
On Ladder Logic Bombs in Industrial
Control Systems

Naman Govil1, Anand Agrawal2(B), and Nils Ole Tippenhauer2

1 IIIT Hyderabad, Hyderabad, India
naman.govil@research.iiit.ac.in

2 Information Systems Technology and Design Pillar,
Singapore University of Technology and Design,
8 Somapah Road, Singapore 487372, Singapore

{agrawal anand,nils tippenhauer}@sutd.edu.sg

Abstract. In industrial control systems, devices such as Programmable
Logic Controllers (PLCs) are commonly used to directly interact with
sensors and actuators, and perform local automatic control. PLCs run
software on two different layers: (a) firmware (i.e. the OS) and (b) con-
trol logic (processing sensor readings to determine control actions).

In this work, we discuss ladder logic bombs, i.e. malware written in lad-
der logic (or one of the other IEC 61131-3-compatible languages). Such
malware would be inserted by an attacker into existing control logic on
a PLC, and either persistently change the behavior, or wait for spe-
cific trigger signals to activate malicious behavior. For example, the LLB
could replace legitimate sensor readings with manipulated values. We see
the concept of LLBs as a generalization of attacks such as the Stuxnet
attack. We introduce LLBs on an abstract level, and then demonstrate
several designs based on real PLC devices in our lab. In particular, we
also focus on stealthy LLBs, i.e. LLBs that are hard to detect by human
operators manually validating the program running in PLCs.

1 Introduction

Industrial Control Systems (ICS) are computer systems that typically control
physical processes that relate to power, water, gas, manufacturing and other crit-
ical infrastructure. ICS and Supervisory Control and Data Acquisition (SCADA)
systems rely on local programmable logic controllers (PLCs) to interface with
sensors and actuators. While PLC devices are available from a range of manufac-
turers, they are all commonly programmed with the same set of programming
languages based on IEC 61131-3. In particular, the IEC 61131-3 standard [7]
contains ladder logic, functional block diagram, and sequential text as different
languages that are used together to define logic to run on the PLCs. The logic
is then interpreted by the firmware running on the PLCs. Modern PLCs pro-
vide security mechanisms to allow only legitimate (e.g., signed) firmware to be
uploaded. In contrast, logic running on the PLCs can typically be altered by
anyone with network or local USB access to the PLC. This setting is the main
c© Springer International Publishing AG 2018
S. K. Katsikas et al. (Eds.): CyberICPS 2017/SECPRE 2017, LNCS 10683, pp. 110–126, 2018.
https://doi.org/10.1007/978-3-319-72817-9_8

http://orcid.org/0000-0001-8424-2602


On Ladder Logic Bombs in Industrial Control Systems 111

difference to malware scenarios in traditional corporate IT environments, where
the injection of attacker code is usually significantly harder.

Recently, the security of Cyber Physical Systems (CPS) and related systems
has gained a lot of attention [4,13,21–23]. In particular, CPS such as critical
infrastructure including power grids, nuclear power plants, and chemical plants
are threatened. In CPS, physical-layer interactions between components have
to be considered as potential attack vectors, in addition to the conventional
network-based attacks.

In this work, we introduce ladder logic bombs (LLBs), i.e. malware written
in ladder logic (or one of the other IEC 61131-3-compatible languages). LLBs
consist of logic that is intended to disrupt the normal operations of a PLC by
either persistently changing the behavior, or by waiting for specific trigger signals
to activate malicious behavior. In particular, the LLBs could lay dormant and
hence hidden for a very long time until a specific trigger is observed. Once acti-
vated, the LLB could replace legitimate sensor readings that are being reported
by the PLC to the SCADA system with manipulated values. We introduce LLBs
by classifying their purpose and action, and demonstrate several constructions
based on real PLC devices in our lab.

We implemented and tested our attacks on a real-world ICS (the SWaT
testbed, see Sect. 4). In particular, we focused on stealthy LLBs, i.e. LLBs that
are hard to detect by human operators manually validating the program running
in PLCs. We provide a classification of logic based attacks, such as the ones
performed by Stuxnet [5].

We summarize our contributions as following:

– We analyzed firmware updates on the target platform to detect vulnerabilities.
– We identify the issue of logic manipulations on PLCs, and introduce the

concept of ladder logic bombs (LLBs).
– We present a range of LLB prototypes, in particular ones that attempt to

hide from manual logic code inspection.

The structure of this work is as follows: In Sect. 2, we introduce CPS sys-
tems, PLCs, and IEC 61131-3 in general. We propose our Ladder Logic Bomb
concept in Sect. 3, and present example implementations in Sect. 4. Related work
is summarized in Sect. 6. We conclude the paper in Sect. 7.

2 Background

In this section, we will introduce some of the salient properties of industrial
control system (ICS) networks that we have found so far. In addition, we will
briefly introduce Ladder Logic programming language and the tools necessary
to interact with such PLCs.

2.1 ICS

In the context of this work, we consider ICS that are used to supervise and
control system like public infrastructure (water, power), manufacturing lines, or



112 N. Govil et al.

Fig. 1. Example local network topology of a plant control network.

public transportation systems. In particular, we assume the system consists of
programmable logic controllers, sensors, actuators, and supervisory components
such as human-machine interfaces and servers. We focus on single-site systems
with local connections, long distance connections would in addition require com-
ponents such as remote terminal units (see below). All these components are
connected through a common network topology.

2.2 Ladder Logic and Studio 5000

A Programmable Logic Controller (PLC) is an industrial computer system that
continuously monitors the state of input devices and makes decisions based on
a custom program to control the state of output devices. PLCs are widely used
in industrial control systems (ICS) for handling sensors and actuators, mainly
because of their robust nature and ability to withstand harsh conditions includ-
ing severe heat, cold, dust, and extreme moisture. Considering their widespread
usage and important nature of tasks handled by PLCs, their security against
malicious manipulation is critical.

PLC programs are typically written in a special application on a local host
(personal computer), and then downloaded by either a direct-connection cable or
over a network to the PLC. The program is stored in the PLC in a non-volatile
flash memory. While details differ for platforms from alternative vendors, it might
be required to enable remote change of control software on the PLC through a
physical switch (i.e., program mode on ControlLogix devices). We observe that
due to convenience, in practical systems PLCs are often kept in that setting to
allow easy remote access. In addition, any attacker with physical access is able
to change the switch setting easily. For that reason, we assume that remote or
local reprogramming access is possible in the remainder of this work.

IEC 61131-3 is an open international standard [7] for PLCs that defines two
graphical and one textual programming language standards for PLCs:



On Ladder Logic Bombs in Industrial Control Systems 113

– Ladder Logic Diagrams (graphical)
– Functional block Diagram (graphical)
– Structured Text (textual)

The most popular of those languages is Ladder Logic Diagrams. The main
intuition behind this Ladder Logic Diagrams is to provide a system-wiring dia-
gram abstraction similar to electro-mechanical relays. Ladder logic is more of
a rule-based graphical language implemented by rungs, rather than traditional
procedural-based language. A rung in the ladder represents a rule. They are
called “ladder” diagrams because they resemble a ladder, with two vertical rails
(supply power) and as many “rungs” (horizontal lines) as there are control cir-
cuits to represent.

“Studio 5000” is a software product of Rockwell Automation that provides an
environment to develop a range of elements for a control system, for operational
and maintenance use. Its major element is the Studio 5000 Logix Designer appli-
cation, formerly (RSLogix 5000), software to program Logix5000 controllers.

Another tool called RSLinx is used to establish USB-based communication
between PLCs and a host PC running Studio 5000. RSLinx is a Windows based
software package to interface with a range of ICS and automation hardware.
In this paper, we used Allen-Bradley PLCs (ControlLogix 5571) with Studio
5000 v21.00. It is important to note that for different PLCs, different versions
of RSLinx and Studio 5000 have to be used.

3 Ladder Logic Bombs

In this section, we present our proposed concept of ladder logic bombs. In partic-
ular, we noticed that while changes to the firmware of PLCs are made more diffi-
cult by digital signatures, the actual logic that is executed on the PLCs is not pro-
tected by such a measure. In addition, the lack of security checks/authentication
before downloading new logic onto PLCs is a cause of major concern. An attacker
can exploit this by either gaining physical access to the PLCs or over the network,
and can download custom (malicious) logic onto PLCs which can compromise
the system. Next, we discuss potential attack scenarios and goals, which can be
achieved through this vulnerability.

3.1 System and Attacker Model

In this work, we assume that the attacker is able to access PLCs in an industrial
control system either remotely via the network, or physically. As we will show,
commonly such access will allow the attacker to read and modify the program-
ming logic of the PLCs without any authentication. The attacker is assumed to
have access to the respective software required to download and upload logic
configurations to the PLC (e.g., Studio 5000 for ControlLogix PLCs).

The goals of the attacker can range from achieving a Denial of Service (DoS),
to changing the behavior of the PLCs, or to obtain data traces of sensor and



114 N. Govil et al.

Fig. 2. Ladder Logic Bomb (LLB) classification

control messages processed by the PLC. In order to perform these attacks, the
attacker just needs access to the PLC system once, making such attacks all the
more dangerous. The attacker could also have sporadic (physical) access to the
PLC. For example, the attacker only has access to the PLC once a week (because
he is a regular contractor). In these events, the attacker can trigger any behavior
changes (i.e. trigger his ladder logic bomb) at a point unrelated to his access time
(e.g., to hide correlations to his access).

The system we consider in this setting is very generic and can be described as
follows: a PLC in an industrial control system which uses IEC 61131-3 languages
for the logic, and can be re-programmed as described above. It is connected to
sensors and actuators of a critical process. Operators of the plant configured
the logic of the PLC at design time. Though they continuously monitor the
status of these PLCs, they seldom need to change the logic configuration of the
already operational system. They are also able to manually download the logic to
inspect it, if required. Although we will briefly discuss a network-based detection
mechanism using an intrusion detection system later, such a solution will not
be able to detect changes by a local attacker. For that reason, we do not focus
on IDS in this work. In addition, physical layer prevention mechanisms (camera,
fences, etc.) are out of scope of this work.

We do not consider an attacker that is able to attack the operator’s machines
(as it was the case in Stuxnet), or able to manipulate network traffic while it
is being transmitted. In particular, if the attacker was able to compromise the
operator’s machine, then the operator would not be able to verify any code
reliably. Such an attacker could be addressed by using a trusted computing
platform, which we consider out of scope for this work. The attacker model
does also not consider insider attacks (e.g., an attacker who might be regular
contractor/employee with authorization to access and modify the PLC logic).

3.2 Bomb Classification

Ladder logic bombs can be classified broadly by two criteria (as shown in Fig. 2).
LLBs can be classified according to their activation and triggering. They can
either be externally triggered by giving a certain input. Alternatively, they
can be triggered by internal logic (system states, specific instructions or data,
clock, etc.)

LLBs can also be classified according to the alteration they incur onto the
existing PLC system. They can add or remove certain functionality in the exist-
ing logic (modify function). These bombs can also alter the system values such
as system date/time, timezone, wall-clock time, or similar (modify system).



On Ladder Logic Bombs in Industrial Control Systems 115

Fig. 3. Overview of SWaT testbed (photo source: http://itrust.sutd.edu.sg).

Finally, these can also be used for data exfiltration and transmitting crucial
system data to a spy node (transmit information).

Together, those classifications now describe more specific LLBs. For example,
a LLB that turns off a pump at 12 AM would be classified as internally activated
function modification LLB.

3.3 Triggering

Here, we describe the different triggering mechanisms that can be used with
ladder logic bombs.

Triggering at a particular Input: The bomb could be set off when a pre-
determined input is detected. For example, we are targeting a water treatment
ICS for our experiments (see Sect. 4.1). The target PLC is receiving inputs about
the water level in one of the tanks from its corresponding level sensor. The bomb
could be set off when a particular level is reached in the tank.

Triggering Sequence: The bomb could also be triggered when a particular trigger
sequence is detected. This would potentially make the bomb more difficult to
detect, as none of its effects would be visible until the particular sequence is
detected as input. This can be achieved by implementing a finite state machine
(FSM) using latches.

Timer: The bomb could also be set off using a timer. This would make the LLB
like a real world time bomb, which sets into motion when the timer has finished
its count sequence. Using nested TON timers, it is possible to implement count
sequences which will last days.

http://itrust.sutd.edu.sg


116 N. Govil et al.

Specific Internal Condition: The bomb could be triggered when a particular
internal state is achieved. This particular triggering scheme requires the attacker
to have complete knowledge and understanding of the logic on the PLCs. When
a particular state variable, for example a fault code, is set, the bomb could be
set off and the payload logic is executed.

3.4 Hiding LLBs in PLC Logic

The näıve approach to detect any modifications in the original logic (in our
case, the LLBs) would be to download the control logic from PLC devices, and
manually inspect them for code changes. In particular, engineers familiar with
the plant operations might be able to read through the code and detect malicious
changes. While that approach might be feasible for small sites and very simple
logic, we will show in the following section that there are several options for
the attacker to hide the malicious payload within the logic to make it harder to
detect by such manual inspection.

4 Implementation

In this section, we describe in detail the construction of ladder logic bombs and
demonstrate how they can be used to disturb the functioning of ICS.

4.1 SWaT Testbed

The experiments were conducted on an industrial control system testbed, called
SWaT, located at the Singapore University of Technology and Design. Secure
Water Treatment, as depicted in Fig. 3, is a fully functional (scaled down) water
treatment plant. SWaT was constructed exclusively as platform for research on
cyber physical system security. The water treatment process is partitioned into
six stages, starting with raw water in Tank 1 to filtered output water in Tank 6.
Each stage is controlled by an independent PLC which determines control actions
using data from sensors.

Sensors values and actuator commands are communicated to and from a
PLC via a plant network. The system also contains monitors to view and ensure
system states are within acceptable operational boundaries. Data from sensors
are available for inspection on the Supervisory Control and Data Acquisition
(SCADA) workstation and recorded by the Historian for subsequent analysis.

4.2 Attack 1: DoS Using Add on Instructions

The Denial of Service (DoS) is a potential attack goal to inflict (most often finan-
cial or reputation) damage on critical systems. In a DoS attack, the attacker
temporarily or permanently slows or stops correct operations of a system.



On Ladder Logic Bombs in Industrial Control Systems 117

Fig. 4. Malicious Add-On instruction

On the Internet, (distributed) DoS attacks are often achieved by creating mas-
sive amounts of traffic that overload communication links or servers. As PLCs
control the action of sensor and actuators in the system, their operational avail-
ability is often critical [12]. If the PLC is incapable of controlling the actuators,
it can have disastrous consequences (e.g., lead to the loss of control of heavy
machinery in an automobile assembly plant).

Goal: In this setup, the goal was to launch a DoS attack on one of the PLCs in
a water treatment plant.

Construction: This has been achieved by implementing an infinite loop as the
bomb payload. The trigger mechanism for this LLB is when a particular input
is received. Similar to Stuxnet [5], the trigger check condition lays on top of the
actual logic, which always stays on to check if the particular input has been
received. As soon as the desired trigger input is received, the LLB springs into
action.

Concealment: The actual malicious logic has been hidden inside an Add-On
Instruction. A new instruction has been created, which is very similar in its
construction to the real ADD block, with similar inputs: 2 sources A and B and
an output: Destination. It has also been named suitably (ADD A) to disguise
well with a real ADD block. From the top overview of the ladder logic (which
contains many rungs), this looks just like any other ADD block on one of the
rungs. But inside this add-on instruction, the real bomb (an infinite loop) is
defined, and that adversely affects the PLC operation. More details about this
can be found in Fig. 4.



118 N. Govil et al.

Fig. 5. Inside the exploiting subroutine

4.3 Attack 2: Manipulation of Sensor Data Using Subroutines

Another important function of the PLCs in ICS (in addition to controlling the
actuators) is reading data from sensors. That data can be critical information
about the process and system. Using the data, it is possible to derive the current
state of the process, which is used by the PLC to determine appropriate control
actions. Thus, tampering with sensor data can cause systems to fail [11].

Goal: The goal for this attack was to manipulate sensor readings coming from
the remote IOs (RIOs in Fig. 1) to the PLC.

Construction: Since this is proof-of-concept, we decided to manipulate the sensor
values and increase them by a constant offset (we arbitrarily chose four). As
result, the LLB payload is a simple ADD block which takes the real sensor values
and increases them by four, and stores them back into the same tag. However,
a more complex triggering mechanism was used in this attack. In particular, the
LLB is triggered when a complete trigger sequence is detected. This has been
achieved by implementing a finite state machine using latches (see Fig. 5).

Concealment: For this attack, we also used A different hiding technique. By
inspecting the actual logic of the PLC in the water treatment plant, we observed
that the logic was calling a large number of subroutines. We assume the subrou-
tines were called that way to maintain good readability of the ladder logic by
the maintainers. However, that structure with large number of subroutines can
be leveraged by the attacker to hide the LLB. We tested this exploit by hiding a
trigger subroutine that gets executed every cycle of the ladder logic (see Fig. 6).

4.4 Attack 3: Data Logging Using FFLs

The attacks discussed above are openly causing damage or malfunctions, and
their effects can be observed as soon as triggered. However, there are another



On Ladder Logic Bombs in Industrial Control Systems 119

Fig. 6. Overview of the logic with the exploiting subroutine

class of LLBs which can be equally harmful but are harder to detect. In particu-
lar, such LLBs could be used for data logging and exporting sensitive information
about the system.

Goal: The goal of this attack is to achieve stealthy data logging of sensitive
information about the plant.

Construction: The data logging is achieved by using a FIFO buffer which
reads data into an array. The FFL block has been used for this purpose. As
shown in Fig. 7, the FFL block stores the tag PB LT Seq which contains sensitive
information about the count sequence used to determine state of the plant. Those
values are stored into the array2 and are converted into .csv format and stored
on the SD card in the PLC. Staying within our attacker model, an attacker who
has sporadic access (physical access to PLCs) to the plant can come in, read
these values stored on the SD card. Then, insert this card back into the PLC
and leave. The trigger sequence for this could be a simple timer, thus ensuring
data logging after ‘x’ days of plant operation.

Concealment: This LLB can again be concealed either inside an Add-On instruc-
tion or as a subroutine. It can also be left inside the main logic flow, since this
LLB contains just one extra rung, making its manual detection difficult in large
and complex code.

4.5 Attack 4: Trigger Major Faults on PLC

We now discuss another attack which is similar in effect to the DoS attack.

Goal: The goal is to trigger major faults on the PLC which causes its processor
to halt and which cannot be fixed by a hard reset.



120 N. Govil et al.

Fig. 7. Data logging in a FIFO buffer

Fig. 8. Stack overflow

Construction: Here we managed to cause a major faults on the PLC. In partic-
ular, we used invalid array subscripts and a stack overflow. The stack overflow
was achieved by implementing a recursive subroutine call to itself. This caused
the stack storing the return pointer to overflow, halting the process and crashing
the PLC (Fig. 8).

Concealment: These LLBs can be concealed within an Add-On instruction or
inside a subroutine.

4.6 Analysis of Attacks

Ideally, there would be a metric to measure the stealthiness of LLBs, that would
indicate how hard different LLBs are to discover. So far, we have not found a
good way to measure that property. In the following, we instead use the relative
additional lines of code (RALOC) to measure the stealthiness. In particular,
the increase of lines of code in the logic can also lead to increased memory



On Ladder Logic Bombs in Industrial Control Systems 121

consumption at runtime. We observed that there are two types of memory that is
used by a ladder logic program: I/O memory and Data & Logic memory. As part
of our analysis, we measured the difference (increase) in memory of the original
logic when malicious ladder logic bombs were added. It was observed that there
was no increase in the I/O memory of the PLC at all, which is primarily because
no new inputs/outputs were created to trigger or apply the ladder logic bombs
discussed above. The only increase observed was in the data and logic memory,
which is also marginal, as depicted in Table 1. Important thing to note is that
Table 1 entries are taken at particular attack scenario and the size of Attack 3
(data logging) will depend on the amount of data that is logged. As result, the
RALOC metric increases, and the modifications might become more visible.

To mitigate that effect, it is best to save the data on the SD card and then
flush the arrays so that they can be re-used if more data needs to be logged.

Table 1. Comparison of attacks performed

Attack Increase in memory (%)

Attack 1: DoS using AOI 2.60

Attack 2: Manipulate sensor 3.84

Attack 3: Data logging 3.41

Attack 4: Major faults 4.09

5 Countermeasures

In this section, we discuss potential countermeasures against LLB attacks. In
particular, we discuss (a) network-based countermeasures, and (b) centralized
validation of running code.

In the following, we assume that the countermeasures are retro-fitted into
an existing industrial control system. In particular, we assume it is not possible
to change the PLCs themselves. If we could change the way logic updates are
applied to PLCs, it would trivially be possible to introduce user authentication
(e.g. with username/password, or public key-based), or cryptographic signatures
for logic updates. The PLC would then only accept the logic code update if the
user is successfully authenticated, or the authenticity of the update has been
validated.

5.1 Network-Based Countermeasures

If an intrusion detection system (IDS) is already used in the network to monitor
traffic for spreading malware or other malicious traffic, then that IDS could
potentially be used to identify the specific traffic related to logic updates on
PLCs connected to the network. If unauthorized logic updates over the network
are observed, an alarm could be raised. A similar IDS is proposed in [6], where



122 N. Govil et al.

L1 Network

HTTP Server

Remote IO

PLC

PLC

L0 Network

Sensor

42.42

Sensors

RIO

Actuators

Attacker

Local System

Golden reference

Inject Malware Malicious Copy

Switch

Fig. 9. Centralized logic store based countermeasure

the authors model periodic communication between HMI and PLCs using a
deterministic finite automata. The system flags anomalies if a message appears
out of position in normal (general) sequence of messages. If the IDS is configured
to operate as intrusion prevention system (IPS), the offending traffic could even
be dropped in real time.

The problem with this proposal is related to the identification of authorized
logic updates. As we cannot change the traffic generated by the respective soft-
ware, there is no way to embed specific authentication information. Thus, we
can only use information such as IP source address (supposedly related to the
authorized person), which is not ideal (as it can be spoofed).

5.2 Centralized Logic Store

Our second proposal is based on two components: (a) a centralized logic store
(CLS) of the latest version of logic running on all PLCs of the ICS, and (b) a tool
to periodically download currently running logic from the PLCs, and to validate
that against the “golden” copy from the CLS. An overview of our proposed
system can be found in Fig. 9.

Submission of golden samples: All authorized engineers are required to submit
the most recent version of logic for each PLC to the CLS when they change
the logic running on the PLCs. To do so, they can use a simple application
that requires them to identify the respective logic file, the target PLC, and
their credentials. That application will then use the credentials to establish an
authenticated secure channel to the CLS (e.g. using TLS), and then upload
the latest logic version to the CLS (e.g. using HTTP over the established TLS
session).

Periodic Logic Validation: We have implemented a python-based tool to man-
ually and periodically validate the logic. The user first exports ladder logic to
a .L5K file (sequential text) on the local machine using Studio 5000. Next, our
tool parses the .L5K file and extracts a unique serial number corresponding to
the logic. Then, the tool connects to the CLS where the correct golden logic is



On Ladder Logic Bombs in Industrial Control Systems 123

searched by using Beautiful Soup parser (BSP). BSP is a python library to parse
HTML and XML pages, in our case BSP parse CLS and look for all .L5K file
followed by our parser which looks for correct golden logic by identifying the
unique serial number.

Then, the tool performs a comparison between the logic found on the PLC,
and the golden sample. If differences are found, they can be visualized to a
human operator using standard functionality provided by tools such as diff. The
algorithm below summarizes the whole process.

Algorithm 1. CLS based countermeasure
Require: Downloaded malicious PLC logic (.L5K) file

Establish server connection at specific port
Parse local .L5K file and fetch serial no.
GET golden sample from server with serial no.
if diff(local .L5K,golden reference .L5K) == 0 then

Local logic successfully validated
else

Local logic differs, present diff to user
User manually inspects code differences
if User detects attack then

Raise alarm
else if Local Logic newer then

Update golden sample on CLS if authorized
else

Update local logic with golden sample
end if

end if

6 Related Work

General Threats to ICS. It has been observed over the years that process
control systems are vulnerable to various exploits with potentially damaging
physical consequences [2,14,20].

In [19] Morris and Gao discuss different attacks such as measurement injec-
tion, command injection, denial of service, etc., on SCADA control systems which
use the MODBUS communication protocol. Much like the rest, this study is
again restricted to exploiting the network layer to attack the PLCs. Therefore,
it is necessary to analyze control logic vulnerabilities, which can be manifested
through malicious logic additions.

Stuxnet. In 2010, Stuxnet [5] caused a radical shift in focus for security of such
control systems by demonstrating practical exploitation of the control logic in
these devices. This resulted in increasing focus on security aspects of PLCs and
their control logic [1,8,9]. In [8], Karnouskos discuss Stuxnet and how it managed
to deviate the expected behavior of PLC. In [9], Kim discuss the cyber security



124 N. Govil et al.

issues in nuclear power plants and focused on stuxnet inherited malware attacks
on control system, and its impacts in future along with its countermeasures.

Protocol-based attacks. The authors of [1] discuss replay, reconnaissance and
authentication by-pass attacks. These attacks can be performed by sending probe
requests or by examining the ISO-TSAP conversation and authenticating oneself
by generating packets with same hash, in turn, achieving access to PLC logic.
All these attacks are focused on exploiting the communication protocols to gain
access to PLCs.

In [18], the authors investigate vulnerabilities of industrial PLCs on firmware
and network level, leaving out any analysis on logic level exploits. In this work,
we provide a consolidated study on logic layer manipulations and provide logic
level safeguarding methods, unlike the network based security (e.g., firewall,
VPN security and secured layered architecture) methods proposed in majority
of the papers above.

Control Logic Manipulation. In [15], the authors propose a PLC malware
capable of dynamically generating a payload based on observations of the process
taken from inside the control system. The malware first gathers clues about the
nature of the process and the layout of physical plant. Dynamic payload is then
generated to meet the specific payload goal. However, the authors assume that
an attacker must be insider or have prior knowledge of the targeted system.
That dependency is worked upon in [16], which proposes a tool to automatically
determine semantics of the target PLC, minimizing the need for prerequisite
knowledge of target control system. This work however does not go into details of
malicious logic construction on ladder logic or any other IEC 61131-3-compatible
language and focus mainly on network layer attack.

Countermeasures. In general, attempting to validate the authenticity of the
root file system or files/directories is not a new concept. In [10], Kim and
Spafford proposed a monitoring tool “Tripwire”. It monitors the Unix based file
system and notifies the system administrator in case a corrupted file or alteration
is detected. In contrast to Tripwire tool (which uses interchangeable signature
subroutines to identify changes in file) our proposed CLS based countermeasure
compares the local instance of a file with its authorized one. Another important
point to note here is that the Tripwire tool is host based, used for unix based
file systems whereas proposed countermeasure is used in respect to PLC logic
file (.L5K) extracted from Studio 5000 tool.

We found a number of works focused on development of countermeasure
techniques to safeguard PLCs and other components of industrial control sys-
tems. In [3], a sequence aware intrusion detection system (S-IDS) is proposed.
The IDS focuses on detection certain sequences of events (e.g. sensor readings
or control actions) that are harmless on their own, but can lead to unwanted
consequences if chained together. Other attack detection methods for PLCs are
found in [17,24]. In [24], the authors propose an approach based on symbolic exe-
cution of PLC code along with control model checking to automatically detect
the malicious code running on the PLC. In [17], a Trusted Safety Verifier (TSV)



On Ladder Logic Bombs in Industrial Control Systems 125

is implemented on a Raspberry PI set-up, placed in between the control sys-
tem network and the PLC as a bump-in-the-wire to intercepts all the controller
code and validate it against all the safety properties defined by process engineer.
This requires additional hardware set-up to function. In this paper, we intend
to propose countermeasures which can be very easily used with the traditional
(existing) industrial control system architecture and have least dependency on
PLC internals (construction and interface internals).

7 Conclusion

In this paper, we have introduced the term ladder logic bombs to discuss the prob-
lem of logic malware for PLCs, such as modifications performed by Stuxnet [5].
Contemporary vulnerabilities study for such devices usually do not include analy-
sis on control logic level, which is an important source of attacks as demonstrated
in this work. We analyzed vulnerabilities in the firmware running on PLCs and
depicted case studies and attack scenarios in real-time on actual PLCs to inflict
damage on industrial control systems. All the tests were conducted on a real
world ICS, unlike majority of the theoretical works presented in the literature
so far. Finally, a centralized logic store based countermeasure technique was
proposed and implemented, that can detect logic level based attacks effectively.

Acknowledgments. This work was supported by SUTD’s startup grant SRIS14081.

References

1. Beresford, D.: Exploiting Siemens Simatic S7 PLCs. In: Proceedings of Black Hat
USA (2011)

2. Cárdenas, A.A., Amin, S., Sastry, S.: Research challenges for the security of control
systems. In: Proceedings of USENIX Workshop on Hot Topics in Security (HotSec)
(2008)

3. Caselli, M., Zambon, E., Kargl, F.: Sequence-aware intrusion detection in indus-
trial control systems. In: Proceedings of the Workshop on Cyber-Physical System
Security (CPSS), pp. 13–24. ACM (2015)

4. Chabukswar, R., Sinópoli, B., Karsai, G., Giani, A., Neema, H., Davis, A.: Sim-
ulation of network attacks on SCADA systems. In: Proceedings of Workshop on
Secure Control Systems (2010)

5. Falliere, N., Murchu, L.O., Chien, E.: W32.Stuxnet dossier
6. Goldenberg, N., Wool, A.: Accurate modeling of Modbus/TCP for intrusion detec-

tion in SCADA systems. Int. J. Crit. Infrastruct. Prot. 6(2), 63–75 (2013)
7. John, K.H., Tiegelkamp, M.: IEC 61131–3: Programming Industrial Automation

Systems: Concepts and Programming Languages, Requirements for Programming
Systems, Decision-Making Aids, 2nd edn. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-12015-2

8. Karnouskos, S.: Stuxnet worm impact on industrial cyber-physical system secu-
rity. In: Proceedings of Conference on Industrial Electronics Society (IECON), pp.
4490–4494. IEEE (2011)

https://doi.org/10.1007/978-3-642-12015-2
https://doi.org/10.1007/978-3-642-12015-2


126 N. Govil et al.

9. Kim, D.-Y.: Cyber security issues imposed on nuclear power plants. Ann. Nucl.
Energy 65, 141–143 (2014)

10. Kim, G.H., Spafford, E.H.: The design and implementation of tripwire: a file system
integrity checker. In: Proceedings of the Conference on Computer and Communi-
cations Security (CCS), pp. 18–29. ACM (1994)

11. Kosut, O., Jia, L., Thomas, R., Tong, L.: Malicious data attacks on smart grid
state estimation: attack strategies and countermeasures. In: Proceedings of the
IEEE Conference on Smart Grid Communications (SmartGridComm), pp. 220–
225, October 2010

12. Krotofil, M., Cárdenas, A.A., Manning, B., Larsen, J.: CPS: driving cyber-physical
systems to unsafe operating conditions by timing DoS attacks on sensor signals. In:
Proceedings of the Conference on Annual Computer Security Applications Confer-
ence (ACSAC), pp. 146–155. ACM (2014)

13. Lin, J., Yu, W., Yang, X., Xu, G., Zhao, W.: On false data injection attacks against
distributed energy routing in smart grid. In: Proceedings of Conference on Cyber-
Physical Systems (ICCPS) (2012)

14. Liu, Y., Ning, P., Reiter, M.K.: False data injection attacks against state estimation
in electric power grids. ACM Trans. Inf. Syst. Secur. (TISSEC) 14(1), 13 (2011)

15. McLaughlin, S.: On dynamic malware payloads aimed at programmable logic con-
trollers. In: Proceedings of USENIX Conference on Hot Topics in Security (HotSec),
p. 10, August 2013

16. McLaughlin, S., McDaniel, P.: SABOT: specification-based payload generation for
programmable logic controllers. In: Proceedings of the ACM Conference on Com-
puter and Communications Security (CCS), pp. 439–449. ACM (2012)

17. McLaughlin, S.E., Zonouz, S.A., Pohly, D.J., McDaniel, P.D.: A trusted safety
verifier for process controller code. In: Proceedings of the Network and Distributed
System Security Symposium (NDSS) (2014)

18. Milinkovic, S.A., Lazic, L.R.: Industrial PLC security issues. In: Proceedings
of Conference on Telecommunications Forum (TELFOR), pp. 1536–1539. IEEE
(2012)

19. Morris, T.H., Gao, W.: Industrial control system cyber attacks. In: Proceedings
of the Symposium for ICS and SCADA Cyber Security Research (ICS-CSR). BCS
Learning and Development Ltd. (2013)

20. Pollet, J.: Electricity for free? The dirty underbelly of SCADA and smart meters.
In: Proceedings of Black Hat USA (2010)

21. Wang, E., Ye, Y., Xu, X., Yiu, S., Hui, L., Chow, K.: Security issues and challenges
for cyber physical system. In: Proceedings of Conference on Cyber, Physical and
Social Computing (CPSCom), pp. 733–738, December 2010

22. Zhu, B., Joseph, A., Sastry, S.: A taxonomy of cyber attacks on SCADA sys-
tems. In: Proceedings of Conference on Cyber, Physical and Social Computing
(CPSCom), pp. 380–388 (2011)

23. Zonouz, S., Rogers, K., Berthier, R., Bobba, R., Sanders, W., Overbye, T.: SCPSE:
security-oriented cyber-physical state estimation for power grid critical infrastruc-
tures. IEEE Trans. Smart Grid 3(4), 1790–1799 (2012)

24. Zonouz, S., Rrushi, J., McLaughlin, S.: Detecting industrial control malware using
automated PLC code analytics. IEEE Secur. Priv. 12(6), 40–47 (2014)


	On Ladder Logic Bombs in Industrial Control Systems
	1 Introduction
	2 Background
	2.1 ICS
	2.2 Ladder Logic and Studio 5000

	3 Ladder Logic Bombs
	3.1 System and Attacker Model
	3.2 Bomb Classification
	3.3 Triggering
	3.4 Hiding LLBs in PLC Logic

	4 Implementation
	4.1 SWaT Testbed
	4.2 Attack 1: DoS Using Add on Instructions
	4.3 Attack 2: Manipulation of Sensor Data Using Subroutines
	4.4 Attack 3: Data Logging Using FFLs
	4.5 Attack 4: Trigger Major Faults on PLC
	4.6 Analysis of Attacks

	5 Countermeasures
	5.1 Network-Based Countermeasures
	5.2 Centralized Logic Store

	6 Related Work
	7 Conclusion
	References




