
How to (Pre-)Compute a Ladder

Improving the Performance of X25519 and X448

Thomaz Oliveira1, Julio López2, Hüseyin Hışıl3, Armando Faz-Hernández2,
and Francisco Rodŕıguez-Henŕıquez1(B)

1 Computer Science Department, Cinvestav-IPN, Mexico City, Mexico
thomaz.figueiredo@gmail.com, francisco@cs.cinvestav.mx

2 Institute of Computing, University of Campinas, Campinas, Brazil
{jlopez,armfazh}@ic.unicamp.br
3 Yasar University, İzmir, Turkey
huseyin.hisil@yasar.edu.tr

Abstract. In the RFC 7748 memorandum, the Internet Research Task
Force specified a Montgomery-ladder scalar multiplication function based
on two recently adopted elliptic curves, “curve25519” and “curve448”.
The purpose of this function is to support the Diffie-Hellman key
exchange algorithm that will be included in the forthcoming version of
the Transport Layer Security cryptographic protocol. In this paper, we
describe a ladder variant that permits to accelerate the fixed-point mul-
tiplication function inherent to the Diffie-Hellman key pair generation
phase. Our proposal combines a right-to-left version of the Montgomery
ladder along with the pre-computation of constant values directly derived
from the base-point and its multiples. To our knowledge, this is the first
proposal of a Montgomery ladder procedure for prime elliptic curves that
admits the extensive use of pre-computation. In exchange of very modest
memory resources and a small extra programming effort, the proposed
ladder obtains significant speedups for software implementations. More-
over, our proposal fully complies with the RFC 7748 specification. A
software implementation of the X25519 and X448 functions using our pre-
computable ladder yields an acceleration factor of roughly 1.20, and 1.25
when implemented on the Haswell and the Skylake micro-architectures,
respectively.

Keywords: Montgomery ladder · Elliptic curve scalar multiplication
Diffie-Hellman protocol · RFC 7748

1 Introduction

Since the last decades, Elliptic Curve Cryptography (ECC) has been used for
achieving highly secure and highly efficient cryptographic communication imple-
mentations. In particular, ECC has become the prime choice for realizing key
exchange and digital signature-verification protocols. However, several reports
released in 2013 suggested that the National Security Agency (NSA) secretly
c© Springer International Publishing AG 2018
C. Adams and J. Camenisch (Eds.): SAC 2017, LNCS 10719, pp. 172–191, 2018.
https://doi.org/10.1007/978-3-319-72565-9_9



How to (Pre-)Compute a Ladder 173

introduced backdoors to internationally-used encryption standards [34]. Imme-
diately thereafter, new revelations [33] indicated that the same agency had
tampered the elliptic curve-based pseudorandom number generator standard
Dual EC DRBG, which was consequently removed from the SP 800-90A speci-
fication by NIST [27,28].

In 2014, the Transport Layer Security (TLS) working group of the Inter-
net Engineering Task Force reacted to these events requesting from the Crypto
Forum Research Group (CFRG), recommendations of new elliptic curves to be
integrated into the next version of the TLS protocol [35]. Some of the require-
ments for the selection of such curves were based on [4,32], which advocate for a
number of design practices and elliptic curve properties, including rigidity in the
curve-generation process and simplicity in the implementation of cryptographic
algorithms. After a long and lengthy discussion, two prime elliptic curves, known
as Curve25519 and Curve448, were chosen for the 128-bit and 224-bit security
levels, respectively (see Sect. 3 for more details). The RFC 7748 [23] memoran-
dum describes the implementation details related to this choice, including the
curve parameters and the Montgomery ladder-based scalar multiplication algo-
rithms, also referred to as X25519 and X448 functions.

The Montgomery ladder and Montgomery curves were introduced in [25].
Since then, the Montgomery ladder has been carefully studied by many authors,
as discussed for example, in the survey by Costello and Smith in [10] (see also [5]).
We know now how to use the Montgomery ladder for computing the point mul-
tiplication kP, where P is usually selected as a point that belongs to a prime
order r subgroup of an elliptic curve, and k is an integer in the [1, r − 1] inter-
val. Nevertheless, arguably the most important application of the Montgomery
ladder lies in the Diffie-Hellman shared-secret computation as described in [23].

The classical Montgomery ladder as it was presented in [25], is a left-to-right
scalar multiplication procedure that does not admit in a natural way efficient pre-
computation mechanisms. In an effort to obtain this feature, and in the context of
binary elliptic curves, the authors of [29] presented a right-to-left Montgomery
ladder that can take advantage of pre-computing multiples of the fixed base
point P. Notice that this procedure was previously reported by Joye in [18].
However, the procedure presented in [29] crucially depended on the computation
of the point halving operation. Although this primitive can be performed at a
low computational cost in binary elliptic curves, in general there are no known
procedures to compute it efficiently for elliptic curves defined over odd prime
fields. Hence, it appeared that the finding of the right-to-left ladder procedure
of [29] was circumscribed to binary elliptic curves, as there was no obvious way
to extend it to elliptic curves defined over large prime fields.

Our contributions. In this paper, we present an alternative way to compute the
key exchange protocol presented in [23]. In short, we propose different X25519
and X448 functions which can take advantage of the fixed-point scenario provided
by the Diffie-Hellman key generation phase. This algorithm achieves an estimated
performance increase of roughly 20% at the price of a small amount of extra
memory resources. In addition, it does not intervene with the original RFC



174 T. Oliveira et al.

specification and it is straightforward to implement, preserving the simplicity
feature of the original design.

The remainder of this paper is organized as follows. In Sect. 2 we briefly
describe the Diffie-Hellman protocol. In Sect. 3 we give more details on the
CFRG selected elliptic curves. The Montgomery ladder-based scalar multipli-
cation functions X25519 and X448 are analyzed in Sect. 4. Our proposal is dis-
cussed in Sect. 5 and our concluding remarks and future work are presented in
Sect. 8.

2 The Diffie-Hellman Protocol

The Diffie-Hellman key exchange protocol, introduced by Diffie and Hellman in
[11], is a method that allows to establish a shared secret between two parties
over an insecure channel. Originally proposed for multiplicative groups of integers
modulo p, with p a prime number, the scheme was later adapted to additively-
written groups of points on elliptic curves by Koblitz and Miller in [19,24].
Commonly known as elliptic curve Diffie-Hellman protocol (ECDH), this variant
is concisely described in Algorithm 1.

Algorithm 1. The elliptic curve Diffie-Hellman protocol
Public parameters: Prime p, curve E/Fp, point P = (x, y) ∈ E(Fp) of order r

Phase 1: Key pair generation

Alice
1: Select the private key dA

$←− [1, r − 1]
2: Compute the public key QA ← dAP

Bob
1: Select the private key dB

$←− [1, r − 1]
2: Compute the public key QB ← dBP

Phase 2: Shared secret computation

Alice
3: Send QA to Bob
4: Compute R ← dAQB

Bob
3: Send QB to Alice
4: Compute R ← dBQA

Final phase: The shared secret is the point R x-coordinate

As shown in Algorithm 1, the ECDH protocol is divided into two phases;
in the first phase, both parties generate their private and public key pair. The
private key dA (dB) is an integer chosen uniformly at random from the interval
[1, r − 1] while the public key QA (QB) is the resulting point of the scalar
multiplication of dA (dB) by the base-point P . In the majority of the proposed
elliptic curve-based standards and specifications (e.g. [7,12,26], including [23]),
the point P is fixed and its coordinates are explicitly given in the documentation.
At the implementation level, this setting is usually called fixed- or known-point
scenario.

After computing their respective public/private key pair, each party sends
her public key to the other. Next, they perform the point multiplication of the
received public key by their own private key. The group properties of E(Fp)



How to (Pre-)Compute a Ladder 175

guarantee that R = dAQB = dA(dBP ) = dB(dAP ) = dBQA = R. As a result,
the parties have access to a common piece of information, represented by the
x-coordinate of R, which is only disclosed to themselves.1 Since the public key
QB (QA) is not known a priori by Alice (Bob), the scalar multiplication in the
second phase is said to be performed in a variable- or unknown-point scenario.

3 The Curves

The [23] memorandum specifies two Montgomery elliptic curves of the form,

EA/Fp : v2 = u3 + Au2 + u. (1)

The standard specification for the 128 bits of security level uses the prime
p = 2255 − 19, and the curve parameter is given by A = 486662. This curve
is commonly known as Curve25519 and was proposed in 2005 by Bernstein [1].
The point group order is given as #E486662(F2255−19) = h · r ≈ 2255, with h = 8
and r = 2252 + 27742317777372353535851937790883648493. The order-r base-
point P = (u, v) is specified as,

uP = 0x9

vP = 0x20AE19A1B8A086B4E01EDD2C7748D14C

923D4D7E6D7C61B229E9C5A27ECED3D9.

The recommendation for the 224-bit security level is to use p = 2448 − 2224 −
1 and A = 156326. This curve was originally proposed by Hamburg in the
Edwards form as Ed448-Goldilocks [15], but it is referred in [23] as Curve448.
The group order #E156326(F2448−2224−1) = h·r ≈ 2448, with h = 4 and, r = 2446−
13818066809895115352007386748515426880336692474882178609894547503885.

For this curve, the base-point P is given by

uP = 0x5

vP = 0x7D235D1295F5B1F66C98AB6E58326FCECBAE5D34F55545D060F75DC2

8DF3F6EDB8027E2346430D211312C4B150677AF76FD7223D457B5B1A.

4 The Scalar Multiplication Operation

Let EA/Fp be an elliptic curve and P an order-r point in EA(Fp). Then, for
any n-bit scalar k = (kn−1, . . . , k2, k1, k0)2 ∈ [1, r − 1], the scalar multiplication
operation is given by Q = kP = kn−12n−1P + · · · + k222P + k12P + k0P . As
presented in Sect. 2, the scalar multiplication function is used in the two first
ECDH phases; first, to generate the public keys QA and QB and later, in the
second phase, to compute the common point R.
1 Here, we are considering an ideal but unrealistic scenario. In practice, an inappro-

priate choice of the elliptic curve parameters, the prime p, the order r, the imple-
mentation of the scalar multiplication algorithm, among many other aspects, could
disqualify this statement.



176 T. Oliveira et al.

4.1 Left-to-Right Montgomery Ladder

Initially proposed to improve the performance of integer factorization algorithms,
the Montgomery ladder [25] is now largely used in the design of constant-time
scalar multiplication implementations. This is because its ladder step structure
assures that the same arithmetic operations are executed independently of the
scalar bits ki values. A high-level description of this procedure is presented in
Algorithm 2.

Algorithm 2. Left-to-right Montgomery ladder
Input: P = (uP , vP ) ∈ EA(Fp), k = (kn−1 = 1, kn−2, . . . , k1, k0)2
Output: uQ=kP

1: R0 ← O; R1 ← uP ;
2: for i = n − 1 downto 0 do
3: if ki = 1 then
4: R0 ← R0 + R1; R1 ← 2R1

5: else
6: R1 ← R0 + R1; R0 ← 2R0

7: end if
8: end for
9: return uQ ← R0

If the difference between the points R1 and R0 is known, it is possible to derive
efficient formulas for computing R0 +R1 that refer only to the u-coordinates of
the operands, a formula that is sometimes named as differential addition [10].2

That is the main rationale for Algorithm2; throughout its execution, the Mont-
gomery ladder maintains the invariant R1 − R0 = P by computing at each
iteration

(R0, R1) ←
{

(2R0, 2R0 + P ), if ki = 0
(2R0 + P, 2R0 + 2P ), if ki = 1.

In order to avoid expensive field inversions, one can accelerate the scalar mul-
tiplication procedure by using projective coordinates, by means of the transfor-
mation u = U/Z. In the context of Algorithm 2, the differential addition formula
required in Step 6 can be computed as [10,23],

UR1 ← ZP ((UR1 + ZR1) · (UR0 − ZR0) + (UR1 − ZR1) · (UR0 + ZR0))
2 (2)

ZR1 ← uP ((UR1 + ZR1) · (UR0 − ZR0) − (UR1 − ZR1) · (UR0 + ZR0))
2.

where the standard trick of use Zp = 1, saves one field multiplication. Thus, it
can be seen that the computational cost of performing the differential addition
formula of Eq. (2) is of 3m + 2s + 6a.
2 It is also possible to express the u-coordinate of the resulting point Ri = 2Ri, for
i ∈ {0, 1}, using only the u-coordinate of the operand P, an operation known as
differential doubling.



How to (Pre-)Compute a Ladder 177

Similarly, the differential point doubling required in Step 6 of Algorithm2
can be computed as [10,23],

UR0 ← (UR0 + ZR0)
2 · (UR0 − ZR0)

2 (3)

T ← (UR0 + ZR0)
2 − (UR0 − ZR0)

2

ZR0 ← [
a24 · T + (UR0 − ZR0)

2
] · T,

where a24 = A+2
4 . It can be readily seen that the computational cost of per-

forming the differential doubling formula of Eq. (3) is of 2m + 1ma24 + 2s +
4a.3

A low-level description of the left-to-right ladder on prime elliptic curves in
Montgomery form is given in Algorithm3.4 When computed with the parameters
listed in Sect. 3, this algorithm is called X25519 (with n = 255) or X448 (with
n = 448) [23]. The ⊕ notation stands for the exclusive-or logical operator, while
the symbols +,−,×,2 and −1 represent the field Fp arithmetic operations of
addition, subtraction, multiplication, squaring and inversion, respectively.

At each iteration i of Algorithm 3, the conditional swap function (cswap)
exchanges the values of the R0 and R1 coordinates when the bits ki−1 and ki are
different. This function is a countermeasure for potential cache-based attacks
[20,21], which could reveal the scalar digits (the private key in Algorithm 1)
by determining the access order of the points R0 and R1. The cswap function
consists only of simple logic operations, so its cost will be disregarded in our
estimations. For more details on the implementation of this function see [23,29].

Cost estimations. Let m, ma24, muP, s, i and a represent the cost of a general
multiplication, multiplication by the constant (A + 2)/4, multiplication by the
u-coordinate of the base-point P , squaring, inversion and addition/subtraction
over the field Fp, respectively. Then, the computing cost of the left-to-right
Montgomery ladder is n · (4m + 1ma24 + 1muP + 4s + 8a) + 1m + 1i. More
specifically, at the 128 bits of security level, the X25519 function costs

1021m + 255ma24 + 255muP + 1020s + 2040a + 1i,

where each operation is performed in the prime field F2255−19. At the 224-bit
security level case, the cost for computing the function X448 is

1793m + 448ma24 + 448muP + 1792s + 3584a + 1i,

with the arithmetic operations being carried out in the prime field F2448−2224−1.

5 How to (Pre-)Compute a Ladder

Our proposal for improving the performance of the X25519 and X448 functions
focuses in the first phase of the Diffie-Hellman protocol (see Algorithm1). There,
3 Where ma24 stands for one multiplication by the constant a24.
4 The description is closely related to [23, Sect. 5].



178 T. Oliveira et al.

Algorithm 3. Low-level left-to-right Montgomery ladder
Input: P = (uP , vP ) ∈ EA/Fp, k = (kn−1 = 1, kn−2, . . . , k1, k0)2, a24 = (A + 2)/4
Output: uQ=kP

1: Initialization: UR0 ← 1, ZR0 ← 0, UR1 ← uP , ZR1 ← 1, s ← 0

2: for i ← n − 1 downto 0 do
3: # timing-attack countermeasure

4: s ← s ⊕ ki
5: UR0 , UR1 ← cswap(s, UR0 , UR1)
6: ZR0 , ZR1 ← cswap(s, ZR0 , ZR1)
7: s ← ki
8: # common operations

9: A ← UR0 + ZR0 ; B ← UR0 − ZR0

10: # addition

11: C ← UR1 + ZR1 ; D ← UR1 − ZR1

12: C ← C × B; D ← D × A
13: UR1 ← D + C; UR1 ← U2

R1

14: ZR1 ← D − C; ZR1 ← Z2
R1 ; ZR1 ← uP × ZR1

15: # doubling

16: A ← A2; B ← B2

17: UR0 ← A × B
18: A ← A − B
19: ZR0 ← a24 × A; ZR0 ← ZR0 + B; ZR0 ← ZR0 × A
20: end for

21: UR0 , UR1 ← cswap(s, UR0 , UR1)
22: ZR0 , ZR1 ← cswap(s, ZR0 , ZR1)
23: ZR0 ← Z−1

R0
24: uR0 ← UR0 × ZR0

25: return uQ ← uR0

the scalar multiplication is performed in the fixed-point setting. More specifically,
the point operand is always the base-point described in the [23] document (see
Sect. 3 for more details).

One possible solution for taking advantage of this scenario was published in
[2], in the context of message signing. In short, the authors pre-compute the
points Pij = i16jP , for 1 ≤ i ≤ 8 and 0 ≤ j ≤ 63 and represent the Curve25519
in Edwards form to process the scalar multiplication through a windowed variant
of the traditional double-and-add method. In addition to the significant amount
of required memory space, the main drawback of this approach is that complex
cache-attack countermeasures need to be applied during the retrieval of the pre-
computed points Pij , which go against the principle of implementation simplicity
promoted in [4,32].

Thus, instead of designing a timing-protected double-and-add algorithm, we
suggest using a slightly modified version of the right-to-left Montgomery ladder
presented in [29] as explained in the following subsection.



How to (Pre-)Compute a Ladder 179

5.1 Right-to-Left Montgomery Ladder with Pre-computation

Algorithm 4. Right-to-left Montgomery ladder

Input: P = (uP , vP ) ∈ EA(Fp), k = (kn−1 = 1, kn−2, . . . , k1, k0)2
Output: uQ=hkP

1: Pre-computation: Calculate and store uPi , where Pi = 2iP , for 0 ≤ i ≤ n
2: Initialization: Select an order-h point S ∈ EA(Fp)
3: R0 ← uP , R1 ← uS , R2 ← uP−S

4: for i ← 0 to n − 1 do
5: if ki = 1 then
6: R1 ← R0 + R1 (with R2 = R0 − R1)
7: else
8: R2 ← R0 + R2 (with R1 = R0 − R2)
9: end if

10: R0 ← uPi+1

11: end for
12: return uQ = hR1

The operating principle of Algorithm4, is to compute Q = kP using the Mont-
gomery differential arithmetic formulas for the point doubling and point addition
operations. This is achieved by recording and storing the difference R0 − R1 in
the point R2 through the whole execution of the procedure. Indeed, in the case
that the bit ki = 1, then R0 is added to the accumulator R1 (Step 6) and the
difference R2 does not change, since the operation 2R0 = R0 + R0 is performed
in Step 10. On the other hand, if ki = 0, nothing is added to the accumulator
R1, so it is necessary to increase the difference R2 by R0 (Step 8) in order to
account for the unconditional doubling performed in Step 10. Notice that at
each iteration, the accumulator R1 is updated in the same fashion as it would
be done in a traditional right-to-left double-and-add algorithm. It follows that
at the end of the main loop, R1 = kP + S.

The reason why the accumulator R1 must be initialized with a point S /∈ 〈P 〉
is because the differential formulas are not complete on Montgomery curves.
Hence, one must prevent the cases where R0 = R1 or R0 = R2. One can eliminate
S by performing a scalar multiplication by the cofactor h, thus obtaining

hR1 = h · (kP + S) = hkP + hS = hkP.

Notice that for Montgomery curves, the cofactor h is as little as four. So this last
correction does not represent a computational burden. Furthermore, in Sect. 5.4
we show a trick specially tailored for the X25519 and X448 functions, which
eliminates the point S at almost no cost, and that allows us to return the correct
R1 = kP result. Nevertheless, we stress that the points S and P − S can be
clearly specified beforehand and therefore, this matter should not bring any
complications for the programmer.

Given that the difference between R0 and R1 is volatile, at first glance the
differential point addition formula computed in Steps 6 and 8 of Algorithm4,



180 T. Oliveira et al.

requires an extra field multiplication as compared with Eq. (2) of the classical
ladder shown in Algorithm2. This is basically because R2 is now represented in
full projective coordinates, which means that its Z-coordinate value will be in
general different than one.

We discuss in the following how to compute the differential addition formula
of Algorithm 4, without incurring in any additional cost as compared with the
cost of Eq. (2) of Algorithm 2.

5.2 Montgomery Differential Addition with Precomputation

Let R0 = (u0, v0) and R1 = (u1, v1), be two points of the elliptic curve of
Eq. (1).5 Then, the point R3 = (u3, v3), such that, R3 = R0 +R1, is determined
as,(

u3, v3
)

=
(
u0, v0

)
+

(
u1, v1

)
=

(
u0v1 − v0u1

u0v1 + v0u1
· 1 − u0u1

u0 − u1
,
u0v1 − v0u1

u0v1 + v0u1
· v0(u

2
1 − 1) − v1(u2

0 − 1)
(u0 − u1)2

)
.

(4)

Let us assume that the point R2 = (u2, v2), such that R2 = R0−R1, is known.
Then, the addition formulas (4) can be rewritten as the following differential
addition formulas,

(
u3, v3

)
=

(
1
u2

· (1 − u0u1)2

(u0 − u1)2
,

1
v2

· v
2
0(1 − u2

1)
2 − v21(1 − u2

0)
2

(u0 − u1)4

)
(5)

One can perform u-only arithmetic by transforming the above equation to cus-
tomary projective coordinates as,

(U3 : Z3) =
(
Z2(U0U1 − Z0Z1)2 : U2(U0Z1 − Z0U1)2

)
=

(
Z2((U1 + Z1) + µ(U1 − Z1))2 : U2((U1 + Z1) − µ(U1 − Z1))2

)
(6)

where µ =
(U0 + Z0)
(U0 − Z0)

.

The per-point-R0 constant value µ can be precomputed and stored since it
only depends on (U0 : Z0). Computing (U3 : Z3) in (6) takes only 3m + 2s +
4a, by reusing (U1 +Z1) and µ(U1 −Z1) on both sides. Notice that this exactly
matches the computational cost of Eq. (2), which computes the differential addi-
tion of the classical Montgomery ladder. In https://github.com/thomazoliveira/
rfc7748 verification, a Magma [6] script verifying Eq. (6) is available.

5 Notice that in general an Montgomery elliptic curve has the form, Bv2 = u3+Au2+u.

https://github.com/thomazoliveira/rfc7748_verification
https://github.com/thomazoliveira/rfc7748_verification


How to (Pre-)Compute a Ladder 181

5.3 Differential Addition Formulas in Algorithm 4

In the context of Algorithm 4, the differential addition formula required in Steps 6
and 8 can be computed as,

UR3 ← ZR2((UR1 + ZR1) + µ(UR1 − ZR1))
2 (7)

ZR3 ← UR2((UR1 + ZR1) − µ(UR1 − ZR1))
2,

where µ =
uR0 + 1
uR0 − 1

.

Once again, notice that the µ-values can be pre-computed and stored since
they only depend on the u-coordinates of the points 2iP .

Timing Attacks. Notice that no side-channel countermeasures are required to
retrieve the values µi = u2iP+1

u2iP −1 from memory, since they are public and do not
have any direct correlation to the sensitive information contained in the scalar
k. Also, the addition performed in Step 8 is not a dummy operation. The correct
value of the R2 coordinates must be maintained in order to perform further
additions in Step 6. Moreover, since kn−1 = 1, a computational fault induced at
any iteration of Algorithm4 would produce a wrong resulting point Q.

5.4 Implementing the Pre-computable Ladder

Before presenting a low-level description of the known-point scalar multiplication
using Algorithm 4, we must examine the point S selection and how to optimize
the processing of the scalar k.

Strategies. When selecting the private key k (Algorithm 1, Step 1), presumably
to facilitate the programming effort, the X25519 specification [23] recommends
to generate 32 bytes at random as k = K0+K128+. . .+K312248 with byte-words
Ki

$←− [0, 255], and to perform the following operations:

K0 ← K0 ∧ 248, K31 ← K31 ∧ 127, K31 ← K31 ∨ 64,

where the symbols ∧ and ∨ represent the logical conjunction and disjunction
operators. For the X448 function, 56 randomly-chosen bytes are required, which
are further processed as

K0 ← K0 ∧ 252, K55 ← K55 ∨ 128.

Those procedures are equivalent to compute, respectively,

k′′ $←− [0, 2251 − 1], k′ ← k′′ + 2251, k ← 8 · k′

and
k′′ $←− [0, 2445 − 1], k′ ← k′′ + 2445, k ← 4 · k′.



182 T. Oliveira et al.

Consequently, we decided to process only the bits of k′ in the main loop of
our function. At the end of the algorithm, as we eliminate the point S from
the accumulator by multiplying it by h, we will have the correct resulting point
Q = h · (k′P + S) = kP . In order to obtain a non-invasive procedure with
respect to the RFC specification, we simply start processing the scalar from the
(log2 h + 1)-th bit of k.

Point S selection. In the Curve25519 setting, we could select an order-8 point S.
However, because of its elegant u-coordinate, we decided to choose the order-4
point:

uS = 0x1,

vS = 0x6BE4F497F9A9C2AFC21FA77AD7F4A6EF635A11C72

84A9363E9A248EF9C884415.

The point P − S is given by:

uP−S = 0x215132111D8354CB52385F46DCA2B71D440F6A51E

B4D1207816B1E0137D48290,

vP−S = 0x5199331F1F5630BBFA49B1B1B02B207B493D0A63B

B4F8F01C011242F9C6E9E7C.

For the Curve448, the order-4 point S is given by:

uS = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE,

vS = 0x45B2C5F7D649EED077ED1AE45F44D54143E34F714B71AA96C945AF01

2D1829750734CDE9FADDBDA4C066F7ED54419CA52C85DE1E8AAE4E6C.

And the (u, v) coordinates of P − S are:

uP−S = 0xF0FAB725013244423ACF03881AFFEB7BDACDD1031C81B9672954459D

84C1F823F1BD65643ACE1B5123AC33FF1C69BAF8ACB1197DC99D2720,

vP−S = 0x45CD0137F88682464AE12E4E2CFCEA7E9360F6FE1E04AE1C5065F397

533F2282EE2643E610A0CC8E9B07D43D47C9658D05E22F0F077395DD.

Algorithm. Next, in Algorithm 5, we present the low-level details of our app-
roach. Again, the term n represents the bit length of #EA(Fp) = h · r and
q = log2 h.6 The pre-computation phase (Step 1) consists of computing and stor-
ing the values µi = uPi

+1

uPi
−1 for the multiples Pi = 2iP . These n− q field elements

are computed a priori from the base-point P. Assuming that the architecture is
byte-addressable, the memory space required for Curve25519 is approximately
(255−3) ·32B ≈ 8 KB, while in the Curve448 setting, we need (448−2) ·56B ≈
25 KB.
6 For the sake of simplicity, in the remaining of this paper it will be assumed that h

is a small power of two.



How to (Pre-)Compute a Ladder 183

Algorithm 5. Low-level right-to-left Montgomery ladder
Input: P = (uP , vP ), S = (uS , vS), P − S = (uP−S , vP−S) ∈ EA/Fp, a24 = (A + 2)/4

k = (kn−1 = 1, kn−2, . . . , k1, k0)2
Output: uQ=kP

1: Pre-computation Let Pi = 2iP . Compute and store the values µi =
uPi

+1

uPi
−1

, for

0 ≤ i ≤ n − q − 1
2: Initialization: UR1 ← uS , ZR1 ← 1, UR2 ← uP−S , ZR2 ← 1, s ← 1

3: for i ← 0 to n − q − 1 do
4: # timing-attack countermeasure

5: s ← s ⊕ ki+q

6: UR1 , UR2 ← cswap(s, UR1 , UR2)
7: ZR1 , ZR2 ← cswap(s, ZR1 , ZR2)
8: s ← ki+q

9: # addition

10: A ← UR1 + ZR1 ; B ← UR1 − ZR1

11: C ← µi × B
12: D ← A + C; D ← D2

13: E ← A − C; E ← E2

14: UR1 ← ZR2 × D; ZR1 ← UR2 × E
15: end for

16: for i ← 0 to q − 1 do
17: # doubling

18: A ← UR1 + ZR1 ; A ← A2

19: B ← UR1 − ZR1 ; B ← B2

20: UR1 ← A × B
21: A ← A − B
22: ZR1 ← a24 × A;ZR1 ← ZR1 + B;ZR1 ← ZR1 × A
23: end for

24: ZR1 ← Z−1
R1

25: uR1 ← UR1 × ZR1

26: return uQ ← uR1

The conditional swap function is identical to the one used in Algorithm3.
However, in this case the inputs are the coordinates of the accumulator R1 and
the difference point R2. Moreover, the s variable that controls the swap is set
to one, since the Montgomery point additions, in terms of memory location,
are always performed as R1 ← R1 + 2iP throughout the algorithm. Also, given
that the most significant bit kn−1 is always equal to one, it is unnecessary to
include another couple of cswap functions after the main loop. At the end of
the algorithm (Steps 16–23), we must perform q consecutive point doublings
to process the least significant bits of k and to eliminate the point S from the
accumulator R1.



184 T. Oliveira et al.

Cost estimations. The cost of the Algorithm 5 can be estimated as (n−q)·(3m+
2s+4a)+ q · (2m+1ma24 +2s+4a)+1m +1i. If the Curve25519 is used, then
n = 255 and q = 3. As a result, the fixed-point scalar multiplication would cost

763m + 3ma24 + 510s + 1020a + 1i,

where the arithmetic operations are over F2255−19. In the Curve448 context,
n = 448 and q = 2. As a consequence, we have the following cost in terms of
F2448−2224−1-operations:

1343m + 2ma24 + 896s + 1792a + 1i.

These results show that, our approach saves more than 25% of general field
multiplications. In addition, it completely eliminates the multiplication by uP

7

and drastically reduces the number of multiplications by the constant (A+2)/4.
In addition, it saves half of the field squarings and half of additions/subtractions.

For the programmer, the only extra effort is to organize the pre-computed
values in the memory and load them during the main loop execution, since
the remaining field and logic operations are very similar to ones presented in
Algorithm 3. In the next subsection, we present a comparative based on the
arithmetic of state-of-the-art software implementations.

5.5 Comparison

In this part, we present a more concrete analysis of the performance efficiency of
Algorithm 5. For this purpose, we measured the field arithmetic cost of different
state-of-the-art constant-time software implementations of the Diffie-Hellman
protocol on Curve25519 and Curve448. After that, we computed the ratios of
ma24, muP, s and i to m, which are considered the most representative field
arithmetic operations for scalar multiplication implementations. As a result, we
were able to show the practical savings of our proposal in terms of general field
multiplications m.

Regarding the X25519 implementations, we selected the code from
Bernstein et al. [2], which represents the F2255−19 elements in radix-251, the
AVX2 approach from Faz-Hernández and López [13] and the curve25519-donna
library from Langley [22].8 For the X448 function, we considered the original
implementation of Hamburg in [15]. The source code of [2,15] were downloaded
from the eBACS [3] web page, the [13] implementation was shared by its authors

7 In fact, given that the difference of the point operands Pi − R1 is variable, the
muP operations were changed into two general multiplications and were included in
the m operation count.

8 The benchmarking reports in [3] shows that the library of Chou [8] currently holds
the speed record on computing the scalar multiplication over Curve25519. However,
the author decided to embed the field arithmetic functions into the ladder step, in a
single assembly code. Isolating the field operations would be impractical and could
alter the author’s original intentions.



How to (Pre-)Compute a Ladder 185

via personal communication and the curve25519-donna library was retrieved
from its GitHub repository [22].

Every field arithmetic code was compiled with the clang/LLVM compiler ver-
sion 3.9 with optimization flags -O3 -march=haswell -fomit-frame-pointer
and further benchmarked in an Intel Core i7-4700MQ 2.40 GHz machine (Haswell
architecture) with the Hyper Threading and Turbo Boost technologies disabled.
The ratios are presented in Table 1.

Table 1. Ratios of selected arithmetic operations to the general field multiplication in
state-of-the-art software implementations

Implementation Ratios to m

ma24 muP s i a

Bernstein et al. [2] 0.23a 0.23a 0.76 203.29 <0.1

Faz-Hernández and López [13] 0.28 0.41 0.96 84.33 <0.1

Langley [22] 0.60 1.00b 0.82 192.55 <0.1

Hamburg [15] 0.24 1.00b 0.75 405.00 <0.1
a Estimated
b The general field multiplication (m) is used to implement this

operation

The cost of the ma24 operation in the Bernstein et al. implementation was
estimated as follows. After analyzing the assembly code, we concluded that
ma24 takes 10 movq, 5 mov, 5 shr, 5 add, 4 addq, 5 mulq and 1 imulq machine
instructions. Next, we added its latencies [14] and, to calculate a “lower bound”
of our speed improvements, we applied an aggressive throughput of 0.25. Finally,
given that the muP is similar to the ma24 operation, we also assumed a similar
cost. In Table 2, we present the performance improvements of our proposal in
terms of the general field multiplication.

Table 2. A comparative between Montgomery-ladder approaches in the fixed-point
scenario

Implementation Estimated costsa Diff.

Mont. ladder
left-to-right
(Algorithm 3)

Mont. ladder
right-to-left
(Algorithm 5)

Bernstein et al. [2] 2116.89m 1354.58m −36.01%

Faz-Hernández and López [13] 2260.48m 1337.77m −40.82%

Langley [22] 2457.95m 1375.55m −44.04%

Hamburg [15] 4097.52m 2420.48m −40.93%
a Because of its negligible cost, the field addition/subtraction operation was not

included



186 T. Oliveira et al.

The above comparison suggests that about 36.01 to 44.04% of speed-up can
be reached in the first phase of the ECDH protocol by using Algorithm5. When
considering the complete Diffie-Hellman scheme, the improvement ranges from
18.01 to 22.02%. In practice, these estimated savings can be further improved
if we take into consideration compiler optimizations and the machine through-
put. Moreover, while the field addition/subtraction cost is imperceptible if mea-
sured separately, it constitutes a significant part in the whole protocol execution
timings.

6 Software Implementation on a 64-Bit Architecture

In this section, an optimized software implementation of X25519 and X448 tar-
geting 64-bit Intel architectures is presented. Our implementation was developed
to take advantage of new instructions, available in Haswell and Skylake micro-
architectures, intended to accelerate the calculation of multi-precision integer
arithmetic [31]. In this sense, the calculation of multiplications is the most crit-
ical operation, and for this reason, we devote a detailed explanation.

Aiming a large usability of the library across different 64-bit platforms, we
restrict arithmetic operations to be computed using the 64-bit instruction set;
for this reason, we use a radix-264 for representing prime field elements. Thus,
for w = 64, an element in F2255−19 is stored in n = 4 words of 64 bits, whereas an
element in F2448−2224−1 requires n = 7 words of 64 bits. This representation of
elements is compact and does not incur on a large memory footprint for storing
the look-up table.

The calculation of prime field multiplications is performed into two steps:
integer multiplication followed by modular reduction. Concerning the integer
multiplication various methods can be applied targeting different optimization
metrics [16,17]. For both fields, we developed the operand scanning technique
since its execution pattern benefits from the properties of the MULX instruction,
which is part of the BMI2 instruction set.

Like the legacy MUL/IMUL instructions, the MULX instruction also computes
a 64-bit integer multiplication (the RDX register times a specified source register)
producing a 128-bit product. However, MULX has a three-operand codification to
specify the destination registers of the product; this differs from the MUL/IMUL
instructions since the product is always deposited in the RAX and RDX registers,
which in turn overwrites the RDX register. The fact that RDX is not modified by
MULX is crucial for the efficient execution of consecutive multiplications by one
common operand, like in the case of the operand scanning technique.

The operand scanning technique calculates the multi-precision integer mul-
tiplication z = xy by first calculating z ← x0y; followed by the accumulation
z ← z+2iwxiy for 0 < i < n. The schedule of operations is listed in Algorithm6.
Notice that in the steps that compute the xiyj product (lines 4 and 13), the yj
operand changes more frequently than the xi operand; thus once xi is loaded
into the RDX register, it remains there for all the iterations of the j-loop sav-
ing n − 1 memory accesses. Additionally, this pattern allows scheduling various



How to (Pre-)Compute a Ladder 187

Algorithm 6. Operand scanning method to calculate prime field multiplications.
Output: (x0, . . . , xn−1) and (y0, . . . , yn−1) be the radix-2w representation of x, y ∈ Fp.
Input: (z0, . . . , zn−1) be the radix-2w representation of z = xy ∈ Fp.
1: c ← 0
2: (H0 ‖ z0) ← x0y0
3: for j ← 1 to n − 1 do
4: (Hj ‖ L) ← x0yj
5: (c ‖ zj) ← L + Hj−1 + c {x0y = (z0, . . . , zn)}
6: end for
7: zn ← Hn−1 + c
8: for i ← 1 to n − 1 do
9: c ← 0

10: (H0 ‖ L0) ← xiy0
11: (d ‖ zi) ← zi + L0

12: for j ← 1 to n − 1 do
13: (Hj ‖ L) ← xiyj
14: (c ‖ Hj−1) ← L + Hj−1 + c {xiy = (L0, H0, . . . , Hn−1)}
15: (d ‖ zi+j) ← zi+j + Hj−1 + d {z ← z + 2iwxiy}
16: end for
17: Hn−1 ← Hn−1 + c
18: zi+n ← Hn−1 + d
19: end forreturn (z0, . . . , zn−1) ← (z0 . . . , z2n−1) mod p

MULX multiplications to the processor, which can execute them faster by means
of the processor’s pipeline. These subtle details make that the operand scanning
technique be suitable for its implementation using MULX instructions.

The word multiplications are independent to each other, and consequently,
no data dependencies occur at all. However, the accumulation of these products
is an inherently sequential process. In Algorithm6, two accumulation steps are
identified: first, once the product (Hj ‖ L) ← xiyj was calculated, L must be
accumulated into Hj−1 (lines 5 and 14 of Algorithm6); and then, the Hj−1 word
is ready to be accumulated into the output zi+j word (line 15 of Algorithm6).
The most relevant fact of these accumulations is that each one produces its own
carry bit (the c and d bit-variables); which must be handled using addition with
carry instructions.

The ADC/ADD instructions calculate additions with/without carry modifying
the FLAGS register according to the result of the addition. Since there is only
one carry bit flag, we must compute one accumulation entirely, and after that,
we can perform the second one. This is the strategy followed when our software
library is compiled targeting the Haswell micro-architecture; nonetheless, this is
not the case of the Skylake micro-architecture.

Unlike the ADD/ADC instructions, the new ADCX and ADOX instructions cal-
culate additions with carry modifying only the CF and the OF bit, respectively,
of the FLAGS register. This allows that two sequences of addition instructions
depending on carry bits can be computed in parallel by the executing units.
Thus, the core of the integer multiplication performs the lines 13, 14, and 15



188 T. Oliveira et al.

using respectively one MULX, one ADCX, and one ADOX instruction; it is worth to
mention none of these instructions competes to each other for accessing to the
same part of the FLAGS register. Relying in these features, we developed opti-
mized code for integer multiplication targeting processors supporting the ADX
instruction set.

The integer multiplication produces a sequence (z0 . . . , z2n−1), which is
reduced modulo p. For p = 2255 − 19, the words zi ← zi + 38zi+4 for 0 ≤ i < 4
are updated using four multiplications, then we reduce again z0 ← z0 + 38z4
letting the result in four words of 64 bits. For p = 2448 − 2224 − 1, we perform
the modular reduction into three steps:

z ← (z mod 2672) + (2448 + 2224)�z/2672

z ← (z mod 2448) + (2224 + 1)�z/2448

z ← (z mod 2448) + (2224 + 1)�z/2448


The first two lines take a 224-bit value and add it to z in two different positions,
one of them requires a 32-bit shift that we compute using SHLD instructions.
The last line reduces only the z7 word. This modular reduction does not require
multiplications (Tables 3 and 4).

7 Performance Benchmark

The performance timings were measured in two platforms: a Core i7-4770 pro-
cessor (Haswell micro-architecture) and a Core i7-6700K processor (Skylake
micro-architecture). Source code was compiled using the GNU C Compiler (GCC
v.6.3.1) and is available at https://github.com/armfazh/rfc7748 precomputed.

Table 3. Prime field arithmetic timings measured in clock cycles

Prime field (Fp) Architecture Arithmetic operation

Add Mul Sqr ma24 Inv

p = 2255 − 19 Haswell 8 63 54 14 15,032

Skylake 6 49 41 11 11,441

p = 2448 − 2224 − 1 Haswell 14 161 117 24 54,709

Skylake 13 122 95 20 45,008

Table 4. Elliptic curve Diffie-Hellman timings measured in clock cycles.

Function Architecture DH operation

Key generation Shared secret

X25519 Haswell 90,668 138,963

Skylake 72,471 107,831

X448 Haswell 401,228 670,754

Skylake 320,695 527,899

https://github.com/armfazh/rfc7748_precomputed


How to (Pre-)Compute a Ladder 189

8 Conclusion

In this work, we presented an alternative way to compute the elliptic curve
Diffie-Hellman protocol with Montgomery ladders. Particularly, we focused on
the key-generation phase, which can be characterized as a fixed-point scenario.
For this phase, we assumed that the relevant multiples of the base-point can
be pre-computed off-line, which helps to boost the computation of the scalar
multiplication via a right-to-left variant of the Montgomery ladder. As a result we
achieved, in the Curve25519 setting, performance improvements that range from
36 to 44% of speed-up for the key generation operation, at the price of just 8 KB
of memory space. Our proposal carefully minimizes coding modifications with
respect to the specifications given in the RFC 7748 memorandum. Our software
implementation of the X25519 and X448 functions using our pre-computable
ladder yields an acceleration factor of roughly 1.20, and 1.25 when implemented
on the Haswell and the Skylake micro-architectures, respectively.

We also would like to explore the potential savings that our ladder approach
can bring for digital signature protocols and other elliptic-curve based protocols.
Finally, building on the work of [30], we would like to explore a Montgomery
ladder variant, which can be applied to prime elliptic curves equipped with
efficient endomorphisms such as the FourQ elliptic curve [9]. For that kind of
elliptic curves, the ladder variant presented in [30], allows for an important
saving in the number of required point doubling operations when working in the
fixed-point scenario.

References

1. Bernstein, D.J.: Curve25519: new Diffie-Hellman speed records. In: Yung, M.,
Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 207–
228. Springer, Heidelberg (2006). https://doi.org/10.1007/11745853 14

2. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.-Y.: High-speed high-
security signatures. J. Cryptographic Eng. 2(2), 77–89 (2012)

3. Bernstein, D.J., Lange, T.: eBACS: ECRYPT Benchmarking of Cryptographic
Systems. https://bench.cr.yp.to. Accessed Mar 2017

4. Bernstein, D.J., Lange T.: SafeCurves: choosing safe curves for elliptic-curve cryp-
tography. http://safecurves.cr.yp.to. Accessed Mar 2017

5. Bernstein, D.J., Lange, T.: Montgomery curves and the montgomery ladder. Cryp-
tology ePrint Archive, Report 2017/293 (2017). http://eprint.iacr.org/2017/293

6. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system I: the user
language. J. Symbolic. Comput. 24(3–4), 235–265 (1997). Computational algebra
and number theory (London, 1993)

7. Certicom Research. SEC 2: Recommended Elliptic Curve Domain Parameters
(2010). Version 2.0. Standards for Efficient Cryptography. http://www.secg.org/
sec2-v2.pdf

8. Chou, T.: Sandy2x: new curve25519 speed records. In: Dunkelman, O., Keliher, L.
(eds.) SAC 2015. LNCS, vol. 9566, pp. 145–160. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-31301-6 8

https://doi.org/10.1007/11745853_14
https://bench.cr.yp.to
http://safecurves.cr.yp.to
http://eprint.iacr.org/2017/293
http://www.secg.org/sec2-v2.pdf
http://www.secg.org/sec2-v2.pdf
https://doi.org/10.1007/978-3-319-31301-6_8
https://doi.org/10.1007/978-3-319-31301-6_8


190 T. Oliveira et al.

9. Costello, C., Longa, P.: FourQ: four-dimensional decompositions on a Q-curve over
the mersenne prime. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS,
vol. 9452, pp. 214–235. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48797-6 10

10. Costello, C., Smith, B.: Montgomery curves and their arithmetic: the case of large
characteristic fields. Cryptology ePrint Archive, Report 2017/212 (2017)

11. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. Theor.
22(6), 644–654 (1976)

12. ECC Brainpool. Standard Curves and Curve Generation (2005). Version 1.0.
http://www.ecc-brainpool.org/download/Domain-parameters.pdf

13. Faz-Hernández, A., López, J.: Fast implementation of curve25519 using AVX2. In:
Lauter, K., Rodŕıguez-Henŕıquez, F. (eds.) LATINCRYPT 2015. LNCS, vol. 9230,
pp. 329–345. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22174-
8 18

14. Fog, A.: Instruction tables: lists of instruction latencies, throughputs and micro-
operation breakdowns for Intel, AMD and VIA CPUs (2016). http://www.agner.
org/optimize/

15. Hamburg, M.: Ed448-Goldilocks, a new elliptic curve. Cryptology ePrint Archive,
Report 2015/625 (2015). http://eprint.iacr.org/2015/625

16. Hutter, M., Schwabe, P.: Multiprecision multiplication on AVR revisited. J. Cryp-
tographic Eng. 5(3), 201–214 (2015)

17. Hutter, M., Wenger, E.: Fast multi-precision multiplication for public-key cryp-
tography on embedded microprocessors. In: Preneel, B., Takagi, T. (eds.) CHES
2011. LNCS, vol. 6917, pp. 459–474. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-23951-9 30

18. Joye, M.: Highly regular right-to-left algorithms for scalar multiplication. In: Pail-
lier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 135–147. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2 10

19. Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48, 203–209 (1987)
20. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)

CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

21. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

22. Langley, A.: curve25519-donna. https://github.com/agl/curve25519-donna.
Accessed Mar 2017

23. Langley, A., Hamburg, M., Turner, S.: Elliptic Curves for Security (2016). Request
for Comments. https://tools.ietf.org/html/rfc7748

24. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986). https://
doi.org/10.1007/3-540-39799-X 31

25. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization.
Math. Comput. 48, 243–264 (1987)

26. National Institute of Standards and Technology. FIPS PUB 186-4: Digital Signa-
ture Standard (DSS). Federal Information Processing Standards (2013). http://
nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

27. National Institute of Standards and Technology. NIST Removes Cryptography
Algorithm from Random Number Generator Recommendations (2014). https://
www.nist.gov/news-events/news/2014/04/nist-removes-cryptography-algorithm-
random-number-generator-recommendations

https://doi.org/10.1007/978-3-662-48797-6_10
https://doi.org/10.1007/978-3-662-48797-6_10
http://www.ecc-brainpool.org/download/Domain-parameters.pdf
https://doi.org/10.1007/978-3-319-22174-8_18
https://doi.org/10.1007/978-3-319-22174-8_18
http://www.agner.org/optimize/
http://www.agner.org/optimize/
http://eprint.iacr.org/2015/625
https://doi.org/10.1007/978-3-642-23951-9_30
https://doi.org/10.1007/978-3-642-23951-9_30
https://doi.org/10.1007/978-3-540-74735-2_10
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-68697-5_9
https://github.com/agl/curve25519-donna
https://tools.ietf.org/html/rfc7748
https://doi.org/10.1007/3-540-39799-X_31
https://doi.org/10.1007/3-540-39799-X_31
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://www.nist.gov/news-events/news/2014/04/nist-removes-cryptography-algorithm-random-number-generator-recommendations
https://www.nist.gov/news-events/news/2014/04/nist-removes-cryptography-algorithm-random-number-generator-recommendations
https://www.nist.gov/news-events/news/2014/04/nist-removes-cryptography-algorithm-random-number-generator-recommendations


How to (Pre-)Compute a Ladder 191

28. National Institute of Standards and Technology. Special Publication 800-90A Rev.
1: Recommendation for Random Number Generation Using Deterministic Random
Bit Generators (2015). http://nvlpubs.nist.gov/nistpubs/SpecialPublications/
NIST.SP.800-90Ar1.pdf

29. Oliveira, T., Aranha, D.F., López, J., Rodŕıguez-Henŕıquez, F.: Fast point multi-
plication algorithms for binary elliptic curves with and without precomputation.
In: Joux, A., Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781, pp. 324–344. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-13051-4 20

30. Oliveira, T., López, J., Rodŕıguez-Henŕıquez, F.: The Montgomery ladder on binary
elliptic curves. J. Cryptographic Eng. (2017, to be submitted)

31. Ozturk, E., Guilford, J., Gopal, V., Feghali, W.: New Instructions Supporting Large
Integer Arithmetic on Intel R© Architecture Processors. Intel Corporation, White
Paper 327831-001, August 2012. http://www.intel.com/content/dam/www/
public/us/en/documents/white-papers/ia-large-integer-arithmetic-paper.pdf

32. Patterson, K.: Formal request from TLS WG to CFRG for new elliptic curves.
Crypto Forum Research Group archives (2015). https://mailarchive.ietf.org/arch/
msg/cfrg/Hvihr yQhVB Qdl-mtwTdVbHGiU

33. Perlroth, N.: Government Announces Steps to Restore Confidence on Encryption
Standards. New York Times (2013). https://bits.blogs.nytimes.com/2013/09/10/
government-announces-steps-to-restore-confidence-on-encryption-standards/

34. Perlroth, N., Larson, J., Shane, S.: N.S.A. Able to Foil Basic Safeguards of Privacy
on Web. New York Times (2013). http://www.nytimes.com/2013/09/06/us/nsa-
foils-much-internet-encryption.html

35. Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3 (2017).
Internet-Draft. https://tools.ietf.org/html/draft-ietf-tls-tls13-19

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
https://doi.org/10.1007/978-3-319-13051-4_20
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-large-integer-arithmetic-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-large-integer-arithmetic-paper.pdf
https://mailarchive.ietf.org/arch/msg/cfrg/Hvihr_yQhVB_Qdl-mtwTdVbHGiU
https://mailarchive.ietf.org/arch/msg/cfrg/Hvihr_yQhVB_Qdl-mtwTdVbHGiU
https://bits.blogs.nytimes.com/2013/09/10/government-announces-steps-to-restore-confidence-on-encryption-standards/
https://bits.blogs.nytimes.com/2013/09/10/government-announces-steps-to-restore-confidence-on-encryption-standards/
http://www.nytimes.com/2013/09/06/us/nsa-foils-much-internet-encryption.html
http://www.nytimes.com/2013/09/06/us/nsa-foils-much-internet-encryption.html
https://tools.ietf.org/html/draft-ietf-tls-tls13-19

	How to (Pre-)Compute a Ladder
	1 Introduction
	2 The Diffie-Hellman Protocol
	3 The Curves
	4 The Scalar Multiplication Operation
	4.1 Left-to-Right Montgomery Ladder

	5 How to (Pre-)Compute a Ladder
	5.1 Right-to-Left Montgomery Ladder with Pre-computation
	5.2 Montgomery Differential Addition with Precomputation
	5.3 Differential Addition Formulas in Algorithm4
	5.4 Implementing the Pre-computable Ladder
	5.5 Comparison

	6 Software Implementation on a 64-Bit Architecture
	7 Performance Benchmark
	8 Conclusion
	References


