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Simulation of Stochastic Volatility s
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Abstract This paper aims to propose efficient mathematical model of variance swap
to study the effect of stochastic volatility in different time-scales on the option pricing.
Two types of stochastic volatility, including Omstein-Uhlenbeck (OU) process and
Cox-Ingersoll-Ross (CIR) process are considered. Analytical solution of CIR model is
presented. For the OU process, a numerical algorithm based on the finite element
approach is established for solution of the model.

Keywords Variance swaps - Time-scale - Stochastic volatility - Finite element
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15.1 Introduction

A variance swap is a financial instrument which allows investors to speculate on the
spread between future volatility and implied volatility. Variance swap provides us a
straightforward method to cover the exposure risk of the volatility of the underlying
asset. Recently, many researchers have investigated the variance pricing based on
the classical Greek option with constant volatility which lead to the underlying
process of a fat-tailed distribution. The stochastic volatility model is one of the
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approaches to overcome the shortcomings of the constant volatility models. Carr and
Madan [1] briefly reviewed three different methods for trading realized volatility,
including static replication, delta hedge, and volatility contract, and connected their
work with the stochastic volatility. However, little work has been done to study the
variance swap pricing problem under stochastic volatility.

The concept of time scales in Finance was first introduced by Fouque et al. in
1998, in Ref. [2] in which the option pricing model with fast-scale stochastic
volatility is proposed. In practice, variations of data, include high frequency data
always appears only in the short period, while low frequency data appears in the long
period.

Many numerical algorithms have been proposed to study the time-scale option
pricing problem. Little and Pant [3] applied the finite difference method (FDM) the
variance swaps problem based on constant volatility [4], in which a two-dimensional
(2D) problem was reduced to a one-dimensional one, and the price of variance swap
was obtained as an average of the 2D solutions. As well known, the stochastic
volatility emerges as a solution to the constant volatility, which has been studied for
years. Zhu and Lian [5] applied the Fourier transformation to price variance swaps
with discrete sampling times and found a closed-form solution of the Heston’s
two-factor stochastic volatility model [6].

In this paper, we extend Zhu and Lian’s work to study the variance swap based on
the fast-scale model. A little attempt has been done on using the OU process for the
variance swap problem. Numerical approximation is carried out using Finite Ele-
ment Method. By introducing the technique implanted by Little and Pant [3], the 3D
model reduces to a 2D model. The model is then split into two stages att; — | <7 <t#,
and #; <t < T respectively. The solution of the second stage at #; < ¢t < T is first
carried out and is then implemented to the initial solution of the first state. The
solution in Zhu and Lian [5] is used as a benchmark to show the validity of our
algorithm. The effect of maturity time and different time-scale rates on strike price is
investigated, also the long level convergence of the strike is showed in our numerical
results.

The rest of this paper is as follows. In Sect. 15.2, we set up the model.
Section 15.3 concerns the numerical study of the problem. Section 15.4 is the
conclusion of this paper.

15.2 Model Setup

This section concerns dynamics of the underlying asset, which can be described by
the following stochastic differential equation:

ds, = pS,dt + 6,8,dw'", (15.1)
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where S, denotes the stock price, dWﬁO) is a Geometric Brownian motion, o,

represents volatility which is driven by a factor diffusion process and is determined
byo, =f (ng)> , with the factor ng) obtained from a Gaussian OU process [7]:

ay® —k(m Y! )dt+vx/_dW,, (15.2)

for the drift scale k > 0 and the diffusion coefficient scale v/k. From (15.1) and
(15.2), ng) and WI(O) is correlated with the covariation cov(Wt(t), W;O)) =p;.

The scale of k affects the volatility process significantly. When k is large, the
process is referred to the fast scale process; otherwise, is known as the slow scale
process. The value of a variance swap at the expiration date can be written as V= L*
(62 — K), where o7 is the final realized volatility, K is the strike price and L is the
variance amount. In the risk-neutral world, the value of variance swap at time ¢ is

denoted by Vr = E [e’r(T’O (612e —K )L} . We let V, = 0, because there is no cost to

enter a swap at the right beginning. Based on the martingale property, K = E[¢?] is
obtained. The problem thus becomes to calculate the realized volatility 6. According
to Little and Pant [3], the final realized volatility is defined as

AF & 2
op = N Z Siv1 = S8i)/Si)", (15.3)
i=0

where AF is an animalization factor and N is number of the expected scheduled
trading days in the observation period. The AF value of 252 is used when the
sampling frequency is every trading day, 52 for everyweek and 12 for everymonth.
As it is shown in (15.3), there are two underlying processes in the final payoff
function, which makes the problem difficult to deal with. In this work, the method
used by Zhu and Lian [5], and Little and Pant [3] are implemented. Firstly, a new
variable I, is introduced as

t
I, :/ 6(li_1 717)51-(11’[7, (154)
0

where & is the Dirac-delta function, which means I, =0ifr <t _j,and I, = §; _ { if
t > t; _ . By the usual no-arbitrage argument, we rewrite (15.1), and (15.2) into the
forms:

45, = rSdi + /75w, s
dYt = (k(m_Yt)_M\/Z_k)dt—i—v\/Z_det“), .

Where A denotes the Risk price which is the same as Heston [6]. Letting U(¢, S, Y, I)
be the price of a derivative whose payoff at time point #; . | from #;is ((S; | — S)/S)%,
and according to Fouque and Sircar [8] and Feyman-Kac Theorem [5], we obtain:
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1
U + EYSZUSS + pvS+/2kY, Ugy + v*kUyy + r(Us — U)

(15.6)
+ (k(m— Y) —XV\/z_k)Uy +6(l,’,1 — l)U] =0

with the terminal condition U(z, S, Y, 1) = (S/I — 1)°. According to the definition of U
(t,S,Y,I), we have ") U, S, Y, 1) = E(? {(S,»/I,- — 1)2} . Based on the definition

(15.4), I, is deterministic and is only related to the previous state of S; _ |, which
means that even though S is a stochastic process, I, can be determined if we fix the
previous stage of S; _ ;. The variation of a deterministic process equals to zero, and
the proof of this argument can be found in Klebaner et al. [9]. Because the
discounted price of U is a martingale, by V(¢, S, Y,I) = e "U(t, S, Y, I), we obtain.

dV = ™" (—rUdt + dU) (15.7)

From Ito’s formula,
1 1
dU = Udt + UgdS + UydY + Udl +§Uss[ds, dS] + EUyy[dY, dY] + ny[dx, dY]

1
— (U, + EYSZUSS + pvSV2kY Usy + v’ kUyy + r(Us — U)

+ (k(m —Y) — WV2k) Uy + 8(t;—1 — )U;)dt + G(X, Y, 1,1)dW
(15.8)
where ¢ is a complicated function of X, Y, I and ¢. By substituting (15.8) into (15.7),

and using the Martingale Representation Theorem, (15.6) is obtained by taking
expectation of (15.7). Letx = In S,y = InY and y = In [, [Eq. (15.6) becomes

1
U+ U+ pyy/ 20Uy + VkUyy + (U, — U)

(15.9)
+ (k(m —y) — WwV2k)Uy + 8(tiey — 1)U, =0

with the terminal condition U(T, x,y,y) = (¢* ~ ¥ — 1)>. Based on the property of
Dirac-delta function, Eq. (15.9) can be represented by two-stages PDEs.
Stage one for0 <t <t; _q,

1

U, + iyum + pv/2kyUsy + v*kUyy + r(U, — U)

+(k(m — y) — WwV2k) Uy = 0, lim U; = lim U
: tltiy

tltiy

(15.10)

Stage two fort; _ | <t <Y,

1
Ui+ U+ pv\/2kyU.y + VKU, + (U, — U) (15.11)

+(k(m — y) — WV2k)Uy = 0, Uj(x,y,y,T) = (7 — )%
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Lett; _ =T — At,and At = T/IN, N = 1,2, ...,N stage one and stage two
should be solved by backward algorithm.

15.3 Numerical Analysis

In Subsect. 15.3.1, the finite element method (FEM) is applied to solve the model
with the CIR process, and our approach will be benchmarked by making a compar-
ison between the approximate solution and the semi-analytical solution at each point.
Also, for the reason that it is no analytic solution for the model with the OU process,
we investigate the relationship between the time scale rate k, the maturity time 7 and
the expected value of strike price through numerical solution based on the FEM
method in Subsect. 15.3.2.

15.3.1 Validity Study

In order to show that the proposed model is applicable, we apply the model (15.12)
and assumption as used by Zhu and Lian [5], and compare the approximated solution
with the closed form solution. The Heston Model:
_ T
dS,—rb:k,dt:—\/v', [dW?, _ (15.12)
dYt =k (9 - Vt)dt + GV\/\-};dWZ N

where k™ = k + A and 0™ = kb/(k + ) are the risk-neutral parameters, A is the
premium of volatility risk [6]. The parameters used here is the same as those in Zhu
and Lian [5], namely k™ = 11.35, 6™ = 0.022, 6y, = 0.618 while we choose vy = 0.5
in this paper. We also apply the same assumption, as in Zhu and Lian [5] that the
strike price is defined by

Kya = x*10* = e™™E[(S,, — S, ,)/S,. ,|%10*/T (15.13)

which is only related with the time step size and value of v,. Figure 15.1 shows the
comparison of the FEM approximation and the exact solution. Clearly, in Fig. 15.1,
the strike price falls as maturity time increases. Even though the difference between
the two methods becomes larger and larger as the maturity time increases, we can
apply this method for the reason that exact solution does not always exist, and even
in Zhu and Lian’s paper, they derived the semi-analytic solution with the integral
form instead of the exact solution. The FEM method is accurate to describe the
tendency and in most cases the maturity time cannot be that long. In order to increase
the absolute accuracy and make our method more persuasive, we calculate the « in
Eq. (15.13) instead of K., with the mesh size of 100, and then obtain Fig. 15.2.
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Fig. 15.1 Calculated strike values as a function of maturity time
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Fig. 15.2 Relationship between maturity time and strike price

15.3.2 Numerical Results of Our Model

Zhu and Lian’s paper is based on Heston’s two-factor stochastic volatility model. In
Heston’s model, the stochastic volatility process is a CIR process, from which it is
easy to construct a closed form solution by using Heston’s Scheme [6]. However, if
the stochastic volatility process is the OU process instead of the CIR process, it is not
easy to obtain analytical solution by simply constructing a specified form. The
approximate solution is thus obtained instead.

As it is shown in Fig. 15.3a, the strike price is inverted anti-correlated with the
time scale rate. There is a mechanism behind the phenomenon: Lager k brings more
risk exposure, which contributes more to the strike price. But this effect will not go to
infinity, when k is larger than one, the strike price experiences a slightly decrease and
converges to zero.

Also, Fig. 15.3b shows the relationship between the maturity time 7 and the strike
price. Obviously, the strike price is anti-correlated with the maturity time. It
decreases sharply when the maturity time 7 is less than 1.5 years and approaches a
steady level when time goes by. This agrees with the result proved by Zhu and Lian
[5]. The result verifies that volatility provides a measure of risk exposure. The longer
the investors hold the contract, the higher risk they have to take.
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15.4 Conclusion

In this paper, we apply the finite element method to obtain the approximate solution
of variance swaps under stochastic volatility. The time scale rate of stochastic
volatility is considered to describe the long term and short term perturbation and
draw the conclusion that the strike price of variance swap is anti-correlated with the
time scale rate, especially when k is less than one. Also, for the reason that the
volatility is a measure of risk, the strike price falls when the maturity time increases.
We have also compared the results produced by the FEM method with the model
with the CIR process for describing the volatility and found that our approximate
solution agrees with the exact solution. The significance of this work can be
illustrated in two aspects. First of all, the exact solution can only be obtained for
specified models. For most PDE, we cannot derive the closed form solution, which
makes the numerical approach necessary. Besides, even though most work has
considered the stochastic volatility, they do not study the property of the stochastic
volatility, we apply the time scale rate to describe our model and show how it works
on the variance swaps pricing.
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