
Chapter 24
Transient Phenomena in Simple Electrical
Circuits

Abstract In this chapter we discuss some transient phenomena in simple electrical
circuits (resistive, inductive, capacitive), as an introduction to the later chapters on
(local) stability and dynamics of electrical machines and drives.

24.1 Switching On or Off a Resistive-Inductive Circuit

Consider the resistive-inductive circuit (a) in Fig. 24.1. R and L are assumed to be
constant (e.g. independent of current or frequency). The circuit is therefore described
by the linear time-invariant differential equation

v(t) = R · i(t) + L · di(t)
dt

(24.1)

First, we will examine the case in which the initially current-less circuit is connected
to a voltage source vs(t) = V̂ cos(ωt + ϕ). The solution of Eq.24.1 with boundary
conditions i(t) = 0 for t ≤ 0− and with v(t) = vs(t) for t ≥ 0+ consists of two
parts:

• the particular or steady-state solution

i(t) = V̂√
R2 + ω2L2

· cos(ωt + ϕ − arctanωL/R) (24.2)

• the transient solution

i(t) = I · exp(−t/τ ) (24.3)

with I = − V̂√
R2+ω2L2 · cos(ϕ − arctanωL/R) and τ = L/R.

Note that the time constant of the system corresponds with the eigenvalue of the
system Eq.24.1, with i(t) considered as state variable (and v(t) as input). This time
constant corresponds to the single energy storage of the system, i.e. the magnetic
energy in the coil. This solution can also be found using the Laplace transform.
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Fig. 24.1 R-L- and R-L-C-circuit

Next, we will analyse the case of an interruption of a (steady-state) DC current Io
in the circuit. The state variable is now the voltage v(t), while the input is i(t). For
t ≤ 0−, i(t) = Io and v(t) = Vo = RIo. At t = 0, the switch is opened. Suppose
that the switch is ideal, i.e. i(t) = 0 for t ≥ 0+.

In order to use the (one-sided) Laplace transform, we have to transform the vari-
ables, i.e. i ′(t) = i(t) − Io and v′(t) = v(t) − Vo. In terms of the new variables, the
equations and boundary conditions become:

v′(t) = R · i ′(t) + L · di
′(t)
dt

(24.4)

i ′(t) = −Io · u(t) (24.5)

with u(t) the unit step function: u(t) = 0 for t ≤ 0− and u(t) = 1 for t ≥ 0+.
The Laplace transform yields

V ′(p) = R · I ′(p) + pL · I ′(p) (24.6)

I ′(p) = −Io/p (24.7)

The solution is

V ′(p) = − R · Io
p

− L · Io (24.8)

and thus in the time domain:

v′(t) = −R · Io · u(t) − L · Io · δ(t) (24.9)

or

v(t) = R · Io[1 − u(t)] − L · Io · δ(t) (24.10)
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The Dirac term in the voltage is the result of two (unrealistic) assumptions: an ideal
switch and a coil with a negligible capacitance between the turns of the coil. In reality,
the high voltage between the contacts of the switch will result in a spark, assuring
the continuity of the current.

The capacitance between the turns of the coil can (approximately) be modelled
by a lumped capacitor as in the circuit (b) in Fig. 24.1. The system equations are now

v(t) = R · i1(t) + L · di1(t)
dt

(24.11)

dv(t)

dt
= 1

C
i2(t) (24.12)

i(t) = i1(t) + i2(t) (24.13)

with boundary conditions i1 = Io, i2 = 0, and v = R · Io for t ≤ 0− and i1 + i2 = 0
for t ≥ 0+.

The solution is now

i1(t) = Io

{
[1 − u(t)] + R/L − p2

p1 − p2
exp(p2t) − R/L − p1

p1 − p2
exp(p1t)

}
(24.14)

v(t) = R · Io
{
[1 − u(t)] + R/L − 1/RC − p2

p1 − p2
exp(p2t) − R/L − 1/RC − p1

p1 − p2
exp(p1t)

}

(24.15)

with p1 and p2 the eigenvalues of this second-order system1

p1,2 = R

2L

(
−1 ±

√
1 − 4L

R2C

)
(24.16)

i.e. the zeros of the eigenvalue equation LCp2 + RCp + 1 = 0.
The capacitance between the turns limits the voltage between the contacts of the

switch (although sparks are still possible).

24.2 Single-Phase Transformer

If we disregard saturation and skin effects, the single-phase transformer is described
by Eqs. 24.17 and 24.18:

v1(t) = R1 · i1(t) + L1 · di1(t)
dt

+ M · di2(t)
dt

(24.17)

1Please analyse the case in which 4L < R2C and 4L > R2C and, in particular, the case in which
R = 0.
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v2(t) = R2 · i2(t) + L2 · di2(t)
dt

+ M · di1(t)
dt

(24.18)

If the turns ratio a = w1/w2 is known, we may also rewrite these equations as

v1(t) = R1 · i1(t) + L1σ · di1(t)
dt

+ Lm1 · d

dt
[i1(t) + i

′
2(t)] (24.19)

v
′
2(t) = R

′
2 · i ′

2(t) + L
′
2σ · di

′
2(t)

dt
+ Lm1 · d

dt
[i1(t) + i

′
2(t)] (24.20)

with L1σ = L1 − aM , L2σ = L2 − M/a, Lm1 = aM and with the prime indicating
the secondary variables referred to the primary.

The eigenvalues of the free system, with the currents as state variables and the
voltages as external inputs (assumed to be zero, for example), are the zeros of

det

∣∣∣∣ L1 p + R1 Mp
Mp L2 p + R2

∣∣∣∣ = 0 (24.21)

or
(L1L2 − M2)p2 + (L1R2 + L2R1)p + R1R2 = 0 (24.22)

This can be written as

σ p2 + (
T−1
m1 + T−1

m2

)
p + T−1

m1 T
−1
m2 = 0 (24.23)

or also as
p2 + (

T−1
1 + T−1

2

)
p + σT−1

1 T−1
2 = 0 (24.24)

where Tm1 = L1/R1, Tm2 = L2/R2 are the main field or open-circuit time constants
of primary and secondary, T1 = σL1/R1, T2 = σL2/R2 are the leakage field or
short-circuit time constants of primary and secondary, and σ is the total leakage
coefficient of the transformer.

For σ that are not too large, the eigenvalues can be approximated by

p1 = − (
T−1
1 + T−1

2

)
(24.25)

p2 = − (Tm1 + Tm2)
−1 (24.26)

These two eigenvalues correspond to the main and leakage fields of the transformer,
i.e. the two ways for magnetic energy storage. The eigenvalue p1 corresponds to that
of an R-L-circuit with as resistance the sum of the primary and secondary resistances
(referred to the same winding) and the total leakage as seen from this winding:
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p1 ≈ − R1 + R
′
2

σL1
= − R

′
1 + R2

σL2
(24.27)

The eigenvalue p2 corresponds to that of an R-L-circuit with as resistance the parallel
connection of primary and secondary resistances (referred to the same winding) and
the main field inductance seen from this same winding:

p2 ≈ − R1R
′
2/(R1 + R

′
2)

Lm1
(24.28)

To apply this, we will study the transient when a transformer, loaded with a resistor
R2e (denoting R = R2e + R2) at the secondary and fed by the grid (V1, f1) at the
primary, is disconnected from the grid at t = 0. Just before the switch is opened, the
primary and secondary currents are I10 and I20, respectively. The secondary current
and the primary voltage for t ≥ 0+ will be calculated in three ways.

Method n°1: Time Domain
At the secondary side, we have at each instant

Ri2(t) + L2 · di2(t)
dt

+ M · di1(t)
dt

= 0 (24.29)

For t > 0+, the primary current as well as its derivative are zero. However, the flux
coupled with the secondary has to remain continuous. Therefore

L2i2(t = 0+) = L2 · I20 + M · I10 (24.30)

or

i2(t = 0+) = I20 + (M/L2) · I10 (24.31)

For t > 0+, the secondary current has to satisfy equation24.29 with i1(t) =
di1(t)/dt ≡ 0. Thus

i2(t > 0+) = [I20 + (M/L2) · I10] exp(−t/τ ) (24.32)

with τ = L2/R. For t > 0−, we may write

i2(t > 0−) = I20[1 − u(t)] + [I20 + (M/L2) · I10]u(t) · exp(−t/τ ) (24.33)

The primary voltage for t > 0− can be calculated fromEq.24.17with i2(t) according
to Eq.24.33 and i1(t) = I10[1 − u(t)].
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For t > 0−, we have

v1(t) = R1 · i1(t) + σL1 · di1(t)
dt

+ M · d

dt

[
i2(t) + M

L2
i1(t)

]
(24.34)

or

v1(t) = R1 · i1(t) + σL1 · di1(t)
dt

− M

L2
R · i2(t) (24.35)

Using di1(t)/dt ≡ 0 for t > 0− and substituting i2(t) from Eq.24.33 yields

v1(t) = R1 · I10[1−u(t)]−σL1 · I10δ(t)− M

L2
R· I20[1−u(t)]− M

L2
R·[I20+ M

L2
· I10]u(t)·exp(−t/τ )

(24.36)
For t > 0+, we therefore have

v1(t) = − M

L2
R · [I20 + M

L2
· I10] exp(−t/τ ) (24.37)

The voltage for t > 0+ corresponds to the main flux coupled with the secondary that
is fading awaywith the secondary open-circuit time constant.When the switch opens
at t = 0, the secondary takes over the magnetising part of the flux corresponding
to the primary current (flux continuity). The Dirac voltage for t = 0 corresponds to
the leakage flux of the primary which is not coupled to the secondary and cannot be
compensated by a jump in the secondary current. This Dirac voltage will give rise to
a spark in the switch.

If for t < 0− the transformer was fed by a DC voltage vo = R1 I10 (with I20 = 0),
we find for the primary voltage

v1(t) = R1 · I10[1 − u(t)] − σL1 · I10δ(t) − M2

L2
2

R · I10u(t) · exp(−t/τ )

and for t > 0+

v1(t) = −M2

L2
2

R · I10 exp(−t/τ ) = −(1 − σ)
L1/R1

L2/R
· vo · exp(−t/τ ) (24.38)

In other words, the initial value is the DC voltage reduced by the factor 1 − σ and
transformed with the ratio of the primary and secondary time constants.



24.2 Single-Phase Transformer 563

Method n°2: Single-side Laplace Transform
To apply the single-side Laplace transform, we have to replace the currents i1 and i2
with fictitious currents i∗1 = i1 − I10 and i∗2 = i2 − I20 which are zero for t ≤ 0−.
For these new variables, the secondary transformer equation becomes

Ri∗2 (t) + L2 · di
∗
2 (t)

dt
+ M · di

∗
1 (t)

dt
= −RI20 (24.39)

and after the Laplace transform

RI ∗
2 (p) + pL2 · I ∗

2(p) + pM · I ∗
1(p) = −R

I20
p

(24.40)

As

I ∗
1 (p) = − I10

p
(24.41)

we find for the secondary current

I ∗
2 (p) = 1

R + pL2

(
−R

I20
p

+ MI10

)
(24.42)

Or, in the time domain:

i2(t) = i∗2 (t) + I20 = I20 (1 − u(t)) +
(
I20 + M

L2
I10

)
u(t) · exp(−t/τ ) (24.43)

The primary voltage2 can be calculated in a similar way.

Method n°3: A variation of Method n°2
Define the new variables i+1 (t) and i+2 (t) with i+1 (t) = 0 for t < 0−, i+1 (t) = i1(t)
for t > 0−, i+2 (t) = 0 for t < 0−, i+2 (t) = i2(t) for t > 0−.

The transformer secondary equation is now

Ri+2 (t) + L2 · di
+
2 (t)

dt
+ M · di

+
1 (t)

dt
= 0 (24.44)

and after Laplace transform

RI+
2 (p) + L2

(
pI+

2 (p) − I20
) + M

(
pI+

1 (p) − I10
) = 0 (24.45)

With I+
1 (p) = 0, we obtain

I+
2 (p) = 1

R + pL2
(L2 I20 + MI10) (24.46)

2Can you also find a Dirac function in the voltage?
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or, in the time domain for t > 0−:

i+2 (t) =
(
I20 + M

L2
I10

)
u(t) · exp(−t/τ ). (24.47)

24.3 Coil with Massive Iron Core

A coil with a massive iron core can be regarded as a special case of magnetically
coupled coils. We consider an infinitely long coil with a core with rectangular cross-
section and sides a (x-direction) and b (y-direction), as illustrated in (a) in Fig. 24.2.
The coil is uniformly distributed along the core length (z-direction).

The general transient solutions have to satisfy the following equations (from
Maxwell’s laws):

Ex = ρFe · Jx = ρFe

μ
· ∂Bz

∂y
(24.48)

Ey = ρFe · Jy = −ρFe

μ
· ∂Bz

∂x
(24.49)

∂Ey

∂x
− ∂Ex

∂y
= −∂Bz

∂t
(24.50)

with B the magnetic field (induction), E the electric field, J the current density, ρFe

the electric resistivity of the iron core and μ the permeability of the iron.
Eliminating the electric field components yields:

∂2Bz

∂x2
+ ∂2Bz

∂y2
= μ

ρFe
· ∂Bz

∂t
(24.51)
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As possible (transient) solutions for Eq.24.51, we propose

b(x, y, t) =
∑
α,β

bαβ (24.52)

with

bαβ = Bαβ cosαx · cosβy · exp(−γαβ t) (24.53)

Because x = 0 and y = 0 are symmetry axes, only cosine functions are considered.
We will only take into account cases where the current in the coil is zero for

t > 0+. From t > 0+ on, the magnetic field strength H−→ as well as the induction
B−→ outside the core are zero. Because of the continuity of the tangential component
of H−→, the magnetic field strength and the induction at the boundaries x = ±a/2

and y = ±b/2 are zero from t > 0+ on.3 Therefore, α = αm = m(π/a) and
β = βn = n(π/b) with m and n odd. Substitution of the solutions of Eqs. 24.53 in
24.51 yields

α2 + β2 = μ

ρFe
γαβ (24.54)

and thus

γαβ = γmn = ρFe

μ

{(
m

π

a

)2 +
(
n
π

b

)2
}

(24.55)

The proposed solution is

b(x, y, t) = bz(x, y, t) =
∑
m,n

Bmn cosαmx · cosβn y · exp(−γmnt) (24.56)

and consists of the sum of mode (m, n). Each mode corresponds to transient circu-
lating currents, as shown in (b) in Fig. 24.2 for m = 3 and n = 3. These currents
follow from

Jx = ∂Hz

∂y
(24.57)

Jy = −∂Hz

∂x
(24.58)

3This is only the transient solution. For other problems (e.g. switching on a sinusoidal excitation)
steady-state solutions should be considered separately. Even with a non-zero current in the coil,
however, the induction outside the coil is negligible because of the high iron permeability.
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In addition to the boundary conditions in space, there are also boundary conditions
in time.

Wewill investigate the case of a coil with very large diameter (so that its curvature
can be disregarded) and withw0 turns per meter. For t < 0 there is a DC current I0 in
the coil, giving rise to a steady-state induction B0 in the core. The current is switched
off at t = 0. From t > 0+ on, there is no current in the coil and the magnetic field
strength H−→ as well as the induction B−→ outside the core are zero.

The steady-state induction for t < 0 follows from Ampere’s law:

B0

μ
l = w0 · l · I0 (24.59)

As a transient solution for4 −a/2 < x < a/2 and −b/2 < y < b/2 for t > 0−, we
propose Eq.24.56. The continuity at t = 0 then requires

b(x, y, t = 0) = b(x, y, 0) =
∑
m,n

Bmn cosαmx ·cosβn y = B0 = μ·w0 · I0 (24.60)

Writing the two-dimensional block function B0 as a product of two Fourier series
(one in x and one in y) yields

Bmn =
(
4

π

)2 1

m · n (−1)
m+n−2

2 · B0 (24.61)

with m and n odd. Therefore

b(x, y, t) =
(
4

π

)2

B0 ·
∑
m,n

1

m · n (−1)
m+n−2

2 cos
(
mπ

x

a

)
· cos

(
nπ

y

b

)
· exp(−γmnt)

(24.62)
with γmn given by Eq.24.55.

The current densities in the iron for −a/2 < x < a/2 and −b/2 < y < b/2 are

Jx = −
(
4

π

)2 B0

μ
· π

b
·
∑
m,n

1

m
(−1)

m+n−2
2 cos

(
mπ

x

a

)
· sin

(
nπ

y

b

)
· exp(−γmnt)

(24.63)

Jy =
(
4

π

)2 B0

μ
· π
a

·
∑
m,n

1

n
(−1)

m+n−2
2 sin

(
mπ

x

a

)
·cos

(
nπ

y

b

)
·exp(−γmnt) (24.64)

4The edges are excluded as the sum is not uniformly convergent for t = 0.
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Fig. 24.3 Massive core:
equivalent circuit for the
fundamental mode
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To calculate the flux, we will first have to integrate over−(a−ε)/2 < x < (a−ε)/2
and −(b − δ)/2 < y < (b − δ)/2 and then take the limit for ε, δ → 0:

Φεδ =
(
4

π

)2
B0 ·

∫ (a−ε)
2

− (a−ε)
2

dx
∫ (b−δ)

2

− (b−δ)
2

dy
∑
m,n

1

m · n (−1)
m+n−2

2 cos
(
mπ

x

a

)
·cos

(
nπ

y

b

)
·exp(−γmnt)

(24.65)

Φεδ =
(
4

π

)2
B0 · 4ab

π2

∑
m,n

(
1

m · n )2(−1)
m+n−2

2 sin

(
mπ

a − ε

2a

)
· sin

(
nπ

b − δ

2b

)
· exp(−γmnt)

(24.66)
and thus

Φ = lim
ε,δ→0

Φεδ =
(
4

π

)2 (
2

π

)2

· ab · B0 ·
∑
m,n

(
1

m · n )2 · exp(−γmnt) (24.67)

The equivalent self-inductance (permeter) of the coil formodem, n can be calculated
in an analogous way as the total self-inductance

w0Φ0 = L0 I0 (24.68)

The inductance Lmn results from w0Φmn = Lmn I0:

Lmn =
(
4

π

)2 (
2

π

)2

· ab · μ · w2
0 · (

1

m · n )2 = 64

π4m2n2
· L0 (24.69)

with L0 = w2
0μab the total self-inductance of the coil.

A time constant 1/γmn = Lmn/Rmn corresponds with each mode, with

Rmn = 64

π2
�Few

2
0 ·

(
1

n2
· b
a

+ 1

m2
· a
b

)
(24.70)
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The largest time constant corresponds with the mode (1, 1). This time constant
is commonly called the transient time constant and the corresponding component
(mode) the transient component. The other modes, with smaller time constants, are
called subtransient components (corresponding with subtransient time constants).
Figure24.3 shows a possible approximate model (equivalent circuit); R1 is the coil
resistance and L1σ its leakage inductance (which corresponds here to field lines cou-
pledwith the coil but outside the iron core); R11 and L11 correspondwith the transient
component; the remaining modes are lumped in the dashed part.

24.4 Quasi-stationary Modelling of Rotating Machines

For rotating machines, there are not only the electrical transients but also mechanical
transients (when the speed is variable).

In principle, electrical and mechanical transient phenomena have to be treated
together: the variable speed affects the electrical transients (e.g. via the emf ofmotion)
and the electrical transients affect the torque and, therefore, via the equation of
motion, the speed.

In many cases, however, the mechanical time constants are one or more orders of
magnitude larger than the pure electrical time constants (i.e. those that would occur
at constant speed). If these time constants differ by an order of magnitude, it may be
permitted to treat the electrical and mechanical transients separately: the electrical
transients as if the speed were constant and the mechanical transients as if the elec-
trical circuit were in steady state. For the analysis of the mechanical phenomena, we
may then use the steady-state currents, voltages and torques that can be derived from
the steady-state equations or equivalent circuits.

An example will be discussed in the next chapter on pulsating loads for an induc-
tion machine. As the mechanical time constant of this high-inertia drive is much
larger than the electrical time constants of the machine and than the period of the
pulsating torque, we may ignore the electrical transients and calculate everything as
if the machine were in steady state. For small slip, the torque equation may also be
approximated by its almost linear part:

T = 3V 2

�sy
· R/s

(R/s)2 + X2
σ

≈ 3V 2

�sy
· s

R
(24.71)

The equation of motion can then be approximated by (using �r = (1 − s)�sy):

− J�sy · ds
dt

= 3V 2

�sy
· s

R
− Tl (24.72)

However, we need to keep in mind that, actually, the electrical transients may give
rise to rather large transient torques, which are entirely disregarded here.
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