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Abstract

Clostridium difficile is a major bacterial cause

of post-antibiotic diarrhoea. The epidemiol-

ogy of C. difficile infections (CDI) has dra-

matically changed since the early 2000s, with

an increasing incidence and severity across

Europe. This trend is partly due to the emer-

gence and rapid worldwide spread of the

hypervirulent and epidemic PCR ribotype

027. Profiles of patients with CDI have also

evolved, with description of community-

acquired (CA) infections in patients with no

traditional risk factors for CDI. However,

recent epidemiological studies indicated that

some European countries have successfully

controlled the dissemination of the 027 clone

whereas other countries recently reported the

emergence of other virulent or unusual strains.

The aims of this review are to summarize the

current European CDI epidemiology and to

describe the new virulent C. difficile strains

circulating in Europe, as well as other poten-

tial emerging strains described elsewhere.

Standardized typing methods and surveillance

programmes are mandatory for a better under-

standing and monitoring of CDI in Europe.
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1 Introduction

Clostridium difficile is the main bacterial cause

of hospital-acquired diarrhoea; it is responsible

for 15–25% of post-antibiotic diarrhoea and for

virtually all cases of pseudomembranous colitis

(Bartlett and Gerding 2008). C. difficile infection
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(CDI) epidemiology has dramatically changed in

Europe since the beginning of the 2000s. The

incidence has increased over the last 10 years

from 2.45 cases per 10,000 patient-days in 2005

(Barbut et al. 2007), to 4.1 in 2008 (Bauer et al.

2011) and 7.0 in 2012–2013 (Davies et al. 2014).

Nevertheless, the incidence of CDI varies widely

across European countries from 0.7 to 28.7 per

10,000 patient-bed days per hospital. This trend

is likely to result from a combination of several

factors, including the level of awareness of CDI

among physicians, the type of methods/algorithm

for CDI diagnosis implemented in each country,

and the global spread of the PCR ribotype

(RT) 027 clone. A European study showed that

there is still a substantial underdiagnosis of CDI

coupled with large variations in testing policies

among European countries (Davies et al. 2014).

In Europe, the hypervirulent epidemic RT

027 strain (or REA type BI/NAP1/toxinotype III)

was first reported in England in 2005 (Smith 2005)

and has since rapidly spread in other European

countries. RT 027 is characterized by an 18 bp

deletion and a deletion at position 117 in tcdC
gene, resulting in the inactivation of the toxin

repressor TcdC and higher amounts of toxin pro-

duction (Warny et al. 2005), although the role of

tcdC mutation in toxin overproduction is currently

debated (Murray et al. 2009; Cartman et al. 2012).

Moreover, epidemic 027 strains also produce an

additional toxin, the binary toxin, and are resistant

to erythromycin and moxifloxacin, which may have

conferred a selective advantage. The same combi-

nation of genetic and phenotypic features can be

found in other rare RT, such as RT 176 (Krutova

et al. 2015; Drabek et al. 2015). RT 027-related CDI

are associated with a higher rate of complications

and recurrences (Sundram et al. 2009). The RT

027 has disseminated throughout Europe, with a

clear shift in its regional repartition from United

Kingdom and Ireland in 2008 (Bauer et al. 2011)

to Eastern Europe in 2012–2013 (Davies et al.

2016b). Some countries have successfully con-

trolled its spread and decreased its prevalence

(Hensgens et al. 2009; Fawley et al. 2016), while

other were recently hit by large outbreaks (Bouza

et al. 2017). In addition, other virulent or unusual

PCR ribotypes are emerging.

2 C. difficile Typing Methods

2.1 PCR Ribotyping

PCR ribotyping is the reference method for

C. difficile typing in Europe. It relies on the

presence of several alleles of the rRNA operon

in the C. difficile genome. The length polymor-

phism of the intergenic spacer region between

16S and 23S rRNA genes results in RT-specific

patterns after genomic amplification and migra-

tion (Bidet et al. 1999). PCR ribotyping was first

developed using agarose gel electrophoresis, but

the capillary gel-based electrophoresis method

has now been widely adopted. The latter enables

better standardization and easier comparison

between laboratories and is recommended as

the reference technique in Europe (Fawley et al.

2015).

Most European countries use a common

nomenclature, but some laboratories developed

their own local databases. An online database

containing internationally recognised capillary

electrophoresis RT profiles is available

(WEBRIBO, https://webribo.ages.at/, Indra

et al. 2008). However, there is no standardized

protocol since several primer sets were published

(Stubbs et al. 1999; Bidet et al. 1999), some of

them enabling direct PCR ribotyping from stool

samples (Janezic et al. 2011). Harmonization of

the PCR ribotyping method and nomenclature is

therefore essential and needs to be improved in

Europe, in order to detect emergence of new

unreferenced RT in a timely manner.

2.2 Other Methods Used
for C. difficile Typing

Toxins A and B, which are considered as the

main virulence factors of C. difficile (Pruitt and

Lacy 2012), are encoded by tcdA and tcdB genes

located within a locus of pathogenicity (PaLoc).

The PaLoc also contains tcdR (positive regulator

of toxin expression), tcdE (holin required for

toxin secretion), and tcdC (potential negative

regulator). The genetic polymorphism of the
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PaLoc can be explored by toxinotyping, which is

a PCR-restriction based method (Rupnik et al.

1998). Toxinotypes are defined according to

differences in the PaLoc compared to the refer-

ence strain VPI 10463 (nonvariant toxinotype 0).

To date, 34 toxinotypes have been described

(Rupnik and Janezic 2016; http://www.mf.um.

si/mf/tox/profile.html). Toxinotyping and PCR

ribotyping are well correlated since most of the

strains in a given RT have similar changes in the

PaLoc and thus belong to a single toxinotype.

The analysis of 123 strains showed that in a few

cases, PCR ribotyping can be more discrimina-

tory than toxinotyping, whereas RT include sev-

eral toxinotypes less frequently (Rupnik et al.

2001). To avoid ambiguities, a revised

toxinotyping nomenclature was recently

published (Rupnik and Janezic 2016).

PFGE (Pulsed-field gel electrophoresis) is a

genotype-based typing method developed in the

1980s and mostly used in North America. There

is good concordance between results of PFGE and

PCR ribotyping (Bidet et al. 2000). PFGE has a

higher discriminatory power than PCR ribotyping

(Killgore et al. 2008) but the interpretation of

genetic relatedness is comparable between both

typing methods. However, some strains are

non-typeable with this method, and degradation of

genomic DNA can hinder the analysis

(Kristjánsson et al. 1994). PFGE is also very

labour-intensive and the lack of standardisation

makes inter-laboratory data comparison difficult.

The discriminatory power of PCR ribotyping

is not sufficient to prove the nosocomial trans-

mission of a strain, particularly when a RT is

endemic at a regional or national level. In that

case, another more discriminant typing method

has to be used, such as multilocus variable-

number tandem repeat (VNTR) analysis

(MLVA). MLVA relies on the variability of the

VNTR at different loci. The genetic relatedness

of isolates is appreciated through the sum of

tandem repeat number differences (STRD)

(Marsh et al. 2006).

Whole genome sequencing (WGS) can distin-

guish between strains at the single nucleotide

level, highly increasing the discriminatory

power over other typing schemes. Given the

transferability of data and the diversity of poten-

tial applications, such as comparative genome

analysis and lineages analysis, this method is

increasingly being used for C. difficile typing

and could spread widely in the coming years

(Knetsch 2013). WGS has successfully and rap-

idly identified transmission of healthcare-

associated infection and could become a valuable

tool in routine clinical practice (Eyre et al. 2012).

3 Global Distribution
of C. difficile PCR Ribotypes
in Europe

The European C. difficile infection study (Bauer

et al. 2011) and the EUCLID study (Davies et al.

2014, 2016b) are two major European surveys

aiming at describing the epidemiology of CDI

including prevalence, diagnosis and RT

distribution.

The first pan-European study on C. difficile
was performed in 2008 in 106 laboratories from

34 countries (Bauer et al. 2011). The incidence of

CDI and the RT distribution varied greatly

between hospitals, as well as the density testing

for CDI. The authors could differentiate 65 RT

among 389 C. difficile isolates. One of the main

findings of this study was that RT 027 was not

predominant in 2008, representing only 5% of

the isolates. The most common RT were

014/020 (16%), 001, (9%), and 078 (8%). Some

RT seemed to spread regionally, such as RT

106 mostly described in UK and Ireland.

The EUCLID study (European, multicentre,

prospective, biannual, point-prevalence study of

CDI in hospitalized patients with diarrhoea) was

conducted in 2012–2013 and included 482 hospitals

from 19 European countries (Davies et al. 2016b).

The objectives were to measure the underdiagnosis

of CDI and to assess the diversity of RT repartition

in Europe. During two sampling days (one in win-

ter and one in summer), participating hospitals sent

every diarrhoeal stool sample, irrespective of the

request to test for C. difficile by the physician, to a

national coordinating laboratory. The RT diversity

was much higher than in the previous study, with

125 RT identified among 1196 isolates.
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Interestingly, the most common RT was

027 (19%), highlighting the rapid spread of this

strain at a global scale. An inverse correlation was

noted between the rate of testing and prevalence of

ribotype 027 across north, south, east, and west

quadrants of Europe, which suggests that increased

awareness of CDI and use of optimum testing

methods and policies can reduce the dissemination

of epidemic strains (Davies et al. 2014). The com-

parison with the 2008 data indicated a shift in the

frequency of RT 027 from UK and Ireland

(decreasing prevalence) to Eastern Europe

countries (increasing prevalence). RT 001/072

(11%) and 014/020 (10%) were the second and

third most prevalent RT, consistent with the 2008

results, however the prevalence of RT 078 dropped

from 8% in 2008 to 3% in 2012–2013. The distri-

bution of causative RT was country-specific as

shown in the Fig. 1 (Davies et al. 2016b).

Besides these two large epidemiological stud-

ies, several other recent European studies

analysed RT distribution at a national level. The

results of these national studies are summarized

in the Table 1.

A multicentre study characterized 3333 toxi-

genic strains isolated between 2010 and 2015 in

110 Belgian hospitals (Neely et al. 2017). RT

027 (4.2%) and 078 (7.0%) were associated

with a higher rate of complications (unadjusted

data) and higher levels of in-vitro toxin produc-

tion from cultured isolates.

A study compared epidemiological data for

community-associated (CA)-CDI and healthcare-

associated (HA)-CDI in 113 laboratories across

England between 2011 and 2013 (Fawley et al.

2016). A total of 703 C. difficile toxin-positive

faecal samples from CA-CDI cases were analysed

and the results were compared to HA-CDI data

(n ¼ 10,754) obtained from the C. difficile
Ribotyping Network. RT distribution was similar

in cases of CA- and HA-CDI, but RT 002wasmore

likely to cause CA-CDI, while RT 027 was more

often associated with HA-CDI.

In Spain, Alcalá et al. performed C. difficile

cultures on 807 unformed stool specimens sent to

118 Spanish microbiology laboratories on a single

day, regardless of the prescription by the clinician

(Alcalá et al. 2012). Among 42 toxigenic strains,

RT 014/020, 001 and 078/126 were the most preva-

lent (20.5%, 18.2% and 18.2% respectively). RT

027 was not found.

The characterization of 498 clinical isolates

from 20 hospitals in Portugal showed that RT

027 was predominant with 18.5% of all the

strains, and 19.6% of HA-associated CDI. RT

014 was the second most frequent overall

(9.4%) and the most frequent among CA-CDI

(12%). The prevalence of RT 126 and 078 was

low (3.8% and 2.8% respectively) (Santos et al.

2016). The authors described a great heterogene-

ity of the RT distribution through the country

with a higher diversity in the north, where RT

027 was not predominant.

The geographic distribution of C. difficile

genotypes in Germany was assessed using

393 isolates sent to the national advisory labora-

tory for diagnostic reason between 2011 and

2013 (von Müller et al. 2015). The typing method

used was surface-layer protein A sequence typ-

ing, with strain assignment to RT for better com-

parison with international data. RT 001 (35%)

and 078 (8%) were prevalent nationwide; RT

027 (26%) and 014/066 (9%) were detected in

almost all regions.

In France, a multicentre study conducted in

2009 in 78 healthcare facilities showed that the

most prevalent RT were 014/020/077 (18.7%),

followed by 078/126 (12.1%) (Eckert et al.

2013). The prevalence of RT 027 strains remained

low (3.1%), and they were only isolated in North-

ern France, where RT 027 emergence was first

described in 2006 (Coignard et al. 2006; Birgand

et al. 2010). These results are consistent with the

more recent LuCID (Longitudinal European Clos-

tridium difficile Infection Diagnosis) surveillance

study (Davies et al. 2016a), during which RT

014/020/077 and 078/126 were the most prevalent

in France (21.9% and 9.5% respectively) (Eckert

et al. 2015).

In conclusion, RT 014/020 and 001/072 are

endemic in almost all European countries while

there is a national or regional specificity for other

RT. Moreover, the RT diversity is significantly

increasing across Europe.
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4 Emerging PCR Ribotypes

4.1 PCR Ribotype 176

RT176 strains are closely related to RT 027 (Stabler

et al. 2006). They belong to toxinotype III, produce

the binary toxin and bear a deletion at position

117 of the tcdC gene, leading to a potential RT

027 misidentification with commonly used molecu-

lar assays such as Xpert® C. difficile (Cepheid).

Moreover, their similar banding pattern (only one

band difference) after gel electrophoresis can be

confusing for RT attribution (Valiente et al. 2012).

The first cases of RT 176-associated CDI were

described in 2008 in Poland (Obuch-Woszczatyński

et al. 2014), in 2009 in the Czech Republic (Nyč

et al. 2011) and in 2015 in Croatia (Rupnik et al.

2016). The first RT 176-related outbreak was

recently described in France (Couturier et al.

2017). Four strains isolated in two geographically

close hospitals, previously identified as RT 027with

the agarose gel method, were reassigned as RT

176 by capillary gel-based electrophoresis. MLVA

analysis showed that those four strains formed a

clonal complex (STRD �2), and were genetically

related to RT 027 strains (STRD �10).

Fig. 1 Geographical distribution of C. difficile PCR

ribotypes, by participating European country, EUCLID

2012–2013 and 2013 (n ¼ 1196) (Reproduced with per-

mission from Davies et al. 2016b) Pie charts show the

proportion of the most common ribotypes per country and

the number in the centre of the charts is the number of

typed isolates in the country
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The results of the EUCLID study showed a

regional specificity of RT 176, isolated mostly in

the Czech Republic where it accounted for 38%

of the strains (Davies et al. 2016b). In 2014, a

study among 18 Czech hospitals showed that

29% of C. difficile isolates belonged to RT

176, and 24% to RT 001 (Krutova et al. 2016,

Table 1). Further typing analysis by MLVA,

indicated that both RT formed clonal complexes

in several hospitals, suggesting a rapid spread of

these clones at a national level.

These results suggest a rapid nosocomial

spread of RT 176 strains through Europe,

stressing the need for a common data base for

PCR ribotyping.

4.2 PCR Ribotype 078

RT 078 strains can produce toxins A and B, as

well as the binary toxin and belong to toxinotype

V. They are characterized by a 39 bp deletion in

tcdC. RT 078 was reported as predominant in

Greece in 2005 (Barbut et al. 2007), and was

the third most common RT in the 2008

European study (Bauer et al. 2011). A recent

study showed that RT 078 strains co-circulate

with the hypervirulent 027 strains in Southern

France (Cassir et al. 2017). While 027 strains

are mostly responsible for outbreaks of

HA-infections in the elderly, 078 strains are

more frequently associated with CA-infections

in a younger population. CA-CDI due to

078 strains were also described in England

(Fawley et al. 2016) (see “Clostridium difficile

infection in the community” below). Finally, RT

078 strains are frequently resistant to

fluoroquinolones and erythromycin, partly

explaining this epidemiological success (Baldan

et al. 2015).

4.3 PCR Ribotype 126

RT 078 and 126 are highly related: they share

similar banding patterns in agarose gel electro-

phoresis method, and can only be differentiated

with the capillary gel-based electrophoresis.

Consequently, they are often reported together

as RT 078/126. Like RT 078 strains, RT

126 strains belong to toxinotype V and are con-

sidered as “hypervirulent” (Knetsch et al. 2011).

They also produce the binary toxin and are

characterized by a 39 bp deletion in tcdC.

The prevalence of RT 126 strains in animals

in Germany is high, suggesting the potential zoo-

notic spread of this RT (Schneeberg et al. 2013).

MLVA analysis showed that most of those

strains are genetically related to RT 078 strains

(STRD �10), and some of them belong to the

Table 1 National epidemiological studies on Clostridium difficile PCR ribotypes repartition

Country

N

strains

PCR ribotyping

method Most prevalent RT (%) References

Belgium 3333 Agarose gel

electrophoresis

014 (11.6), 020 (8.5), 002 (7.6), 078 (7.0),

027 (4.2), 005 (3.5), 106 (3.4)

Neely et al.

(2017)

United

Kingdom

11,457 Agarose gel

electrophoresis

015 (10.2), 002 (9.1), 014 (9.1), 078 (8.0),

005 (7.4) and 027 (6.4)

Fawley et al.

(2016)

Spain 42 Agarose gel

electrophoresis

014/020 (20.5), 001 (18.2), 078/126 (18.2) Alcalá et al.

(2012)

Portugal 498 Capillary

electrophoresis

027 (18.5), 014 (9.4), 020 (5.6), 017 (5.2) Santos et al.

(2016)

Germany 393 slpAST with

assignment to RT

001 (35), 027 (26), 014/066 (9), 078 (8) von Müller et al.
(2015)

France 224 Agarose gel

electrophoresis

014/020/077 (18.7), 078/126 (12.1), 015 (8.5),

002 (8), 005 (4.9)

Eckert et al.

(2013)

Czech

Republic

774 Capillary

electrophoresis

176 (29), 001 (24) Krutova et al.

(2016)

slpAST surface-layer protein A sequence typing
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same clonal complex (STRD�2). RT 126 strains

are also frequently resistant to antibiotics, includ-

ing erythromycin, moxifloxacin and tetracyclin

(Álvarez-Pérez et al. 2017).

4.4 PCR Ribotype 033/Toxinotype XI

PCR ribotype 033 strains belong to toxinotype

XI. They are characterized by the absence of

TcdA and TcdB expression and therefore cannot

be detected by EIA (enzyme immunoassay)

methods for toxins. These strains were first

described in 2001 (Rupnik et al. 2001). In 2014,

six symptomatic CDI cases due to toxinotype XI

strains were reported by the French National

Reference Laboratory for C. difficile (Eckert

et al. 2014). In four cases, the patient was suc-

cessfully treated by oral metronidazole. These

strains were characterized by PCR ribotyping,

amplification of tcdA, tcdB, cdtA and cdtB

genes and toxinotyping. The six strains were

defined as RT 033 (or 033-like) and were nega-

tive for TcdA and TcdB. The binary toxin genes

were present and a 39 bp deletion was identified

in the tcdC gene. The six strains were

characterized by major deletions of the 50 region
of the PaLoc including tcdB, tcdE and tcdR; only
a remnant part of tcdA (A2 and A3 fragments)

and tcdC could be amplified.

The pathogenicity of toxinotype XI strains

remains controversial. Studies on the role of the

binary toxin as a virulence factor in animal

models gave contradictory results. In the rabbit

ileal loop model, an enterotoxic response was

observed after inoculation of supernatants from

culture of A�B�CDT+ strains. However, despite

colonization, no symptoms occurred in

clindamycin-treated hamsters challenged with

these strains (Geric et al. 2006). Although the

prevalence of A�B�CDT+ strains in Europe

seems rather low (Barbut et al. 2007; Bauer

et al. 2011), surveillance of this unusual strains

is required. Indeed, the atypical genomic organi-

zation of the PaLoc can lead to a false negative

diagnosis, more particularly when methods rely-

ing on the presence of toxin A and/or toxin B

only are used. However, the increasing use of the

Xpert® C. difficile assay, which detects binary

toxin genes, will possibly enable a better identi-

fication of toxinotype XI strains.

4.5 PCR Ribotype 018

RT 018 has recently been reported as an

emerging RT responsible for outbreaks in Italy,

where RT 126 was previously predominant

(Spigaglia et al. 2010). The EUCLID study

(Davies et al. 2016b) showed that prevalence of

RT 018 was high in Italy (22%), as opposed to

other European countries. In addition, Baldan

et al. characterized 312 C. difficile isolates from

a large Italian teaching hospital between 2009

and 2013, and observed that RT 018 was pre-

dominant. After epidemiological investigation of

the outbreaks, RT 018 represented 42% of index

CDI cases and virtually all secondary cases (due

to nosocomial transmission). The transmission

index (number of secondary cases divided by

number of index cases) of RT 018 was signifi-

cantly higher than that of RT 078 (0.640 and

0.0606, respectively) (Baldan et al. 2015).

Another study comparing RT 018, RT 126 and

RT 078 demonstrated that RT 018 strains pro-

duced higher levels of toxins, showed increased

adhesion to cells and became endemic in a short

time (Barbanti and Spigaglia 2016). Moreover,

RT 018 strains were all multidrug resistant (resis-

tance to erythromycin, clindamycin and

moxifloxacin). Together, these results suggest

that RT 018 strains have phenotypic traits con-

ferring an adaptive advantage and are able to

spread widely. RT 018 strains were indeed

reported in Southern Europe (Spain, Austria and

Slovenia) and are associated with a higher rate of

complicated infections (Bauer et al. 2011).

4.6 PCR Ribotype 017

RT 017 strains belong to toxinotype VIII and are

part of C. difficile clade 4; they lack toxin A

production and binary toxin genes (Cairns et al.

2012). The clinical relevance and the prevalence

of this clone has been unclear for many years,
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since it was mainly found in asymptomatic

infants (Depitre et al. 1993; Kato et al. 1998).

However, it has now been established that RT

017 strains are predominant in Asian countries

such as Korea, China and Japan (Collins et al.

2013), and that they have spread worldwide. RT

017-related outbreaks have been reported in

England (Cairns et al. 2015), The Netherlands

(Kuijper et al. 2001), Poland (Pituch et al.

2001), and Ireland (Drudy et al. 2007). RT

017-related CA-CDI appear to be more likely to

affect younger patients (Fawley et al. 2016).

Severe RT 017-related CDI have been described

in Germany, although RT 027 was the most

prevalent strain in this study (Arvand et al. 2009).

4.7 Other Emerging PCR Ribotypes

RT 244 strains belong to the same hypervirulent

clade as RT 027 (clade 2) (Lim et al. 2014). They

produce the binary toxin and bear a single nucle-

otide deletion at position 117 in tcdC. Severe

CA-CDI and outbreaks due to RT 244 strains

were recently reported in Australia and

New Zealand, where it was previously uncom-

mon (De Almeida et al. 2013; Eyre et al. 2015).

Eyre et al. showed that a strain isolated in a

patient recently returned from Australia to the

UK was phylogenetically related to their out-

break, highlighting the potential rapid spread of

RT 244 via international travel.

The previously quoted French multicentre

survey showed that among 224 toxigenic strains,

19 (8.5%) belonged to RT 015 which was the

third most frequent RT (Eckert et al. 2013).

Fawley et al. showed that RT 015 was also pre-

dominant in England (Fawley et al. 2016).

Although RT 015 accounted for only 2% of the

strains analysed in the EUCLID study, it seems

that RT 015 strains can spread and become pre-

dominant at a national scale.

RT 106 strains represented 5% of all toxigenic

isolates in the 2008 hospital-based European

study, but their distribution showed a regional

spread: among 20 strains, 13 were isolated in

the United Kingdom and 5 in Ireland (Bauer

et al. 2011). In a Southern England healthcare

facility, 38% of C. difficile isolates (n¼ 97) were

identified as RT 106, the second most prevalent

RT after 027 (45%) (Sundram et al. 2009).

Almost all of these RT 106 strains were resistant

to ciprofloxacin and erythromycin. Moreover, in

the Belgian multicentre study (Neely et al. 2017),

recurrences were more frequent with RT

106-related CDI.

Other data reported the emergence of RT

001 strains with reduced susceptibility to metro-

nidazole, raising concerns about the potential

spread of these strains due to this selective

advantage (Baines et al. 2008). In Southern

Germany, the prevalence of RT 001 strains

exhibiting resistance to erythromycin, ciproflox-

acin and moxifloxacin is high in both in- and

out-patients (Borgmann et al. 2008; Arvand

et al. 2009).

Given their pathogenic and epidemic poten-

tial, the emergence of these RT should be closely

followed in European countries.

The genetic and epidemiological features of

the emerging RT described above are

summarized in the Table 2.

4.8 Emerging Strains with a AþB-
CDT- Unusual Profile

Recently, three clinical strains with an atypical

PaLoc structure were described in France

(Monot et al. 2015), including the first variant

strain producing only toxin A (A+B�CDT�).
WGS analysis of this strain showed that its

PaLoc only contained tcdA and tcdR. None of

the three strains belonged to any of the most

frequent RT. Moreover, the authors described

variability in the sequence of the toxin genes,

which may lead to potential false negative

results with the most commonly used diagnostic

methods (immunoenzymatic or molecular

assays).
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5 C. difficile Infection
in the Community

The epidemiology of CA-CDI is poorly known,

since C. difficile testing is rarely requested in

stool samples from community patients. How-

ever, recent data suggest that the incidence of

CA-CDI is rising (Chitnis et al. 2013). In addi-

tion, CDI were recently described among young

patients from community settings without the

traditional risk factors (antibiotic exposure,

recent hospitalization, co-morbidities) (Wilcox

et al. 2008; Gupta and Khanna 2014).

Fawley et al. showed that RT 002, 020 and

056 were largely responsible for CA-CDI, whereas

RT 027 was most associated with HA-CDI (Fawley

et al. 2016). RT 078 strains have been reported in

animals in the Netherlands (Goorhuis et al. 2008),

and by using MLVA analysis, Debast et al. showed

that RT 078 strains found in animals and in humans

were genetically highly related, suggesting a

foodborne interspecies transmission of C. difficile

(Debast et al. 2009). In Canada, RT 078 epidemic

strains (identified as pulsotype NAP7 by PFGE)

were found in vegetables from grocery stores

(Metcalf et al. 2010). RT 078 has also been

described in the environment; it was the most fre-

quently isolated RT in wastewater treatment plants

in Switzerland (Romano et al. 2012). RT 078 was

the commonest (19.0%) in 42 CA-CDI cases in a

prospective study conducted in Scotland, followed

by RT 014/020 (16.7%), 015 (14.3%) and

001 (11.9%) (Taori et al. 2014). However, in a US

study of 984 CA-CDI cases, NAP1/RT 027 was the

most frequent strain isolated (21.7%), while less

than 7% of the isolates belonged to NAP7/RT

078 (Chitnis et al. 2013). In 2011, population- and

laboratory-based surveillance for CDI was

conducted in 10 US areas (Lessa et al. 2015). A

total of 1364 strains were characterized. The most

common strains were NAP1/RT 027 (18.8% of

CA-CDI and 30.7% of HA-CDI), NAP4/RT

020 (11.4% and 10.3%) and NAP11/RT

106 (10.7% and 10.0%). Less than 4% of the strains

in both settings belonged to NAP7/RT 078. These

Table 2 Characteristics of currently circulating and emerging PCR ribotypes in Europe

RT Toxinotype

Toxins

A and B

Binary

toxin

Deletion

in tcdC Main circulation area

027 III +/+ + �18 bp/

Δ117
Europe, mostly Eastern Europe Davies et al. (2016b)

176 III +/+ + �18 bp/

Δ117
Poland, Czech Republic Nyč et al. (2011), Obuch-

Woszczatyński et al. (2014)

078 V +/+ + �39 bp/

A117T

Community-onset infections Eckert et al. (2011), Fawley et al.

(2016)

126 V +/+ + �39 bp/

A117T

Eckert et al. (2011)

033 XIa/XIb �/� + �39 bp Low prevalence in Europe Eckert et al. (2014)

018 XIX +/+ � ND Italy Spigaglia et al. (2010), Rupnik and Janezic (2016)

017 VIII �/+ � ND Asia Collins et al. (2013), Ireland Drudy et al. (2007), England

(Cairns et al. (2015), The Netherlands Kuijper et al. (2001),

Poland Pituch et al. (2001), Germany

244 IXb +/+ + ND/

Δ117
Australia Lim et al. (2014), Rupnik and Janezic (2016)

015 NA +/+ � �18 bp

or ND

France Eckert et al. (2013)

106 NA +/+ � �18 bp

or ND

United Kingdom, Ireland Bauer et al. (2011)

001 XXIX +/+ � ND Germany, multidrug resistant strains Borgmann et al. (2008),

Rupnik and Janezic (2016)

ND not deleted, NA not available
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results show a large overlapping of the RT distribu-

tion in HA- and CA-CDI, suggesting the existence

of common reservoirs and multiple transmission

routes between community and hospital settings.

6 Conclusion

In conclusion, there is a large diversity of RT

across Europe, although some specific RT are

able to disseminate at a regional or national

level. A national and European clinical surveil-

lance system, associated with microbiological

characterization of strains, is essential in order

to monitor the constantly changing epidemiology

of CDI. A common European data base of the

circulating RT would be very helpful to detect

emergence of new virulent clones in a timely

manner.
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national survey. Médecine Mal Infect 43:67–74.

https://doi.org/10.1016/j.medmal.2013.01.004

Eckert C, Emirian A, Le Monnier A, Cathala L, De

Montclos H, Goret J, Berger P, Petit A, De

Chevigny A, Jean-Pierre H, Nebbad B, Camiade S,

Meckenstock R, Lalande V, Marchandin H, Barbut F

(2014) Prevalence and pathogenicity of binary toxin–

positive Clostridium difficile strains that do not pro-

duce toxins A and B. New Microbes New Infect

3:12–17. https://doi.org/10.1016/j.nmni.2014.10.003

Eckert C, Bildan, M-A, Quach, S, Youssouf, A, Barbut, F,

C. difficile study group (2015) Caractérisation des
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