
Chapter 7
Categorical and Limited Dependent
Variable Modeling in Higher Education

Awilda Rodriguez, Fernando Furquim, and Stephen L. DesJardins

7.1 Introduction

Often the types of outcomes that higher education researchers examine are
represented by categorical variables. These may include dichotomous or binary
dependent variables, such as whether a student enrolls in college or not, whether
they persist to their sophomore year (or not), or whether they graduate. In addition to
studying binary representations of underlying constructs, we are often interested in
studying outcomes that are multi-categorical, also referred to as polytomous. These
might include outcomes that have some natural ordering (i.e., are ordinal) or those
that are not ordered but have multiple nominal categories (i.e., are “multinomial”).
Examples of ordered outcomes include survey questions evaluating teaching with
response categories of excellent, good, fair, and poor or a Likert scale of agreement
where the categories include strongly agree, agree, neutral, disagree, and strongly
disagree. In terms of multinomial responses, where no order in the relationships
among the categories is evident, examples include a person’s college choice (e.g., no
college, attend least selective, selective, or most selective college) or college major
choice (e.g., liberal arts, engineering, science, business, other).

In addition to there being binary and multi-categorical outcomes, there are also
other types of outcomes that require specialized estimation techniques. These
include variables where the range of values for the outcome are restricted due to
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censoring or truncation (known as limited dependent variables) and outcomes that
are measured as counts or proportions. Examples of limited dependent variables
include outcome values with ranges that are censored, such as income obtained from
a survey with the top end of its distribution censored at some value (e.g., $150,000
and above). An example of truncation is when we examine the effects of a devel-
opmental program where students are placed into the program based on a placement
test, but we only have observations for individuals whose test score was below some
threshold. Examples of a count outcome are the number of applications a student
sent to colleges, the number of AP classes a student took, or the number of students
receiving Pell grants in a college. In terms of proportions, examples include the
percentage of students in a college who are from underrepresented groups, the
proportion persisting from the freshman to sophomore year, or what fraction in the
public vs. for-profit sector default on their loans. The higher education literature is
replete with studies examining binary and polytomous dependent variables, and to a
lesser extent studies of limited, count, and dependent variables that are proportions.

When faced with estimating regression models with categorical or specialized
dependent variables, researchers often simply employ linear (ordinary least squares,
or OLS) regression. However, there are some well-known statistical and practical
problems in doing so, including violations of important underlying assumptions
when the dependent variable is not continuous, and problems (e.g., bias and/or
inefficiency) with the estimates produced when using such an approach. Given
these potential problems, knowing more about how to adequately model outcomes
that are categorical or limited in some way is important. In an earlier edition of this
Handbook, Cabrera (1994) provided a description of how to employ statistical
models designed to deal with categorical dependent variable models, thereby pro-
viding higher education researchers with a grounding in these approaches. However,
since Cabrera’s (1994) chapter there have been important changes in the application
of statistical methods to the study of categorical dependent variables. These include
advances in the underlying statistical aspects of estimating such models, including
an improved understanding about the strengths and weaknesses of some of the
formal tests often used. There are also many new software packages available to
estimate these models, with features that make estimation easier and improve our
ability to interpret the results through tabular and graphical displays. Categorical
dependent variable models are also widely used in software packages used to
estimate some quasi-experimental models (e.g., propensity score matching; instru-
mental variable regression) now often employed for causal inferences. In addition,
Cabrera’s (1994) chapter focused almost exclusively on binary categorical depen-
dent variable models. Given the ubiquity of the use of categorical dependent vari-
ables in higher education research, and advances in the application of these models,
this chapter will build on Cabrera’s (and others) work by (1) providing some of the
conceptual and statistical underpinnings and rationale for the use of categorical and
limited dependent variable regression models, (2) demonstrate how to estimate some
of these models using a running example of a higher education issue, (3) provide
examples of extensions of these models, and (4) to promote the use of the methods,
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point readers to additional literature and (in the appendix) provide the statistical code
(in Stata) used to produce the results from our running example.

In the next section, we introduce the empirical example we will use for much of
the chapter. We use the study of student college choice because (1) it is an important
issue in postsecondary education; (2) the topic and underlying mechanisms should
be well-known to many Handbook readers, permitting them to focus on the statis-
tical content; and (3) we have access to very current, national data not yet extensively
used to study student choice. After introducing the running example and data, we
focus our discussion on binary outcome models, then move on to a discussion of
estimating multi-categorical outcomes, and finish the chapter with other limited
dependent variables, including an example of modeling count outcomes and brief
discussions on modeling proportional, censored, and truncated outcomes. Through-
out the chapter, we insert in the text the Stata commands we have used for analysis,
highlighting them in a different font. We also include much of the statistical code
used to conduct the analysis presented herein in the appendix.

7.1.1 Studying Categorical Outcomes in Higher Education

Student college choice is one of the most studied phenomena in higher education
research. In the context of changing landscape in college preparation, increased
competition for admission, and concerns about college affordability, college choice
remains an active area of inquiry. Many scholars pay particular attention to the ways
in which student characteristics (e.g., academic performance, family background,
prior schooling) are associated with college application and enrollment behavior–
especially in the context of enduring social stratification in postsecondary education.
Previous quantitative research into college choice has studied whether students apply
to or enroll in college (Bielby, Posselt, Jaquette, & Bastedo, 2014; Roderick, Coca,
& Nagaoka, 2011; Kim, DesJardins, & McCall, 2009); where students enroll (e.g.,
by institutional sector or selectivity, Belasco, 2013; Chung, 2012; O’Connor,
Hammack, & Scott, 2010; Perna & Titus, 2004; Posselt, Jaquette, Bielby, &
Bastedo, 2012; Taggart & Crisp, 2011); how many college applications high school
seniors submitted (Long, 2004); as well as the college-going rate of high schools
(Engberg & Gilbert, 2014). All such outcomes are measured as categorical or limited
dependent variables, and researchers frequently employ nonlinear regression tech-
niques to study them. We therefore use various operationalizations of college choice
outcomes throughout this chapter to illustrate regression techniques that are often
employed to estimate models with these types of dependent variables.
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7.1.2 Data and Sample

All analyses in this chapter make use of data from the High School Longitudinal
Survey of 2009 (HSLS:2009). The National Center for Education Statistics (NCES)
surveyed over 23,000 high school 9th grade students in 944 high schools in 2009,
with follow-up surveys in 2012 as well as surveys of parents and school personnel.
HSLS:2009 includes information about students’ backgrounds, academic perfor-
mance, course transcripts, college expectations, college applications, and high
school environment.1 We limited the data to high school graduates and excluded
observations missing key measures, resulting in 10,940 students. Our choice to not
account for missing data is based on our goal to focus on the modeling the various
categorical and limited outcomes, and a concern about how much space it would take
to include a detailed discussion of how to deal with missingness. A robust literature
on missingness and imputation methods is available (Allison, 2002; Little & Rubin,
2014).

7.1.3 Variables

Dependent Variables In order to demonstrate the application of the methods used
to study categorical and limited dependent variables, we used the HSLS data to
construct three different outcome variables. To demonstrate how to model binary
outcomes, we created a dichotomous variable measuring whether students enrolled
in college after completing high school or not (discussed in Section II). To demon-
strate the modeling of polytomous dependent variables, we created a multi-
categorical measure that disaggregates whether the student enrolled in college into
finer grains based on the selectivity of the institution attended. This dependent
variable has four categories: no college, chose a less selective, selective, or most
selective institution (see Sections III and IV). The third outcome we modeled is
students’ self-reported number of college application submitted, which we use to
demonstrate the utility of count regression techniques (presented in Section V).

Independent Variables In the regressions estimated, we control for constructs
thought to affect whether a student goes to college, and the type of institution they
decide to attend. These constructs were chosen based on theories used to explain the
college choice process and were operationalized using variables included in prior
studies and available in the HSLS data set.

Academic Ability Given its strong sorting function in the provision of college
opportunity and specifically in the college admissions process, academic ability is
arguably the most important construct included in inferential studies of college

1Although we utilized a restricted version of the HSLS data, there is also a publicly available
version (see https://nces.ed.gov/edat/).
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choice (Clinedinst, Koranteng & Nicola, 2015). When modeling college choice,
researchers often include prior academic achievement measures such as students’
high school grade point average (e.g., GPA, a local measure of achievement); exam
scores, which are often state- or nationally-normed measures (Engberg & Allen,
2011; Posselt et al., 2012); as well as academic preparation measures such as the
highest-math course completed (Kim, Kim, DesJardins & McCall, 2015) or the
number of college-preparatory courses taken in high school (Engberg & Wolniak,
2010). To operationalize prior academic achievement and preparation in the models
estimated, we include 10th grade GPA; students’ scores on the math exam admin-
istered by NCES; the highest level of math taken by 12th grade; and the total number
of AP course credits students acquired during high school.

Demographic Characteristics Given the (1) historic exclusion of non-White,
female, and low-income students frommany forms of higher education; (2) persistent
differences in high school resources across race and income (Office for Civil Rights
[OCR], , 2016; Palardy, 2015); and (3) presence of Minority-Serving Institutions
(MSIs) that shape choice (Freeman & Thomas, 2008; Teranishi & Briscoe, 2008),
we follow most previous college choice studies and include race/ethnicity and
income as explanatory variables in the models estimated. Gender is also another
important characteristic to consider when studying college choice, as women are
generally more likely to enroll in college but less likely to do so at selective
institutions (Bielby et al., 2014). We also include a measure of parental education
as parents who attended college are typically more able to assist their children with
the college choice process, and because some scholars argue that students whose
parents did not attend college rely on their high schools to help them navigate the
complex college choice process (Ceja, 2001; Perna & Titus, 2005; Rowan-Kenyon,
Bell & Perna, 2008).

College Expectations A number of college choice studies also control for students’
stated college plans or aspirations (Gonzales, 2011; Posselt et al., 2012). In the
student surveys, NCES asks students how much postsecondary education they
intended to acquire, which we included and coded as: high school or less, some
college, two-year degree, four-year degree or more. Another important measure that
shapes college choice and is frequently included in choice models is peers’ college
enrollment plans (Engberg & Wolniak, 2010; Taggart & Crisp, 2011).

School Characteristics Many researchers include school-level measures in their
college choice models to reflect that students are nested within schools, and that
schools are an important context for students. High schools provide resources and
present college-going norms that, in turn, shape individual student choice
(McDonough, 1997; Perna, 2006; Roderick et al., 2011). But a school’s college-
going norms are challenging to measure. In this study, we use the share of students
enrolled in two- and four-year colleges as proxies for college-going norms. Existing
studies have also controlled for high school characteristics to acknowledge differ-
ences in demographic composition (representation by race or income); operating
status such as charter and/or magnet schools; and urbanicity. We include these
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measures as well. Table 7.1 describes the dependent and independent measures
discussed above and used in the applications of the modeling techniques demon-
strated in this chapter.

Table 7.1 Description of variables

Dependent
variables

Proportion/
Mean

S.
D. Description

N ¼ 10,940

College
enrollment

Postsecondary institution attending as of Nov 1, 2013.

No college 33.7

College
enrollment

66.3

Enrollment by
selectivity

Enrolled college IPEDS selectivity code, as found in
2012 IPEDS institutional characteristics file

No college 34.0

Less selective
college

27.2

Selective
college

21.6

Most selective
college

17.2

Number of
applications

2.7 2.8 Self-reported.

Independent variables
Demographics

Race/ethnicity Collected from the student questionnaire, school roster,
or parent questionnaire, in order of preference.Native

American
1.0

Asian 7.9

Black 8.0

Latino 14.2

Multiracial 8.7

White 60.2

Income Total family income from all sources 2008.

<35 K 23.5

35–55 K 16.7

55–75 K 13.9

75–95 K 12.1

95–115 K 9.2

115 K and
above

24.6

Parental
education

Highest level of education, taken from the base year
parent questionnaire.

HS diploma
or less

32.1

(continued)
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Table 7.1 (continued)

Dependent
variables

Proportion/
Mean

S.
D. Description

Associate’s
or certificate

4.2

Bachelor’s
or more

63.7

Academics

GPA, 10th
grade

2.7 0.9 Ranges between 0 and 4.

Math test
scores

42.2 11.6 Ranges between 16 and 70.

AP credits 1.3 2.2 Ranges between 0 and 16.

Highest math Highest level mathematics course taken/pipeline in the
12th grade; drawn from transcript files.Algebra I or

below
3.4

Algebra
II/geometry

27.9

Precalculus/
advanced

47.7

Calculus or
above

20.9

Expectations

Friends’ PSE
expectations

93.0 9th grader’s closest friend plans to go to college.

Students’ PSE
expectations

91.4 Expect AA/BA as of senior year.

School controls

Pct. 4-Yr col-
lege enrollment

54.7 26.4 Ranges between 0 to 100.

Pct. 2-Yr col-
lege enrollment

24.4 16.4 Ranges between 0 to 100.

Urbanicity Characterizes the sample member’s base year school
from the common Core of data (CCD) 2005–06 and the
private school survey (PSS) 2005–06.

Urban 28.0

Suburban 35.4

Town 12.8

Rural 23.9

School type Drawn from school survey; special program school
[or magnet school] includes a science or math school,
performing arts school, talented or gifted school, or a
foreign language immersion school.

Regular 93.2

Charter 2.0

Special
program

2.9

Career/
vocational

1.9

Source: HSLS:2009
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7.2 Binary Outcomes

There are three prevalent approaches to modeling binary outcomes–logistic, probit,
and linear regression (i.e., linear probability models). Several texts discuss binary
outcomes at length (e.g., Hosmer, Lemeshow, & Sturdivant, 2013; Long, 1997;
Long & Freese, 2014; Menard, 2002; Pampel, 2000). Below, we situate binary
outcomes in the higher education context and highlight post-estimation techniques
that aid in the interpretation of the findings. We start with a discussion of some
important statistical concepts—odds, odds ratios, probabilities, risk ratios, and
relative risk ratios—as these measures serve as an important foundation for model-
ing binary and multinomial outcomes.

7.2.1 Odds, Odds Ratios, Probabilities, and Risk Ratios

Before moving into an explanation of binary regression techniques, first we formally
define distinct ways of summarizing categorical outcomes that are, at times, con-
flated in common language usage— odds, odds ratios, and probabilities. We also
formally present the risk ratio and relative risk ratios—measures that are essential in
understating the estimation of multinomial models in Section IV.

The odds of an event occurring is the quotient of two probabilities: the probability
the event will occur (Pr(y ¼ 1)) divided by the probability that it will not occur (Pr
(y ¼ 0)), which takes the form:

Odds y ¼ 1ð Þ ¼ Pr y ¼ 1ð Þ
Pr y ¼ 0ð Þ ¼

Pr y ¼ 1ð Þ
1� Pr y ¼ 1ð Þ ð7:1Þ

Odds have a lower bound of zero and upper bound of +1. An event with a break-
even probability of occurring (e.g., 0.50) has odds equal to 1. In our running
example, the probability of college enrollment for the overall HSLS:09 sample is
0.52 (Table 7.2).2 The odds of four-year enrollment in our sample of high school
seniors in 2013 is therefore 1.08 (or, 0.52/[1–0.52]).

An odds ratio allows for comparisons of the odds of an event occurring between
two groups as a quotient—the odds of the event (y¼ 1) given an additional condition
(x ¼ 1) divided by the odds of the event given another condition (x ¼ 0). The odds
ratio is defined below as:

Odds Ratio y ¼ 1jx ¼ 1ð Þ ¼ Odds y ¼ 1jx ¼ 1ð Þ
Odds y ¼ 1jx ¼ 0ð Þ ð7:2Þ

2Defined as two- or four-year college enrollment as of November of 2013.
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Odds ratios have a lower bound of 0 and upper bound of +1. Using our HSLS
sample, the odds ratio of four-year college enrollment for women relative to men
equals the odds of four-year enrollment when female ¼ 1, divided by the odds of
enrollment for men (i.e., female ¼ 0). In our sample, the odds of college enrollment
for women is 1.24 and the odds for men is 0.88, yielding an odds ratio of 1.41 (1.24/
0.88, see Table 7.2, column 3). In other words, the odds of women enrolling in
college are 1.41 times those of men, or 41% greater odds (we subtracted 1 from the
odds ratio to arrive at 41%).

With some algebraic rearranging of Eq. 7.1, the probability can be defined in
terms of odds as:

Pr y ¼ 1ð Þ ¼ Odds y ¼ 1ð Þ
1þ Odds y ¼ 1ð Þ ð7:3Þ

However, unlike odds and odds ratios, probabilities are bounded by zero and one.
Continuing with our running example, the predicted probability of enrollment, given
the student is female is [1.24/(1 + 1.24)] ¼ 0.55 and for males the predicted
probability is [0.88 / (1 + 0.88)] ¼ 0.47.

The risk ratio (also sometimes called the relative risk) is the ratio of two
probabilities—the probability of outcome y occurring under condition x ¼ 1 divided
by the probability of outcome y occurring under another (base) condition x ¼ 0
(Eq. 7.4).

Table 7.2 Comparison of probability, odds, and odds ratios for college enrollmenta by gender,
2013

(1) (2) (3) (4)

Probability Odds Odds ratio Risk ratio

Totalb 0.52 1.08 – –

Gender

Female 0.55 1.24 1.41 1.17

Male 0.47 0.88 Ref. Ref.

Race

Native American 0.39 0.65 0.51 0.70

Asian 0.63 1.70 1.32 1.12

Black 0.46 0.85 0.66 0.82

Latino 0.44 0.77 0.60 0.78

Multiracial 0.51 1.05 0.82 0.91

White 0.56 1.28 Ref. Ref.

Sources: HSLS:2009
Notes: (a) College enrollment includes two- and four-year colleges; (b) sample includes all students
with base year, follow-up data (N ¼ 25,210)
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Risk Ratio y ¼ 1jx ¼ 1ð Þ ¼ Pr y ¼ 1jx ¼ 1ð Þ
Pr y ¼ 1jx ¼ 0ð Þ ð7:4Þ

For many, the term “risk” connotes a negative event, as its use is historically rooted
in the health fields (e.g., a patient’s “risk” of an adverse health event). In our example
where y is college enrollment and x is gender, we divide the aforementioned
probability of enrolling (y ¼ 1) for females (where x ¼ 1) of 0.55 by 0.47, which
is the probability of enrolling for males (where x¼ 0) resulting in 1.17. This number
represents the risk of women enrolling in college, relative to men. We can interpret
this ratio as indicating that women’s risk of enrolling in college is about 1.17 times
that of men. Note that the calculation of the risk ratio is different than the odds ratio,
with the former being the ratio of two probabilities (Eq. 7.4), and the latter being the
ratio of two odds (Eq. 7.3). When the event occurrence (e.g., enrollment) is small
(<10%), the odds- and risk-ratios will be similar. But these two measures diverge as
the event becomes more common. Also, the relationship between ORs and RRs
depends on the direction of the relationship between the outcome and regressor.
When there is no association between the outcome and regressor OR ¼ RR. When
there is a negative (positive) relationship OR < RR (OR > RR). Thus, using these
two terms interchangeably depends on the context.

The relative risk ratio relates the risk ratios for two possible outcome categories,
for example, outcome m relative to a baseline outcome b out of J possible outcomes.

Relative Risk Ratio y ¼ mjxð Þ ¼ Pr y ¼ mjxð Þ
Pr y ¼ bjxð Þ ð7:5Þ

The interpretation of the relative risk ratio is always in relation to a base outcome,
which is important to note when you have multiple outcome categories, so we will
return to this topic in section IV.

Next, we discuss the three main regression-based approaches to estimate binary
outcome models –the logit, probit, and the linear probability models. We begin with
a formal presentation of the logit model and use it to frame our discussions of
goodness of fit and interpretation of coefficients—much of which is applicable to the
probit model. Throughout, we note the estimation and post-estimation commands
available in the Stata software package that one can employ to estimate models and
after the regressions are estimated, to facilitate the interpretation of results. Next, we
turn to a discussion of the probit model, underscoring the points where it diverges
from logit regression. The explanation of the probit model is followed by a presen-
tation of the linear probability model, where we consider the conditions under which
it might not be appropriate to use when modeling binary dependent variables. We
close this section with a summary of the pros and cons of the three binary modeling
techniques.
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7.2.2 Logistic Regression

The logit model is commonly used in education studies to model the relationship
between a set of predictors and a binary outcome. The outcome of interest takes on
only two values, typically represented in the data by a 1, indicting the event of
interest (e.g., enrollment in college), and 0, indicating the event did not happen (e.g.,
non-enrollment in college). For statistical reasons, and to ease in the estimation of
such a model, we would like this binary dependent variable to be linear in the
parameters. For this to be the case, the dependent variable is transformed into a
continuous measure that ranges from –1 to +1. Conceptually, we can think of our
observable binary outcome of interest (denoted by y) representing an unobserved
latent construct (y* representing, for example, the underlying propensity to enroll in
college), that ranges from –1 to +1. Higher values of y* are associated with the
observable binary outcome y ¼ 1, and lower values of y* are associated with y ¼ 0.
We can relate observed measures (x’s) with the continuous latent y∗ formally using:

y∗ ¼ X0β þ ε ð7:6Þ
To illustrate, while we only actually observe whether students enroll in college

(or not), individuals have some underlying unobserved probability (or propensity) to
enroll. Some individuals are very likely to enroll in college (i.e., have higher values
of y*) while others are very unlikely to enroll (have lower values of y*). Another set
of individuals are somewhere in the middle, whereby they might enroll if the
conditions are right (e.g., a conversation with a mentor, a subway ad, or a campus
visit). There are a whole host of reasons why some students have high probabilities
of enrolling in college and others do not. Potential x’s for Eq. 7.6 may, for example,
include a student’s academic performance in high school, their family income, or
peer influences. Given this unobserved probability to enroll, imagine there is also an
unobserved threshold (τ) that separates those who attend from those who do not.
Formally this can be represented as:

y ¼ 1 if y∗ > τ
0 if y∗ � τ

�
ð7:7Þ

where y is what we observe in the data. The task at hand, then, is to transform the
observed binary y into a continuous measure that ranges from –1 to +1 in order to
model the unobserved or latent tendency (y*) to enroll.

Mathematically, we perform several steps to transform a binary measure into a
continuous measure that ranges from –1 to +1. First, we transform the outcome
into the probability of the event occurring because it allows us to conceptualize the
outcome in a continuous form. We then take the (natural) log of the ratio of the
probability of the event occurring or not. Known as the “logit,” this variable is
bounded by –1 to +1 allowing this outcome measure to be linearly related to the
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parameters. Taking the natural log of Eq. 7.1 above, and conditioning on a set of
covariates X

0
, the logit model can be formally defined as:

ln
Pr y ¼ 1jxð Þ

1� Pr y ¼ 1jxð Þ
� �

¼ X0β þ ε ð7:8Þ

eliminating subscripts for ease of expression, the left-hand side of the equal sign is
the natural log of the odds of an event occurring; with intercept α; a vector of
covariates x with a corresponding vector of coefficients β; and errors ε. The logit
model is typically estimated using maximum likelihood estimation (MLE), an
iterative technique that estimates parameters sequentially until the likelihood that
the estimates produced best fits the underlying data is maximized. This method is
different from ordinary least squares (OLS) regression, which identifies parameters
that minimize the sum of squared residuals. Several texts provide thorough over-
views of maximum likelihood estimation (Eliason, 1993; Wooldridge, 2002). For
our purposes, it is sufficient to keep in mind that estimates produced from the
likelihood function are consistent, asymptotically normal, and asymptotically effi-
cient (Long, 1997). However, given maximum likelihood’s asymptotic properties,
the logit model is not well-suited for small samples.3 In fact, this caution holds for all
of the regression techniques discussed in the chapter – when employed using small
samples, their foundational assumptions may not hold, yielding potentially incon-
sistent estimates.

To identify the logit model, we need to make a number of assumptions.
First, unlike a linear regression model—which assumes errors are normally distrib-
uted—the logit model assumes a distribution of errors that are logistically distributed
(σ ¼ π2/3) with a mean of zero (the zero conditional mean of ε assumption). Since
the error distributions from binary data are not directly observed, the variance is set
to π2/3 because the probability density and cumulative distribution functions are
simpler to ascertain when using this value. When plotted, the probability density
function for the logistic distribution has thicker tails than the normal distribution (see
Fig. 7.1). As a result, the cumulative logistic distribution increases at a faster rate
than the normal distribution. With a defined distribution for the errors, we can then
estimate Pr(y ¼ 1). Also, the right-hand side of Eq. 7.8 indicates that using the logit
functional form forces a linear relationship between the outcome (the natural log of
the odds) and the model parameters. Thus, the model is linear in the logit, or
log-odds, but not linear in the probability. A third assumption of the logit model is
that the included regressors cannot be a linear combination of each other (no
multicollinearity, Menard, 2010).

Violations of these assumptions could lead to inefficient and biased estimates,
making it difficult to establish the true effect of regressors on the dependent variable.
Relatedly, the nature of the data and the covariates—particularly in small sample
sizes with categorical predictors—can undermine model estimation due to separation

3For studies with few observations (e.g., fewer than 100), use exact logistic (Mehta & Patel, 1995).
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and empty cells. Perfect separation occurs when there is no variation for an inde-
pendent variable across the dependent variable. For example, if every student who
took calculus enrolled in college, highest math would perfectly (or near-perfectly)
predict college enrollment. Maximum likelihood estimation procedures will tend not
to work under such conditions. Another consideration is empty cells, which are a
result of insufficient observations in a particular category of an independent cate-
gorical variable. This can be an issue for categories that are traditionally underpow-
ered; such as the multi-racial category in race/ethnicity or for inferences into the
intersection of categorical variables (e.g., low-income students who have taken
calculus). See Menard (2010) for a detailed discussion of violations of these
assumptions and how to address them.

Example: Modeling College Enrollment To demonstrate the use and interpreta-
tion of binary outcome models, we estimated college enrollment as our outcome of
interest. We first estimated an unconditional (or restricted) model, that is, a regres-
sion with no covariates (an intercept only model) to compare with our manual
calculations above. Using this model, we found the odds ratio for college enrollment
is 1.04 (the same as the odds ratio we calculated by hand in Table 2). The full

Fig. 7.1 Probability & cumulative density plots for normal and logit distributions
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(or unrestricted) model includes covariates that we hypothesized to explain four-year
college enrollment:

Pr Enroll ¼ 1ð Þ ¼ β0 þ β1DEMSþ β2ACADþ β3EXPECT þ β4SCHOOL ð7:9Þ
that includes student demographics (DEMS, gender, race/ethnicity, family income,
parental education); academics (ACAD, high school GPA, test scores, number of
rigorous courses in high school, highest math course completed in high school); the
students and their friends’ college-going expectations (EXPECT); and a number of
high school controls (SCHOOL).4 We visually checked the distribution of predicted
probabilities using Stata’s predict and histogram commands to get a general sense of
the data (see the accompanying appendix for the presentation of the Stata code used
in the chapter). Figure 7.2 indicates a left-skewed distribution—a sizeable share of
the population has a greater than 50% predicted probability of college enrollment. A
summary of our predicted probabilities indicates the mean predicted probability is
around 0.66, with a range of 0.02 to 0.98.

Fig. 7.2 Density plot of predicted probabilities of college enrollment, full model (Source:
HSLS:2009)

4Our students were nested within high schools, which might suggest we adjust standard errors due
to the heterogeneity found within high schools through the use of a vce clusterð Þ Stata option.
However, there is a tradeoff here. As Long and Freese (2014) discuss, using robust standard errors
no longer makes maximum likelihood an appropriate estimator. After comparing our model with
and without school-level clustered errors, we confirmed little difference in our findings and decided
to proceed without the robust errors. Models that include robust standard errors should rely on the
Wald, rather than the likelihood test (Sribney, n.d.).
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Goodness of Fit Next we take stock of how well our data fit the model by
examining the goodness-of-fit measures. The likelihood ratio test is calculated as
the difference between the logs of the likelihoods of the full (unrestricted) model and
unconditional (restricted) model, multiplied by 2, whereby a worse fit is denoted by
larger values:

Likelihood Ratio ¼ 2lnL ModelFullð Þ � 2lnL Modeluncondð Þ ð7:10Þ
The likelihood ratio test statistic has a chi-squared distribution and we can therefore
treat it as a chi-square statistic (Menard, 2002) to test the null hypothesis that all
independent variables are simultaneously equal to zero (Long, 1997). Using Stata’s
fitstat post-estimation command provides a likelihood ratio test statistic of 2911,5

allowing us to reject the null hypothesis because a chi-square of 2911 with 1 degree
of freedom yields p < 0.001. The likelihood ratio test can also be used to compare
goodness-of-fit across nested models. For example, perhaps theory or prior research
indicates that English language learner (ELL) status would help improve the fit of the
model. Adding a dichotomous variable that denotes whether students are classified
as ELL (or not), the likelihood for the model drops slightly to�5531 (from�5533 in
the previous model). A likelihood ratio test between the models with and without the
ELL flag yields evidence of a modest improvement in model fit when adding the
ELL measure (χ2 ¼ 3.53, df ¼ 1, p < 0.10). While there is strong conceptual
justification for inclusion of this variable in prior literature (see Taggart & Crisp,
2011), we see that empirically doing so only marginally improves the fit of the
model. Its inclusion is a matter of choice for the researcher. For the sake of
consistency, we will use the model without the ELL covariate throughout the
chapter.

As one of many post-estimation commands in Stata, fitstat displays a suite of
summary diagnostic indicators.6 For example, if we wanted to compare either
non-nested models or the same model across different samples, we could use the
Akaike Information Criterion (AIC) and/or the Bayesian Information Criterion
statistics (BIC, Long & Freese, 2014). Both the AIC and BIC measures are calcu-
lated using the model’s likelihood, the number of parameters P, and the size of the
sample N:

AIC ¼ �2lnL Modelfull
� �þ 2P ð7:11Þ

BIC ¼ �2lnL Modelfull
� �þ Pln Nð Þ ð7:12Þ

The models with the lower (rather than higher) AIC and BIC suggest a better fit.
As there is for linear regression models, there is no formal R2 statistic to assess a

logit model’s goodness of fit. However, researchers have derived a number of

52*[(�6988)-(�5533)].
6If using survey data, Archer and Lemeshow (2006) argue one should account for survey sampling
design to calculate goodness-of-fit using the Stata command svylogitgof .
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pseudo-R2 measures that are available when using Stata (and other software pack-
ages) by invoking the fitstat command. As the default in Stata, McFadden’s R2

compares the log-likelihood of the full (unrestricted) model to an unconditional
(restricted) model. Like the R2 used in linear regression, this statistic is bounded by
0 and 1. The McFadden’s R2 for our unrestricted model is 0.204. An adjusted R2

measure is also presented. Similar to its linear regression equivalent, this R2 version
accounts for the number of parameters included in the model. For a more detailed
discussion about diagnostic statistics used for logistic regression see Long and
Freese (2014).

7.2.3 Interpretation of Findings

Coefficients and Odds Ratios Now that we have a sense of model fit, we can turn
to the model results reported in Table 7.3. This table includes a number of different
point estimates for selected regressors included in the model. For example, given the
functional form specified for the variance of the errors (π2/3), the (raw) coefficients
in column 1 are measured in log-odds or logit units, (Long, 1997). These coefficients

Table 7.3 Comparison of estimates of college enrollment from the logit modela

(1) (2) (3) (4) (5) (6)

Logit coefficients Odds ratios Marginal effects

Estimates S.E. Estimates S.E. Estimates S.E.

Female 0.130*** �0.048 1.138*** �0.055 0.022*** �0.008

Race

Native American �0.074 �0.221 0.929 �0.205 �0.012 �0.038

Asian �0.084 �0.1 0.92 �0.092 �0.014 �0.017

Black 0.251*** �0.087 1.285*** �0.112 0.041*** �0.014

Latino 0.131* �0.07 1.140* �0.079 0.022* �0.011

Multiracial �0.1 �0.083 0.904 �0.075 �0.017 �0.014

White – – – – – –

Academic controls

GPA, 10th grade 0.567*** �0.035 1.762*** �0.061 0.095*** �0.006

Math test score 0.005* �0.003 1.005* �0.003 0.001* 0.000

Number of AP credits 0.129*** �0.018 1.137*** �0.02 0.021*** �0.003

Other student-level controlsb x x x

School-level Controlc x x x

N 10,940 10,940 10,940

Source: HSLS:2009
Notes: ***p < 0.001, **p < 0.01, *p < 0.05, ~ p < 0.1; (a) sample includes all students with base
year, follow-up, and transcript data that are not missing data on covariates; (b) other student controls
includes parental education, income, highest math taken, whether friends plan to go to college;
(c) school-level controls includes urbanicity, school type, and share of students enrolled in 2-year
and 4-year colleges

310 A. Rodriguez et al.



are very difficult to interpret, as they lack any practical meaning. But for complete-
ness, the 0.13 logit for the female variable indicates that the log-odds (logit) of
enrollment for women is 0.13 higher than that of men.

To ease interpretation, one can transform the logit coefficients (β) into odds ratios
(ORs) by exponentiating each raw (logit) coefficient using eβ ¼ odds ratio (OR),
where e is a mathematical constant that approximates to 2.718. To demonstrate, the
logit coefficient for females can be changed to an odds ratio by taking e0.13. Stata and
other statistical packages will compute the OR for you automatically; or you could
compute it using the exp. function either using a calculator or in Microsoft Excel,
where e(0.13) produces an odds ratio of 1.138, or, about 1.14 when rounded the
nearest hundredths (see the entry for “Female” in column 3 in Table 7.3).7 Our
unconditional (no regressors included) odds ratio for women presented in Table 7.2
was about 1.41, indicating that when we do not control for any other variables,
women have about a 41 percent [(OR – 1) � 100 ¼ (1.41–1) � 100 ¼ 0.41] higher
odds of enrolling in college than their male counterparts.8 However, when we
control for a set of variables that may confound this relationship, women have
about 14 percent greater odds of enrolling in college than men (OR ¼ 1.138,
p < 0.01), which is statistically significant (Table 7.3, column 3). Additionally,
when compared to the unconditional odds ratios of Black and Latino students’
(OR ¼ 0.66, p < 0.001 and OR ¼ 0.60, p < 0.001, respectively), odds flip signs
when we control for other factors, with the conditional model indicating higher odds
of college enrollment for Blacks and Hispanics versus conditional (OR ¼ 1.285,
p < 0.01 and OR ¼ 1.140, p < 0.10) compared to their White peers. Examining
continuous academic measures, we find that for every AP course credit received, the
average increase in the odds of college enrollment increases by about 76%
(OR ¼ 1.762, p < 0.001). Although odds ratios are easier to interpret than the
estimated logit coefficients, it is important to note that odds ratios and probabilities
are not on the same scale (see Eq. 7.3). Therefore, a doubling of odds is not
equivalent to a doubling of the probability (see Long & Freese, 2014, for details).9

Marginal Effects In Column 5 of Table 7.3 we present the estimates as marginal
effects, or the change in the probability of the outcome given a unit increase in an
independent variable. Marginal effects have the desirable property of being mea-
sured as percentage point changes in the probability of the outcome, which is likely
of substantive interest to researchers and their audience, and makes for a more direct
interpretation of coefficients in nonlinear models such as logit and probit models. For

7Stata will automatically output odds ratios instead of raw coefficients by using the logistic
command, or one can obtain odds ratios by invoking the option when using the logit command.
8A logistic regression model with college enrollment as the outcome and gender as the only
covariate will confirm that the odds ratio is indeed 1.41 ( p < 0.001).
9In other words, there is a built-in nonlinearity to the relationship between each covariate and the
outcome. However, even with this nonlinearity imposed by the functional form, researchers still
need to consider whether any higher order (i.e., polynomials) of covariates are appropriate to
account for nonlinear relationships in the logit (or log-odds).
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indicator (dummy) or categorical variables, the marginal effect represents the con-
trast between the reference (or omitted) category and the level of interest. From
Table 7.3 we observe that the marginal effect for females (female ¼ 1) is significant
but very small—women (female ¼ 1) have predicted probabilities of enrolling in
college that are 2.2 percentage points (0.022 x 100 ¼ 2.2) higher than men
(female ¼ 0), and this effect is significant at the p < 0.01 level. Calculated as a
partial derivative of a covariate (x) with respect to the outcome (y), the marginal
effect for continuous independent variables is the change in probability associated
with an instantaneous change in the given explanatory variable, holding all other
covariates constant. We see (Column 5 in Table 7.3) that the effect of a marginal
increase of one Advanced Placement credit is associated with an increase in the
probability of college enrollment of 2.1 percentage points ( p < 0.001). In Stata,
marginal effects for the covariates can be obtained using themargins post-estimation
command invoked after estimating any regressions.

There are a number of ways that marginal effects can be computed, and there is
robust discussion about the pros and cons of each (Long & Freese, 2014). As noted
above, the marginal effect of any given independent variable depends on the values
of all other covariates (i.e., the values at which we hold them constant). A marginal
effect at the means (MEM) uses the mean values for each independent variable to
calculate the marginal effect.10 Therefore, the marginal effect is calculated for
someone who is average on all of the independent variables included in the model.
Though familiar and computationally less intensive than most alternatives, one
drawback of the MEM approach is that it raises the question of who, exactly, is
“average.” This is particularly salient for covariates measured categorically or as
integers. Does it make sense to hold the value of AP courses constant at 3.4, even
though taking fractional courses is impossible? Or, when controlling for gender
using a variable where female ¼ 1 and the proportion of women in the sample is
0.52, does it make sense that the average “gender” in the sample is held constant at
this value?

The average marginal effect (AME) approach is a more computationally intensive
alternative to MEM that bypasses the concerns mentioned earlier. To calculate
AMEs, we first compute the probability of the outcome (in our case, enrollment)
for each observation (person) using their actual values for the explanatory variables
included in the model. Then one variable is changed by some amount, often 1 unit
for categorical variables (i.e., the “delta” method), or a very small amount for
continuous measures, (but any interval could be used depending on the context),
and the outcome probability is recalculated for each person. The difference between
these two calculated probabilities is calculated for each observation (person) and
then averaged over the entire sample, leading to the AME. As such, the AME is
interpreted as the average change in the probability of the outcome resulting from
changing the independent variable by some amount. Because of advances in

10Computed by adding the atmeans option when using the Stata margins command.
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statistical software, average marginal effects have become more prevalent in the
literature (Long & Freese, 2014). Note, however, that both approaches yield a single
point estimate for the marginal effect, but this effect may vary depending at what
point on the independent variable’s distribution the value is chosen. In both
approaches, a change in an independent variable in the tails of the S-shaped logit
(or probit) curve would yield different changes in probability than a one-unit change
near the center (at the mean) of this distribution due to the nonlinear nature of these
functions. Therefore, before choosing one of these approaches to interpretation of
the results, it is important to consider the pros and cons of AMEs and MEMs and
which one seems most appropriate given the objectives of the study.

A third approach is to calculate marginal effects at representative values (MER),
where marginal effects are calculated while holding the explanatory variables at
user-specified values. MERs allow for the computation of marginal effects along
different points of the distribution of independent variables (and not just the mean).
For example, we examined the marginal effect of high school GPA on college
enrollment across a wide range of plausible GPA values (1.0 to 4.0), and these
marginal effects are plotted in Fig. 7.3. While the marginal effect of GPA on
enrollment (the solid black line) remains positive (>0) across the different values
of GPA, the marginal effect decreases with increases in GPA, and the precision of
the marginal effect (as indicated by the confidence interval) increases with GPA.
That the marginal effect declines with GPA is unsurprising because college enroll-
ment for high-achieving students is quite high and distinctions between a 3.75 and a
4.0, for example, are challenging to isolate. Regardless of the way the marginal
effects are calculated, they are now quite easily available using statistical software

Fig. 7.3 Average marginal effects on college enrollment by student GPA (Source: HSLS:2009)
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packages, and are often reported in tabular format or—for ease of interpretation—
plotted graphically.

Predicted Probabilities An alternative to coefficients or marginal effects is to
directly compute bp, or the predicted probabilities of the outcome of interest.
Predicted probabilities are particularly useful for the interpretation of interaction
terms. Remember that marginal effects compute partial derivatives, allowing one
variable to change while holding all others constant. For interactions, however, such
a calculation is impossible – to vary the interaction term, x1 ∗ x2, we cannot hold
either variable constant. Further, interaction coefficients can be difficult to interpret
in logistic regressions because of the log-odds transformation, which leads to
frequent misinterpretation in the literature (see Norton, Wang, & Ai, 2004, for a
detailed exposition). In the computation of marginal effects and predicted probabil-
ities, some software packages (such as Stata) automatically aggregate the effect of
interacted and polynomial terms.

To illustrate the use and interpretation, we added to the full model (Eq. 7.9) a
vector (INTERACT) of interaction terms of race, gender, and GPA (female*race,
GPA*race, female*GPA), as well as squared and cubed terms of GPA (GPA2 and
GPA3):

P Enroll ¼ 1ð Þ ¼ β0 þ β1DEMSþ β2ACADþ β3EXPECT þ β4SCHOOL
þ β5INTERACT ð7:13Þ

The raw coefficients table is different than in main effects models (models without
interactions) in two important ways. First, we can no longer interpret the estimated
coefficients for GPA, race/ethnicity, and gender as main effects, but rather simple
effects for White males with average GPAs (the reference group). Second, coeffi-
cients that include gender, race, and GPA appear multiple times in the regression
output (not shown here) –3, 3, and 5 times, respectively—rendering the net relation-
ships between these measures and college enrollment challenging to interpret. Most
of the interaction terms as well as the cubed GPA term were statistically significant.
A table of predicted probabilities may be helpful in interpreting differences across
categorical groups (e.g., race and gender), which can be attained using the mtable
post-estimation command with the atðÞ option in Stata to specify values for the
covariates (table not shown here, see Appendix for relevant Stata code). Creating an
mtable for Black, Latino, and White and by gender revealed that, net of student- and
school-level variables, the probability of college enrollment is quite similar across
groups (the probabilities range from 0.649 for White men and 0.704 for Black
women).11

For continuous variables (e.g., GPA), researchers may also want to examine
predicted probabilities over the plausible values—perhaps through graphical

11A formal statistical test can be applied to test the difference between two probabilities using
mtable and mlincom. For more, see Long and Freese (2014).
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analysis. We plotted the probability of college enrollment across the range of high
school GPAs (Fig. 7.4). As expected, students with higher GPAs have higher
probabilities of college enrollment. There is an inflection point at a GPA at about
2.5, where the slope of the curve begins to flatten out – a function of both the logit
functional form and of the polynomial terms of GPA included in the regression. This
shape of the curve indicates there is less differentiation in probability at the upper
end of the GPA curve, as A and B students are going to college at similar rates.
Continuing with our interrogation of college enrollment by gender and race, we
plotted the predicted probabilities of college enrollment for Black and White stu-
dents including an interaction of race and gender. Figure 7.5 shows that the proba-
bility of enrolling in college increases for both women and men as GPA increases,
net of other variables. Although they are largely parallel, the gender gap increases
slightly at the upper end of the GPA distribution. On the other hand, while Black
students are more likely to enroll in college, students with approximately a GPA of
3.0 enroll in college at similar rates, irrespective of race or gender. Plots of predicted
probabilities can illustrate the nuances that exist across the range of values as well as
interactions.

Subgroups of Interest Another advantage of using margins to explain the results of
binary regression models is the ability to estimate predicted probabilities for specific
groups within one’s sample. For example, if you want to produce marginal effects
for student profiles of interest, you can use the Stata mtable command. Using our
running example, if we want to examine the probability of college enrollment for
female students by parental education and income, a table of the marginal effects for
each of these contrasts can easily be produced (see Table 7.4). First, we employ a

Fig. 7.4 Predicted probability of college enrollment by GPA (Source: HSLS:2009)
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Fig. 7.5 Probability of college enrollment by race, gender, and GPA (Source: HSLS:2009)

Table 7.4 Comparison of the probability of female college enrollment by select income and
parental education levels

Pr(college
enrollment)

Lower
CI

Upper
CI

Panel A: at the means

Low-income student whose parent(s) has no more than high
school degree

0.637 0.604 0.670

Middle-income student whose parent (s) enrolled in but did
not attain a college degree

0.650 0.592 0.708

High-income student whose parent(s) earned a college
degree

0.808 0.787 0.829

Panel B: at local means

Low-income student whose parent(s) has no more than high
school degree

0.554 0.520 0.587

Middle-income student whose parent(s) enrolled in but did
not attain a college degree

0.618 0.557 0.679

High-income student whose parent(s) earned a college
degree

0.902 0.890 0.914

Source: HSLS:2009
Notes: Student-level controls include: gender, race, parental education, income, highest math taken,
whether friends plan to go to college; School-level controls includes urbanicity, school type, and
share of students enrolled in 2-year and 4-year colleges. Sample includes all students with base year,
follow-up, and transcript data that are not missing data on covariates (N ¼ 10,940)
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crosstab of parental education and income (using tab in Stata) to estimate clustering
of observations to build our profiles. We find there is a cluster of low-income
students whose parents have no more than a high school degree (low-income first-
generation college goers). There is also a cluster of high income students whose
parents have bachelor’s degrees (high-income non-first-generation college gradu-
ates). There is an additional set of students we can identify as being first-generation
four-year college-goers (their parents have not completed a four-year degree) and are
middle-income. We then examined the probability of college enrollment for these
three groups using mtable to set the values for gender, parental education, and
income associated with these three profiles and calculate their probabilities while
holding all other independent variables at their means (Panel A in Table 7.4).

In terms of their enrollment probabilities, there is about a 17 (probability) point
difference between the least (0.637) and most advantaged (0.808) students. These
findings may be limited because parental income and education is often related to
other measures, for example the availability of AP courses to students, with
low-income students being less likely to gain access to such advanced courses.
Therefore, plugging in mean values of the overall sample to calculate predicted
probabilities (as in Panel A) may not be as meaningful as plugging in local means for
covariates that are more representative of each group. This is an important difference
when you have covariates that are markedly different across groups (e.g., the mean
GPA for the least advantaged group is 2.59 versus 3.24 for the most advantaged
group). To recalculate the predicted probabilities using the local means, we first
created variables that identify each group of interest (e.g., low-income students
whose parents did not go to college). Then we used these three identifiers to
construct three separate mtables each producing sets of probabilities where the
covariates are held constant at their local means. These results allow us to observe
how students with high-income and bachelor’s degree holding parents are
advantaged. Their probability of enrolling in college is much higher (a 45-point
difference) relative to their low-income, first-generation peers (see Panel B in
Table 7.4). Long and Freese (2014) discuss how to formally test for differences in
these probabilities among subgroups. In general, predicted probabilities are useful
for interpreting differences in outcomes across subgroups, and computing predicted
probabilities ( bp ) using local means can adjust for differences in covariates by
subgroups.

Classification or Predictive Accuracy Binary regression models are typically used
to predict the probability of outcomes for individual observations and they can also
be used to classify individuals (using these predicted probabilities) into categories.
For example, in higher education research, previous studies have predicted individ-
ual student enrollment propensities (DesJardins, 2002) and others have used
predicted probabilities to classify students into groups based on their chances of
gaining admission into selective colleges (2013). A simple way to examine how well
your model predicts the outcome of interest, another measure of goodness of fit, is to
extract the classification diagnostic information produced by logit regression
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techniques. In Stata, this classification information is available by invoking the estat
classification command. The classification rate is a calculation of how often a

model correctly classifies observations into either y ¼ 1 or y ¼ 0; in our running
example, how well our logit model classifies college enrollment or not. A correct
classification rate (CCR) of 0.5 means the model correctly predicts outcomes 50% of
the time. Such a model would not outperform a random classifying scheme (e.g.,
flipping a coin to categorize). In addition to the overall classification rate, there are
two measures that researchers also often examine. One is sensitivity, or the rate at
which the model will correctly classify those experiencing the event or outcome.12

The unrestricted logit model we estimated correctly identified college-goers 89% of
the time (sensitivity of 0.89). Specificity is the rate at which the model correctly
classifies those who do not experience the outcome. Our model was not very
accurate in classifying non-college-goers (specificity of 0.50). Overall, our model
correctly classified college-going across the entire sample 76% of the time.

Hosmer et al. (2013) note that sensitivity and specificity are calculated based on a
single threshold value used to classify observations. Statistical programs such as
Stata, SPSS, and SAS all use a default predicted probability threshold of 0.50, but
researchers may want to specify a different cutoff probability for events with
particularly high or low probabilities of occurrence. One way to try to assess whether
a 0.50 cut point is optimal is by using the lsens command in Stata. This command
produces a plot of the sensitivity and specificity across the entire range of possible
threshold cut points that could be used. Ideally, we would select a cut point that
maximized both sensitivity and specificity measures – at their intersection. In the left
side panel in Fig. 7.6, we find the ideal probability cut point for classification is about
0.68. While the lsens graph can provide some indication of alternatives to the 0.50
default cut point, it does not tell us how well our model can discriminate college
goers from non-college goers in our data. To do so, we need a measure that captures
our ability to identify 100% of college-goers (sensitivity) and misidentify non-
college-goers 0% of the time (1-specificity) over all possible cut points. This plot
is known as the receiver operator characteristic (ROC) curve, whereby the area under
the curve is used to determine model fit—the closer to 1, the better the fit of the
model. The right-hand side panel of Fig. 7.6 illustrates the ROC curve, plotted with
the lroc command. The diagonal line represents random assignment to 0 or 1. There-
fore the area above that line represents a net increase in sensitivity and reduction in
specificity. In our example, the area under the curve is 0.795, which is on the margin
of being considered a “very good” fit.13 Hosmer et al. (2013) warn that the extent to
which a model can discriminate between outcomes is not only dependent on the fit of

12The default classification threshold in Stata is a probability of 0.5 – observations with probabil-
ities above 0.5 are classified as 1; 0 otherwise.
13To be clear, there are no absolute definition of an area under the curve measure that is a “good fit,”
but rather rules of thumb ranges: 0.5 is no discrimination (or no better than chance); 0.5 to 0.7 is
considered poor; 0.7 to 0.8 is acceptable; 0.8 to 0.9 is excellent; and greater than 0.9 is outstanding
(Hosmer et al., 2013).
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the model, but on the nature of the outcome and differences between the two groups:
“we can have a well fitting models that discriminate poorly, just as we could have
models with poor fit that discriminate well” (Hosmer et al., 2013, p. 174).

Some scholars note that the aforementioned measures that assess predictive
accuracy actually overestimate the precision of these models (DesJardins, 2002;
Hosmer et al., 2013). If the researcher’s intention is to use data outside of the sample
used to derive the model (e.g., in predicting admission or enrollment behaviors using
historical data), they should not assume that their models will have similar predictive
accuracy. Therefore, in order to better make the case for a model’s accuracy in
classifying observations or predicting outcomes, researchers should first estimate the
model with a random subsample of observations, and then test their predictive
accuracy on the reserve (or validation) sample using these tests. See DesJardins
(2002) and Chapter 5 of Hosmer et al. (2013) for more on the out-of-sample
validation approach.

Fig. 7.6 Sensitivity and specificity versus probability/receiver operator characteristic curve
(Source: HSLS:2009)

7 Categorical and Limited Dependent Variable Modeling in Higher Education 319



7.2.4 Probit Regression

We now turn to another technique often used to model binary outcomes, the probit
model, and juxtapose it to the logit model discussed above. To transform probabil-
ities into a continuous variable that ranges from –1 to +1, the probit approach
relies on the inverse cumulative distribution function based on a normal distribution,
called the probit link. The cumulative distribution function can transform any value
into a value between 0 and 1. Therefore, its inverse can transform the probabilities
that range from 0 to 1 into �1. The probit function is formally defined by:

Ф�1 Pr y ¼ 1jxð Þ½ � ¼ X0β ð7:14Þ
Pr y ¼ 1jxð Þ ¼ Ф xβð Þ ð7:15Þ

WhereФ is the cumulative normal distribution function, the�1 takes its inverse, and
X

0
β results in a z-score for the probability of the outcome occurring for each record.

As such, the coefficient of a probit regression is interpreted as the change in the
z-score of the probability of the event occurring. As with logit, probit is typically
estimated using maximum likelihood estimation. One assumption of the probit that
is distinct from logit is that the errors are assumed to be normally distributed, with a
mean of zero and a variance of 1. Recalling Fig. 7.1, the distribution of errors follows
the normal curve for both the probability and cumulative density functions, with
thinner tails for the logit than for the probit. Approaches to ascertaining goodness-of-
fit are similar to those discussed for logit regression.

Interpretation We estimated the same unrestricted model used for the discussion
of the logit model. In Table 7.5, the probit coefficients are presented as well as their
accompanying marginal effects. The coefficients estimated using the probit model
are interpreted in the following way: for each one unit change in the regressor of

interest, the z-score of enrollment changes bybβ, with larger z-scores being associated
with higher probabilities for the outcome of interest. In our running example, we find
women’s probabilities of enrolling in college are 0.075 standard deviations higher
than that of their male counterparts ( p< 0.01). Interpreting these results in a slightly
different way, each one-point change in high school GPA (measured from 0.0 to 4.0)

increases the probit index by about one-third of a z-score (bβ ¼ 0.337, p < 0.01).

When compared to the logit coefficients in Table 7.3, the magnitude of the probit
coefficients are smaller by roughly

ffiffiffi
3

p
=π, the conditional variance of the errors

assumed for the logit. (Equivalently, the logit coefficients are larger than the probit
coefficients by a factor of about 1.7). This difference in the magnitude of the point
estimates reflects the assumptions made about the distribution of the (conditional)
error variances in the logit and probit models.

Some people find it difficult to interpret the z-score coefficients from probit
regressions directly, as they are not expressed in readily understood units.
Researchers often revert to presenting probit regression results using predicted
probabilities and marginal effects, and we include the latter from our estimated
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model results displayed in the third column of Table 7.5. Not surprisingly, the
marginal effects derived from the probit are quite similar to those produced by the
logit model presented in Table 7.3, and are interpreted in an equivalent manner.

7.2.5 Linear Probability Model

It is not uncommon for researchers to use the linear probability model (LPM) to
estimate models where the outcome is binary (e.g., Dynarski, 2004; Hurwitz, 2012).
The appeal of the LPM stems from the straightforward interpretation of its coeffi-
cients because the coefficients are, simply, marginal effects (i.e., changes in proba-
bilities), holding all other variables constant. A dichotomous dependent variable
takes on only two values (e.g., enrollment in college¼ 1; non-enrollment ¼ 0), thus,
OLS regression estimates the mean of that dichotomous outcome – i.e., its expected
frequency, and the predicted dependent variable from an LPM,by, is the (conditional)
predicted probability of enrollment.

Table 7.5 Comparison of estimates of the probability of college enrollment, probit and linear
probability modelsa

(1) (2) (3)

Probit coefficients Probit MEs LPM coefficients

Estimates S.E. Estimates S.E. Estimates S.E.

Female 0.075*** �0.028 0.022*** �0.008 0.020** �0.008

Race

Native American �0.055 �0.129 �0.016 �0.038 �0.013 �0.039

Asian �0.064 �0.056 �0.019 �0.016 �0.013 �0.016

Black 0.147*** �0.051 0.041*** �0.014 0.045*** �0.015

Latino 0.075* �0.041 0.021* �0.011 0.022* �0.012

Multiracial �0.06 �0.048 �0.017 �0.014 �0.018 �0.014

White – – – – – –

Academic controls

GPA, 10th grade 0.337*** �0.02 0.096*** �0.006 0.111*** �0.006

Math test score 0.003** �0.002 0.001** 0 0.001** 0

Number of AP credits 0.066*** �0.01 0.019*** �0.003 0.013*** �0.002

Other student-level controls b x x x

School-level controlc x x x

N 10,940 10,940 10,940

Source: HSLS:2009
Notes: ***p < 0.001, **p < 0.01, *p < 0.05, ~p < 0.1; (a) sample includes all students with base
year, follow-up, and transcript data that are not missing data on covariates; (b) other student controls
includes parental education, income, highest math taken, whether friends plan to go to college;
(c) school-level controls includes urbanicity, school type, and share of students enrolled in 2-year
and 4-year colleges
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Formally the LPM model can be defined as:

Pr yi ¼ 1jxð Þ ¼ X0β þ εi ð7:16Þ
where y is a categorical outcome for student i who enrolls in college (y ¼ 1) or not
(y ¼ 0); X’ is a vector of explanatory variables (e.g., academic ability, demographic
characteristics, college-promoting networks, and school measures) thought to be
related to one’s enrollment probability; β is a corresponding vector of parameters to
be estimated, and ε represents the error term, which is assumed to be normally
distributed.

The LPM has the same set of assumptions as an OLS regression using a
continuous dependent variable, and interrogating these assumptions is essential to
understanding whether the model is appropriate to the estimation task at-hand (Long,
1997). One assumption is linearity, where the dependent variable ( y) and the
independent variables (x’s) are assumed to be linearly related through the parameters
in vector β. A second assumption is collinearity, where the x’s are assumed to be
independent, that is, none of the regressors (x’s) are a linear combination of the other
covariates. Next, the error term (ε) is expected to be normally distributed (normality)
with a mean of zero given a set of x’s (the zero conditional mean of ε assumption).
Additionally, the errors are assumed to be uncorrelated (uncorrelated errors) and to
have a constant variance across observations, the latter being known as homosce-
dasticity. Intuitively, these last two assumptions suggest that the values observed for
one student should not depend on the observed values of another student, and the
distribution of the errors should be similar across each covariate (x). A common way
to estimate the LPM is using ordinary least squares (OLS), where the objective is to
minimize the sum of the squared errors (Long, 1997).

Example: Modeling College Enrollment As with our examples discussed above,
we estimated the probability of college enrollment using the following model:

Pr Enroll ¼ 1ð Þ ¼ β0 þ β1DEMSþ β2ACADþ β3EXPECT
þ β4SCHOOL ð7:17Þ

where Enroll is 1 if a student enrolled in college, and 0 if they did not; DEMS,
ACAD, EXPECT, and SCHOOL are vectors of independent variables (described
previously) and their corresponding parameters β’s that are to be estimated, and ε is a
randomly distributed error term accounting for mis- and unmeasured explanatory
variables related to college enrollment. The LPM relies on the same measures of
goodness of fit, such as the R2, as when using OLS to estimate a continuous
dependent variable. Our results indicate that the R2 for this model is 0.24, which is
a measure that is not (technically) comparable to McFadden’s R2 often used for the
logit and probit models.

Interpretation of Findings The interpretation of the coefficients
�bβ ) is similar to

that of a standard linear regression model with a continuous outcome–a one unit

change in an explanatory variable x (e.g., one’s high school GPA), results in a bβ
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change in the probability of the outcome, in this case, college enrollment (ceteris
paribus). The fifth column in Table 7.5 displays the coefficient estimates produced
by the LPM (as well as the associated standard errors). On average and net of other
variables, women have probabilities of college enrollment that are about two per-

centage points higher than men (bβ ¼ 0.020, p < 0.05). When examining race, Black
(Latino) students’ probabilities of enrolling in college are 4.5 (2.2) percentage points
higher than White students. In terms of high school GPA, each one-unit increase
results in an 11.1 percentage point increase in the probability of college enrollment
( p < 0.001). All of these estimates are similar to the marginal effects produced by
the logit and probit regressions (see Table 7.3). However, an important distinction is

that the LPM imposes a linear constraint such that the effect
�bβ� for each variable (x)

is the same (constant) no matter the value of x (i.e., plotting the OLS estimate in
Fig. 7.4 would produce a horizontal line at about 0.11).

As is true for the non-linear logit and probit regression models, we can predict the
probability of college enrollment for each individual using the LPM results, and
these results are presented in Fig. 7.7. It may be troubling that some predictions
(about 4%) fall outside of the [0,1] probability interval, thereby providing clearly
nonsensical predictions.

We then examined how to use the OLS results to classify students. Although we
are unable to use post-estimation commands for classification as we did for logit and
probit, we classified students into college enrollment using a threshold of 0.5 and
compared it to the observed outcome. We found that similar to the logit model, the
LPM’s sensitivity (the percent of observations it correctly classified as college-

Fig. 7.7 Distribution of predicted probabilities of enrollment: Linear probability model (Source:
HSLS:2009)
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going) was 90.0 percent and the specificity (the percent of non-college-goers it
correctly classified) was slightly lower at 47.8 percent.

Drawbacks of the LPM Although LPM is appealing due to its familiarity and
intuitive coefficient estimates, the out-of-range predictions in Fig. 7.7 suggest there
are limitations to this model. Indeed, many of the assumptions used in the linear
regression framework are violated when using a dependent binary outcome. Long
(1997) points to four issues with the LPM that we illustrate with our data, below.

Functional Form A fundamental assumption about the linear model is that a given
variable (x) will have the same relationship with the outcome ( y) across all values of
x. In our example from Table 7.5, a one-unit increase in GPA results in a constant
change a student’s probability of college enrollment across all values of GPA,
holding all other variables constant. This implies that the difference in the probabil-
ity of college enrollment between students with GPAs of 4.0 and 3.0 to be
11 points—the same as the difference between students with 1.0 and 2.0 GPAs
(net of other variables). However, we know that college enrollment is quite high
among B students; and the differences in college-going may be greater between C
and D students than A and B students (as suggested in Fig. 7.3). Therefore, a linear
relationship may not best describe how changes in GPA influence changes in college
enrollment. One potential way to address such nonlinearity in the relationship
between y and a given x is to include nonlinear terms or other transformed versions
of x (e.g., polynomials or logged terms).

Heteroscedasticity The assumption that there is constant variance in the x’s across
the ranges of values is categorically (no pun intended) violated. Mathematically, the
variance of a binary outcome y is μ(1-μ), given mean μ. When conditioning on
variables x, then:

Var yjxð Þ ¼ Pr y ¼ 1jxð Þ∗�
1� Pr y ¼ 1jxð Þ ¼ xβ∗ 1� xβð Þ ð7:18Þ

meaning that the conditional variance of y, conditional on x, varies with x. Thus, as
Long (1997) notes, the variance of the errors for a binary outcome is not constant,
nor are the values of the x’s independent. We plot the residuals from the LPM model
against its predicted values (using the rvfplot command in Stata) in Fig. 7.8, which
demonstrates significant heteroscedasticity in the observations in our sample. If the
variance was constant, we would expect to see a random pattern of observations
around the length of the horizontal line located at y ¼ 0. Although such graphical
approaches are useful, to formally test whether the variance is constant we use the
estat imtest command, which tests the null hypotheses that the variance of the errors
is constant and normally distributed. The results of this test (not shown) indicates
that the residual variance of the errors is heteroskedastic, thus “the OLS estimator of
β is inefficient and the standard errors are biased” (Long, 1997, p. 38).

Non-Normality of Errors The errors of a binary outcome are not normally dis-
tributed around the x’s. Residuals, you may recall, are calculated as the difference
between the observed and estimated (or fitted) values. Because binary outcomes can

324 A. Rodriguez et al.



only take on the values of 0 or 1, residuals can take on only one of two values
(Fig. 7.8). For example, for all students who a have an estimated probability of
enrollment of 0.80, they have one of two residual values: +0.80 if they actually did
not enroll in college or �0.20 if they did. Therefore, structurally, the distribution of
errors cannot be normal. You can also examine the normality of the distribution in
Stata (Chen, Ender, Mitchell, & Wells, 2003). We first stored the errors using the
predict command and then compared the density plot of the errors to the normal
distribution using the kdensity command (Fig. 7.9), which shows a skewed distri-
bution of errors. In addition to a visual inspection of the errors we can also employ
one of a number of statistical tests of normality in finite samples. The skewness and
kurtosis test for normality (sktest in Stata) assesses the symmetry and tail thickness of
a distribution, which indeed confirms our visual inspection of Fig. 7.9 ( p< 0.001 for
both skewness and kurtosis).

Out-of-Range Predictions As we illustrated in Fig. 7.7, the LPM can produce
probability estimates that are out of the range of plausible values. Indeed, 4% of our
sample had predicted probabilities that were either less than zero or greater than
1. However, the college enrollment rate for this sample is somewhat balanced (66%),
but when modeling rare or very common events—where the majority of the prob-
abilities are in the tails of the distribution, a LPMwill likely produce a larger share of
out-of-range predictions. To demonstrate this issue we produce an example where
we modeled student expectations to enroll in college –which is known to be
universally high (91% of our sample expects to go to college)—we find that the

Fig. 7.8 Results of residual-versus-fitted plot for the linear probability model (Source:
HSLS:2009)
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LPM produces predicted probabilities greater than one for almost one-quarter (22%)
of the sample, but none less than zero. These findings are, however, sample
dependent, as indicated by no predicted probabilities less than one which is due to
the very high percentage (91%) of students in the sample who have expectations for
going to college. To further illustrate these differences, the boxplot in Fig. 7.10
compares the range of predicted probability estimates for college expectations for the
logit, probit, and LPM college expectations model. The LPM has a slightly lower
mean predicted probability of expecting to go to college, a larger range of predicted
values than the logit and probit, and the upper whisker extended beyond the upper
limit of 1, whereas the predicted probabilities for the logit and probit models are
bounded by 0 and 1 by construction.

A final illustration details the differences in predicted probabilities in the tails of
distribution. Because the probabilities of college enrollment would largely lie in the
linear portion of the probit’s s-curve, we would expect the college enrollment
probability estimates derived from the probit model not to deviate as much from
the LPM (save for the tails). However, because the range of probabilities for the
college expectations model are generally at the upper end of the distribution, we
would expect the linear probability model to diverge for many of the aforementioned
reasons. We therefore plotted the predicted probabilities produced by the LPM
against those produced by the probit (the logit exhibits a similar result) in a scatter
plot for both the college enrollment (Panel A) and college expectations (Panel B)
models to illustrate the differences in results (Fig. 7.11). A perfect alignment

Fig. 7.9 Comparison of kernel density plots, linear probability model estimates and normal
distribution (Source: HSLS:2009)
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Fig. 7.10 Comparison of predicted probabilities for college expectations (Source: HSLS:2009)

Fig. 7.11 Scatter plot of predicted probabilities for probit and LPM estimates, for college enroll-
ment and college expectations (Source: HSLS:2009)
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between the probit and LPM predictions would produce a diagonal line from (0, 0) to
(1,1). In Panel A, we observe that the deviations between the linear and probit
models are largely in the tails of the sigmoid (S-shaped) curve, which is consistent
with their underlying assumptions about the distribution of errors. In Panel B, we
find there are large differences in the probit and LPM estimates when modeling an
event at the top end of the probability distribution (e.g., where over 90 percent of
events occur). This provides further evidence that the LPM may be an inappropriate
approach when modeling rare or common.

Moreover, some measures in an LPM may require transformations that are not
necessary in logit and probit models. Consider the measure number of AP credits,
which the LPM exhibits a small negative (but insignificant) relationship with college
expectations of ( bβ ¼ -0.001, p > 0.10) yet the probit estimates a positive and
significant relationship (bβ ¼0.011, p < 0.001, Table 7.6). A plot of the predicted
probabilities indicates that the LPM estimates diverge from the probit and logit as the
number of AP courses increases, and the LPM estimates also become much less
precise with increases in the number of AP courses completed (Fig. 7.12). A closer
look at AP credits reveals that it is heavily skewed right, as many students take none
or only one AP course. Due to the linear relationship assumed in the functional form
when using the LPM, modeling of nonlinear outcomes with highly skewed distri-
butions while using highly skewed covariates may yield unexpected results. Without
transformations of covariates into nonlinear terms, the LPM may not properly
account for the clustering of observations at the extremes of the variable distribu-
tions. Researchers should consider the prevalence of their outcome and distribution
of their covariates before employing this approach.

7.2.6 Conclusion

The ubiquity of binary outcomes in education research has necessitated the use of
nonlinear estimation approaches such as the logit and probit. To be sure, linear
probability models remain quite popular for estimating dichotomous dependent
variables. Notwithstanding the problems noted, some of the reasons the LPM
remains popular is its familiarity and the simplicity of the interpretation of the
point estimates. Also, there are adjustments that can be made that will remedy
some of the assumption violations, such as employing the use of robust standard
errors and transforming independent variables that one may think are non-linearly
related to the outcome. Nonetheless, the decision of whether to use LPM, logit, or
probit when estimating binary outcomes remains a topic of active discussion. Some
scholars contend that researchers who employ the LPM should do so with caution
because of functional form violations (Long, 1997) and/or the production of
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inaccurate estimates (Horace & Oaxaca, 2006). In contrast, other scholars argue that
the LPM is a parsimonious estimation approach that yields similar results to logit or
probit modeling under a variety of common conditions (Angrist & Pishke, 2009).

There are, of course, tradeoffs to using each approach, and understanding one’s
data, the conceptual foundations of the issues being examined, and underlying
statistical assumptions and how robust the method is to violations of these assump-
tions are important considerations when choosing an estimator for binary outcomes.
The choice between logit or probit is largely dependent on researcher preference and
disciplinary norms, though under some circumstances, the probit will have a mar-
ginally better fit than the logit (see Hahn & Soyer, 2005, for details). However, given
the assumption used for the error distribution, the logit performs well with explan-
atory variables containing extreme values concentrated in the tails of the distribution.
In addition, the logit link function allows for the calculation of the odds ratio, which
may be useful in interpretation of one’s findings. Moreover, there are some statistical
applications that use a specific link function, such as the two-step Heckman selection
model which relies on the probit link function for the first step/first-stage equation
because the technique assumes bivariate normal errors (Greene, 2002), so under-
standing it is necessary when employing these techniques.

Table 7.6 Comparison of marginal effects on college expectation from logit, probit, and linear
probability modelsa

Logit MEs Probit MEs LPM Coefficients

Estimates S.E. Estimates S.E. Estimates S.E.

Female 0.021*** �0.005 0.019*** �0.005 0.018*** �0.005

Race

Native American 0.031 �0.019 0.027 �0.02 0.041* �0.025

Asian �0.006 �0.014 �0.013 �0.013 �0.001 �0.010

Black 0.031*** �0.007 0.032*** �0.007 0.044*** �0.010

Latino 0.003 �0.007 0.002 �0.007 0.005 �0.008

Multiracial 0.002 �0.009 �0.001 �0.009 0.007 �0.009

White – – – – – –

Academic controls

GPA, 10th grade 0.040*** �0.003 0.041*** �0.003 0.056*** �0.004

Math test score 0.002*** 0.000 0.002*** 0.000 0.002*** 0.000

Number of AP credits 0.018*** �0.004 0.011*** �0.003 �0.001 �0.001

Other student-level controlsb x x x

School-level controlsc x x x

N 10,940 10,940 10,940

Source: HSLS:2009
Notes: ***p < 0.001, **p < 0.01, *p < 0.05, ~p < 0.1; (a) sample includes all students with base
year, follow-up, and transcript data that are not missing data on covariates; (b) other student controls
includes parental education, income, highest math taken, whether friends plan to go to college;
(c) school-level controls includes urbanicity, school type, and share of students enrolled in 2-year
and 4-year colleges
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7.3 Ordinal Outcomes

In higher education research, there are a number of commonly studied categorical
outcomes that take on more than two values and have values that can be ranked or set
in some hierarchy. For example, researchers may want to analyze higher education
public opinion data using Likert scales (e.g., ranked from “strongly disagree” to
“strongly agree”); one could estimate the probability of students enrolling in colleges
according to hierarchical categories of institutional selectivity (e.g., from “least” to
“most” selective institutions); we could estimate the probability of earning a partic-
ular grade in a college course where grades are ranked from “A” to “F”); or we might
estimate high school students’ postsecondary expectations from “no college” to
“doctoral degree.” To model the probability of the event when the outcome measure
is ordinal, scholars have employed the ordered logit or ordered probit models
(Brasfield, Harrison, & McCoy, 1993; Cheng & Starks, 2002; Doyle, 2007; Morri-
son, Rudd, Picciano, & Nerad, 2011; Myers & Myers, 2012). For example, in their
study of prestige and job satisfaction, Morrison et al. (2011) used ordered logistic
regression to examine responses from survey data of faculty perceptions of institu-
tional prestige.14

Fig. 7.12 Comparison of predicted probabilities of college expectations by AP credits and
modeling approach (Source: HSLS:2009)

14An additional approach that is not discussed here but may of use to higher education researchers is
the sequential logit, which models events that individual experience in sequence—for example
course-taking (Algebra I, Algebra II, Pre-Calculus); admission stages (application, admission,
enrollment); tenure-track faculty positions (Assistant, Associate, Full).
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Ordinal outcome variables may represent an underlying continuous latent con-
struct. Drawing from the aforementioned examples—faculty’s perceptions of job
satisfaction, institutional selectivity, learning (as captured through course grades),
etc.—are all complex constructs that may have underlying but unobserved values
that are actually continuous. However, we only observe the realizations of this
underlying continuous construct. As an extension of binary regression, ordinal
regression is similar to logit or probit modeling except there are several (rather
than one) cut points along the distribution of the latent dependent variable that cut
this distribution into categories that can be observed. To illustrate this latent variable
concept, the structural model can be defined as:

y∗ ¼ X0β þ ε ð7:19Þ
where y∗is a latent continuous outcome that is unobserved and ranges from �1; X

0

is a vector of regressors; β is a set of corresponding parameters; and ε is a vector of
error terms. The categories of outcomes are then defined by thresholds (τ) using the
following measurement model:

y ¼ c if τc�1 � y∗ � τc, for c ¼ 1 to J ð7:20Þ
where the observed outcome ( y) provides “incomplete information about an under-
lying y∗” (Long, 1997, p. 116) but these thresholds assign the cth outcome category
of J possible categories depending on whether the latent measure y∗ falls between a
lower bound τc � 1 and upper bound τc (Long, 1997).15 To illustrate, our latent
construct we use the selectivity of an institution that a student might choose to attend
and we want to model this as a four-category ordinal outcome. These categories are
defined as follows:

y ¼
1, no college if τ0 ¼ �1 � y∗ < τ1
2, less selective college if τ1 � y∗ < τ2
3, selective college if τ2 � y∗ < τ3
4, most selective college if τ3 � y∗ < τ4 ¼ 1

8>><
>>:

Using some algebraic manipulation and making some assumptions about error
distributions allows us to provide estimates of the probabilities that a student will
be in each of the categories noted in Eq. 7.20. Formally,

Pr y ¼ cjxð Þ ¼ F τc � X0βð Þ � F τc�1 � X0βð Þ ð7:21Þ
where F is the cumulative distribution function (for either the logit or probit), x is a
vector of covariates; and β is a corresponding vector of parameters. The probability
of observing outcome c is equivalent to the difference between the probabilities of

15For a graphical representation of the cut points, see Long (1997).
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being bounded by two thresholds along the cumulative distribution function. Similar
to the binary models, this model is estimated using maximum likelihood estimation
techniques.

7.3.1 Assumptions

In order to estimate the ordinal regression model, a number of assumptions need to
be made about the distribution of errors that are similar to those noted in the binary
outcomes section. The ordinal logit has a logistic error distribution with a mean of
zero and a variance of (π2/3), and the errors are assumed to be normally distributed
with a mean a zero and variance of 1 for the ordinal probit model. One additional
assumption for ordinal regression is that the slopes of the included regressors are
constant across all the outcome categories, which is known as the parallel slopes
(or proportional odds) assumption.16 To illustrate, if we modeled enrollment across
institutional selectivity categories and included gender as a covariate, women would
have the same slope coefficient (bβ) for enrollment at a less selective college as they
would for a most selective college. This is a very stringent assumption that com-
monly fails formals tests. There are formal tests of this assumption that are com-
monly used (discussed below), one comparing the fit of the model using its log
likelihood to a model with relaxed assumptions, known as the generalized ordered
logit model17 (likelihood ratio and score tests) or a test whether the bβ s are
significantly different across categories (Wald or Brant tests).

There are a number of approaches one can take when the parallel slopes
(or parallel regression) assumption fails. First, one can identify and remove variables
thought to differ across outcome categories, but this strategy may not appeal to
researchers if the variable(s) in question are conceptually important. Second, one can
fit the model using multinomial regression (discussed in the following section).
When employing a multinomial regression (mlogit), the assumption that the cate-
gories are ordered is relaxed and thus the parallel slopes assumption no longer
applies. Imposing a rank-order of outcomes that are not ordinal (and thereby the
parallel slopes assumption) will bias your estimates (Borooah, 2002). However, if
the dependent variable is truly ordinal and we treat it is as nominal, we may be faced
with a loss of efficiency because we have “fail[ed] to impose a legitimate ranking on
the outcomes” (Borooah, 2002, p. 3). In choosing between the tradeoff of model
efficiency and estimate bias, the former is usually favored, and therefore applying a
multionomial regression would be an appropriate course of action..

In some cases, researchers have used OLS regression to model ordinal outcome
variables (e.g., modeling Likert-scale responses as continuous). Conceptually, such

16See Long (1997) for the derivation of the parallel regression assumption.
17The generalized ordered logit model does not assume that the bβ ’s are equal. See Long and
Freese (2014).
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an approach assumes that the categories are spaced equidistantly. However, this
equidistance assumption may not be true for ordinal data because the magnitude of
the differences between categories can vary in ways that are unknown. For example,
when employing OLS to estimate our college selectivity dependent variable, the
magnitude in the underlying latent construct between not going to college and
choosing a less selective college is assumed to be the same as the distance between
choosing a very selective and most selective college. However, this may not be case,
as there is a lot of heterogeneity within institutional selectivity categories, particu-
larly among less-selective institutions (Bastedo & Flaster, 2014). As a result, the use
of OLS to model ordinal outcomes may violate a number of assumptions – partic-
ularly the normality and heteroscedasticity assumptions. Winship and Mare (1984)
discuss how the ordinal probit and OLS models can produce disparate estimates,
some of which parallels our own discussion of the use of linear probability models in
Section III above.

7.3.2 Our Example: College Enrollment by Institutional
Selectivity

In this section we build on our example from the binary outcomes section where the
dependent variable is a dichotomous outcome of enrollment/not in college. In this
section the dependent variable is one containing four college choice categories: did
not attend college, attended a less selective, selective, or most selective college,
which is (a priori) assumed to be ordinal. In terms of how students are distributed
across these four categories, 49% of students did not enroll in college; 23% enrolled
in a less selective institution; 15% enrolled in a selective college; and 12% enrolled
in one of the most selective colleges. We included as covariates the same variables
used in the binary outcome model discussed above (demographic, academic, expec-
tations, student networks, and school controls), and estimated the ordinal model
using the ologit command in Stata.

Before interpreting the point estimates produced by the ordinal regression,18 we
check whether the parallel regression assumption is satisfied using a likelihood ratio
test (oparallel) and Brant test (brant). The likelihood ratio test compares the overall
model fit of a ordinal logit with a generalized ordered logit model that does not
impose the parallel regression assumption.19 Here, the null hypothesis is that the two
models fit the data similarly. For our running example, the likelihood ratio test is
statistically significant ( p < 0.001), meaning we can reject the null hypothesis
because the generalized model is a better fit. You can also test the extent to which
individual covariates violate the parallel regression assumption using the brant
command. Brant test results are displayed in the first column of Table 7.7 and

18For brevity, we do not include hypothesis tests of the ordered logit or probit, but refer readers to
Long and Freese’s (2014) overview.
19For more on generalized ordered logit models, see Long and Freese (2014).
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indicate that the test fails for about half of our bβ s, which is not wholly uncommon.
Parallel assumption tests are highly sensitive and can fail due to factors unrelated to
the parallel regression assumption (Long & Freese, 2014). A less formal way to test
whether the parallel regression assumption is violated is to compare the estimates
produced by the ordinal model to estimates produced by a multinomial regression
model. We did so (see Table 7.7) and when comparing the marginal effects20

between the two models we find that some of the estimates are substantively
different across the ordinal and multinomial models (e.g., gender, Asian students).
Taken together, we have evidence that the ordinal regression approach is not
appropriate for examining the probability of enrollment across institutional selectiv-
ity in this sample, thus, in the next section we demonstrate how to employ a
multinomial regression as an alternative.

Although the parallel slopes violation indicates that the ordinal model is not
appropriate in this context, for illustrative purposes we discuss and interpret the
ordinal regression model estimates (not shown here) to serve as a reference for
researchers employing ordinal regression approaches. Similar to coefficients
resulting from binary regression, ordinal logit and ordinal probit coefficients differ
by a factor of 1.7, given underlying assumptions of the distribution of errors
(as discussed in Section III). Moreover, a two-category ordinal regression yields
the same coefficients as a binary regression. It is important to note that regression
output from common statistical packages also includes estimates for the J-1 cut
points. If you recall from Eq. 7.20, the ordinal outcome is conceptualized as a latent
continuous measure (y*) which is carved up into J categories by the J-1 cut points.
When J ¼ 2 (i.e., when there are two outcome categories, as in a binary regression),
the cut point is (basically) equivalent to the constant or intercept (α) in a binary
model. But in our running example we have four categories (J ¼ 4) which results in
3 (J-1) cut points being estimated by the model. The estimated values produced by
for each of the cut points are 3.1, 4.7, and 6.5. Thus, students with an estimated y*

< 3.1 are categorized as not enrolling in college; students with an estimated y*

between 3.1 and 4.7 are categorized as enrolling in less selective colleges; those
between 4.7 and 6.5 are in selective colleges; those with a y* greater than 6.5 are in
the most selective colleges group. These cut points (bτ ’s) are estimated but are
generally not of substantive interest and are therefore not often interpreted. However,
they can provide some valuable information. If the difference between the cut points
is about the same it suggests that the dependent variable is not ordinal but rather on
an interval scale. Recall that OLS assumes that the outcome is interval scale,
suggesting that using a linear regression may be appropriate.

The raw coefficients produced by the ordered regressions are, as is true for the
binary logit case, not intuitive but they can be transformed into odds ratios (if using
ordered logit) or predicted probabilities. In our example, the raw coefficient for the
Female variable is 0.0675 ( p < 0.10) which can be transformed into an odds ratio.

20Marginal effects are useful here in comparing across models.

336 A. Rodriguez et al.



The Stata output produces these raw coefficients by default, and they represent
cumulative odds of belonging to a category or higher versus belonging to the
lower categories.21 In our example the odd of females belonging to the no college
group vs. all the other categories (less/selective/most) are about 1.07 (exp0.0675

¼ 1.0698) times that of males. Equivalently, the odds of females belonging to the
no college/less selective groups vs. the selective/most selective groups are also about
1.07 times that of males. This demonstrates how the effect of being female on the
different contrasts does not vary, which will not be the case for the multinomial
models discussed later in the chapter (see Long & Freese, 2014, for a further
discussion of interpretation issues).

Although there are numerous outcomes that interest higher education researchers
that are ordinal in nature, ordinal regression analyses is less often used because many
times the parallel regression assumption tests fail. Scholars (Borooah, 2002; Long,
1997) also caution about the use of ordinal measures when categories can take on
multiple meanings and ordering. For example, if we are considering earning poten-
tial, we might order a category of institutional levels as no college, two-year college,
and four-year college. However, if we are considering time to earn a degree from
shortest to longest, we might reorder the institutional levels as two-year, four-year,
and no college, whereby those who are not yet enrolled in college are considered to
(theoretically) have the longest time to earn a degree. The main point here is that
different conceptualizations of the latent construct, and the context in which the
categorical ordering is being used, can lead to different conclusions (Long & Freese,
2014). When the parallel regression assumption fails or the ordering of categories is
not certain, researchers may want to consider the use of one of the multinomial
regression models available, discussed in the next section.

7.4 Nominal Outcomes

Some categorical outcomes are not rank ordered but are rather measured on a
nominal scale. In higher education research there are many nominal outcomes of
interest: choices among college majors (e.g., liberal arts, pre-professional, STEM,
other); reasons for selecting or leaving a college (e.g., availability of financial aid,
familial obligations, academic rigor); college-going outcomes (e.g., graduated, still
enrolled, transferred, no longer enrolled); or the types of jobs PhD students select
upon graduation (e.g., private industry, faculty, public service, non-research).
Regression-based models used to estimate multiple nominal outcomes are known
as multinomial models and these have been used to study many different issues in
higher education (e.g, Bahr, 2008; Belasco, 2013; Eagan et al., 2013; Porter &
Umbach, 2006; Wells, Lynch, & Seifert, 2011). To illustrate, Bahr used a multino-
mial probit model to examine the relationship between math course-taking and the

21This is why this model is often called the “cumulative logit model.”
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long-term degree outcomes of community college students, where the outcome
categories of interest were transfer with credential, transfer without credential,
degree with or without certificate, certificate only, or no credential). Researchers
also employ multinomial regression when they are uncertain about the ordinal nature
of their data or are not able to employ ordinal regression. In their study of the
representation of women at selective institutions, Bielby et al. (2014) estimated
multinomial logit models of college application behaviors by institutional selectiv-
ity—arguably ordinal and consistent with our analysis above—because the ordinal
model they initially estimated failed the parallel regression assumption test.

When analyzing multi-categorical outcomes, one might be tempted to run sepa-
rate binary regressions to estimate each pairwise contrast of the categories. For
example, we might examine enrollment by institutional selectivity by modeling
separate binary regressions for: no college enrollment versus less selective enroll-
ment; college enrollment at less selective versus selective colleges; and so forth.
However, this approach results in several regression results that have different
sample sizes, leading to a loss of efficiency of the estimates. Furthermore, this
approach is deficient because it does “enforce the logical relationship among the
parameters” for each of the categories (Long, 1997, p.151). In contrast, multinomial
regression simultaneously estimates all of the possible outcome category relation-
ships, and does so making full use of all the available data, thereby remedying the
problems noted above when employing binary regression to estimate multinomial
outcomes.

To demonstrate the utility of the more popular multinomial regression techniques
available, below we formally present these models, how they are identified, discuss
their underlying assumptions and model fit tests, and provide examples of how to
interpret the results. We do so using our running example of the study of college
enrollment (by institutional selectivity).

When estimating a multinomial environment, the probability of observing out-
come category m among J possible categories can be modeled as:

Pr yi ¼ mjxð Þ ¼
exp X0βmjb

	 

1þPJ

j¼2
exp X0βjjb

	 
 ð7:22Þ

where b is the base outcome, x is a vector of covariates and βm j b is a corresponding
vector of coefficients relating outcome category m with respect to the base outcome.
The reader may notice that this equation is an extension of Eq. 7.3, which formally
describes the binary outcome model. One difference is that the denominator in
Eq. (7.22) is modified to accommodate more than two outcomes categories. Equa-
tion 7.4 (the binary logit representation) can also be modified to account for any
number of (J ) outcome categories:
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ln
Pr y ¼ mjxð Þ
Pr y ¼ bjxð Þ ¼ X0βmjb for m ¼ 1 to J ð7:23Þ

where b is the base outcome, X
0
is a vector of covariates and βm j b is a corresponding

vector of coefficients relating outcome category m to the base or reference category.
In Eq. 7.23, known as the multinomial logit, we take the natural log of the relative
risk ratio, Pr y¼mjxð Þ

Pr y¼bjxð Þ . As noted in section III above, the relative risk ratio is not to be

confused with the odds ratio – the ratio of two odds (Menard, 2010).22 Like the
binary logit model, the multinomial logit is linear in the parameters (the logits),
making the underlying statistical calculation easier to perform. Also of note, in
Eqs. 7.22 and 7.23 is the inclusion of a base or reference category. The parameters
are estimated using maximum likelihood. Multinomial logit regression output typ-
ically only includes estimates for J-1 of the outcome contrasts, with the base or
reference category estimates being omitted. Given that the pairwise comparisons of
the estimates for coefficients produced by the model will be relative to the reference
category, scholars are encouraged to carefully consider the choice of the base
category.

7.4.1 Assumptions

One of the assumptions underpinning the multinomial logit is the independence of
irrelevant alternatives assumption (IIA), whereby the odds of observing an outcome
do not depend on the other available alternatives.23 In words, this means that the
addition or elimination of outcome categories (i.e., alternatives) will not change the
odds of observing the outcome. For example, suppose students have three college
options available to them – let’s call them colleges A, B, and C—and the odds of a
student choosing between College A and B are evenly split. Under the IIA, the
presence (or elimination) of the third College C (the alternative) should have no
bearing on the students’ odds between the other two choices (A and B), essentially
making College C an “irrelevant alternative.” However, in practice, this assumption
will not make sense from a conceptual point of view. The elimination of College C
might mean that more students seek out College A, if for example it had very similar
program offerings as College C, thereby fundamentally changing the relative odds
between students choosing between Colleges A and B. The main argument being, if
there are enough similarities between the added alternative and one of the already
available options, then IIA will not hold. Empirically, there are formal tests—the

22Researchers should be careful to distinguish between the risk ratio and odds ratio, as they are not
interchangeable terms. In particular, odds ratios and risk ratios are most dissimilar in the middle of a
distribution (Menard, 2010). Only when J ¼ 2 are the relative risk ratio and odds ratio equal. For a
clear explanation, see https://www.stata.com/statalist/archive/2005-04/msg00678.html
23The IIA also applies to the conditional logit (not discussed here).
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Hausman-McFadden and Small-Hsiao tests—available to test whether the IIA
assumption holds. However, these tests have been shown to be inconsistent in
identifying violations of the IIA that are related to the size and structure of the
data. Long and Freese (2014) question the relevance of these tests and argue that one
should select outcomes categories that appear to be theoretically distinct, in order to
argue that the multinomial categories are valid. When there is insufficient theoretical
guidance and/or strong empirical evidence that the IIA assumption is violated, one
can also employ multinomial probit regression, which does not rely on the IIA
assumption (e.g., Titus, 2007). As is often the case, there are tradeoffs to consider
when choosing to use the multinomial probit rather than the multinomial logit. The
former does not produce risk ratios, which may ease interpretation (Long & Freese,
2014). The multinomial probit is more computationally intensive, but advances in
computing power make differences in estimation time negligible for moderately
sized datasets (Greene, 2002; Long & Freese, 2014). However, as was the case for
logit and probit models, researchers can now easily produce predicted probabilities
and marginal effects for both the logit and probit multinomial models, and there are
many possibilities for displaying these results in graphical format.

7.4.2 Estimating College Enrollment by Institutional
Selectivity

We revisit estimating enrollment by institutional selectivity, which failed the parallel
regression assumption test for the ordinal regression analysis in the previous section.
As you may recall, we are interested in understanding the relationships between
college enrollment where the outcome categories are: no college, less selective,
selective, or most selective colleges. We regress this dependent variable on a number
of variables thought to explain this choice (e.g., student demographic characteristics;
academic achievement, etc.). Given there was no evidence that the outcome needed
to be estimated using ordinal regression we will now employ an alternative tech-
nique, multinomial logistic regression. Using enrollment at a less selective institu-
tion—where the majority of students enroll in college—as the base outcome, we
estimate the following multinomial logit model:

lnΩNCjLS ¼ β0,NCjLS þ β1,NCjLSDEMSþ β2,NCjLSACADþ β3,NCjLSEXPECT þ β4,NCjLSSCH

ð7:24Þ

lnΩSjLS ¼ β0, SjLS þ β1, SjLSDEMS þ β2, SjLSACADþ β3, SjLSEXPECT þ β4, SjLSSCH ð7:25Þ
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lnΩMSjLS ¼ β0,MSjLS þ β1,MSjLSDEMSþ β2,MSjLSACADþ β3,MSjLSEXPECT þ β4,MSjLSSCH

ð7:26Þ
where Ω ¼ Pr y¼mjxð Þ

Pr y¼bjxð Þ and the numerator is the probability of observing the mth

outcome category [e.g., no college (NC), selective (S), or most selective (MS)
institution) relative to the probability of being in the base outcome (the denominator)
b, whether the student chose a less selective (LS) college. This ratio of two proba-
bilities (risk ratio) is, thus, a relative measure, leading to it being dubbed the relative
risk ratio.24 Included as regressors are DEMS, ACAD, EXPECT, SCH, vectors of
demographic, academic, college expectation, and school characteristics, respec-
tively, described in Table 7.1. As was true for the binary and ordinal regressions,
the β’s are parameters to be estimated. Recall that the ordinal regression model
produced only one set of parameter estimates for the regressors included, whereas
the multinomial model produces such estimates for each covariate for each of the
outcome categories.

Goodness of Fit and Combining Outcomes As with the binary logit or probit, we
can use Stata’s fitstat command to examine how well the model fits the data. This
command produces a number different measures of the model’s goodness of fit (see
help files for details). Additionally, the likelihood ratio and Wald tests can be
invoked to test the null hypothesis (H0) that all of the coefficients are
simultaneously equal to zero. These tests can be conducted using the mlogtest
post-estimation command and the wald and lr options, respectively.25 Relatedly, if

the coefficients (bβ’s) are not significantly different across outcome categories, then
there is evidence that these non-distinct categories can be combined, which would
improve the efficiency of the model and ease interpretation as there will not be as
many pairwise contrasts to explain. One way to test if any of the outcome categories
can be combined is by using the mlogtest command with the combine or lrcombine
options in Stata. The former option uses the Wald test, the latter a likelihood ratio
test. We employed these tests and found that, in our sample, the null hypothesis that
the any of the outcome categories could be combined was rejected, providing no
evidence for combining any of the four categories.

Interpretation Output from a multinomial logistic regression (MNL) can easily
overwhelm because there are J-1 panels of estimates presented as regression output
(as noted earlier, the base outcome results are not presented) and estimated coeffi-
cients for each of the regressors included. In our case, we have four panels of
regression output, one for each of the outcome categories. Although the output
produced by Stata (and other statistical packages) typically includes only the statis-
tics for the non-base outcome category, here we use Stata’s listcoef post-estimation

24For an explanation of odds and risk ratios/relative risks see: http://www.theanalysisfactor.com/
the-difference-between-relative-risk-and-odds-ratios/
25Only the Wald test works when using robust standard errors or survey commands, See Long and
Freese (2014) for a discussion of tradeoffs between the Wald and likelihood ratio tests.
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command (discussed below) to present the statistics for each of the four outcome
categories (all pairwise comparisons; see Table 7.7). One should approach the
interpretation of multinomial regression results with a targeted analysis plan a priori
(e.g., focusing variables of interest), so that the interpretation of the results does not
overwhelm the reader. Below we briefly discuss three ways to examine and present
findings: relative risk ratios, marginal effects, and predicted probabilities.

Relative Risk Ratios As noted above, we have to select a base outcome in order to
fit the multinomial logit (remember in our example, the base outcome is less
selective institutions). However, researchers may have an interest in making con-
trasts to pairwise categories that do not include the base outcome. For example, we
may want to contrast selective and most selective institutions, which is not available
in the default output produced by Stata. Given the somewhat ordered nature of our
outcomes by increasing levels of selectivity (i.e., no college < less selective <
selective< most selective), examining contrasts of adjacent categories is one way to
interpret the results. Stata’s listcoef post-estimation command can help in presenting
the results by providing results about any pairwise contrasts the analyst might be
interested in examining. We used this option to produce such results, and Table 7.8

displays the relative risk ratios (the exponentiated bβ’s) for our covariates of interest:
gender, race, and student GPA, for each of the outcome categories. The results
provide evidence of the female advantage that was observed for the binary logit
results, but this relationship is more complex than initially thought. The differences
being that the gender differences are concentrated on the no college/less- selective
college margins. Relative to men, women had about a 19% higher risk (probability)
of enrolling in a less-selective college compared to not attending college (the base
category). But no statistically significant gender differences were evident for the less
selective to selective institution contrast, but between selective and most selective
institutions, women had a 13% lower risk of enrolling at the most selective institu-
tions, consistent with previous research (Posselt et al., 2012). These gender differ-
ences were masked when using a binary representation of the outcome of interest,
demonstrating the utility of using the multinomial representation of the dependent
variable and modeling approach that permits a more detailed examination of the
relationships among the outcome categories and explanatory variables.

To demonstrate the interpretation of a non-categorical regressor, we present the
results for AP credits. There is no evidence of a statistically significant relationship
of AP credits with enrollment in less selective colleges, relative to not enrolling in
any college. However, a one-credit increase in AP credits is associated, on average,
with an 18% increase in the relative risk (probability) of enrollment at a selective
institution, relative to a less selective institutions, and a 12% increase in the relative
risk of enrollment at a most selective institution, relative to selective institution.26

26Note these are increases in probability, rather than odds.
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Marginal Effects In multinomial regression, marginal effects are one useful way to
check on the relationships between the outcome categories and the included
covariates. As noted above, marginal effects help researchers understand the average
change in probability associated with a change in the given covariates. One advan-
tage of using marginal effects is the ability to compare results across models. Using
marginal effects, the researcher can consider the different ways in which one might
contrast the outcomes—at adjacent margins (as we did in Table 7.8), against one
base outcome (the default), or some other configuration that makes most sense for
your analysis. Given the myriad of contrasts available to the researcher for J-1
outcomes and k covariates, a full table of output may not be an effective way of
ultimately presenting findings. Long & Freese, 2014 further caution that as marginal
effects are computed using partial derivatives, they are highly dependent on the
shape of the probability curve and on the levels of all variables in the model—
potentially leading to large changes in sign and magnitude, depending on the place
on the probability curve where relationships are being examined. Therefore,
researchers are encouraged to examine marginal effects along the various points
on the probability curve, similar to the presentation in Fig. 7.3. Many of the issues
we covered in the Binary Outcomes section related to marginal effects apply to
multinomial regression, and will not be discussed further in this section.

Table 7.8 Comparison of relative risk ratios by college selectivitya

No college-less
selective

Less selective-
selective

Selective-most
selective

Female 1.185*** 0.961 0.872~

Race

Native American 1.115 0.79 0.392*

Asian 0.844 0.989 1.428**

Black 1.257* 0.997 1.071

Latino 1.283*** 0.634*** 1.105

Multiracial 0.966 0.852 0.805

White – – –

Academic controls

GPA, 10th grade 1.407*** 1.750*** 1.801***

Math test score 0.998 1.009* 1.034***

Number of AP credits 0.964 1.181*** 1.123***

Other student-level
controlsb

x x x

School-level controlc x x x

Source: HSLS:2009
Notes: ***p < 0.001, **p < 0.01, *p < 0.05, ~p < 0.1; (a) sample includes all students with base
year, follow-up, and transcript data that are not missing data on covariates (N ¼ 10,940); (b) other
student controls includes parental education, income, highest math taken, whether friends plan to go
to college; (c) school-level controls includes urbanicity, school type, and share of students enrolled
in 2-year and 4-year colleges
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Predicted Probabilities Predicted probabilities also allow researchers to evaluate
the relationship between covariates and outcomes at different points in the proba-
bility distribution in a readily understood metric. Predicted probabilities can be
presented in tables (typically useful for categorical variables); graphical plots (for
continuous variables); and for specific subgroups. In our specific example,
interpreting predicted probabilities across the range of high school GPA values
and for specific populations of interest, may help us better understand the relation-
ship between gender, GPA, and institutional selectivity. In Fig. 7.13, we plotted the
effect of GPA across the four enrollment outcome categories. Students with higher
GPAs are less likely to opt-out of college immediately after high school than
students with lower GPAs. Interestingly, the enrollment effects are relatively flat
across the range of GPAs for students who are likely to enroll in less selective
colleges. The probability of enrollment for students choosing the most selective
colleges is relatively flat for students with average and below high school GPAs (<¼
2.0), but then rises to about 20% for the students with GPA’s of 4.0.

Analysis of specific subgroups is also a useful approach for understanding the
results produced by such models. Expanding on our example of female college
enrollment from Table 7.4, for the multinomial model we find that the probability of
a low-income female student whose parents had not attended college have a prob-
ability of 0.54 of not attending any college, and less than a 1 percent chance of
attending a most selective institution (see Table 7.9). A middle-income woman
whose parents attended college but did not obtain a degree also had high probabil-
ities of either not going to college (0.47) or attending a less selective institution

Fig. 7.13 Predicted probabilities of enrollment by college selectivity and 10th grade GPA (Source:
HSLS:2009)
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(0.33), and very low chances of choosing to attend a highly selective college (0.02).
In contrast, women from families who had high income and college-degreed parents
had relatively high probabilities of attending a selective (0.37) and most selective
college (0.34), net of academic, school, and other measures. These results suggest
that the observed female advantage is in many ways driven by the choice of
institution type as well as one’s family background.

The multinomial regression models allow for the estimation of unordered cate-
gorical outcomes by relaxing some of the assumptions imposed when employing
ordinal regression. While multinomial logit is commonly used to model nominal
dependent variables, when there are conceptual grounds and/or empirical evidence
that the IIA assumption is violated the multinomial probit is an alternative. Regard-
less of the link function that is chosen (logit or probit), the amount of output
produced by multinomial regression models is oftentimes described as “overwhelm-
ing” (Long & Freese, 2014, p. 411). Hosmer et al. (2013) note that although the
complexity of the multinomial model produces considerable output to interpret
(especially when there are numerous outcome categories), the researcher has multi-
ple estimates for each covariate, thereby providing “a complete description of the
process being studied” (p.289). To ease the interpretation burden, in the section
above we presented a number of different approaches to present the findings in a
digestible way.

7.5 Limited Dependent Variable Models

So far, we have focused our attention on categorical dependent variables, whether
they have two (binary), ordered (ordinal), or multiple (nominal) categories. We now
turn our attention to limited dependent variables that may seem at first glance to
resemble continuous measures but “whose range of values is substantially restricted”
(Wooldridge, 2008, p. 529). These outcome variables may be restricted to integer

Table 7.9 Probability of college enrollment for female students by select income and parental
education levels

No
college

Less
Selective Selective

Most
Selective

Low-income student whose parent(s) has no more
than high school degree

0.542 0.365 0.088 0.005

Middle-income student whose parent(s) enrolled in
but did not attain a college degree

0.472 0.328 0.182 0.017

High-income student whose parent(s) earned a col-
lege degree

0.113 0.174 0.371 0.342

Source: HSLS:2009
Notes: Student-level controls include: gender, race, parental education, income, highest math taken,
whether friends plan to go to college; School-level controls includes urbanicity, school type, and
share of students enrolled in 2-year and 4-year colleges. Sample includes all students with base year,
follow-up, and transcript data that are not missing data on covariates (N ¼ 10,940)
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values, as in the case of count variables; they may be restricted to observing values
only over specific ranges, such as proportions that lie between zero and one; or these
variables may be censored or truncated in various ways, either by definition (e.g.,
variables that cannot take on negative values) or because of data generating pro-
cesses (e.g., top-coded variables used in surveys, sample selection). In the next
section we begin the discussion of these limited dependent variables by illustrating
Poisson and negative binomial regression techniques for count variables. We then
discuss analytical approaches for other forms of limited dependent variables, such as
fractional logistic, Tobit, and double-hurdle regression models.

7.5.1 Count Outcomes

We begin our discussion of limited dependent variable models by discussing count
outcomes. Count outcomes are those that enumerate the number of occurrences of
particular events, and such outcome variables abound in higher education. Scott-
Clayton (2011), for example, used a count of total semesters enrolled over 4 years as
an outcome in her evaluation of West Virginia’s PROMISE scholarship program.
Researchers may also be interested in the number of courses students take, as
enrollment intensity is associated with several educational outcomes such as time
to degree and persistence (Stratton, O’Toole, & Wetzel, 2007). As demonstrated by
Goldrick-Rab (2006), students’ transfer behavior is also of substantive interest, as
the frequency and timing of transfers vary across a number of student and institu-
tional characteristics, with important consequences for completion and time to
degree. In many cases, researchers study count outcomes using OLS regression
techniques (e.g., Scott-Clayton, 2011). It is also possible to create discrete categories
of count outcomes instead of using the count as the dependent variable. For example,
Goldrick-Rab’s (2006) research on “swirling” students defined multinomial outcome
(e.g., did not transfer; stopped out and returned; transferred without interruption)
from the underlying frequency and direction of student transfers. Such transforma-
tions may be appropriate for some research questions, but in other contexts may
result in loss of information that is of conceptual or empirical importance.

In cases where outcomes are measured as counts of events directly, the use of
OLS regression “for count outcomes can result in inefficient, inconsistent, and
biased outcomes” (Long, 1997, p. 217). Count outcomes take only integer values,
may have a relatively high preponderance of zeros, and may take on many small
values – suggesting that alternative regression techniques that account for these
characteristics may improve on OLS estimates (Greene, 2002). In this section, we
use students’ college applications to introduce count regression models. Today’s
high school graduate is more likely than ever to apply to multiple postsecondary
institutions (Pryor, Hurtado, Saenz, Santos, & Korn, 2007). The increase in college
applications submitted by students is the result of numerous co-occurring trends:
increased competition in college admissions (Bastedo & Jaquette, 2011; Eagan,
Lozano, Hurtado, & Case, 2013); simplification of the college application process
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(Pryor et al., 2007); and proactive marketing and outreach by colleges and univer-
sities (McDonough, 1994). Applying to college is an important step in the college
choice process, as the application set defines and constrains the choices eventually
available to students and reflects students’ preferences, constraints, and the appeal of
institutions to individuals. The number of applications students submit to college
display many of the properties that count regression techniques are intended to
address. In our sample, we observe a nontrivial number (density) of students who
apply to zero colleges; the modal number of applications is one; and the mean
number of applications is quite low (2.7). As shown in Fig. 7.14, the distribution is
skewed to the right indicating some students apply to many institutions (the maxi-
mum is 30).

An extensive literature addresses students’ college application behavior, ranging
from research into applications to single institutions (e.g., Gonzales & DesJardins,
2002); research into “undermatch” (e.g., Smit et al., 2013); and studies of the
characteristics of students’ college application sets (e.g., Arcidiacono, 2005;
Blume, 2016; Niu & Tienda, 2008). A few authors have studied the number of
applications students submit as an outcome. Hurtado, Inkelas, Briggs, and Rhee
(1997) used standard OLS regression to explore differences in the number (count) of
college applications across students’ race and ethnicity, finding significant dispar-
ities particularly for traditionally underserved student populations. Howell (2010),
Pallais (2015), and Smith, (2014) analyzed how various changes to application or
admissions policies affected the number of applications students submit. Howell
(2010) used ordinal probit regression, with the outcome specified as zero, one, two to

Fig. 7.14 Histogram of number of college applications (Notes: Histogram includes nonmissing
values of S3CLGAPPNUM, winsorized at 30. Source: HSLS:09)

7 Categorical and Limited Dependent Variable Modeling in Higher Education 347



four, or more than four applications, to investigate the effect of affirmative action on
college applications and enrollment. Pallais (2015) estimated a difference-in-differ-
ence model using OLS to identify the effect of changes to the cost of ACT score
sending on the number of applications that students submitted to colleges. Finally,
Smith (2014) investigated how expansion of the Common Application influenced
the number of colleges to which students applied, also using OLS.

To our knowledge, no paper has made use of regression techniques specifically
designed for count data to study the number of college applications students submit.
There are a number of regression-based methods that can be used to study outcomes
that are counts, such as when studying college application submissions, and herein
we explore how to do so. The prevalent count regression techniques include Poisson
and negative binomial regression, as well as the zero-inflated variants of each.
Choosing among these four options depends on two characteristics of the outcome
variable:

1. The dispersion of the outcome (its conditional mean relative to the conditional
variance).

2. The nature of zero counts in the data: whether they are “excessive” and whether
they are the product of mechanisms distinct from those governing positive count
values.

7.5.2 Regression Techniques for Counts

To begin this discussion, we employ Poisson regression as the starting point in
modeling count outcomes. If we are interested in a variable y that measures the
number of applications students submit, Poisson regression treats the count of y as
though it is drawn from a Poisson distribution with parameter μ (Long, 1997). This
distribution can be related to covariates of interest through a log-linear model
(Greene, 2002). The log transformation ensures that the regression model cannot
result in negative values (Atkins & Gallop, 2007). Thus, we can think of the outcome
as measuring the probability of student i applying to y colleges as:

Pr Yi ¼ yijX0
i

� � ¼ e�μiμyii
yi!

ð7:27Þ

Using the log-linear model, we can associate the (natural log of the) μ parameter to
our explanatory variables of interest (X

0
) as:

ln μið Þ ¼ X0
iβ ð7:28Þ

where X
0
is a vector of relevant student characteristics such as collegiate expecta-

tions, demographics, and academic achievement. This model can also be used to
estimate the expected (average) count or number of applications each student
submitted using:
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E yijX0
i

� � ¼ eX
0
iβ ð7:29Þ

The model is estimated by maximum likelihood.
The Poisson distribution has a few properties that may be of interest to researchers.

Its shape is largely governed by the mean rate – as the mean count approaches zero, the
distribution grows more right-skewed and at a sufficiently high mean count, the
distribution approaches normality. In addition, as the mean increases, we would expect
to observe fewer counts equaling zero (Atkins & Gallop, 2007; Cameron & Trivetti,
1998; Long, 1997). One of its most limiting characteristics is that the Poisson
distribution assumes equidispersion: the variance and mean of y are assumed to be
equal. In other words, the variance of y is equal to mean value, shown in Eq. 7.29
above. However, count data are frequently overdispersed, with (conditional) variance
exceeding the (conditional) mean. Descriptively, we observe strong suggestive evi-
dence of overdispersion in college application counts. The histogram of the distribu-
tion of application counts in Fig. 7.14 indicates that these counts are right-skewed,
with an unconditional mean of 2.7 that is exceeded by its unconditional variance of
7.6. Table 7.10 also provides evidence that the conditional (on the variables shown)
variance exceeds the conditional mean for some important variables used as regressors
to explain counts in college applications (more on this below).

In the presence of overdispersion, Poisson regression yields consistent but inef-
ficient estimates, and can understate standard errors (Long, 1997). There are several
formal tests for overdispersion following estimation of a Poisson regression (Cam-
eron & Trivetti, 1998; Greene, 2002). In Stata, we can calculate a goodness of fit
Chi-squared statistic with the gof command – a large Chi-squared value indicates a
poor fit that may be the result of overdispersion. When there is evidence of
overdispersion, negative binomial regression is often employed. The negative bino-
mial regression combines the Poisson distribution for the mean of the outcome
variable with a gamma-distributed parameter that adjusts its variance, with the result
that (conditional) variance exceeds the (conditional mean), thereby accounting for
the overdispersion (Long, 1997). If we treat r as the shape parameter of the gamma
function, the following describes the mean (the same as Eq. 7.29):

E Y jX0ð Þ ¼ eX
0β ð7:30Þ

Whereas the variance for negative binomial is:

var YjX0ð Þ ¼ μþ 1
r
μ2 ð7:31Þ

which means that the variance is larger relative to the mean for small values of r;
with the negative binomial distribution converging to Poisson as r approaches
infinity (Cameron & Trivedi, 1998). There are several formal tests for
overdispersion, many of which are built into statistical software. Stata’s nbreg
command for negative binomial regression estimates an overdispersion parameter
termed alpha, which is defined as α¼ r – in other words, the inverse of 1 r= in Eq. 7.31.
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An α parameter that is statistically different from zero indicates overdispersion. The
nbreg command performs a likelihood ratio test of the significance of α by compar-
ing a model that constrains α to equal zero and a model where α is empirically
estimated.

A final consideration when studying counts in a regression framework is how to
treat values of zero. In our college application example, it is possible for students to
report (in a survey) that they did not apply to any college. About 14% of respondents
in the HSLS sample report applying to zero colleges, a non-trivial number of
non-applicants. There are two general approaches to modeling count outcomes
with zero counts. One could treat zero counts as any other positive integer, thereby
not differentiating them from other values. Alternatively, if the proportion of zeros
relative to positive counts is sufficiently large, or if the occurrence of a zero count is
of substantive interest as its own phenomenon, one could employ the zero-inflated
variants of count models. Zero-inflated Poisson or zero-inflated negative binomial
regressions are similar in spirit to other mixture or two-part models, which we
discuss in greater detail later in this chapter. Two-part models allow for the zero
counts to be estimated separately from the rest of the distribution, with each model
having its own set of covariates. In the case of college applications, such a model
would allow us to model the decision not to apply to college at all as its own
outcome. For zero-inflated count regressions, we first fit a logistic model of the
probability of observing a count equal to zero, and then fit a Poisson or negative
binomial regression on the positive integers (Greene, 2002).27 In other words, we
would model zero counts that occur with probability π using logistic regression, and
would model positive integer counts that occur with probability 1-π using Poisson or
negative binomial regression, as outlined in Eq. 7.32:

Table 7.10 Mean and variance for college applications by student characteristics

Variable

Number of applications

Mean Variance

Race

Native Americans 2.3 6.2

Asian/Pacific islanders 4.0 12.2

Black 2.9 8.9

Hispanic 2.4 6.9

Multiracial 2.5 7.0

White 2.5 6.7

Gender

Male 2.4 6.9

Female 2.9 8.3

Source: HSLS: 2009
Notes: Summary statistics for S3CLGAPPNUM variable

27If overdispersion is the result of excess zeros, a zero-inflated Poisson model may be preferable
over negative binomial regression (Long, 1997).
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Pr Yi ¼ yijX0
i

� �e πi þ 1� πið Þ∗g Yi ¼ 0jX0
i

� �
if yi ¼ 0

1� πið Þ∗g YijX0
i

� �
if yi > 0

�
ð7:32Þ

Using a zero-inflated model, we would model πi ¼ 0 with logistic regression – in the
example we use below, this would mean estimating the probability of (not) applying
to college. We would then model g yijX0

i

� �
with Poisson or negative binomial

regression for positive integer values of yi (i.e., conditional on applying to college
at all). This approach may be valuable in instances where the underlying mecha-
nisms governing zero and positive counts differ. For example, a study of drinking
behavior on college campuses may include in its sample subgroups of students who
are not at risk for drinking at all (say, for example, due to religion). Stata’s zip and
zinb commands estimate these models.

7.5.3 Applying Count Regression to College Applications

We can model the count of applications submitted by student i as a function of
students’ and families’ characteristics, measured academic achievement, extracur-
ricular involvement, postsecondary intentions, and characteristics of their high
school:

Pr Yi ¼ yijX0
i

� � ¼ β0 þ β1racei þ β2genderi þ β3familyi þ β4acadi
þ β5extrai þ β6pse plansi þ β7HS contexti þ εi ð7:33Þ

We estimate Poisson and negative binomial models of Eq. 7.33.28 Recall that the
distribution of college application counts suggested possible overdispersion. We
observe that the α parameter for overdispersion is statistically significant (χ2

¼2053.3, p < 0.001) in the negative binomial regression. We also find that the
Chi-square measure of goodness of fit for the Poisson regression is also highly
significant (χ2¼15,203.4, p < 0.001), again suggesting the presence of
overdispersion. As discussed above, overdispersion results in underestimated stan-
dard errors for Poisson regression. We observe that in the results included in
Table 7.11, that this is indeed the case – the coefficients of both models are quite
similar, but the standard errors of the negative binomial model are larger than for the
Poisson regression because they are inflated by the overdispersion parameter. We
can also look to the AIC and BIC statistics of the two models to further assess fit. All
three statistics suggest that the negative binomial is preferable to the Poisson. Yet
another way to compare these models is to test how well they fit the underlying
distribution of college applications. In Figure 7.15, we plot the residuals of
Pr Yi ¼ yijX0

i

� �
for the Poisson and negative binomial regressions at each value of

28Recall that if we were concerned about the 14% of students that do not apply to college (and thus
have a count of zero), or if we wanted to understand the decision not to apply to college separately,
we could estimate a zero-inflated count model.
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yi. In other words, the residuals show the degree to which the models under- or
overpredict the probability of each count value. The graph indicates that the negative
binomial model does a slightly better job of fitting the observed distribution of
applications.29

We have addressed goodness of fit and, given evidence of overdispersion, have
chosen negative binomial as our preferred modeling approach. Turning to the
coefficients, as with other nonlinear regression techniques, interpreting regression

Table 7.11 Comparison of estimates for count models

Poisson Neg Bin Poisson IRR Neg Bin IRR AMEs (Neg Bin)

Gender (ref. male)

Female 0.115*** 0.116*** 1.121*** 1.123*** 0.327

(0.013) (0.017) (0.014) (0.019)

GPA, 10th grade 0.285*** 0.297*** 1.330*** 1.345*** 0.842

(0.011) (0.014) (0.015) (0.018)

Source: HSLS:2009
Notes: ***p< 0.001, **p< 0.01, *p< 0.05, ~p< 0.1. Models include additional controls for race,
parental education, family income, AP/IB credits, extracurricular activities, hours worked, and high
school characteristics. Standard errors in parenthesis. Sample includes all students with base year,
follow-up, and transcript data that are not missing data on covariates (N ¼ 9740)

Fig. 7.15 Comparison of residuals for poisson and negative binomial regressions of count of
college applications (Notes: Positive residuals indicate underpredictions. Source: HSLS:2009)

29This may seem like a large number of goodness of fit tests to run, but in Stata the user-written
command countfit provides all of these results simultaneously.
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results can be tricky. The coefficients of a negative binomial regression are linear and
additive with respect to the logged values of the expected count, as seen in Eqs. 7.28
and 7.29 - which are not easily interpretable. Table 7.11 reports coefficients for a few
select explanatory variables. An increase of 0.1 in 10th grade GPA, for example, is
associated with a 0.029 increase in the expected number of applications (0.1
multiplied by the coefficient of 0.297). Similarly, the coefficient for female implies
that female students have an expected number of college applications that is about
11% higher than for male students. Exponentiating these coefficients yields inci-
dence rate ratios (IRR), which may be more readily interpretable, and are reported in
Table 7.11. These IRRs represent factor changes in the expected countE yijX0

i

� �
, and

so can be interpreted as multiplicative like an odds ratio. That is, a one-unit increase
in a covariate is associated with an increase of eβ in the expected outcome, all else
held constant (Long, 1997). Keeping with the same two variables as examples, a
one-unit (or one point) increase in high school GPA increases the expected number
of applications by a factor of 1.35 – a 35% increase. Similarly, female students have
1.12 times the expected number of college application of male students, or 12%
higher applications.

An alternative to IRR is to compute marginal effects. As we discussed in section
about binary outcomes, marginal effects provide a useful way to summarize associ-
ations at mean, observed, or representative values of interest. They also help us
translate coefficients from percent or factor changes in the expected number of
applications to a more intuitive unit of measure; i.e., the actual count of applications.
The marginal effect for high school GPA tells us that a one-point increase in GPA is
associated with 0.84 additional college applications, while being female is associated
with 0.33 additional applications.

Marginal effects also help us make sense of interaction terms. To demonstrate
this, we estimate an additional model that includes an interaction of gender and high
school GPA (as reported in Table 7.12). The interaction term in this model allows for
the relationship between high school GPA and college applications to vary by
gender. When we add this interaction to the previously estimated model, we find a
larger main effect of gender (1.32 vs. 1.12) than before, though we must also
consider the interaction effect. Interestingly, the interaction effect of GPA and
gender is negative (or, in IRR terms, less than 1). This suggests that as GPA
increases, the difference in the number of applications submitted by men and
women declines.

To ease the interpretation of main and interaction effects, we graph (see Fig-
ure 7.16) the relationship between high school GPA and the number of college
applications separately by gender. The graph indicates a slow convergence of the
two groups, especially at higher values of GPA.

There are numerous variables in higher education that enumerate phenomena of
interest. Researchers always have the option to take such outcomes and transform
them into dichotomous or categorical measures, or to treat them as continuous.
However, count regression techniques are simple and have desirable robustness
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properties (Wooldridge, 2008) that enable us to study these variables with few
compromises.

Table 7.12 Interaction terms in count regression for college applications

Negative binomial (IRR)

Gender (ref. male)

Female 1.320***

(0.099)

GPA, 10th grade 1.381***

(0.025)

GPA, 10th grade*female 0.949*

(0.022)

Source: HSLS:2009
Notes: ***p< 0.001, **p< 0.01, *p< 0.05, ~p< 0.1. Models include additional controls for race,
parental education, family income, AP/IB credits, extracurricular activities, hours worked, and high
school characteristics. Standard errors in parenthesis. Sample includes all students with base year,
follow-up, and transcript data that are not missing data on covariates (N ¼ 9740)

Fig. 7.16 Predicted count of college applications by gender and GPA (Notes: Shaded region
indicates 95% confidence interval. Model includes controls for student characteristics; measured
academic achievement; extracurricular involvement; postsecondary intentions; high school charac-
teristics; and an interaction of gender and academic achievement. Source: HSLS:2009)
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7.5.4 Proportional/Fractional Outcomes

Researchers in higher education frequently encounter outcomes of interest that are
measured at the institutional level. Such data are widely available from sources such
as IPEDS, and capture several measures relevant to scholars, prospective students,
and regulatory agencies. These variables include the composition of the student body
(e.g., proportion from underrepresented groups, percentage of students that are Pell-
eligible) and institutional outcomes such as persistence, graduation, or student loan
default rates. All such variables are proportions or fractions, with a range from zero
to one.

With few exceptions, much of the research using proportions or rates as outcomes
uses ordinary least squares regression. For example, scholars studying stratification
of enrollments in higher education often attempt to explain such stratification across
race and income, noting that there is a dearth of low-income or marginalized students
at the nation’s most prestigious universities (Bastedo & Gumport, 2003; Carnevale
& Strohl, 2013). They often do so by employing OLS regression to examine
outcome variables that are proportions. Belasco, Rosinger, and Hearn (2015) used
linear regression to study the effect of test-optional admissions on the share of Black
and Hispanic enrollments. Hillman, 2013 used much the same approach to study
changes in the proportion of Pell students at institutions adopting no-loan financial
aid policies. Institutional student loan default rates are another widely studied topic,
with recent studies by Hillman, 2014, Ishitani & McKitrick, 2016, and Kelchen &
Li, 2017 about individual and institutional characteristics associated with default.

In each of these studies, OLS regression provided readily interpretable coeffi-
cients and insights into policies or institutional characteristics of interest. Earlier, we
highlighted the ways in which OLS regression with binary outcomes (LPM) may
violate assumptions necessary for efficient, unbiased estimates. As was the case with
linear probability models, “the drawbacks of linear models for fractional data are
analogous to the drawbacks of the linear probability model for binary data” (Papke &
Wooldridge, 1996, p. 620). Proportions or rates are bounded by zero and one,
whereas fitted values from OLS regressions are not. Second, the relationship of
any independent variable to a fractional outcome cannot be linear through the full
range of outcome values (Papke & Wooldridge, 1996). Finally, the residuals from
OLS regression of fractional outcomes are likely heteroskedastic, with greater
variation at middle values and smaller variation near the lower and upper bounds
(Cribari-Neto & Zeileis, 2010). As such, researchers should approach linear regres-
sion of fractional dependent variables with caution.

To be sure, under many conditions OLS regression may prove to be a reasonable
enough approximation of a fractional outcome. For example, when the proportional
outcome is largely distributed within the linear portion of the logistic curve, the
estimates produced using a linear specification may be a reasonable approximation
(Cribari-Neto & Zeileis, 2010). Institutional graduation rates are a good candidate
for such an approach because graduation rates in many colleges and universities are
near the middle of the distribution (the average being about 60%). However, other
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outcomes may not lend themselves well to OLS regression. At selective institutions,
for example, we know that the fraction of enrolled students receiving Pell grants is
quite low, with many such colleges having fewer than 20% of students as Pell
recipients (Carnevale & Van der Werf, 2017). Similarly, though there is much
justified media and scholarly attention paid to student loan default, institutional
student default rates averaged 11.3% for the 2013 cohort (Federal Student Aid,
2016). In these instances, researchers may be well served by exploring alternatives to
OLS regression, just as we have done with binary dependent variables. We discuss
some approaches below.

7.5.5 Alternatives to OLS for Fractional Outcomes

There are several alternatives to linear regression for the modeling of proportions.
One common approach is to use a transformation of the dependent variable, such as a
log transformation in Eq. 7.34 (Baum, 2008; Papke & Wooldridge, 1996). If p is the
measure of the relevant fractional outcome; by log transforming the fraction the
model becomes linear in the parameters, similar to what we saw in our discussion of
logistic regression:

E ln
p

p� 1

� �
jx
�

¼ X0β
�

ð7:34Þ

One example of using such a transformation is Scott, Bailey, and Kienzl (2006),
who studied the relationship between graduation rates and the characteristics of
institutions and their student bodies. However, this transformation has an important
limitation: it excludes fractions at the endpoints of the [0,1] interval, as the term

ln p
p�1

	 
	 

is undefined for p equal to either zero or one. This transformation is also

of limited interpretability: the coefficients of the regression measure changes in the
log-transformed outcome, not in the actual fractional outcome of interest. Finally,
this transformation does not address the heteroskedastic nature of rate or proportion
data (Ferrari & Cribari-Neto, 2004).

One alternative is to use beta regression, which improves on the log transforma-
tion in two ways. First, beta regression can accommodate outcome variables in the
(0,1) interval that are left- or right-skewed, or that are flatly distributed over the full
range. This is because beta regression treats the dependent variable as following a
beta distribution, which is highly flexible, with the beta density taking a variety of
shapes. This also means that beta regression can accommodate the heteroskedacity
inherent to fractional outcomes. Second, the coefficients of a beta regression are
directly interpretable as changes to the mean expected value of the outcome. Thus,
they require no additional effort for calculation of marginal effects or use of graphs.
However, beta regression does share one important limitation with log
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transformation, which is that it is only defined for fractions in the (0,1) interval –
dependent variables equaling precisely zero or one are excluded (Ferrari & Cribari-
Neto, 2004).

In cases where proportions at the extreme values of 0 or 1 exist and researchers
want to retain such observations, neither a log-transformation nor a beta regression
may be appropriate. Fractions at either extreme may seem rare or unlikely to be
observed – this is certainly the case for metrics like graduation rates, for example.
However, these values do occur for measures that tend to be concentrated at the tails
of the distribution or among select subsamples of postsecondary institutions (e.g.,
retention rates at highly selective institutions, which are extremely high and could
reach 100%; the proportion of low-income students at small colleges with high net
prices, which are very low and may be 0%). The zero-inflated (and one-inflated)
variants of beta regression can retain such observations. Similar to our discussion of
zero-inflated count models, these variations on beta regressions are mixture models.
These models first estimate the probability of observing a fraction equal to zero or
one using logistic regression, and then estimate a beta regression model for outcomes
within the (0,1) range (Ospina & Ferrari, 2012). One advantage of this approach is
that it allows us to specify different covariates for each of the models estimated,
which may be particularly valuable for researchers that posit different underlying
mechanisms for observations at the extremes of [0,1].

Yet another alternative is the use of fractional response models, as outlined in
Papke and Wooldridge (1996). Fractional response models allow for modeling
proportions in the [0,1] interval, using a generalized linear model with a link
function:

E yjxð Þ ¼ G X0βð Þ ð7:35Þ
Where G(∙) is a link function, typically the logistic or standard normal (probit)
cumulative density functions, and 0 � y � 1. The model is estimated using quasi-
maximum likelihood (which does not require knowledge of the full distribution of
outcomes), with the link function indicating the distribution of mean values for the
outcome variable.30 The coefficients from a fractional logistic regression are not
easily interpreted; their sign indicates the direction of marginal effects but otherwise
convey little readily usable information. As with probit or logit models, marginal
effects, graphical representations of the relationships between covariates and the
outcome of interest, and predicted values provide a more easily interpretable way to
communicate results (see Furquim & Glasener, 2016 for an application of fractional
logistic regression to the proportion of Pell eligible students at highly selective
institutions).

Though these alternative approaches to modeling proportions require transfor-
mations of the dependent variable or the use of link functions, statistical software
such as R, SAS, or Stata can estimate any of them using their respective GLM

30One could also use heteroskedastic probit to model the variance rather than the mean of a
proportional outcome.
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regression commands. Stata version 14 and higher also includes specific commands
for beta regression (betareg) and for fractional response models (fracreg). These
regression techniques are readily available to researchers, and may be of use to
higher education scholars studying the fractional or proportional outcomes so
commonly of interest to policymakers and prospective students.

7.5.6 Censoring and Truncation

Many of the dependent variables of interest to higher education scholars can be
censored or truncated in ways that warrant special consideration. For example,
researchers interested into students’ decision to work while in school run into a
censoring issue, as students cannot work fewer than zero hours. The same form of
censoring affects studies of student indebtedness – students cannot borrow amounts
below $0. In many instances, this censoring is overlooked and researchers rely on
OLS regression. For example, Addo, Houle, and Simon (2016) studied the relation-
ship between parental wealth and student debt using OLS regression, and excluded
nonborrowers from their analyses. If we are interested in the censored observations
(non-borrowers), however, OLS estimates of censored variables can be inconsistent,
as OLS fails to “account for the qualitative difference between limit (zero) observa-
tions and nonlimit (continuous) observations (Greene, 2002, p. 762).

Tobit regression provides a workaround for censored variables. As in our discus-
sion of categorical outcomes, Tobit regression is also a latent variable technique. In
the case of student loans, we can think of Tobit regression as modeling a latent
demand for student loans of the form:

y∗ ¼ X0β þ ε ð7:36Þ
And

y ¼ 0 if y∗ � 0
y∗i if y

∗ > 0

�
ð7:37Þ

Where y∗ is a latent construct capturing the true demand for loans; the observed
outcome y is the measure of student loans that is censored at zero for negative values
of y∗.31 Taken together, Eqs. 7.1 and 7.2 tell us that in a Tobit regression a change to
any element of X

0
affects both the probability of yi being greater than zero (in our

case, of taking on student loans) as well as the conditional mean of y∗ for y∗ > 0
(Greene, 2002; Long, 1997). See Hart and Mustafa (2008) for an application of Tobit
regression to study the effect of increased access to subsidized loans on student debt.

31Tobit models also work for censoring from above, such as when data from surveys top-code
variables like income for privacy reasons.
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One limiting assumption of Tobit regression, however, is that X
0
β is assumed to

equally affect both the likelihood of borrowing and the mean amount borrowed (Lin
& Schmidt, 1984). This may not be a desirable or sensible assumption in some cases.
If individuals face a participating decision, such as a decision of whether to borrow at
all, the double-hurdle model introduced by Cragg (1971) may be preferable. The
double-hurdle model allows for the specification of a decision to participate (borrow,
in our example) and then separately to model the amount borrowed. These two
regressions can take different functional forms and include distinct covariates,
allowing researchers to better consider the mechanisms underlying the two distinct
decisions of whether to borrow and then how much to borrow (e.g., Cha &Weagley,
2002; Cha, Weagley, & Reynolds, 2005; Furquim, Glasener, Oster, McCall, &
DesJardins, 2017). Double-hurdle regression is of the form:

Decision equation:

Pr Participate ¼ 1jX0ð Þ ¼ Φ X0
1β1

� � ð7:38Þ
Equation 7.38 is estimated via probit regression with a normally distributed error
term. Then, the level equation is:

y∗ ¼ X0
2β2

y ¼ y∗ if Participate ¼ 1
∅if Participate ¼ 0

8<
: ð7:39Þ

Equation 7.39 is estimated using truncated regression, because observations where
Participate ¼ 0 are excluded. The unknown parameters to be estimated, β2, can
differ from those in the decision equation (β1), as can the included covariates.
One can then analyze several outcomes: the probability of participation (Pr(Partic-
ipate)); the conditional expected outcome (y∗); and the unconditional mean outcome
(y∗ ∗ Pr (Participate)).

Truncated regression can more generally be used to deal with truncation of data.
Truncation occurs when the data generating process excludes “observations based
on the characteristics of the dependent variable” (Long, 1997, p. 187). So while in
the case of censored data we observe censored values of the dependent variable for
some observations, truncated data reduces the analytic sample based on the depen-
dent variable. Truncation may be a byproduct of sample selection (e.g., a study of
family income for Pell eligible students) or other analytical choices. For example, in
their study of student debt, Addo et al., (2016) excluded non-borrowers, thus
truncating the dependent variable at some value greater than zero. The result of
truncation is that the mean of the dependent variable is higher (in case of truncation
from below) or lower (for truncation from above) than the “true” mean, and the
variance of the truncated variable is smaller than that of the untruncated. Ordinary
least squares regression can yield biased coefficients in the presence of truncation
(Long, 1997). In these cases, researchers can use truncated regression, which is
easily estimated in most statistical software (in Stata, the truncreg command).
Truncated regression yields coefficients that can be directly interpreted as partial
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changes to yi that is truncated at some value τ, just as in OLS regression, as seen in
Eq. 7.40 (Long, 1997):

yi ¼ X0
iβ þ εi for all i such that yi > τ ð7:40Þ

Truncation that results from sample selection can also be addressed by sample
selection corrections, such as Heckman type sample selection correction, that use
probit regression to model the likelihood of being in sample and incorporate the
inverse Mills ratio into estimates of the observed data (Wooldridge, 2008). Instru-
mental variable techniques may also be brought to bear in such cases (see Bielby,
House, Flaster, & DesJardins, 2013, for an overview of instrumental variable
techniques applied to higher education).

7.6 Conclusion

Linear regression models have long been an essential part of an education
researcher’s statistical toolkit. Although the statistical foundations underlying the
use of categorical dependent variable regression models have been around for many
decades (see Cramer, 2003, for a history of the logit model, and Dey & Astin, 1993
for early work comparing and contrasting these models in higher education), they
really became an important addition to the statistical tools used by higher education
researchers in the middle to late 1980s. This is probably a result of many converging
trends, such as the availability of these techniques in then available statistical
software packages; the teaching of these methods in programs training education
researchers; discussion of the use of the methods in higher education publications,
including this Handbook (Austin, Yaffee, & Hinkle, 1992; Cabrera, 1994); and the
increase of publications using these techniques in main higher education journals
(Peng, So, Stage, & St. John, 2002). Given the ubiquity of these methods in higher
education these days, having a solid understanding of their foundational statistical
concepts and of their application is essential for conducting research into many
important issues facing postsecondary education. More recently, limited dependent
variable regression models, which have been employed successfully in other disci-
plines, are also increasingly being utilized in higher education research.

As demonstrated herein, these categorical and limited dependent variable models
often remedy some of the statistical problems that arise when using traditional
regression methods, such as linear regression, to study binary, multi-categorical,
and limited outcome variables. But the application of these non-linear methods often
come with a price, including complex estimation routines that are computer-memory
intensive, and, importantly, additional complexities in the interpretation of results
produced by such techniques. The former problem is of less concern with the advent
of computers with multiple processors and high-capacity memory, lowering the time
and memory resources needed to estimate such models. But interpreting the results
of non-linear regression models remains a vexing problem for some, one that can be
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resolved by employing a variety of measures and using the graphical displays now
available in many statistical software packages.

Our intention in producing this chapter was to update the published resources
already available, to provide details about recent advances in the models used to
study categorical and limited dependent variables, and to provide our colleagues
with examples of how to use alternative ways to present and discuss the results
produced by these regression methods. Our intention was not to provide a compre-
hensive treatment of the literature about these methods; to that end, we provide
references to additional articles and books that can assist researchers in learning
more about the underlying concepts and application of these methods.

To facilitate the educative goal of the chapter, we provided a running example of
an important higher education issue that many readers should be familiar with:
research on student college choice. Although the results produced by the applica-
tions of the various modeling techniques may inform the literature on college student
choice, this empirical application was really designed for expository purposes. We
used college choice as the exemplar because many treatments explaining non-linear
models use examples that are not familiar to those in our field, such as applying the
methods to medical research (for example, the work of Hosmer and colleagues).

We hope our efforts provide researchers with additional information about the
application of the categorical methods described herein. In addition, we hope that
our (brief) discussion of limited dependent variable models will encourage others to
learn more about these methods and construct novel ways to apply them. We believe
that using categorical and limited dependent models has, can, and will improve our
collective understanding of many of the important issues facing higher education.

Appendix

/

***************************************************************-

********************************

These are examples of commands used to estimates the models in the

chapter.

The full code is not contained here for space constraints.

***************************************************************-

********************************/

**Set directories, open data, start log as needed.

*set macro vars

global $iv = " "

*enrl_college is the outcome variable we created.
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**** Goodness of Fit ******

* unconditional model

logit enrl_college, or

*full model

logit enrl_college $iv

estimates store loges

predict loges, pr

*describing the pred probs

predict pprob5

set scheme s2mono

histogram pprob5, title("", color(black) margin(zero) size

(small)) ///

xti("Predicted probabily", size(small)) graphregion(color

(white)) /// plotregion(color(white)) yti("Density", size(small))

summarize pprob5

*examining LR

fitstat

*examining classification

estat classification

lsens, title("", color(black) margin(zero) size(small)) ///

graphregion(color(white)) plotregion(color(white)) xti(,size

(small)) yti(,size(small))

lroc, title("", color(black) margin(zero) size(small)) ///

graphregion(color(white)) plotregion(color(white)) xti(,size

(small)) yti(,size(small))

/******LOGIT*****/

estimates restore loges

margins, dydx(*) post

estimates store loges_me

*graphing

estimates restore loges

margins , dydx(gpa) asobserved at(gpa=(1 (.25) 4))

set scheme s2mono

marginsplot, recastci(rarea) recast(line) ciopts(color(*.7)) ///

graphregion(color(white)) plotregion(color(white)) ti("") yti

("Change in Pr(Enroll)", size(small)) xti("GPA, 10th grade",

size(small))
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*look at a few populations of interest

mtable, rowname(1 Female first-gen low-inc ) ci clear at

(student_gender==2 parental_ed==1 family_income==(1 2) ) atmeans

/******PROBIT*****/

probit enrl_college $iv

estimates store probes

predict probes, pr

margins, dydx(*) post

estimates store probes_me

/******LPM *****/

regress enrl_college i.student_gender $dems $acad $expct $netwk

$sch

estimates store lpm

predict lpm, xb

*diagnostic of lpm

histogram lpm

set scheme s2mono

histogram lpm, title("", color(black) margin(zero) size(small))

///

xti("Predicted probabily", size(small)) graphregion(color(white))

plotregion(color(white)) yti("Density", size(small)) xline(0 1,

lstyle(foreground) lpattern("--"))

*plot residual v fitted

set scheme s2mono

rvfplot, yline(0, lstyle(foreground) lpattern("--")) graphregion

(color(white)) plotregion(color(white)) xline(0 1, lstyle(fore-

ground) lpattern("--")) xti(, size(small)) yti(, size(small))

*check for heteroskedasticity

estat imtest

************************ORDINAL/MULTINO-

MIAL***********************

*pse_enroll_sel is the dependent var we created.

ologit pse_enroll_sel i.student_gender $iv, or

estimates store ord

*get some marginal effects

estimates restore ord
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margins, dydx(gpa) post

estimates store ord_me

predict nocol_log lsel_log sel_log msel_log

*test if we need multinomial

oparallel, ic

brant, detail

***run it as multinomial

mlogit pse_enroll_sel $iv, rrr

estimates store multi

*get a marginal effect

margins , dydx(gpa) post

estimates store multi_me

*tests of IVs

estimates restore multi

mlogtest, lr

estimates restore multi

mlogtest, wald

*Test of categories - can we collapse them?

mlogtest, combine

estimates restore multi

mlogtest, lrcomb

estimates restore multi

mlogtest, hausman

*Interpretation

estimates restore multi

listcoef student_gender student_race_combo stugpa_10 stu_mathirt

apcred, gt adjacent

*Pred Probs for select subgroups

estimates restore multi

mtable if student_gender==2 & parental_ed==1 & family_income==1,

atmeans noci rowname(lowinc firstg) clear brief

************************COUNT************************

poisson apps $iv, irr

estimates store pois

estat ic
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prcounts pois, max(20) plot

label var poispreq "Poisson"

labe var poisobeq "Observed"

label var poisval "# of apps"

nbreg apps $iv, irr

estimates store nb

estat ic

countfit apps $iv, nbreg prm
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