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Abstract Glassy dynamics covers the extraordinary spectral range from 10+13 to
10−3 Hz and below. In this broad frequency window, four different dynamic pro-
cesses take place: (i) the primary or α-relaxation, (ii) (slow) secondary relaxations
(β-relaxations), (iii) fast absorption processes in the GHz and (iv) the boson-peak
in the THz range. The dynamic glass transition is assigned to fluctuations between
structural substates and scales well with the calorimetric glass transition temperature.
It shows a similar temperature dependence as the viscosity and fluctuations of the
density or heat capacity. The temperature dependence of the mean relaxation rate of
the dynamic glass transition follows at first glance the empirical Vogel–Fulcher—
Tammann law, albeit a further analysis unravels clear-cut deviations. The (slow)
secondary relaxations are assigned to librational relaxations of molecular subgroups
hence having a straightforward molecular assignment. They may also show up as a
wing on the high-frequency side of the dynamic glass transition. The fast absorp-
tion processes at GHz frequencies can formally be described within the framework
of the mode-coupling theory (MCT). The boson-peak resembles the Poley absorp-
tion and originates from overdamped oscillations. In this chapter, especially the first
three contributions will be discussed in detail and compared with existing theoretical
models.
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1 Introduction

The glassy state is ubiquitous in inorganic and organic matter. It is characterized
by the lack of long range order and shows a refined dynamics including processes
spanning a spectral range from 10+13 to 10−3 Hz and below. Despite concentrated
efforts [1–9], a common theoretical understanding of the glassy state does not exist
and a variety of different and often controversial views compete. The glassy state
is furthermore reflected in many different physical quantities, e.g. the heat capacity,
the viscosity, the mechanical moduli, the density, ultrasonic absorption, magnetiza-
tion, the complex index of refraction and the complex dielectric function. Hence, a
multitude of experimental techniques have been employed to study glassy materials,
such as frequency-dependent and differential scanning calorimetry [10], dynamic
mechanical spectroscopy [11], ultrasound attenuation [12], light [13] and neutron
scattering [14], NMR spectroscopy [15] and especially broadband dielectric spec-
troscopy [16–38].

Themean relaxation rate ν(T ) of the α-relaxation is characterized by the empirical
Vogel–Fulcher–Tammann (VFT)-equation [39–41]:

ν(T ) � 1

2πτ (T )
� v∞ exp

[ −DT0
T − T0

]
(1)

where v∞ � (2πτ∞)−1 is the high temperature limit of the relaxation rate, D is a
constant, andT 0 denotes theVogel–Fulcher temperature. The “fragility” parameterD
[42] describes hereby the deviation from an Arrhenius-type temperature dependence

ν(T ) � ν∞ exp

(−EA

kT

)
(2)

where EA is the activation energy and k the Boltzmann constant. At the calorimetric
glass transition T g, the mean relaxation rate ν(T g) and the viscosity η(T g) have
reached typical values of ~10−3 Hz and ~1013 Poise, respectively. In general, T 0 is
found to be approximately 40 K below T g. Thus, the change in the dynamics of the
glass-forming processes spans more than 15 decades.

The divergence of Eq. (1) at T = T 0 is also supported by the so-called Kauzmann
paradox occurring in the entropy determined by measurements of the specific heat
[43, 44]: if the entropy of the supercooled liquid is extrapolated to low temperatures,
it seems to become identical to that of a crystal or even smaller. In some theories
(like the Gibbs–Di Marzio model [45] for polymers), the Kauzmann paradox is
resolved by a phase transition. But the physical meaning of the divergence of ν(T )
at T = T 0 remains unclear. Because of the universality of Eq. (1), T 0 is considered
as a characteristic temperature, where the mean relaxation rate extrapolates to zero,
albeit little evidence could be found for a dynamic divergence [46].

Qualitatively, glassy dynamics is often discussed as fluctuation of a molecule in
the cage of its neighbours. The librational motions of the latter give rise to fast sec-
ondary β-relaxations which take place on a time scale of 10−10–10−12 s, while the
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reorientations of the molecules forming the cage are assigned to the dynamic glass
transition or α-relaxation obeying a VFT-temperature dependence. This relaxation
process must have cooperative character; i.e. the fluctuations of the molecules form-
ing the “cage” cannot be independent from each other. The extension of the size
of such “cooperatively rearranging domains” [3, 6, 7, 45] is one of the central (and
controversial) topics of glass research.

The relaxation function of the α-relaxation is usually broadened. Its high-
frequency side exhibits often two power laws. In the case of glycerol, this was
observed already by Davidson and Cole [47] and interpreted as caused by high-
frequency vibrations. It is nowadays established for a variety of glass-forming (low
molecular weight and polymeric) materials [s. also the chapter of P. Lunkenheimer
andA.Loidl andF.Kremer et al. in this book] and considered to be the high-frequency
contribution of a secondary relaxation.

Many systems show additionally a slow secondary β-relaxation (with an
Arrhenius-type temperature dependence). This process being observed for relax-
ation rates ~<108 Hz can often be assigned to intramolecular fluctuations. But there
are several examples like the low molecular weight liquid ortho-terphenyl (OTP)
[19, 20] or the main chain polymer poly(ethylene terephthalate) (PET) [38] where
such an interpretation is not immediately obvious. Therefore, it was suggested by
Goldstein and Johari [11, 12] that the slow β-relaxation “is intrinsic to the nature of
the glassy state” [12]. In the THz regime a further molecular process is observed,
the “boson peak” [4] which has similarities with the Poley absorption [48], which
was interpreted as being caused by strong local fields exerted on a molecule by its
immediate neighbours in the glassy state (Fig. 1).

In detail in this chapter, the following questions will be addressed: (i) is there a
scaling function which describes the temperature dependence of the mean relaxation
rate in the entire spectral range from 10+11 to 10−3 Hz and below? (ii) How does the
relaxation time distribution function change with temperature, or in other words, is
time–temperature superposition in general valid for (dielectric) relaxation processes?
(iii) How does the strength�ε of a relaxation process change with temperature in the
course of the dynamic glass transition? (iv)What is themolecular origin of the “high-
frequency” wing, sometimes termed excess wing, which is observed in the dynamic
glass transition of many (low molecular weight and polymeric) systems? (v) Is there
amodel-free characteristic temperature, where glassy dynamics undergoes a change?

2 Theories Describing the Scaling of Relaxation Processes
in Glassy Systems

Numerous approaches [49–69] have been developed to describe the dynamics
of glassy systems. In the following, two most important approaches are briefly
described.
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Fig. 1 Scheme of the dynamical processes taking place in the spectral range between 10−6 and
1014 Hz, (i) the α-relaxation, (ii) (slow) secondary relaxations, (iii) fast absorption processes and
(iv) the boson peak. The temperature shift is depicted for two different temperatures T1 <T2

The experimentally observed VFT-dependence (Eq. (1)) can be founded by two
approaches: the Adam–Gibbsmodel [52] and the free volume theory as developed by
Doolittle [53] and Cohen and Turnbull [54, 55]. The latter is based on four assump-
tions:

(i) A local volume V is attributed to a molecule or polymer segment.
(ii) The difference V f �V − V c can be considered as “free”, if V is larger than a

critical value V c.
(iii) If for the free volume V f ≥V * ≈VM holds, molecular transport takes place in

jumps over a distance corresponding to the size of the molecule VM. V * is the
minimal free volume required for a jump of a molecule.

(iv) The molecular rearrangement of free volume does not require free energy.

Following Boltzmann statistics, a molecule or a polymer segment carries out
positional jumps only if the necessary free volume is provided. Hence for the jump
rate 1/τ

1

τ
∼

∞∫
V ∗

exp

[
−Vf

Vf

]
dV f ∼ exp

[
−V ∗

Vf

]
. (3)
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is obtainedwhere V f is the averaged free volume.Assuming that the relative averaged
free volume f̄ � V f/V (V : total volume) depends linearly on temperature

f̄ � fg + αf
(
T − Tg

)
(4)

while f ∗ � V ∗
V is temperature-independent results in a VFT-equation. αf is the

thermal expansion coefficient of the free volume and f g the relative free volume at
T g. Comparison with Eq. (1) delivers

DT0 � f ∗

αf
, T0 � Tg − fg

αf
(5)

At the temperature T 0, the volume V f vanishes. Within this approach, no inherent
length scale is involved and all transport properties should have the same temperature
dependence because the jump between holes is the only transport mechanism. Cohen
and Grest [55] extended this approach by considering solid- and liquid-like clusters
in a percolation approach.

The model of Adam and Gibbs [52] suggests the existence of “Cooperatively
RearrangingRegions (CRR)” being defined as the smallest volumewhich can change
its configuration independent fromneighbouring regions. It relates the relaxation time
to the numbers of particles (molecules for a low molecular liquid, segments for a
polymer) z(T ) per CRR by

1

τ
∼ exp

[
− z(T )�E

k T

]
(6)

where �E is a free energy barrier for one molecule. z(T ) can be expressed by the
total configurational entropy Sc(T ) as z(T )�Sc(T )/(N kB ln 2) where N is the total
number of particles, kB the Boltzmann constant and ln 2 the minimum entropy of a
CRR assuming a two-state model. Using thermodynamic considerations, Sc(T ) can
be linked to the change of the heat capacitance �cp at the glass transition by

Sc(T ) �
T∫

T2

�cp
T

dT (7)

With T 2 = T 0 and�cp ≈C/T from Eqs. (6) and (7), the VFT-dependence follows.
At T 0, the configurational entropy vanishes and the size of a CRR diverges as z(T ) ∼

1
C(T−T0)

. The Adam–Gibbs model does not provide information about the absolute
size of the CRR at Tg.

Donth [3, 6, 7] suggested a thermodynamic fluctuation model leading to a expres-
sion which connects the height of the step in cp and the temperature fluctuation δT
of a CRR at T g with the correlation length ξ as
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ξ3 ∼ VCRR � k T 2
g �(1/cp)

ρ(δT)2
. (8)

where ρ is the density and�(1/cp) the step of the reciprocal specific heat (if cV ≈cp is
assumed). Experimentally, δT can be extracted from the width of the glass transition
[6, 7] or from thermal heat spectroscopy measurements [56, 57].

Within the fluctuation approach for the temperature dependence of ξ

ξ (T ) ∼ 1

(T − T0)
2/3 (9)

is obtained. A similar equation was derived by Kirkpatrick and Tirumalai [58] using
scaling arguments.

Based on the Adam–Gibbs equation (6) and an expression proposed by Waterton
[59] as early as 1932, Mauro et al. [60] suggested an approach, which avoids the
divergence of the VFT-formula (1) at T �T 0

ν(T ) � v∞ exp

[
K

T
exp

(
C

T

)]
(10)

K and C are related to activation energies deduced through a “physical realistic
model for configurational entropy based on a constraint approach”.

In comparing viscous liquids with spin glasses, Souletie and Bertrand [61] sug-
gested for the mean relaxation rate

τ−1 ∼
[
(T − Tc)

T

]γ

(11)

where γ>0 and T c are constants.
The shoving model developed by Dyre et al. [62] is based essentially on three

assumptions.

1. The activation energy is mainly elastic energy.
2. This elastic energy is mainly located in the surroundings of the flow event.
3. The elastic energy is mainly shear elastic energy.

It relates the mean relaxation rate to the mean square vibrational displacement〈
u2

〉
(T ) and a characteristic molecular length a, which is assumed to be constant.

ν(T ) � v∞ exp

(
− a2〈

u2
〉
(T )

)
(12)

In [63, 64], it is shown that the temperature dependence of the shear modulus
dominates the temperature dependence, leading to

〈
u2

〉
(T ) ∝ T

G∞(T )
(13)
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where G∞(T ) is the elastic shear modulus. The shoving model does not make a spe-
cific prediction of the temperature dependence of the mean relaxation rate, except
that it cannot diverge at any finite temperature. The model, however, relates two
independently measurable quantities in a prediction that has been confirmed for sev-
eral glass-forming liquids; see for example, the review of the experimental situation
given in [65].

The mode-coupling theory (MCT) [9, 66–69] is a hard sphere model based on a
generalized nonlinear oscillator equation

d2Φq(t)

dt2
+ Ω2Φq(t) + ζ

dΦq(t)

dt
+ Ω2

t∫
0

mq(t − τ )
dΦq(τ )

dτ
dτ � 0 (14)

where �(t)q is the normalized density correlation function defined as

Φq(t) �
〈
�ρq (t)�ρq(0)

〉
〈
�ρ2

q

〉 (15)

�ρq(t) are density fluctuations at a wavevector q, � is a microscopic oscillator
frequency, and ς describes a frictional contribution. The first three terms of Eq. (14)
describe a damped harmonic oscillator; the fourth term contains a memory function
mq(t − τ ). As a consequence, the total frictional losses in the system become time-
dependent.

In order to solve Eq. (14), an ansatz formq(t) is required. Already a simple Taylor
expansion of m leads to a relaxational response of �q having some similarity with
the dynamic glass transition [66, 67]. Assuming mq(t) � v1Φq(t) + v2Φ

2
q (t) (F12-

model, [67]) delivers a two-step decrease of the correlation function �q(t). The
faster contribution is interpreted in terms of a (fast) β-relaxation while the slower
component to the dynamic glass transition (α-relaxation). At a critical temperature
T c, the relaxation time diverges; this is interpreted as a phase transition from an
ergodic (T > T c) to a non-ergodic (T < T c). Furthermore, MCT (in the idealized
version) makes the following predictions:

(i) for T > T c the relaxation time τ α of the α-relaxation scales according to

τα ∼ η ∼
[

Tc
T − Tc

]γ

(16)

where γ is a constant.
(ii) the relaxation function of the α-relaxation can be described by

Φq(t) ∼ exp

[
−

(
t

τα

)βKWW
]

(17)
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with (0<βKWW <1), where �0 is the amplitude of the α-relaxation. For T
>T c, the relaxation time distribution should be temperature-independent; i.e.
time–temperature superposition should hold.

(iii) above and close to the critical temperatureT c, theminimumof the susceptibility(
ε′′
min, ωmin

)
between the α-relaxation and the β-relaxation should follow a

power law

ε′′
min ∼

∣∣∣∣T − Tc
Tc

∣∣∣∣
1/2

(18)

Glassy dynamics spans a time scale of more than 15 decades. In order to unravel
the evolution of the temperature dependence in detail, it is most advantageous to
calculate the derivatives of the mean relaxation rate with respect to 1/T of the dif-
ferent theoretical approaches. By that, one obtains for the VFT-equation (Eq. (1))
the Arrhenius dependence (Eq. (2)), the Mauro equation (Eq. (10)), the approach by
Souletie and the MCT (Eq. (11)) for T >T c the following expressions:
VFT:

d log ν

d(1/T )
� −(DT0) · log e ·

(
1 − T0

T

)−2

(19)

Arrhenius:

d log ν

d(1/T )
� −EA

k
· log e (20)

Mauro:

d log ν

d(1/T )
� K · log e · exp

(
C

T

)
·
(
C

T
+ 1

)
(21)

Souletie:

d log v

d(1/T )
� γ · log e · TC · T

Tc − T
(22)

MCT:

d log v

d(1/T )
� γ · log e · T 2

TC − T
(23)

Hence in a plot of the differential quotient d(−logv/d(1/T ))−1/2 versus 1/T, the VFT-
dependence shows up as a straight line. The derivative plots enable to analyse in detail
the scaling with temperature (Fig. 2). This is especially true for the high temperature
regime. By that the difference quotient, �(−logv)/�(/1/T ) of the experimental data
can be determined and compared with the analytical derivatives.
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(a)

(b)

Fig. 2 a The scaling behaviour as predicted by the Arrhenius equation (Eq. 2), the Vogel-Fulcher-
Tammann equation (VFT) (Eq. 1), the Mauro approach (Eq. 10), that of Souletie (Eq. 11) and of
the mode-coupling theory (MCT) (Eq. 16). The glass transition temperature Tg as the temperature,
where the mean relaxation rate according to the VFT-function has reached a value of 10−2 Hz is
indicated. b Differential quotient (−d(log(ν)/(d(1/T))−1/2 ×100 for the functionalities shown in a
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3 The Scaling of the Dynamic Glass Transition in Low
Molecular Weight and Polymeric Organic Glasses

Salol is one of the most explored organic glass-forming liquids. It is considered as
a van der Waals glass, despite the fact that it can form H-bonds, presumably mainly
within the same molecule. In Fig. 3, dielectric measurements [70] extended over a
broad spectral range from about 10−2 Hz up to 1011 Hz are displayed for temperatures
211 and 361K.The charts are characterized by a pronounced dynamic glass transition
(α-relaxation) having an excess wing, which appears as a second power law on the
high-frequency flank of the α-relaxation [71]. The latter is interpreted as a submerged
slow secondary relaxation showing up as a shoulder with a significant curvature for a
sample aged at 211 K for 6.5 days as discussed in detail in ref. [72]. For frequencies
ν>1010 Hz, a shallow loss minimum is found; it can be interpreted in terms of the
fast β-relaxation of the mode-coupling theory (s. below) but also other explanations
have been proposed [73].

The spectra can be described by a superposition of a Havriliak–Negami (HN)
and Cole–Cole (CC) [16] function for the primary α-process or for the secondary
β-process, respectively:

ε∗
total (ω) � ε∞ +

�εHN

(1 + (iω τHN)βHN)γHN
+

�εCC

(1 + (iω τCC)
βCC )

(24)

Fig. 3 Dielectric loss as a function of frequency for a series of temperatures from 211 K up to
361 K for salol. The solid lines are fits with a Havriliak–Negami (HN) function for T ≥243 K and
with the sum of a HN and Cole–Cole (CC) function for T ≤238 K. The dashed lines show the CC
components. The dash-dotted line through the 211 K data is a guide to the eyes. Taken and modified
from [70] with kind permission of The European Physical Journal (EPJ)
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where�εHN and�εCC are the relaxation strengths, τHN and τCC the relaxation times,
and βHN, γHN and βCC the spectral width parameters of the HN and CC function,
respectively, and ω is the circular frequency. For temperatures T≥243 K, the sec-
ondary β-peak has completely merged with the α-peak.

By fitting the dielectric spectra with the empirical relaxation function of Eq. (24),
an activation plot is obtained, where the mean relaxation rate versus the inverse
temperature is displayed (Fig. 4a). The charts at temperatures>300 K can be equally
well described by the Arrhenius equation, the formula suggested byMauro (Eq. (10))
andSouletie (Eq. (11)) and theMCT-ansatz (Eq. (16)). Comparing the experimentally
determined difference quotients with the derivatives of the different scaling functions
with respect to 1/T however proofs that none of the suggested formulae describes the
data within the limits of experimental accuracy in the entire temperature range and
that it is furthermore not possible to describe the experimental data adequately by
use of oneVFT-function or to replace the VFT-dependence by an Arrhenius function
as one might expect from the raw data in Fig. 4a. This is supported as well by an
analysis [74] based on the second derivative of the temperature dependence of the
structural relaxation time τα(T ) with respect to T g/T .

Glycerol (Fig. 5a/b) is an H-bond forming liquid. Its mean relaxation rate shows
a pronounce VFT-dependence; the data for temperatures≥270 K seem to follow
equally well a VFT-function or dependencies as suggested byMauro, Souletie or the
MCT. But from the derivative plot (Fig. 5b) again one must conclude that none of
the suggested formulae fits the temperature dependence correctly within the limits
of experimental accuracy. Similarly as for salol, two VFT-equations (VFT1 and
VFT2) are required to describe the data within experimental accuracy in the entire
temperature range. From the derivative plots, it can be deduced that at temperatures
above 270 K neither the Arrhenius equation nor the MCT-ansatz is adequate.

The dynamic glass transition for propylene glycol, tripropylene glycol and its
polymeric counterpart poly(propylene glycol) having a mean molecular weight of
Mw �4000 g/mol are compared in Fig. 6a. Both charts display a VFT-dependence,
but due to the connectivity of the chain for the latter the relaxation is slower, especially
at lower relaxation rates. In the derivative plots (Fig. 6b), it is shown again that a
single VFT-dependence is not sufficient to describe the data adequately in the entire
temperature range.

A dielectric relaxation process is not only characterized by the relaxation rate but
also by its dielectric strength and by the shape of the relaxation time distribution
function. According to the Debye formula, the product T�ε should be independent
on temperature besides the weak temperature effect on number density of dipoles.
Instead one observes (Fig. 7a) for all materials that T�ε increases with decreasing
temperature; this might be interpreted as caused by a growing length scale, where
polar fluctuations become more cooperative and hence its effective dipole moment
increases. The temperature dependencies suggested by the MCT T�ε ~(T c − T )1/2

for T <Tc and T ×�ε ≈const. for T >T c are not fulfilled. However, one has to be
aware that the reported values of delta epsilon in most cases exhibit large experi-
mental uncertainties and sometimes differ considerably when reported by different
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(a)

(b)

Fig. 4 aActivation plot for salol. Solid lines: VFT-fits (VFT1): logν∞ �23.5, DT0 �4618K, T0 �
141.6 K; (VFT2) logν∞ �10.4, DT0 �333 K, T0 �224.7 K.Dash double dotted line: Arrhenius-fit
logν∞ �12.1, EA/kB �2283 K. Dashed line: MCT fit logν∞ �10.4, γ�2.6, Tc �254 K; dotted
line: Souletie fit logν∞ �12.1, γ�5.25, T c �239K; dash-dotted line:Mauro fit logν∞ �10.5,K �
17.1 K,C �1301 K. The data are taken from [37b, 75]; the error bars are smaller than the size of the
symbols if not indicated otherwise. b Difference quotient (–�(log(νmax))/�(1000/T))−1/2) versus
1000/T for the data shown in a. For comparison, the differential quotients for the VFT-equation and
the temperature dependencies as suggested by the mode-coupling theory (MCT), Souletie (SOU),
and Mauro theory (MAU) using the fit parameters shown in a
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(a)

(b)

Fig. 5 a Activation plot for glycerol. Solid line: VFT-fit (VFT1): logν∞ �14.3, DT0 �2448 K,
T0 �126.0 K. Dash double dotted: VFT-fit (VFT2): logν∞ �12.0, DT0 �1331 K, T0 �183.1 K.
Dashed line:MCTfitwith logν∞ �10.4,γ�3.65,Tc �248.8K.Dotted line: Souletie fitwith logν∞
�12.8,γ�3.69,Tc �215.1.Dash-dotted line:Mauro fitwith logν∞ �12.8,K �517K,C�471K.
Data taken from [37b, 75]. The error bars are smaller than the size of the symbols if not indicated
otherwise. bExperimentally determined difference quotient (–�(log(νmax))/�(1000/T ))−1/2 versus
1000/T . The lines describe the fits shown in a. For comparison, the differential quotients for the
VFT-fits and the temperature dependencies as suggested by the mode-coupling theory (MCT),
Souletie (SOU), and Mauro (MAU) theory using the fit parameters shown in a
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(a)

(b)

Fig. 6 a Activation plot for propylene glycol (open circles), tripropylene glycol (open triangles)
and the polymeric pendant (Mw �2000 g/mol) poly(propylene glycol) (open diamonds). The error
bars are smaller than the size of the symbols if not indicated otherwise. Solid lines (VFT1): VFT-
fits with logν∞ �12.1, DT0 �793 K, T0 �166 K for propylene glycol and logν∞ �12.1, DT0
�833 K, T0 �179 K for poly(propylene glycol)). Dashed lines (VFT2): VFT-fits for the lower
temperature range with logν∞ �14.1, DT0 �1956 K; T0 �115 K for propylene glycol, logν∞ �
13.1, DT0 �1343 K; T0 �151 K for tripropylene glycol, and logν∞ �12.8, DT0 �1041 K, T0
�169 K for polypropylene glycol. b Difference quotient (–�(log(νmax))/�(1000/T ))−1/2 versus
1000/T . For comparison the differential quotients for the VFT-fits using the fit parameters from a
are depicted. The data for propylene glycol and poly(propylene glycol) are taken from [16] and for
tripropylene glycol from [75]
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(a)

(b)

Fig. 7 a The product of relaxational strength �ε and temperature T , (T�ε) versus T ; for salol,
propylene glycol (PG), poly(propylene glycol) (PPG) and glycerol as indicated. For salol and PPG,
T�ε is normalized by 100 and for PG and glycerol by 1000. The error bars are smaller than the size
of the symbols if not indicated otherwise. The critical temperatures Tc of the MCT are indicated for
the different materials. The data for salol are taken from [76], for PG from [16], for PPG from [77]
and for glycerol from [78]. b Shape parameter β from the Cole–Davidson function for the materials
shown in a
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groups. There are also some reports which show at least a rough agreement with the
predictions of MCT [76].

For all examined materials shown in Fig. 7b, the shape parameter β of the Cole—
Davidson function shows a strong temperature dependence. This holds in general
for the vast majority of glass-forming (low molecular weight and polymeric) mate-
rials and proves that relaxation processes do not obey the rule of time–temperature
superposition which is often employed in mechanical spectroscopy.

Schönhals [79] analysed the scaling of the dynamic glass transition for a variety of
glassy materials and suggested to display the twomeasured quantities, the relaxation
strength versus the mean relaxation rate. By that, he found unambiguously that as
different materials as salol, glycerol, propyleneglycol, dipropylenglycol, tripropy-
lenglycol and poly(propylene glycole), a pronounced change in the slope of the
correlation between the two dependent quantities exists. This crossover takes place
at a mean relaxation rate of about 108 Hz and marks perhaps the beginning of coop-
erative dynamics. For all materials, the relaxation strength increases strongly with
decreasing temperature. Extrapolated to high temperatures, the mean relaxation rate
is in the range between 1011 and 1013 Hz which is typical for highly activated libra-
tional fluctuations. The fact that a crossover temperature TB exists can be interpreted
in several ways; (i) TB and the critical temperature Tc of the MCT have some resem-
blance, hence the crossovermight reflect a transition from an ergodic to a non-ergodic
state. (ii) TB can be also comprehended as the onset of a cooperative dynamics as
suggested by Donth [6, 7]. It is characterized by cooperatively rearranging domains
having a size ξ (T ) which increases with decreasing diameter. At the calorimetric
glass transition temperature Tg, a value between 2 and 3 nm can be estimated based
on multiple studies [80] of glassy dynamics in nanometric confinement (Fig. 8).

The mode-coupling theory makes detailed predictions for the minimum region
between the “microscopic peak” and the dynamic glass transition following a master
function:

ε′′(ω) � ε′′
min
a + b

[
b

(
ω

ωmin

)a

+ a
(ωmin

ω

)b
]

(25)

with temperature-independent exponents a and b being interrelated as

Γ 2(1 + b)

Γ (1 + 2b)
� λ � Γ 2(1 − a)

Γ (1 − 2a)
(26)

where � is the �-function. The exponents can be as well determined from the tem-
perature dependence of the frequency of the minimum of the susceptibility and of
the frequency of the maximum ωmax of the dynamic glass transition
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Fig. 8 Relaxational strength �ε, normalized with its maximum value versus the mean relaxation
rate log νmax for salol, propylene glycol (PG), poly(propylene glycol) (PPG) and glycerol as indi-
cated. At the temperature TB, the slope of the correlation between �ε and νmax changes. The data
for salol are taken from [22], for PG and PPG from [16] and for glycerol from [81]

ωmin ∼
∣∣∣∣T − Tc

Tc

∣∣∣∣
1
2a

(27)

ωmax ∼
∣∣∣∣T − Tc

Tc

∣∣∣∣
( 1
2a +

1
2b )

(28)

Carrying out such an analysis delivers for glycerol a value of a �0.325 and b �
0.63. For the lowest temperatures, the increase towards the boson peak approaches a
power law ε′′ ~ν3 as indicated by the dashed line in Fig. 9. The inset demonstrates for
two temperatures that the simple superposition ansatz of, Eq. (25), is not sufficient
to describe the shallow minimum.
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Fig. 9 Dielectric loss of glycerol in theminimumand boson peak region. The solid lines are fitswith
the MCT prediction, Eq. (10), with a �0.325, b �0.63 for glycerol. For the lowest temperatures,
the increase towards the boson peak approaches power laws ε~ν3 for glycerol as indicated by the
dashed line. Note that, in contrast to PC, the boson peak seems to be superimposed to the shallow
minimum in glycerol. The inset demonstrates for two temperatures that the simple superposition
ansatz, Eq. (9), is not sufficient to explain the shallow minimum. Taken from [82] with permission

4 Conclusions

In the spectral range between 10−3 and 1013 Hz, four dynamic processes take place in
the dynamic glass transition, slow and fast secondary relaxations and the boson-peak.
The questions formulated in the introduction can be answered in detail:

(i) Is there a scaling function which describes the temperature dependence of the
mean relaxation rate in the entire spectral range from 10+13 to 10−3 Hz and
below?
For all materials under study, none of the suggested scaling functions is able to
describe the observed temperature dependence of the mean relaxation rate in
the entire spectral range. The analysis of the data using derivative plots reveals
furthermore, that even in the high-frequency limit an Arrhenius dependence
does not describe the measurements within the limits of experimental accu-
racy. The empirical Vogel–Fulcher–Tammann dependence turns out to be a
coarse-grained description only within a limited temperature range. There is
no indication pointing towards a divergence at the Vogel temperature T 0.

(ii) How does the relaxation time distribution function change with temperature or
in other words, is time–temperature superposition in general valid for (dielec-
tric) relaxation processes?
The relaxation time distribution function with its shape parameters β and γ

shows a pronounced temperature dependence. Hence, time–temperature super-
position is not valid in general.
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(iii) How does the strength �ε of a relaxation process change with temperature in
the course of the dynamic glass transition?
The relaxation strength �ε of the dynamic glass transition decreases with
increasing temperature, an effectwhich can be not explained by the temperature
dependence of the density. Instead an increasing length scale of the dynamic
glass transition seems to be likely resulting in an increased effective dipole
moment.

(iv) What is the molecular origin of the “high-frequency” wing which is observed
in the dynamic glass transition of many (low molecular weight and polymeric)
systems?
Several glass formers show a high-frequency wing; it is considered as a slow
secondary relaxation which might be coupled to the dynamic glass transition.

(v) What is the assignment of the “fast secondary relaxation”?
In the spectral range between 109 and 1012 Hz, a fast secondary relaxation is
observed. It can be quantitatively described by the MCT.

(vi) Is there a characteristic temperature, where glassy dynamics undergoes a
change?
As suggested by A. Schönhals, one observes by displaying the correlation
between the two dependent variables, relaxation strength and mean relaxation
rate—without any assumptions—a transition at about 108 Hz. This might be
interpreted as the onset of cooperative dynamics with decreasing temperature.

Acknowledgements Support byM.Anton in preparing someof the figures is highly acknowledged.
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