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Abstract The novel weighted averages (NWAs) are extensions of the linear arith-

metic weighted average and are powerful tools in aggregating diverse inputs includ-

ing numbers, intervals, type-1 fuzzy sets (T1 FSs), words modeled by interval type-2

fuzzy sets, or a mixture of them. In contrast to the linear arithmetic weighted average,

the ordered weighed average (OWA) is a nonlinear operator that can implement more

flexible mappings, and hence it has been widely used in decision-making. In many

situations, however, providing crisp numbers for either the sub-criteria or the weights

is problematic (there could be uncertainties about them), and it is more meaningful

to provide intervals, T1 FSs, words, or a mixture of all of these, for the sub-criteria

and weights. Ordered NWAs are introduced in this chapter. They are also compared

with NWAs and Zhou et al’s fuzzy extensions of the OWA. Examples show that

generally the three aggregation operators give different results.

1 Introduction

The weighted average (WA) is arguably the earliest and still most widely used form

of aggregation or fusion. We remind the reader of the well-known formula for the

WA, i.e.,

y =
∑n

i=1 xiwi
∑n

i=1 wi
, (1)
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in which wi are the weights (real numbers) that act upon the sub-criteria xi (real

numbers). In this chapter, the term sub-criteria can mean data, features, decisions,

recommendations, judgments, scores, etc. In (1), normalization is achieved by divid-

ing the weighted numerator sum by the sum of all of the weights.

The arithmetic WA (AWA) is the one we are all familiar with and is the one

in which all sub-criteria and weights in (1) are real numbers. In many situations

[1–7], however, providing crisp numbers for either the sub-criteria or the weights

is problematic (there could be uncertainties about them), and it is more meaningful

to provide intervals, type-1 fuzzy sets (T1 FSs), words modeled by interval type-2

fuzzy sets (IT2 FSs), or a mixture of all of these, for the sub-criteria and weights.

The resulting WAs are called novel weighted averages (NWAs), which have been

introduced in [2, 3, 6].

The ordered weighted average (OWA) operator [8–16], a generalization of the lin-

ear WA operator, was proposed by Yager to aggregate experts’ opinions in decision

making:

Definition 1 An OWA operator of dimension n is a mapping y
OWA

∶ Rn → R, which

has an associated set of weights 𝐰 = {w1,… ,wn} for which wi ∈ [0, 1], i.e.,

y
OWA

=
∑n

i=1 wix𝜎(i)
∑n

i=1 wi
(2)

where 𝜎 ∶ {1,… , n} → {1,… , n} is a permutation function such that {x
𝜎(1), x𝜎(2),

… , x
𝜎(n)} are in descending order. ■

The key feature of the OWA operator is the ordering of the sub-criteria by value,

a process that introduces a nonlinearity into the operation. It can be shown that the

OWA operator is in the class of mean operators [17] as it is commutative, monotonic,

and idempotent. It is also easy to see that for any 𝐰, mini xi ≤ yOWA ≤ maxi xi.

The most attractive feature of the OWA operator is that it can implement different

aggregation operators by setting the weights differently [8], e.g., by setting wi = 1∕n
it implements the mean operator, by setting w1 = 1 and wi = 0 (i = 2,… , n) it

implements the maximum operator, by setting wi = 0 (i = 1,… , n − 1) and wn = 1
it implements the minimum operator, and by setting w1 = wn = 0 and wi = 1∕
(n − 1) it implements the so-called olympic aggregator, which is often used in obtain-

ing aggregated scores from judge in olympic events such as gymnastics and diving.

Yager’s original OWA operator [12] considers only crisp numbers. Again, in many

situations, it is more meaningful to provide intervals, T1 FSs, words modeled by IT2

FSs, or a mixture of all of these, for the sub-criteria and weights. Ordered NWAs

(ONWAs) are the focus of this chapter.

The rest of this chapter is organized as follows: Sect. 2 introduces the NWAs.

Section 3 proposes ONWAs. Section 4 compares ONWAs with NWAs and Zhou

et al’s fuzzy extensions of the OWA. Finally, conclusions are drawn in Sect. 5.
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2 Novel Weighted Averages (NWAs)

Definition 2 A NWA is a WA in which at least one sub-criterion or weight is not

a single real number, but instead is an interval, T1 FS or an IT2 FS, in which case

such sub-criteria or weights are called novel models. ■

How to compute (1) for these novel models is described in this section. Because

there can be four possible models for sub-criteria or weights, there can be 16 different

WAs, as summarized in Fig. 1.

Definition 3 When at least one sub-criterion or weight is modeled as an interval,

and all other sub-criteria or weights are modeled by no more than such a model, the

resulting WA is called an Interval WA (IWA). ■

Definition 4 When at least one sub-criterion or weight is modeled as a T1 FS, and

all other sub-criteria or weights are modeled by no more than such a model, the

resulting WA is called a Fuzzy WA (FWA). ■

Definition 5 When at least one sub-criterion or weight is modeled as an IT2 FS, the

resulting WA is called a Linguistic WA (LWA). ■

Definition 2 (Continued) By a NWA is meant an IWA, FWA or LWA. ■

In order to reduce the number of possible derivations from 15 (the AWA is

excluded) to three, it is assumed that: for the IWA all sub-criteria and weights are

modeled as intervals, for the FWA all sub-criteria and weights are modeled as T1

FSs, and for the LWA all sub-criteria and weights are modeled as IT2 FSs.

Fig. 1 Matrix of

possibilities for a WA
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2.1 Interval Weighted Average (IWA)

The IWA is defined as:

YIWA ≡

∑n
i=1 XiWi
∑n

i=1 Wi
= [l, r] (3)

where

Xi = [ai, bi] i = 1, ..., n (4)

Wi = [ci, di] i = 1, ..., n (5)

and YIWA is also an interval completely determined by its two end-points l and r,

l = min
xi∈Xi
wi∈Wi

∑n
i=1 xiwi

∑n
i=1 wi

= min
wi∈Wi

∑n
i=1 aiwi

∑n
i=1 wi

(6)

r = max
xi∈Xi
wi∈Wi

∑n
i=1 xiwi

∑n
i=1 wi

= max
wi∈Wi

∑n
i=1 biwi

∑n
i=1 wi

(7)

and they can easily be computed by the KM or EKM Algorithms [18–21].

Example 1 Suppose for n = 5, {xi}|i=1,...,5 = {5, 7.5, 7, 6.5, 2} and {wi}|i=1,...,5 =
{4, 2.5, 8, 1.8, 6}, so that the arithmetic WA y

AWA
= 5.31. Let 𝜆 denote any of these

crisp numbers. In this example, for the IWA, 𝜆 → [𝜆 − 𝛿, 𝜆 + 𝛿], where 𝛿 may be

different for different 𝜆, i.e.,

{xi}|i=1,...,5 → {[4.5, 5.5], [7.0, 8.0], [4.2, 9.8], [6.0, 7.0], [1.0, 3.0]}

{wi}|i=1,...,5 → {[2.8, 5.2], [2.0, 3.0], [7.6, 8.4], [0.9, 2.7], [5.0, 7.0]}.

It follows that YIWA = [3.49, 7.12]. The important difference between y
AWA

and Y
IWA

is

that the uncertainties about the sub-criteria and weights have led to an uncertainty

band for the IWA, and such a band may play a useful role in subsequent decision

making. ■

2.2 Fuzzy Weighted Average (FWA)

The FWA [2, 3, 22–27] is defined as:

YFWA ≡

∑n
i=1 XiWi
∑n

i=1 Wi
(8)
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(a) (b)

(c)

Fig. 2 𝛼-cuts on a Xi, b Wi, and, c YFWA

where Xi and Wi are T1 FSs, and YFWA is also a T1 FS. Note that (8) is an expressive
way to represent the FWA because it is not computed using multiplications, additions

and divisions, as expressed by it. Instead, it has been shown [2–4, 27] that the FWA

can be computed by using the 𝛼-cut Decomposition Theorem [28], where each 𝛼-cut

on YFWA is an IWA of the corresponding 𝛼-cuts on Xi and Wi.

Denote the 𝛼-cut on YFWA as [yL(𝛼), yR(𝛼)], and the 𝛼-cut on Xi and Wi as

[ai(𝛼), bi(𝛼)] and [ci(𝛼), di(𝛼)], respectively, as shown in Fig. 2. Then [2–4, 27],

yL(𝛼) = min
∀wi(𝛼)∈[ci(𝛼),di(𝛼)]

∑n
i=1 ai(𝛼)wi(𝛼)
∑n

i=1 wi(𝛼)
(9)

yR(𝛼) = max
∀wi(𝛼)∈[ci(𝛼),di(𝛼)]

∑n
i=1 bi(𝛼)wi(𝛼)
∑n

i=1 wi(𝛼)
(10)

yL(𝛼) and yR(𝛼) can be computed by the KM or EKM algorithms.

The following algorithm is used to compute YFWA:

1. For each 𝛼 ∈ [0, 1], the corresponding 𝛼-cuts of the T1 FSs Xi and Wi are first

computed, i.e., compute

Xi(𝛼) = [ai(𝛼), bi(𝛼)] i = 1, ..., n (11)

Wi(𝛼) = [ci(𝛼), di(𝛼)] i = 1, ..., n (12)

2. For each 𝛼 ∈ [0, 1], compute yL(𝛼) in (9) and yR(𝛼) in (10) using the KM or EKM

Algorithms.

3. Connect all left-coordinates (yL(𝛼), 𝛼) and all right-coordinates (yR(𝛼), 𝛼) to form

the T1 FS YFWA.
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Fig. 3 Illustration of a T1 FS used in Example 2
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Fig. 4 Example 2: a Xi, b Wi, and, c YFWA (solid curve), YOFWA (dashed curve) and YT1FOWA (dotted

curve)

Example 2 This is a continuation of Example 1 in which each interval is assigned a

symmetric triangular T1 FS that is centered at the mid-point (𝜆) of the interval, has

membership grade equal to one at that point, and is zero at the interval end-points

(𝜆 − 𝛿 and 𝜆 + 𝛿) (see the triangle in Fig. 3). The resulting Xi and Wi are plotted in

Fig. 4a and Fig. 4b, respectively. The FWA is depicted in Fig. 4c as the solid curve.

Although YFWA appears to be triangular, its sides are actually slightly curved.

The support of YFWA is [3.49, 7.12], which is the same as YIWA (see Example 1).

This will always occur because the support of YFWA is the 𝛼 = 0 𝛼-cut, and this is

YIWA. The T1 FS YFWA indicates that more emphasis should be given to values of

variable y that are closer to its apex, whereas the interval YIWA indicates that equal

emphasis should be given to all values of variable y in its interval. The former reflects

the propagation of the non-uniform uncertainties through the FWA, and can be used

in future decisions. ■
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(a) (b)

(c)

Fig. 5 a ̃Xi and an 𝛼-cut, b ̃Wi and an 𝛼-cut, and, c ̃YLWA and an 𝛼-cut

2.3 Linguistic Weighted Average (LWA)

The LWA is defined as:

̃YLWA ≡

∑n
i=1

̃Xi
̃Wi

∑n
i=1

̃Wi
(13)

where ̃Xi and ̃Wi are IT2 FSs, and ̃YFWA is also an IT2 FS. Again, (13) is an expressive
way to describe the LWA. To compute ̃YLWA, one only needs to compute its LMF

YLWA and UMF ̄YLWA.

Let Wi be an embedded T1 FS [19] of ̃Wi, as shown in Fig. 5b. Because in (13) ̃Xi
only appears in the numerator of ̃YLWA, it follows that

YLWA = min
∀Wi∈[Wi,

̄Wi]

∑n
i=1 XiWi
∑n

i=1 Wi
(14)

̄YLWA = max
∀Wi∈[Wi,

̄Wi]

∑n
i=1

̄XiWi
∑n

i=1 Wi
(15)
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The 𝛼-cut based approach [4, 5] is also used to compute YLWA and ̄YLWA. First, the

heights of YLWA and ̄YLWA need to be determined. Because all UMFs are normal T1

FSs, h
̄YLWA

= 1. Denote the height of Xi as hXi
and the height of Wi as hWi

. Let

hmin = min{min
∀i

hXi
,min

∀i
hWi

} (16)

Then [5], hYLWA
= hmin.

Let [ail(𝛼), bir(𝛼)] be an 𝛼-cut on ̄Xi, [air(𝛼), bil(𝛼)] be an 𝛼-cut on Xi [see Fig. 5a],

[cil(𝛼), dir(𝛼)] be an 𝛼-cut on ̄Wi, [cir(𝛼), dil(𝛼)] be an 𝛼-cut on Wi [see Fig. 5b],

[yLl(𝛼), yRr(𝛼)] be an 𝛼-cut on ̄YLWA, and [yLr(𝛼), yRl(𝛼)] be an 𝛼-cut on YLWA [see

Fig. 5c], where the subscripts l and L mean left and r and R mean right. The end-

points of the 𝛼-cuts on ̃YLWA are computed as solutions to the following four opti-

mization problems [4, 5]:

yLl(𝛼) = min
∀wi∈[cil(𝛼),dir(𝛼)]

∑n
i=1 ail(𝛼)wi
∑n

i=1 wi
, 𝛼 ∈ [0, 1] (17)

yRr(𝛼) = max
∀wi∈[cil(𝛼),dir(𝛼)]

∑n
i=1 bir(𝛼)wi
∑n

i=1 wi
, 𝛼 ∈ [0, 1] (18)

yLr(𝛼) = min
∀wi∈[cir(𝛼),dil(𝛼)]

∑n
i=1 air(𝛼)wi
∑n

i=1 wi
, 𝛼 ∈ [0, hmin] (19)

yRl(𝛼) = max
∀wi∈[cir(𝛼),dil(𝛼)]

∑n
i=1 bil(𝛼)wi
∑n

i=1 wi
, 𝛼 ∈ [0, hmin] (20)

(17)–(20) are again computed by the KM or EKM Algorithms.

Observe from (17), (18), and Figs. 5a and b that yLl(𝛼) and yRr(𝛼) only depend on

the UMFs of ̃Xi and ̃Wi, i.e., they are only computed from the corresponding 𝛼-cuts

on the UMFs of ̃Xi and ̃Wi; so,

̄YLWA =
∑n

i=1
̄Xi
̄Wi

∑n
i=1

̄Wi
. (21)

Because all ̄Xi and ̄Wi are normal T1 FSs, ̄YLWA is also normal. The algorithm for

computing ̄YLWA is:

1. Select appropriate m 𝛼-cuts for YLWA (e.g., divide [0, 1] into m − 1 intervals and

set 𝛼j = (j − 1)∕(m − 1), j = 1, 2, ...,m).

2. For each 𝛼j, find the corresponding 𝛼-cuts [ail(𝛼j), bir(𝛼j)] and

[cil(𝛼j), dir(𝛼j)] on Xi and Wi (i = 1, ..., n). Use a KM or EKM algorithm to find

yLl(𝛼j) in (17) and yRr(𝛼j) in (18).

3. Connect all left-coordinates (yLl(𝛼j), 𝛼j) and all right-coordinates (yRr(𝛼j), 𝛼j) to

form the T1 FS YLWA.
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Fig. 6 A flowchart for computing the LWA [2, 3, 5]

Similarly, observe from (19), (20), and Fig. 5a and b that yLr(𝛼) and yRl(𝛼) only

depend on the LMFs of ̃Xi and ̃Wi; hence,

YLWA =
∑n

i=1 XiWi
∑n

i=1 Wi

. (22)

Unlike ̄YLWA, which is a normal T1 FS, the height of YLWA is hmin, the minimum

height of all Xi and Wi. The algorithm for computing YLWA is:

1. Determine hXi
and hWi

, i = 1,… , n, and hmin in (16).

2. Select appropriate p 𝛼-cuts for YLWA (e.g., divide [0, hmin] into p − 1 intervals and

set 𝛼j = hmin(j − 1)∕(p − 1), j = 1, 2, ..., p).

3. For each 𝛼j, find the corresponding 𝛼-cuts [air(𝛼j), bil(𝛼j)] and

[cir(𝛼j), dil(𝛼j)] on Xi and Wi. Use a KM or EKM algorithm to find yLr(𝛼j) in

(19) and yRl(𝛼j) in (20).

4. Connect all left-coordinates (yLr(𝛼j), 𝛼j) and all right-coordinates (yRl(𝛼j), 𝛼j) to

form the T1 FS YLWA.

In summary, computing ̃YLWA is equivalent to computing two FWAs, ̄YLWA and

YLWA. A flowchart for computing YLWA and ̄YLWA is given in Fig. 6. For triangular or

trapezoidal IT2 FSs, it is possible to reduce the number of 𝛼-cuts for both YLWA and

̄YLWA by choosing them only at turning points, i.e., points on the LMFs and UMFs

of Xi and Wi (i = 1, 2, ..., n) at which the slope of these functions changes.
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Fig. 7 Illustration of the IT2 FS used in Example 3. The dashed lines are the corresponding T1

FS used in Example 2

Example 3 This is a continuation of Example 2 where each sub-criterion and weight

is now assigned an FOU that is for a 50% symmetrical blurring of the T1 MF

depicted in Fig. 3 (see Fig. 7). The left half of each FOU has support on the x (w)-

axis given by the interval of real numbers [(𝜆 − 𝛿) − 0.5𝛿, (𝜆 − 𝛿) + 0.5𝛿] and the

right-half FOU has support on the x-axis given by the interval of real numbers

[(𝜆 + 𝛿) − 0.5𝛿, (𝜆 + 𝛿) + 0.5𝛿]. The UMF is a triangle defined by the three points

(𝜆 − 𝛿 − 0.5𝛿, 0), (𝜆, 1), (𝜆 + 𝛿 + 0.5𝛿, 0), and the LMF is a triangle defined by the

three points (𝜆 − 𝛿 + 0.5𝛿, 0), (𝜆, 1), (𝜆 + 𝛿 − 0.5𝛿, 0). The resulting sub-criterion

and weight FOUs are depicted in Figs. 8a and b, respectively, and ̃YLWA is depicted

in Fig. 8c as the solid curve. Although ̃YLWA appears to be symmetrical, it is not.

Comparing Figs. 8c and 4c, observe that ̃YLWA is spread out over a larger range

of values than is YFWA, reflecting the additional uncertainties in the LWA due to the

blurring of sub-criteria and weights. This information can be used in future decisions.

Another way to interpret ̃YLWA is to associate values of y that have the largest

vertical intervals (i.e., primary memberships) with values of greatest uncertainty;

hence, there is no uncertainty at the three vertices of the UMF, and, e.g., for the

right-half of ̃YLWA uncertainty increases from the apex of the UMF reaching its largest

value at the right vertex of the LMF and then decreases to zero at the right vertex of

the UMF. ■

3 Ordered Novel Weighted Averages (ONWAs)

ONWAs, including ordered IWAs, ordered FWAs and ordered LWAs, are proposed

in this section.
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Fig. 8 Example 3: a ̃Xi, b ̃Wi, and, c ̃YLWA (solid curve), ̃YOLWA (dashed curve) and ̃YIT2FOWA (dotted

curve)

3.1 The Ordered Interval Weighted Average (OIWA)

As its name suggests, the OIWA is a combination of the OWA and the IWA.

Definition 6 An OIWA is defined as

YOIWA =
∑n

i=1 WiX𝜎(i)
∑n

i=1 W
𝜎(i)

(23)

where Xi and Wi are intervals defined in (4) and (5), respectively, and

𝜎 ∶ {1,… , n} → {1,… , n} is a permutation function such that {X
𝜎(1),X𝜎(2),… ,

X
𝜎(n)} are in descending order. ■

Definition 7 A group of intervals {Xi}n
i=1 are in descending order if Xi ⪰ Xj for ∀i <

j by a ranking method. ■

Any interval ranking method can be used to find 𝜎. In this chapter, we first com-

pute the center of each interval and then rank them to obtain the order of the corre-

sponding intervals. This is a special case of Yager’s first method [29] for ranking T1

FSs, where the T1 FSs degrade to intervals.

To compute YOIWA, we first sort Xi in descending order and call them by the same

name, but now X1 ⪰ X2 ⪰ ⋯ ⪰ Xn (Wi are not changed during this step); then, the

OIWA becomes an IWA.

Example 4 For the same crisp xi and wi used in Example 1, the OWA y
OWA

=
5.40, which is different from y

AWA
= 5.31. For the same interval Xi and Wi used in

Example 1, the OIWA Y
OIWA

= [4.17, 6.66], which is different from Y
IWA

=
[3.49, 7.12]. ■
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3.2 The Ordered Fuzzy Weighted Average (OFWA)

As its name suggests, the OFWA is a combination of the OWA and the FWA.

Definition 8 An OFWA is defined as

YOFWA =
∑n

i=1 WiX𝜎(i)
∑n

i=1 W
𝜎(i)

(24)

where Xi and Wi are T1 FSs, and 𝜎 ∶ {1,… , n} → {1,… , n} is a permutation func-

tion such that {X
𝜎(1),X𝜎(2),… ,X

𝜎(n)} are in descending order. ■

Definition 9 A group of T1 FSs {Xi}n
i=1 are in descending order if Xi ⪰ Xj for ∀i < j

by a ranking method. ■

Any T1 FS ranking method can be used to find 𝜎. In this chapter, Yager’s first

method [29] is used, which first computes the centroid of each T1 FS and then rank

them to obtain the order of the corresponding T1 FSs.

To compute YOFWA, we first sort Xi in descending order and call them by the same

name, but now X1 ⪰ X2 ⪰ ⋯ ⪰ Xn (Wi are not changed during this step); then, the

FWA algorithm introduced in Sect. 2.2 can be used to compute YOFWA.

Example 5 For the same T1 FSs Xi and Wi used in Example 2, the OFWA Y
OFWA

is

shown as the dashed curve in Fig. 4c, which is different from Y
FWA

[solid curve in

Fig. 4c]. ■

3.3 The Ordered Linguistic Weighted Average (OLWA)

As its name suggests, the OLWA is a combination of the OWA and the LWA.

Definition 10 An OLWA is defined as

̃YOLWA =
∑n

i=1
̃Wi
̃X
𝜎(i)

∑n
i=1

̃W
𝜎(i)

(25)

where 𝜎 ∶ {1,… , n} → {1,… , n} is a permutation function such that { ̃X
𝜎(1), ̃X𝜎(2),

… ,
̃X
𝜎(n)} are in descending order. ■

Definition 11 A group of IT2 FSs { ̃Xi}n
i=1 are in descending order if ̃Xi ⪰ ̃Xj for

∀i < j by a ranking method. ■
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Any IT2 FS ranking method can be used to find 𝜎. In this chapter, the centroid-

based ranking method [30] is used, which first computes the center of centroid of

each IT2 FS and then ranks them to obtain the order of the corresponding IT2 FSs.

To compute the OLWA, we first sort all ̃Xi in descending order and call them by

the same name, but now ̃X1 ⪰ ̃X2 ⪰ ⋯ ⪰ ̃Xn (note that ̃Wi are not changed during

this step); then, the LWA algorithm introduced in Sect. 2.3 can be used to compute

the OLWA.

Example 6 For the same IT2 FSs ̃Xi and ̃Wi used in Example 3, the OLWA ̃Y
OLWA

is shown as the dashed curve in Fig. 8c, which is different from ̃Y
LWA

[solid curve in

Fig. 8c]. ■

4 Other Fuzzy Extensions of the OWA

There has been many works on fuzzy extensions of the OWA, e.g., linguistic ordered

weighted averaging [31–34], uncertain linguistic ordered weighted averaging [35],

and fuzzy linguistic ordered weighted averaging [36]; however, for these extensions,

only the sub-criteria are modeled as T1 FSs whereas the weights are still crisp num-

bers. To the authors’ best knowledge, Zhou et al. [14–16] are the first to consider

fuzzy weights. Their approaches are introduced in this section for comparison pur-

poses.

4.1 T1 Fuzzy OWAs

Zhou et al. [15, 16, 37] defined a T1 fuzzy OWA (T1FOWA) as:

Definition 12 Given T1 FSs {Wi}n
i=1 and {Xi}n

i=1, the membership function of a

T1FOWA is computed by:

𝜇YT1FOWA
(y) = sup∑n

i=1 wix𝜎(i)
∑n

i=1 wi
= y

min(𝜇W1
(w1),… , 𝜇Wn

(wn), 𝜇X1
(x1),… , 𝜇Xn

(xn)) (26)

where 𝜎 ∶ {1,… , n} → {1,… , n} is a permutation function such that {x
𝜎(1), x𝜎(2),

… , x
𝜎(n)} are in descending order. ■

𝜇YT1FOWA
(y) can be understood from the Extension Principle [38], i.e., first all com-

binations of wi and xi whose OWA is y are found, and for the jth combination, the

resulting yj has a membership grade 𝜇(yj) which is the minimum of the correspond-

ing 𝜇Xi
(xi) and 𝜇Wi

(wi). Then, 𝜇YT1FOWA
(y) is the maximum of all these 𝜇(yj).
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YT1FOWA can be computed efficiently using 𝛼-cuts [14], similar to the way they are

used in computing the FWA. Denote YT1FOWA(𝛼) = [y′L(𝛼), y
′
R(𝛼)] and use the same

notations for 𝛼-cuts on Xi and Wi as in Fig. 2. Then,

y′L(𝛼) = min
∀wi(𝛼)∈[ci(𝛼),di(𝛼)]

∑n
i=1 a

𝜎(i)(𝛼)wi(𝛼)
∑n

i=1 wi(𝛼)
(27)

y′R(𝛼) = max
∀wi(𝛼)∈[ci(𝛼),di(𝛼)]

∑n
i=1 b

𝜎(i)(𝛼)wi(𝛼)
∑n

i=1 wi(𝛼)
(28)

y′L(𝛼) and y′R(𝛼) can also be computed using KM or EKM algorithms. Generally 𝜎

is different for different 𝛼 in (27) and (28), because for each 𝛼 the ai(𝛼) or bi(𝛼) are

ranked separately.

Generally the OFWA and the T1FOWA give different outputs, as indicated by the

following:

Theorem 1 The OFWA and the T1FOWA have different results when at least one
of the following two conditions occurs:

1. The left leg of Xi intersects the left leg of Xj, i ≠ j.
2. The right leg of Xi intersects the right leg of Xj, i ≠ j. ■

Proof: Because the proof for Condition 2 is very similar to that for Condition 1, only

the proof for Condition 1 is given here.

Assume the left leg of Xi intersects the left leg of Xj at 𝛼 = 𝜆 ∈ (0, 1), as shown

in Fig. 9. Then, ai(𝛼) > aj(𝛼) when 𝛼 ∈ [0, 𝜆) and ai(𝛼) < aj(𝛼) when 𝛼 ∈ (𝜆, 1].
For an 𝛼1 ∈ [0, 𝜆), y′L(𝛼1) in (27) is computed as

y′L(𝛼1) = min
∀wi(𝛼1)∈[ci(𝛼1),di(𝛼1)]

∑n
i=1 a

𝜎1(i)(𝛼1)wi(𝛼1)
∑n

i=1 wi(𝛼1)
(29)

where 𝜎1 ∶ {1,… , n} → {1,… , n} is a permutation function such that {a
𝜎1(1)(𝛼1),

x
𝜎1(2)(𝛼1),… , x

𝜎1(n)(𝛼1)} are in descending order. Because ai(𝛼1) > aj(𝛼1), it follows

that 𝜎1(i) < 𝜎1(j).
For an 𝛼2 ∈ (𝜆, 1], y′L(𝛼) in (27) is computed as

y′L(𝛼2) = min
∀wi(𝛼2)∈[ci(𝛼2),di(𝛼2)]

∑n
i=1 a

𝜎2(i)(𝛼2)wi(𝛼2)
∑n

i=1 wi(𝛼2)
(30)

where 𝜎2 ∶ {1,… , n} → {1,… , n} is a permutation function such that {a
𝜎2(1)(𝛼2),

a
𝜎2(2)(𝛼2),… , a

𝜎2(n)(𝛼2)} are in descending order. Because ai(𝛼2) < aj(𝛼2), it follows

that 𝜎2(i) > 𝜎2(j), i.e., 𝜎1 ≠ 𝜎2.
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Fig. 9 Illustration of

intersecting Xi and Xj

On the other hand, for YOFWA, no matter which ranking method is used, the per-

mutation function 𝜎 is the same for all 𝛼 ∈ [0, 1]. Without loss of generality, assume

Xj ⪰ Xi by a ranking method. Then, in (24) 𝜎(i) > 𝜎(j), and, for any 𝛼 ∈ [0, 1], yL(𝛼)
is computed as

yL(𝛼) = min
∀wi(𝛼)∈[ci(𝛼),di(𝛼)]

∑n
i=1 a

𝜎(i)(𝛼)wi(𝛼)
∑n

i=1 wi(𝛼)
(31)

Clearly, for any 𝛼 ∈ [0, 𝜆), yL(𝛼) ≠ y′L(𝛼) because 𝜎 ≠ 𝜎1. Consequently, the left legs

of YOFWA and YT1FOWA are different. ■
The following example illustrates Theorem 1.

Example 7 Xi and Wi shown in Figs. 4a and b are used in this example to illustrate

the difference between YT1FOWA and YOFWA. YT1FOWA is shown as the dotted curve

in Fig. 4c. Note that it is quite different from YOFWA [dashed curve in Fig. 4c]. The

difference is caused by the fact that the legs of X3 cross the legs of X1, X2 and X4,

which causes the permutation function 𝜎 to change as 𝛼 increases. ■

Finally, observe two important points from Theorem 1:

1. Only the intersection of a left leg with another left leg, or a right leg with another

right leg, would definitely lead to different YT1FOWA and YOFWA. The intersection

of a left leg with a right leg does not lead to different YT1FOWA and YOFWA, as

illustrated by Example 8.

2. Only the intersections of Xi may lead to different YT1FOWA and YOFWA. The inter-

sections of Wi have no effect on this because the permutation function 𝜎 does not

depend on Wi.

Example 8 Consider Xi shown in Fig. 10a and Wi shown in Fig. 10b. YFWA is shown

as the solid curve in Fig. 10c, YOFWA the dashed curve, and YT1FOWA the dotted curve

(the latter two are covered by the solid curve). Though Xi have some intersections,

YT1FOWA is the same as YOFWA because no left (right) legs of Xi intersect. ■

4.2 IT2 Fuzzy OWAs

Zhou et al. [16] defined the IT2 fuzzy OWA (IT2FOWA) as:
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Fig. 10 Example 8, where YFWA, YOFWA and YT1FOWA give the same result: a Xi, b Wi, and c YFWA
(solid curve), YOFWA (dashed curve) and YT1FOWA (dotted curve)

Definition 13 Given IT2 FSs { ̃Wi}n
i=1 and { ̃Xi}n

i=1, the membership function of an

IT2FOWA is computed by:

𝜇
̃YIT2FOWA

(y) =
⋃

∀We
i ,X

e
i

⎡
⎢
⎢
⎢
⎢
⎢
⎣

sup∑n
i=1 wix𝜎(i)
∑n

i=1 wi
= y

min(𝜇We
1
(w1),… , 𝜇We

n
(wn), 𝜇Xe

1
(x1),… , 𝜇Xe

n
(xn))

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(32)

where We
i and Xe

i are embedded T1 FSs of ̃Wi and ̃Xi, respectively, and 𝜎 ∶
{1,… , n} → {1,… , n} is a permutation function such that {x

𝜎(1), x𝜎(2),… , x
𝜎(n)} are

in descending order. ■

Comparing (32) with (26), observe that the bracketed term in (32) is a T1FOWA,

and the IT2FOWA is the union of all possible T1FOWAs computed from the embed-

ded T1 FSs of ̃Xi and ̃Wi. The Wavy Slice Representation Theorem [39] for IT2 FSs

is used implicitly in this definition.

̃YIT2FOWA can be computed efficiently using 𝛼-cuts, similar to the way they

were used in computing the LWA. Denote the 𝛼-cut on the UMF of ̃YIT2FOWA as

YOWA(𝛼) = [y′Ll(𝛼), y
′
Rr(𝛼)] for ∀𝛼 ∈ [0, 1], the 𝛼-cut on the LMF of ̃YIT2FOWA as

YOWA(𝛼) = [y′Lr(𝛼), y
′
Rl(𝛼)] for ∀𝛼 ∈ [0, hmin], where hmin is defined in (16). Using

the same notations for 𝛼-cuts on ̃Xi and ̃Wi as in Fig. 8, it is easy to show that
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y′Ll(𝛼) = min
∀wi(𝛼)∈[cil(𝛼),dir(𝛼)]

∑n
i=1 a

𝜎(i),l(𝛼)wi(𝛼)
∑n

i=1 wi(𝛼)
, 𝛼 ∈ [0, 1] (33)

y′Rr(𝛼) = max
∀wi(𝛼)∈[cil(𝛼),dir(𝛼)]

∑n
i=1 b

𝜎(i),r(𝛼)wi(𝛼)
∑n

i=1 wi(𝛼)
, 𝛼 ∈ [0, 1] (34)

y′Lr(𝛼) = min
∀wi(𝛼)∈[cir(𝛼),dil(𝛼)]

∑n
i=1 a

𝜎(i),r(𝛼)wi(𝛼)
∑n

i=1 wi(𝛼)
, 𝛼 ∈ [0, hmin] (35)

y′Rl(𝛼) = max
∀wi(𝛼)∈[cir(𝛼),dil(𝛼)]

∑n
i=1 b

𝜎(i),l(𝛼)wi(𝛼)
∑n

i=1 wi(𝛼)
, 𝛼 ∈ [0, hmin] (36)

y′Ll(𝛼), y′Rr(𝛼), y′Lr(𝛼) and y′Rl(𝛼) can also be computed using KM or EKM algorithms.

Because ̃YIT2FOWA computes the permutation function 𝜎 for each 𝛼 separately, gen-

erally 𝜎 is different for different 𝛼.

Generally the OLWA and the IT2FOWA give different outputs, as indicated by

the following:

Theorem 2 The OLWA and the IT2FOWA have different results when at least one
of the following four conditions occur:

1. The left leg of Xi intersects the left leg of Xj, i ≠ j.
2. The left leg of Xi intersects the left leg of Xj, i ≠ j.
3. The right leg of Xi intersects the right leg of Xj, i ≠ j.
4. The right leg of Xi intersects the right leg of Xj, i ≠ j. ■

The correctness of Theorem 2 can be easily seen from Theorem 1, i.e., Condition 1

leads to different yLl(𝛼) and y′Ll(𝛼) for certain 𝛼, Condition 2 leads to different yLr(𝛼)
and y′Lr(𝛼) for certain 𝛼, Condition 3 leads to different yRr(𝛼) and y′Rr(𝛼) for certain 𝛼,

and Condition 4 leads to different yRl(𝛼) and y′Rl(𝛼) for certain 𝛼. Example 9 illustrates

Theorem 2.

Example 9 ̃Xi and ̃Wi shown in Figs. 8a and b are used in this example to illustrate

the difference between ̃YOLWA and ̃YIT2FOWA. ̃YIT2FOWA is shown as the dotted curve

in Fig. 8c. Note that it is quite different from ̃YOLWA [dashed curve in Fig. 8c]. The

difference is caused by the fact that the legs of ̃X3 cross the legs of ̃X1, ̃X2 and ̃X4,

since the permutation function 𝜎 changes as 𝛼 increases. ■

Finally, observe also two important points from Theorem 2:

1. Only the intersection of a left leg with another left leg, or a right leg with another

right leg, would definitely lead to different ̃YIT2FOWA and ̃YOLWA. The intersection

of a left leg with a right leg may not lead to different ̃YIT2FOWA and ̃YOLWA, as

illustrated by Example 10.

2. Only the intersections of ̃Xi may lead to different ̃YIT2FOWA and ̃YOLWA. The inter-

sections of ̃Wi have no effect on this because the permutation function 𝜎 does not

depend on ̃Wi.
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Fig. 11 Example 10, where IT2FOWA and OLWA give the same result: a ̃Xi, b ̃Wi, and c ̃YLWA
(solid curve), ̃YOLWA (dashed curve) and ̃YIT2FOWA (dotted curve)

Example 10 Consider ̃Xi shown in Fig. 11a and ̃Wi shown in Fig. 11b. ̃YLWA is shown

as the solid curve in Fig. 11c, ̃YOLWA the dashed curve, and ̃YIT2FOWA the dotted curve

(the latter two are covered by the solid curve). Though ̃Xi have some intersections,

̃YIT2FOWA is the same as ̃YOLWA. ■

Example 11 In this final example, we compare the results of LWA, OLWA and

IT2FOWA when

{ ̃Xi}|i=1,...,4 → {Tiny, Maximum amount, Fair amount, Medium}
{ ̃Wi}|i=1,...,4 → {Small, Very little, Sizeable, Huge amount}.

where the word FOUs are depicted in Fig. 12a and b. They are extracted from the

32-word vocabulary in [2, 3, 40], which is constructed from actual survey data. The

corresponding ̃YLWA is shown in Fig. 12c as the solid curve, ̃YOLWA the dashed curve,

and ̃YIT2FOWA the dotted curve. Observe that they are different from each other. ■

4.3 Discussions

The T1 and IT2 fuzzy OWAs have been derived by considering each 𝛼-cut separately,

whereas the OFWA and OLWA have been derived by considering each sub-criterion

as a whole. Generally the two approaches give different results. Then, a natural ques-

tion is: which approach should be used in practice?

We believe that it is more intuitive to consider an FS in its entirety during ranking

of FSs. To the best of our knowledge, all ranking methods based on 𝛼-cuts deduce a

single number to represent each FS and then sort these numbers to obtain the ranks

of the FSs (see the Appendix). Each of these numbers is computed based only on



Ordered Novel Weighted Averages 43

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1
X1 X2X4X3

x

(a)

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1
W1 W3 W4W2

w

(b)

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

y

u(c)

Fig. 12 Example 11: a ̃Xi, b ̃Wi, and, c ̃YLWA (solid curve), ̃YOLWA (dashed curve) and ̃YIT2FOWA
(dotted curve)

the FS under consideration, i.e., no 𝛼-cuts on other FSs to be ranked are consid-

ered. Because in OFWA and OLWA the FSs are first ranked and then the WAs are

computed, they coincide with our “FS in its entirety” intuition, and hence they are

preferred in this chapter. Interestingly, this “FS in its entirety” intuition was also used

implicitly in developing the linguistic ordered weighted averaging [32], the uncertain

linguistic ordered weighted averaging [35], and the fuzzy linguistic ordered weighted

averaging [36].

5 Conclusions

In this chapter, ordered novel weighted averages, including ordered interval weighted

average, ordered fuzzy weighted average and ordered linguistic weighted average, as

wells as procedures for computing them, have been introduced. They were compared

with novel weighted averages and Zhou et al’s fuzzy extensions of the OWA. Exam-

ples showed that our ONWAs may give different results from Zhou et al’s extensions

when the legs of the FSs have intersections. Because our extensions coincide with

the “FS in its entirety” intuition, they are the suggested ones to use.

Ranking Methods for T1 FSs

Wang and Kerre [41–44] performed a very comprehensive study on ranking methods

for T1 FSs. They partitioned over 35 ranking methods for T1 FSs into three classes:

1. Class 1: Reference set(s) is (are) set up, and each T1 FS is mapped into a crisp

number based on the reference(s). The T1 FSs are then ranked according to the

corresponding crisp numbers.
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Table 1 Summary of ranking methods for T1 FSs. Note that for Classes 1 and 2, each T1 FS

is first mapped into a crisp number, and then these numbers are sorted to obtain the ranks of the

corresponding T1 FSs. For Class 3, the pairwise ranks are computed directly

Ranking method Equation used for ranking

Class 1

Jain’s method [45, 46] fJ(Ai) = sup
x

min(𝜇Amax,J
(x), 𝜇Ai

(x)), where 𝜇Amax,J
(x) =

(
x

xmax

)k
, in

which k > 0 and xmax is the right end of the x domain

Chen’s method [47] fC(Ai) = [R(Ai) + 1 − L(Ai)]∕2, where

R(Ai) = sup
x

min(𝜇Amax,C
(x), 𝜇Ai

(x)),

L(Ai) = sup
x

min(𝜇Amin,C
(x), 𝜇Ai

(x)), 𝜇Amax,C
(x) =

(
x−xmin

xmax−xmin

)k
,

𝜇Amin,C
(x) =

(
xmax−x

xmax−xmin

)k
, k > 0, and xmin is the left end of the x

domain

Kim and Park’s method [48] fKP(Ai) = khAi∩Amax,KP
+ (1 − k)(1 − hAi∩Amin,KP

), where k ∈ [0, 1],
hAi∩Amax,KP

is the height of Ai ∩ Amax,KP, 𝜇Amax,KP
(x) = x−xmin

xmax−xmin
, and

𝜇Amin,KP
(x) = xmax−x

xmax−xmin

Class 2
Let Ai𝛼 be an 𝛼-cut of a T1 FS Ai

Adamo’s method [49] fA(Ai) = r(Ai𝛼), where r(Ai𝛼) is the right end of Ai𝛼 , and 𝛼 can be

any user-chosen number in (0, 1]

Yager’s first method [29] fY (Ai) =
∫

1
0 x𝜇Ai

(x)dx

∫
1
0 𝜇Ai

(x)dx
, where the domain of x is constrained in

[0, 1]
Yager’s second method

[50, 51]

fY (Ai) = ∫
hAi
0 m(Ai𝛼)d𝛼, where hAi

is the height of Ai, and m(Ai𝛼) is

the center of Ai𝛼

Fortemps and Roubens’

method [52]

fFR(Ai) =
1

hAi
∫

hAi
0 [r(Ai𝛼) − l(Ai𝛼)]d𝛼, where l(A

𝛼

) is the left end of

Ai𝛼

Class 3
dH(Ai,Aj) ≡ ∫X[𝜇Ai

(x) − 𝜇Aj
(x)]dx, Al

and Au
are T1 FSs defined as

𝜇Al (x) ≡ sup
y≤x

𝜇Ai
(y), 𝜇Au (x) ≡ sup

y≥x
𝜇Ai

(y)

m̃ax(A,B) and ̃min(A,B) are T1 FSs defined as

𝜇m̃ax(A,B)(x) = sup
x=u∨v

[𝜇A(u) ∨ 𝜇B(v)]

𝜇
̃min(A,B)(x) = sup

x=u∧v
[𝜇A(u) ∧ 𝜇B(v)]

Nakamura’s method [53] r(Ai,Aj) =
kdH(Al

i,
̃min(Al

i,A
l
j)) + (1 − k)dH(Au

i ,
̃min(Au

i ,A
u
j ))

kdH(Al
i,A

l
j) + (1 − k)dH(Au

i ,A
u
j )

Kolodziejczyk’s method

[54]

r(Ai,Aj) =
dH(Al

i,
̃min(Al

i,A
l
j)) + dH(Au

i ,
̃min(Au

i ,A
u
j )) + dH(Ai ∩ Aj, ∅)

dH(Al
i,A

l
j) + dH(Au

i ,A
u
j ) + 2dH(Ai ∩ Aj, ∅)

Saade and Schwarzlander’s

method [55]

r(Ai,Aj) = dH(Al
i, m̃ax(Al

i,A
l
j)) + dH(Au

i , m̃ax(Au
i ,A

u
j ))
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2. Class 2: A function f (Ai) is used to map a T1 FS Ai to a crisp number, which can

then be ranked. No reference set(s) is (are) used in the mapping.

3. Class 3: T1 FSs Ai (i = 1,… ,M) are ranked through pairwise comparisons.

They then proposed seven reasonable properties that a ranking method should sat-

isfy [41]. Some simple ranking methods, which are also the most reasonable ones

according to the seven properties [41, 42], are summarized in Table 1.
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