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Preface

This book is dedicated to Jerry, Prof. Jerry Mendel, for his pioneering works on the
type-2 fuzzy sets and systems. Jerry has had a long and distinguished academic
career in both signal processing and fuzzy logic, winning many awards and honours.
However, since his first paper in 1998 he has been the leader in the fascinating area
of the type-2 fuzzy logic field for nearly 20 years. He has over 40 journal articles in
leading journals with many citations. His three most cited papers in Google Scholar
(as for July 2017) are: “Type-2 fuzzy sets made simple”, J. M. Mendel, R. I. John,
IEEE Transactions on Fuzzy Systems 10 (2), 117–127, 2002 (1788 citations),
“Interval type-2 fuzzy logic systems: theory and design”, Q. Liang, J. M. Mendel,
IEEE Transactions on Fuzzy Systems 8 (5), 535–555, 2000 (1380 citations) and
“Type-2 fuzzy logic systems”, N. N. Karnik, J. M. Mendel, Q. Liang, IEEE trans-
actions on Fuzzy Systems 7 (6), 643–658, 1999 (1200 citations).

Jerry has worked with numerous Ph.D. students and colleagues from across the
world, always in a collaborative way to move the field forward. We have had many
long hours discussing important research issues in type-2 fuzzy logic. Over that
time he has become our friend and we are honoured to put together this invited
collection of contributions.

The chapters here cover a wide variety of topics—the type-2 fuzzy sets and the
game Go, weighted averages, control of agricultural vehicles, challenges for the
type-2 fuzzy control, type-2 fuzzy control in games, pattern recognition and the role
of type-2 fuzzy sets in intelligent agents, just to mention a few.

We would like to thank the authors for their interesting contributions. The
diversity of topics covered and views and perspectives presented reflects the
diversity in the type-2 community. If you are new to type-2 fuzzy logic, we hope
you are inspired to read these and follow up on Jerry’s work.

Nottingham, UK Robert John
Colchester, UK Hani Hagras
Tijuana, Mexico Oscar Castillo
Spring 2017
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From T2 FS-Based MoGoTW System
to DyNaDF for Human and Machine
Co-learning on Go

Chang-Shing Lee, Mei-Hui Wang, Sheng-Chi Yang
and Chia-Hsiu Kao

Abstract This chapter describes the research from T2 FS-based MoGoTW system
to DyNamic DarkForest (DyNaDF) open platform for human and machine
co-learning on Go. A human Go player’s performance could be influenced by some
factors, such as the on-the-spot environment as well as physical and mental situ-
ations of the day. In the first part, we used a sample of games played against
machine to estimate the human’s strength (Lee et al. in IEEE Trans Fuzzy Syst 23
(2):400–420, 2015 [1]). The Type-2 Fuzzy Sets (T2 FSs) with parameters optimized
by a genetic algorithm for estimating the rank was presented (Lee et al. in IEEE
Trans Fuzzy Syst 23(2):400–420, 2015 [1]). The T2 FS-based adaptive linguistic
assessment system inferred the human performance and presented the results using
the linguistic description (Lee et al. in IEEE Trans Fuzzy Syst 23(2):400–420, 2015
[1]). In March 2016, Google DeepMind challenge match between AlphaGo and Lee
Sedol in Korea was a historic achievement for computer Go development. In Jan.
2017, an advanced version of AlphaGo, Master, won 60 games against some top
professional Go players. In May 2017, AlphaGo defeated Ke Jie, the top profes-
sional Go player, at the Future of Go Summit in China. In second part, we showed
the development of computational intelligence (CI) and its relative strength in
comparison with human intelligence for the game of Go (Lee et al. in IEEE Comput
Intell Mag 11(3):67–72, 2016 [2]). Additionally, we also presented a robotic pre-
diction agent to infer the winning possibility based on the information generated by
DarkForest Go engine and to compute the winning possibility based on the partial
game situation inferred by FML assessment engine (Lee et al. in FML-based pre-
diction agent and its application to game of Go, 2017 [3]). Moreover, we chose
seven games from 60 games to evaluate the performance (Lee et al. in FML-based
prediction agent and its application to game of Go, 2017 [3]). In this chapter, we
extract the human domain knowledge from Master’s 60 games for giving the
desired output. Then, we combine Particle Swarm Optimization (PSO) and FML to
learn the knowledge base and further infer the game results of Google AlphaGo in
May 2017. The experimental results show that the proposed approach is feasible for
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National University of Tainan, Tainan, Taiwan
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the application to human and machine co-learning on Go. In the future, powerful
computer Go programs such as AlphaGo are expected to be instrumental in pro-
moting Go education and AI real-world applications.

1 Introduction

Many real-world applications are with a high-level of uncertainty. Type-2 FS (T2
FS) has the ability to capture the uncertainty about membership functions of fuzzy
sets [4, 5]. Moreover, Type-2 Fuzzy Logic System (T2 FLS) is used to handle the
high uncertainties in the group decision-making process as it can model the
uncertainties between expert preferences by using T2 FSs [4–7]. Because of the
popularity of T2 FS [7], the Type-2 Fuzzy Markup Language (T2 FML), an
extension of the FML grammar, is developed to allow system designers to express
their expertise by using an Interval Type-2 Fuzzy Logic System (IT2 FLS) to model
type-2 fuzzy sets and systems [8–10]. Fuzzy Markup Language (FML) has become
an IEEE Standard since May 2016 and provides designers of intelligent decision
making systems with a unified and high-level methodology for describing systems’
behaviors by means of rules based on human domain knowledge [8, 10]. FML is a
fuzzy-based markup language that can manage fuzzy concepts, fuzzy rules, and a
fuzzy inference engine [8, 10]. Additionally, FML is with the following features:
understandability, extendibility, and compatibility of implemented programs as well
as efficiency of programming [10]. The main advantage of using FML is easy to
understand and extend the implemented programs for other researchers [8, 10].

The game of Go is played by two players, Black and White. Two Go players
alternatively play their stone at a vacant intersection of the board by following the
rules of Go [11]. Additionally, Go is regarded as one of the most complex board
games because of its high state-space complexity 10171, game-tree complexity
10360, and branching factor 250 [12]. The skill of amateur players in Go is ranked
according to kyu (K) in the lower tier, where a smaller number stands for stronger
playing skill (with 1 K being the highest skill level), and dan (D) in the higher tier,
where a larger number stands for stronger playing skill. Professional Go players are
ranked entirely in dan, abbreviated with the letter P [2]. Go is typically played on
19 × 19 size boards, but 9 × 9 size boards are also common for beginners. The
complexity of the 9 × 9 game is far less than the standard game, and the 9 × 9
game had been one of the interim goals for computer Go programs [2]. The
handicaps for the human vs. computer 19 × 19 game have been decreased from 29
in 1998 to 0 in 2016 [2]. In May 2017, AlphaGo even defeated Ke Jie, the top
professional Go players in the world, at the Future of Go Summit in Wuzhen [13].
Owning to the quick advance in artificial intelligence, currently powerful computer
Go programs such as AlphaGo [14] and DeepZenGo are expected to give top
professional humans a few handicap stones to make for an even match.

Games have served as one of the best benchmarks for studying artificial intel-
ligence [15, 16]. Over the last few years, Monte Carlo Tree Search (MCTS) has
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already made a profound effect on artificial intelligence, especially in computer
games [15]. Gelly and Silver [17] applied Rapid Action Value Estimation (RAVE)
algorithm and Heuristic MCTS to a computer Go program, MoGo. Monte Carlo
tree search (MCTS), minorization-maximization (MM), and deep convolutional
neural networks (DCNNs) have demonstrated great success in Go [2, 14, 18, 19]. In
December of 2014, two teams applied deep convolutional neural networks to Go
independently [20, 21]. Among many of DCNN’s applications, it has seen success
in image and video recognition. When applied to Go, DCNN is able to recognize
move patterns at a significantly lower error rate than MM. For this reason, most
state-of-the-art computer Go programs use MCTS combined with either MM or
DCNN [2].

For evaluating the human performance on Go games, humans could be advanced
to a higher rank based on the number of winning games via a formal human against
human competition [1]. However, the invited human Go player’s strength might be
affected by some factors, such as the on-the-spot environment, physical and mental
situations of the day, and game settings, so the Go player’s rank may be with an
uncertain possibility. Additionally, one player’s strength may gradually decrease
because of getting older or seldom playing with a stronger human [1]. Hence, these
uncertain factors cause the difficulties and uncertainty in evaluating the rank of one
human Go player. In [1], we used T2 FSs to model the requirements of a person
specification that is reflective of all the experts’ opinions and this can be used to
provide a good evaluation for the rank of the Go players. A T2 FS-based adaptive
linguistic assessment system was proposed to evaluate one human Go player’s
performance with a semantic analysis such that the proposed system is helpful to
increase the human Go player’s enthusiasm for playing with the computer Go
program [1], especially for children.

In [2], we helped the readership better understand how the development of
computer Go programs has arrived at this milestone of winning against one of the
top human players, and how IEEE Computational Intelligence Society (CIS) has
been involved in this process. This huge achievement in AI is based largely on CI
methods, including DCNNs, supervised learning from expert games, reinforcement
learning, the use of the value network and policy network, and MCTS. In [3], we
constructed a DyNamic DarkForest (DyNaDF) Cloud Platform for game of Go,
including a demonstration game platform, a machine recommendation platform,
and an FML assessment engine. We used the first-stage prediction results of
DarkForest Go engine [18, 19] and the second-stage inferred results of the FML
assessment engine [22], we further introduced the third-stage FML-based decision
support engine to predict the winner of the game and chose seven games from
Master’s 60 games in Jan. 2017 [3, 23] to evaluate the performance. The
fourth-stage robot engine reports real-time situation to players. This chapter further
combines FML and particle swarm optimization (PSO), called PFML [24], to learn
the domain knowledge of Master’s 60 games [23] by referring to the book pub-
lished in Taiwan [25]. After learning, we use the proposed approaches in [3] to infer
the game results of the Future of Go Summit in Wuzhen in May 2017. From the
experimental results, we can get much higher accuracy than before learning.

From T2 FS-Based MoGoTW System … 3



The remainder of this chapter is organized as follows: Sect. 2 introduces the
research performance from the proposed T2 FS-based MoGoTW system [1, 2] to
the FML-based DyNaDF open system [3, 22]. Section 3 is dedicated to the human
and machine co-learning part based on T2 FS and FML. Section 4 shows some
experimental results. Finally, conclusions are given in Sect. 5.

2 From T2 FS-Based MoGoTW Linguistic Assessment
System to FML-Based DyNamic DarkForest Open
Platform

This section introduces the research performance from the proposed T2 FS-based
MoGoTW linguistic assessment system [1] to the constructed FML-based DyNaDF
open platform [3].

2.1 T2 FS-Based MoGoTW System for Adaptive
Linguistic Assessment

Over the past years, there were many Go competitions between humans and
computer Go programs held in Taiwan or in the world [2, 26]. However, playing
with the computer Go program may be boring because the computer Go program
cannot express its feelings, especially in one lopsided game [27, 28]. If the com-
puter Go program is able to adaptively assess its opponent’s strength and provide
one real-time feedback mechanism for Go players, it will be helpful for humans to
increase their interest in playing with the computer Go program and to find their
relevant opponents and/or relevant handicap. Upper Confidence Bounds for Trees
(UCT) is the most popular algorithm in the MCTS family [15, 29, 30]. MoGoTW,
developed based on MoGo 4.86 Sessions plus the Taiwan (TW) modifications,
plays its move at the board according to the result of the best-move selection
mechanism [1]. The strength of MoGoTW is increased when it loses and is
decreased when it wins based on item response theory (IRT) [31].

In [1], we proposed the T2 FS-based adaptive linguistic assessment system to
evaluate human Go player’s performance whose structure is shown in Fig. 1.
The MCTS Simulation Number (SN) is adjusted to meet the strength of the opponent
during one round and their operations are described as follows: (1) Adjustment in
per-move SN: SN is increased by multiplying by V1 when theWinning Rate (WR) of
the computer program is less thanWR1. (2) Adjustment in per-game SN: When one
game ends and the computer program wins the game, the computer program
weakens its strength by dividing SN into V2 for next game. (3) The involved human
Go players compete K games against MoGoTW for one round. During the com-
petition, MoGoTW adjusts its strength to match with the strength of the human Go

4 C.-S. Lee et al.



player by increasing or decreasing MCTS’s simulation number after playing one
move and one game. (4) If human wins the first game, then MoGoTW increases
MCTS’s simulation number to strengthen its own strength at the start of the second
game to compete with the human. In other words, the more consecutive games are
won by the human, the stronger the human. GameWeight denotes the strength of all
the games played by this human. The higher GameWeight, the stronger the human.
WinningRate denotes the winning rate of the human after playing games with
MoGoTW. Based on this concept, T2 FSs Ga gmeWeightLow, Ga gmeWeightMedium,
Ga gmeWeightHigh Winn gingRateLow, Winn gingRateMedium, and Winn gingRateHigh are
constructed.

2.2 FML-Based DyNamic DarkForest (DyNaDF) Open
Platform

Figure 2 shows the structure of the DyNaDF open Platform whose brief descrip-
tions are given as follows [3]: (1) The DyNaDF open platform for game of Go
application is composed of a playing-Go platform located at National University of
Tainan (NUTN)/Taiwan and National Center for High-Performance Computing
(NCHC)/Taiwan, a DarkForest Go engine located at Osaka Prefecture University

PlayersMoGoTW

Adaptive UCT -based
Go-Ranking Mechanism

Human vs. MoGoTW

Game Results
Repository

Players Rank
Repository

Bradley-Terry Model 
Estimation Mechanism

T2FS Construction 
Mechanism

Domain Expert

KB/RB
Repository

Adaptive Go-Ranking
Assessment Ontology

PSO Model 
Estimation Mechanism

T2FS-based 
Fuzzy Inference Mechanism

T2FS-based Genetic Learning
Mechanism

Game Results
Repository

Domain Expert

Human-Performance
Mapping Mechanism

Personal Profile
Repository

Semantic Analysis
Mechanism

Fig. 1 T2 FS-based adaptive linguistic assessment system [1]
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(OPU)/Japan, and the robot PALRO from Tokyo Metropolitan University (TMU)/
Japan. (2) Human Go players surf on the DyNaDF platform located at NUTN/
NCHC to play with DarkForest Go engine located in OPU. (3) The FML assess-
ment engine infers the current game situation based on the prediction information
from DarkForest and stores the results into the database. (4) The robot PALRO
receives the game situation via the Internet and reports to the human Go players.
Human can learn more information about game’s comments via Go eBook [3].
Figure 3 shows the screenshot of the game between Ke Jie (9P) as Black and
Master as White on Dec. 30, 2016 provided by the FML-based DyNaDF Open
Platform [3].

3 Human and Machine Co-learning Based
on T2 FS and FML

This section introduces the human and machine co-learning based on T2 FS and
FML. Section 3.1 describes the adaptive human performance evaluation on game of
Go. The FML-based prediction agent for DyNaDF open platform is described in
Sect. 3.2.

Osaka

Tokyo Tainan

Playing-Go Platform FML Assessment Engine

OPU / Japan TMU / Japan NUTN / NCHC Human Go Players

PALRO
Darkforest 
Go Engine

Go eBook

Fig. 2 Structure of DyNamic DarkForest open platform for Go [3]
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3.1 Adaptive Human Performance Evaluation
on Game of Go

• T2 FS-Based FML for Knowledge Base Representation

In [1], we presented the novel human performance knowledge representation for
game of Go based on fuzzy sets and fuzzy markup language. The constructed fuzzy
sets for the Go competition were stored in the adaptive Go-ranking assessment
ontology. In addition, the refined concept for the fuzzy knowledge base was pre-
sented by a fuzzy linguistic label set and a fuzzy data set. Figures 4a–e show the T2

Human & Machine vs. Human Demonstration Game
Logout

Black: Ke Jie (9P) White: Master Komi: 6.5 Simulation Number: 3000 Date: Dec. 31, 2016

Black: Ke Jie (9P) White: Master Komi: 6.5 Simulation Number: 3000 Date: Dec. 31, 2016 /  simulation: 3000 / komi: 6.5 / mode: multiple / black

Download SGF
/ 128128

Fig. 3 Captured screenshot of the game record [3]
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FSs for fuzzy variables SN, Komi, GameWeight, WinningRate, and Rank, respec-
tively. There are total 81 fuzzy inference rules in the rule base of FML, but some
rules conflict with the fact. After removing these conflicted fuzzy rules, the final
adopted fuzzy rules are 63 in the application to adaptive human performance
evaluation on game of Go [1].

• Six-Layer T2 FS-Based Fuzzy Inference Structure

The difference between T1 FLS and T2 FLS is the output processing [6]. A T2 FLS
first needs to do a type-reducer to perform the type-reduction and then makes a
defuzzification on the type-reduced set [4, 6]. We proposed a six-layer T2 FS-based
fuzzy inference structure shown in Fig. 5 to infer human performance, including an
input layer, an antecedent layer, a rule layer, a consequent layer, a type-reduction
layer, and an output layer [1]. The descriptions for each layer are as follows: (1) The
input layer represents the values of the input variables, such as GameWeight (GW),
WinningRate (WR), SN, and Komi for one round and they are directly transmitted to
the antecedent layer, for example, x′ = fGW ′,WR′, SN ′,Komi′g. (2) The antecedent
layer is to compute the membership of the input values from the first layer. However,
for an IT2 FS, the membership is an interval, for example, the membership of S ̃NLow is
½μSNLow

ðSNÞ, μSNLow
ðSNÞ�. (3) In the rule layer, fuzzy matching uses fuzzy AND

operator (MIN) in the antecedent to calculate the degree to which the input data match
the condition of the M fuzzy rules. (4) In the consequent layer, two iterative
Karnik-Mendel (KM) algorithms [4, 6] are used to compute the left-end and right-end
points of the centroid of each rue’s consequent IT2 FS. (5) In the type-reduction
layer, center-of-sets type reduction combines an individual fired interval with its

1460 6586 7086

Low Medium High

Membership Degree

1

Simulation Number
25000082080 960 2260 2760 7708

~ ~ ~

4 99.5

Low Medium High
Membership Degree

1

Komi
1180 4.53 3.5 8.5

~ ~ ~

10 20 21

Low Medium High
Membership Degree

1

GameWeight
30180 11 129 19

~ ~ ~

35 75 80

Low Medium High
Membership Degree

1

WinningRate

100600 4020 25 65

~ ~ ~

1.6 4.8 5

Low Medium High
Membership Degree

1

Rank
5.52.2-1 1.8-0.5 5.22.4

~ ~ ~

87.5

(a) (b)

(c) (d)

(e)

Fig. 4 T2 FSs for fuzzy variables a SN, b Komi, c GameWeight, d WinningRate and e Rank [1]

8 C.-S. Lee et al.



corresponding pre-computed consequent left-end and right-end centroids, and then
implements two iterative KM algorithms to perform the type reduction set to generate
the lower point and upper point. (6) In the output layer, the crisp output of the IT2 FS,
Rankðx′Þ, is defuzzied by averaging Ranklðx′Þ and Rankrðx′Þ.
• Machine Learning Mechanism for Adaptive Assessment System

The genetic learning mechanism is adopted to tune the fuzzy linguistic label of
T2 FS [1]. The brief descriptions of the machine learning mechanism in [1] are as
follows: (1) The genes of the encoded chromosome contain three parts, including the
knowledge-based genes, the rule-based genes, and the linguistic-hedged genes. The
knowledge-based genes represent the linguistic labels with data and parameters of
fuzzy variables, rule-based genes store the domain expert’s weights and updated
weights of the fuzzy inference rules, and linguistic-hedged genes denote the fuzzy
linguistic hedge such as normal, more-or-less, or very. (2) One chromosome is
composed of 73 genes, including G1–G5 are the knowledge-based genes, G6–G68 are
the rule-based genes, andG69–G73 are the linguistic-hedge genes.Mean Square Error
(MSE) is the fitness function. Figure 6 shows one chromosome with three parts of the

Fig. 5 Six-layer T2 FS-based fuzzy inference structure [1]
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genes. Figure 7 shows the graphic representation for the genetic tuning the T2 FS
Rank. The restrictions on tuning the linguistic labels Medium and High of fuzzy
variable Rank are similar to tuning the linguistic label Low of fuzzy variable Rank.

3.2 FML-Based Prediction Agent for DyNaDF
Open Platform

Figure 8 shows the proposed FML-based prediction agent for DyNaDF open
platform, including Stage I: DarkForest Go engine, Stage II: FML assessment
engine, Stage III: PFML learning mechanism [24], Stage IV: FML-based decision

G1 G2 G3 G4 G5 G6 G7 … G68 G69 G70 G71 G72 G73

Knowledge-Based Genes Rule-Based Genes Linguistic-Hedged Genes

ShapeFS BSL BCL ECL ESL BSU BCU ECU ESU

Fig. 6 One chromosome with three parts of the genes [1]

Membership Degree

Rank
BSLow BSLow

BCLow

BCLow

Low Medium High
1

~ ~ ~

ECLow

ECLow

ESLow

ESLow

BSMedium

BSMedium

BCMedium
BCMedium

ECMedium
ECMedium BSHigh

ESMedium ESMedium

BSHigh

ESHigh ESHigh
BCHigh

BCHigh

ECHigh

ECHigh

DomainLeftDomainRight

Fig. 7 T2 FS Restrictions for the genetic tuning [1]

Desired Output
Darkforest

(DCNN + MCTS)

Fuzzy Inference
Mechanism

Game record with N moves

Stage I:
Darkforest Go Engine

Stage IV: FML-based Decision Support Engine

Stage V: Robot EnginePALRO

Human Go 
Players

DyNaDF
Platform

Move 1 (UncertainSituation)
Move 2 (UncertainSituation)

Move N-5 (WhitePossibleAdvantage)
Move N-4 (UncertainSituation)
Move N-3 (UncertainSituation)
Move N-2 (UncertainSituation)
Move N-1 (UncertainSituation)
Move N (WhitePossibleAdvantage)

FML Assessment-2

⋮Winrate
SN
TMR

⋮ ⋮

Stage II: FML Assessment Engine Stage III:
PFML Learning Mechanism

Before-Learning FML
After-Learning

FML

Domain Experts

Before-Learning FML

Fig. 8 System structure of five-stage FML-based prediction agent [3]
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support engine, and Stage V: robot engine [3]. The followings are its short
descriptions:

• Stage I: We applied Facebook DarkForest Go open source that trains a DCNN
to predict the next top-k moves [18]. DarkForest Go engine powered by deep
learning has been developed mainly by Tian and Zhu from Facebook AI
Research (FAIR) since May 2015 and was open to the public in 2016 [18, 19].
DarkForest relies on a DCNN designed for long-term predictions and has been
able to substantially improve the winning rate for pattern matching approaches
against MCTS-based approaches, even with looser search budgets [18]. Tian
and Zhu [19] proposed a 12-layered full convolutional network architecture for
DarkForest where (1) each convolution layer is followed by a ReLU nonlin-
earity, (2) all layers use the same number of filters at convolutional layers
(w = 254) except for the first layer, (3) no weight sharing is used, (4) pooling is
not used owing to negatively affecting the performance, and (5) only one
softmax layer is used to predict the next move of Back and White to reduce the
number of parameters.

Fig. 9 Captured screenshots including a predicted next moves, b winning rate curve, c inferred
game results, and d feedback from domain experts

From T2 FS-Based MoGoTW System … 11



Fig. 9 (continued)
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• Stage II: FML assessment engine adopted each-move-position, DarkForest-
predicted top-5-move number of simulations and winning rate to decide
each-move number of simulations (BSN andWSN), winning rate (BWR andWWR),
and suggestion affect (BSA andWSA) [22]. After that, the FML assessment engine
inferred each-move current game situation (CGS), including “Black is obvious
advantage (BlackObviousAdvantage, B++),” “Black is possible advantage
(BlackPossibleAdvantage, B+),” “Both are in an uncertain situation (Uncer-
tainSituation,U),” “White is possible advantage (WhitePossibleAdvantage,W+),”
and “White is obvious advantage (WhiteObviousAdvantage, W++).” We use the
game betweenKe Jie asBlack andMaster asWhite onDec. 30, 2016 as an example
to show the captured screenshots, including the predicted nextmoves,winning rate
curve, inferred game results, and feedback provided by the domain experts in
Figs. 9a–d, respectively.

• Stage III: We extracted the domain knowledge from the book [25] to give the
desired output to 60 Master’s games in Jan. 2017 [23]. Table 1 shows the
methods that give the desired output to a specific move and the other moves in
the neighborhood of this specific move. In Stage III, the proposed PFML
learning mechanism in [24] which combines PSO with FML, optimizes the
knowledge base of the constructed FML with 5-fold cross validation. In this
chapter, the number of generations is 3000 and the number of particles is 20.

• Stage IV: The proposed FML-based decision support engine computed the
winning possibility based on the partial game situation inferred by FML
assessment engine and stored the predicted results into the database. In this
chapter, we use the proposed methods in [3], including sampling the information
from three or four sub-games, to infer the final game result. Figure 10 gives an
example of a game with 178 moves when sampling the information from four
sub-games, where the input information of Neighborhood1/4, Neighborhood2/4,
Neighborhood3/4, and Neighborhood4/4 is the current game situations for
Neighborhood of fuzzy numberMove-45 (moves 40–50), Neighborhood of fuzzy
number Move-90 (moves 85–95), Neighborhood of fuzzy number Move-135
(moves 130–140), and Neighborhood of fuzzy number Move-Last (moves 168–
178), respectively. For example, if the input vector is x = (x1, x2, …, x11), then
vector xi/k denotes the input 11 current game situations (CGSs) in the Neigh-
borhoodi/k. Figure 11 is the fuzzy sets for B++, B+, U, W+, and W++ [3].

• Stage V: The robot engine retrieved information from the database to comment
on the game situation, including (1) Black and White’s move numbers that
appear the first 3 highest and the last 3 lowest number of simulations as well as
the highest and lowest winning rates, and (2) Black and White’s average win-
ning rates and top-move rates. It also reports the real-time predicted top-3-move
positions to the human Go player to think carefully before playing his/his next
move [22]. Figure 12 shows the diagram about how to program code to the
robot PALRO, developed by Japan FUJISOFT Incorporated [3]. Table 2 shows
the comment on the game between Ke Jie as Black and Master as White on Dec.
30, 2016.
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4 Experimental Results

This section introduces the experimental results. We first describe our experimental
results for MoGoTW in Sect. 4.1, including comparison between T1 FS and T2 FS
and genetic learning performance based on T2 FS. Section 4.2 gives the experi-
mental results of the constructed DyNaDF Open Platform with FAIR Open Source
DarkForest.

Table 1 a Method giving the desired output to a specific move and b two methods giving the
desired output to the neighborhood of a specific move

a

• If the domain experts [25] consider (1) Black move N to be a Tesuji, an Excellent Move, or a
Move of Master, then the desired output of Black move N is given to B++. On the contrary, the
desired output of White move N is W++, and (2) White was lost or Black Establishes
Competitive Advantage, then the desired output of Black move N is given to B++. On the
contrary, the desired output of White move N is W++

• If the domain experts consider (1) Black move N to be a Surprising Move, a Sente, a Big Point,
a Good Move, or a Severe Tactics, then the desired output of Black move N is given to B+. On
the contrary, the desired output of White move N is W+, and (2) Black move N to be a Losing
Move, Failure Move, or a Big Bad Move, then the desired output of White move N was given to
W+. On the contrary, the desired output of Black move N is B+

b

• Method 1: (1) Moves N−5, N−4, …N−1, N + 1, …, to N + 5: The same one as move N. (2)
Last 11 moves of the game: The same one as the final exact game result

• Method 2: (1) Moves N + 1, …, to N + 5: Each move increases by 0.1 for W+/W++ and
decreases by 0.1 for B+/B++. (2) Last 11 moves of the game: Each two moves increase by 0.1
for W+/W++ and decrease by 0.1 for B+/B++. (3) First 100 moves: If domain experts consider
move 1, 2,…, or 100 to be B++/W++, we only give B+/W+ to its desired output

Move No.

1 15 30 45 60 75 85 90 105 120 135 150 165 178

x1/4 = (CGSm40, CGSm41, …, CGSm50)
x2/4 = (CGSm85, CGSm86, …, CGSm95)

x3/4 = (CGSm130, CGSm131, …, CGSm140)
x4/4 = (CGSm168, CGSm169, …, CGSm178)

K = 4 Neighborhood1/4 Neighborhood2/4

Neighborhood3/4

Neighborhood4/4

Fig. 10 Game with 178 moves when sampling the information from four sub-games [3]
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4.1 Experimental Results for MoGoTW

In order to evaluate the performance of the proposed approach in [1], we first invited
the human Go players with Dan level or Kyu level to play with the adaptive-ability

Ubuntu Linux OSWindows OS

Fig. 12 Diagram about programming code to the robot PALRO

Table 2 Comments on the
game [22]

• Black
The first 3 highest simulation numbers occurred at Moves B17
(3149), B67(3097), and B43(3097). The last 3 lowest
simulation numbers occurred at Moves B45(223), B77(231),
and B101(235). The information of estimated possible winning
rate: The highest winning rate is B13(52.38%), the lowest
winning rate is B105(18.31%), and the average winning rate is
37.86%. Top-move Rate is 90.62%
• White
The first 3 highest simulation numbers occurred at Moves W44
(3173), W68(3164), and W72(3157). The last 3 lowest
simulation numbers occurred at Moves W88(204), W28(229),
and W106(317). The information of estimated possible winning
rate: The highest winning rate is W104(81.89%), the lowest
winning rate is W12(48.37%), and the average winning rate is
62.25%. Top-move Rate is 82.81%

0 1 2-1-2 x

W++B++ U W+B+

µ
DSE

Fig. 11 Fuzzy sets for B++, B+, U, W+, and W++ [3]
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MoGoTW for 9 × 9 games from 2012 to 2013 via the open held human against
computer Go competitions at NUTN, IEEE WCCI 2012, and FUZZ-IEEE 2013 [2].
Second, all of the invited human Go players are Black and MoGoTW isWhite. Third,
each human player played five consecutive games for each round, but each human
player was encouraged to compete with MoGoTW as many rounds as possible.
The MCTS simulation number is adjusted after each game or after each move [1].

• Comparison Between T1 FS and T2 FS

The input data were divided into two parts, namely training data with 60 records
and testing data with 53 records. Because human’s certificated rank is an integer
and not every player’s performance is always expected as his/her certificated rank
during the competition, the desired output is adjusted according to the real game
situation, such as the searched maximum likelihood SN, WinningRate, and
GameWeight. MSE, 1-CS (Cosine Similarity), and accuracy are the adopted mea-
sures in [1]. Accuracy is computed by dividing the number of the positive matched
results over the number of total records. Table 3 indicates that T2 FS performs
better than T1 FS and proves that T2 FS has an advantage to handle the high
uncertainties in the world [1].

• Genetic Learning Performance Based on T2 FS

Figure 13 shows the before-learning and after-learningMSE curves for T1 FS and
T2 FS. NGEN is 1000, 2000, 4000, or 8000. The pair of crossover rate and mutation
rate is 0.75/0.05 and 0.65/0.1 for T1 FS and T2 FS, respectively. Observe Fig. 13
that: (1) Before learning, T2 FS performs better than T1 FS for both the training data
and the testing data. (2) Before learning, the testing data performs better than training
data, but after learning, MSE of training data is lower than MSE of testing data. This
proves that the genetic learning is effective for the application in. (3)MSE decreases
a lot after learning 1000 generations and the drop is much bigger for T1 FS than
T2 FS. (4) MSE has a tendency to reduce when number of generations is increased,
and MSE has an obvious drop when NGEN is 2000. Figures 14a–e show the
after-learning T2 FSs for fuzzy variables SN, Komi,WinningRate, GameWeight, and
Rank, respectively, when crossover rate = 0.65 and mutation rate = 0.1.

Table 3 Before-learning MSE, 1-CS, and accuracy based on T1 FS and T2 FS [1]

Measures T1 FS T2 FS
Training data Testing data Training data Testing data

MSE 0.44 0.34 0.33 0.26
1-CS 0.014 0.012 0.01 0.009
Accuracy (%) 86.6 94.3 91.6 94.3
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4.2 Experimental Results for DyNaDF Platform with FAIR
Open Source DarkForest

In order to evaluate the performance of the constructed DyNaDF platform with
FAIR open source DarkForest, we did the following steps: (1) the invited human
Go players surfed on the DyNaDF cloud platform to play with DarkForest located
in NUTN, NCHC, or OPU, (2) the game records on the Internet were downloaded
and fed into the DyNaDF cloud platform, (3) the predicted each-move information
was generated by DarkForest during playing, and (4) the each-move and final-move
current game situation was inferred by the proposed approaches in [3].

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Before Learning 1000 2000 4000 8000

M
SE

Tra. Data (T1FS) Tst. Data (T1FS)
Tra. Data (T2FS) Tst. Data (T2FS)

Training Data ( T1 FS)

Training Data ( T2 FS)

Testing Data ( T1 FS)

Testing Data ( T2 FS)

Fig. 13 Curves of MSE under different number of generations [1]
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Fig. 14 After-learning T2 FSs for fuzzy variables a SN, b Komi, c WinningRate, d GameWeight,
and e Rank under 0.65/0.1 [1]
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• FML-Based Prediction Agent

Table 4 shows the basic profile of the collected 7 games between Master and top
professional Go players in Jan. 2017 (G1–G7) and 3 games between AlphaGo and
Ke Jie in May 2017 (G8–G10) [13, 23]. We fed the collected game records
downloaded from the Internet into our developed DyNaDF open platform. Fig-
ure 15 shows the DarkForest-predicted winning rate for G1–G7 on Neighborhood
of fuzzy number Move-100, Neighborhood of fuzzy number Move-200, and
Neighborhood of fuzzy number Move-Last. Figure 15 also shows that DarkForest
successfully predicted that “machine won the game for G1–G7,” and “the winning
rate difference between machine and human is the smallest when G6 was already
played 100 moves” [3].

Table 4 Basic profile of collected 10 games [3, 13, 23]

Game No. Black/Level White/Level Date Winner

G1 Master Ke Jie/9P 2016/12/30 Black
G2 Ke Jie/9P Master 2016/12/30 White
G3 Master Yuta Iyama/9P 2017/1/2 Black
G4 Ke Jie/9P Master 2017/1/3 White
G5 Chun-Hsun Chou/9P Master 2017/1/4 White
G6 Master Weiping Nie/9P 2017/1/4 Black
G7 Gu Li/9P Master 2017/1/4 White
G8 Ke Jie/9P AlphaGo 2017/5/23 White
G9 AlphaGo Ke Jie/9P 2017/5/25 Black
G10 AlphaGo Ke Jie/9P 2017/5/27 Black
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Fig. 15 Winning rate curves for G1 to G7 [3]
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• PFML-Based Prediction Agent

The PFML-based prediction agent is to show the after-learning performance
based on the PSO and FML. We used Master’s 60 games in Jan. 2017 [23] as the
training data of PFML learning mechanism and then chose three games from “The
Future of Go Summit” [23], that is, Games 8–10 in Table 4, to test the learned
performance. The desired outputs of the training data were given by extracting the
domain experts’ knowledge from the book “Move of Master” published in Taiwan
[25]. We gave the desired output, including B++, B+, U, W+, and W++ to a specific
move and moves near its neighborhood by following Table 1. There are two
machines installed DyNaDF Platform with FAIR Open Source DarkForest:
including (1) NCHC (Tainan, Taiwan) with GeForce GTX 1080 × 4 and
(2) NUTN (Tainan, Taiwan) with Quadro K2200 × 1 and Quadro M2000 × 1.
We used these two machines to do the experiments for setting Number of simu-
lations to 20,000 and 3000, respectively.

Figure 16a shows before-learning and after-learning accuracy when we sampled
3 or 4 sub-games from the game to infer its final game result [3], where BL and AL
denote before learning and after learning, respectively; (2) MG1-5, MG1-10,
MG1-40, and MG1-60 denote that PFML-based prediction agent learned the domain
knowledge from Games 1-5, Games 1-10, Games 1-40, and Games 1-60 of Master
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Fig. 16 a Before-learning and after-learning accuracy for different sub-game sample and
b after-learning accuracy for different methods that give desired outputs
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Fig. 17 Accuracy when compared with a different machines and b G8-G10
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Table 5 Partial after-learning FML

⋮

⋮
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60 games in Jan. 2017, respectively. Observe Fig. 16a, it indicates that (1) after
learning performs better than before learning and (2) sampling game’s information
from four sub-games to infer the game result performs better than sampling from
three sub-games. Figure 16b shows that (1) learning the domain knowledge from
MG1-10 and MG1-60 gets the first and the second best performances, respectively,
and (2) on average, adopting Method 2 to giving desired output gets the better
performance than Method 1. Figure 17a shows that after learning, NUTN (Tainan,
Taiwan) machine gets better performance between NCHC (Tainan, Taiwan) one.
Figure 17b shows after learning, G9 has an impressive performance compared to the
other two games. Table 5 shows partial after-learning FML when we learned the
domain knowledge from MG1-10 and gave the desired outputs based on Method 2
listed in Table 1. Figures 18a–f show the after-learning fuzzy sets for fuzzy vari-
ables BSN, WSN, BWR, WWR, BSA, and WSA, respectively, when we adopted the
proposed PFML learning mechanism to learn 3000 generations with 20 particles.

5 Conclusions

Since 2009, IEEE Computational Intelligence Society (CIS) has helped to fund
human vs. computer Go competitions in the past IEEE CIS-flag conferences,
including the FUZZ-IEEE 2009, IEEE WCCI 2010, IEEE SSCI 2011, FUZZ-IEEE

Fig. 18 After-learning fuzzy sets for fuzzy variables a BSN, b WSN, c BWR, d WWR, e BSA and
f WSA
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2011, IEEE WCCI 2012, FUZZ-IEEE 2013, FUZZ-IEEE 2015, IEEE CIG 2015,
IEEE WCCI 2016, and FUZZ-IEEE 2017. IEEE SMC Society also funded the
special event of Human and Smart Machine Co-Learning in IEEE SMC 2017. The
handicaps for 19 × 19 board game have been decreased from 29 to 0 up to 2016.
In 2017, powerful computer Go programs such as AlphaGo and DeepZenGo are
expected to give top professional humans a few handicap stones to make for an
even match.

This chapter describes the research from T2 FS-based MoGoTW system to
Dynamic DarkForest (DyNaDF) for human and machine co-learning on Go. A T2
FS-based adaptive linguistic assessment system for semantic analysis and human
performance evaluation on game of Go was presented in [1]. Through playing
games between the invited human Go players and the computer program
MoGoTW, the proposed approach in [1] inferred the human’s rank according to the
collected simulation number of MCTS, the game’s komi setting, the winning rate,
number of consecutive winning games, and so on. In addition, a robotic prediction
agent was proposed [3]. The proposed FML-based decision support engine com-
puted the winning possibility based on DarkForest’s prediction and the partial game
situation inferred by FML assessment engine. In this chapter, we further combine
FML and particle swarm optimization (PSO) to learn the domain knowledge of
Master’s 60 games [23]. After learning, we use the proposed approaches in [3] to
infer the game results of the “Future of Go Summit in Wuzhen” in May 2017.

The experimental results show some conclusions as follows: (1) Before learning,
the proposed T2 FS-based adaptive linguistic assessment system performs better
than T1 FS-based one. (2) For the proposed T2 FS-based adaptive linguistic
assessment system, its after-learning results are better than its own before-learning
ones. (3) The type-2 system has a better ability than the type-1 system to handle the
real-world applications with a high-level uncertainty [5] even though T2 FS is not
always suitable for all of the situations. (4) Sampling game’s information from four
sub-games to infer the game result performs better than sampling from three
sub-games. (5) On average, adopting Method 2 listed in Table 1 to giving desired
output gets the better performance than Method 1. In the future, we will combine
the robot to learn together with Go players, include more data to validate the
learning performance, and generate play-comments on a game to highlight the
positional strategic plan followed by a player during a sequence of moves.
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Ordered Novel Weighted Averages

Dongrui Wu and Jian Huang

Abstract The novel weighted averages (NWAs) are extensions of the linear arith-

metic weighted average and are powerful tools in aggregating diverse inputs includ-

ing numbers, intervals, type-1 fuzzy sets (T1 FSs), words modeled by interval type-2

fuzzy sets, or a mixture of them. In contrast to the linear arithmetic weighted average,

the ordered weighed average (OWA) is a nonlinear operator that can implement more

flexible mappings, and hence it has been widely used in decision-making. In many

situations, however, providing crisp numbers for either the sub-criteria or the weights

is problematic (there could be uncertainties about them), and it is more meaningful

to provide intervals, T1 FSs, words, or a mixture of all of these, for the sub-criteria

and weights. Ordered NWAs are introduced in this chapter. They are also compared

with NWAs and Zhou et al’s fuzzy extensions of the OWA. Examples show that

generally the three aggregation operators give different results.

1 Introduction

The weighted average (WA) is arguably the earliest and still most widely used form

of aggregation or fusion. We remind the reader of the well-known formula for the

WA, i.e.,

y =
∑n

i=1 xiwi
∑n

i=1 wi
, (1)
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in which wi are the weights (real numbers) that act upon the sub-criteria xi (real

numbers). In this chapter, the term sub-criteria can mean data, features, decisions,

recommendations, judgments, scores, etc. In (1), normalization is achieved by divid-

ing the weighted numerator sum by the sum of all of the weights.

The arithmetic WA (AWA) is the one we are all familiar with and is the one

in which all sub-criteria and weights in (1) are real numbers. In many situations

[1–7], however, providing crisp numbers for either the sub-criteria or the weights

is problematic (there could be uncertainties about them), and it is more meaningful

to provide intervals, type-1 fuzzy sets (T1 FSs), words modeled by interval type-2

fuzzy sets (IT2 FSs), or a mixture of all of these, for the sub-criteria and weights.

The resulting WAs are called novel weighted averages (NWAs), which have been

introduced in [2, 3, 6].

The ordered weighted average (OWA) operator [8–16], a generalization of the lin-

ear WA operator, was proposed by Yager to aggregate experts’ opinions in decision

making:

Definition 1 An OWA operator of dimension n is a mapping y
OWA

∶ Rn → R, which

has an associated set of weights 𝐰 = {w1,… ,wn} for which wi ∈ [0, 1], i.e.,

y
OWA

=
∑n

i=1 wix𝜎(i)
∑n

i=1 wi
(2)

where 𝜎 ∶ {1,… , n} → {1,… , n} is a permutation function such that {x
𝜎(1), x𝜎(2),

… , x
𝜎(n)} are in descending order. ■

The key feature of the OWA operator is the ordering of the sub-criteria by value,

a process that introduces a nonlinearity into the operation. It can be shown that the

OWA operator is in the class of mean operators [17] as it is commutative, monotonic,

and idempotent. It is also easy to see that for any 𝐰, mini xi ≤ yOWA ≤ maxi xi.

The most attractive feature of the OWA operator is that it can implement different

aggregation operators by setting the weights differently [8], e.g., by setting wi = 1∕n
it implements the mean operator, by setting w1 = 1 and wi = 0 (i = 2,… , n) it

implements the maximum operator, by setting wi = 0 (i = 1,… , n − 1) and wn = 1
it implements the minimum operator, and by setting w1 = wn = 0 and wi = 1∕
(n − 1) it implements the so-called olympic aggregator, which is often used in obtain-

ing aggregated scores from judge in olympic events such as gymnastics and diving.

Yager’s original OWA operator [12] considers only crisp numbers. Again, in many

situations, it is more meaningful to provide intervals, T1 FSs, words modeled by IT2

FSs, or a mixture of all of these, for the sub-criteria and weights. Ordered NWAs

(ONWAs) are the focus of this chapter.

The rest of this chapter is organized as follows: Sect. 2 introduces the NWAs.

Section 3 proposes ONWAs. Section 4 compares ONWAs with NWAs and Zhou

et al’s fuzzy extensions of the OWA. Finally, conclusions are drawn in Sect. 5.
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2 Novel Weighted Averages (NWAs)

Definition 2 A NWA is a WA in which at least one sub-criterion or weight is not

a single real number, but instead is an interval, T1 FS or an IT2 FS, in which case

such sub-criteria or weights are called novel models. ■

How to compute (1) for these novel models is described in this section. Because

there can be four possible models for sub-criteria or weights, there can be 16 different

WAs, as summarized in Fig. 1.

Definition 3 When at least one sub-criterion or weight is modeled as an interval,

and all other sub-criteria or weights are modeled by no more than such a model, the

resulting WA is called an Interval WA (IWA). ■

Definition 4 When at least one sub-criterion or weight is modeled as a T1 FS, and

all other sub-criteria or weights are modeled by no more than such a model, the

resulting WA is called a Fuzzy WA (FWA). ■

Definition 5 When at least one sub-criterion or weight is modeled as an IT2 FS, the

resulting WA is called a Linguistic WA (LWA). ■

Definition 2 (Continued) By a NWA is meant an IWA, FWA or LWA. ■

In order to reduce the number of possible derivations from 15 (the AWA is

excluded) to three, it is assumed that: for the IWA all sub-criteria and weights are

modeled as intervals, for the FWA all sub-criteria and weights are modeled as T1

FSs, and for the LWA all sub-criteria and weights are modeled as IT2 FSs.

Fig. 1 Matrix of

possibilities for a WA
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2.1 Interval Weighted Average (IWA)

The IWA is defined as:

YIWA ≡

∑n
i=1 XiWi
∑n

i=1 Wi
= [l, r] (3)

where

Xi = [ai, bi] i = 1, ..., n (4)

Wi = [ci, di] i = 1, ..., n (5)

and YIWA is also an interval completely determined by its two end-points l and r,

l = min
xi∈Xi
wi∈Wi

∑n
i=1 xiwi

∑n
i=1 wi

= min
wi∈Wi

∑n
i=1 aiwi

∑n
i=1 wi

(6)

r = max
xi∈Xi
wi∈Wi

∑n
i=1 xiwi

∑n
i=1 wi

= max
wi∈Wi

∑n
i=1 biwi

∑n
i=1 wi

(7)

and they can easily be computed by the KM or EKM Algorithms [18–21].

Example 1 Suppose for n = 5, {xi}|i=1,...,5 = {5, 7.5, 7, 6.5, 2} and {wi}|i=1,...,5 =
{4, 2.5, 8, 1.8, 6}, so that the arithmetic WA y

AWA
= 5.31. Let 𝜆 denote any of these

crisp numbers. In this example, for the IWA, 𝜆 → [𝜆 − 𝛿, 𝜆 + 𝛿], where 𝛿 may be

different for different 𝜆, i.e.,

{xi}|i=1,...,5 → {[4.5, 5.5], [7.0, 8.0], [4.2, 9.8], [6.0, 7.0], [1.0, 3.0]}

{wi}|i=1,...,5 → {[2.8, 5.2], [2.0, 3.0], [7.6, 8.4], [0.9, 2.7], [5.0, 7.0]}.

It follows that YIWA = [3.49, 7.12]. The important difference between y
AWA

and Y
IWA

is

that the uncertainties about the sub-criteria and weights have led to an uncertainty

band for the IWA, and such a band may play a useful role in subsequent decision

making. ■

2.2 Fuzzy Weighted Average (FWA)

The FWA [2, 3, 22–27] is defined as:

YFWA ≡

∑n
i=1 XiWi
∑n

i=1 Wi
(8)
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(a) (b)

(c)

Fig. 2 𝛼-cuts on a Xi, b Wi, and, c YFWA

where Xi and Wi are T1 FSs, and YFWA is also a T1 FS. Note that (8) is an expressive
way to represent the FWA because it is not computed using multiplications, additions

and divisions, as expressed by it. Instead, it has been shown [2–4, 27] that the FWA

can be computed by using the 𝛼-cut Decomposition Theorem [28], where each 𝛼-cut

on YFWA is an IWA of the corresponding 𝛼-cuts on Xi and Wi.

Denote the 𝛼-cut on YFWA as [yL(𝛼), yR(𝛼)], and the 𝛼-cut on Xi and Wi as

[ai(𝛼), bi(𝛼)] and [ci(𝛼), di(𝛼)], respectively, as shown in Fig. 2. Then [2–4, 27],

yL(𝛼) = min
∀wi(𝛼)∈[ci(𝛼),di(𝛼)]

∑n
i=1 ai(𝛼)wi(𝛼)
∑n

i=1 wi(𝛼)
(9)

yR(𝛼) = max
∀wi(𝛼)∈[ci(𝛼),di(𝛼)]

∑n
i=1 bi(𝛼)wi(𝛼)
∑n

i=1 wi(𝛼)
(10)

yL(𝛼) and yR(𝛼) can be computed by the KM or EKM algorithms.

The following algorithm is used to compute YFWA:

1. For each 𝛼 ∈ [0, 1], the corresponding 𝛼-cuts of the T1 FSs Xi and Wi are first

computed, i.e., compute

Xi(𝛼) = [ai(𝛼), bi(𝛼)] i = 1, ..., n (11)

Wi(𝛼) = [ci(𝛼), di(𝛼)] i = 1, ..., n (12)

2. For each 𝛼 ∈ [0, 1], compute yL(𝛼) in (9) and yR(𝛼) in (10) using the KM or EKM

Algorithms.

3. Connect all left-coordinates (yL(𝛼), 𝛼) and all right-coordinates (yR(𝛼), 𝛼) to form

the T1 FS YFWA.
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Fig. 3 Illustration of a T1 FS used in Example 2
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Fig. 4 Example 2: a Xi, b Wi, and, c YFWA (solid curve), YOFWA (dashed curve) and YT1FOWA (dotted

curve)

Example 2 This is a continuation of Example 1 in which each interval is assigned a

symmetric triangular T1 FS that is centered at the mid-point (𝜆) of the interval, has

membership grade equal to one at that point, and is zero at the interval end-points

(𝜆 − 𝛿 and 𝜆 + 𝛿) (see the triangle in Fig. 3). The resulting Xi and Wi are plotted in

Fig. 4a and Fig. 4b, respectively. The FWA is depicted in Fig. 4c as the solid curve.

Although YFWA appears to be triangular, its sides are actually slightly curved.

The support of YFWA is [3.49, 7.12], which is the same as YIWA (see Example 1).

This will always occur because the support of YFWA is the 𝛼 = 0 𝛼-cut, and this is

YIWA. The T1 FS YFWA indicates that more emphasis should be given to values of

variable y that are closer to its apex, whereas the interval YIWA indicates that equal

emphasis should be given to all values of variable y in its interval. The former reflects

the propagation of the non-uniform uncertainties through the FWA, and can be used

in future decisions. ■
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(a) (b)

(c)

Fig. 5 a ̃Xi and an 𝛼-cut, b ̃Wi and an 𝛼-cut, and, c ̃YLWA and an 𝛼-cut

2.3 Linguistic Weighted Average (LWA)

The LWA is defined as:

̃YLWA ≡

∑n
i=1

̃Xi
̃Wi

∑n
i=1

̃Wi
(13)

where ̃Xi and ̃Wi are IT2 FSs, and ̃YFWA is also an IT2 FS. Again, (13) is an expressive
way to describe the LWA. To compute ̃YLWA, one only needs to compute its LMF

YLWA and UMF ̄YLWA.

Let Wi be an embedded T1 FS [19] of ̃Wi, as shown in Fig. 5b. Because in (13) ̃Xi
only appears in the numerator of ̃YLWA, it follows that

YLWA = min
∀Wi∈[Wi,

̄Wi]

∑n
i=1 XiWi
∑n

i=1 Wi
(14)

̄YLWA = max
∀Wi∈[Wi,

̄Wi]

∑n
i=1

̄XiWi
∑n

i=1 Wi
(15)
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The 𝛼-cut based approach [4, 5] is also used to compute YLWA and ̄YLWA. First, the

heights of YLWA and ̄YLWA need to be determined. Because all UMFs are normal T1

FSs, h
̄YLWA

= 1. Denote the height of Xi as hXi
and the height of Wi as hWi

. Let

hmin = min{min
∀i

hXi
,min

∀i
hWi

} (16)

Then [5], hYLWA
= hmin.

Let [ail(𝛼), bir(𝛼)] be an 𝛼-cut on ̄Xi, [air(𝛼), bil(𝛼)] be an 𝛼-cut on Xi [see Fig. 5a],

[cil(𝛼), dir(𝛼)] be an 𝛼-cut on ̄Wi, [cir(𝛼), dil(𝛼)] be an 𝛼-cut on Wi [see Fig. 5b],

[yLl(𝛼), yRr(𝛼)] be an 𝛼-cut on ̄YLWA, and [yLr(𝛼), yRl(𝛼)] be an 𝛼-cut on YLWA [see

Fig. 5c], where the subscripts l and L mean left and r and R mean right. The end-

points of the 𝛼-cuts on ̃YLWA are computed as solutions to the following four opti-

mization problems [4, 5]:

yLl(𝛼) = min
∀wi∈[cil(𝛼),dir(𝛼)]

∑n
i=1 ail(𝛼)wi
∑n

i=1 wi
, 𝛼 ∈ [0, 1] (17)

yRr(𝛼) = max
∀wi∈[cil(𝛼),dir(𝛼)]

∑n
i=1 bir(𝛼)wi
∑n

i=1 wi
, 𝛼 ∈ [0, 1] (18)

yLr(𝛼) = min
∀wi∈[cir(𝛼),dil(𝛼)]

∑n
i=1 air(𝛼)wi
∑n

i=1 wi
, 𝛼 ∈ [0, hmin] (19)

yRl(𝛼) = max
∀wi∈[cir(𝛼),dil(𝛼)]

∑n
i=1 bil(𝛼)wi
∑n

i=1 wi
, 𝛼 ∈ [0, hmin] (20)

(17)–(20) are again computed by the KM or EKM Algorithms.

Observe from (17), (18), and Figs. 5a and b that yLl(𝛼) and yRr(𝛼) only depend on

the UMFs of ̃Xi and ̃Wi, i.e., they are only computed from the corresponding 𝛼-cuts

on the UMFs of ̃Xi and ̃Wi; so,

̄YLWA =
∑n

i=1
̄Xi
̄Wi

∑n
i=1

̄Wi
. (21)

Because all ̄Xi and ̄Wi are normal T1 FSs, ̄YLWA is also normal. The algorithm for

computing ̄YLWA is:

1. Select appropriate m 𝛼-cuts for YLWA (e.g., divide [0, 1] into m − 1 intervals and

set 𝛼j = (j − 1)∕(m − 1), j = 1, 2, ...,m).

2. For each 𝛼j, find the corresponding 𝛼-cuts [ail(𝛼j), bir(𝛼j)] and

[cil(𝛼j), dir(𝛼j)] on Xi and Wi (i = 1, ..., n). Use a KM or EKM algorithm to find

yLl(𝛼j) in (17) and yRr(𝛼j) in (18).

3. Connect all left-coordinates (yLl(𝛼j), 𝛼j) and all right-coordinates (yRr(𝛼j), 𝛼j) to

form the T1 FS YLWA.
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Fig. 6 A flowchart for computing the LWA [2, 3, 5]

Similarly, observe from (19), (20), and Fig. 5a and b that yLr(𝛼) and yRl(𝛼) only

depend on the LMFs of ̃Xi and ̃Wi; hence,

YLWA =
∑n

i=1 XiWi
∑n

i=1 Wi

. (22)

Unlike ̄YLWA, which is a normal T1 FS, the height of YLWA is hmin, the minimum

height of all Xi and Wi. The algorithm for computing YLWA is:

1. Determine hXi
and hWi

, i = 1,… , n, and hmin in (16).

2. Select appropriate p 𝛼-cuts for YLWA (e.g., divide [0, hmin] into p − 1 intervals and

set 𝛼j = hmin(j − 1)∕(p − 1), j = 1, 2, ..., p).

3. For each 𝛼j, find the corresponding 𝛼-cuts [air(𝛼j), bil(𝛼j)] and

[cir(𝛼j), dil(𝛼j)] on Xi and Wi. Use a KM or EKM algorithm to find yLr(𝛼j) in

(19) and yRl(𝛼j) in (20).

4. Connect all left-coordinates (yLr(𝛼j), 𝛼j) and all right-coordinates (yRl(𝛼j), 𝛼j) to

form the T1 FS YLWA.

In summary, computing ̃YLWA is equivalent to computing two FWAs, ̄YLWA and

YLWA. A flowchart for computing YLWA and ̄YLWA is given in Fig. 6. For triangular or

trapezoidal IT2 FSs, it is possible to reduce the number of 𝛼-cuts for both YLWA and

̄YLWA by choosing them only at turning points, i.e., points on the LMFs and UMFs

of Xi and Wi (i = 1, 2, ..., n) at which the slope of these functions changes.
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Fig. 7 Illustration of the IT2 FS used in Example 3. The dashed lines are the corresponding T1

FS used in Example 2

Example 3 This is a continuation of Example 2 where each sub-criterion and weight

is now assigned an FOU that is for a 50% symmetrical blurring of the T1 MF

depicted in Fig. 3 (see Fig. 7). The left half of each FOU has support on the x (w)-

axis given by the interval of real numbers [(𝜆 − 𝛿) − 0.5𝛿, (𝜆 − 𝛿) + 0.5𝛿] and the

right-half FOU has support on the x-axis given by the interval of real numbers

[(𝜆 + 𝛿) − 0.5𝛿, (𝜆 + 𝛿) + 0.5𝛿]. The UMF is a triangle defined by the three points

(𝜆 − 𝛿 − 0.5𝛿, 0), (𝜆, 1), (𝜆 + 𝛿 + 0.5𝛿, 0), and the LMF is a triangle defined by the

three points (𝜆 − 𝛿 + 0.5𝛿, 0), (𝜆, 1), (𝜆 + 𝛿 − 0.5𝛿, 0). The resulting sub-criterion

and weight FOUs are depicted in Figs. 8a and b, respectively, and ̃YLWA is depicted

in Fig. 8c as the solid curve. Although ̃YLWA appears to be symmetrical, it is not.

Comparing Figs. 8c and 4c, observe that ̃YLWA is spread out over a larger range

of values than is YFWA, reflecting the additional uncertainties in the LWA due to the

blurring of sub-criteria and weights. This information can be used in future decisions.

Another way to interpret ̃YLWA is to associate values of y that have the largest

vertical intervals (i.e., primary memberships) with values of greatest uncertainty;

hence, there is no uncertainty at the three vertices of the UMF, and, e.g., for the

right-half of ̃YLWA uncertainty increases from the apex of the UMF reaching its largest

value at the right vertex of the LMF and then decreases to zero at the right vertex of

the UMF. ■

3 Ordered Novel Weighted Averages (ONWAs)

ONWAs, including ordered IWAs, ordered FWAs and ordered LWAs, are proposed

in this section.
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Fig. 8 Example 3: a ̃Xi, b ̃Wi, and, c ̃YLWA (solid curve), ̃YOLWA (dashed curve) and ̃YIT2FOWA (dotted

curve)

3.1 The Ordered Interval Weighted Average (OIWA)

As its name suggests, the OIWA is a combination of the OWA and the IWA.

Definition 6 An OIWA is defined as

YOIWA =
∑n

i=1 WiX𝜎(i)
∑n

i=1 W
𝜎(i)

(23)

where Xi and Wi are intervals defined in (4) and (5), respectively, and

𝜎 ∶ {1,… , n} → {1,… , n} is a permutation function such that {X
𝜎(1),X𝜎(2),… ,

X
𝜎(n)} are in descending order. ■

Definition 7 A group of intervals {Xi}n
i=1 are in descending order if Xi ⪰ Xj for ∀i <

j by a ranking method. ■

Any interval ranking method can be used to find 𝜎. In this chapter, we first com-

pute the center of each interval and then rank them to obtain the order of the corre-

sponding intervals. This is a special case of Yager’s first method [29] for ranking T1

FSs, where the T1 FSs degrade to intervals.

To compute YOIWA, we first sort Xi in descending order and call them by the same

name, but now X1 ⪰ X2 ⪰ ⋯ ⪰ Xn (Wi are not changed during this step); then, the

OIWA becomes an IWA.

Example 4 For the same crisp xi and wi used in Example 1, the OWA y
OWA

=
5.40, which is different from y

AWA
= 5.31. For the same interval Xi and Wi used in

Example 1, the OIWA Y
OIWA

= [4.17, 6.66], which is different from Y
IWA

=
[3.49, 7.12]. ■
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3.2 The Ordered Fuzzy Weighted Average (OFWA)

As its name suggests, the OFWA is a combination of the OWA and the FWA.

Definition 8 An OFWA is defined as

YOFWA =
∑n

i=1 WiX𝜎(i)
∑n

i=1 W
𝜎(i)

(24)

where Xi and Wi are T1 FSs, and 𝜎 ∶ {1,… , n} → {1,… , n} is a permutation func-

tion such that {X
𝜎(1),X𝜎(2),… ,X

𝜎(n)} are in descending order. ■

Definition 9 A group of T1 FSs {Xi}n
i=1 are in descending order if Xi ⪰ Xj for ∀i < j

by a ranking method. ■

Any T1 FS ranking method can be used to find 𝜎. In this chapter, Yager’s first

method [29] is used, which first computes the centroid of each T1 FS and then rank

them to obtain the order of the corresponding T1 FSs.

To compute YOFWA, we first sort Xi in descending order and call them by the same

name, but now X1 ⪰ X2 ⪰ ⋯ ⪰ Xn (Wi are not changed during this step); then, the

FWA algorithm introduced in Sect. 2.2 can be used to compute YOFWA.

Example 5 For the same T1 FSs Xi and Wi used in Example 2, the OFWA Y
OFWA

is

shown as the dashed curve in Fig. 4c, which is different from Y
FWA

[solid curve in

Fig. 4c]. ■

3.3 The Ordered Linguistic Weighted Average (OLWA)

As its name suggests, the OLWA is a combination of the OWA and the LWA.

Definition 10 An OLWA is defined as

̃YOLWA =
∑n

i=1
̃Wi
̃X
𝜎(i)

∑n
i=1

̃W
𝜎(i)

(25)

where 𝜎 ∶ {1,… , n} → {1,… , n} is a permutation function such that { ̃X
𝜎(1), ̃X𝜎(2),

… ,
̃X
𝜎(n)} are in descending order. ■

Definition 11 A group of IT2 FSs { ̃Xi}n
i=1 are in descending order if ̃Xi ⪰ ̃Xj for

∀i < j by a ranking method. ■
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Any IT2 FS ranking method can be used to find 𝜎. In this chapter, the centroid-

based ranking method [30] is used, which first computes the center of centroid of

each IT2 FS and then ranks them to obtain the order of the corresponding IT2 FSs.

To compute the OLWA, we first sort all ̃Xi in descending order and call them by

the same name, but now ̃X1 ⪰ ̃X2 ⪰ ⋯ ⪰ ̃Xn (note that ̃Wi are not changed during

this step); then, the LWA algorithm introduced in Sect. 2.3 can be used to compute

the OLWA.

Example 6 For the same IT2 FSs ̃Xi and ̃Wi used in Example 3, the OLWA ̃Y
OLWA

is shown as the dashed curve in Fig. 8c, which is different from ̃Y
LWA

[solid curve in

Fig. 8c]. ■

4 Other Fuzzy Extensions of the OWA

There has been many works on fuzzy extensions of the OWA, e.g., linguistic ordered

weighted averaging [31–34], uncertain linguistic ordered weighted averaging [35],

and fuzzy linguistic ordered weighted averaging [36]; however, for these extensions,

only the sub-criteria are modeled as T1 FSs whereas the weights are still crisp num-

bers. To the authors’ best knowledge, Zhou et al. [14–16] are the first to consider

fuzzy weights. Their approaches are introduced in this section for comparison pur-

poses.

4.1 T1 Fuzzy OWAs

Zhou et al. [15, 16, 37] defined a T1 fuzzy OWA (T1FOWA) as:

Definition 12 Given T1 FSs {Wi}n
i=1 and {Xi}n

i=1, the membership function of a

T1FOWA is computed by:

𝜇YT1FOWA
(y) = sup∑n

i=1 wix𝜎(i)
∑n

i=1 wi
= y

min(𝜇W1
(w1),… , 𝜇Wn

(wn), 𝜇X1
(x1),… , 𝜇Xn

(xn)) (26)

where 𝜎 ∶ {1,… , n} → {1,… , n} is a permutation function such that {x
𝜎(1), x𝜎(2),

… , x
𝜎(n)} are in descending order. ■

𝜇YT1FOWA
(y) can be understood from the Extension Principle [38], i.e., first all com-

binations of wi and xi whose OWA is y are found, and for the jth combination, the

resulting yj has a membership grade 𝜇(yj) which is the minimum of the correspond-

ing 𝜇Xi
(xi) and 𝜇Wi

(wi). Then, 𝜇YT1FOWA
(y) is the maximum of all these 𝜇(yj).
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YT1FOWA can be computed efficiently using 𝛼-cuts [14], similar to the way they are

used in computing the FWA. Denote YT1FOWA(𝛼) = [y′L(𝛼), y
′
R(𝛼)] and use the same

notations for 𝛼-cuts on Xi and Wi as in Fig. 2. Then,

y′L(𝛼) = min
∀wi(𝛼)∈[ci(𝛼),di(𝛼)]

∑n
i=1 a

𝜎(i)(𝛼)wi(𝛼)
∑n

i=1 wi(𝛼)
(27)

y′R(𝛼) = max
∀wi(𝛼)∈[ci(𝛼),di(𝛼)]

∑n
i=1 b

𝜎(i)(𝛼)wi(𝛼)
∑n

i=1 wi(𝛼)
(28)

y′L(𝛼) and y′R(𝛼) can also be computed using KM or EKM algorithms. Generally 𝜎

is different for different 𝛼 in (27) and (28), because for each 𝛼 the ai(𝛼) or bi(𝛼) are

ranked separately.

Generally the OFWA and the T1FOWA give different outputs, as indicated by the

following:

Theorem 1 The OFWA and the T1FOWA have different results when at least one
of the following two conditions occurs:

1. The left leg of Xi intersects the left leg of Xj, i ≠ j.
2. The right leg of Xi intersects the right leg of Xj, i ≠ j. ■

Proof: Because the proof for Condition 2 is very similar to that for Condition 1, only

the proof for Condition 1 is given here.

Assume the left leg of Xi intersects the left leg of Xj at 𝛼 = 𝜆 ∈ (0, 1), as shown

in Fig. 9. Then, ai(𝛼) > aj(𝛼) when 𝛼 ∈ [0, 𝜆) and ai(𝛼) < aj(𝛼) when 𝛼 ∈ (𝜆, 1].
For an 𝛼1 ∈ [0, 𝜆), y′L(𝛼1) in (27) is computed as

y′L(𝛼1) = min
∀wi(𝛼1)∈[ci(𝛼1),di(𝛼1)]

∑n
i=1 a

𝜎1(i)(𝛼1)wi(𝛼1)
∑n

i=1 wi(𝛼1)
(29)

where 𝜎1 ∶ {1,… , n} → {1,… , n} is a permutation function such that {a
𝜎1(1)(𝛼1),

x
𝜎1(2)(𝛼1),… , x

𝜎1(n)(𝛼1)} are in descending order. Because ai(𝛼1) > aj(𝛼1), it follows

that 𝜎1(i) < 𝜎1(j).
For an 𝛼2 ∈ (𝜆, 1], y′L(𝛼) in (27) is computed as

y′L(𝛼2) = min
∀wi(𝛼2)∈[ci(𝛼2),di(𝛼2)]

∑n
i=1 a

𝜎2(i)(𝛼2)wi(𝛼2)
∑n

i=1 wi(𝛼2)
(30)

where 𝜎2 ∶ {1,… , n} → {1,… , n} is a permutation function such that {a
𝜎2(1)(𝛼2),

a
𝜎2(2)(𝛼2),… , a

𝜎2(n)(𝛼2)} are in descending order. Because ai(𝛼2) < aj(𝛼2), it follows

that 𝜎2(i) > 𝜎2(j), i.e., 𝜎1 ≠ 𝜎2.
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Fig. 9 Illustration of

intersecting Xi and Xj

On the other hand, for YOFWA, no matter which ranking method is used, the per-

mutation function 𝜎 is the same for all 𝛼 ∈ [0, 1]. Without loss of generality, assume

Xj ⪰ Xi by a ranking method. Then, in (24) 𝜎(i) > 𝜎(j), and, for any 𝛼 ∈ [0, 1], yL(𝛼)
is computed as

yL(𝛼) = min
∀wi(𝛼)∈[ci(𝛼),di(𝛼)]

∑n
i=1 a

𝜎(i)(𝛼)wi(𝛼)
∑n

i=1 wi(𝛼)
(31)

Clearly, for any 𝛼 ∈ [0, 𝜆), yL(𝛼) ≠ y′L(𝛼) because 𝜎 ≠ 𝜎1. Consequently, the left legs

of YOFWA and YT1FOWA are different. ■
The following example illustrates Theorem 1.

Example 7 Xi and Wi shown in Figs. 4a and b are used in this example to illustrate

the difference between YT1FOWA and YOFWA. YT1FOWA is shown as the dotted curve

in Fig. 4c. Note that it is quite different from YOFWA [dashed curve in Fig. 4c]. The

difference is caused by the fact that the legs of X3 cross the legs of X1, X2 and X4,

which causes the permutation function 𝜎 to change as 𝛼 increases. ■

Finally, observe two important points from Theorem 1:

1. Only the intersection of a left leg with another left leg, or a right leg with another

right leg, would definitely lead to different YT1FOWA and YOFWA. The intersection

of a left leg with a right leg does not lead to different YT1FOWA and YOFWA, as

illustrated by Example 8.

2. Only the intersections of Xi may lead to different YT1FOWA and YOFWA. The inter-

sections of Wi have no effect on this because the permutation function 𝜎 does not

depend on Wi.

Example 8 Consider Xi shown in Fig. 10a and Wi shown in Fig. 10b. YFWA is shown

as the solid curve in Fig. 10c, YOFWA the dashed curve, and YT1FOWA the dotted curve

(the latter two are covered by the solid curve). Though Xi have some intersections,

YT1FOWA is the same as YOFWA because no left (right) legs of Xi intersect. ■

4.2 IT2 Fuzzy OWAs

Zhou et al. [16] defined the IT2 fuzzy OWA (IT2FOWA) as:
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Fig. 10 Example 8, where YFWA, YOFWA and YT1FOWA give the same result: a Xi, b Wi, and c YFWA
(solid curve), YOFWA (dashed curve) and YT1FOWA (dotted curve)

Definition 13 Given IT2 FSs { ̃Wi}n
i=1 and { ̃Xi}n

i=1, the membership function of an

IT2FOWA is computed by:

𝜇
̃YIT2FOWA

(y) =
⋃

∀We
i ,X

e
i

⎡
⎢
⎢
⎢
⎢
⎢
⎣

sup∑n
i=1 wix𝜎(i)
∑n

i=1 wi
= y

min(𝜇We
1
(w1),… , 𝜇We

n
(wn), 𝜇Xe

1
(x1),… , 𝜇Xe

n
(xn))

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(32)

where We
i and Xe

i are embedded T1 FSs of ̃Wi and ̃Xi, respectively, and 𝜎 ∶
{1,… , n} → {1,… , n} is a permutation function such that {x

𝜎(1), x𝜎(2),… , x
𝜎(n)} are

in descending order. ■

Comparing (32) with (26), observe that the bracketed term in (32) is a T1FOWA,

and the IT2FOWA is the union of all possible T1FOWAs computed from the embed-

ded T1 FSs of ̃Xi and ̃Wi. The Wavy Slice Representation Theorem [39] for IT2 FSs

is used implicitly in this definition.

̃YIT2FOWA can be computed efficiently using 𝛼-cuts, similar to the way they

were used in computing the LWA. Denote the 𝛼-cut on the UMF of ̃YIT2FOWA as

YOWA(𝛼) = [y′Ll(𝛼), y
′
Rr(𝛼)] for ∀𝛼 ∈ [0, 1], the 𝛼-cut on the LMF of ̃YIT2FOWA as

YOWA(𝛼) = [y′Lr(𝛼), y
′
Rl(𝛼)] for ∀𝛼 ∈ [0, hmin], where hmin is defined in (16). Using

the same notations for 𝛼-cuts on ̃Xi and ̃Wi as in Fig. 8, it is easy to show that
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y′Ll(𝛼) = min
∀wi(𝛼)∈[cil(𝛼),dir(𝛼)]

∑n
i=1 a

𝜎(i),l(𝛼)wi(𝛼)
∑n

i=1 wi(𝛼)
, 𝛼 ∈ [0, 1] (33)

y′Rr(𝛼) = max
∀wi(𝛼)∈[cil(𝛼),dir(𝛼)]

∑n
i=1 b

𝜎(i),r(𝛼)wi(𝛼)
∑n

i=1 wi(𝛼)
, 𝛼 ∈ [0, 1] (34)

y′Lr(𝛼) = min
∀wi(𝛼)∈[cir(𝛼),dil(𝛼)]

∑n
i=1 a

𝜎(i),r(𝛼)wi(𝛼)
∑n

i=1 wi(𝛼)
, 𝛼 ∈ [0, hmin] (35)

y′Rl(𝛼) = max
∀wi(𝛼)∈[cir(𝛼),dil(𝛼)]

∑n
i=1 b

𝜎(i),l(𝛼)wi(𝛼)
∑n

i=1 wi(𝛼)
, 𝛼 ∈ [0, hmin] (36)

y′Ll(𝛼), y′Rr(𝛼), y′Lr(𝛼) and y′Rl(𝛼) can also be computed using KM or EKM algorithms.

Because ̃YIT2FOWA computes the permutation function 𝜎 for each 𝛼 separately, gen-

erally 𝜎 is different for different 𝛼.

Generally the OLWA and the IT2FOWA give different outputs, as indicated by

the following:

Theorem 2 The OLWA and the IT2FOWA have different results when at least one
of the following four conditions occur:

1. The left leg of Xi intersects the left leg of Xj, i ≠ j.
2. The left leg of Xi intersects the left leg of Xj, i ≠ j.
3. The right leg of Xi intersects the right leg of Xj, i ≠ j.
4. The right leg of Xi intersects the right leg of Xj, i ≠ j. ■

The correctness of Theorem 2 can be easily seen from Theorem 1, i.e., Condition 1

leads to different yLl(𝛼) and y′Ll(𝛼) for certain 𝛼, Condition 2 leads to different yLr(𝛼)
and y′Lr(𝛼) for certain 𝛼, Condition 3 leads to different yRr(𝛼) and y′Rr(𝛼) for certain 𝛼,

and Condition 4 leads to different yRl(𝛼) and y′Rl(𝛼) for certain 𝛼. Example 9 illustrates

Theorem 2.

Example 9 ̃Xi and ̃Wi shown in Figs. 8a and b are used in this example to illustrate

the difference between ̃YOLWA and ̃YIT2FOWA. ̃YIT2FOWA is shown as the dotted curve

in Fig. 8c. Note that it is quite different from ̃YOLWA [dashed curve in Fig. 8c]. The

difference is caused by the fact that the legs of ̃X3 cross the legs of ̃X1, ̃X2 and ̃X4,

since the permutation function 𝜎 changes as 𝛼 increases. ■

Finally, observe also two important points from Theorem 2:

1. Only the intersection of a left leg with another left leg, or a right leg with another

right leg, would definitely lead to different ̃YIT2FOWA and ̃YOLWA. The intersection

of a left leg with a right leg may not lead to different ̃YIT2FOWA and ̃YOLWA, as

illustrated by Example 10.

2. Only the intersections of ̃Xi may lead to different ̃YIT2FOWA and ̃YOLWA. The inter-

sections of ̃Wi have no effect on this because the permutation function 𝜎 does not

depend on ̃Wi.
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Fig. 11 Example 10, where IT2FOWA and OLWA give the same result: a ̃Xi, b ̃Wi, and c ̃YLWA
(solid curve), ̃YOLWA (dashed curve) and ̃YIT2FOWA (dotted curve)

Example 10 Consider ̃Xi shown in Fig. 11a and ̃Wi shown in Fig. 11b. ̃YLWA is shown

as the solid curve in Fig. 11c, ̃YOLWA the dashed curve, and ̃YIT2FOWA the dotted curve

(the latter two are covered by the solid curve). Though ̃Xi have some intersections,

̃YIT2FOWA is the same as ̃YOLWA. ■

Example 11 In this final example, we compare the results of LWA, OLWA and

IT2FOWA when

{ ̃Xi}|i=1,...,4 → {Tiny, Maximum amount, Fair amount, Medium}
{ ̃Wi}|i=1,...,4 → {Small, Very little, Sizeable, Huge amount}.

where the word FOUs are depicted in Fig. 12a and b. They are extracted from the

32-word vocabulary in [2, 3, 40], which is constructed from actual survey data. The

corresponding ̃YLWA is shown in Fig. 12c as the solid curve, ̃YOLWA the dashed curve,

and ̃YIT2FOWA the dotted curve. Observe that they are different from each other. ■

4.3 Discussions

The T1 and IT2 fuzzy OWAs have been derived by considering each 𝛼-cut separately,

whereas the OFWA and OLWA have been derived by considering each sub-criterion

as a whole. Generally the two approaches give different results. Then, a natural ques-

tion is: which approach should be used in practice?

We believe that it is more intuitive to consider an FS in its entirety during ranking

of FSs. To the best of our knowledge, all ranking methods based on 𝛼-cuts deduce a

single number to represent each FS and then sort these numbers to obtain the ranks

of the FSs (see the Appendix). Each of these numbers is computed based only on
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Fig. 12 Example 11: a ̃Xi, b ̃Wi, and, c ̃YLWA (solid curve), ̃YOLWA (dashed curve) and ̃YIT2FOWA
(dotted curve)

the FS under consideration, i.e., no 𝛼-cuts on other FSs to be ranked are consid-

ered. Because in OFWA and OLWA the FSs are first ranked and then the WAs are

computed, they coincide with our “FS in its entirety” intuition, and hence they are

preferred in this chapter. Interestingly, this “FS in its entirety” intuition was also used

implicitly in developing the linguistic ordered weighted averaging [32], the uncertain

linguistic ordered weighted averaging [35], and the fuzzy linguistic ordered weighted

averaging [36].

5 Conclusions

In this chapter, ordered novel weighted averages, including ordered interval weighted

average, ordered fuzzy weighted average and ordered linguistic weighted average, as

wells as procedures for computing them, have been introduced. They were compared

with novel weighted averages and Zhou et al’s fuzzy extensions of the OWA. Exam-

ples showed that our ONWAs may give different results from Zhou et al’s extensions

when the legs of the FSs have intersections. Because our extensions coincide with

the “FS in its entirety” intuition, they are the suggested ones to use.

Ranking Methods for T1 FSs

Wang and Kerre [41–44] performed a very comprehensive study on ranking methods

for T1 FSs. They partitioned over 35 ranking methods for T1 FSs into three classes:

1. Class 1: Reference set(s) is (are) set up, and each T1 FS is mapped into a crisp

number based on the reference(s). The T1 FSs are then ranked according to the

corresponding crisp numbers.
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Table 1 Summary of ranking methods for T1 FSs. Note that for Classes 1 and 2, each T1 FS

is first mapped into a crisp number, and then these numbers are sorted to obtain the ranks of the

corresponding T1 FSs. For Class 3, the pairwise ranks are computed directly

Ranking method Equation used for ranking

Class 1

Jain’s method [45, 46] fJ(Ai) = sup
x

min(𝜇Amax,J
(x), 𝜇Ai

(x)), where 𝜇Amax,J
(x) =

(
x

xmax

)k
, in

which k > 0 and xmax is the right end of the x domain

Chen’s method [47] fC(Ai) = [R(Ai) + 1 − L(Ai)]∕2, where

R(Ai) = sup
x

min(𝜇Amax,C
(x), 𝜇Ai

(x)),

L(Ai) = sup
x

min(𝜇Amin,C
(x), 𝜇Ai

(x)), 𝜇Amax,C
(x) =

(
x−xmin

xmax−xmin

)k
,

𝜇Amin,C
(x) =

(
xmax−x

xmax−xmin

)k
, k > 0, and xmin is the left end of the x

domain

Kim and Park’s method [48] fKP(Ai) = khAi∩Amax,KP
+ (1 − k)(1 − hAi∩Amin,KP

), where k ∈ [0, 1],
hAi∩Amax,KP

is the height of Ai ∩ Amax,KP, 𝜇Amax,KP
(x) = x−xmin

xmax−xmin
, and

𝜇Amin,KP
(x) = xmax−x

xmax−xmin

Class 2
Let Ai𝛼 be an 𝛼-cut of a T1 FS Ai

Adamo’s method [49] fA(Ai) = r(Ai𝛼), where r(Ai𝛼) is the right end of Ai𝛼 , and 𝛼 can be

any user-chosen number in (0, 1]

Yager’s first method [29] fY (Ai) =
∫

1
0 x𝜇Ai

(x)dx

∫
1
0 𝜇Ai

(x)dx
, where the domain of x is constrained in

[0, 1]
Yager’s second method

[50, 51]

fY (Ai) = ∫
hAi
0 m(Ai𝛼)d𝛼, where hAi

is the height of Ai, and m(Ai𝛼) is

the center of Ai𝛼

Fortemps and Roubens’

method [52]

fFR(Ai) =
1

hAi
∫

hAi
0 [r(Ai𝛼) − l(Ai𝛼)]d𝛼, where l(A

𝛼

) is the left end of

Ai𝛼

Class 3
dH(Ai,Aj) ≡ ∫X[𝜇Ai

(x) − 𝜇Aj
(x)]dx, Al

and Au
are T1 FSs defined as

𝜇Al (x) ≡ sup
y≤x

𝜇Ai
(y), 𝜇Au (x) ≡ sup

y≥x
𝜇Ai

(y)

m̃ax(A,B) and ̃min(A,B) are T1 FSs defined as

𝜇m̃ax(A,B)(x) = sup
x=u∨v

[𝜇A(u) ∨ 𝜇B(v)]

𝜇
̃min(A,B)(x) = sup

x=u∧v
[𝜇A(u) ∧ 𝜇B(v)]

Nakamura’s method [53] r(Ai,Aj) =
kdH(Al

i,
̃min(Al

i,A
l
j)) + (1 − k)dH(Au

i ,
̃min(Au

i ,A
u
j ))

kdH(Al
i,A

l
j) + (1 − k)dH(Au

i ,A
u
j )

Kolodziejczyk’s method

[54]

r(Ai,Aj) =
dH(Al

i,
̃min(Al

i,A
l
j)) + dH(Au

i ,
̃min(Au

i ,A
u
j )) + dH(Ai ∩ Aj, ∅)

dH(Al
i,A

l
j) + dH(Au

i ,A
u
j ) + 2dH(Ai ∩ Aj, ∅)

Saade and Schwarzlander’s

method [55]

r(Ai,Aj) = dH(Al
i, m̃ax(Al

i,A
l
j)) + dH(Au

i , m̃ax(Au
i ,A

u
j ))
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2. Class 2: A function f (Ai) is used to map a T1 FS Ai to a crisp number, which can

then be ranked. No reference set(s) is (are) used in the mapping.

3. Class 3: T1 FSs Ai (i = 1,… ,M) are ranked through pairwise comparisons.

They then proposed seven reasonable properties that a ranking method should sat-

isfy [41]. Some simple ranking methods, which are also the most reasonable ones

according to the seven properties [41, 42], are summarized in Table 1.
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On the Comparison of Model-Based
and Model-Free Controllers in Guidance,
Navigation and Control of Agricultural
Vehicles
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and Wouter Saeys

Abstract In a typical agricultural field operation, an agricultural vehicle must be

accurately navigated to achieve an optimal result by covering with minimal over-

lap during tillage, fertilizing and spraying. To this end, a small scale tractor-trailer

system is equipped by using off the shelf sensors and actuators to design a fully

autonomous agricultural vehicle. To alleviate the task of the operator and allow him

to concentrate on the quality of work performed, various systems were developed for

driver assistance and semi-autonomous control. Real-time experiments show that a

controller, which gives a satisfactory trajectory tracking performance for a straight

line, gives a large steady-state error for a curved line trajectory. On the other hand,

if the controller is aggressively tuned to decrease the tracking error for the curved

lines, the controller gives oscillatory response for the straight lines. Although exist-

ing autonomous agricultural vehicles use conventional controllers, learning control

algorithms are required to handle different trajectory types, environmental uncer-

tainties, such as variable crop and soil conditions. Therefore, adaptability is a must

rather than a choice in agricultural operations. In terms of complex mechatronics

systems, e.g. an agricultural tractor-trailer system, the performance of model-based
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and model-free control, i.e. nonlinear model predictive control and type-2 neuro-

fuzzy control, is compared and contrasted, and eventually some design guidelines

are also suggested.

1 Introduction

Agriculture is the oldest, and also still the most important, economic activity of the

modern humankind society. Archaeological excavations show that we, as humankind,

started this thrilling adventure approximately 11,500 years ago. This decision was

not only to stop being hunters and gatherers but also to start adapting the nature to

our needs instead of only adapting ourselves to the facts of the wild life. This adven-

ture started with wild barley, wheat and lentils in the South Asia (Fertile crescent and

Chogha Golan) [1–3]. Our new skill, the skill of dealing with the soil and growing

domestic plants instead of eating only wild ones, was the first step of our civilization

which caused a domino effect such as paving the way for living as clans in villages

and even the rise of complex religions.

Whereas average life expectancy was around 25 years in the Paleolithic and

Neolithic eras, thanks to modern medicine, in particular Alexander Fleming who dis-

covered penicillin, it has reached to 80 years in the last century [4]. In other words,

our world is constantly being overcrowded. According to the United Nations Food

and Agriculture Organization (FAO), our world has to double food production by

2050 to meet rising demand. Since it is an obvious fact that we can no longer clear

more forest, one of the possible solutions is to increase the overall agricultural pro-

duction efficiency among which the application of intelligent agricultural vehicles.

Considering the high demand for increased efficiency, productivity and safety

in farming operations, a precise trajectory tracking is needed for agricultural vehi-

cles to improve quality meanwhile reducing cost. When the motivations are care-

fully examined, the following requirements can be identified for an autonomous pro-

duction machine, such as a tractor-trailer system: smart (intelligent) and productive

(automation). In light of these aforementioned conditions, theoretical and practical

control and design methods, i.e. model-free and model-based methods, are proposed

throughout this article.

1.1 Role of Robots in Agriculture

Agriculture is not only a vital economic activity of a civilized society but also a

necessity for our survival. Therefore, technological developments have always been

playing an important role to make the most of our land even in challenging geograph-

ical locations. Our aim has always been to use our land in a more efficient way under

significant climate and pre-assumed meteorological conditions.
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The use of production machines and intelligent vehicles in agriculture is always

promising as it allows us to make simultaneous operations that cannot be performed

by a human operator. For instance, when working with an agricultural machine (e.g.
combine harvester), apart from navigating the machine, the operator must also super-

vise the work performed by the machine. To be a skilled operator, even for a particu-

lar agricultural production machine, is not sufficient since the operator must always

adapt the machine settings due to time-varying crop and soil characteristics as well

as environmental conditions. Switching paying attention to between the steering and

the machine control results in an increase in the deviation from the optimal path in

practice. To alleviate the task of the operator and allow him to concentrate on the

quality of work performed, provision of some autonomous functions to an agricul-

tural vehicle is the main task of the robotic system. In this respect, a driver assistance

and semi-autonomous control system for an agricultural robot will be developed in

this article. To dispose a fully autonomous system, a tractor is equipped with off

the shelf actuators and sensors to achieve the aforementioned goals. On behalf of

an operator, the developed advanced learning control algorithms are implemented in

real-time to deal with changing soil conditions as well as longitudinal speed. All the

aforementioned challenges tell us the same thing: adaptability is a must rather than
a choice.

1.2 Why Do We Need Agricultural Robots?

There are at least four reasons that ensure the necessity of using autonomous agri-

cultural vehicles in the future:

1. Constantly rising energy and labor costs (need for efficient machines)

2. Continuously adapt the machine settings (multitasking)

3. Maintain the fixed performance and accuracy (a human operator may get bored

or tired after some time especially under challenging working conditions, e.g.
under hot and sunny conditions)

4. Not possible to increase the size of the machines (limited road capacity)

1.3 What Are the Requirements of the Agricultural Vehicles?

Without exception, all agricultural operations have a strict requirement: accurate

navigation. For instance, throughout tillage, fertilizing and spraying, the production

machine must be operated with a high accuracy to avoid overlapping field operations.

The field rows must be nicely parallel and evenly distributed so that for example the

weed rows can be easily driven between them. In fact, this requirement is challenging
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as it can be observed that there is always considerable overlap and variation in plant

distances in the field even in manual operation. The reason is that these vehicles have

to operate in hilly, bumpy and sometimes muddy off-road conditions as well as they

generally have to deal with thew dynamics of a trailer.

1.4 Literature Review

The first harvesting robot was introduced in The United States of America to harvest

citrus [5]. After this successful implementation, it was also used to harvest apples in

France in 1985 [6]. 2009, a robotic arm, which is capable of harvesting asparagus,

was developed by the Industrial Technology Center of Nagasaki in Japan [7]. After-

wards, in 2011, a prototype robotic platform, which has the ability to detect spheri-

cal fruits by benefiting from image processing, was developed in [8]. It is concluded

that the proposed platform can increase the overall efficiency by reducing the spent

time for harvesting. As a vision-based method, in another study, detection of red and

bicoloured apples on tree with an RGB-D camera has been reported [9]. Further-

more, an agribot has been developed by Birla Institute of Technology and Science to

minimize the labor of farmers and increase the accuracy of the work [10]. As can be

seen from the previous implementations, there have existed significant research and

development in agricultural robotics. One of the most challenging tasks is to guide

the mobile robotic platforms accurately on different soil conditions.

The main goal of guidance of agricultural vehicles is to drive the vehicle on an

agricultural field for specific purposes by keeping it as close as to the target trajec-

tory. There are numerous implementations of multitasking path planning for multi-

vehicle cases [11, 12]. In one of them, the path planning is carried out just for one

vehicle, leading vehicle, the rest of the vehicles follow it by ensuring the desired rel-

ative distances. A master-slave navigation system has been proposed in [13] where

the automated slave vehicle always follows the master vehicle whether the master

vehicle is autonomous or not. Another stable controller for a four-wheel mobile

robot to track between rows on a field has been designed in [14] while a nonlin-

ear model predictive controller has been proposed for a tractor-trailer system in [15].

Moreover, online learning algorithms have been integrated into control algorithms.

A fuzzy controller has been designed where its membership functions (MFs) have

been adapted to changing working conditions [16]. However, this paper was lack of

analyzing the robustness of the proposed learning algorithm considering different

environment conditions. A guidance method based on a grid map of the agricul-

tural field has been proposed in [12] in which the grid information is used to make

a feasible path from the starting point of the vehicle to the desired destination in

the field. Moreover, an autonomous orchard vehicle has been developed to help fruit

production in which the perception system is based on global positioning system and

a two-dimensional laser scanner [17]. It can be concluded from all previous studies
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that learning algorithms must be used to design a controller for the purpose of guid-

ance regarding different working conditions to obtain accurate trajectory tracking

performance. After giving the design details of the autonomous agricultural vehicle,

whereas we will elaborate different control algorithms to accurately navigate the

agricultural vehicle under certain uncertainties in the working environment, inter-

ested readers may refer to [18] for a detailed analysis about the role of global navi-

gation satellite systems (GNSSs) in the navigation strategies of agricultural robots.

Amongst the two well-known inference methods, as a learning model-free con-

troller, Takagi-Sugeno-Kang (TSK) fuzzy structure has significant advantages over

its Mamdani counterpart as it has tunable weights on the consequent part of the rules

which allows us to update them using appropriate optimization algorithms [19]. Con-

sequently, they are preferred in real-time application where the working conditions

vary over the operation. What is more, TSK models are computationally more effi-

cient. Considering the recent advances and proved capabilities of type-2 fuzzy logic

controllers (T2FLCs) over their type-1 counterparts [20–26], we prefer to use a TSK

T2FLC to handle uncertainties in the autonomous tractor-trailer system in this paper.

On the other hand, as a model-based approach, a nonlinear model predictive con-

troller (NMPC) is preferred as an advanced control algorithm. Some parameters are

estimated using a nonlinear moving horizon estimator (NMHE), and fed to the model

which is being used by the NMPC. The overall scheme is a learning model-based

controller.

Model-based and model-free control approaches are compared and contrasted

for wet clutch control problem [27]. However, the parameter update strategy in the

model-free approaches considered in [27], genetic-based machine learning and rein-

forcement learning, are different than the method used in this paper. For instance,

whereas agents take actions in an environment to maximize a cumulative reward

in reinforcement learning, Lyapunov stability-based learning rules are used in the

type-2 fuzzy structure in this paper which are shown to be stable using a candidate

Lyapunov function.

1.5 Motivation

In terms of complex mechatronics systems, the performance of model-based and

model-free control, i.e. nonlinear model predictive control and type-2 neuro-fuzzy

control, is compared and contrasted by means of their design and implementation

simplicity and efficiency. Moreover, some design guidelines are also suggested for

the control complex mechatronic systems where there exist more than

one subsystem.
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1.6 Organization of the Paper

Section 2 gives the system description of the tractor-trailer system. Section 3 explains

the self learning model-free and model-based algorithms; some guidelines for a con-

troller design selection are also suggested. Finally, some conclusions are drawn from

this study in Sect. 4.

2 Prototyped Autonomous Agricultural Vehicle

In order to be used during tillage, fertilizing or spraying, a small scale tractor with

a trailer shown in Fig. 1 is equipped with relatively cheap sensors resulting in a

fully autonomous agricultural ground robotic system. The main expectation from

the designed vehicle is to follow a predetermined trajectory in outdoor environment

with a high accuracy to decrease overlap during agricultural operations.

2.1 Localization

Localization and positioning systems are broadly categorized into two groups: local

and global. Whereas image processing, lazer, etc. belong to local positioning sys-

tems, global positioning systems make use of satellite systems. Thanks to the recent

developments in the field of GNSSs we have up to cm accuracy in real-time kine-

matic (RTK) GNSSs to navigate our tractor-trailer system precisely.

The requirements are to model the system, identify its parameters and design

learning controllers for the system shown in Fig. 1. As this tractor has hydraulic

wheel and steering, and is four-wheel-drive, it is representative for many modern

agricultural vehicles. The most suitable places for mounting GNSS antennas for the

tractor and trailer are the tractor rear axle center and the trailer rear axle center,

respectively. Since the horizontal accuracy for civilian GPS is still around 4 meter,

we have decided to use RTK differential GPS (DGPS) in our system. The resulting

accuracy is 0.03 m according to the specifications of the manufacturer. In order to

receive the correction signals via internet, we have preferred Flepos network by using

a Digi Connect WAN 3G modem.

As the real-time controller, PXI platform (National Instruments Corporation,

Austin, TX, USA) is selected. The GNSS and the modem are connected to the real-

time controller via serial connection. The main responsibility of the real-time con-

troller is to receive and process all the necessary sensory data, such as steering angles,

GNSS measurements, etc., and to generate the control signals for the tractor and
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Fig. 1 The tractor-trailer system

trailer actuators separately. The control algorithms are implemented in LabVIEWTM

version 2011 (National Instruments, Austin, TX, USA). The working frequency of

the overall control system is chosen as 5-Hz.

2.2 Steering Mechanisms

We have preferred to use a potentiometer, which is mounted on the front axle, to

measure the tractor front wheel angle. An inductive sensor is used to measure the

angle between the trailer and its drawbar. Both sensors have 1◦ precision. The rpm

of the diesel engine has been measured by using a hall effect sensor (Hamlin, USA)

which is connected to the shaft between the diesel engine and oil pump. Figure 2

shows the potentiometers and the hydrostat spindle actuator.

Low level controllers, proportional-integral (PI) controllers, generate the voltage

for the electro-hydraulic valves based on the difference between the reference and

measured steering angles. The longitudinal velocity of the tractor is measured by

encoders mounted on the rear wheels of the tractor. A low level controller (PID) gen-

erates the voltage for the spindle actuator (LINAK A/S, Silkeborg, Denmark) taking

into account the difference between the reference and measured pedal positions. The

pedal position is measured by a magnetic sensor.
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Fig. 2 Trailer actuator (top right), potentiometer (bottom left) and hydrostat spindle actuator (bot-

tom right)

3 Self-learning Control Algorithms

The current commercial systems use simple controllers to minimize the deviation

from the target path by adjusting the steering angle. These systems work well for the

following straight lines under uniform soil conditions with a constant speed. How-

ever, when the soil conditions or speed change, the controllers must be tuned again.

Furthermore, they use independent controllers for the absolute steering of the trac-

tor and the relative steering of the trailer. Since both controllers will exhibit selfish

behavior, this often leads to a sub-optimal result, especially for curved target paths

in which the steering action of the tractor works against that of the trailer.

As a solution to the selfish behavior of the decentralized and static control algo-

rithms, self-learning controllers have been designed in this investigation. A learning
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Fig. 3 Block diagram of the model-free controller

control algorithm, no matter it is model-based or model-free, is more than welcome

as it will adapt itself against the parameter, crop and soil condition variations.

3.1 Model-Free Learning: Type-2 Fuzzy Neural Network
Control

The proposed control scheme used in this part of the study is illustrated in Fig. 3.

Since we have realized that the performance progress comes more from the yaw

dynamics control accuracy of the overall control system, we have preferred to use

only a conventional proportional-integral-derivative (PID) controller for the longitu-

dinal dynamics, and design the intelligent model-free controller for the yaw dynam-

ics. In the yaw dynamics control, a PD controller is used to guarantee the stability of

the system during the initial learning. After a finite time, a type-2 fuzzy neural net-

work (T2FNN) takes the control responsibility of the system, and the output of the

PD controller goes to zero. Such a control scheme is called feedback error learning

[28]. Thanks to the model-free structure of the controller, the dynamics and inter-

actions between the subsystems are learnt online, and the optimal control signal is

applied to the system. An outer loop for both the x and the y axes is also designed to

correct the trajectory following errors on the relevant axes.

In the designed T2FLC, a triangular MF is preferred. There are two different

approaches to construct type-2 triangular MFs. One is to blur the width of the MF

Fig. 4a while the other is to blur the center of the MF Fig. 4a. In Fig. 4, the red line

represents the upper MF, and the blue line shows the lower MF. Their corresponding

membership values are 𝜇(x) and 𝜇(x), respectively.

The strength of the rule Rij is calculated as a T-norm of the MFs in the premise

part by using a multiplication operator:

Wij = 𝜇1i(x1) 𝜇2j(x2) and Wij = 𝜇1i(x1) 𝜇2j(x2) (1)
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Fig. 4 A type-2 fuzzy triangular MF with uncertain width (a) and uncertain center (b)

The type-2 fuzzy triangular membership values 𝜇1i(x1), 𝜇1i(x1), 𝜇2j(x2), and

𝜇2j(x2) of the inputs x1 and x2 in the above expression have the following appear-

ance:

𝜇1i(x1) =
⎧
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⎨
⎪
⎩
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|
|
|
|
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|
|
|
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0 otherwise
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Since we do not prefer to use an iterative type-reduction method in this paper, we

prefer to use an approximated model of a type-2 fuzzy logic system which is denoted

as A2-C0 fuzzy system. The rationale is to be able to use an optimization algorithm,

which is a sliding mode control theory-based one in this paper, to tune the antecedent

and consequent parameters. The fuzzy If-Then rule is defined as follows:

Rij ∶ If x1 is Ã1i and x2 is Ã2j, then fij = dij (3)
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The output of the network is calculated as follows:

𝜏n = ∫W11𝜖[W11,W11]
…∫WIJ𝜖[WIJ ,WIJ ]

1
/∑I

i=1
∑J

j=1 Wij(x)fij
∑I

i=1
∑J

j=1 Wij(x)
(4)

where fij is given by the If-Then rule. The inference engine used in this paper replaces

the type-reduction which is given as:

𝜏n =
q(t)

∑I
i=1

∑J
j=1 Wijfij

∑I
i=1

∑J
j=1 Wij

+

(
1 − q(t)

)∑I
i=1

∑J
j=1 Wijfij

∑I
i=1

∑J
j=1 Wij

(5)

The design parameter q, weights the sharing of the lower and the upper firing lev-

els of each fired rule. After the normalization of (5), the output signal of the T2FNN

will obtain the following form:

𝜏n = q(t)
I∑

i=1

J∑

j=1
fijW̃ij +

(
1 − q(t)

) I∑

i=1

J∑

j=1
fij
̃Wij (6)

where W̃ij and
̃Wij are the normalized values of the lower and the upper output signals

of the neuron ij::

W̃ij =
Wij

∑I
i=1

∑J
j=1 Wij

and
̃Wij =

Wij
∑I

i=1
∑J

j=1 Wij

The following vectors can be specified:

W̃ (t) =
[
W̃11 (t) W̃12 (t)… W̃21 (t) … W̃ij (t) … W̃IJ (t)

]T

̃W (t) =
[
̃W11 (t)

̃W12 (t)…
̃W21 (t) … ̃Wij (t) … ̃WIJ (t)

]T

F = [f11 f12 … f21 … fij … fIJ]

The following assumptions have been used in this investigation: Both the input sig-

nals x1(t) and x2(t), and their time derivatives can be considered bounded:

|x1(t)| ≤ B̃x, |x2(t)| ≤ B̃x ∀t (7)

|ẋ1(t)| ≤ B̃ẋ, |ẋ2(t)| ≤ B̃ẋ ∀t (8)
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where B̃x and B̃ẋ are assumed to be some known positive constants. It is obvious that

0 < W̃ij ≤ 1 and 0 <
̃Wij ≤ 1. In addition, it can be easily seen that

∑I
i=1

∑J
j=1 W̃ij = 1

and
∑I

i=1
∑J

j=1
̃Wij = 1. It is also considered that, 𝜏 and �̇� will be bounded signals too,

i.e.
|𝜏(t)| < B

𝜏
, |�̇� (t)| < B

�̇�
∀t (9)

where B
𝜏

and B
�̇�

are some known positive constants.

3.1.1 Proposed Sliding Mode Control (SMC) Theory-Based Learning
Algorithm

The zero value of the learning error coordinate 𝜏c (t) can be defined as a time-varying

sliding surface, i.e.,

Sc
(
𝜏n, 𝜏

)
= 𝜏c (t) = 𝜏n (t) + 𝜏 (t) = 0 (10)

The sliding surface is defined as follows:

Sp (e, ė) = ė + 𝜒e (11)

where 𝜒 is a positive constant which defines the slope of the sliding surface.

Definition A sliding motion will appear on the sliding manifold Sc
(
𝜏n, 𝜏

)
= 𝜏c (t) =

0 after a time th, if the condition Sc(t)Ṡc(t) = 𝜏c (t) �̇�c (t) < 0 is satisfied for all t in

some nontrivial semi-open subinterval of time of the form
[
t, th

)
⊂

(
0, th

)
.

3.1.2 Proposed Parameter Update Rules for the T2FNN

Theorem 1 If the adaptation laws for the parameters of the considered T2FNN are
chosen as [28]:

ċ1i = ċ1i = ċ1i = ẋ1 (12)

ċ2j = ċ2j = ċ2j = ẋ2 (13)

ḋ1i = 𝜇1i

−𝛼d1i2

x1 − c1i
sgn(𝜏c)sgn

(
x1 − c1i
d1i

)

(14)

ḋ1i = 𝜇1i
−𝛼d1i

2

x1 − c1i
sgn(𝜏c)sgn

(
x1 − c1i
d1i

)

(15)
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ḋ2j = 𝜇2j

−𝛼d2j2

x2 − c2j
sgn(𝜏c)sgn

(x2 − c2j
d2j

)

(16)

ḋ2j = 𝜇2j
−𝛼d2j

2

x2 − c2j
sgn(𝜏c)sgn

(x2 − c2j
d2j

)

(17)

̇fij = −

(
q(t)W̃ij +

(
1 − q(t)

)̃Wij

)
𝛼sgn(𝜏c)

(
q(t)W̃ +

(
1 − q(t)

) ̃W
)T(

q(t)W̃ +
(
1 − q(t)

) ̃W
) (18)

q̇(t) = −
𝛼sgn(𝜏c)

F(W̃ − ̃W)T
(19)

where 𝛼 is a sufficiently large positive design constant satisfying the inequality

below:

𝛼 > B
�̇�

(20)

Then, given an arbitrary initial condition 𝜏c(0), the learning error 𝜏c(t) will converge

to zero within a finite time th.

Proof The reader is referred to [28].

The relation between the sliding line Sp and the zero adaptive learning error level Sc
is determined by the following equation:

Sc = 𝜏c = kDė + kPe = kD

(

ė +
kp
kD

e
)

= kDSp (21)

The tracking performance of the feedback control system can be analyzed by

introducing the following Lyapunov function candidate:

Vp =
1
2
S2p (22)

Theorem 2 If the adaptation strategy for the adjustable parameters of the T2FNN
is chosen as in (12)–(19), then the negative definiteness of the time derivative of the
Lyapunov function in (22) is ensured.

Proof The reader is referred to [28].

Remark The obtained result means that, assuming that the SMC task is achievable,

using 𝜏c as a learning error for the T2FNN together with the adaptation laws (12)–

(19) enforces the desired reaching mode followed by a sliding regime for the system

under control.
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3.1.3 Experimental Results for the Model-Free Controller

Even if such a trajectory is not common in a typical agricultural operation, an 8-

shaped time-based trajectory is preferred in this investigation. The simple reason

behind such a trajectory is to be able to elaborate the performance of the intelligent

model-free controller both for straight and curved lines.

As can be seen from Figs. 5a–c, the proposed model-free control scheme con-

sisting of a T2FNN working in parallel with a conventional controller gives a better

trajectory following accuracy than the one where only a PD controller acts alone.

One can claim that the same performance can be obtained by further tuning the con-

ventional controller. However, when there exists more than one subsystem as well

as the changing parameters of the system model and the variations in working con-

ditions (soil and crop variability), this task is not straightforward.

In order to show the adaptability capability of the proposed scheme, we show

the difference between the first, second and thirds turns for different controllers in

Fig. 5a. As it is expected, when the PD controller acts alone, its performance does not

change from the first turn to the consequent turns. Thanks to the learning capability,

the T2FNN working in parallel with a PD controller gives a better performance in

its second and third turns. The results in Fig. 5b show performance improvement of

approximately 30% in the case of having a PD controller working in parallel with

the T2FNN.

The controller signals coming from the PD controller and the T2FNN can be

seen in Fig. 5c. In its first turn, the dominating control signal is coming from the PD

controller. In its second turn (starting from 120th s), the T2FNN is able to take over

the control, thus becoming the leading controller. Every time there is a change in the

reference signal, after a finite time, the output of the PD controller again tends to go

to zero. As can be seen from Fig. 5d, the T2FNN significantly increases the control

accuracy of the yaw dynamics of the system.

3.1.4 Discussions for Model-Free Control

The real-time test results are promising in a way that when the system is controlled by

using a conventional controller in parallel with a T2FNN, the accuracy of the overall

controller increases. In this method, the conventional controller is responsible for

the stability of the system in the beginning of the learning process. After the learn-

ing process starts, the T2FNN controller learns the system dynamics and takes the

responsibility of controlling the system gradually. In other words, there is no need

to well-tune the conventional controller. It is to be noted that in complex mecha-

tronic systems where there exist more than one subsystem, well-tuning of different

controllers on different subsystems is a tedious work.
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Fig. 5 a Reference and actual trajectories b Euclidean error to the reference trajectory c Control

inputs d Yaw rate error

3.2 Model-Based Learning: Model Predictive
Control-Moving Horizon Estimation Framework

Nonlinear model predictive control and nonlinear moving horizon estimation frame-

work is illustrated in Fig. 6 and a system model is required to design this framework.

The equations for the tractor are written as follows:

ẋ = 𝜇v cos (𝜓)
ẏ = 𝜇v sin (𝜓)

�̇� = 𝜇v tan (𝜅𝛿)
L

v̇ = − v
𝜏
+ K

𝜏
HP (23)

where x, y and 𝜓 denote respectively the positions and yaw angle of the tractor

while v denotes the speed. The steering angle and hydrostat position are respectively
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Fig. 6 Block diagram of the NMHE-NMPC framework

denoted by 𝛿 and HP. Additionally, 𝜇 and 𝜂 denote the traction coefficients for the

wheel and side slips.

The equations in (23) are formulated in the following form;

�̇� = f
(
𝜉, u, p

)
(24)

y = h
(
𝜉, u, p

)
(25)

with

𝜉 =
[
x y 𝜓 v

]T
(26)

u =
[
𝛿 HP

]T
(27)

p =
[
𝜇 𝜂

]T
(28)

y =
[
x y v 𝛿 HP

]T
(29)

where 𝜉, u, p and y denote respectively the vectors of state, input, parameter and out-

put of the system. The measured physical parameter is: L = (1.4m), and the iden-

tified parameters are [38]: 𝜏 = 2.05 and K = 0.016 for the speed model while the

engine speed is at 2500 RPM.

3.2.1 Nonlinear Moving Horizon Estimation

In advanced model-based control structures, learning phenomena are required and

realized through online parameter estimation as they make use of the system model
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k h t   –  t kt

Fig. 7 Illustration for the concept of NMHE

to generate control signals, and have to deal with uncertain and varying process con-

ditions. Therefore, it is inevitable to use adaptive models. In this study, nonlinear

moving horizon estimation method has been chosen as a state and parameter esti-

mation algorithm because it considers the state and parameter estimation within the

same problem and allows to incorporate constraints both on states and parameters.

NMHE is illustrated in Fig. 7 and formulated in (30).

min
𝜉(.),dp,u(.)

‖
‖
‖
‖
‖

𝜉 − 𝜉(tk − th)
p̂ − p

‖
‖
‖
‖
‖

2

Vs

+ ∫
tk

tk−th

(
‖ym − y(t)‖2Vy

)
dt

subject to �̇�(t) = f
(
𝜉(t), u(t), p

)

y(t) = h
(
𝜉(t), u(t), p

)

𝜉min < 𝜉 < 𝜉max

pmin < p < pmax ∀t ∈ [tk, tk+1] (30)

In practice, only state estimation is not enough to know the system behaviour

when uncertain systems are considered. Hence, parameter estimation is required to

determine unmeasurable parameters. A parametric least square estimation subject

to the system model and/or boundary conditions has been studied. There are many

software packages to solve optimization problems for offline parameter estimation

[29].

Two approximations have been proposed for online parameter estimation which

is necessary simultaneously with state estimation to find system behavior accurately.

In the first choice, model parameters are assumed as so-called “random constants”
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represented by a differential equation �̇�p = 0 with initial value 𝜉p(tk) = pk. This

approach results in time-invariant parameters over the estimation horizon. If jumps

or drifts for parameters are expected, which is the case in practice under varying

working conditions, a model bias would occur. As a solution to the jump and drifts

problem, the model parameters must be assumed as time-varying. Model parame-

ters are assumed as so-called “random walk” by a differential equation �̇�p =
dp

Δt
with

sampling time Δt and initial value 𝜉p(tk) = pk. It is assumed that the parameters are

time-varying Gaussian random variables in the arrival cost.

The reference estimated values 𝜉(tk − th) and p̂ are taken from the solution of

NMHE at the previous estimation instant. The arrival cost matrix Vs has been cho-

sen as a so-called smoothed EKF-update based on sensitivity information obtained

while solving the previous NMHE problem [30]. The contributions of the past mea-

surements to the inverted Kalman covarianceVs are downweighted by a process noise

covariance matrix Dupdate in (32) [31–35].

The adaptive kinematic model presented in (23) is used in the NMHE design for

the state and parameter estimation. The NMHE problem is solved at each sampling

time with the following constraints on the parameters:

0.25 ≤ 𝜇 ≤ 1
0.25 ≤ 𝜂 ≤ 1 (31)

The standard deviations of the measurements have been set to 𝜎x = 𝜎y = 0.03 m,

𝜎v = 0.1 m/s, and 𝜎
𝛿
= 0.0175 rad based on the information obtained from the real-

time experiments. Thus, the following weighting matrices Vy, and Dupdate have been

used in the NMHE implementation:

Vy = diag(𝜎x, 𝜎y, 𝜎v, 𝜎𝛿)−1

= diag(0.03, 0.03, 0.1, 0.0175)−1 (32)

Dupdate = diag(x, y, 𝜓, 𝜇, 𝜂, v)
= diag(10.0, 10.0, 0.1, 0.25, 0.25, 0.1)−1 (33)

The estimation horizon th is set to 3 s.

3.2.2 Nonlinear Model Predictive Control

In this study, an NMPC formulation at each sampling time t is considered in the

following form:
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min
𝜉(.),u(.) ∫

tk+th

tk

(
‖𝜉r(t) − 𝜉(t)‖2Q + ‖ur(t) − u(t)‖2R

)
dt

+ ‖𝜉r(tk + th) − 𝜉(tk + th)‖2S
s.t. 𝜉(tk) = 𝜉(tk)

�̇�(t) = f
(
𝜉(t), u(t), p

)

𝜉min ≤ 𝜉(t) ≤ 𝜉max

umin ≤ u(t) ≤ umax ∀t ∈ [tk, tk + th]

(34)

where the first and last parts are called the stage cost and the terminal penalty

enforced the stability of NMPC in [36] in which Q ∈ ℝn
𝜉
×n

𝜉 , R ∈ ℝnu×nu and S ∈
ℝn

𝜉
×n

𝜉 are symmetric positive definite weighting matrices, 𝜉r and ur denote respec-

tively the references for the states and inputs, 𝜉 and u denote respectively the states

and inputs, tk denotes the current time, th denotes the prediction horizon. 𝜉(tk)
denotes the estimated state vector by the NMHE, 𝜉min, 𝜉max, umin and umax denote

respectively the upper and lower constraints on the state and input. The terminal

constraints are denoted by 𝜉(tk + th)min and 𝜉(tk + th)max. The first sample of u(t),
u(t, 𝜉(t)) = u∗(tk), is applied to the system and the NMPC problem is solved again

over a moved horizon for the subsequent sampling time.

The constraints on the inputs, the steering angle and hydrostat position references,

are written:

− 35 deg ≤ 𝛿(t) ≤ 35 deg
0% ≤ HP(t) ≤ 100% (35)

The references for the state and inputs are written:

𝜉r = (xr, yr, 𝜓r, vr)T

ur = (𝛿r,HPr)T (36)

The inputs references are the last measured steering angle and hydrostat position

while the states references are relied on the reference trajectory to be tracked.

The weighting matrices Q, R and S have been written:

Q = diag(1, 1, 0, 0)
R = diag(5, 5)
S = diag(10, 10, 0, 0) (37)

The prediction horizon th is set to 3 s.
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3.2.3 Experimental Results for the Model-Based Controller

Throughout the experiments, the tractor has faced with uneven terrain, and been

succeed in staying on-track for the NMHE-NMPC framework as shown in Fig. 8a.

The sampling time of the frameworks is 200 ms in real-time. The Euclidean error for

the tractor is shown in Fig. 8b. The mean values of the Euclidean error of the tractor

have been obtained 18.16 cm for the straight lines while 52.02 cm for the curved

lines. It is observed that the trajectory tracking error for the system for straight lines

has been less than the one for the curved lines as shown in Fig. 8b.

The outputs of the controller, which are the steering angle reference for the tractor

(𝛿
t
), and the hydrostat position (HP) reference as illustrated in Fig. 8c. As seen in this

figure, the control signals stay within the bounds. Moreover, the estimated traction

parameters by the NMHE are shown in Fig. 8d. The estimates stay within the bounds.

For auto generation of the C codes, an open source software is preferred: the

ACADO [37] code generation tool. This too can be used to solve the constrained

nonlinear optimization problems in the NMPC and NMHE. First, we have created the
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C codes by using the ACADO, which is then converted into a .dll file to be used in

LabVIEW. Detailed information on the ACADO code generation tool can be found

in [29, 37].

3.3 Overall Comparison of the Model-Based and Model-Free
Learning Control

Table 1 is a candidate guideline to choose an appropriate control algorithm for the

control of agricultural robotic systems which are generally complex mechatronic

systems. According to observations, when the model of the system as well as the

interactions between the subsystems are precisely modeled, a model-based controller

(MPC-MHE framework) is preferable. This advanced control framework is not only

very accurate but also robust. Moreover, there are some open course fast solvers,

such as Acado toolkit, which generates C/C++ codes for a real-time implementa-

tion. What is more, although early MPC applications were restricted only to slow

systems that long computation times could be tolerated, recent progress in micro-

processor technology has motivated applications of MPC for fast dynamic systems,

such autonomous vehicles.

However, if the modeling of the system is challenging or unfeasible, model-free

control algorithms can be used even if it might be difficult to prove their stability.

In addition to their instability problems, pure model-free methods may be unsta-

ble in the beginning of the experiment depending on the initial weights. If the sys-

tem dynamics are fast, this may cause serious problems, such as fast vehicles or

unmanned aerial vehicles. In order to make sure that the system is stable in the begin-

ning of the learning process, an alternative method, which is the combination of a

conventional controller and an intelligent structure. This fusion is called feedback

error learning, which is also promising in real time if there is no precise model at

hand. These controllers have the ability of learning throughout the operation if an

appropriate optimization algorithm is used.

No matter the model-free controller is a pure model-free or a feedback error

learning-based controller, another prominent feature of them is that the time spent

for modeling does not exist for model-free controllers. It is to be noted that the mod-

eling stage may take more time than designing of a controller in the case of having

a model-based controller. In particular, in addition to its nonlinearities, if the system

has dead-zones and hysteresis, modeling of the system is a very tedious work [38].

These challenging systems include, but are not limited to, electro-hydraulic actuators

and valves, diesel engines and pneumatic actuators.
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Table 1 Guidelines for the selection of the best modeling and control approach for the complex

mechatronic systems

Model-based techniques

When? Interactions are known accurately

Why? Allows to design the controller analytically and to prove the

stability of the overall system

Why not? In practical applications, the interactions are not so easy to be

modelled

Pure model-free techniques

When? Interactions are difficult to be known

Why? No need the mathematical model of the system to be controlled

Why not? Impossible to prove the stability of the overall system and

impossible to calculate the parameters of the controller analytically

Feedback error learning

When? A conventional controller to guarantee the stability of the plant

Why? After the intelligent controller has learned the system dynamics, it

takes the responsibility of controlling the system

Why not? The stability of the overall system may be challenging to be shown

4 Conclusions

A fully autonomous tractor-trailer system is designed and prototyped by using off

the shelf components. The system is able to follow both straight line and curved

line trajectories with a satisfactory accuracy. Both model-based and model-free con-

trollers are designed to navigate the system, and their performances are compared

and contrasted. According to the real-time results, when the model of the system

as well as the interactions between the subsystems are precisely modeled, a model-

based controller is preferable. On the other hand, a model-free controller is preferable

if the mathematical model of the system is challenging or unfeasible. As a model-

free control algorithm, type-2 fuzzy logic controllers are able to learn the systems

dynamics online, and have the ability to control the system with a limited infor-

mation about the system. As a parameter update algorithm, a sliding mode control

theory-based learning algorithm is preferred which need neither partial derivatives

nor matrix inversions. These features make the learning algorithm not only robust but

also computationally efficient which is a big advantage in real-time implementations

where the computation power is limited.
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Important and Challenging Issues
for Interval Type-2 Fuzzy Control
Research

Hao Ying

Abstract The author points out three important issues: (1) when should interval
type-2 (IT2) fuzzy control be utilized, (2) how to design IT2 fuzzy controllers, and
(3) how to analyze IT2 fuzzy controllers. Discussion is focused on application and
practicality.

1 Introduction to Interval Type-2 Fuzzy Control

Fuzzy control is the most active and victorious component of fuzzy systems tech-
nology. The first fuzzy controller was developed by Professor E. H. Mamdan at
University of London in United Kingdom in 1974 [4]. The primary thrust of this
novel control paradigm at the time was to utilize human control operator’s knowledge
and experience to intuitively construct a controller so that the resulting controller is
able to emulate human control behavior to a certain extent. Compared to the tradi-
tional control paradigm, the advantages of the fuzzy control paradigm are two folds.
First, a mathematical model of the system to be controlled is not required, and (2) a
satisfactory nonlinear controller can be developed empirically without complicated
mathematics. The core value of these advantages is the practicality—real-word
systems are nonlinear; accurately modeling them is difficult, costly, and even
impossible in most cases. Proper use of fuzzy control can significantly shorten pro-
duct research and development time with reduced cost. Since mid-1980s, companies
around the world have utilized fuzzy control to make better, cheaper, and smarter
products. Many of them are commercial products. All these fuzzy controllers are now
called type-1 fuzzy controllers when there is a need to differentiate them from type-2
fuzzy controllers. Nevertheless, they are referred in the literature simply as fuzzy
controllers because type-2 fuzzy control did not exist yet when the reports were
published. Figure 1 illustrates configuration of a typical type-1 fuzzy controller.
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To better reflect complicated nature of expert knowledge, a fuzzy controller may
conceivably use a type-2 fuzzy set, which is an extension to a type-1 fuzzy set in
that at each value of the universe discourse, the membership value is an interval
with another membership function (i.e., secondary membership function) defined
over it. A type-2 fuzzy set uses footprint of uncertainty to characterize the region
between its upper and lower membership functions. Although the concept of a
type-2 fuzzy set was first introduced by Professor L. A. Zadeh in 1975, using it to
form a fuzzy inference system is only a relatively recent advance. Profes-
sor J. M. Mendel and his coworkers have proposed the first complete type-2 fuzzy
inference process, developed various type-2 fuzzy systems, and established their
computational principles and foundations since the mid-1990s (e.g., [3, 5, 6]).

With the solid type-2 fuzzy system foundation laid by Mendel and others,
researchers extended the notion of fuzzy control to type-2 fuzzy control around the
2000s. The basic idea was to first replace some or all of type-1 fuzzy sets in a fuzzy
controllers by (interval) type-2 fuzzy sets, and then added components specific to a
type-2 system (e.g., type reducer). Some other modifications were also necessary
(e.g., the defuzzification process). Figure 2 shows configuration of a typical type-2
fuzzy controller. The grey boxes spell out the configuration differences between the
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type-2 and type-1 controller configurations in Figs. 1 and 2. Structurally, a type-2
fuzzy controller is more complicated than its type-1 counterpart as the former has
more components (e.g., type reducer), more parameters (e.g., footprints of uncer-
tainty of the interval type-2 fuzzy sets), and a more complex inference mechanism.

When the secondary membership function of a type-2 fuzzy set is constant 1, the
fuzzy set is an interval type-2 (IT2) fuzzy set. A type-2 fuzzy controller uses IT2
fuzzy sets is called an IT2 fuzzy controller. This chapter focuses on IT2 fuzzy
control only as it represents the simplest kind of type-2 fuzzy control and is the
most interesting kind at present to the fuzzy control community. Note that an IT2
fuzzy controller degenerates into a type-1 fuzzy controller when footprints of
uncertainty of all the type-2 fuzzy sets reduce to 0. Thus, a type-1 fuzzy controller is
a special case of this corresponding IT2 fuzzy controller.

2 Research Issue 1: When Should IT2 Fuzzy Control Be
Utilized?

Before addressing the issue “when should IT2 fuzzy control be employed to solve a
control problem?” let’s first discuss the question “when should fuzzy control,
type-1 or type-2, be employed to solve a control problem?” Sects. 2.1, 2.2, and 2.4
below are applicable to both type-1 and IT2 fuzzy control.

2.1 Advantages of Fuzzy Control

The biggest advantage of fuzzy control is that it provides an effective and efficient
methodology to develop nonlinear controllers without using advanced mathematics.
Making a fuzzy controller requires describing human control knowledge/experience
linguistically and captures them in the form of fuzzy sets, fuzzy logic operation and
fuzzy rules. Fuzzy control can be used to emulate human expert knowledge and
experience and is ideal for solving practical problems where imprecision and
vagueness are present and verbal description is necessary. Unlike the traditional
mathematical-model-based controller design methodology, an explicit system
model is not required by fuzzy control. Rather, a system model is implicitly built
into fuzzy rules, fuzzy logic operation and fuzzy sets in a vague manner. Fuzzy
rules relate input fuzzy sets describing state of output variables of the system to
fuzzy controller output. In a sense, fuzzy control combines the system modeling
task and the system control task into one task. By avoiding a separate modeling
task, which can be more challenging than the control task in many real-world
situations, control problems can be solved more efficiently and effectively.
Countless applications of fuzzy control around the world have proved this point for
type-1 fuzzy control.
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Fuzzy control has also created a paradigm for developing nonlinear and
multiple-input multiple-output (MIMO) controllers without using sophisticated
linear/nonlinear control theory and mathematics. This is in sharp contrast to con-
ventional control technology, especially the nonlinear one. Through manipulating
various components of a fuzzy controller, such as the scaling factors, fuzzy sets and
fuzzy rules, coupled with computer simulation and/or trial-and-error effort, it is
often possible for a non-control professional to build a well-performing fuzzy
controller. This advantage makes fuzzy control practical and powerful in solving
real-world problems and it explains why (type-1) fuzzy control has especially been
popular in industry.

2.2 Disadvantages of Fuzzy Control

A fuzzy controller usually has (far) more design parameters than a comparable
conventional controller. To make the matter worse, learning how to construct a
good fuzzy controller when the system model is unavailable is, to a large extent,
more an art than science. Subsequently, fuzzy controller development may require
more tuning and trial-and-error effort. Compared to the industrially dominant PID
control that has only three design parameters, the number of design parameters for a
fuzzy controller can become overwhelmingly large. They range from the number
and shape of input and output fuzzy sets, scaling factors, fuzzy AND and OR
operators to fuzzy rules and defuzzifier. Worse yet, there do not exist clear and
general relationships between these parameters and controller’s performance. The
developer need to partially rely on empirical rules of thumb and ad hoc design
procedures in the literature to make successful fuzzy control applications. Although
there exist a great deal of such knowledge on type-1 fuzzy controllers, it is not
sufficient, especially for fuzzy control novices. Fuzzy controllers are nonlinear
controllers. As such, the generality of the knowledge is rather limited. Any design
and/or tuning procedure can hardly be generalized to cover a broader range of fuzzy
control problems. As a result, trial-and-error effort and extensive computer simu-
lation are often necessary. Neither stability nor performance of the fuzzy control
system under development can rigorously be guaranteed. This empirical approach,
while effective for some applications, is impractical and unsafe for applications in
some fields, such as aerospace, nuclear engineering and, particularly, biomedicine.

2.3 Accurate Nonlinear System Models Are Hard
and Expansive to Obtain in Practice

Conventional nonlinear control theory is powerful and effective if a nonlinear
system model is mathematically available. In order to design a conventional
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controller for controlling a physical system, the mathematical model of the system
is needed. A common form of the system model is differential equation for a
continuous-time system or difference equation for a discrete-time system. Strictly
speaking, all physical systems are nonlinear. Unless physical insight and the laws of
physics can be applied, establishing an accurate nonlinear model using measure-
ment data and system identification methods is difficult in practice.

For any dynamic system modeling problems, linear or nonlinear, two tasks need
to be accomplished. The first task is model structure identification, and the second
model parameter identification. These tasks are relatively easier for linear system
modeling as there have already existed a set of popular linear model structures to
choose from, which include AR (Auto Regressive), ARX (Auto Regressive with
eXtra input) and ARMA (Auto Regressive Moving Average). They are different
types of difference equations and are black-box models. Strictly speaking, a linear
system does not exist—a linear model is an approximate model of the nonlinear
system valid for a region around one of the system operation points.

Nonlinear system modeling, however, is far more complicated because there
exist an infinitive number of possible model structures. Correctly assuming a
nonlinear model structure is a hard problem in nonlinear system modeling theory
and no general theory exists. Though difficult, different nonlinear system modeling
techniques have still been developed, including the Volterra and Wiener theories of
nonlinear systems. Such nonlinear system models are black-box models because
they only attempt to mimic system’s input-output relationship with system mea-
surement data and hence cannot provide any insight on internal structure of the
system. Another option is to model a nonlinear system as a (piecewise) linear
system. This approach can be over-simplistic in nature and fails to capture diverse
and peculiar nonlinear system behaviors, such as limit circles, chaos and
bifurcation.

Once the model structure is selected/determined, parameters in the model can be
found using system’s input-output data and some system optimization procedures
(e.g., the least-squares methods), which is the second task.

A linear system model is often adequate for control system development. The
whole knowledge base of linear control theory, from linear PID control to modern
linear robust control, has been developed based on the notation of linear system
models. Once designed, control performance and system stability as well as other
properties of the linear control system can usually be examined mathematically.
This is because these linear models are difference equations and thus can be ana-
lytically analyzed. Whether this linear controller development approach will suc-
ceed in practice depends highly on whether the linear model captures the essence of
the nonlinear physical system and whether it is a reasonable representation and
approximation of the physical system.

In contrast, accurately establishing a nonlinear system model is generally diffi-
cult, which significantly limits the application scope of nonlinear control theory.
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2.4 When Should Fuzzy Control Be Employed?

There exists literally a countless number of different types of systems in practice.
Applicability of fuzzy control, type-1 or type-2, apparently should relate to the
strengths and limitations of fuzzy control. In our opinion, fuzzy control is most
desirable if (1) mathematical model of the system to be controlled is unavailable but
the system is known to be significantly nonlinear, time-varying or with a larger time
delay, and/or (2) PID control cannot generate satisfactory system performance.

Given the strengths of fuzzy control, the first criterion is natural and logical. We
need to stress the second criterion: It is practically important to know whether PID
(including PI or PD control) can solve the control problem of interest before fuzzy
control is attempted. PID, PI, PD controllers have been used to control about 90%
industrial processes worldwide. PID control techniques are well-developed and
numerous control system design and gain tuning methods are available. When the
system to be controlled is linear and its mathematical model is available, design and
implementation of linear PID control is effective and efficient. Note that using PID
control does not necessarily require system model. In the absence of a system
model, one can still achieve satisfactory PID control performance in practice by
manually tuning, in a trial-and-error fashion, the proportional-gain, integral-gain
and derivative-gain. This is true if the system is linear, somewhat nonlinear, or with
a mild time delay. Better yet, there exist different types of PID controllers. The most
commonly used one is the linear PID controller but often nonlinear ones, such as
the anti-windup PID controller, are also employed. Properly adding nonlinearity to
linear PID control can lead to desirable control performance. Time has proved that
PID control, though simple, is effective and can produce satisfactory results quickly
for the majority of control problems, especially those in process control. This is the
case even when the system of interest is nonlinear, time-varying or associated with
a time delay, as long as they are not too severe.

Fuzzy control should be used, if at least one of the two criteria mentioned above
holds. This is the case even if control expert knowledge and experience is
unavailable. Practically speaking, it is possible for one to achieve satisfactory fuzzy
control of nonlinear systems through extensive computer simulation and
trial-and-error effort without expert knowledge. Utilizing available expert
knowledge/experience will no doubt reduce development cost and time, particularly
when the system is rather complex. But this is not a prerequisite for using fuzzy
control.

Even when the system of interest is nonlinear, time-varying or associated with a
time delay and its mathematical model is explicitly given, it can often be still
advantageous to apply fuzzy control provided that designing an adequate nonlinear
controller is more difficult. Unlike linear control theory, there does not exist a
general nonlinear control and system theory that is universally applicable to any
nonlinear, time-varying or time-delay systems. When a nonlinear system of interest
is complicated, or a MIMO one, conventional control theory may be ineffective or
even unusable. Furthermore, many of the existing nonlinear control techniques
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require highly sophisticated control and mathematics background (e.g., differential
geometry), which are inaccessible to many of control engineers in the field.

Fuzzy control should not be employed if the system to be controlled is linear,
regardless of the availability of its explicit model. For linear systems, there is no
advantage to use fuzzy control. PID control and various other types of linear
controllers can effectively solve the problem with significantly less effort, time and
cost.

In summary, fuzzy control does not and cannot replace conventional control,
linear or nonlinear; instead, it complements conventional control rather nicely.

2.5 When Should IT2 Fuzzy Control Be Employed?

In the 1980s, the question “when should fuzzy control be used instead of a con-
ventional controller” was faced by the fuzzy control community. Because the
advantages and disadvantages of type-1 fuzzy control relative to those of con-
ventional control were relatively easy to determine and understand, that question
was not too difficult to be settled.

A similar question “when should IT2 fuzzy control be used instead of type-1
fuzzy controller” is now waiting the fuzzy control community to answer.

According to Figs. 1 and 2, both type-1 and IT2 fuzzy control methodologies
provide a “knowledge engineering” procedure, as opposed to the mathematical
approach exclusively adopted in conventional control, to construct u = f(x1, x2, …,
xn), where f is a nonlinear and unknown function that represents the control solution
being sought. It has been shown that a wide range of type-1 fuzzy controllers are
universal approximators in that they can approximate continuous functions arbi-
trarily well (e.g., [10, 12, 15]), so are various IT2 fuzzy controllers [14]. So,
theoretically speaking, IT2 fuzzy control can do whatever type-1 fuzzy control can
do, and vice versa.

It should not be difficult to understand that IT2 fuzzy control will not, and
cannot, replace either type-1 fuzzy control or conventional control. The three
control methodologies are complementary. Arguably, one of the most important
research directions is to develop a theory capable of determining whether or not an
IT2 fuzzy controller should be used for any given control problem. That is, a theory
is needed that can be used ahead of time to determine whether an IT2 fuzzy
controller should be employed as opposed to a type-1 fuzzy controller. It is
important that such a theory be simple and effective so that it can be used by a
control practitioner who may be moderately knowledgeable about type-1 fuzzy
control but has little or no knowledge about IT2 fuzzy control (it is not very realistic
to assume that someone knowing nothing about type-1 fuzzy control will consider
to use IT2 fuzzy control). This theory should not be simulation-based because a
system’s accurate mathematical model is, realistically speaking, always nonlinear
and thus is very difficult to obtain in practice, as we pointed out above. This theory
should also not be heavily reliant on trial-and-error effort because such an approach
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can not only be costly but also risky to use for safety-critical applications (e.g.,
nuclear industry and clinical medicine).

In practice, IT2 fuzzy control may have to prove its superiority to both type-1
fuzzy control and conventional control for a particular control problem or a par-
ticular class of control problems before it will actually be used. Because type-1
fuzzy control and conventional control are able to deliver satisfactory solutions for
so many different practical control problems, defining the niche applications that
require the distinct merits of IT2 fuzzy control is a critically important but tech-
nically challenging area of study. Another important factor that one has to keep in
mind is that a real-world control application typically seeks the simplest and least
expensive hardware/software solution that satisfies the technical specifications
required by the user. This is why PID, PI and PD controllers, with only two or three
design parameters, all of which can be tuned manually in an intuitive manner, have
become the most popular controllers since their inception, dating back to the
pre-electronic period, despite the availability of numerous more advanced and better
(at least in theory) controllers developed in the past dozens of years (e.g., optimal
controllers and robust controllers).

An IT2 fuzzy controller should not be used unless its added structural com-
plexity and additional design parameters (as compared with a type-1 fuzzy con-
troller) can be reasonably justified by demonstrated significant gains in control
performance (e.g., better transition control response and/or more robust perfor-
mance in the presence of system noise and/or disturbance). Research has been
under way to explore when IT2 fuzzy control can bring substantial performance
improvement, and more and more results are appearing.

3 Research Issue 2: How to Design IT2 Fuzzy Controllers?

If, for a given practical control problem, it is decided to use an IT2 fuzzy controller
instead of a type-1 controller, the next logical issue is how to design it.

Numerous techniques have been developed in literature for analyzing and
designing a wide variety of fuzzy control systems of both the Mamdani type and the
TSK type. They are mostly for the type-1 fuzzy controllers for now [2], but a
growing number of techniques are developed for the IT2 controllers. The literature
can be classified into two groups according to methodology: (1) the model-based
approach, and (2) the knowledge-based approach, which is a model-free approach.
When the model-based approach is used, the precise mathematical model of the
system to be controlled must be assumed explicitly available whereas the
knowledge-based approach does not make such an assumption. The model of
interest should be nonlinear because a practical system is always nonlinear. While
the model availability assumption makes theoretical development mathematically
tractable and convenient for the model-based approach, it hardly realistically reflect
practical constraints. The fact of the matter is this—it is challenging to attain a
reasonable nonlinear mathematical model for most systems in the real world. The
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pitfall of the model availability assumption holds not only for fuzzy control but also
equally for conventional control. Emerging in the 1990s, this approach provides
mathematical convenience at the cost of practicality. It has produced a large volume
of publications; nevertheless, its usefulness in practice has yet to be established. In
short, without knowing the nonlinear model, most, if not all, of the model-based
design methods for the type-1 fuzzy controllers are simply inapplicable.

IT2 fuzzy controllers are nonlinear controllers with complicated input–output
relations. They are certainly more complex than their type-1 counterparts in terms
of the mathematical input–output relations and the number of design parameters.
Consequently, designing an IT2 fuzzy control system is more challenging than
designing a type-1 fuzzy control system. As evident by trends in the recent liter-
ature, an important research direction is to extend the analysis and design tech-
niques that have been developed for various type-1 fuzzy controllers and systems to
IT2 fuzzy controllers and systems. Interestingly, methodologies available for ana-
lyzing and designing IT2 fuzzy controllers and systems are fundamentally the same
as those utilized for type-1 fuzzy controllers and systems. For example, the Lya-
punov approach, which has been widely used for type-1 fuzzy control systems as
well as for conventional nonlinear control systems, is the only general tool that has
been used for analyzing system stability or designing a stable IT2 fuzzy control
system. To date, there exists no other more effective stability approach for IT2
fuzzy control systems. It is presently the most general and best technique available
for IT2 fuzzy controllers and systems, and we believe that it will play a crucial role
in the development of future IT2 fuzzy control theory. Note, however, that
extending the type-1 fuzzy control techniques to cover IT2 fuzzy controllers can be
challenging because, generally speaking, an IT2 fuzzy controller is a more com-
plicated nonlinear controller than is a type-1 fuzzy controller.

An IT2 fuzzy controller, like its type-1 counterpart, is presently viewed and
treated by most fuzzy control practitioners and theorists as a black-box function
generator that is capable of producing a desired nonlinear mapping between input
and output of the controller (i.e., u = f(x1, x2, …, xn) in Fig. 2). The mapping is
implicit because f(x1, x2, …, xn) does not spell out the explicit relationship between
the input variables and the output variable. In other words, it shows there is a
relationship but does not reveal exactly what it is. When the model-based approach
utilizes the implicit f(x1, x2, …, xn) to develop a controller design method, it treats
the fuzzy controller as the black-box function generator. On the other hand, the
knowledge-based approach does not start with f(x1, x2, …, xn). Rather, it relies on a
systematic procedure comprising of a number of steps to practically construct f(x1,
x2, …, xn) through manipulating, often in a trial-and-error fashion, fuzzy sets, fuzzy
rules, fuzzy inference, and other components. For each component, the developer
will face choices. For instance, for input fuzzy sets (i.e., the fuzzy sets for fuzzi-
fying input variables), the developer has to decide how many of them should be
used, what type should be used (e.g., triangular vs. Gaussian), and whether a
mixture of different types should be used. This is just one of the several components
that the developer has to specify (other components include output fuzzy sets, fuzzy
rules and defuzzifier). Coupled with computer simulation, this approach often
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suffices for the practitioner to build a satisfactory fuzzy control system as a solution
to the real-world problem at hand. Importantly, this tactic usually works even when
the mathematical model of the system is not available. Apart from the approach
(model-based or knowledge-based), once built, the fuzzy controller remains a black
box in that the explicit expression of f(x1, x2, …, xn) is still unknown. The com-
ponents work together to generate a value for f(x1, x2, …, xn) for any given value of
the input variables. Obviously, the explicit expression of f(x1, x2,…, xn) depends on
how the components are selected. The implicit nature of f(x1, x2, …, xn) does not
change regardless.

4 Research Issue 3: How to Analyze IT2 Fuzzy
Controllers

We call the mapping mentioned above the analytical structure of the fuzzy con-
troller. The model-based approach and the knowledge-based approach of fuzzy
control, type-1 or IT2, are in sharp contrast to the conventional control theories. In
conventional control, once a controller is chosen by the developer according to the
system to be controlled, the controller’s analytical structure, linear or nonlinear, is
always explicitly ready for analysis and design of the control system. The linear and
nonlinear control theories are matured with many time-tested analysis and design
schemes. The primary technical difficulty for controller design lies in how to first
select or design f(x1, x2,…, xn) and then determine its parameter values based on the
given system model so that the designed control system performance will meet the
developer’s performance specifications. f(x1, x2, …, xn) is explicitly known after the
control system design is completed. Control system analysis, stability, control
performance, and other system characteristics are analyzed and determined based
on both the explicitly f(x1, x2, …, xn) and the system model. To bring fuzzy control
to the same level of sophistication and acceptance as the conventional control
theories, fuzzy control needs to overcome two hurdles pertinent only to fuzzy
control and irrelevant to conventional control. The first hurdle is the unavailability
of f(x1, x2, …, xn) in an explicit form after it is designed/constructed, and the second
relates to the fundamental question of whether f(x1, x2, …, xn) can be an arbitrary
nonlinear function. The second issue, referred to as fuzzy systems as universal
approximators in literature, has been extensively addressed for the type-1 fuzzy
controllers, but has been investigated for the IT2 controllers only in a rather limited
scope [14]. To a large extent, mathematically studying IT2 (or type-1) fuzzy control
is inherently even more challenging than studying typical nonlinear control prob-
lems. Not explicitly knowing f(x1, x2, …, xn) puts both the model-based and
model-free fuzzy control approaches in a disadvantageous position.

Studying the analytical structures of both the controller and the system under
control can make it possible for the system analysis and design more precise and
effective and less conservative. No matter if an IT2 fuzzy controller is theoretically
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designed using a model-based scheme or is empirically constructed via a
knowledge-based method, revealing controller’s analytical structure can be signif-
icantly beneficial because one can then:

1. insightfully understand how and why an IT2 fuzzy controller works in the same
sense as we understand how a conventional controller functions,

2. find a possible connection between an IT2 fuzzy controller and a conventional
controller,

3. explore rigorously the differences between an IT2 fuzzy controller and its type-1
fuzzy controller and their relative merits and pitfalls (e.g., control performance
and structural complexity),

4. take advantage of the nonlinear control theory to develop more effective analysis
and design methods for IT2 control system as the fuzzy control problem has
transformed into a nonlinear control problem, and

5. make IT2 fuzzy control more acceptable to safety-critical fields such as clinical
medicine and nuclear industry where people are reluctant to employ a black box
as a controller.

We stress that the analytical structure of a fuzzy controller should be investigated
in such a way that the structure is sensible in the context of control theory. This is to
say that deriving the explicit structure is only a first step, after which the structure
should be represented in a form clearly understandable from a control theory
standpoint to gain the full potential in system analysis and design.

We derived the first analytical structure of a type-1 fuzzy controller in 1990 [9].
The analytical structures of many other type-1 fuzzy controllers have been reported
in the literature since then. The benefits of deriving the analytical structures are well
documented in the literature for the type-1 fuzzy controllers. As an example, some
type-1 fuzzy controllers have been shown to possess peculiar and interesting
structures (e.g., nonlinear PID, PI, or PD controllers with variable gains) [9, 13].
This kind of structural information can be used to guide the parameter-tuning
process, thus leading to a significant reduction in trial-and-error effort (e.g., [11,
13]).

Challenges associated with analytical-structure derivation depend on the con-
figuration of the fuzzy controller, in particular, which kind of fuzzy AND operator
is used. This is the case for both the type-1 and IT2 fuzzy controllers. The product
AND operator and the Zadeh AND operator (i.e., min()) are the only two operators
that are employed in fuzzy control. Deriving the analytical structure of a fuzzy
controller with the product AND operator is relatively simple; however, a fuzzy
controller involving the other operator is far more difficult. Structurally, a IT2 fuzzy
controller is more complicated than its type-1 counterpart as the former has more
components (e.g., type reducer), more parameters (e.g., footprints of uncertainty of
IT2 fuzzy sets), and a more complex inference mechanism.

We revealed first analytical structure of type-2 fuzzy controller which used
Zadeh AND operator [1]. Subsequently, the analytical structures of a number of
other IT2 fuzzy controllers were exposed. (e.g., [7, 8, 16, 17]). We point out that to
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study a new class of IT2 fuzzy controllers, an innovative
analytical-structure-deriving method must be developed first before their analytical
structures can be derived because the existing derivation methods can cover only
the controller configurations for which they are developed.

In [1], the analytical structures of two Mamdani IT2 fuzzy PI controllers are
derived that use the following identical elements—two interval T2 triangular input
fuzzy sets for each of the two input variables, four type-1 singleton output fuzzy
sets, Zadeh AND operator, and the center-of-sets type reducer. The difference is that
one controller employs the centroid defuzzifier while the other a new defuzzifier
called the average defuzzifier (whose advantages are established in the context of
the analytical structure study in [1]). The resulting analytical structures are linked to
nonlinear control. More specifically, the derivation proves explicitly both con-
trollers to be nonlinear PI (or PD) controllers with variable gains (the expressions
are different for the two controllers). The characteristics of the variable gains are
analyzed and shown to have the potential to yield improved control performance.
Taking advantage of the new knowledge, how to determine and tune the design
parameters of the IT2 controllers (there are as many as 11 parameters) even when
the mathematical model of the system to be controlled is unknown are discussed.

An innovative technique capable of deriving the analytical structure for a wide
class of IT2 Mamdani fuzzy controllers is developed in [16]. The configuration of
the controllers is typical and quite general—any number and types of IT2 input
fuzzy sets, any number and types of general or IT2 output fuzzy sets, arbitrary fuzzy
rules, Zadeh AND operator, the Karnik-Mendel center-of-sets type-reducer, and the
centroid defuzzifier. One particularly interesting finding is that the analytical
structure of a subset of the IT2 fuzzy controllers is the sum of two nonlinear PI (or
PD) controllers, each of which has a variable proportional-gain and a variable
integral-gain (or derivative-gain) plus a variable offset if and only if the input fuzzy
sets are piecewise linear (e.g., triangular and/or trapezoidal). The sum of the two
nonlinear PI (or PD) controllers is a new discovery relative to the literature. As an
important benefit of knowing the analytical structure, the IT2 fuzzy controllers can
now be treated as variable-gain controllers, rather than black-box controllers. The
roles of various parameters, such as the footprints of uncertainty of the IT2 input
fuzzy sets, play can be clearly understood from control theory standpoint as
opposed to from vague and subjective viewpoint of linguistic knowledge repre-
sentation. Furthermore, the structure information can be used to facilitate control
system design. More concretely, for the fuzzy PI (or PD) controllers, because at the
equilibrium point, the variable proportional-gain and integral-gain of the IT2 fuzzy
PI (or PD) controller become fixed gains. Therefore, one may apply the linear PI (or
PD) controller to the system to be controlled with its mathematical model being
assumed to be unknown. Tune the proportional-gain and integral-gain (or
derivative-gain) of the linear PI (or PD) controller in a trial-and-error fashion to
achieve a reasonable system output performance. The gains of the linear controller
can be utilized to calculate the scaling factors of the input and output variables quite
easily based on the derived variable gain formulas. The detail on the underlying
principle is given in [11].
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A long-standing fundamental issue is this: how an IT2 fuzzy set’s footprint of
uncertainty, a key element differentiating an IT2 controller from a type-1 controller,
affects a controller’s analytical structure. Absence of a general theory, determining a
footprint relies on blind search through the trial-and-error method, which is cur-
rently widely adopted in the field. Blind searching of a (high-dimensional)
parameter space is not only time consuming but incomprehensive with subpar
outcome. We address this issue for a particular class of IT2 TS fuzzy controllers in
[17] by first developing an innovative technique for deriving their analytical
structures. Analyzing the resulting analytical structures reveals the role of the
footprints of uncertainty in shaping the structures. Specifically, it is mathematically
proven that under certain conditions, the larger the footprints, the more the IT2
controllers resemble linear or piecewise linear controllers. When the footprints are
at their maximum, the IT2 controllers actually become linear or piecewise linear
controllers. That is to say the smaller the footprints, the more nonlinear the con-
trollers. The most nonlinear IT2 controllers are attained at zero footprints, at which
point the IT2 controllers become type-1 controllers. This finding implies that
sometimes if strong nonlinearity is most important and desired, one should consider
using a smaller footprint or even just a type-1 fuzzy controller. This study exem-
plifies the importance of investigating analytical structure of an IT2 fuzzy controller
because availability of such structure information can lead to comprehensive and
insightful analysis and understanding of an IT2 fuzzy controller.
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Type-2 Fuzzy Logic in Pattern Recognition
Applications

Patricia Melin

Abstract Type-2 fuzzy systems can be of great help in image analysis and pattern
recognition applications. In particular, edge detection is a process usually applied to
image sets before the training phase in recognition systems. This preprocessing step
helps to extract the most important shapes in an image, ignoring the homogeneous
regions and remarking the real objective to classify or recognize. Many traditional
and fuzzy edge detectors can be used, but it is very difficult to demonstrate which
one is better before the recognition results are obtained. In this work we show
experimental results where several edge detectors were used to preprocess the same
image sets. Each resulting image set was used as training data for a neural network
recognition system, and the recognition rates were compared. In this paper we
present the advantage of using a general type-2 fuzzy edge detector method in the
preprocessing phase of a face recognition system. The Sobel and Prewitt edge
detectors combined with GT2 FSs are considered in this work. In our approach, the
main idea is to apply a general type-2 fuzzy edge detector on two image databases
to reduce the size of the dataset to be processed in a face recognition system. The
recognition rate is compared using different edge detectors including the fuzzy edge
detectors (type-1, interval, and general type-2 FS) and the traditional Prewitt and
Sobel operators.
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1 Introduction

Edge detection is one of the most common approaches to detect discontinuities in
gray scale images. Edge detection can be considered an essential method used in the
image processing area and can be applied in image segmentation, object recognition
systems, feature extraction and target tracking [1].

There are several edge detection methods, which include the traditional ones,
such as Sobel [2], Prewitt [3], Canny [1], Robert [4], Kirsch [5], and those based in
type-1 [4, 6–8], interval type-2 [9–12] and general fuzzy systems [13, 14]. In Melin
et al. [14] and Gonzalez et al. [13], some edge detectors based on GT2 FSs have
been proposed. In these works the results achieved by the GT2 FS are compared
with others based on a T1 FS and with an IT2 FS. According with the results
obtained in these papers, the conclusion is that the edge detector based on GT2 FS
is better than an IT2 FS and a T1 FS.

In other works, like in [15], an edge detector based on T1 FS and other IT2 FS
are implemented in the preprocessing phase of a face recognition system.
According with the recognition rates achieved in this paper the authors conclude
that the recognition system has better performance when the IT2 fuzzy edge
detector is applied.

In this paper we present a recognition approach illustrated with faces, which is
performed with a monolithic neural network. In the methodology, two GT2 fuzzy
edge detectors are applied over two face databases. In the first edge detector a
GT2 FS is combined with the Prewitt operator and the second with the Sobel
operator. The edge datasets achieved by these GT2 fuzzy edge detectors are using
as the inputs of the neural network in a face recognition system.

The aim of this work is to show the advantage of using a GT2 fuzzy edge
detector in pattern recognition applications. Additionally, make a comparative
analysis with the recognition rates obtained by the GT2 against the results achieved
in [15] by T1 and T2 fuzzy edge detectors.

The remainder of this paper is organized as follows. Section 2 gives a review of
the background on GT2 FS. The basic concepts about Prewitt, Sobel operator,
Low-pass filter and high-pass filter are described in Sect. 3. The methodology used
to develop the GT2 fuzzy edge detector is explained in Sect. 4. The design of the
recognition system based on monolithic neural network is presented in Sect. 5. The
recognition rates achieved by the face recognition system and the comparative
results are show in Sect. 6. Finally, Sect. 7 offers some conclusions about the results.

2 Overview of General Type-2 Fuzzy Sets

The GT2 FSs have attracted attention from the research community, and have been
applied in different areas, like pattern recognition, control systems, image pro-
cessing, robotics and decision making to name a few [16–21]. It has been
demonstrated that a GT2 FS can have the ability to handle great uncertainties.
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In the following we present a brief description about GT2 FS theory, which are
used in the methodology proposed in this paper.

2.1 Definition of General Type-2 Fuzzy Sets

A General type-2 fuzzy set Ã
� �

consists of the primary variable x having domain X,
the secondary variable u with domain in Jux at each x∈X. The secondary mem-
bership grade μÃ x, uð Þ is a 3D membership function where 0≤ μ

A ̃̃
x, uð Þ≤ 1 [22–

24]. It can be expressed by (1)

Ã= x, uð Þ, μÃ x, uð Þ� �j∀x∈X,∀u∈ Jux ⊆ 0, 1½ �� �
. ð1Þ

The footprint of uncertainty (FOU) of Ã
� �

is the two-dimensional support of
μÃ x, uð Þ and can be expressed by (2)

FOU Ã
� �

= fðx, uÞ∈X × ½0, 1�jμA ̃ðx, uÞ>0g. ð2Þ

2.2 General Type-2 Fuzzy Systems

The general structure of a GT2 FLS is shown in Fig. 1 and this consists of five main
blocks, which are the input fuzzification, fuzzy inference engine, fuzzy rule base,
type-reducer and defuzzifier [19].

In a GT2 FLS first the fuzzifier process maps a crisp input vector into other GT2
input FSs. In the inference engine the fuzzy rules are combined and provide a

Fig. 1 General type-2 fuzzy logic system
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mapping from GT2 FSs input to GT2 FSs output. This GT2 FSs output is reduced
to a T1 FSs by the type-reduction process [25, 26].

There are different type-reduction methods, the most commonly used are the
Centroid, Height and Center-of-sets type reduction. In this paper we applied
Centroid type-reduction. The Centroid definition CÃ of a GT2 FLS [27–29] is
expressed in (3)

CÃ = fðzi, μðziÞÞjzi ∈ ∑N
i=1 xiθi

∑N
i=1 θi

,

μðziÞ∈ fx1 θ1ð Þ× . . . × fxN θNð Þ, θi ∈ Jx1 × . . . × JxNg
ð3Þ

where θi is a combination associated to the secondary degree fx1 θ1ð Þ*⋯*fxN θNð Þ.

2.3 General Type-2 Fuzzy Systems Approximations

Due to the fact that a GT2 FSs defuzzification process is computationally more
complex than T1 and IT2 FSs; several approximation techniques have been
proposed, some of them are the zSlices [21, 30] and the α− plane representation
[31, 32]. In these two approaches the 3D GT2 membership functions are decom-
pose by using different cuts to achieve a collection of IT2 FSs.

In this paper the defuzzifier process is performed using α− plane approximation,
which is defined as follow.

An α-plane for a GT2 FS Ã, is denoted by Ãα, and it is the union of all primary
membership functions of Ã, which secondary membership degrees are higher or
equal than α (0 ≤ α ≥ 1) [31, 32]. The α− plane is expressed in (4)

A ̃α = fðx, uÞjμÃðx, uÞ≥ α,∀x∈X,∀u∈ ½0, 1�g ð4Þ

3 Edge Detection and Filters

In this Section we introduce some concepts about filters and edge detectors (Prewitt
and Sobel) used in image processing areas; since, these are critical for achieving
good pattern recognition.

3.1 Prewitt Operator

The Prewitt operator is used for edge detection in digital images. This consists of a
pair of 3 × 3 convolution kernels which are defined in (5) and (6) [33].
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Prewittx=
− 1 − 1 − 1
0 0 0
1 1 1

2
4

3
5 ð5Þ

Prewitty=
− 1 0 1
− 1 0 1
− 1 0 1

2
4

3
5 ð6Þ

The kernels in (5) and (6) can be applied separately to the input image Ið Þ, to
produce separate measurements of the gradient component (7), (8) in horizontally
gxð Þ and vertically orientation gyð Þ respectively [33].

gx=Prewittx * I ð7Þ

gy=Prewitty * I ð8Þ

The gradient components (7) and (8) can be combined together to find the mag-
nitude of the gradient at each point and the orientation of that gradient [2, 34]. The
gradient magnitude Gð Þ is given by. (9).

G=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gx2 + gy2

p
ð9Þ

3.2 Sobel Operator

Sobel operator is similar to the Prewitt operator. The only difference is that the
Sobel operator use the kernels expressed in (10) and (11) to detect the vertical and
horizontal edges.

Sobelx=
− 1 − 2 − 1
0 0 0
1 2 1

2
4

3
5 ð10Þ

Sobely=
− 1 0 1
− 2 0 2
− 1 0 1

2
4

3
5 ð11Þ

3.3 Low-Pass Filter

Low-pass filters are used for image smoothing and noise reduction; this allows only
passing the low frequencies of the image [15]. Also is employed to remove
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high spatial frequency noise from a digital image. This filter can be implemented
by using (12) and the mask highMð Þ used to obtained the highPF is expressed in
(13).

lowPF = lowM * I ð12Þ

lowM =
1
25

*

1 0 0
0 1 0
0 0 1

0 0
0 0
0 0

0 0 0
0 0 0

1 0
0 1

2
6664

3
7775 ð13Þ

3.4 High-Pass Filter

High-pass filter only allow the high frequency of the image to pass through the filter
and that all of the other frequency are blocked. This filter will highlight regions with
intensity variations, such as an edge (will allow to pass the high frequencies) [15].
The high-pass highPFð Þ filter is implemented by using (14)

highPF = highM * I ð14Þ

where highM in (14) represents the mask used to obtained the highPF and this is
defined by (15)

highM =
− 1 ̸16 − 1 ̸8 − 1 ̸16
− 1 ̸8 3 ̸4 − 1 ̸8
− 1 ̸16 − 1 ̸8 − 1 ̸16

2
4

3
5 ð15Þ

4 Edge Detection Improved with a General Type-2 Fuzzy
System

In our approach two edge detectors are improved, in the first a GT2 FS is combined
with Prewitt operator and the second with the Sobel operator. The general structure
used to obtain the first GT2 fuzzy edge detector is shown in Fig. 2. The second
fuzzy edge detector has a similar structure; we only change the kernel by using the
Sobel operators in (10) and (11), which are described in Sect. 3.

The GT2 fuzzy edge detector is calculated as follows. To start, we select a input
image Ið Þ of the images database; after that, the horizontal gx (7) and vertical gy (8)
image gradients are obtained; moreover, the low-pass (12) and high-pass (14) filters
are also applied over Ið Þ.
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The GT2 FIS was built using four inputs and one output. The inputs are the
values obtained by gx (7), gy (8), lowPF (12) and highPF (14); otherwise, the
output inferred represents the fuzzy gradient magnitude which is labeled as Output
Edge.

An example of the input and output membership functions used in the GT2 FIS
is shown in Figs. 3 and 4 respectively.

In order to objectively compare the performance of the proposed edge detectors
against the results achieved in Mendoza [15], we use a similar knowledge base of
fuzzy rules; these rules were designed as follows.

1. If (dx is LOW) and (dy is LOW) then (OutputEdge is HIGH)
2. If (dx is MIDDLE) and (dy is MIDDLE) then (OutputEdge is LOW)
3. If (dx is HIGH) and (dy is HIGH) then (OutputEdge is LOW)
4. If (dx is MIDDLE) and (highPF is LOW) then (OutputEdge is LOW)
5. If (dy is MIDDLE) and (highPF is LOW) then (OutputEdge is LOW)
6. If (lowPF is LOW) and (dy is MIDDLE) then (OutputEdge is HIGH)
7. If (lowPF is LOW) and (dx is MIDDLE) then (OutputEdge is HIGH)

5 Face Recognition System Using Monolithic Neural
Network and a GT2 Fuzzy Edge Detector

The aim of this work is to apply a GT2 fuzzy edge detector in a preprocessing phase
in a face recognition system. In our study case the recognition system is performed
using a Monolithic Neural Networks. As already mentioned in Sect. 5, the edge

Fig. 2 Edge detector improved with Prewitt operator and GT2 FSs
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Fig. 3 Input membership functions using in the GT2 FIS
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detectors were designed using GT2 fuzzy combined with Prewitt and Sobel
operator.

In Fig. 4 as an illustration, the general structure used in the proposed face
recognition system is shown. The methodology used in the process is summarized
in the following steps.

A. Select the input images database

In the simulation results two benchmark face databases were selected; in which are
included the ORL [35] and the Cropped Yale [36–38].

B. Applied the edge detection in the input images

In this preprocessing phase, the two GT2 fuzzy edge detectors described in Sect. 5
were applied on the ORL and Cropped Yale database.

C. Training the monolithic neural network

The images obtained in the edge detection phase are used as the inputs of the neural
network. In order to evaluate more objectively the recognition rate, the k-fold cross
validation method was used. The training process is defined as follow.

1. Define the parameters for the monolithic neural network [15].

• Layers hidden: two
• Neuron number in each layer: 200
• Learning algorithm: Gradient descent with momentum and adaptive

learning.
• Error goal: 1e-4.

2. The indices for training and test k folds were calculated as follow.

• Define the people number pð Þ.
• Define the sample number for each person sð Þ.

Fig. 4 Output membership function using in the GT2 FIS

Type-2 Fuzzy Logic in Pattern Recognition … 97



• Define the k-folds k= 5ð Þ.
• Calculate the number of samples mð Þ in each fold by using (16)

m= s ̸kð Þ ⋅ p ð16Þ

• The train data set size ið Þ is calculated in (17)

i =m k− 1ð Þ ð17Þ

• Finally, the test data set size (18), are the samples number in only one fold.

t =m ð18Þ

• The train set and test set obtained for the three face database used in this
work are show in Table 1.

3. The neural network was training k-1 times, one for each training fold calculated
previously.

4. The neural network was testing k times, one for each fold test set calculated
previously.

Table 1 Information for the tested database of faces

Database People
number (p)

Samples
number (s)

Fold
size (m)

Training
set size (i)

Test
size (t)

ORL 40 10 80 320 80
Cropped Yale 38 10 76 304 76

Fig. 5 General structure for the face recognition system
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Finally, the mean of the rates of all the k-folds are calculated to obtain the
recognition rate (Fig. 5).

6 Experimental Results

This section provides a comparison of the recognition rates achieved by the face
recognition system when different fuzzy edge detectors were applied.

In the experimental results several edge detectors were analyzed in which are
included the Sobel operator, Sobel combined with T1 FLS, IT2 FLS and GT2 FLS.
Besides these, the Prewitt operator, Prewitt based on T1 FLS, IT2 FLS and
GT2 FLS are also considered. Additional to this, the experiments were also vali-
dated without using any edge detector.

The tests were executed using the ORL and the Cropped Yale database; an
example of these faces database is shown in Table 2. The parameters used in the
monolithic neural network are described in Sect. 5. Otherwise, the training set and
testing set that we considered in the tests are presented in Table 1, and these values
depend on the database size used.

It is important to mention that all values presented below are the results of the
average of 30 simulations achieved by the monolithic neural network. For this
reason, the results presented in this section cannot be compared directly with the
results achieved in [15]; because, in [15] only are presented the best solutions.

In the first test, the face recognition system was performed using the Prewitt and
Sobel GT2 fuzzy edge detectors. This test was applied over the ORL data set. The

Table 3 Recognition rate for ORL database using GT2 fuzzy edge detector

Fuzzy system edge detector Mean rate (%) Standard deviation Max rate (%)

Sobel + GT2 FLS 87.97 0.0519 96.50
Prewitt + GT2 FLS 87.68 0.0470 96.25

Table 2 Faces database

Database Examples

ORL

Cropped Yale

Type-2 Fuzzy Logic in Pattern Recognition … 99



mean rate, standard deviation and max rate values achieved by the system are
shown in Table 3. In this Table we can note that better results were obtained when
the Sobel GT2 fuzzy edge detector was applied; with a mean rate of 87.97, and
standard deviation of 0.0519 and maximum rate of 96.50.

As a part of this test in Table 4, the results of 30 simulations are shown; these
results were achieved by the system when the Prewitt GT2 fuzzy edge detector is
applied.

Table 4 Recognition rate for ORL database using Prewitt GT2 fuzzy edge detector

Simulation number Mean rate (%) Standard deviation Max rate (%)

1 83.50 0.0408 88.75
2 87.75 0.0357 92.50
3 89.75 0.0323 93.75
4 88.50 0.0427 95.00
5 70.25 0.3728 91.25
6 86.75 0.0420 91.25
7 89.00 0.0162 91.25
8 87.25 0.0205 88.75
9 86.75 0.0227 90.00
10 90.00 0.0441 96.25
11 89.50 0.0381 95.00
12 90.00 0.0265 92.50
13 89.75 0.0205 92.50
14 89.25 0.0360 92.50
15 92.00 0.0189 93.75
16 88.00 0.0447 93.75
17 86.25 0.0605 96.25
18 90.25 0.0323 95.00
19 90.50 0.0189 92.50
20 88.25 0.0227 91.25
21 89.00 0.0323 92.50
22 89.25 0.0167 91.25
23 89.00 0.0503 95.00
24 87.00 0.0447 91.25
25 89.25 0.0189 92.50
26 85.00 0.0776 93.75
27 87.00 0.0512 93.75
28 89.75 0.0399 95.00
29 86.00 0.0408 90.00
30 86.00 0.0503 93.75
Average 87.68 0.0470 92.75
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In another test the system was considered using the Cropped Yale database. The
numeric results for this experiment are presented in Table 5. In this Table we can
notice that both edge detectors achieved the same max rate value; but, the mean rate
was better with the Sobel + GT2 FLS.

As part of the goals of this work, the recognition rate values achieved by the
system when the GT2 fuzzy edge detector is used, were compared with the results
obtained when the neural network is training without edge detection, the Prewitt
operator, the Prewitt combined with T1 and IT2 FSs; also, the Sobel operator, the
Sobel edge detector combined with T1 and IT2 FSs. The results achieved after to
apply these different edge detection methods are show in Tables 6 and 7.

Table 5 Recognition rate for Cropped Yale database using GT2 fuzzy edge detector

Fuzzy system edge detector Mean rate (%) Standard deviation Max rate

Sobel + GT2 FLS 93.16 0.0328 100
Prewitt + GT2 FLS 97.58 0.0328 100

Table 6 Recognition rate for ORL database

Fuzzy system edge detector Mean rate (%) Standard deviation Max rate

None 2.59 0.0022 5.00
Sobel operator 2.70 0.0037 5.00
Sobel + T1FLS 86.16 0.0486 93.75
Sobel + IT2FLS 87.35 0.0373 95.00
Sobel + GT2 FLS 87.97 0.0519 96.50
Prewitt operator 2.70 0.0036 5.00
Prewitt + T1FLS 87.03 0.0386 93.75
Prewitt + IT2FLS 87.54 0.0394 95.00
Prewitt + GT2 FLS 87.68 0.0470 96.25

Table 7 Recognition rate for Cropped Yale database

Fuzzy system edge detector Mean rate (%) Standard deviation Max rate

None 2.83 0.0042 6.57
Sobel operator 2.63 0.0025 2.63
Sobel + T1FLS 97.52 0.0293 100
Sobel + IT2FLS 97.70 0.0314 100
Sobel + GT2 FLS 98.11 0.0314 100
Prewitt operator 2.80 0.0050 5.26
Prewitt + T1FLS 94.28 0.0348 100
Prewitt + IT2FLS 94.35 0.0304 100
Prewitt + GT2 FLS 97.58 0.0328 100
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The results obtained for the ORL database are presented in Table 6; so, in this
Table we can notice that the mean rate value is better when the Sobel GT2 fuzzy
edge detector is applied with a value of 87.97. In these results we can also observe
that the mean rate and max rate values obtained with the Prewitt + GT2 FLS were
better than the Prewitt + IT2 FLS and Prewitt + T1 FLS.

Otherwise, the results achieved when the Cropped Yale database is used are
shown in Table 7. In this Table we observed that the best performance (mean rate)
of the neural network is obtained when the Sobel + GT2 FLS was applied; nev-
ertheless, we can notice than the max rate values obtained by all the fuzzy edge
detectors was of 100%.

7 Conclusions

In summary, in this paper we have presented two edge detector methods based on
GT2 FS. The edge detection was applied in two image databases before the training
phase of the monolithic neural network.

Based on the simulation results presented in Tables 6 and 7 we can conclude that
the edge detection based on GT2 FS represent a good way to improve the per-
formance in a face recognition system.

In general, the results achieved in the simulations were better when the fuzzy
edge detection was applied; since the results were very low when the monolithic
neural network was performed without edge detection; even so, when the traditional
Prewitt and Sobel edge detectors were applied.
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Type-2 Fuzzy Logic Control in Computer
Games

Atakan Sahin and Tufan Kumbasar

Abstract In this chapter, we will present the novel applications of the Interval
Type-2 (IT2) Fuzzy Logic Controllers (FLCs) into the research area of computer
games. In this context, we will handle two popular computer games called Flappy
Bird and Lunar Lander. From a control engineering point of view, the game Flappy
Bird can be seen as a classical obstacle avoidance while Lunar Lander as a position
control problem. Both games inherent high level of uncertainties and randomness
which are the main challenges of the game for the player. Thus, these two games
can be seen as challenging testbeds for benchmarking IT2-FLCs as they provide
dynamic and competitive elements that are similar to real-world control engineering
problems. As the game player can be considered as the main controller in a feed-
back loop, we will construct an intelligent control systems composed of three main
subsystems: reference generator, the main controller, and game dynamics. In this
chapter, we will design and then employ an IT2-FLC as the main controller in a
feedback loop such that to have a satisfactory game performance while be able to
handle the various uncertainties of the games. In this context, we will briefly present
the general structure and the design methods of two IT2-FLCs which are the Single
Input and the Double Input IT2-FLCs. We will show that the IT2-FLC structure is
capable to handle the uncertainties caused by the nature of the games by presenting
both simulations and real-time game results in comparison with its Type-1 and
conventional counterparts. We believe that the presented design methodology and
results will provide a bridge for a wider deployment of Type-2 fuzzy logic in the
area of the computer games.
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1 Introduction

Computer game industry is one of the biggest high-tech industry as well as its
revenue. Depending on their virtual worlds which are inspired from real-world
dynamics or facts, they are a perfect test-bed for computational intelligence
methods or several types of research [1]. These research areas show extremely
diversity depending on their field. For instance, self-awareness of the game bots is
the challenging application of computational intelligence under computer science
area [2–4]. On the opposite side, engineers try to design a perfect player to bear
against game environment [5–7]. Furthermore, collected behavior logs of the
human players from their plays might also be a source for social scientists
[8]. Consequently, several games have been used as test beds such as Pacman [5],
Scrabble [6], Super Mario [9], Counter-Strike [2], StarCraft [10], Flappy Bird [11,
12] and, Lunar Lander [13, 14].

In the last decade, Type-2 (T2) Fuzzy Logic, which is a generalization of
ordinary (Type-1) fuzzy logic, has made a significant breakthrough in the area of
computational intelligence [15, 16]. Especially, Interval T2 (IT2) Fuzzy Logic
Controllers (IT2-FLCs) have been successfully employed in various engineering
problems [17–23]. IT2-FLCs have the capability of handling high-level uncer-
tainties as well as nonlinear dynamics in comparison with its Type-1 (T1) and
conventional counterparts. This lies due to the extra degree of freedom provided by
their T2 fuzzy sets (T2-FSs) [24, 25]. The superiority of IT2-FLCs has been shown
in various control engineering applications such as in mobile robots [17–20],
unmanned flight systems [21], engine control [22]. Although the mainstream of
these researches are based on Double Input IT2-FLCs (DIT2-FLCs) [14, 16, 18–21,
23, 26], it has also been shown in [21, 27, 28] that Single Input IT2-FLCs
(SIT2-FLCs) are easy to design and to deploy to real-time control engineering
applications.

In this chapter, we will present the novel applications of the IT2-FLCs into the
research area of computer games. In this context, we will handle two well-known
computer games, namely Flappy Bird [11, 12] and Lunar Lander [13, 14], to show
the abilities of the IT2-FLCs. From a control engineering point of view, as the game
player can be seen as the main controller in a feedback loop, we will transform the
game logic of flappy bird into a reference tracking problem while handling the
moon landing problem as a position control problem. Thus, we will construct an
intelligent control system composed of three main subsystems: reference generator,
the main controller, and game dynamics. In this chapter, we will design and then
employ an IT2-FLC as the main controller in a feedback loop such that to have a
satisfactory performance and to be able to handle the various uncertainties of the
games. In this context, we will briefly present the general structure and the design
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methods of two IT2-FLCs which are the SIT2-FLC and DIT2-FLC. In this chapter,
we will design a SIT2-FLC for the game Flappy Bird while a DIT2-FLC structure
for the game moon lander. The IT2-FLCs have been designed and implemented by
using the Interval Type-2 Fuzzy Logic Toolbox [29] for Matlab/Simulink. We will
examine the performance of both IT2 fuzzy control systems with respect to their
control system and game performances, in comparison with its T1 and conventional
counterparts, to show that the presented structure can handle the uncertainties
caused by the nature of the games much better.

2 Interval Type-2 Fuzzy Logic Controllers

The aim of this section is to present the general structure of the PID type IT2-FLCs
by classifying them on the number of input variables. In literature, the most widely
used IT2-FLC structures are the SIT2-FLC and DIT2-FLC ones as presented in
Fig. 1 [26, 28].

The SIT2-FLC structure uses only the error signal eð Þ as its input and the control
signal uSIT2ð Þ as its output as shown in Fig. 1a [28]. The handled SIT2-FLC
structure has one input and four output Scaling Factors (SFs). Here, KE is the input
SF that normalize the input to the common interval − 1, + 1½ � in which the
membership functions (MFs) of the inputs are defined and is defined as:

KE =
1

emax
ð1Þ

where emax represent the maximum allowed error value. While the IT2 fuzzy output
Uð Þ is mapped into the respective actual output uSIT2ð Þ by the output SFs as
follows:

IT2-FLC

IT2-FLC

(a)

(b)

Fig. 1 Illustration of the a SIT2-FLC, b DIT2-FLC structure
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uSIT2 =KPU +KI

Z
Udt+KD

dU
dt

ð2Þ

where Kp,KI and KD are defined as:

KP =KP0Ku KD =KD0KU KI =KI0Ku ð3Þ

Here, the output SF KU is set as K − 1
E to rescale the IT2-FIS output while KP0,

KI0 and KD0 are the baseline PID controller gains.
The PID type DIT2-FLC is formed using PD type DIT2-FLC with an integrator

and a summation unit at the output as shown in Fig. 1b [23, 26]. The PID type
DIT2-FLC given in Fig. 1b is constructed by choosing the inputs to be an error eð Þ
and change of the error Δeð Þ and the output as the control signal uð Þ. Here, the input
SFs KE (for e) and Kd (for Δe) normalize the inputs to the universe of discourse
where the MFs of the inputs are defined. Thus, e and Δe are converted after
normalization into E and ΔE while the output (U) of the PID type DIT2-FLC is
converted into the control signal uð Þ by the output SFs KP (proportional SF) and KI

(integral SF) as follows:

uDIT2 =KPU +KI

Z
Udt ð4Þ

It can be concluded that both the SIT2-FLC and DIT2-FLC controllers are
analogous to the conventional PID controllers from the input-output relationship
point of view [23, 26, 28]. The main difference of these structure lies in the
characteristics of their internal structure.

2.1 Single Input Interval Type-2 Fuzzy Logic Controller

In this subsection, we will present the internal structure of the SIT2-FLC and the
key factors in its design. The rule structure of the SIT2-FLC is as follows:

Rq: IFE is A1̃j THEN U isBj j=1, 2, 3 ð5Þ

where Bj are the crisp consequents with description on these as B1 = − 1, B2 = 0
and, B3 = 1 with rule index q=1, 2, 3. The antecedent MFs are defined with tri-
angular IT2-FSs A1̃j

� �
as represented in Fig. 2 and defined with three linguistic

terms: Negative Nð Þ, Zero Zð Þ, Positive Pð Þ. The IT2-FSs are described with an
upper MF (UMF) μÃ̄1j

and Lower MF (LMF) μ
Ã1j

that provide an extra degree of

freedom named as Footprint of Uncertainty (FOU) [26, 28]. As shown in Fig. 2,
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mij’s represent the height of the LMFs and will be the main design parameters of the
SIT2-FLC to be tuned. For the sake of simplicity, we employ mi2 = α and
mi1 =mi3 = 1− α. Thus, α is the new design parameter which determines the FOU
in the antecedent IT2-FSs [28].

The implemented the SIT2-FLC uses the center of sets type reduction method
[21, 27, 28]. It has been demonstrated in [28] that the defuzzified output can be
calculated as:

U =
Ul +Ur

2
ð6Þ

where Ul and Ur are the left and right end points respectively of the type reduced
set, are defined as follows:

Ul =
∑R

q=1 μÃ1qBq + ∑N
q=R+1 μ ̄A ̃1qBq

∑R
q=1 μÃ1q

+ ∑N
q=R+1 μ ̄Ã1q

ð7Þ

Ur =
∑L

q=1 μ ̄A ̃1qBq + ∑N
q= L+1 μÃ1q

Bq

∑L
q=1 μ ̄Ã1q

+ ∑N
q= L+1 μÃ1q

ð8Þ

where R and L are the switching points [28]. As shown in Fig. 2, the SIT2-FLC
employs fully overlapping IT2-FSs in the sense of LMFs and UMFs. Hence, it is
guaranteed that a crisp value E′ always belongs to two successive IT2-FSs
Ã1j &A ̃1j+1
� �

. Thus, since only N =2 rules will be always activated, the values of
R and L are equal to 1 [28]. Moreover, the input-output mapping of the SIT2-FLC
U Eð Þð Þ can be derived as follows [27, 28]:

U Eð Þ=E ⋅ k Ej jð Þ ð9Þ

where, k Eð Þ is the T2 fuzzy gain and defines as:

k Eð Þ= 1
2

1
α+E− αE

+
α− 1
αE− 1

� �
ð10Þ

Accordingly, the main design parameter of the IT2 FSs, α, is assigned as the
only tuning parameter. This derivation simplifies the SIT2-FLC design into a

PN ZFig. 2 Illustration of the
antecedent of the IT2-FS
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Control Curve (CC) generation instead of conventional control surface design.
In [28], by defining ε0 Eð Þ=U Eð Þ−E, the following design guidelines have been
presented.

• If 0 < α≤ αc1, then ε0 < 0 for ∀E∈ OS where OS ∈ 0, 1½ Þ and αc1 = 3−
ffiffiffi
5

p� �
̸2.

Thus, a Smooth CCIT2 S−CCIT2ð Þ will be generated.
• If αc2 ≤ α<1, then ε0 > 0 for ∀E∈OA where OA ∈ 0, 1½ Þ and αc2 =

ffiffiffi
5

p
− 1

� �
̸2.

Thus, an Aggressive CCIT2 (A−CCIT2) will be generated.

In Fig. 3, a S−CCIT2 and A−CCIT2 examples are given for α=0.2 and α=0.8,
respectively. Here, a Unit CC (U−CC) is sketched for the comparison. It can be
clearly seen that the S−CCIT2 has relatively low input sensitivity when E is close to
“0” when compared to the A−CCIT2. Thus, the parameter α of the SIT2-FLC can
be tuned such that to enhance the control performance of its baseline counterpart via
the design guidelines [28].

2.2 Double Input Interval Type-2 Fuzzy Controller

In this subsection, we will present the internal structure of the DIT2-FLCs. The
DIT2-FLC, handled in this study, uses and employs the 3 × 3 rule base given in
Table 1. The rule structure is defined as follows:

Fig. 3 Illustration of the CCIT2s

Table 1 Rule table ΔE ̸E N Z PB

N NB N Z

Z N Z P
P Z P PB
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Rq: IFE is Ã1i andΔE is Ã2j THEN U isCq ð11Þ

where Cq is the crisp consequent MFs q=1, . . . ,Q=9ð Þ is defined five linguistic
terms Negative Big NBð Þ, N, Z, P and Positive Big PBð Þ that represent
− 1, − 0.5, 0, 0.5, 1, respectively. The antecedent part of the rule is defined with
IT2-FSs Ã1i, Ã2j; i=1, 2, 3; j=1, 2, 3

� �
which are defined with three linguistic

terms N, Z and P. The IT2-FSs can be described with UMFs μ̄A ̃1iand μ ̄Ã2j

� �
and

LMFs μ
Ã1i
and μ

Ã2j

� �
which provides extra degree of freedom that is also known as

FOU. Similar to its input counterpart, the FOU of IT2-FSs is generated with the
heights of the LMFs mij

� �
which is the only design parameter to be tuned [23, 26].

The implemented DIT2-FLC uses the center of the sets type reduction method
[26]. It has been demonstrated in [26] that the defuzzified output can be calculated
as:

U =
Ul +Ur

2
ð12Þ

where Ul and Ur are the left and right end points respectively of the type reduced
set, are defined as follows:

Ul =
∑L

q=1 f q̄Cq + ∑Q=9
q=L+1 fqCq

∑L
q=1 f q̄ + ∑Q=9

q=L+1 fq
ð13Þ

Ur =
∑R

q=1 fqCq + ∑Q=9
q=R+1 f q̄Cq

∑R
q=1 fq + ∑Q=9

q=R+1 f q̄
ð14Þ

where R and L are the switching points defined between 1,Q− 1½ � [15–17].

Moreover, f q̃ = f q̄ fq
h i

is the total firing strength for the qth rule and is defined

as:

fq = μ
Ã1i

* μ
Ã2j

ð15Þ

f q̄ = μ̄A ̃1i * μ ̄2j ð16Þ

Here, “*” represents the product implication (the t-norm). The typed reduced set
can be calculated by finding the optimal switching points (R and L) with the Karnik
and Mendel algorithm [15, 16, 26].
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In control engineering applications, it is usually desired to design a symmetric
control surface [20, 26, 28, 30]. In [31, 32], it has been shown that, by setting
m11 =m13 and m21 =m23, how to generate smooth and aggressive control surfaces
by simply tuning the FOU parameters. In Fig. 4a, a smooth control surface is
presented for the FOU parameter settings m11 =m13 = 0.3, m12 = 0.9,
m21 =m23 = 0.3 and m22 = 0.9 while an aggressive control surface is presented
in Fig. 4b for the FOU parameter settings m11 =m13 = 0.9, m12 = 0.1,
m21 =m23 = 0.9 and m22 = 0.1.

3 Type-2 Fuzzified Flappy Bird Control System

In this section, we will represent the design and performance evaluation of the T2
Fuzzified Flappy Bird Control System for the game Flappy Bird. Flappy Bird is
published as a mobile game in 2013 by GEARS Studios [33]. As a side-scrolled
game, the basic game logic of the game is as follows: each time the player taps the
screen, the bird flaps its wings, moving upward in an arc while gravity constantly
pulls downward; if the screen is not tapped, the bird falls to the ground due to
gravity, which also ends the game. The main goal of the game is to control the
bird’s height while attempting to fly between the obstacles (i.e. the pipes) without
hitting them [11, 33].

3.1 Game Space

Here, we will briefly explain the game space of the Matlab replica of the game
Flappy Bird that can be downloaded from [34]. In this version of this game, the
game parameters are grouped as the parameters of the environment

(a) (b)

Fig. 4 Illustration of the a smooth, b aggressive control surface of DIT2-FLCs
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pg, ph̄, ph, ps, pw,H
� �

and the bird’s dynamics g, v, uð Þ. These parameters are

defined as follows with their illustration in Fig. 5 [11, 33]:

• World height Hð Þ is the distance between the ceiling and the floor with a fixed
value of 180 pixels.

• Upper pipe height p ̄hð Þ is the distance between the top of the upper pipe and
ceiling. This value is generated by a uniformly distributed random number
generator.

• Pipe gap pg
� �

is the distance between the pipes which is fixed as 49 pixels.

• Lower pipe height ph

� �
is the distance between the top of the lower pipe and

floor. The value of the lower pipe height is defined as ph = p ̄h − 49. Though, it is
constrained with a minimum value as 36 pixels.

• Pipe width pwð Þ is the width of the pipe with a fixed value of 24 pixels.

.

.

Fig. 5 Illustration of the
game space and one of the
sample generated reference
for Flappy Bird
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• Pipe separation psð Þ is the horizontal space between two consequent pipes with
a fixed value of 80 pixels.

• Gravitational constant gð Þ has a default value assigned as 0.1356 pixels per
frame.

• Bird’s x-direction velocity vxð Þ has a fixed value of 1 pixel per frame.
• Control signal uð Þ is the binary input variable u∈ 0, 1f g provided by the user to

flap the bird on the y direction velocity vy
� �

[11].

3.2 The Intelligent Control System for Flappy Bird

In this subsection, we will use the presented game space of Flappy Bird and convert
the obstacle avoidance problem into a reference tracking control problem. The
proposed T2 fuzzy control system is composed of three main parts which are the
reference generator, the SIT2-FLC, and the system dynamics of the bird as illus-
trated in Fig. 6. We will handle the bird as the dynamic system to be controlled, the
pipe gap as the goal to be tracked via the reference trajectory and the environment
generation as uncertainty and disturbance [12].

3.2.1 The System Dynamics of Flappy Bird

As it has been asserted in the preceding section, the bird has a constant horizontal
xð Þ velocity while the vertical (y) velocity depends on the player’s taps which
directly controls the dynamics of the bird. From a control engineering point of view,
the taps can be seen as the control signal of the system which is based on binary
numbers and the vertical velocity to be controlled. In the rest of the section, we will
use the abbreviation v for representing vy since vx is constant variable as described
in the game logic. The bird’s system dynamics are defined as follows [34]:

Reference
Generator

Game 
Environment

SIT2-FLC PWM Bird 
Dynamics

-

Fig. 6 Illustration of the T2 fuzzified Flappy Bird control system
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yt = yt− 1 + vt

vt =
2.5, u=1

vt− 1 − g, u=0

	 ð17Þ

where vt and yt are vertical velocity and vertical position of the bird at tth frame as
respectively.

3.2.2 The Reference Generator

The reference generator is an essential component in the control loop as it trans-
forms the obstacle avoidance problem of the game to a fuzzy feedback control
system. The reference generator provides the trajectory for the bird by taking
account the gap between the pipes and the bird’s position. The reference trajectory
rið Þ is updated when the bird reaches the end of the pipe set Tið Þ automatically as
shown in Fig. 5 (the red line). The new reference trajectory is defined as:

ri+1 = ph +0.3 p ̄h − ph

� �
ð18Þ

where i is the frame when the bird reaches the end of the pipe.

3.2.3 The Interval Type-2 Fuzzy Logic Controller Structure

For the presented fuzzy control system in Fig. 6, we will prefer a SIT2-FLC
structure given in Fig. 1a. Furthermore, as it is crucial not to hit and not to track the
reference signal with zero steady state error, we will prefer to employ a P type
SIT2-FLC for the sake of simplicity KI0 = 0,KD0 = 0ð Þ. In this structure, we will set
and fix the input SF KE as KE =1 ̸150 while the output SF KP0 will be set and fixed
to its baseline counterpart (its design will be explained in Sect. 3.3). Thus, the only
parameter to be tuned in the SIT2-FLC structure is the FOU design parameter α. It
is worth to note that the generated signal from the P type SIT2-FLC needs also to be
converted to a binary signal. Thus, the continuous control signal uIT2ð Þ is then
converted into a Pulse Width Modulation (PWM) generator, which is widely used
in power electronics [35], into the input signal u∈ 0, 1f g.

3.3 The Design and Performance Evaluation
of the SIT2-FLC Structure

This subsection will include the design steps of the SIT2-FLC and then investigate
its performance in comparison with the conventional P controller. Then, we will
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present experimental results that performed in both the simulation and game
environment to examine its game performance.

As it has been asserted in Sect. 2.1, the design of the SIT2-FLC is accomplished
as an extension of its baseline counterpart. Thus, as it has been preferred to design
and employ a P type SIT2-FLC, it is necessary to design a conventional P con-
troller. In this context, the Genetic Algorithm is used to find the optimal propor-
tional gain value KP0 on a randomly generated training reference trajectory
regarding the game logic as illustrated in Fig. 7a. The defined cost function is the
widely used Integral of Time Absolute Error (ITSE) which is given below:

ITSE=
Z

e2 tð Þtdt ð19Þ

The resulting optimal parameter value for the proportional gain is found as
Kp0 = 5.04 from the training trajectory. Then, to enhance the control performance of
its baseline counterpart in presence of uncertainties and nonlinearities, we preferred
to set the FOU design parameters value as α=0.2 to end up with S−CCIT2 which is
potentially more robust controller in comparison with its baseline and A−CCIT2
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Fig. 7 System responses of the feedback control systems for the a training reference trajectory
b testing reference trajectory
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counterparts. The control system performances of the SIT2-FLC and P controller
structures are given in Fig. 7a, and their corresponding ITSE values are 30130 and
31630, respectively. It can be concluded that the SIT2-FLC reduced the ITSE value
by about 5% in comparison to its baseline counterpart in the training phase. More-
over, since the dynamics offlappy bird system inherent nonlinearity as given in (17),
we have examined the controller performances for a testing trajectory which is also
generated randomly as shown in Fig. 7b. In other words, we have tested the con-
troller performances for different operating points at which they have not been
designed. The ITSE values of the SIT2-FLC and P controller structures are calcu-
lated as 99674 and 136270, respectively. Thus, in comparison with its conventional
counterpart, the SIT2-FLC resulted with a better tracking performance as shown in
Fig. 7b and was also able to reduce the ITSE value by about 27% on the testing
trajectory. Moreover, with respect to the game logic; it is worth to underline at the
reference variation rið Þ in the 1200th frame (the shaded area in Fig. 7b) that the
conventional control system almost hit the Ti+1 pipe which would end the game. On
the other hand, for the same operation point, the T2 fuzzified flappy bird control
system resulted with a satisfactory reference tracking performance.

In the real game environment, the ITSE value comparison loses its importance as
the number of successfully avoided pipes is the indicator of the score rather than the
reference tracking performance. Therefore, since the game environment parameters

such as pipe gap’s location ph̄, ph
� �

are generated randomly during the game,we have

repeated each experiment 20 times to get an overall performance comparison. The
results of the game performances are tabulated in Table 2 where the best and average
scores of the experiments are given. It can be clearly observed that the T2 fuzzy control
scheme improved the average score almost by 55% in comparison with its baseline
counterpart. Consequently, the SIT2-FLC structure is better when compared to its
conventional counterpart with respect to both its control and game performance.

4 Type-2 Fuzzy Moon Landing System

In this section, we will represent the design and performance evaluation of the T2
Fuzzy Moon Landing System for the game Lunar Lander. Lunar Lander is one of the
most cloned games [36] into several platforms which is a vector monitor based arcade
game firstly released by Atari in the late 1970s. The game logic of the Lunar Lander
game is to control the engine of the spaceship in the x-y coordinate system such that to
land on the dock softly [37, 38]. The player can arrange the spaceship’s angular
rotation by pressing the right or left arrow keys on a cumulative basis. The player can

Table 2 Control
performance evaluation for
Flappy Bird

Average Best

P controller 112 423
SIT2-FLC 174 482
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also produce thrust against the gravity by pushing the spacebar key. The direction of
the force obviously depends on the spaceship’s angular position [12, 13].

4.1 Game Space

In this study, we will use the Matlab clone of the Lunar Lander that can be found in
[39]. The game parameters of the game space are illustrated in Fig. 8 and defined as
follows

• World height Hð Þ is fixed to a value of 20 units.
• World length Lð Þ is fixed value of 40 units.
• The terrain is defined and generated with randomly generated sinus functions.

In Fig. 8, light gray basements define the basic terrain, which is also an obstacle
to be avoided by the player. On the other hand, the dark gray ones only provide
a realistic game environment, thus are not obstacles.

• Position of the Dock xd, ydð Þ is the reference point or the target position for
landing on x-y coordinates. The x-axis is generated as randomly while the y-axis
depends on the randomly generated light gray terrain.

• Position of the Spaceship xs, ysð Þ is the position of the spaceship on x-y
coordinate. In the start of the game, the x-axis position of the spaceship is
randomly assigned in the range of the world length Lð Þ while its y-axis position
is set to a 20 units.

0 10 20 30 40
0

5

10

15

20

H

L

Fig. 8 Illustration of the game environment of Lunar Lander
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• Speed of the Spaceship vx, vy
� �

defines the linear speed of spaceship in x-y the
coordinate system.

• Gravitational constant gð Þ has a default value assigned as 0.4 units per frame.
• The angular position of the Spaceship θð Þ is the angle between the spaceship’s

direction and y-axis. The angle can be controlled with right and left arrow keys
by the player.

• Thrust power Tð Þ defines the thrust force to be employed to the spaceship
engine and is controlled by the player.

• Fuel ∫ T
� �

defines the maximum total thrust power that can be consumed by
the player.

In this Matlab clone [39], the game ends when

(1) The spaceships touches/hits the terrain with failure
(2) The spaceship consumes more than 200-unit fuel before a successful landing

with failure
(3) The Euclidean distance between the spaceship and the dock is less than 2 units

with successful landing

Moreover, we have added the following conditions for a successful landing to
make the game more realistic with providing soft landing conditions:

(4) Vertical velocity vy
� �

must be less than −0.5 when the spaceship has landed.
(5) The angular position of the spaceship θð Þ must be between − π ̸16, π ̸16½ �

when the spaceship has landed.

4.2 The Intelligent Control System for Lunar Lander

In this section, we will convert the defined game space of Lunar Lander into a
feedback control problem. Here, the spaceship will define as the system to be
controlled and the position of the dock xd, ydð Þ to be the desired reference point.

+

-Game 
Environment Error Signal 

Generator
DIT2-FLC

Spaceship 
Dynamics

DIT2-FLC

Fig. 9 Illustration of the type-2 fuzzy moon landing system
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Randomly generated initial spaceship position and terrain, and the gravity will be
considered as the disturbances and uncertainties in the control loop. Moreover, error
signal generator will convert the position signals from the dock xd, ydð Þ and
spaceship xs, ysð Þ with game disturbances such as g into feasible reference signal for
the controllers that will define to control spaceship’s angular position and thrust
power via angle θð Þ and thrust Tð Þ signals. Therefore, we can define the proposed
structure into three part as illustrated in Fig. 9. Note that, we have also designed an
inner loop proportional controller to speed up the response time of angle of the
spaceship θð Þ. In all experiments, we have set and fixed this controller gain as
KT =1.648.

4.2.1 The System Dynamics

The dynamics of the spaceship are based on the classical motion equations. Thus,
the acceleration að Þ of the spaceship at kth frame in x-y coordinate system can be
defined as:

ax kð Þ= − sin θ kð Þð ÞT kð Þdt
ay kð Þ= cos θ kð Þð ÞT kð Þdt

ð20Þ

where dt is sampling time of the game with a fixed value of 0.1. Correspondingly,
the velocity vð Þ equations of the both axis can be defined as:

vx k+1ð Þ= vx kð Þ+ ax kð Þdt
vy k+1ð Þ= vy kð Þ+ ay kð Þdt − gdt

ð21Þ

Moreover, the position of the spaceship xs, ysð Þ can be defined as:

xs k+1ð Þ= xs kð Þ+ vx kð Þdt
ys k+1ð Þ= ys kð Þ+ vy kð Þdt ð22Þ

4.2.2 The Error Signal Generator

The error signal generator is designed to transform the landing of the spaceship into
a control problem by providing the essential reference signals to the controllers. As
the aim of the game is to land the spaceship on the dock, the position differences
between the dock and spaceship are used to define the following error signals:

Δx kð Þ= xd − xs kð Þ
Δy kð Þ= yd − ys kð Þ ð23Þ
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Note that, the values xd and yd are fixed to the randomly generated values at the
beginning of the game until the game ends.

4.2.3 The Interval Type-2 Fuzzy Logic Controller Structure

As it has been asserted, the player has to control the thrust and angle of the
spaceship for a successful landing. In this context, we will design two DIT2-FLCs
to control the thrust power and angular position of the spaceship to provide a
successful landing as illustrated in Fig. 9. Here, we preferred a PD type DIT2-FLC
structure since according to the success criteria of the game velocity and position
must be smaller than predefined values. Note that, we have not preferred a PID
structure, as it is necessary to eliminate the steady state error according to the
definitions of a successful landing presented in Sect. 4.1 with 3rd condition for the
game ending. As it can be seen from Fig. 9, we employed two PD type DIT2-FLC
to solve the thrust Tð Þ and angle θð Þ control problems of the lunar lander. The
DIT2-FLC structure for angle control is constructed by choosing the inputs as
e=Δx kð Þ, Δe= vx kð Þ and the output as u= θ kð Þ. In a similar manner, the
DIT2-FLC structure for thrust control is constructed with e=Δy kð Þ and Δe= vy kð Þ
and u=T kð Þ. For each DIT2-FLC, there are 2 SFs, excluding the SF KE, and 6
FOU parameters to be tuned, thus in total 2 × 8 parameters for DIT2-FLC
structure.

4.3 The Design and Performance Evaluation
of the DIT2-FLC Structure

This subsection will include the design steps of the DIT2-FLC structure and
investigate its performance in comparison with its T1 fuzzy and conventional PD
counterparts. Then, to examine the differences on the different level of the uncer-
tainties, experimental results collected from the game environment are presented.
The T1-FLC structure is composed with the identical rules of the DIT2-FLC
(Table 1) ones with the only difference that it uses and employs triangular type
T1-FSs [25].

As it has been mentioned, the Lunar Lander is a limited type game depending on
game ending condition and also includes random parameter initializations for each
trial. Therefore, the parameter tuning phase of the controllers should be accom-
plished with several trials in the game space to design controllers that are robust for
randomly generated game environments. To provide that, we defined 4 training
sets, as tabulated in Table 3, and then tuned the controllers respectively. The
starting position of the spaceship is set and fixed during this phase to the value (16,
20). Moreover, the terrain characteristics have also been set and fixed in the training
phase to make a fair comparison between the controllers. Here, all three controller
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structures were optimized with the particle swarm optimization that subject to
minimization of the given objective function:

F = ∑
n

k =1
eΔk kð Þk2 + C ð24Þ

where n represents the total number of samples which has been taken for each
sampling time starting from the beginning to landing or crash. ⋅k k is norm operator
for the error term eΔ kð Þ which is defined as:

eΔ kð Þ= Δx,Δy½ � 1 × 2ð Þ ð25Þ

Moreover, C is the penalty for a crash defined as:

C= 10000, if crash=1
0, if crash=0

	
ð26Þ

Note that, to show the superiority of DIT2-FLCs clearly, we have not optimized
the SFs of the DIT2-FLCs. We have set and fixed them to the optimal values found
for its T1 counterpart. The resulting optimal parameters are tabulated in Table 3
according to the training scenarios tabulated in Table 4. To provide a further
comparison, we have also provided the resulting Landing Times (LT) and the
existence of a crash. Firstly, it can be clearly observed that all three control

Table 3 Controller
parameters for Lunar Lander

Method Controller Parameter Value

PD Thrust KP 5.22
KD 13.14

Angle KP 0.51
KD 6.12

T1-FLC Thrust KE 1 ̸emax
KP 39.51
KD 0.18

Angle KE 1 ̸emax
KP 41.37
KD 0.61

DIT2-FLC Thrust m11,m13 0.27
m12 0.91

m21,m23 0.11
m22 0.67

Angle m11,m13 0.15
m12 0.61
m21,m23 0.47
m22 0.91
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structures achieved their training scenarios without a crash as expected from the
training phase. The system responses for Scenario 1 and 4 are illustrated in Fig. 10a
and Fig. 10b, respectively. For Scenario 3, the DIT2-FLC structure decreased the
Landing Time value about 41 and 3% (increased the convergence speed to dock)
while it also reduced the total fitness value about 30 and 16% in comparison to the
PD and T1-FLC structures, respectively. It should be noted that the performances of
the T1 and T2 Fuzzy Moon Landing Systems are quite similar. That lies because the
design of the DIT2-FLC has been accomplished as an extension of its T1 coun-
terpart. Moreover, this also coincides with the results presented in [20] where it has
been stated that the DIT2-FLCs result in smoother control surfaces in comparison
with its T1 counterpart. Thus, the resulting system response might be relatively
slower but potentially more robust against uncertainties. Similar comments can be
made for the other two reference variations.

We have also tested the controllers for a different initial point (35, 20) to see the
performance of the controllers in terms of uncertainties and different operating
regions. The resulting performance values are also tabulated in testing part of
Table 4. The system responses for Scenario 5 and 7 are illustrated in Fig. 10c and
Fig. 10d, respectively. It can clearly observe that the T2 fuzzy moon landing system
was able to pilot the spaceship to the dock without a crash for all testing scenarios
while T1 and conventional PD controller structures crashed the spaceship in three

PD
T1-FLC
DIT2-FLC

PD
T1-FLC
DIT2-FLC

PD
T1-FLC
DIT2-FLC

PD
T1-FLC
DIT2-FLC

(a) (b)

(c) (d)

Fig. 10 Illustration of some training and testing cases. a Scenario-1, b Scenario-4 for training,
c Scenario-5, d Scenario-7 for testing
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of them. The PD structure was not able to handle the uncertainty and thus, in the
first three testing scenarios, the crash occurred for several reasons. Scenario 5 was
failed because the 4th condition of the successful landing (presented in Sect. 4.1)
was violated. PD structure has also violated 1st condition at Scenario 6 and 7. The
T1 fuzzy structure crashed the spaceship in Scenario Numbers 6 and 7 since it hit/
touched the terrain (1st condition). The last crash (Scenario 8) of the T1-FLC
structure occurred due to the fact the required angle condition (5th condition) for a
successful landing could not be satisfied as it resulted with oscillating system
response. The handled scenarios clearly show that the proposed T2 fuzzy moon
landing system can handle uncertainties and various operating points when com-
pared to its T1 and conventional PD controller counterparts.

Distinctly from the simulation studies, the game environment includes various
uncertainty sources and operating points caused by its randomization processes in
the game logic such as various unique terrains, starting points, and landing points.
Therefore, using squared error based evaluation criteria for comparison in the game
environment might not be meaningful. Thus, we will use the successful landing
criteria for the testing and compare the controllers in the game environment. In this
context, we have employed 200 times each controller structure to game where
starting point xs, ysð Þ, landing point xd, ydð Þ and also terrain characteristics are
randomly generated by the game. The success rates of the controllers are given in
Table 5. It can be concluded that the game performance of the DIT2-FLC structure,
with respect to game logic, is better than its T1 and conventional parts by almost
14% and 22.5%, respectively.

5 Conclusions

In this chapter, we presented the novel applications of the IT2-FLCs into the
well-known computer games called Flappy Bird and Lunar Lander. As these games
include various dynamics, and the uncertainties; these two games are challenging
testbeds for benchmarking IT2-FLCs as they provide similar real-world engineering
problems. From a control engineering point of view, as the game player can be seen
as the main controller in a feedback loop, we have transformed the game logic of
flappy bird into a reference tracking problem while the moon landing problem as a
position control problem. Then, we proposed an intelligent control system where
the IT2-FLC is the main controller. We designed a SIT2-FLC for the game Flappy
Bird while a DIT2-FLC structure for the game moon lander. We examined the

Table 5 Game performance
evaluation on 200 trials for
Lunar Lander

Crash count Success rate (%)

PD 78 61
T1-FLC 61 69.5
DIT2-FLC 33 83.5
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performance of both IT2 fuzzy control systems with respect to their control system
and game performances in comparison with its T1 and conventional counterparts.
Thereby, we have shown that the resulting IT2-FLCs resulted with an adequate
control and game performance in the presence of the uncertainties, disturbances and
nonlinear system dynamics.
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A Type-2 Fuzzy Model to Prioritize
Suppliers Based on Trust Criteria
in Intelligent Agent-Based Systems

Mohammad Hossein Fazel Zarandi, Zohre Moattar Husseini
and Seyed Mohammad Moattar Husseini

Abstract In the last two decades the intelligent agents have improved the lifestyle
of human beings from different aspects of view such as life activities and services.
Considering the importance of the safety and security role in the e-procurement,
there have been many systems developed including trust engine. In particular, some
of the first systems were modeled though trust evaluation concepts as crisp values,
but now a days to adjust the systems with real world cases, the uncertainty and
impreciseness parameters must be considered with the use of fuzzy sets theory. In
this paper to minimize the number of exceptions related to suppliers, Trust Man-
agement Agent (TMA) is considered to prioritize candidate suppliers based on trust
criteria. Due to lots of uncertainties, type-2 fuzzy sets prove to be a most suitable
methodology to deal with the trust evaluation process efficiently. In this regard, a
new evaluation process based on hierarchical Linguistic Weighted Averaging
(LWA) sets is proposed. The solution method was then illustrated through a simple
example which clarifies the suitability as well as the simplicity of the proposed
method for the category of the defined problem.

Keywords Interval type-2 fuzzy ⋅ Intelligent agent-based systems
Trust evaluation ⋅ E-procurement ⋅ Prioritize suppliers

1 Introduction

The term e-Procurement refers to the use of electronic communications to deal with
business process between sellers and buyers, through linking and integrating
inter-organization business processes and systems with the use of Internet-based
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protocols [2]. E-Procurement has been providing more efficient trading methods as
well as new trading opportunities in the supply networks.

In the last two decades the intelligent agents have improved the lifestyle of
human beings from different aspects including life activities and services. There has
been growing interest in the design of a distributed, intelligent society of agents in
e-commerce applications in the recent years [10, 13, 21, 30].

It is crucial, in an agent based e-procurement system to protect both buyers and
sellers from any possible unsatisfied condition, which is commonly due to some
uncertain and vague characters. In this regard, there have been a number of systems
developed using a kind of trust engine to help establish trust orientation between the
firms [33]. Such trust, could positively affect firms’ behaviors and performances and
meantime reduce their interrelation risks.

The establishment of the trust commonly requires one party to assess the other
on its past behaviors, acts and promises based on some appropriate trust criteria [7,
22, 32]. For this assessment, commonly, not crisp but vague and uncertain data are
available. Further, in the agent based systems, the assessment heavily relies on the
collective opinions from the agents in the community. Whilst, some early agent
based systems modeled the trust evaluation process merely using crisp values, but
to adjust the systems with real world cases, the uncertainty and vagueness
parameters must be considered in the modelling through utilizing fuzzy based
theories.

While type-1 fuzzy sets are capable to handle several kinds of uncertainties [16]
these are not able to directly model uncertainties related to some particular sources,
such as: uncertainty in the meanings of the words and uncertainty associated with
the consequences (e.g. when the knowledge extracted from group of experts who do
not all agree). Type-2 fuzzy sets are more appropriate for these situations. Type-2
fuzzy sets utilizes higher degree of freedom by a fuzzy membership functions to
handle uncertainties in real world situations.

Considering uncertainty characteristics of the inter-organizational trust evalua-
tion in an agent based e-procurement system (as detailed in the next section) and
based on the capabilities outlined for type-2 fuzzy sets (in Sect. 4) this paper
propose a new evaluation process based on Linguistic Weighted Averaging
(LWA) sets using Interval Type-2 Fuzzy set (IT2-FSs).

The following section (Sect. 2) provides a brief review of the literature and the
main subjects concerned in this paper. Section 3 describes the defined problem. The
background of the solution approach is presented in Sect. 4 and the solution
approach is detailed in Sect. 5. Then an illustrative example is presented in Sect. 6.
Finally, conclusions are provided in Sect. 7.

2 Literature Review

This section provides brief reviews for the three main aspects concerned in this
work:
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• Intelligent agents in e-procurement
• Inter-organizational trust in the e-procurement intelligent agents
• The capabilities of T2-FSs in dealing with high levels of uncertainties.

2.1 Intelligent Agents in E-Procurement

E-Procurement is considered to be a strategic tool for improving the competitive-
ness of organizations and generating scale economies for both sellers and buyers. In
this context, one critical issue is to tackle problems existing in ensuring a trust-
worthy environment in which business interrelationship risks can be minimized [2].

Intelligent agents reveal the capability to operate on behalf of buyers to look for
requested products concerning the process of procurement [9]. Raghavan and
Prabhu [19] developed a software for agent-based framework considering a typical
e-procurement process by classifying the procurement process into three classes:
e-negotiations, e-settlement, and reverse auctions [19]. Cheung et al. [6] proposed
an agent-oriented knowledge-based system for strategic e-procurement using real
time information to produce dynamic business rules [6]. Lee and his collogues [12]
proposed an agent based e-procurement system, in which the intelligent agents are
responsible for searching and negotiating the potential suppliers and evaluating the
performance of suppliers based on the selection criteria [12, 26].

Sun and his collogues [26] proposed an agent and Web service based archi-
tecture for considering exception handling in e-procurement. In this architecture,
different tasks in the e-procurement process are assigned to different agents, such as
searching, negotiating, supplier selection, contracting, monitoring, and exception
handling [26].

Despite the existing developments on applying intelligent agents for
e-procurement, the challenge remains on how to tackle the existing problem as the
legal framework that can ensure a trustworthy environment (as mentioned in this
section). For this reason Inter-organizational trust in intelligent agents of
e-procurement is considered in the next sub-section.

2.2 Inter-organizational Trust in the E-Procurement
Intelligent Agents

Inter-organizational trust helps establish a kind of inter-firm relationship which
ensures each side holding a collective trust orientation towards the other [33]. This
positively affects firms’ behaviors and performances and meantime reduces inter-
relation risks. Inter-organizational trust is conceptualized as a multi-dimensional
construct, for which a list of 22 widely referred dimensions is introduced in [25].
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The same paper also summarized the most commonly used dimensions as: credi-
bility, benevolence, goodwill, predictability, reciprocity, openness and confidence.

Trust has been recognized as a key issue in multi-agent and e-commerce sys-
tems, being at the core of the interactions between agents operating in uncertain
business environments [11, 20]. Bases of the trustworthiness knowledge is one
main concern, for which three types are commonly agreed in the literature: indi-
vidual experience, inference from other agents in the community, and a hybrid of
the two [3]. Evidences used for trust evaluation, based on their source types, can
also be categorized as priori evidences and experienced evidences [11, 18, 35].
Priori evidences are those mainly provided by protocols, policies, or mechanisms;
while experienced evidences are obtained by the agents during their interactions.
The literature reveals considerable research interest in trust decision with regard to
the community based experiences. With regard to the characteristics of trust eval-
uation in the e-procurement environment, we refer to [1] which states the need to
deal with high levels of uncertainties, vagueness and ambiguities which are com-
monly due to: (1) The absence of an authority to prescribe the rules for
inter-organizational interaction as buyer supplier relationships, (2) Trading trans-
actions might occur among unknown parties, which requires a collection of indirect
trust experience from referee agents in the community, and (3) The use of trust
experiences which are based on the feedback from buyers.

According to some studies [20, 27], for an agent to evaluate other agents’
trustworthiness some models traditionally use a bi-stable value (good or bad), while
this cannot generally support realistic situations. Instead, some other researches
(e.g. [18, 23, 24]) attribute some fuzziness to the notion of performance and then
evaluate the trustworthiness using fuzzy reasoning techniques. These authors
concluded that the fuzzy reasoning is especially attractive for the trust evaluation
purpose.

The above review leads to the recognition of the characteristics of trust evalu-
ation in the e-procurement context the characteristic represent the high levels of
uncertainties, vagueness and ambiguities (as detailed [1]).

2.3 A Short Review of T2-FSs Capabilities

In 1975 Zadeh introduced type-2 fuzzy sets to minimize the effect of uncertainties
concerning ambiguity, vagueness and randomness [31]. While type-1 fuzzy sets are
capable to handle several kinds of uncertainties, according to Mendel and his
colleagues in [16] these are not able to directly model uncertainties related to the
following sources: (1) Uncertainty in the meanings of the terms (for instance used
in the rules), (2) Uncertainty associated with the consequences (for instance when
the knowledge extracted from group Of experts who do not all agree), (3) Uncer-
tainty in the measurements that activate type-1 fuzzy set and (4) Uncertainty in the
data used to tune parameters of a type-1 fuzzy sets. These types of uncertainties all
translate into uncertainties about fuzzy sets membership functions, while in the
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type-1 fuzzy sets membership functions are totally crisp. In this paper, it is con-
cluded that type-2 fuzzy sets are able to model such types of uncertainties because
of fuzzy membership functions. According to Castillo and his colleagues [5] five
types of uncertainties emerge from imprecise knowledge natural state, which are:
uncertainties related to measurement, process, model, estimate and implementation.

As discussed in [34] a type-2 fuzzy set, which is characterized by a fuzzy
membership function, is capable to provide us with more degrees of freedom to
represent the vagueness and the uncertainty and of the real world.

According to Mendel and his colleagues [16], there has been several application
areas for fuzzy logic systems and type-2 fuzzy sets (for instance decision making,
extracting knowledge from questionnaire surveys, function approximation, learning
linguistic membership grades, preprocessing radiographic images and transport
scheduling).

3 Problem Description

As discussed in the previous section, it is crucial in an agent based e-procurement
system to protect the buyer from any possible unsatisfied condition which is
commonly due the existence of uncertain and vague characters. In this regard, many
research attempts have been reported in the literature including some developments
which use an exception management agent to handle such undesired situations.
Some research works with the inter-organizational trust orientation have been also
presented in the literature. It is notable that presence of the trust in the buyer-seller
relationship not only reduces uncertainty and vagueness characteristics, but sig-
nificantly reduces the complexity of the inter-firm relations which could in turn
enhance their trading process. These published works, however, mostly utilize
T1-FSs in their solution approach, therefore, they provide limited capabilities in
handling mentioned uncertainty and vagueness characteristics. As reviewed in the
literature, T2-FSs utilize higher degree of freedom by a fuzzy membership function
to handle uncertainties and vagueness in real world situations.

Based on the recognition of the above remarking points, the current paper aims
to establish inter-organizational trust in the agent based e-procurement systems,
through proposing an effecting supplier evaluation and ranking method. Consid-
ering previously mentioned characteristics inherent in the inter-organizational trust
evaluation process such as; uncertainty and vagueness in the data, use of collective
opinions from experts or other agent in the community, as well as using both direct
and indirect sources of evidences; this paper utilizes type-2 fuzzy sets as the
solution approach for the defined problem.

The paper considers an agent based e-procurement system consisting of specific
agents for the required functions also including a Trust Management Agent
(ATM) which is responsible to establish inter-organizational trust in the
buyer-supplier relationship. One major function in this respect is to evaluate some
pre-qualified candidate suppliers in order to rank them on some particular trust
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criteria. In this regard the paper aims to propose a solution method to determine
various decision to lead to a short list of the most appropriate suppliers ranked
based on their trustworthiness characteristics. It is notable that this approach utilizes
linguistic weighted averaging based on interval type-2 fuzzy sets in the evaluation
process.

The proposed solution is further detailed in the following sections.

4 Basic Concepts of Type-2 Fuzzy Sets

In 1975 Zadeh introduced type-2 fuzzy sets to minimize the effect of uncertainties
concerning ambiguity, vagueness and randomness [31]. Comparing to an ordinary
(type-1) fuzzy set which has a grade of crisp membership function, a type-2 fuzzy
set has grades of fuzzy membership functions [14]. This section is organized to
review theoretical definitions related to the proposed fuzzy type-2 based solution
method, including: Interval Type-2 Fuzzy Sets (IT2-FSs) and Linguistic Weighted
Averaging (LWA).

4.1 Interval Type-2 Fuzzy Sets

Definition 1 [16] A type-2 fuzzy set Ã is characterized by a type-2 membership
function μÃðx, uÞ, where x∈X, u∈ Jx ⊆ ½0, 1� and μÃðx, uÞ⊆ ½0, 1�, i.e.,

A ̃= ððx, uÞ, μÃðx, uÞÞ ∀x∈X, ∀u∈ Jx ⊆ ½0, 1�j� � ð1Þ
Also Ã can be presented by Eq. (2),

Ã=
Z

x∈X

Z
u∈ Jx

μÃðx, uÞ ̸ðx, uÞ Jx ⊆ ½0, 1� ð2Þ

where
RR

denotes union overall admissible x and u. For discrete universe of dis-
course x and u,

R
is replaced by ∑ .

Definition 2 [17] If all μA ̃ðx, uÞ=1 then Ã is an interval type-2 fuzzy sets which
can be expressed as a special case of general type-2 fuzzy sets, Eq. (3):

Ã=
Z

x∈X

Z
u∈ Jx

1 ̸ðx, uÞ Jx ⊆ ½0, 1�. ð3Þ

Note that x is the primary variable, Jx ⊆ ½0, 1� is the primary MF of x, also u is the
secondary variable, and

R
u∈ Jx

1 ̸u is the secondary MF at x.
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Definition 3 [17] A bounded region with respect to the uncertainty in the primary
memberships of an IT2-FS, is called the Footprint of Uncertainty (FOU), which is
the union of all primary membership functions.

FOUðÃÞ=⋃x∈XJx. ð4Þ
So, FOU demonstrates the vertical-slice-representation to indicate the interval

type-2 fuzzy sets.

Definition 4 [28] The FOU is bounded by an Upper Membership Function
(UMF) ĀðxÞ≡ Ā and a Lower Membership Function (LMF) AðxÞ≡A, which are
T1-FSs; So, the membership function of each element of an IT2-FS is an interval
½AðxÞ, ĀðxÞ�.

4.2 Linguistic Weighted Averaging

The linguistic weighted average, concerning IT2-FSs as inputs, is introduced by Wu
and Mendel in 2007 and 2008 in [28, 29] which is an extension of the Fuzzy
Weighted Average (FWA) [8] for type-1 FSs inputs. The LWA is defined:

Y ̃LWA =
∑n

i=1 X ̃iW̃ i

∑n
i=1 W̃i

ð5Þ

where Xĩ and the corresponded weight W̃i are linguistic terms. Considering that X ̃i
and W̃i which are modeled by IT2-FSs, the Y ̃LWA is also IT2-FSs (Eq. (6)),

YL̃WA =1 ̸FOUðYL̃WAÞ=1 ̸½YLWA,Y ̄LWA� ð6Þ

where YLWA and Y ̄LWA are LMFs and UMFs of Y ̃LWA, respectively [28]. Considering
the use of Xĩ and W̃i in computing YL̃WA, with regard to
vertical-slice-representation, Eqs. (7) and (8) are defined as below [28]:

Xĩ =1 ̸FOUðXĩÞ=1 ̸½Xi,X ̄i� ð7Þ

W̃i =1 ̸FOUðW̃iÞ=1 ̸½Wi, W̄i� ð8Þ

where Xi and Xī (Wi and W̄i) are LMFs and UMFs of X ̃iðW̃iÞ, respectively.

YL̄WA and YLWA will be computed using the α-cut, in which the range of the MF
is discretized into m points as α1, α2, . . . , αm. The α-cut on X ̃i and W̃i are applied to
compute the corresponding YL̃WA (Figs. 1, 2 and 3) [28].
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Fig. 1 X ̃i and an α-cut. the
dashed curve is an embedded
T1 FS of Xĩ [28]

Fig. 2 W̃i and an α-cut. The
dashed curve is an embedded
T1 FS of W̃i [28]

Fig. 3 Y ̃i and an α-cut [28]
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Noted that all UMFs are T1 FSs normal, so the height of the UMFs of Y ̄LWA is
one ðhY ̄LWA

=1Þ.
And the height of YLWA which is the lower bound of MFs of FOU (Y ̃LWA) is

calculated by hmin which is defined as the smallest height of all FWAs resulted from
T1 FSs of the height of Xi as hXi

and Wi as hWi
in Eq. (9) [14].

hmin =minfmin
∀i

hXi
, min

∀i
hWi

g ð9Þ

Let the interval of ½aiðαÞ, biðαÞ� be an α-cut on X ̃i, and the interval ½ciðαÞ, diðαÞ�
be an α-cut on W̃i. As shown in Fig. (1), if the α-cut on Xi exists, then the interval
½ailðαÞ, birðαÞ� is divided into three subintervals: ½ailðαÞ, airðαÞ�, ½airðαÞ, bilðαÞ�,
and ½bilðαÞ, birðαÞ�.

However, if the α on Xi is larger than hXi
(α-cut dose not exist), then both the

value of aiðαÞ and biðαÞ can be assumed in the entire interval ½ailðαÞ, birðαÞ�:

aiðαÞ= ½ailðαÞ, airðαÞ� α∈ ½0, hXi
�

½ailðαÞ, birðαÞ� α∈ ½hXi
, 1�

�
ð10Þ

biðαÞ= ½bilðαÞ, birðαÞ� α∈ ½0, hXi
�

½ailðαÞ, birðαÞ� α∈ ½hXi
, 1�

�
ð11Þ

Similarly the value of ciðαÞ and diðαÞ can be assumed based on Fig. 2,

ciðαÞ= ½cilðαÞ, cirðαÞ� α∈ ½0, hWi
�

½cilðαÞ, dirðαÞ� α∈ ½hWi
, 1�

�
ð12Þ

diðαÞ= ½dilðαÞ, dirðαÞ� α∈ ½0, hWi
�

½cilðαÞ, dirðαÞ� α∈ ½hWi
, 1�

�
ð13Þ

In Eqs. (10)–(13), the l and r are the left and right indices respectively. Also the
value of airðαÞ, bilðαÞ, cilðαÞ and dilðαÞ can be defined as Eqs. (14)–(17):

airðαÞ≜ airðαÞ, α≤ hXi

birðαÞ, α> hXi

�
ð14Þ

bilðαÞ≜ bilðαÞ, α≤ hXi

ailðαÞ, α> hXi

�
ð15Þ

cirðαÞ≜ cirðαÞ, α≤ hWi

dirðαÞ, α> hWi

�
ð16Þ

dilðαÞ≜ dilðαÞ, α≤ hWi

cilðαÞ, α> hWi

�
ð17Þ
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In the LWA, the value of aiðαÞ, biðαÞ, ciðαÞ, and diðαÞ can be assumed con-
tinuously in their corresponding α-cut intervals. So numerous different combina-
tions of those values can be produced to form yLðαÞ and yRðαÞ. By considering all
yLðαÞ and yRðαÞ, continuous intervals ½yLlðαÞ, yLrðαÞ� and ½yRlðαÞ, yRrðαÞ� are
obtained, where yLrðαÞ, yRlðαÞ, yLlðαÞ, and yRrðαÞ are illustrated in (Fig. 3):

YLWAðαÞ= ½yLrðαÞ, yRlðαÞ�, α∈ ½0, hmin� ð18Þ

Y ̄LWAðαÞ= ½yLlðαÞ, yRrðαÞ�, α∈ ½0, 1� ð19Þ

Considering the fix values of aiðαÞ, biðαÞ, ciðαÞ and diðαÞ, the values of
yLlðαÞ, yLrðαÞ, yRlðαÞ and yLrðαÞ are defined as below [14, 28, 29]:

yLlðαÞ=
∑L*l

i=1 ailðαÞdirðαÞ+ ∑n
i= L*l +1 ailðαÞcilðαÞ

∑L*l
i=1 dirðαÞ+ ∑n

i= L*l +1 cilðαÞ
α∈ ½0, 1� ð20Þ

yLrðαÞ=
∑L*r

i=1 airðαÞdilðαÞ+ ∑n
i= L*r +1 airðαÞcirðαÞ

∑L*r
i=1 dilðαÞ+ ∑n

i= L*r +1 cirðαÞ
α∈ ½0, hmin� ð21Þ

yRlðαÞ=
∑R*

l
i=1 bilðαÞcirðαÞ+ ∑n

i=R*
l +1 bilðαÞdilðαÞ

∑R*
l

i=1 cirðαÞ+ ∑n
i=R*

l +1 dilðαÞ
α∈ ½0, hmin� ð22Þ

yRrðαÞ=
∑R*

r
i=1 birðαÞcilðαÞ+ ∑n

i=R*
r +1 birðαÞdirðαÞ

∑R*
r

i=1 cilðαÞ+ ∑n
i=R*

r +1 dirðαÞ
α∈ ½0, 1� ð23Þ

In these Equations, L*l , L
*
r , R

*
l and R*

r are defined as switch points which are
computed by KM or EKM algorithms discussed in [15]. yLlðαÞ and yRrðαÞ as shown
in Figs. 1, 2 and 3 and Eqs. (20) and (23) only depend on the UMFs of X ̃i and W̃i,
which are computed from the corresponding α-cuts (Expressive Eq. (24)).

YL̄WA =
∑n

i=1 X ̄iW̄ i

∑n
i=1 W̄i

ð24Þ

Because all Xī and W̄i are normal T1-FSs, Y ̄LWA is also normal.
Similarly, observe from Eqs. (21) and (22) and the mentioned Figures, the yLrðαÞ

and yRlðαÞ only depend on the LMFs of X ̃i and W̃i, which are computed from the
corresponding α-cuts (Expressive Eq. (25)).

138 M. H. Fazel Zarandi et al.



YLWA =
∑n

i=1 XiWi

∑n
i=1 Wi

ð25Þ

Noted that, unlike YL̄WA, the height of YLWA is hmin, which is defined by Eq. (9),
as the minimum height of all Xi and Wi.

A pseudo-code for computing YL̄WA and YLWA is given in Fig. 4.

5 Solution Approach

This section describes the proposed method of prioritizing suppliers based on trust
criteria in the intelligent agent environment considering type-2 fuzzy sets.

Let Si = s1, s2, . . . , szf g be a set of prequalified (candidate) suppliers. A set of
agents Af = a1, . . . , amf g is considered to query from, also concerning their fre-
quency of interaction with suppliers, linguistic weights WAf = wa1, . . . ,wamf g are
defined, where ∑m

f =1 WAf =1. Also Ch = fc1, c2, . . . , cng is a set of trust criteria

Fig. 4 The pseudo-code of computing LWA [29]
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with respect to their importance weights Wh = fw1,w2, . . . ,wng, defined as lin-
guistic terms, where ∑n

h=1 Wh =1.
The supplier prioritization process consists of 6 Steps, which is organized in two

Stages. While, stage 1 includes three functions for the determination of: candidate
suppliers, trust evaluation criteria and referee agents. This paper concentrates more
on stage 2, which consists of data collection, data aggregation and supplier
prioritization.

Stage 1
This is a kind of preparation stage which consists of the following 3 steps.

Step 1: Determine prequalified suppliers
Suppliers register their services in the service register center of the e-procurement
system. The registration should include detailed information about the service or
commodity. Based on the information, prequalified suppliers are identified for the
further trust evaluation process, as presented in [18], to serve their product catalogs
to the buyers through the e-procurement system

Step 2: Determine trust evaluation criteria
Inter-organizational trust is conceptualized as a multi-dimensional construct, for
which a list of 22 widely referred dimensions are reviewed in [25] while the most
commonly used dimensions are summarized as: credibility, benevolence, goodwill,
predictability, reciprocity, openness and confidence.

This Step is concerned with the determination of those more appropriate trust
dimensions considering each industry/organization situation. Furthermore, with
regard to the firm’s strategic aspects, an appropriate weight has also to be con-
sidered for each selected criterion.

Step 3: Determine referee agents
Multi-agent systems work autonomously and collaboratively by mean of the
Internet. Each agent are focused on its own particular tasks, meanwhile coopera-
tively provide a specific operation or service to other agents [26]. To retrieve
information from agents, a set of agents who has historical data about direct and
indirect trust experience with the target suppliers is identified.

Stage 2
This stage consists of the following three steps to prioritize suppliers based on the
trust criteria concerning interval type-2 fuzzy sets (both data judgment and
weights).

Step 1: Data collection
When the supplier prioritization is required, the TMA queries about suppliers,
concerning trust criteria, from each of the referee agent. These agents are asked to
evaluate the suppliers by completing an electronic form which is provided by TMA
as shown in Fig. 5.

The evaluation of the agents are based on the defined trust criteria as mentioned
in Stage 1–Step 2. There are different trust assessment levels which are ranged from
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the worst to the best based on linguistic terms as: Weakly Trustable (WT),
Moderately Trustable (MT), Strongly Trustable (ST) and Extremely Trustable (ET).
Also weights of the frequency of interaction associated with agents and suppliers
are concerned using linguistic terms as: Never (N), Almost Never (AN), Seldom
(S), Unspecified (U), Often (O), Almost Always (AA) and Always (A). in this
paper, it is assumed that each category of terms, as mentioned, has been explained
as IT2 FSsX ̃, using upper and lower fuzzy membership functions (Tables 1 and 2).

Step 2: Data aggregation
In this paper two phases of aggregation are defined as below:

• Step 2-1: The aggregation process with respect to agents’ judgments.
In this phase linguistic judgments of agents are aggregated for each criterion and
supplier. Considering that the frequency of interaction between agents and
suppliers can improve the accuracy of the collected data, the LWA operator is
applied to aggregate the all agents’ judgment for the hth criterion of the ith
supplier with regard to the linguistic data related to frequency of interaction. The
frequency of interaction of agents can be considered based on the filled form as
shown in Fig. 5. So in this case, the opinion of the agent who always interact
with specific supplier is taken into account by considering higher linguistic
weights.

• Step 2-2: The aggregation process with respect to defined trust criteria.

Assessment Weakly Trustable Moderately Trustable Strongly Trustable  Extremely Trustable 
Trust criteria 1 (C1) (   ) (   ) (   ) (   ) 

Trust criteria 2 (C2) (   ) (   ) (   ) (   ) 

Trust criteria n (Cn) (   ) (   ) (   ) (   ) 

Term of interaction Never Almost Never Seldom Unspecified Often Almost always Always 

Frequency of interaction (  ) (  ) (  ) (  ) (  ) (  ) (  ) 

Fig. 5 The trust evaluation form of ith supplier for the agent f

Table 1 Fuzzy membership functions of agents’ judgments based on linguistic terms

Linguistic
variables

Fuzzy type 1 Fuzzy type 2
Membership
function (MFs)

Upper membership
function (UMF)

Lower membership
function (LMF)

Weakly Trustable
(WT)

(0, 2, 4) (0.00, 2, 4.2) (0.20, 2, 3.80)

Moderately
Trustable (MT)

(2, 4, 6) (1.80, 4, 6.2) (2.20, 4, 5.80)

Strongly Trustable
(ST)

(4, 6, 8) (3.80, 6, 8.2) (4.20, 6, 7.80)

Extremely
Trustable (ET)

(6, 8, 10) (5.80, 8, 10) (6.20, 8, 9.80)
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In this phase the aggregated data of previous Phase are used to aggregate them
based on the trust criteria for each supplier. Considering the importance of each
criterion, the TMA assigns an importance weight to each criterion based on the
different assessment level that range from the lowest to the highest as defined by
linguistic terms: Very Low (VL), Low (L), Medium Low (ML), Moderate (M),
Medium High (MH), High (H) and Very High (VH).

In this paper assumed that each category of terms, as mentioned, has been
explained as IT2 FSsX ̃ using upper and lower fuzzy membership functions
(Table 2). LWA operator is applied to aggregate the data of all criteria for each
supplier based on the importance weight of the criterion.

Step 3—Suppliers prioritization
Different approaches to prioritizing/ranking interval type-2 fuzzy sets exist. In this
paper, a method proposed by Asan and his colleagues in [4] is applied to rank
suppliers based on α-cuts in the form of IT2-FSs in which both UMFs and LMFs
are normal T1-FSs.

Let YM
i ðαÞ in Eq. (26), denote the total mean of the end points crossing α-cuts on

both LMFs and UMFs of Yĩ,

YM
i ðαÞ= yLlðαÞ+ yLrðαÞ+ yRlðαÞ+ yRrðαÞ

4
ð26Þ

Also YiðαÞj j in Eq. (27), considered as a weighting factor using the length of the
α-cuts of the embedded average T1 FN.

Table 2 Fuzzy membership functions assigned to agents’ and criteria’s weight based on linguistic
terms

Linguistic
variables of
agents

Linguistic
variables of
criteria

Fuzzy type 1 Fuzzy type 2
Membership
function(MFs)

Upper membership
function (UMF)

Lower
membership
function (LMF)

Never (N) Very Low (VL) (0.1, 0.5, 1) (0.06, 0.5, 1.05) (0.14, 0.5, 0.95)
Almost Never
(AN)

Low (L) (0.5, 1, 3) (0.45, 1, 3.2) (0.55, 1, 2.80)

Seldom (S) Medium Low
(ML)

(1, 3, 5) (0.80, 3, 5.2) (1.20, 3, 4.80)

Unspecific (U) Moderate (M) (3, 5, 7) (2.80, 5, 7.2) (3.20, 5, 6.80)
Often (O) Medium High

(MH)
(5, 7, 8) (4.80, 7, 8.1) (5.20, 7, 7.9)

Almost always
(AA)

High (H) (7.5, 8, 9.5) (7.45, 8, 9.65) (7.55, 8, 9.35)

Always (A) Very High
(VH)

(9, 9.5, 10) (8.95, 9.5, 10) (9.05, 9.5, 9.95)
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YiðαÞj j= yRlðαÞ+ yRrðαÞ
2

−
yLlðαÞ+ yLrðαÞ

2
ð27Þ

Then the ranking value rsi of the supplier with respect to IT2-FSs ðY ̃iÞ is cal-
culated by Eq. (28) as proposed in [4]:

rsi =

R 1
0 Y

M
i ðαÞ YiðαÞj jdαR 1
0 YiðαÞj jdα

=

R 1
0

yLlðαÞ+ yLrðαÞ+ yRlðαÞ+ yRrðαÞ
4

� �
yRlðαÞ+ yRrðαÞ

2 − yLlðαÞ+ yLrðαÞ
2

� �
dαR 1

0
yRlðαÞ+ yRrðαÞ

2 − yLlðαÞ+ yLrðαÞ
2

� �
dα

ð28Þ

In this case higher ranking value ðrsiÞ indicates more suitable supplier based on
trust criteria compared to others.

6 Numerical Example

This section prioritizes the suppliers concerning interval type-2 fuzzy sets, using a
simplified example. Based on the description of Stage1 in the previous section, a set
of prequalified suppliers Si = s1, s2, . . . , s5f g is candidated by TMA as well as three
referee agents fa1, a2, a3g. Weights considered for the referee agents, with respect
to their frequency of interaction toward target supplier, are ffwa1, fwa2, fwa3g as
shown in Table 4. Four trust criteria fc1, c2, c3, c4g for example: credibility,
confidence, benevolence and predictability (as discussed in Sect. 1) are considered

Table 3 All agents’ judgments for trustworthiness of the suppliers based on linguistic terms

Criterion Importance weight
of the criterion

Agents Suppliers (Sup)
Sup 1 Sup 2 Sup 3 Sup 4 Sup 5

Credibility (Cr) H Agent 1 MT MT ET MT MT
Agent 2 WT WT ET MT WT
Agent 3 WT ST MT MT MT

Confidence (Con) MH Agent 1 WT ST ET MT WT
Agent 2 MT ST ST ST WT
Agent 3 MT WT ET ST MT

Benevolence (B) M Agent 1 WT MT ET MT MT
Agent 2 WT MT ST WT MT
Agent 3 MT ST ET MT WT

Predictability (P) ML Agent 1 WT MT ET MT WT
Agent 2 WT MT ET MT MT
Agent 3 WT MT MT WT MT
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to evaluate the candidate suppliers. Importance weights associated with for the
defined criterion 1 to 4 are fw̃1, w̃2, w̃3, w̃4g respectively.

In this method, considering Step 1 of the Stage 2, each three agent is asked to fill
the electronic form to evaluate the five suppliers. The completed forms are collected
by TMA and presented in Table 3. Moreover, importance weights of each trust
criterion, which is assigned by TMA, are also expressed in this table.

Also the linguistic weights of agents, with respect to their frequency of inter-
action with suppliers, are collected by the electronic forms (Table 4).

Two phases have been defined for data aggregation. At the first Phase of
aggregation, concerning the conversions of the linguistic data of agents’ judgments
and the frequency of interactions to IT2-FSs, the LWA operator is applied to
provide an evaluation of each supplier for each of the defined trust criterion.
Figure 6 demonstrates the evaluation of supplier 2 based on four trust criteria.

Table 4 Linguistic weights
of agents based on frequency
of interaction

Criterion Agents
(Agent 1) (Agent 2) (Agent 3)

Supplier 1 U O O
Supplier 2 O A U
Supplier 3 O O AA
Supplier 4 U U U
Supplier 5 S U U

Fig. 6 Statistics endpoints of all criteria for supplier 2
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Also at the second phase of this step (Step 2), another LWA operator computes
the overall evaluation for each supplier concerning the importance weights of all
criteria as IT2-FSs (Fig. 7). The result of the overall aggregation of each supplier is
depicted in Fig. 8.

Fig. 7 Statistics endpoints of weights of all criteria for supplier 2

Fig. 8 Statistics endpoints of all suppliers
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Finally in the Step 3 of the Stage 2 suppliers are prioritized based on a method
proposed by Asan and his colleagues in [4] using α-cuts Table 5 illustrates the
result of prioritizing the suppliers based on trust criteria, using type-2 fuzzy sets. It
can be seen from the Table that the most and the least trustable suppliers are
supplier 3 and supplier 1 with the value of 6.9003 and 2.8103 respectively. Based
on the descending order, supplier 2, supplier 4 and supplier 5 are ranked based on
trustworthiness evaluation with the values of 4.2791, 4.1517 and 3.1316 respec-
tively. Moreover, Fig. 8 confirms the result of the prioritization of suppliers in
Table 5.

7 Conclusion and Future Work

E-procurement has been recognized as a strategic tool for improving the compet-
itiveness of the firms and generating scale economies for the both sellers and
buyers. In an agent based e-procurement system, intelligent agents exhibit good
capability to function on behalf of the buyers to look for a most satisfying seller (or
supplier). In this context, it is crucial to protect buyers from any possible unsatisfied
conditions which are commonly due the existence of uncertain and vague characters
in their interrelation. Presence of inter-organizational trust in the buyer-seller
relationship was found not only reducing such uncertainty and vagueness charac-
teristics, but also significantly reducing the complexity of the inter-firm relations
which could in turn reduce supply risks in this context.

Based on this finding, this paper considered the utilization of inter-organizational
trust concept in the agent based e-procurement environment, through proposing an
effective supplier evaluation and ranking method. Considering an agent based
e-procurement system consisting of specific agents for the required functions, the
paper, further included a Trust Management Agent (ATM) which is responsible to
establish inter-organizational trust in the buyer-supplier relationship. ATM is to
evaluate some pre-qualified candidate suppliers and to rank them on some particular
trust criteria. Characteristics inherent in the inter-organizational trust evaluation
process, such as: uncertainty and vagueness in the data, use of collective opinions
from experts or other agent in the community, were considered in the determination
of the solution approach. With regard to the solution approach, Type-2 fuzzy sets
proved to be most suitable in dealing trust evaluation process efficiently. In this

Table 5 The result of
prioritizing suppliers based on
trust criteria using type-2
fuzzy sets

Criterion Scores Ranks

Supplier 1 2.8103 5
Supplier 2 4.2791 2
Supplier 3 6.9003 1
Supplier 4 4.1517 3
Supplier 5 3.1316 4
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regard, a new evaluation process based on hierarchical linguistic weighted aver-
aging sets was proposed. The solution method was then illustrated through a simple
example which clarifies the suitability as well as the simplicity of the proposed
method for the category of the defined problem.

For the future work we will concentrate on changing points in the LWA, which
can be estimated by heuristic methods instead of KM or EKM algorithms, also
using real data that can help to validate and verify the problem.
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