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Abstract Based on the error analysis of Extended Filon Method (EFM), we
present an adaptive Filon method to calculate highly oscillatory integrals. The
main idea is to allow interpolation points depend upon underlying frequency in
order to minimize the error. Typically, quadrature error need be examined in two
regimes. Once frequency is large, asymptotic behaviour dominates and we need to
choose interpolation points accordingly, while for small frequencies good choice
of interpolation points is similar to classical, non-oscillatory quadrature. In this
paper we choose frequency-dependent interpolation points according to a smooth
homotopy function and the accuracy is superior to other EFMs. The basic algorithm
is presented in the absence of stationary points but we extend it to cater for highly
oscillatory integrals with stationary points. The presentation is accompanied by
numerical experiments which demonstrate the power of our approach.
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1 Introduction

The focus of this paper is on the computation of the highly oscillatory integral

I!Œ f � D
Z 1

�1

f .x/ei!g.x/dx; (1)

where f ; g 2 C1Œ�1; 1� and ! � 0 is the frequency. We assume that the phase
function g.x/ is normalised so that maxx2Œ�1;1� jg.x/j D 1. Since this integral
abounds in mathematics and computational engineering [2, 14, 15] and standard
quadrature methods fail to calculate it well, it has been subjected to very active
research effort in the last two decades. This has resulted in a significant number of
efficient quadrature methods, such as the asymptotic expansion and Filon methods
[5, 10, 11], Levin’s method [12, 13], numerical steepest descent [9], complex
Gaussian quadrature [1, 3] and other efficient algorithms [4, 6].

Each of these methods has its own advantages and disadvantages and it would be
rash to proclaim one as the definite approach to the integration of (1). They require
the availability of different information (e.g., Filon methods and complex Gaussian
quadrature require the computation of moments, numerical steepest descent relies
on practical computation of steepest-descent paths in the complex plane) and might
have critical shortcomings in some situations (Levin’s method cannot work in the
presence of stationary points and explicit asymptotic expansions are exceedingly
difficult once (1) is generalised to multivariate setting—a setting in which nothing
is known of complex Gaussian quadrature).

Popularity of Filon-type methods owes much to their simplicity and flexibility.
We just need to replace f by an interpolating polynomial and, assuming that
moments

R 1

�1
xmei!g.x/dx, m � 0, are explicitly available, the new integral can

be computed easily. The make-or-break issue, however, is the location of suitable
interpolation points. The basic imperative is to select interpolation points that ensure
good behaviour for large !, and this is entirely governed by asymptotic analysis. Let
us recap some basic facts from [10]. Assume first that there are no stationary points,
i.e. that g0 ¤ 0 in Œ�1; 1�. Letting Qp be the interpolating polynomial, the error can
be expanded into asymptotic series,

I!Œ Qp� � I!Œ f � D I!Œ Qp � f � (2)

� �
s�1X
mD0

1

.�i!/mC1

�
�mŒ Qp � f �.1/

g0.1/
ei!g.1/ � �mŒ Qp � f �.�1/

g0.�1/
ei!g.�1/

�

C O
�
!�.sC1/

�
;

where

�0Œh�.x/ D h.x/; �mŒh�.x/ D d

dx

�m�1Œh�.x/

g0.x/
; m � 1:
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Moreover, �mŒh�.x/ is a linear combination (with coefficients depending on deriva-
tives of g) of h. j/.x/, j D 0; : : : ;m [11]. It immediately follows that the Hermite-type
interpolation conditions

Qp. j/.1/ D f . j/.1/; Qp. j/.�1/ D f . j/.�1/; j D 0; 1; � � � ; s � 1; (3)

imply that the error is � O.!�s�1/ for ! � 1. The outcome is the (plain-vanilla)
Filon method,

QF;s;0
! Œ f � D

Z 1

�1

Qp.x/ei!g.x/dx:

Once g0 vanishes somewhere in Œ�1; 1�, the oscillation of the integrand slows
down in the vicinity of that point and the behaviour of (1) changes. In particular, the
asymptotic expansion (2) is no longer valid. For example, if g0.c/ D 0, g00.c/ ¤ 0,
for c 2 .�1; 1/ and g0.x/ ¤ 0 elsewhere in Œ�1; 1�, then

I!Œ Qp � f � � �0.!/

1X
mD0

Q�mŒ Qp � f �.c/

.�i!/m
(4)

�
1X
mD0

1

.�i!/mC1

� Q�mŒ Qp � f �.1/ � Q�mŒ Qp � f �.c/

g0.1/
ei!g.1/

� Q�mŒ Qp � f �.�1/ � Q�mŒ Qp � f �.c/

g0.�1/
ei!g.�1/

�
;

where

�0.!/ D
Z 1

�1

ei!g.x/dx D O.!�1=2/

and

Q�mŒh�.x/ D h.x/; Q�mŒh�.x/ D d

dx

Q�m�1Œh�.x/ � Q�m�1Œh�.c/

g0.x/
; m � 1

[11]. Note that the functions Q�m are C1Œ�1; 1�, since the singularity at x D c is
removable. This removable singularity is the reason why, while �mŒh�.x/ is a linear
combination of h. j/.x/, j D 0; : : : ;m, for x 2 Œ�1; 1� n fcg, at x D c we have a linear
combination of h. j/.c/, j D 0; : : : ; 2m. The clear implication is that once, in addition
to (3), we also impose the interpolation conditions

Qp. j/.c/ D f . j/.c/; j D 0; 1; : : : ; 2s � 2;

the plain-vanilla Filon method bears an error of QO.!�s�1=2/ for ! � 1.
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For reasons that will become apparent in the sequel, it is important to consider
also the case when c is at an endpoint: without loss of generality we let c D �1.
In that case (4) need be replaced by

I!Œ Qp � f � � �0.!/

1X
mD0

Q�mŒ Qp � f �.�1/

.�i!/m

�
1X

mD0

1

.�i!/mC1

� Q�mŒ Qp � f �.1/ � Q�mŒ Qp � f �.�1/

g0.1/
ei!g.1/

� Q� 0
mŒ Qp � f �.�1/

g00.�1/
ei!g.�1/

�

and Q� 0
m.�1/ is a linear combination of h. j/.�1/, j D 0; : : : ; 2m C 1 [8].

A plain-vanilla Filon method can be also implemented in a derivative-free
manner, e.g. when the derivatives of f are unknown or not easily available. In that
case we need to replace derivatives by finite differences with an O.!�1/ spacing
and this procedure does not lead to loss of asymptotic accuracy [10]. In particular,
in place of (3), we may interpolate at the points

ck.!/ D
(

�1 C �k
!C1

; k D 0; : : : ; s � 1;

1 � �.2s�k�1/

!C1
; k D s; : : : ; 2s � 1;

(5)

where the denominator ! C 1 ensures that the interpolation points do not blow up
near ! D 0, while 0 < � < .s � 1/�1 implies that the interpolation points are all
distinct and live in Œ�1; 1�.

As an example, consider f .x/ D .1 C x C x2/�1, g.x/ D x in (1). In Fig. 1 we
plot on the left the interpolation points (5) with s D 5. The errors committed by
Filon methods for s D 2 (hence with an asymptotic error decay of O.!�3/) based
on (3) and (5) are displayed on the right in logarithmic scale. As can be seen, that the
points (5) are equidistant at ! D 0 and bunch at the endpoints when ! increases.
The derivative-free Filon method (5) (black dotted line) has essentially the same
good behaviour as (3) (green solid line) for large !.

The addition of extra interpolation points to (3) (or, for that matter, (5)) can be
highly beneficial in reducing an error committed by a Filon method. Specifically, in
the g0 ¤ 0 case, we choose distinct inner nodes c1; : : : ; c� 2 .�1; 1/ and impose
that 2s C � interpolation conditions

p. j/.1/ D f . j/.1/; p. j/.�1/ D f . j/.�1/; j D 0; 1; � � � ; s � 1;

p.ck/ D f .ck/; k D 1; � � � ; �: (6)
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Fig. 1 The left: the interpolation points ck.!/ of (5) with k D 0; � � � ; 2s � 1 (from the bottom
line to top) for s D 5,� D 1

5
and ! 2 Œ0; 30�; The right: the logarithm (to base 10) of the error of

both Filon methods, (3) (green solid line) and (5) (black dotted line), for f .x/ D .1 C x C x2/�1,
g.x/ D x, s D 2 and ! 2 Œ0; 500�

This is the Extended Filon Method (EFM),

QF;s;�
! Œ f � D

Z 1

�1

p.x/ei!g.x/dx

that has been carefully analysed in [7, 8]. Different choices of internal nodes result
in different behaviour for small ! � 0 or in greater simplicity in implementation
although, for large !, the rate of asymptotic decay of the error is always O.!�s�1/.
In particular, [8] examined two choices of internal nodes: Zeros of the Jacobi
polynomial P

.s;s/
� and Clenshaw–Curtis points. In the first instance we have

the best-possible behaviour for ! D 0 and in the second the coefficients are
substantially simpler and, for large � can be evaluated in just O.� log �/ operations.

Regardless of the choice of internal nodes, the leading term of the asymptotic
error can be expressed as

QF;s;�
! Œ f � � I!Œ f � (7)

� � 1

.�i!/sC1

�
f .s/.1/ � Qp.s/.1/

g0sC1.1/
ei!g.1/ � f .s/.�1/ � Qp.s/.�1/

g0sC1.�1/
ei!g.�1/

�

C O
�
!�s�2

�
:

Similar formula applies in the presence of stationary points: quadrature error is
reduced to interpolation error at the endpoints and stationary points. This error, in
turn, can be analysed very precisely using the Peano Kernel Theorem [8] and the
decrease in asymptotic error (as distinct to the asymptotic rate of decay of the error)
can be very substantial.



412 J. Gao and A. Iserles

Fig. 2 The logarithmic error log10 jQF;2;0
! Œ f � � IŒ f �j (the lime green solid line, the top) and

log10 jQF;2;8
! Œ f �� IŒ f �j (the dark blue dotted line, the bottom) for f .x/ D .1CxCx2/�1, g.x/ D x,

s D 2, ! 2 Œ0; 30� (the left) and ! 2 Œ0; 500� (the right)

To illustrate this we revisit the example from Fig. 1. Logarithmic errors of plain-
vanilla Filon (the lime green solid line) and EFM with Jacobi points (the dark blue
dotted line) are displayed in Fig. 2 with s D 2 and � D 8. It can be observed that the
rates of decay between plain-vanilla Filon and EFM are very different. For small !,
EFM is definitely superior by design, while as ! increases both of them decay as
the asymptotic order O

�
!�3

�
but EFM has much smaller error.

Based on the above research, it is legitimate to ask what is the optimal choice
of internal nodes. In reality, these are two questions. If we are concerned with
choosing the same nodes for all ! then the two main choices in [8] are probably
the best: if ‘optimal’ means the least uniform error then Jacobi wins but once we
wish to optimize computation then Clenshaw–Curtis is the better choice. However,
the situation is entirely different once the cks are allowed to depend on !. Now the
answer is clear at the ‘extremities’:

• For ! D 0 the optimal choice is Legendre points, lending themselves to classical
Gaussian quadrature;

• For ! � 1 the optimal choice maximizes the asymptotic rate of error decay,
whereby (5) emerges as the natural preference.

The challenge, though, is to bridge ! D 0 with ! � 1, and this forms the core of
this paper.

This is the place to mention a recent paper of Zhao and Huang [16], which
combines the plain Filon with Exponentially Fitted method (EF), to propose an
alternative version of adaptive Filon method. For large !, the nodes in [16] are
reduced to �1 ˙ k

!
, which is similar to our method, inspired by plain Filon

method in [10]. For small !, since the EF method introduces complex points, the
method of [16] employs complex nodes derived from the computation of asymptotic
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expansion. The outcome is considerably more complicated and restricted to integrals
without stationary points. The algorithm in this paper employs altogether different
strategy for small !. To connect the optimal nodes between Gauss–Legendre points
when ! D 0 and � �

1 � �k
1C!

�
of large !, the real nodes dependent ! are presented

by constructing Filon homotopy. Moreover, our method is extended to the case of
stationary points.

In Sect. 2 we discuss different choices of homotopy functions, connecting
Gaussian weights for ! D 0 and points (5) for ! � 1 in the absence of stationary
points. Numerical experiments are provided to illustrate the effectiveness of the
adaptive method. The adaptive approach to the Filon method is extended in Sect. 3
to the case of stationary points. Finally, in Sect. 4 we discuss the advantages and
limitations of this approach.

2 Adaptive Filon Method Without Stationary Points

2.1 The Construction of !-Dependent Interpolation Points

Throughout this section we assume that (1) has no stationary points, i.e. that g0 ¤ 0

in Œ�1; 1�. We define the vector function c.!/ D fck.!/g2s�1
kD0 as Filon homotopy

once it obeys the following conditions:

1. Each ck is a piecewise-smooth function of ! � 0;
2. ck.0/ D �

.2s/
kC1, the .k C 1/st zero of the Legendre polynomial P2s (in other words,

the .k C 1/st Gauss–Legendre point), arranged in a monotone order;
3.

ck.!/ D

8̂
<
:̂

�1 C �k

! C 1
; k D 0; : : : ; s � 1;

1 � �.2s � k � 1/

! C 1
; k D s; : : : ; 2s � 1

C O.!�2/; ! � 1;

where 0 < � < .s � 1/�1;
4. For every ! � 0

�1 � c0.!/ < c1.!/ < � � � < c2s�1.!/ � 1:

In other words, c is a vector of s trajectories connecting Gauss–Legendre points
with (5), all distinct and living in Œ�1; 1�.

A convenient way to construct Filon homotopy is by choosing any piecewise-
smooth weakly monotone function � such that �.0/ D 1, �.!/ D O.!�2/ (or
smaller) for ! � 1 (therefore lim!!1 �.!/ D 0), and setting

ck.!/ D �
.2s/
kC1�.!/ C 'k.!/Œ1 � �.!/�; k D 0; : : : ; 2s � 1; (8)
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where

'k.!/ D

8̂
<
:̂

�1 C �k

! C 1
; k D 0; : : : ; s � 1;

1 � �.2s � k � 1/

! C 1
; k D s; : : : ; 2s � 1:

It is easy to prove that conditions 1–4 are satisfied and (8) is a Filon homotopy.
To illustrate our argument and in search for a ‘good’ Filon homotopy, we consider

four functions �,

a. �1.!/ D Heaviside.10 � !/, where

Heaviside. y/ D
(

1; y � 0;

0; y < 0

is the Heaviside function;
b. �2.!/ D .1 C !2/�1;
c. �3.!/ D 2=

�
1 C exp

�
log4.1 C !/

�	
;

d. �4.!/ D cos



	
2

e!=2�1

256Ce!=2

�
.

Figure 3 displays the four functions � but perhaps more interesting is Fig. 4,
where we depict the homotopy curves ck.!/ of (8) for the four choices of � and
s D 4. �1 essentially stays put at Gauss–Legendre points until ! D 10 and then
jumps to the points (5), while �4 represents a smooth approximation to �1. �2 and �3

abandon any memory of Gauss–Legendre points fairly rapidly, implicitly assuming
very early onset of asymptotic behaviour in the integral (1).

To gain basic insight into the differences among the functions �j, we have applied
them to the evaluation of the integral

Z 1

�1

ei!xdx

1 C x C x2
(9)

using ten function evaluations and letting � D 1=s. To set the stage, in Fig. 5 we
have calculated the integral using five different Extended Filon–Jacobi methods (6)
with � D 10�2s referenced from [8]: (1) s D 1, � D 8; (2) s D 2, � D 6; (3) s D 3,
� D 4, (4) s D 4, � D 2 and (5) s D 5, � D 0. The errors (to logarithmic scale) are
displayed separately for ! 2 Œ0; 20� and ! 2 Œ0; 200�.

So far, the figure is not very surprising and we recall from the previous section
that “large s, small �” strategy is better for ! � 1, while “small s, large �” wins
for small ! � 0. However, let us instead solve (10) with adaptive Filon, using one
of the four �j functions above. Again, we need to distinguish between small and
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Fig. 3 The functions �j, j D 1; 2; 3; 4 (from the left to right)

large ! and the corresponding plots are Figs. 6 and 7 respectively. It is clear that
for large ! there is little to distinguish adaptive Filon from EFJ with s D 5 (which
is also plain Filon): everything in this regime is determined by asymptotic analysis
and the only relevant observation is that nothing of essence is lost once we replace
derivatives by suitable finite differences. The big difference is for small ! � 0,
before the onset of asymptotics. At ! D 0 all four methods use Gauss–Legendre
points and the error beats even EFJ with � D 8, which corresponds to Lobatto
points. However, the errors for �2 and �3 deteriorate rapidly and this is explained
by the homotopy curves in Fig. 4, because interpolation points very rapidly move to
their ‘asymptotic regime’. �1 and �4 are much better, except that �1 has an ungainly
jump at ! D 10, a consequence of its discontinuity, while �4 seems to be the winner.
Similar outcome is characteristic to all other numerical experiments that we have
undertook.
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Fig. 4 Homotopy curves (8) ck.!/, k D 0; � � � ; 2s � 1 (from the bottom to top line) with s D 4

for each functions �j, j D 1; 2; 3; 4 (from the left to right)

Another interpretation of �4 is that it tends to represent for every ! the best
outcome for any EFJ with the same number of function evaluations. In other words,
denoting the error of EFJ with � D 10 � 2s by eŒs�

! (the dark blue dotted line) and
the error of adaptive Filon by Qe! (the orange red solid line) derived by �4, we plot
in Fig. 8

log10

ˇ̌
minfjeŒ j�

! j W j D 1; : : : ; 5gˇ̌ and log10 jQe!j:

For larger values of ! the two curves overlap to all intents and purposes. For small
!, though, adaptive Filon is better than the best among the different EFJ schemes—
the difference is directly attributable to Gauss–Legendre points being superior to
Lobatto points.
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Fig. 5 Logarithmic errors for EFJ, applied to (9), with ten function evaluations: The lines
corresponding to s vary in shades of blue between 1 (light) and 5 (dark), as well as in the line
style, with � D 10 � 2s

The function �4 is a special case of

�a;b.!/ D cos

�
	

2

ea! � 1

b C ea!



; (10)

using a D 1
2

and b D 256. In general, any �a;b with small a > 0 and large
b > 0 obeys the conditions for a Filon homotopy and, in addition, exhibits
favourable behaviour—essentially, it is a smooth approximation to a Heaviside
function, allowing for Gauss–Legendre points seamlessly segueing into (5), a finite-
difference approximation of derivatives at the endpoints.

What is the optimal function �? Clearly, this depends on the functions f and g, as
does the pattern of transition from ‘small !’ to asymptotic behaviour. Our choice,
� 1

2 ;256, is in our experience a good and practical compromise.

2.2 The Adaptive Filon Algorithm

Let us commence by gathering all the threads into an algorithm. Given the
integral (1) (without stationary points) and a value of !,

1. Compute the interpolation points c0; : : : ; c2s�1 using � D 1=s, (8) and � D � 1
2 ;256

given by (10).
2. Evaluate the polynomial Qp of degree 2s � 1 which interpolates f at c0; : : : ; c2s�1.
3. Calculate

QAF;s
! Œ f � D

Z 1

�1

Qp.x/ei!g.x/dx: (11)
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Fig. 6 Logarithmic errors for adaptive Filon, applied to (9), with ten function evaluations, � D 1
5
,

! 2 Œ0; 20� and �j, j D 1; 2; 3; 4 (top left to bottom right)

Proposition 1 The asymptotic error of the adaptive Filon method QAF;s
! Œ f � is

O
�
!�s�1

�
.

Proof For a fixed !, adaptive Filon is a special case of EFM with derivatives at the
endpoints replaced by suitable finite differences—we already know from [10] that
this is consistent with the stipulated asymptotic behaviour. ut

Alternatively, we can prove the proposition acting directly on the error term (7),
this has the advantage of resulting in an explicit expression for the leading error
term.

Needless to say, Proposition 1 represents just one welcome feature of adaptive
Filon. The other is that it tends to deliver the best uniform behaviour for all ! � 0.
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Fig. 7 Logarithmic errors for Adaptive Filon, applied to (9), with ten function evaluations, � D 1
5
,

! 2 Œ0; 200� and �j, j D 1; 2; 3; 4 (top left to bottom right)

3 Stationary Points

Let us suppose that g0 vanishes at r � 1 points in Œ�1; 1�. We split the interval
into subintervals Ik such that in each Ik D Œ˛k; ˇk� there is a single stationary
point residing at one of the endpoints—it is trivial to observe that there are at least
maxf1; 2r � 2g and at most 2r such subintervals. We use a linear transformation to
map each Ik to the interval Œ�1; 1� so that the stationary point resides at �1:

Stationary point at ˛k W x ! 2x � .ˇk C ˛k/

ˇk � ˛k
;

Stationary point at ˇk W x ! �2x � .ˇk C ˛k/

ˇk � ˛k
:
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Fig. 8 A comparison between adaptive Filon (the orange red solid line) and the pointwise best
scheme among different EFJ methods (the dark blue dotted line)

We thus reduce the task at hand into a number of computations of (1) with a single
stationary point at x D �1.

In the sequel we assume that �1 is a simple stationary point, i.e. that g0.�1/ D 0

and g00.�1/ ¤ 0. The extension of our narrative to higher-order stationary points is
straightforward.

We commence with the EFM method and recall from [8] its asymptotic
expansion,

I!Œ f � � �0.!/

1X
mD0


mŒ f �.�1/

.�i!/m
�

1X
mD0

1

.�i!/mC1

�

mŒ f �.1/ � 
mŒ f �.�1/

g0.1/
ei!g.1/

� 
0
mŒ f �.�1/

g00.�1/
ei!g.�1/

�
; (12)

where

�0.!/ D
Z 1

�1

ei!g.x/dx;


0Œ f �.x/ D f .x/ 
mŒ f �.x/ D d

dx


m�1Œ f �.x/ � 
m�1Œ f �.�1/

g0.x/
; m � 0:

We recall that �0.!/ D R 1

�1
ei!g.x/dx � O.!�1=2/ and that �mŒ f �.1/ is a linear

combination of f . j/.1/, j D 0; : : : ;m, while �mŒ f �0.�1/ is a linear combination
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of f . j/.�1/, j D 0; : : : ; 2m C 1. Putting all this together, we need to impose the
interpolation conditions

p.k/.�1/ D f .k/.�1/; k D 0; : : : ; 2s; (13)

p.k/.1/ D f .k/.1/; k D 0; : : : ; s � 1;

to ensure that the error of (12) is O.!�s�1/. (Alternatively, we can interpolate at �1

up to j D 2s� 1, resulting in an asymptotic error of O.!�s�1=2/—we do not pursue
this route here.) Alternatively to (13) (and the proof is identical to the case when
stationary points are absent), we can take a leaf off (5) and interpolate at

'k.!/ D �1 C �k

! C 1
; k D 0; : : : ; 2s; (14)

'k.!/ D 1 � �.3s � k/

! C 1
; k D 2s C 1; : : : ; 3s; (15)

where � < 2=.3s � 1/ ensures that all interpolation points are distinct, by a
polynomial Qp of degree 3s. This gives a derivative-free Filon á la [10]. To extend
this to adaptive Filon we need to use (8) again by replacing the superscript 2s by
3s C 1, blending the 'ks with Gauss–Legendre points and employing � D � 1

2 ;256.
The outcome is no longer symmetric, as demonstrated in Fig. 9, but this should cause
no alarm.

The construction of adaptive Filon proceeds exactly along the same lines as when
stationary points are absent. All that remains is to present a numerical example:

Fig. 9 Homotopy curves ck.!/, k D 0; � � � ; 3s (from the bottom to top line), for (1) s D 3,
� D 2=9 (the left) and (2) s D 4, � D 1

6
(the right)
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Fig. 10 Logarithmic errors for EFJ, applied to (16), with 13 function evaluations: s varies between
1 (light) and 4 (dark), with � D 12 � 3s. The colours correspond to different values of s: the larger
s, the darker the colour

Fig. 11 Logarithmic errors for adaptive Filon, applied to (16), with 13 function evaluations

instead of (9), we consider

Z 1

�1

ei!.xC1/2
dx

1 C x C x2
(16)

and present the counterparts of Figs. 5, 6, 7, and 8, except that we plot only the
results for � D �4 D � 1

2 ;256. All figures compare an implementation with 13 function
evaluations.

It is vividly clear from Figs. 10, 11, and 12 that, again, adaptive Filon represents
the best of all worlds: for small ! is it as good as Gaussian quadrature, for large
! it matches plain Filon and in the intermediate interval it converts smoothly and
seamlessly between these two regimes.
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Fig. 12 A comparison between adaptive Filon (the orange red solid line) and the pointwise best
scheme among different EFJ methods (the dark blue dotted line) for 13 function evaluations

4 Conclusions

In this paper, we have developed an adaptive Filon method for the computation of
a highly oscillatory integral with or without stationary points. The main feature of
this method is that it optimises the choice of interpolation points between different
oscillatory regimes relative to those EFM based on the analysis in [8].

Is adaptive Filon the best-possible implementation of the ‘Filon concept’, a
method for all seasons? Not necessarily! To define ‘best’ we must first define the
purpose of the exercise. If the main idea is to compute (1) for a small number of
values of ! and we cannot say in advance whether these values live in a highly
oscillatory regime (or if we wish a method which is by design good uniformly for
al ! � 0) then adaptive Filon definitely holds the edge in comparison to other
implementations of the Filon method, in particular to Extended Filon. However,
the method is not competitive once we require the computation of a very large
number of integrals for the same function f but many different values of !. The
reason is simple. Conventional Filon methods use interpolation points which are
independent of !, hence we need to compute the values of f (or its derivatives) and
form an interpolating polynomial just once: it can be reused by any number of values
of !. Adaptive Filon, though, re-evaluates f afresh for every ! and subsequently
forms a new interpolating polynomial. Thus, increased accuracy and better uniform
behaviour are offset by higher cost.

Numerical methods must be always used with care and claims advanced on their
behalf must be responsible. Adaptive Filon is probably optimal in the scenario when
just few values of (1) need be computed but considerably more expensive once a
multitude of computations with different values of ! is sought.
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