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Abstract This study utilizes in situ thermal imaging to monitor the melt pool
during a LENS additive manufacturing (AM) process. A software tool is created
which gathers metrics for each frame and summarizes them over every build.
Plotted metrics allow a user to visually inspect the data, but the software tool also
automatically identifies anomalies and flags them for further review. Anomalies are
then correlated to physical locations in the build which are inspected for defects.
This type of process monitoring could lead to fast detection of defects during a
build, thus increasing the confidence in production quality and eliminating the
acceptance of parts with abnormalities. An anomalous event was identified by the
software tool and investigated with X-ray computed tomography. Defects were
observed in the location identified by the software tool.
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Introduction

AM is rapidly being integrated into production environments where parts must not
only conform to specific geometrical tolerances but also perform structurally under
significant stress and fatigue. Such a shift from prototyping to end-use products has
increased demand for rigorous quality control [1]. The aerospace industry, for
example, has begun adoption of AM parts into rocket engines where constant
vibration makes fatigue a critical component to part performance. Such perfor-
mance requirements mean that defects within the part can be detrimental. The term
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“defect” refers to a wide range of features that can be used to describe an anomaly
in a build which would likely reduce its structural performance. Such defects could
include, but are not limited to, lack of fusion, delamination, surface roughness, and
unusually large or misshapen porosity [2]. This study focuses on Laser Engineered
Net Shaping (LENS) which is a freeform AM process in which metallic powder is
blown through nozzles into the path of a laser forming a melt pool.

In this study, the process is monitored using a camera with a two-color
pyrometer to detect changes in the melt pool temperature profile during a build. As
the metal is deposited onto a build plate, the camera records the temperature dis-
tribution within the melt pool region. Each frame from the camera is analyzed
looking for anomalous behavior which is correlated to a location in the build. That
location is then scanned using X-ray Computed Tomography (XCT) to investigate
the abnormality.

Uses of high speed cameras, with framerates on the order of 5000 Hz, have been
reported for in-situ process monitoring of AM processes [3, 4]. This study, how-
ever, uses a very low framerate (9.310 Hz) in an attempt to explore solutions which
would be more readily accepted into a production environment. This lower fram-
erate allows rapid processing of the data and extraction of a wide range of features
from each frame without significant computational burden. By correlating the data
obtained with defects in actual parts, the combination of metrics gathered from each
frame can be identified as signatures of particular defect type. Although it is pos-
sible to miss defects with signatures on a timescale or length scale small enough to
fit between frames. Continued in-situ and ex-situ analysis are needed to determine
the false positive and false negative rates of any software tool developed.

Experimentation

The LENS machine used in this study was an Optomec LENS MR-7 [5] which is a
blown powder system with 3 axis control housed within a glovebox as shown in
Fig. 1. The base moves in X and Y while the deposition head moves in Z. The MR-7
is equipped with a 1 kW IPG fiber laser in an enclosed argon atmosphere (<10 ppm
O2). Several diagnostic tools have been installed in the machine, including a
ThermalViz camera system used in this study. The camera uses a two-color
pyrometer with 950 and <950 nm wavelengths, overlaying two discreet sensors to
correct for emissivity. A tungsten filament is used to calibrate the temperature
measurements with a linear temperature-radiance ratio. The data was sampled at
9.310 Hz, the maximum rate of the camera, with an exposure time of 20 ms. The
pyrometer looks directly down onto the build plate coaxial with the laser.

The power delivered from the MR-7 LENS laser was 808 W focused at a
distance of 0.9525 cm and with a powder feed rate of 33.7 g/min. Powders used
were 304L with an average size of 100 μm. The dwell time for the laser starting
each pass was 20 ms, and the travel speed of the table was 101.6 cm/min. The
length of each pass was 5.08 cm with a 0.102 cm hatch spacing for the second pass
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deposited next to the first as illustrated in Fig. 2. Parameters were selected to create
a fully dense deposit with no effort made to ‘insert’ a known population of defects.
The print geometry used in this study was 5.08 cm long by 0.102 cm wide and
0.076 cm high.

In Situ Analysis

ThermalViz software was used to convert the data files from the camera into comma
separated value (CSV) format. A custom Python script was used to process the
CSVs. For each frame, a “summary image” is generated which compiles four
different views of the data as shown in Fig. 3: (a) a colorized heat map, (b) the melt
pool isolated with several features drawn on top of it, (c) a contoured heat map, and

Fig. 1 a Shows the ThermalViz pyrometer looking down coaxial with the laser. b Shows the
MR-7 schematic
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(d) a listing of several metrics recorded from that frame with an X direction plot of
the temperature profile through the center of the melt pool (the blue circle in (b))
(Fig. 3). The contours are interpreted using the “prism” scale shown in Fig. 4.

The melt pool is generated by thresholding the original image to only pixels
above a certain temperature value. In this case 1500 °C was chosen as the threshold
temperature. This is slightly above the 1340 °C melting temperature of 304L which
was chosen to ensure the identified region was molten. It is worth noting that the

Fig. 2 Deposition plan used, 5.08 cm long, 2 layers deposited in alternating directions spaced
0.1016 cm apart

Fig. 3 A typical “Summary Image”. a heat map, b molten pool, c contoured heat map, d frame
metrics. The scale shown in (a) is the same for (b) and (c)
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collection of these metrics from the melt pool region are not necessarily meant to be
physically significant. The purpose of the analysis is to spatially resolve the location
of anomalies and outliers; thus only consistency is required.

Once thresholded, the molten pool area is blurred. Unlike the colorized contour
plot, a blur is required so that the software can draw a defined solid line around the
region of interest. From the blurred molten pool the following metrics are gathered:
center of mass, area, minimum bounding rectangle. These metrics are determined
using the python library OpenCV and are summarized in Table 1.

Fig. 4 Matplotlib color map “prism” set to repeat approximately every 150 °C. The maximum
temperature recorded in Fig. 3c was 1784 °C and can be seen visually by the number of repeating
color bands across the contours to the final red color in the center of the molten pool

Table 1 Metrics gathered from each frame with a brief description, typical measured values, and
anomalous frame values

Metric Description Mean St Dev Frame
83

Difference
from 83 to
mean (%)

Distance
(pixels)

Distance from molten pool
CoM to pixel center of
image

26.10 8.36 21.47 −17.80

X offset
(pixels)

X direction component of
distance

20.68 9.76 19.00 −8.10

Y offset
(pixels)

Y direction component of
distance

−13.98 6.36 −10.00 −28.50

Area
(pixels2)

Sum of molten pixel areas 16767.41 3644.96 3587.00 −78.60

Length
(pixels)

Length of smallest bounding
rectangle around molten
pool

166.96 16.69 107.35 −35.70

Width
(pixels)

Width of smallest bounding
rectangle around molten
pool

126.66 19.28 48.66 −61.60

Aspect ratio
(Length/
Width)

Length/Width parameters
specified above

1.34 0.19 2.21 64.70

Max Temp
(°C)

Maximum temperature in
image

1717.03 78.74 1540.18 −10.30

Heating Rate
(°C/pixel)

Temperature rate of change
on leading edge of molten
pool

4.04 0.76 1.67 −58.70

Cooling
Rate (°C/
pixel)

Temperature rate of change
on trailing edge of molten
pool

5.84 1.43 2.08 −64.40
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Two metrics are gathered from the area just outside the molten pool which are
called the “Heating Rate” and “Cooling Rate”. These are created by thresholding
the original image to isolate pixels in the temperature range of 1450–1500 °C. The
range of 50 °C was selected to be broad enough to be significant, but narrow
enough that temperature profile in this range would be linear. This 50 °C band
around the melt pool is blurred so that contours can be drawn, and the thickness of
the contour measured on both the leading and trailing edge of the molten pool. The
pixel thickness of each is then divided by the temperature span of 50 °C to get a
cooling rate in °C/pixel. This can later be converted to °C/m using the actual length
of the image pixels and then into °C/s using the m/s table travel speed. An algo-
rithm was developed to determine the direction of travel which was used to dif-
ferentiate the “Heating Rate” from the “Cooling Rate”.

In this study potential defects are identified by searching for statistical anomalies
in the recorded metrics. After metrics are gathered for each frame, they are plotted
and outliers are identified. For this initial study, anomalies are identified relative
only to the data set of the current build. For each metric summarized in Table 1, the
data is first analyzed while looking for data points which are more than four
standard deviations from the mean. The frame location of these outliers is recorded,
and those data points are removed from the data set. After the removal of extremes,
the mean and standard deviations are recalculated, and any data points outside two
standard deviations are also recorded. If a frame is identified as an outlier in more
than three metrics, it is automatically flagged as an anomaly. Frames which are
flagged as anomalies are then correlated to a location in the build so that XCT scans
can be performed to look for defects. Figure 5 shows an example plot of the
processed data with lines drawn to show one and two standard deviations away
from the mean. Similar plots were generated for every metric gathered.

To guide the XCT scans, the location of the captured frame to a location in the
build must be identified. However the LENS machine does not timestamp the
frames thus there is no time/position data recorded. To provide this correlation, a
combination of build path parameters and signatures in the thermal data are used to
make an appropriate correlation. The passes in each build alternate in the negative
and positive X directions as illustrated in Fig. 2. There is a brief pause between
these passes while the machine adjusts in the Y direction. The pause is long enough
to generate several dark frames in the data. Thus whenever two to three frames are
missing this marks the beginning of a new pass which is assigned a pass number.
To determine the position of the frame within that pass, a camera framerate of
9.310 Hz is used. Thus by counting the number of frames from the start of the pass,
and knowing the travel speed of the table, the distance traveled can be calculated.

Because the time since the start of a pass is being used to calculate the position,
any uncertainty in the time also propagates into the position. Two sources of
uncertainty were quantified. First there is a uniformly distributed uncertainty about
the start time of the build. Although the time associated with the laser on is
unknown, it occurs sometime between the first frame where it is visible and the
frame immediately prior. This uncertainty will be present regardless of the fram-
erate of the camera, but the associated uncertainty scales inversely with the
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framerate. The second source of uncertainty is on the framerate itself. ThermalViz
reports the framerate at the end of a build as an average of the number of frames
taken over the total time it was running, but there is no information available on the
consistency of that framerate. A normal distribution with a 1% standard deviation
was assumed for the time between each frame meaning that this component of the
uncertainty grows with each consecutive frame after a new pass has begun. This
growth is modeled by a normal distribution about the sum of its constituent means
and with a variance equal to the sum of its constituent distribution variances [6].
However because the position of the start of each pass is known from the coding
input to the LENS machine, the growing component of the uncertainty can be reset
to 0 at the start of each pass, hence referred to as a baseline event. Figure 6 plots the
sum of these two uncertainties converted from time uncertainty to position uncer-
tainty by multiplying by the travel speed. The travel speed is assumed constant with
expected uncertainty of less than 1%. The three lines show three different confi-
dence levels which were considered when identifying the location of particular
frames.

Fig. 5 Molten pool area (pixels2) in each frame. Note that frame 83 falls outside of the standard
deviation range. Frame 48 (marked by an arrow) represents the average frame used for comparison
of melt pool size in Fig. 7
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Anomaly Detection Results

The analysis method used in this study identified two frames as anomalous: Frames
44 and 83. Frame 44 was omitted from further investigation as the camera is turned
on for some time before the build actually begins, and the 44th frame from the
camera initialization is the start of the build. The reason this frame flagged as
unusual is that unlike subsequent frames, the current frame was symmetrical
because the base plate had not yet begun to move. This made the shape, area, and
position of the melt pool flag as outliers in the analysis. Thus it is not recommend to
use the first frame of a build for outlier analysis.

Figure 7 shows the melt pools from summary image of Frame 83 which was
considered for further analysis and Frame 48 which is representative of the rest.
Frame 83 was flagged as an outlier in seven metrics: area, length, width, aspect
ratio, maximum temperature, heating rate, and cooling rate. Table 1 shows some
quantification of the metrics averaged over the whole build along with the specific
values of frame 83. Frames which flagged as outliers are italicized. A typical frame

Fig. 6 Quantified positional
uncertainty in the X direction
at three confidence levels.
Frame 83 from Fig. 5 is 10
frames since baseline. The
position of this frame is
known to within ±0.75 mm
with a 95% confidence

Fig. 7 Melt pools for a a normal frame (as seen in Fig. 3) and b Frame 83
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is shown in Fig. 7a in contrast with frame 83 shown in Fig. 7b. The molten pool is
visibly smaller and misshapen. Thus type of fluctuation could be due to anomalies
in powder flow or laser power. Changes in these critical parameters could cause
defects.

Ex-Situ Measurement

After the build was completed, it was inspected using an Xradia Micro Computed
Tomography (XCT) machine. The X-ray source was a Micro Focus Hamamatsu
operated at 40–150 kV acceleration voltage, 10 W total power, and 5 μm spot. The
detector was a 2048 × 2048 pixel camera coupled with a scintillator crystal lens.
The voxel dimension was 5 μm corresponding to a detectable defect size. The
TXMReconstructor software package (Carl Zeiss Microscopy, Inc.) was utilized for
tomogram reconstructions.

Figure 8 shows a lower density region or defect located near the identified area
for Frame 83 but outside of expected location uncertainty bounds. The image
shown is in the pass directly next to the location corresponding to Frame 83. Further
testing of the part is needed to determine if the abnormality detected affects the
structural property of the component.

Future Work

This study is on-going to identify abnormalities in the melt pool during a build.
Initially the data obtained will be evaluated with respect to an individual build. The
ability of the analysis tool developed demonstrated the ability to measure and
calculate several metrics from the acquired frames. The metrics were used to

Fig. 8 Density difference observed in XCT scan in area near location identified as Frame 83. Dark
gray areas marked as ‘voids’ indicate where density is lower than expected. The very dark area to
the top left is open air not inside the material. Both voids are ∼100 μm in diameter and, when
summed, are 40% of the normal melt pool diameter seen in Fig. 7
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identify anomalous behavior in a particular frame which can be correlated to a
specific location in the build.

As the database of abnormalities are continued to be collected and correlated
with impact on material properties this will provide a training dataset for subsequent
analysis. Using this training set, more sophisticated methods can be developed to
identify critical signatures in the data. Narrowing the required number of metrics
would allow for faster processing thereby facilitating real time analysis. If an
abnormality can be detected, the build can be terminated to reduce time in obtaining
an acceptable quality build.

This type of data processing would benefit from AM equipment equipped with a
time stamp. Although extrapolation of the position from the number of frames is
possible, accuracy would be improved by having a timestamp directly correlated to
a position within the build.
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