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Preface

MOD is an international conference embracing the fields of machine learning, opti-
mization, and data science. The third edition, MOD 2017, was organized during
September 14–17, 2017 in Volterra (Pisa, Italy), a stunning medieval town dominating
the picturesque countryside of Tuscany.

The key role of machine learning, reinforcement learning, artificial intelligence,
large-scale optimization, and big data for developing solutions to some of the greatest
challenges we are facing is undeniable. MOD 2017 attracted leading experts from the
academic world and industry with the aim of strengthening the connection between these
institutions. The 2017 edition of MOD represented a great opportunity for professors,
scientists, industry experts, and postgraduate students to learn about recent developments
in their own research areas and to learn about research in contiguous research areas, with
the aim of creating an environment to share ideas and trigger new collaborations.

As chairs, it was an honor to organize a premiere conference in these areas and to
have received a large variety of innovative and original scientific contributions.

During this edition, six plenary lectures were presented:

Yi-Ke Guo, Department of Computing, Faculty of Engineering, Imperial College
London, UK. Founding Director of Data Science Institute

Panos Pardalos, Department of Systems Engineering, University of Florida, USA.
Director of the Center for Applied Optimization

Ruslan Salakhutdinov, Machine Learning Department, School of Computer Science
at Carnegie Mellon University, USA. Director of AI Research at Apple

My Thai, Department of Computer and Information Science and Engineering,
University of Florida, USA

Jun Pei, Hefei University of Technology, China

Vincenzo Sciacca, Cloud and Cognitive Division – IBM Rome, Italy

There were also two tutorial speakers:

Domenico Talia, Dipartimento di Ingegneria Informatica, Modellistica, Elettronica
e Sistemistica Università della Calabria, Italy

Xin–She Yang, School of Science and Technology –Middlesex University London,
UK

Moreover, the conference hosted the second edition of the industrial session on
“Machine Learning, Optimization and Data Science for Real-World Applications”:

Luca Maria Aiello, Nokia Bell Labs, UK

Pierpaolo Basile, University of Bari, Italy



Carlos Castillo, Universitat Pompeu Fabra in Barcelona, Spain

Moderator: Aris Anagnostopoulos, Sapienza University of Rome, Italy

We received 126 submissions from 46 countries and five continents; each manu-
script was independently reviewed by a committee formed by at least five members
through a blind review process. These proceedings contain 49 research articles written
by leading scientists in the fields of machine learning, artificial intelligence, rein-
forcement learning, computational optimization, and data science presenting a sub-
stantial array of ideas, technologies, algorithms, methods, and applications.

For MOD 2017, Springer generously sponsored the MOD Best Paper Award. This
year, the paper by Khaled Sayed, Cheryl Telmer, Adam Butchy, and Natasa
Miskov-Zivanov titled “Recipes for Translating Big Data Machine Reading to Exe-
cutable Cellular Signaling Models” received the MOD Best Paper Award.

This conference could not have been organized without the contributions of these
researchers, and so we thank them all for participating. A sincere thank you also goes to
all the Program Committee, formed by more than 300 scientists from academia and
industry, for their valuable work of selecting the scientific contributions.

Finally, we would like to express our appreciation to the keynote speakers, tutorial
speakers, and the industrial panel who accepted our invitation, and to all the authors
who submitted their research papers to MOD 2017.

September 2017 Giuseppe Nicosia
Panos Pardalos

Giovanni Giuffrida
Renato Umeton
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Best Paper Awards

MOD 2017 Best Paper Award

“Recipes for Translating Big Data Machine Reading to Executable Cellular Signaling
Models”
Khaled Sayed*, Cheryl Telmer**, Adam Butchy*, and Natasa Miskov-Zivanov*
*University of Pittsburgh, USA
**Carnegie Mellon University, USA
Springer sponsored the MOD 2017 Best Paper Award with a cash prize of EUR 1,000.

MOD 2016 Best Paper Award

“Machine Learning: Multi-site Evidence-Based Best Practice Discovery”
Eva Lee, Yuanbo Wang and Matthew Hagen
Eva K. Lee, Professor Director, Center for Operations Research in Medicine and
HealthCare H. Milton Stewart School of Industrial and Systems Engineering, Georgia
Institute of Technology, Atlanta, GA, USA

MOD 2015 Best Paper Award

“Learning with Discrete Least Squares on Multivariate Polynomial Spaces Using
Evaluations at Random or Low-Discrepancy Point Sets”
Giovanni Migliorati
Ecole Polytechnique Federale de Lausanne – EPFL, Lausanne, Switzerland
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Abstract. Biological literature is rich in mechanistic information that can be
utilized to construct executable models of complex systems to increase our
understanding of health and disease. However, the literature is vast and frag-
mented, and therefore, automation of information extraction from papers and of
model assembly from the extracted information is necessary. We describe here
our approach for translating machine reading outputs, obtained by reading
biological signaling literature, to discrete models of cellular networks. We use
outputs from three different reading engines, and demonstrate the translation of
different features using examples from cancer literature. We also outline several
issues that still arise when assembling cellular network models from
state-of-the-art reading engines. Finally, we illustrate the details of our approach
with a case study in pancreatic cancer.

Keywords: Machine reading � Big data in literature � Text mining
Cell signaling networks � Automated model generation

1 Introduction

Biological knowledge is voluminous and fragmented; it is nearly impossible to read all
scientific papers on a single topic such as cancer. When building a model of a particular
biological system, one example being cancer microenvironment, researchers usually
start by searching for existing relevant models and by looking for information about
system components and their interactions in published literature.

Although there have been attempts to automate the process of model building
[1, 2], most often modelers conduct these steps manually, with multiple iterations
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between (i) information extraction, (ii) model assembly, (iii) model analysis, and
(iv) model validation through comparison with most recently published results. To
allow for rapid modeling of complex diseases like cancer, and for efficiently using
ever-increasing amount of information in published work, we need representation
standards and interfaces such that these tasks can be automated. This, in turn, will allow
researchers to ask informed, interesting questions that can improve our understanding
of health and disease.

The systems biology community has designed and proposed a standardized format
for representing biological models called the systems biology markup language
(SBML). This language allows for using different software tools, without the need for
recreating models specific for each tool, as well as for sharing the built models between
different research groups [3]. However, the SBML standard is not easily understood by
biologists who create mechanistic models, and thus requires an interface that allows
biologists to focus on modeling tasks while hiding the details of the SBML language
[4–7].

To this end, the contributions of the work presented in this paper include:

• A representation format that is straightforward to use by both machines and
humans, and allows for efficient synthesis of models from big data in literature.

• An approach to effectively use state-of-the-art machine reading output to create
executable discrete models of cellular signaling.

• A proposal for directions to further improve automation of assembly of models
from big data in literature.

In Sect. 2, we briefly describe cellular networks, our modeling approach, and our
framework that integrates machine reading, model assembly and model analysis. In
Sect. 3, we present details of our model representation format, while Sect. 4 outlines
our approach to translate reading output to the model representation format. Section 5
discusses other issues that need to be taken into account when building interface
between big data reading and model assembly in biology. Section 6 describes a case
study that uses our translation methodology. Section 7 concludes the paper.

2 Background

2.1 Cellular Networks

Intra-cellular networks include signal transduction, gene regulation, and metabolic
networks [8]. Signaling networks are characterized by protein phosphorylation and
binding events, which transduce extracellular signals across the plasma membrane and
through the cytoplasm [9]. Gene regulatory networks involve translocation of signaling
proteins from the cytoplasm to the nucleus, where the integration of these protein
signals act on the genome, resulting in changes in gene expression and cellular pro-
cesses [10]. The regulation of metabolic networks incorporates phosphorylation and
binding, as do signaling networks, and also integrates allosteric regulation, other
protein modifications, and subcellular compartmentalization [11].

2 K. Sayed et al.



Inter-cellular networks assume interactions between cells of the same or different
types. These interactions occur via signaling molecules such as growth factors and
cytokines, synthesized and secreted by one cell, and bound to itself or other cells in its
surroundings, or via a cell-cell contact.

At all levels of signaling, there are feedforward and feedback loops and crosstalk
between signaling pathways to either maintain homeostasis or amplify changes initi-
ated by extracellular signals [12].

2.2 Modeling Approach

When generating executable models, we use a discrete modeling approach previously
described in [13]. As illustrated in the example in Fig. 1, we represent system com-
ponents as model elements (A, B, and C in the example), where each element is defined
as having a discrete number of levels of activity. Each element has a list of regulators
called influence set. In our example, A is a positive regulator of C, B and C are positive
regulators of A, and C activates itself while B inhibits itself. Additionally, each element
has a corresponding update rule, a discrete function of its regulators. In our example, A
is a conjunction of B and C, while C is a disjunction of A and C. Although the model
structure is fixed, the simulator that we use [14] is stochastic, and thus, allows for
closely recapitulating the behavior of biological pathways and networks.

2.3 Framework Overview

To automatically incorporate new reading outputs into models, we have developed a
reading-modeling-explanation framework, called DySE (Dynamic System Explana-
tion), outlined in Fig. 2. This framework allows for (i) expansion of existing models or
assembly of new models from machine reading output, (ii) analysis and explanation of
models, and (iii) generation of machine-readable feedback to reading engines. We
focus here on the front end of the framework, the translation from reading outputs to
the list of elements and their influence sets, with context information, where available.

3 Model Representation Format

To enable comprehensive translation from reading engine outputs to executable
models, the models are first represented in tabular format. It is important to note here
that the tabular representation does not include final update rules, that is, the tabular
version of the model is further translated into an executable model that can be

Fig. 1. Toy example illustrating our modeling approach.
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simulated. Each row in the model table corresponds to one specific model element (i.e.,
modeled system component), and the columns are organized in several groups: (i) in-
formation about the modeled system component, (ii) information about the compo-
nent’s regulators, and (iii) information about knowledge sources. This format enables
straightforward model extension to represent both additional system components as
new rows in the table, and additional component-related features by including new
columns in the table. The addition of new columns occurs with improvements in
machine reading.

The first group of fields in our representation format includes system component-
related information. This information is either used by the executable model, or kept as
background information to provide specific details about the system component when
creating a hypothesis or explaining outcomes of wet lab experiments.

A. Name – full name of element, e.g., “Epidermal growth factor receptor”.
B. Nomenclature ID – name commonly used in the field for cellular components,

e.g., “EGFR” is used for “Epidermal growth factor receptor”.
C. Type – these are types of entities used by reading engines as listed in Table 1.
D. Unique ID – we use identifiers corresponding to elements that are listed in

databases, according to Table 1.
E. Location – we include subcellular locations and the extracellular space, as listed

in Table 2.
F. Location identifier – we use location identifiers as listed in Table 2.
G. Cell line – obtained from reading output.
H. Cell type – obtained from reading outputs.

Fig. 2. DySE framework.

Table 1. Element type and ID database.

Element type Database name

Protein UniProt [16]
Protein family Pfam [17], InterPro [18]
Protein complex Bioentities [19]
Chemical PubChem [20]
Gene HGNC [21]
Biological process GO [15], MeSH [22]

Table 2. The list of cellular locations and
their IDs from the Gene Ontology [15]
database.

Location name Location ID

Cytoplasm GO:0005737
Cytosol GO:0005829
Plasma membrane GO:0005886
Nucleus GO:0005634
Mitochondria GO:0005739
Extracellular GO:0005576
Endoplasmic reticulum GO:0005783
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I. Tissue type – obtained from reading output.
J. Organism – obtained from reading output.
K. Executable model variable – variable names currently include above

described fields B, C, E, and H.

The second group of fields in our representation includes component regulators-
related information that is mainly used by executable models, with a few fields used
for bookkeeping, similar to the first group of fields.

L. Positive regulator nomenclature IDs – list of positive regulators of the
element.

M. Negative regulator nomenclature IDs – list of negative regulators of
the element.

N. Interaction type – for each listed regulator, in case it is known whether
interaction is direct or indirect.

O. Interaction mechanism – for each known direct interaction, if the mecha-
nism of interaction is known. Mechanisms that can be obtained from reading
engines are listed in Table 3.

P. Interaction score – for each interaction, a confidence score obtained from
reading.

The third group of fields in our representation includes interaction-related
provenance information.

Q. Reference paper IDs – for each interaction, we list IDs of published papers
that mention the interaction. This information is obtained directly from reading
output.

R. Sentences – for each interaction, we list sentences describing the interaction.
This information is obtained directly from reading output.

It is worth mentioning that this representation format can be converted into the
SBML format to be used by different software tools and shared between different
working groups. Additionally, the tabular format provides an interface that can be
easily created or read by biologists, and generated or parsed by a machine.

4 From Reading to Model

We obtain outputs from three types of reading engines, namely REACH [2], RUBI-
CON [24], and Leidos table reading (LTR) [25]. These reading engines provide output
files with similar but not exactly the same format. In Table 3, we list the interaction
mechanisms that can be obtained from these three reading engines, and in the following
sub-sections we outline their differences and the advantages of each reading engine.

Recipes for Translating Big Data Machine Reading 5



4.1 Simple Interaction Translation

The first type of reading engine, REACH [2], can extract both direct and indirect
interactions, as well as interaction mechanisms, where available. The simplest and most
common reading outputs are those that include only a regulated element and a single
regulator, each of them having one of the entity types listed in Table 1, with the
interaction mechanism being one of the mechanisms described in Table 3. Such
interactions have straightforward translation to our representation format, that is, they
are translated into a single table row with some or all of the fields described in Sect. 3.
Given that our modeling formalism accounts for positive and negative regulators, while
reading engines can also output specific mechanisms where available in text, we
assume in the translation that Phosphorylation, Acetylation, Increase Amount, and
Methylation represent positive regulations, and Dephosphorylation, Ubiquitination,
Decrease Amount, and Demethylation represent negative regulations. Additionally, we
treat Transcription events as positive regulation.

4.2 Translation of Translocation Interaction

We translate translocation events (moving components from one cellular location to
another) using the formalism described in [26]. This formalism requires including two

Table 3. Intracellular interactions (mechanisms) recognized by the three reading engines.

Reading
engine

Recognized mechanisms

REACH
[23]

Activation, Inhibition, Binding, Phosphorylation, Dephosphorylation,
Ubiquitination, Acetylation, Methylation, Increase or Decrease Amount,
Transcription, Translocation

RUBICON
[24]

Activation, Inhibition, Promotes, Signaling, Reduce, Induce, Supports,
Attenuates, Stimulate, Antagonize, Synergize, Increase and Decrease
Amount, Abrogates

LTR [25] Binding, Phosphorylation, Dephosphorylation, Isomerizations

Fig. 3. Schematic representation of a situation common to many biological signaling pathways
where the regulation of complex formation, A binding to B, is regulated by a third protein, C, so
that the A/B complex can activate D and inhibit E. F can regulate A that is able to regulate G
without forming a complex.
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separate model elements for the translocated component, one at the original and one at
the new location. Additionally, in the translocation type of interaction, translocation
regulators can be listed.

4.3 Translation of Complexes

Binding interaction mechanism represents formation of protein complexes in most
cases. However, in order to include both individual proteins and complexes in which
they participate within a single model, we defined rules for incorporating complexes
listed in reading outputs into our model representation format.

A generic example is shown in Fig. 3. If an element in the reading output file is a
complex, we incorporate that output into our model representation format by creating a
separate table row for each component of the protein complex, and change the regu-
lation set as described in the example outlined in Fig. 3. If the formation of complex
AB is regulated by C, then we create two rows; one for element A, which is also
positively regulated by F, and one for element B. The positive regulation rule for
element A becomes (C AND B) OR F, while the positive regulation rule for element B
becomes (C AND A). Additionally, if an element is regulated by a complex, we list all
components of that complex as positive regulators for the element. In the example in
Fig. 3, the positive regulation rule for element D is (A AND B) because D is regulated by
the complex AB. An example of how complexes are translated from reading output into
our representation format is shown in Table 4.

4.4 Translation of Nested Interactions

REACH reading engine can also detect nested interactions, where some of the par-
ticipants are interactions themselves. The following sub-sections show several exam-
ples of these interactions.

Positive Regulation of Activation. As shown in Fig. 4(a), REACH can find and
output interactions where element A is activating element B, while element C is
positively regulating the interaction between A and B. We also include in this and the
following examples element D. In this case, we assume that D is a negative regulator of
B. This means that C will activate B only when A is active. If A is inactive, only D will
inhibit B, while C will not have any effect on B. The following is an example of the

Table 4. Converting REACH output for complexes into our modeling representation format.

Column name Element Positive regulator Mech.
type

Paper
ID

Evidence

Name Type ID Name ID

REACH output {FAK,
PTP-PEST}

{Protein,
Protein}

{Q05397,
Q05209}

PIN1 Q13526 Binding PMC
3272802

PIN1
stimulates
the
binding of
FAK to
PTP-PEST

DySE
format

Comp. 1 FAK Protein Q05397 PIN1 AND
PTP-PEST

(Q13526,
Q05209)

PMC
3272802

Comp. 2 PTP-PEST Protein Q05209 PIN1 AND
FAK

(Q13526,
Q05397)

PMC
3272802
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aforementioned situation that can occur in text, and is extracted by REACH as
described above: “In fact, RANKL induced phosphorylation of Akt was enhanced by the
addition of TNF-alpha”. Here, RANKL is a positive regulator of Akt, and this acti-
vation is further regulated by TNF-alpha.

Positive Regulation of Inhibition. Figure 4(b) illustrates an example of a nested
interaction where A inhibits B, and C positively regulates this inhibition, which means
that C will increase the inhibition of B by A, when A is active/high. Here, we also
assume that element D is a positive regulator of B. If A is inactive/low, only D will
activate B, and C will not have any effect on B. The following text represents an
example sentence for such situation: “This conclusion was supported by the finding that
nilotinib also induced dephosphorylation of the BCR-ABL1 target CrkL”. Here, the
inhibition of CrkL by BCR-ABL1 is enhanced with nilotinib.

Negative Regulation of Activation. The example in Fig. 4(c) shows that C negatively
regulates the activation of B by A. So, if A is inactive/low, only D will activate B, and
C will not have any effect on B. An example text for this situation is “These data
provide evidence that PDK1 negatively regulates TGF-b signaling through modulation
of the direct interaction between the TGF-b receptor and Smad3 and -7”.

Negative Regulation of Inhibition. Figure 4(d) shows that C negatively regulates the
inhibition of B by A. Therefore, if A is inactive/low, only D will activate B, and C will
not have any effect on B.

4.5 Translation of Direct and Indirect Interactions

RUBICON [24] provides two reading outputs, one for direct interactions and one for
indirect interactions. For the indirect interactions, it creates a chain of elements that
starts with the regulator and ends with the regulated element, and includes the inter-
mediate elements, also found in the read paper, forming a path from the regulator to the
regulated elements.

The RUBICON reader output file with direct interactions, has two special fields,
different from REACH: Confidence and Tags. The Confidence column indicates how
confident the reading engine is about the extracted interaction, and the values in this
column can be LOW, MODERATE, and HIGH. The Tags column includes epistemic

a) b) c) d)

Fig. 4. Examples of nested interactions. (a) Positive regulation of Activation interaction,
(b) Positive regulation of Inhibition interaction, (c) Negative regulation of Activation interaction,
(d) Negative regulation of Inhibition interaction
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tags such as ‘implication’, ‘method’, ‘hypothesis’, ‘result’, ‘goal’, or ‘fact’. Table 5
shows reading output examples from RUBICON for the direct and chain interactions.
Due to space constraints, and given that RUBICON does not provide information for
all the columns, Table 5 includes a subset of columns from our representation.

The second reading output file from RUBICON contains indirect interactions that
form a path from the regulator to the regulated element. This output file also includes a
column called “Connection” and in this column, it lists intermediate elements on a path,
followed by their IDs. For example, if there is a path of the form A ! B ! C, element
B will be included in the connection column.

4.6 Translation from Table Reading Output

The third reading engine, LTR, performs table reading and generates reading output in
the tabular format with some or all of the fields described in Sect. 3. The LTR output
also contains information about Cell Line and Binding sites. Additionally, this output
includes much more specific, connected information than those offered by RUBICON
or REACH. Where RUBICON or REACH look at all the interactions listed in a paper,
the nature of their search returns information on many different experiments
and contexts. LTR is able to focus on one table at a time. As tables tend to describe a
highly specific experiment about interacting components, such output can provide
detailed information about parts of the network, which can be valuable in finding
answers to specific questions. An example of an LTR output is shown in Table 6.

Table 5. RUBICON output examples for both Direct and Chain.

Column
name

Element Positive regulator Mech.
type

Connection Paper
ID

Evidence Confidence Tags

Name ID Name ID

Direct TNF
alpha

P01375 IL-2 P60568 Induced NA PMC
149405

In addition, cytokines
including TNFalpha,
TNFbeta and flt3
ligand were induced
by IL-2 as detected by
the arrays

Low Results

Chain Apoptosis GO:
0006915

imatinib 5291 Enhances,
induced

TRAIL,
ID:
P50591

PMC
4896164

Treatment with
imatinib enhances
TRAIL induced
apoptosis

– Goal

Table 6. LEIDOS output example illustrating the effects of the negative regulator (TiO2) on two
different molecules. As both sites affected by the negative regulator are serine residues, this
provides additional context that the negative regulator might be a serine-specific.

Element Negative
regulator

Cell
line

Organism Paper ID Evidence

Name ID Site Name ID

AKT1 P31749 S124 TiO2 CHEBI:
32234

HeLa Human PMC
3251015

Resource3.xls.
table.serial.txt

Gab2 Q9UQC2 S264 TiO2 CHEBI:
32234

HeLa Human PMC
3251015

Resource4.xls.
table.serial.txt
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5 Matching Reading and Modeling

Due to the writing style in biology, reading engines often encounter texts that are hard
to interpret even by human readers. In the following, we outline several situations
where it is critical to correctly interpret interactions listed in reading outputs to enable
accurate model expansion. When there are contradictions among reading outputs, or
between reading output and an existing model, a feedback to reading can be generated
in the form of new queries to guide further literature search and reading. Queries are
designed using AND, OR and NOT to define more precisely the search space and also
to remove papers that would describe information that is not relevant (e.g., focusing on
different cell type).

5.1 Protein Families

Reading engines often come across entities that represent protein families instead of
specific proteins. In such cases, there is no unique protein ID, instead either all IDs of
proteins from that family need to be listed, or a unique protein family ID should be
used. Since our goal is to automate the assembly of models from machine reading
output, we need to be able to accurately treat such protein family entities in the reading
output. There are several issues that can arise when protein families are outputs as
interaction entities in reading output, described in the following example.

Example 1: Let us assume that either an existing model or previous reading output
include an interaction that describes positive regulation of ERK1 by MEK1 (MEK1 !
ERK1), where both MEK1 and ERK1 are specific proteins that have unique IDs in
protein databases. We list below other similar interactions that may be recognized by
reading, and propose methods to resolve such situations.

a. Reading output MEK ! ERK, where both MEK and ERK are listed as protein
families. In order to incorporate both the original interaction and the new one within
the same model, we can treat the new interaction as generalization. Furthermore,
this is also an example of a situation where a feedback to reading engines can be
created, to obtain more information about the interaction. For example, queries that
could result from the scenario described here are:

• Search for other (non-MEK1) MEK family members and their interactions with
ERK1;

• Search for other (non-ERK1) ERK family members and their interactions with
MEK1;

• Search for other MEK (non-MEK1) and ERK (non-ERK1) family members, and
their mutual interactions.

b. Reading output MEK1 ! ERK, where MEK1 is a protein and ERK is a protein
family. In this case, the feedback to reading could be:

• Search for other ERK family members and their interactions with MEK1.

c. Reading output: MEK ! ERK1, where MEK is a protein family and ERK1 is a
protein. In this case, the feedback to reading could be:
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• Search for other MEK family members and their interaction with ERK1.

d. Reading output: MEK ! p38, MEK protein family activating protein p38. This
case requires additional knowledge that would either already exist in the model or
other reading outputs, or would need to be curated by a human expert. MEK3, and
not MEK1, therefore, adding the original interaction (MEK1 ! ERK1) to the
model, and then incorporating connection between MEK1 (as a member of MEK
family) and p38 in the model would make it incorrect. The feedback to reading in
this case could be:

• Search for interaction between MEK1 and p38 to confirm or disconfirm the
interaction MEK ! p38.

5.2 Cell Type

Often, the modeling goal is to include multiple cell types, for example, model of cancer
microenvironment could include cancer cell and several types of immune cells. In such
cases, it is important to know to which cell type to assign the interaction that is
extracted from text by machine reading. When cell type is taken into account,
depending on the information that exists in the reading output, the relationship between
similar reading outputs, or between reading outputs and an existing model, can be
interpreted in several ways and the following example illustrates one such case.

Example 2: Let us assume that the machine reading output lists interaction A ! B (A
regulates B), but no information is given about cell type to which this interaction
belongs. The model assembly step needs to decide to which cell to add this interaction,
and therefore, different scenarios are possible, some of them described here:

• A is already listed in interactions in more than one cell type in the model;
• B is already listed in interactions in more than one cell type in the model;
• Neither A nor B is listed in other interactions;
• Both A and B are listed in interactions in exactly one cell type in the model (same or

different).

The model assembly step, which adds new reading output to existing model, needs
to either take into account previously defined assumptions (e.g., always add interac-
tions to one predetermined cell type, or add interactions to all cell types, or skip the
interaction that does not indicate cell type, etc.). Another approach is a feedback to
reading engines that requests additional search for evidence of cell type in the paper.

5.3 Cellular Location

In some cases, it is important to know the location of elements participating in inter-
actions. For example, translocation of element from one cellular location to another
may take time, or it may be known that a particular element can affect another element
only in a specific location. In order to accurately model such location-dependent
interactions, the machine reading output should include the information about sub-
cellular locations or extracellular space, the effect of location on interactions and on
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timing of cellular events (e.g., translocation). The following examples illustrate two
such case.

Example 3: Let us assume that new reading output includes interaction A ! B (A
regulates B), but the interaction location is different from the one that exists in the
current model. This can either be interpreted as a contradiction, or a feedback to
reading engines can be generated in the form of a query to initiate literature search for
further evidence of new interaction location. Additionally, the confidence obtained
from reading can be compared with the confidence for the interaction in the model, to
decide how to treat the reading output.

Example 4: Let us assume that an existing model includes interaction A ! B (A
positively regulates B) at a specific location, and reading output includes interaction A-|
B (A negatively regulates B), but without location information. This can either be
interpreted as a contradiction, or, as in previous examples, a feedback to reading
engines can be formed to search for further evidence of new interaction location. It is
possible that the new interaction is observed at a different location, thus, the opposite
regulation sign will not be interpreted as contradiction.

5.4 Contradicting Interaction Type

In the case of contradiction among individual reading outputs, or between new reading
output and an existing model, a feedback to reading engines can be created to initiate
new literature search. The following example illustrates one such case.

Example 5: Let us assume that an existing model includes interaction A ! B (A
positively regulates B), while in reading output A-|B (A negatively regulates B).
Assuming that the location information matches, there are several ways to handle this
situation. The difference between reading outputs and model can be interpreted as a
contradiction, or the new interaction may be interpreted as indirect, forming a negative
feed-forward loop with the one existing in the model. In this case, a feedback to reading
engines can request search for further evidence for elements on a path between A and B.

5.5 Negative Information

When it is well known that some interactions do not exist, such information is not
stored in models. However, the reading output may include such interactions and the
following example shows how these situations can be resolved.

Example 6: Let us assume that the previous reading output or an existing model
includes interactions MEK1 ! ERK1 and MEK3 ! p38. There are several other
reading outcomes that could occur:

a. New reading output includes interaction NOT (MEK3 ! ERK), where MEK3 is
interpreted as a protein, and ERK is interpreted as a protein family. This is in
agreement with the model, however, reading output that indicates that an interaction
does not exist is not used to extend the model.
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b. New reading output includes interaction NOT (MEK ! ERK1), where MEK is
interpreted as a protein family and ERK1 is interpreted as a protein. This new
reading output would contradict the model or other reading output, assuming that an
interaction MEK1 ! ERK1 (from Example 1) already exists in the model or in
other reading output. However, when taking into account the fact that MEK3 does
not indeed regulate ERK1, such reading output could also be interpreted as cor-
roboration. To resolve this, a search for further evidence in the paper that confirms
that the MEK from the reading output is not MEK1 could be conducted.

6 Case Study

To illustrate the utility of the translation from output of automated reading to the model
representation format, we show an example of two queries, followed by a summary of
reading results that we obtained from the three reading engines. The summary includes
numbers of unique extensions that were identified by our interaction classifier tool,
which compares reading outputs with baseline model.

The first query that we used is related to molecule GAB2. The original model does
not contain GAB2 and we were interested in extending the model to incorporate
GAB2. The query that we used is:

Note that GAB2 was identified in 1998 so the protein and gene have the same name
and this results in a confusion in the literature search. In Tables 7 and 8, we show the
number of papers returned by REACH and RUBICON reading engines using the
GAB2 and Beta-catenin queries respectively, the events extracted from all of the papers
analyzed, and the unique extensionsthat were found by comparison to two existing
models, Normal and Cancer.

Table 8. Results from b-catenin query.

REACH RUBICON

Number
of papers

351 351

Extracted
events

2809 2024

Unique
extensions

2532 1906

Table 7. Results from GAB2 query.

REACH RUBICON

Number
of papers

249 249

Extracted
events

4800 5082

Unique
extensions

4618 3317
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The second query that we used is related to molecule b-catenin. The original model
does not contain b-catenin and we were interested in extending the model to incor-
porate this molecule. The query that we used is:

In this case, the b-catenin protein was identified in 1989 and the human gene in
1996 so the protein and gene have different names. However, using Greek letters in the
name requires using various related terms in the query to increase the chance of
capturing the right molecule in papers.

These two examples of search terms and the corresponding reading results
emphasize the fact that a careful construction of search terms is critical – with proper
selection of search terms, we can tailor the reading output for relevant context.

7 Conclusion

This paper describes a representation format that we created for the purpose of
automating assembly of models from machine reading outputs. The proposed repre-
sentation format allows for capturing biological interactions at the molecular level, and
it can be easily used by both human experts and machines. The tabular formatting
described in this paper allows for the transit of files through the pipeline from reading
of scientific literature (text written by scientists), to executable model (computer
readable mathematical model that can be simulated). The format is critical to have all of
the tools communicate with each other and also retain readability for biologists to
evaluate the work of the machines. Manual reading and annotation of thousands of
papers would take many weeks instead of hours.

By using this format, our automated framework rapidly assembles and validates
executable models from big data in literature, with the runtimes and comprehensiveness
not previously possible. Such formalized representation of research findings for the
purpose of creating dynamic models will significantly speed up the process of col-
lecting data from literature, and it will facilitate the reusability of existing scientific
results, increase our knowledge and improve our understanding of biological systems.
This, in turn, should lead to rapidly designing new disease treatments and effectively
guiding future studies.
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Abstract. In this paper, we propose a method for optimization of the
parameters of a Support Vector Machine which is more accurate than
the usually applied grid search method. The method is based on Iter-
ated Local Search, a classic metaheuristic that performs multiple local
searches in different parts of the space domain. When the local search
arrives at a local optimum, a perturbation step is performed to calculate
the starting point of a new local search based on the previously found
local optimum. In this way, exploration of the space domain is balanced
against wasting time in areas that are not giving good results. We show
a preliminary evaluation of our method on a radial-basis kernel and some
sample data, showing that it is more accurate than an application of grid
search on the same problem. The method is applicable to other kernels
and future work should demonstrate to what extent our Iterated Local
Search based method outperforms the standard grid search method over
other heterogeneous datasets from different domains.

1 Introduction

Support Vector Machine (SVM) is a popular supervised learning technique to
analyze data with respect to classification and regression analysis [29]. SVM
models have been successfully applied in numerous applications, such as char-
acter recognition [9], text categorization [14], image classification [25] and have
recently entered the healthcare domain to solve classification problems such as
protein recognition [24], genomics [3] and cancer classification [10,30].

The performance of a SVM is dependent on the parameters setting of the
underlying model. The parameters are usually set by training the SVM on a spe-
cific dataset and are then fixed when applied to a certain application. Finding
the optimal setting of those parameters is an art by itself and as such many pub-
lications on the topic exist [6,12,18,28,31]1. Of the techniques used, grid search
(or parameter sweep) is one of the most common methods to determine optimal
parameter values [5]. Grid search involves an exhaustive searching through a
manually specified subset of the hyperparameter space of a learning algorithm,

1 Note that automatic configuration for algorithms is the same problem faced when
doing hyper-parameter tuning in machine learning; it is just another wording.

c© Springer International Publishing AG 2018
G. Nicosia et al. (Eds.): MOD 2017, LNCS 10710, pp. 16–28, 2018.
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guided by some performance metric (e.g. cross-validation). This traditional app-
roach, however, has several limitations. Firstly, this approach is vulnerable to
local optimum. Although a multi-resolution grid search may overcome this lim-
itation, it does not provide an absolute guarantee that it will find the absolute
minimum. Secondly, setting an appropriate search interval is an ad-hoc app-
roach which, likewise, does not guarantee the absolute minimum. Moreover, it
is a computationally expensive approach when intervals are set to capture wide
ranges.

If the parameters to be set are constrained to assume only a fixed set of
values, it has been shown in the literature that a classic random walk performs
better than grid search [4]; but this only applies for fixed grids to explore, which
is not the case when tuning a SVM where the parameters vary in a continuous
search space. As an alternative to grid search approaches and its limitations,
gradient descent has been proposed in literature for SVM parameter tuning [16].
Gradient descent, or steepest descent optimization finds the local minimum by
taking the gradient (or the approximate gradient) at each parameter step as a
directional indication instead of exploring all possible directions. Although this
approach is able to get better solutions than the grid search, it has however
the disadvantage to be sensitive to initial settings of the parameters. That is,
when the provided initial parameter setting produces a starting solution that is
excessively far from the optimal solution within the search domain, the algorithm
then may converge to a local optimum instead of the optimal minimum.

In this paper, we describe a method to tackle the parameters setting prob-
lem in SVMs using an intelligent optimization procedure based on Iterated Local
Search (ILS) [21]. This is a popular metaheuristic which has been shown to be
a promising approach for several real world optimization problems due to its
strong global search capability [26]. ILS has been previously used with success
to address the problem of automatically configuring the parameters of com-
plex, heuristic algorithms in order to optimize performance on a given set of
benchmark instances [13,19]. In this paper we describes a further application
of parameter tuning via ILS specifically to SVMs. The goal is to exploit the
maximum generalization capability of SVMs by selecting an optimal setting of
kernel parameters.

2 Support Vector Machines

SVMs were developed in 1995 by Cortes and Vapnik [9] with the specific aim of
binary classification. Given the input parameters x ∈ X and their corresponding
output parameters y ∈ Y = {−1, 1}, the separation between classes is achieved
by fitting the hyperplane f(x) that has the optimal distance to the nearest data
point used for training of any class.

f(x) =
n∑

i=1

αiyi < xi, x > +b, (1)
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where n is the total number of parameters. The goal is to find the hyperplane
which maximizes the minimum distances of the samples on each side of the plane.
However, the solution for the above problem is not always possible, since fitting
a plane could result in samples being on the wrong side of the plane. To account
for this, a penalty is associated with the instances which are misclassified and
added to the minimization function. This is done via the parameter C in the
minimization formula:

arg min
f(x)=ωT x+b

1
2
‖ω‖2 + C

n∑

i

c(f, xi, yi). (2)

By varying C, a trade-off between the accuracy and stability of the function
is defined. Larger values of C result in a smaller margin, leading to potentially
more accurate classifications, however overfitting can occur. The above approach
only allows for the separation of linear data. In most real world problems, this is
not the case. To overcome this issue, a mapping of the data into a richer feature
space, including non-linear features is applied prior to the hyperplane fitting. For
the purpose of this mapping, kernel functions k(x, x′) are used. Several kernel
functions have been proposed, such as polynomial, hyperbolic or Gaussian radial-
basis functions. We focus this paper on the latter:

K(xi, x
′) = exp(−γ‖xi − x′‖2), γ > 0. (3)

When a Gaussian radial-basis (RBF) function is used as the kernel of the
SVM function, γ defines the variance of the RBF, practically defining the shape
of the kernel function peaks: lower γ values set the bias to low and corresponding
high γ to high bias.

3 Iterated Local Search

Iterated Local Search (ILS) [21] is a popular explorative local search method
for solving discrete optimization problems. It belongs to the class of trajectory
optimization methods, i.e. at each iteration of the algorithm the search pro-
cess designs a trajectory in the search space, starting from an initial state and
dynamically adding a new better solution to the curve in each discrete time-step.
Thus this process can be seen as the evolution in time of a discrete dynamical
system in the state space. The generated trajectory is useful because it provides
information about the behavior of the algorithm and its dynamics.

Iterated Local Search mainly consists of two steps, the first to reach local
optima performing a walk in the search space, while the second to efficiently
escape from local optima [20]. The aim of this strategy is to prevent getting
stuck in local optima of the objective function. Iterated Local Search is probably
the most general scheme among explorative optimization strategies. It is often
used as framework for other metaheuristics or can be easily incorporated as a
subcomponent in some of them to build effective hybrids.
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The algorithm initializes the search by selecting an initial candidate solution.
The construction of the initial solution should be both computationally not
expensive and, possibly, a good starting point for local search. The fastest way
is to generate randomly the initial solution, although this does not guarantee to
have a good-quality starting point. However constructive heuristics may also be
adopted in order to quickly find high-quality starting points, like, e.g. GRASP
[26]. Afterwards, a locally optimal solution is achieved by applying a local search,
whose characteristics have a considerable influence on the performance of the
entire algorithm. The core of the algorithm mainly consists of the following
three phases:

(1) A perturbation applied to the current candidate solution, say s;
(2) A local search performed to the modified solution in order to find a local

optimum, say s′;
(3) The application of an acceptance criterion to decide which of the two local

optima, s or s′, has to be chosen to continue the search process.

The specific steps have to be properly designed and set to find a good trade-
off between diversification (exploration) and intensification (exploitation) of the
optimization process, which is an essential task for a heuristic in order to quickly
identify regions in the search space with high quality solutions, without wasting
too much time in regions with a low quality.

In ILS, both the perturbation and the acceptance criterion mechanisms can
use aspects of the search history (long- or short-term memory). For example,
stronger perturbation should be applied when the same local optima are repeat-
edly encountered. The role of the perturbation (usually probabilistic to avoid
cycling) is to modify the current candidate solution to help the search process
to effectively escape from local minima, in order to eventually find different bet-
ter points. Typically, the strength of perturbation has a strong influence on the
length of the subsequent local search phase. It can be either fixed (independently
of the problem size) or variable. However, the latter one is in general more effec-
tive because the bigger the problem size is, the larger should be the strength. A
more sophisticated adaptive strength scheme is also possible in which the pertur-
bation strength is increased when more diversification is needed, and decreased
when intensification seems preferable (Variable Neighbourhood Search and its
variants [11] belong to this category). The acceptance criterion has also a strong
influence on the behavior and performances of ILS. The two extremes are:

– Accepting the new local optimum only in case of improvement (strong inten-
sification: iterative improvement mechanism);

– Always accepting the new solution (high diversification: random walk in the
search space). In this case a number of the old solutions can be also kept in
memory.



20 S. Consoli et al.

Between these extremes, there are several intermediate choices. In Simulated
Annealing [1], for example, it is possible to adopt a so-called “cooling schedule”:
accepting all the improving candidate solutions and also the non-improving ones
with a probability that is a function of a temperature parameter, T, and of the
difference of objective function values [26]. In Simulated Annealing, the cool-
ing schedule for the temperature T can be either monotonic (non-increasing in
time) or non-monotonic (adapted to tune the balance between diversification and
intensification). The non-monotonic schedule is particularly effective if it exploits
the history of the search: instead of constantly decreasing the temperature, it is
increased when more diversification seems to be required.

4 Our ILS Method for SVM Parameters Tuning

The accuracy of a SVM model is largely dependent on the selection of its model
parameters used in training and predicting [8]. The most common kernel func-
tions are: linear, polynomial, radial-basis, and sigmoid. In our case we choose
a radial-basis kernel function since it is particularly suited to model non-linear
effects and therefore is indicated for many classification and regression prob-
lems. Although our study has been tailored to a radial-basis kernel function, our
routine is generalizable to the parameters setting of any other kernel function
choice.

A radial-basis kernel functions requires two parameters to be properly tuned:
the penalty parameter (C), and the gamma of the kernel function (γ). The C
parameter is a general penalizing parameter for classification, determining the
trade-off between the fitting error minimization and model complexity. The γ
parameter of the kernel function defines the nonlinear mapping from the input
space to some high dimensional feature space. It is critical, as in any regulariza-
tion scheme, that proper values are chosen for both parameters C and γ.

The C parameter affects the trade-off between complexity and proportion
of non-separable samples and it must be set by the user [7]. If C is chosen too
large, we have a high penalty for non-separable points and we may store many
support vectors and overfit. If it is too small, we may have under-fitting [2]. The
parameter C controls indeed the trade-off between errors of the SVM on training
data and margin maximization; C = ∞ leads to hard margin a SVM [27]. In
some SVMs implementations C has been selected equal to the range of output
values [22] to get a reasonable and quick setting of this parameter; however this
choice is quite questionable since it does not consider possible outliers effects
in the training data. In other situations, tuning of parameter C is performed
in practice by means of trial-and-error, i.e. by trying to vary C through a wide
range of values and assessing the optimal performance obtained, either within a
separate validation set, or by cross-validation using only training data [27].

For a SVM the value of the γ parameter of the kernel function should also be
selected. This parameter has an effect on the smoothness of the SVMs response
and it affects the number of support vectors, so both the complexity and the
generalization capability of the network depend on its value [15]. The value of



Improving Support Vector Machines Performance Using Local Search 21

γ strongly affects therefore the level of accuracy of the approximated function.
There is also some connection between observation noise in the training data set
and the value of γ. Fixing this parameter can be useful if the desired accuracy
of the approximation can be specified in advance. If γ is larger than the range of
the target values we cannot expect a good result. If instead γ assumes low values,
tending to zero, we can expect overfitting since the kernel function would always
tends to output one, and the classifier would be able to perform only majority
prediction over the labels. Therefore γ must be chosen to reflect the data in
some way. Choosing γ to be a certain accuracy does of course only guarantee
that accuracy on the training set. An optimal setting of γ requires the knowledge
of noise level. As shown in [7], the noise variance can be estimated directly from
training data, i.e. by fitting very flexible (high-variance) estimator to the data.
Alternatively, one can first apply least-modulus regression to the data, in order
to estimate noise level. In [17] the authors proposed asymptotically optimal γ
values proportional to noise variance, in agreement with [7]. Similarly, in [22]
the authors propose to choose the γ value so that the percentage of support
vectors in the SVM regression model is around 50% of the number of samples.
However, one can easily show examples when optimal generalization performance
is achieved with the number of support vectors larger or smaller than 50%.
A robust compromise can be to impose the condition that the percentage of
support vectors be equal to 50%. A larger value of γ can be utilized (especially
for very large and/or noisy training sets) [22]. The main practical drawback of
such proposals is that they do not reflect sample size. Intuitively, the value of γ
should be smaller for larger sample size than for small sample size (with same
noise level).

Hence, summarizing, both C and γ values affect model complexity (but in
a different way). Grid search [5] is one of the most common methods used to
set C and γ parameters. However, since this approach is vulnerable to local
optimum, we employ an Iterated Local Search procedure to produce optimal,
or near-optimal, kernel parameters in order to get an effective SVM having the
maximum generalization capability over the considered dataset.

The implemented ILS uses the grid search as an inner local search routine,
which is iterated in order to make it fine-grained by using an automated opti-
mization strategy, which at the end produces the best parameters C and γ found
to date and improves the accuracy and robustness of the subsequent classifier.
The algorithm pseudo-code is shown in Algorithm 1. Given training dataset
D and a Support Vector Machine model Θ, the procedure first generates an
initial solution. To get an initial solution, we use an initial solution produced
by the grid search. The grid search exhaustively generates candidates from a
grid of the parameter values, C and γ, specified in the arrays rangeγ ∈ �+

and rangeC ∈ �+. We choose arrays containing five different values for each
parameter, so that the grid search method will look to 25 different parameters
combinations. The range values are taken as different powers of 10 from −2 to
2, i.e.: [10−2, 10−1, 1, 101, 102], in order to provide an initial solution belonging
to a promising region of the search space. Solution quality is evaluated as the
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Algorithm 1. ILS procedure for the generation of the SVM parameters
Input: A training dataset D and a Support Vector Machine model Θ;

Output: The best set of parameters γ, C of Θ;

- Let range1×5
γ ∈ �+ and range1×5

C ∈ �+ be the arrays (1 × 5) containing the range values
for, respectively, the parameters γ and C where to perform the grid search;

begin
· Generate the initial solution:
[γ, C] ← grid-search(D, Θ, rangeγ , rangeC) //Initialization;

· Accuracy evaluation: Acc ←10-fold-CV(γ, C);

while termination conditions not met do
· [rangeγ , rangeC ] ← new-ranges(rangeγ , γ, rangeC , C) //Perturbation;

· [γ′, C′] ← grid-search(D, Θ, rangeγ , rangeC) //Local search;

· Accuracy evaluation: Acc′ ←10-fold-CV(γ′, C′);
//Acceptance criterion:

if (Acc′ > Acc) then
· Set γ ← γ′, C ← C′, Acc ← Acc′;

end

end

4 ⇒ The best set of parameters γ, C of Θ.

end

accuracy of the SVM by means of 10-fold cross validation. In general, in a k-fold
cross validation, the original sample is randomly partitioned into k equal sized
subsamples. Of the k subsamples, a single subsample is retained as the validation
data for testing the model, and the remaining k−1 subsamples are used as train-
ing data. The cross-validation process is then repeated k times, with each of the
k subsamples used exactly once as the validation data. The k results from the
subsamples can then be averaged to produce a single estimation. The advantage
of this method over repeated random sub-sampling is that all observations are
used for both training and validation, and each observation is used for validation
exactly once. Although in general k remains an unfixed parameter, we used a
10-fold cross-validation since k = 10 is the most common used setting [23]. The
evaluated accuracy is stored in the variable Acc.

Afterwards, the perturbation phase, which represents the core idea of ILS, is
applied to the incumbent solution. The goal is to provide a good starting point
(i.e. parameters ranges) for the next local search phase of ILS (i.e. the grid search
in our case), based on the previous search experience of the algorithm, so that to
obtain a better balance between exploration of the search space against wasting
time in areas that are not giving good results. Ranges are set as:

rangeγ = [γ ∗ 10−2, γ ∗ 10−1, γ, γ ∗ 10, γ ∗ 102]
≡ [γinf−down, γinf−up, γ, γsup−down, γsup−up], (4)

rangeC = [C ∗ 10−2, C ∗ 10−1, C, C ∗ 10, C ∗ 102]
≡ [Cinf−down, Cinf−up, C, Csup−down, Csup−up]. (5)

Imagine that the grid search gets the set of parameters γ′, C ′ as a new incumbent
solution, whose evaluated accuracy is Acc′ by means of 10-fold cross-validation.
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Then the acceptance criterion of this new solution is that it produces a better
quality, that is an increased accuracy, than the best solution to date. If it does
not happen, the new incumbent solution is rejected and the ranges are updated
automatically with the following values:

γinf−down = rand(γinf−down ∗ 10−1, γinf−down) and Cinf−down

= rand(Cinf−down ∗ 10−1, Cinf−down) (6)

γinf−up = rand(
γ − γinf−up

2
, γ) and Cinf−up = rand(

C − Cinf−up

2
, C) (7)

γsup−down =rand(
γsup−down − γ

2
, γ) and Csup−down = rand(

Csup−down − C

2
, C)

(8)
γsup−up = rand(γsup−up ∗ 10) and Csup−up = rand(Csup−up ∗ 10). (9)

That is, indifferently for γ and C, the values of the inf -down and sup-up com-
ponents are random values always taken farther the current parameter (γ or C),
in order to increase the diversification capability of the metaheuristic; while the
values of the inf -up and sup-down components are random values always taken
closer the current parameter, in order to increase the intensification strength
around the current parameter. This perturbation setting allows a good balance
among the intensification and diversification factors. Otherwise, if in the accep-
tance criterion the new incumbent solution, γ′ and C ′, is better than the current
one, γ and C, i.e. Acc′ > Acc, then this new solution becomes the best solution
to date (γ ← γ′, C ← C ′), and rangeγ and rangeC are updated by following
Eqs. 1 and 2. This procedure continues iteratively until the termination con-
ditions imposed by the user, such as maximum allowed CPU time, maximum
number of iterations reached, or the maximum number of iterations between two
successive improvements, are satisfied and, at the end of the algorithm, the best
combination of γ and C parameters is produced as output of the procedure.

5 Experimental Analysis

To test the performance of the proposed algorithm we run some preliminary
experiments on real clinical data which was available to us. We took a random
sample of 1,500 instances from this dataset related to patients who had a surgery
for prostate cancer, with attributes like pre-surgical information on laboratory
data, histology data, time to progression free survival, etc. The aim is to predict if
these patients progress to biochemical recurrence after surgery given the values
taken from the other attributes using a SVM model. Instances with missing
values were discarded from selection. Scaling in [−1, 1] was employed to avoid
feature values in greater numerical ranges dominating those in smaller numerical
ranges, as well as to avoid the numerical difficulties during the calculation.

The proposed ILS used to tune the SVM model was implemented using the
R platform. For the SVM implementation and the grid search we used the open
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source package e1071 available in R2. We implemented the ILS algorithm from
scratch. For the grid search, the searching space for the parameters γ and C
were set to [10−5, 10−4, ..., 1, ..., 104, 105] for both parameters, for an overall of
11 ∗ 11 = 121 combinations of (γ, C) parameters tested each time. In order to
ensure a fair computational comparison among the two methods, we store the
overall computational time required by the grid search and we use it as stopping
condition for the ILS algorithm. Our computational experiments were conducted
on an Intel Quad-Core i5 5300U CPU (2.3 GHz) with 16 GB of RAM.

In order to guarantee valid results, a k-fold cross validation, with k = 10, was
used to evaluate the classification accuracy [23]. That is, data was divided into
ten subsets and, each time, one of the ten subsets was used as the test set and
the other nine subsets formed the training set. Then the average error across
all ten trials was computed. To test the performance of the two SVM models,
we evaluated sensitivity, specificity, and the area under the Receiver Operating
Characteristic curve (AUC), which are the typical statistical measures used for
the performance of a binary classification test. Sensitivity, also called the true
positive rate, or recall in some cases, measures the proportion of positives that
are correctly identified as such. Specificity, also referred to as true negative rate,
measures the proportion of negatives that are correctly identified as such. The
receiver operating characteristic (ROC) curve is a graphical display that gives
the measure of the predictive accuracy of a logistic model. The curve displays
the true positive rate and false positive rate. AUC is the area under the ROC
curve, which is one of the best methods for comparing classifiers in two-class
problems.

Table 1. Computational results for the 10-fold cross validation.

n Sensitivity Specificity AUC

ILS Grid ILS Grid ILS Grid

1 0.63 0.63 0.73 0.64 0.72 0.68

2 0.74 0.74 0.69 0.65 0.77 0.66

3 0.75 0.65 0.69 0.69 0.75 0.70

4 0.68 0.68 0.80 0.63 0.80 0.68

5 0.75 0.67 0.80 0.68 0.84 0.80

6 0.52 0.48 0.82 0.79 0.73 0.68

7 0.78 0.78 0.67 0.65 0.78 0.74

8 0.58 0.58 0.75 0.67 0.69 0.64

9 0.75 0.71 0.74 0.67 0.78 0.76

10 0.64 0.59 0.63 0.62 0.70 0.66

Avg: 0.68 0.65 0.73 0.67 0.76 0.70

2 https://cran.r-project.org/web/packages/e1071/index.html.

https://cran.r-project.org/web/packages/e1071/index.html
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Our results are shown in Table 1. The table shows sensitivity, specificity and
AUC values over the 10-fold cross validation obtained by the two SVM models
tuned with ILS and grid search, respectively. It can be observed that the average
accuracy achieved by the developed SVM tuned with the ILS is always higher
than that of the SVM tuned with the grid search. Indeed, sensitivity, specificity
and AUC values obtained by the first method are always larger, or equal, to
those obtained by the SVM with the grid search method. When ILS obtains
a same value of the grid search, is because it obtained better performance on
the other measures, like for example it happens in the first subsample, where
they get the same sensitivity, but specificity and AUC are considerably larger
in the ILS method. On the average, the ILS and grid search methods obtain,
respectively, the following measures: sensitivity, 0.68 against 0.65; specificity,
0.73 against 0.67, AUC, 0.76 against 0.70. The superiority of the Iterated Local
Search tuning method against the grid search is further evidenced by Fig. 1,
where the bar plots of the AUC for the 10-fold cross validation for the two
methods are shown (ILS, in green, and grid search, in blue).

It is evident that the proposed ILS for tuning the SVM obtains more appro-
priate parameters, performing better than the grid search method over the con-
sidered sample dataset. The better performance of the proposed method can
be attributed to its adaptive control behaviour during the tuning phase of the
parameters, while the grid search method, being a local search method in nature,
can be stuck on local optima during the search process, wasting time in less
promising areas of the search space.

Fig. 1. Bar plot of the AUC obtained by the two approaches. (Color figure online)

6 Conclusions and Future Research

We have defined an implementation of Iterated Local Search to optimize the
C and γ values for a radial-basis kernel. On our preliminary computational
experiments over same real sample clinical data available to us, we have shown
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that our method outperforms a standard grid search for the task of setting
C and γ parameters on this data set. By exploiting promising regions of the
search domain, derived from the search history of previously found local optima,
the Iterated Local Search method provides additional exploration of the search
space over grid search while taking care not to waste too much time in areas
where the results are not good. While the method was applied to a radial-basis
kernel in this paper, it translates too other kernels as well. Future research
should investigate to what extent this method can outperform grid search on
other kernels and on other heterogeneous datasets, coming also from different
domains. Furthermore, the efficiency of the method on different sizes of data
sets and feature sets should be investigated. Extending the method to include
a penalty for model complexity in terms of the number of included features
could provide a nice encompassing method for feature selection. In future work
we plan also to compare the performance of the proposed algorithm against
other common metaheuristics for tuning SVM hyperparameters, in particular
evolutionary algorithms. In addition we aim at a better statistical analysis of
the results, showing also how the grid search results improve using a denser
grid, and how this affects the computational time in comparison to the ILS.
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Abstract. We consider a problem of optimizing convex function of vec-
tor parameter. Many quasi-Newton optimization methods require to con-
struct and store an approximation of Hessian matrix or its inverse to take
function curvature into account, thus imposing high computational and
memory requirements. We propose four quasi-Newton methods based
on consecutive projective approximation. The idea of these methods is
to approximate the product of the function Hessian inverse and func-
tion gradient in a low-dimensional space using appropriate projection
and then reconstruct it back to original space as a new direction for the
next estimate search. By exploiting Hessian rank deficiency in a spe-
cial way it does not require to store Hessian matrix neither its inverse
thus reducing memory requirements. We give a theoretical motivation
for the proposed algorithms and prove several properties of correspond-
ing estimates. Finally, we provide a comparison of the proposed methods
with several existing ones on modelled data. Despite the fact that the
proposed algorithms turned out to be inferior to the limited memory
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) one, they have important
advantage of being easy to extent and improve. Moreover, two of them
do not require the function gradient knowledge.

Keywords: Least-squares · Function approximation
Convex optimization · Iterative methods · Quadratic programming
Quasi-Newton methods · Projective methods

1 Introduction

Mathematical optimization is a very popular and widely used tool in multiple
science and engineering problems that are to maximising or minimising some
quantity. It is a core technique for solving many machine learning problems,
particularly in big data related areas (e.g., see [2,11]).

Assuming function differentiability one may choose among many zero- or
first-order iterative optimization algorithms (for their list, see [3,12,15,17]).
However, most of them treat function as linear in particular point neighbour-
hood, ignoring its quadratic constituent.
c© Springer International Publishing AG 2018
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If the function were twice differentiable and its Hessian was known, then
one may use Newton method thus achieving quadratic convergence rate. Unfor-
tunately, second derivative is often unknown in machine learning problems, or
its calculation become infeasible in high-dimensional case especially frequently
arising in big data areas. Quasi-Newton methods that iteratively approximate
Hessian matrix on the basis of the parameter changes and the function gra-
dient changes seem to be a reasonable trade-off between Newton method and
first-order optimization methods, combining high convergence speed of Newton
method and weak function requirements (e.g. knowledge of Hessian).

Most quasi-Newton algorithms work in iterative fashion updating current
Hessian matrix approximation consequently performing rank one or rank two
update based on gradient and point values at each iteration: Davidon-Fletcher-
Powell update [6,8], Symmetric Rank 1 update [5] and possibly the most widely
used, Broyden-Fltecher-Goldfarb-Shanno update [4,8]. This approach has one
major drawback: it requires storing entire Hessian matrix or its inverse in mem-
ory. To overcome this obstacle, the limited-memory BFGS (L-BFGS) method was
proposed in [16]. Despite the fact that quasi-Newton methods mentioned above
do use history of points and gradient vectors to approximate Hessian matrix,
they use these vectors in iterative fashion and do not attempt to reconstruct the
objective function itself.

In contrast, another type of optimization algorithms—surrogate optimization
methods—do use entire or truncated history of estimates and function values
at those points. Surrogate optimization methods iteratively approximate the
objective function by another function called surrogate on the basis of a set of
points and function values at these points and take the optimum estimate based
on obtained surrogate. Despite many advantages, most surrogate models share
common drawbacks: they are memory and time consuming and, what is most
important, their quality depends on the chosen surrogate model adequacy with
respect to original function [10].

Additionally, so-called multi-step optimization methods do use history
too [17]. Most of them use only fixed amount of history, e.g. two-step Heavy-ball
method uses information from two past steps only. Others do use parametrized
amount of history, like multi-step quasi-Newton method [9] as well as L-BFGS
[16], but in slightly different way (e.g., not using the projection trick, or without
explicit quadratic approximation).

There are a number of previous work regarding the projection idea. E.g. in
[14] authors proposed method which use a variant of L-BFGS algorithm but
storing gradient and estimates steps vectors not in original space but project
it into a low-dimensional space spanned on last m gradient and estimate vec-
tors. Compressed sensing is a powerful technique for signal recovery solely based
on projection idea [7]. In fact, L-BFGS and many quasi-Newton methods use
a low-rank Hessian matrix approximation that can be interpreted as implicit
projection.

In this paper we propose several optimization methods that implicitly
approximate Hessian matrix using projective approximation. By projective
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approximation we understand the following procedure which we denote by
acronym PAR performed on each iteration.

1. Projection step: rectangular matrix with orthonormal rows is constructed and
then used to project parameters values history to a low-dimensional space.

2. Approximation step: projected parameters together with corresponding func-
tion values are been approximated with quadratic polynomial.

3. Reconstruction step: finally, Hessian matrix is calculated using estimated
quadratic polynomial coefficients and rectangular matrix from step 1.

This procedure is described in detail in Sect. 3. Worth noting that in
paper [18] author utilized the similar procedure for gradient descent method
acceleration.

The paper is organized as follows. In Sect. 2 we give some preliminary infor-
mation for further discussion. In Sect. 3 we propose four quasi-Newton algo-
rithms based on projective approximation idea together with some explanation.
In Sect. 4 we provide theoretical motivation behind the proposed algorithms and
prove some of their properties. Further, in Sect. 5 we perform a comparative
analysis of these algorithms together with gradient descent (GD), BFGS and
L-BFGS methods on modelled data. Finally, Sect. 6 brings the conclusion.

2 Preliminaries

2.1 Notation Remarks

We use small light symbols x for scalars and indexes (mainly), small bold symbols
x for vectors, x(i) for i-th vector element, capital light symbols X for constants
and sets (except parameter matrix Θ), capital bold symbols X for matrices,
Xi,· for i-th row and X·,j for j-th column, diag−1 : Rd×d → R

d is an operator
which transform a matrix to a vector consisting of the matrix diagonal elements:
diag−1(X)(i) = (X)i,i. Specifically we denote t as iteration index, T as total
number of iterations, d as dimension of original space, q as dimension of pro-
jective space, P ∈ R

q×d as matrix with orthonormal rows used for projection, I
as identity matrix (its size follows from the context), � as transpose sign, ̂as
estimate sign, f as function and ∇xf or ∇f as function gradient with respect
to parameter vector x.

2.2 Quadratic Response Surface Methodology

Quadratic response surface methodology (QRSM) is a surrogate optimization
method where 2nd order polynomial constructed via polynomial regression used
as a surrogate. It uses a set of points and corresponding objective function mea-
surements to interpolate them in R

d+1 using quadratic least squares technique
[1]. I.e., having a set of points {xi}n

i=1 ⊂ R
d and corresponding function values

{yi}n
i=1 ⊂ R, quadratic least squares method estimates the 2nd order polyno-

mial coefficients by solving the following optimization problem analytically (since
polynomial is linear in all coefficients):
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Â, b̂, ĉ = argmin
A∈Rd×d,A�=A,b∈Rd, c∈R

n
∑

i=1

(

1
2
x�

i Axi + b�xi + c − yi

)2

(1)

argmin of obtained 2nd order polynomial which is equal to −Â−1b̂ is then
used as a next objective function optimum estimate.

One of the polynomial least squared and particularly of quadratic response
surface methodology drawbacks is that they are inapplicable in high-dimensional
problems [1]: straightforward 2nd order polynomial reconstruction requires
O (

Nd2 + d4
)

in memory and O (

d6 + d4N
)

in time. Clearly this is inappro-
priate in case of big d.

2.3 Quasi-Newton Optimization Methods

Quasi-Newton algorithms iteratively improve optimum point estimate xt by
moving it in the direction to ̂H−1

t gt, where matrix ̂H is the Hessian estimate
and g is either the function gradient in xt or its estimate. Some quasi-Newton
algorithms maintain a low-rank Hessian approximation and exploit its rank
deficiency to directly approximate resulted vector

(∇2f(xt)
)−1 ∇f(xt) without

explicit Hessian matrix construction and inversion (L-BFGS is one of examples
[16]). A general optimization procedure including both this approaches presented
in Algorithm 1 where all the logic is in the CalcDirection procedure.

Algorithm 1. QuasiNewtonNoHessian(f,x0,CalcDirection, lineSearch, T )
1: for t ← 1 to T do
2: �xt ← CalcDirection(f,xt−1)
3: λt ← argminλ f(xt−1 + λ�xt)
4: xt ← xt−1 + λt�xt

5: return xT

3 Algorithm Descriptions

In this section we describe four quasi-Newton algorithms all exploiting the
projective-approximation-reconstruction idea briefly described above. First,
we present an algorithms pseudocode and then give some comments and
explanations.

Algorithm 2 contains general PAR-based implementation of CalcDirection
procedure from Algorithm 1. Unfortunately we do not provide any study of the
parameters q and m influence on the algorithm quality due to paper size restric-
tions. However, to knowledge there is usually no need to select q > 1 and optimal
value for parameter m is highly dependant on the particular function.

As one can see, entire projection-approximation-reconstruction pipeline is
encapsulated in the PAR(y,X,G) procedure. Four proposed Algorithms 3, 4, 5
and 6) describe particular implementations of the PAR procedure. In turn all of
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Algorithm 2. GeneralProjectiveApproximationCalcDirection(f,x)
Parameters:

1: q — projective space dimension
2: m — number of estimates, gradients and function values stored

Initialize:
3: G ← 0 ∈ R

m×d

4: X ← 0 ∈ R
m×d

5: y ← 0 ∈ R
m

6: t ← 0
Evaluate:

7: t ← t + 1
8: if t ≤ m then
9: yt ← f(x)

10: Xt,· ← x�

11: Gt,· ← ∇f(x)�

12: return ∇f(x)
13: else
14: y ← (y2, . . . , ym, f(x))�

15: X ← [
X�

2,·, . . . ,X
�
m,·,x

]�

16: G ← [
G�

2,·, . . . ,G
�
m,·, ∇f(x)

]�

17: �x ← PAR(y,X,G)
18: return �x

Algorithm 3. PAR1(y,X,G)
1: P ← Gram-Schmidt(Gm,·, . . . ,Gm−q+1,·)
2: Z ← XP� � Projection
3: Q̂ ← QuadraticLeastSquares

(
Z, diag−1(GX�) − y

)
� Approximation

4: �x ← −P�Q̂−1PGm,· + (I − P�P)
∑m

i=1 Xi,· � Reconstruction
5: return �x

Algorithm 4. PAR2(y,X,G)
1: P ← Gram-Schmidt(ξ1, . . . , ξq) � ξi ∼ N (0, Id)
2: Z ← XP� � Projection
3: Q̂ ← QuadraticLeastSquares

(
Z, diag−1(GX�) − y

)
� Approximation

4: �x ← −P�Q̂−1PGm,· + (I − P�P)
∑m

i=1 Xi,· � Reconstruction
5: return �x

Algorithm 5. PAR3(y,X,G)
1: P ← Gram-Schmidt(Gm,·, . . . ,Gm−q+1,·)
2: Z ← XP� � Projection
3: Q̂, p̂ ← QuadraticLeastSquares (Z,y) � Approximation

4: �x ← Xm,· − P�Q̂−1p̂ + (I − P�P)
∑m

i=1 Xi,· � Reconstruction
5: return �x
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Algorithm 6. PAR4(y,X,G)
1: P ← Gram-Schmidt(ξ1, . . . , ξq) � ξi ∼ N (0, Id)
2: Z ← XP� � Projection
3: Q̂, p̂ ← QuadraticLeastSquares (Z,y) � Approximation

4: �x ← Xm,· − P�Q̂−1p̂ + (I − P�P)
∑m

i=1 Xi,· � Reconstruction
5: return �x

them a largely based on QuadraticLeastSquares and Gram-Schmidt procedures.
QuadraticLeastSquares procedure solves the (1) problem and Gram-Schmidt
method perform consecutive vectors orthonormalization using modified (stabi-
lized) Gram-Schmidt orthogonalization (MGS) method (see, e.g. [13]). Random
gaussian vectors ξi ∼ N (0, Id) generated by consequently generating their ele-
ments ξ

(j)
i ∼ N (0, 1).

Algorithms 3 and 5 construct matrix P using orthonormalization of last q
gradient vectors as rows, while Algorithms 4 and 6 use q random orthonor-
mal vectors. Algorithms 3 and 4 use quadratic least squares method to esti-
mate quadratic dependency between projected vectors Z and diag−1(GXT ) −y
instead of raw function values y since it removes linear term (see Remark 2).
Thus, there is no need to estimate linear coefficients of the approximating
polynomial. These algorithms use special form of “reconstruction” of the esti-
mated quadratic coefficients from the low-dimensional to the original space:
in addition to P�

̂Q−1PGm,· term which approximates
(∇2f(x)

)−1 ∇f(x) (see
Proposition 3) special projection correction term (I−P�P)

∑m
i=1 Xi,· is used to

reduce an effect of the projection (see Proposition 1). In contrast, Algorithms 5
and 6 reconstruct linear term with quadratic least squares and use it in recon-
struction step, where

(∇2f(x)
)−1 ∇f(x) is approximated by Xm,· − P�

̂Q−1p̂
(see Proposition 2).

Table 1. PAR algorithms classification by the way projection, approximation and
reconstruction steps are performed.

Algorithm Projection Approximation Reconstruction

PAR1 Orthonormalized
gradients

Quadratic least squares
fixed linear coefficients

Use Hessian approximation
from Proposition 3

PAR2 Random
projection

Quadratic least squares
fixed linear coefficients

Use Hessian approximation
from Proposition 3

PAR3 Orthonormalized
gradients

Quadratic least squares Direct minimum
reconstruction from
Proposition 2

PAR4 Random
projection

Quadratic least squares Direct minimum
reconstruction from
Proposition 2
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Thus, Algorithms 3, 4, 5 and 6 can be categorized by the way how projection,
approximation and reconstruction steps are performed. This categorization is
presented in Table 1. Finally, we have

Remark 1. General Algorithm 2 utilize O (md) in memory and O (d) in operations
at each iteration. In addition, Algorithms 3, 4, 5 and 6 utilize O (

q2m + q4
)

in
memory and O(qd + q4.76 + mq4 + md) in number of operations.

4 Theoretical Ground

In this section we present several propositions that motivates the proposed
algorithms and estimate some of their properties. At first, we bring the con-
text and then describe the propositions in this context. Proofs are given in the
AppendixA.

Here is the context. Consider function f : Rd → R: f(x) = 1
2x

�Hx+b�x+c,
where H ∈ R

d×d, H � 0, b ∈ R
d, c ∈ R, P ∈ R

q×d, PP� = Iq, q < d. Moreover,
consider sequence of in some way related points {xt}K

t=1 (e.g. consecutive esti-
mates from optimization algorithm). In Proposition 3 we additionally assume
that function f has additive error term with centralized normal distribution.
We use quadratic function as a approximation of convex function in some point
neighbourhood. The noise term includes both errors/uncertainties and model
inadequacy.

Remark 2. Note, that difference between gradient and function itself removes
linear term in quadratic function: ∇f(x) − f(x) = 1

2x
�Hx − c.

Now assume that we obtain ẑ—minimum with respect to the projection.
If matrix P were square invertible matrix, we would simply set x̂ = P−1ẑ.
Unfortunately, it obviously is not: any point z ∈ R

q corresponds the entire set
{x ∈ R

d : Px = z}. Hence we need to impose additional restrictions to pick
specific point from this set. Since we are extending original sequence {xt}K

1

picking the closest point to the original sequence in terms of Euclidean distance
sounds reasonable. The following proposition gives an explicit expression for x̂
that minimizes this distance.

Proposition 1. Consider {x1, . . . ,xK} ⊂ R
d. Then

x̂ = argmin
{x∈Rd :Px=ẑ}

K
∑

t=1

‖xt − x‖22 =
(

I − P�P
) 1

K

K
∑

1

xt + P�ẑ.

Having ẑ, the following proposition gives an explicit estimate of difference
between corresponding x̂ and argmin f . It demonstrates that x̂ is the best esti-
mate in terms of the projection P and it obviously benefits from closeness of the
preceding xi-th to the function minimum point.
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Proposition 2. Consider {xt}K
1 ⊂ R

d and corresponding function values
{yt}K

1 , yt = f(xt). Denote x =
∑K

1 xi/K and x̂ = −P�PH−1b+
(

I − P�P
)

x.
Then

‖argmin f − x̂‖22 =
∥

∥(I − P�P)
(

H−1b − x
)∥

∥

2

2
.

Finally, the following proposition consider a problem of Hessian estimation
with projective approximation approach. It gives an upper bound for Hessian
matrix estimation error in terms of Frobenius norm. Worth noting, that it con-
sider not deterministic but stochastic variant of function f with additional noise
term ε. Thus, it gives an upper bound as a random variable.

Proposition 3. Consider function f(x) = 1
2x

�Hx + b�x + c + ε, where ε ∼
N (0, σ2

ε) and {xt}K
1 ⊂ R

d with corresponding projections {zt = Pxt}K
1 ⊂ R

q

and function values {yt = f(xt)}K
1 ⊂ R. Let ̂Q be an estimation of Hessian

matrix obtained via quadratic least squares applied to a set of points {zt, yt}K
1 .

Denote ̂H = P�
̂QP. Then

∥

∥

∥H − ̂H
∥

∥

∥

2

F
≤ ∥

∥(I − P�P)H(I − P�P)
∥

∥

2

F
+ q2ξ,

where ξ ∼ q2C(XP�)χ2(1) and C is a positive scalar-valued function.

Remark 3. One may note, that
∥

∥(I − P�P)H(I − P�P)
∥

∥

2

F
achieve its minimum

with respect to P if subspace spanned on rows of P coincides with subspace
spanned on eigenvectors of H corresponding to q largest eigenvalues.

5 Modelling

In this section we evaluate four proposed algorithms together with gradient
descent, BFGS and L-BFGS algorithms on simple modelling example. We use
function f(x) = 1

2x
�Hx + b�x + c + ε, where ε ∼ N (0, σ2

ε), x ∈ R
8, matrix

H = LL� where Li,j ∼ N (0, 1) and b(i) ∼ N (0, 1).
Each algorithm was evaluated as follows: we run algorithm one hundred times

on randomly generated f till absolute Euclidean norm between estimate and
argmin f became smaller than 0.1 or till number of iterations exceeds 1000. We
have used the following setup for each algorithm:

– GD: initial step rate equals to 0.01 with momentum equal to 0.9;
– L-BFGS: m (history size) equals to 3;
– PAR1, PAR2, PAR3, PAR4: q equals to 1, m equals to 3.

We consider number of iterations as an informative measure for methods compar-
ison since on each iteration of gradient descent, L-BFGS, PAR1, PAR2, PAR3,
PAR4 and BFGS algorithms function and its gradient are evaluated exactly once
due to caching.

Table 2 contains 25%, 50% and 75% -percentiles of number of iterations for
each algorithm. In addition, we present number of iterations as boxplot for each
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algorithm on Fig. 1 for clarity. As one can see, all proposed algorithms demon-
strate much better convergence then gradient descent algorithm, especially
Algorithms 3 and 5. However, L-BFGS algorithm surpass all of them: even
PAR1 and PAR3 algorithms are at least twice as slow as L-BFGS. However,
few interesting conclusions can be made. First, projection matrix constructed as
orthonormalized gradients in few past points perform much better than ran-
dom one. Second, explicit argmin estimation which is done in Algorithms 5
and 6 seems to work a little bit better than reconstruction approach used in
Algorithms 3 and 4.

Table 2. Number of iterations percentiles

Algorithm 25% 50% 75%

GD 832 1000 1000

BFGS 34 56 84

L-BFGS 71 96 163

PAR1 96 178 391

PAR2 122 513 1000

PAR3 83 152 238

PAR4 126 592 1000

Fig. 1. Boxplots visualizing iterations number distribution for each algorithm. The
bottom and top of each box are the first and third quartiles, and the band inside each
boxes is the median, whiskers correspond to 0.05- and 0.95- quantiles.
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6 Conclusion

We propose four quasi-Newton algorithms all sharing the same projective approx-
imation idea based on implicit approximation of product between inverse Hes-
sian and gradient in the low-dimensional space obtained through specifically
constructed projection. We motivate these algorithms by several propositions
and prove some properties of corresponding estimates, howbeit, no convergence
proof is given. We perform a comparative analysis of the proposed algorithms
with gradient descent, BFGS and L-BFGS algorithms. Despite the fact that
the algorithms proposed turned to be less effective in number of iterations
than L-BFGS, they have few important properties. First one is that projection-
approximation-reconstruction steps which are implicit in L-BFGS algorithm are
explicitly expressed in the proposed algorithms. The second and most important
one is that since projective-approximation-reconstruction steps are expressed
explicitly they can be easily improved or modified. In example, one can replace
quadratic least squares by another approximation algorithm (e.g. by adding reg-
ularization, by using more complex and even non-convex surrogates), or mod-
ify the projection procedure. Thus, it opens up ample opportunities for fur-
ther research. With regard to future research direction, we plan to apply the
proposed algorithms for estimating parameters of deep convolutional neural net-
works, since in that case the problem of the parameter space high dimensionality
is especially relevant.

Acknowledgments. This work was supported by Russian Science Foundation
(project 16-19-00057).

A Proofs

Proof (of Proposition 1)

∂x argmin
{x∈Rd :Px=ẑ}

K
∑

t=1

‖xt − x‖22

= ∂x

K
∑

t=1

∥

∥P�Pxt +
(

I − P�P
)

xt − (

P�ẑ +
(

I − P�P
)

x
)∥

∥

2

2

= ∂x

K
∑

t=1

∥

∥P�Pxt − P�ẑ
∥

∥

2

2
+ ∂x

K
∑

t=1

∥

∥

(

I − P�P
)

(xt − x)
∥

∥

2

2

=
K

∑

t=1

2(I − P�P)
(

(I − P�P)xt − (

I − P�P
)

x
)

= 2(I − P�P)
K

∑

t=1

xt − 2K
(

I − P�P
)

x = 0.

Since (I − P�P) is not invertible the above equation has infinite number of
solutions. Hence, we are free to choose any one of them, e.g. x = 1

K

∑K
1 xt. 
�
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Proof (of Proposition 2). From Proposition 1 and the fact that argmin
z∈Rq

f(P�z +

v) = −PH−1b it follows that x̂ =
(

I − P�P
)

x − P�PH−1b. Hence

‖argmin f − x̂‖22 =
∥

∥−H−1b − x̂
∥

∥

2

2

=
∥

∥− (

I − P�P
)

x + P�PH−1b − H−1b
∥

∥

2

2

=
∥

∥(I − P�P)
(

H−1b − x
)∥

∥

2

2
.


�
Proof (of Proposition 3). First,

‖H − ̂H‖2F = ‖(I − P�P)H(I − P�P)‖2F + ‖P�(PHP� − ̂Q)P‖2F

One can note that ̂Qi,j are normally distributed variables s.t. E
[

̂Q
]

= PHP�

(for example, see [1]). Moreover, consider a vectorization of the matrix ̂Q upper
triangle ̂θ:

̂θ =
(

̂Q1,1, ̂Q1,2, . . . , ̂Qq−1,q, ̂Qq,q

)

,

— its covariance matrix is equal to Σθ = σε

m Z̈Z̈�, where Z̈i,· consist of quadratic
elements of zi = Pxi:

Z̈i,· =
(

z(1)i z(1)i , z(1)i z(2)i , . . . , z(q−1)
i z(q)i , z(q)i z(q)i

)�
.

Next, denote θ as a vectorization of the PHP� matrix upper triangle and con-
sider eigendecomposition of Σθ = UΛU�. Then, vector ̂β = Ûθ would have
gaussian distribution with covariance matrix Λ, and

‖P�(PHP� − ̂Q)P‖2F ≤ ‖P�‖2F ‖PHP� − ̂Q‖2F ‖P‖2F = q2‖PHP� − ̂Q‖2F .

‖PHP� − ̂Q‖2F = ‖̂θ − θ‖22 =
(

U(̂θ − θ)
)� (

U(̂θ − θ)
)

=
q2
∑

i=1

ξ2 ∼
q2
∑

i=1

λ2
i χ

2 (1).

Thus, C(XP�) = max
i

λ2
i .


�
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Intra-feature Random Forest Clustering
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Abstract. Clustering algorithms are commonly used to find structure in data
without explicitly being told what they are looking for. One key desideratum of
a clustering algorithm is that the clusters it identifies given some set of features
will generalize well to features that have not been measured. Yeung et al. (2001)
introduce a Figure of Merit closely aligned to this desideratum, which they use
to evaluate clustering algorithms. Broadly, the Figure of Merit measures the
within-cluster variance of features of the data that were not available to the clus‐
tering algorithm. Using this metric, Yeung et al. found no clustering algorithms
that reliably outperformed k-means on a suite of real world datasets (Yeung et al.
2001). This paper presents a novel clustering algorithm, intra-feature random
forest clustering (IRFC), that does outperform k-means on a variety of real world
datasets per this metric. IRFC begins by training an ensemble of decision trees of
limited depth to predict randomly selected features given the remaining features.
It then aggregates the partitions that are implied by these trees, and outputs
however many clusters are specified by an input parameter.

Keywords: Cluster analysis · Random forest · Unsupervised learning
Ensemble · Figure of Merit

1 Introduction

One of the central challenges for unsupervised learning has been the lack of a universally
accepted validation metric (Giancarlo et al. 2008). Giancarlo et al. review several
possible validation techniques, but they only evaluate those validation metrics by their
ability to identify the number of clusters that a dataset should be partitioned into given
some ground truth. Furthermore, many of those validation measures are only coincident
with the key desiderata of a clustering algorithm. Singh and Kim (1988) articulate the
aim of clustering as follows: “The purpose of cluster analysis is to place objects into
groups suggested by the data such that objects in a given group have tendency to be
similar to each other, and objects in different clusters tend to be dissimilar.” Of the seven
metrics that Giancarlo et al. (2008) review, three of them only consider the stability of
cluster assignments under modified conditions: Clest (Dudoit and Fridlyand 2002)
considers stability of clusters after effectively subsetting the data, Consensus Clustering
(Monti et al. 2003), the stability after bootstrapping, ME (Model Explorer) (Ben-Hur
et al. 2001), the stability after adding random noise. While stability of assignments is
certainly a nice feature, it is obviously not the primary aim of a clustering algorithm, or
else we could create a perfect clustering algorithm that outputs the same assignments
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every time, completely arbitrarily. Three other metrics considered by Giancarlo, et al.
only validate cluster assignments with data that the clustering algorithm had access to:
WCSS (Within Cluster Sum-of-Squares) (Kaufman and Rousseeuw 2009), the Gap
Statistic (Tibshirani et al. 2001), and the KL (Krzanowski-Lai) Index (Krzanowski and
Lai 1988). These approaches have analogous risks to validating on the training set in
supervised learning, as opposed to withholding a test set. Yeung’s Figure of Merit
(Yeung et al. 2001), the remaining metric considered by Giancarlo et al., directly meas‐
ures the suitability of a partition according to Singh’s articulation of the purpose of
clustering. To show this, we first review how the Figure of Merit is calculated, then we
present a wide variety of examples from the literature of applications of clustering algo‐
rithms, and demonstrate that in all these applications, a clustering algorithm is useful
insofar as it scores well according to Yeung’s Figure of Merit. Naturally, that is strong
support for the utility of this metric.

To compute the Figure of Merit, features are withheld one by one, analogously to k-
fold cross validation. Then, the clustering algorithm is applied to the remaining features,
and the within-cluster variance of the withheld feature is divided by the total variance
of that feature. In other words, how much does the variance of the withheld feature go
down when it is separated into clusters? Finally, that quantity is averaged over all
features, again analogously to k-fold cross validation. An important distinction, however
is that while k-fold cross validation withholds data points one at a time, this method
withholds features. A lower Figure of Merit indicates “that objects in a given group have
tendency to be similar to each other, and objects in different clusters tend to be dissim‐
ilar,” (Singh 1998) even with respect to features the clustering algorithm did not have
access to.

Consider the following applications of clustering. Hilas and Mastorocostas (2008)
use clustering to detect telecommunication fraud. The clustering algorithm is therefore
useful insofar as the clusters identified will have relatively low variance with respect to
a feature the algorithm did not have access to: the Boolean value of whether the event
was fraudulent. Masulli and Schenone (1999) use clustering of medical images to
support diagnosis. The algorithm is useful insofar as members of a given group have
lower variance with respect to their diagnoses than the entire sample does. The true
diagnosis, again, is a feature the algorithm did not have access to. Iliadis (2005) use
clustering to identify forest types to assist in fire risk estimation. The algorithm is useful
insofar as clusters are created in such a way that the variance of a new feature (likelihood
fire, in this case) is minimized within clusters. The utility of Li et al.’s (2009) transcrip‐
tomic clusters is their ability to discriminate glioma subtypes, a feature not available to
the clustering algorithm. Harrigan’s (1985) use of clustering to identify “strategic
groups” among competitors in an industry is relevant insofar as companies in the same
clusters deserve strategic treatment that is more similar than that of companies in
different clusters. Companies in the same cluster are expected to respond similarly to a
broad range of treatments, and to a greater degree than two companies selected at
random, so however “expected company behavior” is measured, there should be lower
within-cluster variance than total variance. Becker et al. (2011) identify clusters in
people flow using cellular data, and use categories of movement patterns to evaluate the
comparative utility of different urban developments to members of different clusters. If
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the variance of individuals’ utilities from Project X is no less for members of a particular
cluster than it is for the population as a whole, the cluster assignments are unhelpful.
When Chicco et al. (2003) cluster electricity customers, they expect members of any
given cluster to respond similarly to service regulations, but differently from members
of other clusters. Again, this feature is not included in the original clustering, and the
clustering algorithm is useful insofar as the clusters identified minimize within-cluster
variance with respect to that new feature. Wang (2010) describes the utility of unsuper‐
vised market segmentation to the service industry. The utility arises from the expectation
that customers in different market segments will respond uniquely to different sorts of
targeting. Therefore, “customer response to Campaign X” needs to have a within-
cluster-variance that is lower than the total variance in order for the clustering to be
useful. Pham (1998) demonstrates the utility of clustering radar signals for the identifi‐
cation of aircrafts, aircraft identity being feature the clustering algorithm was not
provided. Pavlidis et al. (2003) use clustering in financial forecasting; their clustering
algorithm obviously does not have access to future financial data, but it is tasked with
making partitions that identify data points with similar future-behavior. Park’s (2002)
forecasting task is to predict freeway traffic with the assistance of unsupervised methods,
and the case is analogous to financial forecasting. This is a miniscule sample of the
applications of clustering, but they begin to support the following generalization: cluster
assignments are likely to be useful when and only when novel features tend to have low
within-cluster-variance compared to their total variance.

An extraordinary variety of clustering algorithms have been proposed (Xu and
Wunsch 2005), as well as many cluster ensembling methods for cluster analysis (Vega-
Pons and Ruiz-Shulcloper 2011). In this paper, we present Intra-Feature Random Forest
Clustering (IRFC), which represents a single clustering algorithm that implements the
driving thesis of cluster ensembling: an ensemble of partitions, benefitting from a
wisdom-of-crows effect, will generally outperform a single partition (Vega-Pons and
Ruiz-Shulcloper 2011). IRFC, unsurprisingly given the name, also borrows extensively
from the supervised learning algorithm Random Forest, in that both make use of an
ensemble of decision tree regressors (Breiman 2001). The strong performance of IRFC
with respect to Yeung’s Figure of Merit is quite analogous to the strong performance of
a random forest regressor with respect to the root-mean-square error of its predictions.

This paper first lays out the algorithm for IRFC, then describes its performance
according to Yeung’s Figure of Merit on a suite of real world data. Ultimately, it’s strong
performance with respect to that metric justifies the algorithm’s utility in applied
settings.

2 The Algorithm

IRFC consists of two stages: train many limited-depth decision trees to derive an
ensemble of partitions, then aggregate the partitions into a single one. For the first stage,
the following parameters are used. nTrees is the number of trees to use. MaxDepth is
the maximum depth for each decision tree. PredictionFraction is the fraction of features
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that are to be trained on for each tree. SetOfPoints is a matrix where each row is a data
point and each column is a feature. RandomForestTransform implements stage 1.

RandomForestTransform thus transforms each data point to a vector of length
nTrees, where each entry in the vector represents the leaf_id that the data point was
assigned by the nth decision tree. For the second stage of the algorithm, k-medoids is
employed on the transformed data (optionally Minkowski weighted), using the Jaccard
distance between the rows. In this circumstance, the Jaccard distance between two rows
represents the fraction of trees for which the points are assigned to different leaves. The
cluster assignments generated by k-medoids represent the output of IRFC.

As one increases the parameter nTrees, the first stage of IRFC slows, and perform‐
ance improves, but of course those improvements fall off asymptotically. For different
applications, the question of what the optimal value of nTrees is (such that gains to
performance no longer justify the additional computation) is hard to predict in advance.
By way of example, for the performance evaluation below, nTrees was set to 100. The
parameter MaxDepth is similarly situational. The relatively small effect of attempting
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to tune it did not yield significant insight to optimal values, but values between 2 and 6
were successful for the datasets tested.

The computational complexity of the algorithm is O(n2k), where n is the number of
data points, and k the number of features. n2k is the complexity of creating a Jaccard
distance matrix between the transformed data points (for use by k-medoids), and this is
the slowest step.

A sample implementation of IRFC in Python can be accessed at https://github.com/
mkc1000/random_forest_cluster. The first stage of IRFC can be found in rf_trans‐
form.py, the second in kmedoids.py, and the two are synthesized in rf_cluster.py.

At this point we can briefly call out the difference between IRFC and an algorithm
that is superficially similar: Breiman’s (2003) unsupervised random forest method. This
involves training a random forest classifier to distinguish real data from “fake data” that
is generated by a poor generative model. (In the generative model, a new vector of fake
data is generated by sampling independently from each feature.) While their similarities
are rather minimal, both unsupervised random forests and IRFC clearly employ random
forests to do unsupervised learning, so it is worth disambiguating the two.

3 Performance Evaluation

The metric chosen for evaluation was Yeung’s Figure of Merit, for the reasons discussed
above. This metric was chosen before the algorithm was designed, to ensure that a posi‐
tive result would not merely reflect the abundance of evaluation metrics for clustering
algorithms. The greater the number of clusters that an algorithm outputs, the easier it is
to have a small Figure of Merit. Therefore, when comparing algorithms, one must hold
the number of clusters constant, and repeat over many values of the number of clusters.

Among existing clustering methods, k-means is perhaps best suited theoretically to
perform well on this metric. K-means explicitly attempts to minimize the within-cluster
variance of the features that it is trained on, which is plausibly an optimal heuristic for
minimizing the within-cluster variance of the features it is not trained on. Indeed, Yeung
et al. (2001) found experimentally that no other algorithms they tested reliably outper‐
formed k-means on the real world data that was included in their analysis. Albaum et al.
(2011) confirmed this finding on different datasets.

Therefore, IRFC was chiefly compared with k-means across four datasets and for
many different values of k. Two other algorithms, DBSCAN (Ester et al. 1996) and
agglomerative clustering, were tested alongside IRFC and k-means to further illustrate
their inferiority to k-means on the datasets used here, as Yeung and Albaum found on
a different suite of datasets. For the iris dataset, DBSCAN performed poorly, and the
other algorithms performed equivalently. Across all datasets, IRFC, k-means, and
agglomerative clustering performed approximately equivalently for k equal to 2. In all
other cases, IRFC outperformed the other algorithms (Fig. 1). (A more detailed explan‐
ation of the construction of Fig. 1 is provided below.) That IRFC outperforms DBSCAN
and agglomerative clustering is not particularly remarkable, since there is no reason to
expect those two to be paragons by this metric. Outperforming k-means, however,
preliminarily indicates that it outperforms all existing clustering algorithms according
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to the FOM, since k-means had previously been found dominant. For a description of
the datasets, see Table 1.

Table 1. Descriptions of the datasets used. All features were scaled to a mean of 0 and a standard
deviation of 1 prior to clustering

Dimensions Example features
Boston housing 506 × 13 Per capita crime rate (by town), average number of

bedrooms per house, nitrogen oxides concentration, full-
value property-tax rate per 10 k

Breast cancer 569 × 30 Mean radius (of tumors), mean area, mean concave
points, worst radius, worst area, worst concave points

Diabetes 442 × 10 Age, body mass index, blood pressure
Iris 150 × 4 Petal length, petal width, sepal length, sepal width

Each data point in Fig. 1 represents an average of n runs of an algorithm with a given
parameter setting on a given dataset, where n is the number of features in the dataset.
Each of the n runs excludes one feature and uses this for the FOM score. Thus, the y-
axis represents the average score from these runs, and the x-axis represents the average
number of clusters generated with this parameter setting, which varies from run to run
for some algorithms. For DBSCAN the parameter varied is epsilon, although for certain
data (the breast cancer data, for example), this is not sufficient to result in any nontrivial
partitions at all. For the remaining algorithms, the number of clusters is a parameter to
the algorithm, and this is varied directly. A bit of marginalia is required to explain how

Fig. 1. Figures of Merit for cluster assignments given the number of clusters. IRFC and k-means
are compared across four standard datasets
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IRFC can yield a different number of clusters on different runs while holding constant
a parameter that ostensibly specifies that quantity. In the k medoids step, if two clusters
are assigned the same data point as a centroid, one of the two clusters evaporates, so the
“number of clusters” parameter in IRFC could more precisely be described as the
maximum number of clusters returned.

The roughly equivalent performance of k-means and IRFC on the iris dataset may
simply reflect that the clusters in the iris dataset are very easily learned. The particularly
small number of features in the iris data should also hamper IRFC. Since one feature at
a time was withheld to validate the cluster assignments, both algorithms only had access
to three features while clustering. In the other datasets, every decision tree in IRFC was
trained on a unique subset of features, but for the iris data, there was significant redun‐
dancy, weakening the ability of IRFC to make use of the wisdom-of-crowds effect.

To acquire a single quantitative measure of the performance of an algorithm on a
dataset, one can evaluate the area under the Figure of Merit curve, and divide by a
normalizing factor. The resulting Integrated Figure of Merit simply compresses the
information from Fig. 1 (Table 2).

Table 2. Integrated Figure of Merit for IRFC, k-Means, and Agglomerative Clustering across
four standard datasets

IRFC K-Means Aggl. clust.
Boston 0.531 0.658 0.673
Breast cancer 0.570 0.627 0.687
Diabetes 0.660 0.766 0.775
Iris 0.301 0.274 0.277

The Integrated Figure of Merit (IFOM) uses the algorithmic parameter for the number of
clusters, so DBSCAN does not fit neatly into this analysis, lacking such a parameter. Since
its poor performance is nevertheless evident above, and since k-means is most relevant
com-parison to IRFC, DSBCAN’s incompatibility with the IFOM is not particularly
problematic.

4 Conclusions

For k greater than 2, IRFC was found to generally outperform k-means according to
Yeung et al.’s Figure of Merit metric. While unsupervised learning may be used for
other purposes, if one’s goal is to predict which data points will have similar values for
an unmeasured feature, IRFC is likely to be optimally effective for this task. Future
research may consider the following extensions. This algorithm could be modified to
output a hierarchical clustering model. Other methods besides Jaccard k-medoids could
be used to aggregate the clusters. Vega-Pons and Ruiz-Shulcloper (2011) review several
worthy candidates for effective cluster aggregation. Other supervised learning models
besides decision trees could be used in the first stage, in such a way that an implied data
compression could be extracted. For example, if a neural network with a hidden layer
of minimal width were used to predict one subset of features from another, the activations
in the hidden layer would represent a continuous rather than discrete compression of the
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data. Hopefully, Intra-Feature Random Forest Clustering can inspire a family of
clustering algorithms that make similar use of supervised learning methods.
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Abstract. A novel nature-inspired, deterministic, global, and derivative-
free optimization method, namely the dolphin pod optimization (DPO), is
presented for solving simulation-based design optimization problems with
costly objective functions. DPO is formulated for unconstrained single-
objective minimization and based on a simplified social model of a dolphin
pod in search for food. A parametric analysis is conducted to identify the
most promising DPO setup, using 100 analytical benchmark functions and
three performance criteria, varying pod size and initialization, coefficient
set, and box-constraint method, resulting in more than 140,000 optimiza-
tion runs. The most promising setup is compared with deterministic parti-
cle swarm optimization, central force optimization, and DIviding RECT-
angles and finally applied to the optimization of a destroyer hull form for
reduced resistance and improved seakeeping.

Keywords: Dolphin pod optimization · Deterministic optimization
Global optimization · Derivative-free optimization

1 Introduction

Simulation-based design (SBD) methods integrate numerical simulations, design
modification tools, and optimization algorithms. SBD has been widely applied
in many engineering fields, including aerospace, automotive, and naval applica-
tions, where the overall computation cost of the optimization process is deter-
mined by the simulation tool, the design space dimensionality, and the efficiency
of the optimization algorithm. The numerical simulations are typically affected
by the presence of residuals and, for this reason, the objective function is likely
noisy. Furthermore, most simulation tools (such as commercial software) do not
directly provide derivatives and, generally, the existence of local minima can-
not be excluded a priori. For these reasons, global derivative-free optimization
algorithms have been developed and applied to SBD, providing global approxi-
mate solutions to the design problem. Although complex SBD applications are
often solved by metamodels, their development and assessment require bench-
mark solutions, with simulations directly connected to the optimization algo-
rithm. These solutions may be achieved only if affordable and effective optimiza-
tion algorithms are available. When global techniques are used with CPU-time
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expensive solvers, the optimization process is computationally expensive and its
effectiveness and efficiency remain an algorithmic and technological challenge.

Metaheuristic algorithms for global optimization have been developed and
extensively applied in the last decade, such as particle swarm optimization (PSO)
[1] and ant colony optimization (ACO) [2]. Several new algorithms appeared
recently, such as firefly algorithm (FA) [3], cuckoo search (CS) [4], and bat
algorithm (BA) [5]. These metaheuristics are usually stochastic, implying that
statistically significant results can be obtained only through extensive numeri-
cal campaigns. Such an approach could be too expensive in SBD optimization
for industrial applications, when CPU-time expensive computer simulations are
used directly as analysis tool. For this reason, deterministic global derivative-
free algorithms have been developed and applied in the context of SBD, such as
deterministic PSO (DPSO, [6]) and central force optimization (CFO, [7]). Other
deterministic global methods have been developed and applied to SBD based on
non-heuristic approaches, such as DIviding RECTangles (DIRECT, [8]).

The objective of the present work is to introduce and assess a novel nature-
inspired deterministic global derivative-free method based on a simplified social
model of a dolphin pod in search for food: the dolphin pod optimization (DPO).
The present DPO belongs to the class of deterministic swarm-intelligence meth-
ods. To the authors’ knowledge, this is a little explored field, where the global
search ability of swarm-intelligence systems is exploited in a deterministic way.
DPO is formulated for unconstrained single-objective minimization and intended
for SBD optimization problems with costly objective functions. The novelty
stems from formulating the global search by defining the pod dynamics as a
spring-mass system subject to internal and external forces. Specifically, DPO is
formulated considering the essential elements of the cetacean intelligence: con-
gregation, self-awareness, communication, and memory. Würsig writes on coop-
erative foraging [9]:

“Individual feeding may be enhanced by the presence of the group due to
rapid and efficient information transfer concerning where, for example, the
major concentration of prey is and what the extent of the prey school may
be.”

Accordingly, the general rules of the algorithm are that each dolphin:

– wants to stay in group since hunting is more efficient (congregation)
– quantifies the concentration of preys he locates (self-awareness)
– communicates to the pod the location and concentration of preys (communi-

cation)
– is able to reconstruct the food distribution known to the pod (memory)
– is willing to modify his speed and course based on how concentrated and far

preys are (intelligence)
– follows his rational deterministic will.
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Based on these rules, one may assume that each dolphin is subject to a pod
attraction force and a force related to the food distribution or fitness (represent-
ing the objective function). Based on these forces, the pod may be modelled as a
spring-mass system (Fig. 1). The integration of the system’s dynamics provides
the mathematical formulation of DPO and allows to study the system stability
with beneficial effects on the search capability and efficiency.

Fig. 1. Pod model

DPO shares some common features with other
well-known swarm-intelligence methods, such as
PSO, CFO, and gravitational search algorithm
(GSA, [10]), where the particle (or agent) posi-
tion and speed are described by the particle system
dynamics. Nevertheless, compared to PSO, CFO,
and GSA, the DPO formulation presents significant
differences as it is the only algorithm that at the
same time is deterministic, based on agent position
and absolute fitness, memory based, fully informed,
and finally formulated by a rigorous integration of the agent dynamics. Table 1
compares the current DPO formulation with PSO, CFO, and GSA. The DIRECT
algorithm is also included in the table as a good example of deterministic
global derivative-free method based on a rigorous mathematical framework (non-
heuristic). Moreover, DPO differentiates also from other somehow-related meta-
heuristics: differently from FA, CS, and BA, the current method is based on a
deterministic concept and the system state depends not only on the agent posi-
tions and comparative fitness, but also directly on the objective function values
(absolute fitness), through the food attraction force. Dolphin behaviour charac-
teristics [11,12] also inspired other metaheuristic methods, such as the dolphin
echolocation algorithm [13,14].

The effectiveness and efficiency of DPO are influenced by the choice of four
main parameters: the number of dolphins interacting during the optimization,

Table 1. Comparison of DPO formulation with PSO, CFO, GSA, and DIRECT

DPO PSO (DPSO) CFO GSA DIRECT

Metaheuristics

metaphor or

search method

Dolphin

behaviour

Bird/bee

behaviour

Gravitational

law

Gravitational

law

Lipschitzian

optimization

Deterministic � DPSO only � �
Agent based � � � �
System state

depends on agent

position

� � � �

System state

depends directly

on agent absolute

fitness

� � �

Memory based � �
Fully informed � � �
Rigorous solution

of agent dynamics

�
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the initialization of the pod in terms of position and velocity, the set of coef-
ficients controlling the pod dynamics, and finally the method used to handle
the box constraints. The analysis includes a parametric study of 100 analyt-
ical benchmark functions [15], with dimensionality from 2 to 50, with a full-
factorial combination of: number of dolphins, initialization scheme, coefficient
set, and box-constraint method. Three metrics are used to evaluate the algo-
rithm performance and the most significant parameters for DPO are identified.
DPO results are compared with deterministic global derivative-free algorithms,
namely DPSO, CFO, and DIRECT. Finally, DPO is applied to two SBD prob-
lems, pertaining to the hull-form optimization of a USS Arleigh Burke-class
destroyer, namely the DTMB 5415 model (an early version of the DDG-51) in
calm water and waves, respectively. The SBD optimization results obtained by
DPO are finally compared to DPSO, CFO, and DIRECT. A preliminary version
of this work was presented in [16].

2 Dolphin Pod Optimization

Consider an optimization problem of the type

Minimize f(x)
subject to l ≤ x ≤ u (1)

where f(x) is the objective function, x ∈ R
N is the variable vector with N ∈ N

+

the number of variables, and l and u are the lower and the upper bounds for x,
respectively.

Now consider a foraging pod of dolphins located at xj , exploring the variable
space with the aim of finding an approximate solution for problem 1. The pod
is modelled as a dynamical system where the dynamics of the j-th individual
depends on a pod attraction force δj , a food attraction force ϕj , as well as the
drag, proportional to ẋj (Fig. 1)

ẍj + ξẋj + kδj = hϕj (2)

where

δj =
Nd∑

i=1

(xj − xi) and ϕj =
Nd∑

i=1

2f̂(xj ,bi)
1 + ‖xj − bi‖α

e(bi,xj) (3)

with

f̂(xj ,bi) =
f(xj) − f(bi)

ρ
and e =

bi − xj

‖bi − xj‖ (4)

In the above equations, ξ, k, and h ∈ R
+ define the pod dynamics; Nd ∈ N

+

is the pod size; α ∈ R
+ tunes the food attraction force; xj ∈ R

N is the
vector-valued position of the j-th individual; f(x) ∈ R is the objective func-
tion (representing the food distribution); bi is the best position ever visited
by the i-th individual; ρ = f(w) − f(b) is a dynamic normalization term for
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f , where b = argmin{f(bj)} is the best position ever visited by the pod and
w = argmax{f(xj)} the worst position occupied by the pod individuals at the
current time instance; bi, b, and w are defined in the variable space.

Using the explicit Euler integration scheme yields:
⎧
⎨

⎩
vn+1

j = (1 − ξΔt)vn
j + Δt(−kδj + hϕj)

xn+1
j = xn

j + vn+1
j Δt

(5)

where xn
j and vn

j represent the j-th dolphin position and velocity at the n-th
iteration, respectively. Equation 5 represents a fully informed formulation, where
each individual knows the story of the whole pod.

The integration step Δt, in Eq. 5, must guarantee the stability of the explicit
Euler scheme, at least for the free dynamics. To this aim, consider the free
dynamics of the k-th component of x (k-th variable), say a. Consider the dynam-
ics of a for the j-th dolphin

äj + ξȧj + kδj = 0 (6)

and finally for the entire pod
{
ȧ
ċ

}
=

[
0 I

−K −G

]{
a
c

}
= A

{
a
c

}
(7)

where

K = −k

⎡

⎢⎢⎢⎣

Nd − 1 −1 · · · −1
−1 Nd − 1 · · · −1
...

...
. . .

...
−1 · · · −1 Nd − 1

⎤

⎥⎥⎥⎦ (8)

and G = ξI, with I the [Nd ×Nd] identity matrix. The solution of Eq. 7 is stable
if Re(λ) ≤ 0 where λ = −γ ± iω are eigenvalues of A. This yields

Δt ≤ 2γ

γ2 + ω2

∣∣∣∣
min

= Δtmax (9)

The DPO pseudo-code is shown in Algorithm1.

3 DPO Setting Parameters

Table 2. Coefficient set

Coefficient ID ξ q p α

1 0.01 0.1 2 0.5
2 0.1 1 4 1
3 1 10 8 2

The number of dolphins used (Nd) is defined
as Nd = 2rN , with r ∈ N [2, 4] therefore
ranging from 4N to 16N . The initialization
of dolphins’ location and velocity is per-
formed using a deterministic and homoge-
neous distribution, following the Hammer-
sley sequence sampling (HSS) [17], applied
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Algorithm 1. DPO pseudo-code
1: Normalize x into a unit hypercube U
2: Initialize the pod of Nd dolphins (position and velocity)
3: Evaluate Δtmax
4: while n ≤ max number of iterations do
5: for j = 1, Nd do
6: Evaluate f(xj)
7: Update bj and f(bj)
8: end for
9: Update b, w, f(b), and f(w)
10: for j = 1, Nd do
11: Evaluate the attraction forces, δj and ϕj

12: Update vj and xj

13: end for
14: end while
15: Output the best solution found, b and f(b)

to three different sub-domains, defined as: (A) domain, (B) domain boundary,
and (C) domain and boundary. The HSS is implemented using a basis of 2,000
prime number and following Eq. 13 in [6]. A non-null initial velocity is used
(see Eq. 15 in [6]). Provided that all the design variables are normalized such
that the domain is confined in a unit hypercube U (i.e. −0.5 ≤ x ≤ 0.5), the
following positions are used for the coefficients controlling the pod dynamics:
k = h = q/Nd; Δt = Δtmax/p; ξΔt < 1, where q defines the weight for the
attraction forces (δj and ϕj) and p defines the integration time step. Table 2
summarizes the coefficient sets used in the current analysis. The dolphins are
confined within U using an inelastic (IW) and an elastic (EW) wall-type app-
roach [6]. Specifically, in the IW approach, if a dolphin is found to violate one
of the bounds in the transition from two consecutive iterations, it is placed on
that bound setting to zero the associated velocity component, whereas, in the
EW approach, the associated velocity component is reversed. The full-factorial
combination of parameters results in a total of 1458 different setups. Finally,
the number of function evaluations or evaluation budget (Nmax) is assumed as
Nmax = 2cN , where c ∈ N [7, 12] and therefore ranges from 128N to 4096N .

4 Performance Metrics

Three performance metrics are used to assess the algorithm performances and
defined as follows [6]:

εx =

√√√√ 1
N

N∑

k=1

(
xk,min − x�

k,min

Rk

)2

, εf =
fmin − f�

min

f�
max − f�

min

, εt =

√
ε2x + ε2f

2
(10)

εx is a normalized Euclidean distance between the minimum position {xk,min}N
k=1

found by the algorithm and the analytical minimum position {x�
k,min}N

k=1, where
Rk = |uk − lk| is the range of the k-th variable. εf is the associated normalized
distance in the function space, fmin is the minimum found by the algorithm,
f�
min is the analytical minimum, and f�

max is the analytical maximum of the
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function f(x) in the search domain. εt is a combination of εx and εf and used
for an overall assessment. Additionally, the relative variability (σ2

r,s) for the
performance metrics [18] is used to assess the impact of each tuning parameter
s on the algorithm performance.

5 Numerical Results

A preliminary study of analytical benchmark functions is used to identify the
most promising setup for DPO. The analyses are conducted setting apart func-
tions with less or more than ten variables and DPO is compared to DPSO,
CFO, and DIRECT. Finally, the optimization of the DTMB 5415 is performed
by DPO with the most promising setup, and a comparison with DPSO, CFO,
and DIRECT is provided. DPSO and CFO are used as suggested in [6,7], respec-
tively, fort both analytical benchmark functions and SBD problems.

5.1 Analytical Benchmark Functions

100 benchmark functions are used, including a wide variety of problems, such
as continuous and discontinuous, differentiable and non-differentiable, separable
and non-separable, scalable and non-scalable, unimodal and multimodal, with
2 ≤ N ≤ 50 (see Tables A.11 and A.12 in [6]).

Figures 2a and b show the relative variability σ2
r,s for εt, associated to the

DPO parameters for N < 10 and N ≥ 10, respectively (each group is composed
by 50 functions). The pod initialization is the most significant parameter overall.
For N < 10, the coefficient p (used to define the time step) becomes more
significant as the number of function evaluations increases. The coefficient q
(defining the attraction force intensity) shows an opposite trend. For N ≥ 10,
the initialization and the coefficient ξ are the most significant. The coefficient α
is the least important overall.
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Fig. 2. Relative variability σ2
r% of εt for DPO parameters

Table 3 shows the best performing parameters based on εt, varying the bud-
get of function evaluations. Average values and standard deviation (STD) of
performance among all setups are provided. Finally the best performing setup
based on budget-averaged performance is shown. Budget-averaged values (bold
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Table 3. Best performing setups for DPO based on εt, conditional to number of
variables and budget of function evaluations

N Nmax/N Nd/N Init ξ, q, p, α Wall εt Average STD

<10 128 16 A 3, 2, 1, 2 IW 0.571E–01 1.568E–01 5.335E–02

256 4 A 3, 2, 3, 1 EW 0.450E–01 1.317E–01 5.118E–02

512 16 A 3, 2, 2, 2 EW 0.345E–01 1.145E–01 4.958E–02

1024 4 C 2, 2, 3, 3 EW 0.333E–01 1.032E–01 4.827E–02

2048 16 A 2, 1, 3, 1 EW 0.307E–01 0.962E–01 4.774E–02

4096 8 C 2, 2, 3, 1 EW 0.276E–01 0.921E–01 4.782E–02

Average 4 A 3, 2, 3, 1 EW 0.494E–01 1.157E–01 4.685E–02

≥10 128 4 B 2, 1, 2, 1 EW 0.107E+00 2.686E–01 1.064E–01

256 4 B 2, 1, 3, 1 EW 0.998E–01 2.441E–01 9.740E–02

512 4 B 2, 1, 3, 1 EW 0.943E–01 2.308E–01 9.220E–02

1024 4 B 2, 1, 3, 1 EW 0.935E–01 2.230E–01 8.897E–02

2048 4 B 2, 1, 3, 1 EW 0.930E–01 2.183E–01 8.640E–02

4096 4 B 2, 1, 3, 1 EW 0.930E–01 2.150E–01 8.439E–02

Average 4 B 2, 1, 3, 1 EW 0.100E+00 2.333E–01 9.143E–02

character in Table 3) are used to define a reasonable guideline for the use of DPO
in SBD optimization. The suggested guideline corresponds to: Nd = 4N , pod
initialization on domain (A), ξ = 1, q = 1, p = 8, α = 0.5, and elastic wall-type
for problem with N < 10; Nd = 4N , pod initialization on domain boundary (B),
ξ = 0.1, q = 0.1, p = 8, α = 0.5, and elastic wall-type for problem with N ≥ 10.

Figures 3a and b show a comparison among the suggested DPO setups,
DPSO, CFO, and DIRECT for N < 10 and N ≥ 10, respectively. On aver-
age, DPO outperforms DPSO, CFO, and DIRECT, specially for problems with
a large number of variables.

Finally three illustrative examples of the algorithms convergence are shown
in Fig. 4 for (a) Schubert, (b) Levy n.15, and (c) Griewank functions with dimen-
sionality equal to N = 2, 10, and 20, respectively. DPO shows a faster conver-
gence than DPSO, CFO, and DIRECT.

5.2 Hull-Form SBD Optimization Problem

The optimization aims at improving separately (I) calm-water and (II) seakeep-
ing performances. For problem I, the objective function f is a normalized ratio
of the total resistance over the displacement in calm water at 18 kn, whereas
for problem II f is a seakeeping merit factor based on the root mean square
of the vertical acceleration of the bridge at 30 kn in head wave (0◦) and on
the roll angle at 18 kn in stern long-crested wave (150◦). Modifications of the
parent hull are performed using orthogonal functions, defined over surface-body
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Fig. 3. Comparison of average performance of DPO, DPSO, CFO, and DIRECT
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Fig. 4. DPO, DPSO, CFO, and DIRECT performance for illustrative functions

patches, and 90%-confidence dimensionality reduction based on the Karhunen-
Loève expansion, leading to a number of design variable N = 6 [19].

Problem I is solved using the code WARP, developed at CNR-INSEAN. Wave
resistance computations are based on the double-model linear potential flow (PF)
theory. The frictional resistance is estimated using a flat-plate approximation,
based on the local Reynolds number. Problem II is solved using the code SMP,
developed at the David Taylor Naval Ship Research and Development Center.
SMP provides a potential flow solution based on linearized strip theory. Details of
the computational domain for the free-surface, the hull grid, and the validation of
PF analysis versus the experimental data can be found in [20]. For each problem,
a budget of 4800 function evaluations is used.

Optimization results are summarized in Table 4. DPO achieves an objective
function reduction close 13% and 32%, for problem I and II, respectively.

For problem I, DPO, DPSO, and DIRECT have a similar objective function
reduction even if DPSO and DIRECT show a faster convergence to the global
minimum, as shown in Fig. 5a. The final solutions found by DPO, DPSO, and
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Table 4. SBD optimization results (non-normalized variables)

Prob. Algorithm x1 x2 x3 x4 x5 x6 Δf%

I DPO 0.999 0.030 0.116 0.353 0.221 0.581 −12.73

DPSO 1.000 −0.044 0.069 0.370 0.229 0.579 −12.78

CFO 0.652 0.204 0.220 0.240 0.180 0.229 −9.28

DIRECT 0.996 0.025 0.033 0.370 0.247 0.551 −12.68

II DPO −0.022 0.417 0.127 −0.421 0.874 −0.997 −32.20

DPSO 0.146 0.356 0.049 −0.545 0.884 −0.873 −31.31

CFO 0.565 −0.852 0.440 0.224 0.289 −0.220 −12.91

DIRECT −0.173 −0.787 −0.140 −0.543 0.993 −0.993 −26.65

DIRECT are very close (see Fig. 5b) showing almost the same modification com-
pared to the original design (see Fig. 6), whereas CFO reaches a less-significant
objective improvement, probably corresponding to a local optimum.

Problem II shows a greater objective function reduction by DPO, compared
with DPSO and especially CFO and DIRECT, probably trapped in local minima
(see Fig. 7a). The optimal design variables found by DPO, DPSO, CFO, and
DIRECT fall in different regions of the design space. In particular, the solution
found by CFO and DIRECT is pretty far from those by DPO and DPSO. This
is also reflected by the hull sections, shown in Fig. 8.
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6 Conclusions and Future Work

Dolphin pod optimization is a novel global derivative-free optimization algorithm
based on a simplified social model of a dolphin pod in search for food. DPO uses
a rigorous deterministic formulation, providing opportunity to define a set of
coefficients that guarantee the pod convergence (at least for the free-dynamics).

A parametric analysis has been conducted using 100 analytical benchmark
functions and three performance metrics, varying the number of dolphins, their
initialization, the coefficient set, and the box-constraint method. For N < 10
and a low budget of function evaluations, coefficient q (force magnitude) and
pod initialization are the most significant parameters. For a higher budget of
function evaluations, coefficient p (time step) and pod initialization are the most
significant parameters. Finally, for N ≥ 10 the pod initialization is found the
most significant parameter for all budgets.

The most promising setup has been identified: a number of dolphins Nd equal
to 4 times the number of variables N ; a pod initialization with a distribution
over the whole design variables domain for N < 10 and only on the domain
boundary for N ≥ 10; a set of coefficients corresponding to: ξ = 1, q = 1, p = 8,
and α = 0.5 for N < 10, and to ξ = 0.1, q = 0.1, p = 8, and α = 0.5 for
N ≥ 10; an elastic wall-type approach. DPO performance has been found on
average better than DPSO, CFO, and DIRECT. DPO has been applied to two
hull-form optimization problems for the improvement of (I) calm water and (II)
seakeeping performances. These have shown comparable results of DPO, DPSO,
and DIRECT. DPO has been found more effective for problem II.
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Future work includes extensions to different formulations for the food attrac-
tion force ϕ, the possibility of using different coefficients for pod and food attrac-
tion forces, and comparison to other dolphin methods [13,14].
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Abstract. Clustering is an essential data mining tool for analyzing and
grouping similar objects. In big data applications, however, many clus-
tering methods are infeasible due to their memory requirements or run-
time complexity. Contraction Clustering (RASTER) is a linear-time
algorithm for identifying density-based clusters. Its coefficient is negli-
gible as it depends neither on input size nor the number of clusters.
Its memory requirements are constant. Consequently, RASTER is suit-
able for big data applications where the size of the data may be huge.
It consists of two steps: (1) a contraction step which projects objects
onto tiles and (2) an agglomeration step which groups tiles into clus-
ters. Our algorithm is extremely fast. In single-threaded execution on
a contemporary workstation, it clusters ten million points in less than
20 s—when using a slow interpreted programming language like Python.
Furthermore, RASTER is easily parallelizable.

Keywords: Algorithms · Big data · Machine learning
Unsupervised learning · Clustering

1 Introduction

The goal of clustering is to aggregate similar objects into groups in which objects
exhibit similar characteristics. When attempting to cluster very large amounts of
data, i.e. data in excess of 1012 elements [10], two limitations of many well-known
clustering algorithms become apparent. First, they operate under the premise
that all available data fits into memory, which does not necessarily hold in a big
data context. Second, their time complexity is unfavorable. For instance, one of
the most used clustering algorithms is DBSCAN [8]. It runs in O(n log n) at best,
where n stands for the number of objects. There are standard implementations
that use a distance matrix, but its space requirements of O(n2) make big data
applications infeasible. In addition, the logarithmic factor is problematic in a big
data context. Linear-time clustering methods have been described, for instance
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in surveys by Kumar et al. [12,13], but those have large coefficients, which makes
them inapplicable to big data clustering.

In this paper, we introduce Contraction Clustering (RASTER).1 In the
taxonomy presented by Fahad et al. [9], it is a grid-based clustering algorithm.
RASTER has been designed for clustering big data. It scales linearly in the size of
its input. In addition, it is able to handle cases where the available data do not fit
into memory as its memory requirements are constant. Its two distinctive phases
are parallelizable; the most computationally intensive first one trivially so, while
the second one can be expressed in the divide-and-conquer paradigm of algo-
rithm design. In a review paper, Shirkhorshidi et al. [19] state that distributed
clustering algorithms are needed for efficiently clustering big data. However, our
algorithm is a counter example to that claim as it exhibits excellent performance
metrics even in single-threaded execution on a single machine.

The novelty of RASTER is that it is a straight-forward, easy to implement,
and extremely fast big data clustering algorithm. It requires only one pass through
the input data and does not need to retain its input. In addition, key operations
like projecting to tiles and neighborhood lookups are performed in constant time.
Another benefit of our approach is that the parameters required are intuitive,
and that there is no need to compute distances between points. Furthermore, it
is easily parallelizable.

The remainder of this paper is organized as follows. Section 2 contains the
problem description, followed by a detailed description of RASTER in Sect. 3. In
Sect. 4 we discuss results. Related work is covered in Sect. 5. Lastly, we outline
possible future work in Sect. 6.

2 Problem Description

In this section we give a brief overview of the clustering problem (Sect. 2.1),
describe the motivating use case behind RASTER (Sect. 2.2), and highlight limi-
tations of common clustering methods (Sect. 2.3).

2.1 The Clustering Problem

Clustering is a standard approach in machine learning for grouping similar items,
with the goal of dividing a dataset into subsets that share certain features. It is
an example of unsupervised learning, which implies that there are many valid
ways of clustering data points. Elements belonging to a cluster are normally
more similar to other elements in it than to elements in any other cluster. If an
element does not belong to a cluster, it is classified as noise. An element normally
only belongs to at most one cluster. However, fuzzy clustering methods [17,22]
can identify non-disjoint clusters, meaning that elements may be part of multiple
1 The chosen shorthand may not be immediately obvious: RASTER operates on an

implied grid. Resulting clusters can be made to look similar to the dot matrix struc-
ture of a raster graphics image. Furthermore, the name RASTER is an agglomerated
contraction of the words contraction and clustering.
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overlapping clusters. Yet, this is not an area we are concerned with in this paper.
Instead, we focus on problems that are in principle solvable by common clustering
methods such as DBSCAN [8] or k-means clustering [16].

2.2 Motivating Use Case

Large-scale processing of telemetry data in the form of GPS coordinates is
required for the analysis of vehicle transportation networks. A central problem
in that domain is the identification of hubs, which are locations within a road
network at which vehicles stop so that a particular action can be performed, e.g.
warehouses, delivery points, or bus stops. Conceptually, a hub is a node in such
a network, and a node is the center of a cluster.

GPS coordinates are provided as coordinate pairs. Their precision is defined
by the number of place values after the decimal point. For instance, the coor-
dinate pair (40.748441, −73.985664) specifies the location of the Empire State
Building in New York City with a precision of 11.1 cm. A seventh decimal place
value would specify a given location with a precision of 1.1 cm, while truncating
to five decimal place values would lower precision to 1.1 m. High-precision GPS
measurements require special equipment, while consumer-grade GPS is accu-
rate to within about ten meters under open sky [7]. Thus, for the purpose of
clustering, lower-precision GPS coordinates could be used, without losing a sig-
nificant amount of information. This is the key insight that led to the discovery
of RASTER.

2.3 Limitations of Common Clustering Methods

In this subsection we briefly describe why two standard clustering algorithms,
DBSCAN and k-means clustering, are not suitable for our big data clustering
use case.

DBSCAN identifies density-based clusters. Its time complexity is O(n log n)
in the best case. This depends on whether a query identifying the neighbors of a
particular data point can be performed in O(log n). In a pathological case, or in
the absence of a fast lookup query, its time complexity is O(n2). DBSCAN is
comparatively fast. However, when working with many billions or even trillions of
data points, clustering becomes infeasible due to the logarithmic factor, provided
all data even fits into memory.2

In k-means clustering, the number of clusters k, has to be known in advance.
The goal is to determine k partitions of the input data. Two aspects make k-
means clustering less suitable for our use case. First, when dealing with big
data, estimating a reasonable k is non-trivial. Second, its time complexity is
unfavorable. An exact solution requires O(ndk+1), where d is the number of
dimensions [11]. Lloyd’s algorithm [15], which uses heuristics, is likewise not
applicable as its time complexity is O(dnki), where i is the number of iterations

2 On a contemporary workstation with 16 GB RAM, the scikit-learn implementa-
tion of DBSCAN cannot even handle one million data points.
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until convergence is reached. There have been recent improvements [2,4], but
their time complexity still seems unfavorable for huge data sets.3

3 RASTER

This section contains a thorough presentation of RASTER, consisting of a high-
level description of the algorithm (Sect. 3.1), a discussion of the concept of tiles
and their role in creating clusters (Sect. 3.2), a detailed description of the algo-
rithm, including its time complexity (Sect. 3.3), an outline of one possible paral-
lelization strategy (Sect. 3.4), brief remarks on using data of higher dimensional-
ity (Sect. 3.5), and a potential weakness of our algorithm, including a workaround
(Sect. 3.6).

3.1 High-Level Description

The goal of RASTER is to reduce a very large number n of 2-dimensional points
to a more manageable number of points that specify the approximate area of
clusters in the input data, without retaining its input data. Figure 1 provides
a visualization. Our algorithm uses an implicit 2-dimensional grid of a coarser
resolution than the input data. Each square of this grid is referred to as a tile;
each point is mapped to exactly one tile. A tile containing at least a user-specified
threshold number t of observations is labeled as a significant tile. Afterwards,
RASTER clusters are constructed from adjacent significant tiles.

Fig. 1. A visualization of RASTER

3.2 Tiles and RASTER Clusters

A key component of RASTER is the deliberate reduction of the precision of its
input data. In general, this operation is a projection of points to tiles, which
could, for instance, be achieved by truncating or rounding. The goal is the iden-
tification of RASTER clusters, which is attained via two distinct and consecu-
tive steps: contraction and agglomeration. The contraction step first determines
the number of observations per tile, and then discards all non-significant tiles.

3 We have identified tens of thousands of clusters with RASTER in a huge real-world
data set, which shows that k-means clustering would have been highly unsuitable.
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The agglomeration step constructs RASTER clusters out of adjacent significant
tiles. To illustrate the idea of a tile, consider a grid consisting of squares of a
fixed side length. A square may contain several coordinate points. Reducing the
precision by one decimal digit means removing the last digit of a fixed-precision
coordinate. For instance, with a chosen decimal precision of 2, the coordinates
(1.005, 1.000), (1.009, 1.002), and (1.008, 1.006) are all truncated (contracted) to
the tile identified by the corner point (1.00, 1.00). Thus, (1.00, 1.00) is a tile with
three associated points. This tile would be classified as significant when using a
threshold value of t ≥ 3 and disregarded otherwise.

In the subsequent agglomeration step, RASTER clusters are constructed,
which consist of significant tiles that are at most a Manhattan distance of δ
steps apart. A value of δ = 1 means that significant tiles need to be directly
adjacent; with a larger δ, a cluster could contain significant tiles without direct
neighbors. Finally, constructing a RASTER cluster is an iterative process that
agglomerates significant tiles, taking δ into account.

3.3 The Algorithm

In this subsection we present some explanations that accompany the RASTER
pseudocode in Fig. 2.4 The algorithm consists of three sequential loops. The
first two for -loops constitute the contraction step. The subsequent while-loop
constitutes the agglomeration step.

Mapping to a tile consists of associating a data point p to a value representing
a tile. The case of 2-dimensional values was illustrated in the previous subsection.
RASTER does not exhaustively check every possible tile value, but instead only
retains tiles that were encountered while processing data. Due to the efficiency
of hash tables, the first for -loop runs in O(n), where n is the number of points.
The mapping function is performed in O(1), which is also the time complexity
of the various hash table operations we use. After the first for -loop all points are
mapped to a tile. The second for -loop traverses all keys of the hash table tiles.
Only significant tiles are retained. The intermediate result of this loop is a hash
table of significant tiles and their respective number of observations. Deleting
an entry is an O(1) operation. At most, and only in the pathological case where
there is exactly one observation per tile, there are n tiles. In any case, it holds
that m ≤ n, where m is the number of tiles. Thus, this step of the algorithm is
performed in O(m) ≤ O(n).

The subsequent while-loop performs the agglomeration step, which constructs
clusters from significant tiles. The pseudocode does not specify the definition of
clusters, but implies that a cluster is either a set of significant tiles, or a set of
tuples, where each tuple consists of the coordinates of a significant tile and the
total number of observations. There are at most n tiles. In order to determine the
tiles a cluster consists of, take one tile from the set tiles and recursively determine
all neighboring tiles in O(n) in a depth-first manner. This is conceptually similar

4 Reference implementations in several programming languages are available at
https://gitlab.com/fraunhofer chalmers centre/contraction clustering raster.

https://gitlab.com/fraunhofer_chalmers_centre/contraction_clustering_raster
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to the well-known flood fill algorithm. Neighborhood lookup with a hash table
is in O(1), as the locations of all its neighboring tiles are known. For instance,
when performing agglomerations with δ = 1, the neighbors of any coordinate
pair (x, y) are the squares to its left, right, top, and bottom in the grid. Thus,
the third loop runs likewise in O(m) ≤ O(n). Each of the three loops runs in
O(n) in the worst case, leading to a total time complexity of O(n).

input : data points, threshold t,
distance δ

output : collection of clusters clusters

initialization
initialize hash table tiles, set clusters

contraction
for point in points do

map point to corresponding tile
if tile ∈ tiles then

add tile with value 1 to tiles
else

increment value for tile by 1
end if

end for
for tile in tiles do

if value for tile < t then
remove tile from tiles

end if
end for

agglomeration
while tiles = ∅ do

select arbitrary tile from tiles
determine cluster c containing tile,

considering δ
remove tiles in c from tiles
add c to clusters

end while

Fig. 2. RASTER

The result is a set C of sets,
where each c ∈ C is a cluster of
a finite amount of points that
each uniquely identify a signifi-
cant tile. An illustration of how
such a cluster may look like
is given in Fig. 1, which shows
the count of observations per
tile and, considering a thresh-
old value of t = 4, highlights
those that are classified as sig-
nificant tiles and agglomerated
into clusters.

According to our specifica-
tion, the result is a set of sets,
where each set is a cluster that
is specified only by its con-
stituent significant tiles. It is
trivial to modify RASTER to
retain either all points of a
cluster, or the count of obser-
vations per tile. Indeed, one
key element of our algorithm
is that information regarding
data points per tile is only
maintained as an aggregate by
keeping track of their sum.
This is a useful approach when
clustering very large amounts
of data. However, if data fits
into memory, one could as well
retain all points per tile or all unique points per tile.

3.4 Parallel RASTER

RASTER is easily parallelizable. An obvious target is mapping to tiles, which
is embarrassingly parallel in nature as no projection depends on the result of
any other projection. Thus, this step could be part of a separate parallel for -
loop. Updating the hash table tiles could be sped up with a concurrent hash
table, which affects the first two loops of the algorithm. The agglomeration
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Fig. 3. The agglomeration step as a divide-and-conquer algorithm

step could be parallelized via the divide-and-conquer paradigm of algorithm
design by subdividing the input into partitions of equal size and recursively
processing them. Figure 3 shows how partitions can be processed in parallel.
However, adjacent RASTER clusters c1 and c2 that cross the boundaries of a
partition need to be joined. A cluster is considered complete once none of its
neighbors is a significant tile and it does not touch any partition boundaries.

3.5 Generalizing to Higher Dimensions

While we have focused on 2-dimensional geospatial data, it is possible to gener-
alize RASTER to d dimensions. Generalizing from R

2, irrespective of dimension,
a similar case can be constructed for R

n. For the former, the reduction for each
decimal value is 102 per tile. For the latter, it is 10n. In the case of δ = 1, the
number of neighbors to consider per tile is 2d.

3.6 Minimum Cluster Size in Disadvantageous Grid Layouts

We consider truncation of a fixed number of decimal digits to be the standard
behavior of RASTER. As long as mapping to tiles is performed in a consistent
manner, any mapping can be chosen. Yet, for any possible mapping a corner
case can be found that illustrates that a significant tile may not be found. Thus,
the identification of significant tiles may depend on the chosen grid.

Fig. 4. Any
RASTER grid
is vulnerable

Assume a threshold of t = 4 for a significant tile, and a tile
with four points. If all points were located in the same tile of
a grid, a significant tile would be detected. However, those four
points could also be spread over adjacent tiles, as illustrated by
Fig. 4. One could of course shift the grid by choosing a different
projection, but an adversary could easily place all points on dif-
ferent tiles in the new grid. In order to alleviate this problem,
a threshold u < t for the number of observations in a tile needs
to be picked. To be on the safe side, a value of u = t

4 is rec-
ommended. Alternatively, an additional step could be added to make RASTER
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more precise. With a complexity of O(m), where m is the number of tiles, one
could determine whether a group of four tiles contains at least t points.5

4 Results

In this section we present results of executing RASTER. A visualization of the use
case this algorithm was designed for (Sect. 4.1) is followed by results with sample
datasets for density-based clustering algorithms (Sect. 4.2). Afterwards, we dis-
cuss empirical runtime measurements, including a comparison with DBSCAN
(Sect. 4.3).

The default implementation of RASTER does not retain its input data, but
instead keeps track of the number of observations per tile. That number is
dropped when agglomerating significant tiles to clusters. This leads to clusters
of significant tiles, which would not have been ideal for visualizations. There-
fore, the results in this section were achieved with a trivially modified version
of our algorithm that retains all points per significant tile. For δ = 2, we made
a minor modification to RASTER to take tiles forming a square around any
coordinate into account, instead of the Manhattan distance. Lastly, as an added
post-processing step, we disregarded clusters containing less than certain thresh-
old number of data points, which is specified in each case below.

In the figures in this section, the entirety of the input data is visualized as
translucent gray points. Clusters in the colors red and blue were plotted on top
of those gray points. Thus, all remaining non-red and non-blue points are noise.

4.1 Ideal Data

Fig. 5. RASTER applied
to ideal data

RASTER was designed for the identification of cen-
ters of groups of points which are placed increasingly
tightly the closer they are to the center of a cluster. In
Fig. 5, we use an artificial data set, where a roughly
Gaussian distribution of points is spread around a
center point. This is similar to patterns encoun-
tered in the motivating use case we described in
Sect. 2.2. Points plotted in red constitute the result-
ing RASTER cluster. In order to generate a larger
cluster, we chose a precision of 2 decimal values when
mapping to tiles and the parameters t = 2, δ = 2. We disregarded clusters that
did not contain at least 10 elements.

5 In case it is not obvious why this is in linear time: For each row in a grid, take the
current and next row into account. Start, for instance, with the tile in the top left
corner and take its right neighbor as well as the two tiles adjacent in the next row
into account.
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4.2 Sample Datasets

Even though RASTER was specifically designed for the pattern shown in Fig. 5,
it also performs well as a general-purpose density-based clustering algorithm.
We illustrate this by showing the results of applying RASTER to two standard
scikit-learn data sets: noisy circles and noisy moons, which both contain
1500 points. For the experiments below, we tried several parameters. We did not
preprocess the input data, for instance by rescaling coordinates.

Fig. 6. RASTER applied to
noisy circles

Fig. 7. RASTER applied to
noisy moonswith threshold t= 7

Fig. 8. RASTER applied to
noisy moons with threshold
t = 6

In the noisy circles data set shown in
Fig. 6, RASTER identifies two distinct clusters,
but ignores part of the outer circle. The cho-
sen parameters were t = 3 and δ = 1. The
chosen precision for mapping to tiles was one
decimal value. Resulting clusters had to contain
more than 25 data points. In the noisy moons
data set, density-based clusters are likewise reli-
ably identified. Figure 7 shows output similar to
noisy circles, as the lower arc in the image is
not fully included in the identified cluster. The
chosen parameters were t = 7 and δ = 2, as well
as a precision of 1 for mapping to tiles. Clus-
ters needed to have a size greater than 15. With
minor parameter tweaking of t the shape of the
lower arc could be clearly identified, as shown
in Fig. 8, but at the cost of adding a minimal
amount of noise to the cluster containing the
upper arc.

4.3 Empirical Runtime

RASTER is a fast clustering algorithm, run-
ning in linear time. In order to quantify this, we
performed several measurements for two varia-
tions of our algorithm, i.e. one that retains all
unique points and one that retains a count of the
number of observations per significant tile. The
experiments were run on an Oracle VirtualBox
virtual machine, hosting Ubuntu Linux 16.04.
We allocated 16 GB RAM. The CPU was an
Intel i7-6700K clocked at 4.0 GHz. The imple-
mentation was executed by a Python 3.5 inter-
preter. We generated ideal data as described in Sect. 4.1. The chosen parameters
were t = 5 and δ = 1. No post-processing to filter out clusters below a cer-
tain minimum size was performed. The resulting clusters were rather dense. The
reason behind that choice was to cause a higher workload for the agglomera-
tion step. When processing real-world data with many small and dense clusters,
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agglomeration would merely add a negligible cost, due to the fact that clusters
are very dense but also quite small.

The difference between both variations of RASTER is modest. To highlight
one of the measurements illustrated by Fig. 9: ten million points are processed in
17.8 versus 23.1 s, while the slower runtime was achieved when retaining all data
points. For an input size of 108 points, memory was insufficient for the version
of RASTER that retains its input. Memory requirements when aggregating data
are bounded by the number of tiles in a grid and the size of the used data types
for storing the count of observations per tile, which are both finite with GPS
data. Thus, memory requirements are constant. We also compared RASTER,
in the variation that retains data points, with the DBSCAN implementation of
scikit-learn 0.18.1, cf. Fig. 10. As parameters, we set ε = 0.3 and the minimum
sample size to 10. The DBSCAN experiment ended prematurely as it ran out of
memory with one million points.

5 Related Work

Fig. 9. Two variations of
RASTER

Fig. 10. RASTER vs DBSCAN

An early approach to grid-based spatial data
mining was STING [20]. A key difference of that
algorithm is that it performs statistical queries,
using distributions of attribute values.

WaveCluster [18] shares some similarities
with RASTER. It can reduce the resolution of
the input, which leads to output that is visu-
ally similar to RASTER clusters that are defined
by its significant tiles. WaveCluster runs in lin-
ear time. However, because the computation of
wavelets is costlier than the operations RASTER
performs, its empirical runtime is presumably
worse.

There are also conceptual similarities between
a sub-method of CLIQUE [1] and RASTER.
Yet, differences are that the former is mainly
concerned with subspace clustering of high-
dimensional data. Further, RASTER is more
flexible with regards to neighborhood lookup. It
is also a faster operation with our algorithm. A
minor difference is that CLIQUE uses a density-
ratio threshold. Lastly, the empirical runtime of
RASTER can be assumed to be lower, largely due to the very cheap cost of
projection onto tiles and neighborhood lookup.

The idea of counting observations within a grid has been explored by Baker
and Valleron [3]. They presented a solution to a problem in spatial epidemiology
whose initial step seems similar to the contraction step performed by RASTER.

The approach taken by GRPDBSCAN, discovered by Darong and Peng [6],
seems to have aspects in common with the RASTER variant that retains all
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input data. Their description is not fleshed out, however, so it is not clear how
similar their algorithm is to ours.

Lastly, there is some similarity between our algorithm and blob detection in
image analysis [5]. A direct application of that method to finding clusters would
arguably require very dense cluster centers, which could be achieved by mapping
points to fewer tiles. Also, blob detection is computationally more expensive than
RASTER.

6 Future Work

There are several ways to build upon RASTER. One obvious direction would be
arbitrary resolutions in the reduction step via rounding. Currently, reductions
truncate by one decimal place value. Smaller reduction steps are easy to imple-
ment. However, RASTER is more general and could use any projection, so it
may be worth exploring different areas of application.

Xiaoyun et al. introduced GMDBSCAN [21], a DBSCAN-variant that is able
to detect clusters of different densities. The inability to detect clusters of differ-
ent densities is a weakness of DBSCAN that is shared by RASTER. For more
general purpose-applications, it may be worth investigating a similar approach
for RASTER as well. A starting point is an adaptive distance parameter for
significant tiles. While this paper only considered fixed values of 1 and 2 for δ,
one could certainly consider arbitrary values instead.

RASTER does not distinguish between significant tiles. Yet, one could think
of cases in which some of those tiles contain a very large number of observa-
tions, while others barely reach the specified threshold value. Thus, one could
consider an adaptive approach to RASTER-clustering, for instance by subdivid-
ing such tiles into smaller segments, with the goal of determining more accurate
cluster shapes. This idea is related to adaptive mesh refinement, suggested by
Liao et al. [14]. A related idea is to change the behavior of RASTER when detect-
ing a large number of adjacent tiles that have not been classified as significant.
This may prompt a coarsening of the grid size for that part of the input space.

For practical use, it may be worthwhile to add a contextual relaxation value ε
for the threshold value of significant tiles. For instance, in the vicinity of several
significant tiles, a neighboring tile with t−ε observations may be considered part
of the agglomeration, in particular if it has multiple significant tiles as neighbors.
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Abstract. In this paper, a study of how to compare the performance
of multi-objective stochastic optimization algorithms using quality indi-
cators and Deep Statistical Comparison (DSC) approach is presented.
DSC is a recently proposed approach for statistical comparison of meta-
heuristic stochastic optimization algorithms over single-objective prob-
lems. The main contribution of DSC is the ranking scheme that is based
on the whole distribution, instead of using only one statistic such as aver-
age or median. Experimental results performed by using 6 multi-objective
stochastic optimization algorithms on 16 test problems show that the
DSC gives more robust results compared to some standard statistical
approaches that are recommended for a comparison of multi-objective
stochastic optimization algorithms according to some quality indicator.

Keywords: Multi-objective optimization · Quality indicators
Deep statistical comparison · Single problem analysis
Multiple problem analysis

1 Introduction

In real-world applications and systems, a lot of problems involve simultaneous
optimization of several conflicting objective functions [3]. Finding an optimal
solution for this kind of problems is really a challenging task because a single
optimal solution does not exist and there is a set of alternative solutions. Each
solution that belongs to the set of alternative solutions is optimal in a manner
that no other solution from the search space is superior to it when all objective
functions are considered. These solutions are known as Pareto-optimal solutions
and the set is known as Pareto-optimal set. The representation of the Pareto-
optimal set in the objective space is known as Pareto-optimal front.
c© Springer International Publishing AG 2018
G. Nicosia et al. (Eds.): MOD 2017, LNCS 10710, pp. 76–87, 2018.
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Stochastic optimization algorithms [2] can be assumed as one efficient tech-
nique of finding a good approximation to the Pareto optimal front in multi-
objective optimization. They usually do not guarantee to identify optimal trade-
offs but try to find a good approximation, a set of solutions that are not far away
from the optimal front. For this reason, over the last years, many multi-objective
stochastic optmizaiton algorithms have been developed. Performance analysis of
a new algorithm compared with the state-of-the-art is a crucial task.

In single-objective optimization, to analyze the performance of meta-heuristic
stochastic optimization algorithms, the best obtained solution by an algorithm
needs to be used. In the case of minimization problems, the solution with the low-
est value is the best solution. However, in multi-objective stochastic optimization
algorithms, the result is usually an approximation of the Pareto-optimal front,
called an approximation set, so a vector of real numbers that reflects differ-
ent aspects of the quality of the solution can be assigned to the approximation
set. The quality is measured in terms of some criteria that are related to the
convergence and diversity properties. A large number of quality indicators have
been proposed to compare the performance of different stochastic optimization
algorithms in multi-objective optimization. Some of them are: hypervolume [22],
generational distance [21], inverse generational distance [21], epsilon [15], spread
[3], generalized spread [3], etc.

In comparative studies, algorithms are used to solve a number of benchmark
problems [6]. Meta-heuristics are non-deterministic techniques, meaning we do
not have any guaranty that the result will be the same for every run. So to test
the quality of the algorithm, it is not enough to perform just one run, but many
of them, from which we can draw some conclusions. By calculating quality indi-
cator for each approximation set that is obtained from multiple runs on a single
problem, the high-dimensional data is transformed into one-dimensional data.
Additionally, this data must be analyzed with some statistical tests to ensure
the significance of the results, otherwise the conclusions may be wrong because
the differences between the algorithms could have occurred by chance. Further,
if algorithms need to be compared over multiple multi-objective problems, an
average or a median of the quality indicator data for an algorithm on one prob-
lem needs to be calculated. This value is a representative value involved in the
multiple-problem scenario for this algorithm on that problem.

The use of average or median can have a negative outcome to the relevancy
of results of statistical test [7]. Averaging is sensitive to outliers that need to be
considered especially because the algorithms could have poor runs. Even more,
in the case when poor runs do not exist, averages can be in some ε-neighborhood,
which is the set of all numbers whose distance from a number is less than some
specified number ε, and the algorithms will obtain different rankings. Only in the
case of ties, average rankings are assigned. To exceed the problem of sensitivity
to outliers, medians are sometimes used because they are more robust to outliers.
However, medians can be in some ε-neighborhood, and according to them the
algorithms will obtain different rankings.
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For these reasons, in our previous work [8], an approach was proposed, which
removes the sensitivity of the simple statistics to the data and enables calculation
of more robust statistics without fear of outliers influence or some errors inside
ε-neighborhood. The approach is known as Deep Statistical Comparison (DSC)
and is used to compare meta-heuristics stochastic optimization algorithms over
single-objective problems.

In this paper, a study of the DSC in the domain of multi-objective optimiza-
tion is presented. The data for comparisons consists of quality indicators, which
needs to be analyzed in a proper way, in order to give correct conclusions. The
rest of the paper is organized as follows. Section 2 gives an overview of the related
works. In Sect. 3, the DSC is reintroduced. Section 4 presents the experimental
study, followed by the discussion of the results. The conclusions of the paper are
presented in Sect. 5.

2 Related Work

Over last years, there are many studies that address the problem of compar-
ing approximation sets in a quantitate manner. Some of them include unary
indicators [18]. An unary indicator is a real number assigned to each approxima-
tion set that reflects a certain quality aspect. Other studies are based on binary
indicators [18]. A binary indicator is a real number that is assigned to pairs of
approximation sets. Another approach is the attainment function, which con-
sists of estimating the probability of attaining arbitrary goals in objective space
from multiple approximation sets [10]. Riquelme et al. [18] presented a study
of a large number of metrics that can be used to compare the performance of
different algorithms in multi-objective approach. In the paper, they presented
a review and analysis of 54 multi-objective optimization metrics with a discus-
sion about the usage, tendency, and advantages/disadvantages of the most cited
ones in order to give researchers enough information when choosing metrics is
necessary. This review indicates that the hypervolume is the most used metric,
followed by the generational distance, the epsilon indicator, and the inverted
generational distance.

By comparing multi-objective stochastic optimization algorithms accord-
ing to quality indicators, we transform the comparison problem from high-
dimensional space into one-dimensional space. Then, the statistical methodology
that needs to be applied is the same as the methodology used in the case of single-
objective optimization. The difference is only in the content of the data. In the
single-objective optimization the data consists of best solutions, while in the case
of the multi-objective optimization the data consists of quality indicators of the
approximation sets.

Garćıa et al. [11] presented a study on the use of nonparametric tests for ana-
lyzing the evolutionary algorithms’ behaviour over single-objective optimization
problems, following the study that has already been presented by Demšar for
machine learning classifiers [5]. The study is conducted in two ways: single-
problem analysis and multiple-problem analysis. We call this approach the com-
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mon approach because it is the most used approach for statistical comparison of
meta-heuristic stochastic optimization algorithms.

In the paper [8], we introduced a novel approach, known as Deep Statistical
Comparison (DSC), for the statistical comparison of stochastic optimization
algorithms over multiple single-objective problems. The DSC enables calculation
of more robust statistics and the incorrect conclusions caused by the presence
of outliers or ranking scheme used by some standard statistical tests can be
avoided.

3 Deep Statistical Comparison

Deep Statistical Comparison (DSC ) is a recently proposed approach for statis-
tical comparison of meta-heuristc stochastic optimization algorithms over mul-
tiple single-objective problems [8]. The main contribution of DSC is the ranking
scheme, which is based on the whole distribution, instead of using only one
statistic to describe the distribution, such as average or median. The approach
consists of two steps. The first step uses a newly proposed ranking scheme to
obtain data that will be later used for statistical comparison. The ranking scheme
is based on comparing distributions. By using some statistical test for comparing
distributions, (e.g. the two-sample Kolmogorov-Smirnov test or the two-sample
Anderson-Darling test [9]), all pairwise comparisons between the algorithms
need to be made, and the obtained p-values are organized in a matrix. Further,
because multiple pairwise comparisons are made, these p-values are corrected
with Bonferroni correction [11] in order to control the FWER [16], which is
the probability of making one or more false discoveries, or type I errors, among
all hypotheses when performing multiple hypotheses tests. After correction, this
matrix is checked for transitivity, and according to it the algorithms obtain their
rankings. The second step is a standard omnibus statistical test, which uses the
data obtained by the DSC ranking scheme as input data.

Contrary to common approach, the DSC gives more robust statistical results,
which are not affected by outliers or misleading ranking scheme. The comparison
between both approaches over single-objective problems together with the power
analysis are presented in [8].

4 Results and Discussion

Two experiments are presented. In the first experiment, examples of multiple-
problem analysis are presented according to different quality indicators, when
the number of compared algorithms are 2 or 3, with an explanation on the level
on single-problem analysis. In the second experiment, an example of multiple-
problem analysis is presented in the case of multiple comparisons with a control
algorithm.
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4.1 Experimental Setup

The experimental data is the same as the data used in the paper [20]. Six algo-
rithms are used for comparisons. Three of them are genetic algorithms NSGA-II,
SPEA2 and IBEA and the other three are their differential evolution based vari-
ants DEMONS−II, DEMOSP2, and DEMOIB. Algorithms are compared on 16
test problems. The seven are DLTZ test problems [4] and the next nine are
WFG test problems presented in [14]. Each of the 16 problems was used three
times, each time with a different number of objectives (2, 3, and 4). More about
the parameters of the test problems and the parameters of the algorithms can
be found in [20]. All test problems assume minimization of all objectives. Each
algorithm was run on each test problem 30 times. Before calculating the quality
indicators, each approximated Pareto front was normalized.

Statistical comparisons were made separately according to different quality
indicators, including: hypervolume, epsilon indicator, and r2 indicator. All men-
tioned quality indicators are unary indicators. To calculate the hypervolume,
the reference point (1, . . . , 1) was used. For the other quality indicators, the
reference set consisted of non-dominated solutions acquired from all runs of each
algorithm on a given problem.

The statistical test for comparing distributions used in the DSC ranking
scheme is the two-sample Anderson-Darling (AD) test. The benefits of using
it are presented in [9]. The significance level for it is set to 0.05. Further, the
rankings are used for multiple-problem analysis. Because the required conditions
for safe use of the parametric tests are not satisfied, an omnibus nonparametric
statistical test needs to be selected. In our case, the Wilcoxon signed-rank test
[17] is used for pairwise comparison over multiple problems, while if three or
more algorithms are compared, the Friedman test [11] is used. The significance
level for an omnibus statistical test is set to 0.05.

To see the benefit of using the DSC when multi-objective stochastic opti-
mization algorithms are compared, the obtained quality indicator data for each
problem over 30 runs is additionally analyzed by some standard statistical tests.
If two algorithms are compared on a single problem, then the Mann-Whitney
rank sum test [19] is used. If three or more than three algorithms are compared
on a single problem, it is recommended to use the Kruskal-Wallis test [1]. The
significance level for an omnibus statistical test is set to 0.05.

4.2 First Experiment

In this experiment, two examples are presented. In the first one, the statistical
comparison is made between DEMONS−II and NSGA-II, while in the second one
between DEMOSP2, DEMONS−II, and NSGA-II. In both examples, the algo-
rithms are compared according to three quality indicators, hypervolume, epsilon
indicator, and r2 indicator, separately. The number of objective functions is set
to 2 and 4, respectively.

Table 1 presents the DSC rankings of both algorithms, DEMONS−II and
NSGA-II. For each quality indicator, the first two columns correspond to the
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DSC rankings and the third column corresponds to the obtained p-value from
the Mann-Whitney rank sum test applied on the quality indicator data for a
given problem.

Table 1. Statistical comparison of two algorithms, A1=DEMONS−II and A2=NSGA-II

F Hypervolume Epsilon r2

A1 A2 pvalue A1 A2 pvalue A1 A2 pvalue

DTLZ1 1.00 2.00 ∗(.00) 1.00 2.00 ∗(.00) 2.00 1.00 ∗(.00)

DTLZ2 1.00 2.00 ∗(.00) 1.00 2.00 ∗(.00) 1.00 2.00 ∗(.00)

DTLZ3 1.00 2.00 ∗(.00) 1.00 2.00 ∗(.00) 1.00 2.00 ∗(.00)

DTLZ4 1.00 2.00 ∗(.00) 1.00 2.00 ∗(.00) 1.00 2.00 ∗(.00)

DTLZ5 1.00 2.00 ∗(.00) 1.00 2.00 ∗(.00) 1.00 2.00 ∗(.00)

DTLZ6 1.00 2.00 ∗(.00) 1.00 2.00 ∗(.00) 1.00 2.00 ∗(.00)

DTLZ7 1.00 2.00 ∗(.00) 1.00 2.00 ∗(.00) 1.00 2.00 ∗(.00)

WFG1 1.00 2.00 ∗(.00) 1.00 2.00 ∗(.00) 1.00 2.00 ∗(.00)

WFG2 1.00 2.00 ∗(.00) 1.00 2.00 ∗(.00) 1.00 2.00 ∗(.00)

WFG3 1.00 2.00 ∗(.00) 2.00 1.00 ∗(.02) 1.00 2.00 ∗(.00)

WFG4 1.00 2.00 ∗(.00) 2.00 1.00 ∗(.03) 1.50 1.50 (.70)

WFG5 1.00 2.00 ∗(.00) 2.00 1.00 ∗(.00) 2.00 1.00 ∗(.00)

WFG6 1.00 2.00 ∗(.00) 1.00 2.00 ∗(.00) 1.00 2.00 ∗(.00)

WFG7 1.00 2.00 ∗(.00) 1.00 2.00 ∗(.00) 1.00 2.00 ∗(.00)

WFG8 1.00 2.00 ∗(.01) 1.00 2.00 ∗(.00) 1.00 2.00 ∗(.00)

WFG9 1.00 2.00 ∗(.02) 2.00 1.00 ∗(.02) 1.50 1.50 ∗(.04)
∗ The null hypothesis is rejected, using α = 0.05
pvalue - the p-value of Mann-Whitney ranks sum test

Using this table, on a single problem level, there is a significant statistical
difference between the performance of both algorithms according to the hyper-
volume and epsilon indicator. For example, the rankings according to the hyper-
volume on the DTLZ1 are 1.00 and 2.00. This means that there is a significant
statistical difference between the performance of both algorithms on that prob-
lem, and the algorithm that is ranked with number 1, DEMONS−II, is signifi-
cantly better than the algorithm that is ranked with number 2, NSGA-II. Then,
the data is analyzed using the Mann-Whitney rank sum test, and the obtained
p-value is 0.00, which is smaller than the used significance level, 0.05. To see
which algorithm is better using the Mann-Whitney rank sum test, a one-sided
test needs to be used, which is not needed for DSC since the ranking scheme
has already presented this information. For this problem, the result from the
Mann-Whitney rank sum test is the same as the result from the DSC.

According to the r2 indicator, there are two problems, WFG4 and WFG9, for
which the DSC rankings are 1.50 and 1.50, so there is no significant statistical
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difference between the performance of the algorithms. For the WFG4 problem,
the p-value by the Mann-Whitney rank sum test is 0.70, which is greater than
the significance level that is used, so the result is the same as in the case of
the DSC. For the WFG9 problem, the p-value of the Mann-Whitney rank sum
test is 0.04, which is lower than the used significance level, so the result is not
the same as the result of the DSC and there is a significant statistical difference
between the performance of the algorithms.

To see what happens on this problem, the result from the DSC is presented
in detail. In Fig. 1a, the cumulative distribution functions (the step functions)
and the mean values (the horizontal lines) of the r2 quality indicator data for
both algorithms on WFG9 are presented.
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Fig. 1. Cumulative distribution functions of a quality indicator on WFG9

From this figure, it is not clear if there is a difference between the cumulative
distribution functions of r2 quality indicator, so to check this the two-sample
AD test is used. The p-value is 0.06, which is greater than the significance
level, 0.05, so there is no significant statistical difference between the perfor-
mance of the algorithms. When a standard statistical procedure is used, the
result could be affected if outliers are presented, or if the differences between the
obtained values for the r2 quality indicator of both algorithms are in some small
ε-neighbourhood and they influence on the ranking scheme. Even more, the ques-
tion is how the result of the Mann-Whitney rank sum test is interpreted. If the
two distributions have a different shape, the Mann-Whitney rank sum test is used
to determine whether there are differences in the distributions of the two algo-
rithms. However, if the two distributions have the same shape, the test is used to
determine whether there are differences in the medians of the quality indicator
between the two algorithms. So if the results are presented without checking the
shape of the distributions, than this could lead to incorrect interpretation of the
obtained results. The same explanation is also valid for the Kruskal-Wallis test.
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From other side, the DSC ranking scheme use a statistical test for comparing dis-
tributions according to their shapes and parameters, so the problem of incorrect
interpretation of the results is avoided.

After ranking the algorithms for each single problem, the rankings are fur-
ther used for multiple problem analysis and compared using an omnibus statis-
tical test. Because the required conditions for the safe use of parametric tests
are not satisfied, the Wilcoxon signed-rank test is used in the case of pairwise
comparison. The obtained p-values for the comparisons made according to each
quality indicator, separately, are 0.00, so there is a significant statistical differ-
ence between the performance of both algorithms according to the three quality
algorithms over multiple problems.

In the second example, the statistical comparison over multiple problems is
made between three algorithms, DEMOSP2, DEMONS−II, and NSGA-II. The
DSC results are compared with the common approach. So to perform a multiple
problem analysis by the common approach, an average of the quality indicator
data of an algorithm over 30 runs on a given problem is set as a representative
value for this algorithm on that problem. Table 2 presents the DSC rankings and
the Friedman rankings. The Friedman ranking scheme is used when the data is
analyzed following the common approach. The first six columns correspond to the
rankings according to the hypervolume, while the next six columns correspond
to the ranks according to the epsilon indicator.

By using this table, the rankings according to the hypervolume for both
approaches differ in 4 problems, DLTZ3, DTLZ5, WFG8, and WFG9, while the
rankings according to the epsilon indicator differ in 8 problems, DTLZ3, DTLZ5,
WFG2, WFG3, WFG6, WFG7, WFG8, and WFG9. This happens because when
the common approach is used, averaging is sensitive to outliers, so even when
the difference between the averages are in some small ε-neighbourhood, the best
one will receive ranking 1 and so on. In the case of DSC, the whole distribution
is used, so if the quality indicator distributions of the algorithms are the same,
they need to obtain the same ranking. So the rankings are obtained according to
the whole distribution and not relying only on one statistic, which is the average
in our example. To clarify this, in Fig. 1b, the cumulative distribution functions
(the step functions) and the mean values (the horizontal lines) for the epsilon
indicator of the algorithms on WFG9 are presented.

From this figure, one may assume that there is no difference between the
cumulative distribution functions of epsilon indicator between the algorithms
DEMONS−II and NSGA-II, but both distributions differ from the cumulative
distribution of DEMO−SP2. To check this, the two-sample AD test is used. The
p-values for each pairwise comparison are: 0.00 (DEMO−SP2, DEMONS−II), 0.00
(DEMO−SP2, NSGA-II), and 0.61 (DEMONS−II, NSGA-II). These value are fur-
ther corrected by Bonferroni correction. In this example, the transitivity of the
matrix used in the DSC ranking scheme is satisfied, so the set of all algorithms
is split into two disjoint sets {DEMO−SP2} and {DEMONS−II, NSGA-II} and
the algorithms rankings are, 1.00, 2.50, 2.50. When a common approach is used,
the rankings are 1.00, 2.00, 3.00, but it is obvious that averages of the epsilon
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Table 2. Rankings of the algorithms, A1=DEMOSP2, A2=DEMONS−II, and A3=
NSGA-II

F Hypervolume Epsilon

DSC Friedman DSC Friedman

A1 A2 A3 A1 A2 A3 A1 A2 A3 A1 A2 A3

DTLZ1 2.00 1.00 3.00 2.00 1.00 3.00 1.00 2.00 3.00 1.00 2.00 3.00

DTLZ2 2.00 1.00 3.00 2.00 1.00 3.00 2.00 1.00 3.00 2.00 1.00 3.00

DTLZ3 1.50 1.50 3.00 1.00 2.00 3.00 1.50 1.50 3.00 1.00 2.00 3.00

DTLZ4 1.00 2.00 3.00 1.00 2.00 3.00 1.00 2.00 3.00 1.00 2.00 3.00

DTLZ5 2.50 2.50 1.00 3.00 2.00 1.00 2.00 2.00 2.00 1.00 2.00 3.00

DTLZ6 2.00 1.00 3.00 2.00 1.00 3.00 2.00 1.00 3.00 2.00 1.00 3.00

DTLZ7 2.00 1.00 3.00 2.00 1.00 3.00 2.00 1.00 3.00 2.00 1.00 3.00

WFG1 1.00 2.00 3.00 1.00 2.00 3.00 1.00 2.00 3.00 1.00 2.00 3.00

WFG2 1.00 2.00 3.00 1.00 2.00 3.00 1.00 2.50 2.50 1.00 2.00 3.00

WFG3 1.00 3.00 2.00 1.00 3.00 2.00 1.00 2.50 2.50 1.00 2.00 3.00

WFG4 1.00 2.00 3.00 1.00 2.00 3.00 2.00 1.00 3.00 2.00 1.00 3.00

WFG5 3.00 2.00 1.00 3.00 2.00 1.00 1.00 3.00 2.00 1.00 3.00 2.00

WFG6 1.00 2.00 3.00 1.00 2.00 3.00 1.00 2.50 2.50 1.00 2.00 3.00

WFG7 1.00 2.00 3.00 1.00 2.00 3.00 1.00 2.50 2.50 1.00 2.00 3.00

WFG8 1.00 2.50 2.50 1.00 3.00 2.00 1.00 2.50 2.50 1.00 3.00 2.00

WFG9 1.00 2.50 2.50 1.00 3.00 2.00 1.00 2.50 2.50 1.00 2.00 3.00

indicator for DEMONS−II and NSGA-II are in some small ε-neighbourhood, so
this affects the ranking scheme, which could also influence the end result.

For multiple-problem analysis, the Friedman test is used with the rankings
obtained on each single problem as an input data. The p-value for the DSC
and the common approach according to the epsilon indicator is 0.00, so the
result is that there is a significant difference between the performance of the
algorithms over the multiple problems. When the comparison is made according
to the hypervolume, the p-value using the DSC is 0.00, while the obtained p-
value using the common approach is 0.01. The result is the same and there
is a significant difference between the performance of the compared algorithms
over the multiple problems that are used in the comparison. In this example, in
the case of multiple-problem analysis, there is no difference between the result
obtained by both approaches, however there is a difference on a single problem
level. In general, the differences that exist on a single problem level can influenced
the result for multiple-problem analysis.

4.3 Second Experiment

In typical comparison of multi-objective stochastic optimization algorithms usu-
ally more than 3 algorithms are used to compare against the proposed one.
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For this reason, an example of multiple comparisons with a control algorithm
is presented. More information about this scenario is presented in [8]. One way
to do this is to obtain the rankings of the algorithms using the DSC ranking
scheme, to used them as input data in an omnibus statistical test, and if there is
a difference to continue with some post-hoc procedure [12,13]. When the number
of algorithms increases, the correction of the p-values used in the DSC ranking
scheme could influence the rankings. In order to avoid this, multiple Wilcoxon
tests with the DSC rankings as input data can be used, one for each pairwise
comparison. To calculate the true statistical difference for combining pairwise
comparisons [11] in order to control the FWER the following equation is used:

pvalue = 1 −
k−1∏

i=1

[1 − pvalueHi
], (1)

where k is the number of algorithms involved in the comparison.
In this example, the comparison is performed between DEMONS−II as a

control algorithm, and the other 5 algorithms: NSGA-II, DEMOSP2, SPEA2,
DEMOIB, and IBEA, using multiple Wilcoxon tests. Table 3 presents the
p-values for the pairwise comparisons according to the r2 indicator.

Table 3. Multiple comparisons with a control algorithm (DEMONS−II) by using mul-
tiple Wilcoxon tests with the DSC ranking scheme

1 2 3 4 5

DEMONS−II vs. NSGA-II DEMOSP2 SPEA2 DEMOIB IBEA

pvalue 0.008 0.021 0.999 0.331 0.013

From this table, before the FWER is not controlled, the conclusion that the
algorithm DEMONS−II has a significant statistical different performance accord-
ing to the r2 indicator than the algorithms NSGA-II, DEMOSP2, and IBEA,
with a significance level α = 0.05, can not be correct. The DEMONS−II algo-
rithm has a significant statistical different performance than each of these 3 algo-
rithms since the p-values are smaller than α = 0.05, considering pairwise com-
parisons. The true statistical difference for combining pairwise comparisons for
these 5 hypotheses is calculated using Eq. 1. In our case the true p-value is 0.04,
which is smaller than the significance level, α = 0.05, and we can conclude that
the DEMONS−II has a significant statistical different performance than these 3
algorithms.

5 Conclusion

In this paper, to compare the performance of multi-objective stochastic opti-
mization algorithms, a study for using quality indicators with deep statistical
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comparison approach (DSC) is presented. Deep Statistical Comparison approach
is a recently proposed approach for the statistical comparison of meta-heuristic
stochastic optimization algorithms over multiple single-objective problems. The
main contribution of the DSC is that its ranking scheme is based on the whole
distribution, instead of using only one statistic to describe the distribution, which
can be average or median. By using the DSC, incorrect conclusions caused by
the presence of outliers or misleading ranking scheme can be avoided.

The evaluation of the study is performed using the results for 6 multi-
objective stochastic optimization algorithms tested on 16 test multi-objective
problems. Two scenarios are tested in the experiments, a single-problem analy-
sis, when the algorithms are compared according to some quality indicator over
single multi-objective problem, and a multiple-problem analysis, when the algo-
rithms are compared according to some quality indicator over multiple multi-
objective problems. Experimental results show that the DSC give more robust
result compared to some standard statistical approaches that are recommended
to use in order to compare the performance of multi-objective stochastic opti-
mization algorithms according to some quality indicator. For our future work,
we are planning to find a way of how to combine different comparison results
from different quality indicators, following the idea of ensemble learning.
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Abstract. Flux balance (or constraint-based) analysis has been the
mainstay for understanding metabolic networks for many years. How-
ever, recently Lucia and DiMaggio [1] have argued that metabolic net-
works are more correctly modeled using game theory, specifically Nash
Equilibrium, because it (1) captures the natural competition between
enzymes, (2) includes rigorous chemical reaction equilibrium thermody-
namics, (3) incorporates element mass balance constraints, and therefore
charge balancing, in a natural way, and (4) allows regulatory constraints
to be included as additional constraints.

The novel aspects of this work center on the explicit inclusion of
enzyme-substrate reactions at the cellular length scale and molecular
length scale protein docking information in metabolic network modeling.
This multi-scale information offers the advantages of directly (1) com-
puting cellular enzyme concentrations and activities, (2) incorporating
genetic modification of enzymes, and (3) encoding the effects of age-
related changes in enzymatic behavior (e.g., protein misfolding) within
any pathway. Molecular length scale binding histograms are computed
using protein-ligand docking and directly up-scaled to the cellular level.
A small, proof-of-concept example from the Krebs cycle is presented to
illustrate key ideas. Numerical results show that the proposed approach
provides a wealth of quantitative enzyme information.

1 Introduction

While flux balance analysis (FBA) or constraint-based modelling (CBM) and its
many variants have been used for metabolic pathway analysis for some time (see,
for example, [2–12]), the Nash Equilibrium (NE) approach recently proposed by
Lucia and DiMaggio [1] and extended in Lucia et al. [13] far outperforms all
FBA and CBM methods because it is a first principles approach that incorpo-
rates rigorous chemical reaction equilibrium and elemental mass balances. As a
result of its formulation, the NE approach has superior capabilities that natu-
rally address (1) the competition among enzymes for resources in the metabolic
pool, (2) substrate and co-factor charge balancing, and (3) regulatory controls.
c© Springer International Publishing AG 2018
G. Nicosia et al. (Eds.): MOD 2017, LNCS 10710, pp. 88–99, 2018.
https://doi.org/10.1007/978-3-319-72926-8_8
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The NE approach is also predictive. While there are competing kinetic-based
models of metabolic pathways, these methods generally require a large num-
ber of parameters that cannot be directly measured and must be determined
through model regression. Thus kinetic approaches are correlative and not pre-
dictive, particularly for experimental conditions that deviate from the training
data used to determine model parameters.

1.1 A Nash Equilibrium Approach to Metabolic Pathways

In this sub-section, only a brief summary of the Nash Equilibrium approach to
modelling metabolic pathways is presented. The reader is referred to [1,13] for
details. The key ideas behind the NE approach to metabolic pathway analysis
are to (1) represent the network using first principles rigorous chemical reaction
equilibrium and element mass balances and (2) view enzymes as players in a
multi-player game, in which each enzyme minimizes the change in Gibbs free
energy for the biochemical reaction it catalyzes subject to appropriate elemental
mass balances (i.e., conservation of mass of carbon, hydrogen, oxygen, nitro-
gen, phosphorous and sulfur). This leads to the representation of any metabolic
network as a set of N nonlinear programming sub-problems (NLPs), where the
network objective function is defined by:

G(v)
RT

=
N∑

j=1

min
Gj(vj)

RT
(1)

where G is the Gibbs free energy, v denotes the vector of metabolic fluxes, R is
the universal gas constant, T is absolute temperature and j denotes the jth NLP
sub-problem. The details of the Gibbs free energy and heat of formation data
required in the NE formulation and a description of the cellular fluid model can
be found in [1,13].

1.2 Element Mass Balances and Charge Balancing

The NE approach provides a natural way to ensure that atomic mass balances
are satisfied within and across the metabolic network. In particular, appropriate
element mass balances are included within each NLP sub-problem. Movement
from one NLP sub-problem to the next automatically guarantees that element
mass balances are satisfied since the outputs of one reaction are typically some
or all of the inputs to the next reaction(s) in the network. For example, consider
the first reaction in the Krebs (TCA) cycle given by:

C4H2O
−2
5 + C23H34N7O17P3S

−4 + H2O

� C6H5O
−3
7 + C21H32N7O16P3S

−4 + H+ (2)

in which oxaloacetate and acetyl-CoA combine with water to form citrate, co-
enzyme A, and hydrogen ions in the presence of the enzyme citrate synthase.
The corresponding element balances for the reaction in Eq. 2 are the hydrogen,
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nitrogen, oxygen, and carbon balances and are represented by the matrix-vector
equation:

Aik,j vk,j = Mi,j (3)

where the index i corresponds to the individual elements, index j denotes sub-
problem j (here j = 1 since the reaction under consideration is the first reac-
tion in the network), index k corresponds to individual metabolites/cofactors,
vector vk,j = (v1,1, v2,1, v3,1, v4,1, v5,1)T , vector Mi,j = (H1, N1, O1, C1)T and
H1, N1, O1, C1 represent the molar amounts of hydrogen, nitrogen, oxygen, and
carbon in that order for subproblem j = 1. The k = 5 independent fluxes
(chemical species) in Eq. 3 are water, acetyl-CoA, co-enzyme A, oxaloacetate,
and citrate respectively. H+ is a dependent flux. Additionally, the full matrix
Aik,j is

Aik,j=1 =

⎛

⎜⎜⎝

2 34 32 2 5 1
0 7 7 0 0 0
1 17 16 5 7 0
0 23 21 4 6 0

⎞

⎟⎟⎠ (4)

Note that while phosphorous and sulfur are also present, these elements, along
with nitrogen, are fixed in the ratio N7P3S so only one of the element mass
balances in the subset N,P, S is linearly independent and can be used as a
constraint.

In the second reaction in the TCA cycle, the citrate from reaction 1 binds with
the enzyme aconitase to form isocitrate. Considering only the overall metabolite
reaction, we have

C6H5O
−3
7 � iC6H5O

−3
7 (5)

Note that there is only a single independent element balance for this second
reaction since it is simply an isomerization reaction.

The key points here are that:

1. If the element balances for the first reaction are satisfied, then the amount
of citrate that is available for the second reaction preserves element mass
balances.

2. Element balancing automatically accounts for correct charge balancing.

2 Explicitly Incorporating Enzyme-Substrate Reactions

To our knowledge there is no approach to metabolic network modeling and analy-
sis that explicitly includes the binding and unbinding of substrates with enzymes
and therefore no methodology capable of predicting enzyme concentrations and
activities or their impact. The inclusion of enzyme-substrate binding/unbinding
reactions opens up a wide range of possibilities that can provide important quan-
titative information such as:

1. The amount of a given enzyme needed to catalyze a given reaction.
2. The impact of changes in enzymatic activity on the steady-state behavior of

metabolic networks.
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Including enzyme-substrate reactions within the Nash Equilibrium formulation
of a metabolic network is straightforward. However, it is well known that enzyme-
substrate binding (also called protein docking) exhibits many minima and saddle
points on the energy surface. To obtain this data, molecular length scale protein
docking software (e.g., AutoDock [14], which was used exclusively in this work)
can be used to create a look-up table of ranked enzyme-substrate binding ener-
gies from histograms and this information can be easily up-scaled to the cellular
length scale for use in the NE calculations. In general, information for confor-
mations (or docking solutions) with the lowest Gibbs free energy are up-scaled
to and used at the cellular length scale - unless there are reasons for choosing a
different conformation.

2.1 Enzyme-Substrate Reactions

General enzyme-substrate reactions can be described using the simple two-
reaction sequence:

E + S � E − S (6)

E − S � E + P (7)

which represent, respectively, the binding of the enzyme, E, and substrate, S, to
form a stable complex, denoted by E − S, followed by rearrangement, cleaving,
or some other interaction and then subsequent unbinding to regenerate enzyme
and produce product, P . Within the Nash Equilibrium framework, binding and
unbinding are considered to reach chemical equilibrium.

2.2 An Example of Binding and Unbinding Reactions

Consider the simple example of the binding of citrate (shown in blue and red)
with the iron sulfate complex (orange and yellow) of the enzyme aconitase as
shown in Fig. 1. A sample of the output produced by AutoDock is given in
AppendixA.1. Note that binding takes place at sites in the large binding pocket
containing the iron sulfate complex, which is surrounded by α helix and β sheet
portions of the enzyme. Moreover, this large pocket is the ‘correct’ binding site
and the one that results in the production of isocitrate.

2.3 Multiple Minima from Protein Docking

It is well known that protein-ligand docking is a multi-minima problem, in which
there are a large number of minima and saddle point solutions. For example,
for the aconitase-citrate illustration, using just twenty-five (25) random starting
points AutoDock located twenty-five different solutions or conformations in three
separate binding pockets. Figure 2 shows three key solutions, which have corre-
sponding Gibbs free energies of binding of −11.38, −6.72, and −6.22 kcal/mol
respectively. Solution 1 (top left) is the global minimum and the one that leads
to the conversion of citrate to isocitrate. Solutions 2 (top right) and 3 (bottom)
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Fig. 1. Docking of citrate with aconitase (Protein Data Bank (PDB) ID: 1C96). (Color
figure online)

represent conformations in which citrate binds to sites that are above the large
binding pocket in the center of the enzyme and, as a result, do not convert cit-
rate to isocitrate. These solutions can be ranked based on their respective Gibbs
free energies and clustering information from the corresponding histogram (see
AppendixA.2) can be used to define cluster efficiencies given by the rule

kijm =
nijm∑M
l=1 nijl

, i = 1, ..., nS ; j = 1, ..., nE ; m = 1, ...,M (8)

where i is a substrate index, nS is the number of substrates, j denotes the enzyme
index, nE is the number of enzymes, m is the cluster index, and M is the total
number of clusters. In the illustrative example, there is one substrate (citrate),
one enzyme (aconitase) and three clusters, which gives

k111 =
23
25

= 0.92; k112 =
1
25

= 0.04; k113 =
1
25

= 0.04 (9)

respectively for solutions 1, 2 and 3 shown in Fig. 2. Normally, the cluster with
the highest efficiency is chosen unless there is reason to choose a different cluster
efficiency. There are a few key points to note:

1. The total time for docking simulations is not prohibitive. For this small exam-
ple, the total time to compute all twenty-five solutions was ∼10 min on a
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laptop. This clearly indicates that generating a database of enzyme-substrate
binding energies, clusters, and a cluster ranking is tractable - even for a large
number of enzymes and substrates. Once this data is determined for a given
enzyme-substrate pair, it never has to be computed again.

2. Our proposed approach for including molecular length scale enzyme-substrate
information relies on the Protein Data Bank (PDB) and a tool for computing
relative binding Gibbs free energies and cluster information (e.g., AutoDock).

3. In a more general sense, ranked enzyme-substrate efficiencies open up many
possibilities, not the least of which is the capability to include behavior such
as changes in enzyme activity due to genetic modifications, misfolding, ageing,
and so on, provided of course the structural changes in the enzyme resulting
from these modifications can be determined (e.g. via protein folding calcula-
tions, molecular dynamics, etc.).

Fig. 2. Multiple binding solutions for aconitase-citrate docking.

2.4 A Multi-scale Methodology for Including Enzyme-Substrate
Reactions

It is instructive to illustrate for the reader the way in which enzyme-substrate
reactions are included in the NE framework for the purpose of determining
enzyme activities and concentrations. Here again we use the example of cit-
rate conversion to isocitrate to illustrate. The conversion of citrate to isocitrate
can be treated as a two-reaction sequence, in which the first reaction is given by

C6H5O
−3
7 + E � E − C6H5O

−3
7 (10)
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where E = aconitase. The corresponding NLP sub-problem for this reaction is

min
G1(v1, v2, v3)

RT
(11)

subject to element balances
5v1 + 0v2 + 5v3 = H (12)
0v1 + 1v2 + 1v3 = E (13)

where H and E represent the amount of hydrogen and aconitase in the initial
pool and the subscripts 1, 2 and 3 correspond to citrate, aconitase, and the
aconitase-citrate complex, respectively. It is important for the reader to under-
stand that enzymes are treated by assuming they undergo no change in mass.
Only the substrates or metabolites undergo chemical change. As a result, element
balancing of the enzyme is unnecessary, which avoids scaling and other compli-
cating issues due to the typically large number of residues and corresponding
molecular weight of enzymes.

The second reaction, Eq. 7, is the unbinding of isocitrate from aconitase and
results in the NLP sub-problem given by

min
G1(v1, v2, v3)

RT
(14)

subject to the same set of mass balance constraints (i.e., Eqs. 12 and 13). The
only difference here is that subscript 1 in Eqs. 12 and 13 now represents isocitrate.
Note that charge balancing associated with the overall conversion of citrate to
isocitrate remains unchanged in the presence of enzyme-substrate reactions.

2.5 Enzyme Activity

One way to get a measure of enzyme activity is to plot the rate of reaction as a
function of substrate concentration. This leads to the simple expression for the
rate of conversion of citrate to isocitrate (here for E. coli) given by

V0 =
vP
V

(15)

where vP represents the steady-state flux of product, V is the reaction volume
of the appropriate compartment of the cell (e.g., cytosol in E. coli), and V0 is
the rate of catalysis. Biochemists usually express the rate of catalysis in terms
of Michaelis-Menton kinetics using an equation of the form

V0 = Vmax
[S]

[S] + KM
(16)

where Vmax is the maximum rate of catalysis, [S] is the substrate concentration,
and KM is the Michaelis constant, which is defined as the substrate concentra-
tion that gives a reaction velocity equal to Vmax/2.
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Another important metric of enzyme activity is turnover number. The
turnover number, kcat, is the reaction rate constant associated with the con-
version of enzyme-substrate complex to enzyme plus product (i.e., the rate con-
stant associated with Eq. 7). The turnover number can be computed using the
expression

kcat =
Vmax

[E]T
=

Vmax

[E] + [E − S]
(17)

where [E]T is the total enzyme concentration.

3 Numerical Results

Numerical results for the inclusion of enzyme-substrate reactions within a Nash
Equilibrium formulation are presented. To make the presentation clear, we focus
on the citrate-aconitase-isocitrate example for E. coli from the previous sections
(Eqs. 10–14) to provide proof-of-concept. Of specific interest is the quantitative
determination of enzyme concentrations and activity metrics. All computations
were performed on a Dell Inspiron laptop with the Lahey-Fujitsu LF95 compiler.

Table 1. Aconitase conversion of citrate to isocitrate at 25 ◦C.

Enzyme/Substrate Flux (mmol/s) Concentration (mM)

Citrate 0.066900 2.79040

Aconitase 0.106647 4.44828

Aconitase-citrate 0.022484 0.93782

Isocitrate 0.033813 1.41034

Table 1 shows the steady-state fluxes and concentrations for substrates,
enzyme and enzyme-substrate complex for the conversion of citrate to isocitrate
in the presence of aconitase for an initial pool of 0.1 mmol of citrate and 0.13
mmol of aconitase and temperature of 25 ◦C. Table 1 also shows that under the
given conditions ∼33% of the citrate is converted to isocitrate and that ∼82%
of the aconitase is regenerated.

Figure 3 shows the rate of isocitrate as a function of substrate concentration
for 0.13 mM/s of aconitase and initial citrate concentrations ranging from 0.2 mM
to 4 M at 25 ◦C and a cytosolic volume for E. coli of V = 1µm3 (Fig. 1 in [15]).

Note that the reaction velocity increases as substrate concentration increases
until the aconitase is saturated. At that point there are no more active sites
available and the reaction velocity (enzyme activity) reaches a maximum rate of
0.091 M/s.

Figure 4, on the other hand, is an enlargement of Fig. 3 at low substrate
concentration, which is necessary to graphically determine the Michaelis con-
stant, KM . From the value Vmax/2 = 0.0455 M/s, the Michaelis constant is
KM = 4.91 mM. Using Eq. 17 and the saturated enzyme concentration of 5.386
mM, the predicted turnover number is 16.90 s−1. Both metrics, KM = 4.91 mM
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Fig. 3. Reaction velocity as a function of citrate concentration.

Fig. 4. Enlargement of V0 as a function of low citrate concentration.
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and kcat = 16.90 s−1 match published experimental data (i.e. KM = [1.16 − 11]
mM in [16] and kcat = 13.5 s−1 in [17]) quite well.

Finally, from the histogram information, we use an enzyme efficiency of 92%
and adjust the initial pool of active enzyme from 0.13 mmol to 0.1196 mmol.
For the illustration in Table 1, this simply gives a slightly lower conversion of
citrate to isocitrate (32 vs. 33%), slightly lower enzyme concentration (4.05 vs.
4.45 mM), and shifts the curve in Fig. 3 downward yielding a lower value of Vmax

(0.083 vs. 0.091 M/s) and a lower KM (4.69 vs. 4.91 mM).

4 Conclusions

The inclusion of enzymatic reactions in a Nash Equilibrium framework for
metabolic pathway analysis was presented. Results for a simple illustration of
the conversion of citrate to isocitrate in the presence of aconitase clearly show
that the proposed approach can be used to predict key metrics used to describe
enzyme activity as well as enzyme and enzyme-substrate complex concentrations.
The results presented in this work easily generalize to any enzymatic reaction
and can be used for strain development via genetic modification, understanding
epigenetics, therapeutics, and other biological tasks.

Appendix A.1

See Fig. 5.

Fig. 5. Sample output from protein-ligand docking software.
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Appendix A.2

See Fig. 6.

Fig. 6. Sample AutoDock histogram for protein-ligand docking.
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Abstract. Text Classification (or Text Categorization) is a popular
machine learning task. It consists in assigning categories to documents.
In this paper, we are interested in comparing state of the art classi-
fiers and state of the art feature weights. Feature weight methods are
classic tools that are used in text categorization. We extend previous
studies by evaluating numerous term weighting schemes for state of the
art classification methods. We aim at providing a complete survey on
text classification for fair benchmark comparisons.

1 Introduction

Nowadays, at the time of the rapid growth of the internet, the volume of text
documents becomes more and more important. Consequently, effective document
retrieval may be a really hard task, especially without any organization. Text
classification has become a state of the art solution to this problem. Over time,
several classification methods appear [5], such as k-nearest neighbor [16], Näıve
Bayes [8], decision trees [1], neural networks [9], boosting methods [11] and
Support Vector Machines [2]. In this paper we are interested in finding a good
term weighting method for state of the art classification algorithms. The paper
is organized as follows: in Sect. 2 we present text classification and in particular
state of the art term weighting method definitions. In Sect. 3 we present the state
of the art classifiers used in our study. In Sect. 4, we compare the different term
weighting methods applied to 3 famous text categorization benchmarks. Finally,
we discuss and present future works in Sect. 5.

2 Text Classification

Text Classification (TC) aims at automatically assigning a set of predefined
categories to a text document. Depending on the text corpus being classified,
each document can be in one or multiple categories. This task is achieved by
using a classifier learned on a training set of labeled documents.

A fundamental step in learning a classifier is to represent text documents in
a suitable format recognizable by this classifier. In Vector Space Model (VSM),
each text document is represented as a vector of index terms in which each term
c© Springer International Publishing AG 2018
G. Nicosia et al. (Eds.): MOD 2017, LNCS 10710, pp. 100–108, 2018.
https://doi.org/10.1007/978-3-319-72926-8_9
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is associated with a weight (score) that measures how informative/discriminative
the correspondent term is. The method which assigns a weight to a term is called
Term Weighting Scheme (TWS).

To the best of our knowledge, no complete survey exists on how effective
TWS performs with different state of the art classifiers. In this paper, we focus
on this comparison in order to have a fair and complete study.

One of the most famous (TWS) is tf.idf proposed by Jones in [12] and stands
for term frequency-inverse document frequency. tf.idf is an unsupervised term
weighting method. It is the product of the Term Frequency component (TF)
by the Collection Frequency component (CF): Term Frequency (tf) and Inverse
Document Frequency (idf) respectively. We use the logarithmically scaled tf
defined as:

tft,d = 1 + log(ft,d).

where ft∈d stands for the occurrence of term t in the document d. And idf
defined as:

idf(t) = log
|D|

|{d′ ∈ D|t ∈ d′}| .

where |D| is the total number of documents and |{d′ ∈ D|t ∈ d′}| is the number
of documents that contains the term t.

TC is a supervised learning task, such that document membership (class
information) is known in advance. We call Supervised Term Weighting (STW),
the term weighting that incorporates the class information. In that context,
researchers proposed various supervised term weighting methods that replace
the unsupervised collection frequency component idf by a supervised component.
For instance, Chi-square (χ2) is a test of independence between two variables
and it was first used as a TWS in text categorization in [4,5]. Gain ratio (gr) in
[4], odds ratio (or) in [5], relevance frequency (rf) was proposed by Lan et al.
in [7], inverse category frequency (icf) proposed by Wang et al. in [14], and term
relevance ratio (trr) by Youngjoong in [17].

Thus, the general formula for the different TWS in this paper, could be
defined as:

wt,d = tft,d × CF (t).

Table 1 shows all the CF included in this study that are used in almost all
TC works. All these TWS are used in classic machine learning tools for TC. We
present some of these tools in the next section.

3 Classifiers

To study the effect of each Supervised Term Weighting (STW) on classification
tasks, we use five known learning algorithms: Support Vector Machine (SVM),
Passive-Aggressive (PA), Stochastic Gradient Descent (SGD), Nearest Centroid
(NC), C4.5 (C4.5). However it’s important to note that we are studying the
effectiveness of STW rather than the performance of the learning algorithms.



102 A. Mazyad et al.

Table 1. Collection Frequency Components. Given a term t and a category c, N stands
for the total number of documents, |C| is the total number of categories and |Ct| is
the number of categories where the term t occurs, w is the number of documents that
contain t and belong to category c, x is the number of documents that contain t and
do not belong to c, y is the number of documents that do not contain t and belong to
cj, z is the number of documents that do not contain t and do not belong to c.

CF Formula

idf log(N/(w + y))

χ2 N × ((w × z − x × y)2)/((w + y)(x + z)(w + x)(y + z))

ig ((w/N)× log(w×N)/((w+x)(w+y)))+ ((y/N)× log(y×N)/((y+z)(w+y)))
+((x/N)× log(x×N)/((w+x)(b+z)))+((z/N)× log(z ×N)/((y+z)(b+z)))

gr ig/((−(w + y)/N)(log(w + y)/N) − ((x + z)/N)(log(x + z)/N))

or log (2 + (w ∗ z)/(x ∗ y))

rf log (2 + (w/ max(1, x)))

icf log2 (C/Ci)

SVM is a supervised machine learning algorithm used for both classification
and regression. SVM has been proposed by Cortes and Vapnik in [2]. Joachims [6]
was the first to use SVM for text categorization in which he shows the superiority
of SVM over other traditional learning methods.

PA introduced in [3] is an online learning algorithm for large scale dataset.
The algorithm watches a stream of instances. Once a new instance is received,
the algorithm outputs a prediction. Later, the instance true label is uncovered
and the algorithm updates its prediction function.

SGD [18] is another learning algorithm for large scale classification task. It
is used to learn linear models such as linear SVM, by minimizing its objective
function.

NC [13] is a simple neighborhood-based classification algorithm. The algo-
rithm computes a centroid for each class. It then outputs the label of the nearest
centroid to the test instance as the predicted label.

C4.5 [10] is a supervised tree-based learning algorithm. In 2008, C4.5 has
received a considerable amount of attention after being ranked first in the Top
10 Algorithms in Data Mining [15].

4 Results and Discussion

4.1 Experiments

Three widely-used datasets are used to evaluate the classifiers: Reuters, Oshumed
and 20 Newsgroups.

Reuters-215781 is one of the most used test collection for TC research. We
use the “ModApte” split which contains 90 categories.
1 http://disi.unitn.it/moschitti/corpora.htm.

http://disi.unitn.it/moschitti/corpora.htm
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The second dataset is extracted from the Oshumed2 collection compiled by
William Hersh.

The last test collection used in our experiment is the 20 Newsgroups. The
dataset “20news-bydate”3 is sorted by date and splitted into training set (about
60%) and test set (about 40%). Duplicates are removed. Newsgroup-identifying
headers (Xref, Newsgroups, Path, Followup-To, Date) are also removed.

In all three test collections, we applied lower case transformation, word stem-
ming and stop word removal. No additional preprocessing steps or feature selec-
tion is performed.

Reuters-21578 and Oshumed are multi-labelled datasets. 20Newsgroups is a
multi-class dataset. In all cases, we transform the task into multiple binary single
label tasks using the one-vs.-all transformation strategy aka one-vs.-rest.

Table 2 shows some statistics on the three collections.

Table 2. Statistics on the three test collections (train data/test data).

Reuters Oshumed Newsgroups

# documents 7769/3019 6286/7643 11314/7532

# terms 26000 30198 101322

# categories 90 23 20

Size of the smallest category 1/1 65/70 377/251

Size of the largest category 2877/1087 1799/2153 600/399

4.2 Evaluation

To assess the performance of STW, we use the standard F1 measure. The F1
score considers both precision (true positive over true positive plus false positive)
p and recall (true positive over true positive plus false negative) r and can be
formally defined as: F1(p, r) = 2rp

r+p . We also report the precision and recall. The
precision and recall results of the multiple binary tasks are averaged using the
micro-(μ) and macro-(m) averaged measures.

Tables 3, 4, 5, 6, 7, 8, 9, 10 and 11 show the μ/m-averaged precision, recall
and f-score, for reuters, oshumed and 20newsgroups datasets, respectively. In
these tables, the highest μ/m score over a column is underlined, and the best
pair of μ/m scores considering all classifiers and all TWS are bolded. The pair
that have the highest average is choosen as the best.

4.3 Results

In Tables 3, 4 and 5, we present the μ/m-averaged precision, recall, and f-score,
respectively, for Reuters-21578 dataset. In Table 5, NC shows the lowest perfor-
mance, considering both μ and m scores. PA have the highest μ-score (87.22%)

2 http://disi.unitn.it/moschitti/corpora.htm.
3 http://qwone.com/∼jason/20Newsgroups/.

http://disi.unitn.it/moschitti/corpora.htm
http://qwone.com/~jason/20Newsgroups/
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Table 3. μ/m-averaged precision results (%) on Reuters-21578 dataset using different
weighting methods.

PA SVM SGD NC C4.5

tf 91.50/62.69 94.37/56.75 94.40/56.64 39.22/30.28 82.17/57.17

tfchi2 91.35/63.23 94.37/56.75 94.46/55.54 39.22/30.28 82.18/56.23

tfgr 91.26/61.37 94.37/56.75 94.48/57.21 39.22/30.28 82.44/55.26

tficf 93.21/64.03 94.95/57.31 94.69/61.25 48.87/50.00 81.64/55.34

tfidf 93.12/64.14 95.17/56.95 94.45/58.85 63.40/47.57 81.82/56.65

tfig 91.56/62.63 94.37/56.75 94.48/56.68 39.22/30.28 82.45/58.53

tfor 91.73/63.42 94.37/56.75 94.47/56.62 39.22/30.28 82.07/56.24

tfrf 91.51/60.75 94.37/56.75 94.45/55.52 39.22/30.28 81.93/55.63

Table 4. μ/m-averaged recall results (%) on Reuters-21578 dataset using different
weighting methods.

PA SVM SGD NC C4.5

tf 82.27/42.74 78.85/33.51 79.73/35.08 89.93/61.76 81.62/53.79

tfchi2 81.76/42.64 78.85/33.51 79.62/34.82 89.93/61.76 81.41/52.91

tfgr 82.27/41.55 78.85/33.51 79.54/34.81 89.93/61.76 81.62/51.81

tficf 79.59/39.44 75.27/30.64 77.19/33.20 86.75/52.96 80.26/51.91

tfidf 82.02/41.81 78.37/33.60 80.02/36.29 87.55/55.60 80.80/53.65

tfig 82.61/41.93 78.85/33.51 79.51/34.81 89.93/61.76 81.70/53.51

tfor 82.10/42.59 78.85/33.51 79.46/34.66 89.93/61.76 81.68/53.32

tfrf 82.00/41.15 78.85/33.51 79.57/34.75 89.93/61.76 81.97/52.97

Table 5. μ/m-averaged f-score results (%) on Reuters-21578 dataset using different
weighting methods.

PA SVM SGD NC C4.5

tf 86.64/48.48 85.91/39.74 86.45/41.15 54.61/34.75 81.90/53.63

tfchi2 86.29/48.51 85.91/39.74 86.41/40.80 54.61/34.75 81.79/53.24

tfgr 86.53/47.14 85.91/39.74 86.37/41.14 54.61/34.75 82.03/51.79

tficf 85.87/46.42 83.97/37.77 85.05/40.28 62.52/46.43 80.94/52.05

tfidf 87.22/48.20 85.95/40.32 86.64/42.73 73.55/47.05 81.31/53.36

tfig 86.86/47.76 85.91/39.74 86.35/40.97 54.61/34.75 82.08/54.24

tfor 86.65/48.48 85.91/39.74 86.32/40.85 54.61/34.75 81.87/52.82

tfrf 86.49/46.74 85.91/39.74 86.37/40.76 54.61/34.75 81.95/52.82
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Table 6. μ/m-averaged precision results (%) on Oshumed dataset using different
weighting methods.

PA SVM SGD NC C4.5

tf 71.13/73.55 78.77/81.13 79.85/82.42 39.22/35.64 57.09/53.40

tfchi2 64.72/61.40 72.81/71.56 71.57/69.70 47.34/45.23 58.22/56.02

tfgr 76.17/78.21 81.04/80.14 80.67/79.39 58.65/58.85 56.72/52.89

tficf 74.27/75.04 80.80/81.07 77.92/77.81 69.32/68.58 55.63/53.09

tfidf 75.76/78.26 80.83/80.36 80.48/79.11 54.40/53.06 57.54/53.61

tfig 76.14/77.84 81.04/80.14 80.81/79.49 58.65/58.85 56.84/53.65

tfor 74.25/76.45 79.74/81.91 79.44/81.19 53.58/53.61 57.34/54.62

tfrf 74.08/76.38 80.29/83.20 80.39/82.11 52.24/52.12 57.64/54.63

Table 7. μ/m-averaged recall results (%) on Oshumed dataset using different weighting
methods.

PA SVM SGD NC C4.5

tf 52.91/44.32 46.21/35.96 47.27/37.76 68.04/66.55 56.08/51.73

tfchi2 56.50/51.22 54.83/48.33 50.77/45.94 64.82/65.07 56.70/52.42

tfgr 54.89/47.80 48.61/40.01 52.08/44.79 66.60/64.62 56.89/52.70

tficf 45.57/40.16 35.50/29.46 42.02/36.32 51.58/47.07 57.43/52.71

tfidf 53.55/45.80 46.82/37.43 50.19/42.00 67.71/65.54 56.35/52.50

tfig 54.76/47.84 48.61/40.01 51.96/44.73 66.60/64.62 57.36/53.67

tfor 58.15/53.84 54.68/48.36 56.53/51.26 66.14/66.29 55.89/51.46

tfrf 56.38/50.68 52.32/44.55 53.69/46.72 66.32/65.98 55.53/51.79

Table 8. μ/m-averaged f-score results (%) on Oshumed dataset using different weight-
ing methods.

PA SVM SGD NC C4.5

tf 60.68/53.95 58.25/47.02 59.39/48.78 49.76/44.48 56.58/52.42

tfchi2 60.33/55.51 62.55/55.27 59.40/52.01 54.72/51.83 57.45/53.88

tfgr 63.80/58.11 60.77/51.71 63.29/56.05 62.37/60.16 56.80/52.65

tficf 56.48/51.32 49.33/41.93 54.60/48.32 59.15/55.25 56.51/52.67

tfidf 62.75/56.42 59.30/49.08 61.83/53.41 60.33/57.43 56.94/52.88

tfig 63.71/58.12 60.77/51.71 63.25/56.02 62.37/60.16 57.10/53.47

tfor 65.22/62.37 64.87/58.78 66.05/60.57 59.20/57.43 56.60/52.76

tfrf 64.03/60.08 63.36/55.52 64.38/57.19 58.44/56.05 56.56/53.00
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Table 9. μ/m-averaged precision results (%) on 20newsgroups dataset using different
weighting methods.

PA SVM SGD NC C4.5

tf 63.91/63.77 66.94/66.58 61.05/62.78 55.91/62.22 44.07/44.12

tfchi2 58.55/60.54 60.26/60.35 59.33/59.51 47.73/60.20 38.20/38.16

tfgr 68.43/68.37 69.69/69.41 70.19/70.06 62.85/71.44 43.07/43.37

tficf 68.14/68.23 69.15/69.23 69.24/68.85 59.43/71.87 49.19/51.77

tfidf 68.31/68.10 69.69/69.29 61.26/66.59 64.27/69.19 43.65/43.67

tfig 68.97/68.86 70.14/69.79 70.26/69.85 63.64/71.56 44.16/44.40

tfor 68.57/68.19 69.80/69.26 69.54/69.24 56.44/69.03 45.13/44.77

tfrf 56.00/55.42 57.73/56.95 56.57/55.36 36.56/46.22 42.22/42.58

Table 10. μ/m-averaged recall results (%) on 20newsgroups dataset using different
weighting methods.

PA SVM SGD NC C4.5

tf 63.91/62.87 66.94/65.81 61.05/59.69 55.91/55.17 44.07/43.01

tfchi2 58.55/57.05 60.26/58.74 59.33/57.82 47.73/47.05 38.20/37.17

tfgr 68.43/67.33 69.69/68.52 70.19/68.92 62.85/62.10 43.07/42.07

tficf 68.14/66.96 69.15/67.90 69.24/67.95 59.43/58.62 49.19/48.15

tfidf 68.31/67.20 69.69/68.48 61.26/59.95 64.27/63.32 43.65/42.73

tfig 68.97/67.86 70.14/68.93 70.26/68.94 63.64/62.78 44.16/43.15

tfor 68.57/67.42 69.80/68.52 69.54/68.26 56.44/55.81 45.13/44.05

tfrf 56.00/54.86 57.73/56.38 56.57/55.10 36.56/36.06 42.22/41.33

Table 11. μ/m-averaged f-score results (%) on 20newsgroups dataset using different
weighting methods.

PA SVM SGD NC C4.5

tf 63.91/63.06 66.94/65.85 61.05/60.38 55.91/56.97 44.07/43.18

tfchi2 58.55/56.89 60.26/58.18 59.33/57.21 47.73/50.62 38.20/36.91

tfgr 68.43/67.55 69.69/68.60 70.19/68.98 62.85/64.45 43.07/42.36

tficf 68.14/67.18 69.15/68.10 69.24/67.97 59.43/61.74 49.19/49.08

tfidf 68.31/67.37 69.69/68.49 61.26/62.38 64.27/64.90 43.65/42.86

tfig 68.97/68.05 70.14/68.96 70.26/68.93 63.64/65.09 44.16/43.39

tfor 68.57/67.52 69.80/68.51 69.54/68.30 56.44/59.19 45.13/43.97

tfrf 56.00/54.69 57.73/56.18 56.57/54.47 36.56/38.41 42.22/41.47
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and the second highest m-score (48.51%) preceded only by C4.5 with a m-score
of 54.24%. Regarding TWS, even though, tf.idf shows higher scores, the results
are very close.

Tables 6, 7 and 8 shows the μ/m-averaged precision, recall, and f-score,
respectively, for Oshumed dataset. Considering both precision and recall scores
in Table 8, PA shows the best performance, followed by SGD, SVM. Strangely
C4.5 shows the lowest performance.

Regarding TWS, tf.or outperforms clearly all other methods except when
used in conjunction NC. tf.rf , tf.gr and tf.ig have close results, and come
second, followed by tf and tf.idf . tf.icf performs poorly.

For these two datasets, we can note that, in comparison with the other algo-
rithms, NC have a very high recall scores in Tables 4 and 7. However, NC reports
the lowest precision scores in Tables 3 and 6.

Scores for Newsgroups dataset are presented in Tables 9, 10 and 11. tf.ig
and tf.gr record the best scores (70%/69%) in conjunction with both SVM and
SGD. Overall, in this dataset, SVM performs the best, followed by SGD and PA.
C4.5 records very low scores. As for TWS, tf.ig and tf.gr give the best results,
followed closely by tf.or, tf.idf and tf.icf . tf.rf shows the lowest scores.

In contrast to the high recall scores and low precision scores registered by
NC algorithm on Reuters-21578 and Oshumed datasets, NC registered approxi-
mately equal results on both precision and recall.

Concerning C4.5, we can note that precision and recall results are approxi-
mately equal on the three datasets.

Overall, in our study, we find that tf.or is the best TWS. tf.idf , tf.gr and
tf.ig are also good choices for weighting features. tf.χ2, tf.icf and tf.rf are the
worst methods.

5 Conclusion

The aim of this paper is to give an insight into the different TWS available
for TC. These schemes are used in conjunction with five classifiers tested on
Reuters-21578, Oshumed and 20newsgroups datasets. Our work aims at extend-
ing previous surveys and establishing a clean and fair basis for TC benchmarks.

To sum up, we find that the superiority of supervised term weighting meth-
ods over unsupervised methods is still not clear. Even though, in our experiment,
tf.or gives better results than tf.idf , we find no consistent superiority. In addi-
tion, tf.idf is shown to be superior that the three supervised methods tf.rf ,
tf.χ2 and tf.icf . We find also that, alongside with tf.or which gave the best
results, tf.idf , tf.gr and tf.ig are good choices for weighting features.
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Abstract. The paper examines four weak relaxed greedy algorithms for
finding approximate sparse solutions of convex optimization problems
in a Banach space. First, we present a review of primal results on the
convergence rate of the algorithms based on the geometric properties
of the objective function. Then, using the ideas of [16], we define the
duality gap and prove that the duality gap is a certificate for the current
approximation to the optimal solution. Finally, we find estimates of the
dependence of the duality gap values on the number of iterations for
weak greedy algorithms.

Keywords: Greedy algorithms · Nonlinear optimization · Sparsity

1 Introduction

Let X be a Banach space with norm ‖ · ‖. Let E be a convex function defined
on X. The problem of convex optimization is to find an approximate solution to
the problem

E(x) → min
x∈X

. (1)

A set of elements D from the space X is called a dictionary (see, e.g. [24]) if
each element g ∈ D has norm bounded by one, ‖g‖ ≤ 1, and the closure of span
D is X, i.e. spanD = X. A dictionary D is called symmetric if −g ∈ D for every
g ∈ D. In this paper we assume that the dictionary D is symmetric.

Many problems in machine learning can be reduced to the problem (1) with
E as a loss function [4]. In many real applications it is required that the optimal
solution x∗ of (1) should have a simple structure, e.g. be a finite linear combina-
tion of elements from a dictionary D in X. In other words, x∗ should be a sparse
element with respect to the dictionary D in X. Of course, one can substitute the
requirement of sparsity by a constraint on cardinality (i.e. the limit on the num-
ber of elements used in linear combinations of elements from the dictionary D to
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construct a solution of the problem (1)). However, in many cases the optimiza-
tion problems with cardinality-type constraint are NP-complete. By this reason,
practitioners and researchers in real applications choose to use greedy methods.
By that design, greedy algorithms are capable of producing sparse solutions.

We are interested in finding the solutions of the problem (1), that are sparse
with respect to D, i.e. we are looking for solving the following problem:

E(x) → inf
x∈Σm(D)

, (2)

where Σm(D) is the set of all m-term polynomials with respect to D:

Σm(D) =
{
x ∈ X : x =

∑

g∈Λ

cgg, #(Λ) = m, Λ ⊂ D}
. (3)

One of the apparent choices among constructive methods for finding the
best m-term approximations are greedy algorithms. The design of greedy algo-
rithms allows us to obtain sparse solutions with respect to D. Perhaps, the
Frank-Wolfe method [11], which is also known as the “conditional gradient”
method [19], is one of the most prominent greedy algorithms for finding optimal
solutions of constrained convex optimization problems. Important contributions
to the development of Frank-Wolfe type algorithms can be found in [5,12,16].
The review of gradient methods in Banach spaces can be found in [7,23]. The
paper [16] provides general primal-dual convergence results for Frank-Wolfe-
type algorithms by extending the duality concept presented in the work [5]. One
can find recent convergence results for greedy algorithms in the works [1,6,8–
10,13,15,17,18,22,25,27].

This paper examines four greedy algorithms for finding solutions of a con-
vex optimization problem, which are sparse with respect to some dictionary, in
Banach spaces:

– basic greedy algorithm (BGA),
– weak greedy algorithm (WGA),
– weak greedy algorithm with free relaxation (WGAFR),
– weak greedy algorithm with free relaxation and error δ (WGAFR(δ)).

Primal convergence results for BGA, WGA, WGAFR, WGAFR(δ) algo-
rithms were obtained in [10,24]. Extending the ideas of [5,16] we force into
application the notion of the duality gap to obtain dual convergence estimates
for sparse-constrained convex optimization problems of type (2) by means of
BGA, WGA, WGAFR, WGAFR(δ) algorithms.

It should be noted, that the paper by Temlyakov [24] shows that the greedy
algorithms (WGAFR, WGAFR(δ)) for finding the solutions of (2) with respect
to the dictionary D solve the problem (1) as well. Following [24], we examine
the problem in an infinite dimensional space setting, since in many real appli-
cations the dimension of the space X even if finite, it is too large. Therefore,
our interest lies in obtaining estimates on the rate of convergence not depending
on the dimension of X. Obviously, the results for infinite Banach spaces provide
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such estimates on the convergence rate. Moreover, in recent years some learning
schemes in Banach spaces have been developed and justified using semi-inner-
products or reproducing kernel Banach space approach (see e.g. [14,26]).

2 Greedy Algorithms

‘For a functional F ∈ X∗ and an element f ∈ X in this paper we will use an
appropriate bracket notation F (f) = 〈F, f〉.

Let Ω := {x ∈ X : E(x) ≤ E(0)} and suppose that Ω is bounded. We will
suppose that function E is Fréchet differentiable on Ω. We note that it follows
from convexity of E that for any x, y ∈ Ω

E(y) ≥ E(x) + 〈E′(x), y − x〉,
where E′(x) denotes Fréchet differential of E at x.

Let A1(D) denote the closure (in X) of the convex hull of D.
We analyze the family of greedy algorithms in a Banach space which use the

Fréchet differential to choose a steepest descent direction at each iteration.
For optimization problem (2), the simplest iterative optimizer is described in

Algorithm 1, which for each m ≥ 1 defines the next point Gm by induction using
the current point Gm−1 and element φm that is obtained in the gradient greedy
step. The gradient greedy step maximizes a certain functional determined by the
gradient information from the previous steps of the algorithm. The algorithm
is the Frank-Wolfe type method, since at each current point Gm−1 it uses the
linearization of the objective function E, and moves towards a minimizer of this
function taken over the dictionary D.

Algorithm 1. Basic Greedy Algorithm (BGA)

begin
· Let G0 := 0;
for each m ≥ 1 do

· (Gradient greedy step) Find the element φm = φm ∈ D such that
〈−E′(Gm−1), φm〉 = sup

s∈D
〈−E′(Gm−1), s〉;

· (Line-search step) Find a real number λm such that
E ((1 − λm)Gm−1 + λmφm) = inf

λ
E ((1 − λ)Gm−1 + λφm) ;

· (Update step) Define Gm = Gr,τ
m = (1 − λm)Gm−1 + λmφm;

end

We would like to note that the gradient greedy step of greedy algorithms is
looking for supremum over the dictionary D (not its convex hull A1(D)), since
points from A1(D) are mostly linear combinations of infinite number of the
dictionary elements. Thus, the optimal solution obtained this way is not obliged
to be sparse with respect to D.
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Solving the subproblem sups∈D〈−E′(Gm−1), s〉 at Gradient greedy step
exactly can be too expensive (or even impossible) for many real problems. Let
τ := {tm}∞

m=1 be a given sequence of nonnegative numbers tm ≤ 1, m = 1, 2, . . ..
Algorithm 2 uses the sequence τ in the gradient greedy step to find approximate
minimizer φm instead, which has approximation (multiplicative) quality at least
tm in step m. That is why the algorithm is called “weak” and the sequence τ is
called “weakness” sequence.

Algorithm 2. Weak Greedy Algorithm (WGA)

begin
· Let G0 = 0;
for each m ≥ 1 do

· (Gradient greedy step) Find the element φm ∈ D such that
〈−E′(Gm−1), φm〉 ≥ tm sup

s∈D
〈−E′(Gm−1), s〉 ;

· (Line-search step) Find a real number λm such that
E ((1 − λm)Gm−1 + λmφm) = inf

λ
E ((1 − λ)Gm−1 + λφm) ;

· (Update step) Define Gm = (1 − λm)Gm−1 + λmφm;

end

After we found φm at the gradient greedy step we can update the current
state Gm−1 using different ways. Some variants of choosing Gm are used in opti-
mization algorithms like gradient method, reduced gradient method, conjugate
gradients, gradient pursuits (see, for instance, [2,3,11,21]). Algorithms 1 and 2
at the line-search step proceeds by choosing the best point on the line connecting
φm and the current point Gm−1.

In Algorithm 3 we use so called free relaxation and choose the element Gm

from span(Gm−1, φm) which gives the infimum of E over all linear combinations
of Gm−1 and φm.

We assume that there exists an element (not necessarily unique) x∗ in the
Banach space X where the minimum E∗ is attained, E(x∗) = E∗. It is obvious
that the set of all such optimal elements x∗ where the minima is attained is
convex. Moreover, the minimum E∗ is obliged to attain on the set Ω.

The paper [10] pointed out that very often we cannot calculate values of E
exactly. Moreover, in many applications we are not able to find the exact value
of the infλ,ω E ((1 − ω)Gm−1 + λφ) in the search with free relaxation step of
Algorithm 3. Therefore, the paper [10] studies the following Algorithm 4 that is
a modification of WGAFR with changing the step of Algorithm 3.

Comparing to the BGA, the idea behind using weakness sequence τ in the
WGA, the free relaxation search in the WGAFR or the error δ in WGAFR(δ) is
that it will hopefully make more progress per iteration, and may result in a better
sparsity of the final solution. Obviously, it has its price, since the optimization
problem in each iteration can now have the same complexity as the original
optimization problem.
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Algorithm 3. Weak Greedy Algorithm with Free Relaxation
(WGAFR)

begin
· Let G0 = 0;
for each m ≥ 1 do

· (Gradient greedy step) Find the element φm ∈ D such that
〈−E′(Gm−1), φm〉 ≥ tm sup

s∈D
〈−E′(Gm−1), s〉 ;

· (Search with free relaxation) Find real numbers ωm and λm, such that
E ((1 − ωm)Gm−1 + λmφm) = inf

ω,λ
E ((1 − ω)Gm−1 + λφm) ;

· (Update step) Define Gm = (1 − ωm)Gm−1 + λmφm;

end

Thus, on the search step of Algorithm 4 we try to solve the bivariate convex
optimization problem with respect to λ and ω with an error δ. The book [20] gives
fast algorithms to solve such problems approximately (see also [10]). In the search
step of Algorithm 3 the existence of optimal ωm and λm is assumed. However,
Algorithm 4 uses approximate implementation which avoids this assumption.

Algorithm 4. Weak Greedy Algorithm with Free Relaxation
and Error δ (WGAFR(δ))

begin
· Let G0 = 0 and δ > 0 be a fixed real;
for each m ≥ 1 do

· (Gradient greedy step) Find the element φm ∈ D such that
〈−E′(Gm−1), φm〉 ≥ tm sup

s∈D
〈−E′(Gm−1), s〉 ;

· (Search with free relaxation and error δ) Find real numbers ωm and
λm, such that
E ((1 − ωm)Gm−1 + λmφm) ≤ inf

ω,λ
E ((1 − ω)Gm−1 + λφm) + δ ;

· (Update step) Define Gm = (1 − ωm)Gm−1 + λmφm;

end

3 Primal Convergence Results

The modulus of smoothness of function E on the bounded set Ω is defined as
follows:

ρ(E, u) =
1
2

sup
x∈Ω,‖y‖=1

|E(x + uy) + E(x − uy) − 2E(x)|. (4)

E is called uniformly smooth function on Ω if limu→0 ρ(E, u)/u = 0.



114 S. P. Sidorov et al.

Let E∗ := infx∈X E(x) = infx∈Ω E(x), E(x∗) = E∗. Let

εm := inf{ε : Aq
εm

1−q ≤ ε}. (5)

Exploiting the geometric properties of the function E, papers [10,24] show
the following estimate of the convergence rate of BGA, WGA and WGAFR.

Theorem 1 (Primal Convergence for BGA, WGA and WGAFR). Let E be a
uniformly smooth convex function with modulus of smoothness ρ(E, u) ≤ γuq,
1 < q ≤ 2. Then, for a weakness sequence τ = {tm}∞

m=1, 0 < tm ≤ 1, m =
1, 2, . . ., we have for BGA (with tm = 1, m = 1, 2, . . .), WGA and WGAFR

E(Gm) − E∗ ≤ C(E, q, γ)εm, (6)

where C(E, q, γ) is a positive constants not depending on m.

Let A0 := inf{M : x∗ ∈ LM}. Notice that since x∗ ∈ LA0 then (6) can be
rewritten in the simpler form:

E(Gm) − E∗ ≤ C(E, q, γ)Aq
0m

1−q.

Lemma 1 (See, e.g. Lemma 1.1 of [24]). Let E be a Fréchet differentiable and
convex on Ω. Then for all x ∈ Ω

0 ≤ E(x + uy) − E(x) − u〈E′(x), y〉 ≤ 2ρ(E, u‖y‖).

The following lemma is proved in [24] as Lemma 2.2.

Lemma 2. Let F be a bounded linear functional and let D be a dictionary. Then

sup
s∈D

〈F, s〉 = sup
s∈A1(D)

〈F, s〉.

Lemma 3. Let nonnegative a1, . . . , aN be such that

am ≤ am−1 + inf
λ

(−λvam−1 + Bλq) + δ, B > 0, δ ∈ [0, 1],

for m ≤ K := [δ−1/q], q ∈ (1, 2]. Then am ≤ C(q, v,B)m1−q, m ≤ K.

Denote
LM := {s ∈ X : s/M ∈ A1(D)},

Aε := A(E, ε) = inf{M : ∃y ∈ LM s.t. E(y) − E∗ ≤ ε}.

The following lemma was proved in [24] (Lemma 4.1).

Lemma 4. Let E be uniformly smooth with modulus of smoothness ρ(E, u) on
Ω. Let fε be from LAε

. Then for WGAFR(δ) we have

E(Gm) ≤ E(Gm−1) + inf
λ≥0

(−λtmA−1
ε (E(Gm−1) − E(f)) + 2ρ(E,C0λ)) + δ,

for m = 1, 2, . . . , δ−1/q.
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We present the following estimate of the convergence rate of the WGAFR(δ)
based on the geometric properties of the function E.
Theorem 2 (Primal Convergence for WGAFR(δ)). Let E be a uniformly
smooth convex function with modulus of smoothness ρ(E, u) ≤ γuq, 1 < q ≤ 2.
Then, for a weakness sequence τ = {tk}∞

k=1, 0 < tk ≤ 1, k = 1, 2, . . ., we have

E(Gm) − E∗ ≤ C(E, q, γ)εm, m ≤ δ− 1
q , (7)

where C(E, q, γ) is positive constants not depending on m.

Proof. The proof is from the work [10]. We present it for completeness. Since

E(Gm) ≤ E(Gm−1) + δ (8)

and m ≤ δ−1/q, we have E(Gm) ≤ E(0) + 1, and therefore, Gm ∈ Ω1 := {x ∈
X : E(x) ≤ E(0) + 1} for m ≤ δ−1/q. Let an := E(Gn) − E(f). It follows from
Lemma 4 that am ≤ am−1 + infλ>0(−λtmA−1

ε am−1 + 2γ(C0λ)q) + δ. If am are
nonnegative then we apply Lemma 3 with v = tmA−1

ε and B = 2γCq
0 .

Denote K := [δ−1/q]. Let n′ be the smallest from [1,K] such that an′ < 0.
Then it follows from (8) and m ≤ δ−1/q that am ≤ Cm1−q for all n′ ≤ m ≤ K.

4 Duality Gap and Convergence Result

In this section we present dual convergence results for BGA, WGA, WGAFR
and WGAFR(δ).

Definition 1. Let us define the duality gap at element G ∈ Ω and error ε by

g(G) = g(G, ε) =: Aε sup
s∈D

〈E′(G), A−1
ε G − s〉. (9)

The useful property of the duality gap is described in the following proposi-
tion.

Proposition 1. Let E be a convex function defined on Banach space X. Then
for any x ∈ Ω we have

E(x) − E(x∗) ≤ g(x, ε) + ε.

Proof. Let xε be such that E(xε)−E(x∗) < ε and xε/Aε ∈ A1(D), i.e. xε ∈ LAε
.

Let us first prove that
E(x) − E(xε) ≤ g(x).

Since E is convex on X, for any x ∈ Ω we have

E(xε) ≥ E(x) + 〈E′(x), xε − x〉
≥ E(x) − sup

s∈LAε

〈E′(x), x − s〉 (since xε ∈ LAε
)

= E(x) − Aε sup
s∈LAε

〈E′(x), xA−1
ε − sA−1

ε 〉

= E(x) − Aε sup
s′∈A1(D)

〈E′(x), xA−1
ε − s′〉 (sinceLAε

= AεA1(D))

= E(x) − Aε sup
s′∈D

〈E′(x), xA−1
ε − s′〉, (10)



116 S. P. Sidorov et al.

where we have used Lemma 2 (or Lemma 2.2 in [24]). Then it follows from (10)
that

E(x) − E(xε) ≤ Aε sup
s′∈D

〈E′(x), xA−1
ε − s′〉 =: g(x), (11)

and we get Lemma (since E(xε) − E(x∗) < ε). ��
Thus, the usefulness of the duality gap is based on the fact that the duality gap
g(x) is a certificate for the current approximation E(x) to the optimal solution
E(x∗).

We can state the following dual result for BGA, WGA and WGAFR.

Theorem 3. Let E be a uniformly smooth convex function defined on Banach
space X. Let ρ(E, u) be the modulus of smoothness of E and suppose that
ρ(E, u) ≤ γuq, 1 < q ≤ 2. Let τ = {tm}∞

m=1, 0 < θ < tk < 1, k = 1, 2, . . .,
be a weakness sequence. Assume that BGA or WGA or WGAFR is run for
N > 2 iterations. Then there are an iterate 1 ≤ m̃ ≤ N and β > 0 such that

g(Gm̃) ≤ βC(E, q, γ)εN . (12)

As it can be seen it is sufficient to prove the dual result for WGAFR(δ)
and then Theorem 3 follows immediately from the corresponding result for
WGAFR(δ).

We need some preliminary results to prove the main theorem.

Lemma 5. Let E be a uniformly smooth convex function defined on Banach
space X. Let ρ(E, u) denote the modulus of smoothness of E. Then the following
inequality holds for the WGAFR(δ):

E(Gm) ≤ E(Gm−1) + inf
λ≥0

(−λtmA−1
ε g(Gm−1) + 2ρ(E,C0λ)) + δ, m = 1, 2, . . . ,

where C0 does not depend on m.

Proof. The proof is a modified version of the proof of Lemma 4.1 in [24]. From
the definition of Gm in Step 3 of WGAFR(δ) we have

Gm = (1 − ωm)Gm−1 + λmφm.

Step 2 of WGAFR(δ) implies

E(Gm) ≤ inf
λ≥0,ω

E(Gm−1 − ωGm−1 + λφm) + δ. (13)

It follows from Lemma 1 that

E(Gm−1 − ωGm−1 + λφm) ≤ E(Gm−1)
+ λ〈−E′(Gm−1), φm〉 − ω〈−E′(Gm−1), Gm−1〉 + 2ρ(E, ‖λφm − ωGm−1‖).

(14)
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We have from Step 1 of WGAFR(δ)

〈−E′(Gm−1), φm〉 ≥ tm sup
s∈D

〈−E′(Gm−1), s〉. (15)

Let us take ω = λtmA−1
ε then

E(Gm−1 − ωGm−1 + λφm)) ≤ E(Gm−1)

− λtm〈−E′(Gm−1), φm − Gm−1A
−1
ε 〉 + 2ρ(E, λ‖φm − Gm−1A

−1
ε ‖). (16)

Using (15) and the definition of the duality gap (9), we have

〈−E′(Gm−1), φm − Gm−1A
−1
ε 〉

≥ tm sup
s∈D

〈−E′(Gm−1), s − Gm−1A
−1
ε 〉 = tmA−1

ε g(Gm−1). (17)

It follows from (13), (16) and (17) that

E(Gm) ≤ E(Gm−1)+ inf
λ≥0

(−λtmA−1
ε g(Gm−1) + 2ρ(E, λ‖φm − Gm−1A

−1
ε ‖)

)
+δ.

It follows from E(Gm−1) ≤ E(0) that Gm−1 ∈ Ω. Our assumption on bound-
ness of Ω implies that there exists a constant C1 such that ‖Gm−1‖ ≤ C1. Since
φm ∈ D, we have ‖φm‖ ≤ 1. Thus,

‖A−1
ε Gm−1 − φm‖ ≤ A−1

ε C1 + 1 =: C0.

This completes the proof of Lemma. ��
Lemma 6. Let 0 < μ < 1 be a real and M be an integer. Then εm0 ≤ μ1−qεM ,
where εm defined in Theorem 2 and m0 = [μM ].

Proof. It follows from (5) that

inf

⎧
⎨

⎩
ε : m1−q <

(
ε

μ1−q

)

A
(

ε
μ1−q

)

⎫
⎬

⎭
= μ1−qεm.

Let ε∗ := ε
μ1−q , i.e. ε∗μ1−q = ε. We note that μ1−q > 1 and ε

μ1−q < ε. We get

A

(
ε

μ1−q

)
≥ Aε. (18)

It follows from (18) that

εm0 = inf
{

ε : M1−q <
ε∗

Aq
ε

}
≤ inf

{
ε∗ : M1−q <

ε∗

Aq
ε∗

}
= μ1−qεM .

��



118 S. P. Sidorov et al.

Theorem 4. Let E be a uniformly smooth convex function defined on Banach
space X. Let ρ(E, u) be the modulus of smoothness of E and suppose that
ρ(E, u) ≤ γuq, 1 < q ≤ 2. Let τ = {tm}∞

m=1, 0 < θ < tk < 1, k = 1, 2, . . .,
be a weakness sequence. Assume that WGAFR(δ) is run for 0 < N ≤ δ− 1

q

iterations. Then there are an iterate 1 ≤ m̃ ≤ N and β > 0 such that

g(Gm̃) ≤ βC(E, q, γ)εN . (19)

Proof. It follows from Theorem 2 that

E(Gm) − E∗ ≤ C(E, q, γ)εm, m ≤ δ− 1
q , εm := inf{ε : Aq

εm
1−q ≤ ε}.

Let us suppose that
g(Gm) > βC(E, q, γ)εN (20)

for all [μN ] ≤ m ≤ N , 0 < μ < 1 (μ is fixed and will be chosen later).
It follows from Lemma 5 with λ = εm,

E(Gm+1) − E∗ ≤ E(Gm) − E∗ − εmtmA−1
ε g(Gm) + 2γ(C0εm)q + δ. (21)

Using our assumption (20), the inequality (21) can be rewritten in the form

E(Gm+1) − E∗ ≤ E(Gm) − E∗ − εmtmA−1
ε βC(E, q, γ)εN + 2γ(C0εm)q + δ.

(22)

Now we are going to use the following inequalities: θ ≤ tk ≤ 1, k = 1, 2, . . .;
εm0 ≤ μ1−qεN (Lemma 6); Since [μN ] ≤ m ≤ N , we have ε[μN ] ≥ εm ≥ εN .

Then (22) gives

E(Gm+1)−E∗ ≤ E(Gm)−E∗−A−1
ε βθC(E, q, γ)ε2N +2γ(C0)qμq(1−q)εq

N +δ.
(23)

If we write the chain of inequalities for all m = m0, . . . , N , m0 := [μN ], we get

E(Gm+1) − E∗ ≤ E(Gm0) − E∗

− (N − m0)εN

[
A−1

ε βθC(E, q, γ)εN − 2γ(C0)qμq(1−q)εq−1
N +

δ

εN

]

≤ C(E, q, γ)εm0

− N(1 − μ)εN

[
A−1

ε βθC(E, q, γ)εN − 2γ(C0)qμq(1−q)εq−1
N +

δ

εN

]

≤ C(E, q, γ)μ1−qεN

− N(1 − μ)εN

[
A−1

ε βθC(E, q, γ)εN − 2γ(C0)qμq(1−q)εq−1
N +

δ

εN

]

= εN

(
C(E, q, γ)μ1−q

− N(1 − μ)
[
A−1

ε βεNθC(E, q, γ) − 2γ(C0)qμq(1−q)εq−1
N +

δ

εN

])
. (24)
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If we take sufficiently big β,

β >

C(E, q, γ)μ1−q

N(1−μ) + 2γ(C0)qμq(1−q)εq−1
N − δ

εN

A−1
ε εNθC(E, q, γ)

then we get E(Gm) − E∗ < 0 which is impossible. The parameter μ can be
chosen as follows:

μ := arg min
0≤μ≤1

(
C(E, q, γ)μ1−q

N(1 − μ)
+ 2γ(C0)qμq(1−q)εq−1

N − δ

εN

)
.

��

5 Conclusion

Theorems 1 and 2 give small primal errors for the weak greedy algorithms
with free relaxation. However, since in real application problems the optimum
value E(x∗) and the constant γ in the modulus of smoothness of E are usually
unknown, estimates for the current approximation quality are strongly desired.
The duality gap g(G) defined in (9) (estimates of which are obtained in Theorems
3 and 4) is computed at the gradient greedy step of the week greedy algorithms
and it is an appropriate quality measure for the primal error E(G)−E(x∗), since
it is natural upper bounds for the primal error.

This paper examines the weak greedy algorithms with free relaxation.
Another problem we would like to address is the problem of extending the results
to the Chebyshev-type greedy algorithms which use so called Chebyshev-type
search and choose the element Gm from span{φi}m

i=1 which gives the infimum of
E over all linear combinations of φi, i = 1, 2, . . . , m.

The problem of quantifying the number of iterations, that are necessary to
reduce to a certain value the error, may be also addressed to the future work.
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Abstract. In shape optimization, design improvements significantly
depend on the dimension and variability of the design space. High dimen-
sional and variability spaces are more difficult to explore, but also usually
allow for more significant improvements. The assessment and breakdown
of design-space dimensionality and variability are therefore key elements
to shape optimization. A linear method based on the principal com-
ponent analysis (PCA) has been developed in earlier research to build
a reduced-dimensionality design-space, resolving the 95% of the orig-
inal geometric variance. The present work introduces an extension to
more efficient nonlinear approaches. Specifically the use of Kernel PCA,
Local PCA, and Deep Autoencoder (DAE) is discussed. The methods
are demonstrated for the design-space dimensionality reduction of the
hull form of a USS Arleigh Burke-class destroyer. Nonlinear methods
are shown to be more effective than linear PCA. DAE shows the best
performance overall.

Keywords: Shape optimization · Hull-form design
Nonlinear dimensionality reduction · Kernel methods
Deep autoencoder

1 Introduction

The simulation-based design (SBD) paradigm has demonstrated its capability
of supporting the design decision process, providing large sets of design options
and reducing time and costs of the design process. The recent development of
high performance computing (HPC) systems has driven the SBD towards its
integration with optimization algorithms, moving the SBD paradigm further,
to automatic SBD optimization (SBDO). In shape optimization, SBDO consists
of three main elements: (i) a simulation tool, (ii) an optimization algorithm,
and (iii) a shape modification tool, which need to be integrated efficiently and
robustly. In this context, design improvements significantly depend on the dimen-
sion and extension of the design space: high dimensional and variability spaces
c© Springer International Publishing AG 2018
G. Nicosia et al. (Eds.): MOD 2017, LNCS 10710, pp. 121–132, 2018.
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are more difficult and computationally expensive to explore but, at the same
time, potentially allow for bigger improvements. The assessment and breakdown
of the design-space dimensionality and variability are therefore a key element
for the success of the SBDO [1].

Online linear dimensionality reduction techniques have been developed,
requiring the evaluation of the objective function or its gradient. As an exam-
ple, principal component analysis (PCA) or proper orthogonal decomposition
(POD) methods have been applied for reduced-dimensionality local represen-
tations of feasible design regions [2]. A PCA/POD based approach is used in
the active subspace method (ASM) [3] to discover and exploit low-dimensional
and monotonic trends in the objective function, based on the evaluation of its
gradient. Online methods improve the shape optimization efficiency by basis
rotation and/or dimensionality reduction. Nevertheless, they do not provide an
assessment of the design space and the associated shape parametrization before
optimization is performed or objective function and/or gradient are evaluated.

Offline linear methodologies have been developed with focus on design-space
variability and dimensionality reduction for efficient optimization procedures. A
method based on the Karhunen-Loève expansion (KLE) has been formulated
for the assessment of the shape modification variability and the definition of a
reduced-dimensionality global model of the shape modification vector in [1]. No
objective function evaluation nor gradient is required by the method. The KLE
is applied to the continuous shape modification vector, requiring the solution of a
Fredholm integral equation of the second kind. Once the equation is discretized,
the problem reduces to the PCA of discrete data. Offline linear methods improve
the shape optimization efficiency by reparametrization and dimensionality reduc-
tion, providing the assessment of the design space and the shape parametrization
before optimization and/or performance analysis are performed. The assessment
is based on the geometric variability associated to the design space of the shape
optimization. Although linear methods have been successfully applied for a wide
range of problems, they may be not efficient when complex non linear relation-
ship are involved in the performance analysis and optimization.

In the last years researchers have developed nonlinear methods for data
dimensionality reduction. Nonlinear dimensionality reduction (NLDR) methods
generalize linear methods to address data with nonlinear structures. Kernel PCA
(KPCA) solves a PCA eigenproblem in a new space (called feature space) by
using kernel methods [4]. Local PCA (LPCA) divides the initial design space in
k clusters and a PCA is applied for each of them, supposing that the data in
each cluster has an approximate linear structure. LPCA techniques [5] may be
differentiated based on the clustering method, which may follow k-means [6] or
spectral approaches [7]. Artificial neural networks (ANN) have been also used to
reduce data dimensionality [8], by performing both encoder and decoder tasks
(the method is also known as autoencoder).

The objective of the present work is to combine NLDR techniques with shape
parametrization in SBDO for ship hydrodynamics. Specifically KPCA, LPCA
with k-means (LPCA-KM), LPCA with spectral clustering (LPCA-SC), and
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Deep Autoencoder (DAE) are used to build a reduced-dimensionality design-
space, resolving at least the 95% of the original design variability based on
the concept of geometric variance [1]. The methods are demonstrated for the
design-space dimensionality reduction of the hull form of USS Arleigh Burke-
class destroyer, namely the DTMB 5415 model, an early and open to public
version of the DDG-51. The effectiveness of the NLDR techniques is shown and
discussed, comparing the results to the linear KLE/PCA method from earlier
work [1].

2 Dimensionality Reduction Methods

General definitions and assumptions for the current problem are presented in the
following, along with linear and nonlinear dimensionality reduction methods.

2.1 General Definitions and Assumptions

Consider a geometric domain G (which identifies the initial shape) and a set of
coordinates x ∈ G.

Fig. 1. Scheme and nota-
tion for the current formu-
lation, showing an example
for n = 1 and m = 2

Assume that u ∈ U is the design variable vector,
which defines a continuous shape modification vector
δ(x,u). Consider the design variables u as a random
field defined over a domain U , with associated prob-
ability density function p(u). The associated mean
shape modification is evaluated as

〈δ〉 =
∫

U
δ(x,u)p(u)du (1)

If one defines the internal product in G as

(f ,g) =
∫

G
f(x) · g(x) dx (2)

with associated norm ‖f‖ = (f , f)1/2, the vari-
ance associated to the shape modification vector (geometric variance) may be
defined as

σ2 =
〈
‖δ̂‖2

〉
=

∫
U

∫
G

δ̂(x,u) · δ̂(x,u)p(u)dxdu (3)

where δ̂ = δ−〈δ〉, and 〈·〉 denotes the ensemble average over u. Generally, x ∈ R
n

with n = 1, 2, 3, u ∈ R
M with M number of design variables, and δ ∈ R

m with
m = 1, 2, 3 (with m not necessarily equal to n). Figure 1 shows an example with
n = 1 and m = 2. Ensemble averages 〈·〉 over u ∈ U may be evaluated by
Monte Carlo (MC) sampling using a statistically convergent number of random
realizations S, {uk}S

k=1 ∼ p(u). These are collected in a [S × L] matrix
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D =

⎡
⎣d(u1) . . . d(uS)

⎤
⎦

T

(4)

representing the (MC sampled) original design space, where d(uk) =
{dq(uk)}m

q=1 is the deviation from the mean of the shape modification vector
and its q-th component is evaluated at discrete coordinates xt, t = 1 . . . , T , as

dq(uk) =

⎧⎪⎨
⎪⎩

δq(x1,uk)
...

δq(xT ,uk)

⎫⎪⎬
⎪⎭ − 1

S

S∑
k=1

⎧⎪⎨
⎪⎩

δq(x1,uk)
...

δq(xT ,uk)

⎫⎪⎬
⎪⎭ (5)

with δq = δ · eq, where {eq}m
q=1 ∈ R

m is a basis of orthogonal unit vector. Note
that L = mT .

A reduced-dimensionality representation of D is sought after for later use in
the SBDO.

2.2 Principal Component Analysis

PCA allows to reduce the input dimensionality of the data, performing a pro-
jection of the points in a new linear subspace, defined by the eigenvectors of the
[L × L] covariance matrix C = DT D/S. These eigenvectors have the properties
to maximize the variance of points projected on them and to minimize the mean
squared distance between the original points and the relative projections [9]. The
principal components are defined by the solution of the eigenproblem

Cz = λz (6)

The solutions {zi}L
i=1 of the Eq. 6 are used to build a reduced-dimensionality

space for the shape modification vector d as

d ≈
N∑

i=1

αizi = d̂ (7)

where αi is the i-th component of the new design variable vector α ∈ R
N .

Equation 7 may be truncated to the N -th order, preserving a desired level of
confidence β (0 < β ≤ 1), provided that

N∑
i=1

λi ≥ β

L∑
i=1

λi = βσ2 (8)

assuming λi ≥ λi+1. Only M eigenvalues are expected to be non zeros.
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2.3 Kernel Principal Component Analysis

The kernel PCA (KPCA) method [4] is a nonlinear extension of PCA. It finds
directions of maximum variance in a higher (possibly infinite) dimensional fea-
ture space F , mapping the points from the input space I by a possible nonlinear
function Φ : I → F as

dk → Φ(dk), ∀k = 1, . . . , S (9)

where, for the sake of simplicity, the d(uk) of Eq. 4 is here simplified in dk.
Then PCA is computed in the feature space F . Assuming that

∑
k Φ(dk) = 0,

the kernel principal component {zp}P
p=1 can be find solving the eigenproblem

ΣΦzp = λpzp (10)

where ΣΦ is the [P × P ] covariance matrix in the feature space F , defined as

ΣΦ =
1
S

S∑
k=1

Φ(dk)Φ(dk)T (11)

KPCA allows the solution of Eq. 10 without computing explicitly the Eq. 9,
since it appears only within an inner product [10], which can be computed effi-
ciently by a kernel function K(di,dk) = Φ(di)T Φ(dk). Defining zp as a linear
expansion of Φ(dk)

zp =
S∑

k=1

cpkΦ(dk) (12)

the Eq. 10 can be recasted as

Kcp = λpScp (13)

where K is the symmetric and positive-semidefinite [S × S] kernel matrix, with
Kik = K(di,dk). The length of the S-component vector cp is chosen such that
zT

p zp = λpScT
p cp = 1. Once the eigenproblem in Eq. 13 is solved, the new design

variables can be found projecting Φ(d) on zp as

α = Φ(d)zp =
S∑

k=1

cpkΦ(d)T Φ(dk) =
S∑

k=1

cpkK(d,dk) (14)

The reconstruction of the original data from the feature space F in KPCA
is more problematic than PCA, since it needs to find, for every point Φ(dk), the
relative pre-image dk in the input space I. In this paper, approximate pre-images
technique proposed in [11] is used.
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2.4 Local Principal Component Analysis

Local PCA (LPCA) performs a PCA for every different disjoint region of the
input space I, assuming that, if the local regions are small enough, the data
manifold will not curve much over the extent of the region and the linear model
will be a good fit [5].

The first step in LPCA is to cluster the data in k sets, applying a clustering
algorithm, such that D = {D1, . . . ,Di}k

i=1. Herein, LPCA is performed with two
clustering techniques: the k-means (LPCA-KM) algorithm [6] and a spectral
clustering (LPCA-SC) [12]. The k-means clustering algorithm is described in
Algorithm 1.

Algorithm 1. k-means clustering algorithm
Require: Random k centroids as representative points of each cluster Di ∀i = 1, . . . , k.
1: repeat
2: Assign each point dj to the nearest centroid μi using the Euclidean distance as similarity

measure.
3: Update the centroids according to: μi = 1

|Di|
∑

dj∈Di
dj

4: until μi ∀i = 1, . . . , k remains unchanged

One issue in k-means is that using the euclidean distance as similarity mea-
sure assumes a convex shape to the underlying clusters [13].

Spectral clustering can be effective even if the clusters shape are more com-
plex. There are several versions of the spectral clustering algorithms, the main
difference is in which graph Laplacian is used [7]. Herein, the symmetric nor-
malized Laplacian Asym = I − B− 1

2 WB− 1
2 [12] is used and the corresponding

algorithm is summarized in Algorithm 2 [7].
After the data are partitioned in k clusters, a PCA is performed on them

solving k PCA eigenproblem

Cizi = λizi ∀i = 1, . . . , k (15)

LPCA results are highly dependent by the clustering procedure and specially
by the number of clusters used. Moreover, the number of clusters k should be
set carefully to avoid extensive computation.

Algorithm 2. Normalized Spectral Clustering
Require: Let k the number of clusters to identify, build a similarity graph as:

– K-nearest neighbor graphs: fix K, di is connected to a point dj if it is among the K-nearest
neighbor of di or viceversa.

1: Compute the adjacency matrix W of the graph and the diagonal degree matrix B, where each
element is equal to bii =

∑S
j=1 wij .

2: Compute the symmetric normalized Laplacian Asym.
3: Find the first k eigenvector v1, . . . ,vk corresponding to the k smallest eigenvalues of Asym.
4: Construct a [S × k] matrix V with the eigenvectors as columns.

5: Normalize the rows of matrix V by v̂ij = vij/(
∑

k v2
ik)

1
2

6: Run k-means on matrix V.
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2.5 Deep Autoencoders

An autoencoder (AE) is an ANN that performs two main tasks [8]: (1) an encoder
function E maps the data d to compress data α; (2) a decoder function D maps
from the compressed data α back to d̂. This operation is performed setting the
same number of neurons L in the input and output layer and constraining the
hidden layer to have N < M neurons.

Consider a single hidden layer AE (see Fig. 2), if the new design variable α can
be written as

α = E(H(1)d + b(1)) (16)

where H is a relative weight matrix, b the bias vector, and the apex “(1)”
represent the hidden layer, then the reconstruction vector d̂ from α can be
expressed as

d̂ = D(H(2)α + b(2)) (17)

where the apex “(2)” represent the output layer. The network parameters H and
b, are evaluated minimizing the reconstruction error

E(H(1),b(1),H(2),b(2)) =
1
2

S∑
k=1

||dk − d̂k||2 (18)

=
1
2

S∑
k=1

||dk − D(H(2)E(H(1)dk + b(1)) + b(2))||2

Fig. 2. Example of AE with one
hidden layer with L = 3 and N = 2

If E and D are linear then the Eq. 18 has a
unique global minimum, in which the weights
in the hidden layer span the same subspace
as the first N -principal components of the
data [14,15]. AE with nonlinear activation
functions and more hidden layers (called deep
autoencoder, DAE) provides a nonlinear gen-
eralization of the PCA [16], but in this case
the error function (Eq. 18) becomes non con-
vex and the optimization algorithm may get
stuck in poor local minima. Moreover, the intrinsic dimensionality of the data
(the number of neurons N in the hidden layer) cannot be known a priori and
have to be fixed respect to the reconstruction error.

3 Shape Modification of a Destroyer Hull

The DTMB 5415 model is an open-to-public early concept of the DDG-51, a USS
Arleigh Burke-class destroyer, widely used for both towing tank experiments [17]
and hull-form SBDO [18]. Figure 3 shows its geometry and body surface grid used
to discretize the shape modification domain.

The offline design-space assessment and dimensionality reduction of the
DTMB 5415 hull form (assuming full-scale with a length between perpendic-
ulars Lpp = 142 m) is presented as a pre-optimization study of the following
problem
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Minimize f(u)
subject to ga(u) = 0, with a = 1, . . . , A

and to he(u) ≤ 0, with e = 1, . . . , E
(19)

where f is the objective function related to the ship performance (i.e. resistance,
seakeeping, etc.) and u are the (original) design variables. Geometrical equality
constraints, ga, include fixed length between perpendicular (Lpp) and displace-
ment (∇), whereas geometrical inequality constraints, he, include 5% maximum
variation of beam and draught and reserved volume for the sonar in the bow
dome, corresponding to 4.9 m diameter and 1.7 m length (cylinder).

X Y

Z
I

J

Fig. 3. DTMB 5415 geometry and body
surface discretization

Shape modifications δ(x,u) are
applied directly on the Cartesian coor-
dinates g of the computational body
surface grid, as per

g(u) = g0 + δ(x,u) (20)

where g0 represents the original grid.
The shape modification is defined

using a linear combination of M = 27 vector-valued functions of the Cartesian
coordinates x over a hyper-rectangle embedding the demi hull [18]

ψi(x) : V = [0, Lx1 ] × [0, Lx2 ] × [0, Lx3 ] ∈ R
3 −→ R

3 (21)

with i = 1, ...,M , as

δ(x,u) =
M∑
i=1

ui ψi(x) (22)

where the coefficients ui ∈ R (i = 1, . . . ,M) are the (original) design variables,

ψi(x) :=
3∏

j=1

sin
(

aijπxj

Lxj

+ rij

)
eq(i) (23)

and the following orthogonality property is imposed:∫
V

ψi(x) · ψk(x)dx = δik (24)

In Eq. 23, {aij}3j=1 ∈ R define the order of the function along j-th axis;
{rij}3j=1 ∈ R are the corresponding spatial phases; {Lxj

}3j=1 are the hyper-
rectangle edge lengths; eq(i) is a unit vector. Modifications are applied along x1,
x2, or x3, with q(i) = 1, 2, or 3 respectively. The parameter values used here are
taken from [18].

Fixed Lpp and ∇ are satisfied by automatic geometric scaling, while geome-
tries exceeding the constraints are not considered.

4 Numerical Results

The results obtained by linear PCA and the nonlinear methods (KPCA, LPCA-
KM, LPCA-SC, and DAE) are presented in the following subsections. Two eval-
uation metrics are used to assess the methods’ performance and compare them.
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4.1 Evaluation Metrics

The methods are assessed by the portion of original geometric variance resolved
(β̂) and the root mean square error (RMSE) of matrix reconstruction D̂, defined
as

β̂ =
1
S

∑L
j=1

∑S
k=1(d̂jk − μ̂j)2

1
S

∑L
j=1

∑S
k=1(djk − μj)2

and RMSE =

√√√√ 1
S

S∑
k=1

||dk − d̂k||2 (25)

where μ̂j is the mean value of D̂ j-th column.

4.2 Evaluation of Design-Space Dimensionality Reduction
Capabilities

In assessing the methods’ performance, a cubic polynomial kernel is used for the
KPCA, a number of cluster k = 32 and 24 is used for LPCA-KM and LPCA-SC
respectively, a seven hidden layer DAE (composed by 300-150-50-N -50-150-300
neurons) with hyperbolic tangent (as activation function) is used and trained
with Adam optimization algorithm [19].

Table 1. Numerical results

Method N [–] β̂% RMSE/Lpp

PCA 24 95.0 1.12E−1
KPCA 18 100 0.00E+0
LPCA-KM 12 95.0 1.12E−1
LPCA-SC 15 95.4 1.08E−1
DAE 5 97.8 9.60E−2

The design space (M = 27) is
sampled using a uniform random dis-
tribution of S = 1, 000 hull-form
designs. For each dimensionality-
reduction method, Fig. 4a shows the
geometric variance (β̂%) resolved
by a N -dimensional design space,
whereas Fig. 4b shows the correspond-
ing reconstruction error (RMSE). The
nonlinear methods result to be more
effective than the linear PCA in terms of both β̂% and RMSE.

Specifically, in order to reduce the design-space dimensionality while resolving
at least the 95% of the original geometric variance, N = 24 is required by PCA,
whereas N = 18, 12, 15, and 5 are needed by KPCA, LPCA-KM, LPCA-SC, and

0 5 10 15 20 25
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0.0
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0.4

0.6

0.8
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β
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PCA
KPCA
LPCA-KM
LPCA-SC
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(a) Geometric variance resolved
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[m
]

PCA
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(b) Reconstruction RMSE

Fig. 4. Convergence of dimensionality-reduction methods in terms of β̂% (a) and
RMSE (b) versus the reduced-dimensionality N
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Fig. 5. Reconstruction of the geometry modification vector δy, reconstruction error,
and corresponding hull stations of target geometry (original input)

DAE, respectively. The results are summarized in Table 1. It is worth noting that
KPCA requires N = 18, but resolves the 100% of the original variance and shows
a reconstruction error equal to zero. In the current study, it was not possible
to reduce N further, due to numerical issue associated to the computation of
pre-images.

Finally, Fig. 5 shows the shape modification (δy) and the reconstruction error
(Δδy) versus grid-node index (I, J), and the corresponding hull stations for a
design originally included in the data matrix D. For this design, LPCA shows



Nonlinear Methods for Design-Space Dimensionality Reduction 131

the largest reconstruction error. PCA and DAE produce a close reconstruction
to the target, whereas KPCA reproduce the target exactly. With only N = 5,
DAE is the most efficient overall.

5 Conclusions and Future Work

Four nonlinear methods for design-space dimensionality-reduction in shape opti-
mization have been presented and compared. Specifically, kernel PCA (KPCA),
local PCA with k-means and spectral clustering (respectively LPCA-KM and
LPCA-SC), and deep autoencoder (DAE) have been used for an offline pre-
optimization dimensionality-reduction of the hull-form parametrization of the
DTMB 5415 model hull. A linear PCA method from earlier studies has been
also included in the analysis, for comparison.

The original shape parametrization was defined by M = 27 design variables.
The reduced-dimensionality space is required to resolve at least the 95% of the
original design variability, based on the concept of geometric variance. The linear
PCA achieved a reduction of 11.2% of the original design dimensionality (requir-
ing a number of design variables N = 24). All nonlinear methods outperform the
linear PCA. Specifically, a 33.4% dimensionality reduction is achieved by KPCA
(N = 18), 55.5% by LPCA-KM (N = 12), 44.4% by LPCA-SC (N = 15), and
finally a remarkable 81.5% by DAE (N = 5). Nonlinear methods have shown
their superior effectiveness in terms of both variance resolved and reconstruction
error, compared to linear PCA. DAE have shown the best performance overall.

The analysis of some specific behavior of the methods presented, such as
the assessment of the clusters used by the LPCA, will be addressed in future
work. Moreover, in order to investigate further on the methods’ effectiveness,
future work will include the optimization of the DTMB 5415 using the reduced-
dimensionality space produced by linear and nonlinear methods, with compar-
ison of objective function improvement and convergence to the optimum. Also,
combined geometry and physics based design variability studies [20,21] will be
addressed using current nonlinear methods.
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Abstract. This paper presents the application of the Differential Evo-
lution (DE) algorithm in the most known dilemma in the field of Game
Theory, the Prisoner’s Dilemma (PD) that simulates the selfish behavior
between rational individuals. This study investigates the suitability of
the DE to evolve strategies for the Iterated Prisoner’s Dilemma (IPD),
so that each individual in the population represents a complete playing
strategy. Two different approaches are presented: a classic DE algorithm
and a DE approach with memory. Their results are compared with sev-
eral benchmark strategies. In addition, the Particle Swarm Optimization
(PSO) and the Artificial Bee Colony (ABC) that have been implemented
in the same framework are compared with the DE approaches. Overall,
the strategies developed by DE outperform all the others. Also, it has
been observed over iterations that when the DE algorithm is used the
player manages to learn his opponent, therefore, DE converges with a
quick and efficient manner.

Keywords: Differential evolution · Game theory
Iterated Prisoner’s Dilemma

1 Introduction

The Prisoner’s Dilemma (PD) is a game between two rational and mutually
interdependent players with conflicting interests. PD has been discussed exten-
sively by game theorists and, also, finds application in diverse areas ranging
from business, finance to sociology. This study focuses on the PD’s variation,
the Iterated Prisoner’s Dilemma (IPD) and presents an algorithmic scheme to
develop well-performing strategies regarding the latter game. Since Axelrod’s
original work [1], in which he evolved a population of strategies using a genetic
algorithm, a number of other works have been published [3,7]. A detailed review
relevant to the IPD approaches for generating strategies and their representa-
tion can be found in [5]. The basic component of this approach is the Differential
Evolution (DE) algorithm, which has a purpose of generating a binary M -bit
c© Springer International Publishing AG 2018
G. Nicosia et al. (Eds.): MOD 2017, LNCS 10710, pp. 133–145, 2018.
https://doi.org/10.1007/978-3-319-72926-8_12
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length, decision vector that prevails to his opponent after a number of repeated
PD games. To improve the developed strategies, a variety of opponents has been
used, such as man-made strategies, denoted as Benchmark and, also, strategies
evolved from other algorithms, the Particle Swarm Optimization (PSO) and the
Artificial Bee Colony (ABC). In order to enhance the solution of the DE algo-
rithm, another approach was implemented, which incorporates the attribute of
memory over the executions, denoted as version 2. From the experimental results,
presented in the following, it is evident that both versions of the DE approach
provide efficient strategies. An additional deriving conclusion, is that, when the
DE approach with memory faces an approach of the ABC with memory, the
strategies co-evolve and eventually, after a number of iterations the DE’s evolved
strategies manage to learn their opponent. The rest of this paper is organized
as follows. Firstly, a short overview of the DE algorithm is given in Sect. 2 and
in sequence the theoretical description of the PD game is presented in Sect. 3.
The latter section includes a short outline of the Iterated PD and of several
Benchmark strategies. An extended analysis of the proposed solution algorithm
based on the DE is presented in Sect. 4, regarding both versions. In Sect. 5, the
experimental results of this research are illustrated and analysed. Finally, Sect. 6
summarizes this paper and provides suggestions for future research.

2 Differential Evolution: A Short Overview

Differential Evolution (DE) is a stochastic, real-parameter optimization algo-
rithm proposed by Storn and Price [9], designed for continuous-optimization
problems. DE is a population-based search method, which includes processes
such as mutation, crossover and selection. One of the DE advantages is the small
number of control parameters, the population size (NP ), the mutation rate (F )
and the crossover rate (Cr). The main idea is the perturbation of a vectors popu-
lation through a number of generations, that incorporates vector differences and
recombination. Initially, a randomly disturbed population of NP individuals is
generated. Each one is a D-dimensional real vector xij , where i ∈ {1, · · · , NP}
and j ∈ {1, · · · ,D}. The first evolutionary process that takes place in every gen-
eration is the mutation. During mutation, three vectors are randomly chosen, a
base vector (i1 �= i) and two others (i �= i1 �= i2 �= i3). The difference of xi2 and
xi3 is amplified by the mutation rate F , which is a real, constant value between
0 and 2. The scaled difference is added to the base vector, see Eq. 1, in order
to form the mutant vector vij(t), for each target vector of the population, in t
generation, i.e. for each individual.

vij(t + 1) = xi1j(t) + F ∗ (xi2j(t) − xi3j(t)) (1)

Afterwards, the crossover process occurs, which is a recombination of each
target and its corresponding mutant and generates the trial vector. There are
two common kinds of crossover methods, exponential and binomial. The binomial
crossover will be used in this research and it is implemented as follows, for every
target vector in the population. Through Eq. 2, it is determined what parameters
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will be inherited to the trial vector from the mutant and what from the target
vector. The crossover is controlled by the Cr parameter and its value is decided
by the user, within the range [0,1]. For each parameter j, a random number φ
and a random index jrand are generated such as φ, jrand ∈ [0, 1]. If the random
number φ is less or equal to Cr, or if the parameter’s index equals to jrand,
the trial vector inherits the corresponding element from the mutant vector and
otherwise from the target vector. The jrand ensures that at least one parameter
will be forwarded to the trial vector from the mutant vector.

uij(t + 1) =
{

vij(t + 1), if φ ≤ Cr or j = jrand
xij(t), otherwise (2)

Both processes, mutation and crossover, increase the diversity of the popula-
tion and thereby they carry out the exploration phase of the search. In order to
involve an exploitation phase of the search and to retain the size of the popula-
tion, a selection procedure is performed. Thus, subsequent to crossover process,
one of the correlated vectors, target and trial, have to remain in the population
and the other one has to be discarded. DE uses a greedy technique as selection
and the vector with the highest fitness value will survive over the other and will
be included in the next generation’s population, see Eq. 3.

xij(t + 1) =
{

uij(t + 1), if f(uij(t + 1)) ≤ f(xij(t))
xij(t), otherwise (3)

A number of variations to the basic DE algorithm have been developed over
the years. Different DE strategies have a general notation DE/x/y/z, where x
is cited to the way that a target vector is selected, y is the number of difference
vectors used and z refers to the crossover scheme. The presented research adopts
the DE/rand/1/bin variation, thus the vector to be mutated is chosen randomly,
the difference of one pair of vectors is involved to Eq. 1 and the binomial crossover
is implemented.

3 Prisoner’s Dilemma

Prisoner’s Dilemma is a non-zero-sum, non-cooperative game and was first for-
malized by Tucker in 1950 [10]. In a non-zero-sum game, when one player wins,
the loss of his opponent is not strictly implied. In terms of non-cooperative, the
communication between players prior to the game is forbidden and as a result
they are not able to make any kind of agreement. An analytical description of the
game is given: two crime suspects have been arrested and detained in separate
cells without communication. The prosecutor offers them two possible choices:
either to cooperate (C) or to defect (D). Cooperation denotes that the prisoner
conspires with his/her associate to remain silent, while defection means that
the prisoner acts selfish, accusing the other one, in order to make a deal with
the authorities. Combining these two choices of each individual, three different
scenarios may emerge. If simultaneously one prisoner chooses to defect and the
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other one to cooperate, then the defector will be released and the cooperator will
be jailed for m years. If simultaneously both decide to cooperate, then, both will
be jailed for n years, n < m. If simultaneously both decide to defect, then, both
will be jailed for r years, n < r < m. The game can be presented in a matrix
form, as shown in Table 1. The values, R,S, T, P , inside the cells are related to
each player’s payoff, depending on his/her decision. The first value is related to
the payoff of player I and the second to the payoff of player II. Specifically, the
letter R denotes the reward payoff in case of mutual cooperation, S refers to
the sucker’s payoff, because in a conflicting-decision situation the player cooper-
ates. In contrary, T is the temptation payoff that player receives when he defects
against the other’s cooperation. Finally, P expresses the punishment payoff of
mutual defection. Regarding the payoffs, the following constrains have to be
satisfied: T > R > P > S and 2R > S + T .

3.1 Iterated PD and Benchmark Strategies

PD is a single game, since each player has to take a decision only once, in order
to maximize his/her payoff. The Iterated Prisoner’s Dilemma (IPD), is merely
a PD game played by the same participants, repeatedly. The key element of the
IPD is that the number of iterations have to be unknown for both parties. Thus,
players of IPD are in position to form a strategy in order to maximize the total
payoff over the repeated games. Since Axelord’s original work [1,2], researchers
have developed various efficient IPD strategies. In the presented research the
following strategies, denoted as benchmark, will be used to evaluate the ones
developed by the DE approach.

1. Random: A random sequence of decisions, either cooperation of defection.
2. Always Cooperate (AC): Unconditionally cooperation in every game.
3. Pavlov: A decision is repeated if it was beneficial (i.e. the corresponding payoff

was T or R). Otherwise, the next decision is opposite to the previous one (i.e.
the corresponding payoff was P or S).

4. Tit-for-tat (TFT): The first decision is cooperation and, afterwards, the player
imitates the last decision of his opponent.

5. Evil tit-for-tat (ETFT): The first decision is defection and, afterwards, the
player imitates the last decision of his opponent.

4 DE Develops IPD Strategies

In this study, an implementation of the Differential Evolution algorithm is
applied to develop strategies for the IPD. Thus, each developed strategy is rep-
resented by a solution vector that includes binary values (0 or 1). In this case,
1 denotes cooperation and 0 stands for defection. Following the DE’s algorith-
mic scheme, an initial population is generated of N random decision vectors xij

(where N , the number of players is equivalent to the population size NP ). Each
individual i has j parameters that correspond to the player’s decision in every
game, j ∈ [1, · · · ,M ], therefore M represents the total number of PD games.
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After the generation of the initial population, each individual has to be evalu-
ated. On that account, each developed strategy has to be assessed and since each
element represents one decision (one PD game), the fitness function is merely
the dilemma itself. In more detail, the fitness function’s value per strategy is the
total payoff achieved from all the PD games, when a player with that strategy
plays with all the players in the population. A simple way to express it, is that
all players have to compete against all others, with respect to their developed
strategies and summarize their achieved payoffs per dilemma/per opponent.

Table 1. Payoff matrix of fitness function

Player II
Cooporate Defect

Player I Cooporate 3,3 (R,R) 0,5 (S,T)
Defect 5,0 (T,S) 1,1 (P,P)

As mentioned above, the equa-
tion of DE algorithm that mutates
the solution vectors, see Eq. 1,
requires continuous values, there-
fore, the binary vectors should
be converted to continuous-valued
vectors. Consequently, the sigmoid
function [6] is applied for this trans-
formation, on every parameter of the population, through Eq. 4. In sequence,
the converted solution vector of every one in the population, is mutated and
the crossover process takes place, see Eq. 2, as described in Sect. 2 and the trial
vectors are generated. To evaluate the new solution vectors and to perform the
selection process between each trial and target vector, the fitness value is need.
Thus, the trial vectors have to be transformed in binary ones, through Eq. 5,
which is controlled by a random generated value φ1 ∈ [0, 1].

Sig(xij) =
1

1 + exp(xij)
, i ∈ [1, · · · , N ], j ∈ [1, · · · ,M ] (4)

uij(t + 1) =
{

1, if φ1 < uij(t + 1)
0, if φ1 ≥ uij(t + 1) (5)

In this way, a set of new solution vectors (strategies) is formed and in effort
to calculate their fitness value, a tournament all-against-all is implemented, as
previously described. Finally, only one of the N strategies emerges, the one
with the highest value of payoff, the most productive strategy of the current
generation. All the above processes are repeated for a number of iterations L,
concluding to an efficient strategy. The algorithm has been executed several
number of times, W . An overview of the DE approach steps are presented below
in Algorithm 1. In order to test the quality of the strategy, that is evolved by
the DE approach, another Iterated Prisoner’s Dilemma will be implemented. At
this stage, one of the players is the DE’s evolved strategy and the other party
is a player that follows one of the benchmark strategies, which are described in
Sect. 3.1. To be more thorough, the authors have compared the DE’s strategy
with others, that have been developed by two nature inspired algorithms, the
Artificial Bee Colony (ABC) [4] and the Particle Swarm Optimization (PSO)
algorithm [6], based on the previous work of Rigakis et al. [8].
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Algorithm 1. Solution Algorithm for the IPD (version 1)
1: Define number of executions (W ), iterations (L), games (M)

Differential Evolution Algorithm
2: Initialization
3: Define values of the DE parameters (F ) and (Cr)
4: Define population size (N)
5: Randomly create (N) decision vectors xij

6: Tournament all-against-all
7: Calculate each strategy’s payoff, according to Table 1
8: Main Phase
9: while number of iterations is not equal to L do

10: Transform the decision vectors xij(t) to continuous-valued, Eq. (4)
11: Create mutant vij(t + 1) for each target vector, Eq. (1)
12: Create trial vectors uij(t + 1) for each mutant, Eq. (2)
13: Transform the trial vectors to binary, Eq. (5)
14: Tournament all-against-all
15: Calculate each strategy’s payoff, according to Table 1
16: Select trial or target vector, Eq.(3)
17: end while
18: Save the most efficient strategy of the population (maximum payoff)

END Differential Evolution Algorithm
19: Employ the best strategy for M games against each of the 5 Benchmark strategies/

PSO algorithm/ ABC algorithm
20: Return to line 2, until W executions are completed

4.1 The DE Approach with Memory

After close examination of the presented DE approach for IPD games, the
authors have decided to embed memory in it. So far, the evolved strategies are
being improved through the DE’s iterations and by merely facing each other. The
idea is to make those strategies, also, relevant to their opponents. Thus, a new
approach is formed, the DE algorithm remains mostly intact, but instead of one
best strategy, five strategies with high payoff, will play against their rivals. Each
of the “elite-five” will counter Benchmark strategies, PSO and ABC evolved
strategies. The “global best” one, which will achieve the highest payoff, will be
memorized. In sequence, the global best strategy will replace one of the random
solution vectors of the initial population in the next execution, see Algorithm2.
The result of this replacement is to enhance the developed strategies with ben-
eficial traits, regarding those opposing to them.

5 IPD Experiments

The experimental results of our research are stated in this section and are
described succinctly. The following are divided to subsections, where each one
contains the results of DE algorithm against other methods in Iterated Prisoner’s
Dilemma, for different parametrization. The original DE control parameters F
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Algorithm 2. Solution Algorithm for the IPD with Memory (version 2)
1: Define number of executions (W ), iterations (L), games (M)
2: Define population size (N)
3: Initialization
4: if It is the first execution then
5: Randomly create (N) decision vectors xij

6: else
7: Create N − 1 random decision vectors
8: Add the global best strategy of the previous execution
9: end if

10: Tournament all-against-all
11: Calculate each strategy’s payoff, according to Table 1
12: Main Phase
13: while number of iterations not equal to L do
14: DE algorithm’s steps to evolve strategies, see Algorithm 1, lines 10–16
15: end while
16: Save the five most efficient strategies of the population
17: Employ them for M games against each of the 5 Benchmark strategies/ PSO

algorithm/ ABC algorithm
18: Save the global best strategy (maximum payoff)
19: Return to line 5, until W executions are completed

and Cr are both equal to 0.5, regarding to all the conducted experiments. In
the figures presented below, the vertical axis shows the payoff achieved for every
strategy while in the horizontal axis, the number of execution appears.

Results with Small Number of Iterations. Initially, the DE algorithm
was executed with small values of the control parameters. More precisely, for
N = 5 players, L = 5 iterations, M = 5 games and W = 20 executions of the
DE algorithm. It should be mentioned that the W executions are considered
as different procedures and are not compared with each other. As it was men-
tioned previously, with each execution of the algorithm, a player’s strategy is
created ready to face all the Benchmark strategies. Furthermore, a comparison
is made between the described approach and the ABC algorithm presented by
[8] to evolve strategies for the IPD. Thus, to have a fair comparison, the con-
trol parameters (L,M,N,W ) are selected to be equal to the ones chosen in [8].
Figure 1 shows the payoff that each player developed by the DE algorithm (red
cross) gains, against to the AC strategy (green circle). The AC strategy is the
most innocent one, therefore, it is predictable and easy to be dominated by both
versions (with memory and without memory) of DE. It is obvious from Fig. 2 that
the DE algorithm in version 1 (without memory) provides competitive strate-
gies against the most unpredictable opponent (the random strategy). In version 2
(with memory) the quality of the results is deteriorated as we excepted, since the
memory is inefficient against a constantly changing behaviour. As seen in Fig. 3,
DE algorithm adapts to his opponent, which follows the Pavlov strategy and both
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versions provide sufficient results. Specifically, in version 1, DE wins 18 out of the
20 executions and achieves two draws. Version 2 improves the results and prevails
by 100%. Figure 4 corresponds to the game between DE algorithm and the most
known from Axelrod’s experiments benchmark strategy, TFT. It is evident, that
DE’s evolved strategies achieve higher payoff at every execution, regarding both
algorithm’s versions. A strategy which manages to fully compete DE algorithm
and most times overcomes it, is ETFT. In Fig. 5, the results for a small number
of iterations can be observed. Specifically, in version 1 the best result that DE
algorithm obtains is one draw (1/20). It is obvious that version 2 with mem-
ory has improved the results (6/20 draws), but the number of iterations (L = 5)
seems to be not enough in order to learn the selfish behaviour of his opponent. In
order to evaluate the performance of the DE algorithm against each Benchmark
strategy, the following equation: Percopponent = payoffDE−payoffopponent

payoffopponent
is used

to calculate the percentage difference of the respectively achieved total payoffs
from W executions. Moreover, the same efficiency measure is presented about
the approach of ABC algorithm and the results are showed in Table 2.

Results with LargeNumber of Iterations. In an effort to improve the results
and to determine more productive parameters’ values, the following changes are
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Fig. 1. DE vs AC (DE: red cross, AC: green circle) (Color figure online)

Table 2. Percentage differences of payoffs (%) between the two versions of DE and
ABC algorithm, for W = 20, N = 5, M = 5, L = 5

Strategies DE (Version 1) DE (Version 2) ABC (Version 1) ABC (Version 2)

AC 3,7747 13,4043 1,6774 2,2627

Random 0,5455 −0,5173 −0,0647 −0,7724

Pavlov 0,6408 4,7582 −0,1213 1,9606

TFT 0,4013 0,9320 0,2255 0,3461

ETFT −0,1786 −0,1519 −0,2215 −0,2944
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Fig. 2. DE vs RANDOM (DE: red cross, RANDOM: green circle) (Color figure online)
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Fig. 3. DE vs PAVLOV (DE: red cross, PAVLOV: green circle) (Color figure online)

implemented. The number of iterations was increased to L = 40, the number of
players to N = 20 and the number of decisions exchanged amongst the players to
M = 10. The executions W are independent runs of the algorithm and the corre-
sponding value is chosen to remain stable at W = 20, since a different value would
not affect the algorithm’s performance. After the increase in control parameter’s
values, both versions of DE behaved almost similar as previously described (for
N,L,M = 5). Most interesting were the results obtained with the Evil-Tit-For-
Tat strategy, thus they are analysed bellow. From Fig. 6, it is observed that a larger
number of iterations (L = 40) is more effective against ETFT strategy, as both
versions of DE succeed more draws. Very interesting is the analysis of the DE’s
second version against ETFT strategy, which is the most competitive strategy.
It has been observed that by holding all variables fixed and gradually increasing
only the number of iterations, the results show a significant improvement. Figure 7
illustrates the experimental results of the DE approach with memory for L = 60
and L = 600, where 11/20 and 20/20 draws are demonstrated respectively. For
L = 600 the outcome was remarkable, since the DE algorithm managed to learn
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the behaviour of his/her opponent. Table 3 summarizes the experiments and the
percentage difference is presented regarding the different L values (60, 120, 240,
600) that have been tested. Additionally, in order to determine whether a DE app-
roach is able to develop efficient IPD strategies, another set of experiments has
been implemented. In particular, DE’s evolved strategy plays against one devel-
oped by PSO algorithm. It is concluded that both DE versions (without and with
memory) outperform the PSO algorithm and the corresponding percentage differ-
ences are 1,4720 and 2.3341, respectively. Comparisons are also made between the
strategies evolved by conducting games between the approaches, DE versus ABC
and DE with memory versus ABC with memory (Fig. 8). DE provides more suf-
ficient strategies than ABC algorithm and the percentage differences are 1,5380
and 2.4631, respectively.
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Table 3. Percentage differences of payoffs (%) between DE Version 2 and ETFT.

DE with memory versus Evil-Tit-For-Tat strategy

W=20, N=20, M=10, with : L=60 L=120 L=240 L=600
-0,0386 -0,0349 -0,0167 0,0

6 Conclusions

In the presented research, an approach is introduced based on the DE algorithm,
to evolve strategies for the 2-person IPD. It is concluded by the experimental
results, that both approaches are in position to develop productive strategies, in
terms of their achieved payoff, against a variety of opponents. The experiments
included several Benchmark strategies and others generated by approaches of
the PSO algorithm and of the ABC algorithm. The presented DE approach
exhibits superior behaviour in comparison to the other tested algorithms, not
only regarding their performance against the Benchmark strategies, but also, in
terms of facing each others’ developed strategies. Moreover, it would be interest-
ing to expand the solution approach to the N-person IPD (more than 2 players).
Finally, future work will include other known problems from the field of Game
Theory, such as the Battle of Sexes.
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Abstract. Within the field of sentiment analysis and emotion detection
applied to tweets, one of the main problems related to the construction
of an automatic classifier is the lack of suitable training sets. Consider-
ing the tediousness of manually annotating a training set, and the noise
present in data collected directly from the social web, in this paper we
propose an iterative learning approach, which combines distant super-
vision with dataset pruning techinque. In particular, following the “eat
your own dogfood” idea, we have applied a classifier, trained on raw data
obtained from different Twitter channels, to the same original dataset,
for removing the most doubious instances automatically. This kind of
approach has been used to obtain a more polished training set for emo-
tion classification, based on Parrot’s model of six basic emotions. On the
basis of the achieved results, we argue that the automatic filtering of
training sets can make the application of the distant supervision app-
roach more effective in many use cases.

Keywords: Social media · Emotion detection · Distant supervision
Machine learning

1 Introduction

Several institutions have always been interested in obtaining informations about
the emotional state of people involved, directly or indirectly, in their activities.
With the diffusion of social media, this task has been enormously favoured by
people sharing large quantities of data related to their feelings. Sentiment analy-
sis uses this data for the automatic detection of theirs authors’ emotional state.
Within this field, however, one of the main problems related to the construction
of an automatic classifier is the lack of suitable training sets. On the one hand,
the manual annotation of training sets is very difficult to apply, as it requires
much time and attention from many people to overcome the subjectiveness of
evaluation. On the other hand, a pure distant supervision approach tends to
produce noisy datasets. Thus, in this paper we propose an approach combining
distant supervision with a dataset pruning techinque.
c© Springer International Publishing AG 2018
G. Nicosia et al. (Eds.): MOD 2017, LNCS 10710, pp. 146–157, 2018.
https://doi.org/10.1007/978-3-319-72926-8_13
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This approach has been applied for the creation of a single “flat” seven-
output classifier based on Parrot’s emotion categorization (joy, love, surprise,
fear, anger, sadness) with the addition of the “objective” class, used to label
sentences without emotion. For creating the necessary dataset, we relied on the
fact that Twitter users, when expressing emotions, add specific hashtags cor-
responding to their sentiments. In order to understand which hashtags used to
express a given sentiment are the most popular, we downloaded a set of tweets
starting directly from tags related to primary and secondary emotions. Then
we manually searched among them for more hashtags, used in a consistent way.
We decided to download more hashtags for each emotion, in order to possibly
represent all its different facets.

A classifier has been trained over this raw dataset, with classes inferred
directly from the hashtags. Following the “eat your own dogfood” principle, the
same classifier has been then applied to the same raw dataset, to filter out the
more doubious instances from the training set, automatically. Finally a classifier,
trained on the dataset collected and filtered with this approach, has been tested
on a test set derived from the EmoTweet-28 [1] dataset, leading to higher accu-
racy than the classifier trained without dataset pruning. The results obtained
show the importance of combining dataset pruning techinques with the distant
supervision approach, in order to remove, as much as possible, spurious instances
that are unavoidably affect data collected from the social web.

The paper is organized according to the following structure. Section 2
describes some related research work, in the fields of social media analysis,
sentiment analysis, emotion detection, and distant supervision. Then, Sect. 3
describes the methodology for the acquisition of data and the creation of a clas-
sification model. Section 4 presents and discusses the obtained results. Finally,
some concluding remarks are presented.

2 Related Work

The individual behavior and decision-making process depend on the user’s emo-
tions with respect to a fact or a product. The growth of online social networks
extends and improves the benefits, both for an individual and organizations,
coming from the interactions among the users (the so called social capital [2])
and much work has been done to try to model complex systems like social net-
works efficiently [3,4]. The ability to retrieve and analyze large amounts of data,
in particular the chance to predict the collective decision by automatic data
classification [5,6], has attracted the interest of marketing and politics.

The automatic classification of human activities is a well-known problem
in different research areas [7,8]. In the case of social-network analysis, Senti-
ment Analysis(SA) techniques [9,10], as well as the study of the dissemination
of information [11,12], have been applied to the users belonging to a given net-
work [13,14].

In recent years, some tools providing more specific classifications than
the simple positive or negative polarity of the classical SA, have been devel-
oped [15–18]. In [19] emotion analysis on brand tweets are conducted using
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both approaches of SentiWordNet [20] and NRC Hashtag Emotion Lexicon [21],
without relying on any a-priori knowledge. On the other hand, it is possible to
capture some a-priori knowledge by using a hierarchical classification system, in
which first the subjectivity, then the polarity, and finally the particular emotion
of a text are detected. In [22], a comparison between hierarchical and flat clas-
sification of emotions in text are reported. In [23], a comparison between the
two approaches is conducted on two datasets of tweets, coming directly from
some Twitter channels without any manually interaction in their composition:
the tweets are filtered using an automated procedure. The tweets are catego-
rized according to Parrot’s classification [24], in which the number of positive
and negative emotions are balanced. In [25], Plutchick’s wheel of emotion is
used [26] to treat the inherently multi-class problem of emotion detection as a
binary problem, for four opposing emotion pairs.

In this work, we have applied the distant supervision method, which has
been shown to be an effective way to overcome the need for a large set of man-
ually labeled data to produce accurate classifiers [27,28]. Distant supervision is
a semi-supervised method to retrieve noisy data which are used to train tradi-
tional supervised systems. In [29] these methods are used to remove noisy data
from automatically generated datasets of text (mentions) with good results. A
survey of dataset pruning methods for distant supervision in sentiment analysis
is exposed in [30].

3 Methodology

The performances of an automatic system for emotion analysis are mainly
affected by the quality of the dataset used to train it. A few publicly available,
reliable and manually annotated datasets, to be used for sentiment analysis of
tweets, are described in the scientific literature, but they only address valence
(polarity) classification. As a result, for the purpose of creating an emotional
classifier based on Parrot’s model of six basic emotions, we had to create our
own training set. Given the high costs required for manually annotating a train-
ing set, we decided to use a distant supervision approach. This approach was
easily implemented because different users of Twitter tend to label their emo-
tional states with specific hashtags. In the following section we describe which
hashtags we have chosen and how we have used the Twitter REST API for down-
loading the instances of our training set. The distant supervision approach, as
mentioned before, has the advantage of allowing the collection of a dense train-
ing set, in short time. However, its main disadvantage is the lack of control over
the way people decide to label their tweets, resulting in noisy data. Because of
this, we have combined distant supervision with an automatic dataset pruning
technique, that will be described in the following sections. In order to evaluate
the effectiveness of the dataset pruning phase we trained, in the same way but
with different training sets, a number of seven-outputs “flat” classifiers:
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– Raw classifier: trained on the training set collected using distant super-
vision without applying dataset pruning;

– A set of improved classifiers: trained on the training sets obtained from
the dataset pruning phase executed with different thresholds;

and compared them on the same manually-annotated test set. We underline the
importance of having a manually-annotated test set, in order to actually measure
the validity of our approach.

3.1 Training Set Creation

To implement the distant supervision approach, we used the Twitter REST
API for downloading tweets containing some given hashtags, corresponding to
Parrot’s primary sentiments, and other terms selected by an empirical study of
tweets we had collected tweets. In creating this dataset we relied on the fact that
Twitter’s users, when expressing emotions, add specific hashtags corresponding
to their emotions. In order to identify the most popular hashtags used to express
a given sentiment, we downloaded a set of tweets and manually searched among
them for hashtags used in a consistent way. We decided to download more hash-
tags for each emotion to represent all possible different facets. The selected
hashtags for each emotion are presented in Table 1.

Table 1. Hashtags selected for each sentiment.

Sentiment Hashtags

Joy #joy, #happiness, #happy, #joyful, #blessed, #smile, #goodvibes,
#proud

Love #love, #loveofmylife, #fiance

Surprise #surprisesurprise, #wtf, #omg

Anger #fuckyou, #pissedoff, #angry, #furious, #fuckoff, #annoyed, #stfu

Sadness #sad, #sadness, #sosad, #disappointed

Fear #terror, #scared

Since the objective class is considered in the task of polarity classification,
and considering that there are publicly available datasets for this field, we have
decided to collect the instances relative to the “objective” class from these sets.
The datasets we have chosen is “SemEval-2013 Task #2”: Sentiment Analysis
on Twitter [31] and “Emotweet-28” [1].

With the name of raw training set we will refer to the set of tweets down-
loaded using the hashtags presented in Table 1, those collected for the objective
class and the corresponding labels obtained as previously described. It has been
essential to proceed with a pre-processing stage:
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– tweets are cleared from elements with no emotional meaning, such as hash-
tags, user references, punctuation or retweet information;

– tweets are cleared from links;
– repetition of tweets are removed;
– emoticons and contractions are replaced with their textual extension;
– keys used to download the tweets are removed;

After these operations, the raw training set is composed by 42533 instances
equally distributed whithin each class.

In the following subsections, we will present the approach used to train our
classifiers and the dataset pruning technique we used. Starting from the raw
training set, we will describe the algorithms and tools used to derive our raw
classifier. Then, we will describe how this classifier has been used to derive the
filtered training sets, starting from the raw training set.

3.2 Classification

In this work, in order to evaluate the validity of the dataset pruning technique,
we have obtained different classifiers: one from the raw training set and many
others from the filtered training set, in a scheme that we familiarly call “dogfood
learning”. In fact, following the “eat your own dogfood” principle, the classifier
obtained from the raw training set has been then applied to the same initial
raw dataset, to filter out the more doubious instances automatically. As will be
described later, we have been able to filter out doubious instances at different
levels, and hence obtain a different classifier for each of the “cleaning levels”
considered. All classifiers have been trained with the same approach, which is
described in detail in this section.

Our classifiers have been trained using the Naive Bayes Multinomial algo-
rithm (in particular, the implementation provided by Weka). In order to define
the features of our training set, we have used the String to Word Vector algo-
rithm, that turns a string into a set of attributes representing word occurrences.
However, it is important to use not only uni-grams (single word) but to extend
the representation to n-grams (set of maximum “n” words). To select the fea-
tures that are more relevant for our training sets, we have used the Information
Gain algorithm (in particular, the implementation provided by Weka).

For each training set, a preliminary phase has been dedicated to optimizing
the parameters representing the number of features and n-grams to be used.
We started from a grid of pairs (n-grams, number of features) and used cross-
validation to estimate the quality of classifiers configured with the parameters
defined by these pairs. Then, we used the pair that returned best results. Figure 1
shows the case of the raw classifer; it can be noted that accuracy peak corre-
sponds to n-grams = 2 and number of features = 6760.
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Fig. 1. Parameters optimization.

3.3 Dataset Pruning

The basic assumption underlying our dataset pruning scheme is that the most
uncertain instances, contained in the raw training set, represent only a fraction
of the ones that are correctly classified. This hypothesis has been considered true
since the results of the work described in [32] show that the instances obtained by
distant supervision have similar quality to annotations of trained human judges.

Fig. 2. Representation of the dataset pruning scheme.
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Figure 2 summarizes the dataset pruning scheme used in this work, which is
composed of the following sequential steps:

1. Train a classifier (which we call the “raw classifier”) using the whole raw
training set.

2. Use the raw classifier to classify all the instances contained in the raw training
set. In other words, use the raw training set in place of a test set.

3. Save the results of this classification in order to have, for each instance:
– The corresponding class, for which the instance has been downloaded;
– The class predicted by the classifer;
– The confidence factor of the classifier in predicting the class.

The Naive Bayes algorithm classifies a given instance based on the class
with the maximum posterior probability distribution given the observa-
tion. So this probability is used as confidence factor in predicting a given
class.

4. Remove, from the previously saved dataset, the incorrectly classified
instances.

5. Obtain different training sets TSα1, TSα2, ..., TSαn by applying a variable
threshold α from 0.2 to 1. The threshold is used to remove all the instances
that have been classified correctly but with a confidence factor lower than the
threshold value.

We have decided to produce also another training set obtained, just by remov-
ing the incorrectly classified instances, without applying any threshold to the
correctly classified instances: this training set is called T0.

All the resulting training sets have been used to train different classifiers
Cα1, Cα2, ... , Cαn, whose parameters have been selected by the optimization
process previously described. Table 2 shows the parameters n-gram and number
of features used for each classifiers.

Table 2. Parameters optimization results.

Classifier N-Gram (max) Features

Raw 2 6760

C0 2 4800

C0.2 2 4800

C0.3 2 4800

C0.4 2 4800

C0.5 2 4760

C0.6 2 4760

C0.7 2 4840

C0.8 2 4760

C0.9 2 4400

C1 2 4000
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4 Results

In this section we present the results obtained, on a common test set, by the
different classifiers. Since all the classifiers have been trained in the same way
but with different training sets, we have been able to assess the effectiveness of
the dataset pruning technique introduced and to evaluate which threshold allows
one to obtain the best performance.

4.1 Test Set

The choice of the test set is a critical element, for evaluating the performance
of a classifier. In this work we have derived a test set from the EmoTweet-28
dataset [1]. This dataset consists of tweets manually classified according to 28
different emotions. Since, for our work, we only need a subset of these emotions,
we have defined some classes of EmoTweet-28 emotions, that can be associated
to each of our primary sentiments. In Table 3 we summarize this process:

Table 3. EmoTweet-28 classes used as representative of Parrot’s primary sentiments.
The tweets corresponding to classes of EmoTweet-28 not reported in the table have
not been included in the test set.

Macro-categories EmoTweet-28 emotions

Joy “Amusement”, “Excitement”, “Happiness”, “Inspiration”, “Pride”

Love “Fascination”, “Love”

Surprise “Surprise”

Anger “Anger”, “Hate”, “Jealousy”

Fear “Fear”

Sadness “Sadness”, “Regret”, “Sympathy”

Objective “none”

Since many of these tweets are labeled with more than one emotion, we
decided to maintain only the tweets with associated emotions of the same macro-
categories according to Table 3. Further, we applied the pre-processing stage as
described in Sect. 3.1. Finally, as mentioned in the previous chapter, considered
the large amounts of objective tweets, we decided to remove some of these from
the test set and insert them in the raw training set.

As result, the test set has 10499 instances subdivided for each class as follows:

– Joy: 2781;
– Love: 447;
– Surprise: 15;
– Anger: 1221;
– Sadness: 98;
– Fear: 204;
– Objective: 5733
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4.2 Accuracy

In this section we compare the results obtained on the test set, previously
described, by the original raw classifier and the improved classifiers.

Figure 3 shows the accuracy for each classifier. The raw classifier has an
accuracy of 39,00% and all the other classifiers, obtained using the different
filtered training sets, improve the accuracy to some degree. More in detail, note
that even the classifier C0, from which only wrongly classified instances have
been removed and no threshold application, allows to boost the accuracy of the
results.

Fig. 3. Visualization of the accuracy obtained by the different classifiers on the given
test set.

In order to have a better feeling of the performances of the classifiers, we
present in Fig. 4 the F-measures obtained by each classifier. The figure shows
that the impact of the data pruning technique is not the same on all classes,
possibly because of the different average certainty degree of the different classes,
which may cause the filter to alter the balance of the original dataset. However
if one considers the average F-measure over the 7 classes, a steady increment in
the global performance can be observed. It should be noticed that this measure
is independent of the a priori distribution of the test data among the 7 classes.

At this point two important observation have to be made:

– Even if the C1 classifier produces a small increment of the F-measure in
relation to the “surprise” class, the low F-measures of the class Surprise,
obtained by all the classifiers, are probably related to the lack of a suitable
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Fig. 4. F-measure trends for each classifier.

number of instances in the test set. EmoTweet-28 contains many tweets asso-
ciated with the Surprise label; however, many of these were ignored since Sur-
prise was not the only label assigned to them. This caused very few instances
of that classes to be included in the test set.

– The improved classifiers couldn’t obtain an increment of the “fear” F-measure.
The reason is probably releted to the fact that Twitter users are hesitant on
sharing their real fears. It follows that the distant supervision approach is not
effective with this type of class. So, the reduction of the trend can be explained
by the fact that, for this particular class, the hypothesis of applicability of our
dataset pruning technique are not verified, since the percentage of spurious
instances is superior to the percentage of correct ones.

5 Conclusion

The automatical analysis of the social network users’ emotional state is of
increasing importance. For the creation of a classifier for emotion detection,
it is of utmost importance to collect a proper training set with low costs and
efforts. In this work we propose an approach for automatically deriving a training
set from Twitter, using a distant supervision approach combined with a dataset
pruning technique. Even if it has been proven that training sets obtained with
distant supervision correspond well to annotation of human judges [32], in this
paper we show that is possible to increment the quality of the training set using
a simple and automated dataset pruning technique.
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Abstract. Natural gas is the cleanest fossil fuel since it emits the low-
est amount of other remains after being burned. Over the years, natu-
ral gas usage has increased significantly. Accurate forecasting is crucial
for maintaining gas supplies, transportation and network stability. This
paper presents two methodologies to identify the optimal configuration
o parameters of a Neural Network (NN) to forecast the next 24 h of gas
flow for each node of a large gas network.

In particular the first one applies a Design Of Experiments (DOE)
to obtain a quick initial solution. An orthogonal design, consisting of
18 experiments selected among a total of 4.374 combinations of seven
parameters (training algorithm, transfer function, regularization, learn-
ing rate, lags, and epochs), is used. The best result is selected as initial
solution of an extended experiment for which the Simulated Annealing
is run to find the optimal design among 89.100 possible combinations of
parameters.

The second technique is based on the application of Genetic Algorithm
for the selection of the optimal parameters of a recurrent neural network
for time series forecast. GA was applied with binary representation of
potential solutions, where subsets of bits in the bit string represent dif-
ferent values for several parameters of the recurrent neural network.

We tested these methods on three municipal nodes, using one year
and half of hourly gas flow to train the network and 60 days for testing.
Our results clearly show that the presented methodologies bring promis-
ing results in terms of optimal configuration of parameters and forecast
error.

Keywords: Machine learning · Neural networks · Genetic algorithm
Simulated annealing · Design Of Experiments (DOE)
Time series forecast

1 Introduction

Over the years, lower prices and better infrastructure led to a significant increase
of natural gas usage in transportation and consumption in residential and
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industrial sectors. Accurate forecasting of natural gas flows is crucial for main-
taining gas supplies, transportation and network stability.

In the past, several methods have been used to predict daily gas demands
[1–3]. The most commonly used among these models are ARIMA models which
assume a linear relationship between data. However, in real-life applications a
lot of time series do not have linear relationships. Neural Networks (NN) can
model both linear and nonlinear relationships. This, as well as the capability of
NN to extract the relationship between the inputs and outputs of a process, are
the reasons why NNs have become one of the methods frequently used in time
series analysis in recent years.

Usually, the process of constructing the NN model for time series forecast-
ing is based on trial and error heuristics. When designing a NN model several
parameters combinations (i.e. neurons, training algorithms, delays...) are set.
For each of them, training, validation and test errors are obtained, and one of
the configuration with better generalization capability is selected to forecast the
future values. An improved procedure is to use an automatic NN design with
hyperparameters optimization techniques.

The goal of this paper is to develop accurate methods capable to automat-
ically determine hyperparameters of NN for forecasting gas flows in large net-
works.

The paper is organized as follows. Section 2 presents a literature review on
hyperparameters optimization techniques. Section 3 explains two methodologies:
Recurrent Neural Network (RNN) with Design Of Experiments (DOE) and Sim-
ulated Annealing and RNN with Genetic Algorithm for forecasting the next 24 h
of gas flows. Section 4 reports the conclusions.

1.1 Literature Review

Neural Networks have been extensively used to forecast time series. In [4], the
authors underline that the application of neural networks to forecast time series
started already in the fifties. After a decline in the use of Neural Networks, the
introduction of the backpropagation algorithm for network training and weight
optimization together with the increased processing power of computers, have
created the basis for a wider deployment of Neural Networks for several types of
applications. The connection between autoregressive models and neural networks
is shown by [6] who demonstrate that NARMA models (Nonlinear Autoregressive
Moving Average) are a particular type of recurrent neural network. Since the
prediction is influenced by the outliers, they propose a filtering algorithm which is
integrated into the training process. In [5], a recurrent neural network is trained
with a hybrid algorithm and it is shown that the combination of two global
optimization algorithms allows to predict missing values of the time series. They
also add that further research should be focused on the parameters settings.

Several approaches have been proposed to find the optimal hyperparameters
of Neural Networks. The simplest one is the random search which consists in the
initialization of the parameters based on a distribution. After each iteration, the
solution is updated until a stop criterion is met. Similarly, the grid search consists
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of dividing the space of solutions into a grid and to systematically explore each
area. If the subset of optimal parameters is known and an acceptance function is
defined, [7] showed that the random search performs better than the grid search
for classification problems.

There are numerous researchers that proposed Evolutionary NN for different
problems (see for instance [21–23]). Several authors use genetic algorithms to
optimize the neural networks’ hyperparameters (i.e. [11,13–15]). In [10], the ini-
tial population consists of a range of parameters initialized with a set of potential
solutions. The couples of chromosomes (solutions) are evaluated based on a fit-
ness function. The best chromosomes are then selected by considering the value
of the cumulative distribution.

The genetic algorithm has been implemented in combination with the Design
of Experiments (DOE). For instance, a hybrid genetic algorithm has been pro-
posed by [9] to optimize a neural network architecture and its hyperparame-
ters. The traditional genetic algorithm is combined with the Taguchi orthogonal
design by inserting the result of the DOE between crossover and mutation to
select the best genes.

Other approaches to optimize the configuration of NNs are based on the
combination of different solutions. For instance, ensembles consists of combining
several networks outputs. For prediction problems, NN are often trained indi-
vidually and the prediction results are averaged or weighted averaged [40]. In
[12], the authors proposed a technique which is based on genetic algorithm to
select and ensemble several neural networks. This technique consists of train-
ing a number of neural networks; assigning random weights to the network and
running a genetic algorithm to improve the fitness of the ensemble model. The
result is a smaller network with an increased generalization capacity.

Sequential Model-Based Optimization (SMBO) is a methodology that con-
sists of the space of parameters’ evaluation based on a function [8]. The con-
figuration space is described as a probability distribution or as a set of discrete
values. [16], for instance, combined algorithm selection and hyperparameter opti-
mization by considering the set of Waikato Environment for Knowledge Analysis
(WEKA) algorithms [17]. The objective was to identify the optimal combination
of algorithms and parameters that minimize the cross-validation loss. Irace [18]
is an iterated racing procedure for automated parameters configuration. The
method consists of three steps: the sampling of possible configurations accord-
ing to a distribution, the selection of the best configuration and the update of
the distribution based on the best selected solution. SMAC [8] is a sequential-
based optimization method for parameter optimization that can be seen as an
extension of the iterated racing algorithm. The method improves the intensi-
fication procedure and provides the possibility to handle categorical variables
and multiple instances. ParamILS [19] is a stochastic local search algorithm for
parameter configuration. The general framework consists of starting with an
initial configuration, modifying it and accepting the new configuration as soon
as the performance improves. Finally, CALABRIA [20] combines the Taguchi
design with the local search to narrow the space of parameters.
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The next section describes the dataset deployed to forecast gas flow, the
network and how the forecast results are evaluated.

1.2 The Data Set

In this paper we observed a data set of hourly gas flow time series from three
Municipal nodes with 17.520 h, that is twenty three months, from 1/10/2013 to
30/9/2015. The objective is to forecast the demand for the next 24 h to plan the
optimal distribution of flows over a large gas network. We used one year and
9 months (1/10/2013–25/7/2015) to train the network and we performed the
hourly daily forecast for each of the 60 remaining days (26/7/2015–30/9/2015).

1.3 Input Features

The network receives a fixed set of features: gas flow at the same time of the
previous day, flow at the same time of the second previous day, .., and so on,
up to the flow at the same time of same day of the previous week. The average
flow registered at the same time in the previous seventh days is also computed
and used as input to the model. Finally, since the gas flow of the three nodes is
influenced by the temperature and its use depends on whether it is holiday or
weekend, these information are included in the set of input features. The input
data are normalized and the predictions are transformed back to evaluate the
forecast results.

1.4 The Network

The network that we want to optimize is a simple Recurrent Neural Network.
This type of network was developed with the aim to model the structure of time
and it was introduced by [35]. More specifically, it is a layer recurrent neural
network with a similar structure as the feedforward neural network with the
difference that it includes tap delays that connect past time steps to the current
output. The number of past time steps to be deployed to forecast the next 24 h
is one of the parameters that is optimized.

1.5 Evaluation

The evaluation is based on the Root Mean Square Error (RMSE) that measures
the difference between the predicted and observed values. The network produces
the 24-h forecast based on the previous data. The average daily RMSE is com-
puted for the 24-h forecast for each of the 60 days and the average forecast is
recorded. The cross validation is performed on the 30% of the dataset.
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2 Recurrent Neural Network (RNN) with Design
of Experiments (DOE) and Simulated Annealing

The Design Of Experiments (DOE) allows to separate and study the main effects
of the different components on the final outcome of a process or system [28].
The development of this methodology has been guided by the industry as there
was the need for new strategies aimed at reducing the number of experiments to
determine the optimal combinations of parameters. The DOE is an iterative pro-
cess which consists in the execution of a subset of experiments to move towards
the optimal condition based on the analysis of the average and variance of the
experiments’ responses.

The most common method of DOE is called fractional factorial design defined
as the methodology that allows reducing the size of the experiment by limiting
the loss of critical information [29]. The basic principle of these experiments
relies on the possibility to estimate the effect of each factor independently from
the others and this is possible when the design is orthogonal. [25] describe an
orthogonal array of m factors of level s and N experiments, OAN (sm), as a
matrix N ∗ m in which each factor can be evaluated independently. In the case
of mixed levels design, an orthogonal array is denoted by OAN (sm ∗ tn) where
s and t (s �= t) denote the cardinality of two different levels’ set and n and m
(n �= m) indicate the number of factors for each level.

Taguchi has proposed a set of orthogonal designs in order to further reduce
the number of experiments needed to identify the optimal combination of param-
eters (see [24,27,39]). The main concept introduced by Taguchi is the loss func-
tion which expresses the cost of quality loss. The hypothesis is that the losses
are caused by the deviation from the target, therefore:

– losses are 0 at the target values;
– when the deviance from the target increases, the loss also increases.

Practically, any deviation from the target causes an increase of loss. There is,
therefore, a margin of tolerability which depends on the type of problem.

DOE have already being used to configure NNs. In particular, [26] applied the
Taguchi method to optimize a Feedforward Neural Network by varying several
factors such as the number of hidden layers, the number of neurons, the size of
the training set and the learning rate.

2.1 The Experiment

This work presents three experiments executed on three different nodes of a gas
network according to the Taguchi’s L18 (36 ∗ 61) mixed levels orthogonal array
consisting of one factor with six levels (61), six factors with three levels (36) and
18 experiments. Each factor is a parameter of the Neural Network. The levels
are fixed values assigned to the parameters.

The experiment runs 18 separate trial conditions selected among a total of
4.374 combinations of seven parameters (training algorithm, transfer function,
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regularization, learning rate, lags, and epochs). The average daily RMSE of the
24-h forecast for 60 days is recorded. The selection of the design is based on the
hypothesis that the train function is the main source of variability of a Neural
Network, as such more training functions should be tested. The other parameters
(transfer function, number of hidden neurons, lags, etc.) were selected based on
the experience and the existing literature.

Description of the Selected Factors. Training a neural network means find-
ing the weights and biases such that, given a set of input values, the output
of the network is as close as possible to the target values. The most common
algorithm for training a neural network is the backpropagation. According to
this approach, the error is minimized by computing the partial derivatives of
the error function with respect to the weights. This allows computing the steep-
est descent, the sign of which provides an indication of how much and towards
which direction the weights have to be updated such that the difference between
the output and the target is minimized. As noted by [30], the backpropagation
algorithm does not guarantee the convergence to the global optimum because
complex problems may have several local optima, it is difficult to understand
how the algorithm behaves with different number of neurons and layers and the
convergence is often slow. For this reason, there is not a standard technique that
guides in the selection of the most appropriate training function.

In the context of the selected design (L18 (36 ∗ 61)), six different training
functions have been included in the experiment. Five of them are based on the
backpropagation algorithm:

– The Levenberg-Marquardt backpropagation (LM) training process combines
the conjugate gradient until it is closed to the optimum; after that it performs
a quadratic approximation according to the Gauss-Newton algorithm [32].

– The Scaled conjugate gradient backpropagation (SCG) combines the
Levenberg-Marquardt with the conjugate gradient approach. The Scaled con-
jugate gradient determines the search direction for the weights; and based on
the direction, it defines the step size [31].

– The Resilient Backpropagation (RP) considers only the sign of the partial
derivative, without taking into account the size of the weights, to decide the
direction of the weights update.

– Gradient Descent backpropagation (GD) adapts the weights and bias accord-
ing to the gradient descent.

– Gradient Descent with momentum backpropagation (GDM) is a batch steep-
est descent which utilize the entire training set to compute the gradient of
the cost function with reference to the parameters.

– Broyden-Fletcher-Goldfarb-Shanno Quasi-Newton (BFGS) is an iterative
method for solving unconstrained nonlinear optimization problem [33].

The factors together with their corresponding levels are shown in Table 1.
The transfer function allows the non-linear transformation of the input into

the output. The neurons are the number of nodes included in each layer of the
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Table 1. Factors/Parameters

Level Training
Fnc

Transfer
Fnc

Neurons Lags Regularization Learning
rate

Epochs

1 LM logsig 10 2 0.5 0.001 100

2 SCG purelin 14 3 0.7 0.01 300

3 RP tansig 18 4 0.9 0.1 600

4 GD - - - - - -

5 GDM - - - - - -

6 BFGS - - - - - -

network, that is the number of non linear transformations of the input into the
output based on the transfer function. The lags are the number of previous
data to be used to forecast the next 24-h. The regularization is a parameter
that allows avoiding overfitting by removing a certain percentage of connections
between neurons. The learning rate allows to set the time needed to reach the
convergence. If the learning speed is high, the algorithm converges very fast but
it could fail finding the optimal solution. Finally, the epochs are the presentation
of the training set to the network. The higher is the number of epochs, the higher
is the accuracy but the higher is the time needed to reach the convergence.

The results of the experimental design for three nodes of the gas network is
shown in Table 2 where the 18 combinations of factors and the corresponding
RMSE are presented according to the selected Taguchi design.

2.2 Optimal Design with Simulated Annealing

This section presents a procedure to optimize the design with Simulated Anneal-
ing. The algorithm, proposed by [34], was inspired by the behaviour of the atoms
in thermal equilibrium in case of temperature variation. The algorithm starts
with an initial configuration and an initial temperature. At each iteration, the
temperature changes and a new candidate configuration is generated by a per-
turbation of the initial configuration. The difference between the two objective
functions is then evaluated. If the value of the objective function improves, the
new configuration is accepted, otherwise it is updated.

In our implementation, the objective is to find the optimal combination of NN
parameters that minimize the RMSE based on the quick initial solution provided
by the DOE. More specifically, the problem consists of minimizing the RMSE
and finding the integer variables that specify the value of the NN parameters in
terms of their position in the vector of parameters.

To this aim, the range of parameters to be evaluated is extended to 89.100
possible combinations of seven parameters. The levels of each parameter are
reported here below:

– Train Function: LM, SCG, RP, BFGS, GDM, GD
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Table 2. Results of the DOE

Run Lags Neurons Learn.
Rate

Transfer
Fnc

Regular Training
Fnc

Epochs NodeA-
RMSE

NodeB-
RMSE

NodeC-
RMSE

1 3 10 0.01 logsig 0.9 RP 600 6.9 98.6 18.8

2 3 18 0.1 logsig 0.5 GDM 300 136.5 493.1 104.5

3 2 10 0.001 logsig 0.5 LM 100 7.4 96.5 18.4

4 3 14 0.001 purelin 0.5 BFGS 600 7.3 101.1 20.3

5 4 18 0.01 logsig 0.7 BFGS 100 10.5 103.8 26.5

6 2 10 0.1 tansig 0.9 BFGS 300 8.8 102.6 21.2

7 2 18 0.001 purelin 0.7 RP 300 7.5 101.6 20.0

8 2 14 0.01 purelin 0.9 GDM 100 346.7 3232.9 607.6

9 4 10 0.01 purelin 0.5 SCG 300 7.4 101.0 19.8

10 4 18 0.1 purelin 0.9 LM 600 7.3 103.1 19.9

11 3 14 0.01 tansig 0.7 LM 300 7.2 100.3 18.7

12 2 18 0.01 tansig 0.5 GD 600 73.9 717.3 355.2

13 3 18 0.001 tansig 0.9 SCG 100 7.2 100.9 18.7

14 4 10 0.001 tansig 0.7 GDM 600 69.8 691.3 154.5

15 3 10 0.1 purelin 0.7 GD 100 298.3 1691.6 582.9

16 2 14 0.1 logsig 0.7 SCG 600 7.9 100.0 19.2

17 4 14 0.001 logsig 0.9 GD 300 172.1 2110.4 412.5

18 4 14 0.1 tansig 0.5 RP 100 7.0 98.1 19.4

– Transfer Function: logsig, tansig, purelin
– Neurons: 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
– Lags: 2, 3, 4
– Regularization: 0.5, 0.6, 0.7, 0.8, 0.9
– Learning Rate: 0.001, 0.01, 0.1
– Epochs: 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000

The best combination of parameters obtained with the Taguchi design in
terms of minimum RMSE is selected as initial solution of the simulated anneal-
ing. The lower and upper bounds of each integer variable of the optimization
problem is set. Since the value of the variables corresponds to the position in
the vector of possible values of the parameters, the upper bound corresponds to
the number of levels of each variable.

The algorithm stops if the average change in the objective function, after 300
iterations, is below 1. The best solution of the Taguchi experiment is selected as
initial solution.

The results of the simulated annealing for the three nodes are reported in
Table 3. For each node, the optimal configuration of parameters is shown together
with the value of the objective function, the RMSE. The results indicate that,
for all nodes, the optimal number of neurons is 19. Furthermore, the number of



166 M. Dell’Amico et al.

Table 3. Results of SA

Parameters NodeA NodeB NodeC

Training Fnc LM RP SCG

Transfer Fnc logsig tansig tansig

Number of neurons 19 19 19

Lags 2 3 3

Regularization 0.9 0.9 0.9

Learning Rate 0.1 0.01 0.001

Epochs 700 300 600

RMSE 5.99 94.04 18.04

previous data to be deployed to forecast the next 24 h, is limited to 2 or 3 obser-
vations (lags). The optimal regularization rate is rather high for all three nodes
and it is included between 0.8 and 0.9. The optimal number of epochs ranges
between 600 and 700, except for NodeB which uses an RP training function with
a learning rate of 0.01.

3 Recurrent Neural Network (RNN) with Genetic
Algorithm (GA)

This section describes the application of genetic algorithm for selecting the
optimal parameters’ configuration of a recurrent neural network for time series
forecast. Genetic algorithm (GA) is a robust evolutionary optimization method
based on elementary mechanisms of evolution. It was originally proposed by
John Holland [36] and further improved by numerous researchers (i.e. [37,38]).
This evolutionary algorithm is based on a population of individuals where every
individual represents a potential solution. Each candidate solution has a set of
properties which can be mutated and altered, and a measure of adjustment, i.e.
the value of optimization function. Using operators like selection, crossover and
mutation GA attempts, through iterations, to achieve the optimal value of the
fitness function.

The proposed GA algorithm for optimal configuration of RNN parameters
consists of the following steps:

1. Setting. In the first step, the RMSE defined according to Sect. 1.5 is set as
objective function for the optimization procedure. The maximum number of
iterations and fitness function tolerance (minimal average relative change in
the fitness function value over iterations) are set in advance as termination
criteria to the values of 20 and 10−3 respectively. The population of potential
solutions is initialized with 20 individuals. The crossover and mutation rates
are set to 0.8 and 0.001 respectively. Finally, the data set is divided into
training and test sets according to Sect. 1.2.
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2. Encoding. The procedure for encoding consists of representing each NN
parameter that is going to be optimized with a certain number of bits with
fixed length. The main idea is to use binary code for every parameter and its
level according to Table 1. Every potential solution consists of 15 bits long
string. First three bits are used to identify the training function which has six
levels, based on the following relation (

∑n
i=0 g(i)∗2n−i)+1 where g(i) = 0 or

1 and n is number of bits for each parameter. For example, when the value of
the first three bits of the string is 000, the string corresponds to the first level
of the training function (LM training function). All the other parameters are
expressed by two bits because the possible levels are only three. In case of
binary codes that correspond to higher levels of the parameter reported in
Table 1, infeasible solutions are discarded as soon they are generated. All the
other parameters are encoded with 2 bits since they have 3 levels.

3. Decoding and training the network. The first generation of potential
solutions, expressed as string of bits, are decoded into the parameter of the
network reported in Table 1.

4. Genetic operations. For every potential solution in the current iteration,
the value of the objective function is calculated. The reproduction, crossover
and mutation are then performed to create the new generation. In the repro-
duction, two strategies are applied: elite and selection. In elite strategy, poten-
tial solutions with the best value of the objective function are stored as elite
solutions among all the others in that iteration. For the individual elite, all bits
are kept unchanged in the next iteration. In the selection strategy, some can-
didate solutions with better objective function value are chosen for crossover.
In the crossover, two of all candidate solutions are randomly selected and
some bits of each parent individual are interchanged. Mutation means that
randomly selected bits of parent individual change their values in order to
avoid that search ends in local optima. If one of the termination criteria is
satisfied, the procedure terminates; otherwise the algorithm is repeated from
step 4.

Table 4. GA results

Parameters NodeA NodeB NodeC

Training Fnc LM LM LM

Transfer Fnc tansig tansig logsig

Number of neurons 18 18 18

Lags 2 2 3

Regularization 0.7 0.9 0.5

Learning rate 0.01 0.01 0.01

Epochs 600 600 600

RMSE 6.6 101.09 18.05
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Table 5. Robustness of the solutions

Node Method Training
Fnc

Transfer
Fnc

Neurons Lags Regularization Learning
rate

Epochs RMSE

NodeA DOE - SA trainlm logsig 19 2 0.9 0.1 700 6.7

trainrp tansig 19 3 0.9 0.01 300 7.0

trainscg tansig 19 3 0.9 0.001 600 7.1

GA trainlm tansig 18 2 0.7 0.01 600 6.8

trainlm tansig 18 2 0.9 0.01 600 6.6

trainlm logsig 18 3 0.5 0.01 600 6.5

NodeB DOE - SA trainlm logsig 19 2 0.9 0.1 700 99.1

trainrp tansig 19 3 0.9 0.01 300 97.1

trainscg tansig 19 3 0.9 0.001 600 97.1

GA trainlm tansig 18 2 0.7 0.01 600 97.4

trainlm tansig 18 2 0.9 0.01 600 100.7

trainlm logsig 18 3 0.5 0.01 600 97.6

NodeC DOE - SA trainlm logsig 19 2 0.9 0.1 700 18.5

trainrp tansig 19 3 0.9 0.01 300 18.8

trainscg tansig 19 3 0.9 0.001 600 19.2

GA trainlm tansig 18 2 0.7 0.01 600 19.2

trainlm tansig 18 2 0.9 0.01 600 18.8

trainlm logsig 18 3 0.5 0.01 600 18.7

The optimal configuration of parameters and value of the RMSE obtained
with the genetic algorithm are reported in Table 4. The results of the GA are very
similar to the ones obtained with the SA both in terms of optimal configuration
and RMSE. The obtained results, one side confirm that the considered range
of parameters lead to a certain amount of errors. In this particular case, the
prediction errors also depend on the dimension of the gas flow (gas flow of
NodeB is higher compared to gas flow of NodeA). On the other side, the results
evidences that additional characteristics should be considered when looking for
the optimal configuration of a neural network such as the selection of the input
features and the evaluation of different neural network architectures.

4 Conclusion

In the present work, two different methodologies are proposed to optimize the
configuration of the neural network parameters for time series forecast. The DOE
allows to perform a subset of experiments based on the selection of an orthogonal
design. The results of the experiment are deployed as initial solution to optimize
the design with the Simulated Annealing.

The second methodology is based on the implementation of a Genetic Algo-
rithm to select optimal combination of parameters of a recurrent neural network.
The parameters are represented using strings of bits and are the same parameters
deployed for the design of experiment.
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Based on the results obtained thanks to the application of the two techniques
and the evaluation of the three similar nodes of the gas network, it is possible
to make some considerations on the selection of parameters. For instance, it
is generally recommended to set the number of neurons equal to the number of
input features, while the results clearly show that the optimal number of neurons
is higher for all three nodes. All optimal configurations are tested on all nodes
and the results are shown in Table 5. The table shows that the solutions found
by the two approaches are robust as there is a little variation in terms of RMSE.

The main limitation of the two approaches relies on the time needed to run
the algorithms which includes the time needed to train 60 times the network. The
final RMSE is, in fact, an average of 60 days 24-h forecast errors. This increases
substantially the running time that also depends on the parameter setting. For
instance, when low values of the learning rates (i.e. 0.001) are set, the running
time further increases.

Future research may introduce in the optimization process a methodology to
select features with the final aim to identify the features with better prediction
capability.

With reference to the performance of the two algorithms, the results show
that the Simulated Annealing provides different training functions for the three
nodes. The GA provides, instead, more stable configuration in terms of param-
eters selection. This may be an indication of the fact that the GA evaluates less
solutions compared to the SA or that the solution provided by the GA is more
robust.

Future research may consider the comparison of the two proposed approaches
with more mature configuration optimizers. Furthermore, more complex neural
network architectures might be considered as well as a wider range of parameters
to be optimized.
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Abstract. Semivectorial bilevel problems (SVBLP) deal with the optimization
of a single function at the upper level and multiple objective functions at the
lower level of hierarchical decisions. Therefore, a set of nondominated solutions
to the lower level decision maker (the follower) exists and should be exploited for
each setting of decision variables controlled by the upper level decision maker
(the leader). This paper presents a new algorithmic approach based on differential
evolution to compute a set of four extreme solutions to the SVBLP. These
solutions capture not just the optimistic vs. pessimistic leader’s attitude but also
possible follower’s reactions more or less favorable to the leader within the lower
level nondominated solution set. The differential evolution approach is compared
with a particle swarm optimization algorithm. In this experimental comparison
we draw attention to pitfalls associated with the interpretation of results and
assessment of the performance of algorithms in SVBLP.

Keywords: Semivectorial bilevel problems � Differential evolution
Particle swarm optimization � Optimistic/pessimistic frontiers
Optimistic/deceiving solutions � Pessimistic/rewarding solutions

1 Introduction

A semivectorial bilevel problem (SVBLP) is an optimization problem with a single
objective function at the upper (leader’s) level and multiple objective functions at the
lower (follower’s) level of hierarchical non-cooperative decisions. Hence, a multiob-
jective (MO) optimization problem contributes to define the feasible region to the
leader’s problem, in the sense that a lower level nondominated region exists for each
setting of upper level variables. Thus, when solving his/her optimization problem, the
leader must anticipate the follower’s choice of a nondominated solution embodying a
trade-off between the lower level multiple objectives. The follower’s reaction may
strongly affect the leader’s optimal solution, depending on the follower’s preference
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structure vis-à-vis the nondominated region established by the instantiation of the
leader’s decision variables. Therefore, it is useful for the leader to have an overview of
possible optimal solutions resulting from different attitudes (optimistic or pessimistic)
in face of his/her expectation of the more or less favorable follower’s choice.
In addition to the intrinsic theoretical and computational difficulty in computing
solutions to the SVBLP, the leader does not have a-priori information about the
nondominated solution the follower will choose according to his/her (unknown)
preferences.

In this setting, this paper presents an algorithmic approach intertwining single and
MO versions of Differential Evolution (DE) for the upper level and lower level
problems, which is aimed at computing a set of extreme solutions to the SVBLP. These
extreme solutions are: the optimistic solution offering the leader the best objective
function value when the follower’s decision for each setting of upper level variables is
the best for the leader; the deceiving solution when the leader adopts an optimistic
approach but the follower’s reaction is the worst for the leader; the pessimistic solution
offering the best objective function value for the leader when the follower’s decision
for each setting of upper level variables is the worst for the leader; and the rewarding
solution when the leader adopts a pessimistic approach but the follower’s reaction is
the most favorable to the leader.

The algorithmic approach introduces new concepts of optimistic and pessimistic
frontiers and adapts DE mechanisms to combine the search at both levels with the
population split between orientations to each frontier. This approach is compared with
a Particle Swarm Optimization (PSO) algorithm we have previously developed [1],
which has been extended herein to compute these four extreme solutions. The algo-
rithms are tested on a set of benchmark problems for multiobjective bilevel (MOBL)
optimization (considering only one of the objective functions in the upper level). We
were able to determine analytically the exact solutions to these problems, which enable
to assess the quality of the solutions obtained by the algorithms. A thorough analysis of
the computational results allowed us to unveil pitfalls associated with the interpretation
of results and assessment of the algorithm performance in SVBL and MOBL opti-
mization. This paper also aims at drawing attention to these pitfalls.

In Sect. 2, the SVBLP is presented and the definitions of the extreme (optimistic,
deceiving, pessimistic and rewarding) solutions are introduced. Algorithmic approa-
ches to deal with the SVBLP are also briefly reviewed in this section. The concepts of
optimistic and pessimistic frontiers are presented and illustrated in Sect. 3. In Sect. 4,
the Semivectorial Bilevel Differential Evolution (SVBLDE) algorithm is proposed.
Computational results are presented and discussed in Sect. 5. Concluding remarks are
presented in Sect. 6.
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2 The SVBLP: Optimistic vs. Pessimistic Approaches

The SVBLP is a bilevel optimization problem with a single objective function at the
upper level F(x, y) and multiple objective functions fkðx; yÞ; k ¼ 1; . . .;m at the lower
level.

8min0
x2X

Fðx; yÞ
s:t: Gðx; yÞ� 0

y 2 argmin
y2Y

f1ðx; yÞ; . . .; fmðx; yÞð Þ : gðx; yÞ� 0f g
ð1Þ

with X�<n1 and Y �<n2 , which impose bounds (box constraints) on the upper level
variables x (which are controlled by the leader) and on the lower level variables
y (which are controlled by the follower), respectively. G(x, y) � 0 and g(x, y) � 0
are general constraints, respectively in the upper and the lower level problems.

Since the decision process is sequential and the leader decides first, x assumes a
constant vector in the optimization of fkðx; yÞ; k ¼ 1; . . .;m. For each x 2 X there is a
set of efficient (Pareto optimal or nondominated) solutions to the lower level problem
represented by WEf ðxÞ. Let YðxÞ ¼ y 2 Y : gðx; yÞ� 0f g.

Thus, WEf ðxÞ ¼ y 2 Y : there is no y0 2 YðxÞ f ðx; y0Þ � f ðx; yÞjð Þf g where �
denotes the dominance relation, i.e., f ðx; y0Þ � f ðx; yÞ iff fjðx; y0Þ � fjðx; yÞ for all
j = 1, …, m, and fjðx; y0Þ\ fjðx; yÞ for at least one j.

Since there is not, in general, a single efficient solution to the lower level problem
for each x, problem (1) is ambiguous. This is the reason for the quotation marks in the
upper level objective function. Two main approaches have been suggested in the
literature to address the problem – the optimistic and the pessimistic approaches –

leading to two reformulations of (1). As in the single objective bilevel problem with
non-unique optimal solutions to the lower level problem, the optimistic formulation of
the SVBLP is much simpler to tackle and has therefore been the most investigated.

The optimistic approach assumes that the leader is able to influence the choice of
the follower. Thus, the upper level optimization can be taken with respect to x and y to
determine the optimal optimistic solution. This means that, for a given upper level
decision x, the lower level decision y is the one that presents the minimum F
(x, y) among the efficient solutions to the lower level problem for that x, which also
satisfy upper level constraints (if there are upper level constraints coupled with lower
level variables, i.e. Gðx; yÞ� 0). The optimal optimistic solution will be called just
optimistic solution and is defined as follows:

• the optimistic solution, (xo, yo), is given by

min
x2X;y2Y

Fðx; yÞ : y 2 WEf ðxÞ;Gðx; yÞ� 0
� �
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In the pessimistic approach the leader prepares for the worst case. The leader
chooses the x that leads to a feasible solution with minimum F in view of the follower’s
decisions y worst for the leader. The optimal pessimistic solution will be called just
pessimistic solution and is defined as follows:

• the pessimistic solution, (xp, yp), is given by

min
x2X

max
y2Y

Fðx; yÞ : y 2 WEf ðxÞ
� �

: Gðx; yÞ� 0
� �

A failed optimistic approach leads to the deceiving solution. This means that the
leader chooses x according to the optimistic approach but the follower does not react
accordingly and takes the decision with worst value for the leader’s objective function.
Thus, given the optimistic upper level decision xo,

• the deceiving solution is (xd, yd) = (xo, yd) where yd is given by

max
y2Y

Fðxo; yÞ : y 2 WEf ðxoÞ
� �

According to the above definition, the deceiving solution may be infeasible to the
leader, i.e. infeasible for the SVBLP. Knowing whether the deceiving follower’s
reaction is feasible or infeasible to the upper level problem is also a useful information
to the leader.

A successful pessimistic approach leads to the rewarding solution. Thus, given the
pessimistic upper level decision xp, the rewarding solution can be defined as the
feasible (xr, yr) = (xp, yr) such that yr is given by

min
y2Y

Fðxp; yÞ : y 2 WEf ðxpÞ;Gðxp; yÞ� 0
� �

Bonnel [2] and Bonnel and Morgan [3] firstly addressed the SVBLP by providing
necessary optimality conditions [2] and a penalty function method [3] for determining
the optimistic solution. Other methods based on penalty functions to compute the
optimistic solution were developed by Ankhili and Mansouri [4], Zheng and Wan [5]
and Ren and Wang [6] for the SVBLP with a MO linear problem in the lower level.
Calvete and Galé [7] focused on the same problem and proposed an exact method and a
genetic algorithm, considering the optimistic approach. Liu et al. [8] developed nec-
essary optimality conditions for the pessimistic solution and Lv and Chen [9] proposed
a discretization iterative algorithm to compute the pessimistic solution to a SVBLP
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without upper level variables in the lower level constraints. Alves et al. [1] firstly
introduced the concept of deceiving solution and proposed an algorithm based on PSO
to approximate the optimistic, pessimistic and deceiving solutions to the SVBLP. The
rewarding solution was introduced in [10], where illustrative examples of these four
types of extreme solutions were presented. In the present paper we propose a new
algorithm based on DE to compute these four extreme solutions and extend the
algorithm in [1] to compute also the rewarding solution.

3 Optimistic and Pessimistic Frontiers

Let us now define two new concepts to be used in the algorithm proposed in the next
section, which are the Optimistic and the Pessimistic frontiers.

The Optimistic frontier (O) consists of the feasible solutions (x, y′), such that y′ is
the follower’s efficient solution y0 2 WEf ðxÞ, Gðx; y0Þ � 0; that provides the minimum
(best) F for that x 2 X:

O ¼ ðx; y0Þ : x 2 X; y0 2 argmin
y2Y

Fðx; yÞ : y 2 WEf ðxÞ;Gðx; yÞ� 0
� �( )

The optimistic solution (xo, yo) to the SVBLP is the solution (x, y′) 2 O with
minimum F.

The Pessimistic frontier (P) consists of the solutions (x, y″) such that y″ is the
follower’s efficient solution y00 2 WEf ðxÞ that provides the maximum (worst) F for that
x 2 X:

P ¼ ðx; y00Þ : x 2 X; y00 2 argmax
y2Y

Fðx; yÞ : y 2 WEf ðxÞ
� �( )

The pessimistic solution (xp, yp) to the SVBLP is the feasible solution (x, y″) 2 P,
Gðx; y00Þ � 0, with minimum F.

The deceiving solution (xd, yd) is the solution in P with xd = xo.
The rewarding solution (xr, yr) is the solution in O with xr = xp.
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In the example in Fig. 1, there is a significant difference between the optimistic and
the deceiving solutions for the leader’s objective function. Therefore, if the leader opts
for an optimistic approach he/she takes a high risk, since the deceiving solution is very
bad. Conversely, there is a small difference between the pessimistic F and the re-
warding one, being the F value in the rewarding solution close to the optimistic F.

Since the deceiving solution is obtained from the Pessimistic frontier using an
optimistic approach and the rewarding solution is obtained from the Optimistic frontier
using a pessimistic approach, both frontiers should be simultaneously explored by an
algorithm aimed at computing these four extreme solutions.

4 A Differential Evolution Algorithm for the SVBLP

In the SVBLDE algorithm proposed below, the population Pop of individuals is divided
into two sub-populations Pop0 and Pop00 which share the upper level x vectors. Let Nu be
the number of upper level individuals. Pop = Pop′ [ Pop″ where Pop′ =
ðx1; y01Þ; ðx2; y02Þ; . . .; ðxNu; y0NuÞ

� �
and Pop″ = ðx1; y001Þ; ðx2; y002Þ; . . .; ðxNu; y00NuÞ

� �
. The

individuals of Pop′ aim at approximating the Optimistic frontier while the individuals of
Pop″ aim at approximating the Pessimistic frontier. DE operations are employed to
evolve the population of the upper level problem and, for each upper level vector x, a
lower level DE algorithm (DE_LOWERLEVEL_O_P) is used to determine (x, y′) and (x, y″).
Below, denotes the mutation scaling factor and CR the crossover rate in the DE
operations. Let Tu be the number of upper level generations. The DE upper level search
is described in Algorithm 1. We have used = 0.7 and CR = 0.9.

Fig. 1. F values in the Optimistic and Pessimistic efficient frontiers of a SVBL linear problem
with one upper level variable (x) and two objective functions at the lower level.
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In Step 16, if ui;j;tþ 1 does not satisfy the bounds defined by X, then it is projected
into the closest bound.

We consider two DE variants: DE/rand/1/bin (the original version, which obtained
good results in the comparative study of DE variants for global optimization in [11]) and
DE/best/1/bin (the variant with highest performance in the same study). The steps
marked with ♦ change from one variant to the other. In Step 13, DE/rand/1/bin ran-
domly selects indexes r1 6¼ r2 6¼ r3 from {1, …, Nu}, while DE/best/1/bin randomly
selects indexes r1 6¼ r2 for xr1 and xr2 but an xbest is used in Step 16 to replace xr3. The
DE/best/1/bin variant divides the population into two equal parts: the first half is mainly
oriented towards the optimistic solution, so xbest = xo, and the second half of the pop-
ulation is mainly oriented towards the pessimistic solution, so xbest = xp. In addition, r1
and r2 are randomly selected from {1, …, Nu/2} for i� Nu/2 and from {Nu/2 +
1, …, Nu} otherwise.

The criterion to decide whether ui;tþ 1 is accepted or not in Step 25 (ACCEPT) also
depends on the DE variant. Steps 25–30 define the population for the next generation.
In DE/rand/1/bin, if (a) the new individual obtained for approximating the Optimistic
frontier ðui;tþ 1;w0

i;tþ 1Þ improves the current one in Pop0t, i.e. Fðui;tþ 1;

w0
i;tþ 1Þ\Fðxi;t; y0i;tÞ, or (b) the new individual obtained for approximating the Pes-

simistic frontier ðui;tþ 1;w00
i;tþ 1Þ improves the current one in Pop″t, i.e. Fðui;tþ 1;

w00
i;tþ 1Þ\Fðxi;t; y00i;tÞ, then the new upper level individual ui;tþ 1 is accepted and Steps

26–27 are performed. Otherwise, the previous individual is kept and Steps 29–30 are
performed. In DE/best/1/bin, the acceptance criterion in the first half of the population
(oriented to the optimistic solution) only considers condition (a) to decide whether
ui;tþ 1 is accepted or not, whereas in the second half of the population only condition
(b) is considered.

The DE_LOWERLEVEL_O_P algorithm aims at computing two extreme efficient solu-
tions to the lower level problem for a given x, one belonging to the Optimistic frontier
and the other belonging to the Pessimistic frontier: ðx; y0Þ 2 O and ðx; y00Þ 2 P.

Let Tl be the number of lower level generations and Nl (an even number) the size of
the lower level population. The algorithm attempts to converge to a population Popy of
efficient solutions to the lower level problem polarized to the extreme values of the
upper level objective function F (the maximum and the minimum). The first Nl/2
individuals of Popy are oriented to converge to y0 while the remaining Nl/2 individuals
are oriented to converge to y00.
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In step 2, for each new yi;t 2 Y randomly generated, the lower level constraints
gðx; yi;tÞ� 0 are checked; if the constraints are violated then another yi;t 2 Y is drawn.
If the first and the second trials are infeasible, the solution with smaller overall violation
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of constraints g is selected. In step 13, if vi;j;tþ 1 does not satisfy the bounds defined by
Y, then it is projected into the closest bound.

As in Algorithm 1, the steps marked with ♦ change from one DE variant to the other.
In Steps 8 and 10, DE/rand/1/bin randomly selects r3 2{1, …, Nl/2} for i � Nl/2 and
r3 2{Nl/2 + 1, …, Nl} for i > Nl/2. The DE/best/1/bin variant defines ybest = y′ for
i � Nl/2 and ybest = y″ for i > Nl/2; ybest is used in Step 13 to replace yr3.

The acceptance criterion in step 18 (ACCEPT_LL) determines whether the new indi-
vidual vi;tþ 1 is accepted or not to replace yi;t in the next population. The acceptance
criterion firstly observes whether the solutions ðx; vi;tþ 1Þ and ðx; yi;tÞ satisfy the lower
level constraints g(x, y) � 0 (g-feasibility), privileging the feasible solution if one of
them is infeasible. If both are g-feasible, then it is checked whether they are non-
dominated w.r.t. to the current set of solutions Eff. If one of the solutions vi;tþ 1 or yi;t is
nondominated (i.e., it belongs to Eff) and the other is dominated, the nondominated
solution is selected. If both solutions have the same status, the selection is based upon
the upper level objective function value: for i � Nl/2 (sub-population oriented to the
Optimistic frontier) the individual with lowest F is selected; for i > Nl/2
(sub-population oriented to the Pessimistic frontier) the individual with highest F is
selected. It is worthwhile to note that, in an initial version of the algorithm, we did not
use the set Eff in the acceptance criterion of vi;tþ 1. The algorithm only compared the
two candidate solutions, vi;tþ 1 and yi;t, checking whether one dominated the other or
both were nondominated w.r.t. to each other. However, the algorithm revealed a very
poor convergence of the population to nondominated solutions, which was overcome
with the current strategy.

5 Computational Experiment

The SVBLDE algorithm has been compared with the PSO algorithm in [1], which was
extended to compute also the rewarding solution as this algorithm had been originally
designed to determine the other three extreme solutions. Below we shortly designate
the optimistic, pessimistic, deceiving and rewarding solutions by sol.o, sol.p, sol.d and
sol.r, respectively (with Fo, Fp, Fd and Fr being the respective upper level objective
values).

To test and compare the algorithms we have considered two sets of problems. The
first set includes 4 problems – Prob.1 to Prob.4 – whose formulations and sol.o, sol.p
and sol.d are presented in [1]; these problems were adapted from the MOBL problems
in [12] by considering only one upper level objective function. All the problems have
one upper level variable and two lower level objective functions. Below we briefly
describe these problems by indicating the number of lower level variables (n2) and
showing the values of Fo, Fp, Fd and Fr.

Prob.1 − n2 = 2; sol.o 6¼ sol.d 6¼ sol.pwith Fo = 0.5, Fd = 1.25, Fp = 1; sol.r = sol.p,
so Fr = 1.

Prob.2 – generalization of Prob.1 with n2 =k. We consider k = 14. The extreme
solutions have the same characteristics as in Prob.1 and the same upper/lower level
objective values.
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Prob.3 and Prob.4 have n2 = 2 and differ from each other in the upper level objective
function. They include an upper level constraint G depending on lower level variables,
which increases their difficulty. Prob.3: sol.o = sol.r with F = –2 and sol.d = sol.p with
F = –1. Prob.4: this problem admits alternative pessimistic solutions (all with Fp = 0)
but with different outcomes for the corresponding rewarding solution (with F = −a,
0 � a � 1). The best rewarding solution corresponds to sol.p = sol.d, Fp = Fd = 0,
being the rewarding solution sol.r = sol.o with Fr = Fo = –1.

The second group of test problems are the MOBL problems DS1 to DS5 in [13],
originally proposed in [14]. We consider only F1 for the upper level objective function
in our problems. This is a set of scalable problems with a variety of complex features to
the algorithms. Problems DS1-DS3 have k upper level and k lower level variables – we
consider k = 5. Problems DS4 and DS5 have one upper level variable and k + l lower
level variables – we consider k = 3 and l = 2. All the other parameters were set as in
[13]. The corresponding values of Fo, Fp, Fd and Fr are presented in Table 1.

Table 1. Median and interquartile range of F in 30 independent runs for each algorithm.

SVBLDE PSO algorithm Exact F M-W test
Median F IQR F Median F IQR F

Prob.1 Sol.o 0.497384 0.000708 0.496248 0.001489 0.5 +
Sol.p 0.993762 7.04E−05 0.993742 9.36E−05 1 –

Sol.d 1.246284 0.01238 1.246038 0.016857 1.25 –

Sol.r 0.993713 0.004252 0.988769 0.021896 1 –

Prob.2 Sol.o 0.487397 0.002296 0.407539 0.026634 0.5 +
Sol.p 0.999220 0.011627 0.991885 0.000691 1 +
Sol.d 1.250138 0.035337 1.202307 0.069874 1.25 +
Sol.r 0.908306 0.057767 0.98603 0.007036 1 +

Prob.3 Sol.o −2 0.006734 −1.99995 4.01E−05 −2 –

Sol.p −0.99985 0.001206 −0.99984 0.000215 −1 –

Sol.d −1.00214 0.003443 −1.00296 0.001645 −1 –

Sol.r −1.95307 0.101921 −1.99036 0.002566 −2 +
Prob.4 Sol.o −0.99694 0.007655 −0.99995 5.12E−05 −1 –

Sol.p −0.00356 0.001833 −0.00606 0.000695 0 +
Sol.d −0.00334 0.001618 −0.00391 0.001138 0 –

Sol.r −0.96020 0.092859 −0.89689 0.111896 −1 +
DS1 Sol.o 2,51E−05 3,1E−05 5,61E−05 3,11E−05 0 +

Sol.p 0,07746 0,056167 0,099769 0,000128 0.1 +
Sol.d 0,092602 0,061951 0,099981 0,000168 0.1 +
Sol.r 3,23E−05 0,000107 0,000179 0,000193 0 +

DS2 Sol.o −0,25977 0,013058 −0,34826 0,035846 −0.238773 +
Sol.p −0,23876 8,07E−06 −0,23877 2,68E−06 −0.238773 +
Sol.d −0,23873 0,000247 −0,23877 9,51E−07 −0.238773 +
Sol.r −0,23876 1,36E−05 −0,23878 0,091723 −0.238773 +

(continued)
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We have considered the following parameters for both algorithms, which were
tuned through experimentation: Nu-Nl-Tu-Tl equal to 20-60-50-100 for the first set of
problems except Prob.2; 20-100-50-100 for Prob.2, DS4 and DS5, which also have one
upper level variable but more than 2 lower level variables; 100-100-100-100 for DS1 to
DS3, which have a higher number of upper level variables. Specific parameters of the
PSO algorithm were set as in [1]. We performed 30 independent runs of each algorithm
in each problem.

Concerning the DE variants of the SVBLDE algorithm, we observed that the results
of DE/rand/1/bin were not statistically different from the results of DE/best/1/bin in
about half of the cases; however, DE/rand/1/bin provided very poor results in a few
other cases. Therefore, and due to space reasons, we omit herein the results of that
variant. Table 1 presents the median and the interquartile range IQR of the F values
obtained for the four extreme solutions over the 30 runs using the variant DE/best/1/bin
of SVBLDE and the PSO algorithm. We also include the exact values of F (obtained
analytically), which are very useful to assess the quality of the results obtained. The
non-parametric Mann-Whitney test has been applied to assess whether the differences
of the F values obtained with the two algorithms are statistically significant, consid-
ering a confidence level of 95%. The best result for each solution is highlighted in bold
if the difference is statistically significant (‘+’ in the last column).

It is noteworthy that there are several difficulties in evaluating results to
SVBLP. These difficulties can easily lead to pitfalls in the interpretation of results,
which may be very difficult to avoid in general problems for which the exact solutions
are not known. We draw attention to some of these pitfalls:

• Only efficient (Pareto optimal) solutions to the lower level problem are feasible to
the SVBLP. Therefore, an algorithm may yield apparently better solutions (for any

Table 1. (continued)

SVBLDE PSO algorithm Exact F M-W test
Median F IQR F Median F IQR F

DS3 Sol.o 1.85E−07 2.64E−07 5.34E−05 9.29E−05 0 +
Sol.p 1.84E−07 1.03E−07 0.200086 1.65E−05 0.2 +
Sol.d 1.86E−07 1.83E−07 0.200299 0.000192 0.2 +
Sol.r 1.99E−07 2.65E−07 0.001461 0.004658 0 +

DS4 Sol.o 0 0 0 0.845635 0 +
Sol.p 102 0 102 0 102 –

Sol.d 204 0 204 100.5451 204 +
Sol.r 1.000245 0.000347 2.388914 0.519674 1 +

DS5 Sol.o 0.760132 0.000174 2.01667 0.021934 0.76 +
Sol.p 102 0 102 0 102 –

Sol.d 188.9164 27.86941 102 0 167.3 +
Sol.r 1.000139 0.000134 2.268107 0.36943 1 +
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of the four extreme solutions), i.e. with lower F values, but the solutions are invalid
because they are not efficient to the lower level problem.

• Even if only efficient (Pareto optimal) solutions to the lower level problem are
obtained, other difficulties arise in assessing the pessimistic and deceiving solutions.
Solutions with lower F values (i.e., which seem to be better) may be false because
they are not in the Pessimistic frontier, i.e., they are not the worst for the leader for
that setting of x. We can observe this situation in Table 1 for several sol.d and sol.p
(e.g., Prob.2, Prob.4, DS1, DS3 or DS5).

From Table 1, we observe that SVBLDE outperformed the PSO algorithm in 17
out of the 36 cases (4 extreme solutions to 9 problems) while the PSO algorithm
outperformed SVBLDE in 9 cases (the differences in the other 10 cases were not
statistically significant). Therefore, SVBLDE seems to perform slightly better than the
PSO algorithm. We can also observe that SVBLDE is very effective in approximating
the optimistic solution, being always better or equal to the PSO algorithm, but
SVBLDE reveals more difficulty in attaining the real pessimistic and deceiving solu-
tions in several cases.

6 Conclusions

We presented a new DE algorithm to compute the optimistic/deceiving and
pessimistic/rewarding solutions to the SVBLP. These four extreme solutions capture
the optimistic vs. pessimistic leader’s attitude and possible follower’s reactions more or
less favorable to the leader. The DE approach seems to perform slightly better than the
PSO-based approach, but the results do not evidence a clear performance advantage of
the SVBLPDE algorithm with respect to PSO. The experiments unveiled some pitfalls
associated with the interpretation of results and assessment of the algorithm perfor-
mance in SVBLP. These pitfalls could be avoided because we were able to determine
analytically the exact solutions to the problems tested. Research is underway on
techniques to mitigate these pitfalls in general problems, which are nevertheless
intrinsic to this kind of problems and cannot be entirely avoided.
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Abstract. A new proof-of-concept method for optimising the perfor-
mance of Brain Computer Interfaces (BCI) while minimising the quantity
of required training data is introduced. This is achieved by using an evo-
lutionary approach to rearrange the distribution of training instances,
prior to the construction of an Ensemble Learning Generic Informa-
tion (ELGI) model. The training data from a population was optimised
to emphasise generality of the models derived from it, prior to a re-
combination with participant-specific data via the ELGI approach, and
training of classifiers. Evidence is given to support the adoption of this
approach in the more difficult BCI conditions: smaller training sets, and
those suffering from temporal drift. This paper serves as a case study to
lay the groundwork for further exploration of this approach.

Keywords: Optimisation · Machine learning · Ensemble
Brain-computer interface · P300 · Evolutionary computation
Transfer learning

1 Introduction

Brain Computer Interfaces (BCI) are applications in which neurological record-
ings are utilised for the control of digital systems. Uses for BCI range from
manipulation of prosthetic limbs, psychological interventions, and assisted com-
munication devices [1]. Approaches to obtain these recordings can be separated
into two main groupings; invasive and non-invasive. While invasive recordings
can allow exceptional spatial and temporal resolutions, they involve sub-cranial
surgery with potentially severe health risks and prohibitive financial costs [2].
For these reasons, non-invasive approaches have garnered significant interest.
These include electroencephalography (EEG); a technique that involves plac-
ing electrodes on the surface of the scalp to measure electrical fields produced
by the underlying neurons. While this technique comes with little or no health
risks, it lacks high resolutions [3], and is subject to noise from muscle movements
(electromyography), cardiac rhythms (electrocardiography), eye movements (elec-
trooculography), and environmental electrical sources [4].

Due to the aforementioned issues, a large quantity of training data is often
required for each individual to calibrate the classifiers. As training sessions are
c© Springer International Publishing AG 2018
G. Nicosia et al. (Eds.): MOD 2017, LNCS 10710, pp. 186–197, 2018.
https://doi.org/10.1007/978-3-319-72926-8_16
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often supervised by a health or technical expert, this increased training time
not only comes at a financial cost, but proves frustrating and stressful for the
participant which, in turn, introduces further noise into the training set.

For these reasons, it is deemed imperative to minimise the amount of training
data by exploiting all available data, from all potential sources.

We propose a novel method for the optimisation of the distribution of
instances within a database of sets recorded from previous participants, in a
manner that ensures that they can be used to create an ensemble that is maxi-
mally general to the population. This database is then used to seed a previously
established method (Ensemble Learned for Generic Information) that recom-
bines instances obtained from different participants with small quantities of
participant-specific data, to create a robust participant-specific ensemble. This
should allow for the creation of a BCI that requires only a small amount of
training data, and should retain accuracy over time in a way that a traditional
BCI does not. This is achieved by moving instances between previously obtained
datasets via a random mutation hill-climber.

The structure of the paper is as follows: A brief literature introduction to
Transfer Learning in the BCI field is given (Sect. 2), and algorithms described,
with a hypothesis based on the new technique (Sect. 2.2). This leads us to the
paradigm, dataset, and methodology used for experimentation (Sects. 3 and 4).
Finally, the results are presented (Sect. 5) and discussed (Sect. 6).

2 Related Work on Transfer Learning in BCI

As described in Sect. 1, BCIs are difficult to calibrate due to recordings having
a low signal to noise ratio. This is further compounded by the non-stationary
nature of brain signals: neural patterns not only differ between participants, but
are also subject to temporal drift, where data obtained from a single participant
changes drastically over time [5]. Zero Training systems, trained exclusively on
participants from previous sessions, are an ideal goal, but this non-stationarity
means highly accurate zero training systems may not be possible. Consequently,
we must instead focus on minimising the participant-specific training information
required by maximising the effectiveness of the data available.

Sufficient data from an individual for the creation of an accurate system
comes with significant costs, so utilising databases from other participants
offers an attractive avenue to alleviate this burden. Transfer Learning has been
employed in a number of domains containing multiple sources to allow data
inference to unseen sources. For a more in-depth discussion of the wider field, [6]
provides a recent, thorough survey. More specifically, BCI literature typically
reports domain adaptation approaches [5], the most popular of which being
Common Spatial Patterns [7]. This involves creating a transformation of the
data that will allow a single classification rule to be applied across all instances.
A much less commonly explored approach is ‘Rule Adaptation’ [5], in which a
number of rules are created from the existing datasets, and then applied to the
new instances. Both cases however, rely upon the natural distribution of the
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data as grouped by their original participant. Some attempts have been made
to group datasets by known variants such as gender [8], and others using the
information extracted from the trained models [9]; but little has been done in
regards to instance selection for each model.

2.1 Ensembles

One method for incorporating data from other domains is the use of ensembles.
Ensembles typically consist of an array of different classifiers trained with the
same dataset. Each classifier makes predictions on a test set, and these are
collated in a voting process. This allows multiple different relationships to be
detected for the classification process, many of which may not be obvious, even
to a domain expert. Another approach is to use multiple instances of the same
classifier, trained with different initial datasets.

Ensembles have been used in a number of different BCI applications to
increase accuracy and reduce the amount of training data required for partici-
pants. Arguably, the most well known P300-Speller ensemble is [10] in which an
ensemble of SVMs were used to reduce variability in signal inputs by averaging
classifier outputs, but relied on a substantial quantity of subject-specific data.
This, like most BCI ensembles [11], used naive partitioning in which the instances
were divided by their associated labels, whether it be by source domain or by
stimuli. This proves useful for weighting classifiers within the ensembles; allowing
information regarding the appropriateness of each model and the test-domain to
be extracted [9]. It was demonstrated in [11] that overlapping these naive divi-
sions can actually increase accuracy, suggesting that having the same training
data duplicated amongst the classifiers can benefit the overall performance.

2.2 ELGI

In 2015, Xu et al. [12] introduced the Ensemble Learning Generic Information
(ELGI) approach. Rather than using the small amount of training data to train
a classifier, or for weighting the models within a larger ensemble trained on
the data of other participants, ELGI combines the participant-dependent data
with participant-independent data to form a hybrid ensemble. This is achieved
by splitting the datasets of each existing patient within the database into target
and non-target sets. The removed missing instance class (target or non-target) is
then replaced by a copy of the corresponding class from the participant-specific
training data. This results in an ensemble consisting of 2n− 1 classifiers, where
n is the number of participants within the database.

This paper proposes a new technique in which the database containing the
previously recorded participants’ datasets are optimised to create an ensemble
that is maximally generalised for the population, prior to the combination pro-
cess of ELGI. The procedure is outlined fully in Sect. 4.
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3 Methodology

This section defines the BCI Paradigm used in the work and describes the
datasets. It then goes on to describe the offline filtering applied to the data and
finally defines the algorithms to be compared in the experiments. In particular,
we focus on how the datasets are initially derived for the eELGI approach, but
background information on the application is summarised here for convenience
and the interested reader can find more detail in [12].

3.1 P300 Speller Paradigm

A promising application of BCI systems are their use in communication assis-
tive technologies. Some conditions, such as Amyotrophic Lateral Sclerosis (ALS),
cause degradation of physical movement [2], rendering patients unable to com-
municate with the outside world. Detection of neural activity can allow patients
to control computers, and produce synthetic speech [1]. A common form of the
system involves using a computer screen displaying a 6× 6 grid of alphanumeric
characters. The user concentrates on the character they wish to select, and all
columns and rows are flashed in a randomised sequence. When the target char-
acter’s row and columns flash, a fluctuation in neural patterns can be observed.
This is known as a P300 wave. The goal of a BCI system in this context is to
identify the P300 wave among the many other detected signals.

3.2 Dataset Recordings

The dataset used in this paper was obtained from [13], in which the P300 Speller
Paradigm was adapted to present 6 images to the participant; each eliciting a
response by increasing the brightness of the image. It included EEG recordings
for 4 disabled participants and 4 able-bodied PhD students. Participants 1, 2
and 4 were able to speak with some dysarthria, but participant 3 was unable to
communicate verbally due to their late stages of amyotrophic lateral sclerosis.
All 4 disabled participants were wheelchair users, with limited to no control over
their upper limbs. Each participant attended 4 recording sessions, each consisting
of, on average, 810 trials; resulting in approximately 3240 trials per participant.

3.3 Prefiltering

The data underwent prefiltering as described in [13]. In summary, the procedure
for this was: referencing against the mastoid electrodes, Butterworth bandpass
filtering between 1 and 12 Hz, downsampling to 32 Hz, and Windsorizing to mit-
igate EoG and EMG artifacts.
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3.4 Classifier

A Bayesian Linear Discriminate Analysis classifier (as in [13]) was used. Each
stimuli presentation was treated as a binary problem, and the Bayesian probabil-
ity of the prediction was recorded. Due to the paradigm structure, every subdi-
vision of 6 stimuli presentations has 1 target and 5 non-target. These groupings
are deemed as a ‘round’. A prediction is made based on the highest probability
within each round. In each run, 20 rounds of all 6 stimuli are presented. This
allows the Bayesian probabilities of each round to be summed with previous
predictions, increasing predictive accuracy over the course of the run.

3.5 Conditions

The complex nature of BCI allows a number of different factors to be considered:

Quantity of Participant-Specific Data. As a primary aim in BCI is min-
imising the required participant-specific training data, the impact of training set
size was explored. The datasets follow a common hierarchical structure; each
participant recording 4 sessions of 6 runs. All models were trained with data
from the first session and 3 training set sizes were used: 3, 4, and 5 runs.

Time Between Testing Sessions. A major challenge in BCI, other than
between-participant transference, is between-session transference in single par-
ticipants. As neural drift occurs over time, highly fitted models tend to lose
accuracy. All models were tested on data acquired from 3 sessions, recorded over
2 days; session 2 on the same day as the training data, and 3 and 4 on a day no
more than 2 weeks later.

3.6 Compared Algorithms

Three approaches were compared in our experiments, two taken from the liter-
ature and the proposed new method:
Standard Learning Individual Information (SLII). A Bayesian LDA
model trained using participant-specific data exclusively. The highest proba-
bility in each round was selected as the target, and the rest, assumed to be
non-targets [12].

Ensemble Learning Generic Information (ELGI). The ELGI [14] cre-
ates an array of classifiers by utilising the participant-specific and participant-
independent datasets in the following manner:

[C2N ] =
N∑

i=1

[C(PT
i + PNT

k ), C(PNT
i + PT

k )]

The training data P from each participant Pi is split into two subgroups; tar-
get T and non-target NT. A copy of the target instances from the test-participant
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Fig. 1. ELGI approach displaying that 2 classifiers are trained for every participant in
the database Pi by a splitting and recombination of their target PT

i and non-target
PNT
i instances with the corresponding instances from the test-participant’s training

data Pk. These classifiers are then used to make predictions on the test-participants
unseen data P x

k . Finally, these predictions are collated via voting.

k (PT
k ) are then added to the non-target subgroup PNT

i , and conversely, a copy
of the test-participant’s non-target instances PNT

k are added to the target sub-
group PT

i . Each of these new subgroups are used to train an ensemble of clas-
sifiers C. Predictions Pr are made by each classifier in the ensemble based on
the unseen data from the test-participant P x

k , and these predictions are collated.
This is done using the Sum Rule voting method where the Bayesian posterior
probabilities are summed for each class. This is further depicted in Fig. 1.

Evolved Ensemble Learning Generic Information (eELGI). The novel
proposed approach of this paper, as described in Sect. 4. In this, we assume
that the natural grouping of instances by participant is not optimal. Instead,
an evolutionary algorithm transplants instances between datasets taken from
each participant, aiming to maximise the generalisability of each set in refer-
ence to other previously recorded participants, prior to their combination with
participant-specific data via the ELGI.

4 Evolved ELGI Ensemble

We propose a new approach whereby the database containing the previous par-
ticipants’ datasets is optimised, with the goal of creating an ELGI ensemble that
better generalises to the population. This is achieved by a leave-one-out tech-
nique in which a participant’s bin, that is the subset containing all data from
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that participant, is selected at random, and a portion of the instances obtained
from that participant are moved into the bin of another randomly selected par-
ticipant. Two models are then trained; one using the data from the bin that was
selected for transfer, and one from the bin that was selected as the destination.

These models make predictions on the data in the remaining unselected bins.
The resulting overall predictive accuracy is used as the fitness function for a
random mutation hill climber. This seeks the allocation of training data to bins
that maximises the predictive accuracy within the database.

We now describe the implementation in more detail. The procedure is given
formally in Algorithm 1. The search is seeded with a solution consisting of 7 bins;
each consisting of an individual’s data, but excluding any information from the
new participant, as in the Zero Training Model. A 500 iteration Hillclimber was
then applied with the following mutation operator and fitness function.

Mutation (Move Operator). The move operator selects a target bin a and a
destination bin b at random from the training set bins; a subset m with 10%
of the target bin’s instances are moved into the destination bin. Subsets Pea

and Peb are created by removing subset m from Pa and appending it to Pb,
respectively.

Fitness Function. To assess the fitness of the candidate solution, 2 classifiers
Cea and Ceb were trained from the subsets Pea and Peb. These were then used
to make predictions on the remaining instances within all subsets P, excluding
the participant datasets selected for mutation (Pa and Pb). The average round
accuracy over all the non-selected bins was calculated for both models affected
by the mutation (fea and feb); a solution was deemed successful if the fitnesses
obtained were an increase over the fitness (fa and fb) of both models created
from the incumbent solution (Ca and Cb). The mutation was rejected if it caused
a decrease in accuracy within either model.

This evolved dataset was then used to seed the original ELGI from [12].

5 Results

Figure 2 presents the performance of the SLII, ELGI and eELGI algorithms aver-
aged across all 8 participants. Rows 1, 2 and 3 show performance of models with
3, 4 and 5 runs (see Sect. 3.5) of training data available, respectively. Columns
display performance over 3 different testing sessions. While the confidence inter-
vals of the different approaches vary due to differing sample sizes, the SLII and
ELGI are almost indiscernible. The mean line of the eELGI is typically higher
than that of the other algorithms, with its smaller confidence interval often vis-
ibly higher. The instances in which notable improvements are made are in the
extremity conditions: low availability of participant specific data (row 1) and the
testing session farthest from the training session (column 3).

The Round Accuracy is presented in Fig. 3 for the SLII, ELGI and eELGI
algorithms. It is displayed by participant with each point representing the accu-
racy achieved with 3, 4 and 5 runs of training data provided for training.
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Algorithm 1. Evolution of instances in eELGI
Input: Initial solution is P = P(Pi)
Output: Final solution is Modified P = P(Pi)

′

1: for x = 1 → 500 do
2: Choose a and b from 1 : N where N is the |P |
3: Create m ⊂ Pa

4: Pea ← Pa with m removed
5: Peb ← Pb appended with m
6: Train classifiers Ca and Cb with Pa and Pb

7: Train classifiers Cea and Ceb with Pea and Peb

8: fa = 0, fb = 0, fea = 0, feb = 0
9: for i = 1 → N do

10: if i �= a && i �= b then
11: fa = fa + Ca(Pi), fb = fb + Cb(Pi)
12: fea = fea + Cea(Pi), feb = feb + Ceb(Pi)
13: end if
14: end for
15: if fa < fea && fb < feb then
16: Pa = Pea, Pb = Peb

17: end if
18: end for

Increases in the quantity of participant-specific training data increases the pre-
dictive accuracy in each participant except 6. Participant 5 is the outlier in
terms of variance; increases in participant-specific training data makes a much
more substantial change to this classifier’s accuracy than others. When consider-
ing overall round accuracies across differing training set sizes, eELGI performed
better than the SLII and ELGI in 62.5% of cases, and obtained the second best
results in the remainder. In no cases was eELGI the worst performer.

Figure 4 demonstrates each algorithm’s resilience to neural drift over time.
The round accuracy of the SLII, ELGI and eELGI over each of the testing
sessions is given. A decrease in predictive accuracy was observed between session
2 and session 3 in 62.5% of the cases, and a decrease between session 3 and 4 in
58.3%. Overall, a decrease in predictive accuracy between session 2 and 4 was
observed in 79.2% of the cases, as expected due to temporal neural drift. For
5 of the 8 participants, the eELGI retained the highest round accuracy after 2
weeks, while still maintaining relativity high accuracy in the remaining 3.

To analyse the differences between each algorithm’s effectiveness in mitigat-
ing the effects of neural drift over time, hierarchical linear models were used as
recommended in [15]. The results of these are given in Figs. 5a and b. In Fig. 5a,
lines show the expected average behaviour when considering the variation across
participants, with points representing the residual deviation of each participant
from the estimated common behaviour. Although no statistical significance can
be claimed here, the trends suggest that in all 3 testing sessions, the eELGI
performed better than both the SLII and ELGI. It should also be noted that
there appears to be less variance within and between testing sets for the eELGI.
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Fig. 2. Algorithm performance by number of stimuli presentations, with differing quan-
tities of participant-specific training data available. Error bars show the confidence
intervals around the means. Horizontal jitter has been added to improve discernibility.
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Fig. 3. Round Accuracy over all testing sets displayed for each quantity of participant-
specific training data, separated for each participant.
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Fig. 4. Round Accuracy over all quantities of training data for each testing set, sepa-
rated for each participant.
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(b) Accuracy over available training data.

Fig. 5. Fit of hierarchical linear models, with random effects for each participant,
estimating (a) the overall Round Accuracy per testing set and (b) the change in Round
Accuracy over training set size.

This suggests that the eELGI not only performs better than the other algorithms,
but is also less susceptible to neural drift over time.

As seen in Fig. 5b, the round accuracy of all 3 algorithms increases with the
amount of participant-specific data available. The SLII is most dependent on the
quantity of participant-specific data, with ELGI performing much better when
fewer training instances are available. However, this advantage is lost as volume
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of training data increases. The eELGI line has a similar slope to the ELGI (0.0402
and 0.0394, respectively) but with a higher intercept (0.618 to 0.574), resulting
in better overall performance than both the SLII and ELGI in all 3 conditions.
In fact, a post-hoc Tukey’s comparison of the model estimates, averaging over
algorithm-data interactions [16], showed that the eELGI produced a statistically
significant increase in round accuracy over the SLII (p = 0.0387) while the ELGI
did not (p = 0.1483). Therefore, with respect to the ELGI, the effect of evolving
the base dataset appears to increase the intercept, without having any adverse
affects to the rate of improvement seen when increasing participant-specific data.

6 Discussion and Conclusion

This paper served as a case study for the proposed eELGI approach. However,
statistical significance can be difficult to determine with small datasets. This
being said, even with small samples, we have demonstrated that there is a visible
advantage to optimisation of the participant database for use in transfer learning
techniques. We can see that an evolved database has 3 primary advantages:

1. A higher classification accuracy, regardless of quantity of training data. As
seen in Fig. 3, 62.5% of cases see eELGI performing better than ELGI and
SLII, with the remaining still close to the optimal. In Fig. 5b we can notice,
in the majority of cases, a marked improvement over the non-evolved ELGI.

2. A reduction in variance in performance across not only sessions, but partic-
ipants as well. When comparing sessions in Fig. 5a, and training set size in
Fig. 5b, the groupings of round accuracies are noticeably more dense. Figure 2,
is perhaps the most dramatic demonstration of this. By including all par-
ticipants over all test sets, the error bars for both the SLII and ELGI are
substantial, while the eELGI provides a modest difference.

3. A means for protection against temporal drift. Figure 5b demonstrates that
the traditional BCI approach (SLII) is highly susceptible to the neural drift
seen over time. While ELGI alleviates that to a degree, eELGI provides a
much more linear, and slower degradation in predictive accuracy over the
testing sessions.

As this paper focused on a small dataset, with an equal number of able and dis-
abled patients, further work should investigate the effects of optimising different
base datasets. For example, it should contain substantially more participants,
and, in more commonly observed situations, contain disproportionately more
able bodied participants. In terms of algorithms; while a simple hillclimber has
provided some promising results, it would be prudent to apply more complex
heuristics to the problem. A potentially promising direction would be utilisation
of a genetic algorithm with an encoding that would allow oversampling of the
more prototypical instances.
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Abstract. A multi-objective deterministic hybrid algorithm (MODHA)
is introduced for efficient simulation-based design optimization. The
global exploration capability of multi-objective deterministic particle
swarm optimization (MODPSO) is combined with the local search accu-
racy of a derivative-free multi-objective (DFMO) linesearch method. Six
MODHA formulations are discussed, based on two MODPSO formula-
tions and three DFMO activation criteria. Forty five analytical test prob-
lems are solved, with two/three objectives and one to twelve variables.
The performance is evaluated by two multi-objective metrics. The most
promising formulations are finally applied to the hull-form optimization
of a high-speed catamaran in realistic ocean conditions and compared to
MODPSO and DFMO, showing promising results.

Keywords: Hybrid global/local optimization
Multi-objective optimization · Particle swarm optimization
Linesearch method · Derivative-free optimization
Deterministic optimization

1 Introduction

Simulation-based design optimization (SBDO) supports the design of complex
engineering systems. The process consists in the evaluation of several numeri-
cal simulations to the aim of exploring and assessing design opportunities with
improved performance for a set of often conflicting objectives. Multi-objective
optimization algorithms drive the search for the best compromise among all
design objectives, which are generally provided in the form of Pareto solutions.
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In this context, objectives may be noisy and/or their derivatives are often not
provided by the simulation tool. Therefore, derivative-free optimization algo-
rithms are preferred as a viable option for the SBDO.

Global or local optimization algorithms are used, whether a fine search region
is or is not known a priori. Global methods explore the whole design domain,
providing approximate solutions to the decision problem. Local algorithms inves-
tigate accurately a limited domain region, also providing proof of convergence
(generally not available for global methods). Hybrid global/local algorithms com-
bine the global search capability of global methods with the accuracy and conver-
gence properties of local algorithms. Examples of hybrid methods in the context
of multi-objective optimization can be found in [1,2].

Among other derivative-free global methods, particle swarm optimization [3]
has been successfully applied in SBDO [4] and extended to hybrid global/local
formulations for both single- [5,6] and multi-objective [7–13] problems. Most
algorithms are stochastic, requiring extensive numerical campaigns to achieve
statistically significant results. Often this is not attainable in SBDO, especially
if CPU-time expensive simulations provide directly objectives and constraints.
Therefore, deterministic methods have been developed and assessed [4,14].

The objective of the present work is to introduce and assess a novel multi-
objective deterministic hybrid algorithm (MODHA), which combines the global
exploration capabilities of multi-objective deterministic particle swarm optimiza-
tion (MODPSO [14]) with the local search accuracy of a deterministic derivative-
free multi-objective (DFMO [15]) linesearch method.

Six formulations are proposed, based on two MODPSO formulations [14] and
three DFMO activation criteria. Two of these are based on the particle velocity
and one on the hypervolume metric [16]. A comparative study is performed
using 45 analytical test problems, with a number of objective functions ranging
from two to three and a number of variables from one to twelve. The DFMO
activation criterion is investigated along with the number of function evaluations
assigned to the local search. A full-factorial combination of formulations and
setting parameters is investigated through more than 14,000 optimization runs.
Two multi-objective performance metrics are assessed, namely the number of
solutions found and the hypervolume bounded by the solution set.

The most promising formulations are applied to the reliability-based robust
design optimization (RBRDO) of a high-speed catamaran in realistic ocean envi-
ronment, sailing in head waves in the North Pacific Ocean with stochastic sea
state and speed [17]. A comparison with MODPSO and DFMO is provided.

2 Optimization Problem Formulation

The multi-objective minimization problem can be formulated as

minimize f(x) = {fm(x)}, with m = 1, . . . , Nof

subject to zi(x) ≤ 0, with i = 1, . . . , I

and to hj(x) = 0, with j = 1, . . . , J

and to l ≤ x ≤ u

(1)



200 R. Pellegrini et al.

where x ∈ R
Ndv is the vector collecting the Ndv variables, Nof is the number

of objective functions fm, zi are the inequality constraints, hj are the equality
constraints, and l and u are the lower and upper bound for x, respectively.

Defining the feasible solution set as X = {x ∈ R
Ndv | [∩I

i zi(x) ≤ 0] ∧
[∩J

j hj(x) = 0 ∧ [l < x < u]}, the solution of Eq. 1 is the locus of non domi-
nated feasible solutions represented in the variable space by the Pareto solution
set PS = {x ∈ X | f(x) ≺ f(y),∀y ∈ X}. In the objective function space,
the locus is represented by the Pareto front PF = {f(x) : x ∈ PS}. In
the following, the approximate solution set S (set of non dominated solutions
represented either in the variable or function space) achieved by the optimizer
at a specific iteration n is indicated by Sn = {(x, s) : s = f(x) ≺ f(y),∀y}.
Similarly, the approximate Pareto front (assessed by numerical experiments
and used as a reference solution set for the performance analysis) is defined
as R = {(x, r) ∈ ∪Ns

i=1Si : r = f(x) ≺ f(y),∀y}, where Ns is the number of
solution sets available, provided by different algorithm formulations/setups.

3 Performance Metrics

The algorithm performance is evaluated in terms of capacity (related to the
number of Pareto solutions S), convergence (related to the distance between S
and R), and diversity (related to how S is wide). Here, the following two metrics
are used. The Ratio of Reference Point Found (C1R, [18])

C1R =
|S ∩ R|

|R| (2)

is used as capacity metric, whereas a normalized version of the hypervolume
(HV) [16] is used as a convergence-diversity metric, defined as

NHV =
HV(S,R)
HV(R,R)

, with HV(S,R) = volume

⎛
⎝

|S|⋃
i=1

vi

⎞
⎠ (3)

where HV(S,R) gives the (hyper) volume dominated by the solution set S,
evaluated using as a reference the anti-ideal point of R [19].

Additionally, the relative variability σ2
r,k [20] is used to assess the impact of

the k-th setting parameter on the algorithm performance.

4 Hybrid Global/Local Deterministic Algorithm

The selected global and local algorithms are described in the following along
with their hybridization.
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4.1 MODPSO

PSO algorithm [3] is based on the social-behaviour metaphor of a flock of birds
or a swarm of bees searching for food and belongs to the class of metaheuristic
algorithms for single-objective derivative-free global optimization. Pinto et al.
[21] proposed a multi-objective deterministic version of PSO as

{
vn+1

i = χ [vn
i + c1 (pi − xn

i ) + c2 (gi − xn
i )]

xn+1
i = xn

i + vn+1
i

(4)

where vn
i and xn

i are the velocity and the position of the i-th particle at the
n-th iteration, χ is a constriction factor, c1 and c2 are the cognitive and social
learning rate, and pi and gi are the cognitive and social attractor.

In this work two MODPSO formulations are selected from [14], namely:

– MODPSO1, where pi is the closest point to the i-th particle of the personal
solution set Sn

p,i (i.e., the set of all non dominated solutions ever visited by
the i-th particle) and gi is the closest point to the i-th particle of the solution
set Sn;

– MODPSO3, where pi is the personal minimizer of the aggregated objective
function F (xi) =

∑Nof
m=1 fm(xi) and gi is the closest point to the i-th particle

of the solution set Sn.

4.2 DFMO

It is a derivative-free algorithm for constrained (possibly) non-smooth multi-
objective problems [15], representing a so-called “a posteriori” method in the
sense that it is able to approximate the entire PF by producing in output a set
of non dominated points. More in particular, at every iteration, the algorithm
produces (or updates) a set of non dominated points (rather than a single point,
as it is common in the single-objective case). As the iteration count grows, these
sets of points tend to the PF of the problem.

Other relevant features of DFMO are: (i) a linesearch approach that takes
into account the presence of multiple objectives; (ii) an exact penalty approach
for dealing with the nonlinear constraints. At each iteration, for each point in
S, DFMO starts a linesearch along a suitably generated direction dj . If such a
direction is able to guarantee “sufficient” decrease, then a “sufficiently” large
movement λ along the direction is performed. This allows to (possibly) improve
S. Detail of algorithm formulation and implementation can be found in [15].

4.3 MODHA

A critical issue when combining MODPSO and DFMO is to define when and
where from the local search starts. Here, three approaches are defined: two are
based on the velocity of the particle and one on the HV metric.

The velocity-based formulation starts a local search if the normalized
speed of the i-th particle drops under a threshold value β, namely when
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Algorithm 1. MODHA pseudo-code
1: Initialize a swarm of Np particles
2: while (n < Max number of iterations) do � MODPSO begins
3: for i = 1, Np do
4: Evaluate f(xn

i )
5: Compute Sn

p,i

6: end for
7: Compute Sn

8: for i = 1, Np do
9: Identify cognitive attractor pi

10: Identify social attractor gi

11: Update particle velocities vn+1
i

12: Update particle positions xn+1
i

13: end for
14: Evaluate condition for performing DFMO based on hybridization scheme
15: if condition for performing DFMO is true then
16: Define Ndv coordinate directions dj

17: Identify Nl starting points for DFMO based on hybridization scheme
18: for i = 1, Nl do � DFMO begins
19: Set NDFMO to zero
20: for j = 1, Ndv do
21: while NDFMO < max. allowed (depending on α) and λ > λmin do
22: Perform one step equal to λ along dj from the starting point i
23: Evaluate f
24: Set NDFMO to NDFMO + 1
25: if At least one objective function decreases “sufficiently” then
26: Update DFMO solution set
27: go to 20
28: else
29: Reduce λ
30: end if
31: end while
32: end for
33: end for � DFMO ends
34: Update Sn (and Sn

p,i if required) with DFMO solution set

35: end if
36: end while � MODPSO ends
37: Output Sn

||vi|| / ||(u − l)|| < β. The local search starts either from the current particle
position (PP) or from the particle social attractor (SA). The hypervolume-based
formulation starts the local search from each point of the current solution set
(SS) if HV(Sn,Sn) < γHV(Sn−1,Sn). HV(Sn,Sn) is the hypervolume associ-
ated to Sn, γ is the threshold coefficient, and HV(Sn−1,Sn) is the hypervolume
associated to Sn−1.

The number of problem evaluations (NDFMO) performed at each call of the
local algorithm is defined as NDFMO = αNdvNof and NDFMO = αNp for velocity-
and hypervolume-based formulations, respectively. Algorithm 1 shows the pseudo
code for the current hybrid formulations.

4.4 Algorithm Parameters and Setup

The MODPSO1 and MODPSO3 setups are defined as in [14]. The number of
particles Np is set to 8NofNdv, initialized using a Hammersley sequence sampling
[22] over variable domain and boundary. The coefficients are set as proposed by
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Clerc [23], with χ = 0.721 and c1 = c2 = 1.655. A semi-elastic wall-type approach
is used for box constraints [4].

Threshold values for local search activation are set to β = {0.1, 1.0, 10} and
γ = {1.0, 1.1, 1.2}. The budget of local search evaluations (for each call) is set by
α = {1, 5, 10}. The linesearch step is reduced by a factor of two until it reaches
a minimum step size λmin = 1E − 9, starting from a maximum value equal to
the 10% of the design variables space dimension.

The number of problem evaluations (Npeval), where one problem evalua-
tion involves one evaluation of each objective function, is assessed by Npeval =
νNofNdv where ν = 125 · 2c, c ∈ N[0, 4] therefore Npeval ranges between
125NofNdv and 2000NofNdv.

5 Numerical Results

A preliminary study on analytical benchmark problems is used to identify the
most promising MODHA formulation and setup. The MODHA formulations
under analysis are summarized in the following:

– PP1 and PP3 perform αNdvNof local search for each call, starting from the
current particle position xn

i , and are activated by the velocity threshold β;
– SA1 and SA3 perform αNdvNof local search for each call, starting from the

particle social attractor gi, and are activated by the velocity threshold β;
– SS1 and SS3 perform αNp local search for each call, starting from the current

solution set Sn, and are activated by the HV threshold value γ.

“1” and “3” indicate the MODPSO formulation. The most promising MODHA
formulations are finally applied to the RBRDO of the high-speed catamaran and
compared with MODPSO1, MODPSO3, and DFMO.

5.1 Analytical Benchmark Problems

A number of 45 benchmark problems [14] is used, including convex and non-
convex, continuous and discontinuous Pareto fronts, with Nof = 2, 3 and 1 ≤
Ndv ≤ 12.

In order to provide a proper comparison between different problems with
different codomain size, each solution set S is normalized with the function range,
therefore si ∈ [0, 1] and the reference point HV is {1}Nof

i=1. The computation of
HV is performed with the code provided in [24].

Figure 1 shows the relative variability of C1R and NHV, conditional to the
setup parameters. Considering both metrics, the velocity-based formulations
(PP1, PP3, SA1, and SA3) are mainly affected by the velocity threshold β,
whereas the hypervolume-based formulation is mainly influenced by the coeffi-
cient α, but SS3.

Figure 2 compares C1R and NHV provided by global, local, and hybrid
global/local algorithms. Although DFMO achieves the highest C1R, hybrid
methods provide significantly larger NHV values. In general, within the same
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r,k conditional to the formulation
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Fig. 2. Analytical test problems, comparison of MODPSO1, MODPSO3, DFMO, and
most promising setup of MODHA formulations

hybridization approach, MODPSO1 and MODPSO3 achieve similar perfor-
mances. It is worth noting that the velocity-based hybrid formulation, that start
the local search from the current particle position (PP1 and PP3), are not able
to outperform the corresponding global algorithms.

Table 1 summarizes the most promising setup for each hybrid formulation,
based on budget-averaged NHV. MODHA-SS3 with an activation threshold γ =
1.0 and a coefficient α = 10 for the DFMO problem evaluations is the best
performing overall (on average).

Finally, Fig. 3 shows illustrative examples of the solution achieved by global,
local, and hybrid (SS1 and SS3) algorithms for the Sch1 problem [25] with Nof =
2 and Ndv = 1. The hybrid algorithms show a more accurate approximation of
the Pareto front than local and global algorithms.
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Table 1. Most promising MODHA setup based on budget-averaged NHV

MODHA formulation β γ α C1R NHV

PP1 0.1 – 1 2.981E−3 0.9750

PP3 0.1 – 5 3.764E−3 0.9786

SA1 0.1 – 1 2.920E−3 0.9739

SA3 0.1 – 5 3.700E−3 0.9785

SS1 – 1.0 10 1.633E−2 0.9789

SS3 – 1.0 10 1.632E−2 0.9797
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Fig. 3. Global, local, and hybrid algorithm solution for the Sch1 problem with
2000NofNdv problem evaluations

5.2 High-Speed Catamaran Optimization

A reliability-based robust design optimization of a 100 m high-speed catamaran
is solved for realistic conditions, associated to the North Pacific Ocean including
stochastic sea state and speed [17]. The multi-objective problem aims at the
reduction of the expected value of the mean total resistance in irregular waves
(ϕ1) and the increase of the ship operability referring to a set of motion-related
constraints (ϕ2). The design optimization problem is formulated as

minimize {ϕ1(x), −ϕ2(x)}T

subject to l ≤ x ≤ u

and to ϕ1 ≤ 0; ϕ2 ≥ 0
(5)



206 R. Pellegrini et al.

The problem is solved by means of stochastic radial-basis function interpolation
[26] of high-fidelity URANS simulations. The inequalities in Eq. 5 are handled
by a linear penalty function, so that ϕk = ϕk + 100

∑Ndv

j=1 max(xj − uj , 0) +
100

∑Ndv

j=1 |min(lj − xj , 0)| if domain bounds violation occurs and ϕk = 10000ϕk

if ϕ1 > 0 or ϕ2 < 0. Four design variables (Ndv = 4) control global shape
modifications of the catamaran hull, based on the Karhunen-Loève expansion
of the shape modification vector. Details may be found in [17]. A total number
of 16,000 problem evaluations are performed and used to compute the reference
non dominated solution set R.

Figure 4 shows the solution obtained by MODPSO1 and 3, DFMO, and the
hybrid algorithms SS1 and SS3 with the most promising parameter set summa-
rized in Table 1. The hybrid algorithms are able to cover the reference solution,
outperforming the global and local algorithms. It is worth noting that the hybrid
algorithms are able to accurately identify the upper right section of R. The solu-
tion provided by SS3 is more accurate than that provided by SS1.

Table 2 summarizes C1R and NHV percentage values achieved by each algo-
rithm, conditional to the budget parameter ν. Both metrics confirm the results
depicted in Fig. 4. The hybrid algorithms perform better than the global and
local algorithms and provide more dense solutions. In particular, SS3 is found to
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Fig. 4. Global, local, and hybrid algorithm solution for the catamaran problem with
2000NofNdv problem evaluations
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Table 2. Catamaran problem, summary of the optimization results

ν MODPSO1 MODPSO3 DFMO MODHA-SS1 MODHA-SS3

C1R NHV C1R NHV C1R NHV C1R NHV C1R NHV

125 0.000E+0 0.9977 0.000E+0 0.9223 0.000E+0 0.9983 0.000E+0 0.9969 0.000E+0 0.9983

250 1.388E−3 0.9983 0.000E+0 0.9687 6.246E−3 0.9984 3.470E−4 0.9978 4.511E−3 0.9986

500 8.675E−3 0.9984 7.634E−3 0.9826 2.325E−2 0.9984 6.246E−3 0.9980 1.410E−1 0.9986

1000 3.088E−2 0.9994 5.274E−2 0.9873 7.911E−2 0.9984 4.580E−2 0.9988 3.540E−1 0.9999

2000 3.227E−2 0.9995 1.620E−1 0.9889 2.866E−1 0.9984 1.117E−1 0.9999 4.060E−1 0.9999

be the best formulation, achieving higher values of C1R and NHV and providing
more dense solutions than SS1.

6 Conclusions and Future Work

A multi-objective deterministic hybrid algorithm (MODHA) has been presented,
combing two multi-objective deterministic particle swarm formulations with a
local derivative-free multi-objective linesearch algorithm. Three hybridization
schemes have been studied: two are based on the particle velocity and one on
the hypervolume metric. The velocity-based formulation starts the local search
when the particle velocity drops under a threshold value (β) and use as a starting
point either the current particle position (PP) or the particles social attractor
(SA). The hypervolume-based formulation starts the local search when the HV
associated to the current solution set does not improve sufficiently (by a factor
equal to γ) compared to the previous iteration. In this case, a local search is per-
formed starting from each point of the current solution set (SS). These hybridiza-
tion schemes are combined to both MODPSO1 and MODPSO3, resulting in six
MODHA formulations.

A comparative study has been performed using 45 analytical test problems,
with a number of objective functions ranging from two to three and a number
of variables from one to twelve, varying the activation criterion and the num-
ber of problem evaluations for the local search. A full-factorial combination of
formulations and parameters has been investigated through more than 14,000
optimization runs. Two multi-objective performance metrics (C1R and NHV)
have been evaluated and discussed.

Velocity-based formulations depend significantly on the local search activa-
tion threshold, whereas the hypervolume-based formulation is affected mainly by
the coefficient related to the number of evaluations reserved for the local search.
Hybrid formulations based on the hypervolume show the best performance.
Specifically, MODHA-SS3 with α = 10 and γ = 1.0 is found the most promis-
ing on average. Hypervolume formulations have been applied to the hull-form
optimization of a high-speed catamaran (aimed at reducing the resistance and
increasing the operability in realistic ocean conditions), showing better results
than global and local algorithms. Also for the catamaran, MODHA-SS3 provides
the best performance.
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Current results are promising and motivate further investigations of metrics-
based formulations, with focus on the method for the selection of local search
starting points. Future work includes the development and assessment of a hybrid
version of the crowding-distance based MOPSO [27] and the use of the crowding
distance to select the local search starting points. The effects of the local search
stop criterion on the overall performance will be included in the analysis. Finally,
novel strategies for the approximation of the Pareto front (e.g. [28]) will be
considered to enhance the exploration capabilities of the MODHA formulations.
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López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp.
835–846. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45823-6 78

3. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the
IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

4. Serani, A., Leotardi, C., Iemma, U., Campana, E.F., Fasano, G., Diez, M.: Param-
eter selection in synchronous and asynchronous deterministic particle swarm opti-
mization for ship hydrodynamics problems. Appl. Soft Comput. 49, 313–334 (2016)

5. Serani, A., Diez, M., Campana, E.F., Fasano, G., Peri, D., Iemma, U.: Globally
convergent hybridization of particle swarm optimization using line search-based
derivative-free techniques. In: Yang, X.S. (ed.) Recent Advances in Swarm Intel-
ligence and Evolutionary Computation. SCI, vol. 585, pp. 25–47. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-13826-8 2

6. Serani, A., Fasano, G., Liuzzi, G., Lucidi, S., Iemma, U., Campana, E.F., Stern, F.,
Diez, M.: Ship hydrodynamic optimization by local hybridization of deterministic
derivative-free global algorithms. Appl. Ocean Res. 59, 115–128 (2016)

7. Liu, D., Tan, K.C., Goh, C.K., Ho, W.K.: A multiobjective memetic algorithm
based on particle swarm optimization. IEEE Trans. Syst. Man Cybern. Part B
(Cybern.) 37(1), 42–50 (2007)

8. Kaveh, A., Laknejadi, K.: A novel hybrid charge system search and particle swarm
optimization method for multi-objective optimization. Expert Syst. Appl. 38(12),
15475–15488 (2011)

9. Cheng, S., Zhan, H., Shu, Z.: An innovative hybrid multi-objective particle swarm
optimization with or without constraints handling. Appl. Soft Comput. 47, 370–
388 (2016)

10. Santana-Quintero, L.V., Ramı́rez, N., Coello, C.C.: A multi-objective parti-
cle swarm optimizer hybridized with scatter search. In: Gelbukh, A., Reyes-
Garcia, C.A. (eds.) MICAI 2006. LNCS (LNAI), vol. 4293, pp. 294–304. Springer,
Heidelberg (2006). https://doi.org/10.1007/11925231 28

https://doi.org/10.1007/978-3-319-45823-6_78
https://doi.org/10.1007/978-3-319-13826-8_2
https://doi.org/10.1007/11925231_28


Hybrid Global/Local Derivative-Free Multi-objective Optimization 209

11. Izui, K., Nishiwaki, S., Yoshimura, M., Nakamura, M., Renaud, J.E.: Enhanced
multiobjective particle swarm optimization in combination with adaptive weighted
gradient-based searching. Eng. Optim. 40(9), 789–804 (2008)

12. Mousa, A., El-Shorbagy, M., Abd-El-Wahed, W.: Local search based hybrid par-
ticle swarm optimization algorithm for multiobjective optimization. Swarm Evol.
Comput. 3, 1–14 (2012)

13. Xu, G., Yang, Y.Q., Liu, B.B., Xu, Y.H., Wu, A.J.: An efficient hybrid multi-
objective particle swarm optimization with a multi-objective dichotomy line search.
J. Comput. Appl. Math. 280, 310–326 (2015)

14. Pellegrini, R., Serani, A., Leotardi, C., Iemma, U., Campana, E.F., Diez, M.: For-
mulation and parameter selection of multi-objective deterministic particle swarm
for simulation-based optimization. Appl. Soft Comput. 58, 714–731 (2017)

15. Liuzzi, G., Lucidi, S., Rinaldi, F.: A derivative-free approach to constrained mul-
tiobjective nonsmooth optimization. SIAM J. Optim. 26(4), 2744–2774 (2016)

16. Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms -
a comparative case study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel,
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Abstract. Worldwide, just under 5,800 people go to work every day and
do not return because they die on the job. The groundbreaking Indus-
try 4.0 paradigm includes innovative approaches to improve the safety
in the workplace, but Small and Medium Enterprises (SMEs) – which
represent 99% of the companies in the EU – are often unprepared to
the high costs for safety. A cost-effective way to improve the level of
safety in SMEs may be to just reassign employees to tasks, and assign
hazardous tasks to the more cautious employees. This paper presents
a multi-objective approach to reallocate the personnel of a company to
the tasks in order to maximize the workplace safety, while minimizing
the cost, and the time to learn the new tasks assigned. Pareto-optimal
reallocations are first generated using the Non-dominated Sorting arti-
ficial Bee Colony (NSBC) algorithm, and the best one is then selected
using the Technique for Order of Preference by Similarity to Ideal Solu-
tion (TOPSIS). The approach was tested in two SMEs with 11 and 25
employees, respectively.

Keywords: Bee colony algorithm · Occupational safety and health
Multi-objective optimization · Personnel reallocation
Risk perception · TOPSIS

1 Introduction

Improving the safety of work environments is key. Every 15 s, a worker dies
as a consequence of occupational injuries and accidents [1]. New technologies
helps save a countless number of lives today, but workplace fatalities are not
diminishing enough.

In economic terms, occupational illnesses and accidents at work result in costs
up to 6% of GDP, in country estimates [1]. Statistics also say that up to 80% of
the accidents are caused by workers’ actions or omissions [9]. It is thus crucial
to study both the employees’ behavior and personality when assigning tasks.
Workers are indeed characterized by the so-called human factors, i.e., individual
aspects and organizational, environmental and job factors that modify a worker’s
behavior in a way that can influence occupational safety and health (OSH) [9].
c© Springer International Publishing AG 2018
G. Nicosia et al. (Eds.): MOD 2017, LNCS 10710, pp. 210–221, 2018.
https://doi.org/10.1007/978-3-319-72926-8_18
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Human factors affect risk perception, i.e., how one understands characteristics
and level of danger in the presence of hazards [3,4,16,18,19]. Human factors
include, e.g., age, past experience and health status, social and cultural aspects,
psychological traits, trust in risk management institutions, optimism bias [7,11]
and locus of control [10,11]. These factors have been investigated in the Sociology
and Psychology literature, but the way they affect human behavior when in the
presence of risk remains vague.

Risk awareness courses help employees achieve appropriate risk awareness
and enforce safety guidelines be observed. Employees regularly undergo risk
awareness training, with high capital investments for companies. However, fatal-
ities and accidents at work are too frequent. Novel techniques were proposed in
[12,13] to profile workers depending on their sensitivity to risk. This can help pro-
vide employees tailored risk awareness courses. Also, the Smart Manufacturing
approach, a part of the groundbreaking Industry 4.0 paradigm, has the work-
place safety improvement as a primary objective. Limited economic resources
make safety hard to manage for Small and Medium Enterprises (SMEs), which
represent ∼99% of the companies in the EU and employ 65 million people [2].
If human factors were included into OSH procedures, accidents at work could
be reduced [9]. To help SMEs achieve a low-cost workplace safety increase, it
may be sufficient to reallocate the personnel to tasks analyzing the employees’:
(i) human factors; (ii) ability to learn new tasks; (iii) behavior when exposed to
the hazards of the tasks [14,15].

This paper presents a multi-objective approach to reallocate the personnel of
a company to the tasks, in order to improve the workplace safety, while keeping
low both the costs and the time to learn the new tasks assigned. The learning
time that an employee takes to learn a new task is predicted using his/her
past jobs where the employee performed that task. Risk-free practical tests help
estimate the learning time in the case the worker has never performed the task
before.

A neural network-based system [6] calculates every employee’s level of caution
towards each task, starting from the human factors and behavior when in the
presence of the risks of the task. An employee’s behavior while performing a task
is expressed on the basis of the precautions taken during the task execution.

The multi-objective problem is solved by generating an approximation of
the whole Pareto front using the Non-dominated Sorting Bee Colony opti-
mization algorithm (NSBC). The most appropriate Pareto-optimal personnel
(re)allocation is selected using the TOPSIS algorithm. Experiments were carried
out involving two footwear companies with 11 and 25 employees, respectively.

The paper is organized as follows: Sect. 2 contains a background on multi-
objective optimization and the description of the NSBC algorithm; Sect. 3
describes TOPSIS; Sect. 4 contains the details on how an employee’s level of
caution towards a task is computed; Sect. 5 gives the problem formulation; in
Sect. 6 the experiments are discussed; Sect. 7 draws the conclusions.
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2 Multi-objective Optimization

Multi-objective optimization (MOO) problems deal with the optimization of
multiple objectives, typically conflicting [8]. An MOO problem can be written
as Minimizex∈X f(x) = [f1(x), . . . , fk(x)], where X = {x ∈ R

p : gi(x) ≤ 0 ∀i =
1, . . . ,m, hj(x) = 0 ∀j = 1, . . . , n}. The vector function f : Rp → R

k contains the
objective functions. In general, any solution does not minimize all the objective
functions at the same time. Thus, Pareto dominance and Pareto-optimality are
introduced. A solution x1 dominates x2 if fi(x1) ≤ fi(x2)∀i ∈ {1, . . . , k}, and
fj(x1) < fj(x2) for at least one j ∈ {1, . . . , k}. Pareto-optimal solutions map to
the Pareto front, in the objective space.

2.1 Non-dominated Sorting Bee Colony Optimization

Overview. The Non-dominated Sorting Bee Colony (NSBC) algorithm is a
popular algorithm inspired by the foraging behavior of bees [17]. NSBC encodes
a solution using the position of a food source and its nectar amount (i.e., the
fitness of the solution). NSBC divides a bee colony into onlookers, employed bees
and scouts. Onlookers stand on a dance area waiting to decide for a quality food
source; employed bees are associated with food sources; scouts perform a random
search. The total number of employed and onlooker bees is equal to the number
of candidate solutions.

The NSBC Optimization Algorithm. NSBC initializes a population of
N food sources (candidate solutions) of dimension D. Food source Xi(t) =
(xi,1, . . . , xi,D) of population Pt=0 is randomly initialized in the range
[Xmin,Xmax], with Xmin = (xmin

1 , . . . , xmin
D ) and Xmax = (xmax

1 , . . . , xmax
D ).

The j-th component of Xi(t = 0) is xi,j(t = 0) = xmin
j +U(0, 1) · (xmax

j −xmin
j ),

where U(0, 1) is a random number uniformly distributed in [0, 1]. The k-th com-
ponent fk(Xi(t = 0)), i.e., the fitness of every food source Xi(t = 0), is computed
for each i = 1, . . . , N .

Each employed bee looks for a new food source X′
i(t) = (xi,1, . . . , x

′
i,j , . . . ,

xi,D) changing the j-th component, selected randomly. The new value is:

x′
i,j(t) = xi,j(t) + U(−1, 1) · (xi,j(t) − xk,j(t)) (1)

where k �= i and U(−1, 1) is a random number uniformly distributed in [−1, 1].
If Xi(t) is dominated by X′

i(t), the bee substitutes the previous food source
with X′

i(t). Otherwise, the bee maintains both solutions in memory. This step
iterates for every food source. The population so obtained (size N ≤ N ′ ≤ 2N)
is sorted according to non-domination. Non-dominated food sources take rank 1
(first front). These food sources are then neglected to find the second front, etc.

A parent population P ′
t of size N is built for the onlooker bee phase, according

to the ascending order of the non-domination ranking. The food sources in the
last front that can be inserted in Pt are sorted in descending order of crowding
distance, i.e., the sum of the distances from a food source to its closest food
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source along each objective. Let Di be the set of the food sources dominated
by Xi(t). Each food source Xi(t = 0), where i = 1, . . . , N , is associated with
a probability to be selected by the onlooker bee. This probability is equal to
πi = |Di|

N , where | · | denotes the cardinality of a set. Onlooker bees evaluate
the fitness of each food source from all employed bees and select a food source
Xi(t) on the basis of probability πi. Onlooker bees change the position of the
food source in their memory in accordance to Eq. (1), and test the fitness of the
new food source.

Population P ′
t (size N ≤ N ′ ≤ 2N) stems from evaluating the Pareto dom-

inance between the neighborhood and the previous food sources. As employed
bees do, using the crowding distance non-domination sorting, the non-dominated
food sources in P ′

t are found to build population Pt+1 of size N .
Finally, when a food source is not improved throughout a certain number of

epochs, it is replaced by a randomly position found by the scouts. NSBC iterates
until a stop condition is met.

3 Technique for Order of Preference by Similarity
to Ideal Solution (TOPSIS)

TOPSIS is an MCDM approach [5]. Considering a decision problem character-
ized by n alternatives and m criteria, TOPSIS requires an n×m decision matrix
H = [hij ], where i ∈ {1, . . . , n} and j ∈ {1, . . . , m}. The goodness of alterna-
tive i w.r.t. criterion j is measured by element hij . In addition, criteria must be
prioritized by assigning them weights. Let these weights be contained in a vec-
tor ω = (ω1, . . . , ωm), with

∑m
j=1 ωj = 1. TOPSIS first calculates the weighted

normalized decision matrix V = [vij ] = ωjhij/
√∑n

i=1 h2
ij , then it finds the ideal

best (IB) and worst (IW ) solutions. The indices in ΩB and ΩC indicate benefit
and cost criteria, respectively. Let IB = (a+

1 , . . . , a+
m) and IW = (a−

1 , . . . , a−
m),

where a+
j = maxi vij for j ∈ ΩB or a+

j = mini vij for j ∈ ΩC , and a−
j = mini vij

for j ∈ ΩB or a−
j = maxi vij for j ∈ ΩC . TOPSIS measures the Euclidean dis-

tance of every single alternative from IB, namely, D+
i =

√∑m
j=1(vij − a+

j )2,

and IW , i.e., D−
i =

√∑m
j=1(vij − a−

j )2. TOPSIS eventually measures the rela-

tive closeness coefficient of every alternative to IB as RCL+
i = D−

i /(D+
i +D−

i ):
the higher RCL+

i the better the alternative. The alternative k = arg maxi RCL+
i

is chosen and results to be the best.

4 Worker’s Risk Perception and Caution

Consider a set of tasks T = {t1, . . . , t|T |} and a set of employees E =
{e1, . . . , e|E|}. An employee is assumed to be exposed to a set Ri of risks when
performing task ti. Let the set of risks of the workplace be R =

⋃|T |
i=1 Ri. Each

employee innately takes specific precautions when exposed to the risks of a task.



214 B. Lazzerini and F. Pistolesi

Formally, let set Ak = {ak,1, . . . , ak,|Ak|} contain preventive actions, i.e., precau-
tions that an employee can take to mitigate a risk rk ∈ R, where k ∈ {1, . . . , |R|}.
Preventive actions can mitigate a risk, i.e., they decrease the risk occurrence
and/or its impact. Depending on this extent, each preventive action is associ-
ated with a level of prevention in L = {1, . . . , L}. The more the action makes
a risk less likely and/or mitigates its impact, the higher the level of prevention.
Experts in risk assessment assign the levels of prevention to preventive actions.

Consider a set H = {h1, . . . , h|H|} of human factors (or factors). Each hv

takes values in a domain Dv. Set H is made of factors that relate to the worker’s
past history and work experience, and factors related to the task. The first group
is composed of P personal factors. The second contains T task-related factors.
The risk perception personal level pers percj of employee ej stems from the set
Pj =

⋃P
v=1 dv,j , which contains the values dv,j ∈ Dv of each personal factor hv.

A function ϕPERSONAL such that Pj �→ ϕPERSONAL(Pj) = pers percj

exists, and the perception level task perci,j of ej for the risks of task ti is
established by Tj =

⋃P+T
v=P+1 dv,j . Here, dv,j are the values of task-related fac-

tors hv for employee ej . The risk perception personal level pers percj of wj

also influences task perci,j . Thus, there exists a function ϕTASK such that
(Tj , pers percj) �→ ϕTASK(Tj , pers percj) = task perci,j .

For each risk rk and employee ej , the caution of ej for rk is measured on
the basis of the number of preventive actions per level of prevention that ej

performs when exposed to rk: this is the behavior of ej towards rk. Let us
denote the number of �-level preventive actions that ej performs when exposed
to rk as #Ak,�=�,j . A function ρk such that (#Ak,�=1,j , . . . ,#Ak,�=L,j) �→
ρk(#Ak,�=1,j , . . . ,#Ak,�=L,j)
= risk cautionk,j can thus be configured for each k = 1, . . . , |R|.

For each task ti and employee ej , the caution of employee ej when performing
task ti therefore depends on risk cautionk,j ,∀k ∈ Ri. For this reason, a group
of functions τi, one for each i = 1, . . . , |T |, such that

⋃
rk∈Ri

risk cautionk,j �→
τi

(⋃
rk∈Ri

risk cautionk,j

)
= task cautioni,j , computes the level of caution of

employee ej for each task ti, given the employee’s levels of caution for the risks
involved. A tuple θj = {⋃P+T

v=1 dv,j ,
⋃|R|

k=1

⋃L
λ=1 #Ak,l=λ,j} thus represents the

employee ej in the model. It is important to point out that |H| = P + T , and
that v ∈ {1, . . . , P} refers to personal factors, whereas task-related factors are
referred to as v ∈ {P + 1, . . . , P + T}.

Given tuple θj , the levels of risk perception and caution of each employee
towards every task are determined in this paper by using the neural network-
based system whose architecture and training process are described in detail
in [6].

5 Problem Formulation

5.1 Objectives

Consider a decision variable xij ∈ {0, 1}. Let xij = 1 if employee ej is assigned
to task ti, and let xij = 0 if not, where i ∈ {1, . . . , |T |} and j ∈ {1, . . . , |E|}. The
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vector x ∈ {0, 1}|T |×|E| is a personnel assignment, and has decision variables
xij as elements, in lexicographic order. The three objectives considered in the
optimization approach described in this paper are formalized in the next sections.

Cost. Assigning task ti to employee ej results in a cost that depends on the
employee’s work seniority for task ti and his/her need to be trained to perform
ti. The longer the overall time during which ej has performed ti in life, the lower
the cost for the training. The cost cij of assigning employee ej to task ti includes
the cost for the training and what the employer pays for salary and benefits.
The overall cost objective function COST (x) : {0, 1}|T |×|E| → R

+ to minimize
is modeled as:

COST (x) =
∑|T |

i=1

∑|E|
j=1 cijxij . (2)

Learning Time. In general, more experienced workers are preferred to be
assigned to tasks. Consider the average number of days AV G TIMEi typically
required to employees to be properly trained for task ti. If an employee has
never performed the task before, this number of days is assumed to be required
to train the worker. If the employee has a past experience for that task, let Pi,j

be the set of the past jobs where employee ej performed task ti. The experience
of employee ej for task ti is estimated as

experiencei,j =
|Pi,j |

∑
u∈Pi,j

duration−1
u

, (3)

where durationu is the duration (in days) of past job u. The harmonic mean is
used in Eq. (3) as it mitigates (intensifies) the impact of large (small) outliers.
The time Ti,j that an experienced employee ej takes to be trained for ti is
estimated as:

Ti,j =
{

AV G TIMEi if experiencei,j ≥ k · AV G TIME
ai,j · AV G TIMEi otherwise (4)

where the parameter k > 0 is set by experts in the field, and ai,j > 0 results from
risk-free practical tests where experts in the field evaluate how skilled employee
ej is in executing task ti. The overall learning time is estimated through the
mean to variance ratio

LEARNING(x) =
TMEAN

∑|T |
i=1

∑|E|
j=1 (Ti,jxij − TMEAN )2

,

where TMEAN is the average learning time for the tasks assigned, defined as
TMEAN = 1

|T |
∑|T |

i=1

∑|E|
j=1 Ti,jxij .

Caution. Let us define the average level of caution for the tasks assigned as:
CMEAN = 1

|T |
∑|T |

i=1

∑|E|
j=1 task cautioni,jxij . The overall level of caution for the
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tasks assigned CAUTION(x) : {0, 1}|T |×|E| → R
+ to maximize, is defined here

as the mean to variance ratio of the level of caution of each employee towards
the task assigned:

CAUTION(x) =
CMEAN

∑|T |
i=1

∑|E|
j=1 (cautioni,jxij − CMEAN )2

. (5)

5.2 Problem Formulation

Consider a set of tasks T and a set of employees E where |T | = |E|. Each task
must be (re)assigned to one worker and vice versa. The optimization problem is:

Minimize
x

f(x) = [COST (x), LEARNING(x),−CAUTION(x) ] (6a)

subject to:
∑|T |

i=1 xij = 1, ∀j = 1, . . . , |E| (6b)
∑|E|

j=1 xij = 1, ∀i = 1, . . . , |T | (6c)

xij ∈ {0, 1}, ∀i = 1, . . . , |T |,∀j = 1, . . . , |E|. (6d)

Equation (6a) is the objective function f(x) : {0, 1}|T |×|E| → R
2
+ × R− whose

components are the overall cost, the average learning time, the overall level of
caution (inverted in sign) towards the tasks assigned of assignment (i.e., person-
nel reallocation) x ∈ {0, 1}|T |×|E|. Constraints (6b) force each worker be assigned
to one task. Constraints (6c) let instead each task of the factory be (re)assigned
to one worker. Equation (6d) express the integer constraint.

6 Experiments and Discussion

The proposed approach was applied to two scenarios (“Scenario A” and
“Scenario B”) based on two real-world case studies related to two footwear com-
panies. The optimization approach was implemented in MATLAB.

6.1 Dataset

A website was implemented to collect information about the employees: the
values of their human factors and behavior. The employees were required to fill
out a questionnaire through the website. Data were collected in compliance with
the privacy laws. For each employee ej , the questionnaire collects:

– the values of the human factors in order to compute task perci,j ;
– data relating the past jobs to estimate the learning times;
– data relating the behavior towards each risk rk of every task ti on the basis

of the preventive actions that the employee chooses from a predefined set of
actions. The actions chosen let task cautioni,j for each task ti be computed.

The dataset consists of 36 interviews: 11 interviews relate to the first com-
pany, the other 25 interviews relate to the second company. Due to privacy laws
and ethical issues, the dataset cannot be made public domain.
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6.2 Setup of the Parameters

The system was implemented in MATLAB. By means of a trial and error app-
roach, the NSBC algorithm was run for 1000 generations and the population
size was set to 150. To find this configuration, a total of 30 trials were run using
different values for population size and number of generations. These values were
determined on the basis of heuristic considerations on the problem.

6.3 Optimization Results

Personnel Assignment Strategy in the Involved Companies. In SMEs,
managers determine how suitable an employee is to perform a task on the basis
of his/her experience: the more the experience, the more suitable is the employee.
As many tasks of the footwear industry are handmade and require the use of
dangerous machines, workers are continuously exposed to serious risks including
crushing injuries, burns and amputation. However, risk management is typically
carried out by SMEs by assigning the more dangerous tasks to the more expe-
rienced employees, mainly because SMEs are unprepared to make important
capital investments. This is tremendously dangerous because more experienced
workers typically have higher locus of control and this can decrease the risk
awareness [10].

The Shoe Making Process. Making a shoe is a complex process, with many
handmade operations. The process starts with cutting pieces of leather using
cutting machines and knives to prepare some of the parts of a shoe, i.e., uppers,
linings, reinforcements and insoles. Die cutters are used to prepare other parts,
such as welts, vamps, soles, heels. The thickness of the leather is made uniform
using milling cutters while preparing the upper. Ornaments are then applied to
the shoe. By sewing all the parts above, the upper is assembled: this phase is
called stitching. A pounding phase lets possible folds of the leather be smoothed.
The upper is then mounted on the last (i.e., a sculpture of the shoe) using a
lasting machine, and is finally joined with the insole. The sole is applied by
using sanding machines, through glueing, sewing or welts. Die casting or nails
are used to fix the heel. Heels are typically coated with leather or wrapped with
a material similar to the one the upper is made of. A press fixes the upper to the
block made of sole and heel, in the case of rubber soles. The bottom of the shoe
is finished by: (i) sanding heel and sole by using rotating machines; (ii) waxing
and coloring the sole contour with rotating tools; (iii) polishing sole and heel.

The process ends with embellishment steps that include cleaning the upper
with solvents/brushes, waxing-up the sole, polishing and starching. The shoes
are eventually put in pairs into shoeboxes to be stored into the warehouse.

Proposed Strategy for Personnel Reallocation. The proposed approach
for personnel reallocation started asking the management to prioritize the objec-
tives. Preventive actions were then classified into three prevention levels: low,
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medium, high. Each employee’s data about human factors and behavior were col-
lected by means of the website described in Sect. 6.1. Each employee’s task perc
and risk caution towards each risk were computed using these data. The neural
system referred to in Sect. 4 computed each employee’s levels of task caution
and task perc towards every task. The Pareto front was approximated by means
of NSBC. The best solution selected by TOPSIS is in Table 1, for both scenarios.

Discussion of Scenario A. In this scenario, the company has 11 employees.
The company aims to improve the workplace safety with a low increase in cost.
The weights of the objectives are (0.35, 0.2, 0.45), in the order they appear in
Eq. (6a). Cost and caution are thus the most important objectives. The left-hand
side of Fig. 1 shows the Pareto front obtained by means of the NSBC algorithm.
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Fig. 1. Pareto front obtained for Scenario A (left) and Scenario B (right).

The current assignment has a cost of 30,180 e and shows an overall level of
caution of −5.15, as summarized in Table 1. Learning is equal to zero because
all employees can perform their task correctly.

The proposed solution reassigns 5 tasks (highlighted with colored cells in
Table 1) and guarantees ∼120% improvement in the overall level of caution at the
expense of ∼18% increase in cost. Cost is paramount for the involved company,
and a percentage like this seems unreasonable. Anyway, that is not what it
seems like because the increase in cost is just temporary, as it is due to the cost
of training the reallocated workers.

Data on the employees’ behavior w.r.t. every task cannot be reported. Con-
sider that each task of a footwear company exposes an employee to five risks
on average. Each risk can in turn be prevented by four actions per level of pre-
vention, on average. Also, three levels of prevention (low, medium and high) are
considered. This causes an explosion of the number of preventive actions per
employee to report. The discussion is thus based on intuitive considerations.

The proposed approach, if implemented, would guarantee that ∼75% of the
employees would deal with the task assigned with high-level preventive actions
only. The remaining percentage would have behaviors between a poor level of
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caution (3 low-level actions) and a good level of caution (2 medium-level actions
and 2 high-level actions).

It is important to note that the most unsafe behavior (i.e., just 1 low-level
action) stems from workers who stamp the insoles or make supervision. As can
be understood, these tasks are almost risk-free. Workers may experience just
muscle tightness and eyestrain.

Instead, in the current assignment, 2 safety-critical tasks are performed
by employees with behavior uniquely made of 1 low-level preventive action.
These tasks involve die cutters and pounding machines, which can be a serious
threat for the health if used unsafely. For instance, employees may experience
grazes, crushing injuries to the hands, and amputation. The employees currently
assigned to these tasks are highly likely to get hurt due to their poor level of
caution.

Assigning safety-critical tasks to certain people just because they have a high
number of years of experience is dangerous. These workers, of course, perform
the task better than others, but the management is highly wrong if neglects their
behavior when in the presence of risk.

In the current assignment, safety-critical tasks are assigned to employees
with, on average, 15 years of experience for the task. However, their level of
caution is poor. As one can imagine, people become familiar with something
that is performed every day in life. And this causes a decrease in risk awareness.
Accordingly, the employees that the management assigned to safety-critical tasks
have become familiar with the task, and they may have inadequate awareness of
the risks they take when performing the task.

Regarding the learning time, the proposed reallocation of personnel guaran-
tees a fast training, ∼3 days, on average, as can be seen from Table 1.

Table 1. Current and proposed personnel assignment for Scenarios A and B.

TASKS
1 2 3 4 5 6 7 8 9 101112 13 14 1516 17 18 19 2021 22 23 24 25

A
Current 5 2 10 3 7 4 116 1 9 8 - - - - - - - - - - - - - -
Proposed 5 9 11 3 2 4 106 1 7 8 - - - - - - - - - - - - - -

B
Current 23 3 8 2117 6 25 9 11 19 16 5 24 7 18 14 1 4 10 15 13 2 20 12 22
Proposed23 3 102117 22 25 9 7 19 16 5 2 11 18 14 20 4 8 15 13 24 1 12 6

Discussion of Scenario B. In this scenario, the weights of the objectives are
(0.4, 0.1, 0.5) The management thus wants to reallocate the personnel to improve
the safety, keeping low the costs.

The current assignment of personnel to tasks is characterized by an overall
caution equal to −4.78 (see Table 2). By reallocating the personnel as suggested
by the proposed approach (see Table 1), the overall level of safety is more than
doubled, at the expense of a temporary increase in cost of ∼10%. The Pareto
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Table 2. Values of the objectives for Scenarios A and B.

COST [ ] LEARNING −CAUTION

A
Current 30,180.00 0 −5.15
Proposed 35,720.00 3.22 −11.41

B
Current 68,995.00 0 −4.78
Proposed 76,150.00 5.38 −9.94

front is in Fig. 1. The behaviors that highly impact on safety are discussed in
the following.

As an example, it is fundamental to observe that the safest behaviors, i.e.,
the ones made of high-level preventive actions alone, pass from 5 (in the current
personnel assignment) to 9 thanks to the proposed reallocation of personnel
to tasks. Also, with the proposed solution no employee behaves showing low-
level preventive actions only. In the current assignment, there are instead 6
employees characterized by behaviors like this, the two most hazardous of them
involve a task where employees may experience crushing injuries while using
die cutters and severe excoriations, respectively. This is another SME where the
management chooses more experienced employees for the most dangerous tasks.

Finally, the time required by the employees to learn the new tasks assigned is
estimated to be a bit longer than 5 days (see Table 2). This is a short amount of
time if one thinks that 10 tasks (colored cells in Table 1) are reassigned. The time
required to learn the new tasks assigned is thus compliant with the importance
assigned by the management to the corresponding objective.

7 Conclusion

This paper has presented a MOO approach for personnel reallocation whose
aim is to improve the workplace safety in SMEs, while keeping low both the
costs and the time required to train the employees. Each employee’s level of
caution for every task is determined by a neural network-based system, based on
some human factors and the precautions he/she takes when performing the task.
NSBC and TOPSIS are used to find a Pareto-optimal personnel reallocation.
The approach was tested in two footwear companies. A high improvement of the
caution was obtained in both scenarios, with a low and temporary increase in
cost. Risks thus become less harmful and less likely as tasks are assigned to more
appropriate employees w.r.t. their level of caution while performing the tasks.
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Abstract. This paper proposes a novel system to help in the design of
interior lighting. It is based on multi-objective optimization of the key
criteria involved in lighting design: the respect of a given target level
of illuminance, uniformity of lighting, and electrical energy saving. The
proposed solution integrates the 3D graphic software Blender, used to
reproduce the architectural space and to simulate the effect of illumina-
tion, and the genetic algorithm NSGA-II. This solution offers advantages
in design flexibility over previous related works.

Keywords: Lighting design · Genetic algorithm · Blender

1 Introduction

The design of interior lighting is the crucial and complex process of integrating
luminaries into the fabric of architecture [11,17]. The goal is to select the lighting
equipment and their placement in the interior environment, that result in a
comfortable and pleasant visual experience. The design process should take into
account several aspects, such as the type of occupants and the type of activities
in the given space, or the interior surface finishes and furnishings.

In addition, in the last decades increasing attention has been paid to the
issue of energy savings. In U.S. the energy consumed for lighting accounts for
about 30% of the total energy consumed by commercial buildings, and in the
European Union the yearly consumption is over 170 TWh. Therefore, the concept
of sustainable lighting design has become central in architectural strategies [23].

A well established aids offered by computational tools to the designer is by
photorealistic architectural rendering, simulating in computer graphics the effect
of a lighting solution on a model of the interior environment [15]. Mathematically,
this is the solution of the direct lighting problem. The drawback of direct lighting
tools is that, if the achieved illumination is not satisfactory, it is not easy to infer
which modifications to the current solution may lead to improvements. Very
likely, the final solution chosen by the designer over a collection of trials, will be
far from optimal.

As discussed in Sect. 2, a more effective assistance would be given by com-
putational tools implementing the inverse lighting problem: the determination
c© Springer International Publishing AG 2018
G. Nicosia et al. (Eds.): MOD 2017, LNCS 10710, pp. 222–233, 2018.
https://doi.org/10.1007/978-3-319-72926-8_19
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of the lighting equipment and their placement from specifications on the illu-
minance. This is the line of research undertaken by this paper. The inverse
lighting problem lacks reliable analytic solutions, therefore it is often formulated
as an optimization problem. The proposed methodology aims to optimize the
main common requirements of interior lighting design, chiefly the desired level of
average luminous intensity, the uniformity of light in the interior space, taking
into account energy consumption. Due to the clashing of these multiple factors,
the resulting problem is multi-objective in nature, as discusses in Sect. 3, where
previous proposals for interior lighting design are compared and contrasted with
the present one.

Our methodology, detailed in Sect. 4, is based on the combination of a
3D graphic software providing a rendering engine for direct illumination, and
genetic algorithms for solving the multi-objective inverse illumination optimiza-
tion. Results on a variety of interior environments are shown in Sect. 5.

2 The Inverse Lighting Problem

In a nutshell, lighting design for interior spaces is the process of integration of
artificial light sources in architectural complexes – be it industrial, public or
private [11]. Since the discovery of the electric light system by Thomas Edison
in 1879, lighting design has experienced several significant revolutions, such as
fluorescent lamps in 1938 and, more recently, solid-state lighting.

Traditionally, illumination design has been seen as a blend of art and practice,
where all the challenges are left to the creativity and the experience of the
design architect. Given the aesthetic nature of the task, lighting design may
seems difficult to formally model. Nevertheless, the design process has been
lately considered as a mathematical and physical problem to be solved with
optimization techniques.

The inverse lighting problem [2,14,20,24] is the problem of determining
potential light sources satisfying a set of given illumination requirements, for
a pre-defined interior space. Conversely, the direct lighting problem refers to the
computation of radiance distribution in an environment that is completely known
a priori, including its lighting parameters. In the inverse problem, lighting con-
figurations are inferred from the desired illumination requirements, taking into
account positions, kinds of luminaries, intensities and number of light sources.
Energy efficiency is often considered as well.

Given the many feasible solutions possible, the application of optimization
methods still allows the designer to have a degree of freedom and creativity in
the final choice of the lighting configuration, from one of the optimal solutions
obtained.
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2.1 Blender as Direct Engine

A system facing the inverse lighting problem must provide two fundamental
components:

• a three-dimensional environment able to accurately reproduce the architec-
tural space and its spectral reflectometric properties;

• a physical simulation platform for illumination calculation in sample points
of the architectural space.

Several approaches were considered in order to satisfy these requirements. Light-
solve [1] is an interactive dedicated environment for daylight design, with a
performance-driven decision support system. The system lacks a detailed archi-
tectural reproduction, and the inclusion of interior furniture is difficult to man-
age. In [10] the 3d models of building facades are obtained with the simple
modeling tool Google SketchUp, which offers a quick and easy way to outline
an architectural space, but resulting in a low level of realism. Conversely, the
popular software Radiance, widely used in the field of optimal lighting design
[9,15,19], consists of a sophisticated physically-correct rendering engine for illu-
mination calculation, and it allows architectural spaces reproduction at arbitrary
levels of detail. Nevertheless, it is a non-interactive system composed by a col-
lection of command-line programs, and all architectural specifications have to be
coded into configuration files. Attempts have been made to unify those extremes,
for example Painting With Light is an integration environment for Rhinoceros,
a commercial CAD software, and Radiance [4].

This paper investigates the adoption of the 3D graphic software Blender as
a unified solution to the two requirements stated above. Firstly, Blender is the
most comprehensive open-source computer graphic tool available, it is particu-
larly suitable for modeling architectural interiors, with the possibility of import-
ing components from CAD files. Secondly, Blender provides a physically-based
rendering engine, named Cycles, able to exhaustively evaluate lighting configura-
tions needed for solving the inverse lighting problem. Moreover, Blender embeds
a Python interpreter which can run scripts supplied by the user, in order to
extend its functionalities, and is known for its remarkable software integrity
[12]. Thanks to its intrinsic versatility, Blender has already been applied to a
number of different problems, including industrial applications [21].

3 Multi-objective Optimization

Interior illumination design involves multiple and often conflicting factors, there-
fore the resulting problem is multi-objective in nature. In contrast to a single-
optimization problem, where there is usually a single optimal solution, a multi-
objective optimization finds a set of solutions that satisfies all conflicting criteria.

Multi-objective optimization methods have been widely used in architectural
and lighting design, and plenty of them are nature-inspired. A particle swarm
optimization algorithm was developed to design curtain wall facades for office
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buildings and to achieves low energy consumption [22]. A study has adopted
multicriteria ant colony optimization to design paneled building envelopes, opti-
mizing lighting performance and cost criteria [25]. Harmony search algorithms
have been applied in the field of civil engineering several times, such as structural
design optimization [16], and residential buildings design with low-emission and
energy-efficient requirements [7].

But most of all, genetic algorithms have been proven to be successfully use-
ful in a variety of architectural tasks, including lighting. The GENE ARCH tool
[3,4] is a popular generative design system for energy-efficient and sustainable
architectural solutions, based on a Pareto genetic algorithm. In [26] genetic algo-
rithms and parametric modeling are combined to explore the morphology of a
dome, taking into account structural performance and daylight transmittance.
A micro-genetic algorithm is used in [10] to explore facade designs based on illu-
minance and glare criteria. A study has applied genetic programming to design
decorative wall of lights, and to create stained-glass window for large public
spaces [19].

For the problem in hand, we used two objectives treated as multi-objective,
and we deem this is the appropriate value for real cases. In fact we might have
more requirements for illumination design, for example in our experiments we
used as illumination quality both the deviation from a target value, and the
overall uniformity. However, it seems that requirements can always be unified
in two combined fitness only, which are significantly conflicting: one the sum
up to lighting quality, and a contrasting one that expresses the cost for achieving
quality.

3.1 Previous Related Works

There is a number of multi-objective genetic formulations of the inverse lighting
problem that shares similarities with the one here proposed. A variant of genetic
algorithm called generalized extremal optimization is used in [5] to minimize the
deviation of lighting to a desired target, and the energy consumption. Our algo-
rithm takes into account also the uniformity of lighting, but the main difference
is that the methodology proposed by Cassol et al. is customized to a rectangular
enclosure formed by surfaces that are perfectly diffuse, while our system is fully
flexible in the geometry of the interior space, and the properties of the surfaces.

In [27] one of the criteria to satisfy, named suitable office lighting, is derived by
interpolating subjective data obtained from psycho-visual tests, while the other
criteria is energy savings. The optimization is solved using genetic algorithm,
but it affects only the relative dimming of two fixed light sources.

In [18] a genetic algorithm was employed for simultaneously minimizing the
power consumption and the uniformity of the illuminance. Our algorithm takes
into account, in addition to the uniformity, the adherence of the average illumi-
nation to a given target. But the most important difference is that in Madias
et al. the location of the light sources is assumed constant, and only their dim-
ming is variable, while in our strategy there is full flexibility in light selection,
placement, and dimming.
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3.2 NSGA-II

The Non-dominated Sorting Genetic Algorithm II (NSGA-II), introduced by
Deb et al. [6], is an elitist multi-objective genetic algorithm that performs well
with real world problems, producing Pareto-optimal solutions to the optimiza-
tion problem. The evaluation of the population of solutions takes into account
the dominance and the crowding distance of the individuals. The first crite-
rion is used to sort the population into different fronts of non-dominated indi-
viduals, while the second criterion gives preference to solutions that are less
crowded. Non-dominated individuals belonging to a high-rank front with a larger
crowding distance are selected to reproduce more than others. The offspring are
generated through the genetic operators of crossover and mutation. The next-
generation population is then selected among the best individuals from both the
offspring and the parent population, ensuring elitism. The result of the algorithm
is the set of non-dominated solutions of the whole final population, namely the
Pareto front.

One of the key working principles of the genetic algorithm is the chromoso-
mal representation of a solution. The algorithm works with a coding of decision
variables, instead of the variable themselves, and choosing the right represen-
tation scheme is crucial to its performance [13]. The most traditional approach
is to code the decision variables in a binary string of fixed length, which is a
natural translation of real-life genetic chromosomes. Such strings are directly
manipulated by the genetic operators, crossover and mutation, to obtain a new
(and hopefully better) set of individuals. Another well established method is the
floating point representation of chromosomes, where each solution is coded as
a vector of floating point numbers, and crossover and mutation operators are
adapted to handle real parameter values.

For the algorithm presented in this paper, we developed a novel chromosomal
representation of solutions, specifically tailored for lighting design optimization.
Each individual represents a possible illumination configuration, and it is coded
as a vector of variable length containing a set of lamp specifications. A lamp
specification is the set of features describing the luminaries in the 3D environ-
ment, including position and orientation, intensity, color temperature of light,
and model of light fixture (wall or ceiling mount). Special operators of crossover
and mutation are implemented to handle this peculiar chromosomal representa-
tion. The design of such operators is, however, facilitated by the transparency
of the representation itself. Therefore, our approach is introduced especially to
deal with representation of complex structured individuals, and it ensures more
flexibility with respect to previous proposals.

3.3 Fitness Evaluation and Constraint Handling

The goal of the proposed model is to find the lighting configuration that best
satisfies the most common and compelling requirements faced by the lighting
designer. In accordance to what stated in the Introduction, there are goals
directly related with the quality of the lighting, and an additional goal of energy
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saving. We adopt as goal for the light quality the combination of two objec-
tives: achieving an illuminance level closest as possible to the given target, and
obtaining light distribution uniform enough in the given space. The evaluation
of light quality is performed on samplers S, horizontal surfaces distributed in
the interior space, captured by virtual cameras placed in Blender over each sam-
pler. The system allows two placement methods: one automatic that locate as
much as evenly as possible the sample in the space, or a manual placing, more
convenient in the case of complex spaces, or when key portions of the space,
that require the best quality, are known in advance. Compliance with the target
level of light, and degree of uniformity, are combined in a single fitness f1 of the
individual I, with the following computations:

t (I) =
1
M

M∑

i=0

|Si − T | (1)

u (I) =

√√√√ 1
M

M∑

i=0

(
Si − S

)2
(2)

f1 (I) = wt(I) + (1 − w)u(I) (3)

where Si is the illumination measured on the i-th sampler produced by the
lighting configuration of individual I, and M is the number of samplers S. Note
that treating t(I) and u(i) as separate fitness in multi-objective optimization
would be incorrect, because they are not conflicting. It can be easily verified in
the limit case of an individual Î that illuminates all samplers exactly at target
level T , from Eqs. (1) and (2) we obtain t(Î) = u(Î) = 0. The weight w control
the balance between the desired compliance with the target level of light and
uniformity, the default value used in all reported results is 0.5.

Energy consumption represents the second fitness and it is quantified as the
overall power consumption of the lamps (measured in Watt) divided by the
volume of the room:

f2 (I) =
∑N

i=0 Ci

V
(4)

where Ci is the amount of Watts consumed by the i-th lamp of the individual
I, V the volume of the interior environment in m3, and N the number of lamps
composing the solution.

In the presented problem of lighting optimization there are some conditions
on the design process to be satisfied, therefore a constraint handling method
has to be considered as well. The constrains in question concern positioning the
lamps inside the interior environment:

• a lamp must be placed inside the room and in contact with the room surface;
• two lamps can not be placed in the same location;
• a lamp should be mounted on the walls or on the ceiling in accordance with

its model of light fixture;
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• depending on the room design, there might be some areas where the lamp
placement is not allowed, for example in presence of windows, pillars, or
supporting beams.

The constraint specifications are provided to the system within the 3D model
of the environment itself. The walls and ceiling are structured as a discrete grid
of vertices, each representing a feasible position for a lamp. With this approach,
the set of constraints can be effortlessly reformulated for different experiments,
ensuring absolute flexibility in the design process.

Since the satisfaction of the above constraints is mandatory for the problem,
they can be referred as hard constraints. To handle them, we adopted a method
based on preserving feasibility of solutions. In this approach, two feasible solu-
tions, after crossover and mutation operation, will create two feasible offspring.
Nevertheless, it can happen that crossover produces an individual composed of
exactly the same lamps of another solution. In that case, the duplicated solution
is discarded.

4 The Proposed Strategy

The algorithm presented in this paper has been implemented in the form of a
Blender script, composed by 9 main Python modules. The simulation environ-
ment set-up is performed by the first group of modules, which rely on Blender’s
modeling features. The architectural interior scene of interest is represented
inside the computer graphics software by means of geometric meshes and mate-
rial shaders. The room structure (walls, floors, ceiling) and its furnishings are
defined by the meshes, while colors, textures and reflectivity properties of the
objects are specified through the shaders.

When evaluating the fitness of a solution, the 3D scene is enriched with
further supporting elements: the proposed lamps illuminating the environment,
and basic 3D structures employed to perform individual lighting measurements
at locations of interest. Using a sophisticated ray-tracing render engine, Blender
executes an accurate simulation of illumination, taking into account a variety of
environmental factors. The obtained rendered images are processed by the second
group of python modules to extract light intensity values and their distribution
across the interior space.

These outputs are used, in the third group of modules, by the genetic algo-
rithm to compute the actual fitness values of a solution. After evaluating the
entire current population and selecting the mating pool, the genetic operators
of crossover and mutation are applied to generate the offspring. The operators
are specifically implemented for the presented case problem, as mentioned in
Sect. 3.2, with the support of an evolutionary computation python framework
named DEAP [8], which allows to freely customize any component of the genetic
algorithm workflow.

At the end of the execution of the algorithm, the obtained result is the Pareto
front of the final population, namely the set of non-dominated solutions, each
one of them representing an optimal lighting configuration for the given interior
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Fig. 1. On the left the final populations and the Pareto fronts in the two case studies.
On the right the comparison of Pareto fronts for executions with 64 and 200 individuals.

environment. Optionally, a photorealistic rendering of the illuminated scene can
be generated.

5 Results

We evaluated empirically our lighting optimization algorithm on two case stud-
ies. As discussed in the Introduction, a satisfactory lighting quality is highly
dependent on the visual tasks that are to be performed in the interior space,
and on specific requirements of visual interest within the space. These specifica-
tions are passed to the model with the placement of the samplers and fixing the
target illumination level. All genetic parameters of the model have been tuned
in a preliminary phase on simpler and smaller rooms, and these settings did not
required further tweaking in the two case studies. The chosen case environments
are both complex architectural interiors, with irregular and non-convex planime-
tries, demonstrating that there are no limitations in the flexibility of application
of the presented system.

5.1 Art Gallery

The first case study is an art gallery environment hosting temporary exhibitions,
its dimensions are 24×12×4.5 m. The architecture of this room is characterized
by a wide open space with high ceilings, a supporting beam, and two load-bearing
columns placed in the middle of the room. A temporary wallboard is also placed
as support for hanging canvas painting, and other ground stands are used for
various sculpture exhibitions.

A total of 16 samplers have been used to evaluate illumination levels, placed
in key areas where light should create visual interest. An illumination target of
0.95 has been selected, since the overall lighting level needed for art exhibitions is
slightly lower than typical. The genetic algorithm has been run with a population
of 200 individuals, the final population after 30 generations is shown on the left in
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Fig. 2. Two renderings, a plan view and an interior view, of two different optimal light
configurations in the art gallery environment.

Fig. 1, where it is possible to appreciate how the solutions smoothly span a large
Pareto front of the two fitness. The right plot in Fig. 1 shows that the algorithm
with an initial population of 64 individuals and 20 generations only already
provides an acceptable approximation of the best Pareto front, obtained with
200 individuals. The Fig. 2 shows photorealistic renderings of two of the solutions
belonging to the Pareto front, the first gives more importance to the quality of
illumination, while the second privileges optimal energy consumption. A more
qualitative evaluation of the quality of light is given by the isophotes plotted
at 1 m level in the room, in Fig. 4 on the left. This case study demonstrates
how the presented algorithm can be a suitable tool to effectively design light
configuration for a frequently changing environment, a temporary art gallery,
with minimum effort from the user.

5.2 Office

The second case study is a typical open-space office, with dimensions of
29 × 13 × 3 m, composed by a reception area connected to an hallway lead-
ing to the main office area. The space is suitable for 20 work stations, and it also
includes a separated private area serving as meeting room or as lounge room.
The architecture is even more complicated by the presence of a curved wall in
the reception, a supporting column and a full window wall in the office area. A
total of 12 samples have been used, evenly spaced in the working area, and an
illumination target of 1.0 has been specified, since office work requires standard
lighting level. Apart from number of samples and illumination target, all param-
eters of the algorithm are the same as in the Art Gallery case. As in the previous
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Fig. 3. Two renderings, a plan view and an interior view, of two different optimal light
configurations in the open-space office.

Fig. 4. On the left plots of isophotes. On the right configurations of the solutions, dots
and a dashed circles represent lamps, crosses represent samplers.

case study, there is a wide and smooth coverage of the Pareto front. However, as
can be seen in Fig. 1, the Pareto front of this case study did not reach the same
optimal level in the illumination fitness as the previous one. This result can be
explained by the greater complexity of the planimetry of the office, a narrow
and long hallway near to a large spacious room appears to be more challenging
to illuminate uniformly. Nonetheless, the visual results are rather satisfying, as
shown in the photorealistic renderings of two optimal solutions in Fig. 3, the first



232 A. Plebe and M. Pavone

one preferring light quality and uniformity, the second one considering higher
level of energy saving.

The final results of both cases are single executions, it is not practical to
perform several runs with different seeds. The timing, on a iMac Intel Core i7
4 GHz, is of 377 min for the Art Gallery with 200 individuals and 30 generations,
and 305 min for the Office, in both cases 97% of the time is spent in the rendering
of light.

6 Conclusions

This paper proposed a system for inverse design of interior lighting based on
the integration between the 3D graphic software Blender and a multi-objective
genetic algorithm. The system takes as input an arbitrary interior environment,
including realistic furniture and materials, with the description of the lighting
requirements in terms of desired average illumination. It produces a Pareto front
of solutions minimizing the compliance with the target illumination level, the
uniformity of light distribution in the interior space, and the consumption of
electric power. The cases presented demonstrate the effectiveness of the system
in helping the process of lighting design in complex architectural interiors.
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Abstract. The problem of extracting a well conditioned submatrix from
any rectangular matrix (with e.g. normalized columns) has been a subject
of extensive research with applications to machine learning (rank reveal-
ing factorization, sparse solutions to least squares regression problems,
clustering, · · · ), optimisation (low stretch spanning trees, · · · ), and is also
connected with problems in functional and harmonic analysis (Bourgain-
Tzafriri restricted invertibility problem).

In this paper, we provide a deterministic algorithm which extracts a
submatrix XS from any matrix X with guaranteed individual lower and
upper bounds on each singular value of XS . We are also able to deduce
a slightly weaker (up to a log) version of the Bourgain-Tzafriri theorem
as an immediate side result.

We end the paper with a description of how our method applies to
the analysis of a large data set and how its numerical efficiency compares
with the method of Spieman and Srivastava.

Keywords: Bourgain Tzafriri theorem · Restricted invertibility
Column selection problems

1 Introduction

Let X ∈ R
n×p be a matrix such that all columns of X have unit euclidean �2-

norm. We denote by ‖x‖2 the �2-norm of a vector x and by ‖X‖ (resp. ‖X‖F ) the
associated operator norm (resp. the Frobenius norm). Let XT denote the sub-
matrix of X obtained by extracting the columns of X indexed by T ⊂ {1, . . . , p}.
For any real symmetric matrix A, let λk(A) denote the k-th eigenvalue of A, and
we order the eigenvalues as λ1(A) ≥ λ2(A) ≥ · · · . We also write λmin(A) (resp.
λmax(A)) for the smallest (resp. largest) eigenvalue of A. We finally write |S| for
the size of a set S.

The problem of well conditioned column selection that we consider here con-
sists in finding the largest subset of columns of X such that the corresponding
submatrix has all singular values in a prescribed interval [1 − ε, 1 + ε]. The one-
sided problem of finding the largest possible T such that λmin(Xt

TXT ) ≥ 1− ε is
c© Springer International Publishing AG 2018
G. Nicosia et al. (Eds.): MOD 2017, LNCS 10710, pp. 234–243, 2018.
https://doi.org/10.1007/978-3-319-72926-8_20
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called the Restricted Invertibility Problem and has a long history starting with
the seminal work of Bourgain and Tzafriri [3]. Applications of such results are
well known in the domain of harmonic analysis [3]. The study of the condition
number is also a subject of extensive study in statistics and signal processing [15].

In data science and machine learning applications, the matrix X represents
n objects that are described using p features. The column subset selection prob-
lem corresponds to choosing the most relevant features among the available ones
and is a nice alternative to PCA analysis, a very highly popular method which
changes the representation basis without constraining the new features to have
an interpretable meaning with respect to the data. An alternative to PCA is
the well known Sparse-PCA [6] method. However, Sparse-PCA relies on solv-
ing Semi-Definite Programming problems and therefore may not be scalable to
high dimension problems such as encountered in “Big Data”-like settings. On
the other hand, several methods have been proposed in the literature for col-
umn selection; see for instance [2,4,5], etc., and the references therein. In these
works, the problem considered is the one of approximating X in a given norm
and the methods. Moreover, the methods often involve randomisation. Greedy
approaches seem to be suitable for large dimensional problem such as described
in [7].

The goal of the present work is to propose a simple greedy approach to
the column subset selection problem with the objective to extract independent
features. The constraint given before hand is the one of selecting the columns
in such a way that the smallest singular value of the extracted matrix is above
a pre-specified level. This problem is intimately related to the Bourgain-Tzafriri
restricted invertibility problem [3]. Our approach is completely elementary and
readily implementable. As a side feature, our algorithm allows at once to also
recover the abstract Bourgain-Tzafriri bound up to a log term in the number of
selected columns. Our main results are based on two simple ingredients:

1. Choosing recursively y ∈ V, the set of remaining columns of X, satisfying

Q(y) ≤ 1
|V|

∑

x∈V
Q(x),

where Q is a relevant quantity depending on the previous chosen vectors;
2. Analysing the steps using a well-known equation (sometimes called secular

equation) whose roots are the eigenvalues of a square matrix after appending
a row and a line.

1.1 Historical Background

Concerning the Restricted Invertibility problem, Bourgain and Tzafriri [3]
obtained the following result for square matrices:

Theorem 1.1 ([3]). Given a p×p matrix X whose columns have unit �2-norm,
there exists T ⊂ {1, . . . , p} with |T | ≥ d

p

‖X‖2 such that C ≤ λmin(Xt
TXT ), where

d and C are absolute constants.
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See also [14] for a simpler proof. Vershynin [17] generalized Bourgain and
Tzafriri’s result to the case of rectangular matrices and the estimate of |T | was
improved as follows.

Theorem 1.2 ([17]). Given a n × p matrix X and letting X̃ be the matrix
obtained from X by �2-normalizing its columns. Then, for any ε ∈ (0, 1), there
exists T ⊂ {1, . . . , p} with

|T | ≥ (1 − ε)
‖X‖2F
‖X‖2

such that C1(ε) ≤ λmin(X̃t
T X̃T ) ≤ λmax(X̃t

T X̃T ) ≤ C2(ε).

Recently, Spielman and Srivastava proposed in [13] a deterministic construc-
tion of T which allows them to obtain the following result.

Theorem 1.3 ([13]). Let X be a p × p matrix and ε ∈ (0, 1). Then there exists

T ⊂ {1, . . . , p} with |T | ≥ (1 − ε)2
‖X‖2F
‖X‖2 such that ε2

‖X‖2
p

≤ λmin(Xt
TXT ).

The technique of proof relies on new constructions and inequalities which are
thoroughly explained in the Bourbaki seminar of Naor [10]. Using these tech-
niques, Youssef [18] improved Vershynin’s result as:

Theorem 1.4 ([18]). Given a n × p matrix X and letting X̃ be the matrix
obtained from X by �2-normalizing its columns. Then, for any ε ∈ (0, 1), there

exists T ⊂ {1, . . . , p} with |T | ≥ ε2

9
‖X‖2F
‖X‖2 such that 1 − ε ≤ λmin(X̃t

T X̃T ) ≤
λmax(X̃t

T X̃T ) ≤ 1 + ε.

1.2 Our Contribution

We provide a deterministic algorithm that extracts a submatrix Yr from the
matrix X with guaranteed individual lower and upper bounds on each singular
value of Yr.

Consider the set of vectors V0 = {x1, . . . , xp}, where the xi are the columns
of X. At step r = 1, choose y1 ∈ V0. By induction, let us be given y1, . . . , yr at
step r. Let Yr denote the matrix whose columns are y1, . . . , yr and let vk be an
unit eigenvector of Y t

r Yr associated to λk,r := λk(Y t
r Yr).

We say that u(·, ·) satisfies the hypothesis (H) if u satisfies for r ≥ 1:

0 ≤ u(k, r) ≤ u(k + 1, r + 1), k ∈ {0, · · · , r}; (1.1)
0 ≤ u(k + 1, r) ≤ u(1, r) < u(0, r) k ∈ {1, · · · , r − 1}. (1.2)

We now introduce the “potential” associated to u(·, ·) satisfying (H):

Qr(x) =
r∑

k=1

(vt
kY

t
r x)2

u(0, r) − u(k, r)
, x ∈ V0.
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We then choose yr+1 ∈ Vr := {x1, . . . , xp} \ {y1, . . . , yr} so that

Qr(yr+1) ≤ 1
p − r

∑

x∈Vr

Qr(x) =
1

p − r

r∑

k=1

∑
x∈Vr

(vt
kY

t
r x)2

u(0, r) − u(k, r)
. (1.3)

The following result, for which we propose a short and elementary proof,
gives a control on all singular values in the column selection problem.

Theorem 1.5. Let u satisfies Hypothesis (H). Set R ≤ p/2. Then, we can
extract from X some submatrices Yr such that for all r and k with 1 ≤ k ≤ r ≤ R,
we have

1 − δR u(r − k + 1, r)
√

λ1,r ≤ λk,r ≤ 1 + δR u(k, r)
√

λ1,r, (1.4)

where

δR =

√√√√2‖X‖2
p

sup
1≤r≤R

r∑

k=1

u(0, r)−1

u(0, r) − u(k, r)
. (1.5)

In particular,

λ1,r ≤ 1 + 2δR u(1, r).

2 Proof of Theorem 1.5

2.1 Suitable Choice of the Extracted Vectors

Consider the set of vectors V0 = {x1, . . . , xp}. At step 1, choose y1 ∈ V0. By
induction, let us be given y1, . . . , yr at step r. Let Yr denote the matrix whose
columns are y1, . . . , yr and let vk be an unit eigenvector of Y t

r Yr associated to
λk,r := λk(Y t

r Yr). Let us choose yr+1 ∈ Vr := {x1, . . . , xp}\{y1, . . . , yr} so that
r∑

k=1

(vt
kY

t
r yr+1)2

u(0, r) − u(k, r)
≤ 1

p−r

∑
x∈Vr

∑r
k=1

(vt
kY

t
r x)2

u(0,r)−u(k,r)

= 1
p−r

∑r
k=1

∑
x∈Vr

(vt
kY

t
r x)2

u(0,r)−u(k,r) . (2.6)

Lemma 2.1. For all r ≥ 1, yr+1 satisfies
r∑

k=1

(vt
kY

t
r yr+1)2

u(0, r) − u(k, r)
≤ λ1,r‖X‖2

p − r
sup

1≤j≤r

j∑

k=1

1
u(0, j) − u(k, j)

.

Proof. Let Xr be the matrix whose columns are the x ∈ Vr, i.e. XrX
t
r =∑

x∈Vr
xxt. Then

∑

x∈Vr

(vt
kY

t
r x)2 = Tr

(
Yrvkv

t
kY

t
r XrX

t
r

) ≤ Tr(Yrvkv
t
kY

t
r )‖XrX

t
r‖ ≤ λk,r‖X‖2,

which yields the conclusion by plugging in into (2.6) since λk,r ≤ λ1,r.

In practice, the next yr+1 can be chosen by selecting random candidates
among the remaining columns.



238 S. Chrétien and S. Darses

2.2 Controlling the Individual Eigenvalues

It is clear that (1.4) holds for r = 1 since then, 1 is the only singular value
because the columns are supposed to be normalized.

Assume the induction hypothesis (Hr): for all k with 1 ≤ k ≤ r < R, (1.4)
holds.

Let us then show that (Hr+1) holds. By Cauchy interlacing theorem, we have

λk+1,r+1 ≤ λk,r, 1 ≤ k ≤ r

λk+1,r+1 ≥ λk+1,r, 0 ≤ k ≤ r − 1.

We then deduce, due to the induction hypothesis (Hr) and Assumption (H),

λk+1,r+1 ≤ 1 + δRu(k, r)
√

λ1,r ≤ 1 + δRu(k + 1, r + 1)
√

λ1,r+1, 1 ≤ k ≤ r,

(2.7)
λk+1,r+1 ≥ 1 − δRu(r − k, r)

√
λ1,r

≥ 1 − δRu(r + 1 − (k + 1) + 1, r + 1)
√

λ1,r+1, 0 ≤ k ≤ r − 1. (2.8)

It remains to obtain the upper estimate for λ1,r+1 and the lower one for
λr+1,r+1. We write

Y t
r+1Yr+1 =

[
yt
r+1

Y t
r

] [
yr+1 Yr

]
=

[
1 yt

r+1Yr

Y t
r yr+1 Y t

r Yr

]
, (2.9)

and it is well known that the eigenvalues of Y t
r+1Yr+1 are the zeros of the secular

equation:

q(λ) := 1 − λ +
r∑

k=1

(vt
kY

t
r yr+1)2

λ − λk,r
= 0. (2.10)

We first estimate λ1,r+1 which is the greatest zero of q, and assume for
contradiction that

λ1,r+1 > 1 + δRu(0, r)
√

λ1,r. (2.11)

From (Hr), we then obtain that for λ ≥ 1 + δRu(0, r)
√

λ1,r,

q(λ) ≤ 1 − λ +
1

δR
√

λ1,r

r∑

k=1

(vt
kY

t
r yr+1)2

u(0, r) − u(k, r)
:= g(λ).

Let λ0 be the zero of g. We have g(λ1,r+1) ≥ q(λ1,r+1) = 0 = g(λ0). But g is
decreasing, so

λ1,r+1 ≤ λ0 = 1 +
1

δR
√

λ1,r

r∑

k=1

(vt
kY

t
r yr+1)2

u(0, r) − u(k, r)
.



An Elementary Approach to the Problem of Column Selection 239

Thus, using Lemma 2.1, the equality (1.5) and noting that r ≤ p/2, we can
write:

λ1,r+1 ≤ 1 +
2
δR

√
λ1,r‖X‖2

p

r∑

k=1

1
u(0, r) − u(k, r)

≤ 1 + δRu(0, r)
√

λ1,r,

(2.12)

which yields a contradiction with the inequality (2.11). Thus, we have

λ1,r+1 ≤ 1 + δRu(0, r)
√

λ1,r ≤ 1 + δRu(1, r + 1)
√

λ1,r+1. (2.13)

This shows that the upper bound in (Hr+1) holds.
Finally, to estimate λr+1,r+1 which is the smallest zero of q, we write

q(λ) ≥ 1 − λ − 1
δR

√
λ1,r

r∑

k=1

(vt
kY

t
r yr+1)2

u(0, r) − u(k, r)
:= g̃(λ).

By means of the same reasoning as above, we show that the lower bound in
(Hr+1) holds.

2.3 Controlling the Greatest Eigenvalue

Set μ1,r = λ1,r − 1 ≥ 0.
Since u(1, r) ≤ u(1, R) ≤ u(0, R), we can write

μ1,r ≤ δR
√

μ1,r + 1.

Hence, using that x ≤ A
√

1 + x implies x ≤ 2A, we reach the upper estimate
for λ1,r.

This concludes the proof of Theorem 1.5.

2.4 Two Simple Examples

Let us choose u(k, r) = 2r−k√
r

. Using (r + 1)(2r − k)2 ≤ r(2r + 1 − k)2 and
(r + 1)(r + k)2 ≤ r(r + 1 + k)2, we thus deduce that u satisfies Hypothesis
(H). Applying Theorem 1.5, we obtain that we can extract a submatrix with R
columns and λ1,R ≤ 1 + ε, provided that

R log R ≤ ε2

8
p

‖X‖2 ,

which is a slightly weaker bound than the one known from [3].
One can also check that u(k, r) =

√
r − k satisfies Hypothesis (H) and yields

a similar bound.
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Algorithm 1. Greedy column selection
1: procedure Greedy column selection
2: Set r = 1 and choose a random singleton T = {j(1)} ⊂ {1, . . . , p}. Fix ε > 0.

Fix R such that R log(R) ≤ ε2p/(8‖X‖2). Set r = 1.
3: while r ≤ R do
4: Choose yr+1 ∈ Vr := {x1, . . . , xp} \ {y1, . . . , yr} so that

r∑

k=1

(vt
kY t

r yr+1)
2

u(0, r) − u(k, r)
≤ 1

p − r

r∑

k=1

∑
x∈Vr

(vt
kY t

r x)2

u(0, r) − u(k, r)
. (3.14)

and let j(r+1) denote the index of the selected column.
5: Set T = T ∪ {j(r+1)}.
6: r ← r + 1

3 Computational Considerations

3.1 A Simple Algorithm

The method studied in this paper can be summarised as follows.
Finding a column yr+1 = xj(r+1) in the matrix X that satisfies (3.14) may

take some time if we scan through the set of columns of X at each iteration of
the method. Yet another option is to draw new candidates uniformly at random.
Another idea is to draw new candidates among the remaining columns in X
with respect to a probability distribution that could be taken proportional to
the maximum absolute scalar product with the vectors already selected at the
previous iterations. This approach is reminiscent of the K-means++ method
for clustering [1]. In practice, we observed that uniform sampling was often the
most efficient solution, but the non-uniform sampling approach based on absolute
scalar products may be relevant for very difficult problems with extremely many
almost co-linear columns.

3.2 Scalability vs Accuracy

The method described in the present paper is constructive and allows to extract
a set of almost orthogonal columns from any given matrix X ∈ R

n×p. The
problem of extracting highly non collinear columns from a data matrix is a
crucial in many applications such as

– Machine Learning: rank revealing factorization, sparse solutions to least
squares regression problems, clustering, · · ·

– Optimisation: low stretch spanning trees, sketching for SemiDefinite program-
ming, · · ·
The problem of computing such extraction in polynomial time has recently

been addressed in a series of impressive papers [10,13,16,18] . . .
Different criteria have also been proposed in the literature such as the one of

maximizing the volume of the polytope generated by the extracted columns such
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as in the very interesting [11,12]. However, volume maximisation was proved to
be NP-hard and one usually resort to randomized algorithms. Notice that in
[11], an interesting variant of the Bourgain-Tzafriri theorem is obtained and a
quick proof for this theorem is provided.

From the computational viewpoint, the approach of [13] needs to perform
recursive invertions of intermediate matrices. This results in a very difficult com-
putational burden, especially when applied to Big Data examples. Our approach
avoids this difficulty while maintaining a remarkable accuracy when compared
against [13] for the Bourgain-Tzafriri problem, since we only loose a log factor
of R for the gain of a much better scalability.

3.3 Extracting Representative Images from a Dataset

Extracting representative objects in a dataset is of great importance in data
analytics. It can be used to detect outliers or clusters. In this example, we applied
our technique to the Yale Faces database1 shown in Fig. 1. In order to cluster the
set of images, we performed a preliminary scattering transform [8,9] of the images
in the dataset. We then reshaped the resulting scattering transform matrices into
column vectors that we further concatenated into a single matrix X. We selected
11 faces using our column selection algorithm and we obtained the result shown
in Fig. 2. The total time for this computation was .22 s.

Fig. 1. Faces from the Yale database

We then used the method for extracting representative images from a large
data set of 10000 images. We applied Mallat’s scattering transform to each of
1 http://www.cad.zju.edu.cn/home/dengcai/Data/Yale/Yale 64x64.mat.

http://www.cad.zju.edu.cn/home/dengcai/Data/Yale/Yale_64x64.mat
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Fig. 2. Faces selected by our algorithm

these images and then ran our method on the resulting matrix in the same
manner as in the previous subsection. Our method took less that 15 min in order
to extract 20 columns. In comparison, we stopped the algorithm implementing
the method of Spielman and Srivastava before convergence, after several hours
of computations.

4 Conclusion

In the present paper, we presented and analysed an efficient column extraction
method for feature extraction with a view towards Big Data analytics. We dis-
cussed computational experiments which confirm that the method has practical
advantages over existing methods. Our method is fully deterministic in nature
and as such, is different from most existing alternative approaches. Randomisa-
tion can be used in order to accelerate the method.

We leave the following question open for further research: does there exist a
function u satisfying Hypothesis (H) and allowing to reach the optimal bound
known in the Bourgain Tzafriri theorem [3] via our new algorithm?
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Abstract. Many optimization techniques have been developed in the
last decade to include the unlabeled patterns in the Support Vector
Machines formulation. Two broad strategies are followed: continuous and
combinatorial. The approach presented in this paper belongs to the latter
family and is especially suitable when a fair estimation of the propor-
tion of positive and negative samples is available. Our method is very
simple and requires a very light parameter selection. Experiments on
both artificial and real-world datasets have been carried out, proving the
effectiveness and the efficiency of the proposed algorithm.

Keywords: Semi-supervised learning · Support vector machines
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1 Introduction and Related Work

1.1 The Semi-supervised Scenario

The process of manually labeling instances, essential to a supervised classifier,
can be expensive and time-consuming. In such a scenario the semi-supervised
approach, which makes use of the unlabeled patterns when building the decision
function, is a more appealing choice. Indeed, large amounts of unlabeled samples
often can be easily obtained. Semi-supervised support vector machines, (S3VMs)
extend the well-known SVMs classifiers [17] to the semi-supervised scenario. In
addition to using the labeled part of the training set to maximize the margin
between classes, these classifiers take advantage of the unlabeled patterns by
forcing the decision function to traverse through low density areas. This approach
implements the so called cluster assumption, which states that samples that are
close each other are likely to have the same label.

Let us consider the linear binary classification problem. We are given � labeled
samples, {xi, yi}�

i=1 and a set of u unlabeled ones, {xi}n
i=�+1, where each xi is

a d-dimensional vector, yi ∈ {−1, 1} and n = � + u. When dealing with S3VMs
the objective function one needs to optimize depends on both the separation
hyperplane parameters (w, b) and the unknown labels yn

i=�+1,

P (w, b, yn
i=l+1) :=

1
2
||w||2 + C

�∑

i=1

V (yi, αi) + C∗
n∑

i=�+1

V (yi, αi), (1)

c© Springer International Publishing AG 2018
G. Nicosia et al. (Eds.): MOD 2017, LNCS 10710, pp. 244–254, 2018.
https://doi.org/10.1007/978-3-319-72926-8_21
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where αi = wTxi + b are the linear predictions. The Hinge loss

V (yi, αi) = max{0, 1 − αiyi}p (2)

with p usually chosen as 1 or 2 (from now on, we will assume p = 1) is a
common choice for V , while the hyper-parameters C and C∗ are used to give
more importance respectively to the labeled or the unlabeled error term. A
balance constraint is frequently added to the formulation mainly to avoid trivial
solutions (with all the examples being classified as belonging to a single class), in
particular when the number of labeled examples is significantly smaller than that
of the unlabeled ones. This is achieved by letting the user specify a desired ratio
r of unlabeled samples to be classified as positive, which leads to the following
constraint:

1
u

n∑

i=�+1

max{yi, 0} = r. (3)

The above equation is equivalent to

1
u

n∑

i=�+1

yi = 2r − 1, (4)

as explained in [5].

1.2 Continuous vs Combinatorial Approach

The optimization techniques that have been recently developed to optimize (1)
follow one of two broad strategies, the continuous and the combinatorial ones.
The former approach gets rid of the variables yn

i=�+1 by replacing them with the
expression of their prediction sgn(wTxi + b), obtaining a non convex function
that depends only on (w, b): the non convexity (that violates one of the nicest
properties of supervised SVMs) is due to the unlabeled part of the objective;
this is what the continuous approach pays by removing the dependency of P
on yn

i=�+1. Another drawback of substituting the unknown labels with their pre-
dictions is that of getting a non linear balance constraint: a common approach
to tackle this issue is that of working with a linear relaxation of the constraint
(see [3]). Due to the loss of convexity, as pointed out in [5], off-the-shelf dual
based SVM software cannot be used directly to optimize (1): for this reason, non
linear decision functions are often obtained by implementing the kernel trick on
the primal formulation, as in [3,8]. An exception to this common practice is [6].
Further details on this family of approaches can be found in [5].

Let us switch to the combinatorial approach, which our method belongs to.
Once the unknown labels yn

i=�+1 are fixed, what we get is a standard SVM
formulation. Defining

I(yn
i=�+1) := min

w,b
P (w, b, yn

i=l+1), (5)
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combinatorial approaches aim to minimize I(yn
i=�+1) over the set of binary vari-

ables yn
i=�+1. The same applies to the non linear case, where w =

∑n
i=1 ciyixi

and the real variable c to be optimized is that of the Lagrangian dual of P .
The first S3VM implementation (S3VMlight, [10]) belongs to this family of strate-
gies. It alternates minimizations in (w, b) obtained by training a standard SVM
on the current labeled set at disposal and a heuristic labeling process of the
unlabeled set, in which the ru unlabeled samples xi with highest wTxi are
classified as positive (so to satisfy the balance constraint), while the others are
assigned to the negative class. An additional label switching phase is carried out
to improve the value of the objective function: since only two labels per iteration
are switched, the overall training process is very slow. The combinatorial app-
roach itself is known to be intractable when u is large, due to the huge number
of possible labeling combinations of the unlabeled patterns. Among others, we
mention [4,7,15] as methods belonging to the combinatorial family.

An interesting discussion on the scenarios where the use of unlabeled sam-
ples can be unsafe can be found in [12]. Some real-world applications of semi-
supervised learning and particularly of S3VMs are [11] (spoken dialog systems
evaluation), [18] (satellite image classification) and [16] (health-care).

2 Lagrangian S3VM

2.1 Dealing with Hyper-parameters

The labeled samples which a classifier is trained on are vital when tuning the
hyper-parameters of its learning algorithm. When only a few patterns in a
dataset have a label, cross-validation techniques are likely to pick bad hyper-
parameter settings, due to the very small size of the validation sets that can be
built. Thus, the more hyper-parameters a method needs to be fine-tuned, the
less robust the method is. In addition, even with a very fast decision function
learning process, the initial hyper-parameter tuning phase could be very time-
consuming. In Sect. 2.4 we will put emphasis on the way our algorithm tackles
these issues.

2.2 Balance Constraint as a Guide

In many classification scenarios, a reasonable confidence on the percentage of
examples to be classified as positive (r in the literature) is available. Let us think
about a medical procedure in which we have to distinguish between patients who
are likely to contract a particular disease and those who are not: the overall pop-
ulation incidence of a disease is often well-known or can be fairly well estimated
from historical data. Moreover, semi-supervised approaches are often used when
a large amount of unlabeled data is available: this renders our estimation of r
more likely to be a fair approximation of the true ratio of positive samples. This
insight can be usefully plugged in a S3VM by means of the balance constraint.
Our method carefully takes advantage of this information to draw the separating
hyperplane.
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2.3 Inductive vs Transductive S3VMs

S3VMs have been introduced by [17] as Transductive SVMs. This definition was
due to the fact that the unlabeled samples that were used alongside the labeled
ones to draw the separating hyperplane were the same the authors would like
to have labeled. Conversely, the approach of building a classification rule on
the entire input space (which is the classical approach of SVMs) is known in
the literature as inductive. In [5] the authors elaborate on this distinction and
carry out an empirical analysis. As we will point out in Sect. 3, our experimental
setting refers to the inductive approach.

2.4 Method Details

The method we present here is a decomposition algorithm that uses a stan-
dard SVM as subroutine. For the sake of simplicity, we are going to use linear
classification to elaborate on the algorithm’s idea. The extension to the kernel
formulation is straightforward: the presented method needs to be aware only of
the distances between the unlabeled samples and the separating hyperplane.

At first, we initialize the decision function, that is, optimizing (1) in (w, b)
using the labeled part of the training set. At each iteration we give a label to the
unlabeled patterns {xi}n

i=�+1 by taking into account both the current decision
function and the balance constraint, that is handled by a Lagrangian technique1;
this labeling process is extremely fast. The inner SVM is trained again on the
extended labeled set, comprised of the patterns in {xi}�

i=1 and those just labeled
by the Lagrangian heuristic; the weight C∗ is increased at each iteration, until
it is assigned the same value of C. This global optimization approach, known as
annealing, is often used in the literature (see [5,8]) and aims at giving increasing
importance to the (initially) unlabeled patterns, as the learning process evolves.

Let us elaborate on how the labeling Lagrangian heuristic works. Once (w, b)
have been computed, the variable part of (1) remains

U(yn
i=l+1) :=

n∑

i=�+1

max{0, 1 − yi(wTxi + b)}, (6)

with the balance constraint (4). Then, the idea is to relax the constraint by
means of the Lagrangian multiplier λ and solve the corresponding dual problem,
which takes the form:

max
λ

min
yn
i=l+1

L(λ, yn
i=l+1) :=

max
λ

min
yn
i=l+1

n∑

i=�+1

max{0, 1−αiyi} + λ(
n∑

i=�+1

yi−β),

1 The idea of employing Lagrangian techniques to relax the balance constraint is
proposed also in [15], but for a totally different formulation.
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where αi is the prediction wTxi + b and the constant term β is defined as
(2r − 1)u. We can write, equivalently:

L(λ, yn
i=l+1) =

n∑

i=�+1

max{λyi, 1 − αiyi + λyi}
︸ ︷︷ ︸

:=F (λ,y)

−λβ. (7)

If we fix the Lagrange multiplier to a starting value λ0, the optimization
problem becomes separable in the y variables and each component of y∗ :=
arg miny F (λ0,y) can be independently computed:

y∗
i = arg min

yi∈{−1,+1}
max {0, 1−αiyi} + λ0yi, i = l + 1 . . . n. (8)

We can then plug y∗ in (7) and update the multiplier value. To this aim, it can
be easily shown that

L(λ) = min
yn
i=l+1

L(λ, yn
i=l+1) (9)

is a concave function of λ: we can take advantage of this property to obtain an
updated value λnext for the subsequent iteration of the Lagrangian heuristic. This
iterative approach, called cutting plane (see [1]), is a typical non-differentiable
optimization method used to solve the Lagrangian dual. Let (λa,ya) and (λb,yb)
be a pair of dual solutions, such that

n∑

i=�+1

ya
i − β < 0 and

n∑

i=�+1

yb
i − β > 0, (10)

and λnext the multiplier value for which

L(λnext,ya) = L(λnext,yb). (11)

Then, let ynext be the labeling obtained by plugging λnext in (8): we can now
set ya = ynext or yb = ynext according to the sign of the constraint violation∑n

i=�+1 ynext
i −β, and iterate the process until convergence. During the very first

iterations of the heuristic, when (λa,ya) and (λb,yb) are not yet available, the
multiplier λ is updated (coherently with the constraint violation) as prescribed
by the sub-gradient method (see [1]). When the Lagrangian dual is polyhedral
(the point-wise minimum of a finite number of affine functions), as it happens
in our case, the cutting plane method terminates finitely (see Proposition 6.3.2
of [1]).

As described above, the Lagrangian heuristic returns with a labeling yn
i=l+1

when the balance constraint is exactly satisfied. During the subsequent annealing
iteration of Lagrangian-S3VM a new separation function is computed, taking into
account the enhanced labeled set, as described above. Algorithm 1 reports the
pseudo-code of our semi-supervised method; a few snapshots of the evolution of
the decision function built by the method are depicted in Fig. 1.
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Algorithm 1. Lagrangian-S3VM

Input: {xi, yi}n
i=1, r, a SVM and an annealing rule

C ← cross-validate the SVM on the labeled set {xi, yi}�
i=1

C∗ ← a fraction of C
H ← separating function obtained by SVM on {xi, yi}�

i=1

while C∗ ≤ C do

α ← distances of {xi}n
i=�+1 from H

yn
i=l+1 ← labeling computed wrt α and r as in (6)–(11)

H ← separating function obtained by SVM on the enhanced labeled set,
with C∗ weighting the patterns which initially had no label
C∗ ← update C∗ according to the annealing rule

end
return the trained classifier

(a) (b) (c) (d)

Fig. 1. The snapshots of some selected annealing iterations of Lagrangian-S3VM. The
plot (a) shows the contours of the surface that separates the two labeled examples (the
blue big circle and the red big triangle). After this initialization the unlabeled patterns
are taken into account increasingly, and the decision function evolves until it reaches
a balanced solution in (d). (Color figure online)

Let us explain more in detail our parameter selection strategy. Almost every-
where in the literature all of the SVM parameters (typically, C and the ker-
nel parameter γ) are validated in addition to C∗. All the latter need to be
fine tuned by the experimenter (their choice widely influences the accuracy of
the S3VM approach), resulting in a very time-consuming validation phase. Our
choice is totally different: our implementation does nothing but validate the inter-
nal supervised solver’s parameter C (γ is kept fixed) on the (usually very limited)
labeled set. This is done to initialize the SVM and is a very quick process; in
addition, the experimenter interaction is not required, being an automated step.
Finally, C∗ is handled by a standard annealing sequence.

The choice of r, which is the only actual parameter of our method, comes,
as is common in the literature, from the knowledge of the problem domain. In
addition, differently from C, C∗ and γ, this parameter’s value has a clear and
intelligible meaning and can be easily used by the experimenter to feed our
algorithm. In the next section we will show how C and C∗ have been chosen to
carry out our experiments.



250 F. Bagattini et al.

3 Experiments

In this Section we introduce our experimental setup and show the performance of
the proposed algorithm, in terms of classification accuracy and execution time.

3.1 Algorithms

We have compared our method with a standard SVM classifier and two semi-
supervised ones. In particular, we used the Python sklearn implementation of
SVM (based on the LIBSVM library, [2]) as supervised method, while we chose
QN-S3VM ([8]) and Well-SVM ([13]) as semi-supervised ones; the latter are the
most accurate S3VM implementations available on-line. It is worth to notice
that both these implementations belong to the continuous family: in fact, in
the last decade, combinatorial methods have been increasingly put aside, due
to their poor efficiency and bad scalability. One of the aims of this paper is to
show the potential efficiency of combinatorial methods, through a smart use of
optimization techniques and heuristics.

3.2 Datasets

To assess its effectiveness and efficiency, we have tested our method with three
artificial datasets, 2moons (Fig. 1 shows an instance), 2gauss and 4gauss (see
[8] for construction details) and two real-world datasets, usps ([9]) and coil20
([14]). For each dataset we rescaled the features such that each value lies in [0, 1];
for coil20, we also rescaled each picture to 20 × 20 pixels. It can be noticed that
many classification tasks can be derived from each real-world dataset: we denote
with (i,j) the binary classification task of distinguish between object i and
j (pictures of everyday objects in coil20 and handwritten digits in usps); we
have taken into account those objects that are more difficult to recognize (e.g.,
pictures of very similar toy cars from coil20).

3.3 Model Selection

The setting in which we have compared our algorithm with the other solvers
is the following: for the inner SVM model we have chosen a Gaussian kernel
K(x,x′) = exp(−γ||x − x′||2)), and the supervised solver is internally preset
(using the labeled patterns) by cross-validating over a very small set of values
for C, while the kernel parameter γ is kept fixed at 1/d, where d is the number of
features. More in detail, with reference to Algorithm 1, C is selected from {2i, i ∈
[0, 5]} (line 2) and C∗ take values 1

10C, 1
4C, 1

2C,C, resulting in four annealing
iterations (lines 3, 5 and 9). Table 1 recaps how the hyper-parameters’ values have
been chosen for (all) our experiments. Dealing with the semi-supervised solvers,
we refer to the respective papers for a deeper look to the parameter selection
strategy, which we followed in our tests. For all our experiments we used a 3-fold
cross-validation approach to validate algorithms’ parameters. The only exception
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is the moons dataset: when l ≤ 10, we used C = 1 for Lagrangian-S3VM and
default values for the other solvers. It is worth to notice, as already mentioned
above, that our validation process is very light; in fact, we only have to choose a
value for C to initialize the inner SVM classifier. Differently from the literature,
where the hyper-parameters are selected by cross-validating the (parameters of
the) whole semi-supervised method, we just validate the inner supervised routine
to pick a starting value for C, selecting it from a small set. Nevertheless, in order
to keep the comparison as fair as possible, all the execution time analyses we
have carried out do not take into account the model selection phase, but only
the training steps.

For what concerns r, it has been set (for all the compared algorithms) to the
ratio of positive samples in the whole dataset. We are thus assuming to have a
good confidence on this measure; note that in the training and test sets this per-
centage could be different. Doing this we add some uncertainty to the value of r
we pick and render its selection more fair. Finally, it is common in the literature
to make use of a surrogate function to approximate the (non differentiable) Hat
loss H(t) = exp(−st2): the latter arises in continuous approaches when replac-
ing the unknown labels with the expression of their prediction (see Sect. 1.2).
QN-S3VM uses this approximation, and we set s = 3 as the authors did in [8].

Table 1. A recap of the hyper-parameter selection.

C Picked in {2i, i ∈ [0, 5]} by validating SVM on {xi}�
i=1

C∗ { 1
10

C, 1
4
C, 1

2
C, C}, resulting in four annealing iterations

γ Fixed at 1/d

r Ratio of positive samples on {xi}n
i=1

3.4 Experimental Results

In our first experiment, we have compared algorithms’ classification accuracy on
the artificial and real-world datasets. Following the experimental setup of [8], two
different ratios of labeled examples are used for each classification task. Table 2
reports the mean classification error (that is, the percentage of test patterns
being misclassified, scaled between 0.0 and 100.0) and its standard deviation
of ten different splits of each dataset configuration; �, u and t denote respec-
tively the number of labeled, unlabeled and test samples, while the best score
for each configuration is marked in bold. Our experimental setting is inductive
(see Sect. 2.3): we use two separated unlabeled sets, respectively for training
and testing. In other words, we employ � labeled and u unlabeled samples for
training a classification rule, and use the latter to label the t samples in the
test set; this holds for all the experiments in this section. Looking at Table 2,
it is easy to notice that the semi-supervised approach outperforms standard
SVM classification everywhere. For what concerns the semi-supervised meth-
ods, Lagrangian-S3VM is the most accurate 72% of the time, which confirms its
effectiveness.
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Table 2. Experimental results. �, u and t denote respectively the number of labeled,
unlabeled and test samples; for each configuration we report the mean and the standard
deviation of the classification error on ten different dataset splits. Lagrangian-S3VM,
QN-S3VM and Well-SVM are referred to respectively as lagr, qn and well. Best results
are in bold.

Dataset � u t svm lagr qn well

moons 2 498 500 14.92± 7.21 8.66± 9.01 11.22± 5.22 5.44±1.66

moons 3 497 500 29.92± 8.31 7.98± 9.68 11.24± 3.61 5.50±1.26

moons 5 495 500 20.10± 15.52 7.08± 8.80 10.60± 2.55 5.08±1.58

moons 10 490 500 11.02± 4.74 1.36±1.67 3.28± 3.19 4.28± 0.93

moons 20 480 500 6.02± 3.13 1.10±1.48 2.08± 3.46 1.22± 1.87

2gauss 25 225 250 23.48± 14.10 3.04±1.12 3.68± 2.76 4.56± 1.30

2gauss 50 200 250 8.68± 2.32 2.40±0.88 2.76± 0.83 5.12± 1.41

4gauss 25 225 250 17.52± 4.68 15.60± 18.46 8.60± 9.83 8.44±4.22

4gauss 50 200 250 8.64± 3.17 3.84± 2.78 3.12±1.63 5.20± 1.72

usps(2,5) 16 806 823 9.74± 6.04 3.49±0.39 4.25± 1.32 4.69± 1.11

usps(2,5) 32 790 823 5.58± 1.08 3.62±0.33 3.88± 1.14 4.34± 1.02

usps(2,7) 17 843 861 3.25± 0.95 1.41±0.29 1.79± 0.60 2.75± 0.89

usps(2,7) 34 826 861 2.46± 1.02 1.38±0.35 1.85± 0.48 1.94± 0.42

usps(3,8) 15 751 766 9.65± 2.70 6.12±1.60 7.22± 2.51 8.17± 2.33

usps(3,8) 30 736 766 6.76± 1.29 4.84±1.39 5.16± 1.88 5.69± 1.44

usps(8,0) 22 1,108 1,131 4.76± 2.12 1.67±0.65 2.40± 1.19 2.88± 1.08

usps(8,0) 45 1,085 1,131 3.53± 1.20 1.51±0.52 1.95± 0.83 2.11± 0.76

coil(3, 6) 15 100 29 16.90± 14.91 22.76± 17.46 15.17±14.40 17.59± 12.19

coil(3, 6) 25 90 29 6.21± 5.30 3.45± 4.88 2.07±3.52 7.59± 7.52

coil(5, 9) 15 100 29 29.31± 13.20 21.38± 10.09 15.86±11.25 15.86±11.56

coil(5, 9) 25 90 29 14.14± 6.97 10.00± 9.44 6.90±9.87 9.66± 7.52

coil(6, 19) 15 100 29 7.59± 10.77 6.55±12.09 8.62± 17.73 8.97± 17.39

coil(6, 19) 25 90 29 5.52± 9.53 00.00±00.00 00.00±00.00 0.34± 1.03

coil(18, 19) 15 100 29 10.34± 15.73 0.69±2.07 2.07± 6.21 3.79± 4.74

coil(18, 19) 25 90 29 1.72± 2.78 0.69± 2.07 00.00±00.00 4.48± 4.64

Our second experiment aims at comparing the execution time of the selected
semi-supervised solvers. To do so we have varied the training set size n = � + u
of two different classification tasks of usps from 100 up to 1000 samples. The
execution time (averaged over ten different dataset splits) is reported in Fig. 2:
in both tasks, Lagrangian-S3VM and QN-S3VM are the most efficient methods,
growing linearly with the size of the training set; conversely, Well-SVM turned
out to be the worst scalable among the compared algorithms.
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3.5 Technical Details

We have implemented our algorithm in Python 2.7, with the sklearn imple-
mentation of SVM as the internal supervised classifier. All execution time anal-
yses have been performed on a desktop computer with an Intel R© i7 CPU at
2.93 GHz, running Ubuntu 14.04 LTS.

Fig. 2. Execution time (in seconds) with growing training set sizes (labeled and unla-
beled samples, with � being fixed at 25) on usps(3,8) and usps(8,0). Results are
averaged over ten different splits.

4 Conclusion and Remarks

The supervised approach to classification is not reliable when labeled data are
scarce. Involving the unlabeled data when training a classifier can help in improv-
ing the classification accuracy in such a scenario. However, directly optimizing
the unknown labels (combinatorial approach) can be intractable; on the other
hand, expressing these variables in terms of their predictions (continuous app-
roach) renders the objective non convex. Recently, several methods have been
proposed to tackle these two main drawbacks of semi-supervised classification.
A common weak point of these methods is the large number of hyper-parameters
they need to be cross-validated on a usually very small validation set. Our app-
roach faces this issue by implementing an automated and very lightweight vali-
dation phase. An additional drawback of the continuous methods lies in the need
of linearly relaxing the balance constraint. Directly involving the balance con-
straint in the optimization problem has proved to be a good choice to outperform
state-of-the-art solvers’ accuracy on most datasets. The presented algorithm is
also very efficient, thanks to the quick labeling process guided by a Lagrangian
combinatorial heuristic, which renders our approach suitable for larger scale
scenarios; future work should broaden the execution time analysis on datasets
having a large number of both features and instances. Of course, our method is
sensitive to the ratio r of unlabeled examples to be classified as positive, and
should be used in a scenario in which there is enough confidence on the value of
this parameter.
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Abstract. Radiotherapy is one of the treatments used against cancer. Each treat‐
ment has to be planned considering the medical prescription for each specific
patient and the information contained in the patient’s medical images. The
medical prescription usually is composed by a set of dosimetry constraints,
imposing maximum or minimum radiation doses that should be satisfied. Treat‐
ment planning is a trial-and-error time consuming process, where the planner has
to tune several parameters (like weights and bounds) until an admissible plan is
found. Radiotherapy treatment planning can be interpreted as a multiobjective
optimization problem, because besides the set of dosimetry constraints there are
also several conflicting objectives: maximizing the dose deposited in the volumes
to treat and, at the same time, minimizing the dose delivered to healthy cells. In
this paper we present a new multiobjective optimization procedure that will, in
an automated way, calculate a set of potential non-dominated treatment plans. It
is also possible to consider an interactive procedure whenever the planner wants
to explore new regions in the non-dominated frontier. The optimization procedure
is based on fuzzy inference systems. The new methodology is described and it is
applied to a head-and-neck cancer case.

Keywords: Multiobjective · Radiotherapy planning · Fuzzy inference systems

1 Introduction

Radiotherapy is one of the possible treatments used against cancer, possibly combined
with surgery and chemotherapy. In a radiotherapy treatment (RT), the patient is immobi‐
lized in a couch, and receives radiation from a linear accelerator, mounted on a gantry that
can rotate along a central axis parallel to the couch. The rotation of the couch and gantry
allows radiation to be delivered from almost any direction (angle) around the tumor.
However, the equidistant coplanar angle configuration (radiation beams equally spaced lay
on the plane of rotation of the linear accelerator) is usually used. There are different RT
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modalities, sharing essentially the same workflow. First all volumes to treat (Planning
Target Volumes – PTV) and radiosensitive structures to spare (Organs at Risk – OAR) are
delineated using the patient’s 3D medical images. Then, the medical prescription is
defined, imposing lower and/or upper radiation doses to be deposited, or maximum/
minimum volumes that should receive a given maximum/minimum radiation dose. This
medical prescription has then to be translated into a plan configuration. In the last stage,
the quality of the proposed treatment plan is analyzed through dose-volume statistic tools
and dose distribution inspection. The present work is focused on the process that leads to
a treatment plan to be delivered to the patient. In current clinical practice, this process is
done by resorting to a computer assisted trial-and-error time consuming procedure using
dedicated dose calculation software (Treatment Planning System-TPS). TPS asks the
planner to introduce weights, bounds or other parameters that will be used in the TPS
optimization procedure, that is seen by the planner as a blackbox. With these parameters
fixed, the TPS will run an optimization procedure, generating a dose distribution that will
be compared with the desired dose distribution defined by the medical prescription. The
planner will iteratively change the TPS dependent parameters, trying to comply with the
medical prescription. The procedure is repeated until the planner is satisfied, runs out of
time, or does not find other ways of improving the treatment plan. Depending on the
complexity of the case, this interactive process can take from several hours to several days
for a single patient, and the optimality of the solution is not guaranteed. Moreover, the
planner will have to deal with many difficult decisions and tradeoffs. It is not possible to
guarantee that a solution satisfying all the dosimetry constraints even exists. If this is the
case, the planner will have to try to satisfy the constraints “as much as possible”, being
difficult to define in a rigorous way this concept. The planner will also have to consider
the existence of tradeoffs between the doses delivered to different structures, since RT
planning is inherently a multiobjective problem: the maximization of the dose delivered
to PTV versus minimization of the dose in OAR.

In this work, Intensity Modulated Radiation Therapy (IMRT) is considered, although
the developed methodology can be easily extended to other RT modalities. In IMRT the
head of the linear accelerator is composed of pairs of individual leaves that can move
independently (multileaf collimator). These leaves will block radiation, and different
configurations allow the conformal shaping of the treatment beams to the tumor shape
and the possibility of having different radiation intensity profiles. Each radiation beam
is interpreted as a set of individual beamlets. In clinical practice, the planner will usually
determine a priori the number of beams to use and their directions. For each set of TPS
parameters, an optimization procedure is run (IMRT Fluence Map Optimization – FMO)
that will generate the optimal radiation intensity associated with each beamlet from each
of the angles to be used in the treatment (fluence maps). The dose deposited in each
voxel (measured in Gy) can then be calculated. In this paper, we present an approach
where the trial-and-error procedure is replaced by an automated procedure that optimizes
fluence maps by using Fuzzy Inference Systems (FIS). The procedure will consider
different sets of angles, and will calculate a set of potential non-dominated solutions that
can then be presented to the planner. Solutions are called “potential” non-dominated
because it is not possible to know for sure if they are indeed Pareto optimal solutions.
The presented methodology can thus be seen as a heuristic procedure. The paper is
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organized as follows: in Sect. 2, a brief review of the literature is presented, focusing
on fuzzy logic and multiobjective approaches applied to RT planning. Section 3
describes the mathematical optimization problem and the FMO problem. Section 4
describes the developed approach. Section 5 describes an application to a head-and-neck
cancer case. Section 6 presents some conclusions and directions for future research.

2 Brief Review of the Literature

The rules that guide the planner in the interactive process of changing TPS dependent
parameters can be hard to represent in a mathematical formal way. They usually are
simple rules that can be written in natural language, and one of the ways of representing
this kind of information is resorting to fuzzy numbers and fuzzy logic. The methodology
presented in this paper is an adaptation of an algorithm previously developed by the
authors [1]. All the model parameters are iteratively and automatically changed by
resorting to a FIS system, without any type of human intervention. The algorithm
considers how far the present treatment plan is from what is desired by the medical
prescription, and uses common-sense rules of the form “if the spinal cord is not being
spared enough then increase the importance of this structure in the optimization
process”, translated into fuzzy rules, to automatically tune the TPS parameters. One of
the drawbacks of the methodology is that it asks the planner to define priorities associated
with each structure (that can all have the same value), calculating a single solution based
on those priorities. The method is capable of delivering high quality plans within
reasonable computational times. Fuzzy logic has been applied to RT planning before.
Li and Yin [2] apply fuzzy logic for determining the best prescription for the normal
tissue. Yan et al. [3, 4] consider the changing of weights assigned to each structure
through the use of a FIS composed of eight rules. The authors extend this work [5] by
developing a neuro-FIS using a trained neural network to determine the parameters of
the fuzzy inference system.

The multiobjective inherently nature of RT planning problems have been recognized
by several different authors. It has been demonstrated that multiobjective optimization
can help planners, especially the less trained ones, to improve the quality of the treatment
plans, with a reduction of planning time [6, 7]. Romeijn et al. [8] present several results
showing that under some conditions several non-convex objectives usually used in RT
planning can be transformed in convex ones, preserving the set of non-dominated treat‐
ment plans. In [9, 10] a database of treatment plans is created for a posteriori navigation,
under the condition that the multiobjective optimization problem is convex. In [11] the
authors analyze two different navigation algorithms, and conclude that only a limited
number of plans is needed during navigation. In [12] the authors tackle the problem of
non-convexity whenever different sets of beam angles are considered, by developing a
methodology that allows the navigation between different convex Pareto surfaces.
Teichert et al. [13] present a methodology to compare two convex Pareto sets consid‐
ering two different sets of beam angles. Metaheuristics have also been applied. Holds‐
worth et al. [14, 15] present a hierarchical evolutionary algorithm for IMRT plan gener‐
ation. The higher level population represents parameters that are used in the fitness

A Heuristic Based on Fuzzy Inference Systems 257



function calculation for the lower level deterministic optimization algorithm. Aubry
et al. [16] present a simulated annealing approach, where different objective functions
are iteratively chosen to guide the algorithm. Lexicographic approaches to radiotherapy
planning have been developed [17], considering a pre-determined ordered list of objec‐
tives and constraints. At the present moment, there is no automated procedure for treat‐
ment planning that explicitly considers the multiobjective nature of this problem.

3 Multiobjective Optimization Problem

The multiobjective optimization problem is determined by the medical prescription. The
defined constraints are inherently linked to the desired objectives. The type of restric‐
tions and objectives to consider will be patient dependent, but they usually consist of
dose-volume restrictions that relate the dose delivered with the volume that receives that
dose and that one wishes to maximize or minimize, according to the specific structure.
One of the main tools to assess the quality of a RT plan is the Dose Volume Histogram
(DVH), so including in the optimization process restrictions and objectives related with
points in the DVH has several advantages. However, these type of constraints are usually
considered as being very difficult to include in FMO problems [18–20], because they
present the drawback of creating a non-convex feasibility space, with many local
minima. It can also be useful to consider the mean-tail-dose rather than conventional
dose-volume constraints [21] (mean dose of a hottest or coldest fractional volume).
Consider the medical prescription defined in Table 1.

Table 1. Prescribed doses for each structure considered

Structure Type of constraint Limit
Spinal cord Maximum dose Lower than 45 Gy
Brainstem Maximum dose Lower than 54 Gy
Left parotid Mean dose Lower than 26 Gy
Right parotid Mean dose Lower than 26 Gy
PTV70 D95% Greater than 66.5 Gy
PTV70 Maximum dose Lower than 74.9 Gy
PTV59 D95% Greater than 56.4 Gy
PTV59 V107% Lower than Percentage of PTV70 volume inside

PTV59 plus a 10% margin
Body Maximum dose Lower than 80 Gy

This medical prescription considers five structures that should be spared (spinal cord,
brainstem, left and right parotids, body), and two PTVs that have different dose require‐
ments: PTV59 that should receive 59.4 Gy and PTV70 that should receive 70 Gy (the
prescribed doses). In this particular case, PTV70 is inside PTV59. In an ideally situation
100% of PTV70 voxels would receive 70 Gy, and 100% of PTV59 voxels (except those
belonging to PTV70) would receive 59.4 Gy. It is not possible to guarantee this complete
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coverage, so different types of constraints are imposed. This medical prescription can
be interpreted as defining the following set of constrains:

– No voxel belonging to the spinal cord should receive more than 45 Gy;
– No voxel belonging to the brainstem should receive more than 54 Gy;
– The mean dose in the parotids should not exceed 26 Gy;
– 95% of the voxels in PTV70 should receive at least 66.5 Gy (D95%);
– No voxel belonging to PTV70 should receive more than 74.9 Gy;
– 95% of the voxels in PTV59 should receive at least 56.4 Gy (D95%);
– The percentage of voxels in PTV59 that are allowed to receive more than 107% of the

prescribed dose (V107%) are limited to the percentage of PTV70 volume inside PTV59
plus a 10% margin.

These constraints are related with optimization objectives:

– The maximum dose received by the spinal cord should be as low as possible;
– The maximum dose received by the brainstem should be as low as possible;
– The mean dose received by the parotids should be as low as possible;
– D95% for PTV70 should be as close to 70 Gy as possible;
– D95% for PTV59 should be as close to 59.4 Gy as possible;
– The percentage of voxels in PTV59 that receive more than 107% of the prescribed

dose (V107%) should be minimized.

It is not expected that a single treatment plan will be able to simultaneously optimize
all these objectives. If we consider that the set of beam angles is fixed a priori then the
multiobjective problem that has to be solved is the FMO problem considering simulta‐
neously several objectives. Let V represent the number of voxels, N the number of
beamlets and D the dose matrix, such that D

ij
 represents the contribution of beamlet j to

the total dose deposited in voxel i. The total dose received by voxel i can be calculated

as 
N∑

j=1
D

ij
w

j
 with w

j
 representing the intensity of beamlet j. For this particular case, the

FMO model can then be defined as follows:

f1(w) = Min Max
i∈Spinal cord

N∑

j=1

D
ij
w

j (1)

f2(w) = Min Max
i∈Brainstem

N∑

j=1

D
ij
w

j (2)

f3(w) = Min

∑

i∈Right parotid

N∑

j=1
D

ij
w

j

#{i:i ∈ Right parotid}
(3)
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f4(w) = Min

∑

i∈Left parotid

N∑

j=1
D

ij
w

j

#{i:i ∈ Left parotid}
(4)

f5(w) = Min Max
{
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(
PTV70

)}
(5)
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{
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(
PTV59

)}
(6)

f7(w) = Min V107%
(
PTV70

)
(7)
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(
PTV59

)
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w
j
≥ 0, j = 1,… , N (17)
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4 Heuristic Procedure Based on FIS

In order to optimize this nonlinear multiobjective optimization problem, a much simpler
problem will be iteratively solved. Let U

i
 and L

i
 be upper/lower bounds associated with

voxel i. 𝜆
i
 and �̄�

i
 are penalty weights. The FMO model is defined as:

f (w) = Min
w

V∑

i=1

⎡
⎢
⎢
⎣

𝜆
i
max

{

0, L
i
−
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j=1

D
ij
w

j

}2

+ 𝜆
i
max

{

0,
N∑

j=1

D
ij
w

j
− U

i

}2⎤
⎥
⎥
⎦

(18)

s.t. w
j
≥ 0, j = 1,… , N (19)

The objective function considered does not have any clinical meaning whatsoever.
This optimization problem will only be used as a tool for finding RT plans satisfying all
the defined constraints. This problem will be iteratively solved, having its parameters
(both weights and bounds) automatically changed resorting to FIS. Structures violating
the respective constraints will have their importance increased in (18), either by
changing the corresponding bounds, or weights, or both. Let dS represent the distance
between the dosimetry values of the current solution and the bounds defined by the
violated constraints for S. The fuzzy rules considered are of the form: if dS is large then
increase (decrease) L

S
 (U

S
) by a large amount; if dS is medium then increase (decrease)

L
S
 (U

S
) by a medium amount; if dS is small then increase (decrease) L

S
 (U

S
) by a small

amount, where concepts like small, medium or large are defined by fuzzy membership
functions and the change in the right hand side of the constraint is determined by FIS.
A detailed description of this procedure can be found in [1]. The algorithm tries to find
a solution that satisfies all constraints. If this is not possible, then it will relax some of
the constraints, also using FIS and considering the distance between each one of the
dose metrics and the desired values (the greater the distance, the greater the relaxation,
by changing the right hand side values of the constraints (8)–(16)). When a feasible
solution is reached, the algorithm tries to improve this solution by being more demanding
regarding the dosimetry constraints. The right hand side values are, once again, changed
by using FIS. In [1] the multiobjective nature of the problem was not explicitly consid‐
ered, and the planner is asked to assign priorities to all structures. These priorities would
define (again using a FIS) how the right hand side values of the restrictions would be
changed: the algorithm would give more importance to structures with higher priorities,
meaning that it would be more demanding with these structures, accepting worse values
in the other ones. The algorithm will stop when it is not possible to improve the current
treatment plan further. In this work no priority list is considered and equal importance
is given to all the structures. A set of solutions is calculated. The algorithmic approach
is described next:

1. Choose a set of radiation beam angles. improve←0;
2. Initialize all the model’s parameters; it←0.
3. Solve the FMO with the current parameters; it←it +1.
4. Do the dosimetry calculations. Admissible←true.
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5. For each structure S
(a) If S is violating a constraint then change the upper/lower bounds associated

with S according to FIS. Admissible←false.
(b) If the upper/lower bound associated with S has reached a predetermined

threshold, then change the corresponding weight according to FIS.
6. If Not Admissible go to 7, else go to 9.
7. If it ≤ Nmax then go to 3, else go to 8.
8. If improve then go to 9. Else relax some of the violated constraints using FIS. it←0.

Go to 3.
9. improve←1. For each structure S and for each objective function f involving S

(a) Change the right hand side of the constraint related with S and f, by using FIS.
(b) Execute 2 to 8.
(c) Save the current solution to a set SOL.

10. If every set of angles was already considered, then go to 11. Else, select a different
set of angles and go to 2.

11. Analyse set SOL and identify all the potential non-dominated solutions.

The algorithm begins by considering a given set of beam angles, and tries to find an
admissible solution (steps 2 to 8). If it is not possible to find an admissible solution, the
algorithm relaxes some of the constraints (step 8). When a solution is finally calculated
(step 9), then the algorithm will consider a structure S and one objective function related
with that structure at a time. The right hand side of the corresponding constraint will be
more demanding (step 9a). This is interpreted as a new problem, that is again solved by
steps 2 to 8. The procedure is repeated for all pairs of structures and objectives. All the
solutions that are calculated along the process are saved. When all sets of beam angles
have been tried, this pool of solutions is analyzed so that only the non-dominated solu‐
tions are kept. These solutions are non-dominated considering this set, but it is not
possible to assure that they are indeed non-dominated for the original problem. This
algorithm can thus be interpreted as a heuristic procedure that approximates the non-
dominated Pareto frontier. Step 9a should be further explained. It is motivated by a well
known result by Ross and Soland [22], where they show that it is possible to find non-
dominated solutions for a linear multiobjective mixed integer programming problem by
simply using a weighted objective function and additional constraints, one for each
objective. Changing the right hand side of these constraints and optimizing the problem
will lead to non-dominated solutions. Although we are not in the presence of a mixed
integer linear multiobjective programming problem, the idea is the same: changing the
right hand side of constraints that are related with the objective functions will trigger
the discovery of new solutions. This change is done looking at how far the current
solution is from the upper/lower bounds defined by the constraint associated with the
objective function. Simple fuzzy rules are considered, assuming that if the current solu‐
tion is fulfilling the current constraint by a large amount (the slack is high) the algorithm
can be more demanding. On the contrary, if they are barely fulfilling the constraint, then
the change has to be only slight.

After generating a set of non-dominated solutions, it is still possible that the planner
wants to calculate other solutions different from the ones already available. It is possible
to consider an interactive procedure where the planner chooses two known solutions.
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Bounds based on these two solutions and his preferences can be defined. To calculate
this new solution, two different situations have to be considered: if both solutions were
generated using the same beam angles set, then it is possible to simply consider a linear
combination of the corresponding fluence maps [12, 23] to find a new admissible solu‐
tion, taking no more than a few seconds of computational time. If they were generated
considering two different sets of beam angles, then it is no longer possible to consider
a linear combination of fluence maps directly. The algorithm will consider one beam
angle set at a time and will look for a solution generated by that set that is as close as
possible to the solution generated with the other beam angle set. A linear combination
is then considered. This means that two new solutions are generated, one for each beam
angle set. If at least one of the solutions satisfies the new bounds, then the solution is
presented to the planner. If not, the algorithm has to be executed again, considering only
the two beam angle sets and the new bounds. The computational time is expected to be
in the order of 4 to 30 min (according to computational experiments made). Consider
the example depicted in Table 2, where two solutions have been found, but the planner
wants to calculate another one. The type of existing constraints will determine the new
bounds to consider (where ε → 0).

Table 2. Calculating a new solution

Structure Type of
constraint

Solution 1 Solution 2 New bounds

Spinal cord Maximum dose 44.5 38.1 44.5 − ε
Brainstem Maximum dose 53.7 51.3 53.7 − ε
Left parotid Mean dose 21.9 20.9 21.9 − ε
Right parotid Mean dose 21.9 22.5 21.9 − ε
PTV70 D95% 67.1 66.5 66.5 + ε
PTV70 Maximum dose 74.9 74.9 74.9
PTV59 D95% 57.5 56.9 56.9 + ε

5 Illustration of the Application of the Procedure

The algorithm was applied to one head-and-neck cancer case where proper PTV
coverage and OAR sparing was difficult to obtain in clinical practice (Fig. 1). The OARs
and PTVs considered are defined in Table 1, as well as the medical prescription.

In clinical practice, most of the times, these cases are treated with 5 up to 11 beam
angles. In this paper 9 beam angle plans are considered, and every equidistant beam
angle solution with 5º discretization was tried. Tests were performed on an Intel Core
i7 CPU 2.8 GHz computer with 4 GB RAM and Windows 7. CERR 3.2.2 [24] and
MATLAB 7.4.0 (R2007a) were used. The dose was computed using CERR’s pencil
beam algorithm (QIB), with corrections for heterogeneities. The sample rate for Body
was 32 and for the remaining structures was 4. The FMO problem was solved using a
trust-region-reflective algorithm (fmincon). FIS made use of the Fuzzy Sets Toolbox.
The algorithm was initialized as described in [1]. It found a total of 78 different potential
non-dominated solutions in approximately 12 h of computational time. Figure 2 shows
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the distribution of the dosimetry values for each structure using boxplots. Figure 3 shows
a heatmap created by considering the dosimetry values of the solutions set. It can be
seen that there are not many differences in the PTV coverage, and choices have to be
made regarding the irradiation of parotids and spinal cord. Figure 4 shows a line chart
considering the subset of solutions that are in the quartile with higher doses delivered
to PTVs. Dominated solutions would be represented by a line that would be always
under at least one other line. It is possible to observe that they are all non-dominated
between themselves.

Fig. 2. Box-plot of the dosimetry values for
each structure.

Fig. 3. Heatmap illustrating all the non-
dominated solutions found.

Fig. 1. Contoured structures in one CT slice for the considered case.
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Fig. 4. Line chart considering dosimetry values scaled into [0–100] where 0 is the worst value
for the structure and 100 is the best.

6 Conclusions

In this paper a new methodology based on FIS that is able to calculate sets of non-
dominated solutions for RT planning is described. This set is built without requiring
human intervention. The a priori calculation of this set could then support an interactive
navigation procedure, where the planner can explore the existing tradeoffs and choose
the best treatment plan according to his preferences. It is also possible to consider an
interactive procedure, where new plans are calculated if the planner wants to explore
new regions of the Pareto frontier. The optimal design of such a decision support system,
and the exploration of new visualization tools that allow the user to simultaneously deal
with more than three objectives, is out of the scope of this paper and is an interesting
path of research. The analysis of the number of solutions calculated with each set of
beam angles and the corresponding tradeoffs can also provide valuable insights for the
integration of a proper beam angle optimization in a multiobjective framework.
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Abstract. Pre-processing of large scale datasets in order to ensure data quality
is a very important task in data mining. One of the serious threats to data quality
is the lack of data collected during field experiments, which negatively affects the
data quality. The missing data usually have significant effects in many real-life
pattern classification scenarios, especially when it leads to biased parameter esti‐
mates but also disqualify for analysis purposes. The process of filling in the
missing data based on other valid values of rest of the variables of a data set is
known as the imputation process. In this paper, we present a new data-driven
machine learning approach for imputing the missing data. Even though Machine
Learning methods are used in order to impute missing data in the literature, it is
difficult to decide on a single method to apply on a given data set for imputation.
This is because imputation process is not considered as science but as art that
focuses on choosing the best method with the least biased value. For this reason,
we compare different machine learning methods, such as decision tree (C4.5),
Bayesian network, clustering algorithm and artificial neural networks in this
work. The comparison of the algorithms indicates that, for predicting categorical
and numerical missing information in large survey data sets, clustering method
is the most efficient out of the others methods found in literature. A hybrid method
is introduced which combines unsupervised learning methods with supervised
ones based on the missing ratio, for achieving a data imputation with higher
accuracy. Additionally, some statistical imputation methods such as Mean\Mode,
Hot-Deck have been applied emphasizing their limitations in large scale datasets
in comparison to the machine learning methods. A comparison of all above
mentioned methods, traditional statistical methods and machine learning methods
has been made and conclusions are drawn for achieving data imputation with
higher accuracy in data sets of large scale survey. Also, another objective of these
experiments is to discover the effect of balancing the training data set in the
performance of classifiers. All methods are tested to a real world data set, popu‐
lation and housing census.

Keywords: Imputation · Data pre-processing · Clustering · Decision tree
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1 Introduction

Information plays an important role in today’s modern society and it is considered as a
valuable asset for companies and organizations as it can be used for future prediction or
decision-making processes. The rapid growth of information coming from different
sources and in different formats (such as text, numeric, image, video audio and so on)
requires interdisciplinary knowledge to be processed and used for decision making.
Nowadays, machine learning techniques are playing an important role in knowledge
discovery in databases which is a process that aims to identify valid data models. Iden‐
tifying valid data models is complex and cannot be managed only based on experience
or intuition. The successful implementation of this process requires the application of
technologies and techniques that are based on analysis and research. Predictive methods
such as classification, regression and time series analyses are used to learn models that
are used for classification, i.e. predicting a certain class. Descriptive methods such as
clustering, association or link analysis deal with extracting interesting, understandable
and interpretable knowledge in order to discover regularities in the data and to uncover
patterns. In the discipline of knowledge discovery, the term “process” is always used to
indicate that knowledge discovery consists of several steps. There are 5 main steps in
this process: (1) understanding the domain and selection of relevant data sets; (2) data
pre-processing; (3) data transformation (4) data mining; (5) interpretation and evaluation
[1]. Data pre-processing is a complex process that faces a number of challenging aspects.
Most of these challenges are common such as scalability, dimensionality and heteroge‐
neous data, data quality, data ownership and distribution and data privacy preservation.
In this paper, we will be focus on applying machine learning techniques to pre-
processing process for dealing with the data quality challenge. The real-world data sets
are considered as dirty data sets due to inconsistence among values, missing values or
being noisy data sets. The data can be incomplete when the data are not collected, when
there are differences between the time when the data are collected and when the data are
analyzed or because of human error or hardware/software malfunction during data
collection and data capturing. A data set is considered as noisy when it contains errors
for different reasons such as faulty data collection instruments, data entry errors or data
transmission errors. In these conditions, when working with real world data set, lacking
quality data means lacking quality in mining results and consequently misleading deci‐
sion making based on these results. Most of the work done by organizations when they
implement their data warehouse includes data extraction, data cleaning and data trans‐
formation. The missing data can be discovered by searching for null values in a data set
but also wrong data or outliers are considered and treated as missing data during the data
pre-processing phase.

Missing or partially answered questions, in the field of statistics are referred to as
item non-response in contrast to unit non-response. The unit non-response can happen
when the person refuses to be part of a survey or when he cannot be contacted during
the field work phase (Fig. 1). Weighting procedures are used for handling the unit non-
response. Item non- responses occur frequently in large scale surveys and in this kind
of surveys it can never be prevented totally. They occur in different domains due to
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different reasons such as partial refusal of respondent, malfunctions or failures of
systems or sensors used to collect and process data, hardware unavailability, etc.

Fig. 1. Unit non response and item non response

In this situation, researchers have to handle the missing data through understanding
them and imputing them in a way to achieve unbiased parameter estimates and accurate
standard errors. The amount of missing data is considered to be an important quality
indicator for survey data processing [2]. Also, analysis of the effect of imputation is
undertaken as part of assessing quality of the data collection in EUROSTAT Quality
Assurance Framework [3]. Many techniques have been developed to handle the impu‐
tation process. Deletion techniques are the most traditional techniques used to handle
missing data by statisticians and they are based on the approach to discard the missing
cases from analyses. These techniques are easy and they are recommended to be used
in the cases when the data set contains a small number of missing records. In contrast,
most of real world data sets contain a considerable amount of missing records and
applying these methods can lead to biased parameter estimates. So, in these data sets
different techniques should be applied to predict the missing information based on the
available information. Several statistical techniques are reported for imputation such as
mean/mode, regression methods, and multiple imputation methods. Also, machine
learning methods are used to impute the missing data such as decision trees, Bayesian
networks, K-Nearest Neighbor, multilayer perceptron and clustering techniques. The
decision about what methods to use is not easy and depends on many factors such as the
data sets itself, the missing data mechanism, missing patterns and data types that are
going to be imputed. This research presents a comparison of some statistical methods
and machine learning techniques used for imputation in real world data sets with arti‐
ficially created missing records. In this paper, we use different missing ratio in the data
from 25% to 0.5% for the attributes of the selected data set. This paper is divided into
following sections such as introduction, related work, system design, performance
measurements and results, and conclusions.

2 Related Work

In a data set, there can be non-observed values or unknown values called as missing
values. Most of the missing data occurs during the data collection phase where there can
be a lack of information due to uncontrolled system failure or the data are not reported
due to privacy or refusal issues. Also, in some cases the values can be lost during the
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data processing phase. As the presence of missing data in knowledge discovery in data‐
bases process is harmful, leading to wrong knowledge extraction and wrong decision
making, procedures to handle them should be in place.

The problem of missing data in an experimental design was firstly introduced in 1933
by Allan and Wishart [4]. Their solution was based on estimating the missing data based
on iteration methods. This approach is not useful when the number of missing obser‐
vations is high due to computational time needed during iteration process. In 1937, it
was Bartlett who used the analyses of covariance among variables to impute the missing
data based on the degree of relationship [5]. Since then, many researchers have proposed
different methods to solve the problem of missing data. The selection of the methods is
based on missing patterns, missing mechanisms (MCAR, MAR, MNAR) and data set
characteristics (numerical or categorical).

The missing pattern of a data set gives information about the structure of the missing
data. There are two missing patterns, monotone and arbitrary pattern. In the arbitrary
pattern, the missing data are interspersed among full data values while in monotone
patterns the missing data are at the end, from left to right and there are not gaps between
the missing data and full data, illustrated in Fig. 2 [6]. A monotone missing pattern is
easier and more flexible in the selection of the techniques for imputation of data. The
first step that a researcher does when she wants to start an imputation process is to analyze
the missing patterns via available procedures.

Fig. 2. Missing monotone and missing arbitrary (v: variable, missing, x: existing variable value)

Missing data mechanism, classified as Missing Completely at Random (MCAR),
Missing At Random (MAR) or Not Missing At Random (NMAR), is seen as a key factor
for developing a successful imputation procedure. MCAR is a mechanism where the
probability of a record to have a missing value is independent of the existing observed
data or the missing one. This case is the highest level of randomness and suggested
approach is not to take into account the records with missing values during data
processing. In case that the number of records with missing value is too high, using this
approach can reduce the data set and end up with loss of information. MAR mechanism
occurs when the missing data depends on the observed data but it does not depend on
the missing value itself. Most of the real-world data sets follow this mechanism and
different imputation methods exist to predict the missing information based on the
existing data. NMAR occurs when the probability of having missing data depends on
the value of the missing attribute [7, 8].

Another factor to take into consideration during the imputation process is the type
of the variables that we are imputing. As there are many imputation methods, some of
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them can handle only categorical variables (nominal or ordinal), others only numerical
variables (discrete or continues) and some other methods can handle both type of vari‐
ables, numerical and categorical ones. Also, during the imputation process an important
aspect to take into account is the capability of methods to deal with complex data sets,
in terms of number of variables and number of records.

In state of the art, various imputation techniques are available. Traditional imputation
techniques are based on statistical methods and are model based. Handling missing data
in surveys using statistical imputation techniques means defining models based on the
non missing data sets and doing inferences based on probability distribution of the model
[9]. The simplest method to impute missing values is the mean/mode approach [10].
Also, other methods such as Hot-Deck and machine learning are well used for the impu‐
tation. However, as the focus of this paper is to find out the best method to be used for
imputing survey database such as census, the evaluation measurement should be done
based on the accuracy of classification for each categorical target variable and the ability
of each imputation strategy in restoring the original marginal distribution of the numer‐
ical target variable. After a good overview of some recent research in imputation field,
we found out different machine learning algorithms used for imputation and the compar‐
ison among them is based on univariate analyses of data, putting apart the preservation
of joint distribution.

Bayesian networks are considered as efficient methods based on some previous
studies. In 2004, Di Zio suggested the use of Bayesian networks for imputing missing
values. He applied this methodology in a subset of 1991 UK population census [11] and
concluded that this method improves the consistency and preservation of joint distribu‐
tion.

Recently, in [12] authors experimented with several clustering algorithms to impute
a financial data set and concluded that the k means algorithm suit the imputation process
in larger data sets better in terms of achieving a higher accuracy compared to other
algorithms.

To the best of our knowledge, there is a lack of comparing supervised and unsuper‐
vised machine learning methods with statistical methods used in imputation process in
terms of univariate data characteristics and preservation of marginal distribution.
Despite the considerable efforts that have been done by researchers in the imputation
filed, there is not a broad consensus among them regarding the most appropriate training
model or the parameters to use for these models, in order to improve the accuracy of the
estimated values. From our review, we find out that there is not a machine learning
algorithm that outperforms the others. This happens because the performance of impu‐
tation does not only depend on the amount of missing data, but also depends on the
missing data structure, the missing data mechanism, the type of variables that are going
to be imputed and the nature of the data set that is going to be imputed.

We conducted many experiments with population data estimating the missing values
with most used models in this field, to find the most promising model for our situation.
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3 System Design

As indicated previously, in this study, we impute the missing values of a census data set
using different machine learning methods in order to compare their performance. In this
section, we describe the processes of data collection, preparation and the machine
learning algorithms we selected to test.

3.1 Data Source and Data Preparation

In this work, as an experiment dataset, we use the Albanian Population and Housing
Census, data collected for the entire population of Albania in 2011. This is the main
statistical activity carried out by a country with the aim to count all the residents
collecting accurate demographical, economic and social data, providing a clear picture
of the social-economic situation in the country [13]. This data set is very important for
the policy making in the country because it gives changes in population from a social-
economic perspective. Meanwhile, as it is a complex and large-scale activity, the reli‐
ability of the data depends on the whole data processing steps. As the scope of this paper
is the process of imputation, we will be focused only on handling missing data and not
on the other type of errors.

The data set in total contains 2,800,138 records which is the total population of the
country in 2011, the latest enumeration process. In our study, we have selected only
female aged over 15 years old and we have chosen two variables to impute, a categorical
and a numerical one (Table 1). This paper deals with how to impute a numerical variable
and a categorical variable through its dependence on other numerical and/or categorical
variables.

Table 1. The number of records by gender and age

Total population Female Female >15 age old
2,800,138 1,397,079 1,094,429

We decided to impute two different type of variables due to the fact that most of the
ML algorithms are data type dependent (Fig. 3). The categorical variable is “having or
not any live-born children” and the numerical one is “number of children live-born”.

Fig. 3. Question 36 of the population and housing census questionnaire

In surveys, the missing data follows a missing at random mechanism (MAR) and
not missing completely at random (MCAR) due to the fact that some people are more
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or less likely to have a valid response. For example, in censuses some questions had a
higher probability to be left blank for example number of children live-born for younger
women. The selection of variables that are used during the imputation phase are crucial
for the entire process, as the main desirable features of the process is to reduce biases
in the final results arising from non responses in the data sets. A set of variables that
have a good explanatory power with respect to fertility are used in all the selected
machine learning algorithms. They are: woman age, marital status, urban/rural area,
employment status, level of education, woman disability status. The data set is anony‐
mized to prevent direct/indirect identifications of persons. All the simulations are
conducted using the same data set and the same variables. The data set which contains
1,094,430 records is a final data set without missing values. For our experiment, we have
created artificially missing values which later are imputed with different methods. Since
the original value of the artificially missing data created are known values, we can eval‐
uate the performance of the machine learning algorithms and do a comparison among
them. As the imputation procedure depends not only on the missing mechanism, but
also on the amount of missing, data sets with different missing ratios (50%, 20% and
1%) are created as shown in Table 2. These data sets are generated as follows: the original
data set is ordered randomly and random missing values are generated for the two vari‐
ables that are going to be imputed. The missing mechanism of the data sets is MCAR.
The missing model used is Uniformly Distributed (UD) where each variable has equal
number of missing values.

Table 2. Settings of missing data simulations

Missing
mechanism

No of attributes
having missing
value

Missing ratio Missing model No of records per
data set

MCAR 2 50%–25% per
variable

Uniformly
Distributed

1,094,429

20%–10% per
variable
1%–0.5% per
variable

Usually in the problem of class prediction, the real-world data set are unbalanced
which has an impact in the performance of the classifier during the training phase. The
problem of unbalanced data is a crucial problem in many domains such as in medical
data sets when rare disease is predicted, in fraud detection, network intrusions etc.

To handle the unbalance class distribution data set problem, external techniques are
required during the pre-processing phase. In literature, there are two strategies to deal
with the class imbalance problem, data-level strategy and algorithm level strategy [15].

The methods at data level approach adjust the data sets with adding or removing
records in order to reduce the discrepancy among classes, while the algorithm level
strategy is focused on tuning classifier algorithms to improve the learning process in
respect to the minority class. The most known data-level strategy are over-sampling and
down-sampling which both has the focus to reduce the imbalance ratio of the data set
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used in the training phase. When we apply down-sampling we remove part of the records
belonging to the majority class until each category is represented by the same number
of records, and when we apply up-sampling we duplicate records from the minority class
[16]. In the case when we apply down-sampling approach, we reduce the chance of
over-fitting but there is a high risk to lose potential information from the training data
set as considerable amount of records are excluded during the learning phase.

When we apply the second approach, the duplication of the records of minority class
do not provide additional information about the class, so it is not dealing with the lack
of the data from minority class.

For doing the experiment, we have split the data set into two, one with missing record
and one without missing records. For taking into account the problem of unbalance
classes for the imputation of categorical variables, we have used three different data sets,
down sampling, no sampling and over sampling for each of the missing patterns.

The principle of analysis is shown in Fig. 4.

Fig. 4. Comparison architecture

3.2 Methods for Imputation of Missing Values

In literature, there exist various imputation methods starting from traditional one to
sophisticated model-based imputation techniques. The methods used in this paper are
three unsupervised imputation algorithms: Mean/Mode, Hot-Deck and clustering, and
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three supervised machine learning algorithms: decision trees, Bayesian Network and
neural networks. All these methods are briefly introduced in this section.

Mean/Mode imputation
When this method is applied, the missing values are imputed with the mean/mode of the
corresponding variable [19]. So, the imputed value y *

i  for a missing value of yi is calcu‐
lated by the observed mean for the numerical variables:

y *
i =

∑
k∈obs yk

p
(1)

where yk is the observed value of kth record and p is the total number of non missing
values of target variable y. The main limitation of this method is that it does not take
into account auxiliary information from other variables during the imputation. For that
reason, in this paper we applied Group Mean/Mode imputation which takes into account
the variation among groups. When this method is applied, the data are grouped into
similar groups based on auxiliary variables and a missing value is replaced by the mean/
mode value of the corresponding group.

Hot-Deck imputation
It is based on the nearest neighbor imputation (NNI) and we will introduce this method
with a simple case. Let’s consider a data set (x1, y1), (x2, y2), …, (xn, yn) and let’s suppose
that from n y-values there are p observed values and the other values are missing
(m = n − p). Let’s suppose that the missing ones are yp+1, yp+2, …, yn. The Hot-Deck
method imputes the missing value yi, where p + 1 <= i <= n by yj where 1 <= j <= p.
The nearest neighbor methods consider yj as the nearest neighbor of yi, if j satisfies:

|
|
|
xj − xi

|
|
|
= min||xk − xi

|
| (2)

where 1 <= k <= p. In the case where there is more than one nearest neighbor of i, one
of them is randomly selected.

This procedure is repeated until all the missing values are imputed.
The most widely used method for imputing statistical surveys is donor Hot-Deck

imputation which for each missing value m a donor record d with similar characteristics
is searched in the dataset [20]. This method can be applied for numerical and categorical
variables and allows multiple imputations of all the missing variables of a record with
information provided by the corresponding donor. The donor pool is defined based on
minimizing a distance function (nearest neighbor Hot-Deck).

Decision tree
A decision tree composed by nodes and leaves is a supervised classifier that can handle
both numeric and categorical variables used to split the instance space. In this study, we
used C4.5 algorithm which is an evolution of ID3 and this algorithm is considered to be
a good one for treating missing values using gain ratio which is calculated using entropy
based measurement [21]. Using this method, the original data set is divided into two
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sets, one with missing values and the other one without missing values. A decision tree
is created with the data set without missing values and a missing variable is considered
a target variable (class variable). The main limitation is that the target variable has to be
a categorical variable and the tree is sensitive to the number of records used to split the
nodes.

Bayesian network
A Bayesian network is a directed acyclic graph containing nodes and arcs. A node
corresponds to a variable and an arc to the casual relationship among variables. Bayesian
networks are used in imputation of missing values because of their ability to deal with
the problem of preservation of the variable distribution in large scale data sets. This
network can be seen as a hierarchical ordering of variables associated with their condi‐
tional probability. This hierarchical ordering allows us to impute a missing value condi‐
tionally based only on the variables that are directly related to it.

Clustering
Clustering consists in grouping similar objects into clusters, where objects belonging to
a class are similar among them and dissimilar to the objects belonging to the other cluster.
As the amount of data to be processed is increased rapidly, clustering is becoming a
powerful technique for drawing useful patterns. There has been many clustering algo‐
rithms proposed in literature but k means is the most popular. K means used in our study,
is a centroid based algorithm [22]. At the initial phase of the algorithm, the k number of
clusters should be specified and for each cluster k centroids are randomly selected as
initial centers.

Neural networks
Neural networks are created by small units called neurons which try to imitate the neural
brain system. All the neurons of a network are connected among them via connections
that are weighted. This is considered to be an adaptive system by learning to estimate
the parameters based on the training records. During the training phase the network tries
to adjust the connection weights to improve the class prediction based on the input signal.
The neural networks are widely used when the data sets are high dimensional, when
they contain noisy data or when there are complex and hidden patterns among variables.
So, because of their ability to present non linear models, they are recently used in impu‐
tation of missing data. The neurons of a neural network are organized in layers. The first
layer is known as the input layer and the last one as the output layer. There are different
neural networks such as perceptron, multi layer perceptron, Kohonen features maps,
SOM etc. In this study, we selected the multilayer perceptron as it is the most popular
type of neural network. It contains multi layers and is a feed-forward network because
cycles or loops within the same layer are not allowed and during the training phase; the
weights are updated by mapping inputs to outputs [22].

As a summary, Table 3 shows a summary of methods used in imputation process
illustrating their main benefits and limitations.
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Table 3. Methods used for imputation process

Methods Main benefit Main limitation Variable type Computational
cost

Mean/Mode Valid when the
amount of missing
is low

Variance is
reduced artificially

Categorical/
Numerical

Low

Hot-Deck Variance is not
reduced artificially

All possible
combinations need
to be computed

Categorical/
Numerical

Medium

Decision
tree (C4.5)

Use all
information for
construction of the
tree

Does not offer a
complete data
table

Categorical High

Bayesian
network

Use all
information for
construction of the
tree

Does not offer a
complete data
table

Categorical High

Artificial
neural
network

Maintain complex
non linear
relationship

Poor
generalization in
complex data sets

Categorical/
Numerical

Very high

Clustering
(k means)

Performs well in
large data sets

Parameters in the
initialization
phase

Categorical/
Numerical

High

4 Performance Measurements and Results

The proposed approach is implemented in Weka 3.8 and executed in a PC with Intel®
Core i5 processor with 2.7 GHz speed and 8 GB of RAM. SAS software, Version 9.2
has also been used for processing. Hot-Deck imputation is done using CONCORD
JAVA (CONtrollo e CORrezione dei Dati version with Java interface) software devel‐
oped for data editing and imputation, and IDEA (Indices for Data Editing Assessment)
software is used for calculating similarity indexes. These are open source software
developed by Italian National Institute of Statistics (ISTAT) [18].

4.1 Algorithms Tuning

All the above mentioned methods were evaluated with 10-fold cross-validation within
the Weka data mining library. A ten-way cross-validation approach was selected where
the dataset was partitioned randomly into ten subsets of equal size. Nine of these datasets
were used as the training set, and the induced tree was used for predicting on the tenth
subset (test set).

C4.5 was used to learn and predict values for the target variables. Since this method
is a supervised classifier, during the training phase the missing records were not included.
We learn a pruned tree, using a confidence threshold of 0.25 with a minimum number
of 2 instances per leaf. For K-means algorithm, we select Manhattan distance metric to
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compute the distance between any two data objects, and the numbers of clusters k is
specified using Elbow rule (k = 10).

Regarding the neural networks, we used the default heuristic values in all of our
experiments because tuning them seemed to have little impact on the final results.

4.2 Evaluation Measures

The evaluation of all the machine learning algorithms has been done by comparing the
original value and the imputed value by each algorithm. Imputation performance for the
categorical variable is evaluated using different evaluation metrics such as classifier
accuracy and root mean square error (RMSE). Accuracy and RMSE are defined as
follow:

Accuracy or recognition rate: percentage of test set records that are correctly clas‐
sified

Accuracy =
(TruePositive + TrueNegative)

All
(3)

The RMSE explores the average difference of actual values with the imputed values

RMSE =

√
∑N

i=1

(
Pi − Oi

)2

N
(4)

Where Pi is the imputed value of ith missing value (1 <= i <= N), Oi is the actual
value of ith artificially created missing value, and N number of artificially created missing
values.

As imputing a numerical variable is not a classification problem like categorical
variables, the evaluation measurements should be done at two levels: micro level
preserving single values for each variable and at macro level preserving marginal distri‐
bution of variables. In our study, we used the following measurements:

– micro level: univariate analyses of the variable before and after imputation (mean,
mode, firs quartile, median, third quartile, minimum, maximum);

– macro level: Kolmogorov-Smirnov Distance(KS) index for measuring similarities of
distribution of variable before and after imputation.

KS index is calculated based on the following cumulative distribution functions:

FOn
(t) = 1

N
∑N

i=1
I
(

Oi ≤ t
)

(5)

FPn
(t) = 1

N
∑N

i=1
I
(
Pi ≤ t

)
(6)

Before and after imputation are computed the value:
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KS = maxt

(
|
|
|
FOn

(t) − FPn
(t)||
|

)
(7)

The KS distance is equal to 0 when the distributions of the variable are equal before
and after imputation and takes the maximum value to 1 when there is a maximum
difference between the two distributions.

In cases when the experiment is large, which means that there is a huge number of
records to be processed from real world data sets, Kovahi in [14] proposed to use 10-
fold cross-validation. In the following supervised algorithm, we used this method, which
randomly partitions the data set in 10 equal size subsamples, where each of the subsam‐
ples is used as a validation data.

As our dataset is not balanced (Table 4) within classes, another objective of these
experiments is to discover the effect of balancing the training data set in the performance
of classifiers.

Table 4. Frequency of classes

Frequency Percent
Class 1 798972 73.0

2 295457 27.0
Total 1094429 100.0

4.3 Results and Considerations

In this section, we are discussing the experimental results of the census data set, and
some considerations are drawn.

For both variables imputed and for each missing data simulation conducted in the
experiments Tables 3 and 4 give the performance measurements for all the algorithms
applied in the imputation phase. Table 3 illustrates the performance measurements of
the categorical variable whereas Table 5, the univariate characteristics and KS index are
given.

Table 5. Performance of algorithms on census data set

C4.5 Bayesian K means Hot-Deck Group Mode

Missing 
ratio

Balance approach Accuracy
%

RMSE Accuracy
%

RMSE Accuracy
%

RMSE Accuracy
%

RMSE Accuracy
%

RMSE

25% no sampling 93.8552 0.2264 93.4441 0.2306 95.92721 0.2017 86.88 0.3622 83.84 0.2481
down sampling 92.2622 0.2442 92.2322 0.2469 96.8758 0.1919 86.99 0.3606 83.77 0.2451
up sampling 90.0247 0.2813 89.9771 0.2872 96.3174 0.1965 85.45 0.3814 82.99 0.2647

10% no sampling 93.9672 0.2259 93.4229 0.2312 96.4695 0.1878 87.25 0.3570 87.93 0.2463
0.50% no sampling 93.8526 0.2269 93.29 0.2348 91.5057 0.2914 88.91 0.3330 93.54 0.2541

It is clear that the best overall results based on accuracy and RMSE measurements
are achieved when we use clustering algorithm K means where the accuracy is higher
and RMSE is lower. The worst case is obtained when we apply traditional statistical
methods for imputation such as Hot-Deck. Regarding mode imputation method, we did
not apply it because the data set is unbalanced. If this method is applied in an unbalanced
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data set, all the records are imputed with the value of the class that has the highest
frequency. To avoid this problem, we applied the group mode method when we impute
the missing class based on the available information from other variables. Due to the
fact that we have selected variables that are highly correlated to fertility, the group mode
method outperforms the Hot-Deck method in all the cases of missing ratios. Usually the
Hot-Deck technique is considered as a better statistical method compared to the group
mode because it allows multiple imputation based on the information coming from
donors and also it is better in preserving the condition distribution of the imputed vari‐
able. When the record missing rate is very low, the mean method fits well in comparison
to the other methods. In the other case, where the missing rate is 25% (273,449 records
in our data set), the machine learning algorithms performs better in terms of accuracy
of prediction. To test the effect of balancing the data over unbalanced data, we applied
all the methods in three datasets, down sampling, up sampling and no sampling. We
selected the case with highest missing ratio because in this case it makes more sense to
test the balancing approach. When we compare the results of the methods used to impute
it is evident that the model on unbalance data is more accurate compared to the balanced
data sets for mostly of the methods. Also, the confusion matrix of all the machine
learning algorithms shows that false positive and false negative values are lower when
we use the unbalanced data set to predict the missing values. Only when we apply clus‐
tering methods, a very slight improvement in accuracy is evident in the down sampling
approach. Our experiment concludes the fact that a 50:50 (down-sampling or over-
sampling) balance ratio between classes in the training dataset does not improve the
classifier performance. Also, other studies discovered the same finding, when the data
set is large, balancing the data is not beneficial as a consequence of the fact that the size
of samples for both classes is big enough containing significant information for each of
them [17]. Also, as a conclusion from the results, we can find out that down-sampling
approach may be more suitable in comparison to up-sampling due to the fact that the
false positive cases are minimized. In particular, the k means imputation provides supe‐
rior results across all the methods when the missing ratio is 25%. This method improved
the classification accuracy by 2% compared to the Bayesian network and by 12%
compared to group mode imputation (Table 6).

Table 6. Preservation of distribution and aggregates, Kolmogorov-Smirnov Index

25% 10% 0.5%

MPL Original MPL K
means

Hot-
Deck

Group 
Mean

Original MPL K
means

Hot-
Deck

Group 
Mean

Original MPL K
means

Hot-
Deck

Group 
Mean

Mean 2.34 1.89 2.38 2.5 2.347 2.35 2.95 2.31 2.7 2.3473 2.34 2.7616 2.35 3.1 2.3724
STD 2.174 1.616 1.762 3.45 1.676 2.172 1.611 1.835 3.4 1.67649 2.178 1.82487 1.769 3.3 1.6780
Max 16 6 6 20 6 20 6 6 20 6 16 6 6 20 6

Min 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Q1 0 1 2 1 1 0 1 1 1 1 0 2 1 1 1
Q2 2 2 2 2 2 2 3 2 2 2 2 3 2 2 2
Q3 3 3 3 5 4 3 4 3 5 4 3 4 4 5 4
Mode 0 0 2 2 2 0 1 3 2 2 0 3 2 2 2
KS - 0.151 0.013 0.167 0.066 - 0.157 0.075 0.155 0.068 - 0.188 0.104 0.099 0.073

According to the KS index, which measures the ability to restore the original
marginal distribution, it seems that all the methods give good results (the index values
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do not exceed 0.188). The lowest index value is achieved using the K means algorithms
(0.013) when the missing ratio is 25%. We observe that K means performs better on a
larger data set. When the missing data set is small, the traditional method of mean
imputation performs better in terms of a smaller KS index and a mean closer to the
original mean. Related to the mean preservation, multi layer perceptron algorithm
produces negative bias for all the different missing percentage. The Group Mean method
and K-means produce a slight bias on means.

An important aspect to analyze during imputation is the variability of the variable
distribution measured by the standard deviation (STD). From the results, it is very evident
the fact that all the methods produce consistent reduction of variability, except the Hot-
Deck method. This can be explained by the fact that the other methods were not able to
reproduce extreme original values. The maximum value imputed from the methods is 6
while the original data set has higher maximum values. All the imputation methods
preserve variability better when the data sets are smaller due to the fact that, it is easier to
control variations in these data sets. Regarding the use of neural networks for imputing the
numerical variables, based on our experiment, we can conclude that they come with a
greater computation and training complexity compared to all the other methods.

5 Proposed Imputation Approach

Based on the results, the proposed imputation approach is as shown in figure below
(Fig. 5):

Fig. 5. The proposed imputation method
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When dealing with data sets where there are missing values first a detailed analyze
should be done regarding the missing mechanism and missing patterns. The data set has
to be split in two sets, one without missing records and the other one with missing
records. The data set without missing records will be used in the learning phase of the
machine learning algorithms. The data sets with missing records will be used in the
testing phase. Important step when dealing with imputation is the feature selection,
which consists in analyzing the correlation among variables to find out the ones that
have higher correction with the variables that are going to be imputed. The selected
variables ate this step will be used during the clustering process. Similar records are
grouped into same cluster and the cluster information is used to categorical variables.
Predicting the missing value of a categorical variable is seen as classification process.
When it comes to numerical variable imputation, it has to be taken into account the
missing ratio in the data set. When this ratio is high based on our experiment results,
imputing the missing values with cluster mean when the missing records belongs to, the
imputed value is closer to the original value. In case that the missing ratio is low,
imputing with group mean method we achieve better results. More specifically, the
clustering approach we apply shows better results in terms of RMSE and KS index. In
terms of RMSE, our clustering method exhibits better the missing value prediction for
categorical variables, where the RMSE is 0.201. On the other hand, imputing the numer‐
ical variables when the amount of missing data is considerable, using clustering
approach we can achieve a KS index 0.013, a value closer to 0 is achieved when the
distributions of the variable are almost equal before and after imputation.

6 Conclusions

In this paper, the performance of some statistical and machine learning imputation
methods has been evaluated through an experimental application on a real-life census
data set. Starting from a complete data set we artificially created missing data sets which
gives us the possibility to evaluate the performance of the imputation process by
comparing the original value with the estimated one. The analyses of results suggested
that all methods produce good results in terms of preservation of the marginal distribu‐
tion for the numerical target variable, but the best result is achieved when we apply the
clustering technique in the data set where the missing ratio is higher. As expected, we
found that simple imputation methods such as group mean imputation performed just
as well as or more than the machine learning methods in data sets where the missing
amount of records is low. We found similar performance with the use of decision trees
and Bayesian networks for imputing categorical variables. K means is the method which
performs better even in predicting the missing values of categorical and numerical vari‐
ables.

In general, results confirm that when the data sets have a higher missing ratio, the
machine learning algorithms perform better compared to the statistical methods such as
group mean or Hot-Deck. The results confirm as well that these methods produce satis‐
factory results related to univariate characteristics of data and preservation of marginal
distribution. So we can conclude that machine learning algorithms provide better
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performance in reproducing the original value, producing significantly better estimates
for statistical parameter such as mean, mode, standard deviation. Based on the proposed
approach, in surveys for a data set containing a large amount of missing data, clustering
methods should be the first methods to be considered. We discover that the basic K-
means algorithm outperforms the mean substitution method or other statistical methods,
which are considered as simple and common approaches for missing data imputation.
As the imputation process is much related to the data set characteristics, missing patterns
and mechanism, different methods should be considered for finding the method that
better fits the needs. As this process is very crucial, after it there is a high need to always
check the result of the imputation.

Further studies are needed in order to measure the performance of these methods
when more covariates containing missing data are used, when the number of variables
containing missing data is higher, and where the missing mechanism is not missing
completely at random. The experiments should also be performed in other domain data
sets such as health or financial ones.
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Abstract. Network representation learning (NRL) is a task of learning
an embedding of nodes in a low-dimensional space. Recent advances in
this area have achieved interesting results; however, as there is no solution
that fits all kind of networks, NRL algorithms need to be specialized to
preserve specific aspects of the networks, such as topology, information
content, and community structure. One aspect that has been neglected so
far is how a network reacts to the diffusion of information. This aspect is
particularly relevant in the context of social networks. Studies have found
out that diffusion reveals complex patterns in the network structure that
are otherwise difficult to be discovered by other means. In this work, we
describe a novel algorithm that combines topology, information content
and diffusion process, and jointly learns a high quality embedding of
nodes. We performed several experiments using multiple datasets and
demonstrate that our algorithm performs significantly better in many
network analysis tasks over existing studies.

Keywords: NRL · Diffusion patterns · Cascades

1 Introduction

Network representation learning (NRL) is the task to embed nodes of a net-
work into a low-dimensional space, while preserving important aspects of the
original network. This strategy is an invaluable tool to tackle a variety of subse-
quent network analysis problems, such as node classification, link prediction, and
visualization. It is not only a hard and daunting task to manually engineer high-
quality features for the aforementioned problems, but also the resulting features
lack the capability of being applicable across different problems. For example,
features that are engineered for node classification might not be suitable for link
prediction or vice versa; therefore, one has to develop a new set of features for
almost every new task.

Automatic network embedding approaches [1–9], however, are highly effective
in capturing interesting patterns that are applicable to a range of tasks. They
are well-suited for learning features that are otherwise difficult to find even

Z. T. Kefato and N. Sheikh contributed equally to this work.

c© Springer International Publishing AG 2018
G. Nicosia et al. (Eds.): MOD 2017, LNCS 10710, pp. 286–298, 2018.
https://doi.org/10.1007/978-3-319-72926-8_24



Mineral: Multi-modal Network Representation Learning 287

for experts. Such techniques have been employed in multiple disciplines, such
as speech recognition and signal processing [10] and object recognition [11,12],
improving previous state-of-the-art solutions by several orders of magnitude [13].

Recent studies in representation learning through neural networks have achi-
eved remarkable results [10–12]. An interesting aspect that makes these model
attractive is that different components of the model, called neurons, are activated
while detecting different kinds of patterns. In other words, the learned embedding
has a set of discriminative features that are shared among different tasks [13].
This is one of the main reasons that made the representations learned using this
technique applicable across multiple tasks [13].

There have been a plethora of studies [1–8] that apply neural networks to
NRL. The goal of such studies is usually to learn a representation that preserves
one or more of the following properties of nodes: (i) neighborhood structure, (ii)
content/attribute information, (iii) community affiliation.

First of all, a high-quality embedding should enable to effectively recon-
struct the original network. Therefore, preserving the structural information is
of paramount importance. A second aspect to be considered is that approaches
that incorporate content/attribute information and enforce a constraint on an
embedding algorithm to preserve it, achieve higher-quality embeddings compared
to content-oblivious approaches [4,6], sometimes by over an order of magnitude.

While significant improvements over traditional techniques have been
obtained, there are still several aspects of information networks that reveal inter-
esting properties of the network. For example, it has been observed that the
dynamics of diffusion of influence and information (cascades) unveil complex
patterns of the network that are effective in identifying groups of users [14,15].

To complement existing studies of NRL, in this study we propose a novel
algorithm that learns an embedding of the network that preserves the topology,
the content information, as well as the dynamics of diffusion cascades.

Our approach integrates content and diffusion information into the network
structure, without requiring any additional data structure. Based on this, we pro-
pose a novel algorithm called Mineral (Multi-modal Network Representation
Learning).

Given that in some datasets, only a fraction of nodes are included in cascades,
while in other datasets cascade information is completely missing, we simulate
a diffusion process that enables to capture complex local and global network
structures. Then, we acquire context information of nodes related to their local
neighborhood (directly connected neighbors) and global neighborhood (commu-
nity membership).

Our contribution can be summarized as follows:

– we combine different aspects of a network that enable learning an effective
network embedding;

– we propose a novel scalable algorithm for NRL;
– we perform several experiments using multiple datasets and across multiple

network analysis tasks.



288 Z. T. Kefato et al.

The rest of the paper is organized as follows. Section 2 introduces the basic
concepts and notations and presents the problem statement. Section 3 discusses
the proposed algorithm. Section 4 reports the experiments and results. Finally,
Sect. 5 discusses related works; the paper is concluded in Sect. 6.

2 Preliminary

We start by providing definitions of the data models and describe our problem.

Definition 1. We consider a network G = (V,E), where V is a set containing
n nodes and E is a set containing m edges.

As in social networks, we assume that the nodes are involved in two types
of activities: (i) generating their own content (e.g. posts) and (ii) consum-
ing/spreading others’ content. Given a node u, A(u) contains all the pieces of
content generated or consumed by u. Content is assumed to be textual; in case
of multimedial information, metadata and tags could be used instead. One way
to incorporate content information is to add a separate node for each piece of
content. However, given that often the goal of incorporating content is to bet-
ter identify similarities between nodes in the representation learning process, we
simply introduce a similarity function π on the edges that is defined as follows.

Definition 2. We consider a similarity function π : E → [0, 1], such that for
any (u, v) ∈ E, π(u, v) is equal to the Jaccard similarity between u and v:

π(u, v) =
|A(u) ∩ A(v)|
|A(u) ∪ A(v)|

If the content is textual, one can easily compute π. For example, consider a
user u that actively tweets about politics and religion and a user v tweeting about
sport and politics. One can construct A(u) and A(v) from the set of keywords
extracted from their posts and estimate π. This modeling is simple and efficient,
as it requires no additional structure with respect to the existing network; it
only associates weights to edges. Unless there is a particular benefit one can
gain from adding independent nodes for content, which could be expensive, we
argue that such modeling is sufficient.

The final piece of our data model is a set of finite cascades C:

Definition 3. We consider a set of cascades C = {C1, . . . , Cc} of size c, where
a cascade C = [u1, u2, . . . , u|C|] is a sequence of finite events, each of them
representing the infection of a user by a given contagion.

We use C(i) = ui to denote the i-th node of the cascade C. We say that a node
u is infected before node v in a cascade C, and we write u ≺C v, if and only if
u = C(i), v = C(j) and i < j. Given a node u and a context size s, we define
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the left-hand side infection context C(u; s)≺ and the right-hand side infection
context C(u; s)�:

C(u; s)≺ = {v : v = C(i) ∧ u = C(j) ∧ j − s ≤ i ≤ j − 1}
C(u; s)� = {v : v = C(i) ∧ u = C(j) ∧ j + 1 ≤ i ≤ j + s}

Definitions 1–3 represents the input of our problem:

Problem 1. Given a network G, a set of cascades C, a similarity function π, and a
dimensional number d, we seek to learn a representation of the network specified
by Φ : V → R

d, provided that Φ preserves as much as possible (i) the network
structure, (ii) the similarity between nodes and (iii) the node infection context.

3 Mineral

In this section, we present a detailed description of Mineral, which exploits
two sources of information: in SPC-Mode (Structure+Content-Mode), it uses
structural information (the network G) as well as content information associated
to nodes (the function π). In CSD-Mode (Cascade-Mode), it utilizes the observed
diffusion information (the set of cascades C).

Thanks to function π, the network G can be considered as a weighted graph.
Hence without requiring additional structures, we can design an effective algo-
rithm to learn the representation of the network that preserves both structural
and content similarity between nodes. One strategy that has proved to be effec-
tive for NRL is to use a similar approach to word representation learning in
natural language documents. In word representation, the basic idea is to learn a
representation of words by predicting their context. Nonetheless, unlike words in
a document where their context is obvious as a result of their linear structure, we
do not have a straightforward way to deduce the context of nodes in a network.
Several strategies have been developed in the literature to address this problem.

In this work, we extend existing approaches based on random walks [1,2] by
considering instead a diffusion process. It has been observed that the dynamics
of diffusion processes reveal complex local and global structural patterns of the
network. Therefore we simulate the diffusion of influence or information using the
independent cascade (IC) model [16] to obtain context information for nodes.
The cascades generated by simulating IC are merged with actual (observed)
cascades, when available.

Algorithm 1 shows the high-level steps required to generate cascades. For each
node u ∈ V , r cascades are generated starting from u, based on the IC model
and using the content similarity π as an unnormalized probability of infection.

When simulateDiffusion(G, π, u, h) is invoked, a cascade of size h is gen-
erated starting from u. Let It denote the set of nodes infected at time t; the
diffusion process works as follows:

1. At time t = 0, a cascade sequence is initiated by infecting the current root,
i.e. C = [u], i.e., I0 = {u}.
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2. At time t > 0, each node v ∈ It−1 makes a single attempt to infect each of its
outgoing neighbor w ∈ out(v) that is not already infected (i.e., w 	∈ C). The
infection succeeds with a probability proportional to π(v, w); in such case, w
is appended to C and it is included in It.

3. Repeat the process starting from step 2 while |C| ≤ h.

We restrict the size of cascades (the number of infected nodes) to be at most
h nodes, because large, viral cascades (unlike non-viral ones) usually do not
capture any relevant local or global structural relation of nodes [14,15].

Generated cascades, together with existing ones if available, are thus used to
learn embeddings. Since cascades are sequences of nodes, we borrow the Skip-
Gram [17] model for word representation learning to perform network represen-
tation learning. For the purpose of being self-contained, we briefly describe the
SkipGram [17] model in our context.

CascadeGenerator(G, π, r, h)
1 C = ∅
2 for u ∈ V do
3 repeat r times
4 C = simulateDiffusion (G, π, u, h)
5 C.insert(C)

6 return C

SkipGram. Given a center node u ∈ C, this model maximizes the log probability
of observing context nodes v ∈ C(u; s)� and w ∈ C(u; s)� within a window
size s. Based on the assumption that the likelihood of observing each context
node given a center node is independent, more formally the SkipGram model
optimizes the objective in Eq. 1 with respect to the model parameter Φ.

max
Φ

∑

u∈V

log Pr(C(u; s)� | Φ(u)) + log Pr(C(u; s)� | Φ(u)) (1)

log Pr(C(u; s)D | Φ(u)) =
∑

v∈C(u;s)D

log Pr(v|Φ(u)) (2)

where D is either 
 or �, and Φ(u) ∈ [0, 1]d is a d-dimensional representation
of u. The right-hand side term in Eq. 2 is specified using the softmax function:

Pr(v|Φ(u)) =
exp(Φ(v)T · Φ(u))∑

w∈N exp(Φ(w)T · Φ(u))
(3)

Nonetheless, directly estimating the conditional probability in Eq. 3 is expen-
sive, because of the normalization constant that needs to be computed for every
node. For this reason, different approximation strategies have been suggested
in the literature; in this work, we adopt the “Negative Sampling” strategy [17]
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that characterizes a good model by its power to discriminate appropriate context
nodes from noise. Then, the computation of log Pr(v|Φ(u)) using the negative
sampling strategy is shown in Eq. 4.

log Pr(v|Φ(u)) = log σ(Φ(v)T Φ(u)) + neg(u; l) (4)

σ is the logistic function, and we need our model to effectively differentiate v
from the l negative examples drawn from some noise distribution N (u) of u,
where neg(u; l) is the noise model and is defined as:

neg(u; l) =
l∑

i=1

Ewi∼N (u)[− log σ(Φ(wi)T Φ(u))] (5)

Numerically, a good model should produce a small expected probability for
the noise model and larger probability for the data model (the first term on the
right-hand-side of Eq. 4).

Finally, we employ the stochastic gradient descent algorithm to minimize the
negative log-likelihood of the objective in Eq. 1 based on the negative sampling
strategy in Eqs. 4 and 5 and obtain the complete model parameters Φ ∈ V →
[0, 1]d.

Table 1. Summary of the datasets

Dataset |V| |E| |C| Number of labels Type of labels

Twitter 595,460 14,273,311 397,681 5 top-5 communities

Memetracker 3,836,314 15,540,787 71,568 5 top-5 communities

Flickr 80,513 5,899,882 – 195 Groups

Blogcatalog 10,312 333,983 – 39 Interests

4 Experiments and Results

In order to demonstrate the effectiveness of our algorithm, we have carried out
several experiments across multiple network analysis problems using multiple
datasets, listed below. A brief summary of the characteristics of the datasets is
given in Table 1.

– Twitter [14]: a dataset containing the follower network of Twitter users and
cascade information of hashtags. Each time a user adopts a hashtag (by cre-
ating a new or using an existing one), it is added to the set of her keywords.
A cascade is constructed by sorting the users according to their first use of a
particular hashtag.
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– Memetracker [18]: a dataset containing the interaction history between dif-
ferent news media and blog web pages during a year. Each page is associated
with a set of memes, which are considered as its keywords. Memes are grouped
into clusters, and we consider each cluster id as a contagion that has infected
every page that has mentioned a meme that belongs to the cluster. Similar
to Twitter, cascades are built by sorting the users of a contagion according
to the time of first use.

– Blogcatalog [19]: a dataset containing a network of bloggers. There are 39
topic categories which are considered as content information for each author.

– Flickr [19]: a photo sharing site paired to a social network. Users place their
pictures under a set of predefined categories which can be considered content
information.

For Twitter and Memetracker, users are labeled based on their communi-
ties. First we identify the (non-overlapping) community to which a user belongs
using [20], and then we associate it as her label. We utilize both SPC and CSD
modes for these datasets, since information regarding structure, content, and
cascades is available. In addition, in all the experiments we have used h = 500
for Twitter and Memetracker, h = 200 for Flickr and h = 50 for Blogcatalog.

4.1 Baselines

Existing methods [4,6] that consider content information are usually based on
matrix factorization, which makes them unscalable for large networks. For this
reason, we only consider the following two content-oblivious approaches as base-
line methods:

1. DeepWalk [1]: is a method that utilizes truncated random walks for network
embedding, where each step of a walk is chosen uniformly at random. Equiv-
alent to the current work, they use the SkipGram model and it is trained
using the walks.

2. Line [3]: is a proximity based approach, trained by concatenating two inde-
pendently trained models based on the notions of first-order and second-order
similarity of nodes. In other words, in the first phase they train a model that
preserves the undirected link structure between nodes; in the second phase,
they train a model that preserves the directed or undirected 2-hop link struc-
ture of the network.

Table 2. Result for the link prediction task on the Twitter dataset

Algorithm P@100 P@500 P@1000 P@5000 P@10000 p@50000 p@100000 p@500000

Mineral 99.9 99.8 99.8 99.8 99.8 99.8 99.8 99.0

DeepWalk 96.6 97.0 97.1 97.1 97.1 97.1 97.1 96.9

Line 99.3 99.8 99.9 99.8 99.7 98.5 94.5 71.0
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Table 3. Result for the link prediction task on the Memetracker dataset

Algorithm P@100 P@500 P@1000 P@5000 P@10000 p@50000 p@100000 p@500000

Mineral 100.0 99.9 99.9 99.6 99.5 99.5 99.4 98.6

DeepWalk 99.1 99.0 99.0 99.1 99.0 99.0 99.0 99.0

Line 91.2 92.2 89.9 85.2 83.3 72.8 68.9 65.4

Table 4. Result for the link prediction task on the Flickr dataset

Algorithm P@50 P@100 P@500 P@1000 p@5000 p@10000 p@50000 p@100000

Mineral 99.2 99.6 99.6 99.6 99.4 99.2 97.4 94.9

DeepWalk 96.6 96.6 97.4 97.5 97.5 97.5 97.4 97.1

Line 54.4 61.0 61.6 58.8 51.6 48.9 44.2 42.5

4.2 Link Prediction

Link prediction is one of the most important network analysis problems. There
are three main techniques solving it, based on node similarity, topology, and
social theory [21]. Very often, such techniques rely on experts to craft informa-
tive features that enable us to effectively predict links, and this makes them
expensive. Instead of manually-crafted features, we use here the learned embed-
dings to perform link prediction. Towards this end, we randomly sampled 15% of
the existing edges from the network; we also randomly sampled the same amount
of node pairs that are not in the edge set. We then used the learned embedding
to effectively predict the links. That is, given a pair of nodes {u, v} ⊆ V , we
compute the probability p(u, v) of an edge existing between the two nodes as:

p(u, v) =
1

1 + e−(Φ(u)T ·Φ(v))

Then we sort the predicted edges according to p(u, v) in descending order and
evaluate the performance of an embedding in correctly predicting the edges
using the precision-at-K (P@K) score. P@K measures the fraction of correctly
predicted edges on the top-K results, i.e. what percent of the top-K edges are
true edges from the randomly sampled edges. For each K value we perform the
experiments 10 times and report the average. Tables 2, 3 and 4 show the results
for the Twitter, Memetracker and Flickr datasets; Mineral performs as good
as or better than the baselines.

4.3 Node Label Classification

The second problem we addressed is label classification. We consider two
instance of it, namely multi-class and multi-label classifications. For the Twit-
ter and Memetracker datasets, we tackled the multi-class classification problem,
because–as shown in Table 1–labels are communities and each node belongs to
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Table 5. Node classification accuracy on different levels of labeled training set ratio
for the Twitter dataset

Algorithm Training ratio

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

Mineral 98.19 98.05 97.97 97.98 97.95 97.91 97.74 97.51 96.93

DeepWalk 97.78 97.76 97.86 97.67 97.61 97.45 97.42 97.02 96.01

Line 84.19 85.74 85.02 85.11 85.18 84.69 84.06 82.20 76.19

Table 6. Node classification accuracy on different levels of labeled training set ratio
for the Memetracker dataset

Algorithm Training ratio

0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01

Mineral 85.25 85.24 85.23 85.21 85.19 85.14 85.08 84.98 84.58

DeepWalk 80.74 80.60 80.70 80.83 80.84 80.73 80.77 80.73 80.41

Line 53.56 53.54 53.50 53.47 53.44 53.41 53.32 53.12 52.58

just a single community. In the other datasets, given that multiple labels are
present, we performed multi-label classification. To evaluate the effectiveness of
a model in the classification task, we adopt the same evaluation metrics as in
previous studies, and hence we use Accuracy, F1-Micro and F1-Macro metrics.

The Multi-class classification results for the Twitter and Memetracker
datasets are reported in Tables 5 and 6, respectively. Similar to previous studies,
we performed these experiments on different fractions of labeled training sets
(Training Ratio ∈ {10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%}). Under this
setting, accuracy is the evaluation metric; and as shown in the tables, Mineral
performs slightly better than DeepWalk and significantly better than Line.

Fig. 1. Multi-label classification (using one-vs-rest logistic regression classifier) on the
Blogcatalog dataset
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Fig. 2. Multi-label classification (using one-vs-rest logistic regression classifier) on the
Flickr dataset

For the other datasets, however, Mineral significantly outperforms both base-
lines in multi-label classification. Figures 1 and 2 report the results on different
training ratios (x-axis) using F1-Micro and F1-Macro measures (y-axis).

4.4 Network Visualization

The last but not the least application of NRL is network visualization. We use
the Twitter dataset for this task, and the visualization is performed using t-
Distributed Stochastic Neighbor Embedding (t-SNE) [22]. Given a set of q com-
munities, an informative visualization should maintain a knit cluster for mem-
bers of the same community and maintain clear boundaries between different
communities. As shown in Fig. 3, Mineral’s visualization gives the best result.
Members of each community are densely clustered and are far from members of
other communities.

Fig. 3. Visualization of top-5 communities with atmost 2000 users in the Twitter
Dataset using (A) Mineral (B) DeepWalk and (C) Line
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4.5 Parameter Sensitivity

Now we turn into analyzing the sensitivity of the virality controlling parameter,
which is h. In Sect. 3 we have argued that “viral” or large cascades do not
capture any meaningful dependency between infected nodes of the cascades. To
empirically prove that such is the case, we have performed experiments over
different values of h ∈ {50, 100, 250, 500, 1000} on the Blogcatalog dataset. As
shown in Fig. 4, the precision@k significantly drops as we increase the size of h.
For example, for a fixed k = 10, the precision@k is P@k = 0.86 for h = 50,
P@k = 0.6 for h = 100, P@k = 0.29 for h = 500, and P@k = 0.15 for h = 1000.

Fig. 4. Sensitivity of the parameter h using the link prediction task on Blogcatalog

5 Related Work

Recent advances in neural network models have attracted researches from sev-
eral communities such as computer vision, NLP, and social network analysis. In
the last two communities in particular, a seminal work of Mikolov et al. [17]
in representation learning (embedding) of words in documents using a shal-
low neural network model has inspired studies [1,2] in network representation
learning. Among the approaches introduced for word embedding, the Skip-Gram
model [17] is the one that has been most largely used for network representation
learning. The Skip-Gram model is used to learn a representation of words by way
of predicting context words. The context of a node in a network, however, does
not have a straightforward definition. Studies have introduced different strate-
gies of capturing nodes context, for example using random walks [1,2], pair-wise
proximities [3,5], and community structures [7,8]. Once a context is formalized,
different neural network (based on either shallow or deep models) are employed
for the representation learning task. Then the learned representations are utilized
for downstream network analysis tasks.
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Studies such as [6] propose a NRL algorithm based on matrix factorization.
Such techniques, however, are computationally expensive and not scalable for
large networks.

6 Conclusion

This study presents Mineral, a novel algorithm for network representation
learning (NRL) that leverages three network aspects: topology, node content,
and diffusion. The algorithm efficiently encodes content information associated
with nodes into a similarity function between pairs of connected nodes. Then
it combines the network and similarity information with natural (observed) or
simulated cascades, and acquires context information of nodes. Finally, we com-
bine everything as a set of cascades and employ the SkipGram model to learn
an embedding that preserves structural, content, and diffusion context of nodes.

We performed several experiments using multiple datasets across several net-
work analysis problems, and compared the performance of our approach with
existing NRL baseline methods. Our results show that Mineral significantly
outperforms the baselines specially in multi-label classification and network visu-
alization. It also performs slightly better than the baselines in link prediction.
Even though our data modeling is effective in capturing many kinds of content
information, in this study we have focused on textual information.
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Abstract. In this study, we simulated the visual perception of the terrain in flying
pigeons over combined homogeneous terrain with multiple textures – forest and
grassland, water surface and seacoast. The surfaces along the pigeon’s flight
trajectory were considered as mixed textures observed from a bird’s eye view. In
the proposed method, the main structural elements for the analyzed textures were
selected and then statistically homogeneous characteristics of the texture were
determined. The textural characteristics and their changes during flight were
recorded in the form of distinct “event channels”. For different types of terrain,
the frequency characteristics of visual perception were calculated and compared.
In addition, we considered the possibility of comparing the frequency character‐
istics of the textures with data regarding the pigeon’s rhythmic brain activity.
Spatial data—open-access remote sensing datasets—were processed using the
geographical information system QGIS. Our results show that recognizing mixed
landscape textures can help solve navigation tasks when flying over terrain with
sparse landmarks.

Keywords: Visual perception · Spatial navigation · Brain activity

1 Introduction

Here, we simulated a pigeon’s flight over natural terrain. The aim of the study was to
determine whether visual properties of mixed homogenous textures can be used to solve
navigation tasks in motion.

In this simulation, the distinguishing feature of homogeneity is defined as homoge‐
nous distribution of texture elements by the spatial frequency. The elements of the
texture are defined as visually recognizable items that repeat along the surface. During
motion, these elements provide visual information for perception.

We propose criteria by which individual elements of textures can be considered
“events along the route”. In addition, we demonstrate that repeating of similar events
can determine the frequency of an extensive texture.

Moments of observations of textural elements can also be recorded in the event
channels. By taking into account flight speed, the frequency characteristics of different
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types of terrains can be calculated and compared. The pigeon perception in flight corre‐
sponds with visual flicker threshold about 75 Hz.

Records in visual event channels can be compared with other simultaneously
recorded data, including the bird’s precise spatial position (using GPS data) and the
bird’s brain activity (using EEG data).

Figure 1 shows the typical examples of homogenous and multiple textures (A) and
change in attention of flying pigeon (B).

Fig. 1. Homogeneous and multiple textures (A) and typical change in pigeon attention when
flying from sea to coast (B)

This paper is structured as follows. In Sect. 2, we provide a brief review of the
published literature regarding the following topics: (i) the perception of textures in
animals and humans; (ii) the study of pigeon’s flight using GPS-based navigation; and
(iii) the principles of recognizing textures and textural elements while in motion. In
Sect. 3, we describe spatial data processing methods for natural terrain images obtained
at the bird’s flight altitude. In Sect. 4, we present the “event channels” and compare the
frequency parameters of the observed textures with the data obtained regarding the
rhythmic brain activity in flying pigeon. In Sect. 5 we conclude that spatial frequency
recognition in textures can help when flying over mixed homogeneous terrain.
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2 Background and Related Works

2.1 Visual Perception of Textures by Animals and Humans

Spatial analysis is associated to the mind which organizes the observations, and the
connections; the analysis is able to modulate new perceptions into different organiza‐
tions. The brain is in fact a geographer: there is the external space, the brain observes
it, the brain interprets it; describes it; interiorises it, and finally uses it, and modifies it.

Visual perception of the textures in the surrounding world is a continuously ongoing
process. The ability to perceive, distinguish, and respond rapidly to minor changes in
textures can be very high—and highly varied—in both animals and humans [1, 2].

When observed visually, a texture can be perceived either as its separate elements
or as a generalized surface. This has been illustrated most clearly in terms of the orien‐
tation of insects. For example, bees can orient themselves using separate repeated local
objects, but they can also produce a global, holistic perception of the visual picture [3].

Leonhardt et al. [4] showed the difference between orientation tasks in homogenous
terrain (for example, a forest) and orientation tasks in disturbed terrains with many
notable landmarks and scenery fragments (“visually/structurally homogeneous terrains,
and disturbed terrains with many prominent landmarks and fragmented”). In their study,
Leonhardt et al. found that homogeneity and heterogeneity of the landscape can differ‐
entially affect the bees’ homing.

In addition to responding to the visual scenes themselves, the brain also reacts to the
rate of change in the scenes. Neural mechanisms of speed perception have been described
[5]. For example, the hippocampus can respond to deviations from the correct route,
thereby supporting the pigeon’s directional adjustment in the event of a navigation error
when returning home [6].

Primates can recognize textures with high accuracy, as demonstrated by the response
of the primary (V1) and secondary (V2) visual cortex [7, 8]. Presentation of the direction
maps in V1, V2 brain areas were showed in [9].

The perception is different in birds and in primates. For example, primates have
mechanisms of visual perception that include both saccades and smooth pursuit eye
movements, which allows a primate to trace the texture elements during motion [10].
In contrast, birds have characteristic forward-and-backward head movements while
walking, running, or landing after flight [11].

Another difference between birds and primates is their flicker threshold value (i.e.,
the flicker frequency at which separate moving stimuli appear to be continuous), which
is several times higher in pigeons than in humans [1, 2]. Visual acuity is also much
higher in pigeons, enabling them to distinguish objects at a distance of up to three kilo‐
meters.

Yet another obvious difference is that most birds can fly, which allows them to
rapidly change their spatial position and to refine their visual information.
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2.2 Studying a Pigeon in Flight Using GPS and Brain Activity Loggers

Jimenez Ortega et al. [11] reported that pigeons occasionally fly home in a straight line,
but rather fly along familiar highways, preferring to be guided by familiar landmarks.
In addition, Biro et al. [12] argued that pigeons rely on both visual reference points and
their internal sense of direction. Schiffner et al. [13] analyzed pigeons’ GPS tracks and
discussed whether a pigeon requires visual perception in order to accurately determine
its location.

Vyssotski et al. [14] analyzed a pigeon’s flight using sensors (Neurologger and a
GPS logger). In their paper, authors described the differences between flight over the
open sea and flight over land, taking into account variations in visibility. They also
registered and analyzed EEG activity during flight over various types of terrains and
under various levels of visibility (i.e., poor, moderate, and good visibility).

Mann et al. [15] studied the influence of mixed terrain on the pigeon’s navigational
behavior, including the effect of extensive linear landmarks such as roads and rivers.
They concluded that pigeons navigate best in areas in which the terrain’s complexity is
neither too high nor too low.

The visual perception of terrain textures typically occurs in pigeon’s flight at an
altitude of 100–500 m at an average speed of 60 km/h. During flight, the pigeon can
change its speed, direction, and altitude based on the varying information.

2.3 The Recognition of Texture and Texture Elements in Motion

Texture consists of a combination of separate elements united by a common principle
(or set of principles). The basic approaches of texture properties were proposed by
Haralick et al. in 1973 [16]. The authors confirmed that a texture can be used for clas‐
sification and segmentation, and they showed that texture and luminance contrast are
always present in images, and they are independent. In 1990, Webster et al. noted “spatial
frequency of patterns defined by luminance variations” [17].

To use dynamic texture properties for navigation, it is necessary to identify the most
relevant attributes. Zaccolo [18] showed that texture attributes suitable for tracking must
be repeatable frame-to-frame in a visual sequence, and they must be clearly distinguish‐
able from the noise. Based on repeated attributes, a texture’s temporal and spatial
frequency can be described.

The internal tracking ability is activated in the presence of structural and organiza‐
tional components of the space, which are perceived as sets of visual stimuli. Exogenous
attention depends on the second order of the stimulus spatial frequency [19].

To classify remote sensing data the methods of the texture recognition can be used,
even for low-density textures [20]. However, a lot of methods are used primarily for the
recognition of stationary images. In practice, in order to recognize separate elements, it
is possible to use elements’ dictionaries for satellite and aerial imageries [21]. In his
review, Blaschke [22] compared methods for selecting objects of interest. In another
review, Du et al. [23] showed that optimal results can be obtained using a combination
of image analysis methods, including both the spectral and textural characteristics of
images. Skowronek et al. [24] showed that the most frequently used methods yield
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strikingly similar results. Indeed, the three most frequently used methods (maximum
entropy, biased support vector machines, and boosted regression trees) yield highly
similar results. Joseph et al. [25] used artificial sets of textures to highlight the optimum
set of scales for observing texture, based on the fact that “As the texture is scaled down,
increasing the number of checks within the fixed display size, performance increases
while the efficiency decreases.”

Simple elements used in detection the texture frequency should be:

– perceptible in motion (the texture frequency should be lower than the flicker threshold
for visual perception);

– large enough to be in the detection range (the elements observation scale should
correspond to visual acuity);

– small enough to be perceived independently (the spatial frequency should be present
within the visual field);

– visually distinguishable (should be differ from noise and other texture content);
– statistically significant (should be appear repeatedly enough inside the texture); and
– relatively periodic.

At the same time, mixed homogenous textures can be represented by several sets of
elements, repeated with different frequencies (for example, mixed growth of bushes and
trees). In addition, the orientation of some texture elements can be taken into account;
for example, Kingdom and Keeble [26] showed double modulation for differently
oriented grids with the same spatial frequency.

The speed and accuracy of detecting the frequency characteristics of the texture can
be increased by performing a layered separation of different types of elements.

3 Materials and Methods

3.1 Spatial Datasets

In this study open remote sensing data were applied. The source data layers were
added using the OpenLayers Plugin (http://openlayers.org) in QGIS, which allows to
obtain Google Maps, Bing Maps and another open layers. The original coordinate system
is WGS 84/Pseudo-Mercator (EPSG:3857). For processing, we used grayscale images.

Calculations were performed for the following cases:

– Flying over homogeneous forest;
– Flying over combined terrain: from the sea to the coast.

Case 1. Homogeneous Terrain: Forest
Case 1 shows the spatial texture frequency calculation for pigeon’s flight over homo‐
geneous terrain.

View the primary data source in Google Maps is available at: https://
www.google.com/maps/@60.499723,5.1349364,500m/data=!3m1!1e3.
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Case 2. Mixed Terrain: Flying from the sea to the coast
Case 2 shows the example of flight over mixed homogeneous coastal terrain: water
surface, coast and forest; and generalization the “event channels” for different spatial
texture frequencies.

View the primary data source in Google Maps is available at: https://
www.google.com/maps/@44.0549291,9.94026,300m/data=!3m1!1e3 or http://
ant.dev.openstreetmap.org/bingimageanalyzer/?lat=44.054929161689764&lon=
-350.0599533319473&zoom=18&l=bing.

In addition, variations in 12–60 Hz EEG power obtained in similar experiments on
pigeon [14] and records of “event channels” are compared.

3.2 Methods

This work was performed in the following steps:
Step 1 - Calculating and analyzing spatial texture frequencies for pigeon’s flight over

homogeneous surface (Cases 1, 2):

– Load data from OpenLayers. Generate raster layer from the appropriate texture loca‐
tion.

– Create shapefile of pigeon’s track.
– Create vector buffer around pigeon’s tracks (Fig. 2). This buffer simulates the area

of special attention in pigeon.

Fig. 2. Case 1. Homogeneous terrain. Case 2. Mixed terrain: flying from the sea to the coast.

– Calculate sampling intervals of texture. Generate vector contour lines at calculated
sampling intervals.

– Generate “event channels” in accordance with spatial texture frequencies. Compute
basic texture statistics and statistics for vector polygons.

– Generate histogram of spatial texture frequency distribution.
– Create a histogram of line directions — rose diagram (weighted using the line

segment lengths).
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Step 2 - Calculating and analyzing spatial and temporal texture frequencies for
pigeon’s flight over mixed surface (Cases 2):

– Generate multiple “event channels” in accordance with the sets of spatial texture
frequencies.

– Comparing spatial and temporal texture frequencies and EEG data obtained in similar
experiments on pigeon [14, 27].

– Calculating spatial texture frequencies for different texture scaling.

3.3 QGIS Plugins

The data were processed using the open source software program QGIS (http://
qgis.org), including additional analysis plugins: QGIS geoalgorithms, SAGA,
GDAL/OGR and GRASS.

4 Results

4.1 Analysis of Typical Texture Frequencies

We calculated and analyzed the texture frequencies for different textures using the
geographical information system QGIS.

Calculated results (contour extraction, event channel and line direction histogram)
for Case 1 are shown in Fig. 3.

Fig. 3. A. Contour extraction and selection data for statistical analysis. B. Event channel. C. Line
direction histogram shows that the difference in texture directions is insignificant.

Contour extraction was made using the GdalTools plugin (see http://planet.qgis.org/
planet/tag/contours). Creation of Polygon Centroids was made using QGIS Geometry
Tools/Polygon Centroids. The event channel was made based on the principle that each
centroid means one event point in the buffer zone.
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4.2 Comparison Texture Frequencies and Brain Activity in Flying Pigeon

We calculated the sets of frequencies of textures based on the data along the pigeon’s
flight trajectory from sea to coastal area. We also calculated the temporal frequency
parameters of the observed textures, taking into account the typical pigeon’s speed. The
events along the flight track were registered in distinct channels.

We compared obtained spatial and temporal texture frequencies in Case 2 with
typical EEG power [14]. At this work authors found that the pigeon’s brain activity
differs depending on the type of landscape over which the pigeon is flying. EEG power
in the 12–60 Hz frequency range was higher over mixed ground landscape than over
sea.

Figure 4 summarizes result of this comparison.

Fig. 4. Data comparison in distinct “event channels”. Data about typical EEG power is
reproduced from [14].

It should be noted that texture frequency cannot be used in classification tasks
directly, since different textures can be similar in frequencies.
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5 Conclusions

Our simulation methods can be applied to study the navigational mechanisms in pigeon
flying over a mixed homogeneous terrain: forest, grassland, water surface or coast.

As future work, precise coordinate definition of texture characteristics could be
compared with GPS location of pigeon and with EEG records of brain activity. To
improve accuracy, one should use high-resolution imagery and take into account 3d and
parallax effects.
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Abstract. The estimation of the density of a population of behaviourally
diverse agents based on limited sensor data is a challenging task. We
employed different machine learning algorithms and assessed their suit-
ability for solving the task of finding the approximate number of honeybees
in a circular arena based on data from an autonomous stationary robot’s
short range proximity sensors that can only detect a small proportion of a
group of bees at any given time. We investigate the application of different
machine learning algorithms to classify datasets of pre-processed, highly
variable sensor data. We present a new method for the estimation of the
density of bees in an arena based on a set of rules generated by the algo-
rithms and demonstrate that the algorithm can classify the density with
good accuracy. This enabled us to create a robot society that is able to
develop communication channels (heat, vibration and airflow stimuli) to
an animal society (honeybees) on its own.

Keywords: Machine learning · Data mining
Classification algorithms · Density estimation · Robots · Honeybees

1 Introduction

The availability of a precise estimation of the population density is an impor-
tant prerequisite for the establishment of a mixed society of interacting bees
and robots, which is the aim of the ASSISI|bf (Animal and robot Societies
Self-organise and Integrate by Social Interaction (bees and fish)) project. The
main concept of the project is to generate a mixed society of honeybees and
autonomous robots, which aims to establishing a robotic society that is able to
develop communication channels to animal societies (bees and fish swarms) on
its own [20]. The robots will adapt by evolutionary algorithms until they have
learned to interact with animals in a desired way. Honeybees are an established
and widely used model organism in the field of collective behaviour and swarm
intelligence due to their social nature [23]. The project’s long-term objective is to
c© Springer International Publishing AG 2018
G. Nicosia et al. (Eds.): MOD 2017, LNCS 10710, pp. 309–321, 2018.
https://doi.org/10.1007/978-3-319-72926-8_26
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integrate bio-inspired robots and biological agents to form an interactive mixed
society. The experiments focus on limited interaction between stationary robots
and bees in an experimental arena. These robots are implemented as CASU s
(Combined Actuator Sensor Units) that communicate with the bees via their
actuators (heat, vibration and airflow) [21]. The bees communicate with the
CASUs via their mere presence (detected by the CASUs’ six proximity sensors).
The task of estimating the population density of a group of agents, based on
information gathered by sensors with severely limited surveillance range, poses
a great challenge for the development of automated realtime solutions. This is
especially true for agents such as honeybees with highly variable and unpre-
dictable behaviour. Supervised machine learning methods are the most promis-
ing candidates for a reliable and time efficient solution for density estimation.
The new agent density estimation approach poses a new challenge when selecting
a good learning algorithm and its parametrization. Therefore, this aspect had
high priority in our work. To our knowledge, agents density estimation based on
machine learning has not been applied before to solve such a problem.

1.1 State of the Art

Researchers use machine learning classification algorithms to generate decision
trees or rulesets as descriptors of datasets, which represent the problem to be
solved [18]. The algorithm is trained by the training dataset where the generated
rules are tested with a test dataset. The algorithms either split the dataset into
separate sets of test and training data, or use cross-validation for generating
the classifiers. The produced classifiers can be evaluated by different measures
such as accuracy, robustness, speed and scalability [11]. For this work, we used
accuracy, calculated as the number of correct predictions per total number of
predictions made while using bees as agents. In prior works, Salem and Schmickl
[19] used bristle-bots, simple micro robots propelled by vibrating the slanted bris-
tles they rest on [7], as substitutes for groups of bees. In this case, an algorithm
was used to learn how to derive the number of bristle bots in a circular arena
from the sensor activities of a CASU at the center of the arena. The resulting
rules were induced by an algorithm trained with datasets collected during the
experiments. The work showed that the set of rules was able to predict the num-
ber of bristle-bots with satisfying accuracy. While this study was valuable for
the development of the project, there are important differences between bristle-
bots and bees that required an extended study with bees. For instance, the bees’
locomotion patterns are modulated by the environment and dependent on com-
munication between individuals. The work reported in this paper aims to enable
the CASUs to determine the number of bees in an arena with a good accuracy
by employing different algorithms. By determining the best suited algorithm and
its parametrization we extend the scope of machine learning applications to the
field of bio-hybrid societies, where they will be implemented on different layers
of control and evaluation software. In additional related work an artificial neural
network based on LSTM architecture was designed and trained for bee density
estimation [16].
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1.2 Research Questions

The work presented in this paper was devoted to answering the following research
questions:

1. Does the number and type of attributes correlate with the classification accu-
racy?

2. Does the number of classes correlate with the accuracy and number of gen-
erated rules?

3. Does the number of examples affect the accuracy and number of generated
rules?

4. Does the number of generated rules correlate with the accuracy?
5. Is there a specific experimental setup that allows any or all of the algorithms

to perform exceptionally well?
6. Are there differences between the three tested algorithms regarding the

achieved accuracy and number of generated rules?
7. Is there an algorithm that performs consistently better or worse than the

others in all experimental setups?

2 Material and Methods

The data is generated by the sensors mounted on the hexagonal top part of a
CASU. The CASU is located at the center of a circular arena (d = 12.5 cm),
which is equipped with a wax floor and a plastic wall. The infra-red proximity
sensors are triggered by objects at a distance of up to 1.5 cm. The values of each
sensor are logged at a rate of 10s−1, thus producing data with six features. For
each animal experiment, single or groups of young (up to one day old) Euro-
pean honeybees (Apis mellifera sp. [10]) were released into the arena and left to
walk freely for a specified time. The experiments were conducted in an infrared
lit environment which is essentially dark for the bees. The number of bees in
the arena was varied in different steps between experiments. The resulting log
files were processed to extract various attributes relevant for the learning pro-
cess, which we combined to constitute the actual datasets. We conducted several
series of experiments on these datasets with different selections of attributes and
evaluated the accuracy achieved with each combination along with the corre-
sponding Kappa coefficient [4]. The aim of the learning process was to assign
to each group size one of several group size classes, which were also subject to
change between iterations of the series of experiments. In order to prevent the
adverse effects of an excessive number of classes on the accuracy, we grouped the
population sizes into larger and fewer bins for some experiments and assessed
the impact of this measure on the accuracy by repeating the experiment four
times with different numbers of classes. In this work we used different algorithms
from the Weka package1 (Waikato Environment for Knowledge Analysis) [22].
We focussed on three different methods which process combined training and

1 Available for download at http://www.cs.waikato.ac.nz/ml/weka/.

http://www.cs.waikato.ac.nz/ml/weka/
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test datasets that store pre-existing knowledge about the classification (the out-
put, in our case the group size) inline with the attributes and their values used
for the training (the input) [12].

2.1 Hardware Description

The hardware system that delivers the data to learn from is a custom stationary
robot (CASU) developed to facilitate interactions with nearby bees (Bee-CASU
system) [8]. The CASU is mounted beneath the arena, with its hexagonal top
part (d = 1.5 cm) above the aluminium ring protruding through the arena floor
into the arena. This part hosts six lateral proximity sensors (VCNL4010) with
an I2C communication interface to detect nearby honeybees. The sensors are
fully integrated and implement an independent distance measurement procedure
that resorts to a built-in infra-red emitter and a photo diode to detect reflected
infrared light. The sensors are able to detect bees at a distance of up to 1.5 cm
and thus do not allow to directly determine the total number of honeybees in
the arena. During the experiments, the values reported by the proximity sensors
and other relevant status information of the CASU were logged by the control
software at a rate of 10s−1. One or more bees are detected by a sensor whenever
its value reaches or exceeds its threshold value. The sensor specific threshold
is assumed at 3% above the minimum value encountered by the sensor during
the entire experiment. The short detection range of the sensors is the primary
reason why we had to develop a method to (spatially and temporally) integrate
the sparse information retrieved from the individual sensors in order to get an
estimation of the total number of honeybees in the arena.

2.2 Learning Algorithms

All learning experiments were performed using three algorithms, one of them
based on decision trees (J48) and two based on classification rules (JRip and
PART).

J48 Decision Tree. J48 is a Java implementation of the C4.5 decision tree
algorithm [17]. J48 is an extension of ID3 algorithm and is often referred to as
a statistical classifier.

JRip Rules Classifier. JRip is a fast and efficient RIPPER algorithm [2].
Classes are examined in increasing size and an initial set of rules for each class is
generated using incremental reduced error pruning [5]. JRip proceeds by treating
all the examples of a particular judgement in the training data as a class, and
finding a set of rules that cover all the members of that class.

PART Algorithm. PART is a partial decision tree algorithm, which is the
developed version of C4.5 and RIPPER algorithms [15]. However, decision trees
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are sometimes more problematic due to the larger size of the tree which could
be oversized and might perform badly for classification problems [3].

2.3 Dataset Description

In order to create the datasets for or our learning experiments, we pre-processed
the data logs for the sensors including six integer values that reflect the status
of each proximity sensor, and extracted a number of attributes that integrate
the information of one or several sensors. Depending on the experiment series,
we averaged the raw data over a period of 3 s (30 values) or 1 min (600 values)
and employed different sub-sets of the defined attributes2.

2.4 Learning Experiments

The classical supervised learning problem is to construct a classifier that can cor-
rectly predict the classes of new objects given training examples of old objects
[14]. If the classifier classifies most cases in the test examples correctly, we can
assume that it works accurately also on the future data. If the classifier makes
too many errors (misclassifications) in the test examples, we can assume that it
was a wrong model. A better model can be searched after modifying the data,
changing the settings of the learning algorithm, or by using another classification
method [9]. In order to identify the best combination of algorithm and dataset
setup, we conducted several series experiments to test the variability of rules
generated using different setups. This approach resulted in five main experiment
series (s1–s5) with different population sizes and different population size granu-
larity. s1 was complemented with four additional sub-series (s1.1–s1.4). The main
reason to iterate over different experiment series was to determine the response
to altering the number of bees, definition of group sizes, attributes or experiment
duration on the learning algorithm for the aim of concluding to the best setup.
For this purpose, we processed the averaged or summed attributes with each
of the algorithms to test. The dataset based on sums was tested in its original
version (examples sorted by population size) and in a randomly shuffled version
(examples in random order). In s1, we used a very simple dataset setup with 14
attributes and 14 classes, where every population size of bees is considered as a
class. We derived the attributes from both averaged (real) and summed (integer)
value in order to test for a possible impact of the data type on the performance
of the algorithm, which proved to be marginal. In s1.1–s1.4 we used different
grouping schemes with different population numbers in every sub-series while
sticking with the same attributes. In s2, we introduced new attributes based on
the original sensor readings in addition to the attributes used earlier. We also
added a new class for no bees. In this case the algorithm can learn from a mix-
ture of real and logical values with more information, which can be beneficial
for generating better results. In this and all subsequent series, we averaged the

2 A sample dataset is available at https://doi.org/10.5281/zenodo.824923.

https://doi.org/10.5281/zenodo.824923
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sensor values over 600 sensor log records, which correspond to 1 min of record-
ings. This method reduces the number of records in the dataset and also reduces
the impact of the large variance in the instantaneous data. In s3, we introduced
normalized versions of several attributes (sum and standard deviation of sensor
values) in order to better compensate for differences between sensors, to reduce
the data range and to complement the logical and integer values with real values,
thus creating a more diverse dataset, which is expected to have a positive impact
on the algorithm’s search space. In s4, the duration of the bee experiments was
shortened to 10 min. In s5 we modified the setup of the experiments to decrease
the population size granularity. We cycled through all population sizes from 1 to
32 bees and repeated each experiment twice. For details on experiment setups
in the different series of learning experiments, consult Table 1.

Table 1. Setups of experiment series. The number of attributes, examples and classes
and the duration (τ) and number of repetitions (nruns) of the bee experiments are
shown for the different series. Each example consists of the indicated number of
attributes and resolves to the respective number of classes.

Series nexamples nattributes nclasses τ [min] nruns

1 1008 14 14 30 2

1.1 1008 14 2 30 2

1.2 1008 14 3 30 2

1.3 1008 14 4 30 2

1.4 1008 14 4 30 2

2 1080 25 5 30 2

3 1080 25 5 30 2

4 360 25 5 10 2

5 320 25 4 10 1

3 Results

The J48 and PART algorithms achieved a similar accuracy (differences between
3–6%) while JRip typically performed slightly lower (see Fig. 1). For all algo-
rithms, the lowest accuracy (47.4% and 46.7% for J48 and PART) was achieved
in the s1 experiments (no categorization) and the highest (97.8% and 98.3%
for J48 and PART) in s1.1 experiments (categorization into the lowest number
of classes). The Kappa statistics demonstrate a sufficient (s1) to excellent (s2,
s3) agreement between predicted and actual classes (see Table 3). The accuracy
achieved while learning from the different types of dataset (based on averages,
sums and shuffled sums), which were provided in the s1 experiments, was almost
identical for the three dataset types (see Fig. 1). While the number of rules
generated by JRip slightly changed depending on the dataset (25, 22 and 24
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rules for averages, sums and shuffled sums), the PART algorithm generated the
same number of rules (90) with all datasets (see Table 2). During the average
based learning of s1 experiments, missing values (zeros) occurred in 68% of all
examples for 4 of the 14 attributes. During the s2 experiments, missing values
occurred in 10% of all examples for 3 out of 25 attributes. While the states were
evenly distributed in the s1 datasets (72 examples per state), the introduction
of classes resulted in an imbalanced distribution of the dataset examples over
the different states. For example, of the five classes in the datasets used for the
s2 and s3 experiments, two were covered by 72, two by 360 and one by 216
examples. The results of categorization into different numbers of nominal classes
(see Fig. 2a) corroborate the negative correlation between number of classes and
achieved accuracy for all three algorithms (compare s1 experiments of Fig. 1).
However, for all tested numbers of classes the achieved accuracy was higher than
for learning from uncategorized (continuous) states. Over all numbers of classes
and with uncategorized states, J48 and PART achieved a higher accuracy than
JRip. There is a direct correlation between the number of classes and the number
of rules generated by the JRip and PART algorithms (see Fig. 2b and Table 2).
This correlation is approximately linear in the investigated range of 2–15 classes.
PART produced more rules than JRip over the entire range. In contrast to the
number of classes, the number of attributes does not have an influence on the
number of rules generated by JRip or PART (see Table 2). It follows from the
correlation between number of classes and number of generated rules and the
negative correlation between number of classes and accuracy, that there is also
a negative correlation between the number of generated rules and the achieved
accuracy (see Fig. 3).

Fig. 1. Overview over the accuracy achieved in the different learning experiment series.
The setups of different series differ in data reduction method and number of states
(classes). The dataset for s1(a) is based on averages, for s1(s) on sums and for s1(sh)
on shuffled sums. For s5, (evenly) redistributed classes were used. Consult Table 1 for
numbers of classes and attributes used in each series. The JRip algorithm was not used
in experiment series s1.1–s1.4.
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Fig. 2. The dependence of accuracy and number of generated rules on the number of
classes. The learning experiments were conducted for different numbers of distinguished
classes (lines with markers; group sizes of 1–32 honeybees categorized into 2–15 nominal
classes) and for uncategorized group sizes (markerless lines). The learning experiments
were conducted with the setup of the s5 experiments. (a) The accuracy achieved by all
three algorithms for different numbers of classes. (b) The number of rules generated
by the JRip and PART algorithms for different numbers of classes

Fig. 3. The accuracy achieved by the JRip and PART algorithms for different numbers
of generated rules

4 Discussion

In this paper, the primary benchmark for the quality of the algorithms is the
accuracy of the predictions made by a model trained on the test dataset. The low-
est accuracy was achieved in the s1 experiments, which were based on datasets
with uncategorized states. This finding is explicable by the scattering of the
dataset over 14 possible states (3 to 42 bees in steps of 3), which has a negative
effect on the ability of the searching mechanism to find the best rules to represent
the whole dataset. A considerable improvement was achieved by categorizing the
states into classes (i.e. by grouping populations; compare experiment series s1.1–
s1.4), which reduces the amount of scattering. In accordance with the negative
relationship between number of classes and accuracy, the highest accuracy was
achieved in the s1.1 experiments, in which only two classes were distinguished.
The method of calculating the attribute values (summation or averaging) and the
randomization of the order of examples did not have any impact on the accuracy.
Some of the 14 attributes used in the s1 and s1.1–s1.4 experiments assumed zero-
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values in many dataset examples. Frequent occurrences of such missing values
can affect the quality of the classifiers trained on these datasets [1] as they tend
to inflate the ruleset. Due to the interdependencies between number of classes,
number of rules and accuracy, it is not possible to imply from these experiments
a direct impact of zero values on the accuracy. The new attributes and data
reduction methods introduced with s2 had a dampening effect on the number of
zero values encountered in the datasets, as both the number of occurrences and
the number of affected attributes decreased. On the other hand, the introduction
of classes with s1.1 brought along the problem of uneven class distribution, which
can seriously affect the performance of the learning algorithms both during the
training and the evaluation phase [6]. For example, in the s1.1 experiments, one
of the two classes comprised populations of 3 bees while the other comprised
populations of 6–42 bees, thus causing an extremely imbalanced class coverage.
Despite this factor, the learning from categorized states, which was employed in
s1.1 and higher, proved to be beneficial to the accuracy. Therefore, the effect of
uneven class distribution appears to be outbalanced by the negative toll taken
by the large number of states to differentiate in datasets without categorization.
In experiment series s2–s5, additional features (attributes) were introduced to
the dataset, bringing their number from 14 to 25 and thus providing the algo-
rithms with more information to learn from (see Table 1). Additionally, some of
the newly introduced attributes directly reflect low level sensor activities rather
than the values derived from logical combinations of sensor values. Both of these
changes had a beneficial effect on the performance of the algorithms. The setup
of the s2 experiments proved to be especially beneficial to the accuracy of the
learning algorithms. In this series with categorization into 5 classes, the J48 and
PART algorithms performed better than in the s1.2, s1.3 and s1.4 experiments
that only differentiated 3, 4 and 4 classes, respectively, and the JRip algorithm
performed on level with J48 and PART. However, J48 and PART didn’t achieve
the same accuracy as in s1.1 experiments, in which only two classes were differ-
entiated. Given the persistence of other parameters, this improvement can only
be ascribed to the increase in number and qualitative changes of the attributes
and the resulting improvement of the algorithms’ database. The changes intro-
duced in s3–s5 experiments did not improve the performance of the algorithms
compared to s2. While they performed comparably well in s3 experiments, the
setup changes in s4 and s5 had a detrimental effect on the classification accu-
racy of all three algorithms. Since the number of classes is the same (5) in s4
as in s2 and s3 and even lower (4) in s5 and the attributes are identical as well,
this effect appears to be due to the lower number of examples in the respective
datasets (360) compared to those used for s2 and s3 (1080). In this case, the
shorter duration of the biological experiments was reflected by smaller datasets,
which in turn provided less information for the algorithms to learn from. The
comparison of the accuracy achieved by the three algorithms shows that JRip
typically has a lower performance than the other two algorithms, which perform
approximately equal. This is especially obvious when considering the accuracy
in correlation with the number of distinct classes. However, in experiment series
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Table 2. The number of rules generated by the JRip and PART algorithm in all
learning experiment series. For s1, the values are given for attributes constructed of
averages (a), sums (s) and shuffled sums (sh).

Algorithm s1(a) s1(s) s1(sh) s1.1 s1.2 s1.3 s1.4 s2 s3 s4 s5

JRip 25 22 24 - - - - 16 18 8 9

PART 90 90 90 9 8 30 46 20 25 26 15

Table 3. Kappa statistics. The kappa coefficients calculated during the learning process
of the three algorithms are shown for the major experiment series.

Algorithm s1(a) s1(s) s1(sh) s2 s3 s4 s5

PART 0.4263 0.4241 0.437 0.8957 0.8945 0.6693 0.738

Jrip 0.3216 0.3494 0.3323 0.9057 0.8701 0.6595 0.6847

J48 0.4338 0.4348 0.438 0.9148 0.8859 0.6517 0.6728

s2–s4, all three algorithms have a comparable performance. The number and
quality of generated rules are an important factor that determines the classifi-
cation accuracy both during the learning process and upon application of the
ruleset to a classification problem, where a lower number of rules is beneficial
for the applicability of the classifier. In this regard, JRip clearly outperforms
PART as it manages to achieve a comparable accuracy with fewer rules in all
tested setups. Generally it can be said that the setups of the experiments played
a much greater role for the accuracy than the selected algorithm.

5 Conclusions

Our approach of detecting the approximate number of bees in an arena by
employing machine learning algorithms to evaluate highly variable data from
a limited detection system has shown promising results. The algorithms applied
to the problem were able to classify the bees population in the arena with good
accuracy and a reasonable number of generated rules (where applicable). It is
obvious that the choice of the algorithm and a proper configuration of dataset
and algorithm is crucial to the quality of the classification results. However,
finding the optimal parameters for all applied algorithms and datasets requires
a large amount of resources [13] as each algorithm has to be tuned individually
for each dataset. Although there are automatic methods for setting parameters,
we adhered to the default parametrization for all machine learning algorithms
employed in our experiments, so that some potential remains to further improve
the accuracy of our classification results. The comparison of the different algo-
rithms employed in our experiments showed that PART is the best suited algo-
rithm for our specific problem as it achieves the highest classification accuracy
with the smallest rulesets. However, all three algorithms achieved a comparable
accuracy when processing datasets configured according to the setup of the s2
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experiments. This setup proved to be the best suited among the different setups
we tested due to the high accuracy it allowed the algorithms to achieve while
differentiating a reasonable number of classes. Due to this compromise between
accuracy and a useful number of classes, this setup will continue to be used in
further experiments. Therefore, the research questions on which the work pre-
sented in this paper was focused, can be answered as follows:

1. The number of attributes and the procedure of deriving their values from the
raw sensor data have an influence on the classification accuracy. However, the
method of calculating their values (averages, sums or shuffled sums) does not
influence the accuracy.

2. The classification accuracy correlates negatively and the number of generated
rules positively with the number of classes.

3. A low number of examples can have a negative effect on the classification
accuracy if the learning algorithm is trained on too little data to achieve its
potential.

4. The number of generated rules is interdependent with the achieved accuracy,
but it is not clear from our results whether this is a real or spurious correlation.

5. All three algorithms showed their best performance when trained on datasets
configured according to the s2 and s3 setup. However, there is potential for
further improvements.

6. J48 and PART perform similarly in terms of classification accuracy while
JRip falls behind. PART also generates fewer rules than JRip.

7. Due to its prevalence over the competing algorithms in terms of accuracy and
ruleset size, PART shows the best overall performance during all experiments.
Judged by the same criteria, JRip underperformed consistently.

Therefore, our approach to determine the approximate number of bees in
an arena using machine learning algorithms was successful. The proportion of
correct classifications was excellent, so that the method can be implemented
in future experimentation, where it will for example provide stationary robots
with the information required to take control over a swarm of bees or other
animals. At the same time, the flexibility of the method and its implementation
will allow for easy adaptation to different scenarios or environments. This wide
applicability gives the method relevance for various fields of research.

6 Future Work

The density detection mechanisms developed in this work will be implemented
in future experiments conducted in the framework of the ASSISIbf project. The
pre-generated rulesets will be used by the CASU control program to estimate
the number of bees in the arena. The control program will be able to integrate
information from several CASUs and thus classify the group sizes with higher
accuracy. We will complement this top-down approach by the implementation
of a learning algorithm directly in each CASUs’ control logic. This will enable
the CASUs to independently estimate the number of bees in the arena and to
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adapt to new scenarios by dynamically modifying the classification rulesets. The
methods developed in our work could be used to monitor bees in their hive in
order to continuously assess the colony size or to detect abnormal behaviour.
This could provide beekeepers with a valuable new tool to survey the health of
their colonies.
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Abstract. In the context of industrial engineering, it is important to integrate
efficient computational optimization methods in the product development
process. Some of the most challenging simulation-based engineering design opti‐
mization problems are characterized by: a large number of design variables, the
absence of analytical gradients, highly non-linear objectives and a limited func‐
tion evaluation budget. Although a huge variety of different optimization algo‐
rithms is available, the development and selection of efficient algorithms for
problems with these industrial relevant characteristics, remains a challenge. In
this communication, a hybrid variant of Differential Evolution (DE) is introduced
which combines aspects of Stochastic Quasi-Gradient (SQG) methods within the
framework of DE, in order to improve optimization efficiency on problems with
the previously mentioned characteristics. The performance of the resulting deriv‐
ative-free algorithm is compared with other state-of-the-art DE variants on 25
commonly used benchmark functions, under tight function evaluation budget
constraints of 1000 evaluations. The experimental results indicate that the new
algorithm performs excellent on the “difficult” (high dimensional, multi-modal,
inseparable) test functions. The operations used in the proposed mutation scheme,
are computationally inexpensive, and can be easily implemented in existing
differential evolution variants or other population-based optimization algorithms
by a few lines of program code as an non-invasive optional setting. Besides the
applicability of the presented algorithm by itself, the described concepts can serve
as a useful and interesting addition to the algorithmic operators in the frameworks
of heuristics and evolutionary optimization and computing.

Keywords: Meta-heuristics · Derivative-free optimization
Evolutionary computing · Differential evolution · Black box optimization
Stochastic Quasi-Gradient Descend · SQG-DE

1 Introduction

The combination of computational optimization with modeling and simulation is
becoming increasingly important in the modern development processes of complex
engineering products and systems. During the last decades, a huge variety of heuristic
and meta-heuristic search techniques have been developed [1, 2] and applied to real-
world industrial problems [3, 4]. In the quest for product and process efficiency, an
important question is: How to select efficient optimization methods for a particular
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problem? The extension of the conservation law of generalization of performance [5],
and the “no free lunch” (NFL) theorems for machine learning to the field of search and
optimization [6], identified that often “generalization is a zero sum enterprise” [5], and
that therefore: the search for a universal best performing optimization algorithm is futile.
The still standing challenge is: to develop and identify efficient optimization algorithms
for particular optimization problems, or classes of optimization problems, taking into
account the available resources in the context of their application.

In this communication, we target optimization problems under strict function eval‐
uation budget constraints, which often occur in the context of industrial optimization
problems which involve the simulation responses of complex dynamic systems. Indus‐
trial applications of such problems are for example: simulation based crashworthiness
optimization of vehicle structures [9–11], and Computational Fluid Dynamics (CFD)
based optimization [7, 8]. The optimization problems of such complex system responses
are often characterized by: a large number of design variables, the absence of analytical
gradient information, highly non-linear system responses, and computationally expen‐
sive function evaluations resulting in a limited function evaluation budget. The need to
adapt the engineering development and optimization process to products and systems
with increasing complexity make the research for efficient optimization algorithms, for
non-convex optimization problems, under tight function evaluation constraints of great
relevance in engineering [3, 4, 10–13].

Despite recent and ongoing research on the theoretical performance analysis of
heuristic search algorithms on fixed budget problems [14], the performance analysis
of complex problems and optimization algorithm is in practice still restricted to
numerical comparative tests. The optimization algorithm performance comparisons
in the literature are however often w.r.t. algorithm convergence behavior using a large
number (hundreds of thousands to millions) of function evaluations. For engineering
optimization problems which involve computationally expensive simulations, the
function evaluation budget is often orders of magnitudes smaller, such that true opti‐
mization near to the global optimum is often infeasible [10, 24]. When the function
evaluation budget strongly constraints the optimization, different aspects of the opti‐
mization algorithms are of practical relevance.

In this communication, we present a new variant of the well-known and widely used
Differential Evolution (DE) algorithm [15, 16], by introducing a novel mutation operator
inspired by concepts of Stochastic Quasi-Gradient (SQG) methods [25, 26]. The new
hybrid algorithm targets to improve the search efficiency in the setting of optimization
under tight function evaluation budget constraints. To investigate the effect of the new
DE mutation operator, the performance of the hybrid algorithms is compared with
“classical” DE and several state-of-the-art DE variants [17–21], on a commonly used
set of test functions of various structure and complexity, under budget constraints of
1000 function evaluations. Although the mutation operator could also be used in other
similar algorithm classes such as Particle Swarm Optimization (PSO) [29], or Evolu‐
tionary Strategies (ES), the focus of this first study will be limited to the implementation
and performance comparison of the SQG-mutation operator in the framework of Differ‐
ential Evolution and several of its state-of-the-art variants. In the context of budget
limited optimization problems in structural and multidisciplinary optimization, DE was
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identified and recommended as an efficient algorithm for car-body optimization prob‐
lems involving computationally expensive crashworthiness responses [9–12]. DE algo‐
rithms are also used for optimization of aircraft engines [7], wind turbines [8], and many
other applications [22, 23]. Optimization problems in the “expensive” function evalu‐
ation setting can also benefit from meta-modelling or surrogate model based optimiza‐
tion techniques such as e.g. [27, 28]. In-depth investigations on the interactions between
optimization algorithm operators and different meta-models and control parameters
require however an extended scope. Nevertheless even in the present limited scope, the
obtained results indicate that the new algorithm, could already be an efficient alternative
to several state-of-the-art DE variants, for difficult problems under a tight function eval‐
uation budget.

2 Description of the SQG-DE Algorithm

2.1 Conceptual Description

The objective in the design of heuristic and meta-heuristic optimization algorithms is to
obtain a beneficial compromise between efficiency and accuracy (or optimality), taking
into account the available resources. The here presented hybrid method is developed to
improve the efficiency of DE for a variety of problem types under strict evaluation
budgeted constraints. This is achieved by means of a new mutation operator. While in
conventional DE, the mutation operator uses a sum of random vector differences from
the DE population, in the new mutation operator the perturbation directions of the new
population members are constructed by a weighted sum approach, using the weights
dependent of respective fitness differences. This concept for the perturbation directions
was inspired by the stochastic quasi-gradient estimations [25, 26] used in the SQG
method. Whereas in SQG-descend the stochastic gradient estimations are based on
vector differences of small stochastic perturbations, the here described method applies
the concept to vector differences of the DE population.

2.2 Quantitative Description

The new hybrid SQG-DE algorithm uses the framework of the conventional original
Differential Evolution (DE) algorithm. For the description of the relatively well-known
DE algorithm we refer to [15, 16], while for an overview of variants we refer to the
reviews in [22, 23]. For the here proposed hybrid method a new mutation operator was
developed, which will be described in this section. The new mutation operator was
inspired by the Stochastic Quasi-Gradient (SQG) method (initially introduced as:
“search by means of statistical gradients”). A detailed description of stochastic quasi-
gradient methods is given in [26]. For the sake of clarity and briefness, the description
here is limited to concepts relevant for the new mutation operator.

In SQG, the search direction is the stochastic gradient approximation ξ(x) of a func‐
tion f (x) at point x. This direction is proportional to the following expression:

324 R. Sala et al.



ξ(x) ∼
∑r

k=1

((
f
(
x + Δzk

)
− f (x)

)

Δ

)
∗ zk (1)

Where zk ∈ [−1, 1]D are uniform random perturbation vectors of current trial vector
x in dimension D. For a sufficiently large r, and sufficiently small values of Δ this
approximation converges in probability to the direction of the gradient ∇f . SQG is
however often applied using r significantly smaller than the problem dimension D,
leading to coarse and “inexpensive” gradient approximations. Compared to other
gradient based methods that require finite difference gradient approximations, SQG
often however performs surprisingly well on local search problems, considering the
efficiency in terms of the total amount of function evaluations. The idea of approximating
the gradient direction d at point x, by means finite perturbations of the trial vector x, can
be generalized to a sum of differences between pairs of distinct vectors xa and xb, in a
sufficiently small neighborhood 𝜀 of x with: ‖‖x − xa

‖‖ < 𝜀, and ‖‖x − xb
‖‖ < 𝜀 by:

d ∼
1
w

∑w

k=1

(
f
(
xa,k

)
− f

(
xb,k

))

‖‖xa,k − xb,k
‖‖

∗
(
xa,k − xb,k

)
(2)

The key concept of the proposed hybrid DE method is the extension of this concept
for gradient estimation to the application of finding new mutation vectors based on an
existing differential evolution population. This extension thus omits the neighborhood
constraint on a sufficiently small 𝜀, and uses the differences between members of the
population at a given iteration of a population based algorithm.

The mutation operator for the originally proposed “DE/rand/1/bin” version of DE
[15] is determined by:

vi = xa + F(xb − xc) (3)

where vi are the mutant vectors for the next generation, xq are parent vectors of the current
population generation, with mutually exclusive (a ≠ b ≠ ⋯ ≠ q) random permutation
indices a, b,… , q ∈ {1, 2, .., P} to population members, in a population of size P. The
scaling factor F ∈ [0, 2] controls the amplification or step size of the differential varia‐
tion. Later DE versions were introduced [16] such as “DE/best/2/bin”, in which the
mutation operator was based on a sum of more vector differences:

vi = xbest + F
((

xa − xb

)
+
(
xc − xd

))
(4)

In which xbest is the best member of the population as opposed to a random member
as in (3).

Combining the previous considerations we introduce the SQG-DE hybrid scheme
“SQG-DE/best/w/bin” with the SQG-mutation operator defined as:
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vi = xbest − F ∗ 𝜑 ∗
∑w

k=1

(
yb,k − yc,k

)

‖‖xb,k − xc,k
‖‖

(
xb,k − xc,k

)
(5)

where yq,k refers to the fitness or function evaluation value corresponding to the parent
vector xq,k as yq,k = f

(
xq,k

)
, and w is the number of mutually exclusive vector pairs used.

To preserve the population self-adaptivity of the DE algorithm, a scaling factor 𝜑 on the
perturbation magnitude is included. This factor is chosen as:

𝜑 =
1∕w‖‖

∑w

k=1 (xb,k − xc,k)
‖‖

‖‖‖‖‖

∑w

k=1

(
yb,k − yc,k

)

‖‖xb,k − xc,k
‖‖

(
xb,k − xc,k

)‖‖‖‖‖

(6)

In which the denominator normalizes the magnitude of the perturbation direction,
while the numerator scales the perturbation magnitude to a similar magnitude as the
mutation operator in the original algorithm (3). The mutation formulation in Eq. (5) is
similar to the original concept of vector differences, with the difference that now a sum
of weighted vector differences are used, with a particular choice for the weights. The
weights for the vector differences are calculated according to the fitness differences
between the corresponding population members, such that in a high-dimensional setting,
directions with larger directional “differences” are prioritized over directions for which
the fitness differences are smaller.

Fitness differences are also used implicitly in the context of PSO, where single point
pair differences between the global and local best-known locations are used to “guide”
the search directions resulting from the mutation operator. In contrast, the basic SQG-
mutation operator uses fitness difference based weighed sums of point pair differences
between any population members, to guide the randomization of the search points. While
the SQG concept is originally aimed at local gradient approximation, this is not the
primary aim of the SQG-mutation operator. The extension of the SQG concept from
perturbation points in a local neighborhood to random mutually exclusive population
members, is likely to result in inaccurate local gradient approximations since the distance
between the population members can be relatively large, and the fitness functions are
generally non-linear. Since in “classical” DE the mutation operator is however only
intended to introduce randomization of the population in its original implementation,
there is no mechanism to favor any particular search direction. New non-descending
SQG-mutation search points based on inaccurate gradient estimates are therefore also
not problematic in the context of DE. However, for problems in which there are global
trend directions, the SQG-mutations are statistically biased towards global descend
directions. The key idea of the new method is however that SQG-mutations, tend to
favor search directions along which the fitness differences are larger, over directions
with small differences. This “direction-screening” is particularly relevant when, not all
problem dimensions are equally important. For the mutation operator, parameter values
of w between 2 and 5 give very satisfactory results, based on our current experience. It
should be noted that for very small population sizes, high values of w should be avoided
to maintain sufficient variance in future populations.
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Although Eq. (5) is more complex than Eq. (3) only a relatively modest number of
scalar and vector operations is required for the new mutation operator, while no addi‐
tional function evaluations are required. The mutation operator can be easily imple‐
mented as an optional setting in existing code of DE or other population-based optimi‐
zation algorithm implementations. On request, a MATLAB/Octave or other implemen‐
tation of the algorithm is available from the authors.

3 A Comparison of Algorithm Performance on a Constrained
Function Evaluation Budget

To investigate the performance of the new hybrid algorithm, a comparative assessment
of SQG-DE, with two of the original DE algorithms, the SQG algorithm, and 5 state-
of-the-art DE variants is performed, on a set of 25 test functions, using a budget of
maximum 1000 function evaluations.

3.1 Algorithms and Test Functions

For the comparative assessment the following optimization algorithms are used:

1. DE - original differential evolution “rand/1/exp” [15]
2. DE2 - “best/2/bin” differential evolution [16]
3. jDE - self-adapting differential evolution [17]
4. JADE - adaptive differential evolution [20]
5. SaDE - strategy adaptation differential evolution [18]
6. epsDE - ensemble parameters differential evolution [19]
7. CoDe - composite trial vector strategy differential evolution [21]
8. SQG - Stochastic Quasi-Gradient search [25, 26]
9. SQG-DE - Stochastic Quasi-Gradient based Differential Evolution

To assess and compare the performance of the different algorithms the 25 test functions
of the CEC 2005 benchmark [30] were used. Although many more benchmark sets have
been developed since, these test functions are widely used in the optimization
community (more than 1500 citations at present). The test function set is composed of
optimization problems in 4 categories. One of these categories is of particular interest
in the context of this work: The 4th category of “difficult” inseparable complex multi‐
modal rotated functions, of which many are even hard to solve with a large function
evaluation budget. Although these functions are usually used in the conventional context
of global optimization, without tight function evaluation limits (typical budgets of
hundreds of thousands to millions of objective function evaluations), they are also of
interest as surrogate-test problems, in the context of algorithm performance assessment
for complex industrial problems under tight function evaluation constraints. In this
assessment the number of function evaluations per optimization run is constrained to a
maximum of 1000. The test functions were evaluated for dimensions 30 and 50.
Table 1 gives an overview of the test function descriptions and the problem categories.
For a more detailed description of the test functions we refer to the description in [30].
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Table 1. List of test functions

Function nr. Test function description from [30]
1 Unimodal Functions (5):
f1(x) Shifted sphere function
f2(x) Shifted Schwefel’s Problem 1.2
f3(x) Shifted Rotated High Conditioned Elliptic

Function
f4(x) Shifted Schwefel’s Problem 1.2a

f5(x) Schwefel’s Problem 2.6b

2 Multimodal Basic Functions (7):
f6(x) Shifted Rosenbrock’s Function
f7(x) Shifted Rotated Griewank’s Function
f8(x) Shifted Rotated Ackley’s Functionb

f9(x) Shifted Rastrigin’s Function
f10(x) Shifted Rotated Rastrigin’s Function
f11(x) Shifted Rotated Weierstrass Function
f12(x) Schwefel’s Problem 2.13
3 Multimodal Expanded Functions (2):
f13(x) Expanded Extended Griewank’s plus

Rosenbrock’s Function
  f14(x) Shifted Rotated Expanded Scaffer’s F6
4 Multimodal Hybrid Composition Functions (11):
f15(x) Hybrid Composition Function
f16,18,21,24(x) Rotated Hybrid Composition Functions
f17(x) Rotated Hybrid Composition Functiona

f20(x) Rotated Hybrid Composition Functionc

f19(x) Rotated Hybrid Composition Functionb

f22(x) Rotated Hybrid Composition Functiond

f23(x) Non-Continuous Rotated Hybrid Composition
Function

f25(x) Rotated Hybrid Composition Function
aWith noise in fitness function
bWith the global optimum on the bounds
cWith a narrow basin for the global optimum
dWith a high condition number matrix

For the comparison, the optimization runs of each algorithm were independently
repeated with different random seeds for 100 times, for each test function to obtain
statistically significant performance results. For all algorithms except SQG, the initial
population size was set to 100, for all problems and dimension as was also done in
previous works [31, 32]. For SQG a “warm” start was provided by choosing the best
start point from a pseudo-random sample set of equal size as the population size of the
other algorithms. The control parameters for DE, DE2 were F = 0.8, CR = 0.8, and in
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addition w = 5 for and SQG-DE, and SQG. For the five other algorithms with adaptive
parameters, the control parameters were as described in the corresponding references
[17–21]. For the adaptive parameter algorithms, the implementations as available in [34]
were used.

3.2 Performance Measures

A commonly used optimization algorithm performance metric is Expected Running
Time (ERT) [33], which can be defined as:

ERT(ftarget) = mean
(

Tftarget

)
+
((

1 − ps

)
∕ps

)
Tmax (7)

Where ftarget is a reference threshold value, Tftarget
 is the number of function evaluations

to reach an objective value better than ftarget, Tmax is the maximum number of function
evaluations per optimization run, and ps is the success rate defined as: ps = Nsucces∕Ntotal,
where Nsucces is the number of successful runs (where the best obtained objective value is
better than ftarget). If the experiments result in no successful runs for a particular algorithm
such that (ps = 0), then expression (7) is undefined, in that case the information available
on the ERT is that: ERT(ftarget) > Tmax ∗ Ntotal.

ERT can be interpreted as the expected number of function evaluations of an algo‐
rithm to reach an objective function threshold for the first time. For the ERT performance
measure, a threshold or success criterion is required. For conventional optimization
performance studies this criterion is often related to reaching the value of the known
global optimum, within a specified tolerance. For the optimization of difficult problems
under tight budget constraints the probability of coming close to the global optimum is
usually statistically negligible, therefore an alternative success criterion is required. To
compare qualitative performance using ERT it is necessary that all compared algorithms
meet the success criterion at least a few times. For the optimization performance assess‐
ment under tight budget evaluation restrictions, we define the success criterion as
reaching a target value which corresponds to the expected value of the best objective
function value obtained from uniform random sampling with the given function evalu‐
ation budget (1000 samples). For a test function fk we will refer to the expected objective

value as ERSE
fk

. The estimation of ERSE
fk

 is based on the same number of repetitions as is
used to measure the performance of the other algorithms (100 in this case). We will refer
to the ERT w.r.t. this objective function value limit as Random Sampling Equivalent-
Expected Run Time (ERTRSE).

Besides the fixed target performance measure ERT, a further (more intuitive) way
to compare the performance of the optimization algorithms on the test functions is by
means of diagrams on which the Best Function Value (BFV) of the objective functions,
is plotted against the number of algorithm iterations or Function evaluations. For the

diagrams in the results section, the BFV has been normalized (BNFV) with ERSE
fk

, for the
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corresponding test function. The advantage of these diagrams is that they give an intui‐
tive picture of performance for both, fixed-cost, and fixed-target scenarios.

Except for the ERT reference value, and an increased number of repetitions, the
experimental set up of the study followed the benchmark description in [30]. To assess
the significance of the overall performance test results, the non-parametric Wilcoxon
signed rank test [36] was applied pairwise between the results of the algorithms, with
the best algorithm as the reference (see also [35]). The null hypothesis of this test is: a
zero difference of the median between two results sets. The conventional significance
threshold of 0.05 is used to indicate that the null hypothesis cannot be rejected with
sufficient certainty.

3.3 Results Comparison

All test problems in this comparison are minimization problems. Good optimization
algorithm performance is thus related to reaching a low BNFV in few function evalua‐
tions. For the 50-dimensional problem set, BNFV diagrams comparing the algorithm
performance for the 9 algorithms are displayed in Fig. 1. The SQG-DE algorithm ranked
as the best algorithm in terms of BNFV performance after 1000 function evaluations in
16 out of the 25 test problems and was the winner in all of the test problems of the 4th

Fig. 1. Evolution of the best normalized function value (BNFV) for increasing function
evaluations, functions 1–24 (D = 50).
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 category (Multi-modal Hybrid composition functions). The results for the 30-dimen‐
sional problem set were similar, but not reported in a figure due to space constraints.

An overview of algorithm performance in terms of the ERTRSE for all 30 and 50
dimensional problems is given in Table 2. An ERTRSE-value of for example 300 means
that the corresponding algorithms requires 300 function evaluations to obtain a function
evaluation better than the threshold, (which was defined as the expected best objective
value for 1000 uniform random samples in the problem domain). Table 2 shows that
SQG-DE achieves the best ERT performance in 30 out of the 50 test problems. The new
hybrid algorithm performed also with respect to the ERT measure as the best in all of
the test problems of the 4th category.

Table 2. Algorithm performance in terms of ERTRSE, for all test functions

Table 3 provides a summary of algorithm performance in terms of ERTRSE, divided
by test function category, and averaged overall performance. The results in Table 3
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indicate that: SQG-DE had the best average performance over all test problems, with an
ERT of approximately 10% less w.r.t. the second overall best algorithm JADE. More
remarkable is that in the 4th category with the hardest test functions, SQG-DE obtained
ERT scores which are about 40% better than the second-best algorithm (JADE). The
Wilcoxon signed rank test indicated that the all the results were statistically significant,
except for the small test problem group 3. Closer inspection revealed that this was
exclusively caused by test function 14, for which all of the investigated algorithms
performed worse than random sampling, which indicates that ftarget was rarely reached.

Table 3. Overview of algorithm performance in terms of ERTRSE, by test function category

The results from this benchmark indicate that for hard high dimensional multimodal,
problems under a tight function evaluation budget the new hybrid algorithm performs
significantly better than the original DE, SQG, and the state-of-the-art DE variants
tested.

4 Discussion and Outlook

The performance comparison results show efficiency gains of SQG-DE ranging up to
40%, w.r.t. the next best algorithm in the category of Multimodal Hybrid Composition
functions. Overall the performance benefits of SQG-DE w.r.t. the “parent” algorithms
(SQG and DE2 “best/2/bin”) indicates a useful synergy effect, which already could be
exploited to solve complex budget constrained optimization problems, in its present
state.

The remarkable results also call for further activities and investigations, such as:
further performance comparisons against optimization algorithms other than DE; imple‐
menting the SQG-mutation operator in other DE variants; control parameter tuning;
implementation of suitable self-adaptive parameters strategies; and hybridization of
SQG with other population-based meta-heuristic algorithms such as ES and PSO.

In the present study the conventional control parameters settings, according to the
recommendations in the respective literature were used for the optimization algorithms.
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The best choice for the control parameters, is however both problem and budget
dependent. Budget dependent control parameter tuning or optimization, for a particular
test function or set of test functions is possible. For computationally expensive industrial
optimization problems such parameter tuning is however several orders of magnitude
more expensive than an optimization run, such that direct control parameter optimization
on real-world problems is often infeasible. Although it is possible to optimize or tune
the algorithms settings on conventional synthetic test or benchmark problems, it is
important in the context of industrially relevant problems to know or estimate the algo‐
rithm performance correlations between the synthetic test problems, and a given real-
world problem. The industrial relevance of detailed comparative studies including new
algorithms, operators or tuned control parameters, are relative to the quantifiability of
performance correlations with real-world problems, or by the gained theoretical insights.
We are however obliged to note that performance on most of the conventional synthetic
benchmark functions (including those used for this study) is difficult to relate (or quan‐
titatively correlate) to performance on particular real-world optimization problems,
which is thus a strong limiting factor for direct practical relevance. Also the theoretical
insights and generalizability of the results are limited by the lack of systematic relations
among the conventional test functions. These strong limitations apply to the presented
study, as well as to most of the work in the literature which is based on conventional
synthetic test problems and benchmark sets.

In order to obtain systematic results that could lead to insights of theoretical value,
and improved optimization performance in real-world problems, most of the earlier
mentioned plans for further investigations on the SQG-mutation operator will be
performed using test functions with parameterized function characteristics such as
presented in [37], benchmarks based on engineering design optimization applications,
and new synthetic test approaches such as representative surrogate problems [12].
Important open questions are: How are the performance of SQG-DE and other meta-
heuristic optimization algorithms related to particular problem characteristics? How do
the control parameters interact with problem characteristics in terms of algorithm
performance? Further investigations and insights are required to address these questions.

5 Conclusions

A new SQG inspired mutation operator is introduced in the framework of DE, resulting
in a new hybrid algorithm “SQG-DE”. The algorithm is compared with conventional
DE and several state-of-the-art DE variants, w.r.t. optimization performance under strict
function evaluation budget constraints. The results of the comparison indicate that the
new algorithm excels the other compared algorithms on average by 10% in overall
performance, on the investigated benchmark problems. The new algorithm performs
particularly well on high dimensional multi-modal composite test problems (of the 4th

test problem category), where w.r.t. fixed target performance measures, averaged func‐
tion evaluation savings of about 40% are achieved. The results are promising, and the
displayed optimization efficiency could be of relevance for Industrial real-world
problem settings, which involve a strict function evaluation budget. The described

SQG-Differential Evolution for Difficult Optimization Problems 333



mutation operator is computationally inexpensive, easy to implement and could there‐
fore also be used in other population-based meta-heuristic optimization approaches. On
request, an implementation of the SQG-DE algorithm is available from the authors.
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Abstract. Determining age and gender from a series of texts is useful
for areas such as business intelligence and digital forensics. We explore
the use of convolutional neural networks together with word2vec word
embeddings for this task in comparison to handcrafted features. The net-
work constructed consists of five layers and is trained using adadelta. It
starts with an embedding layer where a word is represented by a vector,
followed by a convolutional layer composed of three filters, each with
100 feature maps. It is followed by a max-over-time pooling layer which
is done on each map and the resulting features are concatenated before
a dropout layer and a softmax layer. The network was trained to clas-
sify age and gender for English and Spanish tweets. The predictions per
tweet were aggregated using the majority prediction as the final predic-
tion for the user who gave the tweets. The results outperform previous
experiments. The highest English age and gender classification accuracy
obtained are 49.6% and 72.1% respectively. The highest Spanish age and
gender classification accuracy obtained on the other hand are 56.0% and
69.3% respectively.

Keywords: Author profiling · Twitter · Word vectors · Word2vec
Convolutional neural networks

1 Introduction

Social media has grown rapidly in the recent years, especially with the advent of
sites like Facebook, Instagram, Twitter, and Snapchat. With it comes new com-
munication models. Logging worker tasks and productivity for instance could
be done through Yammer while Slack or Telegram is used for team communica-
tions. These communication models still face problems such as fake profiles or
to a lesser extent, incomplete information about the person writing the content.
Authorship analysis then becomes a way to possibly deal with such a problem.
One facet of authorship analysis is author profiling wherein a person’s traits are
determined using the text they created.

Our work tries to solve author profiling for age and gender in English and
Spanish with twitter text using convolutional neural networks. It follows the
work of Kim [8] with some minor modifications. Aside from using convolutional
c© Springer International Publishing AG 2018
G. Nicosia et al. (Eds.): MOD 2017, LNCS 10710, pp. 337–348, 2018.
https://doi.org/10.1007/978-3-319-72926-8_28
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neural networks with word vectors, the work also aims to observe the effect of
the size of the vector dimensions to the accuracy. It also aims to observe if fine-
tuning pre-trained vectors would improve the result. Finally, the work compares
the current accuracy results to the results from previous experiments.

Although the current work is focused on age and gender, it could possible
be extended to other traits. It could also be applied to business intelligence for
targeted advertising or product reviews and analysis wherein brands can suggest
products to people who gave incomplete profiles. The application could also be
geared towards profiling users who circulate certain kinds of content such as fake
news.

The paper is organized as follows. Section 2 covers related literature where it
initially discusses previous author profiling endeavors, then followed by methods
in PAN, followed by an explanation on word2vec, the uses of convolutional neural
networks, and finally a short summary on the previous experiment to which this
work was compared. Section 3 describes the methodology, beginning with the
creation of word2vec vectors, to the dataset, to details of the convolutional neural
network architecture, the different variations, and then how it was evaluated.
Section 4 gives the results and discussion while Sect. 5 gives the conclusion and
recommendations.

2 Related Literature

In previous author profiling research, most of the work is centered on handcrafted
features as well as content-based and style-based ones. For instance, in the work
of Argamon et al. in [2] where texts were categorized based on gender, age,
native language, and personality, different content-based features and style-based
features were used. Content-based features used were the 1000 words that appear
frequently in the corpus which has the highest information gain to differentiate
between classes. The style-based features included the nodes of a taxonomic
tree made from systemic functional linguistics [7] with each value giving the
frequency of the node’s occurence normalized by the number of words in the
text. Another example is the work of Schler et al. in [25] where writing styles in
blogs are related to age and gender. Stylistic and content features were extracted
from 71,000 different blogs and a Multi-Class Real Winnow was used to learn
the models to classify the blogs. Stylistic features included parts-of-speech tags,
function words, hyperlinks, and non-dictionary words; content features included
word unigrams with high information gain.

2.1 PAN Editions

One particular initiative dealing with author profiling is PAN. In the first edi-
tion of PAN [20] in 2013, the task was age and gender profiling for English
and Spanish blogs. In PAN 2014 [20], the task was profiling authors with text
from four different sources - social media, twitter, blogs, and hotel reviews. In
PAN 2015 [21], the task was limited to tweets but expanded to different tasks
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with age and gender classification and a personality dimension. The languages
include English, Spanish, Italian, and Dutch. There were 5 different personality
dimensions - extroversion, stability, agreeableness, conscientiousness, and open-
ness. The more recent edition, PAN 2016 [22] deals with cross-genre evaluation
where classifiers are trained on English, Spanish, and Dutch tweets while tested
on other genres such as blogs, reviews, and other forms of social media.

Most of the methods include extracting content-based features such as bag
of words, named entities, dictionary words, slang words, contractions, senti-
ment words, and emotion words; another would be stylistic features such as
frequencies, punctuations, POS, HTML use, readability measures, and other
various statistics. There are also features that are n-grams based, IR-based, and
collocations-based; named entities, sentiment words, emotion words, contrac-
tions and words with character flooding were also considered. Some variations
would be that of Maharjan et al. [13], where n-grams were used with stop-
words, punctuations, and emoticons, and idf count was also used before placed
into a classifier. In [29], different features were used that were related to length
(number of characters, words, sentences), information retrieval (cosine similar-
ity, okapi BM25), and readability (Flesch-Kincaid readability, correctness, style).
Another approach was to use term vector model representation as in [28]. On
the other hand, Marquardt et al. in [14], used a combination of content-based
features (MRC, LIWC, sentiments) and stylistic features (readability, html tags,
spelling and grammatical error, emoticons, total number of posts, number of
capitalized letters number of capitalized words). Classifiers also varied for this
edition; there was the use of logistic regression, multinomial Näıve Bayes, liblin-
ear, random forests, Support Vector Machines, and decision tables.

In most of the editions, the work of Lopez-Monroy et al. in [11] provided a
framework that works best for most tasks in most editions. They placed second
for both English and Spanish in 2013 where they used second order representa-
tion based on relationships between documents and profiles. The work of Meina
et al. [15] used collocations and placed first for English while the work of Santosh
et al. in [24] worked well with Spanish using POS features in the same year. In
the following year, the work of Lopez-Monroy et al. in [12] which uses the same
method as the previous year [11] gave the best result with an average accuracy
of 28.95% on all corpus-types and languages.

In 2015, the work of Alvarez-Carmona et al. [1] gave the best results on
English, Spanish, and Dutch; their work used second order profiles as in the
previous years as well as LSA. On the other hand, the work of Gonzales-Gallardo
et al. [6] gave the best result for Italian; this used stylistic features represented
by character n-grams and POS n-grams.

2.2 Word2vec

The overall theme is that hand-crafted features are extracted from the text and
used into a classifier to predict. However there is a more recent trend where the
system learns suitable filters at run time and uses the learned filters to generate
a feature representation suitable for classification. This approach begins with
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learning word embeddings that captures semantic information between words
that could be later leveraged. One of the more prominent embeddings is word2vec
by Mikolov in [16,17]. Essentially, words from a dictionary of a given corpus are
initially represented with a vector of random numbers. A word’s vector repre-
sentation is learned by predicting it through its adjacent words; the basis for the
words order is in a large corpus. Obtaining the vector can be done in two dif-
ferent ways - skip grams and continuous bag of words (CBOW). In CBOW, the
word vector is predicted given the context of adjacent words; in skip grams, the
context words are predicted given a word. The word vectors are then updated
after all the predictions and will result in vectors that are not just random but
have some semantic relation to each other.

2.3 Previous System

We used word embeddings in age and gender classification on the same dataset
in our previous paper [3]. We experimented with using word2vec and support
vector machines, where one training example is the average of the word vec-
tors taken from all the tweets made by one user. We compared accuracy results
between tfidf against 100 dimension word2vec vectors trained on continuous bag
of words. Word2vec performs better than the usual tfidf for the given task. Addi-
tional experiments also showed that vectors which used the skip-grams method
performed better than that which used continuous bag of words.

2.4 Convolutional Neural Networks

Averaging the vectors still seemed somewhat crude since all the vectors are given
the same weight and filters are not learned to see which feature is necessary. We
then look into neural network architectures that uses word vectors to find suitable
filters for classification tasks. One such architecture is that of LeCun in [9]. The
original paper works on images however it was adapted to work on text. For
instance, convolutional neural networks were used for semantic parsing in the
work of Yih et al. in [31] while Shen et al. used it for search query retrieval in [26].
The work done in this paper however closely follows that of Kim [8]. He used word
vectors together with convolutional neural network on multiple benchmarks:
movie reviews with one sentence per review in [19], Stanford Sentiment Treebank
(neutral reviews removed and only binary labels), subjectivity dataset in [18],
TREC question dataset in [10], customer reviews in [10], and opinion polarity
detection of the MPQA dataset in [30]. This approach was able to improve the
state of the art on five out of seven benchmarks - everything except TREC
question dataset and the subjectivity datasets. The details of the network he
used is described in Sect. 3.4.

3 Methodology

The Fig. 1 given below shows an overview description of the system from how
the dataset is manipulated before fed into the convolutional neural network and
how it is evaluated. The details are described in the following subsections.
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Fig. 1. Illustration of the flow of the data from the split, to preprocessing, to feeding
to the network, and to the evaluation.

3.1 Pre-trained Vectors

Before training begins, word embeddings need to be created. The wikipedia
dump from February 05, 2016 was used. The English wikipedia dump at that
time was 11.8 Gb compressed with bzip. The Spanish dump on the other hand
had 2.2 Gb compressed. This dump was then extracted and transformed such
that everything was turned into lowercase and entries are in one file. This was
then used as input to the word2vec implementation of gensim [23] to generate
our own vectors. Regarding word2vec parameters, no lemmatization was done,
and 5 was the window size used. We also used skip grams instead of continuous
bag of words and finally, the output dimensions were 100 and 300.

3.2 Dataset

After creating the vectors, the dataset is processed. The dataset comes from PAN
2016 Author Profiling task [22]. It is composed of tweets from English, Spanish,
and Dutch with profiling elements of age and gender. The categories for age
classification are 18–24, 25–34, 35–49, 50–64, and 65 and above. Dutch does not
have age information so we will not be using it. The Table 1 show information
about the dataset. The dataset was then split with 70% to be used for training
while the remaining 30% was held out for testing.

3.3 Preprocessing

All XMLs files from each user are read for both the training and test set. The
tweets taken from each user are extracted to form one training example. The
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Table 1. Age and gender distribution for the number of users in the PAN 2016 dataset.

English Spanish

Gender Male 218 125

Female 218 125

Age 18–24 28 16

25–34 139 64

35–49 182 126

50–64 80 38

65–xx 6 6

Table 2. Basic statistics for PAN 2016 dataset

English Spanish

Train Test Train Test

Total number of users 306 130 175 75

Total number of tweets 194953 82839 151362 57258

Total number of nans removed 1963 1371 1986 55

Max number of tokens in tweet 69 70 98 47

Min number of tokens in tweet 1 1 1 1

Average tweet length 13.15 13.15 13.84 13.92

Standard deviation 6.21 6.32 6.25 6.19

Mode 11 10 18 16

examples are transformed by putting them all in lower case. No stop words are
removed. Hash tags, numbers, mentions, shares, and retweets were not processed
or transformed to anything else. They were retained as is and will correspond
to another item in the dictionary of words. The test set will be set aside for the
final evaluation while the training set will be used to train the network.

3.4 Model

The model architecture is shown in Fig. 2. This is similar to the architecture of
Kim [8] which is a variant of the architecture given by Collobert et al. [5] and is
implemented in Keras [4] with a Theano [27] backend ran on an NVIDIA Tesla
K20c GPU.

All words in the training set are turned into number indices that corresponds
to a word vector. Each training example will be represented by a sequence of
numbers. The sequence length will vary. The total number of indices in the
sequence is held at 59 and padding is done to ensure it. We then feed the sequence
into the system. Each number will be looked up in the embedding layer and
converted to a word vector according to the pre-trained word vectors previously
discussed. The whole sequence will then form a matrix. Feature maps are then
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Fig. 2. Kim’s architecture.

created by convolving filters to the matrix and using a non-linearity after the
convolution. There are three filter windows for this experiment - 3, 4, and 5.
Each filter window has 100 feature maps. Note that the coefficients of the filters
are initially random and then updated while training. The non-linearity used in
our experiments is the tanh function. After making a feature map, max over time
pooling is performed. This means that from each feature map, only the maximum
is recorded. Therefore, there will be a total of 300 features after max over time
pooling is done. Then a dropout layer is added. Our dropout probability is
0.5. We finally add a softmax layer as the final layer with the weight vectors
constrained to an l2-norm.

Training is done through stochastic gradient descent over shuffled mini-
batches with the Adadelta update rule where each mini-batch is made of 3000
examples. The dev set is comprised of 20% of the training set. We also kept the
number of epochs to 30 and to provide for early stopping.

3.5 Model Variations

We experimented on two aspects. The first is dimension varying between 100
and 300 both from skip-grams. The second is the difference between fine-tuning
or not towards the accuracy. CNN-static, indicates that word vectors were taken
from pre-trained word2vec but kept static. CNN-non-static is the same as the
first but it was tuned while training.

3.6 Evaluation

We set aside 30% of the dataset for final evaluation. After the training is done,
we apply the model on the tweets we set aside. After getting a prediction, we
group the tweets that belong to the same user and get the majority prediction
from all the tweets gathered for that user. We used the majority prediction as a
final prediction for the user and base our accuracy off of that.
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4 Results and Discussion

To recap, we did experiments on two different languages (English and Spanish),
on two different classification tasks (age and gender), using two different vector
dimensions (100 and 300), and two different treatments for the vectors (static
and non-static). This gives a total of 16 experiments. Table 3 show the CNN
accuracy results for English and Spanish. We can observe different patterns with
these accuracy results.

We first look at the difference between accuracy over tweets and accuracy
over users. The accuracy over tweets mean that each tweet is regarded as an
example for which we evaluate the accuracy. Accuracy over users means that the
tweets are aggregated first by the user who sent the tweet and uses the majority
prediction as the final prediction for the user. The accuracy is evaluated on the
user. We can see that using the majority predicted class for a tweet to predict
the user generally improves the result except for Spanish gender evaluation.

Looking at the accuracy per user, we observe the effects of dimensionality as
well as the effect of treating vectors static or non-static. Increasing the dimen-
sions gives different effects. In three cases, it diminishes the accuracy. In two
cases, the result is the same. And in the final three cases, the accuracy improves.
However, the magnitudes in the times the accuracy improved is bigger than
the magnitude of the times when the accuracy decreased. The effect also varies
when treating the vectors as static or non-static. We have 4 cases where the
accuracy increases, 3 cases where it decreases, and 1 case where it does not
change. However, the magnitudes of increased accuracy are much more signifi-
cant than those of the decreased ones. This is possibly because the vectors get
finely tuned with more training data. There is an increase of 1.5% and 7.7% for
English gender classification using 100 and 300 dimensions respectively. There’s
also a 1.3% increase for Spanish age classification using 100 dimensions while
using 300 dimensions did not yield any difference. There’s also an increase of
8.0% for Spanish gender classification using 300 dimensions. The other instances
however lower the result when tuning the vectors. The biggest decrease is 4.0%
which comes from gender classification using 100 dimensions.

We look at Table 4 which compares the accuracy from the best settings for
convolutional neural networks that we were able to obtain against the accu-
racy from the best settings from previous experiments. In the previous work [3],
we have results comparing the accuracy of an SVM classifier trained on tfidf
against another SVM classifier trained on average of word vectors. In addition
to what was done in the previous paper, we also experimented with skip-grams
as well as varying the dimensions from 100 to 300 for skip-grams. The tasks and
the datasets are the same and the test set was also the same for the previous
experiment and the experiment detailed on this paper. We found that using skip-
grams with 300 dimensions got a better result for the previous system. We then
adapted the previous system to do a majority vote on tweets as a prediction for
the user so that it would be comparable to the current system. We can see a
better accuracy from the convolutional neural networks after comparing the two
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Table 3. Accuracy comparison between evaluation by tweets and evaluation by user

English Spanish

Age Gender Age Gender

Static Non-static Static Non-static Static Non-static Static Non-static

100

Tweet 0.407 0.397 0.618 0.623 0.541 0.481 0.561 0.551

User 0.481 0.473 0.651 0.667 0.547 0.560 0.557 0.550

300

Tweet 0.410 0.409 0.626 0.613 0.538 0.467 0.693 0.653

User 0.496 0.473 0.643 0.721 0.547 0.547 0.507 0.587

Table 4. Comparison between the best results of the CNN and previous work

English Spanish

Age Gender Age Gender

CNN 0.473 0.721 0.547 0.587

Past-work 0.415 0.600 0.560 0.533

Table 5. Comparison of accuracy results based on different number of epochs for
training

English Spanish

Age Gender Age Gender

Dim = 100

Epoch = 30 0.481 0.651 0.547 0.557

Epoch = 200 0.496 0.636 0.547 0.640

Dim = 300

Epoch = 30 0.496 0.643 0.547 0.507

Epoch = 200 0.481 0.643 0.560 0.560

systems. The only time the previous system fares better is with English gender
classification and only by 0.013.

Another aspect to look at is that the number of epochs for training. Looking
at the learning rates from previous results, learning does not seem to plateau
since the early stopping callback did not take into effect. We then ran the same
experiment of age and gender classification on English and Spanish with 100 and
300 vector dimensions but only for static. The difference this time is that training
was ran on 200 epochs to see if the accuracy would improve. The comparison is
given in Table 5. We can see that aside from Spanish gender classification, the
accuracy improvements are marginal or none at all.
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5 Conclusion and Recommendations

To summarize, we were able to use word vectors in conjunction to a convolutional
neural network using Kim’s architecture [8] as basis. We observed that using a
bigger word vector dimension for English tasks improves the result but the same
is not true for Spanish tasks. We observed that the effect also varies when tuning
or not-tuning vectors. It generally improves the performance when dimensions
are increased. There is a general tendency to have a better accuracy result for
users instead tweets. And finally, we are able to report a better accuracy score
for all four tasks as compared to previous results.

However this work has a lot of hyperparameters that were either fixed based
on Kim’s architecture or decided based on previous experiments. Some of it
might be sub-optimal. For instance, we used f(x) = tanh(x) as our activation
function instead of f(x) = relu(x) according to Kim’s architecture. Another
thing could be the number of feature maps. Sequence size is also an important
parameter that was overlooked. This work was left to 59 based on Kim’s work
but the highest token count was 98. Another main concern is the use of vectors
trained on wikipedia instead of twitter. Preprocessing also does not account for
the fact that hyperlinks and twitter mentions be queried as a separate vector.
This could give important information. Other things that could be experimented
more are the number of layers, padding, the dropout, and even the regularization
that was at the final layers. Other architectures such as LSTM and Bidirectional
LSTM could also be used for further study and comparison. These are possible
things to do for future work.
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Tecnologia under LISP research center (UID/CEC/4668/2016) for partially supporting
this research.
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Abstract. An approximate dynamic programming that incorporates a
combined policy, value function approximation and lookahead policy, is
proposed. The algorithm is validated by applying it to solve a set of
instances of the nurse rostering problem tackled as a multi-stage prob-
lem. In each stage of the problem, a weekly roster is constructed taking
into consideration historical information about the nurse rosters in the
previous week and assuming the future demand for the following weeks
as unknown. The proposed method consists of three phases. First, a pre-
process phase generates a set of valid shift patterns. Next, a local phase
solves the weekly optimization problem using value function approxima-
tion policy. Finally, the global phase uses lookahead policy to evaluate
the weekly rosters within a lookahead period. Experiments are conducted
using instances from the Second International Nurse Rostering Competi-
tion and results indicate that the method is able to solve large instances
of the problem which was not possible with a previous version of approx-
imate dynamic programming.

Keywords: Dynamic programming · Approximation function
Policy function · Nurse scheduling problem

1 Introduction

This paper investigates the ability of approximate dynamic programming using
a combined policy function to tackle a multi-stage nurse rostering problem.
Approximate dynamic programming (ADP) is designed to tackle the Markov
Decision Process that dynamic programming is unable to solve in practice [1].
ADP aims to learn the selection of the optimal policy for mapping the state
space into the action space. The purpose of policies in ADP is to determine
decisions. The technique presented here is a hybrid approach that combines the
lookahead policy and the value function approximation policy. The lookahead
policy makes decisions now by explicitly optimizing over some time horizon by
combining some approximation of future information while the value function
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approximation policy refers to an approximation of the value of being in a future
state as a result of a decision made now [2].

The Nurse Rostering Problem (NRP) is an NP-Hard problem that consists
in constructing rosters for a number of nurses over a time horizon of typically no
more than a few weeks. Constructing a roster involves assigning shifts types of
each nurse for each day in order to fulfill daily duty requirements plus satisfying
a number of soft and hard constraints [3]. In this paper, the NRP is tackled as a
multi-stage optimisation problem is used to test the proposed technique because
it is a widely investigated problem and presents an interesting challenge to ADP.
Tackling the NRP as a multi-stage problem was proposed by [4].

Solving the NRP with dynamic programming is impractical due to the curse
of dimensionality [2,5]. Our previous work investigated ADP to solve NRP, where
a value function approximation based method was proposed to tackle various
instances of the NRP [6]. However, the computation time required for con-
structing solution samples and the memory space required for recording rewards
increased exponentially for larger problem instances. Hence, that shortfall has
motivated the present work. A number of ADP practical issues related to the
complexity of the environment, in particular when dealing with large state or
action space, are reported in the literature [5]. The technique proposed in this
paper enhances the ability of ADP to solve NRP as a multi-stage problem by
combining two policy functions, value function approximation to solve the weekly
problem, and lookahead policy to evaluate weekly rosters with artificially con-
structed future demand within a given lookahead period.

The contribution of this paper is an enhanced approximate dynamic program-
ming approach that takes advantage of tackling the NRP in multiple stages and
is able to tackle instances of this problem with longer planning horizons. The
rest of paper is structured as follows. Section 2 describes NRP used in this inves-
tigation and its modelling as a Markov Decision Process. Section 3 explains the
details of the proposed algorithm. Section 4 presents the experimental results.
Section 5 concludes the paper and outlines future work.

2 The Multi-stage Nurse Rostering Problem

In the multi-stage nurse rostering problem the planning horizon is seen as mul-
tiple non-overlapping stages, nurse rosters should be selected one stage at a
time. A stage is a part of the planning period for which the demands are com-
pletely known at its start [7]. In this paper, the Second International Nurse
Rostering Competition (INRC-II) instances are used for experimentation. In
these instances, each stage is a week under the competition setting. This section
outlines the problem and its modelling as a Markov Decision Process proposed
in a previous paper [6].

2.1 Problem Description

An instance in the INRC-II consists of three data parts, global information, week
requirement and history data. The global constraints, listed below, are those that
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are the same for each stage of the problem and those that are applicable to the
last stage only.

H1 A nurse can be assigned at most one working shift per day.
H3 Two consecutive shifts of a nurse must follow a legal shift type successor,

for example a late shift could not be followed by a early shift.
H4 A shift of a given skill must be fulfilled by a nurse having that skill.
S5 Each nurse is required to either work or rest on both days of weekends.
S6 For the whole planning period, each nurse has a minimum and maximum

total number of working assignments.
S7 For the whole planning period, each nurse works a maximum number of

weekends.

Week requirement is a list of specific hard or soft constraints in each week:

H2 For each day, shift or skill combination, the assigned number of nurses must
cover the minimum requirement.

S1 The number of nurses for each shift with each skill must be equal to the
optimal requirement.

S2 Maximum and minimum number of consecutive assignment per shift or day.
S3 Maximum and minimum number of consecutive days off.
S4 Respect to the specific shift requirement for each nurse.

History data is a summary of the actual roster for the previous stage which
is required when tackling the problem. If the first week is the current solving
stage, history data is randomly selected from built-in artificial files [4]. History
data for each stage must be produced by solvers before processing to the next
stage and it should include the following information for each individual roster:

• the last assignment of previous week.
• consecutive assignments of the same type as last day.
• total number of worked shifts.
• total number of worked weekends.

In the above list of constraints, H indicates hard constraints that must be
satisfied by a solution to be considered feasible and S indicates soft constraints
that incur a penalty if violated.

2.2 Problem Modification

Given that in each stage the future demand in this multi-stage NRP is considered
as unknown, we apply the framework by Powell [2] which considers the exogenous
information. The Markov Decision Process (MDP) notation is summarized as
{S,A,W, Tr(S,A,W )}.

S is a state variable, split as pre-decision state and post-decision state. The
pre-decision state is the start point and the post-decision state is a termination
for each stage. For each stage t in the NRP, the pre-decision state variable
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corresponds to the combination of weekly schedules from stages 1 to t − 1, and
S is the empty set for the first stage. The post-decision state is the combination
of weekly schedules including the one for the current stage t.

A is an action variable which determines the policy selected in the current
stage. In the NRP, A is a weekly roster where each nurse is assigned a combina-
tion of integer variables indicating the shift type for each day. The feasibility of
a solution is controlled by the selection of decisions.

W is defined as exogenous information which is available only within each
stage t. In the NRP, W represents the weekly requirements (local constraints)
described above.

The transition function Tr(S,A,W ) transfers a pre-decision state to the
post-decision state with the decision A and the exogenous information W . In
the NRP considered here, the transition function performs two roles, one is to
update the solution with weekly roster A and week data W and the other one
is to update the nurse historical information based on the value of A and W .

3 Proposed Algorithm

The structure of the proposed algorithm is exhibited in Fig. 1 and consists of
three parts. First, the pre-process phase sets up the search space. Then, the
local phase is an enhancement of our previous work [6] for solving the weekly
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Fig. 1. Overview of the proposed algorithm applying ADP with combined policy func-
tions
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optimization problems. Finally, the global phase applies a lookahead policy for
future demand evaluation. Each of these parts is explained below.

3.1 Pre-process Phase

If a shift pattern (SP) is defined as a weekly roster of a nurse, then a solution
should be described as the combination of nurses’ shift patterns. A solution is fea-
sible if and only if each constructed SP satisfies all the hard constraints. Explor-
ing infeasible solutions is not required in the principle-of-optimality approaches
[2]. Instead, evaluating feasible-shift-pattern based solutions has the potential
to make the search more efficient. With this purpose, the pre-process phase is
designed to construct a reduced search space for the subsequent local and global
phases.

The pseudocode of this pre-process phase is shown in Algorithm 1. Hard
constraints selected to filter shift patterns belong to global information (Sect. 2.1)
which each individual nurse roster is expected to obey. The set that contains all
feasible shift patterns is defined as feasible set. Lines 2–6 are the selection steps,
where sp indicates a single shift pattern and vsp represents the feasible set.

Once the feasible set is prepared, some shift patterns are not available to
specific nurses with the consideration of nurse history data. For example, if the
last assignment of a nurse in history data is a late shift, then any pattern starting
with an early shift in the feasible set becomes infeasible for this nurse (2.1 H3).
Lines 7–13 represent the specific shift pattern selection procedure of each nurse
with the consideration of related history data.

Algorithm 1. Pre-process Phase
1: vsp ← null;
2: repeat
3: sp ← ShiftPatternConstructor();
4: if sp satisfy hard constraints then
5: add sp to vsp;

6: until no more action from constructor
7: for Each Nurse n do
8: ivsp ← null;
9: Collect the last assigned shift type xlast;

10: for each sp ∈ vsp do
11: Select x1 from sp;
12: if {xlast, x1} satisfy hard constraint then
13: add sp to ivsp

3.2 Local Phase - Value Function Approximation

Given the output of the pre-process phase, the weekly nurse rostering optimiza-
tion problem can be seen as selecting a proper shift pattern for each nurse, so
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as to satisfy constraint H2 and minimize the soft constraints violation cost.
The input to this phase are the ivsp for each nurse. Since the future demand is
assumed not known in each particular week, the local optimal weekly roster is
not guaranteed to be the one incorporated into the overall solution. Therefore,
the output of this local phase is a selection of weekly rosters as depicted in Fig. 1.

Q(S, a) = r(S, a) + γmaxa′Q(δ(S, a), a′) (1)

The Q-learning function, presented in Eq. (1), is applied to tackle the local
phase problem. The aim is to update the value of S when changes are made by
the selected a. In this multi-stage nurse rostering problem, S is a weekly roster
and a is a list of selected shift patterns for nurses. Shift patterns are selected
based on two methods. Random Selection is applied if S is not fully constructed
or sample size of S is small. Shift patterns of unassigned nurses in the roster
will be randomly selected. This selection is replaced by Greedy Selection after
constructing a number of S. For a fully constructed S, shift pattern of one or a
list of nurses is updated by the one with minimum cost, or equally described as
highest reward, from previous steps. r(S, a) is the reward function and calculated
from two aspects, the overall constraint violation update and times of the selected
a. The pseudocode of this local phase is shown in Algorithm 2.

Algorithm 2. Local Phase - Value Function Approximation
1: Initial value of max iter, ε
2: i ← 0, M ← Empty SList ← Empty;
3: while i < max iter do
4: Sol ← Empty
5: for Each Nurse n do
6: rnd ← RandomNumberGenerator()
7: if rnd < ε then
8: sp ← RandomSelection(ivsp)
9: else

10: sp ← GreedySelection(ivsp)

11: Insert(Sol, sp)
12: c = CostFunction(sp)
13: UpdateV alue(V (Sol), c)

14: Add(SList, Sol)
15: e = ExpectedFunction(SList)
16: γ = Parameter(V (Sol), e)
17: UpdateV alue(V (Sol), γ × e)
18: Update(ε)
19: i ← i + 1

20: WeeklyRosterSelection(SList, M)

A sample here is a weekly roster which is constructed by selecting shift pat-
terns from each nurse. The shift pattern selection function in lines 6–10 uses
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RandomSelection or GreedySelection which selects the shift pattern with min-
imum cost. This is known as ε-greedy selection function [2]. This shift pattern
selection function ensures that the local phase constructs a weekly rosters set
with a degree of variety and not only concentrating on the local optimum. The
selected shift pattern sp is added to Sol in line 11. In line 12, CostFunction
calculates the shift pattern cost (c) according to the violation of soft constraints
S1-S5 and then the value of this weekly roster is updated in line 13.

In line 14, the fully constructed weekly roster Sol is stored in the sample list
SList. Lines 15–18 correspond to the Evaluation & Update in Fig. 1. The purpose
of the expected function is to indicate the average value of the constructed weekly
roster while γ is an importance factor and its value is adjusted in the opposite
direction to the value of the constructed weekly roster. For instance, if the cost
value of a particular weekly roster is larger than the expected value, the value
of γ is set to a smaller value, and vice verse.

The end of this local phase in line 20 results in the output set M which is a
subset of SList, i.e. a set of weekly rosters some with small constraint violation
cost (due to the greedy selection) and others with possibly large cost (due to the
random selection). This set M is the input to the global phase described in the
following subsection.

3.3 Global Phase - Lookahead Policy

In the local phase, the weekly rosters are evaluated for the weekly constraints
only, i.e. from H1 to H4 and from S1 to S5. However, since in each week the
future demand is unknown, the global constraints S6 and S7 are not considered.
Then, this global phase evaluates the weekly rosters with artificial future demand
through a lookahead period. The lookahead policy seeks to construct a potential
solution within a lookahead period based on the weekly roster and artificial
future demand in order to evaluate the solution for the global constraints. The
input to this global phase is the set of weekly rosters M from the local phase. The
output is one weekly roster only as the final solution to the weekly optimization
problem. The pseudocode of the global phase is shown in Algorithm 3 which is
applied to each weekly roster in M . The method Information Generation will be
explained in Sect. 4, here we assume all the artificial future demand is obtained
in advance.

LK(S) is the lookahead value for each weekly roster S and calculated using
Eq. 2. n is the nurse index. stage is the week index. T is the lookahead period.
spn is a single shift pattern of nurse n in the weekly roster S. xnt is a shift pattern
at the lookahead stage t of nurse n. xnt belongs to the valid shift pattern set
V SPnt.

LK(S) =
N∑

n=1

T+stage∑

t=stage

minnV (spn, xnt) (2)

This global phase incorporates the pre-process and local phases described
above. For each nurse n, the valid shift pattern set V SPnt is constructed in line
7 based on the current shift pattern spn and the artificial weekly demand at
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Algorithm 3. Global Phase
1: Initial value of LK(S);
2: for Each Nurse n do
3: select spn from S
4: Initial ideal sol = Insert(spn, φ)
5: V (ideal sol) = V (spn)
6: for t ← stage to T + stage do
7: V SPnt ← Pre − processPhase
8: xnt ← GreedySelection(V SP )
9: c ← CostFunction(xnt)

10: UpdateV alue(V (ideal sol), c)
11: Insert(ideal sol, xnt)

12: c ← CostFunction(ideal sol)
13: UpdateV alue(V (ideal sol), c)
14: UpdateV alue(LK(S), V (ideal sol))

lookahead period t. We select the shift pattern xnt in V SPnt with the lowest
cost and build up an ideal individual assignment with the combination of spn
and xnt in lines 8 and 11. The initial value of this ideal solution is the same
value of spn and is updated with the constraint violation cost of xnt in line 10.
Lines 7–11 are repeated until reaching the last lookahead stage T + stage. The
value of ideal sol is then added the constraint violation of S6 and S7. This is
the evaluation of a single shift pattern spn and this value is added to LK(S) for
each nurse n.

Once all the weekly rosters are evaluated through the Algorithm 3, the one
with lowest LK(S) will be selected as the final weekly solution and the nurse
historical information is updated for the following week.

4 Experimental Design and Results Analysis

The problem instances for evaluating the proposed approach are selected from
the Second International Nurse Rostering Competition (INRC-II) [4]. The are
three sets of instances, all available at [8]. One is a test set with small number
(up to 21) of nurses. Another is the competition set released to the competitors.
The last set is a hidden set that was made available at the end of the competition.
For the experiments here we use the first two data set only.

The proposed algorithm described in Sect. 3 was implemented in Java (JDK
1.7) and all computations were performed on an Intel (R) Core (TM) i7 CPU
with 3.2 GHz and RAM 6 GB.

4.1 Experimental Settings

For a problem that considers 3 working shifts and 1 day off per day of the week,
the total number of possible shift patterns is 16384 (47). The pre-process phase
reduces this number to 1607 making possible to apply the proposed approach to
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solve large NRP instances. There are three different representations in the value
function approximation, lookup table, parametric model and non-parametric
model. As the search space is considerably small after the pre-process phase, we
implement a lookup table in the local phase procedure.

The initial value of ε is set to 0.9 and is updated based on the Generalized
Harmonic Step Size Function [2]. Through preliminary experimentation we tuned
the size of the simulation sample SList = 100 and the output set M = 30 in
the local phase. Also through preliminary experiments and results analysis, we
decided to select elements from SList for M following the 1-6-3 rule. That is,
10% is selected from S List with the lowest V (S), the 90% of S List is split
into two subgroups, good and bad, based on the constraint violation cost. Then
60% is randomly selected from the good subgroup and 30% is randomly selected
from the bad subgroup.

The cost value for both single shift pattern sp and weekly roster S is cal-
culated using Eq. (3) where cs is the soft constraint violation cost and Vsc is
the number of violation for each constraint. The calculation of the constraint
violation is fully described in [4].

c =
∑

eachconstraint

cs × Vsc (3)

The artificial future demand is generated by randomly selecting a week data
file per week in the lookahead period. Back to the algorithm described in the
Sect. 3, only one future path is evaluated for each weekly roster. Less evaluations
of lookahead policy is not ideal but more evaluations consume much computation
time and memory. By preliminary experiments we found that 1000 evaluations is
the minimum to achieve the level of performance in our results while still using
considerably short computation time. The value of LK(S) is updated based on
Eq. (4). All experimental results presented in the rest of this section correspond
to 20 runs for each problem instance.

LK(S) =
1
k

k∑

i=1

LKi(S) (4)

4.2 Lookahead Period Comparison

We tested various lookahead periods for each planning horizon. The lookahead
period T for scenarios with 4 weeks is set as 1, 2 and 3 and as 3, 5 and 7 for
scenarios with 8 weeks. All the scenarios from the test set were used for these
experiments comparing the different values of T and results are presented in
Table 1.

In the table, Obj is the average objective value and Std. is the standard
deviation. The performance of using longer lookahead period is not much better
than when using a shorter one for the smallest problem instance (n005w4). But
for the larger problem, either with longer planning horizon or larger number
of nurses, the average objective value when using that largest T is the best,
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Table 1. The average objective value and standard deviation obtained with various
lookahead periods for each instance. Best values are indicated in bold.

T = 1 T = 2 T = 3

Instance Obj. Std. Obj. Std. Obj. Std.

n005w4 1 456 55.724 452 49.67 451.5 23.573

n005w4 2 436.5 35.6735 430.5 31.578 430.5 14.568

n005w4 3 541 67.456 530.5 54.674 530 33.584

n021w4 1 2176 435.754 2056.5 343.563 1815 185.683

n021w4 2 3059.5 563.743 2375.5 484.626 2150 254.673

n021w4 3 3415 447.784 2767.5 306.639 2035 186.460

T = 3 T = 5 T = 7

Instance Obj. Std. Obj. Std. Obj. Std.

n012w8 1 1527.5 435.375 1375.5 368.466 1237.5 235.256

n012w8 2 1747 373.692 1623.5 275.573 1544 205.574

n012w8 3 1928.5 563.681 1736.5 503.684 1515.5 385.678

as much as 20% improvement is achieved in instance n021w4. The standard
deviation value is smaller as the value of T increases indicating that the algorithm
performance is more robust with longer lookahead period.

4.3 Algorithm Validation and Comparison

Based on the observations from the experiments with the test set, the lookahead
period was set to T = 3 for 4-week instances and to T = 7 for 8-week instances
on experiments with the competition data set. Results are presented in Table 2.

A value of 99999 in the table indicates that the approach ran out of memory.
The performance of the proposed ADP-CP is evaluated through two aspects for
each instance. In the left part of the Table 2 we compare it with each individual
policy. The solution constructed by individual simulation approach is a combina-
tion of optimal weekly rosters. The global constraints are considered only when
solving the weekly optimization problem in the last stage. On the other hand,
the individual lookahead policy focuses on the solution evaluation of global con-
straints but each weekly solution is solved with random selection approaches.
Looking further has the benefit on the overall solution by comparing the value
in columns 2 and 4. Local optimum is only concentrated on the assignment pat-
terns, such as the consecutive working patterns and the consecutive days off.
We select the instance n030w4 1 as an example. The number of working shifts
for each nurse is set as 4 to avoid local constraint violations. The total working
days for each nurse is 16 in the final solution. However in some contract, the
minimum total working days is 20. A significant large global constraint violation
cost is added to the final objective value. A good weekly roster also improves
the optimality of lookahead policy with the comparison of columns 3 and 4.
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Table 2. Experimental results of the proposed ADP with combined policy (ADP-CP),
individual simulation approach, individual lookahead policy, best and the worst results
from the competition. Best values are indicated in bold.

Instance Simulation Lookahead ADP-CP Best Worst

n030w4 1 1925 2725 1780 1745 9850

n030w4 2 2650 2710 1610 1935 10605

n030w8 1 5350 6645 4830 2295 21185

n030w8 2 6310 5820 4855 1900 21145

n040w4 1 8120 3945 3270 1765 14680

n040w4 2 6895 4260 3735 1910 14460

n040w8 1 14720 10125 9305 3105 35010

n040w8 2 19255 10165 8975 2975 33000

n050w4 1 5900 4070 3535 1525 17745

n050w4 2 6210 4070 3030 1480 15380

n050w8 1 19525 10045 8965 5560 43040

n050w8 2 13905 9725 8420 5475 42765

n060w4 1 18480 16977 12282 2830 19230

n060w4 2 20945 17794 15019 2950 20400

n060w8 1 20215 9590 9720 2840 44130

n060w8 2 17545 11000 10160 3200 44430

n080w4 1 23195 21870 18350 3474 26935

n080w4 2 26305 21435 16885 3535 27210

n080w8 1 48505 44880 35975 4845 64915

n080w8 2 47355 44065 38800 5105 66515

n100w4 1 19625 19295 16045 1445 33740

n100w4 2 20530 20270 17885 2070 33465

n100w8 1 53155 39550 35690 3095 85260

n100w8 2 50340 40755 35440 3135 87445

n120w4 1 99999 24075 22960 2470 36235

n120w4 2 99999 22680 22065 2530 36320

n120w8 1 99999 43215 39170 3555 83590

n120w8 2 99999 40840 41350 3435 82145

The right part of Table 2 seeks to validate our ADP-CP approach by compar-
ing the quality of the solutions obtained to the Best and Worst reported for the
competition. The performance of ADP-CP is close to the best in the instance
n030w4. It also achieved a good gap from the best in instances n040w4 and
n050w4. However, the performance is not so close to the best solutions for larger
problem instances. Nevertheless, the quality of the solutions produced with the
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proposed ADP-CP is in the middle among all the competition results which were
produced by several different algorithms. We believe that this work has accom-
plished good progress in making possible the application of dynamic program-
ming, with the approximation policies, for solving this complicated multi-stage
nurse rostering problem. This is an important step towards making dynamic
programming practical in its application for solving difficult combinatorial opti-
mization problems when a multi-stage solving approach can be followed.

5 Conclusion

This paper proposed a three-phase approximate dynamic programming (ADP)
algorithm to solve the multi-stage nurse rostering problem. This is a problem
where a roster is constructed for each week with the future demand assumed not
known and the history information for the previous week needs to be considered.
The first phase of the proposed approach is a pre-process that generates a set
of valid shift patterns. The second phase is a local phase that applies the value
function approximation, to solve the weekly optimization problem and generate
a set of weekly rosters. The third phase is a global phase that implements a
lookahead policy to evaluate the effect of the future uncertainty within a looka-
head period. The proposed ADP then combines value function approximation
and lookahead policy. The instances from the Second Nurse Rostering Compe-
tition (INRC-II) are used in the experiments to validate the performance of this
proposed algorithm. Experimental results show that the combined policy app-
roach in the proposed algorithm produces better performance than the individual
policies. Besides, the results obtained with the proposed algorithm on some of
the INRC-II problem instances are close to the best solutions reported for the
competition. Future works should be focused on improving the solution quality
and reducing the computational time. These improvements could be achieved
by applying different methods to evaluate the lookahead samples. Furthermore,
improving the quality of weekly rosters could also benefit the lookahead policy as
arguably better weekly rosters could help to achieve better results with shorter
lookahead periods and also reduce the computation time.
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Abstract. Water is not only vital for ecosystems, wildlife, and human con-
sumption, but also for activities such as agriculture, agro-industry, and fishing,
among others. However, in the same way as their water use has increased, it has
also been detected an accelerated deterioration of its quality. In this sense, to
have predictive knowledge about water quality conditions, can provide a sig-
nificant relevance to many socio-economic sectors. In this paper, we present an
approach to predict the water quality for different uses (aquaculture, irrigation,
and human consumption) discovering knowledge from several datasets of
American and Andean Watersheds. This proposal is based on Multiple Classifier
Systems (MCS), including Bagging, Stacking, and Random Forest. Models as
Naïve Bayes, KNN, C4.5, and Multilayer Perceptron are combined to increase
the accuracy of the classification task. The experimental results obtained show
that Random Forest and Stacking expose acceptable precision on different
water-use datasets. However, Bagging with C4.5 was the most appropriate
architecture for the problem addressed. These results indicate that MCS tech-
niques can be used for improving accuracy and generalization capacity of the
prediction tools used by stakeholder involvement in the water quality process.

Keywords: Classification � Machine learning � Multiple classifier systems
Water quality

1 Introduction

Water Quality (WQ) can be defined as the set of physical, chemical, biological, and
radiological characteristics of surface and underground waterbodies. However, experts
in water resources management, show that there is no single definition of water quality
because it strictly depends on its use [1]. Thus, for example, water that cannot be used
for human consumption may be used for other activities such as irrigation or aqua-
culture, among others, as it has specific characteristics that make it suitable for such
use [2]. Some of this water is used by infrastructure installed by human and most of the
extracted water is then returned to the environment after it has been used.

By implementing plans for water management, Watershed Management Authorities
(WMA) collect samples from different water body points to determine the current status
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of water quality. Traditionally, this task involves time, both sampling and construction
of WQ data series, and in most cases, the management response is given too late. This,
occasionally could represent an economic and hugely environmental lost, which affect
territorial sustainability on a regional or global scale.

In Integrated Water Resources Management (IWRM), there is a dynamic rela-
tionship between governmental institutions and basin stakeholders, which must work
together to ensure the viability of their decisions in order to achieve the sustainable
development objectives. In this sense, determine the potential use of water in a
watershed, allows formulating management alternatives associated to the land use for
agricultural or agro-industrial activities developed there. Additionally, the planning
processes and IWRM can be facilitated. Thus, measures or decisions to reduce the risk
of contamination of water’s surface and groundwater, can be supported.

In view of the above, it is necessary to have models or mechanisms to anticipate the
materialization of pollution risk in a short-term, preventing negative effects that impact
water resources quality. In this way, several researches in Machine Learning (ML), and
specifically Multiple Classifier Systems (MCS) [3] has introduced algorithms and
predictive techniques, which have the ability to classify different conditions of water,
based on the analysis of collected historical data. In [4], a classification into quality
classes based on either bio-indicator or physical and chemical indicator data is
developed. This process requires multiple input data previously prepared at a special
facility; in this sense, in-situ classification can be complex or even unfeasible. Bas-
siliades [5] presents an intelligent system for monitoring and predicting water quality
parameters of Northern Greece such as temperature, pH, among others. This system
does not perform water use classification although it does in-situ predictions of water
quality parameters.

On the other hand, Muhammad [6] proposes a classification model for water
quality. The performance of various classification models and algorithms, was analyzed
and compared in order to identify the significant features that contributed in classifying
water quality of Kinta River, Perak Malaysia. Finally, Partalas [7] studies a large
ensemble (200 models) of Artificial Neural Networks (ANN) and Support Vector
Machines (SVM) for predicting WQ. However, it does not perform any water use
classification, focusing only on selecting the best model to predict WQ parameters
measured by the system implemented in [5].

According to the previous literature review, it is important to develop models that
combine different classifiers, primarily to cover the disadvantages of some individual
techniques and improve them with the addition of other algorithms. In all reviewed
studies, classification uses data which had not been immediately measured. One of the
objectives of this proposal is to develop a classifier that can determine the possible
water use base on in-situ parameter measurements, focusing the laboratory test only in
those needed to corroborate the use of water classification. Moreover, no studies were
found, which employ MCS to determine possible uses of water, and it has not been
applied to water samples from Andean watersheds. This proposal is important because
it would allow government authorities to take decisions about different productive
sectors, which use water like an input for all their processes. In this way, these
organisms would have a greater ability to forecast, in an integral and systemic capacity
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associated with the reality of ecosystems, land use, and human activities which makes it
more flexible and useful.

This proposal presents various architectures for combining classifiers, with the aim
of establishing the most accurate and improving the prediction accuracy to determine
which type of use, a water sample belongs. This paper is organized as follows: the first
part outlined the related studies to the main topics addressed around water quality
prediction using MCS; subsequently, data sources for testing are described, MCS
architectures are presented, explained and validated by experimental evaluation results.
And the final part, presents the conclusions and future work of this research.

2 Data and Study Area

In the present study, different WQ databases were pre-processed to determine the
possible use of water in a watershed. This approach was conducted using several
classifiers and MCS architectures for combining classification models. In order to
implement a predictive technique that offers accurate results using different WQ
datasets; it is important to have several data sources which represent different uses of
water. Three free access datasets from two data sources were employed as training data
(Alviso estuary, Don Pedro Lake, and Juanchito station) and two datasets as test data
(Piedras river watershed and Illinois river). Data sources are as follows:

2.1 United States Geological Survey (USGS)

USGS is a research organization of the United States federal government. This agency
provides reliable water quality data in the United States for public access [8]. In this
study, data with label (A) was selected. These datasets belong to two sampling sites in
the state of California: the first one comprising the territory of Alviso; Guadalupe River
and Coyote Creek end up in Alviso wetland through an estuary that flows into the San
Francisco bay. One of the main activities is fish farming, the second one is Don Pedro
Lake, located in Mariposa County, which covers an area of 32.56 km2 where one of the
main uses is the irrigation.

The fish farming dataset is composed of 14 variables as follows: agency_cd,
site_no, datetime, tz_cd, 01_Temperature, 01_Temperature_cd, 02_Spec-conduc,
02_Spec-conduc_cd, 04_Turbidity, 04_Turbidity_cd, 07_Susp-sed-conc, 07_Susp-sed-
conc_cd, 08_Dissol-oxygen and 08_Dissol-oxygen_cd. Each variable consists of
138200 instances; however, some variables contain more than 50% of missing values.
Variables like agency_cd, site_no, datetime, tz_cd and all variables with the “_cd”
suffix, were not used in this study; some of them for its alpha-numeric values, and the
others because they have an alphabetic value according to its level of process: data
approved for publication (A), which have been processed and thoroughly reviewed by
the USGS staff; and provisional data subject to revision (P), which have no approval of
the review staff. Additionally, during the variables inspection, Turbidity had multiple
alpha-numeric values, for this reason this variable was not used. Finally, all missing
values in this dataset were deleted.
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On the other hand, the irrigation dataset is formed by 13 variables: agency_cd,
site_no, datetime, tz_cd, 01_Temperatura, 01_Temperatura_cd, 02_Spec-conduc,
02_Spec-conduc_cd, 03_Dissolved-oxygen(%sat), 03_Dissol-oxygen(%sat)_cd,
04_Dissol-oxygen(mgpl), 04_Dissol-oxygen(mgpl)_cd, 05_pH and 05_pH_cd. Each
variable has 1161 instances, in this case, the amount of missing values was less than
30% in all variables. In a similar way as the previous dataset, agency_cd, site_no,
datetime, tz_cd and all the remain variables with the “_cd” suffix, were not used in this
study based on the same reasons. In this case, only two variables had missing values
and these were deleted.

2.2 Cauca River Modeling Project Phase II (PMC II)

PMC II is a project to monitor the Río Cauca water quality [9]. The study area was the
stretch “Hormiguero-Mediacanoa”, specifically “Puente Juanchito” monitoring station
near Santiago de Cali city, Colombia. The Cauca River Basin is the second largest
waterway of Colombia and crosses around 183 municipalities, representing approxi-
mately 41% of the Colombian population. Water quality variables in this dataset are as
follows: Date, pH, Temperature, Dissolved Oxygen, and Conductance. Date variable
consists on the corresponding date and time for each instance, Dissolved Oxygen has
the saturation percentage, Conductance, the specific conductance in microsiemens/cm,
and Temperature values are given in Celsius degrees. After inspect every instance in
this dataset, it was determined that they satisfy the regulations in resolution 2115 of
June 22, 2007 by the Ministries of Social Protection and Environment for physical
characteristics of water quality for human consumption.

2.3 Río Piedras Watershed (Test Dataset 1)

Río Piedras watershed is located on the western slope of the Cordillera Central
mountain range, west of Popayan, Colombia. This watershed covers an area of 58 km2

and a variable altitude between 1900 m and 3800 m. In this zone, most of the popu-
lation is formed by indigenous families belonging to Nasa and Coconucos ethnic
groups and rural families. The representative economic activities include agriculture,
livestock, fish farming, human consumption, among others [10]. Water quality vari-
ables in this dataset are the same as the PMCII data source, adding the Dissolved
Oxigen variable in mg/l.

2.4 Illinois River (Test Dataset 2)

This river is a principal tributary of the Mississippi River, approximately 439 km long
in the state of Illinois, U.S. [11]. It drains a large section of central Illinois, with a
drainage basin of 74,479 km2. Habitat loss from heavy siltation, and water pollution
have eliminated most commercial fishing; therefore, irrigation is one of their mainly
uses. WQ Variables considered in this dataset were: temperature, specific conductance,
dissolved oxygen in mg/l, dissolved oxygen in percent of saturation, pH, and turbidity.
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3 Models Description

Knowledge Discovery in Databases (KDD) is the process of discovering useful
knowledge from a collection of data [12]. A database which stores data obtained by
monitoring the water quality, is an important source of information. It may contain
measurement data about the physical and chemical properties of the water at different
measurement sites. This section presents the algorithms used in the present study (base
classifiers). Additionally, three of the most popular methods for combining these
algorithms are mentioned (MCS methods).

3.1 Base Classifiers

The goal in supervised learning, is to predict the value of a target feature on unlabeled
instances and the learned model is also called a predictor [13]. For example, to
determine the degree of pollution on a water body, three categories can be labeled as
“high”, “medium”, and “low”. The predictor should be able to forecast the label of an
instance for which the label information is unknown, e.g., (dissolved oxygen = 21%,
turbidity = 1.2 NTU, pollution degree = unknown). If the label is categorical, the task
is also called classification and the learner is also called classifier. Classifiers used in
this study are described below.

• C4.5 Decision Tree (C4.5). C4.5 is an algorithm extension of ID3 [14]; it generates
a set of decision trees which can be used for classification tasks. In addition, it is one
of the most popular algorithms in the Top 10 Algorithms in Data Mining [15].

• K Nearest Neighbors (KNN). KNN [16] is a classification method in supervised
learning, used to estimate a density function F(x|Cj), which determines the class
membership for an instance. The input consists of the k closest training examples in
the feature space.

• Multilayer Perceptron (MLP). MLP [17, 18] is a feedforward ANN model which
maps sets of input data onto a set of appropriate outputs (in this case for classifi-
cation). It consists of multiple layers of nodes in a directed graph, where each layer
is fully connected to the next one.

• Naïve Bayes Classifier. This classifier belongs to the family of simple probabilistic
classifiers which are based on a common principle: applying Bayes’ theorem with
strong independence assumptions between the features [19].

3.2 MCS Models

These methods train and combine multiple classifiers to solve the same problem. In
contrast to the single learning approaches which try to construct one classifier from
training data, MCS selects a set of learners and combine them [3, 13]. Three of the most
used MCS were applied in this study and these are described below.

• Bagging. It is a machine learning ensemble meta-algorithm which attempts to
reduce variance and helps to avoid overfitting [20]. For generating different base
learners, Bagging adopts the bootstrap distribution (bootstrap sampling or data
subsets for training the base classifiers) [21]. Bagging adopts the most popular
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strategies for aggregating the outputs of the base learners, that is, voting for clas-
sification and averaging for regression [13].
Three bootstrap sampling were selected in this study, due to the results were better
than the other number of bootstraps. For each data subset in the MCS architecture,
the same type of classifier was trained (C4.5, MLP, NB, or KNN). Finally, all
classifications were combined in order to select the best-predicted class, in this case,
the use of water.

• Stacking. This MCS method is a way of combining multiple models, that intro-
duces the concept of a meta-classifier [22]. The procedure of stacking initially split
the training set into two disjoint sets; train several base classifiers on the first part,
and test the base learners on the second part. Using the predictions from base
classifiers as the inputs, and the correct responses as the outputs, train a higher-level
learner (meta-classifier). Three single classifiers were selected at the first level and
the remaining learner was defined as meta-classifier; in this sense, all possible
combinations in the architecture were used.

• Random Forest (RF). This ensemble learning method is a substantial variation of
Bagging, combining this approach with a random selection of features. RF imple-
ments a large collection of non-correlated trees outputting the class that is the mode
of the classes (classification) or mean prediction (regression) of the individual trees.
The number of decision trees used in RF method for this study was 100, which is
the default parameter in Weka tool.

4 Data Preprocessing

Initially, three datasets were obtained from separate files. These datasets represent three
uses of water: fish farming, irrigation, and human consumption; the third is the only
one that no needs a previous processing and it could be used directly, the other datasets
were preprocessed to find erroneous and missing values in the attributes. Fish farming
dataset had a large amount of missing values, for this reason, is not recommendable to
apply imputation methods based on centrality. In contrast, other imputation methods
were used, like Bootstrap and Predictive Mean Matching (PMM) in R software
tool [23]. However, r-squared (R2) values of imputed instances were lower than 0.4;
that means the imputed values were not acceptable. In view of the above, the same
process was applied using MICE package with PMM, obtaining acceptable values for
the imputed instances (similar distribution of data). In the same way, this process of
imputation was used for irrigation dataset.

In a second phase, the three datasets were merged to generate a consolidated
dataset, which was used in the evaluation tests applied to single classifiers and MCS.
To increment the number of features, common WQ variables in at least two datasets
were added to consolidated dataset, and then, missing values were assigned to each of
them (pH and dissolved oxygen were added to fish farming instances, and percent
saturation of dissolved oxygen to human consumption dataset). The class to predict in
the consolidated dataset was Type_of_Use, which refers to the previously classified use
of water for each instance.
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Due to unbalanced classes presented in fish farming dataset, in a third phase, the
minimum representative percentage of training samples for this dataset was evaluated.
Experimental tests were conducted using MCS architectures with 3%, 5%, 10%, 15%,
30% y 100% of the total instances to determine if it is enough to use the entire fish
farming dataset or a low percentage of this. Results are shown in Table 1.

As can be seen from Table 1, the results are acceptable from 3% of the fish farming
dataset, and there was a progressive increase to 100% using the total of instances,
except the classifications performed by KNN with 1 neighbor, here the correctly
classified instances decreased. It can be explained by the increment of the number of
fish farming instances with missing values. However, 3% and 5% could be consider
acceptable in order to obtain a high performance in classifiers, taking into account the
high percent of correctly classify instances. As a result, the response and training times
were lower, without affecting the classifier efficacy.

In order to support a better approach for the instances selection process, K-Means
algorithm can be used to group samples in the dataset, and subsequently select
instances of each group, ensuring an adequate and representative sample [24].
Self-Organizing Maps (SOM) [25] was used for this purpose on the 61000 fish farming
instances. This technique is a type of Artificial Neural Network (ANN), which gen-
erates clusters automatically with the aim of infer the optimal number of groups based
on the lowest sum of the squares of standard deviation for each group. With a large
number of clusters, the sum of the squares decreases; nevertheless, the optimal number
of groups was 6, due to the generated groups over this value, only labeled 1 neuron.
SOM with 6 clusters is shown in Fig. 1, which shows different colors (blue, red,
orange, green, brown, and purple) for optimal number of labeled clusters. Each neuron
was assigned to a color, and there were no groups formed by a single neuron. Finally,
using Weka software tool, K-Means was applied to fish farming data, and results show
an acceptable clusters distribution in all cases.

Table 1. Percentage of correctly classified instances by C4.5, KNN, MLP and NB using
different test percentages.

Test percentage (%) Correctly classified instances (%)
C4.5 KNN MLP NB Bagging-C4.5 RF Stacking-C4.5

3 99.81 35.55 100 100 99.83 99.99 64.26
5 99.9 25.11 100 100 99.88 100 74.99
10 99.95 14.88 100 100 99.94 100 85.71
15 99.98 10.33 100 100 99.97 100 90
30 99.99 6.13 100 100 99.99 100 94.73
100 100 2.67 100 100 100 100 98.36
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5 Results

C4.5, KNN, Multilayer Perceptron, and Naïve Bayes classifiers in Table 2, were used
in the first evaluation test for the consolidated dataset. 3% of the total data in the fish
farming dataset was used and 100% in the other two datasets. To apply this test,
WEKA tool was used and all classifiers were configured using default parameters and
the cross-validation process was used.

Table 2 shows that Naïve Bayes and Multilayer Perceptron has the best results with
100% of instances correctly classified, C4.5 also has good results with more than
99.8%, but KNN classifier got only 33%. This could be due to the instances with
missing values include in the dataset to maintain the same number of variables between
the 3 datasets used in this study.

The second evaluation test was conducted by Multiple Classifier Systems with the
aim of select the best architecture for combining classifiers in order to improve the
classification task. In this sense, Random Forest, Bagging and Stacking methods with
different configurations were used. Once again, all classifiers were configured using
default parameters. In Bagging method, 4 configurations were used: (i) Bagging with
Naïve Bayes, (ii) Bagging with KNN, (iii) Bagging with C4.5, and (iv) Bagging with
Multilayer Perceptron. In Stacking method 4 configurations were used: (i) Stacking
with C4.5 as meta-classifier and Naïve Bayes, Multilayer Perceptron and KNN as first
level classifiers (Stacking-C4.5_NB-MLP-KNN), (ii) Stacking with Multilayer Per-
ceptron as meta-classifier and Naïve Bayes, C4.5 y KNN as first level classifiers
(Stacking-MLP_NB-C4.5-KNN), (iii) Stacking with Naïve Bayes as meta-classifier
and Multilayer Perceptron, C4.5 and KNN as first level classifiers (Stacking-NB_
MLP-C4.5-KNN), and finally (iv) Stacking with KNN as meta-classifier and Multilayer

Fig. 1. SOM for finding the optimal number of clusters to select representative fish farming
instances (Color figure online).

Table 2. Percentage of instances correctly classified using C4.5, KNN, MLP and Naïve Bayes.

C4.5 KNN MLP NB

99.85% 33.68% 100% 100%
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Perceptron, C4.5 and Naïve Bayes as first level classifiers (Stacking-KNN_MLP-
C4.5-NB). Results are showed in Table 3.

In the same way as the first evaluation test, Table 3 shows the results of the second
test. Bagging with KNN architecture had the lowest results for classifying instances,
although it improves the results obtained using only KNN. These results may be caused
by the missing values added to the dataset, in this sense, only 1 neighbor were selected
for this case. The other results were very accurate, with 100% of correctly classified
instances.

Experimental results in both test shows that the classes in the consolidated dataset
are highly separable. However, these experimental tests were performed using cross
validation process (the training data are used in validation), which does not always
guarantee more realistic situations to evaluate the classifier performance. Therefore, a
new test was conducted using the same classifiers and architectures, but in this case,
instead of the cross-validation method, two new test datasets were used. The first one
corresponds to Rio Piedras, and the second one, to Illinois River. Table 4 shows the
results, included the respective Confusion Matrix [26], obtained for the models that
classified correctly some of the instances for human consumption.

As can be seen from the previous table, the percentage of correctly classified
instances for test scenario 1, was around 63%. However, in some cases, the confusion
matrix for the irrigation class had several instances classified as human consumption.
For this reason, results may not be appropriate and to know this percentage is not
enough to determine a possible use of water. The implications this could have, is that
irrigation and fish farming comprises less rigorous quality parameters to meet, and a
bad classification for human consumption would imply a risk for public health.

Taking into account the above, the aim of this study is to allow the decision-maker
to reduce the sampling time and the number of tests necessaries to determine the type of
use of a water sample using at least one of these classifiers or MCS directly on the
in-situ collected data. In this sense, the best results were obtained by Naïve Bayes from
the classic methods, Bagging with Naïve Bayes, and Stacking-C4.5_NB-MLP-KNN.
Bagging correctly classified all the human consumption type, but could not differentiate
between the other two water types. Stacking classified correctly 210 instances of
human consumption and was able to make a little differentiation for the other two
classes.

Table 3. Percentage of instances correctly classified using different architectures of MCS.

Random
forest

Bagging Stacking
NB KNN C4.5 MLP C4.5a

NB,
MLP,
KNN

MLPa

NB,
C4.5,
KNN

NBa

MLP,
C4.5,
KNN

KNNa

MLP,
C4.5,
NB

100% 100% 35.6% 99.8% 100% 100% 100% 99.9% 100%
a These classifiers were used as meta-classifier in the MCS.

370 I. D. López et al.



Based on results obtained for the realistic scenario 1, a single technique (a classifier
or MCS) cannot be applied in all cases to determine the possible uses of a water
sample. It can be seen that for human consumption data, the most appropriate option is
Bagging with Naïve Bayes because it completely allows to separate this class from the
other two classes. However, this MCS method cannot distinguish between irrigation
and fish farming instances. In this sense, in WQ prediction for irrigation, both Naïve
Bayes and Stacking-C4.5_NB-MLP-KNN can be used. Nevertheless, the last allows to
differentiate better the human consumption samples; for irrigation, both were able to
classify 306 of the 2804 instances of this class. Finally, to separate the water for fish
farming, Bagging with C4.5 can be used, although this technique only could be applied
on fish farming samples, like Bagging with NB for human consumption; in contrast
with selected classifiers for irrigation which had an acceptable performance on
instances of human consumption and irrigation.

Table 4. Percentage of correctly classified instances using a test dataset.

Classifier/MCS Test scenario 1 Test scenario 2

Percentage
of correctly
classified
instances

Confusion Matrix[a] Percentage
of correctly
classified
instances

Confusion matrix

Naïve bayes 65.4% CA.[b] a b c 94.2% CA a b c

a 185 0 159 a 344 0 0

b 0 4533 0 b 0 4533 0

c 0 2498 306 c 34 255 822

Random forest 61.5% CA a b c 78.3% CA a b C

a 118 226 0 a 99 245 0

b 0 4533 0 b 0 4533 0

c 2553 174 77 c 127 838 146

Bagging with Naïve bayes 63.4% CA a b c 94.5% CA a b c

a 344 0 0 a 344 0 0

b 0 4533 0 b 0 4533 0

c 0 2804 0 c 128 825 158

Bagging with C4.5 63.2% CA a b c 84.2% CA A b C

a 329 15 0 a 332 12 0

b 0 4533 0 b 0 4533 0

c 2804 0 0 c 837 274

Stacking-C4.5_NB-MLP-KNN 65.7% CA a b c 93.8% CA A b C

a 210 0 134 a 344 0 0

b 0 4533 0 b 0 4533 0

c 0 2498 306 c 25 288 798

Stacking-MLP_NB-C4.5-KNN 67.1% CA a b c 94.2% CA A b C

a 182 0 162 a 344 0 0

b 0 4533 0 b 0 4533 0

c 2334 178 292 c 52 239 820
a Confusion Matrix, also known as an error matrix, is a table where each column represents the instances in a
predicted class while each row represents the instances in an actual class
b CA: “Classified as”. Classes, a: human consumption, b: fish farming, and c: irrigation
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For test scenario 2, the irrigation data previously used were replaced by River
Illinois dataset. In this case, there was an increase in the number of correctly classified
instances belonging to the human consumption class, except for the Random Forest and
Bagging with Naïve Bayes models. In addition, the percentage of correctly classified
instances increased in all cases for the same class. This percentage increased too for
irrigation class, while for the fish farming class it was maintained.

In the same way, Bagging with Naive Bayes, which failed to separate irrigation
classes with the fish farming class with test dataset 1, using the test dataset 2, could
differentiate most instances of this class. Nevertheless, 128 instances were classified as
human consumption. This indicates that there was greater general separability of the 3
classes, but the effectiveness of the algorithm was slightly reduced to separate the human
consumption class from the other two. In the case of Random Forest, the number of
instances of irrigation classified incorrectly as human consumption decreased and the
instances of this class correctly classified, most were classified as instances of the class
fish farming. In the case of Naive Bayes, the number of correctly classified instances for
irrigation increased considerably. However, 34 instances were classified as human con-
sumption. Again, the general separability of the classes improved, but the effectiveness of
separating the human consumption class from the other classes decreased. Similarly, with
the other meta-classifiers, there was an increase in the separability of the 3 classes.

Furthermore, the Welch’s t-test [27] in R software tool was made to see if the
improve results in test scenario 2 are statistically different from test scenario 1. Table 5
shows the results, for this test the classified instances in each test scenario with the 6
selected classifiers/MSC were used.

As can be seem from the previous table, all the p-value or observed significance
level [28] were small except for Bagging with Naïve Bayes value. This means that the
differences shown between this MSC in the two test scenarios has no statistical sig-
nificance. Statistical significance was found in all the remaining cases proving that the
test scenario 2 are statistically different from the test scenario 1.

6 Conclusions

This paper has explained the importance of knowing the possible uses of water in a
watershed. An adequate predictive tool would allow guiding the decision-making
processes and could form the basis of decision-support systems for watershed man-
agement authority. These organizations or government entities may establish integrated
control actions on water resources. Based on the above, this study compares different

Table 5. Welch’s t-test p-value results.

Classifier/MSC p-value
NB Random

forest
Bagging with
Naïve Bayes

Bagging
with C4.5

Stacking
C4.5_NBMLP-KNN

Stacking
MLP_NBC4.5-KNN

1.85e-08 <2.2e-16 0.1082 <2.2e-16 1.744e-10 <2.2e-16
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MCS architectures for combining classifiers in order to determine which is the most
accurate, taking into account particular conditions of real world. Experimentally, MCS
techniques like Bagging with Naïve Bayes, and Stacking with C4.5 as meta-classifier
and Naïve Bayes, Multilayer Perceptron, and KNN as first level classifiers, performed
best on instances classification.

In the last test, the results for Rio Piedras dataset were not as good as the first two,
but it has a more realistic approach to the real-world situations. MCS improved the
response over the classical methods not in the percentage of correctly classified
instance, but in the correct differentiation between them; in general, between the human
consumption class and the other two classes in the dataset. As a first hypothesis, we
assume that the results could be better with more data to correctly differentiate between
the classes. In the test dataset 1, the irrigation class did not have the Dissolved oxygen
in mg/l (milligrams per liter), so this had to be added and adapted to missing values.
This could be the reason for the poor behavior in this test, compared to the other test
where no test dataset was use.

The experimental results with the test dataset 2, prove that the hypothesis raised
above is correct. By including the dissolved oxygen variable in mg/l (included as
missing values in the initial tests) it improved the separability of the classes by
increasing the percentages of correctly classified instances and the confusion matrices
in all cases. However, an expert classifier was no longer obtained to separate the
instances of human consumption like in test dataset 1. On the other hand, Stacking with
C4.5 as meta-classifier and Naïve Bayes, Multilayer Perceptron, and KNN as first level
classifiers could be used in this way considering the number of instances miss classified
as human consumption and the separability between the other two classes. With this
database addition, it is demonstrated that it is possible to use a single classifier to obtain
an adequate response to the three classes considered in this study.

Finally, intelligent systems for use of water classification can be developed based
on WQ parameters measured on site. However, in some cases, variations in these
parameters are not significant, and only few features can determine the use of water in a
watershed. In these cases, is recommendable to develop different ensemble methods or
MCS in order to improve the classes differentiation, especially when the features
present high levels of similarity. As a result, the sampling and lab-test time could be
dramatically decrease using a WQ in-situ classification and it will have direct impli-
cations in the resources cost for these tasks making it less expensive and faster. The
laboratory technician could focus the lab tests into the ones needed for the specific type
of use, due to the in situ-classification system previously defined the use of water. The
success of a prediction model depends on whether it can meet the requirements of
the user. Different users might have different expectations, and it is difficult to know the
“right expectation” of each one. A common strategy is to evaluate and estimate the
performance of the models, and then let the user to decide whether a model is
acceptable, or choose the best available model from a set of candidates.
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Abstract. Matrix factorization is a common task underlying several
machine learning applications such as recommender systems, topic mod-
eling, or compressed sensing. Given a large and possibly sparse matrix
A, we seek two smaller matrices W and H such that their product is
as close to A as possible. The objective is minimizing the sum of square
errors in the approximation. Typically such problems involve hundreds
of thousands of unknowns, so an optimizer must be exceptionally effi-
cient. In this study, a new algorithm, Preconditioned Model Building is
adapted to factorize matrices composed of movie ratings in the Movie-
Lens data sets with 1, 10, and 20 million entries. We present exper-
iments that compare the sequential MATLAB implementation of the
PMB algorithm with other algorithms in the minFunc package. We also
employ a lock-free sparse matrix factorization algorithm and provide a
scalable shared-memory parallel implementation. We show that (a) the
optimization performance of the PMB algorithm is comparable to the
best algorithms in common use, and (b) the computational performance
can be significantly increased with parallelization.

Keywords: Preconditioned model building · Matrix factorization
Multicore parallelism

1 Introduction

We investigate the performance of a novel optimization algorithm on the matrix
factorization problem. The classic matrix factorization problem involves approx-
imating a given matrix A as the product of two unknown matrices W and H:

A ≈ WH, (1)

where A ∈ R
m×n, W ∈ R

m×r, H ∈ R
r×n, with r a given integer (the rank of the

factorization). In typical applications, A is sparse, and r is much smaller than
either m or n. However, the resulting factor matrices W and H can be dense.
The associated optimization problem is the minimization of the sum of squares
of errors in the approximation

min
W,H

∑

i,j∈S

(
Aij −

r∑

k=1

WikHkj

)2

, (2)
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where the outer sum is over the set S of (i, j) pairs where Aij is known (nonzero).
If a good approximation with a small r can be found, the factors can be used to
represent the original data in a more compressed form, with less redundancies.

One application of matrix factorization is in the field of recommendation
systems, particularly content-based filtering. As a concrete example, suppose
that each row of A corresponds to a particular user, each column to a particular
movie, and the matrix element Aij is a numeric value representing the rating
given by user i to movie j. This matrix is very sparse, because most of the users
have rated only a small fraction of all available movies. Furthermore, the data
have redundancies, because the ratings given by users with common tastes and
interests are likely to be correlated. After the original matrix A is factorized
into factor matrices with relatively small rank r, we can multiply them back to
obtain a full matrix A∗. The entries in A∗ will then be estimates for the missing
values in A. In other words, we can estimate whether a user would give a high
ranking to a given movie, and display it as a recommendation to the user.

Intuitively, matrix factorization can be seen as discovering some hidden vari-
ables in the data. For example, the hidden dimensions can be movie genres,
movies with a strong female character, movies that appeal to an adolescent
audience, etc. [6]. If the input matrix comprises e-mails and the words in them,
such as the now-public Enron e-mail data set, the hidden dimensions turn out to
be topics like professional football, California blackout, and Enron downfall [1].

The power of matrix factorization as a recommender system is demonstrated
in the Netflix Prize challenge. In this challenge, many different algorithms were
compared with each other to see which one would improve the recommendation
accuracy by more than 10%. The first algorithm that crossed this mark was
based on matrix factorization [6].

Although other methods such as Principal Component Analysis or Latent
Semantic Analysis can also be applied to that end, matrix factorization has
the advantage that it does not regard empty matrix entries as zero values. The
optimization problem considers only the sum of squares over existing values.
This property reduces the error of the approximation [5].

Another application of matrix factorization is data compression, or repre-
senting the data in a low-dimensional subspace. Assume again that each row of
A represents ratings of users. Then, from A ≈ WH it follows that the i-th row
of A can be written as a linear combination of the rows of H, with coefficients
taken from the i-th row of W :

Ai,: =
r∑

k=1

WikHk,: (3)

where the notation Ai,: indicates the i-th row of matrix A. We can then interpret
Wik as a measure of user i’s interest in movies that have property k. Similarly,
we can interpret Hkj as a measure of how much of k is carried by the movie j.

Due to its ability to compress information, matrix factorization can also be
used for unsupervised classification problems. To this end, the preferred variety is
nonnegative matrix factorization, where both the data matrix A and the factor
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matrices W , H are constrained to have only nonnegative entries. With non-
negativity, the linear combination (3) gives a recipe for constructing Ai,: by
adding ingredients Hk,: in amounts of Wik. Because no subtraction is involved,
we can interpret the results in a more intuitive way [7]. In this study, we only
consider unconstrained optimization, therefore nonnegative matrix factorization
is beyond our scope at the moment. We solve only the classic matrix factorization
problem, where entries can be negative real numbers.

For the experiments, we factorize user-movie rating matrices, provided by
the MovieLens database. To minimize the objective function (2), we use the
Preconditioned Model Building (PMB) method that we describe in Sect. 2.

We have developed a MATLAB implementation of the algorithm with no
parallelization. We first factorize the MovieLens 1M rating matrix with PMB,
as well as with other established optimization methods in the minFunc package.
In Sect. 2.1 we show that the performance of PMB on this problem is comparable
to the best ones that are in widespread use, and better than some others.

2 Preconditioned Model Building

In our recent work, we have proposed a new method that could be used as an
alternative to line search procedure in unconstrained optimization algorithms
[9,10]. From this perspective, the proposed method is another globalization
mechanism that aids algorithms to converge from remote points to a local min-
imizer. The main idea of the proposed method is to build a series of quadratic
model functions using trial points around the current iterate. With each trial
point, the simpler quadratic model function is minimized and the next trial
point is set to the location of the attained minimum. If this minimum point
provides a sufficient decrease in the original objective function according to the
Armijo condition, then it is accepted as the new step to move to the next iter-
ation. Otherwise a new model is built around the incumbent trial point. As
we construct a new quadratic model at each trial point, we aptly refer to this
approach as model building (MB) algorithm in this paper.

At iteration k, MB takes an initial vector and uses it as the first trial point,
sk. To guarantee the convergence of the algorithm, this initial vector should be
gradient related providing a sufficient descent. Let us formalize this discussion.
Consider the unconstrained optimization problem of the form

min
x∈Rn

f(x),

where f : Rn �→ R is the objective function. Let xk denote the point at iteration
k. To obtain the next iterate xk+1, the MB algorithm requires the initial vector
sk to satisfy the following two conditions:

m0‖∇f(xk)‖ ≤ ‖sk‖ ≤ M0‖∇f(xk)‖,
−μ0‖∇f(xk)‖2 ≤ s�

k ∇f(xk) ≤ 0 (4)
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for some m0,M0, μ0 ∈ (0,∞). If we simply set sk = −∇f(xk), then both con-
ditions are satisfied with m0 = M0 = μ0 = 1. This choice of sk is, in fact, used
when MB is first introduced by Öztoprak and Birbil [10].

Another way of setting the initial vector for the MB algorithm is to use a
positive definite matrix. That is, we can set sk = −Hk∇f(xk) and use this
direction as an input to the MB algorithm. Since Hk is positive definite, the
conditions in (4) are satisfied by taking m0 as the minimum eigenvalue of Hk,
and M0 along with μ0 as the maximum eigenvalue of Hk. Algorithm 1 shows
explicitly the steps of our implementation, where the first trial step is determined
after a preconditioner is computed (line 4). The model building steps are given
between line 14 and line 21. The original algorithm in [10] takes η ∈ (0, 1) as an
input of the algorithm. In our implementation, we have observed that adjusting
this parameter dynamically as shown in line 14 improves the performance.

Algorithm 1. Preconditioned Model Building

1 Input: x0; ρ = 10−4; k = 0

2 fk = f(xk); gk = ∇f(xk);

3 while xk is not a stationary point do
4 Compute the preconditioner Hk;

5 sk = −Hkgk;

6 for t = 0, 1, 2, · · · do
7 xt

k = xk + sk; f t
k = f(xt

k); gt
k = ∇f(xt

k);

8 v6 = s�
k gk; Δf = fk − f t

k;

9 if Δf ≥ −ρv6 then
10 xk+1 = xt

k, fk+1 = f t
k, gk+1 = gt

k;

11 k = k + 1;

12 break;

13 end

14 v0 = s�
k gt

k; η1 = |Δf|
v6

; η2 = |Δf|
v0

; η = min(η1,η2)
η1+η2

;

15 y = gt
k − gk; v1 = y�sk; v2 = s�

k sk;

16 v3 = y�y; v4 = y�gk; v5 = g�
k gk;

17 σ = 1
2
(
√

v2(
√

v3 + 1
η

√
v5) − v1);

18 θ = (v1 + 2σ)2 − v2v3;

19 cg = −v2/(2σ); cs =
cg
θ

(−(v1 + 2σ)v4 + v3v6);

20 cy =
cg
θ

(−(v1 + 2σ)v6 + v2v4);

21 sk = cggk + cssk + cyy;

22 end

23 end

The introduction of such a positive definite matrix Hk is also known as pre-
conditioning. The advantage of preconditioning in the optimization context is to
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Table 1. Metadata of MovieLens data sets.

Dataset #users #movies #ratings density

1M 6, 040 3, 952 1, 000, 209 0.042

10M 71, 567 10, 681 10, 000, 054 0.013

20M 138, 493 27, 278 20, 000, 263 0.005

incorporate second order information into the step evaluation [2]. Quasi-Newton
methods obtain this information by making use of the gradient information col-
lected in the previous iterations. The most famous one among the quasi-Newton
methods is the limited BFGS method (L-BFGS) method [8]. In this current
work, we have also used L-BFGS update mechanism for estimating our precon-
ditioning matrices. Thus, we refer to the resulting procedure as Preconditioned
Model Building (PMB) algorithm.

2.1 A First Comparison with Other Optimizers

The MovieLens data [4]. This is a public data set containing a large number of
ratings of movies by individuals. The data is collected from the movielens.org
web site, maintained by the GroupLens research group at the Univ. of Minnesota.
Although the full data set keeps growing in time, stable data sets are available
for benchmarking purposes. These are referred to as 1M, 10M, and 20M datasets.
The names refer to the number of ratings contained in each data set.

Table 1 lists the number of users, number of movies and number of ratings in
each data set. Each set contains users who have rated at least 20 movies. Ratings
are integers between 1 and 5.

Numerical comparison. We solve the optimization problem (2) with PMB, as
well as several other optimization functions commonly used in literature. We
see that PMB does not have a significant handicap when compared against the
other accepted methods.

We factorize the matrix of MovieLens 1M data set with several popular opti-
mization algorithms, along with PMB. All of these factorizations are performed
using MATLAB R2015b. For all methods except PMB, we have used minFunc
package [11]. The codes for generating these results are available in the accom-
panying GitHub repository1 for those who wish to replicate our results.2

Each algorithm is initialized with random matrix entries. Each entry is sam-
pled from the uniform distribution U(1, 5)/

√
r, where r is the rank of the fac-

torization (set to 50), so that the resulting matrix product has entries mostly
between 1 and 5. Algorithms are stopped after 500 iterations. The maximum num-
ber of function calls and the maximum number of iterations are both set to 1000.

1 https://github.com/sibirbil/PMBSolve.
2 The PMB results in this section are obtained with the MATLAB implementation,

which is not parallelized and thus different from the results given in Sect. 4.

https://github.com/sibirbil/PMBSolve
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Table 2. Comparison of PMB with other optimizers for the 1M dataset with factor-
ization rank 50, averaged over 50 runs.

Method Mean final RMSE 95% confidence interval

Barzilai and Borwein 0.6436 (0.6096, 0.6855)

Cyclic Steepest Descent 0.5894 (0.5871, 0.5919)

Hessian-Free Newton 0.5561 (0.5544, 0.5581)

Conjugate Gradient (CG) 0.5558 (0.5548, 0.5568)

Scaled CG 0.5391 (0.5385, 0.5398)

PMB 0.5148 (0.5138, 0.5160)

Preconditioned CG 0.5020 (0.5002, 0.5038)

Limited memory BFGS 0.4954 (0.4944, 0.4965)

Every algorithm run is repeated 50 times with randomized initial points, and 95%
confidence intervals for the mean values are estimated using bootstrapping.

The resulting RMS error values and gradient norm for each algorithm is
shown on Table 2. We see that PMB is one of the most successful methods to
solve this large matrix factorization problem.

3 Parallelization of PMB-Based Matrix Factorization

The PMB engine is implemented by using templates in C++11. Various optimiza-
tion problems, e.g., matrix factorization as in this study, can be solved with the
engine once the appropriate function/gradient computation source code is inte-
grated. Moreover, this integration does not need a modification on the engine
and a separate source file is sufficient.

The only time consuming part of the engine is the preconditioning; how-
ever, for the matrix factorization problem, preconditioning is only responsible
for the 5% of the execution time. The rest is spent to the function and gradient
computations for sparse factorization. Hence, in this work, we mainly focus on
the function and gradient computations since they form the main bottleneck.
The computations in the engine, mostly dot products, are also parallelized in a
straightforward manner whlie optimizing the data reuse and memory accesses as
much as possible. The execution time of the PMB for the matrix factorization
problem dissected into three parts is given in Fig. 1. As the figure shows, the
factorization-specific functions is responsible for most of the execution time.

3.1 Computational Tasks for Sparse Matrix Factorization

Given a sparse matrix A with τ entries, there are three tasks at each iteration:

1. Computing the error Δij for known Aij entries, i.e.,

Δij = (Wi,: · H:,j) − Aij for all (i.j) ∈ S (5)
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Fig. 1. The execution time of PMB dissected into three parts for bottleneck detection:
The most time consuming part, Function, computes the error for each Aij and updates
the factor matrices accordingly. The next part handles the Preconditioning stage. The
Other parts of PMB, i.e., memory allocations, transfers etc., are considered as a third
part for completeness.

where · is the dot product operator and Wi,: and H:,j are row and column
vectors corresponding to the i-th row of W and j-th column of H, respectively.
This task simultaneously computes the overall function value

∑
(i,j)∈S Δ2

ij .
2. Computing the gradient entries for W ; let Z1 be the matrix containing these

entries. Then
Z1i,: =

∑

(i,j)∈S

ΔijH
T
:,j . (6)

3. Computing the gradient entries for H; let Z2 be the matrix containing these
entries. Then

Z2:,j =
∑

(i,j)∈S

ΔijW
T
i,:. (7)

For all the tasks, the time complexity is O(r × τ) where r is the factorization
rank.

3.2 Storing the Sparse Matrix and Auxiliary Data in Memory

We start by mentioning the common data structures for the implementation of
the algorithms. For matrix factorization, the pattern and the numerical values
of a sparse matrix is stored in both the compressed row storage (CRS) or com-
pressed column storage (CCS) formats. These are well known storage formats for
sparse matrices (see, e.g., Sect. 2.7 of Duff et al. [3]). Consider an m × n sparse
matrix A with τ nonzeros. In CRS, the pattern of A is stored in three arrays:

– colids[1, . . . , τ ] stores the column index of each entry.
– vals[1, . . . , τ ] stores the corresponding numerical value of each entry. The

column ids and values in a row are stored consecutively; and
– ptrs[1, . . . , m + 1] stores the location of the first entry of each row in array
colids where ptrs[m + 1] = τ + 1. In particular, the column indices of the
entries in row i are stored in colids[ptrs[i], . . . , ptrs[i + 1] − 1]. Similarly
the values in the i-th row are stored in values[ptrs[i], . . . , ptrs[i + 1] − 1]
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The CCS of a matrix A is the CRS of its transpose and vice-versa. In CCS, there
are two pattern arrays (ccs) rowids and (ccs) ptrs, with functions similar to
the first and the third arrays just described above. However, we will not need
a (ccs) vals array separately for the CCS format. Both formats are necessary
for our parallel implementation.

The auxiliary sparse matrix Δ has τ entries and the same sparsity pattern of
A. Hence, the same CRS/CCS pattern arrays can be used. We also use an extra
delta array of size τ to store the Δij values in CRS format. When a column-wise
access to Δ is required (that will be necessary to avoid race conditions), we will
utilize a static, precomputed ccs trans array that translates the CCS-location
to a CRS-location. The usage of this array will be described in more detail later.

The matrices W , Z1, H and Z2 are all dense and the first two and the last
two contain m×r and n×r entries, respectively. To optimize the spatial locality
of reference for the accesses to these matrices, we use the row-major layout for
W and Z1 and the column-major layout for H and Z2.

3.3 Efficient and Lock-Free Parallel Implementation of the Tasks

The memory accesses for the sparse factorization problem can deteriorate the
performance if they are not handled carefully. As mentioned above, our first task
computes the Δ matrix which is used by the later tasks; if the implementation
uses barriers in between the tasks, there will be (at least) τ memory accesses
to the delta array by the second task. This overhead can be avoided when
the first two tasks are integrated; in this version, each Δij computed by (5) is
immediately used by (6). This Δij value is then stored in the corresponding
entry of the delta array to be used later by the third task to compute (7).

The first task can be parallelized in two different ways: in the fine-grain
approach, each Δij computation can be assigned to a different thread, and in
the coarse-grain approach, the values in Δi,: are assigned to the same thread.
Although the former increases the degree of concurrency and eases load balanc-
ing, the latter is more appropriate for the integration of the first two tasks. As
it can be seen by (6), a gradient entry Z1ij is modified for each entry in Δi,:.
Hence, when the fine-grain approach is taken and two threads independently
compute and use Δi,j′ and Δi,j′′ , the entry Z1ij needs to be updated by both of
these threads. To avoid such race conditions, expensive synchronization mecha-
nisms are required. However, a lock-free implementation is possible when each
row Δi,: (and hence Z1i,:) is assigned to only a single thread. Since we access the
elements of A and Δ in a row-wise manner, the CRS pattern and value arrays
are used for this implementation.

A similar analysis of (7) implies that a lock-free parallel implementation of
the third task is possible if the updates on each column of Z2 are solely assigned
to a single thread. However, this requires an efficient access to the columns of
Δ. Since the array delta is organized via CRS, the entries in a column of Δ
are not consecutively stored in memory. On the other hand, with a CCS-to-CRS
translator, one can access to these non-consecutive locations one after another.
In our implementation, we use a helper array ccs trans of size τ to convert the



384 K. Kaya et al.

Fig. 2. The lock-free parallelization of the third task is given on the left. The unrolled
form of its middle loop which performs four iterations at once is given on the right.
For simplicity, only the first part of the loop is given and the part that completes the
remaining |Δ:,j | mod 4 iterations is omitted.

CCS-locations to CRS-locations and access the correct Δij values in the same
column. The lock-free implementation of this task is given in Fig. 2a.

With pinpoint analysis, we identified the main bottleneck of the lock-free code
in Fig. 2a as the memory updates in the innermost loop, which is expected since
one needs to perform two data loads (from myW and myZ2) and a store (to myZ2)
for each update. To reduce the accesses to/from myZ2, we unroll the middle loop
and process multiple Δ and W values in the same line. In this way, we reduce
the number of accesses to myZ2 by at most 4×. The loop-unrolled version of
the third task is given in Fig. 2b. A similar loop-unrolling mechanism is applied
to the integrated implementation of the first and second tasks, but a detailed
explanation is omitted in the paper due to space limitations.

4 Experimental Results

All the simulation experiments in this section are performed on a single machine
running on 64 bit CentOS 6.5 equipped with 384 GB RAM and a dual-socket
Intel Xeon E7-4870 v2 clocked at 2.30 GHz, where each socket has 15 cores (30
in total). Each core has a 32 kB L1 and a 256 kB L2 cache, and each socket
has a 30 MB L3 cache. All the codes are compiled with gcc 4.9.2 with the -O3
optimization flag enabled. For parallelization, we used OpenMP with (dynamic,
16) scheduling policy. For each datapoint in the figures and tables, we perform
five experiments and presented the average.

We first investigate the impact of loop-unrolling. From now on, the integrated
Δ and Z1 computation will be denoted as dtZ1. Similarly, we will use Z2 to
denote the third task of Sect. 3.1. Figures 3 and 4 show the execution times of
the lock-free implementation and its loop-optimized version for dtZ1 and Z2,
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Fig. 3. The impact of loop-unrolling on the integrated dtZ1 computation for all three
datasets and 1, 2, 4, 8 and 16 threads.

Fig. 4. The impact of loop-unrolling on the Z2 computation for all three datasets and
1, 2, 4, 8 and 16 threads.

respectively. As the figures show, unrolling the loop and perform four iterations
at once significantly improves the performance of both tasks.3

The individual speedups of dtZ1, Z2, as well the overall speedup of the whole
matrix factorization process, are given in Fig. 5 for MovieLens 10M and 20M
datasets. As the figures show, with 16 threads, the speedup for the combined
dtZ1, Z2 (Func) is around 13× whereas the overall speedup is around 11×. The
overall speedup is smaller since except dtZ1 and Z2, PMB performs only vector
dot products which is a memory-bounded task infamous about its bad scalability.

We also experimented with a single-precision PMB implementation to see
its impact on the performance. As expected, the performance is significantly
improved; the performance is 1.36×, 1.52×, and 1.90× better for dtZ1, Z2,
and preconditioning, respectively, compared to the double-precision variant.

3 We repeated this experiment by performing eight iterations at once but no further
improvement is observed.
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Fig. 5. Individual speedups with MovieLens 10M (left) and 20M (right) datasets
and 1, 2, 4, 8 and 16 threads for dtZ1 and Z2. The charts also show their combined
speedup (Func), and the overall speedup of whole execution.

Table 3. The execution times (in secs.) for dtZ1, Z2, and the Preconditioning phase
of the loop-unrolled version when double and single precision arithmetic and data
representation is used for single and 16-thread version.

Dataset #threads Double precision Single precision Improvement

dtZ1 Z2 Pre. dtZ1 Z2 Pre. dtZ1 Z2 Pre.

1M 1 28.3 18.3 5.6 22.7 12.5 2.9 1.25 1.46 1.93

16 2.2 2.1 0.8 1.6 1.4 0.4 1.38 1.50 2.00

10M 1 308.2 283.3 57.7 230.3 174.0 33.1 1.34 1.63 1.74

16 22.5 22.1 9.9 16.1 15.1 4.8 1.40 1.46 2.06

20M 1 618.0 567.1 132.1 462.0 359.4 70 1.34 1.58 1.89

16 46.9 46.7 19.3 32.4 31.2 10.6 1.45 1.50 1.82

Average improvement 1.36 1.52 1.90

Although this improvement comes with a possible reduction on the accuracy,
this is not the case for the datasets as the following experiment shows (Table 3).

Using this implementation, we factorize each of the 1M, 10M, and 20M rating
matrices with factorization ranks 20 and 100. Each factorization is repeated 50
times with randomized initial conditions. The final RMSE values are then found
by averaging, and confidence intervals are determined by bootstrap resampling.
The algorithm stops when the number of iterations reaches 500 or when the
absolute value of the largest element of the function gradient drops below 10−5.
Table 4 displays the results for this experiment.

We see that using single-precision version of PMB does not make a significant
difference in the final RMSE value for matrix factorization, compared to the
double-precision version. However, in every case, the single-precision version runs
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Table 4. Final RMSE results from the factorization of MovieLens matrices with fac-
torization rank 20/100 and single/double precision.

Dataset Rank Precision Mean RMSE 95% confidence interval

1M 20 single 0.681926 (0.681265, 0.682619)

double 0.682071 (0.681296, 0.682815)

100 single 0.335744 (0.332367, 0.339220)

double 0.338259 (0.334817, 0.341658)

10M 20 single 0.682580 (0.682190, 0.683038)

double 0.683356 (0.682781, 0.683952)

100 single 0.529536 (0.469352, 0.592387)

double 0.528092 (0.468423, 0.590662)

20M 20 single 0.670611 (0.670027, 0.671292)

double 0.679019 (0.669434, 0.697753)

100 single 0.673502 (0.593685, 0.751497)

double 0.667708 (0.589608, 0.745404)

faster by a factor of 1.5×–2.0×. Therefore, in this particular problem, single-
precision arithmetic can be preferred.

5 Conclusions

Preconditioned Model Building algorithm is a powerful optimizer that combines
local model-building iterations with second-order information. Our results show
that for the matrix factorization problem, the performance of the PMB algorithm
is comparable to the best algorithms in general use.

Since it is cheap, the algorithm spends most of the execution time for the
evaluation of the error and in the update of factor matrices. These computations
are similar to the traditional sparse-matrix computations, therefore we can go
around this bottleneck with appropriate parallelization techniques. Indeed, the
PMB algorithm can be parallelized very well. The experiments show that there
is little overhead thanks to the lock-free parallelization, and the speedup with
16 threads is about 11. Hence, the algorithm can be promising for large-scale
optimization problems.
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Abstract. Parallelization is essential for machine learning systems that
deals with large-scale dataset. Data parallel machine leaning systems
that are composed of multiple machine learning modules, exchange the
parameter to synchronize the models in the modules through network.
We investigate the network bandwidth requirements for various param-
eter exchange method using a cluster simulator called SimGrid. We
have confirmed that (1) direct exchange methods are substantially more
efficient than parameter server based methods, and (2) with proper
exchange methods, the bisection-bandwidth of network does not affect
the efficiency, which implies smaller investment on network facility will
be sufficient.

1 Introduction

For modern machine learning systems, including deep learning systems, paral-
lelization is inevitable since they have to process massive amount of training
data. Data parallel machine learning systems train multiple machine learning
models simultaneously on different subsets of training dataset, and synchronize
the machine learning models periodically. There are mainly two methods to
achieve the synchronization of models, i.e., the exchanging of parameters which
constitute the models, or gradients of parameters. In a method, we use central
server called parameter server to synchronize the parameter, and in the other
method, we make the worker nodes directly communicate each other to exchange
information and synchronize.

Synchronization requires network communication. This means synchroniza-
tion efficiency is affected by system’s network performance. This paper focus on
the communication time for synchronization. Note that communication time is
completely independent of algorithm, computation time, and aggregation time.
The discussion could be applied to any algorithm involves repetitive parameter
update. In order to know the relationship between the parameter synchronization
method and the network structure of system, we use a distributed computing
environment simulator, called SimGrid [4], to virtually build a large-scale envi-
ronment, and performed a quantitative evaluation. We investigate the network
c© Springer International Publishing AG 2018
G. Nicosia et al. (Eds.): MOD 2017, LNCS 10710, pp. 389–400, 2018.
https://doi.org/10.1007/978-3-319-72926-8_32
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bandwidth requirement for several parameter exchange methods, focusing on
the bisection bandwidth of the network. The bisection bandwidth is an impor-
tant measure of network performance which is known to affect significantly on
a specific class of applications’ execution time. Detailed definition will be given
in Sect. 3.

The contribution of the paper are the following; (1) We quantitatively evalu-
ate the required bisection bandwidth for each parameter exchange method and
confirmed that the bisection bandwidth affects significantly on some of the meth-
ods, but not on all the methods, (2) We show that by choosing exchange method
properly, we can reduce the investment on the network facilities without sacri-
ficing the performance.

The next section of this paper gives the overview of distributed machine
learning systems focusing on the parameter exchange methods and introduce
the distributed computing environment simulator SimGrid, which we use in this
paper for the quantitative evaluation. Section 3 presents the cluster and network
configuration we assume. Section 4 describes experimental setup and the result
of the experiments. Section 5 gives detailed discussion on the result. Section 6
gives summary of the paper and the future work.

2 Background

2.1 Parameter Exchange Methods for Large Scale Machine
Learning Systems

To parallelize machine learning systems, there are two methods; Data Par-
allel and Model Parallel. While data parallel method simultaneously trains
multiple machine learning models synchronizing each other, model parallel par-
allelize inside a single machine learning model. These two methods could be used
complementarily. In this paper, we focus only on the data parallel.

Data parallel machine learning methods could be categorized from two
aspects; synchronicity and parameter exchange methods. For synchronicity,
there are synchronous methods and asynchronous methods. Synchronous method
means that all the machine learning models are forced to be exactly the same
periodically, while asynchronous methods allow slight difference among the
models. This paper deals with synchronous methods only. For the parameter
exchange methods, we have two options; the parameter server based method
and the direct communication method.

Parameter Server Based Method. This method utilizes centralized server,
called parameter server, to exchange parameters [1,5,13]. The left diagram
in Fig. 1 shows the parameter server based parameter exchange. The workers
(machine learning modules) send parameters (or gradients) to the parameter
server, the parameter server aggregates the parameter, and send back them to
the workers. Often, multiple servers are used to form one parameter server to
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Fig. 1. Gradient exchange methods.

Fig. 2. Bulk synchronous parallel communication pattern with parameter servers.

shard the parameters and avoid overload each server. In this setting each param-
eter server take care of a certain subset of parameters.

Figure 2 shows the communication pattern among the parameter servers and
the workers. Each worker sends/receives messages to/from all the parameter
servers, periodically and repeatedly. This periodic communication pattern is
called BSP Bulk Synchronous Parallel [17]. Note that there are no communi-
cations among workers nor among parameter servers. In other words, the com-
munication between nodes forms bi-graph.

Direct Exchange Method. It is possible to synchronize the models without
using central server. by repeating peer-to-peer exchange of parameters [18]. The
left diagram in Fig. 3 shows the communication with 8 workers. Communication
pattern likes this is known as butterfly communication, which is widely used,
for example, by the allreduce in MPI [16]. In this communication, in each step
i, each node Nm will exchange message with node Nl, where l is obtained by
flipping ith bit of m. This means that in the earlier steps, the communication
tends to take place locally, while in the later steps the communication spread
out globally. It can exchange information with all the nodes within Log2N steps
of communication where N is the number of workers.

Cluster Aware Direct Exchange Method. We can further optimize the
butterfly assuming the sub-cluster structure. To reduce the inter sub-cluster
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Fig. 3. Butterfly communication diagram. The left shows the ‘flat’ butterfly, while the
right shows the ‘2-layered’ butterfly communication.

communication, this method once gather the information inside the sub-clusters
to the head nodes of sub-clusters, then perform butterfly among the head nodes
of the sub-clusers, and then distribute the exchanged information in each cluster.
We call this method layered butterfly. The right diagram in Fig. 3 shows the
layered butterfly method.

This communication pattern requires log2n+ log2m+ log2n steps where n is
the number of nodes per sub-cluster and m is number of sub-clusters. Note that
the flat butterfly shown above takes log2N = log2nm = log2n + log2m steps;
therefore the layered method requires log2n more steps.

2.2 SimGrid: A Distributed Environment Simulator

SimGrid [2,4] is a simulation framework for distributed parallel applications.
SimGrid is based on a discrete event simulation; it does not perform any
real computation/communication. It just estimates times to perform com-
putation/communication based on given parameters and records events like
‘start/end of computation/communication’. The advantage of this type of simu-
lator is that the simulation cost is relatively small. Even with single node com-
puter, SimGrid can handle several thousands of communicating nodes.

To simulate a distributed system in SimGrid, users have to describe platform
description and deployment description in XML, and the simulation code in C
or C++.

3 Network Model

This section gives the network model assumed in this paper. We assume that a
cluster is composed of smaller sub-clusters with 2-layered fat tree network [12]
which uses switches with same number of port. Fat tree network is a tree network
with fatter links near the root switch to avoid network congestion near the root
switch. In this case we simulate fatter link by employing multiple root switch.
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Fig. 4. Network connections with 8 port switches.

Here, we focus on bisection bandwidth, that is defined as the following;
if the network is bisected into two partitions, the bisection bandwidth is the
bandwidth available between the two partitions [7]. If the bisection bandwidth
of a network equals to the total bandwidh of one half of the nodes, we call the
network with ‘full-bisection’ bandwidth.

Number of ports of the switches determines the maximum number of sub-
clusters we can have. With n-node switch, n sub-clusters are the maximum,
since all the higher layer switches have to be connected with the all the lower
layer switches. Figure 4 shows the configuration with 8-ports switches. The left
diagram shows the ‘full-bisection’ configuration with 8 port switches and 32
nodes in total. You can examine this by counting the number of connections
between upper half and lower half of the cluster, 16. it is the same as the number
of nodes on each half of the cluster. We can configure networks with less bisection
bandwidth by reducing the number of upper layer switches, as shown in Fig. 4.

4 Experiments

We performed experiments with SimGrid using simulation with the network
structure and the parameter exchange methods described below. We measured
the time to perform one parameter exchange, no computation is took into
account to focus on the communication cost only. Time for aggregating the
parameters are also omitted in the simulation, since the time are relatively small
and could be ignored.

4.1 Structure of the Cluster and the Network

We have setup clusters using 4, 8, 16, 32, and 64 port switches, with 2048, 512,
128, 32, 8 nodes in total respectively, with several bisection-bandwidth ratio.
Table 1 shows the setups and the required number of switches for each setup.
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Table 1. Number of switches required to construct the network.

#Ports/Switch #Clusters #Nodes/Cluster #Nodes in Total Bisection Ratio

1/32 1/16 1/8 1/4 1/2 1

64 64 32 2048 64+1 64+2 64+4 64+8 64+16 64+32

32 32 16 512 - 32+1 32+2 32+4 32+8 32+16

16 16 8 128 - - 16+1 16+2 16+4 16+8

8 8 4 32 - - - 8+ 1 8+2 8+4

4 4 2 8 - - - - 4+ 1 4+2

Fig. 5. Parameter server placements. The left diagram shows the ‘packed’ placement
where one sub-cluster is dedicated for parameter servers, while the right diagram shows
the ‘distributed’ placement where parameter servers are evenly distributed to all the
sub-clusters. Note that the used node in each sub-cluster is determined in round-robin
fashion to evenly distribute load to the upper layer switches.

The switch can handle p/2 connections where p is the number of ports. We set
the bandwidth of links as 1 GB/s, assuming 10 G Ethernet with TCP overhead.

4.2 Parameter Exchange Methods

We test one parameter server based method and two butterfly based methods.
For the parameter server based method, we assume 1/p of the nodes in the
cluster are used for parameter servers while the others are used for workers.
Note that the number of parameter servers equals to the number of nodes in
each sub-cluster. We tested two placement strategy for parameter server based
method. One is ‘packed’ and the other is ‘distributed’, shown in Fig. 5.

For the butterfly based methods, all the nodes are used for workers.1 We test
the simple flat-butterfly method with the layered-butterfly method.
1 This means that the number of worker nodes is different between butterfly network

based method and parameter server based method. (Number of worker nodes of
parameter server based method is always n nodes fewer, where n is the number
of nodes per sub-clusters.) However, even if the butterfly network based method
reduces n nodes, the execution time is expected to be the same.
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Fig. 6. The result with 64 subclusters.
(Color figure online)

Fig. 7. The result with 32 subclusters.
(Color figure online)

In summary, we test four settings; namely, parameter server with packed
placement (PS, packed) and distributed placement (PS, distributed), flat
butterfly (BF, flat), and layered butterfly (BS, layered).

4.3 Results of Experiments

We give the whole results in Table 2. Figures 6 and 7 show the results for 64 ports
and 32 ports switches, respectively. The x-axis shows the bisection-ratio, where
1.0 means full-bisection bandwidth while 0.5 means half-bisection bandwidth.
The y-axis shows the execution time to perform one parameter exchange. We
can see that these two graphs are quite similar. We will discuss on the result in
the next section.

5 Discussion

5.1 Discussion on the Results

From this result, it can be seen that the method using the parameter server
is inferior to the butterfly network based method in basic performance. This is
because the connections to the parameter servers becomes the bottleneck.

Parameter server method with packed placement setting exhibit significant
performance drops as the bisection ratio decreases. On the other hand, with
distributed placement setting, the parameter server method is hardly affected
by the reduction of the bisection bandwidth. This is because of the network
traffic is smoothed throughout the cluster by distributing the parameter server
nodes.

Butterfly based methods are faster than parameter server based methods, in
general. The flat butterfly method tends to be affected by the reduced bisection
bandwidth, since it performs inter cluster communication heavily. In contrast,
the layered butterfly method is not affected by the bisection bandwidth at all.



396 M. Li et al.

Table 2. Simulation results.

#Clusters #Nodes Exchange Method Bisection Ratio

1/32 1/16 1/8 1/4 1/2 1

64 2048 BF, Flat 421.08 213.25 109.33 57.37 31.39 18.40

BF, Layered 23.30 23.30 23.30 23.30 23.30 23.30

PS, Distributed 347.30 281.40 229.91 224.79 203.63 129.08

PS, Packed 4123.45 2061.72 1030.86 515.43 257.71 135.30

32 512 BF, Flat - 177.53 90.93 47.63 25.98 15.15

BF, Layered - 19.07 19.07 19.07 19.07 19.07

PS, Distributed - 149.08 115.11 104.58 101.04 63.61

PS, Packed - 1014.50 507.25 253.62 126.81 66.58

16 128 BF, Flat - - 72.53 37.89 20.57 11.91

BF, Layered - - 14.85 14.85 14.85 14.85

PS, Distributed - - 58.33 49.41 45.77 31.16

PS, Packed - - 247.42 123.71 61.86 32.47

8 32 BF, Flat - - - 28.14 15.15 8.66

BF, Layered - - - 10.62 10.62 10.62

PS, Distributed - - - 24.14 21.56 14.65

PS, Packed - - - 57.73 28.87 15.15

4 8 BF, Flat - - - - 9.74 5.41

BF, Layered - - - - 6.39 6.39

PS, Distributed - - - - 8.35 6.39

PS, Packed - - - - 12.37 6.49

Figure 8 shows a close up of Fig. 6. As shown in the figure, the flat butterfly
is slightly faster than layered butterfly with full-bisection bandwidth. This is
because the flat butterfly requires fewer steps than the layered one, as discussed
in Sect. 2.1.

5.2 Data Size, Data Representation, Link Bandwidth

In the experiment above, we assumed the total data size of the parameter is
1 GB, which means 256 million parameters in 32 bit single precision floating
point. Actual data size depends on the number of parameters and the data rep-
resentation. Table 3 summarizes important networks and their number of param-
eters, with the published year. While the number of parameters get larger than
1 billion once in 2012, it decreases again because of the rise of deep and narrow
networks.

Another important issue is the representation of the each datum(gradient
or parameter). If we can represent the gradient with small sized representation,
it will reduce the burden for communication. With 16 floating point, we can
reduce the data size by half. Gradient quantization, which uses 8-bit integer to
represent the gradient, can reduce the data to one-quarter. An extreme case is
known as 1-bit SGD [14], where the gradient is represented as just one bit sign,
reducing the size of data to 1/32.
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Fig. 8. The result with 64 subclusters, enlarged. (Color figure online)

Table 3. Number of parameters and data size for important neural networks.

Name #Parameters Data size

32 bit float 16 bit float 8 bit quantize 1 bit

Google Cat(2012) [11] 1 billion 4GB 2GB 1GB 128MB

AlexNet(2012) [10] 62 million 248MB 124MB 62MB 8MB

GoogLeNet(2015) [15] 6.8 million 27.2MB 13.2MB 6.8MB 0.85MB

ResNet 152(2016) [6] 2.5 million 10MB 5MB 2.5MB 0.31MB

Another important parameter is the network bandwidth of each link. In this
experiment, we assumed link bandwidth as 1 GB/s, assuming 10 Gbit Eather
network with protocol overheads. Link bandwidth is quite important for this
setting, since it linearly speed up the communication. If we use a network with
twice bandwidth, the communication time will become one half.

5.3 Computation Time and Parallelization Efficiency

In Bulk Synchronous Parallel computation, the ratio of communication time and
computation time is quite important. When we assume that we exchange the
gradient after one mini-batch execution, the computation time equals to the
mini-batch computation time. To process a mini-batch with 256 images using
AlexNetwork on single NVIDIA P-100, it requires around 1.4 s. To gain enough
speed up with parallelization, the communication time have to be small enough
compared to this computation time.

Figure 9 shows the expected parallelization efficiency for several settings,
assuming the layered butterfly, 64 million parameters, and one second com-
putation time. X-axis represents number of nodes and Y-axis represents the
parallelization efficiency, where 1.0 is the ideal case. We changed the data repre-
sentation (32 bit float and 1-bit) and link bandwidth (10 G and 40 G). In general,
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Fig. 9. Expected parallelization efficiency for layered butterfly, 64 million parameters,
and 1 s of computation time. (Color figure online)

with more nodes, it get more difficult to get good efficiency. From this figure, we
can conclude that both of the gradient data representation and link bandwidth
are quite important to get better parallelization efficiency.

6 Conclusion

We have quantitatively evaluated the performance of several parameter exchange
method for several possible network configuration to know the required band-
width for each method. We have revealed that; (1) Parameter server based meth-
ods are substantially slower than the direct exchange methods, (2) Cluster aware
direct exchange method (layered butterfly) outperforms naive exchange method
(flat butterfly), except for the case with full-bisection bandwidth. (3) Cluster
aware direct exchange method shows the constant good performance regardless
of the bisection bandwidth ratio.

The implications are; (1) we should use direct exchange method over param-
eter server based method if possible, although they are much more difficult to
implement, (2) if we end up using parameter server based method, we should
distribute parameter servers with careful placement strategy to mitigate the
network congestion, (3) we should invest in network link speed, since it is quite
important for the performance, (4) we should not invest in fatness of the network,
since it does not affect a lot, if we pick proper parameter exchange method.

Our future work include the followings:

– We will pursue parameter server based method with asynchronous settings
[3,8]. While this work shows that the parameter server based methods are
not efficient in term of performance, the methods have certain good charac-
teristics such as easiness of implementation and suitability for fault tolerance.
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By relaxing the strictness of parameter synchronization, there might be good
chance to obtain better performance even with parameter based methods.

– We also would like to investigate asynchronous direct exchange methods. For
example, in [9], the authors proposes gossip protocol based method, where
each worker sends computed gradient to very limited number of peers only.
This kind of methods significantly reduce the requirement for network band-
width, in exchange for undesirable effects on the convergence.

– To pursue the asynchronous setting, we need to clarify the effect of ‘gradient
staleness’ on convergence. Further experiments are required.
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Abstract. In this paper we present an algorithm that optimizes artifi-
cial neural networks using Differential Evolution. The evolutionary algo-
rithm is applied according the conventional neuroevolution approach,
i.e. to evolve the network weights instead of backpropagation or other
optimization methods based on backpropagation. A batch system, simi-
lar to that one used in stochastic gradient descent, is adopted to reduce
the computation time. Preliminary experimental results are very encour-
aging because we obtained good performance also in real classification
dataset like MNIST, that are usually considered prohibitive for this kind
of approach.

1 Introduction

The raise of Deep Learning allowed to Neural Networks (NN) to come back on
the crest of a wave since very complex problems have been solved with new
architectures and optimization techniques [2,5,15,18]. Moreover this raise has
been motivated also by the birth of new computational models using NNs, like
Neural Turing Machines [11], Neural Programmer-Interpreters [26] or hybrid
models [12].

According to these new trends also neuroevolution has been renewed [4,9,
13,14,23,32]. Several approaches have been proposed both to train the topology
and the weigths of the networks. Compared to other neural network learning
methods, neuroevolution is highly general, allowing learning without explicit
targets, with non differentiable activation functions, and with recurrent networks
[10,22]. An interesting analysis on the motivations why backpropagation (and
its developments) is still the most used technique to train neural networks and
evolutionary approaches are not sufficiently studied is presented in [23]. In that
work a simple and efficient method to divide the training set in batches in order
to train neural networks with a particular version of Differential Evolution (DE)
is presented. Despite the performance are very interesting in terms of accuracy
of the predictions the authors do not present experiments with large problems.

The advantages of replacing backpropagation, or other similar methods, with
an evolutionary algorithm is clear: the fitness function to be optimized is not
required to be differentiable or even continuous.
c© Springer International Publishing AG 2018
G. Nicosia et al. (Eds.): MOD 2017, LNCS 10710, pp. 401–413, 2018.
https://doi.org/10.1007/978-3-319-72926-8_33
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DE it is a well known evolutionary technique that demonstrated very good
performance in several problems [31], has a quick convergence and is robust [25].

The main purpose of this paper is hence to show that DE can be effectively
used to train neural networks also in case of quite large problems. We propose
an algorithm that uses DE with population elements which encode the weights
of the neural network. The system applies a batching system, with restart and
elitism for different DE variants and mutation operators.

In order to prove that this mechanism is feasible, we tested it using state of
art classification datasets chosen with different numbers of features and different
number of records. Although the results are preliminary, they are very encour-
aging because in all the experiments the system reaches a very good accuracy,
always comparable or even better than BPG, also when the network is larger
(for instance in MNIST) than the ones presented in literature. Considering also
that there is a room for further improvements, we are confident that this idea
could be applicable also to larger networks.

The paper is organized as follows. Background knowledge about DE algo-
rithm and neuroevolution are summarized in Sect. 2, related works are presented
in Sect. 3, the system is described in Sect. 4 and experimental results are shown
in Sect. 5. Conclusions are drawn in Sect. 6 where some ideas for future works
are also depicted.

2 Background

2.1 Differential Evolution

Differential evolution (DE) is a metaheuristics that solves an optimization prob-
lem by iteratively improving a population of N candidate solutions with respect
to a fitness function f . Usually, DE is used to solve continuous optimization
problems, where the candidate solutions are numerical vectors of dimension D,
but there exist many adaptions to solve combinatorial optimization problems,
where the solutions are discrete objects [27]. The population evolution proceeds
for a certain number of generations or terminates after a given criterion is met.
The initial population can be generated with some strategies, the most used
approach is to randomly generate each vector. In each generation, for every
population element, a new vector is generated by means of a mutation and a
crossover operators. Then, a selection operator is used to choose the vectors in
the population for the next generation.

The most important operator used in DE is the differential mutation. For
each vector xi in the current generation, called target vector, a vector ȳi, called
donor vector, is obtained as linear combination of some vectors in the population
selected according to a given strategy. There exist many variants of the mutation
operator (see for instance [7,8]). In our paper we have used DE/rand/1, where

ȳi = xa + F (xb − xc)

and DE/current to best, where

ȳi = xi + F (xbest − xi) + F (xa − xb)
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In these formulae, a, b, c are unique random indices different from i, best is the
index of the best vector in the population and F is a real parameter.

Furthermore we have chosen to implement also DE with Global and Local
Neighborhoods (DEGL) [6], indeed it works pretty well in neural networks learn-
ing, as explained in [24].

DEGL generates the mutant vector through the combination of two contrib-
utors. The first contributor is computed as:

Li = xi + α(xi−best − xi) + β(xa − xb)

where xi−best is the individual with best fitness in the neighborhood of target xi

and α, β are two constants with same role of F . The neighborhood of the element
xi contains a fixed number of other population elements, chosen at random.

The second contributor is computed as:

Gi = xi + α(xbest − xi) + β(xa − xb)

where xbest is the individual with best fitness in the population. The two con-
tributors are then combined as follow:

ȳi = wGi + (1 − w)Li

where w ∈ [0, 1] is the interpolation factor between Li and Gi.
The crossover operator creates a new vector yi, called trial vector, by recom-

bining the donor with the corresponding target vector by means of a given pro-
cedure. The crossover operator used in this paper is the binomial crossover reg-
ulated by a real parameter CR.

Finally, the usual selection operator compares each trial vector yi with the
corresponding target vector xi and keeps the better of them in the population
of the next generation.

3 Related Works

The first works applying DE to NN date back to the late ’90s and the early
2000s [17,20] where the first applications of DE to train feed-forward NN are
presented and analyzed. More recently, several other applications of evolution-
ary algorithms have been presented in the area of neuroevolution but they
are different either for the evolutionary approach used or for the object of
evolution [7,8].

In the first case the dominating approach used is the genetic one [10,28,33].
The approach is used also to optimize weights but it is very limited by being
a discrete approach so it needs an encoding phase. Several authors proposed a
direct representation of the real weights in genes either as a string of real values
or as a string of characters, which are then interpreted as real values with a given
precision using for example Gray-coded numbers. More adaptive approach has
been suggested, for example in [29] or in the more recent [21]. In the first work
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the authors proposed a dynamic encoding which depends on the exploration
and exploitation phases of the search. In the second one the authors propose
a selfadaptive encoding, where the characters of the string are interpreted as a
system of particles whose center of mass determines the encoded value. Other
approaches have also used a direct encoding that exploits the particular structure
of the problem. The methods are not general and cannot be extended to be
applicable also to general cases [10]. In [14,16] a floating-point representation of
the synaptic weights is used. In these cases the authors use the evolution strategy
called CMA-ES for reinforcement learning applied to the pole balancing problem.

Among DE applications to neuroevolution it is worth to cite [9,19,24,32].
These works are different from our approach because they apply the evolution
in a different way. In [19] the DE algorithm with a modified best mutation opera-
tion is used to enhance the search exploration of a PSO; this PSO is then used to
train the NN and the global best value obtained is used as a seed by the BPG.
In [9] three different methods (GA, DE and EDA) to evolve neural networks
architectures are compared. In particular, the evolutionary methods are imple-
mented to train the architecture of a network with one hidden layer, the learning
factor and the seed for the weights initialization. In [24] the author studied the
stagnation problem of DE approaches when used to train NN. He proposed to
merge the DE with Global and Local neighborhood-based mutation operators
algorithm with the Trigonometric mutation operator. In [32] the authors use the
Adaptive DE (ADE) algorithm to choose the initial weights and the thresholds
of networks. Also in this case the networks are trained by BPG. The authors
proved that the system is effective to solve time series forecasting problems.

The paper which have the strongest connection with ours is undoubtely [23],
where a Limited Evaluation Evolutionary Algorithm (LEEA) is applied to opti-
mize the weigths of the network. The differences between the two papers are
several. First of all, we use DE as evolutionary algorithm, while they employ an
ad hoc evolutionary algorithm, similar in some aspects to a genetic algorithm.
DE and the other enhancement methods allow our algorithm to train networks
much larger than those used in [23]: while we are able to train a feed-forward
neural network for MNIST (which has more than 7000 weights), the maximum
size handled in [23] is less than 1500 weights. Another difference is the batching
system: they use mini-batches which are changed at every generation, while we
use larger batches which are changed after a certain number of generations. On
the other hand, we use the validation set to compare the networks when the
batch is changed, while they use a form of fitness inheritance.

4 The Algorithm

In this section we present our idea of applying Differential Evolution to optimize
the weights of the connections in a feed-forward neural network.

Let P a population of np neural networks with a given fixed topology and
fixed activation functions.
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Since the DE works with continuous values, we can use a straightforward
representation based on a one-to-one mapping between the weights of the neural
network and individuals in DE population.

In details, suppose we have a feed-forward neural network with k levels,
numbered from 0 to k − 1. Each network level l is defined by a real valued
matrix W(l) representing the connection weights and by the bias vector b(l).

Then, each population element xi is described by a sequence

〈(Ŵ(i,0),b(i,0)), . . . , (Ŵ(i,k−1),b(i,k−1))〉,

where Ŵ(i,l) is the vector obtained by linearization of the matrix W(i,l), for
l = 0, . . . , k − 1. For a given population element xi, we denote by x

(h)
i its h–th

component, for h = 0, . . . , 2k − 1, i.e. x
(h)
i = Ŵ(i,h/2), if h is even, while x

(h)
i =

b(i,(h−1)/2) if h is odd. Note that each component x
(h)
i of a solution xi is a vector

whose size depends on the number of neurons of the associated levels.
The population elements are evolved by applying mutation and crossover

operators in a componentwise way. For instance, the mutation rand/1 for the
element xi is applied in the following way: three indices a, b, c are randomly
chosen in the set {1, . . . , np} \ {i} without repetition; then, the h–th component
ȳ
(h)
i of the donor element ȳi is obtained as the linear combination

ȳ
(h)
i = x(h)

a + F (x(h)
b − x(h)

c )

for h = 0, . . . , 2L − 1.
The evaluation of a population element in the selection operator is performed

by computing the cross–entropy of the corresponding neural network. The opti-
mization problem is then to find the neural network with the minimum cross–
entropy value.

Anyway, this computation is the most time consuming operation in the over-
all algorithm and it will lead to unacceptable computation time if the cross–
entropy considers the whole dataset. For this motivation we have decided to
follow a batching method similar to the one proposed in [23].

The dataset D is split in three different sets: a training set TS used for
the training phase, a validation set V S used for a uniform evaluation of the
individuals selected at the end of each training phase, and a test set ES used to
evaluate the performance of the best neural network.

Then, the training set TS is randomly partitioned in K batches of size B.
This phase is very important because the records in each batch should follow
more or less the same distribution as in TS. Otherwise, the risk is to train
specialized networks without generalization ability.

At each generation the population is evaluated against only a limited number
of training examples given by the size of the current batch, instead of evaluat-
ing the population against the whole training set. This allows to reduce the
computational load, particularly on large training sets.
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The fitness function used is then

Hz′(z) = −
B∑

i=1

C∑

j=1

z′
ij log(zij)

where z′
ij and zij are respectively the predicted value and the true value for the

classification of i-th record in the batch with respect to the j-th class and C is
the number of classes.

The batch is changed after s generations (called epoch), so that the evolution
has enough time to learn from the batch. If the algorithm is required to continue
for more than K epochs, the batches are reused in a cyclic way, i.e. after the last
batch, the first batch will be used again, and so on.

Since the fitness function depends also on the batch and we need a fixed
way to compare the elements, at the end of every epoch the best neural network
best nete of the epoch e is selected as the neural network in P which reaches the
highest accuracy in the validation set V S. The best neural network best netglobal
found so far is then eventually updated.

At the beginning of each epoch, the fitness of every element in P is re-
evaluated by computing the cross-entropy on the new batch.

To avoid a premature convergence of the algorithm, a reset method is applied,
i.e. discard all the current population, except the best element, and continue with

Algorithm 1. The algorithm DENN
Initialize the population;
Extract the K = TS/B batches batch0, . . . , batchK−1;
h ← 0;
for e ← 1 to tot gen/s do

Set the current batch as batche modK ;
Re-evaluate all the elements (x1, . . . , xnp);
for g ← 1 to s do

for i ← 1 to np do
yi ← generate offspring(xi)

for i ← 1 to np do
if yi is better than xi in terms of H then

xi ← yi

best nete, best scoree ← best score(x1, . . . , xnp);
Update best netglobal, best scoreglobal;
if best netglobal is not changed then

if h > counter then
Reset the population;
h ← 0;

else
h ← h + 1

return best netglobal;
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a new randomly generated population. The reset is performed at the end of each
epoch e, if the the score of best netglobal has remained unchanged for a certain
number counter of epochs.

The DE parameters F and CR have a great impact on the evolution and
their values are not easy to be chosen. Therefore, we have decided to adopt
the auto–adaptive scheme jDE [3]. This method evolves the values of these two
parameters by a process which is strictly related to the selection operator of
DE. In this way, the algorithm is able to dynamically select the best values of
F and CR for the problem. The complete algorithm, called DENN, is depicted
in Algorithm 1.

In the algorithm DENN, the function generate offspring computes the muta-
tion and the crossover operator in order to produce the trial element, while the
function best score returns the best network and its score among all the elements
in the population.

5 Experimental Results

The main objective of these experiments is to assess the effectiveness of DE
algorithm as an alternative to backpropagation, and other similar methods, for
neural network optimization also in the case of quite large problems. The size
of NNs handled in this paper are larger than those used in the previous works
presented in literature. We run two kinds of experiments in order to (i) evaluate
which combination of DE variant and mutation operator performs better and
(ii) study which setting of algorithm parameters can provide the best results,
also considering the computational effort. DENN has been implemented both as
a TensorFlow plugin written in C++ and Python and as a stand-alone C++
program1.

5.1 Datasets

We decided to test the system on recent classification datasets downloaded by
the UCI repository2, and on the well known MNIST3 dataset. MAGIC, QSAR
and GAS are datasets for classification problems that have been chosen because
they differ for the number of features and records and therefore are well suited
to assess the scalability of the system. Finally, we decided to test the system on
the MNIST dataset because it is a classical challenge with well known results
obtained by NN classification systems. Moreover, it is considered an interested
challenge also in [23].

– MAGIC Gamma telescope: dataset with 10 features, 2 classes and 19020
records.

– QSAR biodegradation: dataset with 41 features, 2 classes and 1055 records.

1 Source code available at https://github.com/Gabriele91/DENN.
2 https://archive.ics.uci.edu/ml/datasets.
3 http://yann.lecun.com/exdb/mnist/.

https://github.com/Gabriele91/DENN
https://archive.ics.uci.edu/ml/datasets
http://yann.lecun.com/exdb/mnist/
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– GAS Sensor Array Drift: dataset with 128 features, 6 classes and 13910
records.

– MNIST: dataset with 784 features, 10 classes and 70000 records.

MAGIC, QSAR and GAS have been split in this way: the training set is
composed of 80% of the records, the validation set is composed of another 10%
of the records and the remaining 10% records are in the test set.

The MNIST dataset is already provided as a pair with separated training and
test sets (TS,ES). Then we extracted the validation set V S from the training set
by a uniform random sampling that preserves the distribution over the classes.
Since a too small validation set could have a negative impact on the performance
in term of accuracy, we chose, as in the other datsets, |V S| = |TS| · 10%.

5.2 Results

First of all we have analyzed the data in order to understand which are the
parameters yielding to the best performance. The system depends from several
parameters: some deriving from the use of DE (np, F , CR, the DE-variant
and the mutation and crossover operators), other depending from the batching
system (B, s) or from the application of the reset mechanism (counter).

A systematic battery of test has been run in order to study all the parame-
ters. Due to the space limits, in this work just some data and graphics can be
discussed. Other preliminary experiments are discussed in [1,30].

During this experimental phase, we have noted that the most important
choice is selecting the DE variant (classical or jDE) and the mutation operator
(rand/1, current-to-best, DEGL). Increasing other parameters, like np or B, can
have a positive impact on the algorithm performance only when these values are
below a certain threshold. When this threshold is overcome, either the computa-
tional time becomes too high or the results do not improve. This fact also agrees
with (i) other traditional results on DE that in general suggest large (but not
too large) populations and (ii) our initial idea about the batch size, according
to which a trade-off between batch size and computational effort is necessary.

The batch size has been chosen to be proportional to the number of classes, in
order to have, on average, a given number of examples for each class. Moreover we
found that B influnces also the number of population elements np, and the steps
s spent on the same batch to train the network. This is unsurprising because
with a larger number of records in a batch, the population size (and the number
of steps) should be larger as well.

In Fig. 1, for all the datasets analyzed in this work, the accuracy values
of a NN without hidden layer trained with different settings of the algorithm
are plotted. We compare the six different combinations of the DE variants and
mutation operators (DE+rand/1 ; DE+current to best ; DE+degl ; jDE+rand/1 ;
jDE+current to best ; jDE+DEGL). Moreover, also the accuracy values obtained
by the same NN trained with BPG (GD) are reported. The accuracy values
plotted in the graphics are computed: (i) training the neural network for a given
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Fig. 1. Comparisons in term of accuracy among the different combinations DEvariant-
mutationType on GAS, MAGIC, MNIST and QSAR datasets

number k of generations (on the x-axis from 1 to 20000) and (ii) running, on
the test set, the NN that obtained the best evaluation on the validation set.

The values of the other parameters are: batch size B = 20C, where C is the
number of classes in the dataset, population size np = 2B, number of training
steps in the same batch s = B and counter = 10. The values of F = 0.5 and
CR = 0.9 are used only when the classical DE is applied. These data have been
chosen after an extended experimental phase, partially showed in [1,30]. From
these experiments we noted, for example, that fixing B and setting s = B and
np = 2B we can obtain, on average, good results.

From the data plotted in the graphics in Fig. 1 we can conclude that in the
most cases jDE performs better than standard DE. Both in the largest datasets
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Fig. 2. Comparisons in term of accuracy among different setting of s (and consequently
of B and np) on GAS, MAGIC, MNIST and QSAR datasets

(GAS and MNIST) and QSAR the differences are sharp, while in the case of
MAGIC dataset the differences are so narrow that it is impossible to distinguish
the best algorithm.

While the “winner” variant is undisputable (at least for these experi-
ments), the same is not for the mutation operator: in the GAS dataset the
difference between the combination DE+DEGL and the second performing
jDE+current to best is clear, but in the MNIST dataset the best performing
combination is jDE+rand/1, with DE+DEGL only in 4th/5th position.

In Fig. 2 data on accuracy for different settings of B, s and np are plotted. In
these graphics we can compare different values for the batch size B, set respec-
tively to B = 5C, B = 10C, B = 20C, where C is the number of the classes.
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The right setting of B is determinant for our algorithm because a too small
value for B does not allow to reach good performance, while a too high value
can increase too much the execution time and moreover can cause overfitting.

From the plots we can see that, excluding the cases where the differences are
not significant, the best values are obtained with the highest values of B, both
for the rand/1 and degl mutation.

6 Conclusions and Future Works

In this paper we presented an algorithm based on Differential Evolution to train
the weights of a neural network. This algorithm can be an effective alterna-
tive to the backpropagation method because of its intrinsic advantages deriving
from the use of an evolutionary algorithm. The experiments presented show how
the system is able to solve classification problems also in case of large image
datasets, like MNIST, reaching satisfying accuracy very close to the state of the
art. These results are very encouraging considering that the algorithm and the
implementation could be improved and other enhancements are already under
investigation.

The proposed approach allows also to handle computational models based
on neural networks which do not need to be fully differentiable and this can lead
to simpler models.

Future works include: the implementation of other DE variants and muta-
tion/crossover operators; the application of the system both to other kind of
problems like numerical estimation and to larger problems; the application
to other computational models based on neural networks like Neural Turing
Machines.
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Abstract. This paper investigates the problem of scheduling step-deteriorating
jobs with release times on a single parallel-batching machine. The processing
time of each job can be represented as a simple non-linear step function of its
starting time. The machine can process up to c jobs simultaneously as a batch.
The objective is to minimize the makespan, and we show that the problem is
strongly NP-hard. Then, a hybrid meta-heuristic algorithm BRKGA-VNS
combining biased random-key genetic algorithm (BRKGA) and variable
neighborhood search (VNS) is proposed to solve this problem. A heuristic
algorithm H is developed based on the structural properties of the problem, and
it is applied in the decoding procedure of the proposed algorithm. A series of
computational experiments are conducted and the results show that the proposed
hybrid algorithm can yield better solutions compared with BRKGA, PSO
(Particle Swarm Optismization), and VNS.

Keywords: Parallel-batching � Step-deteriorating � Release times � Makespan

1 Introduction

In the past two decades, the parallel-batching scheduling problem has become an
important research direction in the field of scheduling. Meanwhile, job release times
and step-deteriorating jobs cannot be ignored in the practical situations. Some certain
cases are indicated in many production scenarios, such as the surface treatment of the
steel products. Consider the production of custom industrial steel products, such as
engine case, vault doors or boiler covers, whereby iron ingots are first converted into
different steel products in the mold workshop, and then surface treatment of the steel
products will be carried out on a machine. The steel products have to reach a threshold
temperature before it can be processed in batch by the machine into end products. If the
starting time of batches is later than deterioration time, the batches need to be reheated
or reprocessed before the machine can work on it. Consequently, extended time is
required to produce each batch from steel products that has waited longer than a certain
time interval. For this parallel-batching scheduling problem, the processing time of
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batch is the largest processing time in the batch. The release time of batch is the largest
release times among all the jobs in the batch.

The classical parallel-batching models relevant to release times have been
addressed by many researchers. Li et al. provided a polynomial-time algorithm for the
bounded problem 1 p� batch; pj ¼ bjt; rj; b \n

�� ��Cmax; and showed that the problem
was binary NP-hard [1]. Ng et al. showed that 1 rj; p� batch; pj; c ¼ 2

�� ��Cmax; was
computationally intractable by performing a reduction from the following strongly
NP-complete product partition problem [2].

Several papers dealing with deteriorating jobs in the context of batch scheduling
have been published. Barketau et al. proposed a reprocessing model and allowed the
defective items to continue deteriorating [3]. Ji and Cheng considered batch scheduling
with linear deterioration in different situations. A fully polynomial time approximation
scheme and a dynamic programming algorithm running in pseudo-polynomial time
were proposed [4]. Recently, the serial-batching scheduling problems with
step-deteriorating jobs were also studied, while many significant differences can be
found in them. Mosheiov first studied the minimization of flowtime with
step-deteriorating jobs, and proved that the problem was NP-hard, and also gave
several heuristic procedures of some general models [5]. However, these studies focus
on the linear deterioration in the context of batch scheduling problems and
serial-batching scheduling problems with step-deteriorating jobs.

In this paper we address the problem of minimizing makespan on a single
parallel-batching machine considering step-deteriorating jobs and non-identical release
times. This problem has rarely been investigated in the scheduling literature, although
parallel-batching problems with deteriorating or release times have been studied
extensively. In many realistic manufacturing environments, this problem is worthwhile
for us to consider three significant features together. The main contributions of this
paper can be summarized as follows.

(1) The bounded parallel-batching scheduling problem with step-deteriorating jobs
and release times is studied in this paper. To the best of our knowledge, this type
of problem has been rarely discussed.

(2) Several structural properties on jobs batching and batching sequencing are
addressed. Based on these properties, a heuristic algorithm H is proposed.
Meanwhile, the heuristic algorithm is used in the decoding procedure of the
meta-heuristic algorithm.

(3) Due to its NP-hard nature, a hybrid meta-heuristic algorithm BRKGA-VNS is
presented. In this algorithm, a variant of VNS is applied to improve the effec-
tiveness of iterative process for the biased random-key genetic algorithm.

The rest of this paper is organized as follows. Section 2 describes the problem.
Section 3 introduces some basic lemmas. Section 4 proposes heuristic methods based
on the lemmas. The computational experiments are conducted to evaluate the proposed
methods in Sect. 5. Finally, In Sect. 6 we conclude the paper.
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2 Notations and Problem Description

The notations used in this paper are described as Table 1.

We consider that a manufacturer which has a single parallel-batching machine can
process at most c jobs simultaneously. There are n n� 1ð Þ jobs to be processed, and the
job set is J ¼ J1; J2; . . .; Jnf g. The processing time of each job is modeled as a step
function dependent upon its starting time. An identical extended time b is penalized
when the starting time of job is later than an identical deterioration time d. The actual

processing time of job Jj is pj ¼ aj
aj þ b

sj � d
otherwise

�
.

We need to make decisions on the job batching and batch sequencing simultane-
ously to minimize the makespan. The studied scheduling problem is described in
Fig. 1. We investigate the actual situations in the surface treatment of the steel prod-
ucts. In most cases, the maximum release time of all jobs is no more than the deteri-
oration time. Based on this situation, we just consider rmax � d.

Table 1. Parameters and description

Parameters Description

j; x Job index
i; k Batch index
b Identical extended time
d Identical deterioration time
n Total number of the jobs
m Total number of the batches
c Capacity of the parallel-batching machine
rj Job release time of Jj; j ¼ 1; 2; � � � ; n
rmax Maximum release time of all jobs

Ri Batch release time of Bi; i ¼ 1; 2; � � � ;m
aj Basic processing time of job Jj; j ¼ 1; 2; � � � ; n
pj Actual processing time of job Jj; j ¼ 1; 2; � � � ; n
pi Actual processing time of batch Bi; i ¼ 1; 2; � � � ;m
Ci Starting time of batch Bi; i ¼ 1; 2; � � � ;m
Cmax The makespan of the schedule

0

rmax d

t

... ...+b +b...

b(i+1)bib1 bk b(k+1) bmb(i-1)

1 2 3

Fig. 1. The process of the studied scheduling problems
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Using the conventional notation of Graham et al. [6], the type of scheduling
problem is represented as 1 rj; p� batch; pj ¼ aj or aj þ b; c

�� ��Cmax. When a batch is
being processed, no job can be added into the batch and no job can be removed from
the batch.

3 The Problem 1 rj; p� batch; pj ¼ aj or ajþ b; c
�� ��Cmax

In this section, we first discuss two properties of general problem, and then discuss
these properties of the special cases, which will be used in the problem with the
objective of minimizing the makespan.

3.1 The Properties of General Problem

We study a single parallel-batching machine scheduling problem with the objective of
minimizing the makespan. For the general problem, two properties on the jobs
sequencing and batching argument are proposed as follows.

Lemma 1. Consider a schedule q ¼ q1;Bi;Biþ 1; q2ð Þ, if Biþ 1 \ Jj
� � ¼ Jj

� �
;

j ¼ 1; 2; � � � ; nð Þ; and there exists the situation that rj �Ri; pj � pi, and bi þ 1j j � c,
then putting job Jj in batch Bi would improve the solution.

Proof: It is obvious that putting job Jj in batch Bi would not affect the release times
and processing time of batch Bi; but the release times and processing time of batch
Biþ 1 may be reduced, this lemma is proved. □

Lemma 2. Let schedule r ¼ r1;Bi;Biþ 1; r2ð Þ represent an optimal schedule. A batch
pair i; iþ 1ð Þ in schedule r has the situations that Ri �Riþ 1 and pi � piþ 1, then
swapping batch Bi and Biþ 1 would improve the solution.

Proof: It is easy to understand, we omit it. □

3.2 The Properties of Special Cases

In this subsection, the properties of special cases are discussed. Firstly, we show that
the problem 1 rj; p� batch; pj ¼ aj or aj þ b; c

�� ��Cmax is strongly NP-hard when
batch’s starting time is earlier than rmax, and we apply ERT-LPT (Earliest Release
Time-Longest Processing Time) rule for the first procedure [7]. Secondly, we apply
FBSPT (Full Batch Shortest Processing Time) rule when batch’s starting time is
between rmax and d. Thirdly, we show an optimal solution to solve the case when
batch’s starting time is more than d.

Lemma 3. The problem 1 rj; p� batch; pj ¼ aj or aj þ b; c
�� ��Cmax is strongly NP-hard.

Brucker et al. showed the problem 1 rj; p� batch; pj; b\n
�� ��Cmax was strongly

NP-hard [8]. In our problem, considering that b ¼ 0 and d ¼ 1, then, the problem is
reduced to 1 rj; p� batch; pj; b\n

�� ��Cmax. Hence, the problem 1 rj; p� batch; pj ¼
��

aj or aj þ b; cjCmax is also strongly NP-hard.
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Lemma 4. There is a satisfactory solution that batches are sequenced in the FBSPT
rule when batch’s starting time is between rmax and d.

From Lemma 4, we can get a satisfactory solution when batch’s starting time is
between rmax and d, at this point, all jobs are available and don’t have the deteriorative
effect, we should process more jobs before d. Therefore, it can be solved satisfactorily
by the full batch shortest processing time rule, where all batches are full except for the
one batch that makes next batch having deteriorative effect.

Lemma 5. When batch’s starting time is later than d, there exists an optimal schedule
that jobs are scheduled in the FBLPT (Full Batch Longest Processing Time) rule [9].

Based on the Lemma 5, we can obtain the optimal schedule when batch’s starting
time is later than d. Note that the remaining jobs are batched as full as possible such
that all the remaining batches are full except the one with the highest index.

4 Heuristic

Once the job sequence is determined, a heuristic algorithm H is developed to calculate
the makespan of this job set. The process of the proposed heuristic is implemented
through three phases: (1) Ci\rmax, (2) rmax �Ci � d, and (3) d\Ci. The parameters
and description of heuristic algorithm H are given in Table 2.

For simplicity, a detailed description of the proposed heuristic algorithm is given in
Table 3.

5 BRKGA-VNS Algorithm

5.1 Key Steps of BRKGA-VNS Algorithm

In this subsection, a BRKGA-VNS algorithm combining biased random-key genetic
algorithm (BRKGA) and variable neighborhood search (VNS) algorithm is proposed to
solve the studied problem. Goncalves and Resende first proposed biased random-key
genetic algorithm (BRKGA), and gave a detailed analysis. Comparing BRKGA
heuristic with other standard GAs, the results showed that the BRKGA heuristic were
indeed competitive [10]. Resende and Ribeiro introduced an Application Programming
Interface (API) for quick implementations of BRKGA heuristics, and apply the
framework to a number of hard combinatorial optimization problems [11].

Table 2. Parameters and description

J Set of all jobs, J ¼ J1; J2; . . .; Jnf g
A tð Þ Set of jobs that are available at time t
U tð Þ Set of jobs that have not been scheduled yet at time t
S Schedule of the generated batches
Cs�max The completion time of last batch in the schedule S
P, Q Index of the last batch generated in the phase
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As we know, VNS has received extensive attentions from researchers in recent
years, and is widely used in various combinatorial optimization problems since it was
improved by Hansen and Mladenović [12]. In order to speed up the convergence of the
algorithm, we adopt the variable neighborhood search (VNS) algorithm to replace the
iteration procedure in traditional BRKGA. The VNS algorithm is introduced to change
the iterative process of BRKGA, and improve the process from the elite random-key
vectors to the partition labeled TOP in the next population (The partition labeled TOP
is a set of elite partition).

For the procedure of encoding and decoding, we can know that each vector ri is
composed of n randomly generated numbers (random keys) in the real interval (0,1].
The vector ri ¼ ri1; � � � ; rid ; � � � ; rin is decoded in the following steps:

Table 3. The description of heuristic algorithm H

Heuristic algorithm H

Step 1 Set i ¼ 1; B1 ¼ J1; pi ¼ a1; t ¼ r1; U tð Þ ¼ Jn J1f g
Step 2 If rmax � t� d, go to step 6, and if d\t; go to step 10, Otherwise, go to step 3
Step 3 A tð Þ ¼ Jjjrj � t

� �
. Place the first job of A tð Þ into S; A tð Þ ¼ A tð Þn J1f g; index jobs

in schedule S as rule ERT-LPT. Update U tð Þ and A tð Þ
Step 4 Judge whether each job in A tð Þ, if there exist a job Jx satisfying that rx �Ri; px � pi,

then place job Jx into Bi

Step 5 Process schedule S. Set t ¼ Cs�max, if U tð Þ ¼ ;, then stop, output Cmax ¼ Cs�max,
otherwise, go to step 2

Step 6 Update U tð Þ and A tð Þ, set P ¼ i
Step 7 If d\t; go to step 10, Otherwise, go to step 8
Step 8 Place the first job of A tð Þ into S; A tð Þ ¼ A tð Þn J1f g; index new jobs in schedule S as

rule FBSPT. Update U tð Þ and A tð Þ
Step 9 Process schedule S, Set t ¼ Cs�max, if U tð Þ ¼ ;, then stop, output Cmax ¼ Cs�max,

otherwise, go to step 6
Step 10 Update U tð Þ and A tð Þ, set Q ¼ i
Step 11 Place the first job of A tð Þ into S; A tð Þ ¼ A tð Þn J1f g; index new jobs in schedule S as

rule FBLPT. Update U tð Þ and A tð Þ
Step 12 Process schedule S, Set t ¼ Cs�max, if U tð Þ ¼ ;, then stop, output Cmax ¼ Cs�max,

otherwise, go to step 10

Table 4. The procedure of encoding and decoding

Step 1 For a vector a ¼ 1; 2; � � � ; nf g, sort all the elements in vector a by the
non-decreasing order of kid to obtain a job list;

Step 2 Execute the Algorithm H to obtain the Cmax of the job list;
Step 3 Output the Cmax as the fitness of ki.

BRKGA-VNS for Parallel-Batching Scheduling on a Single Machine 419



The algorithm framework of BRKGA-VNS is described in Table 4, and the part of
VNS is reflected in the 6th line in the pseudocode (Table 5).

We also give the framework of the proposed algorithm as Fig. 2.

Table 5. The Pseudocode of BRKGA-VNS
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5.2 RVNS

İn order to enhance solution quality of the elite individuals, we apply a variant of VNS
named RVNS for them in each iterations [13]. Based on the characteristic of
random-key encoding, a simple neighborhood structure is applied in this paper, Nh Xð Þ
is used to denote the hth neighborhood of individual X, and the Nh Xð Þ is defined as
follows (Table 6).

The difference between VNS and RVNS is that the RVNS remove the local search
procedure from the basic VNS. The pseudocode of RVNS is given as below (Table 7).

5.3 Computational Experiments and Comparison

Based on the situation that we just consider rmax � d, the paper introduces the features
that the release times do not exceed the deterioration time. In this subsection, a serial of
computational experiments are conducted to test the performance of our proposed
algorithm BRKGA-VNS, compared with BRKGA [10], VNS [12], and PSO [14]. The
parameters of the test problems were randomly generated as Table 8.

Begin
Generate n vectors 

of random keys
Decode each vector 

of random keys

Stopping rule 
satisfied?

EndyesSort solutions by 
their fitness

no
Classify solutions 

as elite or non-elite

Execute RVNS for 
elite solutions to 

obtain next 
generation elite 

solutions

Generate mutants 
in next population

Combine elite  and 
non-elite solutions 
and add offspring 
to next population

Fig. 2. The flowchart of the proposed hybrid BRKGA-VNS

Table 6. Neighborhood structure

Neighborhood structure

Step 1. Set u ¼ 1.
Step 2. Randomly select a gene of individual X to perform mutation operation.
Step 3. If u� h, then go to step 2. Otherwise, output solution X.
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Table 7. The pseudocode of RVNS

Table 8. Parameters setting

Notation Definition Value

n The number of jobs 40,50,60,70.100,150,200,250
d Identical deterioration time U[180,300] for small scale,

U[360,750] for large scale
b Identical extended time U[20,30]
c Capacity of the parallel-batching machine U[3, 8]
aj Basic processing time of job Jj j ¼ 1; 2; � � �; n U[10,30]
rj Release time of job Jj j ¼ 1; 2; � � �; n U[0,100]
NB The number of TOP solutions 5
NW The number of BOT solutions 5

Table 9. The results of the average objective value (Ave.Obj) and the minimum objective value
(Max.Obj) for each algorithm

BRKGA-VNS BRKGA PSO VNS

No. n Ave.Obj Max.Obj Ave.Obj Max.Obj Impr. Ave.Obj Max.Obj Impr. Ave.Obj Max.Obj Impr.

1 40 254.45 259.78 264.15 281.42 3.67 257.57 274.54 1.13 271.28 423.26 6.20

2 50 307.66 329.94 325.22 338.43 5.40 308.50 337.88 0.25 320.33 458.42 3.96

3 60 358.88 406.24 376.70 398.07 4.73 373.98 390.69 3.86 374.20 559.03 4.09

4 70 429.98 487.82 459.02 503.70 6.33 449.46 485.46 4.01 454.93 644.09 5.49

5 100 607.92 662.32 627.71 689.70 3.15 616.72 663.73 1.33 625.04 803.76 2.74

6 150 891.86 958.24 913.73 973.43 2.39 905.24 971.87 1.38 928.35 1156.86 3.93

7 200 956.11 1042.44 985.60 1070.25 2.99 976.54 1058.39 1.93 981.81 1118.24 2.62

8 250 1142.25 1186.47 1165.63 1219.24 2.01 1151.48 1193.65 0.77 1159.54 1342.51 1.49
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(g) Convergence curves for n=200          (h) Convergence curves for n=250 

(e) Convergence curves for n=100          (f) Convergence curves for n=150

(c) Convergence curves for n=60         (d) Convergence curves for n=70 

(a) Convergence curves for n=40          (b) Convergence curves for n=50 

Fig. 3. Convergence curves for each algorithm when n ¼ 40; 50; 60; 70; 100; 150; 200; 250
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In order to evaluate the performance of BRKGA-VNS, the result of the average
objective value (Ave.Obj) and the maximum objective value (Max.Obj) for the prob-
lem is listed in Table 9, the result of the improve objective value (Impr.(%)) obtain by
Ave:ObjBRKGA�VNS�Ave:Objother

Ave:ObjBRKGA�VNS

� 100. We compare the effect of BRKGA-VNS with

BRKGA, PSO and VNS when number of jobs is different, if other variables are same,
all experimental results show that BRKGA-VNS is better, and the convergence curves
of each algorithm are shown in Fig. 3.

All cases run 10 times to avoid the contingency of the experiment. To ensure the
fairness of the experiment, the population size of BRKGA-VNS, BRKGA and PSO is
set as 20. All the algorithms were implemented in C++ and run on a Lenovo computer
running Window10 with a dual-core CPU Intel i3-3240@3.40 GHz and 4 GB RAM.
All of algorithms perform 300 iterations in reasonable time, for example, we recorded
that the program runs in 9.8 s at a time when n ¼ 60, it is shown that the running time
of BRKGA-VNS will not exceed 1 s. As can be observed from Table 9, we can
conclude that proposed algorithm has better performance than the other algorithms with
respect to solution quality, since the results obtained by BRKGA-VNS are better than
those obtained by other algorithms among all the cases. Figure 3 shows the conver-
gence curves of BRKGA-VNS, BRKGA, PSO, and VNS for each category so as to
demonstrate the convergence performance of BRKGA-VNS more clearly. The figure
shows the average of the best solution at each generation, we compare the problem
size’s effect on the average value when n ¼ 40; 50; 60; 70; 100; 150; 200; 250, com-
pared with BRKGA, PSO, and VNS, the hybrid BRKGA-VNS has both faster con-
vergence speed and better results when solving the problems. Based on the
computational results, it can be obtained that the BRKGA-VNS has better performance
rate than those of other algorithms in solving the presented problem.

6 Conclusion

We study a single parallel-batching machine scheduling problem, it is motivated by the
surface treatment of the steel products. We show that the problem is strongly NP-hard,
and some structural properties are presented for both general problem and special cases.
Based on these properties, a hybrid meta-heuristic BRKGA-VNS is proposed to solve
the problem. And the results obtained by BRKGA-VNS are better than those obtained
by BRKGA, PSO, and VNS among all the cases.

In future research work, we may devote to developing more effective meta-heuristic
to solve some related parallel-batching scheduling problems, considering other
objective functions. Moreover, the general batch scheduling models considering mul-
tiple unrelated parallel machines will be investigated, and more research problems from
the real industry will be refined.
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Abstract. A celebrated problem in network optimization is the all-
terminal reliability maximization. We want to communicate a fixed num-
ber n of terminals, but we have a fixed budget constraint m. The goal
is to build m links such that the all-terminal reliability is maximized
in the resulting graph. In such case, the result is a uniformly most-
reliable graph. The discovery of these graphs is a challenging problem
that launched an interplay between extremal graph theory and compu-
tational optimization.

In this paper, we mathematically prove that Petersen graph is uni-
formly most-reliable. The paper is closed with a conjecture on the exis-
tence of other uniformly most-reliable graphs.

Keywords: Network reliability analysis
Uniformly most-reliable graphs · Petersen graph

1 Motivation

Historically, extremal graph theory is inspirational for network design [7]. In the
second book ever written in graph theory, Berge challenges the readers to find
the graph with maximum connectivity among all graphs with a fixed number of
nodes and links. Frank Harary provided not only a full answer, but also found
connected graphs with minimum and maximum diameter [12]. Gustav Kirchhoff
solved linear time-invariant resistive circuits, and as corollary he introduced the
Matrix-Tree theorem, where he counts the number of spanning trees of a con-
nected graph (i.e., the tree-number) using the determinant of a matrix [14]. This
breakthrough in electrical systems launched the theory of trees, which represent
building blocks in communication design. However, the corresponding extremal
problem is not well understood: find the graph with a fixed number of nodes and
links that maximizes the tree-number.

All the previous problems are connectivity-based, and deterministic in
nature. Network reliability analysis deals with probabilistic-based models, where
the goal is to determine the probability of correct operation of a system [3,11].
In its most elementary setting, we are given a simple graph G with perfect nodes

c© Springer International Publishing AG 2018
G. Nicosia et al. (Eds.): MOD 2017, LNCS 10710, pp. 426–435, 2018.
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but random link failures with identical and independent probability ρ. The all-
terminal reliability is the probability that the resulting random graph remains
connected.

Even though network reliability is probabilistic in nature, there is a strong
interplay with the previous deterministic problems. The motivation of this paper
is to have a better understanding of the interplay between network reliability
analysis and inspirational problems from network connectivity, which are com-
pletely deterministic in nature.

This paper is organized as follows. Section 2 presents a formal definition of
uniformly most-reliable graphs and reliability polynomials. Section 3 covers the
body of related works on uniformly most-reliable graphs. The main contribu-
tion is presented in Sect. 4, where it is formally proved that Petersen graph is
uniformly most-reliable. Section 5 presents concluding remarks and trends for
future work.

2 Uniformly Most-Reliable Graphs

We are given a simple graph G = (V,E), with perfect nodes and unreliable links
that fail independently with identical failure probability ρ. The all-terminal reli-
ability RG(ρ) measures the probability that the resulting random graph remains
connected, and it is a polynomial in ρ ∈ [0, 1]. For convenience, in this paper
we work with the unreliability polynomial UG(ρ) = 1 − RG(ρ). Let us denote
p = |V | and q = |E| the respective order and size of the graph G. Further, denote
by mk(G), or simply mk, the number of link-disconnecting sets with cardinality
k, this is, the number of subsets E′ ⊆ E such that |E′| = k and G′ = G − E′

is disconnected. By sum-rule, the unreliability polynomial can be expressed as
follows:

UG(ρ) =
q∑

k=0

mkρk(1 − ρ)q−k. (1)

Let us denote (p, q)-graph to the family of graphs with p nodes and q links.
Clearly, if we consider a fixed ρ ∈ [0, 1], there is at least one graph H that attains
the minimum unreliability, i.e., UH(ρ) ≤ UG(ρ) for all (p, q) graph G. Further, if
the previous condition holds for all ρ ∈ [0, 1] and all (p, q)-graphs G, the graph
H is uniformly most-reliable.

3 Related Work

From inspection of Expression (1), we can see that if there exists some (p, q)-
graph H such that mk(H) ≤ mk(G) for all k and all (p, q)-graph G, then H is
uniformly most-reliable. Curiously enough, this sufficient criterion is not known
to be necessary. However, to the best of our knowledge, the search of uniformly
most-reliable graphs rests on the minimization of all the coefficients mk. This
approach is promoted by the following result, which can be proved using ele-
mentary calculus [1]:
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Proposition 1.

(i) If there exists some integer k such that mi(H) = mi(G) for all i < k but
mk(H) < mk(G), then there exists ρ0 > 0 such that UH(ρ) < UG(ρ) for all
ρ ∈ (0, ρ0).

(ii) If there exists some integer k such that mi(H) = mi(G) for all i > k but
mk(H) < mk(G), then there exists ρ1 < 1 such that UH(ρ) < UG(ρ) for all
ρ ∈ (ρ1, 1).

By definition, there are no disconnecting sets with lower cardinality than the
link connectivity λ. Therefore, mi(G) = 0 for all i < λ, and by Proposition 1-
(i) uniformly most-reliably graphs must have the maximum link-connectivity λ.
Furthermore, the number of disconnecting sets mλ must be minimized. On the
other hand, mi(G) =

(
q
i

)
for all i > q−p+1, since trees are minimally connected

with q = p−1 links. The number of connected sets with q−p+1 links is precisely
the tree-number τ(G), so mq−p+1(G) =

(
q

q−p+1

)−τ(G). Using Proposition 1-(ii),
the tree-number should be maximized. Prior observations directly connect this
network design problem with extremal graph theory:

Corollary 1. A uniformly most-reliable (p, q)-graph H must have the maximum
tree-number τ(H), maximum connectivity λ(H), and the minimum number of
disconnecting sets mλ(H) among all (p, q)-graphs with maximum connectivity.

For convenience we say that a (p, q)-graph, H, is t-optimal if τ(H) ≥ τ(G)
for every (p, q) graph G. Briefly, Corollary 1 claims that uniformly most-reliable
graphs must be t-optimal and max-λ min-mλ, where λ denotes the edge connec-
tivity.

Frank Harary found the maximum connectivity of a (p, q) graph. By Hand-
shaking, the average-degree of every (p, q)-graph is 2q

p . If δ(G) denotes the min-
imum degree, we immediately get that λ(G) ≤ δ(G) ≤ � 2q

p �. The candidate
connectivity is λmax = � 2q

p �. It suffices to find a (p, q)-graph with connectivity
λmax whenever p ≥ q − 1 (otherwise, the graph is not connected). The evidence
is the following family of graphs [12]:

Definition 1 (Harary Graphs H(n,k)). Let n and k be positive integers. Harary
graph H(n,k) consists of n nodes {v0, . . . , vn−1} equally spaced around a circle, and
the following links:

– If k is even, each vertex is adjacent to the k/2 nearest nodes in each direction.
– If k is odd and n is even, H(n,k) is H(n,k−1) with additional links {vi, vi+n

2
} for

each i = 0, . . . , n
2 .

– If k and n are both odd, H(n,k) is H(n,k−1) with additional links {vi, vi+n−1
2

} for
each i = 0, . . . , n − 1.

We immediately check that Harary graphs have maximum connectivity
λmax = � 2q

p �, so, they are max-λ. The number of disconnecting sets should
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be minimized as well; max-λ graphs that minimize the disconnecting sets with
λ nodes are called max-λ min-mλ graphs. Prior works from Bauer et al. fully
characterize max-λ min-mλ graphs [2]. A key idea is to observe that in a max-λ
graph, the number of disconnecting sets mλ is at least the number of nodes with
degree λ. If this bound is achieved, a max-λ min-mλ graph is retrieved. For that
purpose, they define generalized Harary graphs, which are just an augmentation
of the original Harary graphs with random matchings (this is, edges with non-
adjacent nodes). In that way, the number of nodes with degree λ is minimized,
and the authors show that no other disconnecting sets with that size exists.

By Corollary 1, Bauer et al. provide a family of graphs that contain all
uniformly most-reliable graphs. Later works try to find uniformly (p, p+i)-most-
reliable graphs for i small, by a simultaneous minimization of all the coefficients
mk. The cases i = −1 and i = 0 are trivial. Indeed, when q = p − 1 all the trees
have the same reliability polynomial ρq, so they are uniformly most-reliable (the
reliability is zero if the graph is not connected). When i = 0 we have q = p, and
the elementary cycle Cp is t-optimal. All the other graphs with p = q are not
2-connected, and by direct inspection we can see that Cp achieves the minimum
coefficients mk.

Perhaps the first non-trivial uniformly most-reliable graphs were found by
Boesch et al. in 1991 [5]. A new reading of Bauer et al. construction lead them to
find that Monma graphs are (n, n+1) uniformly most-reliable graphs, whenever
the number of nodes in each path differ by at most one. Interestingly enough,
Clyde Monma et al. used these graphs for the design of minimum cost two-node
connected metric networks [17]. Figure 1 depicts Monma graphs. The reader is
invited to find a combinatorial proof of Monma’s t-optimality when the length
of the paths differ by at most one in [9].

u v

1 2 l1

1 2 l2

1 2 l3

Fig. 1. Monma graph M(l1+1,l2+1,l3+1).

A more challenging problem is to find (n, n + 2) uniformly most-reliable
graphs. Boesch et al. minimize the four effective terms m0, m1, m2 and m3

from Expression (1). An (n, n + 2) max-λ min-mλ graph already minimizes the
first three terms. If in addition the tree-number is minimized all the coefficients
are simultaneously minimized, and the result must be a uniformly most-reliable
graph. The merit of the paper [5] is to adequately select the feasible graphs from
Bauer et al. that minimizes the tree-number. Observe that K4 can be partitioned
into three perfect matchings, PM1, PM2 and PM3.
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The result is that we should insert n − 4 points in the six links of K4 in such
a way that:

(i) the number of inserted nodes in all the links differ by at most one, and
(ii) if we insert the same number of nodes in two different matchings PMi �=

PMj , then the number of nodes in the four links from PMi ∪ PMj are
identical.

The resulting (n, n + 2)-graph defines, for every n ≥ 4, a single graph up to
isomorphism. The authors formally prove that the resulting graph is uniformly
most-reliable (n, n+2)-graph. Furthermore, inspired by a previous research on t-
optimality in multipartite graphs authored by Cheng [10], they conjecture that
all uniformly most-reliable (n, n + 3)-graphs with more than 6 nodes are ele-
mentary subdivisions of K(3,3). This conjecture is correct, and it was proved by
Wang [21].

In a recent paper, Romero formally proved that Wagner graph M4 is uni-
formly most-reliable (n, n + 4)-graph [20]. To the best of our knowledge, the
analysis of (n, n + i)-graphs for i ≥ 5 is not available in the related literature.

Definition 2. For every even natural n, Möbius graph Mn is constructed from
the cycle C2n adding n new links joining every pair of opposite nodes.

Curiously enough, M2 = K4, M3 = K(3,3) and M4 are Möbius graphs Mn,
and they are all uniformly most-reliable graphs. Furthermore, the discovery of
(n, n + 2) and (n, n + 3) credited by Boesch et al. [5] and Wang [21] con-
sider a partition of K(3,3) (resp. K4) into three disjoint perfect matchings. The
reader can check that all Möbius graphs can be partitioned into three such per-
fect matchings as well. In this sense, Möbius graphs apparently generalize the
particular result for K(3,3) and K4. This promotes the following:

Conjecture 1. All uniformly most-reliable (n, n + i) graphs with i < n are ele-
mentary subdivisions of Möbius graph Mn.

Conjecture 1 is not true. Indeed, we formally prove in Sect. 4 that Petersen
graph serves as a counterexample for the case of (n, n + 5)-graphs. However,
another (not so optimistic) conjecture is still open:

Conjecture 2. All uniformly most-reliable (n, n + 4) graphs with n ≥ 8 are
elementary subdivisions of Wagner graph.

It is worth to remark that there are (p, q)-pairs where a uniformly most-
reliable graphs does not exist [18]. The reader can consult [6] for a valuable
survey on uniformly most-reliable graphs.

A full determination of t-optimal graphs for every (p, q)-pair is a related
open problem. Indeed, a historical conjecture by Leggett and Bedrosian asserts
that t-optimal graphs must be almost regular, that is, the degrees differ at most
by one [16]. Even though closed formulas are available for the tree-number of
specific graphs, the progress on t-optimality is effective on special regularity con-
ditions [10], almost-complete graphs or other special graphs with few links [19]
(Fig. 2).
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Fig. 2. Wagner Graph M4

4 Petersen Graph

Petersen graph is the complement of the line-graph of K5 (the reader can find
alternative definitions in the book [13]). By Sachs theorem [4], its eigenvalues are
3 (simple), 1 (multiplicity 5) and −2 (multiplicity 4). Therefore, its tree-number
is τ(P ) = 1

10 × (3 − 1)5 × (3 − (−2))4 = 2000.

1

2

34

5

6

7

89

10

Fig. 3. Petersen graph

Figure 3 depicts Petersen graph. It is known that Petersen has the maximum
tree-number among all cubic (10, 15) graphs. Therefore, Petersen graph is the
only candidate to be uniformly most-reliable (10, 15)-graph.

It is clearly super-λ with connectivity λ = 3, so m3 = 10 is minimum among
(10, 15)-graphs. From inspection we find that all the disconnecting sets with 4
links are either incident to a fixed node or fixed link, so m4 = 10×(

3
3

)(
12
1

)
+15 =

135. Furthermore, all cubic (10, 15)-graphs possess the previous disconnecting
sets. In order to count m5 we observe that such disconnecting sets isolate nodes,
links, 2-paths or 5-cycles, so, m5 = (10× (

12
2

)− 15)+15× 10+ (
(
10
2

)− 15)+6 =
831. Counting the complement, we know that m6 =

(
15
6

) − τ(P ) = 3005. For
convenience, we say that a disconnecting set that isolates some node is trivial.
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From now on, we will assume that the ground graph-set is always (10, 15)-
graphs. The following two lemmas are preparatory for the main result, and their
proofs only use combinatorial arguments:

Lemma 1. The coefficient m4 is minimized in Petersen graph.

Proof. The result is trivial for cubic graphs. Consider an arbitrary (10, 15)-graph
H, and denote m4 = 135 the number of disconnecting sets in Petersen graph. If
H has a bridge, then m4(H) ≥ (

13
3

) ≥ m4. It suffices to prove the result when
δ(H) = 2. If there exists non-adjacent nodes v1 and v2 such that deg(v1) =
deg(v2) = 2, then m4(H) ≥ 2×(

13
2

)−1 > m4. If v1 and v2 are adjacent nodes then
m4(H) ≥ (

3
2

)(
12
2

)
> m4. Finally, if there is a single node v such that deg(v) = 2,

by Handshaking Lemma the degree-sequence must be (4, 3, 3, 3, 3, 3, 3, 3, 3, 2). In
this case, counting trivial disconnecting sets we know that m4(H) ≥ (

4
4

)
+ 8 ×(

3
3

)(
12
1

)
+

(
2
2

)(
13
2

)
> m4.

All cubic graphs with not more than 14 nodes were generated in [8]. There
are only 19 cubic (10, 15)-graphs. The following result can be obtained by a
computational test.

Lemma 2. The coefficient m5 is minimized in Petersen graph among all cubic
(10, 15)-graphs.

The following result is analogous to Lemma 1:

Lemma 3. The coefficient m5 is minimized in Petersen graph.

Proof. By Lemma 2 we know that the result holds for in cubic graphs. We
know that m5 = 831 in Petersen graph. In the following, we remark that only
trivial disconnecting sets are considered for counting. If H has a bridge, then
m5(H) ≥ (

14
4

) ≥ m5. It suffices to prove the result when δ(H) = 2. If deg(v1) =
deg(v2) = deg(v3) = 2 for three different nodes, we consider three disjoint and
exhaustive cases:

(i) Non-adjacent nodes: m5(H) ≥ 3 × (
13
3

) − 3 × 11 = 828;
(ii) There are two adjacent nodes: m5(H) ≥ (

13
3

)
+

(
3
2

)(
12
3

)
+

(
3
3

)(
12
2

)−31 ≥ m5;
(iii) There are two links among them: m5(H) ≥ (

4
2

)(
11
3

)
+

(
4
3

)(
11
2

)
+(

4
4

)(
11
1

)
>> m5

Assume that there are precisely two different nodes v1 �= v2 such that
deg(v1) = deg(v2) = 2. We know that deg(vi) = 3 + δi for i = 3, . . . , 10.
By Handshaking Lemma we know that 30 =

∑
i deg(vi), so

∑10
i=3 δi = 2.

Therefore, the only graphic degree-sequences with two degree-two nodes are
D1 = (4, 4, 3, 3, 3, 3, 3, 3, 2, 2) and D2 = (5, 3, 3, 3, 3, 3, 3, 3, 2, 2). We consider four
cases: D1 or D2 with adjacent or non-adjacent (A-NA) nodes v1 and v2:

(i) D1 and A: m5(H) ≥ 2×(
4
4

)(
11
1

)
+6×(

3
3

)(
12
2

)
+

(
3
2

)(
12
3

)
+

(
3
3

)(
12
2

)−6×3 > m5;
(ii) D1 and NA: m5(H) ≥ 2×(

4
4

)(
11
1

)
+6×(

3
3

)(
12
2

)
+2×(

2
2

)(
13
3

)−2×5−11 > m5;
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(iii) D2 and A: m5(H) ≥ (
5
5

)
+ 7 × (

3
3

)(
12
2

)
+

(
3
2

)(
12
3

)
+

(
3
3

)(
12
2

) − 7 × 3 > m5;
(iv) D2 and NA: m5(H) ≥ (

5
5

)
+ 7 × (

3
3

)(
12
2

)
+ 2 × (

2
2

)(
13
3

) − 2 × 7 − 11 > m5.

Finally, we consider the case where there exists only one degree-2 node. In this
case, the degree-sequence must be (4, 3, 3, 3, 3, 3, 3, 3, 3, 2). Counting trivial dis-
connecting sets we get that m5(H) ≥ (

4
4

)(
11
1

)
+ 8 × (

3
3

)(
12
2

)
+

(
2
2

)(
13
3

) − 8 = 825.
However, it does not suffice to close the proof. We must find at least 6 non-trivial
disconnecting sets. Observe that there exists at least 11 links whose extremes
are nodes with degree 2 or 3, so m5(H) ≥ 825 + 11 = 836 > m5.

Lemma 4. Petersen graph is t-optimal.

In order to prove that m6 is minimized in Petersen graph we can distinguish
several cases:

The first case is when δ(H) = 1.

(i) If we have two nodes v1 and v2 such that deg(v1) = deg(v2) = 1
m6(H) ≥ 2 × (

14
5

) − (
13
4

)
> m6.

(ii) If we have v1, v2, v3, v4 such that deg(v1) = 1, deg(v2) = deg(v3) = 2, and
deg(v4) = 3, m6(H) ≥ (

14
5

)
+ 2 × (

13
4

)
+

(
12
3

) − 2 × (
12
3

) − (
11
2

) − 2 × (
10
1

)
+(

10
1

)
+

(
9
0

)
> m6.

(iii) nodes v1, v2, v3, v4, v5, such that deg(v1) = 1, deg(v2) = 2, deg(v3) =
deg(v4) = deg(v5) = 3
m6(H) ≥ (

14
5

)
+

(
13
4

)
+ 4 × (

12
3

) − (
12
3

)
+ 4 × (

11
2

)
+ 4 × (

9
0

)
> m6.

(iv) nodes v1, v2, v3, v4, v5, v6, v7, v8 such that deg(v1) = 1, deg(v2) = deg(v3) =
deg(v4) = deg(v5) = deg(v6) = deg(v7) = deg(v8) = 3
m6(H) ≥ (

14
5

)
+ 7 × (

12
3

) − 7 × (
11
2

) − (
7
2

) × (
9
0

)
> m6.

All the other cases with one node of degree one, are reduced to one of the
above, or have more disconnecting sets than these graphs because they have
one o more nodes with degree ≥ 4.
When δ(H) = 2, we have these cases:

(i) nodes v1, v2, v3, v4, v5 such that deg(v1) = deg(v2) = deg(v3) = deg(v4) =
deg(v5) = 2
m6(H) ≥ 5 × (

13
4

) − (
5
2

) × (
11
2

)
+

(
5
3

) × (
9
0

)
> m6.

(ii) nodes v1, v2, v3, v4, v5, v6, v7, v8 such that deg(v1) = deg(v2) = deg(v3) =
deg(v4) = 2, deg(v5) = deg(v6) = deg(v7) = deg(v8) = 3
m6(H) ≥ 4 × (

13
4

) − 4 × 4 × (
10
1

)
+ 4 × (

12
3

) − 6 × (
11
2

) − 6 × (
9
0

)
> m6.

(iii) nodes v1, v2, v3, v4, v5, v6, v7, v8 such that deg(v1) = deg(v2) = 2,
deg(v3) = deg(v4) = deg(v5) = deg(v6) = deg(v7) = deg(v8) = 3. There are
two cases, (5, 3, 3, 3, 3, 3, 3, 3, 2, 2) and (4, 4, 3, 3, 3, 3, 3, 3, 2, 2), using trivial
and several non trivial disconnector sets m6(H) > m6 in both cases.
The last case is when δ(H) = 3. There are 19 cubic graphs including
Petersen, which have the lower m6.
Cases (..., 4, 2, 1), (...4, 3, 1), (...4, 1), (..., 4, 2, 2), (..., 4, 2) do not exist.

Theorem 1. Petersen is uniformly most-reliable.
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Proof. Recall that Petersen is super-λ, so m3 is minimized. Clearly, mi = 0
for i ∈ {0, 1, 2}, and mi =

(
15
i

)
for all (10, 15)-graphs, when i ≥ 7. Petersen is

t-optimal, thus, it minimizes the coefficient m6. Combining Lemmas 1, 3 and 4,
we know that Petersen graph minimizes simultaneously all the coefficients mi.
Therefore, Petersen simultaneously minimizes all the coefficients mi among
(10, 15)-graphs, and thus it is uniformly most-reliable.

5 Conclusions and Trends for Future Work

Uniformly most-reliable graphs represent a synthesis in network reliability anal-
ysis. Finding them is a hard task not well understood. Prior works in the field
try to globally minimize the coefficients of disconnecting sets. This methodology
provides uniformly most-reliable (n, n + i) graphs for i ∈ {−1, 0, 1, 2, 3, 4}. In
this paper, we formally proved that Petersen graph is uniformly most-reliable
(n, n + 5) graph. This means that Conjecture 1 is false. This work reinforces
Donald Knuth’s statement that Petersen graph serves as a counterexample to
several optimistic predictions in graph theory [15].

There are several trends for future work. A powerful methodology to find uni-
formly most-reliable graphs is not known. A full characterization of t-optimal
graphs is an open problem. Conjecture 2 could be studied with a similar reason-
ing as in Boesch [5] and Wang [21].
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Abstract. This paper introduces a new mathematical optimization
problem, inspired in the evolution of fiber optics communication. Real-life
implementations must address a cost-robustness tradeoff. Typically, real
topologies are hierarchically organized in backbone and access networks.
The backbone is two-node-connected, while the access network usually
considers either leaf nodes or elementary paths, directly connected to the
backbone. We define the Capacitated Two-Node Survivable Tree Prob-
lem (CTNSTP for short). The backbone consists of at most m two-
node-connected structures with a perfect depot as a common node. The
access network consists of trees directly connected to the backbone. The
CTNSTP belongs to the NP-Complete computational class. A GRASP
heuristic enriched with a Variable Neighborhood Descent (VND) is pro-
vided. Certain neighborhoods of our VND include exact models based on
Integer Linear Programming formulations. The comparison among recent
works in the field confirm remarkable savings with the novel proposal.

Keywords: Network survivability · CTNSTP · GRASP · VND

1 Motivation

In fiber optics communication systems, robustness is essential, so, two-node-
connected topologies are considered. A natural approach to accomplish two-
node-connectivity (i.e. a node is connected to another one by two independent
paths) is to connect all terminals in a ring or cycle in an economic way. This
problem is called Traveling Salesman Problem or TSP, and it is widely studied
in the scientific literature [12].

A cornerstone in the field of structural network design is authored by Monma
et al. [13]. They study the Minimum-weight Two-Connected Spanning Problem
(MW2CSP), briefly, how to connect terminals in the cheapest way, with a result-
ing two-node connected topology. They prove that the corresponding decision
version for the MW2CSP belongs to the set of N P-Complete decision prob-
lems. Furthermore, the cheapest Hamiltonian Tour (i.e., a ring that meets all the
nodes) is not necessarily a global optimum. Specifically, the cost of the cheapest
ring is upper-bounded by 4/3 × opt, being opt the cost of the best two-node-
connected structure.
c© Springer International Publishing AG 2018
G. Nicosia et al. (Eds.): MOD 2017, LNCS 10710, pp. 436–448, 2018.
https://doi.org/10.1007/978-3-319-72926-8_36
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Inspired by fiber optics design, Labbé et al. introduce the Ring Star Prob-
lem, or RSP for short [11]. In that work the core is a ring, and the remain-
ing terminals are linked to the ring as leaf-nodes. The objective is to find the
minimum-cost topology meeting the previous constraints, given costs in the ring-
connections and leaf-links. A further generalization, the Capacitated Ring Star
Problem (CmRSP) is introduced by Baldacci et al. pressed by realistic solutions,
where customers are geographically distributed [1]. The authors consider m rings
with the depot as the only common node. The main difference with the RSP is
the presence of m rings instead of one. Both optimization problems belong to
the N P-Hard class, since they generalize the Hamiltonian Tour problem [9].
Therefore, the CmRSP has been heuristically addressed in several opportuni-
ties [8,17]. A trade-off between cost and robustness is proposed by Hill et al. [7],
where the core is a ring again, but there are nodes from a secondary class that are
connected to the ring by trees. The result is the Capacitated Ring-Tree Problem,
or CRTP for short.

Recent works in structural network design replace rings by arbitrary two-
connected components, inspired by savings predicted by Monma et al. For
instance, Bayá et al. introduce the Capacitated m Two-Node Survivable Star
Problem, or CmTNSSP [3] where the m rings of the CmRSP are replaced by
two-connected components. Analogously, Recoba et al. introduce the Two-Node
Connected Star Problem (TNCSP), which is precisely the RSP but with a two-
node-connected core that replaces the ring [14].

In this paper, a extension for both the CRTP and CmRSP is introduced,
where m two-connected structures are considered instead of cycles for each of the
above problems, and the secondary nodes from the access network includes trees
connected to these two-connected structures. The goal is to achieve flexibility and
savings simultaneously. The main contributions of this paper are the following:

– The Capacitated Two-Node Survivable Tree Problem (CTNSTP) is
introduced.

– Given its intractability, a heuristic resolution is developed. We adopted
a GRASP approach enriched with a Variable Neighborhood Descent, or
GRASP-VND.

– A fair comparison with prior works in the field is presented in order to highlight
the benefits of this new proposal.

This article is organized in the following manner. The formal definition of the
CTNSTP is presented in Sect. 2. A Greedy Randomized Adaptive Search Pro-
cedure (GRASP) is developed for its resolution in Sect. 3. The experimental
analysis is conducted in Sect. 4. Concluding remarks and trends for future work
are discussed in Sect. 5.

2 Capacitated Two-Node Survivable Tree Problem

The cost-robustness trade-off is a major engineering challenge to develop phys-
ical communication systems. Ideally, the underlying topology should be flexible
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enough to produce savings, but resilient to simple node/link failures in the back-
bone. Here we describe the closest works from a topological point of view. In
fact, we present a topological extension of the CRTP, gaining on both flexibility
and savings.

Voß and Hill recently introduced the CRTP [7]. They consider a simple and
completed undirected graph G = (V,E), a positive integer m and a partition
V = {s}∪VT1∪VT2∪VS , being s the depot or source node, VT1 the type-1 terminal
nodes, VT2 the type-2 terminal nodes and VS the optional or Steiner nodes. The
depot s has a capacity qs, and there is a cost-matrix C = (ci,j), vi, vj ∈ V .
The goal is to choose a minimum cost spanning subgraph H = ∪k

i=1Rli , where
Rli are ring-trees. A ring-tree is a connected graph with at most n edges, where
n is the number of nodes of such graph. The ring-trees Rli only meet on the
depot s ∈ Rli and have a length li, where li is the number of terminal nodes
(type-1 or type-2) that belong to Rli . Every node from the set VT1 belongs to
precisely one ring-tree, while nodes from VT2 belong to exactly one ring. Steiner
nodes may belong to one ring-tree when their inclusion improves the total cost
of solution. The capacity constraint implies that li ≤ qs for all i ∈ {1, . . . , mp},
with mp ≤ m, being m the maximum number of ring-trees allowed.

Here, we consider a relaxation of CRTP, where rings are replaced by arbi-
trary 2-node-connected components. We obtain the Capacitated Two-Node Sur-
vivable Tree Problem, or CTNSTP (see Fig. 1). The CTNSTP also belongs to
the N P-Hard class, since the design of a single component (m = 1, qs = |V |,
VT1 = VS = ∅) is the minimum-cost 2-node-connected spanning network problem
(MW2NCSN), which is N P-Hard [13].

s

Depot node

Steiner node

Type-2 node

Type-1 node

Fig. 1. A feasible solution for the CTNSTP
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3 GRASP Resolution

Greedy Randomized Adaptive Search Procedure (GRASP) is a powerful multi-
start or iterative process, with great success in telecommunications [16]. In
GRASP, feasible solutions are produced in a first phase, while neighbor solu-
tions are explored in a second phase. The best overall solution is returned as
the result. There is a trade-off between greediness (intensification) and random-
ization (diversification), by means of a restricted candidate list. We invite the
reader to consult [15] for a comprehensive study of this metaheuristic. Here, we
sketch the main ingredients of our particular GRASP design, namely, Construc-
tion Phase and Local Search Phase.

3.1 Construction Phase

During the Construction Phase, components will be iteratively built. The goal
is to produce a feasible solution that includes type-2 terminal nodes in 2-node-
connected structures, and type-1 terminal nodes in both 2-node-connected struc-
tures and trees. Let us consider an arbitrary instance for the CTNSTP, a positive
integer k and a maximum number of iterations MaxIter. In order to define our
construction phase, the following four functions will be used:

(1) Pick(m,G,C,MaxIter): returns m terminal nodes v1, . . . , vm (with vi ∈
VT1 ∪VT2) which maximize their total distance to the depot, out of MaxIter
trials. Random(v1, . . . , vm) selects randomly one node of the vi i = 1 · · · m.

(2) Connect(G,C, s, node, k, non connected): returns a set of k node-disjoint
paths between the depot s and node.

(3) ChooseTwo(C , node): chooses 2 paths out of k uniformly at random, for
node. In this way a cycle between s and node was built.

(4) Insert(non connected,G,C): inserts type-2 nodes in the backbone and
type-1 nodes in the backbone or in a tree, taken from the set non connected.

Algorithm 1. Construction Phase
1: input G, C, k, m, MaxIter
2: GSol ← ∅
3: component nodes ← ∅
4: non connected ← VT1 ∪ VT2

5: {v1, . . . , vm} ← Pick(m,G,R,MaxIter)
6: for i=1 to m do
7: node = Random(v1, . . . , vm)
8: C ← Connect(G,C, s, node, k, non connected)
9: Ci ← ChooseTwo(C , node)

10: GSol ← GSol ∪ Ci

11: component nodes[i] ← component nodes[i] ∪ Ci

12: non connected ← non connected − Ci

13: end for
14: GSol ← GSol ∪ Insert(non connected,G,C)
15: return GSol
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The previous functions will be called sequentially. Pick runs MaxIter inde-
pendent random sets of m terminal nodes. It returns the set with minimum
global cost between all the pairs of the set. Once the set v1, . . . , vm is obtained,
Connect is called for each node vi. It applies Bhandari’s algorithm [4] in order
to find the cheapest set of k node-disjoint paths between the depot and terminal
vi (type-1 or type-2). Function ChooseTwo just chooses uniformly at random
two disjoint paths out of k. Finally, in Insert, non-connected type-1 and type-2
nodes are randomly chosen and iteratively added to the smallest component,
meeting feasibility. In this way, the capacity constraint is met during the con-
struction phase. Consider an isolated node v and a component C (see Fig. 2). All
links that belong to other components will be deleted, and the costs of all links
from C are set to 0. An artificial node v′ is connected to every node from C .
Bhandari’s algorithm is applied in order to find k (or possibly less) node-disjoint
paths between v and v′ in the resulting network. Only two disjoint paths between
v and v′ will be chosen. Finally, the resulting links that connect v with C are
added to the solution. Type-1 nodes can either be inserted into an existing tree,
or a new tree can be built for that specific purpose. We pre-check feasibility,
inspecting the values of m, q, and the number of terminal nodes |VT1 ∪ VT2 |
and was checked at the end of the construction phase. Unfeasible solutions are
discarded, there is no re-feasibility solution process.

v

v′
s

l

3

4

Fig. 2. Including node v into component C .

3.2 Local Search Phase

The following functions determine different neighborhood structures. They are
applied in order, whenever they produce savings, using Variable Neighborhood
Descent. First, we present the key idea of each function:

1. Swap-Nodes: picks a random terminal and swaps it with its closest terminal.
2. Move-Node: removes a node, reconnects their neighbors and inserts the

node into a tree or 2-node-connected structure.
3. Crossing-Components: finds close terminal nodes from different 2-node-

connected structures, deletes adjacent links and reconnects the components.
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4. Add-Links: random links are first added and then adequately deleted from
some 2-node-connected structure.

5. Tree-Convert: removes a random number of type-1 nodes in the 2-node-
connected structure of a component, and re-inserts them in a tree.

6. Move-Steiner: first removes and then inserts Steiner nodes.
7. Best Component: replacement of cycles by the best 2-node connected com-

ponent, using an exact ILP based algorithm.

Also, in order not to stuck in local optima, a perturbation process takes
place. Function Shake randomly disconnects a percentage p of terminal nodes
and reconnects them in another way. Type-2 nodes are inserted into a 2-node-
connected component, while type-1 nodes are inserted into existing trees or new
trees are created, in a cost minimization manner. The procedure tries to keep a
balance between the number of 2-connected structures and trees in the solution.
Shake is called after the VND scheme, where the solution is a local optima for
every neighborhood structure.

In the following paragraphs, the seven functions will be explained in full
detail.

Swap-Nodes. This local search selects two nodes and makes an exchange
(swapping) between them. This process starts with a random selection of a
type-1 or type-2 terminal node and tests all possible ways to swap this node
with another close node belonging to a 2-node-connected component (the same
or other) or belonging to a tree. To clarify the concept close we define a neighbor-
hood related to the considered node. Let i be a terminal node and a neighborhood
N defined as follows:

N(i) =

⎧
⎨

⎩
j ∈ VT1 ∪ VT2 : j

are the k nodes closer to node i
taking into account costs cij

defined in original graph G

⎫
⎬

⎭
(1)

It should be noted that to apply the movement, both nodes must belong to the
2-node-connected structure of the component, or they must belong to different
trees. The algorithm picks a random node i and proceeds as follows. Consider
its closest node j. If j belongs to a tree (i belongs to a different tree to allow
move) we exchange the nodes between trees removing each of them and inserting
in the other tree using a Minimum Spanning Tree algorithm [10]. If j is a node
that belongs to a 2-node-connected structure, this function connects adjacent
nodes of j to node i and adjacent nodes of i to node j. Each time a swapping
movement leads to improvement and keeps the feasibility, the current solution
is updated.

Move-Node. This local search performs the extraction of all terminal nodes in
a random order from their current positions in the solution, and relocates them
to another positions either in the 2-node-connected structure of component or
in a tree, improving the overall cost without losing feasibility. We extract a
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terminal node and we reconnect the adjacents to the extracted node. To make
the insertion of the extracted node we consider the neighborhood N(i) defined
above. For each terminal node i we consider all possible insertions between k
closest nodes, and select the movement that produces the lowest total cost. The
algorithm repeats the same procedure for all i ∈ VT1 ∪ VT2 not even considered,
by examining N(i) until finally selecting the movement that produces the lowest
total cost.

Crossing-Components. This local search takes two close nodes, each one
in different 2-node-connected structure of a component, eliminates one of their
adjacent edges (for each node) and connects each pair of nodes (in different
component) by the edge that generates the best cost.

Add-Links. This local search inserts k edges in a 2-node-connected structure
of a selected component. Afterwards the function considers all nodes of degree
3 or greater of the component, and removes one incident edge until leaving the
node degree in 2, without losing feasibility. This process is performed several
times in each component.

Tree-Convert. In this local search, k type-1 terminal nodes belonging to a 2-
node-connected structure of a component are removed, then they are reinserted
in the best positioned tree (if there are any) or a new tree is generated with the
removed node and the best positioned node of the component.

Move-Steiner. This local search works by adequate deletion/insertion of
Steiner nodes. The first stage of this local search considers all Steiner nodes
belonging to the solution, and tries to remove them if the cost is reduced. Then,
greedy insertions are tried in order to reduce the cost as well.

Best-Component. This local search is based on Integer Linear Programming.
This is an exact local search and it always returns the best two-connected com-
ponent, which may be a cycle. Further information about the model used in this
local search can be found in [2]. Given a feasible solution to the problem, we
identify all cycles that exist in each component. For each cycle we apply the
best replacement by a 2-node-connected topology. As stated in Sect. 1, the best
2-node-connected solution covering a certain set of nodes is not necessarily a
cycle, so this local search may include such topologies in our solution. In order
to model this local search we used a particular case of GSP (Generalized Steiner
Problem) [5], with 2-connectivity requirement between every pair of nodes.

4 Experimental Analysis

As far as we know, the closest work is the Capacitated Ring-Tree Problem or
CRTP. In fact, the CTNSTP is a topological relaxation of the CRTP, and every
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Table 1. Values found for instances with 26 nodes.

P r1 |VT2 | |VT1 | |VS | m q lb ub ub0 ub1 Δ t(s)

Q-1 1 0 12 13 3 5 157 157 157 157 0,000 600

0.75 3 9 210 210 215 211 −1,860 600

0.5 6 6 227 227 227 227 0,000 600

0.25 9 3 236 236 236 236 0,000 600

0 12 0 242 242 242 242 0,000 600

Q-2 1 0 12 13 4 4 163 163 164 166 1,220 600

0.75 3 9 207 207 207 207 0,000 600

0.5 6 6 240 240 240 240 0,000 600

0.25 9 3 249 249 249 249 0,000 600

0 12 0 251 251 251 251 0,000 600

Q-3 1 0 12 13 5 3 170 170 173 175 1,156 600

0.75 3 9 242 242 244 244 0,000 600

0.5 6 6 251 251 251 253 0,797 600

0.25 9 3 279 279 279 279 0,000 600

0 12 0 279 279 279 279 0,000 600

Q-4 1 0 18 7 3 7 207 207 207 208 0,483 600

0.75 4 14 256 256 256 256 0,000 600

0.5 9 9 274 274 274 274 0,000 600

0.25 13 5 292 292 292 292 0,000 600

0 18 0 301 301 305 301 −1,311 600

Q-5 1 0 18 7 4 5 217 217 220 223 1,364 600

0.75 4 14 285 285 285 288 1,053 600

0.5 9 9 313 313 318 320 0,629 600

0.25 13 5 334 334 334 334 0,000 600

0 18 0 339 339 339 339 0,000 600

Q-6 1 0 18 7 5 4 227 227 231 232 0,433 600

0.75 4 14 278 278 278 280 0,719 600

0.5 9 9 336 336 336 336 0,000 600

0.25 13 5 361 361 361 361 0,000 600

0 18 0 375 375 375 375 0,000 600

Q-7 1 0 25 0 3 10 245 245 248 248 0,000 600

0.75 6 19 294 294 294 296 0,680 600

0.5 13 12 313 313 313 313 0,000 600

0.25 18 7 327 327 327 327 0,000 600

0 25 0 328 328 328 328 0,000 600

Q-8 1 0 25 0 4 7 252 252 267 268 0,375 600

0.75 6 19 311 311 315 319 1,270 600

0.5 13 12 345 345 345 347 0,580 600

0.25 18 7 357 357 357 357 0,000 600

0 25 0 362 362 362 362 0,000 600

Q-9 1 0 25 0 5 6 254 254 262 268 2,290 600

0.75 6 19 319 319 322 326 1,242 600

0.5 13 12 369 369 372 372 0,000 600

0.25 18 7 378 378 379 378 −0,264 600

0 25 0 396 396 397 396 −0,252 600
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Table 2. Values found for instances with 51 nodes.

P r1 |VT2
| |VT1

| |VS | m q lb ub ub0 ub1 Δ t(s)

Q-10 1 0 12 38 3 5 156 156 156 156 0,000 3600

0.75 3 9 190 190 196 196 0,000 3600

0.5 6 6 213 213 215 217 0,922 3600

0.25 9 3 222 222 222 222 0,000 3600

0 12 0 242 242 242 242 0,000 3600

Q-11 1 0 12 38 4 4 159 159 163 166 1,807 3600

0.75 3 9 209 209 209 209 0,000 3600

0.5 6 6 230 230 230 230 0,000 3600

0.25 9 3 238 238 238 238 0,000 3600

0 12 0 251 251 251 251 0,000 3600

Q-12 1 0 12 38 5 3 170 170 172 173 0,578 3600

0.75 3 9 203 203 203 203 0,000 3600

0.5 6 6 251 251 251 253 0,791 3600

0.25 9 3 278 278 278 278 0,000 3600

0 12 0 279 279 279 279 0,000 3600

Q-13 1 0 25 25 3 10 245 245 248 248 0,000 3600

0.75 6 19 293 302 305 306 0,327 3600

0.5 12 13 311 311 312 312 0,000 3600

0.25 18 7 322 322 322 322 0,000 3600

0 25 0 328 328 328 328 0,000 3600

Q-14 1 0 25 25 4 7 252 252 267 269 0,743 3600

0.75 6 19 304 304 321 321 0,000 3600

0.5 12 13 341 352 352 355 0,845 3600

0.25 18 7 357 357 357 357 0,000 3600

0 25 0 362 362 362 362 0,000 3600

Q-15 1 0 25 25 5 6 254 254 262 267 1,873 3600

0.75 6 19 331 335 339 337 −0,593 3600

0.5 12 13 359 370 372 372 0,000 3600

0.25 18 7 372 387 387 385 −0,519 3600

0 25 0 390 390 397 392 −1,276 3600

Q-16 1 0 37 13 3 14 304 304 304 304 0,000 3600

0.75 9 28 350 375 375 377 0,531 3600

0.5 18 19 364 376 378 376 −0,532 3600

0.25 27 10 379 379 380 379 −0,264 3600

0 37 0 380 380 381 380 −0,263 3600

Q-17 1 0 37 13 4 11 308 308 309 310 0,323 3600

0.75 9 28 363 363 369 376 1,862 3600

0.5 18 19 384 399 399 403 0,993 3600

0.25 27 10 396 404 404 404 0,000 3600

0 37 0 410 410 418 412 −1,456 3600

Q-18 1 0 37 13 5 9 314 314 314 314 0,000 3600

0.75 9 28 374 408 408 412 0,971 3600

0.5 18 19 401 431 431 435 0,920 3600

0.25 27 10 417 436 436 433 −0,693 3600

0 37 0 446 446 452 446 −1,345 3600

Q-19 1 0 50 0 3 19 376 376 377 380 0,789 3600

0.75 12 38 418 427 436 438 0,457 3600

0.5 25 25 435 445 447 450 0,667 3600

0.25 37 13 451 451 454 454 0,000 3600

0 50 0 462 462 473 465 −1,720 3600

Q-20 1 0 50 0 4 14 384 384 386 392 1,531 3600

0.75 12 38 423 458 458 456 −0,439 3600

0.5 25 25 448 493 493 496 0,605 3600

0.25 37 13 471 502 502 496 −1,210 3600

0 50 0 493 493 513 499 −2,806 3600

Q-21 1 0 50 0 5 12 390 390 392 396 1,010 3600

0.75 12 38 447 491 501 506 0,988 3600

0.5 25 25 478 526 526 531 0,942 3600

0.25 37 13 497 525 525 523 −0,382 3600

0 50 0 522 526 541 526 −2,852 3600
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Table 3. Values found for instances with 76 nodes.

P r1 |VT2
| |VT1

| |VS | m q lb ub ub0 ub1 Δ t(s)

Q-22 1 0 18 57 3 7 213 213 214 216 0,935 3600

0.75 4 14 272 272 272 276 1,471 3600

0.5 9 9 288 318 318 318 0,000 3600

0.25 13 5 303 318 318 318 0,000 3600

0 18 0 331 331 332 331 −0,301 3600

Q-23 1 0 18 57 4 5 232 232 235 236 0,426 3600

0.75 4 14 302 309 312 314 0,641 3600

0.5 9 9 336 336 336 336 0,000 3600

0.25 13 5 359 369 369 367 −0,542 3600

0 18 0 386 386 390 386 −1,026 3600

Q-24 1 0 18 57 5 4 257 257 259 265 2,317 3600

0.75 4 14 325 325 325 326 0,308 3600

0.5 9 9 368 379 379 379 0,000 3600

0.25 13 5 397 397 397 397 0,000 3600

0 18 0 448 448 451 448 −0,665 3600

Q-25 1 0 37 38 3 14 320 320 320 320 0,000 3600

0.75 9 28 363 390 390 396 1,538 3600

0.5 18 19 372 402 402 405 0,746 3600

0.25 27 10 390 403 403 406 0,744 3600

0 37 0 409 409 413 409 −0,969 3600

Q-26 1 0 37 38 4 11 326 326 336 339 0,893 3600

0.75 9 28 382 402 402 408 1,493 3600

0.5 18 19 410 455 455 459 0,879 3600

0.25 27 10 418 460 460 458 −0,435 3600

0 37 0 446 458 458 454 −0,873 3600

Q-27 1 0 37 38 5 9 340 340 343 350 2,041 3600

0.75 9 28 407 446 446 442 −0,897 3600

0.5 18 19 426 473 473 474 0,211 3600

0.25 27 10 443 497 497 485 −2,414 3600

0 37 0 477 506 506 502 −0,791 3600

Q-28 1 0 56 19 3 21 383 383 395 398 0,759 3600

0.75 14 42 427 462 462 469 1,515 3600

0.5 28 28 438 477 477 480 0,629 3600

0.25 42 14 461 465 472 474 0,424 3600

0 56 0 476 476 495 480 −3,030 3600

Q-29 1 0 56 19 4 16 389 389 402 406 0,995 3600

0.75 14 42 441 488 488 489 0,205 3600

0.5 28 28 466 520 520 525 0,962 3600

0.25 42 14 492 532 532 530 −0,376 3600

0 56 0 514 535 543 536 −1,289 3600

Q-30 1 0 56 19 5 13 399 399 414 420 1,449 3600

0.75 14 42 469 533 533 536 0,563 3600

0.5 28 28 493 554 554 554 0,000 3600

0.25 42 14 512 558 558 549 −1,613 3600

0 56 0 546 557 561 554 −1,248 3600

Q-31 1 0 75 0 3 28 473 473 478 483 1,046 3600

0.75 18 57 516 551 551 566 2,722 3600

0.5 37 38 537 564 564 566 0,355 3600

0.25 56 19 554 564 573 568 −0,873 3600

0 75 0 572 572 584 575 −1,541 3600

Q-32 1 0 75 0 4 21 482 482 494 500 1,215 3600

0.75 18 57 531 573 573 575 0,349 3600

0.5 37 38 552 612 612 614 0,327 3600

0.25 56 19 586 618 618 616 −0,324 3600

0 75 0 603 626 626 620 −0,958 3600

Q-33 1 0 75 0 5 17 488 488 495 501 1,212 3600

0.75 18 57 552 623 623 630 1,124 3600

0.5 37 38 585 623 623 625 0,321 3600

0.25 56 19 608 656 656 650 −0,915 3600

0 75 0 641 674 674 667 −1,039 3600
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Table 4. Values found for instances with 101 nodes.

P r1 |VT2
| |VT1

| |VS | m q lb ub ub0 ub1 Δ t(s)

Q-34 1 0 25 75 3 10 274 274 282 282 0,000 7200

0.75 6 19 314 314 327 325 −0,612 7200

0.5 12 13 337 353 353 350 −0,850 7200

0.25 18 7 356 363 363 363 0,000 7200

0 25 0 366 366 366 366 0,000 7200

Q-35 1 0 25 75 4 7 289 289 293 293 0,000 7200

0.75 19 6 344 367 367 367 0,000 7200

0.5 12 13 367 405 405 404 −0,247 7200

0.25 18 7 385 416 416 418 0,481 7200

0 25 0 409 425 425 423 −0,471 7200

Q-36 1 0 25 75 5 6 299 299 299 299 0,000 7200

0.75 19 6 361 393 393 390 −0,763 7200

0.5 12 13 378 403 403 401 −0,496 7200

0.25 18 7 407 429 429 432 0,699 7200

0 25 0 440 452 452 450 −0,442 7200

Q-37 1 0 50 50 3 19 411 411 411 411 0,000 7200

0.75 12 38 457 492 492 490 −0,407 7200

0.5 25 25 473 499 499 496 −0,601 7200

0.25 37 13 483 503 503 499 −0,795 7200

0 50 0 493 508 523 516 −1,338 7200

Q-38 1 0 50 50 4 14 415 415 420 423 0,714 7200

0.75 12 38 460 480 480 481 0,208 7200

0.5 25 25 484 517 517 512 −0,967 7200

0.25 37 13 501 531 531 528 −0,565 7200

0 50 0 525 537 537 532 −0,931 7200

Q-39 1 0 50 50 5 12 426 426 443 445 0,451 7200

0.75 12 38 481 505 505 505 0,000 7200

0.5 25 25 495 527 527 524 −0,569 7200

0.25 37 13 523 564 564 556 −1,418 7200

0 50 0 553 574 574 570 −0,697 7200

Q-40 1 0 75 25 3 28 511 511 516 517 0,194 7200

0.75 18 57 555 594 594 588 −1,010 7200

0.5 37 38 570 592 592 596 0,676 7200

0.25 56 19 588 612 612 610 −0,327 7200

0 75 0 606 606 622 613 −1,447 7200

Q-41 1 0 75 25 4 21 516 516 519 521 0,385 7200

0.75 18 57 559 595 595 597 0,336 7200

0.5 37 38 582 607 607 603 −0,659 7200

0.25 56 19 603 619 619 612 −1,131 7200

0 75 0 624 639 642 632 −1,558 7200

Q-42 1 0 75 25 5 17 522 522 529 531 0,378 7200

0.75 18 57 584 653 653 654 0,153 7200

0.5 37 38 598 645 645 644 −0,155 7200

0.25 56 19 622 670 670 662 −1,194 7200

0 75 0 649 689 689 686 −0,435 7200

Q-43 1 0 100 0 3 38 555 555 555 556 0,180 7200

0.75 25 75 611 652 652 654 0,307 7200

0.5 50 50 624 657 660 660 0,000 7200

0.25 75 25 644 648 656 652 −0,610 7200

0 100 0 663 663 683 677 −0,878 7200

Q-44 1 0 100 0 4 28 564 564 568 568 0,000 7200

0.75 25 75 624 663 663 666 0,452 7200

0.5 50 50 644 690 690 682 −1,159 7200

0.25 75 25 665 683 691 684 −1,013 7200

0 100 0 684 700 700 692 −1,143 7200

Q-45 1 0 100 0 5 23 570 570 576 580 0,694 7200

0.75 25 75 629 695 695 698 0,432 7200

0.5 50 50 674 717 717 722 0,697 7200

0.25 75 25 689 730 730 714 −2,192 7200

0 100 0 709 743 743 733 −1,346 7200
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feasible solution of the latter is feasible in the former. We refer to the work on
the CRTP in [7]. In that paper, a considerable number of problem instances used
are solved to optimality and those that are unsolved have lower bounds that will
guide us to measure the results generated by our application. We use the test
instances provided by Hill and reported in [6,7]. These instances are originated
in the Class A instances of CmRSP in [1]. For each Class A instance, a partition
of terminal nodes in type-1 and type-2 was made with different distribution of
such kind of nodes, summarizing 5 instances for [0, 0.25, 0.5, 0.75, 1] percentage
of type-1 nodes. We performed 10 executions for each instance and we presented
the best value.

Tables 1, 2, 3 and 4 present a contrast between the optimal solution (when it
was reached, otherwise the lower bound) achieved for the CRTP in [7] and the
optimal solution for the CTNSTP found in our metaheuristic. The acronyms are
the following: P is the identifier of the instance, r1 is the percentage of type-1
nodes, |VT2 |, |VT1 | and |VS | are the number of type-2, type-1 and Steiner nodes
of the instance respectively, m is the maximum number of components and q
the capacity of each component. Acronyms lb and ub are the lower and upper
bound in the exact resolution method [7], ub0 is the cost of solution using the
approximate method in [6] and ub1 the optimum produced by our metaheuristic.
The parameter Δ is a measure of our GRASP-VND effectiveness, we compare
the results produced by our metaheuristic with the results reported in [6]. The
relative reduction is Δ = ub1−ub0

ub0
. This means that our proposal outperforms

the previous solution whenever Δ < 0. Column ub is in bold face when ub = lb
and therefore ub is the global optimum. Column ub0 is in bold face when the
value in [6] reaches global optimum [7]. Column ub1 (our value) is in bold face
when it outerperforms ub0 [6]. Finally, the value t(s) is a time limit (in seconds)
imposed to each run of our algorithm; this means that it stops either when it
performs the specified number of GRASP iterations or when it reaches the time
limit. We can note that from 225 instances, we obtained the global optimum in
55 of them, better results in 73 instances, and the average gap was 0.099.

5 Conclusions and Trends for Future Work

The Capacitated Two-Node Survivable Tree Problem (CTNSTP) has been intro-
duced. As far as we know, it has not been studied in prior literature. The
need for redundancy and cheaper costs in network deployment is remarkable.
Inspired by theoretical results and the related problem CmRSP, we propose an
alternative problem where rings are replaced by arbitrary two-node connected
components. Both problems are computationally intractable. Therefore, heuris-
tics are suitable for large case scenarios. The CTNSTP has been heuristically
addressed using a GRASP metaheuristic enriched with a Variable Neighborhood
Descent (VND) and one exact local search. Results from the literature concern-
ing CRTP were taken as reference for comparison. The reader can appreciate
from the results that the resulting topologies in our CTNSTP produce relative
savings with respect to the CRTP. However, the components obtained in the
solutions were cycles instead of other two-connected topologies. Further research
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is needed in order to understand the nature of problem instances which influence
these results. In general terms, we can say that our proposed heuristic algorithm
improves results of other existing heuristics conceived for a more particular prob-
lem. Moreover, our algorithm is able to potentially solve a more general problem.

The problem introduced in this work can be extended in a suitable way
to model delay-sensitive applications. To meet this goal, diameter constraints
should be introduced to ensure connectivity between terminal nodes by a limited
number of hops.
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Abstract. As High Performance Computing (HPC) systems get closer
to exascale performance, job dispatching strategies become critical for
keeping system utilization high while keeping waiting times low for jobs
competing for HPC system resources. In this paper, we take a data-
driven approach and investigate whether better dispatching decisions
can be made by transforming the log data produced by an HPC sys-
tem into useful knowledge about its workload. In particular, we focus on
job duration, develop a data-driven approach to job duration prediction,
and analyze the effect of different prediction approaches in making dis-
patching decisions using a real workload dataset collected from Eurora, a
hybrid HPC system. Experiments on various dispatching methods show
promising results.

1 Introduction

High Performance Computing (HPC) systems have become fundamental “instru-
ments” for doing science much like microscopes and telescopes were during the
previous century. The race towards exascale (1018 operations per sec.) HPC sys-
tems is in full swing with several efforts underway. Pushing current HPC systems
to exascale performance requires a 50-fold increase in their speed and an order of
magnitude increase in their energy efficiency [6]. While we can expect progress
in hardware design to be a major contributor towards these goals, rest of the
increase has to come from software techniques and from massive parallelism
employing millions of processor cores. At these scales, job dispatching strategies
become critical for keeping system utilization high while keeping waiting times
low for jobs that are competing for HPC system resources.

HPC systems produce large amounts of data in the form of logs tracing
resource consumption, errors and various other events during their operation.
Data science can transform this raw data into knowledge through models built
from historical data capable of anticipating unseen or future events. We believe
c© Springer International Publishing AG 2018
G. Nicosia et al. (Eds.): MOD 2017, LNCS 10710, pp. 449–461, 2018.
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that predictive computational models obtained through data-science tools will
be indispensable for the operation and control of future HPC systems.

In an HPC system, a dispatcher decides which jobs to run next among those
waiting in the queue (scheduling) and on which resources to run them (allo-
cation). Ideally, dispatching decisions should complete all jobs in the shortest
amount of time possible while keeping the system utilization high. This goal is
achievable only with complete a priori knowledge of the workload which is rarely
available at dispatching time. We therefore rely on predictive models to obtain
useful knowledge about the workload from the log data of an HPC system, with
the purpose of making better dispatching decisions. In particular, we focus on
job duration, investigate an approach to job duration prediction based on the
data available at job submission, and subsequently study the power of different
approaches to prediction in making dispatching decisions. Our data-driven app-
roach is based on a real workload dataset collected from Eurora [2], a hybrid
HPC system equipped with CPU, GPU and MIC technologies to deliver high
power efficiency. Experimental results on various dispatching methods show that
job duration prediction can significantly benefit dispatching decisions in general,
and specifically our simple data-driven approach can offer a valid alternative.

The contributions of this paper are twofold: (i) development of a simple yet
effective data-driven approach for job duration prediction, (ii) analysis of the
effect of different prediction approaches on various state-of-the-art dispatching
methods.

The rest of the paper is organized as follows. In Sects. 2, 3 and 4, we describe
the dataset used, the prediction approaches and the dispatching methods in con-
sideration, respectively. In Sect. 5, we evaluate the reliability of the predictions
and then their impact on dispatching decisions. We discuss the related work in
Sect. 6 and conclude in Sect. 7 with indications for future work.

2 Data Description

The workload dataset used throughout this paper comes from the Eurora system
which is hosted at CINECA1, the largest datacenter in Italy, and was ranked
first on the Green500 list in July 2013. Eurora has a modular architecture based
on nodes (blades), each one having 2 octa-core CPUs and 2 expansion cards that
can be configured to host an accelerator module. Of the 64 nodes, half of them
host 2 powerful NVidia GPUs, meanwhile the other half are equipped with 2
Intel MIC accelerators. Each node has 16 GB of RAM memory. These 64 nodes
are dedicated exclusively to computation, with the user interface being managed
by a separate node. Eurora has been used by scientists across Italy to perform
simulation studies from different fields, hence the workload is heterogeneous.

The workload data includes logs for over 400,000 jobs submitted between
March 2014 and August 2015. For each job, we have information on the submis-
sion, start and end times, queue, wall-time, user and job name, together with
1 The Italian Inter University Consortium for High Performance Computing (http://

www.cineca.it).

http://www.cineca.it
http://www.cineca.it


Data-Driven Job Dispatching in HPC Systems 451

Fig. 1. Distribution of job durations on Eurora.

resources used and their allocation on the various nodes. The data has been
collected through a dedicated monitoring system [6]. For our study, we selected
the 10 busiest months, resulting in a total of 372,321 jobs. Figure 1 shows the
distribution of job durations of the selected workload. The maximum job dura-
tion is 24 h. The figure demonstrates the existence of many short jobs and fewer
longer jobs, with a long tailed distribution of job duration. As observed earlier,
this is typical to HPC [21] and cloud systems [9], hence results on this system
should apply to large scale computational infrastructures in general.

To evaluate the effects of prediction on different job types, we divided the jobs
into classes: short jobs with duration of under 1 h, medium jobs with duration
between 1 and 12 h, long jobs with duration over 12 h. In terms of frequency,
93.15% of jobs fall into the short class (the vast majority), 6.82% into the medium
class and only 0.03% into the long class. We also computed the CPU time used by
jobs in each class. It is the medium class that uses most resources, with 87.63%
of the total while short and long jobs use only 10.77% and 1.6%, respectively.

3 Job Duration Prediction

Duration of jobs is an important consideration in dispatching decisions and
knowing them at job submission time clearly facilitates better algorithms. Dis-
patching algorithms are often developed with the assumption that job durations
are known [4,17]. Even if this is not practical, in some cases it may be possible
to rely on user-provided estimates of job duration [7,17]. Many HPC systems
allow users to define a wall-time value, and use a default value when users fail
to provide one. This wall-time, which in the case of Eurora is set on a per-queue
basis, can be considered a crude prediction of job duration.

It has been shown that in general user estimations are not reliable [17],
while predefined wall-times are inflexible to account for all user needs. In these
conditions, prediction of job duration through other means may prove to be an
important resource. Here, we describe a simple data-driven heuristic algorithm
that relies on user histories to predict job duration. The data-driven approach
is particularly useful when user data can be stored for longer periods of time,
which is increasingly feasible through modern Big Data tools and techniques.
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Our heuristic constructs job profiles from the available workload data. The
profile includes job name, queue name, user-declared wall-time, and the number
of resources of each type (CPU, GPU, MIC, nodes) requested. Each user is
analyzed separately. Prediction is based on the observation that jobs with the
same or similar profiles have the same duration for long periods of time—there is
a temporal locality of job durations. Then, at some point, the duration changes
to a new set of values, which are again stable in time. This could be due for
instance to changes in user behavior: a user first tests the code with short runs,
then decides to run the real simulation which may last longer, then may decide
to test again after having made changes, and so on. Another explanation could
be switching between input datasets: the user performs repeated runs on one set
of data, then moves to another. Hence, for each new job, our heuristic searches
for the last job with a similar profile, and uses the duration of that job to predict
the duration of the new one. We analyze users separately. The similar profile is
identified using a set of consecutive rules. First, a full profile match is searched
for, then if this does not exist in the user history, a profile where the job name
has the same prefix is looked up. This follows from the observation that users
often name jobs with similar durations with the same job name followed by a
number (e.g. “job1”, “job2”). If this is unsuccessful, we allow for resources used
to differ, as long as the full job name, queue and wall-time are the same. If also
this search fails, we look for the same match but with the name prefix rather
than the exact name. If none of these rules give a match, we look for the last job
with the same name, or, as a last resort, the same name prefix. If all rules fail,
then we take the wall-time as the predicted duration. In all cases, the prediction
is capped by the wall-time.

We have also used machine learning to predict job duration. However, results
were not satisfactory (not shown for space reasons), with our simple heuristic
providing much better performance. We believe this is due to the temporal local-
ity observed in the data, and also due to the fact that jobs with the same profile
may have several different durations depending on when they were submitted.
This means that a regular regression model would try to fit a wide range of values
with the same features, resulting in an averaging of the observed durations.

4 Job Dispatching Methods

Job dispatching in HPC systems is an optimization problem which has been
studied extensively [11,15]. Since it is a hard problem [14], most of the proposed
solutions are heuristic-based methods, which are fast but do not guarantee opti-
mality. In this paper, we examine 5 of such methods reported in the literature. In
the following, we give intuitions for the algorithms underlying these dispatching
methods. We note that in the first three, we have adopted the all-requested-
computers-available policy for resource allocation [24]. For each scheduled job,
this policy searches sequentially the nodes in an attempt to find resources avail-
able for running the job, and if succeeds, it maps the job onto those nodes. The
resource allocation policy of the remaining two are custom made and explained
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in their respective subsections. In all methods, the objective of the dispatcher is
to minimize the total waiting time of the submitted jobs. The waiting time of a
job is the time passed between its submission and its starting time.

Shortest job first, longest job first. Shortest Job First (SJF) and Longest Job
First (LJF) use the estimated duration at scheduling time, sorting all jobs that
have to be scheduled in ascending (or descending) order, and then mapping the
shortest job (or the longest job) to a resource [23]. Both algorithms continue
moving through the sorted list until no available resources remain for allocating
to the current job. The aim of SJF is to reduce the waiting time of the short jobs,
thus causing delays for the execution of the long jobs. Conversely, LJF reduces
the waiting time of the long jobs, causing slowdown for short jobs.

EASY-Backfilling. A key element of many commercial dispatchers is the back-
filling algorithm [24] which starts scheduling jobs stepping through a priority
list such as SJF or LJF, or commonly (as also adopted here) using the jobs’
submission order (first-in-first-out policy). If a job cannot be dispatched due to
lack of available resources (blocked job), backfilling calculates the time in the
future when enough resources will be released to run the blocked job, based on
the estimated duration of running jobs. While the blocked job is waiting, the
dispatcher maps other jobs in the queue over the available resources. If, however,
the durations have been underestimated, the resources for the blocked job will
not be available when needed, which can force termination of the running jobs.
In such a case, EASY-Backfilling (EBF) [24] does not terminate the running
jobs but instead delays the starting time of the blocked job. To keep all the jobs
running until their termination, we have here adopted EBF.

Priority rule-based. As an extension of the first-in-first-out policy, many dis-
patchers sort the set of jobs to be scheduled by certain priority, running those
with higher priorities first. This algorithm is referred to as Priority Rule-Based
(PRB) [1,18] and is widely used in commercial HPC dispatchers2,3. In our work,
the priority rules are based on [7] and sort the jobs to be scheduled in decreas-
ing order of the jobs’ urgency in leaving the queue. To determine if a job could
wait in the queue, the ratio between the waiting time and the expected waiting
time (assumed to be available for each queue the jobs are submitted) of the job
is calculated. Then, jobs that are closer to surpass their expected waiting time
have priority over the jobs that still could wait in the queue. As a tie breaker
the “job demand” is used, which is the job’s resource requirements multiplied
by the estimated job duration. Hence, among the high priority jobs, those that
have requested less resources and have shorter durations have further priority.
The allocation process tries to assign each job to the nodes containing resources
available for running the job. The nodes are also sorted by their current load
(nodes with fewer free resources are preferred), thus trying to fit as many jobs
as possible on the same node, to decrease the fragmentation of the system.
2 Altair PBS Works (http://www.pbsworks.com/).
3 SLURM Workload Manager (https://slurm.schedmd.com/).

http://www.pbsworks.com/
https://slurm.schedmd.com/
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Hybrid constraint programming method. One of the drawbacks of the heuris-
tic methods is the limited exploration of the solution space. Recently, new
approaches have been proposed to improve the performance of traditional
scheduling, without violating the real-time requirements. For example, Bartolini
et al. [5] propose a HPC job dispatcher based on Constraint Programming (CP)
that is able to outperform traditional PRB methods. To increase scalability,
Borghesi et al. introduce a hybrid approach combining CP and a heuristic algo-
rithm [7] (CPH). We adopted this last method in this paper.

CPH is composed of two stages. The first corresponds to scheduling the jobs
using CP with the objective of minimizing the total waiting time. The schedule
is generated using a relaxed model of the problem which considers each resource
type as one unique resource, i.e., CPU availability corresponds to the sum of the
available CPUs of all the computing nodes, memory availability corresponds to
the sum of the memory availability of all the computing nodes, and so on. The
model is solved with a custom search strategy guided by a branching heuris-
tic using the scheduling policy of PRB. Due to the problem complexity, we do
not insist on finding optimal solutions but impose a time limit to bound the
search; the best solution found within the limit is the scheduling decision. The
preliminary schedule generated in the first stage may contain some inconsisten-
cies because of considering the available resources as a whole. During the sec-
ond stage, which corresponds to the resource allocation, any inconsistencies are
removed. If a job can be mapped to a node then it will be dispatched, otherwise
it will be postponed. The second stage uses the allocation policy of PRB.

5 Experimental Results

We have implemented a discrete event simulator for job submission and job
dispatching, named AccaSim4, and used it to simulate the Eurora system with
the workload trace described in Sect. 2. AccaSim is a freely available Python
library. At every time point, it checks if there are jobs to be dispatched. If
so, it calls a dispatching method to generate a dispatching decision, and then
simulates the running of the jobs on the system. AccaSim library already includes
the implementations of the SJF, LJF and EBF dispatching methods. The PRB
and CPH implementations are available for download in the AccaSim website.
The experiments were ran on a CentOS machine equipped with Intel Xeon CPU
E5-2640 Processor and 15 GB of RAM.

The simulation study considered the five dispatching methods described in
Sect. 4 together with three estimations of job duration: prediction based on wall-
time (W), data-driven prediction presented in Sect. 3 (D) and real duration (R).
The real duration was included to provide a baseline to which the other two
predictions are compared. Therefore, for each of the five dispatching methods,
there are three estimations of job duration, resulting in 15 combinations (e.g., for
the SJF method we have SJF-W, SJF-D and SJF-R corresponding to wall-time
prediction, data-driven prediction and real duration, respectively).
4 https://sites.google.com/view/accasim.

https://sites.google.com/view/accasim
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To compare the quality of the dispatching decisions of the 15 combinations,
we have selected two criteria. The first is job slowdown, a common metric for
evaluating job scheduling algorithms [16], which quantifies the effect of each
method on the jobs themselves and is directly perceived also by the HPC users.
Slowdown of a job j is a normalized waiting time and is defined as slowdownj =
(Tw,j + Tr,j)/Tr,j where Tw,j is the waiting time and Tr,j is the duration of
job j. A job waiting more than its duration has a higher slowdown than a job
waiting less than its duration. The second criterion is the number of queued jobs
at a given time. This metric is a measure of the effects of dispatching on the
computing system itself, being directly related to system throughput: the lower
the number of waiting jobs, the higher the throughput.

Next, we present the performance of our data-driven prediction of job dura-
tion and then continue with the evaluation of the various dispatching methods.

5.1 Prediction Performance

To evaluate the performance of our data-driven prediction of job duration, we
compute the absolute error of the prediction and compare with that of the wall-
time prediction. Over all the jobs in the system, our algorithm obtains a mean
absolute error of 38.9 min. Using the wall-time, on the other hand, results in a
mean absolute error of 225.11 min. Figure 2 shows the distribution of the absolute
errors in the two cases, showing that in the data-driven case, these are concen-
trated towards small values, while in the case of the wall-time the distribution
peaks at errors over 1 h. The plot shows clearly that our data-driven prediction
produces much better results compared to wall-time prediction.

Fig. 2. Absolute data-driven prediction error, compared to wall-time prediction.

5.2 Dispatching Performance Using Prediction

To analyze the effects of prediction on job dispatching, we plot the distribution
of our evaluation criteria for all 15 combinations of the dispatching methods
and duration predictions. For easy visualization of distributions, we use box-
plots that show the minimum and maximum values (top and bottom horizontal



456 C. Galleguillos et al.

Fig. 3. Distribution of job slowdown for each method.

lines), the range between the 1st and 3rd quartiles (the colored box), the median
(horizontal line within the box) and the mean (the triangles). Note that with
the logarithmic scale on the vertical axis, some of these elements may be missing
from the plots, meaning their value is zero.

Effects of Prediction on Jobs. The first analysis looks at job slowdown for all
372,321 jobs dispatched. Figure 3 shows the distribution of slowdown achieved
by each dispatching method with each prediction type. For better visualiza-
tion, we plot only the jobs where slowdown is different from 1 in at least one
method-prediction combination. The removed jobs are those that are dispatched
immediately as they arrive in the system, so are not relevant for our compari-
son. As the figure shows, the dispatching methods displaying best performance
when the most basic and least effective prediction is used (wall-time) are PRB
and CPH, while the methods performing worst are LJF and SJF. This is under-
standable since the latter methods are quite simple while the former employ
more sophisticated reasoning.

An interesting effect when using real duration is that not all dispatching
methods show a clear benefit. While we observe a clear decrease in slowdown in
SJF, EBF and CPH, for LJF a significant increase in slowdown is present, while
for PRB no change is observed. We understand that prediction does not always
help the dispatching methods. One possible explanation is that the incomplete
nature of the dispatching methods tends to lead to suboptimal decisions which
can sometimes be compensated by underestimation of job durations, which will
not be possible anymore with a (perfect) prediction.

When using our data-driven prediction in the dispatching methods, we expect
the performance to stay between the wall-time prediction and the real job dura-
tion. Figure 3 shows that this is true for most methods. In the cases of SJF and
EBF, the real job duration improves the results, so does our prediction, albeit
less effectively. In the case of LJF, real job duration worsens the results, so does
our prediction, but less severely. PRB, which already does not benefit from real
job duration, does not benefit from our prediction either. The only dispatching
method where the performance improves with perfect prediction but decreases
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Fig. 4. Distribution of job slowdown for short, medium and long jobs for each method.

with our prediction is CPH. We believe this is because our data-driven pre-
diction may sometimes underestimate job duration, which is never the case for
wall-time and the real duration. CPH is not resilient to job duration underesti-
mation, hence an imperfect prediction can actually be detrimental.

Even if PRB and CPH provide the best overall results, we observe that
SJF comes in very close, with comparable slowdown, when adding prediction.
However, the first two methods are more sophisticated and incur an overhead
when building the dispatching decisions, while SJF is a very simple strategy.
Hence, in the presence of predictions, one may prefer to use a simple method
such as SJF over the heavier methods such as PRB and CPH.

To better understand the effects of prediction, we also look at the different
job classes. Figure 4 shows box-plots of slowdown distributions for short, medium
and long jobs. When prediction is beneficial, we see that the jobs that benefit
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Fig. 5. Distribution of number of jobs waiting at every second, for each method.

most are the short ones. This is good news, given that a large number of our
jobs are short, as we saw in Sect. 2. Some smaller differences are also visible on
medium jobs, while on long jobs the methods seem to be quite comparable, with
slightly larger slowdown values in CPH and SJF compared to the rest.

Effects of Prediction on the System. Besides effects on individual jobs, it
is important to understand prediction’s role in improving system-level behavior.
For this we look at the size of the waiting queue. Figure 5 shows the distribu-
tion of the number of jobs in the queue at every second. We removed from the
plot those time points where there were no jobs in the queue for any of the 15
combinations, because these corresponded to low system utilizations and have
no value for our comparison. The figure shows that the effect on the system is
similar to the performance measured by the slowdown. In particular, SJF and
EBF are improved by prediction (both data-driven and real durations). PRB
shows no difference, however queue size is already the shortest among all dis-
patching methods. LJF does not benefit from prediction, while CPH seems to
be improved only by perfect and not by our data-driven prediction.

We also looked at the distribution of resource utilization (amount of CPUs,
GPUs, MICs and memory used at each second), but we observed minor differ-
ences in the total use of resources between methods, so results are not shown.

6 Related Work

A number of previous efforts have developed techniques for predicting interest-
ing aspects of workloads such as power consumption and job duration [10,20].
Borghesi et al. [8] propose a machine learning approach to forecast the mean
power consumption of HPC applications using only information available at
scheduling time, such as the resources requested, the maximum duration, the
user, etc. Sirbu et al. [22] present a support vector machine model to predict the
power consumption of jobs, taking also into account their variability.

Predicting the durations of HPC jobs have also been considered in previous
research works, especially in relation to job dispatching [3,19]. Tsafrir et al. [12]



Data-Driven Job Dispatching in HPC Systems 459

propose a model that uses the run times of the last two jobs to predict the
duration of the next job. This prediction is then used for scheduling purposes.
Their approach is lightweight and efficient, however, the prediction accuracy can
be improved using more complex techniques like the ones proposed in this paper.
Gaussier et al. [13] show the importance of estimating the duration of HPC jobs
with backfilling schedulers. Their results clearly suggest that a backfilling policy
benefits from accurate duration predictions; the only limitation is that their work
focuses exclusively on a particular scheduling algorithm.

7 Conclusions

We have presented an analysis of the effect of job duration prediction on HPC job
dispatching decisions, based on a real workload dataset collected from Eurora, a
hybrid HPC system. We implemented five state-of-the-art dispatching methods
and studied their performance in the presence of predictions based on a data-
driven heuristic and on estimates based on wall-time. These two approaches to
prediction were compared among themselves and also against a baseline: perfect
prediction using the real job duration from the data.

Our conclusions are severalfold. First, our data-driven approach results in
more effective predictions than the estimates based on wall-time. Second, even
a perfect prediction does not necessarily benefit dispatching methods. One pos-
sible explanation is that the incomplete nature of the dispatching methods tend
to lead to suboptimal decisions which can sometimes be compensated by under-
estimation of job durations. Third, prediction is nevertheless beneficial in the
majority of the methods we have considered, and in the presence of our data-
driven prediction, a simple dispatching method can become a valid alternative
to the sophisticated state-of-the-art methods. Finally, when using prediction is
advantageous, the main beneficiaries are the short jobs. Given the prominent
presence of short jobs in typical HPC [21] and cloud system [9] workloads, our
conclusions should apply to large-scale computational infrastructures in general.

The dispatching methods presented here exploit prediction in their scheduling
component. In future work, we will also develop allocation heuristics that can
exploit prediction, especially in the case of hybrid HPC systems. Additionally, we
plan to extend our job duration prediction heuristic to include resources shared
with other jobs, similar to [22], to improve our prediction power. Finally, we plan
to integrate power predictions [22] into the dispatchers, to optimize not only the
system response, but also energy consumption, which is mandatory for building
exascale systems.
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Abstract. This paper introduces AbstractNet, a generative model for high
density inputs. The model suggests a method that uses unsupervised learning to
generate feature maps. The model drastically improves the performances of raw
audio generation by reducing the required amount of input data and computing
power necessary to achieve a similar result when compared to the state of the art.
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1 Introduction

Among the vast amount of fields that are concerned by the dimensionality problem,
audio generation is a very intuitive example. Anyone can understand why feeding such
dense data to a neural network would prove itself to be a challenge. A known approach
to generating raw audio is to simply give the raw data to a recurrent neural network such
as LSTMs [1] and let the model try to guess what the next frame will be as experimented
in GRUV [2].The output would be added to the input and fed back to the network.
Wavenet [3] suggested another approach, using dilated convolutions [4, 5]:

p(x) =
∏T

t=1
p(xt|x1,… , xt−1) (1)

Formula (1) shows that the output has to be fed back to the input making it an autore‐
gressive [6] model. Given the dimensionality of raw audio (up to 44100 samples per
second), this approach requires a massive amount of time and computing power to produce
raw audio. The larger the receptive field is, the longer it will take to compute (Fig. 1).

Fig. 1. Real-time generated waveform (16000 Hz).

Because it is so hard [7, 8] to train deep neural networks since they struggle to get
an abstract overview of things, and need a massive amount of input data to do so, we
will try and take a different approach; maybe there is a way to reduce the dimensionality
of generative models.
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2 AbstractNet

2.1 The Model

Instead of letting the model figure everything out from scratch, we could divide the
learning process into two (or more) steps, guiding it so it can get an abstract view faster.
As suggested in “The Sparsely-Gated Mixture-of-Experts Layer” [9] approach, sub-
networks offer a solid approach to reducing the computing dimensionality of a dataset.
Other works [10] also suggest using auto-encoders [11] as an effective optimization
solution.

The ideal approach would be to generalize our model, making no assumptions about
the input shape (other than the fact that is it defined by recurrent patterns).

Here is how we will do this:

• Let the network find low level features in a sample of our dataset that represents the
entire population using unsupervised learning (more specifically auto-encoders)

• Compress the entire dataset using those features.
• Generate a high level feature map using a recurrent neural network that defines how

lower features are to be distributed
• Generate a dense, low level input from the feature map using a specialized conditional

generative model.

Considering some raw input data (an audio sample or anything else), this is what the
model looks like (Fig. 2):

Fig. 2. Architecture of the AbstractNet generation model

G: Generative model, used to rebuild low level signals from feature maps.
B: Recurrent generative model, used on a feature map. In the tests I used LSTMS [1].
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This model can be stacked to go deeper; each layer is then conditioned on the
previous one, allowing the system to understand more abstract concepts without the need
of large datasets or great computing power!

Features Extraction. One of the key elements of AbstractNet is feature definition, this
can be done programmatically (ex: amplitude and frequency are simple features that can
be extracted manually), but the ideal setup is to have an unsupervised neural network
extract the features from the low level raw input. The idea behind this approach is that
a few samples of the large scale input data are enough to describe the low level features
of a dataset. This means one should provide to the feature extractor at least one example
for each feature present in the entire dataset (Obviously It is recommended to provide
more than one).

The examples are then converted to a feature map by the auto-encoder (Fig. 3).

Fig. 3. Architecture of the features extractor model

AE: Auto-encoder
A feature map is represented as a set of features for each frame in the raw waveform:

x =

{{
k0,… , ku

}
[[0;N]]

}
(2)

N: Feature map length
k: a feature
u: the amount of features (hidden units) defined in the auto-encoder

The feature map is then fed to a neural network whose task is solely to train on multi-
dimensional feature maps. To control the output, the network is conditioned by the
feature channel:

x̂(c) = {x, c} (3)

c: desired feature channel
As a matter of fact, we don’t have to use the decoding part of the auto-encoder. Using

a conditional [12] network can drastically improve the quality of the generated low level
output; the de-noising aspect of the auto encoder is not really required (Fig. 4).
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Fig. 4. A 20 channels generated feature map, in practice it is normalized.

Entropy pooling. To improve the receptive field and increase the coherence and flex‐
ibility of the generator, an entropy [13] map is injected in the input to condition the high
level generator. This allows the network to have a higher level (thus more abstract) view
(Fig. 5).

E(k) =
∑N

n=1
log xk+n (4)

E: entropy of a given sample
k: sample start index
n: sample length
x: input data

Fig. 5. An input sample with its entropy map one the left side, and the raw audio sample on the
right side.

Quantization. In this generative model, previous outputs are fed back to the new input,
this means that the error rate is subject to an exponential increase:

e(n) =
∑n

k=1
εk (5)

AbstractNet: A Generative Model for High Density Inputs 465



e: error rate
n: generation iteration
ε: measured error

To improve the model’s flexibility and its tolerance to unknown patterns, the inputs
have been quantized [14], encoding each value to only 256 values:

xn =
⌊xn ∗ u⌋

u
(6)

x: input data
u: quantization (in our case 256)

2.2 Conditional AbstractNets

Just like the higher levels in the AbstractNet architecture control the lower levels output,
one can manually inject his own conditions to an AbstractNet model to generate an
output with custom characteristics:

p(x|c) = ∏T

n=1
p(xn|x1,… , xn−1, c) (7)

c: a conditional input, similar to formula (3).
This is typically done for TTS [15, 16]. One could use this technique to define the

words he wants the model to generate.

3 Experiments

To figure out if AbstractNet really is efficient at generating coherent high density signals,
the best way is to test it and evaluate the quality of the generated output.

3.1 Piano Dataset

The generative model was trained on piano samples taken from DJ Oakawari’s songs.
The encoder was trained on small samples extracted from the dataset; the training phase
took 3 h on an NVidia GTX860 M GPU.

For this test, a single AbstractNet layer was used. The model was implemented with
Tensorflow. To improve the compression performances, I used Fast Fourier Transforms
on the input signals; this allowed the encoder to ignore the time dimensionality. The
decoder has been conditioned on previous waveforms to regenerate an audio sample
when combined with a latent vector. The latent feature map for this test was 40 times
smaller than the raw audio input; the output had a background noise due to the generator
not being able to properly rebuild the audio sequence, even when conditioned on the
previous samples. Several techniques [17] exist for noise removal, but it wasn’t the point
of this experiment.
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Regardless, the model was able to generate high frequency audio samples (at
16000 Hz) in real time, a very promising result.

3.2 Complex Samples

More complex audio samples do not get compressed as effectively, because one sample
(for example with dance music) contains more features than piano. This is where a deeper
architecture could prove itself more efficient.

Activation Function. Because the experiments are not defined as a classification
problem, but rather a regression problem; since we want to find the closest approxima‐
tion of a signal, no specific activation function was used, only the identity function.

Error function. The cross entropy [18] function was used for error minimization
during the experiments:

H(p, q) = −
∑

x
p(x) log q(x) (8)

While I do not have the kind of computing power needed to train on video samples
or to generate real time TTS, I believe this is a problem AbstractNet is able to approach
with decent hardware. More tests have yet to be performed to explore the real potential
of this technique; my tests were done on a laptop. The Auto-Encoder approach could
also be tested with other techniques, such as Generative Adverserial Networks (GANs)
[19], Variational-Auto-Encoders (VAE) [20] or even combined VAE + GAN [21]. I am
eager to see the results of other people using the AbstractNet architecture on other data‐
sets with powerful machines and great ideas.

4 Conclusion

This paper presented AbstractNet, a generative model designed for dense inputs that
takes a higher abstract view on the data, while drastically improving performances. By
combining multiple layers of the AbstractNet architecture, the model could go further
in its understanding of high level data structures, making the generated output more
coherent. Because lower layers are conditional networks, it is possible to use them inde‐
pendently to generate low level features. This interesting behavior allows us to “talk”
to the AbstractNet model and ask it to explain why it has behaved in a certain way. This
means one can follow and understand the reasoning of an AbstractNet model to make
it behave as expected.
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Abstract. This paper presents a novel parallel framework based on the
Multi-Population Cultural Algorithm (MPCA) scheme for optimization
problems. Contrary to the existing variants of Cultural Algorithm (CA),
the proposed parallel framework for MPCA (PFMPCA) allows the use
of any implemented metaheuristic both in a belief, and in a popula-
tion space. Furthermore, the proposed approach permits CA to evolve
simultaneously multiple population and belief sub-spaces, leveraging the
dual inheritance mechanism and utilizing multi-population approach.
Moreover, each sub-population (in population or belief space) is able
to communicate between each other. PFMPCA has been implemented
on Graphics Processing Units (GPUs) using CUDA programming model.
The performance of the developed framework was evaluated using asym-
metric Travelling Salesman Problem (ATSP). The MPCA for TSP imple-
mented by means of the parallel framework proves to have an extensible
architecture designed to accommodate changes and good performances.

Keywords: Cultural Algorithm · Multi-Population
GPU computing · CUDA architecture · Travelling Salesman Problem
Ant Colony Optimization · Genetic Algorithm

1 Introduction

Cultural Algorithm is a branch of Evolutionary Algorithms proved to be an
efficient approach for solving many optimization problems (eg. [2]), mainly
due to so-called its dual inheritance mechanism. CA works using two evo-
lution spaces, i.e. population (PS) and belief (BS), communicating through
accept − influence protocol. This double evolutionary mechanism allows often
converging faster with a better solution in comparison with single-population
based approaches [16].

The multi-population Cultural Algorithm, firstly introduced in [3], is an
extended version of the basic CA. In general, in MPCA both population and
belief spaces can contain more than one sub-spaces evolving independently. CA
with multiple population and belief spaces enables evolutionary knowledge to
c© Springer International Publishing AG 2018
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be exchanged among populations according to certain rules. It has been proved
that MPCA can improve the speed of convergence and overcome premature
convergence [7]. At present, rich work have been done about how to multiply
populations in MPCAs. Some examples of MPCA include parallel co-operating
CA [3], MPCA adopting knowledge migration [7], MP particle swarm CA [8],
MPCA with differential evolution [20], transfer-agent MPCA [9], heterogeneous
MPCA [12], GPU-accelerated CA [4], MPCA for community detection in social
networks [22], and heritage dynamic CA [10]. Although it is not a typical MPCA
architecture, it is worth mentioning here CA extended by sub-cultures [1].

Worth noting is the universal architecture of MPCA proposed by Guo et al.
[7]. The so-called MPCA-KM consists of n sub-populations, where each sub-
population is a basic CA containing belief and populations spaces. Each sub-
population evolves independently, and at the constant intervals the evolved
knowledge in the sub-populations is migrated to each other.

In this paper, we propose a novel parallel framework for MPCA. The intro-
duced parallel framework PFMPCA enables to communicate between any belief
or population space, not only placed in the same sub-population. This approach
extends substantially mentioned above the MPCA-KM architecture. Moreover,
the proposed framework has been implemented on GPUs using Compute Unified
Device Architecture (CUDA) [13]. To our best knowledge, CUDA-based (MP)CA
was presented only in [4], not counting our own implementation of parallel CA
[18].

PFMPCA was experimentally compared with a sequential and a parallel Ant
Colony Optimization (ACO), as well as a parallel Cultural Ant Colony Optimiza-
tion (pCACO) [18] on a speed-up and solution quality over asymmetric Trav-
elling Salesman Problems taken from TSPLIB library. In pCACO the parallel
ACO works in population space, whereas parallel Genetic Algorithm evolves the
belief space population. TSP is a typical NP-hard optimization problem, where
a travelling salesman wants to travel all cities but each city is supposed to be
visited only once. Note that many others NP-problems can be attributed to
TSP, such a postman problem, product assembly line, clustering of data arrays,
or even DNA sequencing [11].

The remainder of this paper is organised as follows. In Sect. 2, we briefly
review the concepts of (sequential) Cultural Algorithm, (sequential) Ant Colony
Optimization, Genetic Algorithm, General-Purpose Computing on GPUs, and
Travelling Salesman Problem. The proposed framework is discussed in Sect. 3.
Empirical experiments of evaluating the PFMPCA are conducted in Sect. 4. At
last, Sect. 5 gives some concluding remarks and points out the further research
directions.

2 Preliminaries

Cultural Algorithm [16] depicts cultural evolution as a process of dual inher-
itance from both a micro-evolutionary level (population space) and a macro-
evolutionary level (belief space) (see Fig. 1). From the perspective of evolution,
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any computational framework according to the requirement of CA can be used
to represent or describe both of the spaces. The population space is composed
of the individuals representing the search space of possible solutions, whereas
the belief space consists of the experienced knowledge acquired during evolution
process. These two spaces interact with each other through operations accept
and influence. The PS conducts the evolution and periodically contributes to
the BS using accept operation to update BS. BS performs evolution as well and
calls influence operation to direct the evolution process in PS. When accept
operation is invoked, the solution is updated by the local best (i.e. the short-
est path in TSP case) from PS, and when influence is fired, the global best
solution in BS is transferred to PS. The fulfilled termination condition ends the
algorithm.

Fig. 1. Generic architecture of a Cultural Algorithm. Metai describes any metaheuristic
algorithm.

Ant Colony Optimization [5] has been inspired by real ant colony’s forag-
ing behaviour, where ants can often find the shortest path between a food source
and their nest. For obvious reasons, ACO has been first applied to Travelling
Salesman Problem [5]. The transition probability from city i to city j for the k-th
ant is defined as follows Pk(i, j) = [τ(i, j)]α · [η(i, j)]β/

∑
u∈Ji

k
[τ(i, u)]α · [η(i, u)]β

if j ∈ J i
k, 0 otherwise, where J i

k is the set of cities allowed to be visited by ant
k from the city i, τ(i, j) is the amount of pheromone trail on the edge i to j,
η(i, j) denotes inverse of path length from i to j, α and β are parameters that
control the relative importance of trail versus visibility.

After the ants end all their tours, the pheromone trails τ(i, j) are updated
according to the formula τ(i, j) ← (1−ρ)·τ(i, j)+

∑m
k=1 Δτk(i, j) where m is the

number of ants, (1 − ρ) is the evaporation rate such that (0 ≤ ρ ≤ 1), Δτk(i, j)
is the amount of pheromones remaining on the path at current iteration for ant
k. This amount is calculated as Δτk(i, j) = Q/Lk if (i, j) ∈ k-th ant tour, 0
otherwise, where Q is a constant, and Lk is the total length of k’s ant tour.

MAX -MIN Ant System (MMAS) is one of the most efficient ACO-based
algorithm [17], in which the amount of pheromone over the edge between two
vertices i and j is restricted τmin ≤ τ(i, j) ≤ τmax to avoid search stagnation.

Genetic Algorithm (GA) [6] inspired by nature and proposed by Holland
in 1975, encodes the parameters of a solution into the chromosome consisted of
genes. GA randomly generates a set of chromosomes as the initial population.
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Then, it randomly selects two chromosomes from the population to perform
some genetic operators, like the crossover and the mutation operations, repeat-
edly until the result satisfies the termination condition. After performing the
genetic operators, the system calculates the fitness value of each chromosome.
Chromosomes with higher fitness values are to be selected into the gene pool
for reproduction in the next generation. The application of GA as a robust
population-based metaheuristic for TSP is already intensively studied since the
1980s, and many special dedicated representations and genetic operators were
proposed.

General-Purpose Computing on GPUs. In the CUDA programming model
a program to be executed is divided into CPU and GPU part (Heterogeneous
Programming). In most cases the GPU (device) works as a coprocessor of CPU
(host). The host and the device maintain their own separate memory spaces.
CUDA program is based on functions executed in parallel by a given number of
CUDA threads called kernels. Threads are grouped together into blocks, which
are executed independently to each other. Threads within a block can communi-
cate by sharing data through the shared memory, which is fast in access time but
relatively small in size. In a single block, it is also possible to synchronise threads
execution to coordinate memory accesses. To avoid data hazard, synchronisation
and atomic (also related to global memory) functions are available. Threads in
different blocks are independent. Blocks of threads are, in turn, grouped into
grids. When a kernel is invoked it needs to know the number of blocks in a grid
and the number of threads in a block. During kernel execution, blocks of the grid
are independently scheduled among the GPUs Streaming Multiprocessors (SM).
It is also possible to run multiple kernels concurrently and overlap data trans-
fer using different CUDA streams. Each SM is composed of CUDA cores. SM
executes on successive clock cycles a single warp of threads (32 related threads).
Flow control instructions may force threads of the same warp to serialise their
execution paths. Each thread has an access to local memory too, which can
be registers or a specific region of the global memory. Registers are the fastest
available GPUs memories, but the data cannot be stored in directly there. In
the GPU, tens of thousands threads can be executed concurrently, which can
significantly improve execution time.

Travelling Salesman Problem is a well-known combinatorial optimization
task, proved to be NP-hard. In TSP a set of cities to be visited and distances
between them are given. TSP is to find the shortest way of visiting all the cities
and returning to the starting point. Regarding a set of cities as vertices connected
in pairs by weighted edges, the goal of TSP is to find a Hamiltonian cycle with
the least weight in a complete weighted graph. There are many types of TSP,
including symmetric euclidean and non-euclidean, asymmetric, dynamic, and
special cases, like multiple TSP [21]. In this paper, the asymmetric TSP (ATSP)
is considered, which is the more general version, where the distances between
the cities are dependent on the direction of travelling of the edges.
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3 Implementation of the Proposed Parallel Framework
on GPUs

Proposed parallel framework for MPCA provides a set of functions in form of
MPCA class methods. These methods were inspired by the GPU lock-free syn-
chronization algorithm [19]. The main task of the framework class object is to
create specific data structures in the device (GPU) global memory. A single
framework class object is created for each of chosen CA metaheuristics. Any
metaheuristic algorithm can be used in both of CA spaces. To connect the
selected PS with a chosen BS metaheuristic in MPCA, the setup method is
launched on the PS’s object with a BS’s object as an argument. This kind of
connection allows the PS metaheuristic to make use of the BS metaheuristic pro-
vided data (CA influence operation). The other way, to connect the BS with
the PS metaheuristic, BS metaheuristic’s object runs setup method with the PS
class object as an argument (CA accept operation is provided). It is possible to
connect to any number (or none) of metaheuristics, even in the same CA space.

Fig. 2. Flow chart of a proposed framework for MPCA. Metai(j) describes any meta-
heuristic algorithm

Every MPCA framework class object is indexed based on a number of running
metaheuristics in each of CA space. The main purpose of index is to determine
which version array (VA) element is taken into consideration during influence
and accept operations (see ID in Algorithms 1 and 2). The example of created
version arrays and the data matrices for each CA metaheuristics are shown in
Fig. 2. As can be seen from the PS point of view influence operation is associated
with (data) input, and the PS accept operation is associated with (data) output.
From the BS point of view, the other way, accept operation is associated with
(data) input, and the influence operation with (data) output.

The arrows (Fig. 2) indicate the data flow. Each specific data structure
(including each VA element) can be written by only one metaheuristic. In our
example (see Algorithm 1), the PS influence (input) operation starts by com-
paring BS’s VA (sbV erionArray) element 0 with an element associated with
the specific PS metaheuristic (in the same array). If the first element’s value
(index 0) is larger than PS metaheuristic’s specific one (based on ID), then the
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PS metaheuristic is allowed to (inputAllowed) read the data (DataB) provided
by BS. After the indirect performance of the influence operation the PS meta-
heuristic’s element value in BS VA is set to the array first element value (see
Algorithm 2). Otherwise, the value remains the same (data not read).

Algorithm 1. The PFMPCA method
used before input operation execution
(Fig. 3)

1 if threadIndex == 0 then
2 inputAllowed = false;
3 if sbVersionArray[ID] ¡ sbVersionArray[0]

then
4 inputAllowed = true;
5 end
6 threadfence();
7 end
8 syncthreads();

Algorithm 2. The PFMPCA method
used after input operation execution
(Fig. 3)

1 if threadIndex == 0 and inputAllowed != false then
2 sbVersionArray[ID] = sbVersionArray[0];
3 inputAllowed = false;
4 threadfence();
5 end
6 syncthreads();

Further, the accept (output) operation in the PS begins with comparison of
every PS algorithm VA indices with the array index 0 (see Algorithm 3). If the
sum of the same values occurrence (count) is equal to the number of connected
BS algorithms (numberOfConnections), PS algorithm is allowed to process the
output operation (outputAllowed). The chosen data is written to PS algorithm
data matrix (DataP) and the PS algorithm array index 0 content is incremented
or increased by some value (see Algorithm 4). Otherwise, the array index 0 value
remains the same (data not written).

Algorithm 3. The PFMPCA method
used before output operation execution
(Fig. 3)

1 if threadIndex == 0 then
2 count = 0;
3 outputAllowed = false;
4 while i ¡ numberOfConnections do
5 if myVerionArray[0] ==

myVersionArray[i] then
6 count += 1;
7 else
8 break;
9 end

10 end
11 if count == numberOfConnections then
12 outputAllowed = true;
13 end
14 threadfence();
15 end
16 syncthreads();

Algorithm 4. The PFMPCA method
used after output operation execution
(Fig. 3)

1 if threadIndex == 0 and outputAllowed != false then
2 myVersionArray[0] += 1;
3 outputAllowed = false;
4 threadfence();
5 end
6 syncthreads();

Generally speaking, VA element values provide information about which data
array release is available to read (both versionArray′s element 0) or which data
array release was read by the other metaheuristics (both versionArray′s other
elements). Updating own data matrix is only possible if all connected meta-
heuristics have read or signal to read provided data (myV erionArray element
values the same). Reading data matrix is only possible if the new data is provided
(difference between sbV erionArray element 0 and element based on metaheuris-
tic ID). A similar flow takes place in case of Belief Space with the difference in
accept (input) operation usage.

Population Space (PS). PS can make use of potentially any metaheuris-
tic (ACO algorithm in our approach). The algorithm behind PS starts on a
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host (CPU) side with device’s (GPU’s) memory allocation. In our case it is a
pheromone and a distance matrix. All algorithm specific parameters are set too
and sent in form of a single structure. The other argument is connected directly
with the proposed framework class object which contains all methods and data
required to process CA operations. After the kernel launch the algorithm flow is
redirected to the device.

At first specific instance problem values are calculated. They are used dur-
ing pheromone amount update computation. First one (reference value) is a
product of the longest instance edge and the instance size. The second one
(pheromone multiplier) is a quotient of the instance size and the ants number
parameter. Both are saved in a shared memory due to a broadcast mechanism
usage. The path creation step is made independently by each CUDA thread
which is associated with an individual ant. A single thread block is used.

The placement of CA operations provided by PFMPCA’s methods is very
flexible. In our case if the solution created each turn by the ant is the best (the
shortest) one provided by that ant so far, it is aimed to be saved at an ant-
related data matrix column (structure of arrays pattern is used). Considered PS
data matrix is located in the global memory. Before solution save, VA elements
are compared by framework method (see Algorithm 3). In case of permission,
solution data is safely provided and the PS algorithm VA element (index 0) is
updated (see Algorithm 4). Described operation can be interpreted as the first
stage of the accept operation (output operation from the PS algorithm point of
view).

At the end of the algorithm turn, right after pheromone trails evaporation
process, PS algorithm is trying to run indirectly the influence operation with
some probability (5% in our case). Once again framework operations are used.
Firstly, to determine if associated BS algorithm data is ready to be read and
probably contains some new data (see Algorithm 1). Next, to update related VA
element (see Algorithm 2) if the data was used or we want to skip the current
version of provided solutions. Influence operation takes only the best provided
solution and updates pheromone matrix by adding base pheromone value to
edges on its basis, but still limited by MAX-MIN rule. From the PS algorithm
point of view it is the input operation, the second stage of the influence oper-
ation.

Algorithm ends with the last iteration. With the end of the last working PS
algorithm ends the whole MPCA. Right before returning to host PS algorithm
signals its end by setting chosen value (e.g. different than 0) to provided by the
connected BS algorithm variable.

Belief Space (BS). On a basic level BS specific algorithm works very similar to
any PS algorithm. First, on the host side, global memory and algorithm specific
data is allocated. In our case a simple genetic algorithm is used and for this reason
parent’s and offspring’s matrices are created (structure of arrays pattern is used).
The parent’s matrix is also preliminary initialized with a random set of TSP
solutions (initial population). The algorithm is parameterized by a number of
generations, a population size and a number of taken best PS generated solutions
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in CA accept operation. Once again MPCA framework class object is defined and
sent to kernel function. The algorithm related kernel is launched just after the
start-up of the other PS algorithm kernels. The BS algorithm work is redirected
to the device.

Each thread in a thread block is related to a specific parent and an offspring.
A single thread block is used. The offspring is created on the basis of the related
parent and the randomly chosen one. If the new offspring is better (denotes a
shorter path) than the predecessor (related parent), it takes his place in the
memory. Otherwise, the parent remains unchanged. Optional offspring muta-
tion is considered too. After crossover operation all individuals are sorted based
on their fitness function values (bitonic mergesort algorithm is used). At this
point, after creating potentially better solutions, we place the first stage of the
influence operation (output operation from the BS algorithm point of view). If
possible (see Algorithm 3), the solutions are sent to BS algorithm related data
matrix. In the simplest case only one solution is provided. Every first attempt
to update the algorithm related (CA) data matrix is successful due to fact that
the algorithm VA is initialized with zeros (each element has the same value).

Before each new generation BS algorithm is trying to run indirectly the
second stage of the accept operation with some probability (5% in our case).
From the BS algorithm point of view it is the input operation. Algorithm tries
to swap some number of the worst individuals (parents) for the new ones based on
the solutions provided by related PS algorithm. The number of worst individuals
to be swapped is set to the number of ants used in PS algorithm and for this
reason the number of ants in related PS algorithm is generally smaller than the
number of BS algorithm individuals. To control the process, MPCA framework
operations are used once more (see Algorithms 1 and 2).

The BS algorithm ends with the end of the related PS algorithm. It is worth
noting that the BS algorithm data matrix is available in the device’s global
memory until the end of the whole MPCA algorithm.

4 Experimental Results

In this study, we used a PC with one Intel Core i5-4670K (4 cores, 3.4 GHz)
processor, a single Asus GeForce GTX770 2048 MB 256 bit DirectCU II OC,
and Kingston 8192 MB 1600 MHz HyperX Blu Red CL10. The OS was Windows
7 Professional 64 bit. For CUDA program compilation, Microsoft Visual Studio
2012 and CUDA Toolkit 8.0 (V8.0.60) were used.

The instances on which we tested our algorithm were taken from the TSPLIB
benchmark library [15]. In the experiments, we used 8 instances which were
classified as asymmetric Travelling Salesman Problem. The testbed reflects the
full range of TSPLIB asymmetric instances. 50 runs were performed for each
instance.

The parameters settings are as follows, for ACO: τbaz = 1000, τmin = 1,
τmax = 5 · τbaz, α = 1, β = 3, Q = reference value, ρ = 0.1, m = 64,
tend = 100; for pACO: m = threads = 64; for pCACO: population size = 256,
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Fig. 3. MPCA structures used in experiments. (a) pMPCAGA+2ACO, and (b)
pMPCA2GA+2ACO

no of generation = 1000, probability of inversion mutation = 0.02,
probability of crossover = 1.0; and for both pMPCA: probability of execut-
ing CA operation: 5%, ACO1 ρ = 0.1, ACO2 ρ = 0.15. The values were chosen
accordingly to the previous work [18].

In proposed pMPCAGA+2ACO structure a single PS algorithm (ACO2) is
added to existing standard pCACO architecture (see Fig. 3a). It is not fully
utilized because of no usage of solutions generated by ACO2. None of CA meta-
heuristics is connected with ACO2 by accept operation. However, the ACO2

still creates solutions and is influenced by BS. Additionally, its ρ parameter is
increased to 0.15 value. The purpose is to search the solution space in a different
way, i.e. to check solutions closer to some specific solution provided by BS, since
higher ρ value causes worse (rarely visited) paths to be chosen with much less
probability over time. Furthermore, additional algorithm working in any of CA
spaces gives us an extra opportunity to find the better solution in almost the
same time at the expense of computing power and some higher memory usage.

Table 1 provides experimental results obtained with proposed parallel frame-
work MPCA in two variants (see Fig. 3), compared to results gained by sequential
Ant Colony Optimization (ACO), parallel Ant Colony Optimization (pACO),
parallel Cultural Ant Colony Optimization (pCACO), pMPCAGA+2ACO, and
pMPCA2GA+2ACO. Friedman post-hoc test with Holm p-value adjustment
method was used to check if the differences were statistically significant at the sig-
nificance level α = 0.01. The symbol ↓ indicates that the corresponding method
significantly degrades the result obtained with the best method.

The results show that pMPCA in both variations is able to find signifi-
cantly better average solution than any other used algorithms. The architec-
ture of MPCA with complete sub-populations, i.e. pMPCA2GA+2ACO, outper-
forms in most cases the variant with the lack of BS metaheuristic in one of
sub-populations pMPCAGA+2ACO, when comparing two implementations of the
proposed parallel MPCA framework. It is mostly due to fact that more active
heuristics give us obviously higher probability of getting the better solution
in total. Additionally, changed ρ value in one of ACO algorithms used in PS
diversifies generated solutions. One ACO algorithm is searching much wider solu-
tion space, while the other is focused on creating solutions closer to some best



Parallel Framework for MPCA and Its Applications in TSP 479

ones provided so far. The pMPCA2GA+2ACO structure provided the best aver-
age solutions mainly because of an extra BS algorithm and a cross-connection
between CA spaces, which makes an additional use of the ACO2 data. The last

Table 1. Performance comparison of sequential Ant Colony Optimization (ACO) with
parallel Ant Colony Optimization (pACO), parallel Cultural Ant Colony Optimiza-
tion (pCACO), pMPCAGA+2ACO and pMPCA2GA+2ACO, applied to eight asymmetric
TSP instances, available in TSPLIB (best known solution in parentheses). For each
case respectively from the top given are the best solution obtained, the average solu-
tion with standard deviation in parentheses, the average time in seconds to find the
best solution in a run. Averages are taken over 50 trials, 64 ants in all ACO implemen-
tations were used. The best average solution is in bold. The symbol ↓ indicates that
the corresponding method statistically significantly degrades the result obtained with
the best method.

Instance ACO pACO pCACO pMPCAGA+2ACO pMPCA2GA+2ACO

ftv44 (1613) 1624 1650 1623 1613 1613

1683.92↓ 1684.68↓ 1666.72↓ 1630.42↓ 1624.94

(13.87) (9.88) (15.42) (2.26) (2.27)

4.3463 2.3485 2.3554 2.2601 2.2697

ftv55 (1608) 1635 1674 1635 1612 1612

1696.84↓ 1691.08↓ 1676.50↓ 1649.50↓ 1639.42

(17.57) (17.84) (18.80) (17.98) (8.42)

7.1225 3.7326 3.7357 3.5631 3.5734

ftv64 (1839) 1905 1902 1879 1861 1856

1941.32↓ 1930.50↓ 1911.72↓ 1892.32↓ 1886.46

(11.80) (14.80) (13.16) (13.69) (10.86)

9.4212 5.1313 5.1454 4.8429 4.8531

ftv70 (1950) 2093 2068 2003 1970 1970

2148.74↓ 2143.90↓ 2102.38↓ 1996.70 1990.5

(18.87) (24.31) (33.97) (18.58) (16.53)

10.7068 6.1712 6.1960 5.7289 5.7296

kro124p (36230) 38682 39397 38450 37406 37401

39937.98↓ 39968.78↓ 39362.12↓ 38105.98↓ 37876.88

(417.49) (324.13) (377.94) (341.63) (242.46)

21.0575 12.9537 12.9688 11.9853 12.0963

ftv170(2755) 3130 3150 3083 3013 2983

3269.88↓ 3274.62↓ 3268.30↓ 3118.36↓ 3059.62

(53.41) (51.29) (63.11) (51.94) (29.04)

59.1272 38.7157 39.4822 35.8026 36.4662

rbg323 (1326) 1466 1467 1468 1460 1466

1485.82↓ 1486.40↓ 1483.76↓ 1482.14 1481.30

(6.03) (7.25) (7.49) (7.27) (6.64)

211.2016 140.3757 147.4379 134.0678 135.9170

rbg443 (2720) 3271 3273 3212 3262 3259

3304.88↓ 3306.24↓ 3262.18↓ 3288.68↓ 3284.36

(13.26) (12.90) (17.10) (11.79) (11.79)

390.3430 268.2758 283.8038 258.7033 261.3430
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approach has also often got smaller standard deviation compared to the oth-
ers, what suggest being more stable in finding better solutions. Both pMPCA
algorithms have comparable average time with other approaches despite the fact
that more algorithms is used at the same time. It is because population space, as
well as belief space, use different streams, and therefore both spaces are invisible
to themselves.

In Figs. 4 and 5 we present the results of comparing the average tour
and convergence speed between ACO, parallel ACO, parallel Cultural ACO,
pMPCAGA+2ACO and pMPCA2GA+2ACO for two exemplary datasets ftv64 and
ftv170. Both figures show that the proposed MPCA framework achieves average
shorter tour than pACO and pCACO with similar or better speed of convergence.

Fig. 4. Evolution of average tour
length of selected ftv64 dataset for
pACO, pCACO, pMPCAGA+2ACO and
pMPCA2GA+2ACO

Fig. 5. Evolution of average tour
length of selected ftv170 dataset for
pACO, pCACO, pMPCAGA+2ACO and
pMPCA2GA+2ACO

5 Conclusion

In this paper, we propose a novel parallel framework based on the Multi-
population Cultural Algorithm for solving asymmetric Travelling Salesman
Problem on a GPU. The results show that the proposed PFMPCA finds sig-
nificantly better average solution than compared algorithms, i.e. sequential and
parallel Ant Colony Optimization, and parallel Cultural Ant Colony Optimiza-
tion. What is interesting, both presented parallel MPCA variants have compa-
rable or even better average time with other parallel methods despite the fact,
that more heuristics are used at the same time. It is possible thanks to PFMPCA
communication methods and an effective use of GPU lock-free synchronization
algorithm.

Future work is to research other heuristics for evolving belief space (like very
promising African Buffalo Optimization [14]), to test another architectures of
the framework and to improve some weaknesses of the proposed PFMPCA. One
of them is that only best solution coming from evolved sub-population can be
exchanged with the other one. Sometimes it can lead to premature convergence.
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Abstract. Honey yields are difficult to predict and have been usually
associated with weather conditions. Although some specific meteorolog-
ical variables have been associated with honey yields, the reported rela-
tionships concern a specific geographical region of the globe for a given
time frame and cannot be used for different regions, where climate may
behave differently. In this study, Radial Basis Function (RBF) interpola-
tion models were used to explore the relationships between weather vari-
ables and honey yields. RBF interpolation models can produce excellent
interpolants, even for poorly distributed data points, capable of mim-
icking well unknown responses providing reliable surrogates that can
be used either for prediction or to extract relationships between vari-
ables. The selection of the predictors is of the utmost importance and an
automated forward-backward variable screening procedure was tailored
for selecting variables with good predicting ability. Honey forecasts for
Andalusia, the first Spanish autonomous community in honey produc-
tion, were obtained using RBF models considering subsets of variables
calculated by the variable screening procedure.

Keywords: Honey yield · Weather · Radial basis functions
Variable screening

1 Introduction

Honey has been used by humans for at least 8000 years [2]. Its production and
economic interest have grown to the present day. However, annual production
has large fluctuations mainly associated with weather conditions [5,18]. While
some studies claim that temperatures in May, June and July are particularly
important predictors of honey yields [6,7,9], other claim that variation in honey
yields could be more related to March temperatures and rainfall, sunshine and
temperature from April to July [4,5]. In fact, the precise relationships between
weather conditions and honey yields are not well established yet. Furthermore,
the relationships between weather conditions and honey yields already reported
concern a specific geographical region of the globe for a given time window and
cannot be used for different regions, where climate may behave differently.
c© Springer International Publishing AG 2018
G. Nicosia et al. (Eds.): MOD 2017, LNCS 10710, pp. 483–495, 2018.
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In this study, the relationships between honey yield and a large number
of weather variables were explored aiming to forecast honey production in
Andalusia, a Spanish autonomous community. Radial basis functions (RBF) were
used to interpolate the data and provide the predictive models. RBF regression
has been successfully applied in different contexts, including aeronautics [13,14]
or radiotherapy [16,17]. RBF models proved to mimic well unknown responses
providing reliable surrogates that can be used either for prediction or to extract
relationships between variables [15]. The selection of the predictors is of the
utmost importance and a variable screening approach is presented. The remain-
der of the paper is organized as follows. Honey production and weather data
in Andalusia are presented in the next Sect. 2. In Sect. 3 we briefly describe
RBF interpolation. Section 4 presents the variable screening strategy proposed.
Results are presented in Sect. 5 followed by the conclusion’s Sect. 6.

2 Honey Production and Weather Data in Andalusia

Spain is the largest EU honey producer which is the second world producer after
China [3]. Andalusia is the first Spanish autonomous community regarding honey
production (6887 tonnes) and honey bee hives (562503 units), according to the
latest statistical data released by the Spanish Ministry of Agriculture, Food and
Environment [1]. There are two different types of honey bee hives in Andalusia:
fixed comb hives – traditional hive types that require permanent damage of
the comb for harvesting – and movable comb hives – modern hive types that
include top-bar hives, horizontal frame hives or vertical stackable frame hives.
In Andalusia, about 97% of the hives are modern hive types and we will only
consider these type of hives for our forecast.

Andalusia is in the south of Spain, east of Portugal and the Atlantic Ocean
and north of the Mediterranean Sea and Africa. It is the second largest in area of
the Spanish autonomous communities with 87268 km2. Andalusia is divided into
eight provinces – Almeria, Cádiz, Córdoba, Granada, Huelva, Jaén, Málaga and
Seville – with distinct weather conditions. It is covered by a set of automated
agroclimatic stations that can perform various meteorological measurements [8].
Since the honey yields of the different provinces are also available, instead of
averaging different weather conditions causing a larger weather bias, forecast
was made for each region considering the corresponding weather data. Only the
five largest honey producer provinces (Córdoba, Granada, Huelva, Málaga and
Seville) were considered. Historical data of honey yields and number of hives for
the time frame in study (2001–2015) for each province is presented in Table 1.
Historical data of the weather variables considered – rainfall (mm), evapotran-
spiration (mm), minimum temperature (oC), maximum temperature (oC), mean
temperature (oC) and relative humidity (%) – are available in Appendix.

3 Radial Basis Functions Models

RBF interpolation models can produce response surfaces capable of to explor-
ing the nonlinear relationships between different input or explanatory variables
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Table 1. Tonnes of honey yields and number of hives for the five largest honey producer
provinces of Andalusia.

Year Córdoba Granada Huelva Málaga Seville

Honey # Honey # Honey # Honey # Honey #
yield hives yield hives yield hives yield hives yield hives

2001 268 44739 504 33600 990 66000 761 63398 1131 76644

2002 297 49529 586 39083 1323 66150 872 62263 1369 80989

2003 193 53700 595 39690 944 72580 966 64404 1499 90847

2004 149 41461 656 43723 514 51360 765 63757 894 71238

2005 126 41901 671 44757 433 61832 438 67417 827 82692

2006 473 42987 680 45357 779 64954 697 69669 879 82694

2007 756 45800 565 43466 992 66156 1138 71145 808 79515

2008 435 43531 522 40155 941 67200 987 70488 950 93880

2009 616 43990 546 42020 987 65784 900 66651 1083 97500

2010 600 44804 568 43665 891 66015 915 67783 1066 97463

2011 749 46825 594 45671 882 67813 1000 67450 964 94315

2012 242 48385 613 47127 674 67425 761 76069 954 94173

2013 675 45000 633 48705 972 67041 937 78093 1270 97314

2014 458 45825 660 50791 1105 69060 939 78254 1471 101463

2015 442 58935 700 53856 1066 71056 876 97316 1479 106494

and output or response variable(s). Moreover, RBFs can be used to predict
unknown responses given the values of the explanatory variables. It was shown
that stochastic models coincide with the corresponding RBF models [21]. For a
set of data points in a high dimensional space, even if scarce or poorly distributed,
a RBF interpolation model (surface) can always be calculated. However, the RBF
model behavior between data points, is highly dependent on the basis function
considered. For a given data set, some RBFs can provide desirable trends while
other may exhibit undesirable trends. Thus, instead of a typical a priori choice
based either on the literature or on authors’ preferences, it is advisable to select
the most adequate RBF for the data set at hand considering numerical met-
rics [15]. A brief description of RBF interpolation is provided next.

3.1 RBF Interpolation

Let y(x) denote the response for a given data point x of n components (variables)
such that the value of y is only known at a finite set of N input data points
x1, . . . ,xN , i.e., only y(xk) (k = 1, . . . , N) are known. A RBF interpolation
model h(x) can be generically represented as
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Fig. 1. Graphs of multiquadric, φ(x) =
√

1 + x2, thin plate spline, φ(x) = x2 ln(x),
cubic spline, φ(x) = x3, and Gaussian, φ(x) = exp(−x2) RBFs.

h(x) =
N∑

j=1

αjφ(‖x − xj‖), (1)

where φ(x) is the selected RBF, αj are the coefficients determined by the inter-
polation equations h(xk) = y(xk) (k = 1, . . . , N), ‖x − xj‖ corresponds to the
parameterized distance between x and xj ,

||x − xj || =

√√√√
n∑

i=1

|θi|
(
xi − xj

i

)2
,

and θ1, . . . , θn are scalars [15]. Coefficients α1, . . . , αN in Eq. (1) are computed
for fixed parameters θi using the interpolation equations of the following linear
system:

N∑

j=1

αjφ(||xk − xj ||) = y(xk), for k = 1, . . . , N. (2)

Multiquadric, φ(x) =
√

1 + x2, thin plate spline, φ(x) = x2 ln x, cubic spline,
φ(x) = x3, and Gaussian, φ(x) = exp(−x2), are examples of RBFs that are
commonly used to model linear, almost quadratic and cubic growth rates, as
well as exponential decay of the response, respectively [12] – see Fig. 1.

3.2 Cross-Validation

Calculation of the RBF model h(x) in Eq. (1) requires the selection of a RBF
φ(x) and the choice of model parameters θ1, . . . , θn. While selection of the most
appropriate RBF for the given data set can be done iteratively by testing the
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different possible choices of φ(x), there is an infinite number of possible choices
for θ1, . . . , θn. For different fixed sets of model parameters θ1, . . . , θn, distinct
models with different behaviors between data points are calculated for a given
selection of φ(x). Cross-validation (CV) can be used for model parameter tuning
leading to models with enhanced prediction capability [19]. Furthermore, the
most appropriate basis function φ(x) can be numerically computed using pre-
diction accuracy (CV error) as main criterion. The leave-one-out CV procedure
can be used in model parameter tuning for RBF interpolation [15]:

Algorithm 1. Leave-one-out cross-validation for RBF interpolation
Input:

– x1, . . . ,xN , N input data points with n components.
– y(x1), . . . , y(xN ), response of the N input data points.

Iteration:

1. Fix a set of model parameters θ1, . . . , θn.
2. For j = 1, . . . , N , construct the RBF model h−j(x) of the data points (xk, y(xk))

for 1 ≤ k ≤ N, k �= j.
3. Set prediction error as the following CV root mean square error:

ECV (θ1, . . . , θn) =

√
√
√
√

1

N

N∑

j=1

(h−j(xj) − y(xj))2. (3)

The goal of model parameter tuning by CV is to find θ1, . . . , θn that minimize
the CV error, ECV (θ1, . . . , θn), so that the interpolation model has the highest
prediction accuracy when CV error is the measure. Using different θi allows the
model parameter tuning to scale each variable xi based on its significance in
modeling the variance in the response, thus, has the benefit of implicit variable
screening built in the model parameter tuning.

4 Variable Screening

A regression model with too many input variables may have several disadvan-
tages including an increasing difficulty on model parameter optimization or data
overfitting. A standard variable screening procedure aims to identify a subset of
the input variables that have significant impact on the response y(x). In other
words, if the change of y(x) with respect to a given variable is negligible, then
the subset of the input variables should not include such variable.

Variable screening methods that require the response values for specific input
vectors, such as ANOVA, cannot be used in this study. Other existing variable
screening techniques require specific conditions. E.g., the main effects estimate
(MEE) method, proposed by Tu and Jones [20], generally requires a uniform
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distribution of the existing input vectors in a rectangular domain of the input
space which is not the case.

Forward or backward variable screening methods are typically used to deter-
mine the explanatory power of input variables of polynomial models (linear
regression) that are independent of the data distribution. Here, we assume that
forward and backward variable screening methods are valid for variable selection
in nonlinear models. In general, under this assumption, the forward and back-
ward variable screening methods can be formally applied for variable selection
if the data is fitted by a regression model that is independent of data distri-
bution. We propose a generalization of a combined forward-backward variable
screening procedure, described in Algorithm2, that is based in the predicting
ability instead of the typically used coefficient of determination (R2). In the first
iteration of this procedure, input vectors with a single variable at a time are
fitted using RBF models (1) and the CV error (3). The best model and cor-
responding variable correspond to the smallest CV error which is a proxy for
the prediction error. In the second iteration, input vectors with two variables,
fixing the one found in the first iteration, are fitted using RBF models (1) and
the CV error (3). The second variable that, along with the fixed first variable,
forms the best prediction pair of variables is fixed for the third iteration. This
procedure continues until the prediction error (CV error) fails to improve. Note
that, at successful iteration k, we may not find the best subset of k predicting
variables, i.e. the set of k variables that corresponds to the smallest CV error.
E.g., at iteration two we only tested n − 1 possibilities – the pairs constituted
by the first fixed variable and each of the remaining n − 1 variables – instead of
all possibilities –

(
n
2

)
= n!

2!(n−2)! . Thus, at the end of the forward procedure we
proceed with a backward procedure aiming to further improve the CV error. The
rational behind this procedure is identical except that instead of being added, a
variable is removed at each iteration.

5 Computational Results

Our tests were performed on a 2.60 Ghz Intel Core i7-6700HQ PC with 16 GB
RAM and we used MATLAB (R2016a) [10]. Optimal RBF model parameters
θ1, . . . , θn of (3) were computed by minimizing the CV error using a MATLAB
implementation (fminsearch) of a derivative-free optimization algorithm called
Nelder-Mead [11]. The optimal CV error obtained for the different basis functions
tested was used as proxy of their prediction ability [15]. Thin plate spline RBF
was selected as basis function since the corresponding RBF models presented
the lowest CV errors.

The strategy sketched to forecast the honey yield in Andalusia for each of
the years in study, 2001–2015, was the following:

– Remove the data concerning the year to forecast for each of the five provinces
of Andalusia – Córdoba, Granada, Huelva, Málaga and Seville – guaranteeing
that no bias is introduced in the results;
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Algorithm 2. Forward-backward variable screening
Input:

– x1, . . . ,xN , N input data points with n components (variables) each – x1, . . . , xn

– y(x1), . . . , y(xN ), response of the N input data points
– x̂1, . . . , x̂N , N empty input data points with 0 components (variables) each

Forward screening:

CVbest ← +∞
Improve ← 1
While Improve

For i = 1 to n
If xi is not a variable of input data x̂1, . . . , x̂N

x̌1, . . . , x̌N ← x̂1, . . . , x̂N ⊕xi, where operation ⊕ adds variable xi to the set
of input vectors x̂1, . . . , x̂N

Construct the RBF model hi(x̌) of the data points (x̌k, y(xk)) for 1 ≤ k ≤ N
and compute CVi using (3) to measure the prediction error

Else
CVi ← +∞

End If
End For
If argmin1≤i≤nCVi < CVbest

CVbest ← argmin1≤i≤nCVi

x̂1, . . . , x̂N ← x̂1, . . . , x̂N ⊕ xi

Else
Improve ← 0

End If
End While

Backward screening:

Improve ← 1
While Improve

For i = 1 to n
If xi is a variable of input data x̂1, . . . , x̂N

x̌1, . . . , x̌N ← x̂1, . . . , x̂N � xi, where operation � removes variable xi

from the set of input vectors x̂1, . . . , x̂N

Construct the RBF model hi(x̌) of the data points (x̌k, y(xk)) for 1 ≤ k ≤ N
and compute CVi using (3) to measure the prediction error

Else
CVi ← +∞

End If
End For
If argmin1≤i≤nCVi < CVbest

CVbest ← argmin1≤i≤nCVi

x̂1, . . . , x̂N ← x̂1, . . . , x̂N � xi

Else
Improve ← 0

End If
End While
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Fig. 2. Actual honey yields in Andalusia compared with RBF forecast.

– Consider the remaining data from the five provinces to:
• find a subset of variables using Algorithm2;
• fit the Thin plate RBF models using the subset of variables found;
• estimate the honey yield for that year for each province;

– Considering the average contribution of each province to the overall honey
yield of Andalusia, calculate five different honey yield estimates for that year
for Andalusia;

– Consider the median of the five previous predictions as the final estimate of
honey yield for Andalusia in that year.

Forecast results following this strategy are displayed in Fig. 2. The mean pre-
diction error was 7.9% which is quite good for such an irregular series. Apart
from one year (2010), forecast for all the remaining years are very close to actual
honey yield. Furthermore, honey yield trend is well captured. We have to high-
light the importance of variable screening. Selecting a subset of variables with
good predicting ability enables a better forecast. To calculate the production
forecast for each year, that year is eliminated from the data for all provinces.
This means that the variable screening procedure do not consider any data from
the year to forecast. This leads to different subsets of variables being considered
for the forecast of different years. Thus, it is not useful to enumerate the different
subsets of predicting variables as they depend on the year (and the geographical
region). Nevertheless, some variables appear more often in the different sub-
sets including the minimum temperature in April, the maximum temperature in
June and evapotranspiration in September. It is interesting to report as well that
the number of hives was often absent of the subset of best predicting variables.
Although more hives could be expected to lead to higher honey productions,
figures show otherwise. If we plot the number of hives and corresponding total
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Fig. 3. Number of hives and honey yields for Córdoba and Granada.

honey production for Córdoba and Granada (see Fig. 3), it is straightforward to
see that larger number of hives do not correspond to an increased production.
Furthermore, for the same province, increase in the number of hives randomly
reflects an increased production. Note that, by simple inspection of Table 2 it
is possible to verify that weather conditions are quite different for these two
provinces which might solely explain the differences in honey yield.

6 Conclusions

Honey yields are difficult to predict and have been usually associated with
weather conditions. Although some particular meteorological variables have been
associated with honey yields, extrapolating the reported relationships to different
regions of the globe or even for different temporal periods is not straightforward.
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Thus, the selection of weather variables should be performed using data of the
specific regions to be studied and considering adequate time frames.

In this study, we propose an automated forward-backward variable screening
procedure that lead to subsets of variables with good predicting ability. RBFs
models were used to fit the data and guide the variable screening algorithm.
RBF interpolation models can provide excellent interpolants even for poorly
distributed data points. Instead of an a priori choice of a RBF basis, the numer-
ical choice of the most adequate RBF is advised. We used the CV error as proxy
of the prediction error to decide which RBF basis should be used.

For the subsets of variables obtained using the variable screening procedure,
RBF models obtained high quality honey yield predictions. A set of forecasts
for Andalusia, obtained from the extrapolation of forecasts for the different
provinces considered, allowed a better final annual forecast obtained by excluding
extreme values. The variables considered for the RBF models change for differ-
ent years. Therefore, unlike other studies where specific variables are identified
as the most relevant, the only conclusion that can be safely drawn is that mete-
orological variables are good predictors of honey production but they depend on
the geographic region and the time frame considered. The reverse problem of
using honey yields to acknowledge climate changes should be as interesting and
challenging as the problem addressed here.
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e a Tecnologia (FCT) under project grant UID/MULTI/00308/2013.

Appendix

Table 2. The weather variables, 2001–2015, means and standard deviations (SD).

Córdoba Granada Huelva Málaga Seville

Mean SD Mean SD Mean SD Mean SD Mean SD

Rainfall (mm)

January 53,2 37,8 31,8 23,1 54,4 36,1 39,3 39,7 54,5 35,1

February 74,5 50,4 37 31,8 68,9 67,9 60 61,5 69 59,2

March 80,9 74,1 38,5 23,2 83,8 58,1 69,6 50,5 61,6 59,2

April 57,3 42,9 40,7 21,9 61,9 39,5 35,3 21,7 39,5 26,3

May 36,7 31,1 34 19,1 30,4 30,4 18,3 17,1 31,3 32,4

June 7,7 14,4 17,5 12,4 7,1 13,4 1 1,6 7,6 9

July 0,6 2 3 6,5 1 2,8 1 1,1 2,3 5,3

August 7,2 13,8 9,8 12,5 8,7 17,9 0,7 1,3 3,9 12,2

September 33,9 31,4 23,6 15,9 27,8 30,4 31,4 32,2 28,5 22,2

(Continued)
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Table 2. (Continued)

Córdoba Granada Huelva Málaga Seville

Mean SD Mean SD Mean SD Mean SD Mean SD

October 82,4 50,3 30,8 26 105,6 51,4 55 46 73,2 38,4

November 73,5 57,6 38,4 23,3 80,1 67,8 79,6 70,5 72,8 52,7

December 85 99,4 39,1 42,4 78 79,1 67,9 71,6 84,4 99,5

Evapotranspiration (mm)

January 31,1 5,5 46,1 6,4 35,9 3,5 44 5,1 32,4 2,9

February 44,4 5,7 54,1 6,9 50,4 6 55,9 5,8 45,5 5,6

March 78,2 8,3 86,7 9,9 83,8 10,4 86,7 12,5 80,4 8,5

April 108,1 9,2 107,8 14 114,4 10,9 114,7 11,3 112,4 9,2

May 146,2 13 143,3 18,6 158,6 15,1 151,9 12,5 154,2 14,5

June 180,5 9,7 178,2 12,1 189,7 15,3 180,5 9,4 187,1 10,8

July 203,1 9,4 210,5 8,8 214,5 10,9 196,1 8,5 209,3 7,7

August 181,3 10 184,4 15,3 186,3 8,7 174,5 7,2 187,1 7,3

September 120,1 9 122,4 9,2 124,5 9,9 121,7 10,8 125,6 8,6

October 74,2 6,2 85,3 9,9 78,1 6,5 79,2 8,7 77,8 6,7

November 39,8 5 48,9 8,3 41,6 10,4 49,8 6,5 40,8 4,2

December 28,5 3,7 39,3 5,2 31,5 3,5 39 3,6 29,3 3,3

Minimum temperature (oC)

January 2,7 2,1 0,6 1 6,2 1,3 6,2 1,3 3,8 1,7

February 3,4 2,4 0,6 1,5 6,3 1,7 6,8 1,7 4,2 2,3

March 6,4 1,6 3 0,9 8,4 0,8 8,7 0,8 7 1,2

April 8,9 1,2 5,1 1,1 10,3 1 10,7 0,9 9,4 1,1

May 11,5 1,1 8,4 1,3 12,9 1,1 13,4 0,8 12,3 1,2

June 15,2 0,9 13,1 1,2 16,4 1 17,2 0,9 16,2 1

July 17 0,8 16,1 1 18 0,7 19,5 0,8 18,1 0,7

August 17,7 0,9 16 0,6 18,5 1 20,3 0,9 18,8 1

September 15,4 1 12,4 0,8 16,6 0,6 17,7 0,4 16,3 0,8

October 12 1,1 9 0,9 14,1 0,9 14,2 0,8 12,8 1,5

November 6,3 2,2 3,7 1,3 9,3 1,2 9,7 1,5 7,2 1,8

December 3,5 1,4 1,2 1,1 6,9 1 7,2 0,9 4,7 1,4

Maximum temperature (oC)

January 14,7 1 10,5 1,6 15,3 1 17,1 1 14,6 1

February 16,2 1,4 10,8 1,9 16,2 1 17,4 1,1 15,9 1,3

March 19,9 1,4 14,3 1,4 19,1 1,3 19,7 1,2 19,3 1,3

April 23,2 1,4 17 1,9 21,7 1,2 22,1 1 22,4 1,4

May 27,9 2,2 21,2 2,4 25,8 2 25,4 1,2 27 2,2

(Continued)
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Table 2. (Continued)

Córdoba Granada Huelva Málaga Seville

Mean SD Mean SD Mean SD Mean SD Mean SD

June 33,7 1,4 27,5 1,6 30,2 1,3 29,8 1,2 32,4 1,5

July 37,1 1,3 31,6 1,1 33,2 1,3 32,5 1,1 35,8 1,2

August 36,8 1,1 30,9 1,1 32,9 1,1 32,6 1 35,6 1

September 31,3 1,2 25 1,2 28,6 1,4 29 0,7 30,4 1,1

October 25,6 1,7 20,3 1,7 24,3 1,6 25 1,2 25,2 1,6

November 18,6 1,4 13,6 1,8 18,8 1,2 20 1,3 18,6 1,3

December 15,2 1,3 11 1,6 15,8 0,9 17,4 1 15,3 1,3

Mean temperature (oC)

January 8 1,3 5 1,1 10,2 0,9 11,4 0,9 8,7 1,1

February 9,2 1,5 5,3 1,6 10,8 1,1 12 1,2 9,7 1,4

March 12,7 0,7 8,3 1,1 13,4 0,8 14,1 0,8 12,9 0,8

April 15,8 1,1 10,8 1,4 15,7 1 16,4 0,8 15,7 1,1

May 19,7 1,5 14,7 1,8 19,2 1,5 19,5 0,9 19,7 1,6

June 24,8 1,1 20,2 1,4 23,2 1,1 23,7 1 24,4 1,2

July 27,7 1 23,7 1 25,5 0,9 26,3 0,9 27,3 1

August 27,5 0,8 23,1 0,9 25,4 1 26,5 0,7 27,3 1

September 23,1 0,9 18,2 0,9 22,1 0,8 23,2 0,4 23,2 0,8

October 18,1 0,9 14,2 1,2 18,7 1,1 19,3 0,7 18,7 1,1

November 11,7 1,4 8,2 1,5 13,6 1 14,6 1,1 12,5 1,2

December 8,5 1 5,5 1,3 10,9 0,9 12,1 0,7 9,5 1,1

Relative humidity (%)

January 81,9 5,8 62,4 8,6 78,8 5,1 70,7 4,4 81 6,1

February 77,4 7,5 62,5 7,9 74 7,9 68,2 4,9 76 9,2

March 71,8 6,9 59,9 7,3 71,4 6,8 67,1 7 70,8 7,6

April 67,1 5,9 60,2 6,9 68,4 6,3 63 7,1 65,4 6

May 57,7 7,2 54,3 8,4 59,2 5,2 56,7 5,6 55,4 7,3

June 47,1 4,4 44,3 5,5 52,3 4,8 51,5 3,8 47,6 4,9

July 38 4,5 34,5 4,4 47,1 4,5 51,2 4 40,3 5

August 39,8 4,2 38,5 4,6 51,1 3 55,3 3,6 42,3 4,4

September 53,8 6,4 51,9 6,1 63 7,1 61,9 4,3 55,7 7,3

October 69,2 6,4 57,6 6,7 71,7 4,9 69,6 3,7 67,4 5,3

November 78 7,5 63,2 10,3 73,6 7,7 70,5 6 74,4 8,3

December 81,6 5,3 64,3 5,4 78,7 5,4 73,2 3,7 80,2 4,9
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Abstract. Natural disasters represent a threaten for the existence of
human beings. Given its remarkable importance, operational researchers
should contribute to provide rationale decisions.

In this paper we study a purely combinatorial problem that models
management disasters, called Graph Fragmentation Problem, or GFP
for short. The problem belongs to the N P-Hard class. As corollary,
finding the optimal protection scheme is prohibitive for large populations.
First, we review the problem and its properties. Then, we introduce a
mathematical programming formulation and exact resolution for small
instances. Finally, we discuss feasible model extensions and trends for
future work.

1 Motivation

History reveals painful memories full of pandemics, lighting shocks and fires.
The Spanish flu from 1918 was deadlier than any war in history, and half the
population of the world has been exposed to the virus [14]. An infernal fire in
October 1871 ravaged part of Chicago, leaving more than 90.000 homeless and
300 deaths [10].

We encourage operational researchers to be engaged with society, and provide
means to cope with natural disasters. In this paper, we follow the research line
introduced in [12]. There, a single individual of a population is exposed to a
natural disaster, and the disaster is immediately propagated through neighbors.
Our task is to determine a sub-population that is protected beforehand, subject
to a budget constraint. Clearly, the notion of protection depends on the specific
application (location of fire-stations, isolation in electric systems, vaccination
against a pandemics).

This paper is organized as follows. Section 2 presents the background of the
problem under study, and its origin from epidemic modelling. Section 3 presents
a formal definition of the GFP. Theoretical results for the GFP are presented
in Sect. 4, together with the main approaches to address the problem. The main
contributions are offered in Sects. 5, 6 and 7. Specifically, a mathematical pro-
gramming formulation for the GFP is introduced in Sect. 5. Lower and upper
bounds are obtained in Sect. 6, inspired by relaxations. An experimental analy-
sis is carried out in Sect. 7, where we test the performance of our exact solution
c© Springer International Publishing AG 2018
G. Nicosia et al. (Eds.): MOD 2017, LNCS 10710, pp. 496–505, 2018.
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for the GFP under different test cases coming from real-life applications. It is
worth to notice that the literature in the exact analysis of the GFP is scarce,
and here we provide the first steps towards the development of optimal protec-
tion schemes under this fundamental model. Section 8 presents feasible model
extensions, concluding remarks and trends for future work.

2 Background

A cornerstone in epidemic model is classical SIR (Susceptible - Infected -
Removed). In SIR it is assumed a fully-mixed infinite population with random
contacts. More realistic models are available from authoritative literature in the
field [2,9]. They consider a graph and epidemic spread governed by probabilistic
rules. The authors claim that node-protection (choosing which nodes to remove,
so that the epidemic cannot propagate through them) is a presumably hard task,
but they do not provide hints nor mathematical proofs.

The Graph Fragmentation Problem, or GFP, represents a worst case anal-
ysis of an abstract epidemic modelling. In [12], a realistic SIR-based model is
provided, and the Graph Fragmentation Problem (GFP) is introduced as an
extremal analysis of highly virulent scenarios. Incidentally, it models other catas-
trophic events, such as fire-fighting and electric shocks (the formal model is pre-
sented in Sect. 3). There, only Greedy-based heuristics are presented, and there
is no complexity analysis. A GRASP heuristic enriched with a path-relinking
post-optimization stage is developed in [13].

The first result on computational complexity is offered for the GFP in [11].
The authors prove that the GFP belongs to the class of N P-Hard problems.
This theoretical result confirms the intuition from epidemiologists that finding
an optimal node-protection mechanism is a hard task.

Curiously enough, in a more recent paper, the optimal protection scheme
is found in all acyclic graphs, elementary cycles and some bipartite graphs [1].
In contrast, GFP presents a strong inapproximability result for general graphs.
More specifically, there is no approximation algorithm with factor lower than
3/2, unless P = N P.

3 Graph Fragmentation Problem

We are given a population represented by a graph G = (V,E), and a budget
constraint B, which is a natural number B such that 0 ≤ B ≤ |V |. We can
choose B nodes and protect them: we delete the nodes from G obtaining a
subgraph G′, so that the chosen nodes cannot be affected by the disaster. The
nature picks a node v uniformly at random from G′. The disaster kills all the
members of the same connected component as v.

The goal is to minimize the expected number of deaths. Mathematically,
if the subgraph G′ has V ′ = n nodes and k connected components with
orders n1, . . . , nk, the probability to choose component i is ni/n. Therefore,
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the expected number of deaths is E(G′) =
∑k

i=1 nipi, with pi = ni/n. The goal
of the Graph Fragmentation Problem (GFP) is to choose the protected set in
order to minimize the expected number of deaths:

min
U⊆V

k∑

i=1

n2
i

n

s.t.|U | ≤ B.

Observe that the denominator n is constant for a fixed instance (G,B) in the
GFP. Therefore, our problem is to minimize the Euclidean norm of the vector
n = (n1, . . . , nk), or Constrained Euclidean Norm Minimization (CENM):

min
U⊆V

‖nG−U‖2

s.t.|U | ≤ B,

where nG−U = (n1, . . . , nk) is the vector with the orders of the connected com-
ponents from G′ = G − U . Observe that the objective function ‖nG−U‖2 is
minimized when the resulting graph G′ = G − U has isolated nodes. The reader
is invited to consult [1,4,6] for a discussion of related vulnerability metrics.

4 Analysis

In this section we highlight the main ideas on the analysis of the GFP for a
better understanding of the problem. The following problem will be used to
characterize the computational complexity of the GFP.

Definition 1 (Minimum Cardinality Vertex Cover)
Instance: simple graph G = (V,E) and positive integer k.
Does there exist a node-set U such that |U | ≤ k and every link is incident to
some node from U?

Recall that Minimum Cardinality Vertex Cover belongs to Karp list of 21
N P-Complete decision problems [8].

Theorem 1. The GFP belongs to the class of N P-Hard problems.

Proof. The graph G′ = G − U has isolated nodes if and only if U is a vertex
cover, where |U | ≤ B. Thus, the GFP is at least as hard as Minimum Cardinality
Vertex Cover.

The following problem will be considered in order to prove a stronger inap-
proximability result for the GFP:

Definition 2 (Multiway k-cut)
Instance: simple graph G = (V,E), terminal set K ⊆ V with |K| = k, positive
integer B.
Does there exist a separator set U ⊆ V −K with |U | ≤ B such that each terminal
node belongs to different components in G − U?
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We know that Multiway 2-cut is in P. A polynomial time algorithm is provided
by Ford and Fulkerson [5]. However, Multiway k-cut is N P-Complete for every
fixed k ≥ 3 [3].

Theorem 2. It is N P-hard to approximate GFP within 5
3 − ε, for any ε > 0.

Proof. Consider an instance of Multiway 3-cut with ground graph G = (V,E),
distinguished nodes {v1, v2, v3} and positive integer B. Replace those nodes by
large cliques {KN ,KN ,KN}, where N >> |V |. The order of the new graph G∗

is roughly 3N . If the instance accepts a 3-cut, the cost in the GFP with instance
(G∗, B) is roughly N . Otherwise, the expected number of dead nodes is never
lower than (2N)2+N2

3N = 5N
3 . Therefore, an approximation algorithm with factor

5/3 would decide if G with distinguished nodes {v1, v2, v3} accepts a 3-cut using
B nodes. The existence of such algorithm implies the solution of 3-cut.

Even though the GFP does not accept an optimal solution in polynomial time
(unless P = N P), there exists a dynamic programming-based polynomial time
method to find the optimal solution in acyclic graphs:

Theorem 3. If G is acyclic, there exists a polynomial time algorithm to find
the best protection scheme with B nodes.

Proof. First, consider arbitrary graphs G1 and G2 that accept a polynomial time
algorithm for any B, then we can solve the problem for G = G1 ∪ G2, using all
partitions B = B1 + B2. This reasoning holds for disjoint branches of a rooted
tree (the root is arbitrary in this context). We can consider leaf nodes and their
parents, and proceed with disjoint branches as before. The number of stages in a
dynamic programming algorithm is not more than the height of the tree (which
is not greater than the order of the graph). Finally, the result hold for acyclic
graphs. Just connect all the trees by a fixed auxiliary node and consider the
previous algorithm for the resulting tree. The reader is invited to consult [1] for
technical details.

Theorem 4. The size of the connected components in G′ = G − U must be as
even as possible.

Proof. Let n1 ≥ n2 ≥ . . . ≥ nk be the orders of the connected components
in G′. If |n1 − nk| ≥ 2, a straight calculation shows that ‖(n1, . . . , nk)‖2 ≥
‖(n1−1, . . . , nk+1)‖2. This means that the cost in the GFP is reduced whenever
the size of the components in G′ are as even as possible.

There is no general result for cyclic graphs in general. However, the following
result holds for the elementary cycle:

Theorem 5. The best protection scheme is known for the cycle Cn.

Proof. Delete an arbitrary node, and obtain an elementary path. Then, protect
B−1 nodes in such a way that the resulting sub-paths are as even as possible. By
Theorem 4, the resulting graph provides the minimum-cost protection scheme.
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Let us further analyze the GFP for bipartite graphs. Consider G = (V1 ∪
V2, E) where E ⊆ V1 ×V2. Recall that König theorem asserts that the minimum
cardinality of a vertex cover in bipartite graphs is precisely the size of the maxi-
mum matching L. This number can be found by Ford and Fulkerson algorithm:
connect all nodes from V1 to a source s, all the nodes from V2 to a sink t, and
find the max-flow with unit capacities in the links. If B ≥ L, all nodes from a
vertex cover can be protected, and they can be found in polynomial time. We
obtain the following:

Theorem 6. The optimality for the GFP can be found in polynomial time for
all bipartite graphs whenever B is not lower than the maximum matching.

The computational complexity for the GFP remains open for bipartite graphs
in general.

5 Mathematical Programming Formulation

An integer quadratic programming model (IQP) for the GFP is developed. In
the model we consider a directed graph Gd = (V,E′), where every link from G
is replaced by two one-way links. Consider the following model variables:

– nk: size of connected component k;
– Ui ∈ {0, 1}, i ∈ V : node i ∈ U (or not);
– xk

ij ∈ {0, 1}, (i, j) ∈ E: link (i, j) belongs to component k in G;
– Nk

i ∈ {0, 1}, i ∈ V : node i belongs to the component k;
– yu,v

ij ∈ {0, 1}, (i, j) ∈ E, u, v ∈ V : there is some u-v-path that includes (i, j)
in the way i → j.

The mathematical programming model is the following:

min.
∑

i=1...K

n2
i /(n − B) (1)

s.t.
∑

j∈V

Uj ≤ B, (2)

∑

j∈V

Nk
j = nk,∀k = 1 . . . K (3)

∑

k=1...K

Nk
j = 1 − Uj ,∀j ∈ V (4)

Nk
i + Ns

j ≤ 1,∀i, j ∈ V, i 
= j, (i, j) ∈ E,∀k, s ∈ K, s 
= k, (5)
∑

k=1...K

xk
ij ≤ (1 − Ui),∀(i, j) ∈ E, i, j ∈ V (6)

∑

k=1...K

xk
ij ≤ (1 − Uj),∀(i, j) ∈ E, i, j ∈ V (7)

Nk
i + Nk

j ≤ 1 + xk
ij ,∀k ∈ 1 . . . K,∀(i, j) ∈ E, i, j ∈ V (8)
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yu,v
i,j + yu,v

j,i ≤
∑

k=1...K

xk
ij ,∀u, v ∈ V,∀(i, j) ∈ E, i, j ∈ V (9)

∑

(u,j)∈E′
yu,v
u,j ≥ Nk

u + Nk
v − 1,∀u, v ∈ V,∀k ∈ 1 . . . K (10)

∑

(u,j)∈E′
yu,v
u,j =

∑

(i,v)∈E′
yu,v
i,v ,∀u, v ∈ V (11)

∑

(r,j)∈E′
yu,v
r,j =

∑

(i,r)∈E′
yu,v
i,r ,∀r, u, v ∈ V, r 
= u, r 
= v (12)

The objective function captures de cost of the GFP (1). Inequality (2) rep-
resents the budget constraint. The size of each connected component is found
using Constraint (3). Constraint (4) set Nk

j = 0 for every k whenever j is picked
for protection. Furthermore, if j is not picked for protection, exactly one mem-
ber of the variable-set {Nk

j }k=1...n must be set to 1. Constraint (5) avoid the
existence of a path between different connected components. In Constraints (6)
and (7), the variable xk

i,j is set to 0 when at least one of i or j are protected.
Constraint (8) respects the definition of the binary variable xk

i,j . Constraints (9)–
(12) represent Kirchhoff equations, that ensure connectivity in each component.
The binary variables yu,v

i,j represent the u-v flow that is carried in the link (i, j).
Constraint (9) avoids two-way flows. Constraints (10)–(12) model this flow.

This is an IQP formulation or more general, a mixed integer quadratic prob-
lem (MIQP). It is well known that it is NP-hard. However, it is important to
remark that, differently from MILP or ILP, the source of complexity of IQP is
not restricted to the integrality requirement on its variables.

6 Bounds for the GFP

A lower bound is found by a natural relaxation of the problem, where the vari-
ables nk, xk

ij , Nk
i and yuv

ij assume real values. Although this problem is also
MIQP, only Ui variables remain binary. In order to find an upper-bound, the
objective function is modified, and as a result we obtain an integer linear pro-
gram. Observe that all the constraints are linear. Since we preserve all con-
straints, a feasible solution for the GFP is produced. The new objective function
is to minimize the size of the largest component.

The upper bound of GFP is an ILP, also NP-hard. It is modeled as follows:

min Z with:
s.t. nk ≤ Z, ∀k

Eqs. (2) − (12)

7 Proof of Concept

This section presents the exact analysis that is product of our mathematical pro-
gramming model under selected real-life networks. The model was implemented
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in CPLEX 12.6.3.0, MIP solver, and the executions were performed on an eight-
core Intel i7 processor at 3.07 GHz, 16 GB RAM. As a proof-of-concept, four
graphs coming from real-life applications were considered:

– The electrical optical network EON considered by Gouveia et al. [7]. See
Fig. 1(b).

– The National Science Foundation Network form the USA, also considered in
the previous study [7]. See Fig. 1(c).

– The Uruguayan Academic Network, RAU2, depicted in Fig. 1(d).
– ARPANET (Advanced Research Projects Agency Network), depicted in

Fig. 1(e).

We also considered a toy example in which the analysis is straight (see graph
N1 from Fig. 1(a)). Table 1 summarizes the main characteristics of the graphs
considered in the experimental analysis. Columns LB, UB and Opt stand for
lower-bound, upper-bound and optimal value, respectively. The optimal value
was calculated solving the exact model developed in Sect. 5.

Table 1. Results

Graph |V | |E| B |V | −B LB UB Opt

N1 9 8 1 8 1.03 4.00 3.50

RAU2 10 17 2 8 1.06 2.75 2.75

NFSNET 14 52 5 9 1.13 4.56 4.56

EON 19 36 6 13 1.06 3.46 3.00

ARPANET 20 25 5 15 1.04 2.87 2.60

The gap between the upper bound (UB) and the optimal value in the GFP
(opt) is small under all instances. This highlights the fact that the size of the
connected components should be as even as possible, in a strict correspondence
with Theorem 4.

Curiously enough, if we consider ARPANET with budget 6 instead, the opti-
mal solution could not be found in a reasonable time (less than 48 h). However,
the bounds are efficiently found in that case, where either some variables assume
real values or a the objective is replaced by a linear one.

Note that a trivial lower bound for GFP is 1. In effect, when we protect and
remove B nodes in any graph, there are |V | − B remaining nodes and in the
best case, these result all disconnected. Then, there would be |V |−B connected
components with size 1 and the value of objective function for lower bound is 1.
As shown in the Table 1, all values found for proposed lower bound, are very
near to the trivial lower bound. It would be desirable to improve these values in
future work or to research if this gap has some theoretical basis.

The complexity of the quadratic objective function promotes further research
in the analysis of exact and approach algorithms for the GFP.
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(a) N1 graph (b) EON graph

(c) NFSNET

(d) RAU2

(e) ARPANET

Fig. 1. Test graphs
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8 Conclusions and Trends for Future Work

We strongly believe that operational researchers should be engaged with the
society in providing means to cope with risk analysis and natural disasters. A
purely combinatorial problem is studied in this paper, called Graph Fragmen-
tation Problem or GFP. The GFP belongs to the class of N P-Hard problems,
and there is no hope to find efficient algorithms to solve it optimally, unless
P = N P. However, it is possible to solve cases where the population is con-
figured with no cycles or elementary cycles.

A new mathematical programming formulation for the GFP is introduced in
this paper, together with bounds. Exact resolutions in CPLEX confirm the fact
that optimal solutions can be obtained for the GFP under small populations.
Furthermore, there computational efficiency of an integer linear programming
relaxation is notorious, and provides feasible solutions with small gaps for the
optimal GFP.

Further research includes the development of heuristic methods, extended
models, and the interplay between related relaxations. Observe that in the GFP
it is assumed that a singleton is picked uniformly at random. This selection law
could be modified, and the attacker could select relevant individuals from the
system first. As future work, we would like to understand this generalization of
the GFP with weighted nodes and adaptive protection schemes. Game theory
provides a means to find optimal answers to different attacking systems.

Acknowledgements. This work is partially supported by Project 395 CSIC I+D
Sistemas Binarios Estocásticos Dinámicos.
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Abstract. We consider in this work the problem of scheduling a set of
jobs without preemption, where each job requires two resources: (1) a
common resource, shared by all jobs, is required during a part of the
job’s processing period, while (2) a secondary resource, which is shared
with only a subset of the other jobs, is required during the job’s whole
processing period. This problem models, for example, the scheduling of
patients during one day in a particle therapy facility for cancer treatment.
First, we show that the tackled problem is NP-hard. We then present
a construction heuristic and a novel A* algorithm, both on the basis
of an effective lower bound calculation. For comparison, we also model
the problem as a mixed-integer linear program (MILP). An extensive
experimental evaluation on three types of problem instances shows that
A* typically works extremely well, even in the context of large instances
with up to 1000 jobs. When our A* does not terminate with proven
optimality, which might happen due to excessive memory requirements,
it still returns an approximate solution with a usually small optimality
gap. In contrast, solving the MILP model with the MILP solver CPLEX
is not competitive except for very small problem instances.

1 Introduction

This work considers the following combinatorial optimization problem. A finite
set of jobs must be processed without preemption. Each job requires two
resources: (1) a common resource, shared by all jobs, is required during a cer-
tain part of the job’s processing period, while (2) a secondary resource, which is
shared with only a subset of the other jobs, is required during the job’s whole
processing period. This is the case, for example, in the context of the produc-
tion of certain products where some raw material is put into specific fixtures or
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molds (the secondary resources), which are then sequentially processed on a sin-
gle machine (the common resource). Finally, some further postprocessing (e.g.,
cooling) might be required before the fixtures/molds are available for further
usage again. In order to perform this process as efficiently as possible, the aim is
to minimizing the makespan, i.e., the total time required to finish the processing
of all jobs. In the following we refer to this problem as Job Sequencing with One
Common and Multiple Secondary Resources (JSOCMSR).

The technical definition of the problem, which is provided later on, was
inspired by a more specific application scenario: the scheduling of patients in
radiotherapy for cancer treatment [2,7] and particle therapy for cancer treat-
ment [8]. In modern particle therapy, carbon or proton particles are accelerated
in cyclotrons or synchrotrons to almost the speed of light and from there directed
into a treatment room where a patient is radiated. A number of differently
equipped treatment rooms is available (typically two to four) and the particle
beam can only be directed into one of these rooms at a time. For each patient
it is known in advance in which room she or he has to be treated in dependence
on her/his specific needs. Moreover, each patient requires a certain preparation
(such as positioning, fixation, possibly sedation) in the room before the actual
irradiation can start. Upon finishing the irradiation of a patient, some further
time is usually needed for medical inspections before the patient can actually
leave the room and the treatment of a next patient can start. Note that the
available rooms correspond to the secondary resources mentioned above, while
the particle beam is the common resource. The scheduling of a set of patients
at, e.g., one day in such a facility is considered.

For further information on particle therapy patient scheduling, in which
JSOCMSR appears as sub-problem, the interested reader is referred to [8]. The
whole practical scenario has to consider a time horizon of several weeks, addi-
tional resources, their availability time windows, and a combination of more
advanced objectives.

The JSOCMSR is rather easy to solve when (1) only the common resource
usage is the bottleneck and enough secondary resources are available or (2) the
pre- and postprocessing times in which only the secondary resources are required
are negligible in comparison to the jobs’ total processing times. In such cases
the jobs can, essentially, be performed in almost an arbitrary ordering. The
problem, however, becomes challenging when pre- and postprocessing times are
substantial and many jobs require the same secondary resources. In this work
we consider such difficult scenarios.

1.1 Contribution of This Work

In addition to formally proving that the JSOCMSR is NP-hard, we provide a
lower bound on the makespan objective, which is then exploited both in the
context of a constructive heuristic and a novel A* algorithm. The latter works
on a special graph structure that allows to efficiently exploit symmetries and
features a diving mechanism in order to obtain also heuristic solutions in regular
intervals. In addition, we present a mixed-integer linear programming (MILP)
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model for the JSOCMSR. Our experiments show that the A* algorithm performs
excellently. Even many large problem instances with up to 1000 jobs can be
solved to proven optimality. There are, however, also difficult problem instances
for which A* terminates early due to excessive memory requirements. In these
cases, heuristic solutions together with lower bounds and typically small optimal-
ity gaps are returned. In comparison, solving the MILP model by the general
purpose MILP solver CPLEX1 cannot compete with A*, as only solutions to
rather small problem instances can be obtained in reasonable time.

2 Related Work

In the literature there are only few publications dealing with scenarios similar
to JSOCMSR. Veen et al. [10] studied a related problem in which the common
resource corresponds to a machine on which the jobs are processed and secondary
resources needed in a pre- and postprocessing are called templates. An important
restriction in their problem is that the postprocessing times are assumed to
be negligible compared to the total processing times of the jobs. This implies
that the starting time of each job only depends on its immediate predecessor.
More specifically, a job j requiring a different resource than its predecessor j′

can always be started after a setup time only depending on job j, while a job
requiring the same resource can always be started after a postprocessing time
only depending on job j′. Due to these characteristics, this problem can be
interpreted as a traveling salesman problem (TSP) with a special cost structure.
It is shown that this problem can be solved efficiently in time O(n log n).

Somewhat related is the no-wait flowshop problem; see [1] for a survey on
this problem and related ones. Here, each job needs to be processed on each of m
machines in the same order and the processing of the job on a successive machine
always has to take place immediately after its processing has finished on the pre-
ceding machine. This problem can be solved in time O(n log n) for two machines
via a transformation to a specially structured TSP [4]. In contrast, for three
and more machines the problem is NP-hard, although it can still be transformed
into a specially structured TSP. Röck [9] proved that the problem is strongly
NP-hard for three machines by a reduction from the 3D-matching problem.

A more general problem as which our JSOCMSR can be modeled is the
Resource-Constrained Project Scheduling Problem (RCPSP) with maximal time
lags. We obtain a corresponding RCPSP instance from a JSOCMSR instance by
splitting each job into three activities which are the preprocessing, the main
part also requiring the common resource, and the postprocessing. These activ-
ities must be performed for each job in this order with maximal time lags of
zero, and all resource requirements must be respected. For a survey on RCP-
SPs with various extensions and respective solution methods see Hartmann and
Briskorn [6]. For practically solving the JSOCMSR, however, such a mapping
does not seem to be effective due to the increased number of required activities
and since specificities of the problem are not exploited.
1 https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer.

https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer
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3 Problem Definition and Complexity

An instance of JSOCMSR consists of a set of n jobs J = {1, . . . , n}, the common
resource 0, and a set of m secondary resources R = {1, . . . , m}. By R0 = {0}∪R
we denote the set of all resources. Each job j ∈ J has a total processing time
pj > 0 during which it fully requires a secondary resource qj ∈ R. Furthermore,
each job j requires the common resource 0 from a time pprej ≥ 0 on, counted
from the job’s start, for a duration p0j with 0 < p0j ≤ pj − pprej . A solution to the
problem is described by the jobs’ starting times s = (sj)j∈J with sj ≥ 0. Such a
solution s is feasible if no two jobs require a resource at the same time.

The objective is to find a feasible schedule that minimizes the finishing time of
the job that finishes latest. This optimization criterion is known as the makespan,
and it can be calculated for a solution s by

MS(s) = max {sj + pj | j ∈ J}. (1)

As each job requires the common resource 0, and only one job can use this
resource at a time, a solution implies a total ordering of the jobs. Vice versa, any
ordering—i.e., permutation—π = (πi)i=1,...,n, of the jobs in J can be decoded
into a feasible solution in the straight-forward greedy way by scheduling each job
in the given order at the earliest feasible time. We call a schedule in which, for a
certain job permutation π, each job is scheduled at its earliest time, a normalized
schedule. Obviously, any optimal solution is either a normalized schedule or
there exists a corresponding normalized schedule with the same objective value.
We therefore also use the notation MS(π) for the makespan of the normalized
solution induced by the job permutation π.

For convenience we further define the duration of the postprocessing time by
ppostj = pj − pprej − p0j , ∀j ∈ J and denote by Jr = {j ∈ J | qr = r} the subset
of jobs requiring resource r ∈ R as secondary resource. Note that J =

⋃
r∈R Jr.

The minimal makespan over all feasible solutions, i.e., the optimal solution value,
is denoted by MS∗.

3.1 Computational Complexity

Let the decision variant of JSOCMSR be the problem in which it has to be
determined if there exists a feasible solution with a makespan corresponding to
a given constant MS∗.

Theorem 1. The decision variant of JSOCMSR is NP-complete for m ≥ 2.

Proof. Our problem is in class NP since a solution can be checked in polynomial
time. We show that JSOCMSR is NP-complete by a polynomial reduction from
the well-known NP-complete Partition Problem (PP) [3], which is stated as
follows: Given a finite set of positive integers A ⊂ N, partition it into two disjoint
subsets A1 and A2 such that

∑
a∈A1

a =
∑

a∈A2
a.

We transform an instance of the PP into an instance of the JSOCMSRC as
follows. Let m = 2 and J consist of the following jobs:
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– For each a ∈ A there is a corresponding job j ∈ {1, . . . , |A|} ⊂ J with
processing time pj = a requiring resource qj = 1 and the common resource 0
the whole time, i.e., p0j = pj and pprej = 0.

– Furthermore, there are two jobs j ∈ {|A| + 1, |A| + 2} ⊂ J with processing
times pj = 1

2

∑
a∈A a + 1 requiring resource qj = 2 the whole time but the

common resource 0 just at the first time slot, i.e., p0 = 1 and pprej = 0.

Let MS∗ = p|A|+1 +p|A|+2 =
∑

a∈A a+2. A feasible solution to JSOCMSR with
makespan MS∗ must have the jobs |A| + 1 and |A| + 2 scheduled sequentially
without any gap and all other jobs in parallel to those two. A corresponding
solution to the PP can immediately be derived by considering the integers asso-
ciated with the jobs scheduled in parallel to job |A+1| as A1 and those scheduled
in parallel to job |A+2| as A2. The obtained solution to the PP must be feasible
since

∑
a∈A1

a =
∑

a∈A2
a = 1

2

∑
a∈A a holds as the jobs corresponding to the

integers do not overlap and there is exactly 1
2

∑
a∈A a time left at the common

resource 0 when processing jobs |A| + 1 and |A| + 2, respectively. It also follows
that if there is no JSOCMSR solution with makespan MS∗, then there cannot
exist a feasible solution to the PP.

Clearly, the described transformation of a PP instance into a JSOCMSR
instance as well as the derivation of the PP solution from the obtained schedule
can both be done in time O(|A|), i.e., polynomial time.

Consequently, the decision variant of the JSOCMSR is NP-complete. �	
Corollary 1. The makespan minimization variant of JSOCMSR is NP-hard.

3.2 Lower and Upper Bounds

For an instance of JSOCMSR a lower bound for the makespan can be calculated
on the basis of each resource r ∈ R by taking the total time

∑
j∈Jr

pj . Similarly,
one more lower bound can also be obtained from the total time resource 0 is
required, i.e.,

∑
j∈J p0j . The latter can further be improved by adding the minimal

time for preprocessing and postprocessing for the first and last scheduled jobs,
respectively. Taking the maximum of these m+1 individual lower bounds yields

MSLB = max

⎛

⎝ min
j,j′∈J | j �=j′∨|J|=1

(pprej + ppostj′ ) +
∑

j∈J

p0j , max
r∈R

∑

j∈Jr

pj

⎞

⎠ . (2)

Figure 1 illustrates these relationships.
A trivial upper bound is obtained when scheduling all jobs strictly sequen-

tially, yielding MSUB =
∑

j∈J pj . It follows that taking any normalized solution
has an approximation factor of no more than m, since MSUB ≤ m · MSLB.

4 Least Lower Bound Heuristic

We construct a heuristic solution by iteratively selecting a not yet scheduled
job and always appending it at the end of the current partial schedule at the
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time

resource
4 1 23 5

MSLB

0

1
2
3

0

21

3

54

Fig. 1. Resource-specific individual lower bounds and the overall lower bound MSLB

for an example instance with n = 5 jobs and m = 3 secondary resources.

earliest possible time. The crucial aspect is the greedy selection of the job to be
scheduled next, which is based on the lower bound calculation from Sect. 3.2.
Therefore we call this heuristic Least Lower Bound Heuristic (LLBH).

Let πp be the current partial job permutation representing the current nor-
malized schedule and J ′ ⊆ J be the set of remaining unscheduled jobs. Given
πp, the earliest availability time for each resource—that is, the time from which
on the resource might be used by a next yet unscheduled job—can be calculated
from the respective finishing time of the last job using this resource:

t0 =

{
maxj∈J\J ′ sj + pprej + p0j for J ′ �= J

0 else
(3)

tr =

{
maxj∈Jr\J ′ sj + pj for Jr \ J ′ �= ∅
0 else

∀r ∈ R (4)

These times, however, can possibly be further increased (trimmed) as the earliest
usage time of resource r ∈ R also depends on the remaining unscheduled jobs
and the earliest usage time of the common resource 0. We therefore apply the
rule

tr ← max(tr, t0 − max
j∈Jr∩J′ ppre

j ) ∀r ∈ R | Jr ∩ J ′ �= ∅. (5)

Moreover, also t0 might be increased as its earliest usage time also depends on
the remaining unscheduled jobs and the earliest usage times of their secondary
resources. These relations are considered by applying the rule

t0 ← max

(
t0, min

j∈J′(tqj + ppre
j )

)
= max

(
t0, min

r∈R|Jr∩J′ �=∅
(tr + min

j∈Jr∩J′ ppre
j )

)
. (6)

Further note that after a successful increase of t0 by rule (6), some resource
r ∈ R might become available for a further increase of its tr by the respective
rule (5). We therefore apply all these trimming rules repeatedly until no further
increase can be achieved.

Following our general lower bound calculation for the makespan in (2),
it is now possible to derive a more specific lower bound for a given partial
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permutation πp considering any possible extension to a complete solution on the
basis of each resource r ∈ R | Jr ∩ J ′ �= ∅ by

MSLB
r (πp) =

{
tr +

∑
j∈Jr∩J ′ pj for Jr ∩ J ′ �= ∅

0 else
∀r ∈ R. (7)

Note that we define MSLB
r (πp) = 0 for any resource r that is not required by any

remaining job in J ′ since these bounds should not be relevant for our further
considerations.

A lower bound w.r.t. the common resource 0 can be calculated similarly by

MSLB
0 (πp) = max

(
t0 + min

j∈J′ ppost
j , min

j,j′∈J′ | j �=j′∨|J′|=1
(tqj + ppre

j + ppost
j′ )

)
+

∑
j∈J′

p0
j .

(8)
Clearly, an overall lower bound for the partial solution πp is obtained from the
maximum of the individual bounds

MSLB
max(π

p) = max
r∈R0

MSLB
r (πp). (9)

For selecting the next job in LLBH to be appended to πp, we always consider
the impact of each job j ∈ J ′ on each individual bound MSLB

r , r ∈ R0, as this
gives a more fine-grained discrimination than just considering the impact on the
overall bound MSLB

max(π
p), which would often lead to ties.

More specifically, let f(πp) = (f0(πp), . . . , fm(πp)) be the vector of the
bounds MSLB

r (πp) for r ∈ R0 sorted in non-increasing value order, i.e., f0(πp) =
MSLB

max(π
p) ≥ f1(πp) ≥ . . . ≥ fm(πp) holds.

Let πp ⊕ j denote the partial solution obtained by appending job j ∈ J ′ to
πp. We consider πp ⊕ j better than πp ⊕ j′ for j, j′ ∈ J ′ iff

∃i ∈ {0, . . . , m} | fi(πp ⊕ j) < fi(πp ⊕ j′) ∧ ∀i′ < i : fi′(πp ⊕ j) = fi′(πp ⊕ j′).
(10)

In other words, the sorted vectors f(πp ⊕ j) and f(πp ⊕ j′) are compared in a
lexicographic order.

LLBH always selects in each iteration a job j ∈ J ′ yielding a (locally) best
extension. In the case when multiple extensions have equal f -vectors, one of
them is chosen at random.

5 Mixed Integer Linear Programming Formulation

The position-based mixed integer linear program (MILP) described in the fol-
lowing models solutions to the JSOCMSR in terms of permutations of all jobs.
Index i ∈ {1, . . . , n} refers hereby to position i in a permutation. Variables
xj,i ∈ {0, 1}, for all j ∈ J and i ∈ {1, . . . , n}, are set to one iff job j is assigned
to position i in the permutation. Variables si ≥ 0 represent the starting time
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of the jobs scheduled at each position i = 1, . . . , n in the permutation. Finally,
MS ≥ 0 is the makespan variable to be minimized.

minMS (11)
∑

j∈J

xj,i = 1 i = 1, . . . , n (12)

n∑

i=1

xj,i = 1 j ∈ J (13)

si +
∑

j∈J

xj,i · pj ≤ MS i = 1, . . . , n (14)

s1 = 0 (15)

si +
∑

j∈J

xj,i · pprej ≥ si−1 +
∑

j∈J

xj,i−1 · (pprej + p0j ) i = 2, . . . , n (16)

si′ − si +
∑

j∈Jr

xj,i′(M + pj) +
∑

j∈Jr

xj,iM ≤ 2M

i = 2, . . . , n, i′ = 1, . . . , i − 1, r ∈ R (17)
xj,i ∈ {0, 1} j ∈ J, i = 1, . . . , n (18)
si ≥ 0 i = 1, . . . , n (19)
MS ≥ 0 (20)

Hereby, Eq. (12) ensure that exactly one job is assigned to the i-th position of the
permutation and (13) ensure that each job is assigned to exactly one position.
The makespan is determined by inequalities (14). Equation (15) sets the starting
time of the first job in the permutation to zero, and the remaining two sets of
inequalities make sure that no resource is used by more than one job at a time.
Hereby, inequalities (16) take care of the common resource 0, while (17) consider
the secondary resources. The Big-M constant in these latter inequalities is set
to the makespan obtained by LLBH.

6 A* Algorithm

Based on the solution construction principle of LLBH it is also possible to per-
form a more systematic search for a proven optimal solution following the concept
of A* search [5]. Our A* algorithm searches in a graph whose nodes correspond
to partial solutions and whose arcs represent the extensions of partial solutions
by appending not yet scheduled nodes. More precisely, each node in this graph
maintains the following information:

1. The unordered set Ĵ ⊂ J of already scheduled jobs, implemented by a bit-
vector.

2. A set of Non-Dominated Times (NDT) records, where each NDT record cor-
responds to an individual, more specific partial solution with an indirectly
given ordering for the scheduled jobs by storing:
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– the vector t = (tr)r∈R0 of the trimmed earliest usage times tr for all
resources as defined by (3)–(6);

– the last scheduled job jlast ∈ Ĵ after which t was obtained;
– an evaluation vector f ′ similar to f that will be defined below.

Thus, each node aggregates all partial solutions πp having the same jobs
Ĵ scheduled, and each NDT record provides more specific information for each
(non-dominated) partial solution. For a given node/NDT record, the correspond-
ing ordering of the scheduled jobs Ĵ can be derived in a reverse iterative manner
by considering the fitting preceding node/NDT records, always continuing with
the node Ĵ \ {jlast} and an NDT record with times tr allowing to schedule job
jlast without exceeding the tr values of the last node/NDT record.

Initially a starting node/NDT record corresponding to the empty schedule
is generated with Ĵ = ∅, t = 0, jlast = none, and f ′ = (MSLB, . . . ,MSLB). The
goal node is a node with Ĵ = J , corresponding to all complete solutions.

The set of all so far considered nodes is implemented by a hash-table with
Ĵ as key. Furthermore, the A* algorithm maintains a priority queue containing
references to all open node/NDT record pairs, i.e., the non-dominated partial
solutions that have not yet been expanded. The order criterion in this priority
queue extends the is-better relation (10) from the LLBH heuristic by considering
the number of remaining unscheduled jobs |J \Ĵ |(πp) as secondary criterion after
MSLB

max(π
p), i.e., vectors

f ′ := (MSLB
max(π

p) = f0(πp), |J \ Ĵ |(πp), f1(πp), . . . , fm(πp)) (21)

are lexicographically compared. This enhanced relation implies that partial solu-
tions with more scheduled jobs are preferred over partial solutions with the same
MSLB

max but fewer scheduled jobs, and thus the search adopts depth-first search
characteristics when MSLB

max does not change. In this way, complete solutions are
obtained earlier.

Algorithm 1 sketches our A* algorithm. In each major iteration, a best
node/NDT record pair is taken from the priority queue and expanded by con-
sidering the addition of each job j ∈ J \ Ĵ . Hereby, the corresponding node is
looked up or created when it does not yet exist and a respective NDT record is
determined by calculating the earliest usage times t and the evaluation vector
f . The possibly multiple NDT records in the node are checked for dominance:
Only non-identical and non-dominated entries are kept. An NDT record with
time vector t dominates (symbol �) another NDT record with time vector t′ iff
∀r ∈ R0 (tr ≤ t′r) ∧ ∃r ∈ R0 (tr < t′r). The A* algorithm stops with a proven
optimal solution when the goal node representing a complete solution is selected
for expansion.

Diving: The A* algorithm described above aims at finding a proven optimal
solution as quickly as possible. It usually does not yield intermediate complete
solutions significantly earlier than when terminating with the proven optimum.

To also obtain intermediate heuristic solutions we extended our A* algorithm
by diving for a complete solution at regular intervals: At the very beginning
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Algorithm 1. A* Algorithm for JSOCMSR
1: Initialize priority queue Q with (∅, (0, none, (MSLB, . . . , MSLB))
2: iter ← 0
3: repeat
4: if iter mod δ = 0 then
5: π ← perform diving to obtain complete solution
6: πbest ← π if new best complete solution
7: end if
8: (Ĵ , (t, jlast, f ′)) ← Q.pop()
9: if |Ĵ | = n then

10: return proven optimal solution πbest

11: end if
12: for all j ∈ J \ Ĵ do
13: find or create node N with Ĵ(N) = Ĵ ∪ {j}
14: calculate new NDT record (tnew, j, f ′

new) from t
15: if � ∃(tdom, jlastdom, f ′

dom) ∈ NDTs(N) | tdom � tnew then
16: Remove every (td, j′

d, f ′
d) ∈ NDTs(N) | tnew � td

17: Add (tnew, j, f ′
new) to NDTs(N)

18: Q.push(Ĵ(N), (tnew, j, f ′
new))

19: if |Ĵ(N)| = n then
20: π ← derive complete solution from (Ĵ(N), (tnew, j, f ′

new))
21: πbest ← π if new best complete solution
22: end if
23: end if
24: end for
25: iter ← iter + 1
26: until time- or memory-limit reached
27: return heuristic solution πbest and lower bound f0

and after each δ regular iterations, the algorithm switches from its classical
best-first strategy temporarily to a greedy completion strategy which follows
in essence LLBH. The currently selected node is expanded by considering all
feasible extensions, and each extension is evaluated by calculating the respective
evaluation vector f ′. From all these extensions, only those that are new and non-
dominated—i.e., no corresponding node/NDT entry exists yet—are kept. Should
no extension remain in this way, diving terminates unsuccessfully. Otherwise, a
best extension is selected from this set according to the lexicographic comparison
of the f ′ vectors, and the diving continues by expanding this node/NDT record
pair next. This methodology guarantees that always not yet expanded nodes are
further expanded and the diving, if successful, always yields a different solution.

7 Computational Results

To test our algorithms we created two non-trivial sets of random instances.
Set B exhibits a balanced (B) workload over all resources R, whereas set S has a
skewed (S) workload. Each set consists of 50 instances for each combination of
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n ∈ {10, 20, 50, 100, 200, 500, 1000} jobs and m ∈ {2, 3, 5} secondary resources.
The required resource qj for each job j ∈ J was randomly sampled from the
discrete uniform distribution U{1,m} for the balanced set B but in a skewed
way for set S: There, resource m is chosen with twice the probability of each of
the resources 1 to m− 1. The preprocessing times pprej and postprocessing times
ppostj were sampled from U{0, 1000} for both instance sets, while times p0j were
sampled from U{1, 1000} in case of set B and U{1, 2500} in case of set S.

A third set of instances was derived from the work on patient scheduling
for particle therapy in [8]. This set, called P, comprises 699 instances that are
expected in practical day-scenarios of this application. We partitioned the whole
set into groups with up to 10, 11 to 20, 21 to 50, and 51 to 100 jobs with 51,
39, 207 and 402 instances, respectively. All these instances use m = 3 secondary
resources. All three instance sets are available from https://www.ac.tuwien.ac.
at/research/problem-instances#JSOCMSR.

The algorithms were implemented using G++ 5.4.1. All tests were done on
a single core of an Intel Xeon E5649 with 2.53 GHz with a CPU-time limit of
900 s and a memory limit of 15 GB RAM. The MILP from Sect. 5 was solved
with CPLEX 12.7. In A* diving was performed every δ = 1000-th iteration.

Table 1 lists aggregated results for each combination of instance type and
the different numbers of jobs and secondary resources. Columns opt state the
percentage of instances that could be solved to proven optimality. Columns
%-gap list average optimality gaps of final solutions π, which are calculated
by 100 · (MS(π) − LB)/LB, where LB is the lower bound returned from A* in
case of LLBH and A* and the lower bound returned from CPLEX in case of
CPLEX. Columns σ%-gap provide corresponding standard deviations. Columns
t show the median running times in seconds. In case of MILP, optimality gaps
are list only if solutions for all 50 instances could be obtained.

These results give a rather clear picture: While A* performs very well on
essentially all instance sets and sizes—its largest average optimality gaps are
<5%—CPLEX applied to our MILP model cannot compete at all. CPLEX is
not even able to solve all instances with 10 jobs to optimality, and generally
does not yield any solution for instances with 200 and more jobs. With only few
exceptions, instances of set B are generally rather easy to solve for A* to either
optimality or with a small remaining gap of less than 0.2%. Median running
times are here fractions of a second for n ≤ 500 and under three seconds for
n = 1000. Here we could observe that the general lower bound MSLB is usually
very tight and especially for m = 2 often already corresponds to the optimal
solution value. Skewed instances of type S but also most instances of type P are
more difficult to solve. Especially for set S and m ∈ {2, 3}, A* was only able
to solve instances up to size 20 consistently to optimality. The reason when A*
did not terminate with proven optimality was always that the memory limit had
been reached. However, thanks to A*’s diving, heuristic solutions with small
remaining optimality gaps could still be found. The LLBH is—as expected—
always very fast, nevertheless providing excellent solutions, although without
specific performance guarantees.

https://www.ac.tuwien.ac.at/research/problem-instances#JSOCMSR
https://www.ac.tuwien.ac.at/research/problem-instances#JSOCMSR
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Table 1. Average results of LLBH, A*, and CPLEX for instances of sets B, S, and P.

LLBH A* Search MILP/CPLEX

type n m opt[%] %-gap σ%-gap t[s] opt[%] %-gap σ%-gap t[s] opt[%] %-gap σ%-gap t[s]

B 10 2 90 0.197 0.87 <0.1 100 0.000 0.00 <0.1 40 0.007 0.01 22.6
B 20 2 96 0.074 0.37 <0.1 100 0.000 0.00 <0.1 - - - 900.1
B 50 2 100 0.000 0.00 <0.1 100 0.000 0.00 <0.1 - - - 900.0
B 100 2 100 0.000 0.00 <0.1 100 0.000 0.00 <0.1 - - - 900.0
B 200 2 100 0.000 0.00 <0.1 100 0.000 0.00 <0.1 - - - 900.0
B 500 2 100 0.000 0.00 0.5 100 0.000 0.00 0.4 - - - 900.0
B 1000 2 100 0.000 0.00 3.8 100 0.000 0.00 2.6 - - - 900.0

B 10 3 74 1.133 2.48 <0.1 100 0.000 0.00 <0.1 48 0.007 0.01 19.2
B 20 3 76 0.767 1.65 <0.1 100 0.000 0.00 <0.1 2 - - 900.1
B 50 3 74 0.752 1.40 <0.1 92 0.078 0.30 <0.1 - - - 900.0
B 100 3 68 0.632 1.16 <0.1 82 0.168 0.39 <0.1 - - - 900.0
B 200 3 68 0.405 0.81 <0.1 82 0.172 0.42 <0.1 - - - 900.0
B 500 3 64 0.294 0.46 0.5 68 0.117 0.21 0.4 - - - 900.0
B 1000 3 68 0.127 0.25 3.8 76 0.062 0.16 2.7 - - - 900.0

B 10 5 50 2.320 3.27 <0.1 100 0.000 0.00 <0.1 74 0.004 0.01 2.2
B 20 5 42 1.634 2.31 <0.1 100 0.000 0.00 <0.1 44 - - 900.0
B 50 5 52 0.475 0.78 <0.1 94 0.016 0.07 <0.1 34 - - 900.0
B 100 5 52 0.247 0.45 <0.1 88 0.016 0.06 <0.1 - - - 900.0
B 200 5 74 0.076 0.17 <0.1 96 0.002 0.01 <0.1 - - - 900.0
B 500 5 80 0.014 0.04 0.5 96 0.001 0.01 0.4 - - - 900.0
B 1000 5 76 0.006 0.01 3.8 98 0.000 0.00 2.6 - - - 900.0

S 10 2 40 1.387 1.84 <0.1 100 0.000 0.00 <0.1 60 0.004 0.01 2.8
S 20 2 14 1.675 1.41 <0.1 100 0.000 0.00 19.3 2 11.986 10.09 900.1
S 50 2 0 4.739 2.58 <0.1 0 3.374 2.32 154.2 - - - 900.1
S 100 2 0 4.122 1.70 <0.1 0 3.271 1.57 153.1 - - - 900.0
S 200 2 0 3.678 1.01 <0.1 0 3.163 0.98 166.1 - - - 900.0
S 500 2 0 3.662 0.75 0.5 0 3.360 0.70 201.5 - - - 900.0
S 1000 2 0 3.626 0.50 3.8 0 3.453 0.48 241.1 - - - 900.0

S 10 3 44 1.343 1.73 <0.1 100 0.000 0.00 <0.1 50 0.006 0.01 4.2
S 20 3 20 2.323 1.86 <0.1 100 0.000 0.00 15.2 28 - - 900.0
S 50 3 18 4.170 2.96 <0.1 20 2.807 2.34 163.3 8 - - 900.0
S 100 3 18 4.506 3.11 <0.1 20 3.593 2.64 181.4 - - - 900.0
S 200 3 10 4.545 2.91 <0.1 10 4.011 2.70 194.1 - - - 900.0
S 500 3 0 4.960 1.94 0.5 0 4.672 1.92 236.5 - - - 900.0
S 1000 3 0 5.018 1.46 3.8 0 4.852 1.41 246.3 - - - 900.0

S 10 5 46 1.496 1.87 <0.1 100 0.000 0.00 <0.1 66 0.004 0.01 0.2
S 20 5 64 0.890 1.80 <0.1 100 0.000 0.00 <0.1 82 0.616 2.42 0.8
S 50 5 74 0.275 0.85 <0.1 88 0.097 0.49 <0.1 84 - - 16.6
S 100 5 88 0.044 0.17 <0.1 98 0.014 0.10 <0.1 46 - - 890.5
S 200 5 86 0.010 0.03 <0.1 100 0.000 0.00 <0.1 - - - 900.0
S 500 5 96 0.002 0.01 0.5 100 0.000 0.00 0.4 - - - 900.0
S 1000 5 96 0.001 0.01 3.8 100 0.000 0.00 2.6 - - - 900.0

P ≤10 3 82 0.366 0.93 <0.1 100 0.000 0.00 <0.1 63 0.611 0.84 <0.1
P ≤20 3 64 0.374 0.75 <0.1 100 0.000 0.00 <0.1 59 7.512 17.35 63.5
P ≤50 3 62 0.554 0.96 <0.1 80 0.219 0.55 <0.1 27 - - 900.0
P ≤100 3 65 0.497 1.01 <0.1 77 0.247 0.58 <0.1 4 - - 900.0
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8 Conclusions

In this work we introduced the problem of scheduling a set of jobs, where each
job requires two resources: a common resource shared by all jobs for part of their
processing, and a secondary resource for the whole processing time. Despite that
we could show this problem to be NP-hard, we came up with an excellent lower
bound for the makespan, which we exploited in the fast constructive heuristic
LLBH and the complete A* search. The A* algorithm features in particular
a special graph structure in which each node corresponds to an unordered set
of already scheduled jobs in combination with a set of NDT records represent-
ing individual non-dominated partial solutions. Hereby it is possible to exploit
symmetries and reduce the memory consumption. A diving mechanism is further
used to obtain heuristic solutions in regular intervals. It turns out that A* works
mostly extremely well. However, some instances especially with skewed resource
workloads and competing resources are occasionally hard to solve. The focus
of further research will be to better understand difficult instances, to consider
extended variants of this problem and to develop advanced heuristic methods.
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Abstract. The field of reinforcement learning has been significantly
advanced by the application of deep learning. The Deep Deterministic
Policy Gradient(DDPG), an actor-critic method for continuous control,
can derive satisfactory policies by use of a deep neural network. However,
in common with other deep neural networks, the DDPG requires a large
number of training samples and careful hyperparameter tuning.

In this paper, we propose a Stochastic Value Function (SVF) that
treats a value function such as the Q function as a stochastic variable
that can be sampled from N(μQ, σQ). To learn the appropriate value
functions, we use Bayesian regression with KL divergence in place of
simple regression with squared errors. We demonstrate that the tech-
nique used in Trust Region Policy Optimization (TRPO) can provide
efficient learning. We implemented DDPG with SVF (DDPG-SVF) and
confirmed (1) that DDPG-SVF converged well, with high sampling effi-
ciency, (2) that DDPG-SVF obtained good results while requiring less
hyperparameter tuning, and (3) that the TRPO technique offers an effec-
tive way of addressing the hyperparameter tuning problem.

1 Introduction

As deep learning is able to process complex sensory inputs and raw pixels, it
can be applied to a wide range of tasks, and reinforcement learning with deep
learning (Deep RL) has made great progress in addressing challenging problems.
However, most existing deep reinforcement learning methods have low sampling
efficiency, due to overfitting that arises from the use of deep neural networks to
approximate the value functions. This limits the application of Deep RL to real
physical tasks, such as robot control.

To address this limitation, we propose the use of a Stochastic Value Function
(SVF). SVF applies value functions such as the Q function (action state value
function) and V function (state value function) to reinforcement learning and
treats them as stochastic variables that are sampled from N(μQ, σQ).

Many existing value-based reinforcement learning methods train their value
functions by using regression based on a Bellman equation [1,2]. For training the
SVF, we use Bayesian regression with Kullback-Leibler (KL) divergence rather
than simple regression with L2 divergence. Furthermore, we show theoretically

c© Springer International Publishing AG 2018
G. Nicosia et al. (Eds.): MOD 2017, LNCS 10710, pp. 519–526, 2018.
https://doi.org/10.1007/978-3-319-72926-8_43
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that the natural gradient [3] with the Hessian-free optimization in Trust Region
Policy Optimization (TRPO) can be applied.

We implemented the Deep Deterministic Policy Gradient with SVF (DDPG-
SVF), had it learn to solve a pendulum problem and a lunar lander problem,
and compared the performance of DDPG and DDPG-SVF with and without the
trust region method. Our experimental results demonstrated that DDPG-SVF
required fewer samples and was more robust, since delicate, precise tuning of the
hyperparameters of the deep neural network was unnecessary. We also confirmed
the effectiveness of the natural gradient with the Hessian-free optimization.

2 Background

The goal of reinforcement learning is to identify the policy that maximizes the
expected discounted cumulative rewards received by the agent. At time step t
and state st, the agent chooses action at sampled from π(at|st), belonging to
state space S and action space A, respectively. π maps states to a probabilistic
distribution over the action space π: S → P(A). When the environment transi-
tions to a new state st+1 following the model dynamic p(st+1|st, at), the agent
receives the reward r(st, at). γ is a discount factor. In this context, a state action
value function Qπ can be defined. This represents the discounted expected cumu-
lative rewards from taking action at in state st and then adopting policy π and
model dynamics p(st+1|st, at).

Qπ(s, a) = Eπ,p

[ ∞∑

k=0

γkr(st+k)
∣
∣st = s, at = a

]
. (1)

We can derive recursive equation, Bellman Equation.

Qπ(st, at) = Ep

[
r(st, at) + γEπ

[
Qπ(st+1, at+1)

]]
. (2)

2.1 DDPG

In deterministic policy setting [2], we can avoid calculating the expected Q for
π. Instead, π is given by the function μ: S → A.

Qμ(st, at) = Ep [r(st, at) + γQμ(st+1, μ(st+1))] . (3)

We can then evaluate the right-hand side of Eq. 3 without sampling from the
policy. This type of learning is known as off-policy reinforcement learning [1,2,
4,5] and makes use of trajectories sampled from policies that are different from
the current policy, improving the efficiency of sampling.

In many value-based reinforcement learning methods, Q is parameterized by
θQ and updated by minimizing the square of the Bellman residual with respect
to θQ.

Loss(θQ) = Ep

[
(Qμ(st, at|θQ) − yt)2

]
. (4)
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Here, yt = r(st) + γQμ(st+1, μ(st+1)|θ′
Q), where yt is the target value. For

stable learning, the target parameters θ′
Q can be used to evaluate the target

value [1,2]. The target parameters are updated by θ′ ← (1−τ)θ′ +τθ. In DDPG,
policy is deterministic and is parameterized by θμ and described by μ(s|θμ). μ is
updated by gradient with respect to θμ of J , which is the expected return from
the state distribution, where J = Eρ [r(s, μ(s))] and ρ is the state distribution.
We can then derive the gradient of J with respect to θμ as follows.

∇θμ
J = Ep

[
∇aQμ(s, a|θQ)

∣
∣
s=st,a=μ(st)

∇θμ
μ(s|θμ)

∣
∣
s=st

]
. (5)

It has been proven that this gradient is equal to the policy gradient [6] at the
limit of policy’s variance to zero [7].

However, it is known that the simple regression from Eq. 4 can cause over-
fitting, slowing the fitting of new samples. To make matters worse, the biased
gradient estimate derived from Q in Eq. 5, makes the learning policy prone to
divergence.

2.2 TRPO

In TRPO, a surrogate objective is derived that gives the lower bound of the true
objective. This surrogate objective is in a KL penalized form.

max
θ

∑

n

πθ(an|sn)
πθold

(an|sn)
Aπθold − CDKL [πθold

||πθ] , (6)

where DKL is the KL divergence.
KL penalized maximazation is then treated as a KL constrained maximiza-

tion problem.

max
θ

Lπθold
(πθ) =

∑

n

πθ(an|sn)
πθold

(an|sn)
Aπθold , (7)

s.t.DKL [πθold
||πθ] ≤ δ. (8)

The right direction for this maximization problem can be computed using
a linear approximation of L and a quadratic approximation of KL. Equation 6
then becomes a quadratic optimization problem.

max
θ

g(θ − θold) − C

2
(θ − θold)T F (θ − θold), (9)

where g = ∂
∂θLπθold

(πθ) andF = ∂2

∂θ2 DKL [πθold
||πθ]. The right direction can then

be computed as F−1g, using conjugate gradient descent [8]. Many automatic dif-
ferentiation libraries, such as TensorFlow [9], can be used to compute F−1g with
a computation time O(n) and without requiring O(n2) memory usage (where n
is number of parameters). Line search is then performed with KL constrained by
Eq. 8. In many reinforcement learning tasks, TRPO offers the best performance
and the most stable learning [10]. However, as TRPO is an on-policy learning
method, it requires a large batch of trajectories for updating, reducing sampling
efficiency.
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3 Proposal

As noted in Sect. 2, DDPG is sampling efficient but not stable, whereas TRPO
is stable but less sampling efficient. We therefore propose the use of a SVF and
specifically, a DDPG with SVF (DDPG-SVF) to increase stability and sampling
efficiency. Like DDPG, DDPG-SVF uses a deep neural network for reinforce-
ment learning but treats the Q function as a stochastic variable sampled from
a Gasussian distribution N(μQ, σQ). The network architecture of DDPG-SVF
is shown in Fig. 1. To train the SVF, we use Bayesian regression rather than
the simple regression of Eq. 4. In Bayesian regression, a loss function is defined
by KL divergence between an approximated posterior distribution q(μQ, σQ|θQ)
and the true posterior distribution p(μQ, σQ|D). Here, D is the sample set.

Loss(θQ) = KL [q(μQ, σQ|θQ)||p(μQ, σQ|D)] (10)
= KL[q(μQ, σQ|θQ)||p(μQ, σQ)] − Eq[log(p(D|μQ, σQ))] + const. (11)

By applying a reparameterization trick [11] and analytically computing the
KL divergence between the approximated posterior q(μQ, σQ|θQ) and prior dis-
tribution p(μQ, σQ) (both of which are Gaussian), Eq. 11 can be differentiated
with respect to θQ. We then update θQ to minimize Eq. 11 using gradient-based
methods. As the distribution of the samples changes continuously in reinforce-
ment learning, the distribution obtained one time step earlier is used as the prior
distribution.

Equation 11 can be regarded as yielding the negative log-liklihood and KL
constraint.

min
θQ

−Eq(μQ,σQ|θQ)[log(p(D|μQ, σQ))] + KL[q(μQ, σQ|θQ)||p(μQ, σQ)]. (12)

min
θQ

−Eq(μQ,σQθQ)[log(p(D|μQ, σQ))]

s.t.KL[q(μQ, σQ|θQ)||p(μQ, σQ)] ≤ δ.
(13)

Equation 12 can be approximated by Eq. 13, and the SVF can be trained
by the natural gradient with the Hessian-free algorithm of TRPO [12]. While μ
can be trained in the same way as DDPG. Algorithm 1 is the full DDPG-SVF
algorithm with and without the trust region.

We can reduce the biases of the Q estimate and gradient of Q with respect to
actions when updating μ, because the biases arising from overfitting are reduced
by replacing simple regression with Bayesian regression. We apply a natural
gradient, which can exit a saddle point more quickly than a first-order gradient
with fewer computational resources.

4 Experiments

We designed a Pendulum test and a LunarLander test in OpenAI Gym [13] and
used them to compare the performance of three models: (a) DDPG-SVF with
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Fig. 1. The network architecture of
DDPG-SVF

Fig. 2. Pendulum

Fig. 3. LunarLander

trust region, (b) DDPG-SVF without trust region, and (c) conventional DDPG.
Our main focus was on (A) sampling efficiency and (B) robustness.

4.1 Experimental Methods

The Pendulum test is a continuous control task, the main purpose of which
is to stabilize the pendulum in an inverted position. An agent can send a sig-
nal discribing the torque moment as an action. Figure 2 shows the task. The
LunarLander test is a continuous control task, the main purpose of which is
to land between flags on the moon softly. An agent can send signals as power
of engines. Figure 3 shows the task. The network architecture of DDPG-SVF is
shown in Fig. 1. This architecture differed from that of DDPG only in the final
layer and, the network sizes were the same, giving an output size of 400 for Layer
1 and 300 for Layer 2. The same initialization method was used. This network
architecture was used in all experiments. The other hyperparameters are given
in Table 1 and it was based on original DDPG paper [2]. We multiple a scale
reward and a reward for scaling reward.
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Algorithm 1. DDPG-SVF
Initialize μQ, σQ with weights θQ, μ with weights θµ
Initialize target networks μ′

Q, σ′
Q with θQ → θ′

Q, μ with θµ → θ′
µ

Initialize replay buffer R
for episode = 1 to M do

Initialize random process N
Get initial state s1 from environment
for t = 1 to T do

Select action at = μ(st|θµ) + Nt

Execute action at and get reward rt, next state st+1 and terminal signal Tt

Store transition (st, at, rt, st+1, Tt)
Sample M transitions from R
Compute yi = ri + γμQ(si+1, μ

′(si+1)), L = 1
M

∑ −log(p(yi|μQ, σQ)), DKL

if use trust region then
Compute F −1g by CG
Line search with constaint DKL ≤ δ

else
Minimize Loss = L + DKL

end if
Update target networks θQ → θQ′, θµ → θµ′

end for
end for

Table 1. Hyperparameter settings

Algo Batch size π lr Q lr τ γ Scale reward Game

SQ-tr DDPG 32 1E−04 − 1E−03 0.99 1.0 Pendulum

SQ-no-tr DDPG 32 1E−04 1E−03 1E−03 0.99 1.0 Pendulum

dQ DDPG 32 1E−04 1E−03 1E−03 0.99 1.0 Pendulum

4.2 Sampling Efficiency

Due to overfitting, the DDPG had the lowest sampling efficiency. The only varia-
tion in the hyperparameter settings was the Q learning rate for the stochastic Q
function when applying the trust region method, as this method does not require
the learning rate. Figure 4 shows that whereas the conventional DDPG model
required approximately 300 learning episodes, the DDPG-SVF without trust
region required 180, and the DDPG-SVF with trust-region only required 120 in
the Pendulum test. Figure 5 shows that SVF with and without trust region learn
more quickly than conventional DDPG and SVF with trust region is the most
stable learning in the LunarLander test. This demonstrated the effectiveness of
both the Bayesian regression with KL divergence and the trust region method.

4.3 Robustness

In the conventional DDPG method, if the estimation of the Q function is biased,
the policy gradient also becomes biased, and significant hyperparameter tuning
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is required. As the DDPG-SVF suffers less from overfitting, we anticipated that
biased estimation would be improved. To investigate the robustness of the model,
we applied 135 hyperparameter settings to each method. These parameter set-
tings were the Cartesian products of Table 2. We ran 500 episodes for each setting
and sorted by the obtained score. The plots are shown in Fig. 6, in which the
horizontal axis is the sorted order ratio and the vertical axis is the scores. It
can be seen that the conventional DDPG model performed well only as far as
the upper 40%, after which the scores decreased significantly. In contrast, the
DDPG-SVF without trust region had a threshold at approximately 55%. When
using the DDPG-SVF with trust region, more than 90% of the hyperparameters
had a score higher than those of the other two methods.

Table 2. Hyperparameters

π lr 1e−4, 5e−4, 1e−3, 5e−3, 1e−2

τ 1e−4, 1e−3, 1e−2

γ 0.8, 0.9, 0.99

Scale reward 0.1, 0.5, 1.0

Fig. 4. Pendulum learning curve Fig. 5. LunarLander learning curve

Fig. 6. Pendulum robustness
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5 Concluding Remarks

We proposed a DDPG with SVF (DDPG-SVF), in which the Q function
is treated as a stochastic variable sampled from the Gaussian distribution
N(μQ, σQ) and the learning is based on KL divergence rather than the squared
errors. Our experimental results demonstrated that the DDPG-SVF was able
to improve robustness while reducing the number of trials required. Our SVF
approach is completely modular and can be applied to a range of other value-
based reinforcement learning methods, including DQN [1]. An uncertainty signal
of the value function, such as σQ, should be applied in reinforcement learning
algorithms.
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Abstract. In this paper we formulate an algorithm for finding smooth
graphs with small independence numbers. To this end we formalize a
family of satisfaction problems and propose a branch-and-bound-based
approach for solving them. Strong bounds are obtained by exploiting
graph-theoretic aspects including new results obtained in cooperation
with leading graph theorists. Based on a partial solution we derive a
lower bound by computing an independent set on a partial graph and
finding a lower bound on the size of possible extensions.

The algorithm is used to test conjectured lower bounds on the inde-
pendence numbers of smooth graphs and some subclasses of smooth
graphs. In particular for the whole class of smooth graphs we test the
lower bound of 2n/7 for all smooth graphs with at least n ≥ 12 ver-
tices and can proof the correctness for all 12 ≤ n ≤ 24. Furthermore,
we apply the algorithm on different subclasses, such as all triangle free
smooth graphs.

Keywords: Branch and bound · Smooth graphs
Combinatorial optimization

1 Introduction

In graph theory independent sets are well studied objects and the independence
number of a graph is a central characteristic which is strongly related to many
important properties. One natural research subject is to find lower and upper
bounds for the independence number for general graphs, see for example [6], or
for specific subclasses of graphs, see for example [12].

In this paper we focus on the independence number of smooth graphs, a
subclass of 4-regular Hamiltonian graphs. For a complete definition of smooth
graphs see Sect. 2. This work is motivated by the works of Fleischner, Sabidussi
and Sarvanov [2,3], three renowned graph theorists, who already studied
smooth graphs and their independence number in depth from a graph-theoretic
perspective.

This work is supported by the Austrian Science Fund (FWF) under grant P27615
and the Vienna Graduate School on Computational Optimization, grant W1260.
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We are interested in lower bounds on the independence number of smooth
graphs. Sarvanov conjectured that every smooth graph G with n > 11 vertices
has independence number α(G) ≥ 2

7n [11]. The main goal of this work is to
design an algorithm which can check lower bounds on the independence number
for smooth graphs and either prove them for all graphs with a given number
of vertices or disprove them by finding a graph with a smaller independence
number.

By using Brooks’ Theorem [1] we get a lower bound on the independence
number for all 4-regular graphs. It states that every 4-regular graph with n
vertices that is not the K5 can be colored with 4 colors which implies that it has
an independent set of size at least n/4. This property, together with the fact that
we only consider graphs containing a Hamiltonian cycle and therefore having an
independence number of at most n/2, give us an interval of interesting possible
lower bounds.

We will describe a branch-and-bound algorithm which heavily depends on the
graph-theoretic results and bounds to search through the space of possible graphs
in an efficient way [10]. The main idea is to use a heuristic to compute a large
independent set together with the graph-theoretic bounds to detect infeasible
subproblems as early as possible. For complete solutions we use an integer linear
programming (ILP) model to compute their independence number and to check
if they are feasible.

In the next section we will formally define smooth graphs and state the
problem framework, and in Sect. 3 we present a branch-and-bound approach that
solves the problem. In Sect. 4 we will infer some useful bounds and properties
using already existing graph-theoretic results, and in Sect. 5 we will describe how
to use those bounds and properties to compute a usually very tight bound on
the independence number of a partial solution in order to detect infeasibility as
early as possible. In Sect. 6 we will present some computational results for four
different problem variants. Finally, we will conclude with Sect. 7 and propose
promising further work.

2 Problem Formulation

In the context of this paper we only consider loopless undirected graphs, which
may contain multiple edges, and just write graph for this type of graphs. A graph
is called r-regular if every vertex has degree r. We are interested in 4-regular
Hamiltonian graphs G = (V,E), in which a Hamiltonian cycle H ⊆ E exists. If
we consider the graph G\H after removing the cycle H we get a 2-regular graph
which consists of a set of cycles. We call the cycles of G \ H the inner cycles of
G. Such a graph is called smooth if the inner cycles are “non-selfcrossing” in the
sense that the cyclic order of its vertices agrees with their cyclic order of H. An
example for a smooth graph is given in Fig. 1.

The independence number of a graph is the size of its largest independent set.
Based on Sarvanov’s conjecture [11] we formulate the following problem. Given
n ∈ N as input, does there exist a smooth graph with n vertices and independence
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Fig. 1. Smooth graph with twelve vertices and three inner cycles in different colors
(Color figure online)

number smaller than 2
7n? This problem can be generalized to the following family

of problems. Given n ∈ N as input, does there exist a smooth graph with n
vertices that satisfies some properties P and has independence number smaller
than qn for some given factor q ∈ (

1
4 , 1

2

]
? We call this problem Existence of

Smooth Graphs with Small Independence Number or short ESSI(q,P).

3 Algorithmic Approach

In this section we present a branch-and-bound approach that solves ESSI(q,P),
i.e. it checks for a given n ∈ N if there exists a smooth graph with n vertices
and independence number smaller than qn that satisfies the conditions P. The
conditions of P can get added to the branch-and-bound approach in a problem-
specific manner.

3.1 Solution Representation

If we assume that the Hamiltonian cycle and therefore the order of the ver-
tices in the Hamiltonian cycle is given, every inner cycle of a smooth graph is
already uniquely determined if we only know the set of its vertices. W.l.o.g. we
assume the vertex set V = {1, . . . , n} to be ordered so that the Hamiltonian
cycle {{1, 2}, {2, 3}, . . . , {1, n}} is fixed. Therefore, we only have to partition the
vertex set {1, . . . , n} into sets of size at least three and the result represents a
smooth graph. For the rest of the algorithmic description section we will use a
partitioning of the ordered vertex set {1, . . . , n} into sets of size at least three
as a solution representation.

3.2 Core Algorithm

The core algorithm is based on the branch-and-bound principle. The branching is
done by assigning the next not yet assigned vertex in the order of the Hamiltonian
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cycle to an already existing partition or to a new partition. The start solution is
the solution where no vertex is assigned. After assigning a vertex to a partition
we check if the resulting partial solution satisfies all bounds and if there is
a theoretical possibility to complete it to a solution that satisfies the wanted
conditions. We call a partial solution that fails this check an infeasible partial
solution. If the current partial solution is infeasible, we can cut off this branch
and continue with the next partial solution. The infeasibility check of partial
solutions is described in more detail in Sect. 5.

Whenever the branching reaches a complete solution, where all vertices are
assigned to partitions, we compute its independence number and check the con-
ditions P. Note that computing the independence number is NP-hard for the
class of smooth graphs [2]. We compute it by solving the integer linear program

max

{
∑

v∈V

xv

∣
∣
∣
∣xv ∈ {0, 1} ∀v ∈ V ∧ xv + xw ≤ 1 ∀{v, w} ∈ E

}

.

As search strategy we use depth first search. Although for searching through
the whole tree in order to obtain all feasible graphs, the search strategy is irrele-
vant since we are not reusing information of found solutions, it may be relevant
for finding a feasible solution as fast as possible.

4 Bounds and Other Useful Properties

To reduce the search space for our problem we first derive some bounds and other
properties for smooth graphs that may have an independence number smaller
than qn. We will mainly use the results of Fleischner, Sabidussi and Sarvanov to
infer bounds and other properties [2,3]. Those will then be useful for checking
infeasibility and recognizing infeasible partial solutions as early as possible.

We consider the problem ESSI(q,P) and we assume that the satisfaction
properties P and the factor q are fixed. For the rest of this section we will
assume that G∗ is a smooth graph with n vertices that satisfies the properties P
and has independence number α(G∗) < qn, i.e. G∗ is a solution to the problem
ESSI(q,P). Let r∗ be the number of inner cycles of G∗.

Fleischner and Sarvanov proved in [3] the following theorem.

Theorem 1. Let G be a smooth graph with n vertices and r the number of inner
cycles. Then the following holds.

α(G) ≥ n − r

3
(1)

We use this theorem to compute a lower bound of r∗.

Corollary 1. For G∗ and r∗ the following holds.

r∗ ≥ n − 3�qn	 + 3 (2)
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Proof. Since the independence number α(G∗) is integral we get from (1) that
α(G∗) ≥

⌈
n−r∗

3

⌉
.

α(G∗) < qn ⇒
⌈

n − r∗

3

⌉
< qn ⇔

⌈
n − r∗

3

⌉
≤ �qn	 − 1

⇔ n − r∗

3
≤ �qn	 − 1 ⇔ r∗ ≥ n − 3�qn	 + 3

Inequality (1) can be strengthened if we exclude one special graph, which we
call G(2). G(2) is defined for even n and is the unique simple smooth graph with
only two inner cycles. G(2) is unique since the only possibility to being simple
and having only two inner cycles is if all even vertices are in one inner cycle
and all odd vertices are in another inner cycle. By excluding G(2) Fleischner and
Sarvanov [3] proved the following stronger inequality.

Theorem 2. Let G be a smooth graph with n vertices that is not isomorphic to
G(2) and let r be the number of inner cycles. Then the following holds.

α ≥ n − r + 1
3

(3)

Fleischner and Sarvanov stated this theorem with another equivalent condition.
They proved Theorem 2 first for multigraphs and then showed that it also holds
for simple graphs that have three consecutive vertices in different inner cycles.
Putting this two conditions together we get that two consecutive vertices lie in
different cycles, since the graph must be simple. Therefore, if three consecutive
vertices never lie in three different inner cycles it must hold that vertex k and
vertex k + 2 always lie in the same inner cycle. This further implies that all
even vertices form one inner cycle and so do all odd vertices. Therefore, the only
graph that does not satisfy both conditions is G(2).

As before we can use this theorem to compute a stronger lower bound for r∗.

Corollary 2. If G∗ is not isomorphic to G(2) the following holds.

r∗ ≥ n − 3�qn	 + 4 (4)

Proof. The proof is analogous to the proof of Corollary 1 by replacing (1)
with (3).

Another useful theorem is the following from [4].

Theorem 3 (Cycle-Plus-Triangles Theorem). Let G be a smooth graph
where all inner cycles are triangles, i.e. have length three. Then G is 3-colorable.

In [3] the following corollary of the cycle-plus-triangle theorem is stated.
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Corollary 3. Let G be a smooth graph with n vertices where all inner cycles
have length smaller than or equal to four. Let r be the number of inner cycles
and r3 be the number of inner cycles of length three. Then the following holds.

α(G) ≥ n − (r − r3)
3

(5)

Let for the following corollary r∗
3 be the number of inner cycles of length three

of G∗.

Corollary 4. G∗ has either an inner cycle with length greater than four or the
following holds.

r∗ ≥ n − 3�qn	 + 3 + r∗
3 (6)

Proof. The proof is analogue to the proof of Corollary 1 by replacing (1) with (5).

Until now, we only provided lower bounds for r∗, but by using Theorem 3 we
can also compute the following upper bound.

Corollary 5. Let G∗ and r∗ be as described at the beginning of the section.
Then r∗ < qn holds.

Proof. We remove vertices for each inner cycle with length greater than three
until every inner cycle has length three. For each removed vertex we connect the
two neighbors in the inner cycle and the two neighbors in the Hamiltonian cycle.
The result is a smooth graph G′ with n′ = 3r∗ where all inner cycles are triangles.
Removing vertices and adding edges can only decrease the independence number
since every independent set in the transformed graph is also an independent set
in the original graph. Therefore, we know α(G′) ≤ α(G∗) and we can conclude
the proof using Theorem 3 as follows.

qn > α(G) ≥ α(G′) =
n′

3
= r∗

5 Checking Infeasibility

To check if a given partial solution is infeasible, we use the bounds and properties
from Sect. 4, and compute an as tight lower bound for the independence number
of any completion of the partial solution as possible. Let S be a partial solution,
i.e. S is a partitioning of a subset of the vertices of G.

To be able to use the lower bound from Corollary 2 for r, we need to exclude
the graph G(2). To do this we check the conditions P for the unique graph G(2)

and compute the independence number of it before we execute the branch and
bound algorithm. Let rLB be the lower bound for the number of inner cycles r
which we get from (4). Furthermore, let rUB = �qn be the upper bound for the
number of inner cycles r which we get from Corollary 5.



Finding Smooth Graphs with Small Independence Numbers 533

If |S| > rUB the given partial solution is infeasible. Let k =
∑

P∈S |P | be the
number of fixed vertices in S and

� :=
∑

P∈S:|P |<3

3 − |P |

the number of vertices that are at least needed to complete all partitions of S.
Furthermore, let Ri := |{P ∈ S : |P | ≥ i}| be the number of partitions in S with
at least i vertices. Now we can show the following theorem.

Theorem 4. Let S be a partial solution and rUB, rLB, k, � and (Ri)i≥3 be as
described above. With that we can define the following value.

m := max
[
0,min

(
5 − max

(
3,max

P∈S
|P |

)
, n − 3�qn	 + 3 − R4

)]
.

If there exists a feasible completion of S the following holds.

k + � + m + 3max(0, rLB − |S|) ≤ n (7)

Proof. First of all every completion of S must complete all partitions P ∈ S with
|P | < 3, which implies that at least � vertices must be added to the k existing
ones. If |S| < rLB we know that a completion of S with the desired properties
must have at least rLB different partitions and therefore 3(rLB − |S|) additional
vertices must be added.

By Corollary 4 either the completion must contain a partition of size at least
five or (6) must hold. To get a partition of size five we can add max(0, 5 −
max(3,maxP∈S |P |)) additional vertices to the largest partition. Otherwise, to
satisfy (6) we need to have n−3�qn	+3 many partitions of size at least four. We
have at the moment R4 many inner cycles with length at least four and therefore
we need max(0, n−3�qn	+3−R4) many additional vertices to get enough inner
cycles of length four.

Plugging everything together and considering that in total we have n vertices
we get (7).

If (7) is violated we know that S is infeasible.
We covered now the cases where we can determine that S is infeasible without

even computing an independent set. Now we compute an independent set on the
partial graph of S, which is the graph induced by all fixed vertices VS =

⋃
P∈S P .

By the branching rules we know that VS = {1, . . . , k} for some k ≤ n.
The partial graph GS = (VS , ES) consists of the fixed vertices and all possible

edges between those vertices. Since we do not know if a partition P ∈ S with
|P | ≥ 3 is already complete or not, we also do not know if the vertices min(P )
and max(P ) are connected or not. We want that every independent set in GS is
also an independent set in G and therefore we have to add those edges to ES .

ES := {{a, b} ∈ EG : a, b ∈ VS} ∪ {{min(P ),max(P )} : P ∈ S, |P | ≥ 3}
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To compute an independent set on GS we use the minimum-degree greedy algo-
rithm [8]. In each iteration this algorithm adds a vertex with the minimum degree
to the independent set and removes the vertex and all its neighbors from the
graph. Besides good approximation ratios the greedy algorithm is also fast, it
can be implemented in O(n) time.

Let I be the independent set found by the minimum-degree greedy on the
graph GS . Our goal is now to find a good lower bound on how many additional
vertices can be added to I in each completion of S.

Theorem 5. Let S be a partial solution and I an independent set on the graph
GS. Furthermore, let k, �, m and rUB be as described above and let

V max
I := |I ∩ {1, k}| + |I ∩ {min P : P ∈ S}| + |I ∩ {max P : P ∈ S}|.

Then there exists for every completion G of S an independent set IG with

|IG| ≥ |I| +

[
n − k − V max

I − min
(
rUB − |S|, n−k−�−m

3

)]

3
. (8)

Proof. Let G be an arbitrary completion of S. First of all we upper bound the
number of inner cycles r of G. Clearly we know r ≤ rUB. Furthermore, by using
the same reduction as in the proof of Theorem 4 we get

k + � + m + 3max(0, r − |S|) ≤ n ⇒ r ≤ n − k − � − m

3
+ |S|. (9)

Now we can compute a lower bound on the independence number of G. Let
VI ⊆ VG \ VS be the set of all vertices in G that are not in VS and are adjacent
to one of the vertices in I. The vertices of VI are either connected to I via the
Hamiltonian cycle, which is only possible if the vertex 1 or the vertex k is in
I, or via an inner cycle, which is only possible for the end vertices minP and
max P of an inner cycle P ∈ S. Therefore we can bound the size of VI by

|VI | ≤ |I ∩ {1, k}| + |I ∩ ({min P : P ∈ S}| + |I ∩ {max P : P ∈ S})| = V max
I .

We consider now the residual graph Grem after removing the vertices VS and VI

from G, which is a graph with n−k−|VI | vertices. We complete the independent
set I by an algorithm that is similar to the minimum-degree greedy algorithm.
Instead of always taking a vertex with the minimum degree we take the minimum
remaining vertex, i.e. the first vertex in the order of the Hamiltonian cycle that
is not adjacent to any vertex in the independent set so far.

Let I0 = I be the start set and Ii the set after iteration i and let vi be the
vertex added in iteration i. Furthermore, let Pi be the partition in G of the vertex
vi and Gi be the remaining graph in iteration i, G0 = Grem. We distinguish two
cases, the case if vi = min(Pi) is the first vertex in Pi or not. Since we selected vi

as the first vertex in the order of the Hamiltonian cycle which is still in Gi−1 we
know that the preceding neighbor of vi in the Hamiltonian cycle is not in Gi−1

and therefore we obtain that the degree dGi−1(vi) of vi in Gi−1 is smaller than or
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equal to three. If vi �= min(Pi) we also know that one neighbor in the inner cycle
containing vi is a predecessor of vi in the Hamiltonian cycle and therefore it is
also not in Gi−1, which gives us dGi−1(vi) ≤ 2. Summing up over all iterations
we get

n − k − |VI | =
x∑

i=1

dGi−1(vi) + 1 ≤ x + 3(r − |S|) + 2(x − r + |S|)

⇒x ≥ n − k − |VI | − r + |S|
3

≥ n − k − |VI | − min
(
rUB − |S|, n−k−�−m

3

)

3
.

In total, we constructed a new independent set IG with |I| + x elements and
therefore (8) holds.

If P is not empty we can calculate problem specific bounds for those con-
straints and check them. To summarize this section Algorithm 1 describes the
whole procedure for checking infeasibility.

Algorithm 1. Checking Infeasibility
INPUT: n, q, P and a partial solution S
Compute rLB, rUB, k, �, m
if |S| > rUB then

return infeasible
end if
if (7) is not satisfied then

return infeasible
end if
Construct GS and apply minimum-degree greedy to get independent set I
Compute V max

I

if |I| +
[n−k−V max

I −min(rUB−|S|, n−k−�−m
3 )]

3
≥ qn then

return infeasible
end if
if Problem specific bound check for P fails then

return infeasible
end if
return possibly feasible

5.1 Symmetry Breaking

Until now the branch and bound procedure will consider many isomorphic
graphs, such as all rotations alongside the Hamiltonian cycle and their rever-
sals. In this section we will describe how we break those symmetries.

To this end we define the gap sequence of a complete solution. Let S be
a complete solution, i.e., a partitioning of the vertex set V = {1, . . . , n}. Let
Pi ∈ S be the partition of vertex i and let gi be the gap between vertex i and its
successor j in the partition Pi, i.e., let j = min{j ∈ Pi : j > i} if this set is not
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empty or j = min{j ∈ Pi : j < i} otherwise and gi = j − i if j > i or j + n − i
otherwise. We call the sequence (gi)n

i=1 the gap sequence of S.
If two S have the same gap sequence they are not only isomorphic but also

exactly the same according to the vertex labeling. We break those symmetries
by ensuring that the gap sequence is minimal according to the lexicographical
order under all rotations alongside the Hamiltonian cycle and their reversals. Be
aware that rotating alongside the Hamiltonian cycle simply means shifting the
gap sequence, but reversing the Hamiltonian cycle is a non-trivial change in the
gap sequence.

We can compute the gap sequence not only for complete solutions but also
for partial solutions. In some cases the next gap is not yet known and instead
of calculating a gap we can calculate a lower bound and an upper bound for
the gap. With the lower and upper bounds we can check if there is a rotation
that always leads to a smaller gap sequence. We can also compute lower and
upper bounds for the reversed gap sequence and also check if reversing leads to
a smaller gap sequence.

If we found a rotation or a reversed rotation that always leads to a smaller
gap sequence, we can fathom the current branch and continue with the next one.
The motivations behind the choices of P are explained subsequently.

6 Computational Results

In this section we will present computational results for instances to four different
problems. Our algorithm is implemented in C++ and compiled with g++ 4.8.4. To
solve the ILP model for finding a maximum independent set we used Gurobi 7.0.1
[7]. All tests were performed on a single core of an Intel Xeon E5540 processor
with 2.53 GHz and 2 GB RAM.

We consider four different variants of the problem. The first and original
variant is with q1 = 2

7 and with an empty constraint set P1 = ∅. The second
problem is also with q2 = 2

7 but with the additional constraint that all inner
cycles have length at most four, i.e. P2 = {(R5 = 0)}. The third problem is with
q3 = 5

16 and P3 = {(all inner cycles have length 4)}. The fourth problem is with
q4 = 0.334 and P4 = {(G contains no triangles)}.

6.1 Problem 1

We tested the implementation for n ∈ {6, . . . , 29}. The algorithm found for n = 8
one feasible solution and n = 11 two feasible solutions. For all larger n it could
not find any feasible solutions. Furthermore, the algorithm was able to finish the
branch-and-bound search for all n ≤ 24, which proves that for n = 8 and n = 11
the found feasible solutions are the only ones and for all other n ≤ 24 there does
not exist any feasible solution. For n > 24 it could not finish the search within
5,000,000 s.

The interesting values of n are the ones where 2n/7 is only a little bit larger
than �2n/7, since then it may be easier to find a graph with independence num-
ber �2n/7. Therefore, we are especially interested in the values n ≡ 1 (mod 7)
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and n ≡ 4 (mod 7). Table 1 summarizes the results and running times for those
values and compares them with the results of Problem 2. Column t[s] shows the
run time in seconds and column Candidates the number of complete solutions
that got checked by the ILP solver.

Table 1. Results for selected values of n for Problem 1 and Problem 2

Problem 1 Problem 2

n∗∗ t[s] Candidates t[s] Candidates

8 <1 1 <1 1

11 <1 3 <1 1

15 <1 5 <1 <1

18 94 2, 298 33 259

22 25, 443 5, 795 5, 047 145

25 >5,000,000 >330,000 4, 868, 324 160, 556

29 >5,000,000 >1,463 >5,000,000 >60,713

6.2 Problem 2

Problem 2 is a more restricted variant of Problem 1 and was tested to check if the
restriction helps speeding up the search. Especially the bound corresponding to
the value m can be improved through this restriction. We tested again all inputs
n ∈ {6, . . . , 29}. For n = 8 and n = 11 the algorithms found one solution, the
second solution of n = 11 contains an inner cycle of length five. For all larger n
it also could not find any feasible solution.

Through the speedup compared to Problem 1 the algorithm was able to finish
the search for all n ≤ 28 and therefore proves for all 11 < n ≤ 28 that there does
not exist a feasible solution. For n = 29 it could not finish the search within
5,000,000 s. Table 1 summarizes the results and running times and compares
them with Problem 1.

6.3 Problem 3

Fleischner conjectured that smooth graphs only containing inner cycles of length
four with at least 12 vertices have independence number at least 5n/16 [5]. This
was the motivation to consider this problem with q3 = 5

16 . Our algorithm was
able to disprove the conjecture by finding 36 smooth graphs with 20 vertices and
independence number 6 < qn = 20 · 5/16 containing only inner cycles of length
four. Furthermore, it could find feasible graphs with 24 vertices and independence
number 7 < qn = 24 · 5/16.

Clearly we only have to consider values for n with n ≡ 0 (mod 4). For n = 8
we found the same graph as in Problem 1 and 2, for n = 12 and n = 16 the
algorithm could prove that there are no feasible graphs. For n = 20 it could
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finish the search and prove that the found 36 feasible graphs are the only ones
but for n = 24 the search did not finish in under 5,000,000 s.

The run time for n = 20 was 11 min and for n = 24 it was 11 h. For n = 28
the algorithm could not finish in reasonable time and also did not find a feasible
solution in the first 5,000,000 s run time.

6.4 Problem 4

For triangle-free smooth graphs it is proven that 4n/13 is a valid lower bound for
the independence number [9]. This raises the question if it is possible to reach
this lower bound or if there exists a stronger lower bound. We use q = 0.334 since
we want to check if there exist triangle-free smooth graphs with independence
number smaller than or equal to n/3 and therefore we could use for q any value
1/3 + ε with a small ε > 0. The algorithm was not able to find a graph with
independence number smaller than n/3 but it was able to find graphs with
independence number n/3. It could solve the instances up to n = 26 in under
5,000,000 s.

7 Conclusion and Further Work

In this paper we formalized a family of problems for finding smooth graphs with
small independence numbers. We proposed an algorithm for solving problems
of this family which is based on branch and bound. To increase the efficiency
of the algorithm by computing good bounds, we used graph-theoretic results
to obtain properties and bounds for the number of inner cycles and their sizes.
Using those results we proposed a procedure for computing a strong lower bound
on the independence number of partial solutions to detect infeasibility as early
as possible. We applied our algorithm to four different problems and reported
the results and the running times for different graph sizes. Doing this we could
disprove one conjecture and find more support for other conjectures for small
graphs.

Further work may be to compare different heuristics for computing inde-
pendent sets for partial solutions. Furthermore, one idea could be to search
for a minimal feasible graph, which may enable some reduction properties and
therefore some stronger bounds. Additionally, it would be interesting to use a
metaheuristic to solve our problems, which would allow to search larger smooth
graphs with small independence numbers heuristically.
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Abstract. Nowadays, the importance of collecting large amounts of
data is becoming increasingly crucial, along with the application of effi-
cient and effective analysis techniques, in many areas. One of the most
important field in which Big Data is becoming of fundamental impor-
tance is the biomedical domain, also due to the decreasing cost of acquir-
ing and analyzing biomedical data. Furthermore, the emergence of more
accessible technologies and the increasing speed-up of algorithms, also
thanks to parallelization techniques, is helping at making the applica-
tion of Big Data in healthcare a fast-growing field.

This paper presents a novel framework, Biomedical Hadoop Image
Processing Interface (BioHIPI), capable of storing biomedical image col-
lections in a Distributed File System (DFS) for exploiting the parallel
processing of Big Data on a cluster of machines. The work is based on
the Apache Hadoop technology and makes use of the Hadoop Distributed
File System (HDFS) for storing images, the MapReduce libraries for par-
allel programming for processing, and Yet Another Resource Negotiator
(YARN) to run processes on the cluster.

Keywords: Big Data · Hadoop · Image processing

1 Introduction

The generation of Big Data by biomedical institutes and research is significant,
and still expected to grow. Large amounts of data in different formats are con-
tinuously generated and have to be stored, managed and analyzed in order to
provide suitable information for many applications [4,5].

Traditional solutions can be useful for low-cost storage; however, performance
is usually not satisfactory. There are several solutions for such problems related
to Big-Data, in this respect; a relevant role in developing and disseminating
such solutions is played by technologies like Hadoop [8], a framework that allows

c© Springer International Publishing AG 2018
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the distributed processing of large data sets across clusters of computers using
simple programming models.

In this paper we present a novel framework, namely BioHIPI 1, based on
the use of Apache Hadoop technology, relying on the Hadoop Distributed File
System (HDFS) for storing images, MapReduce for parallel programming for
processing, and Yet Another Resource Negotiator (YARN) to run processes on
the cluster. BioHIPI is built on the existing Hadoop Image Processing Interface
(HIPI) [6], an image library designed to be used with Apache Hadoop. Useful
features for importing and analyzing biomedical images have been implemented,
thanks to a simple and intuitive representation. Currently, biomedical image for-
mats supported by BioHIPI include NIfTI and DICOM ; it also provides support
for processing two-dimensional images such as JPEGs and PNGs. BioHIPI was
born from the need for bringing this new parallel programming approach, based
on MapReduce, also to biomedical image processing. It allows to import different
image formats in a single bundle (BioHIB) and process them all together in one
single run. For this purpose, the infrastructure related to the addition of new
input formats has been improved with respect to HIPI, making the framework
more flexible and scalable. BioHIPI is implemented in Java and can be used as a
library to define, among other things, more sophisticated algorithms for biomed-
ical image processing, and/or, new user interfaces to simplify the data collection
process.

The remainder of the paper is structured as follows. In Sect. 2 we provide an
overview of the Apache Hadoop framework. In Sect. 3, we illustrate the related
literature. In Sect. 4, a detailed description of our framework is provided. In
Sect. 5 we present our experimental evaluation. Eventually, in Sect. 6 we draw
our conclusions.

2 Apache Hadoop

Hadoop is a software framework originally created in 2004 by Doug Cutting,
and became a top-level Apache Software Foundation project in January 2008.
It can be installed on a Linux cluster to permit large scale distributed data
analysis. Hadoop is currently used by many researchers, both in academic and
industrial contexts (Yahoo is one of the largest among such contributors), and
the community of users has been growing rapidly [1,7].

2.1 Hadoop Distributed File System (HDFS)

Among the main components, Hadoop features a robust filesystem inspired by
Google’s file system [2]. The Hadoop Distributed File System (HDFS) is written
in Java, and is designed in order to run on commodity hardware, where stored
data are partitioned and replicated on clusters’ nodes; it is fault-tolerant, and
has been developed to work on large clusters and be distributed on low-cost

1 Source code is available at https://github.com/memoclaudio/BioHipi.

https://github.com/memoclaudio/BioHipi
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machines. HDFS relies on a master/slave architecture (in which the master can
be a bottleneck) and has been tested with good results on clusters with thousands
of nodes. The filesystem provides a high data access bandwidth, and is designed
for applications that need to access entire datasets or large parts of them. It is
a special, specialized filesystem, whose primary purpose is to contain input and
output data for MapReduce.

2.2 MapReduce

MapReduce is a programming model for processing large amounts of data, which
allows high parallelization of calculations [9]. MapReduce works by complying to
the Divide et Impera paradigm: a problem can be decomposed into a sequence
of smaller problems to deal with individually. The approach used in MapReduce
is based on two separate map and reduce operations, often applied in pairs: first
the map function, and then the reduce function. This allows one to transform
and aggregate a list of elements L[x1, x2, ..., xn]:

– The map operation takes as argument a function f(x) and applies it to all
the elements of the list L:

map(L[x1, x2, ..., xn], f(x)) → L[f(x1), f(x2), ..., f(xn)]

– The reduce operation takes as argument a list of elements L, a starting value
v and a function g. In detail, g is applied to the first element of the list L,
and the result is stored in a temporary variable. This temporary value and
the second element of L are the arguments for the next application of the
function g. The process is repeated until all the elements in L are processed.

reduce(L[x1, x2, ..., xn], v, g) → g(g(g(g(v, x1)), x2)..., xn−1), xn)

Intuitively, the map is parallelizable, as the calls are independent from each
other; on the other hand, the same does not hold for the reduce function (even
if, in many applications, list elements can be grouped into parts on which the
reduce function can be applied independently).

The MapReduce paradigm operates on sets of key-value pairs. Program exe-
cution is divided into a Map and a Reduce stage, separated by data transfer
between nodes in the cluster. More precisely, the workflow can be decomposed
in three different stages: map, shuffle, reduce. In this scenario, the map phase
works directly on the input and the map function is invoked on every set of key-
value pairs, producing a multi-set of elements. The shuffle phase is managed by
the system, and groups, per each key, every pairs generated in the previous step.
The reduce step is invoked on each multi-set generated and returns a multi-set
of pairs. All pairs created in the reduce phase constitute the actual output of the
computation.
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2.3 Yet Another Resource Negotiator (YARN)

Apache Hadoop YARN is a sub-project of Hadoop and it is the main charac-
teristic of the second version, which is used to develop our framework [10]. It
allows multiple access engines (either open-source or proprietary) to use Hadoop
as the common standard for batch, interactive and real-time engines that can
simultaneously access the same data set. YARN combines a central resource
manager that reconciles the way applications use Hadoop system resources with
node manager agents that monitor the processing operations of individual cluster
nodes. Running on commodity hardware clusters, Hadoop has attracted partic-
ular interest as a staging area and data store for large volumes of structured and
unstructured data intended for use in analytics applications. Separating HDFS
from MapReduce with YARN makes the Hadoop environment more suitable for
practical applications where waiting for the whole time for batch jobs to finish
might be an issue.

3 Hadoop Image Processing Interface (HIPI)

Standard Hadoop MapReduce programs struggle in representing image input
and output data in a useful format. For example, with current methods, in order
to distribute a set of images over Map nodes, the user needs to pass the images
as a String. Each image then needs to be decoded in each map task in order to
get access to the pixel information. This technique is not only computationally
inefficient, but also not convenient for the programmer. Thus, it involves signifi-
cant overhead to obtain standard floating-point image representation with such
an approach. Hadoop Image Processing Interface (HIPI) [6] is an image library
designed to be used with Apache Hadoop: it provides a solution for storing a
large collection of images on the HDFS, and make them available for efficient
distributed processing with MapReduce style parallel programs.

In this work an Hadoop framework for image analysis is proposed; the project
consists of an extension of HIPI2 for biomedical images, and currently supports,
among others, NIfTI, RDA (for SIEMENS spectroscopy) and DICOM formats.

4 Biomedical Hadoop Image Processing Interface
(BioHIPI)

We introduce next BioHIPI, a library for parallel image processing based on the
HIPI framework [6]. Specifically, HIPI provides useful tools for distributing a
large collection of two-dimensional images on Hadoop’s HDFS. Each image col-
lection is represented within the HDFS as a single entity called HipiImageBundle
(HIB).

To make the HIPI code more suited to our needs, we reorganized the frame-
work classes that are considered unnecessary, and the addition of new formats has

2 http://hipi.cs.virginia.edu/.

http://hipi.cs.virginia.edu/
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been made faster and more intuitive. This is achieved by implementing a better
management of the CodecManager class, which provides the codecs needed for
decoding and encoding specific formats. Images are represented by two classes,
one for the header, which is called BioHipiImageHeader, and one for the image
data, which is called BioHipiImage. These two classes constitute respectively
the key and the value for each pair used as input for the Hadoop MapReduce
computations. A typical BioHIPI workflow is illustrated in Fig. 1.

Fig. 1. Representation of a typical BioHIPI process

4.1 BioHIPIImageBundle

The first step needed to analyze biomedical images is the creation of a BioHIB,
where the dataset is copied within the HDFS as a single file, termed datafile.
There is also an index file in HDFS containing information useful for control
functions that is updated in parallel with the data file. This setup allows us to
easily access images across the entire bundle without having to read in every
image [6].

4.2 BioHIPIImageHeader

BioHIPIImageHeader is the class used by the framework to encapsulate all the
information useful for image recognition, such as DICOM or NIfTI image for-
mat specifications, before it is analyzed. The information is characterized by: a
Java enumerative called BioHipiImageFormat, which indicates the image format
(JPEG, PNG, NIfTI, DICOM) and a Java hash table, called metatada, consist-
ing of a list of elements represented as a pair (key/value) of strings. This allows
easier access to information and more efficient storage within a BioHIB.

4.3 BioHIPIImage

BioHIPIImage is an abstract class that can be extended in order to implement
specific analysis capabilities for each type of image. Extensions currently avail-
able support raster, NIfTI, and DICOM image formats. The classes to represent
these images are RasterImage, NiftiImage and DicomImage, respectively.
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RasterImage. RasterImage is a concrete class that extends BioHipiImage to
represent bidimensional images in the form of a floating-point number array
containing RGB pixels. Storage is carried out using the raster-scan technique
where color values are stored in three different steps: first the red channel, then
the green channel and finally the blue channel. This type of storage requires the
number of bands to be three.

NiftiImage. NiftiImage is a concrete class that extends BioHipiImage to rep-
resent biomedical images in NIfTI format as four-dimensional arrays of double-
precision numbers. The array is the voxel values.

DicomImage. DicomImage is a concrete class that extends BioHipiImage to
represent biomedical images in DICOM 2D format. This class allows one to get
all the information contained in the file header, in the form of a Java Object.
DICOM 3D images are built using a DicomImage sequence, and the voxel values
are manipulated by using the ImageJ library [3].

4.4 CodecManager

CodecManager is the class that provides the necessary codecs for decoding and
encoding supported images, such as JPEG, PNG, NIfTI, and DICOM. Codecs
consist of an implementation of two interfaces:

– ImageDecoder: a Java interface that allows to deploy decodeHeader and
decodeImage functions. DecodeHeader, by means of a Java input stream, is
implied in the process of reading and decoding the image header, generating
a BioHipiImageHeader. Specifically, the latter is filled with metadata suit-
able for the image format. DecodeImage is used in the process of reading
and decoding the image, creating the concrete, full-feature class extending
BioHipiImage.

– ImageEncoder: a Java interface that enables the implementation of the
encodeImage function. The purpose is to encode and write the image into
a Java output stream.

Concrete implementation of ImageEncoder and ImageDecoder are relative to
each format: Raster, DICOM and NIfTI. These implementation make uses of
different Java libraries to encode and decode the image.

5 Experimental Analysis

The intuitive operation of the BioHIPI framework has been implemented in prac-
tical examples, and tested in order to asses how simple algorithms can handle
large amounts of data. Tests were performed on a reference dataset composed
by 9 NIfTI images (604 MB), 59 DICOM images (12.4 MB), 201 JPEG images
(12.7 MB), and 196 PNG images (120.2 MB). Execution times resulting from
experiments are reported in Table 1; it is worth noting that we tested the frame-
work on the following four different tasks:
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Fig. 2. Execution times for each experiment (averaged over three runs)

– Maximum voxel intensity search in a set of NIfTI images: This case
shows how to obtain the maximum value of the voxel assigned to each coor-
dinate. A collection of images with different formats are processed by the
map function. For each image, a set of key/value pairs is returned, indicating
respectively the coordinates and the value of the voxel. Outputs are produced
based on the constant value of the key, in order to automatically create, in
the shuffle phase, a list of voxel values that characterize a specific coordinate
position (x, y, z, t) of different images. In the reduce function, the analysis
of the lists is performed to get the maximum voxel value for each x, y, z, t
coordinate.

– Crop of a set of NIfTI images: The goal of this use case is to extract spe-
cific local regions in a set of NIfTI images. For each image, a set of key/value
pairs is returned, each indicating the metadata of the BioHipiImageHeader
(the key) and the NIfTI image containing the specific area (the value).

– Converting a set of DICOM 2D image in a DICOM 3D image: In
this test, we created DICOM 3D images starting from a sequence of DICOM
2D images. A collection of images in different formats is passed to the map
function that only examines DICOM images, excluding images with different
file format. For each image, a set of key/value pairs is returned, each indicating
the patient’s name (the key) and DICOM image (the value) with the data
to be analyzed. Outputs produced in the map phase are selected based on
the constant value of the key, so that the shuffle step automatically creates
a sequence of DICOM 2D images that are useful for creating a DICOM 3D
image. In the Reduce function, the DICOM 3D image is generated getting
voxel intensities by means of the ImageJ library.

– Compute the average of the RGB values of a collection of raster
images: This case shows how to obtain the image representing the average
of RGB colors from a collection of raster images. A collection of images with
different formats is passed to the map function that only examines Raster
images, excluding different format ones. For each image, a set of key/value
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pairs is returned, indicating respectively a standard reference value and Raster
images containing the average RGB color.

Table 1 shows execution times for each experiment of our experimental campaign.
Graphical representation is reported in Fig. 2.

Table 1. Execution times for each test case of the experimental campaign, includ-
ing time required to import the dataset. Results are averaged on three runs for each
experiment (standard deviation in parenthesis)

Average time

Import 0m 11 s (±0, 01)

Max voxel intensity 1m 46 s (±0, 06)

Crop NIfTI 0m 51 s (±0, 05)

DICOM 2D to 3D 2m 11 s (±0, 01)

Avg RGB 1m 41 s (±0, 01)

6 Conclusion

In this work we introduced BioHIPI, a new framework for managing Big Data
in the domain of biomedical images. More in detail, we took advantage from
Hadoop’s MapReduce paradigm in order to facilitate the use and organization
of large collections of biomedical images. To achieve the goal, an existing frame-
work, HIPI, has been properly extended to support different and complex stan-
dard file formats for the representation of biomedical images, namely the NIfTI
and DICOM formats.

Our preliminary experimental activities showed that the use of BioHIPI
within projects that use Big Data in the context of image analysis can poten-
tially significantly simplify the development process, and speed up the analysis.
The framework features significant room for future interesting improvements,
especially the addition of other formats for biomedical images, like RDA file for
MRI spectroscopy.
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Abstract. The Emergency Department (ED) is responsible to provide
medical and surgical care to patients arriving at the hospital in need of
immediate care. At the regional level, the EDs system can be seen as a
network of EDs cooperating to maximise the outputs (number of patients
served, average waiting time, ...) and outcomes in terms of the provided
care quality. In this paper we discuss how quantitative analysis based on
health care big data can provide a tool to evaluate the dispatching poli-
cies for the network of emergency departments operating in Piedmont,
Italy: the basic idea is to exploit clusters of EDs in such a way to fairly
distribute the workload. Further, we discuss how big data can enable a
novel methodological approach to the health system analysis.

Keywords: Emergency care pathway · Health systems · Big data

1 Introduction

The Emergency Department (ED) is responsible to provide medical and sur-
gical care to patients arriving at the hospital in need of immediate care. At
the regional level, the ED system can be seen as a network of EDs cooperat-
ing to maximise the outputs (number of patients served, average waiting time,
...) and outcomes in terms of the provided care quality. Many EDs, especially
those serving a large amount of people, complain about the large number of non-
urgent patients usually transported by the Emergency Medical Service (EMS)
ambulances. Further, EMSs usually do (or can) not take into account the ED
workload level when assigning and transporting a patient to an ED. When a
peak of emergency demand arises, EDs suffer from increasing overcrowding [10].
The systematic review reported in [9] describes the causes, effects and solu-
tions to the ED overcrowding. The causes described are non-urgent visits of
c© Springer International Publishing AG 2018
G. Nicosia et al. (Eds.): MOD 2017, LNCS 10710, pp. 549–561, 2018.
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patients, influenza seasons, hospital closures, ambulance diversion, inadequate
staffing, delay in diagnostics and hospital bed shortages. As described before, ED
overcrowding leads to delayed patient care. This results in an increased risk of
mortality, patients who left without being seen (LWBS) and also financial losses.
Both academic literature [2] and the ED managers argue that the efficiency and
the equity of the ED system can depend on the interplay between the EMS and
the ED network.

The development of models for the analysis of a health system as a whole
is one of the main challenges in the health care management field. The basic
idea is to have a tool capable to validate management policies at health system
level modelling the patient flow through the care pathway. As a matter of fact,
the current trend in the analysis of health care systems is to shift the attention
from single departments to the entire health care chain in such a way to increase
patient’s safety and satisfaction, and to optimise the use of the resources.

In order to apply such an approach to the analysis of a regional ED network,
one of the main difficulties is the collection of all the information regarding the
transportation of the patients from the emergency scene to the ED. Nevertheless
this problem can be now overcome exploiting the immense amounts of data
generated by health care systems. Health Care Big Data (HCBD) are a key
enabling technology to support detailed health system analysis: exploiting the
HCBD, one can replicate the behaviour of the health system modelling how each
single patient flows within her/his care pathway.

In this paper we discuss how quantitative analysis based on the HCBD can
provide a tool to evaluate dispatching policies for a regional network of emer-
gency departments: the basic idea is to exploit clusters of EDs in such a way to
fairly distribute the workload. We present a simulation model based on the case
study of the Piedmont in Italy, and powered by the knowledge provided by the
analysis of regional HCBD.

The paper is organised as follows. In Sect. 2, we introduce the general con-
cept of clinical pathway and its application to the emergency care. Further, we
discuss how big data can enable a novel methodological approach to the health
system analysis. In Sect. 3, we first discuss the case study under consideration
and then we report how we implemented the simulation model. In Sect. 4, we
report a quantitative analysis of the results obtained running the simulation
model. Conclusions and future works are discussed in Sect. 5.

2 Clinical Pathways and Health System Analysis

The current development of the health care systems is aimed to recognise the
central role of the patient as opposed to the one of the health care providers.
In this context, Clinical Pathways (CPs) shift the attention from a single health
benefit to the health care chain that is involved in the illness episode treatment.
A CP can be conceived as an algorithm based on a flow chart that details all
decisions, treatments, and reports related to a patient with a given pathology,
with a logic based on sequential stages [8]. A CP is therefore “the path” that
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a patient suffering from a disease traverses in the National Health System. For
this reason, they can be considered an operational tool in the clinical treatment
of diseases, from a patient-focused point of view [12]. Many papers show that,
appropriately implemented, CPs have the potential to increase patient outcome,
to reduce patient length of stay and to limit variability in care, thereby yielding
cost savings [7,14]. On the contrary [1], limited attention has been dedicated to
study how CP can optimise the use of resources (see, e.g., [4,11]).

The development of models for the analysis of a health system as a whole
is one of the main challenges in the Health Care Management field [13]. The
basic idea is to have a tool capable to validate management policies at health
system level modelling the patient flow through the corresponding CP. Litera-
ture indicates that System Dynamics (SD) seems to be the most appropriate
methodology. A first attempt has been made by Wolstenholme during his col-
laboration with the NHS. In [17], he applies SD to the development of national
policy guidelines for the U.K. health service. The tested policies include the use
of “intermediate care” facilities aimed at preventing patients needing hospital
treatment. Intermediate care, and the consequent reductions in the overall length
of stay of all patients in community care, is demonstrated here to have a much
deeper effect on total patient wait times than more obvious solutions, such as
increasing acute hospital bed capacity. More generally, as discussed in [18], the
key message is that affordable and sustainable downstream capacity additions
in patient pathways can be identified, which both alleviate upstream problems
and reduce the effort for their management.

A SD model has been used as a central part of a whole-system review of
emergency and on-demand health care in Nottingham, as reported in [6]: due to
a growing emergency care demands, the hospital systems were unlikely to achieve
some government performance and quality targets. Such a model discovered
a range of undesirable outcomes associated with the growing demand and, at
the same time, suggested policies capable to mitigate such impacts. In [16],
the authors were interested in determining whether SD can be an appropriate
methodology to model the patient flow in a hospital, and to analyse it from a
strategic planning perspective. The SD model were developed in collaboration
with the General Campus at The Ottawa Hospital with particular attention
to the delays experienced by patients in the ED. The authors reported about
the modelling techniques, validation and scenarios tested, accompanied by their
comments regarding the appropriateness of SD for such a strategic analysis.

From a modelling point of view, SD is a simulation methodology whose main
elements are stocks and flows: a stock is any entity that accumulates or depletes
over time; a flow is the rate of change of a stock. For instance, in health care
a stock can represent the waiting list for a surgery, that is a number of people
requiring a surgery, while a flow can be the rate of a new insertion in the list.
One of the main limitation of using SD for health system analysis is that patients
are indistinguishable from each other within stocks and flows. On the contrary,
health care services are generally characterised by a large variety of different
patients suffering from the same diseases and flowing in the same care pathway.
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From the above remarks, Discrete Event Simulation (DES) seems the more
appropriate methodology to model such a large variety of patients flowing in
their corresponding pathway because of DES has the capability of representing
each single patient (or entity) within one of more pathways. Further, DES can
easily enable the application of optimisation algorithms to take the best (or the
most rational) decision regarding a single or a group of entities modelling a single
or a group of patients.

It is worth noting that such a modelling approach requires a lot of detailed
data, that is all the data needed to replicate the behaviour of each single patient
flowing in its corresponding pathway. Moreover, in terms of health system analy-
sis, such a model requires the availability of all the data for all patients flowing in
all pathways of the same type in the health system under consideration. A defin-
ing characteristic of today’s data-rich society is the collection, storage, processing
and analysis of immense amounts of data. This characteristic is cross-sectoral
and applies also to health care.

Therefore, we argue that the HCBD can power a detailed health system
analysis using DES methodology: exploiting the HCBD, one can replicate the
behaviour of the health system modelling how each single patient flows within
her/his care pathway. The novelty of the paper is therefore the use of the DES
methodology for the health system analysis exploiting the Big Data in order to
better represent the variety of the patients accessing the health system.

3 A DES Model Powered by the HCBD

In this section we report about the development of a Discrete Event Simulation
(DES) model powered by the Health Care Big Data (HCBD) for the analysis
of the dispatching policies for a regional Emergency Department (ED) network.
First we present the specific case study (Sect. 3.1) and then we discuss our two-
phase DES model (Sect. 3.2).

3.1 The ED Network Operating in Piedmont Region

Piedmont (Italian: Piemonte) is one of the 20 regions of Italy. It has an area of
25,402 km2 and a population of about 4.6 million. The capital of Piedmont is
Turin. Piedmont is organised in 7 provinces. The province of Cuneo is the largest
one while the province of Turin is the most populated one: actually, about 2.3
million of inhabitants are living in, and 1.4 million are living in the area of
Turin. Figure 1 reports the number of inhabitants living in Piedmont and in the
province of Turin, divided in different age classes.

According to the 2015’s report of the “Programma Nazionale Esiti” by the
Ministry of Health, the waiting time for a urgent and a non-urgent code could
exceed respectively 60 min and 450 min, in the worst case. In other similar
Italian regions, such waiting times are about 20% lower. We remark that in
Italy, the Regions are in charge of providing the health services in accordance
with the minimal level decided at the national level by the Ministry of Health.
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Fig. 1. Population of Piedmont and province of Turin: age distribution (ISTAT 2011).

This comparative analysis demonstrates the need of investigating the reasons of
such differences and, eventually, to individuate some possible improvements.

From more than 10 years, the Piedmont region is collecting data about the
regional health system, and released a regional law to unify the flows of data
gathered from all the health care providers operating in Piedmont, that is, local
health agencies, hospitals, and all the private structures in agreement. Such a
regional law guarantees the quality of the data collected in accordance with the
national standards: all the information must respect a standard format and their
consistency is checked for financial reasons since health providers are reimbursed
w.r.t. the number and the type of treatments.

Concerning the access to the network of EDs, the HCBD contains all the
information regarding the access: encrypted patient ID, patient registered resi-
dence, times (arrival, discharge, ...), urgency code, ED, treatment(s), etc. Each
year they collect all the information regarding about 1, 800, 000 accesses to the
regional network of EDs: for instance, in 2013, there were 1, 768, 800 accesses;
among them, the 90.53% were non-urgent. The network is composed of 49 EDs,
mostly – about 20 – located in the province of Turin. The EMS usually trans-
ports patients to the closest ED, apart some particular – limited in number –
cases.

3.2 A Two-Phase DES Model

We propose a quantitative model for the analysis of the network of EDs operating
in Piedmont. The proposed model is organised in two phases, and it operates on a
time horizon of one month. The first phase is devoted to data analysis concerning
the time horizon taken into account in order to determine the appropriate value
of the parameters of the DES model, which is the main part of the second phase.
As a matter of fact, the emergency demand depends on the day of the week and
the time of day [15]. Further, a not accurate forecasting can lead to managerial
solutions that worsen the EMS performance, and by consequence the quality of
the access to the ED, even if more resources are used, as discussed in [3].
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Dynamic Estimation of the Parameters. In order to have a proper repre-
sentation of the main parameters of the network of EDs, the first phase of our
quantitative model concerns the analysis of the big data relative to the time hori-
zon considered in the running experiments. Parameters and their corresponding
distributions are empirically computed over adequate time intervals in such a
way to fit the model on a given and fixed time horizon, and to replicate both
the patients flow and their management by the EDs.

The main parameters dynamically evaluated are the emergency demands
and their urgency code, the capacity and the service time of each ED, and
how the patients are distributed to EDs with respect to their geographic origin.
The general evaluation procedure consists in scrolling the data concerning each
access in chronological order to keep track of the information needed to estimate
the considered parameters and their corresponding empirical distribution, as we
describe in the following.

Emergency demands. The emergency demand consists in the number of
accesses to the whole regional ED network. Such a distribution is computed
counting the average number of accesses in each time interval of 30 min over
each day of the time horizon considered.

Urgency distribution. The urgency distribution measures the percentage of
patients having a urgent or a non urgent code with respect to the origin of
the patients.

Service time of each ED. The service time of each ED is estimated using the
information regarding the time on which the patient has been take over by
the ED, and the time on which the patient has been discharged. The service
time has been estimated by the code of urgency.

Capacity of each ED. An ED usually has a formal capacity defined a priori.
On the contrary, the real practice showed that the real capacity could be
different. Further, we should take into account variations in the staffing.
From these considerations, we estimate the capacity of the ED by counting
the maximum number of patients that are in the ED at the same time. We
compute such a value for each interval of three hours in a day, for each day
in the time horizon. The capacity of each interval of three hours is finally set
to the value corresponding to the 90-percentile of all the values measured in
the same interval and in the same day of the week.

Patient geographical distribution. From the data of the patients, we esti-
mate the number of the patients coming from a city identified by its postal
code. We also estimate the number of patients that accessed an ED from a
given city.

Although the percentage of patients transported by the EMS could be eval-
uated dynamically, our preliminary analysis showed that such a parameter cur-
rently ranges in [13.3%, 14.2%]. Therefore, we decided to set this parameter in
such a way to study the interplay between the EMS and the ED network varying
such a percentage in Sect. 4.

Figure 2 reports an example of the distribution of the daily arrival of the
patients derived from the about 150, 000 accesses to the ED network in July 2001.
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Note that the figure reports ticks of 1 h (instead of 30 min) only to improve its
readability.
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Fig. 2. Distribution of the patient arrivals during the day (July 2011).

The DES Model. We propose a DES model to represent the pathway of the
patient entering in the ED network. Our DES model is based on a straightforward
representation of the flowchart depicted in Fig. 3.

An emergency request of a patient is generated in accordance with the geo-
graphical distribution of the patients and the arrival distribution. At the moment
of its generation, an ED is associated to the patient pursuant to the distribution
of the patients accessing each ED, which usually corresponds to the closest one.
Such an emergency request can be served or not by an EMS ambulance. When
the request is not served by the EMS, we assume that the patient reaches – in
some way – the ED previously associated. On the contrary, the transportation of
the patient is in charge of the EMS. In our model, the ambulance transports the
patient to the associated ED only if the urgency code is high (red or yellow in the
Italian system), otherwise the EMS can decide where to transport the patient
in accordance with some policies (dispatching decision for non urgent patients).
After arriving at the ED, the patient will wait for the treatment, which usually
lasts for a time distributed following the service time distribution dynamically
estimated. When the patient will be discharged, he/she will exit from the model.

The considered dispatching policies are two. The first one, say P0, dispatches
a non urgent patient to the ED associated to the patient at the moment of its
generation, without any change. The second one, say P1, dispatches a non urgent
patient following a service state policy, that is, at the moment t, the patient is
dispatched to the ED h having minimal ratio rth

rth =
wt

h + sth
ch

, (1)

in which the values wt
h and sth are respectively the number of patients waiting

and receiving health care, and ch is the estimated capacity of the ED. This policy
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Fig. 3. The flowchart representing the emergency pathway.

is suggested by the fact that Piedmont region is building an ICT infrastructure
to share the real-time information regarding the workload of the EDs.

The policy P1 does not consider all the ED network but only those belonging
to a cluster of EDs. A cluster of EDs is a subset of all the EDs operating in
Piedmont that can be reached in no more than 30 min from a given origin.
We identified 5 different clusters in Piedmont, denoted by Ci, i = 1, . . . 5. The
largest one C1, composed of 20 EDs, is located in the Turin area. The clusters
C2 (province of Alessandria) and C3 (province of Cuneo) are composed of 7 and
6 EDs, respectively. Finally, two smaller clusters, composed of 2 EDs each, are
located in the area of “Valli di Lanzo” (C4) and in the area of Alba and Bra
(C5).

The proposed DES model is quite flexible: as a matter of fact, the ED net-
work operating during the time horizon considered can be obtained by simply
activating the dispatching policy P0. Note that this also provide a tool to eval-
uate the ED network as a whole system, instead of having simpler measures as
those reported in the “Programma Nazionale Esiti”.

Implementation details. The dynamic estimation of the parameters has been
implemented in Python 2.7. A script evaluates data concerning the time horizon
of interest from the input data-set and generates an Excel file with the parame-
ters of the distributions described above.

Apart from the emergency demand, that has been evaluated at the regional
level calculating, as mentioned before, the average number of accesses in each
time interval of 30 min over each day of the time horizon considered, the rest of
parameters takes also into account the origin of the patients and/or the related
EDs. Urgency code distribution has been estimated by distinguishing for each ED
four different codes (from 1 to 4). The accessing distribution has been estimated
considering both the distribution of provenance of patients and the distribution
of accesses of the EDs, mitigating in this way the possibility of not consid-
ering patients collected from an ED in a different location from their city of
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provenance. Finally the service time distribution has been estimated considering
both the ED and the gravity of patients.

The DES model has been implemented using AnyLogic 7.2 [5]. At simu-
lation start-up it takes in input the file before generated and uses it to ini-
tialise the parameters. Custom distributions have been used for the parameters
above described, while specific objects (respectively Service and ResourcePool,
Schedule and Agent) have been used for the definition of the EDs, their capac-
ities (varying pursuant to the hour of the day) and for the patients. When a
patient is generated it is assigned to him a provenance, the destination hospital
(pursuant to the selected policy), an urgency code and the expected service time.
The routing of patients has been implemented using two matrices, associating
each patient provenance to one (in case of policy P0) or more (policy P1) possible
EDs of destination.

4 Quantitative Analysis

In this section we report the quantitative analysis performed to test our two-
phase DES model.

In our analysis, we considered four different months in 2011. Table 1 provides
more details about the input of our model. For each month considered, the
table reports the total number of accesses considered and their classification
with respect to the urgency code (1 represents the more urgent code while 4 the
less one) and their origin with respect to the property of belonging or not to a
cluster.

We would remark that the total number of accesses considers only those
accesses for which at least one between the origin of the patient or the ED of
destination is correctly reported in the data. Finally, the last column of the
table reports the percentage of the accesses to an ED belonging to one of the
five clusters. This means that the majority of the patients can be served by an
ED belonging to a cluster. Further, the cluster C1, composed of 20 EDs over 49,
treats more than the 50% of the accesses.

Table 1. Description of the data considered in our quantitative analysis.

Total
accesses

Requests by urgency Requests by clusters

3–4 2 1 C1 C2 C3 C4 C5

Jan 126,698 107,773 17,688 1,237 69,773 11,480 12,467 3,701 4,201 80.21%

Feb 116,961 99,806 16,074 1,081 64,876 9,819 11,548 3,379 4,008 80.05%

Jun 132,654 113,734 17,562 1,358 70,292 11,672 12,632 3,568 4,451 77.36%

Jul 123,758 106,404 15,970 1,384 62,505 11,027 12,836 3,507 4,196 76.01%

Our quantitative analysis consists in using the two-phase DES model to solve
the four instances arising from the four months in Table 1. For each instance,
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a test consists in solving the instance by varying the percentage of patients
transported by the EMS, denoted by pE , in the interval [7%, 27%] with a step
of 5%. The rationale is to study the interplay between the EMS and the ED
network, as discussed in Sect. 3.2 and suggested in [2]. Finally, the results for
each solution are the average values among those obtained by running the two-
phase DES model 100 times, each time starting from a different initial conditions
in such a way to have independent and identically distributed repetitions.

Table 2. P1 vs. P0: waiting time reduction Δw in minutes.

pE 7% 12% 17% 22% 27% Avg. Δw

Jan All 15.51 25.91 34.70 42.16 50.79 33.82

EMS 17.75 21.63 24.73 27.74 34.37 25.24

No EMS 15.43 26.67 37.01 46.62 57.39 36.62

Feb All 6.81 13.10 19.75 26.29 31.87 19.56

EMS −4.31 1.62 6.68 11.33 15.70 6.21

No EMS 7.67 14.70 22.48 30.60 37.99 22.69

Jun All 19.70 39.12 64.51 75.73 80.82 55.98

EMS 5.78 19.88 45.51 58.88 66.45 39.30

No EMS 20.81 41.85 68.54 80.63 86.28 59.62

Jul All 8.27 13.19 17.64 21.15 24.23 16.90

EMS −3.86 −2.62 0.22 3.89 7.55 1.04

No EMS 9.20 15.35 21.20 26.03 30.43 20.44

Avg. Δw All 12.57 22.83 34.15 41.33 46.93

EMS 3.84 10.13 19.28 25.46 31.02

No EMS 13.28 24.64 37.31 45.97 53.02

Table 2 shows the results of our quantitative analysis reporting the waiting
time reduction Δw considering the whole network of EDs. Such values are com-
puted as follows: for a given dispatching policy i = 0, 1, we compute the average
waiting time wij for each ED j = 1, . . . , 49, and then we set WPi

equals to the
average of all the values wij ; finally, Δw = WP1 − WP0 . Note that P1 is better
than P0 when Δw > 0.

The results prove a general improvements of the waiting times, which
improves further as soon as the percentage of the patients transported by the
EMS increases. It is worth noting that the different results for each different
instances depend on the different composition of the emergency demand reported
in Table 1 (see, e.g., the last column reporting the percentage of the accesses to
an ED belonging to a cluster).

Table 3 shows the results of our quantitative analysis reporting the waiting
time reduction considering the cluster C1, that is the bigger one in terms of
both the number of EDs and the number of accesses. Although the general
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Table 3. P1 vs. P0, cluster C1: waiting time reduction Δw in minutes.

pE 7% 12% 17% 22% 27% Avg. Δw

Jan All 11.88 19.75 22.96 24.24 27.55 21.28

EMS 30.81 29.65 24.95 22.54 24.52 26.49

No EMS 2.63 7.74 9.03 9.02 12.11 8.10

Feb All −3.15 −1.11 1.66 4.57 6.64 1.72

EMS 6.41 5.40 5.06 5.86 7.27 6.00

No EMS −9.57 −9.80 −8.32 −6.37 −4.85 −7.78

Jun All 2.19 14.53 36.13 46.32 51.54 30.14

EMS 9.89 15.69 29.30 36.75 42.02 26.73

No EMS −2.19 9.17 31.60 42.18 47.85 25.72

Jul All 8.43 11.60 11.96 10.58 8.86 10.29

EMS −0.76 6.17 9.52 9.87 9.47 6.85

No EMS 12.59 16.96 18.11 17.17 15.89 16.14

Avg. Δw All 4.84 11.19 18.18 21.43 23.65

EMS 11.59 14.23 17.21 18.75 20.82

No EMS 0.87 6.02 12.60 15.50 17.75

improvement is inferior than those for the whole network, such results confirm
the comments done for the whole network.

5 Conclusions and Future Developments

We presented a two-phase DES model to evaluate the dispatching policies for the
regional network of emergency departments powered by the knowledge provided
by the analysis of regional health care big data. The model has been tested on
the case study of the Piedmont in Italy showing that there is room to improve
its efficiency. Further, we observed that such an improvement is more significant
as soon as the percentage of the patients transported by the EMS increases. This
remark has an evident managerial implication that would not have been possible
without an analysis of the entire ED network.

More generally, the results showed the effectiveness of the proposed approach
in terms of the capability of modelling a whole health care system through a
discrete event simulation approach, which exploits the availability of the health
care big data. As discussed in [17,18], there could be a significant difference
between the formal description of the health system and the its real functioning.
To overcome this modelling problem, our idea is to retrieve a picture of the
system from the big data through the dynamic estimation of the parameters,
which allow to fit the model on a given time horizon replicating both the patients
flow and their management.



560 R. Aringhieri et al.

Future developments will be follow two main research lines. The first one
is to improve the current model adding a more detailed representation of the
transportation network and predictive dispatching policies. The second one is to
validate such a methodological approach on a more complex health care network,
such as those of the hospitals with their specialties.
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Abstract. We consider dynamic programs modelled in a variant of the
Algebraic Dynamic Programming (ADP) framework which allows us to
develop general purpose solvers for Dynamic Programming problems. In
such dynamic programs the information accumulated in memoization
tables is usually lost if the input data of the problem instance changes.
We analyze those changes and how they affect the information stored
for subproblems of a dynamic program. We then present the theory for
a new algorithm for partial invalidation and incremental evaluation of
ADPs based on a previous simpler algorithm. The new algorithm should
reduce the amount of discarded information in Dynamic Programming
tables and to speed up the reevaluation of dynamic programs in the face
of changing inputs. In future work we will integrate the algorithms into
a framework currently under development to conduct thorough experi-
ments on their practical efficieny.

Keywords: Algebraic Dynamic Programming · Formal grammars
Incremental evaluation · Logic programming

1 Introduction

The principles of Dynamic Programming are well known since the 1950s: separate
a problem into smaller problems and recombine the optimal results to these
to obtain the optimal result of the larger problem—the essence of Bellman’s
Principle of Optimality [1]—then store the results for later reuse. In practice
however, the implementation of the principle is largely problem dependent.

This is one of the main disadvantages of Dynamic Programming (DP). The
dynamic program is often formalized as a set of recurrent functions which exhibit
the optimality principle. Based on this formalization, one starts to implement the
according algorithm which at the end is often hardly recognizable to solve the
original formulation. Each improvement, heuristic, bounding, and other tricks
employed to increase the performance of the dynamic program is lost once a
different DP problem needs to be solved.

Other general problem solving techniques like (Mixed) Integer Linear Pro-
gramming, Quadratic Programming, Constraint Programming, SAT, or Answer
Set Programming, have a large arsenal of efficient and easy to use solver software.
c© Springer International Publishing AG 2018
G. Nicosia et al. (Eds.): MOD 2017, LNCS 10710, pp. 562–573, 2018.
https://doi.org/10.1007/978-3-319-72926-8_47
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So far solvers or frameworks for DP problems are rather rare and often restricted
to specific classes of problems. Since the early 2000s a new approach for mod-
elling and solving dynamic programs called Algebraic Dynamic Programming
(ADP) has been promoted [2].

ADP models dynamic programs as formal grammars and originally targeted
problems on sequence data [3] which often occur in the field of bioinformatics.
The area saw additional work starting from improved implementations [4,5] to
other grammar types like multi-tape grammars, or multiple context-free gram-
mars [6]. Other approaches expand the applicability of ADP to set-like data
structures [7,8] which opens new problems to be tackled with ADP.

We use a variant of ADP which we developed to expand the reach of app-
roach to other combinatorial optimization problems. Especially we consider the
following scenario.

DP as technique is often employed to solve problems on large data sets, e.g.,
string alignment problems, or shortest path variants. As the data sets may be
of substantial size even polynomial time algorithms may require long runtimes
for solving. Should the data set now change, the dynamic program has to be
reevaluated losing the information from the previous run.

The scenario which motivated our work on changing inputs initially, is the use
of DP algorithms as solution decoders embedded in metaheuristics. An example
for this are route-first-cluster-second algorithms for Vehicle Routing Problems
[9], which represent solution candidates as permutations of customers to be vis-
ited. A DP algorithm is then used to partition the permutation into separate
tours. If local search moves are applied to such an encoding the solution candi-
date changes in limited areas leaving large portions unmodified. Nevertheless, the
DP algorithm has to redecode the entire solution, instead of solely the changed
parts.

In this work we describe the theory for a new algorithm which determines
based on the type of change of the input data, which parts of the dynamic
program need to be recomputed. We base the algorithm for partial invalidation
on a simpler variant which we develop in [10]. Experiments on the practical
efficiency are out of the scope of this work and will be conducted on a per
application basis with a solver framework currently under development.

Section 2 provides the formalism for our ADP variant and contains a simple
example model to illustrate the concepts. Section 3 describes a simple algorithm
for partial invalidation and incremental reevaluation from [10]. In Sect. 4 we
present the new algorithm which is based on logic programming and is intended
to improve upon the simpler variant. Section 5 concludes the article.

2 Indexed Algebraic Dynamic Programming

Before we explain partial invalidation and its extension, we provide a short
description of the Indexed Algebraic Dynamic Programming (IADP) formalism.
An in-depth treatment of IADP can be found in [10].



564 C. Bacher and G. R. Raidl

In ADP variants, dynamic programs (DPs) are described using formal gram-
mars. IADP is a variant of ADP which uses explicit indices on the symbols of
the grammar.

Although the index-freeness of ADP is one of main benefits mentioned in
former work [2,4] we reintroduce indices to allow for easier modelling of several
problems like the Knapsack Problem, or the Resource-constrained Shortest Path
Problem [10].

An IADP consists of three parts. First, the indexed grammar describes the
search space of the DP. Second, evaluation algebras define how target values,
e.g., costs and distances, are computed for a solution in the search space. Third,
dominance criteria determine which target values are memoized in the DP tables.

Definition 1 (Indexed Grammar). An indexed grammar consists of a set of
indexed terminal symbols Â, a set of indexed non-terminal symbols N̂ , a set of
productions P̂, and an axiom S ∈ N̂ . An indexed symbol AI consists of a name
A and an index tuple I = (i1, . . .) where each index ik has an associated domain
D(ik). We denote with AǏ a concrete indexed symbol with an instantiated index
tuple Ǐ ∈ D(I).

Definition 2 (Tables and Memoization). Each non-terminal XI is backed
by a table X̄ which is accessed by its index tuples X̄[Ǐ] (or a sub-tuple thereof, see
[10]). A table stores all non-dominated, i.e., optimal target values. Furthermore,
for each target value a set of back-pointers is stored referring to the subproblems,
i.e., symbols which were used to calculate the value.

For the purpose of this work we distinguish between two different forms of
productions: top-down and bottom-up. Top-down productions specify how a non-
terminal XI can be decomposed into smaller subproblems, i.e., non-terminals,
and atomic parts of the input, i.e., terminals. In contrast, bottom-up productions
describe how several subproblems can be aggregated to form larger subproblems.

Other ADP variants do not distinguish between top-down and bottom-up
productions. Though they may use both forms of evaluation as in [11]. The
reason for this is that other ADP approaches usually operate on restricted sets
of input data, e.g., sequences, and can convert between both forms of productions
automatically. Due to the more general nature of IADP an automatic conversion
is only applicable in special cases.

Definition 3 (Top-Down Productions). A top-down production for a non-
terminal NI0 is written as

NI0 → X1
V1

. . . X l
Vl

∀IZ = (z1, . . . , zh) ∈ S

with Xk ∈ Â ∪ N̂ , 1 � k � l where Vk are expressions for computing the index
tuples Ǐk from I0, IZ and the input instance C. Top-down productions can be
all-quantified over some set S of free index tuples IZ to generate productions
in dependence of the input C. We use P(NI0) to refer to all productions of the
given non-terminal.
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The evaluation of the top-down productions starts at the axiomatic symbol
S and repeatedly expands all applicable productions until either all remaining
productions are cut off due to feasibility constraints (see below), or reach termi-
nal symbols. If a symbol is encountered that has been reached before it is not
reexpanded but once optimal target values for the subproblem are known they
are reused.

Definition 4 (Bottom-Up Productions). A bottom-up production for a non-
terminal NI0 is written as

{
X1

I1
. . . X l

Il

}
��� NI0 〈p1〉 . . . 〈pm〉

with Xk ∈ Â ∪ N̂ , 1 � k � l. The relationships between the index tuples Ik are
given in the form of propagators ph, 1 � h � m. A propagator ph defined for an
index ikj ∈ Ik is able to compute index values for other index tuples Ik′ .

Bottom-up evaluation starts with the set of all terminal symbols that are
known to exist in solution candidates. They form the initial trigger set. Each
production containing an element of the trigger set is activated and uses the
propagators to determine values for the other symbols. Once target values are
known for all symbols of a specific index assignment of the left-hand side a target
value for the right-hand side is computed. If the computed target value is not
dominated (see below) then the left-hand side symbol enters the trigger set.

Definition 5 (Conditions and Constraints). The feasibility of a production
(top-down and bottom-up) can be restricted using constraints written as [ci],
1 � i � m on the right-hand side of a production. Each ci is a predicate over
the index values occurring in the production and over the input instance C. A
production may only be applied if all constraints are satisfied.

Definition 6 (Evaluation Algebras). To compute target value we use evalu-
ation algebras. An evaluation algebra σ recursively computes target values using
combinator functions fa and fA(i) for each terminal a and production A(i) as
follows.

σC(aǏ) =
{
fa(Ǐ, C)

}
, aǏ ∈ Â

σ(AǏ) =
⋃

(A
(i)
Ǐ →γi)∈P(AǏ)

fA(i)

⎡

⎢
⎣ ×

X
(j)
Vj

∈γi

σ
(
X

(j)

Vj(Ǐ,C)

)
⎤

⎥
⎦ , A ∈ N̂

Note that σ(AǏ) computes a set of target values using the cross-product of
target value sets of each subproblem of a production. No filtering is applied by
default. For formulating optimization problems we need a form of filtering of
target values. This is done by using dominance criteria.

Definition 7 (Dominance Criteria). Let A and B two arbitrary target value
tuples each containing one entry per evaluation algebra. A dominance relation
A � B defines whether A dominates B. If this the case then B must not be
considered further during the evaluation, i.e., it can be replaced in the DP tables.
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The computed non-dominated target values are then stored in the symbol’s
table. Using appropriate dominance criteria we can easily go beyond simple min-
imization or maximization problems and tackle for example pareto-optimization
problems.

A final definition is given to provide a semantic structure for our IADP
models.

Definition 8 (Yield-Normalform). A grammar and a set of evaluation alge-
bras are in yield-normalform if for a given yield, i.e., the word of terminals
derived for a solution candidate, the computed target values are the same, regard-
less of the path taken through the productions.

In general we expect all IADPs to be in yield-normalform as this property
assigns a clear meaning to the derived terminal symbols. A solution is then
uniquely represented by its yield.

2.1 Modelling a Simple Example

To illustrate the concepts described in Sect. 2, we present a model for the well-
known 0–1 knapsack problem [10,11]. In the 0–1 knapsack problem we want to
find a subset of a set of items I with maximal value while respecting the capacity
Q of the knapsack. Each item i is assigned a weight w(i) and a price p(i).

The model uses the terminal πi to represent an item i ∈ I and the non-
terminal Bi,q to model a knapsack with capacity q and for which we considered
all items up to πi (exclusive) for packing. The productions (4) and (5) then
either pack another item and ask for the optimal packing of a smaller knapsack,
or stop packing by producing the special terminal ε. The evaluation algebra and
the dominance criterion (6)–(8) then turn the grammar into a maximization
model.

nonterm. B(i : int, q: real) (1)
term. π(i : int) (2)

axiom B0,Q (3)
Bi,q → πj Bj+1,q−w(j) [0 � q − w(j)] ∀j ∈ I : j � i (4)

| ε (5)

σ(B) := σ(π(1)) + σ(B(1)) | 0 (6)

σ(πi) : = p(i) (7)

X � Y ⇔ σ(X) > σ(Y ) (8)
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3 Partial Invalidation

Once the undominated target values of an IADP have been obtained and the
solutions have been reconstructed, the intermediate results of the non-terminals
are usually no longer needed. Freeing up the memory allocated for the symbol
tables is the typical action to take.

In some situations, however, it might be beneficial to retain the information
stored in the symbol tables. For example consider the case when several DP
instances have to be solved which share parts of the input, or if the input changes
over time, e.g., when using a DP for candidate decoding inside a metaheuristic.
In such situations parts of the tabled information may be reused to solve the
modified DP instance without reevaluating the full IADP.

In [10] we present a first algorithm for identifying substructures in an IADP
which are not affected by a specific change made to the input. We will summarize
the algorithm as it forms the basis of our improvements discussed in Sect. 4.

The main question is how a change in the input may reflect itself on the
structure of the IADP instance, i.e., its yield language, derivation DAGs, and
undominated target values. Based on the formal definition of an indexed gram-
mar, the input C can be accessed by the index expression of the symbols and
by conditions/constraints. Further when looking closer on the definition of an
evaluation algebra, we see that only the terminals may use information from the
instance for the calculation of target values. However, we exclude changes to the
structure of the evaluation algebras themselves.

Our procedure is called partial invalidation as it implicitly determines a set
of table entries of the IADP affected by the modification of the input. The
algorithm then determines recursively a set of table entries which are no longer
guaranteed to be valid.

For the algorithm to work properly we require the grammar and used evalua-
tion algebras to be in yield-normalform. Further we need to introduce additional
bookkeeping for determining which indexed symbols depend on each other or on
which parts of the input. We do this by keeping track of touches.

An indexed symbol XǏ is said to touch another symbol YJ̌ if during runtime
some production XǏ → . . . YJ̌ . . . is expanded. Similarly a symbol is said to touch
a part of the input if the input part occurs either in a condition/constraint or
in the index calculation of the symbol on the right-hand side of a production.
Further in the case of all-quantified productions an input part is only considered
touched if it occurs in the filter portion of the quantification, as if the filter would
be expressed as—a less efficient—constraint. In constrast, if the input part may
be generated by the quantification, the possibility of generation is not enough to
touch it. Only if the input part is actually generated and bound by some element
of the right-hand side of the created production, the part is touched. How a part
of the input C is defined is a decision of the user, but usually each constant and
matrix cell is considered an atomic part. Each symbol and input part stores a
list of indexed symbols touching the element, denoted by Γ (.).
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We distinguish between the following changes to the input C. First, we inspect
the case where an input part is modified or removed. Let Cx be the modi-
fied/removed input part.

function Invalidate(X)
for all Y ∈ Γ (X) do

if Y is not marked as uncomputed then
Ȳ = ∅
Mark Y as uncomputed

Invalidate(Y )
end if

end for
Γ (X) = ∅

end function

Procedure Invalidate(Cx) recursively steps back along the touched symbols
and resets the data associated with the touching symbol. The only symbols which
remain set are those for which it is known that they never could be effected by
the modification. Note that the axiom of the grammar is always invalidated.

Second, we have to handle the case when an input part is added to the
instance. This may only occur if an element is added to a set-like data structure
of the input. Such an addition at least changes the set of productions generated
by all-quantors and may invalidate computed solutions as conditions/constraints
are modified by the set extension. To handle additions easily we require the IADP
to be terminal-quantified, which is defined as follows.

Definition 9 (Terminal-quantifiedness). An IADP is terminal-quantified iff
each element e of a set-like input part E ∈ C which is quantified over can be
mapped by a function fÂ : E → 2Â to the set of all terminals which can only be
generated if e ∈ E.

First we use the Invalidate(.) procedure to propagate changes of condi-
tions/constraints due to the modification of the set-like input part E . Afterwards
we use the bottom-up evaluation approach to recompute the missing values.
Restarting the bottom-up evaluation algorithm ensures that only the necessary
parts of the IADP are recomputed. The procedure stops as soon as no more
updates have been performed.

4 Refining Partial Invalidation

In many IADP models the two procedures described in Sect. 3 act in an extremely
greedy way. Depending on the modified input part large portions of the com-
puted derivation DAGs may be invalidated. We therefore look for special cases
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in IADPs and input modifications which allow us to restrict the set of invali-
dated table cells as well as determining which parts of the program actually need
recomputation.

We try to characterise the effects of input modifications on the affected table
cells. Let XǏ be an indexed symbol and X̄[Ǐ] its associated table cell. Next we
define the following sets.

Definition 10 (Feasibility Set). The feasibility set of an indexed symbol XǏ
are the generated productions P̂(XǏ) whose conditions/constraints are satisfied.

Definition 11 (Optimality Set and Optimal Subproblems). The opti-
mality set of an indexed symbol XǏ are those productions P̂opt(XǏ) whose target
values are stored in X̄[Ǐ]. An optimal subproblem is any symbol YJ̌ ∈ γ with
some (XǏ → γ) ∈ P̂opt(XǏ). As a shorthand we write YJ̌ ∈ P̂opt(XǏ).

When modifying the input, we can supply additional change-relevant infor-
mation in the form of facts for each indexed symbol XǏ , e.g., once the IADP has
been solved we can add the fact optimal subproblem to all symbols satisfying the
definition, in another case the user may supply explicit facts like stating that
the occurring input change may only remove elements from the optimality sets.
Based on those facts we express the improved invalidation procedures as logic
programs, i.e., as inference rules in the style of Prolog or DLV. Inference rules
may use the affected(X) and touched(X,Y ) predicates which state that X
is affected by the input modification and that X touched Y .

The rules are of the form as shown in (9). The heads are inferred iff all
bodies are known hold and no weak-negation is known hold. As a special case
procedural Actions can be triggered in the same way.

head1(X1, . . .), . . . ,Action1(X1, . . .), . . . : - body1(X1, . . .), . . . ,

not weak-negation1(Z1, . . .),
. . .

(9)

We analyze the actions that should be taken to invalidate or update the
information stored for an indexed symbol based on different categories of facts.
First, the feasibility sets of symbols may either be known to stay the same,
potentially be reduced, i.e., child symbols dropping from the set, or poten-
tially be extended, i.e., child symbols entering the set. We use the predicates
feas-may-drop(X,Y ), feas-may-enter(X,Y ), as well as their strong nega-
tions feas-may-not-drop(X,Y ), feas-may-not-enter(X,Y ). Similarly, the
optimality sets of symbols may either stay the same, be potentially reduced,
or extended. The predicates opt-may-drop(X,Y ), opt-may-enter(X,Y ), and
their counterparts opt-may-not-drop(X,Y ), opt-may-not-enter(X,Y ) indi-
cate that a production containing Y on the right-hand side may (not) be dropped
from or enter the optimality set. Third, opt-sub(X,Y ) states that X has an
optimal subproblem Y .
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MayDrop(X,Y ) : - opt-may-drop(X,Y ), opt-sub(X,Y ),
affected(Y ). (10)

opt-may-drop(X,Y ) : - feas-may-drop(X,Y ), opt-sub(X,Y ),
not opt-may-not-drop(X,Y ). (11)

If we labelled a symbol X with opt-may-drop and we know that the child
Y causing the change is an optimal subproblem, then we only have to inspect
the target values computed from the optimal subproblem. If the table cell is
modified then the change needs to be propagated to the symbols touching X.
For this behaviour the change to the feasibility set is not relevant as in the worst
case the optimal subproblem may drop from the set which affects the table cell
equivalently.

function MayDrop(X, Y )
Remove the back-pointers to Y from all target values in X̄
Remove target values U without back-pointers from X̄
if U �= ∅ then

Mark affected(X).
Add rule opt-may-drop(Z, X) : - touched(Z, X), U �⊆ X̄.

end if
end function

On the other hand if it cannot be inferred that Y is an optimal subproblem
of X then no changes to the optimality set of X can occur. We indicate a case
without action once in (12) though we refrain from stating such cases for the
remainder of the work.

NoAction : - opt-may-drop(X,Y ), affected(Y ),not opt-sub(X,Y ). (12)

The open cases where opt-sub(X,Y ) is known, but opt-may-drop(X,Y )
cannot be inferred are expressed by (13) and (14). Target values derived from Y
may change in this case and need to be recomputed. Depending on the change
to the feasibility set of X might be known to change or not.

UpdateOpt(X,Y,⊥) : - opt-sub(X,Y ), affected(Y ),
not opt-may-drop(X,Y ), (13)
not feas-may-drop(X,Y ).

UpdateOpt(X,Y,�) : - opt-sub(X,Y ), affected(Y ),
feas-may-drop(X,Y ) (14)
not opt-may-drop(X,Y ).

Independent of the knowledge that Y is an optimal subproblem of X or not,
other productions containing Y may enter the optimality set. Rule (15) captures
this eventuality.
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function UpdateOpt(X, Y , check)

Compute U =
{

σ(γ) | (X → γ) ∈ P̂opt(X), Y ∈ γ, if check then CheckFeas(γ)
}

Update X̄ with U
if ∃u ∈ U : u ∈ X̄ then

Mark affected(X).
Try to infer opt-may-enter(Z, X) for all touched(Z, X).
Try to infer opt-may-drop(Z, X) for all touched(Z, X).

else
MayDrop(X, Y )

end if
end function

MayEnter(X,Y ) : - opt-may-enter(X,Y ), affected(Y ). (15)

opt-may-enter(X,Y ) : - feas-may-enter(X,Y ), (16)
not opt-may-not-enter(X, Y).

function MayEnter(X, Y )

Compute U =
{

σ(γ) | (X → γ) �∈ P̂opt(X), Y ∈ γ,CheckFeas(γ)
}

Update X̄ with U
if ∃u ∈ U : u ∈ X̄ then

Mark affected(X).
Try to infer opt-may-enter(Z, X) for all touched(Z, X).
Try to infer opt-may-drop(Z, X) for all touched(Z, X).

end if
end function

Once the refined invalidation procedure has finished, we have to check if
symbols exist that have been labelled as affected but no action could be
derived—including NoAction. In such a case we fall back to the naive Invali-
dation procedure for those symbols to guarantee that no invalid information is
retained in the DP tables. Afterwards, for each symbol which has been marked as
uncomputed or incomplete we have to invoke either the top-down or bottom-up
evaluation procedure to reevaluate the IADP.

Finally, we have to handle the case where new terminals can be generated.
As no touch information is available for those symbols we have to resort to the
bottom-up evaluation procedure as in the naive partial invalidation algorithm to
handle those. Nevertheless, as potentially less information has been invalidated
the bottom-up procedure is expected to complete the DP tables faster.

Besides the rules given in this section the user of an IADP framework may
add additional inference rules to enhance the procedure further.
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5 Conclusion

In this work we presented the theory for a new algorithm for invalidating
Dynamic Programming tables of computed DPs in the face of changing inputs.
The partial invalidation algorithm operates on dynamic programs modelled in
the IADP framework which is also suitable for general purpose solver devel-
opment. With the help of a logic programming framework the algorithm tries
to infer special cases for the invalidation of table cells and tries to abort the
procedure as soon as possible. The logic program powering the refined partial
invalidation algorithm can be easily extended by a framework user by adding
new rules and facts.

By using the algorithms we expect to make the embedding of DPs into other
methods like metaheuristics more efficient. Using DPs as solution decoders in
heuristics is a common approach to improve the quality of the solutions. Though
applying modifications, e.g., local search moves, to the solutions requires a rede-
coding. By applying the described algorithms this often repeated effort might
be reduced, thereby speeding up the overall optimization process.

In future work we will integrate both the simple and the refined algorithm
variant into an IADP framework which is currently under development. Exper-
iments over several problem types still need to be conducted to determine the
practical effectiveness of the approach. Further, new generic inference rules are
of interest which may be added if the IADP under consideration sastifies specific
requirements, e.g., monotonic evaluation algebras, or monotonic constraints.

References

1. Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)
2. Giegerich, R., Meyer, C.: Algebraic Dynamic Programming. In: Kirchner, H.,

Ringeissen, C. (eds.) AMAST 2002. LNCS, vol. 2422, pp. 349–364. Springer, Hei-
delberg (2002). https://doi.org/10.1007/3-540-45719-4 24

3. Giegerich, R., Meyer, C., Steffen, P.: A discipline of dynamic programming over
sequence data. Sci. Comput. Program. 51(3), 215–263 (2004)

4. Sauthoff, G., Janssen, S., Giegerich, R.: Bellman’s GAP: a declarative language for
dynamic programming. In: Proceedings of the 13th International ACM SIGPLAN
Symposium on Principles and Practices of Declarative Programming, pp. 29–40.
ACM (2011)
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7. Höner zu Siederdissen, C., Prohaska, S.J., Stadler, P.F.: Dynamic Programming
for Set Data Types. In: Campos, S. (ed.) BSB 2014. LNCS, vol. 8826, pp. 57–64.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12418-6 8

8. Prohaska, S.J., Stadler, P.F.: Algebraic dynamic programming over general data
structures. BMC Bioinform. 16(19), 1–13 (2015)

https://doi.org/10.1007/3-540-45719-4_24
https://doi.org/10.1007/978-3-319-12418-6_8


Refining Partial Invalidations for Indexed Algebraic Dynamic Programming 573

9. Prins, C., Labadi, N., Reghioui, M.: Tour splitting algorithms for vehicle routing
problems. Int. J. Prod. Res. 47(2), 507–535 (2009)

10. Bacher, C., Raidl, G.R.: Extending algebraic dynamic programming for modelling
and solving combinatorial optimization problems. Technical report, Algorithms
and Complexity Group, TU Wien, Vienna, Austria (2017). in Preparation)

11. Sauthoff, G.: Bellman’s GAP: A 2nd Generation Language and System for Alge-
braic Dynamic Programming. Ph.D. thesis, Bielefeld University (2010)



Subject Recognition Using Wrist-Worn Triaxial
Accelerometer Data

Stefano Mauceri1,2(B), Louis Smith1,2, James Sweeney1,2,
and James McDermott1,2

1 Natural Computing Research and Applications Group, School of Business,
University College Dublin, Dublin, Ireland

stefano.mauceri@ucdconnect.ie, {james.sweeney,james.mcdermott2}@ucd.ie
2 ICON Plc, Dublin, Ireland
louis.smith@iconplc.com

http://ncra.ucd.ie, http://www.iconplc.com

Abstract. This study demonstrates how a subject can be identified by
the means of accelerometer data generated through wrist-worn devices in
the context of clinical trials where data integrity is of utmost importance.
A custom vector of features extracted from the daily accelerometer time
series is defined. Feature selection is adapted to take account of the
sequential structure in features. Several classifiers are compared within
three different learning frameworks: binary, multi-class and one-class.
A simple algorithm like logistic regression shows excellent performance
in the binary and multi-class frameworks.

Keywords: Accelerometer data · Anomaly detection · Classification
Clinical trials

1 Introduction

Clinical trials are an essential research tool to progress medical knowledge, drug
development and patient care. In this regard, data from wrist-worn accelerom-
eters could play a key role in monitoring the efficacy of treatment options on
movement disorders or the impact of drugs on subjects’ free living activity levels
[7]. However, fraud or other misconduct are a well known issue in clinical trials
[5]. For these reasons, an important task is to confirm that a given device is worn
only by the intended subject for the whole trial period.

An example is perhaps the best way to clarify the study aim. Researchers are
designing a clinical trial which involves the enrolment of a subject. The plan is
to provide the subject with a device to assess his/her physical activity without
requiring frequent visits to the research site. How can they be sure that the
subject doesn’t give the device to someone else during the trial periods and so
doing invalidates the integrity of the collected data? The first step is to ask the
subject to spend some time at the research centre so that some accelerometer
data can be gathered. Afterwards, this reference data can be used to develop a
machine learning model to confirm subject’s identity.
c© Springer International Publishing AG 2018
G. Nicosia et al. (Eds.): MOD 2017, LNCS 10710, pp. 574–585, 2018.
https://doi.org/10.1007/978-3-319-72926-8_48
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A possibility would be to make use of a supervised binary classification method
to distinguish those days which belong to the intended subject from those which
don’t. Alternatively the same data could be employed to implement a super-
vised multi-class classification method. In this case, a group of subjects would be
involved simultaneously and the aim would be to recognise each single subject.
However, both binary and multi-class methods assume, in a sense, a fixed popu-
lation of “others”, well-represented in the data, which is not realistic. Therefore
the best option may be a semi-supervised one-class classification method where
learning is focused only on the intended subject.

The purpose of this work is to investigate the most appropriate learning
framework, the most effective classification algorithm and the optimal set of fea-
tures to perform subject recognition from accelerometer data. Feature selection
is conceived to improve interpretability.

The paper proceeds as follows: Sect. 2 mentions some related studies; the
dataset in use, the set of features and the performance metrics employed are
described in Sect. 3. Section 4 describes the experimental design, the hyper-
parameter tuning and the feature selection strategies. Results are examined in
Sect. 5 while study conclusions are summarised in Sect. 6.

2 Related Work

Wearable devices are seen as an inexpensive and unobtrusive diagnostic tool
therefore they are gaining a primary role in the field of medical research espe-
cially in sleep medicine [1,12]. In recent years their employment in motion related
studies, especially outside the laboratory environment, is increasing. Two cen-
tral applications are the assessment of physical activity [14], and the study of
movement disorders [13]. Wearable devices can embed a variety of sensors able
to track human activity information. Of these, only triaxial acceleration is con-
sidered in the present study.

In biometric recognition a heterogeneous set of human characteristics such
as, but not only: facial features [16], gait [15], and voice [10] are exploited to
identify individuals. Of these, facial features and voice are of little relevance in
the present study, but gait is of some relevance. In common with this study, one of
the main approaches in the field involves the analysis of periodic signals gathered
from dedicated accelerometers. Gait is periodic and in the case of human beings
a gait cycle is said to be two steps and its frequency is around 1 Hz [3]. A gait
cycle is the object of many gait recognition approaches.

The proposed approach takes into account only acceleration signals. Unlike
the aforementioned biometric applications for gait recognition, here the focus is
on a time window of 24 h and one data point per minute. To the best of the
authors’ knowledge this represents a novel application of accelerometer data.

Of the various approaches to the classification problem the binary and multi-
class ones are well known. Some classification algorithms allow to use more than
two classes however others don’t. These can be turned into multi-class algorithms
by constructing n binary classification problems, one for each class. In contrast,
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the one-class classification framework is less common. In this case learning is
driven only by positive examples (accelerometer time-series from the intended
subject in this application) while negative examples (accelerometer time-series
from someone else) are either not present or not properly sampled [8]. Recently,
one-class learning techniques are gaining increasing attention. Such approaches
are valuable, for example, in detecting anomalies in security-related tasks achiev-
ing good performance in terms of accuracy and computational cost [2].

3 Wrist-Worn Triaxial Accelerometer Data

First this section introduces the dataset in use (Sect. 3.1), the data preparation
steps (Sect. 3.2) and the feature set (Sect. 3.3). Continuing, the classification set-
up is described: training, validation and test sets (Sect. 3.4), data transformation
(Sect. 3.5), class labels and performance metrics (Sect. 3.6).

3.1 Dataset Description

Data are collected through wrist-worn accelerometers. The type of devices in use
are ActiGraph (Pensacola, Florida), model GT9X Link. Each unit is equipped
with a triaxial accelerometer able to measure linear acceleration within a range
of ±16 g per axis and capable of data recording at up to 100 Hz1.

The raw data consists of date-time tags and the acceleration recorded along
each of the 3 axis. Using the square root of the sum of the squares of the accel-
eration along the 3 axis rounded to the closest integer is obtained a new variable
named magnitude. This variable is employed to create univariate daily time series
at the resolution of 1 min. Each daily time series X is transformed to log(1+X).
A visual representation of log transformed magnitude recordings for one typical
day is shown in Fig. 1.

Fig. 1. Magnitude recordings for one day for one subject

1 For further information see: http://www.actigraphcorp.com/.

http://www.actigraphcorp.com/
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A sample of 9 volunteers, 3 females and 6 males, wore the mentioned device
on their wrist for a period of approximately 45 days. All the participants are
adults working from Monday to Friday; they are required to wear the devices
every day from Monday to Sunday in free living conditions. All the subjects are
office workers based in the same location.

3.2 Data Preparation

Before the data is used certain preparations are needed. Exploratory analysis
portray the fact that subjects’ behaviour on Saturdays differs from Sundays and
both differ from weekdays. Moreover, the number of weekend days (Saturdays
and Sundays) available per subject is relatively small. For these reasons, weekend
days are removed. Also, days where one or more hours of recordings are missing,
are dropped, as this would be in contrast with the present approach.

Statistical analysis of the data show that it’s common for a daily cumulative
magnitude to assume a minimum value around 1 million but a few days are found
in the range from 0 to 500,000. Deepening the analysis of these days is observed
a prevalence of non-wear time over wear time. Practically speaking, non-wear
time corresponds to a sequence of recordings all with the same magnitude equal
to 0. This can happen because subjects take off their devices and leave them
lying still somewhere. Therefore, days where the cumulative magnitude is lower
than 500,000 are pruned.

Devices in use have an internal memory of 4 GB and this requires weekly
transfer of data to a larger hard drive. This time is also used to re-charge devices’
batteries. As a consequence, there are a few days per subject where can be found
a series of missing values. This issue is addressed scanning through each daily
time series and when a sequence of contiguous missing values of size N (with
N ≤ 60) is found it’s filled with a copy of the N values that precede.

3.3 Feature Set

A set of 25 features, listed below, is manually constructed by drawing on the
statistical and time series analysis literature [4]. The feature set includes: mean,
standard deviation, mode frequency, median, variance, kurtosis, skewness, min-
imum, maximum, number of outliers [6], number of observations above mean,
number of observations below mean, number of observations greater than zero,
average of the absolute value of consecutive changes in the series, autocorrelation
with lags of 1, 2, and 3 min, the 5 coefficients of an ARIMA model with param-
eters (2, 1, 2), time reversal asymmetry statistic [4], histogram based estimation
of entropy in samples of 6 min, number of peaks in segments of ±6 min. In the
last two mentioned meta-features the interval length of 6 min is chosen simply
because it allows to divide one hour in ten equally sized segments. Computation
of entropy, autocorrelation and the parameters of the ARIMA model can result
in a ‘nan’ for those sequences where nearly all the values are equal to zero. In
these cases a zero is returned instead.
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While almost all the mentioned features are well known, further clarification
is required for the number of outliers and the time reversal asymmetry statistic:
their formulae are shown below.

Outliers(X) =
n∑

i=1

[
0.6745 ∗ (xi − Med(X))

Med(|X − Med(X)|) > 3.5

]
, TRS(X) =

〈(xi − xi−l)
3〉

〈(xi − xi−l)2〉

Meta-features. The assembly of the feature vector is a fundamental part of this
study. For each hour of the day all the features of the feature set are extracted.
As a result, 25 vectors of 24 scalars are obtained. Each of these vectors is referred
to as a meta-feature.

3.4 Training, Validation and Test Sets

In the present dataset the number of available days differs from subject to sub-
ject. In order to construct a balanced training and test set the subject with the
least number of days (23 days) is taken as reference. From those subjects where
more days are available only 23 are randomly selected.

For each subject selected days are randomly split using a ratio of approxi-
mately 80% to 20% in training and test instances: 18 of the 23 days are included
in the training set, while the remaining 5 are included in the test set. Thus a
training set of 162 instances (18 days × 9 subjects) and a test set of 45 instances
(5 days × 9 subjects) are obtained.

For feature selection and hyper-parameter tuning cross validation is used
with a 2:1 split of the training data.

3.5 Data Transformation

The 600 features have different scales thus column-wise standardisation is applied
by removing the mean and scaling to unit variance. Standardisation parameters
of a given column (μ and σ) of the training set are retained to apply the same
transformation on the corresponding column of the test set. The same is done
for each training and validation set generated through cross-validation.

This applies to the binary, multi-class and one-class experiments. In the one-
class experiment, it would be common practice to standardise data for one sub-
ject at a time. However, it’s noticed that classification performance is positively
influenced when the entire dataset is standardised at once.

3.6 Class Labels and Performance Metrics

In the multi-class experiment each subject involved in the study is assigned
a number from 1 to 9 corresponding to his/her class label. In this case all the
classes are represented equally i.e. the test set is made of 5 instances per subject.

In the binary and one-class experiments there are only two class labels: 1 and 0.
Subjects are tested one at the time. The intended subject is assigned the label 1
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while the label 0 is assigned to all the others. Now, the number of instances in each
of the two classes is quite different i.e. 5 true instances vs. 40 false ones.

Results are presented through 4 different metrics: the area under the receiver
operating characteristic curve (AUROC) which is insensitive to class imbalance,
precision, recall, and specificity.

In general the ROC curve shows how the TPR and the FPR change as the
classification threshold changes. ROC curves can be used to compare classi-
fier and make cost vs. benefit decisions. However, in this study the focus isn’t
on tweaking classifiers thresholds. In the binary and multi-class experiments
decision thresholds are internally defined by the algorithms in use and what is
observed is a vector of class labels as outcome of the classification task. In the
one-class experiment test cases which show a score greater than the 5th percentile
of the training scores are considered as not anomaly. The score is calculated as
a density or distance measure according to the algorithm in use. The vector
of class labels is employed to compute the AUROC using only 3 points (0, 0),
(TPR, FPR), (1, 1), and the trapezoidal rule for integration. While the AUROC
is regarded as a standard performance evaluation criterion in binary classifica-
tion problems, its extension to the multi-class case requires precise definition.
In the present study it’s computed considering one class at a time (one vs. all
approach). In other words, for each subject, the TPR and the FPR are esti-
mated and used to work out his/her AUROC. The multi-class AUROC is then
the mean over subjects.

4 Experiments

Three sets of experiments are carried out: (1) binary classification, (2) multi-class
classification, and (3) one-class classification.

Each experiment is divided in 4 stages. First, classifiers (as listed in Sects. 4.1
and 4.2) with default hyper-parameters are tested exploiting all the available
meta-features. Second, classifiers are tested after their hyper-parameters are
tuned using a grid search approach and all the available meta-features are
employed. Third, classifiers with their default hyper-parameters are tested after
for each of them a subset of optimal meta-features is selected using a for-
ward stepwise feature selection algorithm. Lastly, classifiers are tested after their
hyper-parameters are tuned and only the optimal subset of meta-features found
in the previous stage are employed.

4.1 Binary and Multi-class Classification Algorithms

A set of 6 classifiers is tested for both the binary and multi-class experiments.
The algorithms appraised are: Gaussian Näıve Bayes, K-Nearest Neighbours,
Logistic Regression, Multi-Layer Perceptron, Random Forest and Support Vector
Classification. Furthermore, two baselines are used: (1) most frequent : which
always predicts the most frequent label in the training set, (2) uniform: which
predicts with uniform probability at random among the labels in the training set.
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4.2 One-Class Classification Algorithms

In the one-class classification experiment a set of 5 classifiers is tested. The algo-
rithms evaluated are: Gaussian Mixture, Isolation Forest [9], Kernel Density,
One-Class Support Vector Machine and Single Spherical Gaussian Density2.
While no baseline classifiers are directly employed in this experiment for com-
parisons it’s possible to refer to the baseline in the binary case.

4.3 Feature Selection

For each classifier, a forward feature selection algorithm is employed. It differs
from a standard one in two ways. First, each feature is repeated 24 times (for
24 h), giving a meta-feature. For interpretability of the final model, it’s necessary
to either select or remove each meta-feature en masse. Therefore, to select or
remove one meta-feature it’s necessary to select or remove all 24 associated
columns in the training data. Second, because of the small size of the training
data, there is high variability among training-validation splits. Therefore, it’s
necessary to take the average performance over many splits when carrying out
feature selection. The feature selection algorithm runs in two stages:

Stage 1: a training-validation split is carried out, then a forward stepwise pass
is run, adding at each step the meta-feature which gives the best validation
performance. The selection order of the meta-features is recorded. This is
repeated 100 times and for each meta-feature its mean selection order is
calculated. The meta-features are sorted in increasing mean selection order.

Stage 2: the algorithm iterates over the list of meta-features, adding one at a
time to the model and recording its mean validation performance over 100
training-validation splits. It’s observed that stopping at the first decrease in
validation performance doesn’t lead to the optimal stopping-point, so instead
the optimal number and selection of meta-features is found by taking the
highest validation performance during the full iteration.

The number of features selected per classifier is shown below in Table 1.

Table 1. Feature selection details

Algorithm Binary Multi-class Algorithm One-class

Gaussian Näıve Bayes 9 10 Gaussian Mixture 1

K-Nearest Neighbours 16 15 Isolation Forest 13

Logistic Regression 22 10 Kernel Density 7

Multi-Layer Perceptron 19 11 One-Class SVM 1

Random Forest 4 4 SSGD 2

SVC 2 6

2 All classifiers use Scikit-Learn [11].
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4.4 Hyper-parameter Tuning

For each algorithm hyper-parameters are tuned. The list of hyper-parameters
searched for each algorithm is shown below. Two exceptions are: Gaussian
Näıve Bayes and Single Spherical Gaussian Density where there are no hyper-
parameters which can affect performance. Moreover, in 3 cases the hyper-
parameter set found in the implementation in use is altered. In Kernel Density
the bandwidth is set to 105 due to the high dimensional space, for the same rea-
son in One Class SVM gamma is set to 10−5 (gamma = 1

bandwidth ); in Gaussian
Mixture the number of components is set equal to 1 due to the limited number
of training cases.

The grid search method employed generates all the possible combinations of
hyper-parameters. Then, all the combinations are tested and the setting with
the best performance is retained.

• K-Nearest Neighbours
– k: {2, 3, 4}
– leaf size (leaf size of the k-d tree): {25, 30, 35}

• Logistic Regression
– C (penalty parameter of the error term): {0.01, 0.1, 0.5, 1}
– fit intercept (whether to use intercept scaling or not): {True, False}
– intercept scaling (intercept scaling factor): {0.1, 0.4, 0.8}
– solver (optimiser): {lbfgs, newton-cg, sag}

• Multi-Layer Perceptron
– activation: {identity, logistic, relu, tanh}
– learning rate: {adaptive, constant, invscaling}
– max iter (maximum number of iterations): {500, 1,000, 1,500}
– solver (optimiser): {adam, lbfgs, sgd}

• Random Forest
– n estimators (number of trees in the forest): {50, 100, 150}
– max features (features to consider for the split): {auto, log2 (N), None}
– min samples split (samples required to split a node): {4, 6, 8, 10, 12}

• Support Vector Classification
– C (penalty parameter of the error term): {0.001, 0.01, 0.1, 0.9, 1.5}
– gamma (inverse of the bandwidth): {0.001, 0.01, 0.05, 0.1}

• Gaussian Mixture
– covariance type: {diagonal, full, spherical, tied}
– n components (number of components): {1, 2, 4, 8}

• Isolation Forest
– n estimators (number of base estimators): {5,000, 10,000, 15,000}
– contamination (proportion of anomalies in the dataset): {0.05}

• Kernel Density
– bandwidth: {10−1, 100, 101, 102, 103, 104, 105, 106}
– kernel: {cosine, epanechnikov, exponential, gaussian, linear, tophat}
– metric: {canberra, euclidean, manhattan}

• One-Class SVM
– gamma (inverse of the bandwidth): {10−2, 10−4, 10−6}
– kernel: {cosine, epanechnikov, exponential, gaussian, linear, tophat}
– nu: {0.1, 0.5, 0.9}
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5 Results and Discussion

Performance achieved in the binary and multi-class classification experiments
along with the two baselines are shown in Table 2. For the one-class classifica-
tion experiment results are summarised in Table 3. In both the tables for each
classifier results are listed according to the 4 stages described in Sect. 4.

Table 2. Binary and multi-class classification experimental results – 1. Default hyper-
parameters. 2. Grid search on hyper-parameters. 3. Feature selection. 4. Grid search
after feature selection.

Algorithm Binary classification Multi-class classification

AUROC Precision Recall Specificity AUROC Precision Recall Specificity

Most Frequent 50 0 0 100 6 1 11 90

Uniform 45 9 42 48 55 21 20 90

1 Gaussian Näıve Bayes 75 37 71 78 74 60 53 94

2 − − − − − − − −
3 74 29 82 66 84 74 71 96

4 − − − − − − − −
1 K-Nearest Neighbours 77 80 56 99 74 63 64 96

2 82 91 64 99 73 61 62 95

3 77 75 56 98 80 68 64 96

4 81 84 64 98 80 74 64 96

1 Logistic Regression 84 52 78 91 86 77 76 97

2 83 57 73 93 86 77 76 97

3 85 54 78 92 86 77 76 97

4 83 65 71 95 84 71 71 96

1 Multi-Layer Perceptron 82 69 69 96 81 74 67 96

2 83 60 71 94 83 69 69 96

3 78 66 60 96 85 75 73 97

4 86 60 80 93 84 73 71 96

1 Random Forest 55 28 11 100 84 78 71 96

2 57 41 13 100 76 62 58 95

3 64 78 29 100 73 52 51 94

4 66 73 33 99 76 58 58 95

1 SVC 56 22 11 100 80 71 64 96

2 50 0 0 100 74 62 64 96

3 60 50 20 100 83 72 69 96

4 68 78 36 100 81 76 67 96

While all the algorithms demonstrate better performance than baselines, in
respect to the learning framework, it cannot be said that one approach is clearly
better than the others. The gap between the binary and the multi-class approach
is limited for the majority of the classifiers except for Random Forest and SVC
which work out better in the multi-class scenario. Overall, the one-class approach
shows slightly lower performance.

Looking at the results per subject, not provided in this text, can be seen how
for some subjects the AUROC score is close or equal to 100%.



Subject Recognition Using Wrist-Worn Triaxial Accelerometer Data 583

Table 3. One-class classification experimental results – 1. Default hyper-parameters.
2. Grid search on hyper-parameters. 3. Feature selection. 4. Grid search after feature
selection.

Algorithm One-class classification

AUROC Precision Recall Specificity

1 Gaussian Mixture 50 0 0 100

2 68 34 64 71

3 50 13 7 93

4 62 20 76 49

1 Isolation Forest 58 14 89 27

2 53 12 87 20

3 61 15 93 29

4 61 15 87 34

1 Kernel Density 51 12 87 15

2 78 43 73 82

3 55 12 89 21

4 79 31 89 70

1 One-Class SVM 66 41 49 83

2 74 30 84 63

3 69 41 60 79

4 71 48 56 87

1 SSGD 51 12 87 15

2 − − − −
3 59 15 87 32

4 − − − −

The best results, in terms of AUROC, are gained by the Logistic Regression
classifier, 85% in the binary experiment and 86% in the multi-class experiment.

The second best classifier is the Multi-Layer Perceptron, which peaks at 86%
AUROC in the binary case and it’s consistent in the multi-class case. While the
Logistic Regression algorithm is deterministic ceteris paribus over different runs,
Multi-Layer Perceptron’s results can fluctuate ceteris paribus over different runs.

K-Nearest Neighbours and Gaussian Näıve Bayes follow. In the binary exper-
iment Random Forest and SVC have lower performance compared to the previ-
ously mentioned classifiers, however the gap decreases in the multi-class case.

In the one-class experiment only Kernel Density and One-Class SVM can
achieve 79% and 74% AUROC respectively while all the other classifiers have
poor performance.

The impact of hyper-parameter tuning is not always positive in the binary
and multi-class cases, but sometimes the performance is improved. The choice of
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hyper-parameters improve performance greatly for the Kernel Density and the
One-Class SVM classifiers in the one-class experiment.

Considering the feature selection strategy results fluctuate. Performance isn’t
boosted when the optimal sub-set of meta-features is selected. However, for most
classifiers the number of meta-features can be remarkably decreased (as shown
in Table 1) with a negligible impact on performance and this can allow higher
model interpretability. Top 5 most frequently selected features are: autocorre-
lation (at different lags), mean, average of the absolute value of consecutive
changes, median, and histogram based estimation of entropy.

6 Conclusions and Further Work

The present study describes a problem driven research on subject recognition
using wrist-worn triaxial accelerometer data. It’s shown how accelerometer data
gathered over an entire day can outline a unique representation of a subject and
therefore allow his/her identification.

Well-established classifiers are tested using a customised vector of meta-
features within three different learning frameworks. Overall, the three differ-
ent learning frameworks seem to achieve similar performance. The binary and
multi-class frameworks show slightly better results and this raises the question
of how to construct an appropriate training set for each subject. Nonetheless, it
would be interesting to study how these results vary if one or more subjects are
removed from the training set and employed only in the test set. In this scenario
the one-class approach may perform better than the other two.

The hyper-parameters are tuned. The feature set in use and a suitable adapta-
tion of the forward feature selection algorithm allow high model interpretability.
Results are promising: a simple algorithm like logistic regression achieve the best
score in the binary and multi-class scenarios (86% AUROC).

This work paves the way to the employment of accelerometer data as an
unobtrusive and practical tool in medical research. Further investigations are
needed to address the reliability of the proposed approach on larger datasets.
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Abstract. Immunosenescence concerns the gradual deterioration of the
immune system due to aging. Recent advances in cellular phenotyping
have enabled key improvements in this context during the last decades.
In this work we present a novel extensions and integration of data-driven
models for describing age-related changes in the network of relationships
among cell quantities of eight peripheral B lymphocyte subpopulations.
Our dataset contains about six thousands samples of patients having an
age between one day and ninety-six years, where for each patient, cell
quantities of eight peripheral B lymphocyte subpopulations were mea-
sured. By correlation-based multiple time series segmentation we gener-
ate four sets of age-related networks depending on the number of age
segments. We first analyze a partition in 30 very short segments, then
segmentations in 5, 3 and 2 segments. Moving from a fine to a large
grain segmentation, different aspects of the dataset are highlighted and
analyzed.

1 Introduction

In last decades main mechanisms of the human immune system, one of the most
complex and adaptive systems known in nature, were investigated from different
perspectives. In this context, aging gathered much attention as a complex process
which negatively impacts this system [11,27]. In fact, it may be assumed that the
immune system, as a network of interacting cells, evolves during human life in
terms of different aspects. Presence/absence, strength and types of interactions,
for instance, can change during the life of a person due to the exposure to multiple
foreign challenges through childhood, via young and mature adulthood, to the
decline of old age [23].

The immune network theory, formulated by Jerne [15] in 1974 and subse-
quently developed by Parelson [22], was a starting point to describe the dynamics
of lymphocyte interactions from a quantitative and systemic point of view [21].
More recently, advances in cellular phenotyping have enabled to elucidate sev-
eral functioning mechanisms of the immune system, such as those underling
immunosenescence [7,13], having a notable social and economical impact in the
design of new therapies and vaccines. Latest studies showed that the majority of

c© Springer International Publishing AG 2018
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lymphocyte biological variability seems to be age-dependent [26] and immunose-
nescence seems to be characterized by a decrease in cell-mediated immune func-
tions, where defects in T- and B-cell functions coexist [27].

In this work we proposes a pairwise correlation based analysis over a dataset
of B-cell quantities, measured in about six thousands patients having an age
between one day and ninety-six years. For each patient, cell quantities of eight
peripheral B lymphocyte subpopulations were measured and related time-series,
obtained by ordering patients according to their age, analyzed. Pearson cor-
relation was computed to find out age-related relationships between different
B-cell subpopulations. This kind of analysis allowed us to visualize our data as
(correlation based) networks over the available types of B-cells. Differences in
such age-related networks were investigated in terms of a time-series segmen-
tation problem, where a partition (in intervals) of the time line (i.e., patient
age) emerges as an optimal one to maximize a measure of dissimilarity between
corresponding B-cell networks (see Fig. 1).

Fig. 1. Age-related changes in immune system network.

Segmentation of multiple time-series is a complex problem, since differ-
ent data partitioning may show different aspects of underlying processes and
these aspects could have non-synchronous evidence. Main methodologies in the
field [16,24] take inspiration and extend methods of motif discovery in time-
series [6,19] or are based on clustering [8,25]. The choice of the information
measure of course has a strong influence on the identification of segments (i.e.,
time intervals/clusters of time points) and change points. A possible measure
is represented by the parameters of the (multivariate) mathematical models fit-
ting the data in each segment, since they represent some aspects of the infor-
mation in the segment itself. Comparing these parameters between couples of
adjacent segments and maximizing their differences is a way to identify good
segmentations. If linear regression models are used, then predictor coefficients
are compared. In [4] a constant (to all age intervals) network was provided by
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setting general assumptions, while an age-dependent one was found by restrict-
ing statistical thresholds to validate our multivariate linear models. A previous
model proposed for this dataset [2] describes a possible sequence of (ex-vivo
observed) B cell maturation steps in human body. It was based on Metabolic
P systems [9,10,20], with linear regulation maps generated by regression tech-
niques and genetic algorithms [3,5].

The main contribution of this work concerns the generation and analysis of
four sets of age-related networks depending on the number of age segments. We
first analyze a partition in 30 very short segments, then we analyze a segmenta-
tion in 5, 3 and 2 segments, where the age-intervals of corresponding segments
increase while the number of segments decrease. Moving from a fine to a large
grain segmentation, different aspects of the dataset are highlighted. We used a
brute-force algorithm for testing every possible segmentation with specific num-
ber of segments, and evaluated these segmentations according to a segmentation
performance measure based on the average correlation difference between seg-
ments. A preliminary comparison between these networks and those computed
in [4] is provided.

The rest of the paper is organized as follows. The dataset and algorithm are
described in Sect. 2. A discussion on initial results is presented in Sect. 3 and
Sect. 4 reports some conclusions and proposals for future work.

2 Material and Methods

This section describes the immunological dataset and the segmentation method
used to generate age-related networks of B cell subpopulations.

2.1 Dataset

Data were collected at the University Hospital of Verona (Italy) from 2001 to
2012 as measures of amount of B cells exhibiting the combinations of receptor
clusters CD27, CD23 and CD5 in 5,954 patients. There were 2,910 males and
3,045 females (male/female ratio: 0.95) and the median age of the patients was
37 years (range: 0–95 years). More details on the dataset and the clinical method
used to collect it may be found in [2,4,26]. The names of population size variables
corresponding to each cell phenotype are displayed in Table 1. In other terms, B
cell phenotype of 8 subpopulations (indicated by presence and absence of three
receptor clusters), may be abstractly described by random variables accounting
for quantities of corresponding cell in each patient.

The dataset is a matrix of 5,954 rows and eight columns, in which rows (i.e.,
patients) can be sorted by age, obtaining a kind of multivariate time-series where
patient age represents time. Given the definition of our problem (see previous
section), this is a particular case where it is reasonable to reduce cross-sectional
data into multivariate time-series. In fact, if we sort the data according to the
age of patients, we have a screenshot of the human immune system (or, more
specifically, of the B-cell network) along the lifetime of a metapatient, who may
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Table 1. Dataset variables.

X1 = CD5+ CD23+ CD27- X5 = CD5− CD23− CD27+

X2 = CD5− CD23+ CD27− X6 = CD5+ CD23− CD27+

X3 = CD5− CD23− CD27− X7 = CD5+ CD23+ CD27+

X4 = CD5+ CD23− CD27− X8 = CD5− CD23+ CD27+

be assumed to have a basic functioning system (the number of patients is high
enough, to be able to neglect possible known or unknown diseases, defeacts on
the system).

2.2 Algorithm

The segmentation algorithm here used is a brute-force partitioning method,
based on the maximization of differences in correlation between adjacent seg-
ments. The multiple time-series of patients (sorted by age) is initially split in 30
primitive segments, each containing 200 patients who result in being of very sim-
ilar age. We assume that the time-series is stationary in each primitive segment
because the age effect is irrelevant in such small intervals.

Time-series segmentations are generated by partitioning the vector of primi-
tive segments (1, . . . , 30) in n segments s1, . . . , sn, such that 2 ≤ n ≤ 30. Segment
si = (ki, ki+1), 1 ≤ ki < ki+1 ≤ 30, i = 1, . . . , n contains all patients in primitive
segments between ki and ki+1. For instance, segment (2, 4) contains all primitive
segments from 2 to 4 (namely, patients from 200 to 799 in the age-sorted list of
patients). A segmentation having n segments is then represented by an n-uple
Sn = (k1, . . . , kn), where elements 1 ≤ k1 < . . . < kn = 30 are the indexes of the
primitive segments that delimit the end of each segment in the segmentation.
For instance, segmentation (3, 7, 20, 30) contains four segments, namely (1, 3),
(4, 7), (8, 20) and (21, 30), hence patients are segmented as (1, 599), (600, 1399),
(1400, 1999) and (2000, 5954).

Given a segment si, we indicate by ci = (ci,1, . . . , ci,28) the vector con-
taining the correlation of each couple of different cells in the age interval of
segment si. The number of elements in ci is 28 because there are 28 possible
pairs of different cell types in our dataset. We compute the vector of abso-
lute differences of correlation between two adjacent segments si and si+1 as
di,i+1 = (d1i,i+1, . . . , d

28
i,i+1) = |ci+1 − ci|. Let us analyze an example from Fig. 2

which shows the (unique) segmentation in 30 primitive segments. The first ele-
ment of c1 is the correlation between X1 and X7 in the first age segment (i.e.,
0.0–1.0 years), which has a value of 0.49 (see first column of matrix (a)). The
first element of c2 is the correlation between X1 and X7 in the second age seg-
ment (i.e., 1.0–2.5 years), which has a value of 0.76 (see second column of matrix
(a)). The absolute difference of these two values is the value of the first element
of vector d1,2, namely 0.27 (see first column of matrix (b)).
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Given a specific number of segments n, our goal is to identify the segmen-
tation Ŝn = (k̂1, . . . , k̂n) which maximizes the overall absolute differences of
correlation between adjacent segments. To this end we define the performance
measure of a generic segmentation Sn with n segments as:

m(Sn) =

∑n−1
i=1 (

∑28
j=1(d

j
i,i+1(Sn)))

28 · (n − 1)
(1)

which represents the average difference in correlation between all adjacent seg-
ments in Sn and depends on the specific segmentation points k1, . . . , kn in which
the multiple time-series is partitioned. The algorithm described in Table 2 aims
at identifying the segmentation Sn that maximizes m(Sn).

Table 2. Brute-force algorithm for generating of the best segmentation with n segments
according to the segmentation performance measure in Eq. (1).

Best segmentation(n)
Input: n: number of segments

1. # Initialization

2. bestSegmentation=NULL;

3. bestPerformance=-Inf ;
4. # Search for best segmentation

5. for each segmentation Sh
n = (k1, . . . , kn) | 1 ≤ k1 < . . . < kn = 30 {

6. compute segmentation performance p = m(Sh
n);

7. if(p>bestPerformance) {
8. bestSegmentation=Sh

n;

9. bestPerformance=p;
10. }
11. }
12. return (bestSegmentation,bestPerformance);

The advantage of using this algorithm is that all possible partitioning of the
30 primitive segments in n parts is tested. On the other hand, the number of
these partitions is the binomial coefficient

(
29
n

)
which grows very quickly as n

increases or decreases to n/2. Table 3 shows the number of possible segmentations
depending on n and the time needed by the brute-force algorithm to find the
best segmentation. The algorithm was implemented in R language and it run
on a laptop with processor Intel R© QuadCoreTM i7-3537U 2.00 GHz and 8 GB
of RAM.
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Table 3. Algorithm performance depending on the number of segments n.

n # segmentations Time

2 29 0.15 s

3 406 1.95 s

4 3654 16.83 s

5 23751 1.96 min

6 118755 11.52 min

7 475020 1.15 h

30 1 0.01 s

3 Results

We started to analyze the basic segmentation in 30 intervals (maximal granu-
larity) having 200 patients each. Correlation analysis on this case are reported
in Fig. 2, where we may see: the pairwise correlation 28 × 30 matrix (a), the
absolute value of differences of correlations between two consecutive segments
reported in a 28 × 29 matrix (b), and the sorted row-wise average vector (c).
Two examples of correlation values (computed on the 30 segments) are graphed
in (e): those between X1 and X7, and between X2 and X5, where the dotted
horizontal line denotes the 0.5 threshold.

Only absolute values are considered, since we are interested in selecting couple
of relatively high correlated variables (rather than in the verse they are corre-
lated). Matrix in (a) is filtered across the threshold value 0.5, so to obtain the
bicolor matrix in (d), which corresponds to a sequence of 30 networks over the
variables. Four of these networks, corresponding to the segments 1, 2, 12, 29, are
reported in (f), where we may notice a different presence of edges (i.e., different
couples of highly correlated variables) for different age intervals, and a decrease
of presence of edges with the age increasing (segment 12 corresponds to the
range 25–29 years old and segment 29 to the range 73–78 years, see Fig. 2). The
30-partition has the advantage to group patients having very similar age, then
detecting actual relationships between variables which cannot be seen macro-
scopically from the time-series, which are due to data-driven age-independent
structural properties of the B-cell network. However, we aim at finding a par-
tition with a minor number of segments, having better performance in terms
of dissimilarity between corresponding networks, but still keeping the property
to exhibit an age-independent network which fits actual relationships among
variables over the intervals.

We run the brute force segmentation algorithm, to analyze performances of
first n-partitions with n = 2, . . . , 7, which results are reported in Figs. 3 and 4.
Performance measure of all possible partitions with 2,3,. . . ,7 segments was com-
puted, and best values are respectively reported in Fig. 3(a), where the maxi-
mum (m = 0.31) is obtained for a tripartition. It generates one B cell network for
patients up to one year old, another one for the interval 1–34.8 years, and the last
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Fig. 2. Initial partition of 30 intervals, each with 200 patients. Correlation
matrix (a), correlation differences between consecutive segments in absolute value (b),
corresponding sorted row average vector (c) having components average 0.129. Pairwise
correlations greater than 0.5 (in absolute value) in (d), reported in (f) as networks for
a specific sample of segments: 1, 2, 12, 29. Absolute values of pairwise correlations of
(X1, X7) and (X2, X5) (e).

one for ages over 34.8. One only correlation is kept for the whole life, between
X1 and X4, two phenotypes which differ only for the expression of CD23, as it
was also the case for linear models proposed in [4].

After one year of age, B cell network has many more edges (that is, it has
new variable couples highly correlated), and there are several edges which appear
only in the range of age [1–34.8] as it is evident by observing the central column
of matrix in (c), which is almost all dark (high correlation) with row neighbours
white (scarse correlation). However the network of the second segment is not an
enrichment of the previous one, because a couple of correlations, between X4,X6

and between X2,X8, get lost (as they decrease under 0.5 in absolute value). Both
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Fig. 3. Tripartition corresponding to maximal segmentation performance
(m=0.31). Best values for segmentation performance m over partitions with 2, 3, 4, 5,
6, 7 segments in (a), corresponding m values and ages delimiting the segments in (b). On
the tripartition with m maximum: pairwise correlations (c) generating networks on the
bottom with a filter of 0.5, correlations differences in abs value (d), and corresponding
sorted row-wise average (c).

these edges connect two cell phenotypes which differ each other for only one recep-
tor expression: CD27. This confirms observations by linear models in [4], where
however relationship between X2,X8 was present until higher age (23 years).
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We notice that tripartition is also a natural segmentation we observe if we
look at the multivariate time-series (see Fig. 3 in [2]), having all a peak around
one year, and a descendent tail after about 30 years. We presume this granu-
larity keeps track of a sort of macro age-dependent correlation in the three seg-
ments, and should be further investigated in its stationarity component. Namely,
ARIMA models could be considered to eliminate the non-stationarity [14]. A
good point of the tripartition is to find a couple of change points which are
maintained, among the others, in partitions with more segments (see table (b)
in Fig. 3): 1.0 and 34.8 years. The decline of the immune system however hap-
pens inside the interval 34.8–96.0, which in the following we analyze within a
finer grain. Due to these observations, we pass to analyze our data at a major
granularity, related to the second best values for m, which are 0.27 and 0.28,
corresponding to partitions with 2 and 5 segments respectively, visualized in
Fig. 4.

Fig. 4. Bipartition (top) and 5-partition (bottom), corresponding to second best seg-
mentation performance (0.27 and 0.28 respectively). Correlation matrix (a), correlation
differences between consecutive segments in absolute value (b), corresponding sorted
row average vector (c) and networks with absolute value of pairwise correlations over
0.5 (d).
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We may notice that the bipartition has an excessively low granularity, since
the network corresponding to the second interval of ages (starting with 43.4
years) has no edges - that is, pairwise correlations have all an absolute value
smaller than 0.5. On the other hand, the partition with 5 segments turns out to
be quite informative and interesting, by finding new stable change points at 69
and 73.2 (see Table (b) of Fig. 3). Other less significant change points are found
by next partitions in 6 and 7 segments, where respectively 78.2 was first added,
and then 65.4. Hence, according to this model, the B cell network alterations,
observed as the decline of defence in eldery people, should be investigated around
specific age ranges, at 69 and 73 (and of course 78) years.

In bottom of Fig. 4, a good performant 5-partition (with performance mea-
sure 0.28) is described in terms of age-related B cell networks (d). It is the
model we propose in this paper, with same two networks than in the triparti-
tion until 34.8 years, and three last networks suggesting the dynamics of mature
adulthood, to the decline of old age. In our data driven correlation networks,
B cell networks change dramatically at 69 years with an increasing of all node
degrees (correlations of all variables). Namely, in this age range, we notice an
irreversible lost of correlation between X1−X5 (cell phenotypes with all three
opposite receptors) and an irreversible recover of both connections X4−X6 and
X1−X8, while pairwise correlation between X3−X7 (cell phenotyes having all
or none of the receptors expressed) is the only one which keeps a value greater
than 0.5 until the end. A biomedical validation of this model will be the next
step for future work, in order to test and eventually improve it.

4 Conclusion and Ongoing Work

A recent broad interest is focused on the lifetime aging of immune system, in
terms of changes of immune mechanisms of an individual during his/her infancy,
growing/mature age and senescence. In particular, efficient and fast computa-
tional methods are proposed in the machine learning literature (for data clus-
tering, and feature extraction) to infer new knowledge from given data. In this
context we are currently considering different types of methodologies for multiple
time-series analysis, such as, segmentation [16], change-point detection [1,17,18].
Namely, in this paper a simple algorithm allowed us to preliminary analyze some
statistically validated partitions of ages where the B cell networks of immune
system have change points of interest. In our correlation data driven model, years
69 and 73 seems to be critical for the decline studied in immunosenescence.

The model proposed in this paper may be naturally extended (by improving
the partition algorithm, the selected thresholds, by investigating the intermedi-
ate zone, with 8–28 intervals, by heuristics from the literature) and improved,
with more sophisticated statistical analysis of our specific dataset. For instance
we are currently considering a recent approach, proposed in [12], where subse-
quence clustering of multivariate time-series is profitably used for discovering
repeated patterns in temporal data. Once these patterns have been discovered,
the initial dataset can be interpreted as a temporal sequence of only a small
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number of states (namely clusters or segments). Patterns are defined by Markov
Random Field (MRF) characterizing the interactions between different variables
in typical subsequences of specific clusters. Based on this graphical representa-
tion, a simultaneous segmentation of time-series data may be efficiently realized.

Acknowledgments. Authors would like to thank Antonio Vella (department of
pathology and diagnostics, University Hospital of Verona) for providing the dataset
used in this work and for interesting discussions on the role of B cells in the immune
system.
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