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Abstract The task of approximating a function of d variables from its evaluations
at a given number of points is ubiquitous in numerical analysis and engineering
applications. When d is large, this task is challenged by the so-called curse of
dimensionality. As a typical example, standard polynomial spaces, such as those
of total degree type, are often uneffective to reach a prescribed accuracy unless a
prohibitive number of evaluations is invested. In recent years it has been shown that,
for certain relevant applications, there are substantial advantages in using certain
sparse polynomial spaces having anisotropic features with respect to the different
variables. These applications include in particular the numerical approximation of
high-dimensional parametric and stochastic partial differential equations. We start
by surveying several results in this direction, with an emphasis on the numerical
algorithms that are available for the construction of the approximation, in particular
through interpolation or discrete least-squares fitting. All such algorithms rely on
the assumption that the set of multi-indices associated with the polynomial space
is downward closed. In the present paper we introduce some tools for the study of
approximation in multivariate spaces under this assumption, and use them in the
derivation of error bounds, sometimes independent of the dimension d, and in the
development of adaptive strategies.
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1 Introduction

The mathematical modeling of complex physical phenomena often demands for
functions that depend on a large number of variables. One typical instance occurs
when a quantity of interest u is given as the solution to an equationwritten in general
form as

P.u; y/ D 0; (1)

where y D .yj/jD1;:::;d 2 R
d is a vector that concatenates various physical parameters

which have an influence on u.
Supposing that we are able to solve the above problem, either exactly or

approximately by numerical methods, for any y in some domain of interest U � R
d

we thus have access to the parameter-to-solution map

y 7! u. y/: (2)

The quantity u.y/ may be of various forms, namely:

1. a real number, that is, u.y/ 2 R;
2. a function in some Banach space, for example when (1) is a partial differential

equation (PDE);
3. a vector of eventually large dimension, in particular when (1) is a PDE whose

solution is numerically approximated using some numerical method with fixed
discretization parameters.

In all three cases, the above maps act from U to some finite- or infinite-dimensional
Banach space which we shall generically denote by V .

As a guiding example which will be further discussed in this paper, consider the
elliptic diffusion equation

� div.aru/ D f ; (3)

set on a given bounded Lipschitz domain D � R
k (say with k D 1; 2 or 3), for

some fixed right-hand side f 2 L2.D/, homogeneous Dirichlet boundary conditions
uj@D D 0, and where a has the general form

a D a. y/ D a C
X

j � 1

yj j: (4)

Here, a and j are given functions in L1.D/, and the yj range in finite intervals that,
up to renormalization, can all be assumed to be Œ�1; 1�. In this example y D .yj/j � 1

is countably infinite-dimensional, that is, d D 1. The standard weak formulation
of (3) in H1

0.D/,
Z

D
arurv D

Z

D
fv; v 2 H1

0.D/;
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is ensured to be well-posed for all such a under the so-called uniform ellipticity
assumption

X

j � 1

j jj � a � r; a.e. on D; (5)

for some r > 0. In this case, the map y 7! u.y/ acts from U D Œ�1; 1�N to
H1
0.D/. However, if we consider the discretization of (3) in some finite element space

Vh � H1
0.D/, where h refers to the corresponding mesh size, using for instance the

Galerkin method, then the resulting map

y 7! uh. y/;

acts from U D Œ�1; 1�N to Vh. Likewise, if we consider a quantity of interest such as
the flux q.u/ D R

˙
aru � � over a given interface˙ � D with � being the outward

pointing normal vector, then the resulting map

y 7! q. y/ D q.u. y//;

acts from U D Œ�1; 1�N to R. In all three cases, the above maps act from U to the
finite- or infinite-dimensional Banach space V , which is either H1

0 , Vh or R.
In the previous instances, the functional dependence between the input

parameters y and the output u.y/ is described in clear mathematical terms by
Eq. (1). In other practical instances, the output u.y/ can be the outcome of a
complex physical experiment or numerical simulation with input parameter y.
However the dependence on y might not be given in such clear mathematical
terms.

In all the abovementioned cases, we assume that we are able to query the map (2)
at any given parameter value y 2 U, eventually up to some uncertainty. Such
uncertainty may arise due to:

1. measurement errors, when y 7! u.y/ is obtained by a physical experiment, or
2. computational errors, when y 7! u.y/ is obtained by a numerical computation.

The second type of errors may result from the spatial discretization when solving a
PDEwith a givenmethod, and from the round-off errors when solving the associated
discrete systems.

One common way of modeling such errors is by assuming that we observe u at
the selected points y up to a an additive noise � which may depend on y, that is, we
evaluate

y 7! u. y/C �. y/; (6)
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where � satisfies a uniform bound

k�kL1.U;V/ WD sup
y2U

k�. y/kV � "; (7)

for some " > 0 representing the noise level.
Queries of the exact u.y/ or of the noisy u.y/ C �.y/ are often expensive since

they require numerically solving a PDE, or setting up a physical experiment, or
running a time-consuming simulation algorithm. A natural objective is therefore
to approximate the map (2) from some fixed number m of such queries at points
f y1; : : : ; ymg 2 U. Such approximations y 7! eu.y/ are sometimes called surrogate
or reduced models.

Let us note that approximation of the map (2) is sometimes a preliminary task
for solving other eventually more complicated problems, such as:

1. Optimization and Control, i.e. find a y which minimizes a certain criterion
depending on u.y/. In many situations, the criterion takes the form of a convex
functional of u.y/, and the minimization is subject to feasibility constraints. See
e.g. the monographs [3, 30] and references therein for an overview of classical
formulations and numerical methods for optimization problems.

2. Inverse Problems, i.e. find an estimate y from some data depending on the output
u.y/. Typically, we face an ill-posed problem, where the parameter-to-solution
map does not admit a global and stable inverse. Nonetheless, developing efficient
numerical methods for approximating the parameter-to-solutionmap, i.e. solving
the so-called direct problem, is a first step towards the construction of numerical
methods for solving the more complex inverse problem, see e.g. [36].

3. Uncertainty Quantification, i.e. describe the stochastic properties of the solu-
tion u.y/ in the case where the parameter y is modeled by a random variable
distributed according to a given probability density. We may for instance be
interested in computing the expectation or variance of the V-valued random
variable u.y/. Note that this task amounts in computing multivariate integrals
over the domain U with respect to the given probability measure. This area
also embraces, among others, optimization and inverse problems whenever
affected by uncertainty in the data. We refer to e.g. [24] for the application
of polynomial approximation to uncertainty quantification, and to [35] for the
Bayesian approach to inverse problems.

There exist many approaches for approximating an unknown function of one
or several variables from its evaluations at given points. One of the most classical
approaches consists in picking the approximant in a given suitable n-dimensional
space of elementary functions, such that

n � m: (8)
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Here, by “suitable” we mean that the space should have the ability to approximate
the target function to some prescribed accuracy, taking for instance advantage of its
smoothness properties. By “elementary” we mean that such functions should have
simple explicit form which can be efficiently exploited in numerical computations.
The simplest type of such functions are obviously polynomials in the variables yj.
As a classical example, we may decide to use, for some given k 2 N0, the total
degree polynomial space of order k, namely

Pk WD span

8
<

: y 7! y� W j�j WD k�k1 D
dX

jD1
�j � k

9
=

; ;

with the standard notation

y� WD
dY

jD1
y
�j

j ; � D .�j/jD1;:::;d :

Note that since u.y/ is V-valued, this means that we actually use the V-valued
polynomial space

Vk WD V ˝ Pk D
8
<

: y 7!
X

j�j�k

w�y
� W w� 2 V

9
=

; :

Another classical example is the polynomial space of degree k in each variable,
namely

Qk WD span

�
y 7! y� W k�k1 D max

jD1;:::;d �j � k

�
:

A critical issue encountered by choosing such spaces is the fact that, for a fixed
value of k, the dimension of Pk grows with d like dk, and that of Qk grows like
kd, that is, exponentially in d. Since capturing the fine structure of the map (2)
typically requires a large polynomial degree k in some coordinates, we expect in
view of (8) that the number of needed evaluations m becomes prohibitive as the
number of variables becomes large. This state of affairs is a manifestation of the
so-called curse of dimensionality. From an approximation theoretic or information-
based complexity point of view, the curse of dimensionality is expressed by the fact
that functions in standard smoothness classes such as Cs.U/ cannot be approximated
in L1.U/ with better rate then n�s=d by any method using n degrees of freedom or
n evaluations, see e.g. [17, 31].

Therefore, in high dimension, one is enforced to give up on classical polynomial
spaces of the above form, and instead consider more general spaces of the general
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form

P� WD spanf y 7! y� W � 2 �g; (9)

where� is a subset ofNd
0 with a given cardinality n WD #.�/. In the case of infinitely

many variables d D 1, we replace Nd
0 by the set

F WD `0.N;N0/ WD f� D .�j/j � 1 W #.supp.�// < 1g;

of finitely supported sequences of nonnegative integers. For V-valued functions, we
thus use the space

V� D V ˝ P� WD
(

y 7!
X

�2�
w�y

� W w� 2 V

)
:

Note that V� D P� in the particular case where V D R.
The main objective when approximating the map (2) is to maintain a reasonable

trade-off between accuracy measured in a given error norm and complexity mea-
sured by m or number of degrees of freedommeasured by n, exploiting the different
importance of each variable. Intuitively, large polynomial degrees should only be
allocated to the most important variables. In this sense, if d is the dimension and k is
the largest polynomial degree in any variable appearing in �, we view � as a very
sparse subset of f0; : : : ; kgd.

As generally defined by (9), the space P� does not satisfy some natural properties
of usual polynomial spaces such as closure under differentiation in any variable, or
invariance by a change of basis when replacing themonomials y� by other tensorized
basis functions of the form

��. y/ D
Y

j � 1

��j. yj/;

where the univariate functions f�0; : : : ; �kg form a basis of Pk for any k � 0, for
example with the Legendre or Chebyshev polynomials. In order to fulfill these
requirements, we ask that the set � has the following natural property.

Definition 1 A set � � N
d
0 or � � F is downward closed if and only if

� 2 � ande� � � H) e� 2 �;

wheree� � � means thate�j � �j for all j.

Downward closed sets are also called lower sets. We sometimes use the
terminology of downward closed polynomial spaces for the corresponding P�. To
our knowledge, such spaces have been first considered in [23] in the bivariate case
d D 2 and referred to as polynômes pleins. Their study in general dimension d
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has been pursued in [25] and [16]. The objective of the present paper is to give a
survey of recent advances on the use of downward closed polynomial spaces for
high-dimensional approximation.

The outline is the following. We review in Sect. 2 several polynomial approxi-
mation results obtained in [1, 2] in which the use of well-chosen index sets allows
one to break the curse of dimensionality for relevant classes of functions defined on
U D Œ�1; 1�d, e.g. such as those occurring when solving the elliptic PDE (3) with
parametric diffusion coefficient (4). Indeed, we obtain an algebraic convergence rate
n�s, where s is independent of d in the sense that such a rate may even hold when
d D 1. Here, we consider the error between the map (2) and its approximant in
either norms L1.U;V/ D L1.U;V; d�/ or L2.U;V/ D L2.U;V; d�/, where d� is
the uniform probability measure,

d� WD
O

j � 1

dyj

2
:

We also consider the case of lognormal diffusion coefficients of the form

a D exp.b/; b D b. y/ D
X

j � 1

yj j; (10)

where the yj are i.i.d. standard Gaussian random variables. In this case, we have
U D R

d and the error is measured in L2.U;V; d	/ where

d	 WD
O

j � 1

g. yj/dyj; g.t/ WD 1p
2


e�t2=2; (11)

is the tensorized Gaussian probability measure. The above approximation results are
established by using n-term truncations of polynomial expansions, such as Taylor,
Legendre or Hermite, which do not necessarily result in downward closed index sets.
In the present paper we provide a general approach to establish similar convergence
rates with downward closed polynomial spaces.

The coefficients in the polynomial expansions cannot be computed exactly from
a finite number of point evaluations of (2). One first numerical procedure that builds
a polynomial approximation from point evaluations is interpolation. In this case the
number m of samples is exactly equal to the dimension n of the polynomial space.
We discuss in Sect. 3 a general strategy to choose evaluation points and compute
the interpolant in arbitrarily high dimension. One of its useful features is that the
evaluations and interpolants are updated in a sequential manner as the polynomial
space is enriched, exploiting in a crucial way the downward closed structure. We
study the stability of this process and its ability to achieve the same convergence
rates in L1 established in Sect. 2.
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A second numerical procedure for building a polynomial approximation is the
least-squares method, which applies to the overdetermined case m > n. To keep
the presentation concise, we confine to results obtained in the analysis of this
method only for the case of evaluations at random points. In Sect. 4 we discuss
standard least squares, both in the noisy and noiseless cases, and in particular explain
under which circumstances the method is stable and compares favorably with the
best approximation error in L2. Afterwards we discuss the more general method
of weighted least squares, which allows one to optimize the relation between the
dimension of the polynomial space n and the number of evaluation points m that
warrants stability and optimal accuracy.

The success of interpolation and least squares is critically tied to the choice of
proper downward closed sets .�n/n�1 with #.�n/ D n. Ideally we would like to
choose the set ��

n that minimizes the best approximation error

e.u; �/ WD min
v2V�

ku � vk; (12)

in some norm k � k of interest, among all possible downward closed sets �
of cardinality n. In addition to be generally nonunique, such a set ��

n is often
not accessible. In practice we need to rely on some a-priori analysis to select
“suboptimal yet good” sets. An alternative strategy is to select the sequence .�n/n�1
in an adaptive manner, that is, make use of the computation of the approximation
for�n�1 in order to choose �n.

We discuss in Sect. 5 several adaptive and nonadaptive strategies which make
critical use of the downward closed structure of such sets. While our paper is
presented in the framework of polynomial approximation, the concept of downward
closed set may serve to define multivariate approximation procedures in other
nonpolynomial frameworks. At the end of the paper we give some remarks on
this possible extension, including, as a particular example, approximation by
sparse piecewise polynomial spaces using hierarchical bases, such as sparse grid
spaces.

Let us finally mention that another class of frequently used methods in high-
dimensional approximation is based on Reproducing Kernel Hilbert Space (RKHS)
or equivalently Gaussian process regression, also known as kriging. In such
methods, for a given Mercer kernel K.�; �/ the approximant is typically searched by
minimizing the associated RKHS norm among all functions agreeing with the data
at the evaluation points, or equivalently by computing the expectation of a Gaussian
process with covariance function K conditional to the observed data. Albeit natural
competitors, these methods do not fall in the category discussed in the present
paper, in the sense that the space where the approximation is picked varies with
the evaluation points. It is not clear under which circumstances they may also break
the curse of dimensionality.
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2 Sparse Approximation in Downward Closed Polynomial
Spaces

2.1 Truncated Polynomial Expansions

As outlined in the previous section, we are interested in deriving polynomial
approximations of the map (2) acting from U D Œ�1; 1�d with d 2 N or d D 1
to the Banach space V . Our first vehicle to derive such approximations, together
with precise error bounds for relevant classes of maps, consists in truncating certain
polynomial expansions of (2) written in general form as

X

�2F
u���; (13)

where for each � D .�j/j � 1 2 F the function �� W U ! R has the tensor product
form

��. y/ D
Y

j � 1

��j. yj/;

and u� 2 V . Here we assume that .�k/k�0 is a sequence of univariate polynomials
such that �0 � 1 and the degree of �k is equal to k. This implies that f�0; : : : ; �kg
is a basis of Pk and that the above product only involves a finite number of factors,
even in the case where d D 1. Thus, we obtain polynomial approximations of (2)
by fixing some sets �n � F with #.�n/ D n and defining

u�n WD
X

�2�n

u���: (14)

Before discussing specific examples, let us make some general remarks on the
truncation of countable expansions with V-valued coefficients, not necessarily of
tensor product or polynomial type.

Definition 2 The series (13) is said to converge conditionallywith limit u in a given
norm k � k if there exists an exhaustion .�n/n�1 of F (which means that for any
� 2 F there exists n0 such that � 2 �n for all n � n0), with the convergence
property

lim
n!1 ku � u�nk D 0: (15)

The series (13) is said to converge unconditionally towards u in the same norm, if
and only if (15) holds for every exhaustion .�n/n�1 ofF .

As already mentioned in the introduction, we confine our attention to the error
norms L1.U;V/ or L2.U;V/ with respect to the uniform probability measure d�.
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We are interested in establishing unconditional convergence, as well as estimates of
the error between u and its truncated expansion, for both norms.

In the case of the L2 norm, unconditional convergence can be established when
.��/�2F is an orthonormal basis of L2.U/. In this case we know from standard
Hilbert space theory that if (2) belongs to L2.U;V/ then the inner products

u� WD
Z

U
u. y/��. y/ d�; � 2 F ;

are elements of V , and the series (13) converges unconditionally towards u in
L2.U;V/. In addition, the error is given by

ku � u�nkL2.U;V/ D
0

@
X

�…�n

ku�k2V

1

A
1=2

; (16)

for any exhaustion .�n/n�1. Let us observe that, since d� is a probability measure,
the L1.U;V/ norm controls the L2.U;V/ norm, and thus the above holds whenever
the map u is uniformly bounded over U.

For the L1 norms, consider an expansion (13) where the functions �� W U 7! R

are normalized such that k��kL1.U/ D 1, for all � 2 F . Then .ku�kV /�2F 2
`1.F /, and it is easily checked that, whenever the expansion (13) converges
conditionally to a function u in L1.U;V/, it also converges unconditionally to u
in L1.U;V/. In addition, for any exhaustion .�n/n�1, we have the error estimate

ku � u�nkL1.U;V/ �
X

�…�n

ku�kV : (17)

The above estimate is simply obtained by triangle inequality, and therefore generally
it is not as sharp as (16). One particular situation is when .��/�2F is an orthogonal
basis of L2.U/ normalized in L1. Then, if u 2 L2.U;V/ and if the

u� WD 1

k��k2L2.U;V/

Z

U
u. y/��. y/ d�; � 2 F ;

satisfy .ku�kV/�2F 2 `1.F /, we find on the one hand that (13) converges
unconditionally to a limit in L1.U;V/ and in turn in L2.U;V/. On the other hand,
we know that it converges toward u 2 L2.U;V/. Therefore, its limit in L1.U;V/ is
also u.

A crucial issue is the choice of the sets �n that we decide to use when defining
the n-term truncation (14). Ideally, we would like to use the set�n which minimizes
the truncation error in some given norm k � k among all sets of cardinality n.

In the case of the L2 error, if .��/�2F is an orthonormal basis of L2.U/, the
estimate (16) shows that the optimal �n is the set of indices corresponding to the
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n largest ku�kV . This set is not necessarily unique, in which case any realization of
�n is optimal.

In the case of the L1 error, there is generally no simple description of the
optimal �n. However, when the �� are normalized in L1.U/, the right-hand side
in the estimate (17) provides an upper bound for the truncation error. This bound is
minimized by again taking for �n the set of indices corresponding to the n largest
ku�kV , with the error now bounded by the `1 tail of the sequence .ku�kV/�2F , in
contrast to the `2 tail which appears in (16).

The properties of a given sequence .c�/�2F which ensure a certain rate of decay
n�s of its `q tail after one retains its n largest entries are well understood. Here, we
use the following result, see [12], originally invoked by Stechkin in the particular
case q D 2. This result says that the rate of decay is governed by the `p summability
of the sequence for values of p smaller than q.

Lemma 1 Let 0 < p < q < 1 and let .c�/�2F 2 `p.F / be a sequence of
nonnegative numbers. Then, if �n is a set of indices which corresponds to the n
largest c� , one has

0

@
X

�…�n

cq
�

1

A
1=q

� C.n C 1/�s; C WD k.c�/�2Fk`p ; s WD 1

p
� 1

q
:

In view of (16) or (17), application of the above result shows that `p summability
of the sequence .ku�kV/�2F implies a convergence rate n�s when retaining the
terms corresponding to the n largest ku�kV in (13). From (16), when .��/�2F is
an orthonormal basis, we obtain s D 1

p � 1
2
if p < 2. From (17), when the �� are

normalized in L1.U/, we obtain s D 1
p � 1 if p < 1.

In the present setting of polynomial approximation, we mainly consider four
types of series corresponding to four different choices of the univariate func-
tions �k:

• Taylor (or power) series of the form

X

�2F
t�y

�; t� WD 1

�Š
@�u. y D 0/; �Š WD

Y

j � 1

�jŠ; (18)

with the convention that 0Š D 1.
• Legendre series of the form

X

�2F
w�L�. y/; L�. y/ D

Y

j � 1

L�j. yj/; w� WD
Z

U
u. y/L�. y/ d�; (19)

where .Lk/k�0 is the sequence of Legendre polynomials on Œ�1; 1� normalized
with respect to the uniform measure

R 1
�1 jLk.t/j2 dt

2
D 1, so that .L�/�2F is an

orthonormal basis of L2.U; d�/.
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• Renormalized Legendre series of the form

X

�2F
ew�eL�. y/; eL�. y/ D

Y

j � 1

eL�j. yj/; ew� WD
0

@
Y

j � 1

.1C 2�j/

1

A
1=2

w�; (20)

where .eLk/k�0 is the sequence of Legendre polynomials on Œ�1; 1� with the
standard normalization keLkkL1.Œ�1;1�/ DeLk.1/ D 1, so thateLk D .1C2k/�1=2Lk.

• Hermite series of the form

X

�2F
h�H�. y/; H�. y/ D

Y

j � 1

H�j. yj/; h� WD
Z

U
u. y/H�. y/ d	; (21)

with .Hk/k�0 being the sequence of Hermite polynomials normalized according
to
R
R

jHk.t/j2g.t/dt D 1, and d	 given by (11). In this case U D R
d and .H�/�2F

is an orthonormal basis of L2.U; d	/.

We may therefore estimate the L2 error resulting from the truncation of the
Legendre series (19) by application of (16), or the L1 error resulting from the
truncation of the Taylor series (18) or renormalized Legendre series (20) by
application of (17). According to Lemma 1, we derive convergence rates that depend
on the value of p such that the coefficient sequences .kt�kV/�2F , .kw�kV/�2F ,
.kew�kV /�2F or .kh�kV/�2F belong to `p.F /.

In a series of recent papers such summability results have been obtained for
various types of parametric PDEs. We refer in particular to [1, 13] for the elliptic
PDE (3) with affine parameter dependence (4), to [2, 20] for the lognormal
dependence (10), and to [9] for more general PDEs and parameter dependence. One
specific feature is that these conditions can be fulfilled in the infinite-dimensional
framework. We thus obtain convergence rates that are immune to the curse of
dimensionality, in the sense that they hold with d D 1. Here, we mainly discuss
the results established in [1, 2] which have the specificity of taking into account the
support properties of the functions  j.

One problem with this approach is that the sets�n associated to the n largest val-
ues in these sequences are generally not downward closed. In the next sections, we
revisit these results in order to establish similar convergence rates for approximation
in downward closed polynomial spaces.

2.2 Summability Results

The summability results in [1, 2] are based on certain weighted `2 estimates which
can be established for the previously defined coefficient sequences under various
relevant conditions for the elliptic PDE (3). We first report below these weighted
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estimates. The first one from [1] concerns the affine parametrization (4). Here, we
have V D H1

0.D/ and V 0 denotes its dual H�1.D/.

Theorem 1 Assume that � D .�j/j � 1 is a sequence of positive numbers such that

X

j � 1

�jj j.x/j � a.x/ �er; x 2 D; (22)

for some fixed numberer > 0. Then, one has

X

�2F
.��kt�kV /

2 < 1; �� D
Y

j � 1

�
�j

j ; (23)

as well as

X

�2F

�
ˇ.�/�1��kw�kV

�2 D
X

�2F

�
ˇ.�/�2��kew�kV

�2
< 1; (24)

with

ˇ.�/ WD
Y

j � 1

.1C 2�j/
1=2:

The constants bounding these sums depend oner, k f kV0 , amin and kakL1 .

A few words are in order concerning the proof of these estimates. The first
estimate (23) is established by first proving that the uniform ellipticity assump-
tion (5) implies the `2 summability of the Taylor sequence .kt�kV/�2F . Since the
assumption (22) means that (5) holds with the  j replaced by �j j, this gives the `2

summability of the Taylor sequence for the renormalized map

y 7! u.�y/; �y D .�jyj/j � 1;

which is equivalent to (23). The second estimate is established by first showing thatP
j � 1 �jj jj � a �er implies finiteness of the weighted Sobolev-type norm

X

�2F

�2�

�Š

Z

U
k@�u. y/k2V

Y

j � 1

.1 � j yjj/2�j d� < 1:

Then, one uses the Rodrigues formula Lk.t/ D �
d
dt

�k
�p

2kC1
kŠ 2k .t2 � 1/k

�
in each

variable yj to bound the weighted `2 sum in (24) by this norm.

Remark 1 As shown in [1], the above result remains valid for more general classes
of orthogonal polynomials of Jacobi type, such as the Chebyshev polynomials which
are associated with the univariate measure dt

2

p
1�t2

.
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The second weighted `2 estimate from [2] concerns the lognormal parametriza-
tion (10).

Theorem 2 Let r � 0 be an integer. Assume that there exists a positive sequence
� D .�j/j � 1 such that

P
j � 1 exp.��2j / < 1 and such that

X

j � 1

�jj j.x/j D K < Cr WD ln 2p
r
; x 2 D: (25)

Then, one has

X

�2F
��kh�k2V < 1; (26)

where

�� WD
X

ke�k`1 �r

 
�

e�

!
�2e� D

Y

j � 1

 
rX

lD0

 
�j

l

!
�2l

j

!
;

 
�

e�

!
WD

Y

j � 1

 
�j

e�j

!
;

with the convention that
�k

l

� D 0 when l > k. The constant bounding this sum
depends on k f kV0 ,

P
j � 1 exp.��2j / and on the difference Cr � K.

Similar to the weighted `2 estimate (24) for the Legendre coefficients, the proof
of (26) follows by first establishing finiteness of a weighed Sobolev-type norm

X

k�k`1 �r

�2�

�Š

Z

U
k@�u. y/k2V d	 < 1;

under the assumption (25) in the above theorem. Then one uses the Rodrigues

formula Hk.t/ D .�1/kp
kŠ

g.k/.t/
g.t/ , with g given by (11), in each variable yj to bound

the weighted `2 sum in (26) by this norm.
In summary, the various estimates expressed in the above theorems all take the

form

X

�2F
.!�c�/

2 < 1;

where

c� 2 fkt�kV ; kw�kV ; kew�kV ; kh�kVg;

or equivalently

!� 2 f��; ��ˇ.�/�1; ��ˇ.�/�2; �1=2� g:
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Then, one natural strategy for establishing `p summability of the sequence
.c�/�2F is to invoke Hölder’s inequality, which gives, for all 0 < p < 2,

 
X

�2F
jc� jp

!1=p

�
 
X

�2F
.!�c�/

2

!1=2  X

�2F
j� jq

!1=q

< 1;
1

q
WD 1

p
� 1

2
;

where the sequence .�/�2F is defined by

� WD !�1
� : (27)

Therefore `p summability of .c�/�2F follows from `q summability of .�/�2F with
0 < q < 1 such that 1q D 1

p � 1
2
. This `q summability can be related to that of the

univariate sequence

b D .bj/j � 1; bj WD ��1
j :

Indeed, from the factorization

X

�2F
bq� D

Y

j � 1

X

n�0
bnq

j ;

one readily obtains the following elementary result, see [12] for more details.

Lemma 2 For any 0 < q < 1, one has

b 2 `q.N/ and kbk`1 < 1 ” .b�/�2F 2 `q.F /:

In the case!� D �� , i.e. � D b� , this shows that the `p summability of the Taylor
coefficients .kt�kV/�2F follows if the assumption (22) holds with b D .��1

j /j � 1 2
`q.N/ and �j > 1 for all j. By a similar factorization, it is also easily checked that
for any algebraic factor of the form ˛.�/ WD Q

j � 1.1C c1�j/
c2 with c1; c2 � 0, one

has

b 2 `q.N/ and kbk`1 < 1 ” .˛.�/b�/�2F 2 `q.F /:

This allows us to reach a similar conclusion in the cases !� D ˇ.�/�1�� or
!� D ˇ.�/�2�� , which correspond to the Legendre coefficients .kw�kV /�2F and
.kew�kV /�2F , in view of (24).

Likewise, in the case where !� D �
1=2
� , using the factorization

X

�2F
q
� D

Y

j � 1

X

n�0

 
rX

lD0

 
n

l

!
�2l

j

!�q=2

;
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it is shown in [2] that the sum on the left converges if b 2 `q, provided that r
was chosen large enough such that q > 2

r . This shows that the `p summability
of the Hermite coefficients .kh�kV /�2F follows if the assumption (25) holds with
b D .��1

j /j � 1 2 `q.N/. Note that, since the sequence b can be renormalized, we
may replace (25) by the condition

sup
x2D

X

j � 1

�jj j.x/j < 1; (28)

without a specific bound.

2.3 Approximation by Downward Closed Polynomials

The above results, combined with Lemma 1, allow us to build polynomial approxi-
mations u�n with provable convergence rates n�s in L1 or L2 by n-term truncation
of the various polynomial expansions. However, we would like to obtain such
convergence rates with sets �n that are in addition downward closed.

Notice that if a sequence .�/�2F of nonnegative numbers is monotone nonin-
creasing, that is

� �e� H) e� � �;

then the set�n corresponding to the n largest values of � (up to a specific selection
in case of equal values) is downward closed. More generally, there exists a sequence
.�n/n�1 of downward closed realizations of such sets which is nested, i.e. �1 �
�2 : : :, with �1 D 0F WD .0; 0; : : :/.

Since the general sequences .�/�2F that are defined through (27) may not
always be monotone nonincreasing, we introduce the following notion: for any
sequence .�/�2F tending to 0, in the sense that #f� W j�j > ıg < 1 for all
ı > 0, we introduce its monotone majorant .b�/�2F defined by

b� WD max
e���

je� j;

that is the smallest monotone nonincreasing sequence that dominates .�/�2F . In
order to study best n-term approximations using downward closed sets, we adapt
the `q spaces as follows.

Definition 3 For 0 < q < 1, we say that .�/�2F 2 `1.F / belongs to `q
m.F / if

and only if its monotone majorant .b�/�2F belongs to `q.F /.

We are now in position to state a general theorem that gives a condition for
approximation using downward closed sets in terms of weighted `2 summability.



Multivariate Approximation in Downward Closed Polynomial Spaces 249

Theorem 3 Let .c�/�2F and .!�/�2F be positive sequences such that

X

�2F
.!�c�/

2 < 1;

and such that .�/�2F 2 `q
m.F / for some 0 < q < 1 with � D !�1

� . Then, for any
0 < r � 2 such that 1q >

1
r � 1

2
, there exists a nested sequence .�n/n�1 of downward

closed sets such that #.�n/ D n and

0

@
X

�…�n

cr
�

1

A
1=r

� Cn�s; s WD 1

q
C 1

2
� 1

r
> 0: (29)

Proof With .b�/�2F being the monotone majorant of .�/�2F , we observe that

A2 WD
X

�2F
.b�1
� c�/

2 �
X

�2F
.�1
� c�/

2 D
X

�2F
.!�c�/

2 < 1:

We pick a nested sequence .�n/n�1 of downward closed sets, such that �n consists
of the indices corresponding to the n largestb� . Denoting by .bn/n�1 the decreasing
rearrangement of .b�/�2F , we observe that

nbq
n �

nX

jD1
bq

j � Bq; B WD k.b�/�2Fk`q < 1:

With p such that 1p D 1
r � 1

2
, we find that

0

@
X

�…�n

cr
�

1

A
1=r

�
0

@
X

�…�n

.b�1
� c�/

2

1

A
1=20

@
X

�…�n

bp
�

1

A
1=p

� A

0

@bp�q
nC1

X

�…�n

bq
�

1

A
1=p

� AB.n C 1/1=p�1=q;

where we have used Hölder’s inequality and the properties of .bn/n�1. This
gives (29) with C WD AB. ut

We now would like to apply the above result with c� 2 fkt�kV ; kw�kV ; kew�kV ;

kh�kVg, and the corresponding weight sequences !� 2 f��; ��ˇ.�/�1; ��ˇ.�/�2;
�
1=2
� g, or equivalently � 2 fb�; b�ˇ.�/; b�ˇ.�/2; ��1=2

� g. In the case of the Taylor
series, where � D b� , we readily see that if bj < 1 for all j � 1, then the sequence
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.�/�2F is monotone nonincreasing, and therefore Lemma 2 shows that b 2 `q

implies .�/�2F 2 `q
m.F /. By application of Theorem 3 with the value r D 1, this

leads to the following result.

Theorem 4 If (22) holds with .��1
j /j � 1 2 `q.N/ for some 0 < q < 2 and �j > 1

for all j, then

ku � u�nkL1.U;V/ � Cn�s; s WD 1

q
� 1

2
;

where u�n is the truncated Taylor series and �n is any downward closed set
corresponding to the n largest � .

In the case of the Legendre series, the weight � D b�ˇ.�/ is not monotone
nonincreasing due to the presence of the algebraic factor ˇ.�/. However, the
following result holds.

Lemma 3 For any 0 < q < 1 and for any algebraic factor of the form ˛.�/ WDQ
j � 1.1C c1�j/

c2 with c1; c2 � 0, one has

b 2 `q.N/ and kbk`1 < 1 ” .˛.�/b�/�2F 2 `q
m.F /:

Proof The implication from right to left is a consequence of Lemma 2, and so we
concentrate on the implication from left to right. For this it suffices to find a majorant
e� of � WD ˛.�/b� which is monotone nonincreasing and such that .e�/�2F 2
`q.F /. We notice that for any � > 1, there exists C D C.�; c1; c2/ � 1 such
that

.1C c1n/
c2 � C�n; n � 0:

For some J � 1 and � to be fixed further, we may thus write

� �e� WD CJ
JY

jD1
.�bj/

�j
Y

j>J

.1C c1�j/
c2b

�j

j :

Since kbk`1 < 1 we can take � > 1 such that � WD �kbk`1 < 1. By factorization,
we find that

X

�2F
eq
� D CJq

0

@
JY

jD1

0

@
X

n�0
�qn

1

A

1

A

0

@
Y

j>J

0

@
X

n�0
.1C c1n/

qc2bnq
j

1

A

1

A :

The first product is bounded by .1 � �q/�J . Each factor in the second product is
a converging series which is bounded by 1 C cbq

j for some c > 0 that depends on
c1, c2 and kbk`1 . It follows that this second product converges. Therefore .e�/�2F
belongs to `q.F /.
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Finally, we show that e� is monotone nonincreasing provided that J is chosen
large enough. It suffices to show that e�Cej � e� for all � 2 F and for all j � 1
where

ej WD .0; : : : ; 0; 1; 0; : : : /;

is the Kronecker sequence of index j. When j � J this is obvious since
e�Cej D �bje� � �e� �e� . When j > J, we have

e�Ceje�1
� D bj

�
1C c1.�j C 1/

1C c1�j

	c2

:

Noticing that the sequence an WD
�
1Cc1.nC1/
1Cc1n

�c2
converges toward 1 and is therefore

bounded, and that bj tends to 0 as j ! 1, we find that for J sufficiently large, the
right-hand side in the above equation is bounded by 1 for all � and j > J.

ut
From Lemma 3, by applying Theorem 3 with r D 1 or r D 2, we obtain the

following result.

Theorem 5 If (22) holds with .��1
j /j � 1 2 `q.N/ for some 0 < q < 1 and �j > 1

for all j, then

ku � u�nkL2.U;V/ � Cn�s; s WD 1

q
;

where u�n is the truncated Legendre series and �n is any downward closed set
corresponding to the n largestb� where � WD b�ˇ.�/. If q < 2, we also have

ku � u�nkL1.U;V/ � Cn�s; s WD 1

q
� 1

2
;

with �n any downward closed set corresponding to the n largestb� where � WD
b�ˇ.�/2, with b WD ��1

j /j � 1.

Finally, in the case of the Hermite coefficients, which corresponds to the weight

� WD
Y

j � 1

 
rX

lD0

 
�j

l

!
b�2l

j

!�1=2
; (30)

we can establish a similar summability result.

Lemma 4 For any 0 < q < 1 and any integer r � 1 such that q > 2
r , we have

b 2 `q.N/ H) .�/�2F 2 `q.F /;
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where � is given by (30). In addition, for any integer r � 0, the sequence .�/�2F
is monotone nonincreasing.

Proof For any � 2 F and any k � 1 we have

�Cek D
 

rX

lD0

 
�k C 1

l

!
b�2l

k

!�1=2Y

j�1
j¤k

 
rX

lD0

 
�j

l

!
b�2l

j

!�1=2

�
 

rX

lD0

 
�k

l

!
b�2l

k

!�1=2Y

j�1
j¤k

 
rX

lD0

 
�j

l

!
b�2l

j

!�1=2
D �;

and therefore the sequence .�/�2F is monotone nonincreasing.
Now we check that .�/�2F 2 `q.F /, using the factorization

X

�2F
q
� D

Y

j � 1

X

n�0

 
rX

lD0

 
n

l

!
b�2l

j

!�q=2

�
Y

j � 1

X

n�0

 
n

r ^ n

!�q=2

bq.r^n/
j : (31)

where the inequality follows from the fact that the value l D n ^ r WD minfn; rg is
contained in the sum.

The j-th factor Fj in the rightmost product in (31) may be written as

Fj D 1C bq
j C � � � C b.r�1/q

j C Cr;qbrq
j ;

where

Cr;q WD
X

n�r

 
n

r

!�q=2

D .rŠ/q=2
X

n�0



.n C 1/ � � � .n C r/

��q=2
< 1; (32)

since we have assumed that q > 2=r. This shows that each Fj is finite. If b 2 `q.N/,
there exists an integer J � 0 such that bj < 1 for all j > J. For such j, we can bound
Fj by 1C .Cr;q C r � 1/bq

j , which shows that the product converges. ut
From this lemma, and by application of Theorem 3 with the value r D 2, we

obtain the following result for the Hermite series.

Theorem 6 If (28) holds with .��1
j /j � 1 2 `q.N/ for some 0 < q < 1, then

ku � u�nkL2.U;V/ � Cn�s; s WD 1

q
;

where u�n is the truncated Hermite series and �n is a downward closed set
corresponding to the n largest � given by (30).
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In summary, we have established convergence rates for approximation by
downward closed polynomial spaces of the solutionmap (2) associated to the elliptic
PDE (3) with affine or lognormal parametrization. The conditions are stated in terms
of the control on the L1 norm of

P
j � 1 �jj jj, where the �j have a certain growth

measured by the `q summability of the sequence b D .bj/j � 1 D .��1
j /j � 1. This is a

way to quantify the decay of the size of the  j, also taking their support properties
into account, and in turn to quantify the anisotropic dependence of u.y/ on the
various coordinates yj. Other similar results have been obtained with different PDE
models, see in particular [12]. In the above results, the polynomial approximants are
constructed by truncation of infinite series. The remainder of the paper addresses the
construction of downward closed polynomial approximants from evaluations of the
solution map at m points f y1; : : : ; ymg 2 U, and discusses the accuracy of these
approximants.

3 Interpolation

3.1 Sparse Interpolation by Downward Closed Polynomials

Interpolation is one of the most standard processes for constructing polynomial
approximations based on pointwise evaluations. Given a downward closed set
� � F of finite cardinality, and a set of points

� � U; #.� / D #.�/;

we would like to build an interpolation operator I�, that is, I�u 2 V� is uniquely
characterized by

I�u. y/ D u. y/; y 2 �;

for any V-valued function u defined on U.
In the univariate case, it is well known that such an operator exists if and only if

� is a set of pairwise distinct points, and that additional conditions are needed in
the multivariate case. Moreover, since the set � may come from a nested sequence
.�n/n�1 as discussed in Sect. 2, we are interested in having similar nestedness
properties for the corresponding sequence .�n/n�1, where

#.�n/ D #.�n/ D n:

Such a nestedness property allows us to recycle the n evaluations of u which have
been used in the computation of I�n u, and use only one additional evaluation for the
next computation of I�nC1

u.
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It turns out that such hierarchical interpolants can be constructed in a natural
manner by making use of the downward closed structure of the index sets �n. This
construction is detailed in [7] but its main principles can be traced from [23]. In
order to describe it, we assume that the parameter domain is of either form

U D Œ�1; 1�d or Œ�1; 1�N;

with the convention that d D 1 in the second case. However, it is easily checked
that the construction can be generalized in a straightforward manner to any domain
with Cartesian product form

U D �
k�1Jk;

where the Jk are finite or infinite intervals.
We start from a sequence of pairwise distinct points

T D .tk/k�0 � Œ�1; 1�:

We denote by Ik the univariate interpolation operator on the space Vk WD V ˝ Pk

associated with the k-section ft0; : : : ; tkg of this sequence, that is,

Iku.ti/ D u.ti/; i D 0; : : : ; k;

for any V-valued function u defined on Œ�1; 1�. We express Ik in the Newton form

Iku D I0u C
kX

lD1
�lu; �l WD Il � Il�1; (33)

and set I�1 D 0 so that we can also write

Iku D
kX

lD0
�lu:

Obviously the difference operator�k annihilates the elements of Vk�1. In addition,
since �ku.tj/ D 0 for j D 0; : : : ; k � 1, we have

�ku.t/ D ˛kBk.t/;

where

Bk.t/ WD
k�1Y

lD0

t � tl
tk � tl

:



Multivariate Approximation in Downward Closed Polynomial Spaces 255

The coefficient ˛k 2 V can be computed inductively, since it is given by

˛k D ˛k.u/ WD u.tk/� Ik�1u.tk/;

that is, the interpolation error at tk when using Ik�1. Setting

B0.t/ WD 1;

we observe that the system fB0; : : : ;Bkg is a basis for Pk. It is sometimes called a
hierarchical basis.

In the multivariate setting, we tensorize the grid T, by defining

y� WD .t�j/j � 1 2 U; � 2 F :

We first introduce the tensorized operator

I� WD
O

j � 1

I�j ;

recalling that the application of a tensorized operator ˝j � 1Aj to a multivariate
function amounts in applying each univariate operator Aj by freezing all variables
except the jth one, and then applying Aj to the unfrozen variable. It is readily seen
that I� is the interpolation operator on the tensor product polynomial space

V� D V ˝ P�; P� WD
O

j � 1

P�j ;

associated to the grid of points

�� D �
j � 1

ft0; : : : ; t�jg:

This polynomial space corresponds to the particular downward closed index set of
rectangular shape

� D R� WD fe� W e� � �g:

Defining in a similar manner the tensorized difference operators

�� WD
O

j � 1

��j ;



256 A. Cohen and G. Migliorati

we observe that

I� D
O

j � 1

I�j D
O

j � 1

.

�jX

lD0
�l/ D

X

e�2R�

�e�:

The following result from [7] shows that the above formula can be generalized to
any downward closed set in order to define an interpolation operator. We recall its
proof for sake of completeness.

Theorem 7 Let � � F be a finite downward closed set, and define the grid

�� WD f y� W � 2 �g:
Then, the interpolation operator onto V� for this grid is defined by

I� WD
X

�2�
��: (34)

Proof From the downward closed set property, V� � V� for all � 2 �. Hence the
image of I� is contained in V�. With I� defined by (34), we may write

I�u D I�u C
X

e�2�;e�Š�
�e� u;

for any � 2 �. Since y� 2 �� , we know that

I�u. y�/ D u. y�/:

On the other hand, ife� Š �, this means that there exists a j � 1 such thate� j > �j.
For this j we thus have�e� u.y/ D 0 for all y 2 U with the jth coordinate equal to t�j

by application of ��j in the jth variable, so that

�e� u. y�/ D 0:

The interpolation property I�u.y�/ D u.y�/ thus holds, for all � 2 �. ut
The decomposition (34) should be viewed as a generalization of the Newton

form (33). In a similar way, its terms can be computed inductively: if � D e� [ f�g
where e� is a downward closed set, we have

��u D ˛�B�;

where

B�. y/ WD
Y

j � 1

B�j. yj/;
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and

˛� D ˛�.u/ WD u. y�/ � Ie� u. y�/:

Therefore, if .�n/n�1 is any nested sequence of downward closed index sets, we can
compute I�n by n iterations of

I�i u D I�i�1u C ˛�i B�i ;

where � i 2 �i is such that �i D �i�1 [ f� ig.
Note that .B�/�2� is a basis of P� and that any f 2 V� has the unique

decomposition

f D
X

�2�
˛�B�;

where the coefficients ˛� D ˛�. f / 2 V are defined by the above procedure. Also
note that ˛�. f / does not depend on the choice of � but only on � and f .

3.2 Stability and Error Estimates

The pointwise evaluations of the function u could be affected by errors, as modeled
by (6) and (7). The stability of the interpolation operator with respect to such
perturbations is quantified by the Lebesgue constant, which is defined by

L� WD sup
kI� f kL1.U;V/

k f kL1.U;V/
;

where the supremum is taken over the set of all V-valued functions f defined
everywhere and uniformly bounded over U. It is easily seen that this supremum
is in fact independent of the space V , so that we may also write

L� WD sup
kI� f kL1.U/

k f kL1.U/
;

where the supremum is now taken over real-valued functions. Obviously, we have

ku � I�.u C �/kL1.U;V/ � ku � I�ukL1.U;V/ C L�";

where " is the noise level from (7).
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The Lebesgue constant also allows us to estimate the error of interpolation ku �
I�ukL1.U;V/ for the noiseless solution map in terms of the best approximation error
in the L1 norm: for any u 2 L1.U;V/ and anyeu 2 V� we have

ku � I�ukL1.U;V/ � ku �eukL1.U;V/ C kI�eu � I�ukL1.U;V/;

which by infimizing overeu 2 V� yields

ku � I�ukL1.U;V/ � .1C L�/ inf
eu2V�

ku �eukL1.U;V/:

We have seen in Sect. 2 that for relevant classes of solution maps y 7! u.y/, there
exist sequences of downward closed sets .�n/n�1 with #.�n/ D n, such that

inf
eu2V�n

ku �eukL1.U;V/ � Cn�s; n � 1;

for some s > 0. For such sets, we thus have

ku � I�n ukL1.U;V/ � C.1C L�n/n
�s: (35)

This motivates the study of the growth of L�n as n ! 1.
For this purpose, we introduce the univariate Lebesgue constants

Lk WD sup
kIkf kL1.Œ�1;1�/
k f kL1.Œ�1;1�/

:

Note that L0 D 1. We also define an analog quantity for the difference operator

Dk WD sup
k�kf kL1.Œ�1;1�/
k f kL1.Œ�1;1�/

:

In the particular case of the rectangular downward closed sets � D R� , since I� D
I� D ˝j � 1I�j , we have

LR� D
Y

j � 1

L�j :

Therefore, if the sequence T D .tk/k�0 is such that

Lk � .1C k/� ; k � 0; (36)
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for some � � 1, we find that

LR� �
Y

j � 1

.1C �j/
� D .#.R�//� ;

for all � 2 F .
For arbitrary downward closed sets �, the expression of I� shows that

L� �
X

�2�

Y

j � 1

D�j :

Therefore, if the sequence T D .tk/k�0 is such that

Dk � .1C k/� ; k � 0; (37)

we find that

L� �
X

�2�

Y

j � 1

.1C �j/
� D

X

�2�
.#.R�//� �

X

�2�
.#.�//� D .#.�//�C1:

The following result from [7] shows that this general estimate is also valid under the
assumption (36) on the growth of Lk.

Theorem 8 If the sequence T D .tk/k�0 is such that (36) or (37) holds for some
� � 1, then

L� � .#.�//�C1;

for all downward closed sets �.

One noticeable feature of the above result is that the bound on L� only depends
on #.�/, independently of the number of variables, which can be infinite, as well as
of the shape of �.

We are therefore interested in univariate sequences T D .tk/k�0 such that Lk and
Dk have moderate growth with k. For Chebyshev or Gauss-Lobatto points, given by

Ck WD
�
cos

�
2l C 1

2k C 2



	
W l D 0; : : : ; k

�
and Gk WD

�
cos

�
l

k



	
W l D 0; : : : ; k

�
;

it is well known that the Lebesgue constant has logarithmic growth Lk 	 ln.k/,
thus slower than algebraic. However these points are not the k section of a single
sequence T, and therefore they are not convenient for our purposes. Two examples
of univariate sequences of interest are the following.
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• The Leja points: from an arbitrary t0 2 Œ�1; 1� (usually taken to be 1 or 0), this
sequence is recursively defined by

tk WD argmax

(
k�1Y

lD0
jt � tlj W t 2 Œ�1; 1�

)
:

Note that this choice yields hierarchical basis functions Bk that are uniformly
bounded by 1. Numerical computations of Lk for the first 200 values of k
indicates that the linear bound

Lk � 1C k; (38)

holds. Proving that this bound, or any other algebraic growth bound, holds for all
values of k � 0 is currently an open problem.

• The<-Leja points: they are the real part of the Leja points defined on the complex
unit disc fjzj � 1g, taking for example e0 D 1 and recursively setting

ek WD argmax

(
k�1Y

lD0
je � elj W jej � 1

)
:

These points have the property of accumulating in a regular manner on the unit
circle according to the so-called Van der Corput enumeration [4]. It is proven in
[5] that the linear bound (38) holds for the Lebesgue constant of the complex
interpolation operator on the unit disc associated to these points. The sequence
of real parts

tk WD <.ek/;

is defined after eliminating the possible repetitions corresponding to ek D el for
two different values of k D l. These points coincide with the Gauss-Lobatto
points for values of k of the form 2n C 1 for n � 0. A quadratic bound

Dk � .1C k/2;

is established in [6].

If we use such sequences, application of Theorem 8 gives bounds of the form

L� � .#.�//1C� ;

for example with � D 2 when using the <-Leja points, or � D 1 when using the
Leja points provided that the conjectured bound (38) holds. Combining with (35),
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we obtain the convergence estimate

ku � I�n ukL1.U;V/ � Cn�.s�1��/;

which reveals a serious deterioration of the convergence rate when using interpola-
tion instead of truncated expansions.

However, for the parametric PDE models discussed in Sect. 2, it is possible to
show that this deterioration actually does not occur, based on the following lemma
which relates the interpolation error to the summability of coefficient sequences in
general expansions of u.

Lemma 5 Assume that u admits an expansion of the type (13), where k��kL1.U/ �
1 which is unconditionally convergent towards u in L1.U;V/. Assume in addition
that y 7! u.y/ is continuous from U equipped with the product topology toward V.
If the univariate sequence T D .tk/k�0 is such that that (36) or (37) holds for some
� � 1, then, for any downward closed set �,

ku � I�ukL1.U;V/ � 2
X

�…�

.�/ku�kV ; 
.�/ WD

Y

j � 1

.1C �j/
�C1: (39)

Proof The unconditional convergence of (13) and the continuity of u with respect
to the product topology allow us to say that the equality in (13) holds everywhere in
U. We may thus write

I�u D I�

 
X

�2F
u���

!
D
X

�2F
u�I��� D

X

�2�
u��� C

X

�…�
u�I���;

where we have used that I��� D �� for every � 2 � since �� 2 P�. For the second
sum on the right-hand side, we observe that for each � … �,

I��� D
X

e�2�
�e� �� D

X

e�2�\R�

�e� �� D I�\R���;

since �e� annihilates P� whenevere� 6� �. Therefore

u � I�u D
X

� 62�
u�.I � I�\R� /��;

where I stands for the identity operator. This implies

ku � I�ukL1.U;V/ �
X

� 62�
.1C L�\R� /ku�kV � 2

X

� 62�
L�\R�ku�kV :
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Since (36) or (37) holds, we obtain from Theorem 8 that

L�\R� � .#.�\ R�//
�C1 � .#.R�//

�C1 D 
.�/;

which yields (39). ut
We can apply the above lemma with the Taylor series (18) or the renormalized

Legendre series (20). This leads us to analyze the `1 tail of the sequence .c�/�2F
where c� is either 
.�/kt�kV or 
.�/kew�kV . If (22) holds, we know from Theorem 1
that this sequence satisfies the bound

X

�2F
.!�c�/

2 < 1;

where !� is either 
.�/�1�� or 
.�/�1ˇ.�/�2�� . Since 
.�/ has algebraic growth
similar to ˇ.�/, application of Lemma 3 and of Theorem 3 with the value r D 1,
leads to the following result.

Theorem 9 If (22) holds with .��1
j /j � 1 2 `q.N/ for some 0 < q < 2 and �j > 1

for all j, then

ku � I�n ukL1.U;V/ � Cn�s; s WD 1

q
� 1

2
;

where �n is any downward closed set corresponding to the n largestb� where � is
either 
.�/b� or 
.�/ˇ.�/2b� , where b WD .��1

j /j � 1.

4 Discrete Least Squares Approximations

4.1 Discrete Least Squares on V-Valued Linear Spaces

Least-squares fitting is an alternative approach to interpolation for building a poly-
nomial approximation of u from V�. In this approach we are given m observations
u1; : : : ; um of u at points y1; : : : ; ym 2 U 
 R

d where m � n D #.�/.
We first discuss the least-squares method in the more general setting of V-valued

linear spaces,

Vn WD V ˝ Yn;

where Yn is the space of real-valued functions defined everywhere on U such that
dim.Yn/ D n. In the next section, we discuss more specifically the case where
Yn D P�. Here we study the approximation error in the L2.U;V; d�/ norm for
some given probability measure d�, when the evaluation points yi are independent
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and drawn according to this probability measure. For notational simplicity we use
the shorthand

k � k WD k � kL2.U;V;d�/:

The least-squares method selects the approximant of u in the space Vn as

uL WD argmin
eu2Vn

1

m

mX

iD1
keu. yi/� uik2V :

In the noiseless case where ui WD u.yi/ for any i D 1; : : : ;m, this also writes

uL D argmin
eu2V�

ku �eukm; (40)

where the discrete seminorm is defined by

k f km WD
 
1

m

mX

iD1
k f . yi/k2V

!1=2
:

Note that k f k2m is an unbiased estimator of k f k2 since we have

E.k f k2m/ D k f k2:

Let f�1; : : : ; �ng denote an arbitrary L2.U; d�/ orthonormal basis of the space Yn.
If we expand the solution to (40) as

Pn
jD1 cj�j, with cj 2 V , the V-valued vector

c D .c1; : : : ; cn/
t is the solution to the normal equations

Gc D d; (41)

where the matrix G has entries

Gj;k D 1

m

mX

iD1
�j. yi/�k. yi/;

and where the V-valued data vector d D .d1; : : : ; dn/
t is given by

dj WD 1

m

mX

iD1
ui�j. yi/:

This linear system always has at least one solution, which is unique when G is
nonsingular.WhenG is singular, we may define uL as the unique minimal `2.Rn;V/
norm solution to (41).
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In the subsequent analysis, we sometimes work under the assumption of a known
uniform bound

kukL1.U;V/ � �: (42)

We introduce the truncation operator

z 7! T� .z/ WD
(

z; if kzkV � �;
z

kzkV
; if kzkV > �;

and notice that it is a contraction: kT� .z/� T� .ez/kV � kz �ezkV for any z;ez 2 V . The
truncated least-squares approximation is defined by

uT WD T� ı uL:

Note that, in view of (42), we have ku.y/�uT.y/kV � ku.y/�uL.y/kV for any y 2 U
and therefore

ku � uTk � ku � uLk:

Note that the random matrix G concentrates toward its expectation which is the
identity matrix I as m ! 1. In other words, the probability that G is ill-
conditioned becomes very small as m increases. The truncation operator aims at
avoiding instabilities which may occur when G is ill-conditioned. As an alternative
proposed in [15], we may define for some given A > 1 the conditioned least-squares
approximation by

uC WD uL; if cond.G/ � A; uC WD 0; otherwise;

where cond.G/ WD �max.G/=�min.G/ is the usual condition number.
The property that kG � Ik2 � ı for some 0 < ı < 1 amounts to the norm

equivalence

.1 � ı/k f k2 � k f k2m � .1C ı/k f k2; f 2 Vn:

It is well known that if m � n is too close to n, least-squares methods may
become unstable and inaccurate for most sampling distributions. For example, if
U D Œ�1; 1� and Yn D Pn�1 is the space of algebraic polynomials of degree n � 1,
then with m D n the estimator coincides with the Lagrange polynomial interpolation
which can be highly unstable and inaccurate, in particular for equispaced points.
Therefore, m should be sufficiently large compared to n for the probability that G
is ill-conditioned to be small. This trade-off between m and n has been analyzed in
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[11], using the function

y 7! kn. y/ WD
nX

jD1
j�j. y/j2;

which is the diagonal of the integral kernel of the L2.U; d�/ projector on Yn. This
function depends on d�, but not on the chosen orthonormal basis. It is strictly
positive in U under minimal assumptions on the orthonormal basis, for example if
one element of the basis is the constant function over all U. Obviously, the function
kn satisfies

Z

U
kn d� D n:

We define

Kn WD kknkL1.U/ � n:

The following results for the least-squares method with noiseless evaluations were
obtained in [8, 11, 15, 28] for real-valued functions, however their proof extends
in a straightforward manner to the present setting of V-valued functions. They are
based on a probabilistic bound for the event kG� Ik2 > ı using the particular value
ı D 1

2
, or equivalently the value A D 1Cı

1�ı D 3 as a bound on the condition number
of G.

Theorem 10 For any r > 0, if m and n satisfy

Kn � 
m

lnm
; with  WD .r/ D 3 ln.3=2/� 1

2C 2r
; (43)

then the following hold.

(i) The matrix G satisfies the tail bound

Pr

�
kG � Ik2 > 1

2

�
� 2m�r:

(ii) If u satisfies (42), then the truncated least-squares estimator satisfies, in the
noiseless case,

E.ku � uTk2/ � .1C �.m// inf
eu2Vn

ku �euk2 C 8�2m�r;

where �.m/ WD 4
ln.m/ ! 0 as m ! 1, and  is as in (43).
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(iii) The conditioned least-squares estimator satisfies, in the noiseless case,

E.ku � uCk2/ � .1C �.m// inf
eu2Vn

ku �euk2 C 2kuk2m�r;

where �.m/ is as in (ii).
(iv) If u satisfies (42), then the estimator uE 2 fuL; uT ; uCg satisfies, in the noiseless

case,

ku � uEk � .1C p
2/ inf
eu2Vn

ku �eukL1.U;V/; (44)

with probability larger than 1 � 2m�r.

In the case of noisy evaluationsmodeled by (6)–(7), the observations are given by

ui D u. yi/C �. yi/: (45)

The following result from [8] shows that (44) holds up to this additional perturba-
tion.

Theorem 11 For any r > 0, if m and n satisfy condition (43) and u satisfies (42),
then the estimator uE 2 fuL; uT ; uCg in the noisy case (45) satisfies

ku � uEk � .1C p
2/ inf
eu2Vn

ku �eukL1.U;V/ C p
2";

with probability larger than 1 � 2n�r, where " is the noise level in (7).

Similar results, with more general assumptions on the type of noise, are proven
in [11, 15, 29].

4.2 Downward Closed Polynomial Spaces and Weighted Least
Squares

Condition (43) shows that Kn gives indications on the number m of observations
required to ensure stability and accuracy of the least-squares approximation. In order
to understand how demanding this condition is with respect to m, it is important to
have sharp upper bounds for Kn. Such bounds have been proven when the measure
d� on U D Œ�1; 1�d has the form

d� D C
dO

jD1
.1 � yj/

�1.1C yj/
�2dyj; (46)
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where �1; �2 > �1 are real shape parameters and C is a normalization constant
such that

R
U d� D 1. Sometimes (46) is called the Jacobi measure, because the

Jacobi polynomials are orthonormal in L2.U; d�/. Remarkable instances of the
measure (46) are the uniform measure, when �1 D �2 D 0, and the Chebyshev
measure, when �1 D �2 D � 1

2
.

When Yn D P� is a multivariate polynomial space and � is a downward closed
multi-index set with #.�/ D n, it is proven in [8, 27] that Kn satisfies an upper
bound which only depends on n and on the choice of the measure (46) through the
values of �1 and �2.

Lemma 6 Let d� be the measure defined in (46). Then it holds

Kn �
(

n
ln3
ln 2 ; if �1 D �2 D � 1

2
;

n2maxf�1;�2gC2; if �1; �2 2 N0:
(47)

A remarkable property of both algebraic upper bounds in (47) is that the exponent
of n is independent of the dimension d, and of the shape of the downward closed
set �. Both upper bounds are sharp in the sense that equality holds for multi-
index sets of rectangular type � D R� corresponding to tensor product polynomial
spaces.

As an immediate consequence of Theorem 10 and Lemma 6, we have the next
corollary.

Corollary 1 For any r > 0, with multivariate polynomial spaces P� and �

downward closed, if m and n satisfy

m

lnm
� 

(
n

ln 3
ln 2 ; if �1 D �2 D � 1

2
;

n2maxf�1;�2gC2; if �1; �2 2 N0;
(48)

with  D .r/ as in (43), then the same conclusions of Theorem 10 hold true.

Other types of results on the accuracy of least squares have been recently
established in [14], under conditions of the same type as (48).

In some situations, for example when n is very large, the conditions (48)
might require a prohibitive number of observations m. It is therefore a legitimate
question to ask whether there exist alternative approaches with less demanding
conditions than (48) between m and n. At best, we would like that m is of order
only slightly larger than n, for example by a logarithmic factor. In addition, the
above analysis does not apply to situations where the basis functions �k are
unbounded, such as when using Hermite polynomials in the expansion (21). It
is thus desirable to ask for the development of approaches that also cover this
case.

These questions have an affirmative answer by considering weighted least-
squares methods, as proposed in [15, 18, 21]. In the following, we survey some
results from [15]. For the space Vn D V ˝ Yn, the weighted least-squares
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approximation is defined as

uW WD argmin
eu2Vn

1

m

mX

iD1
wikeu. yi/ � uik2V ;

for some given choice of weights wi � 0. This estimator is again computed by
solving a linear system of normal equations now with the matrix G with entries

Gj;k D 1

m

mX

iD1
w. yi/�j. yi/�k. yi/:

Of particular interest to us are weights of the form

wi D w. yi/;

where w is some nonnegative function defined on U such that

Z

U
w�1 d� D 1: (49)

We then denote by d� the probability measure

d� WD w�1d�; (50)

and we draw the independent points y1; : : : ; ym from d� . The case w � 1 and
d� D d� corresponds to the previously discussed standard (unweighted) least-
squares estimator uL. As previously done for uL, we associate to uW a truncated
estimator uT and a conditioned estimator uC, by replacing uL with uW in the
corresponding definitions.

Let us introduce the function

y 7! kn;w. y/ WD
nX

jD1
w. y/j�j. y/j2;

where once again f�1; : : : ; �ng is an arbitrary L2.U; d�/ orthonormal basis of the
space Yn. Likewise, we define

Kn;w WD kkn;wkL1.U/:

The following result, established in [15] for real-valued functions, extends Theo-
rem 10 to this setting. Its proof in the V-valued setting is similar.
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Theorem 12 For any r > 0, if m and n satisfy

m

lnm
�  Kn;w; with  WD .r/ D 3 ln.3=2/� 1

2C 2r
;

then the same conclusions of Theorem 10 hold true with uL replaced by uW.

If we now choose

w. y/ D nPn
jD1 j�j. y/j2 ; (51)

that satisfies condition (49) by construction, then the measure defined in (50) takes
the form

d� D
Pn

jD1 j�j. y/j2
n

d�: (52)

The choice (51) also gives

Kn;w D kkn;wkL1.U/ D n;

and leads to the next result, as a consequence of the previous theorem.

Theorem 13 For any r > 0, if m and n satisfy

m

lnm
�  n; with  WD .r/ D 3 ln.3=2/� 1

2C 2r
; (53)

then the same conclusions of Theorem 10 hold true with uL replaced by uW, with w
given by (51) and the weights taken as wi D w.yi/.

Remark 2 The above Theorem 13 ensures stability and accuracy of the weighted
least-squares approximation, under the minimal condition that m is linearly propor-
tional to n, up to a logarithmic factor. The fact that we may obtain near optimal
approximation in L2 with this amount of sample is remarkable and quite specific
to the randomized sampling setting, as it was also observed in similar types of
results obtained in the context of information based complexity [22, 32–34, 37].
For example, in the paper [37], the authors obtain the optimal L2 approximation
rate for specific classes of functions that are described by reproducing kernel
Hilbert spaces. The recent results from [22] are perhaps closer to our above results
since the proposed method uses the same optimal sampling measure associated
to the weight (51) as in [15]. The estimates obtained in [22] compare the error
of the randomized algorithm with the approximation numbers of the embedding
of the RKHS in L2, assuming a certain polynomial decay for these numbers.
In Theorem 13, we do not assume any particular form of decay of the best
approximation error.
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Clearly the above Theorem 13 is an advantage of weighted least squares com-
pared to standard least squares, since condition (43) is more demanding than (53) in
terms of the number of observations m.

However, this advantage comes with some drawbacks that we now briefly recall,
see [15] for an extensive description. In general (50) and (52) are not product
measures, even if d� is one. Therefore, the first drawback of using weighted least
squares concerns the efficient generation of independent samples from multivariate
probability measures, whose computational cost could be prohibitively expensive,
above all when the dimension d is large. In some specific settings, for example
downward closed polynomial spaces Yn D P� with #.�/ D n, and when d�
is a product measure, this drawback can be overcome. We refer to [15], where
efficient sampling algorithms have been proposed and analyzed. For any m and
any downward closed set �, these algorithms generate m independent samples
with proven bounds on the required computational cost. The dependence on the
dimension d and m of these bounds is linear. For the general measure (50) the
efficient generation of the sample is a nontrivial task, and remains a drawback of
such an approach.

The second drawback concerns the use of weighted least squares in a hierarchical
context, where we are given a nested sequence�1 � : : : � �n of downward closed
sets, instead of a single such set �. Since the measure (52) depends on n, the sets
.�n/n�1 are associated to different measures .d�n/n�1. Hence, recycling samples
from the previous iterations of the adaptive algorithm is not as straightforward as in
the case of standard least squares.

As a final remark, let us stress that the above results of Theorems 12 and 13 hold
for general approximation spaces Yn other than polynomials.

5 Adaptive Algorithms and Extensions

5.1 Selection of Downward Closed Polynomial Spaces

The interpolation and least-squares methods discussed in Sects. 3 and 4 allow us
to construct polynomial approximations in V� D V ˝ P� of the map (2) from its
pointwise evaluations, for some given downward closed set �. For these methods,
we have given several convergence results in terms of error estimates either in
L1.U;V/ or L2.U;V; d�/. In some cases, these estimates compare favorably with
the error of best approximation mineu2V� ku �euk measured in such norms.

A central issue which still needs to be addressed is the choice of the downward
closed set �, so that this error of best approximation is well behaved, for a given
map u. Ideally, for each given n, we would like to use the set

�n D argmin
�2Dn

min
eu2V�

ku �euk;
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where Dn is the family of all downward closed sets � of cardinality n. However
such sets �n are not explicitly given to us, and in addition the resulting sequence
.�n/n�1 is generally not nested.

Concrete selection strategies aim to produce “suboptimal yet good” nested
sequences .�n/n�1 different from the above. Here, an important distinction should
be made between nonadaptive and adaptive selection strategies.

In nonadaptive strategies, the selection of�n is made in an a-priori manner, based
on some available information on the given problem. The results from Sect. 2.3 show
that, for relevant instances of solution maps associated to elliptic parametric PDEs,
there exist nested sequences .�n/n�1 of downward closed sets such that #.�n/ D n
and mineu2V�n

ku �euk decreases with a given convergence rate n�s as n ! 1. In
addition, these results provide constructive strategies for building the sets �n, since
these sets are defined as the indices associated to the n largestb� WD maxe��� e� like
in Theorem 5, or directly to the n largest � like in Theorems 4 and 6, and since the
� are explicitly given numbers.

In the case where we build the polynomial approximation by interpolation,
Theorem 9 shows that a good choice of �n is produced by taking � to be either

.�/b� or 
.�/ˇ.�/2b� where b D .��1

j /j � 1 is such that (22) holds. The choice of
such a sequence � depends both on the size and support properties of the functions
 j. For example, when the functions  j have nonoverlapping support, one natural
choice is to take

�j D min
x2supp. j/

Na.x/� Qr
j j.x/j : (54)

We refer to [1] for the choices of sequences � in more general situations, for example
in the case where . j/j � 1 is a wavelet basis.

In the case where we build the polynomial approximation by least-squares
methods, the various results from Sect. 4 show that under suitable assumptions, the
error is nearly as good as that of best approximation in L2.U;V; d�/ with respect
to the relevant probability measure. In the affine case, Theorem 5 shows that a good
choice of �n is produced by taking � to be b�ˇ.�/ where b D .��1

j /j � 1 is such
that (22) holds. In the lognormal case Theorem 6 shows that a good choice of �n

is produced by taking � to be given by (30) where b D .��1
j /j � 1 is such that (28)

holds.
Let us briefly discuss the complexity of identifying the downward closed set �n

associated to the n largest b� . For this purpose, we introduce for any downward
closed set � its set of neighbors defined by

N.�/ WD f� 2 F n� such that � [ f�g is downward closedg:

We may in principle define �n D f�1; : : : ; �ng by the following induction.
• Take �1 D 0F as the null multi-index.
• Given �k D f�1; : : : ; �kg, choose a �kC1 maximizingb� over � 2 N.�k/.
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In the finite-dimensional case d < 1, we observe that N.�k/ is contained in the
union of N.�k�1/ with the set consisting of the indices

�k C ej; j D 1; : : : ; d;

where ej is the Kronecker sequence with 1 at position j. As a consequence, since
the values of theb� have already been computed for � 2 N.�k�1/, the step k of the
induction requires at most d evaluations ofb� , and therefore the overall computation
of �n requires at most nd evaluations.

In the infinite-dimensional case d D 1, the above procedure cannot be
practically implemented, since the set of neighbors has infinite cardinality. This
difficulty can be circumvented by introducing a priority order among the variables,
as done in the next definitions.

Definition 4 A monotone nonincreasing positive sequence .c�/�2F is said to be
anchored if and only if

l � j H) cej � cel :

A finite downward closed set � is said to be anchored if and only if

ej 2 � and l � j H) el 2 �;

where el and ej are the Kronecker sequences with 1 at position l and j, respectively.

Obviously, if .c�/�2F is anchored, one of the sets �n corresponding to its n
largest values is anchored. It is also readily seen that all sequences .b�/�2F that are
used in Theorems 4, 5, 6 or 9 for the construction of�n are anchored, provided that
the sequence b D .��1

j /j � 1 is monotone nonincreasing. This is always the case up
to a rearrangement of the variables. For any anchored set �, we introduce the set of
its anchored neighbors defined by

eN.�/ WD f� 2 N.�/ W �j D 0 if j > j.�/C 1g; (55)

where

j.�/ WD maxf j W �j > 0 for some � 2 �g:

We may thus modify in the following way the above induction procedure.

• Take �1 D 0F as the null multi-index.
• Given �k D f�1; : : : ; �kg, choose a �kC1 maximizingb� over � 2 eN.�k/.

This procedure is now feasible in infinite dimension. At each step k the number of
active variables is limited by j.�k/ � k � 1, and the total number of evaluations of
b� needed to construct�n does not exceed 1C 2C � � � C .n � 1/ � n2=2.
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In adaptive strategies the sets �n are not a-priori selected, but instead they are
built in a recursive way, based on earlier computations. For instance, one uses the
previous set �n�1 and the computed polynomial approximation u�n�1 to construct
�n. If we impose that the sets �n are nested, this means that we should select an
index �n … �n�1 such that

�n WD �n�1 [ f�ng:

The choice of the new index �n is further limited to N.�n�1/ if we impose that the
constructed sets �n are downward closed, or to eN.�n�1/ if we impose that these
sets are anchored.

Adaptive methods are known to sometimes perform significantly better than
their nonadaptive counterpart. In the present context, this is due to the fact that
the a-priori choices of �n based on the sequences � may fail to be optimal. In
particular, the guaranteed rate n�s based on such choices could be pessimistic, and
better rates could be obtained by other choices. However, convergence analysis
of adaptive methods is usually more delicate. We next give examples of possible
adaptive strategies in the interpolation and least-squares frameworks.

5.2 Adaptive Selection for Interpolation

We first consider polynomial approximations obtained by interpolation as discussed
in Sect. 3. The hierarchical form

I�u D
X

�2�
˛�B�; (56)

may formally be viewed as a truncation of the expansion of u in the hierarchical
basis

X

�2F
˛�B�;

which however may not always be converging, in contrast to the series discussed in
Sect. 2. Nevertheless, we could in principle take the same view, and use for �n the
set of indices corresponding to the n largest terms of (56) measured in some given
metric Lp.U;V; d�/. This amounts in choosing the indices of the n largest w�k˛�kV ,
where the weight w� is given by

w� WD kB�kLp.U;d�/:
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This weight is easily computable when d� is a tensor product measure, such as the
uniform measure. In the case where p D 1 and if we use the Leja sequence, we
know that kB�kL1.U/ D 1 and therefore this amounts to choosing the largest k˛�kV .

This selection strategy is not practically feasible since we cannot afford this
exhaustive search over F . However, it naturally suggests the following adaptive
greedy algorithm, which has been proposed in [7].

• Initialize �1 WD f0Fg with the null multi-index.
• Assuming that �n�1 has been selected and that .˛�/�2�n�1 have been computed,

compute ˛� for � 2 N.�n�1/.
• Set

�n WD argmaxfw�k˛�kV W � 2 N.�n�1/g: (57)

• Define �n WD �n�1 [ f�ng.
In the case where p D 1 and if we use the Leja sequence, this strategy amounts

in picking the index �n that maximizes the interpolation error ku.y�/� I�n�1u.y�/kV

among all � in N.�n�1/. By the same considerations as previously discussed for
the a-priori selection of �n, we find that in the finite-dimensional case, the above
greedy algorithm requires at most dn evaluation after n steps. When working with
infinitely many variables .yj/j � 1, we replace the infinite set N.�n/ in the algorithm
by the finite set of anchored neighbors eN.�n/ defined by (55). Running n steps of
the resulting greedy algorithm requires at most n2=2 evaluations.

Remark 3 A very similar algorithm has been proposed in [19] in the different
context of adaptive quadratures, that is, for approximating the integral of u over
the domain U rather than u itself. In that case, the natural choice is to pick the new
index �n that maximizes j RU ��u d�j over N.�n/ or eN.�n/.

The main defect of the above greedy algorithm is that it may fail to converge,
even if there exist sequences .�n/n�1 such that I�n u converges toward u. Indeed, if
��u D 0 for a certain �, then no indexe� � � will ever be selected by the algorithm.
As an example, if u is of the form

u. y/ D u1. y1/u2. y2/;

where u1 and u2 are nonpolynomial smooth functions such that u2.t0/ D u2.t1/, then
the algorithm could select sets�n with indices � D .k; 0/ for k D 0; : : : ; n�1, since
the interpolation error at the point .tk; t1/ vanishes.

One way to avoid this problem is to adopt a more conservative selection rule
which ensures that all of F is explored, by alternatively using the rule (57), or
picking the multi-index � 2 eN.�n/ which has appeared at the earliest stage in the
neighbors of the previous sets�k. This is summarized by the following algorithm.

• Initialize �1 WD f0Fg with the null multi-index.
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• Assuming that �n�1 has been selected and that .˛�/�2�n�1 have been computed,
compute ˛� for � 2 eN.�n�1/.

• If n is even, set

�n WD argmaxfw�k˛�kV W � 2 eN.�n�1/g: (58)

• If n is odd, set

�n WD argminfk.�/ W � 2 eN.�n�1/g; k.�/ WD minfk W � 2 eN.�k/g:

• Define �n WD �n�1 [ f�ng.
Even with such modifications, the convergence of the interpolation error pro-

duced by this algorithm is not generally guaranteed.Understandingwhich additional
assumptions on u ensure convergence at some given rate, for a given univariate
sequence T such as Leja points, is an open problem.

Remark 4 Another variant to the above algorithms consists in choosing at the
iteration k more than one new index at a time within N.�k�1/ or eN.�k�1/. In
this case, we have nk WD #.�k/ � k. For example we may choose the smallest
subset of indices that retains a fixed portion of the quantity

P
�2�k�1

w�k˛�kV . This
type of modification turns out to be particularly relevant in the least-squares setting
discussed in the next section.

5.3 Adaptive Selection for Least Squares

In this section we describe adaptive selections in polynomial spaces, for the least-
squares methods that have been discussed in Sect. 4. We focus on adaptive selection
algorithms based on the standard (unweighted) least-squares method.

As a preliminary observation, it turns out that the most efficient available
algorithms for adaptive selection of multi-indices might require the selection of
more than one index at a time. Therefore, we adopt the notation that nk WD #.�k/ �
k, where the index k denotes the iteration in the adaptive algorithm.

As discussed in Sect. 4, stability and accuracy of the least-squares approximation
is ensured under suitable conditions between the number of samples and the
dimension of the approximation space, see e.g. condition (48). Hence, in the
development of reliable iterative algorithms, such conditions need to be satisfied
at each iteration. When d� is the measure (46) with shape parameters �1; �2,
condition (48) takes the form of

mk

lnmk
�  ns

k; (59)



276 A. Cohen and G. Migliorati

where mk denotes the number of samples at iteration k, and

s D
�
ln 3= ln 2; if �1 D �2 D � 1

2
;

2maxf�1; �2g C 2; if �1; �2 2 N0:

Since nk increases with k, the minimal number of samples mk that satisfies (59)
has to increase as well at each iteration. At this point, many different strategies
can be envisaged for progressively increasing mk such that (59) remains satisfied at
each iteration k. For example, one can double the number of samples by choosing
mk D 2mk�1 whenever (59) is broken, and keep mk D mk�1 otherwise. The sole
prescription for applying Corollary 1 is that the samples are independent and drawn
from d�. Since all the samples at all iterations are drawn from the same measure
d�, at the kth iteration, where mk samples are needed, it is possible to use mk�1
samples from the previous iterations, thus generating only mk � mk�1 new samples.

We may now present a first adaptive algorithm based on standard least squares.

• Initialize �1 WD f0Fg with the null multi-index.
• Assuming that�k�1 has been selected, compute the least-squares approximation

uL D
X

�2�k�1[N.�k�1/

c���

of u in V�k�1[N.�k�1/, using a number of samples mk that satisfies condition (59)
with nk D #.�k�1 [ N.�k�1//.

• Set

�k WD argmax
�2N.�k�1/

jc� j2: (60)

• Define �k WD �k�1 [ f�kg.
Similarly to the previously discussed interpolation algorithms, in the case of

infinitely many variables .yj/j � 1 the set N.�k/ is infinite and should be replaced
by the finite set of anchored neighborseN.�k/ defined by (55). As for interpolation,
we may define a more conservative version of this algorithm in order to ensure that
all of F is explored. For example, when k is even, we define �k according to (60),
and when k is odd we pick for �k the multi-index � 2 eN.�k/ which has appeared at
the earliest stage in the neighbors of the previous sets�k. The resulting algorithm is
very similar to the one presented for interpolation, with obvious modifications due
to the use of least squares.

As announced at the beginning, it can be advantageous to select more than one
index at a time from eN.�k�1/, at each iteration k of the adaptive algorithm. For
describing the multiple selection of indices from eN.�k�1/, we introduce the so-
called bulk chasing procedure. Given a finite set R 
 eN.�k�1/, a nonnegative
function E W R ! R and a parameter ˛ 2 .0; 1�, we define the procedure
bulk WD bulk.R;E ; ˛/ that computes a set F 
 R of minimal positive cardinality
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such that

X

�2F

E .�/ � ˛
X

�2R

E .�/:

A possible choice for the function E is

E .�/ D EL.�/ WD jc�j2; � 2 R;

where c� is given from an available least-squares estimator

uL D
X

�2�
c���;

that has been already computed on any downward closed set R � � 
 �k�1 [
eN.�k�1/. Another choice for E is

E .�/ D EM.�/ WD h��; u �euLimk�1 ; � 2 R;

whereeuL is the truncation to �k�1 of a least-squares estimator uL D P
�2� c���

that has been already computed on any downward closed set �k�1 � � 
 �k�1 [
eN.�k�1/, using a number of samples mk�1 that satisfies condition (59) with nk D
#.�/. The discrete norm in EM.�/ uses the same mk�1 evaluations of u that have
been used to compute the least-squares approximation uL on �.

Both EL.�/ and EM.�/ should be viewed as estimators of the coefficient hu; ��i.
The estimator EM.�/ is of Monte Carlo type and computationally cheap to calculate.
Combined use of the two estimators leads to the next algorithm for greedy selection
with bulk chasing, that has been proposed in [26].

• Initialize �1 WD f0Fg with the null multi-index, and choose ˛1; ˛2 2 .0; 1�.
• Assuming that �k�1 has been selected, set

F1 D bulk.eN.�k�1/;EM; ˛1/; (61)

where EM uses the least-squares approximation uL D P
�2� c��� of u in V�

that has been calculated at iteration k � 1 on a downward closed set �k�1 �
� 
 �k�1 [ eN.�k�1/ using a number of samples mk�1 that satisfies (59) with
nk D #.�/.

• Compute the least-squares approximation

uL D
X

�2�k�1[F1

c��� (62)

of u on V�k�1[F1 using a number of samples mk that satisfies (59) with nk D
#.�k�1 [ F1/.
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• Set

F2 D bulk.F1;EL; ˛2/; (63)

where EL uses the least-squares approximation uL computed on�k�1 [ F1.
• Define �k D �k�1 [ F2.

The set eN.�k�1/ can be large, and might contain many indices that are
associated to small coefficients. Discarding these indices is important in order to
avoid unnecessary computational burden in the calculation of the least-squares
approximation. The purpose of the bulk procedure (61) is to perform a preliminary
selection of a set F1 
 eN.�k�1/ of indices, using the cheap estimator EM. At
iteration k, EM in (61) uses the estimator computed in (62) at iteration k � 1

and truncated to �k�1. Afterwards, at iteration k, the least-squares approximation
in (62) is calculated on �k�1 [ F1, using a number of samples mk which satisfies
condition (59), with nk D #.�k�1 [ F1/. The second bulk procedure (63) selects a
set F2 of indices from F1, using the more accurate estimator EL. The convergence
rate of the adaptive algorithm depends on the values given to the parameters ˛1
and ˛2.

Finally we mention some open issues related to the development of adaptive
algorithms using the weighted least-squares methods discussed in Sect. 4, instead of
standard least squares. In principle the same algorithms described above can be used
with the weighted least-squares estimator uW replacing the standard least-squares
estimator uL, provided that, at each iteration k, the number of samples mk satisfies

mk

lnmk
�  nk;

and that the samples are drawn from the optimal measure, see Theorem 13. This
ensures that at each iteration k of the adaptive algorithm, the weighted least-squares
approximation remains stable and accurate. However, no guarantees on stability and
accuracy are ensured if the above conditions are not met, for example when the
samples from previous iterations are recycled.

5.4 Approximation in Downward Closed Spaces: Beyond
Polynomials

The concept of downward closed approximation spaces can be generalized beyond
the polynomial setting. We start from a countable index set S equipped with a partial
order �, and assume that there exists a root index 0S 2 S such that 0S � � for all
� 2 S. We assume that .B� /�2S is a basis of functions defined on Œ�1; 1� such that
B0S � 1. We then define by tensorization a basis of functions on U D Œ�1; 1�d
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when d < 1, or U D Œ�1; 1�N in the case of infinitely many variables, according
to

B�. y/ D
Y

j � 1

B�j. yj/; � WD .�j/j � 1 2 F ;

where F WD Sd in the case d < 1, or F D `0.N; S/, i.e. the set of finitely
supported sequences, in the case d D N.

The set F is equipped with a partial order induced by its univariate counterpart:
� �e� if and only if �j �e� j for all j � 1. We may then define downward closed sets
� � F in the same way as in Definition 1 which corresponds to the particular case
S D N. We then define the associated downward closed approximation space by

V� WD V ˝ B�; B� WD spanfB� W � 2 �g;

that is the space of functions of the form
P

�2� u�B� with u� 2 V .
Given a sequence T D .t� /�2S of pairwise distinct points we say that the basis

.B� /�2S is hierarchical when it satisfies

B� .t� / D 1 and B�.te� / D 0 ife� � � ande� ¤ �:

We also define the tensorized grid

y� WD .t�j/j � 1 2 U:

Then, if � � F is a downward closed set, we may define an interpolation operator
I� onto V� associated to the grid

�� WD f y� W � 2 �g:

In a similar manner as in the polynomial case, this operator is defined inductively
by

I�u WD Ie� u C ˛�B�; ˛� WD ˛�.u/ D u. y�/ � Ie� u. y�/;

where � … e� ande� is any downward closed set such that� D e�[f�g. We initialize
this computation with �1 D f0Fg, where 0F is the null multi-index, by defining
I�1u as the constant function with value u.y0F /.

Examples of relevant hierarchical systems include the classical piecewise linear
hierarchical basis functions. In this case the set S is defined by

S D f��1; �1; .0; 0/g [ ˚
. j; k/ W �2j�1 � k � 2j�1 � 1; j D 1; 2; : : :

�
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equipped with the partial order ��1 � �1 � .0; 0/ and

. j; k/ � . j C 1; 2k/; . j; k/ � . j C 1; 2k C 1/; . j; k/ 2 S:

The set S is thus a binary tree where ��1 is the root node, .0; 0/ is a child of �1
which is itself a child of ��1, every node . j; k/ has two children . j C 1; 2k/ and
. j C 1; 2k C 1/, and the relatione� � � means thate� is a parent of �. The index j
corresponds to the level of refinement, i.e. the depth of the node in the binary tree.
We associate with S the sequence

T WD ft��1 ; t�1 ; t.0;0/g [
�

t. j;k/ WD 2k C 1

2j
W . j; k/ 2 S; j � 1

�
;

where t��1 D �1, t�1 D 1 and t.0;0/ D 0. The hierarchical basis of piecewise linear
functions defined over Œ�1; 1� is then given by

B��1 � 1; B�1.t/ D 1C t

2
; B. j;k/.t/ D H.2j.t � t. j;k///; . j; k/ 2 S;

where

H.t/ WD maxf0; 1� jtjg;

is the usual hat function. In dimension d D 1, the hierarchical interpolation amounts
in the following steps: start by approximating f with the constant function equal to
f .�1/, then with the affine function that coincides with f at �1 and 1, then with the
piecewise affine function that coincides with f at �1, 0 and �1; afterwards refine
the approximation in further steps by interpolating f at the midpoint of an interval
between two adjacents interpolation points.

Other relevant examples include piecewise polynomials, hierarchical basis func-
tions, and more general interpolatory wavelets, see [10] for a survey.
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