
Chapter 30
Improvement of Hedging Effect Based
on the Average Hedging Ratio

Yang Liu and Chuan-he Shen

Abstract This paper is aimed at exploring the improvement of hedging effect based
on the theory of portfolio hedging, with multiple groups of CSI300 stock index
futures and spot sample data as the analysis object. The minimum variance method is
employed to estimate the optimal hedging ratio under the OLS and GARCH hedging
models and calculate the average of the hedge ratios. By comparing the hedging
effects of the constructed portfolio outside of samples based on different hedging
ratios, the empirical analysis displays that the hedging effect of the average hedge
ratio was superior to the hedging effect of the estimated hedge ratio of most
individual historical samples. Therefore, the methodology supposed is deeply
improved by considering the average value of the hedging ratio in order to optimize
the optimal hedging ratio.

Keywords The average hedging ratios · Hedging effect · Minimum variance
method · OLS · GARCH model

30.1 Introduction

The application of financial derivative stock index futures in capital market is more
and more extensive, mainly because of its hedging function in the solution of
systemic risk has a superiority [1]. By combing the development of hedging theory,
we found that the researchers have conducted a thorough and comprehensive study
of the optimal hedging model and the effectiveness of hedging. The research theory
has had a profound impact. Ederington [2] (1979) used the General Least Squares
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Estimator (OLS) to do the hedging of the US Treasury futures market and found that
the hedging ratio was less than 1. He also raised the degree of reduction in the
variance of the yield before and after hedging as a criterion for hedging. Engle [3]
(1982) proposed an autoregressive Heteroscedastic Model (ARCH) and a general-
ized autoregressive Heteroscedastic Model (GARCH). And compared with the
traditional valuation model, he found that GARCH model is more suitable for
stock index futures hedge rate estimates. Holmes [4] (1996) conducted a study on
the effectiveness of stock index futures contracts after hedging operations, and the
results show that the risk of hedging portfolio without hedging is far greater than the
hedging effect of the optimal hedging rate derived from the regression of OLS
model. Wu Xianzhi [5] (2008) employed the hedging model to estimate the hedging
ratio within a sample data, and on the basis of which the effectiveness of hedging is
checked. However, this static analysis method is defective, mainly due to the
existence of time-varying and dynamic characteristics of the impact index and the
fluctuation of the stock index. In view of the multi-sample and dynamic hedging
ratio, Zhang Hua et al. [6] (2014) proposed the method of estimating the dynamic
hedging rate of grain futures based on GARCHmodel. The results show that both the
data in the sample and the data outside the sample are better than the static estimation
method in the dynamic estimation.

Follow the development of this theory, we assume that the joint distribution of the
spot market and the futures market is fixed, thus taking into account the typical OLS
model of static analysis. Simultaneously, the impact of new information on the
market and expected changes will change the joint distribution of futures and spot
markets. Then the time-dependent GARCH model can capture the dynamic charac-
teristics of futures and spot market more accurately [7]. Therefore, this paper
introduces OLS and GARCH hedging model. First of all, we lies in the selection
of the longest futures and spot sample data from the last 4 years CSI 300 stock index
futures contract as the analysis object, and a total of four sets of sample data were
obtained. Next, we estimate the hedge ratio in the OLS and GARCH models and
calculate the average of the hedge ratios. Then we compare the hedging ratio
between the average of the hedge ratio and the hedging ratio of the single sample
on the basis of the hedging portfolio outside the construction sample. The purpose is
to avoid the problem that the hedging rate caused by the single sample is not
significant in the actual hedging operation. Finally, the paper summarizes the full
text and analyzes the future research direction.

30.2 Hedging Ratio Determination andModel Construction

30.2.1 Optimal Hedging Ratio Determination

The hedge ratio based on the minimum variance is the hedging ratio that the
volatility minimizes of the constructed hedging portfolio by hedging tools [8].The
investor adopts a long or short hedging strategy, where the price of the hedged asset
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portfolio changes toΔS� hΔF or hΔF�ΔS. No matter whether the investor adopts
long hedging strategy or short hedging strategy, the variance of the hedging portfolio
price is:

σ2 ¼ σ2s � 2hρσsσf þ h2σ2f ð30:1Þ

In (30.1) formula, σs
2 is the variance of spot asset price variation △S, σF

2 is the
variance of futures asset price variation △F. Simultaneously, σsf is the covariance of
ΔS and ΔF, ρ is the correlation coefficients of ΔS and ΔF. According to the
minimum variance of the hedging ratio connotation, we make dσ2

dh ¼ 0 to get the
hedging ratio of the minimum variance of portfolio return volatility. Therefore,
optimal hedge ratio is:

h ¼ ρ
σS
σF

ð30:2Þ

Therefore, the key of estimate the hedging ratio is using the hedging model to
estimate h.

30.2.2 Hedging Model Construction and Effect Evaluation

30.2.2.1 Hedging Model Construction

1. OLS Hedging model Construction

When estimating the optimal hedging ratio based on the spot and Futures Portfolio,
the general practice is to minimize the variance of the portfolio volatility (risk) of the
spot and futures assets [9]. We assume that there is a linear relationship between the
price of the goods and the price of the futures asset, and a linear function is
introduced. Then, this paper construct the bivariate linear regression model:

ln
Stþ1

St

� �
¼ αþ β ln

Ftþ1

Ft

� �
þ μt ð30:3Þ

In (30.3) formula, ln Stþ1
St

� �
is the daily logarithmic yield of spot index stock at t time,

ln Ftþ1
Ft

� �
is the daily logarithmic yield of t time stock index futures. Simultaneously,

α is the intercept of the equation, μt is the disturbance term, and β is slope of the
equation (that is, the optimal hedge ratio under the OLS model).

2. GARCH Hedging model Construction

The implicit condition of the OLS model is that the variance of the random error
is constant, but the actual financial time series mostly has heteroscedasticity. There-
fore, the autoregressive conditional heteroscedasticity model is used to solve
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heteroscedasticity problems and to capture more time series financial information.
Then, the generalized autoregressive conditional heteroscedasticity model is derived
on the basis of the ARCH model. In addition, the GARCH model is not only related
to the squared u2t � q of the random error in the previous Q period, but also related to
the variance σ2t � p of the random error in the previous P period [10]. Therefore, the
GARCH (p, q) model of under the daily logarithmic yield sample data of the CSI300
stock index futures and spot is:

ln
Stþ1

St

� �
¼ C þ β ln

Ftþ1

Ft

� �
þ εt

σ2t ¼ α0 þ
Xq
i¼1

αiu
2
t�i þ

Xp
j¼1

γjσ
2
t�j

8>>><
>>>:

ð30:4Þ

In the (30.4) formula, εt is a random error and obeys the GARCH (p, q) process,

ln Stþ1
St

� �
is the daily logarithmic yield of spot index stock at t time, and ln Ftþ1

Ft

� �
is the

daily logarithmic yield of at time stock index futures. In addition,σ2t is the variance of
the random error, ε2t�j is the square lag term of the lag J period residual, and σ2t�i is the
variance lag term of the lag I period residual.

Here consider the leverage effect is to solve the future multi-step forecast when
the volatility is negative situation, and the asymmetric effect of market information is
reflected in the EGARCH model [11]. Therefore, a common EGARCH (1,1) model
is established here:

ln
Stþ1

St

� �
¼ C þ β∗ln

Ftþ1

Ft

� �
þ εt

lnðσ2t Þ ¼ ωþ α

�����
ut�1

σt�1

�����þ γ
ut�1

σt�1
þ λlnσ2t�1

8>>><
>>>:

ð30:5Þ

EGARCH model of leverage effect can be judged by γ is not equal to 0. When
ut � 1 > 0 represents the presence of good information can bring α + γ times the
impact; and ut � 1 < 0 on behalf of the negative information can bring α� γ times the
impact [12]. So, β is the optimal hedging ratio for GARCH and EGARCH models.

30.2.2.2 Evaluation Criteria for Hedging Effect

The most common way to measure the hedging effect under different models is to
examine the increase or decrease of the variance of the portfolio return before and
after the hedging operation [13]. The formula for calculating the yield of our stock
portfolio without risk avoidance is as follows:

Var Xtð Þ ¼ Var ln
St
St�1

� �� �
¼ Var ln St- ln St�1ð Þ ¼ σ2x ð30:6Þ
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In the (30.6) formula, Xt and σx
2 represent the variance of the daily logarithmic yield

of stock index spot and the daily logarithmic yield. The variance of the yield of the
portfolio after hedging operations is:

Var Πð Þ ¼ Var ln
St
St-1

� �� �
þ h2Var ln

Ft

Ft-1

� �� �

� 2hCov ln
St
St-1

� �
; ln

Ft

Ft-1

� �� �

¼ σ2Π ð30:7Þ
In the (30.7) formula, Π stands for the constructed hedging portfolio, the σ2Π hedging
portfolio’s yield variance, and the h as the hedging ratio. The measure of the
minimum variance hedging effect is the percentage reduction in the risk of the return
on the portfolio after the hedging rate relative to the non-hedged spot rate of return
[14]. In combination with (30.6) and (30.7), the measure of hedging effectiveness is:

e∗ ¼
σ2x-σ

2Q
σ2x

¼
2hCov ln St

St-1

� �
; ln Ft

Ft-1

� �h i
� h2Var ln Ft

Ft-1

� �h i

Var ln St
St�1

� �h i ð30:8Þ

In the formula, e∗ represents the proportion of the risk of the hedging portfolio to the
original risk. The greater the e∗, the better the effect of the hedging [15].

30.3 Empirical Analysis

30.3.1 Sample Data Selection and Processing

30.3.1.1 CSI 300 Stock Index Sample Data Selection

This paper lies in the selection of the longest futures and spot sample data from the
last 4 years CSI 300 stock index futures contract as the analysis object, and a total of
four sets of sample data were obtained. The contract varieties are IF1412, IF1512,
IF1612 and IF1703. Moreover, a set of spot price sequences corresponding to the
futures price series is generated. Through the CSI 300 stock index futures trading
chart and the correlation coefficient of 0.95566, we can get a high consistency
between the daily logarithmic price of CSI300 stock index futures and the daily
logarithmic price of the spot, so it will avoid the basis risk to a certain extent.

30 Improvement of Hedging Effect Based on the Average Hedging Ratio 277



30.3.1.2 Descriptive Statistics Analysis of Sample Data

This paper uses Eviews software to make a descriptive statistical analysis of the daily
logarithmic yield of the CSI 300 stock index futures(See Figs. 30.1 and 30.2). As can
be seen from the figure, first of all, the average daily yield of CSI300 stock index
futures and spot contracts is �0.000182 and �0.000173, the results are less than
0 and fluctuate around 0. Secondly, the standard deviations are 0.015195 and
0.018430, indicating that both fluctuations are not large, that is, the degree of
dispersion is relatively stable. Then, the P value of the J-B statistic is close to
0, indicating that the daily return of the spot is rejected to the normal distribution.
At last, by the kurtosis 8.468, 10.904 and skewness�0.706,�0.313, we can see that
the daily logarithmic yield of CSI300 stock index futures contracts and share index
spot follows the left skewed spike tail distribution.

Fig. 30.1 Descriptive statistics of stock index spot

Fig. 30.2 Descriptive statistics of stock index futures

278 Y. Liu and C. -h. Shen



30.3.1.3 Processing and Checking of Sample Data

In order to avoid the phenomenon of pseudo regression, this paper uses Eviews
software to do the unit root test for the sample data of CSI 300 stock index futures
and spot stock. CSI 300 stock index futures and spot daily closing price logarithm
sequence and first-order difference sequence ADF test results shown in Table 30.1.

Table 30.1 shows the original data by ADF test P value in the range of
0.0488–0.9894 and more than 0.01 significant level under, so accept the null hypoth-
esis, that is, indicating that these contracts data is not stationary. In addition, the
P values of the ADF tests for first difference sequences are all 0 and are less than the
significant level of 0.05 and 0.01, that is, rejecting the original hypothesis. Therefore,
the two column data are a stationary sequence and are the first order single integral
sequence, that is, ln(St)~I(1) and ln(F)~I(1). This paper selected the sample data for
cointegration test and Granger causality test (See Figs. 30.3 and 30.4).

As can be seen from Fig. 30.3, the P value of the T statistic is 0 in the
cointegration test and less than the significant level of 0.05. Therefore, the original
hypothesis is rejected and there is a long-term equilibrium relation between the two
variables. According to Fig. 30.4, “spot is not the cause of futures,” the hypothesis
that the P value of the F statistic is 0.2843 and it is greater than 0.05 of the
significance level, that is, inspection passed. However, “futures do not cause spot”,
the hypothesis that the P value of the assumed F statistic is 0.0261 and less than the
significant level of 0.05, that is, the test does not pass. To sum up, the CSI 300 stock
index futures is “because”, the spot is “fruit”.

30.3.2 Hedging Ratios Analysis

30.3.2.1 OLS Model Empirical Analysis

This paper use the OLS model to do empirical analysis and find that the P value of
the T statistic of the constant term in the partial sample fitting is greater than 0.05,
that is, accepting the original hypothesis shows that the constant term is not
significant. Therefore, the regression of the OLS model does not include the constant
term. Then the regression results of OLS model were tested by residual difference
test and autocorrelation test, and found that there was no heteroskedasticity in the
regression results of all samples. However, we found that the regression results of
some samples had residual first-order autocorrelation. Therefore, we use the
Cochrane Orcutt method to eliminate the original model of the first-order autocor-
relation [16]. Finally, we do a residual autocorrelation test on the adjusted fitting
results and found that there is no autocorrelation, as shown in Table 30.2 below.

From Table 30.2, The P values of the T statistics of the 4 sets of samples under the
OLS model are 0, and R2 are close to 1, which shows that the OLS model fits well.
The P values of the White test and the LM test were greater than the significant level
of 0.05, and indicating that there was no residual heteroscedasticity and
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autocorrelation in the fitting results. Therefore, the β value is the optimal hedging
ratio and calculate the average hedge ratio under the OSL model is 0.7532.

30.3.2.2 Empirical Analysis Based on GARCH Model

According to the requirements of the GARCHmodel, the ARCH effect of the sample
data is checked and the independent Q test is used to determine the lag order.
Moreover, a common GARCH (1,1) GARCH (1,2) GARCH (2,1) GARCH (2,2)
model is established here. We selected the appropriate model by comparing the
fitting degree, coefficient significance, AIC and SC criteria, and found that the
IF1612 and IF1703 sample data did not meet the GARCH modeling requirements.
Therefore, the EGARCH model is established and then the ARCH LM test of the
fitting results ensures that there is no autocorrelation of the fitting residuals.

Fig. 30.3 Cointegration test results

Fig. 30.4 Granger causality test results

Table. 30.2 Empirical analysis results and their tests based on OLS model

Contract variety

OLS model fitting regression results

White test LM testβ p value R2 SC AIC

IF1412 0.88 0.00 0.90 �8.33 �8.36 0.65 0.15

IF1512 0.63 0.00 0.75 �5.67 �5.69 0.33 0.14

IF1612 0.76 0.00 0.92 �9.09 �9.07 0.10 0.53

IF1703 0.75 0.00 0.88 �9.15 �9.17 0.16 0.53
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According to the sample data, the GARCH and EGARCH models are established,
and the fitting results are shown in Tables 30.3 and 30.4.

As can be seen from Table 30.3, the P values of the ARCH effect tests for the
contract IF1412 and the IF1512 samples are less than the significant level of 0.05 and
indicates the existence of ARCH effect. Here, according to the nature of the
coefficient significance test and the sum of the variance equation coefficients of
the GARCH model is less than 1 and the coefficient is greater than 0, the GARCH
(1,1) model (the mean equation does not include the constant term) is established. In
the fitting result, the P value of coefficient significance is 0 and shows that the
coefficient is remarkable. Moreover, the sum of coefficients of the variance equation
is less than 1 and the R2 is close to 1, which shows that the model fitting is better. In
this paper, the residual value of GARCH (1,1) model to do ARCH LM test and we
found that the P values of the F statistics are greater than the significant level of 0.05,
that is, there is no autocorrelation of the residuals. Therefore, the β value can be the
optimal hedging ratio.

As can be seen from Table 30.4, the P values of the ARCH effect tests for the
contract IF1612 and the IF1703 samples are less than the significant level of 0.05 and
indicates the existence of ARCH effect. Since the variance equation coefficient is
negative and the GARCH model can not be established. Therefore, the EGARCH
(1,1) model is established and the P value of the coefficient T statistic is 0, and
indicating that the coefficient is significant. The values of AIC and SC are relatively
small and R2 is close to 1, which shows that the model fits well. Finally, the residual
of the EGARCH model is tested by ARCH LM and the P value of the F statistic is
greater than 0.05, which indicates that the original assumption is accepted, that is,
there is no autocorrelation. Therefore, the β value is the optimal hedging ratio and
calculate the average hedge ratio under the GARCH model is 0.838.

Table. 30.3 Fitting regression results based on GARCH model

Contract
variety

ARCH
test
(P value)

Independent
Q test(lag
order) β

T
statistic
(P value) R2

Sum of
coefficient of
variance
equations

Residual
ARCH
LM test

IF1412 0.00 1 order lag 0.89 0.00 0.89 0.98 0.67

IF1512 0.00 2 order lag 0.81 0.00 0.69 0.94 0.58

Table. 30.4 Fitting regression results based on EGARCH model

Contract
variety

ARCH
test
(P value)

IndependentQ
test(lag order) β

T
statistic
(P value) AIC SC R2

Residual
ARCH
LM test

IF1612 0.01 2 order lag 0.80 0.00 �9.20 �9.20 0.91 0.61

IF1703 0.00 2 order lag 0.85 0.00 �9.23 �9.10 0.85 0.32
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30.3.3 Hedging Effects Comparative Analysis

In this paper, we use the OLS and GARCH model to estimate the hedge ratio and
construct the futures and spot investment portfolio outside the sample. Here with the
hedging performance formula for hedging the effect of comparative analysis(See
Fig. 30.5). As shown in Fig. 30.5 and Table 30.5, the average of the hedging ratios
under the GARCH model constructs the portfolio outside the sample and the
hedging effect is better than the hedge ratio under a single sample.Similarly, this
paper using the average of the hedging ratios under the OLS model to build a
portfolio outside the sample and the hedging effect is better than that the hedge
ratio obtained under IF1512 and IF1703 samples, but slightly lower than the hedge
ratio of IF1412 and IF1612 samples. Thus, the average of the hedging ratios in the
two models is superior to the estimated hedging ratio estimated in most individual
historical samples in terms of hedging effectiveness.

This paper is based on the theory of portfolio hedging, the minimum variance
method is used to estimate the average of the optimal hedging ratio under the OLS
and GARCH hedging models. The results show that the average of the hedging
ratios is better than the hedging ratios estimated by most individual historical
samples in terms of hedging effectiveness. Therefore, the analysis processing
method by calculating the average hedge ratio optimization can adapt to different
market conditions.

Fig. 30.5 Hedging effect of different hedging ratios outside the sample

Table. 30.5 Hedging effects of different hedging ratios outside of sample

Contract
variety

Hedging ratio
under OLS model

Hedging effect
under OLS model

Hedging ratio under
GARCH model

Hedging effect
under GARCH
model

IF1412 0.88 88.87% 0.89 88.69%

IF1512 0.63 83.98% 0.81 89.06%

IF1612 0.76 88.53% 0.80 89.02%

IF1703 0.75 88.20% 0.85 89.06%

Average
value

0.75 88.36% 0.84 89.12%
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This paper suggests that investors can select several continuous historical con-
tracts at the moment of hedging as the object of study. Then, we estimate the hedge
ratio in the optimal hedging model and calculate the average of the hedge ratios. At
the same time, this paper only uses the average value of the hedging ratio to construct
a hedge portfolio outside the sample and the future needs a lot of empirical data
validation. In addition, the average of the hedging ratio should be dynamically
adjusted on the basis of multiple tests as the future research direction.
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