
SEMFS: Secure and Efficient Multi-keyword
Fuzzy Search for Cloud Storage

Sanjeet Kumar Nayak(B) and Somanath Tripathy

Department of Computer Science and Engineering,
Indian Institute of Technology Patna, Patna, India

{sanjeet.pcs13,som}@iitp.ac.in

Abstract. Cloud computing has become a popular technology for out-
sourcing data and providing reliable data services. Encryption is essen-
tial to preserve privacy of the outsourced sensitive data. Keyword search
over encrypted data would enhance the effective utilization of outsourced
storage. In this work, we propose an efficient Searchable Symmetric
Encryption (SSE) scheme called SEMFS (Secure & Efficient Multi-
keyword Fuzzy Search Scheme) to allow the cloud to search over out-
sourced encrypted data. SEMFS uses quotient filter for efficient index-
ing and faster searching. The most attractive feature of this scheme is
to allow update the entries of index file dynamically (to achieve better
performance) preserving data privacy. Experimental analysis shows that
SEMFS achieves higher throughput than the bloom filter based scheme,
when implemented. Security of SEMFS has been analyzed against known
ciphertext and known plaintext attack models.

Keywords: Cloud storage · Searchable symmetric encryption
Multi-keyword search · Quotient filter · Fuzzy search

1 Introduction

With the advancement of cloud computing, data outsourcing has become a major
motive of several individuals and enterprises. But simply outsourcing the sensi-
tive data like personal, financial, medical, etc., in plaintext format would lead to
security risk. In addition to this, there could be risks from cloud storage server,
as both data owner (DO) and cloud server (CS) are not in the same trusted
domain [24]. This issue would be addressed if encrypted data is uploaded on CS.
As DO outsources data in encryption format, it creates difficulty for the data
users (DUs) to search a data file using keywords. Therefore, there is a call for
some mechanisms to facilitate data users to search directly over the encrypted
data.

Searchable encryption (SE) facilitates DU to securely search a file from
encrypted files, using certain specific keywords without decrypting. Hence, SE
is a widely adopted solution that helps DU to search over a vast collection of

c© Springer International Publishing AG 2017
R. K. Shyamasundar et al. (Eds.): ICISS 2017, LNCS 10717, pp. 50–67, 2017.
https://doi.org/10.1007/978-3-319-72598-7_4

SEMFS: Secure and Efficient Multi-keyword Fuzzy Search for Cloud Storage 51

outsourced data. There are two kinds of SE schemes, namely, searchable symmet-
ric encryption (SSE) and searchable public-key encryption (SPE). The inherent
cryptographic techniques used by the SSE and SPE schemes are symmetric key
cryptography and asymmetric key cryptography respectively. SSE schemes are
more efficient and easier to implement as compared to SPE based schemes.

Song et al. [27] presented a searchable encryption which searches the entire
document sequentially, so consumes more time. Subsequently, many works
including [6,11,13] have been proposed to address this issue, using index based
matching of keywords. But, unfortunately, all these schemes facilitate single key-
word search over encrypted data. For enriching the search functionality, several
schemes like [7,14,16] proposed multiple keyword search over encrypted data.
However, these schemes only support exact keyword search. But, in practical
scenario user searching behavior would lead to minor typing mistakes and for-
mat inconsistencies. Data users may not input exactly the same pre-set keyword
due to some typos, inconsistencies in the representation of the word or due to
lack of exact knowledge. Recently, few works [10,17,19,20] extended the search
functionality to address this issue supporting user searching behavior (known as
fuzzy search). Wang et al. [29] proposed an efficient multi-keyword fuzzy search
over the encrypted data. They used bloom filter for efficient search algorithm.

In this paper, we propose an efficient multi-keyword fuzzy search technique
for cloud storage named SEMFS. It preserves privacy of the index file, search
query and documents without needing predefined dictionary for dynamic data
operation. We use quotient filter for the first time to enable searching over
encrypted data; as a result, SEMFS achieves efficient indexing and faster search-
ing as compared to bloom filter based scheme. This scheme allows the data
owners to directly update the secure index file present in the cloud server if the
corresponding files are modified. The effectiveness and efficiency of the scheme is
evaluated using experimental evaluation. Along with this, we analyze the security
of the proposed scheme against known ciphertext and known plaintext attack
models.

The rest of the paper is organized as follows. Section 2 discusses the related
works in this area. Section 3 describes the system model and threat model. In
Sect. 4, we introduce details of our proposed scheme. We describe the security
analysis of the proposed scheme in Sect. 5. Section 6 provides some discussions
on the proposed scheme along with performance analysis. Finally, the concluding
remarks are provided in Sect. 7.

2 Related Work

Searchable encryption (SE) was first proposed by Song et al. [27]. The motive
behind their proposal is to enable searching on encrypted data without leaking
any information to the untrusted server. Their scheme is a symmetric key based
proposal. Here, data user has to go through the entire document to search a
particular keyword in a document. So searching overhead is linear in terms of
length of the document. In [13], the author has developed a secure index per

52 S. K. Nayak and S. Tripathy

file to reduce the searching overhead. A data user can query for a keyword
using the trapdoor which is a function of keyword and secret key. Bloom filter
[5], a space efficient data structure, is used as a per document index to track
words in each document. Thus, searching overhead is reduced. The authors in
[9] proposed a keyword index which associates each word with its corresponding
file. Data owner uses pseudo random bits to mask the dictionary based keyword
index for each file and sends it to the cloud server. Later the data user recovers
the index. Curtmola et al. [11] proposed an inverted index based searchable
symmetric encryption scheme which indexes per-keyword. A single encrypted
hash table is built for the entire file collection. Here, each entry consists of a
keyword trapdoor corresponding to the encrypted form of those file identifiers
contain that keyword. The searching scheme proposed in [28] reduces the search
time to logarithm order. It ensures the privacy of searched keywords. First public
key encryption with keyword search (PKES) scheme is given by Boneh et al. [6].
Functionality of this scheme is quite similar to that of the Song et al. [27]. But,
only the authorized data users can search with the corresponding private key.
This scheme uses an adversary model similar to Goh et al.’s scheme [13], but
requires the use of computationally intensive pairing operations [21]. All above
works support single keyword search over the outsourced encrypted data.

As multiple keyword search has become a necessary functionality of SE
schemes, many techniques try to incorporate this. Among these works, conjunc-
tive keyword search schemes [14–16] return the list of documents that contain
all the keywords while disjunctive keyword search schemes [7,33] return list of
documents that contain a subset of query words. However, these multi-keyword
search schemes do not provide ranking of the search result, which helps in retriev-
ing most relevant files containing the keywords. Cao et al. [8] proposes a privacy
preserving multi-keyword ranked search scheme over encrypted data.

A fuzzy keyword search algorithm proposed by Li et al. [19]. This is a wild
card based scheme and facilitates the data users to search the desired file with
minor typing errors and even if the format is inconsistent. Liu et al. [20] improves
this scheme by reducing the index size. Chuah et al. [10] proposed a privacy
preserving tree based fuzzy searching algorithm. All these schemes support single
keyword based fuzzy search. Later Wang et al. [29] proposes a multi-keyword
based fuzzy search using bloom filter. It uses locality sensitive hashing in place of
wild cards to enhance the efficiency of fuzzy search. Along with this, it eliminates
the need of a predefined dictionary for dynamic data updation.

3 Problem Formulation

3.1 System Model

A typical system model for secure search over encrypted data is as shown
in Fig. 1. It consists of three entities, namely, data owner (DO), cloud server
(CS) and data user (DU). DO outsources the data files (documents) to an
untrusted cloud server. Each document contains a set of words referred as “key-
words”, through which the document can uniquely be identified. Keywords can

SEMFS: Secure and Efficient Multi-keyword Fuzzy Search for Cloud Storage 53

Fig. 1. Cloud data storage architecture for secure search over encrypted data.
(Color figure online)

be extracted by analyzing the entire document either manually or through an
automated procedure or more sophisticated text mining algorithms like multi
purpose automatic topic indexing (Maui) [22] and rapid automatic keyword
extraction (RAKE) [25]. DU submits a set of keywords as a query to CS.
CS returns the corresponding files by searching those keywords in the index file.
Let F = {f1, f2, f3, ..., fn} denotes the set of files that DO wants to outsource.
To protect the confidentiality, these files could be encrypted using symmetric
encryption like advanced encryption standards (AES) [12].

To facilitate searching over encrypted files in efficient manner, DO creates a
quotient filter based secure searchable index file (QFi) using a secret key (Ksec).
QFi is formed using a collection of distinct keywords W = {w1, w2, w3, ..., wm}
of the file fi. Finally, data owner outsources both F and QFi to CS. Cloud server
stores F and QFi in its data storage to enable data searching mechanism for DU.
When DU sends a trapdoor (Tkw

′) of a keyword kw
′

to CS, it checks for the
same in QFi. It sends the corresponding collection of files. In addition to this
necessary operations, DO sometimes update a file and corresponding QFi and
informs regarding the same to the cloud server.

Initially, data owner shares the symmetric encryption key (Ksym) and secret
key (Ksec) to all authorized DUs. Using Ksec, DU generates the trapdoor (Tkw

′)
of a keyword kw

′
and sends it to CS. Cloud server searches for the corresponding

trapdoor in the index file and returns the encrypted data files to DU. DU can
decrypt those files using Ksym.

3.2 Threat Model

Cloud server is considered to be an “honest-but-curious.” This signifies that CS
executes secure searching over outsourced data honestly, at the same time it is

54 S. K. Nayak and S. Tripathy

curious to derive the information regarding queried word [18,30]. However, data
owner and data user are assumed to act honestly and trust each other. The focus
of this work is mainly over confidentiality rather than availability. Distribution of
the secret informations (Ksym, Ksec) are being performed via a secure channel,
and such key distribution mechanisms are studied separately in [2,23].

Based on the information available to CS, we consider the following two
threat models.

– Known Ciphertext Model: In this model, the cloud server has access to
the collection of encrypted files F , secure index file I (outsourced by DO)
and trapdoor of the keyword Tkw

′ (submitted by DU). Further, CS can have
a collection of previously submitted trapdoors.

– Known Plaintext Model: This model is more stronger than the previous
model. Here, the cloud server has some extra background knowledge includ-
ing the information of the known ciphertext model. Background information
includes statistical information that can be generated using a similar kind of
data set as that data owner used. They can use the known index/trapdoor
generation mechanism using frequency of words. This information can help
them to find some private information of the data owner.

In both these models, target of CS is to derive exact keywords that
DU searches. It will also try to find the content of the encrypted files which
can leak privacy of the keywords.

3.3 Design Goals

To enable secure searching over encrypted data with the above system and threat
model the following design goals are desired.

– Multi-keyword Fuzzy Search: This feature allows to search multiple key-
words using logical connectives like “AND”, “OR”, etc. This scheme should
allow fuzzy search so that minor typos and format inconsistencies will not
disappoint the user searching experience. For example, files containing key-
word “international football match” should be returned as a search result for
the mis-typed word “international football mach” or “internasional football
match.”

– Dynamic Update: DO sometimes update a file and corresponding QFi

stored in the cloud server has to be updated. So, scheme should be designed
to provide dynamic data operation (insertion/deletion/modification) over the
secure index file in an efficient manner.

– Ranking of Search Result: Scheme should rank the relevance of files in
response to a given search query for the convenience of the data user.

– No Predefined Dictionary: Use of a predefined dictionary for the search
operations leads to difficulty during dynamic update of index file. Schemes
without predefined dictionary can update index file comfortably.

– Confidentiality of Document, Privacy of Index File and Trapdoor:
The keywords stored in the index file as well as the search query (or trapdoor)

SEMFS: Secure and Efficient Multi-keyword Fuzzy Search for Cloud Storage 55

should not reveal any information to the cloud server regarding the searched
keywords (wi). As the outsourced documents are present in the CS, they have
to be encrypted to preserve the confidentiality of the documents. Therefore,
if any one of the three is not encrypted, then the privacy of the searched
keyword may leak.

4 SEMFS: The Proposed Scheme

4.1 Basic Idea

SEMFS creates a per file quotient filter (QFi) which contains an index informa-
tion of all the keywords present in file fi. To enable multi-keyword search, we
convert each keyword into a trigram set and use a modified quotienting function
to insert the trigram set into QFi. Quotient filter and trigram set are precisely
discussed as under.

Quotient Filter: Quotient filter (QF) has been introduced by Bender et al.
in [4]. It is a time-efficient data structure for representing a set, to support
membership queries. QF returns no to the membership query assures that the
queried element is definitely not present in the set. Otherwise, the element is
said to be probably present. Thus, quotient filter never returns false negative.

QF stores a m bit hash value (known as fingerprint (FP)) of an element
E as follows. This m bit value is split into two parts as remainder (FPr) and
quotient (FPq). The least significant r bit constitute remainder and the most
significant q = m−r bit constitute quotient (FPq). This is known as quotienting
technique. FPq is used as an index to find the corresponding slot (or bucket) for
FP in the QF and the slot is filled with FPr. Inserting a fingerprint in QF may
encounter a soft collision when only FPq of two or more fingerprints are same.
The canonical slot is the bucket in which a fingerprint’s remainder (FPr) would
be stored in the absence of a collision. All remainders of fingerprints with the
same quotient are stored contiguously, and known as run for the corresponding
quotient. Hence, a run constitutes of all the slots that contain remainders with
the same quotient. But, a cluster is a greater sequence of occupied slots whose
first element is the only element stored in its canonical slot. One or more runs
may present in a cluster.

To search a stored fingerprint within a cluster, each bucket contains addi-
tional three bits known as is occupied, is continuation, is shifted. All these
are initialized to 0 at the beginning. is occupied bit of bucket i is set when
the bucket i is the canonical slot (FPq = i) for some fingerprint FP which is
stored somewhere in QF. is continuation bit is set to 0 indicates the start of
a run. is shifted bit is set to 0 indicates start of a cluster. Algorithms 1 and 2
describe the searching and insertion procedure of a fingerprint FP in the QF
respectively [3].

A schematic diagram of a QF is shown in Fig. 2. This example considers
FPq =

⌊
FP
28

⌋
and FPr = FP mod 28. This QF contains fingerprint values 258,

56 S. K. Nayak and S. Tripathy

Algorithm 1. To search an element E in QF
Input: QF, E

Output: Probably present/Definitely not present
1: Find fingerprint (FP) of E.
2: Find quotient (FPq) and remainder (FPr) for FP .
3: Set running count ← 0.
4: if ¬(is occupied QF[FPq] = 0) then � bucket FPq is empty
5: FP is not present in the filter.
6: else
7: repeat
8: Scan left from bucket FPq

9: if is occupied = 1 then
10: running count ++;
11: end if
12: until find a bucket with is shifted = 0
13: repeat
14: Scan right from current bucket
15: if is continuation = 0 then
16: running count −−;
17: end if
18: until running count = 0
19: Compare the stored remainder in each bucket in the quotient’s run with FPr.
20: if found then
21: Element is in the filter (probably).
22: else
23: Element is not in the filter (definitely).
24: end if
25: end if

Algorithm 2. To insert an element E in QF
Input: QF, E

Output: QF with E inserted
1: Find fingerprint (FP) of E.
2: Find quotient (FPq) and remainder (FPr) for FP .
3: Proceed as Algorithm 1 till FP is definitely not in QF.
4: Choose a bucket in the current run by keeping the order sorted.
5: Insert FPr and (set is occupied bit).
6: Shift forward all remainders at or after the chosen bucket. Update the buckets’

bits.

369, 124, 66, 469, 58 and 364. Figure 2 (a) presents the quotient, remainder pair
for each fingerprint. Using these quotients and remainders, we inserted corre-
sponding fingerprints using Algorithm2 in the QF. At last, the contents of QF
is shown in Fig. 2 (b). Here, remainders are stored in the corresponding bucket
(quotient represents the bucket number) in the filter. Each bucket of QF con-
tains three bits known as is occupied, is continuation, is shifted (meta data)
and the remainder. Here, fingerprints 124, 66, and 58 have the same quotient

SEMFS: Secure and Efficient Multi-keyword Fuzzy Search for Cloud Storage 57

Fig. 2. An example of quotient filter

and constitute a run. Even though 258 could be placed in slot 1, but as run of 0
occupies 3 slots, it is shifted from its canonical slot. Fingerprints 258, 369, 469,
and 364 constitute run of quotient 1. Fingerprints 258, 369, 124, 66, 469, 58 and
364 constitute a cluster.

Trigram Set Construction from Keyword: Each keyword of the corre-
sponding file is transformed into a trigram set (TS). A trigram set contains all
the contiguous three letters appeared in the keyword (considering circular way).
For example, the trigram set of a keyword “relativity” is {rel, ela, lat, ati, tiv,
ivi, vit, ity, tyr, yre}. Here, we assume that keywords ∈ {a, b, ..., z}+.

Each different trigram element (of alphabet set) is enumerated to a unique
decimal number using a function F which works as follows. Letters [a · · · z] are
mapped to [0 · · · 25]. The equivalent decimal representation of the trigram entry
can be obtained using Eq. 1.

�i = F(TSi) = (TSi[0] ∗ 262 + TSi[1] ∗ 261 + TSi[2] ∗ 260) (1)

For example,
F(rel) = (r ∗ 262 + e ∗ 261 + l ∗ 260)

= (17 ∗ 262 + 4 ∗ 261 + 11 ∗ 260)
= (11492 + 104 + 11) = 11607

Now, the modified representation of TS (i.e. �i,∀i ∈ TS) contains equivalent
decimal representations of a trigram.

Inserting Trigrams into Quotient Filter: At first, �i is divided into two
parts (�iq and �ir) as

�iq =
⌊

�i

β

⌋
(2)

�ir = �i mod β (3)

58 S. K. Nayak and S. Tripathy

Here, β is a user defined parameter.1 �iq is used as an index in QF and �ir is
stored in the corresponding slot. Insertion is carried out as per Algorithm2.

4.2 Operational Details of SEMFS

SEMFS consists of following four phases as depicted in Fig. 3 and discussed
below.

Fig. 3. Schematic diagram of proposed SEMFS.

1. Key generation phase: DO generates a secret key (Ksec) and a symmetric
key (Ksym) to be shared with the DUs. It declares a secure hash function (H)
like SHA 2 [1] and symmetric encryption algorithm like advanced encryption
standard (AES) [12]. In addition, data owner declares a system wide parame-
ter L which indicates the level of fuzziness. Level of fuzziness would be defined
as the ability of the technique to support at most L number of typing mistake
or format inconsistencies. For example, if L = 1, then SEMFS should return
the files indexed by keywords “Tom and Jane”, when a data user submits
query for the keywords “Tom amd Jane.”

2. Index building phase: In this phase, DO constructs a QF using
Algorithm 3 with the input as keywords (kwj) of the corresponding file.

1 Let, α×β = γ where α is the total number of slots in QF and β is the total number
of different values that can be stored in each slot.

SEMFS: Secure and Efficient Multi-keyword Fuzzy Search for Cloud Storage 59

A delimiter (like “,”) may be placed at the end of each keyword as the termi-
nating character. Then, a trigram set (TS) is constructed for each keyword.
Each entry of TS is represented in equivalent decimal form. Hash digest of
the equivalent decimal form of trigram entry and Ksec (secret key) is com-
puted. Then, the digest is divided by β, results into quotient and remainder
which would be inserted into QFi accordingly using Algorithm 2. Finally, this
algorithm results in a secure index (QFi) of the corresponding file fi. QFi is
treated as secure index of the file fi as CS does not know Ksec.

Now DO encrypts file (fi) using AES with key Ksym and uploads the
encrypted file (E (fi)) with the corresponding secure index file QFi to the CS.

Algorithm 3. BuildIndex
Input: fi, kwj , H, Ksec, γ
Output: QFi

1: for j = 1 to m do � for each keyword {kw1, ..., kwm} in fi

2: Construct trigram set TSj = {t1, ..., tp}.
3: for k = 1 to p do
4: Find decimal representation of tk

(
�k

)
.

5: Find Ck = H
(
�k||Ksec

)
.

6: Find Ck = Ck mod γ � γ = α × β

7: Find Ckq =
⌊

Ck
β

⌋
and Ckr = Ck mod β

8: Using Ckr and Ckq insert Ck in the QFi.
9: end for

10: end for

3. Trapdoor generation phase: In this phase, DU builds trapdoors for each
keyword (to be searched) using Algorithm 4. Then, a trigram set TS

′
is

constructed for each keyword (after placing the same delimiter used during
index building phase) to be searched. Each entry of TS

′
is represented in

equivalent decimal form. Hash of the equivalent decimal form of trigram entry
and Ksec is computed. This digest value is inserted into the trapdoor set
(Tkw

′). Then, DU sends (Tkw
′) to the CS.

4. Searching phase: Here, CS executes Algorithm 5 to get the list of
corresponding encrypted files E (fi) containing the keywords present kw

′
.

Algorithm 5 searches for each element of Tkw
′ (i.e. Cj

′
) in each QFi using

Algorithm 1 and remembers the number of matching found. As proposed
scheme SEMFS converts all the keywords (either to insert in QFi or to search
in QFi) into trigram format, then, three trigrams will be affected if one letter
is mismatched. As L defines the permissible number of typing mistakes or
format inconsistencies that will be relaxed to find the corresponding file that
contains the keywords, we say if number of matching is ≥ 3L, the correspond-
ing file is returned by this algorithm. At last, a collection of all such files is
sent back to the DU. Upon receiving the encrypted files, DU will decrypt the
files using symmetric encryption key Ksym.

60 S. K. Nayak and S. Tripathy

Algorithm 4. BuildTrapdoor

Input: kw
′
, H, Ksec, γ

Output: Tkw
′

1: for j = 1 to q do � for each keyword to be searched kw
′
= {kw1

′
, ..., kwq

′}
2: Construct trigram set TSj

′
= {t1

′
, ..., tr

′}.
3: for k = 1 to r do
4: Find decimal representation of tk

′(
�k

′)
.

5: Find Ck
′
= H

(
�k

′ ||Ksec

)
.

6: Find Ck
′
= Ck

′
mod γ

7: Insert Ck
′

into trapdoor set (Tkw
′).

8: end for
9: end for

Algorithm 5. IndexSearch
Input: Tkw

′ , L
Output: fi

1: count ← 0
2: for i = 1 to n do
3: for j = 1 to ψ do � |Tkw

′ | = ψ

4: if Cj
′ ∈ QFi then

5: count ← count + 1
6: end if
7: end for
8: if count ≥ (ψ − 3L) then
9: return fi

10: end if
11: end for

5 Security Analysis

In this section, we analyze the security of SEMFS under two different kinds of
security attack models, namely, known ciphertext model and known plaintext
model.

5.1 Confidentiality of Files

In SEMFS, the outsourced files (E (fi)) are encrypted using a standard symmet-
ric encryption algorithm AES [12]. In addition to this, DO sends Ksym (used
to encrypt/ decrypt the files) through a secure channel to the authorized DUs.
Without this key, CS can not decrypt the files as AES encryption scheme is
secure. So, confidentiality of the files can be achieved.

5.2 Privacy Protection of Index Files

In case of known ciphertext model, CS has only the following information. It
has access to the quotient filter (QFi), encrypted files (E (fi)) and trapdoor set

SEMFS: Secure and Efficient Multi-keyword Fuzzy Search for Cloud Storage 61

Tkw
′ . To break the security of SEMFS under known ciphertext model, CS could

try to guess the content of QFi to find exact keywords of fi. But, due to the
following reasons, CS fails to guess the content of QFi correctly.

In index building phase, DO inserts Ck’s (= Ck mod γ) in quotient filter
QFi, where Ck = H

(
�k||Ksec

)
. Ck’s are computed using a secret key Ksec. As

DO sends Ksec through a secure channel to the authorized DUs, CS cannot know
Ksec. In addition to this, it is computationally difficult for the CS to find Ck and
Ksec, only by knowing the digest of secure hash function (H) as it is a one-way
hash function. Hence, the content of the index file QFi is well protected from
CS in SEMFS.

In case of known plaintext model, including the information regarding quo-
tient filter, encrypted files and trapdoor set, CS has extra information regarding
plaintext of some documents. It is computationally difficult for the CS to gen-
erate a correct index file (same as that of the DO) of the files using the known
information regarding plaintext of some documents due to the following reason.
As Ksec is used to generate Ck and only DO and authorized DUs know Ksec,
CS cannot generate correct Ck. Also, CS cannot find Ksec by knowing a pair of
trigram �k and corresponding encrypted trigram Ck due to the one way prop-
erty of hash function. Hence, the index file generated by the CS will be different
from the original one. Thus, content of the index file QFi is well protected from
CS in SEMFS under known plaintext model.

5.3 Privacy Protection of Search Query

In case of known ciphertext model, CS has only the following information. It has
access to the trapdoor set Tkw

′ , quotient filter (QFi) and encrypted files (E (fi)).
It has access to the trigram set Tkw

′ . To break the security of SEMFS under
known ciphertext model, CS could try to guess the content of trapdoor set Tkw

′

to know exact keywords that DU wants to search. But, due to the following
reasons, CS fails to guess the content of Tkw

′ correctly.
In the trapdoor building phase, DU constructs the trapdoor set Tkw

′ which
contains Ck

′
(= Ck

′
mod γ, where Ck

′
= H

(
�k

′ ||Ksec

))
. Ck

′
’s are computed

using a secret key Ksec. As DO sends Ksec through a secure channel to the
authorized DUs, CS cannot know Ksec. In addition to this, it is computationally
difficult for the CS to find Ck

′
and Ksec, only by knowing the digest of secure

hash function (H) as it is a one-way hash function. Hence, the privacy of the
trapdoor set Tkw

′ is protected from CS in SEMFS.
In case of known plaintext model, including the information regarding quo-

tient filter, encrypted files and trapdoor set, CS has extra information regarding
plaintext of some documents. It is computationally difficult for the CS to gener-
ate a correct trapdoor set (same as that of the DU) using the known information
regarding plaintext of some documents due to the following reason. As Ksec is
used to generate Ck

′
and only DO and authorized DUs know Ksec, CS cannot

generate correct Ck

′
. Also, CS cannot find Ksec by knowing a pair of trigram

�k

′
and corresponding encrypted trigram Ck

′
due to the one way property of

62 S. K. Nayak and S. Tripathy

hash function. Hence, the index file generated by the CS will be different from
the original one. Thus, privacy of the trapdoor set is preserved in SEMFS under
known plaintext model.

6 Discussion

6.1 Choice of Trigrams

Trigram set would be the best alternative as unigram and bigram set of a keyword
would be identical for those words with anagram. As an example, the unigram
set of “cat” and “act” is identical ({c, a, t}). Similarly, the bigram set of the
keywords “deeded” and “deed” are identical ({de, ee, ed}). Trigram set of these
two keywords are different ({dee, eed, ede, ded} and {dee, eed} respectively). This
kind of two meaningful words with same trigram set we could not find from
English dictionary and therefore conjectured to be least probable. Therefore, we
choose to represent keywords using a trigram set.

CS returns all the files correspond to the set of trapdoors, if the number of
matching trigrams ≤ 3L which is used in Algorithm 5. SEMFS converts all the
keywords into circular trigram format to ensure each letter is present in three
trigrams (otherwise, first and last letter will be present in only one trigram).
This ensures that exactly 3L numbers of trigrams mismatched between trigrams
present in trapdoor and trigrams present in QFi.

6.2 Efficient Index File Updation in SEMFS

After updating a document, DO needs update the corresponding index file also.
A straight forward way of updating (inserting/deleting/modifying) the index file
is to download it from the CS, update it and resend the updated index file to
CS, which is generally considered in bloom filter based searching schemes like
Wang et al. [29]. This method increases the I/O operation and file transfer cost
in the network. SEMFS supports direct updation of index file without down-
loading them as quotient filter supports addition and deletion of elements. In
SEMFS, the update on the index file is carried out by the CS when it receives
a tuple of 3 values 〈Ck,QFi,UpdateType〉 from the DO (Here, UpdateType ∈
{Insert, Delete}). CS insert/delete/modify Ck in QFi using similar procedure
as Algorithm 2. Here, CS cannot learn anything about the keyword as Ck is
generated using Ksec and H. Insertion or deletion of a whole document is also
possible in SEMFS.

6.3 Ranking the Search Result

Ranking of the search result immensely enhances schemes usability by returning
the matching files in a ranked order. SEMFS supports ranking of search results.
For this CS has to do some additional work during the searching phase. It main-
tains a list containing name of the file and number of matching trigrams. This

SEMFS: Secure and Efficient Multi-keyword Fuzzy Search for Cloud Storage 63

list is sorted in ascending order the number of matching trigrams. Now, top-k
most relevant files corresponding to DU’s interested keyword are sent to the DU.

Keyword’s frequency can also be considered as a tool to find the relevance
between the files and keywords which can help in ranking the search result. Rel-
evance score of a keyword for a file is more if the frequency of the keyword is
more in the document. A scoring technique is widely used in plaintext informa-
tion retrieval [26]. It helps in choosing most relevant document containing a set
of keywords when we find more than one documents containing the same set of
keywords.

6.4 Performance Analysis

Search functionalities like single keyword search, multiple keyword search, fuzzy
keyword search, ranked keyword search, requirement of index file, requirement of
predefined dictionary, confidentiality of files, preserving privacy of index file and
preserving privacy of trapdoor are the important features need to be considered
for designing an efficient SSE scheme in cloud storage. Table 1 summarizes the
comparison of said features for different existing schemes with SEMFS. [9,27] and
[13] schemes do not support multiple keyword search, while [11,15,30–32] and
[18] do not support fuzzy keyword search. However, Li et al.’s scheme [19] enables
fuzzy search but suitable for a single keyword searching. Later on Wang et al. [29]
proposed an SSE scheme based on Bloom filter that enables fuzzy multi-keyword
search. It can be observed that, SEMFS supports all the search functionalities
mentioned earlier. Along with these functionalities, SEMFS performs dynamic
update of index files efficiently.

To verify the efficiency of SEMFS, we implemented both bloom filter and
quotient filter on a PC equipped with Intel Core i5 processor at 3.2 GHz and
4 GB RAM. An introduction to bloom filter is provided in AppendixA. Figure 4
shows that the time consumed by quotient filter during insertion and searching
process is less than bloom filter as the number of elements increases. It can
be observed from the result that with the increase in number of elements the
speedup of quotient filter increases as compared to bloom filter as only a single
hash function is required in case of quotient filter. We implemented Wang et
al.’s scheme [29] and SEMFS and the result is shown in Fig. 5. This result is
obtained for a single file with gradually increasing the number of keywords.
Index generation time and trapdoor generation time of the respective schemes
are very close as algorithms for index file generation and trapdoor generation are
identical. Index file generation time and trapdoor generation time in Wang et al’s
scheme is more as compared to SEMFS in both Fig. 5 (a) and (b) respectively
due to the following reason. Wang et al’s scheme is a bloom filter based scheme
and contain extra matrix multiplications than SEMFS. Therefore, we assure
that the SEMFS is efficient as compared to Wang et al.’s scheme [29] with the
application of QF for searchable symmetric encryption.

64 S. K. Nayak and S. Tripathy

Table 1. Comparison of SSE schemes in cloud storage

Schemes SKWS MKWS FKWS RKWS IF PD PP CD

Song et al. [27] Y N N N N N N Y

Chang et al. [9] Y N N N Y Y N Y

Goh et al. [13] Y N N N Y N Y Y

Curtomola et al. [11] Y Y N N Y Y Y Y

Wang et al. [30] Y Y N Y Y N Y Y

Wang et al. [31] Y Y N Y Y N Y Y

Yu et al. [32] Y Y N Y Y Y Y Y

Li et al. [18] Y Y N Y Y Y Y Y

Li et al. [19] Y N Y N Y N Y Y

Wang et al. [29] Y Y Y N Y N Y Y

Hong et al. [15] Y Y N N Y N Y Y

SEMFS Y Y Y Y Y N Y Y

SKWS: Single Keyword Search, MKWS: Multiple Keyword Search, FKWS:
Fuzzy Keyword Search, RKWS: Ranked Keyword Search, IF: Requirement of
Index File, PD: Requirement of Predefined Dictionary, PP: Privacy Preserving,
CD: Confidentiality of Document

10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of elements

T
im

e
to

 I
ns

er
t

(m
ill

is
ec

on
ds

)

Bloom Filter
Quotient Filter

(a)

10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

Number of elements

T
im

e
to

 S
ea

rc
h

(m
ill

is
ec

on
ds

)

Bloom Filter
Quotient Filter

(b)

Fig. 4. Insertion and searching time comparison between bloom filter and quotient
filter

10 15 20 25 30 35 40 45 50
0

50

100

150

200

250

Number of Keywords

In
de

x
G

en
er

at
io

n
T

im
e

(m
ill

is
ec

on
ds

)

Wang et al. scheme
SEMFS

(a)

10 15 20 25 30 35 40 45 50
0

50

100

150

200

250

Number of Keywords

T
ra

pd
oo

r
ge

ne
ra

ti
on

 t
im

e
(m

ill
is

ec
on

ds
)

Wang et al. scheme
SEMFS

(b)

Fig. 5. Index generation and trapdoor generation time comparison between Wang
et al.’s scheme [29] and SEMFS

SEMFS: Secure and Efficient Multi-keyword Fuzzy Search for Cloud Storage 65

7 Conclusion

Sensitive data are encrypted (to preserve privacy) before storing remotely, so
achieving effective utilization of stored data in cloud has become challenging.
This work proposed an efficient Searchable Symmetric Encryption (SSE) scheme
called SEMFS which facilitates the data owner to outsource the encrypted data
allowing a user to search the file using trapdoor (of keyword) without giving
a clue to others (including CS) about the keyword. SEMFS uses quotient fil-
ter for efficient indexing and faster searching. Most appealing feature of the
proposed scheme is to support dynamic updation of index file. Experimental
analysis showed that SEMFS had higher throughput than the bloom filter based
scheme, when implemented.

Appendix A Bloom Filter

Bloom filter is a space-efficient data structure for representing a set in order to
support membership queries [5]. A bloom filter for representing a set S containing
n number of elements is described by an array of m bits size. All these m bits
are initialized to 0. It uses k independent hash functions defined as H = {hi|hi :
S → [1,m], 1 ≤ i ≤ k}. To insert an element s ∈ S into the bloom filter, all the
hi(s)-th position are set to 1 in the m bit array. To search an element q ∈ S,
first we find k number of array positions using hi(q), 1 ≤ i ≤ k. Then, we check
if the corresponding bit of any of the k position is 0, then q is definitely not
present in the set S. Otherwise, q probably present in the set S. Consider the
following example. Figure 6 shows an example of bloom filter with m = 10 and
k = 3. Here, the filter represents the set S = {A,B}. Black colored arrow shows
the corresponding positions of the bloom filter that each element of set S is
mapped to. Now if we will search for an element D, then we can observe from
the figure that at least one position to which D is mapped contains 0 (shown
in red colored lines). So D is definitely not present in the set. If we will search
for an element C, then we can observe from the figure that all the positions to
which C is mapped contain 1. Hence, C is probably present in the set.

Fig. 6. An example of boolean filter (Color figure online)

66 S. K. Nayak and S. Tripathy

References

1. Secure Hash Algorithm 2. http://csrc.nist.gov/publications/fips/fips180-2/
fips180-2withchangenotice.pdf

2. Adusumilli, P., Zou, X., Ramamurthy, B.: DGKD: distributed group key distri-
bution with authentication capability. In: Proceedings of the Sixth Annual IEEE
SMC Information Assurance Workshop, pp. 286–293. IEEE (2005)

3. Bender, M.A., Farach-Colton, M., Johnson, R., Kraner, R., Kuszmaul, B.C., Med-
jedovic, D., Montes, P., Shetty, P., Spillane, R.P., Zadok, E.: Don’t thrash: how to
cache your hash on flash. Proc. VLDB Endow. 5(11), 1627–1637 (2012)

4. Bender, M.A., Farach-Colton, M., Johnson, R., Kuszmaul, B.C., Medjedovic, D.,
Montes, P., Shetty, P., Spillane, R.P., Zadok, E.: Don’t thrash: how to cache your
hash on flash. In: Proceedings of the 3rd USENIX Conference on Hot Topics in
Storage and File Systems, p. 1 (2011)

5. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13(7), 422–426 (1970)

6. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24676-3 30

7. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data.
In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidel-
berg (2007). https://doi.org/10.1007/978-3-540-70936-7 29

8. Cao, N., Wang, C., Li, M., Ren, K., Lou, W.: Privacy-preserving multi-keyword
ranked search over encrypted cloud data. In: Proceedings of the IEEE INFOCOM
2011, pp. 829–837. IEEE (2011)

9. Chang, Y.-C., Mitzenmacher, M.: Privacy preserving keyword searches on remote
encrypted data. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005.
LNCS, vol. 3531, pp. 442–455. Springer, Heidelberg (2005). https://doi.org/10.
1007/11496137 30

10. Chuah, M., Hu, W.: Privacy-aware bedtree based solution for fuzzy multi-keyword
search over encrypted data. In: Proceedings of the 31st IEEE International Confer-
ence on Distributed Computing Systems Workshops (ICDCSW) 2011, pp. 273–281.
IEEE (2011)

11. Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryp-
tion: improved definitions and efficient constructions. In: Proceedings of the 13th
ACM Conference on Computer and Communications Security, pp. 79–88. ACM
(2006)

12. Daemen, J., Rijmen, V.: The Design of Rijndael: AES-The Advanced Encryption
Standard. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-662-04722-
4

13. Goh, E.J.: Secure indexes. Technical report 2003/216, IACR Cryptology ePrint
Archive (2003)

14. Golle, P., Staddon, J., Waters, B.: Secure conjunctive keyword search over
encrypted data. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS,
vol. 3089, pp. 31–45. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-24852-1 3

15. Hong, C., Li, Y., Zhang, M., Feng, D.: Fast multi-keywords search over encrypted
cloud data. In: Cellary, W., Mokbel, M.F., Wang, J., Wang, H., Zhou, R., Zhang,
Y. (eds.) WISE 2016. LNCS, vol. 10041, pp. 433–446. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-48740-3 32

http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
https://doi.org/10.1007/978-3-540-24676-3_30
https://doi.org/10.1007/978-3-540-24676-3_30
https://doi.org/10.1007/978-3-540-70936-7_29
https://doi.org/10.1007/11496137_30
https://doi.org/10.1007/11496137_30
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/978-3-540-24852-1_3
https://doi.org/10.1007/978-3-540-24852-1_3
https://doi.org/10.1007/978-3-319-48740-3_32

SEMFS: Secure and Efficient Multi-keyword Fuzzy Search for Cloud Storage 67

16. Hwang, Y.H., Lee, P.J.: Public key encryption with conjunctive keyword search and
its extension to a multi-user system. In: Takagi, T., Okamoto, T., Okamoto, E.,
Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575, pp. 2–22. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73489-5 2

17. Kuzu, M., Islam, M.S., Kantarcioglu, M.: Efficient similarity search over encrypted
data. In: Proceedings of the IEEE 28th International Conference on Data Engi-
neering (ICDE), pp. 1156–1167. IEEE (2012)

18. Li, H., Yang, Y., Luan, T.H., Liang, X., Zhou, L., Shen, X.S.: Enabling fine-grained
multi-keyword search supporting classified sub-dictionaries over encrypted cloud
data. IEEE Trans. Dependable Secure Comput. 13(3), 312–325 (2016)

19. Li, J., Wang, Q., Wang, C., Cao, N., Ren, K., Lou, W.: Fuzzy keyword search over
encrypted data in cloud computing. In: Proceedings of the IEEE INFOCOM 2010,
pp. 1–5. IEEE (2010)

20. Liu, C., Zhu, L., Li, L., Tan, Y.: Fuzzy keyword search on encrypted cloud storage
data with small index. In: Proceedings of the IEEE International Conference on
Cloud Computing and Intelligence Systems (CCIS) 2011, pp. 269–273. IEEE (2011)

21. Lynn, B.: The pairing-based cryptography library (2006). https://crypto.stanford.
edu/pbc/. Accessed 27 Mar 2013

22. Medelyan, O.: Human-competitive automatic topic indexing. Ph.D. thesis, The
University of Waikato (2009)

23. Nabeel, M., Yoosuf, M., Bertino, E.: Attribute based group key management. In:
Proceedings of the 14th ACM Symposium on Access Control Models and Tech-
nologies, pp. 115–124. ACM (2014)

24. Nayak, S.K., Tripathy, S.: Privacy preserving provable data possession for cloud
based electronic health record system. In: Proceedings of the IEEE Trust-
com/BigDataSE/ISPA, pp. 860–867. IEEE (2016)

25. Rose, S., Engel, D., Cramer, N., Cowley, W.: Automatic keyword extraction from
individual documents. In: Text Mining: Applications and Theory, pp. 1–20. John
Wiley & Sons (2010)

26. Singhal, A.: Modern information retrieval: a brief overview. IEEE Data Eng. Bull.
24(4), 35–43 (2001)

27. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: Proceedings of the IEEE Symposium on Security and Privacy, pp. 44–55.
IEEE (2000)

28. van Liesdonk, P., Sedghi, S., Doumen, J., Hartel, P., Jonker, W.: Computationally
Efficient searchable symmetric encryption. In: Jonker, W., Petković, M. (eds.) SDM
2010. LNCS, vol. 6358, pp. 87–100. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-15546-8 7

29. Wang, B., Yu, S., Lou, W., Hou, Y.T.: Privacy-preserving multi-keyword fuzzy
search over encrypted data in the cloud. In: Proceedings of the IEEE INFOCOM
2014, pp. 2112–2120. IEEE (2014)

30. Wang, C., Cao, N., Li, J., Ren, K., Lou, W.: Secure ranked keyword search over
encrypted cloud data. In: Proceedings of the 30th International Conference Dis-
tributed Computing Systems (ICDCS), pp. 253–262. IEEE (2010)

31. Wang, C., Cao, N., Ren, K., Lou, W.: Enabling secure and efficient ranked keyword
search over outsourced cloud data. IEEE Trans. Parallel Distrib. Syst. 23(8), 1467–
1479 (2012). IEEE

32. Yu, J., Lu, P., Zhu, Y., Xue, G., Li, M.: Toward secure multikeyword top-k retrieval
over encrypted cloud data. IEEE Trans. Dependable Secure Comput. 10(4), 239–
250 (2013)

33. Zhang, B., Zhang, F.: An efficient public key encryption with conjunctive-subset
keywords search. J. Netw. Comput. Appl. 34(1), 262–267 (2011)

https://doi.org/10.1007/978-3-540-73489-5_2
https://crypto.stanford.edu/pbc/
https://crypto.stanford.edu/pbc/
https://doi.org/10.1007/978-3-642-15546-8_7
https://doi.org/10.1007/978-3-642-15546-8_7

	SEMFS: Secure and Efficient Multi-keyword Fuzzy Search for Cloud Storage
	1 Introduction
	2 Related Work
	3 Problem Formulation
	3.1 System Model
	3.2 Threat Model
	3.3 Design Goals

	4 SEMFS: The Proposed Scheme
	4.1 Basic Idea
	4.2 Operational Details of SEMFS

	5 Security Analysis
	5.1 Confidentiality of Files
	5.2 Privacy Protection of Index Files
	5.3 Privacy Protection of Search Query

	6 Discussion
	6.1 Choice of Trigrams
	6.2 Efficient Index File Updation in SEMFS
	6.3 Ranking the Search Result
	6.4 Performance Analysis

	7 Conclusion
	Appendix A Bloom Filter
	References

