
Carlisle Adams
Jan Camenisch (Eds.)

 123

LN
CS

 1
07

19

24th International Conference
Ottawa, ON, Canada, August 16–18, 2017
Revised Selected Papers

Selected Areas
in Cryptography –
SAC 2017

Lecture Notes in Computer Science 10719

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Carlisle Adams • Jan Camenisch (Eds.)

Selected Areas
in Cryptography –

SAC 2017
24th International Conference
Ottawa, ON, Canada, August 16–18, 2017
Revised Selected Papers

123

Editors
Carlisle Adams
School of Electrical Engineering
and Computer Science (SITE)

University of Ottawa
Ottawa, ON
Canada

Jan Camenisch
IBM Research - Zurich
Rueschlikon
Switzerland

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-72564-2 ISBN 978-3-319-72565-9 (eBook)
https://doi.org/10.1007/978-3-319-72565-9

Library of Congress Control Number: 2017962894

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer International Publishing AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The Conference on Selected Areas in Cryptography (SAC) is the leading Canadian
venue for the presentation and publication of cryptographic research. The 24th annual
SAC was held this year at the University of Ottawa, Ontario (for the second time; the
first was in 2007). In keeping with its tradition, SAC 2017 offered a relaxed and
collegial atmosphere for researchers to present and discuss new results.

SAC has three regular themes:

– Design and analysis of symmetric key primitives and cryptosystems, including
block and stream ciphers, hash functions, MAC algorithms, and authenticated
encryption schemes

– Efficient implementations of symmetric and public key algorithms
– Mathematical and algorithmic aspects of applied cryptology

The following special (or focus) theme for this year was:

– Post-quantum cryptography

A total of 66 submissions were received, out of which the Program Committee
selected 23 papers for presentation. It is our pleasure to thank the authors of all the
submissions for the high quality of their work. The review process was thorough (each
submission received the attention of at least three reviewers, and at least five for
submissions involving a Program Committee member).

There were two invited talks. The Stafford Tavares Lecture was given by Helena
Handschuh, who presented “Test Vector Leakage Assessment Methodology: An
Update,” and the second invited talk was given by Chris Peikert, who presented
“Lattice Cryptography: From Theory to Practice, and Back Again.”

This year, SAC hosted what is now the third iteration of the SAC Summer School
(S3). S3 is intended to be a place where young researchers can increase their knowl-
edge of cryptography through instruction by, and interaction with, leading researchers.
This year, we were fortunate to have Michele Mosca, Douglas Stebila, and David Jao
presenting post-quantum cryptographic algorithms, Tanja Lange and Daniel J. Bern-
stein presenting public key cryptographic algorithms, and Orr Dunkelman presenting
symmetric key cryptographic algorithms. We would like to express our sincere grati-
tude to these six presenters for dedicating their time and effort to what has become a
highly anticipated and highly beneficial event for all participants.

Finally, the members of the Program Committee, especially the co-chairs, would
like to thank the additional reviewers, who gave generously of their time to assist with
the paper review process. We are also very grateful to our sponsors, Microsoft and
Communications Security Establishment, whose enthusiastic support (both financial
and otherwise) greatly contributed to the success of SAC this year.

October 2017 Jan Camenisch
Carlisle Adams

SAC 2017

The 24th Annual Conference on Selected Areas in Cryptography
Ottawa, Ontario, Canada, August 16–18, 2017

Program Chairs

Carlisle Adams University of Ottawa, Canada
Jan Camenisch IBM Research - Zurich, Switzerland

Program Committee

Carlisle Adams (Co-chair) University of Ottawa, Canada
Shashank Agraval Visa Research, USA
Elena Andreeva COSIC, KU Leuven, Belgium
Kazumaro Aoki NTT, Japan
Jean-Philippe Aumasson Kudelski Security, Switzerland
Roberto Avanzi ARM, Germany
Manuel Barbosa HASLab - INESC TEC and FCUP, Portugal
Paulo Barreto University of São Paulo, Brazil
Andrey Bogdanov Technical University of Denmark, Denmark
Billy Brumley Tampere University of Technology, Finland
Jan Camenisch (Co-chair) IBM Research - Zurich, Switzerland
Itai Dinur Ben-Gurion University, Israel
Maria Dubovitskaya IBM Research - Zurich, Switzerland
Guang Gong University of Waterloo, Canada
Johann Groszschaedl University of Luxembourg, Luxembourg
Tim Güneysu University of Bremen and DFKI, Germany
M. Anwar Hasan University of Waterloo, Canada
Howard Heys Memorial University, Canada
Laurent Imbert CNRS, LIRMM, Université Montpellier 2, France
Michael Jacobson University of Calgary, Canada
Elif Bilge Kavun Infineon Technologies AG, Germany
Stephan Krenn Austrian Institute of Technology GmbH, Austria
Juliane Krämer Technische Universität Darmstadt, Germany
Thijs Laarhoven IBM Research - Zurich, Switzerland
Gaëtan Leurent Inria, France
Petr Lisonek Simon Fraser University, Canada
María Naya-Plasencia Inria, France
Francesco Regazzoni ALaRI - USI, Switzerland
Palash Sarkar Indian Statistical Institute, India
Joern-Marc Schmidt Secunet Security Networks AG, Germany

Kyoji Shibutani Sony Corporation, Japan
Francesco Sica Nazarbayev University, Kazakhstan
Daniel Slamanig Graz University of Technology, Austria
Meltem Sonmez Turan National Institute of Standards and Technology, USA
Michael Tunstall Cryptography Research, USA
Vanessa Vitse Université Joseph Fourier - Grenoble I, France
Bo-Yin Yang Academia Sinica, Taiwan
Amr Youssef Concordia University, Canada

Additional Reviewers

Ahmed Abdel Khalek
Cecilia Boschini
Cagdas Calik
André Chailloux
Jie Chen
Yao Chen
Deirdre Connolly
Rafaël Del Pino
Christoph Dobraunig
Benedikt Driessen
Léo Ducas
Maria Eichlseder
Guillaume Endignoux
Tommaso Gagliardoni
Romain Gay
Florian Goepfert
Michael Hamburg
Harunaga Hiwatari
Akinori Hosoyamada
Andreas Hülsing
Takanori Isobe
Thorsten Kleinjung
Moon Sung Lee
Aaron Lye
Kalikinkar Mandal

Oliver Mischke
Nicky Mouha
Christophe Negre
Tobias Oder
Towa Patrick
Cesar Pereida Garcia
Peter Pessl
Thomas Pöppelmann
Sebastian Ramacher
Tobias Schneider
André Schrottenloher
Gregor Seiler
Sohaib Ul Hassan
Christoph Striecks
Cihangir Tezcan
David Thomson
Jean-Pierre Tillich
Yosuke Todo
Mohamed Tolba
Nicola Tuveri
Christine van Vredendaal
David J. Wu
Jiming Xu
Randy Yee
Wenying Zhang

VIII SAC 2017

Contents

Discrete Logarithms

Second Order Statistical Behavior of LLL and BKZ 3
Yang Yu and Léo Ducas

Refinement of the Four-Dimensional GLV Method on Elliptic Curves 23
Hairong Yi, Yuqing Zhu, and Dongdai Lin

Key Agreement

Post-Quantum Static-Static Key Agreement Using Multiple
Protocol Instances . 45

Reza Azarderakhsh, David Jao, and Christopher Leonardi

Side-Channel Attacks on Quantum-Resistant Supersingular
Isogeny Diffie-Hellman . 64

Brian Koziel, Reza Azarderakhsh, and David Jao

Theory

Computing Discrete Logarithms in Fp6 . 85
Laurent Grémy, Aurore Guillevic,
François Morain, and Emmanuel Thomé

Computing Low-Weight Discrete Logarithms . 106
Bailey Kacsmar, Sarah Plosker, and Ryan Henry

Efficient Implementation

sLiSCP: Simeck-Based Permutations for Lightweight Sponge
Cryptographic Primitives . 129

Riham AlTawy, Raghvendra Rohit, Morgan He,
Kalikinkar Mandal, Gangqiang Yang, and Guang Gong

Efficient Reductions in Cyclotomic Rings - Application
to Ring-LWE Based FHE Schemes . 151

Jean-Claude Bajard, Julien Eynard, Anwar Hasan,
Paulo Martins, Leonel Sousa, and Vincent Zucca

http://dx.doi.org/10.1007/978-3-319-72565-9_1
http://dx.doi.org/10.1007/978-3-319-72565-9_2
http://dx.doi.org/10.1007/978-3-319-72565-9_3
http://dx.doi.org/10.1007/978-3-319-72565-9_3
http://dx.doi.org/10.1007/978-3-319-72565-9_4
http://dx.doi.org/10.1007/978-3-319-72565-9_4
http://dx.doi.org/10.1007/978-3-319-72565-9_5
http://dx.doi.org/10.1007/978-3-319-72565-9_6
http://dx.doi.org/10.1007/978-3-319-72565-9_7
http://dx.doi.org/10.1007/978-3-319-72565-9_7
http://dx.doi.org/10.1007/978-3-319-72565-9_8
http://dx.doi.org/10.1007/978-3-319-72565-9_8

How to (Pre-)Compute a Ladder: Improving the Performance
of X25519 and X448. 172

Thomaz Oliveira, Julio López, Hüseyin Hışıl, Armando Faz-Hernández,
and Francisco Rodríguez-Henríquez

HILA5: On Reliability, Reconciliation, and Error Correction
for Ring-LWE Encryption . 192

Markku-Juhani O. Saarinen

Public Key Encryption

A Public-Key Encryption Scheme Based on Non-linear
Indeterminate Equations . 215

Koichiro Akiyama, Yasuhiro Goto, Shinya Okumura,
Tsuyoshi Takagi, Koji Nuida, and Goichiro Hanaoka

NTRU Prime: Reducing Attack Surface at Low Cost. 235
Daniel J. Bernstein, Chitchanok Chuengsatiansup,
Tanja Lange, and Christine van Vredendaal

Signatures

Leighton-Micali Hash-Based Signatures in the Quantum
Random-Oracle Model. 263

Edward Eaton

Efficient Post-Quantum Undeniable Signature on 64-Bit ARM 281
Amir Jalali, Reza Azarderakhsh, and Mehran Mozaffari-Kermani

“Oops, I Did It Again” – Security of One-Time Signatures
Under Two-Message Attacks . 299

Leon Groot Bruinderink and Andreas Hülsing

Cryptanalysis

Low-Communication Parallel Quantum Multi-Target Preimage Search 325
Gustavo Banegas and Daniel J. Bernstein

Lattice Klepto: Turning Post-Quantum Crypto Against Itself 336
Robin Kwant, Tanja Lange, and Kimberley Thissen

Total Break of the SRP Encryption Scheme . 355
Ray Perlner, Albrecht Petzoldt, and Daniel Smith-Tone

Approximate Short Vectors in Ideal Lattices of QðfpeÞ
with Precomputation of ClðOKÞ . 374
Jean-François Biasse

X Contents

http://dx.doi.org/10.1007/978-3-319-72565-9_9
http://dx.doi.org/10.1007/978-3-319-72565-9_9
http://dx.doi.org/10.1007/978-3-319-72565-9_10
http://dx.doi.org/10.1007/978-3-319-72565-9_10
http://dx.doi.org/10.1007/978-3-319-72565-9_11
http://dx.doi.org/10.1007/978-3-319-72565-9_11
http://dx.doi.org/10.1007/978-3-319-72565-9_12
http://dx.doi.org/10.1007/978-3-319-72565-9_13
http://dx.doi.org/10.1007/978-3-319-72565-9_13
http://dx.doi.org/10.1007/978-3-319-72565-9_14
http://dx.doi.org/10.1007/978-3-319-72565-9_15
http://dx.doi.org/10.1007/978-3-319-72565-9_15
http://dx.doi.org/10.1007/978-3-319-72565-9_16
http://dx.doi.org/10.1007/978-3-319-72565-9_17
http://dx.doi.org/10.1007/978-3-319-72565-9_18
http://dx.doi.org/10.1007/978-3-319-72565-9_19
http://dx.doi.org/10.1007/978-3-319-72565-9_19

Quantum Key-Recovery on Full AEZ . 394
Xavier Bonnetain

Quantum Key Search with Side Channel Advice. 407
Daniel P. Martin, Ashley Montanaro, Elisabeth Oswald,
and Dan Shepherd

Multidimensional Zero-Correlation Linear Cryptanalysis
of Reduced Round SPARX-128 . 423

Mohamed Tolba, Ahmed Abdelkhalek, and Amr M. Youssef

Categorising and Comparing Cluster-Based DPA Distinguishers 442
Xinping Zhou, Carolyn Whitnall, Elisabeth Oswald, Degang Sun,
and Zhu Wang

Author Index . 459

Contents XI

http://dx.doi.org/10.1007/978-3-319-72565-9_20
http://dx.doi.org/10.1007/978-3-319-72565-9_21
http://dx.doi.org/10.1007/978-3-319-72565-9_22
http://dx.doi.org/10.1007/978-3-319-72565-9_22
http://dx.doi.org/10.1007/978-3-319-72565-9_23

Discrete Logarithms

Second Order Statistical Behavior
of LLL and BKZ

Yang Yu1(B) and Léo Ducas2(B)

1 Department of Computer Science and Technology,
Tsinghua University, Beijing, China

y-y13@mails.tsinghua.edu.cn
2 Cryptology Group, CWI, Amsterdam, The Netherlands

ducas@cwi.nl

Abstract. The LLL algorithm (from Lenstra, Lenstra and Lovász) and
its generalization BKZ (from Schnorr and Euchner) are widely used in
cryptanalysis, especially for lattice-based cryptography. Precisely under-
standing their behavior is crucial for deriving appropriate key-size for
cryptographic schemes subject to lattice-reduction attacks. Current mod-
els, e.g. the Geometric Series Assumption and Chen-Nguyen’s BKZ-
simulator, have provided a decent first-order analysis of the behavior of
LLL and BKZ. However, they only focused on the average behavior and
were not perfectly accurate. In this work, we initiate a second order analy-
sis of this behavior. We confirm and quantify discrepancies between mod-
els and experiments —in particular in the head and tail regions— and
study their consequences. We also provide variations around the mean
and correlations statistics, and study their impact. While mostly based
on experiments, by pointing at and quantifying unaccounted phenomena,
our study sets the ground for a theoretical and predictive understanding
of LLL and BKZ performances at the second order.

Keywords: Lattice reduction · LLL · BKZ · Cryptanalysis · Statistics

1 Introduction

Lattice reduction is a powerful algorithmic tool for solving a wide range of prob-
lems ranging from integer optimization problems and problems from algebra
or number theory. Lattice reduction has played a role in the cryptanalysis of
cryptosystems not directly related to lattices, and is now even more relevant to
quantifying the security of lattice-based cryptosystems [1,6,14].

The goal of lattice reduction is to find a basis with short and nearly orthog-
onal vectors. In 1982, the first polynomial time lattice reduction algorithm,
LLL [15], was invented by Lenstra, Lenstra and Lovász. Then, the idea of
block-wise reduction appeared and several block-wise lattice reduction algo-
rithms [7,8,19,24] were proposed successively. Currently, BKZ is the most prac-
tical lattice reduction algorithm. Schnorr and Euchner first put forward the orig-
inal BKZ algorithm in [24]. It is subject to many heuristic optimizations, such
as early-abort [12], pruned enumeration [10] and progressive reduction [2,4].
c© Springer International Publishing AG 2018
C. Adams and J. Camenisch (Eds.): SAC 2017, LNCS 10719, pp. 3–22, 2018.
https://doi.org/10.1007/978-3-319-72565-9_1

4 Y. Yu and L. Ducas

All such improvements have been combined in the so-called BKZ 2.0 algorithm
of Chen and Nguyen [5] (progressive strategy was improved further in later
work [2]). Also, plenty of analyses [2,9,19,23,31] of BKZ algorithms have been
made to explore and predict the performance of BKZ algorithms, which provide
rough security estimations for lattice-based cryptography.

Despite of their popularity, the behavior of lattice reduction algorithms is
still not completely understood. While there are reasonable models (e.g. the
Geometric Series Assumption [25] and simulators [5]), there are few studies on
the experimental statistical behavior of those algorithms, and they considered
rather outdated versions of those algorithms [3,20,23]. The accuracy of the cur-
rent model remains unclear.

This state of affair is quite problematic to evaluate accurately the concrete
security level of lattice-based cryptosystem proposal. With the recent calls for
post-quantum schemes by the NIST, this matter seems pressing.

Our Contribution. In this work, we partially address this matter, by proposing
a second-order statistical (for random input bases) analysis of the behavior of
reduction algorithms in practice, qualitatively and quantitatively. We figure out
one more low order term in the predicted average value of several quantities such
as the root Hermite factor. Also, we investigate the variation around the average
behavior, a legitimate concern raised by Micciancio and Walter [19].

In more details, we experimentally study the logarithms of ratios between
two adjacent Gram-Schmidt norms in LLL and BKZ-reduced basis (denoted ri’s
below). We highlight three ranges for the statistical behavior of the ri: the head
(i ≤ h), the body (h < i < n − t) and the tail (i ≥ n − t). The lengths of the
head and tail are essentially determined by the blocksize β. In the body range,
the statistical behavior of the ri’s are similar: this does not only provide new
support for the so-called Geometric Series Assumption [25] when β � n, but
also a refinement of it applicable even when β �� n. We note in particular that
the impact of the head on the root Hermite factor is much stronger than the
impact of the tail.

We also study the variance and the covariance between the ri’s. We observe a
local correlation between the ri’s. More precisely we observe that ri and ri+1 are
negatively correlated, inducing a self-stabilizing behavior of those algorithms:
the overall variance is less than the sum of local variances.

Then, we measure the half-volume, i.e.
∏� n

2 �
i=1 ‖b∗

i ‖, a quantity determining
the cost of enumeration on reduced basis. By expressing the half-volume using
the statistics of the ri’s, we determine that the complexity of enumeration on
BKZ-reduced basis should be of the form 2an2±bn1.5

: the variation around average
(denoted by ±) can impact the speed of enumeration by a super-exponential
factor.

At last, we also compare all those experimental results1 to the simulator [5],
and conclude that the simulator can predict the body of the profile and the tail

1 The variance statistics are not comparable to the simulator [5] whose results are
“deterministic”, in the sense that the simulator’s result starting on the Hermite
Normal Form of a lattice depends only on the parameters (dimension, volume) of
the lattice, and not the randomness of the lattice itself.

Second Order Statistical Behavior of LLL and BKZ 5

phenomenon qualitatively and quantitatively, but the head phenomenon is not
captured. Thus it is necessary to revise the security estimation and refine the
simulator.

Impact. Our work points at several inaccuracies of the current models for the
behavior of LLL and BKZ, and quantifies them experimentally. It should be
noted that our measured statistics are barely enough to address the question
of precise prediction. Many tweaks on those algorithms are typically applied
(more aggressive pruning, more subtle progressive reductions, ...) to accelerate
them and that would impact those statistics. On the other hand, the optimal
parametrization of heuristic tweaks is very painful to reproduce, and not even
clearly determined in the literature. We therefore find it preferable to first app-
roach stable versions of those algorithm, and minimize the space of parameters.

We would also not dare to simply guess extrapolation models for those statis-
tics to larger blocksize: this should be the topic of a more theoretical study.

Yet, by pointing out precisely the problematic phenomena, we set the ground
for revised models and simulators: our reported statistics can be used to sanity
check such future models and simulators.

Source code. Our experiments heavily rely on the latest improvements of the
open-source library fplll [27], catching up with the state of the art algorithm BKZ
2.0. For convenience, we used the python wrapper fpylll [28] for fplll, making our
scripts reasonably concise and readable. All our scripts are open-source and
available online2, for reviewing, reproduction or extension purposes.

2 Preliminaries

We refer to [21] for a detailed introduction to lattice reduction and to [12,16] for
an introduction to the behavior of LLL and BKZ.

2.1 Notations and Basic Definitions

All vectors are denoted by bold lower case letters and are to be read as row-
vectors. Matrices are denoted by bold capital letters. We write a matrix B into
B = (b1, · · · ,bn) where bi is the i-th row vector of B. If B ∈ R

n×m has full rank
n, the lattice L generated by the basis B is denoted by L(B) = {xB | x ∈ Z

n}.
We denote by (b∗

1, · · · ,b∗
n) the Gram-Schmidt orthogonalization of the matrix

(b1, · · · ,bn). For i ∈ {1, · · · , n}, we define the orthogonal projection to the span
of (b1, · · · ,bi−1)⊥ as πi. For 1 ≤ i < j ≤ n, we denote by B[i,j] the local block
(πi(bi), · · · , πi(bj)), by L[i,j] the lattice generated by B[i,j].

The Euclidean norm of a vector v is denoted by ‖v‖. The volume of a lat-
tice L(B) is vol(L(B)) =

∏
i ‖b∗

i ‖, that is an invariant of the lattice. The first
minimum of a lattice L is the length of a shortest non-zero vector, denoted by
λ1(L). We use the shorthands vol(B) = vol(L(B)) and λ1(B) = λ1(L(B)).

2 Available at https://github.com/repo-fplll/Statistical-Behavior-of-BKZ.

https://github.com/repo-fplll/Statistical-Behavior-of-BKZ

6 Y. Yu and L. Ducas

Given a random variable X, we denote by E(X) its expectation and by
Var(X) its variance. Also we denote by Cov(X,Y) the covariance between two
random variables X and Y . Let X = (X1, · · · ,Xn) be a vector formed by random
variables, its covariance matrix is defined by Cov(X) = (Cov(Xi,Xj))i,j .

2.2 Lattice Reduction: In Theory and in Practice

We now recall the definitions of LLL and BKZ reduction. A basis B is LLL-
reduced with parameter δ ∈ (1

2 , 1], if:

1. |μi,j | ≤ 1
2 , 1 ≤ j < i ≤ n, where μi,j = 〈bi,b∗

j 〉/〈b∗
j ,b

∗
j 〉 are the Gram-

Schmidt orthogonalization coefficients;
2. δ‖b∗

i ‖ ≤ ‖b∗
i+1 + μi+1,ib∗

i ‖, for 1 ≤ i < n.

A basis B is BKZ-reduced with parameter β ≥ 2 and δ ∈ (1
2 , 1], if:

1. |μi,j | ≤ 1
2 , 1 ≤ j < i ≤ n;

2. δ‖b∗
i ‖ ≤ λ1(L[i,min(i+β−1,n)]), for 1 ≤ i < n.

Note that we follow the definition of BKZ reduction from [24] which is a little
different from the first notion proposed by Schnorr [26]. We also recall that, as
proven in [24], LLL is equivalent to BKZ2. Typically, LLL and BKZ are used
with Lovász parameter δ =

√
0.99 and so will we.

For high dimensional lattices, running BKZ with a large blocksize is very
expensive. Heuristics improvements were developed, and combined by Chen and
Nguyen [5], advertised as BKZ 2.0.3 In this paper, we report on pure BKZ
behavior to avoid perturbations due to heuristic whenever possible. Yet we switch
to BKZ 2.0 to reach larger blocksizes when deemed relevant.

The two main improvements in BKZ 2.0 are called early-abort and pruned
enumeration. As proven in [12], the output basis of BKZ algorithm with blocksize
β would be of an enough good quality after C · n2

β2

(
log n + log log max ‖b∗

i ‖
vol(L)1/n

)

tours, where C is a small constant. In our experiments of BKZ 2.0, we chose dif-
ferent C and observed its effect on the final basis. We also applied the pruning
heuristic (see [4,10,27] for details) to speed-up enumeration, but chose a con-
servative success probability (95%) without re-randomization to avoid altering
the quality of the output. The preprocessing-pruning strategies were optimized
using the strategizer [29] of fplll/fpylll.

Given a basis B of an n-dimensional lattice L, we denote by rhf(B) the root

Hermite factor of B, defined by rhf(B) =
(

‖b1‖
vol(L)1/n

)1/n

. The root Hermite
factor is a common measurement of the reducedness of a basis, e.g. [9].

Let us define the sequence {ri(B)}1≤i≤n−1 of an n-dimensional lattice basis
B = (b1, · · · ,bn) such that ri(B) = ln

(‖b∗
i ‖/‖b∗

i+1‖
)
. The root Hermite factor

rhf(B) can be expressed in terms of the ri(B)’s:

3 Further improvements were recently put forward [2], but are beyond the scope of
this paper.

Second Order Statistical Behavior of LLL and BKZ 7

rhf(B) = exp

⎛

⎝ 1
n2

∑

1≤i≤n−1

(n − i)ri(B)

⎞

⎠ . (1)

Intuitively, the sequence {ri(B)}1≤i≤n−1 characterizes how fast the sequence
{‖b∗

i ‖} decreases. Thus Eq. (1) provides an implication between the fact that the
‖b∗

i ‖’s don’t decrease too fast and the fact that the root Hermite factor is small.
For reduced bases, the ri(B)’s are of certain theoretical upper bounds. However,
it is well known that experimentally, the ri(B)’s tend to be much smaller than
the theoretical bounds in practice.

From a practical perspective, we are more interested in the behavior of the
ri(B)’s for random lattices. The standard notion of random real lattices of given
volume is based on Haar measures of classical groups. As shown in [11], the uni-
form distribution over integer lattices of volume V converges to the distribution
of random lattices of unit volume, as V grows to infinity. In our experiments, we
followed the sampling procedure of the lattice challenges [22]: its volume is a ran-
dom prime of bit-length 10n and its Hermite normal form (see [18] for details) is
sampled uniformly once its volume is determined. Also, we define a random LLL
(resp. BKZβ)-reduced basis as the basis outputted by LLL (resp. BKZβ) applied
to a random lattice given by its Hermite normal form, as described above. To
speed up convergence, following a simplified progressive strategy [2,4], we run
BKZ (resp. BKZ 2.0) with blocksize β = 2, 4, 6, ... (resp. β = 2, 6, 10, ...) pro-
gressively from the Hermite normal form of a lattice.

We treat the ri(B)’s as random variables (under the randomness of the lattice
basis before reduction). For any i ∈ {1, · · · , n − 1}, we denote by ri(β, n) the
random variable ri(β, n) = ri(B), where B is a random BKZβ-reduced basis, and
by Di(β, n) the distribution of ri(β, n). When β and n are clear from context,
we simply write ri for ri(β, n).

2.3 Heuristics on Lattice Reduction

Gaussian Heuristic. The Gaussian Heuristic, denoted by GAUSS, says that,
for “any reasonable” subset K of the span of the lattice L, the number of lattice
points inside K is approximately vol(K)/vol(L). Let the volume of n-dimensional
unit ball be Vn(1) = πn/2

Γ(n/2+1) . A prediction derived from GAUSS is that λ1(L) ≈
vol(L)1/n · GH(n) where GH(n) = Vn(1)−1/n, which is accurate for random
lattices. As suggested in [10,13], GAUSS is a valuable heuristic to estimate the
cost and quality of various lattice algorithms.

Random Local Block. In [5], Chen and Nguyen suggested the following mod-
eling assumption, seemingly accurate for large enough blocksizes:

Assumption 1. [RANDn,β] Let n, β ≥ 2 be integers. For a random BKZβ-
reduced basis of a random n-dimensional lattice, most local block lattices
L[i,i+β−1] behave like a random β-dimensional lattice where i ∈ {1, · · · , n+1−β}.

8 Y. Yu and L. Ducas

By RANDn,β and GAUSS, one can predict the root Hermite factor of local
blocks: rhf(B[i,i+β−1]) ≈ GH(β)

1
β .

Geometric Series Assumption. In [25], Schnorr first proposed the Geometric
Series Assumption, denoted by GSA, which says that, in typical reduced basis B,
the sequence {‖b∗

i ‖}1≤i≤n looks like a geometric series (while GAUSS provides
the exact value of this geometric ratio). GSA provides a simple description of
Gram-Schmidt norms and then leads to some estimations of Hermite factor and
enumeration complexity [9,10]. When it comes to {ri(B)}1≤i≤n−1, GSA implies
that the ri(B)’s are supposed to be almost equal to each others. However, GSA is
not so perfect, because the first and last b∗

i ’s usually violate it [3]. The behavior
in the tail is well explained, and can be predicted and simulated [5].

3 Head and Tail

In [3,5], it was already claimed that for a BKZβ-reduced basis B, GSA doesn’t
hold in the first and last indices. We call this phenomenon “Head and Tail”,
and provide detailed experiments. Our experiments confirm that GSA holds
in a strong sense in the body of the basis (i.e. outside of the head and tail
regions). Precisely, the distributions of ri’s are similar in that region, not only
their averages. We also confirm the violations of GSA in the head and the tail,
quantify them, and exhibit that they are independent of the dimension n.

As a conclusion, we shall see that the head and tail have only small impacts on
the root Hermite factor when n � β, but also that they can also be quantitatively
handled when n �� β. We notice that the head has in fact a stronger impact than
the tail, which emphasizes the importance of finding models or simulators that
capture this phenomenon, unlike the current ones that only capture the tail [5].

3.1 Experiments

We ran BKZ on many random input lattices and report on the distribution of
each ri. We first plot the average and the variance of ri for various blocksizes β
and dimensions n in Fig. 1. By superposing with proper alignment curves for the
same β but various n, we notice that the head and tail behavior doesn’t depend
on the dimension n, but only on the relative index i (resp. n − i) in the head
(resp. the tail). A more formal statement will be provided in Claim 1.

We also note that inside the body (i.e. outside both the head and the tail)
the mean and the variance of ri do not seem to depend on i, and are tempted to
conclude that the distribution itself doesn’t depend on i. To give further evidence
of this stronger claim, we ran the Kolmogorov-Smirnov test [17] on samples of
ri and rj for varying i, j. The results are depicted on Fig. 2, and confirm this
stronger claim.

Second Order Statistical Behavior of LLL and BKZ 9

Fig. 1. Average value and standard deviation of ri as a function of i. Experimental
values measure over 5000 samples of random n-dimensional BKZ bases for n = 100, 140.
First halves {ri}i≤(n−1)/2 are left-aligned while last halves {ri}i>(n−1)/2 are right-
aligned so to highlight heads and tails. Dashed lines mark indices β and n − β. Plots
look similar in blocksize β = 6, 10, 20, 30 and in dimension n = 80, 100, 120, 140, which
are provided in the full version.

KS Test on Di(2,100)’s

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90

KS Test on Di(20,100)’s

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90

Fig. 2. Kolmogorov-Smirnov Test with significance level 0.05 on all Di(β, 100)’s calcu-
lated from 5000 samples of random 100-dimensional BKZ bases with blocksize β = 2, 20
respectively. A black pixel at position (i, j) marks the fact that the pair of distributions
Di(β, 100) and Dj(β, 100) passed Kolmogorov-Smirnov Test, i.e. two distributions are
close. Plots in β = 10, 30 look similar to that in β = 20, which are provided in the
full version.

3.2 Conclusion

From the experiments above, we allow ourselves to the following conclusion.

Experimental Claim 1. There exist two functions h, t : N → N, such that, for
all n, β ∈ N, and when n ≥ h(β) + t(β) + 2:

1. When i ≤ h(β), Di(β, n) depends on i and β only: Di(β, n) = D
h
i (β)

2. When h(β) < i < n − t(β), Di(β, n) depends on β only: Di(β, n) = D
b(β)

3. When i ≥ n− t(β), Di(β, n) depends on n− i and β only: Di(β, n) = D
t
n−i(β)

Remark 1. We only make this claim for basis that have been fully BKZ-reduced.
Indeed, as we shall see later, we obtained experimental clues that this claim

10 Y. Yu and L. Ducas

would not hold when the early-abort strategy is applied. More precisely, the head
and tail phenomenon is getting stronger as we apply more tours (see Fig. 4).

From now on, we may omit the index i when speaking of the distribution of
ri, implicitly implying that the only indices considered are such that h(β) < i <
n−t(β). The random variable r depends on blocksize β only, hence we introduce
two functions of β, e(β) and v(β), to denote the expectation and variance of r

respectively. Also, we denote by r
(h)
i (resp. r

(t)
n−i) the ri inside the head (resp.

tail), and by e
(h)
i (β) and v

(h)
i (β) (resp. e

(t)
n−i(β) and v

(t)
n−i(β)) the expectation

and variance of r
(h)
i (resp. r

(t)
n−i).

We conclude by a statement on the impacts of the head and tail on the
logarithmic average root Hermite factor:

Corollary 1. For a fixed blocksize β, and as the dimension n grows, it holds
that

E(ln(rhf(B))) =
1
2
e(β) +

d(β)
n

+ O

(
1
n2

)

, (2)

where d(β) =
∑

i≤h e
(h)
i (β) − (

h + 1
2

)
e(β).

Corollary 1 indicates that the impacts on the average root Hermite factor
from the head and tail are decreasing. In particular, the tail has a very little effect
O

(
1

n2

)
on the average root Hermite factor. The impact of the head d(β)/n, which

hasn’t been quantified in earlier work, is —perhaps surprisingly— asymptotically
larger. We include the proof of Corollary 1 in Appendix A.

Below, Figs. 3 and 4 provide experimental measure of e(β) and d(β) from
5000 random 100-dimensional BKZβ-reduced bases. We note that the lengths of
the head and tail seem about the maximum of 15 and β. Thus we set h(β) =
t(β) = max(15, β) simply, which affects the measure of e(β) and d(β) little. For
the average e(2) ≈ 0.043 we recover the experimental root Hermite factor of LLL
rhf(B) = exp(0.043/2) ≈ 1.022, compatible with many other experiments [9].

To extend the curves, we also plot the experimental measure of e(β) and d(β)4

from 20 random 180-dimensional BKZβ 2.0 bases with bounded tour number⌈
C · n2

β2

(
log n + log log max ‖b∗

i ‖
vol(L)1/n

)⌉
. It shows that the qualitative behavior

of BKZ 2.0 is different from full-BKZ not only the quantitative one: there is
a bump5 in the curve of e(β) when β ∈ [22, 30]. Considering that the success
probability for the SVP enumeration was set to 95%, the only viable explanation
for this phenomenon in our BKZ 2.0 experiments is the early-abort strategy: the
shape of the basis is not so close to the fix-point.

4 For BKZ 2.0, the distributions of the ri’s inside the body may not be identical, thus
we just calculate the mean of those ri’s as a measure of e(β).

5 Yet the quality of the basis does not decrease with β in this range, as the bump on
e(β) is more than compensated by the decrease in d(β).

Second Order Statistical Behavior of LLL and BKZ 11

Fig. 3. Experimental measure of e(β) Fig. 4. Experimental measure of d(β)

4 Local Correlations and Global Variance

In the previous section, we have classified the ri’s and established a connection
between the average of the root Hermite factor and the function e(β). Now we
are to report on the (co-)variance of the ri’s. Figure 5 shows the experimental
measure of local variances, i.e. variances of the ri’s inside the body, but it is not
enough to deduce the global variance, i.e. the variance of the root Hermite factor.
We still need to understand more statistics, namely the covariances among these
ri’s. Our experiments indicate that local correlations—i.e. correlations between
ri and ri+1—are negative and other correlations seem to be zero. Moreover, we
confirm the tempting hypothesis that local correlations inside the body are all
equal and independent of the dimension n.

Based on these observations, we then express the variance of the logarithm
of root Hermite factor for fixed β and increasing n asymptotically, and quantify
the self-stability of LLL and BKZ algorithms.

Fig. 5. Experimental measure of v(β)

12 Y. Yu and L. Ducas

4.1 Experiments

Let r = (r1, · · · , rn−1) be the random vector formed by random variables ri’s.
We profile the covariance matrices Cov(r) for 100-dimensional lattices with BKZ
reduction of different blocksizes in Fig. 6. The diagonal elements in covariance
matrix correspond to the variances of the ri’s which we have studied before.
Thus we set all diagonal elements to 0 to enhance contrast. We discover that the
elements on the second diagonals, i.e. Cov(ri, ri+1)’s, are significantly nega-
tive and other elements seems very close to 0. We call the Cov(ri, ri+1)’s local
covariances.

Fig. 6. Covariance matrices of r. Experimental values measure over 5000 samples of
random 100-dimensional BKZ bases with blocksize β = 2, 20. The pixel at coordinates
(i, j) corresponds to the covariance between ri and rj . Plots in β = 10, 30 look similar
to that in β = 20, which are provided in the full version.

We then plot measured local covariances in Fig. 7. Comparing these curves for
various dimensions n, we notice that the head and tail parts almost coincide, and
the local covariances inside the body seem to depend on β only, we will denote
this value by c(β). We also plot the curves of the Cov(ri, ri+2)’s in Fig. 7 and
note that the curves for the Cov(ri, ri+2)’s are horizontal with a value about 0.
For other Cov(ri, ri+d)’s with larger d, the curves virtually overlap that for the
Cov(ri, ri+2)’s. For readability, larger values of d are not plotted. One thing to be
noted is that the case for blocksize β = 2 is an exception. On one hand, the head
and tail of the local covariances in BKZ2 basis bend in the opposite directions,
unlike for larger β. In particular, the Cov(ri, ri+2)’s in BKZ2 basis are not so
close to 0, but are nevertheless significantly smaller than the local covariances
Cov(ri, ri+1). That indicates some differences between LLL and BKZ.

Also, we calculate the average of (n−2max(15, β)) middle local covariances as
an approximation of c(β) for different n and plot the evolution of c(β) in Fig. 8.
The curves for different dimensions seem to coincide, which provides another
evidence to support that the local covariances inside the body don’t depend on
n indeed. To determine the minimum of c(β), we ran a batch of BKZ with β =
2, 3, 4, 5, 6 separately. We note that c(β) increases with β except for c(3) < c(2),
which is another difference between LLL and BKZ.

Second Order Statistical Behavior of LLL and BKZ 13

Fig. 7. Cov(ri, ri+1) and Cov(ri, ri+2) as a function of i. Experimental values mea-
sured over 5000 samples of random n-dimensional BKZ bases for n = 100, 140. The
blue curves denote the Cov(ri, ri+1)’s and the red curves denote the Cov(ri, ri+2)’s.
For same dimension n, the markers in two curves are identical. First halves are left
aligned while last halves {Cov(ri, ri+1)}i>(n−2)/2 and {Cov(ri, ri+2)}i>(n−3)/2 are
right aligned so to highlight heads and tails. Dashed lines mark indices β and n−β −2.
Plots look similar in blocksize β = 6, 10, 20, 30 and in dimension n = 80, 100, 120, 140,
which are provided in the full version.

Remark 2. To obtain a precise measure of covariances, we need enough samples
and thus the extended experimental measure of c(β) is not given. Nevertheless,
it seems that, after certain number of tours, local covariances of BKZ 2.0 bases
still tend to be negative but other covariances tend to zero.

Fig. 8. Experimental measure of the
evolution of c(β) calculated from 5000
samples of random BKZ bases in dif-
ferent dimension n respectively.

Fig. 9. Experimental measure of
v(β)+2c(β)

3
. The data point for β = 2,

v(2)+2c(2)
3

≈ 0.00045 was clipped out,
being 10 times larger than all other
values.

4.2 Conclusion

From above experimental observations, we now arrive at the following conclusion.

Experimental Claim 2. Let h and t be the two functions defined in Claim 1.
For all n ∈ N and β > 2 such that n ≥ h(β) + t(β) + 2:

14 Y. Yu and L. Ducas

1. When |i − j| > 1, ri and rj are not correlated: Cov(ri, rj) = 0
2. When |i − j| = 1, ri and rj are negatively correlated: Cov(ri, rj) < 0. More

specifically:
– When i ≤ h(β), Cov(ri, ri+1) depends on i and β only: Cov(ri, ri+1) =

ch
i (β)

– When h(β) < i < n − t(β), Cov(ri, ri+1) depends on β only:
Cov(ri, ri+1) = c(β)

– When i ≥ n − t(β), Cov(ri, ri+1) depends on n − i and β only:
Cov(ri, ri+1) = ct

n−i(β)

One direct consequence derives from the above experimental claim is that
the global variance, i.e. the variance of the logarithm of root Hermite factor,
converges to 0 as Θ(1/n), where the hidden constant is determined by β:

Corollary 2. For a fixed blocksize β, and as the dimension n grows, it holds
that

Var(ln(rhf(B))) =
1
3n

v(β) +
2
3n

c(β) + O

(
1
n2

)

. (3)

The proof of Corollary 2 is given in Appendix B. Note that the assumption
that all Cov(ri, ri+d)’s with d > 1 equal 0 may not be exactly true. However,
the Cov(ri, ri+d)’s converge to 0 quickly as d increases, hence we may assert
that the sum

∑n−1−i
d=1 Cov(ri, ri+d) converge with n for fixed β and i inside

the body. Then we still can conclude that Var(ln(rhf(B))) = O(1
n). The faster

the Cov(ri, ri+d)’s converges to 0 as d grows, the more accurate our above
approximation is. The experimental measure of v(β)+2c(β)

3 is shown in Fig. 9 and
v(β)+2c(β)

3 seems to converge to a finite value ≈ 5 × 10−5 as β grows.

5 Half Volume

We shall now study statistics on the half-volume, H(B) =
∏� n

2 �
i=1 ‖b∗

i ‖, of a
random BKZ-reduced basis B. As claimed in [10], the nodes in the enumeration
tree at the depths around n

2 contribute the most to the total node number, for
both full and regular pruned enumerations. Typically, the enumeration radius R
is set to c

√
n·vol(B)

1
n for some constant c > 0, e.g. R = 1.05·GH(n)·vol(B)

1
n , the

number of nodes in the �n
2 � level is approximately proportional to H(B)

vol(B)� n
2 �/n ,

making the half-volume a good estimator for the cost of enumeration. Those
formulas have to be amended in case pruning is used (see [10]), but the half-
volume remains a good indicator of the cost of enumeration.

Let hv(β, n) be the random variable ln(H(B)) − � n
2 �
n ln(vol(B)) where B is

a random BKZβ-reduced basis. By the above experimental claims, we conclude
the following result. The proof is shown in Appendix C.

Second Order Statistical Behavior of LLL and BKZ 15

Corollary 3 (Under previous experimental claims). For a fixed blocksize
β, let n be an integer such that n > 2max(h(β), t(β)). Then, as the dimension
n grows, it holds that

E(hv(β, n)) =
n2

8
e(β) + d′(β) + O

(
1
n

)

, (4)

where d′(β) =
∑

i≤h
i
2

(
e
(h)
i (β) − e(β)

)
+

∑
i≤t

i
2

(
e
(t)
i − e(β)

)
− 1

4{n
2 }e(β), and

Var(hv(β, n)) =
n3

48
(v(β) + 2c(β)) + O(n). (5)

Assuming heuristically that the variation around the average of hv follows a
Normal law, Corollary 3 implies that the complexity of enumeration on a random
n-dimensional BKZβ-reduced basis should be of the shape

exp
(
n2x(β) + y(β) ± n1.5l · z(β)

)
(6)

except a fraction at most exp(−l2/2) of random bases, where

x(β) =
e(β)

8
, y(β) = d′(β), z(β) =

√
v(β) + 2c(β)

48
(7)

and where the term ±n1.5l · z(β) accounts for variation around the average
behavior. In particular, the contribution of the variation around the average
remains asymptotically negligible compared to the main exp(Θ(n2)) factor, it
still introduces a super-exponential factor, that can make one particular attempt
much cheaper or much more expensive in practice. It means that it could be
beneficial in practice to rely partially on luck, restarting BKZ without trying
enumeration when the basis is unsatisfactory.

The experimental measure of 8x(β) and 16z(β)2 has been shown in
Figs. 3 and 9 respectively. We now exhibit the experimental measure of y(β)
in Fig. 10. Despite the curves for BKZ 2.0 are not smooth, it seems that
y(β)(=d′(β)) would increase with β when β is large. However, comparing to
n2x(β), the impact of y(β) on the half-volume is still much weaker.6

6 Performance of Simulator

In [5], Chen and Nguyen proposed a simulator to predict the behavior of BKZ.
For large β, the simulator can provide a reasonable prediction of average profile,
i.e.

{
log

(‖b∗
i ‖

vol(L)1/n

)}n

i=1
. In this section, we will further report on the perfor-

mance of the simulator qualitatively and quantitatively. Our experiments confirm
that the tail still exists in the simulated result and fits the actual measure, but
the head phenomenon is not captured by the simulator, affecting its accuracy
for cryptanalytic prediction.
6 The impacts of the ri’s inside the head and tail will still be significant when β = O(n).

16 Y. Yu and L. Ducas

Fig. 10. Experimental measure of y(β)(=d′(β))

To make the simulator7 coincide with the actual algorithm, we set the param-
eter δ =

√
0.99 and applied a similar progressive strategy8. The maximum tour

number corresponds to the case that C = 0.25 in [12], but the simulator always
terminates after a much smaller number of tours.

6.1 Experiments

We ran simulator on several sequences of different dimensions and plot the aver-
age values of ri’s in Fig. 11. An apparent tail remains in the simulated result and
the length of its most significant part is about β despite a slim stretch. However,
there is no distinct head, which does not coincide with the actual behavior: the
head shape appears after a few tours of BKZ or BKZ 2.0. Still, the ri’s inside
the body share similar values, in accordance with GSA and experiments.

Fig. 11. Average value of ri calculated by simulator. First halves are left aligned while
last halves {ri}i>(n−1)/2 are right aligned so to highlight heads and tails. The vertical
dashed line marks the index n − β and the horizontal dashed line is used for contrast.

7 We worked on an open-source BKZ simulator [30], with minor modifications.
8 In simulation, the initial profile sequence is set to (10(n − 1), −10, · · · , −10) and

then we started from blocksize 6 and progressively ran simulator by step 2 (or 4 to
simulate BKZ 2.0.). There seems to be something wrong when starting with BKZ2.

Second Order Statistical Behavior of LLL and BKZ 17

We now compare the average experimental behavior with the simulated
result. Note that the simulator is not fed with any randomness, so it does not
make sense to consider variance in this comparison.

Figure 12 illustrates the comparison on e(β). For small blocksize β, the sim-
ulator does not work well, but, as β increases, the simulated measure of e(β)
seems close to the experimental measure and both measures converge to the
prediction ln

(
GH(β)

2
β−1

)
.

Fig. 12. Comparison on e(β) Fig. 13. Comparison on s(h)(β)

Finally, we consider the two functions d(β) and d′(β) that are relevant to
the averages of the logarithms of the root Hermite factor and the complexity
of enumeration and defined in Corollarys 1 and 3 respectively. To better under-
stand the difference, we compared the following terms s(h)(β) =

∑
i≤h e

(h)
i (β),

w(h)(β) =
∑

i≤h
i
2e

(h)
i (β) and w(t)(β) =

∑
i≤t

i
2e

(t)
i respectively, where we set

h(β) = t(β) = max(15, β) as before. Indeed, combined with e(β), these three
terms determine d(β) and d′(β).

From Fig. 13, we observe that the simulated measure of s(h)(β) is greater
than the experimental measure, which is caused by the lack of the head. The
similar inaccuracy exists as well with respect to w(h)(β) as shown in Fig. 14. The
experimental measure of e(β) is slightly greater than the simulated measure and

Fig. 14. Comparison on w(h)(β) Fig. 15. Comparison on w(t)(β)

18 Y. Yu and L. Ducas

thus the e
(h)
i (β)’s of greater weight may compensate somewhat the lack of the

head. After enough tours, the head phenomenon is highlighted and yet the body
shape almost remains the same so that the simulator still cannot predict w(h)(β)
precisely. Figure 15 indicates that the simulator could predict w(t)(β) precisely
for both large and small blocksizes and therefore the HKZ-shaped tail model is
reasonable.

6.2 Conclusion

Chen and Nguyen’s simulator gives an elementary profile for random BKZβ-
reduced bases with large β: both body and tail shapes are reflected well in
the simulation result qualitatively and quantitatively. However, the head phe-
nomenon is not captured by this simulator, and thus the first ‖b∗

i ‖’s are not
predicted accurately. In particular, the prediction of ‖b∗

1‖ that determines the
Hermite factor is usually larger than the actual value, which leads to an underes-
timation of the quality of BKZ bases. Consequently, related security estimations
need to be refined.

Understanding the main cause of the head phenomenon, modeling it and
refining the simulator to include it seems an interesting and important problem,
which we leave to the future work. It would also be interesting to introduce some
randomness in the simulator, so to properly predict variance around the mean
behavior.

Acknowledgements. We thank Phong Q. Nguyen, Jean-Christophe Deneuville and
Guillaume Bonnoron for helpful discussions and comments. We also thank the SAC’17
reviewers for their useful comments. Yang Yu is supported by China’s 973 Program (No.
2013CB834205), the Strategic Priority Research Program of the Chinese Academy of
Sciences (No. XDB01010600) and NSF of China (No. 61502269). Léo Ducas is sup-
ported by a Veni Innovational Research Grant from NWO under project number
639.021.645. Parts of this work were done during Yang Yu’s internship at CWI.

A Proof of Corollary 1

From Eq. (1), we have:

ln(rhf(B)) =
1
n2

∑

1≤i≤n−1

(n − i)ri(B). (8)

Taking expectations, then:

n2E(ln(rhf(B))) =
∑

i≤h

(n − i)e(h)
i (β) +

∑

i≤t

ie
(t)
i (β) +

∑

h<i<n−t

(n − i)e(β). (9)

Note that

∑

i≤h

(n − i)e(h)
i (β) +

∑

i≤t

ie
(t)
i (β) =

⎛

⎝
∑

i≤t

ie
(t)
i (β) −

∑

i≤h

ie
(h)
i (β)

⎞

⎠ + n
∑

i≤h

e
(h)
i (β)

Second Order Statistical Behavior of LLL and BKZ 19

and

∑

h<i<n−t

(n − i)e(β) =
(

n2

2
− n(2h + 1)

2

)

e(β) +
(h − t)(h + t + 1)

2
e(β).

Since h and t are constant, the two terms
(∑

i≤t ie
(t)
i (β) − ∑

i≤h ie
(h)
i (β)

)
and

(h−t)(h+t+1)
2 e(β) are O(1). A straightforward computation then leads to the con-

clusion.

B Proof of Corollary 2

We compare the variances of two sides in Eq. (8), then:

n4Var(ln(rhf(B))) =

n−1∑

i=1

(n − i)2Var(ri) + 2
∑

i<j

(n − i)(n − j)Cov(ri, rj)

=

n−1∑

i=1

(n − i)2Var(ri) + 2

n−2∑

i=1

(n − i)(n − i − 1)Cov(ri, ri+1).

(10)
Splitting the sum

∑n−1
i=1 (n − i)2Var(ri) into three parts, we have:

n−1∑

i=1

(n − i)
2
Var(ri) =

∑

i≤h

(n − i)
2
Var(ri) +

∑

i≥n−t

(n − i)
2
Var(ri) +

∑

h<i<n−t

(n − i)
2
Var(r). (11)

Both h and t are constant and the variances Var(ri)’s with i ≤ h or i ≥ n− t are
also constant. Thus the two first sums are O(n2). Also, the difference

∑n−1
i=1 (n−

i)2Var(r) − ∑
h<i<n−t(n − i)2Var(r) is O(n2), then:

∑

h<i<n−t

(n − i)2Var(ri) =
n−1∑

i=1

(n − i)2Var(r) + O(n2) =
n3

3
v(β) + O(n2). (12)

The sum
∑n−2

i=1 (n − i)(n − i − 1)Cov(ri, ri+1) can be split into three parts:
∑

i≤h

(n − i)(n − i − 1)Cov(ri, ri+1) +
∑

i≥n−t

(n − i)(n − i − 1)Cov(ri, ri+1)

+
∑

h<i<n−t

(n − i)(n − i − 1)c(β). (13)

Since all Cov(ri, ri+1)’s inside the head and tail are of size O(1), the first
two sums are O(n2). The difference

∑n−2
i=1 (n− i)(n− i−1)c(β)−∑

h<i<n−t(n−
i)(n − i − 1)c(β) is also O(n2), then:

∑

h<i<n−t

(n− i)(n− i−1)Cov(ri, ri+1) =

n−2∑

i=1

(n− i)(n− i−1)c(β)+O(n2) =
n3

3
c(β)+O(n2).

(14)
Combining Eq. (10), (12) and (14), we complete the proof.

20 Y. Yu and L. Ducas

C Proof of Corollary 3

Let n′ = �n
2 �. A routine computation leads to that:

hv(β, n) =
(

1 − n′

n

) n′
∑

i=1

iri +
n′

n

n−1∑

i=n′+1

(n − i)ri. (15)

We compare the expectations of two sides in Eq. (15), then:

E(hv(β, n)) =
(

1 − n′

n

)
⎛

⎝
∑

i≤h

ie
(h)
i (β)

⎞

⎠ +
n′

n

⎛

⎝
∑

i≤t

ie
(t)
i (β)

⎞

⎠

+
(

n′(n − n′)
2

− (n − n′)h(h + 1) + n′t(t + 1)
2n

)

e(β).

(16)

Since h and t are constant, the two sums
∑

i≤h ie
(h)
i (β) and

∑
i≤t ie

(t)
i (β) are

O(1). Note that n′ = n
2 +O(1) and n′(n−n′) = n2

4 − 1
2{n

2 }, which proves Eq. (4).
We compare the variances of two sides in Eq. (15), then:

Var(hv(β, n)) =

(
1− n′

n

)2
⎛

⎝
∑

i≤h

i2v
(h)
i (β)

⎞

⎠ +

(
n′

n

)2
⎛

⎝
∑

i≤t

i2v
(t)
i (β)

⎞

⎠

+

⎛

⎝n′(n − n′)(2n′(n − n′) + 1)

6n
−

(
1− n′

n

)2 ∑

i≤h

i2 −
(

n′

n

)2 ∑

i≤t

i2

⎞

⎠ v(β)

+2

(
1− n′

n

)2 ∑

i<n′
i(i + 1)Cov(ri, ri+1)

+2

(
n′

n

)2 ∑

i<n−n′−1

i(i + 1)Cov(rn−i, rn−i−1)

+2

(
1− n′

n

) (
n′

n

)
n′(n − n′ − 1)Cov(rn′ , rn′+1) (17)

We substitute all Cov(ri, ri+1)’s by c(β), which only leads to a O(1) difference.
Exploiting the identity that

∑n
i=1 i(i + 1) = n(n+1)(n+2)

3 , we know the sum of
a batch of local covariances in Eq. (17) equals 2n′(n−n′)(n′(n−n′)−1)

3n c(β) + O(1).
Thus we have:

Var(hv(β, n)) =
n′(n − n′)(2n′(n − n′) + 1)

6n
v(β) +

2n′(n − n′)(n′(n − n′)− 1)

3n
c(β) + O(1),

(18)
which implies Eq. (5).

Second Order Statistical Behavior of LLL and BKZ 21

References

1. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange—
a new hope. In: USENIX Security 2016, 327–343 (2016)

2. Aono, Y., Wang, Y., Hayashi, T., Takagi, T.: Improved progressive BKZ algorithms
and their precise cost estimation by sharp simulator. In: Fischlin, M., Coron, J.-S.
(eds.) EUROCRYPT 2016, Part I. LNCS, vol. 9665, pp. 789–819. Springer, Hei-
delberg (2016). https://doi.org/10.1007/978-3-662-49890-3 30

3. Buchmann, J., Ludwig, C.: Practical lattice basis sampling reduction. In: Hess, F.,
Pauli, S., Pohst, M. (eds.) ANTS 2006. LNCS, vol. 4076, pp. 222–237. Springer,
Heidelberg (2006). https://doi.org/10.1007/11792086 17

4. Chen, Y.: Réduction de réseau et sécurité concrète du chiffrement complètement
homomorphe. PhD thesis (2013)

5. Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee,
D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0 1

6. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and
bimodal gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I.
LNCS, vol. 8042, pp. 40–56. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-40041-4 3

7. Gama, N., Howgrave-Graham, N., Koy, H., Nguyen, P.Q.: Rankin’s constant and
blockwise lattice reduction. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117,
pp. 112–130. Springer, Heidelberg (2006). https://doi.org/10.1007/11818175 7

8. Gama, N., Nguyen, P.Q.: Finding short lattice vectors within mordell’s inequality.
In: STOC 2008, pp. 207–216 (2008)

9. Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N. (ed.) EURO-
CRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-78967-3 3

10. Gama, N., Nguyen, P.Q., Regev, O.: Lattice enumeration using extreme pruning.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 257–278. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 13

11. Goldstein, D., Mayer, A.: On the equidistribution of hecke points. Forum Mathe-
maticum 15(2), 165–189 (2003)

12. Hanrot, G., Pujol, X., Stehlé, D.: Analyzing blockwise lattice algorithms using
dynamical systems. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp.
447–464. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-
9 25

13. Hanrot, G., Stehlé, D.: Improved analysis of kannan’s shortest lattice vector algo-
rithm. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 170–186.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5 10

14. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosys-
tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054868

15. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Math. Ann. 261(4), 515–534 (1982)

16. Madritsch, M., Vallée, B.: Modelling the LLL algorithm by sandpiles. In:
López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 267–281. Springer, Hei-
delberg (2010). https://doi.org/10.1007/978-3-642-12200-2 25

17. Massey, F.J.: The Kolmogorov-Smirnov test for goodness of fit. J. Am. Stat. Assoc.
46(253), 68–78 (1951)

https://doi.org/10.1007/978-3-662-49890-3_30
https://doi.org/10.1007/11792086_17
https://doi.org/10.1007/978-3-642-25385-0_1
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/11818175_7
https://doi.org/10.1007/978-3-540-78967-3_3
https://doi.org/10.1007/978-3-540-78967-3_3
https://doi.org/10.1007/978-3-642-13190-5_13
https://doi.org/10.1007/978-3-642-22792-9_25
https://doi.org/10.1007/978-3-642-22792-9_25
https://doi.org/10.1007/978-3-540-74143-5_10
https://doi.org/10.1007/BFb0054868
https://doi.org/10.1007/978-3-642-12200-2_25

22 Y. Yu and L. Ducas

18. Micciancio, D.: Improving lattice based cryptosystems using the hermite normal
form. In: Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 126–145. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44670-2 11

19. Micciancio, D., Walter, M.: Practical, predictable lattice basis reduction. In:
Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part I. LNCS, vol. 9665, pp.
820–849. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-
3 31

20. Nguyen, P.Q., Stehlé, D.: LLL on the average. In: Hess, F., Pauli, S., Pohst, M.
(eds.) ANTS 2006. LNCS, vol. 4076, pp. 238–256. Springer, Heidelberg (2006).
https://doi.org/10.1007/11792086 18

21. Nguyen, P.Q., Vallée, B.: The LLL Algorithm: Survey and applications. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-02295-1

22. Schneider, M., Gama, N.: SVP Challenge (2010). https://latticechallenge.org/svp-
challenge

23. Schneider, M., Buchmann, J.A.: Extended lattice reduction experiments using the
BKZ algorithm. In: Sicherheit 2010, 241–252 (2010)

24. Schnorr, C.P., Euchner, M.: Lattice basis reduction: Improved practical algorithms
and solving subset sum problems. In: Budach, L. (ed.) FCT 1991. LNCS, vol. 529,
pp. 68–85. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-54458-5 51

25. Schnorr, C.P.: Lattice reduction by random sampling and birthday methods. In:
Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 145–156. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-36494-3 14

26. Schnorr, C.: A hierarchy of polynomial time lattice basis reduction algorithms.
Theoret. Comput. Sci. 53(2–3), 201–224 (1987)

27. The FPLLL development team: fplll, a lattice reduction library (2016). https://
github.com/fplll/fplll

28. The FPLLL development team: fpylll, a python interface for fplll (2016). Available
at https://github.com/fplll/fpylll

29. The FPLLL development team: strategizer, BKZ 2.0 strategy search (2016).
https://github.com/fplll/strategizer

30. Walter, M.: BKZ simulator (2014). http://cseweb.ucsd.edu/∼miwalter/src/sim
bkz.sage

31. Walter, M.: Lattice point enumeration on block reduced bases. In: Lehmann, A.,
Wolf, S. (eds.) ICITS 2015. LNCS, vol. 9063, pp. 269–282. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-17470-9 16

https://doi.org/10.1007/3-540-44670-2_11
https://doi.org/10.1007/978-3-662-49890-3_31
https://doi.org/10.1007/978-3-662-49890-3_31
https://doi.org/10.1007/11792086_18
https://doi.org/10.1007/978-3-642-02295-1
https://latticechallenge.org/svp-challenge
https://latticechallenge.org/svp-challenge
https://doi.org/10.1007/3-540-54458-5_51
https://doi.org/10.1007/3-540-36494-3_14
https://github.com/fplll/fplll
https://github.com/fplll/fplll
https://github.com/fplll/fpylll
https://github.com/fplll/strategizer
http://cseweb.ucsd.edu/~miwalter/src/sim_bkz.sage
http://cseweb.ucsd.edu/~miwalter/src/sim_bkz.sage
https://doi.org/10.1007/978-3-319-17470-9_16

Refinement of the Four-Dimensional
GLV Method on Elliptic Curves

Hairong Yi1,2(B), Yuqing Zhu1,2(B), and Dongdai Lin1(B)

1 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing 100093, China

{yihairong,zhuyuqing,ddlin}@iie.ac.cn
2 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing 100049, China

Abstract. In this paper we refine the four-dimensional GLV method on
elliptic curves presented by Longa and Sica (ASIACRYPT 2012). First
we improve the twofold Cornacchia-type algorithm, and show that the
improved algorithm possesses a better theoretic upper bound of decom-
position coefficients. In particular, our proof is much simpler than Longa
and Sica’s. We also apply the twofold Cornacchia-type algorithm to GLS
curves over Fp4 . Second in the case of curves with j-invariant 0, we
compare this improved version with the almost optimal algorithm pro-
posed by Hu, Longa and Xu in 2012 (Designs, Codes and Cryptography).
Computational implementations show that they have almost the same
performance, which provide further evidence that the improved version
is a sufficiently good scalar decomposition approach.

Keywords: GLV method · Elliptic curves
Four-dimensional scalar decomposition

1 Introduction

Scalar multiplication is the fundamental operation in elliptic curve cryptography.
It is of vital importance to accelerate this operation and numerous methods
have been extensively discussed in the literature; for a good survey, see [3]. The
Gallant-Lambert-Vanstone (GLV) method [5] proposed in 2001 is one of the
most important techniques that can speed up scalar multiplication on certain
kinds of elliptic curves over fields of large characteristic. The underlying idea,
which was originally exploited by Koblitz [10] when dealing with subfield elliptic
curves of characteristic 2, is to replace certain large scalar multiplication with a
relatively fast endomorphism, so that any single large scalar multiplication can
be separated into two scalar multiplications with only about half bit length. If
scalar multiplication can be parallelized, this two-dimensional GLV will result
in a twofold performance speedup. Specifically, let E be an elliptic curve, P be
a point of prime order n on it and ρ be an efficiently computable endomorphism
of E satisfying ρ(P) = λP . The GLV method consists in replacing kP with
c© Springer International Publishing AG 2018
C. Adams and J. Camenisch (Eds.): SAC 2017, LNCS 10719, pp. 23–42, 2018.
https://doi.org/10.1007/978-3-319-72565-9_2

24 H. Yi et al.

multi-scalar multiplication of the form k1 + k2ρ(P), where the decomposition
coefficients |k1|, |k2| = O(n1/2).

Higher dimensional GLV method has also been intensively studied, because
m-dimensional GLV would probably achieve m-fold performance acceleration
using parallel computation. In 2009, Galbraith et al. [4] proposed a new family
of GLS curves on which the GLV method can be implemented. On restricted
GLS curves with j-invariant 0 or 1728 they considered four dimensional GLV.
Later in 2010, Zhou et al. [18] introduced a three-dimensional variant of GLV
by combining the two approaches of [5] and [4]. But soon Longa and Sica [11]
indicated that the more natural understanding of Zhou et al. idea is in four
dimensions. Moreover they extended this idea and realized four-dimensional GLV
method on quadratic twists of all previous GLV curves appeared in [5].

Apart from constructing curves and efficient endomorphisms, scalar decom-
position is also a crucial step to realize the GLV method. Two approaches are
often used. One uses Babai rounding with respect to a reduced lattice basis,
since the problem of scalar decomposition can be reduced to solving the closest
vector problem (CVP). The other uses division with remainder in some order of
a number field after finding a short divisor. In two-dimensional case, these two
methods have been fully analyzed, including the theoretically optimal upper
bound of decomposition coefficients [16] and comparison of the two methods
[13]. In four-dimensional case, Longa and Sica [11,12] used the first approach.
Instead of LLL algorithm, they introduced a specific and more efficient reduc-
tion algorithm, the twofold Cornacchia-type algorithm, to get a short basis. More
importantly, they showed this new algorithm gained an improved and uniform
theoretic upper bound of coefficients C · n1/4 where C = 103

√
1 + |r| + s with

small values r, s given by the curve, which guaranteed a relative speedup when
moving from a two-dimensional to a four-dimensional GLV method over the
same underlying field. As for the restricted case of GLS curves with j-invariant
0 in [4], Hu, Longa and Xu [7] essentially exploited the second approach, whereas
the short divisor was found by a specific way, which led to an almost optimal
upper bound of coefficients 2

√
2p = O(2

√
2n1/4).

From the analysis it seems that in j-invariant 0 case Hu et al.’s decomposition
method is better than Longa et al. On the other hand, practical implementations
show that Longa et al. analysis of the upper bound C = 103

√
1 + |r| + s is far

from compact, hence it is expected to be optimized. In this paper, we improve
the original twofold Cornacchia-type algorithm described in [11,12]. And we
showed that this improved version possesses a better theoretic upper bound of
decomposition coefficients C ·n1/4 with C = 6.82

√
1 + |r| + s, which is very close

to Hu et al.’s. In particular, our proof is much simpler than Longa and Sica’s
[12]. Finally we also make experiments to compare the improved version with
the original one, which shows the former outputs a shorter basis in most cases.
Moreover, we also indicate that the twofold Cornacchia-type algorithm can also
be applied to the four-dimensional GLV method on GLS curves over Fp4 [4].

Refinement of the Four-Dimensional GLV Method on Elliptic Curves 25

It is also necessary to compare the two different four-dimensional decompo-
sition methods (the twofold Cornacchia-type algorithm and the algorithm in [7])
just as [13] did for the two-dimensional case. To this end, we first show that a
j-invariant 0 curve which is suitable for one of the four-dimensional GLV method
will be applicable for the other, and by this we provide a unified way to construct
a j-invariant 0 curve equipped with both endomorphisms required in [11,12] and
the endomorphism required in [4,7]. In addition, we discover the explicit rela-
tion of the two 4-GLV methods. Next we can make comparison by computational
implementation. Implementations show that our improved Cornacchia-type algo-
rithm behaves almost the same as Hu et al. algorithm, which provide further
evidence that the improved version is a sufficiently good scalar decomposition
approach.

Paper Organization. The rest of the paper is organized as follows. In Sect. 2
we recall some basic facts on GLV method and GLS curves, and the main idea
of Longa and Sica’s to realize four-dimensional GLV. In Sect. 3 we improve the
twofold Cornacchia-type algorithm and give a better upper bound, and extend
this algorithm to four-dimensional GLS curves over Fp4 . Section 4 explores the
uniformity of the two four-dimensional GLV methods on j-invariant 0 curves. In
Sect. 5 we compare our modified algorithm with the original one and compare
the two four-dimensional decomposition methods on j-invariant 0 curves using
computational implementations. Finally, in Sect. 6 we draw our conclusions.

2 A Brief Recall of GLV and GLS

2.1 The GLV Method

In this part, we briefly summarize the GLV method following [5]. Let E be an
elliptic curve defined over a finite field Fq. Assume that #E(Fq) is almost prime
(that is hn with large prime n and cofactor h ≤ 4) and 〈P 〉 is the subgroup
of E(Fq) with order n. Let us consider a non-trivial and efficiently computable
endomorphism ρ defined over Fq with characteristic polynomial X2 + rX + s.
We call a curve satisfying the above properties a GLV curve. Then ρ(P) = λP
for some λ ∈ [0, n) where λ is a root of X2 + rX + s mod n.

Define the group homomorphism (the GLV reduction map w.r.t. {1, ρ})

f : Z × Z → Z/n

(i, j) �→ i + λj (mod n).

Then K = ker f is a sublattice of Z × Z with full rank. Assume v1, v2 are two
linearly independent vectors of K satisfying max{|v1|, |v2|} < c

√
n for some

positive constant c, where | · | denotes the maximum norm. Expressing (k, 0)
as the Q-linear combination of v1, v2 and rounding coefficients to the nearest
integers, we can obtain

kP = k1P + k2ρ(P), |(k1, k2)| < c
√

n.

26 H. Yi et al.

For scalar decomposition in this way, it is essential to choose a basis {v1, v2} of K
as short as possible. To this end, Gallant et al. [5] exploited a specific algorithm,
the Cornacchia’s algorithm. Complete analysis of the output of this algorithm
was given in [16], which showed the constant c in upper bound can be chosen as√

1 + |r| + s.

2.2 The GLS Curves

In 2009, Galbraith et al. [4] extended the work of Gallant et al. and implemented
this method on a wider class of elliptic curves by generalizing Iijima et al. con-
struction [8]. For an elliptic curve E defined over Fp, the latter considered its
quadratic twist E′ defined over Fpk , and constructed an efficient endomorphism
on E′(Fpk) by composition of the quadratic twist map (denoted by t2) and its
inverse, and the Frobenius map π of E:

ψ : E′(Fpk)
t−1
2→ E(Fp2k) π→ E(Fp2k) t2→ E′(Fpk). (1)

Galbraith et al. replaced t2 with a general separable isogeny (t−1
2 with the dual

isogeny) or particularly a twist map of higher degree1. Instead of considering
the characteristic polynomial of ψ on E′(Fpk), they use the polynomial of ψ on
E′(Fpk). For example, in (1) ψ satisfies ψk(P) + P = OE′ for any P ∈ E′(Fpk).
Moreover, Galbraith et al. also described how to obtain higher dimensional GLV
method by using elliptic curves E over Fp2 with #Aut(E) > 2 [4, Sect. 4.1].

Theorem 1 ([4]). Let p ≡ 1 mod 6 and let E defined by y2 = x3 + B be a
j-invariant 0 elliptic curve over Fp. Choose u ∈ Fp12 such that u6 ∈ Fp2 and
define E′ : y2 = x3 + u6B over Fp2 . The isomorphism t6 : E → E′ is given by
t6(x, y) = (u2x, u3y) and is defined over Fp12 . Let Ψ = t6πt−1

6 . For P ∈ E′(Fp2)
we have Ψ4(P) − Ψ2(P) + P = OE′ .

For this case, Hu et al. [7] described the complete implementation of
4-dimensional GLV method on such kind of GLS elliptic curves. For scalar
decomposition, first they found a short vector v1 in ker f through analyzing
properties of p and #E′(Fp2). Since Z

4 is isomorphic to the order Z[Ψ] and
ker f is isomorphic to some prime ideal n of Z[Ψ] (which will be explained in
Sect. 2.3), this amounts to having found a short element in n, still denoted by
v1. {v1, v1Ψ, v1Ψ

2, v1Ψ
3} forms a sublattice of ker f . Then to decompose an arbi-

trary scalar k under this basis is equivalent to divide k by v1 in Z[Ψ] with
remainder that is the decomposition of k.

We present here the pseudo-algorithm of their method. Note that p is a
prime with p ≡ 1 (mod 6) and we choose u such that #E′(Fp2) is prime or
almost prime. The matrix A appeared in the algorithm is given in [7].

1 Assume E and E′ are defined over Fq. E′ is called a twist of degree d of E if there
exists an isomorphism td : E → E′ defined over Fqd and d is minimal.

Refinement of the Four-Dimensional GLV Method on Elliptic Curves 27

Algorithm 1. (Finding a short basis)
Input: p, N = #E′(Fp2), A.

Output: Four linearly independent vectors in ker f : v1, v2, v3, v4.
1) Find integers a, b such that a2 + ab + b2 = p

and a ≡ 2 mod 3, b ≡ 0 mod 3.
2) Let r1 ← (p − 1)2 + (a + 2b)2,

r2 ← (p − 1)2 + (2a + b)2,
r3 ← (p − 1)2 + (a − b)2.

3) If N = r1, then v1 ← (1,−a, 0,−b),
else if N = r2, then v1 ← (1,−b, 0,−a),
else if N = r3, then v1 ← (1,−a − b, 0, a).

3) Return: v1, v2 = v1A, v3 = v2A, v4 = v3A.

2.3 Combination of GLS and GLV and the Twofold
Cornacchia-Type Algorithm

In [11,12], Longa and Sica put forward that choosing a GLV curve E/Fp, we
may obtain four-dimensional scalar multiplication on a quadratic twist of E as
in Sect. 2.2.

Let E′/Fp2 be a quadratic twist of E via the twist map t2 : E → E′. Let ρ
be the non-trivial Fp-endomorphism on E with ρ2 + rρ + s = 0. Suppose that
#E′(Fp2) = nh is almost prime and 〈P 〉 ⊂ E′(Fp2) is the large prime subgroup.
Let ψ = t2πt−1

2 and φ = t2ρt−1
2 . They are defined over Fp2 on E′. ψ, φ satisfy

ψ2(P) + P = OE , φ2(P) + rφ(P) + sP = OE with ψ(P) = μP, φ(P) = λP
respectively. Hence for any scalar k ∈ [1, n−1) we can obtain a four dimensional
decomposition

kP = k1P + k2φ(P) + k3ψ(P) + k4ψφ(P), with max
i

(|ki|) < 2Cn1/4

for some constant C. As in 2-dimensional GLV case, first we consider the 4-GLV
reduction map w.r.t. {1, φ, ψ, φψ}

f : Z
4 → Z/n

(x1, x2, x3, x4) �→ x1 + x2λ + x3μ + x4λμ (mod n).

Second, find a short basis of the lattice ker f: {v1, v2, v3, v4} with maxi |vi| ≤
Cn1/4. Obviously, we can use LLL algorithm [2] to find a reduced basis, but the
theoretic constant C is not desired [11,16]. Then Longa and Sica proposed the
twofold Cornacchia-type algorithm to find such a short basis {v1, v2, v3, v4}. It
consists of the Cornacchia’s algorithm in Z and the Cornacchia’s algorithm in
Z[i]. It is efficient but more importantly, it gives a better and uniform upper
bound with constant C = 51.5(

√
1 + |r| + s).

View φ, ψ as algebraic integers satisfying X2 + rX + s = 0,X2 + 1 = 0
respectively. Assume that they generate disjoint quadratic extension of Q and
denote this biquadratic extension Q(φ, ψ) by K. Let oK be its ring of integers.
Since the prime n is large and integer solutions λ, μ of the two polynomials

28 H. Yi et al.

with coefficients modulo n exist, we always have that n splits completely in K
[9, Theorem 7.4]. Hence there are four prime ideals of oK lying over n. And there
is only one that contains φ − λ, ψ − μ. Denote it by n. We have φ ≡ λ (mod n)
and ψ ≡ μ (mod n).

The order Z[φ, ψ] ⊆ oK is a Z-module of rank 4. Under the basis {1, φ, ψ, φψ}
there is a canonical isomorphism ϕ from Z

4 to Z[φ, ψ], and we can show that
ϕ(ker f) is the submodule n ∩ Z[φ, ψ]. Denote n ∩ Z[φ, ψ] by n′ and Z[φ, ψ] by o.
The following composition of two maps is just the GLV reduction map f w.r.t.
{1, φ, ψ, φψ}.

Z
4 �−−−−−→

ϕ
Z[φ, ψ]

mod n∩Z[φ,ψ]−−−−−−−−−→ Z/n

(x1, x2, x3, x4) �−→ x1 + x2φ + x3ψ + x4φψ �−→ x1 + x2λ + x3μ
+x4λμ(mod n)

Note that o contains the Gaussian domain Z[ψ] = Z[i]. To find a short Z-
basis of n′, first we find out the generator ω of the prime ideal n′ ∩Z[i] (Gaussian
domain is a PID) using the original Cornacchia’s algorithm. Then n′ = ωo +
(φ − λ)o. Note that o = Z[i] + φ · Z[i]. We can deduce

n′ = ω · Z[i] + ωφ · Z[i] + (φ − λ) · Z[i] + φ(φ − λ) · Z[i]
= ω · Z[i] + (φ − λ) · Z[i].

We can equate o with Z[i] × Z[i] naturally under the basis {1, φ}. Then n′ is
a Z[i]-submodule generated by (ω, 0) and (−λ, 1). It is essential to view n′ in
this way, since we may recall that in [5] Cornacchia’s algorithm is just used to
find a short basis of the Z-submodule of Z

2 generated by (n, 0) and (−λ, 1).
Replacing Z with Z[i], we can generalize the algorithm in Z to the variant in
Z[i] (Cornacchia’s algorithm in Z[i]) to obtain a short basis of n′.

Q(φ) Z[φ] (n, φ − λ) Q(i, φ) Z[i, φ] n′
����������

Q Z nZ Q(i) Z[i] ωZ[i]

Finally, once we find a short2 Z[i]-basis {v1, v2} of n′, then {v1, v1 · i, v2, v2 · i}
is also a short Z-basis of n′. More specifically, let v1 = (a1 + b1i, c1 + d1i), v2 =
(a2 + b2i, c2 + d2i), then

n′ = (a1 + b1i + (c1 + d1i)φ)Z[i] + (a2 + b2i + (c2 + d2i)φ)Z[i].

Furthermore, ker f = ϕ−1(n′) is generated by rows of the matrix
⎛

⎜⎜
⎝

a1 c1 b1 d1
−b1 −d1 a1 c1
a2 c2 b2 d2

−b2 −d2 a2 c2

⎞

⎟⎟
⎠ .

2 For a vector v = (α, β) ∈ Z[i] × Z[i], we denote by |v|∞ the maximal norm, that is
|v|∞ = max{|α|, |β|} where |α| is the absolute value as a complex number.

Refinement of the Four-Dimensional GLV Method on Elliptic Curves 29

3 Improvement and Extension of the Twofold
Cornacchia-Type Algorithm

In this section, we give our improvement of the twofold Cornacchia-type algo-
rithm and analyze it. We will show that the output of this improved algorithm
has a much lower (better) upper bound compared with that of the original one.
For the full description and analysis of the original twofold Cornacchia-type
algorithm, one can refer to [12].

3.1 The Improved Twofold Cornacchia-Type Algorithm

The first part of the improved twofold Cornacchia-type algorithm is also to
find out the Gaussian integer ω lying over n, which exploits the Cornacchia’s
algorithm in Z as described in [12]. Here we briefly describe and analyze this
algorithm. Note that it is the following analysis of this algorithm that inspires
us to give the proof of Theorem 2.

Algorithm 2. (Cornacchia’s algorithm in Z)
Input: Two integers: n, μ.

Output: The Gaussian integer lying over n: ω.
1) Let r0 ← n, r1 ← μ, t0 ← 0, t1 ← 1
2) While |r1| ≥ √

n do
q ← � r0

r1
�,

r ← r0 − qr1, r0 ← r1, r1 ← r,
t ← t0 − qt1, t0 ← t1, t1 ← t.

3) Return: ω = r1 − it1.

This is actually the procedure to compute the gcd of n and μ using the
extended Euclidean algorithm. It is well known that it produces three sequences
(rj)j≥0, (sj)j≥0 and (tj)j≥0 satisfying

(
rj+1 sj+1 tj+1

rj+2 sj+2 tj+2

)
=

(
0 1
1 −qj+1

)(
rj sj tj

rj+1 sj+1 tj+1

)
, j ≥ 0

where qj+1 = �rj/rj+1� and the initial data
(

r0 s0 t0
r1 s1 t1

)
=

(
n 1 0
μ 0 1

)
.

These sequences also satisfy the following important properties for all j ≥ 0:

1. rj > rj+1 ≥ 0 and qj+1 ≥ 1,
2. (−1)jsj ≥ 0 and |sj | < |sj+1|(this holds for j > 0),
3. (−1)j+1tj ≥ 0 and |tj | < |tj+1|,
4. sj+1rj − sjrj+1 = (−1)j+1μ,
5. tj+1rj − tjrj+1 = (−1)jn,
6. sjn + tjμ = rj .

30 H. Yi et al.

The former three properties make sure that

|tj+1rj | + |tjrj+1| = n and |sj+1rj | + |sjrj+1| = μ, (2)

the former of which implies |tj+1rj | < n. If Algorithm 2 stops at the m-th
step such that rm ≥ √

n and rm+1 <
√

n, then |tm+1| <
√

n. Then |ω|2 =
|rm+1 − itm+1|2 = r2m+1 + t2m+1 < 2n. Together with n|NZ[i](ω) = |ω|2 we have
|ω| =

√
n.

For the (original) Cornacchia’s algorithm in Z[i], we also have three such
sequences. But just as mentioned in [12], in the j-th step with rj = qj+1rj+1 +
rj+2, positive quotient qj+1 and nonnegative remainder rj+2 are not available
in Z[i]. If we choose qj+1 as the closest Gaussian integer to rj/rj+1 denoted by
�rj/rj+1�, the former three properties will not hold any more, which makes it
more difficult to analyze the behaviour of {|sj |} and {|tj |}. Hence the Eq. (2),
which plays a crucial role in the analysis of Cornacchia’s algorithm in Z, becomes
invalid in Z[i].

For controlling {|sj |}, Longa and Sica [12] use the notation of “good” (“bad”)
index. When j is good, they obtain an upper bound of |sj+1rj | (also of |sjrj+1|
since they are bounded each other by (2)) [12, Lemma 4]. When j is bad, they
transfer the upper bound of |sj+1| (or |sj |) to that of |sj−1| [12, Lemma 5]. They
take 1/

√
1 + |r| + s as the terminal condition of the main loop of the algorithm,

which is indeed determined by the ability of analyzing the upper bound of |sj |
and |rj |.

In this paper, we give up the notation of “good” index, and replace it by
something easier to work with (the following Lemma 1). This appears to be
the “expected behavior” for the {|sj |}, which leads to a neater and shorter
argument. And during this improved analysis, by some calculation we obtain an
optimized terminal condition of the sequence {rj}, which is an absolute constant
independent of the curve. In addition, we make a subttle modification of the
second output. We describe the second part of our improved twofold Cornacchia-
type algorithm in the following Algorithm 3. Note that about the running time
of Algorithm 3, it is completely the same as that of the original algorithm, that
is O(log2 n). One may refer to [12].

Algorithm 3. (Improved Cornacchia’s algorithm in Z[i])
Input: Two Gaussian integers: ω, λ.

Output: Two vectors in Z[i]2: v1, v2.
1) Let r0 ← λ, r1 ← ω, s0 ← 1, s1 ← 0
2) While |r1| ≥

√
2 +

√
2n1/4 do

q ← � r0
r1

�,
r ← r0 − qr1, r0 ← r1, r1 ← r,
s ← s0 − qs1, s0 ← s1, s1 ← s.

3) Compute r2 ← r0 − � r0
r1

�r1, s2 ← s0 − � r0
r1

�s1
4) Return: v1 = (r1,−s1),

v2 = (r0,−s0) if max{|r0|, |s0|} ≤ max{|r2|, |s2|},
= (r2,−s2) otherwise.

Refinement of the Four-Dimensional GLV Method on Elliptic Curves 31

3.2 A Better Upper Bound

Theorem 2. The two vectors v1, v2 output by Algorithm 3 are Z[i]-linearly
independent. They belong to n′ and satisfy |v1|∞ ≤

√
2 +

√
2n1/4, |v2|∞ ≤

(2 +
√

2)(
√

1 + |r| + s)n1/4.

Before proving the theorem, we need the following two lemmas. Lemma
1 replaces Longa and Sica’s Lemma 4 in [12], and is crucial to our proof of
Theorem 2.

Lemma 1. If | sj

sj+1
| < 1, then we have

|sj+1rj | ≤ (2 +
√

2)|ω|, |sjrj+1| ≤ (3 +
√

2)|ω|.
Proof. First we have sj+1rj − sjrj+1 = (−1)j+1ω. If the condition | sj

sj+1
| < 1

holds, and noticing that | rj+1
rj

| ≤ 1√
2
, from | sj

sj+1
· rj+1

rj
| < 1√

2
we can deduce

∣∣∣∣1 − sjrj+1

sj+1rj

∣∣∣∣ ≥ 1 −
∣∣∣∣
sjrj+1

sj+1rj

∣∣∣∣ > 1 − 1√
2
.

Together with sj+1rj − sjrj+1 = (−1)j+1ω we have

|ω| = |sj+1rj − sjrj+1| > (1 − 1√
2
)|sj+1rj |,

which implies

|sj+1rj | ≤ 1
1 − 1√

2

|ω| = (2 +
√

2)|ω|,

and
|sjrj+1| ≤ (3 +

√
2)|ω|.

��
Lemma 2. For any nonzero vector (α, β) ∈ n′ ⊂ Z[i]2 we have

max{|α|, |β|} ≥
√|ω|

√
1 + |r| + s

.

Proof. The key point is that n′ is an ideal in o with norm n, then the norm of
any nonzero element in n′ is divisible by n, hence no less than n. Note that here
the norm is from Z[i, φ] to Z[i]. Complete proof can be found in [16]. ��
Proof (Proof of Theorem 2). The vectors v1, v2 are Z[i]-linearly independent
according to the fourth property, and they belong to n′ because (rj ,−sj) =
tj(ω, 0) + (−sj)(−λ, 1) deduced from the sixth property.

We denote the output {r, s} of the j-th step in the loop of Algorithm 3
by {rj+1, sj+1}, and assume Algorithm 3 stops at the m-th step. Then
v1 = (rm+1,−sm+1) and |rm| ≥

√
2 +

√
2n1/4 and |rm+1| <

√
2 +

√
2n1/4.

32 H. Yi et al.

We need to consider two cases. For brevity, we denote two constants√
1 + |r| + s,

√
2 +

√
2 by c1, c2 respectively.

For the case | sm

sm+1
| < 1, using Lemma 1 we have |sm+1| ≤ c2

√|ω|. Together

with |rm+1| < c2
√|ω| we can easily deduce

|v1|∞ ≤ c2n
1/4.

Moreover, if |rm+1| <

√
|ω|

c1
, by Lemma 2 we have a lower bound |sm+1| ≥

√
|ω|

c1
,

which implies |rm| ≤ c1(2 +
√

2)
√|ω| using again Lemma 1. Together with the

restricted condition |sm| < |sm+1| ≤ c1(2 +
√

2)
√|ω| we can obtain

|(rm,−sm)|∞ ≤ c1(2 +
√

2)n1/4.

If |rm+1| ≥
√

|ω|
c1

, when |sm+1| ≥ |sm+2| we have

|sm+2| < c2
√

|ω|, |rm+2| ≤ |rm+1| < c2
√

|ω|.
When |sm+1| < |sm+2| we can use Lemma 1 to deduce |sm+2| ≤ c2(2+

√
2)

√|ω|.
Hence in both cases we have

|(rm+2,−sm+2)|∞ ≤ c1(2 +
√

2)n1/4.

Finally by the definition of v2 we always have

|v2|∞ ≤ c1(2 +
√

2)n1/4.

For the case | sm

sm+1
| ≥ 1, let k ≤ m be the index satisfying

|sk| ≥ |sk+1| ≥ · · · ≥ |sm| ≥ |sm+1| and |sk−1| < |sk|.
Applying Lemma 1 to the (k − 1)-th step we have |skrk−1| ≤ (2 +

√
2)|ω|. Since

|rk−1| > |rk| > · · · > |rm| ≥ c2
√|ω| we can easily deduce |sk| ≤ c2

√|ω| and
then |sm+1| ≤ |sk| ≤ c2

√|ω|. Together with |rm+1| < c2
√|ω| we obtain

|v1|∞ ≤ c2n
1/4.

Similarly, if |rm+1| <

√
|ω|

c1
we have |sm+1| ≥

√
|ω|

c1
by Lemma 2, which implies

|sk| ≥
√

|ω|
c1

and then |rk−1| ≤ c1(2 +
√

2)
√|ω| by Lemma 1. Hence |rm| ≤

c1(2 +
√

2)
√|ω|. Together with |sm| ≤ |sk| ≤ c2

√|ω| we have

|(rm,−sm)|∞ ≤ c1(2 +
√

2)n1/4.

On the other hand, if |rm+1| ≥
√

|ω|
c1

, following the same argument described in
the case |sm| < |sm+1| we also have

|(rm+2,−sm+2)|∞ ≤ c1(2 +
√

2)n1/4.

Therefore,
|v2|∞ ≤ c1(2 +

√
2)n1/4.

��

Refinement of the Four-Dimensional GLV Method on Elliptic Curves 33

Following Theorem 2 and the argument in Sect. 2.3, we can easily obtain the
conclusion.
Theorem 3. In the 4-dimensional GLV scalar multiplication using the combi-
nation of GLV and GLS, the improved twofold Cornacchia-type algorithm will
result in a decomposition of any scalar k ∈ [1, n) into integers k1, k2, k3, k4 such
that

kP = k1P + k2φ(P) + k3ψ(P) + k4ψφ(P)

with

max
i

(|ki|) < 6.82
(√

1 + |r| + s
)
n

1
4 .

Remark 1. Our proof technique is general and by some modification it can also
be applied to improve the upper bound of coefficients given by the original
twofold Cornacchia-type algorithm in [12].

3.3 Extension to 4-Dimensional GLS Curves over Fp4

The twofold Cornacchia-type algorithm can be extended naturally to the
4-dimensional GLV method on GLS curves over Fp4 , which is just the case k = 4
in Eq. (1). Let E be an elliptic curve over Fp, E′′ be a quadratic twist of E(Fp4)
over Fp4 . Then as described in Eq. (1), the efficient Fp4 -endomorphism ϕ on
E′′ satisfying ϕ4 + 1 = 0 on the large prime subgroup 〈P 〉 of E′′(Fp4). Hence
4-dimensional GLV method can be implemented on E′′. Moreover, in this case,
the twofold Cornacchia-type algorithm can be used for scalar decomposition as
well. Let’s explain it more specifically.

View ϕ as an algebraic integer satisfying X4 + 1 = 0. Let K = Q(ϕ) be the
quartic extension over Q, oK be the ring of integers of K. Since ϕ is a 8-th root
of unity, then oK = Z[ϕ]. Note that ϕ2 satisfies X2 + 1 = 0. Write ϕ2 as i, then
Z[ϕ2] = Z[i] ⊂ oK . We assume that P is of prime order n and ϕ(P) = νP , then
ν is a root of X4+1 ≡ 0(mod n). Denote by n the prime ideal lying over n which
contains n and ϕ − ν.

First, find out the Gaussian integer ω ∈ Z[i] lying over n with ωP = 0 using
Algorithm 2 on the input (n, ν2 (mod n)). Then invoke Algorithm 3 on the
input (ω, ν). Denote the output by (u1, u2) where ui ∈ Z[i] × Z[i]. Following
the same argument of Theorem 2 we can obtain that u1 and u2 are Z[i]-linearly
independent and

|u1|∞ ≤
√

2 +
√

2n1/4, |u2|∞ ≤
√

3(2 +
√

2)n1/4.

If we assume uk = (αk, βk) with αk = ak + ibk and βk = ck + idk for k = 1, 2,
then a short basis of the kernel of the GLV reduction map with respect to
{1, ϕ, ϕ2, ϕ3} is generated by rows of the following matrix

⎛

⎜⎜
⎝

a1 c1 b1 d1
−b1 −d1 a1 c1
a2 c2 b2 d2

−b2 −d2 a2 c2

⎞

⎟⎟
⎠ .

34 H. Yi et al.

4 Relations of the Two 4-Dimensional GLV Methods
on j-invariant 0 Elliptic Curves over Fp2

In this section, we focus on the elliptic curves with j-invariant 0. We want to
explore the relations of the two 4-dimensional GLV methods on this kind of
elliptic curves. The first one is put forward in [4] and described in Sect. 2.2, and
the second one is put forward by Long and Sica [12] and described in Sect. 2.3.

Note that both two methods create their target curves and endomorphisms
by using twists of original curves (especially twists of higher degree). For the
general theory of twists, one may refer to [6] or [17, Chap. X]. And twists used
to be employed to find pairing-friendly elliptic curves with prime order [1,14].
By carefully choosing and balancing some parameters of twists, we can obtain
the following theorem.

Theorem 4. For any j-invariant 0 curve E′ over Fp2 , if one of the two
4-dimensional GLV methods can be implemented, then the other can be used
as well.

Let Fp be a prime field with p ≡ 1(mod 3), E′ be an elliptic curve over
Fp2 with j-invariant 0. Fix a primitive element α of the field Fp2 . Up to a Fp2 -
isomorphism, E′ can be written as

E′ : y2 = x3 + αl, for some l ∈ {0, · · · , 5}.

Let ζ3 =
(
α(p+1)

) p−1
3 be a 3-th root of unity in Fp, then ρ : (x, y) �→ (ζ3x, y)

is an efficient endomorphism of E′. It is not hard to discover the following two
lemmas.

Lemma 3. If and only if l = 1, 3 or 5, we can find an A ∈ Fp and a non-
quadratic residue v ∈ Fp2 , such that αl = Av3.

Proof. Since F
∗
p2 = 〈α〉, we can write v = αm for some odd integer m if it exists.

Then the existence of such an A and v is equivalent to the existence of an odd
integer m ∈ [1, p2 − 1) satisfying

αl

α3m
∈ Fp.

This condition is equivalent to p2 − 1 | (p − 1)(3m − l), namely p + 1 | 3m − l,
since the order of α is p2 − 1. Because p + 1 is even and m needs to be odd, it
is necessary that l is odd.

Since p ≡ 1(mod 3), when l = 1, we can take m = p+2
3 ; when l = 3, take

m = 1 and when l = 5, take m = 2(p+1)+5
3 . ��

Lemma 4. If and only if l = 1, 3 or 5, we can find a B ∈ Fp and a u ∈ Fp2

which is neither a quadratic residue nor a cubic residue, such that αl = Bu.

Refinement of the Four-Dimensional GLV Method on Elliptic Curves 35

Proof. The argument is similar to that of Lemma 3. If such a u exists, we can
let u = αk for some integer k with 2 � k and 3 � k. Then the existence of such
B and u is equivalent to the existence of an integer m ∈ [1, p2 − 1) satisfying
2 � k, 3 � k and

αl

αk
∈ Fp.

This condition is equivalent to p+1 | k− l since the order of α is p2 −1. Because
p + 1 is even and k needs to be odd, it is necessary that l is odd.

Note that p ≡ 1(mod 3). When l = 1, we can take k = 3(p + 1) + 1; when
l = 3, take k = 2(p + 1) + 3 and when l = 5, take k = 4(p + 1) + 5. ��
Remark 2. Note that m and k appeared in the proofs are not unique. We evaluate
them in this way because we should choose v and u carefully to obtain the
equality of endomorphisms explaining the relation of the two 4-GLV methods,
which is described in the following Theorem 5.

Assume that we have found an E′ as above with almost prime group E′(Fp2)
and l = 1, 3 or 5. According to Lemma 3, we can find an A ∈ Fp and a non-
quadratic residue v ∈ Fp2 such that αl = Av3. Let E1 be the curve over Fp

defined by
E1 : y2 = x3 + A.

Then obviously E′ is a quadratic twist of E1(Fp2). Denote the twist map (x, y) �→
(vx, v3/2y) from E1 to E′ by t2, the Frobenius endomorphism of E1 by π1. Now,
Long and Sica’s 4-dimensional GLV method described in Sect. 2.3 can be applied
on E′. Take ψ = t2π1t

−1
2 and φ = t2ρt−1

2 . Then on the large prime subgroup of
E′(Fp2) they satisfy ψ2 + 1 = 0 and φ2 + φ + 1 = 0 respectively. Following the
twofold Cornacchia-type algorithm we will accomplish the 4-dimensional scalar
decomposition.

Let E2 be the curve over Fp defined by

E2 : y2 = x3 + B.

Obviously, E′ is a twist of degree 6 of E2(Fp2). Denote this twist map (x, y) �→
(u1/3x, u1/2y) from E2 to E′ by t6, the Frobenius endomorphism of E2 by π2. Let
Ψ = t6π2t

−1
6 . On the large prime subgroup of E′(Fp2) it satisfies Ψ4−Ψ2+1 = 0.

Therefore, we can implement the 4-dimensional GLV scalar multiplication on E′

as described in Sect. 2.2 and [7].

Proof (of Theorem 4). This theorem is almost trivial following Lemma 3 and
Lemma 4, because they conclude that the condition of choosing E′ that is suit-
able for the two GLV methods are the same, i.e. l = 1, 3, or 5.

Moreover, from the above we see that there is a unified and easy way to
construct a j-invariant 0 curve over Fp2 suitable for both 4-dimensional GLV
methods, that is, we only need to try α, α3 and α5 when given p and α, until
the group order is almost prime. This is very helpful for our implementation in
Sect. 5. ��

36 H. Yi et al.

In addition, the explicit relation of the two 4-GLV methods can be described
as follows.

Theorem 5. Ψ is the composition of ψ and φ that is

Ψ = φψ = ψφ.

Proof. For any point (x, y) on E′, φψ(x, y) = ψφ(x, y) = (ζ3v(1−p)xp, v
3(1−p)

2 yp),
and Ψ(x, y) = (u

1−p
3 xp, u

1−p
2 yp). In any case of l, we always have u/v3 = α2(p+1)

for v, u chosen in Lemmas 3 and 4. Hence we have

u
1−p
3 /v1−p = αk 1−p

3 −m(1−p) = α2(p+1) 1−p
3 = α

p2−1
3 = ζ3,

and
u

1−p
2 /v

3(1−p)
2 = αk 1−p

2 −3m 1−p
2 = α2(p+1) 1−p

2 = 1.

Therefore, φψ(x, y) = Ψ(x, y). ��
This connection can be interpreted clearly by the following commutative

graph.

Remark 3. On the group E′(Fp2), one of the two 4-dimensional GLV methods
uses {1, φ, ψ, φψ} as the basis of scalar decomposition, while the other uses
{1, Ψ, Ψ2, Ψ3} = {1, φψ, 1 + φ,−ψ}. Thus for a scalar k, we have two algorithms
to decompose it, that is Algorithm 1 and the improved twofold Cornacchia-type
algorithm.

5 Comparison

In this section, first we compare the improved twofold Cornacchia-type algo-
rithm with the original one on two families of twists of GLV curves. Then we
compare the two 4-dimensional decomposition algorithms, the improved twofold
Cornacchia-type algorithm and Algorithm 1 in Sect. 2.2, by choosing j-invariant
0 curves over Fp2 with prime order rational-point groups.

For the first comparison, two GLV curves are chosen from [11], which are
E1 : y2 = 4x3 − 30x − 28 over Fp with ρ2 + 2 = 0 and E2 : y2 = x3 + b
over Fp with p ≡ 1(mod 3) and ρ2 + ρ + 1 = 0. For some prime p, choose
a primitive element α of F

∗
p2 . For E1, we use its twist w.r.t.

√
α as our tar-

get curve, denoted by E′
1. For E2 we exploit the way as in Sect. 4. Choosing

Refinement of the Four-Dimensional GLV Method on Elliptic Curves 37

curves E2 (or parameters b) and their twists amount to choosing target curves
E′

2 of the form y2 = x3 + αl with l = 1, 3 or 5. We use SEA algorithm [15] to
compute #E′

i(Fp2) and enumerate p within certain range until the group order
is prime. We choose three about 127-bit primes for each Ei to implement the
original and improved twofold Cornacchia-type algorithm. We care about the
ratio of maxo (resp. maxm) to n1/4 where maxo (resp. maxm) denotes the max-
imum value of the maximum norm of four vectors output by the original (resp.
improved) twofold Cornacchia-type algorithm. First, from tables it is certain
that the improved decomposition algorithm performs better than the original
one in most cases. Second, this performance seems to depend on the GLV model
that we choose, since the improvement showed in Table 2 is more evident and
consistent than that in Table 1. Finally, we should also recognize that in practice
this improvement is rather limited and only by a few bits, so its general practical
effect is no more than a couple percentage points.

Table 1. Decomposition on E1

p 128-bit 127-bit 126-bit

n 254-bit 252-bit 250-bit

maxo /n1/4 3.67 0.98 3.00

maxm /n1/4 0.68 0.98 0.67

Table 2. Decomposition on E2

p 127-bit 128-bit 129-bit

n 254-bit 255-bit 257-bit

maxo /n1/4 4.64 8.56 4.61

maxm /n1/4 1.08 1.05 1.09

For the second comparison, we find ‘cryptographically good’ j-invariant 0
curves by the way described in Sect. 4. That is for any prime p, we consider
y2 = x3 + αl with l = 1, 3 or 5 where 〈α〉 = F

∗
p2 . We also enumerate p with

p ≡ 1(mod 3) within certain range until the group order is prime. As showed
in Sect. 4, we implement Algorithm 1 and the improved twofold Cornacchia-
type algorithm to find a short basis of the kernel of the GLV reduction map
w.r.t. {1, φ, ψ, φψ}. We choose 15 different curves with prime order. For 11 of
them the output of the two decomposition algorithms are identically same. In
the remaining 4 cases the length differences of components of four vectors are
within 1 bits since the ratios of maximum length are less than 2. In a word, the
two decomposition algorithms are same for more than 70% of all cases we have
investigated, and in remaining cases the length differences are almost negligible.

38 H. Yi et al.

6 Conclusion

We refined Longa and Sica’s four-dimensional GLV method and analyzed it from
two aspects. First we improve the original twofold Cornacchia-type algorithm
and show that it possesses a better theoretic upper bound of decomposition
coefficients through a neater and shorter proof. Comparison implementations
show our improved version performs better in most cases. Second we present
relations of the two four-dimensional GLV methods in j-invariant 0 case, and
compare our improved twofold Cornacchia-type algorithm with the almost opti-
mal scalar decomposition method using computational implementation. Imple-
mentations show that they have almost the same performance, which provide
further evidence that the improved version is a sufficiently good scalar decom-
position method.

Acknowledgements. We would like to thank Jincheng Zhuang and Chun Guo for
their advice on a first version of this work. And we would like to thank the anonymous
reviewers for their detailed comments and suggestions. This work is supported by
National Natural Science Foundation of China (61379139) and the Strategic Priority
Research Program of the Chinese Academy of Sciences, Grant No. XDA06010701.

A Implementation I

We list up tables in this part showing comparable data of the original twofold
Cornacchia-type algorithm and the improved one. We chose two GLV curves
and considered 3 different primes p for each curve. In the tables, R1 represents
maxo /n1/4 while R2 represents maxm /n1/4.

E1 : y2 = 4x3 − 30x − 28 with ρ2 + 2 = 0

p 255211775190703847597530955573826073969

n 16283262548997589981439669766846726243580995059600230271972911887471787246897

Original twofold Cornacchia outputs:

v1 [7673580244184025940, −1568296852280298804, −7673580244184025939, 1568296852280298804]

v2 [41504494925480727303, −167904017217468081, 41504494925480727308, −167904017217468080]

v3 [7673580244184025939, −1568296852280298804, 7673580244184025940, −1568296852280298804]

v4 [−41504494925480727308, 167904017217468080, 41504494925480727303, −167904017217468081]

R1 3.6741744846002408025240887433477717824

Improved twofold Cornacchia outputs:

v1 [7673580244184025940, −1568296852280298804, −7673580244184025939, 1568296852280298804]

v2 [3136593704560597608, 7673580244184025939, 3136593704560597608, 7673580244184025940]

v3 [7673580244184025939, −1568296852280298804, 7673580244184025940, −1568296852280298804]

v4 [−3136593704560597608, −7673580244184025940, 3136593704560597608, 7673580244184025939]

Refinement of the Four-Dimensional GLV Method on Elliptic Curves 39

(continued)

R2 0.67930167056205598699343592919037215116
p 170141183460469231731687303715884047161
n 7237005577332262213973186563042989258422395530349600540822048403344118204929

Original twofold Cornacchia outputs:
R1 0.97789758543585283902428717528465557293
Improved twofold Cornacchia outputs:
R2 0.97789758543585283902428717528465557293
p 85070591730234615865843651857942020329
n 1809251394333065553493296640760747176355670214223299403819059252318350656377

Original twofold Cornacchia outputs:
R1 2.9993369087131711807648390857675716140
Improved twofold Cornacchia outputs:
R2 0.67147473658255740348192194949887835750

E2: y2 = x3 + αl with ρ2 + ρ + 1 = 0
p 170141183460469231731687303715884022771
n 28948022309329048855892746252171948734834290114750903245851799285340816353501

Original twofold Cornacchia outputs:
v1 [-1, 0, -11594629644441225966, 2528224560705443369]
v2 [-5, -1, -60501372782911573199, -1481731401619452490]
v3 [11594629644441225966, -2528224560705443369, -1, 0]
v4 [60501372782911573199, 1481731401619452490, -5, -1]
R1 4.6383178294172491273770196206212208904
Improved twofold Cornacchia outputs:
v1 [1, 0, -14122854205146669335, -2528224560705443369]
v2 [0, 1, 2528224560705443369, -11594629644441225966]
v3 [14122854205146669335, 2528224560705443369, 1, 0]
v4 [-2528224560705443369, 11594629644441225966, 0, 1]
R2 1.0827239688765246962710751584135402862
p 212676479325586539664609129644855136153
n 45231284858326638837332416019018715703337988259090681324905724939638218907073

Original twofold Cornacchia outputs:
R1 8.5642929985382088374000139113179346885
Improved twofold Cornacchia outputs:
R2 1.0514088258644207810221621225523176688
p 340282366920938463463374607431768216949
n 115792089237316195423570985008687911591087162208992817759013437099099781551273

Original twofold Cornacchia outputs:
R2 4.6127000361231510412490970651777643836
Improved twofold Cornacchia outputs:
R2 1.0866705232352987405800189002480493540

40 H. Yi et al.

B Implementation II

The table in this part shows comparable data of the two 4-dimensional
scalar decomposition methods on j-invariant 0 curves, the Improved twofold
Cornacchia-type algorithm and Algorithm 1 in Sect. 2.2. We considered 15 such
curves. In this table, R1 represents max1 /n1/4 where max1 denotes the maxi-
mum value of the maximum norm of four vectors output by Algorithm 1, while
R2 represents maxm /n1/4.

p1 170141183460469231731687303715884008641

n1 28948022309329048855892746252171943926515682497197240131140526345303172118961

R1 1.1538418893890212054803449849102612298

R2 1.6922054648996739026934892690950051293

p2 170141183460469231731687303715884022771

n2 28948022309329048855892746252171948734834290114750903245851799285340816353501

R1 1.0827239688765246962710751584135402862

R2 1.0827239688765246962710751584135402862

p3 170141183460469231731687303715884023107

n3 28948022309329048855892746252171948849171146919057501863641160451816855376557

R1 1.0790558850578940013923115927424455442

R2 1.0790558850578940013923115927424455442

p4 170141183460469231731687303715884025321

n4 28948022309329048855892746252171949602569744119638481820693392786551599853609

R1 1.0401348050858175786751875288307348229

R2 1.0401348050858175786751875288307348229

p5 170141183460469231731687303715884032929

n5 28948022309329048855892746252171952191369913468171321827487260495155499120273

R1 1.1333269230515924468020204150516792233

R2 1.1333269230515924468020204150516792233

p6 212676479325586539664609129644855136153

n6 45231284858326638837332416019018715703337988259090681324905724939638218907073

R1 1.0514088258644207810221621225523176688

R2 1.0514088258644207810221621225523176688

p7 212676479325586539664609129644855146767

n7 45231284858326638837332416019018720218018417802573857331203271572310044141717

R1 1.0631742993045731231299194386209802906

R2 1.0631742993045731231299194386209802906

p8 212676479325586539664609129644855147811

Refinement of the Four-Dimensional GLV Method on Elliptic Curves 41

(continued)

n8 45231284858326638837332416019018720662601939572979434825619748814731700156669

R1 1.1546548547005925646516200767383098250
R2 1.7408774991513931654681153269611596499
p9 212676479325586539664609129644855149071
n9 45231284858326638837332416019018721198744499491278384489588201195670328020421

R1 1.0522088043252422449082166720537976875
R2 1.0522088043252422449082166720537976875
p10 212676479325586539664609129644855151543
n10 45231284858326638837332416019018722249701332999103696126702882015428082644173

R1 1.0728298189131269695962120071877785004
R2 1.0728298189131269695962120071877785004
p11 340282366920938463463374607431768214633
n11 115792089237316195423570985008687910015705821725059268401541167257952106734113

R1 1.1533461523122356182763890986020527353
R2 1.7784391593844653239311556780499756686
p12 340282366920938463463374607431768216949
n12 115792089237316195423570985008687911591087162208992817759013437099099781551273

R1 1.0866705232352987405800189002480493540
R2 1.0866705232352987405800189002480493540
p13 340282366920938463463374607431768218167
n13 115792089237316195423570985008687912421194511547120121287422632647148162076797

R1 1.0701593715410208710572988188847176510
R2 1.0701593715410208710572988188847176510
p14 340282366920938463463374607431768225079
n14 7115792089237316195423570985008687917124536804592137431048915777342117090497813

R1 1.0993884293669724136434037720100320491
R2 1.0993884293669724136434037720100320491
p15 340282366920938463463374607431768229507
n15 115792089237316195423570985008687920137464469908874606049864275583449996674837

R1 1.1542595730165208435416372700910158905
R2 1.7590231897838901268908695652015694112

References

1. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In:
Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer,
Heidelberg (2006). https://doi.org/10.1007/11693383 22

2. Cohen, H.: A Course in Computational Algebraic Number Theory, vol. 138.
Springer Science & Business Media, Heidelberg (2000). https://doi.org/10.1007/
978-3-662-02945-9

3. Cohen, H., Frey, G., Avanzi, R., Doche, C., Lange, T., Nguyen, K., Vercauteren,
F.: Handbook of Elliptic and Hyperelliptic Curve Cryptography. CRC Press, Boca
Raton (2005)

https://doi.org/10.1007/11693383_22
https://doi.org/10.1007/978-3-662-02945-9
https://doi.org/10.1007/978-3-662-02945-9

42 H. Yi et al.

4. Galbraith, S.D., Lin, X., Scott, M.: Endomorphisms for faster elliptic curve cryp-
tography on a large class of curves. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 518–535. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-01001-9 30

5. Gallant, R.P., Lambert, R.J., Vanstone, S.A.: Faster point multiplication on elliptic
curves with efficient endomorphisms. In: Kilian, J. (ed.) CRYPTO 2001. LNCS,
vol. 2139, pp. 190–200. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-44647-8 11

6. Hess, F., Smart, N.P., Vercauteren, F.: The eta pairing revisited. IEEE Trans. Inf.
Theory 52(10), 4595–4602 (2006)

7. Zhi, H., Longa, P., Maozhi, X.: Implementing the 4-dimensional GLV method on
GLS elliptic curves with j-invariant 0. Des. Codes Crypt. 63(3), 331–343 (2012)

8. Iijima, T., Matsuo, K., Chao, J., Tsujii, S.: Construction of Frobenius maps of
twists elliptic curves and its application to elliptic scalar multiplication. In: Pro-
ceedings of SCIS 2002, pp. 699–702. IEICE, Japan (2002)

9. Janusz, G.J.: Algebraic Number Fields, vol. 7. American Mathematical Society
(1996)

10. Koblitz, N.: CM-curves with good cryptographic properties. In: Feigenbaum, J.
(ed.) CRYPTO 1991. LNCS, vol. 576, pp. 279–287. Springer, Heidelberg (1992).
https://doi.org/10.1007/3-540-46766-1 22

11. Longa, P., Sica, F.: Four-Dimensional Gallant-Lambert-Vanstone scalar multipli-
cation. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp.
718–739. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-
4 43

12. Longa, P., Sica, F.: Four-dimensional Gallant-Lambert-Vanstone scalar multipli-
cation. J. Cryptol. 27(2), 248–283 (2014)

13. Park, Y.-H., Jeong, S., Kim, C.H., Lim, J.: An alternate decomposition of an
integer for faster point multiplication on certain elliptic curves. In: Naccache, D.,
Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 323–334. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-45664-3 23

14. Pereira, G.C.C.F., Simpĺıcio, M.A., Naehrig, M., Barreto, P.S.L.M.: A family of
implementation-friendly BN elliptic curves. J. Syst. Softw. 84(8), 1319–1326 (2011)

15. Schoof, R.: Counting points on elliptic curves over finite fields. J. Théor. Nombres
Bordeaux 7(1), 219–254 (1995)

16. Sica, F., Ciet, M., Quisquater, J.-J.: Analysis of the Gallant-Lambert-Vanstone
method based on efficient endomorphisms: elliptic and hyperelliptic curves. In:
Nyberg, K., Heys, H. (eds.) SAC 2002. LNCS, vol. 2595, pp. 21–36. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-36492-7 3

17. Silverman, J.H.: The Arithmetic of Elliptic Curves, vol. 106. Springer, New York
(2009). https://doi.org/10.1007/978-0-387-09494-6

18. Zhou, Z., Zhi, H., Maozhi, X., Song, W.: Efficient 3-dimensional GLV method for
faster point multiplication on some GLS elliptic curves. Inf. Process. Lett. 110(22),
1003–1006 (2010)

https://doi.org/10.1007/978-3-642-01001-9_30
https://doi.org/10.1007/978-3-642-01001-9_30
https://doi.org/10.1007/3-540-44647-8_11
https://doi.org/10.1007/3-540-44647-8_11
https://doi.org/10.1007/3-540-46766-1_22
https://doi.org/10.1007/978-3-642-34961-4_43
https://doi.org/10.1007/978-3-642-34961-4_43
https://doi.org/10.1007/3-540-45664-3_23
https://doi.org/10.1007/3-540-36492-7_3
https://doi.org/10.1007/978-0-387-09494-6

Key Agreement

Post-Quantum Static-Static Key Agreement
Using Multiple Protocol Instances

Reza Azarderakhsh3, David Jao1,2(B), and Christopher Leonardi1

1 University of Waterloo, Waterloo, ON, Canada
{djao,cfoleona}@uwaterloo.ca

2 evolutionQ, Inc., Waterloo, ON, Canada
david.jao@evolutionq.com

3 Florida Atlantic University, Boca Raton, FL, USA
razarderakhsh@fau.edu

Abstract. Some key agreement protocols leak information about secret
keys if dishonest participants use specialized public keys. We formalize
these protocols and attacks, and present a generic transformation that
can be made to such key agreement protocols to resist such attacks.
Simply put, each party generates k different keys, and two parties per-
form key agreement using all k2 combinations of their individual keys.
We consider this transformation in the context of various post-quantum
key agreement schemes and analyze the attacker’s success probabilities
(which depend on the details of the underlying key agreement proto-
col) to determine the necessary parameter sizes for 128-bit security. Our
transformation increases key sizes by a factor of k and computation
times by k2, which represents a significant cost—but nevertheless still
feasible. Our transformation is particularly well-suited to supersingular
isogeny Diffie-Hellman, in which one can take k = 113 instead of the usual
k = 256 at the 128-bit quantum security level. These results represent
a potential path forward towards solving the open problem of securing
long-term static-static key exchange against quantum adversaries.

Keywords: Post-quantum cryptography · Key agreement · Isogenies
Supersingular isogeny Diffie-Hellman

1 Introduction

In Asiacrypt 2016, Galbraith et al. [13] introduced an active attack against the
supersingular isogeny-based cryptosystem of De Feo, Jao, and Plût [10], which cir-
cumvents all extant (at the time) direct validation techniques. The attack allows
an attacker who interacts with a static key over multiple rounds of key exchange
to efficiently compute the private key corresponding to the static key over mul-
tiple sessions. When communicating, the participants in an SIDH key exchange
each send a supersingular elliptic curve and two points on the curve. By manip-
ulating the values of the two points, the attacker can learn one bit of informa-
tion about the other participant’s private key (depending on whether or not the
c© Springer International Publishing AG 2018
C. Adams and J. Camenisch (Eds.): SAC 2017, LNCS 10719, pp. 45–63, 2018.
https://doi.org/10.1007/978-3-319-72565-9_3

46 R. Azarderakhsh et al.

key exchange operation succeeds using the manipulated points), and then repeat
this process over additional sessions to learn additional private key bits. As stated
in [13], a countermeasure to their attack was already available in the earlier work
of Kirkwood et al. [17], who proposed so-called “indirect key validation” using a
Fujisaki-Okamoto type transform [12] in order to allow the honest participant to
detect whether or not the other party is manipulating points. Unfortunately, this
countermeasure requires the untrusted party to disclose their SIDH private key,
precluding the use of SIDH as a drop-in replacement for Diffie-Hellman or other
protocols that support static-static key exchange using direct key validation.

Although [13] specifically targets SIDH, similar attacks apply against all
other available post-quantum cryptosystems. No currently known post-quantum
scheme achieves secure static-static key exchange without the use of ephemeral
keys or indirect validation techniques that would expose one’s key in the static-
static setting. Major lattice-based key establishment schemes such as “A New
Hope” [1] and “Frodo” [5] achieve only passive security and are intended and
designed to be used with ephemeral keys. Peikert’s Ring-LWE based scheme [19]
is a key encapsulation mechanism that uses a Fujisaki-Okamoto type transform
to achieve IND-CCA security [19, Sect. 5]. In Peikert’s scheme, the encrypt-
ing participant must reveal their random coins to the decrypting participant,
and so one member must use an ephemeral key. The Module-LWE key exchange
Kyber [6, Sect. 5] has at least one party using an ephemeral key, and both parties
using both a static and ephemeral key in the authenticated variant. In Nieder-
reiter hybrid encryption [23, Sect. 3.1], the error vector is revealed and used to
derive the shared symmetric key. Similarly, in McEliece encryption [18], although
the error vector is not explicitly used in decryption, it is trivial to compute once
the message is determined, and therefore one party must use an ephemeral key.

In this work we present a new generic transformation that takes any key
establishment protocol satisfying certain security properties (see Definition 3)
and converts it into a different protocol that is immune to attacks of the form
presented in [13]. In our transformation, each party generates k different key
pairs and publishes for their public key the list of k individual public keys. Dur-
ing key agreement, two parties compute k2 different shared secrets obtained by
performing shared key agreement with each of their keys in all possible combi-
nations, and hashing the shared secrets to derive a final shared key. Under this
scheme, any use of an invalid public key will, with all but negligible probability,
cause at least one of the k2 shared secret computations to fail, which neutralizes
the attack of [13]. Moreover, the number of possible failure outcomes is exponen-
tial in k, making it impossible for an attacker to predict a likely failure outcome
in advance and lie about the value of their final shared key in order to salvage
the attack of [13].

The necessary value of k depends on the details of the original protocol
with which we started. The easiest (and worst) case is where each invalid key
attempt in the original protocol leads to one of two possible (invalid) shared
secret computations on the part of the honest party, depending on the value of
one of the bits in the honest party’s private key. In this case, one simply needs

Post-Quantum Static-Static Key Agreement 47

k ≈ � to achieve �-bit classical security, and k ≈ 2� in the quantum case to
account for Grover search. However, if there are more possible invalid outcomes,
then the attacker’s job is harder, and (as a designer) we can use a smaller value
of k while still achieving �-bit security. For example in Sect. 3.4 we perform a
detailed analysis of SIDH and conclude that a value of k = 113 is sufficient to
achieve 128-bit quantum security. While a key size penalty of a factor of O(�)
and performance penalty of a factor of O(�2) might seem untenable, we point out
that our scheme is far from the worst in this regard compared to some recently
published articles such as [3].

In Sect. 2 we present our security theorem which states that, for SIDH and
other suitable protocols, our transformation is secure in the sense that finding
even a single invalid key resulting in a successful key exchange (in the sense that
the attacker can guess the shared secret computed by the honest party under
this invalid key) is equivalent to breaking the passive security of the original un-
transformed protocol. We recognize and emphasize that our security reduction
falls short of a full proof of active security, as it only shows that attacks of the
type that involve feeding an honest party invalid keys must fail, and not that
arbitrary attacks must fail. Nevertheless, we suggest that our results provide
a useful foundation for building secure static-static key agreement protocols,
and is worthy of further study, especially in the post-quantum setting where
the question of achieving secure static-static key agreement remains an open
problem.

2 Multiple Instances of Key Agreement

We begin with a review of the format for key agreement protocols. The content
of this paper focuses on two participants establishing a shared secret key that
depends on inputs from both members, it does not address authentication.

Definition 1. We let KE be a key establishment function (the requirements of
which will be stated shortly). A key agreement protocol, KA, for Alice and Bob
using KE consists of the phases:

0. Setup: Both members obtain a valid copy of the global parameters, gp.
1. Key Generation: Alice generates a secret key sA and public key pA, likewise

Bob generates sB and pB.
2. Communication: Alice obtains pB and Bob obtains pA.
3. Key Establishment: Alice computes KE(gp, pB , sA) and Bob computes

KE(gp, pA, sB).
4. Verification: If applicable, each participant test the validity of the others

public key. Alice and Bob verify that they have computed the same shared
secret. If they have not, communication is terminated.

For the verification step to succeed, clearly the key establishment function KE has
the requirement that these two outputs are equal when the participants operate
honestly. Additionally, the following values must be computationally infeasible
to compute: a secret key from its corresponding public key, a secret key s from
KE(gp, p, s), and KE(gp, pB , sA) from gp, pB, and pA.

48 R. Azarderakhsh et al.

Note, this protocol is incomplete as it does not state how Alice and Bob
check if they computed the same secret in the verification phase. However this
step of the protocol will become explicit below, and the security of our choice
will be examined in detail. We now formally state and analyze the security of
performing multiple simultaneous instances of key agreement. First is the attack
model that will be used throughout.

Definition 2. Consider the attack model on a key agreement protocol where Bob
may use a specially chosen public key/private key (pB , sB) and additionally act
dishonestly in the verification phase.

Following [13, Sect. 3] we define a two types of oracles that we will consider
Bob having access to once per verification phase:

1. Oracle1(pB) = KE(gp, pB , sA), which corresponds to Bob somehow obtaining
the output of Alice’s key establishment function.

2. Oracle2(pB , h′) returns 1 if h′ = KE(gp, pB , sA), and returns 0 otherwise,
which corresponds to Alice either terminating or continuing a session after
she and Bob performed verification in which Bob used some h′ as his secret.

Suppose Bob chooses pB in such a way that a response from a type (1) ora-
cle, or a response of 1 from a type (2) oracle, will reveal κ(pB) bits of Alice’s
secret key to Bob (where κ(·) returns non-negative integers). Then the output
of Oracle1(pB) follows some discrete probability distribution (as those κ(pB)
bits vary); denote the corresponding probability mass function by χKE(pB , ·).
Likewise for the type (2) oracle, let χKE(pB , h′) denote the probability that
Oracle2(pB , h′) = 1.

In protocols where these attacks apply, a malicious Bob will typically know
the distribution χKE(pB , ·) (loosely speaking, if pB is “close” to the actual public
key derived by sB , then KE(gp, pB , sA) will be “close” to KE(gp, pA, sB)). Then
Bob can use the values of h′ for which χKE(pB , h′) > 0 and have Alice respond as
a type (2) oracle during verification which reveals those κ(pB) bits of her private
key when he guesses h′ correctly. Our goal is to modify key agreements susceptible
to such attacks so that we can bound all probabilities in χKE(·) arbitrarily from
above. We first need to define a specific type of key agreement protocol.

Definition 3. Let KA be a key agreement protocol which uses the key estab-
lishment function KE(gp, ·, ·), for some global parameters gp. If Bob has a
public key/secret key pair (pB , sB) for KA and is given two public keys p1
and p2 (derived from some secret keys s1, s2 which are unknown to Bob),
then KE(gp, pB , s1) = KE(gp, p1, sB) and KE(gp, pB , s2) = KE(gp, p2, sB) by
requirement of KE. A public key which has been altered in any way will be
referred to as modified. A modified public key p∗ that is guaranteed to satisfy:

1. p∗ passes all validation tests Alice performs in the verification phase,
2. κ(p∗) > 0,
3. KE(gp, p∗, s1) = KE(gp, pB , s1), and
4. KE(gp, p∗, s2) = KE(gp, pB , s2),

Post-Quantum Static-Static Key Agreement 49

will be called malicious. If it is computationally infeasible for Bob to modify his
public key to some malicious p∗ then we will say KA is irreducible.

We can now define our key agreement transformation. With the above general
framework for a key agreement in mind, consider the following variant.

Definition 4. Let KE be a key establishment function as above, let k be a pos-
itive integer, and let H be a preimage resistant hash function. Consider the
following key agreement process between Alice and Bob, called k − KA:

0. Setup: Both members obtain a valid copy of the global parameters, gp.
1. Key Generation: Alice generates k secret key/public key pairs (sAi, pAi),

1 ≤ i ≤ k. Likewise Bob generates (sBi, pBi) for 1 ≤ i ≤ k.
2. Communication: Alice initiates communication and sends all k of her pub-

lic keys to Bob. Bob then sends all k of his public keys to Alice.
3. Key Establishment: Alice computes zi,j ← KE(gp, pBi, sAj) for every pair

1 ≤ i, j ≤ k, then computes

h ← H(z1,1, . . . , z1,k, z2,1, . . . , z2,k, . . . , zk,1, . . . , zk,k).

Similarly, Bob computes z′
i,j ← KE(gp, pAj , sBi) for each pair 1 ≤ i, j ≤ k,

and then computes

h′ ← H(z′
1,1, . . . , z

′
1,k, z′

2,1, . . . , z
′
2,k, . . . , z′

k,1, . . . , z
′
k,k).

4. Verification: If applicable, Alice and Bob test the validity of each others
public keys. Alice and Bob verify that h is equal to h′ as follows: Alice sends
H(H(h)) to Bob, and Bob responds with H(h′). Alice checks that H(h) =
H(h′) and Bob checks that H(H(h′)) = H(H(h)). Either party terminates
the session if their verification fails.

When Alice and Bob perform honestly, it is clear that they will share the same
key and verification will pass on both ends. We now present our main theorem
which explains how the parameter k can affect the security of the protocol from
attacks of the type mentioned in Definition 2.

Theorem 1. Let KA be an irreducible key agreement protocol which uses the
key establishment function KE(gp, ·, ·), for some global parameters gp. Let p∗ be
a modified public key with κ(p∗) > 0 that passes all validity tests of KA, and
let ρ denote the largest probability in the image of χKE(p∗, ·). Suppose that in
k-KA one of the k parts to Bob’s public key is p∗. If Bob has access to a type
(1) oracle for k-KA, then the largest probability in χk-KA(pB) is ρk−1.

In k-KA Bob has access to a type (2) oracle (see Definition 2) in the form of
Alice sending H(H(h)) (or H(h) if the roles are reversed) as he can guess at the
preimage and check his guess. However we are assuming that Bob has access to
a type (1) oracle, that is he somehow recovers h from Alice during verification,
which provides the adversary with greater capabilities. We now prove Theorem 1.

50 R. Azarderakhsh et al.

Proof. During the k-KA session, denote by (pA1, sA1), . . . , (pAk, sAk) the keys
generated by Alice and likewise (pB2, sB2), . . . , (pBk, sBk) the keys generated
by Bob, along with pB1 = p∗ (without loss of generality). Bob can potentially
learn about Alice’s secret keys during the verification phase. Alice will compute
z1,j ← KE(gp, p∗, sAj) and zi,j ← KE(gp, pBi, sAj) for every 2 ≤ i ≤ k and
1 ≤ j ≤ k. She then computes

h ← H(z1,1, . . . , z1,k, z2,1, . . . , z2,k, . . . , zk,1, . . . , zk,k).

We are assuming Bob has access to a type (1) oracle, and so he has obtained
h from Alice. As H is preimage resistant, in order to learn anything about
Alice’s secret keys Bob must guess at the preimage of h. Bob can easily compute
zi,j = KE(gp, pAj , sBi) for all 2 ≤ i ≤ k, 1 ≤ j ≤ k. Therefore determining
the preimage relies completely on Bob’s ability to find z1,j = KE(gp, p∗, sAj)
for every 1 ≤ j ≤ k, each of which is an instance of the original KA protocol,
however he is only able to test a guess for the tuple (z1,1, . . . , z1,k) instead of
each one individually. By assumption, KA is irreducible and p∗ is modified with
κ(p∗) > 0 and passes all applicable validity tests. It follows that KE(gp, pAj , sB1)
is not guaranteed to be equal to KE(gp, p∗, sAj) = z1,j for more than one value
of j. Bob can therefore be certain of no more than one value of z1,j before testing
guesses.

Note that if Bob guesses (x1, . . . , xk) = (z1,1, . . . , z1,k), then the probability
of success is unaffected by his previous guesses. Therefore the probability that
each of Bob’s guesses of z1,j is bounded above by ρ, except for possibly the one
value which can be forced to be KE(gp, pAj , sB1) by Bob’s choice of p∗. Since
the type (2) oracle only returns 1 if all k instances are correct, Bob’s maximum
probability of success on any guess is ρk−1. ��

More than the theorem’s result, the proof shows that the probability that a
guess (x1, . . . , xk) is equal to (z1,1, . . . , z1,k) is the product that each individual
xj is equal to z1,j , 1 ≤ j ≤ k, with the exclusion of no more than one j by the
irreducibility assumption.

3 Multiple Instances of SIDH

In this section we will apply the previous theory to the SIDH key agreement
protocol to enable secure use of static keys. We then estimate the expected
amount of work required to break our transformation in this case.

3.1 Preliminaries

For general background on elliptic curves we refer the reader to [21]. Throughout,
we let E be an elliptic curve over a finite field Fq and use [m]P to denote applying
the multiplication-by-m map to the point P (adding P to itself m times) for
any m ∈ Z. We denote the m-torsion subgroup of E, the subgroup of points
P ∈ E(Fq) such that [m]P is the identity on E, by E[m]. If q = pn, then those

Post-Quantum Static-Static Key Agreement 51

elliptic curves for which E[pr] is the trivial subgroup (for all r ∈ N) are called
supersingular elliptic curves. Otherwise E[pr] ∼= Z/pr

Z for all r ∈ N and such
elliptic curves are called ordinary. Supersingular elliptic curves are all defined
over Fp2 .

Let E′ be a second elliptic curve defined over the finite field Fq. An isogeny
φ : E → E′ over Fq is a non-constant rational map defined over Fq, mapping
identity to identity, and is a group homomorphism from E(Fq) to E′(Fq) [21,
III.4]. The elliptic curves E and E′ defined over Fq are then said to be isogenous
over Fq. For each subgroup G of E, there is up to isomorphism a unique isogeny
φ with domain E and kernel G [21, III.4.12], which we will denote E/G. The
degree, deg(φ), is its degree as a rational map which is equal to the size of its
kernel for separable isogenies. If φ has degree �, we will frequently refer to φ as
an �-isogeny. Every isogeny with deg(φ) > 1 can be represented uniquely (up to
isomorphism) as a composition of prime degree isogenies over Fq [9]. For every
isogeny φ there exists a dual isogeny φ̂ : E′ → E of equal degree [21, III.6]
and it follows that being isogenous over Fq is an equivalence relation on the
set of Fq-isomorphism classes of elliptic curves which are defined over Fq. If E
is supersingular and � � p, then E is �-isogenous to � + 1 supersingular elliptic
curves (counting multiplicites).

Associated to each elliptic curve is a j-invariant, and two elliptic curves are
isomorphic over Fq if and only if they have the same j-invariant [21, III.1.4].
Therefore we can refer to the Fq-isomorphism classes of elliptic curves over Fq

by their j-invariant. If the elliptic curve is represented as E : y2 = x3 + ax + b
with a, b ∈ Fq, then

j(E) = 1728
4a3

4a3 + 27b2
∈ Fq.

For any integer � > 0 with p � �, the Weil pairing is a bilinear form that we
denote by

e� : E[�] × E[�] → μ�,

where μ� = {x ∈ Fq|x� = 1}. The following remark connecting the Weil pairing
and isogenies follows immediately from [21, III.8.2].

Remark 1. Let E be an elliptic curve and R,S ∈ E[�] for some positive integer
�. If φ : E → E′ is an isogeny, then

e�(φ(R), φ(S)) = e�(R,S)deg(φ).

3.2 Supersingular Isogeny Diffie-Hellman Key Agreement

We give a simplified overview of the original SIDH key-establishment protocol
[10] in the format of Sect. 2 and the Galbraith et al. attack [13].

Setup: The global parameters consist of a prime number p = 2m3nf ± 1
where f is 1 or a small prime, a supersingular elliptic curve E/Fp2 , and four
points PA, QA, PB , QB ∈ E(Fp2) such that 〈PA, QA〉 = E[2m] and 〈PB , QB〉 =
E[3n].

52 R. Azarderakhsh et al.

Key Generation: The key generation function takes in E, p, PA, QA,
PB , QB and r ∈ {0, 1}. Upon input of r = 0, the key generation function
computes:

α ←R Z/2m
Z,

φA : E → EA = E/〈PA + [α]QA〉,
(RA, SA) ← (φA(PB), φA(QB)).

The key generation function then outputs the private key α and the public
key (EA, RA, SA). Upon input of 1 the key generation function performs the
analogous computations with some β ←R Z/3n

Z, and outputs the private key β
and the public key (EB , RB , SB). Additionally, to prevent the recently discovered
fault attack [22] Alice and Bob each check the order of the points in their own
public key. This is efficient since the order of each point is known.

Communication: Bob initiates conversation and sends his public key,

(EB , RB , SB),

to Alice. Alice then responds with her public key,

(EA, RA, SA).

Key Establishment: Alice computes

EBA = EB/〈RB + [α]SB〉, and S = j(EBA).

Bob computes

EAB = EA/〈RA + [β]SA〉, and S′ = j(EAB).

Verification: Both Alice and Bob perform validation on the public key the
received by the other via the methods proposed by Costello et al. [8, Sect. 9], ver-
ifying that the points have the correct order and are independent. This includes
Alice verifying that 〈RB , SB〉 = EB [2m] and e2m(RB , SB) = e2m(PA, QA)3

n

,
and Bob acting mutatis mutandis. Additionally, Alice and Bob check that they
have computed the same secret key. If any of the tests fail, then the session is
terminated. Otherwise they continue communication with S = S′ as their shared
secret key.

As in Definition 1 this protocol as defined is incomplete since it does not state
how Alice and Bob check if they computed the same secret in the verification
phase. This step is made explicit when we apply our multiple instances model.

In its original form [10], the key generation phase produces two values, say α1

and α2 (not both divisible by 2) as Alice’s private key, her isogeny φA has kernel
〈[α1]PA + [α2]QA〉, and she takes the analogous linear combination during the
key establishment phase. However, through a change of variables one can always
obtain kernel 〈PA + [α]QA〉 or 〈[α]PA + QA〉 since at least one of α1 or α2 is
invertible modulo 2m. Throughout the remainder of this work we assume without

Post-Quantum Static-Static Key Agreement 53

loss of generality that we fall into the former case (as we stated in our definition
of SIDH) because it simplifies our analysis.

The SIDH key-establishment protocol relies on the difficulty of the following
computation problem.

Definition 5. Let E be a supersingular elliptic curve defined over Fp2 , with
p = �m

A �n
Bf ± 1, and let PA, QA ∈ E(Fp2) be such that 〈PA, QA〉 = E[�m

A].
Given an elliptic curve EA defined over Fp2 which is �m

A -isogenous to E, the
Supersingular Isogeny (SSI) problem is to find an isogeny over Fp2 of degree �m

A

from E to EA with a cyclic kernel. Since the isogeny itself can be infeasible to
store, a solution to the SSI problem is an integer α ∈ Z/�m

A Z such that 〈PA +
[α]QA〉 is the kernel of the isogeny.

As mentioned, this Diffie-Hellman type protocol is susceptible to an active
attack if Alice uses the same private key in different sessions [13, Sect. 3]. We
will describe it now. For this discussion we will assume �A = 2 and �B = 3, a
similar attack applies when this is not the case.

Instead of using the public key (EB , φB(PA), φB(QA)) when communicating
with Alice, a dishonest Bob can send

(EB , R, S) = (EB , [θ]φB(PA), [θ](φB(QA) + [2m−1]φB(PA))),

where θ is chosen such that e2m(R,S) = e2m(PA, QA)3
n

. This modified public
key is certain to pass the validation methods in [8, Sect. 9]. The parity of Alice’s
private key α can then be determined as follows. The subgroup computed by
Alice during key establishment is 〈R + [α]S〉. When α is even this subgroup
is equal to 〈φB(PA) + [α]φB(QA)〉, but the subgroup will be different when α
is odd. Therefore, if Bob performs his half of the key establishment honestly
and uses the shared secret key EA/〈φA(PB) + [β]φA(QB)〉 during verification,
then he can determine the parity of α based on Alice terminating the session
or not. This attack can be extended adaptively to learn each bit of α efficiently
and without detection when using the described validation methods. An indirect
validation technique [17] is available which prevents the attack, but at the cost
of Bob revealing his private key so that Alice can verify the message he sends
was computed honestly.

This active attack suggests that static keys can no longer be used for SIDH
key exchange unless the other party is using an ephemeral key. In addition, it
requires that all holders of static keys must double their computational costs,
recomputing the other participant’s message in order to verify the validity of the
message.

3.3 k-SIDH Key Agreement Protocol

We now apply the multiple instances model of Sect. 2 to create a k-KA scheme
based on supersingular isogenies. For the security proof of Theorem 1 to apply
we need to show that SIDH is irreducible as defined in Definition 3. We first
address the case where a malicious Bob scales his public torsion points by some
invertible element.

54 R. Azarderakhsh et al.

Lemma 1. Suppose Alice and Bob participate in an instance of SIDH key-
agreement and that Bob uses the dishonest public key

p∗ = (EB , [μ]φB(PA), [μ]φB(QA))

for some μ coprime to order of PA and QA. Then p∗ is not a malicious key in
the sense of Definition 3.

Proof. Denote the order of Alice’s torsion subgroup by �m
A and Bob’s by �n

B . The
verification phase of SIDH consists of checking that the two torsion points are
independent, have the correct order, satisfy the Weil pairing condition, and that
both parties compute the same shared secret key. The order and independence
conditions follow immediately from the assumption that �A and μ are coprime.
By Remark 1 and the bilinearity of the Weil pairing,

e�mA
([μ]φB(PA), [μ]φB(QA)) = e�mA

(PA, QA)μ2�nB .

Therefore p∗ passes the Weil pairing test if and only if μ2 ≡ 1 mod �m
A . Lastly,

if we denote Alice’s private key by α, then

〈[μ]φB(PA) + [α] ([μ]φB(QA))〉 = 〈[μ] (φB(PA) + [α]φB(QA))〉
= 〈φB(PA) + [α]φB(QA)〉,

where the second equality follows from μ being coprime to �A.
This shows that if Bob modifies his public key in this way, then Alice will

compute the same shared secret independent of her private key. Therefore no
more information about her private key can be leaked by Alice accepting (or
rejecting if μ2 ≡ 1) than is already leaked when Bob performs honestly. Hence,
κ(p∗) = 0 and this modification does not result in a malicious public key. ��

It is worth noting that if Bob scales his two torsion points by different scalers,
say μ1 and μ2, then they will no longer generate the same subgroup under
Alice’s private key by the independence of φB(PA) and φB(QA), again resulting
in a public key which is not malicious. Now we can prove that isogenies lend
themselves to the transform of Sect. 2.

Theorem 2. Under the assumption that the SSI problem is intractable, it is
computationally infeasible for a malicious Bob with non-negligible probability to
modify his public key (EB , φB(PA), φB(QA)) to some p∗ = (EB , R, S) which is
malicious for SIDH.

Proof. Let p = �m
A �n

Bf ± 1 be prime, let E be an elliptic curve defined over Fp2 ,
and let PA, QA, PB and QB be points on E(Fp2) such that 〈PA, QA〉 = E[�m

A]
and 〈PB , QB〉 = E[�n

B]. Alice has some public key/secret key pair

φA1 : E → EA1 = E/〈PA + [α1]QA〉, α1 ∈ Z/�m
A Z.

Bob knows the global parameters p, PA, QA, PB and QB , and receives the public
key (EA1, φA1(PB), φA1(QB)) from Alice. By the assumption of intractability

Post-Quantum Static-Static Key Agreement 55

of the SSI problem, it should be infeasible for Bob to compute α1. The goal of
our proof is to show that if Bob can violate the definition of irreducibility by
computing p∗ in the statement of the theorem, then he can compute α1 efficiently
which violates the SSI assumption.

Bob uses the SIDH key generation algorithm twice, to generate some

α2 ∈ Z/�m
A Z, φA2 : E → EA2 = E/〈PA + [α2]QA〉, and

β ∈ Z/�n
BZ, φB : E → EB = E/〈PB + [β]QB〉.

Suppose for contradiction that Bob is able to modify (EB , φB(PA), φB(QA))
to some malicious public key (EB , R, S), violating irreducibility as stated in
Definition 3. That is:

• (EB , R, S) passes all validation tests,
• j(EB/〈R + [α1]S〉) = j(EB/〈φB(PA) + [α1]φB(QA)〉),
• j(EB/〈R + [α2]S〉) = j(EB/〈φB(PA) + [α2]φB(QA)〉), and
• κ(EB , R, S) > 0.

Since we cannot fully characterize public keys with κ(p∗) > 0 in this setting,
we instead use the condition that (R,S) = ([μ]φB(PA), [μ]φB(QA)) for some
μ coprime to �A. By Lemma 1 these public keys satisfy κ(p∗) = 0, so we are
assuming a potentially weaker condition than κ(p∗) > 0 by excluding only public
keys of this type.

To simplify notation for the remainder of this proof we set � = �A. The
subgroups 〈R + [α1]S〉 and 〈R + [α2]S〉 are guaranteed to be kernels of isogenies
from E to elliptic curves isomorphic to EA1 and EA2 respectively by the j-
invariant requirements. For the first subgroup one of two cases is true:

i. The isogeny with kernel 〈R + [α1]S〉 is isomorphic to the isogeny with kernel
〈φB(PA) + [α1]φB(QA)〉,

ii. The isogeny with kernel 〈R + [α1]S〉 is not isomorphic to the isogeny with
kernel 〈φB(PA) + [α1]φB(QA)〉.

Likewise, there are two cases for α2 and the isogeny to EA2. For the remainder
of the proof we assume that both isogenies fall into case (i) as our reduction only
applies in this situation. This point will be examined in greater detail in the run-
time analysis at the end of the proof. This distinction of cases must be made as it
is possible for the two isogenies to be non-isomorphic and yet the torsion points
R and S (or some scaling of them) still satisfy all the requirements of the veri-
fication phase, including the Weil pairing test that e�m(R,S) = e�m(PA, QA)�nB

(see [13, Sect. 3.2] for details).
Suppose the isogeny with kernel 〈φB(PA)+[αi]φB(QA)〉 is isomorphic to that

of 〈R + [αi]S〉 for both i ∈ {1, 2}. Then the two subgroups themselves are equal
for each i. It follows that their generators must then differ by a scalar multiple
coprime to the order of the subgroup. We can then write

[λi](φB(PA) + [αi]φB(QA)) = R + [αi]S, (1)

56 R. Azarderakhsh et al.

for some λi ∈ Z/�m
Z coprime to �m (i.e. coprime with �), for both i ∈ {1, 2}.

Since � is a small prime, the elliptic curve discrete log problem is tractable on
EB [�m] using Pohlig-Hellman [20] and the Weil or Tate pairing (see [2, Sect. 3.2]
and optimization [7, Sect. 4-5]). Solving two instances of the two-dimensional
ECDLP provides a, b, c, d ∈ Z/�m

Z such that

R = [a]φB(PA) + [b]φB(QA), and S = [c]φB(PA) + [d]φB(QA). (2)

Substituting these decompositions into (1) and rearranging we obtain

[λ1](φB(PA) + [α1]φB(QA)) = [a + α1c]φB(PA) + [b + α1d]φB(QA).

The points PA and QA are independent—there does not exist t ∈ Z/�m
Z such

that PA = [t]QA. Therefore φB(PA) and φB(QA) are independent as well. Com-
paring coefficients of φB(PA) implies that λ1 ≡ a + α1c mod �m. Comparing
coefficients of φB(QA) then gives the congruence

b + α1d ≡ λ1α1 ≡ (a + α1c)α1 mod �m. (3)

Similar analysis of the subgroups associated with α2 result in the congruence

b + α2d ≡ (a + α2c)α2 mod �m. (4)

Rearranging (3) and (4) gives

cα2
1 + (a − d)α1 − b ≡ 0 mod �m, and cα2

2 + (a − d)α2 − b ≡ 0 mod �m.

Therefore α1 and α2 are solutions to the quadratic congruence relation

cx2 + (a − d)x − b ≡ 0 mod �m. (5)

Bob has the ability to construct this polynomial. One approach to solving
this equation comes from the assumption that α1 and α2 are simple roots modulo
� (this is the same assumption required in Hensel’s lemma) as it implies α1 −α2

is invertible modulo �m. By subtracting (4) from (3) and multiplying the result
by (α1 − α2)−1 mod �m we obtain

d ≡ a + c(α1 + α2) mod �m, (6)

and it follows that
b ≡ −cα1α2 mod �m. (7)

Therefore, if �r | c, then �r | a−d and �r | b too. If c ≡ 0 mod �m, then b ≡ 0 and
a ≡ d mod �m, which contradicts the assumption that (EB , R, S) is malicious
by Lemma 1.

From the malicious public key (EB , R, S), Bob can now efficiently solve for
α1 and α2 using the following process:

1. Compute the discrete log coefficients a, b, c, d ∈ Z/�m
Z as above.

2. Write c = �rg for some g indivisible by � and 0 ≤ r < m.

Post-Quantum Static-Static Key Agreement 57

3. Let K = g−1 a − d

�r
mod �m−r and L = −g−1 b

�r
mod �m−r, where the inverse

of g is computed modulo �m−r.
4. α1 and α2 are roots of the quadratic x2 +Kx+L ≡ 0 mod �m−r by (5). Solve

for all roots of this polynomial modulo �m−r.
5. For each root, u, extend it to an integer mod �m, say u′, and test if it is

equal to α1. This test can be performed by computing the image curve of
the isogeny with 〈PA + [u′]QA〉 ⊂ E(Fp2) as its kernel and comparing its
j-invariant with j(EA1) (the image curve of the isogeny with 〈PA + [α1]QA〉
as its kernel).

What remains is to analyze the computational cost of this reduction and the
probability of success. For this analysis, we need to know the likelihood of our
assumptions, the probable size of the value r, and the number of roots of the
quadratic congruence.

The first assumption is that the subgroup associated to the points R and S
is the same as the isogeny kernel in the SIDH instance. The existence of multiple
isogenies of degree �m between two fixed supersingular elliptic curves is possible,
but unlikely under the Galbraith et al. heuristic of [13, Sect. 4.2]. For instance
there can exist multiple isogenies of degree � from one j-invariant, j0, to another
and this occurs exactly when the classical modular polynomial Φ�(j0, x) has
repeated roots in x. The set of possible roots grows with p and yet its degree in
x is fixed by � + 1, so this situation unlikely for large p.

Next we examine the value r when α1 ≡ α2 mod �. When � = 2, we have
that r ≥ 3 whenever m > 3. From the distribution of multiples of � in Z/2m

Z,
we have r = j for 3 ≤ j < m with probability 1

2j−2 , and the probability that
r = m (i.e. c = 0) is 1

2m−3 . When � is odd, only r ≥ 1 is guaranteed. For Z/�m
Z

with odd �, we have r = j for 1 ≤ j < m with probability 1
�j , and the probability

that r = m is 1
2m−1 . Hence, it is most likely that r = 3 or 4 when � = 2, and

r = 1 or 2 when � is an odd prime.
Lastly, we look at the number of solutions to (5). If α1 ≡ α2 mod � and � � c,

then there are exactly two solutions modulo �m, namely α1 and α2. Letting r
be the �-adic valuation of c as above, the number of solutions to this quadratic
congruence is 2�r, namely

αi + z�m−r−1, 0 ≤ z ≤ �r − 1, i ∈ {1, 2}.

Even though the number of roots to check grows exponentially in r, the prob-
ability of each successive value of r occurring decreases exponentially (see the
previous paragraph).

When α2 is chosen to be congruent to α1 modulo �, b and d are not necessarily
of the form (6) and (7). This makes solving for α1 much harder, and in some
cases, impossible. However, this only happens with probability 1

� . By the previous
paragraph we see that if Bob counts the number of roots of (5) modulo �m−r

before solving for α1, then verifying there are less than �r+1 of them can serve
to test for when α1 ≡ α2 mod �. If the test fails then Bob can reuse the key
generation algorithm until the private key provided is incongruent to the initial

58 R. Azarderakhsh et al.

α2, and then repeat the process above (he never has to run this process more
than twice).

We conclude that if Bob can violate this irreducibility condition, then he can
efficiently solve the SSI problem. ��

Combining Theorem 2 with the fact that there are currently no know attacks
on SIDH that involve modified elliptic curves (as opposed to modified torsion
points) we conclude that SIDH is irreducible for all known modified public keys.
We now give an explicit statement of the k-SIDH protocol.

Setup: A preimage resistant hash function H, a prime number p = 2m3nf ±
1, a supersingular elliptic curve E/Fp2 , and four points PA, QA, PB , QB ∈ E(Fp2)
such that 〈PA, QA〉 = E[2m] and 〈PB , QB〉 = E[3n].

Key Generation: Upon input of 0, the key generation function computes,
for 1 ≤ i ≤ k:

αi ←R Z/2m
Z,

φAi : E → EAi = E/〈PA + [αi]QA〉,
(Ri, Si) ← (φAi(PB), φAi(QB)).

The key generation function then outputs the private key (α1, . . . , αk) and the
public key (EA1, R1, S1), . . . , (EAk, Rk, Sk). The recipient checks that the order
of each Ri and Si is 3n to ensure no faults were induced.

Upon input of 1 the key generation function computes, for 1 ≤ j ≤ k:

βj ←R Z/3n
Z,

φBj : E → EBi = E/〈PB + [βj]QB〉,
(Uj , Vj) ← (φBj(PA), φBj(QA)).

The key generation function then outputs the private key (β1, . . . , βk) and the
public key (EB1 , U1, V1), . . . , (EBk

, Uk, Vk). The recipient checks that the order
of each Uj and Vj is 2m to ensure no faults were induced.

Communication: Bob initiates conversation and sends his public key to
Alice. Alice responds with her public key.

Key Establishment: For each 1 ≤ i, j ≤ k, Alice computes

zi,j = j(EBj/〈Uj + [αi]Vj〉),
and then she calculates the hash

h = H(z1,1, . . . , z1,k, z2,1, . . . , z2,k, . . . , zk,1, . . . , zk,k).

Similarly, for each 1 ≤ i, j ≤ k, Bob computes

z′
i,j = j(EAi/〈Ri + [βj]Si〉),

and calculates the hash

h′ = H(z′
1,1, . . . , z

′
1,k, z′

2,1, . . . , z
′
2,k, . . . , z′

k,1, . . . , z
′
k,k).

Post-Quantum Static-Static Key Agreement 59

Verification: Alice verifies that for each 1 ≤ j ≤ k the pair Uj and Vj

are independent points of order 2m on the curve EBj [8, Sect. 9]. Additionally
Alice verifies that e2m(Uj , Vj) = e2m(PA, QA)3

n

. Likewise Bob verifies that each
pair Ri and Si are independent points of order 3n on the curve EAi and that
e3n(Ri, Si) = e3n(PB , QB)2

m

. Alice sends H(H(h)) to Bob who verifies it is equal
to H(H(h′)). Bob sends H(h′) to Alice who verifies it is equal to H(h). If they
have different secret keys, or any of the public key pairs fail the verification, then
the session is terminated. Otherwise they continue communication with h = h′

as their shared secret key.

3.4 Security Analysis and Key Size

Before the security of k-SIDH can be properly analyzed we need the following
simple result. As before, let � = �A denote the prime defining Alice’s torsion
subgroup. Recall that an �m-degree isogeny can be expressed uniquely as a com-
position of m �-degree isogenies. The following result tells us that, given the
shared j-invariant and Alice’s public key, Bob is unable to determine the final
�-isogeny in the composition of Alice’s isogeny (under the SSI assumption).

Theorem 3. Suppose Alice and Bob perform the standard SIDH key-agreement
protocol as described Sect. 3.2. In the key establishment phase Alice computes a
secret isogeny φA : EB → EBA of degree �m (� ∈ {2, 3}) as the composition of
m isogenies of degree �, say φA = φm ◦ · · · ◦ φ1. Let φ′ = φm−1 ◦ · · · ◦ φ1 be
the isogeny whose image curve is � isogenous to EAB, say φ′ : EB → E′. Bob
also knows the curve EBA by performing his half of the key establishment. If
Bob has access to an efficient, deterministic algorithm which produces E′ from
E,EA, EB , EBA and �m, then Bob can efficiently solve the SSI problem.

Proof. The elliptic curve E′ is � isogenous to EBA. Given E′ Bob can then
determine φm as there are only � + 1 choices which he can test exhaustively.
Repeated iterations of the procedure, replacing the target curve adaptively and
decreasing the exponent of the degree iteratively by 1, will return each �-isogeny
in the composition. This procedure will reveal φA, breaking SSI. ��

The security of this scheme is based on the amount of work Bob must do in the
proof of Theorem 1 to compute the preimage of h. There are two benchmarks
that we could use when choosing k: the expected number of hashes Bob will
compute before correctly hashing the preimage, or the number of hashes before
the solution is found with probability 1

2 . The former is asymptotically greater in
our case, and so it is irrelevant when setting a security level.

The runtime depends on the order Bob guesses at solutions, so we always
assume he does so optimally. We index Bob’s guesses by i, and denote the asso-
ciated probability of success by Pi. The proof of Theorem 1 shows that for Bob
to determine the preimage of h he must correctly guess at least k−1 independent
samples from some distribution. We now determine that distribution for SIDH.

In the attack of Galbraith et al. [13], the public key with the greatest ratio
of revealed bits of Alice’s private key to probability of success that Bob could

60 R. Azarderakhsh et al.

use is p∗ = (EB , φB(PA), φB(QA) + [�m−1]φB(PA)). Bob knows the shared key
that Alice computes were he to participate honestly,

j0 = j(EA/〈φA(PB) + [β]φB(QA)〉),

and when using this dishonest p∗ he knows Alice will compute either j0 or some
other j-invariant which is �2-isogenous to j0. With overwhelming probability
there are �(� + 1) distinct isomorphism families which are �2-isogenous to any
isomorphism family (not represented by the j-invariant 0 or 1728). Combining
this fact with the Theorem 3 shows that k-SIDH exhibits the following proba-
bility distribution for each of Bob’s k guesses:

{1
2
,

1
2�(� + 1)

, . . . ,
1

2�(� + 1)
},

where
1

2�(� + 1)
occurs �(� + 1) times. For example, if � = 2, then the honestly

computed j-invariant, j0, occurs with probability 1
2 , and there are six j-invariants

which are 4-isogenous to j0 each occurring with probability 1
12 .

The guess that maximizes Bob’s probability of success is j0 for each of the

k − 1 unknown values, resulting in P1 =
1

2k−1
. The next most likely outcomes

are those with j0 for k−2 of the values and one of the other �(�+1) j-invariants,
each occurring with probability

Pi =
1

2k−2 · (2�(� + 1))
for 2 ≤ i ≤ (k − 1)(�(� + 1)) + 1.

From this we calculate r, the number of hashes that Bob computes before his

probability of success is 1
2 by solving

1
2

=
r∑

i=1

Pi.

The first step is to collect all guesses with the same probability of success,
that is, those which select the same number of j0. To achieve this we change from
the variable r, the total number of guesses Bob makes, to t which represents the
quantity of non-j0 elements in Bob’s choice. They are related by

r =
t∑

i=0

(
k − 1

i

)

(�(� + 1))i

as each term in the summand is the number of possibilities with i non-j0 ele-
ments. Therefore,

r∑

i=1

Pi =
t∑

i=0

1
2k−1−i(2�(� + 1))i

(
k − 1

i

)

(�(� + 1))i =
1

2k−1

t∑

i=0

(
k − 1

i

)

,

and this final sum equals 1
2 exactly when t = k−2

2 (if k is odd then the sum
needs one half times the

(k−1
k−1
2

)
term) by the symmetry of the binomial coefficient.

Post-Quantum Static-Static Key Agreement 61

This implies that the number of hashes required by Bob to learn the first bit of
each of Alice’s k secret keys is

r =

k−2
2∑

i=0

(
k − 1

i

)

(�(� + 1))i. (8)

If � = 2, then k = 60 gives r = 2130; for � = 3, 2131 hashes is achieved by k = 50.
When considering security against a quantum enabled adversary, one would

expect a quadratic speedup because the runtime of Grover’s algorithm [14] on a
non-uniform distribution is still O(

√
N) when searching for one item, where N

is the size of the domain [4]. The domain for k-SIDH when Bob uses a malicious
public key is all possible preimages to Alice’s hash. Considering an initial state of
each possible preimage (where each preimage is a collection of qubits representing
the associated j-invariants) all with amplitude 1√

(2(�(�+1))k−1)
, and searching for

an element of the marked set (the collection of qubits corresponding to the
correct preimage) gives a quantum algorithm with runtime π

4 2
k−1
2 (�(� + 1))

k−1
4

and requires at least (2(�(� + 1))k−1 qubits. We then calculate the minimal k
such that Bob is required to compute 2128 quantum operations before successfully
calculating the preimage of Alice’s hash, which would reveal k bits of her secret
key. Setting k = 113 is required when � = 2, and k = 94 suffices when � = 3.

These choices of k are based on the currently best known attack that satisfy
Definition 2. There is the possibility that other attacks will be discovered such
as modifying the elliptic curve in a public key instead of the torsion points, or
perhaps stronger attacks using modified torsion points. However, if such attacks
are discovered, the generality of the Theorem 1 shows that only a recalculation
of k is needed to adapt as these qualify as malicious public key attacks.

To achieve a specified level of security for k-SIDH each individual SIDH
instance must also meet that security level. Using the compression techniques
of [7, Sect. 7], at the 128-bit quantum security (or 192-bit classical security) level
a k-SIDH pubic key requires 37 kb when � = 2 and 31 kb when � = 3.

3.5 Other Applicable Post-Quantum Schemes and Future Work

The proposed k-instances model applies to key agreement schemes in which the
resulting shared secret is dependent on input from both parties (not encapsula-
tion methods) where the use of static keys may reveal private keys to a malicious
participant. We have seen that this applies to SIDH [13], but it may also apply to
lattice based schemes. The ring-LWE key agreement protocol by Ding et al. [16]
satisfies this criterion as it is susceptible to such an active attack [11]. However,
one would have to show that this protocol is irreducible (Definition 3).

The computational costs of k-SIDH are naively k2 that of standard SIDH,
in which parties simply perform k2 independent SIDH operations. Economies
of scale could be realized in an optimized implementation using (for example)
SIMD, since the key establishments can be organized into k groups of k such
that all SIDH operations in a group have one half in common.

62 R. Azarderakhsh et al.

k-SIDH only addresses the problem of dishonest users who manipulate ellip-
tic curve points. It does not address the case where the curves themselves are
manipulated. It may be worth examining whether approaches like k-SIDH can
help protect against attacks involving manipulated curves. Another interesting
problem comes from the heuristic assumption from [13, Sect. 4.2] which was used
in the proof of Theorem 2. Although this assumption seems plausible in light of
the Ramanujan property of the supersingular �-isogeny graph, a proof would be
preferable, perhaps under a standard assumption such as GRH. Similar results
have been achieved in the ordinary case [15].

4 Conclusion

We presented a new key agreement model which performs k2 simultaneous key
agreements and defends against a specific class of active adversaries when cer-
tain assumptions about the underlying key agreement protocol are satisfied. We
showed that supersingular isogeny key agreement satisfies these assumptions
provided its computational problem is intractable. Using this new model, we
determined that performing 60 · 50 = 3000 simultaneous instances of SIDH will
protect both participants from leaking any information of their secret key against
these active adversaries with classical capabilities, and 113 · 94 = 10622 suffices
for protection against quantum adversaries.

Acknowledgments. The authors would like to thank the reviewers for their com-
ments. This work is supported in parts by the grants NIST-60NANB17D184, NIST-
60NANB16D246, and NSF CNS-1661557. This work is also partially supported by
NSERC, CryptoWorks21, and Public Works and Government Services Canada.

References

1. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange—
a new hope. In: 25th USENIX Security Symposium (USENIX Security 16), pp.
327–343. USENIX Association, Austin (2016)

2. Azarderakhsh, R., Jao, D., Kalach, K., Koziel, B., Leonardi, C.: Key compression
for isogeny-based cryptosystems. In: Proceedings of the 3rd ACM International
Workshop on ASIA Public-Key Cryptography, AsiaPKC 2016, pp. 1–10. ACM
(2016)

3. Bernstein, D.J., Heninger, N., Lou, P., Valenta, L.: Post-quantum RSA. Cryptology
ePrint Archive, Report 2017/351 (2017), http://eprint.iacr.org/2017/351

4. Biron, D., Biham, O., Biham, E., Grassl, M., Lidar, D.A.: Generalized grover search
algorithm for arbitrary initial amplitude distribution. In: 1st NASA Conference on
Quantum Computing and Quantum Communications (1998)

5. Bos, J., Costello, C., Ducas, L., Mironov, I., Naehrig, M., Nikolaenko, V.,
Raghunathan, A., Stebila, D.: Frodo: take off the ring! practical, quantum-secure
key exchange from LWE. In: Proceedings of 23rd ACM Conference on Computer
and Communications Security (CCS 2016). ACM, October 2016

http://eprint.iacr.org/2017/351

Post-Quantum Static-Static Key Agreement 63

6. Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J.M.,
Schwabe, P., Stehlé, D.: CRYSTALS - kyber: a CCA-secure module-lattice-based
KEM. Cryptology ePrint Archive, Report 2017/634 (2017)

7. Costello, C., Jao, D., Longa, P., Naehrig, M., Renes, J., Urbanik, D.: Efficient
compression of SIDH public keys. Cryptology ePrint Archive, Report 2016/963
(2016)

8. Costello, C., Longa, P., Naehrig, M.: Efficient algorithms for supersingular isogeny
Diffie-Hellman. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol.
9814, pp. 572–601. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53018-4 21

9. Couveignes, J.-M.: Hard homogenous spaces (2006), http://eprint.iacr.org/2006/
291/

10. De Feo, L., Jao, D., Plût, J.: Towards quantum-resistant cryptosystems from super-
singular elliptic curve isogenies. J. Math. Cryptology 8(3), 209–247 (2014)

11. Fluhrer, S.: Cryptanalysis of ring-LWE based key exchange with key share reuse.
Cryptology ePrint Archive, Report 2016/085 (2016), http://eprint.iacr.org/2016/
085

12. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1 34

13. Galbraith, S.D., Petit, C., Shani, B., Ti, Y.B.: On the security of supersingu-
lar isogeny cryptosystems. Cryptology ePrint Archive, Report 2016/859 (2016),
http://eprint.iacr.org/2016/859

14. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of ACM STOC (1996)

15. Jao, D., Miller, S.D., Venkatesan, R.: Expander graphs based on GRH with an
application to elliptic curve cryptography. J. Number Theory 129(6), 1491–1504
(2009)

16. Lin, X., Ding, J., Xie, X.: A simple provably secure key exchange scheme based
on the learning with errors problem. Cryptology ePrint Archive, Report 2012/688
(2012), http://eprint.iacr.org/2012/688

17. Kirkwood, D., Lackey, B.C., McVey, J., Motley, M., Solinas, J.A., Tuller, D.: Fail-
ure is not an option: standardization issues for post-quantum key agreement. In:
Workshop on Cybersecurity in a Post-Quantum World (2015)

18. Misoczki, R., Tillich, J.-P., Sendrier, N., Barreto, P.S.L.M.: MDPC–McEliece: new
McEliece variants from moderate density parity-check codes. In: IEEE Interna-
tional Symposium on Information Theory - ISIT 2013, pp. 2069–2073 (2013)

19. Peikert, C.: Lattice cryptography for the internet. In: Mosca, M. (ed.) PQCrypto
2014. LNCS, vol. 8772, pp. 197–219. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-11659-4 12

20. Pohlig, S., Hellman, M.: An improved algorithm for computing logarithms over
GF(p) and its cryptographic significance. IEEE Trans. Inf. Theory 24, 106–110
(1978)

21. Silverman, J.: The Arithmetic of Elliptic Curves. Graduate Texts in Mathematics,
vol. 106, 2nd edn. Springer, New York (2009). https://doi.org/10.1007/978-0-387-
09494-6

22. Ti, Y.B.: Fault attack on supersingular isogeny cryptosystems. Cryptology ePrint
Archive, Report 2017/379 (2017), http://eprint.iacr.org/2017/379

23. von Maurich, I., Heberle, L., Güneysu, T.: IND-CCA secure hybrid encryption from
QC-MDPC niederreiter. In: Takagi, T. (ed.) PQCrypto 2016. LNCS, vol. 9606, pp.
1–17. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29360-8 1

https://doi.org/10.1007/978-3-662-53018-4_21
https://doi.org/10.1007/978-3-662-53018-4_21
http://eprint.iacr.org/2006/291/
http://eprint.iacr.org/2006/291/
http://eprint.iacr.org/2016/085
http://eprint.iacr.org/2016/085
https://doi.org/10.1007/3-540-48405-1_34
http://eprint.iacr.org/2016/859
http://eprint.iacr.org/2012/688
https://doi.org/10.1007/978-3-319-11659-4_12
https://doi.org/10.1007/978-3-319-11659-4_12
https://doi.org/10.1007/978-0-387-09494-6
https://doi.org/10.1007/978-0-387-09494-6
http://eprint.iacr.org/2017/379
https://doi.org/10.1007/978-3-319-29360-8_1

Side-Channel Attacks on Quantum-Resistant
Supersingular Isogeny Diffie-Hellman

Brian Koziel1(B), Reza Azarderakhsh2, and David Jao3

1 Texas Instruments, Dallas, USA
kozielbrian@gmail.com

2 CEECS Department and I-SENSE FAU, Boca Raton, USA
razarderakhsh@fau.edu

3 C&O Department, University of Waterloo, Waterloo, Canada
djao@uwaterloo.ca

Abstract. In this paper, we present three side-channel attacks on
the quantum-resistant supersingular isogeny Diffie-Hellman (SIDH) key
exchange protocol. These refined power analysis attacks target the repre-
sentation of a zero value in a physical implementation of SIDH to extract
bits of the secret key. To understand the behavior of these zero-attacks
on SIDH, we investigate the representation of zero in the context of
quadratic extension fields and isogeny arithmetic. We then present three
different refined power analysis attacks on SIDH. Our first and second
attacks target the Jao, De Feo, and Plût three-point Montgomery lad-
der by utilizing a partial-zero attack and zero-value attack, respectively.
Our third attack proposes a method to break the large-degree isogeny by
utilizing zero-values in the context of isogenies. The goal of this paper is
to illustrate additional security concerns for an SIDH static-key user.

Keywords: Side-channel attacks · Post-quantum cryptography
Isogeny-based cryptosystems · Elliptic curve cryptography

1 Introduction

Much of today’s digital infrastructure relies on the security of key public-key
cryptosystems, namely RSA and elliptic curve cryptography (ECC). The security
assumption in both of these cryptosystems is effectively broken by a quantum
computer using Shor’s algorithm [1]. Thus, to counteract any potential crises
with the emergence of a quantum computer, considerable research has gone
into post-quantum cryptography (PQC), which studies cryptosystems that are
infeasible to break in the presence of both quantum and classical computers.

The supersingular isogeny Diffie-Hellman (SIDH) key exchange protocol has
been earning a large amount of attention since it resembles the elliptic curve
Diffie-Hellman key exchange protocol, provides forward secrecy, and has much
smaller key sizes in comparison to other quantum-resistant schemes. SIDH is
slow compared to its competitors but the smaller key sizes allow for an effi-
cient transmission of information over a public channel. This scheme’s security
c© Springer International Publishing AG 2018
C. Adams and J. Camenisch (Eds.): SAC 2017, LNCS 10719, pp. 64–81, 2018.
https://doi.org/10.1007/978-3-319-72565-9_4

Side-Channel Attacks on Quantum-Resistant SIDH 65

assumption is based on the difficulty to compute supersingular isogenies between
supersingular elliptic curves. This is believed to be difficult for both classical and
quantum computers. Compared to other quantum-resistant schemes, SIDH is the
newest. Originally introduced by David Jao and Luca De Feo in 2011 [2], the
theory and computational efficiency of SIDH has grown: undeniable signatures
[3], digital signatures [4,5], key compression [6,7], projective isogeny formulas
[8], and efficient software and hardware implementations [8–13].

Recently, there were two proposed fault attacks accepted at PQCrypto 2017
[14,15]. Otherwise, the literature is relatively sparse on side-channel attacks.
Side-channel analysis (SCA) is a method by which an attacker circumvents the
security assumption by analyzing a physical implementation of the cryptosys-
tem. Unfortunately, as the cryptosystem performs its computations, it will leak
certain pieces of information that can reveal security-critical underlying opera-
tions. For other cryptosystems, considerable investigation has gone on in regards
to the timing, power, and electromagnetic residues that are revealed. Fault-based
attacks are also interesting in that they try to make the cryptosystem fail by
creating an invalid condition within the system.

Here, we analyze the applications of refined power analysis attacks on SIDH,
which is also applicable to other isogeny-based cryptosystems. Our contributions
can be summarized as follows:

– We introduce the concept of zero-value attacks in regards to quadratic finite
fields.

– We analyze conditions for zero-values within the highly optimized Mont-
gomery curve point and isogeny arithmetic.

– We propose partial-zero and zero-point attacks on the three-point Mont-
gomery ladder.

– We propose the large-degree isogeny analogue of the zero-value attack in the
context of SIDH.

2 Preliminaries

This serves as a quick introduction to elliptic curves, isogenies, and side-channel
attacks. We point the reader to [16] for a complete look at elliptic curve theory
and [17] for a summary of side-channel attacks on elliptic curve cryptography.

2.1 Elliptic Curve Theory

For our case study of elliptic curve formulas, we primarily focus on Montgomery
curves [18]. Montgomery curves have been the primary target of SIDH imple-
mentations because they feature fast point arithmetic and isogeny operations. A
Montgomery [18] curve defined over Fq can be written as:

E/Fq : by2 = x3 + ax2 + x,

where a, b ∈ Fq and b(a2 − 4) �= 0. A Montgomery curve is composed of all
points (x, y) that satisfy the above equation as well as the point at infinity. It can

66 B. Koziel et al.

be shown that there is a one-to-one mapping from short Weierstrass curves to
a Montgomery curve, so long as the short Weierstrass curve has points of order
4. As demonstrated in [18], this form of the curve allows for extremely efficient
differential point additions by utilizing the Montgomery curve’s Kummer line
(X : Z). By dropping the Y coordinate, this also results in extremely fast isogeny
arithmetic, demonstrated in [8,9], making it currently the most efficient choice
for SIDH. In addition to Montgomery curves, we also discuss applications to
SIDH with short Weierstrass and Edwards [19] curves.

2.2 Isogeny Theory

Isogeny theory analyzes the relationship among various elliptic curves. The j-
invariant of an elliptic curve characterizes various properties of a curve and places
it into a specific elliptic curve isomorphism class. Over a specific finite field, we
can move from one elliptic curve to another by utilizing a rational map over the
identity element, or point at infinity. Moving from one elliptic curve to a curve
with a different j-invariant is a curve isogeny and moving from one elliptic curve
to a curve with the same j-invariant is called a curve isomorphism.

We formally define an isogeny over a finite field, Fq, as φ : E → E′ as a
non-constant rational map defined over Fq such that φ satisfies group homo-
morphism from E(Fq) to E′(Fq) [16]. SIDH uses isogenies among supersingular
elliptic curves rather than their ordinary elliptic curve counterpart as they are
more secure. Supersingular elliptic curves feature an endomorphism ring that is
isomorphic to an order in a quaternion algebra [16]. Supersingular elliptic curves
can be defined over Fp or Fp2 , where p is a prime number. For every prime, � �= p,
there exist � + 1 isogenies of degree � from a specific isomorphism class. These
isogenies can be computed over a kernel, κ, such that φ : E → E/〈κ〉 by utiliz-
ing Vélu’s formulas [20]. SIDH efficiently computes large-degree isogenies of the
form �e by decomposing them into a chain of degree � isogenies and computing
them iteratively.

2.3 Side-Channel Analysis

Side-channel analysis targets various physical phenomena that are emitted by
a cryptographic implementation to reveal critical internal information of the
device. Consider the use of gates to perform cryptographic computations as
switches of 0’s and 1’s. Power, timing, and electromagnetic radiation are all emit-
ted as such computations are performed. Simple power analysis (SPA) analyzes
a single power signature of a device, while differential power analysis (DPA) sta-
tistically analyzes many power runs of a device. Timing analysis targets timing
information of various portions of the computation. Electromagnetic radiation
can be seen as an extension of power analysis attacks by analyzing electromag-
netic emissions instead of power. Lastly, fault attacks attempt to inject a failing
condition into the device to attempt to reveal secret information. In general,
these attacks require physical access to a device and have been successful in
breaking naively constructed cryptosystems.

Side-Channel Attacks on Quantum-Resistant SIDH 67

Refined power analysis (RPA) techniques target computations involving a
zero inside a device. Originally introduced by Goubin at PKC, an attacker can
maliciously send base points that when pushed through a scalar multiplication
produce a point of the form (x, 0) or (0, y) [21]. The conventional wisdom is that
although DPA countermeasures produce a different set of intermediate computa-
tions, the computations with zero will be unchanged since zero multiplied with
anything is zero. By recursively targeting bits of the scalar, an attacker can
obtain an implementation’s secret key. Later, Akishita and Takagi generalized
this to a zero-value attack that targets conditions where a register holds zero [22].
They argue that since a multiplication is composed of a series of cascaded adders
and an addition is a long XOR that the power consumption of these operations
is significantly smaller when zero is one of the operands. Lastly, Smart notes that
countermeasures to zero-point attacks include point blinding, key splitting, and
an isogeny to an isomorphism class where there are no longer any zero points
[23].

3 Supersingular Isogeny Diffie-Hellman Protocol

3.1 Background

Isogeny-based cryptography was first presented by Rostovtsev and Stolbunov in
[24]. This work was based on isogenies of ordinary elliptic curves. The quantum
resistance of this work was subsequently broken by Childs et al. [25]. Supersin-
gular isogenies were first presented in the context of collision-resistant hash [26].
Later, Jao and De Feo proposed the isogeny-based cryptosystem to be based on
isogenies of supersingular elliptic curves, which has not been shown to be easily
broken with quantum computers as a result of the non-commutative endomor-
phism ring of supersingular elliptic curves [2]. Since then, several implementa-
tions of SIDH in both hardware and software have appeared in the literature
[8–13].

3.2 SIDH Protocol

The supersingular isogeny Diffie-Hellman key exchange protocol is a public-key
cryptosystem by which Alice and Bob can agree on a shared secret. The public
parameters include:

– A prime p of the form �aA�bB · f ± 1 where �A and �B are small primes, a and
b are positive integers, and f is a small cofactor

– A supersingular elliptic curve, E0(Fp2)
– A torsion basis {PA, QA} of E0[�aA] over Z/�aAZ and a torsion basis {PB , QB}

of E0[�bB] over Z/�bBZ

From these public parameters, the general idea of the protocol is that Alice and
Bob perform separate walks on isogeny graphs of degree �aA and �bB , respectively,
by computing a large-degree isogeny over a secret kernel. The security assump-
tion is based on the difficulty of computing an isogeny between supersingular

68 B. Koziel et al.

elliptic curves, for which there is no subexponential algorithm known even for
quantum computers. Alice generates private keys mA, nA ∈ Z/�aAZ both not
divisible by �aA and Bob likewise generates private keys mB , nB ∈ Z/�bBZ both
not divisible by �bB . The protocol consists of two rounds that can be broken
down to:

1. Computing a secret kernel R = 〈[m]P +[n]Q〉 for torsion basis points {P,Q},
where m and n are private keys

2. Computing an isogeny over that secret kernel, φ : E → E/〈R〉, using Vélu’s
formulas for a supersingular curve E

3. Computing the images of the other party’s torsion basis, {φ(Popp), φ(Qopp)},
for the first round.

Thus, for the first round, Alice and Bob perform the isogenies φA : E0 →
EA = E0/〈[mA]P + [nA]Q〉 and φB : E0 → EB = E0/〈[mB]P + [nB]Q〉,
respectively. They each also apply the isogeny to the other party’s torsion
basis. After the first round, Alice sends (EA, {φA(PB), φA(QB)}) and Bob sends
(EB , {φB(PA), φB(QA)}) over a public channel. The second round consists of
a similar isogeny computation, but over the exchanged public keys. Alice per-
forms φ′

A : EB → EAB = EB/〈[mA]φB(PA) + [nA]φB(QA)〉 and Bob performs
φ′
B : EA → EBA = EA/〈[mB]φA(PB) + [nB]φA(QB)〉. At this point, Alice and

Bob have isomorphic curves since they separately performed a specific traversal
of isogeny graphs of �aA and �bB , respectively, with their secret kernel construc-
tion. Since the resulting curves are isomorphic, the common j-invariant can be
used as a shared secret [2].

3.3 SIDH Protocol Optimizations

Above, we recited the proper SIDH protocol. However, most of the implemen-
tations in the literature [7,9,11–13] take advantage of a few simplifications to
the computations to make them more efficient. Notably, instead of performing
a full double-point multiplication, [m]P + [n]Q = R, it is assumed that either
m or n is 1. As noted in [9], any generator of [m]P + [n]Q will produce a valid
secret kernel. Thus, by assuming that m or n is invertible modulo the order of
the group, P + [m−1n]Q = P + [m]Q is also a valid generator of all possible
kernels. In terms of Montgomery curves, this simplification allows the use of a
three-point Montgomery differential ladder [9], which is shown in Algorithm 1.

The three-point Montgomery differential ladder produces [x]Q, [x+1]Q, and
[x]Q+P at the end of each step. Thus, with the differentials Q and Q−P , we can
take advantage of the efficient differential addition formulas over Montgomery
curves. Although there have not yet been any SIDH implementations over other
curves, it can be assumed that the above simplification would also be taken
advantage of. However, instead of performing a double-point multiplication as
above, the standard Montgomery ladder could be utilized to compute [m]Q, after
which a simple projective addition would be performed to obtain [m]Q + P .

Otherwise, as originally proposed by [9], the majority of known implemen-
tations in the literature all feature primes of the form 2a3b · f − 1. Over the

Side-Channel Attacks on Quantum-Resistant SIDH 69

Algorithm 1 . Three-point differential ladder to compute P + [t]Q [2].
“dadd(P,Q, (P − Q).x)” represents a differential point addition of P and Q,
where the x-coordinate of P − Q is known.
Input: Points P and Q on an elliptic curve E, scalar d which is k bits
1: Set A = 0, B = Q, C = P
2: Compute Q − P
3: for i decreasing from |d| downto 1 do
4: Let di be the i-th bit of d
5: if di = 0 then
6: B =dadd(A, B, Q), C =dadd(A, C, P), A = 2A
7: else
8: A =dadd(A, B, Q), C =dadd(B, C, Q − P), B = 2B
9: end if
10: end for
Ensure: C = P + [t]Q

Montgomery Kummer arithmetic, [8,9] produced efficient formulas to compute
isogenies and apply isogenies of degree 2 and 3. Thus, we focus on this particu-
lar case, but the attacks we propose can easily be generalized to other isogeny
degree bases.

4 Refined Power Analysis Model for SIDH

Here, we create a power analysis model to describe how the zero-point attack
could be applied to SIDH.

4.1 Targeting Static Keys in SIDH

As originally proposed in [21], the zero-point attack is a form of differential power
analysis, and thus, requires many runs of a device over the same key. At the time
of its conception, this attack could be mounted against users with a long-term
static key in ECDH, ECIES, and ECMQV (which is now broken). Based on
the security assumption of supersingular isogenies, there is currently only an
analogue to the SIDH with a user using a long-term static key. Here, we target
the second round of SIDH, where Alice will compute the secret kernel point R =
P+[n]Q and perform the subsequent isogeny. SIDH is, in a sense, more dangerous
than ECDH since the other party sends φ(P), φ(Q), and the supersingular elliptic
curve E′. Not only does a malicious third-party get to choose two points to send
over, they also can control which supersingular elliptic curve these points will lie
on. From here on, we will assume that Alice has a long-term static key nA and
receives the public key tuple, {φB(PA), φB(QA), EB} from Oscar and attempts
to compute the shared secret j(EAB) = j(EB/〈φB(PA) + [nA]φB(QA)〉). For
generality, the scalar nA could apply to either φB(PA) or φB(QA) and Alice
does not specify.

70 B. Koziel et al.

In [8], Costello et al. introduce a method to validate the public keys sent
over a public channel. This validation includes verifiying that the curve EB is
supersingular, of the proper cardinality, and is in the right supersingular isogeny
class, as well as validating that the transmitted torsion basis points have the
correct order and are independent. As they show in the results, the public key
validation in [8] is rather expensive, and consumes approximately 40% of the
time of a single round of the protocol.

As demonstrated by Galbraith et al. in [27], there is a simple adaptive oracle
attack on a user with long-term static keys. Oscar will send public keys with
maliciously crafted torsion basis points that will only match Oscar’s shared secret
oracle if the bits of Alice’s keys are guessed correctly. Thus, over approximately
log2p oracle queries, Oscar will have Alice’s private key.

This above attack has been shown to bypass the public key validation pro-
posed in [8], but fails to pass the Kirkwood et al. validation model [28] that
ensures Oscar is producing public keys honestly. By utilizing a seed to a pseudo-
random number generator to generate his private keys, Oscar must use Alice’s
public key to first generate the shared secret. Using this shared secret, Oscar
will encrypt his PRNG seed and include it to Alice. From Alice’s perspective,
she will utilize Oscar’s public keys to generate a shared secret and will retrieve
Oscar’s PRNG seed by decrypting it with the shared secret. Then, Alice will
perform Oscar’s computations with the derived private keys. If the public keys
do not match those that Oscar sent, then Alice rejects the key-exchange since
Oscar is not acting honestly.

We provide the above validation methods to analyze the additional overhead
that a static key user must consider in return for increased security. The public
key validation method ensures that the public keys appear valid at the cost of
about 40% of a round, but still does not prevent the Galbraith et al. adaptive
oracle attack. The Kirkwood et al. validation model does prevent the oracle
attack and perhaps other dishonest public key attacks, but Alice must perform an
additional round of SIDH. Thus, if Alice, the static-key user, decides to perform
both of these validations, she must perform an additional 140% work (could be
more if Oscar’s isogeny computations are much more computationally intensive)
as well as have any additional hardware or registers to support the additional
functionality. Indeed, this overhead is much more than that of ECC, but certain
devices may not be able to support or guarantee the security of an on-device
random number generator, for instance.

In terms of the SIDH protocol, we recommend Alice to include both of these
validations. We note that by itself, the Kirkwood et al. validation model will
automatically start computations over the transmitted public keys. From a side-
channel analysis perspective, this is incredibly weak as the public keys could
produce any number of vulnerabilities. First, invalid torsion basis points can
produce a kernel point that is not of the correct order, that a device might not
handle gracefully. Second, Oscar can manipulate the torsion points that produce
special points of interest (such as zero-points). We propose a simple attack of
this in the following section. Third, an invalid elliptic curve can also produce

Side-Channel Attacks on Quantum-Resistant SIDH 71

intermediate values of interest through manipulation. These are only some of the
attacks that could be mounted if public key validation is used. Thus, public key
validation serves as the primary defense against certain types of power analysis
and fault attacks, while the Kirkwood et al. validation method serves as the
primary defense against maliciously chosen, but valid public keys.

4.2 Zero-Value Representations in Quadratic Fields

First, we define a representation of zero in terms of a quadratic extension field,
Fp2 , which is the underlying finite prime field used in SIDH. Let A,B ∈ Fp2 such
that A = a1x + a0, B = b1x + b0 and a1, a0, b1, b0 ∈ Fp. We define an irreducible
polynomial over this finite field of the form x2 +αx+β. We then define addition
and multiplication with A and B as:

A + B = (a1 + b1)x + (a0 + a1) (1)

A × B = (a0b1 + a1b0 − αa1b1)x + (a0b0 − βa1b1) (2)

However, the known implementations in the SIDH literature utilize the
primes of the form 2a3b · f − 1, for which −1 does not have a square root,
so x2 +1 is an irreducible polynomial. The new multiplication formula becomes:

A × B = (a0b1 + a1b0)x + (a0b0 − a1b1) (3)

A × B = (a0b1 + a1b0)x + ((a0 + a1)(b0 − b1) + a0b1 − a1b0) (4)

We included Eq. (4) as the efficient way to perform the multiplication in Fp2 ,
since we are only performing 3 multiplications in Fp rather than 4. We primarily
focus on Eqs. (3) and (4), but further generalizations can be easily made. We
give these equations to show that the behavior of zero will change slightly in
Fp2 . Interestingly, as the above equations show, both resulting Fp values from
the multiplication in the extension field is dependent on all four input Fp values
(a1, a0, b1, b0). Further, it is interesting to note that in the case of a squaring,
the most significant element in Fp2 will only be zero if and only if the input
element also has a most significant element of zero (since p is a prime number).
We define the element A as being fully zero if a1, a0 = 0. We also define A as
being partially zero if exactly a1 = 0 or exactly a0 = 0. Any other combinations
for A are non-zero.

Consider that in projective coordinates, the x-coordinate is scaled by a Z
value, i.e. (x, y) → (X : Y : Z) where x = X/Z and y = Y/Z. In the SIDH
scenario, as can be observed from Eqs. (3) and (4), a partially zero x-coordinate
guaranteed produces a non-zero X-coordinate if scaled by a Z-coordinate that is
non-zero. Non-zero Z-coordinates will only produce a partially zero X-coordinate
if exactly a0b1 = −a1b0 or a0b0 = a1b1. If Alice performs her random curve
isomorphism or randomizes the projective input coordinates, then Oscar has
little control over what values of Z Alice will be using at various iterations of
the scalar point multiplication.

72 B. Koziel et al.

The primary conclusion from above is that targeting partial zero values in
the case of projective points is not very beneficial. Instead, an attacker can target
the fully zero values since the projective representation of quadratic extension
fields will not change these. For Montgomery [18] curves, the point with a zero
x-coordinate is (0, 0), which has order 2. Edwards [19] curves contain the point
(0, 1), which is the neutral element of the addition law, the point (0,−1), which
has order 2, and the points (1, 0) and (−1, 0), which have order 4. Lastly, short
Weierstrass curves may have special points of the form (0,

√
b) if the square

root of b exists and the special point (x, 0) of order 2 if there is a solution to
x3 + ax + b = 0 [21]. Although the zero-point is not guaranteed for a specific
short Weierstrass curve, one can apply an isogeny to an isomorphism class where
the zero-points do exist. Thus, since Oscar can choose the supersingular elliptic
curve and corresponding basis points, he can always choose a curve where there
is a zero-point.

4.3 Zero-Values in Montgomery Curve Arithmetic

As proposed by [22], an implementation’s arithmetic unit can be targeted to
determine the existence of a zero-register. In the case of the quadratic extension
field, arithmetic is primarily done in the base field. Thus, we target any partially-
zero or fully-zero values that may be produced by the curve arithmetic.

In this work, we analyze the fastest SIDH arithmetic available in the liter-
ature, which is introduced in [8]. This work takes advantage of the fast Mont-
gomery differential arithmetic for scalar point multiplication as well as fast pro-
jective isogenies of degree three and four. Table 1 contains a summary of the
arithmetic. This arithmetic has been developed to work over the projectivized
isogeny form of the Montgomery curve:

E(A:B:C) : By2 = Cx3 + Ax2 + Cx

Which can be converted to the original Montgomery curve form in the pre-
liminaries with the relations: a = A

C , b = B
C . Here, C is a projectivized con-

stant of the Montgomery curve to allow for projective isogeny formulas. Note
that “get iso” refers to computing an isogeny and “eval iso” refers to pushing
a point from one elliptic curve to its targeted isogenous curve. In the equations
in Table 1, assume that (X2, Z2) and (X3, Z3) are input points P and Q for
addition and doubling, (X1, Z1) is the normalized coordinate for P − Q, and
A24 = (A + 2)/4. (X4, Z4) = 2(X2, Z2) and (X5, Z5) = (X2, Z2) + (X3, Z3).
(PX3, PZ3) and (PX4, PZ4) are kernel points of order 3 and 4, respectively.

From this table we point out a few interesting calculations that could be used
in a zero-value attack.

In terms of the double and addition formula, we point out the following
calculations:

1. X2 + Z2 = Z2(x2 + 1)
2. X2 − Z2 = Z2(x2 − 1)

Side-Channel Attacks on Quantum-Resistant SIDH 73

Table 1. Summary of projective Montgomery curve arithmetic from [8]

Operation Equation

xDBL X4 = (X2 + Z2)
2(X2 − Z2)

2

Z4 = (A24((X2 + Z2) − (X2 − Z2)
2)

+(X2 + Z2)
2)((X2 + Z2)

2 − (X2 − Z2)
2)

xADD X5 = ((X2 + Z2)(X3 − Z3) + (X2 − Z2)(X3 + Z3))
2

Z5 = X1((X2 + Z2)(X3 − Z3) − (X2 − Z2)(X3 + Z3))
2

get iso 3 (A′, C′) = (P 4
Z3 + 18P 2

X3P
2
Z3 − 27P 4

X3 : 4PX3P
3
Z3)

eval iso 3 (X ′, Z′) = (X(PX3X − PZ3Z)2 : Z(PZ3X − PX3Z)2)

get iso 4 (A′, C′) = (2(2P 4
X4 − P 4

Z4) : P 4
Z4)

eval iso 4 X ′ = X(2PX4PZ4Z − X(P 2
X4 + P 2

Z4))(PX4X − PZ4Z)2

Z′ = Z(2PX4PZ4X − Z(P 2
X4 + P 2

Z4))(PZ4X − PX4Z)2

We can expect to see a zero in an intermediate register holding this result if either
Z2 = 0, x2 = 1, or x2 = −1. Z2 = 0 implies that we are trying to double the
point at infinity, which is not expected in a valid run of this protocol. x2 = ±1
is an interesting target point for the ladder since it will produce an intermediate
zero. However, these points are not guaranteed on a Montgomery curve. For the
standard curve equation, these points exist if there is a corresponding y that

satisfies (1,
√

A+2
B) or (−1,

√
A−2
B). Roughly, this is a check if the square root

exists in the underlying quadratic field to form a point.
Similarly, the differential addition formula utilizes:

1. X2 + Z2 = Z2(x2 + 1)
2. X2 − Z2 = Z2(x2 − 1)
3. X3 + Z3 = Z3(x3 + 1)
4. X3 − Z3 = Z3(x3 − 1)

Similar to the doubling formula, we can expect to see an intermediate zero if
Z2 = 0, Z3 = 0, x2 = ±1, or x3 = ±1. If one of the intermediate Z values is 0,
then we are adding with the point at infinity. We pinpoint these computations,
since we can target the x = ±1 at the double-point multiplication level or at the
large-degree isogeny level. The hidden kernel point is continously tripled (double
and add) when computing an isogeny of base degree 3 or quadrupled (double
and double) when computing an isogeny of base degree 4.

The isogeny formulas are only used in the large-degree isogeny computation
that finishes the round. As was previously mentioned, an isogeny of a base degree
is computed over a kernel and then any points on the old curve are converted to
the new one through an isogeny evaluation. For computing an isogeny of degree
3, we can target:

1. P 4
Z3+18P 2

X3P
2
Z3−27P 4

X3 = P 4
Z3(1+18P 2

x3−27P 4
x3) = P 4

Z3(1+9(2P 2
x3−3P 4

x3))
2. 4PX3P

3
Z3 = 4P 4

Z3(Px3)

74 B. Koziel et al.

As the first equation shows, we will have a zero in the equation for A′ if PZ3 = 0,
27P 4

x3 − 18P 2
x3 − 1 = 0, or 3P 4

x3 − 2P 2
x3 = 0. If PZ3 = 0, then we are using the

point at infinity, which does not have order 3 and is an invalid isogeny kernel.
The solutions to Eq. 1 are Px3 = ± 1

3

√
3 + 2

√
3,± 1

3

√
−3 − 2

√
3 and the solutions

to Eq. 2 are Px3 = 0,±
√

2
3 . However, if Px3 = 0, then we are using the point

(0, 0) which has order 2, not 3, again invalidating the isogeny computation. The
equation for C ′ is zero if either PZ3 = 0 or Px3 = 0, which are again invalid
kernels, which is to be expected since a C coefficient of zero means that the
curve does not exist.

For eval iso 3:

1. PX3X − PZ3Z = ZPZ3(Px3x − 1)
2. PZ3X − PX3Z = ZPZ3(x − Px3)

In the first case, Px3x − 1 = 0 means that Px3 = x−1. If either Z value is zero,
then we are attempting to apply the isogeny to the point at infinity, which will
again produce the point at infinity. For the second case, x = Px3 implies that
we are attempting to push the same point as our kernel point to the new curve,
which will result in the point at infinity.

For get iso 4:

1. 2P 4
X4 − P 4

Z4 = P 4
Z4(2P 4

x4 − 1)

Here, we only look at 2P 4
x4 = 1 to produce a zero value for A′. The only valid

solutions are Px4 = ± 1√
2

and Px4 = ± 1√−2
.

Lastly, we summarize eval iso 4 in-line:

1. P 2
X4 + P 2

Z4 = P 2
Z4(P

2
x4 + 1) =⇒ Px4 = ±√−1

2. 2PX4PZ4Z−X(P 2
X4+P 2

Z4) = P 2
Z4Z(2Px4−x(P 2

x4+1)) =⇒ Px4 = ±
√
4x2+9−3

2x ,
OR Px4 = x = 0

3. 2PX4PZ4X − Z(P 2
X4 + P 2

Z4) = P 2
Z4Z(2xPx4 − (P 2

x4 + 1)) =⇒ Px4 = 1
2 (3x ±√

9y2 + 4)
4. PX4X − PZ4Z = PZ4Z(Px4x − 1) =⇒ Px4 = x−1

5. PZ4X − PX4Z = PZ4Z(x − Px4) =⇒ x = Px4 (Evaluating point same as
kernel point)

5 Proposed Partial-Zero Attack on Three-Point Ladder

Here, we describe a simple attack on the three-point differential ladder proposed
by Jao et al. in [9] and shown in Algorithm 1.

5.1 Partial-Zero Attack Targeting Differential Addition

Depending on the bit of the key we perform the following computations:

– if di = 0, then C =dadd(A,C, P)
– if di = 1, then C =dadd(B,C,Q − P)

Side-Channel Attacks on Quantum-Resistant SIDH 75

In particular, we direct our attention to the differential point, either P or Q−P .
An attacker may have little control over the projective coordinates based on the
quadratic multiplication, but it has been typical to use a normalized differential
point, i.e. P = (x, y), for speed, so Oscar will know which values for P.x and
(Q−P).x are generated. By determining a combination of P and Q that produces
a non-zero P.x and a partially-zero (Q−P).x, Oscar has created an oracle for each
iteration of the three-point ladder, since a multiplication by zero will be observed
if (Q−P).x is used whereas a typical power observation will be observed for the
non-zero P.x. Depending on the multiplication arithmetic in the implementation,
Oscar can extract the entire key from Alice in a single attempt if there is a stark
enough contrast between multiplying by P.x and the partially-zero (Q − P).x.

Thus in the case of attacking a static-key SIDH user, let us assume that Oscar
is attempting to find such a curve and valid torsion basis that can mount this
attack. Initially, Oscar can perform a few walks on the graph of his supposed
isogeny graph of degree �B . As he walks the isogeny graph, he computes the
image of Alice’s torsion basis, {PA, QA), as well as their difference, (QA − PA)
on this new isogenous curve, to preserve a valid torsion basis. From here, Oscar
checks if a valid elliptic curve isomorphism can convert either PA or (QA − PA),
but not both, to an affine coordinate with a partially-zero x-coordinate. If the
isomorphism class does not have an available curve, then Oscar performs another
walk on the isogeny graph of degree �B to an isomorphism class that may have
the required condition.

5.2 Countermeasures

To thwart this attack, a static-key user can merely reject any torsion bases that
produce a normalized P or (Q − P) x-coordinates that are partially-zero. Oth-
erwise, using a random projectivization of these differential coordinates would
thwart the attack as long as it does not create a partially-zero result. Projectiviz-
ing the differential coordinates comes at the cost of two additional multiplication
per step of the three-point ladder. Lastly, any other methods that would alter
the representation of this partially-zero value would also thwart the attack, such
as a random initial isomorphism.

6 Proposed Zero-Point Attack on Three-Point Ladder

Here, we apply the zero-point attack to the three-point differential ladder pre-
sented in [9] in a procedure that is similar to that produced in [21].

6.1 Zero-Point Attack with Points of Large Order

The three-point differential ladder computes P + [n]Q with input points P,Q
and (P − Q).x is known. At the end of the ith step of the ladder, the following
points are computed:

76 B. Koziel et al.

[x]Q = (
n−1∑

j=i+1

dj2j−i + di).Q

[x + 1]Q = (
n−1∑

j=i+1

dj2j−i + di + 1).Q

P + [x]Q = P + (
n−1∑

j=i+1

dj2j−i + di).Q

Thus, it is simple to see that the (i+1) step will produce the following values:

– di = 0 will always produce (
∑n−1

j=i+1 dj2j−i + 1).Q and then
(
∑n−1

j=i+1 dj2j−i).Q, P + (
∑n−1

j=i+1 dj2j−i).Q if di+1 = 0 or
(
∑n−1

j=i+1 dj2j−i + 2).Q, P+ (
∑n−1

j=i+1 dj2j−i + 1).Q if di+1 = 1.
– di = 1 will always produce (

∑n−1
j=i+1 dj2j−i + 3).Q and then

(
∑n−1

j=i+1 dj2j−i + 2).Q, P + (
∑n−1

j=i+1 dj2j−i + 2).Q if di+1 = 0 or
(
∑n−1

j=i+1 dj2j−i + 4).Q, P + (
∑n−1

j=i+1 dj2j−i + 3).Q if di+1 = 1.

Next, we target the points that will always be produced by the guess of di. Let
P0 be a special point where the x-coordinate or y-coordinate is 0, which must be
(0, 0) for a Montgomery curve. However, rather than continuing with Goubin’s
methodology, we note that performing a scalar multiplication with a point of
order 2 will either produce itself if the scalar is odd or the point at infinity if the
scalar is even. Roughly, we need to find a point P1 that satisfies the equation P0 =
(
∑n−1

j=i+1 dj2j−i +1).P1 if we believe that di = 0 or P0 = (
∑n−1

j=i+1 dj2j−i +3).P1

if we believe that di = 1. Based on this setup, we know that P1 is a point with
order 2(

∑n−1
j=i+1 dj2j−i + 1) if di = 0 or 2(

∑n−1
j=i+1 dj2j−i + 3) if di = 1.

Thus, since such points have an invalid order, they will not pass the public-
key validation. We propose instead to find curves with points P0 = (±1, y) with
a large order and solve for P1 in the same way. After finding an appropriate point
P1, Alice will compute her shared secret and may produce the special point of
interest, revealing bit i. The point with x = ±1 is interesting, as we noted that
it would produce a zero condition when analyzing the Montgomery arithmetic.
As noted in [21], this process is recursively repeated to reveal Alice’s entire
secret key. We note that although three points are used in this differential point
ladder, we still target the points (

∑n−1
j=i+1 dj2j−i + 1).Q if we guess that di = 0

and (
∑n−1

j=i+1 dj2j−i + 3).Q if we guess that di = 1, as was done in Goubin’s
original analysis [21].

As is shown above, the zero-point attack will not work against a static-
key user that is validating public keys. However, this is primarily because the
Montgomery curve arithmetic only uses the x-coordinate to perform a scalar
point multiplication and there is only a single zero-point with order 2. Short
Weierstrass curves, on the other hand, may have a point, P0 = (0,

√
b). This

Side-Channel Attacks on Quantum-Resistant SIDH 77

point does not have a specific order, thus Oscar can use isogenies and isomor-
phisms to force this point to have his desired order for the attack. In order to
bypass the public-key validation, Oscar finds a point P1 of the proper order as
specified by the SIDH parameters such that P0 = (

∑n−1
j=i+1 dj2j−i + 1).P1 or

P0 = (
∑n−1

j=i+1 dj2j−i +3).P1. In this case, Alice may produce the point of inter-
est and Oscar discovers another bit of Alice’s key. The difference here is that,
this attack may succeed even in the case of public-key validation.

6.2 Countermeasures

The most noteworthy countermeasures to these zero-point attacks in the context
of ECDH include an isogeny to a curve where the zero-point doesn’t exist, ran-
domization of the private exponent, and point blinding [23]. However, in regards
to SIDH, we note that performing an initial random isogeny will change the
resulting isomorphism class, but will work if the degree of the random isogeny
is not �A or �B . Further, in the context of the Kirkwood et al. validation model,
Alice will not know which random isogeny Oscar performed, so Oscar must per-
form a final isogeny in the reverse direction of the random initial isogeny to
provide valid public keys.

7 Proposed Refined Power Analysis on Large-Degree
Isogenies

Here, we discuss an analog of these zero-value attacks to large-degree isogenies.
Roughly, we show that the iterative nature of the large-degree isogenies can be
attacked by forcing zero conditions.

7.1 Using RPA on SIDH

As is shown in Fig. 1, the large-degree isogeny of a base degree can be visualized
as traversing a complete graph where the vertices represent isomorphism classes
and the edges represent isogenies. Each isomorphism class has � + 1 connecting
isomorphism classes. From an initial isomorphism class, there are � + 1 possible
isogenies of degree � to a new isomorphism class. After that, we do not go back-
wards on an isogeny walk, so there are � possible isogenies at every vertex after
that. In this context, we are trying to determine which path Alice takes through
the isogeny graph, rather than determine bits of Alice’s key. The difficulty to
compute a path between two distant isomorphism classes is considered to be
inefficient even in the context of quantum computers, so each time an isogeny
decision is revealed, the problem becomes that much easier.

We consider the idea of revealing that path through forced zero values. As is
specified in the preliminaries, the large-degree isogeny is performed iteratively;
we take a kernel point of sufficient order and iteratively perform a single walk on
the isogeny graph. As we perform these isogenies of a base degree, we apply the
isogeny to other stored multiples of the kernel point. For the first round, we also

78 B. Koziel et al.

Fig. 1. Graph representing the space of all isogenies of degree 2 under a given field, Fp2 .
The vertices (circles) represent an isomorphism class, of which all curves within the class
share the same j-invariant. The blue circle represents the initial supersingular elliptic
curve isomorphism class of the isogeny. In SIDH, Oscar can choose which isomorphism
class to send Alice. The red circle indicates the targeted path that Oscar is trying to
determine. In this scenario, Oscar has discovered φ0 and must subsequently determine
φ1 by injecting a zero condition into the two possibilities for E2. This process is repeated
iteratively to reveal Alice’s static key.

apply the isogeny to the other party’s basis. As we compute an isogeny, we are
determining the coefficients for a new curve, thus we call refined power analysis
attacks targeting curve coefficeints zero-value isogeny coefficient attacks. As we
apply an isogeny, we are determining the representation of that point on the new
curve, thus we call refined power analysis attacks targeting particular isogenous
points zero-value isogeny point attacks.

Let us assume that Alice takes eA walks on the isogeny graph of base �A
starting at the supersingular curve E0. We number these walks φ0, φ1, · · · φeA−1.
Thus, as is shown in Fig. 1 for �A = 2, φ0 : E0 → E1 and so on. Our goal is
to determine which neighboring node isogeny φ0 utilized. Since Vélu’s formulas
are deterministic and we know what elliptic curve Alice will start on, we can
determine the � + 1 possible isogenous curves where Alice will end up. We can
then target these elliptic curves by forcing a zero condition in one or more of the
neighboring vertices. If this zero condition is experienced on the computation of
φ0 or becomes a coefficient or point coordinate in calculating φ1, then we can
confirm or reject some of the possible isogenies. After we have identified φ0, we
next target φ1, which will have � possibilities. From there, we iteratively use
i known isogenies and target the (i + 1) isogeny until we have discovered the
entire isogeny path. Next, we explain this further in the context of zero-value
coefficient and point attacks.

7.2 Zero-Value Isogeny Coefficient Attack

The first attack we look at is if a zero-value curve coefficient is produced from
an isogeny. As is noted in Sect. 1, there are several ways to produce a zero-
value for A′ in the context of computing an isogeny of degree 3 or degree 4.

Side-Channel Attacks on Quantum-Resistant SIDH 79

However, Oscar has little knowledge of the computation of the kernel point, so
it is not easy to target the point of order 3 or 4. Instead, Oscar can target some
curve in any isomorphism class that produces an isogenous curve with A′ = 0.
In this case, Oscar is checking if this edge of the isogeny graph is traversed by
checking if a zero is experienced. In the case of Montgomery curves, the constant
A24 = (A+2)/4 is used to perform point doubling. Thus, if Oscar can determine
the power trace of an addition by zero, he can reveal information about the
isogeny path. With Montgomery curves, the calculation of A24 is the only direct
usage of A as the other formulas for computing and evaluating an isogeny do not
utilize the Montgomery curve coefficients. This may not be the case for other
optimized isogeny formulas for Montgomery and other curves.

7.3 Zero-Value Isogeny Point Attack

This attack pinpoints when applying an isogeny to a kernel point or basis point
produces a zero-value. In the context of SIDH, Oscar has little control over
intermediate representations of the kernel point, but can trick Alice to using
his own torsion basis points in the first round of SIDH if Alice agrees to non-
standardized parameters. Outside of SIDH, this could be interesting to other
applications of supersingular isogenies that require applying the isogeny to points
from another party. Anyways, the key here is to pick maliciously crafted torsion
points that reveal a zero when pushed through the isogeny. Again, Oscar can
determine all nearby curves with the deterministic Vélu’s formulas, so he will
know a few of the options that Alice will produce. In the context of Montgomery
curves, the point (0, 0) is not an option since that point will always be pushed
to (0, 0) on other Montgomery curves. However, in the context of other curve
forms, this attack could again be interesting, as one can target the special points
(0, y) or (x, 0) if they exist.

7.4 Countermeasures

The zero-value attack on isogenies requires knowledge of the nearby isogenous
curves. Thus, anything that randomizes the resulting isogenous curves, such
as performing a random curve isomorphism or an initial isogeny of a degree
�r �= �A, �B , will defeat this assumption, since the scaling of the curve will
produce different isogenous curves.

8 Conclusion

In this paper, we investigated refined power analysis attacks and their applica-
tion to the supersingular isogeny Diffie-Hellman key exchange protocol. As we
have shown, there are a few caveats to using zero-value attacks over quadratic
extension fields and in Montgomery curve arithmetic. Nevertheless, we have pro-
posed three different zero-value attacks on SIDH that can target static-key users.
Since the Kirkwood et al. validation model does not protect against side-channel

80 B. Koziel et al.

attacks, the attacks proposed in this paper continue to question the safety of a
static-key user in SIDH. The dual computations of a double-point multiplica-
tion and large-degree isogeny in the context of an elliptic curve and points that
another party sends over is especially dangerous. As we move forward, it is nec-
essary to survey the effectiveness of the attacks proposed here and any new
side-channel attacks that are found in the future.

Acknowledgment. The authors would like to thank the reviewers for their com-
ments. This work is supported in parts by the grants NIST-60NANB17D184, NIST-
60NANB16D246, and NSF CNS-1661557.

References

1. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and fac-
toring. In: 35th Annual Symposium on Foundations of Computer Science (FOCS
1994), pp. 124–134 (1994)

2. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp.
19–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5 2

3. Jao, D., Soukharev, V.: Isogeny-based quantum-resistant undeniable signatures. In:
Mosca, M. (ed.) PQCrypto 2014. LNCS, vol. 8772, pp. 160–179. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-11659-4 10

4. Yoo, Y., Azarderakhsh, R., Jalali, A., Jao, D., Soukharev, V.: A Post-Quantum
Digital Signature Scheme Based on Supersingular Isogenies. Cryptology ePrint
Archive, Report 2017/186 (2017)

5. Galbraith, S.D., Petit, C., Silva, J.: Signature Schemes Based On Supersingular
Isogeny Problems. Cryptology ePrint Archive, Report 2016/1154 (2016)

6. Azarderakhsh, R., Jao, D., Kalach, K., Koziel, B., Leonardi, C.: Key compression
for isogeny-based cryptosystems. In: Proceedings of the 3rd ACM International
Workshop on ASIA Public-Key Cryptography. AsiaPKC 2016, pp. 1–10. ACM,
New York (2016)

7. Costello, C., Jao, D., Longa, P., Naehrig, M., Renes, J., Urbanik, D.: Efficient com-
pression of SIDH public keys. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT
2017, Part I. LNCS, vol. 10210, pp. 679–706. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-56620-7 24

8. Costello, C., Longa, P., Naehrig, M.: Efficient algorithms for supersingular isogeny
Diffie-Hellman. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS,
vol. 9814, pp. 572–601. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53018-4 21

9. De Feo, L., Jao, D., Plût, J.: Towards quantum-resistant cryptosystems from super-
singular elliptic curve isogenies. J. Math. Cryptol. 8(3), 209–247 (2014)

10. Azarderakhsh, R., Fishbein, D., Jao, D.: Efficient Implementations of a Quantum-
Resistant Key-Exchange Protocol on Embedded Systems. Technical report, Uni-
versity of Waterloo (2014)

11. Koziel, B., Jalali, A., Azarderakhsh, R., Jao, D., Mozaffari-Kermani, M.: NEON-
SIDH: efficient implementation of supersingular isogeny Diffie-Hellman key
exchange protocol on ARM. In: Foresti, S., Persiano, G. (eds.) CANS 2016. LNCS,
vol. 10052, pp. 88–103. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
48965-0 6

https://doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/10.1007/978-3-319-11659-4_10
https://doi.org/10.1007/978-3-319-56620-7_24
https://doi.org/10.1007/978-3-319-56620-7_24
https://doi.org/10.1007/978-3-662-53018-4_21
https://doi.org/10.1007/978-3-662-53018-4_21
https://doi.org/10.1007/978-3-319-48965-0_6
https://doi.org/10.1007/978-3-319-48965-0_6

Side-Channel Attacks on Quantum-Resistant SIDH 81

12. Koziel, B., Azarderakhsh, R., Mozaffari-Kermani, M.: Fast hardware architectures
for supersingular isogeny Diffie-Hellman key exchange on FPGA. In: Dunkelman,
O., Sanadhya, S.K. (eds.) INDOCRYPT 2016. LNCS, vol. 10095, pp. 191–206.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49890-4 11

13. Koziel, B., Azarderakhsh, R., Kermani, M.M., Jao, D.: Post-quantum cryptography
on FPGA based on isogenies on elliptic curves. IEEE Trans. Circuits Syst. I Regul.
Pap. 64(1), 86–99 (2017)

14. Gélin, A., Wesolowski, B.: Loop-abort faults on supersingular isogeny cryptosys-
tems. In: Lange, T., Takagi, T. (eds.) PQCrypto 2017. LNCS, vol. 10346, pp.
93–106. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59879-6 6

15. Ti, Y.B.: Fault attack on supersingular isogeny cryptosystems. In: Lange, T.,
Takagi, T. (eds.) PQCrypto 2017. LNCS, vol. 10346, pp. 107–122. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-59879-6 7

16. Silverman, J.H.: The Arithmetic of Elliptic Curves. GTM, vol. 106. Springer,
New York (1992). https://doi.org/10.1007/978-0-387-09494-6

17. Fan, J., Guo, X., Mulder, E.D., Schaumont, P., Preneel, B., Verbauwhede, I.: State-
of-the-art of secure ECC implementations: a survey on known side-channel attacks
and countermeasures. In: 2010 IEEE International Symposium on Hardware-
Oriented Security and Trust (HOST), pp. 76–87, June 2010

18. Montgomery, P.L.: Speeding the pollard and elliptic curve methods of factorization.
Math. Comput. 48(177), 243–264 (1987)

19. Bernstein, D.J., Birkner, P., Joye, M., Lange, T., Peters, C.: Twisted Edwards
curves. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 389–
405. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68164-9 26

20. Vélu, J.: Isogénies entre courbes elliptiques. Comptes Rendus de l’Académie des
Sci. 273, A238–A241 (1971). Paris Séries A-B

21. Goubin, L.: A refined power-analysis attack on elliptic curve cryptosystems. In:
Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 199–211. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36288-6 15

22. Akishita, T., Takagi, T.: Zero-value point attacks on elliptic curve cryptosystem.
In: Boyd, C., Mao, W. (eds.) ISC 2003. LNCS, vol. 2851, pp. 218–233. Springer,
Heidelberg (2003). https://doi.org/10.1007/10958513 17

23. Smart, N.P.: An analysis of Goubin’s refined power analysis attack. In: Walter,
C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 281–290.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45238-6 23

24. Rostovtsev, A., Stolbunov, A.: Public-Key Cryptosystem Based on Isogenies. Cryp-
tology ePrint Archive, Report 2006/145 (2006)

25. Childs, A.M., Jao, D., Soukharev, V.: Constructing elliptic curve isogenies in quan-
tum subexponential time. J. Math. Cryptol. 8(3), 1–29 (2014)

26. Charles, D.X., Lauter, K.E., Goren, E.Z.: Cryptographic hash functions from
expander graphs. J. Cryptol. 22(1), 93–113 (2009)

27. Galbraith, S.D., Petit, C., Shani, B., Ti, Y.B.: On the security of supersingular
isogeny cryptosystems. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part
I. LNCS, vol. 10031, pp. 63–91. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53887-6 3

28. Kirkwood, D., Lackey, B.C., McVey, J., Motley, M., Solinas, J.A., Tuller, D.: Fail-
ure is not an Option: Standardization Issues for Post-Quantum Key Agreement.
Technical report, Workshop on Cybersecurity in a Post-Quantum World (2015)

https://doi.org/10.1007/978-3-319-49890-4_11
https://doi.org/10.1007/978-3-319-59879-6_6
https://doi.org/10.1007/978-3-319-59879-6_7
https://doi.org/10.1007/978-0-387-09494-6
https://doi.org/10.1007/978-3-540-68164-9_26
https://doi.org/10.1007/3-540-36288-6_15
https://doi.org/10.1007/10958513_17
https://doi.org/10.1007/978-3-540-45238-6_23
https://doi.org/10.1007/978-3-662-53887-6_3
https://doi.org/10.1007/978-3-662-53887-6_3

Theory

Computing Discrete Logarithms in Fp6

Laurent Grémy1, Aurore Guillevic1(B), François Morain2,
and Emmanuel Thomé1

1 Université de Lorraine, CNRS, Inria, LORIA, 54000 Nancy, France
aurore.guillevic@inria.fr

2 École Polytechnique/LIX, CNRS UMR 7161, Palaiseau, France

Abstract. The security of torus-based and pairing-based cryptography
relies on the difficulty of computing discrete logarithms in small degree
extensions of finite fields of large characteristic. It has already been shown
that for degrees 2 and 3, the discrete logarithm problem is not as hard
as once thought. We address the question of degree 6 and aim at pro-
viding real-life timings for such problems. We report on a record DL
computation in a 132-bit subgroup of Fp6 for a 22-decimal digit prime,
with p6 having 422 bits. The previous record was for a 79-bit subgroup
in a 240-bit field. We used NFS-DL with a sieving phase over degree 2
polynomials, instead of the more classical degree 1 case. We show how
to improve many parts of the NFS-DL algorithm to reach this target.

1 Introduction

Since the 1970s and the first key-exchange protocol, the security of the vast
majority of asymmetric cryptosystems has relied on the hardness of two main
number theory problems: the factorization of large integers and the computation
of discrete logarithms. Given a finite cyclic group (G, ·) of order �, a generator g
of this group, and an element a ∈ G, the goal of the discrete logarithm problem
(DLP) is to solve gx = a for x ∈ Z/�Z. In this paper, we focus on discrete
logarithms in finite fields of the form Fp6 , where p is a prime. This corresponds
to the medium characteristic situation studied in [30]. Breaking discrete loga-
rithms in such a field can affect torus-based cryptography [34,43] (XTR and its
generalization CEILIDH) and pairing-based [16] cryptography.

1.1 XTR and Torus-Based Cryptography

The XTR setting considers the cyclotomic subgroup of a small degree exten-
sion Fp2 or Fp6 . It was generalized to higher extensions, and led to torus-
based cryptography. When these settings were proposed in 2000, computing

Experiments presented in this paper were carried out using the Grid’5000 testbed,
supported by a scientific interest group hosted by Inria and including CNRS,
RENATER and several Universities as well as other organizations (see https://www.
grid5000.fr).

c© Springer International Publishing AG 2018
C. Adams and J. Camenisch (Eds.): SAC 2017, LNCS 10719, pp. 85–105, 2018.
https://doi.org/10.1007/978-3-319-72565-9_5

https://www.grid5000.fr
https://www.grid5000.fr

86 L. Grémy et al.

a discrete logarithm in a non-prime field was supposed to be much harder
than in a prime field. The cost is usually given in terms of the L-notation:
Lpn [α, c] = exp

(
(c + o(1)) log(pn)α log log(pn)1−α

)
. In 2005, Granger and

Vercauteren estimated the cost of computing discrete logarithms in the torus
of Fp6 to be in Lpn [1/2] rather than in Lp[1/3] for prime fields [21]. One year
later, in 2006, an Lpn [1/3, c = 2.43] variant of NFS was proposed [30]. Since
then, the constant c was improved from 2.43 to 2.21 (see [5]) and now 1.93 (1.74
in favorable case) with the so-called exTNFS [32] in the specific case of compos-
ite extension degree n (e.g. n = 6). Multiple-field variants (MNFS) could allow
to reduce even further the constant c.

The record computation of a discrete logarithm in a field Fp6 is held by Zajac
for a 240-bit field [49], done in less than 38 days on a single 2 GHz computer.
The relation collection was realized in about 24 days with a generalized line
sieve algorithm: this was clearly the dominating part. The recent records are
focused on improving this costly relation collection: the same numerical example
of [49] was done again with a dedicated algorithm for dimension three, in about
the same timing by Hayasaka et al. [27] and in less than one day by Gaudry
et al. [18]. They also performed a relation collection for a 389-bit field in less
than 800 days. One part of our experimental data finishes their work: we describe
the linear algebra and one individual logarithm computation in Sect. 5.

1.2 Pairing-Friendly Curves of Small Embedding Degree

The Weil and Tate pairings on elliptic curves were proposed as a constructive
building block in asymmetric cryptography in 2000 for key exchange [28], short
digital signatures [10] and identity-based encryption [9,31]. A pairing is a map
e : G1 ×G2 → GT where the three groups are of large prime order �, G1 and G2

are two distincts subgroups (of same order) of a pairing-friendly elliptic curve,
and GT , the target group, is a multiplicative subgroup of a finite field.

E(Fq)[�] E(Fqk)[�] Fqk

∪ ∪ ∪
e : G1 × G2 → GT

(P,Q) �→ e(P,Q)

To ensure a good level of security for a pairing-friendly curve, one needs to
estimate the complexity of computing a discrete logarithm in the prime order
subgroup E(Fq)[�] of the curve on the one hand, and in the multiplicative sub-
group of order � of the embedding field Fqk = Fpn on the other hand (and when
q is a prime power, make sure that the embedding field is not actually a strict
subfield of Fqk). The state of the art for the former is O(

√
�). For the latter, the

quasi-polynomial-time, Function Field Sieve or Number Field Sieve algorithms
apply, each to a certain type of fields.

A degree six extension field Fp6 is used in XTR and the cyclotomic subgroup
of order p2−p+1 is considered. It is also the field where a pairing takes its values,
the elliptic curve being supersingular, defined over Fp2 and of order p2 − p + 1.

Computing Discrete Logarithms in Fp6 87

The hardness of a discrete logarithm computation on the curve, of prime order
subgroup �, has exponential growth O(

√
�), compared to subexponential growth

Lp6 [1/3, c] in the target field Fp6 . For this reason, for p above some threshold,
the weakness against a discrete logarithm computation attack switches from the
curve to the finite field. Since � ≈ p2 − p + 1 by construction, the complexity
is actually in O(p). For the size we target: p of 71 bits and � of 132 bits, the
computation will be already much faster in Fp6 .

This is the contrary for an MNT curve (introduced by Miyaji et al. in
2001 [39]). An MNT curve is defined over a prime field Fp and has prime order �,
hence a complexity in O(

√
�) ∼ O(

√
p). This is easier than a computation in Fp6

for a 422-bit finite field. Because of the small size of our experiment, we expect
the threshold for an MNT curve to be significantly larger than the prime p that
is targeted in this work. We decided to focus on supersingular curves of order
p2 − p + 1 in this paper.

Supersingular Curves. The supersingular curves are equipped with an easy-
to-compute distortion map φ : E(Fqk) → E(Fqk). It can be turned into an
isomorphism φ : G1 → G2, which is not available for ordinary curves. Many
pairing-based cryptosystems can now be re-stated with an asymmetric pair-
ing [35], where there is no straightforward isomorphism G1 → G2. However in
certain cases this is not possible, so that efficient symmetric pairings are still
desired. The earliest “fast” symmetric pairings are now completely broken since
they used supersingular curves over fields of characteristic 2 or 3: the target
group is then a subgroup of F24n or F36m , and the quasi-polynomial-time algo-
rithm [6] is particularly devastating [1,20]. Since this algorithm does not apply
to large characteristic, three constructions of supersingular curves survived. The
first two are defined over a (large) prime field Fp, and their embedding field
is Fp2 . The computation of a discrete logarithm in Fp2 was studied in [5]. The
third construction uses supersingular curves defined over a quadratic field Fp2 ,
of embedding degree 3, their embedding field being Fp6 . This is the practical
application of our discrete logarithm computation. An efficient Ate pairing com-
putation on these curves was proposed in [12], and is competitive compared to
supersingular curves of embedding degree 2. Numerical examples are provided
in Sect. 5.

Our Contributions. To attack the DLP over Fp6 , we needed to improve sev-
eral parts of NFS. A key ingredient to our computation is the use of sieving in
dimension 3, which follows [18] and is explained in Sect. 2, as opposed to tra-
ditional sieving in dimension 2 (that is, “(a, b) pairs” encoding a − bx become
“(a0, a1, a2) triples” encoding a0 + a1x + a2x

2). To lower the impact of using
ideals of degree 2, we were able to use nice families of cyclic degree 6 extensions,
in which these ideals have a virtual logarithm equal to zero, see Sect. 3. Last, the
individual logarithm computation had to be optimized: we were able to decrease
the initial sizes of the boots needed, and we used a descent in dimension three
in Sect. 2.5.

88 L. Grémy et al.

Our article is organized as follows. Section 2 contains a succinct description of
NFS-DL and insists on the algebraic part, some of which is reused in Sect. 3 that
justifies our choice of degree 6 cyclic extensions to solve the problem. Section 4
builds on this and explains the selection of polynomials. Section 5 contains a list
of discrete logarithm computations we were able to perform.

2 A Crash Course on NFS-DL

We start with an overview of NFS-DL, and then give technical details on the
actual algebraic factorization of ideals in number fields, relevant to our compu-
tation.

Our goal is to compute discrete logarithms in the order � subgroup of F∗
pn ,

where � is a prime divisor of Φn(p), coprime to Φc(p) for all c | n. (This assump-
tion matches the definition of embedding field of the pairing, mentioned in
Sect. 1.2.)

2.1 Overview

The first step is the polynomial selection phase, where we find two irre-
ducible (over Q) polynomials f0 and f1 with integer coefficients, and such that
ϕ = gcd(f0, f1) mod p is a degree n irreducible polynomial. We build Fpn as
Fp[X]/(ϕ) (Fig. 1).

K0
∼= Q[x]/f0(x) Q[x]/f1(x) ∼= K1

Z[x]

Fpn

Fig. 1. The NFS diagram to compute discrete logarithms in F
∗
pn .

We write Ki = Q(αi) for some root αi of fi for i ∈ {0, 1}. In the relation
collection phase, we look for polynomials of degree t − 1, say A(x) = a0 + a1x +
· · · + at−1x

t−1, with integer coefficients, so that the integral pseudonorm

Resx(fi(x), A(x))

factors over a factor basis Bi ⊂ Z (for i ∈ {0, 1}). If this is achieved, then the
algebraic numbers A(α0) and A(α1) factor as a product of prime ideals above
prime elements in their factor bases. Applying reduction from Ki to Fpn , we get
an additive relation between virtual logarithms of elements in the factor bases.

Once enough relations are collected, the linear algebra step aims to solve the
relevant system and get the virtual logarithms of the primes.

In a last step, and perhaps the most significant from a cryptanalytic point of
view, we compute individual logarithms using a method called descent. It should
be remarked that this last step validates all the preceding computations.

Computing Discrete Logarithms in Fp6 89

2.2 Relation Collection

The relation collection examines a subset S of the whole set of polynomials
A(x) of degree t − 1. The subset S is called the search space and is made of the
polynomials A(x) of bounded coefficients. This search space is chosen so as to
contain sufficiently many polynomials A to get a complete set of relations, that
is, more than #(B0 ∪ B1). A way to estimate the relations yield for a given S is
to use the Murphy-E quantity [18,40].

The cost of factoring of the integral pseudonorms and testing if the factors
are in the corresponding factor basis for each polynomial A on both sides is
prohibitive. This is why we use sieving algorithms to partially factor the integral
pseudonorm of all the polynomials in S, in order to detect promising candidates
that have a good chance to have a complete factorization involving only elements
of the factor basis. Sieving algorithms have a major drawback: their memory
consumption is proportional to the size of S. All modern record computations of
discrete logarithms in finite fields required S to be far too large to fit in memory
(the 596-bit record of [11] needed more than 260 elements, and [17] needed 261.5).

To palliate these drawbacks, Pollard [42] suggested to divide the search space
into many subsets of S using the special-q-method: all the elements A of a subset
share the property that the factorization of A(α0) (or resp. A(α1)) involves the
ideal q, if the special-q is forced on side 0 (resp. 1). If the special-qs are large
enough, there is a small number of duplicated elements in the different subsets.
The number of elements per subset, called sieving region, is adapted to fit into
memory (typically 231 elements per special-q) and the sieve algorithm in each
subset can be processed independently. The special-q-method was extended to
polynomials of any degree by Hayasaka et al. [26]. Enumerating the elements
inside a special-q-subset can be performed using the algorithms proposed in [18,
27]: we used in our practical computations an implementation of the three types
of sieve described in [18]. The implementation is available in CADO-NFS [48].

2.3 Algebraic Factorization

Let f(x) = cdx
d + · · · + c0, and denote by K the associated number field K =

Q[X]/(f(X)) = Q(α) and OK its ring of integers (maximal order). We wish to
factor the principal ideal 〈A(α)〉 = A(α)OK where A(x) = a0 + · · · + at−1x

t−1

into prime ideals. To overcome the problem that this ideal might be fractional
(non integral), it is customary to consider the ideal 〈Jdeg A

f A(x)〉 instead, where

Jf = 〈1, α〉−1 = 〈cd, cdα + cd−1, . . . , cdα
d−1 + cd−1α

d−2 + · · · + c1〉

(see [15, Sect. 9]). Then 〈Jdeg A
f A(α)〉 is an integral ideal, which factors as

〈Jdeg A
f A(α)〉 =

∏

i

qui
i (1)

for integers ui and prime ideals qi (over some finite range for the index i).

90 L. Grémy et al.

Computing the valuations in (1) might require some careful work for a few
q’s, as detailed in [13, Chaps. 4 and 6]. We start from the factorization of the
norm

R = Resx(A(x), f(x)) =
∏

j

q
vj

j

where qj is a rational prime which is the norm of one or several of the qi’s. R is
precisely the norm of the integral ideal 〈Jdeg A

f A(α)〉. In great generality, we have
a direct relation between qj and only one qi, but in a few cases, telling apart
which of the q appear above a given q is not straightforward. Computer algebra
software such as Magma or PARI/GP comes to help. Fortunately, only finitely
many of these non straightforward cases may exist, so that some precomputation
ahead of time is possible, and useful.

Since the first task is to compute the factorization of the norm, the factor
basis is first and foremost the set of rational primes q for which f(x) mod q has
roots. While enumerating this set, some exceptional (yet non exclusive) events
can be detected: when q | cd, we have a projective ideal; when q divides disc(f)
to some high power, or when f has multiple roots mod q we have a bad ideal. A
nice degree 1 ideal is simply 〈q, α−r〉 where r is a simple root of f(X) mod q, in
such a way that the ideal is completely characterized by (q, r). On the contrary,
a bad ideal cannot be so simply described; to differentiate these ideals, limited
lifting in the q-adic field Qq is useful.

Post-sieving and Schirokauer Maps. For this experiment, valuations at
prime ideals were computed with Magma. The rest of the computation, namely
all the filtering and linear algebra, was done with CADO-NFS. The final com-
putation of individual logarithms requires some care, since higher dimensional
sieving is used again.

Schirokauer maps are defined as follows. We assume that � does not ramify
in K, and let mi be the inertia degrees of prime ideals above �. We let ε =
lcm({�mi −1}). Let T denote the set of number field elements with zero valuation
at all prime ideals above �. Let a = A(α) ∈ T . The �-adic expansion of aε − 1
writes as �L(a)(α) + O(�2), with L(a) ∈ Z/�Z[x] and deg L(a) < n. We let
the Schirokauer maps be the r-coordinate vector Λ(a) formed by coefficients of
degree n − r to n − 1 of L(a), where r is the unit rank of K. The map Λ is a
homomorphism from (T /T �,×) to ((Z/�Z)r,+). We conjecture, following [46],
that its restriction to units is surjective. In fact, fairly little is canonical with
L (and hence with Λ), as it depends on the choice of the generating element
α. We do however note, as it plays an important role in this paper, that the
constant coefficient of L(a) is special: if deg(L(a)) = 0, so is deg(L(aσ)) for any
field automorphism σ (this also extends to subfields).1

Virtual logarithms of the r coordinates of the Schirokauer map vector Λ are
denoted by (vlog(SM i))1≤i≤r, or (vlog(SM s,i))1≤i≤r when emphasis on the side
s ∈ {0, 1} is desired.
1 We mention here an oversight in [4, Lemma 3.2], where Λ and L are mistakenly

confused for one another.

Computing Discrete Logarithms in Fp6 91

Numbering Ideals in a Sensible Way. In CADO-NFS, the output of the
sieve is a list of rational primes dividing the norm of some 〈Jdeg A

f A(α)〉. Let q be
one such prime. Most often, prime ideals above q are written as q = 〈q, α−r〉, for
r a root of f mod q. The ideal q contributes to the factorization of 〈Jdeg A

f A(α)〉 if
A(r) = 0 mod q. If A and f have several roots in common modulo q, extra work
is needed to separate the contribution of the ideals. Extra work is also needed
for the exceptional cases of prime ideals whose two-element form can only be
written as 〈q, q0+q1α+· · ·+qd−1α

d−1〉. To ensure consistent numbering, we keep
a conversion table from prime ideals to column indices in the relation matrix.

2.4 Linear Algebra

Once all valuations are computed, we get relations

(deg A) vlog(Jf0) +
∑

q0∈B0

uq0 vlog(q0) +
r∑

i=1

vlog(SM 0,i)

≡ (deg A) vlog(Jf1) +
∑

q1∈B1

uq1 vlog(q1) +
r∑

i=1

vlog(SM 1,i) mod �

in which the virtual logarithms are the unknowns.
A large matrix is built, each row corresponding to a relation and each column

to a prime ideal, or the ideals Jf0 and Jf1 , or Schirokauer maps. Then, we enter
the classical process of filtering, whose aim is to reduce the size of the matrix via
elementary operations on rows and columns. Once a smaller (but still sparse)
matrix is obtained, we used the distributed Block Wiedemann implementation
from CADO-NFS to find the kernel of the matrix. Reconstructing all logarithms
from the kernel is done using Magma.

2.5 Computing Individual Logarithms

To complete our work, we compute individual discrete logarithms of random-
looking targets generated from the decimals of π. A target is an element of Fp6 ,
and when it is an output of a pairing (see Sect. 1.2) or of XTR (Sect. 1.1), we
firstly apply the isomorphism to the target to get our target in Fp[x]/(ϕ(x)),
that is, the degree 6 extension Fp6 is defined by ϕ(x) given by the polynomial
selection. Computing this isomorphism has insignificant computational cost.

Initial Splitting Step (a.k.a. smoothing or boot). The first step is initial
splitting and we refer to [24,25] for a complete description. Given a target T0 ∈
Fp[x]/(ϕ(x)), the strategy is to randomize it as giT0 where g is the generator
of the order-� subgroup of Fp6 , and try many exponents i ∈ [1, . . . , � − 1] until
the resultant of f0 and a preimage of giT0 in Z[x], is Binit-smooth. Details are
provided in Sect. 5.1.

92 L. Grémy et al.

Decreasing the Norms: Descent. The initial splitting step outputs a degree 2
polynomial T = b0 + b1x + b2x

2 whose resultant with f0 is Binit-smooth, that is
Resx(f0, T) =

∏
qei
i , where the qi are prime numbers smaller than Binit. Each

qi is treated as a special-q and a sieving step in dimension 3 for the largest qi is
performed as in Sect. 2.2.

This forms a descent tree, where each node is a large prime, for which a
relation involving only smaller primes is sought with a special-q search. The
smaller primes obtained in the relation form the children of the node.

Lemma 1 ([30, Lemma 2]). Let K = Q[θ] and (a0, . . . , at−1) a t-tuple of
coprime integers, then any prime ideal p that divides

∑t−1
i=0 aiθ

i either divides
the index fθ = [OK : Z[θ]] or is of degree < t.

In the relation collection, the degree of the polynomial A(x) that gives a
relation is fixed to t − 1, which is usually 1 for prime fields, and 2 in our case.
We have more freedom during the descent step: the degree can be different,
typically larger than t − 1. Higher degree sieving for the descent was already
analyzed in [17, Sect. 5.4] for prime fields, but it did not provide a notable prac-
tical advantage. In our present case, we do need to perform the descent phase
with polynomials of degree at least 2. Further details are given in Sect. 5.

Final Recombination. When the factor basis is reached, that is we have a
complete set of relations that starts from giT0 and finally is expressed in terms
of ideals of small norm and known virtual discrete logarithm, then we recombine
everything to obtain log(giT0), and eventually logg T0.

3 Cyclic Extensions in Degree 6

Cyclic extensions improve both relation collection and linear algebra, as already
remarked in [30, Sect. 4.3]. The article [4] compiles many results and properties
of virtual logarithms of elements in Galois extensions, including cases where
logarithms of units vanish. In the same spirit, we add Lemma 2 and Theorem 1.
The most striking result is that ideals of degree 2 have virtual logarithm equal
to zero. This eases the linear algebra step in a minor way, but is still good to
have.

3.1 A Cyclic Degree 6 Family

For convenience, we use the cyclic family of polynomials of degree six given
in [22], parameterized by s:

Cs(x) = x6 − 2sx5 − (5s + 15)x4 − 20x3 + 5sx2 + (2s + 6)x + 1.

Since C−(s+3)(x) = x6Cs(1/x), we only consider s > 0. We compute

disc(Cs) = 26 · 36(s2 + 3s + 9)5.

Computing Discrete Logarithms in Fp6 93

For s ∈ {0, 5}, Cs is irreducible, has 6 real roots and is equipped with a degree
6 cyclic automorphism σ : x �→ −(2x + 1)/(x − 1). We note that σ2(x) =
−(x + 1)/x is of order 3, and σ3(x) = −(x + 2)/(2x + 1) is of order 2. The
number field K = Q[x]/(Cs(x)) has a quadratic subfield K+ defined by the
polynomial hs(y) = y2 − 2sy − 3s − 9. Over K+, Cs splits as (x3 − yx2 − (y +
3)x−1)(x3− ȳx2−(ȳ+3)x−1) where ȳ is the conjugate of y in K+. Generically,
one has:

NK/Q(x − 1) = NK/Q(2x + 1) = NK/Q(x + 2) = −33

NK/Q(x) = NK/Q(x + 1) = 1.

3.2 Cancellations of Virtual Logarithms

When we use NFS-DL with both polynomials from the family Cs(x), we observe
the following consequence of Cs(x) having six real roots.

Lemma 2. For all principal ideals of OK , there exists a generator γ with
Schirokauer maps Λ(γ) = 0. Furthermore, if the defining polynomial of K splits
completely in R, then for any automorphism σ of K, we have Λ(γσ) = 0.

Proof. By the assumption that Λ is surjective on the units, we may find γ with
Λ(γ) = 0. Since the defining polynomial splits completely in R, the unit rank is
[K : Q] − 1. Hence Λ(a) captures all but the first coordinates of L(a), following
the notations used in Sect. 2.3. Then Λ(γ) = 0 implies that L(a)(α) is a rational
number, which is Galois invariant.

A consequence of this lemma is that virtual logarithms are very constrained.

Theorem 1. Let p, �, and the degree n be as in Sect. 2. Let K be a cyclic number
field of degree n, whose defining polynomial splits completely in R. Assume that
� is coprime to #Cl(OK) as well as pc −1 for all proper divisors c of n. If q is a
prime ideal of OK that has less than n distinct Galois conjugates (in particular,
if its inertia degree is greater than 1, or if it is ramified), then vlog(q) ≡ 0
mod �.

Proof. The virtual logarithm of q is unequivocally defined as h−1 log
Fpn

γ, where
h = #Cl(OK) is the class number of K, and γ is a generator of qh as in Lemma 2.
Let σ be the Frobenius automorphism of p (i.e. such that ασ − αp ∈ pOK). Let
c < n be the number of distinct conjugate prime ideals of q. Because Gal(K/Q)
is cyclic and p is inert, we have that τ = σc is such that τ(q) = q (i.e. τ is
in the decomposition group of q). Per Lemma 2, we have Λ(γτ) = 0, so that
log

Fpn
(γτ) = pc log

Fpn
γ, whence (pc − 1) vlog q = 0. Given that c is a proper

divisor of n and � is coprime to pc − 1, this concludes the proof.

4 Polynomial Selection for Fp6

The polynomial selection is the first step of the NFS algorithm and its variants.
Many methods were proposed in the last few years, and we can partition them
in three types:

94 L. Grémy et al.

1. methods that define two number fields over a base field (originally Q). These
are (in historical order) base-m, Joux–Lercier (JL), JL–Smart–Vercauteren
JLSV0, JLSV1, JLSV2, generalized JL (GJL), Conjugation, and Sarkar–
Singh [5,19,29,30,36,45];

2. methods to exploit the structure of the subfields: TNFS and exTNFS, which
require an adaptation of one of the above methods since the base field is no
longer Q [7,32,33,44,47];

3. multiple-field variants that can apply to any of the previous methods [2,41]
(the prequels being [14] for factorization and [37] for prime fields).

Using an exTNFS variant for Fp6 would mean first to define a quadratic,
resp. cubic number field as a base field, before running one of the type 1 poly-
nomial selection methods, as if it were for n = 3, resp. n = 2. Because of this
structure, an efficient sieve in dimension 4, resp. 6 would be required2. In this
paper we first investigate a sieve in dimension three without a tower structure
for now. This is a mandatory step before being able to run an efficient sieve
in dimension four, and then implement exTNFS for the first time in Fp6 . We
will compare the following polynomial selections, with a sieve in dimension 2 or
3: JLSV1 [30], conjugation [5], (GJL) [5,36], and Sarkar–Singh [45] which is a
combination of Conjugation and GJL that exploits the decomposition of n as
2 × 3 of 3 × 2 without needing a tower extension.

4.1 First Comparison of Polynomial Selection Methods

To choose the best method, we first compare the average size of the norms in the
sieving phase. We wrote a prototype of polynomial selection in Magma, whose
aim is first to select polynomials with smallest possible coefficients, without
trying to improve the smoothness properties of the polynomials. Then with these
polynomials, we compute the average of the pseudonorms of elements a0+a1x for
dimension two, and a0+a1x+a2x

2 for dimension three. We denote by S the size
of the search space S, that is, S = #S. For a sieving dimension t, S is defined by
the inequalities −E ≤ ai ≤ E for 0 ≤ i < t − 1, and 0 < at−1 ≤ E, so that 2S ≈
(2E)t. To get a rough idea of the largest norm, we set the ai = E ≈ (2S)1/t/2,
where S = LQ[1/3, c+o(1)]. To be more precise, we fix the o(1) in the formula for
S such that it matches the previous relation collection record of 389 bits in Fp6

of [18] and set log2 S = 53 for log2 p6 = 389 bits. Our estimates are presented
in Fig. 2. Clearly, the JLSV1, Sarkar–Singh with (deg f0,deg f1) = (8, 6), and
GJL methods with a dimension 3 sieving provide much smaller norms than the
conjugation method, which would be competitive with a dimension 4 sieving,
that is not yet available. We continued our comparison between GJL, Sarkar–
Singh (8, 6) and JLSV1 methods.

2
Fp6 would be represented as a cubic extension of a quadratic field, or possibly the
converse. We would sieve over polynomials A of either of the forms (a0 +a1y)+(b0 +
b1y)x or (a0 + a1y + a2y

2) + (b0 + b1y + b2y
2)x, that is dimension four or six.

Computing Discrete Logarithms in Fp6 95

70 80 90 100 110 120 130 140 150

240 300 389 422

250

300

350

400

450

500

Q(dd)

Q(bits)

lo
g 2
(p
ro
du

ct
of

no
rm

s)

Conj, (12, 6) dim2
GJL, (7, 6) dim 2
JLSV1 (6, 6) dim 2

Conj, (12, 6) dim3
SarSin, (9, 6) dim 3
SarSin, (8, 6) dim 3
GJL, (7, 6) dim 3
JLSV1 (6, 6) dim 3

Fig. 2. Estimation of the sizes of the norms.

4.2 Refined Comparison of Polynomial Selection Methods

The size of the norms for a fixed size of Q = p6 and a fixed bound on the
coefficients of the polynomials A in the set S provides a first rough comparison of
the polynomial selection methods. To refine the comparison, we start again from
the same S and same estimation of the norms, given p6 and polynomials f0, f1.
Then we set a smoothness bound B = S1/2 and approximate the probability of
an integer of the same size as the norm to be B-smooth with the Dickman-ρ
function [40]. We obtain an estimate of the total number of relations that we
could get. Then we vary B to obtain at least #(F0 ∪ F1) relations. We check it
with the inequality, where Li(x) =

∫ x

2
dt

log t is the offset logarithmic integral:

2 Li(B) ≤ S · Pr(NK0/Q is B-smooth) · Pr(NK1/Q is B-smooth) (2)

We vary S again and adjust B accordingly in a bootstrapping process, to bal-
ance the expected time between relation collection and linear algebra: S1/2 =
#(F0 ∪ F1). Our estimates are summarized in Table 1. We considered each side
separately to estimate the smoothness probability (instead of the product of the
norms in the asymptotic formulas). Other things held constant, it is better to
have balanced norms. We also estimated the average best expected α(f0) and
α(f1). The α value is lower (i.e. better) for dimension three sieve.

We assumed that a Galois automorphism of order six was available with
the JLSV1 method, of order two with Sarkar–Singh (8, 6), but none with GJL.
A Galois automorphism of order k provides a k-fold speedup for the relation
collection. Unfortunately in our implementation, the linear algebra benefits at
most from a two-fold speedup (for even k only).

For each size of finite field (240 bits to 422 bits), the JLSV1 method produces
the smallest norms, which are balanced, and has a Galois speed-up of order six.
For all these reasons it seemed the most promising method.

96 L. Grémy et al.

Table 1. Relation collection space and smoothness bound estimates, and approxima-
tion of the relation collection and linear algebra time.

log2 p6 log2 p log2 S log2 NK0 log2 NK1 log2(NK0NK1) log2 B Relation
collection

Linear
algebra

JLSV1, deg f0 = deg f1 = 6, σ of order 6, α(f0) = −3.0, α(f1) = −8.0

240 40 37 112 113 225 21 235 235

300 50 42 132 133 265 23 239 240

389 65 48 158 159 317 26 245 246

422 71 50 168 168 336 28 247 248

GJL, deg f0 = 7, deg f1 = 6, no Galois automorphism, α(f0) = 0.0, α(f1) = −4.0

240 40 41 92 146 238 23 240.5 240

300 51 45 104 173 277 25 245 245

389 65 50.5 118 210 328 28.5 250.5 250.5

422 71 52.5 122 224 346 29.5 252.5 252.5

Sarkar–Singh, deg f0 = 8, deg f1 = 6, σ of order 2, α(f0) = −2.0, α(f1) = −4.0

240 40 40 106 140 246 23 239 239

300 50 43 112 156 268 24.5 242 242

389 65 49 131 196 327 28 248 248

422 71 50 135 206 341 29 250 250

4.3 Optimizing JLSV1 Pairs of Polynomials

The next step is to run the JLSV1 polynomial selection method for the given
prime p, and to select polynomials that have good smoothness properties. For
that we used the dimension three α and Murphy’s E functions as defined in [18].

The JLSV1 method outputs two polynomials of degree n and coefficients of
size p1/2. We used the cyclic degree 6 family Cs introduced in Sect. 3, allowing a
six-fold speed-up in the relation collection3. We can enumerate all the parameters
s such that

√
p/2 < |s| <

√
p, Cs(x) is irreducible, and has a good α value, that

is α(Cs) ≤ −2.0 in our case. We pre-selected about 4000 such polynomials Cs

as good f0 candidates. Given a f0 = Cs0 for a certain s0, the second polynomial
f1 is built as follows: One computes a rational reconstruction of the parameter
s0 modulo p: s0 = u/v mod p, where |u|, |v| ∼ p1/2 and |v| = 1. Then one
sets f1 = vCu/v. To improve α(f1) without increasing the size of the largest
coefficient of f1 denoted by ‖f1‖∞ = max0≤i≤deg f1 |f1,i|, we can enumerate the
linear combinations f1 + λf0, where 0 < |λ| < ‖f1‖∞/‖f0‖∞ (by construction,
we will have ‖f1‖∞ > ‖f0‖∞ and we can choose to have ‖f1‖∞/‖f0‖∞ of about
210). The improved polynomial f1 +λf0 is still in the family Cs since it is linear
in s. There is a large room for improving α in the JLSV1 method, without
increasing the size of the coefficients (neither the size of the norms), which is
another reason why we have chosen it for our record computations.
3 The Galois action does not produce more relations, it produces the same relations

but six times faster.

Computing Discrete Logarithms in Fp6 97

5 Computations

We ran complete computations in Fp6 for different problem sizes. Three of them
were already done, at least partially, in previous work: for these, we provide
an experimental improvement. For the largest problem size, the experimental
data we provide is new. Timings of all these different works are summarized in
Table 4, see also [23]. We used computer clusters of various research institutes
and universities to run our experiments. Computations for bitsizes 240, 300 and
389 all used Intel Xeon E5520 CPUs, with clock speed 2.27 GHz, while for
the 422-bit record, we used also a set of clusters from the grid5000 platform.
We give in Table 2 the primes and labels we will use to refer to them, for each
bitsize. The p6bd40 problem was covered in [49]. Relation collection was dra-
matically improved by [18], and that paper also completed relation collection for
the p6bd50 and p6bd65 problems. For this reason, we refer to [18] for experimen-
tal data about relation collection for these three problems, as we merely based
our work on the data set produced by [18]. We contributed new linear algebra
computations and new individual logarithm computations for problems p6bd40,
p6bd50 and p6bd65, providing key improvements over the previous state of the
art. We also report an entirely new computation for the larger challenge p6dd22.

Table 2. Primes, bitsizes and labels

Name p Seed for p log2 p log2 p6 log2 � �

p6bd40 1081034284409 [49] 40 240 79 (p2 − p + 1)/3

p6bd50 1043035802846857 [18] 50 300 100 p2 − p + 1

p6bd65 31415926535897942161 [18] 65 389 130 p2 − p + 1

p6dd22 1350664108659952233509 RSA1024 71 422 132 (p2 − p + 1)/651

Table 3 gives polynomial selection parameters, and relation collection param-
eters and results, for all experiments. The sieving region bounds are denoted by
H = (a0, a1, a2), the precomputed factor basis bounds involved in the sieve
by lims = lim0,lim1 (a.k.a. fbb0,fbb1) and the large prime bounds, i.e. the
smoothness bounds by lpbs = lpb0,lpb1. In the sieving process, the prime
ideals in K0, resp. K1, of norm at most lim0 bits, resp. lim1 bits involved
in a pseudo-norm are sieved. After the sieving process, if the remaining non-
factorized part of a pseudo-norm is less than threshold bits, a cofactorization
process with ECM tries to factor it further. This entails finding the prime ideals
of norm between lims and lpbs. Details about the computation of the p6dd22
are given in Sect. 5.3.

5.1 Individual Logarithms

Initial Splitting Step. Since Fp6 has three proper subfields Fp, Fp2 and Fp3 ,
we can apply the fast initial splitting technique of [25]. The target T = a0 +
a1x + a2x

2 + a3x
3 + a4x

4 + a5x
5 ∈ Fp6 is expressed as

98 L. Grémy et al.

Table 3. Properties of the polynomials, parameters and statistics of the relation col-
lection with dimension two and dimension three sieving, see also [23].

p6bd40 [18] p6bd50 [18] p6bd65 [18] p6dd22 (new)

α-values −1.8,−11.5 −4.9,−12 −5.7,−11.5 −2.4,−14.3

Murphy-E 2−21.2 2−23.7 2−28.3 2−29.0

Sieving region H 6, 6, 6 7, 7, 7 9, 9, 8 9, 9, 8

lims (fbbs) 219, 219 220.5, 220.5 221, 221 221, 221

Smoothness bounds
(lpbs)

223, 223 225, 225 228, 228 229, 229

#S = qmax2
H0+H1+H2 241 246 254 255

Special-q side 1 1 1 0

Size of largest norms,
after removing q (bits)

115, 117 128, 139 160, 173 151, 203

Thresholds 65, 65 80, 80 90, 90 90, 110–123

q-range]219, 221.2[]220.5, 222.3[]221, 225.1[]221, 227.9[

relations 1,445,094 5,857,098 29,679,203 100,778,132

Unique 1,258,327 5,245,451 23,654,314 71,850,465

Purged 246,236 621,360 5,440,780 18,335,401

Filtered 72,749 201,601 1,661,759 5,218,599

T = w0(u0 + U)(v0 + v1V + V 2)(b0 + b1x + b2x
2), (3)

where 〈1, U〉 is a polynomial basis of Fp2 , 〈1, V, V 2〉 is a polynomial basis of Fp3 ,
wi, ui, vi ∈ Fp and |bi| ≈ p2/3, so that the resultant of f0 and b0 + b1x + b2x

2

(where the bi’s are lifted in Z) is bounded by O(p5) (assuming ‖f0‖∞ = p1/2

since we are in the JLSV1 case). We observed that a representation as in (3) was
found for 2/3 of the giT0. If it is not, we skip that i and proceed to the next one.
In the JLSV1 case for Fp6 , asymptotically the optimal Binit is Lp6 [2/3, 0.614]
and the number of trials to find a smooth resultant is Lp6 [1/3, 1.357] [25].

The Descent. The descent was not manageable with the classical dimension
two sieving, so we opted for dimension three sieving. This was due to the large
size of the norms involved in the descent. The JLSV1 method does not have a
preferred side for the descent: both polynomials have coefficients of size p1/2.

Given a special-q of norm ±q, the set of degree-2 polynomials A such that
A(α0) (resp. A(α1)) involves q in its ideal factorization is a dimension three
lattice Λq of volume q. Let v0,v1,v2 be a reduced basis, obtained for example by
the LLL algorithm. The coefficients of the vectors are typically close to q1/3. We
enumerate linear combinations λ0v0 +λ1v1 +λ2v2, which form the polynomials
A(x) =

∑2
j=0

∑2
i=0 λivi[j]xj , by the same (sieving) procedure as the one of the

Computing Discrete Logarithms in Fp6 99

relation collection. Given a search space volume S, we bound the λi’s by S1/34,
so that the resultant of A and f0 or f1 is bounded by O(S2q2p) [8]. When A
is of degree 1, then Λq becomes a two-dimensional lattice: the reduction of the
lattice outputs two short vectors whose coefficients are typically close to q1/2,
and the resultants are bounded by O(S3q3p1/2). The crossover point between
dimension three and two sieving is roughly at Sq = p1/2: when Sq > p1/2, one
should prefer dimension three, while for Sq < p1/2 dimension two is better.

5.2 p6bd65

The polynomials are

f0 = x6 − 218117072x5 − 545292695x4 − 20x3 + 545292680x2 + 218117078x + 1,

and f1 = 288064804440x6 + 1381090484642x5 − 868245854995x4 − 5761296088800x3

− 3452726211605x2 + 347298341998x + 288064804440.

The relation collection was done in [18]. We only report the linear algebra and
individual logarithm timings.

Linear Algebra. We used the Block Wiedemann implementation in CADO-
NFS, with parameters n = 10 and m = 20. The cumulated numbers of core years
for the various steps of the algorithm are 80 days for the Krylov sequences, 6
days for the linear generator computation, and 14 days for the final computation
of the solution, which yielded the values of 19,805,202 logarithms of the factor
bases.

Individual Logarithm. Take g = x + 3 ∈ Fp6 = Fp[x]/(f0(x)). From N0(g) =
11 · 23 · 37 · 1398037, we get vlog(g) = 907665820983150820551985406251606874974. The
target is

z = x5 + 3141592653589793238x4 + 4626433832795028841x3

+ 9716939937510582097x2 + 4944592307816406286x + 2089986280348253421

and g116775z has a smooth norm:

N(g116775z) = 11 · 23 · 97 · 46073 · 2958947 · 1009479469 · 6931176587051 · 24379478228011
· 70817385294241 · 199377274156547 · 373976871809623

Descending all of these took approximately 19 h. We get

vlog(z) = 594727449023976898713456336273989724540.

4 In fact, if one of the vectors vi has coordinates shorter than the expected q1/3, it
suffices to set skew bounds on the λi’s. Furthermore, having a short vector in the
lattice allows us to expect more often a relation involving small ideals, which is
better.

100 L. Grémy et al.

5.3 p6dd22

The polynomials are

f0 = x6 − 18375893742x5 − 45939734370x4 − 20x3

+ 45939734355x2 + 18375893748x + 1,

and f1 = 147003909360x6 − 738054758102x5 − 4050195535655x4 − 2940078187200x3

+ 1845136895255x2 + 1620078214262x + 147003909360.

Relation Collection. For this computation, we selected the sieving region to
be 210×210×28 for each special-q. Both smoothness bounds were 229 and sieving
bounds were 221. We sieved the 223.6 smallest special-qs on the f0-side with norm
larger than 221. More precisely, thanks to the order 6 Galois action, we only had
to consider 221.1 special-q orbits.

We designed the polynomials with balanced coefficient sizes but unbalanced
α: we were lucky and got α(f1) = −14.4, but α(f0) = −2.2 only. With the
special-q on side 0, the norm ranged from 142 to 191 bits, once the contribution
of the special-q was removed. On side 1, the norm ranged from 175 to 245
bits. Taking into account the offset α/ log 2 (3.2 and 20.8 bits), the yield was
better with this choice of special-q than if we had put in on side 1, at least
for the small special-qs. It was a closer call for larger special-qs. We increased
the cofactorization threshold on side 1 from 110 to 115 then 121, allowing more
room of the cofactorization process after the sieving. We found ≈72 M unique
relations, after removing the 28.8% duplicates, in about 8400 core-days.

Linear Algebra. We used a combination of Intel Xeon E5-2630v3, E5-
2650, E7-4850 v3 CPUs, connected with Infiniband FDR fabric. The block
Wiedemann algorithm was used with parameters m = 30 and n = 10. The
cumulated running times for the various steps of the algorithm were 2.67 core
years for the computation of the Krylov sequences, 0.1 core years for the com-
putation of the linear generator, and 0.3 core years for the computation of the
solution vector.

Individual Discrete Logarithm Computation. Define Fp2 = Fp[i]/(i2 +2).
The curve E/Fp2 : y2 = x3+b, b = i+2 is supersingular of trace p, hence of order
p2 − p + 1. Define Fp6 = Fp2 [j]/(j3 − b). The embedding field of the curve E is
Fp6 . We take G0 = (6, 875904596857578874580 + 221098138973401953062i) as a generator
of E(Fp2), and G1 = [651]G0 is a generator of E(Fp2)[�]. The distortion map
φ : (x, y) �→ (xp/(jb(p−2)/3), yp/(b(p−1)/2)) gives a generator G2 = φ(G1) of the
second dimension of the �-torsion. We take the point P0 = (314159265358979323847+
264338327950288419716i, 935658401868915145130 + 643077111364229171931i) ∈ E(Fp2) from
the decimals of π, and P = 651P0 ∈ E(Fp2)[�] is our challenge. We aim to
compute the discrete logarithm of P to base G1. To do so, we transfer G1 and
P to Fp6 , and obtain g = eTate(G1, φ(G1)) and t = eTate(P1, φ(G1)), or

Computing Discrete Logarithms in Fp6 101

t = 265997258109245157592 + 397390775772974644009x + 8418434607347781848x2

+ 1319940880937683823103x3 + 1160913500049277376294x4 + 775101705346231535180x5,

g = 1189876249224772794459 + 375273593285154553828x + 426102368940555566443x2

+ 192100975135320642877x3 + 871172323955942457570x4 + 95550149550418478996x5.

The initial splitting gave a 41-bit smooth generator g545513 = uvw
(−141849807327922 − 5453622801413x + 54146406319659x2) where u ∈ Fp2 , v ∈ Fp3 , w ∈
Fp so that their logarithm modulo � is zero. The norm of the latter term is:
33 · 72 · 112 · 17 · 317 · 35812537 · 16941885101 · 17450874689 · 22088674079 · 35134635829 ·
85053580259 ·144278841431 ·1128022180423 ·2178186439939. We had 8 special-q to descend.
The smallest special-q had 34-bit norm q34 = 16941885101. We used the same
sieving implementation to find a relation involving this ideal, and smaller ones.
We set the search space to 231 and the smoothness bound to 29 bits. We were
able to find in 836 s on a Core i5-6500 @ 3.2 GHz three relations involving q34
on the side 0, and other prime ideals of norm strictly smaller than 229.

We also got a 45-bit smooth challenge of norm 821 · 3877 · 6788447 · 75032879 ·
292064093 · 257269999897 · 456432316517 · 1029313376969 · 3142696252889 · 4321280585357 ·
18415984442663:

g58779t = uvw(−137392843659670 − 34918302724509x + 13401171220212x2)

We obtained vlog(g) = 1463611156020281390840341035255174419992 and vlog(t) =
1800430200805697040532521612524029526611, so that logg(t) = vlog(t)/ vlog(g)
mod � = 752078480268965770632869735397989464592.

Table 4. Comparison with other record computations in core-days, and total in core-
years, including also the polynomial selection and individual logarithm computation if
known. For references, see https://gitlab.inria.fr/dldb/discretelogdb.

Year Finite
field

Size of pn Authors Algorithm Rel. col.
c-days

Lin. alg.
c-days

Total
c-days

Total
c-years

2013 Fp12 203 HAKT NFS-HD 10.5 0.28 11 0.03

2008 Fp6 240 Zajac NFS-HD 24.16 13.44 38 0.10

2015 Fp6 240 HAKT NFS-HD 21.94 – – –

2017 Fp6 240 this work NFS-HD 0.90 0.22 1.12 0.003

2017 Fp6 300 this work NFS-HD 6.84 1.64 8.48 0.03

2017 Fp5 324 GGM NFS-HD 359 11.5 386 1.05

2017 Fp6 389 this work NFS-HD 790 100 890 2.44

2015 Fp4 392 BGGM NFS 114 390 510 1.40

2017 Fp6 422 this work NFS-HD 8400 1120 9520 26

2015 Fp3 593 BGGM NFS 3287 5113 8400 23

2016 Fp2 595 BGGM NFS 157 18 175 0.48

2017 Fp 768 KDLPS NFS 1461000 401775 1935825 5300

https://gitlab.inria.fr/dldb/discretelogdb

102 L. Grémy et al.

6 Cryptographic Implications

We demonstrated the practicality of sieving in higher dimension for comput-
ing discrete logarithms in finite fields of medium characteristic, with a record-
breaking computation in a 422-bit field Fp6 . Moreover our parameter compar-
isons of Sect. 4 can be extrapolated to estimate the cost of computing discrete
logarithms in larger fields Fp6 , and also be generalized for Fp12 . To reach the
next pairing frontier, that is Fp12 , it seems necessary to combine these ideas and
extend them so as to make new variants practical. This work will be a useful
additional step to a precise estimation of the cost of computing discrete loga-
rithms in the embedding field Fp12 of Barreto-Naehrig (BN) curves, following
Barbulescu and Duquesne [3] and Menezes et al. [38].

Acknowledgments. The authors are grateful to Pierrick Gaudry and Paul
Zimmermann for numerous discussions all along this work. Many thanks to the ref-
erees whose remarks helped us improve the presentation of our results.

References

1. Adj, G., Canales-Mart́ınez, I., Cruz-Cortés, N., Menezes, A., Oliveira, T.,
Rivera-Zamarripa, L., Rodŕıguez-Henŕıquez, F.: Computing discrete logarithms in
cryptographically-interesting characteristic-three finite fields. ePrint report (2016).
http://eprint.iacr.org/2016/914, http://ecc2016.yasar.edu.tr/slides/ecc2016-gora.
pdf

2. Barbulescu, R., Pierrot, C.: The multiple number field sieve for medium- and
high-characteristic finite fields. LMS J. Comput. Math. 17, 230–246 (2014).
http://journals.cambridge.org/article S1461157014000369

3. Barbulescu, R., Duquesne, S.: Updating key size estimations for pairings. ePrint
report (2017). http://eprint.iacr.org/2017/334

4. Barbulescu, R., Gaudry, P., Guillevic, A., Morain, F.: Improvements to the number
field sieve for non-prime finite fields, November 2014. Working paper, https://hal.
inria.fr/hal-01052449

5. Barbulescu, R., Gaudry, P., Guillevic, A., Morain, F.: Improving NFS for the dis-
crete logarithm problem in non-prime finite fields. In: Oswald, E., Fischlin, M.
(eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 129–155. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46800-5 6

6. Barbulescu, R., Gaudry, P., Joux, A., Thomé, E.: A heuristic quasi-polynomial
algorithm for discrete logarithm in finite fields of small characteristic. In: Nguyen,
P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 1–16. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 1

7. Barbulescu, R., Gaudry, P., Kleinjung, T.: The tower number field sieve. In: Iwata,
T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 31–55. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-48800-3 2

8. Bistritz, Y., Lifshitz, A.: Bounds for resultants of univariate and bivariate polyno-
mials. Linear Algebra Appl. 432(8), 1995–2005 (2010)

9. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44647-8 13

http://eprint.iacr.org/2016/914
http://ecc2016.yasar.edu.tr/slides/ecc2016-gora.pdf
http://ecc2016.yasar.edu.tr/slides/ecc2016-gora.pdf
http://journals.cambridge.org/article_S1461157014000369
http://eprint.iacr.org/2017/334
https://hal.inria.fr/hal-01052449
https://hal.inria.fr/hal-01052449
https://doi.org/10.1007/978-3-662-46800-5_6
https://doi.org/10.1007/978-3-642-55220-5_1
https://doi.org/10.1007/978-3-662-48800-3_2
https://doi.org/10.1007/3-540-44647-8_13

Computing Discrete Logarithms in Fp6 103

10. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing.
In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1 30

11. Bouvier, C., Gaudry, P., Imbert, L., Jeljeli, H., Thomé, E.: Discrete logarithms
in GF(p) - 180 digits. NMBRTHRY archives, item 004703, June 2014. https://
listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;615d922a.1406

12. Chen, B., Zhao, C.A.: Self-pairings on supersingular elliptic curves
with embedding degree three. Finite Fields Appl. 28, 79–93 (2014).
sciencedirect.com/science/article/pii/S1071579714000240

13. Cohen, H.: A Course in Algorithmic Algebraic Number Theory. Graduate Texts in
Mathematics, vol. 138. Springer, Heidelberg (2000). https://doi.org/10.1007/978-
3-662-02945-9. Fourth printing

14. Coppersmith, D.: Modifications to the number field sieve. J. Cryptology 6(3), 169–
180 (1993)

15. Elkenbracht-Huizing, R.M.: An implementation of the number field sieve. Experi-
ment. Math. 5(3), 231–253 (1996)

16. Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves.
J. Cryptology 23(2), 224–280 (2010)

17. Fried, J., Gaudry, P., Heninger, N., Thomé, E.: A Kilobit Hidden SNFS discrete
logarithm computation. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10210, pp. 202–231. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56620-7 8

18. Gaudry, P., Grémy, L., Videau, M.: Collecting relations for the num-
ber field sieve in GF (p6). LMS J. Comput. Math. 19, 332–350 (2016).
https://hal.inria.fr/hal-01273045

19. Gordon, D.M.: Discrete logarithms in GF(p) using the number field sieve. SIAM
J. Discrete Math. 6(1), 124–138 (1993)

20. Granger, R., Kleinjung, T., Zumbrägel, J.: Breaking ‘128-bit Secure’ supersingular
binary curves. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol.
8617, pp. 126–145. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-44381-1 8

21. Granger, R., Vercauteren, F.: On the discrete logarithm problem on algebraic
tori. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 66–85. Springer,
Heidelberg (2005). https://doi.org/10.1007/11535218 5

22. Gras, M.N.: Special units in real cyclic sextic fields. Math. Comp. 48(177), 179–182
(1987). https://doi.org/10.2307/2007882

23. Grémy, L.: Algorithmes de crible pour le logarithme discret dans les corps finis
de moyenne caractéristique. Doctorat, Université de Lorraine, Nancy, France,
September 2017, to appear. http://tel.archives-ouvertes.fr/

24. Guillevic, A.: Computing individual discrete logarithms faster in GF(pn) with the
NFS-DL algorithm. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS,
vol. 9452, pp. 149–173. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48797-6 7

25. Guillevic, A.: Faster individual discrete logarithms with the QPA and NFS variants.
HAL archive, August 2017. 2nd version, https://hal.inria.fr/hal-01341849

26. Hayasaka, K., Aoki, K., Kobayashi, T., Takagi, T.: An experiment of num-
ber field sieve for discrete logarithm problem over GF(p12). In: Fischlin, M.,
Katzenbeisser, S. (eds.) Number Theory and Cryptography. LNCS, vol. 8260, pp.
108–120. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42001-
6 8

https://doi.org/10.1007/3-540-45682-1_30
https://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;615d922a.1406
https://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;615d922a.1406
http://www.sciencedirect.com/science/article/pii/S1071579714000240
https://doi.org/10.1007/978-3-662-02945-9
https://doi.org/10.1007/978-3-662-02945-9
https://doi.org/10.1007/978-3-319-56620-7_8
https://doi.org/10.1007/978-3-319-56620-7_8
https://hal.inria.fr/hal-01273045
https://doi.org/10.1007/978-3-662-44381-1_8
https://doi.org/10.1007/978-3-662-44381-1_8
https://doi.org/10.1007/11535218_5
https://doi.org/10.2307/2007882
http://tel.archives-ouvertes.fr/
https://doi.org/10.1007/978-3-662-48797-6_7
https://doi.org/10.1007/978-3-662-48797-6_7
https://hal.inria.fr/hal-01341849
https://doi.org/10.1007/978-3-642-42001-6_8
https://doi.org/10.1007/978-3-642-42001-6_8

104 L. Grémy et al.

27. Hayasaka, K., Aoki, K., Kobayashi, T., Takagi, T.: A construction of 3-Dimensional
lattice sieve for number field sieve over Fpn . Cryptology ePrint Archive, Report
2015/1179 (2015). http://eprint.iacr.org/2015/1179

28. Joux, A.: A one round protocol for tripartite Diffie–Hellman. In: Bosma, W. (ed.)
ANTS 2000. LNCS, vol. 1838, pp. 385–393. Springer, Heidelberg (2000). https://
doi.org/10.1007/10722028 23

29. Joux, A., Lercier, R.: Improvements to the general number field sieve for discrete
logarithms in prime fields. A comparison with the Gaussian integer method. Math.
Comp. 72(242), 953–967 (2003)

30. Joux, A., Lercier, R., Smart, N., Vercauteren, F.: The number field sieve in the
medium prime case. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp.
326–344. Springer, Heidelberg (2006). https://doi.org/10.1007/11818175 19

31. Kasahara, M., Ohgishi, K., Sakai, R.: Cryptosystems based on pairing. In: The
2000 Symposium on Cryptography and Information Security. vol. SCIS2000-C20,
January 2000

32. Kim, T., Barbulescu, R.: Extended tower number field sieve: a new complexity for
the medium prime case. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS,
vol. 9814, pp. 543–571. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53018-4 20

33. Kim, T., Jeong, J.: Extended tower number field sieve with application to finite
fields of arbitrary composite extension degree. In: Fehr, S. (ed.) PKC 2017. LNCS,
vol. 10174, pp. 388–408. Springer, Heidelberg (2017). https://doi.org/10.1007/978-
3-662-54365-8 16

34. Lenstra, A.K., Verheul, E.R.: The XTR public key system. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 1–19. Springer, Heidelberg (2000). https://
doi.org/10.1007/3-540-44598-6 1

35. Lewko, A.: Tools for simulating features of composite order bilinear groups in the
prime order setting. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 318–335. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29011-4 20

36. Matyukhin, D.: Effective version of the number field sieve for discrete log-
arithms in the field GF(pk). Trudy po Discretnoi Matematike 9, 121–151
(2006). (in Russian), http://m.mathnet.ru/php/archive.phtml?wshow=paper&
jrnid=tdm&paperid=144&option lang=eng

37. Matyukhin, D.V.: On asymptotic complexity of computing discrete logarithms over
GF(p). Discrete Math. Appl. 13(1), 27–50 (2003)

38. Menezes, A., Sarkar, P., Singh, S.: Challenges with assessing the impact of NFS
advances on the security of pairing-based cryptography. In: Phan, R.C.-W., Yung,
M. (eds.) Mycrypt 2016. LNCS, vol. 10311, pp. 83–108. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-61273-7 5

39. Miyaji, A., Nakabayashi, M., Takano, S.: Characterization of elliptic curve traces
under FR-reduction. In: Won, D. (ed.) ICISC 2000. LNCS, vol. 2015, pp. 90–108.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45247-8 8

40. Murphy, B.A.: Polynomial selection for the number field sieve integer factorisa-
tion algorithm. Ph.D. thesis, Australian National University (1999). http://maths-
people.anu.edu.au/∼brent/pd/Murphy-thesis.pdf

41. Pierrot, C.: The multiple number field sieve with conjugation and generalized Joux-
Lercier methods. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9056, pp. 156–170. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46800-5 7

http://eprint.iacr.org/2015/1179
https://doi.org/10.1007/10722028_23
https://doi.org/10.1007/10722028_23
https://doi.org/10.1007/11818175_19
https://doi.org/10.1007/978-3-662-53018-4_20
https://doi.org/10.1007/978-3-662-53018-4_20
https://doi.org/10.1007/978-3-662-54365-8_16
https://doi.org/10.1007/978-3-662-54365-8_16
https://doi.org/10.1007/3-540-44598-6_1
https://doi.org/10.1007/3-540-44598-6_1
https://doi.org/10.1007/978-3-642-29011-4_20
https://doi.org/10.1007/978-3-642-29011-4_20
http://m.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=tdm&paperid=144&option_lang=eng
http://m.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=tdm&paperid=144&option_lang=eng
https://doi.org/10.1007/978-3-319-61273-7_5
https://doi.org/10.1007/3-540-45247-8_8
http://maths-people.anu.edu.au/~brent/pd/Murphy-thesis.pdf
http://maths-people.anu.edu.au/~brent/pd/Murphy-thesis.pdf
https://doi.org/10.1007/978-3-662-46800-5_7
https://doi.org/10.1007/978-3-662-46800-5_7

Computing Discrete Logarithms in Fp6 105

42. Pollard, J.M.: The lattice sieve. In: Lenstra, A.K., Lenstra Jr., H.W. (eds.) The
Development of the Number Field Sieve. LNM, vol. 1554, pp. 43–49. Springer,
Heidelberg (1993). https://doi.org/10.1007/BFb0091538

43. Rubin, K., Silverberg, A.: Torus-based cryptography. In: Boneh, D. (ed.) CRYPTO
2003. LNCS, vol. 2729, pp. 349–365. Springer, Heidelberg (2003). https://doi.org/
10.1007/978-3-540-45146-4 21

44. Sarkar, P., Singh, S.: A general polynomial selection method and new asymptotic
complexities for the tower number field sieve algorithm. In: Cheon, J.H., Takagi,
T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 37–62. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53887-6 2

45. Sarkar, P., Singh, S.: New complexity trade-offs for the (multiple) number field sieve
algorithm in non-prime fields. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9665, pp. 429–458. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49890-3 17

46. Schirokauer, O.: Discrete logarithms and local units. Philos. Trans. Roy. Soc. Lon-
don Ser. A 345(1676), 409–423 (1993)

47. Schirokauer, O.: Using number fields to compute logarithms in finite fields.
Math. Comp. 69(231), 1267–1283 (2000). http://www.ams.org/journals/mcom/
2000-69-231/S0025-5718-99-01137-0/

48. The CADO-NFS development team: CADO-NFS, an implementation of the num-
ber field sieve algorithm (2017). Development version, http://cado-nfs.gforge.inria.
fr/

49. Zajac, P.: Discrete Logarithm Problem in Degree Six Finite Fields. Ph.D. the-
sis, Slovak University of Technology (2008). http://www.kaivt.elf.stuba.sk/kaivt/
Vyskum/XTRDL

https://doi.org/10.1007/BFb0091538
https://doi.org/10.1007/978-3-540-45146-4_21
https://doi.org/10.1007/978-3-540-45146-4_21
https://doi.org/10.1007/978-3-662-53887-6_2
https://doi.org/10.1007/978-3-662-49890-3_17
https://doi.org/10.1007/978-3-662-49890-3_17
http://www.ams.org/journals/mcom/2000-69-231/S0025-5718-99-01137-0/
http://www.ams.org/journals/mcom/2000-69-231/S0025-5718-99-01137-0/
http://cado-nfs.gforge.inria.fr/
http://cado-nfs.gforge.inria.fr/
http://www.kaivt.elf.stuba.sk/kaivt/Vyskum/XTRDL
http://www.kaivt.elf.stuba.sk/kaivt/Vyskum/XTRDL

Computing Low-Weight Discrete Logarithms

Bailey Kacsmar1, Sarah Plosker2, and Ryan Henry3(B)

1 University of Waterloo, Waterloo, ON, Canada
bkacsmar@uwaterloo.ca

2 Brandon University, Brandon, MB, Canada
ploskers@brandonu.ca

3 Indiana University, Bloomington, IN, USA
henry@indiana.edu

Abstract. We propose some new baby-step giant-step algorithms for
computing “low-weight” discrete logarithms; that is, for computing dis-
crete logarithms in which the radix-b representation of the exponent is
known to have only a small number of nonzero digits. Prior to this work,
such algorithms had been proposed for the case where the exponent is
known to have low Hamming weight (i.e., the radix-2 case). Our new algo-
rithms (i) improve the best-known deterministic complexity for the radix-
2 case, and then (ii) generalize from radix-2 to arbitrary radixes b > 1. We
also discuss how our new algorithms can be used to attack several recent
Verifier-based Password Authenticated Key Exchange (VPAKE) proto-
cols from the cryptographic literature with the conclusion that the new
algorithms render those constructions completely insecure in practice.

Keywords: Discrete logarithms · Baby-step giant-step
Meet-in-the-middle · Cryptanalysis
Verifier-based Password Authenticated Key Exchange (VPAKE)

1 Introduction

In this paper, we deal with the problem of computing discrete logarithms when
the radix-b representation of the exponent sought is known to have low weight
(i.e., only a small number of nonzero digits). We propose several new baby-step
giant-step algorithms for solving such discrete logarithms in time depending
mostly on the radix-b weight (and length) of the exponent.

Briefly, the discrete logarithm (DL) problem in a multiplicative group G of
order q is the following: Given as input a pair (g, h) ∈ G×G, output an exponent
x ∈ Zq such that h = gx, provided one exists. The exponent x is called a discrete
logarithm of h with respect to the base g and is denoted, using an adaptation
of the familiar notation for logarithms, by x ≡ logg h mod q. A longstanding
conjecture, commonly referred to as the DL assumption, posits that the DL
problem is “generically hard”; that is, that there exist infinite families of groups
in which no (non-uniform, probabilistic) polynomial-time (in lg q) algorithm can

c© Springer International Publishing AG 2018
C. Adams and J. Camenisch (Eds.): SAC 2017, LNCS 10719, pp. 106–126, 2018.
https://doi.org/10.1007/978-3-319-72565-9_6

Computing Low-Weight Discrete Logarithms 107

solve uniform random instances of the DL problem with inverse polynomial
(again, in lg q) probability.

Our results do not refute (or even pose a serious challenge to) the DL assump-
tion. Indeed, although our algorithms are generic,1 they do not apply to uniform
random DL instances nor do they generally run in polynomial time. Rather, we
demonstrate that, for certain non-uniform instance distributions, one can solve
the DL problem in time that depends mostly on a parameter strictly smaller
than lg q. Specifically, to solve a DL problem instance in which the radix-b rep-
resentation of the exponent has length m and weight t, our fastest determin-
istic algorithm evaluates

(
t + o(1)

)(m/2
t/2

)
(b − 1)t/2 group operations and stores

2
(
m/2
t/2

)
(b−1)t/2 group elements in the worst case; for the same problem, our ran-

domized (Las Vegas) algorithm evaluates fewer than
√

16t
π

(
m/2
t/2

)
(b − 1)t/2 + O(1)

group operations and stores
(
m/2
t/2

)
(b − 1)t/2 group elements, on average. For the

special case of radix-2, our fastest deterministic algorithm improves on the pre-
vious result (due to Stinson [29, Sect. 4.1]) by a factor c

√
t lg m for some con-

stant c, reducing the number of group operations used from Θ
(
t3/2 lg m

(
m/2
t/2

))
to(

t + o(1)
)(m/2

t/2

)
. While a far cry from challenging established cryptographic best

practices, we do observe that our new algorithms are not without practical ram-
ifications. Specifically, we demonstrate a practical attack against several recent
Verifier-based Password Authenticated Key Exchange (VPAKE) protocols from
the literature [12–15,34].

Organization. The remainder of this paper is organized as follows. In Sect. 2,
we recall mathematical preliminaries necessary to frame our main results. In
Sect. 3, we review and improve on several variants of an algorithm for solving
the “low-Hamming-weight DL problem” and then, in Sect. 4, we present our new
generalizations to arbitrary radixes b > 1. In Sect. 5, we review existing work
that addresses some related “low-weight” DL variants. In Sect. 6, we showcase
the cryptanalytic implications of the new algorithms by explaining how they can
be used to attack several Verifier-based Password Authenticated Key Exchange
(VPAKE) protocols from the literature.

2 Mathematical Preliminaries

Throughout this paper, G denotes a fixed cyclic group with order q, which we
express using multiplicative notation, and g denotes a fixed generator of G. We
are interested in computing the DLs of elements h ∈ G to the base g. We assume
that the group order q is known, though our techniques work much the same
when q is not known.

1 In other words, our algorithms only require black-box oracle access to the group
operation, its inverse, and an equality test; they can, therefore, be run over any
finite group.

108 B. Kacsmar et al.

Radix-b representations. Let b > 1 be a positive integer (the “radix”). For
every positive integer x, there exists a unique positive integer m and an m-tuple
(xm, . . . , x1) ∈ {0, 1, . . . , b − 1}m with xm �= 0 such that

x =
∑m

i=1
xi · bi−1, (1)

called the radix -b representation of x. Here the component xi is called the radix -
b digit, and m = �logb x� the radix -b length, of x. The number of nonzero digits
in the radix-b representation of x is called its radix -b weight (or simply its weight
when the radix is clear from context). When b = 2, the radix-b weight of x is its
Hamming weight and the radix-b length of x is its bit length.

Decomposing radix-b representations. Let m and t be positive integers. We write
[m] as shorthand for the set {1, 2, . . . ,m} of positive integers less than or equal
to m and, given a finite set A, we define

(
A
t

)
as the set of all size-t subsets of A.

We are especially interested in
(
[m]
t

)
, a collection of

(
m
t

)
subsets equipped with a

natural bijective mapping to the set of all (at-most)-m-bit positive integers with
Hamming weight t. The mapping from

(
[m]
t

)
to the set of such integers is given

by the function valm,t :
(
[m]
t

) → N that maps each size-t subset Y ∈ (
[m]
t

)
to the

integer valm,t(Y) :=
∑

i∈Y 2i−1.
The above valm,t function naturally generalizes to a family of two-operand

functions parametrized by a radix b > 1. Specifically, for any integer b > 1, the
function valb,m,t : [b−1]t×(

[m]
t

) → N maps each t-tuple X = (xt, . . . , x1) ∈ [b−1]t

and size-t subset Y ∈ (
[m]
t

)
to the integer valb,m,t(X,Y) :=

∑t
i=1 xi·bY [i]−1. In the

preceding notation, Y [i] denotes the ith smallest integer in the set Y . Note that
the function valb,m,t is injective: the (b − 1)t

(
m
t

)
possible inputs to valb,m,t map

to pairwise distinct positive integers, each having radix-b weight t and radix-b
length at most m. Also note that when b = 2, the all-ones tuple (1, 1, . . . , 1)
is the only element in [b − 1]t; thus, val2,m,t is functionally equivalent to the
valm,t function introduced in the preceding paragraph. Going forward, we omit
the subscripts m, t from the preceding notations, noting that m and t can always
be inferred from context when needed.

Stinson [29] describes three algorithms to compute low-Hamming-weight
DLs. Lemmas 1 and 2 generalize Lemmas 1.1 and 1.2 from Stinson’s paper
to the above-generalized family of radix-b val functions. Proofs of these simple
lemmas are in our extended technical report [11, Sects. A.1 and A.2].

Lemma 1. Fix a radix b > 1, let m be a positive integer, and let t be an even
integer in [m]. If gvalb(X1,Y1) = h · (

gvalb(X2,Y2)
)−1 for X1,X2 ∈ [b − 1]t/2 and

Y1, Y2 ∈ (
[m]
t/2

)
, then logg h ≡ (

valb(X1, Y1) + valb(X2, Y2)
)

mod q.

Note that h ·(gvalb(X2,Y2)
)−1 = h ·(g−1

)valb(X2,Y2). The algorithms we present
in the next two sections use the right-hand side of this expression instead of the
left-hand side, as doing so allows us to invert g once and for all, rather than
inverting gvalb(X2,Y2) once for each new choice of (X2, Y2).

Computing Low-Weight Discrete Logarithms 109

Lemma 2. Fix a radix b > 1, let m be an arbitrary positive integer, and let t be
an even integer in [m]. If there is an x ≡ logg h mod q with radix-b weight t and
radix-b length at most m, then there exist two disjoint subsets Y1, Y2 ∈ (

[m]
t/2

)
and

corresponding X1,X2 ∈ [b − 1]t/2 such that gvalb(X1,Y1) = h · (
gvalb(X2,Y2)

)−1.

Lemmas 1 and 2 assume that t is even so that t/2 is an integer. We make
this simplifying assumption purely for notational and expositional convenience;
indeed, both lemmas still hold if, for example, we let (X1, Y1) ∈ [b−1]�t/2�×(

[m]
�t/2�

)

and (X2, Y2) ∈ [b − 1]�t/2� × (
[m]

�t/2�
)
. The algorithms that follow in Sects. 3 and

4 make the same simplifying assumption (in fact, the algorithms in Sect. 3.3
also assume that m is even); however, we stress that each algorithm is likewise
trivial to adapt for t and m with arbitrary parities (as discussed by Stinson [29,
Sect. 5]).

3 Computing DLs with Low Hamming Weight

In this section, we describe and improve upon two variants of the celebrated
“baby-step giant-step” algorithm [28] for computing DLs. These algorithm vari-
ants have been specially adapted for cases in which the exponent is known to
have low Hamming weight. The most basic form of each algorithm is described
and analyzed in a paper by Stinson [29], who credits the first to Heiman [8] and
Odlyzko [24] and the second to Coppersmith (by way of unpublished correspon-
dence with Vanstone [4]).2 In both cases, our improvements yield modest-yet-
notable performance improvements—both concretely and asymptotically—over
the more basic forms of the algorithms; indeed, our improvements to the second
algorithm yield a worst-case computation complexity superior to that of any
known algorithm for the low-Hamming-weight DL problem. In Sect. 4, we pro-
pose and analyze a simple transformation that generalizes each low-Hamming-
weight DL algorithm in this paper to a corresponding low-radix-b-weight DL
algorithm, where the radix b > 1 can be arbitrary.

3.1 The Basic Algorithm

Algorithm 3.1 gives pseudocode for the most basic form of the algorithm, which
is due to Heiman and Odlyzko [8,24].

Theorem 3. Algorithm 3.1 is correct: If there is an m-bit integer x with Ham-
ming weight t such that gx = h, then the algorithm returns a DL of h to the
base g.

2 In addition to the basic algorithms described herein, Stinson’s paper introduces a
generalization of the second algorithm based on a combinatorial structure he coins
splitting systems [29, Sect. 4], as well as a randomized variant (also credited to
Coppersmith) [29, Sect. 2.2], both of which we describe in our extended technical
report [11, Sects. C and D].

110 B. Kacsmar et al.

Algorithm 3.1. LowHammingDL(m, t; g, h)
// Attempts to compute x = logg h mod q

(assumes len2
(
x
)
<= m, wt2

(
x
)
= t, and t is even)

1: Initialize a hash table H

2: /* "Giant step": Populate lookup table */

3: for each
(
Y1 ∈ (

[m]
t/2

))
do // loop runs

(
m choose t/2

)
times

4: y1 ← gval(Y1)

5: H.put(y1, Y1) // y1 = gval
(
Y1

)
is key; Y1 is value

6: end for

7: /* "Baby step": Search for a collision */

8: for each
(
Y2 ∈ (

[m]
t/2

))
do // loop runs <=

(
m choose t/2

)
times

9: y2 ← h · (g−1)val(Y2) // cf. Lemma 2

10: if
(
H.containsKey(y2)

)
then

11: Y1 ← H.get(y2)

12: return
(
val(Y1) + val(Y2)

)
mod q // cf. Lemma 1

13: end if

14: end for

15: return ⊥ // logg h = undefined, len2
(
logg h

)
> m,

or wt2
(
logg h

) �= t

Proof (sketch). This follows directly from Lemmas 1 and 2. Specifically, Lemma 1
ensures that any value returned on Line 12 of Algorithm 3.1 satisfies gx = h,
while Lemma 2 ensures that the baby-step loop (Lines 8–14) will indeed find the
requisite pair (Y1, Y2) if such a pair exists. 	

Remark. When the order q is unknown, one can set m to be any upper bound on
�lg q�, and then omit the modular reduction on Line 12 of Algorithm 3.1. Indeed,
one may even set m > �lg q� when q is known if, for example, the canonical
representation of the desired DL has large Hamming weight but is known to be
congruent (modulo q) to an m-bit integer with low Hamming weight.

The next theorem follows easily by inspection of Algorithm 3.1.

Theorem 4. The storage cost and (both average- and worst-case) computation
cost of Algorithm 3.1, counted respectively in group elements and group expo-
nentiations, each scale as Θ

((m
t/2

))
.

Remark. Each exponentiation counted in Algorithm 3.1 is to a power with Ham-
ming weight t/2. By pre-computing gval({i}) for i ∈ [m], one can evaluate these
exponentiations using just t/2 − 1 group operations a piece. The (both average-
and worst-case) computation complexity becomes Θ

(
t
(

m
t/2

))
group operations.

Going a step further, one can pre-compute gval({i})−val({j}) for each i �= j, and
then iterate through

(
[m]
t/2

)
following a “minimal-change ordering” [19, Sect. 2.3.3]

wherein each successive pair of subsets differ by exactly two elements [30]. Then
all but the first iteration of the baby-step (respectively, giant-step) loop uses
a single group operation to “update” the y1 (respectively, y2) from the previ-
ous iteration. The worst-case computation cost becomes 2

(
m
t/2

)
+ t − 3 group

operations (plus one inversion and m2 group operations for pre-computation).

Computing Low-Weight Discrete Logarithms 111

3.2 Improved Complexity via Interleaving

Next, we propose and analyze an alternative way to implement the basic algo-
rithm (i.e., Algorithm 3.1), which interleaves the baby-step and giant-step cal-
culations in a manner reminiscent of Pollard’s interleaved variant of the classic
baby-step giant-step algorithm [27, Sect. 3]. Although such interleaving is a well-
known technique for achieving constant-factor average-case speedups in baby-
step giant-step algorithms, it had not previously been applied in the context of
low-Hamming-weight DLs. Our analysis reveals that interleaving can, in fact,
yield a surprisingly large (super-constant) speedup in this context.

The interleaved variant comprises a single loop and two lookup tables, H1 and
H2. The loop iterates simultaneously over the subsets Y1 ∈ (

[m]
t/2

)
and Y2 ∈ (

[m]
t/2

)
in

respectively increasing and decreasing order. (To keep the following analysis sim-
ple, we assume the order is lexicographic; however, we note that one can obtain a
factor t speedup by utilizing some pre-computation and a minimal-change order-
ing, exactly as we suggested in the above remarks following the non-interleaved
algorithm.) In each iteration, the algorithm computes both y1 := gval(Y1) and
y2 := h · (g−1)val(Y2), storing (y1, Y1) in H1 and (y2, Y2) in H2, and also check-
ing if y1 collides with a key in H2 or y2 with a key in H1. Upon discovering a
collision, it computes and outputs x ≡ logg h mod q using Lemma 1 (cf. Line 12
of Algorithm 3.1) and then halts. A pseudocode description of our interleaved
algorithm is included in our extended technical report [11, Sect. B.1].)

Despite its simplicity, this modification appears to be novel and has a sur-
prisingly large impact on the average-case complexity. Indeed, if we assume that
the interleaved loop iterates through

(
[m]
t/2

)
in increasing and decreasing lexico-

graphic order (for the giant-step and baby-step calculations, respectively), then
the worst possible costs arise when the t one bits in the binary representation
of x occur consecutively in either the t highest-order or the t lowest-order bit
positions (i.e., when x = 1t0m−t or x = 0m−t1t). In this case, the algorithm pro-
duces a collision and halts after

(
m−t/2

t/2

)
iterations of the loop. For t ∈ Θ

(√
m

)
,

this gives a worst-case constant factor speedup compared to the non-interleaved
algorithm;3 for t ∈ ω

(√
m

)
, the worst-case speedup is asymptotic (alas, we are

unable to derive a precise characterization of the speedup in terms of m and t).
The average-case speedup can be much more dramatic, depending on the distri-
bution of the targeted x ≡ logg h mod q. For a uniform distribution (among the
set of all m-bit exponents with Hamming weight t) on x, we heuristically expect
the one bits in x to be distributed evenly throughout its binary representation;
that is, we expect to find the (t/2)th and (t/2 + 1)th one bits in x in or around
bit positions t

2
m

t+1 <
m
2 and t+2

2
m

t+1 >
m
2 , respectively. Therefore, we expect

3 More precisely, when t = 2c
√
m , we find that limm→∞

(
m−t/2

t/2

)
/
(

m
t/2

)
= e−c2

; that
is, as m grows large, the worst-case computation cost of the interleaved algorithm
approaches a factor e−c2

that of the non-interleaved algorithm; moreover, this lim-
iting factor is a lower bound that underestimates the true worst-case speedup for
small values of m. As a case in point, m = 256 and t = 64 (so that c = 2) yields
a speedup by a factor 97.2, which is about 78% better than the predicted speedup
factor of e4.

112 B. Kacsmar et al.

the interleaved algorithm to produce a collision and halt after at most around(
m/2
t/2

)
loop iterations. (Contrast this with the original average-case Θ

((m
t/2

))
com-

plexity of the non-interleaved algorithm.) We summarize our above analysis in
Theorem 5.

Theorem 5. The worst-case storage and computation costs of the interleaved
algorithm described above, counted respectively in group elements and group oper-
ations, each scale as Θ

((m−t/2
t/2

))
. If x is uniform among m-bit exponents with

Hamming weight t, then the average-case storage and computation complexities
scale as Θ

((m/2
t/2

))
.

3.3 The Coppersmith Algorithms

Algorithm 3.1 and our interleaved variant are “direct” algorithmic instantia-
tions of Lemmas 1 and 2 with a fixed radix b = 2. Such direct instantiations
perform poorly in the worst case because Lemma 2 guarantees only existence—
but not uniqueness—of the subsets Y1 and Y2 and, as a result, the collections of
subsets over which these direct instantiations ultimately iterate are only guar-
anteed to be sufficient—but not necessary—to compute the desired logarithm.
Indeed, given Y ∈ (

[m]
t

)
such that logg h ≡ val(Y) mod q, there exist

(
t

t/2

)
distinct

ways to partition Y into Y1 ∈ (
Y

t/2

)
and Y2 = Y \ Y1 to satisfy the congruence

logg h ≡ (
val(Y1)+val(Y2)

)
mod q arising in Lemma 2. Stirling’s approximation

implies that
(

t
t/2

)
approaches 2t/

√
πt/2 as t grows large so that the number of

“redundant” values these basic algorithms may end up computing (and storing)
grows exponentially with t. We now describe a more efficient variant of this algo-
rithm, originally proposed by Coppersmith [4], that improves on the complexity
of the basic algorithms by taking special care to iterate over significantly fewer
redundant subsets. (Actually, Coppersmith proposed two related algorithms—
one deterministic and the other randomized ; however, due to space constraints,
we discuss only the deterministic algorithm in this section, relegating our discus-
sion of the randomized algorithm to our extended technical report [11, Sect. D].)

Coppersmith’s Deterministic Algorithm. The first variant of Algorithm
3.1 proposed by Coppersmith is based on the following observation.

Observation 6 (Coppersmith and Seroussi [5]). Let t and m be even pos-
itive integers with t ≤ m and, for each i = 1, . . . ,m/2 + 1, define Bi =
{i, i+1, . . . , i+m/2−1} and B̄i = [m]\Bi. For any Y ∈ (

[m]
t

)
, there exists some

i ∈ [m/2] and (disjoint) subsets Y1 ∈ (
Bi

t/2

)
and Y2 ∈ (

B̄i

t/2

)
such that Y = Y1 ∪ Y2.

A proof of Observation 6 is included in our extended technical report [11, Sect.
A.4]. The following analog of Lemma 2 is an immediate corollary to Observation 6.

Corollary 7. Let t and m be even positive integers with t ≤ m and, for each
i = 1, . . . , m/2 + 1, define Bi = {i, i + 1, . . . , i + m/2 − 1} and B̄i = [m] \ Bi. If
there is an x ≡ logg h mod q with Hamming weight t and bit length at most m,

Computing Low-Weight Discrete Logarithms 113

then there exists some i ∈ [m/2] and (disjoint) subsets Y1 ∈ (
Bi

t/2

)
and Y2 ∈ (

B̄i

t/2

)

such that gval(Y1) = h · g−val(Y2).

Using Corollary 7 to improve on the worst-case complexity of the basic algo-
rithm is straightforward. The giant-step and baby-step loops (i.e., Lines 3–6
and 8–14) from Algorithm 3.1 are respectively modified to iterate over only the
subsets Y1 ∈ (

Bi

t/2

)
and Y2 ∈ (

B̄i

t/2

)
for each i = 1, . . . m/2 in turn. In particular,

the algorithm populates a lookup table H in the giant-step loop using only the
Y1 ∈ (

B1
t/2

)
, and then it searches for a collision within H in the baby-step loop

using only the Y2 ∈ (
B̄1
t/2

)
; if the baby-step loop for i = 1 generates no collisions,

then the algorithm clears the lookup table and repeats the process for i = 2, and
so on up to i = m/2. Observation 6 guarantees that the algorithm finds a colli-
sion and halts at some point prior to completing the baby-step loop for i = m/2,
provided a DL with the specified Hamming weight and bit length exists. Pseu-
docode for the above-described algorithm is included in our extended technical
report [11, Sect. B.2].

The next theorem follows easily from Corollary 7 and by inspection.

Theorem 8. Coppersmith’s deterministic algorithm is correct; moreover, its
storage cost scales as Θ

((m/2
t/2

))
group elements and its (worst-case) computation

cost as O
(
m

(
m/2
t/2

))
group exponentiations.4

Remark. The average-case complexity requires a delicate analysis, owing to the
fact that there may be several indices i for which |Y ∩ Bi| = |Y ∩ B̄i| = t/2 and
the algorithm will always halt upon encountering the first such index. Interested
readers can find a detailed analysis of the average-case complexity in Stinson’s
paper [29, Sect. 3]. Stinson’s paper also proposes a generalization of Copper-
smith’s deterministic algorithm utilizing a family of combinatorial set systems
called splitting systems [29, Sect. 2.1] (of which the Coppersmith–Seroussi set
system defined in Observation 6 and Corollary 7 is an example). A discussion of
splitting systems and Stinson’s improvements to the above algorithm is included
in our extended technical report [11, Sect. C].

3.4 Improved Complexity via Pascal’s Lemma

A methodical analysis of the Coppersmith–Seroussi set system suggests an opti-
mization to Coppersmith’s deterministic algorithm that yields an asymptotically
lower computation complexity than that indicated by Theorem 8. Indeed, the
resulting optimized algorithm has a worst-case computation complexity of just
Θ

(
t
(
m/2
t/2

))
group operation, which is asymptotically lower than that of any low-

Hamming-weight DL algorithm in the literature. Moreover, the hidden constant
4 Stinson states [29, Sect. 2.1] that the storage cost is

(
m
t/2

)
group elements; however,

this is clearly not possible, as the computation cost is not large enough to even
produce, let alone necessitate storing, so many group elements. Given that

(
m
t/2

)

group elements is the correct storage cost for the basic algorithm, and that
(

m
t/2

)

differs from
(
m/2
t/2

)
in just two characters, we attribute the discrepancy to a simple

copy-paste error or typo.

114 B. Kacsmar et al.

in the optimized algorithm (i.e., 1+o(1)) seems to be about as low as one could
realistically hope for. Our improvements follow from Observation 9, an immedi-
ate consequence of Pascal’s Lemma for binomial coefficients, which states that(
m/2
t/2

)
=

(
m/2−1
t/2−1

)
+

(
m/2−1

t/2

)
.

Observation 9. Let {B1, . . . , Bm/2} be the Coppersmith–Seroussi set system,
as defined in Observation 6 and Corollary 7. For each i = 1, . . . ,m/2 − 1, we
have that

∣
∣
∣
(

Bi

t/2

) ∩ (Bi+1
t/2

)∣∣
∣ =

(
m/2−1

t/2

)
.

A simple corollary to Observation 9 is that the baby-step and giant-step loops
for i = 2, . . . ,m/2 in a näıve implementation of Coppersmith’s deterministic
algorithm each recompute

(
m/2−1

t/2

)
values that were also computed in the imme-

diately preceding invocation, or, equivalently, that these loops each produce just(
m/2
t/2

) − (
m/2−1

t/2

)
=

(
m/2−1
t/2−1

)
new values. Carefully avoiding these redundant com-

putations can therefore reduce the per-iteration computation cost of all but the
first iteration of the outer loop to 2

(
m/2−1
t/2−1

)
group operations. The first (i.e.,

i = 1) iteration of the outer loop must, of course, still produce 2
(
m/2
t/2

)
values;

thus, in the worst case, the algorithm must produce 2
((

m/2
t/2

)
+ (m

2 − 1)
(
m/2−1
t/2−1

))

distinct group elements. Note that in order to avoid all redundant computa-
tions in subsequent iterations, it is necessary to provide both the giant-step
and baby-step loops with access to the (y1, Y1) and (y2, Y2) pairs, respectively,
that arose in the immediately preceding invocation. Coppersmith’s determinis-
tic algorithm already stores each (y1, Y1) pair arising in the giant-step loop, but
it does not store the (y2, Y2) pairs arising in the baby-step loop; hence, fully
exploiting Observation 9 doubles the storage cost of the algorithm (in a similar
vein to interleaving the loops). The upshot of this increased storage cost is a
notable asymptotic improvement to the worst-case computation cost, which we
characterize in Lemma 10 and Corollary 11. A proof of Lemma 10 is located in
Appendix A.1.

Lemma 10. Let {B1, . . . , Bm/2} be the Coppersmith–Seroussi set system, as
defined in Observation 6 and Corollary 7. We have

∣
∣⋃m/2

i=1
Bi

∣
∣

∑m/2

i=1

∣
∣Bi

∣
∣

= t
m + o

(
1
)
.

To realize the speedup promised by Lemma 10, the optimized algorithm must
do some additional bookkeeping; specifically, in each iteration i = 2, . . . , m/2, it
must have an efficient way to determine which of the Y1 ∈ (

Bi

t/2

)
and Y2 ∈ (

B̄i

t/2

)
—

as well as the associated y1 = gval(Y1) and y2 = h·g−val(Y2)—arose in the (i − 1)th
iteration, and which of them arise will for the first time in the ith iteration. To
this end, the algorithm keeps two sequences of hash tables, say H1, . . . , Hm and
I1, . . . , Im, one for the giant-step pairs and another for the baby-step pairs. Into
which hash table a given (Y1, y1) pair gets stored is determined by the smallest
integer in Y1: a (Y1, y1) pair that arose in the (i − 1)th iteration of the outer loop
will also arise in the ith iteration if and only if the smallest element in Y1 is not

Computing Low-Weight Discrete Logarithms 115

i− 1; thus, all values from the (i − 1)th iteration not in the hash table Hi−1 can
be reused in the next iteration. Moreover, each (Y1, y1) pair that will arise for the
first time in the ith iteration has a corresponding (Y ′

1 , y
′
1) pair that is guaranteed

to reside in Hi−1 at the end of the (i − 1)th iteration. Indeed, one can efficiently
“update” each such (Y ′

1 , y
′
1) in Hi−1 to a required (Y1, y1) pair by setting Y1 =(

Y ′
1 \{i−1})∪{i+m/2} and y1 = y′

1 · g−(i−1) · gi+m/2. Note that because Y1 no
longer contains i−1, the hash table in which the updated (Y1, y1) pair should be
stored changes from Hi−1 to Hj for some j ≥ i. An analogous method is used for
keeping track of and “updating” the (Y2, y2) pairs arising in the baby-step loop.
Pseudocode for the above-described algorithm is included as Algorithm B.1 in
Appendix B. The following corollary is an immediate consequence of Lemma 10.

Corollary 11. Algorithm B.1 is correct; moreover, its storage cost scales as
Θ

((m/2
t/2

))
group elements and its worst-case computation cost as O

(
t
(
m/2
t/2

))
group

exponentiations.

Note that the worst-case complexity obtained in Corollary 11 improves on a näıve
implementation of Coppersmith’s algorithm by a factor m

t (and it improves on
the previously best-known lower bound, due to Stinson [29, Theorem 4.1], by a
factor

√
t lg m). As with the basic algorithm, one can leverage pre-computation

and a minimal-change ordering to replace all but two of the exponentiations
counted by Corollary 11 with a single group operation each; hence, the worst-
case computation complexity is in fact just Θ

(
t
(
m/2
t/2

))
group operations.

4 From Low Hamming Weight to Low Radix-b weight

In this section, we introduce and analyze a simple transformation that allows us
to generalize each of the low-Hamming-weight DL algorithms from the preced-
ing section to a low-radix-b-weight DL algorithm, where the radix b > 1 can be
arbitrary. The transformation is deceptively simple: essentially, it entails modi-
fying the low-Hamming-weight algorithm to iterate over all possible inputs to a
valb function, rather than over all possible inputs to an “unqualified” val func-
tion (or, equivalently, to a val2 function). Algorithm 4.1 provides pseudocode for
the simplest possible form of our radix-b algorithm; that is, for the transforma-
tion applied to Algorithm 3.1. We illustrate the transformation as it applies to
this most basic form of the low-Hamming-weight DL algorithm purely for ease of
exposition; indeed, we do not recommend implementing this particular variant in
practice—rather, we recommend applying the transformation to Algorithm B.1
or to the randomized algorithm (see our extended technical report [11, Sect. D])
as outlined below.

Theorem 12. Algorithm 4.1 is correct: If there exists an integer x with radix-b
length m and radix-b weight t such that gx = h, then the algorithm returns a DL
of h to the base g.

Remark. When the radix is b = 2, the inner giant-step and baby-step loops
(i.e., Lines 4–7 and 11–18) execute only once and Algorithm 4.1 reduces to

116 B. Kacsmar et al.

Algorithm 4.1. LowRadixDL(m, t, b; g, h)
// Attempts to compute x = logg h mod q

(assumes lenb
(
x
)
<= m, wtb

(
x
)
= t, and t is even)

1: Initialize a hash table H

2: /* "Giant step": Populate lookup table */

3: for each
(
Y1 ∈ (

[m]
t/2

))
do // outer loop runs

(
m choose t/2

)
times

4: for each
(
X1 ∈ [b − 1]t/2

)
do // inner loop runs

(
b − 1

)
t/2 times

5: y1 ← gvalb(X1,Y1)

6: H.put
(
y1, (X1, Y1)

)
// y1 = gvalb

(
X1,Y1

)
is key; (X1, Y1) is value

7: end for

8: end for

9: /* "Baby step": Search for a collision */

10: for each
(
Y2 ∈ (

[m]
t/2

))
do // outer loop runs <=

(
m choose t/2

)
times

11: for each
(
X2 ∈ [b − 1]t/2

)
do // inner loop runs <=

(
b − 1

)
t/2 times

12: y2 ← h · (g−1)valb(X2,Y2) // cf. Lemma 2

13: if
(
H.containsKey(y2)

)
then

14: (X1, Y1) ← H.get(y2)

15: x ← (
valb(X1,Y1)+valb(X2,Y2)

)
mod q

16: return x // cf. Lemma 1

17: end if

18: end for
19: end for
20: return ⊥ // logg h = undefined, lenb

(
logg h

)
> m,

or wtb
(
logg h

) �= t

Algorithm 3.1, an observation which bares out in the following theorem. If the
radix is b > 2 yet all digits are bounded above by some c < b, then the inner
loops need only iterate over the (c − 1)t/2 tuples in [c − 1]t/2, thus reducing the
cost by a factor

(c−1
b−1

)t/2.

Theorem 13. The storage cost and (both average- and worst-case) computation
cost of the above algorithm, counted respectively in group elements and group
exponentiations, each scale as Θ

(
(b − 1)t/2

(
m
t/2

))
.

Remark 14. As with the low-Hamming-weight algorithms, it is possible to reduce
each of the exponentiations counted by Theorem 13 to a single group operation,
in this case by using a minimal-change ordering for the outer loop and a Gray
code [19, Sect. 2.2.2] for the inner loop.

More efficient radix-b variants. Every one of the algorithm variants we described
in Sect. 3 generalizes similarly to an algorithm for radix b, by simply including
an inner loop over each X ∈ [b−1]t/2 within the giant-step and baby-step loops.
In each case, the expressions for storage and worst-case computation complexity
pick up an additional factor (b − 1)t/2; however, the reader should bear in mind
that this newfound exponential factor is at least partially offset by a correspond-
ing decrease in the radix-b length and (presumably) weight that appear in the
binomial term. In particular, an exponent x ≡ logg h mod q with bit length m2

has a radix-b length of mb ≈ m2/log2 b. Specifically, applying the transforma-
tion to Algorithm B.1 yields a radix-b algorithm with worst-case running time of

Computing Low-Weight Discrete Logarithms 117

(
t + o(1)

)(m/2
t/2

)
(b − 1)t/2, where m and t respectively denote the radix-b length

and radix-b weight of the DL sought.
In Theorem 15, we (partially) characterize one condition under which it is

beneficial to switch from a baby-step giant-step algorithm for radix b to the
corresponding baby-step giant-step algorithm for some larger radix. In this the-
orem, the radix-b density of x refers to the ratio of its radix-b weight to its radix-b
length. For example, if m and t respectively denote the radix-b length of x and
the radix-b weight of x, then its radix-b density is t/m ∈ [0, 1].

Theorem 15. Fix a radix b > 1 and an exponent x with radix-b density d. There
exists a constant k0 ∈ R (with k0 > 1) such that, for all k > k0, if the radix-bk

density of x is less than or equal to d, then a radix-bk algorithm has lower cost
than the corresponding radix-b algorithm.

Theorem 15 implies that, for a fixed algorithm variant, switching to using a
higher radix is beneficial (essentially) whenever the change to the radix does not
increase the density of the DL being computed. We emphasize that the exponent
k in the theorem need not be an integer;5 thus, the theorem addresses cases
like that of switching from a radix-2 representation to a radix-3 representation
(k = lg 3) or from a radix-4 representation to a radix-8 representation (k = 3/2).
For example, the (decimal) number 20871 has radix-4 representation 11012013
and density 0.75, whereas it has radix-8 representation 50607 and density 0.6.

A proof sketch for Theorem 15 is included in Appendix A.2. We only sketch
the main idea behind the proof, and only for the “basic” radix-b algorithm (i.e.,
for Algorithm 4.1). The reason for this is twofold: first, the details of the relevant
calculations are both unenlightening and rather messy (owing to the fact that
(b − 1)t/2 < (bk − 1)t/2k, which can make our relevant inequalities go the wrong
way for small values of k); and, second, nearly identical calculations illustrate
why the theorem holds for the more efficient algorithm variants.

5 Related Work

The problem of solving “constrained” variants of the DL problem has received
considerable attention in the cryptographic literature, with the most well-
known and widely studied such variant being that of computing DLs that are
“small” [32] or known to reside in a “short” interval [22,31,33]. Existing algo-
rithms can compute such DLs using an expected O

(√
B − A

)
group operations

when the exponent is known to reside in the interval [A..B].
In addition to the basic Heiman–Odlyzko [8] and Coppersmith–Stinson [29]

low-Hamming-weight algorithms discussed earlier, a handful of papers have con-
sidered the problem of computing DLs that have low Hamming weight [20,23]
or those expressible as a product whose multiplicands each have low Hamming
weight [3,16,17]. Efficient algorithms for these computations have applications

5 Indeed, if k > 1 is an integer, then the radix-bk density of x cannot be lower— and
is usually higher—than the radix-b density of x.

118 B. Kacsmar et al.

in attacking encryption schemes that leverage such low-weight [1,18,21] and
product-of-low-weight-multiplicand [7,9] exponents as a means to reduce the
cost of public-key operations. They have also been adapted to attack so-called
secure human identification protocols [10], which leverage low-Hamming-weight
secrets to improve memorability for unassisted humans.

Specifically, Cheon and Kim [3] proposed a baby-step giant-step algorithm
to compute DLs expressible as a product of three low-Hamming-weight multipli-
cands in groups with known order. The use of such “product-of-three” exponents
was proposed by Hoffstein and Silverman [9] to allow for low-cost exponentiations
in groups that permit fast endomorphism squaring (which includes the Galois
fields GF(2n) and the so-called “Koblitz” elliptic curves) while seeking to resist
meet-in-the-middle attacks. Subsequently, Kim and Cheon [16,17]6 improved on
those results using a “parametrized” variant of splitting systems, while Coron,
Lefranc, and Poupard [6] proposed a related algorithm that works in groups
with unknown composite order (e.g., in the multiplicative group of units modulo
n = pq, where p and q are large primes and the factorization of n into p and q
is not provided to the algorithm).

Meanwhile, Muir and Stinson [23] studied generalizations of Coppersmith’s
deterministic algorithm to compute DLs known to have a non-adjacent form
(NAF) representation with low weight. (In the latter context, “low weight”
means a small numbers of ±1 digits in the NAF representation.) More recently,
May and Ozerov [20] revisited the low-Hamming-weight DL problem in groups of
composite order (where a factorization of the order is known), proposing an algo-
rithm that combines aspects of the Silver–Pohlig–Hellman [26] algorithm with
any of the basic low Hamming weight algorithms to obtain lower complexity
than either approach in isolation.

The algorithms we have presented in this work (i) offer improved complexity
relative to existing low-Hamming-weight algorithms, and (ii) generalized to the
low-radix-b-weight case for arbitrary b ≥ 2. This is a (mathematically) natural
generalization of the low-Hamming-weight DL problem that has not been explic-
itly considered in prior work. We suspect that our modifications will “play nice”
with some or all of the above-mentioned low-weight DL algorithm variants, and
we slate a formal investigation of this interplay for future work.

6 Cryptanalytic Applications

We now turn our attention to the cryptanalytic applications of our new algo-
rithms. Specifically, we demonstrate how to use a low-radix-b-weight DL algo-
rithm to attack any one of several verifier-based password-authenticated key
exchange (VPAKE) protocols from the cryptographic literature. Briefly, a
password-authenticated key exchange (PAKE) protocol is an interactive protocol
enabling a client to simultaneously authenticate itself to, and establish a shared

6 Incidentally, the Cheon who authored [3] and [16,17] is one and the same, but the
Kim who authored [3] is not the Kim who authored [16,17].

Computing Low-Weight Discrete Logarithms 119

cryptographic key with, a remote server by demonstrating knowledge of a pass-
word. The security definitions for PAKE require that the interaction between
the client and server reveals at-most a negligible quantity of information about
the client’s password (and the shared key): a man-in-the-middle who observes
(and possibly interferes with) any polynomial number of PAKE sessions between
a given client and server should gain at most a negligible advantage in either
hijacking an authenticating session or impersonating the client (e.g., by guess-
ing her password). VPAKE protocols extend PAKE with additional protections
against the server, ensuring that an attacker who compromises the server can-
not leverage its privileged position to infer the client’s password using less work
than would be required to launch a brute-force attack against the password
database (even after engaging in any polynomial number of PAKE sessions with
the client).

In recent work [12], Kiefer and Manulis proposed a VPAKE protocol with
the novel property of allowing the client to register its password without ever
revealing that password to the server. Their idea, at a high level, is to have the
client compute a “fingerprint” of the password and then prove in zero-knowledge
that the fingerprint was computed correctly; subsequent authentications involve
a proof of knowledge of the password encoded in a given fingerprint. To make the
zero-knowledge proofs practical, the password fingerprints are computed using a
structure-preserving map. Benhamouda and Pointcheval [2, Sect. 1.2] note that
the Kiefer–Manulis VPAKE construction, as originally presented, falls easily
to a short-interval variant Pollard’s Kangaroo algorithm [22]. In response to
this observation, Kiefer and Manulis released an updated version of their paper
(as a technical report [13]) that attempts to thwart the sort of short-interval
attacks pointed out by Benhamouda and Pointcheval. A handful of subsequent
papers [14,15,34] have built on their algorithm, sharing the same basic frame-
work (and, hence, similarly susceptible to the attack described below).

The Kiefer–Manulis Protocol
Before presenting our attack, we briefly summarize the relevant portions of Kiefer
and Manulis’ VPAKE construction. Passwords in their construction consist of
any number of printable ASCII characters (of which there are 94 distinct possi-
bilities that are each assigned a label in [0 . .93]) up to some maximum length,
which we will denote by m; thus, there is a natural mapping between valid
passwords and the set of radix-94 integers with length at most m. This yields∑m

i=1
94i possible passwords (although the authors incorrectly give the number

as just 94m).
The client maps her password pw to Z via the structure-preserving map

PWDtoINT(b; pw) :=
∑|pw|

i=1
bi−1pwi,

where pwi ∈ [0 . .93] is the numeric label assigned to the ith character in pw.
Here b ≥ 94 is an integer parameter, which the authors refer to as the “shift
base”.

120 B. Kacsmar et al.

The client computes a fingerprint of her password pw by selecting two random
values, g̃ ∈R G and s ∈R Z∗ (the so-called “pre-hash” and “post-hash” salts)
and using them to produce a Pedersen-like commitment7

C := g̃PWDtoINT(b; pw)hs

and then outputting the tuple (s, g̃, C). As the post-hash salt s in this construc-
tion is output as part of the fingerprint, it does not serve a clear purpose; indeed,
any party (including the attacker) can trivially compute g̃PWDtoINT(b; pw) = C ·h−s.
Thus, recovering the client’s password PWDtoINT(b; pw) (at least, modulo q) from
a fingerprint is equivalent to solving for x ≡ logg̃ C · h−s mod q.

The Benhamouda–Pointcheval attack. The original protocol used b = 94,
which yields PWDtoINT(b; pw) ≤ 94m − 1; hence, as noted by Benhamouda and
Pointcheval [2, Sect. 1.2], an attacker can recover PWDtoINT(b; pw) mod q from
(s, g̃, C) in around

√
94m � 10m steps using the Kangaroo algorithm. (Note

that m here is a password length, and not a cryptographic security parameter.)
This is a mere square root of the time required to launch a brute-force attack,
which falls far short of satisfying the no-better-than-brute-force requirement for
a VPAKE protocol.

Kiefer and Manulis’ defense. To protect against Kangaroo attacks, Kiefer
and Manulis suggested to increase the shift base. Specifically, as exponents
PWDtoINT(b; pw) in their scheme have the form

∑|pw|
i=1

bi−1pwi with each pwi ∈
[0 . .93], they solve for the smallest choice of b that causes the “largest” possi-
ble password of length |pw| to induce an exponent that satisfies the inequality
942m < 93

∑m
i=1 bi−1. Doing so means that exponents are distributed through-

out the range [0 . .942m], which is (ignoring constants) necessary and sufficient to
ensure that a straightforward application of Pollard’s Kangaroo algorithm will
fail to solve the DL in fewer steps than are required to brute-force the password,
on average. If one supposes that the Kangaroo algorithm is the best possible DL-
based attack possible, the defense seems reasonable. Kiefer and Manulis suggest
b = 105, which they state “should be a safe choice”.

Revised attack from the deterministic low-radix-105-weight DL algo-
rithm. Using our optimized form of Coppersmith’s algorithm (together with
the remarks following Theorem 12), one can solve for any password up to, say
m = 12 characters long, using fewer than

∑12

t=0
t
(
m/2
t/2

)
93t/2 ≈ 238.2

group operations, as compared with
∑12

m=0
94m ≈ 278.7

7 A Pedersen commitment [25] to x is a value C = gxhr where r is uniform random
and logg h is secret; it is perfectly hiding because for every possible x there exists a
unique r that would make the resulting commitment look like C and it is computa-
tionally binding because finding two distinct (x, r), (x′, r′) pairs that yield the same
commitment is equivalent to computing logg h.

Computing Low-Weight Discrete Logarithms 121

guesses for a brute-force attack, thus rendering Kiefer and Manulis’ defense com-
pletely ineffective.

7 Conclusion

The DL problem is a cornerstone of modern cryptography. Several prior works
have studied “constrained” variants of the DL problem in which the desired
exponent is known either to have low Hamming weight or to be expressible as a
product whose multiplicands each have low Hamming weight. In this work, we
have focused on the related problem of computing DLs that have low radix-b
weight for arbitrary b ≥ 2. This is a (mathematically) natural generalization
of the low-Hamming-weight DL problem that has not been explicitly consid-
ered in prior work. We emphasize that a significant part of our contribution
was to minimize the hidden constants in the low-Hamming-weight algorithms
(improving the best-known complexity for the radix-2 case) and, by extension,
in their radix-b generalizations. We expect that our modifications will “play
nice” with prior efforts to solve other low-Hamming-weight and product-of-low-
weight-multiplicand DL problem variants, and we slate a formal investigation of
this interplay for future work. To showcase the cryptanalytic applications of our
new algorithms, we demonstrated an attack against several Verifier-Based Pass-
word Authenticated Key Exchange (VPAKE) protocols from the cryptographic
literature.

Acknowledgements. We thank Doug Stinson, Itai Dinur, and the anonymous ref-
erees for their valuable feedback. Sarah Plosker is supported by the Natural Sciences
and Engineering Research Council of Canada, the Canada Foundation for Innovation,
and the Canada Research Chairs Program. Ryan Henry is supported by the National
Science Foundation under Grant No. 1565375.

A Proofs of Basic Results

This appendix presents proofs (and proof sketches) for some basic results that
appear in the main body of the paper.

A.1 Proof of Lemma 10

This subappendix presents a proof for Lemma 10, which was stated in Sect. 3.4.

Lemma 10 (Restatement). Let {B1, . . . , Bm/2} be the Coppersmith–Seroussi
set system, as defined in Observation 6 and Corollary 7. We have

∣
∣⋃m/2

i=1
Bi

∣
∣

∑m/2

i=1

∣
∣Bi

∣
∣

= t
m + o

(
1
)
.

122 B. Kacsmar et al.

Proof. From Observation 9, we are interested in the ratio
((

m/2
t/2

)
+ (m

2 − 1)
(
m/2−1
t/2−1

))
/
(

m
2

(
m/2
t/2

))
.

Using Pascal’s Lemma to rewrite the numerator, this expression becomes
((

m/2−1
t/2

)
+ m

2

(
m/2−1
t/2−1

))
/
(

m
2

(
m/2
t/2

))
.

Simplifying, the first term in this expression becomes

(
m/2−1

t/2

)
/
(

m
2

(
m/2
t/2

))
=

2(m−t)
m2 ∈ o

(
1
)
,

while the second term becomes
(

m
2

(
m/2−1
t/2−1

))
/
(

m
2

(
m/2
t/2

))
= t

m .

Hence, it follows that
((

m/2−1
t/2

)
+ m

2

(
m/2−1
t/2−1

))
/
(

m
2

(
m/2
t/2

))
= t

m + o
(
1
)
, as

desired. 	

A.2 Proof (sketch) of Theorem 15

This subappendix presents a proof sketch for Theorem 15, which was stated in
Sect. 4.

Theorem 15 (Restatement). Fix a radix b > 1 and an exponent x with radix-
b density d. There exists a constant k0 ∈ R (with k0 > 1) such that, for all k > k0,
if the radix-bk density of x is less than or equal to d, then a radix-bk algorithm
has lower cost than the corresponding radix-b algorithm.

Proof of Theorem 15 (sketch). Let m = �logb x� and t respectively denote
the radix-b length and radix-b weight of x. Then the radix-bk length of x is
�logbk m� ≈ �m/k� and we are interested in cases where the radix-bk weight of
x is (approximately) less than or equal to �t/k�. In such cases, the cost of the
basic radix-bk algorithm is about

2
(�m/k�
�t/2k�

)
(bk − 1)�t/2k� ≈ 2

(�m/k�
�t/2k�

)
bt/2,

and this approximation tightens as k grows large. The right-hand side of the
expression is bounded below by 2bt/2, with equality holding if and only if k ≥
m/2. By contrast, the cost of the radix-b algorithm is about 2

(
m
t/2

)
(b − 1)t/2 ≈

2
(

m
t/2

)
bt/2, which is strictly larger than 2bt/2. 	

B Pseudocode

This appendix provides pseudocode for our optimized variant of Coppersmith’s
deterministic algorithm, as described in Sect. 3.4.

Computing Low-Weight Discrete Logarithms 123

Algorithm B.1. LowHammingDLPascal(m, t; g, h)
// Attempts to compute x = logg h mod q

(assumes len2
(
x
)
<= m, wt2

(
x
)
= t, and m , t are even)

1: Initialize hash tables H1, I1, . . . , Hm, Im // two tables per exponent bit

2: /* Initial"giant step" */

3: for each
(
Y1 ∈ (

[m/2]
t/2

))
do // runs

(
m/2 choose t/2

)
times

4: y1 ← gval(Y1)

5: j ← Y1[1] // j is smallest integer in Y1

6: Hj .put(y1, Y1) // y1 = gval
(
Y1

)
is key; Y1 is value

7: end for
8: /* Initial"baby step" */

9: for each
(
Y2 ∈ (

[m]\[m/2]
t/2

))
do // runs <=

(
m/2 choose t/2

)
times

10: y2 ← h · g−val(Y2) // cf. Corollary 7

11: for
(
i = 1 to m/2

)
do // search for collision in each Hi

12: if (Hi.contains(y2)) then
13: Y1 ← Hi.get(y2)
14: return

(
val(Y1) + val(Y2)

)
mod q // cf. Lemma 1

15: end if
16: end for
17: j ← Y2[1] // j is smallest integer in Y2

18: Ij .put(y2, Y2) // y2 = gval
(
Y2

)
is key; Y2 is value

19: end for
20: /* Interleaved"Pascal steps" */

21: for
(
i = 1 to m/2 − 2

)
do // runs <=

(
m/2 − 1

)
times

22: for each ((y1, Y1) ∈ Hi) do // runs <=
(
m/2 − 1 choose t/2 − 1

)
times

23: Y ′
1 ← (Y1 \ {i}) ∪ {m/2 + i} // "update"Y1

24: y′
1 ← y1 · g−2i · g2m/2+i

// "update"y1; y′
1
= = gval(Y1)

25: for
(
j = m/2 + i to m + i

)
do // search for collision in each Ij

26: j′ ← j (mod m)
27: if (Ij′ .contains(y′

1)) then
28: Y2 ← Ij′ .get(y′

1)

29: return (val(Y ′
1) + val(Y2)) mod q // cf. Lemma 1

30: end if
31: end for
32: j ← Y ′

1 [1] // j is smallest integer in Y′
1

33: Hj .put(y′
1, Y

′
1) // y′

1
= gval(Y

′
1
) is key; Y′

1
is value

34: end for
35: Hi.clear()
36: for each

(
(y2, Y2) ∈ Im/2+i

)
do // runs <=

(
m/2 − 1 choose t/2 − 1

)
times

37: Y ′
2 ← (

Y2 \ {m/2 + i}) ∪ {i} // "update"Y2

38: y′
2 ← y2 · g−2i · g2m/2+i

// "update" y2; y′
2
= = h ∗ g−val(Y2)

39: for
(
j = i to m/2 + i

)
do // search for collision in each Hj

40: if
(
Hj .contains(y′

2)
)
then

41: Y1 ← Hj .get(y′
2)

42: return
(
val(Y1) + val(Y ′

2)
)

mod q // cf. Lemma 1

43: end if
44: end for
45: j ← Y ′

2 [1] // j is smallest integer in Y′
2

46: Ij .put(y′
2, Y

′
2) // y′

2
= h ∗ g−val(Y′

2
) is key; Y′

2
is value

47: end for
48: Hi.clear()
49: end for
50: return ⊥ // logg h = undefined, len2

(
logg h

)
> m,

or wt2
(
logg h

) �= t

124 B. Kacsmar et al.

References

1. Agnew, G.B., Mullin, R.C., Onyszchuk, M.I., Vanstone, S.A.: An implementation
for a fast public-key cryptosystem. J. Cryptol. 3(2), 63–79 (1991). https://doi.org/
10.1007/BF00196789

2. Benhamouda, F., Pointcheval, D.: Verifier-based password-authenticated key
exchange: new models and constructions. IACR Cryptology ePrint Archive, Report
2013/833, October 2013. https://eprint.iacr.org/2013/833.pdf

3. Cheon, J.H., Kim, H.T.: Analysis of low Hamming weight products. Discrete Appl.
Mathe. 156(12), 2264–2269 (2008). https://doi.org/10.1016/j.dam.2007.09.018

4. Coppersmith, D.: Personal communication to Scott Vanstone, July 1997. See
[Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptogra-
phy, p. 128 Chapter 3]

5. Coppersmith, D., Seroussi, G.: On the minimum distance of some quadratic residue
codes. IEEE Trans. Inf. Theory 30(2), 407–411 (1984). https://doi.org/10.1109/
TIT.1984.1056861

6. Coron, J.S., Lefranc, D., Poupard, G.: A new baby-step giant-step algorithm and
some applications to cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005.
LNCS, vol. 3659, pp. 47–60. Springer, Heidelberg (2005). https://doi.org/10.1007/
11545262 4

7. Girault, M., Lefranc, D.: Public key authentication with one (online) single addi-
tion. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 413–
427. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5 30

8. Heiman, R.: A note on discrete logarithms with special structure. In: Rueppel,
R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 454–457. Springer, Heidelberg
(1993). https://doi.org/10.1007/3-540-47555-9 38

9. Hoffstein, J., Silverman, J.H.: Random small Hamming weight products with appli-
cations to cryptography. Discrete Appl. Mathe. 130(1), 37–49 (2003). https://doi.
org/10.1016/S0166-218X(02)00588-7

10. Hopper, N.J., Blum, M.: Secure human identification protocols. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 52–66. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45682-1 4

11. Kacsmar, B., Plosker, S., Henry, R.: Computing low-weight discrete logarithms.
IACR Cryptology ePrint Archive, Report 2017/720, July 2017. https://eprint.iacr.
org/2017/720

12. Kiefer, F., Manulis, M.: Zero-knowledge password policy checks and verifier-based
PAKE. In: Kuty�lowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8713, pp.
295–312. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11212-1 17

13. Kiefer, F., Manulis, M.: Zero-knowledge password policy checks and verifier-based
PAKE. IACR Cryptology ePrint Archive, Report 2014/242, April 2014. https://
eprint.iacr.org/2014/242

14. Kiefer, F., Manulis, M.: Blind password registration for two-server password
authenticated key exchange and secret sharing protocols. In: Bishop, M., Nasci-
mento, A.C.A. (eds.) ISC 2016. LNCS, vol. 9866, pp. 95–114. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-45871-7 7

15. Kiefer, F., Manulis, M.: Blind password registration for verifier-based PAKE. In:
Proceedings of AsiaPKC@AsiaCCS 2016, Xi’an, China, pp. 39–48, May 2016.
https://doi.org/10.1145/2898420.2898424

https://doi.org/10.1007/BF00196789
https://doi.org/10.1007/BF00196789
https://eprint.iacr.org/2013/833.pdf
https://doi.org/10.1016/j.dam.2007.09.018
https://doi.org/10.1109/TIT.1984.1056861
https://doi.org/10.1109/TIT.1984.1056861
https://doi.org/10.1007/11545262_4
https://doi.org/10.1007/11545262_4
https://doi.org/10.1007/978-3-540-28632-5_30
https://doi.org/10.1007/3-540-47555-9_38
https://doi.org/10.1016/S0166-218X(02)00588-7
https://doi.org/10.1016/S0166-218X(02)00588-7
https://doi.org/10.1007/3-540-45682-1_4
https://eprint.iacr.org/2017/720
https://eprint.iacr.org/2017/720
https://doi.org/10.1007/978-3-319-11212-1_17
https://eprint.iacr.org/2014/242
https://eprint.iacr.org/2014/242
https://doi.org/10.1007/978-3-319-45871-7_7
https://doi.org/10.1145/2898420.2898424

Computing Low-Weight Discrete Logarithms 125

16. Kim, S., Cheon, J.H.: A parameterized splitting system and its application to
the discrete logarithm problem with low hamming weight product exponents. In:
Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 328–343. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78440-1 19

17. Kim, S., Cheon, J.H.: Parameterized splitting systems for the discrete logarithm.
IEEE Trans. Inf. Theory Parameterized Splitting Syst. Discrete Logarithm 56(5),
2528–2535 (2010). https://doi.org/10.1109/TIT.2010.2044071

18. Koblitz, N.: CM-curves with good cryptographic properties. In: Feigenbaum, J.
(ed.) CRYPTO 1991. LNCS, vol. 576, pp. 279–287. Springer, Heidelberg (1992).
https://doi.org/10.1007/3-540-46766-1 22

19. Kreher, D.L., Stinson, D.R.: Combinatorial Algorithms: Generation, Enumeration,
and Search. CRC Press, New York (1998)

20. May, A., Ozerov, I.: A generic algorithm for small weight discrete logarithms in
composite groups. In: Joux, A., Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781, pp.
278–289. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13051-4 17

21. Menezes, A., Vanstone, S.: The implementation of elliptic curve cryptosystems.
In: Seberry, J., Pieprzyk, J. (eds.) AUSCRYPT 1990. LNCS, vol. 453, pp. 1–13.
Springer, Heidelberg (1990). https://doi.org/10.1007/BFb0030345

22. Montenegro, R., Tetali, P.: How long does it take to catch a wild kangaroo? In:
Proceedings of STOC 2009, Bethesda, MD, USA, pp. 553–560, May–June 2009.
https://doi.org/10.1145/1536414.1536490

23. Muir, J.A., Stinson, D.R.: On the low Hamming weight discrete logarithm problem
for nonadjacent representations. Appl. Algebra Eng. Commun. Comput. (AAECC)
16(6), 461–472 (2006). https://doi.org/10.1007/s00200-005-0187-7

24. Odlyzko, A.: Personal communication to Rafi Heiman, July 1992. See [8; Page 1
and Reference [Odl]]

25. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 9

26. Pohlig, S.C., Hellman, M.E.: An improved algorithm for computing logarithms over
GF (p) and its cryptographic significance. IEEE Trans. Inf. Theory 24(1), 106–110
(1978). https://doi.org/10.1109/TIT.1978.1055817

27. Pollard, J.M.: Kangaroos, monopoly and discrete logarithms. J. Cryptol. 13(4),
437–447 (2000). https://doi.org/10.1007/s001450010010

28. Shanks, D.: Class number, a theory of factorization, and genera. In: Proceedings
of Symposium of Pure Mathematics, vol. 20, Providence, RI, USA, pp. 415–440,
July–August 1969

29. Stinson, D.R.: Some baby-step giant-step algorithms for the low Hamming weight
discrete logarithm problem. Mathe. Comput. 71(237), 379–391 (2002). https://
doi.org/10.1090/S0025-5718-01-01310-2

30. Teske, E.: Square-root algorithms for the discrete logarithm problem (a survey).
In: Proceedings of the International Conference on Public Key Cryptography and
Computational Number Theory, De Gruyter Proceedings in Mathematics, Warsaw,
Poland, pp. 283–301, September 2000. http://www.degruyter.com/view/product/
61167

31. van Oorschot, P.C., Wiener, M.J.: Parallel collision search with application to hash
functions and discrete logarithms. In: Proceedings of CCS 1994, Fairfax, VA, USA,
pp. 210–218, November 1994. https://doi.org/10.1145/191177.191231

32. van Oorschot, P.C., Wiener, M.J.: On Diffie-Hellman key agreement with short
exponents. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 332–
343. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9 29

https://doi.org/10.1007/978-3-540-78440-1_19
https://doi.org/10.1109/TIT.2010.2044071
https://doi.org/10.1007/3-540-46766-1_22
https://doi.org/10.1007/978-3-319-13051-4_17
https://doi.org/10.1007/BFb0030345
https://doi.org/10.1145/1536414.1536490
https://doi.org/10.1007/s00200-005-0187-7
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1109/TIT.1978.1055817
https://doi.org/10.1007/s001450010010
https://doi.org/10.1090/S0025-5718-01-01310-2
https://doi.org/10.1090/S0025-5718-01-01310-2
http://www.degruyter.com/view/product/61167
http://www.degruyter.com/view/product/61167
https://doi.org/10.1145/191177.191231
https://doi.org/10.1007/3-540-68339-9_29

126 B. Kacsmar et al.

33. van Oorschot, P.C., Wiener, M.J.: Parallel collision search with cryptanalytic appli-
cations. J. Cryptol. 12(1), 1–28 (1999). https://doi.org/10.1007/PL00003816

34. Yang, X., Jiang, H., Xu, Q., Hou, M., Wei, X., Zhao, M., Choo, K.-K.R.: A
provably-secure and efficient verifier-based anonymous password-authenticated key
exchange protocol. In: Proceedings of TrustCom/BigDataSE/ISPA 2016, pp. 670–
677, Tianjin, China, August 2016. https://doi.org/10.1109/TrustCom.2016.0124

https://doi.org/10.1007/PL00003816
https://doi.org/10.1109/TrustCom.2016.0124

Efficient Implementation

sLiSCP: Simeck-Based Permutations
for Lightweight Sponge

Cryptographic Primitives

Riham AlTawy(B), Raghvendra Rohit, Morgan He, Kalikinkar Mandal,
Gangqiang Yang, and Guang Gong

Department of Electrical and Computer Engineering, University of Waterloo,
Waterloo, ON N2L 3G1, Canada

raltawy@uwaterloo.ca

Abstract. In this paper, we propose a family of lightweight crypto-
graphic permutations, named sLiSCP, with the sole aim to provide a
realistic minimal design that suits a variety of lightweight device appli-
cations. More precisely, we argue that for such devices the area dedi-
cated for security purposes should not only be consumed by an encryp-
tion or hashing algorithm, but also be used to provide as many crypto-
graphic functionalities as possible. Our main contribution is the design of
a lightweight permutation employing a 4-subblock Type-2 Generalized
Feistel-like Structure (GFS) and round-reduced unkeyed Simeck with
either 48 or 64-bit block length as the two round functions, thus resulting
in two lightweight instances of the permutation, sLiSCP-192 and sLiSCP-
256. We leverage the extensive security analysis on both Simeck (Simon-
like functions) and Type-2 GFSs and present bounds against differential
and linear cryptanalysis. Moreover, we analyze sLiSCP against a wide
range of distinguishing attacks, and accordingly, claim that there exist no
structural distinguishers for sLiSCP with a complexity below 2b/2 where
b is the state size. We demonstrate how sLiSCP can be used as a uni-
fied round function in the duplex sponge construction to build (authen-
ticated) encryption and hashing functionalities. The parallel hardware
implementation area of the unified duplex mode of sLiSCP-192 (resp.
sLiSCP-256) in CMOS 65 nm ASIC is 2289 (resp. 3039) GEs with a
throughput of 29.62 (resp. 44.44) kbps.

Keywords: Lightweight cryptography · Cryptographic permutation
Simeck block cipher · Generalized feistel structure · Sponge duplexing
Authenticated encryption · Hash function

1 Introduction

The area of lightweight cryptography has been investigated in the literature for
over a decade, however, only recently NIST [45] has initiated a standardization
project in response to the lack of standards that suit the bursting variety of
c© Springer International Publishing AG 2018
C. Adams and J. Camenisch (Eds.): SAC 2017, LNCS 10719, pp. 129–150, 2018.
https://doi.org/10.1007/978-3-319-72565-9_7

130 R. AlTawy et al.

constrained applications. In fact, long before NIST’s lightweight cryptography
project [45], the cryptographic community has, in an ad-hoc manner, tried to
establish some common criteria on how to define a lightweight cryptographic
design (e.g., 2000 GEs for hardware area) [4,38]. Nevertheless, such criteria are
rather generic, and specifically the established bound on the hardware area rep-
resents an upper bound for a passive RFID tag which may contain a total of
between 1000 and 10000 GEs, out of which, a maximum of 20% is to be used
for all security functionalities [38]. Other metrics include latency which maybe
considered of a paramount importance for some applications such as automotive
embedded systems that require a fast response time. However, for other highly
resource-constrained applications (e.g., EPC tags), latency can be relaxed so that
smaller area is realized. What remains the most important aspect in an accept-
able realistic secure lightweight cryptographic design is its hardware footprint
given that it offers acceptable metrics for throughput and latency.

Over the last decade, numerous symmetric primitives such as block
ciphers, stream ciphers and hash functions have been proposed to secure
resource-constrained applications. Examples of block ciphers include TEA [53],
KATAN/KTANTAN [30], LED [35], PRESENT [24], HIGHT [37], EPCBC [56],
TWINE [49], PRINCE [27], SIMON and SPECK [9], SIMECK [55], and SKINNY
[10], lightweight hash function examples include PHOTON [34], QUARK [5], and
SPONGENT [23], and lightweight stream cipher examples encompass Grain-128
[36], Trivium [29], MICKY [8], and WG [46]. These proposals aim to achieve
hardware efficiency by adopting efficient round or feedback functions so that
the targeted cryptographic functionality is provided while guaranteeing its secu-
rity. However, none of these proposals has considered providing multiple crypto-
graphic functions with low overhead, which might be a determining factor for its
realistic adoption in many constrained devices. In other words, it is reasonable to
assume that the available hardware area dedicated for security purposes should
be used to provide encryption, authentication, hash computation, and possibly
pseudo-random bit generation, which are the basic functionalities required by
security services or protocols. Similar to the advantage of having an encryption
algorithm where both encryption and decryption use the same round function,
the concept of cryptographic minimal design aims to unify one design for as many
cryptographic functionalities as possible. As a trade-off for having a minimal
design, some redundancy may be introduced and thus, latency and throughput
of individual functionalities may not be optimized.

In recent years, various authenticated encryption (AE) schemes have been
developed (e.g., during the CAESAR competition [28]). Of particular interest
are NORX-16 [7] and Ketje-JR [11] as they have state sizes of 256 bits (2880
GEs) and 200 bits (1270 LUTs), respectively, and also the lightweight AE scheme
Grain-128a (est. 2769.5 GEs) [2]. However, all the latter lightweight AE schemes
are optimized (e.g., MonkeyDuplexing [16]) for authenticated encryption and not
to be used as a hash function [16]. One can achieve a minimal design using the
Keccak permutation family [17]. However, the smallest instance of the Keccak
family is Keccak-200 whose implementation cost in the duplex mode is 4900

sLiSCP: Simeck-Based Permutations 131

GEs for 130 nm ASIC [39]. Consequently, we believe that there is a need to
explore the design space of secure lightweight cryptographic permutations which
are suitable for unifying a cryptographic design with a minimal overhead of
multiple cryptographic functionalities.

Our contributions. We aim for a hardware efficient and secure cryptographic
permutation for a minimal design, thus our contributions are as follows:

– We design the sLiSCP family of permutations, which adopts two of the
most efficient and extensively analyzed cryptographic structures, namely
a 4-subblock Type-2 Generalized Feistel-like Structure (GFS) [26,47], and
a round-reduced unkeyed version of the Simeck encryption algorithm [55].
Specifically, the round function of Simeck is an independently parameterized
hardware efficient version of the Simon round function [9] and has set a new
record in terms of hardware efficiency and performance in various platforms.
Moreover, Simeck, Simon and Simon-like variants have been extensively
cryptanalyzed by the public cryptographic community [1,19,41,42,44,51].

– We investigate the security of the sLiSCP permutation against a wide variety
of distinguishing attacks. We use the SMT/SAT tool developed in [41] and
develop a Mixed Integer Linear Programming (MILP) model to evaluate the
bounds for the probabilities of the differential and linear distinguishers. The
security of sLiSCP against the known attacks exploiting low bit diffusion is
ensured by choosing the number of rounds to be three times the number of
rounds required for achieving full bit diffusion, as proposed in Simpira V2
[33]. We claim that sLiSCP has no structural distinguishers with complexity
less than 2b/2 where b is the state size. This kind of claim has been used in
the setting of the security claims of the Keccak permutation [13] and Simpira
V.2 [33].

– We demonstrate how to use the sLiSCP permutation to construct authen-
ticated encryption and hash functions in the duplex sponge construction.
Moreover, our ASIC implementation results in CMOS 65 nm show that the
areas of the unified modes of sLiSCP-192 and sLiSCP-256 are 2289 GEs and
3039 GEs with a throughput of 29.62 and 44.44 kbps, respectively.

In the following Section, we present the general construction of the sLiSCP per-
mutation and its two instances, the Simecku-m box and its cryptographic prop-
erties.

2 Specification of sLiSCP

In this section, we formally describe the sLiSCP permutation, illustrated speci-
fications are provided in the full version of the paper [3]. The core algorithm of
the sLiSCP permutation is built upon the Simeck cipher’s round function and a
4-subblock Type-2 GFS construction.

132 R. AlTawy et al.

2.1 Description of Simecku -m

We use Simecku-m as a round function in the sLiSCP permutation. Simecku-m
is derived from the Simeck cipher whose block length is equal to m bits and its
round function is iterated for u rounds, where each round is given by: hi(x) =
Ri(x0, x1) = (((x0 <<< 5) � (x0 <<< 0)) + (x0 <<< 1) + x1 + rki, x0), where
x = x0‖x1, hi : Fm

2 → F
m
2 , <<< is a left cyclic shift operator, x0 and x1 are m

2 -bit
words, rki is a m

2 -bit round key added at the i-th round and + denotes the
bitwise XOR in F

m
2 . We modify the round function as follows; instead of adding

a round key in hi, 0 ≤ i ≤ u − 1, we add a round constant rci in hi where rci =
(C|ti), C = (2

m
2 −2), ti ∈ F2 and C|ti denotes the bitwise OR between C and ti.

Let t be the integer representation of the u-tuple (t0, t1, · · · , tu−1). Simecku-m
is defined as, Simecku-m(x) = hu−1 ◦hu−2 ◦· · ·◦h0(x), where the round constant
rci is used in hi at the i-th round. The round constants are generated using the
LFSR described in Sect. 2.4. We, henceforth, refer to Simecku-m as hu

t . In sLiSCP,
we choose all the round functions of GFS to be Simecku-m and we consider it
as an Sbox to systematically analyze our proposed permutation.

Definition 1 (Simecku-m box). A Simecku-m box is a permutation of m-bit
input constructed by iterating the Simeck-m cipher round function for u rounds
with round constant addition in place of key addition. The nonlinear operation of
such an Sbox is provided by iterating a simple AND operation followed by bitwise
shifts and XORs for u rounds.

2.2 Cryptographic Properties of Simecku -m

We first define some notations which are used in this section. For a vecto-
rial boolean function f : F

m
2 → F

m
2 with input (resp. output) difference δin

(resp. δout), the differential probability, denoted by Pr(δin → δout), is defined as
Pr(δin → δout) = |{x|f(x)+f(x+δin)=δout}|

2m . The squared correlation of f with input

mask Γin and output mask Γout is defined by C2(Γin → Γout) =
(

f̃(Γin,Γout)
2m

)2

,

where f̃(Γin, Γout) =
∑

x∈F
m
2

(−1)(〈x,Γin〉⊕〈f,Γout〉) where 〈x, y〉 denotes the inner

product between vectors x and y. Let fu denote the u-fold iteration of f and
Δu be the set of all differential characteristics of fu with probability p > 0.
For fu, the maximum expected differential characteristic probability (MEDCP)
is given by: MEDCP (fu) = max(δ0→···→δu)∈Δu

∏u−1
j=0 Pr(δj → δj+1), where

Pr(δj → δj+1) is the expected differential probability of δj → δj+1 over one
round of the keyed function f , when the key is picked uniformly and indepen-
dently at random [31,40]. The maximum expected linear characteristic correla-
tion (MELCC) can be defined analogously.

Estimating the maximum differential probability of Simecku-m. In our
permutations, we employ a modified Simeck-48 and Simeck-64 round functions
for Simecku-48 and Simecku-64, respectively. Due to their large input sizes, it
is infeasible to build their differential distribution tables and compute the exact

sLiSCP: Simeck-Based Permutations 133

maximum differential probability (MDP) values. Alternatively, we use the max-
imum estimated differential probability (MEDP) to provide better estimates for
differential characteristics for the sLiSCP permutations using the techniques in
[41]. Table 1 presents the log2 probabilities of maximum expected differential
(MEDCP) and linear squared correlation characteristics (MELCC) for Simeck-
48 and Simeck-64.

Table 1. Probabilities of the maximum differential and linear characteristics for
Simecku-m, where m = 48 and 64. The probabilities are given in the log2(·) scale.
Squared correlation is used for linear characteristic, thus the duality between both
probabilities.

Rounds u 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 · · · 24

Simecku-m 0 −2 −4 −6 −8 −12 −14 −18 −20 −24 −26 −30 −32 −36 −38 −44 −44 −46 · · · −62

The maximum differential probability is usually approximated by the maxi-
mum probability of a differential characteristic where such a probability is com-
monly assumed to be associated with differentials from characteristics with the
optimal probability [31,33]. However, due to the differential effect, we try to fur-
ther tighten it by extracting the differentials from all the optimal characteristics
and get their corresponding probabilities, then we approximate the MDP of the
Simecku-m box by the maximum probability among these differentials. For that,
we get tighter (but not strong) bounds for the probabilities of differential and
linear characteristics of the permutation than by using the Simecku-m maxi-
mum differential characteristic probability. For Simecku-m, the probability of a

differential (δ0, δu) is defined as Pr(δ0
hu
t−→ δu) =

∑wmax

i=wmin
si · 2−i, where wmin

and wmax denote the minimum and maximum log2 characteristic probabilities,
respectively, and si indicates the number of characteristics having probabilities
equal to 2−i. Table 2 presents the MEDP of the Simecku-m box calculated by

MEDP(Simecku-m) = max(δ0,δu)∈Δu(Pr(δ0
hu
t−→ δu)), where m = 48 and 64, and

Δu denotes the set of differentials associated with characteristics with maximum
probabilities.

Table 2. Estimation for the MDP for Simecku-m for m = 48 and 64

Rounds (u) 1 2 3 4 5 6 7 8 9

MEDP (Simecku-m) 0 −2 −4 −6 −8 −11.299 −13.298 −16.597 −18.595

Instantiating u in Simecku-m. Based on our analysis, we decided to choose
u = 6 for Simecku-48 and u = 8 for Simecku-64 because, we found that if we
opted for nine (resp. 11) rounds so that the full bit diffusion is achieved at one
sub-block after one step, then we need five steps for the full bit diffusion at the
state level (i.e. every state bit depends on all input bits) and thus based on
our design criteria, fifteen steps are required for the permutation. This results

134 R. AlTawy et al.

in 15 × 9 = 135 (resp. 15 × 11 = 165) Simeck rounds for the permutation. On
the other hand, by having six (resp. 8) rounds for Simecku-m, full bit diffusion
is achieved at the state level in six steps, as a result, we only need eighteen
steps for the permutation. Hence, sLiSCP employing Simeck-48 requires 18×6 =
108 rounds and sLiSCP employing Simeck-64 requires 18 × 8 = 144 rounds.
Additionally, it can be seen in Table 1 that for Simeck-48 (resp. Simeck-64), the
optimal characteristic probability decreases by a factor of 16 between 5 rounds
and 6 rounds (resp. between 7 and 8 rounds) and by a factor of only 4 between
6 and 7 rounds (resp. between 8 and 9 rounds), which further enhances the
resistance of Simecku-m parametrized by our round choices against differential
and linear attacks. To achieve a better throughput and good resistance against
differential and linear cryptanalysis, we opted for u = 6 rounds and u = 8 rounds
for Simecku-48 and Simecku-64, respectively.

For both Simeck6-48 and Simeck8-64, we considered all (δin, δout) differential
pairs with wt(δin) = wt(δout) = 1 and we found that the probability of such
differentials is zero, which means that both Sboxes have a branching number
larger than 2. However, calculating the exact branch number is infeasible due
to the large input size of Simecku-m. Using a tweaked method based on the
propagation of the division property [50], we have computed the algebraic degree
of Simeck6-48 (resp. Simeck8-64) component functions and our experimental
results show that half of the components has algebraic degree of 13 (resp. 27)
and the other half has a degree of 19 (resp. 36).

2.3 The Permutation F

The sLiSCP permutation is an iterative permutation, denoted by sLiSCP-b, over
F

b
2 where b = 4 × m and m is even. The construction of sLiSCP is based

on Simecku-m (denoted as hu
t) and a Type-2 GFS construction. An archi-

tecture of the sLiSCP permutation is shown in Fig. 1. Let (X0
0 ,X0

1 ,X0
2 ,X0

3)
and (Xs

0 ,Xs
1 ,Xs

2 ,Xs
3) be the input and output to the s-step permutation

F , respectively where X0
i ,Xs

i ∈ F
m
2 , 0 ≤ i ≤ 3. Let f : F

4m
2 → F

4m
2

denote the step function. Then the permutation F is defined in terms of
f as F (X0

0 ,X0
1 ,X0

2 ,X0
3) = fs(X0

0 ,X0
1 ,X0

2 ,X0
3) = (Xs

0 ,Xs
1 ,Xs

2 ,Xs
3), where

(Xj+1
0 ,Xj+1

1 ,Xj+1
2 ,Xj+1

3) = f(Xj
0 ,Xj

1 ,Xj
2 ,Xj

3), for 0 ≤ j ≤ s − 1 and
f0 = f . The step function f at j-th step is defined as f(Xj

0 ,Xj
1 ,Xj

2 ,Xj
3) =

(Xj
1 , hu

t′(Xj
3) + Xj

2 + (C ′|SC2j+1),X
j
3 , hu

t (Xj
1) + Xj

0 + (C ′|SC2j)), where t =
(RC12j , · · · , RC12j+2(u−1)), t′ = (RC12j+1, · · · , RC12j+2u+1), C ′ = 2m − 256,
P |Q denotes the bitwise OR between P and Q, and hi is given by hi(x0, x1) =
(((x0 <<< 5) � (x0 <<< 0)) + (x0 <<< 1) + x1 + (C|γi), x0), 0 ≤ i ≤ u − 1, where
C = 2

m
2 − 2 and γi = ti (resp. t′i) for hu

t (resp. hu
t′). For the constants RCi and

SCi generation, the reader is referred to Sect. 2.4. Table 3 presents the parame-
ters for two lightweight instances of the sLiSCP permutation, which are denoted
by sLiSCP-192 and sLiSCP-256.

sLiSCP: Simeck-Based Permutations 135

Fig. 1. sLiSCP permutation following 4-subblock Type-2 GFS using Simecku-m as hu
t .

Table 3. Parameter set for the 4 subblock GFS permutation F

Permutation (b-bit) Subblock
size m

Rounds u Steps s State size
(b = 4m)

Total #
rounds (u · s)

sLiSCP-192 48 6 18 192 108

sLiSCP-256 64 8 18 256 144

2.4 Round and Step Constants

We add constants to Simecku-m (round constants RC) and the GFS (step
constants SC) to destroy the self-symmetry between rounds and steps. We
use only one 6-stage LSFR (depicted in Fig. 2) to generate both the round
and step constants for sLiSCP-192. The j-th step round constants for h6

t

and h6
t′ are given by RC12j+2i and RC12j+2i+1, 0 ≤ i ≤ 5, respectively.

We use four extra XORs to generate 6-bit step constants from the same
parallel LFSR. At the 6-th clock cycle in each 6-th round at j-th step,
the states for the LFSR are (s12j+10, s12j+11, s12j+12, s12j+13, s12j+14, s12j+15),
we assign (s12j+10, s12j+12, s12j+14) to SC2j and (s12j+11, s12j+13, s12j+15) to
SC2j+1. For the other three values of SC2j (s12j+16, s12j+18, s12j+20) and SC2j+1

(s12j+17, s12j+19, s12j+21), we use the following equations: s12j+16 = s12j+10 ⊕
s12j+11, s12j+17 = s12j+11 ⊕ s12j+12, s12j+18 = s12j+12 ⊕ s12j+13, s12j+19 =
s12j+13 ⊕s12j+14, s12j+20 = s12j+14 ⊕s12j+15, s12j+21 = s12j+15 ⊕s12j+16, j ≥ 0.
Thus, SC2j = s12j+10||s12j+12||s12j+14||s12j+16||s12j+18||s12j+20 and SC2j+1 =
s12j+11||s12j+13||s12j+15||s12j+17||s12j+19||s12j+21. The entire architecture of the
parallel LFSR with feedback function x6 +x+1 to generate the j-th step round
and step constants is shown in Fig. 2. The constants for sLiSCP-256 are gener-
ated analogously using a 7-stage LFSR with primitive polynomial x7 + x + 1.
Further details are provided in the full paper [3].

136 R. AlTawy et al.

s12j+2is12j+2i+2s12j+2i+4

s12j+2i+1s12j+2i+3s12j+2i+5

⊕⊕

RC12j+2i

RC12j+2i+1

s12j+2i+6

s12j+2i+7

⊕
⊕
⊕
⊕

s12j+2i+8

s12j+2i+9

s12j+2i+10

s12j+2i+11

Fig. 2. Round and step constants generated by parallel LFSR at i-th round of j-th
step.

3 Security Analysis

In this section, we analyze the security of the sLiSCP permutation by assessing
its behavior against various distinguishing attacks. As the design of the sLiSCP
permutation is based on the Simecku-m box and the Type-2 GFS, the permu-
tation is analyzed against distinguishing attacks targeting Type-2 GFS designs
when the employed round function is a large Sbox with specific differential and
linear properties.

3.1 Differential and Linear Cryptanalysis

We assess the security of the sLiSCP permutation (denoted by F) by evaluating
the lower bounds on the probabilities of the differential and linear characteris-
tics. We use the terms characteristic and trail interchangeably throughout this
section.

Bounding trails using the Wide Trail Strategy (WTS). To evaluate the
lower bounds on differential and linear characteristics of sLiSCP, we first follow
the WTS and compute the minimum number of active Simecku-m boxes (hu

t). In
such a context, a Simecku-m box is referred to as active if a non zero difference
or a linear mask is presented at its input. Table 4 presents the lower bounds on
the minimum number of active hu

t for up to 18 steps. The bounds presented in
Table 4 are generated by running a Mixed Integer Linear Programming (MILP)
optimizer on a model describing our design.

One can see that the number of active hu
t cycles every six steps. Given the

bounds on the differential and linear correlation probabilities which we derived in
Table 2, we can now evaluate MEDCP (fs) and MELCC(fs) when the number
of steps s = 18 in both sLiSCP-192 and sLiSCP-256 by:

MEDCP (sLiSCP-192) = MEDP (Simeck6-48)18 = (2−11.299)18 = 2−203.382 (1)
MEDCP (sLiSCP-256) = MEDP (Simeck8-64)18 = (2−16.597)18 = 2−298.746.

sLiSCP: Simeck-Based Permutations 137

Table 4. Lower bounds on the number of active hu
t with respect to the number of

steps.

Step 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Min. # of active hu
t 0 1 2 3 4 6 6 7 8 9 10 12 12 13 14 15 16 18

The duality between linear and differential cryptanalysis enables us to similarly
apply the same approach to compute a bound on the MELCC. Over 18 steps, the
maximum expected linear characteristic (squared) correlation is upper bounded
by 2−203.382 and 2−298.746 for sLiSCP-192 and sLiSCP-256, respectively.

Bounding trails using the Long Trail Strategy (LTS). While the above
bounds are for a single optimistically found characteristic, we can argue that
such a characteristic might not be valid as it is pointed out in [31,40], having all
the 18 active Simecku-m boxes exhibiting the maximum differential probability
transitions is not always valid. Additionally, Dinu et al. [31] presented the long
trail strategy which states that better bounds on differential and linear charac-
teristics probabilities may be given if the design allows the propagation of long
uninterrupted trails instead of the wide ones used in WTS.

Definition 2 (Long Trail for n Simecku-m boxes). A differential path that
includes a single path passing though n successive Simecku-m boxes with no
other paths branching in. Such a trail can be static where an output subblock
of the linear layer is equal to one of its inputs, or a dynamic trail where an
output subblock of the linear layer is the result of XORing one of its input non
active subblock with the output of an active Simecku-m box.

Based on the above definition, the MEDCP of a given differential trail is
bounded by the product of the MEDCPs of its component long trails. Given a
differential trail that is decomposed into i trails, where {κi}i≥1 denotes the set
of their corresponding lengths, then, the probability (pd) of such trail is upper
bounded by pd ≤ ∏

i≥1 MEDCP (Simeckuκi-m). Indeed, if ds(u) and ls(u)
denote the MEDCP and MELCC of Simecku-m box, then it can be observed
from Table 1 that ds(nu) � ds(u)n, and ls(nu) � ls(u)n, thus tighter bounds
may be obtained.

Decomposition of an optimum trail. We apply the trail decomposition pro-
cess on a 6-step trail with only six active Simecku-m box which is the trail
returned by the MILP solver corresponding to the minimum number of active
Sboxes. As depicted in Fig. 3, the whole differential trail covers all the col-
ored Sboxes. In such a trail, the XORs that receive two active input subblocks
(indicated by the dashed colored lines) are assumed to cancel them resulting
in zero-difference subblocks which are marked by black colored lines. Using
the LTS, we can decompose this trail into five long trails, out of them, four
trails are static with length one (green, blue, purple and orange colored trails)
and the remaining one is dynamic (red trail) and of length two. Accordingly,

138 R. AlTawy et al.

the MEDCP of this differential trail is evaluated by MEDCP (Simecku-m)4 ×
MEDCP (Simeck2u-m) and equals (2−12)4×2−30 = 2−78 (resp. (2−18)4×2−44 =
2−116) for sLiSCP-192 (resp. sLiSCP-256). The above MEDCP bounds are con-
siderably lower than the previously anticipated 6-step bounds calculated using
Eq. (1) (based on WTS), which are (2−11.299)6 ≈ 2−67.794 (resp. (2−16.597)6 =
2−99.582) for sLiSCP-192 (resp. sLiSCP-256).

Fig. 3. A minimum number of active Simecku-m boxes trail decomposed into five long
trails.

To this end, we claim that our analysis based on the minimum number of
active Sboxes underestimates the security of sLiSCP with respect to differential
and linear cryptanalysis, and that although the above analysis provide a provable
bound against these types of attacks, they are not tight and as shown, tighter
bounds may be provided using the LTS.

3.2 Meet/Miss in the Middle Distinguishers

Based on our design criteria, we require that the total number of steps is equal
to three times the number of steps required for full bit diffusion. Consequently,
splitting sLiSCP into two or even three parts always results in an intermediate
state that achieves full bit-diffusion. More precisely, the evaluation of each bit
in an intermediate state i requires the knowledge of the whole b bits of state
i − 6. For that, the evaluation of an intermediate partial state has no advan-
tage over the brute force guessing, thus we believe that sLiSCP is secure against
these type of attacks. On the other hand, miss-in-the-middle distinguishers such
as impossible differential (ID) and zero-correlation (ZC) distinguishers are a
special kind of meet-in-the-middle distinguisher that exploits contradicting con-
ditions at an intermediate state which makes matching such an intermediate
state attributes impossible [18,25]. Based on the results provided in [21,42], we
belive at most ten steps may be analyzed. Accordingly, having eighteen steps of

sLiSCP: Simeck-Based Permutations 139

sLiSCP-b is sufficient to mitigate distinguishers based on meet-and-miss-in-the-
middle approaches. More detailed analysis about the distinguishers are provided
in the full paper [3].

3.3 Integral and Zero-Sum Distinguishers

The results in [22] imply the existence of 8-round integral distinguisher for
sLiSCP. However, traditional integral attacks are less effective on bit-oriented
ciphers which lead to the development of the new generalized division property
[50]. Employing the algorithms proposed in [54,57], we found nine-round divi-
sion property distinguishers with data complexities 2188 and 2191 for sLiSCP-192.
More analysis on sLiSCP-256 and Simecku-m is presented in the full paper [3]. As
for zero-sums, we have found 9-step distinguishers for both instances of sLiSCP.

3.4 Self Symmetry-Based Distinguishers

To make the step functions in the GFS different, we add a 12-bit constant
including step and round constants in each hu

t . Our choice of LFSR ensures
that each pair of such constants does not repeat due to the periodicity of the 6-
tuple sequence constructed from the decimated m-sequence of period 63, which
enables our design to avoid self symmetry-based distinguisher including slide
[20], rotational and invariant subspace distinguishers [43,48].

4 Applications of sLiSCP

The sLiSCP permutation is designed to be used in lightweight applications to
provide as many cryptographic functionalities as possible. We use sLiSCP in the
sponge framework to construct authenticated encryption (AE), stream cipher,
MAC and hash function.

4.1 Why the Sponge Framework?

Sponge constructions are very diversified in terms of the offered security level,
particularly, it is proven that the sponge and its single pass duplex mode offer
a 2c/2 bound against generic attacks [12,15]. However, for keyed modes such as
MAC, stream cipher and authenticated encryption, a security level of 2c−a is
proven when the number of queries is upper bounded by 2a [16]. When restrict-
ing the data complexity to a maximum of 2a queries with a < c, one can reduce
the capacity and increase the rate for a better throughput with the same secu-
rity level. The sponge duplex AE mode requires the uniqueness of nonce when
encrypting different messages with the same key as the ability of the attacker
to obtain multiple combinations of input and output differences leaks informa-
tion about the inner state bits which may lead to the reconstruction of the full
state [11,15]. One might exploit a nonce reuse differential attack. However, such
an attack depends on the probability of the best differential characteristic and

140 R. AlTawy et al.

the number of rounds of the underlying permutation. If the permutation offers
enough resistance against differential cryptanalysis, the feasibility of nonce reuse
differential attack is minimal.

We use the sLiSCP mode which is a combined version of the duplex sponge
mode used in ASCON [16,32] and NORX [6] that realizes the objectives we
aimed for. The objectives are: (1) Flexibility to adapt the same circuitry for
both keyed and unkeyed functionalities in a hardware friendly manner; (2) High
key agility that fits the lightweight requirements; (3) Simplicity for keeping the
encryption and decryption algorithms similar; and (4) Plaintext and ciphertext
blocks are generated online without processing the whole input and encrypted
data first.

4.2 The sLiSCP Mode: AE and Hash

The initialization and finalization phases for the sLiSCP mode are derived by
modifying the keyed initialization and finalization stages of the ASCON [32]
and NORX [6]. The advantages of the adopted mode are that the initialization
and finalization stages are more hardware efficient, and key recovery and tag
forgery are hard even if an internal state is recovered. We also use the domain
separation technique which is used in NORX as it runs for all rounds of each
stage, and thus reduces the chances of side channel analysis and offers uniformity
across different stages. The separation between the processing of different types
of inputs is important to distinguish between the roles of the processed data.
To this end, we have only one round function that incorporates absorption,
squeezing, and domain separation.

Our sLiSCP permutation is based on the Type-2 GFS where there are four
subblocks and each subblock is either 48 or 64 bits for sLiSCP-192 and sLiSCP-
256, respectively. Since we use it in sponge-based modes, we need to specify
exactly from where the r-bit input is absorbed and the r-bit output is squeezed.
For sLiSCP permutations, we consider the b-bit state as a series of four m-bit
subblocks, X0,X1,X2, and X3, where m is equal to 48 and 64 for sLiSCP-192
and sLiSCP-256, respectively. Each subblock Xi can be viewed as a series of
l = m

8 bytes, Bli+0, Bli+1, · · · , Bli+(l−1), thus the state S is divided into L = 4l
bytes and denoted by S = (B0, · · · , BL−1) where L = 24 and 32 for sLiSCP-192
and sLiSCP-256, respectively. We view the state S as S = (Sr, Sc), where Sr

and Sc denote the rate and capacity parts, respectively, Sr is defined as Sr =
(B6, B7, B18, B19) for sLiSCP-192 and Sr = (B8, B9, B10, B11, B24, B25, B26, B27)
for sLiSCP-256 and Sc consists of the remaining bytes.

Authenticated Encryption. An authenticated encryption (AE) algorithm
takes as input a secret key K, a nonce N , a block header A (a.k.a, associated
data) and a message M and outputs a ciphertext C with |C|= |M |, and an
authentication tag T . An authenticated encryption scheme is defined as AE :
{0, 1}k × {0, 1}n × {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}t with AE(K,N,A,M) =
(C, T) where k is the bit length of K, n is the bit length of N and t is the tag size

sLiSCP: Simeck-Based Permutations 141

in bits. We denote an instance of sLiSCP in a keyed mode by sLiSCP-b/k, where
b and k denote the state size and the key length, respectively. In such a mode,
we limit the number of processed bits per key to 2a such that one can attain bit
security equal to 2k when c ≥ k + a + 1 [14]. There are three instances of AE
based on sLiSCP, which are sLiSCP-192/80, sLiSCP-192/112, sLiSCP-256/128.
The recommended parameters for sLiSCP when used in the AE mode are listed
in Table 5.

Table 5. Recommended parameters for sLiSCP-b/k in the AE mode

Algorithm Key Nonce Tag Block size r Capacity c Usage exponent a

sLiSCP-192/80 80 80 80 32 160 72

sLiSCP-192/112 112 80 112 32 160 40

sLiSCP-256/128 128 128 128 64 192 56

Padding: Padding is necessary when the length of the processed data is not
a multiple of the rate r value and also to act as a delimiter between data of
unknown lengths. Since the keys are of fixed length, we need to pad it by append-
ing zeros only if its length is not a multiple of r such that the padded K is divided
into �K r-bit blocks K0‖K1‖· · · ‖K�K−1. We use the padding rule (10∗) denoting
a single 1 followed by required 0’s to the message M and associated data A such
that their lengths after padding are multiple of r.

The sLiSCP AE algorithms: The sLiSCP AE scheme consists of initialization,
processing associated data, encryption, decryption and finalization algorithms.
We start by describing the key and nonce loading and the tag extraction phase.
Initially, the state is loaded with a nonce N and a key K whose bytes are denoted
by N = (NB0, · · · , NB� n

8 �−1), and K = (KB0, · · · ,KB� k
8 �−1), respectively, and

remaining bytes are set to zero (we refer to this procedure by initialize(·, ·)).
Nonce bytes are divided and loaded in the even indexed subblocks, X0 and X2,
in an ascending byte order. The key is loaded in the odd indexed subblocks, X1

and X3 in the same manner, and if the key size is larger than half the state size,
then remaining key bytes populate the remaining bytes in X0 and X2 equally
and in an ascending order. For example, a 112-bit key is loaded in sLiSCP-192
state as follows: B6 · · · B11 ← KB0 · · · KB5, B18 · · · B23 ← KB7 · · · KB12, and
B5, B17 ← KB6,KB13. The tag extraction procedure, denoted by tagextract(·)
extracts tag values from the same byte positions which are used in the key
initialization stage. Exact byte position assignments are provided in the full
paper [3].

After applying the padding rule, the associated data A and message M are
denoted by A = A0‖· · · ‖A�A−1 and M = M0‖· · · ‖M�M−1, resp., where each Mi

and Ai are of r-bit block and �A and �M are the numbers of r-bit blocks for
A and M . The ciphertext for message M is denoted by C = C0‖· · · ‖C�M−1.
The sLiSCP AE algorithms are described in Fig. 4. The decryption procedure

142 R. AlTawy et al.

Fig. 4. The sLiSCP AE algorithms

returns the message blocks Mi, i = 0, 1, · · · , �M − 1, and it runs the same pro-
cedure as the encryption procedure, except that each Mi = Ci ⊕ Sr, then Sr is
replaced by Ci, and the last M�M−1 = �Sr�(|M | mod r) ⊕ C�M−1, then Sr part is
replaced by C�M−1‖(�Sr�(r−|M | mod r) ⊕ (1‖0(r−1−|M | mod r))). Decrypted mes-
sages are returned only if the calculated tag is the same as the received tag. We
do not claim security in the event of nonce reuse, although, the initialization and
finalization stages combined by the number of rounds used in the sLiSCP per-
mutation tremendously reduces the effect of such attacks. We claim no security
for reduced-round versions of the sLiSCP permutation operating in the sLiSCP
modes. The security levels for data confidentiality, data integrity, associated
data integrity and nonce data integrity are 80, 112 and 128 for sLiSCP-192/80,
sLiSCP-192/112 and sLiSCP-256/128, respectively.

Hash Computation. A hash function takes as input a message M , and a
standard initialization vector IV , and then returns a fixed size output H, called
hash or message digest. Mathematically, the hash function is defined as H :
{0, 1}∗ × {0, 1}iv → {0, 1}h with H = H(M, IV) where iv is the length of the
IV and h is the length of the hash in bits. Below we explain how to use sLiSCP
to compute the hash of a message.

sLiSCP: Simeck-Based Permutations 143

Absorbing and Squeezing: Before applying the absorbing phase, the state is
first initialized with the IV in Table 6 similar to nonce initialization in the AE
mode (cf. Sect. 6.4 in [3]), and the same padding rule (10∗) is applied to the input
message M to make the message length a multiple of r. Each message block is
absorbed by XORing it to the Sr part of the state, then the sLiSCP permutation
is applied. After absorbing all message blocks, the h-bit output is extracted from
the Sr part of the state, outputting r′ bits at a time, followed by applying the
sLiSCP permutation, until a total of �h/r′� extractions are completed. If the
resulting extracted bits are more than the desired hash length, truncation is
performed.

Preimage security: It has been shown that inverting the squeezing phase falls
in the category of the multiblock CICO problem, which requires 2min(h,b)−r com-
putations to recover the state before the squeezing phase [13,34]. Once an inter-
nal state is recovered one can launch an MITM attack with 2c/2 computations
to get a preimage of a given hash of length h. The latter condition reduces
the generic preimage attack on the sponge-based hash functions from 2h to
min(2min(h,b),max(2min(h,b)−r, 2c/2)). Guo et al. [34] suggested using a flexible
squeezing bit rate r′ < r that offers a trade off between speeding up the hash
computation and preimage security. A smaller r′ would make the time complex-
ity of a preimage attack equal to 2h−r′

.
We adopt a standard initialization vector, IV = h/2‖r‖r′ where h/2, r, and

r′ are encoded using 8 bits, as used in PHOTON [34]. The security levels for the
recommended parameters for sLiSCP in the hashing mode are given in Table 6.

Table 6. Parameters for sLiSCP-b in the hashing mode and their security levels

Algorithm IV h r r′ c Collision Sec. preimage Preimage

sLiSCP-192 0x502020 160 32 32 160 80 80 128

sLiSCP-256 0x604040 192 64 64 192 96 96 128

sLiSCP-256 0x604020 192 64 32 192 96 96 160

5 Hardware Implementation and Results

We implement our sLiSCP permutation using the parallel hardware architecture
which is shown and fully explained in the full version of the paper [3]. We use the
same ASIC design flow and metrics as described in Simeck [55]. Our implemen-
tation results are based on STMicroelectronics CMOS 65 nm CORE65LPLVT
library and the areas are obtained before the place and route phase in order to
compare fairly with other lightweight candidates. To keep the consistency with
other sponge based primitives, the throughput is computed at a frequency of 100
kHz using the following formula: Throughput = r′

(u∗s) ∗100 kbps. Our implemen-
tation areas for sLiSCP-192 (resp. sLiSCP-256) permutation are 2153 (resp. 2833)
GEs in 65 nm ASIC. By applying the sLiSCP permutations repeatedly, we carry

144 R. AlTawy et al.

two implementations for the hash and AE modes in order to contrast with other
dedicated designs. The implementations of these two modes involve the input
of key, nonce, associated data, message, and the bit domain separator; and also
involve the output of the ciphertext, hash value and tag. Our results for the hash
and authenticated encryption modes of sLiSCP are presented in Table 7, as well
as a comparison with other lightweight hash functions and AE algorithms. If a
unified mode is used for both functionalities, then the consumed GE area will
be dominated by that of the AE mode.

Table 7. Parallel hardware implementation of sLiSCP modes and comparison with
other lightweight hash and AE primitives. Throughput is given for a frequency of 100
kHz.

Hash function Parametersa Security (bits) Process Latency Area Throughput

r c r′ h Pre 2nd Pre. Coll. (nm) (Cycles) (GEs) (kbps)

sLiSCP-192 32 160 32 160 128 80 80 65 108 2271 29.62

Photon-160/36/36 [34] 36 160 36 160 124 80 80 180 180 2117 20.00

D-Quark [5] 16 160 16 176 160 80 80 180 88 2819 18.18

Spongent-160/160/16 [23] 16 160 16 160 144 80 80 130 90 2190 17.78

Keccak-f [40,160] [39] 40 160 40 200 160 160 80 130 18 4900 222.22

Keccak-f [72,128] [39] 72 128 72 200 128 128 64 130 18 4900 400.00

sLiSCP-256 64 192 64 192 128 96 96 65 144 3019 44.44

sLiSCP-256 64 192 32 192 160 96 96 65 144 3019 22.22

Photon-224/32/32 [34] 32 224 32 224 192 112 112 180 204 2786 15.69

Spongent-160/160/80 [23] 80 160 80 160 80 80 80 130 120 3139 66.67

Spongent-224/224/16 [23] 16 224 16 224 208 112 112 130 120 2903 13.33

Spongent-256/256/16 [23] 16 256 16 256 240 128 128 130 140 3281 11.43

S-Quark [5] 32 224 32 256 224 112 112 180 64 4640 50

AE algorithm t Con.b Int.c

sLiSCP-192/80 32 160 32 80 80 80 − 65 108 2289 29.62

sLiSCP-192/112 32 160 32 112 112 112 − 65 108 2289 29.62

sLiSCP-256/128 64 192 64 128 128 128 − 65 144 3039 44.44

Ketje-Jr [11] 16 184 16 96 96 96 − − − 4900d −
NORX-16 [7] 128 128 128 96 96 96 − − − 2880 −
ar, c, r′, h and t denote the input bitrate, capacity, output bitrate, digest length and tag size, respectively.
bConfidentiality of plaintext.
c Integrity of plaintext, associated data and nonce.
d Considering it uses Keccak-200 as its underlying permutation, its area is at least 4900 GEs.

Our implementation in CMOS 65 nm shows that the area for the hash mode
of sLiSCP-192 (resp. sLiSCP-256) is 2271 (resp. 3019) GEs with a throughput
of 29.62 (resp. 44.44 kbps or 22.22 kbps depending on r′) kbps. When com-
pared with other primitives with similar internal states, the area of sLiSCP-
192 is slightly larger than that of the serialized implementation of Photon-
160/36/36 and is comparable with that of Spongent-160/160/16. However, the
area of sLiSCP-192 is quite smaller than that of D-Quark, Keccak-f [40,160],
Keccak-f [72,128], where the areas of Keccak-f [40,160] and Keccak-f [72,128] are
permutations only. In terms of throughput, sLiSCP-192 is better than Photon-
160/36/36, D-Quark, and Spongent-160/160/16. The area of sLiSCP-256 is a

sLiSCP: Simeck-Based Permutations 145

little larger than that of the serialized result of Photon-224/32/32 and is com-
parable with that of Spongent-160/160/80, Spongent-224/224/16, Sponogent-
256/256/16, and is smaller than that of S-Quark. The relevant throughput is
only smaller than that of Spongent-160/160/80 and S-Quark.

For the authenticated encryption mode, the area of sLiSCP-192 (resp. sLiSCP-
256) is 2289 (resp. 3039) GEs with a throughput of 29.62 (resp. 44.44) kbps.
sLiSCP-256 has a GE area that is comparable with the estimated area of NORX-
16, while sLiSCP-192 is quite smaller than NORX-16. Both areas of sLiSCP-192
and sLiSCP-256 are much smaller than that of Ketje-Jr. We note that serialized
implementations of sLiSCP modes result in more savings in GE area and thus
enable its adoption in highly constrained devices such as EPC tags. Overall,
both the hash and authenticated encryption modes of sLiSCP are competitive
with others in terms of area and throughput.

6 Concluding Remarks

In this section, we conclude the paper by highlighting some of the design deci-
sions we have made for the construction of the sLiSCP permutation. Most of the
contents of this section have been stated in a scattered way in earlier sections, so
we aim by addressing these points again to reiterate some important conclusions
that may have been missed by a reader.

– Another sponge-based primitive: We design sLiSCP in response to the notice-
able shortage of lightweight secure cryptographic permutations which can
be used in the sponge framework to provide a unified secure design which
offers as many cryptographic functionalities as possible. In fact, most of the
lightweight symmetric key primitives that exist in the literature are dedicated
to offer a specific cryptographic functionality and accordingly are optimized
as such. Other than Keccak-200 permutation which has a parallel hardware
implementation cost of around 4900 GEs [39], we cannot find a lightweight
cryptographic permutation. On the other hand, sLiSCP-192 in a duplex mode
has a parallel implementation cost of 2289 GEs on a 65 nm ASIC, which
enables its realistic adoption in constrained lightweight applications to pro-
vide a minimal cryptographic design.

– Simeck is based on the generalized round function of NSA’s Simon: The justi-
fications of the parameters and design choices for Simon by the NSA remain
unclear. However, Simeck is an independently parameterized unkeyed ver-
sion of the generalized Simon round function. In addition to being fully ana-
lyzed by its designers [55] where all the parameter choices have been jus-
tified, Simeck has been publicly cryptanalyzed for over three years. Finally,
Simeck offers one of the lowest hardware footprints which is even smaller than
Simon’s.

– The sLiSCP permutation is based on a GFS like the MD/SHA family of hash
functions. The MD/SHA family is a special instantiation of the Feistel con-
struction which is vulnerable to the Wang et al. differential attacks [52]. How-
ever, such attacks are successful on this family of hash functions due to the

146 R. AlTawy et al.

ability of the attacker to manipulate the propagation of differences in the
internal state through message modification techniques, which are effective
because the algorithm allows a user to feed the state with independent mes-
sage blocks for a substantial number of rounds. Nevertheless, without the
message feeding algorithm, the Wang et al. attacks are ineffective and sLiSCP
is an unkeyed permutation where the attacker has no means to manipulate
the value of the internal state amid execution.

– Simeck operations are bit-based and thus, can be used directly on a large state
for the design of a permutation. Simeck with large internal states such as
Simeck-128 are hard to analyze, even the probabilities of their differential
and linear characteristics are harder to bound for an extended number of
rounds [41,44]. Thus, providing the security guarantee for Simeck with a large
state size is almost unpractical. Consequently, the adoption of Simeck-48 and
Simeck-64 in a Type-2 GFS construction enables us to leverage their existing
cryptanalysis and further provide bounds on the probabilities of differential
and linear characteristics for the sLiSCP permutations.

Acknowledgment. The authors would like to thank the reviewers for their valuable
comments that helped improve the quality of the paper. We would also like to thank
Stefan Kölbl for the help with the SAT/SMT tool. This work is supported by the Nat-
ural Sciences and Engineering Research Council of Canada (NSERC) and the National
Institute of Standards and Technology (NIST).

References

1. Abed, F., List, E., Lucks, S., Wenzel, J.: Differential cryptanalysis of round-
reduced Simon and Speck. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS,
vol. 8540, pp. 525–545. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46706-0 27

2. Agren, M., Hell, M., Johansson, T., Meier, W.: Grain-128a: A new version of grain-
128 with optional authentication. Int. J. Wire. Mob. Comput. 5(1), 48–59 (2011)

3. AlTawy, R., Rohit, R., He, M., Mandal, K., Yang, G., Gong, G.: sLiSCP: simeck-
based permutations for lightweight sponge cryptographic primitives. The Univer-
sity of Waterloo CACR Archive, Technical Report CACR 2017–04 (2017). http://
cacr.uwaterloo.ca/

4. Armknecht, F., Hamann, M., Mikhalev, V.: Lightweight authentication protocols
on ultra-constrained RFIDs - myths and facts. In: Saxena, N., Sadeghi, A.-R. (eds.)
RFIDSec 2014. LNCS, vol. 8651, pp. 1–18. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-13066-8 1

5. Aumasson, J.-P., Henzen, L., Meier, W., Naya-Plasencia, M.: Quark: a lightweight
hash. J. Cryptol. 26(2), 313–339 (2013)

6. Aumasson, J.-P., Jovanovic, P., Neves, S.: NORX: parallel and scalable AEAD.
In: Kuty�lowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8713, pp. 19–36.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11212-1 2

https://doi.org/10.1007/978-3-662-46706-0_27
https://doi.org/10.1007/978-3-662-46706-0_27
http://cacr.uwaterloo.ca/
http://cacr.uwaterloo.ca/
https://doi.org/10.1007/978-3-319-13066-8_1
https://doi.org/10.1007/978-3-319-13066-8_1
https://doi.org/10.1007/978-3-319-11212-1_2

sLiSCP: Simeck-Based Permutations 147

7. Aumasson, J.-P., Jovanovic, P., Neves, S.: Norx8 and norx16: authenticated encryp-
tion for low-end systems. Cryptology ePrint Archive, Report 2015/1154 (2015).
http://eprint.iacr.org/2015/1154

8. Babbage, S., Dodd, M.: The MICKEY stream ciphers. In: Robshaw, M., Billet,
O. (eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 191–209. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-68351-3 15

9. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The
simon and speck families of lightweight block ciphers. Cryptology ePrint Archive,
Report 2013/404 (2013). http://eprint.iacr.org/2013/404

10. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y.,
Sasdrich, P., Sim, S.M.: The SKINNY family of block ciphers and its low-latency
variant MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815,
pp. 123–153. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
53008-5 5

11. Bertoni, G., Daemen, J., Peeters, M., Assche, G.: Caesar submission: Ketje v. 2
(2014). http://ketje.noekeon.org/Ketjev2-doc2.0.pdf

12. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the indifferentiability
of the sponge construction. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol.
4965, pp. 181–197. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-78967-3 11

13. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak specifications. Sub-
mission to nist (round 2) (2009)

14. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the security of the keyed
sponge construction. In: Symmetric Key Encryption Workshop (2011)

15. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Duplexing the sponge:
single-pass authenticated encryption and other applications. In: Miri, A., Vau-
denay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 320–337. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-28496-0 19

16. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Permutation-based encryp-
tion, authentication and authenticated encryption. In: DIAC (2012)

17. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Cryptographic sponge func-
tions (2014). http://sponge.noekeon.org/CSF-0.1.pdf

18. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack reduced to 31
rounds using impossible differentials. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS,
vol. 1592, pp. 12–23. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-
48910-X 2

19. Biryukov, A., Roy, A., Velichkov, V.: Differential analysis of block ciphers SIMON
and SPECK. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540,
pp. 546–570. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-
46706-0 28

20. Biryukov, A., Wagner, D.: Slide attacks. In: Knudsen, L. (ed.) FSE 1999. LNCS,
vol. 1636, pp. 245–259. Springer, Heidelberg (1999). https://doi.org/10.1007/3-
540-48519-8 18

21. Blondeau, C., Bogdanov, A., Wang, M.: On the (In)equivalence of impossible differ-
ential and zero-correlation distinguishers for feistel- and skipjack-type ciphers. In:
Boureanu, I., Owesarski, P., Vaudenay, S. (eds.) ACNS 2014. LNCS, vol. 8479, pp.
271–288. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07536-5 17

22. Blondeau, C., Minier, M.: Analysis of impossible, integral and zero-correlation
attacks on type-II generalized feistel networks using the matrix method. In: Lean-
der, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 92–113. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48116-5 5

http://eprint.iacr.org/2015/1154
https://doi.org/10.1007/978-3-540-68351-3_15
http://eprint.iacr.org/2013/404
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-662-53008-5_5
http://ketje.noekeon.org/Ketjev2-doc2.0.pdf
https://doi.org/10.1007/978-3-540-78967-3_11
https://doi.org/10.1007/978-3-540-78967-3_11
https://doi.org/10.1007/978-3-642-28496-0_19
http://sponge.noekeon.org/CSF-0.1.pdf
https://doi.org/10.1007/3-540-48910-X_2
https://doi.org/10.1007/3-540-48910-X_2
https://doi.org/10.1007/978-3-662-46706-0_28
https://doi.org/10.1007/978-3-662-46706-0_28
https://doi.org/10.1007/3-540-48519-8_18
https://doi.org/10.1007/3-540-48519-8_18
https://doi.org/10.1007/978-3-319-07536-5_17
https://doi.org/10.1007/978-3-662-48116-5_5

148 R. AlTawy et al.

23. Bogdanov, A., Knežević, M., Leander, G., Toz, D., Varıcı, K., Verbauwhede, I.:
spongent: a lightweight hash function. In: Preneel, B., Takagi, T. (eds.) CHES
2011. LNCS, vol. 6917, pp. 312–325. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-23951-9 21

24. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2 31

25. Bogdanov, A., Leander, G., Nyberg, K., Wang, M.: Integral and multidimen-
sional linear distinguishers with correlation zero. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 244–261. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-34961-4 16

26. Bogdanov, A., Shibutani, K.: Generalized feistel networks revisited. Des. Codes
Crypt. 66(1), 75–97 (2013)

27. Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M., Knudsen, L.R.,
Leander, G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen, S.S.,
Yalçın, T.: PRINCE – a low-latency block cipher for pervasive computing applica-
tions. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 208–
225. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4 14

28. CAESAR: Competition for authenticated encryption: security, applicability, and
robustness. https://competitions.cr.yp.to/caesar.html

29. Cannière, C.: Trivium: a stream cipher construction inspired by block cipher
design principles. In: Katsikas, S.K., López, J., Backes, M., Gritzalis, S., Preneel,
B. (eds.) ISC 2006. LNCS, vol. 4176, pp. 171–186. Springer, Heidelberg (2006).
https://doi.org/10.1007/11836810 13

30. De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — a
family of small and efficient hardware-oriented block ciphers. In: Clavier, C., Gaj,
K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-04138-9 20

31. Dinu, D., Perrin, L., Udovenko, A., Velichkov, V., Großschädl, J., Biryukov, A.:
Design strategies for ARX with provable bounds: Sparx and LAX. In: Cheon, J.H.,
Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 484–513. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6 18

32. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1.2. submission to
the caesar competition (2016). http://competitions.cr.yp.to/round3/asconv12.pdf

33. Gueron, S., Mouha, N.: Simpira v2: a family of efficient permutations using the
AES round function. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS,
vol. 10031, pp. 95–125. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53887-6 4

34. Guo, J., Peyrin, T., Poschmann, A.: The PHOTON family of lightweight hash
functions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 222–239.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9 13

35. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-23951-9 22

36. Hell, M., Johansson, T., Maximov, A., Meier, W.: A stream cipher proposal: Grain-
128. In: IEEE International Symposium on Information Theory, pp. 1614–1618
(2006)

https://doi.org/10.1007/978-3-642-23951-9_21
https://doi.org/10.1007/978-3-642-23951-9_21
https://doi.org/10.1007/978-3-540-74735-2_31
https://doi.org/10.1007/978-3-642-34961-4_16
https://doi.org/10.1007/978-3-642-34961-4_14
https://competitions.cr.yp.to/caesar.html
https://doi.org/10.1007/11836810_13
https://doi.org/10.1007/978-3-642-04138-9_20
https://doi.org/10.1007/978-3-662-53887-6_18
http://competitions.cr.yp.to/round3/asconv12.pdf
https://doi.org/10.1007/978-3-662-53887-6_4
https://doi.org/10.1007/978-3-662-53887-6_4
https://doi.org/10.1007/978-3-642-22792-9_13
https://doi.org/10.1007/978-3-642-23951-9_22

sLiSCP: Simeck-Based Permutations 149

37. Hong, D., Sung, J., Hong, S., Lim, J., Lee, S., Koo, B.-S., Lee, C., Chang, D., Lee,
J., Jeong, K., Kim, H., Kim, J., Chee, S.: HIGHT: a new block cipher suitable
for low-resource device. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol.
4249, pp. 46–59. Springer, Heidelberg (2006). https://doi.org/10.1007/11894063 4

38. Juels, A., Weis, S.A.: Authenticating pervasive devices with human protocols. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 293–308. Springer, Heidelberg
(2005). https://doi.org/10.1007/11535218 18

39. Kavun, E.B., Yalcin, T.: A lightweight implementation of keccak hash function
for radio-frequency identification applications. In: Ors Yalcin, S.B. (ed.) RFIDSec
2010. LNCS, vol. 6370, pp. 258–269. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-16822-2 20

40. Keliher, L.: Exact maximum expected differential and linear probability for two-
round advanced encryption standard. IET Inf. Secur. 1, 53–57 (2007)

41. Kölbl, S., Leander, G., Tiessen, T.: Observations on the SIMON block cipher family.
In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 161–185.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6 8

42. Kondo, K., Sasaki, Y., Iwata, T.: On the design rationale of Simon block cipher:
integral attacks and impossible differential attacks against Simon variants. In:
Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696,
pp. 518–536.Springer,Cham(2016). https://doi.org/10.1007/978-3-319-39555-5 28

43. Leander, G., Abdelraheem, M.A., AlKhzaimi, H., Zenner, E.: A cryptanalysis of
PRINTcipher: the invariant subspace attack. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 206–221. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22792-9 12

44. Liu, Z., Li, Y., Wang, M.: Optimal differential trails in simon-like ciphers. IACR
TOSC 2017, 358–379 (2017)

45. McKay, K., Bassham, L., Sönmez Turan, M., Mouha, N.: Report on lightweight
cryptography (NISTIR8114) (2017)

46. Nawaz, Y., Gong, G.: WG: a family of stream ciphers with designed randomness
properties. Inf. Sci. 178(7), 1903–1916 (2008)

47. Nyberg, K.: Generalized Feistel networks. In: Kim, K., Matsumoto, T. (eds.) ASI-
ACRYPT 1996. LNCS, vol. 1163, pp. 91–104. Springer, Heidelberg (1996). https://
doi.org/10.1007/BFb0034838

48. Rønjom, S.: Invariant subspaces in simpira. Cryptology ePrint Archive, Report
2016/248 (2016). http://eprint.iacr.org/2016/248

49. Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E.: TWINE : a lightweight
block cipher for multiple platforms. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012.
LNCS, vol. 7707, pp. 339–354. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-35999-6 22

50. Todo, Y.: Structural evaluation by generalized integral property. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 287–314. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5 12

51. Wang, Q., Liu, Z., Varıcı, K., Sasaki, Y., Rijmen, V., Todo, Y.: Cryptanalysis
of reduced-round SIMON32 and SIMON48. In: Meier, W., Mukhopadhyay, D.
(eds.) INDOCRYPT 2014. LNCS, vol. 8885, pp. 143–160. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-13039-2 9

52. Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005).
https://doi.org/10.1007/11426639 2

https://doi.org/10.1007/11894063_4
https://doi.org/10.1007/11535218_18
https://doi.org/10.1007/978-3-642-16822-2_20
https://doi.org/10.1007/978-3-642-16822-2_20
https://doi.org/10.1007/978-3-662-47989-6_8
https://doi.org/10.1007/978-3-319-39555-5_28
https://doi.org/10.1007/978-3-642-22792-9_12
https://doi.org/10.1007/978-3-642-22792-9_12
https://doi.org/10.1007/BFb0034838
https://doi.org/10.1007/BFb0034838
http://eprint.iacr.org/2016/248
https://doi.org/10.1007/978-3-642-35999-6_22
https://doi.org/10.1007/978-3-642-35999-6_22
https://doi.org/10.1007/978-3-662-46800-5_12
https://doi.org/10.1007/978-3-319-13039-2_9
https://doi.org/10.1007/11426639_2

150 R. AlTawy et al.

53. Wheeler, D.J., Needham, R.M.: TEA, a tiny encryption algorithm. In: Preneel,
B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 363–366. Springer, Heidelberg (1995).
https://doi.org/10.1007/3-540-60590-8 29

54. Xiang, Z., Zhang, W., Bao, Z., Lin, D.: Applying MILP method to searching inte-
gral distinguishers based on division property for 6 lightweight block ciphers. In:
Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 648–678.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6 24

55. Yang, G., Zhu, B., Suder, V., Aagaard, M.D., Gong, G.: The Simeck family of
lightweight block ciphers. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015.
LNCS, vol. 9293, pp. 307–329. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-48324-4 16

56. Yap, H., Khoo, K., Poschmann, A., Henricksen, M.: EPCBC - a block cipher suit-
able for electronic product code encryption. In: Lin, D., Tsudik, G., Wang, X. (eds.)
CANS 2011. LNCS, vol. 7092, pp. 76–97. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-25513-7 7

57. Zhang, H., Wu, W.: Structural evaluation for generalized feistel structures
and applications to LBlock and TWINE. In: Biryukov, A., Goyal, V. (eds.)
INDOCRYPT 2015. LNCS, vol. 9462, pp. 218–237. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-26617-6 12

https://doi.org/10.1007/3-540-60590-8_29
https://doi.org/10.1007/978-3-662-53887-6_24
https://doi.org/10.1007/978-3-662-48324-4_16
https://doi.org/10.1007/978-3-662-48324-4_16
https://doi.org/10.1007/978-3-642-25513-7_7
https://doi.org/10.1007/978-3-642-25513-7_7
https://doi.org/10.1007/978-3-319-26617-6_12

Efficient Reductions in Cyclotomic Rings -
Application to Ring-LWE Based FHE Schemes

Jean-Claude Bajard1, Julien Eynard2, Anwar Hasan2, Paulo Martins3,

Leonel Sousa3, and Vincent Zucca1(B)

1 Sorbonne Universités, UPMC, CNRS, LIP6, Paris, France
{jean-claude.bajard,vincent.zucca}@lip6.fr

2 Department of Electrical and Computer Engineering,
University of Waterloo, Waterloo, Canada

{jeynard,ahasan}@uwaterloo.ca
3 INESC-ID, Instituto Superior Técnico,
Universidade de Lisboa, Lisbon, Portugal

paulo.sergio@netcabo.pt, las@inesc-id.pt

Abstract. With Fully Homomorphic Encryption (FHE), it is possible to
process encrypted data without having an access to the private-key. This
has a wide range of applications, most notably the offloading of sensitive
data processing. Most research on FHE has focused on the improvement
of its efficiency, namely by introducing schemes based on Ring-Learning
With Errors (RLWE), and techniques such as batching, which allows
for the encryption of multiple messages in the same ciphertext. Much of
the related research has focused on RLWE relying on power-of-two cyclo-
tomic polynomials. While it is possible to achieve efficient arithmetic with
such polynomials, one cannot exploit batching. Herein, the efficiency of
ring arithmetic underpinned by non-power-of-two cyclomotic polynomi-
als is analyzed and improved. Two methods for polynomial reduction
are proposed, one based on the Barrett reduction and the other on a
Montgomery representation. Speed-ups up to 2.66 are obtained for the
reduction operation using an i7-5960X processor when compared with a
straightforward implementation of the Barrett reduction. Moreover, the
proposed methods are exploited to enhance homomorphic multiplication
of Fan-Vercauteren (FV) and Brakerski-Gentry-Vaikuntantahan (BGV)
encryption schemes, producing experimental speed-ups up to 1.37.

Keywords: Polynomial reduction · Number Theoretic Transform
Residue Number Systems · Ring-Learning With Errors
Homomorphic encryption

c© Springer International Publishing AG 2018
C. Adams and J. Camenisch (Eds.): SAC 2017, LNCS 10719, pp. 151–171, 2018.
https://doi.org/10.1007/978-3-319-72565-9_8

152 J.-C. Bajard et al.

1 Introduction

There is an increasing discord between the convenience provided by cloud ser-
vices and privacy concerns. Privacy can be achieved by encrypting data before
uploading it to the cloud. However, with traditional cryptosystems, one is not
able to process encrypted data [14], nullifying the benefits of cloud computing.
A solution to this problem is the application of FHE, which allows for the cre-
ation of malleable cryptograms [14]. Homomorphic operations can afterwards be
applied to these cryptograms. Despite its wide range of applicability, FHE has
seldom been applied in practice due to its low computational performance.

Most recent research on FHE has focused on improving its efficiency [23].
LWE [27] and its ring-variant RLWE [21] have been suggested in this context
as a framework for improving the complexity of FHE. The benefits brought
forth by RLWE are twofold. First, operations are executed in a cyclotomic ring,
and therefore benefit from its algebraic structure. Second, the plaintext space
is isomorphic to the Cartesian product of multiple smaller spaces, designated
batching slots, allowing for multiple messages to be encrypted and processed in
a single ciphertext in parallel. Most of the related research has focused on cyclo-
tomic rings of the form Z[X]/(XN + 1), for N a power of two, due to the simple
arithmetic associated with the resulting ring. However, they only allow for a sin-
gle batching slot. While RLWE modulo other cyclotomic polynomials, providing
for a large number of batching slots, has been previously considered [12,28], it
remains very much unused much because of its less efficient arithmetic. In [22],
Lyubashevsky et al. proposed algorithms using a multivariate/tensored represen-
tation of polynomials, natively supporting operations on any cyclotomic rings.

In this work we analyse and improve the arithmetic associated with the uni-
variate representation of polynomials in general cyclotomic rings. Efficient reduc-
tion algorithms are proposed, which have the same asymptotic complexities as
those of [21]. The Barrett reduction, which is a generic technique to perform
polynomial reduction, had been considered in [9] to perform such reductions.
However, the algorithms used in [9] do not take into account the characteris-
tics of cyclotomic polynomials, and hence are sub-optimal. Herein, the degree of
the polynomials is reduced using cyclotomic properties before applying Barrett’s
algorithm, decreasing the complexity of the reduction and leading to theoretical
speed-ups up to 2.06. We also show that in this context a Montgomery represen-
tation leads to more efficient reductions than generic Barrett algorithms, leading
to theoretical speed-ups up to 2.63.

These gains have been confirmed in practice, with experimental speed-ups
of up to 1.95 and 2.55 for the improved Barrett and Montgomery reductions,
respectively, when compared with a straightforward Barrett algorithm in an i7-
5960X processor. Moreover we have tested the applicability of our algorithms to
two of the most currently used homomorphic encryption schemes, namely BGV
[8] developed in HELib [16] and FV [10] developped in SEAL 2.0 [19] resulting
in speed-ups up to 1.37 for homomorphic multiplication.

Efficient Reductions in Cyclotomic Rings 153

2 Background

Throughout the paper, φm(X) ∈ Z[X] will denote the m-th cyclotomic poly-
nomial of degree n = ϕ(m), where ϕ is Euler’s totient function. The ring
R = Z[X]/(φm(X)) is the main structure of R-LWE-based schemes such as FV and
BGV. An element of R can be thought of as a polynomial with integer coefficients
and a degree strictly smaller than n. Unless mentioned otherwise, polynomials
are represented in the power-basis {1, X, . . . Xn−1

}. For a =
∑n−1

i=0 aiX i
∈ Z[X],

we denote ‖a‖
∞

= max{|ai |, 0 � i < n}. The underlying space for ciphertexts
is Rq = R/qR = Z/qZ[X]/(φm(X)), which is composed of elements of R with
coefficients reduced modulo q. The notation | · |q denotes the classical residue
modulo q in [0, q), while the centered residue in [−q/2, q/2) is denoted by [·]q.
Moreover �·� denotes flooring while �·� denotes rounding to the nearest integer.

2.1 Residue Number System (RNS)

In practice, the value of q underpinning Rq is chosen to be the product of
small different prime numbers q = q1 · · · qk . Therefore, thanks to the Chinese
Remainder Theorem (CRT), Rq splits into a cartesian product of smaller rings
through the following isomorphism:

RNSq=q1...qk :
�
�
�
�
Rq → Rq1 × . . . × Rqk

a 	→ (a mod q1, . . . , a mod qk)
(1)

The RNS exploits (1) to transfer the arithmetic modulo q of the coefficients to
k smaller arithmetics modulo each qi. Thus, better performance is achieved due
to smaller arithmetics and parallel computations over each Rqi .

2.2 Product of Elements in Rq

Since the degree n of the polynomials is large in practice, the polynomial product
is a major bottleneck for the efficiency of R-LWE based schemes. However, when
n is close or equal to a power of two, it can be performed efficiently thanks to
the Number Theoretic Transform (NTT). Let N2 be the function defined over
N such that for any n ∈ N N2(n) is the smallest power of two greater than or
equal to n. In our context the products have a degree strictly smaller than 2n,
therefore we denote N = N2(2n). For a prime q, a primitive Nth-root of unity
ω ∈ Fq exists if and only if q ≡ 1 mod N. For a ring Z/qZ equipped with ω, the
following ring morphism is a bijection:

NTTq,N,ω :
�
�
�
�
Z/qZ[X]/(XN

− 1) → Z/qZ[X]/(X − 1) × · · · × Z/qZ[X]/(X − ωN−1
)

a 	→ â =
(
a(1), a(ω), . . . , a(ωN−1

)

)

(2)
Once (2) is applied to obtain the NTT representation of polynomials, their
product can be performed coordinate-wise. The time-complexity of arithmetic
becomes linear in N and the bottleneck changes to the evaluation of (2), as well

154 J.-C. Bajard et al.

as of its inverse, whose evaluations require O(N log(N)) multiplications in Z/qZ
by state-of-the-art algorithms [17,20]. When the context is clear, we will denote
an NTT transformation of degree N by NTTN instead of NTTq,N,ω.

In order to efficiently compute the product of elements a and b of Rq, seen
as polynomials over Z/qZ[X] of degree at most n − 1, one has to compute the
NTT representation of c = a × b of degree 2n− 2 through the following formula:

NTTN (c) = NTTN (a) � NTTN (b) (3)

where � denotes the component-wise multiplication in Z/qZ. To obtain c =

a × b ∈ Rq, a second step is needed, which consists in reducing the result of (3)
modulo φm(X). Notice that when m is a power of two (φm(X) = Xm/2 + 1), one
can use a negatively-wrapped convolution for the evaluation of the NTT and its
inverse [20]. This allows us to use an NTT of size N2(n) instead of N2(2n) for the
evaluation of (3) and also to recover the polynomial reduced modulo Xm/2+1 at
the end of (3) just with an inverse NTT of size N2(n). However, for other values
of m this method cannot be applied and a more complex reduction has to be
carried out after applying (3).

Barrett’s strategy for modular reduction over the integers [5] can be adapted
to polynomial modular arithmetic to reduce a polynomial c of degree n+α by φm

of degree n. The quotient of the Euclidean division �c/φm� is computed through
multiplications by precomputed constants and shifts. We present this strategy
in Algorithm 1. The performance of the algorithm is directly related to the size
of the polynomial to be reduced: the algorithm is more efficient when α is small.
By denoting ñ = N2(n) and A = N2(2α + 1) the cost of the algorithm is:

CNTT(N) + 2CNTT(ñ) + 2CNTT(A) + (ñ + A)MMultq

where CNTT(x) denotes the cost for evaluating (2) (or its inverse) of size x and
MMultq the cost of a modular multiplication modulo q. One may also notice
that Barrett’s reduction used in [9] uses NTT of size N = N2(2n) to perform the
second product while in fact it only requires NTT of size N2(n). For the sake of
completeness a proof of the correctness of Algorithm 1 is given in Appendix A.1.

2.3 RNS Variant of the FV and BGV Encryption Schemes

Fan and Vercauteren [10] have adapted Brakerski’s scale invariant FHE scheme
[7] to the RLWE framework. More recently, Bajard et al. have provided a full
RNS variant of FV [3]. We briefly recall how this RNS variant works.

We first need to introduce the two functions ξq : Rq → Rq1 × · · · × Rqk

and PRNS,q : Rq → R

k
q such that for any a ∈ Rq, ξq(a) = (|a · qi/q |qi)i∈[1,k]

and PRNS,q(a) = (|a · q/qi |q)i∈[1,k]. It is straightforward to notice that for any
(a, b) ∈ R

2
q,

〈
ξq(a),PRNS,q(b)

〉
≡ ab mod q. This scalar product occurs in Rq, and

so it is composed of polynomial products.
In the context of the FV scheme, the secret-key s ∈ R is defined as a “small”

polynomial drawn from a distribution χkey. An encryption of m ∈ Rt corresponds
to a pair of polynomials ct = (c0, c1) ∈ R

2
q satisfying:

Efficient Reductions in Cyclotomic Rings 155

Algorithm 1. NTTBarr(P,Z/qZ, φm): NTT based Barrett reduction in Z/qZ[X],
for a prime q ≡ 1 mod N

Require: cNTT = NTTN (c) ∈ Z/qZN with deg(c) = n + α < 2n with q prime,
n = deg(φm), ñ = N2(n), A = N2(2α + 1); precomputed NTTñ(φm) and
NTTA(�Xn+α

/φm�).
Ensure: c mod (q,φm) in power-basis.
1: c ← NTT−1

N (cNTT)

2: f ← �c/Xn
�

3: r ← NTT−1
A (NTTA(f) � NTTA(�Xn+α

/φm�))

4: r ′ ← �r/Xα
�

5: d ← NTT−1
ñ (NTTñ(r ′) � NTTñ(φm))

6: c′ ← c mod X ñ
− 1

7: return c′ − d

[c0 + c1 s]q = [�q/t� · [m]t + v]q (4)

where v is a noise term that is originally introduced during encryption (which
is related to a distribution χerr) and that grows as homomorphic operations
are applied. Decryption works correctly so long as this noise is below a certain
bound, which limits the amount of operations one can perform.

The homomorphic addition of two ciphertexts corresponds to the pairwise
addition of the ciphertexts’ polynomials. Regarding homomorphic multiplica-
tion, it is useful to see ciphertexts as polynomials of degree 1 with coefficients in
R. In this context, homomorphic multiplication takes place in two steps. First,

ctmult ←

([⌊
t
q c

1
0 c

2
0

⌉]

q
,
[⌊

t
q

(
c10 c

2
1 + c11 c

2
0

)⌉]

q
,
[⌊

t
q c

1
1 c

2
1

⌉]

q

)

is computed with a

Karatsuba like algorithm. During this procedure, the RNS representations of
the input polynomials are extended to bases with larger dynamic ranges so as to
compute the products over R instead of over Rq. Moreover, the division operation
is achievable using [3, Sect. 4.4]. Finally, one has to convert the three-element
ciphertext back to a two-element ciphertext, through a process called relinearisa-
tion. This is done by multiplying ξq(ctmult,2) by pseudo-encryptions of PRNS,q(s

2
)

(designated
−−→

rlk), and adding the result to the other two elements:

ctrelin ←

([

ctmult,0 +
〈

ξq(ctmult,2),
−−→

rlk0

〉]

q
,
[

ctmult,1 + 〈ξq(ctmult,2),
−−→

rlk1〉
]

q

)

(5)

The scheme introduced by Brakerski, Gentry and Vainkuntanathan [8] shares
many features of FV, and can be similarly adapted to the techniques in [3]. A
secret-key is also defined to be a “small” polynomial s ∈ Rq, and ciphertexts
correspond to pairs (c0, c1) ∈ R

2
q, but messages are encrypted in the Least Sig-

nificant Bits of (6):

[c0 + c1 s]q = [[m]t + tv]q (6)

156 J.-C. Bajard et al.

The change in the positioning of the message bits leads to simpler homo-
morphic multiplications. First, we compute the degree 2 ciphertext ctmult ←([
c10 c

2
0

]

q
,
[(
c10 c

2
1 + c11 c

2
0

)]

q
,
[
c11 c

2
1

]

q

)

. Since operations are performed modulo q,
no RNS base extension is required. Afterwards, an operation similar to (5)
is applied, so as to convert the three-element ciphertext to a classical two-
element ciphertext. Finally, a noise management technique is applied to reduce
the growth rate of the norm of v in (6). This technique consists of scaling the
ciphertext to a smaller ring Rq′ with an appropriate rounding, and is performed
in two steps:

δi ← t · [−ctmult,i/t]q/q′ for i = 0, 1
ct ←

([
q′/q · (ctmult,0 + δ0)

]

q′

,
[
q′/q · (ctmult,1 + δ1)

]

q′

)

In certain steps of the aforementioned schemes, one needs to add the result of
multiple polynomial products. In this case, it is possible to sum the NTT forms
of all the products, so that one has to apply only a single polynomial reduction
in the end.

2.4 Batching

A common way to improve the efficiency of RLWE schemes is to encrypt sev-
eral plaintexts in a single ciphertext, through a technique called batching [28].
Under some conditions, φm splits modulo t into � distinct irreducible polyno-
mials f1, . . . , f� of degree n/�. This leads to the following ring isomorphism of
the plaintext space Rt : Rt � Z/tZ[X]/(f1) × · · · × Z/tZ[X]/(f�). In this manner,
� plaintexts m1, . . . ,m� can be compactly represented as a single polynomial
m ∈ Rt . Afterwards m is encrypted and homomorphic operations applied to this
ciphertext operate on each slot individually. This technique is mostly used when
evaluating Boolean circuits, i.e. with t = 2, to pack �-bits in a single ciphertext.
However, since Xm/2+1 ≡ (X +1)m/2 mod 2, this technique cannot be used when
m is a power of two. Thus the efficient arithmetic associated with power-of-two
cyclotomic polynomials has limited applicability.

3 Improving Polynomial Reduction Modulo φm

In this section, we propose two efficient methods to compute polynomial reduc-
tions. The first method takes advantage of the properties of the cyclotomic poly-
nomials to improve the efficiency of the Barrett algorithm. The second reduction
rests on an adaptation of the Montgomery modular reduction [25].

3.1 Improving Barrett’s Reduction for Cyclotomic Polynomials

As explained in Sect. 2, Barrett’s algorithm is sensitive to the difference between
the degree of the polynomial to be reduced and that of the polynomial we want

Efficient Reductions in Cyclotomic Rings 157

to reduce by. The smaller the difference, the more efficient the algorithm will be.
Herein we propose an efficient method to reduce this difference.

Polynomials to be reduced modulo φm have a degree of at most 2n− 2. Let c
be such a polynomial. If c were reduced by a polynomial Qsp of degree n+α+1,
the difference between the degree of the polynomial and the degree of φm would
be reduced to α. However, in order to obtain the correct value of c mod φm in
the end, φm has to divide Qsp and for the efficiency of the reduction Qsp should
be sparse enough so that its reduction can be handled through few operations
in Z/qZ. Thanks to the cyclotomic property

∏
d/m φd(X) = Xm

− 1, Qsp can be
taken as the product of φm and some φd for d dividing m. Good candidates can
be found by recursively using the fact that if p is a prime not dividing m′ then
φm′

·p(X) · φm′
(X) = φm′

(Xp
). If Qsp is found in this way in less than 2 recursions

then, since it will correspond to a cyclotomic with at most two distinct odd
prime factors, it will have coefficients in {−1, 0, 1}. In this case, the reduction
modulo Qsp only requires additions in Z/qZ and can be done very efficiently.

In addition, when m < 2n − 2, c can initially be reduced by Xm
− 1 with

2n − m − 1 additions in Z/qZ. Since φm(X)|Qsp(X)|Xm
− 1 the strategy remains

correct, and the complexity of the reduction by Qsp(X) is further reduced. Let
HW(Qsp) be the Hamming weight of Qsp. The cost of the reduction of c by
Qsp is (HW(Qsp) − 1)(m − deg(Qsp)) additions in Z/qZ. At this point, we obtain
c′ = c mod Qsp (with deg(c′) ≤ n + α) and c′ ≡ c mod φm.

The final algorithm is depicted in Algorithm2. It starts by recovering c in
power-basis from the NTT representation output by (3). Then it consecutively
reduces c of degree 2n − 2 by Xm

− 1 and by the sparse polynomial Qsp. This
allows to recover c′ = c mod Qsp of degree n + α very efficiently. Afterwards,
steps 2 to 7 of Algorithm 1 are applied to c′ to get c′′ = c mod φm.

Algorithm 2. modBtφm : NTT-based Barrett reduction in Z/qZ[X], for q =

q1 . . . qk , with prime integers qi, qi ≡ 1 mod N, N = N2(2n), ñ = N2(n) and
A = N2(2α + 1).
Require: cNTT = NTTN (c) with deg(c) � 2n − 2
Ensure: c′′ = c mod φm in power-basis.
1: c ← NTT−1

N (cNTT)

2: if m < 2n − 2 then
3: c ← c mod Xm

− 1
4: c′ ← c mod Qsp � Reduction by Qsp of degree n + α + 1
5: f ← �c/Xn

�

6: r ← NTT−1
A (NTTA(f) � NTTA(�Xn+α

/φm�))

7: r ′ ← �r/Xα
�

8: d ← NTT−1
ñ (NTTñ(r ′) � NTTñ(φm))

9: c′ ← c mod X ñ
− 1

10: return c′ − d

158 J.-C. Bajard et al.

The impact of this sparse reduction is illustrated in Table 1, where polyno-
mials Qsp are presented for different cyclotomic polynomials. Cyclotomics have
been chosen with a degree n = ϕ(m) close or equal to a power of two. The number
of batching slots � associated with each cyclotomic is also presented. The degree
of Qsp is n + α + 1 thus NTTs of size A = N2(2α + 1) are required to compute
the first polynomial product in Algorithm2. This is in contrast with N = N2(2n)
which would have been the size required for the Barrett algorithm without using
the sparse reduction. In order to highlight the sparsity of Qsp we give HW(Qsp)

which is the number of non-zero coefficients of Qsp.

Complexity. Since the complexity of computing multiplications in Z/qZ is
much higher than additions, the cost of the reduction by the sparse polynomial
can be neglected. Moreover, with the RNS, each multiplication in Rq, with q =

q1 . . . qk can be decomposed into k independent and smaller multiplications.
Therefore the cost, in terms of modular multiplications, to reduce the polynomial
c output by (3) is essentially k times the cost of Algorithm 2:

k · (CNTT(N) + 2 · CNTT(A) + 2 · CNTT(ñ) + A + ñ) .

While the cost of the method by using directly Barrett’s algorithm, i.e. with-
out performing the reduction by the sparse polynomial, is:

k · (3 · CNTT(N) + 2 · CNTT(ñ) + N + ñ) .

Based on this analysis, we also provide in Table 1 the theoretical speed-up
obtained with the use of the sparse reduction.

Table 1. Sparse polynomials used for partial reduction with their related parameters.

m n � Qsp deg(Qsp) α HW(Qsp) A N Speed-up

3855 2048 128 φ3·5(X257
) 2056 7 7 24 212 2.06

4369 4096 256 φ17(X257
) 4112 15 17 25 213 2.05

13107 8192 512 φ3(X17·257
) 8738 545 3 211 214 1.86

21845 16384 1024 φ5(X17·257
) 17476 1091 5 212 215 1.86

32767 27000 1800 φ7(X31·151
) 28086 1085 7 212 216 1.95

65535 32768 2048 φ3·5(X17·257
) 34952 2183 7 213 216 1.85

3.2 NTT-based Montgomery’s Reduction

We propose a Montgomery reduction of a polynomial given in NTT representa-
tion, inspired by [4]. The bottleneck of the previous optimized Barrett algorithm
is the computation of the inverse NTT of size N of (3). Our Montgomery reduc-
tion takes advantage of the presence of the NTT basis of size N/2 (seen as an

Efficient Reductions in Cyclotomic Rings 159

RNS basis in [4]) in the basis of size N allowing to perform all the computations,
in particular the inverse NTT evaluation, in the basis of size N/2 instead of N.

The NTT representation of a polynomial of size N was defined in (2) as the
set {c mod (X−ω j

)|0 ≤ j < N}. This representation can be seen as a polynomial-
RNS representation of c mod (XN

− 1) since XN
− 1 =

∏
0≤ j<N (X − ω j

) mod q,
with respect to the following NTT-basis:

Bω,N = {|X − 1|q, |X − ω|q, . . . , |X − ωN−1
|q}

As XN
− 1 splits in (XN/2

− 1)(XN/2 + 1) when N is even, half of the NTTN

representation of c corresponds to its NTTN/2 representation. Hence, the basis
Bω,N is split along even and odd powers of ω. We can then define two sub-bases
defining two polynomials:

⎧⎪⎪⎪⎨

⎪⎪⎪
⎩

B

(e)
ω,N = {[X − ω2j

|q, 0 ≤ j ≤ N
2 − 1} and Ψ(e) =

�
�
�
∏ N

2 −1

j=0 (X − ω2j
)

�
�
�
q

B

(o)
ω,N = {|X − ω2j+1

|q, 0 ≤ j ≤ N
2 − 1} and Ψ(o) =

�
�
�
∏ N

2 −1

j=0 (X − ω2j+1
)

�
�
�
q

(7)

It is straightforward to notice that Ψ(e)
≡ |XN/2

− 1|q and Ψ(o)
≡ |XN/2 + 1|q. We

also note that since N is a power of two, one has Ψ(o)
≡ φN mod q. Thanks to

Lemma 1, whose first point is a direct consequence of Lemma 2 in [11], we can
choose XN/2 + 1 as the Montgomery factor.

Lemma 1. Let φm be the m-th cyclotomic polynomial of degree n and N be the
smallest power of two greater than or equal to 2n. If m is not a power of two then:

– there exists (U,V) ∈ Z[X]2 such that U(X) · φm(X) + V (X) · φN (X) = 1;
– for any prime p, φm and (XN

− 1) are coprime in Z/pZ. In particular φm is
a unit in Z/pZ[X]/(φN).

One can extract from the coordinates of c in Bω,N the representation ĉ(e)

of c in B

(e)
ω,N (resp. ĉ(o) in B

(o)
ω,N). So, given ĉ(o) and ĉ(e), we can use the NTT

operator to get:
NTT−1N/2(ĉ

(e)
) = c mod (q, XN/2

− 1).

Definition 1. We define the following function, which takes in as input the
residues of the polynomial c (deg(c) < N) modulo a prime p:

modMgφm,Ψ(o),p(c) =
c + φm × | − c/φm |Ψ(o)

Ψ(o)
mod p. (8)

The modMgφm,Ψ(o),p function defined in (8) is a classical Montgomery reduction
with factor Ψ(o) and consisting in an exact polynomial division. It always outputs
a polynomial congruent to |c/Ψ(o)

|φm but when deg(c) � N/2+ n − 1 the output
is exactly |c/Ψ(o)

|φm .

160 J.-C. Bajard et al.

Lemma 2. If deg(c) � N
2 + n − 1, then modMgφm,Ψ(o),p(c) = c/Ψ(o) mod (p,φm).

First the degree of the numerator in (8) is bounded by max(deg(c), deg(φm) +

deg(Ψ(o)
)−1) � n+N/2−1. Thus, the degree of the resulting quotient is bounded

by n − 1 < N/2. Therefore, the output is |c/Ψ(o)
|φm and the computation of (8)

can be made modulo XN/2
− 1, i.e. in an NTT representation of size N/2 when

using primes qi ≡ 1 mod N. Algorithm 3 details the computation of (8). The
following precomputations are used therein:

⎧⎪⎪⎪⎨

⎪⎪⎪
⎩

̂W (o) : −1/φm mod (q,Ψ(o)
) in base B

(o)
ω,N

̂Y (e) : 1/Ψ(o)
≡ 1/2 mod (q,Ψ(e)

) in base B

(e)
ω,N

̂Z (e) : φm/Ψ
(o)

≡ φm/2 mod (q,Ψ(e)
) in base B

(e)
ω,N

Algorithm 3. modMgφm,Ψ(o) : NTT-based Montgomery reduction in Z/qZ[X], for
q = q1 . . . qk , with prime integers qi, and qi ≡ 1 mod N2(2n)

Require: ĉ = NTTq,N (c) (i.e. c in base B

(o)
ω,N ∪ B

(e)
ω,N), with N = N2(2n) and

deg(c) � 2n − 2 < N/2 + n − 1.
Ensure: R = (c/Ψ(o)

) mod (q,φm) in power-basis.
1: (ĉ(e), ĉ(o)) ← Split(ĉ) � Split the NTT coeff. wrt parity of indexes
2: ̂Q(o)

← ĉ(o) � ̂W (o)

3: ̂Q(e)
← BaseConv(̂Q(o)

) � base conversion from B

(o)
ω,N to B

(e)
ω,N

4: ̂T (e)
← ĉ(e) � ̂Y (e) + ̂Q(e)

�

̂Z (e)

5: R ← NTT−1
N/2

(

̂T (e)
)

6: return R

In line 3 of Algorithm 3, we require an operator which takes in as input a
vector of coefficients in base B

(o)
ω,N . This vector defines a unique polynomial Q

with deg(Q) < N/2. Then this operator must output the vector of coefficients of Q
in base B

(e)
ω,N . The function BaseConv is defined for any Q with deg(Q) < N/2 by:

BaseConv : (Q(ω),Q(ω3
), . . . ,Q(ωN−1

)) 	→ (Q(1), Q(ω2
), . . . ,Q(ωN−2

)) [q]. (9)

In [4], (9) is computed with a classical Lagrange interpolation. Our context is
more specific, because the points in which polynomials are evaluated are powers
of a Nth root of unity ω in Z/qZ. With this purpose, Algorithm4 implements
such base conversion by only using NTTs of degree N/2, with ω2 as a primi-
tive N/2th root of unity. The proof of correctness of Algorithm4 is provided in
AppendixA.3.

Complexity. The total cost of Algorithm 3 in terms of modular multiplica-
tions is:

k · (3 · CNTT(N2(n)) + 4 · N2(n)) .

One can find in Table 2 the predicted speed-up of the proposed Montgomery
reduction. Despite its lower complexity, the Montgomery algorithm suffers from
one main drawback which is the presence of the Montgomery factor in the output.

Efficient Reductions in Cyclotomic Rings 161

Algorithm 4. BaseConv
Require: (Q(ω),Q(ω3

), . . . ,Q(ωN−1
)) mod qi, for deg(Q) < N/2, N a power of

2 and ω a primitive Nth root of unity in Z/qZ.
Ensure: (Q(1),Q(ω2

), . . . , Q(ωN−2
)) mod q.

1: (Q′

0,Q
′

1, . . . ,Q
′

N/2−1
) ← NTT−1

N/2,ω2(Q(ω),Q(ω
3
), . . . ,Q(ωN−1

))

2: (Q0,Q1, . . . ,QN/2−1) ← (Q′

0,Q
′

1, . . . ,Q
′

N/2−1
) � (1, ω−1, ω−2, . . . , ω−(N/2−1)

)

3: (R0, R1, . . . , RN/2−1) ← NTTN/2,ω2(Q0,Q1, . . . ,QN/2−1)

4: return (R0, R1, . . . , RN/2−1)

Table 2. Theoretical speed-up of Algorithm 3 when compared with Algorithm 1

m 3855 4369 13107 21845 32767 65535
n 2048 4096 8192 16384 27000 32768
Speed-up 2.62 2.62 2.63 2.63 2.63 2.63

4 Adaptation of FV and BGV to the Montgomery
Representation

In this section, we show how the Montgomery representation impacts the BGV
and FV schemes and suggest modifications to handle these changes. For sim-
plicity, we denote by M the Montgomery factor (XN/2 + 1) mod φm. Thanks to
Lemma 1 we also know that M−1 exists in R. We assume that ciphertexts c̃t are
given in Montgomery representation, i.e. such that c̃t = (c̃0, c̃1) = (c0M, c1M).
The conversion to the Montgomery domain can be integrated in the encryp-
tion procedure for increased efficiency, and the M factor can be removed during
decryption by applying a Montgomery reduction to [c̃0+ c̃1 s]q. The Montgomery
reduction only impacts procedures involving multiplications in Rq by multiply-
ing the product by M−1. Therefore the Montgomery representation is stable with
respect to multiplication. Homomorphic additions are not affected by this differ-
ent representation. Thus the only impact one has to consider is on homomorphic
multiplication. For further discussions, we recall that the expansion factor of the
ring R is the quantity defined by δ

R

= sup{‖ab‖
∞

/‖a‖
∞

‖b‖
∞

(a, b) ∈ R − {0}}.

4.1 Impact of the Montgomery Representation in FV

We note that the first step of the FV homomorphic multiplication corresponds
to the extension of polynomials of ciphertexts to a larger RNS basis, so that
multiplications are computed over R instead of Rq. In order to improve efficiency,
an approximate extension is used [3] and thus the norm of the polynomials is
bounded by q

2 (1 + ρ) for a parameter ρ > 0 [3]. A bound on the noise associated

to c̃tmult ←

([⌊
t
qMc10 c

2
0

⌉]

q
,
[⌊

t
qM(c10 c

2
1 + c11 c

2
0)

⌉]

q
,
[⌊

t
qMc11 c

2
1

⌉]

q

)

is given in

Proposition 1 whose proof can directly be derived from the one of [3].

162 J.-C. Bajard et al.

Proposition 1. Let (c̃0, c̃1, c̃2) = c̃tmult , r∞ =
1+ρ
2 (1 + δ

R

‖ s‖
∞

) + δR ‖M ‖

∞

and
vi be the inherent noise of cti = (ci0, c

i
1). Then

(c̃0 + c̃1 s + c̃2 s
2
)M−1

≡ Δ [m1m2]t + ṽmult mod q

with the following bound on the noise:

‖ ṽmult ‖∞ < δR t
(

δ
R

�
�M−1

�
�
∞

r
∞

+ 1
2

)

(‖v1‖∞ + ‖v2‖∞) +
δ
2 min ‖vi ‖∞ (10)

+ δt |q |t (r∞ + 1) + 1
2δR

�
�M−1

�
�
∞

(1 + δ
R

‖ s‖
∞

(1 + δ
R

‖ s‖
∞

)) +
|q |t
2 + 1.

Now, we assume that we need to relinearize the ciphertext c̃tmult =

(c̃0, c̃1, c̃2). Within the original variant, the following dot products were com-
puted over Rq: 〈ξq(c2), rlki〉, where evk0 =

[
PRNS,q(s

2
) +

−→a s + −→e
]

q
and evk1 =

[
−

−→a
]

q
. The goal of relinearisation is to obtain

〈
ξq(c2),PRNS,q(s

2
)

〉
≡ c2 s

2 mod q
with a limited increase of the noise. Indeed, one can write:

{ 〈
ξq(c2), evk0

〉
≡ c2 s

2 +
〈
ξq(c2),

−→a
〉
s +

〈
ξq(c2),

−→e
〉
≡ c2 s

2 + a′s + e′ mod q
〈
ξq(c2), evk1

〉
≡ −

〈
ξq(c2),

−→a
〉
≡ −a′ mod q

(11)
Now, we need to obtain the Montgomery representation of the output of this
relinearisation, i.e. a cryptogram like

((
c2 s

2 + a′s + e′
)
M,−Ma′

)
.

When the Montgomery representation is used, c̃2 replaces c2 in (11). Hence,
the relinearisation key has to be modified as follows:

evkM0 =
[(

PRNS,q

(
s2/M

)
+
−→a s + −→e

)

M2
]

q
, evkM1 =

[
−

−→a M2
]

q

In the following equations, we simulate the effect of the Montgomery reduction
by introducing a factor M−1 (modφm):

〈
ξq (c̃2) , evkM0

〉
M−1 =

(

c̃2 s
2M +

〈
ξq (c̃2) ,

−→a
〉
sM2 +

〈
ξq (c̃2) ,

−→e
〉
M2

)

M−1

= c̃2 s
2 + (a′′s + e′′)M

=
(
c2 s

2 + a′′s + e′′
)
M

Similarly, we get
〈
ξq (c̃2) , evkM1

〉
M−1 = −a′′M. Hence, we have obtained the

Montgomery representation of the output of relinearisation step at no extra cost
- both computationally and in terms of noise growth.

4.2 Impact of the Montgomery Representation in BGV

For the first step of the BGV homomorphic multiplication, no scaling opera-
tion is required. Thus, the noise is not affected by a change in representation.
Next, relinearisation is applied. An analysis similar to the one in Sect. 4.1 can
be performed, with minor adaptations for the relinearisation key. Similarly, one
concludes that the Montgomery reduction introduces no cost neither in terms of
computation nor in noise growth.

Efficient Reductions in Cyclotomic Rings 163

Finally, one needs to apply scaling so as to manage noise growth. We consider
the ciphertext (c̃0, c̃1) encrypting m and given in Montgomery representation.
Let q′ | q and δi = [−c̃i/t]q/q′ × t. Then the BGV-scaling function applied to c̃i

outputs ĉi = (c̃i + δi) ×
q′

q .

Lemma 3. If
�
�
[c0 + c1 · s]q

�
�
∞

<
q
2 − δ

R

�
�M−1

�
�
∞

qt
2q′

(1 + δ
R

· ‖ s‖
∞

) and q =

q′ mod t, then [
(ĉ0 + ĉ1 · s)M

−1
]

q′

= [c0 + c1 · s]q mod t (12)

and
�
�
�
[
(ĉ0 + ĉ1 · s)M

−1
]

q′

�
�
�
∞

�
q′

q

�
�
[c0 + c1 · s]q

�
�
∞

+ δ
R

�
�M−1

�
�
∞

t
2
(1 + δ

R

‖ s‖
∞

) (13)

Proof. It is similar to the proof of lemma4 in [8]. By definition of c̃i, we have:
[
(c̃0 + c̃1 · s)M

−1
]

q
= [c0 + c1 · s]q = c0 + c1 · s − qu.

By definition of ĉi, we can write:

(ĉ0 + ĉ1 · s)M
−1 =

q′

q (c̃0 + c̃1 · s + δ0 + δ1 · s)M
−1

=
q′

q (c0 + c1 · s) +
q′

q (δ0 + δ1 · s)M
−1

=
q′

q [c0 + c1 · s]q + q′u +
q′

q (δ0 + δ1 · s)M
−1.

(14)

Moreover, since ‖δi ‖
∞

� qt
2q′

, we get the following bound
�
�
(δ0 + δ1 · s)M

−1
�
�
∞

�

δ
R

qt
2q′

�
�M−1

�
�
∞

(1 + δ
R

‖ s‖
∞

). Thus, from the above and by considering the
hypothesis on the norm of

[
(c̃0 + c̃1 · s)M

−1
]

q
= [c0 + c1 · s]q, we deduce that:

�
�
(ĉ0 + ĉ1 · s)M

−1
− q′u

�
�
∞

< q′/2

and then that

(ĉ0 + ĉ1 · s)M
−1

− q′u =
[
(ĉ0 + ĉ1 · s)M

−1
]

q′

.

Hence, from this previous equality and by bounding the norm of last member of
(14), we obtain (13). Finally, we get (12) by:
[
(ĉ0 + ĉ1 · s)M

−1
]

q′

= (ĉ0 + ĉ1 · s)M
−1

− q′u
= (c̃0 + c̃1 · s) /M − qu mod t (ĉi = c̃i mod t; q = q′ mod t)
= c0 + c1 · s − qu mod t (def. of c̃)
= [c0 + c1 · s]q mod t .

��

From this lemma, we can see that the Montgomery representation of the
ciphertext impacts the modulus switching procedure by the addition of an extra
factor δ

R

‖M−1
‖

∞

to the last term on the bound of the hypothesis and of (13).

164 J.-C. Bajard et al.

4.3 Overall Impact on Noise Growth

For both BGV and FV, the norm ‖M−1
‖

∞

and the expansion factor δ
R

are
involved in the noise growth due to the scaling steps performed with the Mont-
gomery reduction. We report some observations concerning the size of the coeffi-
cients of M−1 in AppendixB, but they seem to remain small for most of the cases.
When m is a power of two, δ

R

is equal to n, but for other m it can be larger than
that. Let us consider Fm : Q2n−2[X] → Q[X]/(φm(X)), so that Fm(a) = a mod φm

for every a ∈ Q[X] of degree lesser than or equal to 2n − 2.

Lemma 4. Let m be a positive integer and let R = Z[X]/(φm(X)), with deg(φm) =

n. If δ
R

denotes the expansion factor of the ring R, then δ
R

≤ n · ‖Fm‖∞.

These three parameters are given in Table 3 for the different cyclotomic poly-
nomials considered in this paper. Assuming that distributions χkey and χerr
output elements whose infinite norms are bounded by Bkey and Berr = 6σerr , we
analyse which depth can be reached in a multiplicative tree.

FV: The initial noise of a ciphertext is at most Vinit = Berr (1+ 2δBkey) [10]. We
recall that r

∞

=
1+ρ
2 (1 + δ

R

Bkey) + δR ‖M ‖

∞

. The output of a tree of depth L has
a noise bounded by CL

1 V + LCL−1
1 C2 (cf. [6], Lemma 9) with:

⎧⎪⎪⎪⎨

⎪⎪⎪
⎩

C1 = 2δ
R

t
(

δ
R

�
�M−1

�
�
∞

r
∞

+ 1
2

)

+
δ
R

2

C2 = δ
R

t |q |t (r∞ + 1) + 1
2δR

�
�M−1

�
�
∞

(
1 + δ

R

Bkey(1 + δBkey)
)
+

|q |t
2 + 1

+k(1 + δ
R

Bkey(1 + δ
R

Bkey)) + δR kBerr2ν+1

We denote by Lmax = max{L ∈ N | CL
1 V + LCL−1

1 C2 � Bdec} the depth allowed
by the homomorphic multiplication where Bdec corresponds to the decryption
bound given by the full RNS version of FV [3].

BGV: As long as a ciphertext satisfies the condition on Lemma 3, one can
perform a scaling operation and thus an homomorphic multiplication. Initially,
one has ‖c0 + c1 s‖∞ � Vinit = t/2 + tBerr (2δRBkey + 1). Let �ω,q = �logω q�, by
assuming that after each scaling, the size of q is reduced by ω bits, the growth
of the size V of c0 + c1 s, after one multiplication can be expressed by:

q′

q (δRV
2 + Brelin) +

1
2δRt

�
�M−1

�
�
∞

(
1 + δ

R

Bkey

)

with Brelin =
δ
R

2 �ω,qωBerrBkey the bound on the noise due to the relinearisation.
In Table 3 we present the maximal theoretical depths for BGV and FV with

and without the use of the Montgomery reduction. For these computations we
have taken parameters Bkey = 1, σerr = 2

√

n and a number k of 62-bits moduli
to get the largest size for q ensuring at least 80-bits of security according to [2].

We notice that the depths of BGV are almost unchanged with the usage of
the Montgomery reduction. However for FV the depths are far smaller with a
Montgomery representation. These behaviours have been confirmed in practice.

Efficient Reductions in Cyclotomic Rings 165

Table 3. Theoretical depths with and without Montgomery reduction. Values in paren-
thesis are the depths observed in practice.

m n k ‖M ‖

∞

‖M−1
‖

∞

δ
R

LBGV LM
BGV LFV LM

FV

4369 4096 2 1 1 35n 1(1) 1(1) 1(4) 1(3)
13107 8192 5 2 1 205n 4(4) 4(4) 6(17) 4(10)
21845 16384 11 2 1 739n 10(10) 6(10) 13(40) 8(22)
32767 27000 18 1 9 2621n 8(17) 7(17) 19(66) 12(39)
65535 32768 22 4 1 9886n 7(21) 7(21) 22(80) 14(45)

4.4 Mixing Optimized Barrett and Montgomery Reductions

Considering the non-negligible impact of the Montgomery representation on the
multiplicative depth of FV, a more robust strategy for this cryptosystem corre-
sponds to a mixed Barrett/Montgomery approach. Algorithm2 is used during
the first stage of homomorphic multiplication, with ciphertexts not exploiting a
Montgomery representation. This avoids the noise growth caused by the Mont-
gomery factor. Nonetheless, the Montgomery reduction can still be used during
the relinearisation stage, since we have seen that this does not cause a larger noise
growth. To obtain a valid result, the relinearisation key needs to be modified,
by replacing the factor M2 of the Montgomery approach by M.

5 Experimental Results

The proposed methods for polynomial reduction have been implemented using
C++, and compiled with gcc using the optimization flag -O3. All the experimen-
tal results presented herein were measured on an i7-5960X, running at 3.0 GHz
with 32 GB of main memory. No parallelism was exploited.

In Fig. 1, one can find the execution timings of polynomial reduction, using
NFL for power-of-two cyclotomics [1]; Mayer’s implementation of CRT−1 oper-
ator exploiting a tensored representation [24]; the unoptimized and optimized
Barrett reductions and the Montgomery reduction for non-power-of-two cyclo-
tomics. In order to highlight the gain brought by our algorithms compared to
generic ones we also compare with NTL’s reduction using preconditioning [15].
All timings were normalized based on the number of batching slots �, and exe-
cuted for a single modulus of 62-bits. One finds the straightforward applica-
tion of Barrett reduction, to be more efficient than the preconditioned methods
employed in the NTL library. Moreover, speed-ups up to 1.95 and 2.55 were
achieved for the optimized Barrett and Montgomery algorithms when compared
with the unoptimized Barrett reduction. The figure suggests that using power-
of-two cyclotomics is not scalable with respect to the throughput. In contrast,
the remaining approaches present very little variation when considering the exe-
cution timing per batching slot for the different m given in Table 3. It should

166 J.-C. Bajard et al.

Fig. 1. Execution time per batching slot T/�[μs] for multiple reduction strategies and
mth cyclotomic polynomials. The y-axis is in logarithmic scale

be noted that using larger values of m enables FHE parameters with a larger
multiplicative depth. Finally, while tensored representations natively support
operations on cyclotomic rings, research on its algorithmic efficiency is still in
its infancy, and hence a fair comparison is not possible.

The aforementioned reduction methods were used to implement the homo-
morphic multiplication operations of the FV and BGV schemes. One can find
in Figs. 2 and 3 the execution times of the homomorphic multiplication of two
freshly encrypted ciphertexts for FV and BGV, respectively with the parameters
given in Table 3. The experimental results for NFL are omitted due to its low
performance with respect to the timing per batching slot.

Unlike with Fig. 1, the execution time of homomorphic multiplication
increases significantly with increasing m. This trend is explained by the relineari-
sation procedure, which requires a number of NTTs that increases quadratically
with log2 q. Nevertheless, the employed reduction procedure plays a preponder-
ant role in the efficiency of the homomorphic multiplication. Indeed, one achieves
speed-ups up to 1.37 and 1.24 when comparing the homomorphic multiplication
exploiting the optimized Barrett reduction with the one exploiting the unopti-
mized Barrett method for the FV and BGV schemes, respectively. Since with
the mixed Barrett/Montgomery approach, required by the FV scheme, one is
not able to fully take advantage of the gains brought forth by the Montgomery
representation, one achieves speed-ups similar to those of the optimized Barrett
reduction. In contrast, for BGV, one can exploit the Montgomery representation
throughout the whole procedure, leading to speed-ups up to 1.32.

The speed-up of the proposed methods decreases as the degree n of the cyclo-
tomic, and thus log2 q gets larger due to the increasing complexity of the relin-
earisation procedure. This suggests that they are most beneficial when one needs
to homomorphically evaluate small circuits. Since most of practical applications
of FHE [13,18,26] have circuits with small depth, the proposed methods can
potentially have a wide range of applicability.

Efficient Reductions in Cyclotomic Rings 167

Fig. 2. Execution time per batch-
ing slot T/�[μs] for the homomorphic
multiplication operation of FV with
several reduction strategies and mth
cyclotomic polynomials.

Fig. 3. Execution time per batch-
ing slot T/�[μs] for the homomorphic
multiplication operation of BGV with
several reduction strategies and mth
cyclotomic polynomials.

6 Conclusion

In this paper, the arithmetic of non-power-of-two cyclotomics has been consid-
ered and improved. Two methods for polynomial reduction have been proposed:
one based on the Barrett reduction and the other on a Montgomery represen-
tation. The optimized Barrett algorithm does not offer a better computational
complexity than the Montgomery reduction. However, since it does not require
changes in the representation of ciphertexts, it provides for a slower noise growth,
making it more amenable to application in the FV homomorphic scheme than the
Montgomery approach. In contrast, the Montgomery approach is more suitable
for the BGV scheme. Speed-ups up to 1.95 and 2.55 have been obtained on an i7-
5960X when comparing the optimized Barrett and Montgomery reductions with
the unoptimized Barrett reduction, respectively. Finally, the polynomial reduc-
tions have been incorporated into the homomorphic multiplication procedures
of FV and BGV, producing speed-ups up to 1.37.

Acknowledgments. This work was partially supported by the European Union’s
H2020 Programme under grant agreement ICT − 644209, ANR ARRAND 15−CE39−
0002−01 and the Natural Science Engineering Research Council of Canada. This work
was also supported in part by Portuguese funds through Fundação para a Ciência e a
Tecnologia (FCT) with reference UID/CEC/50021/2013 and by the Ph.D. grant with
reference SFRH/BD/103791/2014.

168 J.-C. Bajard et al.

A Proofs

A.1 Correctness of Algorithm1

Since Fq[X] is an Euclidean ring, we can write the Euclidean division of c by
Φm: c = �c/Φm�Φm + r with deg r ≤ n− 1. Let a, b ≥ 0 be two integers, then we
have the following equations over the field of fractions of Fq[X]:

Xn+a

Φm
·

c
Xn−b =

(⌊
c
Φm

⌋

+ r
Φm

)

· Xa+b

⇔ (

⌊
Xn+a

Φm

⌋

+
r1
Φm

) · (

⌊
c

Xn−b

⌋

+
r2

Xn−b) = (

⌊
c
Φm

⌋

+ r
Φm

) · Xa+b

⇔

⌊
Xn+a

Φm

⌋

·

⌊
c

Xn−b

⌋

+ ra + rα+b + r ′ = (

⌊
c
Φm

⌋

+ r
Φm

) · Xa+b

⇔

⌊
�Xn+a

/Φm � ·
�
c/Xn−b

�

Xa+b

⌋

Xa+b + r ′′ + ra + rα+b + r ′ = (

⌊
c
Φm

⌋

+ r
Φm

) · Xa+b

⇔

⌊
�Xn+a

/Φm � ·
�
c/Xn−b

�

Xa+b

⌋

+
r′′+ra+rα+b+r

′
Xa+b =

⌊
c
Φm

⌋

+ r
Φm
.

Furthermore, deg(r1), deg(r2) < n, deg(ra) < a, deg(rα+b) < α + b, deg(r ′) < 0,
and deg(r ′′) < a+ b. By choosing b � 0 and a � α, the right term of left member
of last equation above have a degree smaller than 0 and we obtain an equality
between the two floored polynomials. Hence, by taking b = 0 and a = α, we get
that �

c
Φm

� is equal to the flooring of the left part of last equation, which is what
Algorithm 1 computes. Since �Xn+α

/Φm� · �c/Xn
� is of degree strictly smaller

than 2α + 1, the computation can be done with an NTT of size A = N2(2α + 1).
Finally, we notice that the result of the computation of r = c − �c/Φm� ×Φm

has a degree strictly smaller than n. Moreover, the polynomial c′ at line 5 is
nothing but �c/Φm� ×Φm mod X ñ

− 1. Indeed, the reduction modulo X ñ
− 1 is a

consequence of the NTT based polynomial product in dimension ñ. Thus, at the
end we have that c′ − d = (c − �c/Φm� ×Φm) mod (X ñ

− 1) = c mod Φm. Since
the degree of c mod Φm is strictly smaller than ñ, the last equality holds.

A.2 Proof of Lemma 1

The first point is a direct consequence from Lemma 2 in [11]. Since m is not
a power of two, m cannot divide N. By denoting m = 2rm′ with m′ > 1 an
odd integer we have n = 2r−1ϕ(m′

), thus 2n = 2rϕ(m′

) and then if N divides m,
N2(ϕ(m′

)) = 1 which is not possible since m′ � 3. Therefore N and m do not
divide each others and we can apply Lemma2 from [11].

Let α be a root of φm in the algebraic closure of Zp. If α is also a root of XN
−1

then αN = 1, since α is of order m by definition of φm it implies that m divide N
which is impossible since N is a power of two and m is not. So, φm and XN

−1 are
coprime on the algebraic closure of Zp thus in Zp. The second point comes from
Bezout equality in Zp and from the fact that XN

−1 ≡ (XN/2
−1)(XN/2+1) mod p.

Efficient Reductions in Cyclotomic Rings 169

A.3 Correctess of Algorithm4

First we notice that since c is a polynomial of degree smaller than N/2 we
have (c(ω), . . . , c(ωN−1

)) = NTTN/2,ω2 (ξN/2,ω(c)) where ξN/2,ω(c0, c1, . . . , cN/2−1) =

(c0, c1ω, . . . , cN/2−1ω
N/2−1

). Therefore the polynomial c′ recovered at the first line
of Algorithm 4 is ξN/2,ω(c). The second line of the algorithm is the computation
of ξN/2,ω−1 (c′) to recover c from c′. Once c is recovered, we just need to compute
and return NTTN/2,ω2 (c) which is done by the last step of the algorithm.

A.4 Proof of Lemma 4

Let a and b two elements of R − {0}. They naturally embed in Zn−1[X] ⊂

Q2n−2[X]. We can write ‖ab‖
∞

≤ n‖a‖
∞

‖b‖
∞

. As the product ab has degree
at most 2n − 2 with coefficients in Z, it belongs to Q2n−2[X]. Since Fm is a lin-
ear map between two vector spaces of finite dimension it is continuous, then we
obtain ‖Fm(ab)‖∞ ≤ ‖Fm‖∞ · ‖ab‖

∞

≤ n · ‖Fm‖∞ · ‖a‖
∞

‖b‖
∞

.

B Size of ‖M−1‖∞
As discussed in Sect. 4.3, the coefficients’ size of M−1 where M = XN/2 +

1 mod Φm ∈ R can impact the noise growth when using Montgomery’s reduc-
tion. Therefore in this case, one must be carefull to choose a cyclotomic with an
associated M−1 small in norm. However this does not seem to be very restric-
tive. Indeed for the first 20, 000 cyclotomics less than 13.4% have an infinite norm
greater than 10, less than 0.5% greater than 100 and only 3 of them greater than
1, 000. Moreover those whose M−1’s norm is greater than 100 offer a relatively
small number of batching slot compared to their degree. Indeed, their ratio n/�,
with n the degree of the cyclotomic and � the number of batching slots modulo
2, is greater than 36 whereas the cyclotomics proposed in Table 1 have a ratio of
16 (15 for m = 32767). Therefore the cyclotomics whose M−1 factor have large
coefficients do not seem to be the best suited for batching.

References

1. Aguilar-Melchor, C., Barrier, J., Guelton, S., Guinet, A., Killijian, M.-O., Lepoint,
T.: NFLlib: NTT-based fast lattice library. In: Sako, K. (ed.) CT-RSA 2016.
LNCS, vol. 9610, pp. 341–356. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-29485-8 20

2. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. J. Math. Cryptol. 9, 169–203 (2015)

3. Bajard, J.-C., Eynard, J., Hasan, M.A., Zucca, V.: A full RNS variant of FV like
somewhat homomorphic encryption schemes. In: Avanzi, R., Heys, H. (eds.) SAC
2016. LNCS, vol. 10532, pp. 423–442. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-69453-5 23

4. Bajard, J.-C., Imbert, L., Negre, C.: Arithmetic operations in finite fields of
medium prime characteristic using the lagrange representation. IEEE Trans. Com-
put. 55, 1167–1177 (2006)

https://doi.org/10.1007/978-3-319-29485-8_20
https://doi.org/10.1007/978-3-319-29485-8_20
https://doi.org/10.1007/978-3-319-69453-5_23
https://doi.org/10.1007/978-3-319-69453-5_23

170 J.-C. Bajard et al.

5. Barrett, P.: Implementing the rivest shamir and adleman public key encryption
algorithm on a standard digital signal processor. In: Odlyzko, A.M. (ed.) CRYPTO
1986. LNCS, vol. 263, pp. 311–323. Springer, Heidelberg (1987). https://doi.org/
10.1007/3-540-47721-7 24

6. Bos, J.W., Lauter, K., Loftus, J., Naehrig, M.: Improved security for a ring-based
fully homomorphic encryption scheme. In: Stam, M. (ed.) IMACC 2013. LNCS,
vol. 8308, pp. 45–64. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-45239-0 4

7. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 868–886. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32009-5 50

8. Brakerski, Z., Vaikuntanathan, V., Gentry, C.: Fully homomorphic encryption
without bootstrapping. In: In Innovations in Theoretical Computer Science (2012)

9. Dai, W., Sunar, B.: cuHE: a homomorphic encryption accelerator library. In:
Pasalic, E., Knudsen, L.R. (eds.) BalkanCryptSec 2015. LNCS, vol. 9540, pp. 169–
186. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29172-7 11

10. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR
Cryptology ePrint Archive (2012)

11. Filaseta, M.: On coverings of the integers associated with an irreducibility theorem
of A. Schinzel. In: Number Theory for the Millennium, II (Urbana, IL, 2000), pp.
1–24. A K Peters, Natick (2002)

12. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 49

13. Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K.E., Naehrig, M., Wernsing,
J.: Cryptonets: applying neural networks to encrypted data with high throughput
and accuracy. In: ICML, JMLR Workshop and Conference Proceedings, vol. 48,
pp. 201–210. JMLR.org (2016)

14. Goluch, S.: The development of homomorphic cryptography. Master’s thesis,
Vienna University of Technology, Austria (2011)

15. Halevi, S., Halevi, T., Shoup, V., Stephens-Davidowitz, N.: Implementing BP-
obfuscation using graph-induced encoding. Cryptology ePrint Archive, Report
2017/104 (2017). http://eprint.iacr.org/2017/104

16. Halevi, S., Shoup, V.: Algorithms in HElib. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014. LNCS, vol. 8616, pp. 554–571. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44371-2 31

17. Harvey, D.: Faster arithmetic for number-theoretic transforms. CoRR,
abs/1205.2926 (2012)

18. Khedr, A., Gulak, G., Vaikuntanathan, V.: SHIELD: scalable homomorphic imple-
mentation of encrypted data-classifiers. IACR Cryptology ePrint Archive, 2014:838
(2014)

19. Laine, K., Player, R.: Simple encrypted arithmetic library - seal (v2.0). Technical
report, September 2016

20. Longa, P., Naehrig, M.: Speeding up the number theoretic transform for faster
ideal lattice-based cryptography. In: Foresti, S., Persiano, G. (eds.) CANS 2016.
LNCS, vol. 10052, pp. 124–139. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-48965-0 8

21. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 1

https://doi.org/10.1007/3-540-47721-7_24
https://doi.org/10.1007/3-540-47721-7_24
https://doi.org/10.1007/978-3-642-45239-0_4
https://doi.org/10.1007/978-3-642-45239-0_4
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-319-29172-7_11
https://doi.org/10.1007/978-3-642-32009-5_49
http://eprint.iacr.org/2017/104
https://doi.org/10.1007/978-3-662-44371-2_31
https://doi.org/10.1007/978-3-319-48965-0_8
https://doi.org/10.1007/978-3-319-48965-0_8
https://doi.org/10.1007/978-3-642-13190-5_1

Efficient Reductions in Cyclotomic Rings 171

22. Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE cryptography.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
35–54. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 3

23. Martins, P., Sousa, L.: Enhancing data parallelism of fully homomorphic encryp-
tion. In: Hong, S., Park, J.H. (eds.) ICISC 2016. LNCS, vol. 10157, pp. 194–207.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53177-9 10

24. Mayer, C.M.: Implementing a toolkit for Ring-LWE based cryptography in arbi-
trary cyclotomic number fields. Cryptology ePrint Archive, Report 2016/049
(2016). http://eprint.iacr.org/2016/049

25. Montgomery, P.L.: Modular multiplication without trial division. Math. Comput.
44, 519–521 (1985)

26. Naehrig, M., Lauter, K., Vaikuntanathan, V.: Can homomorphic encryption be
practical? In: Proceedings of the 3rd ACM Workshop on Cloud Computing Security
Workshop, CCSW 2011, pp. 113–124. New York (2011)

27. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Proceedings of the Thirty-seventh Annual ACM Symposium on Theory of
Computing, STOC 2005, pp. 84–93, ACM, New York (2005)

28. Smart, N.P., Vercauteren, F.: Fully homomorphic simd operations. Des. Codes
Cryptogr. 71(1), 57–81 (2014)

https://doi.org/10.1007/978-3-642-38348-9_3
https://doi.org/10.1007/978-3-319-53177-9_10
http://eprint.iacr.org/2016/049

How to (Pre-)Compute a Ladder

Improving the Performance of X25519 and X448

Thomaz Oliveira1, Julio López2, Hüseyin Hışıl3, Armando Faz-Hernández2,
and Francisco Rodŕıguez-Henŕıquez1(B)

1 Computer Science Department, Cinvestav-IPN, Mexico City, Mexico
thomaz.figueiredo@gmail.com, francisco@cs.cinvestav.mx

2 Institute of Computing, University of Campinas, Campinas, Brazil
{jlopez,armfazh}@ic.unicamp.br
3 Yasar University, İzmir, Turkey
huseyin.hisil@yasar.edu.tr

Abstract. In the RFC 7748 memorandum, the Internet Research Task
Force specified a Montgomery-ladder scalar multiplication function based
on two recently adopted elliptic curves, “curve25519” and “curve448”.
The purpose of this function is to support the Diffie-Hellman key
exchange algorithm that will be included in the forthcoming version of
the Transport Layer Security cryptographic protocol. In this paper, we
describe a ladder variant that permits to accelerate the fixed-point mul-
tiplication function inherent to the Diffie-Hellman key pair generation
phase. Our proposal combines a right-to-left version of the Montgomery
ladder along with the pre-computation of constant values directly derived
from the base-point and its multiples. To our knowledge, this is the first
proposal of a Montgomery ladder procedure for prime elliptic curves that
admits the extensive use of pre-computation. In exchange of very modest
memory resources and a small extra programming effort, the proposed
ladder obtains significant speedups for software implementations. More-
over, our proposal fully complies with the RFC 7748 specification. A
software implementation of the X25519 and X448 functions using our pre-
computable ladder yields an acceleration factor of roughly 1.20, and 1.25
when implemented on the Haswell and the Skylake micro-architectures,
respectively.

Keywords: Montgomery ladder · Elliptic curve scalar multiplication
Diffie-Hellman protocol · RFC 7748

1 Introduction

Since the last decades, Elliptic Curve Cryptography (ECC) has been used for
achieving highly secure and highly efficient cryptographic communication imple-
mentations. In particular, ECC has become the prime choice for realizing key
exchange and digital signature-verification protocols. However, several reports
released in 2013 suggested that the National Security Agency (NSA) secretly
c© Springer International Publishing AG 2018
C. Adams and J. Camenisch (Eds.): SAC 2017, LNCS 10719, pp. 172–191, 2018.
https://doi.org/10.1007/978-3-319-72565-9_9

How to (Pre-)Compute a Ladder 173

introduced backdoors to internationally-used encryption standards [34]. Imme-
diately thereafter, new revelations [33] indicated that the same agency had
tampered the elliptic curve-based pseudorandom number generator standard
Dual EC DRBG, which was consequently removed from the SP 800-90A speci-
fication by NIST [27,28].

In 2014, the Transport Layer Security (TLS) working group of the Inter-
net Engineering Task Force reacted to these events requesting from the Crypto
Forum Research Group (CFRG), recommendations of new elliptic curves to be
integrated into the next version of the TLS protocol [35]. Some of the require-
ments for the selection of such curves were based on [4,32], which advocate for a
number of design practices and elliptic curve properties, including rigidity in the
curve-generation process and simplicity in the implementation of cryptographic
algorithms. After a long and lengthy discussion, two prime elliptic curves, known
as Curve25519 and Curve448, were chosen for the 128-bit and 224-bit security
levels, respectively (see Sect. 3 for more details). The RFC 7748 [23] memoran-
dum describes the implementation details related to this choice, including the
curve parameters and the Montgomery ladder-based scalar multiplication algo-
rithms, also referred to as X25519 and X448 functions.

The Montgomery ladder and Montgomery curves were introduced in [25].
Since then, the Montgomery ladder has been carefully studied by many authors,
as discussed for example, in the survey by Costello and Smith in [10] (see also [5]).
We know now how to use the Montgomery ladder for computing the point mul-
tiplication kP, where P is usually selected as a point that belongs to a prime
order r subgroup of an elliptic curve, and k is an integer in the [1, r − 1] inter-
val. Nevertheless, arguably the most important application of the Montgomery
ladder lies in the Diffie-Hellman shared-secret computation as described in [23].

The classical Montgomery ladder as it was presented in [25], is a left-to-right
scalar multiplication procedure that does not admit in a natural way efficient pre-
computation mechanisms. In an effort to obtain this feature, and in the context of
binary elliptic curves, the authors of [29] presented a right-to-left Montgomery
ladder that can take advantage of pre-computing multiples of the fixed base
point P. Notice that this procedure was previously reported by Joye in [18].
However, the procedure presented in [29] crucially depended on the computation
of the point halving operation. Although this primitive can be performed at a
low computational cost in binary elliptic curves, in general there are no known
procedures to compute it efficiently for elliptic curves defined over odd prime
fields. Hence, it appeared that the finding of the right-to-left ladder procedure
of [29] was circumscribed to binary elliptic curves, as there was no obvious way
to extend it to elliptic curves defined over large prime fields.

Our contributions. In this paper, we present an alternative way to compute the
key exchange protocol presented in [23]. In short, we propose different X25519
and X448 functions which can take advantage of the fixed-point scenario provided
by the Diffie-Hellman key generation phase. This algorithm achieves an estimated
performance increase of roughly 20% at the price of a small amount of extra
memory resources. In addition, it does not intervene with the original RFC

174 T. Oliveira et al.

specification and it is straightforward to implement, preserving the simplicity
feature of the original design.

The remainder of this paper is organized as follows. In Sect. 2 we briefly
describe the Diffie-Hellman protocol. In Sect. 3 we give more details on the
CFRG selected elliptic curves. The Montgomery ladder-based scalar multipli-
cation functions X25519 and X448 are analyzed in Sect. 4. Our proposal is dis-
cussed in Sect. 5 and our concluding remarks and future work are presented in
Sect. 8.

2 The Diffie-Hellman Protocol

The Diffie-Hellman key exchange protocol, introduced by Diffie and Hellman in
[11], is a method that allows to establish a shared secret between two parties
over an insecure channel. Originally proposed for multiplicative groups of integers
modulo p, with p a prime number, the scheme was later adapted to additively-
written groups of points on elliptic curves by Koblitz and Miller in [19,24].
Commonly known as elliptic curve Diffie-Hellman protocol (ECDH), this variant
is concisely described in Algorithm 1.

Algorithm 1. The elliptic curve Diffie-Hellman protocol
Public parameters: Prime p, curve E/Fp, point P = (x, y) ∈ E(Fp) of order r

Phase 1: Key pair generation

Alice
1: Select the private key dA

$←− [1, r − 1]
2: Compute the public key QA ← dAP

Bob
1: Select the private key dB

$←− [1, r − 1]
2: Compute the public key QB ← dBP

Phase 2: Shared secret computation

Alice
3: Send QA to Bob
4: Compute R ← dAQB

Bob
3: Send QB to Alice
4: Compute R ← dBQA

Final phase: The shared secret is the point R x-coordinate

As shown in Algorithm 1, the ECDH protocol is divided into two phases;
in the first phase, both parties generate their private and public key pair. The
private key dA (dB) is an integer chosen uniformly at random from the interval
[1, r − 1] while the public key QA (QB) is the resulting point of the scalar
multiplication of dA (dB) by the base-point P . In the majority of the proposed
elliptic curve-based standards and specifications (e.g. [7,12,26], including [23]),
the point P is fixed and its coordinates are explicitly given in the documentation.
At the implementation level, this setting is usually called fixed- or known-point
scenario.

After computing their respective public/private key pair, each party sends
her public key to the other. Next, they perform the point multiplication of the
received public key by their own private key. The group properties of E(Fp)

How to (Pre-)Compute a Ladder 175

guarantee that R = dAQB = dA(dBP) = dB(dAP) = dBQA = R. As a result,
the parties have access to a common piece of information, represented by the
x-coordinate of R, which is only disclosed to themselves.1 Since the public key
QB (QA) is not known a priori by Alice (Bob), the scalar multiplication in the
second phase is said to be performed in a variable- or unknown-point scenario.

3 The Curves

The [23] memorandum specifies two Montgomery elliptic curves of the form,

EA/Fp : v2 = u3 + Au2 + u. (1)

The standard specification for the 128 bits of security level uses the prime
p = 2255 − 19, and the curve parameter is given by A = 486662. This curve
is commonly known as Curve25519 and was proposed in 2005 by Bernstein [1].
The point group order is given as #E486662(F2255−19) = h · r ≈ 2255, with h = 8
and r = 2252 + 27742317777372353535851937790883648493. The order-r base-
point P = (u, v) is specified as,

uP = 0x9

vP = 0x20AE19A1B8A086B4E01EDD2C7748D14C

923D4D7E6D7C61B229E9C5A27ECED3D9.

The recommendation for the 224-bit security level is to use p = 2448 − 2224 −
1 and A = 156326. This curve was originally proposed by Hamburg in the
Edwards form as Ed448-Goldilocks [15], but it is referred in [23] as Curve448.
The group order #E156326(F2448−2224−1) = h·r ≈ 2448, with h = 4 and, r = 2446−
13818066809895115352007386748515426880336692474882178609894547503885.

For this curve, the base-point P is given by

uP = 0x5

vP = 0x7D235D1295F5B1F66C98AB6E58326FCECBAE5D34F55545D060F75DC2

8DF3F6EDB8027E2346430D211312C4B150677AF76FD7223D457B5B1A.

4 The Scalar Multiplication Operation

Let EA/Fp be an elliptic curve and P an order-r point in EA(Fp). Then, for
any n-bit scalar k = (kn−1, . . . , k2, k1, k0)2 ∈ [1, r − 1], the scalar multiplication
operation is given by Q = kP = kn−12n−1P + · · · + k222P + k12P + k0P . As
presented in Sect. 2, the scalar multiplication function is used in the two first
ECDH phases; first, to generate the public keys QA and QB and later, in the
second phase, to compute the common point R.
1 Here, we are considering an ideal but unrealistic scenario. In practice, an inappro-

priate choice of the elliptic curve parameters, the prime p, the order r, the imple-
mentation of the scalar multiplication algorithm, among many other aspects, could
disqualify this statement.

176 T. Oliveira et al.

4.1 Left-to-Right Montgomery Ladder

Initially proposed to improve the performance of integer factorization algorithms,
the Montgomery ladder [25] is now largely used in the design of constant-time
scalar multiplication implementations. This is because its ladder step structure
assures that the same arithmetic operations are executed independently of the
scalar bits ki values. A high-level description of this procedure is presented in
Algorithm 2.

Algorithm 2. Left-to-right Montgomery ladder
Input: P = (uP , vP) ∈ EA(Fp), k = (kn−1 = 1, kn−2, . . . , k1, k0)2
Output: uQ=kP

1: R0 ← O; R1 ← uP ;
2: for i = n − 1 downto 0 do
3: if ki = 1 then
4: R0 ← R0 + R1; R1 ← 2R1

5: else
6: R1 ← R0 + R1; R0 ← 2R0

7: end if
8: end for
9: return uQ ← R0

If the difference between the points R1 and R0 is known, it is possible to derive
efficient formulas for computing R0 +R1 that refer only to the u-coordinates of
the operands, a formula that is sometimes named as differential addition [10].2

That is the main rationale for Algorithm2; throughout its execution, the Mont-
gomery ladder maintains the invariant R1 − R0 = P by computing at each
iteration

(R0, R1) ←
{

(2R0, 2R0 + P), if ki = 0
(2R0 + P, 2R0 + 2P), if ki = 1.

In order to avoid expensive field inversions, one can accelerate the scalar mul-
tiplication procedure by using projective coordinates, by means of the transfor-
mation u = U/Z. In the context of Algorithm 2, the differential addition formula
required in Step 6 can be computed as [10,23],

UR1 ← ZP ((UR1 + ZR1) · (UR0 − ZR0) + (UR1 − ZR1) · (UR0 + ZR0))
2 (2)

ZR1 ← uP ((UR1 + ZR1) · (UR0 − ZR0) − (UR1 − ZR1) · (UR0 + ZR0))
2.

where the standard trick of use Zp = 1, saves one field multiplication. Thus, it
can be seen that the computational cost of performing the differential addition
formula of Eq. (2) is of 3m + 2s + 6a.
2 It is also possible to express the u-coordinate of the resulting point Ri = 2Ri, for
i ∈ {0, 1}, using only the u-coordinate of the operand P, an operation known as
differential doubling.

How to (Pre-)Compute a Ladder 177

Similarly, the differential point doubling required in Step 6 of Algorithm2
can be computed as [10,23],

UR0 ← (UR0 + ZR0)
2 · (UR0 − ZR0)

2 (3)

T ← (UR0 + ZR0)
2 − (UR0 − ZR0)

2

ZR0 ← [
a24 · T + (UR0 − ZR0)

2
] · T,

where a24 = A+2
4 . It can be readily seen that the computational cost of per-

forming the differential doubling formula of Eq. (3) is of 2m + 1ma24 + 2s +
4a.3

A low-level description of the left-to-right ladder on prime elliptic curves in
Montgomery form is given in Algorithm3.4 When computed with the parameters
listed in Sect. 3, this algorithm is called X25519 (with n = 255) or X448 (with
n = 448) [23]. The ⊕ notation stands for the exclusive-or logical operator, while
the symbols +,−,×,2 and −1 represent the field Fp arithmetic operations of
addition, subtraction, multiplication, squaring and inversion, respectively.

At each iteration i of Algorithm 3, the conditional swap function (cswap)
exchanges the values of the R0 and R1 coordinates when the bits ki−1 and ki are
different. This function is a countermeasure for potential cache-based attacks
[20,21], which could reveal the scalar digits (the private key in Algorithm 1)
by determining the access order of the points R0 and R1. The cswap function
consists only of simple logic operations, so its cost will be disregarded in our
estimations. For more details on the implementation of this function see [23,29].

Cost estimations. Let m, ma24, muP, s, i and a represent the cost of a general
multiplication, multiplication by the constant (A + 2)/4, multiplication by the
u-coordinate of the base-point P , squaring, inversion and addition/subtraction
over the field Fp, respectively. Then, the computing cost of the left-to-right
Montgomery ladder is n · (4m + 1ma24 + 1muP + 4s + 8a) + 1m + 1i. More
specifically, at the 128 bits of security level, the X25519 function costs

1021m + 255ma24 + 255muP + 1020s + 2040a + 1i,

where each operation is performed in the prime field F2255−19. At the 224-bit
security level case, the cost for computing the function X448 is

1793m + 448ma24 + 448muP + 1792s + 3584a + 1i,

with the arithmetic operations being carried out in the prime field F2448−2224−1.

5 How to (Pre-)Compute a Ladder

Our proposal for improving the performance of the X25519 and X448 functions
focuses in the first phase of the Diffie-Hellman protocol (see Algorithm1). There,
3 Where ma24 stands for one multiplication by the constant a24.
4 The description is closely related to [23, Sect. 5].

178 T. Oliveira et al.

Algorithm 3. Low-level left-to-right Montgomery ladder
Input: P = (uP , vP) ∈ EA/Fp, k = (kn−1 = 1, kn−2, . . . , k1, k0)2, a24 = (A + 2)/4
Output: uQ=kP

1: Initialization: UR0 ← 1, ZR0 ← 0, UR1 ← uP , ZR1 ← 1, s ← 0

2: for i ← n − 1 downto 0 do
3: # timing-attack countermeasure

4: s ← s ⊕ ki
5: UR0 , UR1 ← cswap(s, UR0 , UR1)
6: ZR0 , ZR1 ← cswap(s, ZR0 , ZR1)
7: s ← ki
8: # common operations

9: A ← UR0 + ZR0 ; B ← UR0 − ZR0

10: # addition

11: C ← UR1 + ZR1 ; D ← UR1 − ZR1

12: C ← C × B; D ← D × A
13: UR1 ← D + C; UR1 ← U2

R1

14: ZR1 ← D − C; ZR1 ← Z2
R1 ; ZR1 ← uP × ZR1

15: # doubling

16: A ← A2; B ← B2

17: UR0 ← A × B
18: A ← A − B
19: ZR0 ← a24 × A; ZR0 ← ZR0 + B; ZR0 ← ZR0 × A
20: end for

21: UR0 , UR1 ← cswap(s, UR0 , UR1)
22: ZR0 , ZR1 ← cswap(s, ZR0 , ZR1)
23: ZR0 ← Z−1

R0
24: uR0 ← UR0 × ZR0

25: return uQ ← uR0

the scalar multiplication is performed in the fixed-point setting. More specifically,
the point operand is always the base-point described in the [23] document (see
Sect. 3 for more details).

One possible solution for taking advantage of this scenario was published in
[2], in the context of message signing. In short, the authors pre-compute the
points Pij = i16jP , for 1 ≤ i ≤ 8 and 0 ≤ j ≤ 63 and represent the Curve25519
in Edwards form to process the scalar multiplication through a windowed variant
of the traditional double-and-add method. In addition to the significant amount
of required memory space, the main drawback of this approach is that complex
cache-attack countermeasures need to be applied during the retrieval of the pre-
computed points Pij , which go against the principle of implementation simplicity
promoted in [4,32].

Thus, instead of designing a timing-protected double-and-add algorithm, we
suggest using a slightly modified version of the right-to-left Montgomery ladder
presented in [29] as explained in the following subsection.

How to (Pre-)Compute a Ladder 179

5.1 Right-to-Left Montgomery Ladder with Pre-computation

Algorithm 4. Right-to-left Montgomery ladder

Input: P = (uP , vP) ∈ EA(Fp), k = (kn−1 = 1, kn−2, . . . , k1, k0)2
Output: uQ=hkP

1: Pre-computation: Calculate and store uPi , where Pi = 2iP , for 0 ≤ i ≤ n
2: Initialization: Select an order-h point S ∈ EA(Fp)
3: R0 ← uP , R1 ← uS , R2 ← uP−S

4: for i ← 0 to n − 1 do
5: if ki = 1 then
6: R1 ← R0 + R1 (with R2 = R0 − R1)
7: else
8: R2 ← R0 + R2 (with R1 = R0 − R2)
9: end if

10: R0 ← uPi+1

11: end for
12: return uQ = hR1

The operating principle of Algorithm4, is to compute Q = kP using the Mont-
gomery differential arithmetic formulas for the point doubling and point addition
operations. This is achieved by recording and storing the difference R0 − R1 in
the point R2 through the whole execution of the procedure. Indeed, in the case
that the bit ki = 1, then R0 is added to the accumulator R1 (Step 6) and the
difference R2 does not change, since the operation 2R0 = R0 + R0 is performed
in Step 10. On the other hand, if ki = 0, nothing is added to the accumulator
R1, so it is necessary to increase the difference R2 by R0 (Step 8) in order to
account for the unconditional doubling performed in Step 10. Notice that at
each iteration, the accumulator R1 is updated in the same fashion as it would
be done in a traditional right-to-left double-and-add algorithm. It follows that
at the end of the main loop, R1 = kP + S.

The reason why the accumulator R1 must be initialized with a point S /∈ 〈P 〉
is because the differential formulas are not complete on Montgomery curves.
Hence, one must prevent the cases where R0 = R1 or R0 = R2. One can eliminate
S by performing a scalar multiplication by the cofactor h, thus obtaining

hR1 = h · (kP + S) = hkP + hS = hkP.

Notice that for Montgomery curves, the cofactor h is as little as four. So this last
correction does not represent a computational burden. Furthermore, in Sect. 5.4
we show a trick specially tailored for the X25519 and X448 functions, which
eliminates the point S at almost no cost, and that allows us to return the correct
R1 = kP result. Nevertheless, we stress that the points S and P − S can be
clearly specified beforehand and therefore, this matter should not bring any
complications for the programmer.

Given that the difference between R0 and R1 is volatile, at first glance the
differential point addition formula computed in Steps 6 and 8 of Algorithm4,

180 T. Oliveira et al.

requires an extra field multiplication as compared with Eq. (2) of the classical
ladder shown in Algorithm2. This is basically because R2 is now represented in
full projective coordinates, which means that its Z-coordinate value will be in
general different than one.

We discuss in the following how to compute the differential addition formula
of Algorithm 4, without incurring in any additional cost as compared with the
cost of Eq. (2) of Algorithm 2.

5.2 Montgomery Differential Addition with Precomputation

Let R0 = (u0, v0) and R1 = (u1, v1), be two points of the elliptic curve of
Eq. (1).5 Then, the point R3 = (u3, v3), such that, R3 = R0 +R1, is determined
as,(

u3, v3
)

=
(
u0, v0

)
+

(
u1, v1

)
=

(
u0v1 − v0u1

u0v1 + v0u1
· 1 − u0u1

u0 − u1
,
u0v1 − v0u1

u0v1 + v0u1
· v0(u

2
1 − 1) − v1(u2

0 − 1)
(u0 − u1)2

)
.

(4)

Let us assume that the point R2 = (u2, v2), such that R2 = R0−R1, is known.
Then, the addition formulas (4) can be rewritten as the following differential
addition formulas,

(
u3, v3

)
=

(
1
u2

· (1 − u0u1)2

(u0 − u1)2
,

1
v2

· v
2
0(1 − u2

1)
2 − v21(1 − u2

0)
2

(u0 − u1)4

)
(5)

One can perform u-only arithmetic by transforming the above equation to cus-
tomary projective coordinates as,

(U3 : Z3) =
(
Z2(U0U1 − Z0Z1)2 : U2(U0Z1 − Z0U1)2

)
=

(
Z2((U1 + Z1) + µ(U1 − Z1))2 : U2((U1 + Z1) − µ(U1 − Z1))2

)
(6)

where µ =
(U0 + Z0)
(U0 − Z0)

.

The per-point-R0 constant value µ can be precomputed and stored since it
only depends on (U0 : Z0). Computing (U3 : Z3) in (6) takes only 3m + 2s +
4a, by reusing (U1 +Z1) and µ(U1 −Z1) on both sides. Notice that this exactly
matches the computational cost of Eq. (2), which computes the differential addi-
tion of the classical Montgomery ladder. In https://github.com/thomazoliveira/
rfc7748 verification, a Magma [6] script verifying Eq. (6) is available.

5 Notice that in general an Montgomery elliptic curve has the form, Bv2 = u3+Au2+u.

https://github.com/thomazoliveira/rfc7748_verification
https://github.com/thomazoliveira/rfc7748_verification

How to (Pre-)Compute a Ladder 181

5.3 Differential Addition Formulas in Algorithm 4

In the context of Algorithm 4, the differential addition formula required in Steps 6
and 8 can be computed as,

UR3 ← ZR2((UR1 + ZR1) + µ(UR1 − ZR1))
2 (7)

ZR3 ← UR2((UR1 + ZR1) − µ(UR1 − ZR1))
2,

where µ =
uR0 + 1
uR0 − 1

.

Once again, notice that the µ-values can be pre-computed and stored since
they only depend on the u-coordinates of the points 2iP .

Timing Attacks. Notice that no side-channel countermeasures are required to
retrieve the values µi = u2iP+1

u2iP −1 from memory, since they are public and do not
have any direct correlation to the sensitive information contained in the scalar
k. Also, the addition performed in Step 8 is not a dummy operation. The correct
value of the R2 coordinates must be maintained in order to perform further
additions in Step 6. Moreover, since kn−1 = 1, a computational fault induced at
any iteration of Algorithm4 would produce a wrong resulting point Q.

5.4 Implementing the Pre-computable Ladder

Before presenting a low-level description of the known-point scalar multiplication
using Algorithm 4, we must examine the point S selection and how to optimize
the processing of the scalar k.

Strategies. When selecting the private key k (Algorithm 1, Step 1), presumably
to facilitate the programming effort, the X25519 specification [23] recommends
to generate 32 bytes at random as k = K0+K128+. . .+K312248 with byte-words
Ki

$←− [0, 255], and to perform the following operations:

K0 ← K0 ∧ 248, K31 ← K31 ∧ 127, K31 ← K31 ∨ 64,

where the symbols ∧ and ∨ represent the logical conjunction and disjunction
operators. For the X448 function, 56 randomly-chosen bytes are required, which
are further processed as

K0 ← K0 ∧ 252, K55 ← K55 ∨ 128.

Those procedures are equivalent to compute, respectively,

k′′ $←− [0, 2251 − 1], k′ ← k′′ + 2251, k ← 8 · k′

and
k′′ $←− [0, 2445 − 1], k′ ← k′′ + 2445, k ← 4 · k′.

182 T. Oliveira et al.

Consequently, we decided to process only the bits of k′ in the main loop of
our function. At the end of the algorithm, as we eliminate the point S from
the accumulator by multiplying it by h, we will have the correct resulting point
Q = h · (k′P + S) = kP . In order to obtain a non-invasive procedure with
respect to the RFC specification, we simply start processing the scalar from the
(log2 h + 1)-th bit of k.

Point S selection. In the Curve25519 setting, we could select an order-8 point S.
However, because of its elegant u-coordinate, we decided to choose the order-4
point:

uS = 0x1,

vS = 0x6BE4F497F9A9C2AFC21FA77AD7F4A6EF635A11C72

84A9363E9A248EF9C884415.

The point P − S is given by:

uP−S = 0x215132111D8354CB52385F46DCA2B71D440F6A51E

B4D1207816B1E0137D48290,

vP−S = 0x5199331F1F5630BBFA49B1B1B02B207B493D0A63B

B4F8F01C011242F9C6E9E7C.

For the Curve448, the order-4 point S is given by:

uS = 0xFFFE

FFFE,

vS = 0x45B2C5F7D649EED077ED1AE45F44D54143E34F714B71AA96C945AF01

2D1829750734CDE9FADDBDA4C066F7ED54419CA52C85DE1E8AAE4E6C.

And the (u, v) coordinates of P − S are:

uP−S = 0xF0FAB725013244423ACF03881AFFEB7BDACDD1031C81B9672954459D

84C1F823F1BD65643ACE1B5123AC33FF1C69BAF8ACB1197DC99D2720,

vP−S = 0x45CD0137F88682464AE12E4E2CFCEA7E9360F6FE1E04AE1C5065F397

533F2282EE2643E610A0CC8E9B07D43D47C9658D05E22F0F077395DD.

Algorithm. Next, in Algorithm 5, we present the low-level details of our app-
roach. Again, the term n represents the bit length of #EA(Fp) = h · r and
q = log2 h.6 The pre-computation phase (Step 1) consists of computing and stor-
ing the values µi = uPi

+1

uPi
−1 for the multiples Pi = 2iP . These n− q field elements

are computed a priori from the base-point P. Assuming that the architecture is
byte-addressable, the memory space required for Curve25519 is approximately
(255−3) ·32B ≈ 8 KB, while in the Curve448 setting, we need (448−2) ·56B ≈
25 KB.
6 For the sake of simplicity, in the remaining of this paper it will be assumed that h

is a small power of two.

How to (Pre-)Compute a Ladder 183

Algorithm 5. Low-level right-to-left Montgomery ladder
Input: P = (uP , vP), S = (uS , vS), P − S = (uP−S , vP−S) ∈ EA/Fp, a24 = (A + 2)/4

k = (kn−1 = 1, kn−2, . . . , k1, k0)2
Output: uQ=kP

1: Pre-computation Let Pi = 2iP . Compute and store the values µi =
uPi

+1

uPi
−1

, for

0 ≤ i ≤ n − q − 1
2: Initialization: UR1 ← uS , ZR1 ← 1, UR2 ← uP−S , ZR2 ← 1, s ← 1

3: for i ← 0 to n − q − 1 do
4: # timing-attack countermeasure

5: s ← s ⊕ ki+q

6: UR1 , UR2 ← cswap(s, UR1 , UR2)
7: ZR1 , ZR2 ← cswap(s, ZR1 , ZR2)
8: s ← ki+q

9: # addition

10: A ← UR1 + ZR1 ; B ← UR1 − ZR1

11: C ← µi × B
12: D ← A + C; D ← D2

13: E ← A − C; E ← E2

14: UR1 ← ZR2 × D; ZR1 ← UR2 × E
15: end for

16: for i ← 0 to q − 1 do
17: # doubling

18: A ← UR1 + ZR1 ; A ← A2

19: B ← UR1 − ZR1 ; B ← B2

20: UR1 ← A × B
21: A ← A − B
22: ZR1 ← a24 × A;ZR1 ← ZR1 + B;ZR1 ← ZR1 × A
23: end for

24: ZR1 ← Z−1
R1

25: uR1 ← UR1 × ZR1

26: return uQ ← uR1

The conditional swap function is identical to the one used in Algorithm3.
However, in this case the inputs are the coordinates of the accumulator R1 and
the difference point R2. Moreover, the s variable that controls the swap is set
to one, since the Montgomery point additions, in terms of memory location,
are always performed as R1 ← R1 + 2iP throughout the algorithm. Also, given
that the most significant bit kn−1 is always equal to one, it is unnecessary to
include another couple of cswap functions after the main loop. At the end of
the algorithm (Steps 16–23), we must perform q consecutive point doublings
to process the least significant bits of k and to eliminate the point S from the
accumulator R1.

184 T. Oliveira et al.

Cost estimations. The cost of the Algorithm 5 can be estimated as (n−q)·(3m+
2s+4a)+ q · (2m+1ma24 +2s+4a)+1m +1i. If the Curve25519 is used, then
n = 255 and q = 3. As a result, the fixed-point scalar multiplication would cost

763m + 3ma24 + 510s + 1020a + 1i,

where the arithmetic operations are over F2255−19. In the Curve448 context,
n = 448 and q = 2. As a consequence, we have the following cost in terms of
F2448−2224−1-operations:

1343m + 2ma24 + 896s + 1792a + 1i.

These results show that, our approach saves more than 25% of general field
multiplications. In addition, it completely eliminates the multiplication by uP

7

and drastically reduces the number of multiplications by the constant (A+2)/4.
In addition, it saves half of the field squarings and half of additions/subtractions.

For the programmer, the only extra effort is to organize the pre-computed
values in the memory and load them during the main loop execution, since
the remaining field and logic operations are very similar to ones presented in
Algorithm 3. In the next subsection, we present a comparative based on the
arithmetic of state-of-the-art software implementations.

5.5 Comparison

In this part, we present a more concrete analysis of the performance efficiency of
Algorithm 5. For this purpose, we measured the field arithmetic cost of different
state-of-the-art constant-time software implementations of the Diffie-Hellman
protocol on Curve25519 and Curve448. After that, we computed the ratios of
ma24, muP, s and i to m, which are considered the most representative field
arithmetic operations for scalar multiplication implementations. As a result, we
were able to show the practical savings of our proposal in terms of general field
multiplications m.

Regarding the X25519 implementations, we selected the code from
Bernstein et al. [2], which represents the F2255−19 elements in radix-251, the
AVX2 approach from Faz-Hernández and López [13] and the curve25519-donna
library from Langley [22].8 For the X448 function, we considered the original
implementation of Hamburg in [15]. The source code of [2,15] were downloaded
from the eBACS [3] web page, the [13] implementation was shared by its authors

7 In fact, given that the difference of the point operands Pi − R1 is variable, the
muP operations were changed into two general multiplications and were included in
the m operation count.

8 The benchmarking reports in [3] shows that the library of Chou [8] currently holds
the speed record on computing the scalar multiplication over Curve25519. However,
the author decided to embed the field arithmetic functions into the ladder step, in a
single assembly code. Isolating the field operations would be impractical and could
alter the author’s original intentions.

How to (Pre-)Compute a Ladder 185

via personal communication and the curve25519-donna library was retrieved
from its GitHub repository [22].

Every field arithmetic code was compiled with the clang/LLVM compiler ver-
sion 3.9 with optimization flags -O3 -march=haswell -fomit-frame-pointer
and further benchmarked in an Intel Core i7-4700MQ 2.40 GHz machine (Haswell
architecture) with the Hyper Threading and Turbo Boost technologies disabled.
The ratios are presented in Table 1.

Table 1. Ratios of selected arithmetic operations to the general field multiplication in
state-of-the-art software implementations

Implementation Ratios to m

ma24 muP s i a

Bernstein et al. [2] 0.23a 0.23a 0.76 203.29 <0.1

Faz-Hernández and López [13] 0.28 0.41 0.96 84.33 <0.1

Langley [22] 0.60 1.00b 0.82 192.55 <0.1

Hamburg [15] 0.24 1.00b 0.75 405.00 <0.1
a Estimated
b The general field multiplication (m) is used to implement this

operation

The cost of the ma24 operation in the Bernstein et al. implementation was
estimated as follows. After analyzing the assembly code, we concluded that
ma24 takes 10 movq, 5 mov, 5 shr, 5 add, 4 addq, 5 mulq and 1 imulq machine
instructions. Next, we added its latencies [14] and, to calculate a “lower bound”
of our speed improvements, we applied an aggressive throughput of 0.25. Finally,
given that the muP is similar to the ma24 operation, we also assumed a similar
cost. In Table 2, we present the performance improvements of our proposal in
terms of the general field multiplication.

Table 2. A comparative between Montgomery-ladder approaches in the fixed-point
scenario

Implementation Estimated costsa Diff.

Mont. ladder
left-to-right
(Algorithm 3)

Mont. ladder
right-to-left
(Algorithm 5)

Bernstein et al. [2] 2116.89m 1354.58m −36.01%

Faz-Hernández and López [13] 2260.48m 1337.77m −40.82%

Langley [22] 2457.95m 1375.55m −44.04%

Hamburg [15] 4097.52m 2420.48m −40.93%
a Because of its negligible cost, the field addition/subtraction operation was not

included

186 T. Oliveira et al.

The above comparison suggests that about 36.01 to 44.04% of speed-up can
be reached in the first phase of the ECDH protocol by using Algorithm5. When
considering the complete Diffie-Hellman scheme, the improvement ranges from
18.01 to 22.02%. In practice, these estimated savings can be further improved
if we take into consideration compiler optimizations and the machine through-
put. Moreover, while the field addition/subtraction cost is imperceptible if mea-
sured separately, it constitutes a significant part in the whole protocol execution
timings.

6 Software Implementation on a 64-Bit Architecture

In this section, an optimized software implementation of X25519 and X448 tar-
geting 64-bit Intel architectures is presented. Our implementation was developed
to take advantage of new instructions, available in Haswell and Skylake micro-
architectures, intended to accelerate the calculation of multi-precision integer
arithmetic [31]. In this sense, the calculation of multiplications is the most crit-
ical operation, and for this reason, we devote a detailed explanation.

Aiming a large usability of the library across different 64-bit platforms, we
restrict arithmetic operations to be computed using the 64-bit instruction set;
for this reason, we use a radix-264 for representing prime field elements. Thus,
for w = 64, an element in F2255−19 is stored in n = 4 words of 64 bits, whereas an
element in F2448−2224−1 requires n = 7 words of 64 bits. This representation of
elements is compact and does not incur on a large memory footprint for storing
the look-up table.

The calculation of prime field multiplications is performed into two steps:
integer multiplication followed by modular reduction. Concerning the integer
multiplication various methods can be applied targeting different optimization
metrics [16,17]. For both fields, we developed the operand scanning technique
since its execution pattern benefits from the properties of the MULX instruction,
which is part of the BMI2 instruction set.

Like the legacy MUL/IMUL instructions, the MULX instruction also computes
a 64-bit integer multiplication (the RDX register times a specified source register)
producing a 128-bit product. However, MULX has a three-operand codification to
specify the destination registers of the product; this differs from the MUL/IMUL
instructions since the product is always deposited in the RAX and RDX registers,
which in turn overwrites the RDX register. The fact that RDX is not modified by
MULX is crucial for the efficient execution of consecutive multiplications by one
common operand, like in the case of the operand scanning technique.

The operand scanning technique calculates the multi-precision integer mul-
tiplication z = xy by first calculating z ← x0y; followed by the accumulation
z ← z+2iwxiy for 0 < i < n. The schedule of operations is listed in Algorithm6.
Notice that in the steps that compute the xiyj product (lines 4 and 13), the yj
operand changes more frequently than the xi operand; thus once xi is loaded
into the RDX register, it remains there for all the iterations of the j-loop sav-
ing n − 1 memory accesses. Additionally, this pattern allows scheduling various

How to (Pre-)Compute a Ladder 187

Algorithm 6. Operand scanning method to calculate prime field multiplications.
Output: (x0, . . . , xn−1) and (y0, . . . , yn−1) be the radix-2w representation of x, y ∈ Fp.
Input: (z0, . . . , zn−1) be the radix-2w representation of z = xy ∈ Fp.
1: c ← 0
2: (H0 ‖ z0) ← x0y0
3: for j ← 1 to n − 1 do
4: (Hj ‖ L) ← x0yj
5: (c ‖ zj) ← L + Hj−1 + c {x0y = (z0, . . . , zn)}
6: end for
7: zn ← Hn−1 + c
8: for i ← 1 to n − 1 do
9: c ← 0

10: (H0 ‖ L0) ← xiy0
11: (d ‖ zi) ← zi + L0

12: for j ← 1 to n − 1 do
13: (Hj ‖ L) ← xiyj
14: (c ‖ Hj−1) ← L + Hj−1 + c {xiy = (L0, H0, . . . , Hn−1)}
15: (d ‖ zi+j) ← zi+j + Hj−1 + d {z ← z + 2iwxiy}
16: end for
17: Hn−1 ← Hn−1 + c
18: zi+n ← Hn−1 + d
19: end forreturn (z0, . . . , zn−1) ← (z0 . . . , z2n−1) mod p

MULX multiplications to the processor, which can execute them faster by means
of the processor’s pipeline. These subtle details make that the operand scanning
technique be suitable for its implementation using MULX instructions.

The word multiplications are independent to each other, and consequently,
no data dependencies occur at all. However, the accumulation of these products
is an inherently sequential process. In Algorithm6, two accumulation steps are
identified: first, once the product (Hj ‖ L) ← xiyj was calculated, L must be
accumulated into Hj−1 (lines 5 and 14 of Algorithm6); and then, the Hj−1 word
is ready to be accumulated into the output zi+j word (line 15 of Algorithm6).
The most relevant fact of these accumulations is that each one produces its own
carry bit (the c and d bit-variables); which must be handled using addition with
carry instructions.

The ADC/ADD instructions calculate additions with/without carry modifying
the FLAGS register according to the result of the addition. Since there is only
one carry bit flag, we must compute one accumulation entirely, and after that,
we can perform the second one. This is the strategy followed when our software
library is compiled targeting the Haswell micro-architecture; nonetheless, this is
not the case of the Skylake micro-architecture.

Unlike the ADD/ADC instructions, the new ADCX and ADOX instructions cal-
culate additions with carry modifying only the CF and the OF bit, respectively,
of the FLAGS register. This allows that two sequences of addition instructions
depending on carry bits can be computed in parallel by the executing units.
Thus, the core of the integer multiplication performs the lines 13, 14, and 15

188 T. Oliveira et al.

using respectively one MULX, one ADCX, and one ADOX instruction; it is worth to
mention none of these instructions competes to each other for accessing to the
same part of the FLAGS register. Relying in these features, we developed opti-
mized code for integer multiplication targeting processors supporting the ADX
instruction set.

The integer multiplication produces a sequence (z0 . . . , z2n−1), which is
reduced modulo p. For p = 2255 − 19, the words zi ← zi + 38zi+4 for 0 ≤ i < 4
are updated using four multiplications, then we reduce again z0 ← z0 + 38z4
letting the result in four words of 64 bits. For p = 2448 − 2224 − 1, we perform
the modular reduction into three steps:

z ← (z mod 2672) + (2448 + 2224)�z/2672
z ← (z mod 2448) + (2224 + 1)�z/2448
z ← (z mod 2448) + (2224 + 1)�z/2448

The first two lines take a 224-bit value and add it to z in two different positions,
one of them requires a 32-bit shift that we compute using SHLD instructions.
The last line reduces only the z7 word. This modular reduction does not require
multiplications (Tables 3 and 4).

7 Performance Benchmark

The performance timings were measured in two platforms: a Core i7-4770 pro-
cessor (Haswell micro-architecture) and a Core i7-6700K processor (Skylake
micro-architecture). Source code was compiled using the GNU C Compiler (GCC
v.6.3.1) and is available at https://github.com/armfazh/rfc7748 precomputed.

Table 3. Prime field arithmetic timings measured in clock cycles

Prime field (Fp) Architecture Arithmetic operation

Add Mul Sqr ma24 Inv

p = 2255 − 19 Haswell 8 63 54 14 15,032

Skylake 6 49 41 11 11,441

p = 2448 − 2224 − 1 Haswell 14 161 117 24 54,709

Skylake 13 122 95 20 45,008

Table 4. Elliptic curve Diffie-Hellman timings measured in clock cycles.

Function Architecture DH operation

Key generation Shared secret

X25519 Haswell 90,668 138,963

Skylake 72,471 107,831

X448 Haswell 401,228 670,754

Skylake 320,695 527,899

https://github.com/armfazh/rfc7748_precomputed

How to (Pre-)Compute a Ladder 189

8 Conclusion

In this work, we presented an alternative way to compute the elliptic curve
Diffie-Hellman protocol with Montgomery ladders. Particularly, we focused on
the key-generation phase, which can be characterized as a fixed-point scenario.
For this phase, we assumed that the relevant multiples of the base-point can
be pre-computed off-line, which helps to boost the computation of the scalar
multiplication via a right-to-left variant of the Montgomery ladder. As a result we
achieved, in the Curve25519 setting, performance improvements that range from
36 to 44% of speed-up for the key generation operation, at the price of just 8 KB
of memory space. Our proposal carefully minimizes coding modifications with
respect to the specifications given in the RFC 7748 memorandum. Our software
implementation of the X25519 and X448 functions using our pre-computable
ladder yields an acceleration factor of roughly 1.20, and 1.25 when implemented
on the Haswell and the Skylake micro-architectures, respectively.

We also would like to explore the potential savings that our ladder approach
can bring for digital signature protocols and other elliptic-curve based protocols.
Finally, building on the work of [30], we would like to explore a Montgomery
ladder variant, which can be applied to prime elliptic curves equipped with
efficient endomorphisms such as the FourQ elliptic curve [9]. For that kind of
elliptic curves, the ladder variant presented in [30], allows for an important
saving in the number of required point doubling operations when working in the
fixed-point scenario.

References

1. Bernstein, D.J.: Curve25519: new Diffie-Hellman speed records. In: Yung, M.,
Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 207–
228. Springer, Heidelberg (2006). https://doi.org/10.1007/11745853 14

2. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.-Y.: High-speed high-
security signatures. J. Cryptographic Eng. 2(2), 77–89 (2012)

3. Bernstein, D.J., Lange, T.: eBACS: ECRYPT Benchmarking of Cryptographic
Systems. https://bench.cr.yp.to. Accessed Mar 2017

4. Bernstein, D.J., Lange T.: SafeCurves: choosing safe curves for elliptic-curve cryp-
tography. http://safecurves.cr.yp.to. Accessed Mar 2017

5. Bernstein, D.J., Lange, T.: Montgomery curves and the montgomery ladder. Cryp-
tology ePrint Archive, Report 2017/293 (2017). http://eprint.iacr.org/2017/293

6. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system I: the user
language. J. Symbolic. Comput. 24(3–4), 235–265 (1997). Computational algebra
and number theory (London, 1993)

7. Certicom Research. SEC 2: Recommended Elliptic Curve Domain Parameters
(2010). Version 2.0. Standards for Efficient Cryptography. http://www.secg.org/
sec2-v2.pdf

8. Chou, T.: Sandy2x: new curve25519 speed records. In: Dunkelman, O., Keliher, L.
(eds.) SAC 2015. LNCS, vol. 9566, pp. 145–160. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-31301-6 8

https://doi.org/10.1007/11745853_14
https://bench.cr.yp.to
http://safecurves.cr.yp.to
http://eprint.iacr.org/2017/293
http://www.secg.org/sec2-v2.pdf
http://www.secg.org/sec2-v2.pdf
https://doi.org/10.1007/978-3-319-31301-6_8
https://doi.org/10.1007/978-3-319-31301-6_8

190 T. Oliveira et al.

9. Costello, C., Longa, P.: FourQ: four-dimensional decompositions on a Q-curve over
the mersenne prime. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS,
vol. 9452, pp. 214–235. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48797-6 10

10. Costello, C., Smith, B.: Montgomery curves and their arithmetic: the case of large
characteristic fields. Cryptology ePrint Archive, Report 2017/212 (2017)

11. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. Theor.
22(6), 644–654 (1976)

12. ECC Brainpool. Standard Curves and Curve Generation (2005). Version 1.0.
http://www.ecc-brainpool.org/download/Domain-parameters.pdf

13. Faz-Hernández, A., López, J.: Fast implementation of curve25519 using AVX2. In:
Lauter, K., Rodŕıguez-Henŕıquez, F. (eds.) LATINCRYPT 2015. LNCS, vol. 9230,
pp. 329–345. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22174-
8 18

14. Fog, A.: Instruction tables: lists of instruction latencies, throughputs and micro-
operation breakdowns for Intel, AMD and VIA CPUs (2016). http://www.agner.
org/optimize/

15. Hamburg, M.: Ed448-Goldilocks, a new elliptic curve. Cryptology ePrint Archive,
Report 2015/625 (2015). http://eprint.iacr.org/2015/625

16. Hutter, M., Schwabe, P.: Multiprecision multiplication on AVR revisited. J. Cryp-
tographic Eng. 5(3), 201–214 (2015)

17. Hutter, M., Wenger, E.: Fast multi-precision multiplication for public-key cryp-
tography on embedded microprocessors. In: Preneel, B., Takagi, T. (eds.) CHES
2011. LNCS, vol. 6917, pp. 459–474. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-23951-9 30

18. Joye, M.: Highly regular right-to-left algorithms for scalar multiplication. In: Pail-
lier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 135–147. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2 10

19. Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48, 203–209 (1987)
20. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)

CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

21. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

22. Langley, A.: curve25519-donna. https://github.com/agl/curve25519-donna.
Accessed Mar 2017

23. Langley, A., Hamburg, M., Turner, S.: Elliptic Curves for Security (2016). Request
for Comments. https://tools.ietf.org/html/rfc7748

24. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986). https://
doi.org/10.1007/3-540-39799-X 31

25. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization.
Math. Comput. 48, 243–264 (1987)

26. National Institute of Standards and Technology. FIPS PUB 186-4: Digital Signa-
ture Standard (DSS). Federal Information Processing Standards (2013). http://
nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

27. National Institute of Standards and Technology. NIST Removes Cryptography
Algorithm from Random Number Generator Recommendations (2014). https://
www.nist.gov/news-events/news/2014/04/nist-removes-cryptography-algorithm-
random-number-generator-recommendations

https://doi.org/10.1007/978-3-662-48797-6_10
https://doi.org/10.1007/978-3-662-48797-6_10
http://www.ecc-brainpool.org/download/Domain-parameters.pdf
https://doi.org/10.1007/978-3-319-22174-8_18
https://doi.org/10.1007/978-3-319-22174-8_18
http://www.agner.org/optimize/
http://www.agner.org/optimize/
http://eprint.iacr.org/2015/625
https://doi.org/10.1007/978-3-642-23951-9_30
https://doi.org/10.1007/978-3-642-23951-9_30
https://doi.org/10.1007/978-3-540-74735-2_10
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-68697-5_9
https://github.com/agl/curve25519-donna
https://tools.ietf.org/html/rfc7748
https://doi.org/10.1007/3-540-39799-X_31
https://doi.org/10.1007/3-540-39799-X_31
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://www.nist.gov/news-events/news/2014/04/nist-removes-cryptography-algorithm-random-number-generator-recommendations
https://www.nist.gov/news-events/news/2014/04/nist-removes-cryptography-algorithm-random-number-generator-recommendations
https://www.nist.gov/news-events/news/2014/04/nist-removes-cryptography-algorithm-random-number-generator-recommendations

How to (Pre-)Compute a Ladder 191

28. National Institute of Standards and Technology. Special Publication 800-90A Rev.
1: Recommendation for Random Number Generation Using Deterministic Random
Bit Generators (2015). http://nvlpubs.nist.gov/nistpubs/SpecialPublications/
NIST.SP.800-90Ar1.pdf

29. Oliveira, T., Aranha, D.F., López, J., Rodŕıguez-Henŕıquez, F.: Fast point multi-
plication algorithms for binary elliptic curves with and without precomputation.
In: Joux, A., Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781, pp. 324–344. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-13051-4 20

30. Oliveira, T., López, J., Rodŕıguez-Henŕıquez, F.: The Montgomery ladder on binary
elliptic curves. J. Cryptographic Eng. (2017, to be submitted)

31. Ozturk, E., Guilford, J., Gopal, V., Feghali, W.: New Instructions Supporting Large
Integer Arithmetic on Intel R© Architecture Processors. Intel Corporation, White
Paper 327831-001, August 2012. http://www.intel.com/content/dam/www/
public/us/en/documents/white-papers/ia-large-integer-arithmetic-paper.pdf

32. Patterson, K.: Formal request from TLS WG to CFRG for new elliptic curves.
Crypto Forum Research Group archives (2015). https://mailarchive.ietf.org/arch/
msg/cfrg/Hvihr yQhVB Qdl-mtwTdVbHGiU

33. Perlroth, N.: Government Announces Steps to Restore Confidence on Encryption
Standards. New York Times (2013). https://bits.blogs.nytimes.com/2013/09/10/
government-announces-steps-to-restore-confidence-on-encryption-standards/

34. Perlroth, N., Larson, J., Shane, S.: N.S.A. Able to Foil Basic Safeguards of Privacy
on Web. New York Times (2013). http://www.nytimes.com/2013/09/06/us/nsa-
foils-much-internet-encryption.html

35. Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3 (2017).
Internet-Draft. https://tools.ietf.org/html/draft-ietf-tls-tls13-19

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
https://doi.org/10.1007/978-3-319-13051-4_20
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-large-integer-arithmetic-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-large-integer-arithmetic-paper.pdf
https://mailarchive.ietf.org/arch/msg/cfrg/Hvihr_yQhVB_Qdl-mtwTdVbHGiU
https://mailarchive.ietf.org/arch/msg/cfrg/Hvihr_yQhVB_Qdl-mtwTdVbHGiU
https://bits.blogs.nytimes.com/2013/09/10/government-announces-steps-to-restore-confidence-on-encryption-standards/
https://bits.blogs.nytimes.com/2013/09/10/government-announces-steps-to-restore-confidence-on-encryption-standards/
http://www.nytimes.com/2013/09/06/us/nsa-foils-much-internet-encryption.html
http://www.nytimes.com/2013/09/06/us/nsa-foils-much-internet-encryption.html
https://tools.ietf.org/html/draft-ietf-tls-tls13-19

HILA5: On Reliability, Reconciliation,
and Error Correction for Ring-LWE Encryption

Markku-Juhani O. Saarinen(B)

Helsinki, Finland

Abstract. We describe a new reconciliation method for Ring-LWE that
has a significantly smaller failure rate than previous proposals while
reducing ciphertext size and the amount of randomness required. It is
based on a simple, deterministic variant of Peikert’s reconciliation that
works with our new “safe bits” selection and constant-time error correc-
tion techniques. The new method does not need randomized smoothing
to achieve non-biased secrets. When used with the very efficient “New
Hope” Ring-LWE parametrization we achieve a decryption failure rate
well below 2−128 (compared to 2−60 of the original), making the scheme
suitable for public key encryption in addition to key exchange proto-
cols; the reconciliation approach saves about 40% in ciphertext size when
compared to the common LP11 Ring-LWE encryption scheme. We per-
form a combinatorial failure analysis using full probability convolutions,
leading to a precise understanding of decryption failure conditions on
bit level. Even with additional implementation security and safety mea-
sures the new scheme is still essentially as fast as the New Hope but has
slightly shorter messages. The new techniques have been instantiated
and implemented as a Key Encapsulation Mechanism (KEM) and pub-
lic key encryption scheme designed to meet the requirements of NIST’s
Post-Quantum Cryptography effort at very high security level.

Keywords: Ring-LWE · Reconciliation · Post-Quantum encryption
New hope

1 Introduction

Some classes of encrypted data must remain confidential for a long period of time
– often at least few decades in national security applications. Therefore high-
security cryptography should be resistant to attacks even with projected future
technologies. As there are no physical or theoretical barriers preventing progres-
sive development of quantum computing technologies capable of breaking current
RSA- and Elliptic Curve based cryptographic standards (using polynomial-time
quantum algorithms already known [37,42]), a need for such quantum-resistant
algorithms in national security applications has been identified [33].

Most of this work was performed while the author was with DARKMATTER, UAE.

c© Springer International Publishing AG 2018
C. Adams and J. Camenisch (Eds.): SAC 2017, LNCS 10719, pp. 192–212, 2018.
https://doi.org/10.1007/978-3-319-72565-9_10

HILA5: On Reliability, Reconciliation, and Error Correction 193

In December 2016 NIST issued a standardization call for quantum-resistant
public key algorithms, together with requirements and evaluation criteria [32].
This has made “Post-Quantum Cryptography” (PQC) central to cryptographic
engineers who must now design concrete proposals for standardization. Practi-
cal issues such as performance, reliability, message and key sizes, implementation
and side-channel security, and compatibility with existing and anticipated appli-
cations, protocols, and standards are as relevant as mere theoretical security and
asymptotic feasibility when evaluating these proposals.

Ring-LWE lattice primitives offer some of the best performance and key size
characteristics among quantum-resistant candidates [16]. These algorithms rely
on “random noise” for security and always have some risk of decryption failure.
This reliability issue can pose problems when used in non-interactive applications
which are not designed to tolerate errors. The issue of decryption failure can be
addressed via reconciliation methods, which is the focus of present work.

Structure of This Paper and Our Contributions. Section 2 provides a
practical introduction to Ring-LWE Key Exchange and prior work on recon-
ciliation. Section 3 introduces our new reconciliation techniques, together with
detailed analysis. Section 4 discusses design, analysis, and implementation of
XE5, a simple constant-time error correction code suitable for Ring-LWE.
Section 5 contains the specification and implementation benchmarks for our
instantiation HILA5, designed to meet the NIST PQC criteria at high secu-
rity level. We conclude in Sect. 6. Additional algorithmic listings are provided in
Appendix A.

2 Ring-LWE Key Exchange and Key Encapsulation

Notation and Basic Properties. Reduction x mod q puts a number in
non-negative range 0 ≤ x < q. We write the rounding function as �x� = �x+ 1

2�.
Let R be a ring with elements v ∈ Z

n
q . Its coefficients vi ∈ [0, q−1] (0 ≤ i < n)

can be interpreted as a polynomial via v(x) =
∑n−1

i=0 vix
i, or as a zero-indexed

vector. Addition, subtraction, and scaling (scalar multiplication with c) follow
the basic rules for polynomials or vectors with coefficients in Zq.

For multiplication in R we use cyclotomic polynomial basis Zq[x]/(xn + 1).
Products are reduced modulo q and xn +1 and results are bound by degree n−1
since xn ≡ q − 1 in R. We may write a direct wrap-around multiplication rule:

h = f ∗ g mod (xn + 1) ⇐⇒ hi =
i∑

j=0

fjg(i−j) −
n−1∑

j=i+1

fjg(n+i−j). (1)

Algorithmically the multiplication rule of Eq. 1 requires O(n2) elementary oper-
ations. However, there is an O(n log n) method using the Number Theoretic
Transform (NTT), originally from Nussbaumer [34]. For efficient NTT imple-
mentation n should be a power of two and q a small prime, with 2n | q − 1.

194 M.-J. O. Saarinen

Definition 1 (Informal). With all distributions and computations in ring R,
let s, e be elements randomly chosen from some non-uniform distribution χ, and
g be a uniformly random public value. Determining s from (g,g∗s+e) in ring R
is the (Normal Form Search) Ring Learning With Errors (RLWER,χ) problem.

Typically, χ is chosen so that each coefficient is a Discrete Gaussian or from
some other “Bell-Shaped” distribution that is relatively tightly concentrated
around zero. The hardness of the problem is a function of n, q, and χ.1

2.1 Noisy Diffie-Hellman in a Ring

A key exchange method analogous to Diffie-Hellman can be constructed in R in
a straightforward manner, as first described in [1,35]. Let g $← R be a uniformly
random common parameter (“generator”), and χ a non-uniform distribution.

Alice Bob

a $← χ private keys b $← χ

e $← χ noise e′ $← χ
A = g ∗ a + e public keys B = g ∗ b + e′

A−−−→
B←−−−

x = B ∗ a shared secret y = A ∗ b

We see that the way messages A,B are generated makes the security of the
scheme equivalent to Definition 1. This commutative scheme “almost” works
like Diffie-Hellman because the shared secrets only approximately agree; x ≈ y.
Since the ring R is commutative, substituting A and B gives

x = (g ∗ b + e′) ∗ a = g ∗ a ∗ b + e′ ∗ a (2)
y = (g ∗ a + e) ∗ b = g ∗ a ∗ b + e ∗ b. (3)

The distance Δ therefore consists only of products of “noise” parameters:

Δ = x − y = e′ ∗ a − e ∗ b. (4)

1 References and Notes on RLWE. The Learning With Errors (LWE) problem in
cryptography originates with Regev [38] who showed its connection to fundamental
lattice problems in a quantum setting. Regev also showed equivalence of search and
decision variants [39]. These ideas were extended to ring setting (RLWE) starting
with [29]. The connection between a uniform secret s and a secret chosen from χ is
provided by Applebaum et al. [8] for LWE case, and for the ring setting in [30]. Due to
these reductions, the informal problem of Definition 1 can be understood to describe
“RLWE”. Best known methods for solving the problem expand an RLWE instance
to the general (lattice) LWE, and therefore RLWE falls under “lattice cryptography”
umbrella. For a recent review of its concrete hardness, see [3].

HILA5: On Reliability, Reconciliation, and Error Correction 195

We observe that each of {a,b, e, e′} in Δ are picked independently from χ, which
should be relatively “small’ and zero-centered. The coefficients of both x and y
are dominated by common, uniformly distributed factor g ∗ a ∗ b ≈ x ≈ y.
Up to n shared bits can be decoded from coefficients of x and y by a simple
binary classifier such as � 2xi

q � ≈ � 2yi

q �. This type of generation will generate some
disagreeing bits due to error Δ, however. Furthermore, the output of the classifier
is slightly biased when q is odd. This is why additional steps are required.

2.2 Reconciliation

Let x ≈ y be two vectors in Z
n
q with a relatively small difference in each coef-

ficient; the distribution of the distance δi = xi − yi is strongly centered around
zero. In reconciliation, we wish the holders of x and y (Alice and Bob, respec-
tively) to be able to arrive at exactly the same shared secret (key) k with a small
amount of communication c. However, single-message reconciliation can also be
described simply as a part of an encryption algorithm (not a protocol).2

Peikert’s Reconciliation and BCNS Instantiation. In Peikert’s reconcilia-
tion for odd modulus [36], Bob first generates a randomization vector r such that
each ri ∈ {0,±1} is uniform modulo two. Bob can then determine the public
reconciliation c and shared secret k via

ci =
⌊

2(2yi − ri)
q

⌋

mod 2 ki =
⌊

2yi − ri

q

⌉

mod 2. (5)

We define disjoint helper sets I0 = [0, � q
2�] and I1 = [−� q

2�,−1] and E = [− q
4 , q

4).
Alice uses x to arrive at the shared secret k′ = k via

k′
i =

{
0, if 2xi ∈ Ici + E mod 2q
1, otherwise. (6)

This mechanism is illustrated in Fig. 1. Peikert’s reconciliation was adopted for
the Internet-oriented “BCNS” instantiation [14], which has a vanishingly small
failure probability; Pr(k′ �= k) < 2−16384.

New Hope Variants. “New Hope” is a prominent, more recent instantiation
of Peikert’s key exchange scheme [5]. New Hope is parametrized at n = 1024,
yet produces a 256-bit secret key k. This allowed the designers to develop a
relatively complex reconciliation mechanism that uses 1024

256 = 4 coefficients of x
and 2 ∗ 4 = 8 bits of reconciliation information to reach < 2−60 failure rate.
2 References and Notes on Reconciliation. The term “reconciliation” comes from

Quantum Cryptography. Standard Quantum Key Distribution (QKD) protocols such
as BB84 [10] result in approximately agreeing shared secrets, which must be recon-
ciled over a public channel with the help of classical information theory and cryp-
tography [11,15]. Ding et al. describe functionally similar (but mathematically very
different) “Robust Extractors” in later versions of [21] and patent application [20].

196 M.-J. O. Saarinen

0

q
2

q
4

k = 0

c = 0

k = 1

c = 1

k = 0

c = 1

k = 1

c = 0

3q
4

Bob:

0

when c = 0

3q
8

7q
8

k = 1

k = 0

0

when c = 1

k = 1

k = 0

q
8

5q
8

Alice:

Fig. 1. Simplified view of Peikert’s original reconciliation mechanism [36], ignoring
randomized rounding. Alice and Bob have points x ≈ y ∈ Zq that are close to each
other. Bob uses y to choose k and c as shown on left, and transmits c to Alice. Alice
can use x, c to always arrive at the same shared bit k′ if |x − y| < q

8
, as shown on

right. Without randomized smoothing the two halves k = 0 and k = 1 have an area of
unequal size (when q is an odd prime) and the resulting key will be slightly biased.

In a follow-up paper [4] the New Hope authors let Bob unilaterally choose
the secret key, and significantly simplified their approach. This version also uses
four coefficients, but requires 3 ∗ 4 = 12 bits of reconciliation (or “ciphertext”)
information per key bit. The total failure probability is the same < 2−60.

Security Level and Failure Probability. Note that despite having a higher
failure probability, the security level of New Hope (Sect. 2.2) is higher than that
of BCNS (Sect. 2.2). Security of RLWE is closely related to the entropy and
deviation of noise distribution χ in relation to modulus q. Higher noise ratio
increases security against attacks, but also increases failure probability [3]. This
is a fundamental trade-off in all Ring-LWE schemes.

2.3 Formalization as a KEM

Following the NIST call [32] and Peikert [36], such a scheme can be formalized
as a Key Encapsulation Mechanism (KEM), which consists of three algorithms:

– (PK,SK) ← KeyGen(). Generate a public key PK and a secret key SK (pair).
– (CT,K) ← Encaps(PK). Encapsulate a (random) key K in ciphertext CT.
– K ← Decaps(SK,CT). Decapsulate shared key K from CT with SK.

In this model, reconciliation data is a part of ciphertext produced by Encaps.
The three KEM algorithms constitute a natural single-roundtrip key exchange:

Alice Bob
(PK,SK) ← KeyGen() PK−−−→

CT←−−− (CT,K) ← Encaps(PK)
K ← Decaps(SK,CT)

HILA5: On Reliability, Reconciliation, and Error Correction 197

0

q
2

q − 1
0

q
4

3q
4

q
2

d = 1

d = 1d = 1

d = 1
k = 0

k = 0k = 1

k = 1
c = 0

c = 0 c = 1

c = 1

q
8

3q
8

5q
8

7q
8

−b

−b

−b

−b

+b

+b

+b

+b
d = 0

d = 0 d = 0

d = 0

d = 0d = 0
d = 1

k = 1 k = 0

d = 1 q
4

3q
4

q
4 − b

q
4 + b

3q
4 + b

3q
4 − b

Fig. 2. We use k = � 2y
2

� (k = 1 on left half) instead of signed rounding k = � 2y
2

+ ε�
(k = 1 in lower half) of Peikert (Fig. 1). Illustration on the left gives intuition for the
simple key bit selection and SafeBits without reconciliation. Bob uses window parameter
b to select “safe” bits d = 1 which are farthest away from the negative (k = 1)/positive
(k = 0) threshold. The bit selection d is sent to Alice, who then chooses the same bits
as part of the shared secret k′. On right, safe bit selection when reconciliation bits c
are used; this doubles the SafeBits “area”. Each section constitutes a fraction 2b+1

q
, so

bits are unbiased. However the number of shared bits is not constant.

Even though a KEM cannot encrypt per se, a hybrid set-up that uses a KEM to
determine random shared keys for message payload confidentiality (symmetric
encryption) and integrity (via a message authentication code) is usually prefer-
able to using asymmetric encryption directly on payload [18].

NIST requires at least IND-CPA [9] security from such a scheme. For a KEM
without “plaintext”, this essentially means that valid (PK,CT,K) triplets are
computationally indistinguishable from (PK,CT,K′), where K′ is random.

3 New Reconciliation Method

We define a simpler, deterministic key and reconciliation bit generation rule from
Bob’s share y to be

ki =
⌊

2yi

q

⌋

and ci =
⌊

4yi

q

⌋

mod 2. (7)

Input yi can be assumed to be uniform in range [0, q − 1]. If taken in this plain
form, the generator is slightly biased towards zero, since the interval for ki = 0,
[0, � q

2�] is 1 larger than the interval [� q
2�, q − 1] for ki = 1 when q is odd.

Intuition: Selecting Safe Bits (without Reconciliation). Let’s assume
that we don’t need all n bits given by the ring dimension. There is a straight-
forward strategy for Bob to select m indexes in y that are most likely to agree.

198 M.-J. O. Saarinen

These safe coefficients are those that are closest to center points of k = 0 and
k = 1 ranges, which in this case are q

4 and 3q
4 , respectively. Bob may choose a

boundary window b, which defines shared bits to be used, and then communicate
his binary selection vector d to Alice:

di =
{

1 if yi ∈ [� q
4� − b, � q

4� + b
]

or yi ∈ [� 3q
4 � − b, � 3q

4 � + b
]

0 otherwise.
(8)

This simple case is illustrated on left side of Fig. 2.
Since y is uniform in Z

n
q , the Hamming weight of d = SafeBits(y) satisfies

Wt(d) =
∑n−1

i=1 di ≈ 4b+2
q n. Note that if not enough bits for the required payload

can be obtained with bound b, Bob should re-randomize y rather than raising
b as that can have an unexpected effect on failure rate. If there are too many
selection bits for desired payload, one can just ignore them.

Importantly, both partitions are of equal size 2b+1 and therefore k is unbiased
if there are no bit failures. If Alice also uses the simple rule k′

i = � 2xi

q � to derive
key bits (without ci), the distance between shares must be at least |xi−yi| > q

4−b
for a bit error to occur.

3.1 Even Safer Bits via Peikert’s Reconciliation

Let Bob use Eq. 7 to determine his private key bits ki and reconciliation bits ci.
Bob also uses a new d = SafeBits(y, b) function that accounts for Peikert-style
reconciliation via

di =
{

1 if |(yi mod � q
4�) − � q

8�| ≤ b
0 otherwise. (9)

Note that there are now four “safe zones” (Fig. 2, right side). Bob sends his bit
selection vector d to Alice, along with reconciliation bits ci at selected positions
with di = 1. Alice can then get corresponding k′

i using ci via

k′
i =

⌊
2
q

(
xi − ci

⌊q

4

⌉
+

⌊q

8

⌉
mod q

)⌋

. (10)

Both parties derive a final key of length m ≤ Wt(d) bits by concatenating the
selected bits. Since y is uniform, each partition is still of size 2b + 1, and the
expected weight is now Wt(d) =

∑n−1
i=1 di ≈ 8b+4

q n, allowing the selection to be
made essentially twice as tight while producing unbiased output.

Note that when selection mechanism is used, one needs to “pack” keys to
payload size m by removing ki and k′

i at positions where di = 0. Algorithms 3
and 4 in Appendix A implement Eqs. 9 and 10 with packing.

3.2 Instantiation and Failure Analysis

We adopt the well-analyzed and optimized external ring parameters (q = 12289,
n = 1024, and χ = Ψ16) from New Hope [4,5] in our instantiation.

HILA5: On Reliability, Reconciliation, and Error Correction 199

Definition 2. Let Ψk be a binomial distribution source

Ψk =
k∑

i=0

bi − b′
i where bi, b

′
i

$← {0, 1}. (11)

For random variable X from Ψk we have P (X = i) = 2−2k
(

2k
k+i

)
. Furthermore,

Ψn
k is a source of R elements where each one of n coefficients is independently

chosen from Ψk. Since scheme is uses k = 16, a typical sampler implementation
just computes the Hamming weight of a 32-bit random word and subtracts 16.

Lemma 1. Let ε, ε′ be vectors of length 2n from Ψ2n
k . Individual coefficients

δ = Δi of distance Eq. 4 will have distribution equivalent to

δ =
2n∑

i=1

εiε
′
i. (12)

Proof. When we investigate the multiplication rule of Eq. 1, we see that each
coefficient of independent polynomials {a,b, e, e′} (or its inverse) in Δ is used in
computation of each Δi = δ exactly once. One may equivalently pick coefficients
of ε, ε′ from {±e,±e′,±sA,±sB}, without repetition. Therefore coefficients of
εi, ε

′
i are independent and have distribution Ψk. ��

Independence Assumption. Even though all of the variables in the sum of
individual element δ = Δi are independent in Eq. 12, they are reused in other
sums for Δj , i �= j. Therefore, while the average-case distribution of each one of
the n coefficients of Δ is the same and precisely analyzable, they are not fully
independent. In this work we perform error analysis on a single coefficient and
then simply expand it to the whole vector. This independence assumption is
analogous to our extension of LWE security properties to Ring-LWE with more
structure and less independent variables.

The assumption is supported by our strictly bound error distribution Ψk

(when using discrete Gaussian distributions, which are infinite up to a tail bound,
a few highly anomalous values would be more likely to cause multiple errors)
and the structure of convolutions of signed random vectors (Eq. 1). Our error
estimate has a significant safety margin, however.

Estimation via Central Limit Theorem. The distribution of the product
from two random variables from Ψk in Eq. 12 is no longer binomial. Clearly its
range is [−k2, k2], but not all values are possible; for example, primes p > k
cannot occur in the product. However, it is easy to verify that the product is
zero-centered and its standard deviation is exactly

σ =

√
√
√
√

k∑

i=−k

k∑

j=−k

(
2k

k+i

)(
2k

k+j

)

24k
(ij)2 =

k

2
. (13)

200 M.-J. O. Saarinen

0 � q
8
�−� q

8
� � q

4
�−� q

4
� � 3q

8
�−� 3q

8
� � q

2
�−� q

2
�

0.0000
0.0002
0.0004
0.0006
0.0008
0.0010
0.0012

-6000 -5000 -4000 -3000 -2000 -1000 0 1000 2000 3000 4000 5000 6000

Fig. 3. The error distribution E of δ = xi −yi (which we compute with high precision)
is bell-shaped with variance σ2 = 217. Its statistical distance to corresponding discrete
Gaussian (with same σ) is ≈ 2−12.6, which has a significant effect on the bit failure
rate. This is why we compute the discrete distributions numerically.

Hence, we may estimate δ of Eq. 12 using the Central Limit Theorem as a Gaus-
sian distribution with deviation

σ =
k

2

√
2n (14)

With our parameter selection this yields σ ≈ 362.0386 (variance σ2 = 217).
Figure 3 illustrates this error distribution.

More Precise Computation via Convolutions. The distribution of X =
εiε

′
i in Eq. 12 is far from being “Bell-shaped” – its (total variation) statistical

distance to a discrete Gaussian (with the same σ = 8) is ≈ 0.307988.
We observe that since our domain Zq is finite, we may always perform full

convolutions between statistical distributions of independent random variables X
and Y to arrive at the distribution of X+Y . The distributions can be represented
as vectors of q real numbers (which are non-negative and add up to 1).

In order to get the exact shape of the error distribution we start with X,
which is a “square” of Ψ16 and can be computed via binomial coefficients, as is
done in Eq. 13. The error distribution (Eq. 12) is a sum X + X + · · · + X of 2n
independent variables from that distribution. Using the convolution summing
rule we can create a general “scalar multiplication algorithm” (analogous to
square-and-multiply exponentiation) to quickly arrive at E = 2048 × X.

We implemented finite distribution evaluation arithmetic in 256-bit floating
point precision using the GNU MPFR library3. From these computations we
know that the statistical distance of E to a discrete Gaussian with (same) σ2 =
217 is approximately 0.0001603 or 2−12.6.

3 The GNU MPFR is a widely available, free C library for multiple-precision floating-
point computations with correct rounding: http://www.mpfr.org/.

http://www.mpfr.org/

HILA5: On Reliability, Reconciliation, and Error Correction 201

Proposition 1. Bit selection mechanism of Sect. 3.1 yields unbiased shared
secret bits k = k′ if y is uniform. Discrete failure rate for individual bits k �= k′

can be computed with high precision in our instance.

Proof. Consider Bob’s k value from in Eq. 7, Bob’s c and Alice’s k′ from Eq. 10,
and the four equiv-probable SafeBits ranges in Eq. 9. With our q = 12289 instan-
tiation the four possible k �= k′ error conditions are:

Failure Case Bob’s yi range for Y Alice’s Failing xi

k = 0, c = 0, k′ = 1 [1536 − b, 1536 + b] [4609, 10752]
k = 0, c = 1, k′ = 1 [4608 − b, 4608 + b] [0, 1535] ∪ [7681, 12288]
k = 1, c = 0, k′ = 0 [7680 − b, 7680 + b] [0, 4608] ∪ [10753, 12288]
k = 1, c = 1, k′ = 0 [10752 − b, 10752 + b] [1536, 7680]

We examine each case separately (See Fig. 2). Since the four non-overlapping yi

ranges are of the same size 2b + 1 and together constitute all selectable points
di = 1 (Eq. 9), the distribution of k = k′ is uniform. Furthermore, bit fail
probability k �= k′ is the average of these four cases. For each case, compute
distribution Y which is uniform in the range of yi. Then convolute it with error
distribution to obtain X = Y + E, the distribution of xi. The probability of
failure is the sum of probabilities in X in the corresponding xi failure range. ��

Parameter Selection for Instantiation. Based on our experiments, the rela-
tionship between window size b and bit failure rate is almost exponential.

Some representative window sizes and payloads are given in Table 1, which
also puts our selection b = 799 in context. Five-error correction (Sect. 4) lowers

Table 1. Potential window b sizes for safe bit selection (Eq. 9) for different payload
sizes. We target a payload of 496 bits, of which 256 are actual key bits and 240 bits
are used to encrypt a five-error correcting code from XE5.

Payload bitsa

m ≈ r × n
Selection
Window b

Selection Ratio
r = 4(2b+1)

q

Bit fail
Probability p

Payload Failure
1 − (1 − p)m

128 191 0.124664 2−51.4715 2−44.4715

256 383 0.249654 2−46.5521 2−38.5521

384 575 0.374644 2−41.5811 2−32.9962

496b 799 0.520465 2−36.0359 2−27.0818

512 767 0.499634 2−36.8063 2−27.8063

768 1151 0.749613 2−28.1151 2−18.5302

1024 1535 0.999593 2−20.7259 2−10.7263

a This is the minimum number of payload bits you get with 50% probability. The actual
number is binomially distributed with density f(k) =

(
n
k

)
rk(1 − r)n−k. Probability of

at least m bits is therefore
∑n

k=m f(k).
b The payload could be 533 bits with 50% probability. We get 496 bits with 99%
probability – this safety margin was chosen to minimize repetition rate (to ≈ 1

100
).

202 M.-J. O. Saarinen

the message failure probability to roughly (2−27)5 ≈ 2−135 or even lower as 99%
of six-bit errors are also corrected. We therefore meet the 2−128 message failure
requirement with some safety margin.

4 Constant-Time Error Correction

We note that in our application the error correction mechanism operates on
secret data. As with all other components of the scheme it is highly desirable
that decoding can be implemented with an algorithm that requires constant
processing time regardless of number of errors present. We are not aware of
satisfactory constant-time decoding algorithms for BCH, Reed-Solomon, or other
standard block multiple-error correcting codes [31].

We chose to design a linear block code specifically for our application. The
design methodology is general, and a similar approach was used by the Author
in the Trunc8 Ring-LWE lightweight authentication scheme [41]. However, that
work did not provide a detailed justification for the error correction code.

Definition 3. XE5 has a block size of 496 bits, out of which 256 bits are payload
bits p = (p0, p1, · · · , p255) and 240 provide redundancy r. Redundancy is divided
into ten subcodewords r0, r1, · · · , r9 of varying bit length |ri| = Li with

(L0, L1, · · · , L9) = (16, 16, 17, 31, 19, 29, 23, 25, 27, 37). (15)

Bits in each ri are indexed r(i,0), r(i,1), · · · , r(i,Li−1). Each bit k ∈ [0, L0 − 1] in
first subcodeword r0 satisfies the parity equation

r0,k =
15∑

j=0

p(16k+j) (mod 2) (16)

and bits in r1, r2, · · · , r9 satisfy the parity congruence

ri,k =
∑

j−k | Li

pj (mod 2). (17)

We see that r0,k in Eq. 16 is the parity of k +1:th block of 16 bits, while the ri,k

in Eq. 17 is parity of all pj at congruent positions j ≡ k (mod Li).

Definition 4. For each payload bit position pi we can assign corresponding inte-
ger “weight” wi ∈ [0, 10] as a sum

wi = r(0,�i/16�) +
9∑

j=1

r(j,i mod Lj). (18)

Lemma 2. If message payload p only has a single nonzero bit pe, then we = 10
and wi ≤ 1 for all i �= e.

HILA5: On Reliability, Reconciliation, and Error Correction 203

Proof. Since each Li ≥ √|p| and all Li≥1 are coprime (each is a prime power)
it follows from the Chinese Remainder Theorem that any nonzero i �= j pair can
satisfy both ri,a mod Li

= 1 and rj,a mod Lj
= 1 only at a = e. Similar argument

can be made for pairing r0,a with ri≥1. Since the residues can be true pairwise
only at e, weight wa cannot be 2 or above when a �= e. The we = 10 case follows
directly from the Definition 3. ��
Definition 5. Given XE5 input block p | r, we deliver a redundancy check r′

from p via Eqs. 16 and 17. Furthermore we have distance rΔ = r ⊕ r′. Payload
distance weight vector wΔ is derived from rΔ via Eq. 18.

Since the code is entirely linear, Lemma 2 implies a direct way to correct a
single error in p using Definition 5 – just flip bit px at position x where wΔ

x = 10.
In fact any two redundancy subcodewords ri and rj would be sufficient to correct
a single error in the payload; it’s where wΔ

i ≥ 2. It’s easy to see if the single
error would be in the redundancy part (ri or rj) instead of the payload, this is
not an issue since in that case wΔ

x ≤ 1 for all x. This type of reasoning leads to
our main error correction strategy that is valid for up to five errors:

Theorem 1. Let b | r be an XE5 message block as in Definition 5. Changing
each bit pi when wΔ

i ≥ 6 will correct a total of five bit errors in the block.

Proof. We first note that if all five errors are in the redundancy part r, then
wΔ

i ≤ 5 and no modifications in payload are done. If there are 4 errors in r and
one in payload we still have wΔ

x ≥ 6 at the payload error position px, etc. For
each payload error px, each of ten subcodeword ri will contribute one to weight
wΔ

x unless there is another congruent error py – i.e. we have �x/16� = �y/16�
for r0 or x ≡ y (mod Li) for ri≥1. Four errors cannot generate more than four
such congruences (due to properties shown in the proof of Lemma 2), leaving
fifth correctable via remaining six subcodewords (wΔ

i ≥ 6). ��
In order to verify the correctness of our implementation, we also performed

a full exhaustive test (search space
∑5

i=0
496!

i!(496−i)! ≈ 237.8). Experimentally XE5
corrects 99.4% of random 6-bit errors and 97.0% of random 7-bit errors.

Efficient Constant-Time Implementation. The code generation and error
correcting schemes can be implemented in bit-sliced fashion, without conditional
clauses or table-lookups on secret data. Please refer to the implementations under
https://mjos.fi/hila5 and the full version of this paper at https://eprint.iacr.org/
2017/424 for more information about these techniques.

The block is encoded simply as a 496-bit concatenation p | r. The reason for
the ordering of Li in Eq. 15 is so that they can be packed into byte boundaries:
17 + 31 = 48, 19 + 29 = 48, 23 + 25 = 48 and 27 + 37 = 64.

https://mjos.fi/hila5
https://eprint.iacr.org/2017/424
https://eprint.iacr.org/2017/424

204 M.-J. O. Saarinen

5 Instantiation and Implementation

Our instantiation – codenamed HILA54 – shares core Ring-LWE parameters with
various “New Hope” variants, but uses an entirely different error management
strategy. Algorithm 1 contains a pseudocode overview of the entire HILA5 Key
Encapsulation Mechanism, using a number of auxiliary primitives and functions.

Algorithm 1. The HILA5 KEM Components and (key exchange) protocol flow.
Alice Bob

(PK, SK) ← KeyGen()

s
$← {0, 1}256 Public random seed.

ĝ ← Parse(s) Expand to “generator” in NTT domain.

a
$← ψn

16 Randomize Alice’s secret key.
â ← NTT(a) Transform it.

e
$← ψn

16 Generate masking noise.

Â ← ĝ � â + NTT(e) Compute Alice’s public key in NTT domain.

→ Send PK = s | Â PK−−−−→↓ Keep SK = â and h(PK). (CT,K) ← Encaps(PK)

Randomize Bob’s ephemeral secret key. b
$← ψn

16

Transform it. b̂ ← NTT(b)

Bob’s version of shared secret. y ← NTT−1(Â � b̂)
Get payload and reconciliation values. (d,k, c) ← SafeBits(y)

(Fail hard after more than a dozen restarts.) If k = FAIL restart Encaps()
Split to payload and redundancy “keystream”. p | z = k

Error correction code, encrypt it. r ← XE5 Cod(p) ⊕ z
Get “generator” from Alice’s seed. ĝ ← Parse(s)

Generate masking noise. e′ $← ψn
16

Compute Bob’s one-time public value. B̂ ← ĝ � b̂ + NTT(e′)
CT←−−− ← Send CT = B̂ | d | c | r

Hash the shared secret. V is a version identifier. ↓ K = h(V | h(PK) | h(CT) | p)
K ← Decaps(SK,CT)

x ← NTT−1(B̂ � â) Alice’s version of the shared secret.
k′ ← Select(x,d, c) Get payload with the help of reconciliation.
p′ | z′ = k′ Split to payload and redundancy “keystream”.
r′ ← XE5 Cod(p′) Get error correction code from Alice’s version.
p′′ ← XE5 Fix(r ⊕ z′ ⊕ r′) ⊕ p′ Decrypt and apply Bob’s error correction.

↓ K′ = h(V | h(PK) | h(CT) | p′′) Upon success shared secret K = K′.

4 Hila is Finnish for a lattice. HILA5 – especially when written as “Hila V” – also refers
to hilavitkutin, a nonsensical placeholder name usually meaning an unidentified,
incomprehensibly complicated apparatus or gizmo.

HILA5: On Reliability, Reconciliation, and Error Correction 205

Notation and Auxiliary Functions. We represent elements of R in two
different domains; the normal polynomial representation v and Number The-
oretic Transform representation v̂. Convolution (polynomial multiplication) in
the NTT domain is a linear-complexity operation, written x̂ � ŷ. Addition and
subtraction work as in normal representation. The transform and its inverse are
denoted NTT(v) = v̂ and NTT−1(v̂) = v, respectively. The transform algorithm
is adopted from Longa and Naehrig [28], and not detailed here.

The XE5 error correction functions r = XE5 Cod(p) and p′ = XE5 Fix(r ⊕
r′) ⊕ p are discussed in Sect. 4. Here we have “error key” k = p | r with the
payload key p ∈ {0, 1}256 and redundancy r ∈ {0, 1}240.

The hash h(x) is SHA3-256 [24]. Appendix A contains pseudocode algorithm
listings for additional auxiliary functions. Function Parse() (Algorithm 2) deter-
ministically samples a uniform ĝ ∈ R based on arbitrary seed s using SHA3’s
XOF mode SHAKE-256 [24]. While New Hope uses the slightly faster SHAKE-
128 for this purpose, we consistently use SHAKE-256 or SHA3-256 in all parts
of HILA5. For sampling modulo q we use the 5q trick suggested by Gueron and
Schlieker in [25]. Binomial distribution values Ψ16 can be computed directly from
32 random bits per Definition 2.

Bob’s reconciliation function SafeBits() (Algorithm 3) captures Eqs. 7 and
9 from Sect. 3. Conversely Alice’s reconciliation function Select() (Algorithm 4)
captures Eq. 10.

Encoding – Shorter Messages. Ring elements, whether or not in NTT
domain, are encoded into |R| = �log2 q�n bits = 1, 792 bytes. This is the private
key size. Alice’s public key PK with a 256-bit seed s and Â is 1, 824 bytes. Cipher-
text CT is |R| + n + m + |r| bits or 2, 012 bytes; 36 bytes less than New Hope
[5], 196 bytes less than the variant of [4], and 1, 572 bytes less than LP11 [27].

5.1 Encryption: From Noisy Diffie-Hellman to Noisy ElGamal

Modification of the scheme for public-key encryption is straightforward. Com-
pared to the more usual “LP11” Ring-LWE Public Key Encryption construction
[27] our reconciliation approach saves about 44 % in ciphertext size.

For minimal ciphertext expansion with only passive security, one may replace
SHA3 at the end of Encaps() and Decaps() with SHAKE-256 and use the output
K as keystream to XOR with plaintext to produce ciphertext or vice versa.

However, for active security we suggest that K is used as keying material
for an AEAD (Authenticated Encryption with Associated Data) scheme such as
AES256-GCM [22,23] or Keyak [12] in order to protect message integrity. See
Sect. 5 of [36] for details of the formal security argument.

5.2 Security

In Algorithm 1 the error correction data r is transmitted encrypted with shared
secret bits z, and therefore does not leak entropy about the actual key data p,

206 M.-J. O. Saarinen

also derived from the shared secret. Shared secret bits are unbiased. The shared
key K also includes plaintext PT and ciphertext CT in the final hash to protect
against a class of active attacks.

Our reconciliation mechanism has no effect on the security against (quantum)
lattice attacks, so estimates in [2,5] are applicable (2255 quantum security, with
2199 attacks plausible). Pre-image security is expected from SHA3 and SHAKE-
256 in HILA5. Breaking the construction via these algorithms is expected to
require approximately 2166 logical-qubit-cycles [7,19,45].

This leads us to claim that the HILA5 meets NIST’s “Category 5” post-
quantum security requirement ([32], Sect. 4.A.5): Compromising key K in a pas-
sive attack requires computational resources comparable to or greater than those
required for key search on a block cipher with a 256-bit key (e.g. AES 256).
The scheme can also be made secure against active attacks with an appropriate
AEAD mechanism, as discussed in Sect. 5.1.

Implementation Security. HILA5 has been designed from ground-up to be resis-
tant against timing and side-channel attacks. The sampler Ψ16 is constant-time,
as is our error correction code XE5. Ring arithmetic can also be implemented in
constant time, but leakage can be further minimized via blinding [40] (Sect. 6).

Table 2. Performance of HILA5 within the Open Quantum Safe test bench C imple-
mentations [43]. The slight (under 4%) performance difference to New Hope is prin-
cipally due to our use of error correction and SHAKE-256. Testing was performed on
an Ubuntu 17.04 workstation with Core i7-6700 @ 3.40 GHz. For reference and scale
we are also including RSA numbers with OpenSSL 1.0.2 (system default) on this tar-
get. A single Elliptic Curve DH operation requires 45.4µs for the NIST P-256 curve
(highly optimized implementation), and 331.7µs for NIST P-521. Full source code of
our implementation is available at https://mjos.fi/hila5/

Scheme Init Public Private Key Ex. Data

KeyGen() Encaps() Decaps() Total Tot. xfer

RLWE New Hope [5] 60.7µs 92.3µs 16.2µs 169.2µs 3,872 B

RLWE Hila5 [This work] 68.7µs 89.9µs 16.9µs 175.4µs 3,836 B

RLWE BCNS15 [14] 951.6µs 1546µs 196.9µs 2.694 ms 8,320 B

LWE Frodo [13] 2.839 ms 3.144 ms 84.9µs 6.068 ms 22,568 B

SIDH CLN16 [17] 10.3 ms 22.9 ms 9.853 ms 43.1 ms 1,152 B

RSA-2048 [OpenSSL] 60 ms 15.9µs 559.9µs N/A N/A

RSA-4096 [OpenSSL] 400 ms 55.7µs 3.687 ms N/A N/A

5.3 Performance

Our main contribution, a new reconciliation mechanism, has a minor effect on
performance of the scheme, but a significant impact on failure probability.

https://mjos.fi/hila5/

HILA5: On Reliability, Reconciliation, and Error Correction 207

We chose to recycle “New Hope” NTT (n, q) and sampler (q, Ψ16) parame-
ters as they have been extensively vetted for security against lattice attacks and
originally selected for performance. A significant effort has subsequently been
dedicated (by several research groups) for the optimization of NTT and Sam-
pler components. There already exists a number of permissively licensed open
source implementations and a body of publications detailing specific optimiza-
tions for these particular NTT and sampler parameters. New Hope has also
been integrated in TLS stacks and cryptographic toolkits in 2016-17 by Google
(BoringSSL), the Open Quantum Safe project, Microsoft (MS Lattice Library),
ISARA Corporation, and possibly others.

There are at least two very fast AVX2 Intel optimized versions of the NTT
core and Ψ16 sampler – the original [5] and one by Longa and Naehrig [28].
Further sampler optimizations have been suggested in [25]. Implementations
have also been reported for ARM Cortex-M microcontrollers [6], ARM NEON
SIMD instruction set [44], and for FPGA hardware [26].

Our prototype implementation was integrated into a branch of the Open
Quantum Safe (OQS) framework5 where it was benchmarked against other
quantum-resistant KEM schemes [43]. Table 2 summarizes the performance of
our implementation. It is essentially the same as New Hope C implementation,
with slightly smaller message size.

6 Conclusions

With NIST’s ongoing post-quantum standardization effort, the practical perfor-
mance, implementation security, and reliability of Ring-LWE public key encryp-
tion and key exchange implementations have emerged as major research area.

We have described an improved general reconciliation scheme for Ring-LWE.
Our SafeBits selection technique avoids randomized “blurring” of previous Peik-
ert’s, Ding’s, and New Hope reconciliation schemes to achieve unbiased secret
bits, therefore needing less randomness. We have given detailed, precise argu-
ments for its effectiveness.

The failure probability can also be addressed using error correcting codes.
For this purpose we described a class of linear forward-error correcting block
codes that can be implemented without branches or table lookups on secret
data, guarding against side-channel attacks.

We instantiate the new techniques in “HILA5” with well-studied and efficient
“New Hope” Ring-LWE parameters. The new reconciliation methods are shown
to have minimal negative performance impact, while significantly improving the
failure probability. The failure probability, which is shown to be under 2−128,
allows the KEM to be used for actively secure public key encryption in addition
to interactive key exchange protocols. Furthermore the message sizes are shorter
than with previous proposals, especially when used for public key encryption.

5 Open Quantum Safe project: https://openquantumsafe.org/.

https://openquantumsafe.org/

208 M.-J. O. Saarinen

We claim that the HILA5 instantiation meets “Category 5” NIST PQC secu-
rity requirements as a KEM and public key encryption scheme. Furthermore, it
has been explicitly designed to be robust against side-channel attacks.

Acknowledgements.. The author wishes to thank the DARKMATTER Crypto
Team and Dr. Najwa Aaraj for providing feedback and supporting this research.

A Algorithmic Definitions

Algorithm 2. Parse(s): Deterministic sampling in ring R based on seed s.
Input: Seed value s.

1: z ← SHAKE − 256(s) Absorb the seed s into Keccak state.
2: for i = 0, 1, . . . n − 1 do
3: repeat
4: t ← next 16 bits from z z represents the (endless) output of XOF.
5: until t < 5q Acceptance rate is 5q

216
≈ 93.76%.

6: ĝi ← t No further transformation needed.
7: end for

Output: A ring element ĝ which is understood to be in NTT domain.

Algorithm 3. SafeBits(y): Determine Bob’s key bit, reconciliation, and payload.
HILA5 has n = 1024, q = 12289, selection bound b = 799, and payload m = 496.
Input: Bob’s share y ∈ R.

1: j ← 0, d ← 0n, k ← 0m, c ← 0m Initialize.
2: for i = 0, 1, . . . n − 1 do
3: t ← yi mod � q

4
� Position within the quadrant.

4: if t ∈ [� q
8
� − b, � q

8
� + b

]
then

5: di ← 1 Mark selection bit.
6: kj ← �2yi/q� Key bit (really just bound comparisons).
7: cj ← �4yi/q� mod 2 Reconciliation bit (also just bounds).
8: j ← j + 1
9: if j = m then

10: return (d,k, c) We have enough bits, done.
11: end if
12: end if
13: end for
14: return FAIL j < m: not enough bits (< 1% probability).

Output: Either three binary vectors d ∈ {0, 1}n, k ∈ {0, 1}m, c ∈ {0, 1}m or FAIL.

HILA5: On Reliability, Reconciliation, and Error Correction 209

Algorithm 4. Select(x,d, c): Determine Alice’s key bits.
Input: Alice’s share x ∈ R.
Input: Bob’s reconciliation vectors d ∈ {0, 1}n and c ∈ {0, 1}m.

1: j ← 0, k ← 0m Initialize.
2: for i = 0, 1, . . . n − 1 do
3: if di = 1 then
4: if cj = 1 then
5: t ← xi − ⌊

q
8

⌉
Reconciliation 45◦ anticlockwise.

6: else
7: t ← xi +

⌊
q
8

⌉
Reconciliation 45◦ clockwise.

8: end if
9: kj =

⌊
2
q
(t mod q)

⌋
Really a conditional.

10: j ← j + 1
11: if j = m then
12: return k Done.
13: end if
14: end if
15: end for
16: return FAIL j < m: not enough bits

Output: Either key bits k ∈ {0, 1}m or FAIL.

References

1. Aguilar, C., Gaborit, P., Lacharme, P., Schrek, J., Zémor, G.: Noisy Diffie-Hellman
protocols, May 2010, https://pqc2010.cased.de/rr/03.pdf. Talk given by Philippe
Gaborit at PQCrypto 2010 “Recent Results” session

2. Albrecht, M.R., Göpfert, F., Virdia, F., Wunderer, T.: Revisiting the expected cost
of solving uSVP and applications to LWE. In: ASIACRYPT 2017 (2017), https://
eprint.iacr.org/2017/815

3. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. J. Math. Cryptology 9(3), 169–203 (2015), https://eprint.iacr.org/2015/
046

4. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Newhope without reconcilia-
tion. IACR ePrint 2016/1157, December 2016, https://eprint.iacr.org/2016/1157

5. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange
- A new hope. In: Holz, T., Savage, S. (eds.) USENIX Security 16, pp. 327–
343. USENIX Association, August 2016, https://www.usenix.org/system/files/
conference/usenixsecurity16/sec16 paper alkim.pdf. full version, https://eprint.
iacr.org/2015/1092

6. Alkim, E., Jakubeit, P., Schwabe, P.: A new hope on ARM Cortex-M. IACR ePrint
2016/758 (2016), https://eprint.iacr.org/2016/758

7. Amy, M., Matteo, O.D., Gheorghiu, V., Mosca, M., Parent, A., Schanck, J.: Esti-
mating the cost of generic quantum pre-image attacks on SHA-2 and SHA-3. IACR
ePrint 2016/992 (2016), http://eprint.iacr.org/2016/992. To appear in Proc. SAC
2016

https://pqc2010.cased.de/rr/03.pdf
https://eprint.iacr.org/2017/815
https://eprint.iacr.org/2017/815
https://eprint.iacr.org/2015/046
https://eprint.iacr.org/2015/046
https://eprint.iacr.org/2016/1157
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_alkim.pdf
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_alkim.pdf
https://eprint.iacr.org/2015/1092
https://eprint.iacr.org/2015/1092
https://eprint.iacr.org/2016/758
http://eprint.iacr.org/2016/992

210 M.-J. O. Saarinen

8. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03356-8 35

9. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of
security for public-key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0055718

10. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and
coin tossing. In: Proceedings of IEEE International Conference on Computers, Sys-
tems and Signal Processing, pp. 175–179. IEEE, December 1984, http://researcher.
watson.ibm.com/researcher/files/us-bennetc/BB84highest.pdf

11. Bennett, C.H., Brassard, G., Robert, J.M.: Privacy amplification by public
discussion. SIAM J. Comput. 17(2), 210–229 (1988)

12. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V., Keer, R.V.: Caesar
submission: Keyak v2, September 2016, http://keyak.noekeon.org/. cAESAR
Candidate Specification

13. Bos, J., Costello, C., Ducas, L., Mironov, I., Naehrig, M., Nikolaenko, V.,
Raghunathan, A., Stebila, D.: Frodo: take off the ring! practical, quantum-secure
key exchange from LWE. In: ACM CCS 2016, pp. 1006–1018. ACM, October 2016,
https://eprint.iacr.org/2016/659. Full version, IACR ePrint 2016/659

14. Bos, J.W., Costello, C., Naehrig, M., Stebila, D.: Post-quantum key exchange for
the TLS protocol from the ring learning with errors problem. In: IEEE S & P
2015, pp. 553–570. IEEE Computer Society (2015), https://eprint.iacr.org/2014/
599. Extended version, IACR ePrint 2014/599

15. Brassard, G., Salvail, L.: Secret-key reconciliation by public discussion. In:
Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 410–423. Springer,
Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7 35

16. Chen, L., Jordan, S., Liu, Y.K., Moody, D., Peralta, R., Perlner, R., Smith-Tone,
D.: Report on post-quantum cryptography. NISTIR 8105, April 2016

17. Costello, C., Longa, P., Naehrig, M.: Efficient algorithms for supersingular isogeny
Diffie-Hellman. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol.
9814, pp. 572–601. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53018-4 21

18. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput. 33(1),
167–226 (2003), http://www.shoup.net/papers/cca2.pdf

19. Czajkowski, J., Bruinderink, L.G., Hülsing, A., Schaffner, C.: Quantum preimage,
2nd-preimage, and collision resistance of SHA3. IACR ePrint 2017/302 (2017),
https://eprint.iacr.org/2017/302

20. Ding, J.: Improvements on cryptographic systems using pairing with errors,
June 2015, https://patents.google.com/patent/WO2015184991A1/en. Application
PCT/CN2015/080697

21. Ding, J., Xie, X., Lin, X.: A simple provably secure key exchange scheme based
on the learning with errors problem. IACR ePrint 2012/688 (2012), https://eprint.
iacr.org/2012/688

22. Dworkin, M.: Recommendation for block cipher modes of operation: Galois/
Counter Mode (GCM) and GMAC. NIST Special Publication 800–38D, November
2007

https://doi.org/10.1007/978-3-642-03356-8_35
https://doi.org/10.1007/BFb0055718
https://doi.org/10.1007/BFb0055718
http://researcher.watson.ibm.com/researcher/files/us-bennetc/BB84highest.pdf
http://researcher.watson.ibm.com/researcher/files/us-bennetc/BB84highest.pdf
http://keyak.noekeon.org/
https://eprint.iacr.org/2016/659
https://eprint.iacr.org/2014/599
https://eprint.iacr.org/2014/599
https://doi.org/10.1007/3-540-48285-7_35
https://doi.org/10.1007/978-3-662-53018-4_21
https://doi.org/10.1007/978-3-662-53018-4_21
http://www.shoup.net/papers/cca2.pdf
https://eprint.iacr.org/2017/302
https://patents.google.com/patent/WO2015184991A1/en
https://eprint.iacr.org/2012/688
https://eprint.iacr.org/2012/688

HILA5: On Reliability, Reconciliation, and Error Correction 211

23. FIPS: Specification for the Advanced Encryption Standard (AES). Federal Infor-
mation Processing Standards Publication 197 (November 2001), http://csrc.nist.
gov/publications/fips/fips197/fips-197.pdf

24. FIPS: SHA-3 standard: permutation-based hash and extendable-output functions.
Federal Information Processing Standards Publication 202, August 2015

25. Gueron, S., Schlieker, F.: Speeding up R-LWE post-quantum key exchange. IACR
ePrint 2016/467 (2016), https://eprint.iacr.org/2016/467

26. Kuo, P.C., Li, W.D., Chen, Y.W., Hsu, Y.C., Peng, B.Y., Cheng, C.M., Yang, B.Y.:
Post-quantum key exchange on FPGAs. IACR ePrint 2017/690 (2017), https://
eprint.iacr.org/2017/690

27. Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryp-
tion. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-19074-2 21

28. Longa, P., Naehrig, M.: Speeding up the number theoretic transform for faster
ideal lattice-based cryptography. In: Foresti, S., Persiano, G. (eds.) CANS 2016.
LNCS, vol. 10052, pp. 124–139. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-48965-0 8

29. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 1

30. Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE cryptography.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
35–54. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 3

31. MacWilliams, F.J., Sloane, N.J.: The Theory of Error-correcting Codes. North-
Holland, Amsterdam (1977)

32. NIST: Submission requirements and evaluation criteria for the post-quantum cryp-
tography standardization process. Official Call for Proposals, National Institute for
Standards and Technology, December 2016, http://csrc.nist.gov/groups/ST/post-
quantum-crypto/documents/call-for-proposals-final-dec-2016.pdf

33. NSA/CSS: Information assurance directorate: Commercial national security
algorithm suite and quantum computing FAQ, January 2016, https://www.iad.
gov/iad/library/ia-guidance/ia-solutions-for-classified/algorithm-guidance/cnsa-
suite-and-quantum-computing-faq.cfm

34. Nussbaumer, H.J.: Fast polynomial transform algorithms for digital convolution.
IEEE Trans. Acoust. Speech Signal Process. 28, 205–215 (1980)

35. Peikert, C.: Some recent progress in lattice-based cryptography. In: Reingold, O.
(ed.) TCC 2009. LNCS, vol. 5444, pp. 72–72. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-00457-5 5

36. Peikert, C.: Lattice cryptography for the internet. In: Mosca, M. (ed.) PQCrypto
2014. LNCS, vol. 8772, pp. 197–219. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-11659-4 12

37. Proos, J., Zalka, C.: Shor’s discrete logarithm quantum algorithm for elliptic curves.
Quantum Inf. Comput. 3(4), 317–344 (2003), https://arxiv.org/abs/quant-ph/
9508027. Updated version available on arXiv

38. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: STOC 2005, pp. 84–93. ACM, May 2005

39. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM 56(6), 34:1–34:40 (2009)

40. Saarinen, M.J.O.: Arithmetic coding and blinding countermeasures for lattice sig-
natures. J. Cryptographic Eng. (to appear, 2017), http://rdcu.be/oHun

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
https://eprint.iacr.org/2016/467
https://eprint.iacr.org/2017/690
https://eprint.iacr.org/2017/690
https://doi.org/10.1007/978-3-642-19074-2_21
https://doi.org/10.1007/978-3-319-48965-0_8
https://doi.org/10.1007/978-3-319-48965-0_8
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-38348-9_3
http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/call-for-proposals-final-dec-2016.pdf
http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/call-for-proposals-final-dec-2016.pdf
https://www.iad.gov/iad/library/ia-guidance/ia-solutions-for-classified/algorithm-guidance/cnsa-suite-and-quantum-computing-faq.cfm
https://www.iad.gov/iad/library/ia-guidance/ia-solutions-for-classified/algorithm-guidance/cnsa-suite-and-quantum-computing-faq.cfm
https://www.iad.gov/iad/library/ia-guidance/ia-solutions-for-classified/algorithm-guidance/cnsa-suite-and-quantum-computing-faq.cfm
https://doi.org/10.1007/978-3-642-00457-5_5
https://doi.org/10.1007/978-3-642-00457-5_5
https://doi.org/10.1007/978-3-319-11659-4_12
https://doi.org/10.1007/978-3-319-11659-4_12
https://arxiv.org/abs/quant-ph/9508027
https://arxiv.org/abs/quant-ph/9508027
http://rdcu.be/oHun

212 M.-J. O. Saarinen

41. Saarinen, M.J.O.: Ring-LWE ciphertext compression and error correction: tools for
lightweight post-quantum cryptography. In: Proceedings of the 3rd ACM Interna-
tional Workshop on IoT Privacy, Trust, and Security, IoTPTS 2017, pp. 15–22.
ACM, April 2017

42. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: Proceedings of FOCS 1994, pp. 124–134. IEEE (1994), https://arxiv.org/
abs/quant-ph/9508027. Updated version available on arXiv

43. Stebila, D., Mosca, M.: Post-quantum key exchange for the internet and the open
quantum safe project. In: Avanzi, R., Heys, H. (eds.) SAC 2016. LNCS, vol. 10532,
pp. 14–37. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69453-5 2

44. Streit, S., Santis, F.D.: Post-quantum key exchange on ARMv8-A - a new hope for
NEON made simple. IACR ePrint 2017/388 (2017), https://eprint.iacr.org/2017/
388

45. Unruh, D.: Collapsing sponges: post-quantum security of the sponge construction.
IACR ePrint 2017/282 (2017), https://eprint.iacr.org/2017/282

https://arxiv.org/abs/quant-ph/9508027
https://arxiv.org/abs/quant-ph/9508027
https://doi.org/10.1007/978-3-319-69453-5_2
https://eprint.iacr.org/2017/388
https://eprint.iacr.org/2017/388
https://eprint.iacr.org/2017/282

Public Key Encryption

A Public-Key Encryption Scheme Based
on Non-linear Indeterminate Equations

Koichiro Akiyama1(B), Yasuhiro Goto2, Shinya Okumura3, Tsuyoshi Takagi4,
Koji Nuida5, and Goichiro Hanaoka5

1 Corporate Research and Development Center, Toshiba Corporation,
Kawasaki, Japan

koichiro.akiyama@toshiba.co.jp
2 Department of Mathematics, Hokkaido University of Education, Hakodate, Japan

goto.yasuhiro@h.hokkyodai.ac.jp
3 Department of Information and Communications Technology,

Osaka University, Suita, Japan
okumura@cy2sec.comm.eng.osaka-u.ac.jp

4 Institute of Mathematics for Industry, Kyushu University, Fukuoka, Japan
takagi@imi.kyushu-u.ac.jp

5 National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
{k.nuida,hanaoka-goichiro}@aist.go.jp

Abstract. In this paper, we propose a post-quantum public-key encryp-
tion scheme whose security depends on a problem arising from a multi-
variate non-linear indeterminate equation. The security of lattice cryp-
tosystems, which are considered to be the most promising candidate for
a post-quantum cryptosystem, is based on the shortest vector problem or
the closest vector problem in the discrete linear solution spaces of simul-
taneous equations. However, several improved attacks for the underlying
problems have recently been developed by using approximation meth-
ods, which result in requiring longer key sizes. As a scheme to avoid such
attacks, we propose a public-key encryption scheme based on the “small-
est” solution problem in the non-linear solution spaces of multivariate
indeterminate equations that was developed from the algebraic surface
cryptosystem. Since no efficient algorithm to find such a smallest solution
is currently known, we introduce a new computational assumption under
which proposed scheme is proven to be secure in the sense of IND-CPA.
Then, we perform computational experiments based on known attack
methods and evaluate that the key size of our scheme is able to be much
shorter than those of previous lattice cryptosystems.

Keywords: Public-key cryptosystem · Post-quantum cryptosystem
Indeterminate equation · Smallest solution problem

S. Okumura—Research conducted while at Institute of Mathematics for Industry,
Kyushu University.

c© Springer International Publishing AG 2018
C. Adams and J. Camenisch (Eds.): SAC 2017, LNCS 10719, pp. 215–234, 2018.
https://doi.org/10.1007/978-3-319-72565-9_11

216 K. Akiyama et al.

1 Introduction

In 1994, Shor proposed quantum algorithms that can solve the factorization
problem and the discrete logarithm problem in polynomial time [30]. This implies
that elliptic curve cryptosystems and the RSA cryptosystem will no longer
be secure once a quantum computer is built. Due to this, the importance of
“Post-quantum cryptosystems” (PQCs) that will still be secure after the devel-
opment of quantum computers has been recognized. With the recent active stud-
ies to develop quantum computers, NIST announced that the process of PQC
standardization will begin in the end of 2017 [25]. Possible candidates for a
PQC include lattice-based encryptions, code-based encryptions, and multivari-
ate encryptions.

First lattice-based encryption was proposed in 1997 by Ajtai and Dwork [1].
Its security depends on the unique shortest vector problem in lattices. Goldreich
et al. proposed the GGH cryptosystem, whose security is based on the closest vec-
tor problem for an integer lattice [14]. However, According to Nguyen and Stern,
these schemes are not practical since they require large size parameters for secu-
rity reasons [23,24]. Hoffstein et al. proposed the NTRU cryptosystem, whose
security depends on the shortest vector problem for polynomial ring lattices [15].
In 2009, Regev proposed an LWE cryptosystem, whose security depends on the
“learning with error” (LWE) problem [28]. Currently, NTRU, LWE, and their
variants are relatively efficient among lattice-based encryption schemes.

However, there are several efficient approximation algorithms for finding the
(nearly) shortest/closest vectors, such as the LLL [19], BKZ [29], and BKZ2.0
[8] algorithms. Recently, several improved attacks for these underlying problems
using these methods, such as lattice decoding attacks [6] and subfield lattice
attacks [18] have been developed. In order to avoid these attacks, the public-key
sizes of lattice-based cryptosystems must be enlarged. Encryption schemes with
large key sizes require a large amount of memory in applications.

Code-based encryption was first proposed in 1978 by McEliece [22]. Its secu-
rity depends on the decoding problem for random linear codes, for which only
exponential algorithms are known. However, it requires a large public-key size, of
more than 1M bits. The multivariate public-key cryptosystem (MPKC) was first
introduced in 1989 by Matsumoto and Imai [16] and was improved by Patarin
[26]. Its security depends on the problem of solving non-linear equations (called
multivariate equations) over finite fields. While the problem is NP-hard in gen-
eral, almost all proposed schemes have been broken due to the special structure
of the equations that are used as public keys. Several schemes with resistance
against known attacks on MPKC have been proposed, but they still have large
public keys [27,32,33].

These candidates require large public-key sizes of more than 24 K bits (under
128-bit security) to avoid improved attacks that take advantage of the special
structure of the schemes. Even though many PQC candidates have been pro-
posed, none of them are efficient enough for practical use. This might be due
to their large public-key sizes and the large amount of memory that is therefore
required in applications. In an effort to find a more practical PQC, Akiyama et al.

A Public-Key Encryption Scheme 217

proposed the algebraic surface cryptosystem (ASC) [3], whose security depends
on the section-finding problem (the problem of solving some kind of indetermi-
nate equation). Although they claimed that their proposed scheme necessitates
much shorter public keys than the other candidates for PQC, the scheme was
broken by Faugére et al. [11]. In this paper, we intend to improve ASC by
modifying the underlying problem to make the scheme secure while keeping the
public-key size small relative to that of other PQC candidates.

Our Contribution. This paper proposes a post-quantum public-key encryption
scheme whose security is based on the smallest solution problem for non-linear
solution spaces of indeterminate equations, to which attack algorithms based
on approximation (e.g., LLL and BKZ) cannot be applied. Our scheme was
developed from ASC, which is designed such that its security depends on the
intractability of solving some non-linear indeterminate equation [3]. ASC was
broken by the ideal decomposition attack proposed in PKC 2010 [11]. We revise
the scheme to be secure against this attack by adding a noise term to the cipher
polynomial. Our scheme is provably secure in regards to IND-CPA under the
intermediate equation of LWE (IE-LWE) assumption, which is a new computa-
tional assumption coming from analogy to the LWE assumption. An IND-CCA2
secure scheme is obtained by using a well-known conversion technique [10].

The linear algebraic attack, one of the known attacks for ASC, can be applied
to the IE-LWE problem. Through this attack, the IE-LWE problem can be reduced
to a lattice problem, but the rank of the lattice is larger than that of present lattice-
based cryptosystems due to the properties of multivariate polynomials. This sug-
gests that the keys (both public and secret) can be expected to be much shorter
than those of lattice-based cryptosystems. Our scheme is, in this sense, a light PQC
constructed by combining the beneficial properties of multivariate cryptography
and lattice-based cryptography. According to our computational experiment on
attacks, our scheme requires a public key that is 3/4 the length of the public keys
in LWE and 1/3 the length of the public keys in NTRU. Moreover, our scheme
supports multi-bit homomorphism as well as NTRU.

This paper is organized as follows. Section 2 gives our notation and a short
overview of algebraic surface encryptions, which our scheme was developed from.
In Sect. 3, we define the smallest solution problem and propose our new encryp-
tion scheme. Section 4 defines the computational assumption that makes our
scheme provably secure and discusses the complexity of this assumption against
some considered attacks. In Sect. 5, we give a set of appropriate parameters that
make our scheme secure. We summarize the results and discuss directions for
future work in Sect. 6.

2 Preliminaries

2.1 Notation

We express a polynomial with two variables x, y as ξ(x, y) =
∑

(i,j)∈Γξ
τi,jx

iyj ,
where Γξ denotes the set of pairs (i, j) of the exponents of non-zero monomials

218 K. Akiyama et al.

xiyj in a polynomial ξ(x, y). We refer to Γξ as the term set of ξ(x, y). Note that
the cardinality #Γξ is equal to the number of monomials in ξ(x, y). Hereinafter,
we write ξ instead of ξ(x, y) when ξ is clearly a polynomial in two variables x, y.

The set of polynomials with two variables having the term set Γ over a ring
R is denoted by FΓ /R. This is defined as

FΓ /R =

⎧
⎨

⎩
f ∈ R[x, y] | f =

∑

(i,j)∈Γ

aijx
iyj

⎫
⎬

⎭
.

For simplicity, we write FΓ instead of FΓ /R when it is clearly over R.
In this paper, we take representative sets of Zp and Zq as Z+

p = {0, 1, · · · , p−
1} and Z

+
q = {0, 1, · · · , q − 1}, respectively. we refer to Zq[t]/(tn − 1) as Rq and

denote the subset of Rq whose elements have restricted coefficients to the range
of Z+

p to Rp. Then, we can define the maximum coefficient of the polynomial ξ,
which is denoted by MC(ξ), as follows:

MC(ξ) = max

⎧
⎨

⎩
τi,j |ξ(x, y) =

∑

(i,j)∈Γξ

τi,jx
iyj

⎫
⎬

⎭
, (1)

where τi,j is regarded as an integer instead of a representative element in Zp

or Zq to measure the size of the coefficients. Some properties of the maximum
coefficient are described in Appendix B.

These concepts can be defined in the same manner for polynomials with one
or three variables.

2.2 Algebraic Surface Cryptosystem

ASC was first introduced in 2006 by Akiyama and Goto [2]. The security of ASC
depends on the section-finding problem, defined as follows.

Definition 1 (Section-finding Problem). If X(x, y, t) = 0 is an algebraic
surface over field K, then the problem of finding a parameterized curve (x, y, t) =
(ux(t), uy(t), t) on X is called the section-finding problem on X.

A section can be considered as a solution of X(x, y) = 0, which is an indeter-
minate equation over the ring K[t]. In this paper, we write an algebraic surface
X(x, y) = 0 over Fp[t] instead of X(x, y, t) = 0 over Fp.

The problem of solving indeterminate equations over some rings or fields is
known to be difficult. For example, the case of indeterminate equations over the
integer ring Z, a class of problems called Diophantine equations, is undecidable
(Hilbert’s 10th problem). “Undecidable” in this context means that there is
no general algorithm to solve such indeterminate equations. The section-finding
problem has also been proven to be undecidable [9].

To show the concept for the scheme we propose in this paper, we give an
explanation of algebraic surface encryption. First, the simplest ASC can be
described as

c(x, y) = m(x, y) + X(x, y)r(x, y) , (2)

A Public-Key Encryption Scheme 219

where X(x, y) is the public key, which defines an algebraic surface with a section.
The polynomials c(x, y) and r(x, y) are a ciphertext polynomial and a random
polynomial, respectively. The polynomial m(x, y) is a plaintext polynomial in
which plaintext is embedded. In the decryption phase, we substitute the secret
key (a section of X(x, y)) into c(x, y). Using the relation X(ux(t), uy(t)) = 0,
we obtain c(ux(t), uy(t)) = m(ux(t), uy(t)). The plaintext can be recovered from
the polynomial m(ux(t), uy(t)) as follows. First, we write m(x, y) as m(x, y) =∑

(i,j,k)∈Γm
mijkxiyjtk, where mijk are unknowns, and substitute the section

into m(x, y). Then, we obtain m(ux(t), uy(t)) =
∑

(i,j,k)∈Γm
mijkux(t)iuy(t)jtk.

The simultaneous linear equations in mijk are constructed by comparing the
coefficients of t. When the number of variables is less than or equal to the rank
of the coefficient matrix, we can recover the correct plaintext by solving the
equations.

However, an attack that can break the scheme exists. We can expand the
cipher polynomial c(x, y) as

c(x, y) =
∑

(i,j,k)∈Γm

mijkxiyjtk +

⎛

⎝
∑

(i,j,k)∈ΓX

aijkxiyjtk

⎞

⎠

⎛

⎝
∑

(i,j,k)∈Γr

rijkxiyjtk

⎞

⎠ , (3)

where Γm, ΓX , and Γr are given as parameters and aijk are given coefficients of
the public key X; and mijk and rijk are variables. By comparing the coefficients
of the monomials, we obtain the simultaneous linear equations with the variables
mijk and rijk. The relation #Γm + #Γr < #ΓXr is required for the decoding.
However, in this case, the equations have unique solutions with high probability.
We refer to the attacks of this type as linear algebraic attacks.

For avoiding this attack, Akiyama, Goto, and Miyake constructed the latest
ASC scheme in 2009 [3]. From the cryptographic point of view, the ciphertext
is equivalent to

c(x, y) = m(x, y)s(x, y) + X(x, y)r(x, y). (4)

Here, s(x, y) is employed as another random polynomial, and the term set
m(x, y)s(x, y) is equal to that of X(x, y)r(x, y) (Γms = ΓXr). In order to
decrypt the ciphertext, we have to decompose m(ux(t), uy(t))s(ux(t), uy(t)) into
m(ux(t), uy(t)) and s(ux(t), uy(t)). Since polynomial factorization (over Fp) is
easy to compute by using the Berlekamp method, we can obtain m(ux(t), uy(t))
as a factor, and recover the plaintext from m(ux(t), uy(t)) in the same way as
the previous scheme.

When applying the linear algebra attack to this scheme, m(x, y)s(x, y) must
be considered as a single polynomial g(x, y) because the quadratic equations
are derived from the variables mijk and sijk. (It is difficult to solve systems of
quadratic equations in general.) Therefore, if the number of variables #Γr +
#ΓXr is greater than the number of equations #ΓXr, then the linear algebra
attack does not work.

Unfortunately, this scheme was also broken by the ideal decomposition
attack, which was introduced by Faugere et al. [11]. They found that the ideal

220 K. Akiyama et al.

(c,X) can be decomposed into (m,X) and (s,X) by calculating the resultant
Resx(c,X) or Resy(c,X). Ultimately, they were able to recover the plaintext m
by using this method to solve the linear equations.

3 Our Proposed Encryption Scheme

In this section, we propose a new ASC scheme that is resistant to the ideal
decomposition attack. We accomplish this by changing the underlying ring of
ASC to Zq[t]/(tn − 1) and adding a p divisible polynomial p · e(x, y) to the
simplest ASC cipher polynomial (2) as noise. Our cipher polynomial is

c(x, y) = m(t) + X(x, y)r(x, y) + p · e(x, y),

where e(x, y) is a random polynomial with small coefficients, and p and m are
a small prime and an element of Zq[t]/(tn − 1), respectively. The polynomial
e(x, y) works as a noise factor in the cipher, and the condition #Γe = #ΓXr is
required for resistance against the linear algebra attack. Also, a small solution
of X(x, y) is necessary in order to decrypt.

3.1 Algorithms

Parameters. In this section, we introduce our scheme’s parameters. Appropri-
ate parameters are discussed in Sect. 5. The parameters are as follows.

1. p, q: The cardinality of Zp,Zq, where p, q are primes and p � q
2. n: The degree of the modulus polynomial of Rq(= Zq[t]/(tn − 1))
3. ΓX : The term set of the indeterminate equation X(x, y)(= 0)
4. Γr: The term set of the random polynomial r(x, y)

The total degrees of X and r are denoted by wX and wr, respectively. The
relation between p and q is important to the decryption. The following condition
must be fulfilled:

q > #ΓXr · p(p − 1) · (n(p − 1))wX+wr , (5)

which reason is explained in Appendix B. It is evident that q is much greater
than p.

Keys. The secret-key is a small (smallest is not necessary) solution of the inde-
terminate equation X(x, y) = 0, which is denoted by u:

u : (x, y) = (ux(t), uy(t)), ux(t), uy(t) ∈ Rp, (6)

where deg ux(t) = deg uy(t) = n− 1. Note that p is much smaller than q. There-
fore, we call u a small solution. The public key is the indeterminate equation
X(x, y) = 0 that has the smallest solution u:

X(x, y) =
∑

(i,j)∈ΓX

aijx
iyj , (7)

where aij ∈ Rq.

A Public-Key Encryption Scheme 221

Key Generation. The key-generation algorithm, which accepts parameters
p, q, n, ΓX , andΓr as input, can be described as follows. The secret key is gen-
erated as the random polynomials ux(t), uy(t)(∈ Rp), whose degrees are n − 1.
The indeterminate equation X(x, y) = 0 is constructed according to the follow-
ing procedure.
1. Choose a coefficient for each non-constant monomial as follows.

(a) Set X = 0.
(b) For each (i, j) in ΓX :

i. Choose a coefficient aij(t), with degree n − 1 uniformly at random
from the set Rq.

ii. Set X = X + aij(t)xiyj .
2. Calculate the constant term a00(t) as

a00(t) = −∑
(i,j)∈ΓX−(0,0) aij(t)ux(t)iuy(t)j (∈ Rq).

Encryption

1. Embed a plaintext M into the coefficients of the plaintext polynomial m(t)(∈
Rp), whose degree is n − 1.

2. Choose a random polynomial r(x, y) in FΓr
/Rq as follows.

(a) Set r = 0.
(b) For each (i, j) in Γr:

i. Choose a coefficient rij(t), with degree n − 1 uniformly at random
from the set Rq.

ii. Set r = r + rij(t)xiyj .
3. Choose a noise polynomial e(x, y) for FΓXr

/Rp as follows.

(a) Set e = 0
(b) For each (i, j) in ΓXr:

i. Choose a coefficient eij(t), with degree n − 1 uniformly at random
from the set Rp.

ii. Set e = e + eij(t)xiyj .
4. Construct the cipher polynomial c(x, y) as

c(x, y) = m(t) + X(x, y)r(x, y) + p · e(x, y). (8)

Decryption

1. Substitute the smallest solution u into c(x, y) as a solution of X over Fq[t]:

c(u) = m(t) + p · e(u), (9)
where c(u) denotes c(ux(t), uy(t)). When the parameters p and q satisfy the
relation described above (5), each coefficient of m(t) + p · e(u) ∈ Z/(tn − 1) is
within the range of Z+

q . The proof for this is given in Appendix B
2. Extract m(t) from c(u) as c(u) (mod p) = m(t), where we consider c(u) as an

element of Z[t].
3. Recover the plaintext M from the coefficients of m(t).

From now on, we will refer to the public-key encryption scheme as the inde-
terminate equation cryptosystem (IEC) encryption scheme.

222 K. Akiyama et al.

3.2 The Smallest-Solution Problem

Let us express the solution u = (ux(t), uy(t)) (∈ (Zq[t]/(tn − 1))2) of an indeter-
minate equation as

ux(t) =
n−1∑

i=0

αit
i, uy(t) =

n−1∑

i=0

βit
i.

Then, the norm of the solution is defined as follows.

Norm(u) = max{αi, βi ∈ Z
+
q | 0 ≤ i ≤ n − 1}

The security of our system depends on the smallest-solution problem, defined as
follows.

Definition 2 (Smallest-solution Problem). If X(x, y) = 0 is an indeter-
minate equation over the ring Zq[t]/(tn − 1), then the problem of finding the
solution (x, y) = (ux(t), uy(t)) on Zq[t]/(tn − 1) with the smallest norm is called
the smallest-solution problem on X.

We are not able to apply the approximate lattice reduction algorithms directly
to solving the problem because the solution space is non-linear.

4 Security

In this section, we introduce a computational assumption and discuss some pos-
sible attacks for the assumption, based on the attacks for ASCs.

4.1 Security Assumption

The polynomials over Zq whose coefficients are in the range of 0 to p − 1 are
called size-p polynomials. If a polynomial is size p, this means that its coefficients
are much smaller than those of an ordinary polynomial, since p is much smaller
than q. We define the set of polynomials that have zero points in size p as follows:

X(ΓX , p)/Rq = {X ∈ FΓX
/Rq | ∃ux(t), uy(t) ∈ Rp X(ux(t), uy(t)) = 0}.

When the sets of polynomials, such as X(ΓX , p)/Rq, FΓr
/Rq, and FΓXr

/Rp, that
satisfy the condition

(0, 0) ∈ ΓX , (0, 0) ∈ Γr

are given, we define the decisional problem as follows.

Definition 3 (IE-LWE problem). When we write the set UX , TX as

UX = X(ΓX , p)/Rq × FΓXr
/Rq, (10)

TX = {(X,Xr + e)|X ∈ X(ΓX , p)/Rq, r ∈ FΓr
/Rq, e ∈ FΓXr

/Rp}, (11)

respectively, the IE-LWE problem is to distinguish the multivariate polynomials
chosen from a ’noisy’ set TX of polynomials or from a set of UX − TX , where
TX is a subset of UX .

A Public-Key Encryption Scheme 223

We define the IE-LWE assumption.

Definition 4 (IE-LWE assumption). The IE-LWE assumption is the
assumption that the advantage

AdvIE-LWE
B (k) :=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Pr

⎡

⎢
⎣B(p, q, n, Γr, ΓX ,X, Y) → 1

∣
∣
∣
∣
∣
∣
∣

(p, q, n, ΓX , Γr,X) R← GenG(1k);
r

U← FΓr
/Rq; e

U← FΓXr
/Rp;

Y := Xr + e

⎤

⎥
⎦

−Pr

⎡

⎢
⎣B(p, q, n, Γr, ΓX ,X, Y) → 1

∣
∣
∣
∣
∣
∣
∣

(p, q, n, ΓX , Γr,X) R← GenG(1k);

Y
U← FΓXr

/Rq

⎤

⎥
⎦

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(12)

is negligible. In other words,

AdvIE-LWE
B (k) < ε(k),

where ε(k) is a negligible function in the security parameter k.

IE-LWE is an extended variation of R-LWE×
HNF, which is one of the variants

of R-LWE defined by the polynomial ring Rq. This is claimed by a provably
secure NTRU modification [31] and can be reduced to the shortest vector prob-
lem of the lattice derived from Rq. In this paper, we extend R-LWE×

HNF to the
multivariate polynomial ring Rq[x, y] so that the dimension of the lattice is larger
than that of the lattice derived from Rq.

Theorem 1. Under the IE-LWE assumption, the IEC encryption scheme Σ =
(Gen,Enc,Dec) is secure in the sense of IND-CPA. Specifically, if there is an
adversary that runs in polynomial time and breaks the IEC encryption scheme
Σ in the sense of IND-CPA, then there exists an algorithm B that solves the IE-
LWE problem in probabilistic polynomial time. Moreover, the following relation
holds:

AdvIND-CPA
Σ,A (k) = 2 · AdvIE-LWE

B (k).

Proof. Due to space constraints, we omit the proof. We carried out the proof by
using the same technique as in the proof of Lemma 13 in [31].

In addition, one can make the IEC encryption scheme IND-CCA2 secure
by using well-known conversions such as those in [10]. However, the converted
scheme is no longer a homomorphic one.

4.2 Possible for Attacks

In this subsection, we introduce two possible attacks for the IE-LWE assumption.
Other attacks against ASC, which this scheme was developed from, cannot be
applied to this problem. For example, the ideal decomposition attack described
in Sect. 2.2 does not work on our scheme because our scheme does not have a
multiple structure such as m(x, y)s(x, y) in (4).

224 K. Akiyama et al.

The Linear Algebra Attack. Given a pair of polynomials (X,Y), we can
determine that (X,Y) is sampled from TX if we find r ∈ FΓr

/Rq and e ∈
FΓXr

/Rp such that Y = Xr + e. The problem of finding such polynomials r
and e can be solved by using the linear algebra attack introduced in Sect. 2.2 as
follows. We construct a system of linear equations by comparing the coefficients
of xiyj in the relation

∑

(i,j)∈ΓXr

dijx
iyj =

⎛

⎝
∑

(i,j)∈ΓX

aijx
iyj

⎞

⎠

⎛

⎝
∑

(i,j)∈Γr

rijx
iyj

⎞

⎠ +

⎛

⎝
∑

(i,j)∈ΓXr

eijx
iyj

⎞

⎠ ,

(13)
where rij and eij are Rq-valued and Rp-valued variables, respectively.

In the case of deg X = deg r = 1, we can set X, r, e, and Y in the following
manner.

X(x, y) = a10x + a01y + a00

r(x, y) = r10x + r01y + r00

e(x, y) = e20x
2 + e11xy + e02y

2 + e10x + e01y + e00

Y (x, y) = d20x
2 + d11xy + d02y

2 + d10x + d01y + d00

From the equation

X(x, y)r(x, y) = a10r10x
2+(a10r01+a01r10)xy+a01r01y

2+(a10r00+a00r10)x
+ (a01r00 + a00r01)y + a00r00 ,

we obtain a system of linear equations as follows:

a10r10 + e20 = d20

a10r01 + a01r10 + e11 = d11

a01r01 + e02 = d02

a10r00 + a00r10 + e10 = d10

a01r00 + a00r01 + e01 = d01

a00r00 + e00 = d00 .

(14)

The system has a solution space with dimension at least three since the number
of variables is more than the number of equations by three. In general, a linear
system obtained with this attack has a solution space with a dimension at least
#Γr since the system has #ΓXr + #Γr variables and #ΓXr equations.

When we can find a solution such that eij are valued in Rp, we conclude
that (X,Y) is in TX . We may find it exactly with a brute force attack on the
polynomial e, but this attack can be avoided by increasing #ΓXr to

((p − 1)pn−1)#ΓXr > 2k ,

where k is a security parameter.
We employ a lattice-reduction attack to find such a small eij . Let us represent

a ∈ Rq as a vector (a0, a1, · · · , an−2, an−1) for

a = a0 + a1t + · · · + an−2t
n−2 + an−1t

n−1 .

A Public-Key Encryption Scheme 225

When the elements b, c ∈ Rq are represented in the same manner as a, we can
express ab + c as

⎛

⎜
⎜
⎜
⎜
⎜
⎝

an−1 an−2 · · · a1 a0

an−2 an−3 · · · a0 an−1

an−3 an−4 · · · an−1 an−2

...
...

...
...

...
a0 an−1 · · · a2 a1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎝

b0

b1

...
bn−2

bn−1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎜
⎜
⎝

cn−1

cn−2

...
c1

c0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

The first equation of (14) is described as

A10r10 + e20 = d20

when a10 is expressed as

A10 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

an−1 an−2 · · · a1 a0

an−2 an−3 · · · a0 an−1

an−3 an−4 · · · an−1 an−2

...
...

...
...

...
a0 an−1 · · · a2 a1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

and r10,e20,d20 are denoted by

r10 =
(
r0 r1 · · · rn−2 rn−1

)T
,

e20 =
(
en−1 en−2 · · · e1 e0

)T
,

d20 =
(
dn−1 dn−2 · · · d1 d0

)T
,

respectively. By adding the integer vector u20 = (un−1, · · · , u0)T , we obtain the
equation over the integers, as follows.

A10r10 + qu20 + e20 = d20

Now, we can consider an integer lattice L =
(
A10 qIn

)
, where In denotes the

n×n unit matrix. If we can find a point v closest to the d20 in the lattice L, then
we can detect ±e20 from v − d20 with high possibility. In the same way, ±e11
can be detected from a point w closest to the d11 in the lattice

(
A10 A01 qIn

)
.

However, we cannot distinguish whether the sample (X,Y) is sampled from TX

if the aij ’s are invertible in Rq. For the equation a10r10 + e20 = d20, we can
calculate r10 ∈ Rq from any short vector e20 as r10 = a−1

10 (d20 − e20). This
implies that any sample (X,Y) ∈ UX satisfies the relation. This is true for any
equation in (14).

Therefore, we need to simultaneously consider all equations in (14). Then, we
see that the linear algebraic attack can be reduced to the closest vector problem
(CVP) on the lattice

226 K. Akiyama et al.

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

A10 qIn

A01 A10 qIn

A01 qIn

A00 A10 qIn

A00 A01 qIn

A00 qIn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(15)

and the vector (d20 d11 d02 d10 d01 d00)T
. Here, blank entries are zero matrices.

Key-Recovery Attack. If a solution ũ := (ũx(t), ũy(t)) ∈ R2
q to X(x, y) = 0

(not necessarily the secret key) in which all coefficients are less than p is found,
then the IE-LWE problem can be solved with high probability, as follows. For
an IE-LWE instance (X,Y), if all coefficients of p · Y (ũ) are multiples of p, then
it can be concluded that (X,Y) is sampled from TX . In fact, sampling (X,Y)
from TX implies that

p · Y (ũ) = p(X(ũ)r(ũ) + e(ũ)) = p · e(ũ),

and MC(e(ũ)) < q implies that all coefficients of p · e(ũ) are multiples of p.
On the other hand, if (X,Y) is sampled from UX , then the probability that all
coefficients of p · Y (ũ) are multiples of p is about 1/pn. Therefore, if a small
solution, such as ũ, can be found, then the IE-LWE problem can be solved with
a probability higher than 1−1/pn by checking whether all coefficients of p ·Y (ũ)
are multiples of p. Since n, p ≥ 2, the probability 1 − 1/pn is at least 3/4, which
is non-negligible.

In the following, we consider the key-recovery attack on our encryption
scheme (i.e., finding the smallest solution to X(x, y) = 0 over Rq by using
lattice-reduction techniques). First, we consider the case of deg X = 1. In this
case, we need to find ux(t), uy(t) ∈ R2

p satisfying

a10ux(t) + a01uy(t) + a00 = 0. (16)

We write this equation with a matrix and vectors in the same manner as the
algebraic attack described above, as follows:

A
(
ux uy u

)T =
(−a00

)
, (17)

where u is the vector corresponding to u ∈ Z[t]/(tn−1) and satisfying a10ux(t)+
a01uy(t) + qu + a00 = 0 in Z[t]/(tn − 1) and A =

(
A10 A01 qIn

)
. We consider

the lattice LA = {x|Ax = 0} and let v be a solution to the system (17). Then,
any solution of (17) can be written as v +w (w ∈ LA). Observe that our target
solution (ux ,uy ,u) of (17) is expected to be relatively short among the solutions
of (17), because all of the coefficients of ux(t) and uy(t) are much smaller than q.
This observation leads us to an approach to the key-recovery attack, as follows.
First, we solve the system and find its solution space LA and a solution v.
Second, we solve CVP to find the vector w closest to v, and then v − w is the
smallest solution of (17) and is expected to be our target solution (ux ,uy ,u)T .

A Public-Key Encryption Scheme 227

In the case of deg X = 2, our approach to the key-recovery attack is similar to
the approach in the case of deg X = 1. Now, our goal is to find ux(t), uy(t) ∈ Rp

satisfying
A

(
u2
x uxuy u2

y ux uy u
)T

=
(−a00

)
, (18)

where A =
(
A20 A11 A02 A10 A01 qIn

)
. A = (A20 A11 A02 A10 A01 qIn) . Note

that each entry of the vector (u2
x ,uxuy ,u2

x)T is in Znp2 . We observe that the
key-recovery attack for deg X = 2 is much more difficult than that for deg X = 1
because the solution has the non-linear parts u2

x , uxuy , and u2
x , which are

hard to handle with lattice-reduction techniques. In fact, the key-recovery attack
for deg X = 2 did not succeed at all in our experiments, while the attack for
deg X = 1 succeeded for some n. Moreover, Babai’s nearest-plane algorithm
could not find closer vectors than the correct vector with n ≥ 20. (See Table 2
in Sect. 4.3 for these results.)

We also considered the latest lattice attacks, such as the lattice-decoding
attack and the subfield-lattice attack. As discussed in Appendix A, these are
not applicable to our scheme.

4.3 Computational Experiment

In this subsection, we show our experimental results for the two attacks above in
order to estimate the parameters that make the IE-LWE problem intractable. In
our experiments, we used Babai’s nearest-plane algorithm [5], which is a standard
algorithm for solving CVP approximately. A lattice basis-reduction algorithm,
such as the LLL algorithm [19] or BKZ [29] algorithm, is used in Babai’s nearest-
plane algorithm.

We use the root of Hermite factor (RHF) as an index to evaluate the
quality of Babai’s nearest plane algorithm. RHF is larger than or equal to 1 in
general, and the quality improves as RHF decreases.

The LLL algorithm is expected to achieve RHF = 1.0219. In the case of the
BKZ algorithm, RHF depends on the block sizes β. For example, β = 20 and
β = 28 suggest RHF = 1.0128 and RHF = 1.0109, respectively. (See [12] for
these values of RHF).

Our computing environment is as follows.

– CPU: AMD Opteron (TM) Processor 848
– Memory: 64 GB
– OS: Linux version 2.6.18-406.el5.centos.plus
– Software: Magma Ver2.21-5

Experimental Results for the Linear Algebra Attack. After choosing X,
r, and e uniformly at random as in the encryption process in Sect. 3.1, we set
(Y,Z) = (X,Xr+e) and conducted experiments to determine whether the target
e or a polynomial with small coefficients < p could be found. Our experiments
were conducted for the cases of deg X = deg r = 1 and deg X = deg r = 2,
and we set p = 3 and increased n in each case. We generated three IE-LWE

228 K. Akiyama et al.

instances for each parameter set and applied the linear algebra attack described
in Sect. 4.2 against each instance.

In Table 1, we show our experimental results for the linear algebra attack,
where “Time” is the average time that it took to conduct the linear algebra
attack and q is the smallest prime number satisfying (5).

Table 1. Experimental results for the linear algebra attack

n q Degree of X RHF Rank Results Time (s)

Target Babai

10 14401 1 0.9831 0.9831 60 Success 2.27

20 57601 1 0.9903 0.9903 120 Success 48.08

30 129607 1 0.9930 0.9930 180 Success 189.9

40 230431 1 0.9944 0.9944 240 Success 1023.97

50 360007 1 0.9954 1.016 300 Failure 4847.95

60 518411 1 0.9959 1.015 360 Failure 19233.13

10 14400011 2 0.9860 0.9860 150 Success 396.62

20 230400007 2 0.9913 0.9913 300 Success 11680.77

30 1166400007 2 0.9936 0.9936 450 Success 79429.53

40 3686400041 2 0.9948 0.9948 600 Success 223644.52

The experimental results show that the linear algebra attack for deg X = 1
failed for n ≥ 50 and the attack for deg X = 2 succeeded for n ≤ 40. In the case
of deg X = 2, it took too much time to complete the attack when n was more
than 40, since the rank of the lattice (15) increases in proportion to the square
of deg Xr (3n × 9n for deg X = 1, 6n × 21n for deg X = 2). The linear algebra
attack appears to fail for values of n large enough that RHF > 1.

Experimental Results for the Key-Recovery Attack. We conducted the
key-recovery attack described in Sect. 4.2 for the same instances as the linear
algebra attack. We consider the key-recovery attack as having succeeded even if
we find two polynomials with small coefficients < p that differ from the correct
secret key (ux(t), uy(t)).

The experimental results described in Table 2 show that the key-recovery
attack for deg X = 1 failed for n ≥ 50 and that the key recovery attack for
deg X = 2 did not succeed at all.

Moreover, in the case of deg X = 2, Babai’s nearest-plane algorithm could
not find closer vectors than the correct vector when n ≥ 20. This implies that
the algorithm is not able to find the correct vector when n ≥ 20.

A Public-Key Encryption Scheme 229

Table 2. Experimental results for the key-recovery attack

n q Degree of X RHF Rank Results Time (s)

Target Babai

10 14401 1 0.8541 0.8541 20 Success 0.08

20 57601 1 0.9143 0.9143 40 Success 1.62

30 129607 1 0.9374 0.9374 60 Success 9.37

40 230431 1 0.9508 0.9508 80 Success 35.84

50 360007 1 0.9589 0.9981 100 Failure 107.48

60 518411 1 0.9646 1.018 120 Failure 268.56

10 14400011 2 1.022 1.017 50 Failure 2.06

20 230400007 2 1.017 1.021 100 Failure 48.70

30 1166400007 2 1.014 1.021 150 Failure 391.84

40 3686400041 2 1.011 1.021 200 Failure 2182.66

5 Appropriate Parameter Values

In this section, we design appropriate parameter values using the experimental
results in Sects. 4.3. Both the linear algebra attack and the key-recovery attack
for deg X = 1 failed when n ≥ 50. However, a key-recovery attack could also
be done by using a brute force method, as follows. Choose ũx(t) randomly until
the correct uy(t) (or a polynomial with sufficiently small coefficients) is found
by solving the one-variable equation X(ũx(t), y) = 0 over Rq. In order to resist
the brute force attack, the parameter n must be set such that the number of
candidates for ux(t) is at least 2k, where k is the security parameter. Therefore,
we need to set n ≥ 80 when we keep 128 bit security. Note that n ≥ 80 is also
required in the case of deg X = 2 because the brute-force attack is independent
of the degree of X. In addition, n is preferred to be prime since our scheme
employs the same algebra as NTRU [13]. Using the above argument, we designed
appropriate parameter values for our encryption scheme, shown in Table 3.

Table 3. Appropriate parameter values for our scheme

p q (bit) n deg X deg r #ΓXr Secret Key (bit) Public Key (bit) Ciphertext (bit)

3 20 83 1 1 6 264 4980 9960

3 36 83 2 2 15 264 17928 44820

Using [7], we show a comparison of our encryption scheme with other
lattice-based encryption schemes known as efficient ring-homomorphic encryp-
tion schemes, in Table 4. Table 4 shows that the size of the ciphertext in our
scheme is larger than that in LWE, but the sizes of public and secret keys in our
scheme are the smallest among those in the schemes in Table 4.

230 K. Akiyama et al.

Table 4. Comparison of our scheme with NTRU and LWE

Scheme Secret Key Public Key Ciphertext

Theory Actual (Kb) Theory Actual (Kb) Theory Actual (Kb)

NTRU [31] n�log2 q� ≥ 70 n�log2 q� ≥ 70 n�log2 q� ≥ 70

LWE [20] n�log2 q� 12 2n�log2 q� 24 2n�log2 q� 24

Our scheme 2n�log2 p� 0.3 n#ΔX�log2 q� 18 n#Δe�log2 q� 45

From the point of view of solving indeterminate equations, the difference
between the key-recovery attacks for our encryption scheme and the NTRU
encryption scheme is the following. Our scheme for deg X = 2 is based on the
difficulty of finding a solution (a pair of univariate polynomials with small coeffi-
cients satisfying the non-linear indeterminate equation X(x, y) = 0. In contrast,
the NTRU is based on the difficulty of finding polynomials f and g with small
coefficients that satisfy the linear indeterminate equation hx ≡ g mod q. Based
on this difference, we conclude that the lattice basis-reduction in the NTRU is
easier than that in our scheme. Moreover, this leads to the difference in the sizes
of public and secret keys between our scheme and NTRU (and LWE).

6 Conclusion

In this study, we constructed a post-quantum encryption scheme whose security
is based on an IE-LWE problem and related to the smallest-solution problem
in non-linear spaces. This paper gave the algorithms for key generation, encryp-
tion/decryption, and the security proof in the sense of IND-CPA. Then, we dis-
cussed two attacks that can be applied to the IE-LWE problem and estimated the
key size of our scheme according to the results of the computational experiment
for these attacks. The sizes of the keys are estimated to be much smaller than
those of lattice-based cryptosystems such as LWE and NTRU since no efficient
approximation algorithms are known for non-linear spaces. Finally, we described
our computational experiment to solve the problem using Babai’s nearest-plane
algorithm with LLL. In the future, we plan to conduct experiments using the
lattice decoding attack and the subfield lattice attack to solve the problem.

Acknowledgments. The authors thank Keita Xagawa for suggesting us the attack
[4,13] may work against our scheme when we choose the parameter n to be composite.
The authors also thank anonymous referees for careful reading of our manuscript and
for giving helpful comments.

A Public-Key Encryption Scheme 231

A Further Discussion on Lattice Attacks

In this section, we discuss and analyze whether other lattice attacks, such as a
lattice-decoding attack [6] and a subfield-lattice attack [18], can be applied to
our scheme. The discussion and analysis of these attacks given here is rough. We
plan to conduct more careful discussion and analysis in future work. In addition,
analyzing the enumeration methods for CVP (e.g., [21]) is another important
area for future study.

A.1 Lattice-Decoding Attack

The lattice decoding attack consists of three techniques: Kanan’s embedding
technique for reducing CVP to SVP [17], the BKZ algorithm for solving SVP,
and the re-scaling of lattices. More precisely, the attack first reduces the search
binary-LWE problem to the inhomogeneous short integer solution (ISIS) prob-
lem and then tries to solve the ISIS problem by reducing it to CVP. Kanan’s
embedding technique and the BKZ algorithm are used to solve the CVP. The
re-scaling technique is required because some elements in the target vector are
unbalanced in size. This approach seems to be applicable to the original search-
LWE [28] as well as our scheme, but the shortness of the secret vector s is
used in the analysis of the lattice decoding attack. However, for our scheme, the
vector r, which corresponds to s in the binary-LWE problem, is not short in
general since the scheme requires that the vector r be chosen uniformly at ran-
dom from Zq. Therefore, the lattice-decoding attack on the binary-LWE problem
does not appear to be applicable to our scheme.

However, the embedding technique is applicable to the key-recovery and lin-
ear algebra attacks described in previous subsections. In fact, when we applied
the technique to them, we obtained almost the same results as for our scheme.

A.2 Subfield-Lattice Attack

Here, we discuss the subfield-lattice attack on our scheme. This attack can be
applied to homomorphic variants of NTRU. The attack reduces the lattice prob-
lem on certain number fields to the problem on their appropriate subfields by
using norm maps from the original number fields to the subfields.

NTRU variants (i.e., the NTRU on Zq[x]/(x2k

+ 1) and Zq[x]/(xp − x − 1)
with prime numbers p and positive integers q) have been addressed in previous
experiments by Kirchner et al. [18, Sect. 5]. There is no subfield of the number
field Q[x]/(xp − x − 1), but the attack on Zq[x]/(xp − x − 1) succeeds for many
parameters. We infer that the size of the parameter q is strongly related to
the success of the attack. As the size of q increases, the volume of the lattice
becomes larger, and the SVP on the lattice becomes easier. In fact, the subfield
attacks on NTRU with relatively small q fail in some cases (see [18, Figs. 1 and
2]). Moreover, the form h = f/g of the public key for NTRU seems to have a
positive effect on the attack, where f and g are secret polynomials with small
coefficients and f is invertible in Zq[x] = (x2k

+ 1) or Zq[x] = (xp − x − 1).

232 K. Akiyama et al.

However, when comparing Table 3 in this paper with [18, Figs. 1 and 2], it is
evident that the size of q in our scheme is much smaller than that of the NTRU
variants. Moreover, there is a gap between the forms of the keys (public/secret-
keys) in our scheme and those in the above NTRU variants. The data shows that
the lattices derived from the two attacks on our scheme are very different from
those derived from the subfield attacks on the above NTRU variants. Therefore,
the subfield attack does not appear to be applicable to our scheme. In future
work, we plan to consider a variant of the subfield attack on our scheme.

B Maximum Coefficient of Noise Term e

For our scheme, the condition MC(p·e(u)) < q is required in order to decrypt. In
this section, we describe several properties of MC(f(t)) and use them to prove
the condition (5).

For any a in Z
+
q and any f(t), g(t) in Rq, the relation

MC(af(t)) ≤ a · MC(f(t))
MC(f(t) + g(t)) ≤ MC(f(t)) + MC(g(t))
MC(f(t)g(t)) ≤ n · MC(f(t))MC(g(t)),

(19)

are satisfied, where the equality is satisfied when all the coefficients of f(t) and
g(t) are the same.

Considering the worst case gives us ux(t) = uy(t) =
∑n−1

i=0 (p − 1)ti. By
applying (19) repeatedly, we obtain the following:

MC(e(u)) = MC(
∑

(i,j)∈ΓXr
eij(t)ux(t)iuy(t)j)

≤ ∑
(i,j)∈ΓXr

MC(eij(t)ux(t)iuy(t)j)
≤ ∑

(i,j)∈ΓXr
ni+jMC(eij(t))MC(ux(t))iMC(uy(t))j

≤ ∑
(i,j)∈ΓXr

(p − 1) · (n(p − 1))i+j

≤ #ΓXr · (p − 1) · (n(p − 1))wX+wr .

The relation leads to the following condition:

q > #ΓXr · p(p − 1) · (n(p − 1))wX+wr . (20)

This is the condition (5), so the condition (5) is proven.

References

1. Ajtai, M., Dwork, C.: A public-key cryptosystem with worst-case/average-case
equivalence. In: Proceedings of STOC 1997, pp. 284–293. ACM New York (1997)

2. Akiyama, K., Goto, Y.: A public-key cryptosystem using algebraic surfaces. In: Pro-
ceedings of PQCrypto 2006, pp. 119–138 (2006). http://postquantum.cr.yp.to/

3. Akiyama, K., Goto, Y., Miyake, H.: An algebraic surface cryptosystem. In: Jarecki,
S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 425–442. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-00468-1 24

http://postquantum.cr.yp.to/
https://doi.org/10.1007/978-3-642-00468-1_24

A Public-Key Encryption Scheme 233

4. Albrecht, M., Bai, S., Ducas, L.: A subfield lattice attack on overstretched NTRU
assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814,
pp. 153–178. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
53018-4 6

5. Babai, L.: On Lovász’ lattice reduction and the nearest lattice point problem.
Combinatorica 6(1), 1–13 (1986). (Preliminary version in STACS 1985)

6. Bai, S., Galbraith, S.D.: Lattice decoding attacks on binary LWE. In: Susilo, W.,
Mu, Y. (eds.) ACISP 2014. LNCS, vol. 8544, pp. 322–337. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-08344-5 21

7. Bansarkhani, R.E., Cabarcas, D., Kuo, P.C., Schmidt, P., Schneider, M.: A selec-
tion of recent lattice-based signature and encryption schemes. Tatra Mt. Math.
Publ. 53(1), 81–102 (2012)

8. Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H.,
Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-25385-0 1

9. Denef, J.: The Diophantine Problem for polynomial rings of positive characteristic.
In: Proceedings of Logic Colloquium 1978, Studies in Logic and the Foundations of
Mathematics, North Holland, Amsterdam-New York, vol. 97, pp. 131–145 (1979)

10. Fujisaki, E., Okamoto, T.: How to enhance the security of public-key encryption
at minimum cost. In: Imai, H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560, pp.
53–68. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49162-7 5

11. Faugère, J.-C., Spaenlehauer, P.-J.: Algebraic cryptanalysis of the PKC 2009 alge-
braic surface cryptosystem. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010.
LNCS, vol. 6056, pp. 35–52. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-13013-7 3

12. Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N. (ed.) EURO-
CRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-78967-3 3

13. Gentry, C.: Key recovery and message attacks on NTRU-composite. In: Pfitzmann,
B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 182–194. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44987-6 12

14. Goldreich, O., Goldwasser, S., Halevi, S.: Public-key cryptosystems from lattice
reduction problems. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp.
112–131. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052231

15. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosys-
tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054868

16. Matsumoto, T., Imai, H.: Public quadratic polynomial-tuples for efficient signature-
verification and message-encryption. In: Barstow, D., et al. (eds.) EUROCRYPT
1988. LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (1988). https://doi.org/
10.1007/3-540-45961-8 39

17. Kannan, R.: Minkowski’s convex body theorem and integer programming. Math.
Oper. Res. 12(3), 415–440 (1987). INFORMS, Linthicum, Maryland, USA

18. Kirchner, P., Fouque, P.-A.: Comparison between Subfield and Straightforward
Attacks on NTRU, IACR Cryptology ePrint Archive: Report 2016/717. http://
eprint.iacr.org/2016/717

19. Lenstra, A.K., Lenstra Jr., H.W., Lovasz, L.: Factoring polynomials with rational
coefficients. Math. Ann. 261(4), 515–534 (1982). Springer

20. Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryp-
tion. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-19074-2 21

https://doi.org/10.1007/978-3-662-53018-4_6
https://doi.org/10.1007/978-3-662-53018-4_6
https://doi.org/10.1007/978-3-319-08344-5_21
https://doi.org/10.1007/978-3-642-25385-0_1
https://doi.org/10.1007/3-540-49162-7_5
https://doi.org/10.1007/978-3-642-13013-7_3
https://doi.org/10.1007/978-3-642-13013-7_3
https://doi.org/10.1007/978-3-540-78967-3_3
https://doi.org/10.1007/978-3-540-78967-3_3
https://doi.org/10.1007/3-540-44987-6_12
https://doi.org/10.1007/BFb0052231
https://doi.org/10.1007/BFb0054868
https://doi.org/10.1007/3-540-45961-8_39
https://doi.org/10.1007/3-540-45961-8_39
http://eprint.iacr.org/2016/717
http://eprint.iacr.org/2016/717
https://doi.org/10.1007/978-3-642-19074-2_21

234 K. Akiyama et al.

21. Liu, M., Nguyen, P.Q.: Solving BDD by enumeration: an update. In: Dawson, E.
(ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 293–309. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36095-4 19

22. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. The
Deep Space Network Progress Report, DSN PR 42–44, pp. 114–116 (1978)

23. Nguyen, P.: Cryptanalysis of the Goldreich-Goldwasser-Halevi cryptosystem from
Crypto ’97. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 288–304.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1 18

24. Nguyen, P., Stern, J.: Cryptanalysis of the Ajtai-Dwork cryptosystem. In:
Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 223–242. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0055731

25. https://www.nsa.gov/ia/programs/suiteb cryptography/ (2015)
26. Patarin, J.: Hidden Fields Equations (HFE) and Isomorphisms of Polynomials (IP):

two new families of asymmetric algorithms. In: Maurer, U. (ed.) EUROCRYPT
1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996). https://doi.org/10.
1007/3-540-68339-9 4

27. Porras, J., Baena, J., Ding, J.: ZHFE, a new multivariate public key encryp-
tion scheme. In: Mosca, M. (ed.) PQCrypto 2014. LNCS, vol. 8772, pp. 229–245.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11659-4 14

28. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM 56(6), 1–40 (2009). ACM, New York

29. Schnorr, C.R., Euchner, M.: Lattice basis reduction: improved algorithms and solv-
ing subset sum problems. Math. Program. 66(1), 181–189 (1994). Springer

30. Shor, P.W.: Algorithms for quantum computation: discrete log and factoring. In:
Proceedings of SFCS 1994, pp. 124–134. IEEE Computer Society Washington
(1994)

31. Stehlé, D., Steinfeld, R.: Making NTRU as secure as worst-case problems over ideal
lattices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 27–47.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4 4

32. Tao, C., Diene, A., Tang, S., Ding, J.: Simple matrix scheme for encryption. In:
Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol. 7932, pp. 231–242. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-38616-9 16

33. Yasuda, T., Sakurai, K.: A multivariate encryption scheme with rainbow. In: Qing,
S., Okamoto, E., Kim, K., Liu, D. (eds.) ICICS 2015. LNCS, vol. 9543, pp. 236–251.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29814-6 19

https://doi.org/10.1007/978-3-642-36095-4_19
https://doi.org/10.1007/3-540-48405-1_18
https://doi.org/10.1007/BFb0055731
https://www.nsa.gov/ia/programs/suiteb_cryptography/
https://doi.org/10.1007/3-540-68339-9_4
https://doi.org/10.1007/3-540-68339-9_4
https://doi.org/10.1007/978-3-319-11659-4_14
https://doi.org/10.1007/978-3-642-20465-4_4
https://doi.org/10.1007/978-3-642-38616-9_16
https://doi.org/10.1007/978-3-319-29814-6_19

NTRU Prime: Reducing Attack Surface
at Low Cost

Daniel J. Bernstein1(B), Chitchanok Chuengsatiansup2(B), Tanja Lange3(B),
and Christine van Vredendaal3(B)

1 Department of Computer Science, University of Illinois at Chicago,
Chicago, IL 60607–7045, USA

djb@cr.yp.to
2 INRIA and ENS de Lyon, 46 Allée d’Italie, 69364 Lyon Cedex 07, France

chitchanok.chuengsatiansup@ens-lyon.fr
3 Department of Mathematics and Computer Science,

Technische Universiteit Eindhoven, P.O. Box 513,
5600 MB Eindhoven, The Netherlands

tanja@hyperelliptic.org, c.v.vredendaal@tue.nl

Abstract. Several ideal-lattice-based cryptosystems have been broken
by recent attacks that exploit special structures of the rings used in those
cryptosystems. The same structures are also used in the leading propos-
als for post-quantum lattice-based cryptography, including the classic
NTRU cryptosystem and typical Ring-LWE-based cryptosystems.

This paper (1) proposes NTRU Prime, which tweaks NTRU to use
rings without these structures; (2) proposes Streamlined NTRU Prime,
a public-key cryptosystem optimized from an implementation perspec-
tive, subject to the standard design goal of IND-CCA2 security; (3) finds
high-security post-quantum parameters for Streamlined NTRU Prime;
and (4) optimizes a constant-time implementation of those parameters.
The resulting sizes and speeds show that reducing the attack surface has
very low cost.

Keywords: Post-quantum cryptography · Public-key encryption
Lattice-based cryptography · Ideal lattices · NTRU · Ring-LWE
Security · Soliloquy · Karatsuba · Software implementation
Vectorization · Fast sorting

Author list in alphabetical order; see https://www.ams.org/profession/leaders/
culture/CultureStatement04.pdf. This work was supported by the Netherlands
Organisation for Scientific Research (NWO) under grant 639.073.005; by the Com-
mission of the European Communities through the Horizon 2020 program under
project number 645622 (PQCRYPTO) and project number 645421 (ECRYPT-
CSA); and by the National Science Foundation under grant 1314919. The second
author acknowledges the support of Bpifrance in the context of the national project
RISQ (P141580). Calculations were carried out on the Saber cluster of the Crypto-
graphic Implementations group at Technische Universiteit Eindhoven. Permanent ID
of this document: 99a9debfc18b7d6937a13bac4f943a2b2cd46022. Date: 2017.10.04.
See full version [10].

c© Springer International Publishing AG 2018
C. Adams and J. Camenisch (Eds.): SAC 2017, LNCS 10719, pp. 235–260, 2018.
https://doi.org/10.1007/978-3-319-72565-9_12

https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf
https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf

236 D. J. Bernstein et al.

Fig. 1.1. Terminology in this paper for selected branches of the NTRU family tree.
This paper introduces the NTRU Prime branch. Streamlined NTRU Prime is specified
and analyzed in detail as a case study. See Sect. 3 for more options.

1 Introduction

This paper presents an efficient implementation of high-security prime-degree
large-Galois-group inert-modulus ideal-lattice-based cryptography. “Prime
degree” etc. are three features that we recommend because they take various
mathematical tools away from the attacker; see Appendix A in the full version of
this paper. The reader can, if desired, skip the appendix in favor of the following
short summary short summary (see also Fig. 1.1):

– “NTRU Classic”: Rings of the form (Z/q)[x]/(xp −1), where p is a prime and
q is a power of 2, are used in the original NTRU cryptosystem [27], and are
excluded by our recommendation.

– “NTRU NTT”: Rings of the form (Z/q)[x]/(xp+1), where p is a power of 2 and
q ∈ 1 + 2pZ is a prime, are used in typical “Ring-LWE-based” cryptosystems
such as [2], and are excluded by our recommendation.

– “NTRU Prime”: Fields of the form (Z/q)[x]/(xp − x − 1), where p is prime,
are used in this paper, and follow our recommendation.

Specifically, we use only 28682 cycles on one core of an Intel Haswell CPU for
constant-time multiplication in the field (Z/4591)[x]/(x761 − x − 1).

We define a public-key cryptosystem “Streamlined NTRU Prime 4591761”
using this field, aiming for the standard design goal of IND-CCA2 security at the

NTRU Prime 237

standard 2128 post-quantum security level. Streamlined NTRU Prime 4591761

uses just 59600 cycles for encryption (more precisely, “encapsulating” a 256-bit
session key), and just 97452 cycles for decryption (“decapsulation”).

Our public keys are field elements, easily squeezed into 1218 bytes. We explain
how to further squeeze ciphertexts into just 1047 bytes. Obviously these sizes
are not competitive with 256-bit ECC key sizes, but they are small enough for
many applications.1

Streamlined NTRU Prime provides several implementation advantages and
security-auditing advantages beyond the NTRU Prime choice of ring: for exam-
ple, it eliminates the annoying possibility of “decryption failures” that appear in
most lattice-based cryptosystems. Our security analysis indicates that Stream-
lined NTRU Prime 4591761 actually provides a large security margin beyond
our target security level, compensating for potential progress in estimating the
actual cost of lattice attacks.

To put our speed in perspective: Modern implementations [18,22] of the popu-
lar Curve25519 elliptic curve use more than 150000 Haswell cycles for scalar mul-
tiplication. However, one should not conclude that post-quantum lattice-based
cryptography is faster than pre-quantum ECC. The total time for cryptography
includes time to communicate keys and ciphertexts; lattice-based cryptography
has much larger keys and ciphertexts than ECC.2

1.1. Comparison to Previous Multiplication Speeds Aiming for High
Security. Before our work, the state of the art in implementations of lattice-
based cryptography was the November 2015 paper “Post-quantum key exchange:
a new hope” [2] by Alkim, Ducas, Pöppelmann, and Schwabe, using about 40000
Haswell cycles for NTRU NTT multiplication. Most of the implementations
before [2] are, in our view, obviously unsuitable for deployment because they
access the CPU cache at secret addresses, taking variable time and allowing
side-channel attacks.

We announced 51488 cycles for NTRU Prime multiplication in May 2016, in
a preliminary version of this paper. Longa and Naehrig [38] announced 33000
cycles for NTRU NTT multiplication the same month. An update of [2] in August
2016 announced 31000 cycles for NTRU NTT multiplication.3 We now announce
28682 cycles for NTRU Prime multiplication. See Table 1.1 for details.

1 For example, our ciphertexts fit into the 1500-byte Ethernet MTU for plaintexts up to
a few hundred bytes, avoiding the implementation hassle of packet fragmentation.

2 If an operation takes 100000 cycles then one can imagine a typical quad-core 3 GHz
CPU completing 1 million operations in just 8 seconds. However, if each operation
involves 1000 bytes of network data, then the data for 1 million operations will take
80 seconds to be transmitted through a typical 100 Mbps network.

3 Each forward NTT in the updated version of [2] takes 8448 cycles (compared to 10968
cycles in the first version, and 9100 cycles in [38, Table 1]). A reverse NTT takes 9464
cycles (compared to 12128 and 9300). The time for pointwise multiplication is not
stated in [2] or [38] but can be extrapolated from [23] to take about 5000 cycles.

238 D. J. Bernstein et al.

Table 1.1. Comparison of multiplication results. “Rec” means that the ring follows this
paper’s recommendation to reduce attack surface. “Constant” means that the software
runs in constant time. “Cycles” is approximate multiplication time on an Intel Haswell.
All rings are used in public-key cryptosystems designed for at least 2128 post-quantum
security. The estimated pre-quantum security levels are 2248 for Streamlined NTRU
Prime 4591761; 2256 for ntruees743ep1; 2281 for New Hope; not stated in [33].

Rec Constant Cycles Ring Technique Source

no yes 11722 (Z/8192)[x]/(x701 − 1) Karatsuba etc. [33]

yes yes 28682 (Z/4591)[x]/(x761 − x − 1) Karatsuba etc. This paper

no yes 31000 (Z/12289)[x]/(x1024 + 1) NTT New Hope [2], [38]

no no <91056 (Z/2048)[x]/(x743 − 1) Sparse input ntruees743ep1 [35]

Like our paper, [2] and [38] target the Haswell CPU, require constant-time
implementations, and aim for more than 2128 post-quantum security. Unlike
our paper, [2] follows the tradition from NTRU and Ring-LWE [41] of using
cyclotomic rings. More precisely, [2] is an example of Product NTRU NTT,
using the ring (Z/q)[x]/(xp + 1) with p = 1024 and q = 12289 = 12 · 1024 + 1.

A disadvantage of requiring the lattice dimension p to be a power of 2, as
in [2], is that security levels are quite widely separated. In [2] there is a claim
of “94 bits of post quantum security” for one dimension-512 system; we are not
aware of any dimension-512 system that is claimed today to reach the standard
2128 post-quantum security target. Jumping to the next power of 2, namely
p = 1024, means at least doubling key sizes, ciphertext sizes, encryption time,
etc. This severe discontinuity in the security-performance graph means that [2]
is unable to offer any options truly comparable to the better-tuned p = 743 in
“ntruees743ep1” (see [35]) or p = 761 in this paper. Of course one can view
p = 1024 as an additional buffer against the possibility of improved attacks; but
dimension is only one contributing factor to security, and size does matter.

The conventional wisdom is that, despite the large p, rings of the type used
in [2] are particularly efficient. These rings allow multiplication at the cost of
three “number-theoretic transforms” (NTTs), i.e., fast Fourier transforms over
finite fields, with only a small overhead for “pointwise multiplication”. This
multiplication strategy relies critically on choosing an NTT-friendly polynomial
such as x1024 + 1 and choosing an NTT-friendly prime such as 12289.

Tweaking the polynomial and prime, as we recommend, would make the
NTTs several times more expensive. A typical NTT-based method to multiply
in, e.g., (Z/8819)[x]/(x1021−x−1) would replace x1021−x−1 with x2048−1, and
would also replace 8819 with two or three NTT-friendly primes. The conventional
wisdom therefore implies that we pay a very large penalty for requiring a large
Galois group (NTT-friendly polynomials always have small Galois groups) and
an inert modulus (NTT-friendly primes are never inert).

We do much better by scrapping the NTTs and multiplying in a completely
different way. The May 2016 version of this paper presented details of a combina-
tion of several layers of Karatsuba’s method and Toom’s method. This approach

NTRU Prime 239

does not need NTT-friendly polynomials, and it does not need NTT-friendly
primes. (The approach is like NTTs in that a significant part of the work is
for separately transforming each input, allowing transforms to be skipped in
many settings.) We now do even better by tweaking various details, as explained
later in this paper; in particular, our current software uses purely Karatsuba’s
method. The resulting multiplication speed is slightly faster than in [2,38], and
the sizes are smaller.

We are not saying that the NTRU Prime rings have zero cost. Last month
Hülsing, Rijneveld, Schanck, and Schwabe [33] announced 11722 cycles for NTRU
Classic multiplication, specifically multiplication in the ring (Z/q)[x]/(xp − 1)
with p = 701 and q = 8192, again using a combination of several layers of Karat-
suba’s method and Toom’s method. The power-of-2 moduli in NTRU Classic
avoid the cost of reducing modulo medium-size primes. These moduli force a
moderate discontinuity in the security-performance graph4 but it seems likely
that taking (Z/q)[x]/(xp − 1) with prime q would be slightly faster than NTRU
Prime at every security level.

1.2. Priority Dates and Additional Followup Work. Our recommen-
dation to switch lattice-based cryptography to prime-degree large-Galois-group
inert-modulus lattice-based cryptography was announced in February 2014.

In 2016, the NTRU authors posted a draft [28] that they had circulated
at Crypto 1996. Page 21 of the draft says “One could also consider variants of
standard NTRU by using rings such as A = Z[X]/(XN −X−1). This would slow
computations somewhat, while providing greater mixing of the coefficients.” Our
announcement was published earlier; pinpoints stronger mathematical reasons to
use these rings (not merely “providing greater mixing” but also taking subfields
and automorphisms away from the attacker); adds the further requirement to
use quotient fields; and is a recommendation, not merely a “could”.

We posted a preliminary version of this paper in May 2016, as mentioned
above. That version included, among other things, an improved cryptosystem, a
detailed security analysis, and new performance results showing that the NTRU
Prime ring recommendation is compatible with high speed. All of this was writ-
ten independently of the above quote from [28].

Lyubashevsky, in response to the possibility that “some rings could give
rise to more difficult instances of Ring-SIS and Ring-LWE than other rings”,
introduced a signature system [39] in August 2016 for which a polynomial-time
attack would imply a polynomial-time attack against similar problems for all
rings. Rosca, Sakzad, Steinfeld, and Stehlé introduced an encryption system [47]
in June 2017 with similar properties. The concrete performance of these systems
is unclear.

In June 2017, Bos–Ducas–Kiltz–Lepoint–Lyubashevsky–Schanck–Schwabe–
Stehlé [14] announced 119652 cycles for encapsulation and 125736 cycles for
decapsulation using a new public-key cryptosystem “Kyber”. (Preliminary

4 The security level in [33] seems somewhat lower than the security level of Streamlined
NTRU Prime 4591761. Taking a larger p in [33] would require jumping to q = 16384,
and the resulting ciphertext expansion seems likely to outweigh any small speed gap.

240 D. J. Bernstein et al.

speeds announced in January 2017 [6] were slower.) This system uses Module-
LWE [37] with three elements of (Z/7681)/(x256 + 1), for a total of 768 coeffi-
cients. Ciphertexts occupy 1184 bytes.

In March 2017, Peikert, Regev, and Stephens–Davidowitz [45] argued briefly
that “one might wish to use Ring-LWE over non-Galois number fields”. The
argument is essentially one of the arguments from this paper, without credit.
The main result of [45] is a worst-case-to-average-case reduction; see Appendix C
in the full version of this paper.

Acknowledgements We wish to thank John Schanck for detailed discussion of
the security of NTRU and for suggesting the “transitional security” terminology;
Dan Shepherd and Manuel Pancorbo Castro for pointing out a stronger bound for
Theorem 2.1; and Sean Parkinson for helpful comments.

2 Streamlined NTRU Prime: An Optimized
Cryptosystem

This section specifies “Streamlined NTRU Prime”, a public-key cryptosystem.
The next section compares Streamlined NTRU Prime to alternatives.

We emphasize that Streamlined NTRU Prime is designed for the standard
goal of IND-CCA2 security, i.e., security against adaptive chosen-ciphertext
attacks. A server can reuse a public key any number of times, amortizing the
costs of key generation and key distribution. The cost of setting up a new session
key, including post-quantum server authentication, is then just one encryption
for the client and one decryption for the server. This gives Streamlined NTRU
Prime important performance advantages over unauthenticated key-exchange
mechanisms such as [2]; see Appendix E in the full version of this paper for a
precise comparison.

We are submitting our complete implementation to eBACS [11] for bench-
marking. However, we caution potential users that many details of Streamlined
NTRU Prime were first published in May 2016 and still require careful security
review. We have not limited ourselves to the minimum changes that would be
required to switch to NTRU Prime from an existing version of the NTRU public-
key cryptosystem; we have taken the opportunity to rethink and reoptimize all of
the details of NTRU from an implementation and security perspective. We recom-
mend NTRU Prime, but it is too early to recommend Streamlined NTRU Prime.

2.1. Parameters. Streamlined NTRU Prime is actually a family of cryptosys-
tems parametrized by positive integers (p, q, t) subject to the following restric-
tions: p is a prime number; q is a prime number; t ≥ 1; p ≥ 3t; q ≥ 32t + 1;
xp − x − 1 is irreducible in the polynomial ring (Z/q)[x].

We abbreviate the ring Z[x]/(xp − x − 1), the ring (Z/3)[x]/(xp − x − 1),
and the field (Z/q)[x]/(xp − x − 1) as R, R/3, and R/q respectively. We refer
to an element of R as small if all of its coefficients are in {−1, 0, 1}. We refer

NTRU Prime 241

to a small element as t-small if exactly 2t of its coefficients are nonzero, i.e., its
Hamming weight is 2t.

Our case study in this paper is Streamlined NTRU Prime 4591761. This spe-
cific cryptosystem has parameters p = 761, q = 4591, and t = 143. The following
subsections specify the algorithms for general parameters but the reader may
wish to focus on these particular parameters. Figures Z.1 and Z.2 in the full
version of this paper show complete algorithms for key generation, encapsula-
tion, and decapsulation in Streamlined NTRU Prime 4591761, using the Sage
[48] computer-algebra system.

2.2. Key Generation. The receiver generates a public key as follows:

– Generate a uniform random small element g ∈ R. Repeat this step until g is
invertible in R/3.

– Generate a uniform random t-small element f ∈ R. (Note that f is nonzero
and hence invertible in R/q, since t ≥ 1.)

– Compute h = g/(3f) in R/q. (By assumption q is a prime larger than 3, so
3 is invertible in R/q, so 3f is invertible in R/q.)

– Encode h as a string h. The public key is h.
– Save the following secrets: f in R; and 1/g in R/3.

See keygen in Fig. Z.2.
The encoding of public keys as strings is another parameter for Streamlined

NTRU Prime. Each element of Z/q is traditionally encoded as �log2 q� bits, so
the public key is traditionally encoded as p�log2 q� bits. If q is noticeably smaller
than a power of 2 then one can easily compress a public key by merging adjacent
elements of Z/q, with a lower limit of p log2 q bits. For example, 5 elements of
Z/q for q = 4591 are easily encoded together as 8 bytes, saving 1.5% compared
to separately encoding each element as 13 bits, and 20% compared to separately
encoding each element as 2 bytes. See Fig. Z.1 for further encoding details.

2.3. Encapsulation. Streamlined NTRU Prime is actually a “key encapsula-
tion mechanism” (KEM). This means that the sender takes a public key as input
and produces a ciphertext and session key as output. See Sect. 3.5 for compari-
son to older notions of public-key encryption, and for an explanation of how to
use a KEM to encrypt a user-provided message.

Specifically, the sender generates a ciphertext as follows:

– Decode the public key h, obtaining h ∈ R/q.
– Generate a uniform random t-small element r ∈ R.
– Compute hr ∈ R/q.
– Round each coefficient of hr, viewed as an integer between −(q − 1)/2

and (q − 1)/2, to the nearest multiple of 3, producing c ∈ R. (If q ∈
1 + 3Z, as in our case study q = 4591, then each coefficient of c is in
{−(q − 1)/2, . . . ,−6,−3, 0, 3, 6, . . . , (q − 1)/2}. If q ∈ 2 + 3Z then each coef-
ficient of c is in {−(q + 1)/2, . . . ,−6,−3, 0, 3, 6, . . . , (q + 1)/2}.)

242 D. J. Bernstein et al.

– Encode c as a string c.
– Hash r, obtaining a left half C (“key confirmation”) and a right half K.
– The ciphertext is the concatenation C c. The session key is K.

See encapsulate in Fig. Z.2.
The hash function for r is another parameter for Streamlined NTRU Prime.

We encode r as a byte string by adding 1 to each coefficient, obtaining an element
of {0, 1, 2} encoded as 2 bits in the usual way, and then packing 4 adjacent
coefficients into a byte, consistently using little-endian form. See encodeZx in
Fig. Z.1. We hash the resulting byte string with SHA-512, obtaining a 256-bit
key confirmation C and a 256-bit session key K.

The encoding of ciphertexts c as strings c is another parameter for Stream-
lined NTRU Prime. This encoding can be more compact than the encoding of
public keys because each coefficient of c is in a limited subset of Z/q. Concretely,
for q = 4591 and p = 761, we use 32 bits for each 3 coefficients of c and a total
of 8120 bits (padded to a byte boundary) for c, saving 16% compared to the
size of a public key, 18% compared to separately encoding each element of Z/q
as 13 bits, and 33% compared to separately encoding each element of Z/q as
2 bytes. See encoderoundedRq in Fig. Z.1. Key confirmation adds 256 bits to
ciphertexts.

2.4. Decapsulation. The receiver decapsulates a ciphertext C c as follows:

– Decode c, obtaining c ∈ R.
– Multiply by 3f in R/q.
– View each coefficient of 3fc in R/q as an integer between −(q − 1)/2 and

(q − 1)/2, and then reduce modulo 3, obtaining a polynomial e in R/3.
– Multiply by 1/g in R/3.
– Lift e/g in R/3 to a small polynomial r′ ∈ R.
– Compute c′, C ′,K ′ from r′ as in encapsulation.
– If r′ is t-small, c′ = c, and C ′ = C, then output K ′. Otherwise output False.

See decapsulate in Fig. Z.2.
If C c is a legitimate ciphertext then c is obtained by rounding the coefficients

of hr to the nearest multiples of 3; i.e., c = m+hr in R/q, where m is small. All
coefficients of the polynomial 3fm + gr in R are in [−16t, 16t] by Theorem 2.1
below, and thus in [−(q−1)/2, (q−1)/2] since q ≥ 32t+1. Viewing each coefficient
of 3fc = 3fm + gr as an integer in [−(q − 1)/2, (q − 1)/2] thus produces exactly
3fm + gr ∈ R, and reducing modulo 3 produces gr ∈ R/3; i.e., e = gr in R/3,
so e/g = r in R/3. Lifting now produces exactly r since r is small; i.e., r′ = r.
Hence (c′, C ′,K ′) = (c, C,K). Finally, r′ = r is t-small, c′ = c, and C ′ = C, so
decapsulation outputs K ′ = K, the same session key produced by encapsulation.

Theorem 2.1. Fix integers p ≥ 3 and t ≥ 1. Let m, r, f, g ∈ Z[x] be polynomials
of degree at most p − 1 with all coefficients in {−1, 0, 1}. Assume that f and r
each have at most 2t nonzero coefficients. Then 3fm + gr mod xp − x − 1 has
each coefficient in the interval [−16t, 16t].

NTRU Prime 243

3 The Design Space of Lattice-Based Encryption

There are many different ideal-lattice-based public-key encryption schemes in
the literature, including many versions of NTRU, many Ring-LWE-based cryp-
tosystems, and now Streamlined NTRU Prime. These are actually many different
points in a high-dimensional space of possible cryptosystems. We give a unified
description of the advantages and disadvantages of what we see as the most
important options in each dimension, in particular explaining the choices that
we made in Streamlined NTRU Prime.

Beware that there are many interactions between options. For example, using
Gaussian errors is incompatible with eliminating decryption failures, because
there is always a small probability of large samples combining with large values.
Using truncated Gaussian errors is compatible with eliminating decryption fail-
ures, but requires a much larger modulus q. Neither of these options is compatible
with the simple tight KEM that we use.

3.1. The Ring. The choice of cryptosystem includes a choice of a monic
degree-p polynomial P ∈ Z[x] and a choice of a positive integer q. As in Sect. 2,
we abbreviate the ring Z[x]/P as R, and the ring (Z/q)[x]/P as R/q.

The choices of P mentioned in Sect. 1 include xp − 1 for prime p (NTRU
Classic); xp + 1 where p is a power of 2 (NTRU NTT); and xp − x − 1 for prime
p (NTRU Prime). Choices of q include powers of 2 (NTRU Classic); split primes
q (NTRU NTT); and inert primes q (NTRU Prime).

Of course, Streamlined NTRU Prime makes the NTRU Prime choices here.
Most of the optimizations in Streamlined NTRU Prime can also be applied to
other choices of P and q, with a few exceptions noted below.

3.2. The Public Key. The receiver’s public key, which we call h, is an element
of R/q. It is invertible in R/q but has no other obvious public structure.

3.3. Inputs and Ciphertexts. In the original NTRU system, ciphertexts are
elements of the form m + hr ∈ R/q. Here h ∈ R/q is the public key as above,
and m, r are small elements of R chosen by the sender.

Subsequent systems labeled as “NTRU” have generally extended ciphertexts
to include additional information, for various reasons explained below; but these
cryptosystems all share the same core design element, sending m + hr ∈ R/q
where m, r are small secrets and h is public. We suggest systematically using the
name “NTRU” to refer to this design element, and more specific names (e.g.,
“NTRU Classic” vs. “NTRU Prime”) to refer to other design elements.

The multiplication of h by r is the main bottleneck in encryption in all of
these systems and the main target of our implementation work; see Sect. 6. We
refer to (m, r) as “input” rather than “plaintext” because in any modern public-
key cryptosystem the input is randomized and is separated from the sender’s
plaintext by symmetric primitives such as hash functions; see Sect. 3.5.

244 D. J. Bernstein et al.

In the original NTRU specification [27], m was allowed to be any element of
R having all coefficients in a standard range. The range was {−1, 0, 1} for all of
the suggested parameters, with q not a multiple of 3, and we focus on this case
for simplicity (although we note that some other lattice-based cryptosystems
have taken the smaller range {0, 1}, or sometimes larger ranges).

Current NTRU specifications such as [26] prohibit m that have an unusu-
ally small number of 0’s or 1’s or −1’s. For random m, this prohibition applies
with probability < 2−10, and in case of failure the sender can try encoding the
plaintext as a new m, but this is problematic for applications with hard real-
time requirements. The reason for this prohibition is that the original NTRU
system gives the attacker an “evaluate at 1” homomorphism from R/q to Z/q,
leaking m(1). The attacker scans many ciphertexts to find an occasional cipher-
text where the value m(1) is particularly far from 0; this value constrains the
search space for the corresponding m by enough bits to raise security concerns.
In NTRU Prime, R/q is a field, so this type of leak cannot occur.

Streamlined NTRU Prime actually uses a different type of ciphertext, which
we call a “rounded ciphertext”. The sender chooses a small r as input and com-
putes hr ∈ R/q. The sender obtains the ciphertext by rounding each coefficient
of hr, viewed as an integer between −(q−1)/2 and (q−1)/2, to the nearest mul-
tiple of 3. This ciphertext can be viewed as an example of the original ciphertext
m + hr, but with m chosen so that each coefficient of m + hr is in a restricted
subset of Z/q.

With the original ciphertexts, each coefficient of m+hr leaves 3 possibilities
for the corresponding coefficients of hr and m. With rounded ciphertexts, each
coefficient of m + hr also leaves 3 possibilities for the corresponding coefficients
of hr and m, except that the boundary cases −(q−1)/2 and (q−1)/2 (assuming
q ∈ 1 + 3Z) leave only 2 possibilities. In a pool of 264 rounded ciphertexts, the
attacker might find one ciphertext that has 15 of these boundary cases out of
761 coefficients; these occasional exceptions have very little impact on known
attacks. It would be possible to randomize the choice of multiples of 3 near the
boundaries, but we prefer the simplicity of having the ciphertext determined
entirely by r. It would also be possible to prohibit ciphertexts at the boundaries,
but as above we prefer to avoid restarting the encryption process.

More generally, we say “Rounded NTRU” for any NTRU system in which
m is chosen deterministically by rounding hr to a standard subset of Z/q, and
“Noisy NTRU” for the original version in which m is chosen randomly. Rounded
NTRU has two advantages over Noisy NTRU. First, it reduces the space required
to transmit m+hr; see, e.g., Sect. 2.3. Second, the fact that m is determined by
r simplifies protection against chosen-ciphertext attacks; see Sect. 3.5.

[43, Sect. 4] used an intermediate non-deterministic possibility to provide
some space reduction for a public-key cryptosystem: first choose m randomly, and
then round m+hr, obtaining m′ +hr. The idea of rounded hr as a deterministic
substitute for noisy m + hr was introduced in [7] in the context of a symmetric-
key construction, was used in [4] to construct another public-key encryption
system, and was further studied in [3,13]. All of the public-key cryptosystems in

NTRU Prime 245

these papers have ciphertexts longer than Noisy NTRU, but applying the same
idea to Noisy NTRU produces Rounded NTRU, which has shorter ciphertexts.

3.4. Key Generation and Decryption. In the original NTRU cryptosys-
tem, the public key h has the form 3g/f in R/q, where f and g are secret.
Decryption computes fc = fm + 3gr, reduces modulo 3 to obtain fm, and
multiplies by 1/f to obtain m.

The NTRU literature, except for the earliest papers, takes f of the form
1 + 3F , where F is small. This eliminates the multiplication by the inverse of f
modulo 3. In Streamlined NTRU Prime we have chosen to skip this speedup for
two reasons. First, in the long run we expect cryptography to be implemented in
hardware, where a multiplication in R/3 is far less expensive than a multiplica-
tion in R/q. Second, this speedup requires noticeably larger keys and ciphertexts
for the same security level, and this is important for many applications, while
very few applications will notice the CPU time for Streamlined NTRU Prime.

Streamlined NTRU Prime changes the position of the 3, taking h as g/(3f)
rather than 3g/f . Decryption computes 3fc = 3fm + gr, reduces modulo 3 to
obtain gr, and multiplies by 1/g to obtain r. This change lets us compute (m, r)
by first computing r and then multiplying by h, whereas otherwise we would first
compute m and then multiply by 1/h. One advantage is that we skip computing
1/h; another advantage is that we need less space for storing a key pair. This 1/h
issue does not arise for NTRU variants that compute r as a hash of m, but those
variants are incompatible with rounded ciphertexts, as discussed in Sect. 3.5.

More generally, we say “Quotient NTRU” for NTRU with h computed as a
ratio of two secret small polynomials. An alternative is what we call “Product
NTRU”, namely NTRU with h of the form e + Af , where e and f are secret
small polynomials. Here A ∈ R/q is public, like h, but unlike h it does not need
a hidden multiplicative structure: it can be, for example, a standard chosen
randomly by a trusted authority, or output of a long hash function applied to
a standard randomly chosen seed, or (as proposed in [2]) output of a long hash
function applied to a per-receiver seed supplied along with h as part of the public
key.

Product NTRU does not allow the same decryption procedure as Quotient
NTRU. The first Product NTRU system, introduced by Lyubashevsky, Peikert,
and Regev in [41] (originally in talk slides in 2010), sends d + Ar as additional
ciphertext along with m + hr + M , where d is another small polynomial, and
M is a polynomial consisting of solely 0 or �q/2� in each position. The receiver
computes (m + hr + M) − (d + Ar)f = M + m + er − df , and rounds to 0 or
�q/2� in each position, obtaining M . Note that m + er − df is small, since all of
m, e, r, d, f are small.

The ciphertext size here, two elements of R/q, can be improved in various
ways. One can replace hr with fewer coefficients, for example by simply summing
batches of three coefficients [46], before adding M and m. Rounded Product
NTRU rounds hr + M to obtain m + hr + M , rounds Ar to obtain d + Ar, and
(to similarly reduce key size) rounds Af to obtain e+Af . Decryption continues

246 D. J. Bernstein et al.

to work even if m + hr + M is compressed to two bits per coefficient. “NTRU
LPRime” is an example of Rounded Product NTRU Prime in which r is chosen
deterministically as a hash of M .

A disadvantage of Product NTRU is that r is used twice, exposing approx-
imations to both Ar and hr. This complicates security analysis compared to
simply exposing an approximation to hr. State-of-the-art attacks against Ring-
LWE, which reveals approximations to any number of random public multiples
of r, are significantly faster for many multiples than for one multiple. Perhaps
this indicates a broader weakness, in which each extra multiple hurts security.

Quotient NTRU has an analogous disadvantage: if one moves far enough
in the parameter space [34] then state-of-the-art attacks distinguish g/f from
random more efficiently than they distinguish m + hr from random. Perhaps
this indicates a broader weakness. On the other hand, if one moves far enough
in another direction in the parameter space [54], then g/f has a security proof.

We find both of these issues worrisome: it is not at all clear which of Product
NTRU and Quotient NTRU is a safer option.5 We see no way to simultaneously
avoid both types of complications. Since Quotient NTRU has a much longer his-
tory, we have opted to present details of Streamlined NTRU Prime, an example
of Quotient NTRU Prime.

3.5. Padding, KEMs, and the Choice of q. In Streamlined NTRU Prime
we use the modern “KEM+DEM” approach introduced by Shoup; see [51]. This
approach is much nicer for implementors than previous approaches to public-
key encryption. For readers unfamiliar with this approach, we briefly review the
analogous options for RSA encryption.

RSA maps an input m to a ciphertext me mod n, where (n, e) is the receiver’s
public key. When RSA was first introduced, its input m was described as the
sender’s plaintext. This was broken in reasonable attack models, leading to the
development of various schemes to build m as some combination of fixed padding,
random padding, and a short plaintext; typically this short plaintext is used as
a shared secret key. This turned out to be quite difficult to get right, both in
theory (see, e.g., [52]) and in practice (see, e.g., [42]), although it does seem
possible to protect against arbitrary chosen-ciphertext attacks by building m in
a sufficiently convoluted way.

The “KEM+DEM” approach, specifically Shoup’s “RSA-KEM” in [51] (also
called “Simple RSA”), is much easier:

– Choose a uniform random integer m modulo n. This step does not even look
at the plaintext.

5 Peikert claimed in [44], modulo terminology, that Product NTRU is “at least as hard”
to break as Quotient NTRU (and “likely strictly harder”). This claim ignores the
possibility of attacks against the reuse of r in Product NTRU. There are no theorems
justifying Peikert’s claim, and we are not aware of an argument that eliminating this
reuse is less important than eliminating the g/f structure. For comparison, switching
from NTRU NTT and NTRU Classic to NTRU Prime eliminates structure used in
some state-of-the-art attacks without providing new structure used in other attacks.

NTRU Prime 247

– To obtain a shared secret key, simply apply a cryptographic hash function
to m.

– Encrypt and authenticate the sender’s plaintext using this shared key.

Any attempt to modify m, or the plaintext, will be caught by the authenticator.
“KEM” means “key encapsulation mechanism”: me mod n is an “encapsula-

tion” of the shared secret key H(m). “DEM” means “data encapsulation mech-
anism”, referring to the encryption and authentication using this shared secret
key. Authenticated ciphers are normally designed to be secure for many mes-
sages, so H(m) can be reused to protect further messages from the sender to
the receiver, or from the receiver back to the sender. It is also easy to combine
KEMs, for example combining a pre-quantum KEM with a post-quantum KEM,
by simply hashing the shared secrets together.

When NTRU was introduced, its input (m, r) was described as a sender
plaintext m combined with a random r. This is obviously not secure against
chosen-ciphertext attacks. Subsequent NTRU papers introduced various mecha-
nisms to build (m, r) as increasingly convoluted combinations of fixed padding,
random padding, and a short plaintext.

It is easy to guess that KEMs simplify NTRU, the same way that KEMs
simplify RSA; we are certainly not the first to suggest this. However, all the
NTRU-based KEMs we have found in the literature (e.g., [49,53]) construct the
NTRU input (m, r) by hashing a shorter input and verifying this hash during
decapsulation; typically r is produced as a hash of m. These KEMs implicitly
assume that m and r can be chosen independently, whereas rounded ciphertexts
(see Sect. 3.3) have r as the sole input. It is also not clear that generic-hash
chosen-ciphertext attacks against these KEMs are as difficult as inverting the
NTRU map from input to ciphertext: the security theorems are quite loose.

We instead follow a simple generic KEM construction introduced in the ear-
lier paper [19, Sect. 6] by Dent, backed by a tight security reduction [19, Theorem
8] saying that generic-hash chosen-ciphertext attacks are as difficult as inverting
the underlying function:

– Like RSA-KEM, this construction hashes the input, in our case r, to obtain
the session key.

– Decapsulation verifies that the ciphertext is the correct ciphertext for this
input, preventing per-input ciphertext malleability.

– The KEM uses additional hash output for key confirmation, making clear
that a ciphertext cannot be generated except by someone who knows the
corresponding input.

Key confirmation might be overkill from a security perspective, since a random
session key will also produce an authentication failure; but key confirmation
allows the KEM to be audited without regard to the authentication mechanism,
and adds only 3% to our ciphertext size.

Dent’s security analysis assumes that decryption works for all inputs. We
achieve this in Streamlined NTRU Prime by requiring q ≥ 32t + 1. Recall that
decryption sees 3fm + gr in R/q and tries to deduce 3fm + gr in R; the

248 D. J. Bernstein et al.

condition q ≥ 32t+1 guarantees that this works, since each coefficient of 3fm+gr
in R is between −(q−1)/2 and (q−1)/2 by Theorem 2.1. Taking different shapes
of m, r, f, g, or changing the polynomial P = xp−x−1, would change the bound
32t + 1; for example, replacing g by 1 + 3G would change 32t + 1 into 48t + 3.

In lattice-based cryptography it is standard to take somewhat smaller values
of q. The idea is that coefficients in 3fm + gr are produced as sums of many +1
and −1 terms, and these terms usually cancel, rather than conspiring to produce
the maximum conceivable coefficient. However, this idea led to attacks that
exploited occasional decryption failures; see [30] and, for an analogous attack
on code-based cryptography using QC-MDPC codes, [24]. It is common today
to choose q so that decryption failures will occur with, e.g., probability 2−80;
but this does not meet Dent’s assumption that decryption always works. This
nonzero failure rate appears to account for most of the complications in the
literature on NTRU-based KEMs. We prefer to guarantee that decryption works,
making the security analysis simpler and more robust.

3.6. The Shape of Small Polynomials. As noted in Sect. 3.3, the coeffi-
cients of m are chosen from the limited range {−1, 0, 1}. The NTRU literature
[25–27,32] generally puts the same limit on the coefficients of r, g, and f , except
that if f is chosen with the shape 1 + 3F (see Sect. 3.4) then the literature puts
this limit on the coefficients of F . Sometimes these “ternary polynomials” are
further restricted to “binary polynomials”, excluding coefficient −1.

The NTRU literature further restricts the Hamming weight of r, g, and f .
Specifically, a cryptosystem parameter is introduced to specify the number of
1’s and −1’s. For example, there is a parameter t (typically called “d” in NTRU
papers) so that r has exactly t coefficients equal to 1, exactly t coefficients equal
to −1, and the remaining p − 2t coefficients equal to 0. These restrictions allow
decryption for smaller values of q (see Sect. 3.5), saving space and time. Beware,
however, that if t is too small then there are attacks; see our security analysis in
Sect. 4.

We keep the requirement that r have Hamming weight 2t, and keep the
requirement that these 2t nonzero coefficients are all in {−1, 1}, but we drop
the requirement of an equal split between −1 and 1. This allows somewhat more
choices of r. The same comments apply to f . Similarly, we require g to have all
coefficients in {−1, 0, 1} but the distribution is otherwise unconstrained.

These changes would affect the conventional NTRU decryption procedure:
they expand the typical size of coefficients of fm and gr, forcing larger choices
of q to avoid noticeable decryption failures. But we instead choose q to avoid all
decryption failures (see Sect. 3.5), and these changes do not expand our bound
on the size of the coefficients of fm and gr.

Elsewhere in the literature on lattice-based cryptography one can find larger
coefficients: consider, e.g., the quinary polynomials in [21], and the even wider
range in [2]. In [54], the coefficients of f and g are sampled from a very wide
discrete Gaussian distribution, allowing a proof regarding the distribution of
g/f . However, this appears to produce worse security for any given key size.

NTRU Prime 249

Specifically, there are no known attack strategies blocked by a Gaussian dis-
tribution, while the very wide distribution forces q to be very large to enable
decryption (see Sect. 3.5), producing a much larger key size (and ciphertext size)
for the same security level. Furthermore, wide Gaussian distributions are practi-
cally always implemented with variable-time algorithms, creating security prob-
lems, as illustrated by the successful cache-timing attack in [15].

4 Pre-quantum Security of Streamlined NTRU Prime

In this section we adapt existing pre-quantum NTRU attack strategies to the
context of Streamlined NTRU Prime and quantify their effectiveness. In partic-
ular, we account for the impact of changing xp −1 to xp −x−1, and using small
f rather than f = 1 + 3F with small F .

Underestimating attack cost can damage security, for reasons explained in
[12, full version, Appendix B.1.2], so we prefer to use accurate cost estimates.
However, accurately evaluating the cost of lattice attacks is generally quite dif-
ficult. The literature very often explicitly resorts to underestimates. Compre-
hensively fixing this problem is beyond the scope of this paper, but we have
started work in this direction, as illustrated by Appendix M in the full version
of this paper. At the same time it is clear that the best attack algorithms known
today are much better than the best attack algorithms known a few years ago,
so it is unreasonable to expect that the algorithms have stabilized. We plan to
periodically issue updated security estimates to reflect ongoing work.

4.1. Meet-in-the-Middle Attack. Odlyzko’s meet-in-the-middle attack [29,
31] on NTRU works by splitting the space of possible keys F into two parts such
that F = F1 ⊕ F2. Then in each loop of the algorithm partial keys are drawn
from F1 and F2 until a collision function (defined in terms of the public key h)
indicates that f1 ∈ F1 and f2 ∈ F2 have been found such that f = f1 + f2 is the
private key.

The number of choices for f is
(
p
t

)(
p−t
t

)
in NTRU Classic and

(
p
2t

)
22t in

Streamlined NTRU Prime. A first estimate is that the number of loops in the
algorithm is the square root of the number of choices of f . However, this estimate
does not account for equivalent keys. In NTRU Classic, a key (f, g) is equivalent
to all of the rotated keys (xif, xig) and to the negations (−xif,−xig), and the
algorithm succeeds if it finds any of these rotated keys. The 2p rotations and
negations are almost always distinct, producing a speedup factor very close to√

2p.
The structure of the NTRU Prime ring is less friendly to this attack. Say

f has degree p − c; typically c is around p/2t, since there are 2t terms in f .
Multiplying f by x, x2, . . . , xc−1 produces elements of F , but multiplying f by
xc replaces xp−c with xp mod xp − x − 1 = x + 1, changing its weight and thus
leaving F . It is possible but rare for subsequent multiplications by x to reenter
F . Similarly, one expects only about p/2t divisions by x to stay within F , for a

250 D. J. Bernstein et al.

total of only about p/t equivalent keys, or 2p/t when negations are taken into
account. We have confirmed these estimates with experiments.

One could modify the attack to use a larger set F , but this seems to lose
more than it gains. Furthermore, similar wraparounds for g compromise the
effectiveness of the collision function. To summarize, the extra term in xp−x−1
seems to increase the attack cost by a factor around

√
t, compared to NTRU

Classic; i.e., the rotation speedup is only around
√

2p/t rather than
√

2p.
On the other hand, some keys f allow considerably more rotations. We have

decided to assume a speedup factor of
√

2(p − t), since we designed some patho-
logical polynomials f with that many (not consecutive) rotations in the set. For
random r the speedup is much smaller. This means that the number of loops
before this attack is expected to find f is bounded by

L =

√(
p

2t

)
22t

/
√

2(p − t). (1)

In each loop, t vectors of size p are added and their coefficients are reduced
modulo q. We thus estimate the attack cost as Lpt. The storage requirement of
the attack is approximately L log2 L. We can reduce this storage by applying
collision search to the meet-in-the-middle attack (see [55,56]). In this case we
can reduce the storage capacity by a factor s at the expense of increasing the
running time by a factor

√
s.

4.2. Streamlined NTRU Prime Lattice. As with NTRU we can embed
the problem of recovering the private keys f, g into a lattice problem. Saying
3h = g/f in R/q is the same as saying 3hf + qk = g in R for some polynomial
k; in other words, there is a vector (k, f) of length 2p such that

(
k f

)
(

qI 0
H I

)
=

(
k f

)
B =

(
g f

)
,

where H is a matrix with the i’th vector corresponding to xi · 3h mod xp −x− 1
and I is the p × p identity matrix. We will call B the Streamlined NTRU Prime
public lattice basis. This lattice has determinant qp. The vector (g, f) has norm
at most

√
2p. The Gaussian heuristic states that the length of the shortest vector

in a random lattice is approximately det(B)1/(2p)
√

πep =
√

πepq, which is much
larger than

√
2p, so we expect (g, f) to be the shortest nonzero vector in the

lattice.
Finding the secret keys is thus equivalent to solving the Shortest Vector

Problem (SVP) for the Streamlined NTRU Prime public lattice basis. The fastest
currently known method to solve SVP in the NTRU public lattice is the hybrid
attack, which we discuss below.

A similar lattice can be constructed to instead try to find the input pair
(m, r). However, there is no reason to expect the attack against (m, r) to be
easier than the attack against (g, f): r has the same range as f , and m has
essentially the same range as g. Recall that Streamlined NTRU Prime does not

NTRU Prime 251

have the original NTRU problem of leaking m(1). There are occasional boundary
constraints on m (see Sect. 3.3), and there is also an R/3 invertibility constraint
on g, but these effects are minor.

4.3. Hybrid Security. The best known attack against the NTRU lattice
is the hybrid lattice-basis-reduction-and-meet-in-the-middle attack described
in [29]. The attack works in two phases: the reduction phase and the meet-
in-the-middle phase.

Applying lattice-basis-reduction techniques will mostly reduce the middle
vectors of the basis [50]. Therefore the strategy of the reduction phase is to
apply lattice-basis reduction, for example BKZ 2.0 [16], to a submatrix B′ of the
public basis B. We then get a reduced basis T = UBY :

⎛

⎝
Iw 0 0
0 U ′ 0
0 0 Iw′

⎞

⎠ ·
⎛

⎝
qIw 0 0
∗ B′ 0
∗ ∗ Iw′

⎞

⎠ ·
⎛

⎝
Iw 0 0
0 Y ′ 0
0 0 Iw′

⎞

⎠ =

⎛

⎝
qIw 0 0
∗ T ′ 0
∗ ∗ Iw′

⎞

⎠

Here Y is orthonormal and T ′ is again in lower triangular form.
In the meet-in-the-middle phase we can use a meet-in-the-middle algorithm

to guess options for the last w′ coordinates of the key by guessing halves of the
key and looking for collisions. If the lattice basis was reduced sufficiently in the
first phase, a collision resulting in the private key will be found by applying a
rounding algorithm to the half-key guesses. More details on how to do this can
be found in [29].

To estimate the security against this attack we adapt the analysis of [26] to
the set of keys that we use in Streamlined NTRU Prime. Let w be the dimension
of Iw and w′ be the dimension of Iw′ . For a sufficiently reduced basis the meet-
in-the-middle phase will require on average

− 1
2

(
log2(2(p − t)) +

∑

0≤a≤min{(}2t,w′)

2a
(

w′

a

)
v(a) log2(v(a))

)
(2)

work, where the log2(2(p − t)) term accounts for equivalent keys and

v(a) =
22t−a

(
p−w′

2t−a

)

22t
(
p
2t

) =
2−a

(
p−w′

2t−a

)

(
p
2t

) . (3)

The quality of a basis after lattice reduction can be measured by the Hermite
factor δ = ||b1||/det(B)1/p. Here ||b1|| is the length of the shortest vector among
the rows of B. To be able to recover the key in the meet-in-the-middle phase,
the (2p − w − w′) × (2p − w − w′) matrix T ′ has to be sufficiently reduced. For
given w and w′ this is the case if the lattice reduction reaches the required value
of δ. This Hermite factor has to satisfy

log2(δ) ≤ (p − w) log2(q)
(2p − (w + w′))2

− 1
2p − (w′ + w)

. (4)

252 D. J. Bernstein et al.

We use the BKZ 2.0 simulator of [16] to determine the best BKZ 2.0 parameters,
specifically the “block size” β and the number of “rounds” n, needed to reach a
root Hermite factor δ. To get a concrete security estimate of the work required
to perform BKZ-2.0 with parameters β and n we use the conservative formula
determined by [26] from the experiments of [17]:

Estimate(β, p, n) = 0.000784314β2 + 0.366078β − 6.125 + log2(p · n) + 7. (5)

This estimate and the underlying experiments rely on “enumeration”; see
Appendix M in the full version of this paper for a comparison to “sieving”.
This analysis also assumes that the probabily of two halves of the key colliding
is 1. We will also conservatively assume this, but a more realistic estimate can
be found in [57]. Using these estimates we can determine the optimal w and w′

to attack a parameter set and thereby estimate its security.
Lastly we note that this analysis is easily adaptable to generalizing the coef-

ficients to be in the set {−d,−(d − 1), . . . , d − 1, d} by replacing base 2 in the
exponentiations in Eqs. 1, 2 and 3 with 2d. In this case however the range of t,
by a generalization of Theorem 2.1, decreases to q ≥ 16(d3 + d2)t.

4.4. Algebraic Attacks. The attack strategy of Ding [20], Arora–Ge [5], and
Albrecht–Cid–Faugère–Fitzpatrick–Perret [1] takes subexponential time to break
dimension-n LWE with noise width o(

√
n), and polynomial time to break LWE

with constant noise width. However, these attacks require many LWE samples,
whereas typical cryptosystems such as NTRU and NTRU Prime provide far less
data to the attacker. When these attacks are adapted to cryptosystems that
provide only (say) 2n samples, they end up taking more than 20.5n time, even
when the noise is limited to {0, 1}. See generally [1, Theorem 7] and [40, Case
Study 1].

5 Parameters

Algorithm 1 searches for (p, q, t, λ), where λ is Sect. 4’s estimate of the pre-
quantum security level for parameters (p, q, t). For example, we used Algorithm 1
to find our recommended parameters (p, q, t) = (761, 4591, 143) with estimated
pre-quantum security 2248. We expect post-quantum security levels to be some-
what lower (e.g., [36] saves a factor 1.1 in the best known asymptotic SVP
exponents), and lattice security remains a tricky research topic, but there is a
comfortable security margin above our target 2128.

In the parameter generation algorithm the subroutine nextprime(i) returns
the first prime number > i. The subroutine viableqs(p, qb) returns all primes q
larger than p and smaller than qb for which it holds that xp−x−1 is irreducible in
(Z/q)[x]. The subroutine mitmcosts uses the estimates from Eq. (1) to determine
the bitsecurity level of the parameters against a straightforward meet-in-the-
middle attack. To find w,w′, β, n we set w to the hybridbkzcost of the previous
iteration (initially 0) and do a binary search for w′ such that the two phases of

NTRU Prime 253

Algorithm 1. Determine parameter sets for security level above �.
Input: Upper bound qb for q, range [p1, p2] for p, lower bound � for security level
Result: Viable parameters p, q and t with security level λ.
p ← p1 − 1 (the prime we are currently investigating)
while p ≤ p2 do

p ← nextprime(p)
Q ← viableqs(p, qb)
for q ∈ Q do

t ← min{�(q − 1)/32� , �p/3�}
λ1 ← mitmcosts(p, t)
if λ1 ≥ � then

Find w, w′, β, n such that BKZ-2.0 costs are approximately equal
to meet-in-the-middle costs in the hybrid attack.
λ2 ← max{hybridbkzcost, hybridmitmcost}
return p, q, t, min{λ1, λ2}

the hybrid attack are of equal cost. For each w′ we determine the Hermite factor
required with Eq. (4), use the BKZ-2.0 simulator to determine the optimal β and
n to reach the required Hermite factor and use Eqs. (5) and (2) to determine the
hybridbkzcost and hybridmitmcost.

Note that this algorithm outputs the largest value of t such that there are
no decryption failures according to Theorem 2.1 and that no more than 2/3 of
the coefficients of f are set. Experiments show that decreasing t to t1 linearly
decreases the security level by approximately t − t1.

The results of the algorithm for qb = 20000, [p1, p2] = [500, 950], and � = 128
can be found in Appendix P in the full version of this paper.

6 Vectorized Polynomial Multiplication

Our optimized implementation of Streamlined NTRU Prime 4591761 takes a
total of 157052 Haswell cycles for encapsulation and decapsulation. Almost 75%
of this time is spent on four multiplications of polynomials modulo xp − x − 1.
(Another 15% is spent on generating a t-small element; see Appendices S and
T in the full version of this paper.) This section explains how we perform each
multiplication in under 30000 cycles.

6.1. Sizes of Inputs and Intermediate Results. Three of the multiplica-
tions are in R/q = (Z/q)[x]/(xp − x − 1). Specifically, encapsulation multiplies
the public key h by r; decapsulation multiplies the ciphertext c by 3f , and later
multiplies h by r′.

Each element of Z/q is conventionally represented as an element of Z between
0 and q − 1. Each element of R/q is then represented as an element of Z[x] with
p coefficients between 0 and q − 1. The product of two such elements in Z[x] has

254 D. J. Bernstein et al.

coefficients between 0 and p(q − 1)2. The product in R = Z[x]/(xp − x − 1) has
coefficients between 0 and 2p(q − 1)2; see the proof of Theorem 2.1. Reducing
these coefficients modulo q produces the desired product in R/q.

A standard improvement, “signed digits” or “signed coefficients”, is to instead
represent each element of Z/q as an element of Z between −(q−1)/2 and (q−1)/2.
This is an improvement because the product in Z[x] then has coefficients between
−p(q − 1)2/4 and p(q − 1)2/4, an interval just half as long as before. This fits
each coefficient into fewer bits, and allows the coefficient arithmetic to use less
precision.

We use signed digits but go much further by observing that, in NTRU and
its variants, each multiplication has an input that is guaranteed to be small.
For example, r in Streamlined NTRU Prime has coefficients in {−1, 0, 1}, so the
product in Z[x] has coefficients between −p(q − 1)/2 and p(q − 1)/2, a much
smaller interval than before. Even better, r has Hamming weight 2t, so the
product in Z[x] has coefficients between −t(q − 1) and t(q − 1), and the product
in R has coefficients between −2t(q − 1) and 2t(q − 1), as in Theorem 2.1. Note
that 2t(q − 1) = 1312740 < 220.4 for Streamlined NTRU Prime 4591761.

The same bounds apply to the multiplication by r′, since r′ is constructed
to have coefficients in {−1, 0, 1} and is (eventually) checked to have Hamming
weight 2t. Similar comments apply to 3f , except for a factor 3 in the bounds.
We actually multiply by f , so identical bounds apply, and then multiply each
output coefficient by 3.

The fourth multiplication is in R/3 = (Z/3)[x]/(xp − x − 1): decapsulation
multiplies e by a precomputed 1/g. For simplicity we currently reuse the same
R/q code for this multiplication in R/3. The output coefficients here are bounded
by 2p in absolute value; 2p is below q/2 for Streamlined NTRU Prime 4591761. We
could save time by performing arithmetic on more tightly packed R/3 elements.

6.2. Choosing Haswell Multiplication Instructions. The Haswell
instruction set includes “AVX” and “AVX2” instructions operating on 256-bit
vectors. We now compare various multiplication instructions to the requirements
of the polynomial multiplications in Streamlined NTRU Prime 4591761. For this
subsection we assume schoolbook multiplication of polynomials; later we con-
sider the impact of polynomial-multiplication techniques that use fewer arith-
metic operations.

The vpmullw instruction performs 16 separate multiplications of integers
modulo 216. A new vpmullw instruction can start every cycle. Using vpmullw to
perform p2 separate multiplications modulo 216 thus takes p2/16 ≈ 36195 cycles.

Polynomial multiplication involves a similar number of additions, which one
might think take extra time. However, the same Haswell core can start a new
vpaddw instruction, which performs 16 separate additions mod 216, twice every
cycle, in parallel with the vpmullw instructions. The multiplication instructions
occupy “port 0” on the core, while the addition instructions are handled by “port
1” and “port 5”; the “ports” in a core operate in parallel.

NTRU Prime 255

A more serious problem is that 216 is not large enough for the output coef-
ficients in Z[x], which as noted above can range from −t(q − 1) = −656370 to
t(q−1) = 656370. One can safely add as many as 14 integers between −(q−1)/2
and (q − 1)/2 while staying within an interval of length 14(q − 1) < 216, but to
safely add more integers one must first “squeeze” the sums. This means reduc-
ing the sums modulo q into a smaller range, although not necessarily “freezing”
them into the minimum range, −2295 through 2295.

The best squeezing method we found uses vpmulhrsw, which performs 16
separate copies of the following operation: multiply two integers between −215

and 215, divide by 215, and round to an integer. We take the second integer as 7;
then the output is round(7x/215) where x is the first integer. This is not always
exactly round(x/4591) but it is close. We then multiply by 4591 and subtract
from x, obtaining something that cannot be much larger than 2295 in absolute
value. The exact bound depends on exactly how big x is allowed to be; for
example, if x is between −32000 and 32000, then the output is between −2881
and 2881. (At the end of the computation we use several more instructions to
freeze x.)

An alternative is to switch to vpmulld, which performs 8 separate multipli-
cations of integers modulo 232, and vpaddd, which performs 8 separate additions
of integers modulo 232. This has the advantage of not requiring any reductions
until the end of the computation, but it has two much larger disadvantages:
first, each instruction handles only 8 operations instead of 16; second, vpmulld
occupies port 0 for 2 cycles instead of 1.

A better alternative is to switch to vfmadd231ps, which performs 8 separate
operations of the form ab+c on single-precision floating-point inputs a, b, c. Port
0 and port 1 can each handle a new vfmadd231ps instruction every cycle, for a
total of 16 ab + c operations every cycle. The advantage over vpmullw is that a
single-precision floating-point number can exactly represent any integer between
−224 and 224. Again no reductions are required until the end of the computation.

There are some slowdowns not discussed above, but quite concise schoolbook-
polynomial-multiplication code using vfmadd231ps performs a multiplication in
R/q in just 50000 cycles. The number of coefficient multiplications here is an
order of magnitude larger than the number of coefficient multiplications inside
NTT-based multiplication in (Z/12289)[x]/(x1024 + 1), but this cycle count is
only 1.6× more than the New Hope software [2], which relies on double-precision
floating-point arithmetic. This illustrates the importance of keeping intermediate
results small, so that one can efficiently use small multipliers without spending
much time on reductions.

6.3. Karatsuba’s Method. Karatsuba’s method uses a linear amount of
extra work to reduce a 2n-coefficient multiplication to three n-coefficient multi-
plications We use specifically the “refined Karatsuba identity” from [9, Sect. 2]:

(F0 + xnF1)(G0 + xnG1) = (1 − xn)(F0G0 − xnF1G1) + xn(F0 + F1)(G0 + G1).

256 D. J. Bernstein et al.

The initial computations of F0+F1 and G0+G1 each take n additions. The final
computations take 5n−3 additions. For simplicity we actually use 5n additions,
zero-padding each intermediate product from 2n−1 coefficients to 2n coefficients.

For schoolbook multiplication our main concern was the Haswell multipli-
cation instructions: 16 single-precision floating-point multiplications per cycle
sounded better than 16 16-bit integer multiplications per cycle, since floating-
point operations have more precision. Karatsuba’s method adds emphasis to the
addition instructions, and here the integer story might sound clearly better:

– The Haswell can start two vpaddw instructions per cycle: as noted above, one
on port 1 and one on port 5. This is a total of 32 separate additions modulo
216 per cycle.

– The Haswell floating-point addition instruction vaddps is limited to port 1,
for a total of 8 single-precision floating-point additions per cycle. One can do
better by using vfmadd231ps for additions (artificially multiplying by 1), for
a total of 16 single-precision floating-point additions per cycle, but this is still
just half as many additions per cycle as the integer case.

– Furthermore, floating-point numbers occupy more space than 16-bit integers,
and floating-point additions have higher latency. These are not problems for
schoolbook multiplication, which (at the size we use) easily fits into level-1
cache and is highly parallel, but Karatsuba’s method uses more space and is
less parallel.

On the other hand, floating-point numbers still have the advantage of more preci-
sion. Two Karatsuba layers applied to integers between −2295 and 2295 produce
results between −9180 and 9180, still fitting into 16-bit integers; meanwhile the
same layers applied to integers in {−1, 0, 1} produce results between −4 and 4;
but then the products can overflow 16-bit integers. There is a vpmulhd instruc-
tion that produces the high 16 bits of each product, but reduction then costs
many more instructions.

Our current software starts with 768-coefficient polynomials (zero-padded
from the 761-coefficient inputs) stored as vectors of 16-bit integers. We use
multiple layers of Karatsuba’s method: specifically, 5 layers, down to 24 × 24
schoolbook multiplications. To avoid reductions, we use floating-point arithmetic
for the schoolbook multiplications, and we squeeze inputs partway through the
Karatsuba layers: specifically, we squeeze 96-coefficient polynomials. We also
convert from integers to floating-point numbers partway through the Karatsuba
layers, trying to minimize the total cost of conversions and Karatsuba additions.
We use floating-point operations to squeeze 192-coefficient products, convert
those products back to integers, and then squeeze intermediate results in the
final Karatsuba additions so as to avoid overflowing 16-bit integers.

6.4. Other Multiplication Methods. Karatsuba’s method is asymptoti-
cally superseded by Toom’s method and various FFT-based methods. For large
input sizes, it is clear that FFT-based methods are the best. However, for small
to medium input sizes, it is unclear which methods or combinations of methods
are best.

NTRU Prime 257

We have analyzed many different combinations of schoolbook multiplication,
refined Karatsuba, the arbitrary-degree variant of Karatsuba for degrees 3, 4, 5,
or 6, and Toom’s method for splitting into 3, 4, 5, or 6 pieces. Many methods
involve multiplications by large constants, spoiling the smallness of our second
polynomial, but this is not a problem in double-precision floating-point arith-
metic. Our best double-precision result so far is 46784 cycles, achieved as fol-
lows: use Toom’s method with evaluation points 0, 1,−1, 2,−2, 3,−3, 4,−4, 5,∞
to reduce a 768 × 768 product to 11 separate 128 × 128 products; then use 5
layers of refined Karatsuba.

We also experimented with variants of the Schönhage–Strassen multiplication
method, starting from the framework of [8, Sect. 9]. The Schönhage–Strassen
multiplication method is like Karatsuba’s method in that it does not involve
multiplications by large constants, but as n → ∞ it uses only n1+o(1) arithmetic
operations. The conventional wisdom is that the Schönhage–Strassen method is
of purely asymptotic interest, but we found a tuned variant to be surprisingly
competitive, around 32000 cycles, again mixing 16-bit integer arithmetic with
floating-point arithmetic.

References

1. Albrecht, M.R., Cid, C., Faugère, J.-C., Fitzpatrick, R., Perret, L.: Algebraic algo-
rithms for LWE problems (2014). https://eprint.iacr.org/2014/1018

2. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange
- A new hope. In: USENIX Security Symposium, pp. 327–343. USENIX (2016)

3. Alperin-Sheriff, J., Apon, D.: Dimension-preserving reductions from LWE to LWR.
IACR Cryptology ePrint Archive 2016:589 (2016)

4. Alwen, J., Krenn, S., Pietrzak, K., Wichs, D.: Learning with rounding, revisited
- new reduction. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol.
8042, pp. 57–74. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
40041-4 4

5. Arora, S., Ge, R.: New algorithms for learning in presence of errors. In: Aceto,
L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6755, pp. 403–415.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22006-7 34

6. Bai, S., Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J.M.,
Schwabe, P., Stehlé, D.: Crystals: cryptographic suite for algebraic lattices (2017).
http://tinyurl.com/znsjrv5

7. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
719–737. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 42

8. Bernstein, D.J.: Multidigit multiplication for mathematicians (2001). https://cr.
yp.to/papers.html#m3

9. Bernstein, D.J.: Batch binary Edwards. In: Halevi, S. (ed.) CRYPTO 2009. LNCS,
vol. 5677, pp. 317–336. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-03356-8 19

10. Bernstein, D.J., Chuengsatiansup, C., Lange, T., van Vredendaal, C.: NTRU
Prime: reducing attack surface at low cost (2017). https://eprint.iacr.org/2016/
461. Full version of this paper

https://eprint.iacr.org/2014/1018
https://doi.org/10.1007/978-3-642-40041-4_4
https://doi.org/10.1007/978-3-642-40041-4_4
https://doi.org/10.1007/978-3-642-22006-7_34
http://tinyurl.com/znsjrv5
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-642-29011-4_42
https://cr.yp.to/papers.html#m3
https://cr.yp.to/papers.html#m3
https://doi.org/10.1007/978-3-642-03356-8_19
https://doi.org/10.1007/978-3-642-03356-8_19
https://eprint.iacr.org/2016/461
https://eprint.iacr.org/2016/461

258 D. J. Bernstein et al.

11. Bernstein, D.J., Lange, T.: eBACS: ECRYPT benchmarking of cryptographic sys-
tems. https://bench.cr.yp.to. Accessed 9 Feb 2017

12. Bernstein, D.J., Lange, T.: Non-uniform cracks in the concrete: the power of free
precomputation. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol.
8270, pp. 321–340. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-42045-0 17

13. Bogdanov, A., Guo, S., Masny, D., Richelson, S., Rosen, A.: On the hardness of
learning with rounding over small modulus. In: Kushilevitz, E., Malkin, T. (eds.)
TCC 2016. LNCS, vol. 9562, pp. 209–224. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49096-9 9

14. Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J.M.,
Schwabe, P., Stehlé, D.: CRYSTALS - Kyber: a CCA-secure module-lattice-based
KEM (2017). https://eprint.iacr.org/2017/634

15. Groot Bruinderink, L., Hülsing, A., Lange, T., Yarom, Y.: Flush, Gauss, and
reload – a cache attack on the BLISS lattice-based signature scheme. In: Gierlichs,
B., Poschmann, A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 323–345. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53140-2 16

16. Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee,
D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0 1

17. Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates (full version)
(2011). http://www.di.ens.fr/∼ychen/research/Full BKZ.pdf

18. Chou, T.: Sandy2x: New Curve25519 speed records. In: Dunkelman, O., Keliher, L.
(eds.) SAC 2015. LNCS, vol. 9566, pp. 145–160. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-31301-6 8

19. Dent, A.W.: A Designer’s guide to KEMs. In: Paterson, K.G. (ed.) Cryptogra-
phy and Coding 2003. LNCS, vol. 2898, pp. 133–151. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-40974-8 12

20. Ding, J.: Solving LWE problem with bounded errors in polynomial time (2010).
https://eprint.iacr.org/2010/558

21. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and
bimodal Gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol.
8042, pp. 40–56. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
40041-4 3

22. Faz-Hernández, A., López, J.: Fast implementation of Curve25519 using AVX2. In:
Lauter, K., Rodŕıguez-Henŕıquez, F. (eds.) LATINCRYPT 2015. LNCS, vol. 9230,
pp. 329–345. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22174-
8 18

23. Güneysu, T., Oder, T., Pöppelmann, T., Schwabe, P.: Software speed records for
lattice-based signatures. In: Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol. 7932,
pp. 67–82. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38616-
9 5

24. Guo, Q., Johansson, T., Stankovski, P.: A key recovery attack on MDPC with CCA
security using decoding errors. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT
2016. LNCS, vol. 10031, pp. 789–815. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53887-6 29

25. Hirschhorn, P.S., Hoffstein, J., Howgrave-Graham, N., Whyte, W.: Choosing
NTRUEncrypt parameters in light of combined lattice reduction and MITM
approaches. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.)
ACNS 2009. LNCS, vol. 5536, pp. 437–455. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-01957-9 27

https://bench.cr.yp.to
https://doi.org/10.1007/978-3-642-42045-0_17
https://doi.org/10.1007/978-3-642-42045-0_17
https://doi.org/10.1007/978-3-662-49096-9_9
https://doi.org/10.1007/978-3-662-49096-9_9
https://eprint.iacr.org/2017/634
https://doi.org/10.1007/978-3-662-53140-2_16
https://doi.org/10.1007/978-3-642-25385-0_1
http://www.di.ens.fr/~ychen/research/Full_BKZ.pdf
https://doi.org/10.1007/978-3-319-31301-6_8
https://doi.org/10.1007/978-3-319-31301-6_8
https://doi.org/10.1007/978-3-540-40974-8_12
https://eprint.iacr.org/2010/558
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/978-3-319-22174-8_18
https://doi.org/10.1007/978-3-319-22174-8_18
https://doi.org/10.1007/978-3-642-38616-9_5
https://doi.org/10.1007/978-3-642-38616-9_5
https://doi.org/10.1007/978-3-662-53887-6_29
https://doi.org/10.1007/978-3-662-53887-6_29
https://doi.org/10.1007/978-3-642-01957-9_27
https://doi.org/10.1007/978-3-642-01957-9_27

NTRU Prime 259

26. Hoffstein, J., Pipher, J., Schanck, J.M., Silverman, J.H., Whyte, W., Zhang, W.:
Choosing parameters for NTRUEncrypt (2015). https://eprint.iacr.org/2015/708

27. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosys-
tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054868

28. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a new high speed public key
cryptosystem (2016). Circulated privately in 1996; put online in 2016 at https://
web.securityinnovation.com/hubfs/files/ntru-orig.pdf

29. Howgrave-Graham, N.: A hybrid lattice-reduction and meet-in-the-middle attack
against NTRU. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 150–
169. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5 9

30. Howgrave-Graham, N., Nguyen, P.Q., Pointcheval, D., Proos, J., Silverman, J.H.,
Singer, A., Whyte, W.: The impact of decryption failures on the security of NTRU
encryption. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 226–246.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 14

31. Howgrave-Graham, N., Silverman, J.H., Whyte, W.: A meet-in-the-middle attack
on an NTRU private key. Technical report, NTRU Cryptosystems (2003). https://
www.securityinnovation.com/uploads/Crypto/NTRUTech004v2.pdf

32. Howgrave-Graham, N., Silverman, J.H., Whyte, W.: Choosing parameter sets for
NTRUEncrypt with NAEP and SVES-3 (2005). https://eprint.iacr.org/2005/045

33. Hülsing, A., Rijneveld, J., Schanck, J., Schwabe, P.: High-speed key encapsulation
from NTRU. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp.
232–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4 12

34. Kirchner, P., Fouque, P.-A.: Comparison between subfield and straightforward
attacks on NTRU (2016). https://eprint.iacr.org/2016/717

35. Kumar, V.: ntruees743ep1 software (2014). Included in [11]
36. Laarhoven, T., Mosca, M., van de Pol, J.: Finding shortest lattice vectors faster

using quantum search. Des. Codes Cryptography 77(2–3), 375–400 (2015)
37. Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lattices.

Des. Codes Cryptography 75(3), 565–599 (2015)
38. Longa, P., Naehrig, M.: Speeding up the number theoretic transform for faster

ideal lattice-based cryptography. In: Foresti, S., Persiano, G. (eds.) CANS 2016.
LNCS, vol. 10052, pp. 124–139. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-48965-0 8

39. Lyubashevsky, V.: Digital signatures based on the hardness of ideal lattice problems
in all rings. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol.
10032, pp. 196–214. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53890-6 7

40. Lyubashevsky, V.: Future directions in lattice cryptography (talk slides) (2016).
http://troll.iis.sinica.edu.tw/pkc16/slides/Invited Talk II-Directions in Practical
Lattice Cryptography.pptx

41. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. J. ACM 60(6), 43 (2013)

42. Meyer, C., Somorovsky, J., Weiss, E., Schwenk, J., Schinzel, S., Tews, E.: Revisit-
ing SSL/TLS implementations: new Bleichenbacher side channels and attacks. In:
USENIX Security Symposium, pp. 733–748. USENIX (2014)

43. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In: STOC, pp. 333–342. ACM (2009)

44. Peikert, C.: “A useful fact about Ring-LWE that should be known better: it is *at
least as hard* to break as NTRU, and likely strictly harder. 1/” (tweet) (2017).
http://archive.is/B9KEW

https://eprint.iacr.org/2015/708
https://doi.org/10.1007/BFb0054868
https://web.securityinnovation.com/hubfs/files/ntru-orig.pdf
https://web.securityinnovation.com/hubfs/files/ntru-orig.pdf
https://doi.org/10.1007/978-3-540-74143-5_9
https://doi.org/10.1007/978-3-540-45146-4_14
https://www.securityinnovation.com/uploads/Crypto/NTRUTech004v2.pdf
https://www.securityinnovation.com/uploads/Crypto/NTRUTech004v2.pdf
https://eprint.iacr.org/2005/045
https://doi.org/10.1007/978-3-319-66787-4_12
https://eprint.iacr.org/2016/717
https://doi.org/10.1007/978-3-319-48965-0_8
https://doi.org/10.1007/978-3-319-48965-0_8
https://doi.org/10.1007/978-3-662-53890-6_7
https://doi.org/10.1007/978-3-662-53890-6_7
http://troll.iis.sinica.edu.tw/pkc16/slides/Invited_Talk_II-Directions_in_Practical_Lattice_Cryptography.pptx
http://troll.iis.sinica.edu.tw/pkc16/slides/Invited_Talk_II-Directions_in_Practical_Lattice_Cryptography.pptx
http://archive.is/B9KEW

260 D. J. Bernstein et al.

45. Peikert, C., Regev, O., Stephens-Davidowitz, N.: Pseudorandomness of Ring-LWE
for any ring and modulus. In: STOC, pp. 461–473. ACM (2017)

46. Pöppelmann, T., Güneysu, T.: Towards practical lattice-based public-key encryp-
tion on reconfigurable hardware. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC
2013. LNCS, vol. 8282, pp. 68–85. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-43414-7 4

47. Roşca, M., Sakzad, A., Stehlé, D., Steinfeld, R.: Middle-product learning with
errors. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp.
283–297. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63697-9 10

48. The Sage Developers. SageMath, the Sage Mathematics Software System (Version
6.5) (2015). http://www.sagemath.org

49. Sakshaug, H.: Security analysis of the NTRUEncrypt public key encryption
scheme (2007). https://brage.bibsys.no/xmlui/bitstream/handle/11250/258846/
426901 FULLTEXT01.pdf

50. Schnorr, C.P.: Lattice reduction by random sampling and birthday methods. In:
Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 145–156. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-36494-3 14

51. Shoup, V.: A proposal for an ISO standard for public key encryption (2001).
https://eprint.iacr.org/2001/112

52. Shoup, V.: OAEP reconsidered. J. Cryptology 15(4), 223–249 (2002)
53. Stam, M.: A key encapsulation mechanism for NTRU. In: Smart, N.P. (ed.) Cryp-

tography and Coding 2005. LNCS, vol. 3796, pp. 410–427. Springer, Heidelberg
(2005). https://doi.org/10.1007/11586821 27

54. Stehlé, D., Steinfeld, R.: Making NTRU as secure as worst-case problems over ideal
lattices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 27–47.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4 4

55. van Oorschot, P.C., Wiener, M.J.: Parallel collision search with cryptanalytic appli-
cations. J. Cryptology 12(1), 1–28 (1999)

56. van Vredendaal, C.: Reduced memory meet-in-the-middle attack against the NTRU
private key. LMS J. Comp. Math. 19, 43–57 (2016)

57. Wunderer, T.: Revisiting the hybrid attack: improved analysis and refined security
estimates (2016). https://eprint.iacr.org/2016/733

https://doi.org/10.1007/978-3-662-43414-7_4
https://doi.org/10.1007/978-3-662-43414-7_4
https://doi.org/10.1007/978-3-319-63697-9_10
http://www.sagemath.org
https://brage.bibsys.no/xmlui/bitstream/handle/11250/258846/426901_FULLTEXT01.pdf
https://brage.bibsys.no/xmlui/bitstream/handle/11250/258846/426901_FULLTEXT01.pdf
https://doi.org/10.1007/3-540-36494-3_14
https://eprint.iacr.org/2001/112
https://doi.org/10.1007/11586821_27
https://doi.org/10.1007/978-3-642-20465-4_4
https://eprint.iacr.org/2016/733

Signatures

Leighton-Micali Hash-Based Signatures
in the Quantum Random-Oracle Model

Edward Eaton1,2(B)

1 ISARA Corporation, Waterloo, Canada
ted.eaton@isara.com

2 University of Waterloo, Waterloo, Canada

Abstract. Digital signatures constructed solely from hash functions
offer competitive signature sizes and fast signing and verifying times.
Moreover, the security of hash functions against a quantum adversary
is believed to be well understood. This means that hash-based signa-
tures are strong candidates for standard use in a post-quantum world.
The Leighton-Micali signature scheme (LMS) is one such scheme being
considered for standardization. However all systematic analyses of LMS
have only considered a classical adversary. In this work we close this
gap by showing a proof of the security of LMS in the quantum random-
oracle model. Our results match the bounds imposed by Grover’s search
algorithm within a constant factor, and remain tight in the multi-user
setting.

Keywords: Post-quantum cryptography · Digital signatures
Random oracles · Hash functions · Multi-user setting

1 Introduction

Hash-based signature schemes have their origins in the paper “Constructing Dig-
ital Signatures from a One Way Function”, by Leslie Lamport [12]. The security
of these schemes is based solely on the security properties of a standard hash
function, as opposed to schemes whose security relies on problems such as the
discrete-logarithm problem on finite groups, or the learning with errors problem.
After Lamport’s one-time scheme, Ralph Merkle improved upon the construction
with the Winternitz one-time scheme and the ability to sign multiple messages
with Merkle trees [15,16]. The Leighton-Micali scheme, or LMS, proposed some
modifications of Merkle’s construction to improve speed and security [13].

Recently, there has been a renewed interest in hash-based signatures in gen-
eral, and LMS in particular. This is partially due to the expiration of the patents
LMS was covered by [13,16], but more importantly because hash-based schemes
are believed to remain secure against a quantum adversary. LMS has been pro-
posed for standardization in a recent IETF draft [14]. In a recent paper, Jonathan
Katz analyzed the security of LMS [11].

c© Springer International Publishing AG 2018
C. Adams and J. Camenisch (Eds.): SAC 2017, LNCS 10719, pp. 263–280, 2018.
https://doi.org/10.1007/978-3-319-72565-9_13

264 E. Eaton

Katz’s analysis used the random-oracle model to establish the security of
LMS. However, as the random-oracle model is insufficient for establishing the
security of a protocol against an adversary with access to a quantum computer,
we must move to the quantum random-oracle model [3].

In this paper, we reformulate and update Katz’s random-oracle model proof
of security for LMS to the quantum random-oracle model. As LMS is a hash-
based scheme, this is particularly important as it is a strong candidate for post-
quantum standardization. We also discuss some of the difficulties that need to be
overcome in order to establish this proof in the quantum random-oracle model.

1.1 The Quantum Random-Oracle Model

Katz’s classical proof of the security of LMS takes place in the random-oracle
model. In his proof, he considers an experiment with an adversary A, who is
attacking the existential-unforgeability of the scheme. Whenever this adversary
wishes to evaluate the n-bit hash function H on a point x, they must instead
query an oracle for the evaluation, and are provided a response which is indistin-
guishable from random. Katz shows that for any adversary that makes q queries,
the probability that A can break the existential-unforgeability of LMS is at most
3q/2n. He establishes this by showing that for the adversary to win a game, one
of a series of events must occur. Then by upper bounding the probability of these
events happening, the upper bound follows.

As the random oracle is meant to replace a hash function, an adversary should
be able to interact with this oracle in a similar way to how they interact with
a hash function. However it has been noted that an adversary with a quantum
computer can interact with a hash function in ways very different from a ‘make
a single query, get a response’ model [3]. If a hash function is implemented on a
quantum computer, then they are able to evaluate the function in superposition,
giving them access to the quantum mapping

UH :
∑

x,y

αx,y|x〉|y〉 �→
∑

x,y

αx,y|x〉|y ⊕ H(x)〉. (1)

A model of security in which we provide access to this mapping to an adversary
is called the quantum random-oracle model.

New issues arise in this model however, and Katz’s proof no longer works.
Katz’s events are defined by considering the queries that the adversary makes
and the responses they receive. However in the quantum random-oracle model,
the queries the adversary makes no longer need be classical, and so the defini-
tion of these events is no longer meaningful. Instead the events must be defined
by considering what classical information the adversary is able to find, rather
than just what they query. Classically, the information the adversary has about
an oracle is entirely specified by the queries being made. But against a quan-
tum adversary, the information an adversary has about an oracle is much more
challenging to classify.

Leighton-Micali Hash-Based Signatures 265

1.2 The Multi-user Setting

The security of a protocol is generally defined in terms of a game between a
challenger C and an adversary A. If the adversary is unable to win the game
with a reasonable number of resources, the protocol is considered secure. For
example in our situation, C may be a signing oracle with a public key, and A
may be trying to create a forged signature on that public key.

However in the real world, attackers do not always want to break a specific
individual’s security. They may be happy to break the security of any of a large
number of entities. To model this, we consider an adversary A that plays a game
with a large number of independent challengers C1, . . . , CU . If A is able to win
the game with any one of these challengers, they are considered to have won.
The multi-user setting was first considered in [2].

For many schemes, it is unknown if an adversary’s task in winning a game
in the multi-user setting is easier or not. In fact there are schemes for which the
adversary’s chances of winning a game increase linearly with the number of chal-
lengers [5]. If a scheme is intended for widespread use, even a linear increase can
be a cause for concern that can necessitate an increase in the security param-
eters. Therefore it is very desirable that any adversary gains no advantage in
breaking the security of a scheme in the multi-user setting.

1.3 Our Contributions

– We consider a Lemma by Unruh [18] on distinguishing quantum oracles. We
make a small modification that generalizes Unruh’s result and addresses ora-
cles that are more commonly considered.

– Develop a heuristic approach to study the properties of a series of composed
random oracles.

– Consider the property of undetectability in the random-oracle model.
– Discuss how these can be applied to LMS in order to upper bound any quan-

tum adversary’s abilities to break the security of the scheme in the quantum
random-oracle model.

– Consider how these results apply to the multi-user setting, where an adversary
attempts to break the security of one of many independent instances of the
scheme.

1.4 Related Work

The approach for proving LMS in the quantum random-oracle model was largely
inspired by the approach in [11], reworking and incorporating modified results
from [18,19]. The quantum-random oracle model was originally defined in [3].
The quantum security of other hash-based constructions, such as Merkle trees
and XMSS (another proposed hash-based standard) has been considered before
in works such as [4,10]. In particular [10] considered quantum query bounds
on multi-target search problems. A comprehensive report comparing XMSS and
LMS [17] has also discussed the need for a quantum random-oracle model proof of

266 E. Eaton

LMS. Other works exploring post-quantum signature schemes whose security is
established in the quantum random-oracle model include [1,3,8]. Undetectability
has been considered before to consider the security of the Winternitz one-time
signature scheme [6].

2 Scheme Description

2.1 One-Time Scheme

The basic component of the full scheme is the one-time (OT) LMS signature
scheme, also known as the Winternitz OT signature scheme. This scheme con-
sists of OT key generation, signing, and verifying algorithms. It uses, as a basic
component, a hash function H : {0, 1}∗ → {0, 1}n, where n is the security
parameter. In our analysis, we will model H as a random oracle.

The parameters are:

– n, the security parameter.
– w, the Winternitz parameter, which is a small divisor of n less than or equal

to eight.

These parameters define the following values:

– E = 2w − 1
– u1 = n/w
– u2 = ��log2 (u1 · E) + 1�/w	
– p = u1 + u2.

For our purposes, string concatenation is denoted by ||.
We can parse a string of n bits as the concatenation of u1 strings, each w

bits long and representing an integer from 0 to E. This allows us to define the
checksum : ({0, 1}w)u1 → ({0, 1}w)u2 function as

checksum(h1, . . . , hu1) =
u1∑

i=1

(E − hi). (2)

We can then see that u2 was chosen so that w · u2 is the maximum bit length of
the result of the checksum function.

The checksum function is constructed so that when we compare two vectors
of u1 integers from 0 to E, (h1, . . . , hu1) and (h′

1, . . . , h
′
u1

), if hi ≤ h′
i for each

i (and there is at least one index where they are not equal), then when the
checksum is viewed as a vector of u2 integers from 0 to E, (c1, . . . , cu2) and
(c′

1, . . . , c
′
u2

), there is an index i such that ci > c′
i. This follows from the fact

that if hi ≤ h′
i for all i (and there is at least one index where they are not equal),

then
∑

(E − hi) >
∑

(E − h′
i), and so when the checksums are converted into

integer vectors, at least one of the ci must be greater than the corresponding c′
i.

We define a function F as a repeated application of H, with each application
also adding some additional information, such as the number of times H has

Leighton-Micali Hash-Based Signatures 267

been applied. We also include s = I||Q||i, a string consisting of an identifying
string I for the owner of the public key, a string Q indicating which instance of
the scheme is being used, and a number i indicating which chain of hashes we
are referring to. This information is used in the multi-user and multi-instance
analysis of the scheme. For 0 ≤ b ≤ f ≤ E, define

Fs(x; b, f) =
{

x if b = f
Fs(H(x||s||b||00); b + 1, f) if b < f.

(3)

The OTLMS algorithms for key generation, signing, and verifying are then
described as follows.

Algorithm 1. OTLMSKeyGen

Input: Security parameter 1n, Winternitz parameter w, identity I, and instance num-
ber Q.

Output: Public key pk, secret key sk.

1: Choose p values x0
1, x

0
2, . . . , x

0
p ∈ {0, 1}n, uniformly at random.

2: For i = 1 to p, let s = I||Q||i and compute xE
i = Fs(x

0
i ; 0, E).

3: Let pk = H(xE
1 ||xE

2 || . . . ||xE
p ||I||Q||01).

4: The one-time public key is pk, and the secret key is sk = (x0
1, . . . , x

0
p).

Algorithm 2. OTLMSSign

Input: Message M ∈ {0, 1}∗, secret key sk, identity I, and instance number Q.
Output: Signature σ.

1: Choose a uniformly random r ∈ {0, 1}n.
2: Compute h = H(M ||r||I||Q||02) and c = checksum(h). Set v := h||c and parse v as

p w-bit integers in {0, . . . , E}, v = (v1, v2, . . . , vp).
3: For i = 1 to p, let s = I||Q||i and compute σi = Fs(x

0
i ; 0, vi).

4: Output signature σ = (r, σ1, . . . , σp).

Algorithm 3. OTLMSVrfy

Input: Message M ∈ {0, 1}∗, public key pk (if being used as a standalone scheme),
signature σ = (r, σ1, . . . , σp), identity I, and instance number Q.

Output: accept or reject if being used as a standalone signature scheme, value pk′ if
being used as part of the full LMS scheme.

1: Compute h′ = H(M ||r||I||Q||02) and c′ = checksum(h′). Set v′ = h′||c′, and parse
v′ as p w-bit integers in {0, . . . , E}, v′ = (v′

1, v
′
2 . . . , v′

p).

2: For i = 1 to p, let s = I||Q||i and compute x′E
i = Fs(σi; v

′
i, E).

3: Let pk′ = H(x′E
1 ||x′E

2 || . . . x′E
p ||I||Q||01). If the scheme is used as part of the full

scheme, output pk′. If it is being used as a standalone signature scheme, output
‘accept’ if and only if pk′ = pk.

The correctness property can verified by inspection. While the OTLMS
scheme can seem complicated by its description it is conceptually simple. For key
generation, the n-bit random values x0

1, . . . , x
0
p are hashed E times to generate

268 E. Eaton

the values xE
1 , . . . , xE

p , which are hashed together to make the public key pk.
Any message (along with a random salt r) is hashed to generate a seeded digest
h′. This digest can then be parsed as a series of p integers from 0 to E. These
are interpreted as p positions in a ‘Winternitz chain’ - the number of times x0

i is
hashed for each i. These repeated hashes are revealed as a signature. To verify a
signature, the revealed values are then hashed the correct number of times more
to recover xE

1 , . . . , xE
p , which are all hashed together to get pk.

Readers may be more familiar with the Lamport one-time signature scheme.
In that scheme, 2n uniformly random n-bit strings form the private key,
(a0,1, a1,1, a0,2, a1,2, . . . a0,n, a1,n). Each of these strings is hashed once to form
the public key, which also consists of 2n bit strings of length n,
(b0,1, b1,1, . . . , b0,n, b1,n). To sign an n-bit message digest h1h2 . . . hn (with hi ∈
{0, 1}) we reveal ahi,i for i ∈ {1, . . . , n}. In this scheme, public and secret keys
are both 2n2 bits long, and the signature is n2 bits long.

The Winternitz one-time scheme and the Lamport one-time scheme are sim-
ilar in the aspect that both interpret the message digest as a specification for
what parts of the secret key should be revealed. Different messages have different
digests, and so while part of the secret key has been revealed by one signature,
not enough information has been revealed to sign a second message after seeing
one signature.

The Winternitz one-time scheme is one of the earliest hash-based schemes,
and offers a considerable advantage in terms of key and signature sizes over the
Lamport one-time scheme. Its public key is only n bits, and ignoring the salt, its
secret key and signature sizes are just p ·n as opposed to n2 or 2n2 (for example,
for n = 256 and w = 8, this is 8448 bits as opposed to 65536 bits). It obtains
this advantage (at the expense of some additional hashes) by grouping together
sections of the salted digest and interpreting these sections as a numeric index
in a series of hashes, rather than considering each bit of the digest separately.

2.2 Full Scheme

In the full scheme, we combine the one-time scheme as a subroutine with a
Merkle tree construction in order to have a full (stateful) signature scheme.

In addition to the parameters for the one-time scheme, we have the parameter
G. We will create 2G separate instances of the one-time scheme.

Again, correctness can be verified by inspection. To understand the full
scheme, we consider a binary tree, the leaves of which are the public keys of
individual one-time schemes. When a message is signed with a one-time scheme,
we include the signature of the one-time scheme (in order to generate the public
key of that instance), as well as the values of the adjacent nodes on each level of
the binary tree in order to be able to recover the value of the root node, which
is the overall public key. These values form what is known as the Merkle tree
verification path.

Leighton-Micali Hash-Based Signatures 269

Algorithm 4. LMSKeyGen

Input: Security Parameter 1n, Winternitz parameter w, Merkle tree height 1G, iden-
tity I

Output: Public key pk, secret key sk

1: For i = 1 to 2G, obtain (pki, ski) ← OTLMSKeyGen(1n, w, I).
2: For i = 1 to 2G, compute y0

i := H(pki||I||i||03).
3: For j = 1 to G:

1. For k = 1 to 2G−j , compute yj
k := H(yj−1

2k−1||yj−1
2k ||k||j||I||04).

4: Output pk = yG
1 as the public key, and sk = (sk1, . . . , sk2G) as the secret key.

5: Initialize Q = 0.

Algorithm 5. LMSSign

Input: Message M ∈ {0, 1}∗, secret key sk, identity I
Output: Signature σ

1: Increment Q by 1. If Q = 2G + 1, STOP; all signatures have been used.
2: Obtain σ′ ← OTLMSSign(M, skQ, I, Q).
3: Let c ← Q. Update σ ← σ′||Q.
4: For j = 0 to G − 1:

1. If c is even, let σ ← σ||yj
c−1 and c ← c/2.

2. If c is odd, let σ ← σ||yj
c+1 and c ← (c + 1)/2.

5: Output σ.

Algorithm 6. LMSVrfy

Input: Message M ∈ {0, 1}∗, public key pk, signature σ = σ′||Q||y0||y1|| . . . ||yG−1,
identity I

Output: accept or reject

1: Obtain pk′ ← OTLMSVrfy(M, σ′, I, Q).
2: Compute y = H(pk′||I||Q||03).
3: Let c ← Q.
4: For j = 0 to G − 1:

1. If c is even, let y ← H(yj ||y||c/2||j + 1||04) and c ← c/2.
2. If c is odd, let y ← H(y||yj ||(c + 1)/2||j + 1||04) and c ← (c + 1)/2.

5: Output accept if and only if y = pk. Output reject otherwise.

3 The (Quantum) Random Oracle

In order to analyze the security of LMS, we need to formulate a few results
about the hardness of various problems in the quantum random-oracle model. In
Sect. 3.1 we establish upper bounds on the success probability in standard games
such as (second-) preimage resistance in a multi-instance and multi-target set-
ting. In Sect. 3.2, we consider the difficulty of a slight variant of second-preimage
resistance, and in Sect. 3.3, we consider the properties of functions defined by a
composition of random oracles.

270 E. Eaton

3.1 Oracle Distinguishing and Marked Item Searching

To establish the hardness of certain fundamental problems, we need a lemma to
upper bound a quantum adversary’s ability to obtain any relevant information
from an oracle. In order to do this, we upper bound an adversary’s ability to
distinguish two oracles, one which has marked items and one which does not.
Furthermore, we would like this upper bound to hold when the adversary has
access to multiple independent oracles.

For �x = (x1, . . . , xK) ∈ ({0, 1}n)K , and z ∈ {0, 1}n, let

δ�x(z) :=

{
1 if z = xi for some i

0 otherwise.
(4)

In other words, δ�x is a function that outputs 1 on any of K marked items
specified by �x. Next we consider the case where there are M independent oracles.
Each of these oracles has K marked items, which are chosen independently.
We want to consider an adversary A capable of querying such an oracle in
superposition who is attempting to tell if any of the oracles have any marked
items.

Lemma 1. For X = (�x1, . . . , �xM) ∈ (({0, 1}n)K)M , z ∈ {0, 1}n, j ∈
{1, . . . , M}, and b ∈ {0, 1}, let UX be the mapping

UX : |z〉|j〉|b〉 �→ |z〉|j〉|b ⊕ δ�xj
(z)〉. (5)

Let A be a quantum algorithm making at most q queries to a mapping. Let
ρb denote X along with the final state of A in the following experiment: Select
X = (�x1, . . . , �xM) $←− (({0, 1}n)K)M . Run A(UX)

b

(). Then

Tr (ρ0, ρ1) ≤ 2q

√
K

2n
. (6)

This lemma is a straightforward generalization of [18, Lemma 13]. Its proof
is very similar, and can be found in Appendix A of the full version of the paper
[7].

The most straightforward application of this Lemma is to upper bound any
adversary’s success probability in identifying a marked item in any of a set of
oracles that can be queried in superposition.

Lemma 2. Let H1, . . . , HM be independent random oracles with domains
D1, . . . , DM onto a common range. Let UH be the unitary mapping

UH :
∑

x,y,i

αx,y,i|x〉|i〉|y〉 �→
∑

x,y,i

|x〉|i〉|y ⊕ Hi(x)〉. (7)

Let S1, . . . , SM be random subsets of the respective Di, such that membership in
Si can be tested by a query to Hi. We call Si the marked items of Hi. Then for

Leighton-Micali Hash-Based Signatures 271

any quantum adversary making q queries to UH , the probability that they find
an x ∈ Si for any i is at most

2q

√

max
i

{ |Si|
|Di|

}
. (8)

This lemma follows from Lemma 1 by noting that any adversary that is able
to find a marked item can certainly distinguish whether a marked item exists.
So the bounds on any adversary in Lemma1 apply, with K being determined by
the maximum fraction of marked items.

3.2 Second-Preimage Resistance with Adversary Prefixes

Also important to the analysis of LMS is a slight modification of second-preimage
resistance, where the adversary is able to specify a prefix of the element whose
second preimage they seek. We define this in terms of a game.

Game 1 (Second-Preimage Resistance with Adversary Prefixes).

1. C chooses a random function H : {0, 1}∗ → {0, 1}n from all possible mappings,
as well as a random suffix r′ ← {0, 1}n. C provides A1 with oracle access to
H.

2. A1 makes some queries to H, and then outputs some quantum state ρ and a
classical message M ′.

3. C runs A2, with access to H,M ′, r′, and ρ.
4. A2 makes some queries to H, and then submits an M∗, r∗ ∈ {0, 1}∗ ×{0, 1}n,

with M ′ = M∗.

We say that the adversary A = (A1,A2) has won if H(M∗||r∗) = H(M ′||r′).
Classically, it is not difficult to show that an adversary does not obtain much

of an advantage. In Katz’s paper [11], he tackles this issue through the use of ran-
dom oracle reprogramming. Specifically, he considers the challenger that, when
the adversary submits their prefix M ′, modifies H to H ′ so that H ′(M ′||r′) = h′,
where r′ and h′ are uniformly random n-bit strings that were chosen at the
beginning of the game. The adversary will only notice that C isn’t playing by
the ‘real’ rules of the game if they had previously queried M ′||r′, and since r′ is
not disclosed to the adversary in advance, this happens with probability ≤ q

2n .
Then the probability that an adversary queries a different M∗||r∗ such that
H(M∗||r∗) = h′ is simply q/2n. So we upper bound the probability that the
adversary wins this game by 2q/2n.

It is much more difficult to prove a similar statement in the quantum setting
however. In Katz’s proof, an essential step was to reprogram the oracle to reduce
to something that more closely resembled second-preimage resistance. Since the
adversary has a limited number of queries, they don’t have any information
about what is reprogrammed with high probability. In the quantum case how-
ever, this is much more challenging. Since the adversary can make a quantum

272 E. Eaton

superposition of queries, an adversary can make a query giving them some infor-
mation about the entire oracle. However, the basic approach is still sound—if
C selects a (r′, h′) and sets H ′(M ′||r′) = h′, any adversary should be unable to
notice this reprogramming.

For any oracle H, let HM ′||r′ �→h′ denote the oracle identical to H except that
the input M ′||r′ maps to h′.

Game 2.

1. C chooses a random function H : {0, 1}∗ → {0, 1}n from all possible mappings,
as well as a random suffix and outputs r′, h′ ← {0, 1}n. C provides A1 with
oracle access to H.

2. A1 makes some queries to H, and then outputs some quantum state ρ and a
classical message M ′.

3. C runs A2, with access to HM ′||r′ �→h′ ,M ′, r′, and ρ.
4. A2 makes some queries to HM ′||r′ �→h′ , and then submits an M∗, r∗ ∈ {0, 1}∗×

{0, 1}n, with M ′ = M∗.

A2 wins Game 2 if H(M∗||r∗) = h′.

Lemma 3. For any A = (A1,A2) making collectively at most q queries to a
random oracle H,

∣∣∣ Pr
Game 1

[A2wins] − Pr
Game 2

[A2wins]
∣∣∣ ≤ 4q

2n/2
. (9)

Roughly speaking, the proof of this lemma follows a technique also seen
in [18]. The idea is to introduce two subgames, and show that the difference
in the adversary’s success probabilities for these games and Games 1 and 2 is
at most 2q/2n/2. This follows from Lemma 1 by showing that any adversary
distinguishing between the subgames can also win the game in Lemma 1 with
the same probability. The full proof can be found in Appendix B of the full
version of the paper [7].

We can also imagine the situation where a single adversary A plays Game 1
with multiple challengers C1, . . . , CU with access to multiple independent quan-
tum random oracles H1, . . . , HU . Then note that the adversary’s chances of
success do not increase at all with U . This can be established by considering the
same subgames in this multi-user setting. The arguments relating how close the
sub-games are still apply, because Lemma 1 does not depend on the number of
oracles, as long as each oracle is independent.

3.3 Random Oracle Composition

In the description of LMS, and occasionally in other constructions, a function is
defined by a composition of independent random oracles. It would be convenient
for this function to itself be a random oracle, or at least have certain properties of
a random oracle, from the perspective of both classical and quantum adversaries.
However, this is not quite the case.

Leighton-Micali Hash-Based Signatures 273

Let O1, . . . ,OE be independent random oracles mapping n-bit strings to n-bit
strings. Consider the oracle O = OE ◦OE−1 ◦ · · · ◦O1, O : {0, 1}n → {0, 1}n. We
want to consider properties of the combined oracle O with respect to standard
properties such as preimage resistance.

Lemma 4. Let O be a random mapping from a domain D of size N to a
codomain R of size M . Then the expected size of the image of D under O is

M

(
1 −

(
1 − 1

M

)N
)

. (10)

Proof. Let R = {1, . . . , M}. For each 1 ≤ i ≤ M , let Xi be a binary random
variable where Xi is 1 if there is an x ∈ D such that O(x) = i, and 0 otherwise.
It is not hard to see that E[Xi] = 1 − (M−1

M)N . Then the expected number of
elements in the codomain that are hit is E[X1 + X2 + · · · + XM] = E[X1] +
E[X2] + · · · + E[XM], from which the result follows. ��

Writing N = α · M , for sufficiently large N and M , Lemma 4 tells us that
the fraction of the codomain that is hit is very close to

(
1 − 1

eα

)
, (11)

where e ≈ 2.71828 is Euler’s constant. So when k oracles, each of which maps to
a codomain of size 2n, are composed, the overall oracle maps to an image that
has size roughly

2n ·
(

1 −
(

1
e

)1−(1/e)1−(1/e)... }
k

)
. (12)

For example, for k = 256, this tells us that after 256 applications of inde-
pendent random oracles, the final range will be very close to 2−7 the size of the
original domain. For k = 1024, we have the size of the final range is close to 2−9

of the original size.

Remark 1. For the rest of this document we will assume that the actual com-
pression for the composed oracles in LMS does not shrink more than four times
the expected rate. We will also assume that no more than 256 oracles are used,
as this is the most used in any proposed set of LMS parameters. We will assume
that the size of the range of 256 applications of an oracle is no smaller than
2−10 · 2n, which is over four times smaller than the expected size of roughly
2−7 · 2n. This amount of compression is very unlikely to actually occur, and as
actually distinguishing the number of marked items in an oracle is also a expo-
nentially difficult problem, this approach greatly overestimates the compression
and the adversary’s ability to take advantage of that compression. A much more
careful analysis could result in a slightly tighter bound in Theorem1. However,
as this would provide at most a few bits of security in the analysis, we leave this
for future work. For further details on the compression of oracles, we refer to
Appendix C in the full version of this paper [7].

274 E. Eaton

3.4 Undetectability

Often in protocols with random oracles, a value y is selected by choosing a
uniformly random point x in the domain of the random oracle H, and setting
y = H(x). While the distribution of y is certainly uniform (as H is uniform),
the joint distribution of (H, y) is not uniform. Therefore an adversary A that
has access to the random oracle may be able to tell if a point in the codomain
was chosen uniformly at random or if it was chosen by hashing a uniform point
in the domain. This is known as the undetectability property.

Game 3 (Undetectability).

1. C generates a random oracle H : {0, 1}n → {0, 1}n, and selects a uniformly

random bit b
$←− {0, 1}.

2. – If b = 0, C sends a uniformly random y ∈ {0, 1}n to A and provides oracle
access to H.

– If b = 1, C selects a uniformly random x ∈ {0, 1}n and sends y = H(x) to
A, and provides oracle access to H.

3. After some queries to H, A outputs a bit b′.

A is said to have won Game 3 if b′ = b.

Lemma 5. Let A be a quantum algorithm with oracle access to a random oracle
H, making at most q queries. Then

∣∣∣ Pr
Game 3

[A wins] − 1/2
∣∣∣ ≤ 2q/2n/2. (13)

Roughly speaking, this lemma is shown by establishing that the only real way
to distinguish whether a point in the codomain was chosen uniformly at random
or by first choosing a preimage is to actually find that preimage. Finding the
preimage can then be tightly reduced to Lemma 1. Furthermore, as Lemma 1
does not depend on the number of instances of the problem, as long as each
oracle is independent, the result stays the same when A is playing multiple,
independent instances of Game 3. The full proof can be found in Appendix D of
the full version of this paper [7].

Similar to Lemma 3, we can imagine an adversary A playing multiple
instances of Game 3 with independent oracles. Then note that this gives no
advantage to the adversary’s success probability, even if b is chosen to be the
same in each game. This is because the reduction to Lemma 1 still holds, with
separate marked items in separate independent oracles.

4 Scheme Proof

4.1 OTLMS Proof

Throughout this section, a variable with a ∗ will refer to a value derived from
the forgery (M∗, σ∗). A variable with ′ refers to a value derived in the course

Leighton-Micali Hash-Based Signatures 275

of the signing query. If neither are present, it refers to a value derived in the
key generation algorithm. We define security in terms of the standard notion of
existential unforgeability under chosen-message attack. This standard notion of
security is defined in terms of the following interaction between an adversary A
and a challenger C.

Game 4 (One-time existential-unforgeability under chosen-message
attack (OTeucma)).

1. C chooses a random oracle H : {0, 1}∗ → {0, 1}n from all possible mappings
(considering that there is in principle an upper bound on the length of binary
strings A will ask for evaluation on). C then creates a quantum random oracle
that provides quantum access to H as in Eq. 1.

2. C runs OTKeyGen(1n, w, I,Q), obtaining (pk, sk), and sends pk to A.
3. A makes some queries to the quantum random oracle and then submits a

message M ′ for signing.
4. C runs OTSign(M ′, sk, I,Q) and sends the resulting signature, σ′ to A.
5. A makes some queries to the quantum random oracle, then submits a message-

signature pair, (M∗, σ∗), such that M∗ = M ′.

We say that A has won the OTeucma game if OTVrfy(M∗, σ∗, pk, I,Q) →
accept. To bound the adversary’s ability to win this, we introduce a separate
game:

Game 5 (One-time Simulation).

1. C Chooses a random oracle H : {0, 1}∗ → {0, 1}n, as well as random strings
r′, h′ ∈ {0, 1}n.

2. C computes c′ = checksum(h′) and sets (v′
1, . . . , v

′
p) = h′||c′. C chooses p values

x
v′
1

1 , . . . , x
v′
p

p uniformly at random from {0, 1}n.
3. For i = 1 to p, let s = I||Q||i and compute xE

i = Fs(x
v′
i

i ; v′
i, E).

4. Send pk = H(xE
1 || . . . ||xE

p ||I||Q||01) to A and provide oracle access to H.
5. A makes oracle queries and submits a message M ′ for signing.
6. C modified H so that H(M ′||r′||I||Q||02) = h′, and sends (r′, xv′

1
1 , . . . , x

v′
p

p) as
the signature.

7. After further oracle queries, A submits a message-signature pair (M∗, σ∗)
such that M∗ = M ′.

As before, A wins this game if OTLMSVrfy(M∗, σ∗, pk, I,Q) → accept.

Lemma 6 (Simulation Difference). Let A be a quantum adversary, making
at most q queries to a quantum oracle H. Then

∣∣∣∣ Pr
Game 4

[A wins] − Pr
Game 5

[A wins]
∣∣∣∣ ≤ 516q/2n/2. (14)

276 E. Eaton

Proof. The difference between these two games is established by applications of
Lemmas 3 and 5. There are two differences between Games 4 and 5. The first is
that the value h′ for the signing query is chosen uniformly at random, and H is
later modified so that H(M ′||r′||I||Q||02) = h′. This introduces a difference of
at most 4q/2n/2 by Lemma 3. The second difference is that values x

v′
i

i are chosen
uniformly at random, rather than as the output of F (x0

i ; 0, v′
i) for i = 1 to p.

This introduces a difference of at most 256 ·2q/2n/2. This can be seen by a game
hopping argument. In the original game, x

v′
i

i is chosen by computing F (x0
i ; 0, v′

i)
for a uniform x0

i . In the next game, it is chosen by computing F (x1
i ; 1, v′

1) for
a uniform x1

i . By Lemma 5, this only introduces a difference of 2q/2n/2. Then
we repeatedly apply this lemma until we choose x

v′
i

i uniformly. As E is at most
256, this needs to be applied at most 256 times, and so the difference is at
most 2 · 256q/2n/2. Thus the overall separation between these games is at most
(4 + 2 · 256)q/2n/2. ��
Theorem 1. For any adversary A, making at most q quantum queries to the
random oracle, the probability that they win Game 4 is at most

580q/2n/2. (15)

Proof. This proof is established by showing that the probability an adversary
wins Game 5 is at most 64q/2n/2 so that the result follows from Lemma 6.

To upper bound A’s chances of winning Game 5, we define a few subsets of
the domain of H.

– S0,i,j := {x ∈ {0, 1}∗ : x = x′||I||Q||i||j||00, FI||Q||i(x; j, E) = xE
i }

– S1 := {x ∈ {0, 1}∗ : x = x′E
1 || . . . ||x′E

p ||I||Q||01, H(x) = pk,

(x′E
1 || . . . ||x′E

p) = (xE
1 || . . . ||xE

p)}
– S2 := {x ∈ {0, 1}∗ : x = M ||r||I||Q||02, H(x) = h′,M = M ′}.

Then we define the following three events that may occur over the course of
the game OTeucma.

– E0 is the event that A has complete knowledge of some x ∈ S0,i,j for some i
and j where v′

i > j.
– E1 is the event that A has complete knowledge of some x ∈ S1.
– E2 is the event that A has complete knowledge of some x ∈ S2.

These sets correspond to the (second-) preimages that an adversary will have
to find in order to break the security of LMS. These events then represent an
adversary actually finding such a preimage. Classically, an adversary finding
a relevant preimage is exactly characterized by the adversary querying such a
point to the random oracle. In a quantum setting however, this equivalence fails
as superposition queries are allowed. Instead we characterize the event of an
adversary finding such a preimage by whether such a value is derived when run-
ning the verification algorithm OTLMSVrfy. This is what we mean by “complete
knowledge”.

Leighton-Micali Hash-Based Signatures 277

We will establish that if (M∗, σ∗) is a valid forgery, at least one of the three
events has occurred. We do this by establishing that in the event of a forgery
where events E1 and E2 did not occur, E0 must have happened.

We are assuming that A has succeeded in submitting a forgery and that
events E1 and E2 have not occurred. We will examine the properties of (M∗, σ∗)
and show that E0 must have occurred.

When the adversary submits a forgery (M∗, σ∗), we can run the verification
algorithm on this pair. Then the following values are derived in the process of
running the verification algorithm:

– M∗||r∗||I||Q||02
– x∗E

1 || . . . ||x∗E
p ||I||Q||01

– σ∗
i ||I||Q||i||v∗

i ||00, for i = 1 to p.

As E1 did not occur, and since the verification algorithm accepts (M∗, σ∗),
then we must have that H(x∗E

1 || . . . ||x∗E
1 ||I||Q||01) = pk. So we must have that

x∗E
1 || . . . ||x∗E

p ||I||Q||01 /∈ S1, and so x∗E
1 || . . . ||x∗E

p = xE
1 || . . . ||xE

p .
Similarly, E2 did not occur, and since M∗ = M ′, it must be the case that

H(M∗||r∗||I||Q||02) = h′.
So we know that h∗ = h′, and that x∗E

1 || . . . ||x∗E
p = xE

1 || . . . ||xE
p . Note that

by the construction of the checksum, when we compare v∗ and v′, there must be
an index i for which v∗

i < v′
i. But then since we have that x∗E

i = xE
i , we can see

that this means that σ∗
i ||I||Q||i||v∗

i ||00 ∈ S0,i,v∗
i

and E0 has occurred.
All we need to do now is provide an upper bound on the probability of any

of the events occurring. To do this, we establish that for any of these events to
occur A must solve some quantum search problem on a distinct search space.

Event E0. For event E0, we want to consider the adversary’s ability to find
any new x, i, and j, with j < v′

i and x ∈ S0,i,j . Note that finding an x ∈ S0,i,j

implies complete knowledge of some x′ ∈ S0,i,k, for j ≤ k < E. In particular, it
implies complete knowledge of some x ∈ S0,i,v′

i−1. So we need to upper bound
the adversaries ability to find such an x.

From the signing query, the adversary knows precisely one element of S0,i,v′
i
.

However, we can imagine an adversary who knows this set entirely. We will show
that finding an element of S0,i,v′

i−1 is still difficult.
From Sect. 3.3, we know that when considering the function F as a composi-

tion of random oracles, we have an expectation on the overall compression from
the domain to the codomain, based on the number of applications of H in the
construction of F . For typical parameter sets, this is less than 256 times, which
corresponds to a compression of roughly 27 times. As noted in Remark 1, we will
take a conservative approach and use a compression factor of four times this,
210. One consequence is that S0,i,v′

i
will have size less than 210 (as the remaining

oracles then compress this down to a point).
So we can imagine an adversary that for each i, knows entirely the set S0,i,v′

i
.

The adversary then needs to find an element in {0, 1}n that H(·||I||Q||i||v′
i−1||0)

maps that point to an element in S0,i,v′
i
. As S0,i,v′

i
has size less than 210, a fraction

278 E. Eaton

less than 210 of the domain maps to these points. So the adversary needs to find
a marked item where the fraction of marked items is at most 210−n.

Event E1. Event E1 is simply the adversary’s ability to find some distinct
x = xe

1|| . . . ||xe
p that maps to pk under H(·||I||Q||01), when the adversary is

already given such an element. This is a game of second-preimage resistance, so
the adversary must find a marked item in the oracle H(·||I||Q||01), where the
fraction of marked items is 2−n.

Event E2. Event E2 refers to the adversary’s ability to find a distinct M∗ and
any r∗ such that H(M∗||r∗||I||Q||02) = H(M ′||r′||I||Q||02), where M ′ is chosen
by the adversary and r′ is chosen uniformly at random. But this is precisely the
game of second-preimage resistance with adversary prefixes with respect to the
random oracle H(·|| · ||I||Q||02). So, the adversary’s chances of succeeding differ
at most by 4q/

√
2n from the challenge of finding a marked item in the oracle

H(·|| · ||I||Q||02), where h′ is chosen in advance, and the oracle is reprogrammed.
In this case the fraction of marked items is 2−n.

We have that the adversary’s chances of succeeding are at most 4q/2n/2 from
attempting to find a marked item in any of the distinct oracles defined by I, Q,
and i||v′

i − 1 for i = 1 to p. As the fraction of marked items in any of these
oracles is at most 210−n, the chances of any adversary’s success are at most

Pr
Game 5

[A wins] ≤ 2q
√

210−n = 64q/2n/2. (16)

And so
Pr

Game 4
[A wins] ≤ 516q/2n/2 + 64q/2n/2 = 580q/2n/2. (17)

��

4.2 Security Proof for Full Version and in the Multi-user Setting

Proving the security of the full version is quite simple having developed the
techniques and lemmas used to prove the security of the one-time scheme. By
the construction of LMS, all oracles contain different identifying information. We
can thus prove security by showing that for an adversary to break the security,
they must find a marked item in one of these oracles, and calculating the largest
fraction of marked items.

To do this we can use Lemmas 5 and 3 to simulate a signing algorithm similar
to how we did in Game 5, but instead for each one-time instance of the signature
scheme. As these lemmas can be applied in a multi-instance model without
affecting the parameters, we can split up the domain by instance number and
identifier information to complete the proof in the full version of the scheme and
in the multi-user setting without additional theory.

Theorem 2. Let A be an adversary attacking the security of the full LMS
scheme in the multi-user setting. If A makes at most q queries, then the proba-
bility they break the existential unforgeability of any of the instances of LMS is
at most

580q/2n/2. (18)

Leighton-Micali Hash-Based Signatures 279

The complete proof of this theorem may be found in Appendices E and F of the
full version of the paper [7].

5 Future Work and Discussion

Grover’s algorithm implies that any random-oracle analysis of LMS can show
that there exists an adversary whose success probability of after q queries is
2q/2n/2. While the bounds in Theorems 1 and 2 asymptotically match this, there
is a difference of a constant factor of 290, suggesting a possible loss in roughly
8 bits of security over what is expected based off of the most obvious attacks.
However it is not clear if there is an attack on LMS that gives such an advantage.
This loss in tightness largely comes from applying Lemma 5 a constant number
of times in the proof of Lemma 6. More careful analysis in the proof of Lemma6
could reduce this constant factor.

In our proof, we also had to assume that the number of collisions in the
Winternitz chains was much higher than should ever be the case in order to make
up for the heuristic technique of assuming how much they actually decreased
by. Better understanding of the statistics of repeated application of independent
random mappings could greatly assist in tightening up this analysis for a simpler
understanding of the Winternitz chains.

In [9], the author proved the security of LMS in a model where the compres-
sion function of a hash function is assumed to be a random oracle, rather than
the entire hash function itself. This is particularly relevant when LMS is imple-
mented with hash functions such as the SHA-2 series where the hash function
does not entirely behave as a random oracle, due to the Merkle-Damg̊ard con-
struction. Elevating this analysis to the quantum random-oracle model would
provide greater security assurance for the use of LMS with such a hash function
in practice.

Acknowledgments. Thanks to Gus Gutoski and Alfred Menezes for insightful dis-
cussion, as well as their helpful editorial skills. Additional thanks to Philip Lafrance.

References

1. Alkim, E., Bindel, N., Buchmann, J., Dagdelen, Ö., Eaton, E., Gutoski, G.,
Krämer, J., Pawlega, F.: Revisiting TESLA in the quantum random oracle model.
In: Lange, T., Takagi, T. (eds.) PQCrypto 2017. LNCS, vol. 10346, pp. 143–162.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59879-6 9

2. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-48329-2 21

3. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.:
Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-25385-0 3

https://doi.org/10.1007/978-3-319-59879-6_9
https://doi.org/10.1007/3-540-48329-2_21
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-25385-0_3

280 E. Eaton

4. Boneh, D., Zhandry, M.: Secure signatures and chosen ciphertext security in a
quantum computing world. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013.
LNCS, vol. 8043, pp. 361–379. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40084-1 21

5. Chatterjee, S., Menezes, A., Sarkar, P.: Another look at tightness. In: Miri, A.,
Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 293–319. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-28496-0 18

6. Dods, C., Smart, N.P., Stam, M.: Hash based digital signature schemes. In: Smart,
N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 96–115. Springer,
Heidelberg (2005). https://doi.org/10.1007/11586821 8

7. Eaton, E.: Leighton-micali hash-based signatures in the quantum random-oracle
model. Cryptology ePrint Archive, Report 2017/607 (2017). http://eprint.iacr.org/
2017/607

8. Eaton, E., Song, F.: Making existential-unforgeable signatures strongly unforge-
able in the quantum random-oracle model. In: 10th Conference on the Theory of
Quantum Computation, Communication, and Cryptography (TQC), pp. 147–162
(2015)

9. Fluhrer, S.: Further analysis of a proposed hash-based signature standard. Cryp-
tology ePrint Archive, Report 2017/553 (2017)

10. Hülsing, A., Rijneveld, J., Song, F.: Mitigating multi-target attacks in hash-based
signatures. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC
2016. LNCS, vol. 9614, pp. 387–416. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49384-7 15

11. Katz, J.: Analysis of a proposed hash-based signature standard. In: Chen, L.,
McGrew, D., Mitchell, C. (eds.) SSR 2016. LNCS, vol. 10074, pp. 261–273.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49100-4 12

12. Lamport, L.: Constructing digital signatures from a one way function. Technical
report, October 1979. https://www.microsoft.com/en-us/research/publication/
constructing-digital-signatures-one-way-function/

13. Leighton, F., Micali, S.: Large provably fast and secure digital signature schemes
based on secure hash functions, 11 July 1995. https://www.google.com/patents/
US5432852. US Patent 5,432,852

14. McGrew, D., Curcio, M., Fluhrer, S.: Hash-Based Signatures. Internet-Draft draft-
mcgrew-hash-sigs-06, Internet Engineering Task Force, March 2017. In press.
https://datatracker.ietf.org/doc/html/draft-mcgrew-hash-sigs-06

15. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, New York (1990). https://doi.org/10.1007/
0-387-34805-0 21

16. Merkle, R.C.: Method of providing digital signatures, 5 January 1982. https://
www.google.com/patents/US4309569. US Patent 4,309,569

17. Panos Kampanakis, S.F.: LMS vs XMSS: A comparison of the stateful hash-based
signature proposed standards. Cryptology ePrint Archive, Report 2017/349 (2017)

18. Unruh, D.: Quantum position verification in the random oracle model. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 1–18. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1 1

19. Unruh, D.: Revocable quantum timed-release encryption. J. ACM 62(6), 49:1–
49:76 (2015). http://doi.acm.org/10.1145/2817206

https://doi.org/10.1007/978-3-642-40084-1_21
https://doi.org/10.1007/978-3-642-40084-1_21
https://doi.org/10.1007/978-3-642-28496-0_18
https://doi.org/10.1007/11586821_8
http://eprint.iacr.org/2017/607
http://eprint.iacr.org/2017/607
https://doi.org/10.1007/978-3-662-49384-7_15
https://doi.org/10.1007/978-3-662-49384-7_15
https://doi.org/10.1007/978-3-319-49100-4_12
https://www.microsoft.com/en-us/research/publication/constructing-digital-signatures-one-way-function/
https://www.microsoft.com/en-us/research/publication/constructing-digital-signatures-one-way-function/
https://www.google.com/patents/US5432852
https://www.google.com/patents/US5432852
https://datatracker.ietf.org/doc/html/draft-mcgrew-hash-sigs-06
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/0-387-34805-0_21
https://www.google.com/patents/US4309569
https://www.google.com/patents/US4309569
https://doi.org/10.1007/978-3-662-44381-1_1
http://doi.acm.org/10.1145/2817206

Efficient Post-Quantum Undeniable Signature
on 64-Bit ARM

Amir Jalali1(B), Reza Azarderakhsh1, and Mehran Mozaffari-Kermani2

1 Department of Computer and Electrical Engineering and Computer Science,
Florida Atlantic University, Boca Raton, FL, USA

{ajalali2016,razarderakhsh}@fau.edu
2 Department of Computer Science and Engineering,

University of South Florida, Tampa, FL, USA
mmozaff@gmail.com

Abstract. We present a full-fledged, highly-optimized, constant-time
software for post-quantum supersingular isogeny-based undeniable signa-
ture (SIUS) on the ARMv8 platforms providing 83- and 110-bit quantum
security levels. To the best of our knowledge, this work is the first empir-
ical implementation of isogeny-based quantum-resistant undeniable sig-
nature presented to date. The proposed software is developed on the top
of our optimized hand-written ARMv8 assembly arithmetic library and
benchmarked on a variety of platforms. The entire protocol runs less than
a second on Huawei Nexus smart phone, providing 83-bit quantum secu-
rity level. Moreover, our signature and public key sizes are 25% smaller
than the original SIUS scheme. We remark that the SIUS protocol, sim-
ilar to other isogeny-based schemes, suffers from the excessive number
of operations, affecting its overall performance. Nonetheless, its signifi-
cantly smaller key and signature sizes make it a promising candidate for
post-quantum cryptography.

Keywords: ARM assembly
Supersingular isogeny-based cryptosystem
Undeniable signature

1 Introduction

To prepare for the advent of quantum computers, the state-of-the-art research
work has been investigating various public-key cryptography primitives which
are assumed to be resistant against Shor’s quantum algorithm [27]. One family
of these primitives is based on the hardness of computing isogenies between
two isogenous supersingular elliptic curves. Elliptic curve isogenies were first
proposed by Couveignes [10] as an alternative underlying problem of elliptic
curve cryptography. Construction of public-key cryptography from the isogeny
of regular elliptic curves was introduced by Rostovtsev and Stolbunov [26,29].
However, the proposed scheme was later found to be unassured due to the sub-
exponential quantum attack proposed by Childs et al. [8]. Cryptographic schemes
c© Springer International Publishing AG 2018
C. Adams and J. Camenisch (Eds.): SAC 2017, LNCS 10719, pp. 281–298, 2018.
https://doi.org/10.1007/978-3-319-72565-9_14

282 A. Jalali et al.

based on supersingular elliptic curve isogenies were also applied in cryptographic
hash functions by Charles-Lauter-Goren [6] which proposed the hardness of path-
finding in supersingular isogeny graphs. Isogenies on elliptic curves have been
used as an assumption for other cryptographic systems such as Diffie-Hellman
key-exchange [18], authenticated encryption [28], and signatures [14,19,31]. To
date, the best known classical and quantum attacks against the supersingular
isogeny problem have exponential complexity, making this cryptosystem to be
one of the auspicious quantum-resistant candidates. Furthermore, isogeny-based
schemes are constructed over elliptic curves and provide significantly smaller
key size compared to other quantum-resistant candidates. This is desirable for
the applications where communication bandwidth is restricted. Recently, it is
pointed out that isogeny-based cryptosystems can be utilized with even smaller
keys using key compression techniques [4,9].

Recent attempts to efficiently implement isogeny-based key-exchange proto-
col, in software [3,9,23] and hardware [22], show that this cryptography primi-
tive can be efficiently implemented on different platforms with reasonable per-
formance metrics. However, the performance evaluation of other supersingular
isogeny-based schemes such as undeniable signature has not been investigated
in depth. In this work, we present a constant-time software for the signature
and confirmation/disavowal operations of supersingular isogeny-based undeni-
able signature (SIUS) which was first introduced by Jao and Soukharev [19].
Furthermore, we benchmark our software on a variety of platforms to evalu-
ate the performance of a quantum-resistant undeniable signature as a reference.
Additionally, we develop an optimized version of the SIUS scheme for the 64-bit
ARM platforms with a special focus on the ARMv8 Cortex-A57 processor. The
proposed implementation is developed based on the projective coordinates and
curve coefficients in analogy with the projective formulas which are proposed in
[9]. We plan to make our software publicly available in the near future.

The main contributions of this paper are summarized as follows:

– We propose a new set of inversion-free projective formulas for computing
degree 5 isogenies of supersingular Montgomery curves. Previous implemen-
tations of isogeny-based cryptosystems mainly focused on Diffie-Hellman key
exchange protocol (SIDH) which is constructed over the two subgroups of
points on elliptic curves; accordingly, efficient formulas for 3 and 4 degree
isogenies have been studied and implemented in [9,12,23]. However, since the
isogeny-based undeniable signature is constructed on three such subgroups of
points, in this work, we develop projective degree 5 isogenies formulae and
implement them efficiently on our target processor.

– Taking advantage of reduced curve coefficient technique in Kummer varieties,
we reduce the signature and public-key sizes of SIUS protocol by 25% com-
pared to the original definition of this protocol in [19].

– We introduce two implementation-friendly primes for different quantum secu-
rity levels. The proposed primes have a special shape that can be used to effi-
ciently implement isogenies and finite field arithmetic computations on 64-bit
platforms. We include a comparative discussion of implementation techniques

Efficient Post-Quantum Undeniable Signature on 64-Bit ARM 283

on the ARMv8-A platforms based on their capabilities to efficiently imple-
ment finite field arithmetic.

– We implement the SIUS protocol in C language for two quantum-security lev-
els. The presented implementation is portable on different platforms, provid-
ing 83 and 110 bits of quantum security. We also present an optimized version
of the protocol for the ARMv8-A platforms. To the best of our knowledge,
our software is the first implementation of the SIUS found in the literature.

2 Preliminaries

This section provides a brief overview of the isogeny-based undeniable signature
scheme and its features. We refer readers to [12,18,19] for more detailed informa-
tion of quantum-resistant isogeny-based cryptography and its related protocols.

2.1 Isogenies and Kernels

Let E1 and E2 be elliptic curves over a field K. An isogeny over K is a rational
map over K which is denoted as φ : E1 → E2 such that φ(OE1) = OE2 . The
degree of an isogeny, denoted as �, is the degree of its rational map. We represent
the isogeny of degree � as �-isogeny. If there exists an isogeny of degree � between
two elliptic curves E1 and E2, then these two curves are �-isogenous, and they
share the same j-invariant value. Isogenies of elliptic curves are identified with
their kernels using Vélu’s formula [30]. The kernel of an isogeny φ of degree �
is a finite subgroup of points in E(K) and defined as: ker(φ) = {OE} ∪ {P =
(xp, yp) ∈ E(K) : order(P) = �}, and for a separable isogeny of degree � has
exactly � elements. Let E be an elliptic curve defined over K and G a finite
subgroup of E(K) which is defined over K. Then, there is an isogenous elliptic
curve E′ : E/〈G〉 and an isogeny map φ : E → E′ both defined over K with
ker(φ) = G [13]. In this work, all the kernels are cyclic groups and we can evaluate
isogenies using the kernel or any single generator of the kernel. For small values of
�, we can compute this isogeny efficiently using Vélu’s formula. Moreover, as it is
discussed in details in [9,12,18,23], large-degree isogenies of smooth order elliptic
curves can be computed using consecutive elliptic curve point multiplication
and the evaluation of small-degree isogenies. The computation procedure adopts
an optimal strategy which computes the leaves of the isogeny graph efficiently
using a combination of point multiplication, isogeny evaluation, and divide-and-
conquer method. However, the optimal strategy over a defined finite field depends
on the cost of point multiplication by � and �-isogeny evaluation of elliptic curves
on the target platform. We return to this discussion in Sect. 3.3.

2.2 Supersingular Isogeny Undeniable Signature

The undeniable signature was first introduced by Chaum and Van Antwerpen [7]
which was constructed based on discrete logarithm problem. Furthermore, the
security of this scheme was defined by Kurosawa and Furukawa [24], in which

284 A. Jalali et al.

the invisibility concept of undeniable signatures was characterized. Unlike a digi-
tal signature, an undeniable signature requires an interactive procedure between
signer and verifier to confirm and disavow valid and forged signatures, respec-
tively. It is noted that any undeniable signature scheme requires 6 specific func-
tions to securely generate, verify, and disavow a signature. These functions have
been first defined in [11] and denoted as:

∑
= (Gk, S, V, Ssim, πcon, πdis),

where a key generation algorithm Gk, a signature algorithm S, a validity check
V , a signature simulator Ssim, a confirmation protocol πcon, and finally a dis-
avowal protocol πdis make up an undeniable signature scheme. The confirmation
protocol πcon and the disavowal protocol πdis are used by signer to prove to the
verifier that the signature is valid or invalid, respectively. Moreover, an unde-
niable signature scheme is assumed to be secure, if and only if it completely
satisfies unforgeability and invisibility [24]. We refer to [19,24] for details on the
definitions of unforgeability and invisibility.

SIUS is defined over smooth primes of the form p = �eAA �eBB �eCC .f ± 1 , where
�A, �B , and �C are small primes and f is a small factor. A supersingular elliptic
curve E of cardinality #E = (p ∓ 1)2 = (�eAA �eBB �eCC .f)2 can be constructed over
Fp2 using Bröker’s algorithm [5] which is the SIUS scheme base curve, and its
coefficients are public parameters. Furthermore, three pairs of random points
on E denoted as {PA, QA} ∈ E[�eAA], {PM , QM} ∈ E[�eBB], and {PC , QC} ∈
E[�eCC] are randomly chosen as the starting points. Hence, the protocol public
parameters are p, E, {PA, QA}, {PM , QM}, {PC , QC}, and a hash function H
which is used to compute the message hash before the signing procedure.

Signature. The signer securely generates two random integers mA, nA ∈
Z/�eAA Z, computes the point KA = [mA]PA + [nA]QA on elliptic curve E, and
gets the isogenous curve EA using �eAA -isogeny map φA : E → EA/〈KA〉. The
signer also evaluates φA(PC) and φA(QC) using φA and publishes the public-key
as EA, φA(PC), and φA(QC), while the private-key is (mA, nA). The signer com-
putes the message hash h = H(M), KM = PM +[h]QM , and sets it as the kernel
of isogeny φM . Moreover, the signer computes φM (KA) and φA(KM) which are
the kernel of the isogeny φM,AM and φA,AM , respectively. In order to generate
the signature, the signer computes the following isogenies:

– φM : E → EM = E/〈KM 〉,
– φM,AM : EM → EAM = EM/〈φM (KA)〉 ∼= EA/〈φA(KM)〉.
Figure 1 illustrates the corresponding required maps to generate the signature
EAM from the base curve E. Additionally, using φM,AM , the signer evaluates
φM,AM (φM (PC)) and φM,AM (φM (QC)) on EAM , and presents these two points
along with EAM as the signature string.

Confirmation Protocol πcon. To confirm the signature, EAM should be con-
firmed without disclosing the signature isogenies, i.e., φM,AM and φA,AM . To

Efficient Post-Quantum Undeniable Signature on 64-Bit ARM 285

E

EM EA

EAM

φM φA

φA,AMφM,AM

EC

EMC EAC

EAMC

φC,MC φC,AC

φAC,AMCφMC,AMC

φC

φA,ACφM,MC

φAM,AMC

Sign.

Conf.

Fig. 1. Signature (Sign.) and Confirmation (Conf.) protocol isogeny maps.

this end, signer uses the public points {PC , QC} and generates another isogeny
φC similar to φA:

1. The signer generates two secret integers mC , nC ∈ Z/�eCC Z and computes
the kernel KC = [mC]PC + [nC]QC . Consecutively, the signer computes the
following isogenies:

– φC : E → EC = E/〈KC〉,
– φC,MC : EC → EMC = EC/〈φC(KM)〉,
– φA,AC : EC → EAC = EA/〈φA(KC)〉,
– φMC,AMC : EMC → EAMC = EMC/〈φC,MC(KA)〉.
The signer further commits EC , EAC , EMC , EAMC , and ker(φC,MC) = φC(KM)
to be verified. Note that here, the signer uses {PC , QC} to eventually blind the
signature EAM through EAMC as a commitment without disclosing the required
information to compute the actual signature.

2. The verifier randomly generates a bit b ∈ {0, 1} and sends it to the signer:
(a) If b = 0, the signer outputs ker(φC) = KC . Since EA is available in

the signer’s public-key, the verifier is able to compute ker(φA,AC). More-
over, using ker(φM) = KM , the verifier can compute ker(φM,MC) =
φM (KC). The verifier uses the auxiliary points in the signature, i.e.,
φM,AM (φM (PC) and φM,AM (φM (QC)), and computes φAM,AMC . Finally,
verifier utilizes the signer’s output point ker(φC) and KM , and verifies
ker(φC,MC) = φC(KM) which is committed by the signer. The verifier
checks that all the computed kernels map between the corresponding
curves specified in the signer’s commitment. Note that the verification
procedure is performed simply by comparing the j-invariant values of the
curves.

286 A. Jalali et al.

(b) If b = 1, the signer outputs ker(φC,AC) = φC(KA). Using this value,
the verifier computes φMC,AMC and φAC,AMC , and verifies if φC,AC ,
φMC,AMC , and φAC,AMC correctly map between the corresponding com-
mitted curves by the signer.

Disavowal Protocol πdis. In disavowal protocol, given a falsified signature, the
signer wishes to convince the verifier that the presented signature is fake. In this
case, the signer is presented with a fake signature (EF , FP , FQ) instead of the
real signature (EAM , φM,AM (φM (PC)), φM,AM (φM (QC))). The signer should
disavow EF without revealing any credentials such as EAM . To this end, the
signer, similar to confirmation protocol, exploits the point {PC , QC} to blind
EAM , yet gives the verifier enough information that the verifier can compute
EFC and check that EFC 	= EAMC .

1. The signer generates two secret random integers mC , nC ∈ Z/�eCC Z to com-
pute ker(φC) = KC = [mC]PC+[nC]QC . The signer computes all the required
kernels and isogenies to blind EAM using EAMC similar to Step 1 in the con-
firmation protocol πcon. The signer commits EC , EAC , EMC , EAMC , and
ker(φC,MC) = φC(KM).

2. The verifier selects b ∈ {0, 1}:
(a) If b = 0, the signer provides ker(φC). The verifier computes ker(φC),

ker(φM,MC), and ker(φA,AC) using ker(φC). Also, the verifier computes
ker(φC,MC) independently and checks its value with the commitment.
Using knowledge of EF (fake signature), the verifier computes the isogeny
map φF,FC : EF → EFC = EF /〈[mC]FP +[nC]FQ〉. Now, the verifier has
all the required isogeny maps to check the correctness of the corresponding
curves in the signer’s commitment as well as checking that EFC 	= EAMC .

(b) If b = 1, the signer outputs ker(φC,AC). The verifier computes φMC,AMC

and φAC,AMC , and checks if φC,AC , φMC,AMC , and φAC,AMC map the
corresponding committed curves correctly similar to confirmation proto-
col.

3 Implementation Parameters

Unlike traditional elliptic curve cryptography with a fixed curve, isogeny-based
cryptosystem computes the isogeny between different curves and maps the cor-
responding points which are computationally intensive for large-degree isoge-
nies. Hence, from the first version of isogeny-based software (Diffie-Hellman key
exchange scheme) developed by De Feo et al. [12], all the required arithmetic
of elliptic curves were computed in Kummer varieties using Montgomery arith-
metic, taking advantage of their efficient computations. Moreover, the recently
proposed projective formulas for isogeny computations [9] set the performance
bar higher and provide faster, yet constant-time library for SIDH key exchange
scheme by providing almost inversion-free implementation. In this work, we
follow the same methodology and arithmetic for the isogeny computations to
achieve efficient performance results.

Efficient Post-Quantum Undeniable Signature on 64-Bit ARM 287

3.1 Projective Isogenies of Montgomery Curves

We follow the implementation parameters and strategies described in [9] for 3-
and 4-isogeny computations, while we propose new sets of projective formulas
for 5-isogeny computations on Montgomery curves.

Let E : by2 = x3 +ax2 +x be a Montgomery curve defined over a field K not
of characteristic 2, where a, b ∈ K and a(b2 − 4) 	= 0. The projective points on E
are all points (X : Y : Z) ∈ P

2(K) = {(X : Y : Z) : (X,Y,Z) ∈ K
3 − {(0, 0, 0)}}

satisfying the homogeneous equation:

bZY 2 = X3 + aZX2 + Z2X.

Moreover, we can convert the curve coefficients to projective coordinates as
(A : B : C) ∈ P

2(K), where a = A/C and b = B/C. Now, the fully projective
curve equation is:

BZY 2 = CX3 + AZX2 + Z2CX.

Moreover, based on [9], isogeny and point arithmetic computations can be
stated even more simply by ignoring B, since Kummer arithmetic is indepen-
dent of this coefficient [25], and works solely with (A : C) ∈ P

1. Based on these
assumptions, we restate the Montgomery curves projective 3- and 4-isogeny for-
mulae from [9,18], and develop new sets of formulas for projective 5 isogenies in
the following.

Projective 3 Isogenies. An isogeny of degree � can be efficiently computed
for small values of � using Vélu’s formula and its kernel. For 3 isogenies, the
kernel of the isogeny is the subgroup of points on E which has order 3. We
denote this subgroup as G3 = {P3,−P3,O} where P3 = (X3 : Z3) ∈ P

1 is a
point with order equal to 3 on E. In analogy with the computations in [9,18],
the projective 3-isogeny map φ3 : E(A:C) → E′

(A′:C′), and 3-isogeny evaluation
formulas (X : Z)
→ (X ′ : Z ′) can be efficiently computed as

φ3 : (A′ : C ′) = (Z4
3 + 18X2

3Z2
3 − 27X4

3 : 4X3Z
3
3),

(X ′ : Z ′) = (X(X3X − Z3Z)2 : Z(Z3X − X3Z)2),

which cost 6M + 2S + 5a for each isogeny map and 3M + 3S + 8a for each
evaluation.

Projective 4 Isogenies. Isogenies of degree four are constructed on the sub-
group of the points on E which have the exact order equal to four. Again, we
use Vélu’s formula to derive the rational maps and refer to [9] for projectivizing
the isogeny map and evaluation formulas. The 4-isogeny map and evaluation set
of formulas can be expressed as follows:

φ4 : (A′ : C ′) = (2(2X4
4 − Z4

4) : Z4
4),

288 A. Jalali et al.

(X ′ : Z ′) = (X(2X4Z4Z − X(X2
4 + Z2

4))(X4X − Z4Z)2) :

Z(2X4Z4X − Z(X2
4 + Z2

4))(Z4X − X4Z)2),

where P4 = (X4 : Z4) ∈ P
1 is a 4-torsion point on E. The above formulas can

be computed using 5S + 7a for isogeny map, and 9M + 1S + 6a for isogeny
evaluation using pre-computed coefficients X2

4 + Z2
4 , X2

4 − Z2
4 , 2X4Z4, X4

4 , and
Z4
4 which are stored when the isogeny map φ4 is computed.

Projective 5 Isogenies. Isogenies of degree 5, unlike the isogenies of degree
4 and degree 3, require more complicated set of formulas. First, we should
construct the kernel using the subgroup of order 5 on E. Suppose P5 =
(X5 : Z5) ∈ P

1 is a 5-torsion point on E and let 2P5 = (X̄5 : Z̄5) ∈ P
1.

The 5-torsion subgroup for computing isogeny can be represented as G5 =
{−2P5,−P5,O, P5, 2P5} which has exactly 5 elements. Applying the abscissas
of P5 and 2P5, we develop a set of formulas for computing 5-isogeny map and
evaluating this isogeny for a given point (X : Z).

For the 5-isogeny map, we use the fact that the x abscissas of P5 and [4]P5 =
[2]2P5 are equal. Using 5-division polynomials ψ5(x), the 5-isogeny map can be
computed as:

φ5 : (A′ : C ′) = (X̄4
5Z5 − 4X5X̄5Z̄5(X̄2

5 + Z̄2
5) − Z5Z̄

2
5 (2X̄2

5 − Z̄2
5) : 4X5X̄

2
5 Z̄2

5)

using 10M + 2S + 7a, when the abscissa of 2P5 is available. For the isogeny eval-
uation, computations are more complex. Particularly, we notice that the Vélu’s
formula for computation of the 5-isogeny map leads to an unwieldy formula com-
pared to 3 and 4 isogenies. The projective version of the 5-isogeny evaluation
can be computed using

(X ′ : Z ′) = (XZ5Z̄5(X5Z − XZ5)2(X̄5Z − XZ̄5)2

+ 2Z[2Z2(X5Z̄5(X̄5Z − XZ̄5)2(AX5Z5 + C(X2
5 + Z2

5))

+ X̄5Z5(X5Z − XZ5)2(AX̄5Z̄5 + C(X̄2
5 + Z̄2

5)))

+ Z̄5(X5Z − XZ5)(X̄5Z − XZ̄5)2(2AX5Z5 + C(3X2
5 + Z2

5))

+ Z5(X̄5Z − XZ̄5)(X5Z − XZ5)2(2AX̄5Z̄5 + C(3X̄2
5 + Z̄2

5))] :

CZZ5Z̄5(X5Z − XZ5)2(X̄5Z − XZ̄5)2),

which is more complicated than the 5-isogeny map; however, in our implemen-
tation, we store five coefficients during the computation of 5-isogeny map which
are used in 5-isogeny evaluation. These coefficients are X̄5Z5, X̄5Z̄5, (X̄2

5 + Z̄2
5),

Z5Z̄5, and X̄2
5 . Using these pre-computed values, the 5-isogeny can be evaluated

in 30M + 4S + 16a. We state that the 5-isogeny evaluation formula in affine
coordinates has relatively simpler formula than projective form; however, affine
formulas require excessive number of field inversions which result in significant
overall performance degradation if the inversions are computed using constant-
time algorithms. Alternatively, non-constant time inversion algorithms can be

Efficient Post-Quantum Undeniable Signature on 64-Bit ARM 289

Table 1. Proposed smooth implementation-friendly primes for SIUS scheme

p = �
eA
A

�
eB
B

�
eC
C

− 1 Prime size

(bits)

min(�
eA
A

, �
eB
B

, �
eC
C

)

(bits)

θ Quantum

security

Classical

security

Signature

(bytes)

225031635110 − 1 764 251 9.13 83 125 573

233032105151 − 1 1014 331 9.19 110 165 761

deployed to implement the whole protocol in affine coordinates. Nevertheless, in
such case, the software would be vulnerable to timing analysis attacks. Hence, we
choose to work with projective coordinates, providing a constant-time software
which is assumed to be secure against these types of attack.

3.2 Proposed Implementation-Friendly Primes

The SIUS scheme is built over a prime of the smooth form p = �eAA �eBB �eCC .f ± 1,
taking advantage of its special shape to construct three different subgroups of
points on E, i.e., E[�eAA], E[�eBB], and E[�eCC]. Finding the efficient primes of this
form is directly related to the field arithmetic algorithms and implementation
platform architecture. Since we utilize Montgomery arithmetic, we choose to set
�A = 2 to find Montgomery-friendly primes (p′ = −p−1mod R = 1) [16]. The
generic Montgomery reduction requires s2 + s multiplications, while reduction
over Montgomery-friendly primes can be efficiently computed using s2 multipli-
cations for a 2s-limb element.

Moreover, as it is discussed in [9], Montgomery reduction can be implemented
even more efficiently for the primes of the form p = 2eAα − 1, since it can be
implemented based on multiplication of the finite field elements with p̂ = p+1 =
2eAα which has exactly

⌊
eA
r

⌋
least significant words equal to “0” in 2r-radix

representation; therefore, multiplication of these limbs can simply be neglected
inside the reduction implementation. This implies that the larger values of eA
lead to even more efficient implementation of Montgomery reduction for the
primes of this form, because the number of “0” words are increased. We return
to this discussion in Sect. 4.3.

So far, we set �A = 2 and seek for the large values of eA to make the reduction
procedure more optimized. We also choose f = 1 since the SIUS security level
depends only on the size of the kernels, and larger values of f do not provide
any more security, yet increase the prime size. Furthermore, we set �B = 3
and �C = 5 to compute small-degree isogenies of elliptic curves efficiently using
Velús formula. Moreover, as stated in [19], the fastest known quantum algorithm
against the SIUS scheme require O(n1/3) running time, where n is the size of
the kernel; therefore, we search for the primes which provide reasonable level of
quantum security, but not too large in size, so we can implement the finite field
arithmetic efficiently on the ARM-powered devices. We propose an efficiency
parameter to ease the prime search procedure of the SIUS smooth primes. Let

θ =
nbits(p)

min(nbits(�eAA , �eBB , �eCC))/3
,

290 A. Jalali et al.

Table 2. Comparative timings for multiplication and isogeny evaluation in projective
Kummer coordinates in terms of microseconds on ARMv8 Cortex-A57

Operation p764 p1014

� = 3 � = 4 � = 5 � = 3 � = 4 � = 5

Multiplication by � (μs) 56 52 68 94 87 115

�-isogeny evaluation (μs) 35 47 185 59 78 309

r = mul/eval 1.6 1.1 0.3 1.6 1.1 0.3

be the efficiency parameter for a prime of the form �eAA �eBB �eCC − 1, where
nbits(n) = �logn2 � which represents the number of bits in n. In particular, we
are interested in the primes with the smaller value of θ, so we attain higher
level of security with smaller number of bits. For all the smooth primes of the
form p = �eAA �eBB �eCC − 1 with different size and security levels, this parameter
is bounded by 9 < θ < 10 which makes it a reasonable measurement with low
variation for the prime search procedure. We also choose the primes with the
number of bits smaller than multiple of 64-bit word, so we can adopt a combina-
tion of Karatsuba multiplication, carry-handling elimination, and lazy reduction
in Fp2 arithmetic for achieving better performance.

Based on the above assumptions, we search for the implementation-friendly
primes which are well-fitted into our library and target processor. Table 1
includes our proposed primes for two different quantum security levels. We also
ensure that these primes satisfy the security balance for computing isogenies
of torsion subgroups, i.e., �eAA , �eBB , and �eCC have less than 40 bits difference
pairwise.

Smaller Signature. We denote that by ignoring the curve coefficient B and
using projective coordinates, each element of the signature, i.e., curve and auxil-
iary points is represented by only one field element in Fp2 which makes the SIUS
signature and public-key in our implementation about 25% smaller than the
original signature sizes reported in [19] for different security levels. This concept
was first used in [9], providing smaller public-keys for the SIDH protocol.

3.3 Optimal Strategy for Large-Degree Isogeny Computation

In the previous sections, we have described all the necessary formulas for comput-
ing small-degree isogenies. However, eventually, we require to compute smooth
large-degree �e isogenies inside the protocol. This can be done by the composi-
tion of small-degree � isogeny e times as φ = φe−1 ◦φe−2 ◦ · · · ◦φ0 using different
strategies. As it is pointed out in [18], we can demonstrate the computational
structure of isogeny map between different points of elliptic curves as a graph,
where left edges represent point multiplications by � and right edges are �-isogeny
evaluations. Additionally, since multiplications and isogeny computations have
different costs, different weights are assigned to the left and right edges of the

Efficient Post-Quantum Undeniable Signature on 64-Bit ARM 291

graph. Jao and De Feo [18] developed an optimal strategy for the large-degree
isogeny computations by traversing this weighted graph at each point based on
a decision algorithm. Their proposed strategy reveals the most efficient steps of
computing large smooth degree isogenies. We adopt the same strategy in our
implementation. Note that the cost of point multiplication by � and �-isogeny
evaluation is different for each degree, i.e., �A, �B , and �C , as well for the tar-
get platform. We obtain these weights for each small-degree �A = 3, �B = 4,
and �C = 5 on our target processor and find the optimal strategy based on
them. Table 2 includes the operation costs of multiplication by � and �-isogeny
evaluation for different � over the two finite fields on an ARMv8 Cortex-A57
core.

The provided numbers are averaged over 104 iterations of the functions, and
they are implemented based on our optimized assembly library. The r ratio
represents the relative cost of point multiplication to isogeny evaluation for each
degree �. Regarding this ratio, the optimal strategy traversal for each degree is
computed. We observe that the smaller value of r leads to less number of isogeny
evaluation operations in the final strategy.

3.4 Protocol Implementation

We implement the SIUS protocol using five main procedures:

1. Sign(): Key generation and signature operations performed by the signer.
2. SignerConfirmation(): The isogeny computations performed by the signer

to commit the required curves and points.
3. VerifierConfirmation(): The isogeny computations performed by the ver-

ifier to confirm the correctness of a signature.
4. SignerDisavowal(): The isogeny computations performed by the signer to

disavow a forged signature. These computations are identical to the signer’s
confirmation protocol.

5. VerifierDisavowal(): The isogeny computations performed by the verifier
to check that the fake signature is disavowed by the signer.

Moreover, we implement the verifier’s confirmation and disavowal functions
based on the input bit b ∈ {0, 1}. Therefore, the number of operations and
isogeny computations in verifier’s confirmation and disavowal protocols depends
on the b value. In Sect. 5, we provide the corresponding timings for each function
based on this value in detail. We also remark that in our implementation, all
the verification operations are implemented by checking the j-invariant values of
committed curves and the curves which are computed by the verifier using the
public parameters.

Figure 2 illustrates the SIUS confirmation protocol mechanism based on the
above functions. The same mechanism applies to the disavowal protocol using
SignerDisavowal() and VerfierDisavowal() functions. Note that the veri-
fier’s disavowal protocol in case of b = 0 requires one more isogeny computation,
i.e., φF : EF → EFC = EF /〈[mC]FP + [nC]FQ〉.

292 A. Jalali et al.

Fig. 2. The SIUS confirmation protocol mechanism.

4 Fp Arithmetic on ARMv8

We implement optimized field arithmetic library, targeting the ARMv8-A plat-
form using AArch64 assembly instruction set. We concentrate on the develop-
ment of tailored hand-optimized arithmetic functions for each proposed finite
field. We employ loop unrolling, full register allocation, and multiple load/store
techniques to highly optimize our field arithmetic library.

4.1 Target Platform Architecture

The proposed software is benchmarked on various platforms; however, we opti-
mized our finite filed arithmetic library for the 64-bit ARM-powered devices. We
run our software on a Huawei Nexus 6P smart phone which is equipped with
ARMv8 Cortex-A57 and ARMv8 Cortex-A53, providing ARM big.LITTLE tech-
nology1. ARMv8 processors are capable of performing arithmetic instructions
using the A64 instruction set with general registers, as well as Advanced SIMD
instructions with vectors. The instruction processing pipeline is composed of two
phases. First, instructions are fetched and decoded in order into internal micro-
operations. Then, micro-operations stall for their operands and assign execution
to one of the execution pipelines [2]. We note that the high-performance Cortex-
A57 cores have separate execution pipes for ASIMD and A64 operations in fully
out-of-order phase which results in fast computational power, while Cortex-A53
1 ARM big.LITTLE technology is a power optimization technology where high-

performance cores are combined with power-efficient cores to provide power-
performance efficient benchmarks.

Efficient Post-Quantum Undeniable Signature on 64-Bit ARM 293

Fig. 3. (a) A64 and (b) Adv. SIMD 128 × 128-bit multiplication.

cores make use of highly power-efficient 8-stage in-order pipeline. We analyze
the usage of both instruction sets as well as their capabilities for field arithmetic
implementation in the following:

A64 Overview. The A64 instruction set provides similar functionality to the
A32 and T32 instruction set in AArch32 for the ARMv7 platforms. However,
it supports larger general-purpose register file with thirty one 64-bit unbanked
registers [15]. This excessive number of registers is suitable for implementing
field arithmetic over large fields, since the number of load and store instructions
is infrequent. Moreover, the field operands can be represented in radix-264 which
translates into a significant improvement in performance compared to the previ-
ous family of 32-bit ARM processors. The A64 multiplication instructions, i.e.,
MUL and UMULH, take 4 and 6 clock cycles on Cortex-A57 processors, respectively
[2]; the first instruction computes the low half of 64 × 64-bit multiplication
result, while the latter one generates the high part.

Advanced SIMD. The AArch64 vector multiplication instruction is similar to
ARMv7 NEON multiplication which computes two parallel 32 × 32-bit multipli-
cation and generates a pair of 64-bit results. This operation takes roughly 6 clock
cycles for the low half of the vector, i.e., UMULL, and 5 clock cycles for the upper
half, i.e., UMULL2, on the Cortex-A57 cores, when there are no dependencies [2].
Moreover, since data are decomposed into 32-bit limbs, the implementation of
arithmetic using Adv. SIMD instructions set leads to the representation of data
in radix-232. This simply implies that the number of multiplication instructions

294 A. Jalali et al.

is twice compared to radix-264 representation. However, since a pair of 32 × 32-
bit multiplication is performed using one Adv. SIMD multiplication instruction,
the total number of multiplication instructions is the same for A64 and Adv.
SIMD implementations. Figure 3 illustrates this comparative discussion for 128
× 128-bit multi-precision multiplication. Each 64 × 64-bit multiplication result
is implemented using a pair of multiplication instructions, i.e., MUL and UMULH in
A64 assembly language; therefore, the entire multiplication requires 8 multipli-
cation instructions. Similarly, 8 SIMD multiplication instructions are required
to implement the same function using Adv. SIMD assembly.

Based on the above discussion, roughly speaking, n Adv. SIMD multiplication
instructions take about 5n

2 + 6n
2 = 5.5n clock cycles, while n A64 multiplications

take 4n
2 + 6n

2 = 5n clock cycles on Cortex-A57 processors. Therefore, we claim
that unlike AArch32 NEON instruction sets, AArch64 Adv. SIMD vectorization
does not provide any performance improvement over A64 general-purpose regis-
ters for field arithmetic implementation. Based on this conclusion, we implement
field arithmetic using A64 assembly instruction set, taking advantage of its wide
64-bit registers.

4.2 Finite Field Multiplication

The dominant field operation in any projective implementation is field mul-
tiplication and reduction, since all modular inversions are replaced with mul-
tiple multiplications. Therefore, optimized projective implementation requires
efficient modular multiplication. We implement field multiplication using prod-
uct scanning method for both Fp764 and Fp1014 fields using A64 instruction sets.
We have access to 31 × 64-bit general registers and we are able to implement
an optimized compact field multiplication function with a few number of data
transfers between memory and registers.

4.3 Finite Field Reduction

Since we perform isogeny computations and point multiplications on Mont-
gomery curves using Montgomery arithmetic, we use the efficient version of
Montgomery reduction for our smooth primes as it is discussed in [9,17]. We
remark that although the shape of our primes is slightly different compared to
the SIDH smooth primes, we still can adopt the same optimization for our modu-
lar reduction implementation and achieve remarkable performance improvement
compared to generic Montgomery or Barrett reduction. Thus, we implement cus-
tomized Comba-based Montgomery reduction for each of the proposed primes,
taking advantage of simplified formulas in [9], i.e., the reduction over p̂ = p + 1
which eliminates several single-precision multiplications by “0” limbs. In partic-
ular, p764+1 and p1014+1 have three and five 64-bit words equal to “0” in the
lower half. Since we choose the primes with larger values of eA, the total num-
ber of these zero limbs is the most possible value for each prime size. However,
we note that since the chain of “0” in SIUS primes is relatively shorter than

Efficient Post-Quantum Undeniable Signature on 64-Bit ARM 295

Table 3. Performance results (×106 CPU clock cycles) of SIUS protocol on various
platforms. The verifier’s confirmation and disavowal computations are implemented
based on the protocol parameter b, while signer’s operations are independent of this
value.

Field size PQ security Lang. Keygen Sign Signer Verifier (b = 0) Verifier (b = 1)

Conf./Disv. Conf Disv Conf./Disv.

Huawei Nexus 6P ARMv8-A57 at 2.0 GHz

764 83 C 1,068 1,416 2,638 2,980 1,138

ASM 230 290 544 614 232

1014 110 C 2,646 3,592 6,854 7,726 2,918

ASM 512 684 1,310 1,466 552

Huawei Nexus 6P ARMv8-A53 at 1.55 GHz

764 83 C 2,024 2,595 4,834 5,463 2,085

ASM 516 652 1,213 1,378 549

1014 110 C 4,515 6,142 11,724 13,153 4,972

ASM 1,227 1,671 3,199 3,585 1,350

Desktop PC Intel x64 i7-6700 at 2.1 GHz

764 83 C 493 655 1,222 1379 684

1014 110 1,136 1,545 2,973 3,357 1,623

NVIDIA Jetson TK1 ARMv7-A15 at 2.3 GHz

764 83 C 3,433 4,549 8,473 9,574 3,657

1014 110 8,052 10,957 20,913 23,453 8,868

SIDH primes due to the smaller value of eA for the same prime size, the overall
performance of modular reduction is depreciated.

4.4 Finite Field Inversion

We implement field inversion using Fermat’s little theorem (FLT) with fixed
window-based addition chain. Although FLT method is much slower than other
non-constant time modular inversion algorithms such as Extended Euclidean
Algorithm or Kaliski’s inverse method in [20], since the total number of modular
inversions is scarce in our protocol, we prioritize security over a small amount
of performance improvement in using these algorithms. We implement modular
inversion by using fixed 6-bit window addition chain method. We remark that
constructing addition chains for the SIUS primes is different from the SIDH
primes and using more efficient method of computing addition chain, such as
hybrid-window method which is discussed in [21], yields negligible improvement
in performance due to the shorter chain of “1” in the lower half of the prime.

5 Implementation Results and Discussion

Since this work is the first empirical implementation of a quantum-resistant
undeniable signature, and the only other quantum-resistant undeniable signature

296 A. Jalali et al.

[1] does not provide any performance results, we provide the performance mea-
surements on a variety of platforms: a Huawei Nexus 6P smart phone with a 2.0
GHz Cortex-A57 and a 1.55 GHz Cortex-A53 processors running Android 7.1.1,
a 2.3 GHz NVIDIA Jetson TK1 equipped with a 32-bit ARMv7 Cortex-A15
running Ubuntu 14.04 LTS, and a desktop PC with a 2.1 GHz Intel x64 i7-6700
running Ubuntu 16.04 LTS. We also include our efficient results on ARMv8 pro-
cessors to compare the efficiency of our optimized library. The binaries are com-
piled using -O3 -fomit-frame-pointer -march=native flags. Table 3 includes
benchmark results of our SIUS implementation for both proposed quantum secu-
rity levels. Results represent the average of 104 iterations reported in CPU clock
cycles to provide a fair comparison of the performance on different platforms.
Note that the verifier’s disavowal computations differ in terms of the protocol
value b, while signer’s confirmation and disavowal computations stay the same.

The implementation results show that our hand-optimized library is almost
4.8X and 5.2X faster than generic implementation on the high-performance
Cortex-A57 core over p764 and p1014, respectively. However, on the power-
efficient Cortex-A53 core, the improvement factor is less and shows a speedup of
3.9X over p764 and 3.6X over p1014. We remark that our generic C finite field
library is implemented in pure C without utilizing any multi-precision arithmetic
libraries such as GMP2 which implies that the more efficient generic implementa-
tion can be developed based on these libraries with the cost of extra dependencies
during the compilation procedure.

The performance results on Jetson TK1 board with a high-performance 32-bit
Cortex-A15 core is almost 3X slower than Cortex-A57 for the same implemen-
tation. It is because 64-bit platforms perform multi-precision arithmetic roughly
twice as fast as 32-bit platforms. Moreover, the total number of available gen-
eral registers in the ARMv8 processors is more compared to ARMv7-A which
provides faster and much compact arithmetic with less number of data transfer
to memory.

6 Conclusion

We have presented a constant-time software for supersingular isogeny-based
undeniable signature protocol providing two different quantum security levels.
We have built optimized libraries targeting the ARMv8-A family of processors
using A64 assembly instruction set to achieve a factor speedup of up to 5.2X on a
high-performance Cortex-A57 core. Moreover, taking advantage of reduced curve
coefficient technique, we have decreased 25% of the SIUS signature and public-
key sizes compared to its original scheme. To the best of our knowledge, this
work is the first practical implementation of any quantum-resistant undeniable
signatures found in the literature. We remark that since isogeny-based cryp-
tosystems are younger than other post-quantum cryptography candidates, their
performance and security are still required to be studied widely. For instance,

2 The GNU Multiple Precision Arithmetic Library.

Efficient Post-Quantum Undeniable Signature on 64-Bit ARM 297

developing more efficient formulas for isogeny computations will result in remark-
able performance improvement of the overall protocol. Nevertheless, the signa-
ture size and performance of our software demonstrate the strong potential of
this scheme as a quantum-resistant undeniable signature candidate. We hope
that this work would be a paradigm shift towards motivating more investigation
in this area.

Acknowledgement. The Authors would like to thank the anonymous SAC reviewers
for their constructive comments. This work was supported by NSF grant no. CNS-
1661557 and NIST award 60NANB16D246.

References

1. Aguilar-Melchor, C., Bettaieb, S., Gaborit, P., Schrek, J.: A code-based undeniable
signature scheme. In: Stam, M. (ed.) IMACC 2013. LNCS, vol. 8308, pp. 99–119.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45239-0 7

2. ARM Limited: Cortex-A57 Software Optimization Guide (2016). http://infocenter.
arm.com/help/topic/com.arm.doc.uan0015b

3. Azarderakhsh, R., Fishbein, D., Jao, D.: Efficient implementations of a quantum-
resistant key-exchange protocol on embedded systems. Technical report (2014).
http://cacr.uwaterloo.ca/techreports/2014/cacr2014-20.pdf

4. Azarderakhsh, R., Jao, D., Kalach, K., Koziel, B., Leonardi, C.: Key compression
for isogeny-based cryptosystems. In: Proceedings of the 3rd ACM International
Workshop on ASIA Public-Key Cryptography, AsiaPKC 2016, pp. 1–10. ACM,
New York (2016). http://doi.acm.org/10.1145/2898420.2898421

5. Bröker, R.: Constructing supersingular elliptic curves. J. Comb. Number Theor.
1(3), 269–273 (2009)

6. Charles, D.X., Lauter, K.E., Goren, E.Z.: Cryptographic hash functions from
expander graphs. J. Cryptology 22(1), 93–113 (2009)

7. Chaum, D., van Antwerpen, H.: Undeniable signatures. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 212–216. Springer, New York (1990). https://
doi.org/10.1007/0-387-34805-0 20

8. Childs, A., Jao, D., Soukharev, V.: Constructing elliptic curve isogenies in quantum
subexponential time. J. Math. Cryptology 8(1), 1–29 (2014)

9. Costello, C., Longa, P., Naehrig, M.: Efficient algorithms for supersingular isogeny
diffie-hellman. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol.
9814, pp. 572–601. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53018-4 21

10. Couveignes, J.M.: Hard homogeneous spaces. IACR Cryptology ePrint Archive
2006:291 (2006)

11. Damg̊ard, I., Pedersen, T.: New convertible undeniable signature schemes. In:
Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 372–386. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9 32

12. De Feo, L., Jao, D., Plût, J.: Towards quantum-resistant cryptosystems from super-
singular elliptic curve isogenies. J. Math. Cryptol. 8(3), 209–247 (2014)

13. Galbraith, S.D.: Mathematics of Public Key Cryptography. Cambridge University
Press, New York (2012)

https://doi.org/10.1007/978-3-642-45239-0_7
http://infocenter.arm.com/help/topic/com.arm.doc.uan0015b
http://infocenter.arm.com/help/topic/com.arm.doc.uan0015b
http://cacr.uwaterloo.ca/techreports/2014/cacr2014-20.pdf
http://doi.acm.org/10.1145/2898420.2898421
https://doi.org/10.1007/0-387-34805-0_20
https://doi.org/10.1007/0-387-34805-0_20
https://doi.org/10.1007/978-3-662-53018-4_21
https://doi.org/10.1007/978-3-662-53018-4_21
https://doi.org/10.1007/3-540-68339-9_32

298 A. Jalali et al.

14. Galbraith, S.D., Petit, C., Silva, J.: Signature schemes based on supersingular
isogeny problems. Technical report, Cryptology ePrint Archive, Report 2016/1154
(2016)

15. Group, A., et al.: Armv8 instruction set overview. 15(11) (2011). PRD03-GENC-
010197

16. Gueron, S., Krasnov, V.: Fast prime field elliptic-curve cryptography with 256-bit
primes. J. Cryptographic Eng. 5(2), 141–151 (2015)

17. Jalali, A., Azarderakhsh, R., Mozaffari-Kermani, M., Jao, D.: Supersingular
isogeny Diffie-Hellman key exchange on 64-bit ARM. IEEE Trans. Dependable
Secure Comput. (2017). I: Regular Papers

18. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp.
19–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5 2

19. Jao, D., Soukharev, V.: Isogeny-based quantum-resistant undeniable signatures. In:
Mosca, M. (ed.) PQCrypto 2014. LNCS, vol. 8772, pp. 160–179. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-11659-4 10

20. Kaliski, B.S.: The Montgomery inverse and its applications. IEEE Trans. Comput.
44(8), 1064–1065 (1995)

21. Koziel, B., Azarderakhsh, R., Jao, D., Mozaffari-Kermani, M.: On fast calculation
of addition chains for isogeny-based cryptography. In: Chen, K., Lin, D., Yung,
M. (eds.) Inscrypt 2016. LNCS, vol. 10143, pp. 323–342. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-54705-3 20

22. Koziel, B., Azarderakhsh, R., Mozaffari-Kermani, M., Jao, D.: Post-quantum cryp-
tography on FPGA based on isogenies on elliptic curves. IEEE Trans. Circ. Syst.
(2016). I: Regular Papers

23. Koziel, B., Jalali, A., Azarderakhsh, R., Jao, D., Mozaffari-Kermani, M.:
NEON-SIDH: efficient implementation of supersingular isogeny diffie-hellman key
exchange protocol on ARM. In: Foresti, S., Persiano, G. (eds.) CANS 2016. LNCS,
vol. 10052, pp. 88–103. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
48965-0 6

24. Kurosawa, K., Furukawa, J.: Universally composable undeniable signature. In:
Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A.,
Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 524–535. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-3 43

25. Montgomery, P.L.: Speeding the pollard and elliptic curve methods of factorization.
Math. Comput. 48(177), 243–264 (1987)

26. Rostovtsev, A., Stolbunov, A.: Public-key cryptosystem based on isogenies. IACR
Cryptology ePrint Archive 2006/145 (2006)

27. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and fac-
toring. In: Proceedings of 35th Annual Symposium on Foundations of Computer
Science, 1994 Proceedings, pp. 124–134. IEEE (1994)

28. Soukharev, V., Jao, D., Seshadri, S.: Post-quantum security models for authenti-
cated encryption. In: Takagi, T. (ed.) PQCrypto 2016. LNCS, vol. 9606, pp. 64–78.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29360-8 5

29. Stolbunov, A.: Constructing public-key cryptographic schemes based on class group
action on a set of isogenous elliptic curves. Adv. Math. Comm. 4(2), 215–235 (2010)

30. Vélu, J.: Isogénies entre courbes elliptiques. CR Acad. Sci. Paris Sér. AB 273,
A238–A241 (1971)

31. Yoo, Y., Azarderakhsh, R., Jalali, A., Jao, D., Soukharev, V.: A post-quantum
digital signature scheme based on supersingular isogenies. Technical report (2017).
http://eprint.iacr.org/2017/186

https://doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/10.1007/978-3-319-11659-4_10
https://doi.org/10.1007/978-3-319-54705-3_20
https://doi.org/10.1007/978-3-319-48965-0_6
https://doi.org/10.1007/978-3-319-48965-0_6
https://doi.org/10.1007/978-3-540-70583-3_43
https://doi.org/10.1007/978-3-319-29360-8_5
http://eprint.iacr.org/2017/186

“Oops, I Did It Again” – Security of One-Time
Signatures Under Two-Message Attacks

Leon Groot Bruinderink(B) and Andreas Hülsing(B)

Department of Mathematics and Computer Science,
Technische Universiteit Eindhoven, P.O. Box 513,

5600 MB Eindhoven, The Netherlands
authors-oops@huelsing.net

Abstract. One-time signatures (OTS) are called one-time, because the
accompanying security reductions only guarantee security under single-
message attacks. However, this does not imply that efficient attacks are
possible under two-message attacks. Especially in the context of hash-
based OTS (which are basic building blocks of recent standardization
proposals) this leads to the question if accidental reuse of a one-time key
pair leads to immediate loss of security or to graceful degradation.

In this work we analyze the security of the most prominent hash-
based OTS, Lamport’s scheme, its optimized variant, and WOTS, under
different kinds of two-message attacks. Interestingly, it turns out that
the schemes are still secure under two message attacks, asymptotically.
However, this does not imply anything for typical parameters. Our results
show that for Lamport’s scheme, security only slowly degrades in the rel-
evant attack scenarios and typical parameters are still somewhat secure,
even in case of a two-message attack. As we move on to optimized Lam-
port and its generalization WOTS, security degrades faster and faster,
and typical parameters do not provide any reasonable level of security
under two-message attacks.

Keywords: Hash-based signatures · One-time signatures
Few-time signatures · Post-quantum cryptography
Two-message attacks

1 Introduction

The possible advent of large-scale quantum computers threatens the security
of all widely deployed public key cryptography. Shor’s algorithm [20] allows
to factor and compute discrete logarithms in polynomial time on a quantum
computer with a few thousand logical qubits. While it is not yet known for sure

This work was supported by the Commission of the European Communities through
the Horizon 2020 program under project number 645622 PQCRYPTO. Permanent
ID of this document: 85629c7dc69dad1c4be4fbd7e360086c. Date: September 25,
2017.

c© Springer International Publishing AG 2018
C. Adams and J. Camenisch (Eds.): SAC 2017, LNCS 10719, pp. 299–322, 2018.
https://doi.org/10.1007/978-3-319-72565-9_15

300 L. Groot Bruinderink and A. Hülsing

if it will be possible to build such a machine, it is a question of risk assessment
to be prepared. The implied disastrous consequences by now also motivated
standardization bodies (see e.g. [16]) and security agencies [17] to prepare the
transition to post-quantum cryptography – cryptography secure against attacks
using quantum-computers.

The first post-quantum signature schemes considered for standardization
are hash-based Merkle Signature Schemes [9,13]. These schemes form the most
confidence-inspiring post-quantum solution for digital signatures as their secu-
rity only relies on some mild assumptions about properties of cryptographic
hash-functions [11]. This is in contrast to all other proposals where security in
addition to assumptions about the used hash function is based on rather new
intractability assumptions like the MQ-problem (see e.g. [18]) or the approxi-
mate shortest vector problem [6]. Hash-based signature schemes can be split into
stateful [3–5,10,11,15] and stateless [1] proposals. In this context, statefulness
means that the secret key changes after every signature. In case a ’secret key
state’ is used twice, all security guarantees vanish. In practice it turns out that
in many scenarios keeping a state becomes a complicated issue [14]. However,
currently stateful schemes are the ones considered for standardization as these
schemes are far more efficient in terms of signature size and signing speed than
the stateless alternatives.

The reason these schemes are stateful is that their core building block is a
so-called one-time signature scheme (OTS). A one-time signature scheme allows
to use a key pair to sign a single (arbitrary) message. If a key pair is used to
sign a second, different message, no security guarantees are given. The security
reductions only apply as long as just a single message is signed. While this is
commonly interpreted as the schemes are entirely broken if a key pair is used
to sign twice, this is not necessarily the case. It is known that if an adversary
has full control about the messages to be signed, the schemes are fully broken
after two signatures, i.e. the secret key can be extracted without any effort.
However, in practice the OTS causing statefulness are used to sign the digest of
an adversarial chosen message. Moreover, in both recent proposals for standard-
ization [9,13] these message digests are randomized. Hence, the actually signed
message (digest) is unpredictable for an adversary.

Taking the message digest into account is one of the crucial steps in the
construction of hash-based few-time signature schemes like HORS [19] that allow
to use a key pair to sign a small number of messages before security drops below
the acceptable limit. This opens up the question if classical hash-based OTS
are still one-time when we take the message digest into account or if a similar
argument applies as for HORS. For practice, this question translates to the
question if reuse of a secret key state leads to a hard fail or if one is “only”
facing graceful degradation of security.

Our Contribution. In this work we analyze the security of hash-based one-time
signature schemes under different kinds of two-message-attacks. We carry out the
analysis for the most prominent proposals Lamport’s scheme [12], the optimized

“Oops, I Did It Again” 301

version of Lamport’s scheme [15], and the Winternitz OTS (WOTS) [15]. It turns
out that actually, all three schemes are still secure under two-message attacks if
we take into account that a message digest is signed – at least asymptotically
(see Table 1).

Table 1. Complexity for an existential forgery under a random message attack for the
given signature scheme with typical parameters (see text).

Signature scheme Attack complexity

Lamport O((1.34)m)

Optimized Lamport O((1.14)m+logm)

Winternitz O((1.09)m+logm)

The general working of these schemes is as follows. If necessary, a message
M is first compressed using a cryptographic hash function H to obtain a fixed
length message digest M∗ = H(M). A mapping function G is used to map M∗

to some index set B = (B1, . . . , B�) = G(M∗). Finally, secret values indicated
by the index set B are published as signature. Generally, the secret values are
the preimages of public key values under a cryptographic hash function F. Ver-
ification works by applying F to the given values and comparing the results to
the respective public key values. In case of WOTS secrets are arranged in hash
chains. The end nodes of the chains are the public key values. In this case, there
exists some dependency, i.e., if a value from a chain is part of the signature, all
later values of that chain can be derived applying F.

After seeing two signatures, there exist two possible ways to forge a signature.
First, an adversary can try to find a message that is mapped to an index set
which is covered by the union of the index sets of the two seen signatures. In this
case, all the required secret values are contained in the two signatures. Second,
an adversary can try to compute the missing secret values for a signature from
the respective public key values. However, this requires to break one of the
security properties of F and would also allow to forge signatures after seeing
just the public key. Parameters in practice are chosen such that this is infeasible.
Consequently, we just consider the first approach in this work. The possibility
and complexity of attacks of this type depends on the properties of hash function
H, the message mapping function G, and possible dependencies of secret values
(as in the case of WOTS). In our analysis we focus on the latter two. For H
we assume that it behaves like a random oracle. This decision follows the same
reasoning as above. Vulnerabilities of H would already allow for forgeries under
one-message attacks. For WOTS this implies that the obtained results also apply
to the recent variants of WOTS that minimize security assumptions [2,8,11] as
the mapping function and the arrangement of secret values for these variants is
the same as in the original scheme.

For Lamport’s scheme, we obtain exact complexities for two-message attacks.
For the optimized Lamport scheme and WOTS analysis becomes extremely

302 L. Groot Bruinderink and A. Hülsing

complex when looking at the actual mapping function. This is caused by a
checksum which is added to the message. This checksum introduces a lot of
dependencies between probabilities, eventually leading to sums with an exponen-
tial number of summands. Therefore, we decided to analyze a simplified variant
where we assume that the checksums are independent and uniformly distributed.
For this simplified message mapping, we obtain exact complexities. We experi-
mentally verified the results obtained for the simplified mapping function.

We analyze security of the OTS without initial message hash in terms of full
break resistance, universal, selective, and existential unforgability under random
and adaptively chosen message attacks. Please note that as we assume H to be
a random oracle, existential unforgability under an adaptively chosen message
attack (EU-CMA) of a scheme with initial randomized message hashing is equiv-
alent to existential unforgability under a random message attack (EU-RMA) of
the scheme without initial message hash. Accordingly, the crucial case for prac-
tice is EU-RMA security of the scheme without initial message hash. It covers
the case of accidental reuse of an OTS key pair when using one of the recent
proposals to standardize hash-based signatures. While all three schemes turn out
to be EU-RMA-secure under two-message attacks in the asymptotic setting, we
get different results for typical parameter choices. For Lamport’s scheme with a
message digest size of 256 bits, the complexity to produce existential forgeries
under two-random-message attacks is still 2106 hash function calls, ignoring the
costs for pairwise comparison of all message digests. Hence, in this setting a
signer is still on the safe side even after using a one-time key pair twice. For the
optimized Lamport OTS with 256 bit message digests, the complexity to produce
existential forgeries under two-random-message attacks is already down to 251.
Which means attacks are not for free, but they are possible. For WOTS in the
same setting, using the parameters from [9], we are left with an attack complex-
ity of 234 hash function computations. This can be done on a modern computer
within few days if not hours. These parameters use a Winternitz parameter of
w = 16, i.e. hash chains of length 16. For bigger values of w, the attack com-
plexity goes down even further. These results show that Lamport’s scheme is
still somewhat forgiving but especially for WOTS, measures have to be taken
that prevent ots key reuse in any case. However, as soon as we are consider-
ing attacks on quantum-computers, complexities drop at least by a square-root
factor. In this case even Lamport’s scheme has to be considered broken after
two-random-message attacks for typical parameters.

Organization. In Sect. 2 we discuss the models we use as well as required
notation. We start our analysis in Sect. 3 with Lamport’s scheme. We continue
in Sect. 4 with the optimized Lamport scheme and in Sect. 5 with WOTS. In
Sect. 6, we experimentally verify our results.

2 The Model

Security of one-time signature schemes (OTS) can be analyzed with regard to all
traditional security definitions for general signature schemes. The difference is

“Oops, I Did It Again” 303

that the number of adversarial signature queries is limited to q = 1. Formally, any
signature scheme that achieves EU-CMA-security (see definition below) when the
adversary may only make a single signature query is a OTS. To understand the
security of a OTS under two-message attacks in any of the models, we simply
investigate the security for q = 2. We first discuss the traditional definitions and
afterwards we discuss how to analyze security within these models.

2.1 Digital Signature Schemes

First, what exactly are we talking about? From a formal perspective the objects
we are talking about are digital signature schemes, defined as follows:

Definition 1 (Digital Signature Scheme). Let M be the message space. A
digital signature scheme Dss = (kg, sign, vf) is a triple of probabilistic polynomial
time algorithms:

– kg(1n) on input of a security parameter 1n outputs a private signing key sk
and a public verification key pk;

– sign(sk,M) outputs a signature σ under sk for message M , if M ∈ M;
– vf(pk, σ,M) outputs 1 iff σ is a valid signature on M under pk;

such that the following correctness condition is fulfilled:

∀(pk, sk) ← kg(1n),∀(M ∈ M) : vf(pk, sign(sk,M),M) = 1.

Throughout this work signature scheme always refers to a digital signature
scheme.

2.2 Security of Signature Schemes

The definition above is only a functional definition of the object at hand that
says nothing about security. It leaves the question of how to define security
for a signature scheme. In general we can split security notions into the goals
an adversary A has to achieve (e.g., a valid signature on any new message for
existential unforgeability) and the attack capabilities given to A (e.g., adaptively
learning signatures on messages of its choice after seeing the public key). For the
goals, the relevant notions1 are:

Full break (FB): A can compute the secret key.
Universal forgery (UU): A can forge a signature for any given message. A

can efficiently answer any signing query.
Selective forgery (SU): A can forge a signature for some message of its

choice. In this case A commits itself to a message before the attack starts.
Existential forgery (EU): A can forge a signature for one arbitrary message.

A might output a forgery for any message for which it did not learn the
signature from a oracle during the attack.

1 We omit strong unforgeability here as it is irrelevant for this context.

304 L. Groot Bruinderink and A. Hülsing

On the other hand, for the attacks we got (We omit key-only attacks as these
allow for no signature queries at all):

Random message attack (RMA): A learns the public key and the signa-
tures on a set of random messages.

Adaptively chosen message attack (CMA): A learns the public key and
is allowed to adaptively ask for the signatures on messages of its choice2.

These two attacks are parameterized by the number of signature queries q
the adversary is allowed to ask. For one-time schemes we only require that a
notion is fulfilled for q = 1.

Any combination of a goal and an attack from the above sets gives a mean-
ingful notion of security. The strength of the notion increases going down each
list. Accordingly, a scheme that is only secure against a full break under a ran-
dom message attack offers the weakest kind of security while a scheme that
offers existential unforgeability under adaptively chosen message attacks offers
the strongest security guarantees.

2.3 Formal Definitions

We now give formal definitions for the notions from above. We define EU-CMA
as an example. The definitions for the remaining notions can be found in the full
version.

EU-CMA. The standard security notion for digital signature schemes is exis-
tential unforgeability under adaptive chosen message attacks (EU-CMA) which
is defined using the following experiment. By Dss(1n) we denote a signature
scheme with security parameter n.

Experiment ExpEU-CMA
Dss(1n) (A)

(sk, pk) ← kg(1n)
(M�, σ�) ← ASign(sk,·)(pk)
Let {(Mi, σi)}q

1 be the query-answer pairs of sign(sk, ·).
Return 1 iff vf(pk,M�, σ�) = 1 and M� �∈ {Mi}q

1.

For the success probability of an adversary A in the above experiment we write

Succeu-cmaDss(1n) (A) = Pr
[
ExpEU-CMA

Dss(1n) (A) = 1
]
.

A signature scheme is called (t, ε(t), q)-EU-CMA-secure if any adversary running
in time at most t, making no more than q queries to the signing oracle has at
most a success probability of ε(t) for breaking the scheme:

2 We omit the non-adaptive setting as it turns out that there is no difference in the
given setting.

“Oops, I Did It Again” 305

Definition 2 (EU-CMA). Let n ∈ N, Dss a digital signature scheme as defined
above. We call Dss (t, ε(t), q)-EU-CMA-secure if InSeceu-cma (Dss(1n); t, q), the
maximum success probability of all possibly probabilistic adversaries A running in
time ≤ t, making at most q queries to Sign in the above experiment, is bounded
by ε(t):

InSeceu-cma (Dss(1n); t, q)
def
= max

A
{Succeu-cmaDss(1n) (A)} ≤ ε(t).

A (t, ε(t))-EU-CMA-secure one-time signature scheme (OTS) is a Dss that is
(t, ε(t), 1)-EU-CMA secure, i.e. the number of signing oracle queries of the adver-
sary is limited to one.

We can give similar definitions for the remaining notions. The difference
between the different notions is described by a modified experiment. The defini-
tion of success probability and what it means for a scheme to fulfill the notion can
be obtained replacing the experiment in the above definitions (and, of course,
tracing the resulting changes through the definition). The experiments of the
remaining notions are given in the full version.

Attack Complexity. For a (t, ε(t))-secure scheme, we define the attack com-
plexity as 2t∗ for t∗ = mint{ε(t) ≥ 1

2}. As the most costly operations of all
attacks are calls to the message digest function H, we measure attack complex-
ity as the number of calls to H.

Further Model Decisions. For our analysis we made several decisions on
how we are analyzing the security in the above models. We are not interested in
attacks that exploit weaknesses of the used hash-functions as these already apply
in the one-message attack setting. Therefore, we model all used hash functions
as random oracles. Due to this decision, RMA-attacks model the setting where
randomized hashing is used for the initial message digest. Hence, we do not do
a separate analysis for variants of the schemes that use randomized hashing.

3 Lamport’s Scheme

We start with analyzing Lamport’s scheme which was the first proposal for a
hash-based signature scheme. For q = 1 it achieves the strongest security notion
EU-CMA-security when the used function is one-way (actually even the ignored
stronger SU-CMA-security if the function is second-preimage resistant). This
holds even without hashing the message first. Now let us look at the two-message
attack case.

3.1 Scheme Description

The first and most intuitive proposal for an OTS is Lamport’s scheme (some-
times called Lamport-Diffie OTS) [12]. The scheme uses a one-way function

306 L. Groot Bruinderink and A. Hülsing

F : {0, 1}n → {0, 1}n, and signs m bit strings. The secret key consists of 2m
random bit strings

sk = (sk1,0, sk1,1, . . . , skm,0, skm,1)

of length n. The public key consists of the 2m outputs of the one-way function

pk = (pk1,0, pk1,1, . . . , pkm,0, pkm,1) = (F(sk1,0),F(sk1,1), . . . ,F(skm,0),F(skm,1))

when evaluated on the elements of the secret key. Signing a message (digest)
M∗ ∈ {0, 1}m corresponds to publishing the corresponding elements of the secret
key:

σ = (σ1, . . . , σm) = (sk1,M∗
1
, . . . , skm,M∗

m
).

To verify a signature the verifier checks whether the elements of the signature
are mapped to the right elements of the public key using F:

(F(σ1), . . . ,F(σm)) ?= (pk1,M∗
1
, . . . , pkm,M∗

m
).

For Lamport’s scheme, the message mapping can be considered the identity.

3.2 Security Under Two-Message Attacks

Considering a CMA setting, we cannot achieve any security without an initial
message hash. An adversary A can choose any pair of messages (M∗

1 ,M∗
2) such

that M∗
1 = ¬M∗

2 , where ¬ denotes bitwise negation, and will learn the full secret
key. In the following we assume a message M is first hashed using a hash function
H : {0, 1}∗ → {0, 1}m, i.e., a m-bit message digest M∗ is used to select the secret
key elements. Our results are summarized in Table 2.

Table 2. Overview of the computational complexity for two-message attacks against
Lamport’s scheme. If the success probability of an attack is not constant in terms
complexity, we give the attack complexity to achieve a success probability of 1/2.

Security goal Attack complexity Pr[Success]

EU-CMA O((4/3)m/3) 1
2

SU-CMA O((4/3)m/3) 1
2

UU-CMA O(2m/2) 1
2

FB-CMA O(2m/2) 1
2

EU-RMA O((4/3)m) 1
2

SU-RMA - (3/4)m

UU-RMA - (3/4)m

FB-RMA - (1/2)m/2

“Oops, I Did It Again” 307

FB-CMA. A full break requires A to find a pair of messages (M1,M2) such
that H(M1) = ¬H(M2). This task has the same complexity as collision finding
for H. The only difference between the two tasks is that the equality condition
is replaced by equality after negation. Sadly, this does not mean that we get a
reduction from collision resistance as the counter example of the identity function
shows: The identity function is collision resistant as no collisions exist but it is
trivial to find a pair such that one message is the negation of the other. However,
assuming H behaves like a random function a birthday bound argument shows
that the complexity of finding such a pair is O(2m/2) which can be carried out
as pre-computation as long as H is known.

EU-CMA. To produce a valid forgery in a chosen message setting, an adversary
A has to find a triple of messages M1,M2,M3 such that

break(M1,M2,M3) = (∀i ∈ [0,m−1]) : H(M1)i = H(M2)i ∨H(M1)i = H(M3)i)

where H(·)i denotes the i-th bit of the message digest. In this case, we say that
M2,M3 form a cover for M1.

For random messages M1,M2,M3, the probability that M2,M3 cover M1 is
the inverse probability of each bit of M∗

1 not being covered by M∗
2 ,M∗

3 :

PrM1 [break(M1,M2,M3) = 1] = (1 − (1/2)2)m = (3/4)m

For an existential forgery, A can start by hashing τ > 2 random messages,
pick a random set of two hashed message and check if these cover a hashed third
message. There are

(
τ
2

)
such pairs of hashed messages, and τ −2 hashed messages

that are potentially covered, leaving a total of
(
τ
2

)
(τ − 2) possibilities. We can

bound the success probability of an existential forgery by the union bound:

Pr{M1,...,Mτ }[∃(Ma,Mb,Mc) ∈ {M1, . . . ,Mτ} : break(Ma,Mb,Mc) = 1]

≤
(

τ

2

)
(τ − 2)(3/4)m ≤ 1

2
τ3(3/4)m

We want to know for which τ this upper bound reaches 1/2, which is
τ = (4/3)m/3. Hence, the attack complexity is lower bound by (4/3)m/3. As
an example, if we consider m = 256 then 236 > (4/3)m/3. It has to be noted
that this is all pre-computation, which can be done before choosing a victim:
no knowledge of the public key is required. It remains to show how tight our
upper bound is. In Sect. 6, we experimentally verify that it is tight for the case
of optimized Lamport and Winternitz.

SU-CMA. For selective forgeries, A can pick a message M for which it needs
to find a cover before receiving signatures. However, since no knowledge of the
public key is needed to start an attack, there is no difference between a selec-
tive forgery and an existential forgery. A can simply search for three messages
(M1,M2,M3) satisfying the break condition before the attack starts using the

308 L. Groot Bruinderink and A. Hülsing

correct hash function. It can then commit to M1 before learning pk, and use
the signatures of M2,M3 to sign M1. This means, the complexity of a selective
forgery can again be lower bound by (4/3)m/3.

UU-CMA. For universal forgeries, A can try to find two messages M1,M2

such that they have non-overlapping message digests in r indices. After the
experiment, A can forge any message with probability (1/2)m−r, since a messages
digest has to overlap with the digests of M1,M2 in m−r indices. The probability
that any two messages M1,M2 have non-overlapping message digests in r indices
is

(
m
r

)
(1/2)r(1/2)m−r =

(
m
r

)
(1/2)m. Using similar arguments as in the EU-CMA

case after τ calls to H, the probability that two messages have r non-overlapping
indices is bounded by at least 1/2 if

(
τ
2

) ≥ 1/2 ·2m
(
m
r

)−1, where we can estimate

that τ = 2m/2
(
m
r

)−1/2. It is easy to see that the more pre-computation an
attacker is doing, the higher the success probability. Figure 1 shows the success
probability as a function of the pre-computation carried out. For m = 256, a
pre-computation of 2136 calls to H is required to reach a probability of 1/2.

Fig. 1. This plot shows the relation between the amount of pre-computation and the
success probability of a universal forgery in a chosen message attack on Lamport’s
One-Time Signature Scheme.

EU-RMA. In this case, the adversary gets a signature of two random messages
(M1,M2) and has to find a third message M3 that is covered by M1,M2. The
difference to the CMA case is that A cannot optimize the choice of M1,M2. This
means each index should be covered, which happens with probability (3/4)m.
In consequence, A has to compute τ = (4/3)m message digests before it finds
a forgery with probability ≥ 1/2. For m = 256, this means the attacker has to

“Oops, I Did It Again” 309

compute about 2106 message digests, making this type of forgery computation-
ally infeasible. However, for m = 128 bit message digests, this would mean a
computational cost of 253, which is in reach for strong attackers.

SU-RMA. For SU-RMA, the adversary selects a message before it receives two
signatures of two random messages. There is no way for A to optimize the selec-
tion of this message, as A does not know (or has influence on) the two random
messages for which it learns the signatures. The probability that A can after-
wards sign the selected message is (3/4)m. This is also the success probability
of the attack. Note that this probability is constant for fixed parameters, i.e.,
independent of the adversaries efforts.

UU-RMA. For random message attacks, there is no difference between uni-
versal and selective forgery attacks since the adversary has no power over the
signed messages and cannot affect his success probability by choice of a target
message. This means also in this case, the probability of a forgery is (3/4)m.

FB-RMA. The probability of a full break under a random message attack, is
simply the probability that two messages are each-others negated version. This
happens with probability (1/2)m.

4 Optimized Lamport

The optimized Lamport scheme is very similar to Lamport’s scheme and first
appeared in [15]. While it is interesting on its own, it is also of interest as it can
be viewed as a special, simplified version of the Winternitz OTS discussed in the
next section.

4.1 Scheme Description

The optimized Lamport scheme uses a one-way function F : {0, 1}n → {0, 1}n,
and signs m bit messages. The secret key consists of � = m + log m + 1 random
bit strings

sk = (sk1, . . . , sk�)

of length n. The public key consists of the � outputs of the one-way function

pk = (pk1, . . . , pk�) = (F(sk1), . . . ,F(sk�))

when evaluated on the elements of the secret key. Signing a message M∗ ∈
{0, 1}m corresponds to first computing and appending a checksum to M∗ to
obtain the message mapping G(M∗) = B = M∗‖C where C =

∑m
i=1 ¬M∗

i . The
signature consists of the secret key element if the corresponding bit in B is 1,
and the public key element otherwise:

σ = (σ1, . . . , σm) with σi =
{
ski, if Bi = 1,
pki, if Bi = 0.

310 L. Groot Bruinderink and A. Hülsing

To verify a signature the verifier checks whether the full public key is obtained
by hashing the elements of the signature that correspond to 1 bits in B:

Return 1, iff (∀i ∈ [1, �]) : pki =
{
F(σi), if Bi = 1,
σi, if Bi = 0.

4.2 Security Under Two-Message Attacks

As with the non-optimized Lamport scheme, we cannot achieve any security
without initial message hash. While it is impossible to learn the whole secret
key from a two-message attack for typical parameters (this is the case as for m
being a power of two the most significant bit of the checksum is only 1 for the all
zero message, and it is impossible to learn the remaining secret key values from
the signature of a single message), it is trivial to obtain all secret key elements
but the one that corresponds to the most significant bit of the checksum. This
allows to sign any message but the all 0 message. An adversary can for example
use the all 1 message (to learn the secret key values for the message part of B)
and any message with a single one (to learn the secret key values of the checksum
part of B, besides the one at the most significant position).

In the following we assume a message M is first hashed using a hash function
H : {0, 1}∗ → {0, 1}m to obtain a message digest M∗ – making attacks signifi-
cantly harder. It is easy to see that checksum C follows a binomial distribution.
However, the analysis of the scheme as described above turned out too complex
to be carried out exactly due to the dependency between C and M∗. The prob-
lem is that it would be possible to condition on two checksums to cover a third
one in the existential forgery setting. These conditions would give an exact Ham-
ming weight for the message parts. However, there would be exponentially many
possibilities, each with a specific probability, rendering a very complex analysis.
For that reason, we simplified the analysis assuming that C is uniformly random
and thereby that digest M∗ and checksum C are independent of each other.
Note that the neglected dependency, and the neglected distribution of C, can
make the attack both easier and harder, depending on wether the higher order
bits of C are covered. Our theoretical results are summarized in Table 3. For an
experimental verification of our results see Sect. 6.

FB-CMA. As mentioned above for m being a power of two (which is the typical
setting), it is impossible to learn the whole secret key from a two-message attack.
For other choices of m, an adversary A has to find two messages M1,M2 such
that (B1)i = 1 or (B2)i = 1 for all i ∈ {0, . . . , � − 1}.

As H is modeled as random oracle and we assume the checksum is uniformly
random and independent of the message, every random input message M leads
to a random message mapping B of length �. For two random input messages
M1,M2, the probability that at least one of the two corresponding message
mappings B1, B2 is 1 at each position is:

Pr[FB(M1,M2)] = (3/4)�.

“Oops, I Did It Again” 311

Table 3. Overview of the computational complexity for two-message attacks against
the optimized Lamport scheme. If the success probability of an attack is not constant
in terms of complexity, we give the attack complexity to achieve a success probability
of 1/2 (aside from SU-RMA as the best we can achieve is a success probability of 3

8
).

Security goal Attack complexity Pr[Success]

EU-CMA O((8/7)(m+logm)/3) 1
2

SU-CMA O((8/7)(m+logm)/3) 1
2

UU-CMA O((4/3)(m+logm)/2) 1
2

FB-CMA O((4/3)(m+logm)/2) 1
2

EU-RMA O((8/7)m+logm) 1
2

SU-RMA O(2m+logm) 3
8

UU-RMA - (7/8)m+logm

FB-RMA - (3/4)m+logm

Similar to the strategy of the existential forgery in Lamport’s scheme, we
can hash τ messages and check all pairs for a full break. The probability of
a full break is bounded by

(
τ
2

)
(3/4)�. We can therefor lower bound the attack

complexity of a full break by (4/3)�/2 calls to H. For m = 256, this complexity
equals 254.

EU-CMA. We will now explore forgeries for a third message, given the signa-
tures for two messages. We define the condition for a break for three messages
M1,M2,M3 with message mappings B1, B2, B3 as:

break(M1,M2,M3) := (∀i ∈ [0, � − 1]) : (B1)i = 1 ⇒ (B2)i = 1 ∨ (B3)i = 1 (1)

where (Bj)i denotes the i-th bit of the mapping of message Mj . If the condition
is fulfilled, we say that M2,M3 form a cover of M1.

In other words: we only need the secret values for those bits of the first
message mapping that are 1, so the probability for a break is higher for target
messages with a low weight message mapping. Recall that we assume that M∗

j

and Cj are independent, meaning we assume we have three independent random
bit strings.

To get the probability that we cover a bit of B1, we can condition on the
value of that bit b ∈ {0, 1}:

Pr[(B1)i ≤ (B2)i ∨ (B1)i ≤ (B3)i]

=
∑

b∈{0,1}
Pr[(B1)i ≤ (B2)i ∨ (B1)i ≤ (B3)i |(B1)i = b]Pr[(B1)i = b]

=
1

2
· Pr[0 ≤ (B2)i ∨ 0 ≤ (B3)i |(B1)i = 0]

+
1

2
· Pr[1 ≤ (B2)i ∨ 1 ≤ (B3)i |(B1)i = 1]

=
1

2
· 1 +

1

2
· 3

4
=

7

8

312 L. Groot Bruinderink and A. Hülsing

This means that the probability that the break condition is fulfilled for three
random messages is

(
7
8

)�.
As with the original Lamport scheme, we can precompute τ message map-

pings, and calculate the upper bound for the success probability. This time, for
the bound to reach 1/2 we need to compute τ = (8/7)�/3 message mappings,
using similar arguments as in the EU-CMA case for Lamport. For m = 256, this
means the adversary needs to precompute τ = 217 hash digests. For m = 128,
this would mean τ = 29 hash digests.

SU-CMA. As with the original Lamport scheme, the adversary does not need
knowledge of the public key to compute three messages that satisfy the break
condition. This means that also for the optimized Lamport scheme, a selective
forgery has the same complexity as an existential forgery under chosen message
attacks.

UU-CMA. The goal of the adversary is to find two messages M1,M2 such that
their combined mappings have the highest weight possible. The probability that
any two messages have weight r is equal to

(
�
r

)
(3/4)r(1/4)�−r, where we again

assume that M∗ and C are independent. Note that the mean of this distribution
is at � · (3/4), which means A should not take any r below � · (3/4). After τ calls
to H, the probability that two of the messages M1,M2 have a combined weight

of r is bounded by at least 1/2 if
(
τ
2

) ≥ 1/2 ·
((

�
r

)
(3/4)r(1/4)�−r

)−1

. We can
estimate the pre-computation complexity as square-root of the right part of this
inequality. After the online phase of the attack, A can sign a new message with
probability (1/2)�−r, since for the positions that are not covered by B1 or B2,
the bit of the new message must be 0. The relation between the pre-computation
and the success probability is given in Fig. 2 for m = 256.

EU-RMA. According to Eq. 1, two messages M2,M3 have a probability of
(7/8)� to cover a random third message M1. This means that after receiving
the signature of two random messages, the adversary has to search τ = (8/7)�

messages to forge a third signature (again using arguments described in earlier
analyses), since it only needs the secret values for the bits of M1 that are 1. For
m = 256, this means a computational cost of about 251, which is in reach for
a strong attacker. For m = 128, this would mean a computational cost of 226,
which can be done within minutes on today’s CPUs.

SU-RMA. Unlike with the original Lamport scheme, for the optimized Lam-
port scheme an adversary can optimize his selection of the target message in a
random message attack. Messages that have low-weight message mappings are
more likely to be covered by the mappings of two random messages. However,
note that we can only select a single target message instead of a whole cover,
which makes the pre-computation more costly. The probability to find a message

“Oops, I Did It Again” 313

Fig. 2. This plot shows the relation between the amount of pre-computation and the
success probability of a universal forgery in a chosen message attack on the optimized
Lamport scheme.

mapping B with weight r is equal to
(

�
r

)
(1/2)�, which is again symmetric around

�/2. An attacker should therefor always pick a message with weight r ≤ �/2.
This message can be signed, after receiving the signatures of two random mes-
sages, with probability (3/4)r, since all positions of B that are 1 have to be
covered by the mappings of the two random messages. If we again estimate the

Fig. 3. This plot shows the relation between the amount of pre-computation and the
success probability of a selective forgery in a chosen message attack on the optimized
Lamport’s One-Time Signature Scheme.

314 L. Groot Bruinderink and A. Hülsing

pre-computation as τ =
((

�
r

)
(1/2)�

)−1

to find a message mapping with weight r

with probability bounded by 1/2, we get the relation between pre-computation
and success probability for a selective forgery in Fig. 3 for m = 256. Note that
this figure looks similar to Fig. 2 but a far more pre-computation is required to
achieve the same bound on the success probability. Even for strong attackers, it
should be infeasible to get a high success probability.

UU-RMA. For a universal forgery under a random message attack, the attacker
cannot influence anything in the experiment. This means the success probability
for this forgery is simply the success probability of the conditional break: (7/8)�.

FB-RMA. The probability of a full break under a random message attack, is
simply the probability that all bits are covered. This happens with probability
(3/4)�, which is 2−54 when m = 256.

5 Winternitz OTS

The Winternitz one-time signature scheme (WOTS) is a further improvement of
the optimized Lamport scheme. Instead of using the hash of each secret key value
as public key, the public key values are obtained by hashing more than once, i.e. w
times. That way, more than one bit can be encoded per selection of a hash value.
The basic idea for the Winternitz OTS (WOTS) was proposed in [15]. What we
know as WOTS today is a generalization that was proposed by Even, Goldreich,
and Micali [7]. There exist several variants that reduce the assumptions made
about the used hash function [2,8,11]. Recent standardization proposals for hash-
based signatures [9,13] as well as a recent proposal for stateless hash-based
signatures [1] use WOTS as one-time signature scheme.

5.1 Scheme Description

WOTS uses a length-preserving (cryptographic hash) function F : {0, 1}n →
{0, 1}n. It is parameterized by the message length m and the Winternitz param-
eter w ∈ N, w > 1, which determines the time-memory trade-off. The two param-
eters are used to compute

�1 =
⌈

m

log(w)

⌉
, �2 =

⌊
log(�1(w − 1))

log(w)

⌋
+ 1, � = �1 + �2.

The scheme uses w − 1 iterations of F on a random input. We define them as

Fa(x) = F(Fa−1(x))

and F0(x) = x.

“Oops, I Did It Again” 315

Now we describe the three algorithms of the scheme:
Key generation algorithm (kg(1n)): On input of security parameter 1n the key
generation algorithm choses � n-bit strings uniformly at random. The secret key
sk = (sk1, . . . , sk�) consists of these � random bit strings. The public verification
key pk is computed as

pk = (pk1, . . . , pk�) = (Fw−1(sk1), . . . ,Fw−1(sk�))

Signature algorithm (sign(1n,M∗, sk)): On input of security parameter 1n, a mes-
sage (digest) M∗ of length m and the secret signing key sk, the signature algo-
rithm first computes a base w representation of M∗: M∗ = (M∗

1 . . . M∗
�1

), M∗
i ∈

{0, . . . , w − 1}. Next it computes the check sum

C =
�1∑

i=1

(w − 1 − M∗
i)

and computes its base w representation C = (C1, . . . , C�2). The length of the
base-w representation of C is at most �2 since C ≤ �1(w − 1). We set B =
(B1, . . . , B�) = M∗ ‖ C. The signature is computed as

σ = (σ1, . . . , σ�) = (FB1(sk1), . . . ,FB�(sk�)).

Verification algorithm (vf(1n,M∗, σ, pk)): On input of security parameter 1n, a
message (digest) M∗ of length m, a signature σ and the public verification key
pk, the verification algorithm first computes the Bi, 1 ≤ i ≤ � as described
above. Then it does the following comparison:

pk = (pk1, . . . , pk�)
?= (Fw−1−B1(σ1), . . . ,Fw−1−B�(σ�))

If the comparison holds, it returns true and false otherwise.

Remark 1. The difference between the basic WOTS as described above and the
variants proposed in [2,8,11] is how F is iterated. As all the attacks below are
independent of this choice, our results apply to all those variants, too.

5.2 Two-Message Attacks

Without hashing the message, the scheme does not offer any security once an
attacker can choose two messages to be signed. As always, the adversary simply
chooses the all zero and the all one message to be signed, and afterwards knows
all secret values (for some parameter choices it will actually be impossible to
extract the whole secret key for the same reason as for optimized Lamport.
However, in that case, as for the optimized Lamport scheme, it is possible to
select two messages that allow learn all but one secret key element).

In the following we assume a message M is first hashed using a hash function
H : {0, 1}∗ → {0, 1}m to obtain a message digest M∗ – making attacks signifi-
cantly harder. As for the optimized Lamport scheme, the analysis of the scheme

316 L. Groot Bruinderink and A. Hülsing

as described above turned out too complex to be carried out exactly due to the
dependency between C and M∗. We simplified the analysis assuming that C is
uniformly random and thereby that digest M∗ and checksum C are indepen-
dent of each other. It applies again that the neglected dependency can make the
attack both easier and harder, depending on the setting. Our theoretical results
are summarized in Table 4. For an experimental verification of the results see
Sect. 6.

Table 4. Overview of the computational complexity for two-message attacks against
the Winternitz OTS. If the success probability of an attack is not constant in terms of
complexity, we give the attack complexity to achieve a success probability of 1/2.

Security goal Attack complexity Pr[Success]

EU-CMA O(
(

(w+1)(4w+1)

6w2

)− m+log m
3 log w

) 1
2

SU-CMA O(
(

(w+1)(4w+1)

6w2

)− m+log m
3 log w

) 1
2

UU-CMA O(
(
1 − (w−1

w
)2

)− m+log m
2 log w) 1

2

FB-CMA O(
(
1 − (w−1

w
)2

)− m+log m
log w) 1

2

EU-RMA O(
(

(w+1)(4w+1)

6w2

)− m+log m
log w

) 1
2

SU-RMA O(
(

1
w

)− m+log m
log w) 1

2

UU-RMA -
(

(w+1)(4w+1)

6w2

) m+log m
log w

FB-RMA -
(
1 − (w−1

w
)2

) m+log m
log w

FB-CMA. The adversary has to find messages M1,M2 with mappings B1, B2

such that for all 0 ≤ i ≤ �: either (B1)i = 0 or (B2)i = 0. The probability to
cover an index of the secret key equals (1 − (w−1

w)2) for each i, which means
the probability that this is true for all i equals: (1 − (w−1

w)2)�. After hashing τ
messages, the probability to find two messages satisfying the condition of a full
break will be upper bounded by at least 1/2 if

(
τ
2

) ≥ 1/2 · (1− (w−1
w)2)−�, which

means we can lower bound the attack complexity by τ ≥ (1 − (w−1
w)2)−�/2.

As a sanity check, we see that for w = 2 we get τ = (4/3)�/2, which is the
complexity of a full break for the optimized Lamport scheme. Typical parameters
for applications are w = 16 and m = 256, which leads to � = 67 and τ = 2102.

EU-CMA. For an existential forgery, we first define the condition for a break
for WOTS:

break(M1,M2,M3) := (∀i ∈ [0, � − 1]) : (B1)i ≥ (B2)i ∨ (B1)i ≥ (B3)i (2)

where (Bj)i denotes the i-th bit of the base-w values of the message mapping
Bj for message Mj ; j ∈ {1, 2, 3}. If the condition is true, we say M2,M3 form a
cover of M1.

“Oops, I Did It Again” 317

We will first see what the probability is to cover one index of B1. If we
condition on the value of (B1)i, we get:

Pr[(B1)i ≥ (B2)i ∨ (B1)i ≥ (B3)i]

=
w−1∑
x=0

Pr[(B1)i ≥ (B2)i ∨ (B1)i ≥ (B3)i|(B1)i = x]Pr[(B1)i = x]

=
w−1∑
x=0

1
w

(
1 −

(
w − (x + 1)

w

)2
)

=
(w + 1)(4w − 1)

6w2

Again as a sanity check, we see that for w = 2, this probability equals (7/8),
which we already concluded for the optimized Lamport scheme.

In total we see that the probability for a conditional break is:

Pr[break(M1,M2,M3) = 1] =
(

(w + 1)(4w − 1)
6w2

)�

≈
(

(w + 1)(4w − 1)
6w2

)m+log m
log w

We see that for bigger w, the probability that one of the indices is not cov-
ered grows, but the number of indices shrinks. The logarithmic decrease of the
exponent is in this case more important, which means the bigger the w, the
bigger the probability of the conditional break (which means less computational
power required for forgeries) (Fig. 4).

Similar to the arguments for the EU-CMA cases for Lamport and opti-
mized Lamport scheme, an adversary needs to pre-compute about τ =((

(w+1)(4w−1)
6w2

)− m+log m
log w

)1/3

message mappings for the bound on the proba-

bility to find a cover in the list of τ message mappings to reach 1/2. As an
example, if we set m = 256 and w = 16, we have τ = 212. Note that, unlike the
FB-CMA setting, it is much easier to forge a third signature for bigger w: while
it becomes harder to get Bi = 0, the probability for a message cover grows.

SU-CMA. As with Lamport’s scheme and the optimized Lamport scheme, A
does not need knowledge of the public key to start any pre-computation. This
means we obtain the same complexity for a selective forgery as for an existential
forgery under CMA.

UU-CMA. For a universal forgery, A can try to compute two message map-
pings B1, B2 such that either (B1)i ≤ r or (B2)i ≤ r for all i ∈ {0, . . . , � − 1},
where r ∈ {0, . . . , w − 1}. The probability that any two messages satisfy

318 L. Groot Bruinderink and A. Hülsing

Fig. 4. This plot shows the logarithmic relation between w and Pr[break] for w ∈
{2, 4, 8, 16, 32, 64}. The logarithmic decrease of the exponent in Pr[break] is clearly
making the probability grow faster for larger w.

these rules equals
(

1 −
(

w−(r+1)
w

)2
)�

, which means the probability that there

exist two such messages in a list of τ messages is bounded by at least 1/2 if
(
τ
2

) ≥ 1/2 ·
(

1 −
(

w−(r+1)
w

)2
)−�

, using again the same arguments as for Lam-

port and optimized Lamport. Now A obtains a successful forgery for M3 with
probability at least

(
w−r

w

)�, since we ignored the cases where (B3)i is smaller
than r, but still bigger than (B1)i or (B2)i. The pre-computation τ and corre-
sponding success probability for different values of w and r ∈ {0, . . . , w − 1} are
given in Fig. 5.

EU-RMA. For WOTS, two messages cover a third one with probability:

Pr[break(M1,M2,M3) = 1] ≈
(

(w + 1)(4w − 1)
6w2

)m+log m
log w

.

This means that when an attacker receives two signatures of two random mes-

sages, it has to compute about τ =
(

(w+1)(4w−1)
6w2

)− m+log m
log w

messages to find a

covered third message. For m = 256 and w = 16, this equals 234, which can be
done within a few days on today’s CPUs.

SU-RMA. For the selective forgery, an attacker can select an optimal mes-
sage with a mapping that contains as high values as possible. For the analysis,

“Oops, I Did It Again” 319

Fig. 5. This plot shows the relation between the amount of pre-computation and the
lower bound for the success probability for a universal forgery under a chosen message
attack on WOTS for different values of w and for each r ∈ {0, . . . , w − 1}.

we will use the same strategy as for the universal forgery, but in this case we
want (B1)i ≥ r for all i ∈ {0, . . . , �−1}, which happens with probability

(
w−r

w

)�.

Hence, the pre-computation can again be bound by τ ≥ (
w−r

w

)−� to upper bound
the probability of finding such a message in a list of τ messages by at least 1/2.
The probability that the adversary can sign his selected message after he received

two signatures on random messages equals
(

1 −
(

w−(r+1)
w

)2
)�

in this case. A

plot of the computational costs with corresponding success probability is given
in Fig. 6. As for the optimized Lamport scheme, it looks similar to the graph
of the universal forgery under chosen message attacks, but with lower success
probabilities since A only has control over the selected message.

UU-RMA. The probability of a successful universal forgery under a random
message attack equals the probability that three random messages fulfill the
break condition:

Pr[break(M1,M2,M3) = 1] ≈
(

(w + 1)(4w − 1)
6w2

)m+log m
log w

The attacker has no influence on the process and cannot use any computational
power before or after the online phase of the attack to increase his success prob-
ability.

FB-RMA. Similar to Lamport’s and the optimized Lamport scheme, a full
break occurs exactly when all secret values are exposed. For Winternitz with

320 L. Groot Bruinderink and A. Hülsing

Fig. 6. This plot shows the relation between the amount of pre-computation and the
success probability of a selective forgery under random message attacks on WOTS for
different values of w and for each r ∈ {0, . . . , w − 1}

parameter w, this happens with probability (1 − (w−1
w)2)�, which is a negligible

probability for any w.

6 Experimental Verifications

In Sects. 3, 4, and 5 we discussed the attack complexity of several different
attacks. For the optimized Lamport scheme and WOTS, we assumed that the
checksum is uniformly random and hence the message digest and its checksum
behave as independent bit strings. However, as already mentioned there, the
actual situation is that the checksum is dependent of the message digest. To
verify the obtained results we carried out experiments for the EU-CMA case for
optimized Lamport and WOTS.

We determined a lower bound for the number of calls τ to the message
digest function H, such that a list of size τ of message digests, allows to find an
existential forgery with probability upper bounded by at least 1/2. We performed
several experiments for different values of τ , to see how realistic our assumption
matches the real situation and how tight our bound is. We checked how many
times a list of τ message mappings contained a cover for optimized Lamport
scheme with digest length of m = 128 bits and for WOTS, with m = 256 and w =
16 (which are the parameters suggested in [9]). We performed 100 experiments
per value of τ . As can be seen from the results in Table 5, the experiments closely
match the theoretical results using the checksum simplification. The theoretical
analysis predicts that τ = 29 is required for the bound on the probability of an
existential forgery to reach 1/2 for the optimized Lamport scheme with m = 128.
For WOTS, the analysis suggests τ = 212 when m = 256 and w = 16. From the

“Oops, I Did It Again” 321

results of the experiments, we can conclude that the simplifying assumption of
independent message digests and checksums is not causing a significant difference
to the real setting in the case of EU-CMA.

Remark 2. It is important to note that for extreme cases our analysis is not good
enough. In the FB-CMA, UU-CMA, SU-RMA and FB-RMA settings for the
optimized Lamport and Winternitz schemes, we are trying to push the message
mappings to extreme cases to allow for forgeries. However, due to the inverse
nature of the checksum, our analysis leads to impossible message mappings. For
example, a high weight message part means a low weight checksum part for
optimized Lamport, but in our analysis we are trying to push both message and
checksum part to high weights. Therefor we expect the complexity to be much
higher for these extreme cases, i.e. when r is very low or very high, with the
meaning of r as described in optimized Lamport and Winternitz.

Table 5. Experimental results for the success probability of an EU-CMA adversary,
using a list of τ message mappings for the optimized Lamport (left table) with digest
length m = 128 and for WOTS (right table) with w = 16 and digest length m = 256

τ Pr[Success]
28 0.02
29 0.13
210 0.77
211 1.0
212 1.0

τ Pr[Succes]
211 0.1
212 0.49
213 0.94
214 1.0
215 1.0

Acknowledgement. This research was motivated in part by suggestions by Burt
Kaliski of Verisign. The authors would also like to thank Aziz Mohaisen for helpful
discussions.

References

1. Bernstein, D.J., et al.: SPHINCS: practical stateless hash-based signatures. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 368–
397. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5 15

2. Buchmann, J., Dahmen, E., Ereth, S., Hülsing, A., Rückert, M.: On the security
of the Winternitz one-time signature scheme. In: Nitaj, A., Pointcheval, D. (eds.)
AFRICACRYPT 2011. LNCS, vol. 6737, pp. 363–378. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-21969-6 23

3. Buchmann, J., Dahmen, E., Hülsing, A.: XMSS - a practical forward secure sig-
nature scheme based on minimal security assumptions. In: Yang, B.-Y. (ed.)
PQCrypto 2011. LNCS, vol. 7071, pp. 117–129. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-25405-5 8

4. Buchmann, J., Dahmen, E., Klintsevich, E., Okeya, K., Vuillaume, C.: Merkle
signatures with virtually unlimited signature capacity. In: Katz, J., Yung, M. (eds.)
ACNS 2007. LNCS, vol. 4521, pp. 31–45. Springer, Heidelberg (2007). https://doi.
org/10.1007/978-3-540-72738-5 3

https://doi.org/10.1007/978-3-662-46800-5_15
https://doi.org/10.1007/978-3-642-21969-6_23
https://doi.org/10.1007/978-3-642-25405-5_8
https://doi.org/10.1007/978-3-540-72738-5_3
https://doi.org/10.1007/978-3-540-72738-5_3

322 L. Groot Bruinderink and A. Hülsing

5. Buchmann, J., Garćıa, L.C.C., Dahmen, E., Döring, M., Klintsevich, E.: CMSS – an
improved merkle signature scheme. In: Barua, R., Lange, T. (eds.) INDOCRYPT
2006. LNCS, vol. 4329, pp. 349–363. Springer, Heidelberg (2006). https://doi.org/
10.1007/11941378 25

6. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and
bimodal Gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol.
8042, pp. 40–56. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
40041-4 3. https://eprint.iacr.org/2013/383/

7. Even, S., Goldreich, O., Micali, S.: On-line/off-line digital signatures. J. Cryptology
9(1), 35–67 (1996)

8. Hülsing, A.: W-OTS+ – Shorter signatures for hash-based signature schemes. In:
Youssef, A., Nitaj, A., Hassanien, A.E. (eds.) AFRICACRYPT 2013. LNCS, vol.
7918, pp. 173–188. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-38553-7 10

9. Hülsing, A., Butin, D., Gazdag, S.-L., Mohaisen, A.: XMSS: Extended hash-based
signatures. Internet Draft, IETF Crypto Forum Research Group (2015)

10. Hülsing, A., Rausch, L., Buchmann, J.: Optimal parameters for XMSSMT . In:
Cuzzocrea, A., Kittl, C., Simos, D.E., Weippl, E., Xu, L. (eds.) CD-ARES 2013.
LNCS, vol. 8128, pp. 194–208. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40588-4 14

11. Hülsing, A., Rijneveld, J., Song, F.: Mitigating multi-target attacks in hash-based
signatures. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC
2016. LNCS, vol. 9614, pp. 387–416. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49384-7 15

12. Lamport, L.: Constructing digital signatures from a one way function. Technical
report SRI-CSL-98, SRI International Computer Science Laboratory (1979)

13. McGrew, D., Curcio, M.: Hash-based signatures. Internet Draft, IETF (2014)
14. McGrew, D., Kampanakis, P., Fluhrer, S., Gazdag, S.L., Butin, D., Buchmann, J.:

State management for hash based signatures. Cryptology ePrint Archive, Report
2016/357 (2016). https://eprint.iacr.org/2016/357

15. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, New York (1990). https://doi.org/10.1007/
0-387-34805-0 21

16. NIST. Post-quantum cryptography: NIST’s plan for the future (2016). http://
csrc.nist.gov/groups/ST/post-quantum-crypto/documents/pqcrypto-2016-
presentation.pdf

17. NSA. Commercial National Security Algorithm Suite. https://www.iad.gov/iad/
programs/iad-initiatives/cnsa-suite.cfm. Accessed July 2016

18. Petzoldt, A., Chen, M.-S., Yang, B.-Y., Tao, C., Ding, J.: Design principles for
HFEv- based multivariate signature schemes. In: Iwata, T., Cheon, J.H. (eds.)
ASIACRYPT 2015. LNCS, vol. 9452, pp. 311–334. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48797-6 14. http://www.iis.sinica.edu.tw/
papers/byyang/19342-F.pdf

19. Reyzin, L., Reyzin, N.: Better than BiBa: Short one-time signatures with fast
signing and verifying. In: Batten, L., Seberry, J. (eds.) ACISP 2002. LNCS, vol.
2384, pp. 144–153. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45450-0 11

20. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and fac-
toring. In: Proceedings of the 35th Annual IEEE Symposium on Foundations of
Computer Science (FOCS 1994), pp. 124–134. IEEE Computer Society Press (1994)

https://doi.org/10.1007/11941378_25
https://doi.org/10.1007/11941378_25
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/978-3-642-40041-4_3
https://eprint.iacr.org/2013/383/
https://doi.org/10.1007/978-3-642-38553-7_10
https://doi.org/10.1007/978-3-642-38553-7_10
https://doi.org/10.1007/978-3-642-40588-4_14
https://doi.org/10.1007/978-3-642-40588-4_14
https://doi.org/10.1007/978-3-662-49384-7_15
https://doi.org/10.1007/978-3-662-49384-7_15
https://eprint.iacr.org/2016/357
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/0-387-34805-0_21
http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/pqcrypto-2016-presentation.pdf
http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/pqcrypto-2016-presentation.pdf
http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/pqcrypto-2016-presentation.pdf
https://www.iad.gov/iad/programs/iad-initiatives/cnsa-suite.cfm
https://www.iad.gov/iad/programs/iad-initiatives/cnsa-suite.cfm
https://doi.org/10.1007/978-3-662-48797-6_14
http://www.iis.sinica.edu.tw/papers/byyang/19342-F.pdf
http://www.iis.sinica.edu.tw/papers/byyang/19342-F.pdf
https://doi.org/10.1007/3-540-45450-0_11
https://doi.org/10.1007/3-540-45450-0_11

Cryptanalysis

Low-Communication Parallel Quantum
Multi-Target Preimage Search

Gustavo Banegas1(B) and Daniel J. Bernstein2(B)

1 Department of Mathematics and Computer Science,
Technische Universiteit Eindhoven, P.O. Box 513,

5600 MB Eindhoven, The Netherlands
gustavo@cryptme.in

2 Department of Computer Science, University of Illinois at Chicago,
Chicago, IL 60607–7045, USA

djb@cr.yp.to

Abstract. The most important pre-quantum threat to AES-128 is the
1994 van Oorschot–Wiener “parallel rho method”, a low-communication
parallel pre-quantum multi-target preimage-search algorithm. This algo-
rithm uses a mesh of p small processors, each running for approximately
2128/pt fast steps, to find one of t independent AES keys k1, . . . , kt, given
the ciphertexts AESk1(0), . . . ,AESkt(0) for a shared plaintext 0.

NIST has claimed a high post-quantum security level for AES-128,
starting from the following rationale: “Grover’s algorithm requires a long-
running serial computation, which is difficult to implement in practice. In
a realistic attack, one has to run many smaller instances of the algorithm
in parallel, which makes the quantum speedup less dramatic.” NIST has
also stated that resistance to multi-key attacks is desirable; but, in a real-
istic parallel setting, a straightforward multi-key application of Grover’s
algorithm costs more than targeting one key at a time.

This paper introduces a different quantum algorithm for multi-target
preimage search. This algorithm shows, in the same realistic parallel set-
ting, that quantum preimage search benefits asymptotically from having
multiple targets. The new algorithm requires a revision of NIST’s AES-
128, AES-192, and AES-256 security claims.

Keywords: Quantum cryptanalysis · Multi-target preimages
Parallel rho method · Grover’s algorithm

This project has received funding under the European Union’s Horizon 2020
research and innovation programme (grant agreement 645622 PQCRYPTO and
Marie Sk�lodowska-Curie grant agreement 643161 ECRYPT-NET); from the Nether-
lands Organisation for Scientific Research (NWO grant 639.073.005); and from the
U.S. National Science Foundation (grant 1314919). “Any opinions, findings, and con-
clusions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the National Science Foundation.” Per-
manent ID of this document: 564c02527d5562810a43e02ec640d604e13a9910. Date:
2017.08.18.

c© Springer International Publishing AG 2018
C. Adams and J. Camenisch (Eds.): SAC 2017, LNCS 10719, pp. 325–335, 2018.
https://doi.org/10.1007/978-3-319-72565-9_16

326 G. Banegas and D. J. Bernstein

1 Introduction

Fix a function H. For any element x in the domain of H, the value H(x) is called
the image of x, and x is called a preimage of H(x).

Many attacks can be viewed as searching for preimages of specified functions.
Consider, for example, the function H that maps an RSA private key (p, q) to
the public key pq. Formally, define P as the set of pairs (p, q) of prime numbers
with p < q, and define H : P → Z as the function (p, q) �→ pq. Shor’s quantum
algorithm efficiently finds the private key (p, q) given the public key pq; in other
words, it efficiently finds a preimage of pq.

As another example, consider a protocol that uses a secret 128-bit AES key
k, and that reveals the encryption under k of a plaintext known to the attacker,
say plaintext 0. Define H(k) as this ciphertext AESk(0). Given H(k), a simple
brute-force attack takes a random key x as a guess for k, computes H(x), and
checks whether H(x) = H(k). If H(x) �= H(k) then the attack tries again, for
example replacing x with x + 1 mod 2128.

Within, e.g., 2100 guesses the attack has probability almost 2−28 of successfully
guessing k. We say “almost” because there could be preimages of H(k) other than
k: i.e., it is possible to have H(x) = H(k) with x �= k. This gives the attack more
chances to find a preimage, but it means that any particular preimage selected as
output is correspondingly less likely to be k. Typical protocols give the attacker
a reasonably cheap way to see that these other preimages are not in fact k, and
then the attacker can simply continue the attack until finding k.

This brute-force attack is not specific to AES, except for the details of how
one computes AESk(0) given k. The general strategy for finding preimages of a
function is to check many possible preimages. In this paper we focus on faster
attacks that work in the same level of generality. Some specific functions, such as
the function (p, q) �→ pq mentioned above, have extra structure allowing much
faster preimage attacks, but we do not discuss those special-purpose attacks
further.

1.1. Multiple-Target Preimages. Often an attacker is given many images,
say t images H(x1), . . . , H(xt), rather than merely a single image. For example,
x1, . . . , xt could be secret AES keys for sessions between t pairs of users, where
each key is used to encrypt plaintext 0; or they could be secret keys for one user
running a protocol t times; or they could be secrets within a single protocol run.

The t-target preimage problem is the problem of finding a preimage of at
least one of y1, . . . , yt; i.e., finding x such that H(x) ∈ {y1, . . . , yt}. A solution
to this problem often constitutes a break of a protocol; and this problem can be
easier than the single-target preimage problem, as discussed below.

Techniques used to attack the t-target preimage problem are also closely
related to techniques used to attack the well-known collision problem: the
problem of finding distinct x, x′ with H(x) = H(x′).

The obvious way to attack the t-target preimage problem is to choose a ran-
dom x and see whether H(x) ∈ {y1, . . . , yt}. Typically y1, . . . , yt are distinct, and

Low-Communication Parallel Quantum Multi-Target Preimage Search 327

then the probability that H(x) ∈ {y1, . . . , yt} is the sum of the probability that
H(x) = y1, the probability that H(x) = y2, and so on through the probability
that H(x) = yt. If x is a single-target preimage with probability about 1/N then
x is a t-target preimage with probability about t/N .

Repeating this process for s steps takes a total of s evaluations of H on dis-
tinct choices of x, and has probability about st/N of finding a t-target preimage,
i.e., high probability after N/t steps. This might sound t times faster than finding
a single-target preimage, but there are important overheads in this algorithm,
as we discuss next.

1.2. Communication Costs and Parallelism. Real-world implementations
show that, as t grows, the algorithm stated above becomes bottlenecked not by
the computation of H(x) but rather by the check whether H(x) ∈ {y1, . . . , yt}.

One might think that this check takes constant time, looking up H(x) in a
hash table of y1, . . . , yt, but the physical reality is that random access to a table
of size t becomes slower as t grows. Concretely, when a table of size t is laid out
as a

√
t × √

t mesh in a realistic circuit, looking up a random table entry takes
time proportional to

√
t.

Furthermore, for essentially the same cost as a memory circuit capable of
storing and retrieving t items, the attacker can build a circuit with t small parallel
processors, where the ith processor searches for a preimage of yi independently of
the other processors. Running each processor for N/t fast steps has high success
probability of finding a t-target preimage and takes total time N/t, since the
processors run in parallel.

The “parallel rho method”, introduced by van Oorschot and Wiener in 1994
[13], does better. The van Oorschot–Wiener circuit has size p and reaches high
probability after only N/pt fast steps (assuming p ≥ t; otherwise the circuit
does not have enough storage to hold all t targets, and one must reduce t). For
example, with p = t, this circuit has size t and reaches high probability after
only N/t2 steps.

There are p small parallel processors in this circuit, arranged in a
√

p ×√
p square. There is also a parallel “mesh” network allowing each processor to

communicate quickly with the processors adjacent to it in the square. Later, as
part of the description of our quantum multi-target preimage-search algorithm,
we will review how these resources are used in the parallel rho method. The
analysis also shows how large p and t can be compared to N .

1.3. Quantum Attacks. If a random input x has probability 1/N of being a
preimage of y then brute force finds a preimage of y in about N steps. Quantum
computers do better: specifically, Grover’s algorithm [7] finds a preimage of y in
only about

√
N steps.

However, increased awareness of communication costs and parallelism has
produced increasingly frequent objections to this quantitative speedup claim.
For example, NIST’s “Submission Requirements and Evaluation Criteria for the

328 G. Banegas and D. J. Bernstein

Post-Quantum Cryptography Standardization Process” [11] states security levels
for AES-128, AES-192, and AES-256 that provide

substantially more quantum security than a näıve analysis might suggest.
For example, categories 1, 3 and 5 are defined in terms of block ciphers,
which can be broken using Grover’s algorithm, with a quadratic quantum
speedup. But Grover’s algorithm requires a long-running serial computa-
tion, which is difficult to implement in practice. In a realistic attack, one
has to run many smaller instances of the algorithm in parallel, which makes
the quantum speedup less dramatic.

Concretely, Grover’s algorithm has high probability of finding a preimage if it
uses p small parallel quantum processors, each running for

√
N/p steps, as in

[8]. The speedup compared to p small parallel non-quantum processors is only√
N/p, which for reasonable values of p is much smaller than

√
N .

Furthermore, when the actual problem facing the attacker is a t-target preim-
age problem, the parallel rho machine with p small parallel non-quantum pro-
cessors reaches high success probability after only N/pt steps. This extra factor
t can easily outweigh the

√
N/p speedup from Grover’s algorithm.

For example, a parallel rho machine of size p finds collisions in only
√

N/p
steps. This is certainly better than running Grover’s algorithm for

√
N/p steps.

Brassard, Høyer, and Tapp [5] claimed a faster quantum algorithm to find
collisions. Their algorithm chooses t ≈ N1/3, takes t random inputs x1, . . . , xt,
computes the corresponding images y1, . . . , yt, and then builds a new function
H ′ defined as follows: H ′(x) = 0 if H(x) ∈ {y1, . . . , yt}, otherwise H ′(x) = 1. A
random input is an H ′-preimage of 0 with probability approximately 1/N2/3, so
Grover’s algorithm finds an H ′-preimage of 0 after approximately N1/3 steps.

However, Bernstein [4] analyzed the communication costs in this algorithm
and in several variants, and concluded that no known quantum collision-finding
algorithms were faster than the non-quantum parallel rho method.

1.4. Contributions of This Paper. This paper introduces a quantum algo-
rithm, in the same realistic model mentioned above (p small parallel proces-
sors connected by a two-dimensional mesh), that finds a t-target preimage using
roughly

√
N/pt1/2 fast steps. If communication were not an issue then t1/2 would

improve to t. See Fig. 1.4.
Taking t = 1 produces a single-target preimage using roughly

√
N/p steps, as

in Grover’s algorithm running on p processors. To save time for larger values of
t we combine Grover’s algorithm with the parallel rho method offering a speed
up on the quantum attacks. This requires a reversible version of the parallel
rho method. Reversibility creates a further tε cost explained below compared
to pre-quantum attacks. Communication inside the parallel rho method raises
further issues that do not show up in simpler applications of Grover’s method;
this creates the gap between t1/2 and t.

NIST has stated that resistance to multi-key attacks is desirable. Our results
show that simply using Grover’s algorithm for single-target preimage search is

Low-Communication Parallel Quantum Multi-Target Preimage Search 329

not optimal in this context. NIST’s post-quantum security claims for AES-128,
AES-192, and AES-256 assume that it is optimal, and therefore need to be
revised.

1.5. Open Questions. Our analysis is asymptotic. In this paper we suppress
constant factors, logarithmic factors, etc. and focus on asymptotic exponents.
We plan to increase the precision of the analysis of the algorithm by measur-
ing the costs (qubits and gates) of an implementation. One major issue is the
implementation of AES in a quantum computer; see the cost estimates from
[6]. Another major issue is the sorting implementation. Both stages can be effi-
ciently simulated and tested in a non-quantum computer, since both stages are
reversible computations without superposition.

Fig. 1.4. Overview of costs of pre-quantum and post-quantum attacks. Circled blue
items are new results in this paper. Lower-order factors are omitted. Pre-quantum
single-target preimage attacks: brute force plus simple parallelization. Post-quantum
single-target preimage attacks: Grover’s algorithm [7] plus simple parallelization [8].
Pre-quantum multi-target preimage attacks: brute force and the parallel rho method
[13]. Post-quantum multi-target preimage attacks: [9] for oracle calls, this paper for
parallel methods. Pre-quantum collision attacks: the rho method and the parallel
rho method. Post-quantum collision attacks: [5] for oracle calls, plus the parallel rho
method. (Color figure online)

330 G. Banegas and D. J. Bernstein

2 Reversible Computation

A Toffoli gate maps bits (x, y, z) to (x, y, z + xy), where + means exclusive-or.
A reversible n-bit circuit is an n-bit-to-n-bit function expressed as a com-

position of a sequence of Toffoli gates on selected bits. We assume that adjacent
Toffoli gates on separate bits are carried out in parallel: our model of time for
a reversible circuit is the depth of the circuit rather than the total number of
gates. To model realistic communication costs, we lay out the n bits in a square,
and we require each Toffoli gate to be applied to bits that are laid out within a
constant distance of each other.

Let H be a function from {0, 1}b to {0, 1}b, where b is a nonnegative integer.
An a-ancilla reversible circuit for H is a reversible (2b + a)-bit circuit that,
for all b-bit strings x and y, maps (x, y, 0) to (x, y + H(x), 0). The behavior of
this circuit on more general inputs (x, y, z) is not relevant.

Grover’s method, given any reversible circuit for H, produces a quantum
preimage-search algorithm. This algorithm uses s serial steps of H computation
and negligible overhead, and has probability approximately s2/N of finding a
preimage, if a random input to H has probability 1/N of being a preimage.

In subsequent sections we convert the reversible circuit for H into a reversible
circuit for a larger function H ′ using approximately

√
t steps on t small parallel

processors. H ′ is designed so that

• a random input to H ′ has probability approximately t5/2/N of being an H ′-
preimage and

• an H ′-preimage produces a t-target H-preimage as desired.

Applying Grover’s method to H ′, with s ≈
√

N/pt3/2, uses overall
√

N/pt1/2

steps on t small parallel processors, and has probability approximately t/p of
finding a preimage. A machine with p/t parallel copies of Grover’s method has
high probability of finding a preimage and uses

√
N/pt1/2 steps on p small

parallel processors.

3 Reversible Iteration

As in the previous section, let H be a function from {0, 1}b to {0, 1}b, where b is
a nonnegative integer. Assume that we are given a reversible circuit for H using
a ancillas and gate depth g (see, e.g., the circuit in [6]). This section reviews the
Bennett–Tompa technique [3] to build a reversible circuit for Hn, where n is a
positive integer, using a + O(b log2 n) ancillas and gate depth O(gn1+ε). Here ε
can be taken as close to 0 as desired, although the O constants depend on ε.

As a starting point, consider the following reversible circuit for H2 using a+b
ancillas and depth 3g:

time 0: x y 0 0
time 1: x y H(x) 0
time 2: x y + H2(x) H(x) 0
time 3: x y + H2(x) 0 0

Low-Communication Parallel Quantum Multi-Target Preimage Search 331

Each step here is a reversible circuit for H, and in particular the last step
adds H(x) to H(x), obtaining 0 (recall that + means xor).

More generally, if H uses a ancillas and depth g, and H ′ uses a′ ancillas and
depth g′, then the following reversible circuit for H ′ ◦ H uses max{a, a′} + b
ancillas and depth 2g + g′:

time 0: x y 0 0
time 1: x y H(x) 0
time 2: x y + H ′(H(x)) H(x) 0
time 3: x y + H ′(H(x)) 0 0

Bennett now substitutes Hm and Hn for H and H ′ respectively, obtaining the
following reversible circuit for Hm+n using max{am, an} + b ancillas and depth
2gm + gn:

time 0: x y 0 0
time 1: x y Hm(x) 0
time 2: x y + Hm+n(x) Hm(x) 0
time 3: x y + Hm+n(x) 0 0

Bennett suggests taking n = m or n = m + 1, and then it is easy to prove by
induction that an = a +
log2 n�b and gn ≤ 3�log2 n�g ≤ 3nlog2 3g. For example,
computing H2k(x) uses a + kb ancillas and depth 3kg.

More generally, with credit to Tompa, Bennett suggests a way to reduce the
exponent log2 3 arbitrarily close to 1, at the expense of a constant factor in front
of b. For example, one can start from the following reversible circuit for H3 using
a + 2b ancillas and depth 5g:

time 0: x y 0 0 0
time 1: x y H(x) 0 0
time 2: x y H(x) H2(x) 0
time 3: x y + H3(x) H(x) H2(x) 0
time 4: x y + H3(x) H(x) 0 0
time 5: x y + H3(x) 0 0 0

Generalizing straightforwardly from H3 to H ′′ ◦ H ′ ◦ H, and then replacing
H,H ′,H ′′ with H�,Hm,Hn, produces a reversible circuit for H�+m+n using
max{a� + b, am + 2b, an + 2b} ancillas and depth 2g�+2gm+gn. Splitting evenly
between �,m, n reduces log2 3 ≈ 1.58 to log3 5 ≈ 1.46. (An even split is not
optimal: for a given ancilla budget one can afford to take a� larger than am

and an. See [10] for detailed optimizations along these lines.) By starting with
H4 instead of H3 one reduces the exponent to log4 7 ≈ 1.40, using, e.g., a + 9b
ancillas and depth 567g to compute H64. By starting with H8 one reduces the
exponent to log8 15 ≈ 1.30; etc.

4 Reversible Distinguished Points

As above, let H be a function from {0, 1}b to {0, 1}b, where b is a nonnegative
integer; and assume that we are given an a-ancilla depth-g reversible circuit
for H.

332 G. Banegas and D. J. Bernstein

Fix d ∈ {0, 1, . . . , b}. We say that x ∈ {0, 1}b is distinguished if its first d
bits are 0.

The rho method iterates H until finding a distinguished point or reaching
a prespecified limit on the number of iterations, say n iterations. The resulting
finite sequence x,H(x),H2(x), . . . , Hm(x), either

• containing exactly one distinguished point Hm(x) and having m ≤ n or
• containing zero distinguished points and having m = n,

is the chain for x, and its final entry Hm(x) is the chain end for x.
This section explains a reversible circuit for the function that maps x to the

chain end for x. This circuit has essentially the same cost as the Bennett–Tompa
circuit from the previous section.

Define Hd : {0, 1}b → {0, 1}b as follows:

Hd(x) =

{
x if the first d bits of x are 0
H(x) otherwise.

A reversible circuit for Hd is slightly more costly than a reversible circuit for H,
since it needs an “OR” between the first d bits of x and a selection between x
and H(x).

If the chain for x is x,H(x),H2(x), . . . , Hm(x) then the iterates

x,Hd(x),H2
d(x), . . . , Hm

d (x),Hm+1
d (x), . . . , Hn

d (x)

are exactly x,H(x),H2(x), . . . , Hm(x),Hm(x), . . . , Hm(x). Hence the chain end
for x, namely Hm(x), is exactly Hn

d (x). We compute Hn
d reversibly by substi-

tuting Hd for H in the previous section.
If x is chosen randomly and H behaves randomly then one expects each

new H output to have chance 1/2d of being distinguished. To have a reasonable
chance that the chain end is distinguished, one should take n on the scale of 2d:
e.g., n = 2d+1. If n and d are very large then chains will usually fall into loops
before reaching distinguished points, but we will later take small n, roughly

√
t

for t-target preimage search.

5 Reversible Parallel Distinguished Points

Define b,H, a, g, d, n as before, and let t be a positive integer. This section
explains a reversible circuit for the function that maps a vector (x1, . . . , xt)
of b-bit strings to the corresponding vector (Hn

d (x1), . . . , Hn
d (xt)) of chain ends.

This circuit is simply t parallel copies of the circuit from the previous section,
where the ith copy handles xi. The depth of the circuit is identical to the depth
of the circuit in the previous section. The size of this circuit is t times larger
than the size of the circuit in the previous section.

Communication in this circuit is only inside the parallel computations of H
etc. There is no communication between the parallel circuits, and there is no
dependence of communication costs upon t.

Low-Communication Parallel Quantum Multi-Target Preimage Search 333

6 Sorting on a Mesh Network

Define S(c1, c2, . . . , ct), where c1, c2, . . . , ct are b-bit strings, as (d1, d2, . . . , dt),
where d1, d2, . . . , dt are the same as c1, c2, . . . , ct in lexicographic order.

This section presents a reversible computation of S using O(t(b + (log t)2))
ancillas and O(t1/2(log t)2) steps. Each step is a simple local operation on a
two-dimensional mesh, repeated many times in parallel. We follow the general
sorting strategy from [2] but choose different subroutines.

We start with odd-even mergesort [1]. This algorithm is a sorting network:
i.e., a sequence of comparators, where each comparator sorts two objects. Odd-
even mergesort sorts t items using O((log t)2) stages, where each stage involves
O(t) parallel comparators. For comparison, [2, Table 2] mentions bitonic sort,
which is slower than odd-even mergesort, and AKS sort, which is asymptotically
faster as t → ∞ but slower for any reasonable size of t.

To make odd-even mergesort reversible, we record for each of the O(t(log t)2)
comparators whether the inputs were out of order, as in [2, Sect. 2.1]. This uses
O(t(log t)2) ancillas. The comparators themselves use O(tb) ancillas.

The comparators in odd-even mergesort are not local when items are spread
across a two-dimensional mesh. We fix this as in [2, Sect. 2.3]: before each stage,
we permute the data so that the stage involves only local comparators. Each
of these permutations is a constant determined by the structure of the sorting
network; for odd-even mergesort each permutation is essentially a riffle shuffle.

The permutation strategy suggested in [2, Sect. 2.3] is to apply any sorting
algorithm built from local operations. For a two-dimensional mesh, [2, Table 2]
suggests “Bubble/Insertion sort”, but it is not at all clear which two-dimensional
algorithm is meant here; the classic forms of bubble sort and insertion sort are
not parallelizable. The same table also says that these are “sorting networks”,
but most of the classic forms of bubble sort and insertion sort include conditional
branches. We suggest using the Schnorr–Shamir algorithm [12], which has depth
approximately 3

√
t. It seems likely that an ad-hoc riffle algorithm would produce

a better constant here.

7 Multi-target Preimages

Fix images y1, . . . , yt. We build a reversible circuit that performs the following
operations:

• Input a vector (x1, . . . , xt).
• Compute, in parallel, the chain ends for x1, . . . , xt: i.e., Hn

d (x1), . . . , Hn
d (xt).

• Precompute the chain ends for y1, . . . , yt.
• Sort the chain ends for x1, . . . , xt and the chain ends for y1, . . . , yt.
• If there is a collision, say a collision between the chain end for xi and the

chain end for yj : recompute the chain for xi, checking each chain element to
see whether it is a preimage for yj .

• Output 0 if a preimage was found, otherwise 1.

334 G. Banegas and D. J. Bernstein

This circuit uses O(a+b log2 n+tb+t(log t)2) ancillas. The chain computation has
depth O(gn1+ε), and the sorting has depth O(t1/2(log t)2 log b), where O(log b)
accounts for the cost of a b-bit comparator.

If a chain for xi ends with a distinguished point, and the chain includes
a preimage (before this distinguished point) for yj , then the chain for yj will
end with the same distinguished point. The recomputation will then find this
preimage. The number of such chains is proportional to t (with a constant-factor
loss for chains that end before a distinguished point), so the number of elements
in the chains is proportional to nt (with a constant factor reflecting the length
of chains before distinguished points); the chance of a particular preimage being
one of these elements is 1/N ; and there are t preimages, for an overall chance
roughly nt2/N .

We take n ≈ √
t, so the circuit uses O(a+tb+t(log t)2) ancillas and has depth

O(gt1/2+ε/2+t1/2(log t)2 log b); one can also incorporate b, g, ε into the choice of n
to better balance the two terms in this depth formula. The chance that the circuit
finds a preimage is roughly t5/2/N , as mentioned earlier. Finally, we apply p/t
parallel copies of Grover’s method to this circuit, each copy using approximately√

N/pt3/2 iterations, i.e., depth O(
√

N/pt1/2(gtε/2 + (log t)2 log b)), to reach a
high probability of finding a t-target preimage.

References

1. Batcher, K.E.: Sorting networks and their applications. In: Proceedings of the
Spring Joint Computer Conference, AFIPS 1968 (Spring), 30 April–2 May 1968,
pp. 307–314. ACM, New York (1968)

2. Beals, R., Brierley, S., Gray, O., Harrow, A.W., Kutin, S., Linden, N., Shepherd,
D., Stather, M.: Efficient distributed quantum computing. Proc. R. Soc. Lond. Ser.
A Math. Phys. Eng. Sci. 469(2153), 20120686, 20 (2013). ISSN: 1364-5021

3. Bennett, C.H.: Time/space trade-offs for reversible computation. SIAM J. Comput.
18(4), 766–776 (1989)

4. Bernstein, D.J.: Cost analysis of hash collisions: Will quantum computers make
SHARCS obsolete? In: SHARCS 2009 Special-purpose Hardware for Attacking
Cryptographic Systems, p. 105 (2009)

5. Brassard, G., Høyer, P., Tapp, A.: Quantum cryptanalysis of hash and claw-free
functions. In: Lucchesi, C.L., Moura, A.V. (eds.) LATIN 1998. LNCS, vol. 1380,
pp. 163–169. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054319

6. Grassl, M., Langenberg, B., Roetteler, M., Steinwandt, R.: Applying Grover’s algo-
rithm to AES: quantum resource estimates. In: Takagi, T. (ed.) PQCrypto 2016.
LNCS, vol. 9606, pp. 29–43. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-29360-8 3

7. Grover, L.: A fast quantum mechanical algorithm for database search. In: Proceed-
ings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp.
212–219. ACM (1996)

8. Grover, L., Rudolph, T.: How significant are the known collision and element dis-
tinctness quantum algorithms? arXiv preprint arXiv:quant-ph/0309123 (2003)

https://doi.org/10.1007/BFb0054319
https://doi.org/10.1007/978-3-319-29360-8_3
https://doi.org/10.1007/978-3-319-29360-8_3
http://arxiv.org/abs/quant-ph/0309123

Low-Communication Parallel Quantum Multi-Target Preimage Search 335

9. Hülsing, A., Rijneveld, J., Song, F.: Mitigating multi-target attacks in hash-based
signatures. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC
2016. LNCS, vol. 9614, pp. 387–416. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49384-7 15

10. Knill, E.: An analysis of Bennett’s pebble game. CoRR, abs/math/9508218 (1995)
11. NIST: Submission requirements and evaluation criteria for the post-quantum cryp-

tography standardization process (2016). http://csrc.nist.gov/groups/ST/post-
quantum-crypto/documents/call-for-proposals-final-dec-2016.pdf

12. Schnorr, C.-P., Shamir, A.: An optimal sorting algorithm for mesh connected com-
puters. In: Hartmanis, J. (ed.) Proceedings of the 18th Annual ACM Symposium
on Theory of Computing, 28–30 May 1986, Berkeley, California, USA, pp. 255–263.
ACM (1986)

13. Van Oorschot, P.C., Wiener, M.J.: Parallel collision search with application to hash
functions and discrete logarithms. In: Proceedings of the 2nd ACM Conference on
Computer and Communications Security, pp. 210–218. ACM (1994)

https://doi.org/10.1007/978-3-662-49384-7_15
https://doi.org/10.1007/978-3-662-49384-7_15
http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/call-for-proposals-final-dec-2016.pdf
http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/call-for-proposals-final-dec-2016.pdf

Lattice Klepto

Turning Post-Quantum Crypto Against Itself

Robin Kwant(B), Tanja Lange(B), and Kimberley Thissen(B)

Department of Mathematics and Computer Science,
Technische Universiteit Eindhoven, P.O. Box 513,

5600 MB Eindhoven, The Netherlands
r.j.h.kwant@student.tue.nl, tanja@hyperelliptic.org,

k.k.a.thissen@student.tue.nl

Abstract. This paper studies ways to backdoor lattice-based systems
following Young and Yung’s work on backdooring RSA and discrete-log
based systems. For the NTRU encryption scheme we show how to build
a backdoor and to change the system so that each ciphertext leaks infor-
mation about the plaintext to the owner of the backdoor. For signature
schemes the backdoor leaks information about the signing key to the
backdoor owner.

As in Young and Yung’s work the backdoor uses the freedom that ran-
dom selections offer in the protocol to hide a secret message encrypted to
the backdoor owner. The most interesting and very different part though
is how to hide and retrieve the hidden messages.

Keywords: Post-quantum cryptography · Kleptography
Lattice-based encryption · NTRU · Signatures

1 Introduction

The attacks studied in cryptanalysis can typically be classified into mathemat-
ical, algorithmic attacks and side-channel attacks. The former tries to tackle
the hard problem the system is based on or to find ways to circumvent the
hard problem altogether; the latter uses information gathered during execution
of algorithms (possibly after introducing faults or cache flushes) to learn secret
information. Typically the analysis assumes that the attacker has full knowledge
of the algorithm implemented and typically also of the implementation itself.

In the mid 90’s, Young and Yung invented [15–17] the concept of Cryp-
tovirology or Kleptography and studied how easily systems lend themselves
to being backdoored. Their setups typically include a black-box implementa-
tion whose output should be indistinguishable from the output of a legitimate
implementation for anybody but the owner of the backdoor key. The klepto

This work was supported by the European Communities through the
Horizon 2020 program under project number 645622 (PQCRYPTO) and
project number 645421 (ECRYPT-CSA). Permanent ID of this document:
e14bc1779799664cf160742e72d7fa50. Date: 2017.08.11.

c© Springer International Publishing AG 2018
C. Adams and J. Camenisch (Eds.): SAC 2017, LNCS 10719, pp. 336–354, 2018.
https://doi.org/10.1007/978-3-319-72565-9_17

Lattice Klepto 337

implementation of a regular algorithm leaks (parts of) the secret message, a
private key, or the state of a random-number generator to the attacker. In a
secure klepto scheme this is done in such a way that the attacker holds a secret
key which gives him the unique power to decrypt that leaked information. If
anybody inspects or reverse engineers the black-box implementation they may
observe a difference in how the values are generated but must not be able to
decrypt their own past leaks or those of others. Ideally they should not be able
to even decrypt future leaks.

The properties of a secure klepto scheme are

– exclusivity,
– indistinguishability, and
– forward secrecy.

This implies that the backdoor encryption must use a public-key system and
that only the public part of the backdoor key is stored on the device.

The study of kleptopgraphy has gained topicality in the wake of the Snowden
revelations which mention “subversion of standards” as one of the targets of NSA
and news articles [13] strongly indicating that the elliptic-curve based random-
number generator DualEC [10] was designed with a backdoor. This backdoor
is closely related to the “repeated DH Setup” by Young and Yung. Subsequent
research has shown that this backdoor can be exploited in the wild [2] in TLS
implementations and turned up more evidence about the origin [1] of DualEC
and how it got incorporated into standards.

While the overall lesson is clear: do not accept black-box implementations
of cryptographic algorithms and request justification for all choices made, the
power of klepto schemes differs noticeably between RSA, finite field DH, and
elliptic-curve cryptography (ECC). The most powerful backdoor against RSA
produces keys that are indistinguishable from random keys but include an ECC-
based encryption to a backdoor key of the same cryptographic security as the
RSA key that allows instant factorization [18].

This raises the question how other public-key schemes can be turned into
kleptographic schemes. Post-quantum cryptography has received a lot of interest
in recent years and NIST calls for submissions of post-quantum algorithms by the
end of 2017. So far schemes have been evaluated purely for security, functionality,
speed, and at best for implementation security (side-channel countermeasures).
We are not aware of any study of kleptographic attacks against these schemes.

This paper studies lattice-based encryption, in particular the NTRU [7] fam-
ily of encryption schemes and signature schemes and shows how to turn them
into klepto schemes with an ECC-based backdoor.

2 Background

This section briefly describes the NTRU encryption system and fixes parameters
for our klepto scheme. For the NTRU encryption scheme we follow the original
NTRU paper [7].

338 R. Kwant et al.

2.1. Background on Kleptography. Young and Yung call their the core of
their klepto schemes a SETUP. SETUP is an abbreviation of “Secretly Embed-
ded Trapdoor with Universal Protection”.

Definition 2.1 (SETUP). Let S be a publicly known cryptosystem. A SETUP
mechanism is an algorithmic modification made to S to get S′ such that:

– The input of S′ agrees with the public specifications of the input of S.
– S′ computes using the attacker’s public encryption function E (and possibly

other functions as well), contained within S′.
– The attacker’s private decryption function D is not contained within S′ and

is known only by the attacker.
– The output of S′ agrees with the public specifications of the output of S. At the

same time, it contains published bits which are easily derivable by the attacker
but are otherwise hidden.

– Furthermore, the outputs of S and S′ are polynomially indistinguishable to
everyone except the attacker.

The definition of a weak SETUP mechanism is a relaxation of a regular
SETUP mechanism. A weak SETUP is the same as a regular SETUP with the
exception that it does not require the polynomial indistinguishability between
the output of S and S′ [16]. This may seem very easily detectable, but in practice
this still works well because an end user does not know that the implementation
contains a SETUP. Furthermore, an end user often does not know what the
output of S should be.

2.2. Subliminal Channel. A subliminal channel is a secondary channel of
communication hidden inside a communications channel that is presumed to be
compromised. The concept of a subliminal channel was introduced as a solution to
the prisoners problem by Simmons in 1984 [14]. In the prisoners problem two peo-
ple Alice and Bob are incarcerated and wish to plan a breakout. Their only way of
communicating is by passing over messages via Eve who is one of the guards. They
are allowed to use encryption, but Eve will only pass along the messages if she is
allowed to read the messages, so she needs access to the keys and the decryption
function. As Eve will report any breakout plan, Alice and Bob have to hide their
communications about breaking out within their communication.

This subliminal channel seems to solve a very specific problem, yet in times
of surveillance this problem is and will be more frequently seen in practice. More
and more countries propose laws which oblige citizens to give up their private
keys if requested. If they want to continue having secure communications, this
creates a situation directly analogous to the prisoners problem.

2.3. Concrete Choices. For concreteness we consider ECC to exfiltrate
secrets. The benefits of using ECC are small ciphertext size, needing just 256 bits
at 128-bit security level in addition to the symmetric-key encryption of the mes-
sage. Let E/Fp be an elliptic curve over the prime field Fp, e.g. let E/Fp be P256
from [11] with base point P , and let PB = BP be the public key for the backdoor.

Lattice Klepto 339

For symmetric encryption and authentication we use AES-GCM, this means
that to exfiltrate M ∈ {0, 1}� we need 256 + 128� + 128 bits by sending C =
(AP,AES-GCMK(M)), where K is the key for AES-GCM derived from the DH
key APB. Upon receipt of C the backdoor owner uses its secret backdoor key B
to compute the same K from B(AP).

Obviously the security level of the backdoor key is significantly reduced once
a quantum computer exists and the schemes will no longer satisfy the property
of exclusivity if the backdoor key is found by somebody having a quantum com-
puter. However, there are no agreed upon post-quantum encryption schemes, yet,
and, in showing how to exfiltrate these >512 random bits, we provide a mech-
anism of exfiltrating any data, possibly split over multiple NTRU encryption
messages.

Furthermore, NTRU has been proposed independently of post-quantum cryp-
tography as a very efficient encryption system and was included into standards,
such as IEEE P1363.1 and ASC X9 X9.98, on its own merits.

2.4. NTRU Parameters. NTRU is an asymmetric cryptosystem com-
monly used in a hybrid cryptosystem to share keys for a symmetric encryp-
tion algorithm. NTRU is specified by six public parameters, the integers
(N, p, q, df , dg, dr), in which gcd(p, q) = 1 and q is much larger than p. In prac-
tice p is usually chosen as 3 and q a power of 2. NTRU works with operations
on elements of the ring R = Z[X]/(XN − 1). In the following we assume q is
even and p is odd. An element can be represented as either a polynomial of
degree at most N − 1 or a vector of length N containing the coefficients of that
polynomial. The operation denoted as � is the cyclic convolution product, that
is multiplication in R. Using the property XN ≡ 1 mod (XN − 1) it is defined
as F � G = H with

Hk =
k∑

i=0

Fi · Gk−i +
N−1∑

i=k+1

Fi · GN+k−i =
∑

i+j≡k mod N

Fi · Gj .

The parameters (df , dg, dr) specify the sets (Lf ,Lg,Lr,Lm), which are sets
of polynomials of degree at most N − 1 with a fixed number of (small) nonzero
coefficients. Concrete parameter choices are included in Table 5.1.

Definition 2.2 (Message space). The message space Lm is defined as

Lm = {m ∈ R|m has coefficients in [−(p − 1)/2, (p − 1)/2]}.

Messages are assumed to be integers in a radix p representation, with every
digit a coefficient of the polynomial. The rest of this section follows definitions
from [7].

Definition 2.3 (The set L(d1, d2)). The set of ternary polynomials L(d1, d2)
is defined as:

L(d1, d2) =

⎧
⎨

⎩F ∈ R

∣∣∣∣∣∣
F has exactly

d1 coefficients equal to 1,
d2 coefficients equal to − 1
the rest of the coefficients equal 0

⎫
⎬

⎭

340 R. Kwant et al.

The key and randomness spaces (Lf ,Lg, and Lr) are defined as:

Lf = L(df , df − 1)
Lg = L(dg, dg)
Lr = L(dr, dr)

Lf is not set as L(df , df) because a polynomial f ∈ L(df , df) would have f(1) =
0 which is not invertible, while f needs to be invertible for key creation explained
now.

2.5. NTRU Key Generation. To create a key, two random polynomials
f ∈ Lf and g ∈ Lg are chosen such that inverses Fq and Fp of f exist in R
modulo q and p respectively.

The public key
h ≡ Fq � g mod q, (2)

is computed.
The private key is the pair (f, Fp), in which Fp is derivable from f and p but

is precomputed for practical purposes. The reduction modulo q of the polynomial
means a reduction of the coefficients to equivalent representatives in the interval
(−q/2, q/2].

2.6. NTRU Encryption. A message m ∈ Lm is chosen and a random r ∈ Lr

is selected. Now ciphertext

c ≡ p · r � h + m mod q, (3)

is computed.

2.7. NTRU Decryption. To obtain message m, first the quantity a ≡ f �
c mod q is computed. Because

a ≡ f � (p · r �h+m) ≡ f � (p · r �Fq � g +m) ≡ p · r � g + f �m mod q, (4)

reducing modulo p yields f � m if the polynomials are sparse enough.
In that case,

m ≡ a � Fp mod p.

We now consider possible exceptions to this equivalence.

2.8. NTRU Decryption Failures. When Eq. (4) is not an exact equation
in R due to the modular reductions in the decryption step, then m might be
not or only partially recovered. In Eq. (4) first the term a ≡ p · r � g + f � m is
reduced modulo q after which it is reduced modulo p. Since gcd(p, q) = 1, this
resulting a reduced modulo q and p is not well defined, as reducing a different
representative of a modulo p could give a different result. In practice this problem

Lattice Klepto 341

is avoided by choosing the uniquely defined representative of a with coefficients
in the interval (−q/2, q/2]. The resulting a in Eq. (4) equals p ·r � g + f � m in
R if the maximum absolute value of any coefficient is not too big. This property
is captured by the width:

Definition 2.4 (Width). Let l =
∑N−1

i=0 liX
i ∈ R. The width of l is defined as

|l|∞ = max
0≤i≤N−1

li − min
0≤i≤N−1

li.

If the width of the term S = p · r � g + f � m exceeds q, some coefficients
in the recovered polynomial will differ from the coefficients of m. If m is used as
the key for symmetric authenticated encryption the user will quickly notice that
the authenticator does not verify. This is called a decryption failure and has to
be taken into account in parameter selection.

3 The NTRU Backdoor

In this section an example of a modified NTRU encryption with a backdoor
using a weak SETUP is described and analyzed, after which countermeasures
are given. The backdoor has the purpose of leaking secrets of the encrypting
party to a third party. This information is made available exclusively to the
third party by encrypting it to the party’s ECC key.

3.1. Description. This version differs from regular NTRU in the sense that
a secondary encrypted message along with the regular message is included in
the ciphertext. This secondary message is available to a third party. As in
Sect. 2.3, the public key encryption of this secondary message will be denoted
as C, encrypting plaintext M . The key setup on the receiving end stays exactly
the same. We take C to be the ECC encrypted and authenticated message to be
exfiltrated; in the typical hybrid setting of NTRU, M is the symmetric session
key of the legitimate user, so M typically has 256 bits (for encryption and MAC
part) and C has 640 bits.

3.2. Encryption. Let ρ < q be an integer coprime to p. Consider C as a
polynomial in R with coefficients modulo ρ, i.e., C ∈ Zρ[X]/(XN − 1), ρ < q
and gcd(ρ, p) = 1. To obtain this representation, first take the bitstring C and
interpret it as a large integer, then take its coefficients in base ρ as polynomial
coefficients.

On the sending end, a slight adaptation of Eq. (3) is used. First ciphertext
c is computed as in Eq. (3). Now the new ciphertext c′ including the secondary
message, is computed as

c′ = c + k · p, (5)
with k a polynomial in R with coefficients inZρ such that c′ ≡ C mod ρ. This poly-
nomial k can be obtained by solving the integer equation Ci ≡ ci + ki ·p mod ρ for
every coefficient of k. Having the gcd(ρ, p) = 1 by definition, ensures the existence
of these solutions.

342 R. Kwant et al.

3.3. Decryption by the Attacker. The attacker reduces c′ mod ρ and
recovers the polynomial C, since C ≡ c′ mod ρ. The attacker interprets C as
a bitstring and decrypts it with his private key (as in Sect. 2.3) to obtains the
leaked information.

3.4. Decryption by the Intended Receiver. Decryption at the receiver
end stays exactly the same. First the quantity a′ = f � c′ mod q is computed as
in Eq. (4). Because

a′ ≡ f � (p · k + p · r � h + m)
≡ f � (p · k + p · r � Fq � g + m)
≡ p · k � f + p · r � g + f � m mod q,

(6)

reducing a′ modulo p still yields f � m if the coefficients are not too large (see
the comment on decryption failures above). Thus m ≡ a′ � Fp mod p.

4 Analysis of the Backdoor Quality

In this section we analyze how much more likely a decryption failure gets depend-
ing on the size of the backdoor parameter ρ. A large ρ value is convenient for
the attacker to send more data but obviously makes failures more likely.

4.1. Decryption Failures. As pointed out in Sect. 2.8, a decryption failure
occurs when the polynomial

S = p · r � g + f � m,

has a width larger than q. Adding the k · p term to the ciphertext c′ in Eq. (5)
makes decryption failures more likely because now a decryption failure occurs
when the polynomial

T = p · k � f + p · r � g + f � m,

has a width larger than q, as generally |T |∞ > |S|∞. Because for a single coeffi-
cient of T it applies that

Tl = Sl +
∑

i+j≡l mod N

p · ki · fj ,

the contribution of this extra convolution product p · k � f to a single coefficient
is at most

p · (�(ρ − 1)/2�) · (2 · df − 1). (7)

Let α = min (dg, dr), the maximum width of S is given by

max |S|∞ = 2 · p · α + (2 · df − 1) · (p − 1)/2, (8)

so the maximum width of T would be

max |T |∞ = 2 · p · α + (2 · df − 1) · ((p − 1)/2 + p · �(ρ − 1)/2�). (9)

Lattice Klepto 343

4.2. Parameter Choices. Because of the possible decryption failures it is
important to pick parameters that minimize this phenomenon while maintaining
global security. It is recommended to keep ρ as small as possible. In the case
where p = 3 the value ρ = 2 is quite suitable. Other options would be ρ = 4 and
ρ = 5 as this would give space to leak more information, but as noted above,
decryption failures will be much more likely because the extra contribution of
the term in Eq. (7) can become much larger. For most parameter sets ρ = 2 will
most likely be the only option that works without increasing the probability of
decryption failures too much.

For the typical 128-bit security level the klepto ciphertext C has only 640
bits, which is less than N for typical parameter choices, meaning that ρ = 2 is
sufficient to exfiltrate ciphertexts as described in Sect. 2.3.

4.3. Optimization. Decryption failures will be less likely if the vector k · p
added in Eq. (5) is sparse. This is the case when k is sparse. A way to keep k
sparse is to minimize the number of bits needed to store C and pad it with zeros.
Depending on what information will be leaked it might even be possible to split
up C over several messages. In that case C will only be partially leaked, but can
be recovered if multiple messages containing all the parts are recorded.

Another optimization that works in the case where ρ = 2 is to append a one
bit shorter message C ′ with an indicator bit i such that instead of C, [i|C ′] is
leaked. The polynomial k is now computed regularly. If this k contains more
ones then it contains zeros the term k̄ · p is added instead of k · p, with k̄ the
bitwise complement of k. The attacker now recovers either [0|C ′] or [1|C̄ ′] and
is able to recover C ′ by taking the complement if i = 1. Note that this indicator
costs one bit in space, so C ′ has at most N − 1 bits where C would have N .

Another trick for ρ = 1 is to randomly pick between ±1 for nonzero ki in
order to halve the average width of p · k � f .

5 Practical Implementation

We wrote an implementation of NTRU in Sage [3] and added the backdoor as
described in Sect. 3, using parameter ρ = 2. We ran experiments to look at the
impact of the backdoor with respect to decryption failures. In every experiment
a pseudorandom ternary message m is generated along with a pseudorandom N
bit binary message C. This way C is as long as N , which for most parameter sets
is longer than necessary, but we were interested in seeing the overall impact and
using a shorter C will make the system more likely to function correctly. None
of the optimizations discussed in Sect. 4.3 were applied in the implementation.
The first set of experiments counts the number of decryption failures caused
by the backdoor in 2 different ways using NTRU parameters from [4]. First a
subset of experiments was conducted in which a new key is generated with every
trial, in this case all trials are independent. Secondly a subset of experiments
was conducted in which the same key is used more than once, these trials are
not independent but they do represent a real world situation in which keys are

344 R. Kwant et al.

Table 5.1. Decryption failure check results

Parameters # keys # trials per key # failures

N p q df dg dr

613 3 2048 55 204 55 20000 1 0

100 10000 0

887 3 2048 81 295 81 10000 1 0

100 10000 0

1171 3 2048 106 390 106 5000 1 0

100 10000 0

generated once and then reused often. Doing multiple trials with the same keys
also allows for more experiments as generating a new key is relatively expensive
computationally.

Since no decryption failures occurred in these experiments, the increased
probability of a decryption failure caused by the backdoor will probably go
unnoticed in practice. With Eq. (7) the maximum contribution to the width of
T with the parameters used can be computed, with respect to q this difference
is relatively small enough. Looking at Eqs. (8) and (9) the maximum width T
is only slightly larger than the maximum width of S with the parameters used
in the experiments. This could possibly explain the lack of decryption failures.
Note that the maximum width was not expected to be obtained. These extreme
widths are in general very rare, as f and r are chosen to be sparse. They are
intentionally centered around 0 to let a lot of cancellations occur. This behavior
is not unique to the parameters used in the experiments, in most parameter
sets used in practice df = dr. When ρ = 2 is chosen, the most significant term
in Eq. (9) is generally the first one, so the contribution of the backdoor to the
maximum width is generally small enough. In the implementation any message
can be leaked as long as its encryption does not exceed N bits. The trialled
version with parameter N = 613 is 27 bits too short for the hidden ciphertext C
described in Sect. 2.3 but also has slightly lower security. The versions with N =
887 and N = 1171 have ample space, even for longer messages C. For instance,
in N = 1171 there could be an 256-bit ECC key and a 128-bit authentication
tag, which leaves (1171 − 256 − 128 = 787) bits for a message. The 787 bits fit
6 blocks of 128 bit ciphertext and the remaining 19 bits could be used for the
optimizations discussed in Sect. 4.3. To get an idea of how much the probability
of decryption failures increases on average instead of just the worst case, a second
set of experiments was run. In the second set of experiments, the width of the
terms S and T were stored. A decryption failure occurs when |S|∞ > q or
|T |∞ > q, without and with the backdoor respectively. For these experiments the
parameters from Table 5.1 were used. The results are presented in histograms (see
Figs. 5.1, 5.2, 5.3 and 5.4) where red corresponds to |S|∞ and green corresponds
to |T |∞. Note that all observed widths are significantly smaller even than q/2.

Lattice Klepto 345

|S|∞ |T |∞
μ 164.0471 190.7234
σ 13.81889 15.95371
min 116 139
max 251 294

Fig. 5.1. (N, p, q, df , dg, dr) = (613, 3, 2048, 55, 204, 55), 10 keys, 10000 trials per key.

These results confirm that on average the probability of a decryption failure
increases, but this increase is small enough to go unnoticed in a practical situa-
tion because large widths are rare. An interesting side effect is that the standard
deviation also increases when the backdoor is added. The green spike is gener-
ally lower and less steep, which means that the |T |∞ values are less predictable
than the |S|∞ values. This phenomena gives rise to some questions explained in
Sect. 10.2.

6 Countermeasures

There are ways to find out that the ciphertext was tampered with. One of those
being the recovery of the randomness. From Eq. (3) we obtain

c − m = r � h mod q,

meaning r can be recovered by

r = (c − m) � h−1 mod q

if inverse h−1 exists in R modulo q. In the case of a ciphertext with an extra term
added, doing the same computation will result in r + k · p � h−1 instead of r,
which with high probability will not be an element of Lr. Since by specification
r ∈ Lr, the receiver can check whether (c−m)�h−1 ∈ Lr. If this is not the case
and h is invertible in R modulo q, the ciphertext has been tampered with and a
warning can be sent back to the sender. To make sure that this is possible, it is
important that h is always invertible in R modulo q. Remember that h depends
on the choice of f and g so a change has to be made to the selection of those.
Public key h is defined as h = Fq � g mod q. By definition Fq is invertible so
the only extra requirement is that g must also be invertible, this can be done

346 R. Kwant et al.

|S|∞ |T |∞
μ 163.9682 190.6541
σ 13.79992 15.95437
min 117 140
max 257 300

Fig. 5.2. (N, p, q, df , dg, dr) = (613, 3, 2048, 55, 204, 55), 100 keys, 10000 trials per key

by choosing g ∈ Lg in a similar manner as f . Since invertibility is required, Lg

can no longer be defined as Lg = L(dg, dg) and would need to be defined as
Lg = L(dg, dg − 1).

7 Subliminal Channel in NTRU

In this section a modification of NTRU with a SETUP is shown in which an
extra possibly secret channel for information is added. This channel differs from
the backdoor discussed in Sect. 3 as it is intended for the receiver of the message
instead of a third party.

7.1. Description. In this adaptation, Bob sends a regular message m and
a subliminal encrypted message C to receiver Alice. We use the same ECC-
AES-GCM-based setup as described in Sect. 2.3 to construct C. To include this
C, a technique inspired by the countermeasures described in Sect. 6 is used. In
addition to the regular setup, both Alice and Bob agree upon an injective map
φ which maps C to an element of Lr and a pair of ECC keys to generate and
decrypt C.

7.2. Key Setup. Alice chooses f ∈ Lf and computes Fq and Fp as in Sect. 2.5.
Now g ∈ L(dg, dg −1) is chosen such that inverse g−1 exists in Rq and public key
h is computed normally as in Eq. (2). Choosing g ∈ L(dg, dg − 1) is justifiable
as a protection against the specific backdoor mentioned earlier. Alice publishes
her public key h so that others including Bob, can send her messages.

7.3. Encryption. Bob takes the secret message M , generates C, uses the
function φ to map C to an element r ∈ Lr and encrypts m by computing c using
Eq. (3) with this choice of r. Bob now sends c to Alice.

Lattice Klepto 347

|S|∞ |T |∞
μ 206.3269 239.786
σ 16.43092 18.94655
min 157 182
max 298 358

Fig. 5.3. (N, p, q, df , dg, dr) = (887, 3, 2048, 81, 295, 81), 10 keys, 10000 trials per key.

7.4. Decryption. Alice receives c and recovers m using Eq. (4). She now
computes h−1 and uses this to recover r ≡ (c−m)�h−1 mod q. She now recovers
C as the preimage of r using φ−1. For efficiency it is possible to precompute h−1.

7.5. Encoding Messages. In this section an example for the injective map
φ mentioned earlier is described. It is somewhat similar to Algorithm 2.2 in
[12]. Let C, the encryption of a message M , be represented as a unique number
chosen in the discrete interval

[
0,

(
N
dr

) · (
N−dr

dr

) − 1
]
. Then φ is an injective map

[
0,

(
N
dr

) · (
N−dr

dr

) − 1
]

→ Lr that encodes an encrypted message C to an r ∈ Lr.

The inverse φ−1 gives preimage C from the image r.
The set Lr can be represented as a tree, with every level representing one

coefficient. We now describe how this tree is constructed, see Fig. 7.1 for a visu-
alization. The root is defined as representing r0, the level of the leaves rn. Every
leaf corresponds to a unique element of Lr, and is defined by the unique path
from the root to the leaf. Every node has at most 3 branches depending on
whether it can still be completed, because left and right branches are limited:
The leftmost branch corresponds to choosing a −1, the middle branch a 0 and
the right branch a 1 on that level. Now the set Lr can be indexed by counting
the leaves from left to right, where the leftmost leaf has index 0.

The tree itself does not have to be stored in memory, at every node the
number of leaves can be computed by

(
n
k

) · (
n−k

l

)
, with n being the number of

levels from the node to a leaf, k the number of −1s and l the number of 1s that
are not used yet at that node. The left, middle, and right subbranches of a node
have

(
n−1
k−1

) · (
n−k

l

)
,
(
n−1

k

) · (
n−k−1

l

)
and

(
n−1

k

) · (
n−k−1

l−1

)
leaves respectively.

348 R. Kwant et al.

|S|∞ |T |∞
μ 242.3299 281.6776
σ 18.47012 21.31923
min 182 218
max 365 435

Fig. 5.4. (N, p, q, df , dg, dr) = (1171, 3, 2048, 106, 390, 106), 10 keys, 10000 trials per
key

To convert an index C into an r ∈ Lr the tree is traversed starting from the
root, and a running index j is kept, so at the root i = 0 and j = C. At every
level i the number of leaves in the left subbranch Li is computed. If j ≤ Li, the
left branch is taken and ri = −1. If this is not the case, the number of leaves
in the middle subbranch is computed and added to Li to obtain L′

i which is the
number of leaves in the left and middle subbranch combined. Now if Li < j ≤ L′

i

the middle branch is taken, ri = 0 and we set j = j − Li. If j > L′
i the right

branch is taken, ri = 1 and we set j = j − L′
i. This process repeats until a leaf

is reached.
The inverse φ−1 works in a similar matter, the tree is traversed starting from

the root according to the path specified in r. A running index j is kept for which
j = 0 at the root. Now at every level i the number of leaves that are “skipped”
by not choosing the left or middle branch respectively, are added to j. So if
ri = 0, the middle branch is taken, Li is computed and we set j = j + Li. Else
if ri = 1, the right branch is taken, L′

i is computed and we set j = j + L′
i. This

process repeats until all the bits of r are evaluated. Now finally C = j.

7.6. Why Does It Work?. As pointed out in Sect. 6 the randomness r can
be recovered by the receiver if g is chosen to be invertible. This phenomenon is
exploited by putting a message in r rather than choosing r randomly.

This subliminal channel changes the choice of r to being deterministic in C
but does not change the range for r, hence it does not introduce any extra decryp-
tion errors and is completely undetectable from the observable distribution, even
to Eve who obtained the NTRU key. For properly chosen elliptic curves, C is
indistinguishable from random bitstrings and thus r is indistinguishable from a
randomly chosen element from Lr.

Lattice Klepto 349

Fig. 7.1. Example of a tree for dr = 1 and N = 4

8 pqNTRUSign

This section briefly describes pqNTRUSign, also known as NTRU-MLS, which
is short for NTRU Modular Lattice Signature. For this we follow the original
paper [6] from PQCrypto 2014. Though other NTRU signature schemes, such as
NSS [8] and NTRUSign [5], have been broken, this scheme has no known attacks
against the currently proposed parameters.

8.1. pqNTRUSign Parameters. The signature scheme works in NTRU lat-
tices, so the set up is very similar to NTRU (Sect. 2.4). pqNTRUSign is specified
by five parameters, the integers (N, p, q,Bs, Bt), where gcd(p, q) = 1, q is much
larger than p and Bs and Bt are some bounds on the norms of some elements;
typically p = 3 and q has 15 or more bits. Similar to NTRU, all computations
take place in the ring R = Z[X]/(XN − 1) and polynomials are often reduced
modulo q or p. Unlike NTRU, only the size of the polynomial coefficients is lim-
ited but there is no limit on the number of non-zero coefficients. We write Rp to
denote elements of R with coefficients in Zp; we consider elements automatically
lifted to Z using integers in (−p/2, p/2]; all integer modular reductions are made
explicit.

8.2. pqNTRUSign Key Generation. To generate a key pick F ∈ R3, g ∈
Rp such that both are invertible modulo p and q. Let f = pF . The private key
is the pair (f, g).

The public key is h ≡ f−1 � g mod q.
Similar to NTRU, polynomials in Lh = {(s, t) ∈ R2|t ≡ h � s mod q} will be

considered, this is the NTRU lattice which is emphasized in the naming of the
signature scheme.

350 R. Kwant et al.

8.3. pqNTRUSign Signature. To sign message m ∈ {0, 1}∗ compute
(sp, tp) = H(h‖m), where H : Rq × {0, 1}∗ → Rp × Rp is a hash function.

The next step picks a random polynomial r from a certain distribution. For
NTRU-MLS this is from R� for some integer � ≈ q/p and for pqNTRUSign
(as presented at the PQCrypto 2017 rump session [9]) this is from a bimodal
Gaussian distribution. For our klepto scheme the details do not matter; we note
that both distributions are sufficiently wide.

Let s0 = sp + pr and t0 ≡ s0 � h mod q. Now compute a ≡ (tp − t0) �
g−1 mod p. Then the candidate signature is (s, t) = (s0, t0)+(a�f, a� g). Note
that this last computation takes place in R, i.e., there is no reduction on the
coefficients, while a ∈ Rp and t0 ∈ Rq. The latter ensures that all coefficients are
small. Note further that by construction s ≡ sp mod p and t ≡ tp mod p because
f = pF .

NTRU-MLS outputs (s, t) if no coefficient in a � f is larger than Bs, no
coefficient in a � g is larger than Bt and the coefficients of s and t are bounded
by ‖s‖ ≤ q

2 − Bs and ‖t‖ ≤ q
2 − Bt. Else the procedure restarts with a different

choice of r.
The details for the bounds in the latest version of pqNTRUSign are less clear

but a similar rejection sampling on (s, t) is performed.
The signature is on m is (s, t); to save space the pqNTRUSign authors also

suggest a version in which the signature is s and t ≡ s�h mod q is recomputed.

8.4. pqNTRUSign Verification. In order to verify the signature, either
first recompute t ≡ s � h mod q or check that t in the signature verifies this
equivalence. Also check the bounds on the coefficients of s and t. If any of the
checks fails, reject the signature.

Then compute (sp, tp) = H(h‖m) and accept the signature if s ≡ sp mod p
and t ≡ tp mod p, else reject it.

9 The pqNTRUSign Backdoor

In this section we show how to backdoor pqNTRUSign using a weak SETUP.
Signatures are easier to backdoor than NTRU because the signer can check for
verification failures himself and restart with a new random choice. Since the
regular algorithm uses rejection sampling on the outputs these restarts will not
raise suspicion if they do not get significantly more frequent. The backdoor is
based on the same idea as that in NTRU: taking the signature modulo 2 reveals
a secondary ciphertext C encrypted to the public key of the klepto scheme (for
details see Sect. 2.3). As in the NTRU backdoor we choose reduction modulo
2 because the typical choice of p is 3 which is coprime to 2 and larger moduli
increase the chance of resampling.

The most obvious target to leak in a signature scheme is the signing key.
In pqNTRUSign this would be F ∈ R3, needing
N log2 3� + 1 bits in optimal
packing. Alternatively, an evil implementer could point to the importance of

Lattice Klepto 351

short secret keys and generate F deterministically from a short random seed
that can be leaked in a shorter message.

Unlike in NTRU we will not be able to transmit N bits at once but only a
small number (in order to keep resampling rates acceptable). This means that C
needs to be transmitted over multiple signatures and then concatenated at the
receiver end. The GCM part of the encryption then also serves as a check for
correctness. In the following, C will be a ciphertext to be leaked, encoded as a
binary polynomial of degree less than d ≤ N .

In line with the paper topic we chose to exploit the flexibility in random
choices for a klepto scheme but would like to point out that it could as well be
used as a subliminal channel to hide encrypted messages. Because the signer can
validate the signature himself there no distinction between the capacity of the
klepto/covert channel and the subliminal channel.

There are no modification to the key generation or verification algorithm
and the owner of the klepto backdoor obtains and deciphers the ciphertext as
for NTRU (apart from sorting and arranging partial ciphertexts).

9.1. Trivial Backdoor. We want to achieve that s ≡ C mod 2, up to
the degree of C, i.e., that this equivalence holds for the coefficients of
1,X,X2, . . . , Xd−1 for some d.

In the trivial backdoor we check whether s satisfies this equation or else reject
the signature in the rejection step. This means that the change to the signature
algorithm is minimal but increases signature generation time by a factor of 2d

on average.

9.2. Modified Signature. To avoid too many rejections we will now modify
the signature generation. As a warm up put d = 1, i.e. we will leak 1 bit.

Changing s to s′ = s + p, i.e., adding p to the constant will change the
parity of the constant but not affect s ≡ sp mod p. This change implies choosing
s′
0 = s0 +p instead of s0 and r′ = r +1 instead of r which only minimally affects

the distribution of the randomness. There is a minimal chance that s will violate
Bs if s was valid.

However, t ≡ h � s mod q may no longer hold. If t′0 ≡ s′
0 � h ≡ s0 � h +

ph mod q equals t0 modulo p, i.e., t0 had small enough coefficients that adding
ph did not cause a reduction in it, then a′ = a and verification will work for
t′ = t′0 + a � g and s′ (provided that they also satisfy Bs and Bt). Note that
h is a full-size polynomial, i.e. its coefficients can range over the full interval
(−q/2, q/2], and the equivalence has to hold in all N coefficients. If either of
these checks fails, a possible fix is to use s′ = s − p instead, otherwise a new r
needs to be sampled.

Now let c(X) =
∑d−1

i=0 ciX
i ∈ R2 for some larger d and let k(X) =

∑d−1
i=0 kiX

i

with ki ∈ {0,±1} such that s′ = s + pk ≡ c mod 2 on the bottom d coefficients.
As for NTRU this is possible because gcd(2, p) = 1. Then r′ = r + k and
s′
0 = s0 + pk, which still likely pass the size test for s since p is much smaller

than q.

352 R. Kwant et al.

However, for increasing d, t′0 ≡ t0 + ph � k mod q will increasingly likely
invoke a reduction modulo q when adding ph � k.

Again we can vary the sign on the ki to reduce the size of h � k mod q.
For small d this can be done exhautively to find the minimum and for larger d
randomizing signs to reach roughly as many +1 as −1 seems beneficial.

A final optimization is to skip validity tests on (s, t) before including the
backdoor and choosing signs in k such that (s′, t′) is smaller.

We plan on providing experimental results in the very near future to deter-
mine acceptable rejection rates and good sizes for d.

10 Final Remarks

As shown in Sects. 3, 7, and 9 it is feasible and practical to modify NTRU and
pqNTRUSign in such a way that they contains a backdoor or subliminal channel.
Countermeasures against the NTRU backdoor have been described in Sect. 6.

10.1. Minimization of Decryption Failures. In Sect. 4 some optimizations
have been given in order to reduce the increased probability of decryption failures
with the backdoor added. In Sect. 5 some experimental results are given. By
doing more experiments and with more parameter sets, the increased probability
of decryption failures might be estimated and parameters can be selected which
allow for more information to be leaked without increasing the failure probability
too much. Research can also be done to find the theoretical probability instead of
an estimation. With this estimation parameters can be computed that preserve
global security, but at the same time minimize the probability of decryption
failures.

10.2. Statistical Countermeasures. In Sect. 5 experimental results were
given on the width of the polynomial T with respect to the width of S. These
results showed that the width of T is less predictable but still small. The stan-
dard deviation was larger for the values of T . This occurs because adding an
extra message to the ciphertext means adding some randomness. This yields the
question, whether a receiver of messages could distinguish the ones that were
tampered with from the ones that were not and alert the sender? How many
messages would it need to be able to do so? These are questions that might be
worthwhile looking into.

10.3. Potential Biases in pqNTRUSign Klepto Signatures. The result
of the modified signatures of the pqNTRUSign scheme in Sect. 9 could potentially
be biased as the random generation is influenced. If the user would collect a set
of signatures generated by this black box algorithm, it will likely show that the
signatures are not as random as the user would expect. This behavior could be
analyzed.

Lattice Klepto 353

10.4. Further Research. For backdoors in NTRUSign [5] and NSS [8] see
the thesis by Kimberley Thissen http://repository.tue.nl/854465. For full details
and further considerations on NTRU see the thesis by Robin Kwant http://
repository.tue.nl/854433.

References

1. Bernstein, D.J., Lange, T., Niederhagen, R.: Dual EC: a standardized back door.
In: Ryan, P.Y.A., Naccache, D., Quisquater, J.-J. (eds.) The New Codebreakers.
LNCS, vol. 9100, pp. 256–281. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-49301-4 17

2. Checkoway, S., Niederhagen, R., Everspaugh, A., Green, M., Lange, T., Ristenpart,
T., Bernstein, D.J., Maskiewicz, J., Shacham, H., Fredrikson, M.: On the practical
exploitability of Dual EC in TLS implementations. In: Fu, K., Jung, J. (eds.) Pro-
ceedings of the 23rd USENIX Security Symposium, pp. 319–335. USENIX Associ-
ation (2014)

3. The Sage Developers: SageMath, the Sage Mathematics Software System (2017).
http://www.sagemath.org

4. Hirschhorn, P.S., Hoffstein, J., Howgrave-Graham, N., Whyte, W.: Choosing
NTRUEncrypt parameters in light of combined lattice reduction and MITM
approaches. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.)
ACNS 2009. LNCS, vol. 5536, pp. 437–455. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-01957-9 27

5. Hoffstein, J., Howgrave-Graham, N., Pipher, J., Silverman, J.H., Whyte, W.:
NTRUSign: digital signatures using the NTRU lattice. In: Joye, M. (ed.) CT-RSA
2003. LNCS, vol. 2612, pp. 122–140. Springer, Heidelberg (2003). https://doi.org/
10.1007/3-540-36563-X 9

6. Hoffstein, J., Pipher, J., Schanck, J.M., Silverman, J.H., Whyte, W.: Transcript
secure signatures based on modular lattices. In: Mosca, M. (ed.) PQCrypto 2014.
LNCS, vol. 8772, pp. 142–159. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-11659-4 9

7. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosys-
tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054868

8. Hoffstein, J., Pipher, J., Silverman, J.H.: NSS: an NTRU lattice-based signature
scheme. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 211–228.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6 14

9. Hoffstein, J., Pipher, J., Whyte, W., Zhang, Z.: pqNTRUSign: update and recent
results (2017). http://2017.pqcrypto.org/conference/slides/recent-results/zhang.
pdf

10. National Institute of Standards and Technology: Special Publication 800-90: Rec-
ommendation for random number generation using deterministic random bit gen-
erators (2012). First version June 2006, Second version March 2007. http://csrc.
nist.gov/publications/PubsSPs.html#800-90A

11. National Security Agency: Suite B cryptography/cryptographic interoper-
ability (2005). https://web.archive.org/web/20150724150910/www.nsa.gov/ia/
programs/suiteb cryptography/

12. Overbeck, R., Sendrier, N.: Code-based cryptography. In: Bernstein, D.J., Buch-
mann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 95–145. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-540-88702-7 4

http://repository.tue.nl/854465
http://repository.tue.nl/854433
http://repository.tue.nl/854433
https://doi.org/10.1007/978-3-662-49301-4_17
https://doi.org/10.1007/978-3-662-49301-4_17
http://www.sagemath.org
https://doi.org/10.1007/978-3-642-01957-9_27
https://doi.org/10.1007/978-3-642-01957-9_27
https://doi.org/10.1007/3-540-36563-X_9
https://doi.org/10.1007/3-540-36563-X_9
https://doi.org/10.1007/978-3-319-11659-4_9
https://doi.org/10.1007/978-3-319-11659-4_9
https://doi.org/10.1007/BFb0054868
https://doi.org/10.1007/3-540-44987-6_14
http://2017.pqcrypto.org/conference/slides/recent-results/zhang.pdf
http://2017.pqcrypto.org/conference/slides/recent-results/zhang.pdf
http://csrc.nist.gov/publications/PubsSPs.html#800-90A
http://csrc.nist.gov/publications/PubsSPs.html#800-90A
https://web.archive.org/web/20150724150910/www.nsa.gov/ia/programs/suiteb_cryptography/
https://web.archive.org/web/20150724150910/www.nsa.gov/ia/programs/suiteb_cryptography/
https://doi.org/10.1007/978-3-540-88702-7_4

354 R. Kwant et al.

13. Perlroth, N., Larson, J., Shane, S.: N.S.A. able to foil basic safeguards of privacy on
web. International New York Times, September 2013. http://www.nytimes.com/
2013/09/06/us/nsa-foils-much-internet-encryption.html

14. Simmons, G.J.: Subliminal channels; past and present. Eur. Trans. Telecommun.
5(4), 459–474 (1994)

15. Young, A.L., Yung, M.: Cryptovirology: extortion-based security threats and coun-
termeasures. In: 1996 IEEE Symposium on Security and Privacy, 6–8 May 1996,
Oakland, CA, USA, pp. 129–140. IEEE Computer Society (1996)

16. Young, A., Yung, M.: Kleptography: using cryptography against cryptography.
In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 62–74. Springer,
Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0 6

17. Young, A.L., Yung, M.: Malicious Cryptography - Exposing Cryptovirology. Wiley,
Hoboken (2004)

18. Young, A., Yung, M.: Kleptography from standard assumptions and applications.
In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 271–290.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15317-4 18

http://www.nytimes.com/2013/09/06/us/nsa-foils-much-internet-encryption.html
http://www.nytimes.com/2013/09/06/us/nsa-foils-much-internet-encryption.html
https://doi.org/10.1007/3-540-69053-0_6
https://doi.org/10.1007/978-3-642-15317-4_18

Total Break of the SRP Encryption Scheme

Ray Perlner1, Albrecht Petzoldt1(B), and Daniel Smith-Tone1,2

1 National Institute of Standards and Technology, Gaithersburg, MD, USA
{ray.perlner,albrecht.petzoldt,daniel.smith}@nist.gov

2 Department of Mathematics, University of Louisville, Louisville, KY, USA

Abstract. Multivariate Public Key Cryptography (MPKC) is one of
the main candidates for secure communication in a post-quantum era.
Recently, Yasuda and Sakurai proposed in [7] a new multivariate encryp-
tion scheme called SRP, which combines the Square encryption scheme
with the Rainbow signature scheme and the Plus modifier.

In this paper we propose a practical key recovery attack against the
SRP scheme, which is based on the min-Q-rank property of the system.
Our attack is very efficient and allows us to break the parameter sets
recommended in [7] within minutes. Our attack shows that combining
a weak scheme with a secure one does not automatically increase the
security of the weak scheme.

Keywords: Multivariate cryptography · SRP encryption scheme
Cryptanalysis · Min-Q-rank

1 Introduction

Multivariate cryptography is one of the main candidates to guarantee the secu-
rity of communication in the post-quantum era [1]. Multivariate schemes are
in general very fast and require only modest computational resources, which
makes them attractive for the use on low cost devices such as RFIDs or smart
cards [2,3]. While there exist many practical multivariate signature schemes
such as UOV [4], Rainbow [5] and Gui [6], the number of secure and efficient
multivariate public key encryption schemes is quite limited.

At ICISC 2015, Yasuda and Sakurai proposed in [7] a new multivariate
encryption scheme called SRP, which combines the Square encryption scheme [8],
the Rainbow signature scheme [5] and the Plus method [9]; hence the name SRP.
The scheme is very efficient and has a comparably small blow up factor between
plain and ciphertext size. In [7] it is claimed that, by the combination of Square
and Rainbow into one scheme, several attacks against the single schemes are no
longer applicable.

In this paper we present a new practical key recovery attack against the
SRP encryption scheme, which uses the min-Q-rank property of the system to
separate the Square from the Rainbow and Plus polynomials. By doing so, we
can easily find (parts of) the linear transformations T and U used to hide the
c© Springer International Publishing AG 2018
C. Adams and J. Camenisch (Eds.): SAC 2017, LNCS 10719, pp. 355–373, 2018.
https://doi.org/10.1007/978-3-319-72565-9_18

356 R. Perlner et al.

structure of the central map F in the public key. The attack is completed by
using the known structure of the Rainbow part of the central map.

Our attack is very efficient and allows us (even with our limited resources) to
break the SRP instances proposed in [7] for 80, 112 bit security in 8 min and less
than three hours respectively. By switching to a larger server we could break the
parameters proposed for 160 bit security, too. Our attack therefore shows that
this attempt to combine several multivariate schemes into one brings no extra
security into the system.

Our paper is organized as follows. In Sect. 2, we give an overview of the basic
concepts of multivariate public key cryptography and introduce the SRP encryp-
tion scheme of [7]. In Sect. 3 we recall the concept of the Q-Rank of a quadratic
map, while Sect. 4 describes the main ideas and results of the Kipnis-Shamir
attack on HFE needed for the description of our attack. Section 5 describes our
key recovery attack against the SRP scheme in detail, whereas Sect. 6 deals with
the complexity of our attack. In Sect. 7 we present the results of our computer
experiments, and Sect. 8 concludes the paper.

2 The SRP Encryption Scheme

In this section, we recall the SRP scheme of [7]. Before we come to the description
of the scheme itself, we start with a short overview of the basic concepts of
multivariate cryptography.

2.1 Multivariate Cryptography

The basic objects of multivariate cryptography are systems of multivariate
quadratic polynomials over a finite field F. The security of multivariate schemes
is based on the MQ Problem of solving such a system. The MQ Problem is
proven to be NP-Hard even for quadratic polynomials over the field GF(2) [10]
and believed to be hard on average (both for classical and quantum computers).

To build a multivariate public key cryptosystem (MPKC), one starts with
an easily invertible quadratic map F : F

n → F
m (central map). To hide the

structure of F in the public key, we compose it with two invertible affine (or
linear) maps T : Fm → F

m and U : Fn → F
n. The public key of the scheme is

given by P = T ◦ F ◦ U : Fn → F
m. The relation between the easily invertible

central map F and the public key P is referred to as a morphism of polynomials.

Definition 1. Two systems of multivariate polynomials F and G are said to be
related by a morphism iff there exist two affine maps T ,U such that G = T ◦F◦U .

The private key consists of the three maps T ,F and U and therefore allows to
invert the public key.

To encrypt a message M ∈ F
n, one simply computes C = P(M) ∈ F

m.
To decrypt a ciphertext C ∈ F

m, one computes recursively x = T −1(C) ∈
F

m, y = F−1(x) ∈ F
n and M = U−1(y). M ∈ F

n is the plaintext corresponding
to the ciphertext C. This process is illustrated in Fig. 1.

Total Break of the SRP Encryption Scheme 357

Fig. 1. Encryption and decryption process for multivariate public key encryption
schemes

Since, for multivariate encryption schemes, we have m ≥ n, the pre-image of
the vector x under the central map F and therefore the decrypted plaintext will
(with overwhelming probability) be unique.

2.2 SRP

The SRP encryption scheme was recently proposed by Yasuda and Sakurai
in [7] by combining the Square encryption scheme [8], the Rainbow signature
scheme [5] and the Plus method [9]. Since both Square and Rainbow are very
efficient, the same holds for the SRP scheme. Furthermore, the combination
with Rainbow provides an efficient way to distinguish between correct and false
solutions of Square. In [7] it is claimed that, by the combination of Square and
Rainbow into one scheme, several attacks against the single schemes are no longer
applicable.

In this paper, we restrict to variants of SRP in which the Rainbow part is
replaced by UOV [4]. Note that the parameter sets proposed in [7] are of this
type. However we note that our attack can easily be generalized to variants of
SRP which use a Rainbow (and not UOV) map FR and that these modifications
have no significant effect on the running time of the attack.

We choose a finite field F = Fq of odd characteristic with q ≡ 3 mod 4 and,
for an odd integer d, a degree d extension field E = Fqd . Let φ : Fd → E be an
isomorphism between the vector space F

d and the field E. Moreover, let o, r, s
and l be non-negative integers.

Key Generation. Let n = d + o − l, n′ = d + o and m = d + o + r + s. The
central map F : Fn′ → F

m of the scheme is the concatenation of three maps FS ,
FR, and FP . These maps are defined as follows.

(i) The Square part FS : Fn′ → F
d is the composition of the maps

F
n′ πd−→ F

d φ−→ E
X �→X2

−→ E
φ−1

−→ F
d.

Here πd : Fd+o → F
d is the projection to the first d coordinates.

358 R. Perlner et al.

(ii) The UOV (Rainbow) part FR = (f (1), . . . , f (o+r)) : F
n′ → F

o+r is con-
structed as the usual UOV signature scheme: let V = {1, . . . , d} and
O = {d+1, . . . , d+o}. For every k ∈ {1, . . . , o+r}, the quadratic polynomial
f (k) is of the form

f (k)(x1, . . . , xn′) =
∑

i∈O,j∈V

α
(k)
i,j xixj +

∑

i,j∈V,i≤j

β
(k)
i,j xixj +

∑

i∈V ∪O

γ
(k)
i xi + η(k),

with α
(k)
i,j , β

(k)
i,j , γ

(k)
i , η(k) randomly chosen in F.1

(iii) The Plus part FP = (g(1), . . . , g(s)) : F
n′ → F

s consists of s randomly
chosen quadratic polynomials g(1), . . . , g(s).

We additionally choose an affine embedding U : Fn ↪→ F
n′

of full rank and an
affine isomorphism T : Fm → F

m. The public key is given by P = T ◦ F ◦ U :
F

n → F
m and the private key consists of T ,F and U .

F
d

���
��

��
��

��

F
n

P

��
U �� Fn+l

FS

����������

FP ���
��

��
��

��
FR �� Fo+r �� Fm T �� Fm

F
s

�����������

Encryption: Given a message M ∈ F
n, the ciphertext C is computed as C =

P(M) ∈ F
m.

Decryption: Given a ciphertext C = (c1, . . . , cm) ∈ F
m, the decryption is exe-

cuted as follows.

(1) Compute x = (x1, . . . , xm) = T −1(C).
(2) Compute X = φ(x1, . . . , xd) ∈ E.
(3) Compute R1,2 = ±X(qd+1)/4 ∈ E and set

y(i) = (y(i)
1 , . . . , y

(i)
d) = φ−1(Ri) ∈ F

d (i = 1, 2).2

(4) Given the vinegar values y
(i)
1 , . . . , y

(i)
d (i = 1, 2), solve the two systems of

o + r linear equations in the n′ − d = o variables ud+1, . . . , un′ given by

1 Note that, while, in the standard UOV signature scheme, we only have o polynomials,
the map FR consists of o + r polynomials of the Oil and Vinegar type. This fact is
needed to reduce the probability of decryption failures (see Footnote 3).

2 The fact of q ≡ 3 mod 4 and d odd allows us to compute the square roots of X by
this simple operation. Therefore, the decryption process of both Square and SRP is
very efficient.

Total Break of the SRP Encryption Scheme 359

f (k)(y(i)
1 , . . . , y

(i)
d , ud+1, . . . , un′) = xd+k (i = 1, 2)

for k = 1, . . . , o + r. The solution is denoted by (yd+1, . . . , yn′).3

(5) Compute the plaintext M ∈ F
n by finding the pre-image of (y1, . . . , yn′)

under the affine embedding U .

3 Q-Rank

A critical quantity tied to the security of multivariate BigField schemes is the
Q-rank (or more correctly, the min-Q-rank) of the public key.

Definition 2. Let E be a degree n extension field of Fq. The Q-rank of a
quadratic map f(x) on F

n
q is the rank of the quadratic form φ ◦ f ◦ φ−1 in

E[X0, . . . , Xn−1] via the identification Xi = φ(x)qi

.

Quadratic form equivalence corresponds to matrix congruence, and thus the
definition of the rank of a quadratic form is typically given as the minimum
number of variables required to express an equivalent quadratic form. Since
congruent matrices have the same rank, this quantity is equal to the rank of the
matrix representation of this quadratic form, even in characteristic 2, in which
the quadratics x2qi

are additive, but not linear for q > 2.
Q-rank is invariant under one-sided isomorphisms f �→ f ◦ U , but is not

invariant under isomorphisms of polynomials in general. The quantity that is
often meant by the term Q-rank, but more properly called min-Q-rank, is the
minimum Q-rank among all nonzero linear images of f . This min-Q-rank is
invariant under isomorphisms of polynomials and is the quantity relevant for
cryptanalysis.

In particular, min-Q-rank can be defined in circumstances for which Q-rank
may make little sense. Specifically, consider the case in which there are more
equations than variables, or the case in which we consider an extension field of
smaller degree than the number of variables. We may then define min-Q-rank in
the following manner.

Definition 3. Let E be a degree d < n extension field of Fq. The min-Q-rank
of a quadratic map f : Fn

q → F
m
q over E is

min-Q-rank(f) = min
L1

max
L2

{Q-rank (L1 ◦ f ◦ L2)},

where L1 : F
d
q → F

m
q and L2 : F

n
q → F

d
q are nonzero linear transformations.

As above, “Q-rank” computes the rank of its input as a quadratic form over
E[X0, . . . , Xd−1] via the identification Xi = φ(x)qi

.

3 In [7, Proposition 1] it was shown that the probability of both (y
(1)
1 , . . . , y

(1)
d) and

(y
(2)
1 , . . . , y

(2)
d) leading to a solution of the linear system is about 1/q−r−1. Therefore,

with overwhelming probability, one of the two possible solutions is eliminated during
this step.

360 R. Perlner et al.

4 The KS Attack and Minors Modeling

The property of low min-Q-rank is a weakness of many BigField schemes and
has been exploited in many attacks, see [11–15]. While the attack in [12] exploits
the low min-Q-rank property to speed up a direct algebraic attack, the other
cryptanalyses use the Kipnis-Shamir (KS) attack of [11] with either the original
KS modeling or with the minors modeling approach pioneered in [13].

The KS-attack recovers a related private key for a low min-Q-rank system
with codomain isomorphic to a degree n extension field E by exploiting the fact
that a quadratic form embedded in the homogeneous quadratic component of
the private key is of low rank, say r. Using polynomial interpolation, the public
key can be expressed as a collection of quadratic polynomials G over E, and it
is known that there is a linear map N such that N ◦G has rank r as a quadratic
form over E; thus, there exists a rank r matrix that is an E-linear combination of
the Frobenius powers of G. This turns the task of recovering the transformation
N into solving a MinRank problem over E.

Definition 4 (MinRank Problem (n,r,k)): Given k n×n matrices M1, . . . ,

Mk ∈ Mn×n(E), find an E-linear combination M =
∑k

i=1 αi · Mi satisfying

Rank(M) ≤ r.

The key recovery attack of [13] revises the KS approach by modeling the low
min-Q-rank property differently. The authors show that an E-linear combina-
tion of the public polynomials has low rank as a quadratic form over E. Setting
the unknown coefficients in E of each of the public polynomials as variables,
the polynomials representing (r + 1) × (r + 1) minors of such a linear combina-
tion, which must be zero due to the rank property, reside in Fq[t0,0, . . . , t0,m−1].
Thus a Gröbner basis needs to be computed over Fq and the variety computed
over E. This technique is called minors modeling and dramatically improves the
efficiency of the KS-attack. The complexity of the KS-attack with minors mod-
eling is asymptotically O(n(logq(D)
+1)ω), where 2 < ω ≤ 3 is the linear algebra
constant.

One should note that the situation is more complicated when multiple vari-
able types are utilized in a scheme. In the case that there are more variables than
the degree of E over Fq, the dimensions of the matrices do not match the degree
of the extension. Still, if there is a central map with low min-Q-rank with a small
subspace of the plaintext space as its domain, as it is the case of SRP, it may
remain possible to recover a low rank map. Specifically, using fewer variables
does not increase the rank of a quadratic form.

5 Key Recovery for SRP

In this section we explain our key recovery attack on SRP in detail. For the
purpose of simplicity of exposition, we restrict to the homogeneous quadratic
case. The method extends to the general case trivially.

Total Break of the SRP Encryption Scheme 361

We note that a public key of SRP is isomorphic to an analogous scheme
without the embedding as long as πd ◦ U is full rank, which occurs with high
probability. In this case, let π′

d : F
n
q → F

d
q be the projection onto the first d

coordinates and find a projection ρ : Fn+l
q → F

n
q such that U ′ = ρ ◦ U has full

rank and π′
d ◦ U ′ = πd ◦ U . Let F∗ : E → E represent the squaring map so

that FS = φ−1 ◦ F∗ ◦ φ ◦ πd. Then given the central maps F ′
R = FR ◦ U ◦ U ′−1

and F ′
P = FP ◦ U ◦ U ′−1, which are of Rainbow shape and of random shape

respectively, one easily checks that

T ◦

⎡

⎣
F∗ ◦ πd

FR

FP

⎤

⎦ ◦ U = T ◦

⎡

⎣
F∗ ◦ π′

d

F ′
R

F ′
P

⎤

⎦ ◦ U ′.

It therefore suffices to consider the scheme with l = 0; however, for specificity,
we analyze the embedding explicitly in the following discussion.

The attack is broken down into two main steps. The first is finding a related
Square component private key. Then we discuss how to systematically solve for
the Rainbow and Plus polynomials to complete key recovery.

5.1 The Min-Q-Rank of SRP

While it is true that the min-Q-rank of the public key of an instance of SRP over
a degree n extension is expected to be high, the public key retains the property
that there exists a linear combination of the public forms which is of low Q-rank
over the degree d extension used by the Square component. We verify this claim.

Let α be a primitive element of the degree d extension E of Fq. Fix a vector
space isomorphism φ : Fd

q → E defined by φ(x) =
∑d−1

i=0 xiα
i. Furthermore, fix a

one dimensional representation Φ : E → A defined by a
Φ�−→ (a, aq, . . . , aqd−1

).
Define Md : Fd

q → A by Md = Φ ◦ φ. We can explicitly represent this map
with the matrix

Md =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 1 · · · 1
α αq · · · αqd−1

α2 α2q · · · α2qd−1

...
...

. . .
...

αd−1 α(d−1)q · · · α(d−1)qd−1

⎤

⎥⎥⎥⎥⎥⎥⎦
∈ Md×d(E),

acting via right multiplication (so that we may use algebraists’ left-to-right com-
position). Thus we can pass between the two interesting representations of ele-
ments in E of the form (x0, . . . , xd−1) ∈ F

d
q and (X,Xq, . . . , Xqd−1

) ∈ A simply
by right multiplication by Md or M−1

d .
The above map Md provides another way of expressing an SRP public key.

Note first that any homogeneous Fq-quadratic map from E to E induces a
quadratic form on A that can be represented as a d × d matrix with coeffi-
cients in E. Since the maps FR and FP can be written as vectors of quadratic

362 R. Perlner et al.

forms over Fq[x1, . . . , xn] in matrix form, the entire public key can be expressed
as a matrix equation.

To achieve this matrix representation of the public key, we need some addi-
tional notation. We blockwise define

M̃d =
[
Md 0
0 Io+r+s

]
∈ Mm×m(E)

and

M̂d =
[
Md

0o×d

]
∈ Mn′×d(E).

Note that M̃d = Φ ⊕ ido+r+s and M̂d = Φ ◦ πd. Furthermore, let F∗i be the
matrix representation of the quadratic form over A corresponding to the map
x �→ x2qi

.
Let (FS,0, . . . ,FS,d−1,FR,0, . . . ,FR,o+r−1,FP,0, . . . ,FP,s−1) denote the m-

dimensional vector of (d + o) × (d + o) symmetric matrices associated to the
private key. The function corresponding to the application of each coordinate
of a vector of such quadratic forms followed by the application of a linear map
represented by a matrix will be denoted by the right product of the vector by
the matrix. Next, note that

(FS,0,FS,1, . . . ,FS,d−1)Md = (M̂dF∗0M̂�
d , M̂dF∗1M̂�

d , . . . , M̂dF∗d−1M̂�
d),

which yields

(xFS,0x
�,xFS,1x

�, . . . , xFS,d−1x
�)Md

= (xM̂dF∗0M̂�
d x�, xM̂dF∗1M̂�

d x�, . . . , xM̂dF∗d−1M̂�
d x�),

as functions of x. Then we obtain the equation

(FS,0, . . . ,FS,d−1,FR,0, . . . ,FP,m−1)M̃d

= (M̂dF∗0M̂�
d , . . . , M̂dF∗d−1M̂�

d ,FR,0, . . . ,FP,s−1).
(1)

Next, consider the relation between the public key and the central maps of the
private key.

(P0, . . . ,Pm−1)T−1 = (UFS,0U�, . . . ,UFP,s−1U�).

By Eq. (1), we have

(P0, . . . ,Pm−1)T−1M̃d

= (UM̂dF∗0M̂�
d U

�, . . . ,UM̂dF∗d−1M̂�
d U

�,UFR,0U�, . . . ,UFP,s−1U�).

Let T̂ = T−1M̃d = [ti,j] ∈ Mm×m(E) and let W = UM̂d. Then we have
that

m−1∑

i=0

ti,0Pi = WF∗0W�. (2)

Total Break of the SRP Encryption Scheme 363

Since the rank of F∗i is one for all i, the rank of this E-linear combination
of the public matrices is bounded by one. Indeed, if the rank were zero, then
W = 0, and the scheme reduces to a weak version of Rainbow+ whose kernel is
the vinegar subspace. In particular, for all practical parameters one sets d > l,
implying d + o − l > o, which verifies that W
= 0 (due to the fact that U is
required to be full rank). Thus we obtain the following:

Theorem 1 The min-Q-rank of the public key P of SRP(q, d, o, r, s, l) is, with
high probability, given by:

min-Q-rank(P) =

{
0 if d ≤ l and UM̂d = 0,

1 otherwise.

Proof. If UM̂d = 0, then the span of P is of dimension at most m − d, and
thus the min-Q-rank of P is zero. Otherwise, with high probability, the public
polynomials are linearly independent. In this case, for any choice of L1, there
exists an L2 such that the Q-rank of the composition L1 ◦ P ◦ L2 is positive.

Consider, in particular, L1 to be the Fq-linear transformation defined by the
matrix consisting of the first d columns of T−1. Let L2 : Fd

q → F
n
q be linear of

full rank. Then

φ ◦ L1 ◦ P ◦ L2 ◦ φ−1 = F∗ ◦ φ ◦ πd ◦ U ◦ L2 ◦ φ−1.

Let L2 be the d×n matrix representation of L2. Then the matrix representation
of the above quantity is

M−1
d L2UM̂dF∗0M̂�

d U
�L�

2 M
�
d .

Since F∗0 is of rank one and the image of M̂d is A, the product is of rank one
exactly when L2UM̂d is nonzero, otherwise, the rank of the above matrix is zero.
Since L2 is chosen to maximize rank, the Q-rank is zero exactly when UM̂d is
zero, which necessitates that d ≤ l.

One may note here that the matrix T̂ unmixes the Square equations from
the Rainbow and Plus polynomials. It further mixes the Rainbow and Plus poly-
nomials, but this is no issue since this phase of the attack is aimed at ultimately
recovering a representation of F∗.

5.2 Recovering the Output Transformation with MinRank

As demonstrated in the previous subsection, the recovery of T̂ begins by solving
a MinRank instance over E. This phenomenon is well studied and has been the
basis of previous cryptanalyses, see [13–15]. We may use the minors modeling
approach to take advantage of the fact that we can compute the Gröbner basis
over the small field, Fq.

Due to the extremely low min-Q-rank of the system, the system of minors
is homogeneous quadratic. The ideal generated by these minors is one dimen-
sional, so we may set a single variable to a fixed value, say 1. We then recover a

364 R. Perlner et al.

system of many quadratic equations in m−1 variables. This system is massively
overdefined, so a solution can be recovered via linearization.

To accomplish this, we have to compute only as many minors as there are
monomials in m − 1 variables of total degree ≤ 2. There are exactly

(
m+1
2

)

monomials in m−1 variables of degree less than or equal to two, so we randomly
select

(
m+1
2

)
minors and arrange their coefficients in a

(
m+1
2

)
×

(
m+1
2

)
matrix.

As we will show in Sect. 6, we expect such a matrix to have full rank with
high probability, roughly q−1

q for large n and m. We may then linearly solve,

recovering the first column of T̂.
Once the first column of T̂ is recovered, the first d columns can be generated

by the relation
ti,j = tqi,j−1 for j = 1, . . . , d − 1.

We will return to the issue of computing the remaining columns of T̂ and sepa-
rating the Rainbow and Plus polynomials in Subsect. 5.5.

5.3 Recovering the Input Transformation

Once the first column of the transformation T̂ = [ti,j] is discovered, we have
access to the rank one matrix

m−1∑

i=0

ti,0Pi.

This matrix encodes the representation of the squaring map.

Theorem 2. Given the first column of T̂, the recovery of W requires the solu-
tion of a linear system of d+o− l−1independent equations in d+o− l variables.

Proof. First, note that W = [wi,j] is of the form wi,j = wqk

i,j−k for all i ∈
{0, 1, . . . , d + o − l} and for all 0 ≤ j, k < d. Thus, it suffices to solve for the first
column of W. Let K be the left kernel of the low rank matrix

m−1∑

i=0

ti,0Pi.

Let K be the matrix whose rows form a basis of K. By Eq. (2), we know that

0d+o−l−1×d+o−l = KWF∗0W�,

and since W is of full rank, it must be the case that

KWF∗0 = 0d+o−l−1×d.

Thus KW = ker(F∗0). In a proper basis the representation of F∗0 contains a
single nonzero entry in the first row and first column. Thus, the relation that
KW = ker(F∗0) is equivalent to the condition that the first column of W is
in the right kernel of K. Since this right kernel is one dimensional, this process
recovers all equivalent matrices W.

Total Break of the SRP Encryption Scheme 365

Recall that we have the relation

W = UM̂d = U
[
Md

0o×d

]
.

Then multiplying on the right by M−1
d yields

WM−1
d = U

[
Md

0o×d

]
M−1

d = U
[

Id

0o×d

]
. (3)

Thus, we obtain the first d columns of U. We may extend this matrix in any
manner to obtain a full rank n×(d+o) matrix. With high probability, a random
concatenation of o columns produces a full rank matrix U. For the sake of
recovering FS , we insist that the first n columns of U form an invertible matrix.

5.4 Recovering the Square Map

We now assume that we have recovered the first column, [ti,0], of T̂ and that we
have recovered U. Let Û represent the matrix consisting of the first d + o − l

columns of U. By construction, Û is invertible. We set U =
[
Û Û′

]
.

We can now explicitly compute

m−1∑

i=0

ti,0Pi = WF∗0W�.

Note that

W = UM̂d =
[
Û Û′

] [
Md

0o×d

]
= Û

[
Md

0(o−l)×d

]
.

Thus we have
m−1∑

i=0

ti,0Pi = Û
[

Md

0(o−l)×d

]
F∗0 [

M�
d 0d×(o−l)

]
Û�.

Therefore, we may compute
[

Md

0(o−l)×d

]
F∗0 [

M�
d 0d×(o−l)

]
= Û−1

(
m−1∑

i=0

ti,0Pi

)
Û−�, (4)

Now, by taking the top left d × d submatrix, we recover MdF∗0M�
d . Finally, by

multiplying on the left by M−1
d and on the right by M−�

d , we recover F∗0.

5.5 Unmixing the Rainbow and Plus Polynomials

Having identified the vinegar subspace of linear forms on the input variables, we
can identify the Rainbow polynomials as those linear combinations of the public
polynomials which become linear when their inputs are restricted to the kernel
of those linear forms. In other words, we can find the Rainbow polynomials by
linearly solving for ti such that:

366 R. Perlner et al.

[
0(o−l)×dIo−l

]
Û−1

(
m−1∑

i=0

tiPi

)
Û−�

[
0d×(o−l)

Io−l

]
= 0. (5)

A basis ti,j of the solution space of this equation forms the columns d+1 through
d + o + r of T−1. We can place any selection of column vectors in the last s
columns of T−1 making it full rank, since no party is concerned with the values
of the plus polynomials.

Having recovered the complete transformation T−1, we can compute the
Rainbow and Plus part of the central map by

(Fs,0, . . . ,FS,d−1,FR,0, . . . ,FR,o+r−1,FP,0, . . . ,FP,s−1)

= (Û−1P0Û−�, . . . , Û−1PmÛ−�)T−1. (6)

Algorithm 1 shows the process of our attack in algorithmic form. In the
appendix of this paper, we illustrate our attack using a toy example.

Algorithm 1. Our Key Recovery Attack on SRP

Input: SRP parameters (o, d, r, s, l), SRP public key P : Fn′ → F
m

Output: equivalent private key (T , (FS ,FR,FP),U)
1: Solve a MinRank problem on the m public polynomials with target rank 1. Denote

the solution by v ∈ E
m.

2: Define the elements of the m × d matrix T̂′ by t̂ij
′
= vq

j−1

i (j = 1, . . . , d).
3: Compute the first d columns of the matrix T−1 by T′−1

= T̂ · M−1
d .

4: Let K be the (n− 1)×n matrix representing the left kernel of the low rank matrix∑m−1
i=0 ti,0Pi and choose an element w ∈ F

n of its right kernel.

5: Define the elements of the n × d matrix W by wij = wqj−1

i (j = 1, . . . , d)
6: Recover the first d columns of the matrix U by Eq. (3).

7: Extend U to an invertible n× n matrix Û and Û to a full rank n× (d+ o) matrix
U.

8: Recover the map FS by Eq. (4).
9: Compute the columns d + 1, . . . , d + o + r of the matrix T−1 by solving the linear

system of Eq. (5). Append randomly columns to get an invertible m × m matrix
T−1.

10: Recover the matrices representing the Rainbow and plus polynomials by Eq. (6).

6 Complexity of Attack

To estimate the complexity of our attack, we compute the Hilbert series of the
ideal generated by the 2 × 2 minors of

m−1∑

i=0

ti,0Pi.

We can then recover the degree of regularity dreg explicitly.

Total Break of the SRP Encryption Scheme 367

Theorem 3. Let E[T] = E[t0,0, . . . , tm−1,0]. Let I be the ideal generated by the
system of minors arising from the minors modeling variant of the KS-attack on
SRP(q, d, o, r, s, l) with d > l, n = d + o − l and m = d + o + r + s. Then the
Hilbert series of I (that is, the Hilbert Series of E[T]/I) is

Hilbertseries(t) =
1 + (m − 1)t − (m − 1)t2

1 − t
.

Consequently the degree of regularity of the minors system is dreg = 2.

Proof. Consider the ideal I generated by the 2 × 2 minors over E[T]. There are(
n
2

)2
/2 distinct 2 × 2 minors in an n × n symmetric matrix; however, each such

minor of the above matrix is a homogeneous quadratic polynomial in m vari-
ables. Since we know that there is a nontrivial solution, the dimension of the
span of the 2 × 2 minors is at most

(
m
2

)
+ m − 1 =

(
m+1
2

)
− 1. As a conse-

quence,
(
m+1
2

)
− 1 randomly chosen minors should be linearly independent with

probability approximately 1 − 1
q .

Since I = ⊕∞
n=0In contains all linear combinations of the minors, I2 is of

codimension one in the space of all quadratic monomials in E[T]. By induction,
In is of codimension one in the space of all degree n monomials in E[T]. Therefore,
the Hilbert Series of E[T]/I is

HS(t) = 1 + mt + t2 + t3 + . . . = (m − 1)t +
∞∑

n=0

tn =
1 + (m − 1)t − (m − 1)t2

1 − t
.

Technically, the ideal I in Theorem 3 is not what we use in the attack. We use
I ′ = 〈I, t0,0 −1〉, for example. However, adding polynomials to I cannot increase
the degree of regularity; thus, the degree of regularity in the actual attack is still
two.

This fact proves that we actually require no Gröbner basis algorithm for the
attack. Simple linearization and Gaussian elimination are effective in breaking
all parameters.

Specifically, recalling that with one variable fixed we have only m−1 variables,
we may use the above calculation to estimate the complexity of recovering the
first column of T̂ using the minors modeling variant of the KS-attack.

Unmixing the Rainbow and plus polynomials only requires 2m matrix mul-
tiplications of dimension n matrices and solving a linear system in m variables.
The complexity of these operations is on the order of mω+1, and is therefore
dominated by the minors modeling step. Thus we obtain the following

Theorem 4. The complexity of our key recovery attack on SRP (q, d, o, r, s, l)
with d > l, n = d+o− l and m = d+o+r+s using the minors modeling variant
of the KS-attack is

O
((

m + 1
2

)ω)
,

where 2 < ω ≤ 3 is the linear algebra constant.

368 R. Perlner et al.

7 Experimental Results

In order to estimate the complexity of our attack in practice, we created a
straightforward implementation of the key generation process of SRP and our
attack in MAGMA Code. While the experiments were run on large servers with
multiple cores, we used, for each of our experiments, only a single core.

Table 1 shows, for different parameter sets, the results of our experiments.
The numbers in rows 3 and 10 show the time needed to solve the MinRank
problem and to recover the maps FS and U as well as the first d columns of the
matrix T−1. The numbers in row 4 and 11 show the time needed to recover the
remaining columns of T−1 and the maps FR and FP . The numbers in the fifth
and twelfth row show the overall running time of our attack.

Table 1. Running time of the proposed attack

Parameters (q, d, o, r, s, l) (31, 16, 16, 8, 3, 8) (31, 24, 24, 12, 4, 12) (31, 35, 35, 15, 5, 15)

(m,n) (43, 24) (64, 36) (90, 55)

Time for recovering FS (s) 10.0 74.5 1,295

Time for recovering FR and FP (s) 0.5 2.5 16.5

Time (overall) (s) 10.5a 77.1a 1,313a

Memory (MB) 354.6 1,970.3 11,867

Claimed security level (bit) 80 112 160

Parameters (q, d, o, r, s, l) (31, 33, 32, 16, 5, 16) (31, 47, 47, 22, 5, 22) (31, 71, 71, 32, 5, 32)

(m,n) (86, 49) (121, 72) (179, 110)

Time for recovering FS (s) 487.0 9,705 27,306

Time for recovering FP and FR 10.0 69.1 183

Time (overall) 497.0a 9,777a 27,494b

Memory (MB) 8,518.5 47,988 315,407
a AMD Opteron @ 2.4GHz, 128GB RAM
b Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz, and 512GB RAM

As the second column of the table shows, doubling the parameters leads to an
increase of the running time and memory requirements of our attack by factors
of about 50 and 25, which corresponds to our theoretical estimations.4

The parameter sets shown in the bottom half of Table 1 are those proposed
by the authors of [7] for security levels of 80, 112 and 160 bit respectively. As
the table shows, we could (even with our limited resources and poorly opti-
mized attack) break the parameter sets proposed for 80 and 112 bit security in
very short time. Since, for a security level of 160 bit, the memory requirements
exceeded our possibilities, we had to run these experiments on another server.
We want to thank Nadia Heninger for running these experiments.

8 Conclusion

In this paper we propose a practical attack against the SRP encryption scheme of
Yasuda and Sakurai [7]. Our attack uses the min-Q-rank property of the scheme
4 For larger parameters, the memory access time plays a major role in the overall

running time. Therefore the corresponding factors are nuch larger.

Total Break of the SRP Encryption Scheme 369

to recover parts of the linear transformation T , the transformation U and the
Square part FS of the central map. Following this, we use the known structure
of the Rainbow polynomials to recover the second half of the map T as well as
the Rainbow and Plus part of the central map. Our attack is very efficient and
breaks the SRP instances proposed in [7] in reasonable short time.

Therefore, our attack shows that the security of a weak multivariate scheme
like Square is not automatically increased by combining it with another (secure)
scheme.

Acknowledgements. We thank the anonymous reviewers for their comments which
helped to improve the paper. Furthermore, we want to thank Nadia Heninger and Cisco
for their help with running our experiments.

Disclaimer. Certain commercial equipment, instruments, or materials are identified
in this paper in order to specify the experimental procedure adequately. Such iden-
tification is not intended to imply recommendation or endorsement by the National
Institute of Standards and Technology, nor is it intended to imply that the materials
or equipment identified are necessarily the best available for the purpose.

A Toy Example

In the following we illustrate our attack using a toy example with small param-
eters.

A.1 Key Generation

For our toy example we use GF(7) as the underlying field. We choose the param-
eters of SRP as (d, o, r, s, l) = (2, 2, 1, 1, 1).5 Therefore our public key consists of
six equations in three variables. The Square map is defined over the extension
field GF(7)[X]/〈X2 + 6X + 3〉. For simplicity, we restrict to linear maps T and
U as well as homogeneous quadratic maps FR and FP . By doing so, the public
key P of our scheme will be homogeneous quadratic, too.

Let the linear maps T and U be given by the matrices

T =

⎛

⎜⎜⎜⎜⎜⎜⎝

1 5 1 6 3 3
5 3 5 2 2 5
0 4 0 4 5 0
0 6 6 2 4 3
3 3 6 3 6 3
5 3 5 0 4 6

⎞

⎟⎟⎟⎟⎟⎟⎠
∈ F

6×6 and U =

⎛

⎝
6 0 3 2
2 0 0 4
4 1 1 0

⎞

⎠ ∈ F
3×4.

The Square map FS(X) = X2 is given by the matrix F =
(

1 0
0 0

)
∈ F

2×2.

5 Note that this parameter choice does not meet the description in Sect. 2.2, where d
was required to be odd. However, an odd value of d is only needed for the efficient
decryption. The scheme itself can be defined for any value of d.

370 R. Perlner et al.

Let the three Rainbow polynomials be given by the 4 × 4 matrices

FR,0 =

⎛

⎜⎜⎝

2 6 2 3
6 1 6 0
2 6 0 0
3 0 0 0

⎞

⎟⎟⎠ , FR,1 =

⎛

⎜⎜⎝

2 1 5 1
1 5 0 6
5 0 0 0
1 6 0 0

⎞

⎟⎟⎠ , and FR,2 =

⎛

⎜⎜⎝

5 4 3 0
4 2 0 1
3 0 0 0
0 1 0 0

⎞

⎟⎟⎠ .

The Plus polynomial is given by the 4 × 4 matrix

FP0 =

⎛

⎜⎜⎝

3 4 3 2
4 4 0 3
3 0 5 0
2 3 0 3

⎞

⎟⎟⎠ .

We compute the public key of our scheme by P = T ◦ (FS ,FR,FP) ◦ U and
obtain the following 6 3 × 3 matrices representing P

P0 =

⎛

⎝
6 6 0
6 6 0
0 0 1

⎞

⎠ , P1 =

⎛

⎝
5 2 5
2 3 4
5 4 6

⎞

⎠ , P2 =

⎛

⎝
6 4 2
4 0 1
2 1 1

⎞

⎠

P3 =

⎛

⎝
4 5 3
5 6 3
3 3 3

⎞

⎠ , P4 =

⎛

⎝
5 1 5
1 1 4
5 4 3

⎞

⎠ , and P5 =

⎛

⎝
2 4 6
4 3 1
6 1 3

⎞

⎠ .

A.2 Recovery of Transformation of Square Polynomials

In the first step of the attack, we have to solve a MinRank problem on the 6
matrices P0, . . . ,P5 with target rank 1. One solution is given by

v = (1, b19, b13, b9, b47, b9),

where b is a generator of the extension field E = GF(72).
From this, we obtain the first part of the linear transformation T which

divides the Square part from the remaining polynomials. Let T̂′ represent the
first d columns of T̂. We may recover the first d columns of T−1 via right
multiplication by M−1

d .

T̂′ =

⎛

⎜⎜⎜⎜⎜⎜⎝

1 1
b19 b37

b13 b43

b9 b15

b47 b41

b9 b15

⎞

⎟⎟⎟⎟⎟⎟⎠
, T−1′

= T̂′M−1
d =

⎛

⎜⎜⎜⎜⎜⎜⎝

1 1
1 3
3 3
0 3
5 2
0 3

⎞

⎟⎟⎟⎟⎟⎟⎠
.

Note that the entries in the second column of T̂′ are just the Frobenius powers
of the first column entries.

Total Break of the SRP Encryption Scheme 371

A.3 Recovery of the Input Transformation U
Next we can use the first column, [ti,0], of T̂′ to recover the first d columns of
the matrix representation of the linear transformation U , thus separating the
vinegar subspace from the oil subspace. To accomplish this, we construct our
rank one solution to the MinRank step

L =
m−1∑

i=0

ti,0Pi =

⎛

⎝
b45 b3 b18

b3 b9 6
b18 6 b39

⎞

⎠ .

Let K be the left kernel of L and construct the reduced row echelon form
matrix K whose rows form a basis of K.

K =
(

1 0 b3

0 1 b9

)
.

Any element in the right kernel of K forms the first column of W. The second
column is the first Frobenius power of the first. For a random selection we obtain

W =

⎛

⎝
b45 b27

b3 b21

b18 b30

⎞

⎠ .

We next recover the first d = 2 columns of U via the relation

WM−1
d = U

[
Id

0o×d

]
=

⎛

⎝
5 5
4 5
1 2

⎞

⎠ .

Extending this matrix, we construct the invertible

Û =

⎛

⎝
5 5 0
4 5 0
1 2 1

⎞

⎠ .

We may now extend this matrix to any n × n + l matrix. The simplest way
is to append zeros. This technique is always effective due to the isomorphism
described at the beginning of Sect. 5. Thus we obtain

U =

⎛

⎝
5 5 0 0
4 5 0 0
1 2 1 0

⎞

⎠ .

A.4 Recovering FS

Knowing T−1′ and Û, we can recover the Square part of the central map. Specif-
ically, we recover the top left 2 × 2 submatrix of Û−1LÛ−�:

F∗0 =
(

b3 0
0 0

)
.

372 R. Perlner et al.

A.5 Recovering FR and FP

We solve the equation

[
0(o−l)×d Io−l

]
Û−1

(
m−1∑

i=0

tiPi

)
Û−�

[
0d×(o−l)

Io−l

]

for ti and append o + r = 3 linearly independent solutions as column vectors
onto T−1′. The final s = 1 column(s) of T−1can be chosen randomly to achieve
full rank. Our random selection produces

T−1 =

⎛

⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 5
1 3 0 0 0 6
3 3 2 6 4 3
0 3 1 5 4 6
5 2 2 0 2 1
0 3 1 0 2 1

⎞

⎟⎟⎟⎟⎟⎟⎠
.

Now with T−1 we can recover explicitly the Rainbow and Plus polynomials.
To do so, we compute

(Û−1P0Û−�, . . . , Û−1Pm−1Û−�)T−1.

We may now express the Rainbow and Plus polynomials as quadratic forms
in n variables by appending l rows and columns of arbitrary values, since our
choice of U makes these entries obsolete. We obtain

FR,0 =

⎛

⎜⎜⎝

0 5 2 0
5 4 0 0
2 0 0 0
0 0 0 0

⎞

⎟⎟⎠ , FR,1 =

⎛

⎜⎜⎝

0 0 6 0
0 2 0 0
6 0 0 0
0 0 0 0

⎞

⎟⎟⎠ , FR,2 =

⎛

⎜⎜⎝

5 4 0 0
4 4 5 0
0 5 0 0
0 0 0 0

⎞

⎟⎟⎠ ,

and

FP,0 =

⎛

⎜⎜⎝

4 5 2 0
5 4 1 0
2 1 5 0
0 0 0 0

⎞

⎟⎟⎠ .

Via composition, one verifies that

P = T ◦ (FS ,FR,FP) ◦ U .

References

1. Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.): Post-Quantum Cryptography.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-88702-7

2. Chen, A.I.-T., Chen, M.-S., Chen, T.-R., Cheng, C.-M., Ding, J., Kuo, E.L.-H.,
Lee, F.Y.-S., Yang, B.-Y.: SSE implementation of multivariate PKCs on modern
x86 CPUs. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 33–48.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04138-9 3

https://doi.org/10.1007/978-3-540-88702-7
https://doi.org/10.1007/978-3-642-04138-9_3

Total Break of the SRP Encryption Scheme 373

3. Bogdanov, A., Eisenbarth, T., Rupp, A., Wolf, C.: Time-Area optimized public-
key engines: MQ-cryptosystems as replacement for elliptic curves? In: Oswald, E.,
Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 45–61. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-85053-3 4

4. Kipnis, A., Patarin, J., Goubin, L.: Unbalanced oil and vinegar signature schemes.
In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 206–222. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 15

5. Ding, J., Schmidt, D.: Rainbow, a new multivariable polynomial signature scheme.
In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp.
164–175. Springer, Heidelberg (2005). https://doi.org/10.1007/11496137 12

6. Petzoldt, A., Chen, M.-S., Yang, B.-Y., Tao, C., Ding, J.: Design principles for
HFEv- based multivariate signature schemes. In: Iwata, T., Cheon, J.H. (eds.)
ASIACRYPT 2015. LNCS, vol. 9452, pp. 311–334. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48797-6 14

7. Yasuda, T., Sakurai, K.: A multivariate encryption scheme with Rainbow. In: Qing,
S., Okamoto, E., Kim, K., Liu, D. (eds.) ICICS 2015. LNCS, vol. 9543, pp. 236–251.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29814-6 19

8. Clough, C., Baena, J., Ding, J., Yang, B.-Y., Chen, M.: Square, a new multivariate
encryption scheme. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 252–
264. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00862-7 17

9. Ding, J., Gower, J.E., Schmidt, D.S.: Multivariate Public Key Cryptosystems.
ADIS, vol. 25. Springer, New York (2006). https://doi.org/10.1007/978-0-387-
36946-4

10. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the The-
ory of NP-Completeness. A Series of Books in the Mathematical Sciences. W. H.
Freeman and Company, New York (1979)

11. Kipnis, A., Shamir, A.: Cryptanalysis of the HFE public key cryptosystem by
relinearization. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 19–30.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1 2

12. Faugère, J.-C., Joux, A.: Algebraic cryptanalysis of Hidden Field Equation (HFE)
cryptosystems using Gröbner bases. In: Boneh, D. (ed.) CRYPTO 2003. LNCS,
vol. 2729, pp. 44–60. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-
540-45146-4 3

13. Bettale, L., Faugére, J., Perret, L.: Cryptanalysis of HFE, multi-HFE and variants
for odd and even characteristic. Des. Codes Crypt. 69, 1–52 (2013)

14. Cabarcas, D., Smith-Tone, D., Verbel, J.A.: Key recovery attack for ZHFE. In:
Lange, T., Takagi, T. (eds.) PQCrypto 2017. LNCS, vol. 10346, pp. 289–308.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59879-6 17

15. Vates, J., Smith-Tone, D.: Key recovery attack for all parameters of HFE-. In:
Lange, T., Takagi, T. (eds.) PQCrypto 2017. LNCS, vol. 10346, pp. 272–288.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59879-6 16

https://doi.org/10.1007/978-3-540-85053-3_4
https://doi.org/10.1007/3-540-48910-X_15
https://doi.org/10.1007/11496137_12
https://doi.org/10.1007/978-3-662-48797-6_14
https://doi.org/10.1007/978-3-319-29814-6_19
https://doi.org/10.1007/978-3-642-00862-7_17
https://doi.org/10.1007/978-0-387-36946-4
https://doi.org/10.1007/978-0-387-36946-4
https://doi.org/10.1007/3-540-48405-1_2
https://doi.org/10.1007/978-3-540-45146-4_3
https://doi.org/10.1007/978-3-540-45146-4_3
https://doi.org/10.1007/978-3-319-59879-6_17
https://doi.org/10.1007/978-3-319-59879-6_16

Approximate Short Vectors in Ideal Lattices
of Q(ζpe) with Precomputation of Cl(OK)

Jean-François Biasse(B)

Department of Mathematics and Statistics, University of South Florida, Tampa, USA
biasse@usf.edu

Abstract. Let a, b be constants such that b ≤ 7a−2 and 2
5

< a < 1
2
. We

present a classical heuristic PIP resolution method that finds a generator

of any input I such that N (I) ≤ 2nb

in time 2na+o(1)
given a one time

classical precomputation of cost and size 2n2−3a+o(1)
.

We also present a quantum variant of this PIP algorithm with pre-
computation. Let 1/3 < a < 1/2. With a quantum coprocessor running

Shor’s algorithm, our algorithm solves the γ-ideal-SVP for γ = 2n1/2+o(1)

in time 2na+o(1)
using Õ(n2−a) qubits and a one time classical precompu-

tation on Q(ζpe) of cost 2n2−3a+o(1)
. This is a superpolynomial improve-

ment over the best classical method relying on the BKZ reduction, and
it uses asymptotically fewer qubit than the quantum polynomial time
method relying on the PIP algorithm of [BS16] which requires Ω(n3)
qubits.

Keywords: Ideal lattices · Lattice reduction · Quantum algorithms
Post quantum cryptography · ideal-SVP · Ideal class group
Principal Ideal Problem

1 Introduction

The computational hardness of finding short vectors in lattices that are ideals
in a cyclotomic field is the basis for many of the most promising proposals for
quantum-safe cryptography and Fully Homomorphic Encryption (FHE). The
problem of finding a vector in an ideal lattice I of the maximal order OK of
K = Q(ζ2e) whose length is within a factor γ > 0 of the shortest vector of I is
called the γ-ideal-Shortest Vector Problem and is denoted γ-ideal-SVP. The work
of Cramer, Ducas, Peikert and Regev [CDPR16] combined with that of Cramer,
Ducas and Wesolowski [CDW16] shows that γ-ideal-SVP for some γ = 2n1/2+o(1)

where n := [K : Q] heuristically reduces to the Principal Ideal Problem (PIP).
Given an ideal I of the maximal order OK of K = Q(ζpe), solving the PIP

consists in deciding if I is principal, and if so, computing α ∈ OK such that

This work was supported by NIST under grant 60NANB17D and by the Simons
Foundation under grant 430128.

c© Springer International Publishing AG 2018
C. Adams and J. Camenisch (Eds.): SAC 2017, LNCS 10719, pp. 374–393, 2018.
https://doi.org/10.1007/978-3-319-72565-9_19

Approximate Short Vectors in Ideal Lattices 375

I = (α)OK . The PIP is a fundamental problem in computational number theory
and a generator of a principal ideal of the maximal order OK of a number field K

can be found in heuristic subexponential time 2log(|Δ|)2/3+o(1)
where Δ := disc(K)

by using an algorithm of Biasse and Fieker [Bia,BF14], and in the case where
K = Q(ζpe), similar methods yield a heuristic run time of 2n1/2+o(1)

by using
recent work of Biasse, Espiteau, Fouque, Gélin and Kirchner [BEF+17]. Note
that when K = Q(ζpe), log(|Δ|) = Θ(n log(n)), so 2n1/2+o(1)

= 2log(|Δ|)1/2+o(1)
.

We can also find a generator of a principal ideal in quantum polynomial
time with an algorithm of Biasse and Song [BS16] which relies on the hidden
subgroup resolution algorithm in R

O(n) of Eisenträger, Hallgren, Kitaev and
Song [EHKS14]. This algorithm requires Ω(n3) qubits (see AppendixA).

The extra algebraic structure that ideal lattices enjoy allows multiple perfor-
mance enhancements over cryptosystems using general lattices. The extent to
which this extra structure also allows better algorithms to solve the underlying
hard problems (in particular γ-ideal-SVP for a non trivial γ) is an open problem.
The best classical method to solve γ-ideal-SVP for a subexponential γ is the BKZ
lattice reduction [Sch87]. In particular, it solves γ-ideal-SVP for γ = 2n1/2+o(1)

in time 2n1/2+o(1)
. The possibility of a superpolynomial improvement over the

BKZ reduction algorithm by using quantum computers was recently highlighted
by Cramer, Ducas and Wesolowski [CDW16] who combined the quantum PIP
algorithm of [BS16] with a heuristic reduction from γ-ideal-SVP to PIP for some
γ = 2n1/2+o(1)

to solve γ-ideal-SVP in quantum polynomial time. This indicates
that γ-ideal-SVP in ideal lattices is not as computationally hard as in general
lattices (at least for some non-trivial approximation factors γ), but this dis-
crepancy is not well understood, and it is a major stake in the development
and the standardization of post-quantum cryptographic primitives. This paper
further illustrates this divide by providing algorithms for γ-ideal-SVP where
γ = 2n1/2+o(1)

that outperform BKZ by leveraging a precomputation on Q(ζpe).

Contributions. We describe classical and quantum algorithms for computing
approximate short vectors in ideals of Q(ζpe) by using a one-time classical subex-
ponential precomputation on Q(ζpe). At a given security level, most ideal lattice-
based cryptosystem use the same field for all keys, therefore this precomputation
reduces the hardness of all instances of our search problem.

(i) The classical precomputation consists in the computation of a basis of the
relations1 between classes of prime ideals of norm less than a given B > 0
in the ideal class group of Q(ζpe). When B ≥ 2n1/2

, our algorithm computes
all relations between the classes of prime ideals of norm less than B in time
BÕ(1).

(ii) Let a, b be constants such that b ≤ 7a − 2 and 2
5 < a < 1

2 . We present
a classical heuristic PIP resolution method that finds a generator of any

1 The subexponential PIP method [Coh91, Sect. 6.5.5] also leverages a precomputed
set of relations. This paper shows how to exploit a trade-off between these two
phases.

376 J.-F. Biasse

input I such that N (I) ≤ 2nb

in time 2na+o(1)
given a one time classical

precomputation of the relations between ideals of norm less than 2n2−3a+o(1)

which costs 2n2−3a+o(1)
. For example, given a 2n5/7+o(1)

precomputation, we
retrieve the private keys of the cryptographic schemes2 relying on the hard-
ness of finding a short generator of an ideal I ⊆ Q(ζpe) (short-PIP) with
N (I) ≤ 2n1+o(1)

in time 2n3/7+o(1)
from the corresponding public keys.

(iii) Let 1/3 < a < 1/2 be a constant. We present a quantum heuristic PIP
resolution method that finds a generator of any ideal I ⊂ Q(ζpe) time
2na+o(1)

using Õ(n2−a) qubits given a one time classical precomputation on
Q(ζpe) of cost 2n2−3a+o(1)

. With the heuristic reduction from γ-ideal-SVP to
PIP of [CDW16], this yields a solution to γ-ideal-SVP for some γ = 2n1/2+o(1)

in time 2na+o(1)
.

– It is a superpolynomial improvement over the best classical method based on
the BKZ reduction which runs in time 2n1/2+o(1)

.
– It uses asymptotically fewer qubits than the best quantum method which

relies on the Biasse-Song quantum PIP method which uses Ω(n3) qubits.

In addition to using fewer qubits than the method of [BS16], this has the advan-
tage of solely relying on a very well studied quantum subroutine, namely Shor’s
factoring algorithm. The exact qubit requirement of Shor’s algorithm [Sho97] is
very well understood, as well as the classical part of this algorithm while the
algorithm for solving the HSP in R

O(n) of [EHKS14] is likely to be a lot more
complicated to implement and to involve a non-trivial classical part. The search
for low-resource quantum algorithms that solve hard problems in cryptography
is a growing area of research. For example, Bernstein, Biasse and Mosca [BBM17]
recently described a quantum factoring algorithm requiring Õ(log(N))2/3) qubits
and offering a polynomial improvement over the classical Number Field Sieve.
This contribution achieves a similar goal: providing a quantum algorithm for
solving a problem with significantly less resource than the best quantum algo-
rithm while running significantly faster than the best known classical method.
We did not consider a quantum variant of the precomputation as to the best of
our knowledge, it would only provide a polynomial speedup.

2 Background

Lattices. A lattice is a discrete additive subgroup of Rn for some integer n. The
first minimum of a lattice L is defined by λ1 := minv∈L\{0} ‖v‖. A basis of L is
a set of linearly independent vectors b1, · · · , bk such that L = Zb1 + · · · + Zbk.
The determinant of L is det(L) =

√
det(B · BT) where B = (bi)i≤k ∈ R

k×n

is the matrix of a basis of L. For a full dimensional lattice L, we know that
2 The multilinear maps of Garg, Gentry and Halevi [GGH13] are an example of such

schemes, but a polynomial-time attack exists [HJ16] that exploit the zero-testing
elements, which is a feature specific to the multilinear maps.

Approximate Short Vectors in Ideal Lattices 377

λ1(L) is in O
(√

n det(L)1/n
)
. The problem of finding a shortest vector v ∈ L

is known as the Shortest Vector Problem (SVP), while the problem of finding
v ∈ L such that ‖v‖ ≤ γλ1(L) for some γ ≥ 1 is known as γ-SVP. A solution v
to γ-SVP satisfies ‖v‖ ∈ O

(
γ
√

ndet(L)1/n
)
. Given the matrix of a basis A as

input, the LLL algorithm [LLL82] returns a basis (bi)i≤n such that ‖b1‖
det(L)1/n ∈

2O(n) in polynomial time in n and log(|A|). The BKZ algorithm [Sch87] with
block size k returns a basis (bi)i≤n such that ‖b1‖

det(L)1/n ∈ O(kÕ(n/k)) in time

2O(k) Poly(n, log(|A|)) [HPS11, Theorem 1].

Number Fields. A number field K is a finite extension of Q. Its ring of integers
OK has the structure of a lattice of degree n = [K : Q]. A number field has r1 ≤ n
real embeddings (σi)i≤r1 and 2r2 complex embeddings (σi)r1<i≤2r2 (coming as
r2 pairs of conjugates). The field K is isomorphic to OK ⊗Q. We can embed K
in KR := K⊗R
 R

r1 ×C
r2 , and extend the σi’s to KR. Let T2 be the Hermitian

form on KR defined by T2(x, x′) :=
∑

i σi(x)σi(x′), and let ‖x‖ :=
√

T2(x, x)
be the corresponding
2-norm. The norm of an element x ∈ K is defined by
N (x) =

∏
i σi(x). Let (αi)i≤d such that OK = ⊕iZαi, then the discriminant of

K is given by Δ = det2(T2(αi, αj)). The volume of the fundamental domain is√|Δ|, and the size of the input of algorithms working on an integral basis of
OK is in O(log(|Δ|)). In K = Q(ζpe), the degree satisfies [K : Q] = (p − 1)ps−1

and Δ = ±pps−1(ps−s−1), therefore log(|Δ|) ∼ n log(n) and we can express the
complexity of our algorithms in terms of n (a choice we made in this paper),
which makes it easier to compare with other lattice reduction results. However,
most of the literature on class group computation presents complexities in terms
of log(|Δ|), which is in general the right value to measure the input. For example,
it makes no sense to express the complexity with respect to the degree of K in
infinite classes of quadratic number fields.

Cyclotomic Fields. A cyclotomic field is an extension of Q of the form K =
Q(ζN) where ζN = e2iπ/N is a primitive N -th root of unity. The ring of integers
OK of K is Z[X]/(ΦN (X)) where ΦN is the N -th cyclotomic polynomial. When
N is a power of two, ΦN (X) = XN/2 + 1, and when N = pe is a power of
p > 2, we have ΦN (X) = Xpe−1(p−1) + Xpe−1(p−2) + · · · + 1 (which generalizes
the case p = 2). Elements a ∈ OK are residues of polynomials in Z[X] modulo
ΦN (X), and can be identified with their coefficient vectors a ∈ Z

φ(N) where
φ(N) = pe−1(p − 1) is the Euler totient of N (and the degree of ΦN (X)).

The Ideal Class Group. Elements of the form I
d where I ⊆ OK is an (inte-

gral) ideal of the ring of integers of K and d > 0 are called fractional ideals.
They have the structure of a Z-lattice of degree n = [K : Q], and they form a
multiplicative group I. Elements of I admit a unique decomposition as a power
product of prime ideals of OK (with possibly negative exponents). The norm of
integral ideals is given by N (I) := [OK : I], which extends to fractional ideals by
N (I/J) := N (I)/N (J). The norm of a principal (fractional) ideal agrees with
the norm of its generator N (xOK) = |N (x)|. The principal fractional ideals P of
K are a subgroup of P and ideal class group of OK is defined by Cl(OK) := I/P.

378 J.-F. Biasse

We denote by [a] the class of a fractional a in Cl(OK) and by h the cardinality
of Cl(OK) which is a finite group. In Cl(OK) we identify two fractional ideals
a, b if there is α ∈ K such that a = (α)b. This is denoted by a ∼ b.

Units of OK . Elements u ∈ OK that are invertible in OK are called units.
Equivalently, they are the elements u ∈ OK such that (u)OK = OK and also
such that N (u) = ±1. The unit group of OK where K is a cyclotomic field has
rank r = n/2 − 1 and has the form O∗

K = μ × 〈ε1〉 × · · · × 〈εr〉 where μ are roots
of unity (torsion units) and the εi are non-torsion units. Such (εi)i≤r are called
a system of fundamental units of OK . Units generate a lattice L of rank r in
R

r+1 via the embedding x ∈ K �−→ Log(x) := (ln(|σ1(x)|), · · · , ln(|σr+1(x)|))
where the complex embeddings (σi)i≤n are ordered such that the first r = n/2
ones are not conjugates of each other. The volume R of L is an invariant of
K called the regulator. The regulator R and the class number h satisfy hR =
|μ|

√
|Δ|

2r1 (2π)r2 lims→1 ((s − 1)ζK(s)) , where ζK(s) =
∑

a
1

N (a)s is the usual ζ-function
associated to K and |μ| is the cardinality of μ the group of torsion units. This
allows us to derive a bound h∗ in polynomial time under GRH that satisfies
h∗ ≤ hR < 2h∗ ([Bac95]). When K = Q(ζpe), logarithm vectors of units of the

form uj =
ζj

pe−1

ζpe−1 for j ∈ Z
∗
pe (the cyclotomic units) generate a sublattice of L of

index h+(ps) where h+(N) is the class number of the maximal real subfield of
Q(ζpe) [Was82, Lemma 8.1].

Heuristic 1 (Weber and [BPR04]). h+(2e) = 1 (Weber class number prob-
lem) and that h+(pe) remains bounded for fixed p and increasing e.

Smoothness of Ideals. Let x, y, ε > 0. To bound the run time of
our algorithms, we need to use estimates of Ψ(x, y) := |{a ⊆ OK ,N (a) ≤
x, a y–smooth}|. Sourfield [Sco04], showed that Ψ(x,y)

x ∼ λKρ(u), where u =
ln(x)
ln(y) , ρ is the Dickman function, λK is the residue of the zeta function ζK(s)

at s = 1 and (ln ln(x))
5
3+ε ≤ ln(y) ≤ ln(x), x ≥ x0(ε) for some x0(ε). There

is no known analogue of Sourfield’s result for restricted classes of ideals. This
is one of the reasons why the complexity of the number field sieve [LLMP90] is
only heuristic. We therefore rely on the following heuristic for the smoothness
of ideals.

Heuristic 2. We assume that the probability P (ι, μ) that a principal ideal of
OK of norm bounded by ι is a power-product of prime ideals of norm bounded
by μ satisfies P (ι, μ) ≥ e(−u ln u(1+o(1))), for u = ln(ι)/ ln(μ).

Notations. Throughout this paper, ‖A‖ = maxi,j |Ai,j | denotes the infinite
norm of a matrix. We denote by ln(x) the natural logarithm of x and by log(x)
its base-2 logarithm. If S = {si}i≤k is a set in a group and v ∈ Z

k, Sv :=
∏

i svi
i .

3 High Level Description of the Algorithms

The Precomputation: Calculation of Cl(OK). To compute the ideal class
group of Q(ζpe), we follow the general framework deriving from the algorithm of

Approximate Short Vectors in Ideal Lattices 379

Hafner and McCurley [HM89] (subsequently generalized by Buchmann [Buc90]
and Biasse-Fieker [BF14]). Let B > 0 be a smoothness bound and a factor
base B := {prime ideals p with N (p) ≤ B}. We compute a generating set of
the lattice Λ of all the vectors (e1, · · · , em) ∈ Z

m with m := |B| such that
∃α ∈ K, (α)OK = pe1

1 · · · pem
m . When B > 12 ln2 |Δ|, the classes of ideals in

B generate Cl(OK) under the GRH [Bac90, Theorem 4]. Therefore, (B, Λ) is a
presentation of the group Cl(OK) and the search for a generating set of the
relations Bv = (α) is equivalent to computing the group structure of Cl(OK).
Indeed, the morphism

Z
m ϕ−−−−→ I π−−−−→ Cl(OK)

(e1, . . . , em) −−−−→ ∏
i p

ei
i −−−−→ ∏

i[pi]ei

,

is surjective, and the class group Cl(OK) is isomorphic to Z
m/ ker(π◦ϕ) = Z

m/Λ.

PIP with Precomputation on K. Given an ideal I, and a basis for the lattice
Λ of all relations between primes of norm up to B > 0, we find a generator of I.

1. Use a q-descent to find a relation of the form I = (α)
∏

i qi where N (qi) ≤ B.
2. Use a basis of Λ in Hermite Normal Form (HNF) to rewrite each qi with

respect to ideals pi of norm less than 12(ln(|Δ|))2. That is I = (α′)
∏

j p
bj

j .
3. Using the HNF basis, find the sublattice Λ′ ⊂ Λ of relations between ideals

of norm less than 12(ln(|Δ|))2. Let A = (ai,j) be the matrix of a basis of Λ′

and αi such that (αi) =
∏

j p
ai,j

j .
4. Solve xA = b and return β := α′ · ∏

j α
xj

j , which is a generator of I.

Reducing the Short-PIP and γ-ideal-SVP to the PIP. Assume that the
input ideal I ⊆ OK is generated by a short element g, and that we have com-
puted α ∈ OK such that I = (α) · OK . Given a generating set u1, · · · , ur of
the unit group O∗

K , all generators g′ of I are of the form g′ = α · ux1
1 · · · uxr

r

for some (x1, · · · , xr) ∈ Z
r. The problem of finding g (or another short gen-

erator, which is equivalent for the sake of a cryptanalysis of a system relying
on the hardness of short-PIP), boils down to finding (x1, · · · , xr) such that
α · ux1

1 · · · uxr
r is short. This can be done by finding (x1, · · · , xr) such that

‖Log(α) − ∑
i xi Log(ui)‖ is small. To do this, we find the closest vector to

Log(α) in the lattice L := ZLog(u1) + · · · + ZLog(ur). It was observed by
Campbell, Groves, and Shepherd [CGS] and proved by Cramer et al. [CDPR16]
under Heuristic 1 that the cyclotomic units have interesting geometric properties
allowing the method descrived in [CDPR16, Proof of Theorem 5.3] to return the
correct value. This short generator of I is also a solution to γ-ideal-SVP in I for
some γ = 2n1/2+o(1)

[CDPR16, Sect. 6].
Moreover, under reasonable assumptions on the ideal class group, given an

arbitrary input ideal I ⊆ OK , the heuristic methods of [CDW16] allow us to find
an ideal J with N (J) ∈ 2Õ(n3/2) such that IJ is principal. Then a short generator
of IJ is a solution to γ-ideal-SVP for I with γ = 2n1/2+o(1)

. The close principal
multiple algorithm of [CDW16] uses the decomposition of an input ideal on a
short generating set.

380 J.-F. Biasse

4 Computation of Cl(OK)

In this section, we use the method of [Bia14] to compute Cl(OK) where K =
Q(ζpe) is a cyclotomic field of prime power conductor in heuristic time 2n1/2+o(1)

for n := [K : Q]. The algorithm of [Bia14] was originally designed to work
in time 2log(|Δ|)1/3+o(1)

on classes of number fields with specific conditions on
their degree and on the height of their defining polynomial. Cyclotomic fields of
prime power conductor have a defining polynomial with height 1, which allows
us to use [Bia14] and achieve a run time of 2n1/2+o(1)

. In [BEF+17], Biasse et al.
also used this technique for computing the class group of Q(ζpe)+. The method
of [Bia14] consists in drawing elements α ∈ OK with small coefficients on the
power basis 1, ζpe , · · · , ζn−1

pe and test them for smoothness with respect to a
factor basis B = {p | N (p) ≤ B} for some smoothness bound B > 0. The
smoothness test is simply done by checking if N (α) is B-smooth as an integer
using either a factoring algorithm [LLMP90,Pom85] or a dedicated smoothness
test algorithm [Ber]. Every time we have a relation of the form (α) = pe1

1 · · · pem
m ,

we store the vector (e1, · · · , em) in the rows of a matrix M . Once enough relations
are found, we find Cl(OK) by doing linear algebra on M .

Algorithm 1. Computation of the class group of Q(ζpe)
Input: A smoothness bound B > 0, a constant A > 0 and K := Q(ζpe).
Output: di such that Cl(OK) =

⊕
i Z/di and M ∈ Z

k×m,(αi)i≤k ∈ Ok
K such that for

each row Mi of M , BMi = (αi), where B = {p | N (p) ≤ B}.
1: Compute B = {p | N (p) ≤ B}, m ← |B|, k ← m, M ∈ Z

0×m.
2: while The number of relations is less than k do
3: (ai)i≤n

R←− [−A, A]n, α ← ∑
i aiζ

i
pe with R the uniform distribution.

4: if (α) is B-smooth then

5: Find (ei)i≤m such that (α) =
∏

i p
ei
i . M ←

(
M
(ei)

)
.

6: end if
7: end while
8: if M does not have full rank then k ← 2k and go to Step 3.
9: H ← HNF(M). d ← det(H). B ← ker(M).

10: L ← (Log(α1), · · · , Log(αk)). C ← LB.
11: Let V be the volume of the lattice generated by the rows of C, and h∗ be an

approximation of hR given by the methods of [Bac95].
12: if dV > 1.5h∗ then k ← 2k and go to Step 3.
13: diag(di, · · · , dm) ← Smith Normal Form of H with [Sto00, Sect. 8.2].
14: return (di)i≤m, M , (αi)i≤k.

The run time of Algorithm 1 depends on the probability of smoothness of
principal ideals, which is ruled by Heuristic 2. This gives us a bound on the
average time to find a relation. However, we do not know how the relations we
find are distributed. Suppose we found a full rank sublattice Λ0 of Λ, Hafner and
McCurley [HM89] proved under GRH that their relation search for quadratic

Approximate Short Vectors in Ideal Lattices 381

fields yielded relation vectors x such that P (x ∈ w + Λ0) was high enough
for any w ∈ Λ. This proves that their algorithm terminates with high enough
probability in subexponential time. It reasonable to assume that by drawing
coefficient vectors uniformly at random in [−A,A], the generators of the principal
ideals of our relations will be well enough distributed to justify that the relations
themselves are equally distributed in Λ, but proving it remains an open question.

Heuristic 3 (Heuristic 2 of [Bia14]). There exists Q negligible with respect
to |B| such that collecting Q|B| relations suffices to generate the whole lattice of
relations.

Proposition 1 (GRH+Heuristic 2 +Heuristic 3). Algorithm1 with B =
2n1/2

is correct and its heuristic complexity is in 2n1/2+o(1)

Proof. The run time depends on the smoothness probability of α ∈ OK drawn
in Step 4. Let P ∈ Z[X] such that α = P (ζpe). The norm of α is Res(Φpe , P)
where Φpe is the pe-th cyclotomic polynomial. The first n rows of the resultant
have length less than

√
n while the last n rows have length bounded by

√
nA.

By Hadamard’s bound, the resultant is bounded by nnAn. This means that
log(|N (α)|) ≤ n log(n)(1 + o(1)). Let u := log(|N (α)|)

log(B) , from Heuristic 2, the
probability of finding a smooth α is at least e−u ln(u)(1+o(1)) = 1

2n1/2+o(1) , and

therefore the relation search takes time 2n1/2+o(1)
. The linear algebra phase (HNF

and SNF computation) takes time |B|4+o(1) = 2n1/2+o(1)
.

Corollary 1 (GRH + Heuristic 2+Heuristic 3). When B = 2nκ

for κ >

1/2, Algorithm1 has heuristic complexity 2nκ+o(1)
.

5 Precomputation on Q(ζpe)

Let B = 2nκ

for some 1/2 < κ < 1 and a prime p. In Sect. 4, we recalled how to
compute a basis of the lattice L of x such that Bx ∼ (1) with B = {p | N (p) ≤
B} that has the shape H =

(
C (0)
D I

)
with i0 := dim(C) < 12(ln(|Δ|))2. In this

section, we compute βi mod (p)OK and Log(βi) where (βi) = BHi , i ≤ dim(H),
j ≤ s. These are essential tools to solve the subsequent instances of the PIP, and
we prove that each element of this precomputation has polynomial size.

Given B, Algorithm 1 returns a generating set (b1, · · · , bt) of L together with
αi ∈ K such that Bbi = (αi). We process this basis and the (αi) to return an
HNF-reduced basis H = (h1, · · · ,hm) for L. Using [Sto00, Proposition 6.3], we
can find U ∈ GLt×t(Z) such that UM =

(
H
(0)

)
is the HNF of M = (bi)i≤t

with ‖U‖ ≤ (
√

m‖M‖)m in time O
(
tmθ−1 log(δ) + tm log(m)Mult(log(δ))

)
for

δ := (
√

m‖M‖)m, Mult(x) the complexity of x-bit integer multiplication, and
2 ≤ θ ≤ 3 the matrix multiplication exponent. The matrix H has a small
essential part C. Under GRH, hi,i = 1 for i > i0 where i0 ≤ 12 log(|Δ|)2. We
leverage this to facilitate the resolution of the linear system giving the solution

382 J.-F. Biasse

to the PIP. However, for this to yield a generator, we need to compute the
(βi)i≤m such that

∏
j≤t α

Ui,j

j = βi for i ≤ m. As the coefficients of U and the
number of terms m in the product are large, we cannot afford to write down
these algebraic numbers on the integral basis of Q(ζpe). However, we know that
they are used to compute an element of I whose length is within 2n1/2+o(1)

of the first minimum λ1(I) ≤ √
n|Δ|1/nN (I)1/n of the ideal lattice I. So we

compute βi mod (p)OK for a prime p such that p ≥ ennn/2|Δ|N (I). We can
always assume that N (I) ≤ 2n2+o(1)

because we can find I′ ∼ I such that
N (I′) ≤ 2n2+o(1)

in polynomial time by using the LLL reduction [BF14, Sect. 3.2].
Therefore, we need a p such that p ≥ 2n2+o(1)

.
We also keep Log(βi) as part of the precomputation. Each of these values

satisfies Log(βi) =
∑

j≤t Ui,j Log(αj). The logarithm vectors of the αj have

polynomial size, but the bit size of the Ui,j is 2nκ+o(1)
where 1/2 < κ < 1. As we

are aiming at lowering down the cost of subsequent resolutions of the short-PIP
which all require the values of Log(βi), we must find different generators for
the ideals (βi)OK . We do so by using the log-unit lattice decoding algorithm of
[CGS,CDPR16] which returns a short generator of (βi)OK under Heuristic 1.

Algorithm 2. Precomputation step
Input: Prime p, B = 2nκ

for 1/2 < κ < 1, K = Q(ζpe).
Output: H in HNF form with (βj mod (p)OK)j≤|B| such that BHi = (βi)OK for

B = {p | N (p) ≤ B}, and (Log(βj))j≤|B|.
1: Compute B = {p | N (p) ≤ B}. Let m := |B|.
2: Compute a generating set b1, · · · , bt of the lattice L ⊆ Z

m of vectors x such that
Bx ∼ (1) and (αi)i≤t such that Bbi = (αi) using Algorithm 1. M ← (bi)i≤t.

3: Find U ∈ GLt×t(Z) with U · M = H in HNF using [Sto00, Proposition 6.3].
4: for i ≤ m, compute Log(βi) =

∑
j≤t ui,j Log(αj).

5: for i ≤ t, j ≤ s do Compute βi mod (p)OK := α
ui,1
1 · · · αui,t

t mod (p)OK .
6: Compute the cyclotomic units u1, · · · , ur of Q(ζpe) .
7: for 1 ≤ i ≤ m do
8: Ii ← ∏

j≤i0
p

hi,j

j . A ← (Log(uj))j≤r, Y ← Log(βi).
9: Find (xj)j≤r ∈ Span

Z
(A) close to Y by using [CDPR16, Proof of Theorem 6.3].

10: βi mod (p)OK ← ux1
1 · · · uxr

r βj mod (p)OK .
11: Log(βi) ← x1 Log(u1) + · · · + xr Log(ur) + Log(βj).
12: end for
13: return H, (βi mod (p)OK)i≤m, (Log(βi))i≤m

Proposition 2 (GRH + Heuristic 1+ Heuristic 2). Assume that B = 2nκ

for κ ≥ 1/2, and that p ≥ ennn/2|Δ|N (I), then the heuristic expected run time
of Algorithm2 is less than 2nκ+o(1)

, and the bit size of the representation of the
Log(βj) is polynomial in n.

Approximate Short Vectors in Ideal Lattices 383

Proof. The run time of Algorithm 2 is dominated by the cost of the search for
relations and the computation of the HNF of the relation matrix (together with
the premultipliers). We need to bound the Log(βi). The upper bound on a gen-
erator βi of the integral principal ideal Ii =

∏
j≤m p

hi,j

j is given by the norm

of Ii. When i ≤ i0, Ii has the shape Ii =
∏

j≤i0
p

hi,j

j while when i > i0, Ii

is of the form Ii := pi ·
(∏

j≤i0
p

hi,j

j

)
. For each j ≤ i0, N (pj) ≤ 12 ln(|Δ|)2

while N (pi) ≤ 2nκ+o(1)
if i > i0 and hi,j ≤ |Cl(OK)| ∈ Õ(

√|Δ|) for i, j ≤ i0.
Therefore, in any case N (Ii) ∈ 2Õ(|Δ|), and ‖βi‖ ≤ 2Õ(n1/2)N (Ii)1/n ∈ 2Õ(|Δ|).
For each σ ∈ Gal(K/Q), maxσ |σ(βi)| ≤ ‖βi‖ ∈ 2Õ(|Δ|), and minσ |σ(βi)| ≥

|N (βi)|
(maxσ |σ(βi)|)n−1 ≥ 1

2Õ(n|Δ|) . Therefore, for all σ ∈ Gal(K/Q), | ln(|σ(βi))| ∈
Õ(|Δ|2), and the representation of Log(βi) has a polynomial bit size in n.

Remark 1. In the RAM model, accessing the information in a large precomputed
data is assumed to be efficient. However, ignoring the time required to access this
data might not be realistic, and our algorithm would have a larger asymptotic
complexity in other model such as the AT (Area-Time) model. Yet, exploiting
the fact that ideals can be sorted by norm, and considering that memory access
are independent, it is very plausible that access time is not going to be an
issue in practice, using for example several hard-drives through a communication
network.

6 Finding Short Elements in I

Let I be an ideal of OK . We want to find elements α ∈ I of small norm. To do
this, we restrict the search to the lattice

LI,k := Zv1,1 + Z(v2,2ζpe + v2,1) + · · · + Z(vk,kζk
pe + vk,k−1ζ

k−1
pe + · · · + vk) ⊆ I,

for some k > 0 where the coefficients vi,j are the upper left k × k submatrix of
the HNF of the Z-basis of I. This strategy was used in [Bia11,Bia,BF14] in the
case of I = q a degree one prime ideal, which is enough for the sake of collecting
relations to compute Cl(OK) and solve the PIP. However, it was pointed out
in [BEF+17] that this approach was folklore. In particular, it has been used
under the more general form presented in this paper by Cheon [CL15].

Lemma 1. Let l ≤ k ≤ n. By using the BKZ reduction with block size l, we
can find a vector α ∈ LI,k of length less than l(k−1)/2(l−1)+3/2N (I)

1
k in time

2O(l) Poly(l, log(N (I))).

Proof. The determinant of LI satisfies det(LI,k) ≤ ∏
i≤N vi,i = N (I). Accord-

ing to [HPS11, Theorem 1], the BKZ reduction algorithm with block length l

returns a basis whose first vector has length less than l(k−1)/2(l−1)+3/2N (I)
1
k

after Poly(k, log log(N (I))) calls to an SVP oracle which can be done in time
2O(l) Poly(log(N (I))) using [AKS01].

384 J.-F. Biasse

Lemma 2. Suppose k = na1 , l = na2 for 1 ≥ a1 > a2 > 0. We can find an
element α ∈ I such that N (α) ≤ l

kn
2l (1+o(1))N (I)

n
k in time 2l1+o(1)

.

Proof. Let α be the first vector of a BKZ-reduced basis of LI,k with block size
l. The calculation of this basis takes time 2l1+o(1)

and by Lemma 1, the length of
its first vector (α1, · · · , αk) is bounded by l(k−1)/2(l−1)+3/2N (I)

1
k . As shown in

the proof of Proposition 1, the algebraic norm of α :=
∑

i αiζ
i
pe satisfies

N (α) ≤ √
n

n (‖(α1, · · · , αk)‖)n ≤ nn/2ln(k−1
2(l−1)+

3
2)

︸ ︷︷ ︸
l

kn
2l

(1+o(1))

N (I)
n
k .

Algorithm 3. Short vectors in I

Input: I with log(N (I)) ≥ nb for b > 1/2, 1 ≥ a1 > a2 > 0, A ≥ 1, ν ≤ 2n1/2+o(1)
.

Output: A number ν of α ∈ I with N (α) ≤
(
l

kn
2l N (I)

n
k

)1+o(1)

for k = na1 , l = na2 .

1: S ← {
pi such that N (pi) ≤ 12 log(|Δ|)2} , L ← {}.

2: while |L| ≤ ν do

3: (xi)
R←− [0, A]|S| where R is uniform over vectors of weight n1/2.

4: I′ ← I
∏

i p
xi
i .

5: Construct a basis for the lattice LI′,k with k := na1 .
6: BKZ-Reduce LI′ with block size l := na2 , α ← first vector of the basis.
7: L ← L ∪ {α}
8: end while
9: return L.

Proposition 3 (GRH + Heuristic 2). Let k = na1 , l = na2 for 1 ≥ a1 >

a2 > 0, and ν ≤ 2n1/2+o(1)
. When A ≥ 2, Algorithm3 returns a list of ν elements

α ∈ I such that N (α) ≤
(
l

kn
2l N (I)

n
k

)1+o(1)

in time ν2l1+o(1)
.

Proof. The ideal I′ created in Step 3 of Algorithm 3 satisfies N (I′) ≤ N (I)1+o(1)

and I′ ⊆ I. Indeed, the norm of the extra factor used for randomization is
N (

∏
i p

xi
i) ≤ 2An1/2+o(1)

while N (I) ≥ 2nb

for b > 1/2. Therefore, according to
Lemma 2, the α derived in Step 6 satisfies

log(N (α)) ≤
(

kn log(l)
l

+
n

k
log (N (I))

)
(1 + o(1)).

For any A ≥ 2, the number of possible vectors (xi) is
(|S|
n1/2

)
An1/2 � 2n1/2+o(1)

.

The run time of each BKZ-reduction is in 2l1+o(1)
, and we execute this ν times,

which justifies the total runtime of this procedure.

7 Classical Attack Against Short-PIP
with Precomputation

Let I be a principal ideal satisfying N (I) ≤ 2nb

. We describe a q-descent proce-
dure to find a product of ideals in the same ideal class as I and involving only

Approximate Short Vectors in Ideal Lattices 385

prime ideals of norm less than 2n2−3a+o(1)
in time 2na+o(1)

where b ≤ 7a − 2 and
2
5 < a < 1

2 . Then we use the precomputation to solve the PIP and then find a
short generator of I.

The q-descent. Let ε > 0, and a prime ideal q such that log(N (q)) ≤ nb. We
use Algorithm 3 to find α ∈ q such that (α)/q =

∏
qi where the qi are prime

ideals satisfying log(N (qi)) ≤ nb−ε.

Algorithm 4. q-descent
Input: I ⊆ OK with K = Q(ζpe), a, b0 and ε > 0 such that b0 ≤ 7a − 2 and 2

5
+ ε

5
≤

a < 1
2
, I with N (I) ≤ 2nb0

.

Output: Prime ideals (qi)i≤s ∈ B with N (qi) ≤ 2n2−3a+2ε

, integers (ei)i≤s, and
(φj)j≤t ∈ K such that I =

∏
j≤t(φj) · ∏

i≤s q
ei
i .

1: genList ← {1}, primeList ← {I}, expList ← {1}. b ← b0.
2: while b > 2 − 3a + ε do
3: for q ∈ primeList with N (q) > nb−ε do

4: Find a large enough list L with |L| = 2na+o(1)
short elements α ∈ q by using

Algorithm 3 with A = 2, k := nmin{4a−1,b+2a−1−ε} and l := na.
5: Find φ ∈ L such that (φ)/q is nb−ε-smooth using the Number Field Sieve.
6: Find (qi)i≤s, (ei)i≤s such that q = (φ)

∏
i≤s q

ei
i .

7: genList ← genList ∪ {φ}, primeList ← primeList ∪ {q1, . . . , qs}.
8: expList ← expList ∪ {e1, · · · , es}.
9: Remove q from primeList, expList.

10: end for
11: b ← b − ε.
12: end while
13: return genList, primeList, expList.

Proposition 4 (GRH + Heuristic 2). Let ε > 0, and let a, b > 0 be constants
satisfying 2 − 3a + ε ≤ b ≤ 7a − 2 and 2

5 + ε
5 < a < 1

2 . Let q be a prime with
log(N (q)) ≤ nb. Steps 5 to 7 of Algorithm4 returns a decomposition of q in
Cl(OK) as a product of primes pi with log(N (pi)) ≤ nb−ε in time 2na+o(1)

.

Proof According to Lemma 2, any α derived in Step 5 of Algorithm4 satisfies
log(N (α)) ∈ O

(
nk log(l)

l + n
k log(N (q))

)
. As k ≤ n4a−1 and l = na, we get nk

l ≤
n1+4a−1−a. Moreover, since k = min{n4a−1, nb+2a−1−ε}, we get n

k log(N (q)) ∈
O(n3a). The latter inequality follows from the fact that by definition a ≥ 2

5 + ε
5 .

Therefore, log(N (α)) ∈ O(n3a), and testing the smoothness of N (α) with the
Number Field Sieve takes time 2na+o(1)

. As k ≤ nb+2a−1−ε, we also have nk
l ≤

na+b−ε. In addition, we can show that k ≥ n1−a+ε. Indeed, from the definition
of a, b we get 1 − a + ε ≤ 4a − 1 and 1 − a + ε ≤ b + 2a − 1 − ε. Therefore,
n
k log(N (q)) ∈ O

(
na+b−ε

)
. This means that log(N (α)) ∈ O(na+b−ε), and from

Heuristic 2, the number of α we need only need to test 2na+o(1)
elements before

386 J.-F. Biasse

obtaining one such that (α)/q is 2nb−ε

-smooth. From Proposition 3, we know
that we can make L large enough for this search. For correctness, we also check
that k = na1 , l = na2 for 0 < a2 < a1 ≤ 1. k ≥ n1−a+ε so a1 > 1−a, and a2 = a
with a < 1/2, so a2 > a1 > 0. On the other hand a1 ≤ 4a − 1 ≤ 1.

Corollary 2 (GRH + Heuristic 2). Algorithm4 decomposes I with N (I) ≤
2nb0 as an 2n2−3a+ε

-smooth product in Cl(OK) in time
(
n3a

)O(1
ε) 2na+o(1)

, where
b0 ≤ 7a − 2 and 2

5 + ε
5 ≤ a ≤ 1

2 .

We can choose ε = 1
log(n) = o(1) to ensure that the required precomputation has

asymptotic complexity 2n2−3a+o(1)
while that of Algorithm 4 is 2na+o(1)

. Indeed,
at each of the O

(
1
ε

)
steps, the number of primes in primeList gets multiplied by

at most n3a elements, which is a bound on the number of divisors of α.

Resolution Step. Given I = (φ)p1 · · · pm such that φ ∈ Q(ζpe) and N (pi) ≤ 2nκ

where 1/2 < κ < 1, we refine this decomposition into one that involves only
primes of norm less than 12 ln(|Δ|)2 by using the precomputed relation matrix
and we solve a linear system to obtain a generator of I. This generator is then
used to derive a short generator of I by using the techniques of [CDPR16]. The
precomputed relation matrix has the form H =

(
C (0)
D I

)
where I is the identity.

Under the GRH, i0 := dim(C) ≤ 12 ln(|Δ|)2. The rows of index i > i0 correspond
to relations of the form pi ∼ ∏

j≤i0
p

ej

j where (−ei) is a row vector of D and
N (pj) ≤ 12 ln(|Δ|)2 for j ≤ i0. Given the input decomposition of I over B, it
is straightforward to rewrite all large prime ideals as products of the ideals of
norm less than N (pi0) ≤ 12 ln(|Δ|)2. We describe this procedure in Algorithm5.

Algorithm 5. Decomposition over a small generating set
Input: Hermite form H =

(
C (0)
D I

)
of the matrix of relations between primes of B =

{p | N (p) ≤ 2nκ} for some 1 > κ > 1/2, prime p, (Log(αj))j≤m, (αj mod
(p)OK)j≤m such that BHj = (αj), and input ideal I together with α, qi such that
I = (α)

∏
i q

ai
i , qi ∈ B .

Output: (ei)i≤i0 , Log(β), β mod (p)OK with I = (β)
∏

i≤i0
p

ei
i , i0 = dim(C).

1: β mod (p)OK ← α mod (p)OK , m ← |B|, (ei)i≤m ← (ai)i≤m, Log(β) ← Log(α).
2: for qj | I with j > i0 do
3: (ei)i≤i0 ← (ei)i≤i0 + ajDj−i0 and β mod (p)OK ← βα

aj

j mod (p)OK .
4: Log(β) ← Log(β) + aj log(αj).
5: end for
6: return (ei)i≤i0 , Log(β), β mod (p)OK .

Proposition 5 (GRH + Heuristic 1 + Heuristic 2). Let 2
5 < a < 1

2 , b ≤
7a − 2 and a principal ideal I of Q(ζpe) such that N (I) ≤ 2nb

for n := [Q(ζpe) :
Q]. Given the output of Algorithm1 with κ = 2−3a+o(1), Algorithm6 is correct
and runs in time 2na+o(1)

.

Approximate Short Vectors in Ideal Lattices 387

Algorithm 6. Short generator with precomputation
Input: Hermite form H =

(
C (0)
D I

) ∈ Z
m×m of the relation matrix with (αi mod

(p)OK)i≤m for some prime p, (Log(αi))i≤m, B = {p | N (p) ≤ 2nκ} for some
1 > κ > 1/2 such that BHi = (αi)OK , and input ideal I.

Output: Generator β ∈ I with ‖β‖ ≤ 2n1/2+o(1)N (I)1/n.
1: i0 ← dim(C). B0 ← {p1, · · · , pi0}.
2: Find α mod (p)OK where I = (α)

∏
i q

ai
i with qi ∈ B using the q-descent.

3: Find Log(β), β mod (p)OK and (ei)i≤i0 such that I = (β)
∏

i≤i0
p

ei
i using Algo-

rithm 5.
4: y ← (ei)i≤i0 . Solve xC = y .
5: β0 mod (p)OK ← β

∏
i≤i0

αxi
i mod (p)OK for j ≤ s. (here I = (β0)OK).

6: Log(β0) ← Log(β) +
∑

i≤i0
ei Log(αi), Y := Log(β0).

7: A ← (Log(ui))i≤r where (ui)i≤r are the cyclotomic units of Q(ζpe).
8: Find (xj)j≤r ∈ Span

Z
(A) close to Y by using [CDPR16, Proof of Theorem 6.3].

9: Compute β0

∏
i uxi

i mod (p)OK and compute β = β0

∏
i uxi

i by lifting each coeffi-
cient to Z.

10: return β

With a = 3
7 and b = 1+o(1), and a precomputation cost in 2n5/7+o(1)

, all instances
of searches of small generators in principal ideals I with log(N (I)) ≤ n1+o(1)

take heuristic time in 2n3/7+o(1)
.

8 Quantum γ-ideal-SVP in Q(ζpe) with Precomputation

Let 1/3 < a < 1/2. We present a quantum algorithm that finds a 2n2−3a+o(1)
-

smooth decomposition of an input ideal I ⊂ Q(ζpe) in time 2na+o(1)
where

n = [Q(ζpe) : Q] by using Õ(n2−a) qubits. When combined with the precompu-
tation of the relations between ideals of norm less than 2n2−3a+o(1)

, this yields
an algorithm for γ-ideal-SVP running in heuristic time 2na+o(1)

. For example, if
a = 3/7, we solve γ-ideal-SVP for γ ∈ 2n1/2+o(1)

in heuristic quantum complexity
in 2n3/7+o(1)

using Õ(n11/7) qubits and a one-time (classical) precomputation on
Q(ζpe) in time 2n5/7+o(1)

.

Quantum q-descent. Our q-descent strategy to find a 2n2−3a+o(1)
-smooth

decomposition of an input ideal I can be decomposed into 3 main steps:

1. Find I′ such that I ∼ I′ using BKZ where N (I′) ∈ 2n2−a+o(1)
.

2. Find I′′ such that I′ ∼ I′′ and I′′ is 2n2−2a

-smooth.
3. Recursively decompose each q | I′′ with norm less than 2nb

into a product of
terms with norm less than 2nb−ε

until we get a 2n2−3a+ε

-smooth decomposition
for ε → 0.

The initial BKZ-reduction of I is the algorithm described in [BF14, Algo-
rithm 2]. It consists in drawing a short vector from a BKZ-reduced basis of the

388 J.-F. Biasse

Algorithm 7. Quantum q-descent
Input: I ⊆ OK , ε > 0 and a such that 1/3 < a < 1/2.

Output: Prime ideals (qi)i≤t ∈ B with N (qi) ≤ 2n2−3a+2ε

, integers (ei) and (φj)j≤k ∈
K such that I =

∏
j≤t(φj) · ∏

i≤t q
ei
i .

1: c ← dI−1 where d is the denominator of I.
2: Find a BKZk-reduced γ ∈ c for k = log(n)na, I′ ← (γ/d)I.

3: Find a large enough list L with |L| = 2na+o(1)
of short elements α ∈ I′ by using

Algorithm 3 with A = 2, k := n and l := na.

4: Find φ ∈ L such that (φ)/I′ is 2n2−2a

-smooth using Shor’s algorithm.
5: Find (qi)i≤s, (ei)i≤s such that q = (φ)

∏
i≤s q

ei
i .

6: genList ← {(γ/d)φ}, primeList ← {(qi)i≤s}, expList ← {(ei)i≤s}. b ← 2 − 2a.
7: while b > 2 − 3a + ε do
8: for q ∈ primeList with N (q) > nb−ε do

9: Find a large enough list L with |L| = 2na+o(1)
of short elements α ∈ q by

using Algorithm 3 with A = 2, k := n1−a+ε and l := na.

10: Find φ ∈ L such that (φ)/q is 2nb−ε

-smooth using Shor’s algorithm.
11: Find (qi)i≤s, (ei)i≤s such that q = (φ)

∏
i≤s q

ei
i .

12: genList ← genList ∪ {φ}, primeList ← primeList ∪ {q1, . . . , qs}.
13: expList ← expList ∪ {e1, · · · , es}.
14: Remove q from primeList, expList.
15: end for
16: b ← b − ε.
17: end while
18: return genList, primeList, expList.

inverse of I. The norm of the ideal obtained by multiplying that element to I is
bounded by a function of the invariants of the field.

Proposition 6. Let 1/3 < a < 1/2, and k = log(n)na. Step 2 of Algorithm7
returns α ∈ Q(ζpe) such that I′ := (α)I satisfies N (I′) ≤ 2n2−a+o(1)√|Δ| in
time 2na+o(1)

Poly (log(N (I))).

The second step of the quantum q-descent consists in looking for short vectors
α ∈ I′ such that (α)/I′ is 2n2−2a

-smooth. This step is the one where the numbers
we test for smoothness with Shor’s algorithm are the largest. Therefore, the
parameters are set to minimize the size of the elements α ∈ I′ we draw. These
elements α satisfy log(N (α)) ∈ Õ(n2−a) which sets the qubit requirements of
the entire descent.

Proposition 7 (GRH + Heuristic 2). Let I′ be an ideal with log(N (I′)) ≤
O(n2−a), ε > 0, 1/3 < a < 1/2. Steps 3 and 4 of Algorithm7 return a decom-
position of I′ in Cl(OK) as a product of primes pi with log(N (pi)) ≤ n2−2a in
time 2na+o(1)

using less than Õ(n2−a) qubits.

Proof. In Step 4, we have log(N (α)) ∈ O
(

nk log(l)
l + n

k log(N (I′))
)
. As k = n

and l = na, we get that log(N (α)) ∈ Õ(n2−a). We can test the smoothness

Approximate Short Vectors in Ideal Lattices 389

of these α using Shor’s algorithm with Õ(n2−a) qubits in polynomial time, and
from Heuristic 2, the number of α we need to test before obtaining one such that
(α)/I is 2n2−2a

-smooth is bounded by 2na+o(1)
. As before, we can prove that the

search space is large enough from Proposition 3.

Proposition 8 (GRH + Heuristic 2). Let ε > 0 and let q be a prime with
log(N (q)) ≤ nb for 2 − 3a + ε ≤ b ≤ 2 − 2a. Step 10 returns a 2nb−ε

-smooth of

q in time
(
n2−a

)O(1
ε) 2na+o(1)

using less than Õ(n2−a) qubits.

Proof. In Step 9, log(N (α)) ∈ O
(

nk log(l)
l + n

k log(N (q))
)
. As k = n1−a+ε and

l = na, we get n
k log(N (q)) ≤ nb−ε+a and nk

l ≤ n2−2a. Since b ≤ 2 − 2a,
log(N (α)) ≤ Õ(n2−a) and we can test the smoothness of (α)/q using Shor’s
algorithm in quantum polynomial time using less than Õ(n2−a) qubits. From
Heuristic 2, the number of α we need to test before obtaining one such that
(α)/I is 2nb−ε

-smooth is bounded by 2na+o(1)
. From Proposition 3, the search

space is large enough.

To make the precomputation time 2n2−3a+o(1)
and the q-descent time 2na+o(1)

,
we can choose ε = 1

log(n) as in the classical q-descent.

Resolution Step. Given an ideal I, we look for a solution α ∈ I to γ-ideal-SVP
for γ = 2n1/2+o(1)

. We assume that we are given a precomputed relation matrix
H =

(
C (0)
D I

)
of relations between the ideals (pi)i≤m of norm less than 2nκ

where
1/2 < κ < 1 and I is the identity matrix. Our algorithm for γ-ideal-SVP is:

1. Find an ideal J with N (J) ∈ 2Õ(n3/2) such that IJ is principal using the
heuristic method of [CDW16, Algorithms 1 and 2].

2. Use Algorithm 7 to decompose IJ over ideals of norm less then 2nκ

.
3. With Algorithm 5, express IJ with respect to (pi)i≤i0 where i0 := dim(C).
4. Find a short generator α of IJ using Algorithm 63.

The element α ∈ IJ computed in Step 4 satisfies ‖α‖ ≤ 2n1/2+o(1)N (IJ)1/n =
2n1/2+o(1)N (I)1/n. It is therefore a solution to γ-ideal-SVP in I for γ = 2n1/2+o(1)

.
The run time of the close principal multiple algorithm of [CDW16] depends on:

Heuristic 4. There are primes (pi)i≤i0 with N (pi) ≤ Poly(n), i0 ≤
Poly(log(n)) such that the classes of (pσ

i)i≤i0,σ∈Gal(K/Q) generate Cl(OK)− :=
ker(NK/K+) where NK/K+([I]) = [II].

Step 1 is performed with a modification of [CDW16, Algorithm 2]. In [CDW16,
Algorithm 2, Step 1], the input ideal I is decomposed over a short generating
set (the (pi)i≤i0) using the quantum algorithm of Biasse and Song [BS16]. Here,
we replace it with a variation of Algorithm 5 to decompose the class of I with

3 Replace the q-descent by the quantum q-descent in Step 2 of Algorithm 6.

390 J.-F. Biasse

respect to generators for Cl(OK)−. Therefore Step 1 runs in time 2na+o(1)
. Note

that Heuristic 4, is a stronger variant of Heuristic [CDW16, Assumption 2] used
by Cramer et al.

Proposition 9. (GRH + Heuristic 1 + Heuristic 2 + Heuristic 4). Let
1/3 < a < 1/2 and an ideal I. Given the output of Algorithm1 with κ = 2 −
3a + o(1), Steps 1 to 4 return a solution to γ-ideal-SVP in I for γ = 2n1/2+o(1)

in time 2na+o(1)
by using Õ(n2−a) qubits.

Acknowledgments. The author thanks the anonymous reviewers for their valuable
comments on the original submission. The author is also very grateful to the program
committee for their advice through the revising process.

A Qubit Requirement of Quantum PIP Algorithm

The quantum polynomial time algorithm described by Biasse and Song directly
relies on the Hidden Subgroup Problem algorithm of Eisenträger et al. [EHKS14],
and it has therefore the same qubit requirements. In [BS], Biasse and Song
showed how to directly use the HSP solver of [EHKS14] to perform a cryptanal-
ysis against the schemes which rely on the hardness of finding a short generator
of a principal ideal.

Solving the HSP. The HSP algorithm of [EHKS14] requires a quantum oracle
f : G ⊆ R

m → {quantum states} such that the periods of f are a secret subgroup
of G which answers our problem (here: finding a generator of the input ideal).
This means that if ∀g ∈ G, f(g + x) = f(g) then x ∈ H. Such a function must
satisfy the conditions stated in [EHKS14, Theorem 6.1]. Let n := deg(Q(ζpe)+)
be the degree of the maximal real subfield of Q(ζpe). We use

G ⊆ R
n fc−−−−→ {lattices in R

n} fq−−−−→ {quantum states}
(v, j) −−−−→ ev · O · I−j −−−−→ ∣∣ev · O · I−j

〉 ,

where G = {(ui)i≤n |∑i≤n vi = j log(|N (I)|)}. The periods of f yield a gen-
erator for II which can be lifted to a generator of I using the Gentry-Szydlo
algorithm [GS02].

Qubit Requirement. The qubit requirement of the HSP algorithm of [EHKS14]
directly comes from fq, the quantum encoding of lattices in R

n that is used in the
quantum oracle. Let gs(·) be the Gaussian function gs(x) := eπ‖x‖2/s2

, x ∈ R
n.

For any set S ⊂ R
n, denote gs(S) :=

∑
x∈S gs(x). The encoding maps L to

|L〉 := γ
∑

v∈L gs(v)|strν,n(v)〉, where γ is a factor that normalizes the state. Here
|strν,n(v)〉 is the straddle encoding of a real-valued vector v ∈ R

n. In the one-
dimensional case, the straddle encoding of a real number is x ∈ R �→ |strν(x)〉 :=
cos(π

2 t)|j〉 + sin(π
2 t)|j + 1〉 where j := �x/ν� denotes the nearest grid point no

bigger than x and t := x/ν − j denotes the (scaled) offset. Repeat this for each

Approximate Short Vectors in Ideal Lattices 391

coordinate of v = (v1, . . . , vn) to get |strν,n(v)〉 :=
⊗n

i=1 |strν(vi)〉. According
to [EHKS14, Theorem 5.7], the parameters of fq must satisfy ν ≤ 1

4n(s
√

n)2n and

s ≥ cn
(√

n
λ

)n−1

d where c is a constant, λ is a lower bound on the length of the
non-zero vectors of H and d is an upper bound on the volume of Rn/H. Elements
of H correspond to algebraic numbers that are not torsion units. Therefore, their
length is larger than λ := 21

128
ln(n)
n2 (by applying the proof of [FP06, Cor. 3.5]

to an algebraic number). Let (ui)i≤n−1 be a generating set for the unit group,
and let u i := Log(ui). Let g be a generator of I and let g := Log(g). Then
H is generated by the vectors (u i, 0) and (g ,−1). We proceed as in [EHKS14]
to determine an upper bound on the volume d(H) of H. We first augment H
with an orthogonal unit vector v = 1√

n+1+ln2(N (I))
(1, · · · , 1,− ln(N (I))). Then

d(H) = |det(u1, · · · ,un−1, g , v)|. By expanding this determinant with respect
to its last row, we obtain d(H) ≤ 1√

n+1+ln2(N (I))
(n + ln(N (I))‖g‖)R where

R ∈ Õ(
√|Δ|) is the regulator of Q(ζpe)+, i.e. the determinant of any subma-

trix of (u1, · · · ,un−1) where one column is removed. This means that we can
choose s such that log(s) ∈ Õ(n), and ν that satisfies log

(
1
ν

) ∈ Õ(n2). Then,
as the straddle encoding of a vector is the tensor product of n values requiring
O

(
log

(
1
ν

))
qubits, the encoding of a lattice requires Õ(n3). Up to logarithm

factors, this is the same qubit requirement as the unit group computation algo-
rithm of Eisenträger et al. [EHKS14, Theorem 5.7]. The total qubit requirement
of the algorithm depends on the circuit used to encode lattices. Its analysis is
left to future work, but it must be in Ω(n3) since at least n3 qubits are required
to store L.

References

[AKS01] Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest
lattice vector problem. In: Proceedings of the Thirty-third Annual ACM
Symposium on Theory of Computing, STOC 2001, pp. 601–610. ACM,
New York (2001)

[Bac90] Bach, E.: Explicit bounds for primality testing and related problems. Math.
Comp. 55(191), 355–380 (1990)

[Bac95] Bach, E.: Improved approximations for Euler products. In: Number The-
ory: CMS Proceedings, vol. 15, pp. 13–28. American Mathematical Society,
Providence (1995)

[BBM17] Bernstein, D.J., Biasse, J.-F., Mosca, M.: A low-resource quantum factoring
algorithm. In: Lange, T., Takagi, T. (eds.) PQCrypto 2017. LNCS, vol.
10346, pp. 330–346. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-59879-6 19

[BEF+17] Biasse, J.-F., Espitau, T., Fouque, P.-A., Gélin, A., Kirchner, P.: Computing
generator in cyclotomic integer rings, a subfield algorithm for the principal
ideal problem in L(1/2) and application to cryptanalysis of a FHE scheme.
Cryptology ePrint Archive, Report 2017/142 (2017). http://eprint.iacr.org/
2017/142

https://doi.org/10.1007/978-3-319-59879-6_19
https://doi.org/10.1007/978-3-319-59879-6_19
http://eprint.iacr.org/2017/142
http://eprint.iacr.org/2017/142

392 J.-F. Biasse

[Ber] Bernstein, D.: How to find smooth parts of integers. https://cr.yp.to/
factorization/smoothparts-20040510.pdf

[BF14] Biasse, J.-F., Fieker, C.: Subexponential class group and unit group com-
putation in large degree number fields. LMS J. Comput. Math. 17, 385–403
(2014)

[Bia] Biasse, J-F.: Subexponential time relations in large degree number fields.
Adv. Math. Communi. (in press)

[Bia11] Biasse, J-F.: Subexponential algorithms for number fields. Ph.D. thesis,
École Polytechnique, Paris (2011)

[Bia14] Biasse, J.-F.: An L(1/3) algorithm for ideal class group and regulator
computation in certain number fields. Math. Comput. 83(288), 2005–2031
(2014)

[BPR04] Buhler, J., Pomerance, C., Robertson, L.: Heuristics for class numbers of
prime-power real cyclotomic fields. In: High Primes and Misdemeanours:
Lectures in Honour of the 60th Birthday of Hugh Cowie Williams, Fields
Inst. Commun, pp. 149–157. American Mathematical Society, Providence
(2004)

[BS] Biasse, J.-F., Song, F.: On the quantum attacks against schemes relying on
the hardness of finding a short generator of an ideal in Q(ζ2n). http://cacr.
uwaterloo.ca/techreports/2015/cacr2015-12.pdf

[BS16] Biasse, J.-F., Song, F.: Efficient quantum algorithms for computing class
groups and solving the principal ideal problem in arbitrary degree number
fields. In: Krauthgamer, R. (ed.) Proceedings of the Twenty-Seventh Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington,
VA, USA, 10–12 January 2016, pp. 893–902. SIAM (2016)

[Buc90] Buchmann, J.: A subexponential algorithm for the determination of class
groups and regulators of algebraic number fields. In: Goldstein, C. (ed.)
Séminaire de Théorie des Nombres. Paris 1988–1989, Progress in Mathe-
matics, pp. 27–41. Birkhäuser, Boston (1990)

[CDPR16] Cramer, R., Ducas, L., Peikert, C., Regev, O.: Recovering short generators
of principal ideals in cyclotomic rings. In: Fischlin, M., Coron, J.-S. (eds.)
EUROCRYPT 2016. LNCS, vol. 9666, pp. 559–585. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49896-5 20

[CDW16] Cramer, R., Ducas, L., Wesolowski, B.: Short Stickelberger class relations
and application to Ideal-SVP. Cryptology ePrint Archive, Report 2016/885
(2016). http://eprint.iacr.org/2016/885

[CGS] Campbell, P., Groves, M., Shepherd, D.: SOLILOQUY: a caution-
ary tale. http://docbox.etsi.org/Workshop/2014/201410 CRYPTO/S07
Systems and Attacks/S07 Groves Annex.pdf

[CL15] Cheon, J.H., Lee, C.: Approximate algorithms on lattices with small deter-
minant. Cryptology ePrint Archive, Report 2015/461 (2015). http://eprint.
iacr.org/2015/461

[Coh91] Cohen, H.: A Course in Computational Algebraic Number Theory. Grad-
uate Texts in Mathematics, vol. 138. Springer, Heidelberg (1993). https://
doi.org/10.1007/978-3-662-02945-9

[EHKS14] Eisenträger, K., Halgren, S., Kitaev, A., Song, F.: A quantum algorithm
for computing the unit group of an arbitrary degree number field. In: Pro-
ceedings of the 46th Annual ACM Symposium on Theory of Computing,
STOC 2014, pp. 293–302. ACM, New York (2014)

[FP06] Fieker, C., Pohst, M.: Dependency of units in number fields. Math. Comput.
75, 1507–1518 (2006)

https://cr.yp.to/factorization/smoothparts-20040510.pdf
https://cr.yp.to/factorization/smoothparts-20040510.pdf
http://cacr.uwaterloo.ca/techreports/2015/cacr2015-12.pdf
http://cacr.uwaterloo.ca/techreports/2015/cacr2015-12.pdf
https://doi.org/10.1007/978-3-662-49896-5_20
http://eprint.iacr.org/2016/885
http://docbox.etsi.org/Workshop/2014/201410_CRYPTO/S07_Systems_and_Attacks/S07_Groves_Annex.pdf
http://docbox.etsi.org/Workshop/2014/201410_CRYPTO/S07_Systems_and_Attacks/S07_Groves_Annex.pdf
http://eprint.iacr.org/2015/461
http://eprint.iacr.org/2015/461
https://doi.org/10.1007/978-3-662-02945-9
https://doi.org/10.1007/978-3-662-02945-9

Approximate Short Vectors in Ideal Lattices 393

[GGH13] Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal
lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS,
vol. 7881, pp. 1–17. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-38348-9 1

[GS02] Gentry, C., Szydlo, M.: Cryptanalysis of the revised NTRU signature
scheme. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
pp. 299–320. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
46035-7 20

[HJ16] Hu, Y., Jia, H.: Cryptanalysis of GGH map. In: Fischlin, M., Coron, J.-S.
(eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 537–565. Springer, Hei-
delberg (2016). https://doi.org/10.1007/978-3-662-49890-3 21

[HM89] Hafner, J.L., McCurley, K.S.: A rigorous subexponential algorithm for com-
putation of class groups. J. Am. Math. Soc. 2, 839–850 (1989)

[HPS11] Hanrot, G., Pujol, X., Stehlé, D.: Terminating BKZ. IACR Cryptology
ePrint Archive 2011:198 (2011)

[LLL82] Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with ratio-
nal coefficients. Math. Ann. 261, 515–534 (1982)

[LLMP90] Lenstra, A.K., Lenstra Jr., H.W., Manasse, M.S., Pollard, J. M.: The num-
ber field sieve. In: STOC 1990: Proceedings of the Twenty-second Annual
ACM Symposium on Theory of Computing, pp. 564–572. ACM, New York
(1990)

[Pom85] Pomerance, C.: The quadratic sieve factoring algorithm. In: Beth, T., Cot,
N., Ingemarsson, I. (eds.) EUROCRYPT 1984. LNCS, vol. 209, pp. 169–182.
Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39757-4 17

[Sch87] Schnorr, C.P.: A hierarchy of polynomial time lattice basis reduction algo-
rithms. Theoret. Comput. Sci. 53, 201–224 (1987)

[Sco04] Scourfield, E.: On ideals free of large prime factors. Journal de Théorie des
Nombres de Bordeaux 16(3), 733–772 (2004)

[Sho97] Shor, P.: Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509
(1997)

[Sto00] Storjohann, A.: Algorithms for Matrix Canonical Forms. Ph.D. thesis,
Department of Computer Science, Swiss Federal Institute of Technology
- ETH (2000)

[Was82] Washington, L.: Introduction to Cyclotomic Fields. Graduate Texts in
Mathematics, vol. 83. Springer, New York (1982). https://doi.org/10.1007/
978-1-4684-0133-2

https://doi.org/10.1007/978-3-642-38348-9_1
https://doi.org/10.1007/978-3-642-38348-9_1
https://doi.org/10.1007/3-540-46035-7_20
https://doi.org/10.1007/3-540-46035-7_20
https://doi.org/10.1007/978-3-662-49890-3_21
https://doi.org/10.1007/3-540-39757-4_17
https://doi.org/10.1007/978-1-4684-0133-2
https://doi.org/10.1007/978-1-4684-0133-2

Quantum Key-Recovery on Full AEZ

Xavier Bonnetain1,2(B)

1 Sorbonne Universités, UPMC Univ Paris 06, IFD, Paris, France
2 Inria, Paris, France

xavier.bonnetain@inria.fr

Abstract. AEZ is an authenticated encryption algorithm, submitted to
the CAESAR competition. It has been selected for the third round of the
competition. While some classical analysis on the algorithm have been
published, the cost of these attacks is beyond the security claimed by the
designers.

In this paper, we show that all the versions of AEZ are completely
broken against a quantum adversary. For this, we propose a generali-
sation of Simon’s algorithm for quantum period finding that allows to
build efficient attacks.

Keywords: CAESAR competition · Symmetric cryptanalysis
Quantum cryptanalysis · Authenticated encryption · AEZ
Simon’s algorithm

1 Introduction

Post-quantum cryptography studies the weaknesses of cryptographic systems
against quantum adversaries. The consequences of a quantum computer would be
catastrophic in cryptography. Indeed, due to Shor’s algorithm [17], most widely
used cryptographic primitives would be completely broken. The situation is dif-
ferent in symmetric cryptography. We know since 1996 that Grover’s algorithm
[9] gives a quadratic speedup on exhaustive search, which lead to the common
belief that doubling the key length would be enough to attain a suitable level
of security against quantum computers. The work on dedicated cryptanalysis is
much more recent, with many results [2,11,13] showing that we need to study
further the implications of quantum computation in symmetric cryptography.

Authenticated encryption aims at providing both secrecy and authenticity. It
can be achieved by a classical symmetric primitive in a specific mode of operation
(OCB, GCM) [14,16], or with a dedicated primitive. The CAESAR competition,
launched in 2014, aims to standardise a portfolio of authenticated encryption
algorithms. It has been quite successful in driving the community to work on
this subject, with more than 50 submissions, and many cryptanalytic results on
these submissions, like for instance [5,6]. AEZ [10] is one of these proposals, still
in the competition in the 3rd round of the selection process. The candidate AEZ
has been tweaked several times to counter some proposed analysis [6,8]. The
current version is AEZ version 5, denoted AEZv5. AEZ claims to be a robust
authenticated encryption scheme, being secure even in nonce misuse scenarios.
c© Springer International Publishing AG 2018
C. Adams and J. Camenisch (Eds.): SAC 2017, LNCS 10719, pp. 394–406, 2018.
https://doi.org/10.1007/978-3-319-72565-9_20

Quantum Key-Recovery on Full AEZ 395

The designers however limited their security claims to 244 blocks of data used
with the same key. This unusually small limit renders the attacks from [6,8]
inapplicable, and their security claims remain unaffected. The published analysis
consider only a classical adversary. In this paper, we study the resistance against
quantum adversaries.

There has been some previous work on authenticated encryption in a quan-
tum setting, for instance SPHINCS, by Berstein et al. [3]. Kaplan et al. [11]
showed some existential forgeries in OCB, GCM and many CAESAR candi-
dates(including AEZ). Soukharev et al. have proposed a security model for
authenticated encryption against quantum adversaries [19], where the challenges
are classical, but the adversary can make queries in quantum superposition to an
encryption (or decryption, if available) oracle, with a classical chosen random-
ness. Our attacks performs in this model, where the chosen queries are quantum,
except for the nonce, which should be classical (it can be chosen or known, this
has no impact on our quantum attacks).

This is a strong model, as the attacker has not only quantum computa-
tion capabilities, but can perform quantum queries to an oracle that computes
a classical function f : that is, from an arbitrary superposition

∑ |x〉 |0〉, get∑ |x〉 |f(x)〉. It has the advantage of encompassing any other, more constrained,
model, and if a primitive is safe in this model, it is safe in the others. Moreover,
it may become plausible. We can for example think of white-box cryptography:
if you have access to a program that computes a function, you can implement it
on a quantum computer. Finally, this model is non-trivial: it is possible to build
constructions secure in this model.

In this paper, we show how the key-recovery of [6] can be dramatically accel-
erated in a quantum setting to break AEZv4. We also show of to adapt the
attack for a key-recovery of AEZv5 and a universal forgery with AEZ10. All
these attacks use quantum period finding and have a cost in data of around 210

blocks, which is far below the 244 limit claimed by the designers.
From a quantum algorithmic’s point of view, we propose a more powerful

and precise analysis than the one in [11]. We also show how to take advantage
of a quantum multiple period finding, that allows to reduce even more the data
complexity in some cases. The results are summarised in Table 1.

Table 1. Summary of the attacks on AEZ since version 3

Version Data, time, memory
complexity (blocks)

model Type Ref

AEZv3 266.6 Classical Key Recovery [8]

AEZv4 266.5 Classical Key recovery [6]

AEZv4 210 Classical Existential forgery [4]

All � 29 Quantum query Existential forgery [11]

AEZv4 211.4 Quantum query Key recovery Sect. 5.1

AEZv5 211.1 Quantum query Key recovery Sect. 5.2

AEZ10 29.6 Quantum query Universal forgery Sect. 5.3

396 X. Bonnetain

2 Preliminaries

In this section, we describe the primitive we’re attacking and our main cryptan-
alytic tool, Simon’s algorithm.

2.1 Description of AEZ

AEZ [10] (Fig. 1) is a tweakable block cipher for authenticated encryption, and
its components have been tweaked in the different versions of the algorithm. It
uses a master key K of 384 bits, decomposed in 3 subkeys (I, J , L) of 128 bits
each. AEZ has at its core a tweakable function Ei,j

K used in the intermediate func-
tion AEZ-hash (Fig. 2). The user calls the external function Encrypt, that calls,
depending on the message length, AEZ-prf, AEZ-tiny or AEZ-core. AEZ-tiny
and AEZ-core are symmetric ciphers, AEZ-tiny is used for messages of less than
32 bytes (one block), AEZ-core is used for longer messages. AEZ-prf is a pseudo-
random function (PRF) called when the message is empty that takes some asso-
ciated data and a length τ in argument, and that outputs a tag of the desired
length that can be used to authentify the associated data. Our attacks will use
AEZ-prf, and its components are described below. We also need AEZ-core for
a part of the attack against AEZ version 4, but as its description is more com-
plex and the attack uses the same principles, we refer to [6] for a description of
AEZ-core.

Ei,j
K

AEZ-hash

AEZ-prf
AEZ-tiny

AEZ-core

PRF Encryption

Encrypt

Fig. 1. High-level view of the components of AEZ

Associated Data. The associated data is seen as a bidimensional vector of
128-bit blocks. An example for 7 blocks can be represented as:

A1
1

A1
2

A1
3A

2
3A

3
3

A1
4A

2
4

that we note (A1
1, A

1
2, (A

1
3, A

2
3, A

3
3), (A

1
4, A

2
4)).

Quantum Key-Recovery on Full AEZ 397

The associated data can contain any number of lines, and each line can have
any length. In practice, we have two constraints. The first line A1 contains the
output length τ of the PRF, in bits. As we’ll only have output lengths smaller
than 2128 bits, the first line will only contain one block. The second line contains
the nonce N . The specification recommends a nonce smaller than 128 bits, which
also limits this line to one block. However, as this is only a recommendation, we
can also study what happens if we allow longer nonces.

Finite Field. AEZ uses a multiplication in F2128 , seen as F2[X]/(X128 + X7 +
X2 +X +1). As we are in a field, we can invert any non-zero number. Moreover,
knowing the polynomial, we can do it efficiently.

Core Function. The core of the algorithm is the function Ei,j
K , which is a

permutation on 128 bits. It is concretely a tweaked version of 4 or 10 rounds
of AES [7] (AES4 and AES10). The exact function depends on the version of the
algorithm and the values of i and j. These versions of AES don’t use the normal
key schedule but one of the subkeys (I, J, L) at each round.

Table 2 shows the value of Ei,j
K in AEZv4, depending on the parameters i and

j, with αj = 23+�(j−1)/8� + ((j − 1) mod 8) and βi = 2i−3. The multiplication
is done in the finite field.

Table 2. Ei,j
K in AEZv4

i j Ei,j
K (X)

−1 N AES10(X ⊕ jJ)

0 N AES4(X ⊕ jI)

1 N AES4(X ⊕ αjI)

2 N AES4(X ⊕ αjI)a

≥ 3 0 AES4(X ⊕ βiL) ⊕ βiL

≥ 3 ≥ 1 AES4(X ⊕ βiL ⊕ αjJ) ⊕ βiL ⊕ αjJ
a This AES doesn’t uses the same keys as the others

The function is simpler in AEZv5:

– E−1,j
K (X) = AES10(X ⊕ jL)

– Ei,j
K (X) = AES4(X ⊕ iJ ⊕ 2�j/8�I ⊕ (j mod 8)L)

Since version 2, AEZ also proposes an alternative algorithm named AEZ10
where the master key K has 128 bits and is directly used as an AES key, I =
AESK(0), J = AESK(1) and Ei,j

K = AESK(X ⊕ jI ⊕ iJ).

398 X. Bonnetain

A1
1 = τ

E3,1
K

A1
2 = N

E4,1
K

A1
3

E5,1
K

A2
3

E5,2
K

. . . Aj
i

Ei+2,j
K

Δ

Fig. 2. AEZ-hash scheme

AEZ-hash. This function takes as input the associated data A and the key K
and outputs 128 bits.

AEZ-hash(K,A) = Δ =
⊕

i,j

Ei+2,j
K (Aj

i) in both v4 and v5.

AEZ-prf. This function is a PRF of arbitrary output length which can be used
to authentify the associated data. It takes as input an output length τ , some
associated data A and the key K, and outputs τ bits.

It computes Δ = AEZ-hash(K,A), and outputs the first τ bits of the sequence
E−1,3

K (Δ), E−1,3
K (Δ ⊕ 1), E−1,3

K (Δ ⊕ 2) . . . The most interesting property of this
function is that its value (for τ fixed) depends only on the value of AEZ-hash,
and in particular, that a collision in AEZ-hash implies a collision in AEZ-prf.

Encrypt. This function takes as input the key K, the associated data A
and a variable-length message M . For empty messages, it is a direct call to
AEZ-prf(K,A, τ).

2.2 Simon’s Algorithm

Simon’s algorithm [18] aims at solving the following problem:

Simon’s problem. Given a function f : {0, 1}n → {0, 1}n and the promise that
there exists s ∈ {0, 1}n such that for all (x, y) ∈ ({0, 1}n)2, f(x) = f(y) ⇔
x ⊕ y ∈ {0, s}, find s.

We say that f has the period s. We have a 2-to-1 function such that for each
output, the xor of the 2 preimages is always the same value, and we want to
find this value. Classically, we can solve this problem by searching for collisions,
in time Ω

(
2n/2

)
. In our quantum model, where we allow quantum queries to

the function, Simon’s algorithm solves that problem in O(n) quantum queries
and time, using the circuit in Fig. 3. It also needs a polynomial-time classical
post-processing, that we will neglect. We have access to the oracle Of : |x〉 |y〉 �→
|x〉 |f(x) ⊕ y〉. We also use the Hadamard transform H⊗n : |x〉 �→ ∑

y(−1)x·y |y〉,
with · the inner product in {0, 1}n, and some measurements.

Quantum Key-Recovery on Full AEZ 399

|0〉

|0〉

H⊗n

Of (x, y) =
(x, y ⊕ f(x))

H⊗n

�→ f(x0)

�→ x

Fig. 3. Simon’s algorithm quantum circuit

This circuits has five steps:

1. Starting with 2 n-qbits registers |0〉 |0〉, we apply the Hadamard transform on
the first register, which gives us the superposition

∑

x∈{0,1}n

|x〉 |0〉

2. With the oracle, we get the quantum superposition of all input-outputs
through f : ∑

x∈{0,1}n

|x〉 |f(x)〉

3. We measure the second register. This gives us an f(x0) for an unknown x0,
and collapses the first register to the compatible preimages, that are, thanks
to the promise

|x0〉 + |x0 ⊕ s〉
4. We then reapply the Hadamard transform to the first register, which becomes

∑

x∈{0,1}n

(−1)x0·x (1 + (−1)x·s) |x〉

5. We measure that register. Any x such that x · s = 1 has a null amplitude,
and we can’t measure it. Therefore, we’ll measure a random value satisfying
x · s = 0.

One application of this circuit gives us a random vector orthogonal to s. We
can retrieve the hyperplane orthogonal to s with n−1 independent equations in
O(n) queries, and then retrieve s.

3 Extending Simon’s Algorithm

In this section, we’ll study what happens in the circuit in various interesting
situations that occur in the applications we have considered.
s is 0 [18]. The behaviour is slightly different if s = 0 (f is injective): we have
only one element at step 3, and we measure a random value at step five, wich
means we’ll get n independent values in O(n) queries. This case was already
treated by Simon in his original paper.

400 X. Bonnetain

More Preimages [11]. If f fulfils f(x) = f(x ⊕ s) for all x, but can also verify
f(x) = f(y) for different values, that is, f can have more than 2 preimages by
image, the routine still works and gives us a vector orthogonal to the secret, but
we won’t get a uniform distribution. This problem has been addressed in [11],
Theorem 1, where they bound the error probability of the algorithm, depending
on the probability of occurence of a given parasite period, that is, with

p0 = max
t/∈{0,s}

Pr[f(x) = f(x ⊕ t)],

we get an error probability with cn queries of at most
(

2
(

1 + p0
2

)c)n

.

Taking the log in base 2, with pe the error bound, we get

n(1 + c(log(p0 + 1) − 1)) = log(pe).

We can rewrite it as

cn =
1

log
(

2
p0+1

) (n − log(pe)).

This allows us to compute directly the needed number of queries for a given
success probability. We see that pe diminishes exponentially with the number of
queries. For our numerical applications, we can be very conservative for p0 and
take 1/8. As this shows an unwanted differential property, this bound is unlikely
to be tight for our applications, which are xors of 4 AES rounds. With such a
p0, we get cn = 1.2(n− log(pe)). For our numerical applications, we’ll consider a
pe such that the total success probability of the attack is greater than one half.

Multiple Periods [21]. If f satisfies f(x) = f(x ⊕ s) for multiple values of s,
the routine will spawn some vectors orthogonal to all the periods. We will then
be able to recover the vector space generated by these periods [21]. If we have n
bits and s independent periods, it is equivalent to Simon’s problem with n−s+1
bits (the post-processing is a bit different, as we get a vector space instead of
a value). In the most degenerate case, if f is constant, we can only measure 0
(this can also be detected in a few classical queries).

Different Functions [11]. The original problem requires an oracle identical for
each query. However, as one query gives one equation, we don’t need to have the
same oracle call for each query, as long as the hidden periods are the same in
all the functions. This will allow us to apply our cryptanalysis with a different
nonce at each oracle call. This was used in some of the applications in [11].

Quantum Key-Recovery on Full AEZ 401

4 Previous Classical Attack

Chaigneau and Gilbert presented at FSE’17 a key-recovery attack on AEZv4
[6]. The attacker can query the functions of AEZ with a fixed unknown key,
and chosen authenticated data and plaintexts. The attack is done in two parts:
first, they apply 3 independent birthday sub-attacks that retrieve one of the 3
subkeys, and next they perform a diffential attack that retrieves the 2 remaining
subkeys once one is known. The first part needs a quantity of data at the birthday
bound (264 blocks), wich is beyond the security claimed by AEZs designers, who
limited the data to 244 blocks for a given key. We’ll describe here only that part,
as it is sufficient to perform efficient quantum attacks. Moreover, the second part
doesn’t gain much in a quantum setting, and would lead to less efficient attacks.

For each of the 3 attacks, they seek for a collision in a specific function
we construct with some functions of AEZ, and such a collision, with a high
probability, will give them a subkey if they xor the colliding inputs. The functions
are described in Table 3. The functions fI and fJ need a fixed nonce N for each
input, but not fL, as for this function the queried nonce depends on the input
value.

Table 3. Collision functions in [6]

subkey function property

I fI(x) = lastblock(AEZ-core(K, (τ, N), (0, x, 0, x, 0))) fI(x) = fI(x ⊕ I)

J fJ(x) = AEZ-prf(K, (τ, N, (x, x)), τ) fJ(x) = fJ(x ⊕ J)

L fL(x) = AEZ-prf(K, (τ, x, x), τ) fL(x) = fL(x ⊕ 6L)

For example, for fL, the value of AEZ-hash(K, (τ, x, x)) is Δ = E3,1
K (τ) ⊕

E4,1
K (x) ⊕ E5,1

K (x), which gives us, when we expand:

Δ = E3,1
K (τ) ⊕ AES4(x ⊕ 2L ⊕ 8J) ⊕ AES4(x ⊕ 4L ⊕ 8J).

For x′ = x ⊕ 6L, we get

Δ = E3,1
K (τ) ⊕ AES4(x ⊕ 6L ⊕ 2L ⊕ 8J) ⊕ AES4(x ⊕ 6L ⊕ 4L ⊕ 8J).

As we are in F2128 , it reduces to

Δ = E3,1
K (τ) ⊕ AES4(x ⊕ 4L ⊕ 8J) ⊕ AES4(x ⊕ 2L ⊕ 8J).

Hence, we get the same Δ (which implies the same value of fL(x)) if x⊕x′ =
6L, that is, fL(x) = fL(x ⊕ 6L). We have similar properties for fJ and fI :
fJ(x) = fJ (x ⊕ J) and fI(x) = fI(x ⊕ I).

Then, for fL (and similarly for fI and fJ), the attack is:

– Query fL(x) for 264 different values of x.
– Search for a collision fL(x) = fL(x′)
– With high probability, x ⊕ x′ = 6L.

We’ll see how to use these properties to dramatically accelerate this attack
in a quantum setting in the next section.

402 X. Bonnetain

5 Quantum Cryptanalysis of AEZ

In this section, we’ll show how to use Simon’s algorithm to efficiently recover
the subkeys in AEZv4, AEZv5 and AEZ10. We’ve chosen to restrain ourselves
to a classical known nonce for each quantum query.

All these attacks make use of a function f , of the form f(x) = a ⊕ g(x ⊕
b) ⊕ g(x ⊕ b ⊕ s), with g a xor of AES4 with various inputs. Simon’s algorithm
will retrieve efficiently s, except if s = 0. In this case, f is a constant function,
and the corresponding key is weak, as such a property can easily be detected
classically. However, the proportion of such weak keys, which corresponds to the
subkeys I, J, L (or some multiples of the subkeys) being linearly dependent, is
too small to be exploited (this occurs with a probability of around 2−125 for
one f).

5.1 AEZv4

We can directly use the functions of [6], described in Table 3, in Simon’s algo-
rithm. There is however a slight difference for fI , as the period is not on the full
AEZ-core but only on the last block. We can construct an oracle of fI from an
oracle of AEZ-core by uncomputing and taking only the last block. With this
method, one query to fI costs two queries to AEZ-core. For each case, we query
functions of n = 128 bits. In order to get a success probability of 0.5, we need
80% of success for each subkey, which is attained in 157 queries. The total query
complexity of the attack is 628 = 29.3. We use respectively 2, 3 and 2 × 6 block
of data for each query. We need 2669 = 211.4 � 244 blocks of data.

The complete attack is:

– For k ∈ {I, J, L}:
• Query 157 times Simon’s routine with fk.
• Solve classically the boolean equation system to get the period of fk.
• If this period was a multiple of k, invert to retrieve k.

In the original attack, fI and fJ needed a nonce reuse. This is not the case
with the quantum attack, as the different functions have the same hidden period.
The only constraint for the nonce is to be non-entangled with the input value.
For fL, we need to perform a quantum query with a nonce superposition. If
we want to disallow this, we can still use f ′

L = AEZ-prf(K, (τ,N, x, x), τ), which
satisfies f ′

L(x) = f ′
L(x⊕12L). This has the same query complexity, but a slightly

larger data complexity (211.5).
But we can go even further, if we look at

fJL(x) = AEZ-prf(K, (τ,N, (x, x), (x, x)), τ).

The associated Δ is

A⊕AES4(x⊕4L⊕8J)⊕AES4(x⊕4L⊕9J)⊕AES4(x⊕8L⊕8J)⊕AES4(x⊕8L⊕9J).

Quantum Key-Recovery on Full AEZ 403

This function has a hidden period of J and 12L (and also J ⊕ 12L). As seen in
Sect. 3, this means we can retrieve the vector space 〈J, 12L〉 with this function.
J and 12L need to be independent for the function to be non-constant. In that
case, we can retrieve the value of J and L with an exhaustive (classical) research,
as it has only 6 possibilities (for example by checking for collisions in fJ and
fL). This diminishes even more the query complexity to 471 = 28.9, using the
same number of block of quantum data. We then need to identify J and L. We
can do an exhaustive search, in one classical query and 6 tests (we only need to
test pairs of linearly independent vectors of the subspace we retrieved), or check
for collisions, in 6 classical queries (one for a reference, 3 to try to collide with
the reference on the first subkey, 2 to try to collide on the second).

We can also use these multiple periods in the classical attack: we use fJL for
our collisions, but as one query of this function has the same data complexity
as the queries of fJ and fL, it won’t change much on the overall complexity.

5.2 AEZv5

The functions in Table 4 allow to perform the same attack on AEZv5, with a
quantum query complexity of 28.9, and a data complexity of 2464 = 211.3 blocks.

Table 4. Collision functions for AEZv5

subkey function Period

I fI(x) = AEZ-prf(K, (τ, N, (x, A, B, C, D, E, F, G, x), τ) 6I

J fJ(x) = AEZ-prf(K, (τ, N, x, x), τ) 3J

L fL(x) = AEZ-prf(K, (τ, N, (x, x)), τ) 3L

We can even be more efficient in queries and recover the vector space
〈6I, 3J, 3L〉 in one go, with the function

fIJL(x) = AEZ-prf(K, (τ,N, (x, x,A,B,C,D,E, F, x, x),
(x, x,A′, B′, C ′,D′, E′, F ′, x, x)), τ).

Here, any non-x value in argument can be anything as long as it is not entangled
with x. This f has the 3 periods of fI , fJ and fL, and allows us to recover the
vector space in 155 = 27.3 queries, and a data complexity of 3255 = 211.7 blocks.
Once we know the vector space, we can use one classical query and check the
7 × 6 × 4 = 168 possible triplets, or check for collisions in the classical version of
fI , fJ and fK , which can be done in 1 + 7 + 6 + 4 = 18 classical queries.

Using the same principle, we can also define and use fIJ , fJL or fIL, which
all have comparable complexities,

fIL(x) = AEZ-prf(K, (τ,N, (x, x,B,C,D,E, F,G, x, x), τ)

and fJ(x) giving the best data complexity of 211.1 blocks.

404 X. Bonnetain

5.3 AEZ10

The core function is even simpler in this variant: Ei,j
K (X) = AES(X ⊕ iJ ⊕ jI).

Hence, we can do the attack with the functions in Table 5. With two functions,
we can recover I and J in 312 quantum queries and 936 quantum blocks of data.
If we choose to get the vector space spawned by I and J , we only need 155
queries and 775 blocks of data. In this case, we don’t get a full key recovery, but
the knowledge of the tweaks I and J allows to make forgeries for any non-empty
authenticated data.

Table 5. Collision functions for AEZ10

subkey function period

I fI(x) = AEZ-prf(K, (τ, N, (x, x)), τ) 3I

J fJ(x) = AEZ-prf(K, (τ, N, x, x), τ) 3J

I, J fIJ(x) = AEZ-prf(K, (τ, N, (x, x), (x, x)), τ) 3I, 3J, 3I ⊕ 3J

5.4 Variants of the Attack

We can gain one block per query if we allow the nonce to be in quantum super-
position and if the nonce can be more than 128 bits (which is not recommended,
but isn’t forbidden by the specification). Indeed, this would allow to suppress
the nonce line in the associated data in each of the queried functions. The new
functions would have a hidden period for some other multiples of the subkeys.

The attack from Chaigneau and Gilbert [6] can also be applied to all the
versions we have considered here classically, and the cost will be at the birthday
bound (264 queries, for around 266 blocks of data, depending on the amount of
associated data in the functions). If we want to gain in data complexity, we can
reuse the second part of the attack in [6]. Once the subkey I is known, we can
get J and L by attacking 3 rounds of AES (we can probably also make use of
the knowledge of J or L, but this would need another dedicated analysis).

5.5 Thwarting the Attack

There are different ways to counter this specific attack. As Simon’s algorithm
uses a specific structure, the simplest solution would be to change the way offsets
are used, from a xor with the data to another operation (see [1]). However, if
this is still a commutative group operation, the algorithm would be vulnerable
to some other quantum algorithms like Kuperberg’s algorithm [12], and it may
not lead to a satisfactory level of security.

A more conservative approach would be to change a bit the way the associated
data is processed. We can currently see it as 4 rounds of an AES with a custom
key schedule, with the first round key that depends on the position of the block,
the other ones being fixed. If the variable key is one of the inner AES keys

Quantum Key-Recovery on Full AEZ 405

(or if there are variable keys on multiple rounds), this quantum attack would
not work. This could however lead to some kind of related-key attacks on this
4-round AES, and it would require a dedicated analysis to ensure it does not
lead to some other classical attacks.

Moreover, these changes would prevent the quantum exponential gain of
Simon’s algorithm, but the collision analysis from Chaigneau and Gilbert [6]
would remain.

6 Conclusion

We’ve shown that all the versions of AEZ are deeply broken in the quantum
superposition model. This is an example of an exponential speedup of a classical
attack on a real primitive, that went from costly to almost-free. We’ve also
presented a way to exploit multiple hidden periods in order to reduce the number
of quantum oracle calls, and provide more flexibility in the attack, and discussed
how to avoid these kinds of attacks.

Acknowledgements. The author would like to thank Colin Chaigneau and Henri
Gilbert for helpful discussions on AEZ, and Maŕıa Naya-Plasencia and André
Schrottenloher for their detailed comments on the early versions of this paper.

References

1. Alagic, G., Russell, A.: Quantum-Secure Symmetric-Key Cryptography Based on
Hidden Shifts. CoRR abs/1610.01187 (2016)

2. Anand, M.V., Targhi, E.E., Tabia, G.N., Unruh, D.: Post-quantum security of the
CBC, CFB, OFB, CTR, and XTS modes of operation. In: Takagi, T. (ed.) [20],
pp. 44–63

3. Bernstein, D.J., Hopwood, D., Hülsing, A., Lange, T., Niederhagen, R.,
Papachristodoulou, L., Schneider, M., Schwabe, P., Wilcox-O’Hearn, Z.: SPHINCS:
practical stateless hash-based signatures. In: Oswald, E., Fischlin, M. (eds.) [15],
pp. 368–397

4. Bonnetain, X., Derbez, P., Duval, S., Jean, J., Leurent, G., Minaud, B., Suder, V.:
An easy attack on AEZ. FSE 2017 rump session, March 2017

5. Chaigneau, C., Fuhr, T., Gilbert, H., Jean, J., Reinhard, J.R.: Cryptanalysis of
NORX v2.0. IACR Trans. Symmetric Cryptol. 2017(1), 156–174 (2017)

6. Chaigneau, C., Gilbert, H.: Is AEZ v4.1 sufficiently resilient against key-recovery
attacks? IACR Trans. Symmetric Cryptol. 1(1), 114–133 (2016)

7. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Information Security and Cryptography. Springer, Heidelberg (2002).
https://doi.org/10.1007/978-3-662-04722-4

8. Fuhr, T., Leurent, G., Suder, V.: Collision Attacks Against CAESAR Candidates.
In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015, Part II. LNCS, vol. 9453, pp.
510–532. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48800-
3 21

9. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Miller,
G.L. (ed.) STOC. pp. 212–219. ACM (1996)

https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/978-3-662-48800-3_21
https://doi.org/10.1007/978-3-662-48800-3_21

406 X. Bonnetain

10. Hoang, V.T., Krovetz, T., Rogaway, P.: Robust authenticated-encryption AEZ and
the problem that it solves. In: Oswald, E., Fischlin, M. (eds.) [15], pp. 15–44

11. Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Breaking symmetric
cryptosystems using quantum period finding. In: Robshaw, M., Katz, J. (eds.)
CRYPTO 2016, Part II. LNCS, vol. 9815, pp. 207–237. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53008-5 8

12. Kuperberg, G.: A subexponential-time quantum algorithm for the dihedral hidden
subgroup problem. SIAM J. Comput. 35(1), 170–188 (2005)

13. Kuwakado, H., Morii, M.: Security on the quantum-type Even-Mansour cipher.
In: 2012 International Symposium on Information Theory and its Applications
(ISITA), pp. 312–316, October 2012

14. McGrew, D.A.: Galois counter mode. In: van Tilborg, H.C.A., Jajodia, S. (eds.)
Encyclopedia of Cryptography and Security, 2nd edn, pp. 506–508. Springer, New
york (2011). https://doi.org/10.1007/978-1-4419-5906-5 451

15. Oswald, E., Fischlin, M. (eds.): EUROCRYPT 2015, Part II. LNCS, vol. 9057.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6

16. Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: a block-cipher mode of
operation for efficient authenticated encryption. In: Reiter, M.K., Samarati, P.
(eds.) CCS 2001, Proceedings of the 8th ACM Conference on Computer and Com-
munications Security, Philadelphia, Pennsylvania, USA, November 6–8, 2001. pp.
196–205. ACM (2001)

17. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

18. Simon, D.R.: On the power of quantum computation. SIAM J. Comput. 26(5),
1474–1483 (1997)

19. Soukharev, V., Jao, D., Seshadri, S.: Post-Quantum Security Models for Authen-
ticated Encryption. In: Takagi, T. (ed.) [20], pp. 64–78

20. Takagi, T. (ed.): PQCrypto 2016. LNCS, vol. 9606. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-29360-8

21. Yang, L., Li, H.W.: Investigating the linear structure of Boolean functions based
on Simon’s period-finding quantum algorithm. CoRR abs/1306.2008 (2013)

https://doi.org/10.1007/978-3-662-53008-5_8
https://doi.org/10.1007/978-1-4419-5906-5_451
https://doi.org/10.1007/978-3-662-46803-6
https://doi.org/10.1007/978-3-319-29360-8
https://doi.org/10.1007/978-3-319-29360-8

Quantum Key Search with Side Channel Advice

Daniel P. Martin1,2, Ashley Montanaro1, Elisabeth Oswald3(B),
and Dan Shepherd4

1 School of Mathematics, University of Bristol,
University Walk, Bristol BS8 1TW, UK

{dan.martin,ashley.montanaro}@bristol.ac.uk
2 The Heilbronn Institute for Mathematical Research, Bristol, UK

3 Department of Computer Science, University of Bristol,
Merchant Venturers Building, Woodland Road, Bristol BS8 1UB, UK

elisabeth.oswald@bristol.ac.uk
4 National Cyber Security Centre, Hubble Road, Cheltenham GL51 0EX, UK

Daniel.S@ncsc.gov.uk

Abstract. Recently, a number of results have been published that show
how to combine classical cryptanalysis with quantum algorithms, thereby
(potentially) achieving considerable speed-ups. We follow this trend but
add a novel twist by considering how to utilise side channel leakage in
a quantum setting. This is non-trivial because Grover’s algorithm deals
with unstructured data, however we are interested in searching through
a key space which has structure due to the side channel information. We
present a novel variation of a key enumeration algorithm that produces
batches of keys that can be efficiently tested using Grover’s algorithm.
This results in the first quantum key search that benefits from side chan-
nel information.

Keywords: Quantum computation · Side channel attacks

1 Introduction

The announcement that NIST will embark on a post-quantum cryptography
project has injected further enthusiasm into researching cryptography in the
presence of quantum computers. At present there exist a number of algorithms
that run efficiently on a quantum computer (see [22] for a survey of the current
state of quantum computation). Some of these are a clear threat to existing
cryptographic techniques and algorithms. For instance, Shor’s algorithm [24] to
factor integers leaves a host of cryptographic schemes insecure. Another example
is Grover’s algorithm [9], which can be used to achieve a quadratic speedup in
the majority of unstructured search problems including brute force key search.

This research was carried out while D. P. Martin was a member of the Department
of Computer Science, University of Bristol.

c© Springer International Publishing AG 2018
C. Adams and J. Camenisch (Eds.): SAC 2017, LNCS 10719, pp. 407–422, 2018.
https://doi.org/10.1007/978-3-319-72565-9_21

408 D. P. Martin et al.

Ongoing research in post quantum cryptography focuses on studying adver-
sarial models alongside cryptographic constructions that include access to quan-
tum algorithms (e.g. Anand et al. [1] investigate the quantum IND-CPA security
of various block cipher modes of operation). Recent research [12,13] also studies
how classical cryptanalytic techniques might benefit from quantum algorithms
via appropriating Simon’s algorithm [25], and enquire about how realistic, for
example, a potential brute-force key search on AES would be [8]. Interestingly,
current thinking about post quantum cryptography only marginally touches on
adversaries that also have access to additional information.

We believe that considering how leakage might be exploited within the quan-
tum setting should be a pressing research question. After all, since 1996 when
Kocher [14] showed how side channels1 can be used to to break implementations
of otherwise secure schemes, the community has witnessed a host of effective
side channel attacks.

Many side channel attacks operate in two steps: first the device/
implementation leakage is turned into information leakage about the key result-
ing in probability or score vectors for each independent chunk of the key; second
a search over the most likely keys is conducted. Our paper is not concerned with
the specifics of the first step. It is the second step, which turns probability/score
vectors on chunks of the key into information about the (whole) key, on which
our work will focus, as we will motivate next.

Typical side channel attacks trade off data complexity (i.e. the number of
queries to a device/implementation as part of the first step) and computational
complexity (i.e. the effort that it takes to actually determine the secret in the
second step). Given that many practical side channel attacks have a compara-
tively low data complexity, there is little to be gained from quantum speed-ups
in that respect. However, if we consider side channel attacks that trade off using
very few queries for a large computational effort (via some enumeration/key
search following the key leakage extraction) it seems (intuitively) that access to
a quantum algorithm could help.

The logical starting point for search problems is, of course, Grover’s algo-
rithm, which can speed up any unstructured search. However, we are interested
in a highly structured search. At first sight, it seems hence impossible to ‘marry
up’ Grover (which cannot, as written, benefit from structure on the search data)
and side channel information (which is essentially structure on the search data).

The post-leakage search problem essentially is a quantum search problem
where there is some additional information available about the likelihood of
each element being the key. The conundrum of how to effectively use Grover in
this context was first tackled by Montanaro [21]. The algorithm takes in a set
of elements (to be searched and tested), as well as an advice distribution for
the set, and inputs the most likely elements to Grover in ‘batches’ of increasing

1 A side channel is some additional (unintended) channel that an adversary has access
to. Beyond power and timing analysis, side channel attacks can be based on the elec-
tromagnetic emanation of a device [16], error messages communicated by a device [18]
and even the sound that a device produces [6].

Quantum Key Search with Side Channel Advice 409

sizes, optimised to obtain an efficient quantum search algorithm. It would thus
seem that this algorithm already gives the solution to the post-leakage search
problem. However, one crucial implicit assumption was made in [21]: that the
advice distribution was given in order of likelihood.

Side channel attacks typically produce information about the independent
chunks of the unknown key (rather than the whole key) and thus they do not
conveniently output the kind of sorted list that the algorithm of [21] requires.
Also, it would be impossible to do so in the case of many interesting practical
scenarios, e.g. the minimum recommended key length today is 128 bits, thus it is
clearly impossible to explicitly generate an ordered list containing 2128 elements.

1.1 Contribution and Outline

We give a novel version of Martin et al. [20] that is able to efficiently generate
keys (to be tested) according to a side channel advice distribution. This novel
version can output single keys with a specific weight. We then show how to
define an efficient, distribution based quantum search algorithm inspired by the
quantum algorithm of Montanaro [21]. Our contribution is organised as follows.
In Sect. 2 we introduce notation and recap the latest developments in fast and
parallel key search. The first contribution of this work (in Sect. 3) is then to take
the key rank algorithm of Martin et al. [20] and show how to use it to return a
single key (the rth) with a weight in a particular range. Using this new insight,
and varying the value of r, we are able to construct a new, more efficient, key
enumeration/search algorithm in Sect. 3.1. Our main contribution is showing
how the newly derived (classical) search algorithm can then be turned into a
quantum key search algorithm in Sect. 4, which provides a quadratic speed-up
over the classical algorithm. To our knowledge this is the first time that a side
channel attack has been improved with the use of a quantum algorithm.

2 Preliminaries

Our work brings together recent advances from side channel research (key rank
and enumeration) and quantum algorithms (quantum search with advice). To
keep the paper reasonably self contained, we introduce and explain the necessary
background regarding key enumeration/search, alongside introducing notation.

The cryptographic attack may work against the secret key in any kind of
cryptography, e.g. symmetric cryptography (such as a block cipher) or public
key cryptography (such as a signing algorithm). All we assume about the secret
key, k , is that some information is leaked by the implementation about k , and
that this splits up into m independent chunks, called subkeys (k1, . . . , km), each
of which can take one of n possible values. Whilst our algorithms do not require
that each subkey is the same size, this assumption helps to ease explanation. We
denote the secret key to be targeted by the attack as t = (t1, . . . , tm).

Our work is not concerned with how the leakage is obtained or how it is
manipulated to infer information about the key. We refer to the established lit-
erature (e.g. [17]) for an in-depth explanation. We only assume that the result

410 D. P. Martin et al.

of a leakage attack is an n by m matrix w = (w1, . . . ,wm), wj,i ∈ Z
+. Each

column represents the likelihood information that we have about the values of a
respective key chunk, whereby we adopt the convention that larger numbers cor-
respond to smaller likelihoods. We also assume that there is a notion of ‘adding’
likelihoods, and this is defined by integer addition. Thus, we can determine the
weight (likelihood) of any (sub)set of subkeys by simply adding up weights. The
likelihood of a key k will be denoted ρk =

∑m
i=1 wki,i

Remark 1. Different types of attack techniques may lead to different types of
matrix (i.e. some attacks might produce probabilities as outputs, others inte-
gers). There are existing techniques such as [3,23,26] that show that it is pos-
sible to ‘convert’ various side channel attack outputs to probabilities. Other
papers [4,19,20] discuss converting probabilities to integers (i.e. they enquire
regarding how much precision needs to be retained). In summary, whilst the
conversion of outcomes from typical leakage attacks to integer values is nor-
mally lossy, previous work shows that in well understood scenarios it can be
done and leads to sensible results.

2.1 Key Search with Additional Information

To ease further explanations, we now introduce a small example and use it to
motivate the notions of key rank, enumeration and search.

Example 1. Our illustrative toy example, which will run throughout the paper,
consists of a key that can be split into two subkeys, where each subkey can take
three different values {1, 2, 3}. The target key t in this example is t = (2, 1). The
observed leakage has been turned into the matrix that contains the information
about how likely each of the values are:

w =

⎛

⎝
0 1
1 0
3 2

⎞

⎠

Remember that lower weights indicate more likely values, and the weight of
the key can be derived by adding the weights of the subkeys. We can thus sort
the key combinations according to their overall weight, as shown in Table 1.

The weight of the target key t is ρt = w2,1 + w1,2 = 1 + 1 = 2. Thus in
an ordered list, it would appear after the keys with weights 0 and 1. There are

Table 1. All possible keys sorted by weight.

Overall weight
0 1 2 3 4 5

(1, 2) (1, 1) (2, 1) (2, 3) (3, 1) (3, 3)
(2, 2) (1, 3) (3, 2)

Quantum Key Search with Side Channel Advice 411

three keys with weights 0 and 1, hence the rank of the target key will be 3 (the
number of more likely keys2).

As should become clear from the example, we can define the rank of a key t
with respect to a weight matrix w in a natural manner.

Definition 1 (Key Rank). Given an n × m matrix w and target key t, the
rank of the key t is defined as the number of keys k with a weight smaller than
the weight of t. Formally:

rankt(w) = |{k = (k1, . . . , km) : ρk < ρt}|

In the context of an attack, where an adversary has access to a weight matrix
but does not know the target key t , the adversary will want to enumerate (and
test) keys with respect to their likelihood as given by the weight matrix. We
hence define key enumeration with respect to a weight matrix.

Definition 2 (Key Enumeration). Given an n × m weight matrix w and
e ∈ Z, output the e keys with the lowest weights (breaking ties arbitrarily).

Note that this definition only asks for the e most likely keys, and not that
they are returned in likelihood order. Optimal key enumeration would require
exactly that, i.e. output the e most likely keys k1, . . . , ke in the order of their
weights.

In certain scenarios (such as restarting an enumeration algorithm) the adver-
sary may require e keys from an arbitrary position in the key space. This is
captured by Extended Key Enumeration.

Definition 3 (Extended Key Enumeration). Given an n×m weight matrix
w and e, f ∈ Z, output the e keys with the lowest weights (breaking ties arbitrar-
ily), after ignoring the first f keys.

In this scenario the algorithm will output keys kf+1, . . . , ke+f .
Clearly to succeed in an attack, an adversary needs not just to enumerate the

most likely keys, but needs to check which one is the target key. This is achieved
using a testing function T which behaves as follows:

T(k) =
{

1 if k = t
0 otherwise

More concretely, in the context of symmetric encryption; the testing function
could utilise one or more plaintext/ciphertext pairs together with the underlying
scheme.

Example 2. Consider an attack on the block cipher AES with 128 bit keys.
We assume that the adversary has access to a plaintext/ciphertext pair

2 Rank could be defined as keys with a lower or equal weight but considering a strictly
lower weight favours the adversary.

412 D. P. Martin et al.

(m, c = AESt (m)), and an implementation of AES. In this situation T can be
constructed as follows:

T(k) =
{

1 if AESk (m) = c
0 otherwise

We can now define key search.

Definition 4 (Key Search). Given an n×m weight matrix w, a testing func-
tion T and e ∈ Z, output any ki, with i ≤ e, such that T(ki) = 1 and ki would
be output from enumeration, on input w and e. If no such i exists output ⊥.

A similar definition can be given for Extended Key Search.

2.2 Efficiently Computing the Rank of a Key

We base our work on the key rank algorithm by Martin et al. [20] (along with the
improvements [15,19]). This might be surprising at first as we are aiming to con-
struct a quantum key search algorithm. However, Martin et al.’s rank algorithm
directly enables the construction of a quantum-compatible key search algorithm.
Therefore we now briefly sketch the working principle of their algorithm.

An integer parameter W is fixed, which denotes the target weight, or the
largest weight that should be considered. A graph is specified with n · m · W + 2
vertices, according to the following simple rules (described informally). Two
vertices are called ‘Accept’ and ‘Reject’ and these are sink vertices. The other
vertices are called vi,j,w for i ∈ [1..m], j ∈ [1..n], and w ∈ [0..W − 1]. Each has
out-valency two, so that each such vertex vi,j,w has a ‘right child’ that represents
the idea that ki = j (consider the ith subkey selected) and a ‘left child’ that
represents the idea that ki �= j (consider the ith subkey yet to be determined).
A path from v1,1,0 to ‘Accept’ will take exactly m ‘right’ forks, so that each
subkey is selected exactly once on the path, so that the path effectively selects
a whole key. A path will only reach ‘Accept’ if the total accumulated weight
from these selections is kept below W , otherwise it will divert to ‘Reject’. The
number of paths from v1,1,0 to ‘Accept’ is therefore constructively identical with
the number of keys having weight strictly less than W , and therefore is actually
the rank of any key having weight exactly W , if such one exists.

Example 3. We construct a graph for our running example and choose the target
weight W to equal 4, i.e. we want to know how many combinations of subkeys
lead to a key with weight strictly smaller than 4. Our graph hence contains
2 ·3 ·4+2 vertices and can be drawn in a ‘flattened’ version, as shown in Fig. 1a.
The upper ‘half’ corresponds to the first subkey, and the lower half to the second
subkey. The vertices in each column represent the current weight. To draw the
graph, we begin at the start node S (v1,1,0), and then draw the right child (it
points to a vertex representing the first value of the second subkey with the
correct weight v2,1,0) and the left child (points to a vertex representing the next
value in the subkey v1,2,0, unless it is the last value in which case it points to
reject – these are omitted for readability).

Quantum Key Search with Side Channel Advice 413

A R

S

0 1 2 3
Cumulative Weight

1
2
3
1
2
3

C
h
u
n
k
1

C
h
u
n
k
2

(a) The original graph structure of [20]

A

S

0 1 2 3
Cumulative Weight

C
h
u
n
k
1

2

(b) The more efficient graph structure of [19]

Fig. 1. Two possible graph constructions for our running example (with W = 4).

The right child of S points to weight 0 in the next subkey (because the weight
of having k1 = 1 equals zero in our example), and the left child points at the
weight 0 in the next row (because we are not choosing the element so the weight
remains unchanged). Suppose we now consider the vertex v2,1,0. This again has
two children. The right child corresponds to choosing the first value of subkey
2, which has weight 1. Hence the total weight is 1, which is smaller than 4 and
thus the right child goes into the accept node. The left child corresponds to
not choosing the first value, but considering the second value (v2,2,0). The other
paths in the graph are generated according to the same principles.

The algorithm to compute the key rank counts all paths that lead to the
accept node. Consequently, by augmenting the algorithm to also store the cor-
responding subkeys that are visited on those paths that lead to accept, this
algorithm immediately gives rise to a key enumeration algorithm. There are
different considerations (in particular the choice of ordering, which impacts on
memory complexity) when implementing this principle and [20] discusses these
in great depth. In recent work, the algorithm was further simplified and made
more efficient by slightly changing the recurrence relation that iterates through
the graph [19]. Further work gave evidence that there might be still a (signifi-
cantly) faster key rank algorithm possible: [15] contains an algorithm ‘Threshold’
which proves to be the fastest among the compared algorithms, but at the sig-
nificant disadvantage that it does not support extended key enumeration. Since
the Threshold algorithm does not support ranking between two weights, it is not
suitable for our purpose.

3 Key Ranking Leading to Faster Enumeration

The key rank algorithm in the previous section constructed a graph (and counted
paths in it) by using right children to move ‘down the graph into the next chunk’
and left children to indicate that a value had not been selected. Thus every node
had exactly two outgoing edges. However, the graph could be compressed by

414 D. P. Martin et al.

allowing vertices to have multiple outgoing edges, resulting in a two, instead of
three, index system. This was explored, and shown to be more efficient, in [19].

Example 4. We refer again to our running example. Let v i correspond to the
row, in the graph, for the ith key chunk. The start node now points to 3 vertices
representing the three possible values the subkey could take. The vertices for the
second subkey have edges going to accept if and only if adding the weight for
the respective value results in a total weight smaller than W . Figure 1b shows
the corresponding graph. There are three edges from v2,0 (and from v2,1) to the
accept node because all three weights in w2 are smaller than 4 (and 3 resp.).
There are two edges from v2,2 to the accept node because two weights of w2 are
smaller than 4 − 2 = 2, however no edge connects into v2,2 so we don’t draw it
in our graph. There is only one edge possible from v2,3 because only one value
of w2 is small enough such that the overall weight is smaller than 4.

Our key observation is that the number of vertices from the edge to the accept
node can be written down in a simple and elegant manner. Let us consider the
vertex vi,w for the pair (i, w). The vertices vi,w, for i < m, have out degree at
most n (vi,w has an edge to vi+1,w+wj,i

for 1 ≤ j ≤ n when w + wj,i < W).
Let there also be an accept node (which is a sink) such that vm,w has edges to
the sink when wj,m < W − w. With this we can define a matrix b, where bi,w

stores how many paths there are from vi,w to the sink. Since each path from v1,0

corresponds to a key with weight at most W , this gives a representation that is
equivalent to the graph. The equations for constructing b are given below.

bi,w :=
n∑

j=1

bi+1,w+wj,i
for i < m (1)

bm,w :=
n∑

j=1

1{wj,m < W − w} (2)

where 1{·} returns 1 if the expression in the curly brackets evaluates to true and
0 otherwise.

The array index b1,0 contains the rank of the key with score W . It is assumed
that bi,w = 0 for all 1 ≤ i ≤ m if w ≥ W . Correctness follows from [20].

In order to compute b1,0 we start by filling in the values for bm,w for 0 ≤
w < W (using Eq. 2) and then fill in bi,w working backwards over the i’s (using
Eq. 1). Each bi,w is computed and stored once. Since there are m · W matrix
entries, each of which look at n bi,w’s and then writes an integer of size m · log n
(since there are nm total keys), the total time complexity is O(m2 ·n ·W · log n).

As b contains m · W elements, each of which contains an integer of size
m · log n, the required space is O(m2 · W · log n).3

It is possible to change the rank algorithm such that it counts all keys with
weight in a particular range, instead of weight less than a target. We refer
3 Martin et al. [20] show how to tweak their algorithm such that the entirety of b does

not have to be stored. However, for enumeration, repeat access to b is required and
thus this is not applicable.

Quantum Key Search with Side Channel Advice 415

to this algorithm as Rank(w ,W1,W2), and define it formally in Algorithm6
(AppendixA). This helps to meet the extended key enumeration definition and
will be required for our new enumeration algorithm. To achieve this Eq. 2 is
replaced with the following:

bm,w :=
n∑

j=1

1{W1 − w ≤ wj,m < W2 − w} (3)

We assume that an algorithm exists that ‘fills’ b with the correct values
for weights [W1,W2), called Initialise(w ,W1,W2), which is formally defined in
Algorithm 4 (AppendixA).

The getKey algorithm. We will require an algorithm getKey(b,w ,W1,W2, r)
which returns the rth key with weight between W1 and W2 to design a quantum
search algorithm with side channel advice.4 This can be achieved utilising the
data structure b, as shown in Algorithm1.

Algorithm 1. An algorithm for requesting particular keys
function getKey(b,w ,W1,W2, r)

if r > b1,0 then return ⊥ end if
k ← [0]m

w ← 0
for i = 1 to m − 1 do

for j = 1 to n do
if r ≤ bi+1,w+wj,i

then
ki ← j
w ← w + wj,i

break j
end if
r ← r − bi+1,w+wj,i

end for
end for
for j = 1 to n do

if r ≤ 1{W1 − w ≤ wj,m < W2 − w} then
km ← j
break

end if
r ← r − 1{W1 − w ≤ wj,m < W2 − w}

end for
return k

end function

4 The rth key does not have to be the rth most likely key in this range, any arbitrary
ordering will suffice.

416 D. P. Martin et al.

Correctness of getKey follows from the correctness of b. Since the algorithm
is deterministic it is clear that given the same r twice it will return the same key
and that, due to its similarity to Depth First Search, no key will be returned
twice, for different r. Thus we indeed have a uniquely determined rth key. This
is also important for the quantum and classical enumeration algorithms that
follow. The algorithm has to assign values to each of the m subkeys, which can
involve up to n comparisons of integers of size m · log n. This gives the algorithm
a time complexity of O(m2 · n · log n).

3.1 A Faster Classical Enumeration Algorithm

The getKey algorithm given in Algorithm1 can trivially be converted into an
algorithm which enumerates all keys, with weight in the range [W1,W2).

If there are e keys in the range [W1,W2), the keyEnumerate algorithm simply
runs getKey e times, giving a total time complexity of O(m2 · n · W2 · log n + e ·
m2 · n · log n). The original algorithm by Martin et al. [20] has time complexity
O(e · m2 · n · W2 · log n). Therefore, the new algorithm is considerably faster.
Since our algorithm can be split into enumeration ranges, it can be made highly
parallelisable using techniques from [15]. As there is a trade off between range
size and runtime, we will discuss this is more detail (for a single machine) below.
A formal description can be found in Algorithm5 (AppendixA). Correctness of
keyEnumerate follows from the correctness of getKey5.

To convert the enumeration algorithm into a key search algorithm keySearch,
rather than storing the keys they would be tested using T. Upon finding the
correct key the algorithm terminates, otherwise (if all keys in the budget have
been tested but the key was not found) the algorithm returns ⊥.

Combining together the above algorithm with the techniques for searching
over partitions independently gives the key search algorithm in Algorithm2.
To construct our algorithm, we draw inspiration from the algorithm of Mon-
tanaro [21]. It works by partitioning the search space into sections whose size
follows a geometrically increasing sequence using a size parameter a = O(1).
This parameter is chosen such that the number of loop iterations is balanced
with the number of keys verified per block. It is fairly straightforward to see
that this is the optimal choice (it follows similar ideas to the Exponential Search
Algorithm [2]).

5 The keyEnumerate algorithm could be made more efficient by directly adjusting
getKey instead of calling it multiple times in a disjoint manner. The bottleneck
that arises is that getKey(b, r) and getKey(b, r + 1) might perform a lot of similar
work to output the key, for example they may have the same m − 1 first subkeys.
This can be avoided using backtracking to produce keys in a manner similar to depth
first search.

Quantum Key Search with Side Channel Advice 417

Algorithm 2. The key search algorithm
function KS(w , e,T)

W1 ← Wmin

W2 ← Wmin + 1
step ← 0
Choose We such that Rank(w , 0,We) is approx e
while W1 ≤ We do

k ← keySearch(w ,W1,W2,T)
if k �=⊥ then return k end if
step ← step + 1
W1 ← W2

Choose W2 such that Rank(w ,W1,W2) is approx astep

end while
return ⊥

end function

3.2 Total Runtime

The algorithm starts by finding We, which takes O(m2·n·Wmax·log n+log Wmax)
time,6 where Wmax is the key with the largest weight. Since the algorithm
searches e keys such that approximately as keys are tested at each iteration
s, the loop will iterate O(loga e) times.

On iteration s, the call to keySearch takes O(m2 · n · W2 · log n + as · m2 · n ·
log n). Finally, the call to calculate W2 costs O(log We) look ups in the array
generated when choosing We, as W2 ≤ We we can binary search up to We

instead of Wmax. Putting it all together gives an asymptotic time complexity of
O(m2 ·n · log n(Wmax +e+We · log e)). See AppendixB for the derivation details.

4 Quantum Key Search

Finally we are in a position to give the novel quantum search with side channel
advice algorithm, which achieves a quadratic speed-up over the classical key
search. We heavily rely on Grover’s algorithm [9], which is a quantum algorithm
to solve the following problem:Given a black box which returns 1 on a single
input x, and 0 on all other inputs, find x. If there are X possible inputs to
the black box, the classical algorithm uses O(X) queries to the black box – the
correct input might be the very last input tested. However, a version of Grover’s
algorithm solves the problem using O(

√
X) queries, with certainty [5,10,11]. It

is easy to generalise this to the case where we have either zero or one inputs on
which the testing function returns 1 (which is our setting), at the cost of one
extra query. To do this, run the algorithm of [5,10,11] and apply the testing
function to the answer obtained. If it returns 0, there must have been no input
on which the testing function would return 1.
6 As shown by Martin et al. [19]. The initial O(m2 ·n ·Wmax · logn) can be reused by

future queries reducing their work to O(logWmax).

418 D. P. Martin et al.

Algorithm 3. The quantum key search algorithm
function QKS(w , e,T)

W1 ← Wmin

W2 ← Wmin + 1
step ← 0
Choose We such that Rank(w , 0,We) is approx e
while W1 ≤ We do

b ← Initialise(w ,W1,W2)
f(·) ← T(getKey(b,w ,W1,W2, ·))
Call Grover using f for one or zero marked elements in range [W1,W2)
if marked element t found then

return getKey(b,w ,W1,W2, t)
end if
step ← step + 1
W1 ← W2

Choose W2 such that Rank(w ,W1,W2) is approx astep

end while
return ⊥

end function

Our QKS algorithm based on this subroutine is given in Algorithm3. The
algorithm is nearly identical to the classical KS one given in Algorithm2. The
crucial difference is the work done within the loop. Since Grover’s algorithm is
being called instead of keySearch, some of the work classically done in keySearch
must be done within the loop, so that it is compatible with Grover. The algorithm
must generate the array b, construct a testing function which takes in a ‘key
index’ instead of a key and convert the index output back to a key. Otherwise,
the algorithm behaves exactly the same as the classical algorithm.

4.1 Total Runtime

We assume we have access to a coherently addressable quantum RAM
(QRAM) [7], which allows us to efficiently read the data structure b in quantum
superposition. Such a QRAM can be initialised in time proportional to the size
of b. We stress that in our case b is relatively small, so this does not substantially
affect the time complexity of the algorithm.

Most of the time complexity of the quantum algorithm can be assessed in the
same way as for the classical algorithm. The only exception is that at iteration
s, the algorithm makes O(a

s
2) calls to getKey instead of the as calls classically.

We show (details are in AppendixB) that the time complexity of the total
calls that Grover’s algorithm makes to getKey is O(

√
e ·m2 ·n · log n). Combining

this with the classical analysis of the rest of the algorithm gives the total time
complexity of O(m2 · n · log n(Wmax +

√
e + We · log e)).

While the classical and quantum time complexities look fairly similar, we get
a quadratic speed-up because the parameters m,n,W are attack dependent and

Quantum Key Search with Side Channel Advice 419

tend to be fairly small. For example, for typical attacks on AES-128, m = 16 and
n = 256. The weights W are normally controlled by the attacker using a precision
parameter and thus unlikely to grow large. Thus the dominating variable is the
number of keys enumerated, which gains a quadratic improvement in a quantum
setting.

Conclusion. We demonstrated that it is possible to leverage the power of a
side channel attack in the quantum setting. Our quantum key search with side
channel advice thus benefits from a quadratic improvement over a classical key
search. Clearly our work is restricted to the setting of ‘classical’ side channel
attacks that follow a divide and conquer principle, which result in information
about subkeys independently. However, this setting is very common and applies
to attacks such as differential and simple power (EM, timing, cache) analysis.

Acknowledgements and Disclaimer. Ashley Montanaro was supported by an
EPSRC Early Career Fellowship EP/L021005/1. Elisabeth Oswald and Dan Martin
were in part supported by EPSRC via grant EP/N011635/1 (LADA). No research
data was created for this paper.

A Additional Algorithms

For completeness, in this appendix we give any additional algorithms required
for implementation of the key search algorithms.

Algorithm 4. The initialise algorithm to generate b
function Initialise(w ,W1,W2)

b ← [[0]W2]m

for w = 0 to W2 − 1 do
for j = 1 to n do

bm,w ← bm,w + 1{W1 − w ≤ wj,m < W2 − w}
end for

end for
for i = m − 1 down to 1 do

for w = 0 to W2 − 1 do
for j = 1 to n do

if w + wj,i < W2 then
bi,w ← bi,w + bi+1,w+wj,i

end if
end for

end for
end for
return b

end function

420 D. P. Martin et al.

Algorithm 5. A new enumeration algorithm.
function keyEnumerate(w ,W1,W2)

K ← {}
b ← Initialise(w ,W1,W2)
k ← ∅
r ← 1
while True do

k ← getKey(b,w ,W1,W2, r)
if k =⊥ then break end if
K ← K ∪ {k}
r ← r + 1

end while
return K

end function

Algorithm 6. The key rank algorithm
function Rank(w ,W1,W2)

b ← Initialise(w ,W1,W2)
return b1,0

end function

B Time Complexity Calculations

The time complexity of the classical key search algorithm was derived using the
following calculations:

m2 · n · Wmax · log n + log Wmax

+
�loga e+1�∑

s=0

(m2 · n · W2 · log n + as · m2 · n · log n + log We)

= m2 · n · Wmax · log n + log Wmax

+e · m2 · n · log n +
�loga e+1�∑

s=0

(m2 · n · W2 · log n + log We)

≤ m2 · n · Wmax · log n + log Wmax

+e · m2 · n · log n + (loga e + 2)(m2 · n · We · log n + log We)
= m2 · n · log n(Wmax + e + (loga e + 2)We) + (loga e + 2) log We + log Wmax

= O(m2 · n · log n(Wmax + e + We · log e))

where the classical algorithm made as calls to getKey for iteration s of the loop,
Grover’s algorithm makes �π

4 · a
s
2 � + 1 calls [5,10,11].The time complexity of

total calls to getKey, made by Grover’s algorithm, can be calculated as follows:

Quantum Key Search with Side Channel Advice 421

�loga e+1�∑

s=0

(�π

4
· a

s
2 � + 1) · m2 · n · log n

= m2 · n · log n · (
�loga e+1�∑

s=0

(�π

4
· a

s
2 � + 1))

≤ m2 · n · log n · (2 loga e + 4 +
π

4
·

�loga e+1�∑

s=0

a
s
2)

≈ m2 · n · log n · (2 loga e + 4 +
π

4
·
∫ �loga e+1�

s=0

a
s
2)

= 2 · m2 · n · log n · (loga e + 2 +
π

4
+

π · a

4 ln a
· √

e)

= O(
√

e · m2 · n · log n)

References

1. Anand, M.V., Targhi, E.E., Tabia, G.N., Unruh, D.: Post-quantum security of the
CBC, CFB, OFB, CTR, and XTS modes of operation. Cryptology ePrint Archive,
Report 2016/197 (2016). http://eprint.iacr.org/2016/197

2. Bentley, J.L., Yao, A.C.-C.: An almost optimal algorithm for unbounded searching.
Inf. Proces. Lett. 5(3), 82–87 (1976)

3. Bernstein, D.J., Lange, T., van Vredendaal, C.: Tighter, faster, simpler side-channel
security evaluations beyond computing power. Cryptology ePrint Archive, Report
2015/221 (2015). http://eprint.iacr.org/2015/221

4. Bogdanov, A., Kizhvatov, I., Manzoor, K., Tischhauser, E., Witteman, M.: Fast
and memory-efficient key recovery in side-channel attacks. In: Dunkelman, O.,
Keliher, L. (eds.) SAC 2015. LNCS, vol. 9566, pp. 310–327. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-31301-6 19

5. Brassard, G., Hoyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification
and estimation. Contemp. Mathe. 305, 53–74 (2002)

6. Genkin, D., Shamir, A., Tromer, E.: RSA key extraction via low-bandwidth acous-
tic cryptanalysis. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol.
8616, pp. 444–461. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-44371-2 25

7. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum random access memory. Phys.
Rev. Lett. 100(16) (2008). 160501

8. Grassl, M., Langenberg, B., Roetteler, M., Steinwandt, R.: Applying Grover’s algo-
rithm to AES: quantum resource estimates. In: Takagi, T. (ed.) PQCrypto 2016.
LNCS, vol. 9606, pp. 29–43. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-29360-8 3

9. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: 28th
Annual ACM Symposium on Theory of Computing, pp. 212–219. ACM Press, May
1996

10. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack.
Phys. Rev. Lett. 79(2) (1997). 325

http://eprint.iacr.org/2016/197
http://eprint.iacr.org/2015/221
https://doi.org/10.1007/978-3-319-31301-6_19
https://doi.org/10.1007/978-3-662-44371-2_25
https://doi.org/10.1007/978-3-662-44371-2_25
https://doi.org/10.1007/978-3-319-29360-8_3
https://doi.org/10.1007/978-3-319-29360-8_3

422 D. P. Martin et al.

11. Høyer, P.: Arbitrary phases in quantum amplitude amplification. Phys. Rev. A
62(5) (2000). 052304

12. Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Breaking sym-
metric cryptosystems using quantum period finding. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 207–237. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53008-5 8

13. Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Quantum differential
and linear cryptanalysis. In: ToSC (2017). Springer

14. Kocher, P.C.: Timing attacks on implementations of diffie-hellman, RSA, DSS, and
other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

15. Longo, J., Martin, D.P., Mather, L., Oswald, E., Sach, B., Stam, M.: How low can
you go? Using side-channel data to enhance brute-force key recovery. Cryptology
ePrint Archive, Report 2016/609 (2016). http://eprint.iacr.org/2016/609

16. Longo, J., De Mulder, E., Page, D., Tunstall, M.: SoC It to EM: electromagnetic
side-channel attacks on a complex system-on-chip. In: Güneysu, T., Handschuh,
H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 620–640. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48324-4 31

17. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards, vol. 31. Springer Science & Business Media, New York (2008)

18. Manger, J.: A chosen ciphertext attack on RSA optimal asymmetric encryption
padding (OAEP) as standardized in PKCS #1 v2.0. In: Kilian, J. (ed.) CRYPTO
2001. LNCS, vol. 2139, pp. 230–238. Springer, Heidelberg (2001). https://doi.org/
10.1007/3-540-44647-8 14

19. Martin, D.P., Mather, L., Oswald, E., Stam, M.: Characterisation and estimation of
the key rank distribution in the context of side channel evaluations. In: Cheon, J.H.,
Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 548–572. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6 20

20. Martin, D.P., O’Connell, J.F., Oswald, E., Stam, M.: Counting keys in parallel
after a side channel attack. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015.
LNCS, vol. 9453, pp. 313–337. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-48800-3 13

21. Montanaro, A.: Quantum search with advice. In: van Dam, W., Kendon, V.M.,
Severini, S. (eds.) TQC 2010. LNCS, vol. 6519, pp. 77–93. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-18073-6 7

22. Montanaro, A.: Quantum algorithms: an overview. npj Quantum Inf. 2 (2016).
15023

23. Pan, J., van Woudenberg, J.G.J., den Hartog, J.I., Witteman, M.F.: Improving
DPA by peak distribution analysis. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.)
SAC 2010. LNCS, vol. 6544, pp. 241–261. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-19574-7 17

24. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: 35th Annual Symposium on Foundations of Computer Science, pp. 124–134.
IEEE Computer Society Press, November 1994

25. Simon, D.R.: On the power of quantum computation. SIAM J. Comput. 26(5),
1474–1483 (1997)

26. Veyrat-Charvillon, N., Gérard, B., Standaert, F.-X.: Security evaluations beyond
computing power. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 126–141. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-38348-9 8

https://doi.org/10.1007/978-3-662-53008-5_8
https://doi.org/10.1007/3-540-68697-5_9
http://eprint.iacr.org/2016/609
https://doi.org/10.1007/978-3-662-48324-4_31
https://doi.org/10.1007/3-540-44647-8_14
https://doi.org/10.1007/3-540-44647-8_14
https://doi.org/10.1007/978-3-662-53887-6_20
https://doi.org/10.1007/978-3-662-48800-3_13
https://doi.org/10.1007/978-3-662-48800-3_13
https://doi.org/10.1007/978-3-642-18073-6_7
https://doi.org/10.1007/978-3-642-19574-7_17
https://doi.org/10.1007/978-3-642-19574-7_17
https://doi.org/10.1007/978-3-642-38348-9_8
https://doi.org/10.1007/978-3-642-38348-9_8

Multidimensional Zero-Correlation Linear
Cryptanalysis of Reduced Round SPARX-128

Mohamed Tolba, Ahmed Abdelkhalek, and Amr M. Youssef(B)

Concordia Institute for Information Systems Engineering,
Concordia University, Montréal, QC, Canada

youssef@ciise.concordia.ca

Abstract. SPARX is a family of ARX-based block ciphers proposed at
ASIACRYPT 2016. This family was designed with the aim of provid-
ing provable security against single-characteristic linear and differential
cryptanalysis. SPARX-128/128 and SPARX-128/256 are two members
of this family which operate on data blocks of length 128 bits and keys
of length 128 and 256 bits, respectively. In this work, we propose a zero-
correlation distinguisher that covers 5 steps (20 rounds) for both variants
of SPARX-128. Then, using specific linear masks at its output and uti-
lizing some properties of the employed linear layer and S-box, we extend
this distinguisher to 5.25 steps (21 rounds).

By exploiting some properties of the key schedule, we extend the 20-
round distinguisher by 4 rounds to present a 24-round multidimensional
zero-correlation attack against SPARX-128/256, i.e., 6 steps out of 10
steps. The 24-round attack is then extended to a 25-round (6.25 out of
10 steps) zero-correlation attack against SPARX-128/256 with the full
codebook by using the developed 21-round distinguisher. In addition, we
extend the 21-round distinguisher by one round to launch a 22-round
multidimensional zero-correlation attack against SPARX-128/128, i.e.,
5.5 steps out of 8 steps.

Keywords: Block ciphers · Cryptanalysis
Multidimensional zero-correlation · SPARX

1 Introduction

With the aim of developing block ciphers with provable security against single-
characteristic linear and differential cryptanalysis, Dinu et al. [7] proposed a
new ARX-based family of block ciphers at ASIACRYPT 2016. They achieved
this goal by proposing a new strategy, namely, the long trail strategy, which is
different from the well-studied wide trail strategy [6] that is used by many S-box
based block ciphers. The long trail strategy encourages the use of a rather weak
but large S-boxes such as ARX-based S-boxes along with a very light linear
transformation layer. Adopting this strategy in the SPARX family allowed the
designers to prove the security of the cipher against single-characteristic linear

c© Springer International Publishing AG 2018
C. Adams and J. Camenisch (Eds.): SAC 2017, LNCS 10719, pp. 423–441, 2018.
https://doi.org/10.1007/978-3-319-72565-9_22

424 M. Tolba et al.

and differential cryptanalysis by bounding the maximum linear and differential
probabilities for any number of rounds.

SPARX-128/128 and SPARX-128/256 are two members of the SPARX fam-
ily which employ a data block of length 128 bits using 128 and 256 key bits,
respectively. The only known attacks against these two variants were developed
by the designers. These attacks were found using integral cryptanalysis based
on Todo's division property [11] and cover 22 and 24 rounds of SPARX-128/128
and SPARX-128/256, respectively, in the chosen plaintext attack model.

Zero-correlation [4] is one of the relatively new techniques that is used to ana-
lyze symmetric-key primitives, where the attacker utilizes a linear approximation
of probability exactly 1/2 over rm rounds to act as a distinguisher. Then, this
distinguisher can be utilized in a key recovery attack such that the keys which
lead to this distinguisher are excluded. This technique proves its success against
many of the recently proposed block ciphers as exemplified by the work done
in [4,10,12–14].

In this paper, we evaluate the security of SPARX-128 in the known plain-
text attack model using the zero-correlation cryptanalysis. First, we present a
20-round zero-correlation distinguisher. Then, we use a specific linear mask at
the output of this 20-round distinguisher and exploit some properties of the
employed linear layer and S-box to add one more round and create a 21-round
zero-correlation distinguisher. To turn these distinguishers into key recovery
attacks, we take advantage of the property of the S-box that permits the exis-
tence of a two-round linear approximation that holds with probability 1. Then,
by exploiting the key schedule relations, we place this deterministic two-round
linear approximation in a position that enables us to extend the 20-round dis-
tinguisher by 4 complete rounds, i.e., including the linear layer, to launch a
24-round key recovery attack against SPARX-128/256 using multidimensional
zero-correlation attack. This 24-round attack is, then, extended by one more
round using the 21-round distinguisher to launch a 25-round zero-correlation
attack against SPARX-128/256 using the full codebook. In addition, we extend
the 21-round distinguisher to launch a 22-round attack against SPARX-128/128.

The remainder of the paper is organized as follows. In Sect. 2, the nota-
tions used throughout the paper and the specifications of SPARX-128/128 and
SPARX-128/256 are presented. Section 3 presents a brief introduction about
zero-correlation and multidimensional zero-correlation attacks. In Sect. 4, we
present our distinguisher for SPARX-128/128 and SPARX-128/256. Afterwards,
in Sect. 5, we provide a detailed description of our multidimensional zero-
correlation attacks against SPARX-128/128 and SPARX-128/256, and finally
we conclude the paper in Sect. 6.

2 Description of SPARX-128/128 and SPARX-128/256

The following notations are used throughout the paper:

– K: The master key.

Multidimensional Zero-Correlation Linear Cryptanalysis 425

– ki: The ith 16-bit of the key state, where 0 ≤ i ≤ 7 for SPARX-128/128, and
0 ≤ i ≤ 15 for SPARX-128/256.

– kj
i : The ith 16-bit of the key state after applying the key schedule permutation

j times, where 0 ≤ i ≤ 7, 0 ≤ j ≤ 32 for SPARX-128/128, and 0 ≤ i ≤ 15,
0 ≤ j ≤ 20 for SPARX-128/256.

– Ki: The ith 32-bit of the key state, where 0 ≤ i ≤ 3 for SPARX-128/128, and
0 ≤ i ≤ 7 for SPARX-128/256.

– Kj
i : The ith 32-bit of the key state after applying the key schedule permuta-

tion j times, where 0 ≤ i ≤ 3, 0 ≤ j ≤ 32 for SPARX-128/128, and 0 ≤ i ≤ 7,
0 ≤ j ≤ 20 for SPARX-128/256.

– RK(a,i): The 32-bit round key used at branch a of round i where 0 ≤ i ≤ 32
(resp. 0 ≤ i ≤ 40) for SPARX-128/128 (resp. SPARX-128/256), and 0 ≤ a ≤
3, with a = 0 corresponding to the left branch.

– X(a,i) (Y(a,i)): The left (right) 16-bit input at branch a of round i where
0 ≤ i ≤ 32 (resp. 0 ≤ i ≤ 40) for SPARX-128/128 (resp. SPARX-128/256),
0 ≤ a ≤ 3, with a = 0 corresponding to the left branch, and the LSBs of both
X(a,i) and Y(a,i) start from the right.

– X(a,i)[i, j, · · · , k]: The i, j, · · · , k bits of X(a,i).
– X(a,i)[i : j]: The bits from i to j of X(a,i), where i ≤ j.
– w: The number of 32-bit words, i.e., w = 4 for a 128-bit block and w = 8 for

a 256-bit master key.
– R4: The iteration of 4 rounds of SPECKEY [2,3] with their corresponding

key additions.
– Lw: Linear mixing layer used in SPARX with w-word block size. Thus, L4 rep-

resents the linear mixing layer used in SPARX-128/128 and SPARX-128/256.
– �: Addition mod 216.
– ⊕: Bitwise XOR.
– ≪ q (≫ q): Rotation of a word by q bits to the left (right).
– ‖: Concatenation of bits.

2.1 Specifications of SPARX-128/128 and SPARX-128/256

SPARX [7,8] is a family of ARX-based Substitution-Permutation Network (SPN)
block ciphers. It follows the SPN design construction while using ARX-based S-
boxes instead of S-boxes based on look-up tables. The ARX-based S-boxes form a
specific category of S-boxes that rely solely on addition, rotation and XOR oper-
ations to provide both non-linearity and diffusion. The SPARX family adopts
the 32-bit SPECKEY ARX-based S-box (S), shown in Fig. 1, which resembles
one round of SPECK-32 [2,3] with only one difference, that is, the key is added
to the whole 32-bit state instead of just half the state as in SPECK-32.

For a given member of the SPARX family whose block size is n bits, the
plaintext is divided into w = n/32 words of 32 bits each. Then, the SPECKEY
S-box (S), is applied to w words in parallel, and iterated r times interleaved by
the addition of independent subkeys. Then, a linear mixing layer (Lw) is applied
to ensure diffusion between the words. As depicted in Fig. 1, the structure made
of a key addition followed by S is called a round while the structure made of r

426 M. Tolba et al.

rounds followed by Lw is called a step. Thus, the ciphertext corresponding to
a given plaintext is generated by iterating such steps. The number of steps and
the number of rounds in each step depend on both the block size and the key
length of the cipher.

(w–1,i+r–1)

(w–1,i+r) (w–1,i+r)

(w–1,i)

(w–1,i) (w–1,i)

(0,i+r–1)

(0,i+r)

w

(0,i+r)

(0,i)

(0,i) (0,i)

Fig. 1. SPARX structure

SPARX-128/128 and SPARX-128/256 are two members of the SPARX family
which operate on 128-bit blocks using 128-bit and 256-bit keys, respectively. Both
variants use 4 rounds in each step and iterate over 8 and 10 steps, i.e., the total
number of rounds is 32 and 40, respectively. More precisely, in SPARX-128/128
and SPARX-128/256, 4 SPECKEY S-boxes (S) are iterated simultaneously for
4 times, while being interleaved by the addition of the round keys and then a
linear mixing layer (L4) is applied, as shown in Fig. 2 which also depicts the
structure of L4.

SPARX-128/128 key schedule. The 128-bit master key instantiates the key
state, denoted by k0

0‖k0
1‖k0

2‖k0
3‖k0

4‖k0
5‖k0

6‖k0
7. Then, the 4×32-bit round keys used

in branch number 0 of the first step are extracted. Afterwards, the permutation
illustrated in Fig. 3 is applied and then the 4 × 32-bit round keys used in branch
number 1 of the first step are extracted. The application of the permutation and
the extraction of the keys are interleaved until all the round keys encompassing
the post-whitening ones are generated. This means that the round keys of a given
branch in step j are generated first and then the key state is updated.

SPARX-128/256 key schedule. The 256-bit master key instantiates the key
state, denoted by k0

0‖k0
1‖k0

2‖k0
3‖k0

4‖k0
5‖k0

6‖k0
7‖k0

8‖k0
9 ‖k0

10‖k0
11‖k0

12‖k0
13‖k0

14‖k0
15.

First, the 4 × 32-bit round keys used in branch number 0 of the first step are
extracted. Then, the 4 × 32-bit round keys used in branch number 1 of the first

Multidimensional Zero-Correlation Linear Cryptanalysis 427

Fig. 2. SPARX-128/128 and SPARX-128/256 step structure

Fig. 3. SPARX-128/128 key schedule permutation, where the counter r is initialized
to 0

428 M. Tolba et al.

step are extracted. Afterwards, the permutation illustrated in Fig. 4 is applied
and then the 4 × 32-bit round keys used in branch number 2 and 3 of the first
step are extracted. The application of the permutation and the extraction of the
keys are interleaved until all the round keys encompassing the post-whitening
ones are generated.

Fig. 4. SPARX-128/256 key schedule permutation, where the counter r is initialized
to 0

3 Multidimensional Zero-Correlation Linear
Cryptanalysis

In the traditional linear cryptanalysis [9], the attacker tries to find a linear
relation between an input x and an output y of an n-bit block cipher function f
that has the following form:

Γx ◦ x ⊕ Γy ◦ y = 0,

where ◦ is a bitwise dot product operation and Γx (Γy) is the input (output)
linear mask. This linear relation has a probability p, and in this type of attack
it should be far from 1/2 or equivalently its correlation C = 2 × p − 1 is not
zero. The following lemmas are used to specify the propagation of linear masks
through the different operations (XOR, branch, and S-box) that are used in the
round function.

Lemma 1 (XOR operation [4,12]): Either the three linear masks at an XOR ⊕
are equal or the correlation over ⊕ is exactly zero.

Lemma 2 (Branching operation [4,12]): Either the three linear masks at a
branching point • sum up to 0 or the correlation over • is exactly zero.

Lemma 3 (S-box permutation [4,12]): Over an S-box S, if the input and output
masks are neither both zero nor both nonzero, the correlation over S is exactly
zero.

Multidimensional Zero-Correlation Linear Cryptanalysis 429

Later on, Bogdanov and Rijmen [4] proposed a new technique called zero-
correlation cryptanalysis which, in contrast to the linear cryptanalysis, exploits
linear relations with correlation exactly zero to exclude wrong keys which lead
to this linear approximation. To remove the burden of the high data complex-
ity of the zero-correlation attack and the statistical independence for multiple
zero-correlation linear approximations, Bogdanov et al. [5] proposed the multi-
dimensional zero-correlation attack. In this technique, we have m different linear
approximations with zero-correlation, where all the l = 2m − 1 non-zero linear
approximations involved in the spanned linear space of these m linear approxi-
mations should have zero-correlation. The zero-correlation linear approximation
over rm rounds can act as a distinguisher, then the attacker can prepend/append
additional rounds called analysis rounds. The attack proceeds by gathering N
plaintext/ciphertext pairs and creating an array of counters V [z], where |z| = m
bits, and initializing it to zero. Then, for each plaintext/ciphertext pair and key
guess, the attacker computes the corresponding bits needed to apply the m lin-
ear approximations to compute z and increments the corresponding counter by
one. Afterwards, the attacker computes the statistic T [5]:

T =
2m−1∑

z=0

(V [z] − N2−m)2

N2−m(1 − 2−m)
=

N2m

(1 − 2−m)

2m−1∑

z=0

(
V [z]
N

− 1
2m

)2

. (1)

The right key has T that follows χ2-distribution with mean μ0 = l 2
n−N
2n−1 , and

variance σ2
0 = 2l(2

n−N
2n−1)2, while the statistic for the wrong key guess follows χ2-

distribution with mean μ1 = l and variance σ2
1 = 2l [5]. The number of known

plaintexts required by the attack can be estimated as follows [5]:

N =
2n(Z1−γ + Z1−ζ)√

l/2 − Z1−ζ

, (2)

where γ (resp. ζ) denotes the probability to incorrectly discard the right key
(resp. the probability to incorrectly accept a random key as the right key) and
Zp = φ−1(p) (0 < p < 1), φ is the cumulative function of the standard nor-
mal distribution. According to the required γ and ζ probabilities, the decision
threshold is set to τ = μ0 + σ0Z1−γ = μ1 − σ1Z1−ζ .

4 Zero-Correlation Distinguisher of SPARX-128/128
and SPARX-128/256

In this section, we present a 20-round zero-correlation distinguisher for SPARX-
128/128 and SPARX-128/256, which will be exploited later in our attacks against
22 rounds (5.5 steps out of 8) of SPARX-128/128 and 24, 25 rounds (6, 6.25 steps
out of 10) of SPARX-128/256. As depicted in Fig. 5, this distinguisher begins
with only branch 0 containing a linear mask α0 at round i. Then, by propagating
this linear mask 2 steps forward, and by utilizing Lemmas 1 and 2, we have linear

430 M. Tolba et al.

masks 0 and α4 applied on X(1,i+8)Y(1,i+8) and X(3,i+8)Y(3,i+8), respectively.
From the other side, at round i + 20, branch 0 has a linear mask β0, branch 1
has no linear mask, and branch 2 and 3 have linear masks β1 and β2, respectively.
The linear masks β1 and β2 are chosen such that L4(β1, β2) = (β0, 0). This choice
enables us to pass one step backward with only one word having a linear mask β3

at branch 2. Then, following Lemmas 1 and 2, we can propagate the linear masks
backward for one additional step and a linear layer to end with branch 1 and
3 having a non-zero linear mask β6 and a zero linear mask before applying the
inverse of R4 to obtain X(1,i+8)Y(1,i+8) and X(3,i+8)Y(3,i+8), respectively. Here,
R4 can be considered as a one big S-box, and hence, from Lemma 3, this linear
approximation has a zero-correlation.

5 Multidimensional Zero-Correlation Cryptanalysis
of SPARX-128/128 and SPARX-128/256

The following observations, which stem from the structure of SPARX-128/128
and SPARX-128/256, are exploited in our attacks.

Observation 1. As depicted in Fig. 6a, there is a 2-round linear approximation
that holds with probability 1 (0x0080 0x4001 → 0x0004 0x0004).

Observation 2. As illustrated in Fig. 6b, the linear mask 0ββ0, where 0 and β
denote 0x0000 and 16-bit non-zero linear mask, respectively, propagates through
the linear layer L4 as ββ00, i.e., L4(0ββ0) = ββ00.

Observation 3. From Observation 2 and the specification of the S-box, the
20-round distinguisher can be extended to 21-round distinguisher, as shown in
Fig. 6c.

5.1 24-Round Multidimensional Zero-Correlation Attack
on SPARX-128/256

In this attack, and in order to maximize the number of attacked rounds, we have
chosen to place the 20-round distinguisher at the bottom, and add 4 analysis
rounds at the top to launch a 24-round attack against SPARX-128/256. Taking
into account the key schedule relations, the top 4 analysis rounds involve all
the master key bits, and in order to be able to extend 4 rounds above the
distinguisher, we utilize Observation 1. In particular, we choose a specific linear
mask at branch 0 at the beginning of our 20-round zero-correlation distinguisher.
This specific linear mask, after propagating it backward through the linear layer
L4, enables us to bypass 2 rounds of branch 0 with probability 1 by exploiting
Observation 1 and thus have an extended distinguisher (the dotted one in Fig. 7).

Multidimensional Zero-Correlation Linear Cryptanalysis 431

Fig. 5. A 20-round zero-correlation distinguisher of SPARX-128/128 and SPARX-
128/256, where αi, βj are 32-bit non-zero linear masks and 0 denotes 0x0000 0x0000
linear mask

432 M. Tolba et al.

Fig. 6. Illustrations of Observations 1, 2 and 3.

Multidimensional Zero-Correlation Linear Cryptanalysis 433

Fig. 7. A 24-round multidimensional zero-correlation linear cryptanalysis of SPARX-
128/256, where 0 and β denotes 0x0000 and 16-bit non-zero linear mask, respectively

Key Recovery. Here, we chose β = 0x0abc, where a, b, c are 4-bit non-zero lin-
ear masks. Then, the attack proceeds by gathering enough plaintext/ciphertext
pairs. Afterwards, we guess the round keys involved in the analysis rounds to
estimate the statistic T . However, the complexity of the attack following this
strategy exceeds the complexity of exhaustive search. Therefore, we use the par-
tial compression technique in order to reduce the time complexity of the attack
as follows:

Step 1. Allocate an array of counters N1[X1] and initialize it to zeros, where
X1 = X(0,0)Y(0,0)||X(1,0)Y(1,0) ||X(2,0)Y(2,0)||(X(0,24)[0 : 11] ⊕ Y(0,24)[0 : 11] ⊕
Y(2,24)[0 : 11] ⊕ X(3,24)[0 : 11]), i.e., |X1| = 108 bits. Then, from the gathered
plaintext/ciphertext pairs compute X1 and increment the corresponding counter.
Since all the non-zero 16-bit linear masks in the ciphertext equal β = 0x0abc,

434 M. Tolba et al.

then, we can store only (X(0,24)[0 : 11]⊕Y(0,24)[0 : 11]⊕Y(2,24)[0 : 11]⊕X(3,24)[0 :
11]) instead of storing each one separately to apply the linear mask β.

Step 2. Allocate an array of counters N2[X2] and initialize it to zeros, where
X2 = X(0,0)Y(0,0)||X(1,3)[0, 1, 7 : 15]Y(1,3)[0 : 10] ||X(2,0)Y(2,0)||(X(0,24)[0 : 11] ⊕
Y(0,24)[0 : 11] ⊕ Y(2,24)[0 : 11] ⊕ X(3,24)[0 : 11]), i.e., |X2| = 98 bits. Then, guess
K4,K5,K6 and partially encrypt X1 to compute X2 and add the corresponding
counter N1[X1] to N2[X2].

Step 3. Allocate an array of counters N3[X3] and initialize it to zeros, where
X3 = X(0,0)Y(0,0)||X ′

(1,3)[2, 10]Y ′
(1,3)[2] ||X(2,0)Y(2,0)||(X(0,24)[0 : 11] ⊕ Y(0,24)[0 :

11]⊕Y(2,24)[0 : 11]⊕X(3,24)[0 : 11]), i.e., |X3| = 79 bits. Then, guess 22 bits of K7

(K7[0 : 10, 16, 17, 23 : 31] ≡ k14[0, 1, 7 : 15], k15[0 : 10]) and partially encrypt X2

to compute X3 and add the corresponding counter N2[X2] to N3[X3]. Since the
linear mask on X ′

(1,3)Y
′
(1,3) is 0x0404 0x0004, i.e., we need to compute only 3 bits

of X ′
(1,3)Y

′
(1,3), and we need only to know 22 bits of X(1,3)[0, 1, 7 : 15]Y(1,3)[0 : 10]

and 22 bits of K7 to compute this linear mask.

Step 4. Allocate an array of counters N4[X4] and initialize it to zeros,
where X4 = X(0,0)Y(0,0)||X ′

(1,3)[2, 10]Y ′
(1,3)[2] ||X(2,3)[0, 1, 7 : 15]Y(2,3)[0 : 10]||

(X(0,24)[0 : 11] ⊕ Y(0,24)[0 : 11] ⊕ Y(2,24)[0 : 11] ⊕ X(3,24)[0 : 11]), i.e., |X4| = 69
bits. Then, guess the remaining 10 bits of K7 and partially encrypt X3 to com-
pute X4 and add the corresponding counter N3[X3] to N4[X4].

Step 5. Allocate an array of counters N5[X5] and initialize it to zeros, where
X5 = X(0,0)Y(0,0)||X ′

(1,3)[2, 10]Y ′
(1,3)[2] ||X ′

(2,3)[10]||(X(0,24)[0 : 11] ⊕ Y(0,24)[0 :
11] ⊕ Y(2,24)[0 : 11] ⊕ X(3,24)[0 : 11]), i.e., |X5| = 48 bits. Then, guess 22 bits of
R(K0) (R(K0)[0 : 10, 16, 17, 23 : 31]) and partially encrypt X4 to compute X5

and add the corresponding counter N4[X4] to N5[X5].

Step 6. Allocate an array of counters N6[X6] and initialize it to zeros, where
X6 = X(0,1)[0 : 5, 7 : 15]Y(0,1)[0 : 14]||X ′

(1,3)[2, 10]Y ′
(1,3)[2] ||X ′

(2,3)[10]||(X(0,24)[0 :
11] ⊕ Y(0,24)[0 : 11] ⊕ Y(2,24)[0 : 11] ⊕ X(3,24)[0 : 11]), i.e., |X6| = 46 bits. Then,
guess the remaining 10 bits of R(K0) and partially encrypt X5 to compute X6

and add the corresponding counter N5[X5] to N6[X6].

Step 7. Allocate an array of counters N7[X7] and initialize it to zeros, where
X7 = X(0,2)[7]Y(0,2)[0, 14]||X ′

(1,3)[2, 10]Y ′
(1,3)[2] ||X ′

(2,3)[10]||(X(0,24)[0 : 11] ⊕
Y(0,24) [0 : 11] ⊕ Y(2,24)[0 : 11] ⊕ X(3,24)[0 : 11]), i.e., |X7| = 19 bits. Then,
guess 30 bits of K1 (k2[0 : 5, 7 : 15], k3[0 : 14]) and partially encrypt X6 to
compute X7 and add the corresponding counter N6[X6] to N7[X7].

The steps of the key recovery phase are summarized in Table 1, where the
second column gives the keys to be guessed in each step. The third column
presents the saved state in each step after the partial encryption, the fourth
column is the counter size for each obtained state in the corresponding step,
and the fifth column quantifies the time complexity of each step measured in
24-round encryption by considering the number of S-box accesses.

Multidimensional Zero-Correlation Linear Cryptanalysis 435

Table 1. Key recovery process of the attack on 24-round SPARX-128/256

Step Guessed keys Obtained state Size Time complexity

1 a X1 108 b

2 K4, K5, K6 X2 98 2108 × 23×32 × 3

24 × 4
≈ 2199

3 K7[0 : 10, 16, 17, 23 : 31] X3 79 298 × 296+22 × 1

24 × 4
≈ 2209.4

4 K7[11 : 15, 18 : 22] X4 69 279 × 2118+10 × 3

24 × 4
≈ 2202

5 R(K0)[0 : 10, 16, 17, 23 : 31] X5 48 269 × 2128+22 × 1

24 × 4
≈ 2212.4

6 R(K0)[11 : 15, 18 : 22] X6 46 248 × 2150+10 × 1

24 × 4
≈ 2201.4

7 K1[0 : 14, 16 : 21, 23 : 31] X7 19 246 × 2160+30 × 1

24 × 4
≈ 2229.4

a: No additional key guesses needed, b: Negligible complexity

After Step 7, we have guessed 190 key bits (gK) from the master key and
evaluated X7, that contains all the 19 bits involved in computing the zero-
correlation masks. Therefore, to recover the master key, the following steps are
performed:

1. Allocate an array of counters V [z], where |z| = 12 bits.
2. For 219 values of X7

(a) Evaluate all 12 basis zero-correlation masks on X7 and calculate z.
(b) Update the counter V [z] by V [z] = V [z] + N7[X7].

3. For each guessed key gK, compute TgK =
N × 212

1 − 2−12

212−1∑

z=0

(
V [z]
N

− 1
212

)2

.

4. If Tk < τ , then the guessed values of gK are key candidates.
5. Exhaustively search all the remaining key candidates with 266 values for the

66 bits of the key that are not retrieved by the above steps of the attack using
2 plaintext/ciphertext pairs.

Attack complexity. Since the beginning of the distinguisher has a specific
linear mask and the end of the distinguisher has a variable 12-bit linear mask
β, then m = 12, and hence l = 212 − 1. Here, we set γ = 2−2.7 and ζ = 2−30

and hence we have z1−γ ≈ 1 and z1−ζ ≈ 6. According to Eq. (2), the data
complexity is about 2125.5 known plaintexts. The total time complexity of the
attack encompasses the time complexity of two phases. The first is the time
required to reduce the key search space which can be computed from Table 1.
The second is the time required to retrieve the whole master key by exhaustively
searching the remaining 2190 × 2−30 = 2160 key candidates with the 266 key bits
not involved in the attack using 2 plaintext/ciphertext pairs. Therefore, the
total time complexity of the attack is 2229.4 + 2 × 2160 × 266 ≈ 2229.65 24-round
encryptions.

25-round Zero-Correlation Attack on SPARX-128/256. The above
attack can be extended one more round to launch a key recovery attack against

436 M. Tolba et al.

25-round of SPARX-128/256 with the full codebook. This extra round can be
obtained by selecting the linear masks at the end of the distinguisher as in
Observation 3 to convert the 20-round distinguisher to 21-round distinguisher.
However, at this time we will use only one zero-correlation linear approximation.
Therefore, we require the full codebook. The time complexity of the attack is
dominated by Step 7, and it will be 2227.4 instead of 2229.4 because we store only
10 bits instead of 12 bits at the end of the distinguisher.

5.2 22-Round Multidimensional Zero-Correlation Attack
on SPARX-128/128

As depicted in Fig. 8, in this attack we use the 21-round zero-correlation dis-
tinguisher obtained by utilizing Observation 3. Then, we append an additional
round at the bottom of the distinguisher. In the previous attack, the analysis
rounds were placed above the distinguisher, therefore, the relation of the round
keys to the master key was straightforward and we use the master key relations
in the attack from the beginning. However, in this attack, we place the analysis
round at the bottom of the distinguisher, and hence the relation of the round
keys to the master key is not trivial. Therefore, we will perform the attack on
the round keys. Then, we will explain how to recover the master key from the
recovered round keys. In order to balance the time complexity and the data
complexity, we choose α0 having linear masks in the first 30-bit only.

Fig. 8. A 22-round multidimensional zero-correlation linear cryptanalysis of SPARX-
128/128

Multidimensional Zero-Correlation Linear Cryptanalysis 437

Key Recovery. Similar to the previous attack, we first gather N plaintext/
ciphertext pairs, and then proceed as follows:

Step 1. Allocate an array of counters N1[X1] and initialize it to zeros, where
X1 = X(0,0)[0 : 13]Y(0,0)[0 : 15]||X(0,22)[0 : 13]Y(0,22)[2 : 13] ||X(2,22)[0 : 4, 11]
Y(2,22)[2 : 4, 11]||X(3,22)[0 : 13]Y(3,22)[2 : 13], i.e., |X1| = 92 bits. Then, from
the N plaintext/ciphertext pairs compute X1 and increment the corresponding
counter.

Step 2. Allocate an array of counters N2[X2] and initialize it to zeros, where
X2 = X(0,0)[0 : 13]Y(0,0)[0 : 15]||X(0,22)[0 : 13]Y(0,22)[2 : 13] ||X(2,21)[9]Y(2,21)[9]
||X(3,22)[0 : 13]Y(3,22)[2 : 13], i.e., |X2| = 84 bits. Then, guess RK(2,22)[2 :
4, 11, 16 : 20, 27] and partially decrypt X1 to compute X2 and add the corre-
sponding counter N1[X1] to N2[X2].

Step 3. Allocate an array of counters N3[X3] and initialize it to zeros, where
X3 = X(0,0)[0 : 13]Y(0,0)[0 : 15]||X(0,22)[0 : 13]Y(0,22)[2 : 13] ||X(2,21)[9]Y(2,21)[9]
||X(3,21)[0, 2]Y(3,21)[2], i.e., |X3| = 61 bits. Then, guess RK(3,22)[2 : 13, 16 : 29]
and partially decrypt X2 to compute X3 and add the corresponding counter
N2[X2] to N3[X3].

Step 4. Allocate an array of counters N4[X4] and initialize it to zeros, where
X4 = X(0,0)[0 : 13]Y(0,0)[0 : 15]||X(0,21)[0, 2, 9]Y(0,21)[2, 9] ||X(2,21)[9]Y(2,21)[9]
||X(3,21)[0, 2]Y(3,21)[2], i.e., |X4| = 40 bits. Then, guess RK(0,22)[2 : 13, 16 : 29]
and partially decrypt X3 to compute X4 and add the corresponding counter
N3[X3] to N4[X4].

To determine the surviving round key candidates, we proceed as in the previ-
ous attack in Sect. 5.1 with m = 30, and hence |z| = 30 bits. Moreover, instead of
using X7, we use X4. The number of surviving round key candidates is 262×2−ζ .
To retrieve the master key, we will, first, retrieve the 128-bit key after applying
the key permutation 20 times, i.e., K20

0 ||K20
1 ||K20

2 ||K20
3 and, afterwards, we just

revert the key schedule permutation 20 times to retrieve the master key. We have
retrieved RK(0,22)[2 : 13, 16 : 29] which allows us to deduce K20

2 [2 : 13, 16 : 29],
see Fig. 9. Retrieving the remaining 102 bits of K20

0 ||K20
1 ||K20

2 ||K20
3 can be done

as follows:

1. We guess K20
0 ,K20

3 and the remaining 6 bits of K20
2 to compute RK(1,21),

RK(1,23), RK(2,21), RK(2,22). Hence in total we have 262−ζ+32+32+6−10=122−ζ

remaining key candidates for K20
0 ,K20

2 ,K20
3 , RK(3,22)[2 : 13, 16 :

29], RK(1,21), RK(1,23), RK(2,21), because we have 10-bit filter on RK(2,22)[2 :
4, 11, 16 : 20, 27].

2. We guess the remaining 6 bits of RK(3,22) to compute RK(2,20), RK(1,22),K
20
1 .

Therefore, in total we have 2122−ζ+6 key candidates for K20
0 ,K20

1 ,K20
2 ,K20

3 .
3. We apply the inverse of the key permutation 20 times to retrieve 2122−ζ+6

key candidates for K, i.e., the master key.
4. We test the remaining key candidates using one plaintext/ciphertext pairs to

identify the correct key.

438 M. Tolba et al.

Attack complexity. Here, we set m = 30 (and hence l = 230 − 1), γ = 2−2.7,
and ζ = 2−26. Thus z1−γ ≈ 1 and z1−ζ ≈ 5.54. The data complexity is 2116.2

known plaintexts, which can be computed from Eq. (2). In this case, the total
time complexity of the attack is determined by the time complexity of three
stages. The first is the time required to reduce the key search space which is
dominated by Step 4 and equals 261 × 210+26+26 × 1

22×4 ≈ 2116.54. The second is
the time required to retrieve the whole master key and equals 262−26+32+32+6 ×

3
22×4 + 2122−26+6 × 2

22×4 + 2122−26+6 × 20×2
22×4 + 2102 ≈ 2103. The third is the time

required by the data collection phase which is equal to 2116.2. Therefore, the time
complexity of the attack is 2116.54 +2103 +2116.2 ≈ 2117.38 22-round encryptions.

Remark: It is worth noting that the above zero-correlation attacks are also
applicable to 15 rounds of SPARX-64/128 using the zero-correlation distin-
guisher shown in Fig. 10 (see also [1]). The details of this attack are omitted
from this version of the paper due to space limitations.

6 Conclusion

In this paper, we presented 20 and 21-round zero-correlation distinguishers that
are used to launch key recovery attacks against 24, 25 rounds (6, 6.25 out of
10 steps) of SPARX-128/256 and 22 rounds (5.5 out of 8 steps) of SPARX-
128/128. To the best of our knowledge these are the first third party attacks
against SPARX-128/128 and SPARX-128/256.

Multidimensional Zero-Correlation Linear Cryptanalysis 439

A Key Schedule Relations for SPARX-128/128

Fig. 9. Key secluded relations of SPARX-128/128

440 M. Tolba et al.

B Zero-Correlation Distinguisher for SPARX-64/128

Fig. 10. A 12-round zero-correlation distinguisher of SPARX-64/128, where αi, βj are
32-bit non-zero linear masks and 0 denotes 0x0000 0x0000 linear mask

Multidimensional Zero-Correlation Linear Cryptanalysis 441

References

1. Abdelkhalek, A., Tolba, M., Youssef, A.M.: Impossible differential attack on
reduced round SPARX-64/128. In: Joye, M., Nitaj, A. (eds.) AFRICACRYPT
2017. LNCS, vol. 10239, pp. 135–146. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-57339-7 8

2. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK families of lightweight block ciphers. Cryptology ePrint
Archive, Report 2013/404 (2013). http://eprint.iacr.org/2013/404

3. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
SIMON and SPECK: block ciphers for the internet of things. Cryptology ePrint
Archive, Report 2015/585 (2015). http://eprint.iacr.org/2015/585

4. Bogdanov, A., Geng, H., Wang, M., Wen, L., Collard, B.: Zero-correlation lin-
ear cryptanalysis with FFT and improved attacks on ISO standards camellia and
CLEFIA. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS, vol. 8282,
pp. 306–323. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-
43414-7 16

5. Bogdanov, A., Leander, G., Nyberg, K., Wang, M.: Integral and multidimen-
sional linear distinguishers with correlation zero. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 244–261. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-34961-4 16

6. Daemen, J., Rijmen, V.: The wide trail design strategy. In: Honary, B. (ed.) Cryp-
tography and Coding 2001. LNCS, vol. 2260, pp. 222–238. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45325-3 20

7. Dinu, D., Perrin, L., Udovenko, A., Velichkov, V., Großschädl, J., Biryukov, A.:
Design strategies for ARX with provable bounds: Sparx and LAX. In: Cheon, J.H.,
Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 484–513. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6 18

8. Dinu, D., Perrin, L., Udovenko, A., Velichkov, V., Groschdl, J., Biryukov, A.: Design
strategies for ARX with provable bounds: SPARX and LAX (Full Version). Cryptol-
ogy ePrint Archive, Report 2016/984 (2016). http://eprint.iacr.org/2016/984

9. Matsui, M., Yamagishi, A.: A new method for known plaintext attack of FEAL
cipher. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 81–91.
Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-47555-9 7

10. Sun, L., Fu, K., Wang, M.: Improved zero-correlation cryptanalysis on SIMON. In:
Lin, D., Wang, X.F., Yung, M. (eds.) Inscrypt 2015. LNCS, vol. 9589, pp. 125–143.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-38898-4 8

11. Todo, Y.: Structural evaluation by generalized integral property. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 287–314. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5 12

12. Wang, Y., Wu, W.: Improved multidimensional zero-correlation linear cryptanal-
ysis and applications to LBlock and TWINE. In: Susilo, W., Mu, Y. (eds.) ACISP
2014. LNCS, vol. 8544, pp. 1–16. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-08344-5 1

13. Wen, L., Wang, M., Bogdanov, A., Chen, H.: Multidimensional zero-correlation
attacks on lightweight block cipher HIGHT: improved cryptanalysis of an ISO
standard. Inf. Proces. Lett. 114(6), 322–330 (2014)

14. Xu, H., Jia, P., Huang, G., Lai, X.: Multidimensional zero-correlation linear crypt-
analysis on 23-round LBlock-s. In: Qing, S., Okamoto, E., Kim, K., Liu, D. (eds.)
ICICS 2015. LNCS, vol. 9543, pp. 97–108. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-29814-6 9

https://doi.org/10.1007/978-3-319-57339-7_8
https://doi.org/10.1007/978-3-319-57339-7_8
http://eprint.iacr.org/2013/404
http://eprint.iacr.org/2015/585
https://doi.org/10.1007/978-3-662-43414-7_16
https://doi.org/10.1007/978-3-662-43414-7_16
https://doi.org/10.1007/978-3-642-34961-4_16
https://doi.org/10.1007/3-540-45325-3_20
https://doi.org/10.1007/978-3-662-53887-6_18
http://eprint.iacr.org/2016/984
https://doi.org/10.1007/3-540-47555-9_7
https://doi.org/10.1007/978-3-319-38898-4_8
https://doi.org/10.1007/978-3-662-46800-5_12
https://doi.org/10.1007/978-3-319-08344-5_1
https://doi.org/10.1007/978-3-319-08344-5_1
https://doi.org/10.1007/978-3-319-29814-6_9
https://doi.org/10.1007/978-3-319-29814-6_9

Categorising and Comparing Cluster-Based
DPA Distinguishers

Xinping Zhou1,2,3(B), Carolyn Whitnall3, Elisabeth Oswald3, Degang Sun1,2,
and Zhu Wang1,2

1 Institute of Information Engineering, Chinese Academy of Sciences,
Beijing, People’s Republic of China

{zhouxinping,sundegang,wangzhu}@iie.ac.cn
2 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing, People’s Republic of China
3 Department of Computer Science, University of Bristol,

Merchant Venturers Building, Woodland Road, Bristol BS8 1UB, UK
{Carolyn.Whitnall,Elisabeth.Oswald}@bristol.ac.uk

Abstract. Side-channel distinguishers play an important role in differ-
ential power analysis, where real world leakage information is compared
against hypothetical predictions in order to guess at the underlying secret
key. A class of distinguishers which can be described as ‘cluster-based’
have the advantage that they are able to exploit multi-dimensional leak-
age samples in scenarios where only loose, ‘semi-profiled’ approximations
of the true leakage forms are available. This is by contrast with univari-
ate distinguishers exploiting only single points (e.g. correlation), and
Template Attacks requiring concise fitted models which can be overly
sensitive to mismatch between the profiling and attack acquisitions. This
paper collects together—to our knowledge, for the first time—the various
different proposals for cluster-based DPA (concretely, Differential Clus-
ter Analysis, First Principal Components Analysis, and Linear Discrimi-
nant Analysis), and shows how they fit within the robust ‘semi-profiling’
attack procedure proposed by Whitnall et al. at CHES 2015. We provide
discussion of the theoretical similarities and differences of the separately
proposed distinguishers as well as an empirical comparison of their per-
formance in a range of (real and simulated) leakage scenarios and with
varying parameters. Our findings have application for practitioners con-
strained to rely on ‘semi-profiled’ models who wish to make informed
choices about the best known procedures to exploit such information.

1 Introduction

It is well-established that the extent and accuracy of an attacker’s knowledge
about the data-dependent functional form of side-channel leakage impacts sub-
stantially on the effectiveness of a differential side-channel analysis (DPA)1.
1 The ‘P’ in DPA stands for Power but the principles of DPA extend equally to other

data-dependent observables such as electromagnetic radiation.

c© Springer International Publishing AG 2018
C. Adams and J. Camenisch (Eds.): SAC 2017, LNCS 10719, pp. 442–458, 2018.
https://doi.org/10.1007/978-3-319-72565-9_23

Categorising and Comparing Cluster-Based DPA Distinguishers 443

At one end of the spectrum are detailed, usually multivariate fitted models
acquired in a profiling stage during which the attacker has access to a device
identical to the target [4]; at the other, are reasoned guesses based on general
knowledge of circuit activity, such as Hamming weight or Hamming distance
assumptions [9]. The former can be used to perform Bayesian classification on
target traces. These can be highly efficient at recovering secret values in the case
that there is a close match between the profiling and the attack acquisitions, but
can fail altogether in the presence of discrepancies [5,11]. The latter are most
typically used in correlation attacks [3], which succeed as long as the guessed
model is reasonably proportional to the true form of the leakage, but are less
efficient (or entirely ineffective) the larger the divergence between model and
reality [15]. They are also inherently univariate, raising the question of how best
to combine relevant information from different points in the traces.

A form of ‘semi-profiling’, sitting somewhere between the two extremes, is
achieved by unsupervised clustering of leakage traces with known intermediates,
as proposed by Whitnall et al. at CHES 2015 [16]. This procedure assumes some
a priori access to measurements from a duplicate device, without necessarily
requiring the degree of control over or replicability of the acquisitions assumed
in a ‘fully profiled’ setting. Rather than outputting precise and detailed models,
these aim at rough arrangements of intermediate values into similarly-leaking
classes, which can be used as ‘nominal power models’ [17] in cluster- (AKA
partition- [13]) based DPA.

Several proposals for cluster-based DPA distinguishers have been made,
including the recent Linear Discriminant Analysis (LDA) based attack [8]. How-
ever, practitioners have so far had little guidance as to which of these might
be preferable for use in real attack scenarios when constrained to rely on ‘semi-
profiled’ nominal models. Most of the experimental investigations done previ-
ously have been performed under standard (non-profiled) leakage assumptions
such as the Hamming weight, and in leakage scenarios conforming well to those
assumptions. Further, each new cluster-based distinguisher has typically been
compared against correlation-based DPA (a popular benchmark) rather than
against existing proposals of a similar nature; to the best of our knowledge,
there does not yet exist a study collecting together all of these conceptually
similar methodologies, as we aim to do here. We explore and explain the points
on which the different distinguishers differ and, by integrating them within the
clustering-based semi-profiling attack procedure of [16], are able to empirically
test their performance for a wider range of leakage scenarios and prior knowledge
assumptions than previously attempted, thus arriving at a clearer picture of the
best options for semi-profiling adversaries and evaluators.

The rest of the paper proceeds as follows: Sect. 2 covers the preliminaries of
DPA generally, cluster-based DPA in particular, and the application of unsuper-
vised clustering for building the semi-profiled power models used by cluster-based
DPA. In Sect. 3 the four distinguishers are empirically tested in one hardware and
one software leakage scenario, as parameters vary. We also test them against sim-
ulated leakage with increasing levels of Gaussian noise. Section 4 discusses some

444 X. Zhou et al.

of the reasons for the difference in performance from a theoretical perspective,
and Sect. 5 concludes.

2 Preliminaries

2.1 Differential Power Analysis

We consider a ‘standard DPA attack’ scenario as defined in [10], and briefly
explain the underlying idea as well as introduce the necessary terminology
here. We assume that the power consumption P = {P1, ..., PT } of a crypto-
graphic device (as measured at time points {1, ..., T}) depends, for at least some
τ ⊂ {1, ..., T}, on some internal value (or state) Fk∗(X) which we call the tar-
get : a function Fk∗ : X → Z of some part of the known plaintext—a random

variable X
R∈ X—which is dependent on some part of the secret key k∗ ∈ K.

Consequently, we have that Pt = Lt ◦ Fk∗(X) + εt, t ∈ τ , where Lt : Z → R

describes the data-dependent leakage function at time t and εt comprises the
remaining power consumption which can be modeled as independent random
noise (this simplifying assumption is common in the literature—see, again, [10]).
The attacker has N power measurements corresponding to encryptions of N
known plaintexts xi ∈ X , i = 1, . . . , N and wishes to recover the secret key
k∗. The attacker can accurately compute the internal values as they would be
under each key hypothesis {Fk(xi)}N

i=1, k ∈ K and uses whatever information
he possesses about the true leakage functions Lt to construct a prediction model
(or models) Mt : Z → Mt.

A distinguisher D is some function which can be applied to the measurements
and the hypothesis-dependent predictions in order to quantify the correspon-
dence between them, the intuition being that the predictions under a correct key
guess should give more information about the true trace measurements than an
incorrect guess. For a given such comparison statistic, D, the theoretic attack vec-
tor is D = {D(L◦Fk∗(X)+ε,M ◦Fk(X))}k∈K, and the estimated vector from a
practical instantiation of the attack is D̂N = {D̂N (L◦Fk∗(x)+e,M ◦Fk(x))}k∈K
(where x = {xi}N

i=1 are the known inputs and e = {ei}N
i=1 is the observed noise).

Then the attack is o-th order theoretically successful if #{k ∈ K : D[k∗] ≤
D[k]} ≤ o and o-th order successful if #{k ∈ K : D̂N [k∗] ≤ D̂N [k]} ≤ o.

2.2 Cluster-Based Distinguishers

Differential Cluster Analysis. Differential Cluster Analysis (DCA) was pro-
posed by Batina et al. in [2]. The main idea of DCA is that the hypothesised
cluster arrangement (M ◦ Fk(X))) arising from the correct key guess conforms
with the real power consumption, so that the between-cluster variance (or the
sum of the variances within each cluster) as the separation criterion would be
maximum (or minimum) when compared with the cluster arrangements arising
under other key hypotheses. The distinguisher score can be expressed as:

DDCA(k) =
∑

m∈M

∑

t∈τ ′
var({Pt,i|M ◦ Fk(xi) = m})2 (1)

Categorising and Comparing Cluster-Based DPA Distinguishers 445

where {Pt,i}N
i=1 is the power traces, τ ′ is the attacker’s best knowledge about τ

(one hopes that τ ′ ∩τ �= ∅), M is a nominal approximation (taking values in M)
for the leakage output by a power model, and nm = #{xi|M ◦ Fk(xi) = m}, i.e.
the number of observations in the trace set for which the predicted cluster label
is m. An alternative separation criterion, also suggested in [2], is the variance
ratio of [13]:

DDCA-VR(k) =

∑
t∈τ ′

var({Pt,i}N
i=1)

2

1
N

∑
m∈M

nm

∑
t∈τ ′

var({Pt,i|M ◦ Fk(xi) = m})2
, (2)

First Principal Components Analysis. Principal component analysis
(PCA) is a popular method for unsupervised dimensionality reduction. An N×T
matrix is orthogonally transformed so that the T columns in the new matrix are
linearly uncorrelated and sorted in decreasing order of variance. By construction,
the columns are the eigenvectors of the covariance matrix, sorted according to
the size (largest to smallest) of the corresponding eigenvalues λ1, . . . , λT . The
first q < T of these columns maximise (w.r.t. all other N × q transformations)
the total variance preserved whilst minimising the mean squared reconstruction
error

∑T
i=q+1 λi. The hope is that all of the ‘important’ information will be

concentrated into a small number of components.
First Principal Components Analysis (FPCA) as a distinguisher for SCA is

proposed by Souissi et al. in [12]. The procedure is to sort the total power con-
sumption {Pt,i}N

i=1 into different clusters {{Pt,i} |M ◦ Fk(xi) = m, t ∈ τ ′} under
the key hypothesis k and power model M2. Mean vectors are computed within
each cluster and combined into a matrix upon which PCA is subsequently per-
formed. The FPCA distinguisher score is defined as the sum of the first m
eigenvalues λ1, . . . , λT associated with the PCA transformation.

Linear Discriminant Analysis. Linear Discriminant Analysis (LDA)
is another widely-used—in this case, supervised—dimensionality reduction
method. It seeks the directions along which the projected data displays large
between-cluster distances and small within-cluster distances. Suppose the orig-
inal N × T size data, which is already sorted into p different clusters with jth

(1 ≤ j ≤ p) cluster Cj has nj vectors (
p∑

j=1

nj = N). The mean vector of the whole

data is μ and the mean vector of jth cluster is μj . The projection direction ω is
given by,

SBω = λSW ω (3)

where SB =
∑p

j=1 Nj(μj − μ)T (μj − μ), SW =
∑p

j=1

∑
x∈Cj

(x − μj)
T (x − μj)

represents the between-cluster scatter matrix and within-cluster scatter matrix
2 Because the hypothesised class labels are used to perform FPCA, it is no longer

‘unsupervised’ relative to that information.

446 X. Zhou et al.

respectively (for details see [6]). Performing LDA amounts to calculating the
generalized eigenvalues λ1, . . . , λT ′ (from largest to smallest and T ′ ≤ T) and
the corresponding generalized eigenvectors eigenvector ω1, . . . , ωT ′ .

The use of LDA as a DPA distinguisher is proposed by Mahmudlu et al. in
[8]. Similar in procedure to FPCA, LDA-based DPA operates as follows: arrange
the power consumption traces into clusters according to the key hypothesis and
the power model; perform LDA on the labeled clusters; extract the first (largest)
generalized eigenvalue as the distinguisher score for the key hypothesis.

2.3 Unsupervised Clustering for Semi-Profiled Power Models

Unsupervised clustering for robust semi-profiled power models was proposed
by Whitnall et al. in [16]. The idea is to learn meaningful groupings of known
intermediates displaying similar leakage characteristics. It can be regarded as a
tradeoff between a non-profiled power model which can be easily used for attacks
but might not precisely describe the power consumption and the profiled power
model which can precisely describe the power consumption but might not be
easily used in attacks. The procedure for semi-profiled modelling is as follows.
First, sort the Np w-width (subset of τ) profiling traces into different clusters
according to the intermediate value Fk∗(xi) (F, k∗, xi are known in the profiling
phase). Second, the mean vector of each cluster is used to represent the cluster
and PCA is performed to concentrate the relevant leakage information into fewer
dimensions. Finally, an unsupervised clustering method such as K-means or
hierarchical clustering is used to learn a partitioning on the reduced data. Thus,
the intermediate values are mapped onto K cluster labels. This is then the power
model, which can be paired with any cluster-based distinguisher (i.e. one which
operates on a so-called ‘nominal’ model) in a (multivariate) attack phase.

3 Performance Evaluation

As demonstrated in [16], the parameters have some influence on the performance
of the distinguishers. For the purpose of comprehensive comparison, we investi-
gate the performance of the clustering distinguishers under different realizations
of these parameters in this paper:

– The number of profiling power traces Np used to profile the power model.
– The window width of profiling traces wp and the window width of attacking

traces wa.
– The number of clusters K.

We also experiment with different leakage settings. We evaluate the per-
formance of the clustering distinguishers on traces acquired from two unpro-
tected implementations of AES—one software, running on an ARM microcon-
troller (10,000 traces total); one hardware, designed for an RFID-type system
(5,000 traces total). Our chosen evaluation metric is the mean rank of the correct
subkey [14].

Categorising and Comparing Cluster-Based DPA Distinguishers 447

3.1 Software Scenario

Influence of Number of Profiling Traces Np . First, we consider the influ-
ence of the profiling sample size on the performance of the clustering distin-
guishers. For the software implementation, the attack intermediate value is the
output of the first S-box. We denote the DCA distinguisher, variance ratio-based
DCA distinguisher, FPCA distinguisher, LDA distinguisher by DCA, DCA-VR,
FPCA and LDA respectively in the experimental results graphs hereafter. Since
Np is the only parameter under test here, we fix the window width of profil-
ing and attack traces to 20, and restrict the number of clusters K to be no
larger than 10, allowing the clustering procedure to test different values of K
and choose the one producing the largest mean silhouette index (SI) as per [16]3.
Figure 1 shows the guessing entropies of different clustering distinguishers under
the clustering power models as profiled using different numbers of samples.

We first observe that the LDA distinguisher—the most recent to have been
introduced for the purposes of side-channel key recovery—is actually less effi-
cient than its predecessors, for all tested profiling sample sizes. A particular
drawback of LDA is that it needs a certain number (and spread) of attack traces
to return a meaningful distinguishing score; if samples are too small to evidence
within-group scatter then the computations entail division by zero, leading to
eigenvalues of ‘infinite’ value. We assign the maximum rank in such instances,
which amounts to concluding that the attack has returned no information about

0 100 200 300
0

50

100

150

200

250
Profile sample: 200

Attack sample

M
ea

n
su

bk
ey

 ra
nk

0 50 100 150
0

50

100

150

200

250
Profile sample: 500

Attack sample

M
ea

n
su

bk
ey

 ra
nk

0 50 100 150
0

50

100

150

200

250
Profile sample: 1000

Attack sample

M
ea

n
su

bk
ey

 ra
nk

0 50 100 150
0

50

100

150

200

250
Profile sample: 4000

Attack sample

M
ea

n
su

bk
ey

 ra
nk

DCA DCA−VR LDA FPCA

Fig. 1. Mean subkey rank of clustering distinguishers against the software implemen-
tation, as profiling sample size varies. (Window width: 20; reps: 100).

3 The silhouette index is defined for the ith object as Si = bi−ai
max(ai,bi)

, where ai is the

average distance from the ith object to the other objects in the same cluster, and bi
is the minimum (over all clusters) average distance from the ith object to the objects
in a different cluster.

448 X. Zhou et al.

Table 1. Mean number of ‘infinite’ scores returned by the LDA distinguisher as profile
and attack sample sizes vary (reps: 100, width: 20).

the subkey. Table 1 reports the scale of the problem, which especially dimin-
ishes the ability for the distinguisher to succeed in attack sample sizes of 25 or
smaller, regardless of the size of the profiling sample. In Sect. 4 we examine this
phenomenon in more detail and explain why it is an inevitable feature of LDA.

As for the other distinguishers, when the profiling sample size is not sufficient
(e.g. 200), DCA-VR (to our knowledge, the earliest of the three, dating back
to 2008 [13]) appears to achieve fractionally better outcomes than DCA and
FPCA. But for larger profiling samples (sufficient to profile the power model
more accurately), the results of DCA, DCA-VR, and FPCA are almost the
same.

Influence of Window Widths wp and wa . We then test the influence of the
widths of the profiling and attack trace windows (wp and wa respectively). As
is clear from the previous subsection, more profiling traces will lead to better
results, so for this part of the analysis we fix the number of profiling traces at
4000. Again, the number of clusters is not assigned but is constrained to be no
larger than 10. The values of wp and wa we test are {4, 10, 20, 40}.

First, we consider the scenario in which the width of the profiling trace
window is equal to that of the attacking trace window (wp = wa). The results are
shown in Fig. 2. It seems that the DCA-VR is the most stable distinguisher as
the window widths vary. The efficiencies of the DCA and FPCA distinguishers
are almost equal. Both of them perform better when the widths become wider,
in contrast with the LDA distinguisher, which performs worse as the widths
increase.

Next, we focus on the scenario in which the width of the profiling window is
not equal to that of the attacking window. Although we test all 4 × 4 pairwise
combinations, for the purposes of presentation we focus on profiling widths wp

4 and 20, in each case varying wa as previously.
The results are shown in Figs. 3 and 4. We observe that the DCA-VR per-

forms best when the profiling window is narrow. The profiling window width
has more of an impact than the attacking window width for the DCA-VR, DCA
and FPCA distinguishers according to these two figures (the same holds for
the remaining figures which are not presented here due to space restrictions).
However, this is opposite for the LDA distinguisher, which is affected more by
the window width of the attack traces than that of the profiling traces.

Categorising and Comparing Cluster-Based DPA Distinguishers 449

0 50 100 150
0

20

40

60

80

100

120

140
wp: 4, wa:4

Attack sample

M
ea

n
su

bk
ey

 ra
nk

0 50 100 150
0

50

100

150

200

250
wp: 10, wa:10

Attack sample

M
ea

n
su

bk
ey

 ra
nk

0 50 100 150
0

50

100

150

200

250
wp: 20, wa:20

Attack sample

M
ea

n
su

bk
ey

 ra
nk

0 50 100 150
0

50

100

150

200

250
wp: 40, wa:40

Attack sample

M
ea

n
su

bk
ey

 ra
nk

DCA DCA−VR LDA FPCA

Fig. 2. Mean subkey rank of clustering distinguishers against software implementation,
as window widths vary (reps: 100, wp: window width of profiling traces, wa: window
width of attacking traces).

0 50 100 150
0

20

40

60

80

100

120

140
wp: 4, wa:4

Attack sample

M
ea

n
su

bk
ey

 ra
nk

0 50 100 150
0

50

100

150

200

250
wp: 4, wa:10

Attack sample

M
ea

n
su

bk
ey

 ra
nk

0 50 100 150
0

50

100

150

200

250
wp: 4, wa:20

Attack sample

M
ea

n
su

bk
ey

 ra
nk

0 50 100 150
0

50

100

150

200

250
wp: 4, wa:40

Attack sample

M
ea

n
su

bk
ey

 ra
nk

DCA DCA−VR LDA FPCA

Fig. 3. Mean subkey rank of clustering distinguishers against software implementation,
for a profiling window of width 4 as attacking window widths vary (reps: 100, wp:
window width of profiling traces, wa: window width of attacking traces).

Influence of Number of Clusters K. In the above subsections, rather than
fixing the number of clusters K we let the clustering algorithm choose the num-
ber for each power model according to the SI. However, an ‘optimal’ clustering
according to the SI need not necessarily imply optimality with regards to DPA
performance. We therefore next explore how varying the number of clusters (from
2 to 8) affects the performance of the cluster-based distinguishers. As before, we

450 X. Zhou et al.

0 50 100 150
0

50

100

150
wp: 20, wa:4

Attack sample

M
ea

n
su

bk
ey

 ra
nk

0 50 100 150
0

50

100

150

200

250
wp: 20, wa:10

Attack sample

M
ea

n
su

bk
ey

 ra
nk

0 50 100 150
0

50

100

150

200

250
wp: 20, wa:20

Attack sample

M
ea

n
su

bk
ey

 ra
nk

0 50 100 150
0

50

100

150

200

250
wp: 20, wa:40

Attack sample
M

ea
n

su
bk

ey
 ra

nk

DCA DCA−VR LDA FPCA

Fig. 4. Mean subkey rank of clustering distinguishers against software implementation,
for a profiling window of width 20 as attacking window widths vary (reps: 100, wp:
window width of profiling traces, wa: window width of attacking traces).

fix the number of profiling traces at 4000, and we fix the profiling and attacking
window widths at 20. The result is shown in Fig. 5. We clearly see that DCA-VR
still performs best whatever the value of K. The performance of DCA is almost
the same as that of FPCA, and both decrease as K increases. By contrast, the
value of K seems to barely influence the performance of DCA-VR and LDA.

0 50 100 150
0

50

100

150

200

250
Number of clusters: 2

Attack sample

M
ea

n
su

bk
ey

 ra
nk

0 50 100 150
0

50

100

150

200

250

300
Number of clusters: 4

Attack sample

M
ea

n
su

bk
ey

 ra
nk

0 50 100 150
0

50

100

150

200

250

300
Number of clusters: 6

Attack sample

M
ea

n
su

bk
ey

 ra
nk

0 50 100 150
0

50

100

150

200

250

300
Number of clusters: 8

Attack sample

M
ea

n
su

bk
ey

 ra
nk

DCA DCA−VR LDA FPCA

Fig. 5. Mean subkey rank of clustering distinguishers against software implementation,
as the numbers of clusters varies (reps: 100, window width of profiling traces: 20,
window width of attacking traces: 20).

Categorising and Comparing Cluster-Based DPA Distinguishers 451

3.2 Hardware Scenario

Influence of Number of Profiling Traces Np . We now move to consider the
practical performance of the cluster-based distinguishers in the hardware setting.
Preliminary investigations of the data acquired from the hardware implementa-
tion revealed considerable variation in the exploitability of the different S-boxes;
we picked one (S-box 14) which was more amenable to attack in order to report
interesting (but clearly not definitive) results. We first investigate the influence
of the number of profiling traces Np on the performance of the distinguishers. As
done in the software scenario, we fix the window width (to 10 this time, owing to
the coarser granularity of leakages from hardware, which typically runs in fewer
clock cycles), and allow the cluster algorithm to select up to 10 clusters according
to the SI. Figure 6 shows the experimentally observed performance of these dis-
tinguishers given different numbers of profiling traces to profile the power model.
Unlike the result in the software scenario, the DCA-VR is no longer the most
efficient distinguisher. However, LDA still performs the least efficiently. Besides,
as in the software scenario, distinguishing scores of ‘infinite’ value are frequently
returned when the sample size is small; as before we interpret such outcomes as
a failure to deduce anything about the key.

0 100 200 300
0

50

100

150

200
Profile sample: 200

Attack sample

M
ea

n
su

bk
ey

 ra
nk

0 50 100 150
0

50

100

150

200

250
Profile sample: 500

Attack sample

M
ea

n
su

bk
ey

 ra
nk

0 50 100 150
0

50

100

150

200

250
Profile sample: 1000

Attack sample

M
ea

n
su

bk
ey

 ra
nk

0 50 100 150
0

50

100

150

200

250
Profile sample: 4000

Attack sample

M
ea

n
su

bk
ey

 ra
nk

DCA DCA−VR LDA FPCA

Fig. 6. Mean subkey rank of clustering distinguishers against the hardware implemen-
tation, as profiling sample size varies. (Window width: 10; reps: 100).

Influence of Window Widths wp and wa . As before, we investigate the
influence of window width on the performance of cluster-based distinguishers
against hardware leakages. The power model is profiled using 4000 power traces
with the number of clusters constrained to be no larger than 10, just as in the
software scenario. The values of wp and wa we test are {4, 10, 20, 40}. First,
we fix the attack window width wa equal to the profiling window width wp.

452 X. Zhou et al.

0 50 100 150
0

50

100

150
wp: 4, wa:4

Attack sample

M
ea

n
su

bk
ey

 ra
nk

0 50 100 150
0

50

100

150

200

250
wp: 8, wa:8

Attack sample

M
ea

n
su

bk
ey

 ra
nk

0 50 100 150
0

50

100

150

200

250
wp: 10, wa:10

Attack sample

M
ea

n
su

bk
ey

 ra
nk

0 50 100 150
0

50

100

150

200

250
wp: 12, wa:12

Attack sample
M

ea
n

su
bk

ey
 ra

nk

DCA DCA−VR LDA FPCA

Fig. 7. Mean subkey rank of clustering distinguishers against hardware implementa-
tion, as window widths vary (reps: 100, wp: window width of profiling traces, wa:
window width of attacking traces).

The experimental result is indicated in Fig. 7. Then, the profiling window width
wp is fixed at 4 and then 10, while the attacking window width wa is allowed to
vary. The results are presented in Figs. 8 and 9.

0 50 100 150
0

50

100

150
wp: 4, wa:4

Attack sample

M
ea

n
su

bk
ey

 ra
nk

0 50 100 150
0

50

100

150

200

250
wp: 4, wa:8

Attack sample

M
ea

n
su

bk
ey

 ra
nk

0 50 100 150
0

50

100

150

200

250
wp: 4, wa:10

Attack sample

M
ea

n
su

bk
ey

 ra
nk

0 50 100 150
0

50

100

150

200

250
wp: 4, wa:12

Attack sample

M
ea

n
su

bk
ey

 ra
nk

DCA DCA−VR LDA FPCA

Fig. 8. Mean subkey rank of clustering distinguishers against hardware implementa-
tion, for a profiling window of width 4 as attacking window widths vary (reps: 100, wp:
window width of profiling traces, wa: window width of attacking traces).

Categorising and Comparing Cluster-Based DPA Distinguishers 453

0 50 100 150
0

50

100

150
wp: 10, wa:4

Attack sample

M
ea

n
su

bk
ey

 ra
nk

0 50 100 150
0

50

100

150

200

250
wp: 10, wa:8

Attack sample

M
ea

n
su

bk
ey

 ra
nk

0 50 100 150
0

50

100

150

200

250
wp: 10, wa:10

Attack sample

M
ea

n
su

bk
ey

 ra
nk

0 50 100 150
0

50

100

150

200

250
wp: 10, wa:12

Attack sample

M
ea

n
su

bk
ey

 ra
nk

DCA DCA−VR LDA FPCA

Fig. 9. Mean subkey rank of clustering distinguishers against hardware implementa-
tion, for a profiling window of width 10 as attacking window widths vary (reps: 100,
wp: window width of profiling traces, wa: window width of attacking traces).

Influence of the Number of Clusters K. Figure 10 shows the distinguish-
ers’ performance when the power models are constructed to have different (fixed)
numbers of clusters (keeping the window widths at 10). We observe that DCA,
DCA-VR, and LDA distinguishers are stable as the number of clusters changes,
with the relative performance summarised as DCA>DCA-VR>LDA. The per-
formance of FPCA deteriorates as the number of clusters increases, just as in
the software setting.

3.3 Influence of Noise

Since LDA has been promoted as especially useful in scenarios exhibiting high
levels of noise [8], we now explore the performance of all four distinguishers
as noise increases. To do this, we simulate traces by adding Gaussian noise of
increasing magnitude to the Hamming weight of intermediate value.

From Fig. 11 it can be observed that FPCA is detrimentally affected by the
increase of noise, but the poor performance of LDA relative to DCA and DCA-
VR is unchanged as the noise level increases. This is explained in part by the
PCA dimensionality reduction step that all of the distinguishers share: LDA may
have an advantage over methods that don’t pre-process leakages to strengthen
the signal, but among known approaches following a similar procedure it remains
less efficient than the alternatives. Besides, the result of FPCA under Hamming
weight model (9 clusters) also confirms the previous finding that it is affected
by the number of cluster more (see Figs. 5 and 10).

454 X. Zhou et al.

0 50 100 150
0

50

100

150

200

250
Number of clusters: 2

Attack sample

M
ea

n
su

bk
ey

 ra
nk

0 50 100 150
0

50

100

150

200

250
Number of clusters: 4

Attack sample

M
ea

n
su

bk
ey

 ra
nk

0 50 100 150
0

50

100

150

200

250
Number of clusters: 6

Attack sample

M
ea

n
su

bk
ey

 ra
nk

0 50 100 150
0

50

100

150

200

250
Number of clusters: 8

Attack sample
M

ea
n

su
bk

ey
 ra

nk

DCA DCA−VR LDA FPCA

Fig. 10. Mean subkey rank of clustering distinguishers against hardware implementa-
tion, as the numbers of clusters varies (reps: 100, window width of profiling traces: 10,
window width of attacking traces: 10).

0 100 200 300 400
0

20

40

60

80

100

120
SNR=1/8

Attack sample

M
ea

n
su

bk
ey

 ra
nk

0 200 400 600
0

20

40

60

80

100

120
SNR=1/16

Attack sample

M
ea

n
su

bk
ey

 ra
nk

0 500 1000 1500 2000
0

20

40

60

80

100
SNR=1/32

Attack sample

M
ea

n
su

bk
ey

 ra
nk

0 1000 2000 3000
0

20

40

60

80

100

120
SNR=1/128

Attack sample

M
ea

n
su

bk
ey

 ra
nk

DCA DCA−VR LDA FPCA

Fig. 11. Mean subkey rank of clustering distinguishers against simulated traces as noise
varies (reps: 100, window width: 20).

4 Discussion

In this section, we unpack some of the theoretical similarities and differences of
the cluster-based distinguishers.

Categorising and Comparing Cluster-Based DPA Distinguishers 455

4.1 Similarities

The basic operating procedure is the same for all four of the distinguishers
considered: first partition the traces into different clusters {Cj}p

j=1 according
to the key guess and the power model, then compute an indicator of ‘cluster
quality’ to evaluate the extent to which the particular key guess produces a
good partition. This strategy takes advantage of the fact that, for a correct key
guess, the arrangement produced by the power model should correspond with
the true cluster structure of the leakage measurements, so that the indicator
value stands out by comparison with the wrong key guesses.

Specifically, for DCA, if the partition is correct, all traces within one cluster
Cj would be ‘close’ to each other. Thus the indicator – the sum of the variances
of each cluster – would be low for the correct key candidate. The DCA-VR is
another kind of DCA, the indicator is the ratio between the overall variance
and the weighted mean of the variances of each cluster, which would be high
for the correct key candidate. FPCA exploits the fact that if the partition is
correct then the mean traces within each cluster Cj are well separated from
each other. Performing PCA on these mean traces finds the directions along
which they exhibit the greatest dispersion. Since the eigenvalues associated with
the projection directions measure this dispersion, the first (i.e. the largest) of
these is chosen as the indicator; it should be maximal under the correct key
guess. Similarly, LDA finds the directions along which the clusters have small
within-cluster scatter and large between-cluster scatter; the ratio of the latter
to the former is the indicator in this instance and should (again) be largest for
the correct key.

4.2 Differences

LDA. We can see from all the experimental results that the LDA distinguisher’s
performance is much poorer than that of the others when the attack sam-
ple size is small (e.g. in the top left figure of Fig. 1, the mean subkey rank
of LDA is about 200, compared with about 150 for the other distinguishers,
given 5 attacking traces). As explained before, the reason for this is essen-
tially that a certain number of observations are needed before the indicator
can be properly computed. From Eq. (3) we are reminded that the indicator
used by the LDA distinguisher, λ, is the eigenvalue of matrix S−1

W SB , where
SW =

∑p
j=1

∑
x∈Cj

(x − μj)
T (x − μj). Let Σj be the covariance matrix of Cj . We

get that
∑

x∈Cj

(x − μj)
T (x − μj) = (nj −1)Σj . When the number of traces in the

jth cluster nj is smaller than the width of the traces wa, the covariance matrix
is a singular matrix. In this case, the SW , as the sum of a number of singular
matrices, might be still a singular matrix, in which case its inverse does not exist.

Therefore, LDA is not well-suited to attack small sized samples. It can be
useful in the scenario that the trace window width is small, but it seldom out-
performs its (pre-dated) rivals.

456 X. Zhou et al.

DCA Vs. FPCA. The indicator of the DCA distinguisher in Sect. 2.2 can be
rewritten as follows:

DDCA(k) =
p∑

j=1

nj ||μj − μ||2 (4)

where the symbols are defined as previously, and || · ||2 denotes the squared
Euclidean norm (||z1, z2, ..., zk||2 =

∑k
i=1 z2i). Equation (1) exploits the within-

cluster variance; Eq. (4) exploits the between-cluster variance.
Since the sum of within-cluster variance and between-cluster variance is con-

stant, minimizing (1) is exactly equivalent to maximizing (4). The indicator of
FPCA λ is given by Σω = λω, where Σ is the covariance matrix of {μj}p

j=1.

Σ =
p∑

j=1

(μj − μ)T (μj − μ) (5)

Thus, both FPCA and DCA are related to the between-cluster variance. In
the ideal environment4, their performances are almost identical.

DCA Vs. DCA-VR. From Eqs. (1) and (2) it can be seen that the only
material difference between DCA and DCA-VR is that DCA takes the total
variance of each cluster while DCA-VR takes the weighted mean of the variances
of each cluster, because the numerator of Eq. (2)

∑
t∈τ ′

var({Pt,i}N
i=1)

2 is constant

across all key hypotheses (i.e. no matter what the partition). In DCA-VR, two
variables are monitored: the partition, and the cardinality of each cluster nj .
Under a correct key guess, these are both correct; otherwise, they are both wrong.
So, in an ideal environment, the true key hypothesis is more clearly distinguished
from the alternatives than by DCA, which only monitors the partition; in other
words, DCA-VR is a ‘reinforced’ DCA that benefits from (correct or otherwise)
information on the cluster sizes.

However, for the hardware implementation, the noise is large and the power
model is not as precise as in the software one, which leads to a non-ideal environ-
ment. The error on the cluster variance induced by the noise and the partition
would be amplified by the weighting according to nj . Thus, against the hardware
implementation, the performance of DCA-VR is slightly less efficient than DCA.

5 Conclusion

Our empirical comparison of the various different suggestions for cluster-based
DPA has revealed that the variance ratio (DCA-VR) – to our knowledge, the
earliest proposal, dating back to Standaert et al. in 2008 [13] – consistently either
is, or at least closely rivals, the best performing distinguisher of its type. This is
observed across the two example scenarios tested and as implementation param-
eters vary. By contrast, FPCA and DCA (which are conceptually very close)
4 For the software implementation, the influence of noise is relatively small.

Categorising and Comparing Cluster-Based DPA Distinguishers 457

perform strongly in some scenarios (especially in the case of hardware leakages,
where they marginally outperform DCA-VR) but are less robust to changes in
parameters. The most recent proposal, LDA, is disadvantaged by the require-
ment for a certain minimum number of data points before the distinguishing
scores can be computed, and is typically less efficient and less robust than its
competitors, even in high noise scenarios where it has been especially advocated
for use. We therefore conclude that, whilst it is interesting to seek out alternative
means of exploiting semi-profiled leakage information, for the time being it would
seem that established methodologies remain the best option for practitioners.

Acknowledgements and Disclaimer. The authors would like to thank Thomas
Korak, Thomas Plos and Michael Hutter at TU Graz for supplying us with data
from the TAMPRES project [1,7]. This work was supported by the National Natu-
ral Science Foundation of China (No. 61372062), and the European Union’s H2020
Programme under grant agreement number ICT-731591 (REASSURE). No research
data was created for this paper.

References

1. Tampres: Tamper resistant sensor nodes (2009–2013). http://www.tampres.eu
2. Batina, L., Gierlichs, B., Lemke-Rust, K.: Differential cluster analysis. In: Clavier,

C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 112–127. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-04138-9 9

3. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5 2

4. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36400-5 3

5. Elaabid, M., Guilley, S.: Portability of templates. J. Cryptographic Eng. 2(1), 63–
74 (2012)

6. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann.
Eugenics 7(2), 179–188 (1936)

7. Korak, T., Plos, T., Hutter, M.: Attacking an AES-enabled NFC tag: implications
from design to a real-world scenario. In: Schindler, W., Huss, S.A. (eds.) COSADE
2012. LNCS, vol. 7275, pp. 17–32. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29912-4 2

8. Mahmudlu, R., Banciu, V., Batina, L., Buhan, I.: LDA-based clustering as a side-
channel distinguisher. In: Hancke, G.P., Markantonakis, K. (eds.) RFIDSec 2016.
LNCS, vol. 10155, pp. 62–75. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-62024-4 5

9. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards. Springer, New York (2007). https://doi.org/10.1007/978-0-387-
38162-6

10. Mangard, S., Oswald, E., Standaert, F.X.: One for all-all for one: unifying standard
differential power analysis attacks. IET Inf. Secur. 5(2), 100–110 (2011)

http://www.tampres.eu
https://doi.org/10.1007/978-3-642-04138-9_9
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1007/978-3-642-29912-4_2
https://doi.org/10.1007/978-3-642-29912-4_2
https://doi.org/10.1007/978-3-319-62024-4_5
https://doi.org/10.1007/978-3-319-62024-4_5
https://doi.org/10.1007/978-0-387-38162-6
https://doi.org/10.1007/978-0-387-38162-6

458 X. Zhou et al.

11. Renauld, M., Standaert, F.-X., Veyrat-Charvillon, N., Kamel, D., Flandre, D.: A
formal study of power variability issues and side-channel attacks for nanoscale
devices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 109–
128. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4 8

12. Souissi, Y., Nassar, M., Guilley, S., Danger, J.-L., Flament, F.: First principal
components analysis: a new side channel distinguisher. In: Rhee, K.-H., Nyang,
D.H. (eds.) ICISC 2010. LNCS, vol. 6829, pp. 407–419. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-24209-0 27

13. Standaert, F.-X., Gierlichs, B., Verbauwhede, I.: Partition vs. comparison side-
channel distinguishers: an empirical evaluation of statistical tests for univariate
side-channel attacks against two unprotected cmos devices. In: Lee, P.J., Cheon,
J.H. (eds.) ICISC 2008. LNCS, vol. 5461, pp. 253–267. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-00730-9 16

14. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-01001-9 26

15. Whitnall, C., Oswald, E.: A fair evaluation framework for comparing side-channel
distinguishers. J. Cryptographic Eng. 1(2), 145–160 (2011)

16. Whitnall, C., Oswald, E.: Robust profiling for DPA-style attacks. In: Güneysu, T.,
Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 3–21. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-48324-4 1

17. Whitnall, C., Oswald, E., Standaert, F.-X.: The myth of generic DPA-and the
magic of learning. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 183–
205. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04852-9 10

https://doi.org/10.1007/978-3-642-20465-4_8
https://doi.org/10.1007/978-3-642-24209-0_27
https://doi.org/10.1007/978-3-642-00730-9_16
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-662-48324-4_1
https://doi.org/10.1007/978-3-319-04852-9_10

Author Index

Abdelkhalek, Ahmed 423
Akiyama, Koichiro 215
AlTawy, Riham 129
Azarderakhsh, Reza 45, 64, 281

Bajard, Jean-Claude 151
Banegas, Gustavo 325
Bernstein, Daniel J. 235, 325
Biasse, Jean-François 374
Bonnetain, Xavier 394

Chuengsatiansup, Chitchanok 235

Ducas, Léo 3

Eaton, Edward 263
Eynard, Julien 151

Faz-Hernández, Armando 172

Gong, Guang 129
Goto, Yasuhiro 215
Grémy, Laurent 85
Groot Bruinderink, Leon 299
Guillevic, Aurore 85

Hanaoka, Goichiro 215
Hasan, Anwar 151
He, Morgan 129
Henry, Ryan 106
Hışıl, Hüseyin 172
Hülsing, Andreas 299

Jalali, Amir 281
Jao, David 45, 64

Kacsmar, Bailey 106
Koziel, Brian 64
Kwant, Robin 336

Lange, Tanja 235, 336
Leonardi, Christopher 45
Lin, Dongdai 23
López, Julio 172

Mandal, Kalikinkar 129
Martin, Daniel P. 407
Martins, Paulo 151
Montanaro, Ashley 407
Morain, François 85
Mozaffari-Kermani, Mehran 281

Nuida, Koji 215

Okumura, Shinya 215
Oliveira, Thomaz 172
Oswald, Elisabeth 407, 442

Perlner, Ray 355
Petzoldt, Albrecht 355
Plosker, Sarah 106

Rodríguez-Henríquez, Francisco 172
Rohit, Raghvendra 129

Saarinen, Markku-Juhani O. 192
Shepherd, Dan 407
Smith-Tone, Daniel 355
Sousa, Leonel 151
Sun, Degang 442

Takagi, Tsuyoshi 215
Thissen, Kimberley 336
Thomé, Emmanuel 85
Tolba, Mohamed 423

van Vredendaal, Christine 235

Wang, Zhu 442
Whitnall, Carolyn 442

Yang, Gangqiang 129
Yi, Hairong 23
Youssef, Amr M. 423
Yu, Yang 3

Zhou, Xinping 442
Zhu, Yuqing 23
Zucca, Vincent 151

	Preface
	SAC 2017
	Contents
	Discrete Logarithms
	Second Order Statistical Behavior of LLL and BKZ
	1 Introduction
	2 Preliminaries
	2.1 Notations and Basic Definitions
	2.2 Lattice Reduction: In Theory and in Practice
	2.3 Heuristics on Lattice Reduction

	3 Head and Tail
	3.1 Experiments
	3.2 Conclusion

	4 Local Correlations and Global Variance
	4.1 Experiments
	4.2 Conclusion

	5 Half Volume
	6 Performance of Simulator
	6.1 Experiments
	6.2 Conclusion

	A Proof of Corollary 1
	B Proof of Corollary 2
	C Proof of Corollary 3
	References

	Refinement of the Four-Dimensional GLV Method on Elliptic Curves
	1 Introduction
	2 A Brief Recall of GLV and GLS
	2.1 The GLV Method
	2.2 The GLS Curves
	2.3 Combination of GLS and GLV and the Twofold Cornacchia-Type Algorithm

	3 Improvement and Extension of the Twofold Cornacchia-Type Algorithm
	3.1 The Improved Twofold Cornacchia-Type Algorithm
	3.2 A Better Upper Bound
	3.3 Extension to 4-Dimensional GLS Curves over Fp4

	4 Relations of the Two 4-Dimensional GLV Methods on j-invariant 0 Elliptic Curves over Fp2
	5 Comparison
	6 Conclusion
	A Implementation I
	B Implementation II
	References

	Key Agreement
	Post-Quantum Static-Static Key Agreement Using Multiple Protocol Instances
	1 Introduction
	2 Multiple Instances of Key Agreement
	3 Multiple Instances of SIDH
	3.1 Preliminaries
	3.2 Supersingular Isogeny Diffie-Hellman Key Agreement
	3.3 k-SIDH Key Agreement Protocol
	3.4 Security Analysis and Key Size
	3.5 Other Applicable Post-Quantum Schemes and Future Work

	4 Conclusion
	References

	Side-Channel Attacks on Quantum-Resistant Supersingular Isogeny Diffie-Hellman
	1 Introduction
	2 Preliminaries
	2.1 Elliptic Curve Theory
	2.2 Isogeny Theory
	2.3 Side-Channel Analysis

	3 Supersingular Isogeny Diffie-Hellman Protocol
	3.1 Background
	3.2 SIDH Protocol
	3.3 SIDH Protocol Optimizations

	4 Refined Power Analysis Model for SIDH
	4.1 Targeting Static Keys in SIDH
	4.2 Zero-Value Representations in Quadratic Fields
	4.3 Zero-Values in Montgomery Curve Arithmetic

	5 Proposed Partial-Zero Attack on Three-Point Ladder
	5.1 Partial-Zero Attack Targeting Differential Addition
	5.2 Countermeasures

	6 Proposed Zero-Point Attack on Three-Point Ladder
	6.1 Zero-Point Attack with Points of Large Order
	6.2 Countermeasures

	7 Proposed Refined Power Analysis on Large-Degree Isogenies
	7.1 Using RPA on SIDH
	7.2 Zero-Value Isogeny Coefficient Attack
	7.3 Zero-Value Isogeny Point Attack
	7.4 Countermeasures

	8 Conclusion
	References

	Theory
	Computing Discrete Logarithms in Fp6
	1 Introduction
	1.1 XTR and Torus-Based Cryptography
	1.2 Pairing-Friendly Curves of Small Embedding Degree

	2 A Crash Course on NFS-DL
	2.1 Overview
	2.2 Relation Collection
	2.3 Algebraic Factorization
	2.4 Linear Algebra
	2.5 Computing Individual Logarithms

	3 Cyclic Extensions in Degree 6
	3.1 A Cyclic Degree 6 Family
	3.2 Cancellations of Virtual Logarithms

	4 Polynomial Selection for Fp6
	4.1 First Comparison of Polynomial Selection Methods
	4.2 Refined Comparison of Polynomial Selection Methods
	4.3 Optimizing JLSV1 Pairs of Polynomials

	5 Computations
	5.1 Individual Logarithms
	5.2 p6bd65
	5.3 p6dd22

	6 Cryptographic Implications
	References

	Computing Low-Weight Discrete Logarithms
	1 Introduction
	2 Mathematical Preliminaries
	3 Computing DLs with Low Hamming Weight
	3.1 The Basic Algorithm
	3.2 Improved Complexity via Interleaving
	3.3 The Coppersmith Algorithms
	3.4 Improved Complexity via Pascal's Lemma

	4 From Low Hamming Weight to Low Radix-b weight
	5 Related Work
	6 Cryptanalytic Applications
	7 Conclusion
	A Proofs of Basic Results
	A.1 Proof of Lemma 10
	A.2 Proof (sketch) of Theorem 15

	B Pseudocode
	References

	Efficient Implementation
	sLiSCP: Simeck-Based Permutations for Lightweight Sponge Cryptographic Primitives
	1 Introduction
	2 Specification of sLiSCP
	2.1 Description of Simecku-m
	2.2 Cryptographic Properties of Simecku-m
	2.3 The Permutation F
	2.4 Round and Step Constants

	3 Security Analysis
	3.1 Differential and Linear Cryptanalysis
	3.2 Meet/Miss in the Middle Distinguishers
	3.3 Integral and Zero-Sum Distinguishers
	3.4 Self Symmetry-Based Distinguishers

	4 Applications of sLiSCP
	4.1 Why the Sponge Framework?
	4.2 The sLiSCP Mode: AE and Hash

	5 Hardware Implementation and Results
	6 Concluding Remarks
	References

	Efficient Reductions in Cyclotomic Rings - Application to Ring-LWE Based FHE Schemes
	1 Introduction
	2 Background
	2.1 Residue Number System (RNS)
	2.2 Product of Elements in Rq
	2.3 RNS Variant of the FV and BGV Encryption Schemes
	2.4 Batching

	3 Improving Polynomial Reduction Modulo m
	3.1 Improving Barrett's Reduction for Cyclotomic Polynomials
	3.2 NTT-based Montgomery's Reduction

	4 Adaptation of FV and BGV to the Montgomery Representation
	4.1 Impact of the Montgomery Representation in FV
	4.2 Impact of the Montgomery Representation in BGV
	4.3 Overall Impact on Noise Growth
	4.4 Mixing Optimized Barrett and Montgomery Reductions

	5 Experimental Results
	6 Conclusion
	A Proofs
	A.1 Correctness of Algorithm1
	A.2 Proof of Lemma1
	A.3 Correctess of Algorithm4
	A.4 Proof of Lemma4

	B Size of "026B30D M-1"026B30D
	References

	How to (Pre-)Compute a Ladder
	1 Introduction
	2 The Diffie-Hellman Protocol
	3 The Curves
	4 The Scalar Multiplication Operation
	4.1 Left-to-Right Montgomery Ladder

	5 How to (Pre-)Compute a Ladder
	5.1 Right-to-Left Montgomery Ladder with Pre-computation
	5.2 Montgomery Differential Addition with Precomputation
	5.3 Differential Addition Formulas in Algorithm4
	5.4 Implementing the Pre-computable Ladder
	5.5 Comparison

	6 Software Implementation on a 64-Bit Architecture
	7 Performance Benchmark
	8 Conclusion
	References

	HILA5: On Reliability, Reconciliation, and Error Correction for Ring-LWE Encryption
	1 Introduction
	2 Ring-LWE Key Exchange and Key Encapsulation
	2.1 Noisy Diffie-Hellman in a Ring
	2.2 Reconciliation
	2.3 Formalization as a KEM

	3 New Reconciliation Method
	3.1 Even Safer Bits via Peikert's Reconciliation
	3.2 Instantiation and Failure Analysis

	4 Constant-Time Error Correction
	5 Instantiation and Implementation
	5.1 Encryption: From Noisy Diffie-Hellman to Noisy ElGamal
	5.2 Security
	5.3 Performance

	6 Conclusions
	A Algorithmic Definitions
	References

	Public Key Encryption
	A Public-Key Encryption Scheme Based on Non-linear Indeterminate Equations
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Algebraic Surface Cryptosystem

	3 Our Proposed Encryption Scheme
	3.1 Algorithms
	3.2 The Smallest-Solution Problem

	4 Security
	4.1 Security Assumption
	4.2 Possible for Attacks
	4.3 Computational Experiment

	5 Appropriate Parameter Values
	6 Conclusion
	A Further Discussion on Lattice Attacks
	A.1 Lattice-Decoding Attack
	A.2 Subfield-Lattice Attack

	B Maximum Coefficient of Noise Term e
	References

	NTRU Prime: Reducing Attack Surface at Low Cost
	1 Introduction
	1.1. Comparison to Previous Multiplication Speeds Aiming for High Security.
	1.2. Priority Dates and Additional Followup Work.

	2 Streamlined NTRU Prime: An Optimized Cryptosystem
	2.1. Parameters.
	2.2. Key Generation.
	2.3. Encapsulation.
	2.4. Decapsulation.

	3 The Design Space of Lattice-Based Encryption
	3.1. The Ring.
	3.2. The Public Key.
	3.3. Inputs and Ciphertexts.
	3.4. Key Generation and Decryption.
	3.5. Padding, KEMs, and the Choice of q.
	3.6. The Shape of Small Polynomials.

	4 Pre-quantum Security of Streamlined NTRU Prime
	4.1. Meet-in-the-Middle Attack.
	4.2. Streamlined NTRU Prime Lattice.
	4.3. Hybrid Security.
	4.4. Algebraic Attacks.

	5 Parameters
	6 Vectorized Polynomial Multiplication
	6.1. Sizes of Inputs and Intermediate Results.
	6.2. Choosing Haswell Multiplication Instructions.
	6.3. Karatsuba's Method.
	6.4. Other Multiplication Methods.

	References

	Signatures
	Leighton-Micali Hash-Based Signatures in the Quantum Random-Oracle Model
	1 Introduction
	1.1 The Quantum Random-Oracle Model
	1.2 The Multi-user Setting
	1.3 Our Contributions
	1.4 Related Work

	2 Scheme Description
	2.1 One-Time Scheme
	2.2 Full Scheme

	3 The (Quantum) Random Oracle
	3.1 Oracle Distinguishing and Marked Item Searching
	3.2 Second-Preimage Resistance with Adversary Prefixes
	3.3 Random Oracle Composition
	3.4 Undetectability

	4 Scheme Proof
	4.1 OTLMS Proof
	4.2 Security Proof for Full Version and in the Multi-user Setting

	5 Future Work and Discussion
	References

	Efficient Post-Quantum Undeniable Signature on 64-Bit ARM
	1 Introduction
	2 Preliminaries
	2.1 Isogenies and Kernels
	2.2 Supersingular Isogeny Undeniable Signature

	3 Implementation Parameters
	3.1 Projective Isogenies of Montgomery Curves
	3.2 Proposed Implementation-Friendly Primes
	3.3 Optimal Strategy for Large-Degree Isogeny Computation
	3.4 Protocol Implementation

	4 Fp Arithmetic on ARMv8
	4.1 Target Platform Architecture
	4.2 Finite Field Multiplication
	4.3 Finite Field Reduction
	4.4 Finite Field Inversion

	5 Implementation Results and Discussion
	6 Conclusion
	References

	``Oops, I Did It Again'' – Security of One-Time Signatures Under Two-Message Attacks
	1 Introduction
	2 The Model
	2.1 Digital Signature Schemes
	2.2 Security of Signature Schemes
	2.3 Formal Definitions

	3 Lamport's Scheme
	3.1 Scheme Description
	3.2 Security Under Two-Message Attacks

	4 Optimized Lamport
	4.1 Scheme Description
	4.2 Security Under Two-Message Attacks

	5 Winternitz OTS
	5.1 Scheme Description
	5.2 Two-Message Attacks

	6 Experimental Verifications
	References

	Cryptanalysis
	Low-Communication Parallel Quantum Multi-Target Preimage Search
	1 Introduction
	1.1. Multiple-Target Preimages.
	1.2. Communication Costs and Parallelism.
	1.3. Quantum Attacks.
	1.4. Contributions of This Paper.
	1.5. Open Questions.

	2 Reversible Computation
	3 Reversible Iteration
	4 Reversible Distinguished Points
	5 Reversible Parallel Distinguished Points
	6 Sorting on a Mesh Network
	7 Multi-target Preimages
	References

	Lattice Klepto
	1 Introduction
	2 Background
	2.1. Background on Kleptography.
	2.2. Subliminal Channel.
	2.3. Concrete Choices.
	2.4. NTRU Parameters.
	2.5. NTRU Key Generation.
	2.6. NTRU Encryption.
	2.7. NTRU Decryption.
	2.8. NTRU Decryption Failures.

	3 The NTRU Backdoor
	3.1. Description.
	3.2. Encryption.
	3.3. Decryption by the Attacker.
	3.4. Decryption by the Intended Receiver.

	4 Analysis of the Backdoor Quality
	4.1. Decryption Failures.
	4.2. Parameter Choices.
	4.3. Optimization.

	5 Practical Implementation
	6 Countermeasures
	7 Subliminal Channel in NTRU
	7.1. Description.
	7.2. Key Setup.
	7.3. Encryption.
	7.4. Decryption.
	7.5. Encoding Messages.
	7.6. Why Does It Work?.

	8 pqNTRUSign
	8.1. pqNTRUSign Parameters.
	8.2. pqNTRUSign Key Generation.
	8.3. pqNTRUSign Signature.
	8.4. pqNTRUSign Verification.

	9 The pqNTRUSign Backdoor
	9.1. Trivial Backdoor.
	9.2. Modified Signature.

	10 Final Remarks
	10.1. Minimization of Decryption Failures.
	10.2. Statistical Countermeasures.
	10.3. Potential Biases in pqNTRUSign Klepto Signatures.
	10.4. Further Research.

	References

	Total Break of the SRP Encryption Scheme
	1 Introduction
	2 The SRP Encryption Scheme
	2.1 Multivariate Cryptography
	2.2 SRP

	3 Q-Rank
	4 The KS Attack and Minors Modeling
	5 Key Recovery for SRP
	5.1 The Min-Q-Rank of SRP
	5.2 Recovering the Output Transformation with MinRank
	5.3 Recovering the Input Transformation
	5.4 Recovering the Square Map
	5.5 Unmixing the Rainbow and Plus Polynomials

	6 Complexity of Attack
	7 Experimental Results
	8 Conclusion
	A Toy Example
	A.1 Key Generation
	A.2 Recovery of Transformation of Square Polynomials
	A.3 Recovery of the Input Transformation U
	A.4 Recovering FS
	A.5 Recovering FR and FP

	References

	Approximate Short Vectors in Ideal Lattices of Q(pe) with Precomputation of Cl(OK)
	1 Introduction
	2 Background
	3 High Level Description of the Algorithms
	4 Computation of Cl(OK)
	5 Precomputation on Q(pe)
	6 Finding Short Elements in I
	7 Classical Attack Against Short-PIP with Precomputation
	8 Quantum -ideal-SVP in Q(pe) with Precomputation
	A Qubit Requirement of Quantum PIP Algorithm
	References

	Quantum Key-Recovery on Full AEZ
	1 Introduction
	2 Preliminaries
	2.1 Description of AEZ
	2.2 Simon's Algorithm

	3 Extending Simon's Algorithm
	4 Previous Classical Attack
	5 Quantum Cryptanalysis of AEZ
	5.1 AEZv4
	5.2 AEZv5
	5.3 AEZ10
	5.4 Variants of the Attack
	5.5 Thwarting the Attack

	6 Conclusion
	References

	Quantum Key Search with Side Channel Advice
	1 Introduction
	1.1 Contribution and Outline

	2 Preliminaries
	2.1 Key Search with Additional Information
	2.2 Efficiently Computing the Rank of a Key

	3 Key Ranking Leading to Faster Enumeration
	3.1 A Faster Classical Enumeration Algorithm
	3.2 Total Runtime

	4 Quantum Key Search
	4.1 Total Runtime

	A Additional Algorithms
	B Time Complexity Calculations
	References

	Multidimensional Zero-Correlation Linear Cryptanalysis of Reduced Round SPARX-128
	1 Introduction
	2 Description of SPARX-128/128 and SPARX-128/256
	2.1 Specifications of SPARX-128/128 and SPARX-128/256

	3 Multidimensional Zero-Correlation Linear Cryptanalysis
	4 Zero-Correlation Distinguisher of SPARX-128/128 and SPARX-128/256
	5 Multidimensional Zero-Correlation Cryptanalysis of SPARX-128/128 and SPARX-128/256
	5.1 24-Round Multidimensional Zero-Correlation Attack on SPARX-128/256
	5.2 22-Round Multidimensional Zero-Correlation Attack on SPARX-128/128

	6 Conclusion
	A Key Schedule Relations for SPARX-128/128
	B Zero-Correlation Distinguisher for SPARX-64/128
	References

	Categorising and Comparing Cluster-Based DPA Distinguishers
	1 Introduction
	2 Preliminaries
	2.1 Differential Power Analysis
	2.2 Cluster-Based Distinguishers
	2.3 Unsupervised Clustering for Semi-Profiled Power Models

	3 Performance Evaluation
	3.1 Software Scenario
	3.2 Hardware Scenario
	3.3 Influence of Noise

	4 Discussion
	4.1 Similarities
	4.2 Differences

	5 Conclusion
	References

	Author Index

