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Abstract Bulk metallic glass and their composites are unique new materials which
have superior mechanical and structural properties as compared to existing con-
ventional materials. However, their mechanical behavior is dubious, unpredictable
and requires extensive experimentation to draw conclusive results. In present study,
which is continuation of previous work of author, a non-linear one-dimensional
iterative deterministic model is combined with two-dimensional probabilistic cel-
lular automaton method to describe nucleation and growth of primary ductile phase
from melt in glassy matrix during solidification. Preliminary methodology ad
philosophy of model making is described with an aim to explain the grounds on
which this approach is adopted. MATLAB® is chosen as programing platform.
Results indicate that the effect of incorporating all heat transfer, mass transfer and
diffusion coefficients with appropriate interpolation play a vital role in refining the
model and bringing it closer to actual experimental observations. Two types of
hypo and hyper eutectic systems were studied with different inoculants.
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Introduction

Bulk Metallic Glass Matrix Composites (BMGMC) have emerged as new materials
of future bearing unique properties of strength, hardness and elastic strain limit [1]
which are not observed in other conventional engineering materials. However, they
suffer from lack of ductility and toughness which make them impracticable to be
used in any structural engineering application [2]. They fail catastrophically under
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the application of external load without yielding. Due to this they have not been
able to gain enough popularity and are still being investigated at laboratory scale.
Various theories and thoughts exist which reinforce or cast doubts about their large
scale manufacturing. Recently, a lot of attention has been diverted at making them
useful for outer space and extreme environment conditions [3–6] such as windows
of international space station (ISS) [5], gears of outer and deep space exploration
missions and rovers [7, 8]. However, an in depth understanding of their mi-
crostructure evolution is still a gap in field of research. Various efforts have been
made to address this problem such as use of container less levitation techniques [4],
experiments in micro and zero gravity [4, 9] and use of synchrotron light [10, 11]
but none has proved out to be satisfactory. In present study, an effort has been made
to address this problem from modeling and simulation perspective. A detailed
probabilistic iterative model is developed based on well-known theory of
self-reproducing automata [12] which is based on authors earlier work [3]
describing deterministic modeling and simulation in Zr based BMGMCs. Some of
the salient features of model and approach are described below.

Model

It consists of making a detailed probabilistic model explaining two dimensional
evolution of dendritic microstructure (e.g. B2 in CuZrAlCo and β-Zr CuZrAlNi) in
a carefully selected simulation domain based on cellular automaton method [13]. Its
features are:

1. It takes into account the use of transient thermal parameters (temperature,
density, specific heat capacity, thermal conductivity) of actual Zr based
BMGMCs [14], incorporate them in detailed heat transfer model in ABAQUS,
generate temperature profile at each node of mesh in ABAQUS simulation
geometry and finally use this temperature as input for CA simulation domain
inside ABAQUS finite element (FE) grid [15]. In summary CA process [13]
adopted here is:

a. Determine phases to be evolved in a typical selected alloy system (based on
literature).

b. Determine their volume fraction (Vf) (based on literature).
c. Select Representative Volume Element (RVE) in a test piece/coupon (in

mm) (actual part—in present case rectangular block).
d. Selection of simulation domain (Cartesian or point based grid) (e-g

300 × 300 [15]). This is performed in MATLAB.
e. Select cell shape (square, hexagon, rectangle (based on literature)). This is

done in MATLAB.
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f. Select parameters to account for mesh anisotropy. This can be done by any
of following

i. Selection of modified square cell (decentred square algorithm (DCSA
[16–19])) (most popular approach).

ii. Refining of square cells e.g. limited angle method [15]
iii. Refining of mesh (by decreasing it physical size from micron to nm)

(usually not adopted—leads to increase of computational time and
make process inefficient).

g. Select neighborhood transition rules [20] based on well-established CA
pattern selected in step e above (These rules are well defined in literature e.g.
Von Numen rules, Moore rules [21] (popular, accurate but computationally
expensive), Solid/Liquid Interface generation and energy at tip) [22, 23].

h. Scan whole simulation domain/grid for “n” number of cells (300 × 300
[15]) and assign a random number r (0 < r < 1) to each cell [24–26].

i. Select physical appearance of next cells based on neighborhood transition
rules of step g above.

Note: CA model is physical model as it gives interface curvature physically and
plot it in a cell in terms of solid fraction in a 2D simulation domain/grid thus a
visual/physical picture is obtained. (However, it depends on previous deterministic
[3] and heat transfer model (as described above)).

Explanation

In essence, the model consists of calculating solid fraction in defined cell as a
function of time. Once this solid fraction is calculated at a particular time, a random
number is generated which is assigned to next growing grain/cell. Life or death of
next cell is determined on the basis of this number. Similarly, growth (solid frac-
tion) in next cell (Fig. 1a and b) is determined on the basis of its life/existence and
the process continues.

It is primarily based on following fundamental studies [24, 27–29] whose origins
goes back to welding process owing to similarities in features and characteristics as
additive manufacturing process.

1. Nastac, L., Numerical modeling of solidification morphologies and segregation
patterns in cast dendritic alloys. Acta Materialia, 1999. 47(17): p. 4253–4262

2. Wei, Y.H., et al., Numerical simulation of columnar dendritic grain growth
during weld solidification process. Science and Technology of Welding and
Joining, 2007. 12(2): p. 138–146
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3. Zhou, X., et al., Simulation of microstructure evolution during hybrid deposition
and micro-rolling process. Journal of Materials Science, 2016. 51(14):
p. 6735–6749

4. Dezfoli, A.R.A., et al., Determination and controlling of grain structure of
metals after laser incidence: Theoretical approach. Sci. Rep. 2017. 7: p. 41527

Present study is focused on development of detailed theoretical model for
BMGMCs. Coding, simulation results and their comparison with experimental
values will be described in subsequent studies.
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