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Abstract. We describe a new reconciliation method for Ring-LWE that
has a significantly smaller failure rate than previous proposals while
reducing ciphertext size and the amount of randomness required. It is
based on a simple, deterministic variant of Peikert’s reconciliation that
works with our new “safe bits” selection and constant-time error correc-
tion techniques. The new method does not need randomized smoothing
to achieve non-biased secrets. When used with the very efficient “New
Hope” Ring-LWE parametrization we achieve a decryption failure rate
well below 272 (compared to 2% of the original), making the scheme
suitable for public key encryption in addition to key exchange proto-
cols; the reconciliation approach saves about 40% in ciphertext size when
compared to the common LP11 Ring-LWE encryption scheme. We per-
form a combinatorial failure analysis using full probability convolutions,
leading to a precise understanding of decryption failure conditions on
bit level. Even with additional implementation security and safety mea-
sures the new scheme is still essentially as fast as the New Hope but has
slightly shorter messages. The new techniques have been instantiated
and implemented as a Key Encapsulation Mechanism (KEM) and pub-
lic key encryption scheme designed to meet the requirements of NIST’s
Post-Quantum Cryptography effort at very high security level.
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1 Introduction

Some classes of encrypted data must remain confidential for a long period of time
— often at least few decades in national security applications. Therefore high-
security cryptography should be resistant to attacks even with projected future
technologies. As there are no physical or theoretical barriers preventing progres-
sive development of quantum computing technologies capable of breaking current
RSA- and Elliptic Curve based cryptographic standards (using polynomial-time
quantum algorithms already known [37,42]), a need for such quantum-resistant
algorithms in national security applications has been identified [33].
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In December 2016 NIST issued a standardization call for quantum-resistant
public key algorithms, together with requirements and evaluation criteria [32].
This has made “Post-Quantum Cryptography” (PQC) central to cryptographic
engineers who must now design concrete proposals for standardization. Practi-
cal issues such as performance, reliability, message and key sizes, implementation
and side-channel security, and compatibility with existing and anticipated appli-
cations, protocols, and standards are as relevant as mere theoretical security and
asymptotic feasibility when evaluating these proposals.

Ring-LWE lattice primitives offer some of the best performance and key size
characteristics among quantum-resistant candidates [16]. These algorithms rely
on “random noise” for security and always have some risk of decryption failure.
This reliability issue can pose problems when used in non-interactive applications
which are not designed to tolerate errors. The issue of decryption failure can be
addressed via reconciliation methods, which is the focus of present work.

Structure of This Paper and Our Contributions. Section2 provides a
practical introduction to Ring-LWE Key Exchange and prior work on recon-
ciliation. Section 3 introduces our new reconciliation techniques, together with
detailed analysis. Section4 discusses design, analysis, and implementation of
XE5, a simple constant-time error correction code suitable for Ring-LWE.
Section 5 contains the specification and implementation benchmarks for our
instantiation HILAS, designed to meet the NIST PQC criteria at high secu-
rity level. We conclude in Sect. 6. Additional algorithmic listings are provided in
Appendix A.

2 Ring-LWE Key Exchange and Key Encapsulation

Notation and Basic Properties. Reduction x mod ¢ puts a number in
non-negative range 0 < z < g. We write the rounding function as [z] = [z + 3.

Let R be aring with elements v € Zg . Its coefficients v; € [0,¢—1] (0 <i <n)
can be interpreted as a polynomial via v(z) = Z?;Ol v;z’, or as a zero-indexed
vector. Addition, subtraction, and scaling (scalar multiplication with ¢) follow
the basic rules for polynomials or vectors with coefficients in Zj.

For multiplication in R we use cyclotomic polynomial basis Z,[z]/(z™ + 1).
Products are reduced modulo ¢ and 2™ + 1 and results are bound by degree n —1
since " = ¢ — 1 in R. We may write a direct wrap-around multiplication rule:

7 n—1
h=fxg mod (z"+1) <= hi=Y figi-j— Y. fidm+i-p- (1)
=0 j=it1

Algorithmically the multiplication rule of Eq. 1 requires O(n?) elementary oper-
ations. However, there is an O(nlogn) method using the Number Theoretic
Transform (NTT), originally from Nussbaumer [34]. For efficient NTT imple-
mentation n should be a power of two and ¢ a small prime, with 2n | ¢ — 1.
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Definition 1 (Informal). With all distributions and computations in ring R,
let s, e be elements randomly chosen from some non-uniform distribution x, and
g be a uniformly random public value. Determining s from (g,g+s+e) in ring R
is the (Normal Form Search) Ring Learning With Errors (RLWEg ) problem.

Typically, x is chosen so that each coefficient is a Discrete Gaussian or from
some other “Bell-Shaped” distribution that is relatively tightly concentrated
around zero. The hardness of the problem is a function of n, ¢, and x.!

2.1 Noisy Diffie-Hellman in a Ring

A key exchange method analogous to Diffie-Hellman can be constructed in R in

a straightforward manner, as first described in [1,35]. Let g S Rbea uniformly
random common parameter (“generator”), and y a non-uniform distribution.

Alice Bob
ad X private keys b X
el X noise o & X
A=gxa+te public keys B=gxb+e¢€
A
=
B
B
x=B=xa shared secret y=Axb

We see that the way messages A, B are generated makes the security of the
scheme equivalent to Definition 1. This commutative scheme “almost” works
like Diffie-Hellman because the shared secrets only approximately agree; x ~ y.
Since the ring R is commutative, substituting A and B gives

x=(gxb+e)rxa=graxb+e xa (2)
y=(gxat+e)xb=gxaxb+exb. (3)

The distance A therefore consists only of products of “noise” parameters:

A=x—-y=¢e*a—exb. 4)

! References and Notes on RLWE. The Learning With Errors (LWE) problem in
cryptography originates with Regev [38] who showed its connection to fundamental
lattice problems in a quantum setting. Regev also showed equivalence of search and
decision variants [39]. These ideas were extended to ring setting (RLWE) starting
with [29]. The connection between a uniform secret s and a secret chosen from x is
provided by Applebaum et al. [8] for LWE case, and for the ring setting in [30]. Due to
these reductions, the informal problem of Definition 1 can be understood to describe
“RLWE”. Best known methods for solving the problem expand an RLWE instance
to the general (lattice) LWE, and therefore RLWE falls under “lattice cryptography”
umbrella. For a recent review of its concrete hardness, see [3].
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We observe that each of {a, b, e, €'} in A are picked independently from y, which
should be relatively “small’ and zero-centered. The coefficients of both x and y
are dominated by common, uniformly distributed factor g*xa*b ~ x ~ y.
Up to n shared bits can be decoded from coefficients of x and y by a simple
binary classifier such as L%J ~ L%J . This type of generation will generate some
disagreeing bits due to error A, however. Furthermore, the output of the classifier
is slightly biased when ¢ is odd. This is why additional steps are required.

2.2 Reconciliation

Let x ~ y be two vectors in Zy with a relatively small difference in each coef-
ficient; the distribution of the distance §; = x; — y; is strongly centered around
zero. In reconciliation, we wish the holders of x and y (Alice and Bob, respec-
tively) to be able to arrive at exactly the same shared secret (key) k with a small
amount of communication c. However, single-message reconciliation can also be
described simply as a part of an encryption algorithm (not a protocol).?

Peikert’s Reconciliation and BCNS Instantiation. In Peikert’s reconcilia-
tion for odd modulus [36], Bob first generates a randomization vector r such that
each r; € {0,41} is uniform modulo two. Bob can then determine the public
reconciliation ¢ and shared secret k via

¢ = {MH)J mod 2 k; = {2%“—‘ mod 2. (5)
q q

We define disjoint helper sets Iy = [0, |Z]] and I = [~|2], —1] and E = [-%, ).
Alice uses x to arrive at the shared secret k/ = k via

,_J0,if 22; € I, + F mod 2¢

ki = { 1, otherwise. (6)

This mechanism is illustrated in Fig. 1. Peikert’s reconciliation was adopted for
the Internet-oriented “BCNS” instantiation [14], which has a vanishingly small
failure probability; Pr(k’ # k) < 2716384,

New Hope Variants. “New Hope” is a prominent, more recent instantiation

of Peikert’s key exchange scheme [5]. New Hope is parametrized at n = 1024,

yet produces a 256-bit secret key k. This allowed the designers to develop a
1024

relatively complex reconciliation mechanism that uses Sz= = 4 coefficients of x

and 2 % 4 = 8 bits of reconciliation information to reach < 2769 failure rate.

2 References and Notes on Reconciliation. The term “reconciliation” comes from
Quantum Cryptography. Standard Quantum Key Distribution (QKD) protocols such
as BB84 [10] result in approximately agreeing shared secrets, which must be recon-
ciled over a public channel with the help of classical information theory and cryp-
tography [11,15]. Ding et al. describe functionally similar (but mathematically very
different) “Robust Extractors” in later versions of [21] and patent application [20].
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Alice:

slg
NS

when ¢ =0 when ¢ =1

NS

Fig. 1. Simplified view of Peikert’s original reconciliation mechanism [36], ignoring
randomized rounding. Alice and Bob have points  ~ y € Z, that are close to each
other. Bob uses y to choose k and ¢ as shown on left, and transmits ¢ to Alice. Alice
can use z,c to always arrive at the same shared bit k' if |z — y| < £, as shown on
right. Without randomized smoothing the two halves k = 0 and k£ = 1 have an area of
unequal size (when ¢ is an odd prime) and the resulting key will be slightly biased.

In a follow-up paper [4] the New Hope authors let Bob unilaterally choose
the secret key, and significantly simplified their approach. This version also uses
four coefficients, but requires 3 * 4 = 12 bits of reconciliation (or “ciphertext”)
information per key bit. The total failure probability is the same < 2760,

Security Level and Failure Probability. Note that despite having a higher
failure probability, the security level of New Hope (Sect. 2.2) is higher than that
of BCNS (Sect.2.2). Security of RLWE is closely related to the entropy and
deviation of noise distribution y in relation to modulus ¢. Higher noise ratio
increases security against attacks, but also increases failure probability [3]. This
is a fundamental trade-off in all Ring-LWE schemes.

2.3 Formalization as a KEM

Following the NIST call [32] and Peikert [36], such a scheme can be formalized
as a Key Encapsulation Mechanism (KEM), which consists of three algorithms:

— (PK,SK) « KeyGen(). Generate a public key PK and a secret key SK (pair).
— (CT,K) « Encaps(PK). Encapsulate a (random) key K in ciphertext CT.
— K« Decaps(SK, CT). Decapsulate shared key K from CT with SK.

In this model, reconciliation data is a part of ciphertext produced by Encaps.
The three KEM algorithms constitute a natural single-roundtrip key exchange:

Alice Bob
(PK,SK) «— KeyGen() PK
—_
CT (CT,K) « Encaps(PK)

K «— Decaps(SK, CT)
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Fig. 2. We use k = | %] (k = 1 on left half) instead of signed rounding k = | % + €|
(k =1 in lower half) of Peikert (Fig.1). Illustration on the left gives intuition for the
simple key bit selection and SafeBits without reconciliation. Bob uses window parameter
b to select “safe” bits d = 1 which are farthest away from the negative (k = 1)/positive
(k = 0) threshold. The bit selection d is sent to Alice, who then chooses the same bits
as part of the shared secret k’. On right, safe bit selection when reconciliation bits ¢
are used; this doubles the SafeBits “area”. Each section constitutes a fraction %, SO
bits are unbiased. However the number of shared bits is not constant.

Even though a KEM cannot encrypt per se, a hybrid set-up that uses a KEM to
determine random shared keys for message payload confidentiality (symmetric
encryption) and integrity (via a message authentication code) is usually prefer-
able to using asymmetric encryption directly on payload [18].

NIST requires at least IND-CPA [9] security from such a scheme. For a KEM
without “plaintext”, this essentially means that valid (PK,CT,K) triplets are
computationally indistinguishable from (PK, CT,K’), where K’ is random.

3 New Reconciliation Method

We define a simpler, deterministic key and reconciliation bit generation rule from

Bob’s share y to be
2y, 4y,
ki:{gJ and ciz{ngon. (7)

Input y; can be assumed to be uniform in range [0, ¢ — 1]. If taken in this plain
form, the generator is slightly biased towards zero, since the interval for k; = 0,
[0, | 2]] is 1 larger than the interval [[£],q — 1] for k; = 1 when ¢ is odd.

Intuition: Selecting Safe Bits (without Reconciliation). Let’s assume
that we don’t need all n bits given by the ring dimension. There is a straight-
forward strategy for Bob to select m indexes in y that are most likely to agree.
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These safe coefficients are those that are closest to center points of K = 0 and
k = 1 ranges, which in this case are § and %, respectively. Bob may choose a
boundary window b, which defines shared bits to be used, and then communicate
his binary selection vector d to Alice:

& = {(1)i)f‘ciferevvi[sLeZ.1 -l b] o e [L%ﬂ - |_37:11 - b] (8)

This simple case is illustrated on left side of Fig. 2.

Since y is uniform in Zg, the Hamming weight of d = SafeBits(y) satisfies
Wt(d) = 2?1—11 d; ~ ‘“’T“n. Note that if not enough bits for the required payload
can be obtained with bound b, Bob should re-randomize y rather than raising
b as that can have an unexpected effect on failure rate. If there are too many
selection bits for desired payload, one can just ignore them.

Importantly, both partitions are of equal size 2b+1 and therefore k is unbiased
if there are no bit failures. If Alice also uses the simple rule k} = L%‘j to derive
key bits (without ¢;), the distance between shares must be at least |x; —y;| > —b
for a bit error to occur.

3.1 Even Safer Bits via Peikert’s Reconciliation

Let Bob use Eq. 7 to determine his private key bits k; and reconciliation bits c;.
Bob also uses a new d = SafeBits(y, b) function that accounts for Peikert-style

reconciliation via _
L[ | mod [47) — [2]] < o
v 0 otherwise.

Note that there are now four “safe zones” (Fig. 2, right side). Bob sends his bit
selection vector d to Alice, along with reconciliation bits ¢; at selected positions
with d; = 1. Alice can then get corresponding k. using ¢; via

K = LQ] (i — e E] + {%W mod q)J . (10)

Both parties derive a final key of length m < Wt(d) bits by concatenating the
selected bits. Since y is uniform, each partition is still of size 2b 4+ 1, and the
expected weight is now Wt(d) = Z;:ll d; ~ SETHn, allowing the selection to be
made essentially twice as tight while producing unbiased output.

Note that when selection mechanism is used, one needs to “pack” keys to
payload size m by removing k; and k. at positions where d; = 0. Algorithms 3
and 4 in Appendix A implement Eqs.9 and 10 with packing.

3.2 Instantiation and Failure Analysis

We adopt the well-analyzed and optimized external ring parameters (¢ = 12289,
n = 1024, and x = ¥y4) from New Hope [4,5] in our instantiation.
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Definition 2. Let ¥, be a binomial distribution source
k
W, = > b — b} where by, b, & {0,1}. (11)

For random variable X from ¥, we have P(X = i) = 272k (,ff) Furthermore,
W' is a source of R elements where each one of n coefficients is independently
chosen from Wj. Since scheme is uses k = 16, a typical sampler implementation

just computes the Hamming weight of a 32-bit random word and subtracts 16.

Lemma 1. Let ¢,&' be vectors of length 2n from WZ". Individual coefficients
0 = A; of distance Eq. 4 will have distribution equivalent to

2n
5= Zsisg. (12)
i=1

Proof. When we investigate the multiplication rule of Eq.1, we see that each
coefficient of independent polynomials {a, b, e, e’} (or its inverse) in A is used in
computation of each A; = § exactly once. One may equivalently pick coefficients
of g,&' from {+e,+€’,ts4,+sp}, without repetition. Therefore coefficients of
€;,¢; are independent and have distribution &j,. O

Independence Assumption. Even though all of the variables in the sum of
individual element 6 = A; are independent in Eq. 12, they are reused in other
sums for Aj;,¢ # j. Therefore, while the average-case distribution of each one of
the n coefficients of A is the same and precisely analyzable, they are not fully
independent. In this work we perform error analysis on a single coefficient and
then simply expand it to the whole vector. This independence assumption is
analogous to our extension of LWE security properties to Ring-LWE with more
structure and less independent variables.

The assumption is supported by our strictly bound error distribution ¥y
(when using discrete Gaussian distributions, which are infinite up to a tail bound,
a few highly anomalous values would be more likely to cause multiple errors)
and the structure of convolutions of signed random vectors (Eq.1). Our error
estimate has a significant safety margin, however.

Estimation via Central Limit Theorem. The distribution of the product
from two random variables from ¥y in Eq. 12 is no longer binomial. Clearly its
range is [—k?, k2], but not all values are possible; for example, primes p > k
cannot occur in the product. However, it is easy to verify that the product is
zero-centered and its standard deviation is exactly

Zk)

DD ’““24(:“ (i) = 5. (13)

i=—k j=—k
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Fig. 3. The error distribution F of § = z; — y; (which we compute with high precision)
is bell-shaped with variance o = 2'7. Its statistical distance to corresponding discrete
Gaussian (with same o) is ~ 27'%¢ which has a significant effect on the bit failure
rate. This is why we compute the discrete distributions numerically.

Hence, we may estimate § of Eq. 12 using the Central Limit Theorem as a Gaus-
sian distribution with deviation

o= gx/% (14)

With our parameter selection this yields o a~ 362.0386 (variance o2 = 217).
Figure 3 illustrates this error distribution.

More Precise Computation via Convolutions. The distribution of X =
g€} in Eq.12 is far from being “Bell-shaped” — its (total variation) statistical
distance to a discrete Gaussian (with the same o = 8) is ~ 0.307988.

We observe that since our domain Z, is finite, we may always perform full
convolutions between statistical distributions of independent random variables X
and Y to arrive at the distribution of X +Y . The distributions can be represented
as vectors of ¢ real numbers (which are non-negative and add up to 1).

In order to get the exact shape of the error distribution we start with X,
which is a “square” of ¥4 and can be computed via binomial coefficients, as is
done in Eq. 13. The error distribution (Eq.12) is a sum X + X +--- + X of 2n
independent variables from that distribution. Using the convolution summing
rule we can create a general “scalar multiplication algorithm” (analogous to
square-and-multiply exponentiation) to quickly arrive at F = 2048 x X.

We implemented finite distribution evaluation arithmetic in 256-bit floating
point precision using the GNU MPFR library?. From these computations we
know that the statistical distance of E to a discrete Gaussian with (same) 02 =
217 is approximately 0.0001603 or 27126,

3 The GNU MPFR is a widely available, free C library for multiple-precision floating-
point computations with correct rounding: http://www.mpfr.org/.
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Proposition 1. Bit selection mechanism of Sect. 3.1 yields unbiased shared
secret bits k = k' if y is uniform. Discrete failure rate for individual bits k # k'
can be computed with high precision in our instance.

Proof. Consider Bob’s k value from in Eq. 7, Bob’s ¢ and Alice’s k' from Eq. 10,
and the four equiv-probable SafeBits ranges in Eq. 9. With our ¢ = 12289 instan-
tiation the four possible k # k' error conditions are:

Failure Case Bob’s y; range for YV Alice’s Failing z;
k=0,c=0,k'=1 [1536 — b, 1536 + b) [4609,10752)
k=0,c=1Fk = [4608 — b, 4608 + b] [0,1535] U [7681, 12288]
k=1,c=0,k'=0 [7680 — b, 7680 + b] [0,4608] U [10753, 12288]
k=1,c=1,kK =0 [10752 — b, 10752 + b) [1536, 7680]

We examine each case separately (See Fig. 2). Since the four non-overlapping y;
ranges are of the same size 2b + 1 and together constitute all selectable points
d; = 1 (Eq.9), the distribution of ¥ = k' is uniform. Furthermore, bit fail
probability k # k' is the average of these four cases. For each case, compute
distribution Y which is uniform in the range of y;. Then convolute it with error
distribution to obtain X = Y 4+ E, the distribution of x;. The probability of
failure is the sum of probabilities in X in the corresponding x; failure range. O

Parameter Selection for Instantiation. Based on our experiments, the rela-

tionship between window size b and bit failure rate is almost exponential.
Some representative window sizes and payloads are given in Table 1, which

also puts our selection b = 799 in context. Five-error correction (Sect.4) lowers

Table 1. Potential window b sizes for safe bit selection (Eq.9) for different payload
sizes. We target a payload of 496 bits, of which 256 are actual key bits and 240 bits
are used to encrypt a five-error correcting code from XES5.

Payload bits® | Selection Selection Ratio | Bit fail Payload Failure
maTrXn Window b r= @ Probability p |1 —(1—p)™
128 191 0.124664 9—51.4715 Q—44.4715
256 383 0.249654 9—46.5521 9385521
384 575 0.374644 Q415811 9~ 32.9962
496° 799 0.520465 9736.0359 Q—27.0818
512 767 0.499634 9—36.8063 Q~27.8063
768 1151 0.749613 9281151 Q185302
1024 1535 0.999593 27207259 9—10.7263

@ This is the minimum number of payload bits you get with 50% probability. The actual
number is binomially distributed with density f(k) = (})r*(1 — r)"~*. Probability of
at least m bits is therefore Y ;_  f(k).

® The payload could be 533 bits with 50% probability. We get 496 bits with 99%

probability — this safety margin was chosen to minimize repetition rate (to =~ ﬁ).
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the message failure probability to roughly (2727)5 ~ 2713% or even lower as 99%
of six-bit errors are also corrected. We therefore meet the 27128 message failure
requirement with some safety margin.

4 Constant-Time Error Correction

We note that in our application the error correction mechanism operates on
secret data. As with all other components of the scheme it is highly desirable
that decoding can be implemented with an algorithm that requires constant
processing time regardless of number of errors present. We are not aware of
satisfactory constant-time decoding algorithms for BCH, Reed-Solomon, or other
standard block multiple-error correcting codes [31].

We chose to design a linear block code specifically for our application. The
design methodology is general, and a similar approach was used by the Author
in the TRUNC8 Ring-LWE lightweight authentication scheme [41]. However, that
work did not provide a detailed justification for the error correction code.

Definition 3. XES5 has a block size of 496 bits, out of which 256 bits are payload
bits p = (po,p1,- - ,P2s5) and 240 provide redundancy r. Redundancy is divided

into ten subcodewords ro,r1,--- ,ry of varying bit length |r;| = L; with
(Lo, L1, -+, Lg) = (16,16,17,31,19,29, 23, 25,27, 37). (15)
Bits in each r; are indeved 7(; 0),7(i,1), "+ »T(i,L.—1)- Fach bit k € [0, Lo —1] in
first subcodeword rq satisfies the parity equation
15
rok =Y PQckts) (mod 2) (16)
j=0
and bits in r1,7r2,- -+ ,T9 satisfy the parity congruence
Tik = Z p; (mod 2). (17)
j—k | Li

We see that rg j, in Eq. 16 is the parity of k4 1:th block of 16 bits, while the r; j,
in Eq. 17 is parity of all p; at congruent positions j = k (mod L;).

Definition 4. For each payload bit position p; we can assign corresponding inte-
ger “weight” w; € [0,10] as a sum

9
w; = T(0,i/16]) T Zr(j,i mod L;)- (18)
j=1

Lemma 2. If message payload p only has a single nonzero bit p., then w, = 10
and w; <1 for all i # e.
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Proof. Since each L; > \/@ and all L;>1 are coprime (each is a prime power)
it follows from the Chinese Remainder Theorem that any nonzero i # j pair can
satisfy both 7; 4 mod L, = 1 and 74 mod £, = 1 only at a = e. Similar argument
can be made for pairing 7 , with 7;>;. Since the residues can be true pairwise
only at e, weight w, cannot be 2 or above when a # e. The w, = 10 case follows
directly from the Definition 3. O

Definition 5. Given XFE5 input block p | r, we deliver a redundancy check r’
from p via Egs. 16 and 17. Furthermore we have distance v> =r ®r'. Payload
distance weight vector w2 is derived from r® via Eq. 18.

Since the code is entirely linear, Lemma 2 implies a direct way to correct a
single error in p using Definition 5 — just flip bit p, at position # where w2 = 10.
In fact any two redundancy subcodewords r; and r; would be sufficient to correct
a single error in the payload; it’s where wiA > 2. It’s easy to see if the single
error would be in the redundancy part (r; or r;) instead of the payload, this is
not an issue since in that case w2 < 1 for all z. This type of reasoning leads to
our main error correction strategy that is valid for up to five errors:

Theorem 1. Let b | r be an XE5 message block as in Definition 5. Changing
each bit p; when w? > 6 will correct a total of five bit errors in the block.

Proof. We first note that if all five errors are in the redundancy part r, then
w? < 5 and no modifications in payload are done. If there are 4 errors in r and
one in payload we still have w2 > 6 at the payload error position p,, etc. For
each payload error p,,, each of ten subcodeword r; will contribute one to weight
w2 unless there is another congruent error p, — i.e. we have |z/16] = |y/16]
for rg or = y (mod L;) for r;>1. Four errors cannot generate more than four
such congruences (due to properties shown in the proof of Lemma 2), leaving
fifth correctable via remaining six subcodewords (w? > 6). O

In order to verify the correctness of our implementation, we also performed
a full exhaustive test (search space Y0_, m%% ~ 2378). Experimentally XE5
corrects 99.4% of random 6-bit errors and 97.0% of random 7-bit errors.

Efficient Constant-Time Implementation. The code generation and error
correcting schemes can be implemented in bit-sliced fashion, without conditional
clauses or table-lookups on secret data. Please refer to the implementations under
https://mjos.fi/hilab and the full version of this paper at https://eprint.iacr.org/
2017/424 for more information about these techniques.

The block is encoded simply as a 496-bit concatenation p | r. The reason for
the ordering of L; in Eq. 15 is so that they can be packed into byte boundaries:
17431 =48, 19+ 29 = 48, 23 4+ 25 = 48 and 27 + 37 = 64.
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5 Instantiation and Implementation

Our instantiation — codenamed HILA5* — shares core Ring-LWE parameters with
various “New Hope” variants, but uses an entirely different error management
strategy. Algorithm 1 contains a pseudocode overview of the entire HILA5S Key
Encapsulation Mechanism, using a number of auxiliary primitives and functions.

Algorithm 1. The HILA5 KEM Components and (key exchange) protocol flow.
Alice Bob
(PK, SK) « KeyGen()
s & {0,132
g «— Parse(s)

Public random seed.
Ezpand to “generator” in NTT domain.

ad Pl Randomize Alice’s secret key.
a— NTT(a) Transform it.
ed V16 Generate masking noise.
A—g®a+NTT(e) Compute Alice’s public key in NTT domain.
—Send PK=s| A PK
—_—
| Keep SK = & and h(PK). (CT, K) « Encaps(PK)
Randomize Bob’s ephemeral secret key. b & T
Transform it. b «— NTT(b)

Bob’s version of shared secret.

Get payload and reconciliation values.

(Fail hard after more than a dozen restarts.)
Split to payload and redundancy “keystream”.
Error correction code, encrypt it.

Get “generator” from Alice’s seed.

Generate masking noise.
Compute Bob’s one-time public value.
CcT
o~

Hash the shared secret. V is a version identifier.

K « Decaps(SK, CT)
x —NTT }{(B®a)

k' < Select(x,d, c)

y — NTT_I(A ® E))

(d, k, c) « SafeBits(y)

If k = FAIL restart Encaps()
plz=k

r — XE5_Cod(p) & =

g «— Parse(s)

o &

B—g®b+NTT(e)
—Send CT=B|d|c]|r

LK =h(V | h(PK)|A(CT)[p)

Alice’s version of the shared secret.
Get payload with the help of reconciliation.

Split to payload and redundancy “keystream”.
r’ «— XE5_Cod(p’) Get error correction code from Alice’s version.
p’ — XE5 Fix(r oz @r')®p’ Decrypt and apply Bob’s error correction.

L K'=h(V|R(PK) | h(CT) | p"” ) Upon success shared secret K =K'.

pl|Z/:kl

4 Hila is Finnish for a lattice. HILA5 — especially when written as “Hila V” — also refers
to hilavitkutin, a nonsensical placeholder name usually meaning an unidentified,
incomprehensibly complicated apparatus or gizmo.
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Notation and Auxiliary Functions. We represent elements of R in two
different domains; the normal polynomial representation v and Number The-
oretic Transform representation v. Convolution (polynomial multiplication) in
the NTT domain is a linear-complexity operation, written x ® y. Addition and
subtraction work as in normal representation. The transform and its inverse are
denoted NTT(v) = v and NTT*(¥) = v, respectively. The transform algorithm
is adopted from Longa and Naehrig [28], and not detailed here.

The XE5 error correction functions r = XE5_Cod(p) and p’ = XE5_Fix(r &
r’) @ p are discussed in Sect.4. Here we have “error key” k = p | r with the
payload key p € {0,1}?%6 and redundancy r € {0,1}24°.

The hash h(z) is SHA3-256 [24]. Appendix A contains pseudocode algorithm
listings for additional auxiliary functions. Function Parse() (Algorithm 2) deter-
ministically samples a uniform g € R based on arbitrary seed s using SHA3’s
XOF mode SHAKE-256 [24]. While New Hope uses the slightly faster SHAKE-
128 for this purpose, we consistently use SHAKE-256 or SHA3-256 in all parts
of HILAS5. For sampling modulo ¢ we use the 5¢ trick suggested by Gueron and
Schlieker in [25]. Binomial distribution values W14 can be computed directly from
32 random bits per Definition 2.

Bob’s reconciliation function SafeBits() (Algorithm 3) captures Eqgs.7 and
9 from Sect. 3. Conversely Alice’s reconciliation function Select() (Algorithm 4)
captures Eq. 10.

Encoding — Shorter Messages. Ring elements, whether or not in NTT
domain, are encoded into |R| = [log, ¢|n bits = 1,792 bytes. This is the private
key size. Alice’s public key PK with a 256-bit seed s and Ais1,824 bytes. Cipher-
text CT is |R| 4+ n 4+ m + |r| bits or 2,012 bytes; 36 bytes less than New Hope
[5], 196 bytes less than the variant of [4], and 1,572 bytes less than LP11 [27].

5.1 Encryption: From Noisy Diffie-Hellman to Noisy ElGamal

Modification of the scheme for public-key encryption is straightforward. Com-
pared to the more usual “LP11” Ring-LWE Public Key Encryption construction
[27] our reconciliation approach saves about 44 % in ciphertext size.

For minimal ciphertext expansion with only passive security, one may replace
SHA3 at the end of Encaps() and Decaps() with SHAKE-256 and use the output
K as keystream to XOR with plaintext to produce ciphertext or vice versa.

However, for active security we suggest that K is used as keying material
for an AEAD (Authenticated Encryption with Associated Data) scheme such as
AES256-GCM [22,23] or Keyak [12] in order to protect message integrity. See
Sect. 5 of [36] for details of the formal security argument.

5.2 Security

In Algorithm 1 the error correction data r is transmitted encrypted with shared
secret bits z, and therefore does not leak entropy about the actual key data p,
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also derived from the shared secret. Shared secret bits are unbiased. The shared
key K also includes plaintext PT and ciphertext CT in the final hash to protect
against a class of active attacks.

Our reconciliation mechanism has no effect on the security against (quantum)
lattice attacks, so estimates in [2,5] are applicable (2255 quantum security, with
2199 attacks plausible). Pre-image security is expected from SHA3 and SHAKE-
256 in HILAS5. Breaking the construction via these algorithms is expected to
require approximately 2156 logical-qubit-cycles [7,19,45].

This leads us to claim that the HILA5 meets NIST’s “Category 5”7 post-
quantum security requirement ([32], Sect.4.A.5): Compromising key K in a pas-
sive attack requires computational resources comparable to or greater than those
required for key search on a block cipher with a 256-bit key (e.g. AES 256).
The scheme can also be made secure against active attacks with an appropriate
AEAD mechanism, as discussed in Sect. 5.1.

Implementation Security. HILAS has been designed from ground-up to be resis-
tant against timing and side-channel attacks. The sampler ¥4 is constant-time,
as is our error correction code XE5. Ring arithmetic can also be implemented in
constant time, but leakage can be further minimized via blinding [40] (Sect. 6).

Table 2. Performance of HILA5 within the Open Quantum Safe test bench C imple-
mentations [43]. The slight (under 4%) performance difference to New Hope is prin-
cipally due to our use of error correction and SHAKE-256. Testing was performed on
an Ubuntu 17.04 workstation with Core i7-6700 @ 3.40 GHz. For reference and scale
we are also including RSA numbers with OpenSSL 1.0.2 (system default) on this tar-
get. A single Elliptic Curve DH operation requires 45.4 ps for the NIST P-256 curve
(highly optimized implementation), and 331.7 us for NIST P-521. Full source code of
our implementation is available at https://mjos.fi/hila5/

Scheme Init Public | Private |Key Ex. | Data
KeyGen() | Encaps() | Decaps() | Total Tot. xfer
RLWE New Hope [5] 60.7ns  |92.3ps | 16.2pus | 169.2us | 3,872 B
RLWE Hila5 [This work] | 68.7 ps 899us |16.9ps |175.4pus | 3,836 B
RLWE BCNS15 [14] 951.6 s | 1546 ps | 196.9us | 2.694ms | 8,320 B
LWE Frodo [13] 2.839ms |3.144ms | 84.9pus |6.068ms | 22,568 B
SIDH CLN16 [17] 10.3ms |22.9ms |9.853ms 43.1ms | 1,152 B
RSA-2048 [OpenSSL)] 60 ms 15.9us |559.9us | N/A N/A
RSA-4096 [OpenSSL] | 400ms | 55.7ps | 3.687ms N/A | N/A

5.3 Performance

Our main contribution, a new reconciliation mechanism, has a minor effect on
performance of the scheme, but a significant impact on failure probability.
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We chose to recycle “New Hope” NTT (n,q) and sampler (g, ¥14) parame-
ters as they have been extensively vetted for security against lattice attacks and
originally selected for performance. A significant effort has subsequently been
dedicated (by several research groups) for the optimization of NTT and Sam-
pler components. There already exists a number of permissively licensed open
source implementations and a body of publications detailing specific optimiza-
tions for these particular NTT and sampler parameters. New Hope has also
been integrated in TLS stacks and cryptographic toolkits in 2016-17 by Google
(BoringSSL), the Open Quantum Safe project, Microsoft (MS Lattice Library),
ISARA Corporation, and possibly others.

There are at least two very fast AVX2 Intel optimized versions of the NTT
core and Wi sampler — the original [5] and one by Longa and Naehrig [28].
Further sampler optimizations have been suggested in [25]. Implementations
have also been reported for ARM Cortex-M microcontrollers [6], ARM NEON
SIMD instruction set [44], and for FPGA hardware [26].

Our prototype implementation was integrated into a branch of the Open
Quantum Safe (OQS) framework® where it was benchmarked against other
quantum-resistant KEM schemes [43]. Table 2 summarizes the performance of
our implementation. It is essentially the same as New Hope C implementation,
with slightly smaller message size.

6 Conclusions

With NIST’s ongoing post-quantum standardization effort, the practical perfor-
mance, implementation security, and reliability of Ring-LWE public key encryp-
tion and key exchange implementations have emerged as major research area.

We have described an improved general reconciliation scheme for Ring-LWE.
Our SafeBits selection technique avoids randomized “blurring” of previous Peik-
ert’s, Ding’s, and New Hope reconciliation schemes to achieve unbiased secret
bits, therefore needing less randomness. We have given detailed, precise argu-
ments for its effectiveness.

The failure probability can also be addressed using error correcting codes.
For this purpose we described a class of linear forward-error correcting block
codes that can be implemented without branches or table lookups on secret
data, guarding against side-channel attacks.

We instantiate the new techniques in “HILA5” with well-studied and efficient
“New Hope” Ring-LWE parameters. The new reconciliation methods are shown
to have minimal negative performance impact, while significantly improving the
failure probability. The failure probability, which is shown to be under 27128,
allows the KEM to be used for actively secure public key encryption in addition
to interactive key exchange protocols. Furthermore the message sizes are shorter
than with previous proposals, especially when used for public key encryption.

5 Open Quantum Safe project: https://openquantumsafe.org,/.
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We claim that the HILAS5 instantiation meets “Category 5” NIST PQC secu-
rity requirements as a KEM and public key encryption scheme. Furthermore, it
has been explicitly designed to be robust against side-channel attacks.

Acknowledgements.. The author wishes to thank the DARKMATTER Crypto
Team and Dr. Najwa Aaraj for providing feedback and supporting this research.

A Algorithmic Definitions

Algorithm 2. Parse(s): Deterministic sampling in ring R based on seed s.
Input: Seed value s.

1: z «— SHAKE — 256(s) Absorb the seed s into Keccak state.

2: fori=0,1,...n—1do

3: repeat

4: t < next 16 bits from z z represents the (endless) output of XOF.
5. until t < 5¢ Acceptance rate is ;Tqﬁ ~ 93.76%.

6: gi—t No further transformation needed.

7: end for

Output: A ring element g which is understood to be in NTT domain.

Algorithm 3. SafeBits(y): Determine Bob’s key bit, reconciliation, and payload.
HILAS5 has n = 1024, ¢ = 12289, selection bound b = 799, and payload m = 496.
Input: Bob’s share y € R.

1: j«<~0,d<—0", k0™ c«— 0™ Initialize.

2: fori=0,1,...n—1do

3: t«<y; mod |%] Position within the quadrant.

4:  ifte [[£] — b, [Z] +0b] then

5: d; — 1 Mark selection bit.

6: k; — |2yi/q] Key bit (really just bound comparisons).
7 ¢j < |4yi/q] mod 2 Reconciliation bit (also just bounds).

8: j—j+1

9: if j = m then

10: return (d,k,c) We have enough bits, done.

11: end if
12:  end if
13: end for
14: return FAIL j < m: not enough bits (< 1% probability).

Output: Either three binary vectors d € {0,1}", k € {0,1}™, ¢ € {0,1}" or FAIL.
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Algorithm 4. Select(x,d, ¢): Determine Alice’s key bits.

Input: Alice’s share x € R.
Input: Bob’s reconciliation vectors d € {0,1}"™ and ¢ € {0,1}™.

1: 5«0, k0" Initialize.

2: fori=0,1,...n—1do

3: if d; =1 then

4: if ¢;j =1 then

5: t— x; — L%-‘ Reconciliation 45° anticlockwise.
6: else

7 t— x; + L%] Reconciliation 45° clockwise.
8: end if

9: k; = E(t mod q)J Really a conditional.

10: e+l

11: if j = m then

12: return k Done.

13: end if

14: end if

15: end for

16: return FAIL 7 < m: not enough bits

Output: Either key bits k € {0,1}™ or FAIL.

References

Aguilar, C., Gaborit, P., Lacharme, P., Schrek, J., Zémor, G.: Noisy Diffie-Hellman
protocols, May 2010, https://pqc2010.cased.de/rr/03.pdf. Talk given by Philippe
Gaborit at PQCrypto 2010 “Recent Results” session

Albrecht, M.R., Gopfert, F., Virdia, F., Wunderer, T.: Revisiting the expected cost
of solving uSVP and applications to LWE. In: ASTACRYPT 2017 (2017), https://
eprint.iacr.org/2017/815

Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. J. Math. Cryptology 9(3), 169-203 (2015), https://eprint.iacr.org/2015/
046

Alkim, E., Ducas, L., Péppelmann, T., Schwabe, P.: Newhope without reconcilia-
tion. IACR ePrint 2016/1157, December 2016, https://eprint.iacr.org/2016,/1157
Alkim, E., Ducas, L., Péppelmann, T., Schwabe, P.: Post-quantum key exchange
- A new hope. In: Holz, T., Savage, S. (eds.) USENIX Security 16, pp. 327—
343. USENIX Association, August 2016, https://www.usenix.org/system/files/
conference/usenixsecurity16/sec16_paper_alkim.pdf. full version, https://eprint.
iacr.org/2015/1092

Alkim, E.; Jakubeit, P., Schwabe, P.: A new hope on ARM Cortex-M. IACR, ePrint
2016/758 (2016), https://eprint.iacr.org/2016/758

Amy, M., Matteo, O.D., Gheorghiu, V., Mosca, M., Parent, A., Schanck, J.: Esti-
mating the cost of generic quantum pre-image attacks on SHA-2 and SHA-3. IACR
ePrint 2016/992 (2016), http://eprint.iacr.org/2016/992. To appear in Proc. SAC
2016


https://pqc2010.cased.de/rr/03.pdf
https://eprint.iacr.org/2017/815
https://eprint.iacr.org/2017/815
https://eprint.iacr.org/2015/046
https://eprint.iacr.org/2015/046
https://eprint.iacr.org/2016/1157
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_alkim.pdf
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_alkim.pdf
https://eprint.iacr.org/2015/1092
https://eprint.iacr.org/2015/1092
https://eprint.iacr.org/2016/758
http://eprint.iacr.org/2016/992

210

8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

M.-J. O. Saarinen

Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595-618. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03356-8_35

Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of
security for public-key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 26-45. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0055718

Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and
coin tossing. In: Proceedings of IEEE International Conference on Computers, Sys-
tems and Signal Processing, pp. 175-179. IEEE, December 1984, http://researcher.
watson.ibm.com//researcher/files/us-bennetc/BB84highest.pdf

Bennett, C.H., Brassard, G., Robert, J.M.: Privacy amplification by public
discussion. SIAM J. Comput. 17(2), 210-229 (1988)

Bertoni, G., Daemen, J., Peeters, M., Assche, G.V., Keer, R.V.: Caesar
submission: Keyak v2, September 2016, http://keyak.noekeon.org/. cAESAR
Candidate Specification

Bos, J., Costello, C., Ducas, L., Mironov, I., Naehrig, M., Nikolaenko, V.,
Raghunathan, A., Stebila, D.: Frodo: take off the ring! practical, quantum-secure
key exchange from LWE. In: ACM CCS 2016, pp. 1006-1018. ACM, October 2016,
https://eprint.iacr.org/2016,/659. Full version, IACR ePrint 2016,/659

Bos, J.W., Costello, C., Naehrig, M., Stebila, D.: Post-quantum key exchange for
the TLS protocol from the ring learning with errors problem. In: IEEE S & P
2015, pp. 553-570. IEEE Computer Society (2015), https://eprint.iacr.org/2014/
599. Extended version, IACR ePrint 2014/599

Brassard, G., Salvail, L.: Secret-key reconciliation by public discussion. In:
Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 410-423. Springer,
Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7_35

Chen, L., Jordan, S., Liu, Y.K., Moody, D., Peralta, R., Perlner, R., Smith-Tone,
D.: Report on post-quantum cryptography. NISTIR 8105, April 2016

Costello, C., Longa, P., Naehrig, M.: Efficient algorithms for supersingular isogeny
Diffie-Hellman. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol.
9814, pp. 572-601. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53018-4_21

Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. STAM J. Comput. 33(1),
167-226 (2003), http://www.shoup.net/papers/cca2.pdf

Czajkowski, J., Bruinderink, L.G., Hiilsing, A., Schaffner, C.: Quantum preimage,
2nd-preimage, and collision resistance of SHA3. IACR ePrint 2017/302 (2017),
https://eprint.iacr.org/2017/302

Ding, J.: Improvements on cryptographic systems using pairing with errors,
June 2015, https://patents.google.com/patent/W02015184991A1/en. Application
PCT/CN2015/080697

Ding, J., Xie, X., Lin, X.: A simple provably secure key exchange scheme based
on the learning with errors problem. IACR ePrint 2012/688 (2012), https://eprint.
iacr.org/2012/688

Dworkin, M.: Recommendation for block cipher modes of operation: Galois/
Counter Mode (GCM) and GMAC. NIST Special Publication 800-38D, November
2007


https://doi.org/10.1007/978-3-642-03356-8_35
https://doi.org/10.1007/BFb0055718
https://doi.org/10.1007/BFb0055718
http://researcher.watson.ibm.com/researcher/files/us-bennetc/BB84highest.pdf
http://researcher.watson.ibm.com/researcher/files/us-bennetc/BB84highest.pdf
http://keyak.noekeon.org/
https://eprint.iacr.org/2016/659
https://eprint.iacr.org/2014/599
https://eprint.iacr.org/2014/599
https://doi.org/10.1007/3-540-48285-7_35
https://doi.org/10.1007/978-3-662-53018-4_21
https://doi.org/10.1007/978-3-662-53018-4_21
http://www.shoup.net/papers/cca2.pdf
https://eprint.iacr.org/2017/302
https://patents.google.com/patent/WO2015184991A1/en
https://eprint.iacr.org/2012/688
https://eprint.iacr.org/2012/688

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

HILAS5: On Reliability, Reconciliation, and Error Correction 211

FIPS: Specification for the Advanced Encryption Standard (AES). Federal Infor-
mation Processing Standards Publication 197 (November 2001), http://csrc.nist.
gov/publications/fips/fips197 /fips-197.pdf

FIPS: SHA-3 standard: permutation-based hash and extendable-output functions.
Federal Information Processing Standards Publication 202, August 2015

Gueron, S., Schlieker, F.: Speeding up R-LWE post-quantum key exchange. IACR
ePrint 2016/467 (2016), https://eprint.iacr.org/2016/467

Kuo, P.C., Li, W.D., Chen, Y.W., Hsu, Y.C., Peng, B.Y., Cheng, C.M., Yang, B.Y.:
Post-quantum key exchange on FPGAs. IACR ePrint 2017/690 (2017), https://
eprint.iacr.org/2017/690

Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryp-
tion. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319-339. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-19074-2_21

Longa, P., Naehrig, M.: Speeding up the number theoretic transform for faster
ideal lattice-based cryptography. In: Foresti, S., Persiano, G. (eds.) CANS 2016.
LNCS, vol. 10052, pp. 124-139. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-48965-0-8

Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1-23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_1
Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE cryptography.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
35-54. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_3
MacWilliams, F.J., Sloane, N.J.: The Theory of Error-correcting Codes. North-
Holland, Amsterdam (1977)

NIST: Submission requirements and evaluation criteria for the post-quantum cryp-
tography standardization process. Official Call for Proposals, National Institute for
Standards and Technology, December 2016, http://csrc.nist.gov/groups/ST/post-
quantum-crypto/documents/call-for-proposals-final-dec-2016.pdf

NSA/CSS: Information assurance directorate: Commercial national security
algorithm suite and quantum computing FAQ, January 2016, https://www.iad.
gov/iad/library /ia-guidance/ia-solutions-for-classified /algorithm-guidance/cnsa-
suite-and-quantum-computing-faq.cfm

Nussbaumer, H.J.: Fast polynomial transform algorithms for digital convolution.
IEEE Trans. Acoust. Speech Signal Process. 28, 205-215 (1980)

Peikert, C.: Some recent progress in lattice-based cryptography. In: Reingold, O.
(ed.) TCC 2009. LNCS, vol. 5444, pp. 72-72. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-00457-5_5

Peikert, C.: Lattice cryptography for the internet. In: Mosca, M. (ed.) PQCrypto
2014. LNCS, vol. 8772, pp. 197-219. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-11659-4_12

Proos, J., Zalka, C.: Shor’s discrete logarithm quantum algorithm for elliptic curves.
Quantum Inf. Comput. 3(4), 317-344 (2003), https://arxiv.org/abs/quant-ph/
9508027. Updated version available on arXiv

Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: STOC 2005, pp. 84-93. ACM, May 2005

Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM 56(6), 34:1-34:40 (2009)

Saarinen, M.J.O.: Arithmetic coding and blinding countermeasures for lattice sig-
natures. J. Cryptographic Eng. (to appear, 2017), http://rdcu.be/oHun


http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
https://eprint.iacr.org/2016/467
https://eprint.iacr.org/2017/690
https://eprint.iacr.org/2017/690
https://doi.org/10.1007/978-3-642-19074-2_21
https://doi.org/10.1007/978-3-319-48965-0_8
https://doi.org/10.1007/978-3-319-48965-0_8
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-38348-9_3
http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/call-for-proposals-final-dec-2016.pdf
http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/call-for-proposals-final-dec-2016.pdf
https://www.iad.gov/iad/library/ia-guidance/ia-solutions-for-classified/algorithm-guidance/cnsa-suite-and-quantum-computing-faq.cfm
https://www.iad.gov/iad/library/ia-guidance/ia-solutions-for-classified/algorithm-guidance/cnsa-suite-and-quantum-computing-faq.cfm
https://www.iad.gov/iad/library/ia-guidance/ia-solutions-for-classified/algorithm-guidance/cnsa-suite-and-quantum-computing-faq.cfm
https://doi.org/10.1007/978-3-642-00457-5_5
https://doi.org/10.1007/978-3-642-00457-5_5
https://doi.org/10.1007/978-3-319-11659-4_12
https://doi.org/10.1007/978-3-319-11659-4_12
https://arxiv.org/abs/quant-ph/9508027
https://arxiv.org/abs/quant-ph/9508027
http://rdcu.be/oHun

212

41.

42.

43.

44.

45.

M.-J. O. Saarinen

Saarinen, M.J.O.: Ring-LWE ciphertext compression and error correction: tools for
lightweight post-quantum cryptography. In: Proceedings of the 3rd ACM Interna-
tional Workshop on IoT Privacy, Trust, and Security, IoTPTS 2017, pp. 15-22.
ACM, April 2017

Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: Proceedings of FOCS 1994, pp. 124-134. IEEE (1994), https://arxiv.org/
abs/quant-ph/9508027. Updated version available on arXiv

Stebila, D., Mosca, M.: Post-quantum key exchange for the internet and the open
quantum safe project. In: Avanzi, R., Heys, H. (eds.) SAC 2016. LNCS, vol. 10532,
pp. 14-37. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69453-5_2
Streit, S., Santis, F.D.: Post-quantum key exchange on ARMv8-A - a new hope for
NEON made simple. IACR ePrint 2017/388 (2017), https://eprint.iacr.org/2017/
388

Unruh, D.: Collapsing sponges: post-quantum security of the sponge construction.
TACR ePrint 2017/282 (2017), https://eprint.iacr.org/2017/282


https://arxiv.org/abs/quant-ph/9508027
https://arxiv.org/abs/quant-ph/9508027
https://doi.org/10.1007/978-3-319-69453-5_2
https://eprint.iacr.org/2017/388
https://eprint.iacr.org/2017/388
https://eprint.iacr.org/2017/282

	HILA5: On Reliability, Reconciliation, and Error Correction for Ring-LWE Encryption
	1 Introduction
	2 Ring-LWE Key Exchange and Key Encapsulation
	2.1 Noisy Diffie-Hellman in a Ring
	2.2 Reconciliation
	2.3 Formalization as a KEM

	3 New Reconciliation Method
	3.1 Even Safer Bits via Peikert's Reconciliation
	3.2 Instantiation and Failure Analysis

	4 Constant-Time Error Correction
	5 Instantiation and Implementation
	5.1 Encryption: From Noisy Diffie-Hellman to Noisy ElGamal
	5.2 Security
	5.3 Performance

	6 Conclusions
	A Algorithmic Definitions
	References


