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Dedicated to Ian H. Sloan on the occasion of his 80th birthday.

Abstract Given ˇ > 0 and ı > 0, the function t�ˇ may be approximated
for t in a compact interval Œı; T� by a sum of terms of the form we�at, with
parameters w > 0 and a > 0. One such an approximation, studied by Beylkin and
Monzón (Appl. Comput. Harmon. Anal. 28:131–149, 2010), is obtained by applying
the trapezoidal rule to an integral representation of t�ˇ , after which Prony’s method
is applied to reduce the number of terms in the sum with essentially no loss of
accuracy. We review this method, and then describe a similar approach based on
an alternative integral representation. The main difference is that the new approach
achieves much better results before the application of Prony’s method; after applying
Prony’s method the performance of both is much the same.

1 Introduction

Consider a Volterra operator with a convolution kernel,

K u.t/ D .k � u/.t/ D
Z t

0

k.t � s/u.s/ ds for t > 0; (1)

and suppose that we seek a numerical approximation to K u at the points of a
grid 0 D t0 < t1 < t2 < � � � < tNt D T. For example, if we know Un � u.tn/
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and define (for simplicity) a piecewise-constant interpolant QU.t/ D Un for t 2 In D
.tn�1; tn/, then

K u.tn/ � K QU.tn/ D
nX

jD1

!njU
j where !nj D

Z
Ij

k.tn � s/ ds:

The number of operations required to compute this sum in the obvious way for 1 �
n � Nt is proportional to

PNt
nD1 n � N2

t =2, and this quadratic growth can be
prohibitive in applications where each Uj is a large vector and not just a scalar.
Moreover, it might not be possible to store Uj in active memory for all time levels j.

These problems can be avoided using a simple, fast algorithm if the kernel k
admits an exponential sum approximation

k.t/ �
LX

lD1

wle
blt for ı � t � T; (2)

provided sufficient accuracy is achieved using only a moderate number of terms L,
for a choice of ı > 0 that is smaller than the time step �tn D tn � tn�1 for all n.
Indeed, if �tn � ı then ı � tn � s � T for 0 � s � tn�1 so

n�1X
jD1

!njU
j D

Z tn�1

0

k.tn � s/ QU.s/ ds �
Z tn�1

0

LX
lD1

wle
bl.tn�s/ QU.s/ ds D

LX
lD1

�n
l ;

where

�n
l D wl

Z tn�1

0

ebl.tn�s/ QU.s/ ds D
n�1X
jD1

�lnjU
j and �lnj D wl

Z
Ij

ebl.tn�s/ ds:

Thus,

K QU.tn/ � !nnUn C
LX

lD1

�n
l ; (3)

and by using the recursive formula

�n
l D �ln;n�1Un�1 C ebl�tn�n�1

l for n � 2; with �1
l D 0;

we can evaluate K QU.tn/ for 1 � n � N to an acceptable accuracy with a number
of operations proportional to LNt—a substantial saving if L � Nt. In addition, we
may overwrite �n�1

l with �n
l , and overwrite Un�1 with Un, so that the active storage

requirement is proportional to L instead of Nt.
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In the present work, we study two exponential sum approximations to the
kernel k.t/ D t�ˇ with ˇ > 0. Our starting point is the integral representation

1

tˇ
D 1

� .ˇ/

Z 1

0

e�ptpˇ dp

p
for t > 0 and ˇ > 0; (4)

which follows easily from the integral definition of the Gamma function via the
substitution p D y=t (if y is the original integration variable). Section 2 discusses
the results of Beylkin and Monzón [3], who used the substitution p D ex in (4) to
obtain

1

tˇ
D 1

� .ˇ/

Z 1

�1
exp.�tex C ˇx/ dx: (5)

Applying the infinite trapezoidal rule with step size h > 0 leads to the approximation

1

tˇ
� 1

� .ˇ/

1X
nD�1

wne�ant (6)

where

an D ehn and wn D heˇnh: (7)

We will see that the relative error,

�.t/ D 1 � tˇ

� .ˇ/

1X
nD�1

wne�ant; (8)

satisfies a uniform bound for 0 < t < 1. If t is restricted to a compact interval Œı; T�

with 0 < ı < T < 1, then we can similarly bound the relative error in the finite
exponential sum approximation

1

tˇ
� 1

� .ˇ/

NX
nD�M

wne�ant for ı � t � T; (9)

for suitable choices of M > 0 and N > 0.
The exponents an D enh in the sum (9) tend to zero as n ! �1. In Sect. 3

we see how, for a suitable threshold exponent size a�, Prony’s method may be
used to replace

P
an�a�

wne�ant with an exponential sum having fewer terms. This
idea again follows Beylkin and Monzón [3], who discussed it in the context of
approximation by Gaussian sums.
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Section 4 introduces an alternative approach based on the substitution p D
exp.x � e�x/, which transforms (4) into the integral representation

1

tˇ
D 1

� .ˇ/

Z 1

�1
exp

��'.x; t/
�
.1 C e�x/ dx; (10)

where

'.x; t/ D tp � ˇ log p D t exp.x � e�x/ � ˇ.x � e�x/: (11)

Applying the infinite trapezoidal rule again leads to an approximation of the
form (6), this time with

an D exp
�
nh � e�nh

�
and wn D h.1 C e�nh/ exp

�
ˇ.nh � e�nh/

�
: (12)

As x ! 1, the integrands in both (5) and (10) decay like exp.�tex/. However, they
exhibit different behaviours as x ! �1, with the former decaying like eˇx D e�ˇjxj
whereas the latter decays much faster, like exp.�ˇe�x/ D exp.�ˇejxj/, as seen in
Fig. 1 (note the differing scales on the vertical axis).

Fig. 1 Top: the integrand from (10) when ˇ D 1=2 for different t. Bottom: comparison between
the integrands from (5) and (10) when t D 0:01; the dashed line is the former and the solid line the
latter
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Li [5] summarised several alternative approaches for fast evaluation of a frac-
tional integral of order ˛, that is, for an integral operator of the form (1) with kernel

k.t/ D t˛�1

� .˛/
D sin �˛

�

Z 1

0

e�ptp�˛ dp for 0 < ˛ < 1 and t > 0; (13)

where the integral representation follows from (4), with ˇ D 1�˛, and the reflection
formula for the Gamma function, � .˛/� .1 � ˛/ D �= sin �˛. She developed a
quadrature approximation,

Z 1

0

e�ptp�˛ dp �
QX

jD1

wje
�pjtp�˛

j for ı � t < 1; (14)

which again provides an exponential sum approximation, and showed that the error
can be made smaller than 	 for all t 2 Œı; 1/ with Q of order .log 	�1 C log ı�1/2.

More recently, Jiang et al. [4] developed an exponential sum approximation for
t 2 Œı; T� using composite Gauss quadrature on dyadic intervals, applied to (5),
with Q of order

.log 	�1/ log
�
Tı�1 log 	�1

� C .log ı�1/ log
�
ı�1 log 	�1

�
:

In other applications, the kernel k.t/ is known via its Laplace transform,

Ok.z/ D
Z 1

0

e�ztk.t/ dt;

so that instead of the exponential sum (2) it is natural to seek a sum-of-poles
approximation,

Ok.z/ �
LX

lD1

wl

z � bl

for z in a suitable region of the complex plane; see, for instance, Alpert et al. [2] and
Xu and Jian [7].

2 Approximation Based on the Substitution p D ex

The nature of the approximation (6) is revealed by a remarkable formula for the
relative error [3, Section 2]. For completeness, we outline the proof.
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Theorem 1 If the exponents and weights are given by (7), then the relative error (8)
has the representation

�.t/ D �2

1X
nD1

R.n=h/ cos
�
2�.n=h/ log t � ˚.n=h/

�
(15)

where R.
/ and ˚.
/ are the real-valued functions defined by

� .ˇ C i2�
/

� .ˇ/
D R.
/ei˚.
/ with R.
/ > 0 and ˚.0/ D 0:

Moreover, R.
/ � e�2�� j
j=.cos �/ˇ for 0 � � < �=2 and �1 < 
 < 1.

Proof For each t > 0, the integrand f .x/ D exp.�tex C ˇx/ from (5) belongs to the
Schwarz class of rapidly decreasing C1 functions, and we may therefore apply the
Poisson summation formula to conclude that

h
1X

nD�1
f .nh/ D

1X
nD�1

Qf .n=h/ D
Z 1

�1
f .x/ dx C

X
n¤0

Qf .n=h/;

where the Fourier transform of f is

Qf .
/ D
Z 1

�1
e�i2�
xf .x/ dx D

Z 1

�1
exp

��tex C .ˇ � i2�
/x
�

dx:

The substitution p D tex gives

Qf .
/ D 1

tˇ�i2�


Z 1

0

e�ppˇ�i2�
 dp

p
D � .ˇ � i2�
/

tˇ�i2�

;

so, with an and wn defined by (7),

1

� .ˇ/

1X
nD�1

wne�ant D 1

tˇ
C 1

tˇ
X
n¤0

� .ˇ � i2�n=h/

� .ˇ/
ti2�n=h:

The formula for �.t/ follows after noting that � .ˇ C i2�
/ D � .ˇ � i2�
/ for all
real 
; hence, R.�
/ D R.
/ and ˚.�
/ D �˚.
/.

To estimate R.
/, let y > 0 and define the ray C� D f sei� W 0 < s < 1 g. By
Cauchy’s theorem,

� .ˇ C iy/ D
Z
C�

e�ppˇCiy dp

p
D

Z 1

0

e�sei�
.sei� /ˇCiy ds

s
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and thus

j� .ˇ C iy/j �
Z 1

0

e�s cos � e��ysˇ ds

s
D e��y

.cos �/ˇ

Z 1

0

e�ssˇ ds

s
D e��y

.cos �/ˇ
� .ˇ/;

implying the desired bound for R.
/. ut
In practice, the amplitudes R.n=h/ decay so rapidly with n that only the first term

in the expansion (15) is significant. For instance, since [1, 6.1.30]

ˇ̌
� . 1

2
C iy/

ˇ̌2 D �

cosh.�y/
;

if ˇ D 1=2 then R.
/ D .cosh 2�2
/�1=2 � p
2e��2
 so, choosing h D 1=3, we

have R.1=h/ D 1:95692 	 10�13 and R.2=h/ D 2:70786 	 10�26. In general, the
bound R.n=h/ � e�2��n=h=.cos �/ˇ from the theorem is minimized by choosing
tan � D 2�n=.ˇh/, implying that

R.n=h/ � �
1 C .rn=ˇ/2

�ˇ=2
exp

��rn arctan.rn=ˇ/
�

where rn D 2�n=h:

Since we can evaluate only a finite exponential sum, we now estimate the two
tails of the infinite sum in terms of the upper incomplete Gamma function,

� .ˇ; q/ D
Z 1

q
e�ppˇ dp

p
for ˇ > 0 and q > 0:

Theorem 2 If the exponents and weights are given by (7), then

tˇ
1X

nDNC1

wne�ant � � .ˇ; teNh/ provided teNh � ˇ;

and

tˇ
�M�1X
nD�1

wne�ant � � .ˇ/ � � .ˇ; te�Mh/ provided te�Mh � ˇ:

Proof For each t > 0, the integrand f .x/ D exp.�tex C ˇx/ from (5) decreases
for x > log.ˇ=t/. Therefore, if Nh � log.ˇ=t/, that is, if teNh � ˇ, then

tˇh
1X

nDNC1

f .nh/ � tˇ
Z 1

Nh
f .x/ dx D

Z 1

teNh
e�ppˇ dp

p
D � .ˇ; teNh/;
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where, in the final step, we used the substitution p D tex. Similarly, the func-
tion f .�x/ D exp.�te�x �ˇx/ decreases for x > log.t=ˇ/ so if Mh � log.t=ˇ/, that
is, if te�Mh � ˇ, then

tˇh
�M�1X
nD�1

f .nh/ D tˇh
1X

nDMC1

f .�nh/ � tˇ
Z 1

Mh
f .�x/ dx D

Z te�Mh

0

e�ppˇ dp

p
;

where, in the final step, we used the substitution p D te�x. ut
Given 	RD > 0 there exists h > 0 such that

2

1X
nD1

j� .ˇ C i2�n=h/j D 	RD� .ˇ/; (16)

and by Theorem 1,

j�.t/j � 	RD for 0 < t < 1;

so 	RD is an upper bound for the relative discretization error. Similarly, given a
sufficiently small 	RT > 0, there exist xı > 0 and XT > 0 such that ıexı � ˇ and
Te�XT � ˇ with

� .ˇ; ıexı / D 	RT� .ˇ/ and � .ˇ/ � � .ˇ; Te�XT / D 	RT� .ˇ/: (17)

Thus, by Theorem 2,

tˇ

� .ˇ/

1X
nDNC1

wne�ant � 	RT for t � ı and Nh � xı;

and

tˇ

� .ˇ/

�M�1X
nD�1

wne�ant � 	RT for t � T and Mh � XT ;

showing that 2	RT is an upper bound for the relative truncation error. Denoting the
overall relative error for the finite sum (9) by

�N
M.t/ D 1 � tˇ

� .ˇ/

NX
nD�M

wne�ant; (18)
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we therefore have

j�N
M.t/j � 	RD C 2	RT for ı � t � T; Nh � xı and Mh � XT : (19)

The estimate for R.
/ in Theorem 1, together with the asymptotic behaviours

� .ˇ; q/ 
 qˇ�1e�q as q ! 1;

and

� .ˇ/ � � .ˇ; q/ 
 qˇ

ˇ
as q ! 0;

imply that (19) can be satisfied with

h�1 � C log 	�1
RD; N � Ch�1 log.ı�1 log 	�1

RT /; M � Ch�1 log.T	�1
RT /:

Figure 2 shows the relation between 	RD and 1=h given by (16), and confirms
that 1=h is approximately proportional to log 	�1

RT . In Fig. 3, for each value of 	

we computed h by solving (16) with 	RD D 	=3, then computed xı and XT by
solving (17) with 	RT D 	=3, and finally put M D dXT=he and N D dxı=he.

Fig. 2 The bound 	RD for the
relative discretization error,
defined by (16), as a function
of 1=h for various choices
of ˇ
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Fig. 3 The growth in M and N as the upper bound for the overall relative error (18) decreases, for
different choices of T and ı

3 Prony’s Method

The construction of Sect. 2 leads to an exponential sum approximation (9) with
many small exponents an. We will now explain how the corresponding terms can
be aggregated to yield a more efficient approximation.

Consider more generally an exponential sum

g.t/ D
LX

lD1

wle
�alt;

in which the weights and exponents are all strictly positive. Our aim is to
approximate this function by an exponential sum with fewer terms,

g.t/ �
KX

kD1

Qwke�Qakt; 2K � 1 < L;

whose weights Qwk and exponents Qak are again all strictly positive. To this end, let

gj D .�1/jg. j/.0/ D
LX

lD1

wla
j
l:
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We can hope to find 2K parameters Qwk and Qak satisfying the 2K conditions

gj D
KX

kD1

Qwk Qaj
k for 0 � j � 2K � 1; (20)

so that, by Taylor expansion,

g.t/ �
2K�1X
jD0

gj
.�t/j

jŠ
D

KX
kD1

Qwk

2K�1X
jD0

.�Qakt/j

jŠ
�

KX
kD1

Qwke�Qakt:

The approximations here require that the gj and the Qakt are nicely bounded, and
preferably small.

In Prony’s method, we seek to satisfy (20) by introducing the monic polynomial

Q.z/ D
KY

kD1

.z � Qak/ D
KX

kD0

qkzk;

and observing that the unknown coefficients qk must satisfy

KX
mD0

gjCmqm D
KX

mD0

KX
kD1

Qwk QajCm
k qm D

KX
kD1

Qwk Qaj
k

KX
mD0

qm Qam
k D

KX
kD1

Qwk Qaj
kQ.Qak/ D 0;

for 0 � j � K � 1 (so that j C m � 2K � 1 for 0 � m � K), with qK D 1. Thus,

K�1X
mD0

gjCmqm D bj; where bj D �gjCK; for 0 � j � K � 1;

which suggests the procedure Prony defined in Algorithm 1. We must, however,
beware of several potential pitfalls:

1. the best choice for K is not clear;
2. the K 	 K matrix ŒgjCk� might be badly conditioned;
3. the roots of the polynomial Q.z/ might not all be real and positive;

Algorithm 1 Prony.a1; : : : ; aL; w1; : : : wL; K/

Require: 2K � 1 � L
Compute gj D PL

lD1 wla
j
l for 0 � j � 2K � 1

Find q0 , . . . , qK�1 satisfying
PK�1

mD0 gjCmqm D �gjCK for 0 � j � K � 1, and put qK D 1

Find the roots Qa1, . . . , QaK of the polynomial Q.z/ D PK
kD0 qkzk

Find Qw1, . . . , QwK satisfying
PK

kD1 Qaj
k Qwk � gj for 0 � j � 2K � 1

return Qa1, . . . , QaK , Qw1, . . . , QwK
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4. the linear system for the Qwk is overdetermined, and the least-squares solution
might have large residuals;

5. the Qwk might not all be positive.

We will see that nevertheless the algorithm can be quite effective, even when K D 1,
in which case we simply compute

g0 D
LX

lD1

wl; g1 D
LX

lD1

wlal; Qa1 D g1=g0; Qw1 D g0:

Example 1 We took ˇ D 3=4, ı D 10�6, T D 10, 	 D 10�8, 	RD D 0:9 	 10�8 and
	RT D 0:05 	 10�8. The methodology of Sect. 2 led to the choices h D 0:47962,
M D 65 and N D 36, and we confirmed via direct evaluation of the relative error
that j�N

M.t/j � 0:92 	 10�8 for ı � t � T. We applied Prony’s method to the first
L terms of the sum in (9), that is, those with �M � n � L � M, thereby reducing
the total number of terms by L � K. Table 1 lists, for different choices of L and K,
the additional contribution to the relative error, that is, max1�p�P j�.tp/j where

�.t/ D tˇ

� .ˇ/

� KX
kD1

Qwke�Qakt �
LX

lD1

wl0 e
�al0 t

�
; l0 D l � M C 1; (21)

Table 1 Performance of Prony’s method for different L and K using the parameters of
Example 1

L K D 1 K D 2 K D 3 K D 4 K D 5 K D 6

66 9.64e�01 4.30e�01 6.15e�02 3.02e�03 4.77e�05 2.29e�07

65 8.11e�01 1.69e�01 9.89e�03 1.80e�04 9.98e�07 1.66e�09
64 5.35e�01 4.59e�02 1.03e�03 6.85e�06 1.35e�08 7.96e�12

63 2.72e�01 9.17e�03 7.76e�05 1.89e�07 1.36e�10 2.74e�14

62 1.12e�01 1.46e�03 4.64e�06 4.19e�09 1.11e�12 3.58e�16

61 3.99e�02 1.98e�04 2.38e�07 8.05e�11 8.28e�15 3.52e�16

60 1.28e�02 2.43e�05 1.10e�08 1.41e�12 4.63e�16 2.24e�16

59 3.82e�03 2.78e�06 4.81e�10 2.36e�14 4.63e�16 1.25e�16

58 1.10e�03 3.05e�07 2.02e�11 4.46e�16 1.23e�16 6.27e�17

57 3.07e�04 3.27e�08 8.25e�13 5.60e�17 8.40e�17

56 8.43e�05 3.44e�09 3.32e�14 8.96e�17 5.60e�17

55 2.29e�05 3.59e�10 1.32e�15 4.48e�17 4.48e�17

48 2.30e�09 3.98e�17 2.58e�18

47 6.16e�10 3.92e�18 1.54e�18

For each K, we seek the largest L for which the maximum relative error (shown in bold) is less
than 	 D 10�8
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and we use a geometric grid in Œı; 1� given by tp D T.p�1/=.P�1/ı.P�p/=.P�1/ for 1 �
p � P with P D 751. The largest reduction consistent with maintaining overall
accuracy was when L D 65 and K D 6, and Fig. 4 (Top) plots j�.t/j in this case, as
well as the overall relative error (Bottom) for the resulting approximation,

1

tˇ
� 1

� .ˇ/

� KX
kD1

Qwke�Qakt C
NX

nDL�M

wne�ant

�
for 10�6 � t � 10: (22)

In this way, the number of terms in the exponential sum approximation was reduced
from M C 1 C N D 102 to .M C K � L/ C 1 C N D 43, with the maximum absolute
value of the relative error growing only slightly to 1:07 	 10�8. Figure 4 (Bottom)
shows that the relative error is closely approximated by the first term in (15), that is,
�M

N .t/ � �2R.h�1/ cos
�
2�h�1 log t � ˚.h�1/

�
for ı � t � T.

Fig. 4 Top: the additional contribution j�.t/j to the relative error from applying Prony’s method
in Example 1 with L D 65 and K D 6. Bottom: the overall relative error for the resulting
approximation (22) of t�ˇ requiring L � K D 59 fewer terms
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4 Approximation Based on the Substitution p D exp.x � e�x/

We now consider the alternative exponents and weights given by (12). A different
approach is needed for the error analysis, and we define

I . f / D
Z 1

�1
f .x/ dx and Q. f ; h/ D h

1X
nD�1

f .nh/ for h > 0;

so that Q. f ; h/ is an infinite trapezoidal rule approximation to I . f /. Recall the
following well-known error bound.

Theorem 3 Let r > 0. Suppose that f .z/ is continuous on the closed strip j=zj � r,
analytic on the open strip j=zj < r, and satisfies

Z 1

�1
�j f .x C ir/j C j f .x � ir/j� dx � Ar

with
Z r

�r
j f .x ˙ iy/j dy ! 0 as jxj ! 1:

Then, for all h > 0,

jQ. f ; h/ � I . f /j � Are�2�r=h

1 � e�2�r=h
:

Proof See McNamee et al. [6, Theorem 5.2]. ut
For t > 0, we define the entire analytic function of z,

f .z/ D exp
��'.z; t/

�
.1 C e�z/; (23)

where '.z; t/ is the analytic continuation of the function defined in (11). In this way,
t�ˇ D I . f /=� .ˇ/ by (10).

Lemma 1 If 0 < r < �=2, then the function f defined in (23) satisfies the
hypotheses of Theorem 3 with Ar � Ct�ˇ for 0 < t � 1, where the constant C > 0

depends only on ˇ and r.

Proof A short calculation shows that

<'.x ˙ iy; t/ D t exp.x � e�x cos y/ cos. y C e�x sin y/ � ˇ.x � e�x cos y/;
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and that if 0 < 	 < �=2 � r, then

0 � yCe�x sin y � �

2
�	 for x � x� D log

sin r

�=2 � r � 	
and 0 � y � r: (24)

Thus, if x � x� then cos.r C e�x sin r/ � cos.�=2 � 	/ D sin 	 so

<'.x ˙ ir; t/ � t exp.x � e�x�

cos r/ sin 	 � ˇx C ˇe�x cos r � ctex � ˇx;

where c D exp.�e�x�

cos r/ sin 	 > 0. If necessary, we increase x� so that x� > 0.
Since j1 C e�.x˙ir/j � 1 C e�x,

Z 1

x�

j f .x ˙ ir/j dx D
Z 1

x�

exp
��<'.x ˙ ir; t/

�ˇ̌
1 C e�.x˙ir/

ˇ̌
dx

�
Z 1

x�

exp.�ctex C ˇx/.1 C e�x/ dx;

and the substitution p D ex then yields, with p� D ex�

,

Z 1

x�

j f .x ˙ ir/j dx �
Z 1

p�

e�ctppˇ.1 C p�1/
dp

p
� �

1 C . p�/�1
� Z 1

p�

e�ctppˇ dp

p

D 1 C . p�/�1

.ct/ˇ

Z 1

ctp�

e�ppˇ dp

p
� 1 C . p�/�1

.ct/ˇ

Z 1

0

e�ppˇ dp

p
� Ct�ˇ:

Also, if x � 0 then

<'.x ˙ ir; t/ � �t exp.x � e�x cos r/ � ˇ.x � e�x cos r/ � �tex � ˇx

so

Z x�

0

j f .x ˙ ir/j dx �
Z x�

0

exp.tex C ˇx/.1 C e�x/ dx � 2x� exp
�
tex� C ˇx��

;

which is bounded for 0 < t � 1. Similarly, if x � 0 then exp.x � e�x cos r/ � 1 so
<'.x ˙ ir; t/ � �t C ˇe�x cos r and therefore, using again the substitution p D ex,

Z 0

�1
j f .x ˙ ir/j dx �

Z 0

�1
exp.t � ˇe�x cos r/.1 C e�x/ dx

D
Z 1

0
exp.t � ˇex cos r/.1 C ex/ dx D et

Z 1

1
e�ˇp cos r.1 C p/

dp

p
;

which is also bounded for 0 < t � 1. The required estimate for Ar follows.
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If x � x�, then the preceding inequalities based on (24) show that

Z r

�r
j f .x C iy/j dy � 2r max

j yj�r
j f .x C iy/j � 2r exp.�ctex C ˇx/.1 C e�x/;

which tends to zero as x ! 1 for any t > 0. Similarly, if x � 0, then <'.x ˙ iy/ �
�t C ˇe�x cos r for j yj � r, so

Z r

�r
j f .x C iy/j dy � 2r exp.t � ˇe�x cos r/.1 C e�x/;

which again tends to zero as x ! �1. ut
Together, Theorem 3 and Lemma 1 imply the following bound for the relative

error (8) in the infinite exponential sum approximation (6).

Theorem 4 Let h > 0 and define an and wn by (12). If 0 < r < �=2, then there
exists a constant C1 (depending on ˇ and r) such that

j�.t/j � C1e�2�r=h for 0 < t � 1:

Proof The definitions above mean that hf .nh/ D wne�ant. ut
Thus, a relative accuracy 	 is achieved by choosing h of order 1= log 	�1. Of

course, in practice we must compute a finite sum, and the next lemma estimates the
two parts of the associated truncation error.

Lemma 2 Let h > 0, 0 < � < 1 and 0 < t � 1. Then the function f defined in (23)
satisfies

h

� .ˇ/

�M�1X
MD�1

f .nh/ � C2 exp.�ˇeMh/ for Mh �
8<
:

log.ˇ�1 � 1/; 0 < ˇ < 1=2;

0; ˇ � 1=2;

(25)

and

h

� .ˇ/

1X
nDNC1

f .nh/ � C3

tˇ
exp

��� teNh�1
�

for Nh � 1 C log.ˇt�1/: (26)

When 0 < ˇ � 1, the second estimate holds also with � D 1.

Proof If n � 0, then '.nh; t/ � �t C ˇe�nh so

f .nh/ � g1.�nh/ where g1.x/ D exp.t � ˇex/.1 C ex/:
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The function g1.x/ decreases for x > log.ˇ�1 �1/ if 0 < ˇ < 1=2, and for all x � 0

if ˇ � 1=2, so

h
�M�1X
nD�1

f .nh/ � h
1X

nDMC1

g1.nh/ �
Z 1

Mh
g1.x/ dx for M as in (25),

and the substitution p D ex gives

Z 1

Mh
g1.x/ dx D

Z 1

eMh
et�ˇp.1 C p/

dp

p
� 2et

Z 1

eMh
e�ˇp dp D 2et

ˇ
exp.�ˇeMh/;

so the first estimate holds with C2 D 2e=� .ˇ C 1/.
If n � 0 we have '.nh; t/ � t exp.nh � 1/ � ˇnh and 1 C e�nh � 2, so

f .nh/ � g2.nh/ where g2.x/ D 2 exp.�tex�1 C ˇx/:

The function g2.x/ decreases for x > 1 C log.ˇt�1/, so

h
1X

nDNC1

f .nh/ �
Z 1

Nh
g2.x/ dx for N as in (26),

and the substitution p D ex gives

Z 1

Nh
g2.x/ dx � 2

Z 1

eNh
e�te�1ppˇ dp

p
D 2

�
e

t

�ˇ Z 1

teNh�1

e�ppˇ�1 dp:

Since teNh�1 � ˇ, if 0 < ˇ � 1 then the integral on the right is bounded above
by ˇˇ�1 exp.�teNh�1/. If ˇ > 1, then pˇ�1e�.1��/p is bounded for p > 0 so

Z 1

teNh�1

e�ppˇ�1 dp D
Z 1

teNh�1

e��p. pˇ�1e�.1��/p/ dp � C exp.�� teNh�1/;

completing the proof. ut
It is now a simple matter to see that the number of terms L D M C 1 C N needed

to ensure a relative accuracy 	 for ı � t � 1 is of order .log 	�1/ log.ı�1 log 	�1/.

Theorem 5 Let an and wn be defined by (12). For 0 < ı � 1 and for a sufficiently
small 	 > 0, if

1

h
� 1

2�r
log

3C1

	
; M � 1

h
log

�
1

ˇ
log

3C2

	

�
; N � 1C1

h
log

�
1

�ı
log

3C3

	

�
;
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then

j�N
M.t/j � 	 for ı � t � 1:

Proof The inequalities for h, M and N imply that each of C1e�2�r=h, C2 exp.�ˇeMh/

and C3 exp.�� teNh�1/ is bounded above by 	t�ˇ=3, so the error estimate is a
consequence of Theorem 4, Lemma 2 and the triangle inequality. Note that the
restrictions on M and N in (25) and (26) will be satisfied for 	 sufficiently small. ut

Although the error bounds above require t 2 Œı; 1�, a simple rescaling allows us
to treat a general compact subinterval Œı; T�. If Lan D an=T and Lwn D wn=Tˇ , then

1

tˇ
D 1

Tˇ

1

.t=T/ˇ
� 1

� .ˇ/

NX
nD�M

Lwne�Lant

for ı � t=T � 1, or in other words for ı � T � t � T. Moreover, the relative error
L�N
M.t/ D �N

M.t=T/ is unchanged by the rescaling.

Example 2 We took the same values for ˇ, ı, T, 	, 	RD and 	RT as in Example 1.
Since the constant C1 of Theorem 4 is difficult to estimate, we again used (16) to
choose h D 0:47962. Likewise, the constant C3 in Lemma 2 is difficult to estimate,
so we chose N D dh�1xı=Te D 40. However, knowing C2 D 2e=� .ˇ C1/ we easily
determined that C2 exp.�ˇeMh/ � 	RT for M D 8. The exponents and weights (12)
were computed for the interval Œı=T; 1�, and then rescaled as above to create an
approximation for the interval Œı; T� with M C1CN D 49 terms and a relative error
whose magnitude is at worst 2:2 	 10�8.

The behaviour of the relative error �N
M.t/, shown in Fig. 5, suggests a modified

strategy: construct the approximation for Œı; 10T� but use it only on Œı; T�. We found
that doing so required N D 45, that is, 5 additional terms, but resulted in a nearly
uniform amplitude for the relative error of about 0:97	10�8. Finally, after applying
Prony’s method with L D 17 and K D 6 we were able to reduce the number of
terms from M C 1 C N D 54 to 43 without increasing the relative error.

To compare these results with those of Li [5], let 0 < ˛ < 1 and let k.t/ D
t˛�1=� .˛/ denote the kernel for the fractional integral of order ˛. Taking ˇ D 1�˛

we compute the weights wl and exponents al as above and define

kN
M.t/ D 1

� .˛/� .1 � ˛/

NX
nD�M

wne�ant for ı � t � T:

The fast algorithm evaluates

.K N
M U/n D

Z tn�1

0

kN
M.t � s/ QU.s/ ds C

Z tn

tn�1

k.tn � s/ QU.s/ ds
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Fig. 5 The relative error for the initial approximation from Example 2

and our bound j�N
M.t/j � 	 implies that jkN

M.t/ � k.t/j � 	t˛�1=� .˛/ for ı � t � T,
so

ˇ̌
.K N

M U/n � .K QU/.tn/
ˇ̌ � 	

Z tn�1

0

.tn � s/˛�1

� .˛/
j QU.s/j ds � 	t˛n

� .˛ C 1/
max
1�j�n

jUjj;

provided �tn � ı and tn � T. Similarly, the method of Li yields .KQU/n but with
a bound for the absolute error in (14), so that jkQ.t/ � k.t/j � 	0 for ı0 � t < 1.
Thus,

ˇ̌
.KQU/n � .K QU/.tn/

ˇ̌ � 	0 sin �˛

�

Z tn�1

0

j QU.s/j ds � 	0tn
sin �˛

�
max
1�j�n

jUjj;

provided �tn � ı. Li [5, Fig. 3 (d)] required about Q D 250 points to achieve an
(absolute) error 	0 � 10�6 for t � ı0 D 10�4 when ˛ D 1=4 (corresponding to ˇ D
1�˛ D 3=4). In Examples 1 and 2, our methods give a smaller error 	 � 10�8 using
only M C 1 C N D 43 terms with a less restrictive lower bound for the time step,
ı D 10�6. Against these advantages, the method of Li permits arbitrarily large tn.
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5 Conclusion

Comparing Examples 1 and 2, we see that, for comparable accuracy, the approxi-
mation based on the second substitution results in far fewer terms because we are
able to use a much smaller choice of M. However, after applying Prony’s method
both approximations are about equally efficient. If Prony’s method is not used,
then the second approximation is clearly superior. Another consideration is that the
first approximation has more explicit error bounds so we can, a priori, more easily
determine suitable choices of h, M and N to achieve a desired accuracy.
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