
On the Comparison of Model-Based
and Model-Free Controllers in Guidance,
Navigation and Control of Agricultural
Vehicles

Erkan Kayacan, Erdal Kayacan, I-Ming Chen, Herman Ramon
and Wouter Saeys

Abstract In a typical agricultural field operation, an agricultural vehicle must be

accurately navigated to achieve an optimal result by covering with minimal over-

lap during tillage, fertilizing and spraying. To this end, a small scale tractor-trailer

system is equipped by using off the shelf sensors and actuators to design a fully

autonomous agricultural vehicle. To alleviate the task of the operator and allow him

to concentrate on the quality of work performed, various systems were developed for

driver assistance and semi-autonomous control. Real-time experiments show that a

controller, which gives a satisfactory trajectory tracking performance for a straight

line, gives a large steady-state error for a curved line trajectory. On the other hand,

if the controller is aggressively tuned to decrease the tracking error for the curved

lines, the controller gives oscillatory response for the straight lines. Although exist-

ing autonomous agricultural vehicles use conventional controllers, learning control

algorithms are required to handle different trajectory types, environmental uncer-

tainties, such as variable crop and soil conditions. Therefore, adaptability is a must

rather than a choice in agricultural operations. In terms of complex mechatronics

systems, e.g. an agricultural tractor-trailer system, the performance of model-based
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and model-free control, i.e. nonlinear model predictive control and type-2 neuro-

fuzzy control, is compared and contrasted, and eventually some design guidelines

are also suggested.

1 Introduction

Agriculture is the oldest, and also still the most important, economic activity of the

modern humankind society. Archaeological excavations show that we, as humankind,

started this thrilling adventure approximately 11,500 years ago. This decision was

not only to stop being hunters and gatherers but also to start adapting the nature to

our needs instead of only adapting ourselves to the facts of the wild life. This adven-

ture started with wild barley, wheat and lentils in the South Asia (Fertile crescent and

Chogha Golan) [1–3]. Our new skill, the skill of dealing with the soil and growing

domestic plants instead of eating only wild ones, was the first step of our civilization

which caused a domino effect such as paving the way for living as clans in villages

and even the rise of complex religions.

Whereas average life expectancy was around 25 years in the Paleolithic and

Neolithic eras, thanks to modern medicine, in particular Alexander Fleming who dis-

covered penicillin, it has reached to 80 years in the last century [4]. In other words,

our world is constantly being overcrowded. According to the United Nations Food

and Agriculture Organization (FAO), our world has to double food production by

2050 to meet rising demand. Since it is an obvious fact that we can no longer clear

more forest, one of the possible solutions is to increase the overall agricultural pro-

duction efficiency among which the application of intelligent agricultural vehicles.

Considering the high demand for increased efficiency, productivity and safety

in farming operations, a precise trajectory tracking is needed for agricultural vehi-

cles to improve quality meanwhile reducing cost. When the motivations are care-

fully examined, the following requirements can be identified for an autonomous pro-

duction machine, such as a tractor-trailer system: smart (intelligent) and productive

(automation). In light of these aforementioned conditions, theoretical and practical

control and design methods, i.e. model-free and model-based methods, are proposed

throughout this article.

1.1 Role of Robots in Agriculture

Agriculture is not only a vital economic activity of a civilized society but also a

necessity for our survival. Therefore, technological developments have always been

playing an important role to make the most of our land even in challenging geograph-

ical locations. Our aim has always been to use our land in a more efficient way under

significant climate and pre-assumed meteorological conditions.
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The use of production machines and intelligent vehicles in agriculture is always

promising as it allows us to make simultaneous operations that cannot be performed

by a human operator. For instance, when working with an agricultural machine (e.g.
combine harvester), apart from navigating the machine, the operator must also super-

vise the work performed by the machine. To be a skilled operator, even for a particu-

lar agricultural production machine, is not sufficient since the operator must always

adapt the machine settings due to time-varying crop and soil characteristics as well

as environmental conditions. Switching paying attention to between the steering and

the machine control results in an increase in the deviation from the optimal path in

practice. To alleviate the task of the operator and allow him to concentrate on the

quality of work performed, provision of some autonomous functions to an agricul-

tural vehicle is the main task of the robotic system. In this respect, a driver assistance

and semi-autonomous control system for an agricultural robot will be developed in

this article. To dispose a fully autonomous system, a tractor is equipped with off

the shelf actuators and sensors to achieve the aforementioned goals. On behalf of

an operator, the developed advanced learning control algorithms are implemented in

real-time to deal with changing soil conditions as well as longitudinal speed. All the

aforementioned challenges tell us the same thing: adaptability is a must rather than
a choice.

1.2 Why Do We Need Agricultural Robots?

There are at least four reasons that ensure the necessity of using autonomous agri-

cultural vehicles in the future:

1. Constantly rising energy and labor costs (need for efficient machines)

2. Continuously adapt the machine settings (multitasking)

3. Maintain the fixed performance and accuracy (a human operator may get bored

or tired after some time especially under challenging working conditions, e.g.
under hot and sunny conditions)

4. Not possible to increase the size of the machines (limited road capacity)

1.3 What Are the Requirements of the Agricultural Vehicles?

Without exception, all agricultural operations have a strict requirement: accurate

navigation. For instance, throughout tillage, fertilizing and spraying, the production

machine must be operated with a high accuracy to avoid overlapping field operations.

The field rows must be nicely parallel and evenly distributed so that for example the

weed rows can be easily driven between them. In fact, this requirement is challenging
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as it can be observed that there is always considerable overlap and variation in plant

distances in the field even in manual operation. The reason is that these vehicles have

to operate in hilly, bumpy and sometimes muddy off-road conditions as well as they

generally have to deal with thew dynamics of a trailer.

1.4 Literature Review

The first harvesting robot was introduced in The United States of America to harvest

citrus [5]. After this successful implementation, it was also used to harvest apples in

France in 1985 [6]. 2009, a robotic arm, which is capable of harvesting asparagus,

was developed by the Industrial Technology Center of Nagasaki in Japan [7]. After-

wards, in 2011, a prototype robotic platform, which has the ability to detect spheri-

cal fruits by benefiting from image processing, was developed in [8]. It is concluded

that the proposed platform can increase the overall efficiency by reducing the spent

time for harvesting. As a vision-based method, in another study, detection of red and

bicoloured apples on tree with an RGB-D camera has been reported [9]. Further-

more, an agribot has been developed by Birla Institute of Technology and Science to

minimize the labor of farmers and increase the accuracy of the work [10]. As can be

seen from the previous implementations, there have existed significant research and

development in agricultural robotics. One of the most challenging tasks is to guide

the mobile robotic platforms accurately on different soil conditions.

The main goal of guidance of agricultural vehicles is to drive the vehicle on an

agricultural field for specific purposes by keeping it as close as to the target trajec-

tory. There are numerous implementations of multitasking path planning for multi-

vehicle cases [11, 12]. In one of them, the path planning is carried out just for one

vehicle, leading vehicle, the rest of the vehicles follow it by ensuring the desired rel-

ative distances. A master-slave navigation system has been proposed in [13] where

the automated slave vehicle always follows the master vehicle whether the master

vehicle is autonomous or not. Another stable controller for a four-wheel mobile

robot to track between rows on a field has been designed in [14] while a nonlin-

ear model predictive controller has been proposed for a tractor-trailer system in [15].

Moreover, online learning algorithms have been integrated into control algorithms.

A fuzzy controller has been designed where its membership functions (MFs) have

been adapted to changing working conditions [16]. However, this paper was lack of

analyzing the robustness of the proposed learning algorithm considering different

environment conditions. A guidance method based on a grid map of the agricul-

tural field has been proposed in [12] in which the grid information is used to make

a feasible path from the starting point of the vehicle to the desired destination in

the field. Moreover, an autonomous orchard vehicle has been developed to help fruit

production in which the perception system is based on global positioning system and

a two-dimensional laser scanner [17]. It can be concluded from all previous studies
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that learning algorithms must be used to design a controller for the purpose of guid-

ance regarding different working conditions to obtain accurate trajectory tracking

performance. After giving the design details of the autonomous agricultural vehicle,

whereas we will elaborate different control algorithms to accurately navigate the

agricultural vehicle under certain uncertainties in the working environment, inter-

ested readers may refer to [18] for a detailed analysis about the role of global navi-

gation satellite systems (GNSSs) in the navigation strategies of agricultural robots.

Amongst the two well-known inference methods, as a learning model-free con-

troller, Takagi-Sugeno-Kang (TSK) fuzzy structure has significant advantages over

its Mamdani counterpart as it has tunable weights on the consequent part of the rules

which allows us to update them using appropriate optimization algorithms [19]. Con-

sequently, they are preferred in real-time application where the working conditions

vary over the operation. What is more, TSK models are computationally more effi-

cient. Considering the recent advances and proved capabilities of type-2 fuzzy logic

controllers (T2FLCs) over their type-1 counterparts [20–26], we prefer to use a TSK

T2FLC to handle uncertainties in the autonomous tractor-trailer system in this paper.

On the other hand, as a model-based approach, a nonlinear model predictive con-

troller (NMPC) is preferred as an advanced control algorithm. Some parameters are

estimated using a nonlinear moving horizon estimator (NMHE), and fed to the model

which is being used by the NMPC. The overall scheme is a learning model-based

controller.

Model-based and model-free control approaches are compared and contrasted

for wet clutch control problem [27]. However, the parameter update strategy in the

model-free approaches considered in [27], genetic-based machine learning and rein-

forcement learning, are different than the method used in this paper. For instance,

whereas agents take actions in an environment to maximize a cumulative reward

in reinforcement learning, Lyapunov stability-based learning rules are used in the

type-2 fuzzy structure in this paper which are shown to be stable using a candidate

Lyapunov function.

1.5 Motivation

In terms of complex mechatronics systems, the performance of model-based and

model-free control, i.e. nonlinear model predictive control and type-2 neuro-fuzzy

control, is compared and contrasted by means of their design and implementation

simplicity and efficiency. Moreover, some design guidelines are also suggested for

the control complex mechatronic systems where there exist more than

one subsystem.



54 E. Kayacan et al.

1.6 Organization of the Paper

Section 2 gives the system description of the tractor-trailer system. Section 3 explains

the self learning model-free and model-based algorithms; some guidelines for a con-

troller design selection are also suggested. Finally, some conclusions are drawn from

this study in Sect. 4.

2 Prototyped Autonomous Agricultural Vehicle

In order to be used during tillage, fertilizing or spraying, a small scale tractor with

a trailer shown in Fig. 1 is equipped with relatively cheap sensors resulting in a

fully autonomous agricultural ground robotic system. The main expectation from

the designed vehicle is to follow a predetermined trajectory in outdoor environment

with a high accuracy to decrease overlap during agricultural operations.

2.1 Localization

Localization and positioning systems are broadly categorized into two groups: local

and global. Whereas image processing, lazer, etc. belong to local positioning sys-

tems, global positioning systems make use of satellite systems. Thanks to the recent

developments in the field of GNSSs we have up to cm accuracy in real-time kine-

matic (RTK) GNSSs to navigate our tractor-trailer system precisely.

The requirements are to model the system, identify its parameters and design

learning controllers for the system shown in Fig. 1. As this tractor has hydraulic

wheel and steering, and is four-wheel-drive, it is representative for many modern

agricultural vehicles. The most suitable places for mounting GNSS antennas for the

tractor and trailer are the tractor rear axle center and the trailer rear axle center,

respectively. Since the horizontal accuracy for civilian GPS is still around 4 meter,

we have decided to use RTK differential GPS (DGPS) in our system. The resulting

accuracy is 0.03 m according to the specifications of the manufacturer. In order to

receive the correction signals via internet, we have preferred Flepos network by using

a Digi Connect WAN 3G modem.

As the real-time controller, PXI platform (National Instruments Corporation,

Austin, TX, USA) is selected. The GNSS and the modem are connected to the real-

time controller via serial connection. The main responsibility of the real-time con-

troller is to receive and process all the necessary sensory data, such as steering angles,

GNSS measurements, etc., and to generate the control signals for the tractor and
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Fig. 1 The tractor-trailer system

trailer actuators separately. The control algorithms are implemented in LabVIEWTM

version 2011 (National Instruments, Austin, TX, USA). The working frequency of

the overall control system is chosen as 5-Hz.

2.2 Steering Mechanisms

We have preferred to use a potentiometer, which is mounted on the front axle, to

measure the tractor front wheel angle. An inductive sensor is used to measure the

angle between the trailer and its drawbar. Both sensors have 1◦ precision. The rpm

of the diesel engine has been measured by using a hall effect sensor (Hamlin, USA)

which is connected to the shaft between the diesel engine and oil pump. Figure 2

shows the potentiometers and the hydrostat spindle actuator.

Low level controllers, proportional-integral (PI) controllers, generate the voltage

for the electro-hydraulic valves based on the difference between the reference and

measured steering angles. The longitudinal velocity of the tractor is measured by

encoders mounted on the rear wheels of the tractor. A low level controller (PID) gen-

erates the voltage for the spindle actuator (LINAK A/S, Silkeborg, Denmark) taking

into account the difference between the reference and measured pedal positions. The

pedal position is measured by a magnetic sensor.
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Fig. 2 Trailer actuator (top right), potentiometer (bottom left) and hydrostat spindle actuator (bot-

tom right)

3 Self-learning Control Algorithms

The current commercial systems use simple controllers to minimize the deviation

from the target path by adjusting the steering angle. These systems work well for the

following straight lines under uniform soil conditions with a constant speed. How-

ever, when the soil conditions or speed change, the controllers must be tuned again.

Furthermore, they use independent controllers for the absolute steering of the trac-

tor and the relative steering of the trailer. Since both controllers will exhibit selfish

behavior, this often leads to a sub-optimal result, especially for curved target paths

in which the steering action of the tractor works against that of the trailer.

As a solution to the selfish behavior of the decentralized and static control algo-

rithms, self-learning controllers have been designed in this investigation. A learning
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Fig. 3 Block diagram of the model-free controller

control algorithm, no matter it is model-based or model-free, is more than welcome

as it will adapt itself against the parameter, crop and soil condition variations.

3.1 Model-Free Learning: Type-2 Fuzzy Neural Network
Control

The proposed control scheme used in this part of the study is illustrated in Fig. 3.

Since we have realized that the performance progress comes more from the yaw

dynamics control accuracy of the overall control system, we have preferred to use

only a conventional proportional-integral-derivative (PID) controller for the longitu-

dinal dynamics, and design the intelligent model-free controller for the yaw dynam-

ics. In the yaw dynamics control, a PD controller is used to guarantee the stability of

the system during the initial learning. After a finite time, a type-2 fuzzy neural net-

work (T2FNN) takes the control responsibility of the system, and the output of the

PD controller goes to zero. Such a control scheme is called feedback error learning

[28]. Thanks to the model-free structure of the controller, the dynamics and inter-

actions between the subsystems are learnt online, and the optimal control signal is

applied to the system. An outer loop for both the x and the y axes is also designed to

correct the trajectory following errors on the relevant axes.

In the designed T2FLC, a triangular MF is preferred. There are two different

approaches to construct type-2 triangular MFs. One is to blur the width of the MF

Fig. 4a while the other is to blur the center of the MF Fig. 4a. In Fig. 4, the red line

represents the upper MF, and the blue line shows the lower MF. Their corresponding

membership values are 𝜇(x) and 𝜇(x), respectively.

The strength of the rule Rij is calculated as a T-norm of the MFs in the premise

part by using a multiplication operator:

Wij = 𝜇1i(x1) 𝜇2j(x2) and Wij = 𝜇1i(x1) 𝜇2j(x2) (1)
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Fig. 4 A type-2 fuzzy triangular MF with uncertain width (a) and uncertain center (b)

The type-2 fuzzy triangular membership values 𝜇1i(x1), 𝜇1i(x1), 𝜇2j(x2), and

𝜇2j(x2) of the inputs x1 and x2 in the above expression have the following appear-

ance:

𝜇1i(x1) =
⎧
⎪
⎨
⎪
⎩

1 −
|
|
|
|

x1−c1i
d1i

|
|
|
|
|
|x1 − c1i|| < d1i

0 otherwise
(2)

𝜇1i(x1) =

{
1 −

|
|
|
|

x1−c1i
d1i

|
|
|
|
|
|x1 − c1i|| < d1i

0 otherwise

𝜇2j(x2) =
⎧
⎪
⎨
⎪
⎩

1 −
|
|
|
|
|

x2−c2j
d2j

|
|
|
|
|

|
|
|
x2 − c2j

|
|
|
< d2j

0 otherwise

𝜇2j(x2) =

{
1 −

|
|
|
|

x2−c2j
d2j

|
|
|
|

|
|
|
x2 − c2j

|
|
|
< d2j

0 otherwise

Since we do not prefer to use an iterative type-reduction method in this paper, we

prefer to use an approximated model of a type-2 fuzzy logic system which is denoted

as A2-C0 fuzzy system. The rationale is to be able to use an optimization algorithm,

which is a sliding mode control theory-based one in this paper, to tune the antecedent

and consequent parameters. The fuzzy If-Then rule is defined as follows:

Rij ∶ If x1 is Ã1i and x2 is Ã2j, then fij = dij (3)
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The output of the network is calculated as follows:

𝜏n = ∫W11𝜖[W11,W11]
…∫WIJ𝜖[WIJ ,WIJ ]

1
/∑I

i=1
∑J

j=1 Wij(x)fij
∑I

i=1
∑J

j=1 Wij(x)
(4)

where fij is given by the If-Then rule. The inference engine used in this paper replaces

the type-reduction which is given as:

𝜏n =
q(t)

∑I
i=1

∑J
j=1 Wijfij

∑I
i=1

∑J
j=1 Wij

+

(
1 − q(t)

)∑I
i=1

∑J
j=1 Wijfij

∑I
i=1

∑J
j=1 Wij

(5)

The design parameter q, weights the sharing of the lower and the upper firing lev-

els of each fired rule. After the normalization of (5), the output signal of the T2FNN

will obtain the following form:

𝜏n = q(t)
I∑

i=1

J∑

j=1
fijW̃ij +

(
1 − q(t)

) I∑

i=1

J∑

j=1
fij
̃Wij (6)

where W̃ij and
̃Wij are the normalized values of the lower and the upper output signals

of the neuron ij::

W̃ij =
Wij

∑I
i=1

∑J
j=1 Wij

and
̃Wij =

Wij
∑I

i=1
∑J

j=1 Wij

The following vectors can be specified:

W̃ (t) =
[
W̃11 (t) W̃12 (t)… W̃21 (t) … W̃ij (t) … W̃IJ (t)

]T

̃W (t) =
[
̃W11 (t)

̃W12 (t)…
̃W21 (t) … ̃Wij (t) … ̃WIJ (t)

]T

F = [f11 f12 … f21 … fij … fIJ]

The following assumptions have been used in this investigation: Both the input sig-

nals x1(t) and x2(t), and their time derivatives can be considered bounded:

|x1(t)| ≤ B̃x, |x2(t)| ≤ B̃x ∀t (7)

|ẋ1(t)| ≤ B̃ẋ, |ẋ2(t)| ≤ B̃ẋ ∀t (8)
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where B̃x and B̃ẋ are assumed to be some known positive constants. It is obvious that

0 < W̃ij ≤ 1 and 0 <
̃Wij ≤ 1. In addition, it can be easily seen that

∑I
i=1

∑J
j=1 W̃ij = 1

and
∑I

i=1
∑J

j=1
̃Wij = 1. It is also considered that, 𝜏 and 𝜏̇ will be bounded signals too,

i.e.
|𝜏(t)| < B

𝜏
, |𝜏̇ (t)| < B

𝜏̇
∀t (9)

where B
𝜏

and B
𝜏̇

are some known positive constants.

3.1.1 Proposed Sliding Mode Control (SMC) Theory-Based Learning
Algorithm

The zero value of the learning error coordinate 𝜏c (t) can be defined as a time-varying

sliding surface, i.e.,

Sc
(
𝜏n, 𝜏

)
= 𝜏c (t) = 𝜏n (t) + 𝜏 (t) = 0 (10)

The sliding surface is defined as follows:

Sp (e, ė) = ė + 𝜒e (11)

where 𝜒 is a positive constant which defines the slope of the sliding surface.

Definition A sliding motion will appear on the sliding manifold Sc
(
𝜏n, 𝜏

)
= 𝜏c (t) =

0 after a time th, if the condition Sc(t)Ṡc(t) = 𝜏c (t) 𝜏̇c (t) < 0 is satisfied for all t in

some nontrivial semi-open subinterval of time of the form
[
t, th

)
⊂

(
0, th

)
.

3.1.2 Proposed Parameter Update Rules for the T2FNN

Theorem 1 If the adaptation laws for the parameters of the considered T2FNN are
chosen as [28]:

ċ1i = ċ1i = ċ1i = ẋ1 (12)

ċ2j = ċ2j = ċ2j = ẋ2 (13)

ḋ1i = 𝜇1i

−𝛼d1i2

x1 − c1i
sgn(𝜏c)sgn

(
x1 − c1i
d1i

)

(14)

ḋ1i = 𝜇1i
−𝛼d1i

2

x1 − c1i
sgn(𝜏c)sgn

(
x1 − c1i
d1i

)

(15)
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ḋ2j = 𝜇2j

−𝛼d2j2

x2 − c2j
sgn(𝜏c)sgn

(x2 − c2j
d2j

)

(16)

ḋ2j = 𝜇2j
−𝛼d2j

2

x2 − c2j
sgn(𝜏c)sgn

(x2 − c2j
d2j

)

(17)

̇fij = −

(
q(t)W̃ij +

(
1 − q(t)

)̃Wij

)
𝛼sgn(𝜏c)

(
q(t)W̃ +

(
1 − q(t)

) ̃W
)T(

q(t)W̃ +
(
1 − q(t)

) ̃W
) (18)

q̇(t) = −
𝛼sgn(𝜏c)

F(W̃ − ̃W)T
(19)

where 𝛼 is a sufficiently large positive design constant satisfying the inequality

below:

𝛼 > B
𝜏̇

(20)

Then, given an arbitrary initial condition 𝜏c(0), the learning error 𝜏c(t) will converge

to zero within a finite time th.

Proof The reader is referred to [28].

The relation between the sliding line Sp and the zero adaptive learning error level Sc
is determined by the following equation:

Sc = 𝜏c = kDė + kPe = kD

(

ė +
kp
kD

e
)

= kDSp (21)

The tracking performance of the feedback control system can be analyzed by

introducing the following Lyapunov function candidate:

Vp =
1
2
S2p (22)

Theorem 2 If the adaptation strategy for the adjustable parameters of the T2FNN
is chosen as in (12)–(19), then the negative definiteness of the time derivative of the
Lyapunov function in (22) is ensured.

Proof The reader is referred to [28].

Remark The obtained result means that, assuming that the SMC task is achievable,

using 𝜏c as a learning error for the T2FNN together with the adaptation laws (12)–

(19) enforces the desired reaching mode followed by a sliding regime for the system

under control.
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3.1.3 Experimental Results for the Model-Free Controller

Even if such a trajectory is not common in a typical agricultural operation, an 8-

shaped time-based trajectory is preferred in this investigation. The simple reason

behind such a trajectory is to be able to elaborate the performance of the intelligent

model-free controller both for straight and curved lines.

As can be seen from Figs. 5a–c, the proposed model-free control scheme con-

sisting of a T2FNN working in parallel with a conventional controller gives a better

trajectory following accuracy than the one where only a PD controller acts alone.

One can claim that the same performance can be obtained by further tuning the con-

ventional controller. However, when there exists more than one subsystem as well

as the changing parameters of the system model and the variations in working con-

ditions (soil and crop variability), this task is not straightforward.

In order to show the adaptability capability of the proposed scheme, we show

the difference between the first, second and thirds turns for different controllers in

Fig. 5a. As it is expected, when the PD controller acts alone, its performance does not

change from the first turn to the consequent turns. Thanks to the learning capability,

the T2FNN working in parallel with a PD controller gives a better performance in

its second and third turns. The results in Fig. 5b show performance improvement of

approximately 30% in the case of having a PD controller working in parallel with

the T2FNN.

The controller signals coming from the PD controller and the T2FNN can be

seen in Fig. 5c. In its first turn, the dominating control signal is coming from the PD

controller. In its second turn (starting from 120th s), the T2FNN is able to take over

the control, thus becoming the leading controller. Every time there is a change in the

reference signal, after a finite time, the output of the PD controller again tends to go

to zero. As can be seen from Fig. 5d, the T2FNN significantly increases the control

accuracy of the yaw dynamics of the system.

3.1.4 Discussions for Model-Free Control

The real-time test results are promising in a way that when the system is controlled by

using a conventional controller in parallel with a T2FNN, the accuracy of the overall

controller increases. In this method, the conventional controller is responsible for

the stability of the system in the beginning of the learning process. After the learn-

ing process starts, the T2FNN controller learns the system dynamics and takes the

responsibility of controlling the system gradually. In other words, there is no need

to well-tune the conventional controller. It is to be noted that in complex mecha-

tronic systems where there exist more than one subsystem, well-tuning of different

controllers on different subsystems is a tedious work.
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Fig. 5 a Reference and actual trajectories b Euclidean error to the reference trajectory c Control
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3.2 Model-Based Learning: Model Predictive
Control-Moving Horizon Estimation Framework

Nonlinear model predictive control and nonlinear moving horizon estimation frame-

work is illustrated in Fig. 6 and a system model is required to design this framework.

The equations for the tractor are written as follows:

ẋ = 𝜇v cos (𝜓)
ẏ = 𝜇v sin (𝜓)

𝜓̇ = 𝜇v tan (𝜅𝛿)
L

v̇ = − v
𝜏
+ K

𝜏
HP (23)

where x, y and 𝜓 denote respectively the positions and yaw angle of the tractor

while v denotes the speed. The steering angle and hydrostat position are respectively



64 E. Kayacan et al.

Fig. 6 Block diagram of the NMHE-NMPC framework

denoted by 𝛿 and HP. Additionally, 𝜇 and 𝜂 denote the traction coefficients for the

wheel and side slips.

The equations in (23) are formulated in the following form;

𝜉̇ = f
(
𝜉, u, p

)
(24)

y = h
(
𝜉, u, p

)
(25)

with

𝜉 =
[
x y 𝜓 v

]T
(26)

u =
[
𝛿 HP

]T
(27)

p =
[
𝜇 𝜂

]T
(28)

y =
[
x y v 𝛿 HP

]T
(29)

where 𝜉, u, p and y denote respectively the vectors of state, input, parameter and out-

put of the system. The measured physical parameter is: L = (1.4m), and the iden-

tified parameters are [38]: 𝜏 = 2.05 and K = 0.016 for the speed model while the

engine speed is at 2500 RPM.

3.2.1 Nonlinear Moving Horizon Estimation

In advanced model-based control structures, learning phenomena are required and

realized through online parameter estimation as they make use of the system model
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k h t   –  t kt

Fig. 7 Illustration for the concept of NMHE

to generate control signals, and have to deal with uncertain and varying process con-

ditions. Therefore, it is inevitable to use adaptive models. In this study, nonlinear

moving horizon estimation method has been chosen as a state and parameter esti-

mation algorithm because it considers the state and parameter estimation within the

same problem and allows to incorporate constraints both on states and parameters.

NMHE is illustrated in Fig. 7 and formulated in (30).

min
𝜉(.),dp,u(.)

‖
‖
‖
‖
‖

𝜉 − 𝜉(tk − th)
p̂ − p

‖
‖
‖
‖
‖

2

Vs

+ ∫
tk

tk−th

(
‖ym − y(t)‖2Vy

)
dt

subject to 𝜉̇(t) = f
(
𝜉(t), u(t), p

)

y(t) = h
(
𝜉(t), u(t), p

)

𝜉min < 𝜉 < 𝜉max

pmin < p < pmax ∀t ∈ [tk, tk+1] (30)

In practice, only state estimation is not enough to know the system behaviour

when uncertain systems are considered. Hence, parameter estimation is required to

determine unmeasurable parameters. A parametric least square estimation subject

to the system model and/or boundary conditions has been studied. There are many

software packages to solve optimization problems for offline parameter estimation

[29].

Two approximations have been proposed for online parameter estimation which

is necessary simultaneously with state estimation to find system behavior accurately.

In the first choice, model parameters are assumed as so-called “random constants”
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represented by a differential equation 𝜉̇p = 0 with initial value 𝜉p(tk) = pk. This

approach results in time-invariant parameters over the estimation horizon. If jumps

or drifts for parameters are expected, which is the case in practice under varying

working conditions, a model bias would occur. As a solution to the jump and drifts

problem, the model parameters must be assumed as time-varying. Model parame-

ters are assumed as so-called “random walk” by a differential equation 𝜉̇p =
dp

Δt
with

sampling time Δt and initial value 𝜉p(tk) = pk. It is assumed that the parameters are

time-varying Gaussian random variables in the arrival cost.

The reference estimated values 𝜉(tk − th) and p̂ are taken from the solution of

NMHE at the previous estimation instant. The arrival cost matrix Vs has been cho-

sen as a so-called smoothed EKF-update based on sensitivity information obtained

while solving the previous NMHE problem [30]. The contributions of the past mea-

surements to the inverted Kalman covarianceVs are downweighted by a process noise

covariance matrix Dupdate in (32) [31–35].

The adaptive kinematic model presented in (23) is used in the NMHE design for

the state and parameter estimation. The NMHE problem is solved at each sampling

time with the following constraints on the parameters:

0.25 ≤ 𝜇 ≤ 1
0.25 ≤ 𝜂 ≤ 1 (31)

The standard deviations of the measurements have been set to 𝜎x = 𝜎y = 0.03 m,

𝜎v = 0.1 m/s, and 𝜎
𝛿
= 0.0175 rad based on the information obtained from the real-

time experiments. Thus, the following weighting matrices Vy, and Dupdate have been

used in the NMHE implementation:

Vy = diag(𝜎x, 𝜎y, 𝜎v, 𝜎𝛿)−1

= diag(0.03, 0.03, 0.1, 0.0175)−1 (32)

Dupdate = diag(x, y, 𝜓, 𝜇, 𝜂, v)
= diag(10.0, 10.0, 0.1, 0.25, 0.25, 0.1)−1 (33)

The estimation horizon th is set to 3 s.

3.2.2 Nonlinear Model Predictive Control

In this study, an NMPC formulation at each sampling time t is considered in the

following form:
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min
𝜉(.),u(.) ∫

tk+th

tk

(
‖𝜉r(t) − 𝜉(t)‖2Q + ‖ur(t) − u(t)‖2R

)
dt

+ ‖𝜉r(tk + th) − 𝜉(tk + th)‖2S
s.t. 𝜉(tk) = 𝜉(tk)

𝜉̇(t) = f
(
𝜉(t), u(t), p

)

𝜉min ≤ 𝜉(t) ≤ 𝜉max

umin ≤ u(t) ≤ umax ∀t ∈ [tk, tk + th]

(34)

where the first and last parts are called the stage cost and the terminal penalty

enforced the stability of NMPC in [36] in which Q ∈ ℝn
𝜉
×n

𝜉 , R ∈ ℝnu×nu and S ∈
ℝn

𝜉
×n

𝜉 are symmetric positive definite weighting matrices, 𝜉r and ur denote respec-

tively the references for the states and inputs, 𝜉 and u denote respectively the states

and inputs, tk denotes the current time, th denotes the prediction horizon. 𝜉(tk)
denotes the estimated state vector by the NMHE, 𝜉min, 𝜉max, umin and umax denote

respectively the upper and lower constraints on the state and input. The terminal

constraints are denoted by 𝜉(tk + th)min and 𝜉(tk + th)max. The first sample of u(t),
u(t, 𝜉(t)) = u∗(tk), is applied to the system and the NMPC problem is solved again

over a moved horizon for the subsequent sampling time.

The constraints on the inputs, the steering angle and hydrostat position references,

are written:

− 35 deg ≤ 𝛿(t) ≤ 35 deg
0% ≤ HP(t) ≤ 100% (35)

The references for the state and inputs are written:

𝜉r = (xr, yr, 𝜓r, vr)T

ur = (𝛿r,HPr)T (36)

The inputs references are the last measured steering angle and hydrostat position

while the states references are relied on the reference trajectory to be tracked.

The weighting matrices Q, R and S have been written:

Q = diag(1, 1, 0, 0)
R = diag(5, 5)
S = diag(10, 10, 0, 0) (37)

The prediction horizon th is set to 3 s.
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3.2.3 Experimental Results for the Model-Based Controller

Throughout the experiments, the tractor has faced with uneven terrain, and been

succeed in staying on-track for the NMHE-NMPC framework as shown in Fig. 8a.

The sampling time of the frameworks is 200 ms in real-time. The Euclidean error for

the tractor is shown in Fig. 8b. The mean values of the Euclidean error of the tractor

have been obtained 18.16 cm for the straight lines while 52.02 cm for the curved

lines. It is observed that the trajectory tracking error for the system for straight lines

has been less than the one for the curved lines as shown in Fig. 8b.

The outputs of the controller, which are the steering angle reference for the tractor

(𝛿
t
), and the hydrostat position (HP) reference as illustrated in Fig. 8c. As seen in this

figure, the control signals stay within the bounds. Moreover, the estimated traction

parameters by the NMHE are shown in Fig. 8d. The estimates stay within the bounds.

For auto generation of the C codes, an open source software is preferred: the

ACADO [37] code generation tool. This too can be used to solve the constrained

nonlinear optimization problems in the NMPC and NMHE. First, we have created the
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C codes by using the ACADO, which is then converted into a .dll file to be used in

LabVIEW. Detailed information on the ACADO code generation tool can be found

in [29, 37].

3.3 Overall Comparison of the Model-Based and Model-Free
Learning Control

Table 1 is a candidate guideline to choose an appropriate control algorithm for the

control of agricultural robotic systems which are generally complex mechatronic

systems. According to observations, when the model of the system as well as the

interactions between the subsystems are precisely modeled, a model-based controller

(MPC-MHE framework) is preferable. This advanced control framework is not only

very accurate but also robust. Moreover, there are some open course fast solvers,

such as Acado toolkit, which generates C/C++ codes for a real-time implementa-

tion. What is more, although early MPC applications were restricted only to slow

systems that long computation times could be tolerated, recent progress in micro-

processor technology has motivated applications of MPC for fast dynamic systems,

such autonomous vehicles.

However, if the modeling of the system is challenging or unfeasible, model-free

control algorithms can be used even if it might be difficult to prove their stability.

In addition to their instability problems, pure model-free methods may be unsta-

ble in the beginning of the experiment depending on the initial weights. If the sys-

tem dynamics are fast, this may cause serious problems, such as fast vehicles or

unmanned aerial vehicles. In order to make sure that the system is stable in the begin-

ning of the learning process, an alternative method, which is the combination of a

conventional controller and an intelligent structure. This fusion is called feedback

error learning, which is also promising in real time if there is no precise model at

hand. These controllers have the ability of learning throughout the operation if an

appropriate optimization algorithm is used.

No matter the model-free controller is a pure model-free or a feedback error

learning-based controller, another prominent feature of them is that the time spent

for modeling does not exist for model-free controllers. It is to be noted that the mod-

eling stage may take more time than designing of a controller in the case of having

a model-based controller. In particular, in addition to its nonlinearities, if the system

has dead-zones and hysteresis, modeling of the system is a very tedious work [38].

These challenging systems include, but are not limited to, electro-hydraulic actuators

and valves, diesel engines and pneumatic actuators.
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Table 1 Guidelines for the selection of the best modeling and control approach for the complex

mechatronic systems

Model-based techniques

When? Interactions are known accurately

Why? Allows to design the controller analytically and to prove the

stability of the overall system

Why not? In practical applications, the interactions are not so easy to be

modelled

Pure model-free techniques

When? Interactions are difficult to be known

Why? No need the mathematical model of the system to be controlled

Why not? Impossible to prove the stability of the overall system and

impossible to calculate the parameters of the controller analytically

Feedback error learning

When? A conventional controller to guarantee the stability of the plant

Why? After the intelligent controller has learned the system dynamics, it

takes the responsibility of controlling the system

Why not? The stability of the overall system may be challenging to be shown

4 Conclusions

A fully autonomous tractor-trailer system is designed and prototyped by using off

the shelf components. The system is able to follow both straight line and curved

line trajectories with a satisfactory accuracy. Both model-based and model-free con-

trollers are designed to navigate the system, and their performances are compared

and contrasted. According to the real-time results, when the model of the system

as well as the interactions between the subsystems are precisely modeled, a model-

based controller is preferable. On the other hand, a model-free controller is preferable

if the mathematical model of the system is challenging or unfeasible. As a model-

free control algorithm, type-2 fuzzy logic controllers are able to learn the systems

dynamics online, and have the ability to control the system with a limited infor-

mation about the system. As a parameter update algorithm, a sliding mode control

theory-based learning algorithm is preferred which need neither partial derivatives

nor matrix inversions. These features make the learning algorithm not only robust but

also computationally efficient which is a big advantage in real-time implementations

where the computation power is limited.
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