
Fast Distributed Approximation for Max-Cut

Keren Censor-Hillel(B), Rina Levy, and Hadas Shachnai

Computer Science Department, Technion, 3200003 Haifa, Israel
{ckeren,rinalevy,hadas}@cs.technion.ac.il

Abstract. Finding a maximum cut is a fundamental task in many
computational settings, with a central application in wireless networks.
Surprisingly, Max-Cut has been insufficiently studied in the classic dis-
tributed settings, where vertices communicate by synchronously sending
messages to their neighbors according to the underlying graph, known as
the LOCAL or CONGEST models. We amend this by obtaining almost
optimal algorithms for Max-Cut on a wide class of graphs in these mod-
els. In particular, for any ε > 0, we develop randomized approximation
algorithms achieving a ratio of (1 − ε) to the optimum for Max-Cut on
bipartite graphs in the CONGEST model, and on general graphs in the
LOCAL model.

We further present efficient deterministic algorithms, including a 1/3-
approximation for Max-Dicut in our models, thus improving the best
known (randomized) ratio of 1/4. Our algorithms make non-trivial use
of the greedy approach of Buchbinder et al. (SIAM Journal Computing
44:1384–1402, 2015) for maximizing an unconstrained (non-monotone)
submodular function, which may be of independent interest.

1 Introduction

Max-Cut is one of the fundamental problems in theoretical computer science.
A cut in an undirected graph is a bipartition of the vertices, whose size is the
number of edges crossing the bipartition. Finding cuts of maximum size in a given
graph is among Karp’s famous 21 NP-complete problems [25]. Since then, Max-
Cut has received considerable attention, in approximation algorithms [17,19,
42,45], parallel computation [44], parameterized complexity [43], and streaming
algorithms (see, e.g., [24]).

Max-Cut has a central application in wireless mesh networks (WMNs). The
capacity of WMNs that operate over a single frequency can be increased sig-
nificantly by enhancing each router with multiple transmit (Tx) or receive (Rx)
(MTR) capability. Thus, a node will not experience collision when two or more
neighbors transmit to it. Yet, interference occurs if a node transmits and receives
simultaneously. This is known as the no mix-tx-rx constraint. The set of links
activated in each time slot, defining the capacity of an MTR WMN, is governed

K. Censor-Hillel—The research is supported in part by the Israel Science Foundation
(grant 1696/14).

c© Springer International Publishing AG 2017
A. Fernández Anta et al. (Eds.): ALGOSENSORS 2017, LNCS 10718, pp. 41–56, 2017.
https://doi.org/10.1007/978-3-319-72751-6_4

42 K. Censor-Hillel et al.

by a link scheduler. As shown in [10], link scheduling is equivalent to finding
Max-Cut in each time slot. A maximum cut contains the set of non-conflicting
links that can be activated at the same time, i.e., they adhere to the no mix-tx-
rx constraint. The induced bipartition of the vertices at each time slot defines a
set of transmitters and a set of receivers in this slot. Link scheduling algorithms
based on approximating Max-Cut, and other applications in wireless networks,
can be found in [27,48–51].1

Surprisingly, Max-Cut has been insufficiently studied in the classic dis-
tributed settings, where vertices communicate by synchronously sending mes-
sages to their neighbors according to the underlying graph, known as the LOCAL
or CONGEST models. Indeed, there are known distributed algorithms for Max-
Cut using MapReduce techniques [5,35,36]. In this setting, the algorithms par-
tition the ground set among m machines and obtain a solution using all the
outputs. However, despite a seemingly similar title, our distributed setting is
completely different.

In this paper we address Max-Cut in the classic distributed network models,
where the graph represents a synchronous communication network. At the end
of the computation, each vertex decides locally whether it joins the subset S or
S̄, and outputs 1 or 0, respectively, so as to obtain a cut of largest possible size.

It is well known that choosing a random cut, i.e., assigning each vertex to
S or S̄ with probability 1/2, yields a 1

2 -approximation for Max-Cut, and a 1
4 -

approximation for Max-Dicut, defined on directed graphs (see, e.g., [37,38]).2

Thus, a local algorithm, where each vertex outputs 0 or 1 with probability 1/2,
yields the above approximation factors with no communication required. On the
other hand, we note that a single vertex can find an optimal solution, once it has
learned the underlying graph. However, this requires a number of communication
rounds that depends linearly on global network parameters (depending on the
exact model considered). This defines a tradeoff between time complexity and the
approximation ratio obtained by distributed Max-Cut algorithms. The huge gap
between the above results raises the following natural questions: How well can
Max-Cut be approximated in the distributed setting, using a bounded number of
communication rounds? Or, more precisely: How many communication rounds
are required for obtaining an approximation ratio strictly larger than half, or
even a deterministic 1

2 -approximation for Max-Cut?
To the best of our knowledge, these questions have been studied in our

distributed network models only for a restricted graph class. Specifically, the
paper [22] suggests a distributed algorithm for Max-Cut on d-regular triangle-
free graphs, that requires a single communication round and provides a (1/2 +
0.28125/

√
d)-approximation.

The key contribution of this paper is in developing two main techniques
for approximating Max-Cut and Max-Dicut in distributed networks, with any

1 Max-Cut naturally arises also in VLSI [9], statistical physics [4] and machine learning
[47].

2 In Max-Dicut we seek the maximum size edge-set crossing from S to S̄.

Fast Distributed Approximation for Max-Cut 43

communication graph. Below we detail the challenges we face, and our methods
for overcoming them.

1.1 The Challenge

In the LOCAL model, where message sizes and the local computation power are
unlimited, every standard graph problem can be solved in O(n) communication
rounds. For Max-Cut it also holds that finding an optimal solution requires
Ω(n) communication rounds. This lower bound follows from Linial’s seminal
lower bound [31, Theorem 2.2] for finding a 2-coloring of an even-sized cycle. In
an even cycle, the maximum cut contains all edges. Therefore, finding a Max-Cut
is equivalent to finding a 2-coloring of the graph.

An approach that proved successful in many computational settings − in
tackling hard problems − is to relax the optimality requirement and settle for
approximate solutions. Indeed, in the distributed setting, many approximation
algorithms have been devised to overcome the costs of finding exact solutions
(see, e.g., [1–3,16,21,28–30,32,39], and the survey of Elkin [11]). Our work can
be viewed as part of this general approach. However, we face crucial hurdles
attempting to use the known sequential toolbox for approximating Max-Cut in
the distributed setting.

As mentioned above, a 1
2 -approximation for Max-Cut can be obtained easily

with no communication. While this holds in all of the above models, improv-
ing the ratio of 1/2 is much more complicated. In the sequential setting, an
approximation factor strictly larger than 1/2 was obtained in the mid-1990’s
using semidefinite programming [17] (see Sect. 1.3). Almost two decades later,
the technique was applied by [44] to obtain a parallel randomized algorithm for
Max-Cut, achieving a ratio of (1−ε)0.878 to the optimum, for any ε > 0. Adapt-
ing this algorithm to our distributed setting seems non-trivial, as it relies heavily
on global computation. Trying to apply other techniques, such as local search,
unfortunately leads to linear running time, because of the need to compare values
of global solutions.

Another obstacle that lies ahead is the lack of locality in Max-Cut, due to
strong dependence between the vertices. The existence of an edge in the cut
depends on the assignment of both of its endpoints. This results in a chain of
dependencies and raises the question whether cutting the chain can still guar-
antee a good approximation ratio.

1.2 Our Contribution

We develop two main techniques for approximating Max-Cut, as well as Max-
Dicut. Our first technique relies on the crucial observation that the cut value is
additive for edge-disjoint sets of vertices. Exploiting this property, we design
clustering-based algorithms, in which we decompose the graph into small-
diameter clusters, find an optimal solution within each cluster, and prove that the
remaining edges still allow the final solution to meet the desired approximation
ratio. An essential component in our algorithms is efficient graph decomposition

44 K. Censor-Hillel et al.

to such small-diameter clusters connected by few edges (also known as a padded
partition), inspired by a parallel algorithm of [34] (see also [12,13]).

For general graphs, this gives (1 − ε)-approximation algorithms for Max-Cut
and Max-Dicut, requiring O(log n

ε) communication rounds in the LOCAL model.
For the special case of a bipartite graph, we take advantage of the graph struc-
ture to obtain an improved clustering-based algorithm, which does not require
large messages. The algorithm achieves a (1 − ε)-approximation for Max-Cut in
O(log n

ε) rounds, in the more restricted CONGEST model.
For our second technique, we observe that the contribution of a specific ver-

tex to the cut depends only on the vertex itself and its immediate neighbors.
We leverage this fact to make multiple decisions in parallel by independent
sets of vertices. We find such sets using distributed coloring algorithms. Our
coloring-based technique, which makes non-trivial use of the greedy approach
of [7] for maximizing an unconstrained submodular function, yields determin-
istic 1

2 -approximation and 1
3 -approximation algorithms for Max-Cut and Max-

Dicut, respectively, and a randomized 1
2 -approximation algorithm for Max-Dicut.

Each of these algorithms requires Õ(Δ + log∗ n) communication rounds in the
CONGEST model, where Δ is the maximal degree of the graph, and Õ ignores
polylogarithmic factors in Δ.

Finally, we present LOCAL algorithms which combine both of our tech-
niques. Applying the coloring-based technique to low-degree vertices, and the
clustering-based technique to high-degree vertices, allows as to design faster
deterministic algorithms with approximation ratios of 1

2 and 1
3 for Max-Cut and

Max-Dicut, respectively, requiring min{Õ(Δ + log∗ n), O(
√

n)} communication
rounds (Table 1).3

Table 1. A summary of our results.

1.3 Background and Related Work

The weighted version of Max-Cut is one of Karp’s NP-complete problems [25].
The unweighted version that we study here is also known to be NP-complete [15].

While there are graph families, such as planar and bipartite graphs, in which a
maximum cut can be found in polynomial time [18,19], in general graphs, even
3 Due to space constraints, some of the results are omitted. A detailed version of this

paper can be found in [8].

Fast Distributed Approximation for Max-Cut 45

approximating the problem is NP-hard. In the sequential setting, one cannot
obtain an approximation ratio better than 16

17 for Max-Cut, or an approximation
ratio better than 12

13 for Max-Dicut, unless P = NP [20,46].
Choosing a random cut, i.e., assigning each vertex to S or S̄ with probabil-

ity 1/2, yields a 1
2 -approximation for Max-Cut, and 1

4 -approximation for Max-
Dicut. In the sequential setting there are also deterministic algorithms yielding
the above approximation ratios [40,42]. For 20 years there was no progress in
improving the 1/2 approximation ratio for Max-Cut, until (in 1995) Goemans
and Williamson [17] achieved the currently best known ratio, using semidefinite
programming. They present a 0.878-approximation algorithm, which is optimal
assuming the Unique Games Conjecture holds [26]. In the same paper, Goemans
and Williamson also give a 0.796-approximation algorithm for Max-Dicut. This
ratio was improved later by Matuura et al. [33], to 0.863. Using spectral tech-
niques, a 0.53-approximation algorithm for Max-Cut was given by Trevisan [45].
In [23] Kale and Seshadhri present a combinatorial approximation algorithm for
Max-Cut using random walks, which gives a (0.5 + δ)-approximation, where δ
is some positive constant that appears also in the running time of the algo-
rithm. In particular, for Õ(n1.6), Õ(n2) and Õ(n3) times, the algorithm achieves
approximation factors of 0.5051, 0.5155 and 0.5727, respectively.

Max-Cut and Max-Dicut can also be viewed as special cases of submodular
maximization, which has been widely studied. It is known that choosing a solu-
tion set S uniformly at random yields a 1

4 -approximation, and a 1
2 -approximation

for a general and for symmetric submodular function, respectively [14]. These
results imply the known random approximation ratios for Max-Cut and Max-
Dicut. Buchbinder et al. [7] present determinstic 1

2 -approximation algorithms for
both symmetric and asymmetric submodular functions. These algorithms assume
that the submodular function is accessible through a black box returning f(S)
for any given set S (known as the value oracle model).

In recent years, there is an ongoing effort to develop distributed algorithms
for submodular maximization problems, using MapReduce techniques [5,35,36].
Often, the inputs consist of large data sets, for which a sequential algorithm may
be inefficient. The main idea behind these algorithms is to partition the ground
set among m machines, and have each machine solve the problem optimally
independently of others. After all machines have completed their computations,
they share their solutions. A final solution is obtained by solving the problem
once again over a union of the partial solutions. The algorithms achieve perfor-
mance guarantees close to the sequential algorithms while decreasing the running
time, where the running time is the number of communication rounds among
the machines. As mentioned above, these algorithms do not apply to our classic
distributed settings.

2 Preliminaries

The Max-Cut problem is defined as follows. Given an undirected graph G =
(V,E), one needs to divide the vertices into two subsets, S ⊂ V and S̄ = V \ S,

46 K. Censor-Hillel et al.

such that the size of the cut, i.e., the number of edges between S and the com-
plementary subset S̄, is as large as possible. In the Max-Dicut problem, the given
graph G = (V,E) is directed, and the cut is defined only as the edges which are
directed from S to S̄. As in the Max-Cut problem, the goal is to obtain the largest
cut.

Max-Cut and Max-Dicut can be described as the problem of maximizing the
submodular function f(S) = |E(S, S̄)|, where for Max-Dicut f(S) counts only
the edges directed from S to S̄. Given a finite set X, let 2X denote the power set
of X. A function f : 2X → R is submodular if it satisfies the following equivalent
conditions:

(i) For any S, T ⊆ X: f(S ∪ T) + f(S ∩ T) ≤ f(S) + f(T).
(ii) For any A ⊆ B ⊆ X and x ∈ X\B: f(B∪{x})−f(B) ≤ f(A ∪ {x}) − f(A).

For Max-Cut and Max-Dicut, the submodular function also satisfies: for any
pair of disjoint sets S, T ⊆ X such that ES×T = {(u, v)|u ∈ S, v ∈ T} = ∅,
f(S)+ f(T) = f(S ∪T). Note that for Max-Cut, the function is also symmetric,
i.e., f(S) = f(S̄).

Model: We consider a distributed system, modeled by a graph G = (V,E), in
which the vertices represent the computational entities, and the edges represent
the communication channels between them. We assume that each vertex v has
a unique identifier id(v) of size O(log n), where n = |V |.

The communication between the entities is synchronous, i.e., the time is
divided into rounds. In each round, the vertices send messages simultaneously
to all of their neighbors and make a local computation based on the information
gained so far. This is the classic LOCAL model [41], which focuses on analyzing
how locality affects the distributed computation. Therefore, message sizes and
local computation power are unlimited, and the complexity is measured by the
number of communication rounds needed to obtain a solution. It is also impor-
tant to study what can be done in the more restricted CONGEST model [41],
in which message sizes are O(log n).

We assume that each vertex has preliminary information including the size
of the network n = |V |, its neighbors, and the maximal degree of the graph Δ.4

Each vertex runs a local algorithm to solve the Max-Cut problem. Along the
algorithm, each vertex decides locally whether it joins S or S̄, and outputs 1 or
0, respectively. We define the solution of the algorithm as the set of all outputs.
Note that individual vertices do not hold the entire solution, but only their local
information. The solution value is defined as the size of the cut induced by the
solution. We show that this value approximates the size of the maximum cut.

3 Clustering-Based Algorithms

In this section we present clustering-based algorithms for Max-Cut and Max-
Dicut. Our technique relies on the observation that Max-Cut is a collection of
4 This assumption is needed only for the (Δ+1)-coloring algorithm [6] used in Sect. 4;

it can be omitted (see [6]), increasing the running time by a constant factor.

Fast Distributed Approximation for Max-Cut 47

edges having their endpoints in different sets; therefore, it can be viewed as the
union of cuts in the disjoint parts of the graph.

Given a graph G = (V,E), we first eliminate a small fraction of edges to
obtain small-diameter connected components. Then, the problem is solved opti-
mally within each connected component. For general graphs, this is done by
gathering the topology of the component at a single vertex. For the special case
of a bipartite graph, we can use the graph structure to propagate less informa-
tion. Since the final solution, consisting of the local decisions of all vertices, is at
least as good as the sum of the optimal solutions in the components, and since
the fraction of eliminated edges is small, we prove that the technique yields a
(1 − ε)-approximation.

3.1 A Randomized Distributed Graph Decomposition

We start by presenting the randomized distributed graph decomposition algo-
rithm. The algorithm is inspired by a parallel graph decomposition by Miller
et al. [34] that we adapt to the distributed.5 The PRAM algorithm of [34] gener-
ates a strong padded partition of a given graph, namely, a partition into connected
components with strong diameter O(log n

β), for some β ≤ 1/2, such that the frac-
tion of edges that cross between different clusters of the partition is at most
β. As we show below, the distributed version guarantees the same properties
with high probability and requires only O(log n

β) communication rounds in the
CONGEST model.

The distributed version of the graph decomposition algorithm proceeds as
follows: Let δv be a random value chosen by vertex v from an exponential dis-
tribution with parameter β. Define the shifted distance from vertex v to vertex
u as distδ(u, v) = dist(u, v) − δu. Along the algorithm, each vertex v finds a
vertex u within its k log n

β -neighborhood that minimizes distδ(u, v), where k is
a constant. We define this vertex as v’s center. This step implies the difference
between the parallel and the distributed decomposition. Indeed, in the paral-
lel algorithm, each vertex chooses its center from the entire ground set V . We
show that our modified process still generates a decomposition with the desired
properties. Furthermore, w.h.p. the distributed algorithm outputs a decomposi-
tion identical to the one created by the parallel algorithm. A pseudocode of the
algorithm is given in Algorithm 1.

We prove that the fraction of edges between different components is small. In
order to do so, we bound the probability of an edge to be between components,
i.e., the probability that the endpoints of the edge choose different centers. We
consider two cases for an edge e = (u, v). In the first case, we assume that both
u and v choose the center that minimizes their shifted distance, distδ, over all
the vertices in the graph. In other words, if the algorithm allowed each vertex
to learn the entire graph, they would choose the same center as they did in our

5 Our algorithm can be viewed as one phase of the distributed algorithm presented by
Elkin et al. in [12] with some necessary changes.

48 K. Censor-Hillel et al.

Algorithm 1. Distributed Decomposition, code for vertex v

1: 0 < β < 1, k > 2.
2: choose δv at random from Exp(β)
3: center = id(v)
4: distδmin = −δv

5: for k log n
β

iterations do
6: send (distδmin , center)

7: for every (dist
′
δmin

, center
′
) received from u ∈ N(v) do

8: if
(
dist

′
δmin

+1 < distδmin

)
OR

(
(dist

′
δmin

+1 = distδmin) AND (center
′
<

center)
)
then

9: center ← center
′

10: distδmin ← dist
′
δmin

+ 1
11: end if
12: end for
13: end for
14: output center

algorithm. In the second case, we assume that at least one of u and v chooses
differently if given a larger neighborhood.

Define the ideal center of a vertex v as argminw∈V distδ(w, v). In the next
lemma, we upper bound the probability that a vertex does not choose its ideal
center.

Lemma 3.1. Let v′ be the ideal center of vertex v, then the probability that
dist(v′, v) > k log n

β , i.e., vertex v does not join its ideal center, is at most 1
nk .

Proof. Since v′ is the ideal center of vertex v, we have that distδ(v′, v) ≤
distδ(v, v). Therefore, dist(v′, v) − δv′ ≤ dist(v, v) − δv = −δv ≤ 0, which
implies that dist(v′, v) ≤ δv′ . That is, the distance between each vertex v to
its ideal center v′ is upper bounded by δv′ , and hence Pr

[
dist(v′, v) > k log n

β

]
≤

Pr
[
δv′ > k log n

β

]
. Using the cumulative exponential distribution, we have that

Pr
[
δv′ > k log n

β

]
= exp

(
−k·β log n

β

)
= exp (−k log n) ≤ 1

nk . ��

Corollary 3.2. The Distributed Decomposition algorithm generates a decom-
position identical to the decomposition generated by the parallel decomposition
algorithm with probability at least 1 − 1

nk−1

Define an exterior edge as an edge connecting different vertex components, and
let F denote the set of exterior edges. Let Au,v denote the event that both u
and v choose their ideal centers.

Lemma 3.3. The probability that an edge e = (u, v) is an exterior edge, given
that u and v choose their ideal centers, is at most β.

The lemma follows directly from [34], where indeed the algorithm assigns to
each vertex its ideal center. We can now bound the probability of any edge to
be an exterior edge.

Fast Distributed Approximation for Max-Cut 49

Lemma 3.4. The probability that an edge e = (u, v) is in F is at most β + 2
nk .

We can now prove the performance guarantees of the Distributed Decomposition
algorithm. Recall that the weak diameter of a set S = {u1, u2, ...ul} is defined
as max(ui,uj)∈S dist(ui, uj).

Theorem 3.5. The Distributed Decomposition algorithm requires O(log n
β) com-

munication rounds in the CONGEST model, and partitions the graph into com-
ponents, such that in expectation there are O(βm) exterior edges. Each of the
components is of weak diameter O(log n

β), and with high probability also of strong
diameter O(log n

β).

Proof. Clearly, as each vertex chooses a center from its k log n
β -neighborhood, the

distance between two vertices that choose the same center, i.e., belong to the
same component, over the graph G, is at most O(log n

β). Therefore, the weak
diameter of every component is at most O(log n

β). By Corollary 3.2, with prob-
ability at least 1 − 1

nk−1 , the algorithm outputs a partition identical to the one
output by the parallel algorithm, and therefore with the same properties, which
implies that the strong diameter of every component is at most O(log n

β) as well.
Using the linearity of expectation and Lemma 3.4, we have that E [|F |] ≤∑

e∈E

(
β + 2

nk

)
= βm + 2m

nk . Since m ≤ n2, for any k > 2, E [|F |] ≤ O(βm).
Finally, as can be seen from the code, the algorithm requires O(log n

β) communi-
cation rounds. ��

3.2 A Randomized (1 − ε)-Approximation Algorithm for Max-Cut
on a Bipartite Graph

Clearly, in a bipartite graph, the maximum cut contains all of the edges. Such a
cut can be found by selecting arbitrarily a root vertex, and then simply putting
all the vertices of odd depth in one set and all the vertices of even depth in
the complementary set. However, this would require a large computational time
in our model, that depends on the diameter of the graph. We overcome this
by using the above decomposition, and finding an optimal solution within each
connected component. In each component C, we find an optimal solution in
O(Dc) communication rounds, where Dc is the diameter of C. First, the vertices
in each component search for the vertex with the lowest id.6 Then, the vertex
with the lowest id joins S or S̄ with equal probability and sends its decision to
its neighbors. When a vertex receives a message from one of its neighbors, it
joins the opposite set, outputs its decision, and sends it to its neighbors. Since
finding the optimal solution within each component does not require learning
the entire component topology, the algorithm is applicable in the more restricted
6 This can be done by running a BFS in parallel from all vertices. Each vertex propa-

gates the information from the root with lowest id it knows so far, and joins its tree.
Thus, at the end of the process, we have a BFS tree rooted at the vertex with the
lowest id.

50 K. Censor-Hillel et al.

CONGEST model. The algorithm yields a (1 − ε)-approximation for the Max-
Cut problem on a bipartite graph in O(log n

ε) communication rounds with high
probability.

Theorem 3.6. Bipartite Max-Cut is a randomized (1 − ε)-approximation for
Max-Cut, requiring O(log n

ε) communication rounds in the CONGEST model
w.h.p.

Algorithm 2. Bipartite Max-Cut
1: G=(V,E)
2: apply Distributed Decomposition to G, with β = ε, k > 2
3: for each component C obtained by the decomposition do
4: build a BFS tree from the vertex v with the lowest id
5: assign v to S or S̄ with equal probability, assign the rest of the vertices to

alternating sides
6: end for

3.3 A Randomized (1 − ε)-Approximation Algorithm for General
Graphs

We present below a (1 − ε)-approximation algorithm for Max-Cut in general
graphs, using O(log n

ε) communication rounds. As before, the algorithm consists
of a decomposition phase and a solution phase. While the decomposition phase
works in the CONGEST model, the algorithm suits for the LOCAL model,
since for general graphs, the generated components are not necessarily sparse,
and learning the components topology is expensive in the CONGEST model.

Algorithm 3. Decomposition-Based Max-Cut
1: G=(V,E)
2: apply Distributed Decomposition on G, with β = ε/2, k > 2
3: for each component C obtained by the decomposition do
4: gather the component topology at the vertex v ∈ C with the lowest id.
5: let v find an optimal solution and determine the value output by the compo-

nent’s vertices.
6: end for

Theorem 3.7. Decomposition-Based Max-Cut is a randomized (1 − ε)-
approximation for Max-Cut, requiring O(log n

ε) communication rounds in the
LOCAL model.

Proof. Let OPT (G) be the set of edges that belong to some maximum cut in G,
and let ALG(G) be the set of edges in the cut obtained by Decomposition-Based
Max-Cut. Let Su be the component induced by the vertices which choose u as

Fast Distributed Approximation for Max-Cut 51

their center, and denote by S the set of components that algorithm Distributed
Decomposition constructs. Then E [|ALG(G)|] ≥ E

[∑
Su∈S |OPT (Su)|

]
≥

|OPT (G)|−βm ≥ |OPT (G)|−2β|OPT (G)| = (1−ε)|OPT (G)|. The last inequal-
ity follows from the fact that for every graph G it holds that |OPT (G)| ≥ m

2 .
The graph decomposition requires O(log n

ε) communication rounds, and out-
puts components with weak diameter at most O(log n

ε). Therefore, finding the
optimal solution within each component takes O(log n

ε) as well. The time bound
follows. ��

By taking β = ε/4, one can now obtain a (1 − ε)-approximation algorithm
for Max-Dicut. The difference comes from the fact that for Max-Dicut it holds
that |OPT (G)| ≥ m

4 for every graph G. The rest of the analysis is similar to the
analysis for Max-Cut. Hence, we have

Theorem 3.8. Decomposition-Based Max-Dicut is a randomized (1 − ε)-
approximation for Max-Dicut, requiring O(log n

ε) communication rounds in the
LOCAL model.

4 Coloring-Based Algorithms

Many of the sequential approximation algorithms for Max-Cut perform n iter-
ations. Each vertex, in its turn, makes a greedy decision so as to maximize
the solution value. We present distributed greedy algorithms that achieve the
approximation ratios of the sequential algorithms much faster. We first prove
that the greedy decisions of vertices can be done locally, depending only on their
immediate neighbors. Then we show how to parallelize the decision process, such
that in each iteration an independent set of vertices completes. The independent
sets are generated using (Δ+1)-coloring; then, for (Δ+1) iterations, all vertices
of the relevant color make their parallel independent decisions. All algorithms
run in the CONGEST model (see [8]).

5 A Deterministic LOCAL Algorithm

Our coloring-based algorithms may become inefficient for high degree graphs,
due to the strong dependence on Δ. Consider a clique in this model. The above
algorithms require a linear number of communication rounds, while learning the
entire graph and finding an optimal solution requires only O(1) communication
rounds in the LOCAL model. Indeed, there is a tradeoff between the graph
diameter and the average degree of its vertices. Based on this tradeoff, we propose
a faster, two-step, deterministic algorithm for Max-Cut that requires min{Õ(Δ+
log∗ n), O(

√
n)} communication rounds in the LOCAL model. The pseudocode

is given in Algorithm 4.
We call a vertex v a low-degree vertex, if deg(v) <

√
n, and a high-degree

vertex, if deg(v) ≥ √
n. Define Glow, and Ghigh as the graphs induced by the

52 K. Censor-Hillel et al.

low-degree vertices and the high-degree vertices, respectively. The idea is to solve
the problem separately for Glow and for Ghigh.

In the first step, the algorithm deletes every high-degree vertex, if there are
any, and its adjacent edges, creating Glow. The deletion means that the low-
degree vertices ignore the edges that connect them to high-degree vertices and
do not communicate over them. Then, the algorithm approximates the Max-Cut
on Glow, using one of the coloring-based algorithms described in Sect. 4.

In the second step, the problem is solved optimally within each connected
component in Ghigh. However, the high-degree vertices are allowed to commu-
nicate over edges which are not in Ghigh. As we prove next, the distance in the
original graph G between any two vertices which are connected in Ghigh is upper
bounded by O(

√
n). Hence, the number of rounds needed for this part of the

algorithm is O(
√

n).

Algorithm 4. Fast Distributed Greedy Max-Cut
1: run Distributed Greedy Max-Cut on Glow

2: for each connected component in Ghigh do
3: learn the component topology in G, including all its adjacent edges
4: let the vertex with the lowest id find an optimal solution, and determine the

output for each vertex in its component
5: end for
6: output the vertices decisions

Lemma 5.1. Assume u, v are connected in Ghigh, then the distance between u
and v in the original graph G is at most 3

√
n.

Theorem 5.2. Fast Distributed Greedy Max-Cut yields a 1
2 -approximation to

Max-Cut, using min{Õ(Δ + log∗ n), O(
√

n)} communication rounds in the
LOCAL model.

Proof. We first prove the approximation ratio. Since Distributed Greedy Max-
Cut is applied on Glow, at least half of the edges of Glow are in the cut. Given
the decisions of vertices in Glow, the algorithm finds an optimal solution for all
vertices in Ghigh. Note that running Distributed Greedy Max-Cut on the high-
degree vertices of G, would give at least half of the remaining edges. This is due
to the fact that the algorithm makes sequential greedy decisions. Therefore, an
optimal solution for the high-degree vertices guarantees at least half of the edges
in G \ Glow, implying the approximation ratio.

Applying Distributed Greedy Max-Cut on Glow requires Õ(Δlow + log∗ n)
communication rounds, where Δlow = min{Δ,

√
n}. Using Lemma 5.1 we have

that each high degree vertex can communicate with every high-degree vertex
connected to it in Ghigh, using at most O(

√
n) communication rounds. Hence,

Steps 2. − 4. of the algorithm take O(
√

n) communication rounds. We note that

Fast Distributed Approximation for Max-Cut 53

when Δ <
√

n, the algorithm terminates after the first step. Thus, the algorithm
requires min{Õ(Δ + log∗ n), O(

√
n)} communication rounds. ��

Using the above technique, we obtain a fast, deterministic algorithm for the
Max-Dicut problem, by replacing the call to Distributed Greedy Max-Cut in
Step 1 with a call to Distributed Greedy Max-Dicut. Using the same arguments
as in the analysis for the Max-Cut algorithm, we have:

Theorem 5.3. Fast Distributed Greedy Max-Dicut yields a 1
3 -approximation to

Max-Dicut, using min{Õ(Δ + log∗ n), O(
√

n)} communication rounds in the
LOCAL model.

Acknowledgements. We thank Roy Schwartz and Shay Kutten for stimulating dis-
cussions and for helpful comments on the paper.

References

1. Åstrand, M., Floréen, P., Polishchuk, V., Rybicki, J., Suomela, J., Uitto, J.: A local
2-approximation algorithm for the vertex cover problem. In: Keidar, I. (ed.) DISC
2009. LNCS, vol. 5805, pp. 191–205. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-04355-0 21

2. Åstrand, M., Suomela, J.: Fast distributed approximation algorithms for vertex
cover and set cover in anonymous networks. In: Proceedings of the Twenty-Second
Annual ACM Symposium on Parallelism in Algorithms and Architectures, pp.
294–302. ACM (2010)

3. Bar-Yehuda, R., Censor-Hillel, K., Schwartzman, G.: A distributed (2+ε)-
approximation for vertex cover in O(logΔ/ε log log Δ) rounds. In: Proceedings
of the 2016 ACM Symposium on Principles of Distributed Computing, PODC
2016, Chicago, IL, USA, 25–28 July 2016, pp. 3–8 (2016)

4. Barahona, F., Grötschel, M., Jünger, M., Reinelt, G.: An application of combi-
natorial optimization to statistical physics and circuit layout design. Oper. Res.
36(3), 493–513 (1988)

5. da Ponte Barbosa, R., Ene, A., Nguyen, H.L., Ward, J.: A new framework for
distributed submodular maximization. arXiv preprint http://arxiv.org/abs/1507.
03719 (2015)

6. Barenboim, L.: Deterministic (δ+ 1)-coloring in sublinear (in δ) time in static,
dynamic and faulty networks. In: Proceedings of the 2015 ACM Symposium on
Principles of Distributed Computing, pp. 345–354. ACM (2015)

7. Buchbinder, N., Feldman, M., Naor, J., Schwartz, R.: A tight linear time (1/2)-
approximation for unconstrained submodular maximization. SIAM J. Comput.
44(5), 1384–1402 (2015)

8. Censor-Hillel, K., Levy, R., Shachnai, H.: Fast distributed approximation for max-
cut. arXiv preprint http://arxiv.org/abs/1707.08496 (2017)

9. Chang, K., Du, D.C.: Efficient algorithms for layer assignment problem. IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst. 6(1), 67–78 (1987)

10. Chin, K.W., Soh, S., Meng, C.: Novel scheduling algorithms for concurrent trans-
mit/receive wireless mesh networks. Comput. Netw. 56(4), 1200–1214 (2012)

https://doi.org/10.1007/978-3-642-04355-0_21
https://doi.org/10.1007/978-3-642-04355-0_21
http://arxiv.org/abs/1507.03719
http://arxiv.org/abs/1507.03719
http://arxiv.org/abs/1707.08496

54 K. Censor-Hillel et al.

11. Elkin, M.: Distributed approximation: a survey. ACM SIGACT News 35(4), 40–57
(2004)

12. Elkin, M., Neiman, O.: Distributed strong diameter network decomposition. In:
Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing,
pp. 211–216. ACM (2016)

13. Elkin, M., Neiman, O.: Efficient algorithms for constructing very sparse spanners
and emulators. In: Proceedings of the Twenty-Eighth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira,
16–19 January, pp. 652–669 (2017)

14. Feige, U., Mirrokni, V.S., Vondrák, J.: Maximizing non-monotone submodular
functions. SIAM J. Comput. 40(4), 1133–1153 (2011)

15. Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified NP-complete graph
problems. Theoret. Comput. Sci. 1(3), 237–267 (1976)

16. Ghaffari, M., Kuhn, F.: Distributed minimum cut approximation. In: Afek, Y. (ed.)
DISC 2013. LNCS, vol. 8205, pp. 1–15. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-41527-2 1

17. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for max-
imum cut and satisfiability problems using semidefinite programming. J. ACM
42(6), 1115–1145 (1995)

18. Grötschel, M., Pulleyblank, W.R.: Weakly bipartite graphs and the max-cut prob-
lem. Oper. Res. Lett. 1(1), 23–27 (1981)

19. Hadlock, F.: Finding a maximum cut of a planar graph in polynomial time. SIAM
J. Comput. 4(3), 221–225 (1975)

20. H̊astad, J.: Some optimal inapproximability results. J. ACM (JACM) 48(4), 798–
859 (2001)

21. Henzinger, M., Krinninger, S., Nanongkai, D.: A deterministic almost-tight dis-
tributed algorithm for approximating single-source shortest paths. In: Proceedings
of the 48th Annual ACM SIGACT Symposium on Theory of Computing, pp. 489–
498. ACM (2016)

22. Hirvonen, J., Rybicki, J., Schmid, S., Suomela, J.: Large cuts with local algorithms
on triangle-free graphs. arXiv preprint arXiv:1402.2543 (2014)

23. Kale, S., Seshadhri, C.: Combinatorial approximation algorithms for maxcut using
random walks. arXiv preprint arXiv:1008.3938 (2010)

24. Kapralov, M., Khanna, S., Sudan, M.: Streaming lower bounds for approximating
max-cut. In: Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on
Discrete Algorithms, pp. 1263–1282. SIAM (2015)

25. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations, pp.
85–103. Springer, Heidelberg (1972). https://doi.org/10.1007/978-1-4684-2001-2 9

26. Khot, S., Kindler, G., Mossel, E., O’Donnell, R.: Optimal inapproximability results
for max-cut and other 2-variable CSPs? SIAM J. Comput. 37(1), 319–357 (2007)

27. Komurlu, C., Bilgic, M.: Active inference and dynamic Gaussian Bayesian networks
for battery optimization in wireless sensor networks. In: AI for Smart Grids and
Smart Buildings, Papers from the 2016 AAAI Workshop, Phoenix, Arizona, USA
(2016)

28. Kuhn, F., Moscibroda, T.: Distributed approximation of capacitated dominating
sets. Theory Comput. Syst. 47(4), 811–836 (2010)

29. Kuhn, F., Moscibroda, T., Wattenhofer, R.: Local computation: lower and upper
bounds. J. ACM (JACM) 63(2), 17 (2016)

https://doi.org/10.1007/978-3-642-41527-2_1
https://doi.org/10.1007/978-3-642-41527-2_1
http://arxiv.org/abs/1402.2543
http://arxiv.org/abs/1008.3938
https://doi.org/10.1007/978-1-4684-2001-2_9

Fast Distributed Approximation for Max-Cut 55

30. Lenzen, C., Pignolet, Y.A., Wattenhofer, R.: Distributed minimum dominating set
approximations in restricted families of graphs. Distrib. Comput. 26(2), 119–137
(2013)

31. Linial, N.: Locality in distributed graph algorithms. SIAM J. Comput. 21(1), 193–
201 (1992)

32. Lotker, Z., Patt-Shamir, B., Pettie, S.: Improved distributed approximate match-
ing. In: Proceedings of the Twentieth Annual Symposium on Parallelism in Algo-
rithms and Architectures, pp. 129–136. ACM (2008)

33. Matuura, S., Matsui, T.: 0.863-approximation algorithm for MAX DICUT. In:
Goemans, M., Jansen, K., Rolim, J.D.P., Trevisan, L. (eds.) APPROX/RANDOM
-2001. LNCS, vol. 2129, pp. 138–146. Springer, Heidelberg (2001). https://doi.org/
10.1007/3-540-44666-4 17

34. Miller, G.L., Peng, R., Xu, S.C.: Parallel graph decompositions using random shifts.
In: Proceedings of the Twenty-Fifth Annual ACM Symposium on Parallelism in
Algorithms and Architectures, pp. 196–203. ACM (2013)

35. Mirrokni, V., Zadimoghaddam, M.: Randomized composable core-sets for dis-
tributed submodular maximization. In: Proceedings of the Forty-Seventh Annual
ACM on Symposium on Theory of Computing, pp. 153–162. ACM (2015)

36. Mirzasoleiman, B., Karbasi, A., Sarkar, R., Krause, A.: Distributed submodular
maximization: identifying representative elements in massive data. In: Advances
in Neural Information Processing Systems, pp. 2049–2057 (2013)

37. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press, Cambridge (2005)

38. Motwani, R., Raghavan, P.: Randomized Algorithms. Chapman & Hall/CRC,
London (2010)

39. Nanongkai, D.: Distributed approximation algorithms for weighted shortest paths.
In: Proceedings of the 46th Annual ACM Symposium on Theory of Computing,
pp. 565–573. ACM (2014)

40. Papadimitriou, C., Yannakakis, M.: Optimization, approximation, and complexity
classes. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of
Computing, pp. 229–234. ACM (1988)

41. Peleg, D.: Distributed Computing. SIAM Monographs on Discrete Mathematics
and Applications, vol. 5 (2000)

42. Sahni, S., Gonzalez, T.: P-complete approximation problems. J. ACM (JACM)
23(3), 555–565 (1976)

43. Saurabh, S., Zehavi, M.: (k, n − k)-Max-Cut: an O∗(2p)-time algorithm and a
polynomial kernel. In: Kranakis, E., Navarro, G., Chávez, E. (eds.) LATIN 2016.
LNCS, vol. 9644, pp. 686–699. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-49529-2 51

44. Tangwongsan, K.: Efficient parallel approximation algorithms. Ph.D. thesis, School
of Computer Science, Carnegie Mellon University (2011)

45. Trevisan, L.: Max cut and the smallest eigenvalue. SIAM J. Comput. 41(6), 1769–
1786 (2012)

46. Trevisan, L., Sorkin, G.B., Sudan, M., Williamson, D.P.: Gadgets, approximation,
and linear programming. SIAM J. Comput. 29(6), 2074–2097 (2000)

47. Wang, J., Jebara, T., Chang, S.F.: Semi-supervised learning using greedy max-cut.
J. Mach. Learn. Res. 14(Mar), 771–800 (2013)

48. Wang, L., Chin, K., Soh, S.: Joint routing and scheduling in multi-Tx/Rx wireless
mesh networks with random demands. Comput. Netw. 98, 44–56 (2016)

https://doi.org/10.1007/3-540-44666-4_17
https://doi.org/10.1007/3-540-44666-4_17
https://doi.org/10.1007/978-3-662-49529-2_51
https://doi.org/10.1007/978-3-662-49529-2_51

56 K. Censor-Hillel et al.

49. Wang, W., Liu, B., Yang, M., Luo, J., Shen, X.: Max-cut based overlapping channel
assignment for 802.11 multi-radio wireless mesh networks. In: 2013 IEEE 17th
International Conference on Computer Supported Cooperative Work in Design
(CSCWD), pp. 662–667 (2013)

50. Xu, Y., Chin, K., Raad, R., Soh, S.: A novel distributed max-weight link sched-
uler for multi-transmit/receive wireless mesh networks. IEEE Trans. Veh. Technol.
65(11), 9345–9357 (2016)

51. Xue, G., He, Q., Zhu, H., He, T., Liu, Y.: Sociality-aware access point selection in
enterprise wireless LANs. IEEE Trans. Parallel Distrib. Syst. 24(10), 2069–2078
(2013)

	Fast Distributed Approximation for Max-Cut
	1 Introduction
	1.1 The Challenge
	1.2 Our Contribution
	1.3 Background and Related Work

	2 Preliminaries
	3 Clustering-Based Algorithms
	3.1 A Randomized Distributed Graph Decomposition
	3.2 A Randomized (1-)-Approximation Algorithm for Max-Cut on a Bipartite Graph
	3.3 A Randomized (1-)-Approximation Algorithm for General Graphs

	4 Coloring-Based Algorithms
	5 A Deterministic LOCAL Algorithm
	References

