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Abstract We explore the connection between fractional order partial differential
equations in two or more spatial dimensions with boundary integral operators to
develop techniques that enable one to efficiently tackle the integral fractional Lapla-
cian. In particular, we develop techniques for the treatment of the dense stiffness
matrix including the computation of the entries, the efficient assembly and storage
of a sparse approximation and the efficient solution of the resulting equations. The
main idea consists of generalising proven techniques for the treatment of boundary
integral equations to general fractional orders. Importantly, the approximation does
not make any strong assumptions on the shape of the underlying domain and does
not rely on any special structure of the matrix that could be exploited by fast
transforms. We demonstrate the flexibility and performance of this approach in a
couple of two-dimensional numerical examples.

1 Introduction

Large scale computational solution of partial differential equations has revolu-
tionised the way in which scientific research is performed. Historically, it was
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generally the case that the mathematical models, expressed in the form of partial
differential equations involving operators such as the Laplacian, were impossible
to solve analytically, and difficult to resolve numerically. This led to a concerted
and sustained research effort into the development of efficient numerical methods
for approximating the solution of partial differential equations. Indeed, many
researchers who were originally interested in applications shifted research interests
to the development and analysis of numerical methods. A case in point is Professor
Ian H. Sloan who originally trained as physicist but went on to carry out fundamental
research in a wide range of areas relating to computationalmathematics. Indeed, one
may struggle to find an area of computational mathematics in which Sloan has not
made a contribution and the topic of the present article, fractional partial differential
equations, may be one of the very few.

In recent years, there has been a burgeoning of interest in the use of non-local
and fractional models. To some extent, this move reflects the fact that with present
day computational resources coupled with state of the art numerical algorithms,
attention is now shifting back to the fidelity of the underlying mathematical models
as opposed to their approximation. Fractional equations have been used to describe
phenomena in anomalous diffusion, material science, image processing, finance and
electromagnetic fluids [30]. Fractional order equations arise naturally as the limit of
discrete diffusion governed by stochastic processes [20].

Whilst the development of fractional derivatives dates back to essentially the
same time as their integer counterparts, the computational methods available for
their numerical resolution drastically lags behind the vast array of numerical
techniques from which one can choose to treat integer order partial differential
equations. The recent literature abounds with work on numerical methods for
fractional partial differential equations in one spatial dimension and fractional order
temporal derivatives. However, with most applications of interest being posed on
domains in two or more spatial dimensions, the solution of fractional equations
posed on complex domains is a problem of considerable practical interest.

The archetypal elliptic partial differential equation is the Poisson problem
involving the standard Laplacian. By analogy, one can consider a fractional Poisson
problem involving the fractional Laplacian. The first problem one encounters is that
of how to define a fractional Laplacian, particularly in the case where the domain is
compact, and a number of alternatives have been suggested. The integral fractional
Laplacian is obtained by restriction of the Fourier definition to functions that have
prescribed value outside of the domain of interest, whereas the spectral fractional
Laplacian is based on the spectral decomposition of the regular Laplace operator. In
general, the two operators are different [24], and only coincide when the domain of
interest is the full space.

The approximation of the integral fractional Laplacian using finite elements was
considered by D’Elia and Gunzburger [10]. The important work of Acosta and
Borthagaray [1] gave regularity results for the analytic solution of the fractional
Poisson problem and obtained convergence rates for the finite element approxima-
tion supported by numerical examples computed using techniques described in [2].
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The numerical treatment of fractional partial differential equations is rather
different from the integer order case owing to the fact that the fractional derivative
is a non-local operator. This creates a number of issues including the fact that the
resulting stiffness matrix is dense and, moreover, the entries in the matrix are given
in terms of singular integrals. In turn, these features create issues in the numerical
computation of the entries and the need to store the entries of a dense matrix, not to
mention the fact that a solution of the resulting matrix equation has to be computed.
The seasoned reader will readily appreciate that many of these issues are shared
by boundary integral equations arising from classical integer order differential
operators [26, 27, 31]. This similarity is not altogether surprising given that the
boundary integral operators are pseudo-differential operators of fractional order.

A different, integer order operator based approach, was taken by Nochetto,
Otárola and Salgado [21] for the case of the spectral Laplacian. Caffarelli and
Silvestre [7] showed that the operator can be realised as a Dirichlet-to-Neumann
operator of an extended problem in the half space in d C 1 dimensions.

In the present work, we explore the connection with boundary integral operators
to develop techniques that enable one to efficiently tackle the integral fractional
Laplacian. In particular, we develop techniques for the treatment of the stiffness
matrix including the computation of the entries, the efficient storage of the resulting
dense matrix and the efficient solution of the resulting equations. The main ideas
consist of generalising proven techniques for the treatment of boundary integral
equations to general fractional orders. Importantly, the approximation does not make
any strong assumptions on the shape of the underlying domain and does not rely on
any special structure of the matrix that could be exploited by fast transforms. We
demonstrate the flexibility and performance of this approach in a couple of two-
dimensional numerical examples.

2 The Integral Fractional Laplacian and Its Weak
Formulation

The fractional Laplacian in R
d of order s, for 0 < s < 1 and d 2 N, of a function u

can be defined by the Fourier transformF as

.��/s u D F�1 h
j�j2s Fu

i
:

Alternatively, this expression can be rewritten [29] in integral form as

.��/s u .x/ D C.d; s/ p: v:
Z

Rd
dy

u.x/� u.y/

jx � yjdC2s
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where

C.d; s/ D 22ss�
�
s C d

2

�

�d=2� .1 � s/

is a normalisation constant and p: v: denotes the Cauchy principal value of the
integral [19, Chapter 5]. In the case where s D 1 this operator coincides with
the usual Laplacian. If ˝ � R

d is a bounded Lipschitz domain, we define the
integral fractional Laplacian .��/s to be the restriction of the full-space operator to
functions with compact support in ˝ . This generalises the homogeneous Dirichlet
condition applied in the case s D 1 to the case s 2 .0; 1/.

Define the usual fractional Sobolev space Hs
�
R

d
�
via the Fourier transform. If

˝ is a sub-domain as above, then we define the Sobolev space Hs .˝/ to be

Hs .˝/ WD ˚
u 2 L2 .˝/ j jjujjHs.˝/ < 1�

;

equipped with the norm

jjujj2Hs.˝/ D jjujj2L2.˝/ C
Z

˝

dx
Z

˝

dy
.u.x/� u.y//2

jx � yjdC2s
:

The space

eHs .˝/ WD ˚
u 2 Hs

�
R

d
� j u D 0 in˝c

�

can be equipped with the energy norm

jjujjeHs.˝/ WD
r

C.d; s/

2
jujHs.Rd/ ;

where the non-standard factor
p

C.d; s/=2 is included for convenience. For s >
1=2, eHs .˝/ coincides with the space Hs

0 .˝/ which is the closure of C1
0 .˝/ with

respect to the Hs .˝/-norm. For s < 1=2, eHs .˝/ is identical to Hs .˝/. In the
critical case s D 1=2, eHs .˝/ � Hs

0 .˝/, and the inclusion is strict. (See for example
[19, Chapter 3].)

The usual approach to dealing with elliptic PDEs consists of obtaining a weak
form of the operator by multiplying the equation by a test function and applying
integration by parts [13]. In contrast, for equations involving the fractional Laplacian
.��/s u, we again multiply by a test function v 2 eHs .˝/ and integrate overRd, and
then, instead of integration by parts, we use the identity

Z

Rd
dx

Z

Rd
dy
.u .x/ � u .y/ v .x//

jx � yjdC2s
D �

Z

Rd
dx

Z

Rd
dy
.u .x/ � u .y/ v .y//

jx � yjdC2s
:
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Following this approach, since both u and v vanish outside of ˝ , we arrive at the
bilinear form

a.u; v/ D b .u; v/C C.d; s/
Z

˝

dx
Z

˝c
dy

u .x/ v .x/

jx � yjdC2s ;

with

b.u; v/ D C.d; s/

2

Z

˝

dx
Z

˝

dy
.u .x/ � u .y// .v .x/ � v .y//

jx � yjdC2s ;

corresponding to .��/s on eHs .˝/ � eHs .˝/. The bilinear form a .�; �/ is trivially
seen to be eHs .˝/-coercive and continuous and, as such, is amenable to treatment
using the Lax-Milgram Lemma.

In this article we shall concern ourselves with the computational details needed
to implement the finite element approximation of problems involving the fractional
Laplacian. To this end, the presence of the unbounded domain ˝c in the bilinear
form a .�; �/ is somewhat undesirable. Fortunately, we can dispense with ˝c using
the following argument. The identity

1

jx � yjdC2s D 1

2s
ry � x � y

jx � yjdC2s ;

enables the second integral to be rewritten using the Gauss theorem as

C.d; s/

2s

Z

˝

dx
Z

@˝

dy
u .x/ v .x/ ny � .x � y/

jx � yjdC2s
;

where ny is the inward normal to @˝ at y, so that the bilinear form can be expressed
equivalently as

a.u; v/ D C.d; s/

2

Z

˝

dx
Z

˝

dy
.u .x/� u .y// .v .x/ � v .y//

jx � yjdC2s

C C.d; s/

2s

Z

˝

dx
Z

@˝

dy
u .x/ v .x/ ny � .x � y/

jx � yjdC2s
:

As an aside, we note that the bilinear form b .u; v/ represents the so-called regional
fractional Laplacian [5, 8]. The regional fractional Laplacian can be interpreted
as a generalisation of the usual Laplacian with homogeneous Neumann boundary
condition for s D 1 to the case of fractional orders s 2 .0; 1/. It will transpire from
our work that most of the presented techniques carry over to the regional fractional
Laplacian by simply omitting the boundary integral terms.
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3 Finite Element Approximation of the Fractional Poisson
Equation

The fractional Poisson problem

.��/s u D f in˝;

u D 0 in˝c

takes the variational form

Find u 2 eHs .˝/ W a .u; v/ D h f ; vi 8v 2 eHs .˝/ : (1)

Henceforth, let˝ be a polygon, and letPh be a family of shape-regular and globally
quasi-uniform triangulations of˝ , andPh;@ the induced boundarymeshes [13]. Let
Nh be the set of vertices of Ph and hK be the diameter of the element K 2 Ph,
and he the diameter of e 2 Ph;@. Moreover, let h WD maxK2Ph hK . Let �i be the
usual piecewise linear basis function associated with a node zi 2 Nh, satisfying
�i

�
zj

� D ıij for zj 2 Nh, and let Xh WD span f�i j zi 2 Nhg. The finite element
subspace Vh � eHs .˝/ is given by Vh D Xh when s < 1=2 and by

Vh D fvh 2 Xh j vh D 0 on @˝g D span f�i j zi 62 @˝g
when s � 1=2. The corresponding set of degrees of freedom Ih for Vh is given by
Ih D Nh when s < 1=2 and otherwise consists of nodes in the interior of ˝ . In
both cases we denote the cardinality of Ih by n. The set of degrees of freedom on
an element K 2 Ph is denoted byIK .

The stiffness matrix associated with the fractional Laplacian is defined to be
As D ˚

a
�
�i; �j

��
i;j
, where

a
�
�i; �j

� D C.d; s/

2

Z

˝

dx
Z

˝

dy
.�i .x/� �i .y//

�
�j .x/� �j .y/

�

jx � yjdC2s

C C.d; s/

2s

Z

˝

dx
Z

@˝

dy
�i .x/ �j .x/ ny � .x � y/

jx � yjdC2s
:

The existence of a unique solution to the fractional Poisson problem Eq. (1) and its
finite element approximation follows from the Lax-Milgram Lemma.

The rate of convergence of the finite element approximation is given by the
following theorem:

Theorem 1 ([1]) If the family of triangulations Ph is shape regular and globally
quasi-uniform, and u 2 H` .˝/, for 0 < s < ` < 1 or 1=2 < s < 1 and 1 < ` < 2,
then

jju � uhjjeHs.˝/ � C .s; d/ h`�s jujH`.˝/ : (2)



Efficient Finite Element Method for the Integral Fractional Laplacian 23

In particular, by applying regularity estimates for u in terms of the data f , the
solution satisfies

jju � uhjjeHs.˝/ �

8
ˆ̂<
ˆ̂:

C .s/ h1=2 jlog hj jj f jjC1=2�s.˝/ if 0 < s < 1=2;

Ch1=2 jlog hj jj f jjL1.˝/ if s D 1=2;
C.s;ˇ/
2s�1 h1=2

pjlog hj jj f jjCˇ.˝/ if 1=2 < s < 1; ˇ > 0

Moreover, using a standard Aubin-Nitsche argument [13, Lemma 2.31] gives
estimates in L2 .˝/:

Theorem 2 ([6]) If the family of triangulations Ph is shape regular and globally
quasi-uniform, and, for � > 0, u 2 HsC1=2�� .˝/, then

jju � uhjjL2 �
(

C.s; �/h1=2Cs�� jujHsC1=2��.˝/ if 0 < s < 1=2;

C.s; �/h1�2� jujHsC1=2��.˝/ if 1=2 � s < 1:

When s D 1 classical results [13, Theorems 3.16 and 3.18] show that if u 2
H` .˝/, 1 < ` � 2,

jju � uhjjH1
0 .˝/

� Ch`�1 jujH`.˝/ ;

jju � uhjjL2.˝/ � Ch` jujH`.˝/ ;

so that (2) can be seen as a generalisation to the case s 2 .0; 1/. For s D 1, u 2
H2 .˝/ if the domain is of class C2 or a convex polygon and if f 2 L2 .˝/ [13,
Theorems 3.10 and 3.12]. However, when s 2 .0; 1/, higher order regularity of the
solution is not guaranteed under such conditions.

For example, consider the problem

.��/s us.x/ D 1 in ˝ D ˚
x 2 R

2 j jxj < 1� ;
us .x/ D 0 in ˝c;

with analytic solution [14]

us .x/ WD 2�2s

� .1C s/2

�
1 � jxj2

�s
:

Although the domain is C1 and the right-hand side is smooth, us is only in
HsC1=2�� .˝/ for any � > 0. Sample solutions for s 2 f0:25; 0:75g are shown in
Fig. 1.
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Fig. 1 Solutions us to the
fractional Poisson equation
with constant right-hand side
for s D 0:25 (top) and
s D 0:75 (bottom)

4 Computation of Entries of the Stiffness Matrix

The computation of entries of the stiffness matrix As in the case of the usual
Laplacian (s D 1) is straightforward. However, for s 2 .0; 1/, the bilinear form
contains factors jx � yj�d�2s which means that simple closed forms for the entries
are no longer available and suitable quadrature rules therefore must be identified.
Moreover, the presence of a repeated integral over˝ (as opposed to an integral over
just ˝ in the case s D 1) means that the matrix needs to be assembled in a double
loop over the elements of the mesh so that the computational cost is potentially
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much larger than in the integer s D 1 case. Additionally, every degree of freedom is
coupled to all other degrees of freedom and the stiffness matrix is therefore dense.

4.1 Reduction to Smooth Integrals

In order to compute the entries of As D ˚
a

�
�i; �j

��
ij we decompose the expression

for the entries into contributions from elements K; QK 2 Ph and external edges
e 2 Ph;@:

a.�i; �i/ D
X

K

X
QK

aK� QK.�i; �j/C
X

K

X
e

aK�e.�i; �j/;

where the contributions aK� QK and aK�e are given by:

aK� QK.�i; �j/ D C.d; s/

2

Z

K
dx

Z
QK

dy
.�i.x/ � �i.y//

�
�j.x/� �j.y/

�

jx � yjdC2s
; (3)

aK�e.�i; �j/ D C.d; s/

2s

Z

K
dx

Z

e
dy
�i .x/ �j .x/ ne � .x � y/

jx � yjdC2s : (4)

Although the following approach holds for arbitrary spatial dimension d, we restrict
ourselves to d D 2 dimensions. In evaluating the contributions aK� QK over element
pairs K � QK, several cases need to be distinguished:

1. K and QK have empty intersection,
2. K and QK are identical,
3. K and QK share an edge,
4. K and QK share a vertex.

These cases are illustrated in Fig. 2. In case 1, where the elements do not touch, the
Stroud conical quadrature rule [28] (or any other suitable Gauss rule on simplices)

Fig. 2 Element pairs that are treated separately. We distinguish element pairs of identical elements
(red), element pairs with common edge (yellow), with common vertex (blue) and separated
elements (green)
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of sufficiently high order can be used to approximate the integrals. More details as
to what constitutes a sufficiently high order are given in Sect. 4.2.

Special care has to be taken in the remaining cases 2–4, in which the elements
are touching, owing to the presence of a singularity in the integrand. Fortunately,
the singularity is removable and can, as pointed out in [1], be treated using
standard techniques from the boundary element literature [22]. More specifically,
we write the integral as a sum of integrals over sub-simplices. Each sub-simplex
is then mapped onto the hyper-cube Œ0; 1�4 using the Duffy transformation [11].
The advantage of pursuing this approach is that the singularity arising from the
degenerate nature of the Duffy transformation offsets the singularity present in the
integrals. For example, we obtain the following expressions

aK� QK.�i; �j/ D C.2; s/

2

jKjˇ̌
ˇ OK

ˇ̌
ˇ

ˇ̌ QK ˇ̌
ˇ̌
ˇ OK

ˇ̌
ˇ

LcX
`D1

Z

Œ0;1�4
d� NJ.`;c/

N .`;c/k.i/ .�/
N .`;c/k.j/ .�/ˇ̌

ˇP6�c
kD0 N .`;c/k .�/ xk

ˇ̌
ˇ
2C2s ; (5)

and

aK�e.�i; �j/ D C.2; s/

2s

jKjˇ̌
ˇ OK

ˇ̌
ˇ

jej
jOej

LcX
`D1

Z

Œ0;1�3
d� NJ.`;c/ �

.`;c/
k.i/ .�/ �

.`;c/
k.j/ .�/

P5�c
kD0 N .`;c/k .�/ ne � xkˇ̌

ˇP5�c
kD0 N .`;c/k .�/ xk

ˇ̌
ˇ
2C2s

(6)

in which the singularity jx � yj�d�2s is no longer present. The derivations of the
terms involved can be found in [2, 22] and, for completeness, are summarised in
the Appendix, along with the notations used in Eqs. (5) and (6). Removing the sin-
gularity means that the integrals in Eqs. (5) and (6) are amenable to approximation
using standard Gaussian quadrature rules of sufficiently high order as discussed in
Sect. 4.2. The same idea is applicable in any number of space dimensions.

4.2 Determining the Order of the Quadrature Rules

The foregoing considerations show that the evaluation of the entries of the stiffness
matrix boils down to the evaluation of integrals with smooth integrands, i.e.
expressions Eqs. (3) and (4) for case 1 and expressions Eqs. (5) and (6) for case
2–4. As mentioned earlier, it is necessary to use a sufficiently high order quadrature
rule to approximate these integrals. We now turn to the question of how high is
sufficient.
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The arguments used to prove the ensuing estimates follow a pattern similar to
the proofs of Theorems 5.3.29, 5.3.23 and 5.3.24 in [22]. The main difference from
[22] is the presence of the boundary integral term. More details on the development
of this type of quadrature rules in the context of boundary element methods can be
found in the work of Erichsen and Sauter [12].

Theorem 3 For d D 2, let IK index the degrees of freedom on K 2 Ph, and
define IK� QK WD IK [ I QK. Let kT (respectively kT;@) be the quadrature order
used for touching pairs K � QK (respectively K � e), and let kNT

�
K; QK�

(respectively
kNT;@ .K; e/) be the quadrature order used for pairs that have empty intersection.
Denote the resulting approximation to the bilinear form a .�; �/ by aQ .�; �/. Then the
consistency error due to quadrature is bounded by

ja.u; v/ � aQ.u; v/j � C .ET C ENT C ET;@ C ENT;@/ jjujjL2.˝/ jjvjjL2.˝/ 8u; v 2 Vh;

where the errors are given by

ET D h�2�2s	
�2kT
1 ;

ENT D max
K; QK2Ph;K\ QKD;

h�2d�2s
K; QK

�
	2

dK; QK
h

��2kNT.K; QK/
;

ET;@ D h�1�2s	
�2kT;@
3 ;

ENT;@ D max
K2Ph;e2Ph;@;K\eD;

h�1d�2s
K;e

�
	4

dK;e

h

��2kNT;@.K;e/

;

dK; QK WD infx2K;y2 QK jx � yj, dK;e WD infx2K;y2e jx � yj, and 	j > 1, j D 1; 2; 3; 4, are
constants.

The proof of the Theorem is deferred to the Appendix.
The impact of the use of quadrature rules on the accuracy of the resulting finite

element approximation can be quantified using Strang’s first lemma [13, Lemma
2.27]:

jju � uhjjeHs.˝/ � C inf
vh2Vh

"
jju � vhjjeHs.˝/ C sup

wh2Vh

ja.vh;wh/� aQ.vh;wh/j
jjwhjjeHs.˝/

#

� C inf
vh2Vh

h
jju � vhjjeHs.˝/

C .ET C ENT C ET;@ C ENT;@/ jjvhjjL2.˝/ sup
wh2Vh

jjwhjjL2.˝/
jjwhjjeHs.˝/

#

� C inf
vh2Vh

h
jju � vhjjeHs.˝/ C .ET C ENT C ET;@ C ENT;@/ jjvhjjL2.˝/

i
;
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where we used the Poincare inequality jjwhjjL2.˝/ � C jjwhjjeHs.˝/ in the last step. We
then use the Scott-Zhang interpolation operator˘h [9, 23] and the estimate

jju �˘hujjeHs.˝/ � Ch`�s jujH`.˝/ ;

used in the proof of Theorem 1 to bound the first term on the right-hand side:

jju � uhjjeHs.˝/ � C
	
h`�s jujH`.˝/ C .ET C ENT C ET;@ C ENT;@/ jj˘hujjL2.˝/



:

We choose the quadrature rules in such a way that the remaining terms on the right-
hand side are also of order O

�
h`�s

�
, i.e.

kT � .` � s C 2C 2s/

2 log.	1/
jlog hj � C; (7)

kNT
�
K; QK� � ..` � s/=2C 1C s/ jlog hj � s log

dK; QK

h � C

log
dK; QK

h C log.	2/
; (8)

kT;@ � .` � s C 1C 2s/

2 log.	3/
jlog hj � C; (9)

kNT;@ .K; e/ � ..` � s/=2C 1=2C s/ jlog hj � s log dK;e
h � C

log dK;e

h C log.	4/
: (10)

In particular, if the pair K � QK (respectively K �e) is well separated, so that dK; QK � 1

(dK;e � 1), then

kNT
�
K; QK� � .` � s/=2C 1;

kNT;@ .K; e/ � .` � s/=2C 1=2

is sufficient.
In practice, the quadrature order for non-touching element pairs can be chosen

depending on dK; QK using Eqs. (8) and (10), or an appropriate choice of cutoff
distance D can be determined so that element pairs with dK; QK < D are approximated
using a quadrature rule with O .jlog hj/ nodes, and pairs with dK; QK � D are
computed using a constant number of nodes.

It transpires from the expressions derived in the Appendix and the fact that n �
h�2 that the complexity to calculate the contributions by a single pair of elements K
and QK scales like

• log n if the elements coincide,
• .log n/2 if the elements share only an edge,
• .log n/3 if the elements share only a vertex,
• .log n/4 if the elements have empty intersection, but are “near neighbours”, and
• C if the elements are well separated.
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Since n � jPhj, we cannot expect a straightforward assembly of the stiffness
matrix to scale better than O

�
n2

�
. Similarly, its memory requirement is n2, and a

single matrix-vector product has complexity O
�
n2

�
, which severely limits the size

of problems that can be considered.

5 Solving the Linear Systems

The fractional Poisson equation leads to the linear algebraic system

Asu D b; (11)

whereas time-dependent problems (using implicit integration schemes) lead to
systems of the form

.M C�tAs/u D b; (12)

where �t is the time-step size. In typical examples, the time-step will be chosen so
that the orders of convergence in both spatial and temporal discretisation errors are
balanced.

In both cases, the matrices are dense and the condition number of As grows as the
mesh is refined (h ! 0). The cost of using a direct solver is prohibitively expensive,
growing as O

�
n3

�
. An alternative is to use an iterative solver such as the conjugate

gradient method but the rate of convergence will depend on the condition number.
The following result quantifies how the condition number of As depends on the
fractional order s and the mesh size h:

Theorem 4 ([4]) For s < d=2, and a family of shape regular and globally quasi-
uniform triangulationsPh with maximal element size h, the spectrum of the stiffness
matrix satisfies

chdI � As � Chd�2sI;

and hence the condition number of the stiffness matrix satisfies


 .As/ D Ch�2s:

The exponent of the growth of the condition number depends on the fractional
order s. For small s, the matrix is better conditioned, similarly to the mass matrix
in the case of integer order operators. As s ! 1, the growth of the condition
number approaches O

�
h�2�, as for the usual Laplacian. Consequently, just as the

conjugate gradient method fails to be efficient for the solution of equations arising
from the discretisation of the Laplacian, CG becomes increasingly uncompetitive
for the solution of equations arising from the fractional Laplacian.
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In the integer order case, multigrid iterations have been used with great success
for solving systems involving both the mass matrix and the stiffness matrix that
arises from the discretisation of the regular Laplacian. It is therefore to be expected
that the same will remain true for systems arising from the fractional Laplacian. In
practice, a single multigrid iteration is much more expensive than a single iteration
of conjugate gradient. The advantage of multigrid is, however, that the number of
iterations is essentially independent of the number of unknowns n. Consequently,
while the performance of CG degenerates as n increases, this will not be the case
with multigrid making it attractive as a solver for the fractional Poisson problem.

Turning to the systems that arise from the discretisation of time-dependent
problems, we first observe that an explicit schemewill lead to CFL conditions on the
time-step size of the form�t � Ch2s. On the other hand, for implicit time-stepping,
the following theorem shows that if the time-step �t D O

�
h2s

�
, we can expect the

conjugate gradient method to converge rapidly, at a rate which does not degenerate
as n increases, in contrast with what is observed for steady problems:

Lemma 1 For a shape regular and globally quasi-uniform family of triangulations
Ph and time-step �t � 1,


 .M C�tAs/ � C

�
1C �t

h2s

�
:

Proof Since chdI � M � ChdI, this also permits us to deduce that

c
�
hd C�t hd

�
I � M C�tAs � C

�
hd C�t hd�2s

�
I

and so


 .M C�tAs/ � C

�
1C �t

h2s

�
:

ut
This shows that for a general time-step �t � h2s, the number of iterations the
conjugate gradient method will require for systems of the form Eq. (12) will grow
as

p
�t=h2s � ns=d

p
�t. Consequently, if �t is large compared to h2s, a multigrid

solver outperforms conjugate gradient for the systems Eq. (12), but if �t is on the
same order as h2s, conjugate gradient iterations will generally be more efficient than
a multigrid method.

In this section we have concerned ourselves with the effect that the mesh and the
fractional order have on the rate of convergence of iterative solvers. This, of course,
ignores the cost of carrying out the iteration in which a matrix-vector multiply
must be computed at each step. The complexity of both multigrid and conjugate
gradient iterations depends on how efficiently the matrix-vector product Asx can be
computed. By way of contrast, the mass matrix in Eq. (12) has O .n/ entries, so its
matrix-vector product scales linearly in the number of unknowns. Since all the basis
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functions �i interact with one another, the matrix As is dense and the associated
matrix-vector product has complexity O

�
n2

�
. In the following section, we discuss

a sparse approximation that will preserve the order of the approximation error of
the fractional Laplacian, but display significantly better scaling in terms of both
memory usage and operation counts for both assembly and matrix-vector product.

6 Sparse Approximation of the Matrix

The presence of a factor jx � yj�d�2s in the integrand in the expression for the
entries of the stiffness matrix means that the contribution of pairs of elements
that are well separated is significantly smaller than the contribution arising from
pairs of elements that are close to one another. This suggests the use of the panel
clustering method [17] from the boundary element literature, whereby such far field
contributions are replaced by less expensive low-rank blocks rather than computing
and storing all the individual entries from the original matrix. Conversely, the near-
field contributions are more significant but involve only local couplings and hence
the cost of storing the individual entries is a practical proposition. A full discussion
of the panel clustering method is beyond the scope of the present work but can be
found in [22, Chapter 7]. Here, we confine ourselves to stating only the necessary
definitions and steps needed to describe our approach.

Definition 1 ([22]) A cluster is a union of one or more indices from the set of
degrees of freedomI . The nodes of a hierarchical cluster tree T are clusters. The
set of all nodes is denoted by T and satisfies

1. I is a node of T .
2. The set of leaves Leaves.T / � T corresponds to the degrees of freedom i 2 I

and is given by

Leaves.T / WD ffig W i 2 I g :

3. For every � 2 TnLeaves .T / there exists a minimal set˙ .�/ of nodes in Tnf�g
(i.e. of minimal cardinality) that satisfies

� D
[

�2˙.�/
�:

The set ˙ .�/ is called the sons of � . The edges of the cluster tree T are the
pairs of nodes .�; �/ 2 T � T such that � 2 ˙ .�/.

An example of a cluster tree for a one-dimensional problem is given in Fig. 3.

Definition 2 ([22]) The cluster box Q� of a cluster � 2 T is the minimal hyper-
cube which contains

S
i2� supp�i. The diameter of a cluster is the diameter of its
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Fig. 3 Cluster tree for a one
dimensional problem. For
each cluster, the associated
degrees of freedom are
shown. The mesh with its
nodal degrees of freedom is
plotted at the bottom
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Fig. 4 Cluster pairs for a one
dimensional problem. The
cluster boxes of the
admissible cluster pairs are
coloured in light blue, and
their overlap in darker blue.
The diagonal cluster pairs are
not admissible and are not
approximated, but assembled
in full
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cluster box diam .�/ WD supx;y2Q� jx � yj. The distance of two clusters � and �
is dist .�; �/ WD infx2Q� ;y2Q� jx � yj. The subspace V� of Vh is defined as V� WD
span f�i j i 2 �g.

For given  > 0, a pair of clusters .�; �/ is called admissible, if

 dist .�; �/ � max fdiam .�/ ; diam .�/g :

The admissible cluster pairs can be determined recursively. Cluster pairs that are not
admissible and have no admissible sons are part of the near field and are assembled
into a sparse matrix. The admissible cluster pairs for a one dimensional problem are
shown in Fig. 4.

For admissible pairs of clusters � and � and any degrees of freedom i 2 � and
j 2 � , the corresponding entry of the stiffness matrix is

.As/ij D a
�
�i; �j

� D �C .d; s/
Z

˝

Z

˝

k .x; y/ �i .x/ �j .y/
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with kernel k .x; y/ D jx � yj�.dC2s/. The kernel can be approximated on Q� � Q�

using Chebyshev interpolation of order m in every spatial dimension by

km .x; y/ D
mdX

˛;ˇD1
k

�
��˛; �

�
ˇ

�
L�˛ .x/ L�ˇ .y/ :

Here, ��˛ are the tensor Chebyshev nodes on Q� , and L�˛ are the associated Lagrange

polynomials on the cluster box Q� with L�˛
�
��ˇ

�
D ı˛ˇ. This leads to the following

approximation:

.As/ij 	 �C .d; s/
m2X

˛;ˇD1
k

�
��˛; �

�
ˇ

� Z

supp�i

�i .x/ L�˛ .x/ dx
Z

supp�j

�j .y/ L�ˇ .y/ dy

In fact, the expressions
R
supp�i

�i .x/ L�˛ .x/ dx can be computed recursively starting
from the finest level of the cluster tree, since for � 2 ˙ .�/ and x 2 Q�

L�˛ .x/ D
X
ˇ

L�˛
�
��ˇ

�
L�ˇ .x/ :

This means that for all leaves � D fig, and all 1 � ˛ � md, the basis far-field
coefficients

Z

supp�i

�i .x/ L�˛ .x/ dx

need to be evaluated (e.g. by m C 1-th order Gaussian quadrature). Moreover, the
shift coefficients

L�˛

�
��ˇ

�

for � 2 ˙ .�/ must be evaluated, as well as the kernel approximations

k
�
��˛; �

�
ˇ

�

for every admissible pair of clusters .�; �/. We refer the reader to [22] for further
details.

The consistency error of this approximation is given by the following theorem:

Theorem 5 ([22], Theorems 7.3.12 and 7.3.18) There exists � 2 .0; 1/ such that

jk .x; y/ � km .x; y/j � C�m

dist .�; �/dC2s
:
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The consistency error between the bilinear form a.�; �/ and the bilinear form aC.�; �/
of the panel clustering method is

ja.u; v/� aC.u; v/j � C�m .1C 2/dC2s Cd;s.h/ jjujjL2.˝/ jjvjjL2.˝/ ;
where

Cd;s.h/ D

8̂
<̂
ˆ̂:

h�2 if d D 1 and s < 1=2;

h�2 .1C jlog hj/ if d D 1 and s D 1=2;

h�d�2s otherwise:

Again, by invoking Strang’s Lemma, O
�
h`�s

�
convergence is retained if the

interpolation order m satisfies

m � .` � s C 2/ jlog hj
jlog � j if d D 1 and s < 1=2

m � .` � s C 2/ jlog hj C log .1C jlog hj/
jlog � j if d D 1 and s D 1=2

m � .` � s C d C 2s/ jlog hj
jlog � j otherwise:

By following the arguments in [22], it can be shown that the number of near
field entries, i.e. the entries that need to be assembled using the quadrature rules
described in Sect. 4, scales linearly in n. The same conclusion holds for the number
of far field cluster pairs. Since the four dimensional integral contributions aK� QK
are evaluated using Gaussian quadrature rules with at most k � log n quadrature
nodes per dimension, the assembly of the near field contributions scales with
n log2d n. The far field kernel approximations and the shift coefficients have size
m2d � log2d n, and are also calculated in log2d n complexity. This means that all the
kernel approximations and shift coefficients are obtained in n log2d n time. Finally,
the nmd basis far-field coefficients require the evaluation of integrals using m C 1-
th order Gaussian quadrature, leading to a complexity of n log2d n as well. The
overall complexity of the panel clustering method is thereforeO

�
n log2d n

�
, and the

sparse approximation requires O
�
n log2d n

�
memory. In practice, this means that

the assembly of the near-field matrix dominates the other steps but involves only
local computations.

The computation of the matrix-vector product involving upward and downward
recursion in the cluster tree and multiplication by the kernel approximations can
also be shown to scale with O

�
n log2d n

�
.

As an aside, we note that one could also opt to use a conventional dense
approximation of the discretised fractional Laplacian such as the “hybrid” scheme
described in [16] which reduces the far field computation to the computation of a
“Nyström-type” approximation.While the complexity of this approach still scales as
O

�
n2

�
, the constant is significantly smaller than if the dense matrix were to be used.
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Fig. 5 Memory usage of the
dense matrix and its sparse
approximation. s D 0:25

(top), s D 0:75 (bottom).
While the dense matrix uses
n2 floating-point numbers, the
sparse approximation can be
seen to require only
O

�
n log4 n

�
memory. At

roughly 2000 unknowns, the
memory footprint of the
sparse approximation
separates from the O

�
n2

�
curve
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We illustrate the above results by assembling both the full matrix as well as
its sparse approximation on the unit disk for fractional orders s D 0:25 and s D
0:75. The memory usage of the matrices are compared in Fig. 5. For low number of
degrees of freedom, none of the cluster pairs are admissible, so the full matrix and its
approximation have the same size. Starting with roughly 2000 degrees of freedom,
the memory footprint of the sparse approximate starts to follow the n log4 n curve
and therefore outperforms the full assembly. The same behaviour can be observed
for the assembly times, as seen in Fig. 6.
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Fig. 6 Assembly time of the
dense matrix and its sparse
approximation. s D 0:25

(top), s D 0:75 (bottom). The
time to assemble the full
matrix grows quadratically in
the number of unknowns,
whereas the sparse
approximation starts to follow
the n log4 n curve at about
2000 degrees of freedom
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7 Applications

7.1 Fractional Poisson Equation

We consider the fractional Poisson problem

.��/s u D f in ˝;

u D 0 in˝c
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Fig. 7 A quasi-uniform triangulation of the disc domain, obtained through uniform refinement
followed by projection of the resulting boundary nodes back onto the unit circle

on the unit disk˝ D ˚
x 2 R

2 j jxj � 1
�
. The discretised fractional Poisson problem

then reads

Asu D b; (13)

where uh D Pn
iD1 ui�i 2 Vh is the approximation to the solution u, and bi D h f ; �ii.

Triangulations of the disc are obtained through uniform refinement of a uniform
initial mesh. After each refinement, the boundary nodes are projected onto the unit
circle, resulting in triangulations of the type shown in Fig. 7.

We first consider the test case introduced in Sect. 3 where f D 1 with analytic
solution [14] given by

us .x/ WD 2�2s

� .1C s/2

�
1 � jxj2

�s
:

Both the full matrix and its sparse approximation are assembled for s 2 f0:25; 0:75g,
and Eq. (13) is solved using LAPACK’s dgesv routine and a multigrid solver in
the dense case, and multigrid and conjugate gradient methods in the sparse case.
Two steps of pre- and postsmoothing by Jacobi iteration are used on every level
of the multigrid solver. Recall that solutions for s D 0:25 and s D 0:75 were
shown in Fig. 1. In Figs. 8 and 9, the discretisation error is plotted in eHs .˝/ and
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Fig. 8 Error jjus � uhjjeHs.˝/

for s D 0:25 (top) and
s D 0:75 (bottom) in the case
of solutions with singular
behaviour close to the
boundary. Both the full matrix
and its sparse approximation
are shown to achieve the
predicted rate of h1=2
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in L2-norm. It can be seen that the rates predicted by Theorems 1 and 2 of h1=2 and
h1=2Cmin.1=2;s/ are indeed obtained, and that the error curves for the full matrix and
its sparse approximation are essentially indistinguishable.

For a second example, the right-hand side f is chosen such that u D 1 � jxj2 2
H2 .˝/. The action of f on v 2 Vh is approximated by

. f ; v/ D a.Ihu; v/;
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Fig. 9 Error jjus � uhjjL2 for
s D 0:25 (top) and s D 0:75

(bottom) in the case of
solutions with singular
behaviour close to the
boundary. Both the full
matrix and its sparse
approximation are shown to
achieve the predicted rate of

h1=2Cminfs;1=2g
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where Ih is the interpolation operator onto a highly refined mesh with h < h. The
resulting consistency error in this case is

sup
v

ˇ̌
a.u; v/� a.Ihu; v/

ˇ̌

jjvjjeHs.˝/

� C
ˇ̌̌̌
u � Ihu

ˇ̌̌̌
eHs.˝/

� Ch2�s jujH2 :

Therefore, if h is sufficiently smaller than h, the consistency error will be negligible
compared to the discretisation error.
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Fig. 10 Errors jju � uhjjeHs.˝/

and jju � uhjjL2 for s D 0:25

(top) and s D 0:75 (bottom)
in the case of a smooth
solution
u.x/ D 1� jxj2 2 H2 .˝/.
Optimal orders are achieved
both ineHs .˝/- and L2-norm
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Table 1 Asymptotic
complexities of different
solvers for the discretised
fractional Poisson problem
Asu D b

Method Dense matrix Sparse approximation

Dense solver n3 –

Conjugate gradient n2Cs=d n1Cs=d .log n/2d

Multigrid n2 n .log n/2d

The dependency of the error on the mesh size h can be seen in Fig. 10. The
discretisation error decays as h2�s in eHs .˝/-norm, and as h2 in L2-norm, which are
the optimal orders that we would expect based on estimate (2).

Summarising the results of Sects. 5 and 6, we expect different solvers for the
fractional Laplacian to have complexities as given in Table 1. The timings for
the different combinations of dense or sparse matrix with a solver are shown in
Fig. 11. It can be observed that the sparse approximation asymptotically outperforms
the dense solvers. Moreover, for the larger value of s, the multigrid solver starts
to outperform the conjugate gradient method for increasingly smaller numbers of
unknowns as one would expect based on earlier arguments.
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Fig. 11 Solution time for the
fractional Laplacian using
different solvers and the full
matrix and its sparse
approximation for s D 0:25

(top) and s D 0:75 (bottom).
The solvers using the full
matrix are outperformed by
the ones based on the sparse
approximation. For larger
fractional order s, the
break-even between
conjugate gradient and
multigrid iteration occurs at a
lower number of unknowns
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7.2 Fractional Heat Equation

The fractional heat equation is given by

ut C .��/s u D f in˝;

u D 0 in˝c:

We propose to approximate the problem using an implicit method in time. The
simplest such scheme is the backward Euler method

.M C�t As/ ukC1 D Muk C�tf kC1;

where u.�; k�t/ 	 P
i uk

i �i and f k
i D . f .�; k�t/; �i/.

More generally, let us assume that a scheme of order ˛ is used in time. In order
to obtain optimal convergence in L2-norm, in view of Theorem 2, we shall choose
�t˛ � h1=2Cmin.1=2;s/, i.e.

�tL2 � hmin.2;1C2s/=.2˛/:

On the other hand, if optimal eHs .˝/-convergence is desired, we need �teHs.˝/ �
h1=.2˛/, see Theorem 1. Consequently, if an order ˛ scheme is used for time stepping,
with optimal time step �tL2 or �teHs.˝/, we find by Lemma 1 that the condition
numbers of the iteration matrix satisfy


 .M C�tL2 A
s/ � C

�
1C hmin.2;1C2s/=.2˛/�2s

�
;



�
M C�teHs.˝/ A

s
�

� C
�
1C h1=.2˛/�2s

�
:

In particular, in the L2 case, this shows that the condition number will not grow at
all as the mesh size decreases if s 2 .0; 1= .4˛ � 2/�. For fractional orders s that
are slightly larger than 1=.4˛ � 2/, the condition number only grows very slowly
as the mesh size is decreased. The larger the fractional order, the faster the linear
system becomes ill-conditioned. In the eHs .˝/ case, the condition number of the
linear system grows as the mesh size is decreased for s > 1= .4˛/.

We illustrate the consequences of the above result in the case of a second order
accurate time stepping scheme (˛ D 2), and for s D 0:25 and s D 0:75. In the case
of s D 0:25, �tL2 � h3=8 and 
 .M C�tL2 A

s/ � 1C h�1=8. This suggests that the
conjugate gradient method will deliver good results for a wide range of mesh sizes
h, as the number of iterations will only grow as

p

 .M C�tL2 A

s/ � h�1=16. The
convergence of the multigrid method does not depend on the condition number and
is essentially independent of h. This is indeed what is observed in the top part of
Fig. 12. In Fig. 13, the number of iterations is shown. It can be observed that for
s D 0:25 both the multigrid and the conjugate gradient solver require an essentially
constant number of iterations for varying values of �t.
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Fig. 12 Timings in seconds for CG and MG depending on �t for s D 0:25 (top) and s D 0:75

(bottom). It can be observed that, for s D 0:25, the conjugate gradient method is essentially on
par with the multigrid solver. For s D 0:75, the multigrid solver asymptotically outperforms the
conjugate gradient method, since the condition number 
 .M C�tL2A

s/ grows as h�1

On the other hand, for s D 0:75, �tL2 � h1=2 and 
 .M C�tL2 A
s/ � 1 C h�1.

Therefore, the condition number increases a lot faster as h goes to zero, and we
expect that multigrid asymptotically outperforms the CG solver. This is indeed what
is observed in Figs. 12 and 13.

The complexities of the different solvers for different choices of time step size
are summarised in Table 2.
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Fig. 13 Number of iterations for CG and MG depending on �t for s D 0:25 (top) and s D 0:75

(bottom). For s D 0:25, the number of iterations is essentially independent of �t. For s D 0:75,
the number of iterations of the multigrid solver is independent of �t, but the iterations count for
conjugate gradient grows with h�1=2
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Table 2 Complexity of different solvers for .M C�tAs/ u D b for�t D �tL2 and�t D �teHs.˝/

for an ˛-order time stepping scheme

Method �t D �tL2 �t D �teHs.˝/

Conjugate gradient n1C2s=d�min.2;1C2s/=.2˛d/ .log n/2d n1C2s=d�1=.2˛d/ .log n/2d

Multigrid n .log n/2d n .log n/2d

Table 3 IMEX scheme by Koto

0 0

1 0 1

1/2 0 �1/2 1

1 0 �1 1 1

0 �1 1 1

0

1 1

1/2 0 0

1 0 0 1

0 0 1 0

Implicit scheme on the left, explicit on the right

7.3 Fractional Reaction-Diffusion Systems

In [15], a space-fractional Brusselator model was analysed and compared to the
classical integer-order case. The coupled system of equations is given by

@X

@t
D �DX .��/˛ X C A � .B C 1/X C X2Y;

@Y

@t
D �DY .��/ˇ Y C BX � X2Y:

Here, DX and DY are diffusion coefficients, A and B are reaction parameters, and ˛
and ˇ determine the type of diffusion. By rewriting the solutions as deviations from
the stationary solution X D A, Y D B=A and rescaling, one obtains

@u

@t
D � .��/˛ u C .B � 1/u C Q2v C B

Q
u2 C 2Quv C u2v; (14)

2
@v

@t
D � .��/ˇ v � Bu � Q2v � B

Q
u2 � 2Quv � u2v; (15)

with  D
q

DY=Dˇ=˛
X and Q D A.

In [15] the equations were augmented with periodic boundary conditions and
approximated using a pseudospectral method for various different parameter com-
binations. Here, thanks to the foregoing developments, we have the flexibility to
handle more general domains and, in particular, we consider the case where ˝
corresponds to a Petri-dish, i.e. ˝ D ˚

x 2 R
2 j jxj � 1

�
is the unit disk. We solve

the above set of equations using a second order accurate IMEX scheme proposed
by Koto [18], whose Butcher tableaux are given by Table 3. The diffusive parts are
treated implicitly and therefore require the solution of several systems all of which
are of the typeM C c�tAs with appropriate values of c.
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In order to verify the correct convergence behaviour, we add forcing functions f
and g to the system, chosen such that the analytic solution is given by

u D  sin.t/us.x/;

v D �1 cos.2t/us.x/;

for suitable initial conditions, where us is the solution of the fractional Poisson
problem with constant right-hand side. We take ˛ D ˇ D 0:75, and choose
�t � h1=2, since we already saw that the rate of the spatial approximation in L2-
norm is of order h. We measure the error as

eu
L2 D max

0�ti�10
ˇ̌̌̌
u.ti; �/� ui

h

ˇ̌̌̌
L2
; evL2 D max

0�ti�10
ˇ̌̌̌
v.ti; �/� vi

h

ˇ̌̌̌
L2
;

eueHs.˝/
D max

0�ti�10
ˇ̌̌̌
u.ti; �/� ui

h

ˇ̌̌̌
eHs.˝/

; eveHs.˝/
D max

0�ti�10
ˇ̌̌̌
v.ti; �/� vi

h

ˇ̌̌̌
eHs.˝/

:

From the error plots in Fig. 14, it can be observed that eL2 � h and eV � h1=2, as
expected.

Fig. 14 Error in L2-norm
(top) andeHs .˝/-norm
(bottom) in the Brusselator
model. Optimal orders of
convergence are achieved
(compare Theorems 1 and 2)
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Fig. 15 Localised spot solutions of the Brusselator system with ˛ D ˇ D 0:625 (left) and ˛ D
ˇ D 0:75 (right). u is shown in both cases, and time progresses from top to bottom. The initial
perturbation was identical in both cases. The initial perturbation in the centre of the domain forms
a ring, whose radius is bigger if the fractional orders of diffusion ˛, ˇ are smaller. The ring breaks
up into several spots, which start to replicate and spread out over the whole domain. n � 50;000

unknowns were used in the finite element approximation

Having verified the accuracy of the method, we turn to the solution of the system
Eqs. (14) and (15) augmented with exterior Neumann conditions as described in
Sect. 2. Golovin et al. [15] observed that for  D 0:2, B D 1:22 and Q D 0:1,
a single localised perturbation would first form a ring and then break up into
spots. The radius of the ring and the number of resulting spots increases as the
fractional orders are decreased. In Fig. 15, simulation results for ˛ D ˇ D 0:625
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Fig. 16 Stripe solutions of the Brusselator system with ˛ D ˇ D 0:75. u is shown on the left,
and v on the right. The random initial condition leads to the formation of stripes throughout the
domain. n � 50;000 unknowns were used in the finite element approximation

and ˛ D ˇ D 0:75 are shown. We observe that in both cases, an initially circular
perturbation develops into a ring. Lower diffusion coefficients do lead to a larger
ring, which breaks up later and into more spots. In the last row, we can see that the
resulting spots start to replicate and spread out over the whole domain.

Another choice of parameters leads to stripes in the solution. For ˛ D ˇ D 0:75,
 D 0:2, B D 6:26 and Q D 2:5, and a random initial condition, stripes without
directionality form in the whole domain. This is in alignment with the theoretical
considerations of Golovin et al. [15] (Fig. 16).

8 Conclusion

We have presented a reasonably complete and coherent approach for the efficient
approximation of problems involving the fractional Laplacian, based on techniques
from the boundary element literature. In particular, we discussed the efficient
assembly and solution of the associated matrix, and demonstrated the feasibility
of a sparse approximation using the panel clustering method. The potential of
the approach was demonstrated in several numerical examples, and were used to
reproduce some of the findings for a fractional Brusselator model.While we focused
on the case of d D 2 dimensions, the generalisation to higher dimensions does
not pose any fundamental difficulties. Moreover, the approach taken to obtain a
sparse approximation to the dense system matrix for the fractional Laplacian does
not rely strongly on the form of the interaction kernel k .x; y/ D jx � yj�.dC2s/, and
generalisations to different kernels such as the one used in peridynamics [25] are
therefore possible. In the present work we have confined ourselves to the discussion
of quasi-uniform meshes. However, solutions of problems involving the fractional
Laplacian exhibit line singularities in the neighbourhood of the boundary. The
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efficient resolution of such problems would require locally refined meshes which
form the topic of forthcoming work [3].

Acknowledgements This work was supported by the MURI/ARO on “Fractional PDEs for
Conservation Laws and Beyond: Theory, Numerics and Applications” (W911NF-15-1-0562).

Appendix 1: Derivation of Expressions for Singular
Contributions

The contributions aK� QK and aK�e as given in Eqs. (3) and (4) for touching elements
K and QK contain removable singularities. In order to make these contributions
amenable to numerical quadrature, the singularities need to be lifted. We outline
the derivation for d D 2 dimensions.

The expression for aK� QK can be transformed into integrals over the reference
element OK:

aK� QK.�i; �j/

DC.2; s/

2

Z

K
dx

Z
QK

dy
.�i.x/ � �i.y//

�
�j.x/� �j.y/

�

jx � yj2C2s

DC.2; s/

2

jKjˇ̌
ˇ OK

ˇ̌
ˇ

ˇ̌ QK ˇ̌
ˇ̌
ˇ OK

ˇ̌
ˇ

Z
OK

d Ox
Z

OK
d Oy .�i.x .Ox// � �i.y .Oy///

�
�j.x .Ox// � �j.y .Oy//

�

jx .Ox/ � y .Oy/j2C2s
:

Similarly, by introducing the reference edge Oe, we obtain

aK�e.�i; �j/ D C.2; s/

2s

Z

K
dx

Z

e
dy
�i .x/ �j .x/ ne � .x � y/

jx � yj2C2s

D C.2; s/

2s

jKjˇ̌
ˇ OK

ˇ̌
ˇ

jej
jOej

Z
OK

d Ox
Z

Oe
d Oy�i .x .Ox// �j .x .Ox// ne � .x .Ox/� y .Oy//

jx .Ox/� y .Oy/j2C2s

for touching elements K and edges e. If K and QK or e have c � 1 common vertices,
and if we designate by �k, k D 0; : : : ; 6� c the barycentric coordinates of K [ QK or
K [ e respectively (cf. Fig. 17), we have

�k.i/.Ox/ D �i .x .Ox// ;
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Fig. 17 Numbering of local
nodes for touching triangular
elements K and QK or element
K and edge e. (a) K \ QK D K.
(b) K \ QK Dedge. (c)
K \ QK Dvertex. (d)
K \ e D e. (e) K \ e Dvertex
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where k.i/ is the local index on K [ QK or K [ e of the global degree of freedom i.
Moreover, we have

x .Ox/ � y .Oy/ D
6�cX
kD0

�k .Ox/ xk �
6�cX
kD0

�k .Oy/ xk

D
6�cX
kD0

Œ�k .Ox/� �k .Oy/� xk:

Here, xk, k D 0; : : : ; 6 � c are the vertices that span K [ QK or K [ e respectively.
By setting

 k .Ox; Oy/ WD �k .Ox/ � �k .Oy/ ;



Efficient Finite Element Method for the Integral Fractional Laplacian 51

we can therefore write

aK� QK.�i; �j/ D C.2; s/

2

jKjˇ̌
ˇ OK

ˇ̌
ˇ

ˇ̌ QK ˇ̌
ˇ̌
ˇ OK

ˇ̌
ˇ

Z
OK

d Ox
Z

OK
d Oy  k.i/ .Ox; Oy/  k.j/ .Ox; Oy/ˇ̌

ˇP6�c
kD0  k .Ox; Oy/ xk

ˇ̌
ˇ
2C2s :

By carefully splitting the integration domain OK � OK into Lc parts and applying a
Duffy transformation to each part, the contributions can be rewritten into integrals
over a unit hyper-cube, where the singularities are lifted.

aK� QK.�i; �j/ D C.2; s/

2

jKjˇ̌
ˇ OK

ˇ̌
ˇ

ˇ̌ QK ˇ̌
ˇ̌
ˇ OK

ˇ̌
ˇ

LcX
`D1

Z

Œ0;1�4
d� NJ.`;c/

N .`;c/k.i/ .�/
N .`;c/k.j/ .�/ˇ̌

ˇP2d�c
kD0 N .`;c/k .�/ xk

ˇ̌
ˇ
2C2s

: (16)

The details of this approach can be found in Chapter 5 of [22] for the interactions
between K and QK. We record the obtained expressions in this case.

• K and QK are identical, i.e. c D 3

L3 D 3; NJ.1;3/ D NJ.2;3/ D NJ.3;3/ D 3�2s
0 2�2s

1 1�2s
2 ;

N .1;3/k D

8
ˆ̂<
ˆ̂:

�3
3 � 1

1

N .2;3/k D

8
ˆ̂<
ˆ̂:

�1
1 � 3
3

N .3;3/k D

8
ˆ̂<
ˆ̂:

3

�1
1� 3

• K and QK share an edge, i.e. c D 2

L2 D 5; NJ.1;2/ D 3�2s
0 2�2s

1 ;

NJ.2;2/ D NJ.3;2/ D NJ.4;2/ D NJ.5;2/ D 3�2s
0 2�2s

1 2

N .1;2/k D

8
ˆ̂̂
<̂
ˆ̂̂
:̂

�2
1 � 3

3

2 � 1

N .2;2/k D

8
ˆ̂̂
<̂
ˆ̂̂
:̂

�23
2 � 1

1

23 � 2

N .3;2/k D

8
ˆ̂̂
<̂
ˆ̂̂
:̂

2

23 � 1
1 � 2

�23

N .4;2/k D

8
ˆ̂̂
<̂
ˆ̂̂
:̂

23

1 � 2

2 � 23

�1

N .5;2/k D

8
ˆ̂̂
<̂
ˆ̂̂
:̂

23

2 � 1

1 � 23
�2
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• K and QK share a vertex, i.e. c D 1

L1 D 2; NJ.1;1/ D NJ.2;1/ D 3�2s
0 2

N .1;1/k D

8
ˆ̂̂̂
ˆ̂̂
<
ˆ̂̂
ˆ̂̂
:̂

2 � 1

1� 1

1

23 � 2
�23

N .2;1/k D

8
ˆ̂̂̂
ˆ̂̂
<
ˆ̂̂
ˆ̂̂
:̂

1 � 2

2 � 23

23

1 � 1

�1

We notice that the contributions for identical elements only depend on 3, so that
in fact only one-dimensional integrals need to be computed. Similarly, the cases
of common edges or common vertices only require two and three dimensional
integration.

In a similar fashion, the integration domain of aK�e can be split into several parts,
so that the singularity can be lifted:

aK�e.�i; �j/

D C.2; s/

2s

jKjˇ̌
ˇ OK

ˇ̌
ˇ
jej
jOej

Z

Œ0;1�3
d�NJ.`;c/ �

.`;c/
k.i/ .�/ �

.`;c/
k.j/ .�/

P5�c
kD0 N .`;c/k .�/ ne � xkˇ̌

ˇP5�c
kD0 N .`;c/k .�/ xk

ˇ̌
ˇ
2C2s

:

Here, �.`;c/k are the expressions for the local shape functions under the Duffy
transformations. The obtained expressions are

• e is an edge of K, i.e. c D 2

L2 D 3; NJ.1;2/ D NJ.2;2/ D NJ.3;2/ D �2s
0 .1 � 0/ ;

�
.1;2/
k D

8̂
<̂
ˆ̂:

1 � 0 � 2 C 02

0 C 2 � 01 � 01

01

�
.2;2/
k D

8̂
<̂
ˆ̂:

1 � 0 � 2 C 02

2 � 02

0

�
.3;2/
k D

8
ˆ̂<
ˆ̂:

1 � 2 C 02 � 01

2 � 02
01

N .1;2/k D

8
ˆ̂<
ˆ̂:

�1
1 � 1

1

N .2;2/k D

8
ˆ̂<
ˆ̂:

�1
1 � 1

1

N .3;2/k D

8
ˆ̂<
ˆ̂:

1� 1

�1
1
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We notice that for s � 1=2, the integrand still contains a singularity. In this
case, the finite element space Vh does not include the degrees of freedom on the
boundary. For the interaction of the single degree of freedom that is not on the
boundary (k D 2), we obtain

NJ.1;2/ D NJ.2;2/ D NJ.3;2/ D 2�2s
0 .1 � 0/ ;

�
.1;2/
2 D 1 �

.2;2/
2 D 1 �

.3;2/
2 D 1

and N `;c2 as above.
• K and e share a vertex, i.e. c D 1

L1 D 2; NJ.1;1/ D 1�2s
0 ; NJ.2;1/ D 1�2s

0 1

N .1;1/k D

8
ˆ̂̂
<̂
ˆ̂̂
:̂

2 � 1

1 � 1
1

�2

N .2;1/k D

8
ˆ̂̂
<̂
ˆ̂̂
:̂

1 � 1

1 � 12
12

�1

Appendix 2: Proof of Consistency Error Due to Quadrature

Next, we give the proof for the consistency error of the quadrature approximation
first stated in Sect. 4.2.

Theorem 3 For d D 2, let IK index the degrees of freedom on K 2 Ph, and
define IK� QK WD IK [ I QK. Let kT (respectively kT;@) be the quadrature order used
for touching pairs K � QK (respectively K � e), and let kNT

�
K; QK�

(respectively
kNT;@ .K; e/) be the quadrature order used for pairs that have empty intersection.
Denote the resulting approximation to the bilinear form a .�; �/ by aQ .�; �/. Then the
consistency error due to quadrature is bounded by

ja.u; v/ � aQ.u; v/j � C .ET C ENT C ET;@ C ENT;@/ jjujjL2.˝/ jjvjjL2.˝/ 8u; v 2 Vh;

where the errors are given by

ET D h�2�2s	
�2kT
1 ;

ENT D max
K; QK2Ph;K\ QKD;

h�2d�2s
K; QK

�
	2

dK; QK
h

��2kNT.K; QK/
;
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ET;@ D h�1�2s	
�2kT;@
3 ;

ENT;@ D max
K2Ph;e2Ph;@;K\eD;

h�1d�2s
K;e

�
	4

dK;e

h

��2kNT;@.K;e/

;

dK; QK WD infx2K;y2 QK jx � yj, dK;e WD infx2K;y2e jx � yj, and 	j > 1, j D 1; 2; 3; 4, are
constants.

Proof Let the quadrature rules for the pairsK� QK andK�e be denoted by aK� QK
Q .�; �/

and aK�e
Q .�; �/. Set

Ei;j

K� QK D aK� QK �
�i; �j

� � aK� QK
Q

�
�i; �j

�
;

Ei;j
K�e D aK�e

�
�i; �j

� � aK�e
Q

�
�i; �j

�
:

For u; v 2 Vh, we set

EK� QK.u; v/ D
X

i2IK�

QK

X
j2IK�

QK

uivjE
i;j

K� QK ;

EK�e.u; v/ D
X
i2IK

X
j2IK

uivjE
i;j
K�e

so that

ˇ̌
EK� QK.u; v/

ˇ̌ �
�
max

i;j

ˇ̌
ˇEi;j

K� QK
ˇ̌
ˇ
� X

i2IK�

QK

juij
X

j2IK�

QK

ˇ̌
vj

ˇ̌

�
�
max

i;j

ˇ̌
ˇEi;j

K� QK
ˇ̌
ˇ
� ˇ̌

IK� QK
ˇ̌ s X

i2IK�

QK

juij2
s X

j2IK�

QK

ˇ̌
vj

ˇ̌2
;

jEK�e.u; v/j �
�
max

i;j

ˇ̌
ˇEi;j

K;e

ˇ̌
ˇ
� X

i2IK

juij
X
j2IK

ˇ̌
vj

ˇ̌

�
�
max

i;j

ˇ̌
ˇEi;j

K;e

ˇ̌
ˇ
�

jIK j
s X

i2IK

juij2
s X

j2IK

ˇ̌
vj

ˇ̌2

Since

X
i2IK�

QK

juij2 � C

�
h�d

K

Z

K
u2 C h�d

QK

Z
QK

u2
�
;

X
i2IK

juij2 � Ch�d
K

Z

K
u2;
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we find

ja.u; v/� aQ.u; v/j �
X

K

X
QK

ˇ̌
EK� QK.u; v/

ˇ̌ C
X

K

X
e

jEK�e.u; v/j

� C
X

K

X
QK

�
max

i;j

ˇ̌
ˇEi;j

K� QK
ˇ̌
ˇ
�

h�d
h
jjujj2L2.K/ C jjujj2L2. QK/

i1=2

h
jjvjj2L2.K/ C jjvjj2L2. QK/

i1=2

C C
X

K

X
e

�
max

i;j

ˇ̌
ˇEi;j

K�e

ˇ̌
ˇ
�

h�d jjujjL2.K/ jjvjjL2.K/

� Ch�d

�
max
K; QK

max
i;j

ˇ̌
ˇEi;j

K� QK
ˇ̌
ˇ
� X

K

X
QK

jjujjL2.K[ QK/ jjvjjL2.K[ QK/

C Ch�d

�
max
K;e

max
i;j

ˇ̌
ˇEi;j

K�e

ˇ̌
ˇ
� X

K

X
e

jjujjL2.K/ jjvjjL2.K/ :

Because

X
K

X
QK

jjujjL2.K[ QK/ jjvjjL2.K[ QK/ �
sX

K

X
QK

jjujj2
L2.K[ QK/

sX
K

X
QK

jjvjj2
L2.K[ QK/

� 2 jPhj jjujjL2.˝/ jjvjjL2.˝/

� Ch�d jjujjL2.˝/ jjvjjL2.˝/

and

X
K

X
e

jjujjL2.K/ jjvjjL2.K/ � jPh;@j jjujjL2.˝/ jjvjjL2.˝/

� Ch1�d jjujjL2.˝/ jjvjjL2.˝/ ;

we obtain

ja.u; v/� aQ.u; v/j � C

�
h�2d

�
max
K; QK

max
i;j

ˇ̌
ˇEi;j

K� QK
ˇ̌
ˇ
�

Ch1�2d

�
max
K;e

max
i;j

ˇ̌
ˇEi;j

K�e

ˇ̌
ˇ
��

jjujjL2.˝/ jjvjjL2.˝/ :

For d D 2, using Theorem 6 stated below permits to conclude. ut
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Theorem 6 ([22], Theorems 5.3.23 and 5.3.24) If K and QK (K and e) are touching
elements, then

ˇ̌
ˇEi;j

K� QK
ˇ̌
ˇ � Ch2�2s	

�2kT
1 ;

ˇ̌
ˇEi;j

K�e

ˇ̌
ˇ � Ch2�2s	

�2kT;@
3 ;

where 	1; 	3 > 1 and kT , kT;@ are the quadrature orders in every dimension of
Eqs. (5) and (6).

If K and QK (K and e) are not touching, then

ˇ̌
ˇEi;j

K� QK
ˇ̌
ˇ � Ch2d�2s

K; QK Q	2
�
K; QK��2kNT

;

ˇ̌
ˇEi;j

K�e

ˇ̌
ˇ � Ch2d�2s

K;e Q	4 .K; e/�2kNT:@ ;

where dK; QK WD dist.K; QK/, dK;e WD dist.K; e/, Q	2.K; QK/ WD 	2max
n

dK; QK

h ; 1
o
, and

Q	4.K; QK/ WD 	4max
n

dK;e

h ; 1
o
, with 	2; 	4 > 1, and kNT , kNT;@ are the quadrature

order in every dimension of Eqs. (3) and (4).
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