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Dedicated to Ian H. Sloan on the occasion of
his 80th birthday.



Preface

On June 17, 2018, Professor Ian Hugh Sloan will celebrate his 80th birthday. We
are delighted in wishing him well on this happy occasion. Ian has been a teacher, a
mentor, a research collaborator, and a very dear friend to many of us.

We decided to give Ian a special birthday present in the form of this book as
a tribute to his many important contributions in various areas of computational
mathematics. At this point, we wish to thank the colleagues who contributed to this
book as authors and/or referees. In fact, the response of sending papers to celebrate
the 80th birthday of Ian was so great and from so many colleagues that it was indeed
a difficult job for us to limit the number of pages of the book. We are very grateful to
Springer Verlag that they agreed from the very beginning that the number of pages
of the book will not be an issue.

The book consists of nearly 60 articles written by international leaders in a
diverse range of areas in contemporary computational mathematics. These papers
highlight impact and many achievements of Ian in his distinguished academic
career. The papers also present the current state of knowledge in such areas as
quasi-Monte Carlo and Monte Carlo methods for multivariate integration, multi-
level methods, finite element methods, uncertainty quantification, spherical designs
and integration on the sphere, approximation and interpolation of multivariate
functions, and oscillatory integrals and in general in information-based complexity
and tractability, as well as in a range of other topics.

This book tells an important part of the life story of the renowned mathematician,
family man, colleague, and friend who has been an inspiration to so many of us.

We believe that the best way to begin this book is by presenting a few words about
Ian. We are also sure that the reader will enjoy reading the family perspectives on
Ian by his wife Jan, his children Jenni and Tony, and his grandchildren Sam, Gus,
Mack, Corrie, and Kiara. (Granddaughter Eliza missed the opportunity to contribute
due to travelling.)

Ian Hugh Sloan was born on June 17, 1938, in Melbourne, Australia. He did his
schooling at Scotch College, Melbourne, and Ballarat College. The father of Ian was
a senior mathematics master at Scotch College and later Principal at Ballarat and
apparently took good care of the background on mathematical education of his son.
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Then Ian was educated at the University of Melbourne, where he obtained BSc in
1958 in physics and BA (hons) in 1960 in pure and applied mathematics. Ian met his
future wife Jan at the University of Melbourne, and they were married in 1961. He
obtained MSc at the University of Adelaide in 1961 in mathematical physics for a
thesis entitled “Ionization in Nebulae”. Ian was supervised in Adelaide by Professor
Herbert Green who was one of Australia’s first professors of mathematical physics.
It is worth mentioning that Ian completed his master’s degree in record time of
7 months. Ian received his PhD in 1964 at the University of London in theoretical
physics based on the thesis “Electron Collisions by Neutral and Ionized Helium” and
was supervised by renowned mathematical physicist Professor Sir Harrie Massey
who worked on the Manhattan Project and at the Australian Woomera Rocket
Range. Ian completed his PhD again in record time of just 30 months. Part of his
PhD work involved computations on an early mainframe machine in Manchester.

Ian Sloan started his professional career as a research scientist for the Colonial
Sugar Refining Company, during 1964–1965, in Melbourne. Since 1965 Ian Sloan
has been at the University of New South Wales as a member of the School of
Mathematics. He was appointed Lecturer in 1965 and became involved in research
in theoretical nuclear physics. Ian had a very good start at UNSW and published
10 single authored papers in the first 5 years. He was promoted to Senior Lecturer
in 1968. His research focus was shifting from theoretical physics to applied math-
ematics, especially towards numerical analysis, first for integral equations relevant
to scattering theory and then to computational mathematics mostly of multivariate
integration and approximation. He was promoted to Associate Professor in 1973
and was appointed to a personal Chair in Mathematics in 1983 and then to Scientia
Professor in 1999. He served as Head of the School of Mathematics of UNSW from
1986 to 1990 and from 1992 to 1993.

Ian had many visiting positions during his career. He was associated, in
particular, with (in alphabetical order) Cornell University, ESI in Vienna, Hong
Kong Polytechnic University, IBM Paris, ICERM in Providence in the USA, King
Fahd University of Petroleum and Minerals in Saudi Arabia, Mittag-Leffler Institute
in Stockholm, Newton Institute at Cambridge, Politecnico di Torino, Technical
University of Vienna, University of Bath, University of Maryland (two sabbaticals
1971–1972 and 1979–1980), University of Stuttgart, and Weierstrass Institute in
Berlin.

Ian Sloan received many honours and awards during his academic career. In
1993 he was elected a Fellow of the Australian Academy of Science; in 1997 he
was awarded the ANZIAM Medal of the Australian Mathematical Society; during
1998–2000 he was the President of the Australian Mathematical Society; in 2001
he received the Australian Academy of Science’s Thomas Ranken Lyle Medal; in
2001 he was awarded the Centenary Medal; in 2002 he shared the inaugural George
Szekeres Medal of the Australian Mathematical Society with Alf van der Poorten of
Macquarie University; during 2003–2007 he was the President of the International
Council for Industrial and Applied Mathematics (ICIAM); in 2005 he received the
Information-Based Complexity (IBC) Prize; in the June 2008 Queen’s Birthday
Honours, he was appointed an Officer of the Order of Australia (AO); in 2009 he
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became a Fellow of the Society for Industrial and Applied Mathematics (SIAM); in
2012 he became a Fellow of the American Mathematical Society; and in 2014 he
was elected a Fellow of the Royal Society of New South Wales (FRSN).

Ian Sloan has been serving on editorial boards of many international compu-
tational mathematical journals. These include Journal of Integral Equations and
Applications (1987–2012), SIAM Journal on Numerical Analysis (1991–1997 and
2003–2012), Journal of Complexity (1999–2009 as Associate Editor and since 2009
as Senior Editor), Numerische Mathematik (2004–2014), Advances in Computa-
tional Mathematics (2000–2015), Computational Methods in Applied Mathematics
(2000–2015), Chinese Journal of Engineering Mathematics (2007–), International
Journal of Geomathematics (2011–), International Journal for Mathematics in
Industry (2013–), and Foundations of Computational Mathematics (2015–).

Ian Sloan loves to work with other people. The list of his collaborators is very
impressive, and many of them contributed papers to this book. He was a PhD advisor
of Reginald Cahill (1971), John Aarons (1972), Ivan Graham (1980), Stephen
Joe (1985), Sunil Kumar (1987), Yi Yan (1989), Thanh Tran (1994), Timothy
Langtry (1995), Thang Cao (1995), Yi Zeng (1998, co-supervisor), Josef Dick
(2004), Kassem Mustapha (2004, co-supervisor), Benjamin Waterhouse (2007),
Paul Leopardi (2007), Jan Baldeaux (2010), Cong Pei An (2011, co-supervisor),
James Nichols (2013), Andrew Chernih (2013), Yu Guang Wang (2015), Alexander
Gilbert (current, co-supervisor), and Yoshihito Kazashi (current).

Ian Sloan has so far published more than 280 peer-reviewed papers in leading
journals of theoretical physics and computational mathematics, book chapters, and
refereed conference proceedings, as well as one book with Stephen Joe entitled
Lattice Methods for Multiple Integration published by Oxford University Press in
1994. His papers cover various areas such as the numerical solution of integral
equations, boundary integral equations, numerical integration, interpolation and
approximation of multivariate functions, partial differential equations with random
coefficients, and information-based complexity and tractability. The list of Ian’s
publications is included later in this book. He is one of a select few on the 2001
Thompson ISI list of highly cited authors.

Professor Ian Sloan has made outstanding contributions to mathematical research
over the last 50 years. Ian’s impact is felt widely today; the Bencze-Redish-Sloan
equation and the Sloan iteration for integral equations (see the article by Thanh
Tran in this monograph) have been named after him. Further key contributions were
the introduction of weighted spaces and the study of tractability and inventing the
component-by-component construction of lattice rules.

As many of us know, Ian loves to travel. He almost always travels with his wife
Jan, and it is sometimes easier to meet Ian and Jan abroad than in Sydney. He has
travelled to all parts of the world giving invited talks on his work really almost
everywhere. He is making many friends during his trips and has many interesting,
not always mathematical, stories to tell about his travels. More importantly, Ian does
not slow down. He is as energetic and active today as he was years ago. Ian Sloan is
a role model and inspiration to his friends and colleagues.



x Preface

In addition to most authors of this book who also served as referees, the following
people also served as referees for the book: Michael Feischl, Alexander Gilbert,
Juan Gonzalez Criado del Rey, Michael Griebel, Thomas Hou, James Hyman,
Stephen Joe, Pierre LÉcuyer, Klaus Ritter, Robert Schaback, Frank Stenger, Kosuke
Suzuki, Mario Ullrich, Clayton Webster, Takehito Yoshiki, and Penchuan Zhang.
We sincerely thank all authors and referees for their contributions.

We are also grateful to Martin Peters of Springer Verlag for his strong support of
this book from the very beginning and for making it possible that every contributor
receives a free copy of the book.

Josef Dick
Frances Y. Kuo

Henryk Woźniakowski
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Jan Sloan (Wife)

The Ian Sloan I know is always in a hurry and never has enough time. There is
always a paper to finish, a deadline to meet, someone to see, or something to do.
I understand that this started early: he began school a few days after turning four
because he grew impatient watching other children through the school fence. (His
father was a mathematics teacher and at that time was a house master of a boarding
house which happened to be next to the primary school.) A few years later, we spent
our honeymoon in Adelaide so that he could put in an appearance at morning tea
in the Math Physics Department, to allow him to complete a master’s degree in
two terms—morning tea satisfied the “minimum three-term” requirement! Then he
completed a PhD in theoretical physics at the University College London in two and
a half years, with his final oral exam taken in a taxi. The oral in a taxi was because
his supervisor, Professor Sir Harrie Massey, was in even more of a hurry: he was an
important person in the space programme at Cape Canaveral (now Cape Kennedy),
so was rarely in London—indeed Ian saw him only six times during his PhD, or
seven if you count the taxi. But there was another reason for urgency, namely, that
Ian wanted to finish his PhD in superfast time.

I believe his PhD experience made him exceptionally self-reliant and indepen-
dent. He never needs others to tell him what to do.

After a memorable two and a half years in London, we returned to Australia for
Ian to take up a research position in an industrial lab (to which he owed some loyalty
since they had paid him to do the PhD in London). Ian says this period of industrial
research was the most miserable period of his working life, since in reality there
was nothing for him to do. (His industry boss allowed him to go gracefully, saying
“We have to accept that some people are not cut out for research.”) After a gloomy
10 months in industrial research, he was rescued by an advertisement for a casual
teaching position at the University of New South Wales. And after more than 50
years, he is still there!

xi
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The person I know is courageous and of strong character. If something needs to
be said, he will say it. A choice example came early in his career at UNSW when
he told his Head of Department that he should either do his job properly or resign.
I suggested, but to no avail, that this was not the right way to advance his career.
He is still stirring trouble, recently organising his colleagues in a collective letter of
complaint to the Vice Chancellor. I can tell him that this is unwise, but it makes no
difference.

He is also uncompromisingly honest. Our children will remember that they were
never allowed to use his university-supplied paper and pencils.

He is always checking facts, correcting spelling and pronunciation, and finding
errors—no doubt a desirable characteristic professionally, but one not always
appreciated at home. Another challenging habit is that he is always reading the fine
print, advertisements, and plaques on the wall, anything at all. It is a bad idea to take
him food shopping, as he reads all the labels.

Surprisingly, he has a terrible memory. He often tells me of introducing himself in
friendly fashion, only to get the response “I know who you are, we met yesterday”.

Many collaborators over the years, first in physics, then later in mathematics,
have commented that he has great energy. That is a side that I rarely see, but it
is true that he will often be at his desk sending emails in the early hours of the
morning. And during our many overseas travels, I am often woken by the clicking
of the computer keys when all sensible people are asleep.

Travel has always been an important part of our lives. This is especially true
now that children are grown up, and I am not working and Ian is not teaching, but
even in the early days, the two year-long sabbaticals we spent at the University of
Maryland were important to us—and to our two children who spent formative years
in American schools. Through our many travels, we have made the most beautiful
and long-lasting friendships.

He is an enthusiastic reader, with a wide range of interests, and he often has five
books on the go at one time. (One grandson inherited the interest, and when small
always walked with a book in hand.) Both of us are keen on music. For Ian, this
used to take the form, when the children were small, of playing Chopin etudes and
Beethoven sonatas on the piano in the evening. We attend many concerts, and both
love theatre. For us this started all those years ago in London, where for two and a
half years we attended one stellar performance or another almost every week.

Ian often talks to me about his various projects, in spite of my complete lack of
mathematical training and aptitude. Such talk is not about mathematical details, but
rather about strategy, and about the human and intellectual struggles. And I like to
know who among our friends is involved in each project.

He seems to me to change fields more often than most people. Privately, he tells
me that he is something of a butterfly: he sips the nectar then moves on.

Over the years I have watched from the sidelines the evolution of many projects
and papers, first in physics then later in mathematics. Often there is drama, through
the struggle to get ideas worked out and papers written and accepted, and sometimes
(though rarely) the pain of rejection. But I have also shared in the pleasure of the
many awards and signs of recognition he has received over the years.
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And I have watched him prepare many talks. It is clear to me that he takes great
effort to communicate his ideas and results clearly, and I believe that his colleagues
agree.

In spite of his passion for research, he has always been willing to take on
administrative burdens, often against my advice. He has been Head of this and Chair
of that, always with apparent success. An extreme example early in his mathematical
life was taking on the Editorship of the journal that later became the ANZIAM
Journal, at a time when the journal was in disarray, with the previous Editor having
resigned, recommending that the journal be closed down. The journal still exists and
is apparently doing well.

Along the way we have found time to have two children and by now six
grandchildren, all of whom are just fine, and a source of great pride to both of us.
Ian claims to be a good family man, in spite of never having enough time, and says
we should judge by the results. I am not so sure, but will ask the family to pass their
own judgement.

Jenni Johnson (Daughter)

. . . and judge we do. . . somewhat mercilessly at times!
Ian (or dad as I like to call him, despite his best attempts to level the playing

field by getting us to call him Ian) is a conundrum. The man at home is a constant
source of amusement, often leading the way by laughing at himself, a very endearing
characteristic which I have decided to emulate, as it helps get one through otherwise
difficult situations. I recall him telling us about his first attempt to use a lapel
microphone for one of his lectures. As the lecture progressed and he became more
and more animated, he found himself wrapped up in the cord, struggling to stay
upright and keep control of the students, who were vastly amused.

He can burst with energy if there is something stimulating to argue about or
discuss; arms will fly, the eyes become beady, the veins on his rather proud dome
pulse with excitement, and the voice volume rises. Just as easily, he will be off to
sleep in a flash if there is too much “small talk”—so it is a constant challenge for us
all to keep things interesting. Some might say he has a short attention span, but I am
not so sure. I think it’s an efficiency measure to keep his brain agile for things that
really matter.

While his brain is agile, he has very poor body awareness, and this sometimes
gets him into trouble both at home and in far-flung places. He recently injured his
knee playing tennis, but was only really aware of the problem the next day when
he described “struggling to get out of the bed sheets”. Most lesser mortals would
have described pain or swelling as the first symptom and usually at the time of the
accident. He has been known to walk into walls leaving a permanent nose imprint
(to the delight of children and grandchildren) or walk around with socks filled with
blood oblivious to a recent insult.
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He manages to move around the world mixing with the best. He is adventurous
and curious, keeping us well entertained with his stories of international largesse.
Yes of course there is always a talk or a workshop to prepare, a paper to review,
a student to meet, a keynote address, an important conference to prepare for, and
the endless awards and accolades he receives for his work. However the best stories
come from his adventures overseas. You may find him trapped in the mines of Chile,
losing his navel in a hospital in Poland, on the shores of Lake Baikal in Russia
drinking vodka out of a glass rifle, or racing uncontrollably across the sand dunes
of Saudi Arabia in a four wheel drive. There is always a funny story to be told and
some more friends to be collected along the way.

He adapts to his environment like a chameleon, feeling just as at home in China
as in Italy, Korea, or the USA. He learns the essentials of the language and picks up
a few colleagues along the way to assist with the immersion process. He is on and
off planes at the drop of a hat, yet seems to bounce back to be back at work on the
same day. He manages a black tie affair at the Academy of Science, a family “muck
in”, or is equally comfortable in his “gardening gear and matching glasses”. I think
this is because he is humble, extremely tolerant, and as I have heard from others “a
true gentleman”.

One of his most treasured abilities is multitasking. He will often be reading five
books at one time, arranging travel for his next adventure, writing several papers,
arranging the next season’s tickets to the opera, and watching the football all at the
same time. In order to get through all this, the 24 h of the day he has available must
be maximally utilised; he is well known to be stomping around at 3:00 am writing
down the skeletal thoughts of his next paper. He will always have paper and a pencil
available readily just in case a thought needs to be captured.

I believe this extreme behaviour comes from a desire to keep learning and
continues to be relevant. He strives to make a difference. I think this characteristic
has been handed down to the next generations, something for which we are very
grateful. The long hours and high productivity are really not a chore for him. Work
and life seem to be like sweet treats in a cake shop—all to be sampled and enjoyed
or passed off as an “interesting experience”. (For him “interesting” is a deceptive
adjective: it can well mean he didn’t like it!)

So maths, science, and family are his passions, but he also enjoys music, theatre,
food, wine, and sport even though this is not his personal forte. He enjoys all the
children’s sports and is a proud grandparent. He has recently taken up tennis again
and has joined a whole series of clubs, really quite strange, as he seemed to have an
intolerance of this kind of activity as a younger man. There is always a surprise in
store for us!

I find it difficult to reconcile the man we know, somewhat distracted, warm
hearted, generous, and humble, with the man and his stellar academic career. We
are very proud to have been part of it all!
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Tony Sloan (Son)

My father has an eclectic sense of humour. Rather than saying “time flies”,
he’ll rush around like a mad professor screaming “tempus fugit”. In my field
of accountancy, we say that small amounts of money are “immaterial”. Ian’s
mathematical translation of this term is “epsilon”. So I learned about “epsilon” (very
small) and “infinity” (more than very large) early in my life. When Ian received his
Lyle Medal a decade or so ago, he roared with laughter, almost uncontrollably, when
someone said that something was getting “ever closer to infinity”. When George
Bush was talking about weapons of mass destruction, Ian was proudly holding his
own weapon of math instruction—his calculator.

He gave me a tee shirt, channelling Maxwell’s equations, which he thought was
hilarious. It read: “And God Said

r � E D �@B
@t
; r � E D 0;

r � B D �0�0
@E
@t
; r � B D 0:

And Then There Was Light”. Once he borrowed it when he was teaching Maxwell’s
equations, and at the appropriate moment, in the style of Superman, he stripped off
his outer shirt to reveal the message.

While most people have graduated and have proper jobs in the real world, he
sticks with maths because he says it’s the only job which really counts. But I took
a different point of view, and often used to ask him: “When are you going to get a
real job?”

Age shall not weary him, technology shall not defeat him, and retirement is just
moving ever closer to infinity for Ian. As he progresses around the bell curve of
life, and slowly transforms from a vertical bar into a more cuddly version, higher
honours no doubt await him, Professor to the math gods perhaps or maybe “Sir
Cumference”, with the Queen’s blessing.

Sam Johnson (Grandson)

For much of my early childhood, I was confused as to what my grandfather (or,
as he prefers to sign his emails to the family, Ian/Dad/Papa) actually did for his
job. I had been told that he was a “very smart man who likes maths”, but much
of my experiences with him seemed to involve English. For example, Papa always
had a strong compulsion to drill into the heads of his grandchildren the correct
spelling of “raspberry”. He would always make sure to identify the silent “p”, and
would clap in delight the first time one of us spelled it correctly. (Jan adds: the word
“raspberry” is special to Ian because, as I discovered early and to my great delight,
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he himself didn’t know it contained a silent “p”, and only believed me after checking
the dictionary.)

Another strong image of mine as a child is going to Ian’s office. As I took after
my grandfather in my bookishness, he seemed to take great amusement in taking out
various papers that he had been working on and seeing if I could read and pronounce
the titles. While at the time (and to this day) the words I was saying appeared to be
nonsense, nonetheless he made sure that by the end of the session I had come away
being able to pronounce a new word.

Later in life, I came to the belief that rather than being a professor, my grandfather
was actually a professional traveller, as he seemed to spend the majority of his
time in a different country. You can imagine my shock when I eventually found out
that he was journeying to all these exotic locales to sit with colleagues and discuss
mathematical principles. I did find, however, that the trips were not quite as boring
as I had imagined, as I discovered when I was invited to take a holiday with both my
grandparents to South America in early 2013: there we travelled in zodiacs, gazed
at a glacier calving, and saw amazing mountains.

Ian has always been an enigma to me and the other grandchildren, somehow
managing to be an incredibly interesting person, despite his work making sense to
nobody at all except for those he works with. One always finds out new things when
having a discussion with him, as he seems to have a vast array of knowledge on a
colossal number of topics.

Upon reflection, the initial description of my grandfather seems to be very apt:
he is indeed a “very smart man who likes maths”. However, Papa always tempers
a brilliant mind and a sharp wit with a caring and loving heart, who never fails to
make time for his family. I have always seen my grandfather as one who has never
stopped writing, reading, loving, or pondering, and I hope he never will.

Gus Sloan (Grandson)

It was not until early 2016 that I realised how revered Ian is among his colleagues,
when one of them, a publican at my part-time workplace, read the surname on my
security licence. “Sloan is a very famous name at UNSW”, he said to me—“but I
am sure you’ve no interest”. Don’t be so quick to judge sir, as I explained I was his
grandson. From then on he frequently reminded me of how intelligent Ian was, with
an ability to think critically and inform others clearly.

That reminds me of when I was 13 and struggled with maths at school, and Ian
would spend hours teaching me different tricks to do calculations faster, despite it
being far too simple he would still give me his time. I owe much of my success in
school to these early lessons, without such I probably wouldn’t have succeeded in
the Higher School Certificate. I still use these skills today.

He is always keen to hear of what is happening in our lives despite having a more
interesting life than all of us combined. In the past year I have made a conscious
effort to educate myself on difficult mathematical concepts so that I would be able
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to ask him questions at family meetings, such as the Banach-Tarski paradox to which
I was able to provide a measly amount of information and Ian was able to clarify
and make it interesting for me.

Because my grandparents are constantly travelling around the world, we only see
each other a few times a year at family gatherings. But Ian never changes, always
with a smile on his dial and a glass of red in his hand and those hauntingly beady
eyes. He always wants to chat about his latest adventure or some political issue,
except when he falls asleep in the middle of a party. His days of watching me play
rugby have now ended since my playing days are behind me, but his interest in
watching the Australian rugby Wallabies is still there in spades.

I look forward to the future as we both grow older and wiser, perhaps there will
come a day where I am the one answering questions from him!

Mack Sloan (Grandson)

Not even the human calculator himself could have predicted how his life would
turn out all these years later. Although, from a young age, he had an undoubted
mathematical ability and passion, it would have been impossible for him to think
that he would be travelling the world, teaching and researching what he loves, with
whom he loves, only to arrive home again to be with the family he loves.

It is interesting to ponder how the small, “epsilon” actions in the past can have
big implications for the present. One of these moments was when Jan and Ian started
dating. Jan wanted to party on her birthday, but Ian had a very important exam the
next day: he needed to be fresh, alert, and prepared. And so, he was faced with
the choice: does he rest so he can perform well on the looming exam, or does he
instead have a night out with Jan? He bravely declined the party invitation, survived
the relationship crisis, and unsurprisingly performed the best in the class for the
exam. But what would have happened if he had gone to the party? Would he still
be a mathematician? Would he have met someone else other than Jan at the party?
Would he have had the privilege to travel the world? Would he come to live a happy
life with a beautiful wife, two children, and six grandchildren?

Much like Ian, the butterfly effect is complex, yet very interesting. Not until I
stepped back and looked into Ian’s accomplishments did I begin to understand how
much Ian has impacted my life, and our families. The decisions he chose to make,
and the ones he chose not to make, have turned out to be good ones and to have had
a positive impact on each of our lives.

I don’t know where Ian is travelling half the time, or what area of maths he is in,
but it seems to me that he is living a life that many could only dream of. Through his
commitment and dedication to both academia and Jan, he is truly a gentleman. As
I grow older and wiser, and I reflect on my work and study habits, I realise that my
ability to focus and my modus operandi are directly due to Ian. While I may never
have his brain power, I can see more clearly every day the enormous impact Ian, my
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Papa, has had on my life in terms of problem solving and deep thinking. We are all
very proud to be his grandchildren and to enjoy his tales and good humour.

Corrie Sloan (Grandson, Aged 12)

When I was young, I wondered what job my grandfather, Ian, did. I always thought
it was strange that my Dad graduated before him, but I was continually reminded
that Ian works at the university, so doesn’t need to leave. I remember that everyone
told me that my grandfather (Papa) was so smart and that he was a scientist, so I
pulled out my iPad and googled Ian Sloan. I saw hundreds of pictures of him, but
the strangest one of all was of him in his well-cut garden drinking his famous red
wine. I still have no idea how he got that picture onto the Internet. Whenever I go to
Papa’s for a sleepover, the first thing I see is him on his hands and knees working in
the garden, picking up some sticks or digging up a plant. But whenever I see him,
he’s always got a jolly smile and rosy cheeks ready to greet me. Papa makes the
best home-made creamy and delicious porridge I have ever tasted. Whenever I am
sleeping over, his porridge is the one thing to get me up in the morning.

Whenever Papa has the chance to come and watch me play sport or come to
grandparents’ day at school, he is there and never in a hurry. I remember the time
when Papa and Janny came to one of my representative rugby games, and I scored
two tries in the corner where they were standing. I looked up at Papa and Janny and
they both clapped and smiled right at me.

When my sister, Kiara, and I go over to Papa’s place, he always takes us on an
adventure into the bushland. My Dad tells me that when he was little he used to
always go into the bush where we go with Papa. He said one time he went to his
favourite rock to rest on, slept for about 10 min, and then woke up but realised he
was looking right into the eyes of a brown snake. My Dad stayed still for a few
minutes and the snake went away. I always ask Papa if he’s seen a brown snake but
he says no. When we are in the bush, we always see lots of animals rustling in the
bushes and birds chirping in the trees. I always enjoy walking through the bush with
my grandfather, Papa.

When we have family gatherings at Papa’s house, it is always a day to remember.
With Papa’s great preaching and Janny’s great cooking, it always turns out fun. All
the grandchildren go outside and play touch footy or kick tennis balls, while the
adults stay inside and Papa talks about some political problem. I don’t think any of
us has seen Papa without a glass of red wine in his grasp or a smile on his face. He
always makes us laugh.

Papa is a loving grandfather, a wordsmith, a preacher, a funny clown, and a math
God. I look forward to the time when I learn all of my grandfather’s tricks and math
skills so I too can take part in the mathematical and political discussions that happen
inside Papa’s house.
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Corrie’s sketch of Papa and a photo taken in 2011

Kiara (Button) Sloan (Granddaughter, Aged 9)

I’m always asking Papa math questions, and he always answers them correctly, I
think! I’m not sure because he says things in completely different ways—since he’s
a University Professor, he says them in a university way instead of a Year 4 context.
So I ask, what does that mean? what does that mean? Over and over.

Since Papa is such a genius, he always needs to go to meetings about math stuff,
and those meetings are ALWAYS in another state or country. But it makes it all the
merrier when Papa and Janny come back and tell us all about their trip.

Papa always takes us on awesome bush walks like the last time Corrie and I were
at Papa’s house, Papa took us on a bush walk around a lake. He said if we kept
walking we could get to Newcastle, hundreds of kilometres away. I’m so pleased
we didn’t end up walking to Newcastle!

Papa comes to nearly all my dance and singing concerts and performances. The
only time he doesn’t come is when he is overseas on a work trip. But I love it when
Papa and Janny get back and can come to my performances and see how much I
have improved.

Papa is the best grandfather any girl could ask for. He is kind and funny, always
has a huge smile, and is jolly good at making porridge. I think if he opened up
a porridge shop he would be famous. He’s the best Papa anyone could be, and I
wouldn’t want to change one single thing about him.
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Family

We want to thank sincerely all of those who have contributed to this memorable
celebration of Ian’s 80th. We especially thank Henryk, Frances, and Josef and all of
those who have contributed to this volume.

Jan Sloan and Family



A Fortunate Scientific Life

In the course of a long career, my scientific directions have seen many changes. I
am often asked: why so many changes? To me there is often no great change: there
is always a connecting thread. But what is also true is that I have grasped every
opportunity to learn about something new and interesting. And over the years, I have
been helped to move in new directions by many wonderful friends and collaborators.
In large part this essay is a homage to those friends and collaborators.

But in truth my early research years were much more solitary. My PhD research
at the University College London was concerned with the theory and computation
of the scattering of electrons by atoms. There were experts about in the Department,
but there was little tradition of collaboration or communication. Indeed I recall being
less than amused to find out, well into the PhD research, that another student had
been given a project overlapping very significantly with my own. That gave extra
incentive, if any were needed, to finish my PhD quickly.

My first significant publication, from those PhD years, was [157], a paper
appearing in the Proceedings of the Royal Society (something for a young researcher
to be proud of) concerned with an improved method for computing scattering cross
sections for electrons hitting upon simple atoms.

One very fortunate aspect of my early career was its timing, in that the first
general purpose electronic computer available to university researchers in the UK (a
big beast of a machine at the University of Manchester) had just become available.
(This was fortunate because until that time a PhD would typically include 6 months
of laborious hand calculations to solve numerically one simple integro-differential
equation.) In that new era, students were able to write Fortran programmes on paper
tape, to be transferred to Manchester overnight. We learned to be experts at patching
paper tape.

After returning to Australia, and an unhappy year in an industrial research
laboratory, I joined the Applied Mathematics Department at the University of New
South Wales. At that time it was in everything but name a theoretical physics
department, under the leadership of John M. Blatt, who after a very distinguished
career in nuclear physics was beginning to dabble in other areas, including control
theory and economics. Probably it was under his influence that I started to work on

xxi
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scattering problems in nuclear physics, especially quantum mechanical problems
involving a small number of protons or neutrons. At first the going was tough,
because when I began I knew nobody working in the field, either in Australia or
anywhere else in the world.

Nevertheless, I managed to make some progress and attract some attention in
low-energy scattering problems in nuclear physics. An important milestone for me
came through an invitation in the early 1970s to spend a sabbatical year at the
University of Maryland. I remain grateful to my host, Gerry Stephenson (later at
Los Alamos National Laboratory). In the nuclear theory group there, I learned for
the first time about the stimulating effect of a strong group environment, a lesson I
have since taken to heart. My friend E.F. (Joe) Redish was an enthusiastic member
of that group.

For me that year at Maryland was highly productive. In those years the Faddeev
equations (devised by the great Russian physicist L.D. Faddeev) were attracting
great interest. They are a beautiful set of integral equations which allow the
nuclear three-body problem (e.g., the problem of two neutrons and one proton, or
equivalently of a deuteron, i.e., heavy hydrogen, nucleus and an incident neutron)
to be solved on a computer essentially exactly. One significant fruit of my time at
Maryland was the paper [170], in which I developed analogous equations for four
particles, rather than the three particles of the Faddeev equations. While an increase
from three to four might not seem much, the problem does become harder, not only
mathematically but also computationally—it is still hard to obtain computationally
exact solutions for more than three particles.

Later the four-particle equations were generalised to any number of particles,
independently by both D. Bencze and Joe Redish, to make what are still recognised
as the Bencze-Redish-Sloan equations. But by then my own interests had moved
elsewhere.

In those physics years, the principal mathematical tools for those of us working
on scattering problems were integral equations. There were many good idea floating
around, but I often felt that those good ideas were accompanied by a cavalier attitude
to the question of proof. I liked the fact that in physics one can take space to explain
the ideas behind an approximation scheme, but sometimes this was at the cost of a
simple proof. Still, I enjoyed my time in this area.

For me a turning point came in the mid-1970s when, for reasons I no longer
remember, I decided to develop and write up some of the ideas for solving integral
equations for publication in a numerical analysis journal. It was something of a
shock to me (knowing as I did the more relaxed publication standards in physics)
to find my paper in trouble with a referee. (The referee later turned out to be
L.M. (Mike) Delves, who before my time had been a staff member at the University
of New South Wales, and indeed whose old golf clubs were left behind in my first
office at UNSW.) The referee thought there were some good ideas, but noted (very
appropriately, as I now think) that there were no proofs and, more importantly
from my point of view, wanted the paper rewritten in a way that would (in my
view) have buried the intuition behind the method. That rewriting was something I
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was not willing to do, so in the end the paper appeared as [265] in the Journal of
Computational Physics.

That experience made me determined to prove the merit of my ideas, but to do
that I had first to master the theory of the numerical solution of integral equations,
which I did through the books of my later friends Philip Anselone and Ken Atkinson.

In the end I was able to prove the merit of what is now often called the “Sloan
iteration” for integral equations of the second kind. In brief, the essence of a second-
kind integral equation is that the unknown solution appears on both the left and
right sides of the defining equation. (On the left the solution is on its own; on the
right it appears under an integral sign.) It is therefore natural, if one already has
some approximation to the solution, to substitute that approximation into the right-
hand side of the equation, and so generate another approximation, hopefully a better
one. I was eventually able to prove, under more or less natural conditions, that if
one starts with a so-called Galerkin approximation (which I will not explain!), then
the iterated Galerkin approximation generated in that way always converges faster
than the original Galerkin approximation as the dimension of the approximating
space increases. A dramatic description is that the new iterated approximation is
“superconvergent”.

The original superconvergence work appeared principally in the references
[174, 176]. To me there was special pleasure in the fact that the second of those
papers appeared in the journal Mathematics of Computation, the very journal that
had (deservedly!) given my first venture such a hard time.

By the time that particular interest had been worked through, I discovered that I
had somehow drifted out of physics, essentially because I was too busy elsewhere.
But there were challenges for me in moving into numerical analysis, because I
was no longer in the first flush of youth, yet at the time I made my unsuccessful
submission as above I knew not a single person in the world in the field of numerical
analysis. Admittedly there were Australian experts, some even in the area of integral
equations (I am thinking of David Elliott, Bob Anderssen, Frank de Hoog, and Mike
Osborne, all of them later good friends), but at that time I am sorry to say that I had
never heard of any of them. This was in essence because of the remarkable cultural
separation that exists between physics and mathematics: in the main they publish in
different journals, attend different conferences, and almost never meet each other.
For me, I recall that until 1975 I had never attended a conference with mathematics
in the title and since my undergraduate days had never been in a mathematics
department other than my own.

But all of that was to change quickly. In (I think it was) 1976 I was an invited
speaker at the Australian Applied Mathematics Conference. Within a year or two
of that, I was Editor of the Australian journal of the applied mathematicians (now
the ANZIAM Journal) and in subsequent years have been heavily involved, to my
pleasure, in all aspects of Australian and indeed international mathematics.

In particular, I find it pleasing to be able to report that this not-so-young new
boy was accepted remarkably quickly into the professional community of numerical
analysts. Many people helped in this—Philip Anselone and Kendall Atkinson
certainly, also the great Ben Noble who happened to be at my lecture on “New
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Methods for Integral Equations” at the Australian Applied Mathematics Conference,
Zuhair Nashed who invited me to a meeting of the American Mathematical Society,
Günther Hämmerlin, who invited me to more than one Oberwolfach conference, and
many others, to all of whom I am forever grateful.

In the early 1980s, I first met Vidar Thomée, a renowned authority on the
numerical solution of parabolic problems (e.g., the time-dependent problem of
heat diffusion in some region). In the course of time, we published together
some six papers, with him patiently teaching me the modern theory of partial
differential equations and me contributing, I hope, some insight into integral
equations, numerical integration, and superconvergence. Our first joint paper [241]
was concerned with superconvergence for integral equations, but with the analysis
informed by the analysis of finite element methods for partial differential equations.
In addition to collaborating on papers, Thomée also introduced me to the whole
new world of finite element methods, a world that included subsequent friends Lars
Walhlbin and Al Schatz at Cornell, who took me further into the world of PDE and
superconvergence [152].

In the early 1980s, I became interested in high-dimensional numerical inte-
gration, something that has become a major theme for me in recent years. It
came about this way. While visiting old physics friends at Flinders University in
Adelaide, the late Ian McCarthy introduced me to the amazing number-theoretic
methods of Korobov and others, which they were trying out experimentally in
their atomic physics codes. I had never heard of these things and was immediately
captivated by them. But early on I had the idea that they could be extended from the
classical constructions (nowadays called lattice rules of rank one) to more general
constructions, so I applied, successfully, for an Australian Research Council grant
to work on such a generalisation, which led eventually to the publication [224]. The
classical constructions of point sets were to my eyes like crystal lattices, in that they
are unchanged under special overall shifts (or translations), if you think of the point
set as extended indefinitely. That paper, with my postdoc Philip Kachoyan, for the
first time allowed the points to be any set which is invariant under translations. In
developing a theory for such general lattice rules, I could take advantage of earlier
experience in teaching the theory of group representations in quantum mechanics,
and was also helped by looking back at my old books on solid-state physics, where
the “dual lattice” plays an important role (e.g., in the scattering of X-rays from
crystals). Incidentally, that is another paper which experienced great troubles in the
refereeing process, but no doubt in the end the paper was all the better for it.

In 1984 I had an opportunity to present ideas on lattice methods for numerical
integration at an international congress in Leuven. There I met James Lyness, who
suggested that we could work together on this topic for 10 years and expect to
publish one paper per year. James (regrettably now deceased) was a colourful
personality, and a renowned expert on numerical integration, with whom as it
happens I had shared an office at UNSW in my first year or two. While we never
reached our 10 papers, we did some interesting work together, and in particular in
[225] managed to classify all lattice rules according to “rank”, a new concept at the
time.
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In 1987 I spent an important sabbatical at the University of Stuttgart with Wolf-
gang Wendland. Under his influence I became more interested in what are called
boundary integral equations. (In brief, these might be described as ways of solving
certain differential equation for a bounded region by an integral equation that lives
only on the boundary.) For a number of years, this was a major preoccupation.
One aspect was the development of “qualocation” methods (a quadrature-based
extension of collocation methods), notably in a paper with Wendland, [248].

I have always been interested in the methods of approximation, which is the
foundation subject for all work on the approximate solution of differential equations,
integral equations, and numerical integration. In the early 1990s, having often
used polynomial approximations for integral equations and numerical integration,
I became interested in questions of polynomial approximation on spheres and other
manifolds. I was intrigued by this conundrum: that whereas approximation of a
periodic function on an interval (or what is equivalent, for a function on a circle), the
approximation known as interpolation (which just means fitting a (trigonometric)
polynomial through the function values at equally spaced points), has properties
as good as those of the more famous orthogonal projection, yet for spheres of
dimension more than one this is not the case: indeed interpolation on spheres
remains to this day very problematic; see [286]. Yet a discrete approximation
with the right properties (but admittedly using more points than interpolation) is
available. This approximation, now called “hyperinterpolation”, appeared in the
paper [203]. I must say I was rather proud of this paper (I remember presenting
it in an animated way to the significant mathematician Werner Reinboldt on the
only occasion I met him. He urged me to find a name different from interpolation:
hence the name “hyperinterpolation”). That paper had more trouble getting past the
referees than almost any other paper I have written. Nevertheless it continues to
attract some interest.

I began working with Robert Womersley in the late 1990s, often on polynomial
approximation and point distribution problems on spheres. This has been an
extremely fruitful partnership, in which we each bring different attributes: from me
analysis and from him very high level skills in optimization and high performance
computing. One early fruit was the paper [253], in which we proved that the
hyperinterpolation approximation can be optimal in a space of considerable practical
importance (that of continuous functions).

My interest in approximation has been invigorated from time to time by
stumbling across fascinating ideas well known to others but not to me, such as
“radial basis functions” and more recently “needlets”. On the first of these, I had
the opportunity to work with Holger Wendland, an authority on RBFs and the
inventor of a special class of localised RBFs that carry his name. With him we were
able to develop a successful theory for Wendland RBFs of progressively smaller
scale: the idea was to use thinner and thinner RBFs (but correspondingly more
and more of them) to get successive corrections to an initial approximation. Of
the several papers we wrote on this topic, I especially like our recent “Zooming-
in” paper [130]. (It is not as recent as it seems, having been lost for 4 years in the
refereeing process.) In this project, as in many other projects over the years, my
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former student Q. Thong Le Gia was a valued participant. I said former “student”,
but actually Thong only did an undergraduate (honours) degree at UNSW before
heading to the USA; nevertheless he did his undergraduate work well enough to
result in a joint paper [122], in which hyperinterpolation was extended to spheres
in an arbitrary number of dimensions. Needlets, invented by Joe Ward and Fran
Narcowich (now friends), are something similar, but are localised (and “spiky”)
polynomials. A recent paper [284] developed a fully constructive theory of needlet
approximation, one that needs only function values at discrete points on the sphere.
Other participants in that project were Robert Womersley and my recent student and
continuing collaborator Yu Guang Wang.

Another recent influence in the broad area of approximation theory has been
Edward Saff, an expert on potential theory and on energies and point distributions
on the sphere. By combining different areas of expertise, we were able (together
with Robert Womersley and Johann Brauchart) to come up with a new concept (of
so-called QMC designs) of point distributions on the sphere; see [29]. (The essence
is that instead of characterising point distributions by geometrical properties, or e.g.,
by minimal energy, now sequences of point sets are characterised by asymptotic
convergence properties.) Time will tell how useful this concept is.

I remained interested in high-dimensional integration problems and, around
1980, was invited by Oxford University Press to write book on the subject. At the
time I had an excellent colleague (and former student) Stephen Joe. We delayed
writing a book on lattice methods until we thought we had the subject wrapped
up (though it turned out we were quite wrong—the topic was far from finished).
The book eventually appeared as [1] and remains a useful reference to the classical
theory.

In 1994 I had the good fortune of meeting Henryk Woźniakowski, a world leader
in the field of information-based complexity. We soon started to work seriously on
problems of high-dimensional integration. At that time I was familiar with the work
in the 1950s and 1960s of the number theorists, on lattice and other methods for
integration in many variables. They typically worked with an arbitrary number of
variables, but (like the numerical analysts of the time) paid little or no attention
to the way the accuracy reduces, or the cost increases, as the number of variables
increases: the sole interest was instead in what happens as the number of function-
evaluation points increases. Henryk, in contrast, always asked: what happens as the
number of variables increases? It turned out that this was a very good question. In
our first paper [259], we were able to show something surprising, that in one of
the most popular theoretical settings of the number theorists, while there was no
flaw in their predictions of the rate of convergence for a large enough number of
function values, in the worst case there would be no improvement until the number
of points was impossibly large. (Technically, the required number of points was
approximately 2 raised to the power of the number of dimensions. Try it out for 100
dimensions!)

In the second paper with Woźniakowski, we took seriously an idea that for
problems with large numbers of variables, those variables might not be equally
important. We thought that if the variables are ordered in order of importance, we
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should be able to quantify that decreasing importance by assigning to each variable a
parameter (a “weight”), with the weights becoming progressively smaller. We were
able to carry through that programme, to the point of being able, for an important
setting, to characterise completely the condition on the weights needed to get a
result independent of dimension, that is, of the number of variables. (Technically,
we were able to find a necessary and sufficient condition for the worst case error
to be independent of the dimension.) That work, appearing in [260], gave us much
pleasure and has been the foundation for a large amount of subsequent work by
ourselves and others.

I have been privileged for the past two decades to have two outstanding young
colleagues in high-dimensional computation, Frances Kuo (a student of Stephen
Joe, and hence my doctoral granddaughter) and Josef Dick (who earlier came from
Salzburg to be my PhD student). Together we wrote a major review [52] of certain
methods for high-dimensional integration. I have had many good students, but Josef
was exceptional, in that shortly before he was due to submit his thesis he abandoned
the work already done and wrote a new thesis on novel joint work with Friedrich
Pillichshammer. He became the teacher and I the student.

Our interest in high-dimensional problems led us a few years ago into a joint
project with an Australian merchant bank. (Many problems in mathematical finance
are high-dimensional because they involve many, even infinitely many, random
variables.) I think the truth is that we made no contribution to the bank’s bottom
line, but the experience had a lasting influence on our subsequent research, because
none of our high-dimensional theories can explain the apparent success of some of
our methods for so-called option pricing. (The problem with options is that their
value is considered to be zero if the final price drops below an agreed “strike price”.
For that reason the functions that need to be integrated have a kink, which places
them outside almost all existing theory.) With Frances Kuo and Michael Griebel, we
made some progress in finding theoretical answers to this conundrum in [69], and
at the moment we are proposing a practical cure in joint work with Hernan Leövey
and Andreas Griewank.

Many years earlier, my first PhD student after my physics days was Ivan Graham,
who came from Northern Ireland. In 2007, as a Professor at the University of Bath,
he directed my attention to the field of partial differential equations (PDEs) with
random coefficients, as a burgeoning source of very challenging high-dimensional
problems. Christoph Schwab from ETH Zurich was another who directed my
interest in that direction. Such PDE application has become a major interest for
all of us in subsequent years. I especially like the experimental paper [65] and
the theoretical paper [116], both with Frances Kuo and with Ivan Graham and
colleagues Dirk Nuyens and Robert Scheichl in the first paper and Christoph
Schwab in the second. This work continues.

Is there a consistent theme? Perhaps there is, to the extent that many problems
I have worked on are governed by the question of what can be done, and proved,
when the underlying problems of physics and mathematics are intrinsically infinite-
dimensional, yet our computations can use only a finite amount of information (e.g.,
of function values at points) and a limited amount of computer resources. But the
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truth is that I have always found that one interesting problem leads to another, and I
have just done whatever I have found interesting and the things my colleagues have
helped me to do.

In the limited space of this essay, I cannot do justice to my more than 100
lifetime collaborators and my many students and postdoctoral fellows. Among
the influential collaborators not mentioned already are Mark Ainsworth, Xiaojun
Chen, Ronald Cools, Mahadevan Ganesh, Michael Giles, Rolf Grigorieff, Rainer
Kress, Kerstin Hesse, Fred Hickernell, Hrushikesh Mhaskar, Harald Niederreiter,
Philip Rabinowitz, Alastair Spence, Sergei Pereverzyev, Siegfried Prössdorf, Ernst
Stephan, Xiaoqun Wang, and Grzegorz Wasilkowski. I am grateful to all of them,
and more, for the lessons they have taught me and for the wonderful ideas to which
they have introduced me.

Ian H. Sloan
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270. Sloan, I.H., Wang, X., Woźniakowski, H.: Finite-order weights imply tractability of multi-
variate integration. J. Complex. 20, 46–74 (2004)

271. Smith, W.E., Sloan, I.H.: Product-integration rules based on the zeros of Jacobi-polynomials.
SIAM J. Numer. Anal. 17, 1–13 (1980)

272. Smith, W.E., Sloan, I.H., Opie, A.H.: Product integration over infinite intervals I. Rules based
on the zeros of Hermite polynomials. Math. Comput. 40, 519–535 (1983)

273. Tran, T., Sloan, I.H.: Tolerant qualocation—a qualocation method for boundary integral
equations with reduced regularity requirement. J. Integral Equ. Appl. 10, 85–115 (1998)

274. Tran, T., Le Gia, Q.T., Sloan, I.H., Stephan, E.P.: Preconditioners for pseudodifferential
equations on the sphere with radial basis functions. Numer. Math. 115, 141–163 (2010)

275. Wang, X., Sloan, I.H.: Why are high-dimensional finance problems often of low effective
dimension? SIAM J. Sci. Comput. 27, 159–183 (2005)

276. Wang, X., Sloan, I.H.: Efficient weighted lattice rules with applications to finance. SIAM J.
Sci. Comput. 28, 728–750 (2006)

277. Wang, X., Sloan, I.H.: Brownian bridge and principal component analysis: towards removing
the curse of dimensionality. IMA J. Numer. Anal. 27, 631–654 (2007)



Publications of Professor Sloan xli

278. Wang, X., Sloan, I.H.: Quasi-Monte Carlo methods in financial engineering: an equivalence
principle and dimension reduction. Oper. Res. 59, 80–95 (2011)

279. Wang, H., Sloan, I.H.: On filtered polynomial approximation on the sphere. J. Fourier Anal.
Appl. 23, 863–876 (2017)

280. Wang, S., Sloan, I.H., Kelly, D.W.: Pointwise a posteriori upper bounds for derivatives of
a Neumann problem. In: Computer Techniques and Applications (CTAC95), pp. 771–778.
World Scientific, Singapore (1996)

281. Wang, S., Sloan, I.H., Kelly, D.W.: Computable error bounds for pointwise derivatives of a
Neumann problem. IMA J. Numer. Anal. 18, 251–271 (1998)

282. Wang, X., Sloan, I.H., Dick, J.: On Korobov lattice rules in weighted spaces. SIAM J. Numer.
Anal. 42, 1760–1779 (2004)

283. Wang, Y.G., Sloan, I.H., Womersley, R.S.: Riemann localisation on the sphere. J. Fourier
Anal. Appl. 2016, 1–43 (2016)

284. Wang, Y.G., Le Gia, Q.T., Sloan, I.H., Womersley, R.S.: Fully discrete needlet approximation
on the sphere. Appl. Comput. Harmon. Anal. 43, 292–316 (2017)

285. Waterhouse, B.J., Kuo, F.Y., Sloan, I.H.: Randomly shifted lattice rules on the unit cube for
unbounded integrands in high dimensions. J. Complex. 22, 71–101 (2006)

286. Womersley, R.S., Sloan, I.H.: How good can polynomial interpolation on the sphere be? Adv.
Comput. Math. 14, 195–226 (2001)

287. Yan, Y., Sloan, L.: On integral equations of the first kind with logarithmic kernels. J. Integral
Equ. Appl. 1, 549–579 (1988)

288. Yan, Y., Sloan, I.H.: Mesh grading for integral-equations of the 1st kind with logarithmic
kernel. SIAM J. Numer. Anal. 26, 574–587 (1989)



Contents

On Quasi-Energy-Spectra, Pair Correlations of Sequences
and Additive Combinatorics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Ida Aichinger, Christoph Aistleitner, and Gerhard Larcher

Towards an Efficient Finite Element Method for the Integral
Fractional Laplacian on Polygonal Domains. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Mark Ainsworth and Christian Glusa

Irregularities of Distributions and Extremal Sets in Combinatorial
Complexity Theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Christoph Aistleitner and Aicke Hinrichs

Importance Sampling and Stratification for Copula Models. . . . . . . . . . . . . . . . 75
Philipp Arbenz, Mathieu Cambou, Marius Hofert, Christiane Lemieux,
and Yoshihiro Taniguchi

A Spectral Method for the Biharmonic Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Kendall Atkinson, David Chien, and Olaf Hansen

Quasi-Monte Carlo for an Integrand with a Singularity Along
a Diagonal in the Square . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Kinjal Basu and Art B. Owen

There Is No Strongly Regular Graph with Parameters
.460; 153; 32; 60/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Andriy Bondarenko, Anton Mellit, Andriy Prymak, Danylo Radchenko,
and Maryna Viazovska

Low-Discrepancy Sequences for Piecewise Smooth Functions
on the Torus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Luca Brandolini, Leonardo Colzani, Giacomo Gigante,
and Giancarlo Travaglini

xliii



xliv Contents

Explicit Families of Functions on the Sphere with Exactly Known
Sobolev Space Smoothness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Johann S. Brauchart

Logarithmic and Riesz Equilibrium for Multiple Sources
on the Sphere: The Exceptional Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Johann S. Brauchart, Peter D. Dragnev, Edward B. Saff,
and Robert S. Womersley

Numerical Analysis and Computational Solution
of Integro-Differential Equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Hermann Brunner

Multivariate Approximation in Downward Closed Polynomial Spaces . . . . 233
Albert Cohen and Giovanni Migliorati

Subperiodic Trigonometric Hyperinterpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
Gaspare Da Fies, Alvise Sommariva, and Marco Vianello

Discrete Data Fourier Deconvolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
Frank de Hoog, Russell Davies, Richard Loy, and Robert Anderssen

Kernels of a Class of Toeplitz Plus Hankel Operators with Piecewise
Continuous Generating Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
Victor D. Didenko and Bernd Silbermann

Probabilistic Lower Bounds for the Discrepancy of Latin
Hypercube Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
Benjamin Doerr, Carola Doerr, and Michael Gnewuch

Hyperinterpolation for Spectral Wave Propagation Models
in Three Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
Mahadevan Ganesh and Stuart C. Hawkins

Multilevel QMC with Product Weights for Affine-Parametric,
Elliptic PDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
Robert N. Gantner, Lukas Herrmann, and Christoph Schwab

An Adaptive Filon Algorithm for Highly Oscillatory Integrals . . . . . . . . . . . . . 407
Jing Gao and Arieh Iserles

MLMC for Nested Expectations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
Michael B. Giles

A Note on Some Approximation Kernels on the Sphere . . . . . . . . . . . . . . . . . . . . . 443
Peter Grabner

Modern Monte Carlo Variants for Uncertainty Quantification in
Neutron Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
Ivan G. Graham, Matthew J. Parkinson, and Robert Scheichl



Contents xlv

On the Representation of Symmetric and Antisymmetric Tensors . . . . . . . . . 483
Wolfgang Hackbusch

Direct and Inverse Results on Bounded Domains for Meshless
Methods via Localized Bases on Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517
Thomas Hangelbroek, Francis J. Narcowich, Christian Rieger,
and Joseph D. Ward

A Discrete Collocation Method for a Hypersingular Integral
Equation on Curves with Corners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545
Thomas Hartmann and Ernst P. Stephan

On the Complexity of Parametric ODEs and Related Problems . . . . . . . . . . . 567
Stefan Heinrich

Adaptive Quasi-Monte Carlo Methods for Cubature . . . . . . . . . . . . . . . . . . . . . . . . 597
Fred J. Hickernell, Lluís Antoni Jiménez Rugama, and Da Li

Upwind Hybrid Spectral Difference Methods for Steady-State
Navier–Stokes Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621
Youngmok Jeon and Dongwoo Sheen

On Nyström and Product Integration Methods for Fredholm
Integral Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 645
Peter Junghanns, Giuseppe Mastroianni, and Incoronata Notarangelo

Properties and Numerical Solution of an Integral Equation to
Minimize Airplane Drag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 675
Peter Junghanns, Giovanni Monegato, and Luciano Demasi

Hyperbolic Conservation Laws and L2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 703
Barbara Lee Keyfitz and Hao Ying

Integral Equation Methods in Inverse Obstacle Scattering with a
Generalized Impedance Boundary Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 721
Rainer Kress

Ian Sloan and Lattice Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 741
Peter Kritzer, Harald Niederreiter, and Friedrich Pillichshammer

Truncation Dimension for Function Approximation . . . . . . . . . . . . . . . . . . . . . . . 771
Peter Kritzer, Friedrich Pillichshammer, and Grzegorz W. Wasilkowski

On Nonnegativity Preservation in Finite Element Methods for the
Heat Equation with Non-Dirichlet Boundary Conditions . . . . . . . . . . . . . . . . . 793
Stig Larsson and Vidar Thomée

Numerical Solutions of a Boundary Value Problem on the Sphere
Using Radial Basis Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 815
Quoc T. Le Gia



xlvi Contents

Approximate Boundary Null Controllability and Approximate
Boundary Synchronization for a Coupled System of Wave
Equations with Neumann Boundary Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 837
Tatsien Li, Xing Lu, and Bopeng Rao

Sparse Support Vector Machines in Reproducing Kernel Banach
Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 869
Zheng Li, Yuesheng Xu, and Qi Ye

Mean Convergence of Interpolation at Zeros of Airy Functions . . . . . . . . . . 889
Doron S. Lubinsky

Exponential Sum Approximations for t�ˇ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 911
William McLean

Approximate Quadrature Measures on Data-Defined Spaces . . . . . . . . . . . . 931
Hrushikesh N. Mhaskar

Tractability of Multivariate Problems for Standard and Linear
Information in the Worst Case Setting: Part II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 963
Erich Novak and Henryk Woźniakowski
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On Quasi-Energy-Spectra, Pair
Correlations of Sequences and Additive
Combinatorics

Ida Aichinger, Christoph Aistleitner, and Gerhard Larcher

Dedicated to Ian H. Sloan on the occasion of his 80th birthday.

Abstract The investigation of the pair correlation statistics of sequences was ini-
tially motivated by questions concerning quasi-energy-spectra of quantum systems.
However, the subject has been developed far beyond its roots in mathematical
physics, and many challenging number-theoretic questions on the distribution
of the pair correlations of certain sequences are still open. We give a short
introduction into the subject, recall some known results and open problems, and
in particular explain the recently established connection between the distribution
of pair correlations of sequences on the torus and certain concepts from additive
combinatorics. Furthermore, we slightly improve a result recently given by Jean
Bourgain in Aistleitner et al. (Isr. J. Math., to appear. Available at https://arxiv.org/
abs/1606.03591).

1 Introduction

Some of Ian Sloan’s first published papers dealt with topics from mathematical
physics, in particular with theoretical nuclear physics. Later he moved his area
of research to applied mathematics and numerical analysis, and in particular Ian’s
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ground-breaking work on complexity theory, numerical integration and mathemati-
cal simulation is well-known and highly respected among the scientific community
of mathematicians. The techniques developed and analyzed by Ian in these fields are
often based on the use of deterministic point sets and sequences with certain “nice”
distribution properties, a method which is nowadays widely known under the name
of quasi-Monte Carlo method (QMC). In the present paper we will combine these
two topics, mathematical physics and the distribution of point sets.

Ian’s first research paper appeared 1964 in the Proceedings of the Royal Society
(London), entitled “The method of polarized orbitals for the elastic scattering of
slow electrons by ionized helium and atomic hydrogen” [26]. In the same journal,
but 13 years later, Berry and Tabor published a groundbreaking paper on “Level
clustering in the regular spectrum” [4]. This paper deals with the investigation of
conservative quantum systems that are chaotic in the classical limit. More precisely,
the paper deals with statistical properties of the energy spectra of these quantum
systems, and Berry and Tabor conjectured that for the distribution function of the
spacings between neighboring levels of a generic integrable quantum system the
exponential Poisson law holds. That means, roughly speaking, the following.

Let H be the Hamiltonian of a quantum system and let �1 � �2 � : : : be its
discrete energy spectrum. We call the numbers �i the levels of this energy spectrum.
If it is assumed that

# fi W �i � xg � cx�

for x ! 1 and some constants c > 0; � � 1, then consider Xi WD c��i . The
Berry–Tabor conjecture now states that if the Hamiltonian is classically integrable
and “generic”, then the Xi have the same local statistical properties as independent
random variables coming from a Poisson process. Here the word “generic” is a bit
vague; it essentially means that one excludes the known obvious (and less obvious)
counterexamples to the conjecture. For more material on energy spectra of quantum
systems and the following two concrete examples see the original paper of Berry and
Tabor [4] as well as [5, 8, 16] and Chapter 2 in [7]. For a survey on the Berry–Tabor
conjecture see [15].

Two basic examples of quantum systems are the two-dimensional “harmonic
oscillator” with Hamiltonian

H D p2x C p2y C w2
�
x2 C y2

�

and the “boxed oscillator”. This is a particle constrained by a box in x-direction and
by a harmonic potential in y-direction; the Hamiltonian in this case is given by

H D �p2x � p2y C w2y2:

The investigation of the distribution of the energy levels in these two examples leads
to the investigation of the pair correlation statistics of certain sequences .�n/n�1 in
the unit interval. More specifically, one is led to study the pair correlations of the
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sequence .fn˛g/n�1 in the case of the 2-dimensional harmonic oscillator, and the
pair correlations of the sequence

�˚
n2˛

��
n�1 in the case of the boxed oscillator;

here, and in the sequel, we write f�g for the fractional part function. In particular, for
these sequences one is led to study the quantity R2, which is introduced below.

Let .�n/n�1 be a sequence of real numbers in Œ0; 1�, and let k�k denote the distance
to the nearest integer. For every interval Œ�s; s� we set

R2
�
Œ�s; s�; .�n/n�1;N

� D 1

N
#
n
1 � j ¤ k � N W ���j � �k

�
� � s

N

o
:

The subscript “2” of “R2” refers to the fact that these are the pair correlations, that
is, the correlations of order 2—in contrast to triple correlations or correlations of
even higher order. Note that the average spacing between two consecutive elements
of f�1; : : : ; �Ng (understood as a point set on the torus) is 1=N, and thus for an
“evenly distributed” point set one would expect to find roughly 2s other points
within distance Œ�s=N; s=N� around a given point �j, causing R2.Œ�s; s�; .�n/n�1;N/
to be approximately 2s for such a point set (after summing over all elements of
the point set and then normalizing with division by N). Actually, for a sequence of
independent, Œ0; 1�-uniformly distributed random variables �1; �2; : : : one can easily
show that for every s � 0 we have

R2.Œ�s; s�; .�n/n�1;N/! 2s;

almost surely. If this asymptotic relation holds for the distribution of pair corre-
lations of a certain sequence we say that the distribution of the pair correlations
is asymptotically Poissonian. Informally speaking, a sequence whose distribution
of the pair correlations is asymptotically Poissonian may be seen as a sequence
showing “random” behavior, and the investigation of the asymptotic distribution
of the pair correlations of a deterministic sequence may be seen as studying the
pseudo-randomness properties of this sequence.

The systematic investigation of the asymptotic distribution of the pair correlation
of sequences on the torus (motivated by the applications in quantum physics)
was started by Rudnick and Sarnak in [20] for the case of sequences of the
form

�˚
nd˛

��
n�1 for integers d � 1. In the case d D 1, the distribution of the

pair correlations is not asymptotically Poissonian (independent of the value of
˛); this was remarked for example in [20] with a hint to the well-known Three
Distance Theorem, which goes back to Świerczkowski and Sós [27]. For d � 2

the distribution of the pair correlations is asymptotically Poissonian for almost all
˛, which has been proved by Rudnick and Sarnak [20]. The case d D 2 (which
corresponds to the energy levels of the boxed oscillator) has received particular
attention; see for example [13, 17, 22, 29]. A generalization from .fnd˛g/n�1 to the
case of .fa.n/˛g/n�1 with a.x/ 2 ZŒx� is obtained in [6]; again the pair correlations
are asymptotically Poissonian for almost all ˛, provided that the degree of a.x/ is at
least 2. Another case which has been intensively investigated is that of .fa.n/˛g/n�1
for .a.n//n�1 being a lacunary sequence; see for example [3, 10, 21].
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In [1] a general result was proved which includes earlier results (polynomial
sequences, lacunary sequences, and sequences satisfying certain Diophantine con-
ditions) and gives a unifying explanation. This result links the distribution of the pair
correlations of the sequence .fa.n/˛g/n�1 to the additive energy of the truncations of
the integer sequence .a.n//n�1, a well-known concept from additive combinatorics
which has been intensively studied. Recall that the additive energy E.A/ of a set of
real numbers A is defined as

E.A/ WD
X

aCbDcCd

1; (1)

where the sum is extended over all quadruples (a, b, c, d) 2 A4. Trivially one
has the estimate jAj2 � E.A/ � jAj3, assuming that the elements of A are
distinct. The additive energy of sequences has been extensively studied in the
combinatorics literature. We refer the reader to [28] for a discussion of its properties
and applications. To simplify notations, in the sequel whenever a sequence A WD
.a.n//n�1 is fixed we will abbreviate R2 .s; ˛;N/ for R2

�
Œ�s; s� ; .fa.n/˛g/n�1 ;N

�
.

Furthermore we will let AN denote the first N elements of A. The result states that if
the truncations AN of an integer sequence A satisfy E .AN/� N3�" for some " > 0,
then .fa.n/˛g/n�1 has (asymptotically) Poissonian pair correlations for almost all
˛. More precisely, the following theorem is true.

Theorem 1 Let .a.n//n�1 be a sequence of distinct integers, and suppose that there
exists a fixed constant " > 0 such that

E .AN/� N3�" as N !1: (2)

Then for almost all ˛ one has

R2 .s; ˛;N/! 2s as N !1 (3)

for all s � 0.

Note that the condition of Theorem 1 is close to optimality, since by the trivial
upper bound we always have E .AN/ � N3; thus an arbitrarily small power
savings over the trivial upper bound assures the “quasi-random” behavior of the
pair correlations of .fa.n/˛g/n�1. On the other hand, in [1] Bourgain showed the
following negative result.

Theorem 2 If E .AN/ D ˝
�
N3
�
, then there exists a subset of Œ0; 1� of positive

measure such that for every ˛ from this set the pair correlations of the sequence
.fa.n/˛g/n�1 are not asymptotically Poissonian.

We conjecture that actually even the following much stronger assertion is true.

Conjecture 1 If E .AN/ D ˝
�
N3
�

there is no ˛ for which the pair correlations of
the sequence .fa.n/˛g/n�1 are Poissonian.
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In this paper we will prove a first partial result which should support this
conjecture. However, before stating and discussing our result (which will be done
in Sect. 2 below), we want to continue our general discussion of pair correlation
problems. As one can see from the previous paragraphs, the metric theory of pair
correlation problems on the torus is relatively well-understood. In contrast, there are
only very few corresponding results which hold for a specific value of ˛. The most
interesting case is that of the sequence .fn2˛g/n�1, where it is assumed that there
is a close relation between Diophantine properties of ˛ and the pair correlations
distribution. For example, it is conjectured that for a quadratic irrational ˛ this
sequence has a pair correlations distribution which is asymptotically Poissonian;
however, a proof of this conjecture seems to be far out of reach. A first step towards
a proof of the conjecture was made by Heath-Brown [13], whose method requires
bounds on the number of solutions of certain quadratic congruences; this topic was
taken up by Shparlinski [24, 25], who obtained some improvements, but new ideas
seem to be necessary for further steps toward a solution of the conjecture.

It should also be noted that the investigation of pair correlation distributions is
not restricted to sequences of the torus. For example, consider a positive definite
quadratic form P.x; y/ D ˛x2 C ˇxy C �y2, and its values at the integers .x; y/ D
.m; n/ 2 Z

2. These values form a discrete subset of R, and one can study the
pair correlations of those numbers contained in a finite window Œ0;N�. See for
example [23, 30]. Another famous occurrence of the pair correlation statistics of
an unbounded sequence in R is in Montgomery’s pair correlation conjecture for
the normalized spacings between the imaginary parts of zeros of the Riemann zeta
function. The statement of the full conjecture is a bit too long to be reproduced here;
we just want to mention that it predicts a distribution of the pair correlations which is
very different from “simple” random behavior. For more details see Montgomery’s
paper [18]. There is a famous story related to Montgomery’s conjecture; he met the
mathematical physicist Freeman Dyson at tea time at Princeton, where Freeman
Dyson identified Montgomery’s conjectured distribution as the typical distribu-
tion of the spacings between normalized eigenvalues of large random Hermitian
matrices—an observation which has led to the famous (conjectural) connection
between the theory of the Riemann zeta function and random matrix theory. The
whole story and more details can be found in [19].

2 New Results

In the sequel we give a first partial result towards a solution of the conjecture
made above. Before stating the result we introduce some notations, and explain the
background from additive combinatorics. For v 2 Z let AN.v/ denote the cardinality
of the set

n
.x; y/ 2 f1; : : : ;Ng2 ; x ¤ y W a.x/� a.y/ D v

o
:
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Then

E .AN/ D ˝
�
N3
�

(4)

is equivalent to
X

v2Z
A2N.v/ D ˝

�
N3
�
; (5)

which implies that there is a � > 0 and positive integers N1 < N2 < N3 < : : : such
that

X

v2Z
A2Ni
.v/ � �N3

i ; i D 1; 2; : : : : (6)

It will turn out that sequences .a.n//n�1 satisfying (4) have a strong linear
substructure. From (6) we can deduce by the Balog–Szemeredi–Gowers-Theorem
(see [2] and [12]) that there exist constants c;C > 0 depending only on � such that
for all i D 1; 2; 3; : : : there is a subset A.i/0 	 .a .n//1�n�Ni

such that
ˇ
ˇ̌A.i/0

ˇ
ˇ̌ � cNi and

ˇ
ˇ̌A.i/0 C A.i/0

ˇ
ˇ̌ � C

ˇ
ˇ̌A.i/0

ˇ
ˇ̌ � CNi:

The converse is also true: If for all i for a set A.i/0 with A.i/0 	 .a .n//1�n�Ni
withˇ

ˇ
ˇA.i/0

ˇ
ˇ
ˇ � cNi we have

ˇ
ˇ
ˇA.i/0 C A.i/0

ˇ
ˇ
ˇ � C

ˇ
ˇ
ˇA.i/0

ˇ
ˇ
ˇ, then

X

v2Z
A2Ni
.v/ � 1

C

ˇ
ˇ
ˇA.i/0

ˇ
ˇ
ˇ
3 � c3

C
N3

i

and consequently
P

v2Z A2N.v/ D ˝
�
N3
�

(this an elementary fact, see for example
Lemma 1 (iii) in [14]).

Consider now a subset A.i/0 of .a.n//1�n�Ni
with

ˇ
ˇ
ˇA.i/0

ˇ
ˇ
ˇ � cNi and

ˇ
ˇ
ˇA.i/0 C A.i/0

ˇ
ˇ
ˇ � C

ˇ
ˇ
ˇA.i/0

ˇ
ˇ
ˇ :

By the theorem of Freiman (see [11]) there exist constants d and K depending
only on c and C, i.e. depending only on � in our setting, such that there exists a
d-dimensional arithmetic progression Pi of size at most KNi such that A.i/0 	 Pi.
This means that Pi is a set of the form

Pi WD
8
<

:
bi C

dX

jD1
rjk

.i/
j

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
0 � rj < s.i/j

9
=

;
; (7)

with bi; k
.i/
1 ; : : : ; k

.i/
d ; s

.i/
1 ; : : : ; s

.i/
d 2 Z and such that s.i/1 s.i/2 : : : s

.i/
d � KNi.
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In the other direction again it is easy to see that for any set A.i/0 of the form (7)
we have

ˇ
ˇ
ˇA.i/0 C A.i/0

ˇ
ˇ
ˇ � 2dKNi:

Based on these observations we make the following definition:

Definition 1 Let .a .n//n�1 be a strictly increasing sequence of positive integers.
We call this sequence quasi-arithmetic of degree d, where d is a positive integer, if
there exist constants C;K > 0 and a strictly increasing sequence .Ni/i�1 of positive
integers such that for all i � 1 there is a subset A.i/ 	 .a .n//1�n�Ni

with
ˇ
ˇA.i/

ˇ
ˇ � CNi

such that A.i/ is contained in a d-dimensional arithmetic progression P.i/ of size at
most KNi.

The considerations above show that a sequence .a .x//x�1 is quasi-arithmetic of
some degree d if and only if it satisfies (5).

So our conjecture is equivalent to

Conjecture 2 If .a.n//n�1 is a quasi-arithmetic sequence of integers then there is
no ˛ such that the pair correlations of .fa.n/˛g/x�1 are asymptotically Poissonian.

In the remaining part of this paper we will prove a theorem which slightly
improvements the Theorem 2 of Bourgain for the subclass of sequences .a.n//n�1
which are quasi-arithmetic of degree 1.

Theorem 3 If the sequence of integers .a.n//n�1 is quasi-arithmetic of degree 1,
then the set of ˛’s for which the distribution of the pair correlations of .fa.n/˛g/n�1
is not asymptotically Poissonian has full measure.

Remark The class of quasi-arithmetic sequences .a .n//n�1 of degree 1 contains all
strictly increasing sequences with positive upper density, i.e.

lim sup
N!1

1

N

NX

nD1
m2fa.n/j n�1g

1 > 0:

In particular this class contains all strictly increasing sequences which are bounded
above by a linear function.

We will first state two auxiliary results in Sect. 3, and then give the proof of
Theorem 3 in Sect. 4.

3 Auxiliary Results

Lemma 1 Let .�n/n�1 be a strictly increasing sequence of positive integers. Let
�n be the number of fractions of the form j��1

n .0 < j < �n/ which are not of
the form k��1

q with some q < n and k < �q. Furthermore, let . n/n�1 be a
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non-increasing sequence of positive reals such that
P1

nD1  n D 1 and with the
following property (*):

There exists a sequence .	n/n�1 of positive reals tending monotonically to zero,
but so slowly that

P1
nD1  n	n still diverges, and such that there exist a constant

c > 0 and infinitely many positive integers N with

NX

nD1
�n�

�1
n  n	n > c

NX

nD1
 n	n:

Then—if (*) holds—for almost all � 2 R there exist infinitely many positive integers
n, and integers m, such that

0 � �n� � m <  n:

Proof This lemma is essentially the divergence part of Theorem IV in [9]. It is
shown there that the assertion of our Lemma 1 is true under the slightly stronger
condition that . n/n�1—as in our Lemma—is a non-increasing sequence of positive
reals with

P1
nD1  n D 1, and that .�n/n�1 satisfies

lim inf
N!1

1

N

NX

nD1
�n�

�1
n > 0:

If we follow the proof of Theorem IV in [9] line by line we see that our slightly
weaker condition (*) also is sufficient to obtain the desired result. In fact replacing
Cassel’s condition by our condition (*) is relevant only in the proof of Lemma 3 in
[9], which is an auxiliary result for the proof of Theorem IV in [9]. ut
Lemma 2 For all ı > 0 there is a positive constant c.ı/ > 0, such that for every
infinite subset A of N with

d.A/ WD lim inf
N!1

1

N
# fn � N j n 2 Ag > ı

we have

lim inf
N!1

1

N

X

n�N
n2A

'.n/

n
� c.ı/:

Here ' denotes the Euler totient function.
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Proof Let

B.t/ WD lim
N!1

1

N

ˇ
ˇ
ˇ̌
�

n � N

ˇ
ˇ
ˇ̌ n

'.n/
� t

� ˇˇ
ˇ̌ :

Then by the main theorem in [31] the limit B.t/ exists and satisfies

B.t/ D exp
�

e�te�� .1CO.t�2//
	

for t to infinity and with � denoting Euler’s constant. Here, and in the sequel, we
write exp.x/ for ex.

So there is a constant L > 0 such that

B.t/ � exp



e�te��

�
1� L

t2

	�

for all t � 1. Hence

B.t/ � exp
�

e� 1
2 te��

	

for all t � max
�
1;
p
2L
	

. Now assume that ı > 0 is so small that

t0 WD 2e� log



� log

ı

4

�
> max

�
1;
p
2L
	
:

Note that it suffices to prove the lemma for such ı. We have

B .t0/ D lim
N!1

1

N

ˇ̌
ˇ
ˇ

�
n � N

ˇ̌
ˇ
ˇ

n

'.n/
� t0

� ˇ̌
ˇ
ˇ

and

B .t0/ � exp
�

e� 1
2 e�� t0

	
D ı

4
:

Hence there exists N0 such that for all N � N0

1

N

ˇ̌
ˇ
ˇ

�
n � N

ˇ̌
ˇ
ˇ

n

'.n/
� t0

� ˇ̌
ˇ
ˇ �

ı

3
:

Therefore, since d.A/ > ı, for all sufficiently large N we have

1

N

ˇ
ˇ
ˇ
ˇ

�
n � N; n 2 A

ˇ
ˇ
ˇ
ˇ

n

'.n/
� t0

� ˇˇ
ˇ
ˇ �

ı

3
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and consequently also

1

N

X

n�N
n2A

'.n/

n
� ı

3

1

t0
DW c.ı/ > 0:

ut

4 Proof of Theorem 3

Let .a.n//n�1 be quasi-arithmetic of degree one and let C;K > 0; .Ni/i�1 ;
�
A.i/
�

i�1
and

�
P.i/
�

i�1 be as described in Definition 1. In the sequel we will define inductively
a certain strictly increasing subsequence .Ml/l�1 of .Ni/i�1.

Set M1 WD N1 and assume that M1;M2; : : : ;Ml�1 already are defined. If Ml D Nil
(where il still has to be defined) to simplify notations we write Al WD A.il/; Pl WD
P.il/:

We set

Pl WD fal C r�l j 0 � r < KMlg

and

Al WD
n

al C r.l/j �l

ˇ̌
ˇ j D 1; 2; : : : ; sl

o

with certain fixed r.l/j with 1 � r.l/1 < r.l/2 < : : : < r.l/sl < KMl and sl � CMl. Of
course we have sl < KMl.

We consider

Vl WD
n�

r.l/i � r.l/j

	
�l

ˇ
ˇ
ˇ 1 � j < i � sl

o
;

the set of positive differences of Al. Here Vl is the set itself, whereas by eVl we will
denote the same set of positive differences but counted with multiplicity (so strictly
speakingeVl is a multi-set rather than a set). Hence jVlj < KMl, whereas

ˇ
ˇeVl

ˇ
ˇ D sl .sl � 1/

2
� c1M

2
l :

Here and in the sequel we write ci for positive constants depending only on C and
K. We note that a value u 2 Vl has multiplicity at most sl.
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Let x be the number of elements in Vl with multiplicity at least c2Ml where
c2 WD min

�
K; c1

2K

�
: Assume that x < c2Ml. Then

c1M
2
l �

ˇ
ˇeVl

ˇ
ˇ � xsl C .jVlj � x/ c2Ml

� xKMl C .KMl � x/ c2Ml

D Ml .x .K � c2/C Kc2Ml/

< M2
l .c2 .K � c2/C Kc2/

< M2
l c1;

a contradiction.
So there are at least c2Ml values u 2 Vl with multiplicity at least c2Ml. We take

the c2
2

Ml largest of these values and denote them by T.l/1 < T.l/2 < : : : < T.l/wl with

wl � c2
2

Ml and T.l/j WD R.l/j �l. Note that

c2
2

Ml � R.l/1 < : : : < R.l/wl
< KMl: (8)

Remember that we still have to choose il > il�1 and to define Ml as Nil . We
choose now il so large that

Ml >

0

@
l�1X

pD1

wpX

qD1
T. p/

q

1

A

2

: (9)

So altogether we have constructed a strictly increasing sequence �1 < �2 <

�3 < : : : of integers given by T.1/1 < : : : < T.1/w1 < T.2/1 < : : : < T.2/w2 < T.3/1 < : : :.
Furthermore we define a decreasing sequence . n/n�1 of positive reals in the

following way. If �n is such that T.l/1 � �n � T.l/wl , then  n WD 1
Ml

.
Obviously we have

lim
n!1 n D 0

and

1X

nD1
 n �

1X

lD1
wl
1

Ml
�

1X

lD1

c2
2

Ml
1

Ml
D1:

We will show below that .�n/ and . n/ satisfy the condition (*) of Lemma 1.
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We choose N WD w1 C : : : C wl and first estimate
P

n�N �n�
�1
n  n from below

(for the definition of �n see Lemma 1). We have

X

n�N

�n�
�1
n  n �

NX

nDN�wlC1
�n�

�1
n  n:

In the following we estimate �n from below for n with N � wl C 1 � n � N; i.e.,
�n D T.l/i D R.l/i �l for some i with 1 � i � wl.

Consider first �q with q � w1C : : :Cwl�1. Then the number of j with 0 � j < �n

such that j��1
n is of the form k��1

q with 0 � k < �q trivially is at most �q.
Now consider �q with q > w1 C : : :C wl�1 and �q < �n, i.e.,

�q D T.l/h D R.l/h �l

for some h with 1 � h < i. Then the number of j with 0 � j < �n such that j��1
n is

not of the form k��1
q with 0 � k < �q, i.e., such that

j

�n
D k

�q
, j

R.l/i �l

D k

R.l/h �l

, j

R.l/i

D k

R.l/h

does not hold, is at least '
�

R.l/i

	
�l. Hence by (8) and by (9)

�n � '
�

R.l/i

	
�l �

w1C:::Cwl�1X

qD1
�q

� '
�

R.l/i

	
�l �

p
Ml � 1

2
'
�

R.l/i

	
�l

for all l large enough, say l � l0 (note that R.l/i � c2
2

Ml).
Therefore for l � l0

X

n�N

�n�
�1
n  n �

NX

nDN�wlC1
�n�

�1
n  n (10)

� 1

Ml

wlX

iD1

1

2
'
�

R.l/i

	
�l

1

R.l/i �l

D 1

2Ml

wlX

iD1

'
�

R.l/i

	

R.l/i

:
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Later on we will use the same chain of inequalities starting from the second
expression in (10).

We recall that wl � c2
2

Ml, and R.l/i � KMl for all i D 1; : : : ;wl. Hence

R.l/1 ; : : : ;R
.l/
wl form a subset of f1; 2; : : : ;KMlg of density at least c3 WD c2

2K . Hence
by Lemma 2 we have for l large enough and with c from Lemma 2 that

X

n�N

�n�
�1
n  n � K

2
c
� c2
2K

	
DW c4 > 0: (11)

This holds for all N D w1 C : : :C wl and all l � l0.
Finally we have to choose the function .	n/n�1 from condition (*) in Lemma 1

in a suitable way. If �n is such that T.l/1 � �n � T.l/wl , i.e., if  n D 1
Ml

, then we set

	n WD 1
l . Then

1X

nD1
 n	n �

1X

lD1
wl
1

Ml

1

l
�

1X

lD1

c2
2

Ml
1

Ml

1

l
D1:

Finally, on the one hand for all N D w1 C : : :C wl we have by (10) and (11) that

X

n�N

�n�
�1
n  n	n �

lX

l0Dl0

c4
1

l0
� c5 log l

for all l � l0.
On the other hand we have

X

n�N

 n	n �
lX

l0D1
wil

1

Ml

1

l
D

lX

l0D1
K
1

l
� c6 log l:

Consequently

X

n�N

�n�
�1
n  n	n � c5 log l � c5

c6

X

n�N

 n	n

and the conditions of Lemma 1 are satisfied for .�n/n�1 and . n/n�1. We conclude
from Lemma 1 that for almost all ˛ there exist infinitely many n such that k�n˛k �
 n holds. Let such an ˛ be given, and let n1 < n2 < n3 < : : : be such that k�ni˛k �
 ni for all i D 1; 2; 3; : : :. For any ni let l .ni/ be defined such that w1 C w2 C : : :C
wl.ni/�1 < ni � w1 C w2 C : : :C wl.ni/, then  ni D 1

Ml.ni/
, hence

0 � k�ni˛kMl.ni/ < 1

for all i.
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Let 
 with 0 � 
 � 1 be a limit point of
�k�ni˛kMl.ni/

�
iD1;2;::: : We distinguish

now between two cases.
First case: 
 D 0.
Then there exists a subsequence m1 < m2 < m3 < : : : of n1 < n2 < n3 < : : :

such that

0 � k�mi˛k <
1

Ml.mi/

c2
4K2

for all i. �mi is an element of Vl.mi/ with multiplicity at least c2Ml.mi/. Hence there
exist at least c2Ml.mi/ pairs . p; q/ with

1 � p < q � sl.mi/ < KMl.mi/

and

kfa .q/ ˛g � fa . p/ ˛gk < 1

Ml.mi/

c2
4K2

:

Let now s D c2
4K then for all M D KMl.mi/ we have

1

M
#
n
1 � p ¤ q � M W kfa .q/ ˛g � fa . p/ ˛gk � s

M

o
� c2

K
D 4s;

and hence

R2 .Œ�s; s� ; ˛;M/ 6! 2s:

Second case: 
 > 0.
Let " WD min

�



2
; c2
8K2

�
> 0. Then there exists a subsequence m1 < m2 < m3 <

: : : of n1 < n2 < n3 < : : : such that

0 � ˇˇMl.mi/ k�mi˛k � 

ˇ
ˇ < "

for all i. Hence there exist at least c2Ml.mi/ pairs . p; q/ with 1 � p < q � sl.mi/ <

KMl.mi/ and

kfa .q/ ˛g � fa . p/ ˛gk 2
�

 � "
Ml.mi/

;

C "
Ml.mi/


:

Let s1 WD K .
 � "/ and s2 WD K .
C "/, then s2 � s1 D 2K" � c2
4K . Let for

M WD KMl.mi/ and j D 1; 2:

�. j/ WD 1

M
#
n
1 � p ¤ q � M W kfa .q/ ˛g � fa . p/ ˛gk � sj

M

o
:
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Then�.2/ ��.1/ � 1
M c2

M
K D c2

K . Hence at least one of

ˇ̌
�.2/ � 2s2

ˇ̌ � c2
8K

or

ˇ
ˇ�.1/ � 2s1

ˇ
ˇ � c2

8K
holds;

since otherwise

c2
2K
� ˇ̌�.2/ ��.1/

ˇ̌� 2 .s2 � s1/

� ˇ̌�.2/ � 2s2 ��.1/ C 2s1
ˇ̌ � ˇ̌�.2/ � 2s2

ˇ̌C ˇ̌�.1/ � 2s1
ˇ̌

� c2
4K
;

which is a contradiction. Therefore either

R2 .Œ�s1; s1� ; ˛;M/ 6! 2s1 or

R2 .Œ�s2; s2� ; ˛;M/ 6! 2s2;

which proves the theorem.
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Towards an Efficient Finite Element
Method for the Integral Fractional
Laplacian on Polygonal Domains

Mark Ainsworth and Christian Glusa

Dedicated to Ian H. Sloan on the occasion of his 80th birthday.

Abstract We explore the connection between fractional order partial differential
equations in two or more spatial dimensions with boundary integral operators to
develop techniques that enable one to efficiently tackle the integral fractional Lapla-
cian. In particular, we develop techniques for the treatment of the dense stiffness
matrix including the computation of the entries, the efficient assembly and storage
of a sparse approximation and the efficient solution of the resulting equations. The
main idea consists of generalising proven techniques for the treatment of boundary
integral equations to general fractional orders. Importantly, the approximation does
not make any strong assumptions on the shape of the underlying domain and does
not rely on any special structure of the matrix that could be exploited by fast
transforms. We demonstrate the flexibility and performance of this approach in a
couple of two-dimensional numerical examples.

1 Introduction

Large scale computational solution of partial differential equations has revolu-
tionised the way in which scientific research is performed. Historically, it was
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generally the case that the mathematical models, expressed in the form of partial
differential equations involving operators such as the Laplacian, were impossible
to solve analytically, and difficult to resolve numerically. This led to a concerted
and sustained research effort into the development of efficient numerical methods
for approximating the solution of partial differential equations. Indeed, many
researchers who were originally interested in applications shifted research interests
to the development and analysis of numerical methods. A case in point is Professor
Ian H. Sloan who originally trained as physicist but went on to carry out fundamental
research in a wide range of areas relating to computational mathematics. Indeed, one
may struggle to find an area of computational mathematics in which Sloan has not
made a contribution and the topic of the present article, fractional partial differential
equations, may be one of the very few.

In recent years, there has been a burgeoning of interest in the use of non-local
and fractional models. To some extent, this move reflects the fact that with present
day computational resources coupled with state of the art numerical algorithms,
attention is now shifting back to the fidelity of the underlying mathematical models
as opposed to their approximation. Fractional equations have been used to describe
phenomena in anomalous diffusion, material science, image processing, finance and
electromagnetic fluids [30]. Fractional order equations arise naturally as the limit of
discrete diffusion governed by stochastic processes [20].

Whilst the development of fractional derivatives dates back to essentially the
same time as their integer counterparts, the computational methods available for
their numerical resolution drastically lags behind the vast array of numerical
techniques from which one can choose to treat integer order partial differential
equations. The recent literature abounds with work on numerical methods for
fractional partial differential equations in one spatial dimension and fractional order
temporal derivatives. However, with most applications of interest being posed on
domains in two or more spatial dimensions, the solution of fractional equations
posed on complex domains is a problem of considerable practical interest.

The archetypal elliptic partial differential equation is the Poisson problem
involving the standard Laplacian. By analogy, one can consider a fractional Poisson
problem involving the fractional Laplacian. The first problem one encounters is that
of how to define a fractional Laplacian, particularly in the case where the domain is
compact, and a number of alternatives have been suggested. The integral fractional
Laplacian is obtained by restriction of the Fourier definition to functions that have
prescribed value outside of the domain of interest, whereas the spectral fractional
Laplacian is based on the spectral decomposition of the regular Laplace operator. In
general, the two operators are different [24], and only coincide when the domain of
interest is the full space.

The approximation of the integral fractional Laplacian using finite elements was
considered by D’Elia and Gunzburger [10]. The important work of Acosta and
Borthagaray [1] gave regularity results for the analytic solution of the fractional
Poisson problem and obtained convergence rates for the finite element approxima-
tion supported by numerical examples computed using techniques described in [2].
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The numerical treatment of fractional partial differential equations is rather
different from the integer order case owing to the fact that the fractional derivative
is a non-local operator. This creates a number of issues including the fact that the
resulting stiffness matrix is dense and, moreover, the entries in the matrix are given
in terms of singular integrals. In turn, these features create issues in the numerical
computation of the entries and the need to store the entries of a dense matrix, not to
mention the fact that a solution of the resulting matrix equation has to be computed.
The seasoned reader will readily appreciate that many of these issues are shared
by boundary integral equations arising from classical integer order differential
operators [26, 27, 31]. This similarity is not altogether surprising given that the
boundary integral operators are pseudo-differential operators of fractional order.

A different, integer order operator based approach, was taken by Nochetto,
Otárola and Salgado [21] for the case of the spectral Laplacian. Caffarelli and
Silvestre [7] showed that the operator can be realised as a Dirichlet-to-Neumann
operator of an extended problem in the half space in dC 1 dimensions.

In the present work, we explore the connection with boundary integral operators
to develop techniques that enable one to efficiently tackle the integral fractional
Laplacian. In particular, we develop techniques for the treatment of the stiffness
matrix including the computation of the entries, the efficient storage of the resulting
dense matrix and the efficient solution of the resulting equations. The main ideas
consist of generalising proven techniques for the treatment of boundary integral
equations to general fractional orders. Importantly, the approximation does not make
any strong assumptions on the shape of the underlying domain and does not rely on
any special structure of the matrix that could be exploited by fast transforms. We
demonstrate the flexibility and performance of this approach in a couple of two-
dimensional numerical examples.

2 The Integral Fractional Laplacian and Its Weak
Formulation

The fractional Laplacian in R
d of order s, for 0 < s < 1 and d 2 N, of a function u

can be defined by the Fourier transform F as

.��/s u D F�1 hj�j2s Fu
i
:

Alternatively, this expression can be rewritten [29] in integral form as

.��/s u .x/ D C.d; s/ p: v:
Z

Rd
dy

u.x/� u.y/

jx � yjdC2s



20 M. Ainsworth and C. Glusa

where

C.d; s/ D 22ss�
�
sC d

2

�

�d=2� .1 � s/

is a normalisation constant and p: v: denotes the Cauchy principal value of the
integral [19, Chapter 5]. In the case where s D 1 this operator coincides with
the usual Laplacian. If ˝ 	 R

d is a bounded Lipschitz domain, we define the
integral fractional Laplacian .��/s to be the restriction of the full-space operator to
functions with compact support in ˝ . This generalises the homogeneous Dirichlet
condition applied in the case s D 1 to the case s 2 .0; 1/.

Define the usual fractional Sobolev space Hs
�
R

d
�

via the Fourier transform. If
˝ is a sub-domain as above, then we define the Sobolev space Hs .˝/ to be

Hs .˝/ WD ˚u 2 L2 .˝/ j jjujjHs.˝/ <1
�
;

equipped with the norm

jjujj2Hs.˝/ D jjujj2L2.˝/ C
Z

˝

dx
Z

˝

dy
.u.x/� u.y//2

jx � yjdC2s
:

The space

eHs .˝/ WD ˚u 2 Hs
�
R

d
� j u D 0 in ˝c

�

can be equipped with the energy norm

jjujjeHs.˝/ WD
r

C.d; s/

2
jujHs.Rd/ ;

where the non-standard factor
p

C.d; s/=2 is included for convenience. For s >
1=2, eHs .˝/ coincides with the space Hs

0 .˝/ which is the closure of C1
0 .˝/ with

respect to the Hs .˝/-norm. For s < 1=2, eHs .˝/ is identical to Hs .˝/. In the
critical case s D 1=2,eHs .˝/ 	 Hs

0 .˝/, and the inclusion is strict. (See for example
[19, Chapter 3].)

The usual approach to dealing with elliptic PDEs consists of obtaining a weak
form of the operator by multiplying the equation by a test function and applying
integration by parts [13]. In contrast, for equations involving the fractional Laplacian
.��/s u, we again multiply by a test function v 2 eHs .˝/ and integrate over Rd, and
then, instead of integration by parts, we use the identity

Z

Rd
dx
Z

Rd
dy
.u .x/ � u .y/ v .x//

jx � yjdC2s
D �

Z

Rd
dx
Z

Rd
dy
.u .x/ � u .y/ v .y//

jx � yjdC2s
:
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Following this approach, since both u and v vanish outside of ˝ , we arrive at the
bilinear form

a.u; v/ D b .u; v/C C.d; s/
Z

˝

dx
Z

˝c
dy

u .x/ v .x/

jx � yjdC2s ;

with

b.u; v/ D C.d; s/

2

Z

˝

dx
Z

˝

dy
.u .x/ � u .y// .v .x/ � v .y//

jx � yjdC2s ;

corresponding to .��/s on eHs .˝/ � eHs .˝/. The bilinear form a .�; �/ is trivially
seen to be eHs .˝/-coercive and continuous and, as such, is amenable to treatment
using the Lax-Milgram Lemma.

In this article we shall concern ourselves with the computational details needed
to implement the finite element approximation of problems involving the fractional
Laplacian. To this end, the presence of the unbounded domain ˝c in the bilinear
form a .�; �/ is somewhat undesirable. Fortunately, we can dispense with ˝c using
the following argument. The identity

1

jx � yjdC2s D
1

2s
ry � x � y

jx � yjdC2s ;

enables the second integral to be rewritten using the Gauss theorem as

C.d; s/

2s

Z

˝

dx
Z

@˝

dy
u .x/ v .x/ ny � .x � y/

jx � yjdC2s
;

where ny is the inward normal to @˝ at y, so that the bilinear form can be expressed
equivalently as

a.u; v/ D C.d; s/

2

Z

˝

dx
Z

˝

dy
.u .x/� u .y// .v .x/ � v .y//

jx � yjdC2s

C C.d; s/

2s

Z

˝

dx
Z

@˝

dy
u .x/ v .x/ ny � .x � y/

jx � yjdC2s
:

As an aside, we note that the bilinear form b .u; v/ represents the so-called regional
fractional Laplacian [5, 8]. The regional fractional Laplacian can be interpreted
as a generalisation of the usual Laplacian with homogeneous Neumann boundary
condition for s D 1 to the case of fractional orders s 2 .0; 1/. It will transpire from
our work that most of the presented techniques carry over to the regional fractional
Laplacian by simply omitting the boundary integral terms.
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3 Finite Element Approximation of the Fractional Poisson
Equation

The fractional Poisson problem

.��/s u D f in˝;

u D 0 in˝c

takes the variational form

Find u 2 eHs .˝/ W a .u; v/ D h f ; vi 8v 2 eHs .˝/ : (1)

Henceforth, let˝ be a polygon, and let Ph be a family of shape-regular and globally
quasi-uniform triangulations of˝ , and Ph;@ the induced boundary meshes [13]. Let
Nh be the set of vertices of Ph and hK be the diameter of the element K 2 Ph,
and he the diameter of e 2 Ph;@. Moreover, let h WD maxK2Ph hK . Let i be the
usual piecewise linear basis function associated with a node zi 2 Nh, satisfying
i
�
zj
� D ıij for zj 2 Nh, and let Xh WD span fi j zi 2 Nhg. The finite element

subspace Vh 	 eHs .˝/ is given by Vh D Xh when s < 1=2 and by

Vh D fvh 2 Xh j vh D 0 on @˝g D span fi j zi 62 @˝g
when s � 1=2. The corresponding set of degrees of freedom Ih for Vh is given by
Ih D Nh when s < 1=2 and otherwise consists of nodes in the interior of ˝ . In
both cases we denote the cardinality of Ih by n. The set of degrees of freedom on
an element K 2Ph is denoted by IK .

The stiffness matrix associated with the fractional Laplacian is defined to be
As D ˚a �i; j

��
i;j

, where

a
�
i; j

� D C.d; s/

2

Z

˝

dx
Z

˝

dy
.i .x/� i .y//

�
j .x/� j .y/

�

jx � yjdC2s

C C.d; s/

2s

Z

˝

dx
Z

@˝

dy
i .x/ j .x/ ny � .x � y/

jx � yjdC2s
:

The existence of a unique solution to the fractional Poisson problem Eq. (1) and its
finite element approximation follows from the Lax-Milgram Lemma.

The rate of convergence of the finite element approximation is given by the
following theorem:

Theorem 1 ([1]) If the family of triangulations Ph is shape regular and globally
quasi-uniform, and u 2 H` .˝/, for 0 < s < ` < 1 or 1=2 < s < 1 and 1 < ` < 2,
then

jju � uhjjeHs.˝/ � C .s; d/ h`�s jujH`.˝/ : (2)
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In particular, by applying regularity estimates for u in terms of the data f , the
solution satisfies

jju � uhjjeHs.˝/ �

8
ˆ̂<

ˆ̂
:

C .s/ h1=2 jlog hj jj f jjC1=2�s.˝/ if 0 < s < 1=2;

Ch1=2 jlog hj jj f jjL1.˝/ if s D 1=2;
C.s;ˇ/
2s�1 h1=2

pjlog hj jj f jjCˇ.˝/ if 1=2 < s < 1; ˇ > 0

Moreover, using a standard Aubin-Nitsche argument [13, Lemma 2.31] gives
estimates in L2 .˝/:

Theorem 2 ([6]) If the family of triangulations Ph is shape regular and globally
quasi-uniform, and, for � > 0, u 2 HsC1=2�� .˝/, then

jju � uhjjL2 �
(

C.s; �/h1=2Cs�� jujHsC1=2��.˝/ if 0 < s < 1=2;

C.s; �/h1�2� jujHsC1=2��.˝/ if 1=2 � s < 1:

When s D 1 classical results [13, Theorems 3.16 and 3.18] show that if u 2
H` .˝/, 1 < ` � 2,

jju� uhjjH1
0 .˝/
� Ch`�1 jujH`.˝/ ;

jju � uhjjL2.˝/ � Ch` jujH`.˝/ ;

so that (2) can be seen as a generalisation to the case s 2 .0; 1/. For s D 1, u 2
H2 .˝/ if the domain is of class C2 or a convex polygon and if f 2 L2 .˝/ [13,
Theorems 3.10 and 3.12]. However, when s 2 .0; 1/, higher order regularity of the
solution is not guaranteed under such conditions.

For example, consider the problem

.��/s us.x/ D 1 in ˝ D ˚x 2 R
2 j jxj < 1� ;

us .x/ D 0 in ˝c;

with analytic solution [14]

us .x/ WD 2�2s

� .1C s/2

�
1 � jxj2

	s
:

Although the domain is C1 and the right-hand side is smooth, us is only in
HsC1=2�� .˝/ for any � > 0. Sample solutions for s 2 f0:25; 0:75g are shown in
Fig. 1.
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Fig. 1 Solutions us to the
fractional Poisson equation
with constant right-hand side
for s D 0:25 (top) and
s D 0:75 (bottom)

4 Computation of Entries of the Stiffness Matrix

The computation of entries of the stiffness matrix As in the case of the usual
Laplacian (s D 1) is straightforward. However, for s 2 .0; 1/, the bilinear form
contains factors jx � yj�d�2s which means that simple closed forms for the entries
are no longer available and suitable quadrature rules therefore must be identified.
Moreover, the presence of a repeated integral over˝ (as opposed to an integral over
just ˝ in the case s D 1) means that the matrix needs to be assembled in a double
loop over the elements of the mesh so that the computational cost is potentially
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much larger than in the integer s D 1 case. Additionally, every degree of freedom is
coupled to all other degrees of freedom and the stiffness matrix is therefore dense.

4.1 Reduction to Smooth Integrals

In order to compute the entries of As D ˚
a
�
i; j

��
ij we decompose the expression

for the entries into contributions from elements K; QK 2 Ph and external edges
e 2Ph;@:

a.i; i/ D
X

K

X

QK
aK� QK.i; j/C

X

K

X

e

aK�e.i; j/;

where the contributions aK� QK and aK�e are given by:

aK� QK.i; j/ D C.d; s/

2

Z

K
dx
Z

QK
dy
.i.x/ � i.y//

�
j.x/� j.y/

�

jx � yjdC2s
; (3)

aK�e.i; j/ D C.d; s/

2s

Z

K
dx
Z

e
dy
i .x/ j .x/ ne � .x � y/

jx � yjdC2s : (4)

Although the following approach holds for arbitrary spatial dimension d, we restrict
ourselves to d D 2 dimensions. In evaluating the contributions aK� QK over element
pairs K � QK, several cases need to be distinguished:

1. K and QK have empty intersection,
2. K and QK are identical,
3. K and QK share an edge,
4. K and QK share a vertex.

These cases are illustrated in Fig. 2. In case 1, where the elements do not touch, the
Stroud conical quadrature rule [28] (or any other suitable Gauss rule on simplices)

Fig. 2 Element pairs that are treated separately. We distinguish element pairs of identical elements
(red), element pairs with common edge (yellow), with common vertex (blue) and separated
elements (green)
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of sufficiently high order can be used to approximate the integrals. More details as
to what constitutes a sufficiently high order are given in Sect. 4.2.

Special care has to be taken in the remaining cases 2–4, in which the elements
are touching, owing to the presence of a singularity in the integrand. Fortunately,
the singularity is removable and can, as pointed out in [1], be treated using
standard techniques from the boundary element literature [22]. More specifically,
we write the integral as a sum of integrals over sub-simplices. Each sub-simplex
is then mapped onto the hyper-cube Œ0; 1�4 using the Duffy transformation [11].
The advantage of pursuing this approach is that the singularity arising from the
degenerate nature of the Duffy transformation offsets the singularity present in the
integrals. For example, we obtain the following expressions

aK� QK.i; j/ D C.2; s/

2

jKjˇ
ˇ
ˇ OK
ˇ
ˇ
ˇ

ˇ
ˇ QKˇˇ
ˇ
ˇ
ˇ OK
ˇ
ˇ
ˇ

LcX

`D1

Z

Œ0;1�4
d� NJ.`;c/

N .`;c/k.i/ .�/
N .`;c/k.j/ .�/

ˇ
ˇ
ˇ
P6�c

kD0 N .`;c/k .�/ xk

ˇ
ˇ
ˇ
2C2s ; (5)

and

aK�e.i; j/ D C.2; s/

2s

jKj
ˇ
ˇ
ˇ OK
ˇ
ˇ
ˇ

jej
jOej

LcX

`D1

Z

Œ0;1�3
d� NJ.`;c/ 

.`;c/
k.i/ .�/ 

.`;c/
k.j/ .�/

P5�c
kD0 N .`;c/k .�/ ne � xk

ˇ
ˇ
ˇ
P5�c

kD0 N .`;c/k .�/ xk

ˇ
ˇ
ˇ
2C2s

(6)

in which the singularity jx � yj�d�2s is no longer present. The derivations of the
terms involved can be found in [2, 22] and, for completeness, are summarised in
the Appendix, along with the notations used in Eqs. (5) and (6). Removing the sin-
gularity means that the integrals in Eqs. (5) and (6) are amenable to approximation
using standard Gaussian quadrature rules of sufficiently high order as discussed in
Sect. 4.2. The same idea is applicable in any number of space dimensions.

4.2 Determining the Order of the Quadrature Rules

The foregoing considerations show that the evaluation of the entries of the stiffness
matrix boils down to the evaluation of integrals with smooth integrands, i.e.
expressions Eqs. (3) and (4) for case 1 and expressions Eqs. (5) and (6) for case
2–4. As mentioned earlier, it is necessary to use a sufficiently high order quadrature
rule to approximate these integrals. We now turn to the question of how high is
sufficient.
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The arguments used to prove the ensuing estimates follow a pattern similar to
the proofs of Theorems 5.3.29, 5.3.23 and 5.3.24 in [22]. The main difference from
[22] is the presence of the boundary integral term. More details on the development
of this type of quadrature rules in the context of boundary element methods can be
found in the work of Erichsen and Sauter [12].

Theorem 3 For d D 2, let IK index the degrees of freedom on K 2 Ph, and
define IK� QK WD IK [ I QK. Let kT (respectively kT;@) be the quadrature order
used for touching pairs K � QK (respectively K � e), and let kNT

�
K; QK� (respectively

kNT;@ .K; e/) be the quadrature order used for pairs that have empty intersection.
Denote the resulting approximation to the bilinear form a .�; �/ by aQ .�; �/. Then the
consistency error due to quadrature is bounded by

ja.u; v/ � aQ.u; v/j � C .ET C ENT C ET;@ C ENT;@/ jjujjL2.˝/ jjvjjL2.˝/ 8u; v 2 Vh;

where the errors are given by

ET D h�2�2s

�2kT
1 ;

ENT D max
K; QK2Ph;K\ QKD;

h�2d�2s
K; QK




2

dK; QK
h

��2kNT.K; QK/
;

ET;@ D h�1�2s

�2kT;@
3 ;

ENT;@ D max
K2Ph;e2Ph;@;K\eD;

h�1d�2s
K;e




4

dK;e

h

��2kNT;@.K;e/

;

dK; QK WD infx2K;y2 QK jx � yj, dK;e WD infx2K;y2e jx � yj, and 
j > 1, j D 1; 2; 3; 4, are
constants.

The proof of the Theorem is deferred to the Appendix.
The impact of the use of quadrature rules on the accuracy of the resulting finite

element approximation can be quantified using Strang’s first lemma [13, Lemma
2.27]:

jju � uhjjeHs.˝/ � C inf
vh2Vh

"

jju � vhjjeHs.˝/ C sup
wh2Vh

ja.vh;wh/� aQ.vh;wh/j
jjwhjjeHs.˝/

#

� C inf
vh2Vh

h
jju � vhjjeHs.˝/

C .ET C ENT C ET;@ C ENT;@/ jjvhjjL2.˝/ sup
wh2Vh

jjwhjjL2.˝/
jjwhjjeHs.˝/

#

� C inf
vh2Vh

h
jju � vhjjeHs.˝/ C .ET C ENT C ET;@ C ENT;@/ jjvhjjL2.˝/

i
;
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where we used the Poincare inequality jjwhjjL2.˝/ � C jjwhjjeHs.˝/ in the last step. We
then use the Scott-Zhang interpolation operator˘h [9, 23] and the estimate

jju �˘hujjeHs.˝/ � Ch`�s jujH`.˝/ ;

used in the proof of Theorem 1 to bound the first term on the right-hand side:

jju � uhjjeHs.˝/ � C
�
h`�s jujH`.˝/ C .ET C ENT C ET;@ C ENT;@/ jj˘hujjL2.˝/

�
:

We choose the quadrature rules in such a way that the remaining terms on the right-
hand side are also of order O

�
h`�s

�
, i.e.

kT � .` � sC 2C 2s/

2 log.
1/
jlog hj � C; (7)

kNT
�
K; QK� � ..` � s/=2C 1C s/ jlog hj � s log

dK; QK

h � C

log
dK; QK

h C log.
2/
; (8)

kT;@ � .` � sC 1C 2s/

2 log.
3/
jlog hj � C; (9)

kNT;@ .K; e/ �
..` � s/=2C 1=2C s/ jlog hj � s log dK;e

h � C

log dK;e

h C log.
4/
: (10)

In particular, if the pair K� QK (respectively K�e) is well separated, so that dK; QK � 1
(dK;e � 1), then

kNT
�
K; QK� � .` � s/=2C 1;

kNT;@ .K; e/ � .` � s/=2C 1=2

is sufficient.
In practice, the quadrature order for non-touching element pairs can be chosen

depending on dK; QK using Eqs. (8) and (10), or an appropriate choice of cutoff
distance D can be determined so that element pairs with dK; QK < D are approximated
using a quadrature rule with O .jlog hj/ nodes, and pairs with dK; QK � D are
computed using a constant number of nodes.

It transpires from the expressions derived in the Appendix and the fact that n �
h�2 that the complexity to calculate the contributions by a single pair of elements K
and QK scales like

• log n if the elements coincide,
• .log n/2 if the elements share only an edge,
• .log n/3 if the elements share only a vertex,
• .log n/4 if the elements have empty intersection, but are “near neighbours”, and
• C if the elements are well separated.
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Since n � jPhj, we cannot expect a straightforward assembly of the stiffness
matrix to scale better than O

�
n2
�
. Similarly, its memory requirement is n2, and a

single matrix-vector product has complexity O
�
n2
�
, which severely limits the size

of problems that can be considered.

5 Solving the Linear Systems

The fractional Poisson equation leads to the linear algebraic system

Asu D b; (11)

whereas time-dependent problems (using implicit integration schemes) lead to
systems of the form

.MC�tAs/u D b; (12)

where �t is the time-step size. In typical examples, the time-step will be chosen so
that the orders of convergence in both spatial and temporal discretisation errors are
balanced.

In both cases, the matrices are dense and the condition number of As grows as the
mesh is refined (h! 0). The cost of using a direct solver is prohibitively expensive,
growing as O

�
n3
�
. An alternative is to use an iterative solver such as the conjugate

gradient method but the rate of convergence will depend on the condition number.
The following result quantifies how the condition number of As depends on the
fractional order s and the mesh size h:

Theorem 4 ([4]) For s < d=2, and a family of shape regular and globally quasi-
uniform triangulationsPh with maximal element size h, the spectrum of the stiffness
matrix satisfies

chdI � As � Chd�2sI;

and hence the condition number of the stiffness matrix satisfies

� .As/ D Ch�2s:

The exponent of the growth of the condition number depends on the fractional
order s. For small s, the matrix is better conditioned, similarly to the mass matrix
in the case of integer order operators. As s ! 1, the growth of the condition
number approaches O

�
h�2�, as for the usual Laplacian. Consequently, just as the

conjugate gradient method fails to be efficient for the solution of equations arising
from the discretisation of the Laplacian, CG becomes increasingly uncompetitive
for the solution of equations arising from the fractional Laplacian.
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In the integer order case, multigrid iterations have been used with great success
for solving systems involving both the mass matrix and the stiffness matrix that
arises from the discretisation of the regular Laplacian. It is therefore to be expected
that the same will remain true for systems arising from the fractional Laplacian. In
practice, a single multigrid iteration is much more expensive than a single iteration
of conjugate gradient. The advantage of multigrid is, however, that the number of
iterations is essentially independent of the number of unknowns n. Consequently,
while the performance of CG degenerates as n increases, this will not be the case
with multigrid making it attractive as a solver for the fractional Poisson problem.

Turning to the systems that arise from the discretisation of time-dependent
problems, we first observe that an explicit scheme will lead to CFL conditions on the
time-step size of the form�t � Ch2s. On the other hand, for implicit time-stepping,
the following theorem shows that if the time-step �t D O

�
h2s
�
, we can expect the

conjugate gradient method to converge rapidly, at a rate which does not degenerate
as n increases, in contrast with what is observed for steady problems:

Lemma 1 For a shape regular and globally quasi-uniform family of triangulations
Ph and time-step �t � 1,

� .M C�tAs/ � C



1C �t

h2s

�
:

Proof Since chdI � M � ChdI, this also permits us to deduce that

c
�
hd C�t hd

�
I � M C�tAs � C

�
hd C�t hd�2s

�
I

and so

� .M C�tAs/ � C



1C �t

h2s

�
:

ut
This shows that for a general time-step �t � h2s, the number of iterations the
conjugate gradient method will require for systems of the form Eq. (12) will grow
as
p
�t=h2s � ns=d

p
�t. Consequently, if �t is large compared to h2s, a multigrid

solver outperforms conjugate gradient for the systems Eq. (12), but if �t is on the
same order as h2s, conjugate gradient iterations will generally be more efficient than
a multigrid method.

In this section we have concerned ourselves with the effect that the mesh and the
fractional order have on the rate of convergence of iterative solvers. This, of course,
ignores the cost of carrying out the iteration in which a matrix-vector multiply
must be computed at each step. The complexity of both multigrid and conjugate
gradient iterations depends on how efficiently the matrix-vector product Asx can be
computed. By way of contrast, the mass matrix in Eq. (12) has O .n/ entries, so its
matrix-vector product scales linearly in the number of unknowns. Since all the basis



Efficient Finite Element Method for the Integral Fractional Laplacian 31

functions i interact with one another, the matrix As is dense and the associated
matrix-vector product has complexity O

�
n2
�
. In the following section, we discuss

a sparse approximation that will preserve the order of the approximation error of
the fractional Laplacian, but display significantly better scaling in terms of both
memory usage and operation counts for both assembly and matrix-vector product.

6 Sparse Approximation of the Matrix

The presence of a factor jx � yj�d�2s in the integrand in the expression for the
entries of the stiffness matrix means that the contribution of pairs of elements
that are well separated is significantly smaller than the contribution arising from
pairs of elements that are close to one another. This suggests the use of the panel
clustering method [17] from the boundary element literature, whereby such far field
contributions are replaced by less expensive low-rank blocks rather than computing
and storing all the individual entries from the original matrix. Conversely, the near-
field contributions are more significant but involve only local couplings and hence
the cost of storing the individual entries is a practical proposition. A full discussion
of the panel clustering method is beyond the scope of the present work but can be
found in [22, Chapter 7]. Here, we confine ourselves to stating only the necessary
definitions and steps needed to describe our approach.

Definition 1 ([22]) A cluster is a union of one or more indices from the set of
degrees of freedom I . The nodes of a hierarchical cluster tree T are clusters. The
set of all nodes is denoted by T and satisfies

1. I is a node of T .
2. The set of leaves Leaves.T / 	 T corresponds to the degrees of freedom i 2 I

and is given by

Leaves.T / WD ffig W i 2 I g :

3. For every � 2 TnLeaves .T / there exists a minimal set˙ .�/ of nodes in Tnf�g
(i.e. of minimal cardinality) that satisfies

� D
[

	2˙.�/
	:

The set ˙ .�/ is called the sons of � . The edges of the cluster tree T are the
pairs of nodes .�; 	/ 2 T � T such that 	 2 ˙ .�/.

An example of a cluster tree for a one-dimensional problem is given in Fig. 3.

Definition 2 ([22]) The cluster box Q� of a cluster � 2 T is the minimal hyper-
cube which contains

S
i2� suppi. The diameter of a cluster is the diameter of its
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Fig. 3 Cluster tree for a one
dimensional problem. For
each cluster, the associated
degrees of freedom are
shown. The mesh with its
nodal degrees of freedom is
plotted at the bottom
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0 123 45 6 7 8

Fig. 4 Cluster pairs for a one
dimensional problem. The
cluster boxes of the
admissible cluster pairs are
coloured in light blue, and
their overlap in darker blue.
The diagonal cluster pairs are
not admissible and are not
approximated, but assembled
in full
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cluster box diam .�/ WD supx;y2Q� jx � yj. The distance of two clusters � and 	
is dist .�; 	/ WD infx2Q� ;y2Q	 jx � yj. The subspace V� of Vh is defined as V� WD
span fi j i 2 �g.

For given � > 0, a pair of clusters .�; 	/ is called admissible, if

� dist .�; 	/ � max fdiam .�/ ; diam .	/g :

The admissible cluster pairs can be determined recursively. Cluster pairs that are not
admissible and have no admissible sons are part of the near field and are assembled
into a sparse matrix. The admissible cluster pairs for a one dimensional problem are
shown in Fig. 4.

For admissible pairs of clusters � and 	 and any degrees of freedom i 2 � and
j 2 	 , the corresponding entry of the stiffness matrix is

.As/ij D a
�
i; j

� D �C .d; s/
Z

˝

Z

˝

k .x; y/ i .x/ j .y/



Efficient Finite Element Method for the Integral Fractional Laplacian 33

with kernel k .x; y/ D jx � yj�.dC2s/. The kernel can be approximated on Q� � Q	

using Chebyshev interpolation of order m in every spatial dimension by

km .x; y/ D
mdX

˛;ˇD1
k
�
��˛; �

	
ˇ

	
L�˛ .x/ L	ˇ .y/ :

Here, ��˛ are the tensor Chebyshev nodes on Q� , and L�˛ are the associated Lagrange

polynomials on the cluster box Q� with L�˛
�
��ˇ

	
D ı˛ˇ. This leads to the following

approximation:

.As/ij 
 �C .d; s/
m2X

˛;ˇD1
k
�
��˛; �

	
ˇ

	 Z

suppi

i .x/ L�˛ .x/ dx
Z

suppj

j .y/ L	ˇ .y/ dy

In fact, the expressions
R

suppi
i .x/ L�˛ .x/ dx can be computed recursively starting

from the finest level of the cluster tree, since for 	 2 ˙ .�/ and x 2 Q	

L�˛ .x/ D
X

ˇ

L�˛
�
�	ˇ

	
L	ˇ .x/ :

This means that for all leaves � D fig, and all 1 � ˛ � md, the basis far-field
coefficients

Z

suppi

i .x/ L�˛ .x/ dx

need to be evaluated (e.g. by m C 1-th order Gaussian quadrature). Moreover, the
shift coefficients

L�˛

�
�	ˇ

	

for 	 2 ˙ .�/ must be evaluated, as well as the kernel approximations

k
�
��˛; �

	
ˇ

	

for every admissible pair of clusters .�; 	/. We refer the reader to [22] for further
details.

The consistency error of this approximation is given by the following theorem:

Theorem 5 ([22], Theorems 7.3.12 and 7.3.18) There exists � 2 .0; 1/ such that

jk .x; y/ � km .x; y/j � C�m

dist .�; 	/dC2s
:
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The consistency error between the bilinear form a.�; �/ and the bilinear form aC.�; �/
of the panel clustering method is

ja.u; v/� aC.u; v/j � C�m .1C 2�/dC2s Cd;s.h/ jjujjL2.˝/ jjvjjL2.˝/ ;
where

Cd;s.h/ D

8
ˆ̂
<

ˆ̂
:

h�2 if d D 1 and s < 1=2;

h�2 .1C jlog hj/ if d D 1 and s D 1=2;
h�d�2s otherwise:

Again, by invoking Strang’s Lemma, O
�
h`�s

�
convergence is retained if the

interpolation order m satisfies

m � .` � sC 2/ jlog hj
jlog � j if d D 1 and s < 1=2

m � .` � sC 2/ jlog hj C log .1C jlog hj/
jlog � j if d D 1 and s D 1=2

m � .` � sC dC 2s/ jlog hj
jlog � j otherwise:

By following the arguments in [22], it can be shown that the number of near
field entries, i.e. the entries that need to be assembled using the quadrature rules
described in Sect. 4, scales linearly in n. The same conclusion holds for the number
of far field cluster pairs. Since the four dimensional integral contributions aK� QK
are evaluated using Gaussian quadrature rules with at most k � log n quadrature
nodes per dimension, the assembly of the near field contributions scales with
n log2d n. The far field kernel approximations and the shift coefficients have size
m2d � log2d n, and are also calculated in log2d n complexity. This means that all the
kernel approximations and shift coefficients are obtained in n log2d n time. Finally,
the nmd basis far-field coefficients require the evaluation of integrals using mC 1-
th order Gaussian quadrature, leading to a complexity of n log2d n as well. The
overall complexity of the panel clustering method is therefore O

�
n log2d n

�
, and the

sparse approximation requires O
�
n log2d n

�
memory. In practice, this means that

the assembly of the near-field matrix dominates the other steps but involves only
local computations.

The computation of the matrix-vector product involving upward and downward
recursion in the cluster tree and multiplication by the kernel approximations can
also be shown to scale with O

�
n log2d n

�
.

As an aside, we note that one could also opt to use a conventional dense
approximation of the discretised fractional Laplacian such as the “hybrid” scheme
described in [16] which reduces the far field computation to the computation of a
“Nyström-type” approximation. While the complexity of this approach still scales as
O
�
n2
�
, the constant is significantly smaller than if the dense matrix were to be used.
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Fig. 5 Memory usage of the
dense matrix and its sparse
approximation. s D 0:25

(top), s D 0:75 (bottom).
While the dense matrix uses
n2 floating-point numbers, the
sparse approximation can be
seen to require only
O
�
n log4 n

�
memory. At

roughly 2000 unknowns, the
memory footprint of the
sparse approximation
separates from the O

�
n2
�
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We illustrate the above results by assembling both the full matrix as well as
its sparse approximation on the unit disk for fractional orders s D 0:25 and s D
0:75. The memory usage of the matrices are compared in Fig. 5. For low number of
degrees of freedom, none of the cluster pairs are admissible, so the full matrix and its
approximation have the same size. Starting with roughly 2000 degrees of freedom,
the memory footprint of the sparse approximate starts to follow the n log4 n curve
and therefore outperforms the full assembly. The same behaviour can be observed
for the assembly times, as seen in Fig. 6.
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Fig. 6 Assembly time of the
dense matrix and its sparse
approximation. s D 0:25

(top), s D 0:75 (bottom). The
time to assemble the full
matrix grows quadratically in
the number of unknowns,
whereas the sparse
approximation starts to follow
the n log4 n curve at about
2000 degrees of freedom
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7 Applications

7.1 Fractional Poisson Equation

We consider the fractional Poisson problem

.��/s u D f in ˝;

u D 0 in ˝c
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Fig. 7 A quasi-uniform triangulation of the disc domain, obtained through uniform refinement
followed by projection of the resulting boundary nodes back onto the unit circle

on the unit disk˝ D ˚x 2 R
2 j jxj � 1�. The discretised fractional Poisson problem

then reads

Asu D b; (13)

where uh DPn
iD1 uii 2 Vh is the approximation to the solution u, and bi D h f ; ii.

Triangulations of the disc are obtained through uniform refinement of a uniform
initial mesh. After each refinement, the boundary nodes are projected onto the unit
circle, resulting in triangulations of the type shown in Fig. 7.

We first consider the test case introduced in Sect. 3 where f D 1 with analytic
solution [14] given by

us .x/ WD 2�2s

� .1C s/2

�
1 � jxj2

	s
:

Both the full matrix and its sparse approximation are assembled for s 2 f0:25; 0:75g,
and Eq. (13) is solved using LAPACK’s dgesv routine and a multigrid solver in
the dense case, and multigrid and conjugate gradient methods in the sparse case.
Two steps of pre- and postsmoothing by Jacobi iteration are used on every level
of the multigrid solver. Recall that solutions for s D 0:25 and s D 0:75 were
shown in Fig. 1. In Figs. 8 and 9, the discretisation error is plotted in eHs .˝/ and
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Fig. 8 Error jjus � uhjjeHs.˝/

for s D 0:25 (top) and
s D 0:75 (bottom) in the case
of solutions with singular
behaviour close to the
boundary. Both the full matrix
and its sparse approximation
are shown to achieve the
predicted rate of h1=2
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in L2-norm. It can be seen that the rates predicted by Theorems 1 and 2 of h1=2 and
h1=2Cmin.1=2;s/ are indeed obtained, and that the error curves for the full matrix and
its sparse approximation are essentially indistinguishable.

For a second example, the right-hand side f is chosen such that u D 1 � jxj2 2
H2 .˝/. The action of f on v 2 Vh is approximated by

. f ; v/ D a.Ihu; v/;
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Fig. 9 Error jjus � uhjjL2 for
s D 0:25 (top) and s D 0:75

(bottom) in the case of
solutions with singular
behaviour close to the
boundary. Both the full
matrix and its sparse
approximation are shown to
achieve the predicted rate of

h1=2Cminfs;1=2g
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where Ih is the interpolation operator onto a highly refined mesh with h < h. The
resulting consistency error in this case is

sup
v

ˇ
ˇa.u; v/� a.Ihu; v/

ˇ
ˇ

jjvjjeHs.˝/

� C
ˇ̌̌̌
u � Ihu

ˇ̌̌̌
eHs.˝/

� Ch2�s jujH2 :

Therefore, if h is sufficiently smaller than h, the consistency error will be negligible
compared to the discretisation error.
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Fig. 10 Errors jju � uhjjeHs.˝/

and jju � uhjjL2 for s D 0:25

(top) and s D 0:75 (bottom)
in the case of a smooth
solution
u.x/ D 1� jxj2 2 H2 .˝/.
Optimal orders are achieved
both ineHs .˝/- and L2-norm
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Table 1 Asymptotic
complexities of different
solvers for the discretised
fractional Poisson problem
Asu D b

Method Dense matrix Sparse approximation

Dense solver n3 –

Conjugate gradient n2Cs=d n1Cs=d .log n/2d

Multigrid n2 n .log n/2d

The dependency of the error on the mesh size h can be seen in Fig. 10. The
discretisation error decays as h2�s in eHs .˝/-norm, and as h2 in L2-norm, which are
the optimal orders that we would expect based on estimate (2).

Summarising the results of Sects. 5 and 6, we expect different solvers for the
fractional Laplacian to have complexities as given in Table 1. The timings for
the different combinations of dense or sparse matrix with a solver are shown in
Fig. 11. It can be observed that the sparse approximation asymptotically outperforms
the dense solvers. Moreover, for the larger value of s, the multigrid solver starts
to outperform the conjugate gradient method for increasingly smaller numbers of
unknowns as one would expect based on earlier arguments.
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Fig. 11 Solution time for the
fractional Laplacian using
different solvers and the full
matrix and its sparse
approximation for s D 0:25

(top) and s D 0:75 (bottom).
The solvers using the full
matrix are outperformed by
the ones based on the sparse
approximation. For larger
fractional order s, the
break-even between
conjugate gradient and
multigrid iteration occurs at a
lower number of unknowns
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7.2 Fractional Heat Equation

The fractional heat equation is given by

ut C .��/s u D f in ˝;

u D 0 in ˝c:

We propose to approximate the problem using an implicit method in time. The
simplest such scheme is the backward Euler method

.M C�t As/ ukC1 D Muk C�tf kC1;

where u.�; k�t/ 
Pi uk
i i and f k

i D . f .�; k�t/; i/.
More generally, let us assume that a scheme of order ˛ is used in time. In order

to obtain optimal convergence in L2-norm, in view of Theorem 2, we shall choose
�t˛ � h1=2Cmin.1=2;s/, i.e.

�tL2 � hmin.2;1C2s/=.2˛/:

On the other hand, if optimal eHs .˝/-convergence is desired, we need �teHs.˝/ �
h1=.2˛/, see Theorem 1. Consequently, if an order ˛ scheme is used for time stepping,
with optimal time step �tL2 or �teHs.˝/, we find by Lemma 1 that the condition
numbers of the iteration matrix satisfy

� .MC�tL2 A
s/ � C

�
1C hmin.2;1C2s/=.2˛/�2s

	
;

�
�
M C�teHs.˝/ A

s
	
� C

�
1C h1=.2˛/�2s

�
:

In particular, in the L2 case, this shows that the condition number will not grow at
all as the mesh size decreases if s 2 .0; 1= .4˛ � 2/�. For fractional orders s that
are slightly larger than 1=.4˛ � 2/, the condition number only grows very slowly
as the mesh size is decreased. The larger the fractional order, the faster the linear
system becomes ill-conditioned. In the eHs .˝/ case, the condition number of the
linear system grows as the mesh size is decreased for s > 1= .4˛/.

We illustrate the consequences of the above result in the case of a second order
accurate time stepping scheme (˛ D 2), and for s D 0:25 and s D 0:75. In the case
of s D 0:25, �tL2 � h3=8 and � .MC�tL2 A

s/ � 1C h�1=8. This suggests that the
conjugate gradient method will deliver good results for a wide range of mesh sizes
h, as the number of iterations will only grow as

p
� .M C�tL2 A

s/ � h�1=16. The
convergence of the multigrid method does not depend on the condition number and
is essentially independent of h. This is indeed what is observed in the top part of
Fig. 12. In Fig. 13, the number of iterations is shown. It can be observed that for
s D 0:25 both the multigrid and the conjugate gradient solver require an essentially
constant number of iterations for varying values of �t.
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Fig. 12 Timings in seconds for CG and MG depending on �t for s D 0:25 (top) and s D 0:75

(bottom). It can be observed that, for s D 0:25, the conjugate gradient method is essentially on
par with the multigrid solver. For s D 0:75, the multigrid solver asymptotically outperforms the
conjugate gradient method, since the condition number � .M C�tL2A

s/ grows as h�1

On the other hand, for s D 0:75, �tL2 � h1=2 and � .M C�tL2 A
s/ � 1C h�1.

Therefore, the condition number increases a lot faster as h goes to zero, and we
expect that multigrid asymptotically outperforms the CG solver. This is indeed what
is observed in Figs. 12 and 13.

The complexities of the different solvers for different choices of time step size
are summarised in Table 2.
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Fig. 13 Number of iterations for CG and MG depending on �t for s D 0:25 (top) and s D 0:75

(bottom). For s D 0:25, the number of iterations is essentially independent of �t. For s D 0:75,
the number of iterations of the multigrid solver is independent of �t, but the iterations count for
conjugate gradient grows with h�1=2
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Table 2 Complexity of different solvers for .M C�tAs/ u D b for�t D �tL2 and�t D �teHs.˝/

for an ˛-order time stepping scheme

Method �t D �tL2 �t D �teHs.˝/

Conjugate gradient n1C2s=d�min.2;1C2s/=.2˛d/ .log n/2d n1C2s=d�1=.2˛d/ .log n/2d

Multigrid n .log n/2d n .log n/2d

Table 3 IMEX scheme by Koto

0 0

1 0 1

1/2 0 �1/2 1

1 0 �1 1 1

0 �1 1 1

0

1 1

1/2 0 0

1 0 0 1

0 0 1 0

Implicit scheme on the left, explicit on the right

7.3 Fractional Reaction-Diffusion Systems

In [15], a space-fractional Brusselator model was analysed and compared to the
classical integer-order case. The coupled system of equations is given by

@X

@t
D �DX .��/˛ X C A � .BC 1/X C X2Y;

@Y

@t
D �DY .��/ˇ Y C BX � X2Y:

Here, DX and DY are diffusion coefficients, A and B are reaction parameters, and ˛
and ˇ determine the type of diffusion. By rewriting the solutions as deviations from
the stationary solution X D A, Y D B=A and rescaling, one obtains

@u

@t
D � .��/˛ uC .B � 1/uCQ2v C B

Q
u2 C 2Quv C u2v; (14)

�2
@v

@t
D � .��/ˇ v � Bu �Q2v � B

Q
u2 � 2Quv � u2v; (15)

with � D
q

DY=Dˇ=˛
X and Q D A�.

In [15] the equations were augmented with periodic boundary conditions and
approximated using a pseudospectral method for various different parameter com-
binations. Here, thanks to the foregoing developments, we have the flexibility to
handle more general domains and, in particular, we consider the case where ˝
corresponds to a Petri-dish, i.e. ˝ D ˚

x 2 R
2 j jxj � 1� is the unit disk. We solve

the above set of equations using a second order accurate IMEX scheme proposed
by Koto [18], whose Butcher tableaux are given by Table 3. The diffusive parts are
treated implicitly and therefore require the solution of several systems all of which
are of the type MC c�tAs with appropriate values of c.
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In order to verify the correct convergence behaviour, we add forcing functions f
and g to the system, chosen such that the analytic solution is given by

u D � sin.t/us.x/;

v D ��1 cos.2t/us.x/;

for suitable initial conditions, where us is the solution of the fractional Poisson
problem with constant right-hand side. We take ˛ D ˇ D 0:75, and choose
�t � h1=2, since we already saw that the rate of the spatial approximation in L2-
norm is of order h. We measure the error as

eu
L2 D max

0�ti�10
ˇ
ˇ
ˇ
ˇu.ti; �/� ui

h

ˇ
ˇ
ˇ
ˇ
L2
; evL2 D max

0�ti�10
ˇ
ˇ
ˇ
ˇv.ti; �/� vi

h

ˇ
ˇ
ˇ
ˇ
L2
;

eu
eHs.˝/

D max
0�ti�10

ˇ̌̌̌
u.ti; �/� ui

h

ˇ̌̌̌
eHs.˝/

; eveHs.˝/
D max

0�ti�10
ˇ̌̌̌
v.ti; �/� vi

h

ˇ̌̌̌
eHs.˝/

:

From the error plots in Fig. 14, it can be observed that eL2 � h and eV � h1=2, as
expected.

Fig. 14 Error in L2-norm
(top) andeHs .˝/-norm
(bottom) in the Brusselator
model. Optimal orders of
convergence are achieved
(compare Theorems 1 and 2)
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Fig. 15 Localised spot solutions of the Brusselator system with ˛ D ˇ D 0:625 (left) and ˛ D
ˇ D 0:75 (right). u is shown in both cases, and time progresses from top to bottom. The initial
perturbation was identical in both cases. The initial perturbation in the centre of the domain forms
a ring, whose radius is bigger if the fractional orders of diffusion ˛, ˇ are smaller. The ring breaks
up into several spots, which start to replicate and spread out over the whole domain. n � 50;000

unknowns were used in the finite element approximation

Having verified the accuracy of the method, we turn to the solution of the system
Eqs. (14) and (15) augmented with exterior Neumann conditions as described in
Sect. 2. Golovin et al. [15] observed that for � D 0:2, B D 1:22 and Q D 0:1,
a single localised perturbation would first form a ring and then break up into
spots. The radius of the ring and the number of resulting spots increases as the
fractional orders are decreased. In Fig. 15, simulation results for ˛ D ˇ D 0:625
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Fig. 16 Stripe solutions of the Brusselator system with ˛ D ˇ D 0:75. u is shown on the left,
and v on the right. The random initial condition leads to the formation of stripes throughout the
domain. n � 50;000 unknowns were used in the finite element approximation

and ˛ D ˇ D 0:75 are shown. We observe that in both cases, an initially circular
perturbation develops into a ring. Lower diffusion coefficients do lead to a larger
ring, which breaks up later and into more spots. In the last row, we can see that the
resulting spots start to replicate and spread out over the whole domain.

Another choice of parameters leads to stripes in the solution. For ˛ D ˇ D 0:75,
� D 0:2, B D 6:26 and Q D 2:5, and a random initial condition, stripes without
directionality form in the whole domain. This is in alignment with the theoretical
considerations of Golovin et al. [15] (Fig. 16).

8 Conclusion

We have presented a reasonably complete and coherent approach for the efficient
approximation of problems involving the fractional Laplacian, based on techniques
from the boundary element literature. In particular, we discussed the efficient
assembly and solution of the associated matrix, and demonstrated the feasibility
of a sparse approximation using the panel clustering method. The potential of
the approach was demonstrated in several numerical examples, and were used to
reproduce some of the findings for a fractional Brusselator model. While we focused
on the case of d D 2 dimensions, the generalisation to higher dimensions does
not pose any fundamental difficulties. Moreover, the approach taken to obtain a
sparse approximation to the dense system matrix for the fractional Laplacian does
not rely strongly on the form of the interaction kernel k .x; y/ D jx � yj�.dC2s/, and
generalisations to different kernels such as the one used in peridynamics [25] are
therefore possible. In the present work we have confined ourselves to the discussion
of quasi-uniform meshes. However, solutions of problems involving the fractional
Laplacian exhibit line singularities in the neighbourhood of the boundary. The
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efficient resolution of such problems would require locally refined meshes which
form the topic of forthcoming work [3].

Acknowledgements This work was supported by the MURI/ARO on “Fractional PDEs for
Conservation Laws and Beyond: Theory, Numerics and Applications” (W911NF-15-1-0562).

Appendix 1: Derivation of Expressions for Singular
Contributions

The contributions aK� QK and aK�e as given in Eqs. (3) and (4) for touching elements
K and QK contain removable singularities. In order to make these contributions
amenable to numerical quadrature, the singularities need to be lifted. We outline
the derivation for d D 2 dimensions.

The expression for aK� QK can be transformed into integrals over the reference
element OK:

aK� QK.i; j/

DC.2; s/

2

Z

K
dx
Z

QK
dy
.i.x/ � i.y//

�
j.x/� j.y/

�

jx� yj2C2s

DC.2; s/

2

jKjˇ
ˇ
ˇ OK
ˇ
ˇ
ˇ

ˇ
ˇ QKˇˇ
ˇ
ˇ
ˇ OK
ˇ
ˇ
ˇ

Z

OK
d Ox
Z

OK
d Oy .i.x .Ox// � i.y .Oy///

�
j.x .Ox// � j.y .Oy//

�

jx .Ox/ � y .Oy/j2C2s
:

Similarly, by introducing the reference edge Oe, we obtain

aK�e.i; j/ D C.2; s/

2s

Z

K
dx
Z

e
dy
i .x/ j .x/ ne � .x � y/

jx � yj2C2s

D C.2; s/

2s

jKjˇ
ˇ
ˇ OK
ˇ
ˇ
ˇ

jej
jOej
Z

OK
d Ox
Z

Oe
d Oyi .x .Ox// j .x .Ox// ne � .x .Ox/� y .Oy//

jx .Ox/� y .Oy/j2C2s

for touching elements K and edges e. If K and QK or e have c � 1 common vertices,
and if we designate by �k, k D 0; : : : ; 6� c the barycentric coordinates of K [ QK or
K [ e respectively (cf. Fig. 17), we have

�k.i/.Ox/ D i .x .Ox// ;
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Fig. 17 Numbering of local
nodes for touching triangular
elements K and QK or element
K and edge e. (a) K \ QK D K.
(b) K \ QK Dedge. (c)
K \ QK Dvertex. (d)
K \ e D e. (e) K \ e Dvertex
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where k.i/ is the local index on K [ QK or K [ e of the global degree of freedom i.
Moreover, we have

x .Ox/ � y .Oy/ D
6�cX

kD0
�k .Ox/ xk �

6�cX

kD0
�k .Oy/ xk

D
6�cX

kD0
Œ�k .Ox/� �k .Oy/� xk:

Here, xk, k D 0; : : : ; 6 � c are the vertices that span K [ QK or K [ e respectively.
By setting

 k .Ox; Oy/ WD �k .Ox/ � �k .Oy/ ;
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we can therefore write

aK� QK.i; j/ D C.2; s/

2

jKj
ˇ
ˇ
ˇ OK
ˇ
ˇ
ˇ

ˇ̌ QK ˇ̌
ˇ
ˇ
ˇ OK
ˇ
ˇ
ˇ

Z

OK
d Ox
Z

OK
d Oy  k.i/ .Ox; Oy/  k.j/ .Ox; Oy/
ˇ
ˇ̌P6�c

kD0  k .Ox; Oy/ xk

ˇ
ˇ̌2C2s :

By carefully splitting the integration domain OK � OK into Lc parts and applying a
Duffy transformation to each part, the contributions can be rewritten into integrals
over a unit hyper-cube, where the singularities are lifted.

aK� QK.i; j/ D C.2; s/

2

jKj
ˇ
ˇ̌ OK
ˇ
ˇ̌

ˇ
ˇ QKˇˇ
ˇ
ˇ̌ OK
ˇ
ˇ̌

LcX

`D1

Z

Œ0;1�4
d� NJ.`;c/

N .`;c/k.i/ .�/
N .`;c/k.j/ .�/

ˇ
ˇ
ˇ
P2d�c

kD0 N .`;c/k .�/ xk

ˇ
ˇ
ˇ
2C2s

: (16)

The details of this approach can be found in Chapter 5 of [22] for the interactions
between K and QK. We record the obtained expressions in this case.

• K and QK are identical, i.e. c D 3
L3 D 3; NJ.1;3/ D NJ.2;3/ D NJ.3;3/ D �3�2s

0 �2�2s
1 �1�2s

2 ;

N .1;3/k D

8
ˆ̂<

ˆ̂
:

��3
�3 � 1
1

N .2;3/k D

8
ˆ̂<

ˆ̂
:

�1
1 � �3
�3

N .3;3/k D

8
ˆ̂<

ˆ̂
:

�3

�1
1� �3

• K and QK share an edge, i.e. c D 2
L2 D 5; NJ.1;2/ D �3�2s

0 �2�2s
1 ;

NJ.2;2/ D NJ.3;2/ D NJ.4;2/ D NJ.5;2/ D �3�2s
0 �2�2s

1 �2

N .1;2/k D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

��2
1 � �3
�3

�2 � 1

N .2;2/k D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

��2�3
�2 � 1
1

�2�3 � �2

N .3;2/k D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

�2

�2�3 � 1
1 � �2
��2�3

N .4;2/k D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

�2�3

1 � �2
�2 � �2�3
�1

N .5;2/k D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

�2�3

�2 � 1
1 � �2�3
��2
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• K and QK share a vertex, i.e. c D 1
L1 D 2; NJ.1;1/ D NJ.2;1/ D �3�2s

0 �2

N .1;1/k D

8
ˆ̂̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:̂

�2 � 1
1� �1
�1

�2�3 � �2
��2�3

N .2;1/k D

8
ˆ̂̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:̂

1 � �2
�2 � �2�3
�2�3

�1 � 1
��1

We notice that the contributions for identical elements only depend on �3, so that
in fact only one-dimensional integrals need to be computed. Similarly, the cases
of common edges or common vertices only require two and three dimensional
integration.

In a similar fashion, the integration domain of aK�e can be split into several parts,
so that the singularity can be lifted:

aK�e.i; j/

D C.2; s/

2s

jKj
ˇ̌
ˇ OK
ˇ̌
ˇ

jej
jOej
Z

Œ0;1�3
d�NJ.`;c/ 

.`;c/
k.i/ .�/ 

.`;c/
k.j/ .�/

P5�c
kD0 N .`;c/k .�/ ne � xk

ˇ
ˇ
ˇ
P5�c

kD0 N .`;c/k .�/ xk

ˇ
ˇ
ˇ
2C2s

:

Here, .`;c/k are the expressions for the local shape functions under the Duffy
transformations. The obtained expressions are

• e is an edge of K, i.e. c D 2
L2 D 3; NJ.1;2/ D NJ.2;2/ D NJ.3;2/ D ��2s

0 .1 � �0/ ;


.1;2/
k D

8
ˆ̂
<

ˆ̂:

1 � �0 � �2 C �0�2
�0 C �2 � �0�1 � �0�1
�0�1


.2;2/
k D

8
ˆ̂
<

ˆ̂:

1 � �0 � �2 C �0�2
�2 � �0�2
�0


.3;2/
k D

8
ˆ̂
<

ˆ̂
:

1 � �2 C �0�2 � �0�1
�2 � �0�2
�0�1

N .1;2/k D

8
ˆ̂
<

ˆ̂
:

�1
1 � �1
�1

N .2;2/k D

8
ˆ̂
<

ˆ̂
:

��1
�1 � 1
1

N .3;2/k D

8
ˆ̂
<

ˆ̂
:

1� �1
�1
�1
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We notice that for s � 1=2, the integrand still contains a singularity. In this
case, the finite element space Vh does not include the degrees of freedom on the
boundary. For the interaction of the single degree of freedom that is not on the
boundary (k D 2), we obtain

NJ.1;2/ D NJ.2;2/ D NJ.3;2/ D �2�2s
0 .1 � �0/ ;


.1;2/
2 D �1 

.2;2/
2 D 1 

.3;2/
2 D �1

and N `;c2 as above.
• K and e share a vertex, i.e. c D 1

L1 D 2; NJ.1;1/ D �1�2s
0 ; NJ.2;1/ D �1�2s

0 �1

N .1;1/k D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

�2 � 1
1 � �1
�1

��2

N .2;1/k D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

1 � �1
�1 � �1�2
�1�2

�1

Appendix 2: Proof of Consistency Error Due to Quadrature

Next, we give the proof for the consistency error of the quadrature approximation
first stated in Sect. 4.2.

Theorem 3 For d D 2, let IK index the degrees of freedom on K 2 Ph, and
define IK� QK WD IK [ I QK. Let kT (respectively kT;@) be the quadrature order used
for touching pairs K � QK (respectively K � e), and let kNT

�
K; QK� (respectively

kNT;@ .K; e/) be the quadrature order used for pairs that have empty intersection.
Denote the resulting approximation to the bilinear form a .�; �/ by aQ .�; �/. Then the
consistency error due to quadrature is bounded by

ja.u; v/ � aQ.u; v/j � C .ET C ENT C ET;@ C ENT;@/ jjujjL2.˝/ jjvjjL2.˝/ 8u; v 2 Vh;

where the errors are given by

ET D h�2�2s

�2kT
1 ;

ENT D max
K; QK2Ph;K\ QKD;

h�2d�2s
K; QK




2

dK; QK
h

��2kNT.K; QK/
;
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ET;@ D h�1�2s

�2kT;@
3 ;

ENT;@ D max
K2Ph;e2Ph;@;K\eD;

h�1d�2s
K;e




4

dK;e

h

��2kNT;@.K;e/

;

dK; QK WD infx2K;y2 QK jx � yj, dK;e WD infx2K;y2e jx � yj, and 
j > 1, j D 1; 2; 3; 4, are
constants.

Proof Let the quadrature rules for the pairs K� QK and K�e be denoted by aK� QK
Q .�; �/

and aK�e
Q .�; �/. Set

Ei;j

K� QK D aK� QK �i; j
� � aK� QK

Q

�
i; j

�
;

Ei;j
K�e D aK�e

�
i; j

� � aK�e
Q

�
i; j

�
:

For u; v 2 Vh, we set

EK� QK.u; v/ D
X

i2IK�

QK

X

j2IK�

QK

uivjE
i;j

K� QK ;

EK�e.u; v/ D
X

i2IK

X

j2IK

uivjE
i;j
K�e

so that

ˇ̌
EK� QK.u; v/

ˇ̌ �



max
i;j

ˇ
ˇ̌Ei;j

K� QK
ˇ
ˇ̌
� X

i2IK�

QK

juij
X

j2IK�

QK

ˇ̌
vj

ˇ̌

�



max
i;j

ˇ
ˇ̌
Ei;j

K� QK
ˇ
ˇ̌
� ˇ
ˇIK� QK

ˇ
ˇ
s X

i2IK�

QK

juij2
s X

j2IK�

QK

ˇ
ˇvj

ˇ
ˇ2;

jEK�e.u; v/j �



max
i;j

ˇ
ˇ̌Ei;j

K;e

ˇ
ˇ̌
� X

i2IK

juij
X

j2IK

ˇ̌
vj

ˇ̌

�



max
i;j

ˇ
ˇ
ˇEi;j

K;e

ˇ
ˇ
ˇ
�
jIK j

sX

i2IK

juij2
sX

j2IK

ˇ
ˇvj

ˇ
ˇ2

Since

X

i2IK�

QK

juij2 � C

�
h�d

K

Z

K
u2 C h�d

QK

Z

QK
u2

;

X

i2IK

juij2 � Ch�d
K

Z

K
u2;
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we find

ja.u; v/� aQ.u; v/j �
X

K

X

QK

ˇ
ˇEK� QK.u; v/

ˇ
ˇC

X

K

X

e

jEK�e.u; v/j

� C
X

K

X

QK



max

i;j

ˇ
ˇ
ˇEi;j

K� QK
ˇ
ˇ
ˇ
�

h�d
h
jjujj2L2.K/ C jjujj2L2. QK/

i1=2

h
jjvjj2L2.K/ C jjvjj2L2. QK/

i1=2

C C
X

K

X

e



max

i;j

ˇ
ˇ
ˇEi;j

K�e

ˇ
ˇ
ˇ
�

h�d jjujjL2.K/ jjvjjL2.K/

� Ch�d



max
K; QK

max
i;j

ˇ
ˇ
ˇEi;j

K� QK
ˇ
ˇ
ˇ
�X

K

X

QK
jjujjL2.K[ QK/ jjvjjL2.K[ QK/

C Ch�d



max
K;e

max
i;j

ˇ
ˇ
ˇEi;j

K�e

ˇ
ˇ
ˇ
�X

K

X

e

jjujjL2.K/ jjvjjL2.K/ :

Because

X

K

X

QK
jjujjL2.K[ QK/ jjvjjL2.K[ QK/ �

sX

K

X

QK
jjujj2

L2.K[ QK/
sX

K

X

QK
jjvjj2

L2.K[ QK/

� 2 jPhj jjujjL2.˝/ jjvjjL2.˝/
� Ch�d jjujjL2.˝/ jjvjjL2.˝/

and

X

K

X

e

jjujjL2.K/ jjvjjL2.K/ � jPh;@j jjujjL2.˝/ jjvjjL2.˝/

� Ch1�d jjujjL2.˝/ jjvjjL2.˝/ ;

we obtain

ja.u; v/� aQ.u; v/j � C

�
h�2d



max
K; QK

max
i;j

ˇ
ˇ
ˇEi;j

K� QK
ˇ
ˇ
ˇ
�

Ch1�2d



max
K;e

max
i;j

ˇ
ˇ
ˇEi;j

K�e

ˇ
ˇ
ˇ
�
jjujjL2.˝/ jjvjjL2.˝/ :

For d D 2, using Theorem 6 stated below permits to conclude. ut



56 M. Ainsworth and C. Glusa

Theorem 6 ([22], Theorems 5.3.23 and 5.3.24) If K and QK (K and e) are touching
elements, then

ˇ
ˇ
ˇEi;j

K� QK
ˇ
ˇ
ˇ � Ch2�2s


�2kT
1 ;

ˇ
ˇ̌Ei;j

K�e

ˇ
ˇ̌ � Ch2�2s


�2kT;@
3 ;

where 
1; 
3 > 1 and kT , kT;@ are the quadrature orders in every dimension of
Eqs. (5) and (6).

If K and QK (K and e) are not touching, then

ˇ
ˇ
ˇEi;j

K� QK
ˇ
ˇ
ˇ � Ch2d�2s

K; QK Q
2
�
K; QK��2kNT

;

ˇ̌
ˇEi;j

K�e

ˇ̌
ˇ � Ch2d�2s

K;e Q
4 .K; e/�2kNT:@ ;

where dK; QK WD dist.K; QK/, dK;e WD dist.K; e/, Q
2.K; QK/ WD 
2 max
n

dK; QK

h ; 1
o
, and

Q
4.K; QK/ WD 
4 max
n

dK;e

h ; 1
o
, with 
2; 
4 > 1, and kNT , kNT;@ are the quadrature

order in every dimension of Eqs. (3) and (4).
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Irregularities of Distributions and
Extremal Sets in Combinatorial
Complexity Theory

Christoph Aistleitner and Aicke Hinrichs

Dedicated to Ian H. Sloan on the occasion of his 80th birthday.

Abstract In 2004 the second author of the present paper proved that a point
set in Œ0; 1�d which has star-discrepancy at most " must necessarily consist of at
least cabsd"�1 points. Equivalently, every set of n points in Œ0; 1�d must have star-
discrepancy at least cabsdn�1. The original proof of this result uses methods from
Vapnik–Chervonenkis theory and from metric entropy theory. In the present paper
we give an elementary combinatorial proof for the same result, which is based on
identifying a sub-box of Œ0; 1�d which has approximately d elements of the point set
on its boundary. Furthermore, we show that a point set for which no such box exists
is rather irregular, and must necessarily have a large star-discrepancy.

1 Introduction and Statement of Results

Let A � denote the class of all axis-parallel boxes in Œ0; 1�d which have one vertex
at the origin. The star-discrepancy of a point set x1; : : : ; xn 2 Œ0; 1�d is defined as

D�
n .x1; : : : ; xn/ D sup

A2A �

ˇ
ˇ
ˇ̌
ˇ
1

n

nX

kD1
1A.xk/ � vol.A/

ˇ
ˇ
ˇ̌
ˇ
;
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where 1A denotes the indicator function of A.1 The notion of the star-discrepancy
is crucial for the Quasi-Monte Carlo integration method, in which the integral
over Œ0; 1�d of a d-variate function f is approximated by the average 1

n

Pn
kD1 f .xk/.

Famously, by the Koksma–Hlawka inequality the error in this numerical integration
method can be estimated by the product of the variation of f in an appropriate sense
and the star-discrepancy of the set of sampling points x1; : : : ; xn. More information
on this topic can be found in the classical monographs [3, 4, 8].

The most famous open problem in discrepancy theory concerns the necessary
degree of irregularity of a point distribution in the multidimensional unit cube. More
precisely, the problem asks for the smallest possible order of the discrepancy of a
set of n points in Œ0; 1�d, which was partially answered by the celebrated results of
Roth [12] and Bilyk–Lacey–Vagharshakyan [2] (see [1] for a survey) on the one
hand and by many constructions of so-called low-discrepancy point sets (see [3])
on the other hand. In the formulation of this problem it is understood that d is fixed
and n ! 1. Another important open problem, which recently has received some
attention, asks for the order of the inverse of the star-discrepancy: given a number
" > 0, what is the minimal cardinality n�."; d/ of a point set in Œ0; 1�d achieving
star-discrepancy at most "? This problem can also been seen as an irregularities-of-
distributions problem, but one where the role of the simultaneous dependence of the
minimal size of the discrepancy on both d and n is emphasized.

Concerning the inverse of the discrepancy, it is known that

n�."; d/ � cabsd"
�2 (1)

from a fundamental paper of Heinrich–Novak–Wasilkowski–Woźniakowski [6], and
that

n�."; d/ � cabsd"
�1 ." < "0/ (2)

due to a result of the second author of the present paper [7].2 Thus the inverse of
the discrepancy depends linearly on the dimension d, while the dependence on "
constitutes an important open problem. Novak and Woźniakowski conjectured that
the exponent 2 of "�1 in (1) is optimal. In [11, p. 63] they write:

How about the dependence on "�1? This is open and seems to be a difficult problem. [. . . ]
We think that as long as we consider upper bounds of the form n�."; d/ � cabsdk"�˛ , the
exponent ˛ � 2 and 2 cannot be improved.

See also [10, Open problem 7] and [5, Problem 3].

1It does not make any difference, but for convenience we will assume in this paper that the boxes
in A � are closed. We will also allow point sets to contain identical points, so strictly speaking our
point sets are not sets, but multi-sets.
2Throughout this paper, cabs denotes positive absolute constants, not always the same.



Irregularities of Distributions and Extremal Sets 61

Note that (1) and (2) can be formulated in a different, alternative form. Equa-
tion (1) is equivalent to saying that for all d and n there exist x1; : : : ; xn 2 Œ0; 1�d
such that

D�
n .x1; : : : ; xn/ � cabs

p
dp
n
;

while (2) is equivalent to the statement that for all x1; : : : ; xn 2 Œ0; 1�d we have

D�
n .x1; : : : ; xn/ � cabs

d

n
.n � cabsd/: (3)

The proof of (2) in [7] uses methods from combinatorial complexity theory (more
precisely, Vapnik–Chervonenkis theory) together with methods from metric entropy
theory. The purpose of the present paper is twofold. On the one hand, we want
to give an elementary proof of (2), in the spirit of the “cheap proof” which will
be sketched below. On the other hand, we will use Vapnik–Chervonenkis theory
(VC theory) and metric entropy theory in order to show that point sets which
prohibit an application of the “cheap proof” must necessarily have a rather simple
combinatorial structure from the point of view of VC theory, and must consequently
have particularly large discrepancy.

The idea of the “cheap proof” is very simple. Let x1; : : : ; xn be points in Œ0; 1�d.
Find a box A 2 A � such that d points of x1; : : : ; xn are situated on the “right upper”
boundary of A (that is, on one of the faces which are not adjacent to the origin). Let
A1 be a box which is just a little bit smaller than A and let A2 a box which is just a
little bit larger than A. Then the volumes of A1 and A2 are essentially equal, while
the difference in points is at least d. Thus the star-discrepancy of x1; : : : ; xn is at
least d

2n .
The problem with the “cheap argument” clearly is that it is not always possible

to find a box A which has d points on its boundary—see for example the point set
in Fig. 1 below. However, our proof of Theorem 1 shows that a slight modification
of the “cheap argument” can actually be successfully implemented. Furthermore,
as Theorem 2 will show, a point set which does not allow the “cheap argument”
must have a very strong internal structure, and in particular must have a small
combinatorial complexity in the sense of VC theory.

Theorem 1 Let x1; : : : ; xn be points in Œ0; 1�d. Then

D�
n .x1; : : : ; xn/ � d

12n
;

provided that n � 250d.

From Theorem 1 we can deduce that

n�."; d/ � d"�1

12
;



" <

1

3000

�
:
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Fig. 1 Two “extremal” point sets. Note that point set (A) on the left is exactly the “opposite” of
the point set (B) on the right

The constants appearing in Theorem 1 may be compared with those given in [7]
for (2), where it was shown that

D�
n .x1; : : : ; xN/ � d

32e2n
; .n � d/;

with 32e2 
 236. However, the reason for writing the present paper was not to
improve the numerical constants in (2); rather, the purpose of this paper is to share
some observations which we consider interesting.

The following theorem states, informally speaking, that a point configuration
which does not allow one to apply the “cheap argument” must necessarily have a
small combinatorial complexity, and consequently must have a large discrepancy. In
other words, either the “cheap argument” is applicable straightforward or the point
configuration must have even larger discrepancy especially because it prohibits the
application of the “cheap argument”. In the statement of the theorem, as the “right
upper” boundary of an anchored axis-parallel box A D Œ0; a� we mean the union of
all those .d � 1/-dimensional faces of A which are adjacent to the (“right upper”)
point a.

Theorem 2 Let x1; : : : ; xn be points in Œ0; 1�d, and assume that it is not possible to
find a box in A � such that the right upper boundary of this box contains at least
d=4 of these points. Assume also that n � d. Then

D�
n .x1; : : : ; xn/ � d3=4

372n3=4
:

We finish the introduction with a discussion on the applicability of the “cheap
proof” and on the combinatorial complexity of point sets. Here combinatorial
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complexity refers to the cardinality of the set

˚
A \ fx1; : : : ; xng W A 2 A �� (4)

(this is a set of subsets of fx1; : : : ; xng). Since the class of anchored axis-parallel
boxes A � is a Vapnik–Chervonenkis class (VC class) of index d, the cardinality
of the set (4) can be bounded by the Sauer–Shelah lemma, which asserts that this
cardinality is at most

dX

iD0

 
n

i

!

I (5)

this is one of the main ingredients of the “entropy argument” in the proof of (2) in [7]
(for definitions in the context of VC theory, see Sect. 4). This entropy argument gives
better (that is, larger) lower bounds for the discrepancy the smaller the cardinality
of (4) can be shown to be. As we will show in Sect. 4 below, a point set which
prohibits the application of the “cheap argument” by having the property stated in
the assumption of Theorem 2 must have a very small combinatorial complexity in
the sense that the cardinality of (4) is much smaller than what could be deduced
from the Sauer–Shelah lemma. However, in turn, if an improvement of the Sauer–
Shelah lemma is not possible since the point set does not satisfy the assumptions of
Theorem 2, then obviously the “cheap argument” is applicable to this point set. So
two competing forces are at work here, both of which lead to a large discrepancy in
one way or the other.

To illustrate the situation we present two extremal point sets in Fig. 1 (unfor-
tunately the pictures are restricted to the less instructive two-dimensional case).
The point set (A) on the left-hand side is extremal in the sense that it prohibits the
application of the “cheap argument”—there is no anchored axis-parallel box which
has two elements of the point set on its right-upper boundary. On the other hand, the
point set (A) has very low complexity in the sense of VC theory: there are 9 points,
and the cardinality of (4) is obviously 10 (note that the empty set also counts), which
is smallest possible (unless we allow points to coincide). In contrast, for the point
set (B) the cardinality of (4) can be calculated to be 46, which is

�
9
0

�C �9
1

�C �9
2

�
and

thus by (5) is largest possible. On the other hand, the “cheap argument” is obviously
applicable to this point set, and actually there is a very large number of boxes which
have two elements of (B) on their “right upper” boundary.

The outline of the remaining part of this paper is as follows. In Sect. 2 we use the
“cheap argument” to prove Theorem 1 in the case n � ed2, which is simpler than the
general case and particularly instructive. In Sect. 3 we use the “cheap argument” to
prove Theorem 1 in the general case. In Sect. 4 we introduce the necessary notions
from VC theory and prove Theorem 2.
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2 The “Cheap Proof” of Theorem 1 in the Case n � ed2

In this section we will prove Theorem 1 under the additional assumption that n �
ed2, since in this case the proof is particularly simple. It also illustrates the idea of
the proof in the general case, which, however, requires a more careful reasoning.

We may assume that d � 2. Let P D fx1; : : : ; xng be a point set in Œ0; 1�d and
let � D 1 � 1

d . Now consider the boxes A;B 2 A � given by

A D Œ0; 1� � Œ0; ��d�1 and B D Œ0; ��d:

Observe that B 	 A and that

vol .A n B/ D 1

d



1 � 1

d

�d�1
>
1

ed
� d

n
; (6)

where we used the assumption that n � ed2. If A \P D B \P then we find

2D�
n .x1; : : : ; xn/ �



vol .A/� #.A\P/

n

�
C



#.B\P/

n
� vol .B/

�

D vol .A n B/ � d

n
;

which implies

D�
n .x1; : : : ; xn/ � d

2n
: (7)

On the other hand, if A\P ¤ B\P , then there exists a point y1 D .y.1/1 ; : : : ; y.d/1 / 2
P in A n B, i.e.

y.1/1 > � and y.k/1 � � for k ¤ 1:

Arguing similarly for the other coordinates by modifying the set A such that it ranges
all the way from 0 to 1 not in the first, but instead in the second, third, etc. coordinate,
we either have already proved (7) or we find y1; : : : ; yd 2P such that

y. j/
j > � and y.k/j � � for k ¤ j:

Obviously, all these points are distinct and contained in the right upper boundary of
the box

h
0; y.1/1

i
�
h
0; y.2/2

i
� � � � �

h
0; y.d/d

i
:
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Thus we have found a box which contains at least d elements of P on its right upper
boundary, and the “cheap argument” from above shows that (7) holds in this case.
This proves Theorem 1 (with the value 1=2 instead of 1=12 for the constant) in the
case n � ed2.

3 The “Cheap Proof” of Theorem 1 in the General Case

The proof of Theorem 1 in the general case uses the same idea as the proof in the
previous section; however, it requires a slightly more complicated combinatorial
argument. The reason why the argument from the previous section fails is that the
last inequality of (6) is no longer true, so that we can no longer guarantee that every
box of the type A n B contains a point. Consequently we will use a slightly different
construction, and distinguish between several cases.

As the reader will see our proof contains several numerical parameters, such as
the number 25 in the definition of � below. Of course we have chosen parameters
which give a reasonable result. However, optimizing these parameter is fairly
complicated, and we do not claim that we have found the optimal ones. Also, with
this method there is a trade-off between the two constants appearing in the statement
of the theorem, which are 1/12 and 250 in our formulation of Theorem 1. Decreasing
one of them would possibly increase the other, and vice versa. In particular, we
checked that the theorem also holds with constants 1/20 and 40.

We fix the point set P D fx1; : : : ; xng and abbreviate

D�
n D D�

n .x1; : : : ; xn/

and Œd� D f1; : : : ; dg. The trivial bound D�
n � 1

2n from the one-dimensional case
already proves the theorem in the case d � 6. So we may and do assume that d � 7.

We will need the reverse Bernoulli-type inequality

.1 � x/q � 1 � 21
20

qx for 0 � x � 1

10
and

1

7
� q � 1

4
: (8)

This inequality can be easily checked numerically and, what is more tedious, can be
proved by elementary analysis. A proof can be found in the Appendix at the very
end of the paper.

With

� D


1 � 25d

n

�1=d
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we partition the point set P into subsets according to how many coordinates of the
considered point are at least �:

P0 D
˚
x 2P W x. j/ � � for all j 2 Œd��;

P1 D
˚
x 2P W x. j/ > � for exactly one j 2 Œd��;

P2 D
˚
x 2P W x. j/ > � for at least two j 2 Œd��:

Furthermore, let

C D ˚j 2 Œd� W x. j/ > � for some x 2P1

�

be the set of coordinates where at least one point in P1 has its largest coordinate.
We now distinguish between three cases.

Case 1 Assume that #C � d
6
.

This is the simple case, when the “cheap proof” is directly applicable. Since
every x 2P1 has exactly one coordinate j with x.j/ > �, there exists a box A 2 A �
that contains #C � d

6
points of P1 � P on its right upper boundary. Hence the

“cheap proof” shows that

D�
n �

d

12n

in this case.

Case 2 Assume that #C < d
6

and #P1 � 107d
24

.
In this case there exist many points having exactly one large coordinate, but

the “cheap proof” is not applicable since many of these points share the same few
coordinate indices where they have their large coordinate. However, since too many
points are located close to just a few right upper faces of the unit cube, there must
also exist a large sub-box of Œ0; 1�d (avoiding the proximity of these faces) which
does not contain enough points.

More precisely, the box

A D Œ0; ��C � Œ0; 1�Œd�nC ;

which extends from 0 to � for those coordinate indices which are contained in C
and from 0 to 1 for all other coordinates, has volume

vol.A/ D �#C � �d=6 D


1 � 25d

n

�1=6
� 1 � 35d

8n
;
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where the last inequality follows from (8) and the assumption n � 250d. By
definition of the sets Pi, we have

#.A \P/ � #P0 C #P2 D n � #P1 � n � 107d

24
:

This implies

D�
n � vol.A/� #.A \P/

n
�


107

24
� 35
8

�
d

n
D d

12n

also in this case.

Case 3 Assume that #P1 <
107d
24

.
This is the most tricky case. Since the cardinality of P1 is small, the cardinality

of P2 must be large. Thus we have a relatively large number of points which have
multiple large coordinates, which means that these points cannot be assigned to
different faces of the unit cube (as in Sect. 2 or as in Case 1) but that they are rather
located in “corners” of the unit cube. Thus the “cheap proof” is not applicable.
However, since many points are located in corners, this means that we can identify a
large sub-box of Œ0; 1�d, reaching all the way from 0 to 1 in many coordinates, which
avoids these corners and contains an insufficient number of points of P .

To give a detailed proof in this case, first we consider A D Œ0; ��d which has
volume �d D 1� 25d

n and contains exactly those points of P that are in P0, that is

#.A \P/ D #P0 D n � #P1 � #P2:

Then it follows from

1 � #P1 C #P2

n
� vol.A/ D #.A\P/

n
� vol.A/ � D�

n

and from the assumption #P1 <
107d
24

that

M WD #P2 � 493d

24
� nD�

n : (9)

We now set up an inductive procedure to produce a large box which contains few
points by successively removing points of P2. Let

S0 DP2; R0 D ;; C0 D ;; m0 D #R0 D 0:

Now assume that Sk�1;Rk�1 	P2;Ck�1 D f j1; : : : ; jk�1g 	 Œd� and mk�1 D #Rk�1
are already defined. By definition of P2 and double counting we have

X

j2Œd�nCk�1

#
˚
x 2 Sk�1 W x. j/ > �

� D
X

x2Sk�1

#
˚
j 2 Œd� n Ck�1 W x. j/ > �

�

� 2#Sk�1:
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Therefore, as long as Sk�1 ¤ ;, we find jk 2 Œd� n Ck�1 such that

Rk D
˚
x 2 Sk�1 W x. jk/ > �

�

satisfies

mk D #Rk � 2#Sk�1
#Œd� n Ck�1

� 2#Sk�1
d

: (10)

To complete the inductive construction, let

Sk D Sk�1 n Rk and Ck D Ck�1 [ fjkg:

If Sk D ; for some k < d, we take Sh D Rh D ; for h � k and choose jh
arbitrary among the remaining coordinates. Then the inductive process is defined
for k D 0; 1; : : : ; d, and by (10) we have

mk � 2#Sk�1
d
D 2

d

"

M �
k�1X

hD1
mh

#

:

Fix k and let q D k
d . For the total number of points removed up to step k, we then

have

kX

hD1
mh � 2k

d

"

M �
kX

hD1
mh

#

D 2q

"

M �
kX

hD1
mh

#

;

which, by (9), implies

kX

hD1
mh � 2qM

1C 2q
� 2q

1C 2q



493d

24
� nD�

n

�
:

We now consider the box

A D Œ0; ��Ck � Œ0; 1�Œd�nCk :

which has volume

vol.A/ D �#Ck � �k D


1 � 25d

n

�q

� 1 � 105q

4
� d

n
;

where the last inequality follows from (8) and the assumption n � 250d, provided
that

1

7
� q D k

d
� 1

4
:
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Since we assumed d � 7 and since d is an integer, we can satisfy this condition with
the choice k D d d

7
e.

By construction, none of the removed points in R1; : : : ;Rk is contained in A,
which implies

#.A\P/ � n�
kX

hD1
mh � n � 2q

1C 2q



493d

24
� nD�

n

�
:

Hence

D�
n � vol.A/� #.A \P/

n
�



493q

12.1C 2q/
� 105q

4

�
d

n
� 2q

1C 2q
D�

n ;

which in turn gives

D�
n �

1C 2q

1C 4q



493q

12.1C 2q/
� 105q

4

�
d

n
D q.89� 315q/

6.1C 4q/

d

n
:

It is easily verified that

q.89� 315q/

6.1C 4q/
� 1

12

for 1
7
� q � 1

4
, so that the theorem is also proved in this case.

4 Point Sets Which Prohibit the “Cheap Argument”,
and Combinatorial Complexity Theory

In Vapnik–Chervonenkis theory (VC theory) the notion of shattering plays a crucial
role. Let S D fx1; : : : ; xng be elements of some set X, and let C denote a collection
of subsets of X. We say that C shatters S if

# fA \ S W A 2 C g D 2nI

that is, if using the sets in C it is possible to pick out every possible subset from S.
The VC index (or VC dimension) of C is the largest integer n for which there exists
a set (of elements of X) of cardinality n which is shattered by C . In our setting we
have X D Œ0; 1�d and C D A �, and the VC dimension of A � is d.

Assume that C has VC dimension d, and that #S D n. Then the Sauer–Shelah
lemma asserts that

# fA \ S W A 2 C g �
dX

iD0

 
n

i

!

(11)
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(and this upper bound is in general optimal). We will sketch a proof of this lemma
in the setting X D Œ0; 1�d and C D A � below, since we will use this proof as a
blueprint for the key inequality in our proof of Theorem 2.

Set

N.n; d/ D max
x1;:::;xn2Œ0;1�d

# fA \ fx1; : : : ; xng W A 2 A �g : (12)

Let x1; : : : ; xn be any points in Œ0; 1�d. Assume, without loss of generality, that x1
has the largest first coordinate among all these points. Then for a given box A for the
intersection A\fx1; : : : ; xng there are two possibilities. Either x1 62 A, which means
that we “lose” one point. Or x1 2 A, which means that the first coordinate of the
right upper corner of A is at least as large as the first coordinates of all other points
as well, and we “lose” one dimension as well as the point x1 (which by construction
is always contained in A in this case). Thus

N.n; d/ � N.n � 1; d/C N.n � 1; d � 1/; d; n � 2: (13)

Together with the trivial initial values N.1; d/ D 2 and N.n; 1/ D nC 1 this leads
to a recursion, whose solution gives (11). A detailed version of this proof can be
found, for example, on page 46 of [9].

Now we are ready to prove Theorem 2. Let d be fixed. To avoid ambiguities,
we write A �.d/ for the collection of axis-parallel boxes having one vertex at the
origin, which are contained in Œ0; 1�d. For points y1; : : : ; ym in Œ0; 1�s, we say that
this collection of points has property P.r/ if it is not possible to find a box in A �.s/
such that the right upper boundary of this box contains at least r of these points
(where the term “right upper boundary” is defined as in the paragraph before the
statement of Theorem 2). For the assumptions of Theorem 2 this means that we
start with a set x1; : : : ; xn in Œ0; 1�d having property P.d=4/.

Set

ON.m; s; r/ D max
y1;:::;ym2Œ0;1�s ;

y1;:::;ym has property P.r/

# fA \ fy1; : : : ; ymg W A 2 A �.s/g :

Assume that r < s, and let y1; : : : ; ym 2 Œ0; 1�s be points having property P.r/. Upon
a little reflection this implies that there must exist a point in y1; : : : ; ym which has
at least two maximal coordinates (that is, coordinate entries which are at least as
large as the corresponding coordinate entries of all the other points). Without loss
of generality, assume that this point is ym, and that its coordinates at positions s� 1
and s are maximal in this sense.

# fA \ fy1; : : : ; ymg W A 2 A �.s/g
D # fA \ fy1; : : : ; ymg W A 2 A �.s/; ym 62 Ag

C # fA \ fy1; : : : ; ymg W A 2 A �.s/; ym 2 Ag
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D # fA \ fy1; : : : ; ym�1g W A 2 A �.s/g (14)

C # fA \ fy1; : : : ; ym�1g W A 2 A �.s/; ym 2 Ag : (15)

The term in line (14) is clearly dominated by ON.m � 1; s; r/. To understand the
term in line (15), let y.s�2/ denote the restriction (projection) of a point y 2 Œ0; 1�s
to its first s � 2 coordinates, and define A.s�2/ similarly as a projection of A. By
construction ym 2 A implies that the coordinates at positions s � 1 and s of all the
points y1; : : : ; ym�1 cannot exceed those of the right upper corner of A. Thus

# fA \ fy1; : : : ; ym�1g W A 2 A �.s/; ym 2 Ag
D #

n
A.s�2/ \ fy.s�2/1 ; : : : ; y.s�2/m�1 g W A 2 A �.s/; ym 2 A

o

� #
n
A \ fy.s�2/1 ; : : : ; y.s�2/m�1 g W A 2 A �.s� 2/

o
: (16)

Furthermore, the point set
n
y.s�2/1 ; : : : ; y.s�2/m�1

o
has property P.r/, which is inherited

from the original point set fy1; : : : ; ymg. Thus the term in line (16) is dominated by
ON.m � 1; s� 2; r/, and in total we have

ON.m; s; r/ � ON.m � 1; s; r/C ON.m � 1; s� 2; r/: (17)

This is an analogue of (13), except that now we “lose” two dimensions rather than
only one, and that it is only valid as long as r < s.

Note that from the definition of ON.m; s; r/ we have ON.m; s; r/ � N.m; s/ for all
m; s; r. Now we claim the following:

Claim We have ON.n; d; r/ � N.n; r/
P

0�i�d=2

�n
i

�
.

The claim is obviously right whenever r � d, since then

ON.n; d; r/ � N.n; d/ � N.n; r/:

On the other hand, whenever r < d, then by (17) we have

ON.n; d; r/ � ON.n � 1; d; r/C ON.n � 1; d � 2; r/

� N.n; r/
X

0�i�d=2

 
n � 1

i

!

C N.n; r/
X

0�i�d=2�1

 
n � 1

i

!

D N.n; r/
X

0�i�d=2

  
n � 1

i

!

C
 

n � 1
i � 1

!!

(18)

D N.n; r/
X

0�i�d=2

 
n

i

!

: (19)
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where in line (18) we read
�n�1

�1
� D 0. Thus the claim is true by induction. Classically

we have

dX

iD0

 
n

i

!

�
�en

d

	d

for n � d (see for example [9, Corollary 3.3]), so by (11) and (19) we have

ON.n; d; r/ �
�en

r

	r



en

d=2

�d=2

;

for n � d, which in particular yields

ON.n; d; d=4/ �


4en

d

�d=4 

2en

d

�d=2

D 2d
�en

d

	3d=4
: (20)

The remaining part of the proof of Theorem 2 can be carried out similar to the
proof of the main theorem in [7]. As shown in equation (8) of [7], for given " > 0

there exists a collection C of at least .8e"/�d anchored axis-parallel boxes in Œ0; 1�d

such that

vol.C1�C2/ � " for all C1;C2 2 C ;

where � denotes the symmetric difference. Let x1; : : : ; xd denote the points from
the assumption of Theorem 2. Since C is a subset of A �, by (20) we have

# fC \ fx1; : : : ; xng W C 2 C g � 2d
�en

d

	3d=4
:

Thus by the pigeon hole principle there exist two sets C1 and C2 for which

C1 \ fx1; : : : ; xng D C2 \ fx1; : : : ; xng and vol.C1�C2/ � "; (21)

provided that

2d
�en

d

	3d=4
<



1

8e"

�d

: (22)

It is easily seen that (21) implies that

D�
n .x1; : : : ; xn/ � "

4
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(see [7, Lemma 6]), and that because of 16e7=8 < 93 inequality (22) is satisfied if
we choose

" D d3=4

93n3=4
:

This proves Theorem 2.
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Appendix: Proof of Inequality (8)

Here we will prove that

.1 � x/q � 1 � 21
20

qx for 0 � x � 1

10
and

1

7
� q � 1

4
:

We consider the function

fq.x/ D .1 � x/q C 21

20
qx

for fixed q with 1
7
� q � 1

4
. Since its second derivative

f 00
q .x/ D �q.1 � q/.1 � x/q�2

is negative for 0 � x < 1, the function fq.x/ is strictly concave here. So the minimal
value attained by fq for 0 � x � 1

10
is either fq.0/ D 1 or fq. 110 /. It remains to verify

that

g.q/ D fq



1

10

�
D


9

10

�q

C 21q

200
� 1 for

1

7
� q � 1

4
:

Since the exponential function
�
9
10

�q
is strictly convex on R, this is also true for

g.q/. Since g.0/ D 1, it is enough to verify that g. 1
7
/ � 1 to ensure that g.q/ � 1

also holds for q � 1
7
. Finally, g. 1

7
/ � 1 is equivalent to

9

10
�


1� 21

1400

�7
D 11514990476898413

12800000000000000
;

which is indeed true.
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7. Hinrichs, A.: Covering numbers, Vapnik-Červonenkis classes and bounds for the star-
discrepancy. J. Complex. 20(4), 477–483 (2004)

8. Kuipers, L., Niederreiter, H.: Uniform Distribution of Sequences. Wiley-Interscience [Wiley],
New York, London, Sydney (1974)

9. Mohri, M., Rostamizadeh, A., Talwalkar, A.: Foundations of Machine Learning. Adaptive
Computation and Machine Learning. MIT Press, Cambridge, MA (2012)
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Importance Sampling and Stratification
for Copula Models

Philipp Arbenz, Mathieu Cambou, Marius Hofert, Christiane Lemieux,
and Yoshihiro Taniguchi

Dedicated to Ian H. Sloan on the occasion of his 80th birthday.

Abstract An importance sampling approach for sampling from copula models is
introduced. The proposed algorithm improves Monte Carlo estimators when the
functional of interest depends mainly on the behaviour of the underlying random
vector when at least one of its components is large. Such problems often arise from
dependence models in finance and insurance. The importance sampling framework
we propose is particularly easy to implement for Archimedean copulas. We also
show how the proposal distribution of our algorithm can be optimized by making a
connection with stratified sampling. In a case study inspired by a typical insurance
application, we obtain variance reduction factors sometimes larger than 1000 in
comparison to standard Monte Carlo estimators when both importance sampling
and quasi-Monte Carlo methods are used.

1 Introduction

Many applications in finance and insurance lead to the problem of calculating a
functional of the form � D E.�0.X//, where X D .X1; : : : ;Xd/ W ˝ ! R

d is a
random vector on a probability space .˝;F ;P/ and �0 W Rd ! R is a measurable
function. If the components of X cannot be assumed to be independent, it is popular
to model the distribution function H of X with a copula C, such that H.x1; : : : ; xd/ D
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C.F1.x1/; : : : ;Fd.xd//, x 2 R
d, where Fj.x/ D P.Xj � x/, j 2 f1; : : : ; dg, are

the univariate margins of H and C W Œ0; 1�d ! Œ0; 1� is a copula. A copula allows
one to separate the dependence structure from the marginal distributions, which is
useful for constructing multivariate stochastic models. We assume the reader to be
familiar with copulas and refer to [16] or [17] for an introduction; see also Sect. 2
for important background information.

A drawback of using such flexible models is that an analytical form for the
quantity of interest E.�0.X// rarely exists, and thus numerical methods must be
applied to evaluate it. Preferably, the employed techniques should be applicable to
high-dimensional problems, which are common in finance. An advantage of Monte
Carlo (MC) simulation is that the rate of convergence of its error is independent of
the dimensionality of a given problem. Nevertheless, the convergence rate of plain
MC is generally slow so that MC is often combined with some variance reduction
technique (VRT) to improve the precision of estimators.

Importance sampling (IS) is a VRT often used for rare event simulations. IS
attempts to reduce the variance of the MC estimator of E.�0.X// by sampling X
more frequently from the important region where j�0.X/j is large. While there are
many publications that design IS for Gaussian and t-copula models, [2, 8, 12, 19]
for instance, not much attention has been given to IS for other types of copulas,
including Archimedean copulas. To our knowledge, [3] is the only work which
develops IS for Archimedean copulas.

The main contribution of this paper is the study of IS techniques that do not
rely on a specific copula structure. We consider the case where the functional �0 of
interest depends mainly on the behaviour of the random vector X when at least one
of the components is large. Such problems often arise from dependence models in
the realm of finance and insurance. We propose a new IS framework for this setup
which can be implemented for all classes of copula models from which sampling
is feasible. The main idea of our proposed IS approach is to oversample sets of the
form Œ0; 1�snŒ0; �k�

s for 0 � �1 � : : : � �M � 1. Explicit algorithms are given
in the case of Archimedean copulas. We also examine how to optimally choose the
proposal distribution by making a connection with stratified sampling (SS), which
is then used to propose yet another estimator based on our general IS setup.

While the plain MC method generates samples based on pseudo-random num-
bers, quasi-Monte Carlo (QMC) methods use a low-discrepancy sequence (LDS)
to draw samples. An LDS has the property of covering the unit cube Œ0; 1/d

more uniformly than pseudo-random numbers generally do. This usually leads to
approximations whose error converges to 0 faster than with MC. Furthermore, these
methods can be randomized in a way that preserves their low discrepancy but allows
for error estimation. Such randomized QMC methods can thus be seen as a VRT.
QMC has been primarily used for multinormal models and has shown substantial
improvements over plain MC. Recently, its effectiveness for sampling copula
models was studied and demonstrated theoretically and empirically in [1]. Building
up on that work, it is natural to try to combine QMC with our proposed IS approach.

The rest of this work is organized as follows. In Sect. 2, we motivate our proposed
IS method and give the necessary background on Archimedean copulas and QMC
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methods for copulas. In Sect. 3 we introduce a general IS setup for copula models,
and then show in Sect. 4 how to exploit the Marshall–Olkin stochastic representation
of Archimedean copulas to design an efficient sampling algorithm for IS. We show
that the proposed IS scheme is very similar to stratified sampling and then develop
sampling methods for SS estimators. In Sect. 5, we derive variance expressions for
the IS and SS estimators. By minimizing such variance expressions, we derive the
optimal calibration for our proposal distribution, for both IS and SS estimators. In
Sect. 6, we investigate the effectiveness of the proposed IS and SS schemes using
numerical experiments. All proofs are deferred to the appendix.

2 Motivation and Background

In a copula model, we may write � D E.�0.X// D E.�.U//; where U D .U1; : : : ;

Ud/ W ˝ ! R
d is a random vector with distribution function C, � W Œ0; 1�d ! R is

given by

�.u1; : : : ; ud/ D �0.F�1
1 .u1/; : : : ;F

�1
d .ud//; (1)

and F�1
j .p/ D inffx 2 R W Fj.x/ � pg for j 2 f1; : : : ; dg.

If C and F1; : : : ;Fd are known, we can use MC simulation to estimate E.�.U//.
For a random sample fUi W i D 1; : : : ; ng of U, the MC estimator of E.�.U// is

O�MC;n D 1

n

nX

iD1
�.Ui/: (2)

In this paper, we consider the case where � is large only when at least one of
its arguments is close to 1, or equivalently, if at least one of the components of X is
large. This assumption is inspired by several applications in insurance:

• The fair premium of a stop loss cover with deductible D is E.maxfPd
jD1 Xj �

D; 0g/. The corresponding functional is �.u/ D maxfPd
jD1 F�1

j .uj/�D; 0g; see
the left-hand side of Fig. 1 for a contour plot of � for two Pareto margins.

• Risk measures for an aggregate sum S D Pd
jD1 Xj, such as value-at-risk,

VaR˛.S/, or expected shortfall, ES˛.S/, ˛ 2 .0; 1/, cannot in general be
written as an expectation of type E.�0.X//. However, they are functionals of
the aggregate distribution function FS.x/ D P.S � x/ D E.�.UI x//, where
�.uI x/ D If F�1

1 .u1/C���CF�1
d .ud/�xg. We can therefore write

VaR˛.S/ D inffx 2 R W E.�.UI x// � ˛g;

ES˛.S/ D 1

1 � ˛
Z 1

˛

VaRu.S/ du; (3)



78 P. Arbenz et al.
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Fig. 1 Left: Contour lines for the excess function �.u1; u2/ D maxf F�1
1 .u1/CF�1

2 .u2/�10; 0g,
where the margins are Pareto distributed with F1.x/ D 1 � .1 C x=4/�2 and F2.x/ D 1 � .1 C
x=8/�2 . The grey area indicates where � is zero. Right: Contour lines for the product function
�.u1; u2/ D F�1

1 .u1/F
�1
2 .u2/, where X1 	 LN.2; 1/ and X2 	 LN.1; 1:5/

which depend only on those x for which E.�.UI x// � ˛ holds. This is
determined by the tail behaviour of S, which is strongly influenced by the
properties of the copula C when at least one component is close to 1. Note
that capital allocation methods such as the Euler principle for expected shortfall
behave similarly, see [21] and [16, p. 260].

Note that in this framework we follow the convention of [16, Remark 2.1] that X
refers to a loss and �X to a profit, which is more common in an actuarial context.
One could have equally well worked with the profit-and-loss random variable �X
by changing the area of interest to where components of X are small.

2.1 Archimedean Copulas and Sampling Methods

Archimedean copulas form a popular class of copulas in actuarial science and risk
management, as they can capture various types of tail dependence. An Archimedean
copula admits the representation

C.u1; : : : ; ud/ D  . �1.u1/C � � � C  �1.ud//; (4)

where  is a univariate function called generator and is such that  W Œ0;1/ !
Œ0; 1� with  .0/ D 1 and  .1/ D limt!1  .t/ D 0; also  .t/ is continuous and
strictly decreasing on Œ0; infft W  .t/ D 0g�. We review two sampling techniques
applicable to Archimedean copulas.
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2.1.1 Conditional Distribution Method

The conditional distribution method (CDM) is a sampling technique that in principle
works for any copula. For j 2 f2; : : : ; dg, let

Cjj1:::j�1.uj j u1; : : : ; uj�1/ D P.Uj � uj jU1 D u1; : : : ;Uj�1 D uj�1/

be the conditional distribution of the jth component given the first j�1 components.
As a function of uj, Cjj1:::j�1.uj j u1; : : : ; uj�1/ is a univariate distribution function on
Œ0; 1� and thus can be sampled via inversion. Doing this iteratively in j based on the
previously computed component samples leads to a sample from C according to the
CDM. The efficiency of this sampling method depends on the computational cost
required to evaluate the conditional quantile functions C�1

jj1:::j�1.uj j u1; : : : ; uj�1/,
which in many cases are not available in closed form. For Archimedean copulas,
there exists a more efficient sampling method, which we now describe.

2.1.2 Marshall–Olkin Algorithm

It is well established that  induces an Archimedean copula for any dimension
d � 2 if and only if  is the Laplace–Stieltjes transform of a distribution function
of some positive random variable V , the so-called frailty. Based on V , one can derive
the stochastic representation

�
 
�E1

V

	
; : : : ;  

�Ed

V

		
� C; (5)

where E1; : : : ;Ed
ind.� Exp.1/ are independent of the positive frailty random variable

V whose Laplace–Stieltjes transform is  . This sampling method is known as
Marshall–Olkin (MO) algorithm; see [14].

For many popular Archimedean copulas, the frailty random variable V from
the MO algorithm has a known distribution, for instance V is Gamma distributed
for Clayton copulas; see Table 1 for information about five popular Archimedean

Table 1 Popular Archimedean generators and corresponding frailty distributions

Family Parameter  .t/ V

Ali-
Mikhail-
Haq

� 2 Œ0; 1/ .1� �/=.exp.t/� �/ Geo.1� �/

Clayton � 2 .0;1/ .1C t/�1=� � .1=�; 1/

Frank � 2 .0;1/ � log.1� .1� e�� / exp.�t//=� Log.1� e�� /

Gumbel � 2 Œ1;1/ exp.�t1=� / Stable.1=�; 1; cos� .�=.2�//,
I
f�D1gI 1/

Joe � 2 Œ1;1/ 1� .1� exp.�t//1=� Sibuya.1=�/
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copulas and the corresponding frailty random variables V , and see [10, Table 1] for
the details concerning Table 1. In Sect. 4 we develop an IS algorithm that exploits
the MO representation of Archimedean copulas.

2.2 Quasi-Monte Carlo and Copula Models

The combination of QMC and copulas is studied in depth in [1]. To describe how it
works, let � W Œ0; 1/dCk ! Œ0; 1/d for k � 0 be some transformation function such
that �.U0/ � C for U0 � UŒ0; 1/dCk. The choice of � corresponds to the choice of
sampling methods for C, such as CDM or MO. The plain MC estimator (2) thus
becomes

O�MC;n D 1

n

nX

iD1
�.�.U0

i//; U0
i

ind.� UŒ0; 1/dCk: (6)

To use QMC, we replace the point set fU0
i; i D 1; : : : ; ng by a low-discrepancy point

set. The choice of sampling algorithm � is not very important to control the MC
error, but it is for QMC, as explained in [1]. The sampling algorithms we propose
in this work are applicable to both MC and QMC, and numerical results for both
methods are reported in Sect. 6. For QMC we use a Sobol’ sequence [20] and apply
to it a randomization based on a digital-shift (see [13, Section 6.2.2]) so that we can
construct unbiased estimators and compute confidence intervals for the quantity of
interest by using replication.

3 Importance Sampling for Copula Models

IS is a popular variance reduction technique for rare event simulations. Suppose we
want to estimate E.�.U// where U � C, for a d-dimensional copula C. In IS, we
draw samples from some proposal distribution QU � G and construct the estimator

O�IS;n D 1

n

nX

iD1
�. QUi/w. QUi/; QUi

ind.� G; (7)

where w.u/ D dC.u/
dG.u/ is the Radon-Nikodym derivative of C with respect to G. The

function w works as a weight function so that the estimator remains unbiased after
changing the distribution. Intuitively, the variance of the IS estimator is smaller than
the variance of the plain MC estimator if the proposal distribution is concentrated
around the important region, which we characterized in Sect. 2 as the region where
the maximal component of a sample point is close to 1.
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In order to define the proposal distribution G, we suggest a mixing approach by
taking a weighted average of a multivariate distribution function C� W Œ0; 1�d !
Œ0; 1� over different values of �. Let F� denote a discrete distribution function of a
random variable � W ˝ 7! Œ0; 1/, defined by qk WD P.� D �k/, k D 1; : : : ;M. We
then define the distribution function G of QU as a mixture of C� with respect to F�:

G.u/ D
MX

kD1
qkC�k .u/;

where C� is a distorted version of the copula C itself that concentrates samples in
a region of the form Œ0; 1�d n Œ0; ��d. Note that the C� we will construct (see (8)) is
a copula only if C.�1/ D 0, but C� does not need to be copula for our approach to
work.

We will see that this mixture approach is natural in order to allow C to be
absolutely continuous with respect to G. In particular, the absolute continuity is
guaranteed for any copula C if the following assumption is satisfied.

Assumption 1 The random variable � satisfies P.� D 0/ > 0.

In order to obtain a well defined weight function w and an unbiased estimator
O�IS;n, Assumption 1 must be fulfilled. Note that this assumption does not require
particular conditions on C. Although it seems restrictive, we will see that it is also
needed to have a consistent estimator O�IS;n. Moreover, ensuring P.� D 0/ > 0 can
be seen as a form of defensive mixture sampling, where a fraction of samples are
drawn from the original distribution [9]. Defensive sampling bounds the IS weights
away from infinity (as will be seen in Lemma 2) so that the resulting estimator has a
finite variance. To that end, we assume Assumption 1 to be satisfied in what follows.

The construction of the proposal distribution G as a C�-mixture directly yields a
sampling method, as one can draw a realization of G by first drawing � � F� and
then QU � C�. Therefore, the following algorithm can be used to construct O�IS;n:

Algorithm 1 General IS algorithm for copulas
1: Fix n 2 N.
2: Draw �i 	 F�, i 2 f1; : : : ; ng.
3: Draw QUi 	 C�i , i 2 f1; : : : ; ng.
4: Calculate w. QUi/ D dC. QUi/=dG. QUi/, i 2 f1; : : : ; ng.
5: Return O�IS;n D 1

n

Pn
iD1 �.

QUi/w. QUi/.

The following lemma establishes consistency and asymptotic normality of the
estimator O�IS;n.

Lemma 1 Suppose that Var.�.U// <1 and that w. � / � B for a constant B <1.
Then

1. O�IS;n converges P-almost surely to �;
2. �2 D Var.�. QU/w. QU// <1 and

p
n. O�IS;n � �/!N .0; �2/ in distribution.
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We will later show that under some mild assumptions on F�, the weight function
will indeed be bounded on Œ0; 1�.

The form of C� we propose to work with is the distribution of U conditioned on
the event that at least one of its components exceeds �:

C�.u/ D P.U1 � u1; : : : ;Ud � ud j maxfU1; : : : ;Udg > �/
D P.U1 � u1; : : : ;Ud � ud jU … Œ0; ��d/

D C.u/� C .minfu1; �g; : : : ;minfud; �g/
1 � C.�1/

; (8)

where �1 D �.1; : : : ; 1/ D .�; : : : ; �/ 2 Œ0; 1/d. By putting mass of � on .0; 1/,
we can put more weight on the region of the copula where at least one component
is large. For instance, if F� is discrete and P.� D 0/ D P.� D 0:9/ D 0:5, then
50% of the samples of QU are constrained to lie only in Œ0; 1�d n Œ0; 0:9�d while the
other 50% of the samples will lie on Œ0; 1�d. Note that the mass on Œ0; 1�d n Œ0; 0:9�d
would then be higher than 50% since we can still sample from Œ0; 1�dnŒ0; 0:9�d when
� D 0. On the other hand, the case P.� D 0/ D 1 yields G D C since C� D C for
� D 0.

We now describe how the weight function w based on the above choice for C�
can be calculated.

Theorem 1 The Radon–Nikodym derivative w.u/ D dC.u/=dG.u/ is given by

w.u/ D
� MX

kD1

If�k�maxfu1;:::;udgg
1 � C.�k1/

qk

	�1
:

In order to simplify the notation, letew W Œ0; 1�! Œ0;1/ be defined as

ew.u/ D
� MX

kD1

If�k�ug
1 � C.�k1/

qk

	�1
: (9)

Therefore we have that w.u/ D ew.maxfu1; : : : ; udg/. In order to evaluate ew,
it is sufficient to calculate (or approximate) C.�k1/ for k 2 f1; : : : ;Mg. These
values must be calculated only once and thus this approach is fast and can be
easily implemented. In particular, the density of C does not have to be evaluated
to calculate w (or Qw). This is in an advantage in comparison to most other IS
algorithms, for which the existence of the density of C is required.

Lemma 2 Under Assumption 1,ew is bounded from above by P.� D 0/�1 on Œ0; 1�.

As a consequence of Lemma 2, Assumption 1 is not only sufficient to obtain
existence of the weights, but it also guarantees that they are bounded. In virtue of
Lemma 1, this guarantees consistency and asymptotic normality of the IS estimator.
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Note that our approach could be generalized to other forms of C� and F� (e.g.,
not necessarily discrete). In such cases the evaluation of the weight functionew might
be more demanding and require the use of numerical integration schemes.

4 Importance Sampling Algorithm for Archimedean Copulas

While the IS method from the previous section can be applied to any copula,
sampling from C� is in general difficult. A possible solution could be to use rejection
sampling, but we do not pursue this approach here as we expect it would not work
very well with QMC sampling. In this section, we instead focus on developing
sampling algorithms for U jU.d/ WD maxfU1; : : : ;Udg > � when U follows an
Archimedean copula with generator  . This corresponds to Step 3 in Algorithm 1.
In light of (5), we have .U1; : : : ;Ud/

dD . .E1
V /; : : : ;  .

Ed
V // where Ej

ind.� Exp.1/
and V is the corresponding frailty random variable. The condition U.d/ > � can
then be written as E.1/ <  �1.�/V , where E.1/ � Exp.d/ is the first order statistic
of fE1; : : : ;Edg. In summary, sampling from U jU.d/ > � is equivalent to sampling
from .E1; : : : ;Ed;V/ jE.1/ <  �1.�/V . Algorithm 2 summarizes the sampling
method for this conditional distribution where we let � D  �1.�/. Proposition 1
asserts that samples from Algorithm 2 have the right distribution.

Proposition 1 Let E1; : : : ;Ed be iid positive random variables and V be a positive
random variable independent of the Ej’s. Then a sample .E1; : : : ;Ed;V/ constructed
as in Steps 1–3 of Algorithm 2 has the distribution .E1; : : : ;Ed;V/ j .E.1/ < �V/.

While Proposition 1 holds for general (positive) Ej’s and V , we now give detailed
explanations of how to do the sampling for Steps 1 and 2 of Algorithm 2, i.e., when
Ej

ind.� Exp.1/ and V is the frailty random variable. We assume that V is continuous
for the derivations below. We need only minor modifications for the discrete case.

Step 1: Sample .E.1/;V/ j .E.1/ < �V/

We want to sample from the joint distribution of .E.1/;V/ conditioned on the event
.E.1/ < �V/. Let fE.1/ .x/ and fV.v/ be the density of E.1/ and V , respectively. Further,
let f.E.1/;V/j.E.1/<�V/.x; v/ be the conditional joint density of .E.1/;V/ given E.1/ <
�V . Then by independence of E.1/ and V

f.E.1/;V/j.E.1/<�V/.x; v/ D ˇfE.1/ .x/fV.v/I.x < �v/; (10)

Algorithm 2 Sampling step of the IS algorithm for Archimedean copulas
Require: 0 < � D  �1.�/ < 1.
1: Draw .E.1/;V/ j .E.1/ < �V/.
2: Draw .E1; : : : ;Ed/ j E.1/.
3: Let Uj D  .Ej=V/ for j 2 f1; : : : ; dg.
4: return .U1; : : : ;Ud/.
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where 1=ˇ D P.E.1/ < �V/ D P.U.d/ > �/ D .1 � C.�1// D .1 �  .d �1.�///.
We use conditional sampling to sample from this density, that is, we first sample V
from the marginal conditional density fVj.E.1/<�V/ of (10) then draw E.1/ from (10)
given V . Note that

fVj.E.1/<�V/.v/ D ˇfV .v/
Z �v

0

fE.1/.x/ dx D ˇfV .v/.1 � exp.�d�v//: (11)

Unfortunately, the density (11) does not belong to a known parametric family for
most Archimedean copulas. Nonetheless, there exist efficient numerical algorithms
that allow one to sample from a univariate distribution given its probability
density function. For instance, the NINIGL Algorithm in [4] achieves this through
numerical inversion techniques. Such algorithms could become costly if they had
to be applied for several values of �. However in our numerical experiments, the
threshold random variable � only takes a small number of distinct values, such as
10, which is much less than the number of simulations, which is of order 10,000.
Furthermore for each value of � D �, we sample from (11) thousands of times,
which makes the overhead required to initialize the sampling algorithms negligible.

After sampling V from (11), we want to draw E.1/ given V . Let the conditional
density of E.1/ be denoted by fE.1/j.E.1/<�V;V/.x jV/. Then

fE.1/j.E.1/<�V/.x jV/ D d exp.�dx/I.x < �V/

1 � exp.�d�V/

and we can draw a sample from this density using the inversion technique. In
particular, we generate U � UŒ0; 1/ and then let E.1/ D � 1d log.1 �U.1 � e��dV //.

Step 2: Sampling .E1; : : : ;Ed/ jE.1/
Suppose we have drawn E.1/ D x.1/ from Step 1. Let f .x1; : : : ; xd/ D
exp

�
�Pd

iD1 xi

	
be the joint density of .E1; : : : ;Ed/. Note that each Ej is as likely

to be the minimum. Consider the case where E1 is the minimum. The conditional
distribution is

f .x1; : : : ; xd jE1 D E.1/; E.1/ D x.1// D e�x.1/�Pd
jD2 xj

.1=d/de�dx.1/

D e�Pd
jD2.xj�x.1// � IfE1Dx.1/g: (12)

We can sample from (12) by letting Ej D Exp.1/ C x.1/ independently for j 2
f2; : : : ; dg.

Since any of the Ej’s can be the minimum, we pick the index for the minimum
component randomly from 1 to d and sample the rest of the components accordingly.
This sampling method works for MC, but may not work very well for QMC. When
randomly choosing the index for the minimum component, we potentially destroy
the structure of the LDS. So, if we are working with an LDS, the CDM based on
Proposition 2 below is preferred.
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Proposition 2 Suppose E1; : : : ;Ed are iid Exp.1/. Then

P.Ek � xk jE1 D x1; : : : ;Ek�1 D xk�1;E.1/ D x/

D
(
1 � expf�.xk � x/g; if xj D x for some j 2 f1; : : : ; k � 1g;

1
d�kC1 Ifxk<xg C d�k

d�kC1 .1 � expf�.xk � x/g/; otherwise:
(13)

To sample E1; : : : ;Ed, we let k take the successive values k 2 f1; : : : ; dg in (13) and
proceed by inversion.

4.1 Stratified Sampling Alternative to Importance Sampling

Recall from Algorithm 1 and the form of C� given in (8) that our IS scheme starts
with sampling a threshold random variable � D �k and then proceeds by sampling
QU � U j .T D maxfU1; : : : ;Udg > �k/. Instead, we can construct a stratified
sampling (SS) estimator based on the samples from U j .�kC1 > T � �k/. That
is, we stratify the domain of U along with T. Suppose � takes M distinct values as
0 D �1 < � � � < �M < 1. Let �MC1 D 1 for convenience. Then we can define M
strata as

˝k D fu 2 Œ0; �kC1/d j u … Œ0; �k/
dg; k D 1; : : : ;M: (14)

By construction, �k � T < �kC1 if and only if u 2 ˝k. We can then construct the
SS estimator

O�SS;n D
MX

kD1

pk

nk

nkX

iD1
�. QU.k/i /; (15)

where pk is the stratum probability, nk is the number of samples allocated to the

stratum ˝k, and QU.k/i
ind.� U j˝k. For Archimedean copulas, pk D  .d �1.�kC1//�

 .d �1.�k//. In Sect. 5, we show that the SS estimator has a smaller variance than
the IS estimator. It is easy to show that sampling from ˝k is equivalent to sampling
from .E1; : : : ;Ed;V/ j �1.�kC1/V < E.1/ �  �1.�k/V . Let �k D  �1.�k/ for all
k 2 f1; : : : ;M C 1g. Algorithm 3 summarizes the procedure to sample from each
stratum.

In this algorithm, Step 2 is exactly the same as for the IS case (Algorithm 2).
For Step 1, we use conditional sampling to draw samples from the joint conditional
density of .E.1/;V/ j .�kC1V < E.1/ � �kV/. By using an argument similar to the one
used for Step 1 of Algorithm 2, we can show that the marginal conditional density
of V is

fVj.E.1/<�V/.v/ D ˇfV .v/.exp.�d�kC1v/ � exp.�d�kv//; (16)
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Algorithm 3 Sampling Uk;j in SS algorithm for Archimedean copulas
Require: 0 < �kC1 < �k < 1.
1: Draw .E.1/;V/ j .�kC1V < E.1/ � �kV/.
2: Draw .E1; : : : ;Ed/ j E.1/.
3: Let Uj D  .Ej=V/ for j 2 f1; : : : ; dg.
4: return .U1; : : : ;Ud/.

where fV .v/ is the density of V and ˇ D 1=pk D 1= Œd �1.�kC1//� .d �1.�k/�.
Conditional on V drawn from (16), generate U � UŒ0; 1/ and then let E.1/ D
� 1d log

�
e��kC1dy �U.e��kC1dy � e��kdy/

�
. Then .E.1/;V/ follows the desired distri-

bution.

Remark 1 We can follow Algorithm 3 to sample from the SS distribution under
QMC, if the number of samples to be drawn is fixed. In some cases, however, we
want to keep running simulations until some error criterion is met. Since SS requires
to have a subset of points allocated to each stratum, combining it with QMC for n
not fixed is challenging. This is because when the total sample size is increased by
successive increments, it means possibly disjoint subsets of a QMC point set will
be used in a given stratum, which is undesirable. Whether or not this allocation over
successive increments can be done in a clever way that exploits the uniformity of
low-discrepancy sequences is a question we leave for future research.

5 Variance Analysis and Calibration Method

In this section, we analyze the variance of the IS and SS estimators and then propose
calibration methods for choosing the qk’s designed to minimize the variance of the
respective estimators. We also show that the SS scheme is more flexible to calibrate
and gives an estimate with a smaller variance than the IS estimator.

We define the strata˝1; : : : ;˝M as in (14) and Ck D C.�k1/ for k 2 f1; : : : ;Mg.
The following proposition gives the variance of the IS estimator.

Proposition 3 Let O�IS;n be the IS estimator described in Algorithm 1 with C� given
in (8). Then its variance is given by

Var. O�IS;n/ D 1

n

0

@
MX

kD1
pk

 
kX

lD1

ql

1 � Cl

!�1
�
.2/
k � �2

1

A ; (17)

where pk D P.U 2 ˝k/, qk D P.� D �k/ and �.2/k D E.�2.U/ j˝k/.

For the optimal calibration, we want to choose the qk’s so that (17) is minimized.
The following proposition gives an analytical expression for the optimal calibration.
For convenience, we define �.2/0 D 0.
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Proposition 4 The set of qk’s that minimize (17) under the condition �.2/1 � � � � �
�
.2/
M with �.2/0 D 0 for convenience, is

qopt
k D

.1� Ck/


q
�
.2/
k �

q
�
.2/
k�1
�

MP

kD1
.1 � Ck/


q
�
.2/
k �

q
�
.2/
k�1
� ; k 2 f1; : : : ;Mg: (18)

Remark 2 If the condition �.2/1 � � � � < �
.2/
M is not met, some of the qopt

k ’s given
by (18) will be negative, which makes the IS scheme infeasible. Note that qopt

k < 0

means that ever having the event Œ� D �k� makes the overall variance greater than
when qopt

k D 0. We propose to then remove �k from the support of � if qopt
k < 0.

Accordingly, the strata ˝k’s will change so the stratum second moments need to be
recomputed for the optimal calibration.

Of course, we do not know the true values of the �.2/k ’s in practice, so we have
to replace them with estimates. As often done for Neyman allocation, we can first
run a pilot study with a small number of simulations and estimate the �.2/k ’s. The

condition �.2/1 � � � � < �
.2/
M means that the outer strata must have greater stratum

second moments than the inner strata. We refer to this condition as increasing
second moment (ISM) condition. Whether this ISM condition is met depends on the
problem at hand. In this paper, we specifically work with �.U/ which is large when
at least one component of U is large. This assumption on � and the ISM condition
are not incompatible, although there is no guarantee that the former implies the
latter. If the ISM is satisfied, then we can substitute (18) into (17) and obtain

Var. O�opt
IS;n/ D

1

n

0

@

 
MX

kD1
pk

q
�
.2/
k

!2

� �2
1

A : (19)

Using the Cauchy-Schwarz inequality, we can show that

VarQ. O�opt
IS;n/ D

1

n

0

@

 
MX

kD1
pk

q
�
.2/
k

!2

� �2
1

A � 1

n

 
MX

kD1
pk�

.2/
k � �2

!

D Var. O�MC;n/:

Equality holds only when �.2/k is the same for all k. Except for this restrictive case,
the IS estimator with the optimal choice of qk’s always has a smaller variance than
the plain MC counterpart. If the ISM is not met, there is no analytical form for
the optimal qk’s. We can still find the optimal values using widely available convex
optimization solvers in this case. If we let q1 D 1 and qk D 0 for k D 2; : : : ;M,
the proposal distribution is the same as the original distribution. That is, IS becomes
plain MC. Hence, if we choose the qk’s appropriately, the IS estimator cannot do
worse than plain MC. In this sense, the IS estimator is similar to an SS estimator.

Now that we have derived the variance expression and the optimal choice of
qk’s, we move on to the stratified sampling estimator (15). Using simple algebra,
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one can show that Var. O�SS;n/ D PM
kD1 p2k�

2
k =nk; where �2k D Var.�.U/ j˝k/,

k 2 f1; : : : ;Mg are the stratum variances. The optimal nk’s are given by Neyman
allocation

nk D npk�k
PM

kD1 pk�k

: (20)

Unlike the IS estimator, there is no restriction on this optimal allocation, i.e., we do
not need �k to be increasing with k. In this sense, the SS estimator is more flexible.

Since the true strata variances are unknown, we have to replace them with
estimates. Investigating the optimal calibration formula for IS (18) and SS (20), it
appears that the estimation error of the strata moments (the�.2/k ’s for IS and the �2k ’s
for SS) has greater impact on the estimated calibration for IS than for SS. Since qk

for IS depends on
q
�
.2/
k �

q
�
.2/
k�1, the estimation error comes from both estimating

�
.2/
k�1 and �.2/k . On the other hand, for SS, nk depends on �k, so the estimation

error comes from estimating �2k alone. Consequently, the approximation is likely
to deviate more from the actual optimal calibration for IS than for SS.

Going back to IS and as discussed in [9], instead of choosing � D �k with
probability qk it is more efficient to stratify �. That is, take nk D nqk observations
with � D �k. Let O�det

IS;n denote such a stratified IS estimator. Generally nqk is not an
integer and needs to be rounded. If each nk is large enough, this rounding effect is
negligible. The following proposition compares the variance of the three estimators.

Proposition 5 Suppose we have an IS estimator with P.� D �k/ D qk; 1 � k �
M. If the �k D E.�.U/j˝k/ are not all equal and n is large enough, then there
exists some strata sample allocation .n1; : : : ; nM/ for the SS estimator such that
Var. O�SS;n/ � Var. O�det

IS;n/ � Var. O�IS;n/.

This result trivially holds when we use the optimal qk’s (18) for stratified and
unstratified IS and use the optimal allocation (20) for SS. Since the SS estimator
is more flexible for calibration and it has a smaller variance than both IS estimators,
the SS approach is preferred if the sampling efforts for (11) and (16) are not
significantly different. Nonetheless, depending on the type of the underlying copula,
sampling from the IS distribution could be much easier than sampling from the SS
distribution.

6 Numerical Examples

In this section, we investigate the efficiency of the IS and SS estimators introduced
in this paper. We consider the valuation of tail-related quantities of a portfolio
consisting of stocks from companies in the financial industry listed on the S&P 100.
The five stocks in the portfolio are AIG, Allstate Corp., American Express Inc.,
Bank of New York and Citigroup Inc. Their stock symbols are AIG, ALL, AXP, BK
and C, respectively. We assume that the value of the portfolio is 100 and that all
the portfolio weights are equal. The data are daily negative log-returns of these five
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companies from 2010-01-01 to 2016-04-01 (1571 data points). We fit GARCH(1,1)-
models with t-innovations to each return series to filter out the volatility clustering
effect using the R package “rugarch” [6]. The fitted standardized residuals do not
exactly follow a t-distribution, so we fit a semi-parametric distribution to the resid-
uals using the R package “spd” [7]. The fitted model uses a kernel density estimate
for the centre of the distribution and fits a generalized Pareto distribution to the tails.
The use of generalized Pareto distribution to model the GARCH filtered residuals to
estimate tail-related risk measures in a univariate setting is studied by McNeil and
Frey [15]. We let S DPd

jD1 Xj denote the portfolio loss over a 1 day period with

Xj D 100!j

0

@1 �
dX

jD1
exp.aj � bj QF�1

j .Uj//

1

A ;

where d is the number of assets, !j’s are the portfolio weights, aj’s are the means
of the log-returns, bj’s are the fitted conditional standard deviations from the
GARCH(1,1) model, QFj’s are the fitted semi-parametric distributions from the R
package “spd”, and .U1; : : : ;Ud/ follows the fitted copula. We use the R package
“distr” [18] to sample from (11) and (16).

Using the R package “copula” [11], we fit the Gumbel, Frank, Clayton and Joe
copulas to the standardized residuals based on MLE. Among the four Archimedean
copulas, the Gumbel copula with � D 1:604 gives the best fit in terms of log-
likelihood, followed by a Frank copula with � D 4:06. Hence we proceed assuming
that the model we consider is well approximated by a Gumbel or a Frank copula.

The three functionals we estimate are stop loss E.maxfS�D; 0g/with D D 3 for
Gumbel and D D 2 for Frank, VaR0:99 and ES0:99 of S. To define C�, we use �k D
1 � � 1

2

�k�1
for k D 1; : : : ;M, with M D 10. When constructing an IS estimator, we

stratify� regardless of whether we use MC or QMC. When we calibrate the qk’s for
IS according to (18) and SS according to (20), we use ES as our objective function.

Table 2 shows the estimates, variance reduction factors and computational times
for the three functionals for the five different estimators based on Gumbel and Frank
copulas, respectively. We used 30 randomizations to estimate the variance of each
estimator (MC and QMC). The estimates shown are based on SS estimators with
QMC. Variance reduction factors are defined to be the ratios of the variance of the
plain MC estimators over the variance of the estimators with the respective VRTs.
The last row of Table 2 shows the increase in computation time compared to plain
MC. We see that both IS and SS reduce the variance by large amounts and this
is amplified when combined with QMC. Note that SS estimators generally give
smaller variances than the IS estimators, as suggested by Proposition 5. For IS and
SS estimators with and without QMC, we see that the largest variance reduction
factors are for ES. This makes sense as we calibrate the qk’s to minimize the variance
of the ES estimator.

We also repeat the same experiment but with a portfolio of 20 stocks from large
companies in the financial industry traded on NYSE (the full list is available from
the authors); the results are displayed under d D 20 in Table 2. Figures 2 and 3 show
the log-variance of the three different MC-based estimators for different n.
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Fig. 2 Estimated variances of plain MC, IS and SIS estimators of ES0:99 for a Gumbel copula
(left-hand side) and a Frank copula (right-hand side) for different n and for d D 5
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Fig. 3 Estimated variances of plain MC, IS and SIS estimators of 99% ES for a Gumbel copula
(left-hand side) and a Frank copula (right-hand side) for different n and for d D 5
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Appendix

Proof of Lemma 1 Since E.�. QU/w. QU// D E.�.U//, consistency follows directly

from the Strong Law of Large Numbers. Note that E

�
�. QU/2w. QU/2

	
D

E
�
�.U/2w.U/

� � E
�
�.U/2

�
B < 1, where the first equality is justified by a

change of measure. We can immediately deduce asymptotic normality of O�IS;n by
the Central Limit Theorem, see, for example, Section 2.4 in [5, p. 110]. ut
Proof of Theorem 1 Due to Leibniz’ integral rule, dG.u/ D R 1

0
dC�.u/dF�.�/.

From the definition of C�, we can derive the differential

dC�.u/ D
(
0; u 2 Œ0; ��d;

dC.u/
1�C.�1/ ; otherwise.

Using both identities, we obtain

dG.u/ D dC.u/
Z 1

0

If��maxfu1;:::;udgg
1 � C.�1/

dF�.�/;

leading to the desired result. ut
Proof of Lemma 2 Since C.�1/; � 2 Œ0; 1�, the diagonal section of the copula C and
the distribution function F� are both increasing functions. The weight functionew is
thus decreasing on Œ0; 1�, and is bounded above byew.0/ D P.� D 0/�1 <1: ut
Proof of Proposition 1 We sample .E1; : : : ;Ed;V/ j .E.1/ < �V/ using condi-
tional distribution sampling. That is, we first sample .E.1/;V/ j .E.1/ < �V/,
which is the Step 1 of Algorithm 2. Given the .E.1/;V/ drawn, we then want
to sample .E1; : : : ;Ed/ j .E.1/ < �V;E.1/;V/ which is equivalent to sampling
.E1; : : : ;Ed/ jE.1/ and this is the Step 2 of the algorithm. ut
Proof of Proposition 2 First, consider the case where xj D x for some j D 1; : : : ; k�
1. Without loss of generality assume that x1 D x, i.e., E1 D E.1/. So we want to find
P.Ek � xk jE1 D x1; : : : ;Ek�1 D xk�1;E.1/ D E1 D x/. From (12), the conditional
distribution of Ek is xC Exp.1/. So the above probability equals

P.Ek � xk jE1 D x1; : : : ;Ek�1 D xk�1;E.1/ D x/ D 1 � e�.xk�x/: (21)

Next, we consider the case xj ¤ x for all j D 1; : : : ; k � 1. This means that
Ej D E.1/ for some j D k; : : : ; d. Since all Ej are iid, there is a 1

d�kC1 probability



Importance Sampling and Stratification for Copula Models 93

that Ek D E.1/. In such a case Ek D x with probability 1 as we are given E.1/ D x.
Suppose Ek ¤ E.1/, which occurs with probability of d�k

d�kC1 . Then we need to find
the probability

P.Ek � xk jE1 D x1; : : : ;Ek�1 D xk�1;E.1/ D x;Ej ¤ E.1/; j D 1; : : : k/

D
dX

jDkC1

1

d � k
P.Ek � xk jE1 D x1; : : : ;Ek�1 D xk�1;E.1/ D x;Ej D E.1//

D P.Ek � xk jE1 D x1; : : : ;Ek�1 D xk�1;E.1/ D x;Ed D E.1// D 1 � e�.xk�x/:

The last equality again holds by (12) and the result follows. ut
Proof of Proposition 3 Recall that the IS estimator (7) is

O�IS;n D 1

n

nX

iD1
�. QUi/w. QUi/ D 1

n

nX

iD1
�. QUi/ Qw.ti/; (22)

where ti D max. QUi;1; : : : ; QUi;d/, and where the weight function (9) is

ew.u/ D
� MX

kD1

If�k�ug
1 � Ck

qk

	�1
: (23)

Hence ew is constant over each stratum ˝k. Thus, for u 2 ˝k, we can define the
stratum weight as

wk D
� kX

lD1

ql

1 � Cl

	�1
; k 2 f1; : : : ;Mg: (24)

The second moment of w. QU/�. QU/ is

E.w2. QU/�2. QU// D E.w.U/�2.U// D
MX

kD1
pkE.w.U/�2.U/ jU 2 ˝k/

D
MX

kD1
pkwkE.�

2.U/ jU 2 ˝k/ D
MX

kD1
pkwk�

.2/
k D

MX

kD1
pk

 
kX

lD1

1

1 � Cl
ql

!�1
�
.2/
k :

The third equality holds because the weight function Qw.t/ is constant over each
stratum. The last equality follows from (24). Then the variance of the IS estimator

based on n samples is Var. O�IS;n/D 1
n



PM

kD1 pk

�Pk
lD1 1

1�Cl
ql

	�1
�
.2/
k � �2

�
: ut
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Proof of Proposition 4 Since the variance expression (17) is convex in qk’s, we can
solve the minimization problem using Lagrange multipliers. First, we simplify (17)
so that the minimization problem becomes easier. Let Qpk D P. QU 2 ˝k/, the stratum
probability under the proposal distribution. Observe that

Qpk D
MX

lD1
ql � P. QU 2 ˝k j� D �l/ D

kX

lD1
ql � P.U 2 ˝k j max.U1; : : : ;Ud/ > �l/

D
kX

lD1
ql

pk

1 � Cl
D pk

kX

lD1

ql

1 � Cl
: (25)

By (23) and (25), we can write wk D pk=Qpk. The weight wk is the ratio of
probabilities of a sample falling onto stratum ˝k under the original distribution and
the proposal distribution. Plugging this expression into (17), we have

Var. O�IS;n/ D 1

n

 
MX

kD1

p2k
Qpk
�
.2/
k � �2

!

: (26)

Using the Lagrange multiplier method, we can show that the optimal Qpk is

Qpopt
k D pk

q
�
.2/
k

� MX

kD1
pk

q
�
.2/
k : (27)

Note that this optimal choice of Qpk’s resembles the Neyman allocation, the optimal
allocation under stratified sampling.

Using the relation qk D .1�Ck/
� Qpk

pk
� Qpk�1

pk�1

	
, (with Qp0=p0 D 0) the optimal qk is

qopt
k / .1� Ck/


q
�
.2/
k �

q
�
.2/
k�1
�
; .with �.2/0 D 0/: (28)

The assumption that �.2/1 � � � � � �.2/M ensures that qopt
k � 0 for k D 1; : : : ;M. ut

Proof of Proposition 5 We have O�det
IS;n D 1

n

PM
kD1

Pnqk
jD1 �. QUki/w. QUki/; QUki

iid�
Uj� D �k: Thus Var. O�det

IS;n/ D E

h
Var.�. QU/w. QU/ j�/

i
=n C O.1=n2/ (term due

to rounding nqk). Since Var. O�IS;n/ D 1
n Var.�. QU/w. QU/, we have Var. O�det

IS;n/ �
Var. O�IS;n/ as long as n is large enough for the O.1=n2/ term due to rounding to
be smaller than Var.E.�. QU/w. QU/j�//=n > 0. As shown before, Qpk D P. QU 2
˝k/ D pk

Pk
lD1

ql
1�Cl

. Consider an SS estimator with nk D nQpk. Then Var. O�SS;n/ D
1
n

PM
kD1

p2kQpk
�2k . Also Var.�. QU/w. QU/ j� D �k/ D Var.�. QU/w. QU/ j T > �k/ �
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EŒVar.�. QU/w. QU/ j T > �k;T 2 ˝j/� D PM
jDk

pj

1�Ck
w2j �

2
j . Then, using (24) and

wk D pk=Qpk we get

Var. O�det
IS;n/ �

1

n

MX

kD1
qk

MX

jDk

pj

1 � Ck
w2j �

2
j D

1

n

MX

kD1
pkw2k�

2
k

kX

jD1

qj

1 � Cj

D 1

n

MX

kD1
pkwk�

2
k D

1

n

MX

kD1

p2k
Qpk
�2k D Var. O�SS;n/:

ut
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A Spectral Method for the Biharmonic
Equation

Kendall Atkinson, David Chien, and Olaf Hansen

Dedicated to Ian H. Sloan on the occasion of his 80th birthday.

Abstract Let ˝ be an open, simply connected, and bounded region in R
d, d � 2,

with a smooth boundary @˝ that is homeomorphic to S
d�1. Consider solving

�2uC �u D f over˝ with zero Dirichlet boundary conditions. A Galerkin method
based on a polynomial approximation space is proposed, yielding an approximation
un. With sufficiently smooth problem parameters, the method is shown to be rapidly
convergent. For u 2 C1 �

˝
�

and assuming @˝ is a C1 boundary, the convergence
of ku � unkH2.˝/ to zero is faster than any power of 1=n. Numerical examples
illustrate experimentally an exponential rate of convergence.

1 Introduction

Consider the biharmonic problem

�2u .s/C � .s/ u .s/ D f .s/ ; s 2 ˝; (1)

with the Dirichlet boundary conditions

u .s/ D @u .s/

@ns
D 0; s 2 @˝: (2)
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The region ˝ � R
d, d � 2, is to be bounded and simply-connected; and its

boundary @˝ is to be smooth and homeomorphic to S
d�1. Assume f 2 L2 .˝/

and

�min � min
s2˝

� .s/ � 0: (3)

This can be looked upon as a problem in the Sobolev space H4 .˝/. It can also be
reformulated as a variational problem. For background on the use of this problem in
mechanics, see [10], [16, Chap. 8].

Introduce the bilinear functional

A .u; v/ D
Z

˝

Œ�u .s/�v .s/C � .s/ u .s/ v .s/� ds

and the linear functional

`f .v/ � . f ; v/ D
Z

˝

f .s/ v .s/ ds; v 2 L2 .˝/ :

Introduce the Hilbert space

H2
0 .˝/ D

�
v 2 H2 .˝/ j v; @v

@n
D 0; on @˝

�
:

For the norm, use

kvk2 � kvkH2.˝/ D
sX

jkj�2
kDkvk2

L2.˝/
;

where k D .k1; : : : ; kd/ ; jkj D k1 C � � � C kd, and

Dkv .s/ D @jkjv .s1; : : : ; sd/

@sk1
1 � � � @skd

d

:

The variational formulation of (1)–(2) is to find u 2 H2
0 .˝/ for which

A .u; v/ D `f .v/ ; 8v 2 H2
0 .˝/ : (4)

For a discussion of this reformulation, see Ciarlet [9, p. 28]. With the above
assumptions and definitions, A is a strongly elliptic operator on H2

0 .˝/,

A .v; v/ � cekvk22; v 2 H2
0 .˝/ ;
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with ce > 0. Also, A is a bounded bilinear operator,

jA .v;w/j � cA kvk2 kwk2 ; v;w 2 H2
0 .˝/ ;

for some finite cA > 0. Finally,

k`f k � kfkL2.˝/:

The Lax-Milgram Theorem (cf. [1, §8.3], [8, §2.7]) implies the existence of a unique
solution u to (4) with

kuk2 � 1

ce
k`f k: (5)

In Sect. 3 we present a Galerkin method for approximating (4), making use
of multivariate orthonormal polynomial approximations. Numerical examples are
given in Sect. 4.

2 Preliminaries

Assume the existence of an explicitly known continuously differentiable mapping

˚ W Bd 1�1�!
onto

˝ (6)

and let � D ˚�1 W ˝ 1�1�!
onto

B
d

denote the inverse mapping. A very simple example

of such a mapping is when˝ is the ellipse

� s1
a

	2 C
� s2

b

	2 � 1

with a; b > 0. Choose

˚ .x/ D .ax1; bx2/ ; x 2 B
2:

It is necessary to know ˚ explicitly, but not � . The creation of such a mapping ˚
is examined at length in [3].
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Let

J .x/ � .D˚/ .x/ D

2

6
6
6
6
4

@˚1 .x/

@x1
� � � @˚1 .x/

@xd
:::

: : :
:::

@˚d .x/

@x1
� � � @˚d .x/

@xd

3

7
7
7
7
5
; x 2 B

d
; (7)

K .s/ � .D�/ .s/ D

2

6
6
6
6
4

@�1 .s/

@s1
� � � @�1 .s/

@sd
:::

: : :
:::

@�d .s/

@s1
� � � @�d .s/

@sd

3

7
7
7
7
5
; s 2 ˝ (8)

denote the Jacobian matrix of the transformations ˚ and � , respectively. Assume

J.x/ is nonsingular on B
d
,

det J.x/ ¤ 0; x 2 B
dI

and without loss of generality, assume

det J.x/ > 0; x 2 B
d
:

Differentiating the identity ˚ .� .s// D s over ˝ , or the identity � .˚ .x// D x
over Bd, leads to

J .x/K .s/ D I; x D � .s/ ; (9)

Thus the components of K .s/ can be obtained by using

K .s/ D J .x/�1 ; s D ˚ .x/ : (10)

K .˚.x// D J .x/�1 ; x 2 B
d
: (11)

Let v denote a general function defined over ˝ . For the transformation s D
˚ .x/, introduce the notationev .x/ D v .˚ .x//; or equivalently, v .s/ D ev .� .s// :
Consider the derivatives with respect to s of v .s/. Let rs denote the gradient with
respect to the components of s; and do similarly for rx. Then

rsv .s/ D K .s/T rxev .x/ ; x D � .s/ ; (12)

rxev .x/ D J .x/T rsv .s/ ; s D ˚ .x/ ;

with rxev .x/ the gradient ofev .x/ written as a column vector, and analogously for
rsv .s/. Further derivatives are considered later in Sect. 3.1.
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2.1 Approximation Space

For ˝ D B
d, introduce the approximation space

fX n D
��
1 � jxj2

	2
p .x/ j p 2 ˘ d

n

�
;

where ˘ d
n denotes the space of all polynomials in d variables and of degree � n.

For general˝ , use the approximation space

Xn D
˚
� ı ˚�1 j � 2 fX n

�
:

Let Vk denote the space of all polynomials of degree k that are orthogonal in
L2
�
B

d
�

to all polynomials in ˘ d
k�1 using the standard inner product

. f ; g/ D
Z

Bd
f .x/ g .x/ dx:

More precisely,

Vk D
˚

p 2 ˘ d
k j . p; q/ D 0; 8q 2 ˘ d

k�1
�
; k D 1; 2; : : : ;

and V0 is the set of all constant functions. Then

˘ d
n D V0 ˚ V1 ˚ � � � ˚ Vn;

is an orthogonal decomposition of ˘ d
n within L2

�
B

d
�
. A basis for ˘ d

n is defined
by first defining a basis for each subspace Vk, k D 0; 1; : : : ; n. Let

˚
'k;j
�

be an
orthonormal basis of Vk, let Mk D dimVk, and define

�k;j .x/ D
�
1 � jxj2

	2
'k;j .x/ ; j D 1; : : : ;Mk:

Denote the corresponding basis for fX n by f�` .x/ j 1 � ` � Nng ;

Nn � M0 C � � � CMn:

Let
˚
 j j 1 � j � Nn

�
be the corresponding basis for Xn using ` D �`ı˚�1. Note

that for d D 2,

Mn D nC 1; Nn D 1
2
.nC 1/ .nC 2/ :

Orthonormal bases
˚
'k;j
�

for Vk, k � 0, are considered in [6, 11, 17].
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3 The Numerical Method

The numerical method is a Galerkin method for approximating (4): find un 2 Xn

for which

A .un; v/ D . f ; v/ ; 8v 2Xn:

This is the standard variational framework used with finite element methods, with
the approximating elements required to belong to H2

0.˝/, a significant requirement.
Write

un .s/ D
NnX

jD1
˛j j .s/ :

Then the coefficients
˚
˛j
�

must satisfy the linear system

NnX

jD1
˛jA

�
 j;  i

� D `f . i/ ; i D 1; : : : ;Nn: (13)

The Lax-Milgram Theorem (cf. [1, §8.3], [8, §2.7], [9, p. 8]) implies the existence
of un for all n, with

kunk2 � 1

ce
k`f k:

For the error in this Galerkin method, Cea’s Lemma (cf. [1, p. 371], [8, p. 62],
[9, p. 104]) implies the convergence of un to u, and moreover,

ku � unk2 � cA
ce

inf
v2Xn

ku � vk2: (14)

It remains to bound the best approximation error on the right side of this inequality.
The error analysis is similar to that given in the earlier papers [2, 4, 5].

To bound the right side, make use of the following connection between norms in
Hk .˝/ and Hk

�
B

d
�
; the proof is omitted.

Lemma 1 Assume ˚ 2 C1 .˝/. Let v 2 Hk .˝/ for some k � 0, k 2 N0, and let
ev .x/ D v .˚ .x//. Then

c1;k kevkHk.Bd/ � kvkHk.˝/ � c2;k kevkHk.Bd/ (15)

for some c1;k; c2;k > 0 independent of v.
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In order to look at rates of convergence as a function of n, this lemma is used to
convert the bound (14) to the equivalent bound

keu �eunk2 � c inf
ev2eX n

keu �evk2; (16)

c a generic constant dependent on ˚ , but not on u. Assume u 2 Hk
0 .˝/, and

equivalentlyeu 2 Hk
0

�
B

d
�
, k � 2. Bounding the right side of (16) using [15, Thm

4.3] leads to the error bound

keu �eunk2 � c

nk�2 keukHk.Bd/ . (17)

Combined with Lemma 1 and (14),

ku � unk2 � c

nk�2 kukHk.˝/ , (18)

again with c a generic constant. To obtain convergence for k D 2, it can be shown
that

inf
ev2eX n

keu �evk2 ! 0 as n!1:

This follows because the polynomials [n�0fX nare dense in H2
0 .˝/ [note the

comments following [15, Thm 4.3] and the denseness of the polynomials [n�0˘ d
n

in Hk
�
B

d
�
].

3.1 Evaluating the Integrals

The integrals

A
�
 i;  j

� D
Z

˝

�
� i .s/� j .s/C � .s/  i .s/  j .s/

�
ds (19)

must be computed. Begin by converting to an integral over Bd using the transforma-
tion s D ˚ .x/:

A
�
 i;  j

� D
Z

Bd

h
�s i .s/jsD˚.x/ �s j .s/

ˇ̌
sD˚.x/

C� .˚ .x// �i .x/ �j .x/
�

det J .x/ dx:

The quantities �s i .s/, i D 1; : : : ;Nn, must be converted to functions involving
derivatives with respect to x for �i .x/.
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For the transformation x D � .s/, let v .s/ D ev .� .s//; or equivalently,ev .x/ D
v .˚ .x// : Look at the derivatives with respect to s of v .s/. Then for i D 1; : : : ; d;

@v .s/

@si
D

dX

jD1

@ev .x/
@xj

ˇ
ˇ
ˇ
ˇ
xD�.s/

� @�j .s/

@si

D
�
@�1

@si
; : : : ;

@�d

@si


rxev .x/ ; x D � .s/ :

This is a proof of (12). Next,

@2v .s/

@s2i
D @

@si

2

4
dX

jD1

@ev .x/
@xj

ˇ
ˇ
ˇ̌
xD�.s/

� @�j .s/

@si

3

5

D
dX

jD1

@ev .x/
@xj

ˇ
ˇ
ˇ
ˇ
xD�.s/

� @
2�j .s/

@s2i

C
dX

jD1

@�j .s/

@si

dX

kD1

@2ev .x/
@xj@xk

@�k .s/

@si
:

Summing over i,

�sv .s/ D
dX

i;jD1

@ev .x/
@xj

ˇ
ˇ
ˇ̌
xD�.s/

� @
2�j .s/

@s2i

C
dX

i;j;kD1

@�j .s/

@si

@2ev .x/
@xj@xk

@�k .s/

@si
: (20)

Look at the terms in (20). First,

dX

i;jD1

@ev .x/
@xj

ˇ̌
ˇ
ˇ
xD�.s/

� @
2�j .s/

@s2i
D

dX

jD1

@ev .x/
@xj

�s�j .s/

D Œ�s�1 .s/ ; : : : ; �s�d .s/� rxev .x/ : (21)
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Using the notation of (8),

dX

i;j;kD1

@�j .s/

@si

@2ev .x/
@xj@xk

@�k .s/

@si
D

dX

j;kD1

@2ev .x/
@xj@xk

dX

iD1

@�j .s/

@si

@�k .s/

@si

D
dX

j;kD1

@2ev .x/
@xj@xk

�
K .s/j;�

� �
K .s/k;�

�T
(22)

D
dX

j;kD1

@2ev .x/
@xj@xk

h
K .s/K .s/T

i

j;k
:

Returning to (20) and combining terms,

�sv .s/ D Œ�s�1 .s/ ; : : : ; �s�d .s/� rxev .x/

C
dX

j;kD1

@2ev .x/
@xj@xk

�
K .s/j;�

� �
K .s/k;�

�T
: (23)

Formula (22) can be evaluated from knowing J .x/; see (10) above. The for-
mula (23) is to be evaluated with

ev .x/ D �` .x/ ; 1 � ` � Nn;

so as to create the elements A
�
 i;  j

�
.

To evaluate (21), we need �s�j .s/, 1 � j � d. The first derivatives of 6 � can be
obtained from Ds� .s/ D ŒDx˚ .x/�

�1 where s D ˚ .x/. How to obtain the functions
�s�j .s/? Begin by differentiating

s D ˚ .� .s// ; s 2 ˝;

or

sj D ˚j .�1 .s/ ; : : : ; �d .s// ; 1 � j � d:

The derivative with respect to si yields

ıi;j D
dX

kD1

@˚j .x/

@xk

ˇ
ˇ
ˇ̌
xD�.s/

� @�k .s/

@si
; 1 � i; j � d: (24)
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Differentiate the components of (9), given in (24), with respect to s`: for 1 �
i; j; ` � d,

0 D
dX

kD1

@˚j .x/

@xk

@2�k .s/

@si@s`
C

dX

kD1

@�k .s/

@si

dX

mD1

@2˚j .x/

@xk@xm

@�m .s/

@s`
:

Let ` D i;

0 D
dX

kD1

@˚j .x/

@xk

@2�k .s/

@s2i
C

dX

kD1

@�k .s/

@si

dX

mD1

@2˚j .x/

@xk@xm

@�m .s/

@si
;

D
dX

kD1

@˚j .x/

@xk

@2�k .s/

@s2i
C

dX

k;mD1

@2˚j .x/

@xk@xm

@�k .s/

@si

@�m .s/

@si
:

Sum over i: for 1 � j � d,

0 D
dX

kD1

@˚j .x/

@xk
�s�k .s/C

dX

k;mD1

@2˚j .x/

@xk@xm

dX

iD1

@�k .s/

@si

@�m .s/

@si

D
dX

kD1

@˚j .x/

@xk
�s�k .s/C

dX

k;mD1

@2˚j .x/

@xk@xm

�
K .s/k;�

� �
K .s/m;�

�T
(25)

D
dX

kD1

@˚j .x/

@xk
�s�k .s/C

dX

k;mD1

@2˚j .x/

@xk@xm

h
K .s/K .s/T

i

k;m
:

Introduce

�s� .s/ D Œ�s�1 .s/ ; : : : ; �s�d .s/�
T ;

D2˚j .x/ D

2

6
6
6
6
6
4

@2˚j .x/

@x1@x1
� � � @

2˚j .x/

@x1@xd
:::

: : :
:::

@2˚j .x/

@xd@x1
� � � @

2˚j .x/

@xd@xd

3

7
7
7
7
7
5
; 1 � j � d:

Introduce the dot product of two arrays of the same dimension:

Aˇ B D
X

i;j

Ai;jBi;j:



A Spectral Method for the Biharmonic Equation 107

Then (25) can be written as

0 D � J .x/j;�
�
Œ�s� .s/�C D2˚j .x/ˇ

h
K .s/K .s/T

i
:

From (25),

0 D J .x/�s� .s/C

2

6
66
4

D2˚1 .x/ˇ
h
K .s/K .s/T

i

:::

D2˚d .x/ˇ
h
K .s/K .s/T

i

3

7
77
5

� J .x/�s� .s/CD2˚ .x/ˇ
h
K .s/T K .s/

i
:

which contains an implicit definition of D2˚ and an implicit notational extension
of the operationˇ. Then

�s� .s/ D �J .x/�1
n
D2˚ .x/ˇ

h
K .s/K .s/T

io
;

and recall (10) to compute K .s/.
This allows computing the coefficientsA

�
 i;  j

�
of (13) by means of the change

of variables s D ˚ .x/. Rewrite (23) as

�sv .s/ D Œ�s� .s/�
T rxev .x/C D2ev .x/ˇ

h
K .s/K .s/T

i
: (26)

Returning to A
�
 i;  j

�
, apply (26) with

ev .x/ D �n;j .x/ D
�
1 � jxj2

	2
'n;j .x/

D �1 � x21 � � � � � x2d
�2
'n;j .x/

for 1 � j � Mk, 0 � k � n.
We need to find the first and second order derivatives of �n;j .x/, and thus also of

'n;j .x/.

@�n;j .x/

@xk
D �4xk

�
1 � x21 � � � � � x2d

�
'n;j .x/C

�
1 � jxj2

	2 @'n;j .x/

@xk
;

@2�n;j .x/

@x2k
D ˚�4 �1 � x21 � � � � � x2d

�C 8x2k
�
'n;j .x/
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� 8xk
�
1 � x21 � � � � � x2d

� @'n;j .x/

@xk

C
�
1 � jxj2

	2 @2'n;j .x/

@x2k
:

For ` ¤ k,

@2�n;j .x/

@xk@x`
D 8xkx`'n;j .x/

� 4 �1 � x21 � � � � � x2d
� �

xk
@'n;j .x/

@x`
C x`

@'n;j .x/

@xk

�

C
�
1 � jxj2

	2 @2'n;j .x/

@xk@x`
:

These can be combined with (26) to compute�s�j and thus to compute A
�
 i;  j

�

for 1 � i; j � Nn.
The next step is to look at particular orthonormal polynomials

˚
'n;j .x/

�
and to

compute

'n;j; 1 � j � Mn;

@'n;j .x/

@xk
;
1 � j � Mn

1 � k � d
;

@2'n;j .x/

@xk@x`
;
1 � j � Mn

1 � k; ` � d
:

The best choice as regards speed of calculation is to use the polynomials discussed
in [6], as they satisfy a triple recursion that allows for a rapid calculation. For the
planar case, these are given by

'n;k .x/ D 1

hk;n
CkC1

n�k .x1/
�
1� x21

� k
2 C

1
2

k

0

B
@

x2q
1 � x21

1

C
A ; x 2 B

2; (27)

for k D 0; : : : ; n; n D 0; 1; : : : The quantity C�
m .t/ ; m � 0, denotes the Gegenbauer

polynomial of degree m and index �.
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For the three dimensional case, we use the polynomials

'n;j;k.x/ D 1

hj;k
CjCkC3=2

n�j�k .x1/.1 � x21/
j=2 : : :

�CkC1
j .

x2q
1 � x21

/.1 � x21 � x22/
k=2C1=2

k .
x3q

1 � x21 � x22

/;

x 2 B
3; 0 � jC k � n; n D 0; 1; : : : (28)

which uses again the Gegenbauer polynomials. The numbers hj;k are normalization
constants, see [11], and see [6] for the triple recursion.

4 Numerical Examples

4.1 Planar Examples

Our first examples are for˝ a planar region, and thus ˚ W B2 ! ˝ .

Example 1 Begin with the elliptical region ˝ defined by the mapping s D ˚ .x/,
x 2 B

2,

s1 D 2x1 C x2

s2 D 3x1 � 4x2: (29)

Choose

f .s/ D 10 cos .s1 � 0:1/ sin .s2 C 0:1/ (30)

and � .s/ � 1 over˝ . The solution is shown in Fig. 1. The true solution is unknown,
so the error is estimated by using un� as the ‘true’ solution with n� much larger than
n being used. In the present case, n� D 20was used. The maximum errors are shown
in Fig. 2, and it appears to be an exponential decrease in the error. Figure 3 is a graph
of log n vs. log .cond/, with cond the condition number of (13). It indicates that the
condition number is O .np/ for some power pI experimentally and roughly, p 
 4:5,
and p D 4 seems most likely to be the theoretical power. That would be consistent
with the condition number being O

�
N2

n

�
, as was observed earlier with the spectral

method for the Neumann boundary value problem for second order equations.

Example 2 Consider the boundary mapping

' .�/ D 
 .�/ .cos �; sin �/ ;

 .�/ D 3C cos � C 2 sin �; 0 � � � 2�: (31)
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2

0

s1
-2

-4

-2

s2

0

2

4

-1

0

1

Fig. 1 Solution u with f given by (30), � .s/ 
 1, and the region (29)

5 10 15
10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

n

Fig. 2 Computed error in un with f given by (30) and � .s/ 
 1

This can be extended to a polynomial mapping of degree 2 in various ways, as
discussed in [3], and one such mapping is illustrated in Fig. 4. This mapping ˚ is
obtained using (1) the interpolation/quadrature method of §3 in [3], followed by (2)
computing the least squares polynomial approximation over B2 of degree 2 in each
component.
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Fig. 3 log n vs. log .cond/, with cond the condition number of (13), with the region (29)

−3 −2 −1 0 1 2 3 4 5

−1

0

1

2

3

4

5

s1

s2

Fig. 4 Mappings for limacon boundary mapping (31)

Equation (1) is solved with the same choices for � and f as in Example 1. Figure 5
illustrates the solution, using u20. The errors are shown in Fig. 6. The condition
numbers, shown in Fig. 7, appear to increase like O

�
N2

n

�
, as with Example 1.

Example 3 Consider the mapping

˚1 .x/ D
�
x1 � x2 C ax21; x1 C x2

�T
; x 2 B

2
; (32)
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4
3

2

s1

1
0

-1
-2-1

0
1

2

s2

3
4

5

2

1

0

Fig. 5 Solution u with f given by (30), � .s/ 
 1, and @˝ given by (31)

4 6 8 10 12 14 16
10-6

10-5

10-4

10-3

10-2

10-1

100

101

n

Fig. 6 Computed error in un with f given by (30), � .s/ 
 1, and the boundary mapping (31)

for a given 0 < a < 1, with the image defining ˝ . In addition, use the
interpolation/quadrature method of §3 in [3] to create another mapping ˚2 that
agrees with ˚1 on the boundary of B

2. These mappings are illustrated in Fig. 8.
Clearly˚2 is a ‘better behaved’ mapping as compared to˚1. We solve�2uC�u D f
as before, but now let

f .s/ D 200 cos .st/ sin .tC 0:1/ : (33)
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1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
3

4

5

6

7

8

9

log n

Fig. 7 log n vs. log .cond/, with cond the condition number of (13), with the boundary map-
ping (31)

−1 −0.5 0 0.5

(a) (b)

1 1.5 2

−1

−0.5

0

0.5

1

s1

s2

−1 −0.5 0 0.5 1 1.5 2

−1

−0.5

0

0.5

1

s2

s1

Fig. 8 The mapping ˚ for boundary (32) with a D 0:95. (a) ˚1. (b) ˚2

The solution is shown in Fig. 9. The maximum errors are shown in Fig. 10, and there
appears to be an exponential decrease in the error. The condition numbers are shown
in Fig. 11, and again they appear to increase like O

�
N2

n

�
.

4.2 A Three Dimensional Example

Example 4 Here we consider the case of an ellipsoid

˝ D f.s1; s2; s3/ j s21 C
� s2
3

	2 C
� s3
2

	2 � 1g (34)
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2
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s1

0
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-1

-0.5
0

0.5

s2

1

0

1

1.5

2

2.5

0.5

Fig. 9 Solution u with f given by (33), � .s/ 
 1, and @˝ given by (32)

4 6 8 10 12 14 16
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

n

Φ1
Φ2

Fig. 10 Computed error in un with f given by (33), for the mappings ˚1 and ˚2 with the boundary
specified by (32)

with the obvious mapping

˚.x1; x2; x3/ D Œx1; 3x2; 2x3�; Œx1; x2; x3� 2 B
3: (35)
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12

13

Φ1
Φ2

Fig. 11 log n vs. log .cond/, with cond the condition number of (13), for the mappings ˚1 and ˚2
with the boundary specified by (32)

We solve Eq. (1) with �.s/ � 1 and calculate the right hand side f1 in such a way
that the solution of (1) is given by

u.s1; s2; s3/ D


1 � s21 �

� s2
3

	2 �
� s3
2

	2�2
e3.s1Cs2=3Cs3=2/: (36)

To study the influence of faster growing derivatives we use a second right hand side
f2 on the same domain˝ , such that the solution is given

v.s1; s2; s3/ D


1 � s21 �

� s2
3

	2 �
� s3
2

	2�2
e7.s1Cs2=3Cs3=2/: (37)

We expect slower but still exponential convergence for the second example. This is
confirmed in the numerical calculation, see Fig. 12, where the maximum errors are
plotted versus n. The error graph for the solution u shows some saturation around
n D 22, because we reach the precision limit of the Gauß–quadratures that we use
for the evaluation of the integrals in Eq. (13). The graph of log.cond/ versus log n in
Fig. 13 shows again a polynomial behavior. From the numerical results we estimate
a condition number of O

�
N2

n

�
, where we remember that Nn D O.n3/.



116 K. Atkinson et al.

0 5 10 15 20 25
10−15

10−10

10−5

100

105

u
v

Fig. 12 Computed error in un and vn, for the solutions u and v given in (36) and (37)

100 101 102
100

101

102

103

104

105

106

Fig. 13 log .cond/ vs. log n, with cond the condition number of (13), with �.s/ 
 1, and the
mapping (35) for the domain (34)

5 Nonhomogeneous Boundary Conditions

Consider the Dirichlet biharmonic problem

�2u .s/C � .s/ u .s/ D f .s/ ; s 2 ˝;
u .s/ D g1 .s/ ;

@u .s/

@ns
D g2 .s/ ; s 2 @˝: (38)
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This can be reduced to two simpler problems. Consider first the standard Dirichlet
biharmonic problem

�2w .s/ D 0; s 2 ˝;
w .s/ D g1 .s/ ;

@w .s/

@ns
D g2 .s/ ; s 2 @˝: (39)

Define v D u � w. Then v satisfies

�2v .s/C � .s/ v .s/ D f .s/ � � .s/w .s/ �ef .s/ ; s 2 ˝;
v .s/ D @v .s/

@ns
D 0; s 2 @˝: (40)

Begin by solving (39) numerically, obtaining an approximating solutionbw .s/ 

w .s/ : Then solve (40) with bw .s/ replacing w .s/ in the definition of ef .s/. The
problem (40) can be solved using the methods given earlier in this paper. Solve
for an approximating solution vn .s/ 
 v .s/, and then define

bu .s/ D vn .s/Cbw .s/ ; s 2 ˝;

as the approximating solution of (38).
To solve (39), a number of methods have been proposed, often using boundary

integral equation reformulations. For a review of some of these, see [12, Chaps.
9,15], [13, 14].

Remark The eigenvalue problem for the biharmonic equation (1)–(2) is discussed
and illustrated in the book [7, Chap. 9].

Traditional spectral methods use univariate approximations with a decomposition
of the partial differential equation into univariate problems. Consider, for example,
using a polar coordinates decomposition of the unit disk. But this leads to problems
when treating the solution u at the center of the disk. The present spectral
method makes use of the recently developed theory and tools for multivariate
approximation over B

d , avoiding artificial problems that can occur when using
univariate approximations.
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Quasi-Monte Carlo for an Integrand
with a Singularity Along a Diagonal
in the Square

Kinjal Basu and Art B. Owen

Dedicated to Ian H. Sloan on the occasion of his 80th birthday.

Abstract Quasi-Monte Carlo methods are designed for integrands of bounded
variation, and this excludes singular integrands. Several methods are known for
integrands that become singular on the boundary of the unit cube Œ0; 1�d or at isolated
possibly unknown points within Œ0; 1�d. Here we consider functions on the square
Œ0; 1�2 that may become singular as the point approaches the diagonal line x1 D x2,
and we study three quadrature methods. The first method splits the square into two
triangles separated by a region around the line of singularity, and applies recently
developed triangle QMC rules to the two triangular parts. For functions with a
singularity ‘no worse than jx1 � x2j�A is’ for 0 < A < 1 that method yields an
error of O..log.n/=n/.1�A/=2/. We also consider methods extending the integrand
into a region containing the singularity and show that method will not improve upon
using two triangles. Finally, we consider transforming the integrand to have a more
QMC-friendly singularity along the boundary of the square. This then leads to error
rates of O.n�1C�CA/ when combined with some corner-avoiding Halton points or
with randomized QMC but it requires some stronger assumptions on the original
singular integrand.

1 Introduction

Quasi-Monte Carlo (QMC) integration is designed for integrands of bounded vari-
ation in the sense of Hardy and Krause (BVHK). Such integrands must necessarily
be bounded. Singular integrands cannot be BVHK; they cannot even be Riemann
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integrable. It is known since [5] and [3] that for any integrand f on Œ0; 1�d that
is not Riemann integrable, there exists a sequence xi 2 Œ0; 1�d for which the
star discrepancy D�

n .x1; : : : ; xn/ ! 0 as n ! 1 while .1=n/
Pn

iD1 f .xi/ fails to
converge to

R
Œ0;1�d

f .x/dx.
We are interested in problems where the singularity arises along a manifold in

Œ0; 1�d. For motivation, see the engineering applications by Mishra and Gupta in [9]
and several other papers. Apart from a few remarks, we focus solely on the problem
where there is a singularity along the line x1 D x2 in Œ0; 1�2.

It is possible for QMC integration to succeed on unbounded integrands. Sobol’
[14] noticed this when colleagues used his methods on such problems. He explained
it in terms of QMC points that avoid a hyperbolic region around the lower boundary
of the unit cube where the integrands became singular. Klinger [8] shows that
Halton points and some digital nets avoid a cubical region around the origin. Halton
points (after the zero’th) avoid hyperbolic regions around the boundary faces of the
unit cube at a rate suitable to get error bounds for QMC [12]. Certain Kronecker
sequences avoid hyperbolic regions around the boundary of the cube [7]. In all of
these examples, avoiding the singularity should be understood as using points that
approach it, but not too quickly, as the number n of function evaluations increases.

For plain Monte Carlo, the location of the singularity is not important. One
only needs to consider the first two moments of the integrand. Because QMC
exploits mild smoothness of the integrand, the nature of the singularity matters.
Reference [13] considers randomized QMC (RQMC) methods for integrands with
point singularities at unknown locations. In RQMC, the integrand is evaluated at
points that, individually, are uniformly distributed on Œ0; 1�d and this already implies
a singularity avoidance property via the Borel-Cantelli lemma. If

R
f .x/2dx < 1

then scrambled nets yield an unbiased estimate of � D R
f .x/dx with RMSE

o.n�1=2/ [10].
The analyses in [12] and [13] employ an extension Qf of f from a set K D Kn 	

Œ0; 1�d to Œ0; 1�d. The extension satisfies Qf .x/ D f .x/ for x 2 K. Now the quadrature
error is

1

n

nX

iD1
f .xi/�

Z

Œ0;1�d
f .x/dx D 1

n

nX

iD1
f .xi/� 1

n

nX

iD1
Qf .xi/

C 1

n

nX

iD1
Qf .xi/ �

Z

Œ0;1�d

Qf .x/dx

C
Z

Œ0;1�d

Qf .x/dx�
Z

Œ0;1�d
f .x/dx:

If all of the points satisfy xi 2 K, then the first term drops out and we find that

ˇ
ˇ̌
ˇ
1

n

nX

iD1
f .xi/�

Z

Œ0;1�d
f .x/dx

ˇ
ˇ̌
ˇ �

ˇ
ˇ̌
ˇ
1

n

nX

iD1
Qf .xi/�

Z

Œ0;1�d

Qf .x/dx
ˇ
ˇ̌
ˇC
Z

�K
j Qf .x/� f .x/jdx;
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where �K D Œ0; 1�d n K. The extension used in [12] and [13] is due to Sobol’ [14].
It is particularly well suited to a Koksma-Hlawka bound for the first term above as
Qf has low variation.

In our case, we can isolate the singularity in the set fx j jx1 � x2j < �g. A set
K 	 Œ0; 1�d is Sobol’-extensible to Œ0; 1�d with anchor c if for every x 2 K the
rectangle

Qd
jD1Œmin.xj; cj/;max.xj; cj/� 	 K. In our case, the set fx j jx1 � x2j � �g

in which f is bounded is not Sobol’ extensible. The extension Qf used in [12] and [13]
cannot be defined for this problem.

Section 2 presents a strategy of avoiding a region near the singularity and
integrating over two triangular regions using the method from [1]. The error is then a
sum of two quadrature errors and one truncation error. We consider functions where
the singularity is not more severe than that in jx1�x2j�A where 0 < A < 1. Section 3
shows that the truncation error in this approach is O.��A/ and the quadrature
error is O.��A�1 log.n/=n/ using the points from [1] and a Koksma-Hlawka bound
from [4]. The result is that we can attain a much better quadrature error bound
of O..log.n/=n/.1�A/=2/. Section 4 shows that an approach based on finding an
extension Qf of f would not yield a better rate for this problem. Section 5 transforms
the problem so that each triangular region becomes the image of a unit square, with
the singularity now on the boundary of the square. The singularity may be too severe
for QMC. However, with an additional assumption on the nature of the singularity
it is possible to attain a quadrature error of O.n�1C�CA/. Section 6 summarizes
the findings and relates them to QMC-friendliness as discussed by several authors,
including Ian Sloan in his work with Xiaoqun Wang.

2 Background

In the context of a Festschrift for Ian Sloan, we presume that the reader is familiar
with quasi-Monte Carlo, discrepancy and variation. Modern approaches to QMC
and discrepancy are covered in [6]. See [11] for an outline of variation for QMC
including variation in the senses of Vitali and of Hardy and Krause.

We will use a notion of functions that are singular but not too badly singular.

Definition 1 The function f defined on Œ0; 1�2 has a diagonal singularity no worse
than jx1 � x2j�A for 0 < A < 1, if

j f .x/j � Bjx1 � x2j�A

ˇ
ˇ
ˇ
ˇ
@f .x/
@xj

ˇ
ˇ
ˇ
ˇ � Bjx1 � x2j�A�1; j 2 f1; 2g; and

ˇ
ˇ
ˇ
ˇ
@2f .x/
@xj@xk

ˇ
ˇ
ˇ
ˇ � Bjx1 � x2j�A�2; j; k 2 f1; 2g

(1)

all hold for some B <1.
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We take A > 0 in order to allow a singularity and A < 1 because f must be
integrable. Smaller values of A describe easier cases to handle. The value of A to
use for a given integrand may be evident from its analytical form. If A < 1=2 then
f 2 is integrable. Definition 1 is modeled on some previous notions:

Definition 2 The function f .x/ defined on Œ0; 1�d has a lower edge singularity no
worse than

Qd
jD1 x

�Aj

j , for constants 0 < Aj < 1, if

j@uf .x/j � B
dY

jD1
x

�Aj�1j2u

j ;

holds for some B <1 and all u � f1; 2; : : : ; dg.
Definition 3 The function f .x/ defined on Œ0; 1�d has a point singularity no worse
than kx � zk�A, for z 2 Œ0; 1�d, if

j@uf .x/j � Bkx � zk�A�juj

holds for some B <1 and all u � f1; 2; : : : ; dg.
Definition 2 is one of several conditions in [12] for singularities that arise as x
approaches the boundary of the unit cube. Definition 3 is used in [13] for isolated
point singularities. Definition 1 is more stringent than Definitions 2 and 3 are,
because it imposes a constraint on partial derivatives taken twice with respect to
x1 or x2.

To estimate � D R
Œ0;1�2

f .x/dx we will sample points xi 2 Œ0; 1�2. The points we
use will avoid a region near the singularity by sampling only within

S� D
˚
x 2 Œ0; 1�2 ˇ̌ jx1 � x2j � �

�

where 0 < � < 1. The set S� is the union of two disjoint triangles:

Tu
� D

˚
x 2 Œ0; 1�2 ˇˇ x2 � x1 C �

�
; and

Td
� D

˚
x 2 Œ0; 1�2 ˇ̌ x2 � x1 � �

�
:

We let�S� denote the set Œ0; 1�2nS� . As remarked in the introduction, the set Tu[Td

is not Sobol’ extensible to Œ0; 1�2.
We will choose points xi;u 2 Tu

� for i D 1; : : : ; n and estimate ��;u D
R

Tu
�

f .x/dx
by

O��;u D vol.Tu
� /

n

nX

iD1
f .xi;u/:
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Using a similar estimate for Td
� we arrive at our estimate of �,

O�� D O��;u C O��;d :

Our error then consists of two quadrature errors and a truncation error and it satisfies
the bound

j O�� � �j �
ˇ
ˇ̌
ˇ O��;u �

Z

Tu
�

f .x/dx

ˇ
ˇ̌
ˇC

ˇ
ˇ̌
ˇ O��;d �

Z

Td
�

f .x/dx

ˇ
ˇ̌
ˇC

ˇ
ˇ̌
ˇ

Z

�S�

f .x/dx

ˇ
ˇ̌
ˇ: (2)

3 Error Bounds

We show in Proposition 1 below that the truncation error bound j R�S�
f .x/dxj is

O.�1�A/ as � ! 0. We will use the construction from [1] and the Koksma-Hlawka
inequality from [4] to provide an upper bound for the integration error over Tu

� . That
bound grows as � ! 0 and so to trade them off we will tune the way � depends
on n.

Proposition 1 Under the regularity conditions (1),

ˇ
ˇ
ˇ
ˇ

Z

�S�

f .x/dx

ˇ
ˇ
ˇ
ˇ �

2B�1�A

1 � A
:

Proof We take the absolute value inside the integral and obtain

Z

�S�

j f .x/jdx �
Z

�S�

Bjx1 � x2j�Adx � B
Z 1

0

2

Z �

0

x�A
2 dx2dx1

from which the conclusion follows. ut
Next we turn to the quadrature error over Tu

� . Of course, Td
� is similar. The

Koksma-Hlawka bound in [4] has

j O��;u � ��;uj � D�
Tu
�
.x1;u; : : : ; xn;u/VTu

�
. f /

where D�
Tu;�

and VTu
�

are measures of discrepancy and variation suited to the triangle.
Basu and Owen [1] provide a construction in which D�

Tu
�
D O.log.n/=n/, the best

possible rate.
Brandolini et al. [4, p. 46] provide a bound for VTu

�
, the variation on the simplex

as specialized to the triangle. To translate their bound into our setting, we introduce
the notation frs D @rCsf=@rx1@sx2. Specializing their bound to the domain Tu

� we
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find that the variation is

O
�
j f .0; 1/j C j f .0; �/j C j f .1 � �; 1/j

C
Z 1

�

j f .0; x2/jdx2 C
Z 1��

0

j f .x1; 1/jdx1 C
Z 1��

0

j f .x1; x1 C �/jdx1

C
Z 1

�

j f01.0; x2/jdx2 C
Z 1��

0

j f10.x1; 1/jdx1 (3)

C
Z 1��

0

j f10.x1; x1 C �/jdx1 C
Z 1��

0

j f01.x1; x1 C �/jdx1

C
Z

Tu
�

j f .x/j C j f01.x/j C j f10.x/j C j f20.x/j C j f02.x/j C j f11.x/jdx
	

as � ! 0. The implied constant in (3) includes their unknown constant C2, the
reciprocals of edge lengths of Tu

� , the reciprocal of the area of Tu
� , some small

integers and some factors involving
p
2.1� �/, the length of the hypotenuse of Tu

� .

Proposition 2 Let f satisfy the regularity condition (1). Then the trapezoidal
variation of f over Tu

� satisfies

VTu
�
. f / D O.��A�1/

as � ! 0.

Proof Under condition (1),

j f .0; 1/j C
Z 1

�

j f .0; x2/jdx2 C
Z 1��

0

j f .x1; 1/jdx1 C
Z

Tu
�

j f .x/j D O.1/:

Next

j f .0; �/j C j f .1 � �; 1/j C
Z 1��

0

j f .x1; x1 C �/jdx1 D O.��A/

and

Z 1

�

j f01.0; x2/jdx2 C
Z 1��

0

j f10.x1; 1/jdx1 D O.��A/

as well. Continuing through the terms, we find that

Z 1��

0

j f10.x1; x1 C �/jdx1 C
Z 1��

0

j f01.x1; x1 C �/jdx1 D O.��A�1/:
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The remaining terms are integrals of absolute partial derivatives of f over Tu
� . They

are dominated by integrals of second derivatives and those terms obey the bound

Z 1��

0

Z 1

x1C�
B2jx1 � x2j�A�2dx2dx1 D O.��A�1/:

ut
Theorem 1 Under the regularity conditions (1), we may choose � / p

log.n/=n
and get

j O� � �j D O
�� log.n/

n

	.1�A/=2	
: (4)

Proof From Propositions 1 and 2 we get

j O� � �j D O
�
�1�A C log.n/

n
��1�A

	
:

Taking � to be a positive multiple of
p

log.n/=n yields the result. ut
The choice of � / plog.n/=n optimizes the upper bound in (4).

4 Extension Based Approaches

Another approach to this problem is to construct a function Qf where Qf .x/ D f .x/ for
x 2 S� and apply QMC to Qf . The function Qf can smoothly bridge the gap between
Tu
� and Td

� . With such a function, the quadrature error satisfies

ˇ
ˇ
ˇ̌1
n

nX

iD1
Qf .xi/ �

Z

Œ0;1�2
f .x/dx

ˇ
ˇ
ˇ̌ � D�

n .x1; : : : ; xn/VHK. Qf /

C
Z

�S�

j f .x/ � Qf .x/jdx (5)

where VHK is total variation in the sense of Hardy and Krause.
Our regularity condition (1) allows for f to take the value ��A along the line

x2 D x1�� and to take the value���A along x2 D x1C�. By placing squares of side
2� along the main diagonal we then find that the Vitali variation of an extension Qf
is at least b.2�/�1c2��A � ��1�A. Therefore the Hardy-Krause variation of Qf grows
at least this quickly for some of the functions f that satisfy (1). More generally,
for singular functions along a linear manifold M within Œ0; 1�d, and no worse than
dist.x;M/�A, an extension over the region within � of M could have a variation
lower bound growing as fast as ��.d�1/�A.
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This result is much less favorable than the one for isolated point singularities
[13]. For integrands on Œ0; 1�d no worse than kx � zk�A, where z 2 Œ0; 1�d, Sobol’s
low variation extension yields a function Qf that agrees with f for kx � zk � � >

0 having VHK. Qf / D O.��A/. Here we see that no extension can have such low
variation for this type of singularity.

Owen [12] considers functions with singularities along the lower boundary of
Œ0; 1�d that are no worse than

Qd
jD1 x

�Aj

j . Sobol’s extension from the region where
Q

j xj � � has variation O.�� max Aj/ when the Aj are distinct (otherwise logarithmic
factors enter). So that problem with singularities along the boundary also has a more
accurate extension than can be obtained for singularities along the diagonal.

No extension Qf from S� to Œ0; 1�2 can yield a bound (5) with a better rate than
O..log n=n/.1�A/=2/. To show this we first clarify one of the rules we impose on
extensions. When we extend f from x 2 S to values of x 62 S we do not allow the
construction of Qf to depend on f .x/ for x 62 S. That is, we cannot peek outside the
set we are extending from. Some such rule must be necessary or we could trivially
get 0 error from an extension based on an oracle that uses the value of � to define
Qf . With our rule, any two functions f1 and f2 with f1.x/ D f2.x/ on S� have the same
extension Qf . From the triangle inequality,

max
jD1;2


Z

�S�

j Qf .x/� fj.x/jdx
�
� 1

2

Z

�S�

j f1.x/� f2.x/jdx:

Now let

f1.x/ D
(
�jx1 � x2j�A; x2 � x1 > 0

jx1 � x2j�A; x2 � x1 < 0;

and

f2.x/ D

8
ˆ̂
<

ˆ̂
:

jx1 � x2j�A; x2 � x1 > 0

.x2 � x1/; 0 > x2 � x1 � ��
jx1 � x2j�A; �� > x2 � x1;

for a quadratic polynomial  with .��/ D ��A, 0.��/ D �A��A�1, and
00.��/ D A.A C 1/��A�2. Both f1 and f2 satisfy (1) and

R
�S�
j f1.x/ � f2.x/jdx is

larger than a constant times �1�A. That is the same rate as the truncation error from
Proposition 1 and the quadrature error from this approach also attains the same rate
as the error in Proposition 2. As a result, we conclude that even if we could construct
the best extension Qf , it would not lead to a bound with a better rate than the one in
Theorem 1.
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5 Transformation

Here we consider applying a change of variable to move the singularity from the
diagonal to an edge of the unit square. We focus on integrating f .x/ over Tu D
f.x1; x2/ 2 Œ0; 1�2 j 0 � x1 � x2 � 1g for f with a singularity no worse than
jx1 � x2j�A. The same strategy and same convergence rate hold on Td D f.x1; x2/ 2
Œ0; 1�2 j 0 � x2 � x1 � 1g. Using a standard change of variable we have

Z

Tu
f .x/dx D 1

2

Z 1

0

Z 1

0

f ..1 � u1/
p

u2;
p

u2/du;

which we then write as

1

2

Z

Œ0;1�2
g.u/du; for g.u/ D f ..1 � u1/

p
u2;
p

u2/:

That is g.u/ D f .	.u// for a transformation 	 W Œ0; 1�2 ! Tu 	 Œ0; 1�2 given by
	1.u/ D .1 � u1/

p
u2 and 	2.u/ D pu2.

The archetypal function with diagonal singularity satisfying Definition 1 is
f .x/ D jx1 � x2j�A. The corresponding function g for this f is

g.u/ D j	1.u/� 	2.u/j�A D u�A
1 u�A=2

2 :

We see that the change of variable has produced an integrand with a singularity no
worse than u�A

1 u�A=2
2 according to Definition 2. Taking ui to be the Halton points

leads to a quadrature error at rate O.n�1C�CA/ for any � > 0, because Halton points
(after the zeroth one) avoid the origin at a suitable rate [12, Corollary 5.6]. For this
integrand g, randomized quasi-Monte Carlo points for will attain the mean error rate
E.j O� � �j/ D O.n�1C�CA/ as shown in Theorem 5.7 of [12].

We initially thought that the conversion from a diagonal singularity to a lower
edge singularity no worse than u�A

1 u�A=2
2 would follow for other functions satisfying

Definition 1. Unfortunately, that is not necessarily the case.
Let f be defined on Œ0; 1�2 with a diagonal singularity no worse than jx1 � x2j�A

for 0 < A < 1. First,

jg.u/j D j f ..1 � u1/
p

u2;
p

u2/j � Bju1u1=22 j�A

which fits Definition 2. Similarly,

g10.u/ D f10.	1.u/; 	2.u//
@	1.u/
@u1

D O.j	1 � 	2j�A�1/ � u1=22 D O.u�A�1
1 u�A=2

2 /
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which also fits Definition 2. However,

g01.u/ D f10.	.u//
@	1.u/
@u2

C f01.	.u//
@	2.u/
@u2

D � f10.	.u//C f01.	.u//
�1
2

u�1=2
2 � f10.	.u//

1

2
u1u

�1=2
2 : (6)

Now f10 and f01 appearing in (6) are both O.u�A�1
1 u�A=2�1=2

2 /. Therefore the two

terms there are O.u�A�1
1 u�A=2�1

2 / and O.u�A
1 u�A=2�1

2 / respectively. The first term is
too large by a factor of u�1

1 to suit Definition 2. We would need . f01 C f10/.	.u//
to be only O.u�A

1 u�A=2�1=2
2 /. Definition 1 is also not strong enough for g11 to be

O.u�A�1
1 u�A=2�1

2 / as it would need to be under Definition 2. That definition yields

only O.u�A�2
1 u�A=2�1

2 / without stronger assumptions. Theorem 2 below gives a
sufficient condition where f is a modulated version of jx1 � x2j�A.

Theorem 2 Let f .x/ D jx1 � x2j�Ah.x/ for x 2 Œ0; 1�2 and 0 < A < 1 where h and
its first two derivatives are bounded. Then g.u/ D f ..1 � u1/

p
u2;
p

u2/ satisfies
Definition 2 with A1 D A and A2 D A=2.

Proof We begin with

g.u/ D u�A
1 u�A=2

2 h..1� u1/u
1=2
2 ; u1=22 / D O.u�1

1 u�A=2
2 /

by boundedness of h. Next because u1 is not in the second argument to h,

g10.u/ D �Au�A�1
1 u�A=2

2 h.	.u//C u�A
1 u�A=2

2 h10.	.u//@	1.u/=@u1

D �Au�A�1
1 u�A=2

2 h.	.u// � u�A
1 u�A=2C1=2

2 h10.	.u//

D O.u�A�1
1 u�A=2

2 /

as required. Similarly,

g01.u/ D �.A=2/u�A
1 u�A=2�1

2 h.	.u//

C u�A
1 u�A=2

2

�
h10.	.u//.1� u1/C h01.	.u//

�
.1=2/u�1=2

2

D O.u�A
1 u�A=2�1

2 /

as required. Finally,

g11.u/ D .A2=2/u�A�1
1 u�A=2�1

2 h.	.u//

� .A=2/u�A
1 u�A=2�1

2 h10.	.u//.�u1=22 /

� .A=2/u�A�1
1 u�A=2�1=2

2

�
h10.	.u//.1 � u1/C h01.	.u//

�
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C .u�A
1 u�A=2�1=2

2 =2/
�� h10.	.u//C .1 � u1/h20.	.u//.�u1=22 /

C h11.	.u//.�u1=22 /
�

D O.u�A�1
1 u�A=2�1

2 /

as required. ut

6 Discussion

We find that for an integrand with a singularity ‘no worse than jx1 � x2j�A’ along
the line x1 D x2 we can get a QMC estimate with error O..log.n/=n/.1�A/=2/ by
splitting the square into two triangles and ignoring a region in between them. The
same method applies to singularities along the other diagonal of Œ0; 1�2. Moreover,
the result extends to singularities along other lines intersecting the square. One
can partition the square into rectangles, of which one has the singularity along the
diagonal while the others have no singularity, and then integrate f over each of those
rectangles.

That result does not directly extend to singularities along a linear manifold in
Œ0; 1�d for d � 3. The reason is that the QMC result for integration in the triangle
from [1] has not been extended to the simplex. In a personal communication,
Dimitry Bilyk told us that such an extension would imply a counterexample to
the Littlewood conjecture, which is widely believed to be true. Basu and Owen
[2] present some algorithms for RQMC over simplices, but they come without
a Koksma-Hlawka bound that would be required for limiting arguments using
sequences of simplices.

The rate O..log.n/=n/.1�A/=2/ is a bit disappointing. We do much better by
transforming the problem to place the singularity along the boundary of a square
region, for then we can attain O.n�1C�CA/, under a stronger assumption that f is our
prototypical singular function jx1 � x2j�A possibly modulated by a function h with
bounded second derivatives on Œ0; 1�2. As a result we find that there is something
to be gained by engineering QMC-friendly singularities in much the same way that
benefits of QMC-friendly discontinuities have been found valuable by Wang and
Sloan [15].
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There Is No Strongly Regular Graph
with Parameters .460; 153; 32; 60/

Andriy Bondarenko, Anton Mellit, Andriy Prymak, Danylo Radchenko,
and Maryna Viazovska

Dedicated to Ian H. Sloan on the occasion of his 80th birthday.

Abstract We prove that there is no strongly regular graph (SRG) with parameters
.460; 153; 32; 60/. The proof is based on a recent lower bound on the number of
4-cliques in a SRG and some applications of Euclidean representation of SRGs.

1 Introduction

A finite, undirected, simple graph G D .V;E/ with vertices V and edges E is called
strongly regular with parameters .v; k; �; �/ if G is k-regular on v vertices, and, in
addition, any two adjacent vertices of G have exactly � common neighbors, while
any two non-adjacent vertices of G have exactly � common neighbors.

The parameters .v; k; �; �/ of a SRG must satisfy certain known conditions
(see [5]), but in general it is an open question to determine parameters .v; k; �; �/
for which strongly regular graphs (SRGs) exist, and, in case when they do exist, to
classify such graphs. A list of known results for v � 1300 is maintained at [3].
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As an application of a recently established lower bound on the number of
4-cliques in a SRG (see [1] and [2]) and of Euclidean representation of SRGs, we
obtain the following non-existence result in a very special case.

Theorem 1 There is no strongly regular graph with parameters .460; 153; 32; 60/.

Some general background on SRGs can be found in [4, Chapter 9] and [6],
while [4, Chapter 8] and [5] contain details on Euclidean representation of SRGs.
The argument with the Gram matrix used here has been extensively applied in [1].

2 Proof of Theorem 1

Assume that a SRG G D .V;E/ with parameters .v; k; �; �/ D .460; 153; 32; 60/

exists. Then adjacency matrix A of G satisfies the equations AJ D 153J and A2 C
28A � 93I D 60J, where I is the identity matrix and J is the matrix having all
entries equal to 1. Consequently, A has the following spectrum: 1531 3414 .�31/45.
The Euclidean representation of G defines a mapping V 3 u 7! xu 2 R

45 such
that all xu are unit vectors and the dot products between these vectors depend only
on the adjacency between the corresponding vertices of G. More precisely, for two
different vertices u;w 2 V , we have

hxu; xwi D
(

p; if u is adjacent to w;

q; if u is not adjacent to w;
where

p D �31
153
;

q D 5
51
;

and hx; yi is the Euclidean dot product in R
45.

The first step is to show that G has at least 228;111 complete subgraphs of size 4.
This follows from [1] (see also the bounds on the number of 4-cliques in [2]). Let
us give a brief outline of the proof. For each edge e D fu;wg 2 E we consider the
unit vector ye D xuCxwkxuCxwk . A simple calculation shows that the distribution of dot
products between fxugu2V and f yege2E depends only on the SRG parameters and
the number of 4-cliques. Since the Gegenbauer polynomials C.d�2/=2

t .x/ are positive
definite on Sd�1, by applying them to the Gram matrix of fxugu2V [ f yege2E we get
a positive definite matrix (here d D 45, t D 4). To get an inequality for the number
of 4-cliques we simply compute the value of the corresponding quadratic form on
the vector that takes value 1 on xu’s and a on ye’s and optimize the parameter a.

Next, for any two adjacent vertices u;w 2 V (i.e., fu;wg 2 E), let Vu;w be the set
of vertices t 2 V adjacent to both u and w. Note that any pair of adjacent vertices in
Vu;w forms a 4-clique together with u and w. Now choose u;w so that the number of
edges in the subgraph of G induced by Vu;w is largest possible (among all possible
edges fu;wg 2 E). Let V WD Vu;w, eG be the subgraph of G induced by V , and let
m be the number of edges in eG. Since G has 35;190 edges, we get the following
inequality on m from the lower bound on the number of 4-cliques: m � 6�228111

35190
,

so m � 39. For an upper bound on m, we will make use of the above Euclidean
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representation. Define X1 WD P
t2V xt and X2 WD xu C xw. The Gram matrix M WD

.hXi;Xji/2i;jD1 is positive semi-definite, therefore, det M � 0. Explicitly, in terms of
m and graph parameters we have

M D


�C 2mpC .�2 � � � 2m/q 2�p

2�p 2C 2p

�
D 1

1532



19776� 92m �1984
�1984 244

�
:

The inequality det M � 0 leads to m � 2416
61

, therefore m � 39.
Thus, m D 39, and the grapheG on 32 vertices has 39 edges. Let W be a set of 14

vertices of eG which have the largest degrees (in eG). We claim that the sum ˛ of the
degrees of vertices of W in eG is at least 42. Indeed, if each such degree is at least
3, then we are clearly done. Otherwise, the sum of the degrees of vertices not in W
is at most .32 � 14/2 D 36, which means that ˛ � 2 � 39 � 36 D 42. Denote by
ˇ the number of edges in the subgraph induced by W . Then we have ˛ � 2ˇ edges
between W and V nW , and 39Cˇ�˛ edges in V nW . We take Y1 WDPt2V nW xt,
Y2 WDPt2W xt, and Y3 WD xuCxw and apply previous considerations. For the Gram
matrix eM WD .hYi;Yji/3i;jD1 we clearly have det eM � 0. On the other hand, we
compute

hY1;Y1i D 18C 2.39C ˇ � ˛/pC .18 � 17� 2.39C ˇ � ˛//q;
hY2;Y2i D 14C 2ˇpC .14 � 13 � 2ˇ/q;
hY1;Y2i D .˛ � 2ˇ/pC .18 � 14� .˛ � 2ˇ//q;
hY1;Y3i D 18 � 2p; hY2;Y3i D 14 � 2p; hY3;Y3i D 2C 2p;

and therefore

det eM D


� 516304
3581577

˛2 C 35785792

3581577
˛

�
�


1252672

3581577
ˇ C 198599296

1193859

�

DW .˛/�  .ˇ/:

The quadratic function  is decreasing for ˛ � 35785792
2�516304 D 2114

61
, in particular for

˛ � 42. The linear function  is clearly increasing. Since 39Cˇ� ˛ � 0, we have
ˇ � 3. Now, since

0 � det eM D .˛/ �  .ˇ/ � .42/�  .3/ D �270848
132651

< 0;

we get a contradiction and hence Theorem 1 is proved.
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3 Conclusion

Let us remark that the exact same reasoning from the proof above can be
applied to some other strongly regular graphs. For instance, with some trivial
changes we obtain non-existence of strongly regular graphs with parameters
.5929; 1482; 275; 402/ and .6205; 858; 47; 130/, for which the number of 4-cliques
is bounded from below by 4805 and 113 respectively. The key property that these
three graphs have in common is that they have a very small (but strictly positive)
value of the Krein parameter q222 (see [4, Chapter 11] for the definition). The
proof also goes through for some strongly regular graphs that satisfy q222 D 0, or
equivalently

.sC 1/.kC sC rs/ D .kC s/.rC 1/2;

where r > 0 and s < 0 are eigenvalues of the adjacency matrix. In this case the
above reasoning shows that all �-subgraphs must be regular. The smallest set of
parameters that can be ruled out in this way is .2950; 891; 204; 297/. Alternatively,
the non-existence in this case can be shown by noting that the first subconstituent
must be strongly regular, but there exist no strongly regular graphs on 891 vertices
of degree 204 (since there are no feasible parameters with v D 891 and k D 204).
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and Giancarlo Travaglini

Dedicated to Ian H. Sloan on the occasion of his 80th birthday.

Abstract We produce low-discrepancy infinite sequences which can be used to
approximate the integral of a smooth periodic function restricted to a smooth
convex domain with positive curvature in R

d. The proof depends on simultaneous
Diophantine approximation and on appropriate estimates of the decay of the Fourier
transform of characteristic functions.

1 Introduction

In [6], the following version of the classical Koksma-Hlawka inequality has been
shown. Its main feature is the possibility to numerically approximate the integral
of piecewise smooth functions, which have discontinuities along rather general
hypersurfaces in R

d.

Theorem 1 Let h .t/ D f .t/ �˝ .t/, where f is a smooth Z
d-periodic function on

R
d and �˝ is the characteristic function of a bounded Borel set ˝ in R

d. Let 1 �
p; q � C1; 1=pC 1=q D 1. Let us call the quantity

Vq. f / WD
X

˛2f0;1gd

2d�j˛j
�
�
�
�



@

@t

�˛
f

�
�
�
�

Lq.Td/
;
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q-variation of the function f . Let ft. j/gNjD1 	 R
d, for any s 2 .0; 1/d and for any

x 2 R
d let

I .s; x/ D [m2Zd .Œ0; s1� � : : : � Œ0; sd�C xC m/

be the periodization of the axis parallel box anchored at x and with edges given by
s, and let us call the quantity

Dp

�
˝; ft. j/gNjD1

	

WD
�
�
�
��
�

1

N

NX

jD1

X

m2Zd

�I.s;x/\˝ .t . j/C m/� jI .s; x/ \˝j
�
�
�
��
�

Lp..0;1/d�Td ; ds dx/

the p-discrepancy of the point set ft . j/C mgNjD1;m2Zd with respect to the set˝ . Then

ˇ
ˇ̌
ˇ
ˇ
ˇ

1

N

NX

jD1

X

m2Zd

h .t . j/C m/�
Z

Rd
h .t/ dt

ˇ
ˇ̌
ˇ
ˇ
ˇ
� Vq. f / Dp

�
˝; ft. j/gNjD1

	
:

Here we are interested in the case when˝ is a convex set. Of course, when d D 1,
a convex set ˝ is just an interval, and therefore the error in numerical integration
can be efficiently estimated by means of the classical Koksma inequality, see e.g.
[13]. For this reason from now on we will assume d � 2.

Throughout the paper we will make use of the following localized discrepancy

D
�
˝; ft. j/gNjD1 ; s; x

	
WD 1

N

NX

jD1

X

m2Zd

�I.s;x/\˝ .t . j/C m/� jI .s; x/ \˝j :

In order to introduce our results, we need some definitions.
Fix a; b > 0. Define O.a; b/ as the class of all smooth compact convex sets ˝

that can be written as
˚
x 2 R

d W ˚.x/ � 0� for some function ˚.x/ with continuous
derivatives up to the order Œ.dC 3/=2� (the integer part of .d C 3/=2), and with the
following properties:

1. The Gaussian curvature of @˝ is greater than a at every point.
2. jr˚.x/j � 1 when ˚.x/ D 0, and jD˛˚.x/j � b for every x 2 R

d and every
multiindex ˛ with j˛j � Œ.dC 3/=2�.

Definition 1 Let ˝ be a non-empty compact subset of R
d: The signed distance

function ı˝ is defined by

ı˝.x/ D
�

dist.x; @˝/ if x 2 ˝;
�dist.x; @˝/ if x … ˝:
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For any real number u, define

˝u D ˚x 2 R
d W ı˝.x/ � u

�
:

It is easy to see that the signed distance function is Lipschitz continuous with
constant 1, and it can be shown that when @˝ is smooth, then ı˝ is smooth in
a suitable neighborhood of @˝ (see [10, Section 14.6]). In particular, a suitable
modification of this signed distance function away from the boundary can be taken
as a natural choice for the defining function ˚ of the set ˝ .

The meaning of the above definitions comes from the following classical result.

Lemma 1 For every a; b > 0 there exists c > 0 such that for every ˝ in O.a; b/
and every � 2 R

d the Fourier transform of �˝ satisfies the estimate

jb�˝.�/j � c .1C j�j/�.dC1/=2
:

Proof The decay of the Fourier transform for a fixed single set can be found
in [11, 12, 18]. A careful reading of the proof shows that the above constant c
can be chosen independently of the set ˝ as long as the Gaussian curvature is
bounded from below, and a finite number of derivatives of the defining function
are bounded.

ut
Our main result is the following.

Theorem 2 Assume that ˛1; : : : ; ˛d are real algebraic numbers and assume that
1; ˛1; : : : ; ˛d are linearly independent over Q. Set ˛ D .˛1; : : : ; ˛d/. Then for any
�; a; b > 0 there is a constant c such that

sup
˝2O.a;b/

sup
y2Rd

sup
s2.0;1/d

sup
x2Rd

ˇ̌
ˇD
�
˝; f j˛ C ygNjD1 ; s; x

	ˇ̌
ˇ � c N� 2

dC1C�: (1)

The above constant c depends on �; a; b, and on ˛:

In [7] a sharper version of this result has been proved in the two-dimensional
case. In particular, a decay of order N�2=3 log N can be obtained under the
hypothesis that the numbers f1; ˛1; ˛2g form a basis of a number field of degree
3 over Q. The difference with the above theorem can be explained as follows. One
key ingredient in the proof of this type of results is an estimate of the decay of the
Fourier transform of the characteristic function of the intersection of an axis parallel
box I with a set ˝ with smooth boundary and nonvanishing curvature. While in the
two-dimensional case it is possible to give the sharp estimate

jb�˝\I .�/j � c
1

.1C j�j/3=2 C c
1

.1C j�1j/
1

.1C j�2j/ ;
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(see [7, Lemma 11]), in the general d-dimensional case we are only able to prove
the following weaker, though simpler, estimate contained in Lemma 2,

jb�˝\I.�/j � c
dY

iD1

log .2C j�ij/
.1C j�ij/

dC1
2d

:

There is a second difference between the proof given here and the proof in [7]. In
order to properly apply the Fourier analytic methods, it is necessary to approximate
from above and from below characteristic functions with smooth functions. In [7]
this was obtained by means of entire functions of finite exponential type, and the
discrepancy was estimated using a generalization of the Erdős-Turan inequality
proved in [8]. This part has been simplified here, where the approximation is
obtained by taking the convolution of the inner (and the outer) parallel body with a
bump function with small support.

Another observation about the above result concerns the exponent �2= .d C 1/.
It follows from a result of J. Beck [3] and H. Montgomery [14] (see also
Theorem 4.1 in [5]) that for any collection ft . j/gNjD1 of N points in the unit box
there is a set ˝ 2 O.a; b/ contained in the unit box such that the localized
discrepancy

ˇ
ˇ
ˇD
�
˝; ft . j/gNjD1 ; .1; : : : ; 1/ ; .0; : : : ; 0/

	ˇˇ
ˇ � c N� dC1

2d :

Therefore the exponent� .dC 1/ = .2d/ is the best one can hope to have in a result
like Theorem 2. It should also be emphasized that if one replaces the collection
O.a; b/ with a smaller collection, things may change drastically. In particular, it
has been proved in [1], see also [2], that if ˝ is a Borel measurable set with
positive Lebesgue measure contained in the unit box, then there is a collection
ft . j/gNjD1 of N points in the unit box such that the 1-discrepancy satisfies the
bound

D1
�
˝; ft . j/gNjD1

	
� cN�1 .log N/3dC1 :

Unfortunately, this result is not constructive.
In an attempt to approach the optimal exponent� .d C 1/ =2d, we will show the

following result, where the supremum in the variable y is replaced with an Lp norm
in this variable. This allows us to replace the exponent �2=.d C 1/ in (1) with the
better exponent�.d C 1/=2d.

Theorem 3 Assume that ˛1; : : : ; ˛d are real algebraic numbers and assume that
1; ˛1; : : : ; ˛d are linearly independent over Q. Set ˛ D .˛1; : : : ; ˛d/. Then for
any 1 � p � C1 and �; a; b > 0 there is a constant c such that the localized
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discrepancy satisfies

sup
˝2O.a;b/

sup
s2.0;1/d

sup
x2Rd

�
�
�D

�
˝; f j˛ C ygNjD1 ; x; s

	��
�

Lp.Td ; dy/

�
(

c N� dC1
2d C� if 1 � p � 2d= .d � 1/ ;

c N� 2
dC1� d�1

.dC1/p C� if 2d= .d � 1/ � p � C1:

The above constant c depends on p; �; a; b, and on ˛.

Theorem 3 has an immediate application to numerical integration. Indeed,
translating by y the sequence f j˛g and integrating, by Theorem 1 one obtains

��
�
�
�
�

1

N

NX

jD1

X

m2Zd

h . j˛ C yC m/ �
Z

Rd
h .t/ dt

��
�
�
�
�

Lp.Td ;dy/

� Vq. f /
�
�
�Dp

�
˝; f j˛ C ygNjD1

	��
�

Lp.Td ;dy/
:

By Theorem 3, for any˝ in O.a; b/
�
�
�Dp

�
˝; f j˛ C ygNjD1

	��
�

Lp.Td ;dy/

D

Z

Td

Z

.0;1/d

Z

Td

ˇ
ˇ̌D
�
˝; f j˛ C ygNjD1 ; s; x

	ˇˇ̌p dy ds dx

�1=p

� sup
s2.0;1/d

sup
x2Rd


Z

Td

ˇ
ˇ
ˇD
�
˝; f j˛ C ygNjD1 ; s; x

	ˇˇ
ˇ
p

dy

�1=p

�
(

cN� dC1
2d C� 1 � p � 2d

d�1 ;
cN� 2

dC1� d�1
.dC1/p C� 2d

d�1 � p � C1:
Therefore, Theorems 2 and 3 imply the following result.

Theorem 4 Assume that ˛1; : : : ; ˛d are real algebraic numbers and assume that
1; ˛1; : : : ; ˛d are linearly independent over Q. Set ˛ D .˛1; : : : ; ˛d/. Let 1 � p; q �
C1; 1=pC 1=q D 1. Then for any �; a; b > 0 there is a constant c such that if f is
a smooth Z

d-periodic function on R
d then

sup
˝2O.a;b/

�
�
��
�
�

1

N

NX

jD1

X

m2Zd

f . j˛ C yC m/ �˝ . j˛ C yC m/�
Z

˝

f .t/ dt

�
�
��
�
�

Lp.Td ;dy/

�
(

cVq. f /N� dC1
2d C� if 1 � p � 2d

d�1 ;
cVq. f /N� 2

dC1� d�1
.dC1/p C� if 2d

d�1 � p � C1:
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Observe that the above result gives essentially the desired exponent whenever
1 � p � 2d= .d � 1/. Also observe that the exponent .d C 1/=2d is larger than 1=2
for all d, while the exponent 2=.dC 1/C .d � 1/=..dC 1/p/ is larger than 1=2 for
all p � C1 when d D 2, for p < C1 when d D 3, and for p < 2 .d � 1/ = .d � 3/
when d > 3. Thus, in these ranges, the above estimates beat the decay N�1=2 for
the mean square error given by the classical Monte Carlo method with independent
uniformly distributed sampling points.

As usual, in what follows we shall denote by c a constant that may vary from line
to line.

2 Proofs and Auxiliary Results

One of the main ingredients is the following lemma, to be compared with Lemma 1.

Lemma 2 For any a; b > 0 there exists c > 0 such that for any ˝ in O.a; b/ and
for any hyper-rectangle I with edges of length at most 2 and parallel to the axes,
and for any n D .n1; : : : ; nd/ 2 R

d,

jb�˝\I.n/j � c
dY

iD1

log .2C jnij/
.1C jnij/

dC1
2d

: (2)

Proof Since �˝\I D �˝�I and1�˝�I Db�˝ b�I , then

jb�˝\I.n/j � .jb�˝ j  jb�Ij/ .n/ :

By Lemma 1

jb�˝ .n/j � c
1

.1C jnj/ dC1
2

;

while an explicit computation of the Fourier transform of �I as the product of d
one-dimensional Fourier transforms of characteristic functions of intervals gives

jb�I .n/j � c
dY

iD1

1

1C jnij ;

where c is a constant depending only on the dimension, since the edges of I have
length at most 2: Since

1C jxj � c .1C jx1j C : : :C jxdj/ � c .1C jx1j/1=d : : : .1C jxdj/1=d ;
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then

.jb�˝ j  jb�Ij/ .n/ � c
Z

Rd

 
dY

iD1

1

1C jni � xij

!
1

.1C jxj/ dC1
2

dx

� c
dY

iD1

Z

R

1

1C jni � xij
1

.1C jxij/
dC1
2d

dxi

Thus, if jnij � 1; then

Z

R

1

1C jni � xij
1

.1C jxij/
dC1
2d

dxi � c
Z

R

1

1C jxij
1

.1C jxij/
dC1
2d

dxi � c;

while if ni � 1, then

Z

R

1

1C jni � xij
1

.1C jxij/
dC1
2d

dxi � c
Z ni=2

0

1

ni

1

.1C xi/
dC1
2d

dxi

C c
Z 2ni

ni=2

1

1C jni � xij
1

n
dC1
2d

i

dxi C c
Z C1

2ni

1

x
3dC1
2d

i

dxi � cn
� dC1

2d
i log.2C ni/:

ut
Definition 2 Let B be the closed unit ball centered at the origin. If K is a convex
body in R

d; then the outer parallel body of K at distance r is defined as the
Minkowski sum of K and rB,

K C rB D fxC y W x 2 K; j yj � rg;

while the inner parallel body of K at distance r is defined as the Minkowski
difference of K and rB;

K � rB D fx W xC rB 	 Kg:

Lemma 3 Let K be a convex body in R
d and let Ku be as in Definition 1.

(i) For any real number u; the set Ku is the outer or the inner parallel body of K
at distance juj, according to whether u is negative or positive, that is

Ku D K C jujB; if u � 0;
Ku D K � uB; if u > 0:

(ii) For any real number u; the set Ku is convex (possibly empty).
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(iii) If M is another convex body, then

.M \ K/u D Mu \ Ku if u � 0;

.M \ K/u 	 Mu \ Ku if u < 0:

Proof Points (i) and (iii) follow easily from the definitions, while the proof of (ii)
can be found in [17, Chapter 3]. ut
Lemma 4 For every a; b > 0 there exists " > 0 such that if ˝ is in O.a; b/ and if
juj < " then ˝u is in O.a=2; 2b/. In particular, Lemma 1 gives uniform estimates
on the decay of the Fourier transform of˝u.

Proof This is essentially a reformulation of Lemmas 14.16 and 14.17 in [10] for
the case of convex bodies. In particular, in those lemmas it is proved that if ˝ is a
convex body in R

d with C k boundary, if �max is the maximum of all the principal
curvatures of @˝ , and if one defines

� D � .˝; �max/ D fx W �.2�max/
�1 < ı˝.x/ < .2�max/

�1g;

then ı˝ 2 C k.� / and jrı˝j D 1 in � . Furthermore, the level set

˝u D
˚
x 2 R

d W ı˝.x/ D u
�

is C k whenever juj < .2�max/
�1 and its principal curvatures at a point x are given

by

�i.x/ D �i. y/

1 � u�i. y/
; i D 1; : : : ; d � 1;

where y is the unique point of @˝ such that dist.x; y/ D juj and �i.y/ are the
principal curvatures of @˝ at y: ut

We are now ready to proceed with the proof of Theorem 2.

Proof of Theorem 2 Let us fix the set ˝; the translation parameters x and y in R
d,

and the shape parameter s 2 .0; 1/d : Call m1; : : : ;mQ the lattice points for which
the sets

.Œ0; s1� � : : : � Œ0; sd�C x � yCmi/\ .˝ � y/

are nonempty, and for i D 1; : : : ;Q; let

Ki D .Œ0; s1� � : : : � Œ0; sd�C x � yCmi/\ .˝ � y/ ;
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then of course

[m2Zd ..Œ0; s1� � : : : � Œ0; sd�C x � yC m/\ .˝ � y// D [Q
iD1Ki:

The number Q is bounded by the maximum number of unit cubes with integer
vertices that intersect any given translate of ˝ in R

d. This number is of course
bounded by .diam .˝/C 2/d and diam .˝/ is uniformly bounded in the class
O.a; b/. We recall that we need a uniform estimate with respect to ˝; x, y and
s. The discrepancy

ˇ
ˇ
ˇ
ˇ̌
ˇ

1

N

NX

jD1

X

m2Zd

�I.s;x/\˝ . j˛ C yC m/� jI .s; x/ \˝j
ˇ
ˇ
ˇ
ˇ̌
ˇ

D
ˇ
ˇ
ˇ
ˇ̌
ˇ

1

N

NX

jD1

X

m2Zd

�I.s;x�y/\.˝�y/ . j˛ C m/ � jI .s; x � y/\ .˝ � y/j
ˇ
ˇ
ˇ
ˇ̌
ˇ

is bounded by the sum of the discrepancies of the sets Ki;

QX

iD1

ˇ
ˇ
ˇ̌
ˇ
ˇ

1

N

NX

jD1

X

m2Zd

�Ki . j˛ C m/ � jKij
ˇ
ˇ
ˇ̌
ˇ
ˇ
:

We shall therefore study the discrepancy of a single piece Ki D K. Assume that
K D I \ .˝ � y/ where I is a box with edges parallel to the coordinate axes and
length at most 1. For the sake of simplicity, we will call ˝ the set ˝ � y. Let
" > 0 be small enough so that ˝˙" 2 O.a=2; 2b/, and let us call I .�"/ the box
that contains I and has facets at distance " from the corresponding facets of I, and
K .�"/ D I .�"/ \ ˝�": Observe that I .�"/ contains the outer parallel body of
I at distance " and therefore K .�"/ contains the outer parallel body K�" of K at
distance ". On the other hand, observe that K" D I" \ ˝": Notice that K" may be
empty and that I" is a box. In all cases, K .�"/ and K" are the intersection of a box
with edges parallel to the axes and length at most 2 and a smooth convex body in
O.a=2; 2b/. Let ' be a smooth function with integral 1 and supported on the unit
ball, and let

'" .x/ D "�d' .x="/ :

By the above observations, K" C "B 	 K and K 	 K .�"/ � "B; so that for any
x 2 R

d

�K"  '" .x/ � �K .x/ � �K.�"/  '" .x/ :
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Thus, by the Poisson summation formula applied to the smooth compactly supported
function �K.�"/  '",

1

N

NX

jD1

X

m2Zd

�K . j˛ C m/ � jKj

� 1

N

NX

jD1

X

m2Zd

�K.�"/  '" . j˛ C m/� jKj

D 1

N

NX

jD1

X

m2Zd

�
�K.�"/  '"

�^
.m/ e2� ijm�˛ � jKj

D jK .�"/j � jKj C 1

N

NX

jD1

X

m¤0
b�K.�"/.m/b'" .m/ e2� ijm�˛

� jK .�"/j � jKj C
X

m¤0

ˇ
ˇb�K.�"/ .m/

ˇ
ˇ jb' ."m/j

ˇ
ˇ
ˇ
ˇ̌
ˇ

1

N

NX

jD1
e2� ijm�˛

ˇ
ˇ
ˇ
ˇ̌
ˇ
:

Similarly,

1

N

NX

jD1

X

m2Zd

�K . j˛ C m/ � jKj

� 1

N

NX

jD1

X

m2Zd

�K"  '" . j˛ Cm/ � jKj

D 1

N

NX

jD1

X

m2Zd

.�K"  '"/^ .m/ e2� ijm�˛ � jKj

D jK"j � jKj C 1

N

NX

jD1

X

m¤0
b�K" .m/b'" .m/ e2� ijm�˛

� jK"j � jKj �
X

m¤0
jb�K" .m/j jb' ."m/j

ˇ
ˇ
ˇ
ˇ
ˇ̌
1

N

NX

jD1
e2� ijm�˛

ˇ
ˇ
ˇ
ˇ
ˇ̌ :

Observe first that 0 � jKj � jK"j � c". Indeed, since K n K" 	 .I n I"/[ .˝ n˝"/,
it follows from the coarea formula and from the Archimedean postulate (if a
convex body A is contained in a convex body B then the surface area of A
is smaller than or equal to the surface area of B, see [4, Property 5, p. 52])
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that

jKj � jK"j D jK n K"j � jI n I"j C j˝ n˝"j

� 2d"C
Z "

0


Z

fxWı˝.x/Dtg
d� .x/

�
dt

� 2d"C " jfx W ı˝ .x/ D 0gjd�1 � c":

Similarly, since K .�"/ n K 	 .I .�"/ n I/[ .˝�" n˝/, then

jK .�"/j � jKj D jK .�"/ n Kj � jI .�"/ n Ij C j˝�" n˝j

� 2d .1C 2"/d�1 "C
Z 0

�"


Z

fxWı˝.x/Dtg
d� .x/

�
dt

� 2d .1C 2"/d�1 "C " jfx W ı˝ .x/ D �"gjd�1 � c":

The estimate of the exponential sums is standard,

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

1

N

NX

jD1
e2� ijm�˛

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
1

N

sin .�Nm � ˛/
sin .�m � ˛/

ˇ
ˇ
ˇ
ˇ �

1

N km � ˛k ;

where kuk is the distance of u from the closest integer. Finally, by Lemma 4, for
both sets K .�"/ and K" the estimate (2) for the Fourier transform in Lemma 2 holds
uniformly in ". It follows that the goal becomes to estimate

c"C
X

m¤0

 

c
dY

iD1

log .2C jmij/
.1C jmij/

dC1
2d

jb' ."m/j
!

1

N km � ˛k

� c"C c

N

X

m¤0

 
dY

iD1

log .2C jmij/
.1C jmij/

dC1
2d

dY

iD1

1

1C " jmij

!
1

km � ˛k :

Let us first rearrange the above series by partitioning Z
d into sets where mi ¤ 0 if

and only if i 2 S, as S ranges over all possible nonempty subsets of f1; : : : ; dg : Thus

X

m¤0

 
dY

iD1

 
log .2C jmij/
.1C jmij/

dC1
2d

1

1C " jmij

!!
1

km � ˛k

D
X

S�f1;:::;dg; S¤;

X

mi¤0 iff i2S

 
dY

iD1

 
log .2C jmij/
.1C jmij/

dC1
2d

1

1C " jmij

!!
1

km � ˛k :
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Now, for any nonempty subset S of the set f1; : : : ; dg with cardinality j, we need to
estimate

X

mi¤0 iff i2S

 
Y

i2S

 
log .2C jmij/
.1C jmij/

dC1
2d

1

1C " jmij

!!
1

km � ˛k :

A dyadic decomposition along all directions i1; : : : ; ij in S gives

X

mi¤0 iff i2S

 
Y

i2S

 
log .2C jmij/
.1C jmij/

dC1
2d

1

1C " jmij

!!
1

km � ˛k

� c
C1X

k1D0
: : :

C1X

kjD0



k1

2k1
dC1
2d

1

1C "2k1
: : :

kj

2kj
dC1
2d

1

1C "2kj

� 2k1C1�1X

mi1D2k1

: : :

2
kjC1�1X

mij D2kj

1

km � ˛k :

Let us study the sum

2k1C1�1X

mi1D2k1

: : :

2
kjC1�1X

mij D2kj

1

km � ˛k :

By the celebrated result of W.M. Schmidt [15], see also [16, Theorem 7C], since
1; ˛1; : : : ; ˛d are algebraic and linearly independent over Q, for any � > 0 there is
a constant � > 0 such that for any m ¤ 0,

km � ˛k > �

.1C jm1j/1C� : : : .1C jmdj/1C�
:

Then, arguing as in [9], in any interval of the form

"
.h � 1/ �

.1C 2k1C1/1C� : : :
�
1C ˇˇ2kjC1ˇˇ�1C�

;
h�

.1C 2k1C1/1C� : : :
�
1C ˇˇ2kjC1ˇˇ�1C�

!

;

where h is a positive integer, there are at most two numbers of the form km � ˛k, with
mi1 < 2k1C1; : : : ; mij < 2kjC1; and all other indices equal to zero. Indeed, assume
by contradiction that there are three such numbers. Then for two of them, say
kn � ˛k and km � ˛k ; the fractional parts of n � ˛ and m � ˛ belong either to .0; 1=2�
or to .1=2; 1/ : Assume without loss of generality that they belong to .0; 1=2�.
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Then

�

.1C 2k1C1/1C� : : :
�
1C ˇˇ2kjC1ˇˇ�1C�

> jkn � ˛k � km � ˛kj

D j.n � ˛ � p/� .m � ˛ � q/j
� k.n � m/ � ˛k
>

�

.1C 2k1C1/1C� : : :
�
1C ˇˇ2kjC1ˇˇ�1C�

:

By the same type of argument, in the first interval

"

0;
�

.1C2k1C1/
1C�

:::
�
1C

ˇ
ˇ̌
2

kjC1
ˇ
ˇ̌	1C�

!

there are no points of the form km � ˛k with mi1 < 2k1C1; : : : ; mij < 2kjC1; and all
other indices equal to zero. It follows that

2k1C1�1X

m1D2k1

: : :

2
kjC1�1X

mjD2kj

1

km � ˛k � c
2

k1C:::CkjX

hD1

2.k1C:::Ckj/.1C�/

h�

� c 2.k1C:::Ckj/.1C�/ �k1 C : : :C kj
� � c 2.k1C:::Ckj/.1C2�/:

Thus

C1X

k1D0
: : :

C1X

kjD0



k1

2k1
dC1
2d

1

1C "2k1
: : :

kj

2kj
dC1
2d

1

1C "2kj

� 2k1C1�1X

m1D2k1

: : :

2
kjC1�1X

mjD2kj

1

km � ˛k

� c
C1X

k1D0
: : :

C1X

kjD0



1

2k1
dC1
2d

1

1C "2k1
: : :

1

2kj
dC1
2d

1

1C "2kj

�
2.k1C:::Ckj/.1C2�/

� c

 C1X

kD0

1

2k dC1
2d

1

1C "2k
2k.1C2�/

!j

� c

0

@
� log2 "X

kD0
2k. d�1

2d C2�/ C
C1X

kD� log2 "

2
k
�
� dC1

2d C2�
	

"

1

A

d

� c
�
"� d�1

2d �2� C " dC1
2d �2��1

	d � c"� d�1
2 �2�d :

Choosing " so that " D "� d�1
2 �2�dN�1 gives the desired estimate c N� 2

dC1C�0

. ut
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Proof of Theorem 3 Everything proceeds as in the proof of the Theorem 2, up until
the point where we need to estimate

�
�
��
�
�

QX

iD1

ˇ
ˇ
ˇ̌
ˇ
ˇ

1

N

NX

jD1

X

m2Zd

�Ki . j˛ C yCm/ � jKij
ˇ
ˇ
ˇ̌
ˇ
ˇ

�
�
��
�
�

Lp.Td ;dy/

�
QX

iD1

�
��
�
�
�

1

N

NX

jD1

X

m2Zd

�Ki . j˛ C yC m/ � jKij
�
��
�
�
�

Lp.Td ;dy/

:

Once again, take a single piece Ki and call it K, for simplicity. First consider 2 �
p < 2d=.d� 1/: In this case, the smoothing argument with the convolution with the
function '" is superfluous. By the Hausdorff-Young inequality with 1=pC 1=qD 1,
�
�
�
�
�
�

1

N

NX

jD1

X

m2Zd

�K . j˛ C yC m/ � jKj
�
�
�
�
�
�

Lp.Td ;dy/

� 1

N

0

@
X

m¤0

0

@
NX

jD1
e2� ij˛�m

1

A

q

jb�K .m/jq
1

A

1=q

� c

N

0

@
X

m¤0
min



Nq;

1

km � ˛kq

� dY

iD1

log .2C jmij/
.1C jmij/

dC1
2d

!q
1

A

1=q

D c

N

X

S�f1;:::;dg; S¤;

0

@
X

mi¤0 iff i2S

 
dY

iD1

logq .2C jmij/
.1C jmij/

dC1
d

q
2

!

min



Nq;

1

km � ˛kq

�
1

A

1=q

Now, for any nonempty subset S of the set f1; : : : ; dg with cardinality j, we need to
estimate

X

mi¤0 iff i2S

 
Y

i2S

 
logq .2C jmij/
.1C jmij/

dC1
d

q
2

!!

min



Nq;

1

km � ˛kq

�

A dyadic decomposition along all the relevant directions in S gives

X

mi¤0 iff i2S

 
Y

i2S

 
logq .2C jmij/
.1C jmij/

dC1
d

q
2

!!

min



Nq;

1

km � ˛kq

�

� c
C1X

k1D0
: : :

C1X

kjD0

 
kq
1

2k1
dC1

d
q
2

: : :
kq

j

2kj
dC1

d
q
2

!
2k1C1�1X

mi1D2k1

: : :

2
kjC1�1X

mij D2kj

min



Nq;

1

km � ˛kq

�
:
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Let us study the sum

2k1C1�1X

mi1D2k1

: : :

2
kjC1�1X

mij D2kj

min



Nq;

1

km � ˛kq

�
:

The proof proceeds as in Theorem 2, mutatis mutandis. Since 1; ˛1; : : : ; ˛d are
algebraic linearly independent over Q, for any � > 0 there is a constant � > 0

such that for any m ¤ 0,

km � ˛k > �

.1C jm1j/1C� : : : .1C jmdj/1C�
:

In any interval of the form

"
.h � 1/ �

.1C 2k1C1/1C� : : :
�
1C ˇˇ2kjC1ˇˇ�1C�

;
h�

.1C 2k1C1/1C� : : :
�
1C ˇˇ2kjC1ˇˇ�1C�

!

;

where h is a positive integer, there are at most two numbers of the form km � ˛k,
with mi1 < 2k1C1; : : : ; mij < 2kjC1; and all other indices equal to zero. Also, in the
first interval

"

0;
�

.1C 2k1C1/1C� : : :
�
1C ˇˇ2kjC1ˇˇ�1C�

!

;

there are no points of the form km � ˛k with mi1 < 2k1C1; : : : ; mij < 2kjC1; and all
other indices equal to zero. It follows that

2k1C1�1X

mi1D2k1

: : :

2
kjC1�1X

mij D2kj

min



Nq;

1

km � ˛kq

�
� c

2
k1C:::CkjX

hD1
min

 

Nq;
2q.k1C:::Ckj/.1C�/

hq

!

:

If 2.k1C:::Ckj/.1C�/ � N, then the sum reduces to

2
k1C:::CkjX

hD1
min

 

Nq;
2q.k1C:::Ckj/.1C�/

hq

!

D
2

k1C:::CkjX

hD1

2q.k1C:::Ckj/.1C�/

hq

� c2q.k1C:::Ckj/.1C�/:
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If, on the other hand, 2.k1C:::Ckj/.1C�/ � N, then the sum reduces to

2
k1C:::CkjX

hD1
min

 

Nq;
2q.k1C:::Ckj/.1C�/

hq

!

�
X

1�h�2.k1C:::Ckj/.1C�/
=N

Nq C
X

2.k1C:::Ckj/.1C�/
=N�h�2k1C:::Ckj

2q.k1C:::Ckj/.1C�/

hq

� cNq�12.k1C:::Ckj/.1C�/:

Hence,

2k1C1�1X

mi1D2k1

: : :

2
kjC1�1X

mij D2kj

min



Nq;

1

km � ˛kq

�

� c2.k1C:::Ckj/.1C�/ min
�

Nq�1; 2.q�1/.k1C:::Ckj/.1C�/
	
:

Finally, if � is positive but small, then

C1X

k1D0
: : :

C1X

kjD0

 
kq
1

2k1
dC1

d
q
2

: : :
kq

j

2kj
dC1

d
q
2

!
2k1C1�1X

mi1D2k1

: : :

2
kjC1�1X

mij D2kj

min



Nq;

1

km � ˛kq

�

� c
C1X

k1D0
: : :

C1X

kjD0

 
kq
1

2k1
dC1

d
q
2

: : :
kq

j

2kj
dC1

d
q
2

!

2.k1C:::Ckj/.1C�/

�min
�

Nq�1; 2.q�1/.k1C:::Ckj/.1C�/
	

� c
C1X

k1D0
: : :

C1X

kjD0
2
.k1C:::Ckj/

�
�� dC1

d
q
2

	

2.k1C:::Ckj/.1C�/

�min
�

Nq�1; 2.q�1/.k1C:::Ckj/.1C�/
	

� c
C1X

sD0

0

@
X

k1C:::CkjDs

1

1

A 2s
�
2�C1� dC1

d
q
2

	

min
�

Nq�1; 2s.1C�/.q�1/	

� c
C1X

sD0
2

s
�
3�C1� dC1

d
q
2

	

min
�

Nq�1; 2s.1C�/.q�1/
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� c
X

0�s� 1
1C� log2.N/

2
s
�

q� dC1
d

q
2C.qC2/�

	

C cNq�1 X

1
1C� log2.N/�s�C1

2
s
�
3�C1� dC1

d
q
2

	

� c
�
2

1
1C� log2 N

	q d�1
2d C.qC2/� C cNq�1

�
2

1
1C� log2 N

	1� dC1
d

q
2C3�

� cN
1

1C� .q
d�1
2d C.qC2/�/ � cNq. 12� 1

2d C�0/:

This takes care of the case p < 2d=.d � 1/. The case p D C1 is contained
in Theorem 2. The intermediate cases 2d=.d � 1/ � p < C1 follow by the
interpolation

Z

Y
jD. y/jp dy � sup

y2Y
jD. y/jp�s

Z

Y
jD. y/js dy;

where s < p < C1, .Y; dy/ is a measure space, and D is a measurable function
on Y. ut
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Explicit Families of Functions on the
Sphere with Exactly Known Sobolev
Space Smoothness

Johann S. Brauchart

Dedicated to Ian H. Sloan mentor and friend on the occasion of
his 80th birthday.

Abstract We analyze explicit trial functions defined on the unit sphere S
d in the

Euclidean space R
dC1, d � 1, that are integrable in the Lp-sense, p 2 Œ1;1/.

These functions depend on two free parameters: one determines the support and
one, a critical exponent, controls the behavior near the boundary of the support.
Three noteworthy features are: (1) they are simple to implement and capture typical
behavior of functions in applications, (2) their integrals with respect to the uniform
measure on the sphere are given by explicit formulas and, thus, their numerical
values can be computed to arbitrary precision, and (3) their smoothness can be
defined a priori, that is to say, they belong to Sobolev spaces Hs.Sd/ up to a specified
index Ns determined by the parameters of the function. Considered are zonal functions
g.x/ D h.x � p/, where p is some fixed pole on S

d. The function h.t/ is of the
type Œmaxft;Tg�˛ or a variation of a truncated power function x 7! .x/˛C (which
assumes 0 if x � 0 and is the power x˛ if x > 0) that reduces to Œmaxft � T; 0g�˛ ,
Œmaxft2 � T2; 0g�˛, and ŒmaxfT2 � t2; 0g�˛ if ˛ > 0. These types of trial functions
have as support the whole sphere, a spherical cap centered at p, a bi-cap centered
at the antipodes p, �p, or an equatorial belt. We give inclusion theorems that
identify the critical smoothness Ns D Ns.T; ˛/ and explicit formulas for the integral
over the sphere. We obtain explicit formulas for the coefficients in the Laplace-
Fourier expansion of these trial functions and provide the leading order term in the
asymptotics for large index of the coefficients.
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1 Introduction and Statement of Results

Trial functions are used in simulation experiments, e.g., to test numerical integra-
tion, interpolation, and approximation methods. The purpose of our paper is to prove
previously in the literature not available properties of functions that can be used as
trial functions on the non-standard domain the sphere.

Let Sd be the unit sphere in the Euclidean space R
dC1, d � 1, provided with the

uniform normalized surface area measure �d (i.e.,
R
Sd d�d D 1). We analyze four

families of zonal trial functions defined on S
d, d � 1; i.e., functions of the form

g.x/ D h.x � p/, p 2 S
d fixed. These functions depend on one parameter controlling

the support of the function and a critical exponent determining the behavior near the
boundary of the support; cf. Fig. 1. Three noteworthy features are:

1. simple to implement and capture of typical behavior of functions in applications
(kinks and threshold values that are features of, say, option pricing functions);

2. the integral with respect to �d on the sphere is given by an explicit formula and,
thus, the numerical values can be computed to arbitrary precision; and

3. the smoothness can be defined a priori, that is to say, the Sobolev space classes
H

s.Sd/ are specified by the parameters of the trial function.

We provide inclusion theorems that identify the least upper bound (critical
index Ns) of the smoothness of the Sobolev spaces over Sd to which the trial function
of a family belong. The proofs employ asymptotic analysis of the coefficients of
the Laplace-Fourier expansion of the trial function and, thus, rely on the Hilbert
space structure of the underlying function space of square-integrable functions over
S

d. For this purpose, we derive explicit expressions of the coefficientsbh` and give
their leading order term in the asymptotics for large index `. In particular, we obtain
explicit formulas of the integrals with respect to �d. For technical details, including
representations of the coefficients in terms of special functions, see Sect. 3.

Fig. 1 Qualitative behavior of the trial functions g1, g2, g3, and g4 given in (1)–(4) for same value
of ˛ > 0 and 0 < T < 1. The function values are represented as suitable rescaled distances normal
to the surface of the unit sphere
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1.1 Trial Functions and Numerical Integration on Spheres

The testing of numerical integration schemes makes use of suitable trial functions
with prescribed features. Numerical analysis of function approximation schemes
(see also ‘optimal recovery’, cf. [43]) also makes use of trial functions. We cite
recent work on hyperinterpolation [25], filtered hyperinterpolation [37], and filtered
polynomial approximation [42]. We refer the reader to [32], the work of Genz (see,
e.g., [17]1), and online test suites of functions and data sets like [39]. See also
the Virtual Library of Simulation Experiments: Test Functions and Datasets https://
www.sfu.ca/~ssurjano/index.html.

Here, we shall focus on numerical integration on spheres. Regarding general
references, we refer to [26]; see also [18, 28].

A frequently chosen trial function for the 2-sphere is Franke’s test function [34],

f
�
x; y; z

� WD 0:75 exp.�.9x � 2/2=4� .9y� 2/2=4� .9z� 2/2=4/
C 0:75 exp.�.9xC 1/2=49� .9yC 1/=10� .9zC 1/=10/
C 0:5 exp.�.9x � 7/2=4� .9y � 3/2=4� .9z� 5/2=4/
� 0:2 exp.�.9x � 4/2 � .9y � 7/2 � .9z � 5/2/; .x; y; z/ 2 S

2;

which has two Gaussian peaks of different heights, and a smaller dip and which is
in C1.S2/. Its integral is computable to arbitrary precision,

Z

S2

f .x/ d�2.x/ D 0:5328652500843890 : : : :

The functions considered in this paper will be useful as trial functions on S
d for all

dimensions d � 1with a precise range of Sobolev space smoothness whose integrals
are exactly known with values that can be given to arbitrary precision.

Sobolev spaces over S
d emerge naturally when dealing with numerical inte-

gration in the worst-case error setting in the continuous regime s > d=2. A
Quasi-Monte Carlo (QMC) method is an equal weight numerical integration
formula with deterministic node set: the integral I. f / of a given continuous real
function f on S

d is approximated by a QMC method QŒXN �. f / for a node set
XN D fx1; : : : ; xNg 	 S

d,

I. f / WD
Z

Sd
f .x/d�d.x/ 
 1

N

NX

kD1
f .xk/ DW QŒXN �. f /:

1For the related MATLAB program TESTPACK, see http://people.sc.fsu.edu/~jburkardt/m_src/
testpack/testpack.html.

https://www.sfu.ca/~ssurjano/index.html
https://www.sfu.ca/~ssurjano/index.html
http://people.sc.fsu.edu/~jburkardt/m_src/testpack/testpack.html
http://people.sc.fsu.edu/~jburkardt/m_src/testpack/testpack.html
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A node set XN is deterministically chosen in a sensible way so as to guarantee
“small” worst-case error of numerical integration

wce.QŒXN �IHs.Sd// WD sup
˚ˇˇQŒXN �. f / � I. f /

ˇ
ˇ W f 2 H

s.Sd/; k fkHs � 1� :

Reproducing kernel Hilbert space techniques (see [27] for the case of the unit
cube) provide a convenient way to explicitly compute this error for a given node
set whenever the reproducing kernel has a suitable closed form. Indeed (see
[4, 7, 8, 12, 35] for generalizations), the worst-case error for the Sobolev space
H

s.Sd/ for s D .d C 1/=2 endowed with the reproducing kernel 1 � Cdjx � yj
for x; y 2 S

d, Cd given in (5), satisfies the following invariance principle named
after Stolarsky [38],

1

N2

NX

j;kD1

ˇ
ˇxj � xk

ˇ
ˇC 1

Cd

�
wce.QŒXN �IHs.Sd//

�2 D
Z

Sd

Z

Sd
jx� yj d�d.x/ d�d.y/I

i.e., points that maximize their sum of mutual Euclidean distances are excellent
nodes for a QMC method that minimizes the worst-case error in the above setting.
The distance maximization problem for the points is highly non-trivial which limits
the usability of this approach to produce good node sets for QMC methods. It is
known (see [10]) that a sequence .X�

N/ of maximal sum-of-distance N-point sets
define QMC methods satisfying

ˇ
ˇQŒX�

N �. f / � I. f /
ˇ
ˇ � cs0;d

k fkHs

Ns=d
for all f 2 H

s.Sd/ and all
d

2
< s � d C 1

2
:

The order of N cannot be improved. It is an open problem if the range of s can be
enlarged; i.e., the strength of .X�

N/, which is the supremum of the maximal range
for s, is unknown. Determining the strength of a given sequence of N-point sets
on S

d is a highly unresolved question. In contrast, consider spherical t-designs,
introduced in the seminal paper [15], that integrate spherical polynomials of degree
� t exactly. A sequence .Z�

Nt
/ of spherical t-designs with exactly the optimal order

of points, Nt � td , has the remarkable property that

ˇ
ˇQŒZN�

t
�. f / � I. f /

ˇ
ˇ � cs;d

k fkHs

Ns=d
t

for all f 2 H
s.Sd/ and all s >

d

2
:

The order of Nt cannot be improved (see [9, 21–24]) and the strength of .Z�
Nt
/ is

infinite. The existence of such sequences .Z�
Nt
/ follows from [5]. Spherical designs

can be obtained by minimizing certain “energy functionals” (see [1, 2, 13, 14, 19,
36]). A fundamental unresolved question in the theory of numerical integration on
the sphere concerns the explicit construction of good node sets with provable small
or even optimal worst-case error bounds (for conjectures, see [6]). We remark that
.X�

N/ is a QMC design sequence for Hs.Sd/ for d=2 < s � .dC 1/=2 and .Z�
Nt
/ is a
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QMC design sequence for Hs.Sd/ for all s > d=2; see [10, 11]. In general, a QMC
design sequence .XN/ for Hs.Sd/, s > d=2, has the property

jQŒXN �. f / � I. f /j � c0
s0;d

Ns0=d
k fk

Hs0 for all f 2 H
s0

.Sd/ and all
d

2
< s0 � s:

The asymptotic behavior of the error of integration of one of the following trial
functions should be understood in the context of above estimates.

1.2 Trial Functions

The first three families of trial functions are defined via variations of a truncated
power function x 7! .x/˛C that is 0 if x � 0 and is the power x˛ if x > 0. Throughout
the paper we shall assume that 0˛ D 0 if ˛ > 0. All trial functions considered here
(see definitions (1)–(4)) are non-negative and obey a power law of the following
form: Let g D g.˛;TI �/. Then jg.˛;TI �/jp D g.p ˛;TI �/ for p 2 R. Hence, the
Lp-norm of g is closely related to its rescaled integral; i.e.,

kgkp
Lp.Sd/

D
Z

Sd
jg.˛;TI x/jp d�d.x/ D

Z

Sd
g. p ˛;TI x/ d�d.x/:

Explicit expressions for these integrals (with ˛ changed to p ˛ and ` set to 0) are
given in the corollaries below.

Proposition 1 Let 1 � p < 1. Then the trial functions given in (1)–(4) are in
Lp.S

d/ if the parameters T and ˛ obey the relations in the table

Eq. �1 < T < 0 T D 0 0 < T < 1

(1) ˛ > �1=p ˛ > �1=p ˛ > �1=p

(2) – ˛ > �1=.2p/ ˛ > �1=p

(3) – – ˛ > �1=p

(4) – – ˛ 2 R

The following inclusion theorems (one for each trial function type) concern
Sobolev spaces H

s.Sd/ over S
d and provide sharp bounds on the smoothness

parameter s of the space in terms of the critical exponent ˛. We remark that s > 0

is natural in the sense that H0.Sd/ coincides with L2.S
d/. However, the condition

s > d=2 required for continuous embedding restricts the range of ˛ from below.
Let p 2 S

d, T � 0, and ˛ 2 R. The functions of the first family are defined as:

g1.x/ WD f1.x � p/; x 2 S
d; f1.t/ WD

�
t � T

�˛
C; �1 � t � 1: (1)
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For ˛ > 0, we have f1.t/ D Œmaxft � T; 0g�˛ . The function g1 is supported on the
spherical cap fx 2 S

d W x � p � Tg for T � 0; cf. first display in Fig. 1.

Theorem 1 Let�1 < T < 1 and ˛ > �1=2. Then g1 2 H
s.Sd/ iff 0 < s < ˛C1=2.

The Laplace-Fourier coefficients and their asymptotics are given in Sect. 3.2.

Corollary 1 Let ˛ > �1. If T D 0, then
Z

Sd
g1.x/d�d.x/ D 1

2

�..dC 1/=2/�..˛C 1/=2/p
� �..dC 1C ˛/=2/ :

If 0 < jTj < 1, then (in terms of the Ferrers function P�� defined in (22))

Z

Sd
g1.x/d�d.x/ D 2d=2�1 �..dC 1/=2/�.˛C 1/p

�

�
1 � T2

�.˛Cd=2/=2
P�.˛Cd=2/

d=2�1 .T/:

Let p 2 S
d, T � 0, and ˛ 2 R. The functions of the second family are defined as:

g2.x/ WD f2.x � p/; x 2 S
d; f2.t/ WD

�
t2 � T2

�˛
C; �1 � t � 1: (2)

For ˛ > 0, we have f2.t/ D
�
maxft2 � T2; 0g�˛. The function g2 is supported on the

bi-cap fx 2 S
d W jx � pj � Tg; cf. second display in Fig. 1.

Theorem 2 Suppose T D 0.

1. Let ˛ > �1=4 with ˛ ¤ 0; 1; 2; : : : . Then g2 2 H
s.Sd/ iff 0 < s < 2˛ C 1=2.

2. Let ˛ D 0; 1; 2; : : : . Then g2 2 H
s.Sd/ for all s � 0.

Suppose 0 < T < 1 and ˛ > �1=2. Then g2 2 H
s.Sd/ iff 0 < s < ˛ C 1=2.

The Laplace-Fourier coefficients and their asymptotics are given in Sect. 3.3.

Corollary 2 If T D 0 and ˛ > �1=2, then
Z

Sd
g2.x/d�d.x/ D �..dC 1/=2/�.˛C 1=2/p

� �.˛ C .dC 1/=2/ :

If 0 < T < 1 and ˛ > �1, then (in terms of the Jacobi function P.˛;ˇ/� given in (31))

Z

Sd
g2.x/d�d.x/ D �..dC 1/=2/�.˛C 1/

�.˛ C .dC 1/=2/
�
1 � T2

�˛Cd=2
P.˛Cd=2;�˛�1=2/

�1=2 .2T2�1/:

Remark 1 For ˛ > �1 and 0 < T < 1 the integrals can also be written as

Z

Sd
g2.x/d�d.x/ D �..dC 1/=2/�.˛C 1/p

� �.˛ C 1C d=2/

�
1 � T2

�˛Cd=2

� 2F1
�
1=2; d=2

˛ C 1C d=2I 1 � T2
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and for d D 2 take the form

Z

S2

g2.x/d�2.x/ D 1

˛ C 1 .1 � T/˛C1 .1C T/˛ 2F1



�˛; 1
˛ C 2I

1 � T

1C T

�
:

The hypergeometric function reduces to a polynomial of degree ˛ if ˛ D 0; 1; 2; : : : .
If ˛ D �1=2; 1=2; 3=2; : : : (i.e., ˛ D � � 3=2 for � D 1; 2; 3; : : : ), then

Z

S2

g2.x/d�2.x/ D .�1/��1

2� � 1
.1=2/�
.� � 1/Š T2��2

�
2 atanh.

p
1 � T2/

C �1 � T2
��1=2 ��1X

kD1

.k � 1/Š
.1=2/k



1 � 1

T2

�k 	
:

Let p 2 S
d, T > 0, and ˛ 2 R. The functions of the third family are defined as:

g3.x/ WD f3.x � p/; x 2 S
d; f3.t/ WD

�
T2 � t2

�˛
C; �1 � t � 1: (3)

For ˛ > 0, the function f3 reduces to f3.t/ D
�
maxfT2 � t2; 0g�˛ . The function g3 is

supported on the equatorial belt fx 2 S
d W jx � pj � Tg; cf. third display in Fig. 1.

Theorem 3 Let 0 < T < 1 and ˛ > �1=2. Then g3 2 H
s.Sd/ iff 0 < s < ˛ C 1=2.

The Laplace-Fourier coefficients and their asymptotics are given in Sect. 3.4.

Corollary 3 Let 0 < T < 1 and ˛ > �1. Then

Z

Sd
g3.x/d�d.x/ D �..dC 1/=2/�.˛C 1/

�..dC 1/=2C ˛/ T2˛C1P.˛C1=2;�˛�d=2/
d=2�1 .1� 2T2/;

where the Jacobi function P.˛;ˇ/� is defined in (31).

Let p 2 S
d, T > 0, and ˛ 2 R. The functions of the fourth family are defined as:

g4.x/ WD f4.x � p/; x 2 S
d; f4.t/ WD Œmaxft;Tg�˛ ; �1 � t � 1: (4)

The support of g4 is the whole sphere Sd. The function g4 attains the constant value
T˛ on the spherical cap fx 2 S

d W x � p � Tg; cf. fourth display in Fig. 1.

Theorem 4 Let 0 < T < 1 and ˛ � 0. Then g4 2 H
s.Sd/, s > 0, iff 0 < s < 3=2.

The Laplace-Fourier coefficients and their asymptotics are given in Sect. 3.5.

Corollary 4 Suppose 0 < T < 1 and ˛ > �1. Then

Z

Sd
g4.x/d�d.x/ D T˛



1 � 1

2
I1�T2 .d=2; 1=2/

�
C 1

2
A1 I1�T2 .d=2; .˛C 1/=2/;
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where Iz.a; b/ denotes the regularized incomplete beta function given in (20) and

A1 WD �..dC 1/=2/�..˛C 1/=2/p
� �..dC 1C ˛/=2/ :

Remark 2 We also include the following alternative forms for 0 < T < 1, ˛ > �1:

Z

Sd
g4.x/d�d.x/ D 1

2
A1 C T˛

 
1

2
C !d�1

!d
T 2F1

�
1=2; 1� d=2

3=2
IT2

	

� 1

˛ C 1
!d�1
!d

T 2F1
�
.˛ C 1/=2; 1� d=2
1C .˛ C 1/=2 IT

2
	
!

:

Note that the hypergeometric functions, defined in (21), reduce to polynomials if d
is an even dimension. The ratio !d�1=!d is given in (5).

2 Function Space Setting and Zonal Functions

The unit sphere S
d in the Euclidean space R

dC1, d � 1, is provided with the
normalized uniform surface area measure �d (i.e.,

R
Sd d�d D 1) and has surface

area !d:

!0 WD 2; !d

!d�1
D
Z 1

�1
�
1 � t2

�d=2�1
dt

D
p
� �.d=2/

�..dC 1/=2/ ; d � 1I Cd WD 1

d

!d�1
!d
I

(5)

2.1 Spherical Harmonics

The restriction to S
d of a homogeneous polynomial of exact degree ` defined in

R
dC1 is called a spherical harmonic Y` D Y.d/

` of degree ` on S
d. There are at most

Z.d; 0/ WD 1; Z.d; `/ WD .2`C d � 1/ �.`C d � 1/
�.d/ �.`C 1/ ; ` � 1; (6)

such linearly independent spherical harmonics. The exact asymptotic behavior is

Z.d; `/ � .2=�.d// `d�1 as `!1: (7)
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Every Y` is an eigenfunction of the negative Laplace-Beltrami operator ���
d for Sd

with eigenvalue

�` WD ` .`C d � 1/ ; ` � 0: (8)

A system fY`;k W k D 1; : : : ;Z.d; `/g of Z.d; `/ linearly independent real spherical
harmonics Y`;k, L2-orthonormal with respect to �d on S

d, obeys the addition theorem

Z.d;`/X

kD1
Y`;k.x/Y`;k.y/ D Z.d; `/P.d/` .x � y/; x; y 2 S

d: (9)

The normalized Gegenbauer (or ultraspherical) polynomials P.d/` are orthogonal on

Œ�1; 1� w.r.t. the weight function .1 � t2/d=2�1 with P.d/` .1/ D 1. The family

fY`;k W k D 1; : : : ;Z.d; `/I ` D 0; 1; : : : g (10)

is a complete orthonormal basis of the Hilbert space L2.S
d/ of square-integrable

functions on S
d endowed with the inner product and induced norm 2

. f ; g/L2.Sd/ WD
Z

Sd
f .x/g.x/d�d.x/; k fkL2.Sd/ WD

q
. f ; f /L2.Sd/:

2.2 Normequivalent Sobolev Space Families

Sequences of positive weights .a.s/` /`�0 that satisfy the relation 3

a.s/` � .1C �`/�s � .1C `/�2s (11)

define a family of inner products and induced equivalent norms

. f ; g/
.a
.s/
` /
WD

1X

`D0

1

a.s/`

Z.d;`/X

kD1
bf n;kbgn;k; k fk

.a
.s/
` /
WD
q
. f ; f /

.a
.s/
` /

2The system (10) is also a complete orthogonal system for the class of continuous functions C.Sd/,
the set of k-times continuously differentiable functions Ck.Sd/, the family of smooth func-
tions C1.Sd/, and the Banach space Lp.S

d/, 1 � p < 1, provided with the usual p-norm.
For more details, we refer the reader to [3, 29].
3We write a` � b` to mean that there exist c1; c2 > 0 independent of ` such that c1a` � b` � c2a`
for all `.
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on L2.S
d/ in terms of the Laplace-Fourier coefficients

bf `;k WDbf .d/`;k WD . f ;Y`;k/L2.Sd/ D
Z

Sd
f .x/Y`;k.x/d�d.x/: (12)

The Sobolev space H
s.Sd/ over S

d with smoothness index s is then the set of all
L2-functions on S

d with finite Sobolev norm k fkHs WD k fk
.a
.s/
` /

; i.e.,

H
s.Sd/ WD ˚ f 2 L2.S

d/ W k fkHs <1� : (13)

It is known that Hs.Sd/ 	 H
s0

.Sd/ whenever s > s0, and that Hs.Sd/ is embedded
in the space of k-times continuously differentiable functions Ck.Sd/ if s > kC d=2.

2.3 Zonal Functions

Let g.x/ WD h.x � p/ be a zonal function; i.e., g depends only on the inner product of
x with a fixed p 2 S

d. Then (12) and the Funk-Hecke formula (see Müller [29])

Z

Sd
h.x � p/Y`.x/ d�d.x/ D ˛`Œh�Y`.p/;

where

˛`Œh� WD !d�1
!d

Z 1

�1
h.t/P.d/` .t/

�
1 � t2

�d=2�1
dt;

holding for any spherical harmonic Y` of degree ` on S
d, yield

bg`;k D .g;Y`;k/L2.Sd/ D ˛`Œh�Y`;k.p/:

Application of the addition theorem gives

g.x/ D
1X

`D0

Z.d;`/X

kD1
bg`;k Y`;k.x/

D
1X

`D0
˛`Œh�

Z.d;`/X

kD1
Y`;k.p/Y`;k.x/

D
1X

`D0
˛`Œh�Z.d; `/P.d/` .x � p/:
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On the other hand, the function h can be expanded (formally) w.r.t. the orthogonal
system of normalized ultraspherical polynomials (cf. [40]) by means of

h.t/ D
1X

`D0
bh` P.d/` .t/; where

bh`
Z.d; `/

D !d�1

!d

R 1
�1 h.t/P.d/` .t/

�
1 � t2

�d=2�1
dt:

(14)

(Note that !d�1

!d

R 1
�1 P.d/` .t/P

.d/
` .t/.1� t2/d=2�1dt D 1=Z.d; `/; cf., e.g., [30].) Hence,

the connecting formula relating the Laplace-Fourier coefficientsbg`;1; : : : ;bg`;Z.d;`/ of
g with the coefficientbh` in the ultraspherical expansion of h is

bg`;k D ˛`Œh�Y`;k.p/

D
bh`

Z.d; `/
Y`;k.p/; k D 1; : : : ;Z.d; `/I ` D 0; 1; 2; : : : : (15)

Thus, the squared Sobolev norm of the zonal function g is then given by

kgk2
Hs D

1X

`D0

1

a.s/`

Z.d;`/X

kD1
Œbg`;k�

2 D
1X

`D0

1

a.s/`

Z.d;`/X

kD1

"
bh`

Z.d; `/
Y`;k.p/

#2

D
1X

`D0

Z.d; `/

a.s/`

"
bh`

Z.d; `/

#2
;

(16)

where in the last step the addition theorem (9) is used. Clearly, the zonal function g
is in H

s.Sd/ if and only if the last infinite series converges.
Furthermore, using that Y0;1 � 1, we have

Z

Sd
g.x/ d�d.x/ D

Z

Sd
h.x � p/ d�d.x/

D !d�1
!d

Z 1

�1
h.t/

�
1 � t2

�d=2�1
dt Dbh0:

(17)

We conclude this section with the observation that due to the Funk-Hecke4

formula the zonal function g satisfies the following relation for p 2 Œ1;1/:

kgkp
Lp.Sd/

D
Z

Sd
jh.x � p/jp d�d.x/ D !d�1

!d

Z 1

�1
jh.t/jp �1 � t2

�d=2�1
dt: (18)

4The Funk-Hecke formula holds for L1 functions h; see [3].
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3 Proofs

3.1 Preliminaries5

We use the Pochhammer symbol defined by .a/0 D 1, .a/nC1 D .a/n.n� 1C a/ for
n D 0; 1; : : : , which can be written in terms of the gamma function �:

.a/n D
�.nC a/

�.a/
; .a/�n D

.�1/n
.1 � a/n

D �.a � n/

�.a/
:

The incomplete beta function Bz.a; b/, its regularized form Iz.a; b/, and the beta
function B.a; b/ are given by (Re a;Re b > 0)

Bz.a; b/ D
Z z

0

ua�1 .1 � u/b�1 du; (19)

Iz.a; b/ D Bz.a; b/

B.a; b/
; B.a; b/ D B1.a; b/ D �.a/�.b/

�.aC b/
: (20)

The Gauss hypergeometric function, its regularized form, and the generalized
hypergeometric 3 F2-function are the analytic continuations of the power series

2F1
�

a; b
c I z

	
D

1X

kD0

.a/k.b/k
.c/kkŠ

zk; 2
eF1
�

a; b
c I z

	
D

1X

kD0

.a/k.b/k
�.kC c/kŠ

zk; (21)

3F2
�a1; a2; a3

b1; b2 I z
	
D

1X

kD0

.a1/k.a2/k.a2/k
.b1/k.b2/k

zk

kŠ
:

The Ferrers function of the first kind is defined as

P�� .x/ D


1C x

1 � x

��=2
2
eF1



��; 1C �
1 � � I 1 � x

2

�
; �; � 2 R;�1 < x < 1: (22)

Ultraspherical and classical Gegenbauer polynomials C.�/` are related: For d D 1,

Z.1; `/P.1/` .t/ D lim
�!0

`C �
�

C.�/` .t/; P.1/` .t/ D T`.t/; (23)

where T` is the Chebyshev polynomial of the first kind, and for d � 2,

Z.d; `/P.d/` .t/ D
`C �
�

C.�/` .t/; � D d � 1
2

: (24)

5For details, see the standard reference NIST Digital Library of Mathematical Functions [30].
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We shall, in particular, use that C.�/` .1/ D .2�/`=`Š and

P.d/0 � 1; P.d/` .�t/ D .�1/` P`.t/; ` � 1; jP.d/` .t/j � P.d/` .1/ D 1: (25)

For the asymptotic analysis part, we collect the following auxiliary results.
The gamma function satisfies the asymptotic relation [30, Eq. 5.11.12]

�.zC a/

�.zC b/
� za�b as z!1 in the sector j arg zj � � � ı.< �/: (26)

Ursell [41] gives the following asymptotic expansion for Gegenbauer polynomi-
als with large degree n in terms of Bessel functions of the first kind,

C.˛/n .cos �/ � �.˛ C 1=2/
�.2˛/

J˛�1=2.N�/
.N�=2/˛�1=2

�N2˛�1
�

a0.�
2/C 1

N2
a1.�

2/C � � �
�

� �.3� 2˛/�.˛ � 1=2/
�.1� 2˛/�.2˛/

J˛�3=2.N�/
.N�=2/˛�3=2

�N2˛�3
�

b0.�
2/C 1

N2
b1.�

2/C � � �
�
;

(27)

where N D nC ˛ and ˛ ¤ 1; 1=2; 0;�1;�2; : : : , the functions ap.�
2/ and bp.�

2/

are analytic in �2, and successive terms in the asymptotic series decay in powers
of N�2. This asymptotic expansion is valid in a disc j� j < � excluding small discs
around˙� . In particular, one has

a0.�
2/ WD



�

sin �

�˛
; b0.�

2/ WD ˛

4



�

sin �

�˛ sin � � � cos �

�2 sin �
: (28)

We also need the asymptotic expansion of C.1/n .cos �/ as n ! 1 which can
be obtained from the above asymptotic expansion by letting ˛ ! 1 (cf. [41,
Section 6]).

The Jacobi polynomials admit the uniform asymptotic expansion [16]



sin

�

2

�˛ 

cos

�

2

�ˇ
P.˛;ˇ/n .cos �/

D �.nC ˛ C 1/
nŠ



�

sin �

�1=2 ( m�1X

`D0
A`.�/

J˛C`.N�/
N˛C` C �˛O.N�m/

) (29)
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as n!1, where ˛ > �1=2, ˛�ˇ > �2m, ˛Cˇ � �1, and N D nC.˛CˇC1/=2.
The coefficients A`.�/ are analytic functions for 0 � � < � and

A0.�/ D 1; A1.�/ D
�
˛2 � 1=4� sin � � � cos �

2� sin �
� ˛

2 � ˇ2
4

tan
�

2
: (30)

The O-term is uniform with respect to � 2 Œ0; � � ı�, ı > 0.
For the Jacobi function (˛; ˇ; � real and � C ˛ ¤ �1;�2; : : : )

P.˛;ˇ/� .x/ D �.� C ˛ C 1/
�.� C 1/ 2

eF1



��; � C ˛ C ˇ C 1

˛ C 1 I 1 � x

2

�
; (31)

which reduces to a Jacobi polynomial for � a non-negative integer (and ˛; ˇ > �1),
one has the following asymptotic expansion (see [20])

.sin �/˛ .cos �/ˇ P.˛;ˇ/� .cos.2�//

D 22�C˛CˇC3=2B.� C ˛ C 1; � C ˇ C 1/
�

Œsin.2�/��1=2

�
(

p�1X

`D0

f`.�/

2`.2� C ˛ C ˇ C 2/`
C O.��p/

)

as � !1;
(32)

where ˛; ˇ are real and bounded and � is real. The functions f`.�/ are given by

f`.�/ D
X̀

kD0

.1=2C ˛/k.1=2� ˛/k.1=2C ˇ/`�k.1=2� ˛/`�k

kŠ.` � k/Š

� cosŒ.2� C ˛ C ˇ C `C 1/� � .˛ C kC 1=2/�=2�
.sin �/k .cos �/`�k

:

The O-term is uniform w.r.t. � 2 Œ�1; �2� with 0 < �1 < �2 < �=2. In particular,

P.˛;ˇ/� .cos.2�// � 1p
�

cosŒ.2� C ˛ C ˇ C 1/� � .˛ C 1=2/�=2�
.sin �/˛C1=2 .cos �/ˇC1=2 ��1=2: (33)

The Bessel functions of the first kind have the asymptotic behaviour [30,
Eq. 10.17.3]

J�.z/ �


2

�z

�1=2 (

cos!
1X

kD0
.�1/k a2k.�/

z2k
� sin!

1X

kD0
.�1/k a2kC1.�/

z2kC1

)

(34)

as z ! 1 for j arg zj � � � ı, where ! D z � ��=2 � �=4 and the coefficients
ak.�/ are given in [30, Eq. 10.17.1]. This asymptotic form motivates the definition
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of the (asymptotically) normalized Bessel function of the first kind

J�.z/ WD


2

�z

��1=2
J�.z/; j arg zj � � � ı: (35)

Regarding a remainder estimate, we will use for � > �1=2 (cf. Olver [31,
Sec. 8.11.3]),

J�.x/ D


2

�x

�1=2 �
cos

�
x � 2� C 1

2

�

2

�C O.x�1/
�

as x!1.x real/: (36)

The Ferrers function of the first kind has the asymptotic behavior [30,
Eq. 14.15.11]

P��
� .cos �/ D 1

��

� �

sin �

	1=2

�
�

J�
�
.� C 1

2
/�
�C O

�1
�

�
env J�

�
.� C 1

2
/�
�� (37)

as � ! 1 and � (� 0) fixed, where the remainder term is represented by means
of the envelope function associated with J�. The convergence is uniform for � 2
.0; � � ı�.

3.2 The Trial Functions of Type (1)

Set h � f1. Let T D 0. For d � 1, the Laplace-Fourier coefficients take the form

bh`
Z.d; `/

D !d�1
!d

Z 1

0

t˛ P.d/` .t/
�
1 � t2

�d=2�1
dt; ` D 0; 1; 2; : : : : (38)

The integral is finite for all ` D 0; 1; 2; : : : if and only if ˛ > �1 as can be seen
from the behavior of the integrand near t D 0.

Lemma 1 Let d � 1, T D 0, and ˛ > �1. Then for ` D 2mC " (" D 0 or " D 1),

bh2mC"
Z.d; 2mC "/ D

.�1/m
2

�..dC 1/=2/�.."C ˛ C 1/=2/p
�

� .." � ˛/=2/m
�.mC .dC 1C ˛ C "/=2/:

(39)

Proof Let T D 0. Let d � 2. By (24), the integral in (38) is a special case of [33,
Eq. 2.21.2.5] valid for ˛ > �1 � ". Let d D 1. Because of (23), the integral in (38)
is a special case of [33, Eq. 2.18.1.1]. We get (39) but valid for ˛ > �1. ut
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We remark that if ˛ D 0; 1; 2; : : :, thenbh` D 0 for ` D ˛ C 2; ˛ C 4; : : : , since
bh2mC" vanishes whenever ˛ � " D 0; 2; 4; : : : and 2mC " > ˛.

Lemma 2 Let d � 1, T D 0, and ˛ > �1. Then for ˛ � " ¤ 0; 2; 4; 6; : : : (as
m!1),

bh2mC"
Z.d; 2mC "/ �

.�1/m
2

�..dC 1/=2/�.."C ˛ C 1/=2/p
� �.."� ˛/=2/ m�.dC1/=2�˛: (40)

Proof We expand .." � ˛/=2/m in (39) and use (26) to obtain (40). ut
Let 0 < jTj < 1. For d � 1, the Laplace-Fourier coefficients take the form

bh`
Z.d; `/

D !d�1
!d

Z 1

T
.t � T/˛ P.d/` .t/

�
1 � t2

�d=2�1
dt; ` D 0; 1; 2; : : : : (41)

The integral is well-defined and finite for all ` D 0; 1; 2; : : : if and only if ˛ > �1
as can be seen from the behaviour of the integrand near the critical point t D T.

Lemma 3 Let d � 1, 0 < jTj < 1, and ˛ > �1. Then for ` D 0; 1; 2; : : :,

bh`
Z.d; `/

D 2d=2�1 �..dC 1/=2/�.˛C 1/p
�

�
1 � T2

�.˛Cd=2/=2
P�.˛Cd=2/
`Cd=2�1 .T/

in terms of the Ferrers function defined in (22).

Proof Let d � 2 and 0 < T < 1. Set � D .d � 1/=2. By (24), the integral in (41) is
a special case of [33, Eq. 2.21.4.10]. Thus, using (41) and (5), we get

bh` D �.�C 1/p
� �.�C 1=2/

`C �
�

.2�/`

`Š

� B.˛ C 1; �C 1=2/2��1=2 .1 � T/˛C�C1=2

� 3F2



�C 1=2; 1=2� � � `; `C �C 1=2

˛ C �C 3=2; �C 1=2 I 1 � T

2

�
;

(42)

provided ˛ > �1 and � > �1=2 and with the understanding that, by (23) and (25),

lim
�!0

`C �
�

.2�/`
`Š
D lim

�!0

`C �
�

C.�/` .1/ D Z.1; `/P.d/` .1/ D Z.1; `/: (43)

Since the hypergeometric function reduces to a regularized Gauss hypergeometric
function, expanding the beta function and simplifying expressions yields

bh`
Z.d; `/

D �..d C 1/=2/�.˛ C 1/
21�d=2

p
�

.1 � T/˛Cd=2
2
eF1


1 � d=2 � `; `C d=2

˛ C 1C d=2 I 1 � T

2

�
:
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By (43), this formula holds for all d � 1. The hypergeometric function can be
expressed in terms of a Ferrers function (cf. (22)) and we obtain the desired result
for 0 < T < 1. If �1 < T < 0, then relation (42) follows from [33, Eq. 2.21.4.6].

ut
Lemma 4 Let d � 1, 0 < jTj < 1 with T DW cos �T for 0 < �T < � , and ˛ > �1.
Then (as `!1)

bh`
Z.d; `/

� 2.d�1/=2 �..dC 1/=2/�.˛C 1/
�

� .sin �T/
˛C.d�1/=2 J˛Cd=2

�
.`C .d � 1/=2/�T

�

`.dC1/=2C˛ :

(44)

Proof We express (37) in terms of the normalized Bessel function,

P��
� .cos �T/ �

� 2
�

	1=2
����1=2 .sin �T/

�1=2 J�
�
.� C 1=2/�T

�
as � !1;

and (44) follows from Lemma 3. ut
Proof of Theorem 1 Let T D 0. Using the asymptotics (7), (11), and (40), we obtain
for ` D 2mC " with " 2 f0; 1g and ˛ � " ¤ 0; 2; 4; 6; : : : ,

Z.d; `/

a.s/`

h bh`
Z.d; `/

i2 � `2s `d�1 �m�.dC1/=2�˛�2 � `2s�2˛�2 as `!1:

Hence, the series in (16) converges if and only if 2s � 2˛ � 2 < �1; i.e., the zonal
trial function g1 belongs to H

s.Sd/, s > 0, if and only if 0 < s < ˛ C 1=2.

Let 0 < jTj < 1. Then (7), (11), and (44) imply Z.d;`/

a
.s/
`

h
bh`

Z.d;`/

i2 � `2s�2˛�2 as

`!1. Hence, g1 belongs to H
s.Sd/, s > 0, if and only if 0 < s < ˛ C 1=2. ut

3.3 The Trial Functions of Type (2)

Set h � f2. Let T D 0. For d � 1, the Laplace-Fourier coefficients take the form

bh`
Z.d; `/

D !d�1
!d

Z 1

�1
jtj2˛ P.d/` .t/

�
1 � t2

�d=2�1
dt; ` D 0; 1; 2; : : : : (45)

This integral is finite for all ` D 0; 1; 2; : : : if and only if ˛ > �1=2 as can be seen
from the behavior of the integrand near t D 0.
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Lemma 5 Let d � 1, T D 0, and ˛ > �1=2. Thenbh2mC1 D 0 and

bh2m

Z.d; 2m/
D .�1/m�..dC 1/=2/�.˛C 1=2/p

� �.�˛/
�.m � ˛/

�.mC .d C 1/=2C ˛/ ; (46)

where �.m � ˛/=�.�˛/ is interpreted as .�˛/m if ˛ is a non-negative integer.

Proof By (25),bh` D 0 for ` D 1; 3; : : : and

bh2m

Z.d; 2m/
D 2 !d�1

!d

Z 1

0

t2˛ P.d/2m.t/
�
1 � t2

�d=2�1
dt; m D 0; 1; 2; : : : :

The integral has essentially been dealt with in the proof of Lemma 1. ut
We remark that if ˛ D 0; 1; 2; : : :, then the coefficientbh` vanishes for ` � 2˛C1.

Lemma 6 Let d � 1, T D 0, and ˛ > �1=2 not an integer. Then

bh2m

Z.d; 2m/
� .�1/m�..dC 1/=2/�.˛C 1=2/p

� �.�˛/ m�.dC1/=2�2˛ as m!1: (47)

Proof We apply to (46) the asymptotic expansion (26) and obtain (47). ut
Let 0 < T < 1. For d � 1, the Laplace-Fourier coefficients take the form

bh`
Z.d; `/

D !d�1
!d

Z 1

�1
�
t2 � T2

�˛
C P.d/` .t/

�
1 � t2

�d=2�1
dt; ` D 0; 1; 2; : : : : (48)

The integral is well-defined and finite for all ` D 0; 1; 2; : : : if and only if ˛ > �1
as can be seen from the behaviour of the integrand near the critical points t D ˙T.

Lemma 7 Let d � 1, 0 < T < 1, and ˛ > �1. Thenbh2mC1 D 0 and

bh2m

Z.d; 2m/
D �..dC 1/=2/p

�

�.˛ C 1/�.mC 1=2/
�.mC ˛ C .dC 1/=2/

� �1 � T2
�˛Cd=2

P.˛Cd=2;�˛�1=2/
m�1=2 .2T2 � 1/:

Proof By (25),bh` D 0 for ` D 1; 3; : : : and

bh2m

Z.d; 2m/
D 2 !d�1

!d

Z 1

T

�
t2 � T2

�˛
P.d/2m.t/

�
1 � t2

�d=2�1
dt; m D 0; 1; 2; : : : :

Let d � 2. Using (5) and (24), we havebh2m D 2H2m..d � 1/=2; ˛IT/, where

H2m.�; ˛IT/ WD �.�C 1/p
� �.�C 1=2/

2mC �
�

Z 1

T

�
t2 � T2

�˛
C.�/2m .t/

�
1 � t2

���1=2
dt:
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The above integral is a special case of [33, Eq. 2.21.4.3]. Transformations like [30,
Eqs. 15.8.1 and 15.8.4] in the arising Gauss hypergeometric functions yield

H2m.�; ˛IT/ D 1

2

�.�C 1/�.˛ C 1/p
�

2mC �
�

.2�/2m

.2m/Š

� �1 � T2
�˛C�C1=2

2
eF1
�
1=2� m;mC �C 1=2

˛ C �C 3=2 I 1 � T2
	
;

valid for 0 < T < 1, � > �1=2 with � ¤ 0, and ˛ > �1 with ˛ ¤
�1=2; 1=2; 3=2; : : : which also extends to the case when 1=2 C ˛ is an integer.
The formula for d D 1 follows by taking the limit as � ! 0. Hence, for all d � 1,
0 < T < 1, and ˛ > �1,

bh2m

Z.d; 2m/
D �..d C 1/=2/�.˛ C 1/p

�

�
1 � T2

�˛Cd=2
2
eF1
�
1=2 � m;mC d=2

d=2C ˛ C 1 I 1 � T2
	
:

The result follows by changing to Jacobi functions (cf. (31)). ut
Lemma 8 Let d � 1, 0 < T DW cos �T < 1, and ˛ > �1. Then (as m!1)

bh2m

Z.d; 2m/
� �..dC 1/=2/

�
�.˛ C 1/ .sin �T/

˛C.d�1/=2

� .cos �T/
˛ cos

h
.2mC d � 1

2
/�T � .˛ C dC 1

2
/�=2

i
m�˛�.dC1/=2:

Proof The result follows from Lemma 7 using the asymptotics (33) and (26). ut
Proof of Theorem 2 Let T D 0 and ˛ > �1=2 and ˛ not an integer. Using the
asymptotics (7), (11), and (47), we obtain for the even terms in (16),

Z.d; 2m/

a.s/2m

h bh2m

Z.d; 2m/

i2 � m2s md�1 �m�.dC1/=2�2˛�2 D m2s�4˛�2 as m!1I

i.e., the series in (16) converges iff 2s� 4˛ � 2 < �1. Thus, g2 2 H
s.Sd/, s > 0, iff

0 < s < 2˛C 1=2. If ˛ D 0; 1; 2; : : : , then the Laplace-Fourier expansion of g2 has
only finitely many terms and g2 2 H

s.Sd/ for all s � 0.
Let 0 < T < 1 and ˛ > �1. Then (7), (11), and Lemma 8 imply

Z.d;2m/

a
.s/
2m

� bh2m
Z.d;2m/

�2 � m2s�2˛�2 as m ! 1 and g2 2 H
s.Sd/, s > 0, iff 0 < s <

˛ C 1=2. ut
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3.4 The Trial Functions of Type (3)

Set h � f3. Let 0 < T < 1. For d � 1, the Laplace-Fourier coefficients take the
form

bh`
Z.d; `/

D !d�1
!d

Z 1

�1
�
T2 � t2

�˛
C P.d/` .t/

�
1 � t2

�d=2�1
dt; ` D 0; 1; 2; : : : : (49)

The integral is well-defined and finite for all ` D 0; 1; 2; : : : if and only if ˛ > �1
as can be seen from the behaviour of the integrand near the critical points t D ˙T.

Lemma 9 Let d � 1, 0 < T D cos �T < 1, and ˛ > �1. Thenbh2mC1 D 0 and

bh2m

Z.d; 2m/
D .�1/m�..dC 1/=2/�.˛C 1/p

�

�.mC 1=2/
�.mC .d C 1/=2C ˛/

� .cos �T/
1C2˛ P.˛C1=2;�˛�d=2/

mCd=2�1 .cos.2.�=2� �T///:

Proof By (25),bh` D 0 for ` D 1; 3; 5; : : : andbh2m D 2H2m..d� 1/=2; ˛IT/, where

H2m.�; ˛IT/ WD �.�C 1/p
� �.�C 1=2/

2mC �
�

Z T

0

�
T2 � t2

�˛
C.�/2m .t/

�
1 � t2

���1=2
dt:

The above integral is a special case of [33, Eq. 2.21.4.1] valid for 0 < T < 1,
˛ > �1, and � > �1=2. The formula for d D 1 follows by taking the limit as
�! 0. Hence,

bh2m

Z.d; 2m/
D .�1/m �..dC 1/=2/�.˛C 1/

�.d=2/

.1=2/m

.d=2/m

� T2˛C1
2
eF1
�
1 � d=2� m;mC 1=2

˛ C 3=2 IT2
	
:

The result follows by changing to a Jacobi function (cf. (31)) and using the
substitution T D cos �T . (Note that the argument of the Jacobi function is 1 � 2T2.)

ut
Lemma 10 Let d � 1, 0 < T D cos �T < 1, and ˛ > �1. Then (as m!1)

bh2m

Z.d; 2m/
� ��..dC 1/=2/�.˛C 1/

�
.cos �T/

˛ .sin �T/
˛C.d�1/=2

� sinŒ.2mC .d � 1/=2/�T C .˛ � .d � 1/=2/�=2�m�˛�.dC1/=2:

Proof The result follows from Lemma 9 using (32) and (26). ut
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Proof of Theorem 3 Using (7) and (11), Lemma 10 implies Z.d;2m/

a
.s/
2m

h
bh2m

Z.d;2m/

i2 �
m2s�2˛�2 as m!1 and g3 2 H

s.Sd/, s > 0, iff 0 < s < ˛ C 1=2. ut

3.5 The Trial Functions of Type (4)

Let h D f4. The Laplace-Fourier coefficients can be written as

bh`
Z.d; `/

D !d�1
!d

Z 1

�1
Œmaxft;Tg�˛ P.d/` .t/

�
1 � t2

�d=2�1
dt D T˛A` CD`; (50)

where the integrals

A` WD !d�1
!d

Z T

�1
P.d/` .t/

�
1 � t2

�d=2�1
dt; D` WD !d�1

!d

Z 1

T
t˛ P.d/` .t/

�
1 � t2

�d=2�1
dt

are well-defined and finite for all ` D 0; 1; 2; : : : , T > 0, and ˛ 2 R. Set

A1 WD B.d=2; .˛C 1/=2/
B.d=2; 1=2/

D �..dC 1/=2/�..˛C 1/=2/p
� �..dC 1C ˛/=2/ :

Lemma 11 Let d � 1, 0 < T < 1, and ˛ > �1. Then

bh0 D T˛


1 � 1

2
I1�T2 .d=2; 1=2/

�
C 1

2
A1 I1�T2 .d=2; .˛C 1/=2/

and for ` D 2mC " � 1 (" D 0 or " D 1),

bh2mC"

Z.d; 2mC "/ D
.�1/m
2

�..d C 1/=2/�.." C ˛ C 1/=2/p
�

.." � ˛/=2/m
�.mC .dC 1C ˛ C "/=2/

� .�1/mC"�1T˛C1�" 2
d�"˛�..dC 1/=2/
�.˛ C 1 � "/

�.mC .d C 1/=2/�.2mC "/
�.mC "/�.2mC "C d/

� 3F2
�
1 � d=2 � m � ";mC 1=2; .˛ C 1 � "/=2

3=2 � "; 1C .˛ C 1 � "/=2 IT2
	
:

Proof Let ` D 0. Then P.d/0 � 1 and Z.d; 0/ D 1. Hence, (50) yields

bh0 D T˛ A0 CD0:

The integral A0 is the �d-measure of the spherical cap fx 2 S
d W x � p � Tg:

A0 D I.1CT/=2.d=2; d=2/ D 1 � 1
2

I1�T2 .d=2; 1=2/:
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Since T > 0, the substitution u D 1� t2 reduces D0 to an incomplete beta function,

D0 D 1

2

!d�1
!d

B1�T2 .d=2; .˛C 1/=2/:

The final form of the coefficientbh0 follows then by using (5) and (20).
Let ` � 1. By orthogonality of the ultraspherical polynomials, A` in (50)

becomes

A` D �!d�1
!d

Z 1

T
P.d/` .t/

�
1 � t2

�d=2�1
dt:

Inserting (5) and (24) into (50), we getbh` D H`..d � 1/=2; ˛IT/ for d � 2, where

H`.�; ˛IT/ D `C �
�

�.�C 1/p
� �.�C 1=2/

Z 1

T
.t˛ � T˛/C.�/` .t/

�
1 � t2

���1=2
dt:

Integration by parts, using relation [30, Eq. 18.9.20] yields

H`.�; ˛IT/ D 2˛ �.�C 1/p
� �.�C 1=2/

`C �
` .`C 2�/

�
Z 1

T
t˛�1 C.�C1/

`�1 .t/
�
1 � t2

��C1=2
dt:

(51)

This formula holds, in particular, in the limit as �! 0 which corresponds to d D 1.
The above integral is a special case of [33, Eq. 2.21.4.3]. The result follows. ut
Lemma 12 Let d � 1, 0 < T D cos �T < 1, and ˛ > �1. Then

bh`
Z.d; `/

� ˛2.d�1/=2 �..dC 1/=2/
�

.cos �T/
˛�1 .sin �T/

.dC1/=2

�
Jd=2C1

�
.`C .d � 1/=2/ �T

	

`.d�1/=2C2 as `!1:

Proof Let d � 2. Set � D .d � 1/=2 and T D cos �T . Then (51) turns into

bhn

Z.d; n/
D ˛

2�C 1
!d�1
!d

Z �T

0

.cos �/˛�1 C.�C1/
n�1 .cos �/

C.�C1/
n�1 .1/

.sin �/2�C2 d�:
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Since � C 1 ¤ 1; 1=2; 0;�1;�2; : : : , by Ursell’s result (27), and exploiting
integration by parts and properties of the Bessel functions, we arrive at

bhn

Z.d; n/
� ˛2� �.�C 1/

�

�.n/

�.nC 2�C 1/N��1 .cos �T/
˛�1 .sin �T/

�C1 J�C3=2.N�T/

C �.n/

�.nC 2�C 1/O
�
N��3=2� as N WD nC �!1:

The result follows by using (26) and substituting N D nC � and � D .d � 1/=2.
The result for d D 1 follows in a similar way by taking into account that Ursell’s

asymptotic expansion also holds as �! 0. ut
Proof of Theorem 4 Using asymptotics (7) and (11), by Lemma 12,

Z.d; `/

a.s/`

h f`
Z.d; `/

i2 � `2s `d�1 �`�.d�1/=2�2�2 D `2s�4 as `!1:

Hence, g4 2 H
s.Sd/, s > 0, iff 0 < s < 3=2. ut
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Logarithmic and Riesz Equilibrium for
Multiple Sources on the Sphere: The
Exceptional Case
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Abstract We consider the minimal discrete and continuous energy problems on the
unit sphere S

d in the Euclidean space R
dC1 in the presence of an external field due

to finitely many localized charge distributions on S
d, where the energy arises from

the Riesz potential 1=rs (r is the Euclidean distance) for the critical Riesz parameter
s D d � 2 if d � 3 and the logarithmic potential log.1=r/ if d D 2. Individually,
a localized charge distribution is either a point charge or assumed to be rotationally
symmetric. The extremal measure solving the continuous external field problem for
weak fields is shown to be the uniform measure on the sphere but restricted to the
exterior of spherical caps surrounding the localized charge distributions. The radii
are determined by the relative strengths of the generating charges. Furthermore,
we show that the minimal energy points solving the related discrete external field
problem are confined to this support. For d � 2 � s < d, we show that for point
sources on the sphere, the equilibrium measure has support in the complement of
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the union of specified spherical caps about the sources. Numerical examples are
provided to illustrate our results.

1 Introduction

Let Sd WD fx 2 R
dC1 W jxj D 1g be the unit sphere in R

dC1, where j�j denotes
the Euclidean norm. Given a compact set E 	 S

d, consider the class M .E/ of unit
positive Borel measures supported on E. For 0 < s < d the Riesz s-potential and
Riesz s-energy of a measure � 2M .E/ are given, respectively, by

U�
s .x/ WD

Z
ks.x; y/d�.y/; x 2 R

dC1; Is.�/ WD
Z Z

ks.x; y/d�.x/d�.y/;

where ks.x; y/ WD jx � yj�s for s > 0 is the so-called Riesz kernel. For the case
s D 0 we use the logarithmic kernel k0.x; y/ WD log.1=jx�yj/. The s-capacity of E
is then defined as Cs.E/ WD 1=Ws.E/ for s > 0 and C0.E/ D exp.�W0.E//, where
Ws.E/ WD inffIs.�/ W � 2 M .E/g. A property is said to hold quasi-everywhere
(q.e.) if the exceptional set has s-capacity zero. When Cs.E/ > 0, there exists a
unique minimizer �E D �s;E , called the s-equilibrium measure on E, such that
Is.�E/ D Ws.E/. The s-equilibrium measure is just the normalized surface area
measure on S

d which we denote with �d. For more details see [7, Chapter II].
We remind the reader that the s-energy of Sd is given by,

U�d
s .x/ D Is.�d/ D Ws.S

d/ D � .d/� ..d � s/=2/

2s� .d=2/� .d � s=2/
; 0 < s < d; for x 2 S

d;

(1)

and the logarithmic energy of Sd is given by

U�d
0 .x/ D I0.�d/ D W0.S

d/ D dWs.S
d/

ds

ˇ̌
ˇ
sD0
D � log.2/C 1

2
. .d/ �  .d=2// ;

where .s/ WD � 0.s/=� .s/ is the digamma function. Using cylindrical coordinates

x D .
p
1 � u2 x; u/; �1 � u � 1; x 2 S

d�1; (2)

we can write the decomposition

d�d.x/ D !d�1
!d

�
1 � u2

�d=2�1
du d�d�1.x/: (3)
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Here !d is the surface area of Sd and the ratio of these areas can be evaluated as

!0 D 2; !d

!d�1
D
Z 1

�1
�
1 � u2

�d=2�1
du D

p
�� .d=2/

� ..d C 1/=2/

D 2d�1 Œ� .d=2/�
2

� .d/
: (4)

We shall refer to a non-negative lower semi-continuous function Q W Sd ! Œ0;1�
such that Q.x/ < 1 on a set of positive Lebesgue surface area measure as an
external field. The weighted energy associated with Q is then given by

IQ.�/ WD Is.�/C 2
Z

Q.x/d�.x/: (5)

Definition 1 The minimal energy problem on the sphere in the presence of the
external field Q refers to the quantity

VQ WD inf
˚

IQ.�/ W � 2M .Sd/
�
: (6)

A measure �Q D �Q;s 2M .Sd/ such that IQ.�Q/ D VQ is called an s-extremal (or
s-equilibrium) measure associated with Q.

The discretized version of the minimal s-energy problem is also of interest. The
associated optimal point configurations have a variety of possible applications, such
as for generating radial basis functions on the sphere that are used in the numerical
solutions to PDEs (see, e.g., [8, 9]).

Given a positive integer N, we consider the optimization problem

EQ;N WD min
fx1;:::;xNg�Sd

X

1�i6Dj�N

�
ks.xi; xj/C Q.xi/C Q.xj/

�
: (7)

A system that minimizes the discrete energy is called an optimal (minimal) s-energy
N-point configuration w.r.t. Q. The field-free case Q � 0 is particularly important.

The following Frostman-type result as stated in [6] summarizes the existence and
uniqueness properties for s-equilibrium measures on S

d in the presence of external
fields (see also [12, Theorem I.1.3] for the complex plane case and [14] for more
general spaces).

Proposition 1 Let 0 � s < d. For the minimal s-energy problem on Sd with external
field Q the following properties hold:

(a) VQ is finite.
(b) There exists a unique s-equilibrium measure �Q D �Q;s 2 M .Sd/ associated

with Q. Moreover, the support SQ of this measure is contained in the compact
set EM WD fx 2 S

d W Q.x/ � Mg for some M > 0.
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(c) The measure �Q satisfies the variational inequalities

U
�Q
s .x/C Q.x/ � FQ q.e. on S

d; (8)

U
�Q
s .x/C Q.x/ � FQ for all x 2 SQ; (9)

where

FQ WD VQ �
Z

Q.x/d�Q.x/: (10)

(d) Inequalities (8) and (9) completely characterize the extremal measure �Q in the
sense that if � 2M .Sd/ is a measure with finite s-energy such that

U�
s .x/C Q.x/ � C q.e. on S

d; (11)

U�
s .x/C Q.x/ � C for all x 2 supp.�/ (12)

for some constant C, we have then �Q D � and FQ D C.

Remark 1 We note that a similar statement holds true when S
d is replaced by any

compact subset K 	 S
d of positive s-capacity.

The explicit determination of s-equilibrium measures or their support is not an
easy task. In [6] an external field exerted by a single point mass on the sphere was
applied to establish that, in the field-free case, minimal s-energy N-point systems
on S

d, as defined in (7), are “well-separated” for d � 2 < s < d. Axis-supported
external fields were studied in [4] and rotationally invariant external fields on S

2

in [3]. The separation of minimal s-energy N-point configurations for more general
external fields, namely Riesz s-potentials of signed measures with negative charge
outside the unit sphere, was established in [5].

Here we shall focus primarily on the exceptional case when s D d � 2 and
Q is the external field exerted by finitely many localized charge distributions. Let
a1; a2; : : : ; am 2 S

d be m fixed points with associated positive charges q1; q2; : : : ; qm.
Then the external field is given by

Q.x/ WD
mX

iD1
qi kd�2.ai; x/: (13)

For sufficiently small charges q1; : : : ; qm we completely characterize the .d � 2/-
equilibrium measure for the external field (13).

The outline of the paper is as follows. In Sect. 2, we introduce some notion
from potential theory utilized in our analysis. In Sect. 3, we present the important
case of the unit sphere in the 3-dimensional space and logarithmic interactions.
An interesting corollary in its own right for discrete external fields in the complex
plane is exhibited as well. The situation when d � 3, considered in Sect. 4, is more
involved as there is a loss of mass in the balayage process. Finally, in Sect. 5, we
derive a result on regions free of optimal points and formulate an open problem.
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2 Signed Equilibria, Mhaskar-Saff F -Functional, and
Balayage

A significant role in our analysis is played by the so-called signed equilibrium
(see [4, 5]).

Definition 2 Given a compact subset E 	 R
p, p � 3, and an external field Q, we

call a signed measure �E;Q D �E;Q;s supported on E and of total charge �E;Q.E/ D 1
a signed s-equilibrium on E associated with Q if its weighted Riesz s-potential is
constant on E:

U
�E;Q
s .x/C Q.x/ D FE;Q for all x 2 E: (14)

We note that if the signed equilibrium exists, it is unique (see [4, Lemma 23]).
In view of (8) and (9), the signed equilibrium on SQ is actually a non-negative
measure and coincides with the s-extremal measure associated with Q, and hence
can be obtained by solving a singular integral equation on SQ. Moreover, for the
equilibrium support we have that SQ 	 supp.�C

E;Q/ whenever SQ 	 E 	 S
d (see [5,

Theorem 9]).
An important tool in our analysis is the Riesz analog of the Mhaskar-Saff

F-functional from classical logarithmic potential theory in the plane (see [10] and
[12, Chapter IV, p. 194]).

Definition 3 The Fs-functional of a compact subset K 	 S
d of positive s-capacity

is defined as

Fs.K/ WD Ws.K/C
Z

Q.x/ d�K.x/; (15)

where Ws.K/ is the s-energy of K and �K is the s-equilibrium measure on K.

Remark 2 As pointed out in [4, 5], when d � 2 � s < d, a relationship exists
between the signed s-equilibrium constant in (14) and the Fs-functional (15),
namely Fs.K/ D FK;Q. Moreover, the equilibrium support minimizes the
Fs-functional; i.e., if d � 2 � s < d and Q is an external field on S

d, then the
Fs-functional is minimized for SQ D supp.�Q/ (see [4, Theorem 9]).

A tool we use extensively is the Riesz s-balayage measure (see [7, Section 4.5]).
Given a measure � supported on S

d and a compact subset K 	 S
d, the measure

b� WD Bals.�;K/ is called the Riesz s-balayage of � onto K, d � 2 � s < d, ifb� is
supported on K and

Ub�s .x/ D U�
s .x/ on K;

Ub�s .x/ � U�
s .x/ on S

d:

(16)
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In general, there is some loss of mass, namely b�.Sd/ < �.Sd/. However, in the
logarithmic interaction case s D 0 and d D 2, the mass of the balayage measures is
preserved, but as in the classical complex plane potential theory we have equality of
potentials up to a constant term

Ub�0 .x/ D U�
0 .x/C C on K;

Ub�0 .x/ � U�
0 .x/C C on S

2:

(17)

Balayage of a signed measure � is achieved by taking separately the balayage of
its positive and its negative part in the Jordan decomposition � D �C � ��. An
important property is that we can take balayage in steps: if F 	 K 	 S

d, then

Bals.�;F/ D Bals.Bals.�;K/;F/: (18)

We also use the well-known relation

Bals.�;K/ D �jK C Bals.�j
Sd

nK
;K/: (19)

3 Logarithmic Interactions on S
2

We first state and prove our main theorem for the case of logarithmic interactions on
S
2. We associate with Q in (13) (or equivalently with faig and fqig) the total charge

q WD q1 C � � � C qm;

the vector

� D .�1; : : : ; �m/; �i WD 2
r

qi

1C q
; i D 1; : : : ;m; (20)

and the set

˙� D
m\

iD1
˙i;�i ; ˙i;� WD

˚
x 2 S

2 W jx� aij � �
�
; i D 1; : : : ;m; � � 0: (21)

More generally, with any vector � D .�1; : : : ; �m/ with non-negative components
we associate the set˙� DTm

iD1 ˙i;�i . Note: if � � � (i.e., �i � �i, 1 � i � m), then
˙� 	 ˙� .

Theorem 1 Let d D 2 and s D 0. Let Q, �, and ˙� be defined by (13), (20),
and (21). Suppose that˙c

i;�i
\˙ c

j;�j
D ;, 1 � i < j � m (Kc denotes the complement
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of K relative to the sphere). Then the logarithmic extremal measure associated with
Q is �Q D .1C q/ �2j˙� and the extremal support is SQ D ˙�.
Remark 3 The theorem has the following electrostatics interpretation. As positively
charged particles ai are introduced on a positively pre-charged unit sphere, they
create charge-free regions which we call regions of electrostatic influence. The
theorem then states that if the potential interaction is logarithmic and the charges of
the particles are sufficiently small (so that the regions of influence do not overlap),
then these regions are perfect spherical caps ˙c

i;�i
whose radii depend only on the

amount of charge and the position of the particles. In Sect. 5, we partially investigate
what happens when the qi’s increase beyond the critical values imposed by the non-
overlapping conditions˙c

i;�i
\˙ c

i;�j
D ;, 1 � i < j � m.

Proof Let m D 1. This case has already been solved in [4]. By [4, Theorem 17], the
signed equilibrium on˙� associated with Q.x/ WD q log 1

jx�aj , a 2 S
2, is given by

�˙� ;Q D .1C q/Bal0.�2;˙�/� q Bal0.ıa; ˙�/

D .1C q/ �2j˙� C .1C q/



�2

4
� q

1C q

�
ˇ; (22)

where ˇ is the normalized Lebesgue measure on the boundary circle of ˙� .
The logarithmic extremal measure on S

2 associated with Q is then given by

�Q D .1C q/ �2j˙� ; where � D 2
r

q

1C q
:

Let � WD hx; ai and �2 D 2.1� t/, where t is the projection of the boundary circle
@˙� onto the a-axis. For future reference, by [4, Lemmas 39 and 41] we have

U
Bal0.�2;˙� /
0 .x/ D

8
<̂

:̂

W0.˙�/; x 2 ˙�;

W0.˙�/C 1

2
log

1C t

1C � ; x 2 ˙ c
�

(23)

and

U
Bal0.ıa;˙� /
0 .x/ D Uıa

0 .x/C

8
<̂

:̂

1

2
log

1� t

1C t
� 1
2

log
1 � t

2
; x 2 ˙�;

1

2
log

1� �
1C � �

1

2
log

1 � t

2
; x 2 ˙ c

� :
(24)
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Moreover,b� D Bal0.�2j˙c
�
; ˙�/ and bıa D Bal0.ıa; ˙� / are multiples of ˇ:

b� D �2.˙ c
� / ˇ D

�2

4
ˇ D 1 � t

2
ˇ; bıa D ˇ: (25)

Let m � 2. First, we determine the signed equilibrium on the set ˙� , � � �,
associated with Q. We consider the signed measure

	 WD .1C q/Bal0.�2;˙�/� Bal0.q1 ıa1 C � � � C qm ıam ; ˙�/:

As balayage under logarithmic interaction is linear and preserves mass, we have1

k	k D .1C q/ k�2k �
mX

iD1
qi kıaik D 1C q �

mX

iD1
qi D 1:

The hypotheses on ˙� and the fact that ˙� 	 ˙� , � � �, imply the non-
overlapping conditions

˙c
i;�i
\˙ c

j;�j
D ;; 1 � i < j � m:

For i D 1; : : : ;m let

�i WD �2j˙c
i;�i

; b�i WD Bal0.�i; ˙i;�i /;
bıai WD Bal0.ıai ; ˙i;�i/: (26)

Since ˙i;�i � ˙� , balayage in steps (cf. (18)) yields

Bal0.�i; ˙� / D Bal0.Bal0.�i; ˙i;�i /;˙�/ D Bal0.�i; ˙i;�i/ D b�i:

The second step follows because b�i is supported on @˙i;�i which is included in @˙� .
Hence

Bal0.�2;˙�/ D Bal0.�2j˙� C �1 C � � � C �m; ˙�/

D �2j˙� C
mX

iD1
Bal0.�i; ˙�/

D �2j˙� C
mX

iD1
b�i:

Likewise,

Bal0.ıai ; ˙�/ D Bal0.Bal0.ıai ; ˙i;�i /;˙�/ D Bal0.ıai ; ˙i;�i / D bıai :

1The mass of a signed measure � is defined as k�k WD R
d�.
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Hence, we obtain the following representation of 	 :

	 D .1C q/ �2j˙� C .1C q/
mX

iD1
b�i �

mX

iD1
qi
bıai : (27)

We show that the weighted logarithmic potential of 	 satisfies (14). Let x 2 ˙� .
Then x 2 ˙i;�i for every 1 � i � m and, by (17) and (24), for every 1 � i � m

Ub�i
0 .x/ D U�i

0 .x/C Ci on ˙i;�i ;

U
bıai
0 .x/ D U

ıai
0 .x/�

1

2
log

1C ti
2

on ˙i;�i :

Hence, computing the logarithmic potential of 	 in (27) yields, after simplification,

U	
0 .x/CQ.x/ D .1C q/U�2

0 .x/C
mX

iD1



.1C q/Ci C qi

2
log

1C ti
2

�
; x 2 ˙� :

Since U�2
0 .x/ D W0.S

2/, the weighted potential of 	 is constant on ˙� ; i.e., 	 is a
signed equilibrium on˙� associated with Q and, by uniqueness, �˙� ;Q D 	 and

F˙� ;Q D .1C q/W0.S
2/C

mX

iD1



.1C q/Ci C qi

2
log

1C ti
2

�
:

Let x 2 ˙c
� . Then x 2 ˙ c

i0;�i0
for some i0 2 f1; : : : ;mg and x 2 ˙i;�i for i ¤ i0.

Using (27), (23), and (24),

U
�˙� ;Q

0 .x/C Q.x/ D F˙� ;Q C .1C q/

�
U
b�i0
0 .x/�

�
U
�i0
0 .x/C Ci0

	

C qi0

2
log

.1C �i0 / .1 � ti0 /

.1 � �i0 / .1C ti0 /
:

(28)

Observe that the square-bracketed expression is � 0 by (17). Because of
ti0 < �i0 < 1, the ratio under the logarithm is > 1 and the logarithm tends to
zero as �i0 goes to ti0 and the logarithm tends to C1 as �i0 approaches 1 from
below. Using (23) again, we derive

U
�˙� ;Q

0 .x/C Q.x/ D .1C q/W0.˙i0;�i0
/C

mX

iD1;
i¤i0



.1C q/Ci C qi

2
log

1C ti
2

�

Cqi0

2
log

1C ti0
2
C f .ti0 / � f .�i0 /; (29)
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where

f .u/ WD 1C q � qi0

2
log.1C u/C qi0

2
log.1 � u/; �1 < u < 1: (30)

The function f has a unique maximum at u� D 1 � 2qi0
1Cq in the interval .�1; 1/ for

0 < qi0 < 1C q. Assuming that �1 < ti0 < u < 1, f 0.u/ < 0 if and only if

max
n
ti0 ; 1�

2qi0

1C q

o
< u < 1 , 0 < 2.1�u/ < min

n 4qi0

1C q
; �2i0

o
D min

n
�2i0 ; �

2
i0

o
:

By assumption, �i0 � �i0 . Hence, the infimum of the weighted potential of �˙� ;Q in
the set ˙c

i0;�i0
is assumed on its boundary. Continuity of the potentials in (28) yields

U
�˙� ;Q

0 .x/C Q.x/ � F˙� ;Q on˙ c
i0;�i0

:

As i0 was determined by x 2 ˙ c
� , we deduce that the last relation holds on ˙c

� .
Summarizing, for each � � �

U
�˙� ;Q

0 .x/C Q.x/ � F˙� ;Q on ˙ c
� ; (31)

U
�˙� ;Q

0 .x/C Q.x/ D F˙� ;Q on ˙� (32)

and from (27) and (25),

�˙� ;Q D .1C q/ �2j˙� C .1C q/
mX

iD1



�2i
4
� �

2
i

4

�
ˇi:

It is not difficult to see that the signed equilibrium �˙� ;Q becomes a positive measure,
and at the same time satisfies the characterization inequalities (11) and (12), if and
only if � D �. By Proposition 1(d), �Q D �˙�;Q D .1C q/ �2j˙� . ut

Theorem 1 and [5, Corollary 13] yield the following result.

Corollary 1 Under the assumptions of Theorem 1, the optimal logarithmic energy
N-point configurations w.r.t. Q are contained in SQ for every N � 2.

Proof From [5, Corollary 13] we have that the optimal N-point configurations lie in

eSQ D fx W U
�Q
0 .x/C Q.x/ � FQg:

The strict monotonicity of the function f in (30) yieldseSQ D SQ. ut

Remark 4 Theorem 1 and Corollary 1 are illustrated in Figs. 1 and 2 for two and
three point sources, respectively. Observe, that the density of the (approximate) log-
optimal configuration approaches the normalized surface area of the equilibrium
support SQ D ˙�.
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Fig. 1 Approximate log-optimal points for m D 2, N D 4000 with q1 D q2 D 1
4
, a1 D .0; 0; 1/

and a2 D .
p

91

10
; 0;� 3

10
/ or a2 D .

4
p

5

9
; 0;� 1

9
/

Fig. 2 Approximate log-optimal points for m D 3, N D 4000 with q1 D 1
4
, q2 D 1

8
, q3 D 1

20
,

a1 D .0; 0; 1/, a2 D .
p

91

10
; 0;� 3

10
/, and a3 D .0;

p

3

2
;� 1

2
/

Remark 5 The objective function for the optimization problem (7) with the discrete
external field (13) is

EQ;N.x1; : : : ; xN/ D
X

1�i¤j�N

ks.xi; xj/C 2.N � 1/
mX

iD1
qi

NX

jD1
ksi.ai; xj/;

where k.x; y/ is the Riesz kernel defined at the beginning of Sect. 1. The standard
spherical parametrisation, xi D .sin.�i/ cos.i/; sin.�i/ sin.i/; cos.�i// 2 S

2

for �i 2 Œ0; �� and i 2 Œ0; 2�/ is used to avoid the non-linear constraints
jxij D 1; i D 1; : : : ;N. This introduces singularities at the poles � D 0; � , one of
which can be avoided by using the rotational invariance of the objective function
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to place the first external field at the North Pole. For �i ¤ 0; � the gradient
of EQ;N.�1; 1; : : : ; �N ; N/ can be calculated for use in a nonlinear optimization
method.

Point sets fx1; : : : ; xNg that provide approximate optimal s-energy configurations
were obtained using this spherical parametrisation of the points and applying a
nonlinear optimization method, for example a limited memory BFGS method for
bound constrained problems [13], to find a local minimum of EQ;N . The initial
point sets fx1; : : : ; xNg used as starting points for the nonlinear optimization were
uniformly distributed on S

2, so did not reflect the structure of the external fields.
A local perturbation of the point set achieving a local minimum was then used to
generate a new starting point and the nonlinear optimization applied again. The
best local minimizer found provided an approximation (upper bound) on the global
minimum of EQ;N . Different local minima arose from the fine structure of the points
within their support.

The results above lend themselves to the following generalization. Given m
points a1; : : : ; am 2 S

2, for each i D 1; : : : ;m let i be a radially-symmetric measure
centered at ai and supported on˙ c

i;
i
for some 
i > 0 that has absolutely continuous

density with respect to �2; i.e.,

di.x/ D fi.hx; aii/ d�2.x/; fi.u/ D 0 on

�
� 1;

q
1 � 
2i =2


: (33)

Let qi WD kik D
R

di, 1 � i � m, and define the external field

Q�.x/ WD
mX

iD1
Ui
0 .x/ D

mX

iD1

Z
log

1

jx� aij di.x/; (34)

where � D .1; : : : ; m/. Then the following theorem holds.

Theorem 2 Let d D 2 and s D 0. Let Q� be defined by (34) and �, ˙� be defined
by (20), (21). Suppose that ˙c

i;�i
\ ˙ c

j;�j
D ;, 1 � i < j � m. Then the logarithmic

extremal measure associated with Q� is �Q� D .1C q/ �2j˙� and the extremal
support is SQ� D ˙� .
Proof The proof proceeds as in the proof of Theorem 1 with the adaption that the
balayage measure of i is given by

b i D Bal0.i; ˙i;�i / D kkˇi D qi ˇi;

which follows easily from the hypothesis 
i � �i and the uniqueness of balayage
measures. ut

We next formulate the analog of Theorem 1 in the complex plane C. Let us fix
one of the charges, say am, at the North Pole p, which will also serve as the center of
the Kelvin transformation K (stereographic projection, or equivalently, inversion
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about the center p) with radius
p
2 onto the equatorial plane. Set wi WD K .ai/,

1 � i � m. The image of am under the Kelvin transformation is the “point at
infinity” in C. Letting z D K .x/, x 2 S

2, we can utilize the following formulas

jx � pj D 2
p
1C jzj2 ; jx � aij D 2jz� wijp

1C jzj2p1C jwij2
; 1 � i � m � 1

to convert the continuous minimal energy problem (cf. (6)) and the discrete minimal
energy problem (cf. (7)) on the sphere to their analogous forms in the complex
plane C. Neglecting a constant term, we obtain in the complex plane the external
field

eQ.z/ WD
m�1X

iD1
qi log

1

jz� wij C .1C q/ log
p
1C jzj2; z 2 C: (35)

This external field is admissible in the sense of Saff-Totik [12], since

lim
jzj!1

�eQ.z/ � log jzj� D lim
jzj!1

qm log jzj D 1:

Therefore, there is a unique equilibrium measure �eQ characterized by variational
inequalities similar to the ones in Proposition 1(d). The following theorem giving
the extremal support SeQ and the extremal measure �eQ associated with the external

field eQ in (35) for sufficiently small qi’s is a direct consequence of Theorem 1.

Theorem 3 Let w1; : : : ;wm�1 2 C be fixed and q1; : : : ; qm be positive real
numbers with q D q1 C � � � C qm and eQ be the corresponding external field
given in (35). Further, let a1; : : : ; am�1 2 S

2 be the pre-images under the Kelvin
transformation K , i.e., wi D K .ai/, 1 � i � m � 1, and am D p. If the qi’s are
sufficiently small so that ˙c

i;�i
\ ˙ c

j;�j
D ;, 1 � i < j � m, where the spherical

caps ˙i;�i are defined in (21), then there are open discs D1; : : : ;Dm�1 in C with
wi 2 Di D K .˙i;�i /, 1 � i � m � 1, such that

SeQ D
(

z 2 C W jzj �
s
1C q � qm

qm

)

n
m�1[

iD1
Di: (36)

The extremal measure �eQ associated with eQ is given by

d�eQ.z/ D
1C q

� .1C jzj2/2 dA.z/; (37)

where dA denotes the Lebesgue area measure in the complex plane.

Proof The proof follows by a straight forward application of the Kelvin transfor-
mation to the weighted potential U

�Q
0 .x/C Q.x/ and using the identity relating the

regular (not normalized) Lebesgue measure on the sphere and the area measure on
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the complex plane

4�

jx � pj2 d�2.x/ D 1

1C jzj2 dA.z/:

This change of variables yields the identity

U
�Q
0 .x/C Q.x/ D U

�eQ
0 .z/CeQ.z/C const

from which, utilizing (31) and (32), one derives

U
�eQ
0 .z/CeQ.z/ � C in C; (38)

U
�eQ
0 .z/CeQ.z/ D C on SeQ; (39)

which implies that �eQ is the equilibrium measure by Saff and Totik [12, Theo-
rem 1.3]. ut
Remark 6 At first it seems like a surprising fact that the equilibrium measure in
Theorem 2 is uniform on SQ (i.e. has constant density). However, this can be easily
seen alternatively from the planar version Theorem 3. Once we derive that the
support SeQ is given by (36), we can recover the measure �eQ by applying Gauss’
theorem (cf. [12, Theorem II.1.3]), namely on any subregion of SeQ we have

d�eQ D �
1

2�
�U

�eQdA.z/ D 1

2�
�eQ.z/ D 1C q

�.1C jzj2/2 dA.z/:

Recall that on this subregion log jz � wij is harmonic for all i D 1; : : : ;m � 1.
As d�2.x/ D dA.z/=Œ�.1 C jzj2/2�, we get that �Q is the normalized Lebesgue
surface measure on SQ. Observe, that the same argument will apply to the setting of
Theorem 5 (d D 2; s D 0), from which we derive �Q D .1C q/ �2jSQ

even in the
case when ˙c

�i
are not disjoint. Of course, we don’t know the equilibrium support

SQ in this case. For related results see [1, 2].

4 Riesz .d � 2/-Energy Interactions on S
d, d � 3

The case of .d � 2/-energy interactions on S
d, d � 3, and an external field Q

given by (13) is considerably more involved as the balayage measures utilized to
determine the signed equilibrium on ˙� diminish their masses. This phenomenon
yields an implicit nonlinear system for the critical values of the radii �1; : : : ; �m

(see (54) and (55)) characterizing the regions of electrostatic influence.
Let d � 3 and 0 < d � 2 � s < d. Let ˚s.ti/ WD Fs.˙i;�i/ be the Mhaskar-Saff

Fs-functional associated with the external field Qi.x/ WD qi jx� aij�s evaluated for
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the spherical cap ˙i;�i . Then the signed s-equilibrium measure �i;s WD �˙i;�i ;Qi;s on
˙i;�i associated with Qi is given by (see [4, Theorem 11 and 15])

�i;s D ˚s.ti/

Ws.Sd/
Bals.�d; ˙i;�i /� qi Bals.ıai ; ˙i;�i /: (40)

For d � 2 < s < d this signed measure is absolutely continuous

d�i;s.x/ D !d�1
!d

�0
i;s.u/

�
1 � u2

�d=2�1
du d�d�1.x/; x D .

p
1 � u2 x; u/ 2 ˙i;�i ;

with density function

�0
i;s.u/ D

1

Ws.Sd/

� .d=2/

� .d � s=2/



1 � ti
1 � u

�d=2 
 ti � u

1 � ti

�.s�d/=2

�
(

˚s.ti/ 2F1
�

1; d=2
1 � .d � s/=2I

ti � u

1 � u

	
� qi 2

d�s

�i
d

)

:

(41)

For the ratio !d�1

!d
see (4), a formula for the Riesz s-energy W0.S

d/ is given in (1),
and 2F1 denotes Olver’s regularized 2F1-hypergeometric function [11, Eq. 15.2.2].
For s D d � 2 the signed .d � 2/-equilibrium

�i;d�2 D ˚d�2.ti/
Wd�2.Sd/

�d j˙i;�i
C 1 � ti

2

�
1 � t2i

�d=2�1
�
˚d�2.ti/� 4qi

�d
i


ˇi (42)

has, like in the logarithmic case (see (22)), a boundary-supported component ˇi,
which is the normalized Lebesgue measure on the boundary circle of ˙i;� . Observe
that in either case the signed equilibrium has a negative component if and only if

˚s.ti/ � 2
d�sqi

�d
i

< 0; where 2.1� ti/ D �2i : (43)

The weighted s-potential of �i;s, d � 2 < s < d, satisfies [4, Theorem 11]

U�i;s
s .z/C Qi.z/ D ˚s.ti/; z 2 ˙i;�i ; (44)

U�i;s
s .z/C Qi.z/ D ˚s.ti/C qi

Œ2.1� �i/�s=2
I

 
2

1 � ti

�i � ti
1C �i

I d � s

2
;

s

2

!

� ˚s.ti/ I

 
�i � ti
1C �i

I d � s

2
;

s

2

!

; z 2 S
d n˙i;�i ;

(45)
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where z D .
q
1 � �2i z; �i/ 2 S

d, �1 � �i � 1 and z 2 S
d�1, and

I.xI a; b/ WD B.xI a; b/
B.a; b/

; B.a; b/ WD B.1I a; b/; B.xI a; b/ WD
Z x

0

ua�1.1�u/b�1du

are the regularized incomplete beta function, the beta function, and the incomplete
beta function [11, Ch. 5 and 8]; whereas [4, Lemmas 33 and 36]

U�i;d�2

d�2 .z/C Qi.z/ D ˚d�2.ti/; z 2 ˙i;�i ; (46)

U�i;d�2

d�2 .z/C Qi.z/ D ˚d�2.ti/


1C ti
1C �i

�d=2�1
C qi

.2.1� �i//
d=2�1

� qi

�d�2
i



1C ti
1C �i

�d=2�1
; z 2 S

d n˙i;�i :

(47)

The last relation follow from (45) if s is changed to d � 2.
In the proof of our main result for s D d � 2, d � 3, we need the analog of (31),

which we derive from a similar result for the weighted potential (45). As this is of
independent interest, we state and prove the following lemma for d � 2 � s < d.

Lemma 1 Let d � 3 and d � 2 � s < d. If (43) is satisfied, then the weighted
s-potential of the signed s-equilibrium �i;s satisfies the variational inequalities

U�i;s
s .z/C Qi.z/ D ˚s.ti/; z 2 ˙i;�i ; (48)

U�i;s
s .z/C Qi.z/ > ˚s.ti/; z 2 S

d n˙i;�i : (49)

Furthermore, both relations remain valid if equality is allowed in (43).

Proof The first equality (48) was established in [4, Theorems 11 and 15].
Let d � 3 and d � 2 � s < d. The right-hand side of (45) is a function of �i

with ti < �i � 1. We denote it by G.�i/. Using the integral form of the incomplete
regularized beta function, we get

B
�d � s

2
;

s

2

	 �
G.�i/� ˚s.ti/

	
D


1 � ti
1 � �i

�s=2
2d�sqi

�d
i

�
Z �i�ti

1C�i

0

u
d�s
2 �1



1 � 2 u

1 � ti

� s
2�1

du �˚s.ti/
Z �i�ti

1C�i

0

u
d�s
2 �1 .1 � u/

s
2�1 du:
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Let (43) be satisfied. Then

B
�d � s

2
;

s

2

	 G.�i/� ˚s.ti/

˚s.ti/
>

�
1 � ti
1 � �i

s=2 Z �i�ti
1C�i

0

u
d�s
2 �1



1 � 2

1 � ti
u

� s
2�1

du

�
Z �i�ti

1C�i

0

u
d�s
2 �1 .1 � u/

s
2�1 du:

The square-bracketed expression is > 1 for �1 < ti < �i � 1. Since 2
1�ti

> 1, the
first integrand is bounded from below by the second integrand if s

2
� 1 � 0. In the

case s
2
� 1 > 0, we observe that for 0 � u � �i�ti

1C�i
,

�
1 � ti
1 � �i

s=2 

1 � 2

1 � ti
u

� s
2�1
D 1 � ti
1 � �i



1 � ti
1 � �i

� 2

1 � �i
u

� s
2�1

>



1 � ti
1 � �i

� 2

1� �i
u

� s
2�1

� .1 � u/
s
2�1 :

The estimates are strict in both cases, which yields (49). Moreover, examining these
inequalities shows that (49) still holds when (43) is an equality. ut

We are now ready to state and prove the second main result.

Theorem 4 Let d � 3 and s D d � 2. Let Q be defined by (13). Suppose the
positive charges q1; : : : ; qm are sufficiently small. Then there exists a critical � D
.�1; : : : ; �m/, uniquely defined by these charges, such that ˙c

�i
\ ˙ c

�j
D ;, 1 �

i < j � m, and the .d � 2/-extremal measure associated with Q is �Q D C �d j˙�
for a uniquely defined normalization constant C > 1 and the extremal support is
SQ D ˙�.

Furthermore, an optimal .d � 2/-energy N-point configuration w.r.t. Q is
contained in SQ for every N � 2.

Proof Let � D .�1; : : : ; �m/ be a vector of m positive numbers such that
˙ c

i;�i
\˙ c

i;�j
D ;, 1 � i < j � m. We consider the signed measure

	 WD C Bald�2.�d; ˙�/� Bald�2.q1 ıa1 C � � � C qm ıam ; ˙�/:

As balayage under Riesz .d � 2/-kernel interactions satisfies (16), we have

U	
d�2.z/C Q.z/ D C U�d

d�2.z/ D C Wd�2.Sd/; z 2 ˙� ;
U	

d�2.z/C Q.z/ � C U
Bald�2.�d ;˙� /

d�2 .z/; z 2 S
d n˙� :
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If the normalization constant C D C.�/ is chosen such that k	k D 	.˙� / D 1,
then 	 is a signed .d � 2/-equilibrium measure on ˙� associated with Q and, by
uniqueness, �˙� ;Q D 	 and F˙� ;Q D Fs.˙�/ with C D Fs.˙�/=Wd�2.Sd/.

We show the variational inequality for z 2 S
d n ˙� and proceed in a similar

fashion as in the proof of Theorem 1. For i D 1; : : : ;m let

�i WD �d j˙c
i;�i

; b�i WD Bald�2.�i; ˙i;�i /;
bıai WD Bald�2.ıai ; ˙i;�i /; (50)

where ti is the projection of the boundary circle @˙i;�i onto the ai-axis; recall that
2.1 � ti/ D �2i . As the open spherical caps ˙ c

i;�i
, 1 � i � m, do not intersect for

i ¤ j, we have @˙�i 	 @˙� . Balayage in steps yields

Bald�2.�i; ˙�/ D Bald�2.�i; ˙i;�i / D b�i D Wd�2.Sd/
1 � ti
2

�
1 � t2i

�d=2�1
ˇi;

Bald�2.ıai ; ˙�/ D Bald�2.ıai ; ˙i;�i / D bıai D
4

�d
i

1 � ti
2

�
1 � t2i

�d=2�1
ˇi;

where the respective last step follow from [4, Lemmas 33 and 36] and it is crucial
that b�i and bıai are supported on @˙i;�i and thus @˙� , so that

	 D C �d j˙� C C
mX

iD1
b�i �

mX

iD1
qi
bıai (51)

D C �d j˙� C
mX

iD1



C Wd�2.Sd/ � 4qi

�d
i

�
1 � ti
2

�
1 � t2i

�d=2�1
ˇi: (52)

Observe, the signed measure 	 has a negative component if and only if

C Wd�2.Sd/ � 4qi

�d
i

< 0 for at least one i 2 f1; : : : ;mg:

Let z 2 S
d n ˙� . Then z 2 ˙ c

i0;�i0
for some i0 2 f1; : : : ;mg and z 2 ˙i;�i for all

i ¤ i0. Hence,

U	
d�2.z/C Q.z/ D C Wd�2.Sd/C C



U
b�i0
d�2.z/� U

�i0
d�2.z/

�

� qi0



U
cıai0
d�2.z/ �U

ıai0
d�2.z/

�
:

Using (19), from [4, Lemmas 33]

U
b�i0
d�2.z/� U

�i0
d�2.z/ D Wd�2.Sd/



1C ti0
1C �i0

�d=2�1
�Wd�2.Sd/ < 0
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and from [4, Lemmas 36],

U
cıai0
d�2.z/� U

ıai0
d�2.z/ D

1

�d�2
i0



1C ti0
1C �i0

�d=2�1
� 1

.2.1� �i0 //
d=2�1 < 0I

hence

U	
d�2.z/C Q.z/ D C Wd�2.Sd/



1C ti0
1C �i0

�d=2�1
� qi0

�d�2
i0



1C ti0
1C �i0

�d=2�1

C qi0

.2.1� �i0 //
d=2�1 :

Observe the similarity to (47). Essentially the same argument as in the proof of
Lemma 1 shows that

U	
d�2.z/CQ.z/ > C Wd�2.Sd/; z 2 ˙i0;�i0

in the case when

C Wd�2.Sd/ � 4qi0

�d
i0

� 0; i D 1; : : : ;m: (53)

It is not difficult to see that near @˙i0;�i0
the following asymptotics holds:

U	
d�2.z/C Q.z/ D C Wd�2.Sd/C



d

2
� 1

� 
4qi0

�d
i0

� C W0.S
d/

!
�i0 � ti0
1C ti0

C 1

2



d

2
� 1

�
d

2

 
4qi0

�d
i0

2ti0
1C ti0

C C W0.S
d/

!

�i0 � ti0
1C ti0

�2

C O
�
�i0 � ti0

1C ti0

�3 	
as �i0 ! tCi0 I

i.e., the weighted .d� 2/-potential of 	 will be negative sufficiently close to @˙i0;�i0

if (53) does not hold. Hence, if the necessary conditions (53) are satisfied, then

U	
d�2.z/C Q.z/ > C Wd�2.Sd/; z 2 ˙ c

� :

Suppose, the system

C Wd�2.Sd/ D 4qi

�d
i

; i D 1; : : : ;m; (54)

C �d.˙�/ D 1; (55)
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subject to the geometric side conditions

˙i;�i \˙j;�j D ;; 1 � i < j � m; (56)

has a solution .�;C/ with � D �.C/ 2 .0; 2/m and C > 0, then �˙� ;Q D 	 D
C �d j˙� with F˙� ;Q D C Wd�2.Sd/ satisfies the variational inequalities

U
�˙� ;Q

d�2 .z/C Q.z/ D F˙� ;Q; z 2 ˙� ;
U
�˙� ;Q

d�2 .z/C Q.z/ > F˙� ;Q; z 2 ˙ c
� ;

(57)

and thus, by Proposition 1(d), �Q D �˙� ;Q D C �d j˙� and SQ D ˙� . Observe that,

given a collection of pairwise different points a1; : : : ; am 2 S
d, for sufficiently small

charges q1; : : : ; qm, there always exists such a solution. In particular, this is the case
if (55) holds for �i D Œ4qi=Wd�2.Sd/�1=d.

To determine the parameter C, denote g.C/ WD C�d.˙�/, where

�i WD �i.C/ D
�

4qi

CWd�2.Sd/

1=d

; i D 1; : : : ;m:

As �i D �i.C/ are decreasing and continuous functions for all i D 1; : : : ;m, we
derive that �d.˙�/ is an increasing and continuous function of C and so is g.C/.
Also, note that g.1/ D �d.˙�/ < 1, and limC!1 g.C/ D 1. Therefore, there
exists a unique solution C� of the equation

C�d

 
m\

iD1
˙i;�i

!

D 1;

where the �i’s are defined by (54).
Finally, we invoke [5, Corollary 13] and (57) to conclude that an optimal .d�2/-

energy N-point configuration w.r.t. Q is contained in SQ. ut

5 Regions of Electrostatic Influence and Optimal
.d � 2/-Energy Points

In this section we consider what happens when the regions of electrostatic influence
(see Remark 3 after Theorem 1) have intersecting interiors. We are going to utilize
the techniques in the proofs of [5, Theorem 14 and Corollary 15] to show that the
support of the .d � 2/-equilibrium measure associated with the external field (13)
satisfies SQ 	 ˙�, and hence the optimal .d � 2/-energy points stay away from˙c

� .
We are going to prove our result for s in the range d � 2 � s < d.
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Let a1; : : : ; am 2 S
d be m fixed points with associated positive charges

q1; : : : ; qm. We define for d � 2 � s < d the external field

Qs.x/ WD
mX

iD1
qi ks.ai; x/; x 2 S

d: (58)

We introduce the reduced charges

qi WD
qi

1C q � qi
; 1 � i � m:

Let ˚ s.ti/ be the Mhaskar-Saff Fs-functional associated with the external field
qi ks.ai; �/ evaluated for the spherical cap ˙i;�i (cf. Sect. 4) where it is used that
ti and �i are related by 2.1 � ti/ D �2i . Let � i denote the unique solution of the
equation

˚ s.ti/ D 2d�sqi

�d
i

; 1 � i � m: (59)

Theorem 5 Let d � 2 � s < d, d � 2, and let � D .�1; : : : ; �m/ be the vector
of solutions of (59). Then the support SQs of the s-extremal measure �Qs associated
with the external field Qs defined in (58) is contained in the set ˙� D Tm

iD1 ˙i;� i
. If

d D 2 and s D 0, then � i D �i, 1 � i � m, where �i is defined in (20).
Furthermore, no point of an optimal N-point configuration w.r.t. Qs lies in ˙i;� i

,
1 � i � m.

Proof First, we consider the case d � 2 < s < d. Let i be fixed. Since the external
field (58) has a singularity at ai, it is true that SQs 	 ˙i;
 for some 
 > 0. Moreover,
as noted after Definition 2, SQs 	 supp.�C

˙i;� ;Qs
/ for all � such that SQs 	 ˙i;� . It is

easy to see that the signed equilibrium on ˙i;� associated with Qs is given by

�˙i;� ;Qs D
1CPm

jD1 qj kbıajk
kb�ik b�i �

mX

jD1
qj
bıaj ; (60)

where

b�i D Bals.�d; ˙i;� /; bıaj D Bals.ıaj ; ˙i;� /:

Observe, that if aj 2 ˙i;� then bıaj D ıaj . We will show that for all 
 < � < � i
the signed s-equilibrium measure in (60) will be negative near the boundary @˙i;� .
Indeed, with the convention that the inequality between two signed measures



200 J. S. Brauchart et al.

�1 � �2 means that �2 � �1 is a non-negative measure, we have

�˙i;� ;Qs �
1CPm

jD1 qj kbıajk
kb�ik b�i � qi

bıai

� .1C q � qi/

 
1C qi kbıaik
kb�ik b�i � qi

bıai

!

D .1C q � qi/

"
˚ s.t/

Ws.Sd/
b�i � qi

bıai

#

; (61)

where 2.1 � t/ D �2. The square-bracketed part is the signed equilibrium measure
on ˙i;� associated with the external field qi ks.ai; �/ and has a negative component

near the boundary @˙i;� if and only if ˚ s.t/ � 2d�sqi
�d < 0 as noted after (42). This

inequality holds whenever 
 < � < � i and the inclusion relation SQs 	 ˙i;� for
all 
 < � < � i can now be easily deduced. As i was arbitrarily fixed, we derive
SQs 	 ˙� . As an optimal N-point configuration w.r.t. Qs is confined to SQs , no point
of such a configuration lies in ˙c

i;� i
, 1 � i � m.

In order to obtain the result of the theorem for d D 2 and s D 0, we use that
balayage under logarithmic interaction preserves mass. Hence

�˙i;� ;Q0 D ˚0.t/b�i �
mX

jD1
qj
bıaj � ˚0.t/b�i � qi

bıai ; ˚0.t/ WD 1C q

and the characteristic equation ˚0.t/ D 4qi

�2
reduces to �2 D 4qi

1Cqi
. As before,

no point of an optimal N-point configuration w.r.t. Q0 lies in ˙ c
i;� i

, 1 � i � m
(as illustrated in Fig. 3). This completes the proof. ut

Fig. 3 Approximate Coulomb-optimal points for m D 2, N D 4000, q1 D q2 D 1
4
, a1 D .0; 0; 1/

and a2 D .0;
p

91

10
;� 3

10
/ or a2 D .0;

p

91

10
; 3
10
/



Logarithmic and Riesz Equilibrium for Multiple Sources on the Sphere 201

Example 1 Observe, that if the charges q1; : : : ; qm are selected sufficiently small
so that for all i we have aj 2 ˙�i , then close to the boundary @˙�i equality holds
in (61). So, the critical �i can be determined by solving the equation

˚ s.ti/� 2d�sqi=�
d
i D 0;

where

˚ s.ti/ D Ws.S
d/

1C qikbıti;sk
kBals.�2;˙�i/k

: (62)

Motivated by this, we consider the important case of Coulomb interaction potential,
namely when d D 2 and s D 1. We find that (see [4, Lemmas 29 and 30])

W1.S
2/ D 1; kbıti;1k D

arcsin ti
�

C 1
2
; kBals.�2;˙�i/k D

q
1 � t2i C arcsin ti

�
C 1
2
:

Maximizing the Mhaskar-Saff F1-functional ˚1.t/ is equivalent to solving the
equation

�.1C qi=2/C qi arcsin tiq
1 � t2i C arcsin ti C �=2

D qi

1 � ti
:

An equivalent equation in term of the geodesic radius ˛i of the cap ˙ c
�i

of
electrostatic influence, so ti D cos.˛i/ is

.Nqi C 1/� cos.˛/ � Nqi˛ cos.˛/C Nqi sin.˛/ � � D 0:

Problem 1 The two images in Fig. 4 compare approximate log-optimal configu-
rations with 4000 and 8000 points. The two circles are the boundaries of ˙1;�1

and ˙2;�2 . It is evident that optimal log-energy points stay away from the caps
of electrostatic influence ˙ c

1;�1
and ˙ c

2;�2
of the two charges. In the limit, the log-

optimal points approach the log-equilibrium support, which seems to be a smooth
region excluding these caps of electrostatic influence. We conclude this section
by posing as an open problem, the precise determination of the support in such
a case.
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Fig. 4 Approximate log-optimal points for m D 2, N D 4000 (left) and N D 8000 (right),

q1 D q2 D 1
4
, a1 D .0; 0; 1/, a2 D .

p

91

10
; 0; 3

10
/
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Numerical Analysis and Computational
Solution of Integro-Differential
Equations

Hermann Brunner

Dedicated to Ian Sloan, with my best wishes on your 80th
birthday.

Abstract The aim of this paper is to describe the current state of the numerical
analysis and the computational solution of non-standard integro-differential equa-
tions of Volterra and Fredholm types that arise in various applications. In order to do
so, we first give a brief review of recent results concerning the numerical analysis of
standard (ordinary and partial) Volterra and Fredholm integro-differential equations,
with the focus being on collocation and (continuous and discontinuous) Galerkin
methods. In the second part of the paper we look at the extension of these results
to various classes of non-standard integro-differential equations type that arise as
mathematical models in applications. We shall see that in addition to numerous
open problems in the numerical analysis of such equations, many challenges in the
computational solution of non-standard Volterra and Fredholm integro-differential
equations are waiting to be addressed.

1 Introduction

In applications integro-differential equations (IDEs) of Volterra or Fredholm type
often arise in ‘non-standard’ form. While the numerical analysis and the compu-
tational solution of standard IDEs are now well understood, this is largely not
true for many of their non-standard versions. Thus, the aim of this paper is to
present first a concise overview of collocation and Galerkin methods for standard
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Volterra and Fredholm IDEs (with the focus being on the former class of equations)
and then to describe various classes of non-standard IDEs where the analysis and
the implementation of those numerical schemes is rather incomplete. Owing to
limitation of space we will deal with partial (e.g. parabolic) IDEs only in passing,
as the spatial discretization of such IDEs leads to a (usually large) system of IDEs
in time.

1.1 Standard Volterra Integro-Differential Equations

The generic (standard) forms of linear and nonlinear first-order Volterra integro-
differential equations (VIDEs) are respectively given by

u0.t/ D a.t/u.t/C f .t/C
Z t

0

.t � s/˛�1K.t; s/u.s/ ds; t 2 I WD Œ0;T�; (1)

and

u0.t/ D F.t; u.t//C
Z t

0

.t � s/˛�1k.t; s; u.s// ds; t 2 I .0 < ˛ � 1/; (2)

with 0 < ˛ � 1 and complemented by an initial condition u.0/ D u0. The kernels
K D K.t; s/ and k D k.t; s; u/ are assumed to be continuous on their respective
domains D WD f.t; s/ W 0 � s � t � Tg and D � R . If 0 < ˛ < 1 we will refer
to (1) and (2) as weakly singular VIDEs.

In applications, nonlinear VIDEs usually occur in Hammerstein form; that is, the
function k.t; s; u/ in (2) is

k.t; s; u/ D K.t; s/G.s; u/; (3)

where G D G.s; u/ is a smooth function in s and u.
The spatial discretization (by, e.g., finite element or finite difference techniques)

of parabolic partial VIDEs for u D u.t; x/, for example

@u

@t
D A uC

Z t

0

.t � s/˛�1K.t; s/.Bu/.s; �/ ds; x 2 ˝ 	 R
d; t 2 I; (4)

where A denotes a linear, uniformly elliptic spatial differential operator (e.g. A D
�, the spatial Laplace operator) and B is a spatial differential operator of order not
exceeding 2, leads to a (usually very large) system of VIDEs (1). If the partial VIDE
is of hyperbolic type, e.g.

@2u

@t2
D A uC

Z t

0

.t � s/˛�1K.t; s/.Bu/.s; �/ ds; (5)
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spatial discretization yields a (large) system of ordinary second-order VIDEs that is
the matrix analogue of the VIDE

u.r/.t/ D
r�1X

jD0
aj.t/u

. j/.t/C f .t/C
Z t

0

rX

jD0
Kj.t; s/u

. j/.s/ ds; t 2 I; (6)

with r D 2.

1.2 Non-standard Integro-Differential Equations

VIDEs arising in the mathematical modelling of physical or biological phenomena
(for example, in materials with memory, in population dynamics, and in chemical
reaction-diffusion processes) often occur in ‘non-standard’ form. Typical examples
are

u0.t/ D F.t; u.t//C
Z t

0

k.t � s/G.u.t/; u.s// ds; u.0/ D u0I (7)

"u0.t/ D F.t; u.t//C
Z t

�1
k.t � s/G.u.t/; u.s// ds; t > 0 .0 < "� 1/ (8)

(singularly perturbed VIDE), with u.t/ D .t/; .t � 0/; and

u0.t/ D a.t/u.t/C f .t/C
Z t

0

K.t; s/G.u.t � s//G.u.s// ds; u.0/ D u0 (9)

(generalized auto-convolution VIDE). A representative example corresponds to
G.u/ D uˇ .ˇ > 0/.

In these VIDEs the nonlinearity under the integral sign does not only depend on
u.s/ but also on u.t/ or on u.t � s/. We illustrate this, also for further reference,
by means of six representative examples. They show that these equations may also
depend on a (constant or variable) delay 	 > 0.

Example 1 (Volterrra [95–98]; see also Brunner [17]) The system of VIDEs

dN1.t/

dt
D N1.t/

�
"1 � �1N2.t/ �

Z t

t�	
F1.t � s/N1.s/ ds

	
; (10)

dN2.t/

dt
D N2.t/

�
� "2 C �2N1.t/ �

Z t

t�	
F2.t � s/N2.s/ ds

	
; (11)

where the "i and �i are given positive parameters, is a mathematical model
describing the size of the populations N1.t/ and N2.t/ of interacting predators and



208 H. Brunner

preys. The integral operators describing these VIDEs contain a constant delay 	 > 0.
(See also Cushing [38, Ch. 4] for related population growth models of interacting
species.)

Example 2 (Markowich and Renardy [65, 66]) The non-standard VIDE

�u0.t/ D b.t/uˇ.t/C
Z t

�1
k.t � s/

� u3.t/

u2.s/
� u.s/

	
ds; t � 0; (12)

is a mathematical model for the stretching (and recovery) of a filament or a sheet of
a certain molten polymer under a prescribed force. The constant � � 0 is related to
the Newtonian contribution to viscosity, and ˇ D 2 (polymeric filament) or ˇ D 1=2
(polymeric sheet). For small parameters 0 < � � 1 this is a singularly perturbed
VIDE. (See also Lodge et al. [58] and Jordan [48] for related mathematical models.)

Example 3 (Janno and von Wolfersdorf [47], von Wolfersdorf and Janno [99]) A
particular case of the VIDE of auto-convolution type,

u0.t/ D a.t/u.t/C f .t/C
Z t

0

K.t; s/u.t � s/u.s/ ds; t � 0; (13)

namely,

u0.t/C �

t
u.t/ D a.t/

Z t

0

u.t � s/u.s/ ds; t > 0; (14)

arises in the theory of Burgers’ turbulence. Details on the physical background of
the model can be found in the above papers and their references.

Example 4 (Burns et al. [32]) The mathematical modelling of the elastic motions
of a 3-degree of freedom airfoil with flap in a 2-dimensional incompressible flow
leads to a system of neutral Volterra functional differential equations of the form

d

dt

�
A0u.t/ �

Z 0

�	
A1.s/u.tC s/ ds

	
D B0u.t/C B1u.t � 	/C f .t/; t > 0 (15)

(	 > 0), with A0; A1.�/ and B0; B1 denoting square matrices in R
d�d (where

d D 8). The matrix A0 is singular (det A0 D 0 but rank A0 � 1); typically, its
last row consists of zeros. Compare also Ito and Turi [46] for details and additional
references.

Example 5 (Doležal [39, Ch. 5]) The related system of integro-differential alge-
braic equations (IDAEs)

A.t/u0.t/C B.t/u.t/ D f .t/C
Z t

0

.t � s/˛�1K.t; s/u.s/ ds; t � 0; (16)
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with ˛ D 1, arises in the theory of electrical networks. Here, A.�/; B.�/ and K.�; �/ are
square matrices in R

d�d .d � 2/, with det A.t/ D 0 for all t � 0 and rank A.t/ > 0.
A similar system of IDAEs occurs in the mathematical modelling of a hydraulic
circuit that feeds on a combustion process (cf. Nassirharand [78]). The paper by
Bulatov et al. [31] is concerned with the theory of IDAEs (16).

Example 6 Population growth models (Cushing [38]):

u0.t/ D u.t/
�
1 �

Z t

�1
k.t � s/u.s/ ds

	
; t > 0: (17)

See also Aves et al. [4] and its references.

Example 7 Thermal behavior for a confined reactive gas (Bebernes and Kassoy [8],
Bebernes and Bressan [6]):

ut ��u D ıeu C �.� � 1/=���1=vol.˝/
� Z

˝

ut.�; y/ dy; (18)

with u.t; x/ D 0 .x 2 @˝; t > 0/, u.0; x/ D u0.x/ (where ˝ 2 R
n is bounded with

boundary @˝), and ı > 0; � D 1 or � > 1. Note that this (Fredholm) integro-
differential equation is implicit in ut. The monograph by Bebernes and Eberly [7]
conveys the general framework of such combustion problems.

Example 8 Local chemical reaction-diffusion processes (Chadam et al. [35],
Chadam and Yin [34]): The VIDE

ut ��u D
Z

˝

H.u.�; y// dy; t > 0; x 2 ˝ 	 R
d; (19)

complemented by homogeneous Dirichlet or Neumann boundary conditions on @˝ ,
represents a mathematical model of chemical reaction-diffusion processes in which,
owing to the effects of a catalyst, the reaction occurs only at some local sites. A
typical example corresponds to H.u/ D eu. For certain (large) initial data u.0; x/ �
0 the solution blows up in finite time.

Example 9 Non-local reaction-diffusion equations with finite-time blow-up (Sou-
plet [89], Quittner and Souplet [83, Ch. V]):

ut ��u D a
Z t

0

up.s/ ds� buq; x 2 ˝ 	 R
d (20)

(a > 0; b > 0; p; q � 1), with u.0; x/ D u0.x/ � 0 .x 2 ˝/; u.t; x/ D 0 .x 2
@˝; t � 0/. For u0 with u0.x/ 6� 0, the solution blows up in finite time Tb (i.e.
ku.t; �/k1 !1 (as t! T�

b ) whenever p > q. For p � q the solution exists for all
t > 0 but is unbounded: lim supt!1 ju.t; �/j D 1.
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An analogous result holds for a similar partial VIDE containing integrals over both
time and space,

ut ��u D a
Z t

0

Z

˝

k.s/up.s; y/ dy ds� buq.t; �/: (21)

Example 10 Dynamics of price adjustment in a single commodity market i (Bélair
and Mackey [9]): If D.�/ and S.�/ denote, respectively, the demand and supply
functions for a particular commodity, and PD and PS are the demand and supply
prices, then a model for the relative variations in market price P D P.t/ is

1

P.t/
P0.t/ D F

�
D.PD/; S.PS/

�
; t � 0; (22)

subject to some appropriate initial condition. The function F D F.D; S/ is the price
range function (a simple example is F.D; S/ D D � S). The demand price

PD.t/ D
Z t

�1
KD.t � v/P.v/ dv

is the weighted average of all the past prices, where KD.t�s/ is a weight attached by
the consumer to a past market price P.s/ .�1 � s � t/. The weighting function KD

(the demand price kernel) is assumed to be normalized so that
Z 1

0

KD.s/ds D 1.

An analogous expression exists for the supply price PS: it is

PS.t/ D
Z t�Tmin

�1
KS.t � Tmin � v/P.v/ dv;

where Tmin denotes the minimum time which must elapse before a decision to alter
production is translated into an actual change of supply.

Example 11 Evolution of a spherical flame initiated by a point source energy input
and subject to heat loss (Audounet et al. [3], Rouzaud [84]):

��1=2
Z t

0

.t � s/�1=2u0.s/ ds D u.t/ log
�
u.t/

�C Eq.t/� �u3.t/; (23)

with u.0/ D 0. Here, the constant E > 0 and the function q.t/ � 0 are given; Eq.t/
is a point source energy input. It can be shown that there exists a ‘critical value’
� D �� for which the flame always quenches.

The monographs by Prüss [82] and by Appell et al. [2] contain, in addition to the
theory of VIDEs, additional applications of (ordinary and partial) VIDEs.



Numerical Analysis and Computational Solution of Integro-Differential Equations 211

We note that in many of the above examples the numerical analysis and
computational treatment of the respective integro-differential equations are as yet
little understood.

The paper is organized as follows. In Sect. 2 we give a concise review of
results on the optimal (global and local) order of convergence of collocation and
(continuous or discontinuous) Galerkin solutions for standard linear VIDEs. The
extension of the convergence analysis for collocation and Galerkin-type solutions
for various classes of non-standard VIDEs, including equations with delay argu-
ments, integro-algebraic equations and fractional evolution equations, is the subject
of Sect. 3. There we describe theoretical and computational issues that are waiting
to be addressed. In Sect. 4 we turn our attention to Volterra and Fredholm IDEs
whose solutions blow up in finite time. Owing to limitation of space we only
briefly discuss partial VIDEs. However, since the first step in the discretization of
such problems usually consists in the approximation (e.g. by finite difference of
finite element Galerkin techniques) of the spatial derivatives of the solution, the
numerical schemes described in this paper can be employed for the subsequent
temporal discretization (time-stepping). The aim of the list of references is to guide
the reader to papers that reflect the current ‘state of the art’ of the numerical analysis
and the computational solution of VIDEs, as well as to papers on integro-differential
equations not treated in the present paper.

2 Numerical Analysis of Ordinary VIDEs

In his paper [94] of 1909 (the first paper on applications of partial VIDEs) Volterra
makes the following observation:

The problem of solving integro-differential equations constitutes a problem which is
fundamentally different from the problems of solving differential equations and integral
equations.

As we shall see in the following sections, this comment remains true for the
numerical analysis and computational solution of VIDEs.

We first present a brief overview of prominent time-stepping schemes for VIDEs.
They include collocation methods, continuous and discontinuous Galerkin methods,
and convolution quadrature methods.

2.1 Collocation and Galerkin Spaces

Suppose we want to approximate the solution of an ordinary VIDE (1.1) (we use the
notation (1.1) to refer to Eq. (1) in Sect. 1, etc.) on the time interval I WD Œ0;T� .T <
1/, and let Ih WD ftn W 0 D t0 < t1 < � � � < tN D Tg be a (not necessarily uniform)
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mesh for I (i.e. an h-discretization of I), with

hn WD tnC1 � tn; en WD .tn; tnC1�; h WD maxfhn W 0 � n � N � 1g:

The approximating space will be either

S.0/m .Ih/ WD fv 2 C.I/ W vˇˇ
en
2Pm .0 � n � N � 1/g;

the space of globally continuous piecewise polynomials of (fixed) degree m � 1 for
all en (Pm D Pm.en/ denotes the set of (real-valued) polynomials on en of degree
not exceeding m), or

S.�1/m .Ih/ WD fv W v
ˇ
ˇ
en
2Pm .0 � n � N � 1/g;

the space of piecewise polynomials of degree m � 0 that may possess finite jump
discontinuities at the interior mesh points of Ih. The dimensions of these linear
spaces are given respectively by

dim S.0/m .Ih/ D NmC 1 and dim S.�1/m .Ih/ D N.mC 1/:

It is often advantageous (especially when approximating non-smooth solutions
of (1.1)) not to use the same polynomial degree m on each subinterval en. Thus,
an hp-discretization of I is defined as follows: for the given mesh and given
nonnegative integers mi .i D 0; 1; : : : ;N � 1/ we consider the degree vector
m WD .m0;m1; : : : ;mN�1 /, with jmj WD maxfmn W 0 � n � N�1g. For d 2 f�1; 0g
the corresponding piecewise polynomial spaces are then

S.d/m .Ih/ WD fv 2 Cd.I/ W vˇˇen
2Pmn .0 � n � N � 1/g:

(If d D �1 the elements of S.�1/m .Ih/ are in general not continuous at the interior
points of Ih.) It is easily seen that we have

dim S.0/m .Ih/ D
N�1X

nD0
mn C 1 and dim S.�1/m .Ih/ D

N�1X

nD0
mn C N:

In order to obtain high-order collocation or Galerkin approximations to VIDEs
with weakly singular kernels whose solutions typically have unbounded second
derivatives at t D 0, one will choose a mesh on I D Œ0;T� that is locally refined
near t D 0. Such meshes, denoted by Ih.r; �/, correspond to a grading parameter
� 2 .0; 1/ and r � 1 levels of refinement and are defined by the mesh points

ft0;0 WD 0; t0;� WD � r��t1 .1 � � � r/; tn .1 � n � N/g: (24)
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We associate with each subinterval e0;� WD .t0;�; t0;�C1� .0 � � � r � 1/ a
nonnegative integer m0;�; these integers define the initial degree vector m0 WD
.m0;0; : : : ;m0;r�1 /. For d 2 f�1; 0g the corresponding piecewise polynomial spaces
are defined by

S.d/m .Ih.r; �//

WD fv 2 Cd.I/ W vˇˇe0;� 2Pm0;� .0 � � � r � 1/I vˇˇen
2Pmng; (25)

where .m1; : : : ;mN�1 / is the degree vector for the intervals e1; : : : ; eN�1. The
dimensions of these linear spaces are

dim S.�1/m .Ih.r; �// D
r�1X

kD0
m0;k C

N�1X

nD1
mn C rC N � 1 (26)

and

dim S.0/m .Ih.r; �// D
r�1X

kD0
m0;k C

N�1X

nD1
mn C 1;

respectively. These spaces will be used below in the formulation of the hp-versions
of collocation and (continuous and discontinuous) Galerkin methods.

2.2 Collocation Time-Stepping

We first recall time-stepping schemes based on collocation in the piecewise
polynomial space S.0/m .Ih/ for the VIDE

u0.t/ D a.t/u.t/C f .t/C .V˛u/.t/; t 2 I WD Œ0;T�; u.0/ D u0; (27)

where the Volterra integral operator V˛ W C.I/! C.I/ is

.V˛u/.t/ WD
Z t

0

.t � s/˛�1K.t; s/u.s/ ds

(0 < ˛ � 1), with K 2 C.D/ .D WD f.t; s/ W 0 � s � t � Tg/. Since dim S.0/m .Ih/ D
NmC 1, we choose the set of collocation points

Xh WD ftn;i WD tn C cihn W i D 1; : : : ;m .0 � n � N � 1/g (28)

of cardinality jXhj D Nm and defined by m � 1 prescribed collocation parameters
fci W 0 < c1 < � � � < cm � 1g. The collocation equation defining the collocation
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solution uh 2 S.0/m .Ih/ for (4) is then given by

u0
h.t/ D a.t/uh.t/C f .t/C .V˛u/.t/; t 2 Xh; (29)

and complemented by the initial condition uh.0/ D u0.
The local (time-stepping) version of (4) (for t D tn C vhn 2 en) has the form

u0.tn C vhn/ D a.tn C vhn/u.tn C vhn/C f .tn C vhn/C Hn.tn C vhn/

Ch˛n

Z v

0

.v � s/˛�1K.tn C vhn; tn C shn/u.tn C shn/ ds (30)

(v 2 .0; 1�), with the history term

Hn.t/ WD
Z tn

0

.t � s/˛�1K.t; s/u.s/ ds

D
n�1X

`D0
h`

Z 1

0

.t � .t` C sh`//
˛�1K.t; t` C sh`/u.t` C sh`/ ds (31)

(t D tnCvhn 2 en). Thus, the corresponding (local) collocation equation for tn;i 2 en

is

u0
h.tn;i/ � a.tn;i/uh.tn;i/� h˛n

Z ci

0

.ci � s/˛�1K.tn;i; tn C shn/uh.tn C shn/ ds

D f .tn;i/C OHn.tn;i/ (32)

(i D 1; : : : ;m), where the approximation OHn.t/ to the history term Hn.t/ in (8) is

OHn.t/ WD
Z tn

0

.t � s/˛�1K.t; s/uh.s/ ds .t 2 en/:

In order to obtain the computational form of (9) we set

Yn;i WD u0
h.tn;i/; Lj.v/ WD

mY

kD1;k¤j

v � ck

cj � ck
; bj.v/ WD

Z v

0

Lj.s/ ds .v 2 Œ0; 1�/:

Since u0
h on en is a polynomial of degree m � 1 we may write

u0
h.tn C vhn/ D

mX

jD1
Lj.v/Yn;j .v 2 .0; 1�/:
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This implies that on en the collocation approximation uh has the local representation

uh.tn C vhn/ D un C hn

mX

jD1
bj.v/Yn;j .v 2 Œ0; 1�/; (33)

where un WD uh.tn/. It allows us to write the local collocation Eq. (9) in the form

Yn;i � hna.tn;i/
mX

jD1
bi;jYn;j � h2n

mX

jD1

Z ci

0

.ci � s/˛�1K.tn;i; tn C shn/bj.s/ds � Yn;j

D f .tn;i/C OH.tn;i/C
�

a.tn;i/C hn

Z ci

0

.ci � s/˛�1K.tn;i; tn C shn/ds
	

un; (34)

with bi;j WD bj.ci/. This is a system of m linear algebraic equations for the vector
Yn WD . Yn;1; : : : ;Yn;m /

T . For a; f 2 C.I/, K 2 C.D/ and 0 < ˛ � 1, it possesses a
unique solution Yn 2 R

m for 0 � n � N � 1 and for all meshes Ih with sufficiently
small mesh diameter h > 0.

Remark 1 Since the integrals in (11) cannot, in general, be evaluated analytically a
further discretization step consisting in approximating these integrals by appropriate
numerical quadrature schemes, e.g. m-point interpolatory quadrature formulas with
abscissas coinciding with the collocation points will be necessary (cf. Brunner [16]
and Remark 2 below).

The attainable order of convergence of the collocation solution uh 2 S.0/m .Ih/

depends strongly on the regularity of the solution u of the VIDE (3). If ˛ D 1,
then u essentially inherits the regularity of the data: Cm data a; f and K imply that
u 2 CmC1.I/. For 0 < ˛ < 1 this is no longer true: for such Cm data we obtain in
general only u 2 C1.I/\CmC1.0;T�: its second derivative behaves like u00.t/ � t˛�1
as t ! 0C. We summarize these observations in the following theorems (see for
example Brunner [16, Ch. 3]).

Theorem 1 Assume that a; f 2 Cd.I/, K 2 Cd.D/ .d � m/; ˛ D 1, and let
uh 2 S.0/m .Ih/ be the collocation solution defined by the collocation Eq. (6), with Ih

being (quasi-)uniform.

(a) If d � m and the collocation parameters fcig are chosen arbitrarily, there holds
ku � uhk1 � Chm. The exponent m can in general not be replaced by mC 1.

(b) If d � m C 1 and if the collocation parameters satisfy the orthogonality
condition

Z 1

0

mY

iD1
.s � ci/ ds D 0; (35)

the attainable order of convergence of uh is given by ku�uhk1 � ChmC1. This
holds in particular when the ci are the (shifted) Gauss-Legendre points (i.e. the
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zeros of the Legendre polynomial Pm.2s � 1/) or the (shifted) Radau II points
(the zeros of Pm.2s� 1/� Pm�1.2s� 1/, with cm D 1).

For sufficiently regular solutions and very special choices of the collocation
parameters fcig the collocation solution uh 2 S.0/m .Ih/ exhibits a higher order of
(local) superconvergence at the mesh points Ih.

Theorem 2 Let the assumptions of Theorem 1 hold and assume that the collocation
parameters are such that

Z 1

0

s�
mY

iD1
.s � ci/ ds D 0 for � D 0; : : : ; � � 1 .� � m/:

Then the optimal order of (local) convergence of uh 2 S.0/m .Ih/ at the points of Ih is

max
1�n�N

ju.tn/� uh.tn/j � CdhmC�:

Important special cases are the m Gauss-Legendre points (corresponding to � D m)
and the Radau II points (corresponding to � D m � 1, with cm D 1).

Remark 2 The local superconvergence results on Ih remain valid (with different,
usually larger, error constants Cd) if the integrals in the collocation Eq. (11) are
approximated by m-point interpolatory quadrature formulas whose abscissas are the
collocation points. The resulting ‘fully discretized’ collocation equation represents
an implicit m-stage Volterra-Runge-Kutta method (Brunner [16, Section 3.2.2]; see
also Brunner and van der Houwen [21]).

The general theory of (explicit and implicit) Runge-Kutta is due to Lubich [60]
(compare also Brunner and van der Houwen [21, Section 4.2]). Implicit Runge-
Kutta time discretization (and their asymptotic stability properties) were studied by
Brunner et al. [24]. See also Kauthen [49] on implicit Runge-Kutta methods for
singularly perturbed VIDEs.

For VIDEs (4) with weakly singular kernels (corresponding to 0 < ˛ < 1)
the above results on the attainable order of convergence of the collocation solution
uh 2 S.0/m .Ih/ are no longer valid, owing to the low regularity of the solution u at
t D 0. The following theorem is due to Brunner [12], Tang [91] (see also Brunner
et al. [25] and Brunner [16, Section 7.2]).

Theorem 3 Let the functions a; f ; K in (4) be subject to the assumptions of
Theorem 1, with 0 < ˛ < 1. Then the collocation solution uh 2 S.0/m .Ih/ defined
by (6), (7) possesses the following convergence properties:

(a) If the mesh Ih is (quasi-)uniform, then ku � uhk1 � C˛h1C˛ for any m � 2.
(b) If Ih is a (globally) graded mesh whose points are given by tn D .n=N/rT, with

r � .m C ˛/=.1 C ˛/, then the attainable order of convergence of uh on I is
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described by

max
1�n�N

ju.tn/� uh.tn/j � C˛N�.mC˛/ .m � 2/;

provided the collocation parameters fcig are such that (12) holds.

While the use of globally graded meshes restores the higher order of convergence
of collocation solutions for VIDEs (1.1) with 0 < ˛ < 1, it has the drawback that
hn, the size of the subinterval en becomes very large (compared to h0) as n tends to
N � 1. There are a number of approaches that avoid this problem.

(a) Piecewise non-polynomial spline collocation: For a given (uniform) mesh Ih

the piecewise polynomial space S.0/m .Ih/ is augmented by an appropriate number
(depending on m and ˛) of non-polynomial basis functions that, on the initial
interval e0, reflect the singular behaviour of higher derivatives of the solution u
(cf. Brunner [11]).

(b) Hybrid collocation: This approach combines non-polynomial spline collocation
near the initial point t D 0 and piecewise polynomial spline collocation on en

with n � 1. It was analyzed for weakly singular Volterra integral equations in
Cao et al. [33]; it seems that for weakly singular VIDEs this has not yet been
studied.

(c) hp-collocation with local mesh refinement: As we shall see at the end of
Sect. 2.3, piecewise polynomial collocation in S.0/m .Ih/ for the VIDE (4) is
closely related to discretized cG and dG methods in S.0/m .Ih/ and S.�1/m�1.Ih/,
respectively. Thus, the convergence analysis for the latter approximations to the
solution of (4) with 0 < ˛ � 1 can be employed to derive optimal convergence
results for hp-collocation methods. This analysis is currently being carried out.

2.3 Continuous and Discontinuous Galerkin Time-Stepping

Based on the variational form of the VIDE (4) the exact continuous Galerkin (cG)
equation for uh 2 S.0/m .Ih/ has the form

hu0
h � auh; i D hf ; i C hV˛uh; i for all  2 S.0/m .Ih/; (36)

where the (global) inner product of g and h is given by hg; hi WD
Z

I
g.s/h.s/ds. (We

use the terminology ‘exact Galerkin equation’ to indicate that the inner products are
evaluated exactly.) In analogy to the collocation Eq. (6) in S.0/m .Ih/ the cG Eq. (13) is
complemented by the initial condition uh.0/ D u0.

The (exact) discontinuous Galerkin (dG) equation in S.�1/m .Ih/ for (4) is

hu0
h � auh; i D hf ; i C hV˛uh; i for all  2 S.�1/m .Ih/: (37)
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The above cG and dG equations can be written in local ‘time-stepping’ form
where the inner products are now taken over the subintervals en. We will do this first
for the dG Eq. (14) where we have to take into account the jump discontinuities of
the test functions  2 S.�1/m .Ih/ across the interior points of the mesh Ih. It is readily
verified that on en the dG equation assumes the form

Z

en

u0
h.t/.t/ dt � UC

n 
C
n D

Z

en

a.t/uh.t/.t/ dt

C
Z

en

� Z t

tn

.t � s/˛�1K.t; s/uh.s/ds
	
.t/ dt (38)

C U�
n 

C
n C

Z

en

f .t/.t/dtC
Z

en

OHn.t/.t/ dt

for all  2Pm.en/ and 0 � n � N � 1 (see also Brunner and Schötzau [20]). Here,
we have set

UC
n WD uh.t

C
n /; U�

n WD uh.t
�
n /; 

C
n WD .tCn /;

and OHn.t/ is as in (9).
An equation analogous to (15) holds for the cG Eq. (13), except that now there

are no jump discontinuity terms (since uh 2 C.I/):

Z

en

u0
h.t/.t/ dt D

Z

en

a.t/uh.t/.t/ dt

C
Z

en

� Z t

tn

.t � s/˛�1K.t; s/u.s/ds
	
.t/ dt (39)

C
Z

en

f .t/.t/ dsC
Z

en

OHn.t/.t/ dt

for all  2Pm.en/ .0 � n � N � 1/.
We cite two representative results on the attainable order of convergence of hp-

dG approximations uh 2 S.�1/m .Ih/ and uh 2 S.�1/m .Ih.r; �//. The underlying VIDE
(1.1) is assumed to be parabolic (that is, a 2 C.I/ satisfies a � �a.t/ � Na .t 2 I/
for some constants a � Na < 1), as well as subject to some additional technical
assumptions (see Brunner and Schötzau [20] and Mustapha et al. [76] for details).

(1) In the (atypical) case where the solution u of the VIDE (1.1) with 0 < ˛ < 1 is
analytic on I there holds

ku � uhk1 � Ce�bjmj;

where the constants C and b are independent of the degree vector m.
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(2) If the data a f ; and K are analytic on I and D, respectively, (implying that u is
not analytic on I) then there exist degree vectors m0 (on e0) and m (on Œt1;T�)
so that for the locally geometrically refined mesh Ih.r; �/ the dG solution uh 2
S.�1/m .Ih.r; �// satisfies

ku � uhk1 � Ce�bM
�1=2
m ;

where

Mm WD dim S.�1/m .Ih.r; �// D
r�1X

kD0
m0;k C

N�1X

nD1
mn C rC N � 1;

(cf. (3)), with constants C and b not depending on the degree vectors.

Remark 3

(i) While ‘good’ values of the grading parameter � 2 .0; 1/ can be determined
numerically (see Brunner and Schötzau [20, pp. 242–243] for a discussion),
the analysis of how to select an optimal grading parameter � remains to be
carried out.

(ii) Superconvergence results for dG solutions (h-version) for weakly singular
VIDEs (1.1) can be found in Mustapha [72]. Analogous results for cG solutions
do not seem to have been derived yet.

(iii) An interesting alternative to hp-dG methods for VIDEs with weakly singular
kernels are hp-Petrov-Galerkin methods: here, the approximate solution is
sought in the space S.0/m .Ih/ while the test space is a space of discontinuous
piecewise polynomials. This extension of the hp-dG methods analyzed in [20]
can be found in Yi and Guo [100], together with results on the attainable order
of convergence of such Petrov-Galerkin solutions.

Since the (local) integrals (inner products) in the Galerkin equations (15)
and (16) can in general not be found analytically, they need to be approximated
by appropriate quadrature schemes in order to obtain the computational form of
these equations. For the dG Eq. (15) the obvious choice are m-point interpolatory
(product) quadrature formulas with abscissas 0 � d0 < d1 < � � � < dm � 1. For the
approximation of the first integral on the right-hand side of (15) this results in

Z

en

a.t/uh.t/.t/ dt D hn

Z 1

0

a.tn C vhn/uh.tn C vhn/.tn C vhn/ dv


 hn

mX

jD0
wja.tn C djhn/uh.tn C djhn/.tn C djhn/:

The resulting discretized dG equation is related to (but, owing to the finite jump
terms, not identical with) the collocation Eq. (9) for uh 2 S.0/mC1.Ih/ with the
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fdig as collocation parameters. (This is an extension of Lasaint and Raviart [51]
where this relationship was explored for ODEs; see also [20].) On the other
hand, the discretized cG Eq. (16) coincides with the collocation Eq. (9) if m-point
interpolatory quadrature with abscissas di D ci is used.

Remark 4

(i) For long-time integration and very large values of N the re-evaluation of the
history terms (i.e. the integrals over Œ0; tn�) in (15) and (16) for each new interval
en will become very expensive. In such situations the use of ‘sparse quadrature’
may reduce the computational effort; see for example Sloan and Thomeé [88]
or Adolfssson et al. [1].

(ii) For certain partial VIDEs with convolution kernels, for example

@u

@t
C
Z t

0

.t � s/˛�1A u.s/ ds D f .t/; t 2 I; u.0/ D u0 (40)

where 0 < ˛ < 1 andA is an elliptic (spatial) differential operator, convolution
quadrature based on Laplace transform techniques leads to efficient time-
stepping schemes (see for example McLean and Thomée [71], Schädle et al.
[85], López-Fernández et al. [59], Mustapha and McLean [73], as well as
Cuesta et al. [37] for more general versions of (17) and the use of modified
convolution quadrature techniques for time-stepping). A particular example
(Fujita [40]) is the VIDE

ut D f C
Z t

0

k.t � s/�u.s; �/ ds W

it ‘interpolates’ between heat equation (corresponding to k.t � s/ D ı.t � s/)
and the wave equation (k.t � s/ � 1).

2.4 Collocation and Galerkin Methods for FIDEs

A comprehensive analysis of piecewise polynomial collocation solutions for
boundary-value problems for nonlinear Fredholm integro-differential equations

u.r/.t/ D F
�
t; u.t/; : : : ; u.r�1/.t/

�

C
Z b

a
k
�
t; s; u.s/; : : : ; u.r/.s/

�
ds; t 2 Œa; b�; (41)

with r � 1, is due to Hangelbroek et al. [45]. In particular, they derived optimal
local superconvergence results at the mesh points Ih. Similar local superconvergence
results hold for initial-value problems for analogous rth-order VIDEs (cf. Brunner
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[13]). A boundary-value problem for the nonlinear second-order nonlinear FIDE

u00.t/C
Z 1

0

k.t � s/u4.s/ ds D f .t/; t 2 Œ0; 1�;

arises when studying a coupled system of integro-differential-algebraic equations
that models exothermic catalytic combustion in a cylinder. Its numerical treatment
by orthogonal collocation methods and the derivation of optimal convergence results
are discussed in Ganesh and Spence [42]. An alternative numerical scheme, namely
a Petrov-Galerkin method, is analyzed in Ganesh and Sloan [41].

An analysis of projection methods, and in particular of cG methods, for
FIDEs (18) can be found in Volk [92, 93]. The second paper also contains
superconvergence results for cG solutions.

Parts, Pedas and Tamme [79] and Pedas and Tamme [80] established a compre-
hensive theory on the regularity of solutions of linear, weakly singular FIDEs

u0.t/ D a.t/u.t/C f .t/C
Z T

0

K.t; s/u.s/ ds; t 2 Œ0;T�;

where K.t; s/ contains weak algebraic or logarithmic singularities, or is bounded
but has unbounded derivatives. This is complemented by an equally comprehensive
analysis of the order of optimal convergence of piecewise polynomial collocation
solutions (see also [81]).

Large systems of FIDEs with dense matrices are encountered in the spatial
discretization of linear parabolic FIDEs ut C A u D 0 where A is the sum of
a second-order elliptic (spatial) differential operator and a linear Fredholm integral
operator over some bounded domain˝ 	 R

d. Such FIDEs arise in the mathematical
modelling of stochastic processes in financial mathematics (e.g. in option pricing).
Matache et al. [67] proposed a numerical scheme, based on wavelet discretization
in space and dG time discretization, in which the (large) dense matrix is replaced by
using wavelet compression techniques. The complexity of such schemes is analyzed
in Matache et al. [68].

3 Numerical Analysis of Non-standard VIDEs

3.1 Auto-Convolution VIDEs

It was shown in Brunner [14] that for the non-standard VIDE

u0.t/ D a.t/u.t/C f .t/C
Z t

0

K.t; s/G.u.t/; u.s// ds; t 2 I; (42)
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the optimal orders of (global and local) convergence of collocation solutions uh 2
S.0/m .Ih/ described in Theorems 1 and 2 remain valid (see also Brunner et al. [26]
for a study of similar time-stepping for analogous partial VIDEs). The proof of
these results proceeds along the lines of the one for standard nonlinear VIDEs (cf.
Brunner [16]). Discontinuous Galerkin methods for (1) were analyzed in Ma and
Brunner [62]; the paper includes the derivation of a posteriori error bounds for the
piecewise polynomial spaces S.�1/m�1.Ih/ with m D 1 and m D 2.

Consider now the (generalized) auto-convolution VIDE

u0.t/ D a.t/u.t/C f .t/C
Z t

0

K˛.t; s/G.u.t � s//G.u.s// ds; t 2 I; (43)

with a 2 C.I/; f 2 C.I/ and K˛.t; s/ WD .t � s/˛�1K.t; s/ .0 < ˛ � 1; K 2 C.D//.
If G.u/ D u the analysis of its solvability differs significantly from one for the
non-standard VIDE (1). It follows by a fixed-point argument similar to the one used
in Zhang et al. [102] for auto-convolution VIEs that there exists a (small) ı0 > 0

(depending on Na WD kak1; Nf WD k fk1 and NK WD kKk1) so that (1) possesses a
unique (local) solution w0 2 C1Œ0; ı0�. For t 2 Œı0; 2ı0� we may write (1) in the form

u0.t/ D a.t/u.t/C f .t/C
Z ı0

0

K˛.t; s/u.t � s/u.s/dsC
Z t

ı0

K˛.t; s/u.t � s/u.s/ds

D a.t/u.t/C f .t/C
Z ı0

t�ı0
K˛.t; s/w0.t � s/w0.s/ ds

C
Z t

ı0

�
K˛.t; t � s/C K˛.t; s/

�
u.t � s/u.s/ ds: (44)

We see that in (3), t � s 2 Œ0; ı0�. Since u.t � s/ D w0.t � s/ is known, (3) is linear
in u. This process can be continued to the entire (bounded) interval Œı0;T� because
there exists an integer NN so that T 2 Œ.M � 1/ı0;Mı0�.

The above observation implies that the results on the attainable orders of
superconvergence of Theorems 1 and 2 are also valid for the auto-convolution
VIDE (2) with G.u/ D u. (A different, though rather sketchy, convergence analysis
for implicit, collocation-based Runge-Kutta methods for (2) with ˛ D 1 and
G.u/ D u was given in Yuan and Tang [101].)

For more general (nonlinear) functions G in (2), for example G.u/ D uˇ with
ˇ > 1, the analysis of the optimal order of (global or local) superconvergence of
collocation solutions uh 2 S.0/m .Ih/ remains open.
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3.2 VIDEs with Delay Arguments

The generic form of a linear Volterra functional integro-differential equation
(VFIDE) with (real-valued) delay function � is

u0.t/ D a.t/u.t/Cb.t/u.�.t//C
Z t

�.t/
.t�s/˛�1K.t; s/u.s/ ds; t 2 I D Œ0;T�; (45)

where 0 < ˛ � 1, and �.t/ WD t � 	.t/ is either a vanishing delay (	.0/ D 0; 0 <

�.t/ < t if t > 0) or a non-vanishing delay (	.t/ � 	0 > 0; t 2 I). Regularity
results for the solutions of weakly singular VFIDES (4) with non-vanishing delays
can be found in Brunner and Ma [19]. For (4) with ˛ D 1, optimal (super-
)convergence results analogous to the ones in Theorems 1 and 2 were established in
Brunner [15]. Shakourifar and Enright [86] studied continuous implicit Runge-Kutta
methods for such VFIDEs; an alternative to collocation, using (explicit) continuous
Volterra-Runge-Kutta methods together with C1 Hermite interpolants at non-mesh
points is described in Shakourifar and Enright [87] (compare also [86]). These
methods are then used to solve Volterra’s predator-prey system (1.10), (1.11). A
very general theoretical framework for the analysis of Runge-Kutta methods for
Volterra functional differential equations is due to Lin [52] and Li and Li [53].

If a VFIDE is of the form

u0.t/ D a.t/u.t/C b.t/u.�.t//C c.t/u0.�.t//

C
Z t

�.t/
.t � s/˛�1�K.t; s/u.s/C K1.t; s/u

0.s/
�
ds; (46)

it is said to be of neutral type; it may be viewed as the nonlocal analogue of a neutral
delay differential equation. The terminology ‘neutral’ VIDE or VFIDE is also used
for equations like

d

dt

�
u.t/ �

Z t

�.t/
.t � s/˛�1K.t; s/u.s/ds

	
D a.t/u.t/C f .t/; t 2 I; (47)

with, respectively, �.t/ � 0 and �.t/ D t � 	.t/. We have encountered a closely
related system of such neutral VFIDEs in Example 4. That system of VFIDEs is also
closely related to a system of integral-algebraic equations (cf. following section).
The numerical analysis and computational solution of VFIDEs (6) was studied by,
e.g., Brunner and Vermiglio [22] (�.t/ � 0 and ˛ D 1) and, for 0 < ˛ < 1/, by Ito
and Turi [46] (using a semigroup framework) and by Brunner [18]. (The latter two
papers also contain numerous additional references.)
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3.3 Volterra Integro-Differential-Algebraic Equations

The system

A.t/u0.t/C B.t/u.t/ D f .t/C .V˛u/.t/; t 2 I D Œ0;T�; (48)

with

.V˛u/.t/ WD
Z t

0

.t � s/˛�1K.t; s/u.s/ ds .0 < ˛ � 1/;

and A.�/; B.�/; K.�; �/ 2 R
d�d .d � 2/ and 0 < ˛ � 1, is called a system of Volterra

integro-differential-algebraic equations (IDAEs). It may be viewed as a nonlocal
extension of the system of differential-algebraic equations (DAEs)

A.t/u0.t/C B.t/u.t/ D f .t/; t 2 I: (49)

The numerical analysis of systems of DAEs is now well understood (see for
example Lamour et al. [50] and its references), and this is to a somewhat lesser
extent also true for systems of integral-algebraic equations (IAEs) (that is, (7)
with A.t/ � 0; cf. Liang and Brunner [54, 55]). The extension of the optimal
convergence results for collocation methods from IAEs (which used an adaptation
of the projection techniques of [50]) to systems of IDAEs is currently being studied
by Liang and Brunner [56]. Owing to the non-local character of IAEs and IDAEs,
the analysis becomes much more complex than the one for DAEs because it not
only requires an appropriate understanding of the (tractability) index of the IDAE
system but has also to take into account the degree of ill-posedness of the inherent
system of first-kind Volterra integral equations. However, the analysis of collocation
methods for IAEs and IDAEs with weakly singular kernels remains open.

3.4 Time-Fractional Evolution Equations

An equation of the form

�C
D˛

t u
�
.t/ D a.t/u.t/C f .t/; t 2 I; (50)

is a basic example of a (time-)fractional VIDE. For 0 < ˛ < 1,

�C
D˛

t u
�
.t/ WD 1

� .1 � ˛/
Z t

0

.t � s/1�˛�1

� .1 � ˛/
du.s/

ds
ds
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is the Caputo fractional derivative of order ˛ of u.t/. It is related to the Riemann-
Liouville fractional derivative,

�RL
D˛

t u
�
.t/ WD 1

� .1 � ˛/
d

dt

Z t

0

.t � s/�˛u.s/ ds;

via

�RL
D˛

t u
�
.t/ D t�˛

� .1 � ˛/u.0/C �C
D˛

t u
�
.t/:

Using the inverse (fractional time-integration) operator corresponding to CD˛
t the

fractional VIDE (9) can be written as an equivalent first-order VIDE or a VIE with
weakly singular kernel (see for example Ma and Huang [63] where this is used as the
basis for a numerical scheme). Although the numerical treatment of time-fractional
VIDEs (and more general time-fraction evolution equations) has by now become a
substantial ‘industry’, many issues are still waiting to be addressed. These include
a detailed (analytical and numerical) comparison of computational schemes for
fractional diffusion equations based on either the Caputo or the Riemann-Liouville
fractional derivative (and the relationship between the respective schemes), as
well as a thorough analysis of the merits of solving (9) directly, rather than its
corresponding VIDE or VIE version.

Owing to limitation of space, and the sheer mass of recent papers on fractional
diffusion equations, we will have to restrict this section to pointing the reader to
a selection recent contributions relevant to the topics treated in the present paper.
The 2010 monograph by Mainardi [64] contains, in addition to an introduction to
fractional calculus, numerous applications of fractional diffusion-wave equations.
The regularity of solutions to fractional diffusion is analyzed in McLean [69] (see
also Clément and Londen [36] and its references). Various aspects (including a
maximum principle) of discretizing such problems are treated in Mustapha and
McLean [73], Brunner et al. [27], Mustapha and McLean [74], Ling and Yamamoto
[57], Mustapha and Schötzau [75], Mustapha et al. [77], McLean and Mustapha
[70], and Brunner et al. [28, 29]. Most of these papers contain extensive references.

4 Computational Challenges and Open Problems

4.1 Semilinear VIDEs with Blow-Up Solutions

For certain functions a; f , smooth or weakly singular kernels k, and (smooth) G the
solution of the semilinear VIDE

u0.t/ D a.t/u.t/C f .t/C
Z t

0

k.t � s/G.u.s// ds; t � 0 (51)
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(with a.t/ � 0) may blow up in finite time. For VIDEs (1) whose solution behaves
monotonically the blow-up analysis of nonlinear VIEs developed in Brunner and
Yang [23] can be used to derive necessary and sufficient conditions for finite-time
blow-up. (Sufficient conditions for very special case of (1) were derived in Ma [61].)
However, the blow-up theory for general VIDEs (1) whose solutions do (typically)
not exhibit a monotone behavior remains to be established.

The finite-time blow-up of solutions of semilinear parabolic VIDEs

ut ��u D f C
Z t

0

k.t � s/G.u.s; �// ds; x 2 ˝ 	 R
d; t � 0; (52)

with typical nonlinearities G.u/ D .uC �/p .p > 1; � > 0/ or G.u/ D eˇu .ˇ > 0

was studied by Bellout [10] (see also Souplet [90]), under the assumption that ˝
is bounded and has a smooth boundary @˝ . Blow-up results for different classes of
semilinear parabolic VIDEs, including VIDEs of the form

ut ��u D �
Z t

0

up.s; �/ ds� auq . p; q � 1/; (53)

where � is Hölder continuous, with � � 0 .� 6� 0/, and a > 0, and analogous
partial VIDEs of Fredholm type, can be found in Souplet [89] and in Chapter V
of Quittner and Souplet [83]. The blow-up of solutions for IDEs whose right-hand
sides contain the composition of temporal and spatial integrals are also studied. The
analysis is again based on the assumption that the spatial domain ˝ possesses a
smooth boundary. It appears that the blow-up theory for (2) and (3) with d D 2 and
rectangular ˝ remains to be established (in contrast to semilinear parabolic PDEs;
cf. Bandle and Brunner [5] and its references).

The computational solution of parabolic VIDEs (2) on unbounded spatial
domains ˝ was studied in, e.g., Han et al. [44] and Brunner et al. [30] (see also
for additional references). It is based on the choice of an appropriate bounded
computational domain N̋ and the construction of corresponding artificial boundary
conditions for N̋ . (Compare also the monograph by Han and Wu [43] on the
underlying theory of artificial boundary conditions for various classes of PDEs.)

On the other hand, the numerical analysis of parabolic VIDEs with finite-time
blow-up, in particular the derivation of a posteriori error bounds for the numerical
blow-up time, remains open.

4.2 Semilinear FIDEs with Blow-Up Solutions

As we have seen in Sect. 1.2, semilinear Fredholm integro-differential equations
with nonlocal reaction term,

ut ��u D f C
Z

˝

H.u.�; y// dy; t > 0; x 2 ˝ 2 R
d; (54)



Numerical Analysis and Computational Solution of Integro-Differential Equations 227

where ˝ is bounded with smooth boundary, occur in chemical reaction-diffusion
processes. It was shown in Chadam et al. [35] and Chadam and Yin [34] that for
typical nonlinearities like H.u/ D eu the solution of (4) may blow up in finite
time. While the theory of such FIDEs is well understood, this is not true of the
numerical analysis and the efficient computational solution of these problems. The
key difference between the spatial semidiscretization of the parabolic VIDE (2) and
the parabolic FIDE (4) is that the approximation of the spatial integral in (4) leads
to a large, dense system of semilinear FIDEs. It would be of interest to see if a
discretization scheme similar to the one described at the end of Section 2.4 [67] can
be used in the efficient computational solution of (4).
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Multivariate Approximation
in Downward Closed Polynomial Spaces

Albert Cohen and Giovanni Migliorati

Dedicated to Ian H. Sloan on the occasion of his 80th birthday.

Abstract The task of approximating a function of d variables from its evaluations
at a given number of points is ubiquitous in numerical analysis and engineering
applications. When d is large, this task is challenged by the so-called curse of
dimensionality. As a typical example, standard polynomial spaces, such as those
of total degree type, are often uneffective to reach a prescribed accuracy unless a
prohibitive number of evaluations is invested. In recent years it has been shown that,
for certain relevant applications, there are substantial advantages in using certain
sparse polynomial spaces having anisotropic features with respect to the different
variables. These applications include in particular the numerical approximation of
high-dimensional parametric and stochastic partial differential equations. We start
by surveying several results in this direction, with an emphasis on the numerical
algorithms that are available for the construction of the approximation, in particular
through interpolation or discrete least-squares fitting. All such algorithms rely on
the assumption that the set of multi-indices associated with the polynomial space
is downward closed. In the present paper we introduce some tools for the study of
approximation in multivariate spaces under this assumption, and use them in the
derivation of error bounds, sometimes independent of the dimension d, and in the
development of adaptive strategies.

The original version of this chapter was revised. The correction to this chapter can be found at
https://doi.org/10.1007/978-3-319-72456-0_59.
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1 Introduction

The mathematical modeling of complex physical phenomena often demands for
functions that depend on a large number of variables. One typical instance occurs
when a quantity of interest u is given as the solution to an equation written in general
form as

P.u; y/ D 0; (1)

where y D .yj/jD1;:::;d 2 R
d is a vector that concatenates various physical parameters

which have an influence on u.
Supposing that we are able to solve the above problem, either exactly or

approximately by numerical methods, for any y in some domain of interest U 	 R
d

we thus have access to the parameter-to-solution map

y 7! u. y/: (2)

The quantity u.y/ may be of various forms, namely:

1. a real number, that is, u.y/ 2 R;
2. a function in some Banach space, for example when (1) is a partial differential

equation (PDE);
3. a vector of eventually large dimension, in particular when (1) is a PDE whose

solution is numerically approximated using some numerical method with fixed
discretization parameters.

In all three cases, the above maps act from U to some finite- or infinite-dimensional
Banach space which we shall generically denote by V .

As a guiding example which will be further discussed in this paper, consider the
elliptic diffusion equation

� div.aru/ D f ; (3)

set on a given bounded Lipschitz domain D 	 R
k (say with k D 1; 2 or 3), for

some fixed right-hand side f 2 L2.D/, homogeneous Dirichlet boundary conditions
uj@D D 0, and where a has the general form

a D a. y/ D aC
X

j � 1

yj j: (4)

Here, a and j are given functions in L1.D/, and the yj range in finite intervals that,
up to renormalization, can all be assumed to be Œ�1; 1�. In this example y D .yj/j � 1

is countably infinite-dimensional, that is, d D 1. The standard weak formulation
of (3) in H1

0.D/,
Z

D
arurv D

Z

D
fv; v 2 H1

0.D/;



Multivariate Approximation in Downward Closed Polynomial Spaces 235

is ensured to be well-posed for all such a under the so-called uniform ellipticity
assumption

X

j � 1

j jj � a � r; a.e. on D; (5)

for some r > 0. In this case, the map y 7! u.y/ acts from U D Œ�1; 1�N to
H1
0.D/. However, if we consider the discretization of (3) in some finite element space

Vh 	 H1
0.D/, where h refers to the corresponding mesh size, using for instance the

Galerkin method, then the resulting map

y 7! uh. y/;

acts from U D Œ�1; 1�N to Vh. Likewise, if we consider a quantity of interest such as
the flux q.u/ D R

˙
aru � � over a given interface˙ 	 D with � being the outward

pointing normal vector, then the resulting map

y 7! q. y/ D q.u. y//;

acts from U D Œ�1; 1�N to R. In all three cases, the above maps act from U to the
finite- or infinite-dimensional Banach space V , which is either H1

0 , Vh or R.
In the previous instances, the functional dependence between the input

parameters y and the output u.y/ is described in clear mathematical terms by
Eq. (1). In other practical instances, the output u.y/ can be the outcome of a
complex physical experiment or numerical simulation with input parameter y.
However the dependence on y might not be given in such clear mathematical
terms.

In all the abovementioned cases, we assume that we are able to query the map (2)
at any given parameter value y 2 U, eventually up to some uncertainty. Such
uncertainty may arise due to:

1. measurement errors, when y 7! u.y/ is obtained by a physical experiment, or
2. computational errors, when y 7! u.y/ is obtained by a numerical computation.

The second type of errors may result from the spatial discretization when solving a
PDE with a given method, and from the round-off errors when solving the associated
discrete systems.

One common way of modeling such errors is by assuming that we observe u at
the selected points y up to a an additive noise � which may depend on y, that is, we
evaluate

y 7! u. y/C �. y/; (6)
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where � satisfies a uniform bound

k�kL1.U;V/ WD sup
y2U
k�. y/kV � "; (7)

for some " > 0 representing the noise level.
Queries of the exact u.y/ or of the noisy u.y/ C �.y/ are often expensive since

they require numerically solving a PDE, or setting up a physical experiment, or
running a time-consuming simulation algorithm. A natural objective is therefore
to approximate the map (2) from some fixed number m of such queries at points
f y1; : : : ; ymg 2 U. Such approximations y 7! eu.y/ are sometimes called surrogate
or reduced models.

Let us note that approximation of the map (2) is sometimes a preliminary task
for solving other eventually more complicated problems, such as:

1. Optimization and Control, i.e. find a y which minimizes a certain criterion
depending on u.y/. In many situations, the criterion takes the form of a convex
functional of u.y/, and the minimization is subject to feasibility constraints. See
e.g. the monographs [3, 30] and references therein for an overview of classical
formulations and numerical methods for optimization problems.

2. Inverse Problems, i.e. find an estimate y from some data depending on the output
u.y/. Typically, we face an ill-posed problem, where the parameter-to-solution
map does not admit a global and stable inverse. Nonetheless, developing efficient
numerical methods for approximating the parameter-to-solution map, i.e. solving
the so-called direct problem, is a first step towards the construction of numerical
methods for solving the more complex inverse problem, see e.g. [36].

3. Uncertainty Quantification, i.e. describe the stochastic properties of the solu-
tion u.y/ in the case where the parameter y is modeled by a random variable
distributed according to a given probability density. We may for instance be
interested in computing the expectation or variance of the V-valued random
variable u.y/. Note that this task amounts in computing multivariate integrals
over the domain U with respect to the given probability measure. This area
also embraces, among others, optimization and inverse problems whenever
affected by uncertainty in the data. We refer to e.g. [24] for the application
of polynomial approximation to uncertainty quantification, and to [35] for the
Bayesian approach to inverse problems.

There exist many approaches for approximating an unknown function of one
or several variables from its evaluations at given points. One of the most classical
approaches consists in picking the approximant in a given suitable n-dimensional
space of elementary functions, such that

n � m: (8)
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Here, by “suitable” we mean that the space should have the ability to approximate
the target function to some prescribed accuracy, taking for instance advantage of its
smoothness properties. By “elementary” we mean that such functions should have
simple explicit form which can be efficiently exploited in numerical computations.
The simplest type of such functions are obviously polynomials in the variables yj.
As a classical example, we may decide to use, for some given k 2 N0, the total
degree polynomial space of order k, namely

Pk WD span

8
<

:
y 7! y� W j�j WD k�k1 D

dX

jD1
�j � k

9
=

;
;

with the standard notation

y� WD
dY

jD1
y
�j

j ; � D .�j/jD1;:::;d :

Note that since u.y/ is V-valued, this means that we actually use the V-valued
polynomial space

Vk WD V ˝ Pk D
8
<

:
y 7!

X

j�j�k

w�y
� W w� 2 V

9
=

;
:

Another classical example is the polynomial space of degree k in each variable,
namely

Qk WD span

�
y 7! y� W k�k1 D max

jD1;:::;d �j � k

�
:

A critical issue encountered by choosing such spaces is the fact that, for a fixed
value of k, the dimension of Pk grows with d like dk, and that of Qk grows like
kd, that is, exponentially in d. Since capturing the fine structure of the map (2)
typically requires a large polynomial degree k in some coordinates, we expect in
view of (8) that the number of needed evaluations m becomes prohibitive as the
number of variables becomes large. This state of affairs is a manifestation of the
so-called curse of dimensionality. From an approximation theoretic or information-
based complexity point of view, the curse of dimensionality is expressed by the fact
that functions in standard smoothness classes such as Cs.U/ cannot be approximated
in L1.U/ with better rate then n�s=d by any method using n degrees of freedom or
n evaluations, see e.g. [17, 31].

Therefore, in high dimension, one is enforced to give up on classical polynomial
spaces of the above form, and instead consider more general spaces of the general
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form

P� WD spanf y 7! y� W � 2 �g; (9)

where� is a subset ofNd
0 with a given cardinality n WD #.�/. In the case of infinitely

many variables d D1, we replace Nd
0 by the set

F WD `0.N;N0/ WD f� D .�j/j � 1 W #.supp.�// <1g;

of finitely supported sequences of nonnegative integers. For V-valued functions, we
thus use the space

V� D V ˝ P� WD
(

y 7!
X

�2�
w�y

� W w� 2 V

)

:

Note that V� D P� in the particular case where V D R.
The main objective when approximating the map (2) is to maintain a reasonable

trade-off between accuracy measured in a given error norm and complexity mea-
sured by m or number of degrees of freedom measured by n, exploiting the different
importance of each variable. Intuitively, large polynomial degrees should only be
allocated to the most important variables. In this sense, if d is the dimension and k is
the largest polynomial degree in any variable appearing in �, we view � as a very
sparse subset of f0; : : : ; kgd.

As generally defined by (9), the space P� does not satisfy some natural properties
of usual polynomial spaces such as closure under differentiation in any variable, or
invariance by a change of basis when replacing the monomials y� by other tensorized
basis functions of the form

�. y/ D
Y

j � 1

�j. yj/;

where the univariate functions f0; : : : ; kg form a basis of Pk for any k � 0, for
example with the Legendre or Chebyshev polynomials. In order to fulfill these
requirements, we ask that the set � has the following natural property.

Definition 1 A set � 	 N
d
0 or � 	 F is downward closed if and only if

� 2 � ande� � � H) e� 2 �;

wheree� � � means thate�j � �j for all j.

Downward closed sets are also called lower sets. We sometimes use the
terminology of downward closed polynomial spaces for the corresponding P�. To
our knowledge, such spaces have been first considered in [23] in the bivariate case
d D 2 and referred to as polynômes pleins. Their study in general dimension d
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has been pursued in [25] and [16]. The objective of the present paper is to give a
survey of recent advances on the use of downward closed polynomial spaces for
high-dimensional approximation.

The outline is the following. We review in Sect. 2 several polynomial approxi-
mation results obtained in [1, 2] in which the use of well-chosen index sets allows
one to break the curse of dimensionality for relevant classes of functions defined on
U D Œ�1; 1�d, e.g. such as those occurring when solving the elliptic PDE (3) with
parametric diffusion coefficient (4). Indeed, we obtain an algebraic convergence rate
n�s, where s is independent of d in the sense that such a rate may even hold when
d D 1. Here, we consider the error between the map (2) and its approximant in
either norms L1.U;V/ D L1.U;V; d�/ or L2.U;V/ D L2.U;V; d�/, where d� is
the uniform probability measure,

d� WD
O

j � 1

dyj

2
:

We also consider the case of lognormal diffusion coefficients of the form

a D exp.b/; b D b. y/ D
X

j � 1

yj j; (10)

where the yj are i.i.d. standard Gaussian random variables. In this case, we have
U D R

d and the error is measured in L2.U;V; d�/ where

d� WD
O

j � 1

g. yj/dyj; g.t/ WD 1p
2�

e�t2=2; (11)

is the tensorized Gaussian probability measure. The above approximation results are
established by using n-term truncations of polynomial expansions, such as Taylor,
Legendre or Hermite, which do not necessarily result in downward closed index sets.
In the present paper we provide a general approach to establish similar convergence
rates with downward closed polynomial spaces.

The coefficients in the polynomial expansions cannot be computed exactly from
a finite number of point evaluations of (2). One first numerical procedure that builds
a polynomial approximation from point evaluations is interpolation. In this case the
number m of samples is exactly equal to the dimension n of the polynomial space.
We discuss in Sect. 3 a general strategy to choose evaluation points and compute
the interpolant in arbitrarily high dimension. One of its useful features is that the
evaluations and interpolants are updated in a sequential manner as the polynomial
space is enriched, exploiting in a crucial way the downward closed structure. We
study the stability of this process and its ability to achieve the same convergence
rates in L1 established in Sect. 2.
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A second numerical procedure for building a polynomial approximation is the
least-squares method, which applies to the overdetermined case m > n. To keep
the presentation concise, we confine to results obtained in the analysis of this
method only for the case of evaluations at random points. In Sect. 4 we discuss
standard least squares, both in the noisy and noiseless cases, and in particular explain
under which circumstances the method is stable and compares favorably with the
best approximation error in L2. Afterwards we discuss the more general method
of weighted least squares, which allows one to optimize the relation between the
dimension of the polynomial space n and the number of evaluation points m that
warrants stability and optimal accuracy.

The success of interpolation and least squares is critically tied to the choice of
proper downward closed sets .�n/n�1 with #.�n/ D n. Ideally we would like to
choose the set ��

n that minimizes the best approximation error

e.u; �/ WD min
v2V�
ku � vk; (12)

in some norm k � k of interest, among all possible downward closed sets �
of cardinality n. In addition to be generally nonunique, such a set ��

n is often
not accessible. In practice we need to rely on some a-priori analysis to select
“suboptimal yet good” sets. An alternative strategy is to select the sequence .�n/n�1
in an adaptive manner, that is, make use of the computation of the approximation
for�n�1 in order to choose �n.

We discuss in Sect. 5 several adaptive and nonadaptive strategies which make
critical use of the downward closed structure of such sets. While our paper is
presented in the framework of polynomial approximation, the concept of downward
closed set may serve to define multivariate approximation procedures in other
nonpolynomial frameworks. At the end of the paper we give some remarks on
this possible extension, including, as a particular example, approximation by
sparse piecewise polynomial spaces using hierarchical bases, such as sparse grid
spaces.

Let us finally mention that another class of frequently used methods in high-
dimensional approximation is based on Reproducing Kernel Hilbert Space (RKHS)
or equivalently Gaussian process regression, also known as kriging. In such
methods, for a given Mercer kernel K.�; �/ the approximant is typically searched by
minimizing the associated RKHS norm among all functions agreeing with the data
at the evaluation points, or equivalently by computing the expectation of a Gaussian
process with covariance function K conditional to the observed data. Albeit natural
competitors, these methods do not fall in the category discussed in the present
paper, in the sense that the space where the approximation is picked varies with
the evaluation points. It is not clear under which circumstances they may also break
the curse of dimensionality.
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2 Sparse Approximation in Downward Closed Polynomial
Spaces

2.1 Truncated Polynomial Expansions

As outlined in the previous section, we are interested in deriving polynomial
approximations of the map (2) acting from U D Œ�1; 1�d with d 2 N or d D 1
to the Banach space V . Our first vehicle to derive such approximations, together
with precise error bounds for relevant classes of maps, consists in truncating certain
polynomial expansions of (2) written in general form as

X

�2F
u��; (13)

where for each � D .�j/j � 1 2 F the function � W U ! R has the tensor product
form

�. y/ D
Y

j � 1

�j. yj/;

and u� 2 V . Here we assume that .k/k�0 is a sequence of univariate polynomials
such that 0 � 1 and the degree of k is equal to k. This implies that f0; : : : ; kg
is a basis of Pk and that the above product only involves a finite number of factors,
even in the case where d D 1. Thus, we obtain polynomial approximations of (2)
by fixing some sets �n 	 F with #.�n/ D n and defining

u�n WD
X

�2�n

u��: (14)

Before discussing specific examples, let us make some general remarks on the
truncation of countable expansions with V-valued coefficients, not necessarily of
tensor product or polynomial type.

Definition 2 The series (13) is said to converge conditionally with limit u in a given
norm k � k if there exists an exhaustion .�n/n�1 of F (which means that for any
� 2 F there exists n0 such that � 2 �n for all n � n0), with the convergence
property

lim
n!1 ku � u�nk D 0: (15)

The series (13) is said to converge unconditionally towards u in the same norm, if
and only if (15) holds for every exhaustion .�n/n�1 of F .

As already mentioned in the introduction, we confine our attention to the error
norms L1.U;V/ or L2.U;V/ with respect to the uniform probability measure d�.
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We are interested in establishing unconditional convergence, as well as estimates of
the error between u and its truncated expansion, for both norms.

In the case of the L2 norm, unconditional convergence can be established when
.�/�2F is an orthonormal basis of L2.U/. In this case we know from standard
Hilbert space theory that if (2) belongs to L2.U;V/ then the inner products

u� WD
Z

U
u. y/�. y/ d�; � 2 F ;

are elements of V , and the series (13) converges unconditionally towards u in
L2.U;V/. In addition, the error is given by

ku � u�nkL2.U;V/ D
0

@
X

�…�n

ku�k2V

1

A

1=2

; (16)

for any exhaustion .�n/n�1. Let us observe that, since d� is a probability measure,
the L1.U;V/ norm controls the L2.U;V/ norm, and thus the above holds whenever
the map u is uniformly bounded over U.

For the L1 norms, consider an expansion (13) where the functions � W U 7! R

are normalized such that k�kL1.U/ D 1, for all � 2 F . Then .ku�kV /�2F 2
`1.F /, and it is easily checked that, whenever the expansion (13) converges
conditionally to a function u in L1.U;V/, it also converges unconditionally to u
in L1.U;V/. In addition, for any exhaustion .�n/n�1, we have the error estimate

ku � u�nkL1.U;V/ �
X

�…�n

ku�kV : (17)

The above estimate is simply obtained by triangle inequality, and therefore generally
it is not as sharp as (16). One particular situation is when .�/�2F is an orthogonal
basis of L2.U/ normalized in L1. Then, if u 2 L2.U;V/ and if the

u� WD 1

k�k2L2.U;V/

Z

U
u. y/�. y/ d�; � 2 F ;

satisfy .ku�kV/�2F 2 `1.F /, we find on the one hand that (13) converges
unconditionally to a limit in L1.U;V/ and in turn in L2.U;V/. On the other hand,
we know that it converges toward u 2 L2.U;V/. Therefore, its limit in L1.U;V/ is
also u.

A crucial issue is the choice of the sets �n that we decide to use when defining
the n-term truncation (14). Ideally, we would like to use the set�n which minimizes
the truncation error in some given norm k � k among all sets of cardinality n.

In the case of the L2 error, if .�/�2F is an orthonormal basis of L2.U/, the
estimate (16) shows that the optimal �n is the set of indices corresponding to the
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n largest ku�kV . This set is not necessarily unique, in which case any realization of
�n is optimal.

In the case of the L1 error, there is generally no simple description of the
optimal �n. However, when the � are normalized in L1.U/, the right-hand side
in the estimate (17) provides an upper bound for the truncation error. This bound is
minimized by again taking for �n the set of indices corresponding to the n largest
ku�kV , with the error now bounded by the `1 tail of the sequence .ku�kV/�2F , in
contrast to the `2 tail which appears in (16).

The properties of a given sequence .c�/�2F which ensure a certain rate of decay
n�s of its `q tail after one retains its n largest entries are well understood. Here, we
use the following result, see [12], originally invoked by Stechkin in the particular
case q D 2. This result says that the rate of decay is governed by the `p summability
of the sequence for values of p smaller than q.

Lemma 1 Let 0 < p < q < 1 and let .c�/�2F 2 `p.F / be a sequence of
nonnegative numbers. Then, if �n is a set of indices which corresponds to the n
largest c� , one has

0

@
X

�…�n

cq
�

1

A

1=q

� C.nC 1/�s; C WD k.c�/�2Fk`p ; s WD 1

p
� 1

q
:

In view of (16) or (17), application of the above result shows that `p summability
of the sequence .ku�kV/�2F implies a convergence rate n�s when retaining the
terms corresponding to the n largest ku�kV in (13). From (16), when .�/�2F is
an orthonormal basis, we obtain s D 1

p � 1
2

if p < 2. From (17), when the � are

normalized in L1.U/, we obtain s D 1
p � 1 if p < 1.

In the present setting of polynomial approximation, we mainly consider four
types of series corresponding to four different choices of the univariate func-
tions k:

• Taylor (or power) series of the form

X

�2F
t�y

�; t� WD 1

�Š
@�u. y D 0/; �Š WD

Y

j � 1

�jŠ; (18)

with the convention that 0Š D 1.
• Legendre series of the form

X

�2F
w�L�. y/; L�. y/ D

Y

j � 1

L�j. yj/; w� WD
Z

U
u. y/L�. y/ d�; (19)

where .Lk/k�0 is the sequence of Legendre polynomials on Œ�1; 1� normalized
with respect to the uniform measure

R 1
�1 jLk.t/j2 dt

2
D 1, so that .L�/�2F is an

orthonormal basis of L2.U; d�/.
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• Renormalized Legendre series of the form

X

�2F
ew�eL�. y/; eL�. y/ D

Y

j � 1

eL�j. yj/; ew� WD
0

@
Y

j � 1

.1C 2�j/

1

A

1=2

w�; (20)

where .eLk/k�0 is the sequence of Legendre polynomials on Œ�1; 1� with the
standard normalization keLkkL1.Œ�1;1�/ DeLk.1/ D 1, so thateLk D .1C2k/�1=2Lk.

• Hermite series of the form

X

�2F
h�H�. y/; H�. y/ D

Y

j � 1

H�j. yj/; h� WD
Z

U
u. y/H�. y/ d�; (21)

with .Hk/k�0 being the sequence of Hermite polynomials normalized according
to
R
R
jHk.t/j2g.t/dt D 1, and d� given by (11). In this case U D R

d and .H�/�2F
is an orthonormal basis of L2.U; d�/.

We may therefore estimate the L2 error resulting from the truncation of the
Legendre series (19) by application of (16), or the L1 error resulting from the
truncation of the Taylor series (18) or renormalized Legendre series (20) by
application of (17). According to Lemma 1, we derive convergence rates that depend
on the value of p such that the coefficient sequences .kt�kV/�2F , .kw�kV/�2F ,
.kew�kV /�2F or .kh�kV/�2F belong to `p.F /.

In a series of recent papers such summability results have been obtained for
various types of parametric PDEs. We refer in particular to [1, 13] for the elliptic
PDE (3) with affine parameter dependence (4), to [2, 20] for the lognormal
dependence (10), and to [9] for more general PDEs and parameter dependence. One
specific feature is that these conditions can be fulfilled in the infinite-dimensional
framework. We thus obtain convergence rates that are immune to the curse of
dimensionality, in the sense that they hold with d D 1. Here, we mainly discuss
the results established in [1, 2] which have the specificity of taking into account the
support properties of the functions  j.

One problem with this approach is that the sets�n associated to the n largest val-
ues in these sequences are generally not downward closed. In the next sections, we
revisit these results in order to establish similar convergence rates for approximation
in downward closed polynomial spaces.

2.2 Summability Results

The summability results in [1, 2] are based on certain weighted `2 estimates which
can be established for the previously defined coefficient sequences under various
relevant conditions for the elliptic PDE (3). We first report below these weighted
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estimates. The first one from [1] concerns the affine parametrization (4). Here, we
have V D H1

0.D/ and V 0 denotes its dual H�1.D/.

Theorem 1 Assume that 
 D .
j/j � 1 is a sequence of positive numbers such that

X

j � 1


jj j.x/j � a.x/ �er; x 2 D; (22)

for some fixed numberer > 0. Then, one has

X

�2F
.
�kt�kV /

2 <1; 
� D
Y

j � 1



�j

j ; (23)

as well as

X

�2F

�
ˇ.�/�1
�kw�kV

�2 D
X

�2F

�
ˇ.�/�2
�kew�kV

�2
<1; (24)

with

ˇ.�/ WD
Y

j � 1

.1C 2�j/
1=2:

The constants bounding these sums depend oner, k fkV0 , amin and kakL1 .

A few words are in order concerning the proof of these estimates. The first
estimate (23) is established by first proving that the uniform ellipticity assump-
tion (5) implies the `2 summability of the Taylor sequence .kt�kV/�2F . Since the
assumption (22) means that (5) holds with the  j replaced by 
j j, this gives the `2

summability of the Taylor sequence for the renormalized map

y 7! u.
y/; 
y D .
jyj/j � 1;

which is equivalent to (23). The second estimate is established by first showing thatP
j � 1 
jj jj � a�er implies finiteness of the weighted Sobolev-type norm

X

�2F


2�

�Š

Z

U
k@�u. y/k2V

Y

j � 1

.1 � j yjj/2�j d� <1:

Then, one uses the Rodrigues formula Lk.t/ D
�

d
dt

�k
�p

2kC1
kŠ 2k .t2 � 1/k

	
in each

variable yj to bound the weighted `2 sum in (24) by this norm.

Remark 1 As shown in [1], the above result remains valid for more general classes
of orthogonal polynomials of Jacobi type, such as the Chebyshev polynomials which
are associated with the univariate measure dt

2�
p
1�t2

.
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The second weighted `2 estimate from [2] concerns the lognormal parametriza-
tion (10).

Theorem 2 Let r � 0 be an integer. Assume that there exists a positive sequence

 D .
j/j � 1 such that

P
j � 1 exp.�
2j / <1 and such that

X

j � 1


jj j.x/j D K < Cr WD ln 2p
r
; x 2 D: (25)

Then, one has

X

�2F
��kh�k2V <1; (26)

where

�� WD
X

ke�k`1 �r

 
�

e�

!


2e� D
Y

j � 1

 
rX

lD0

 
�j

l

!


2l
j

!

;

 
�

e�

!

WD
Y

j � 1

 
�j

e�j

!

;

with the convention that
�k

l

� D 0 when l > k. The constant bounding this sum
depends on k fkV0 ,

P
j � 1 exp.�
2j / and on the difference Cr � K.

Similar to the weighted `2 estimate (24) for the Legendre coefficients, the proof
of (26) follows by first establishing finiteness of a weighed Sobolev-type norm

X

k�k`1 �r


2�

�Š

Z

U
k@�u. y/k2V d� <1;

under the assumption (25) in the above theorem. Then one uses the Rodrigues

formula Hk.t/ D .�1/kp
kŠ

g.k/.t/
g.t/ , with g given by (11), in each variable yj to bound

the weighted `2 sum in (26) by this norm.
In summary, the various estimates expressed in the above theorems all take the

form

X

�2F
.!�c�/

2 <1;

where

c� 2 fkt�kV ; kw�kV ; kew�kV ; kh�kVg;

or equivalently

!� 2 f
�; 
�ˇ.�/�1; 
�ˇ.�/�2; �1=2� g:
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Then, one natural strategy for establishing `p summability of the sequence
.c�/�2F is to invoke Hölder’s inequality, which gives, for all 0 < p < 2,

 
X

�2F
jc� jp

!1=p

�
 
X

�2F
.!�c�/

2

!1=2  X

�2F
j�� jq

!1=q

<1; 1

q
WD 1

p
� 1
2
;

where the sequence .��/�2F is defined by

�� WD !�1
� : (27)

Therefore `p summability of .c�/�2F follows from `q summability of .��/�2F with
0 < q <1 such that 1q D 1

p � 1
2
. This `q summability can be related to that of the

univariate sequence

b D .bj/j � 1; bj WD 
�1
j :

Indeed, from the factorization

X

�2F
bq� D

Y

j � 1

X

n�0
bnq

j ;

one readily obtains the following elementary result, see [12] for more details.

Lemma 2 For any 0 < q <1, one has

b 2 `q.N/ and kbk`1 < 1 ” .b�/�2F 2 `q.F /:

In the case!� D 
� , i.e. �� D b� , this shows that the `p summability of the Taylor
coefficients .kt�kV/�2F follows if the assumption (22) holds with b D .
�1

j /j � 1 2
`q.N/ and 
j > 1 for all j. By a similar factorization, it is also easily checked that
for any algebraic factor of the form ˛.�/ WD Q

j � 1.1C c1�j/
c2 with c1; c2 � 0, one

has

b 2 `q.N/ and kbk`1 < 1 ” .˛.�/b�/�2F 2 `q.F /:

This allows us to reach a similar conclusion in the cases !� D ˇ.�/�1
� or
!� D ˇ.�/�2
� , which correspond to the Legendre coefficients .kw�kV /�2F and
.kew�kV /�2F , in view of (24).

Likewise, in the case where !� D �1=2� , using the factorization

X

�2F
�q
� D

Y

j � 1

X

n�0

 
rX

lD0

 
n

l

!


2l
j

!�q=2

;
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it is shown in [2] that the sum on the left converges if b 2 `q, provided that r
was chosen large enough such that q > 2

r . This shows that the `p summability
of the Hermite coefficients .kh�kV /�2F follows if the assumption (25) holds with
b D .
�1

j /j � 1 2 `q.N/. Note that, since the sequence b can be renormalized, we
may replace (25) by the condition

sup
x2D

X

j � 1


jj j.x/j <1; (28)

without a specific bound.

2.3 Approximation by Downward Closed Polynomials

The above results, combined with Lemma 1, allow us to build polynomial approxi-
mations u�n with provable convergence rates n�s in L1 or L2 by n-term truncation
of the various polynomial expansions. However, we would like to obtain such
convergence rates with sets �n that are in addition downward closed.

Notice that if a sequence .��/�2F of nonnegative numbers is monotone nonin-
creasing, that is

� �e� H) �e� � ��;

then the set�n corresponding to the n largest values of �� (up to a specific selection
in case of equal values) is downward closed. More generally, there exists a sequence
.�n/n�1 of downward closed realizations of such sets which is nested, i.e. �1 	
�2 : : :, with �1 D 0F WD .0; 0; : : :/.

Since the general sequences .��/�2F that are defined through (27) may not
always be monotone nonincreasing, we introduce the following notion: for any
sequence .��/�2F tending to 0, in the sense that #f� W j��j > ıg < 1 for all
ı > 0, we introduce its monotone majorant .b��/�2F defined by

b�� WD max
e���
j�e� j;

that is the smallest monotone nonincreasing sequence that dominates .��/�2F . In
order to study best n-term approximations using downward closed sets, we adapt
the `q spaces as follows.

Definition 3 For 0 < q <1, we say that .��/�2F 2 `1.F / belongs to `q
m.F / if

and only if its monotone majorant .b��/�2F belongs to `q.F /.

We are now in position to state a general theorem that gives a condition for
approximation using downward closed sets in terms of weighted `2 summability.
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Theorem 3 Let .c�/�2F and .!�/�2F be positive sequences such that

X

�2F
.!�c�/

2 <1;

and such that .��/�2F 2 `q
m.F / for some 0 < q <1 with �� D !�1

� . Then, for any
0 < r � 2 such that 1q >

1
r � 1

2
, there exists a nested sequence .�n/n�1 of downward

closed sets such that #.�n/ D n and

0

@
X

�…�n

cr
�

1

A

1=r

� Cn�s; s WD 1

q
C 1

2
� 1

r
> 0: (29)

Proof With .b��/�2F being the monotone majorant of .��/�2F , we observe that

A2 WD
X

�2F
.b��1
� c�/

2 �
X

�2F
.��1
� c�/

2 D
X

�2F
.!�c�/

2 <1:

We pick a nested sequence .�n/n�1 of downward closed sets, such that �n consists
of the indices corresponding to the n largestb�� . Denoting by .b�n/n�1 the decreasing
rearrangement of .b��/�2F , we observe that

nb�q
n �

nX

jD1
b�q

j � Bq; B WD k.b��/�2Fk`q <1:

With p such that 1p D 1
r � 1

2
, we find that

0

@
X

�…�n

cr
�

1

A

1=r

�
0

@
X

�…�n

.b��1
� c�/

2

1

A

1=20

@
X

�…�n

b�p
�

1

A

1=p

� A

0

@b�p�q
nC1

X

�…�n

b�q
�

1

A

1=p

� AB.nC 1/1=p�1=q;

where we have used Hölder’s inequality and the properties of .b�n/n�1. This
gives (29) with C WD AB. ut

We now would like to apply the above result with c� 2 fkt�kV ; kw�kV ; kew�kV ;

kh�kVg, and the corresponding weight sequences !� 2 f
�; 
�ˇ.�/�1; 
�ˇ.�/�2;
�
1=2
� g, or equivalently �� 2 fb�; b�ˇ.�/; b�ˇ.�/2; ��1=2

� g. In the case of the Taylor
series, where �� D b� , we readily see that if bj < 1 for all j� 1, then the sequence
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.��/�2F is monotone nonincreasing, and therefore Lemma 2 shows that b 2 `q

implies .��/�2F 2 `q
m.F /. By application of Theorem 3 with the value r D 1, this

leads to the following result.

Theorem 4 If (22) holds with .
�1
j /j � 1 2 `q.N/ for some 0 < q < 2 and 
j > 1

for all j, then

ku � u�nkL1.U;V/ � Cn�s; s WD 1

q
� 1
2
;

where u�n is the truncated Taylor series and �n is any downward closed set
corresponding to the n largest �� .

In the case of the Legendre series, the weight �� D b�ˇ.�/ is not monotone
nonincreasing due to the presence of the algebraic factor ˇ.�/. However, the
following result holds.

Lemma 3 For any 0 < q < 1 and for any algebraic factor of the form ˛.�/ WDQ
j � 1.1C c1�j/

c2 with c1; c2 � 0, one has

b 2 `q.N/ and kbk`1 < 1 ” .˛.�/b�/�2F 2 `q
m.F /:

Proof The implication from right to left is a consequence of Lemma 2, and so we
concentrate on the implication from left to right. For this it suffices to find a majorant
e�� of �� WD ˛.�/b� which is monotone nonincreasing and such that .e��/�2F 2
`q.F /. We notice that for any 	 > 1, there exists C D C.	; c1; c2/ � 1 such
that

.1C c1n/
c2 � C	n; n � 0:

For some J � 1 and 	 to be fixed further, we may thus write

�� �e�� WD CJ
JY

jD1
.	bj/

�j
Y

j>J

.1C c1�j/
c2b

�j

j :

Since kbk`1 < 1 we can take 	 > 1 such that � WD 	kbk`1 < 1. By factorization,
we find that

X

�2F
e�q
� D CJq

0

@
JY

jD1

0

@
X

n�0
�qn

1

A

1

A

0

@
Y

j>J

0

@
X

n�0
.1C c1n/

qc2bnq
j

1

A

1

A :

The first product is bounded by .1 � �q/�J . Each factor in the second product is
a converging series which is bounded by 1 C cbq

j for some c > 0 that depends on
c1, c2 and kbk`1 . It follows that this second product converges. Therefore .e��/�2F
belongs to `q.F /.
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Finally, we show that e�� is monotone nonincreasing provided that J is chosen
large enough. It suffices to show that e��Cej � e�� for all � 2 F and for all j� 1
where

ej WD .0; : : : ; 0; 1; 0; : : : /;

is the Kronecker sequence of index j. When j � J this is obvious since
e��Cej D 	bje�� � �e�� �e�� . When j > J, we have

e��Ceje�
�1
� D bj



1C c1.�j C 1/
1C c1�j

�c2

:

Noticing that the sequence an WD
�
1Cc1.nC1/
1Cc1n

	c2
converges toward 1 and is therefore

bounded, and that bj tends to 0 as j ! 1, we find that for J sufficiently large, the
right-hand side in the above equation is bounded by 1 for all � and j > J.

ut
From Lemma 3, by applying Theorem 3 with r D 1 or r D 2, we obtain the

following result.

Theorem 5 If (22) holds with .
�1
j /j � 1 2 `q.N/ for some 0 < q <1 and 
j > 1

for all j, then

ku � u�nkL2.U;V/ � Cn�s; s WD 1

q
;

where u�n is the truncated Legendre series and �n is any downward closed set
corresponding to the n largestb�� where �� WD b�ˇ.�/. If q < 2, we also have

ku � u�nkL1.U;V/ � Cn�s; s WD 1

q
� 1
2
;

with �n any downward closed set corresponding to the n largestb�� where �� WD
b�ˇ.�/2, with b WD 
�1

j /j � 1.

Finally, in the case of the Hermite coefficients, which corresponds to the weight

�� WD
Y

j � 1

 
rX

lD0

 
�j

l

!

b�2l
j

!�1=2
; (30)

we can establish a similar summability result.

Lemma 4 For any 0 < q <1 and any integer r � 1 such that q > 2
r , we have

b 2 `q.N/ H) .��/�2F 2 `q.F /;
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where �� is given by (30). In addition, for any integer r � 0, the sequence .��/�2F
is monotone nonincreasing.

Proof For any � 2 F and any k � 1 we have

��Cek D
 

rX

lD0

 
�k C 1

l

!

b�2l
k

!�1=2Y

j�1
j¤k

 
rX

lD0

 
�j

l

!

b�2l
j

!�1=2

�
 

rX

lD0

 
�k

l

!

b�2l
k

!�1=2Y

j�1
j¤k

 
rX

lD0

 
�j

l

!

b�2l
j

!�1=2
D ��;

and therefore the sequence .��/�2F is monotone nonincreasing.
Now we check that .��/�2F 2 `q.F /, using the factorization

X

�2F
�q
� D

Y

j � 1

X

n�0

 
rX

lD0

 
n

l

!

b�2l
j

!�q=2

�
Y

j � 1

X

n�0

 
n

r ^ n

!�q=2

bq.r^n/
j : (31)

where the inequality follows from the fact that the value l D n ^ r WD minfn; rg is
contained in the sum.

The j-th factor Fj in the rightmost product in (31) may be written as

Fj D 1C bq
j C � � � C b.r�1/q

j C Cr;qbrq
j ;

where

Cr;q WD
X

n�r

 
n

r

!�q=2

D .rŠ/q=2
X

n�0

�
.nC 1/ � � � .nC r/

��q=2
<1; (32)

since we have assumed that q > 2=r. This shows that each Fj is finite. If b 2 `q.N/,
there exists an integer J � 0 such that bj < 1 for all j > J. For such j, we can bound
Fj by 1C .Cr;q C r � 1/bq

j , which shows that the product converges. ut
From this lemma, and by application of Theorem 3 with the value r D 2, we

obtain the following result for the Hermite series.

Theorem 6 If (28) holds with .
�1
j /j � 1 2 `q.N/ for some 0 < q <1, then

ku � u�nkL2.U;V/ � Cn�s; s WD 1

q
;

where u�n is the truncated Hermite series and �n is a downward closed set
corresponding to the n largest �� given by (30).
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In summary, we have established convergence rates for approximation by
downward closed polynomial spaces of the solution map (2) associated to the elliptic
PDE (3) with affine or lognormal parametrization. The conditions are stated in terms
of the control on the L1 norm of

P
j � 1 
jj jj, where the 
j have a certain growth

measured by the `q summability of the sequence b D .bj/j � 1 D .
�1
j /j � 1. This is a

way to quantify the decay of the size of the  j, also taking their support properties
into account, and in turn to quantify the anisotropic dependence of u.y/ on the
various coordinates yj. Other similar results have been obtained with different PDE
models, see in particular [12]. In the above results, the polynomial approximants are
constructed by truncation of infinite series. The remainder of the paper addresses the
construction of downward closed polynomial approximants from evaluations of the
solution map at m points f y1; : : : ; ymg 2 U, and discusses the accuracy of these
approximants.

3 Interpolation

3.1 Sparse Interpolation by Downward Closed Polynomials

Interpolation is one of the most standard processes for constructing polynomial
approximations based on pointwise evaluations. Given a downward closed set
� 	 F of finite cardinality, and a set of points

� 	 U; #.� / D #.�/;

we would like to build an interpolation operator I�, that is, I�u 2 V� is uniquely
characterized by

I�u. y/ D u. y/; y 2 �;

for any V-valued function u defined on U.
In the univariate case, it is well known that such an operator exists if and only if

� is a set of pairwise distinct points, and that additional conditions are needed in
the multivariate case. Moreover, since the set � may come from a nested sequence
.�n/n�1 as discussed in Sect. 2, we are interested in having similar nestedness
properties for the corresponding sequence .�n/n�1, where

#.�n/ D #.�n/ D n:

Such a nestedness property allows us to recycle the n evaluations of u which have
been used in the computation of I�n u, and use only one additional evaluation for the
next computation of I�nC1

u.
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It turns out that such hierarchical interpolants can be constructed in a natural
manner by making use of the downward closed structure of the index sets �n. This
construction is detailed in [7] but its main principles can be traced from [23]. In
order to describe it, we assume that the parameter domain is of either form

U D Œ�1; 1�d or Œ�1; 1�N;

with the convention that d D 1 in the second case. However, it is easily checked
that the construction can be generalized in a straightforward manner to any domain
with Cartesian product form

U D �
k�1Jk;

where the Jk are finite or infinite intervals.
We start from a sequence of pairwise distinct points

T D .tk/k�0 	 Œ�1; 1�:

We denote by Ik the univariate interpolation operator on the space Vk WD V ˝ Pk

associated with the k-section ft0; : : : ; tkg of this sequence, that is,

Iku.ti/ D u.ti/; i D 0; : : : ; k;

for any V-valued function u defined on Œ�1; 1�. We express Ik in the Newton form

Iku D I0uC
kX

lD1
�lu; �l WD Il � Il�1; (33)

and set I�1 D 0 so that we can also write

Iku D
kX

lD0
�lu:

Obviously the difference operator�k annihilates the elements of Vk�1. In addition,
since �ku.tj/ D 0 for j D 0; : : : ; k � 1, we have

�ku.t/ D ˛kBk.t/;

where

Bk.t/ WD
k�1Y

lD0

t � tl
tk � tl

:
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The coefficient ˛k 2 V can be computed inductively, since it is given by

˛k D ˛k.u/ WD u.tk/� Ik�1u.tk/;

that is, the interpolation error at tk when using Ik�1. Setting

B0.t/ WD 1;

we observe that the system fB0; : : : ;Bkg is a basis for Pk. It is sometimes called a
hierarchical basis.

In the multivariate setting, we tensorize the grid T, by defining

y� WD .t�j/j � 1 2 U; � 2 F :

We first introduce the tensorized operator

I� WD
O

j � 1

I�j ;

recalling that the application of a tensorized operator ˝j � 1Aj to a multivariate
function amounts in applying each univariate operator Aj by freezing all variables
except the jth one, and then applying Aj to the unfrozen variable. It is readily seen
that I� is the interpolation operator on the tensor product polynomial space

V� D V ˝ P�; P� WD
O

j � 1

P�j ;

associated to the grid of points

�� D �
j � 1
ft0; : : : ; t�jg:

This polynomial space corresponds to the particular downward closed index set of
rectangular shape

� D R� WD fe� W e� � �g:

Defining in a similar manner the tensorized difference operators

�� WD
O

j � 1

��j ;
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we observe that

I� D
O

j � 1

I�j D
O

j � 1

.

�jX

lD0
�l/ D

X

e�2R�

�e�:

The following result from [7] shows that the above formula can be generalized to
any downward closed set in order to define an interpolation operator. We recall its
proof for sake of completeness.

Theorem 7 Let � 	 F be a finite downward closed set, and define the grid

�� WD f y� W � 2 �g:
Then, the interpolation operator onto V� for this grid is defined by

I� WD
X

�2�
��: (34)

Proof From the downward closed set property, V� 	 V� for all � 2 �. Hence the
image of I� is contained in V�. With I� defined by (34), we may write

I�u D I�uC
X

e�2�;e�Š�

�e� u;

for any � 2 �. Since y� 2 �� , we know that

I�u. y�/ D u. y�/:

On the other hand, ife� Š �, this means that there exists a j� 1 such thate� j > �j.
For this j we thus have�e� u.y/ D 0 for all y 2 U with the jth coordinate equal to t�j

by application of ��j in the jth variable, so that

�e� u. y�/ D 0:

The interpolation property I�u.y�/ D u.y�/ thus holds, for all � 2 �. ut
The decomposition (34) should be viewed as a generalization of the Newton

form (33). In a similar way, its terms can be computed inductively: if � D e� [ f�g
where e� is a downward closed set, we have

��u D ˛�B�;

where

B�. y/ WD
Y

j � 1

B�j. yj/;
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and

˛� D ˛�.u/ WD u. y�/ � Ie� u. y�/:

Therefore, if .�n/n�1 is any nested sequence of downward closed index sets, we can
compute I�n by n iterations of

I�i u D I�i�1uC ˛�i B�i ;

where � i 2 �i is such that �i D �i�1 [ f� ig.
Note that .B�/�2� is a basis of P� and that any f 2 V� has the unique

decomposition

f D
X

�2�
˛�B�;

where the coefficients ˛� D ˛�. f / 2 V are defined by the above procedure. Also
note that ˛�. f / does not depend on the choice of � but only on � and f .

3.2 Stability and Error Estimates

The pointwise evaluations of the function u could be affected by errors, as modeled
by (6) and (7). The stability of the interpolation operator with respect to such
perturbations is quantified by the Lebesgue constant, which is defined by

L� WD sup
kI� fkL1.U;V/

k fkL1.U;V/
;

where the supremum is taken over the set of all V-valued functions f defined
everywhere and uniformly bounded over U. It is easily seen that this supremum
is in fact independent of the space V , so that we may also write

L� WD sup
kI� fkL1.U/

k fkL1.U/
;

where the supremum is now taken over real-valued functions. Obviously, we have

ku � I�.uC �/kL1.U;V/ � ku � I�ukL1.U;V/ C L�";

where " is the noise level from (7).
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The Lebesgue constant also allows us to estimate the error of interpolation ku �
I�ukL1.U;V/ for the noiseless solution map in terms of the best approximation error
in the L1 norm: for any u 2 L1.U;V/ and anyeu 2 V� we have

ku � I�ukL1.U;V/ � ku �eukL1.U;V/ C kI�eu � I�ukL1.U;V/;

which by infimizing overeu 2 V� yields

ku � I�ukL1.U;V/ � .1C L�/ inf
eu2V�

ku �eukL1.U;V/:

We have seen in Sect. 2 that for relevant classes of solution maps y 7! u.y/, there
exist sequences of downward closed sets .�n/n�1 with #.�n/ D n, such that

inf
eu2V�n

ku �eukL1.U;V/ � Cn�s; n � 1;

for some s > 0. For such sets, we thus have

ku � I�n ukL1.U;V/ � C.1C L�n/n
�s: (35)

This motivates the study of the growth of L�n as n!1.
For this purpose, we introduce the univariate Lebesgue constants

Lk WD sup
kIkfkL1.Œ�1;1�/
k fkL1.Œ�1;1�/

:

Note that L0 D 1. We also define an analog quantity for the difference operator

Dk WD sup
k�kfkL1.Œ�1;1�/
k fkL1.Œ�1;1�/

:

In the particular case of the rectangular downward closed sets � D R� , since I� D
I� D ˝j � 1I�j , we have

LR� D
Y

j � 1

L�j :

Therefore, if the sequence T D .tk/k�0 is such that

Lk � .1C k/� ; k � 0; (36)
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for some � � 1, we find that

LR� �
Y

j � 1

.1C �j/
� D .#.R�//� ;

for all � 2 F .
For arbitrary downward closed sets �, the expression of I� shows that

L� �
X

�2�

Y

j � 1

D�j :

Therefore, if the sequence T D .tk/k�0 is such that

Dk � .1C k/� ; k � 0; (37)

we find that

L� �
X

�2�

Y

j � 1

.1C �j/
� D

X

�2�
.#.R�//� �

X

�2�
.#.�//� D .#.�//�C1:

The following result from [7] shows that this general estimate is also valid under the
assumption (36) on the growth of Lk.

Theorem 8 If the sequence T D .tk/k�0 is such that (36) or (37) holds for some
� � 1, then

L� � .#.�//�C1;

for all downward closed sets �.

One noticeable feature of the above result is that the bound on L� only depends
on #.�/, independently of the number of variables, which can be infinite, as well as
of the shape of �.

We are therefore interested in univariate sequences T D .tk/k�0 such that Lk and
Dk have moderate growth with k. For Chebyshev or Gauss-Lobatto points, given by

Ck WD
�

cos



2lC 1
2kC 2�

�
W lD 0; : : : ; k

�
and Gk WD

�
cos



l

k
�

�
W lD 0; : : : ; k

�
;

it is well known that the Lebesgue constant has logarithmic growth Lk � ln.k/,
thus slower than algebraic. However these points are not the k section of a single
sequence T, and therefore they are not convenient for our purposes. Two examples
of univariate sequences of interest are the following.
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• The Leja points: from an arbitrary t0 2 Œ�1; 1� (usually taken to be 1 or 0), this
sequence is recursively defined by

tk WD argmax

(
k�1Y

lD0
jt � tlj W t 2 Œ�1; 1�

)

:

Note that this choice yields hierarchical basis functions Bk that are uniformly
bounded by 1. Numerical computations of Lk for the first 200 values of k
indicates that the linear bound

Lk � 1C k; (38)

holds. Proving that this bound, or any other algebraic growth bound, holds for all
values of k � 0 is currently an open problem.

• The<-Leja points: they are the real part of the Leja points defined on the complex
unit disc fjzj � 1g, taking for example e0 D 1 and recursively setting

ek WD argmax

(
k�1Y

lD0
je � elj W jej � 1

)

:

These points have the property of accumulating in a regular manner on the unit
circle according to the so-called Van der Corput enumeration [4]. It is proven in
[5] that the linear bound (38) holds for the Lebesgue constant of the complex
interpolation operator on the unit disc associated to these points. The sequence
of real parts

tk WD <.ek/;

is defined after eliminating the possible repetitions corresponding to ek D el for
two different values of k D l. These points coincide with the Gauss-Lobatto
points for values of k of the form 2n C 1 for n � 0. A quadratic bound

Dk � .1C k/2;

is established in [6].

If we use such sequences, application of Theorem 8 gives bounds of the form

L� � .#.�//1C� ;

for example with � D 2 when using the <-Leja points, or � D 1 when using the
Leja points provided that the conjectured bound (38) holds. Combining with (35),
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we obtain the convergence estimate

ku � I�n ukL1.U;V/ � Cn�.s�1��/;

which reveals a serious deterioration of the convergence rate when using interpola-
tion instead of truncated expansions.

However, for the parametric PDE models discussed in Sect. 2, it is possible to
show that this deterioration actually does not occur, based on the following lemma
which relates the interpolation error to the summability of coefficient sequences in
general expansions of u.

Lemma 5 Assume that u admits an expansion of the type (13), where k�kL1.U/ �
1 which is unconditionally convergent towards u in L1.U;V/. Assume in addition
that y 7! u.y/ is continuous from U equipped with the product topology toward V.
If the univariate sequence T D .tk/k�0 is such that that (36) or (37) holds for some
� � 1, then, for any downward closed set �,

ku � I�ukL1.U;V/ � 2
X

�…�
�.�/ku�kV ; �.�/ WD

Y

j � 1

.1C �j/
�C1: (39)

Proof The unconditional convergence of (13) and the continuity of u with respect
to the product topology allow us to say that the equality in (13) holds everywhere in
U. We may thus write

I�u D I�

 
X

�2F
u��

!

D
X

�2F
u�I�� D

X

�2�
u�� C

X

�…�
u�I��;

where we have used that I�� D � for every � 2 � since � 2 P�. For the second
sum on the right-hand side, we observe that for each � … �,

I�� D
X

e�2�
�e� � D

X

e�2�\R�

�e� � D I�\R��;

since �e� annihilates P� whenevere� 6� �. Therefore

u � I�u D
X

� 62�
u�.I � I�\R� /�;

where I stands for the identity operator. This implies

ku � I�ukL1.U;V/ �
X

� 62�
.1C L�\R� /ku�kV � 2

X

� 62�
L�\R�ku�kV :
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Since (36) or (37) holds, we obtain from Theorem 8 that

L�\R� � .#.�\ R�//
�C1 � .#.R�//�C1 D �.�/;

which yields (39). ut
We can apply the above lemma with the Taylor series (18) or the renormalized

Legendre series (20). This leads us to analyze the `1 tail of the sequence .c�/�2F
where c� is either �.�/kt�kV or �.�/kew�kV . If (22) holds, we know from Theorem 1
that this sequence satisfies the bound

X

�2F
.!�c�/

2 <1;

where !� is either �.�/�1
� or �.�/�1ˇ.�/�2
� . Since �.�/ has algebraic growth
similar to ˇ.�/, application of Lemma 3 and of Theorem 3 with the value r D 1,
leads to the following result.

Theorem 9 If (22) holds with .
�1
j /j � 1 2 `q.N/ for some 0 < q < 2 and 
j > 1

for all j, then

ku � I�n ukL1.U;V/ � Cn�s; s WD 1

q
� 1
2
;

where �n is any downward closed set corresponding to the n largestb�� where �� is
either �.�/b� or �.�/ˇ.�/2b� , where b WD .
�1

j /j � 1.

4 Discrete Least Squares Approximations

4.1 Discrete Least Squares on V-Valued Linear Spaces

Least-squares fitting is an alternative approach to interpolation for building a poly-
nomial approximation of u from V�. In this approach we are given m observations
u1; : : : ; um of u at points y1; : : : ; ym 2 U � R

d where m � n D #.�/.
We first discuss the least-squares method in the more general setting of V-valued

linear spaces,

Vn WD V ˝ Yn;

where Yn is the space of real-valued functions defined everywhere on U such that
dim.Yn/ D n. In the next section, we discuss more specifically the case where
Yn D P�. Here we study the approximation error in the L2.U;V; d�/ norm for
some given probability measure d�, when the evaluation points yi are independent
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and drawn according to this probability measure. For notational simplicity we use
the shorthand

k � k WD k � kL2.U;V;d�/:

The least-squares method selects the approximant of u in the space Vn as

uL WD argmin
eu2Vn

1

m

mX

iD1
keu. yi/� uik2V :

In the noiseless case where ui WD u.yi/ for any i D 1; : : : ;m, this also writes

uL D argmin
eu2V�

ku �eukm; (40)

where the discrete seminorm is defined by

k fkm WD
 
1

m

mX

iD1
k f . yi/k2V

!1=2
:

Note that k fk2m is an unbiased estimator of k fk2 since we have

E.k fk2m/ D k fk2:

Let f1; : : : ; ng denote an arbitrary L2.U; d�/ orthonormal basis of the space Yn.
If we expand the solution to (40) as

Pn
jD1 cjj, with cj 2 V , the V-valued vector

c D .c1; : : : ; cn/
t is the solution to the normal equations

Gc D d; (41)

where the matrix G has entries

Gj;k D 1

m

mX

iD1
j. yi/k. yi/;

and where the V-valued data vector d D .d1; : : : ; dn/
t is given by

dj WD 1

m

mX

iD1
uij. yi/:

This linear system always has at least one solution, which is unique when G is
nonsingular. When G is singular, we may define uL as the unique minimal `2.Rn;V/
norm solution to (41).
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In the subsequent analysis, we sometimes work under the assumption of a known
uniform bound

kukL1.U;V/ � 	: (42)

We introduce the truncation operator

z 7! T	 .z/ WD
(

z; if kzkV � 	;
z

kzkV
; if kzkV > 	;

and notice that it is a contraction: kT	 .z/�T	 .ez/kV � kz�ezkV for any z;ez 2 V . The
truncated least-squares approximation is defined by

uT WD T	 ı uL:

Note that, in view of (42), we have ku.y/�uT.y/kV � ku.y/�uL.y/kV for any y 2 U
and therefore

ku � uTk � ku � uLk:

Note that the random matrix G concentrates toward its expectation which is the
identity matrix I as m ! 1. In other words, the probability that G is ill-
conditioned becomes very small as m increases. The truncation operator aims at
avoiding instabilities which may occur when G is ill-conditioned. As an alternative
proposed in [15], we may define for some given A > 1 the conditioned least-squares
approximation by

uC WD uL; if cond.G/ � A; uC WD 0; otherwise;

where cond.G/ WD �max.G/=�min.G/ is the usual condition number.
The property that kG � Ik2 � ı for some 0 < ı < 1 amounts to the norm

equivalence

.1 � ı/k fk2 � k fk2m � .1C ı/k fk2; f 2 Vn:

It is well known that if m � n is too close to n, least-squares methods may
become unstable and inaccurate for most sampling distributions. For example, if
U D Œ�1; 1� and Yn D Pn�1 is the space of algebraic polynomials of degree n � 1,
then with m D n the estimator coincides with the Lagrange polynomial interpolation
which can be highly unstable and inaccurate, in particular for equispaced points.
Therefore, m should be sufficiently large compared to n for the probability that G
is ill-conditioned to be small. This trade-off between m and n has been analyzed in
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[11], using the function

y 7! kn. y/ WD
nX

jD1
jj. y/j2;

which is the diagonal of the integral kernel of the L2.U; d�/ projector on Yn. This
function depends on d�, but not on the chosen orthonormal basis. It is strictly
positive in U under minimal assumptions on the orthonormal basis, for example if
one element of the basis is the constant function over all U. Obviously, the function
kn satisfies

Z

U
kn d� D n:

We define

Kn WD kknkL1.U/ � n:

The following results for the least-squares method with noiseless evaluations were
obtained in [8, 11, 15, 28] for real-valued functions, however their proof extends
in a straightforward manner to the present setting of V-valued functions. They are
based on a probabilistic bound for the event kG� Ik2 > ı using the particular value
ı D 1

2
, or equivalently the value A D 1Cı

1�ı D 3 as a bound on the condition number
of G.

Theorem 10 For any r > 0, if m and n satisfy

Kn � � m

ln m
; with � WD �.r/ D 3 ln.3=2/� 1

2C 2r
; (43)

then the following hold.

(i) The matrix G satisfies the tail bound

Pr

�
kG � Ik2 > 1

2

�
� 2m�r:

(ii) If u satisfies (42), then the truncated least-squares estimator satisfies, in the
noiseless case,

E.ku � uTk2/ � .1C �.m// inf
eu2Vn

ku �euk2 C 8	2m�r;

where �.m/ WD 4�
ln.m/ ! 0 as m!1, and � is as in (43).
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(iii) The conditioned least-squares estimator satisfies, in the noiseless case,

E.ku � uCk2/ � .1C �.m// inf
eu2Vn

ku �euk2 C 2kuk2m�r;

where �.m/ is as in (ii).
(iv) If u satisfies (42), then the estimator uE 2 fuL; uT ; uCg satisfies, in the noiseless

case,

ku � uEk � .1C
p
2/ inf
eu2Vn

ku �eukL1.U;V/; (44)

with probability larger than 1 � 2m�r.

In the case of noisy evaluations modeled by (6)–(7), the observations are given by

ui D u. yi/C �. yi/: (45)

The following result from [8] shows that (44) holds up to this additional perturba-
tion.

Theorem 11 For any r > 0, if m and n satisfy condition (43) and u satisfies (42),
then the estimator uE 2 fuL; uT ; uCg in the noisy case (45) satisfies

ku � uEk � .1C
p
2/ inf
eu2Vn

ku �eukL1.U;V/ C
p
2";

with probability larger than 1 � 2n�r, where " is the noise level in (7).

Similar results, with more general assumptions on the type of noise, are proven
in [11, 15, 29].

4.2 Downward Closed Polynomial Spaces and Weighted Least
Squares

Condition (43) shows that Kn gives indications on the number m of observations
required to ensure stability and accuracy of the least-squares approximation. In order
to understand how demanding this condition is with respect to m, it is important to
have sharp upper bounds for Kn. Such bounds have been proven when the measure
d� on U D Œ�1; 1�d has the form

d� D C
dO

jD1
.1 � yj/

�1.1C yj/
�2dyj; (46)
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where �1; �2 > �1 are real shape parameters and C is a normalization constant
such that

R
U d� D 1. Sometimes (46) is called the Jacobi measure, because the

Jacobi polynomials are orthonormal in L2.U; d�/. Remarkable instances of the
measure (46) are the uniform measure, when �1 D �2 D 0, and the Chebyshev
measure, when �1 D �2 D � 12 .

When Yn D P� is a multivariate polynomial space and � is a downward closed
multi-index set with #.�/ D n, it is proven in [8, 27] that Kn satisfies an upper
bound which only depends on n and on the choice of the measure (46) through the
values of �1 and �2.

Lemma 6 Let d� be the measure defined in (46). Then it holds

Kn �
(

n
ln3
ln 2 ; if �1 D �2 D � 12 ;

n2maxf�1;�2gC2; if �1; �2 2 N0:
(47)

A remarkable property of both algebraic upper bounds in (47) is that the exponent
of n is independent of the dimension d, and of the shape of the downward closed
set �. Both upper bounds are sharp in the sense that equality holds for multi-
index sets of rectangular type � D R� corresponding to tensor product polynomial
spaces.

As an immediate consequence of Theorem 10 and Lemma 6, we have the next
corollary.

Corollary 1 For any r > 0, with multivariate polynomial spaces P� and �

downward closed, if m and n satisfy

m

ln m
� �

(
n

ln 3
ln 2 ; if �1 D �2 D � 12 ;

n2maxf�1;�2gC2; if �1; �2 2 N0;
(48)

with � D �.r/ as in (43), then the same conclusions of Theorem 10 hold true.

Other types of results on the accuracy of least squares have been recently
established in [14], under conditions of the same type as (48).

In some situations, for example when n is very large, the conditions (48)
might require a prohibitive number of observations m. It is therefore a legitimate
question to ask whether there exist alternative approaches with less demanding
conditions than (48) between m and n. At best, we would like that m is of order
only slightly larger than n, for example by a logarithmic factor. In addition, the
above analysis does not apply to situations where the basis functions k are
unbounded, such as when using Hermite polynomials in the expansion (21). It
is thus desirable to ask for the development of approaches that also cover this
case.

These questions have an affirmative answer by considering weighted least-
squares methods, as proposed in [15, 18, 21]. In the following, we survey some
results from [15]. For the space Vn D V ˝ Yn, the weighted least-squares
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approximation is defined as

uW WD argmin
eu2Vn

1

m

mX

iD1
wikeu. yi/ � uik2V ;

for some given choice of weights wi � 0. This estimator is again computed by
solving a linear system of normal equations now with the matrix G with entries

Gj;k D 1

m

mX

iD1
w. yi/j. yi/k. yi/:

Of particular interest to us are weights of the form

wi D w. yi/;

where w is some nonnegative function defined on U such that

Z

U
w�1 d� D 1: (49)

We then denote by d� the probability measure

d� WD w�1d�; (50)

and we draw the independent points y1; : : : ; ym from d� . The case w � 1 and
d� D d� corresponds to the previously discussed standard (unweighted) least-
squares estimator uL. As previously done for uL, we associate to uW a truncated
estimator uT and a conditioned estimator uC, by replacing uL with uW in the
corresponding definitions.

Let us introduce the function

y 7! kn;w. y/ WD
nX

jD1
w. y/jj. y/j2;

where once again f1; : : : ; ng is an arbitrary L2.U; d�/ orthonormal basis of the
space Yn. Likewise, we define

Kn;w WD kkn;wkL1.U/:

The following result, established in [15] for real-valued functions, extends Theo-
rem 10 to this setting. Its proof in the V-valued setting is similar.
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Theorem 12 For any r > 0, if m and n satisfy

m

ln m
� � Kn;w; with � WD �.r/ D 3 ln.3=2/� 1

2C 2r
;

then the same conclusions of Theorem 10 hold true with uL replaced by uW.

If we now choose

w. y/ D n
Pn

jD1 jj. y/j2 ; (51)

that satisfies condition (49) by construction, then the measure defined in (50) takes
the form

d� D
Pn

jD1 jj. y/j2
n

d�: (52)

The choice (51) also gives

Kn;w D kkn;wkL1.U/ D n;

and leads to the next result, as a consequence of the previous theorem.

Theorem 13 For any r > 0, if m and n satisfy

m

ln m
� � n; with � WD �.r/ D 3 ln.3=2/� 1

2C 2r
; (53)

then the same conclusions of Theorem 10 hold true with uL replaced by uW, with w
given by (51) and the weights taken as wi D w.yi/.

Remark 2 The above Theorem 13 ensures stability and accuracy of the weighted
least-squares approximation, under the minimal condition that m is linearly propor-
tional to n, up to a logarithmic factor. The fact that we may obtain near optimal
approximation in L2 with this amount of sample is remarkable and quite specific
to the randomized sampling setting, as it was also observed in similar types of
results obtained in the context of information based complexity [22, 32–34, 37].
For example, in the paper [37], the authors obtain the optimal L2 approximation
rate for specific classes of functions that are described by reproducing kernel
Hilbert spaces. The recent results from [22] are perhaps closer to our above results
since the proposed method uses the same optimal sampling measure associated
to the weight (51) as in [15]. The estimates obtained in [22] compare the error
of the randomized algorithm with the approximation numbers of the embedding
of the RKHS in L2, assuming a certain polynomial decay for these numbers.
In Theorem 13, we do not assume any particular form of decay of the best
approximation error.
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Clearly the above Theorem 13 is an advantage of weighted least squares com-
pared to standard least squares, since condition (43) is more demanding than (53) in
terms of the number of observations m.

However, this advantage comes with some drawbacks that we now briefly recall,
see [15] for an extensive description. In general (50) and (52) are not product
measures, even if d� is one. Therefore, the first drawback of using weighted least
squares concerns the efficient generation of independent samples from multivariate
probability measures, whose computational cost could be prohibitively expensive,
above all when the dimension d is large. In some specific settings, for example
downward closed polynomial spaces Yn D P� with #.�/ D n, and when d�
is a product measure, this drawback can be overcome. We refer to [15], where
efficient sampling algorithms have been proposed and analyzed. For any m and
any downward closed set �, these algorithms generate m independent samples
with proven bounds on the required computational cost. The dependence on the
dimension d and m of these bounds is linear. For the general measure (50) the
efficient generation of the sample is a nontrivial task, and remains a drawback of
such an approach.

The second drawback concerns the use of weighted least squares in a hierarchical
context, where we are given a nested sequence�1 	 : : : 	 �n of downward closed
sets, instead of a single such set �. Since the measure (52) depends on n, the sets
.�n/n�1 are associated to different measures .d�n/n�1. Hence, recycling samples
from the previous iterations of the adaptive algorithm is not as straightforward as in
the case of standard least squares.

As a final remark, let us stress that the above results of Theorems 12 and 13 hold
for general approximation spaces Yn other than polynomials.

5 Adaptive Algorithms and Extensions

5.1 Selection of Downward Closed Polynomial Spaces

The interpolation and least-squares methods discussed in Sects. 3 and 4 allow us
to construct polynomial approximations in V� D V ˝ P� of the map (2) from its
pointwise evaluations, for some given downward closed set �. For these methods,
we have given several convergence results in terms of error estimates either in
L1.U;V/ or L2.U;V; d�/. In some cases, these estimates compare favorably with
the error of best approximation mineu2V� ku �euk measured in such norms.

A central issue which still needs to be addressed is the choice of the downward
closed set �, so that this error of best approximation is well behaved, for a given
map u. Ideally, for each given n, we would like to use the set

�n D argmin
�2Dn

min
eu2V�

ku �euk;
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where Dn is the family of all downward closed sets � of cardinality n. However
such sets �n are not explicitly given to us, and in addition the resulting sequence
.�n/n�1 is generally not nested.

Concrete selection strategies aim to produce “suboptimal yet good” nested
sequences .�n/n�1 different from the above. Here, an important distinction should
be made between nonadaptive and adaptive selection strategies.

In nonadaptive strategies, the selection of�n is made in an a-priori manner, based
on some available information on the given problem. The results from Sect. 2.3 show
that, for relevant instances of solution maps associated to elliptic parametric PDEs,
there exist nested sequences .�n/n�1 of downward closed sets such that #.�n/ D n
and mineu2V�n

ku �euk decreases with a given convergence rate n�s as n ! 1. In
addition, these results provide constructive strategies for building the sets �n, since
these sets are defined as the indices associated to the n largestb�� WD maxe��� �e� like
in Theorem 5, or directly to the n largest �� like in Theorems 4 and 6, and since the
�� are explicitly given numbers.

In the case where we build the polynomial approximation by interpolation,
Theorem 9 shows that a good choice of �n is produced by taking �� to be either
�.�/b� or �.�/ˇ.�/2b� where b D .
�1

j /j � 1 is such that (22) holds. The choice of
such a sequence 
 depends both on the size and support properties of the functions
 j. For example, when the functions  j have nonoverlapping support, one natural
choice is to take


j D min
x2supp. j/

Na.x/� Qr
j j.x/j : (54)

We refer to [1] for the choices of sequences 
 in more general situations, for example
in the case where . j/j � 1 is a wavelet basis.

In the case where we build the polynomial approximation by least-squares
methods, the various results from Sect. 4 show that under suitable assumptions, the
error is nearly as good as that of best approximation in L2.U;V; d�/ with respect
to the relevant probability measure. In the affine case, Theorem 5 shows that a good
choice of �n is produced by taking �� to be b�ˇ.�/ where b D .
�1

j /j � 1 is such
that (22) holds. In the lognormal case Theorem 6 shows that a good choice of �n

is produced by taking �� to be given by (30) where b D .
�1
j /j � 1 is such that (28)

holds.
Let us briefly discuss the complexity of identifying the downward closed set �n

associated to the n largest b�� . For this purpose, we introduce for any downward
closed set � its set of neighbors defined by

N.�/ WD f� 2 F n� such that � [ f�g is downward closedg:

We may in principle define �n D f�1; : : : ; �ng by the following induction.

• Take �1 D 0F as the null multi-index.
• Given �k D f�1; : : : ; �kg, choose a �kC1 maximizingb�� over � 2 N.�k/.
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In the finite-dimensional case d < 1, we observe that N.�k/ is contained in the
union of N.�k�1/ with the set consisting of the indices

�k C ej; j D 1; : : : ; d;

where ej is the Kronecker sequence with 1 at position j. As a consequence, since
the values of theb�� have already been computed for � 2 N.�k�1/, the step k of the
induction requires at most d evaluations ofb�� , and therefore the overall computation
of �n requires at most nd evaluations.

In the infinite-dimensional case d D 1, the above procedure cannot be
practically implemented, since the set of neighbors has infinite cardinality. This
difficulty can be circumvented by introducing a priority order among the variables,
as done in the next definitions.

Definition 4 A monotone nonincreasing positive sequence .c�/�2F is said to be
anchored if and only if

l � j H) cej � cel :

A finite downward closed set � is said to be anchored if and only if

ej 2 � and l � j H) el 2 �;

where el and ej are the Kronecker sequences with 1 at position l and j, respectively.

Obviously, if .c�/�2F is anchored, one of the sets �n corresponding to its n
largest values is anchored. It is also readily seen that all sequences .b��/�2F that are
used in Theorems 4, 5, 6 or 9 for the construction of�n are anchored, provided that
the sequence b D .
�1

j /j � 1 is monotone nonincreasing. This is always the case up
to a rearrangement of the variables. For any anchored set �, we introduce the set of
its anchored neighbors defined by

eN.�/ WD f� 2 N.�/ W �j D 0 if j > j.�/C 1g; (55)

where

j.�/ WD maxf j W �j > 0 for some � 2 �g:

We may thus modify in the following way the above induction procedure.

• Take �1 D 0F as the null multi-index.
• Given �k D f�1; : : : ; �kg, choose a �kC1 maximizingb�� over � 2 eN.�k/.

This procedure is now feasible in infinite dimension. At each step k the number of
active variables is limited by j.�k/ � k � 1, and the total number of evaluations of
b�� needed to construct�n does not exceed 1C 2C � � � C .n � 1/ � n2=2.
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In adaptive strategies the sets �n are not a-priori selected, but instead they are
built in a recursive way, based on earlier computations. For instance, one uses the
previous set �n�1 and the computed polynomial approximation u�n�1 to construct
�n. If we impose that the sets �n are nested, this means that we should select an
index �n … �n�1 such that

�n WD �n�1 [ f�ng:

The choice of the new index �n is further limited to N.�n�1/ if we impose that the
constructed sets �n are downward closed, or to eN.�n�1/ if we impose that these
sets are anchored.

Adaptive methods are known to sometimes perform significantly better than
their nonadaptive counterpart. In the present context, this is due to the fact that
the a-priori choices of �n based on the sequences �� may fail to be optimal. In
particular, the guaranteed rate n�s based on such choices could be pessimistic, and
better rates could be obtained by other choices. However, convergence analysis
of adaptive methods is usually more delicate. We next give examples of possible
adaptive strategies in the interpolation and least-squares frameworks.

5.2 Adaptive Selection for Interpolation

We first consider polynomial approximations obtained by interpolation as discussed
in Sect. 3. The hierarchical form

I�u D
X

�2�
˛�B�; (56)

may formally be viewed as a truncation of the expansion of u in the hierarchical
basis

X

�2F
˛�B�;

which however may not always be converging, in contrast to the series discussed in
Sect. 2. Nevertheless, we could in principle take the same view, and use for �n the
set of indices corresponding to the n largest terms of (56) measured in some given
metric Lp.U;V; d�/. This amounts in choosing the indices of the n largest w�k˛�kV ,
where the weight w� is given by

w� WD kB�kLp.U;d�/:
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This weight is easily computable when d� is a tensor product measure, such as the
uniform measure. In the case where p D 1 and if we use the Leja sequence, we
know that kB�kL1.U/ D 1 and therefore this amounts to choosing the largest k˛�kV .

This selection strategy is not practically feasible since we cannot afford this
exhaustive search over F . However, it naturally suggests the following adaptive
greedy algorithm, which has been proposed in [7].

• Initialize �1 WD f0Fg with the null multi-index.
• Assuming that �n�1 has been selected and that .˛�/�2�n�1 have been computed,

compute ˛� for � 2 N.�n�1/.
• Set

�n WD argmaxfw�k˛�kV W � 2 N.�n�1/g: (57)

• Define �n WD �n�1 [ f�ng.
In the case where p D 1 and if we use the Leja sequence, this strategy amounts

in picking the index �n that maximizes the interpolation error ku.y�/� I�n�1u.y�/kV

among all � in N.�n�1/. By the same considerations as previously discussed for
the a-priori selection of �n, we find that in the finite-dimensional case, the above
greedy algorithm requires at most dn evaluation after n steps. When working with
infinitely many variables .yj/j � 1, we replace the infinite set N.�n/ in the algorithm
by the finite set of anchored neighbors eN.�n/ defined by (55). Running n steps of
the resulting greedy algorithm requires at most n2=2 evaluations.

Remark 3 A very similar algorithm has been proposed in [19] in the different
context of adaptive quadratures, that is, for approximating the integral of u over
the domain U rather than u itself. In that case, the natural choice is to pick the new
index �n that maximizes j RU ��u d�j over N.�n/ or eN.�n/.

The main defect of the above greedy algorithm is that it may fail to converge,
even if there exist sequences .�n/n�1 such that I�n u converges toward u. Indeed, if
��u D 0 for a certain �, then no indexe� � � will ever be selected by the algorithm.
As an example, if u is of the form

u. y/ D u1. y1/u2. y2/;

where u1 and u2 are nonpolynomial smooth functions such that u2.t0/ D u2.t1/, then
the algorithm could select sets�n with indices � D .k; 0/ for k D 0; : : : ; n�1, since
the interpolation error at the point .tk; t1/ vanishes.

One way to avoid this problem is to adopt a more conservative selection rule
which ensures that all of F is explored, by alternatively using the rule (57), or
picking the multi-index � 2 eN.�n/ which has appeared at the earliest stage in the
neighbors of the previous sets�k. This is summarized by the following algorithm.

• Initialize �1 WD f0Fg with the null multi-index.
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• Assuming that �n�1 has been selected and that .˛�/�2�n�1 have been computed,
compute ˛� for � 2 eN.�n�1/.

• If n is even, set

�n WD argmaxfw�k˛�kV W � 2 eN.�n�1/g: (58)

• If n is odd, set

�n WD argminfk.�/ W � 2 eN.�n�1/g; k.�/ WD minfk W � 2 eN.�k/g:

• Define �n WD �n�1 [ f�ng.
Even with such modifications, the convergence of the interpolation error pro-

duced by this algorithm is not generally guaranteed. Understanding which additional
assumptions on u ensure convergence at some given rate, for a given univariate
sequence T such as Leja points, is an open problem.

Remark 4 Another variant to the above algorithms consists in choosing at the
iteration k more than one new index at a time within N.�k�1/ or eN.�k�1/. In
this case, we have nk WD #.�k/ � k. For example we may choose the smallest
subset of indices that retains a fixed portion of the quantity

P
�2�k�1

w�k˛�kV . This
type of modification turns out to be particularly relevant in the least-squares setting
discussed in the next section.

5.3 Adaptive Selection for Least Squares

In this section we describe adaptive selections in polynomial spaces, for the least-
squares methods that have been discussed in Sect. 4. We focus on adaptive selection
algorithms based on the standard (unweighted) least-squares method.

As a preliminary observation, it turns out that the most efficient available
algorithms for adaptive selection of multi-indices might require the selection of
more than one index at a time. Therefore, we adopt the notation that nk WD #.�k/ �
k, where the index k denotes the iteration in the adaptive algorithm.

As discussed in Sect. 4, stability and accuracy of the least-squares approximation
is ensured under suitable conditions between the number of samples and the
dimension of the approximation space, see e.g. condition (48). Hence, in the
development of reliable iterative algorithms, such conditions need to be satisfied
at each iteration. When d� is the measure (46) with shape parameters �1; �2,
condition (48) takes the form of

mk

ln mk
� � ns

k; (59)
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where mk denotes the number of samples at iteration k, and

s D
�

ln 3= ln 2; if �1 D �2 D � 12 ;
2maxf�1; �2g C 2; if �1; �2 2 N0:

Since nk increases with k, the minimal number of samples mk that satisfies (59)
has to increase as well at each iteration. At this point, many different strategies
can be envisaged for progressively increasing mk such that (59) remains satisfied at
each iteration k. For example, one can double the number of samples by choosing
mk D 2mk�1 whenever (59) is broken, and keep mk D mk�1 otherwise. The sole
prescription for applying Corollary 1 is that the samples are independent and drawn
from d�. Since all the samples at all iterations are drawn from the same measure
d�, at the kth iteration, where mk samples are needed, it is possible to use mk�1
samples from the previous iterations, thus generating only mk �mk�1 new samples.

We may now present a first adaptive algorithm based on standard least squares.

• Initialize �1 WD f0Fg with the null multi-index.
• Assuming that�k�1 has been selected, compute the least-squares approximation

uL D
X

�2�k�1[N.�k�1/

c��

of u in V�k�1[N.�k�1/, using a number of samples mk that satisfies condition (59)
with nk D #.�k�1 [ N.�k�1//.

• Set

�k WD argmax
�2N.�k�1/

jc� j2: (60)

• Define �k WD �k�1 [ f�kg.
Similarly to the previously discussed interpolation algorithms, in the case of

infinitely many variables .yj/j � 1 the set N.�k/ is infinite and should be replaced
by the finite set of anchored neighborseN.�k/ defined by (55). As for interpolation,
we may define a more conservative version of this algorithm in order to ensure that
all of F is explored. For example, when k is even, we define �k according to (60),
and when k is odd we pick for �k the multi-index � 2 eN.�k/ which has appeared at
the earliest stage in the neighbors of the previous sets�k. The resulting algorithm is
very similar to the one presented for interpolation, with obvious modifications due
to the use of least squares.

As announced at the beginning, it can be advantageous to select more than one
index at a time from eN.�k�1/, at each iteration k of the adaptive algorithm. For
describing the multiple selection of indices from eN.�k�1/, we introduce the so-
called bulk chasing procedure. Given a finite set R � eN.�k�1/, a nonnegative
function E W R ! R and a parameter ˛ 2 .0; 1�, we define the procedure
bulk WD bulk.R;E ; ˛/ that computes a set F � R of minimal positive cardinality
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such that

X

�2F

E .�/ � ˛
X

�2R

E .�/:

A possible choice for the function E is

E .�/ D EL.�/ WD jc�j2; � 2 R;

where c� is given from an available least-squares estimator

uL D
X

�2�
c��;

that has been already computed on any downward closed set R 	 � � �k�1 [
eN.�k�1/. Another choice for E is

E .�/ D EM.�/ WD h�; u �euLimk�1 ; � 2 R;

whereeuL is the truncation to �k�1 of a least-squares estimator uL D P
�2� c��

that has been already computed on any downward closed set �k�1 	 � � �k�1 [
eN.�k�1/, using a number of samples mk�1 that satisfies condition (59) with nk D
#.�/. The discrete norm in EM.�/ uses the same mk�1 evaluations of u that have
been used to compute the least-squares approximation uL on �.

Both EL.�/ and EM.�/ should be viewed as estimators of the coefficient hu; �i.
The estimator EM.�/ is of Monte Carlo type and computationally cheap to calculate.
Combined use of the two estimators leads to the next algorithm for greedy selection
with bulk chasing, that has been proposed in [26].

• Initialize �1 WD f0Fg with the null multi-index, and choose ˛1; ˛2 2 .0; 1�.
• Assuming that �k�1 has been selected, set

F1 D bulk.eN.�k�1/;EM; ˛1/; (61)

where EM uses the least-squares approximation uL D P
�2� c�� of u in V�

that has been calculated at iteration k � 1 on a downward closed set �k�1 	
� � �k�1 [ eN.�k�1/ using a number of samples mk�1 that satisfies (59) with
nk D #.�/.

• Compute the least-squares approximation

uL D
X

�2�k�1[F1

c�� (62)

of u on V�k�1[F1 using a number of samples mk that satisfies (59) with nk D
#.�k�1 [ F1/.
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• Set

F2 D bulk.F1;EL; ˛2/; (63)

where EL uses the least-squares approximation uL computed on�k�1 [ F1.
• Define �k D �k�1 [ F2.

The set eN.�k�1/ can be large, and might contain many indices that are
associated to small coefficients. Discarding these indices is important in order to
avoid unnecessary computational burden in the calculation of the least-squares
approximation. The purpose of the bulk procedure (61) is to perform a preliminary
selection of a set F1 � eN.�k�1/ of indices, using the cheap estimator EM. At
iteration k, EM in (61) uses the estimator computed in (62) at iteration k � 1
and truncated to �k�1. Afterwards, at iteration k, the least-squares approximation
in (62) is calculated on �k�1 [ F1, using a number of samples mk which satisfies
condition (59), with nk D #.�k�1 [ F1/. The second bulk procedure (63) selects a
set F2 of indices from F1, using the more accurate estimator EL. The convergence
rate of the adaptive algorithm depends on the values given to the parameters ˛1
and ˛2.

Finally we mention some open issues related to the development of adaptive
algorithms using the weighted least-squares methods discussed in Sect. 4, instead of
standard least squares. In principle the same algorithms described above can be used
with the weighted least-squares estimator uW replacing the standard least-squares
estimator uL, provided that, at each iteration k, the number of samples mk satisfies

mk

ln mk
� � nk;

and that the samples are drawn from the optimal measure, see Theorem 13. This
ensures that at each iteration k of the adaptive algorithm, the weighted least-squares
approximation remains stable and accurate. However, no guarantees on stability and
accuracy are ensured if the above conditions are not met, for example when the
samples from previous iterations are recycled.

5.4 Approximation in Downward Closed Spaces: Beyond
Polynomials

The concept of downward closed approximation spaces can be generalized beyond
the polynomial setting. We start from a countable index set S equipped with a partial
order �, and assume that there exists a root index 0S 2 S such that 0S � � for all
� 2 S. We assume that .B� /�2S is a basis of functions defined on Œ�1; 1� such that
B0S � 1. We then define by tensorization a basis of functions on U D Œ�1; 1�d
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when d < 1, or U D Œ�1; 1�N in the case of infinitely many variables, according
to

B�. y/ D
Y

j � 1

B�j. yj/; � WD .�j/j � 1 2 F ;

where F WD Sd in the case d < 1, or F D `0.N; S/, i.e. the set of finitely
supported sequences, in the case d D N.

The set F is equipped with a partial order induced by its univariate counterpart:
� �e� if and only if �j �e� j for all j� 1. We may then define downward closed sets
� 	 F in the same way as in Definition 1 which corresponds to the particular case
S D N. We then define the associated downward closed approximation space by

V� WD V ˝ B�; B� WD spanfB� W � 2 �g;

that is the space of functions of the form
P

�2� u�B� with u� 2 V .
Given a sequence T D .t� /�2S of pairwise distinct points we say that the basis

.B� /�2S is hierarchical when it satisfies

B� .t� / D 1 and B�.te� / D 0 ife� � � ande� ¤ �:

We also define the tensorized grid

y� WD .t�j/j � 1 2 U:

Then, if � 	 F is a downward closed set, we may define an interpolation operator
I� onto V� associated to the grid

�� WD f y� W � 2 �g:

In a similar manner as in the polynomial case, this operator is defined inductively
by

I�u WD Ie� uC ˛�B�; ˛� WD ˛�.u/ D u. y�/ � Ie� u. y�/;

where � … e� ande� is any downward closed set such that� D e�[f�g. We initialize
this computation with �1 D f0Fg, where 0F is the null multi-index, by defining
I�1u as the constant function with value u.y0F /.

Examples of relevant hierarchical systems include the classical piecewise linear
hierarchical basis functions. In this case the set S is defined by

S D f��1; �1; .0; 0/g [
˚
. j; k/ W �2j�1 � k � 2j�1 � 1; j D 1; 2; : : : �



280 A. Cohen and G. Migliorati

equipped with the partial order ��1 � �1 � .0; 0/ and

. j; k/ � . jC 1; 2k/; . j; k/ � . jC 1; 2kC 1/; . j; k/ 2 S:

The set S is thus a binary tree where ��1 is the root node, .0; 0/ is a child of �1
which is itself a child of ��1, every node . j; k/ has two children . j C 1; 2k/ and
. j C 1; 2k C 1/, and the relatione� � � means thate� is a parent of �. The index j
corresponds to the level of refinement, i.e. the depth of the node in the binary tree.
We associate with S the sequence

T WD ft�
�1 ; t�1 ; t.0;0/g [

�
t. j;k/ WD 2kC 1

2j
W . j; k/ 2 S; j � 1

�
;

where t�
�1 D �1, t�1 D 1 and t.0;0/ D 0. The hierarchical basis of piecewise linear

functions defined over Œ�1; 1� is then given by

B�
�1 � 1; B�1.t/ D

1C t

2
; B. j;k/.t/ D H.2j.t � t. j;k///; . j; k/ 2 S;

where

H.t/ WD maxf0; 1� jtjg;

is the usual hat function. In dimension d D 1, the hierarchical interpolation amounts
in the following steps: start by approximating f with the constant function equal to
f .�1/, then with the affine function that coincides with f at �1 and 1, then with the
piecewise affine function that coincides with f at �1, 0 and �1; afterwards refine
the approximation in further steps by interpolating f at the midpoint of an interval
between two adjacents interpolation points.

Other relevant examples include piecewise polynomials, hierarchical basis func-
tions, and more general interpolatory wavelets, see [10] for a survey.
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Subperiodic Trigonometric
Hyperinterpolation

Gaspare Da Fies, Alvise Sommariva, and Marco Vianello

Dedicated to Ian H. Sloan on the occasion of his 80th birthday.

Abstract Using recent results on subperiodic trigonometric Gaussian quadrature
and the construction of subperiodic trigonometric orthogonal bases, we extend
Sloan’s notion of hyperinterpolation to trigonometric spaces on subintervals of the
period. The result is relevant, for example, to function approximation on spherical
or toroidal rectangles.

1 Introduction

Trigonometric approximation in the absence of periodicity has been investigated
along some apparently parallel paths: the theory of Fourier Extensions (also known
as Fourier Continuations in certain applications), cf. [1, 3, 4, 8, 9, 27], the theory
of subperiodic trigonometric interpolation and quadrature, e.g. [7, 12–15, 40], and
the recent developments of nonperiodic trigonometric approximation [39] and of
mapped polynomial approximation [2]. It is also worth mentioning the study of
monotone trigonometric approximations, which can arise only in the subperiodic
setting, cf. [29].
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Fourier Extensions emerged in the context of trigonometric approximation
of nonperiodic functions, for example as a tool for circumventing the Gibbs
phenomenon. Summarizing, a smooth nonperiodic real-valued function f defined in
Œ�1; 1� is approximated by the restriction to Œ�1; 1� of a trigonometric polynomial
periodic on Œ�T;T�, T > 1,

	 2 Tn D spanf1; cos.k�u=T/; sin.k�u=T/; 1 � k � n;

u 2 Œ�T;T� ; T > 1g; (1)

by solving the minimization problem

min
	2Tn

k	 � fkL2�.Œ�1;1�/; (2)

where either � is the Lebesgue measure on Œ�1; 1�, or a discrete measure supported
at a discrete set X 	 Œ�1; 1�. In the first case one speaks of a “continuous Fourier
extension”, and in the second of a “discrete Fourier extension”. When card.X/ D
2nC 1 D dim.Tn/, the construction of the discrete Fourier extension becomes an
interpolation problem.

A number of deep theoretical results have been obtained on Fourier extensions,
concerning different aspects such as: choice of T, choice of interpolation nodes for
discrete extensions, approximation power (with tight error estimates for analytic
functions), resolution power on higly oscillatory functions, numerical stability;
cf. e.g. [1, 4]. The main computational approach has been the solution of the
least squares/interpolation linear systems working with the standard trigonometric
basis (1), which leads to strongly ill-conditioned systems. Nevertheless, Fourier
extensions are actually numerically stable when implemented in finite arithmetic,
cf. [4] for an explanation of the phenomenon (a different approach has been recently
proposed in [30]).

Let us now summarize the parallel path of subperiodic trigonometric approx-
imation. In several recent papers, subperiodic trigonometric interpolation and
quadrature have been studied, i.e., interpolation and quadrature formulas exact on

Tn.Œ�!;!�/ D spanf1; cos.k�/; sin.k�/; 1 � k � n ; � 2 Œ�!;!�g; (3)

where Tn.Œ�!;!�/ denote the .2nC1/-dimensional space of trigonometric polyno-
mials restricted to the interval Œ�!;!�, 0 < ! � �; cf. e.g. [7, 13], and [12, 15] for
the construction and application of subperiodic trigonometric Gaussian formulas.
All these formulas are related by the simple nonlinear transformation

�.t/ D 2 arcsin.sin.!=2/t/ ; t 2 Œ�1; 1�; (4)
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with inverse

t.�/ D sin.�=2/

sin.!=2/
; � 2 Œ�!;!�; (5)

to polynomial interpolation and quadrature on Œ�1; 1�, and have been called “subpe-
riodic” since they concern subintervals of the period of trigonometric polynomials.

For example, trigonometric interpolation and quadrature by the transformed
zeros of the .2n C 1/-th Chebyshev polynomial T2nC1.t/ has been studied in
[7]. Moreover, in [13] stability of such Chebyshev-like subperiodic trigonometric
interpolation has been studied, proving that its Lebesgue constant does not depend
on ! and increases logarithmically in the degree.

In this article, we apply the following subperiodic quadrature [12, 23].

Proposition 1 Let f.�j; �j/g1�j�nC1, be the nodes and positive weights of the
algebraic Gaussian quadrature formula on .�1; 1/ induced by the weight function

W�1=2.t/ D 2 sin.!=2/
p
1 � sin2.!=2/ t2

; t 2 .�1; 1/: (6)

Then

Z !

�!
f .�/ d� D

nC1X

jD1
�jf .'j/ ; 8f 2 Tn.Œ�!;!�/ ; 0 < ! � �; (7)

where

'j D 2 arcsin.sin.!=2/�j/ 2 .�!;!/ ; j D 1; 2; : : : ; nC 1: (8)

It is worth recalling that the key role played by the transformation (6) on
subintervals of the period was also recognized in [6, E.3, p. 235], and more recently
in [40], in the context of trigonometric polynomial inequalities. On the other hand,
such a transformation (already introduced in [28]), is at the base of the recent studies
on nonperiodic trigonometric approximations [39], and on “mapped” polynomial
approximations [2].

The initial motivation of [7, 12] for the analysis of subperiodic interpolation
and quadrature was different from that of Fourier extensions or other similar
studies, since it arised from multivariate applications. The key observation is that
a multivariate polynomial restricted to an arc of a circle becomes a univariate sub-
periodic trigonometric polynomial in the arclength. Then, multivariate polynomials
on domains defined by circular arcs, such as sections of disk (circular sectors,
segments, zones, lenses, lunes) and surface/solid sections of sphere, cylinder, torus
(rectangles, collars, caps, slices) become in the appropriate coordinates elements
of tensor-product spaces of univariate trigonometric and algebraic polynomials,
where the angular variables are restricted to a subinterval of the period. This entails
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that approximation in polynomial spaces and in such product spaces are intimately
related; cf. e.g. [12, 15, 36]. On the other hand, product approximations are simpler
to construct.

Now, a closer look at Fourier extensions and subperiodic trigonometric approx-
imation shows that we are speaking essentially of the same problem, and that the
results obtained in one framework can be fruitfully adapted to the other one. Indeed,
by the change of variables

� D ! u ; ! D �

T
; u 2 Œ�1; 1�; (9)

we can immediately translate an extension problem into a subperiodic problem, and
conversely.

In this paper we focus on a semi-discrete approximation in the subperiodic set-
ting, namely hyperinterpolation, that is an orthogonal projection onto Tn.Œ�!;!�/,
discretized by means of the Gaussian quadrature formula of Proposition 1 for
exactness degree 2n. In view of (9), this can be seen as a kind of discrete Fourier
extension.

In order to generate such orthogonal projections, we need some theoretical
tools that are recalled in Sects. 2 and 3, that are: the extension of the notion of
hyperinterpolation, originally introduced by Sloan in the seminal paper [35] for
multivariate total-degree polynomial spaces, to a more general class of spaces, that
we term hyperinterpolation spaces; the construction of a subperiodic orthogonal
trigonometric basis. Moreover, in Sect. 3 we also discuss the main computational
issues related to subperiodic orthogonality. Finally, in Sect. 4 we discuss the imple-
mentation of subperiodic trigonometric hyperinterpolation, together with examples
and applications.

2 Hyperinterpolation Spaces

Hyperinterpolation is a powerful tool for total-degree polynomial approximation of
multivariate continuous functions, introduced by Sloan in the seminal paper [35].
In brief, it corresponds to a truncated Fourier expansion in a series of orthogonal
polynomials for some measure on a given multidimensional domain, where the
Fourier coefficients are discretized by a positive algebraic cubature formula. Since
then, theoretical as well as computational aspects of hyperinterpolation as an alter-
native to interpolation have attracted much interest, due to the intrinsic difficulties
in finding good multivariate interpolation nodes, with special attention to the case
of the sphere; cf., e.g., [16, 25, 26, 41, 42].

In order to generalize the notion of hyperinterpolation, we introduce the idea of
nested hyperinterpolation spaces. We shall denote by C.K/ the space of real-valued
continuous functions on a compact set K 	 R

d.
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Let fSng be an increasing sequence of finite-dimensional subspaces Sn 	 SnC1 	
C.K/, n � 0. Moreover, assume that

.i/ if u 2 Sn and v 2 Sm then uv 2 SnCm;
.ii/ the subalgebra S D S

n�0 Sn is dense in C.K/ with respect to the uniform
norm (by the Stone-Weierstrass theorem, if S contains the constants the latter
is equivalent to the fact that S separates points in K, i.e., for every x 2 K there
exist u; v 2 S such that u.x/ ¤ v.x/; cf. e.g. [34]);

.iii/ we know a sequence of positive quadrature rules �n D f.X;w/g, n � 0, with
nodes X D fxjg and weights w D fwjg, 1 � j � M, that are exact in S2n for a
measure � on K (for notational convenience we do not display the fact that the
nodes X, the weights w and the cardinality M depend on n)

Z

K
f .x/ d� D

MX

jD1
wjf .xj/ ; 8f 2 S2n: (10)

Let fujg be a �-orthonormal basis of Sn, i.e. Sn D spanfu1; : : : ; uNg ; N D Nn D
dim.Sn/ and

.ui; uj/� D
Z

K
ui.x/uj.x/ d� D ıij: (11)

Observe that such an orthonormal basis always exists by the Gram-Schmidt process
applied to a given basis of Sn, that in view of .iii/ can be performed using either the
scalar product . f ; g/� or equivalently its discrete counterpart . f ; g/�n defined below
in (12). It is also worth observing that a quadrature formula like (10) always exists,
by a generalized version of Tchakaloff theorem on positive algebraic formulas
(whose proof however is not constructive, so that in practice we have to get the
formula in some other way); cf. [10] for the polynomial setting and [5, Thm. 5.1]
for the extension to more general spaces.

Consider the “discrete inner product” in C.K/ (cf. .iii/)

. f ; g/�n D
MX

jD1
wjf .xj/g.xj/ (12)

together with the corresponding seminorm k fk`2w.X/ D
p
. f ; f /�n , and define the

discrete orthogonal projection Ln W C.K/! Sn

Lnf .x/ D
NX

iD1
. f ; ui/�n ui.x/; (13)
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which solves the discrete weighted least squares problem

k f �Lnfk`2w.X/ D min
u2Sn
k f � uk`2w.X/: (14)

This construction was originally proposed in polynomial spaces by Sloan [35]
with the name of “hyperinterpolation”, namely for Sn D P

d
n.K/ (the space of total-

degree polynomials in d real variables of degree not exceeding n, restricted to a
compact set or manifold K).

All the relevant properties of the hyperinterpolation operator hold true also in
our more general setting. We do not give the proofs, since “mutatis mutandis” they
follow exactly the lines of those in [35]. We only observe that a key fact is the
coincidence of the original 2-norm and the discrete weighted 2-norm in Sn, in view
of .i/ and .iii/, that is

kukL2�.K/
D kuk`2w.X/ ; 8u 2 Sn: (15)

It is worth collecting some of the most relevant features of hyperinterpolation in
the following

Proposition 2 (cf. [35] for the Polynomial Case) The hyperinterpolation operator
Ln defined in (13) has the following properties:

• M � dim
�
Snjsupp.�/

�
and if the equality holds, then Lnf interpolates f at the

quadrature nodes;
• for every f 2 C.K/

kLnfkL2�.K/
� p�.K/ k fkL1.K/I (16)

• the L2�.K/ error can be estimated as

k f �LnfkL2�.K/
� 2p�.K/ESn. f IK/; (17)

where ESn. f IK/ D infu2Sn

˚k f � ukL1.K/
�
.

Observe that by the density of the subalgebra S D Sn�0 Sn, (17) implies L2�.K/-
convergence of the sequence of hyperinterpolants, since density is equivalent to
ESn. f IK/ ! 0, n ! 1. To study L1.K/-convergence, an estimate of uniform
norm of the operator is needed, along with a Jackson-like theorem for approximation
in Sn. The former can be obtained, in general, by estimating in the specific context
the reciprocal Christoffel function

Kn.x; x/ D
NX

iD1
u2i .x/ ; (18)
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(i.e., the diagonal of the reproducing kernel Kn.x; y/ DPN
iD1 ui.x/ui.y/ which does

not depend on the orthonormal basis), as shown in [17] for total-degree polynomials.
Indeed, one can easily prove that

sup
Sn3u¤0

kukL1.K/

kukL2�.K/
D
q

max
x2K

Kn.x; x/; (19)

and consequently by (16)

kLnk D sup
f ¤0
kLnfkL1.K/

k fkL1.K/
�
q

max
x2K

Kn.x; x/ sup
f ¤0

kLnfkL2�.K/

k fkL1.K/

�
q
�.K/ max

x2K
Kn.x; x/; (20)

cf. [17, Prop. 1.1 and Cor. 1.2].
On the other hand, by the representation

Lnf .x/ D
NX

iD1

0

@
MX

jD1
wjui.xj/f .xj/

1

A ui.x/ D
MX

jD1
f .xj/wjKn.x; xj/; (21)

we can obtain an explicit expression for the uniform norm of the hyperinterpolation
operator

kLnk D max
x2K

MX

jD1
wj

ˇ
ˇKn.x; xj/

ˇ
ˇ: (22)

Observe that when M D N D dim
�
Snjsupp.�/

�
and thus Ln is interpolant, the

functions

`j.x/ D wjKn.x; xj/ ; j D 1; : : : ;N; (23)

are the cardinal functions of interpolation at X in Sn, i.e. `j.xk/ D ıjk, and kLnk
plays the role of the Lebesgue constant of polynomial interpolation.

We stress finally that (20) is usually an overestimate of the actual norm (22).
Tighter estimates can be obtained on specific geometries and functional settings,
see e.g. the case of the ball [41] and the cube [42] in the polynomial framework.
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3 Subperiodic Orthogonality

In this paper we wish to apply the generalized notion of hyperinterpolation of Sect. 2
in the subperiodic trigonometric framework, namely Sn D Tn.Œ�!;!�/, 0 < ! �
� . To this end, since the trigonometric Gaussian quadrature formula (7) is at hand
(cf. .iii/), we need to find a subperiodic orthonormal basis.

We can now state and prove the following Proposition (see [11] for a preliminary
version)

Proposition 3 An orthonormal basis in L2.�!;!/ for the .2n C 1/-dimensional
space Tn.Œ�!;!�/ is given by the trigonometric polynomials

	i.�/ D 	i.�; !/ ; i D 0; 1; : : : ; 2n; (24)

	2k.�/ D p2k



sin.�=2/

sin.!=2/

�
; k D 0; : : : ; n (25)

where f pjgj�0 are the algebraic orthonormal polynomials with respect to the weight
function W�1=2.t/ in (6) and

	2k�1.�/ D cos.�=2/ q2k�1



sin.�=2/

sin.!=2/

�
; k D 1; : : : ; n (26)

where fqjgj�0 are the algebraic orthonormal polynomials with respect to the weight
function

W1=2.t/ D 2 sin.!=2/
q
1 � sin2.!=2/ t2 ; t 2 .�1; 1/: (27)

Proof First, observe that by basic trigonometric identities the functions 	2k are a
basis for the even trigonometric polynomials, whereas the functions 	2k�1 are a
basis for the odd trigonometric polynomials. Indeed, an even power of a sine is
a combination of cosines with frequencies up to the exponent, whereas an odd
power of a sine is a combination of sines with frequencies up to the exponent,
and cos.�=2/ sin. j�=2/ D 1

2
sin.. jC 1/�=2/C sin.. j � 1/�=2/ is a trigonometric

polynomial of degree . jC 1/=2 for odd j.
From the definition and the change of variable (4) it follows directly that 	i has

unit L2-norm for even i, and that 	i and 	j with even i and j, i ¤ j, are mutually
orthogonal, whereas when i is even and j odd, or conversely, they are mutually
orthogonal since their product is an odd function. To show that they are orthonormal
also for odd i and j, write

Z !

�!
	i.�/	j.�/ d� D

Z !

�!
qi



sin.�=2/

sin.!=2/

�
qj



sin.�=2/

sin.!=2/

�
cos2.�=2/ d�:
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By the change of variable � D 2 arcsin.sin.!=2/t/ we get

Z !

�!
	i.�/	j.�/ d� D

Z 1

�1
qi.t/qj.t/ .1 � sin2.!=2/ t2/

2 sin.!=2/
p
1 � sin2.!=2/ t2

dt

D
Z 1

�1
qi.t/qj.t/W1=2.t/ dt D ıij: �

ut
We discuss now how to implement the computation of the subperiodic orthogonal

basis of Proposition 3, since this is the base for an algorithm that constructs
subperiodic trigonometric hyperinterpolants.

Concerning univariate algebraic orthogonal polynomials, one of the most com-
prehensive and reliable tools is the Matlab OPQ suite by Gautschi [22]. For example,
inside OPQ one finds the routine chebyshev, that computes in a stable way the
recurrence coefficients for orthogonal polynomials with respect to a given measure
by the modified Chebyshev algorithm, as soon as the modified Chebyshev moments
(i.e., the moments of the Chebyshev basis with respect to the given measure) are
known. As shown in [21, 22], the modified Chebyshev algorithm computes the
recurrence coefficients for the orthogonal polynomials up to degree k C 1 using
the modified Chebyshev moments up to degree 2kC 1 (in our application k D 2n is
needed).

Our first step is then to compute the modified Chebyshev moments up to degree
2n for the weight functions W�1=2 in (6) and W1=2 in (27), namely

m2j D 2 sin.!=2/
Z 1

�1
T2j.t/ .1 � sin2.!=2/ t2/ˇ dt ; j D 0; : : : ; 2n; (28)

where ˇ D �1=2 or ˇ D 1=2; observe that only the even moments have to be
computed, since the weight functions are even and thus the odd moments vanish.

More generally, in [33] it is proved that the sequence of moments

I2j.˛; ˇ; s/ D
Z 1

�1
T2j.t/ .˛ C s2 C t2/ˇ dt; (29)

where ˛ 2 C, s; ˇ 2 R, satisfies the recurrence relation



1

4
C ˇ C 1
2.2jC 1/

�
I2jC2 C



1

2
C ˛2 C s2 � ˇ C 1

4j2 � 1
�

I2j

C


1

4
� ˇ C 1
2.2j� 1/

�
I2j�2 D �2.1C ˛

2 C s2/ˇC1

4j2 � 1 ; j � 1: (30)
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Now, setting ˛ D i= sin.!=2/ where i is the imaginary unit (i2 D �1), s D 0 and
ˇ D ˙1=2, we have that m2j D 2 sin2ˇC1.!=2/.�1/�ˇI2j.i= sin.!=2/; ˇ; 0/, from
which follows that m2j satisfies the recurrence relation

ajm2jC2 C bjm2j C cjm2j�2 D dj ; j � 1; (31)

where

aj D


1

4
C ˇ C 1
2.2jC 1/

�
; bj D



1

2
� 1

sin2.!=2/
� ˇ C 1
4j2 � 1

�
;

cj D


1

4
� ˇ C 1
2.2j� 1/

�
; dj D 4 cos2ˇC2.!=2/

sin.!=2/

1

4j2 � 1: (32)

Such a recurrence is however unstable, namely small errors on the starting values
grow very rapidly increasing j. In order to stabilize it we have adopted the method
that solves instead a linear system, with tridiagonal diagonally dominant matrix
(of the recurrence coefficients) and the vector .d1 � c1m0; d2; : : : ; d2n�2; d2n�1 �
a2n�1m4n/ as right-hand side; cf. [11, 20]. We get immediately that m0 D 2! for
ˇ D �1=2 and m0 D ! C sin.!/ for ˇ D 1=2, whereas the last moment m4n can
be computed accurately in both cases by the quadgk Matlab function (adaptive
Gauss-Kronrod quadrature).

Since the chebyshev routine, starting from the modified Chebyshev moments,
returns the recurrence coefficients for the monic orthogonal polynomials, we have
to modify the recurrence relation in the standard way (cf. [21, Thm. 1.29]) to get
the orthonormal polynomials f p2kg for W�1=2 and fq2k�1g for W1=2, from which
we compute the orthonormal subperiodic trigonometric basis f	0; : : : ; 	2ng as in
Proposition 3.

On the other hand, it turns out numerically (in double precision) that there is a
moderate loss of orthogonality when n increases. Defining the Vandermonde-like
matrix

V D Vn.�; !/ D .vij/ D .	j�1.'i// ; 1 � i; j � 2nC 1; (33)

where � D f'ig are the 2n C 1 quadrature nodes for trigonometric exactness
degree 2n (see Proposition 1), we can then measure numerical orthogonality of the
basis f	j�1g by computing "n D k.

p
�V/t.

p
�V/ � Ik2, where � D diag.�i/

is the diagonal matrix of the quadrature weights. For example, we get "250 

2 � 10�13. In order to recover orthogonality at machine precision, it is sufficient
to re-orthogonalize the basis by

p
�V D QR ; . O	0.�/; : : : ; O	2n.�// D .	0.�/; : : : ; 	2n.�//R

�1: (34)

In such a way, we can eventually compute in a stable way the orthonormal
trigonometric basis of Proposition 3. All the relevant codes are available in the
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Matlab package HYPERTRIG [38]. Notice that we could not have applied the
QR based orthonormalization directly to the Vandermonde matrix in the canonical
trigonometric basis (3), since such a matrix turns out to be extremely ill-conditioned
already at moderate values of n for ! < � . On the contrary, the Vandermonde-like
matrix

p
�V in (34) being quasi-orthogonal has a condition number very close to

1, and thus Q D p�VR�1 is orthogonal at machine precision.

4 Subperiodic (Hyper)interpolation

By the tools developed in the previous sections, we can now construct a subperiodic
trigonometric hyperinterpolation operator, whose properties are an immediate
consequence of Proposition 2 with Sn D Tn.Œ�!;!�/. Notice that property .i/
of hyperinterpolation spaces is immediate (n being the trigonometric degree) and
concerning .ii/ it is not difficult to show that subperiodic trigonometric polynomials
separate points.

Corollary 1 Consider the subperiodic trigonometric hyperinterpolation operator
Ln W C.Œ�!;!�/! Tn.Œ�!;!�/, 0 < ! � � , defined as

Lnf .�/ D
2nX

iD0
.f ; 	i/�n 	i.�/; � 2 Œ�!;!�; .f ; 	i/�n D

2nC1X

jD1
�jf .'j/	i.'j/; (35)

where f	ig is the orthonormal basis of Proposition 3 and f.'j; �j/g are the nodes
and weights of the subperiodic Gaussian formula of Proposition 1 for degree 2n.

Then, the following properties hold

• Lnf interpolates f at the 2nC 1 D dim.Tn.Œ�!;!�// quadrature nodes

Lnf .'j/ D f .'j/ ; 1 � j � 2nC 1I (36)

• the L2-error can be estimated as

k f �LnfkL2.Œ�!;!�/ � 2
p
2! ETn.Œ�!;!�/. f /: (37)

We can now give an estimate of the uniform norm of the hyperinterpolation operator,
which we may call its Lebesgue constant since by Corollary 1 it is an interpolation
operator.
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Corollary 2 The Lebesgue constant of the hyperinterpolation operator Ln of
Corollary 1 can be estimated as

kLnk � Cn � 2
p
� nC 4p

3
n3=2;

Cn D
p
�.2nC 1/C

r
.2nC 1/.2nC 2/.4nC 3/

3
: (38)

Proof In view of (20) with K D Œ�!;!� and Proposition 3, we are reduced
to estimate the trigonometric reciprocal Christoffel function. Setting t.�/ D
sin.�=2/= sin.!=2/ 2 Œ�1; 1�, we have

Kn.�; �/ D
2nX

iD0
	2i .�/ D

X

even i

p2i .t.�//C cos2.�=2/
X

odd i

q2i .t.�//

�
2nX

iD0
p2i .t.�//C

2nX

iD0
q2i .t.�// D ��1

2n .t.�/IW�1=2/C ��1
2n .t.�/IW1=2/; (39)

where ��1
m .tIW/ denotes the reciprocal Christoffel function for algebraic degree n

and weight function W 2 L1C.�1; 1/.
Now, in view of the basic property of monotonicity of Christoffel functions with

respect to the underlying measure (cf., e.g., [31, Ch. 6]), we have that ��1
m .tIW/ is

decreasing in W, in the sense that if W1 � W2 a.e., then ��1
m .tIW1/ � ��1

m .tIW2/.
Observing that W1=2.t/ � 2 sin.!=2/

p
1 � t2 and W�1=2.t/ � 2 sin.!=2/, t 2

.�1; 1/, we get that the corresponding reciprocal Christoffel functions are bounded,
up to a scaling by the factor .2 sin.!=2//�1, by the reciprocal Christoffel functions
of the Chebyshev measure of the second kind (sum of squares of the Chebyshev
polynomials of the second kind) and of the Lebesgue measure (sum of squares of the
Legendre polynomials), respectively. By well-known estimates for such reciprocal
Christoffel functions (cf., e.g., [17]), we get

��1
2n .tIW�1=2/ � .2nC 1/2

4 sin.!=2/
; ��1

2n .tIW1=2/ � .2nC 1/.2nC 2/.4nC 3/
6� sin.!=2/

; (40)

and thus

kLnk �
r
2! max

�2Œ�!;!�Kn.�; �/

� 2
s

!=2

sin.!=2/

 
2nC 1p

2
C
r
.2nC 1/.2nC 2/.4nC 3/

6�

!

; (41)
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from which (38) follows since the function y= sin.y/ is increasing and bounded by
�=2 for y D !=2 2 Œ0; �=2�. � ut

Even though (38) is clearly an overestimate of the actual growth, it provides a
bound independent of ! and shows that the Lebesgue constant is slowly increasing
with n. By (38) and the fact that Ln is a projection operator, we easily get the
uniform error estimate

k f �LnfkL1.Œ�!;!�/ � .1C Cn/ETn.Œ�!;!�/. f / ; 8f 2 C.Œ�!;!�/: (42)

In Fig. 1, we have plotted the Lebesgue constant computed numerically by (22)
on a fine control grid in Œ�!;!� for some values of !, that is

�n.!/ D kLnk D max
�2Œ�!;!�

2nC1X

jD1
j`j.�/j ; (43)

where

`j.�/ D �jKn.�; 'j/ ; 1 � j � 2nC 1 ; Kn.�; / D
2nX

iD0
	i.�/	i./: (44)

Observe that the Lebesgue constant appears to be decreasing in ! for fixed n
and to converge to the Lebesgue constant of algebraic interpolation of degree 2n
at the Gauss-Legendre nodes (for ! ! 0), which as known is O.

p
n/ (upper

solid line). This also shows that the bound (38) is a large overestimate of the
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Fig. 1 The Lebesgue constant (43) for n D 5; 10; : : : ; 95; 100 at some values of !: from below,
! D � (diamonds), ! D 3�=4 (squares), ! D �=2 (triangles), ! D �=4 (circles), ! D �=8

(asterisks); right: detail for n D 25; : : : ; 45. The upper solid line is the Lebesgue constant of
algebraic interpolation of degree 2n at the Gauss-Legendre nodes
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actual values. It is also worth observing that for ! D � the Lebesgue constant is
exactly that of algebraic interpolation of degree 2n at the Gauss-Chebyshev nodes,
that is logarithmic in n, cf. [13].

Based on these and other numerical experiments that we do not report for brevity,
we can then make the following

Conjecture 1 The Lebesgue constant�n.!/ of trigonometric hyperinterpolation in
Œ�!;!�, 0 < ! � � , cf. (35) and (43), is a decreasing function of! for fixed degree.
Moreover, its limit for ! ! 0 (that is its supremum being bounded by (38)) is the
Lebesgue constant of algebraic interpolation of degree 2n at the Gauss-Legendre
nodes.

In order to show the performance of subperiodic trigonometric hyperinterpola-
tion, in Fig. 2 we have reported the errors in the uniform norm on six test functions
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Fig. 2 Relative `2-errors of subperiodic trigonometric hyperinterpolation for degrees n D
5; 10; : : : ; 50 on the test functions (45) on Œ�!; !�with ! D 3�=4 (top-left), ! D �=2 (top-right),
! D �=4 (bottom-left) and ! D �=8 (bottom-right): f1 (bullets), f2 (squares), f3 (diamonds), f4
(stars), f5 (asterisks), f6 (triangles)
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with different regularity for some values of !, namely

f1.�/ D .2C cos.�/C sin.�//30 ; f2.�/ D exp.��2/ ; f3.�/ D exp.�5�2/;

f4.�/ D 1

1C 25.�=!/2 ; f5.�/ D j� j5=2 ; f6.�/ D .! � �/5=2; (45)

that are a positive trigonometric polynomial, two Gaussians centered at � D 0, a
Runge-like function, a function with a singularity of the third derivative at � D 0

(where the nodes do not cluster), and one with a singularity of the third derivative
at � D ! (where the nodes cluster). The errors are measured in the relative `2-norm
on a fine control grid in Œ�!;!�.

We see that convergence on the smooth functions f1; f2; f3; f4 (that are analytic) is
faster by decreasing the interval length (in particular, the trigonometric polynomial
f1 is recovered at machine precision below the theoretical exactness degree n D
30), whereas the interval length has a substantial effect only at low degrees on
the singular functions f5; f6 (observe that the clustering of sampling nodes at the
singularity entails a faster convergence for f6 compared to f5).

The dependence of the convergence rate on ! for analytic functions is not
surprising. Indeed, interpreting subperiodic trigonometric hyperinterpolation as a
(discretized) Fourier extension, as discussed in the Introduction (cf. (2)–(9)), we
may resort to deep convergence results in that theory. For example, in [1, Thm. 2.3]
it is proved that the uniform convergence rate of Fourier extensions, and thus also
that of the best trigonometric approximation in the relevant space if one uses (42),
for “sufficiently” analytic functions (complex singularities not “too close” to the
approximation interval) is (at least) exponential with order O.E.T/�n/, where
E.T/ D cot2.�=.4T// D cot2.!=4/ is a decreasing function of ! and E.T/!C1
as ! ! 0C. This might give an explanation of the error behavior observed in Fig. 2.
We do not pursue further this aspect and refer the reader to [1] for a complete
discussion on the convergence features of Fourier extensions.

To conclude, we observe that we can easily extend all the constructions above to
any angular interval Œ˛; ˇ� 3 � , ˇ � ˛ � 2� , by the change of variable

� 0 D � � ˛ C ˇ
2
2 Œ�!;!� ; ! D ˇ � ˛

2
; (46)

namely using the orthonormal basis

ti.�/ D ti.�; ˛; ˇ/ D 	i.�
0; !/ ; 0 � i � 2n; (47)

and the subperiodic Gaussian quadrature formula with nodes and weights

f.�j; �j/g ; �j D 'j C ˛ C ˇ
2

; 1 � j � 2nC 1; (48)

cf. (35).
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5 Product (Hyper)interpolation on Spherical Rectangles

The general setting of Sect. 2 allows to extend immediately subperiodic trigono-
metric hyperinterpolation to the tensor-product case. Indeed, consider the product
basis

fui.�/vj./g; 0 � i; j � 2n; .�; / 2 K D I1 � I2 D Œ˛1; ˇ1� � Œ˛2; ˇ2�; (49)

where ui.�/ D ti.�; ˛1; ˇ1/ and vj./ D tj.; ˛2; ˇ2/, cf. (47). Clearly (49) is a
L2-orthonormal basis of the tensor-product subperiodic trigonometric space

Sn D Tn.I1/˝ Tn.I2/: (50)

Then, we can construct the product hyperinterpolant of f 2 C.I1 � I2/ as

Lnf .�; / D
2nX

i;jD0
cij ui.�/vj./; (51)

with

cij D
2nC1X

h;kD1
�h1�k2 f .�h1; �k2/ ui.�h1/vj.�k2/; (52)

where f.�is; �is/g are the angular nodes and weights of the subperiodic trigonometric
Gaussian formula on Is, s D 1; 2, for exactness degree 2n (cf. Proposition 1
and (48)).

All the relevant properties of hyperinterpolation apply, in particular the hyperin-
terpolant is a (product) interpolant (see also [32]). Moreover, the Lebesgue constant
is the product of the one-dimensional constants, �n.!1; !2/ D �n.!1/�n.!2/, and
the following error estimates hold

k f �LnfkL2.I1�I2/ � 4
p
!1!2 ESn. f I I1 � I2/;

k f �LnfkL1.I1�I2/ � .1C�n.!1/�n.!2//ESn. f I I1 � I2/: (53)

Concerning the implementation of subperiodic product hyperinterpolation, this
can be constructed in a simple matrix form working on grids. Indeed, let

V1 D .uj�1.�i1// ; V2 D .vj�1.�i2// ; Ds D diag.�is/ ; s D 1; 2;

F D . f .�i1; �j2// ; 1 � i; j � 2nC 1; (54)
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be the univariate Vandermonde-like matrices at the hyperinterpolation nodes in Is,
the diagonal matrices of the quadrature weights and the matrix of the function values
at the bivariate hyperinterpolation grid f�i1g � f�j2g, respectively. Moreover, let

U1 D .uj�1. O�`// ; U2 D .vj�1. Ot// ; 1 � ` � m1 ; 1 � t � m2; (55)

be univariate Vandermonde-like matrices at the points f O�`g 	 I1 and f Otg 	 I2,
respectively.

Then, it is easy to check that the hyperinterpolation coefficient matrix and the
values of the hyperinterpolant at the target grid f O�`g � f Otg can be computed by
matrix products as

C D .cij/ D Vt
1D1FD2V2 ; L D .Lnf . O�`; Ot// D U1CUt

2: (56)

Subperiodic product hyperinterpolation via (56) has been implemented in the
Matlab package [38].

Subperiodic product hyperinterpolation can be used, for example, to recover
functions on spherical rectangles, in applications that require local approximation
models. It is worth recalling that hyperinterpolation-like trigonometric approxima-
tion on the whole sphere, with applications in scattering theory, has been studied,
e.g., in [18, 19].

Consider the spherical coordinates

.x; y; z/ D �.�; / D .cos.�/ sin./; sin.�/ sin./; cos.//; (57)

where � is the azimuthal angle and  the polar angle, .�; / 2 Œ��; ��� Œ0; ��, and
a “geographic rectangle”, that is

˝ D �.I1 � I2/ ; I1 D Œ˛1; ˇ1� � Œ��; �� ; I2 D Œ˛2; ˇ2� � Œ0; ��: (58)

Now, take a function g 2 C.˝/, that we can identify with a continuous function in
I1 � I2 as f .�; / D g.�.�; //. In order to estimate the hyperinterpolation errors
in (53), we can observe that if p 2 P

3
n.˝/ then p ı � 2 Sn D Tn.I1/˝Tn.I2/. Then,

due to the surjectivity of the map � , we have

inf
 2Sn

k f �  kL1.I1�I2/ � inf
p2P3n.˝/

k f � p ı �kL1.I1�I2/

D inf
p2P3n.˝/

kg ı � � p ı �kL1.I1�I2/ D inf
p2P3n.˝/

kg � pkL1.˝/;

that is

ESn. f I I1 � I2/ � EP3n.˝/
.gI˝/: (59)
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Moreover, it is also clear that subperiodic product trigonometric hyperinterpola-
tion reproduces total-degree polynomials, namely

Ln. p ı �/ D p ı � ; 8p 2 P
3
n.˝/: (60)

It is also worth observing that the orthonormal basis functions fui.�/vj./g, and thus
also the hyperinterpolant Lnf .�; /, correspond to continuous spherical functions
on ˝ , whenever ˝ does not contain the north or south pole (i.e., Œ˛2; ˇ2� 	 .0; �/
or in other words˝ is a nondegenerate rectangle).

To make an example, we have taken two geographic rectangles of the unit sphere.
The first

˝1 D �

�
�125
180

�;� 67
180

�


�
�
41

180
�;

65

180
�

�
; !11 
 0:506 ; !12 
 0:209;

(61)

corresponds in standard longitude-latitude to 67ıW–125ıW, 25ıN–49ıN, a vaste
rectangle approximately corresponding to the contiguous continental USA, whereas
the second

˝2 D �

�
�109
180

�;�102
180

�


�
�
49

180
�;

53

180
�

�
; !21 
 0:061 ; !22 
 0:035;

(62)

is the rectangle 102ıW–109ıW, 37ıN–41ıN, corresponding to Colorado.
In order to test the polynomial reproduction property, we have taken the positive

test polynomials

pn.x; y; z/ D .axC byC czC 3/n; (63)

where a; b; c are random variables uniformly distributed in Œ0; 1�. In Fig. 3 we have
reported the relative `2-errors (average of 100 samples) in the reconstruction of
the polynomials by hyperinterpolation, computed on a 50 � 50 control grid. In
particular, in Fig. 3-right we see that the reconstruction of a fixed polynomial an
overprecision phenomenon occurs, more pronounced with the smaller rectangle
(where near exactness is obtained already at half the polynomial degree). This
may be interpreted by the dependence on ! of the convergence rate of univariate
subperiodic hyperinterpolation for analytic functions, as discussed above (cf. the
convergence profile for f1 in Fig. 2).
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Fig. 3 Left: Average relative `2-errors of subperiodic trigonometric hyperinterpolation for degrees
n D 5; 10; : : : ; 50 on the random test polynomials pn in (63), with spherical rectangles
corresponding to USA (circles) and Colorado (asterisks). Right: Average relative `2-errors in the
reconstruction of the fixed polynomial p30

It is worth stressing that the fact of being on a sphere is not essential, since similar
results can be obtained for example also on rectangles of the torus, with angular
intervals (in the usual poloidal-toroidal coordinates) of the same length of those
in (61)–(62). On the other hand, subperiodic trigonometric hyperinterpolation could
be useful also to construct mixed algebraic-trigonometric product formulas for solid
sections of the sphere such as (truncated) spherical sectors with rectangular base,
and also for planar circular sections, such as sectors, zones, lenses, lunes (via the
transformations used in [14, 15, 37]).

6 Comparison with Polynomial Hyperinterpolation

In a recent paper [24], hyperinterpolation on geographic rectangles has been
studied and implemented in the usual hyperinterpolation setting of total-degree
polynomials. As known, the dimension of the underlying polynomial space on the
sphere is .n C 1/2 for degree n. Spherical harmonics, however, are no more an
orthogonal basis on a portion of the sphere, so that a costly orthonormalization
process has to be applied, based on the availability of algebraic quadrature formulas
exact at degree 2n with .2n C 1/.2n C 2/ nodes and positive weights. Such an
orthonormalization cost is much larger than the cost of the present approach, since
here orthonormalization is univariate in the components. Moreover, a substantial
drawback of polynomial hyperinterpolation on geographic rectangles is that the
orthonormalization process suffers from severe ill-conditioning (of the relevant
Vandermonde-like matrices) already at moderate degrees, cf. [24].
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A good feature of polynomial hyperinterpolation is that we work by construction
with continuous spherical functions, and this allows to have rectangles containing
the north or south pole and even to work with spherical polar caps (with the
appropriate transformation, cf. [24]). The number of sampling points on general
rectangles is slightly bigger than that of the present approach, .2n C 1/.2n C 2/
versus .2n C 1/2, whereas the number of coefficients is smaller, namely .n C 1/2
versus .2nC 1/2. On the other hand, we expect smaller reconstruction errors from
subperiodic product trigonometric hyperinterpolation, since we work here in a
bigger space, indeed if p 2 P

3
n.˝/ then p ı � 2 Sn D Tn.I1/ ˝ Tn.I2/. Moreover,

the hyperinterpolant is interpolant in the present context, whereas it is not in the
polynomial case.

In order to make a numerical comparison of polynomial with superiodic product
hyperinterpolation, we have considered the functions

g1.P/ D exp .�5kP � P0k22/ ; g2.P/ D kP � P0k52 ; P D .x; y; z/; (64)

on the two rectangles above corresponding to USA (61) and Colorado (62), P0 D
.x0; y0; z0/ being the center of the rectangle (where the sampling points do not
cluster). Notice that g1 is smooth whereas g2 has a singularity at P0. In Fig. 4 we
have reported the relative `2-errors in the reconstruction of g1 and g2, computed on
a 50 � 50 control grid. We see that subperiodic trigonometric hyperinterpolation
is more accurate than polynomial hyperinterpolation (with essentially the same
number of sampling points and a much lower computational cost).
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Fig. 4 Average relative `2-errors of polynomial (squares) and subperiodic trigonometric (circles)
hyperinterpolation for degrees n D 5; 10; : : : ; 50 on the test functions g1 (solid line) and g2 (dashed
line) in (64), with spherical rectangles corresponding to USA (left) and Colorado (right)
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Discrete Data Fourier Deconvolution

Frank de Hoog, Russell Davies, Richard Loy, and Robert Anderssen

Dedicated to Ian H. Sloan on the occasion of his 80th birthday.

Abstract In many practical situations, the recovery of information about some
phenomenon of interest f reduces to performing Fourier deconvolution on indirect
measurements g D pf , corresponding to the Fourier convolution of f with a known
kernel (point spread function) p. An iterative procedure is proposed for performing
the deconvolution of g D p  f , which generates the partial sums of a Neumann
series. However, the standard convergence analysis for the Neumann series is not
applicable for such deconvolutions so a proof is given which is based on using
Fourier properties in L2.

In practice, only discrete measurements fgmg of g will be available. Conse-
quently, the construction of a discrete approximation f fmg to f reduces to performing
a deconvolution using a discrete version fgmg D f pmg  f fmg of g D p  f . For
p.x/ D sech.x/=� , it is shown computationally, using the discrete version of the
proposed iteration, that the resulting accuracy of f fmg will depend on the form and
smoothness of f , the size of the interval truncation, and the level of discretization of
the measurements fgmg. Excellent accuracy for f fmg is obtained when fgmg and f pmg
accurately approximate the essential structure in g and p, respectively, the support
of p is much smaller than that for g, and the discrete measurements of fgmg are on a
suitably fine grid.
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1 Introduction

In the recovery of information f from indirect measurements g, the relationship that
connects g to f is often a Fourier convolution equation [8]

g.x/ D p  f .x/ D
Z 1

�1
p.x � y/f . y/dy

D
Z 1

�1
p. y/f .x � y/dy; �1 < x <1; (1)

with known kernel p. Examples include phenomena where the theoretical range of
the independent variable is infinite, such as the frequency response of the stress and
strain in rheological oscillatory shear measurements and the frequency response of
electronic amplifiers, of microphones and loudspeakers, and of brain waves [4, 7].

In this paper, it is assumed that the kernel p is a positive, even, and peaked at zero
function such that [3]

Z 1

�1
p. y/dy D 1; (2)

and that the Fourier transform of p, Op, satisfies Op > 0. Though weaker condi-
tions would suffice, the ones chosen are sufficient to clarify the matters under
consideration. Of particular interest is p.x/ D sech.x/=� , because it corresponds
to the recovery of information from oscillatory shear measurements in rheology
[3, 9]. Various algorithms, including iterative procedures, have been proposed and
implemented for this choice of p as well as for related rheological equations [1, 3].

Although, in practice, g.x/ is only measured at discrete values of x, it is never-
theless useful to initially focus on the continuous deconvolution (1). Therefore, we
examine an iterative correction scheme for Eq. (1) and demonstrate its convergence.
Furthermore, we observe that, in practice, useful approximations are obtained after
a small number of iterations. This is the key to the subsequent developments, as
it is well known that while deconvolution is an ill posed problem in the sense of
Hadamard, the number of iterations applied in iterative methods, if small, provide
effective regularisation. Here, the iterative correction procedure is implemented by
approximating the iterates of the continuous problem using the discrete data or,
equivalently, by applying the analogue of the iterative correction to the discretised
convolution equation. In doing this, the fact that the actual discrete measurements
fgmg of g will often be limited to a sub-interval �L � x � L needs to be taken into
account.
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It is concluded that the iterative deconvolution of discretized versions of Eq. (1)
converges rapidly and globally when the discretizations and the kernel p satisfy the
following conditions

• the support of p is much smaller than that for g,
• the discretizations fgmg and f pmg accurately approximate the essential structure

in g and p,
• any truncation of p recovers essentially all of the structure in p,
• for limited data, the discretization grid is sufficiently fine.

2 Preliminaries

2.1 The Discretization of g D p � f

Here, it is assumed that the discrete measurements correspond to a set of discrete
values fgmg of g on an even grid with step-length h; namely, fg.mh/g. For the
numerical solution of the convolution equation (1), some appropriate discretization
of it must be performed. One possibility is given by

h
1X

`D�1
p.m�`/f` D gm; pm D p.mh/; f` D f .`h/; m 2 Z: (3)

In reality, since the fgmg values will have only been measured on some sub-grid
�L � m � L, the actual equation that is solved for the discrete approximationf f`g
is given by

h
LX

`D�L

p.m�`/f` D gm; pm D p.mh/; �L � m � L: (4)

Consequently, the accuracy of the recovery of f by f f`g reduces to assessing, as
a function of f pmg, fgmg, h and L, the accuracy with which the values of f f`g
approximate the values of f f .`h/g.

Equation (4) is a discretization of the following truncation of Eq. (1)

g.x/ D p  fŒ�a;a�.x/ D
Z a

�a
p.x � y/fŒ�a;a�. y/dy; x 2 .�a; a/ a D Lh: (5)
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2.2 Properties of Fourier Convolutions

Let the Fourier transform of an integrable function q be denoted by

bq.!/ D
Z 1

�1
q.x/ exp.�2�i!x/dx: (6)

It follows that

(a) Fourier transform of convolutions. For the convolution of Eq. (1),

bg D bp  f Dbp �bf : (7)

(b) The spectrum of convolution operators. Taking the Fourier transform of the
convolution kernel p of Eq. (1) yields

Z 1

�1
p.x � y/ exp.2�i!y/dy D

Z 1

�1
p.x � y/ exp.�2�i!.x � y/C 2�i!x/dy

D
�Z 1

�1
p.x � y/ exp.�2�i!.x � y//

�

dy exp.2�i!x/

Dbp.!/ exp.2�i!x/: (8)

It therefore follows that a convolution operator p.x � y/ has a continuous
spectrum which is the Fourier transformbp of p.

(c) The spectrum of discretized convolution operators. For the chosen value
h of the level of discretization, the Nyquist frequency constraint �1=.2h/ �
! � 1=.2h/ determines the range of frequencies ! that the sampling of the
signal determines without involving oversampling, which would compromise
the Fourier recovery of the signal. Consequently, the Fourier transform of the
discretized kernel of Eq. (4) thereby yields, for that range of frequencies,

h
1X

`D�1
p.n�`/ exp.2�i`h!/ D h

1X

`D�1
p.n�`/ exp.�2�i.n � `/h! C 2�inh!/

D
(

h
1X

`D�1
p.n�`/ exp.�2�i.n � `/h!/

)

�

exp.2�inh!/

D
(

h
1X

`D�1
p` exp.�2�i`h!/

)

exp.2�inh!/

Dbp.!I h/ exp.2�inh!/; (9)
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where

bp.!I h/ D h
1X

`D�1
p` exp.�2�i`h!/: (10)

3 The Continuous Iterative Implementation
and Convergence

In many practical situations, where the convolution kernel p is peaked at zero,
such as for point spread functions and the rheological functions sech.x/=� and
sech2.x/=2 [1, 2], the indirect measurements g correspond to a smoothed version
of f .

For an approximation Qf1 to f , we have the error e1 D f � Qf1, and residual r1 D
g�pQf1. Since r1 D pe1, r1 is a smoothed version of e1, this suggests the following
iterative scheme

fnC1 D fn C rn D fn C g � p  fn ; n D 1; 2; : : : ; (11)

with

f1 D g; en D f � fn; rn D g � p  fn D p  en:

In fact, fn corresponds to the nth partial sum of the Neumann series solution

f D
1X

nD0
.I � A/ng;

where Af D p  f with kI � Ak D kI �bpk1 D 1. The subtraction of Eq. (11) from
f yields the iterative error equation

enC1 D f � fnC1 D en � rn D en � p  en ; n D 1; 2; : : : ; e1 D f � g : (12)

Taking the Fourier transform of Eq. (12), invoking the Fourier convolution
theorem and rearranging yields

benC1 D .1 �bp/nbe1 .n � 1/ : (13)

Clearly,bp.0/ D 1 D k pk1. Since Op > 0, which holds for sech and Gaussians, it
follows that 0 � 1 �bp.!/ < 1 on Œ0;1/. Consequently,

kenk22 D kbenk22 D
Z 1

�1
.1 �bp.!//2.n�1/jbe1.!/j2d! & 0
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Fig. 1 Plots of .1�bp/n for
n D 1; 2; 4; 8; 16; 32 (from
the outer to the inner curve)
for p.x/ D sech.x/=� , with
the frequencies given on the
horizontal axis
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by monotone convergence. In fact, we have geometric k � k2 convergence on each
bounded interval. So apart from some “tail” of be1, we have geometric convergence.
In addition,

en.x/ D
Z 1

�1
.1 �bp.!//n�1be1.!/ exp.2�ix!/d! ;

so that

kenk1 D sup
x
jen.x/j �

Z 1

�1
.1 �bp.!//n�1jbe1.!/jd! & 0

provided that be1 2 L1.�1;1/. Once again, geometric convergence holds on each
bounded interval.

We note that, because of the factor .1 �bp.!//, the more peakedbp happens to
be, such as for sech and gaussians, the slower will be the rate of convergence. This
relates to the fact that the successive applications of .1 �bp.!// correspond to a
frequency filtering of be1.!/ with a decrease in the removal of higher frequencies
correlating with the stronger peakedness.

For p.x/ D sech.x/=� , for which bp.!/ D sech.�2!/ > 0, and n D
1; 2; 4; 8; 16; 32, the convergence is plotted in Fig. 1.

4 Assessing the Effects of Working with the Discretized
Data fgmg

Because the deconvolution of Eq. (1) is performed numerically by solving the
discrete equations (3) using the continuous iteration, the first matter to assess is
the accuracy with which the Fourier transform bp.!I h/ of the discretized kernel
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Fig. 2 Comparison of the accuracy with whichbp.!I h/ approximatesbp.!/, for different values
of h

approximates the Fourier transform of the continuous kernelbp.!/. This is illustrated
in Fig. 2 for the rheology point spread function p.x/ D sech.x/=� [1] for the values
h D 2, h D 1:5 and h D 1.

This highlights the fact that, for a sufficiently fine discretization (i.e. suitably
small h), Qp.!I h/ yields an accurate recovery of the structure ofbp.!/.

The second matter to assess is the accuracy with which the matrix of the truncated
equations (4) represents an accurate approximation of the structure encapsulated in
Eq. (5). It is not a matter of comparing a selection of individual solutions of Eqs. (4)
and (5), but of checking that the “low frequency” eigenvalues and eigenvectors of (4)
yield accurate approximations for those of (5). To this end, for p.x/ D sech.x/=� ,
h D 0:5 and a D Lh D 6; 12; 24, the eigenvalues of the Toeplitz matrices
associated with the equations of (4) are compared in Fig. 3 with the values ofbp.!/.
It highlights that the accuracy of the approximations improves as the sizes increase
of the truncations applied to Eq. (1) to obtain the equations (4).
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Eigenvalues and Spectrum, a=hL = 6
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Fig. 3 Comparison, for p.x/ D sech.x/=� , h D 0:5 and a D Lh D 6; 12; 24, of the eigenvalues
of the corresponding matrices associated with equations of (4) withbp.!/

4.1 Assessing the Numerical Performance of the Iteration

In order to implement the iteration numerically, it is necessary to evaluate p  fn
numerically at each step of the iteration (11).

However, Fig. 1, though it indicates that convergence is faster at low frequencies,
does not tell the full story about how the error propagates as highlighted in Eq. (13).
Specifically, if there is a error �n in the calculation of the convolution p  en, then it
follows from Eqs. (11) and (12) that

benC1 D .1 �bp/nbe1 �
n�1X

kD0
b�n�k.1 �bp/k ; (14)
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Fig. 4 Plots, for
p.x/ D sech.x/=� and
n D 1; 2; 4; 8; 16; 32 (from
the bottom to the top curve),
of Œ1� .1� Op/n�=Op, with the
frequencies given on the
horizontal axis
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and hence

jbenC1j � j1 �bpjnjbe1j C
ˇ
ˇ̌Pn�1

kD0 O�n�k.1�bp/k
ˇ
ˇ̌

� j1�bpjnjbe1j C 1�.1�bp/n
bp �Pn�1

kD0 jb�n�kj (15)

The final inequality follows because k�k1 is submultiplicative under convolution.
Alternatively, one could also use Cauchy-Schwarz to obtain a bound involving k � k2
using kb�n�kk2 D k�n�kk2.

The behaviour of the bound (15), as a function of n, is illustrated in Fig. 4, where
1�.1�bp/n
bp is plotted as a function of frequency.

The plots in Fig. 4 illustrate that the low frequency components of the pertur-
bation, where the convergence is most rapid, as highlighted in Fig. 1, are not as
strongly amplified with each iteration as the high frequency components where
the convergence is slow. Such situations are regularized by limiting the number of
iterations using an appropriate stopping criterion.

5 Numerical Validation

With p.x/ D sech.x/=� , the validation was performed using the following synthetic
data for the solution f

f .x/ D 1p
�

exp



� .xC 2/

2

8

�
C 3

4
p
�

exp



� .x � 3/

2

8

�
: (16)
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Fig. 5 For the kernel
p.x/ D sech.x/=� , this shows
that, visually, the bimodal
nature of the solution f is not
apparent in the data g. The
blue curve is f , the red g
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The importance of this choice is illustrated in Fig. 5, which shows that, in
deconvolution situations, the available data g can often hide a multiple hump
structure in f . As discussed elsewhere [2], such synthetic data is representative
of practical deconvolution situations which arise in the study of the rheology of
viscoelastic materials such as polystyrene and polybutadiene samples [5, 6]. In fact,
the synthetic data is quite challenging in that, unlike the measurement data for
polystyrene and polybutadiene samples, there is little evidence in the synthetic g
that there are peaks in f .

In [2], the focus was joint inversion deconvolution algorithms for limited data
where both sech.x/=� and sech2.x/=2 were utilized for p jointly. It acted as
motivation of the more general limited data considerations developed in this paper.

5.1 The Effect of Truncation and Discretization

The accuracy with which the matrix of the truncated equations (4) represents an
accurate approximation of the structure encapsulated in Eq. (5) has already been
discussed in Sect. 4 and illustrated in Fig. 3.

Here, using the synthetic data of Eq. (16), the effect of different sizes of
truncation in the algebraic equations (4) is examined in terms of its effect on the
convergence of the iteration. For a grid spacing of h D 0:5, this is illustrated
in Figs. 6 and 7, where g, corresponding to the synthetic f of Eq. (16), has been
sampled on a uniform grid on the intervals Œ�6; 6� and Œ�12; 12�, respectively.
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Fig. 6 For p.x/ D sech.x/=� and h D 0:5, the convergence of the 3rd, 5th and 8th iterates of (11)
are compared when the measurements of g are truncated onto the interval [�12,12]

Figure 6 confirms that the successive approximations converge rapidly and
globally to the correct solution if the truncation [�12,12] includes the bulk of the
structure in g. This is clear from Fig. 7 that, if the size of the truncation [�6,6], on
which the measurements of g are made, does not cover the full range of the structure
in g, then the approximations generated by the iteration deteriorate away from the
central region where they converges.

6 Conclusions

The various figures illustrate that excellent accuracy for the discrete approximation
f fmg is obtained when the discrete measurements fgmg and the discrete kernel f pmg
accurately approximate the essential structure in g and p, respectively, (Figs. 2 and 3)
when the support of p is much smaller than that for g (Figs. 6 and 7) and the discrete
measurements of fgmg are on a suitably fine grid (Fig. 3).
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Fig. 7 For p.x/ D sech.x/=� and h D 0:5, the convergence of the 3rd, 5th and 8th iterates of (11)
are compared when the measurements of g are truncated onto the interval [�6,6]
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Kernels of a Class of Toeplitz Plus Hankel
Operators with Piecewise Continuous
Generating Functions

Victor D. Didenko and Bernd Silbermann

Dedicated to Ian H. Sloan on the occasion of his 80-th
anniversary.

Abstract Toeplitz T.a/ and Toeplitz plus Hankel operators T.a/ C H.b/ acting
on sequence space lp, 1 < p < 1, are considered. If a 2 PCp is a piecewise
continuous lp-multiplier, a complete description of the kernel of the Fredholm
operator T.a/ is derived. Moreover, the kernels of Fredholm Toeplitz plus Hankel
operators T.a/CH.b/ the generating functions a and b of which belong to PCp and
satisfy the condition a.t/a.1=t/ D b.t/b.1=t/, t 2 T, are also determined.

1 Introduction

Fredholm properties of Toeplitz plus Hankel operators with piecewise continuous
generating functions acting on classical Hardy spaces and on spaces of p-power
summable sequences are well studied. There are efficient necessary and sufficient
conditions for their Fredholmness and index formulas (see Sections 4.95–4.102 in
[1], Sections 4.5 and 5.7 in [12], and [13, 14]). Moreover, the Fredholmness of the
operators with quasi piecewise continuous generating functions acting on Hardy
spaces, have been investigated in [15] and index formulas have been derived in [2].
However, the invertibility, the kernels and cokernels of such operators have been
little studied. In particular, the investigation of Toeplitz plus Hankel operators on
sequence spaces faces considerable difficulties. Even for “pure” Toeplitz operators
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on lp-spaces not much is known about the kernels of such operators, and in most
cases there are no efficient representations for their inverses, either. On the other
hand, for a wide class of Toeplitz plus Hankel operators acting on classical Hardy
spaces Hp some results have been obtained recently [3–6]. This became possible
due to the existence of a factorization of auxiliary functions in Hp. Such an approach
generally does not work for operators acting on the spaces of sequences. The only
exceptions are operators with generating functions from those multiplier algebras
which allow factorizations inside the same algebra. One example of such a situation
is the Wiener algebra of functions with absolutely convergent Fourier series.

Thus the aim of this paper is to describe the kernels of Toeplitz operators and
Toeplitz plus Hankel operators with piecewise continuous generating functions
acting on the spaces of p-summable sequences. Note that for Toeplitz plus Hankel
operators we additionally assume that their generating functions satisfy an auxiliary
algebraic condition.

This paper is organized as follows. In Sect. 2 we introduce Banach spaces and
operators which are the main object of our study and recall some of their properties.
In Sect. 3, connections between the kernels of Toeplitz plus Hankel operators acting
in classical Hardy spaces and in spaces of summable sequences are described. In
particular, we derive an efficient description for the kernels of Toeplitz operators
T.g/ acting on lp-spaces. Moreover, we establish a formula for the inverse of the
operator T.g/ if the function g generates an invertible Toeplitz operator on the
related Hardy space Hq, 1=pC1=q D 1. Section 4 deals with the kernels of Toeplitz
plus Hankel operators the generating functions of which are lp-multipliers and
satisfy an algebraic condition. In conclusion, the corresponding results are specified
for Toeplitz plus Hankel operators with piecewise continuous generating functions.

2 Spaces and Operators

In this section we introduce some operators and spaces we are interested in. Let
T WD fz 2 C W jzj D 1g be the unit circle in the complex plane C equipped with the
counterclockwise orientation, and let Lp D Lp.T/, 1 � p � 1 denote the complex
Banach space of all Lebesgue measurable functions f on T such that

jj f jjp WD


1

2�

Z

T

j f .t/jp jdtj
�1=p

<1; 1 � p <1;

jj f jj1 WD ess sup
t2T
j f .t/j <1:

The Fourier transform F on the space L1 and on its subspaces Lp, p > 1 is
defined by

F W L1 ! c0; f 7! .bf n/n2Z;
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where bf n WD .1=2�/
R 2�
0

f .ein� /e�in� d� , n 2 Z, are the Fourier coefficients of
f , and c0 is the space of all sequences of complex numbers that tend to zero as
jnj ! 1. Note that in what follows, we often write bf instead of F f .

For a non-empty subset I of the set of all integers Z, let lp.I/ denote the complex
Banach space of all sequences � D .�n/n2I of complex numbers with the norm

jj�jjp D
 
X

n2I
j�njp

!1=p

; 1 � p <1:

In this paper, the space lp.I/ is considered as a natural subspace of lp.Z/, and by PI

we denote the canonical projection from lp.Z/ onto lp.I/. Further, if I is the set of
non-negative integers ZC, then instead of lp.ZC/ and PZ

C

we will write lp and P,
respectively.

It is well known that the operator F maps L2 isometrically onto l2.Z/. For p ¤ 2
a more general result, namely the celebrated Hausdorff-Young Theorem, describing
relations between the spaces Lp and lp will be recalled later on.

2.1 Toeplitz and Hankel Operators on lp-Spaces

On the space lp.Z/ we consider an operator J defined by

J� D J..�n/n2Z/ D .��n�1/n2Z;

and if I denotes the identity operator then we set Q WD I � P. It is easily seen that
the operators I; J;P and Q are connected by the following relations J2 D I and
JPJ D Q.

Let a 2 L1. On the space l0.Z/ of all finitely supported sequences on Z consider
the Laurent operator L.a/ generated by a, i.e.

.L.a/�/k WD
X

m2Z
bak�m�m:

Note that for every k 2 Z there is only a finite number of non-zero terms in this
sum. We say that a is a multiplier on lp.Z/ if L.a/� 2 lp.Z/ for any � 2 l0.Z/ and if

jjL.a/jj WD supfjjL.a/�jjp W � 2 l0.Z/; jj�jjp D 1g

is finite. In this case, L.a/ extends to a bounded linear operator on lp.Z/ and we
denote it by L.a/ again. The set Mp of all multipliers on lp.Z/ is a commutative
Banach algebra under the norm jjajjMp WD jjL.a/jj (see, for example, [1]). Recall
that M2 D L1.T/ and M1 D W.T/ where W.T/ stands for the Wiener algebra
of functions with absolutely convergent Fourier series. Moreover, every function
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a 2 L1.T/ with bounded total variation Var .a/ belongs to the algebra Mp for any
p 2 .1;1/, and the Stechkin inequality

jjajjMp � cp.jjajj1 CVar .a//;

with a constant cp independent of a, holds. In particular, every trigonometric
polynomial and every piecewise constant function on T are multipliers on any
space lp.Z/, p 2 .1;1/. Moreover, trigonometric polynomials belong to the set
M1 D W.T/ as well. However, in this work we consider operators with piecewise
continuous generating functions and we restrict ourselves to the case p 2 .1;1/.
Let E and PC be, respectively, the algebra of all trigonometric polynomials and the
algebra of all piecewise constant functions on T. By Cp and PCp we, respectively,
denote the closures of the sets E and PC in the algebra Mp. Note that C2 is just
the algebra C.T/ of all continuous functions on T, and PC2 is the algebra PC.T/
of all piecewise continuous functions on T. It is well known that Cp 	 C.T/ and
Cp 	 PCp 	 PC.T/ (see [1] for this and other properties of multipliers). Let us
recall that T is oriented counter-clockwise. Accordingly, hereinafter a.t�/ and a.tC/
stand for the one-sided limits of a function a 2 PCp at the point t 2 T from below
and from above.

Remark 1 If a 2 Mp then JL.a/J D L.ea/, whereea D a.1=t/.

Let a 2 Mp. The operators T.a/ W lp ! lp and H.a/ W lp ! lp defined,
respectively, by f 7! PL.a/f and f 7! PL.a/QJf are called Toeplitz and Hankel
operators with generating function a. It is clear that for a 2 Mp the operators T.a/
and H.a/ are bounded on lp. Moreover, the action of the operators T.a/ and H.a/
on the elements from lp can be written as follows

T.a/ W .�j/j2Z
C

!
0

@
X

k2Z
C

baj�k�k

1

A

j2Z
C

;

H.a/ W .�j/j2Z
C

!
0

@
X

k2Z
C

bajCkC1�k

1

A

j2Z
C

:

We remark that below we often use the notation Tp.a/ or Hp.a/ in order to underline
that the corresponding Toeplitz or Hankel operator is considered on the space lp for
a fixed p 2 .1;1/. Moreover, in what follows, we will operate in spaces defined
by various indices p and q. In this connection, let us agree that whenever p and q
appears in the text, they are related as: 1=pC 1=q D 1.

By GMp we denote the group of invertible elements in Mp.

Lemma 1 (Sections 2.30, 2.38, 6.5–6.6 in [1]) Let p 2 .1;1/.
1. If Tp.a/ is Fredholm, then a 2 GMp.
2. If a 2 Mp, then one of the kernels of the operators Tp.a/ or T�

q .a/ is trivial.
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3. If a 2 GMp, then the operator Tp.a/ is Fredholm, and if ind Tp.a/ D 0, then T.a/
is invertible on lp.

Let us now recall the necessary and sufficient conditions for the Fredholmness of
Toeplitz operators T.a/ W lp ! lp, 1 < p < 1 with generating functions a 2 PCp.
Consider the two-point compactification R of the real line R and the function �p W
R! C defined by

�p.�/ WD

8
ˆ̂
<

ˆ̂
:

1C coth.�.�C i=p//

2
; � 2 R;

0; � D �1;
1; � D C1:

Note that if � runs from�1 toC1, then�p.�/ runs along a circular arc in C which
connects the points 0 and 1 and passes through the point .1 � i cot.�=p//=2. The
next theorem is due to Roland Duduchava [7, 8]. For alternative proofs see [1, 11].

Theorem 1 If a 2 PCp, then the operator Tp.a/ is Fredholm if and only if the
function

.smb Tp.a//.t; �/ WD a.t�/.1 � �q.�//C a.tC/�q.�/;

does not vanish on T �R.

For a 2 PCp, the index of the Fredholm operator Tp can be determined by means
of the function smb Tp.a/. First, let us suppose that a 2 PCp is a piecewise smooth
function with only finitely many jumps. Then the range of the function smb Tp.a/ is
a closed curve � with a natural orientation obtained from the essential range of a
by filling in the circular arcs

�q.a.t
�/; a.tC// D fa.t�/.1 � �q.�/C a.tC//�q.�/ W � 2 Rg/;

at every point t 2 T where a has a jump. If Tp.a/ is Fredholm, the curve � does
not pass the origin, and we let wind smb Tp.a/ denote the winding number of �
with respect to the origin, i.e. the integer 1=.2�/ times the growth of the argument
of .smb Tp.a//.t; �/ when t moves along T in the counter-clockwise direction and
the arcs �q.a.t�/; a.tC// if a has a jump at the point t. The orientation of the arcs
�q.a.t�/; a.tC// is chosen in such a way that the point �q.a.t�/; a.tC//.�/ runs from
a.t�/ to a.tC/ if � runs from �1 toC1. Then the index of the operator Tp.a/ is

ind Tp.a/ D �wind smb Tp.a/; (1)

(see [1, Section 2.73 and Section 6.32]). Moreover, analogously to Section 5.49
of [1] one can extend both the definition of the winding number and the index
formula (1) to Fredholm operators Tp.a/ with arbitrary a 2 PCp.
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2.2 Toeplitz and Hankel Operators on Hardy Spaces

For 1 � p � 1, let Hp D Hp.T/ and Hp stand for the Hardy spaces,

Hp WD f f 2 Lp W bf n D 0 for all n < 0g;
Hp WD f f 2 Lp W bf n D 0 for all n > 0g:

On the spaces Lp, 1 < p <1 consider the operators J;P and Q defined by

J W f .t/ 7! t�1f .t�1/;

P W
X

n2Z
bf ntn 7!

X

n2Z
C

bf ntn

Q WD I � P;

where I is the identity operator on the space Lp. The operator of multiplication by a
function a 2 L1 ia denoted by aI. These operators satisfy the relations

J2 D I; Q D JPJ; JaJ DeaI;

whereea.t/ WD a.1=t/.
Any function a 2 L1 defines two bounded linear operators acting on the Hardy

space Hp, 1 < p <1, namely,

T.a/ W ' 7! Pa';

H.a/ W ' 7! PaQJ':

Similarly to the case of lp-spaces, the operators T.a/ and H.a/ are, respectively,
called Toeplitz and Hankel operators, and we will write Tp or Hp if we want
to emphasize that the corresponding operator is considered on a specific Hardy
space Hp.

Let �n denote the function �n.t/ D tn, n 2 Z. For 1 < p < 1 the function
system X0 D f�n W n 2 Zg forms a Schauder basis in Lp, whereas the system
X D f�n W n 2 ZCg forms a Schauder basis in Hp. It is easily seen that the matrix
representations ŒTp.a/�X and ŒHp.a/�X of the operators Tp.a/ and Hp.a/ with
respect to the above basis Hp are given by .bai�j/

1
i:jD0 and .baiCjC1/1i:jD0, respectively.

For instance, the action of the operator Tp.a/ on Hp can be described using the
matrix representation of Tp.a/ as follows. If f DPn2Z

C

bf n�n 2 Hp, then

Tp.a/f D g; g D
X

n2Z
C

bgn�n;
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wherebgn DP
k2Z

C

ban�kbf k. Clearly, the action of Hp.a/ on Hp can be described in
the same manner.

It turns out that Theorem 1 is also valid for Toeplitz operators acting on the
Hardy space Hp. More precisely, let us recall the following result of I. Gohberg and
N. Krupnik (see [1]).

Theorem 2 If a 2 PC, then the Toeplitz operator Tp.a/ is Fredholm if and only if
the function

.smbTp.a//.t; �/ WD a.t�/.1 � �p.�//C a.tC/�p.�/;

does not vanish on T �R. If this condition is satisfied, then

indTp.a/ D �wind smbTp.a/:

Comparing Theorem 1 with Theorem 2, we observe a close relation between
Toeplitz operators on lp and Hq.

Corollary 1 If a 2 PCp, 1 < p < 1, then the operators Tp.a/ and Tq.a/ are
simultaneously Fredholm or not and their indices as well as the kernel dimensions
coincide.

Indeed, the simultaneous Fredholmness of the operators Tp.a/ and Tq.a/ and
coincidence of their indices follow from Theorems 1 and 2, whereas the equality
of kernel dimensions is the consequence of the Coburn-Simonenko Theorem (see
assertion 2 in Lemma 1 or Section 6.6 in [1]).

Thus if a 2 PCp, then the Fredholmness of the operator Tp.a/ implies that of
Tq.a/ with ind Tp.a/ D ind Tq.a/. However, the authors do not know whether this
statement is true without the assumption a 2 PCp. In other words the following
problem appears.

Problem 1 Let p 2 .1;1/. For which classes of functions a, the Fredholmness of
the operator Tp.a/ implies the Fredholmness of Tq.a/ and the parity of their indices?

3 Kernels of Toeplitz Operators Acting on Spaces lp

As was already mentioned, the theory of Toeplitz operators on lp-spaces is more
complicated than the corresponding theory on Hp-spaces. The first obstacle in
lp-case is the multiplier problem which is not an issue for Toeplitz operators
considered on the Hardy spaces Hp. Another complication is that in lp-case there
is no developed Wiener-Hopf factorization theory, whereas various factorizations
are heavily used in description of the kernels of Toeplitz operators acting on Hp-
spaces. In the present work, we propose an approach to overcome these difficulties.
For we need the celebrated Hausdorff-Young theorem. Let us recall this important
result.
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Theorem 3 (Section 13.5 in [9]) Let 1=pC 1=q D 1 if q 2 .1;1/, and let p D 1
if q D 1.

1. If g 2 Hq, 1 � q � 2, then Fg 2 lp and jjFgjjlp � jjgjjHq.
2. If ' 2 lq, 1 � q � 2, then there is an element g 2 Hp such that ' D Fg and
jjgjjHp � jj'jjlq .

In what follows we will also use the Wiener-Hopf factorization of functions a 2
L1, so let us remind some relevant definitions and facts.

Definition 1 A function g 2 L1 admits a generalized Wiener–Hopf factorization
in Hp, if it can be represented in the form

g D g��ngC; g�.1/ D 1; (2)

where n 2 Z, gC 2 Hq, g�1C 2 Hp, g� 2 Hp, g�1� 2 Hq, and the linear operator
g�1C Pg�1� I defined on the set span f�k W k 2 ZCg can be boundedly extended to the
whole space Hp.

Let us emphasize that the generalized Wiener-Hopf factorization (2) strongly
depends on the space Hp. However, if p is fixed, then it is unique. In what follows,
the representation (2) is often called just Wiener-Hopf factorization. Let us also
recall that the number n occurring in (2) is called the factorization index.

Theorem 4 (Section 5.5 in [1]) If g 2 L1, then the Toeplitz operator Tp.g/, 1 <
p < 1 is Fredholm if and only if the generating function g admits the generalized
Wiener-Hopf factorization (2). If Tp.g/ is Fredholm, then

indTp.g/ D �n:

Now we are going to present a description of the kernels of Toeplitz T.a/ and
Toeplitz plus Hankel operators T.a/ C H.b/ acting on spaces lp. Let us start with
auxiliary results.

Proposition 1 Let X1 be a Banach space continuously and densely embedded into
a Banach space X2, and let A1 W X1 ! X1 and A2 W X2 ! X2 be bounded Fredholm
operators such that ind A1 D ind A2. If A2 is an extension of the operator A1, then

ker A1 D ker A2: (3)

Proof The proof of this result is simple. Since X1 	 X2, then

dim ker A1 � dim ker A2: (4)

On the other hand, the inclusion X�
2 	 X�

1 implies that

dim ker A�
2 � dim ker A�

1 : (5)
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Using (4) and (5) and the relation ind A1 D ind A2, one obtains

dim ker A1 D dim ker A2;

and the identity (3) follows. ut
Let us now describe general relations between the kernels of Toeplitz plus Hankel

operators acting on the spaces lp and Hq.

Lemma 2 Let p 2 .1;1/. Assume that a; b 2 Mp and that Tp.a/ C Hp.b/ and
Tq.a/CHq.b/ are Fredholm operators. If

ind .Tp.a/C Hp.b// D ind .Tq.a/CHq.b//;

then the Fourier transform F is an isomorphism between the spaces ker.Tq.a/ C
Hq.b// and ker.Tp.a/C Hp.b//. In particular, an element h 2 lp is in ker.Tp.a/C
Hp.b// if and only if h D F' for a function ' 2 ker.Tq.a/CHq.b//.

Proof Let bHp, p 2 .1;1/ be the space of all sequences .gk/k2Z
C

for which there is

a function g 2 Hp such that Fg D .gk/k2Z
C

. Let us equip bHp with the norm

jj.gk/k2Z
C

jj WD jjgjjHp :

Apparently the spaces bHp and Hp are isometrically isomorphic, and the operator
Tq.a/CHq.b/ induces a linear bounded operator on bHp given by

ŒTp.a/CHp.a/�X D .bai�j/
1
i:jD0 C .baiCjC1/1i:jD0:

Assume that 2 � p < 1. The first part of Hausdorff-Young Theorem shows
that bHq is continuously embedded in the space lp. Moreover, bHq is dense in lp. The
operatorsTq.a/CHq.b/ and ŒTq.a/CHq.b/�X W bHq ! bHq have the same Fredholm
properties as Tp.a/ C Hp.b/, and the operator Tp.a/ C Hp.b/ is an extension of
ŒTq.a/CHq.b/�X W bHq ! bHq on the whole space lp. By Proposition 1, one has

kerŒTp.a/CHp.a/�X D ker.Tp.a/C Hp.b//;

whence the assertion of Lemma 2 follows for p � 2.
Now let 1 < p < 2. The second part of Hausdorff-Young Theorem assures that

lp is continuously embedded into bHq. Clearly, ŒTq.a/ C Hq.b/�X is an extension
of Tp.a/ C Hp.b/. Using Proposition 1 once more, we obtain the result for
1 < p < 2. ut

The main problem in using Lemma 2 is the availability of information about
Fredholm properties of the operators involved, including the equality of their
Fredholm indices. For example, if a 2 PCp, then by Theorems 1 and 2 the
operators Tp.a/ and Tq.a/ are simultaneously Fredholm and their indices coincide.
Consequently, we again arrive at Corollary 1.
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Theorem 5 Assume that g 2 PCp, ind Tp.g/ D k > 0, and let

g D gC��kg�

be the Wiener-Hopf factorization in Hq of the generating function a. Then

ker Tp.g/ D lin spanf.bg�1C;n�l/n2Z
C

W l D 0; 1; : : : ; k � 1g; (6)

wherebg�1C;j, j 2 Z are the Fourier coefficients of the element g�1C .

Proof Recall that Fredholm Toeplitz operators Tq.g/ are one-sided invertible. By
Corollary 1, one has indTq.g/ D ind Tp.g/ D k > 0, so the operator Tq.g/ is
right invertible. Let gC be the plus-factor in the Wiener-Hopf factorization of the
function g in Hq. Then, it is easily seen that the functions fg�1C �lgk�1

lD0 form a basis
in kerTq.g/. Indeed, for 0 � l � k � 1 one has �kC l < 0, so that

Tq.g/g
�1C �l D Pg���kgCg�1C �l D Pg���kCl D 0:

It remains to employ Lemma 2 and the result follows. ut
Remark 2 Note that the Fourier coefficientsbg�1C;�kC1;bg�1C;�kC2; : : : ;bg�1C;�1 in (6) are
all equal to zero.

Remark 3 Theorem 5 shows that the kernel of Tp.g/ possesses a basis which is
formed by a so-called V-chain, where V is the forward shift on lp, that is V D
Tp.�1/. Indeed, relations (6) can be rewritten as

ker Tp.g/ D lin spanfVlFg�lC W l D 0; 1; : : : ; k � 1g:

Note that for g 2 W.T/ this result is well-known [10].

Corollary 2 Let g 2 Mp and Tp.g/ and Tq.g/ be Fredholm operators with
coinciding indices. If gC is the plus factor in the Wiener-Hopf factorization of the
function g in Hq, then Fg�1C 2 lp.

Proof Without loss of generality, we may assume that

indTq.g/ D 1:

Then g�1C 2 kerTq.g/ and Fg�1C 2 lp by Lemma 2. ut
Remark 4 Let a; b 2 Mp. If the operator Tp.a/ C Hp.b/ is subject to the Coburn-
Simonenko Theorem, i.e. the kernel or cokernel of this operator is trivial, and if it is
a Fredholm operator with the index zero, then Tp.a/C Hp.b/ is invertible.

For instance, let a; b 2 Cp and a be invertible in C.T/ with wind a D 0. Then
Tp.a/ is invertible on lp and the operator Hp.b/ is compact. Hence, Tp.a/CHp.b/ is
Fredholm with the index zero. If .a; b/ is a matching pair with the subordinated pair
.c; d/, then in the following cases
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1. ind T.c/ D 0,
2. ind T.c/ D 1 and � .c/ D 1,
3. ind T.c/ D �1 and � .c/ D �1,

the Coburn-Simonenko Theorem is in force. This result can be proven similarly to
Corollary 6.4 in [4].

Thus the kernel of a Toeplitz operator Tp.a/ admits the representation (6). Our
next goal is to find efficient representations for the kernels of Toeplitz plus Hankel
operators Tp.a/C Hp.b/. As we will see later in Sect. 4, such representations may
contain inverses of certain auxiliary Toeplitz operators. However, to the best of
authors’ knowledge, exact formulas for the inverses of Toeplitz operators acting
on spaces lp, are not well developed. Therefore, we are going to discuss this issue
here.

Theorem 6 Let g 2 Mp be a function such that Tq.g/ and Tp.g/ are invertible
operators. Then the function g admits a Wiener-Hopf factorization

g D g�gC; (7)

in Hq and

T�1
p .g/ WD T .g�1C /T .g�1� /;

where

T .g�1C / WD .bg�1C;j�k/
1
j;kD0; T .g�1� / WD .bg�1�;j�k/

1
j;kD0;

and .bg�1C;n/n2Z and .bg�1�;n/n2Z are the sequences of the Fourier coefficients of the
functions g�1C and g�1� .

Proof Let us first recall that if a 2 Lq.T/, b 2 Lp.T/ then the n-th Fourier coefficient
b.ab/n of the function ab is

b.ab/n D
X

l2Z
ban�lbbl; n 2 Z; (8)

wherebal andbbl are the Fourier coefficients of the functions a and b, correspondingly.
Note that ab 2 L1.T/ and the series in the right-hand side of (8) converges for any
n 2 Z.

Further, if the operator Tq.g/ is invertible, then g admits a Wiener-Hopf
factorization (7) such that gC 2 Hp, g�1C 2 Hq, g� 2 Hq, g�1� 2 Hp, and the
linear operator g�1C Pg�1� I W Hq ! Hq is bounded [1]. Consider the sequences
.bgC;n/n2Z and .bg�;n/n2Z of the Fourier coefficients of the functions gC and g� and
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the corresponding Toeplitz matrices

T .gC/ WD .bgC;j�k/
1
j;kD0; T .g�/ WD .bg�;j�k/

1
j;kD0:

Computing the entry gn;k of the product T .g�/T .gC/ and taking into account that
T .g�/ is a Toeplitz matrix, one obtains

gn;k D
1X

lD0
bg�;n�lbgC;l�k D

1X

lD0
bg�;n�k�.l�k/bgC;l�k:

This leads to the relation

gn;k D
1X

jD0
bg�;n�k�jbgC;j Dbgn�k; (9)

since the function g allows representation (7),bgC;l�k D 0 for l < k and the series
in (9) converges by (8). Thus the matrix T .g/ D .bgj�k/

1
j;kD0 can be represented

as T .g/ D T .g�/T .gC/. We already know that the matrix T .g/ generates a
bounded linear operator, namely, Tp.g/. It is easily seen that

Tp.g/en D T .g�/T .gC/en; (10)

where en D .ıi;n/i2Z
C

and ıi;n is the Kronecker symbol. Clearly, the set .en/n2Z
C

forms a Schauder basis in lp. Relation (10) indicates that T .g�/T .gC/ is a bounded
linear operator on the dense subset of lp consisting of all linear combinations of a
finite number of the basis elements from .en/n2Z

C

, i.e. on [1
nD0lpn, where

lpn WD
(

nX

iD0
ciei W ci 2 C; i D 0; 1; � � � ; n

)

:

The equality (10) also suggests that T�1
p .g/ can be expressed as T .g�1C /T .g�1� /. We

will make sure that this is the case, indeed. It is easily seen that the compressions of
T .g�/ and T .g�1� / on lpn are well defined and map lpn into lpn, n 2 ZC. Moreover,
these compressions are the inverses to each other. Let us denote T .g�/ei by mi.
Then .mi/

n
iD0 actually forms a basis in lpn. Now we get that T .g�1C /T .g�1� /mi D

T .g�1C /ei D Vi.bg�1C;k/1kD0 2 lp by Remark 3 (recall that V is the forward shift given
by Tp.�1//. Further, consider the element Tp.g/Vi.bg�1C;k/1kD0. The n0-th entry in the
last sequence is

1X

kD0
bgn0�kbg�1C;k�i D

1X

lD0
bgn0Ci�lbg�1C;l:
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Now it is easily seen that the last sum is

.2gg�1C �i/n0 D .1g�1� �i/n0 ;

so that

Tp.g/V
i.bg�1C;k/1kD0 D .bg�1�;i;bg�1�;i�1; � � � ;bg�1�;0; 0; � � � / D mi:

The invertibility of Tp.g/ immediately leads to the identity

T�1
p .g/mi D T .g�1C /T .g�1� /mi;

and

Tp.g/
�1m D T .g�1C /T .g�1� /m (11)

for all m 2 [1
nD0lpn. Moreover, the relation (11) allows us to determine the matrix of

the operator T�1
p .g/ with respect to the basis .ei/

1
iD0 and the proof of Theorem 6 is

completed. ut

4 Kernels of Toeplitz Plus Hankel Operators Acting
on Spaces lp

The considerations of the previous section suggest the idea to use the kernels of
Tq.a/CHq.b/ in order to obtain the description of ker .Tp.a/CHp.b//. However, the
situation is not so simple. One can prove that these operators are subject to Lemma 2
but the proof is involved and we are not going to follow along this line of thinking.
One of the main reasons is the absence of the description of ker.Tq.a/ C Hq.b//
in general situation. Nevertheless, for particular classes of Toeplitz plus Hankel
operators on Hp some results have been obtained recently [4]. Thus if the generating
functions a and b of the operators Tq.a/ and Hq.b/ satisfy the relations

a 2 GL1; b 2 L1 and a.t/a.1=t/ D b.t/b.1=t/; t 2 T; (12)

then under suitable conditions the kernel of the operator Tq.a/ C Hq.b/ can be
completely described via the kernels of two Toeplitz operators with generating
functions from a special class. It turns out that this idea also works for Toeplitz
plus Hankel operators acting on lp-spaces.

As was mentioned in Section 3 of [4], the approach developed there can also be
used to study Toeplitz plus Hankel operators acting on lp-spaces. The proof of the
corresponding results are similar to those for Toeplitz plus Hankel operators acting
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on Hardy spaces Hp. Note that the condition (12) reads now as follows:

a 2 GMp; b 2 Mp and a.t/a.1=t/ D b.t/b.1=t/; t 2 T: (13)

If a; b 2 L1 (a; b 2 Mp) satisfy the condition (12) ((13)), then the duo .a; b/ is
called matching pair. For a matching pair .a; b/, the duo .c; d/,

c WD ab�1.Debea�1/; d WD aeb�1.D bea�1/

is also a matching pair with the additional property

cQc D 1; d Qd D 1:

Recall thatea.t/ D a.1=t/ for any a 2 L1.
The duo .c; d/ is called the subordinated pair for the pair .a; b/. Further, a

matching pair .a; b/ is called Fredholm if the Toeplitz operators with generating
functions c and d are Fredholm on the spaces under consideration. It follows from
relations .3:2/ and .3:7/ in [4] that Tp.a/˙Hp.b/ are Fredholm if and only if so are
both operators Tp.c/ and Tp.d/.

In what follows, any function g 2 L1 (g 2 Mp) satisfying the relation geg D 1

is called matching function. We recall some results from [4], formulating them for
Toeplitz plus Hankel operators acting on the space lp. To shorten the notation, we
drop the subscript p when confusion is unlikely.

For g 2 Mp let us define the operators Pġ W lp ! lp by

Pġ WD
1

2
.I ˙ JPL.g/Q/:

Lemma 3 (Proposition 3.4 in [4]) If g 2 Mp is a matching function, then the
operators Pġ are complementary projections on the space ker T.g/.

Lemma 4 (Corollary 3.5 in [4]) Let .c; d/ be the subordinated pair for a matching
pair .a; b/ 2 Mp �Mp. Then the following relations

ker T.c/ D im P�
c u im PC

c ;

im P�
c 	 ker.T.a/C H.b//;

im PC
c 	 ker.T.a/ �H.b//;

hold.

Suppose that the operator T.c/ is right-invertible. An example of a right invertible
Fredholm operator is T.c/ with k D ind T.c/ � 0, one of the right-inverses of which
is the operator T�1.c�k/T.�k/. Notice that ind T.c�k/ D 0 and T.c�k/ is invertible.
If T.c/ is right-invertible, then T�1

r .c/ stands for one of the right inverses of T.c/.
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Now we can define the operators '˙ W lp ! lp by

'˙.s/ WD 1

2
.T�1

r .c/T.ea�1/� JQL.c/PT�1
r .c/T.ea�1/˙ JQL.ea�1//s: (14)

Lemma 5 (Proposition 3.7 in [4]) Let .c; d/ be the subordinated pair for a
matching pair .a; b/ 2 Mp �Mp. If the operator T.c/ W lp ! lp is right-invertible,
then

ker.T.a/C H.b// D 'C.im PC
d /u im P�

c ;

ker.T.a/ � H.b// D '�.im P�
d /u im PC

c :
(15)

If .a; b/ 2 Mp � Mp is a Fredholm matching pair, and this will be assumed in
what follows, then

dim ker.T.a/C H.b// D dim im PC
d u dim im P�

c ;

dim ker.T.a/� H.b// D dim im P�
d u dim im PC

c ;

provided that ind T.c/ � 0. These relations are also valid if ind T.c/ < 0 and
ind T.d/ � 0. However, in the situation where ind T.c/ < 0 and ind T.d/ > 0

they may fail. Nevertheless, the last case still can be studied by using a special
representation of the Toeplitz plus Hankel operator under consideration. More
precisely, if n is a natural number, then the operator T.a/CH.b/ can be represented
as the product of two operators, namely,

T.a/C H.b/ D .T.a��n/C H.b�n//T.�n/; (16)

(see relation (2.4) in [4]). Let us choose n 2 N such that

0 � 2nC ind T.c/ � 1: (17)

Such a number n is uniquely defined and

2nC ind T.c/ D
�
0; if ind T.c/ is even,
1; if ind T.c/ is odd.

In addition, we observe that .a��n; b�n/ is also a matching pair with the subordi-
nated pair .c��2n; d/. However, ind T.c��2n/ � 0, so that the operator T.a��n/C
H.b�n/ is subject to Lemma 5. This leads to the following result.

Lemma 6 Assume that .a; b/ 2 Mp�Mp be a Fredholm matching pair, ind T.c/ < 0
and ind T.d/ > 0, and let n be the natural number defined by the relation (17).
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1. If n is even, then T.c��2n/ is invertible and

ker.T.a��n/C H.b�n// D 'C.im PC
d /;

ker.T.a��n/ �H.b�n// D '�.im P�
d /:

2. If n is odd, then ind T.c��2n/ D 1 and ker T.c��2n/ is a one-dimensional
subspace of lp. Moreover,

ker.T.a��n/C H.b�n// D 'C.im PC
d /u im P�

c�
�2n
;

ker.T.a��n/� H.b�n// D '�.im P�
d /u im PC

c�
�2n
:

We would like to draw the reader’s attention to the facts that the operators '˙ in the
last two identities are generated by the matching pair .a��n; b�n/ and that one of
the subspaces im Pċ�

�2n
has dimension zero whereas the dimension of the other is

one.
If �1 WD ind T.c/, �2 WD ind T.d/, then relation (16) leads to the following result.

Lemma 7 Assume that .�1; �2/ 2 .�N/ � N and let n be the integer defined
by (17).

1. If �1 is even, then

ker.T.a/˙H.b// D T.��n/
�˚
'˙.im Pḋ /

�\ im T.�n/
�

D ˚ 2 fT.��n/ug W u 2 '˙.im Pḋ / and bu0 D � � � Dbun�1 D 0
�
:

2. If �1 is odd, then

ker.T.a/˙ H.b// D T.��n/
�n

im P
c�

�2n
u '˙.im Pḋ /

o
\ im T.�n/

	
D

n
 2 fT.��n/ug W u 2

n
im P

c�
�2n

u '˙.im Pḋ /
o

and bu0 D � � � Dbun�1 D 0
o
:

Thus what remains now is to describe the subspaces im Pċ , im Pḋ and im Pċ�
�2n

.
For this we again need a results from [4].

Proposition 2 (See Proposition 5.1, Corollary 5.3 and Theorem 5.4 of [4])
Assume that g 2 L1 satisfy the relation geg D 1. Then

1. If the operator Tq.g/ is Fredholm with the index n, then the function g admits
Wiener-Hopf factorization in Hq,

g.t/ D gC.t/ ��n g�.t/; g�.1/ D 1; (18)

where gC 2 Hp, g�1C 2 Hq, g�.t/ D � .g/eg�1C .t/, and � .g/ D gC.0/ D ˙1 (see
Remark 5 below).
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2. If k D indTq.g/ > 0, then the operators

Pġ WD .1=2/.I˙ JQgP/ W kerTq.g/! kerTq.g/;

are complementary projections.
3. If (18) is the Wiener–Hopf factorization of g in Hq and n > 0, then the following

systems of functions B˙.g/ form bases in the spaces imPġ :

a. If n D 2m, m 2 N, then

B˙.g/ WD fg�1C .tm�k�1 ˙ � .g/tmCk/ W k D 0; 1; � � � ;m � 1g:

b. If n D 2mC 1, m 2 ZC, then

B˙.g/ WD fg�1C .tmCk ˙ � .g/tm�k/ W k D 0; 1; � � � ;mg n f0g:

Remark 5 If g is a matching function and the operator Tq.g/ is Fredholm, then
gC.0/ takes only two distinct values 1 and �1. The corresponding value, denoted
by � .g/, is called the factorization signature of the matching function g. Its role can
be seen from the relation � .g/eg�1C .1/ D g�.1/ D 1.

Theorem 7 Let g 2 Mp be a matching function such that both operators Tp.g/
and Tq.g/ are Fredholm and indTq.g/ D ind Tp.g/. If (18) is the Wiener-Hopf
factorization of g in Hq and n > 0, then the following systems of sequences B˙
form bases in the spaces im Pġ :

1. If n D 2m;m 2 N, then

B˙ WD
n
.bg�1C;j�.m�k�1//j2ZC

˙� .g/.bg�1C;j�.mCk//j2ZC

W k D 0; 1; � � � ;m � 1
o
;

(19)

where here and in what follows .bg�1C;j/j2ZC

D Fg�1C , i.e. bg�1C;j are the Fourier
coefficients of the function g�1C .

2. If n D 2mC 1; n 2 N, then

B˙ WD
n
.bg�1C;j�.mCk//j2ZC

˙� .g/.bg�1C;j�.m�k//j2ZC

W k D 0; 1; � � � ;m
o
n f0g: (20)

Proof Following the proof of Theorem 5, we get

ker Tp.g/ D lin spanf.bg�1C;n�l/n2Z
C

W l D 0; 1; : : : ; k � 1g:

It is clear that the sequences .bg�1C;n�l/n2Z
C

form a basis in ker Tp.g/ and so does the
system BC [B�.Thus we only have to prove that Pġ B˙ DB˙. Observe that the
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matrix representation Œ.1=2/.I˙ JQgP/�X of the operator .1=2/.I˙ JQgP/ is

�
1

2
.I˙ JQgP/



X

D 1

2

�
I ˙ .g�j�k�1/1j;kD0

�
;

because JQgP D PegQJ. Note that the matrix generating the operator JQL.g/P D
PL.eg/QJ on lp coincides with the matrix representation of JQgP. Taking into
account the relations Pġ B˙ D B˙ and B˙ D FB˙, we obtain

B˙ D
�
1

2
.I˙ JQgP/



X

FB˙ D 1

2
.I ˙ JQL.g/P/B˙;

which completes the proof. ut
Remark 6 Let .a; b/ be a Fredholm matching pair. It is easily seen that the adjoints

to the operators Tq.a/ C Hq.b/ and Tp.a/ C Hp.b/ are Tp.a/ C Hp.
eb/ and

Tq.a/ C Hq.
eb/, respectively. Recall that .a;eb/ forms again a matching pair with

the subordinated pair .d; c/. Therefore, the Fredholm indices of the operators Tp.c/
and Tq.c/ coincide if so are those of Tq.c/ and Tp.c/. Similar assertion is also true
for the operators Tp.d/ and Tq.d/. Now it can be shown that the Fredholm indices

of the operators Tp.a/ C Hp.
eb/ and Tq.a/ C Hq.

eb/ coincide. Moreover, it is also
possible to study the invertibility of the operators under consideration.

Consider examples where a complete description of the kernels of the operators
Tp.a/C Hp.b/ can be derived.

Theorem 8 Let .a; b/ 2 PCp � PCp be a Fredholm matching pair with the
subordinated pair .c; d/, and let bc�1C;j, j 2 ZC be the Fourier coefficients of the
function c�1C , where cC is the plus factor in the Wiener-Hopf factorization (18) of
the function c in Hq. If �1 WD ind Tp.c/ > 0, �2 WD ind Tp.d/ � 0, then the kernel of
the operator Tp.a/C Hp.b/ admits the following representation:

1. If �1 D 1 and �.c/ D 1, then

ker.Tp.a/C Hp.b// D f0g:

2. If �1 D 1 and �.c/ D �1, then

ker.Tp.a/C Hp.b// D lin spanf.bc�1C;j/j2ZC

g:

3. If �1 > 1 is odd, then

ker.Tp.a/C Hp.b// D
D lin spanf.bc�1

C;j�.�1�1/=2�l � � .c/bc�1
C;j�.�1�1/=2Cl/j2Z

C

W l D 0; 1; � � � ; .�1 � 1/=2g:
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4. If �1 is even, then

ker.Tp.a/CHp.b// D
D lin spanf.bc�1C;j��1=2ClC1 � � .c/bc�1C;j��1=2�l/j2ZC

W l D 0; 1; � � � ; �1=2 � 1g:

Proof Let the operators Tp.c/ and Tp.d/ be as above. According to Lemma 5 the
kernel of the operator Tp.a/C Hp.b/ can be expressed in the form

ker.Tp.a/C Hp.b// D im P�
c :

Further, since the matching function c 2 PCp, by Corollary 1 the operator Tq.c/
is also Fredholm and it has the same index as the operator Tp.c/. It remains to use
Theorem 7 and representations (19)–(20). ut

Thus in the case where ind Tp.c/ > 0 and ind Tp.d/ � 0 we have a complete
description of the ker Tp.a/ C Hp.b/. The kernel spaces arising in Theorem 8 we
denote by Np.c/.

Next we are going to derive the kernel description of the operator Tp.a/CHp.b/
in another situation. Let c and d be as above. Assume now that �1 D ind Tp.c/ > 0

and �2 D ind Tp.d/ > 0 and let the sequences . .l/j .d//j2ZC

be defined by

 
.l/
j .d/ WD

(
bd�1C;j��2=2ClC1 C � .d/bd�1C;j��2=2�l; l D 0; 1; : : : ; �2=2� 1 if �2 is even;
bd�1C;j��2C1/=2�l C � .d/bd�1C;j�.�2�1/=2Cl; l D 0; 1; : : : ; .�2 � 1/=2 if �2 is odd;

wherebd�1C;j; j 2 ZC are the Fourier coefficients of the function d�1C , and dC is the
plus factor in the Wiener-Hopf factorization (18) of the matching function d in Hq.

Let 'C W lp ! lP be the operator defined by (14). We specify the set Np
'

C

.d/ 	 lp

as follows

1. If �2 D 1 and �.d/ D �1, then

Np
'

C

.d/ WD f0g:

2. If �2 D 1 and �.d/ D 1, then

Np
'

C

.d/ WD lin spanf'C. .0/j .d//g:

3. If �2 > 1, then

Np
'

C

.d/ DW lin spanf'C. .l/j .d//g;

and l D 0; 1; � � � ; .�2 � 1/=2 if �2 is odd or l D 0; 1; � � � ; �2=2 � 1 if �2 is even.
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Theorem 9 Let .a; b/ 2 PCp � PCp be a Fredholm matching pair with the
subordinated pair .c; d/ and let �1 WD ind Tp.c/ > 0, �2 WD ind Tp.d/ > 0. Then
the operator Tp.a/ C Hp.b/ is also Fredholm and its kernel admits the following
representation:

ker.Tp.a/CHp.b// D Np.c/u Np
'

C

.d/:

Proof Once again one can employ Corollary 1 and obtain that the operators Tq.c/
and Tq.d/ are Fredholm and have the indices �1 and �2, correspondingly. Therefore,
by Theorem 7, im P�

c D Np and 'C.im PC
d / D N

p
'

C

.d/. Taking in the account the
first relation in (15), one obtains the result. ut

It remains to study the situation where �1 WD ind Tp.c/ < 0, �2 WD ind Tp.d/ > 0.
This can be done analogously to previous considerations in Theorem 8 and
Theorem 9, if one uses Lemma 7.

5 Concluding Remarks

The description of the kernels of the operators Tp.a/ ˙ Hp.b/ has been obtained
under the condition that the related operators Tp.c/ and Tp.d/ are Fredholm. It turns
out that even if this condition is violated, then one of the operators Tp.a/ � Hp.b/
or Tp.a/C Hp.b/ can still be Fredholm. In the case where a; b 2 PCp, the kernel of
the corresponding Fredholm operator can be also described. For, one has to use the
methods of [4] where this situation is considered in the Hp-setting.

Moreover, the approach developed in the present work can also be used to study
other objects where the multiplier problem is involved. For example, it can be
employed to Wiener-Hopf plus Hankel operators. However, such an extension is
highly non-trivial and will be reported elsewhere.
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Probabilistic Lower Bounds
for the Discrepancy of Latin Hypercube
Samples

Benjamin Doerr, Carola Doerr, and Michael Gnewuch

Dedicated to Ian H. Sloan on the occasion of his 80th birthday.

Abstract We provide probabilistic lower bounds for the star discrepancy of Latin
hypercube samples. These bounds are sharp in the sense that they match the
recent probabilistic upper bounds for the star discrepancy of Latin hypercube
samples proved in Gnewuch and Hebbinghaus (Discrepancy bounds for a class of
negatively dependent random points including Latin hypercube samples. Preprint
2016). Together, this result and our work implies that the discrepancy of Latin
hypercube samples differs at most by constant factors from the discrepancy of
uniformly sampled point sets.

1 Introduction

Discrepancy measures are well established and play an important role in fields
like computer graphics, experimental design, pseudo-random number generation,
stochastic programming, numerical integration or, more general, stochastic simula-
tion.

The prerelevant and most intriguing discrepancy measure is arguably the star
discrepancy, which is defined in the following way:

Let P 	 Œ0; 1/d be an N-point set. (We always understand an “N-point set”
as a “multi-set”, i.e., it consists of N points, but these points do not have to be
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pairwise different.) We define the local discrepancy of P with respect to a Lebesgue-
measurable test set T � Œ0; 1/d by

DN.P;T/ WD
ˇ
ˇ
ˇ̌ 1
N
jP \ Tj � �d.T/

ˇ
ˇ
ˇ̌;

where jP\Tj denotes the size of the finite set P\T (again understood as a multi-set)
and �d the d-dimensional Lebesgue measure on R

d. For vectors x D .x1; x2; : : : ; xd/,
y D .y1; y2; : : : ; yd/ 2 R

d we write

Œx; y/ WD
dY

jD1
Œxj; yj/ D fz 2 R

d j xj � zj < yj for j D 1; : : : ; dg:

The star discrepancy of P is then given by

D�
N.P/ WD sup

y2Œ0;1�d
DN.P; Œ0; y//:

We will refer to the sets Œ0; y/, y 2 Œ0; 1�d, as anchored test boxes.
The star discrepancy is intimately related to quasi-Monte Carlo integration via

the Koksma-Hlawka inequality: For every N-point set P 	 Œ0; 1/d we have

ˇ
ˇ
ˇ̌
ˇ
ˇ

Z

Œ0;1/d
f .x/ d�d.x/ � 1

N

X

p2P

f . p/

ˇ
ˇ
ˇ̌
ˇ
ˇ
� D�

N.P/VarHK. f /;

where VarHK. f / denotes the variation in the sense of Hardy and Krause see, e.g.,
[13]. The Koksma-Hlawka inequality is sharp, see again [13]. (An alternative
version of the Koksma-Hlawka inequality can be found in [8]; it says that the
worst-case error of equal-weight cubatures based on a set of integration points
P over the norm unit ball of some Sobolev space is exactly the star discrepancy
of P.) The Koksma-Hlawka inequality shows that equal-weight cubatures based
on integration points with small star discrepancy yield small integration errors.
(Deterministic equal-weight cubatures are commonly called quasi-Monte Carlo
algorithms; for a recent survey we refer to [2].) For the very important task of high-
dimensional integration, which occurs, e.g., in mathematical finance, physics or
quantum chemistry, it is therefore of interest to know sharp bounds for the smallest
achievable star discrepancy and to be able to construct integration points that satisfy
those bounds. To avoid the “curse of dimensionality” it is crucial that such bounds
scale well with respect to the dimension.

The best known upper and lower bounds for the smallest achievable star
discrepancy with explicitly given dependence on the number of sample points N
as well as on the dimension d are of the following form: For all d;N 2 N there
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exists an N-point set P 	 Œ0; 1/d satisfying

D�
N.P/ � C

r
d

N
(1)

for some universal constant C > 0, while for all N-point sets Q 	 Œ0; 1/d it holds
that

D�
N.Q/ � min

�
c0; c

d

N

�
; (2)

where c0; c 2 .0; 1� are suitable constants. The upper bound (1) was proved by
Heinrich et al. [7] without providing an estimate for the universal constant C. The
first estimate for this constant was given by Aistleitner [1]; he showed that C � 9:65.
This estimate has recently been improved to C � 2:5287 in [5]. All these results are
based on probabilistic arguments and do not provide an explicit point construction
that satisfies (1). The lower bound (2) was established by Hinrichs [9]. Observe that
there is a gap between the upper bound (1) and the lower bound (2). In [6, Problem 1
& 2] Heinrich asked the following two questions:

(a) Does any of the various known constructions of low discrepancy point sets
satisfy an estimate like (1) or at least some slightly weaker estimates?

(b) What are the correct sharp bounds for the smallest achievable star discrepancy?

It turned out that these two questions are very difficult to answer.
To draw near an answer, it was proposed in [5] to study the following related

questions:

(c) What kind of randomized point constructions satisfy (1) in expectation and/or
with high probability?

(d) Can it even be shown, by probabilistic constructions, that the upper bound (1)
is too pessimistic?

As mentioned, the upper bound (1) was proved via probabilistic arguments. Indeed,
Monte Carlo points, i.e., independent random points uniformly distributed in Œ0; 1/d,
satisfy this bound with high probability. In [3] it was rigorously shown that the star
discrepancy of Monte Carlo point sets X behaves like the right hand side in (1). More
precisely, there exists a constant K > 0 such that the expected star discrepancy of X
is bounded from below by

EŒD�
N.X/� � K

r
d

N
(3)
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and additionally we have the probabilistic discrepancy bound

P

 

D�
N.X/ < K

r
d

N

!

� exp.�˝.d//: (4)

The upper bound (1) is thus sharp for Monte Carlo points, showing that they cannot
be employed to improve it.

What about other randomized point constructions? In [5] it is shown that so-
called Latin hypercube samples satisfy the upper bound (1) with high probability,
see Theorem 1 below. In this note we show that this estimate is tight. More precisely,
we prove that the bounds (3) and (4) for Monte Carlo point sets also apply to Latin
hypercube samples.

2 Probabilistic Discrepancy Bounds for Latin Hypercube
Sampling

For N 2 N we denote the set f1; 2; : : : ;Ng by ŒN�. The definition of Latin hypercube
sampling presented below was introduced by McKay et al. [12] for the design of
computer experiments.

Definition 1 A Latin hypercube sample (LHS) .Xn/n2ŒN� in Œ0; 1/d is of the form

Xn;j D �j.n/� un;j

N
;

where Xn;j denotes the jth coordinate of Xn, �j is a permutation of ŒN� that is
chosen uniformly at random, and un;j obeys the uniform distribution on Œ0; 1/. The
d permutations �j and the dN random variables un;j are mutually independent.

The following result was proved in [5].

Theorem 1 Let d;N 2 N, and let X D .Xn/n2ŒN� be a Latin hypercube sample in
Œ0; 1/d. Then for every c > 0

P

 

D�
N.X/ � c

r
d

N

!

� 1 � exp
��.1:6741 c2 � 11:7042/ d

�
:

In particular, there exists a realization P 	 Œ0; 1/d of X such that

D�
N.P/ � 2:6442 �

r
d

N
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and the probability that X satisfies

D�
N.X/ � 3 �

r
d

N
and D�

N.X/ � 4 �
r

d

N

is at least 0:965358 and 0:999999, respectively.

The result of our note complements the previous theorem and shows that it is
sharp from a probabilistic point of view.

Theorem 2 There exists a constant K > 0 such that for all d;N 2 N with d � 2
and N � 1600d, the discrepancy of a Latin hypercube sample X D .Xn/n2ŒN� in
Œ0; 1/d satisfies

EŒD�
N.X/� � K

r
d

N

and

P

 

D�
N.X/ < K

r
d

N

!

� exp.�˝.d//:

We note that Theorem 2 does not hold for d D 1. Indeed, it is easily verified that
in dimension d D 1 we have D�

N.X/ � 1=N almost surely.

3 Proof of Theorem 2

We now list the results that we need to prove Theorem 2. We will employ the
fact that (under suitable conditions) the hypergeometric distribution resembles the
binomial distribution. Let us make this statement more precise.

Consider an urn that contains N balls among which W are white and N � W
are black. Now we draw a random sample of size n. The number of white balls in
the sample has the hypergeometric distribution H.N;W; n/ if we sample without
replacement and the binomial distribution B.n; p/ with

p WD W=N

if we sample with replacement. The deviation of both distributions can be measured
by the total variation distance

ı
�
H.N;W; n/;B.n; p/

� WD max
A�f0;1;:::;ng

jH.N;W; n/.A/� B.n; p/.A/j:
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The following theorem can be found in [11, p. 1]; here we only need the upper
bound, which is due to Ehm, see [4].

Theorem 3 Let n;N;W 2 N with W; n � N and let p 2 .0; 1/ such that np.1�p/ �
1. Then

1

28

n � 1
N � 1 � ı

�
H.N;W; n/;B.n; p/

� � n � 1
N � 1 :

Furthermore, we will make use of the following lemma from [3].

Lemma 1 Let n � 16 and 1=n � p � 1=4. Then

B.n; p/


�
0; np� 1

2

p
np

�
� 3

160
:

Finally, we need the following Chernoff-Hoeffding bound for sums of indepen-
dent Bernoulli random variables, see [10]. Recall that a Bernoulli random variable
is simply a random variable that takes only values in f0; 1g.
Theorem 4 Let k 2 N, and let �1; : : : ; �k be independent (not necessarily identi-
cally distributed) Bernoulli random variables. Put S WDPk

iD1.�i � EŒ�i�/. Then we
have for all t > 0 that

P .S < �tk/ � exp
��2t2k

�
: (5)

The Bernoulli random variables �i, i D 1; : : : ; d, that appear in our proof of
Theorem 2 are actually not independent; to cope with that we need the following
lemma.

Lemma 2 Let k 2 N and q 2 .0; 1/. Let �1; : : : ; �k be independent Bernoulli
random variables with P.�j D 1/ D q for all j 2 Œk�, and let �1; : : : ; �k be (not
necessarily independent) Bernoulli random variables satisfying

P.�j D 1 j �1 D v1; : : : ; �j�1 D vj�1/ � q for all j 2 Œk� and all v 2 f0; 1g j�1:

Then we have

P

 
jX

iD1
�i < t

!

� P

 
jX

iD1
�i < t

!

for all j 2 Œk� and all t > 0: (6)

Since we do not know a proper reference for this lemma, we provide a proof. For
a finite bit string v 2 f0; 1g j we put jvj1 WD v1 C � � � C vj.

Proof We verify statement (6) by induction on j. For j D 1 statement (6) is true,
since for t 2 .0; 1� we have P.�1 < t/ � 1 � q D P.�1 < t/ and for the trivial case
t > 1 we have P.�1 < t/ D 1 D P.�1 < t/.
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Now assume that statement (6) is true for j 2 Œk � 1�. This gives for t > 0

P

 
jC1X

iD1
�i < t

!

D P

 
jX

iD1
�i < t � 1

!

C P

 

�jC1 D 0 ;
jX

iD1
�i 2 Œt � 1; t/

!

DP

 
jX

iD1
�i < t � 1

!

C
X

v2f0;1g j

jvj12Œt�1;t/

P
�
�jC1 D 0 j �1 D v1; : : : ; �j D vj

��

� P
�
�1 D v1; : : : ; �j D vj

�

� P

 
jX

iD1
�i < t � 1

!

C .1 � q/P

 
jX

iD1
�i 2 Œt � 1; t/

!

D q P

 
jX

iD1
�i < t � 1

!

C .1 � q/ P

 
jX

iD1
�i < t

!

� q P

 
jX

iD1
�i < t � 1

!

C .1 � q/ P

 
jX

iD1
�i < t

!

DP

 
jX

iD1
�i < t � 1

!

C .1 � q/P

 
jX

iD1
�i 2 Œt � 1; t/

!

DP

 
jX

iD1
�i < t � 1

!

C P

 

�jC1 D 0 ;
jX

iD1
�i 2 Œt � 1; t/

!

DP

 
jC1X

iD1
�i < t

!

:

ut
For a given N-point set P 	 Œ0; 1/d and a measurable set B � Œ0; 1/d let us define

the excess of points from P in B by

exc.P;B/ WD jP \ Bj � N�d.B/:

For an arbitrary anchored test box B we always have

D�
N.P/ � DN.P;B/ � 1

N
exc.P;B/: (7)

Proof of Theorem 2 We adapt the proof approach of [3, Theorem 1] and construct
recursively a random test box Bd D Bd.X/ that exhibits with high probability a
(relatively) large excess of points exc.X;Bd/. Due to (7) this leads to a (relatively)
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large local discrepancy DN.X;Bd/. Put I WD Œ0; bN=4c=N/, where bN=4c WD
maxfz 2 Z j z � N=4g. We start with B1 WD I�Œ0; 1/d�1. Notice that there are exactly
bN=4c points of X inside the box B1, implying exc.X;B1/ D 0. The recursion step
is as follows: Let j � 2 and assume we already have a test box Bj�1 that satisfies
exc.X;Bj�1/ � 0 and is of the form

Bj�1 WD I �
j�1Y

iD2
Œ0; xi/ � Œ0; 1/d�jC1;

where xi 2 f1�c=d; 1g for i D 2; : : : ; j�1 and c is the largest value in .1=84; 1=80�
that ensures Nc=d 2 N. Observe that due to N � 1600 d we have Nc=d � 20 and
�d.B1/ D �1.I/ 2 .1=5; 1=4�. Let

Sj WD Œ0; 1/ j�1 � Œ1 � c=d; 1/� Œ0; 1/d�j and Cj WD Bj�1 \ Sj;

and put

Yj WD jX \ Cjj:

Looking at Definition 1 one sees easily that Yj has the hypergeometric distribution
H.N;W; n/ with

W WD jX \ Bj�1j and n WD jX \ Sjj D N
c

d
:

Observe that

1

4
� �d.Bj�1/ � 1

5
.1 � c=d/d�2 � 1

5
.1� c=d/d � 1

5
.1 � c=2/2 DW v � 1

6
; (8)

and, due to exc.X;Bj�1/ � 0,

W D jX \ Bj�1j � N�d.Bj�1/ � Nv: (9)

Put

p WD W=N:

We now want to check that the conditions on p and n in Theorem 3 and Lemma 1
hold. Due to Bj�1 � B1 and exc.X;B1/ D 0 we have p � 1=4. Furthermore, we
have n D Nc=d � 20 and, due to (9) and (8), p � v � 1=6 � 1=n. This leads to

np.1� p/ � 20 � 1
6



1 � 1

4

�
D 5

2
> 1:
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Hence we may apply Theorem 3 and Lemma 1 to obtain

P



Yj � np� 1

2

p
np

�
� B.n; p/


�
0; np� 1

2

p
np

�
� ı�H.N;W; n/;B.n; p/�

� 3

160
� c

d

� 1

80
: (10)

If

Yj D jX \ Cjj � np � 1
2

p
np;

then put xj WD 1 � c=d, and otherwise put xj WD 1. We define

Bj WD I �
jY

iD2
Œ0; xi/ � Œ0; 1/d�j:

Before we go on, let us make a helpful observation: Put

�i WD 1ŒxiD1�c=d�.X/ for i D 2; : : : ; j:

Then �i is a Bernoulli random variable and (10) says that P.�j D 1/ � 1=80.
Actually, due to our construction we proved a slightly stronger result, namely:

P
�
�j D 1 j �2 D v1; : : : ; �j�1 D vj�2

� � 1=80 for all v 2 f0; 1g j�2 (11)

(since (10) holds for all values of �2; : : : ; �j�1 that have been determined previously
in the course of the construction of Bj).

We now want to estimate the excess of points of X in Bj. In the case xj D 1� c=d
we have �d.Bj/ D .1 � c=d/�d.Bj�1/ and thus

exc.X;Bj/ D jX \ Bj�1j � jX \ Cjj � N.1 � c=d/�d.Bj�1/

� jX \ Bj�1j � npC 1

2

p
np � N.1 � c=d/�d.Bj�1/

D .1 � c=d/
�jX \ Bj�1j � N�d.Bj�1/

�C 1

2

p
np

D .1 � c=d/exc.X;Bj�1/C 1

2

r
W

c

d

� .1 � c=d/exc.X;Bj�1/C
p

cv

2

r
N

d
;
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where in the last step we used (9).
In the case xj D 1 we obviously have Bj D Bj�1 and consequently exc.X;Bj/ D

exc.X;Bj�1/.
Put

k D k.X/ WD jf i 2 f2; : : : ; dg j xi D 1 � c=dgj:

Due to .1 � c=d/k � 5v (cf. (8)) we obtain

exc.X;Bd/ � k.1 � c=d/k
p

cv

2

p
N=d � 5

2

p
cv3 k

p
N=d: (12)

Thus we get on the one hand from (7)

EŒD�
N.X/� �

1

N
EŒexc.X;Bd/�

�
d�1X

�D0

5

2

p
cv3 �

p
1=Nd P.k.X/ D �/

D 5

2

p
cv3

p
1=Nd

d�1X

�D0
� P.k.X/ D �/

D 5

2

p
cv3

p
1=Nd EŒk.X/�

� .
p

cv3=32
p
2/
p
.d � 1/=N;

where in the last step we used (10) to obtain

EŒk.X/� D
dX

iD2
EŒ�i� D

dX

iD2
P



Yi � np� 1

2

p
np

�
� .d � 1/=80:

On the other hand we get from (12) for K WD pcv3=80

P
�

D�
N.X/ < K

p
d=N

	
� P

�
exc.X;Bd/ < K

p
dN
	

� P



5

2

p
cv3 k.X/

p
N=d < K

p
dN

�

D P .k.X/ < d=200/

D P

 
dX

iD2
�i < d=200

!

:



Probabilistic Lower Bounds for the Discrepancy of Latin Hypercube Samples 349

Let �i, i D 2; : : : ; d, be independent Bernoulli random variables with

P.�i D 1/ D 1=80 and P.�i D 0/ D 79=80:

Clearly, EŒ�i� D 1=80. Since estimate (11) holds for each j 2 f2; : : : ; dg, we have
due to Lemma 2

P

 
dX

iD2
�i < d=200

!

� P

 
dX

iD2
�i < d=200

!

:

Hence we get from Theorem 4

P
�

D�
N.X/ < K

p
d=N

	
� P

 
dX

iD2
.�i � EŒ�i�/ <



1

200
� 1

80

d � 1
d

�
d

!

� P

 
dX

iD2
.�i � EŒ�i�/ < � d

800

!

� exp



� 2d2

.800/2.d � 1/
�

D exp .�˝.d// :

This concludes the proof of the theorem. ut
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Hyperinterpolation for Spectral Wave
Propagation Models in Three Dimensions

Mahadevan Ganesh and Stuart C. Hawkins

Dedicated to Professor Ian H. Sloan on the occasion of his 80th
birthday.

Abstract In this review article, we describe some advances in applications of the
hyperinterpolation operator introduced by Sloan about two decades ago (J Approx
Theory 83:238–254, 1995). In particular, our focus is on reviewing the application of
the scalar and vector-valued hyperinterpolation approximations for developing, ana-
lyzing and implementing fully-discrete high-order algorithms. Such approximations
facilitate efficient simulation of scattering of acoustic, electromagnetic and elastic
waves, exterior to connected and disconnected bounded three dimensional domains.
The main contributions of this article are: (1) a unified (acoustic, electromagnetic,
and elastic) approach for the three important classes of waves; (2) theoretical and
numerical comparisons of the hyperinterpolation approximations in these three
applications; and (3) new results for a class of unbounded heterogeneous media.

1 Introduction

In this survey article on a class of fully-discrete spectral Galerkin wave propagation
models based on spherical hyperinterpolation approximations, we mark more than
two decades since Professor Ian H. Sloan introduced polynomial hyperinterpolation
in his seminal 1995 paper “Polynomial Interpolation and Hyperinterpolation over
General Regions” [47].
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In the two decades since the publication of the paper [47], the results in the paper,
and the hyperinterpolation technique it introduced, have been applied extensively
in fields including approximation of functions, cubature, and methods for solution
of PDEs. Particular applications include approximation of functions on various
shaped regions using interpolation [51] and hyperinterpolation [5, 22, 30, 36], and
generalisations of hyperinterpolation [6, 46, 49]. The results in [47] have been
applied to inform development of cubature techniques [1, 24, 29, 44], and inspire
development of new cubature rules suitable for hyperinterpolation [35, 37]. The
hyperinterpolation technique in [47] has been a powerful tool for development and
analysis of mesh-free numerical methods for solving partial differential equations
(PDEs) [8, 38, 39] and integral equations [7, 11–14, 23, 25, 27, 32, 34, 40, 41].

In particular, global or local polynomial approximations are fundamental to
understanding physical processes governed by partial differential equations in a
bounded domain ˝ 	 R

d (or in its complement Rd n ˝) and by appropriate con-
ditions on the boundary @˝ . Development of an associated spectral computational
PDE model requires projection of some unknown quantity onto finite dimensional
spaces Vn, which are spanned by global polynomials of degree of at most n that are
eigenfunctions of a second-order elliptic differential operator. A key tool to analyze
the supremum norm error in the associated computer model is the growth of the
Lebesgue constant of the projection operator with respect to n.

If the PDE is described in the unbounded region R
d n ˝ (together with a

radiation condition) and if a fundamental solution of the PDE is known (as in the
homogeneous constant coefficient PDE case), it is efficient to start with a surface
integral ansatz. The integrand in the ansatz usually depends on the fundamental
solution and an unknown density u defined on @˝ . This approach reformulates the
PDE model into a surface integral equation (SIE) for the unknown density u.

For two dimensional PDE models, spectrally accurate approximation of the SIE
on @˝ was investigated thoroughly in the last century and is detailed in [4, 31]
and references therein. Spectrally accurate approximation for the two dimensional
acoustic scattering problem is comprehensively presented in [4]. The starting point
for such approximations is to assume that @˝ 	 R

2 is a simply connected closed
(almost everywhere) differentiable manifold and use a diffeomorphic map q1 from
the smooth unit circle S

1 to the boundary @˝ 	 R
2 (or equivalently, to use a 2�-

periodic parameterization from Œ0; 2�� to @˝).
The corresponding fully discrete Fourier projection L 1

N is defined from C .S1/
onto V1

N , where V1
N 	 C .S1/ is spanned by orthonormal polynomials j.bx/ D

1p
2�

exp.ij�/ for j D �N; � � � ;N and bx D .cos �; sin �/. This projection and its
properties are well known.

For a given function f in C .S1/, the fully-discrete approximation L 1
N. f / to f

is obtained by approximating the Fourier coefficients h f ; ji in the truncated semi-
discrete Fourier expansion

P1
Nf D

NX

jD�N

h f ; ji j; (1)
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using a quadrature rule with positive weights and a certain exactness property. We
denote the quadrature approximation to the Fourier coefficients as h f ; jiN and the
required exactness property is

hv;wiN D hv;wi; for all v;w 2 V1
N : (2)

The rectangle rule, for example, has positive weights and satisfies the exactness
property. The fully-discrete approximation, corresponding to P1

Nf , is

L 1
N f D

NX

jD�N

hf ; jiN j: (3)

Under the assumption of (2), the approximation (3) satisfies L 1
Nv D P1

Nv, for all
v 2 V1

N . It is well known that the Lebesgue constant of P1
N is O.log N/ [54, p. 67].

If the quadrature rule can be chosen so that it satisfies the exactness property (2) and
that the total number of quadrature points is Q1

N D 2N C 1, then L 1
N in (3) is also

an interpolatory operator. Indeed, Q1
N D Dim.VN/ is a necessary condition for L 1

N
to be an interpolatory operator [47, Lemma 2]. In case Q1

N > Dim.V1
N/, then L 1

N is
called a hyperinterpolation operator [47].

Such quadrature rules with Q1
N D Dim.V1

N/ to approximate integrals on S
1 exist.

An example is the rectangle rule with equally spaced quadrature points, and the
Lebesgue constant of L 1

N is then of the same order as that of P1
N . Due to this fact,

the interpolatory property plays an important role in a large number of applications,
and the operator is efficiently applied using the fast Fourier transform (FFT).

The fundamental problem addressed by Sloan in [47] is the generalization of the
above fully discrete Fourier projection to the higher dimensional unit sphere S

d�1
for d � 3, by replacing the trigonometric basis functions j in (3) with spherical
polynomial basis functions.

In this article we focus on the SIE reformulations of three dimensional homoge-
neous PDEs associated with acoustic, electromagnetic, and elastic waves propagat-
ing in a heterogeneous medium exterior to a bounded three dimensional obstacle.
The key is therefore efficient approximation of an unknown surface density (the
surface current) on a simply connected closed almost everywhere differentiable
boundary surface @˝ 	 R

3.
We assume that the boundary @˝ 	 R

3 can be mapped onto the unit sphere
S
2 by an isomorphic map q2. Such maps are available in many applications of

interest, such as light scattering by red blood cells [28, 53]; scattering from model
atmospheric particles, such as ice crystals [42] and dust particles [50], and all of the
non-smooth benchmark radar targets in [52].

For approximating spherical functions in S
2, the natural polynomial projection

space is

Vn D span
˚

Yl;j W j jj � l; 0 � l � n
�
: (4)
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Here the orthonormal spherical harmonics Yl;j are eigenfunctions of the second-
order spherical Laplace-Beltrami differential operator, and we use the following
representation for anybx 2 S

2,

Yl;j.bx/ D .�1/. jCj jj/=2
s
2lC 1
4�

.l � j jj/Š

.lC j jj/ŠP
j jj
l .cos �/eij;

l D 0; 1; : : : I j jj � l; (5)

defined using the associated Legendre functions Pj jj
l and the spherical polar

coordinates map

bx D p.�; / D .sin � cos; sin � sin ; cos �/T ; bx 2 S
2; (6)

where � and  are the polar and azimuthal angles respectively. (The Condon-Shortly
phase factor .�1/. jCj jj/=2 in (5) is convenient for our algorithms but is not used
in [47].)

The dimension of Vn D .n C 1/2. Here orthonormality is with respect to the
L2.S2/ inner product .�; �/. One of the key reasons for using Vn is the following
spectrally accurate Jackson-type approximation property: For any F 2 C r;˛.S2/, the
space of all r-times differentiable Hölder continuous functions with Hölder constant
0 < ˛ < 1, there exists �n 2 Vn such that

kF � �nk1 � Cn�.rC˛/kFkr;˛; (7)

where, throughout the article, C is a generic constant independent of n and F.
Similar to the S

1 case, we consider the corresponding semi-discrete and fully-
discrete projection operators:

PnF D
nX

lD0

X

j jj�l

.F;Yl;j/Yl;j; LnF D
nX

lD0

X

j jj�l

.F;Yl;j/nYl;j; F 2 C .S2/; (8)

where the discrete approximation .�; �/n to the inner product, obtained using a
cubature rule with positive weights, is required to satisfy the exactness property

.v;w/ D .v;w/n; for all v;w 2 Vn; (9)

so that Pnv D Lnv for all v 2 Vn. It has been known for more than a century
that, in the S

2 case, the Lebesgue constant of Pn is O.
p

n/ [26]. (Throughout this
article, we use the standard definition that the Lebesgue constant of an operator is the
norm of the operator from C .S2/ to itself.) The slowest possible growth with respect
to n of the Lebesgue constant for the operator Ln in (8) is that of Pn. However,
establishing this optimal order Lebesgue constant for Ln was not achieved until the
turn of this century.
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The quest to solve this challenging problem, which was open for several decades,
began in 1995 with the seminal work of Sloan [47]. The key result [47, Theorem 1]
is proving that the norm ofLn as an operator from C .S2/ to L2.S2/ is independent of
n, generalizing a theorem of Erdős and Turán. Another important observation in [47,
Theorem 2] is that, unlike in the S

1 case, for n � 3 the fully-discrete operator Ln

in (8) cannot be an interpolation operator, because the total number of points Qn in
any cubature on S

2 with positive weights and exactness property (9) must satisfy
QN > .nC 1/2, leading to the term “hyperinterpolation” in [47].

The two operators in (8) were first studied and analyzed for approximating
a nonlinear elasticity model and associated SIE operators in the 1994 article by
Ganesh et al. [20]. The sub-optimal Lebesgue constant proved in [20] was recalled
in the 2000 article by Sloan and Womersley [48] and they proved (see [48,
Theorem 5.5.4]) that the hyperinterpolation operator Ln achieves the optimal
O.
p

n/ Lebesgue constant, under certain mild conditions on the cubature rule. This
mild condition was subsequently removed by Reimer in the 2000 article [45].

In the two decades since hyperinterpolation was introduced by Sloan in
1995 [47], it has played a pivotal role in the development and analysis of a family
of spectral algorithms for solving a class of partial differential equations (PDEs)
posed exterior to a connected body D � R

3 that can be reformulated as equivalent
SIEs posed on the body’s surface @˝ (with the restriction that @˝ is isomorphic to
S
2). In this article, we focus on PDEs associated with propagation of time harmonic

acoustic, electromagnetic and elastic waves using SIE reformulations on @˝ .
From a computational perspective, such SIE formulations have three key advan-

tages compared with the original PDE formulations. Firstly, the surface @˝ is
two-dimensional and hence the domain of the SIE is of lower dimension than the
domain of the PDE. Secondly, the surface @˝ is bounded, whereas the domain R

3 n
˝ of the PDE is unbounded and so standard discretisation techniques such as finite
differences and the finite element method are not applicable without modification.
Thirdly, any radiation condition associated with the PDE is incorporated exactly
into the SIE formulation.

However, a disadvantage of the SIE reformulation is the need to solve dense
complex linear systems. This disadvantage can be avoided by developing algorithms
that require substantially fewer degrees of freedom (DoF) compared to that required
for local polynomial based approximations of the PDE and SIE models. The
hyperinterpolation-based global polynomial approximations, which are spectrally
accurate, facilitate such a reduction in the DoF. As we demonstrate in the last
section of this article, to solve scalar acoustic, and vector electromagnetic and elastic
scattering models exterior to a sphere of 8-wavelengths diameter, we can achieve
high-order accuracy using only about one hundred DoFs.

A similar reduction of the number of DoFs, compared to local polynomial-based
low-order finite- and boundary-element approximations, which are used in many
industrial standard software packages, has been demonstrated [12–14] for a large
class of smooth and non-smooth test obstacles used in the literature. The non-
smooth obstacles include the benchmark radar targets in [52].
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Of course the restriction imposed on @˝ in this article does not allow general
Lipschitz geometries such as aircraft. For such geometries, and for heterogeneous
models, it is important to include local polynomial based finite element approxima-
tions. However, heterogeneous wave propagation models that use only finite element
approximations demand truncation of the domain and approximation of the radiation
condition, and require a very large bounded domain to justify the truncation.
However, this major restriction on local polynomial approximations can be avoided
by using a hybrid of finite element and hyperinterpolation approximations [2, 19].

A practical high-order algorithm for a general Lipschitz domain was developed
in [19] by closely circumscribing the domain with an artificial closed smooth
interface (that is diffeomorphic to S

d�1) and reformulating the problem as an
interface model comprising interior and exterior problems. The algorithm in [19]
uses high-order local polynomial finite element approximations for the PDE in
the bounded domain with the Lipschitz and smooth boundary, and spectrally
accurate approximations for the exterior part of the model. The method in [19]
was demonstrated in two dimensions for a Lipschitz (acoustic-horn) geometry using
approximation based on the hyperinterpolation operator L 1

N for the exterior part of
the model. In a future work, we plan to develop a similar FEM-SIE software for a
general class of 3D models using the hyperinterpolation approximations described
in this article.

A fundamental result that is needed in the analysis of all such high-order
SIE algorithms for unbounded, exterior regions and homogeneous media, is that
the Lebesgue constant of the hyperinterpolation operator satisfies O.ns/ with
s < 1. Below we will consider two vector-valued counterparts of the scalar
hyperinterpolation operator Ln for electromagnetic scattering, namely On and L n.
It is still an open problem to prove such a bound for the hyperinterpolation operator
On, which is based on only tangential basis functions.

For scalar acoustic problems using Ln, the apex practical algorithm is given
by Ganesh and Graham [11]. This algorithm incorporates the excellent work of
Sloan and collaborators [25, 47, 48] who contributed to a full convergence analysis
for the fully discrete scheme. In their landmark paper [25], Graham and Sloan
provided a full analysis for the fully discrete scheme and established superalgebraic
convergence for the solution of the SIE. Ganesh and Graham [11] subsequently
proved superalgebraic convergence of derived quantities such as the far field and
exterior field, and demonstrated the algorithm with extensive numerical examples.
The algorithm in [11] includes several important details required for efficient
implementation, including high order evaluation of the inner integrals using a
numerically stable rotation of the coordinate system and hyperinterpolation (see
Sect. 4).

The vector hyperinterpolation operator L n based on componentwise application
of Ln was introduced and analysed in [12]. A fully discrete high order method
for electromagnetic scattering, based on the magnetic dipole equation, was then
developed utilising this hyperinterpolation operator. The analysis in [12] establishes
the optimal order O.

p
n/ Lebesgue constant for L n, which facilitates a full

convergence proof for the algorithm.
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The method in [12] requires modification of the magnetic dipole operator to
enforce the tangential property of the solution of the SIE. A different hyperinterpo-
lation operator On based on vector spherical harmonics was introduced in [13]. For
spherical scatterers the operator On preserves the tangential property of the solution
of the SIE and so the number of unknowns is reduced by about one third. The
restriction to spherical scatterers was subsequently removed in [14] by incorporating
a rotation of the tangential vector spherical harmonics. The convergence of the
methods in [13, 14] is based on the conjecture that On has O.

p
n/ Lebesgue

constant. Pieper [43] established an order O.n/ estimate for the Lebesgue constant.
Proving the conjecture in [13, 14] remains an open problem.

A key element of the analysis in [25] is proving an error bound for evaluating the
weakly singular inner surface integral. A corresponding bound for the vector case
was established for L n in [12]. Such an error bound is yet to be proven when On
is used for evaluating the inner integral (see [12, Remark 2]). The electromagnetic
scattering algorithms [12–14] are restricted to SIEs with weakly-singular kernels. Le
Louër recently developed similar spectral algorithms for SIEs with hypersingular
operators arising in elastic and electromagnetic wave PDEs [40, 41] using the
hyperinterpolation operators in [12–14]. In Le Louër’s method, the rotation of the
tangential vector spherical harmonics is effected using the Piola transformation.
Integration by parts is then used to derive, for example, the relation [41, Section 4.2]

On curlS2 D curlS2 Ln; (10)

which reduces the degree of singularity of the kernel.
The rest of this article assumes (as in the literature cited above) that˝ is a closed

and simply-connected domain in R
3. However, in addition to our earlier discussion

on a class of practical smooth and non-smooth geometries and general Lipschitz
domains, we note that the restriction to simply-connected domains is not necessary
for the application of the hyperinterpolation operators; techniques for domains ˝
comprising up to several thousands of disjoint sub-domains are presented in [15–
17], and in [18] for the case when there is uncertainty in the description of the
domains.

In Sect. 2 we recall the three dimensional homogeneous PDEs associated with
acoustic, electromagnetic and elastic waves and their corresponding SIE reformu-
lations. In Sect. 3 we describe the spectral algorithm in a unified framework that
includes all of the PDE models. In Sect. 4 we describe in detail how the weakly
singular inner integrals are evaluated using hyperinterpolation. Finally, in Sect. 5
we present numerical results.

2 Acoustic, Electromagnetic, and Elastic Wave PDEs

In this section, we recall the exterior PDE models for propagation of the three
important classes of waves and reformulation of the PDEs as SIEs.



358 M. Ganesh and S. C. Hawkins

2.1 Acoustic Wave Propagation

The time-harmonic acoustic wave scattered by ˝ is described by the complex
acoustic velocity potential u.x/ for x 2 R

3 n ˝ , which satisfies the Helmholtz
equation

4u.x/C k2u.x/ D 0; x 2 R
3 n˝; (11)

where k D 2�=� is the wavenumber and � is the wavelength, and satisfies the
Sommerfeld radiation condition

lim
jxj!1

jxj


@u

@x
� iku

�
D 0: (12)

The scattered field is induced by a known incident field uinc through a boundary
condition applied on @˝ . In the case that ˝ represents a sound soft obstacle, the
boundary condition is of the form

u.x/ D �uinc.x/; x 2 @˝: (13)

Analogous Neumann and Robin boundary conditions arise when the obstacle is
sound hard or absorbing [11].

Following [4], we use the surface integral ansatz for the scattered field

u.x/ D
Z

@˝



@˚.x; y/
@n. y/

� i�˚.x; y/
�
v. y/ ds. y/; x 2 R

3 n˝;

where � ¤ 0 is a coupling parameter, and

˚.x; y/ D eikjx�yj

4�jx � yj ; x ¤ y;

is the fundamental solution for the Helmholtz equation and v is the unknown surface
current. The surface current v 2 C .S2/ satisfies the second kind SIE

v.x/C Kv.x/� i�Sv.x/ D �2uinc.x/; x 2 @˝;

where K is the weakly singular double layer potential,

Kv.x/ D
Z

@˝

@˚

@ny
.x; y/v.y/ ds.y/;
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with ny denoting the unit outward normal at y 2 @˝ , and S is the weakly singular
single layer potential,

Sv.x/ D
Z

@˝

˚.x; y/v.y/ ds.y/:

We refer to [4, 11] for full details, for other surface integral ansatzes and related
SIEs.

2.2 Electromagnetic Wave Propagation

The vector time-harmonic electric field E and magnetic field H scattered by ˝
satisfy the reduced Maxwell equations

curl E.x/� ikH.x/ D 0; curl H.x/C ikE.x/ D 0; x 2 R
3 n˝; (14)

and the Silver-Müller radiation condition

lim
jxj!1

ŒH.x/ � x � jxjE.x/� D 0:

The scattered field is induced by a known incident field Einc;Hinc through a
boundary condition applied on @˝ . In the case that ˝ represents a perfectly
conducting obstacle, the boundary condition is

n.x/ � E.x/ D �n.x/ � Einc.x/; x 2 @˝; (15)

where n.x/ denotes the unit outward normal at x 2 @˝ .
Following [4, 12], we use the surface integral ansatz for the electric field

E.x/ D curl
Z

@˝

˚.x; y/w. y/ ds. y/; x 2 R
3 n˝:

The tangential surface field w 2 C .@˝/ satisfies the magnetic dipole equation

w.x/CMw.x/ D �2 n.x/ � Einc.x/; x 2 R
3 n˝;

where M is the magnetic dipole operator

Mw.x/ D 2
Z

@˝

curlx f˚.x; y/w. y/g ds. y/; x 2 @˝:

The magnetic dipole operator is weakly singular for operands that are tangential to
@˝ .
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In the case that ˝ is a dielectric obstacle, the PDEs above are augmented with
similar equations posed in ˝ (with the wavenumber replaced by the corresponding
interior parameters) and the perfect conductor boundary condition is replaced by a
transmission boundary condition.

Unlike the acoustic case, a major issue for the electromagnetic SIE reformulation
is the breakdown at low-frequencies. This breakdown is described in detail in [9],
which surveys over a century of research and provides a large number of references.
In particular, the SIE reformulation for the Maxwell system dates back to the work
of Lorentz (1890), Mie (1907), and Debye (1908) for scattering by spheres and
leads to the 1949 work of Maue, who proposed the electric field SIE (EFIE) and the
magnetic field SIE (MFIE).

The recent works [9, 21] were motivated by the lack of an SIE that is stable
at all-frequencies (with robust mathematical analysis and properties). Such an
SIE is highly desired and the lack thereof is both odd and unsatisfactory, given
more than a century of work in this area. The most desirable class of SIE is
the weakly-singular Fredholm SIE of the second-kind, governed by the identity
plus a weakly-singular operator of negative-order that does not suffer from low-
frequency breakdown. Recently a new class of second kind weakly singular SIE
reformulations for the dielectric case, with rigorous mathematical analysis, was
developed [21]. A computational implementation of the all-frequency model based
on hyperinterpolation approximations will be a future work. Preliminary results are
presented in Sect. 5.

2.3 Elastic Wave Propagation

The time-harmonic elastic wave scattered by ˝ is described by the complex vector
field u.x/ for x 2 R

3 n˝ , which satisfies the Navier equation

�4u.x/C .�C �/ grad divu.x/C 
!2u.x/ D 0; x 2 R
3 n˝; (16)

where � and � are the Lamé parameters, 
 is the density, and ! is the frequency, as
well as the Kupradze radiation conditions

lim
jxj!1

jxj


@up

@x
� ikup

�
; lim

jxj!1
jxj


@us

@x
� ikus

�
: (17)

Here up and us are the longitudinal and transverse components of u and kp and ks

are the corresponding wavenumbers, with

up D �k2p grad divu; us D u � up;
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and

kp D !
r




�C 2�; ks D !
r



�
:

The scattered field is induced by a known incident field uinc through a boundary
condition applied on @˝ . In the case that ˝ represents a rigid body, the boundary
condition is

u.x/ D �uinc.x/; x 2 @˝: (18)

An analogous Neumann boundary condition arises when ˝ corresponds to a
cavity [33, 40].

Following [33, 40], we use the surface integral ansatz for the elastic field

u.x/ D �
Z

@˝

G.x; y/Pv. y/ ds. y/; x 2 R
3 n˝;

where G.x; y/ is the fundamental solution of the Navier equation and the traction
derivative P is given by

Pu D 2�@u
@n
C �n divuC �n � curl u:

The surface field v 2 C .@˝/ satisfies the combined field integral equation

v.x/CD0v.x/C i�Sv.x/ D 2Puinc.x/C 2i�uinc.x/; x 2 @˝;

where S is the single layer potential for the Navier equation,

Sv.x/ D 2
Z

@˝

˚.x; y/v. y/ ds. y/;

and D0 its traction derivative,

D0v.x/ D 2
Z

@˝

ŒP˚.x; y/v. y/� ds. y/:

Here P is applied to each column of ˚.x; y/ and the differentiation in P is with
respect to the variable x. We refer to [33, 40] for full details.
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3 Unified Vector and Scalar SIE Spectral Algorithms

The second kind vector SIEs in the previous section can be written in the unified
form

w.x/C .Kw/.x/ D f .x/; x 2 @˝; (19)

where K is an appropriate surface integral operator. The right hand side f is known
and the equation is to be solved for the unknown vector valued surface potential
w. The SIE corresponding to the Helmholtz equation is identical, with suitable
modification so that all functions are scalar valued.

The key to utilizing hyperinterpolation on the sphere for high order approxima-
tion of (19) is to derive an equivalent integral equation

W.bx/C .K W/.bx/ D F.bx/; bx 2 S
2; (20)

posed on the unit sphere S
2. In [14] this derivation incorporates an orthogonal

transformation that maps tangential fields on @˝ to tangential fields on S
2.

In [40, 41] a similar transformation is achieved using the Piola transformation. An
appropriate vector variant of the space Vn in (4) is required to project the unknown
W and the SIE (20) onto a finite dimensional space.

We use the notation Q
n
	 C .S2/ to denote such a finite dimensional space

for the vector valued electromagnetic and elastic models. Similar to Vn with the
property (7), the space Q

n
is chosen to satisfy a Jackson-type property: For any F 2

C r;˛.S2/, the space of all r-times differentiable Hölder vector-valued continuous
functions with Hölder constant 0 < ˛ < 1, there exists � n 2 Q

n
such that

kF � � nk1 � Cn�.rC˛/kFkr;˛: (21)

The semi-discrete Galerkin scheme for the SIE (20) is to solve

.Wn CK Wn;� n/n D .F;� n/n; for all � n 2 Q
n
; (22)

where Wn 2 Q
n
. Despite using the fully-discrete quadrature approximation (22)

for the Galerkin integrals, we refer to the scheme as semi-discrete. This is because,
in general, it is not possible to analytically evaluate the surface integrals K Wn

and we require an additional, non-trivial, spectrally accurate approximation of such
integrals. We discuss such details in the next section and our focus is on fully-
discrete computer implementable wave propagation models, with mathematical
analysis to quantify the error in the models, and efficient computer implementation
to simulate scattering from non-trivial curved surfaces.

It is convenient to choose an ansatz space Q
n

spanned by the tangential vector
spherical harmonics (associated with On) or by the componentwise vector spherical
harmonics (associated with L n), depending on whether the solution W of (20) is
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tangential on S
2 or not. In the case of componentwise vector spherical harmonics,

the semi-discrete equation corresponding to (20) is

Wn CL nK Wn D L nF (23)

where Wn 2 Q
n
.

To elucidate the importance of the hyperinterpolation theory contributions made
by Sloan for wave propagation applications, it is convenient to assume that K is
weakly singular and bounded from C .S2/ to C 0;˛.S2/ for any 0 < ˛ < 1. It is
helpful to recap the key elements of the existence and uniqueness proof for the
semi-discrete equation (23). The full proof for the scalar case is given by Sloan et
al. in [25]. (A different proof of existence and uniqueness for the vector case is given
in [12].)

As in [25, Theorem 3.1], the proof requires the assumption that L n is bounded
on C .S2/ and satisfies

kL nkC .S2/!C .S2/ � Cns; (24)

for some 0 < s < 1. Then for F 2 C 0;˛.S2/ and � n as in (21), using the exactness
property L n� n D � n we obtain

kF �L nFk1 D k.I �L n/.F � � n/k1
� �1C kL nkC .S2/!C .S2/

� kF � � nk1
� .1C Cns/kF � � nk1

� C

n˛�s
kFk0;˛: (25)

For A 2 C .S2/ we have F D K A 2 C 0;˛.S2/ and from (25),

kK A �L nK Ak1 � C

n˛�s
kK Ak0;˛ � C

n˛�s
kAk1: (26)

Thus

k.I �L n/K kC .S2/!C .S2/ �
C

n˛�s
:

Existence and uniqueness of the solution Wn of (23) then follows from the Banach
Lemma provided s < ˛ 2 .0; 1/.

Thus establishing a bound of the form (24) with s < 1 is crucial for the analysis
of the spectral method. As mentioned earlier, this crucial result was established in
the scalar case by Sloan and Womersley [48, Theorem 5.5.4]. The corresponding
result was established for L n in [12, Equation A.10]. Establishing a similar result
for On remains an open problem.
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In the discussion above we have demonstrated the importance of hyperinterpo-
lation approximations for projecting the unknown surface current and the SIE. The
hyperinterpolation operator also plays a crucial role in developing spectrally accu-
rate approximations of the various surface integral operators in the wave propagation
model. However, the weakly singular surface integral operators have discontinuous
kernels, and so the hyperinterpolation operator and best-approximation results (7)
and (21) are not appropriate for direct application to obtain fully discrete approxi-
mations to the integrands. Indeed, a very careful hybrid analytic-numeric approach
is required to evaluate such integrals to very high accuracy and establish associated
error bounds. We describe such details in the next section for the general weakly
singular operator K .

4 Hyperinterpolation for Weakly-Singular Integrals

In this section we review the role of hyperinterpolation approximations for the
description, analysis, and implementation of a fully-discrete scheme for (20) in the
case that the operator K is weakly singular. In order to obtain such a fully-discrete
scheme, we require a spectrally accurate approximation of the surface integral K
by a summation operator Kn0 that can be evaluated efficiently.

For hypersingular operators that arise in elastic wave propagation, relations such
as (10) transform hypersingular kernels into weakly singular kernels of the kind
considered in this section. The key task considered in this section is to evaluate the
spectrally accurate surface integral approximation .Kn0A/.bx/ for any given vector
potential A 2 C .@˝/ and observation pointbx 2 S

2.
We proceed by splitting K into singular and regular components

K A DK1ACK2A (27)

where

.K1A/.bx/ D
Z

S2

1

jbx �byjK1.bx;by/A.by/ ds.by/; (28)

.K2A/.bx/ D
Z

S2

K2.bx;by/A.by/ ds.by/; (29)

and K1.�; �/ and K2.�; �/ are 3 � 3 matrix valued functions that are infinitely
continuously differentiable on R

3 � R
3. The process for scalar valued weakly

singular operators is similar, with suitable modification so that all functions are
scalar valued.

First we consider evaluation of the weakly singular integral (28) for fixedbx 2 S
2.

The first step is to introduce a new coordinate system in which the weak singularity
atby Dbx is transformed to the north polebn D .0; 0; 1/T . We achieve this by rotating
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the coordinate system using the orthogonal matrix

TOx WD Rz./Ry.��/Rz.�/ (30)

wherebx D p.�; / and

Rz. / WD
0

@
cos � sin 0

sin cos 0

0 0 1

1

A ; Ry. / WD
0

@
cos 0 sin 
0 1 0

� sin 0 cos 

1

A : (31)

To describe the approximation procedure it is helpful to introduce a linear transfor-
mation

TOxA.bz/ WD A.T�1
Ox bz/; bz 2 S

2; A 2 C .S2/; (32)

and its bivariate analogue

TOxA.bz1;bz2/ WD A.T�1
Ox bz1;T

�1
Ox bz2/; bz1;bz2 2 S

2; A 2 C .S2 � S
2/: (33)

Forbz D TOxby 2 S
2 we have, using the orthogonality of TOx,

jbx�byj D jT�1
Ox .bn�bz/j D jbn �bzj: (34)

Using the fact that the surface measure on S
2 is invariant, we get

K1A.bx/ D
Z

S2

1

jbn �bzjTOxK1.bn;bz/ TOxA.bz/ ds.bz/: (35)

In the transformed coordinate system, the function .� 0; 0/ 7! TOxK1.bn; p.� 0; 0//
is infinitely continuously differentiable, with all derivatives 2�-periodic in each
variable, and each partial derivative is uniformly bounded with respect to bx 2 S

2

(see [12, Theorem 1], and references therein for the corresponding scalar case).
Furthermore, the denominator jbn �bzj D 2 sin � 0=2 forbz D p.� 0; 0/ and so when
the surface integral in (28) is expressed in spherical polar coordinates, the singularity
is cancelled out by the surface element sin � 0 d� 0 d0.

Next we choose n0 > n and approximate K1A.bx/ by

K1;n0A.bx/ D
Z

S2

1

jbn �bzjL n0

fTOxK1.bn; �/ TOxA.�/g .bz/ ds.bz/

D
Z

S2

1

jbn �bzj
n0X

lD0

X

j jj�l

3X

kD1

�
TOxK1.bn; �/ TOxA.�/;Yl;j;k.�/

�
n0

Yl;j;k.bz/ ds.bz/

D
n0X

lD0

X

j jj�l

3X

kD1

�
TOxK1.bn; �/ TOxA.�/;Yl;j;k.�/

�
n0

Z

@B

1

jbn�bzjYl;j;k.bz/ ds.bz/:
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Here the componentwise vector spherical harmonics are

Yl;j;k D Yl;jek; 0 � l � n; j jj � l; 1 � k � 3; (36)

where ek denotes the kth Euclidean vector.
We evaluate the integral using the property of the spherical harmonics that they

are eigenfunctions of the single layer potential [10], that is

Z

S2

1

jbx�byjYl;j.by/ ds.by/ D 4�

2lC 1Yl;j.bx/: (37)

Thus

K1;n0A.bx/ D
n0X

lD0

X

j jj�l

3X

kD1

�
TOxK1.bn; �/ TOxA.�/;Yl;j;k.�/

�
n0

4�

2lC 1Yl;j;k.bn/:

To expand the discrete inner product we use a .2n0 C 2/ � .n0 C 1/ point Gauss-
rectangle quadrature rule

Z

S2

G.bx/ ds.bx/ 
 Qn0.G/ D
2n0C1X

rD0

n0C1X

sD1
�r�sG.bzrs/; G 2 C .S2/; (38)

wherebzrs D p.�s; r/. Here �s D cos�1 zs, where zs are the zeros of the Legendre
polynomial of degree n0C 1, �s are the corresponding Gauss-Legendre weights and

�r D �

n0 C 1; r D r�

n0 C 1; r D 0; : : : ; 2n0 C 1: (39)

Expanding the discrete inner product as sums over s0 and r0, we obtain

K1;n0A.bx/

D
n0X

lD0

X

j jj�l

3X

kD1

n0C1X

s0D1

2n0C1X

r0D0
�r0�s0

4�

2lC 1Yl;j;k.bzr0s0/
T
TOxK1.bn;bzr0s0/ TOxA.bzr0s0/Yl;j;k.bn/

D
n0X

lD0

3X

kD1

n0C1X

s0D1

2n0C1X

r0D0
�r0�s0

4�

2lC 1ekeT
k TOxK1.bn;bzr0s0/ TOxA.bzr0s0/

X

j jj�l

Yl;j.bzr0s0/Yl;j.bn/:

From the addition theorem for the spherical harmonics [4, Theorem 2.8],

4�

2lC 1
X

j jj�l

Yl;j.ba/Yl;j.bb/ D Pl.ba �bb/;



Hyperinterpolation and Wave Propagation 367

the last sum simplifies and we obtain

K1;n0A.bx/ D
n0X

lD0

3X

kD1

n0C1X

s0D1

2n0C1X

r0D0
�r0�s0ekeT

k TOxK1.bn;bzr0s0/ TOxA.bzr0s0/Pl.bn �bzr0s0/

D
n0C1X

s0D1

2n0C1X

r0D0
�r0�s0˛s0TOxK1.bn;bzr0s0/ TOxA.bzr0s0/; (40)

where ˛s0 DPn0

lD0 Pl.cos �s0/, and we have usedbn �bzr0s0 D cos �s0 .
Next we consider evaluation of the weakly singular integral (29). Using again the

transformed coordinate system, we have

K2A.bx/ D
Z

S2

TOxK2.bn;bz/ TOxA.bz/ ds.bz/: (41)

Similar to above, we approximate K2A by

K2;n0A.bx/ D
Z

S2

L n0

fTOxK2.bn; �/ TOxA.�/g .bz/ ds.bz/ (42)

D
Z

S2

n0X

lD0

X

j jj�l

3X

kD1

�
TOxK2.bn; �/ TOxA.�/;Yl;j;k.�/

�
n0

Yl;j;k.bz/ ds.bz/

D
n0X

lD0

X

j jj�l

3X

kD1

�
TOxK2.bn; �/ TOxA.�/;Yl;j;k.�/

�
n0

Z

S2

Yl;j;k.bz/ ds.bz/:

Now,
Z

S2

Yl;j;k.bz/ ds.bz/ D
�
ek=
p
4�; for l D 0; j D 0;

0; otherwise:

It follows that

K2;n0A.bx/ D
3X

kD1
.TOxK2.bn; �/ TOxA.�/; ek/n0

ek:

Expanding the discrete inner product using (38),

K2;n0A.bx/ D
3X

kD1

n0C1X

s0D1

2n0C1X

r0D0
�r0�s0ekeT

k TOxK2.bn;bzr0s0/ TOxA.bzr0s0/

D
n0C1X

s0D1

2n0C1X

r0D0
�r0�s0TOxK2.bn;bzr0s0/ TOxA.bzr0s0/: (43)
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The fully discrete Galerkin scheme is obtained by replacing the operatorsK1 and
K2 in (27) with the discrete approximations above. Following the corresponding
scalar case analysis by Graham and Sloan [25, Theorem 4.2], it was proved in [12,
Theorem 1] that Kn0A D K1;n0ACK2;n0A converges to K A with spectral accuracy
for A 2 Pn when n0 D an with a > 1 and n0 � n > 2. In particular, for any r 2 N,
there exists Cr > 0 independent of n and n0 such that

k.K �Kn0/Ak1 � Cr
1

nr
kAk1; for all A 2 Pn: (44)

The trial functions A depend on the projection used in the semi-discrete
equation (23). In particular, as discussed in Sect. 3, if the projection L n is used then
the associated trial functions are the componentwise vector spherical harmonics. If
the projection On is used then the associated trial functions are the tangential vector
spherical harmonics

Y.1/l;j .bx/ D
1

p
l.lC 1/Grad Yl;j.bx/; Y.2/l;j .bx/ Dbx� Y.1/l;j .bx/; bx 2 S

2; (45)

and the normal vector spherical harmonics

Y.3/l;j .bx/ DbxYl;j.bx/; bx 2 S
2: (46)

It is well known, for over a century [3], that the space Pn of spherical polynomials
is invariant under rotations, and so for fixed � 2 Œ0; �� and  2 Œ0; 2�/,

Tp.�;/Yl;j.bz/ D
X

jQjj�l

Rl;j;Qj.�; /Yl;Qj.bz/; bz 2 S
2; (47)

for coefficients Rl;j;Qj.�; / that are independent ofbz. The vector spherical harmonics
defined in (45)–(46) and (36) are obtained from the spherical harmonics by
application of particular linear operators, and hence the rotated vector spherical
harmonics enjoy an analogous relation to (47), with the same coefficients.

The key consequence of (47) is that the vector spherical harmonics are evaluated
only at the tensor product quadrature points given by (38). From (5) we see that on
a tensor product grid the � and  parts of (5) decouple, facilitating a reduction in
the complexity of the high order scheme by a factor n. Using a similar decoupling
for the test function leads to a fast order n5 assembly scheme for the Galerkin
matrix corresponding to Kn0 (see for example [12, Section 3] for full details). For
comparison, naive implementation would have complexity order n8. In Sect. 5 we
present numerical results for n between 25 and 40.

Expressions for the rotation coefficients Rl;j;Qj.�; / in (47) were given in [3, 11,
25]. In particular, with focus on practical evaluation, Ganesh and Graham [11] used
the following representation, which has enhanced numerical stability for higher
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degree harmonics,

Rl;j;Qj.�; / D ei. j�Qj/.C�=2/ X

j Qmj�l

d.l/Qj Qm.�=2/d
.l/
j Qm.�=2/e

i Qm� ; (48)

where

d.l/Qjj .�=2/ D 2
Qj
"
.lC Qj/Š.l � Qj/Š
.lC j/Š.l � j/Š

#1=2
P. j�Qj;�j�Qj/

lCQj .0/:

For given non-negative integers a; b and s � 0, P.a;b/s .0/ is the normalized Jacobi
polynomial evaluated at zero,

P.a;b/s .0/ D 2�s
sX

tD0
.�1/t



sC a
s � t

�

sC b

t

�
:

When a or b are negative, d.l/Qjj can be computed using the symmetry relations

d.l/Qjj .˛/ D .�1/
Qj�jd.l/

jQj .˛/ D d.l/�j�Qj.˛/ D d.l/
jQj .�˛/:

5 Numerical Results

We demonstrate the high order convergence of this family of high order fully
discrete methods based on hyperinterpolation by tabulating the error in the far
field induced by an incident plane wave for the acoustic, electromagnetic and
elasticity applications described in Sect. 2. The far field u1 is a physical quantity
of interest (QoI) for various applications, including the inverse problem. For
example, in the inverse scattering models, the input data are the experimentally
observed or simulated far field measurements and the computational task is to
reconstruct the shape of the scatterer that approximately matches the far field
data [4]. Further hyperinterpolation approximations are needed to approximate the
far field from the surface current approximations described earlier. For complete
details of hyperinterpolation based spectrally accurate far field approximations, we
refer to [11–14, 40].

For the electromagnetic example we give results for scattering by perfect
electrical conducting (PEC) and dielectric obstacles. The tabulated error is a discrete
approximation to

ku1 � u1
n k1; (49)



370 M. Ganesh and S. C. Hawkins

Table 1 Error in the computed far field u1

n for scattering by spheres of diameter 8 wavelengths
with n D n0; n0 C 5; n0 C 10

Acoustic EM (PEC) EM (dielectric) Elasticity

n � n0 n0 D 30 n0 D 25 n0 D 35 n0 D 30

0 2.31e�03 9.84e�02 1.61e�01 6.17e�03

5 7.86e�07 1.12e�03 7.67e�04 3.23e�06

10 4.02e�11 5.63e�07 2.76e�08 1.44e�08

Here the value chosen for n0 is problem dependent

where u1 denotes the true far field and u1
n denotes the approximation computed

using the spectral method.
For a spherical scatterer the true far field is given in series form by the Mie

series in the acoustic and electromagnetic cases. A similar analytic solution for the
elasticity case is given by Le Louër [40, Appendix A].

In Table 1 we present results for spheres of diameter 8 times the incident
wavelength. The results for acoustic scattering by a sound soft sphere and for
electromagnetic scattering by a perfect conductor were published in [11] and [12]
respectively. The results for scattering of an elastic wave by a rigid sphere of
diameter 8 times the transverse incident wavelength were published in [40]. The
results for electromagnetic scattering by a glass sphere (with refractive index 1.9)
are new and were obtained using a computational implementation of the new weakly
singular SIE formulation in [21] based on hyperinterpolation approximations.

The key observation from the numerical results is that we obtain high accuracy
even for small values of n, which is the key parameter for hyperinterpolation
approximations, and correspondingly small DoFs.

The mathematical justification of such high-order accurate algorithms began with
the seminal work of Sloan [47], and his intuition, more than two decades ago, about
the need to study such approximations.
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1 Introduction

A core task in computational uncertainty quantification (UQ for short) is to approx-
imate the statistics of (functionals of) solutions to partial differential equations
(PDEs for short) which depend on parameters describing uncertain input data.
Upon placing probability measures on admissible parameters, the computation of
mathematical expectations in so-called forward UQ and in Bayesian inverse UQ of
such PDEs on possibly large sets of data amounts to a problem of high dimensional
numerical integration; we refer to the surveys [4, 5, 26] and the references there.

In the present note, we address the numerical analysis of high-dimensional
numerical integration methods of Quasi-Monte Carlo (QMC for short) type for
the efficient numerical approximation of expectations of solutions of parametric
PDEs over high-dimensional parameter spaces. Pioneering contributions to the
mathematical foundation of dimension-independent convergence rates for QMC
quadrature methods for such problems that we will draw on also in the present note,
are by Sloan and Woźniakowski in [28], after earlier, foundational work by Sloan
and Joe in [27].

Specifically, we consider the linear, affine-parametric elliptic PDE

�r � .a.x; y/ru.x; y// D f .x/ in D;

u.x; y/
ˇ̌
ˇ
�1
D 0; a.x; y/ru.x; y/ � n.x/

ˇ̌
ˇ
�2
D 0; (1)

with input a.x; y/ parametrized by y D .yj/j�1, fixed, y-independent right hand side
f .x/, and mixed boundary conditions. The domain D 	 R

d, d D 1; 2, is assumed
to be either a bounded polygon with straight sides if d D 2 or, if d D 1, a bounded
interval. The set �1 ¤ ; is assumed to be the union of some of the closed edges of
@D, �2 WD @Dn�1, and n.x/ denotes the unit outward pointing normal vector of D.
Specifically, QMC rules with product weights are considered which are known to
have linear complexity in the integration dimension, cp. [24, 25]. The purpose of the
present paper is to prove error versus work bounds of these algorithms, with explicit
estimation of the dependence of the constants on the dimension s of the domain of
integration, and of the form O."�� /, � > 0, for a given accuracy " > 0.

Convergence analysis of QMC methods with randomly shifted lattice rules
applied to a parametric PDE of the type (1) was first established in [21] together
with the survey [20]. Randomly shifted lattice rules were first proposed in [29]. A
multilevel version for parametric PDEs was first analyzed in [22]. This theory was
extended in [7, 8] with interlaced polynomial lattice rules, which achieve higher
order convergence rates. These convergence rates are independent of the number of
scalar variables that is, of the dimension of the domain of integration. Conditions for
such dimension independent error bounds of QMC algorithms were first shown in
the seminal work [28] for integrand functions belonging to certain weighted function
spaces with so-called product weights. In [20, 21], analogous results were shown to
hold for randomly shifted lattice rules, and for input parametrizations in terms of
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globally supported basis functions (as, e.g., Karhunen-Loève expansions) with so-
called product and order dependent (POD for short) weights. General references
for QMC integration are [6, 20]; see also the survey [13] for multilevel Monte Carlo
methods and [9, 19] for available software implementations.

As in the mentioned references, we admit parameter vectors y D .yj/j�1 whose
components take values in the closed interval

�� 1
2
; 1
2

�
, i.e., we will consider

y 2 U WD
�
�1
2
;
1

2

N
:

We model uncertainty in diffusion coefficients a.x; y/ to the PDE (1) by assuming
the parameter vectors to be independent, identically distributed (i.i.d. for short) with
respect to the uniform product probability measure

�.dy/ WD
O

j�1
dyj:

The triplet .U;
N

j�1B.Œ�1=2; 1=2�/; �/ is a probability space. For any Banach
space B, the mathematical expectation of F with respect to the probability measure
� is a Bochner integral of the strongly measurable, integrable map F W U ! B
which will be denoted by

E.F/ WD
Z

U
F.y/�.dy/: (2)

The parametric input a.x; y/ of (1) is assumed to be of the form

a.x; y/ D Na.x/C
X

j�1
yj j.x/; a.e. x 2 D; y 2 U; (3)

where fNa;  j W j � 1g 	 L1.D/ and Na is such that 0 < Namin � Namax exist and satisfy

Namin � ess infx2DfNa.x/g � ess supx2DfNa.x/g � Namax:

Convergence analysis for QMC with product weights was recently carried out in
[11] under the assumption that there exists � 2 .0; 1/ and a sequence .bj/j�1 2
.0; 1�N such that

��
�
�
�

P
j�1 j jj=bj

2Na

��
�
�
�

L1.D/

� � < 1: (A1)

A (dimension independent) convergence rate of 1=p in terms of the number of
QMC points for the approximate evaluation of (2) was shown in [11, Section 6] if
.bj/j�1 2 `p.N/ for the range p 2 .0; 2�. These rates coincide, in the mentioned range
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of summability exponents, with the convergence rates of best N-term approximation
rates of generalized polynomial chaos expansions obtained in [3, Theorem 1.2 and
Equation (1.11)]. As in [3], the assumption in (A1) can accommodate possible
localization in D of the supports of the function system . j/j�1.

For every parameter instance y 2 U, in the physical domain D a standard,
first order accurate Galerkin Finite Element (FE for short) discretization of the
parametric PDE (1) will be applied. In the polygonal domain D, first order FE
based on sequences of uniformly refined, regular simplicial meshes are well-known
to converge at suboptimal rates due to corner singularities in the solution, even
if a.x; y/ and f .x/ in (1) are smooth. To establish full FE convergence rates on
locally refined meshes coupled with the QMC error estimates, parametric regularity
estimates in Kondrat’ev spaces will be demonstrated.

In Sect. 2 well-posedness of the parametric solution and approximation by
dimension truncation and FE is discussed. Particular weighted Sobolev spaces of
parametric regularity that are required for the error analysis of multilevel QMC and
general error estimates are reviewed in Sect. 3. Parametric regularity estimates of the
dimension truncation and FE error are proven in Sect. 4. These estimates yield error
bounds of multilevel QMC algorithms that are demonstrated in Sect. 5. In Sect. 6,
parameter choices are derived that minimize the needed work for a certain error
threshold. In the numerical experiments, we analyze piecewise (bi)linear wavelet
bases to expand the diffusion coefficient in one and two spatial dimensions. The
experiments confirm the theory and also show that the multilevel QMC algorithm
outperforms the single-level version in terms of work versus achieved accuracy, in
the engineering range of accuracy, and for a moderate number of integration points.

2 Well-Posedness and Spatial Approximation

The parametric problem in (1) admits a symmetric variational formulation with trial
and test space V WD fv 2 H1.D/ W vj�1 D 0g, with dual space denoted by V� D
H�1.D/, where vj�1 D 0 is to be understood as a trace in H1=2.�1/. Let f 2 V�
and let the assumption in (A1) be satisfied. Then, the parametric weak formulation
of (1) reads: for every y 2 U find u.�; y/ 2 V such that

Z

D
a.�; y/ru.�; y/ � rvdx D h f ; viV�;V ; 8v 2 V; (4)

where h�; �iV�;V denotes the dual pairing between V and V�. Since the assumption
in (A1) implies that

0 < .1 � �/Namin � ess infx2Dfa.x; y/g; y 2 U;
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and

ess supx2Dfa.x; y/g � .1C �/Namax; y 2 U;

the parametric bilinear form .w; v/ 7! R
D a.�; y/rw � rvdx is continuous and

coercive on V � V , uniformly with respect to the parameter vector y 2 U. By the
Lax–Milgram lemma, the unique solution u.�; y/ 2 V to (4) exists, is a strongly
measurable mapping from U to V (by the second Strang lemma), and satisfies the a
priori estimate

..1 � �/Namin/ku.�; y/kV � k fkV� y 2 U:

A finite dimensional domain of integration which is required for the use of QMC
is achieved by truncating the expansion of a.x; y/ to a finite number of s 2 N terms.
We introduce the notation that for every y 2 U, yf1Wsg is such that .yf1Wsg/j D yj if
j � s and 0 otherwise, where f1 W sg denotes the set f1; : : : ; sg. Specifically, for
every s 2 N define

us.�; y/ WD u.�; yf1Wsg/; y 2 U:

Proposition 1 ([11, Proposition 5.1]) Let the assumption in (A1) be satisfied for
some � 2 .0; 1/ and recall the right hand side f 2 V� in (4). If for some s0 2 N

� Namax

.1 � �/Namin
sup

j�sC1
fbjg < 1;

then there exists a constant C > 0 such that for every s � s0 and every G.�/ 2 V�

jE.G.u//� E.G.us//j � CkG.�/kV�k fkV�

 

sup
j�sC1
fbjg

!2
:

For the study of the spatial regularity of u.�; y/, we consider weighted Sobolev
spaces of Kondrat’ev type, which allow for full regularity shifts in polygonal
domains D 	 R

2, cp. [2]. In our setting the domain D is either a polygon in R
2

with corners fc1; : : : ; cJg or an interval. To introduce weighted Sobolev spaces, we
define the functions ri.x/ WD jx � cij, x 2 D, i D 1; : : : ; J, where j � j denotes the
Euclidean norm. For a J-tuple ˇ D .ˇ1; : : : ; ˇJ/ with ˇi 2 Œ0; 1/, i D 1; : : : ; J, we
define the weight function ˚ˇ by

˚ˇ.x/ WD
JY

iD1
rˇi

i .x/; x 2 D:
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For multi-indices ˛ 2 N
2
0, define the notation @˛x WD @j˛j=.@x˛11 @x˛22 /. We define the

weighted spaces L2ˇ.D/ and H2
ˇ.D/ as the completion of C1.D/ with respect to the

corresponding norms which are given by

kvkL2ˇ .D/
WD kv˚ˇkL2.D/; kvk2H2

ˇ .D/
WD kvk2H1.D/ C

X

j˛jD2
kj@˛x vjk2L2ˇ .D/: (5)

In the corresponding weighted Sobolev spaces, there is a full regularity shift of the
Laplacean, cp. [2, Theorem 3.2 and Equation (3.2)], i.e., there exists a constant
C > 0 such that for every w 2 V satisfying �w 2 L2ˇ.D/ there holds

kwkH2
ˇ .D/
� Ck�wkL2ˇ .D/

; (6)

where ˇi > 1 � �=!i and ˇi � 0, (!i denotes the interior angle of the corner ci) for
i D 1; : : : ; J such that both edges that have ci as an endpoint are both in �1 or �2.
Otherwise (change of the boundary conditions at ci), we require ˇi > 1 � �=.2!i/

and ˇi � 0. Note that we allow the case !i D � , which facilitates the case that
the boundary conditions change within one edge of @D. Hence, in the case that the
domain D is convex and �1 D @D, we may choose ˇ D .0; : : : ; 0/. There holds
an approximation property in FE spaces on D with local mesh refinement towards
the corners of D. To state it, let fT`g`�0 denote a sequence of regular, simplicial
triangulations of the polygon D, which can be generated either by judicious mesh
grading in a vicinity of each corner of D, cp. [2, Section 4], or by newest vertex
bisection, cp. [12]. Let V` WD fv 2 V W vjK 2 P1.K/;K 2 T`g, ` � 0, where
P1.K/ denotes the affine functions on K. The FE space V` is of finite dimension
M` WD dim.V`/, ` � 0. Then, there exists a constant C > 0 such that for every
w 2 H2

ˇ.D/ and every ` � 0 there exists w` 2 V` such that

kw � w`kV � CM�1=d
` kwkH2

ˇ .D/
; (7)

where d D 1; 2 is the dimension of the domain D. For d D 2, and in the case
of graded meshes, this follows, for example, from [2, Lemmas 4.1 and 4.5]. An
approximation property of this kind for newest vertex bisection is shown in [12].
The regularity shift in (6) and the approximation property in (7) also hold if D is an
interval (for d D 1).

Assume that the right hand side f 2 L2ˇ.D/, and that fjr Naj˚ˇ; jr jj˚ˇ W j �
1g 	 L1.D/, and that there exists a bounded, positive sequence .Nbj/j�1, which
satisfies

K WD
�
�
�
��
�

0

@jr Naj C
X

j�1

jr jj
Nbj

1

A˚ˇ

�
�
�
��
�

L1.D/

<1: (A2)
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This assumption readily implies that supy2Ufkjra.�; y/j˚ˇkL1.D/g < 1. As a
consequence, jra.�; y/j 2 L1.eD/ and �u.�; y/ 2 L2.eD/ for every compactly
included subdomaineD 		 D and for every y 2 U. Then, by the divergence theorem
and by the product rule for every v 2 C1

0 .D/ 	 V
Z

D
a.�; y/ru.�; y/ � rv dx D �

Z

D
Œr � .a.�; y/ru.�; y//�v dx

D �
Z

D
.a.�; y/�u.�; y/Cra.�; y/ � ru.�; y//v dx:

We have to show that�u.�; y/ 2 L2ˇ.D/. By duality of the space L2ˇ.D/, the previous
identity, and by the Cauchy–Schwarz inequality,

ka.�; y/�u.�; y/kL2ˇ .D/
D sup

v2L2ˇ .D/;kvk
L2
ˇ
.D/

�1

Z

D
a.�; y/�u.�; y/v˚2

ˇ dx

D sup
v2C1

0 .D/;kvkL2.D/�1

Z

D
a.�; y/�u.�; y/v˚ˇ dx

D sup
v2C1

0 .D/;kvkL2.D/�1

Z

D
. f Cra.�; y/ � ru.�; y//v˚ˇ dx

� k fkL2ˇ .D/
C kjra.�; y/j˚ˇkL1.D/ku.�; y/kV : (8)

Since ess infx2Dfa.x; y/g � .1 � �/Namin, �u.�; y/ 2 L2ˇ.D/. In (8), we applied that
C1
0 .D/ is dense in L2.D/ and used that the operator of pointwise multiplication

w 7! w˚�ˇ is an isometry from L2.D/ to L2ˇ.D/.
The parametric FE solution is defined as the unique solution of the variational

problem: for y 2 U and ` � 0, find uT`.�; y/ 2 V` such that
Z

D
a.�; y/ruT` .�; y/ � rv dx D h f ; viV�;V ; 8v 2 V`: (9)

Well-posedness of the parametric FE solution also follows by the Lax–Milgram
lemma. As above, we define for every truncation dimension s 2 N and level ` 2 N0

us;T`.�; y/ WD uT`.�; yf1Wsg/; y 2 U:

By Céa’s lemma, an Aubin–Nitsche argument, Proposition 1, (6)–(8), there exists a
constant C > 0 such that for every s 2 N, ` � 0, and every G.�/ 2 L2ˇ.D/,

jE.G.u//� E.G.us;T` //j � CkG.�/kV�k fkV�

 

sup
j�sC1
fbjg

!2

C CkG.�/kL2ˇ .D/
k fkL2ˇ .D/

M�2=d
` :

(10)
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Remark 1 If f and G.�/ have less regularity, say f 2 .V�;L2ˇ.D//t;1 and G.�/ 2
.V�;L2ˇ.D//t0;1, t; t0 2 .0; 1/, then the estimate in (10) holds with M�.tCt0/=d

` . This
follows by interpolation. The interpolation spaces are in the sense of the K-method,
cp. [31]. Since L2ˇ.D/ 	 V� continuously which follows by [2, Equation (3.2)],

V� and L2ˇ.D/ are an interpolation couple. Naturally the embedding H�1Ct0.D/ D
.V�;L2.D//t0;2 	 .V�;L2ˇ.D//t0 ;1 is continuous, since L2.D/ is continuously
embedded in L2ˇ.D/.

3 Multilevel QMC Integration

Randomly shifted lattice rules and interlaced polynomial lattice rules are QMC rules
that have well-known worst case error estimates in particular weighted Sobolev
spaces of regularity with respect to the dimensionally truncated parameter vectors
yf1Wsg, s 2 N. Generally, these QMC rules approximate dimensionally truncated
integrals

Is.F/ WD
Z

Œ� 1
2 ;
1
2 �

s
F.y/dy:

Denote by QRS
s;N.�/ and QIP

s;N.�/ randomly shifted lattice rules and interlaced poly-
nomial lattice rules in dimension s with N points, respectively. Subsequently, if
the superscript is omitted either of the QMC rules is meant. For a nondecreas-
ing sequence .s`/`D0;:::;L of truncation dimensions and numbers of QMC points
.N`/`D0;:::;L, L 2 N, and for the meshes fT`g`�0 from Sect. 2, the multilevel QMC
quadrature for L 2 N levels is, for every G.�/ 2 V�, defined by

QL.G.u
L// WD

LX

`D0
Qs`;N`.G.u

` � u`�1//;

where we introduced the notation u` WD us`;T` , ` 2 N0, and have set u�1 WD 0.
Throughout, we shall assume that sequences of numbers of QMC points .N`/`D0;:::;L
are nonincreasing. For the error analysis, we introduce for a collection of QMC
weights � D .�u/u�N the weighted Sobolev spaces Ws;� and Ws;˛;� ;q;r as closures
of C1.Œ�1=2; 1=2�s/ with respect to the norms

kFkWs;� WD
0

@
X

u�f1Wsg
��1
u

Z

Œ� 1
2 ;
1
2 �

juj

ˇ
ˇ
ˇ
ˇ
ˇ

Z

Œ� 1
2 ;
1
2 �

s�juj

@uy F.y/dyf1Wsgnu

ˇ
ˇ
ˇ
ˇ
ˇ

2

dyu

1

A

1=2
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and for 2 � ˛ 2 N, q; r 2 Œ1;1�

kFkWs;˛;�;q;r WD
 

X

u�f1Wsg

 

��q
u

X

v�u

X

	unv2f1W˛gjunvj

Z

Œ� 1
2 ;
1
2 �

jvj

ˇ̌
ˇ
ˇ
ˇ

Z

Œ� 1
2 ;
1
2 �

s�jvj

@
.˛v;	unv ;0/
y F.y/dyf1Wsgnv

ˇ̌
ˇ
ˇ
ˇ

q

dyv

!r=q!1=r

with the obvious modifications if q or r is infinite. Here, .˛v;	unv; 0/ 2 f0 W ˛gs
denotes a multi-index such that .˛v;	unv; 0/j D ˛ for j 2 v, .˛v;	unv; 0/j D 	j

for j 2 unv, and .˛v;	unv; 0/j D 0 for j … u, for every u � f1 W sg, v � u;	 2
f1 W ˛gjunvj. Note that the integer ˛ � 2 is the interlacing factor. For every u 	
f1 W sg, dyu denotes the product measure

N
j2u dyj. The following two estimates

follow essentially from the worst case error estimates in [21, Theorem 2.1] and [7,
Theorem 3.10] for QRS

s;N.�/ and QIP
s;N.�/, respectively. For every � 2 .1=2; 1�,

E

.jIsL.G.u

L//�QRS
L .G.u

L//j2/

�
LX

`D0

0

@
X

;¤u�f1Ws`g
��u



2�.2�/

.2�2/�

�juj
1

A

1=�

.'.N`//
�1=�kG.u` � u`�1/k2Ws`;�

;

(11)

cp. [22, Equation (25)], where 
 denotes the random shift and ' denotes the Euler
totient function. For every � 2 .1=˛; 1�,

jIsL.G.u
L// �QIP

L .G.u
L//j

�
LX

`D0

0

@ 2

N` � 1
X

;¤u�f1Ws`g
��u .
˛.�//

juj
1

A

1=�

kG.u` � u`�1/kWs`;˛;�;1;1 ;

(12)

cp. [8, Equation (42)], where the constant 
˛.�/ is finite if � > 1=˛ as stated in [7,
Equation (3.37)]. We remark that the choice of �, ˛, � in (11) and (12) may also
depend on the level ` D 0; : : : ;L, which is not explicit in the notation.

4 Parametric Regularity

As in the single-level QMC analysis in [11], we introduce the auxiliary parameter
set eU D Œ�1; 1�N with elements z 2 eU. Fix � 2 .�; 1/. We split the sparsity of
the sequence .bj/j�1 between spatial approximation and QMC approximation rates,
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which naturally couple in multilevel integration methods. For a sequence .bbj/j�1 (to
be specified in the following) which satisfies the assumption (A1), and for every
y 2 U define

Nay.x/ D Na.x/C
X

j�1
yj j.x/ and  y;j.x/ D ��1 � 2j yjj

2bbj

 j.x/; a.e. x 2 D; j 2 N;

(13)

which are used to construct

eay.x; z/ WD Nay.x/C
X

j�1
zj y;j.x/; a.e. x 2 D; z 2 eU:

We recall that for every y 2 U

�
��
�
�

P
j�1 j y:jj
Nay

�
��
�
�

L1.D/

� �

�
< 1; (14)

which implies that the problem for arbitrary y 2 U and z 2 eU to findeuy.�; z/ 2 V
such that

Z

D
eay.�; z/reuy.�; z/ � rvdx D hf ; viV�;V ; 8v 2 V;

is well-posed, cp. [11, Section 4]. Then, the affine mapping Ty W eU ! Ty.eU/ 	 R
N,

which is given by

.Ty.z//j WD yj C ��1 � 2j yjj
2bbj

zj; j � 1; z 2 eU; (15)

yields by construction, cp. [11, Section 4], a connection of u.�; y/ andeuy.�; z/, i.e.,

euy.�; z/ D u.�;Ty.z// in V:

Finally, by the chain rule for every 	 2 F WD f	0 2 N
N

0 W j	0j <1g holds

@	zeuy.�; z/
ˇ
ˇ
ˇ
zD0 D

0

@
Y

j�1

 
��1 � 2j yjj

2bbj

!	j
1

A @	y u.�; y/: (16)

A transformation of this type has been introduced in [3]. The dilated coordinate
is analogously applied to dimensionally truncated solutions and the FE approx-
imations, which are denoted by eus

y.�; z/, euT`y .�; z/, and eus;T`
y .�; z/. As observed in
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[11, Theorems 6.1 and 6.3], this sequence .bbj/j�1 will be the input for the product
weights of the considered QMC rules and its summability properties will be a
sufficient condition to achieve a certain dimension-independent convergence rate of
either type of QMC rule. Note that the parametric regularity results of [11] also hold
for homogeneous mixed boundary conditions, since the proof of [11, Lemma 4.1]
relied on the variational formulation, which is the same and v 7! .

R
D jrvj2dv/1=2 is

also a norm on V .

4.1 Dimensionally Truncated Differences

Let s 2 N be the truncation dimension of the series expansion of a.�; y/ and also
of eay.�; z/. The difference of solutions with respect to the full respectively to the
truncated expansion of the parametric coefficient satisfies

Z

D
eay.�; z/r.euy.�; z/�eus

y.�; z// � rvdx D �
Z

D

X

j>s

zj y;jreus
y.�; z/ � rvdx; 8v 2 V:

In this section we split the sequence .bj/j�1 into two sequences by bj D b1��j b�j ,
j 2 N, � 2 Œ0; 1�, and consider the dilated coordinate in (13) and (15) with respect
to the sequence .b1��j /j�1, i.e., here .bbj/j�1 D .b1��j /j�1, which satisfies (A1) by the
condition bj 2 .0; 1�, j 2 N. By the assumption in (A1) and (14), for every y 2 U,

�
�
�
�
�

P
j�1 j y;jj=b�j
Nay

�
�
�
�
�

L1.D/

� �

�
< 1: (17)

Theorem 1 Let the assumption in (A1) be satisfied. There exists a constant C > 0

such that for every y 2 U and for every s 2 N and every � 2 Œ0; 1�
X

	2F

1

.	Š/2

�
�
�@	z

�
euy.�; z/ �eus

y.�; z/
� ˇˇ
ˇ
zD0

�
�
�
2

V
� Ck fk2V�

sup
j>s

˚
b2�j

�
:

Proof As in the proof of [11, Lemma 4.1], we will consider the Taylor coefficients

ty;	 WD 1

	Š
@	zeuy.�; z/

ˇ
ˇ
ˇ
zD0 and ts

y;	 WD
1

	Š
@	zeu

s
y.�; z/

ˇ
ˇ
ˇ
zD0; 8	 2 F : (18)

We introduce a parametric energy norm k � kNay for every y 2 U by

kvk2Nay WD
Z

D
Nayjrvj2dx; 8v 2 V:
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Evidently, ts
y;	 D 0 in case that 	j > 0 for some j > s. For every 	 2 F ,

Z

D
Nayr.ty;	 � ts

y;	/ � rvdx D �
X

j.	/

Z

D
 y;jr.ty;	�ej � ts

y;	�ej
/ � rvdx

�
X

j.	/;j>s

Z

D
 y;jrts

y;	�ej
� rvdx; 8v 2 V;

where we used the notation j.	/ WD f j 2 N W 	j > 0g. Testing with v D ty;	 � ts
y;	 ,

we find for 0 ¤ 	 2 F ,

kty;	 � ts
y;	k2Nay �

Z

D

X

j.	/

j y;jjjr.ty;	�ej � ts
y;	�ej

/jjr.ty;	 � ts
y;	/jdx

C
Z

D

X

j.	/;j>s

j y;jjjrts
y;	�ej
jjr.ty;	 � ts

y;	/jdx;

where ej 2 F is such that .ej/i D 1 if j D i and zero otherwise. We obtain with a
twofold application of the Cauchy–Schwarz inequality using (A1) and (17)

kty;	 � ts
y;	k2Nay �

0

@�
�

Z

D

X

j.	/

j y;jjjr.ty;	�ej � ts
y;	�ej

/j2dx

1

A

1=2

kty;	 � ts
y;	kNay

C
0

@�
�

sup
j>s

˚
b�j
� Z

D

X

j.	/;j>s

j y;jjjrts
y;	�ej
j2dx

1

A

1=2

kty;	 � ts
y;	kNay :

Hence, by the Young inequality with " > 0 and by (A1)

X

k�1

X

j	jDk

kty;	 � ts
y;	k2Nay � .1C "/

�

�

X

k�1

Z

D

X

j	jDk�1

X

j�1
j y;jjjr.ty;	 � ts

y;	/j2dx

C


1C 1

"

�
�

�
sup
j>s

˚
b�j
�X

k�1

Z

D

X

j	jDk�1

X

j>s

j y;jjjrts
y;	 j2dx

� .1C "/


�

�

�2X

k�0

X

j	jDk

kty;	 � ts
y;	k2Nay

C


1C 1

"

�

�

�

�2
sup
j>s

˚
b2�j

�X

k�0

X

j	jDk

kts
y;	k2Nay :
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Since � < �, we can choose " such that .1C "/.�=�/2 < 1 and conclude that

X

0¤	2F
kty;	 � ts

y;	k2Nay

� 1C "
1 � .1C "/.�=�/2

 

kty;0 � ts
y;0k2Nay C

1

"
sup
j>s

˚
b2�j

�X

	2F
kts

y;	k2Nay
!

;

which implies the assertion with [11, Lemma 4.1 and Proposition 5.1] using that bj 2
.0; 1�, j 2 N. Note that [11, Lemma 4.1] gives an upper bound, since @	zeu

s
y.�; z/ D

@	zeuy
f1Wsg

.�; z/ if 	j D 0 for every j > s and @	zeu
s
y.�; z/ D 0 otherwise. ut

Remark 2 The estimate in Theorem 1 also holds when the differences @	z .eu
T`
y .�; z/�

eus;T`
y .�; z//jzD0, 	 2 F , ` � 0, are considered and the constant is independent

of fT`g`�0. Since only the variational formulation was used in the proof, the
corresponding variational formulation with trial and test space V` can be used
instead.

4.2 FE Differences

We assume now that the sequence .Nbj/j�1 satisfies the assumptions in (A1) and
in (A2). We consider the dilated coordinate in (13) and (15) with respect to this
sequence .Nbj/j�1, i.e., here .bbj/j�1 D .Nbj/j�1.

Proposition 2 Let the assumption in (A1) and (A2) be satisfied for .Nbj/j�1. Then,
there exists a constant C > 0 (independent of f ) such that for every y 2 U

X

	2F

1

.	Š/2

�
���@	zeuy.�; z/

ˇ
ˇ̌
zD0

�
��
2

L2ˇ .D/
� Ck fk2

L2ˇ .D/
:

Proof Recall that the Taylor coefficients fty;	 W 	 2 F g have been defined in (18).
We also recall that for any 0 ¤ 	 2 F ,

Z

D
Nayrty;	 � rvdx D �

X

j.	/

Z

D
 y;jrty;	�ej � rvdx; 8v 2 V:

Similarly as in Sect. 2, by the divergence theorem for every v 2 C1
0 .D/

�
Z

D
Nay�ty;	vdx D

Z

D

0

@rNay � rty;	 C
X

j.	/

�r y;j � rty;	�ej C  y;j�ty;	�ej

�
1

A vdx:
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Since�ty;	 ˚ˇ 2 L2.D/, cp. (8), we may use ��ty;	 ˚2
ˇ as a test function and obtain

with the Young inequality for any " > 0

Z

D
Nayj�ty;	 j2˚2

ˇdx D �
Z

D

0

@rNay � rty;	 C
X

j.	/

r y;j � rty;	�ej

1

A�ty;	˚
2
ˇdx

�
Z

D

X

j.	/

 y;j�ty;	�ej�ty;	˚
2
ˇdx

� "
Z

D
Nayj�ty;	 j2˚2

ˇdx

C 1

4"

Z

D

˚2
ˇ

Nay

0

@rNay � rty;	 C
X

j.	/

r y;j � rty;	�ej

1

A

2

dx

C 1

2

Z

D

X

j.	/

j y;jj.j�ty;	�ej j2 C j�ty;	 j2/˚2
ˇdx:

For k � 1, by a twofold application of the Cauchy–Schwarz inequality (applied to
the sum) and (A2) and � � 1=2

X

j	jDk

Z

D

˚2
ˇ

Nay

0

@rNay � rty;	 C
X

j.	/

r y;j � rty;	�ej

1

A

2

dx

� 2K
Z

D

˚ˇ

Nay

0

@jr Nayj
X

j	jDk

jrty;	 j2 C
X

j	jDk�1

X

j�1
jr y;jjjrty;	 j2

1

A dx

� 4K2

.Nay;min/2

0

@
X

j	jDk

kty;	k2Nay C
X

j	jDk�1
kty;	k2Nay

1

A :

Note that also by (A1) for every k � 1,

X

j	jDk

Z

D

X

j.	/

j y;jj.j�ty;	�ej j2 C j�ty;	 j2/˚2
ˇdx

� �

�

0

@
X

j	jDk�1
kpNay�ty;	k2L2ˇ .D/ C

X

j	jDk

kpNay�ty;	k2L2ˇ .D/

1

A :
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We now choose " > 0 such that " < 1=2.1��=�/, which implies "C�=.2�/ < 1=2.
Then, we sum over k � 1 to obtain

X

k�1

X

j	jDk

kpNay�ty;	k2L2ˇ .D/ � C
X

	2F
kty;	k2Nay C C"

X

	2F
kpNay�ty;	k2L2ˇ .D/;

where C" D 1=2.1��=.2�/�"/�1 < 1 and C D 2K2=.".Nay;min/
2/.1��=.2�/�"/�1.

It follows

X

0¤	2F
kpNay�ty;	k2L2ˇ .D/ �

1

1 � C"

 

C
X

	2F
kty;	k2Nay C k

pNay�ty;0k2L2ˇ .D/
!

;

which implies the assertion with [11, Lemma 4.1] and (8). ut
Remark 3 For every truncation dimension s 2 N, the estimate in Proposition 2 also
holds when �@	zeu

s
y.�; z/jzD0, 	 2 F , are considered and the constant is independent

of s. This follows from the observation that @	zeu
s
y.�; z/jzD0 D @	zeuy

f1Wsg
.�; z/jzD0 if

	j D 0 for every j > s and @	zeu
s
y.�; z/jzD0 D 0 otherwise. Then, the sum of the

estimate in Proposition 2 only consists of more terms and is an upper bound.

Proposition 3 Let the assumptions in (A1) and (A2) be satisfied and let ˇ satisfy
ˇi > 1 � �=!i and if the boundary conditions change at ci also ˇi > 1 � �=.2!i/,
i D 1; : : : ; J. Then, there exists a constant C > 0 such that for every y 2 U and for
every integer ` � 0

X

	2F

1

.	Š/2

�
�
�@	z

�
euy.�; z/�euT`y .�; z/

� ˇˇ
ˇ
zD0

�
�
�
2

V
� CM�2=d

` k fk2
L2ˇ .D/

:

Proof We argue similarly as in the proof of [11, Lemma 4.1] and consider the Taylor
coefficients for fixed y 2 U

ty;	 WD 1

	Š
@	zeuy.�; z/

ˇ̌
ˇ
zD0 and t`y;	 WD

1

	Š
@	zeu

T`
y .�; z/

ˇ̌
ˇ
zD0; 	 2 F :

We observe that
Z

D
Nayr.ty;	 � t`y;	/ � rvdx D �

X

j.	/

 y;jr.ty;	�ej � t`y;	�ej
/ � rvdx; 8v 2 V`:

For every y 2 U and for every ` 2 N0, let Py;` W V ! V` denote the “dilated
Galerkin projection”. For every w 2 V , Py;`w, it is defined by

Z

D
Nayr.w �Py;`w/ � rv dx D 0; 8v 2 V`: (19)
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By the definition of Py;` in (19) and by testing with v DPy;`.ty;	 � t`y;	/ 2 V`,

X

j	jDk

Z

D
NayjrPy;`.ty;	 � t`y;	/j2dx

�
Z

D

X

j	jDk

X

j.	/

j y;jj1
2
.jr.ty;	�ej � t`y;	�ej

/j2 C jrPy;`.ty;	 � t`y;	/j2/dx

� 1

2

Z

D

X

j	jDk�1

X

j�1
j y;jjjr.ty;	 � t`y;	/j2dx

C 1

2

Z

D

X

j	jDk

X

j�1
j y;jjjrPy;`.ty;	 � t`y;	/j2dx;

which implies with (A1)

X

j	jDk

kPy;`.ty;	 � t`y;	/k2Nay �
1

2 � �=�
Z

D

X

j	jDk

X

j.	/

j y;jjjr.ty;	�ej � t`y;	�ej
/j2dx

� 1

2 � �=�
�

�

X

j	jDk�1
kty;	�ej � t`y;	�ej

k2Nay : (20)

Note that by the triangle inequality

kty;	 � t`y;	kNay � kPy;`.ty;	 � t`y;	/kNay C k.I �Py;`/ty;	kNay ;

where I W V ! V denotes the identity. With the Young inequality and the previous
two inequalities we obtain for any " > 0

X

j	jDk

kty;	 � t`y;	k2Nay

� .1C "/�
2�� �

X

j	jDk�1
kty;	 � t`y;	k2Nay C



1C 1

"

� X

j	jDk

k.I �Py;`/ty;	k2Nay :

Since � < � < 1, 2�� � > � and so we choose " > 0 such that .1C "/�=� < 1 and
conclude by subtracting the first sum in the previous inequality that

X

k�1

X

j	jDk

kty;	 � t`y;	k2Nay

� 1C "
1 � .1C "/�=�

0

@kty;0 � t`y;0k2Nay C
1

"

X

k�1

X

j	jDk

k.I �Py;`/ty;	k2Nay

1

A ;

which implies the assertion with (7), (6), and Proposition 2. ut
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Remark 4 The estimate in Proposition 3 holds if f 2 .V�;L2ˇ.D//t;1 with the

error being controlled by M�2t=d
` , t 2 .0; 1/. This can be seen by interpolating the

error bounds in the last step of the proof of Proposition 3 with the real method of
interpolation, where (7), (6), and Proposition 2 were used (see also Remark 1).

For any G 2 V�, we introduce uG.�; y/ and uT`
G .�; y/, ` 2 N0, as the parametric

solution to the dual problem of (4) and the parametric FE solution to the dual
problem of (9), respectively, with right hand side G. Consideration of the dilated
coefficient resulting from (13) giveseuG;y.�; z/ andeuT`G;y.�; z/, ` 2 N0. By an Aubin–

Nitsche argument, for every y 2 U and every z 2 eU,

G.euy.�; z/�euT`y .�; z// D
Z

D
eay.�; z/r.euy.�; z/�euT`y .�; z// � r.euG;y.�; z/ �euT`G;y.�; z//dx:

(21)

Theorem 2 Let the assumptions in (A1) and (A2) be satisfied. Then, there exists a
constant C > 0 such that for every G.�/ 2 L2ˇ.D/ and for every integer ` � 0

X

	2F

1

.	 C 1/Š	Š
ˇ
ˇ̌
@	z G

�
euy.�; z/ �euT`

y .�; z/
� ˇˇ̌

zD0

ˇ
ˇ̌2

� C M�4=d
` k fk2

L2ˇ .D/
kG.�/k2

L2ˇ .D/
:

Proof The Taylor coefficients ofeuG;y.�; z/ andeuT`G;y.�; z/ will be denoted bybty;	 and
bt`y;	 , 	 2 F , respectively (see also (18)). By differentiating (21), for every 0 ¤ 	 2
F ,

G.ty;	 � t`y;	/ D
X

��	

Z

D

2

4
X

j.�/

 y;jr.ty;��ej � t`y;��ej
/

3

5 � r.bty;	�� �bt`y;	��/dx:

Squaring the previous equality and applying the Cauchy–Schwarz inequality yields

jG.ty;	 � t`y;	/j2 �
Y

j.	/

.	j C 1/
X

��	

�
��
�

q
1=NayŒ: : :�

�
��
�

2

L2.D/

kbty;	�� �bt`y;	��k2Nay ;
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where we used that
P
��	 D

Q
j.	/.	j C 1/. The hidden term is given by Œ: : :� D

P
j.�/  y;jr.ty;��ej � t`y;��ej

/. By changing the order of summation

X

	2F

Y

j.	/

.	j C 1/�1jG.ty;	 � t`y;	/j2

�
X

�2F

��
�
�

q
1=NayŒ: : :�

��
�
�

2

L2.D/

X

	2F ;	��
kbty;	�� �bt`y;	��k2Nay

D
X

�2F

��
�
�

q
1=NayŒ: : :�

��
�
�

2

L2.D/

X

	2F
kbty;	 �bt`y;	k2Nay :

(22)

By the Cauchy–Schwarz inequality we obtain with (A1)

�
�
��

q
1=NayŒ: : :�

�
�
��

2

L2.D/

� �

�

Z

D

X

j.�/

j y;jjjr.ty;��ej � t`y;��ej
/j2dx:

By another application of the Cauchy–Schwarz inequality and (A1)

X

k�1

X

j�jDk

�
�
��

q
1=NayŒ: : :�

�
�
��

2

L2.D/

�


�

�

�2X

k�1

X

j�jDk�1
kty;� � t`y;�k2Nay ;

which implies with (22)

X

	2F

Y

j.	/

.	j C 1/�1jG.ty;	 � t`y;	/j2 �
 
X

	2F
kty;	 � t`y;	k2Nay

! 
X

	2F
kbty;	 �bt`y;	k2Nay

!

:

The assertion now follows with Proposition 3. ut
Remark 5 The estimate in Theorem 2 also holds if f 2 .V�;L2ˇ/t;1 and G.�/ 2
.V�;L2ˇ/t0;1, t; t0 2 .0; 1/, with error bound O.M�2.tCt0/=d

` /, which follows by
Remark 4.

Remark 6 For every truncation dimension s 2 N, the estimates in Proposition 3 and
Theorem 2 also hold when the differences @	z .eu

s
y.�; z/ �eus;T`

y .�; z//jzD0, 	 2 F , are
considered and the constant is independent of s. This follows by the same argument
which is used to verify Remark 3.
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5 Convergence of Multilevel QMC

The parametric regularity estimates from Sect. 4 will result in explicit error esti-
mates of multilevel QMC. Let the sequence .bj/j�1 be a generic input for the QMC
weights. For interlaced polynomial lattice rules with interlacing factor ˛ � 2 we
will consider the product weights � IP D .� IP

u /u�N given by � IP; WD 1 and

� IP
u WD

Y

j2u

 
X̨

�D1



2bj

1 � �
��p

2ı.�;˛/�Š

!

; u 	 N; juj <1; (23)

and for randomly shifted lattice rules the product weights �RS D .�RS
u /u�N given

by �RS
; WD 1 and

�RS
u WD

Y

j2u



2bj

1 � �
�2
; u 	 N; juj <1: (24)

We will apply one common QMC rule on discretization levels ` D 1; : : : ;L and
allow a different rule on discretization level ` D 0. The parametric regularity
estimates that were derived in Sect. 4 are based on a dilated coordinate, cp. (13)
and (15), with respect to sequences .b1��j /j�1 for the truncation error and .Nbj/j�1
for the FE error. These sequences will be the input for the product weights. Their
summability in terms of membership in `Np.N/, Np 2 .0; 2�, will result in explicit
bounds of the combined discretization and quadrature errors between discretiza-
tion levels. On discretization levels ` D 1; : : : ;L, we use .b1��j _ 2Nbj/j�1 WD
.maxfb1��j ; 2Nbjg/j�1 as input for the product weights in (23) and (24), i.e., here

.bj/j�1 D .b1��j _2Nbj/j�1. On the lowest discretization level ` D 0 we use .bj/j�1 as
an input for (23) and (24), which has potentially stronger summability properties.

Theorem 3 Let the assumption in (A1) be satisfied by .bj/j�1 and by .Nbj/j�1. Let the
assumption in (A2) be satisfied by .Nbj/j�1. Let .bj/j�1 2 `p.N/ for some p 2 .0; 2�
and assume that .b1��j _ Nbj/j�1 2 `Np.N/ for some Np 2 Œ p; 2� and any � 2 Œ0; 1/
admitting this summability. For p 2 .0; 1� and Np 2 Œ p; 1�, QIP

L .�/, L 2 N, satisfies
with product weights (23) and order ˛ D b1=pC 1c on discretization level ` D 0,
and of order N̨ D b1=NpC1c on discretization levels ` D 1; : : : ;L, the error estimate

jE.G.u//�QIP
L .G.u

L//j � C

 

sup
j>sL

fb2j g CM�2=d
L C N�1=p

0

C
LX

`D1
N�1=Np
`

 

�`;`�1 sup
j>s`�1

fb�j g CM�2=d
`�1

!!

;
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where �`;`�1 WD 0 if s` D s`�1 and �`;`�1 WD 1 otherwise. For p 2 .1; 2� and
Np 2 Œ p; 2�, QRS

L .�/, L 2 N, satisfies with product weights (24) the error estimate

q
E
.jE.G.u//� QRS

L .G.u
L//j2/

� C

 

sup
j>sL

fb4j g CM�4=d
L C .'.N0//�2=p

C
LX

`D1
.'.N`//

�2=Np
 

�`;`�1 sup
j>s`�1

fb2�j g CM�4=d
`�1

!!1=2
:

The constant C is in particular independent of L, .N`/`D0;:::;L, .M`/`�0, .s`/`D0;:::;L.

Proof By the error estimates in (12) and (11), we have to estimate the difference
G.u` � u`�1/ D G.us`;T` � us`�1;T`�1 / in the Ws`;˛;� ;1;1-norm and in the Ws`;� -
norm, ` D 1; : : : ;L. We decompose by the triangle inequality

kG.us`;T` � us`�1;T`�1 /kWs`;�

� kG.us`;T` � us`;T`�1 /kWs`;�
C kG.us`;T`�1 � us`�1;T`�1 /kWs`;�

;

and

kG.us`;T` � us`;T`�1 /kWs`;�
� kG.us` � us`;T` /kWs`;�

C kG.us` � us`;T`�1 /kWs`;�
:

The contributions from the dimension truncation and the FE error have been
separated in the Ws`;� -norm. For the dimension truncation error, we obtain by the
Jensen inequality, the relation of higher order partial derivatives in terms of the
dilated coordinate in (16), Theorem 1, and Remark 2

kG.us`;T`�1 � us`�1;T`�1 /k2Ws`;�

� kG.�/k2V�

Z

Œ� 1
2 ;
1
2 �

s

X

u�f1Wsg
.�RS

u /�1k@uy .us`;T`�1 .�; y/� us`�1;T`�1 .�; y//k2V dy

� CkG.�/k2V�

k fk2V�

sup
u�f1Wsg

.�RS
u /�1

Y

j2u

 
2b1��j

1 � �

!2
sup

j>s`�1

fb2�j g:

Due to the choice of the weights, there exists a constant C > 0 independent of the
sequences .s`/`D0;:::;L and fT`g`�0 such that

kG.us`;T`�1 � us`�1;T`�1 /kWs`;�
� CkG.�/kV�k fkV� sup

j>s`�1

fb�j g:
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Note that if s` D s`�1 this difference is zero. Similarly, we obtain with Theorem 2
and Remark 4 that there exists a constant C > 0 which is independent of .s`/`D0;:::;L
and .M`/`�0 such that for every ` 2 N

kG.us` � us`;T`�1 /kWs`;�
� CkG.�/kL2ˇ .D/

k fkL2ˇ .D/
M�2=d
`�1 :

Here the constant factor 2 in the sequence .b1��j _ 2Nbj/j�1, which is an input for
the weight sequence, is necessary to compensate the factor

Q
j.	/.	j C 1/�1 in

the estimate of Theorem 2. The corresponding estimate on the level ` D 0 of
kG.us0;T0 /kWs0;�

is due to [11, Corollary 4.3], which is also applicable in the case of
a dimensionally truncated FE solution, cp. Remarks 2 and 4. The estimate for the
randomly shifted lattice rules follows then with (10) and (11) with � D p=2.

The proof for interlaced polynomial lattice rules follows along the same lines,
where the estimate kFkWs`;˛;�;1;1 � kFkWs`;˛;�;2;2

, F 2 Ws`;˛;� ;2;2, is used and [11,
Corollary 4.5] is used for the level ` D 0 (see also the proof of [11, Proposition 4.4]).

ut
Remark 7 The estimate in Theorem 3 also holds if f 2 .V�;L2ˇ/t;1 and G.�/ 2
.V�;L2ˇ/t0;1, t; t0 2 Œ0; 1�, with an error bound O.M�.tCt0/=d

` / and O.M�2.tCt0/=d
` /,

` D 0; : : : ;L, in the estimates for QIP
L .�/ and QRS

L .�/, respectively. This follows by
Remark 5.

Remark 8 The factor 2=.1 � �/ in the weights in (23) and (24) as well as the
constant factor 2 in the sequence .b1��j _ 2Nbj/j�1 can be omitted. Then, the error
estimates in Theorem 3 hold under the same assumptions with QMC convergence
rates 1=p� " and 1=Np� " in the multilevel error estimates for every " > 0. This can
be seen by the same argument that we used to show [11, Corollary 6.2] (see also
[11, Corollary 6.4]).

6 Error vs. Work Analysis

The error estimates in Theorem 3 are the key ingredient to calibrate and choose the
parameters .s`/`D0;:::;L, .M`/`�0, � 2 Œ0; 1/, and .N`/`D0;:::;L of either considered
type of the multilevel QMC algorithm with L 2 N levels. We seek to derive choices
that optimize the work for a given error threshold. The analysis will be demonstrated
for a class of multiresolution analyses (MRA for short), which will serve as the
function system . �/�25, here indexed by � 2 5. We will use notation that is
standard for wavelets and MRA. Assume that . �/�25 is a MRA that is obtained
by scaling and translation from a finite number of mother wavelets, i.e.,

 �.x/ D  .2j�jx � k/; k 2 5j�j; x 2 D:
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The index set 5j�j has cardinality j 5j�j j D O.2j�jd/ and jsupp. �/j D O.2�j�jd/.
Let j W 5 ! N be a suitable bijective enumeration. We also assume that on every
level j�j there is a finite overlap, i.e., there exists a support overlap constant K > 0

such that for every i 2 N0 and for every x 2 D

jf� 2 5 W j�j D i;  �.x/ ¤ 0gj � K :

The work needed to assemble the stiffness matrix for a generic parameter instance
y 2 Œ�1=2; 1=2�s is therefore O.M`j j�1.s`/j/ D O.M` log.s`//. Assuming at hand
a linear complexity solver (i.e., a procedure which delivers a numerical solution of
the discrete problem (9) to accuracy O.M�2=d

` / in the goal functional G.�/ as in (10)
uniformly w.r. to y 2 U in work and memory O.M`/) the overall work for either
multilevel QMC algorithm with the number of levels L 2 N0 satisfies

work D O

 
LX

`D0
N`M` log.s`/

!

:

We remark that error vs. work estimates for general function systems . j/j�1 in the
uncertainty parametrization (3) have been derived in [8, 22].

The parameter � in the coupled estimates of Theorem 3 allows to discuss two
possible strategies in the choices of the dimension truncation levels .s`/`D0;:::;L. We

recall from [11, Section 8] that if k j.�/kL1.D/ � �2�b̨j�j, then the sequence

bj.�/ D
 

1C Namin.1 � �/.1� 2b̌�b̨/
�2K

2b̌j�j
!�1

; j 2 N; (25)

satisfies (A1) for b̨> b̌ > 1 and bj � j�b̌=d, j � 1, holds. The sequence

Nbj D b.
b̌�1/=b̌
j ; j 2 N;

satisfies (A2) and (A1) and Nbj � j�.b̌�1/=d, j � 1, holds. Note that kr j.�/kL1.D/ �
C�2�.b̨�1/j�j assuming kr kL1.D/ � Ck kL1 .D/ for some C > 0. The truncation
levels .s`/`D0;:::;L are chosen so as to cover entire levels of the MRA expansion of
the uncertain PDE input, so that we choose s` 2 fPI

iD0 jrij W I 2 N0g, ` � 0. We
also assume that

M` � 2d`; ` � 0: (A3)

In this section we assume for simplicity that only one version of the QMC rule is
applied with convergence rate 1=Np. We remark that in some cases the application
of two different weight sequences with different sparsity (as expressed by the
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summability exponents p; Np of the sequences .bj/j�1; .Nbj/j�1) may be beneficial.
Also we assume that

f 2 .V�;L2ˇ.D//t;1 and G.�/ 2 .V�;L2ˇ.D//t0;1; t; t0 2 Œ0; 1�; (A4)

which yields a FE convergence rate of 	 WD tC t0 2 Œ0; 2�, cp. Remark 7.

Strategy 1 We equilibrate the decay of the sequences .b1��j /j�1 and .Nbj/j�1, which
determines the bound on the QMC error in Theorem 3. The parameter � 2 Œ0; 1/
is chosen to be � D 1=b̌, which implies b1��j D Nbj, j 2 N, and .Nbj/j�0 2 `Np.N/
for every Np > d=.b̌ � 1/. We equilibrate the error contributions on the highest
discretization level L. Since ML � 2dL, we choose

sL � 2ddL	=.2b̌/e:

On the different discretization levels of the coupled error terms, we either increase
the dimension truncation levels or leave them constant, which is reflected in the
choice

s` � min
n
2dd`	=.�b̌/e; sL

o
; ` D 0; : : : ;L � 1:

Strategy 2 For certain function systems . �/�2r and meshes fT`g`�0 it may be
interesting (also for implementation purposes) to couple their discretizations, i.e.,
we choose

s` � M`; ` D 0; : : : ;L:
To equilibrate the truncation and FE error on the levels we choose � D 	=b̌, which

imposes the constraint b̌ > 	 and implies that b1��j � j�.b̌�	/=d. Hence, .b1��j _
Nbj/j�1 2 `Np.N/ for every Np > d=.minfb̌� 	; b̌� 1g/.

We will discuss interlaced polynomial lattice rules first and follow [8, Sec-
tion 3.3]. In either of our parameter choices, the error estimate

error D O

 

M�	=d
L C

LX

`D0
N�1=Np
` M�	=d

`

!

holds, where we used that M` D O.2d`/. The QMC sample numbers .N`/`D0;:::;L are
chosen to optimize the error versus the required work. Optimizing error (bound) vs.
cost as in [8, 22], we seek the stationary point of the function

g.�/ D M�	=d
L C

LX

`D0
N�1=Np
` M�	=d

` C �
LX

`D0
N`M` log.s`/
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with respect to N`, i.e., choose N` such that @g.�/=@N` D 0. We thus obtain

N` D
�

N0
�

M�1�	=d
` log.s`/�1

	Np=.1CNp/�
; ` D 1; : : : ;L; (26)

and for E` WD .M1�Np	=d
` log.s`//1=.NpC1/,

error D O

 

M�	=d
L C N�1=Np

0

LX

`D0
E`

!

and work D O

 

N0

LX

`D0
E`

!

:

Since for every 0 ¤ r1 2 R and r2 > 0,

LX

`D0
2r1``r2 � 2r1.LC1/ � 1

2r1 � 1 Lr2 ;

log.s`/ D O.`/, which holds in the considered cases, implies that

LX

`D0
E` D

8
ˆ̂
<

ˆ̂
:

O.1/ if d < Np	;
O.L.NpC2/=.NpC1// if d D Np	;
O.2.d�Np	/L=.NpC1/L1=.NpC1// if d > Np	:

We choose N0 to equilibrate the error, i.e.,

N�1=Np
0

LX

`D0
E` D O

�
M�	=d

L

	
;

which yields

N0 WD

8
ˆ̂
<

ˆ̂:

d2	 NpLe if d < Np	;
d2	 NpLLNp.NpC2/=.NpC1/e if d D Np	;
d2Np.dC	/L=.NpC1/LNp=.NpC1/e if d > Np	:

(27)

This implies that an error D O.M�	=d
L / requires

work D

8
ˆ̂
<

ˆ̂
:

O.2Np	L/ if d < Np	;
O.2	 NpLLNpC2/ if d D Np	;
O.2dLL/ if d > Np	:

In the other case of randomly shifted lattice rules, sample numbers .N`/`D0;:::;L
are derived in [22, Section 3.7]. There, also the work functional from a MRA is
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considered, cp. [22, Equations (74) and (77)] with � D Np=2 and K` D M` log.M`/ �
2d``. Specifically, for randomly shifted lattice rules we choose

N` D
�

N0
�

M�1�2	=d
` log.s`/�1

	Np=.2CNp/�
; ` D 1; : : : ;L; (28)

and

N0 WD

8
ˆ̂
<

ˆ̂
:

d2	 NpLe if d < Np	;
d2	 NpLLNp.NpC4/=.2NpC4/e if d D Np	;
d2Np.dC2	/L=.NpC2/LNp=.NpC2/e if d > Np	:

(29)

The work estimates for these choices in the case of randomly shifted lattice rules are
stated on [22, p. 443]. We collect the foregoing estimates in the following theorem.

Theorem 4 Let the assumption in (A3) be satisfied and let for L 2 N and QIP
L .�/,

the sample numbers .N`/`D0;:::;L be given by (26) and (27) and for QRS
L .�/, be given

by (28) and (29). Let the right hand side f and G.�/ satisfy (A4). For Np 2 .d=.b̌�
1/; 1�, assuming d < b̌� 1 and error threshold " > 0, we obtain

jE.G.u//�QIP
L .G.u

L//j D O."/

with

work D

8
ˆ̂
<

ˆ̂
:

O."�Np/ if d < Np	;
O."�Np log."�1/NpC2/ if d D Np	;
O."�d=	 log."�1// if d > Np	:

For Np 2 .maxf1; d=.b̌ � 1/g; 2� assuming d < 2.b̌ � 1/ and an error threshold
" > 0, we obtain

q
E
.jE.G.u//� QRS

L .G.u
L//j2/ D O."/

with

work D

8
ˆ̂<

ˆ̂
:

O."�Np/ if d < Np	;
O."�Np log."�1/Np=2C2/ if d D Np	;
O."�d=	 log."�1// if d > Np	:

Remark 9 The parameter choices for � and .s`/`D0;:::;L in Theorem 4 reflect
Strategy 1. For Strategy 2, the assumptions Np > d=.minfb̌ � 	; b̌ � 1g/, b̌ > 	

are required, which is more restrictive if 	 > 1. However, aligning MRA and
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FE meshes might be useful in certain cases. Note that the truncation dimension
in Strategy 2 could also be capped as in Strategy 1, which may be beneficial in some
cases. Adopting this strategy would affect the work measure only by a constant
factor.

7 Numerical Experiments

To illustrate the foregoing asymptotic error bounds, we present numerical experi-
ments in space dimension d D 1; 2 with affine-parametric diffusion coefficient

a.x; y/ D Na.x/C
X

j�1
yj j.x/;

where Na.x/ � 1 and we assume  j D  j.`;k/ to be a system of continuous, piecewise
(bi)linear spline wavelets for ` � 0, k 2 f0; : : : ; 2` � 1gd with support overlap
constant K D 2d, see e.g. [18, Chapter 12]. We assume in the following the scaling

k j.`;k/kL1.D/ D �2�b̨̀ . We pursue Strategy 2 from Sect. 6, which yields for b̨ >
b̌> 	 a QMC weight sequence of the form

bj.`;k/ D
�
1C c22

b̌̀
	�.b̌�	/=b̌

;

for 0 < c2 2 R as specified in (25) (see also Remark 8). We use the implementation
from [9] for applying the single-level and multilevel methods in parallel, and use the
Walsh coefficient bound C D 0:1 in the component-by-component (CBC for short)
construction, cp. [10] for details. For the multilevel method, we choose N` D 2m` ,
where m` follows from (26). The resulting expression is given by

m` D
l
Np	LC Np.NpC 2/NpC 1 log2.LC 1/C

Np
NpC 1

�� `.dC 	/� log2.`C 1/
�m
; (30)

with m` D 1 if the expression is not positive. In the following examples, we consider
the limiting case d D Np	 also with the limiting value Np�1 D .b̌� 	/=d. This choice
is based on the cost model

WML
L D

LX

`D0
N`M` log2.s`/ ;

which we use for computing the cost in the multilevel experiments below. We
compare the multilevel computations to a single-level approach, where we equi-
librate the QMC and FE discretization errors, yielding on a fixed level L with
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N�1=Np
L � M�	=d

L the choice NL D 2Np	.LC1/, i.e.,

mL D log2.NL/ D dNp	e.LC 1/ :

In the single-level case, the work is simply WSL
L D NLML log2.sL/.

7.1 Univariate Model Problem

We consider the domain D D .0; 1/ and homogeneous Dirichlet boundary
conditions, i.e., �1 D @D, with right hand side f .x/ D 10x, x 2 D. As goal
functional, we consider point evaluation of the solution at x D e�1 (which is not
a node on any mesh used in our simulations), G.u.�; y// D u.x; y/, which implies
the FE convergence rate 	 D 1:5 � " for arbitrary " > 0. The parameter calibration
will be done under the formal case 	 D 1:5. For a given discretization level `, we
solve the parametric PDE (9) with the finite element method using piecewise linear
basis functions on an equidistant mesh with meshwidth h` D 2�`�1 to approximate
the solution of (1). Considering the wavelet basis for the coefficients on the same
mesh, we obtain s` D h�1

` � 1 D 2`C1 � 1 parametric dimensions on level `. We

choose b̨ D 3, b̌ D 2:99, � D 0:15, yielding the expected QMC convergence
rate b̌ � 	 D 1:49 (see Fig. 1). We use the same generating vectors as above
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Fig. 1 Convergence of single-level and multilevel methods for a univariate diffusion coefficient
given in wavelet representation. As a reference solution, the multilevel approximation on the level
L D 14 with a total of sL D 32;767 dimensions was used. The measured rates were obtained by
a linear least squares fit on the last 9 points. The expected rates are 0:75 for SLQMC and 1:5 for
MLQMC ignoring log factors. The work is WML

L D PL
`D0 N`h

�1
` .1C log2.s`// for multilevel and

WSL
L D NLh�1

L .1C log2.sL// for single-level
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Fig. 2 Convergence of the QMC approximation for the univariate model problem using interlaced
polynomial lattice (IPL) rules with N D 2m points, m D 1; : : : ; 17 and for digit interlacing
factors ˛ D 2; 3. We use the results with m D 17 as the reference value and keep the maximal
discretization level L D 14 fixed, resulting in sL D 215 � 1 D 32;767 parameter dimensions and
smallest FE meshwidth hL D 2�15

for the single-level method; this is justified since the weight sequence used in the
CBC construction majorizes the weight sequence for the single-level quadrature,
theoretically capping the rate at N�1:5. With these generating vectors, as observed
in Fig. 2, the measured QMC convergence rate is independent of the parameter
dimension, and equals N�˛ for ˛ D 2; 3 rather than the expected rate N�1:5.

7.2 Two Spatial Dimensions

For d D 2, we consider the domain D D .�1; 1/ � .0; 1/ with mixed boundary
conditions. Specifically, the Neumann boundary is given by �2 D .�1; 0/ � f0g
and the Dirichlet boundary is �1 D @Dn�2. Although the domain is convex,
the change in boundary conditions at the origin induces a point singularity in the
parametric solutions corresponding to an interior angle equal to � . Due to isotropy
of the parametric diffusion coefficient, this leads to a non-H2.D/ singularity of (y-
independent) strength O.

p
r/ of the parametric solution u.�; y/ concentrated at the

origin. The boundary conditions change also at the corner .�1; 0/> 2 @D, inducing
a weaker singularity there as well. The considered goal functional is here integration
over the domain D, which is an element of L2.D/. Since the parametric coefficients
a.x; y/ are isotropic, i.e., scalar valued, the full regularity shift of the Laplacean
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in weighted Hilbert spaces is applicable as detailed in Sect. 2, we obtain 	 D 2.
Analogous to the univariate problem considered in the previous subsection, we use
continuous, bilinear FE on quadrilaterals on sequences of nested, locally refined
meshes of the domain D which were obtained by a suitable bisection refinement,
cp. [12].

Here, we have J D 5 singular points or corners and ˇ 2 Œ0; 1/J satisfies that
ˇi > 1��=!i, i D 1; 2; 3, and ˇi > 1��=.2!i/, i D 4; 5, cp. Sect. 2. Then, for the
Laplacean with mixed boundary conditions in D there holds a full regularity shift
in weighted Sobolev spaces, i.e. .��/�1 W L2ˇ.D/ ! H1

0.D/ \ H2
ˇ.D/ is bounded

with ˇ D .0; 0; 0; ˇ4; ˇ5/, 1 > ˇ4 > 0, and 1 > ˇ5 > 1=2, where singular points
are enumerated counter clockwise, i.e., c1 D .1; 0/>, c2 D .1; 1/>, c3 D .�1; 1/>,
c4 D .�1; 0/>, and c5 D .0; 0/>. We observe that solutions will in general have
a weak non-H2.D/ singularity at the corner c4, i.e., u.x; y/ 2 H2�".D4/ for every
" > 0, where D4 	 D is a sufficiently small neighborhood of c4. We use the values
ˇ1 D ˇ2 D ˇ3 D 0, ˇ4 D 0:05, and ˇ5 D 0:55 as inputs for a bisection refinement
algorithm, which results in 1-irregular quadrilateral meshes. In polar coordinates
.r; / 2 .0;1/ � .0; �/, where x D r.cos./; sin.//>, the function Nu.r; / Dp

r sin.=2/ is harmonic, i.e., �Nu D 0, and satisfies the homogeneous Neumann
boundary conditions. We solve the parametric boundary value problem

�r � .a.x; y/ru.x; y// D 0; u.x; y/
ˇ
ˇ
ˇ
�1
D Nu.x/

ˇ
ˇ
ˇ
�1
; a.x; y/ru.x; y/ � n.x/

ˇ
ˇ
ˇ
�2
D 0:

Clearly, u.x; 0/ D Nu.x/. The inhomogeneous Dirichlet boundary terms can be
incorporated into the right hand side, for example by solving �r � .ar.u � Nu// D
r � .arNu/ and adding Nu to the solution afterwards. Instead of Nu one may use any
other suitable extension of Nuj@D to the domain D. The difference u � Nu satisfies the
homogeneous mixed boundary conditions. The parametric right hand side is given
by f .x; y/ WD r � .a.x; y/rNu.x// 2 L2ˇ.D/ for ˇ stated above. This right hand side
f .x; y/ depends affinely on the parameter vector y. In previous sections, we assumed
a fixed right hand side only for simplicity and conciseness of the presentation. A
right hand side, which only depends linearly on the coefficient a.x; y/ under the
made assumptions is admissible by a straightforward extension of our theory. The
implementation of the spatial discretization in two space dimensions of bilinear FE
uses deal.II, cp. [1].

For the uncertain diffusion coefficient, we consider the parametrization obtained
by tensorizing the univariate continuous, piecewise linear biorthogonal spline
wavelets. Specifically, we choose

b `;k1;k2 .x1; x2/ D �2�b̨̀  `;k1 .x1/ `;k2 .x2/; k1; k2 2 f0; : : : ; 2` � 1g; (31)

where  `;k.x/ denotes the univariate continuous, piecewise linear wavelet function

with scaling k `;kkL1.D/ D 1 and � D 0:01. Thus, kb `;k1;k2kL1.D/ D �2�b̨̀ with
b̨ D 4. This choice of parametrization results in sL D PL

`D0 4` D .4LC1 � 1/=3
dimensions on the discretization level L. The generating vectors were constructed
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Fig. 3 Convergence of single-level and multilevel methods for a 2d diffusion equation with
parametric coefficient given in wavelet representation. Continuous, piecewise bilinear biorthogonal
spline wavelets (31) on uniform partitions of the domain D with meshwidth O.2�`/, ` D 0; : : : ; L,
were used. As a reference solution, the multilevel approximation on the level L D 8 with a total
of sL D 87;381 dimensions was used. The measured rates were obtained by a linear least squares
fit on all points but the first and the two last ones. The rates expected from the theory for this
problem are 0:67 for SLQMC and 1 for MLQMC ignoring log factors. The work measure is
WML

L D PL
`D0 N`22`.1 C log2.s`// for multilevel and WSL

L D NL2
2L.1 C log2.sL// for single-

level

by the CBC algorithm based on a QMC weight sequence analogous to the univariate

case, given here by bj.`;k1;k2/ D
�
1C c22

b̌̀ ��.b̌�	/=b̌
where b̌D 3:99 and 	 D 2.

For the multilevel method, the number of samples per level is given by N` D 2m`

where the exponent m` is given as in (30) with d D 2. To compare to a single-
level approach, we equilibrate the finite element and QMC sampling error to obtain
NL D 2L	=r � M	=.dr/

L , where r is the QMC convergence rate, here r 
 2 for
interlacing factor ˛ D 2 and we take r D 2 to obtain the value of NL (see Fig. 3).

8 Conclusions

We provided the convergence rate analysis of randomly shifted and higher order,
interlaced polynomial lattice rules for the numerical evaluation of linear functionals
G.�/ of solutions of countably affine-parametric, linear second order elliptic par-
tial differential equations. The spatially inhomogeneous diffusion coefficient was
assumed to be represented by a multiresolution analysis with local supports, rather
than the globally supported Karhunen-Loève expansion considered, for example,



Multilevel QMC with Product Weights for Affine-Parametric, Elliptic PDEs 403

in [7, 8, 14, 21, 22] and the references there. As in the corresponding single-level
QMC Petrov–Galerkin approaches considered in [11], we proved that QMC with
product weights, originally proposed by Sloan and Woźniakowski in [28], can
provide optimal QMC convergence rates which are independent of the parameter
dimension. Unlike the so-called product and order dependent weights which are
mandated by globally supported representation systems of uncertain input data,
the use of product weights results in linear w.r. to dimension scaling of fast CBC
constructions from [24, 25], which originate in a dimension-wise, greedy strategy
to minimize the worst case error, as proposed originally in [30]. The present analysis
addressed linear, affine-parametric random input data where the supports of the
parameters are bounded. The extension for log-Gaussian diffusion coefficients in
the present setting, along the lines of [14, 23] (where the case of globally supported
 j were treated) and in the setting of the single-level analysis in [15], is given in [16].
Numerical experiments were given for a model, linear elliptic problem in one and in
two space dimensions with local spatial mesh refinement. The present mathematical
analysis holds, however, also for PDEs on polyhedra in three space dimensions, for
proper choice of (corner- and edge-weighted) function spaces, and corresponding
mesh refinements. We refer to [16]. Analogous error bounds for product weight
QMC also hold for log-Gaussian representations of uncertain PDE inputs. Details
are presented in [16, 17].
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Abstract Based on the error analysis of Extended Filon Method (EFM), we
present an adaptive Filon method to calculate highly oscillatory integrals. The
main idea is to allow interpolation points depend upon underlying frequency in
order to minimize the error. Typically, quadrature error need be examined in two
regimes. Once frequency is large, asymptotic behaviour dominates and we need to
choose interpolation points accordingly, while for small frequencies good choice
of interpolation points is similar to classical, non-oscillatory quadrature. In this
paper we choose frequency-dependent interpolation points according to a smooth
homotopy function and the accuracy is superior to other EFMs. The basic algorithm
is presented in the absence of stationary points but we extend it to cater for highly
oscillatory integrals with stationary points. The presentation is accompanied by
numerical experiments which demonstrate the power of our approach.
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1 Introduction

The focus of this paper is on the computation of the highly oscillatory integral

I!Œ f � D
Z 1

�1
f .x/ei!g.x/dx; (1)

where f ; g 2 C1Œ�1; 1� and ! � 0 is the frequency. We assume that the phase
function g.x/ is normalised so that maxx2Œ�1;1� jg.x/j D 1. Since this integral
abounds in mathematics and computational engineering [2, 14, 15] and standard
quadrature methods fail to calculate it well, it has been subjected to very active
research effort in the last two decades. This has resulted in a significant number of
efficient quadrature methods, such as the asymptotic expansion and Filon methods
[5, 10, 11], Levin’s method [12, 13], numerical steepest descent [9], complex
Gaussian quadrature [1, 3] and other efficient algorithms [4, 6].

Each of these methods has its own advantages and disadvantages and it would be
rash to proclaim one as the definite approach to the integration of (1). They require
the availability of different information (e.g., Filon methods and complex Gaussian
quadrature require the computation of moments, numerical steepest descent relies
on practical computation of steepest-descent paths in the complex plane) and might
have critical shortcomings in some situations (Levin’s method cannot work in the
presence of stationary points and explicit asymptotic expansions are exceedingly
difficult once (1) is generalised to multivariate setting—a setting in which nothing
is known of complex Gaussian quadrature).

Popularity of Filon-type methods owes much to their simplicity and flexibility.
We just need to replace f by an interpolating polynomial and, assuming that
moments

R 1
�1 xmei!g.x/dx, m � 0, are explicitly available, the new integral can

be computed easily. The make-or-break issue, however, is the location of suitable
interpolation points. The basic imperative is to select interpolation points that ensure
good behaviour for large!, and this is entirely governed by asymptotic analysis. Let
us recap some basic facts from [10]. Assume first that there are no stationary points,
i.e. that g0 ¤ 0 in Œ�1; 1�. Letting Qp be the interpolating polynomial, the error can
be expanded into asymptotic series,

I!Œ Qp� � I!Œ f � D I!Œ Qp � f � (2)

� �
s�1X

mD0

1

.�i!/mC1

�
�mŒ Qp � f �.1/

g0.1/
ei!g.1/ � �mŒ Qp � f �.�1/

g0.�1/ ei!g.�1/


CO
�
!�.sC1/�;

where

�0Œh�.x/ D h.x/; �mŒh�.x/ D d

dx

�m�1Œh�.x/
g0.x/

; m � 1:



An Adaptive Filon Algorithm for Highly Oscillatory Integrals 409

Moreover, �mŒh�.x/ is a linear combination (with coefficients depending on deriva-
tives of g) of h. j/.x/, j D 0; : : : ;m [11]. It immediately follows that the Hermite-type
interpolation conditions

Qp. j/.1/ D f . j/.1/; Qp. j/.�1/ D f . j/.�1/; j D 0; 1; � � � ; s� 1; (3)

imply that the error is � O.!�s�1/ for ! � 1. The outcome is the (plain-vanilla)
Filon method,

QF;s;0
! Œ f � D

Z 1

�1
Qp.x/ei!g.x/dx:

Once g0 vanishes somewhere in Œ�1; 1�, the oscillation of the integrand slows
down in the vicinity of that point and the behaviour of (1) changes. In particular, the
asymptotic expansion (2) is no longer valid. For example, if g0.c/ D 0, g00.c/ ¤ 0,
for c 2 .�1; 1/ and g0.x/ ¤ 0 elsewhere in Œ�1; 1�, then

I!Œ Qp � f � � �0.!/
1X

mD0

Q�mŒ Qp � f �.c/

.�i!/m
(4)

�
1X

mD0

1

.�i!/mC1

� Q�mŒ Qp � f �.1/� Q�mŒ Qp � f �.c/

g0.1/
ei!g.1/

� Q�mŒ Qp � f �.�1/� Q�mŒ Qp � f �.c/

g0.�1/ ei!g.�1/
�
;

where

�0.!/ D
Z 1

�1
ei!g.x/dx D O.!�1=2/

and

Q�mŒh�.x/ D h.x/; Q�mŒh�.x/ D d

dx

Q�m�1Œh�.x/ � Q�m�1Œh�.c/
g0.x/

; m � 1

[11]. Note that the functions Q�m are C1Œ�1; 1�, since the singularity at x D c is
removable. This removable singularity is the reason why, while �mŒh�.x/ is a linear
combination of h. j/.x/, j D 0; : : : ;m, for x 2 Œ�1; 1� n fcg, at x D c we have a linear
combination of h. j/.c/, j D 0; : : : ; 2m. The clear implication is that once, in addition
to (3), we also impose the interpolation conditions

Qp. j/.c/ D f . j/.c/; j D 0; 1; : : : ; 2s� 2;

the plain-vanilla Filon method bears an error of QO.!�s�1=2/ for ! � 1.
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For reasons that will become apparent in the sequel, it is important to consider
also the case when c is at an endpoint: without loss of generality we let c D �1.
In that case (4) need be replaced by

I!Œ Qp � f � � �0.!/
1X

mD0

Q�mŒ Qp � f �.�1/
.�i!/m

�
1X

mD0

1

.�i!/mC1

� Q�mŒ Qp � f �.1/� Q�mŒ Qp � f �.�1/
g0.1/

ei!g.1/

� Q�
0
mŒ Qp � f �.�1/

g00.�1/ ei!g.�1/
�

and Q� 0
m.�1/ is a linear combination of h. j/.�1/, j D 0; : : : ; 2mC 1 [8].

A plain-vanilla Filon method can be also implemented in a derivative-free
manner, e.g. when the derivatives of f are unknown or not easily available. In that
case we need to replace derivatives by finite differences with an O.!�1/ spacing
and this procedure does not lead to loss of asymptotic accuracy [10]. In particular,
in place of (3), we may interpolate at the points

ck.!/ D
(
�1C �k

!C1 ; k D 0; : : : ; s � 1;
1 � �.2s�k�1/

!C1 ; k D s; : : : ; 2s � 1; (5)

where the denominator ! C 1 ensures that the interpolation points do not blow up
near ! D 0, while 0 < � < .s � 1/�1 implies that the interpolation points are all
distinct and live in Œ�1; 1�.

As an example, consider f .x/ D .1 C x C x2/�1, g.x/ D x in (1). In Fig. 1 we
plot on the left the interpolation points (5) with s D 5. The errors committed by
Filon methods for s D 2 (hence with an asymptotic error decay of O.!�3/) based
on (3) and (5) are displayed on the right in logarithmic scale. As can be seen, that the
points (5) are equidistant at ! D 0 and bunch at the endpoints when ! increases.
The derivative-free Filon method (5) (black dotted line) has essentially the same
good behaviour as (3) (green solid line) for large !.

The addition of extra interpolation points to (3) (or, for that matter, (5)) can be
highly beneficial in reducing an error committed by a Filon method. Specifically, in
the g0 ¤ 0 case, we choose distinct inner nodes c1; : : : ; c� 2 .�1; 1/ and impose
that 2sC � interpolation conditions

p. j/.1/ D f . j/.1/; p. j/.�1/ D f . j/.�1/; j D 0; 1; � � � ; s� 1;
p.ck/ D f .ck/; k D 1; � � � ; �: (6)
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Fig. 1 The left: the interpolation points ck.!/ of (5) with k D 0; � � � ; 2s � 1 (from the bottom
line to top) for s D 5,� D 1

5
and ! 2 Œ0; 30�; The right: the logarithm (to base 10) of the error of

both Filon methods, (3) (green solid line) and (5) (black dotted line), for f .x/ D .1C x C x2/�1,
g.x/ D x, s D 2 and ! 2 Œ0; 500�

This is the Extended Filon Method (EFM),

QF;s;�
! Œ f � D

Z 1

�1
p.x/ei!g.x/dx

that has been carefully analysed in [7, 8]. Different choices of internal nodes result
in different behaviour for small ! � 0 or in greater simplicity in implementation
although, for large !, the rate of asymptotic decay of the error is always O.!�s�1/.
In particular, [8] examined two choices of internal nodes: Zeros of the Jacobi
polynomial P

.s;s/
� and Clenshaw–Curtis points. In the first instance we have

the best-possible behaviour for ! D 0 and in the second the coefficients are
substantially simpler and, for large � can be evaluated in just O.� log �/ operations.

Regardless of the choice of internal nodes, the leading term of the asymptotic
error can be expressed as

QF;s;�
! Œ f � � I!Œ f � (7)

� � 1

.�i!/sC1

�
f .s/.1/� Qp.s/.1/

g0sC1.1/
ei!g.1/ � f .s/.�1/� Qp.s/.�1/

g0sC1.�1/ ei!g.�1/


C O
�
!�s�2�:

Similar formula applies in the presence of stationary points: quadrature error is
reduced to interpolation error at the endpoints and stationary points. This error, in
turn, can be analysed very precisely using the Peano Kernel Theorem [8] and the
decrease in asymptotic error (as distinct to the asymptotic rate of decay of the error)
can be very substantial.
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Fig. 2 The logarithmic error log10 jQF;2;0
! Œ f � � IŒ f �j (the lime green solid line, the top) and

log10 jQF;2;8
! Œ f �� IŒ f �j (the dark blue dotted line, the bottom) for f .x/ D .1Cx Cx2/�1, g.x/ D x,

s D 2, ! 2 Œ0; 30� (the left) and ! 2 Œ0; 500� (the right)

To illustrate this we revisit the example from Fig. 1. Logarithmic errors of plain-
vanilla Filon (the lime green solid line) and EFM with Jacobi points (the dark blue
dotted line) are displayed in Fig. 2 with s D 2 and � D 8. It can be observed that the
rates of decay between plain-vanilla Filon and EFM are very different. For small !,
EFM is definitely superior by design, while as ! increases both of them decay as
the asymptotic order O

�
!�3� but EFM has much smaller error.

Based on the above research, it is legitimate to ask what is the optimal choice
of internal nodes. In reality, these are two questions. If we are concerned with
choosing the same nodes for all ! then the two main choices in [8] are probably
the best: if ‘optimal’ means the least uniform error then Jacobi wins but once we
wish to optimize computation then Clenshaw–Curtis is the better choice. However,
the situation is entirely different once the cks are allowed to depend on !. Now the
answer is clear at the ‘extremities’:

• For ! D 0 the optimal choice is Legendre points, lending themselves to classical
Gaussian quadrature;

• For ! � 1 the optimal choice maximizes the asymptotic rate of error decay,
whereby (5) emerges as the natural preference.

The challenge, though, is to bridge ! D 0 with ! � 1, and this forms the core of
this paper.

This is the place to mention a recent paper of Zhao and Huang [16], which
combines the plain Filon with Exponentially Fitted method (EF), to propose an
alternative version of adaptive Filon method. For large !, the nodes in [16] are
reduced to �1 ˙ k

!
, which is similar to our method, inspired by plain Filon

method in [10]. For small !, since the EF method introduces complex points, the
method of [16] employs complex nodes derived from the computation of asymptotic
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expansion. The outcome is considerably more complicated and restricted to integrals
without stationary points. The algorithm in this paper employs altogether different
strategy for small !. To connect the optimal nodes between Gauss–Legendre points
when ! D 0 and� �1 � �k

1C!
�

of large !, the real nodes dependent ! are presented
by constructing Filon homotopy. Moreover, our method is extended to the case of
stationary points.

In Sect. 2 we discuss different choices of homotopy functions, connecting
Gaussian weights for ! D 0 and points (5) for ! � 1 in the absence of stationary
points. Numerical experiments are provided to illustrate the effectiveness of the
adaptive method. The adaptive approach to the Filon method is extended in Sect. 3
to the case of stationary points. Finally, in Sect. 4 we discuss the advantages and
limitations of this approach.

2 Adaptive Filon Method Without Stationary Points

2.1 The Construction of !-Dependent Interpolation Points

Throughout this section we assume that (1) has no stationary points, i.e. that g0 ¤ 0
in Œ�1; 1�. We define the vector function c.!/ D fck.!/g2s�1

kD0 as Filon homotopy
once it obeys the following conditions:

1. Each ck is a piecewise-smooth function of ! � 0;
2. ck.0/ D �.2s/

kC1, the .kC 1/st zero of the Legendre polynomial P2s (in other words,
the .kC 1/st Gauss–Legendre point), arranged in a monotone order;

3.

ck.!/ D

8
<̂

:̂

�1C �k

! C 1 ; k D 0; : : : ; s � 1;

1 � �.2s� k � 1/
! C 1 ; k D s; : : : ; 2s� 1

C O.!�2/; ! � 1;

where 0 < � < .s � 1/�1;
4. For every ! � 0

�1 � c0.!/ < c1.!/ < � � � < c2s�1.!/ � 1:

In other words, c is a vector of s trajectories connecting Gauss–Legendre points
with (5), all distinct and living in Œ�1; 1�.

A convenient way to construct Filon homotopy is by choosing any piecewise-
smooth weakly monotone function � such that �.0/ D 1, �.!/ D O.!�2/ (or
smaller) for ! � 1 (therefore lim!!1 �.!/ D 0), and setting

ck.!/ D �.2s/
kC1�.!/C 'k.!/Œ1 � �.!/�; k D 0; : : : ; 2s � 1; (8)
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where

'k.!/ D

8
<̂

:̂

�1C �k

! C 1 ; k D 0; : : : ; s � 1;

1 � �.2s� k � 1/
! C 1 ; k D s; : : : ; 2s� 1:

It is easy to prove that conditions 1–4 are satisfied and (8) is a Filon homotopy.
To illustrate our argument and in search for a ‘good’ Filon homotopy, we consider

four functions �,

a. �1.!/ D Heaviside.10 � !/, where

Heaviside. y/ D
(
1; y � 0;
0; y < 0

is the Heaviside function;
b. �2.!/ D .1C !2/�1;
c. �3.!/ D 2=

�
1C exp

�
log4.1C !/��;

d. �4.!/ D cos
�
�
2

e!=2�1
256Ce!=2

	
.

Figure 3 displays the four functions � but perhaps more interesting is Fig. 4,
where we depict the homotopy curves ck.!/ of (8) for the four choices of � and
s D 4. �1 essentially stays put at Gauss–Legendre points until ! D 10 and then
jumps to the points (5), while �4 represents a smooth approximation to �1. �2 and �3
abandon any memory of Gauss–Legendre points fairly rapidly, implicitly assuming
very early onset of asymptotic behaviour in the integral (1).

To gain basic insight into the differences among the functions �j, we have applied
them to the evaluation of the integral

Z 1

�1
ei!xdx

1C xC x2
(9)

using ten function evaluations and letting � D 1=s. To set the stage, in Fig. 5 we
have calculated the integral using five different Extended Filon–Jacobi methods (6)
with � D 10�2s referenced from [8]: (1) s D 1, � D 8; (2) s D 2, � D 6; (3) s D 3,
� D 4, (4) s D 4, � D 2 and (5) s D 5, � D 0. The errors (to logarithmic scale) are
displayed separately for ! 2 Œ0; 20� and ! 2 Œ0; 200�.

So far, the figure is not very surprising and we recall from the previous section
that “large s, small �” strategy is better for ! � 1, while “small s, large �” wins
for small ! � 0. However, let us instead solve (10) with adaptive Filon, using one
of the four �j functions above. Again, we need to distinguish between small and
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Fig. 3 The functions �j, j D 1; 2; 3; 4 (from the left to right)

large ! and the corresponding plots are Figs. 6 and 7 respectively. It is clear that
for large ! there is little to distinguish adaptive Filon from EFJ with s D 5 (which
is also plain Filon): everything in this regime is determined by asymptotic analysis
and the only relevant observation is that nothing of essence is lost once we replace
derivatives by suitable finite differences. The big difference is for small ! � 0,
before the onset of asymptotics. At ! D 0 all four methods use Gauss–Legendre
points and the error beats even EFJ with � D 8, which corresponds to Lobatto
points. However, the errors for �2 and �3 deteriorate rapidly and this is explained
by the homotopy curves in Fig. 4, because interpolation points very rapidly move to
their ‘asymptotic regime’. �1 and �4 are much better, except that �1 has an ungainly
jump at ! D 10, a consequence of its discontinuity, while �4 seems to be the winner.
Similar outcome is characteristic to all other numerical experiments that we have
undertook.
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Fig. 4 Homotopy curves (8) ck.!/, k D 0; � � � ; 2s � 1 (from the bottom to top line) with s D 4

for each functions �j, j D 1; 2; 3; 4 (from the left to right)

Another interpretation of �4 is that it tends to represent for every ! the best
outcome for any EFJ with the same number of function evaluations. In other words,
denoting the error of EFJ with � D 10 � 2s by eŒs�! (the dark blue dotted line) and
the error of adaptive Filon by Qe! (the orange red solid line) derived by �4, we plot
in Fig. 8

log10
ˇ
ˇminfjeŒ j�! j W j D 1; : : : ; 5gˇˇ and log10 jQe!j:

For larger values of ! the two curves overlap to all intents and purposes. For small
!, though, adaptive Filon is better than the best among the different EFJ schemes—
the difference is directly attributable to Gauss–Legendre points being superior to
Lobatto points.
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Fig. 5 Logarithmic errors for EFJ, applied to (9), with ten function evaluations: The lines
corresponding to s vary in shades of blue between 1 (light) and 5 (dark), as well as in the line
style, with � D 10� 2s

The function �4 is a special case of

�a;b.!/ D cos



�

2

ea! � 1
bC ea!

�
; (10)

using a D 1
2

and b D 256. In general, any �a;b with small a > 0 and large
b > 0 obeys the conditions for a Filon homotopy and, in addition, exhibits
favourable behaviour—essentially, it is a smooth approximation to a Heaviside
function, allowing for Gauss–Legendre points seamlessly segueing into (5), a finite-
difference approximation of derivatives at the endpoints.

What is the optimal function �? Clearly, this depends on the functions f and g, as
does the pattern of transition from ‘small !’ to asymptotic behaviour. Our choice,
� 1
2 ;256

, is in our experience a good and practical compromise.

2.2 The Adaptive Filon Algorithm

Let us commence by gathering all the threads into an algorithm. Given the
integral (1) (without stationary points) and a value of !,

1. Compute the interpolation points c0; : : : ; c2s�1 using � D 1=s, (8) and � D � 1
2 ;256

given by (10).
2. Evaluate the polynomial Qp of degree 2s� 1 which interpolates f at c0; : : : ; c2s�1.
3. Calculate

QAF;s
! Œ f � D

Z 1

�1
Qp.x/ei!g.x/dx: (11)
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Fig. 6 Logarithmic errors for adaptive Filon, applied to (9), with ten function evaluations, � D 1
5
,

! 2 Œ0; 20� and �j, j D 1; 2; 3; 4 (top left to bottom right)

Proposition 1 The asymptotic error of the adaptive Filon method QAF;s
! Œ f � is

O
�
!�s�1�.

Proof For a fixed !, adaptive Filon is a special case of EFM with derivatives at the
endpoints replaced by suitable finite differences—we already know from [10] that
this is consistent with the stipulated asymptotic behaviour. ut

Alternatively, we can prove the proposition acting directly on the error term (7),
this has the advantage of resulting in an explicit expression for the leading error
term.

Needless to say, Proposition 1 represents just one welcome feature of adaptive
Filon. The other is that it tends to deliver the best uniform behaviour for all ! � 0.
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Fig. 7 Logarithmic errors for Adaptive Filon, applied to (9), with ten function evaluations, � D 1
5
,

! 2 Œ0; 200� and �j, j D 1; 2; 3; 4 (top left to bottom right)

3 Stationary Points

Let us suppose that g0 vanishes at r � 1 points in Œ�1; 1�. We split the interval
into subintervals Ik such that in each Ik D Œ˛k; ˇk� there is a single stationary
point residing at one of the endpoints—it is trivial to observe that there are at least
maxf1; 2r � 2g and at most 2r such subintervals. We use a linear transformation to
map each Ik to the interval Œ�1; 1� so that the stationary point resides at �1:

Stationary point at ˛k W x! 2x � .ˇk C ˛k/

ˇk � ˛k
;

Stationary point at ˇk W x! �2x � .ˇk C ˛k/

ˇk � ˛k
:



420 J. Gao and A. Iserles

Fig. 8 A comparison between adaptive Filon (the orange red solid line) and the pointwise best
scheme among different EFJ methods (the dark blue dotted line)

We thus reduce the task at hand into a number of computations of (1) with a single
stationary point at x D �1.

In the sequel we assume that �1 is a simple stationary point, i.e. that g0.�1/ D 0
and g00.�1/ ¤ 0. The extension of our narrative to higher-order stationary points is
straightforward.

We commence with the EFM method and recall from [8] its asymptotic
expansion,

I!Œ f � � �0.!/
1X

mD0


mŒ f �.�1/
.�i!/m

�
1X

mD0

1

.�i!/mC1

�

mŒ f �.1/ � 
mŒ f �.�1/

g0.1/
ei!g.1/

� 

0
mŒ f �.�1/
g00.�1/ ei!g.�1/


; (12)

where

�0.!/ D
Z 1

�1
ei!g.x/dx;


0Œ f �.x/ D f .x/ 
mŒ f �.x/ D d

dx


m�1Œ f �.x/ � 
m�1Œ f �.�1/
g0.x/

; m � 0:

We recall that �0.!/ D
R 1

�1 ei!g.x/dx � O.!�1=2/ and that �mŒ f �.1/ is a linear
combination of f . j/.1/, j D 0; : : : ;m, while �mŒ f �0.�1/ is a linear combination
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of f . j/.�1/, j D 0; : : : ; 2m C 1. Putting all this together, we need to impose the
interpolation conditions

p.k/.�1/ D f .k/.�1/; k D 0; : : : ; 2s; (13)

p.k/.1/ D f .k/.1/; k D 0; : : : ; s � 1;

to ensure that the error of (12) is O.!�s�1/. (Alternatively, we can interpolate at �1
up to j D 2s� 1, resulting in an asymptotic error of O.!�s�1=2/—we do not pursue
this route here.) Alternatively to (13) (and the proof is identical to the case when
stationary points are absent), we can take a leaf off (5) and interpolate at

'k.!/ D �1C �k

! C 1; k D 0; : : : ; 2s; (14)

'k.!/ D 1 � �.3s� k/

! C 1 ; k D 2sC 1; : : : ; 3s; (15)

where � < 2=.3s � 1/ ensures that all interpolation points are distinct, by a
polynomial Qp of degree 3s. This gives a derivative-free Filon á la [10]. To extend
this to adaptive Filon we need to use (8) again by replacing the superscript 2s by
3s C 1, blending the 'ks with Gauss–Legendre points and employing � D � 1

2 ;256
.

The outcome is no longer symmetric, as demonstrated in Fig. 9, but this should cause
no alarm.

The construction of adaptive Filon proceeds exactly along the same lines as when
stationary points are absent. All that remains is to present a numerical example:

Fig. 9 Homotopy curves ck.!/, k D 0; � � � ; 3s (from the bottom to top line), for (1) s D 3,
� D 2=9 (the left) and (2) s D 4, � D 1

6
(the right)
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Fig. 10 Logarithmic errors for EFJ, applied to (16), with 13 function evaluations: s varies between
1 (light) and 4 (dark), with � D 12� 3s. The colours correspond to different values of s: the larger
s, the darker the colour

Fig. 11 Logarithmic errors for adaptive Filon, applied to (16), with 13 function evaluations

instead of (9), we consider

Z 1

�1
ei!.xC1/2dx

1C xC x2
(16)

and present the counterparts of Figs. 5, 6, 7, and 8, except that we plot only the
results for � D �4 D � 1

2 ;256
. All figures compare an implementation with 13 function

evaluations.
It is vividly clear from Figs. 10, 11, and 12 that, again, adaptive Filon represents

the best of all worlds: for small ! is it as good as Gaussian quadrature, for large
! it matches plain Filon and in the intermediate interval it converts smoothly and
seamlessly between these two regimes.
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Fig. 12 A comparison between adaptive Filon (the orange red solid line) and the pointwise best
scheme among different EFJ methods (the dark blue dotted line) for 13 function evaluations

4 Conclusions

In this paper, we have developed an adaptive Filon method for the computation of
a highly oscillatory integral with or without stationary points. The main feature of
this method is that it optimises the choice of interpolation points between different
oscillatory regimes relative to those EFM based on the analysis in [8].

Is adaptive Filon the best-possible implementation of the ‘Filon concept’, a
method for all seasons? Not necessarily! To define ‘best’ we must first define the
purpose of the exercise. If the main idea is to compute (1) for a small number of
values of ! and we cannot say in advance whether these values live in a highly
oscillatory regime (or if we wish a method which is by design good uniformly for
al ! � 0) then adaptive Filon definitely holds the edge in comparison to other
implementations of the Filon method, in particular to Extended Filon. However,
the method is not competitive once we require the computation of a very large
number of integrals for the same function f but many different values of !. The
reason is simple. Conventional Filon methods use interpolation points which are
independent of !, hence we need to compute the values of f (or its derivatives) and
form an interpolating polynomial just once: it can be reused by any number of values
of !. Adaptive Filon, though, re-evaluates f afresh for every ! and subsequently
forms a new interpolating polynomial. Thus, increased accuracy and better uniform
behaviour are offset by higher cost.

Numerical methods must be always used with care and claims advanced on their
behalf must be responsible. Adaptive Filon is probably optimal in the scenario when
just few values of (1) need be computed but considerably more expensive once a
multitude of computations with different values of ! is sought.
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MLMC for Nested Expectations

Michael B. Giles

Dedicated to Ian H. Sloan on the occasion of his 80th birthday,
with warm appreciation for the way in which he welcomed me
into the MC/QMC community and introduced me to QMC
methods when I switched research fields in 2006.

Abstract This paper discusses progress and future research possibilities in apply-
ing MLMC ideas to nested expectations of the form EŒ g.EŒ f .X;Y/jX�/ �, with an
outer expectation with respect to one random variable X, and an inner conditional
expectation with respect to a second random variable Y. The difficulty in treating
such applications is shown to depend on whether the function g is (1) smooth, (2)
continuous and piecewise smooth, or (3) discontinuous.

1 Introduction

Considerable progress has been achieved over the past 10 years in the development,
application and analysis of Multilevel Monte Carlo (MLMC) methods, applied to
SDEs, SPDEs, continuous-time Markov processes, and a range of other stochastic
models; see [10] and references therein.

This paper discusses an area of active research, the application of MLMC ideas
to nested simulations, in which one is interested in estimating quantities of the form
EŒ g.EŒ f .X;Y/jX�/ � with an outer expectation with respect to one random variable
X, and an inner conditional expectation with respect to a second random variable Y.

Such nested expectations arise in a number of applications; the two applications
motivating the author’s research are the evaluation of Expected Value of Partial
Perfect Information (EVPPI) and Value-at-Risk (VaR).
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EVPPI arises in fields such as medicine [1, 4] and the exploration and exploita-
tion of oil and gas reservoirs [3, 24], the common element being decision making
under a large degree of uncertainty. In the medical case, models of the effectiveness
of different medical treatments are based on a number of uncertain parameters which
we group into two independent sets X and Y. Given no knowledge of X and Y other
than that they come from prescribed probability distributions, then given a finite
set of possible treatments D, the optimal choice dopt is the one which maximises
E Œ fd.X;Y/�where fd.X;Y/ represents some measure of the patient outcome, such as
QALY’s (quality-adjusted life-year, see Wikipedia), with a larger value being better.
Thus, with no knowledge, the expected optimal outcome is maxd E Œ fd.X;Y/� :
On the other hand, given perfect information on X;Y due to additional medical
research, the best treatment maximises fd.X;Y/, giving the overall expected outcome
E Œmaxd fd.X;Y/� : In the intermediate situation, if X is determined but not Y, then
the best treatment has expected outcome value E Œmaxd E Œ fd.X;Y/ jX� � : EVPI, the
expected value of perfect information, is the difference

EVPI D EŒmax
d

fd.X;Y/� �max
d

EŒ fd.X;Y/�;

and EVPPI, the expected value of partial perfect information, is the difference

EVPPI D EŒmax
d

E Œ fd.X;Y/ jX���max
d

EŒ fd.X;Y/�:

EVPPI represents the benefit, on average, of knowing the value of X. This can be
compared to the cost of the research required to determine X, to judge whether or
not the research is cost-effective.

Value-at-Risk (VaR) is a financial risk measure used by investment banks [16,
17, 22, 23]. In this application, X represent a set of risk factors affecting the value
of the bank’s portfolio over some short risk horizon. For a given X, the loss in value
of the portfolio is L.X/ � EŒ f .X;Y/jX� where the expectation corresponds to risk-
neutral pricing, with Y representing the stochastic drivers for the behaviour of the
underlying assets beyond the risk horizon. The objective with VaR is to compute
the loss threshold L˛ such that P.L.X/�L˛/ D ˛; for some small value of ˛. This
defines L˛ implicitly, but in this paper we will consider the simpler situation of a
given threshold L� and then computing P.L.X/�L�/ � E

�
1EŒ f .X;Y/jX��L�

�
: Hence

in this case the function g is a discontinuous indicator function.
The paper begins with a quick review of MLMC and two important variants,

the randomised unbiased MLMC method due to Rhee and Glynn [25], and the
Multi-Index Monte Carlo (MIMC) method of Haji-Ali et al. [21]. Based on material
in [10], Sect. 3 addresses the case in which the function g is smooth, using an
antithetic estimator to achieve a faster rate of multilevel variance convergence.
Section 4 addresses the EVPPI problem; a similar antithetic estimator is used but
the convergence is poorer due to the lack of smoothness when there is a switch in
the optimal decision. Section 5 addresses the VaR problem, and the difficulty in
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dealing with the discontinuous indicator function, and the paper finishes with a few
concluding comments.

2 MLMC and Two Important Variants

2.1 MLMC

The central idea behind MLMC is very simple: given a sequence P0;P1; : : :
which approximates a random output variable P with increasing accuracy, but also
increasing cost, we have the simple identity

EŒPL� D EŒP0�C
LX

`D1
EŒP`�P`�1� D

LX

`D0
EŒ�P`�; (1)

if we define�P` � P`�P`�1 and P�1 � 0. Therefore, if Z` is an unbiased estimator
for EŒ�P`� then

PL
`D0 Z` is an estimator for EŒPL�.

Combining this with a geometric sequence of levels, and choosing the finest
level L to control the magnitude of the weak error EŒPL�P�, leads to the usual
MLMC theorem in which we assume that there exist independent estimators Z`
based on N` Monte Carlo samples, each with expected cost C` and variance
V`, such that there are positive constants ˛; ˇ; �; c1; c2; c3 with ˛ � 1

2
min.ˇ; �/

and

1.
ˇ
ˇ
ˇEŒP`�P�

ˇ
ˇ
ˇ � c1 2

�˛ `

2. EŒZ`� D EŒ�P`�
3. V` � c2 2

�ˇ `
4. C` � c3 2

� `;

and then conclude that there exists a positive constant c4 such that for any desired
root-mean-square accuracy " < e�1 there are values L and N` for which the
multilevel estimator

Z D
LX

`D0
Z`;

has a mean-square-error with bound

MSE � E

h
.Z � EŒP�/2

i
< "2
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with a computational complexity C with bound

EŒC� �

8
ˆ̂̂
<

ˆ̂
:̂

c4 "�2; ˇ > �;

c4 "�2.log "/2; ˇ D �;
c4 "�2�.��̌ /=˛; ˇ < �:

In each new application, the objective is to design an estimator so that ˇ > � to
achieve the best order of complexity.

2.2 Randomised MLMC for Unbiased Estimation

An important extension has been introduced by Rhee and Glynn in [25]. Rather
than choosing the finest level of simulation L, based on the desired accuracy, and
then using the optimal number of samples on each level based on an estimate of the
variance, their “single term” estimator instead uses N samples in total, and for each
sample they perform a level ` simulation with probability p`>0, with

P1
`D0 p`D1.

The estimator is

Z D 1

N

NX

nD1
�P.n/

`.n/
=p`.n/

with the level `.n/ for each sample being selected randomly with the relevant
probability, so that

EŒZ� D
X

`

EŒ�P`� D EŒP�:

Hence, it is an unbiased estimator.
The choice of the probabilities p` is crucial. For both the variance and the

expected cost to be finite, it is necessary that

1X

`D0
V`=p` < 1;

1X

`D0
p` C` < 1:

Under the conditions of the usual MLMC theorem, this is possible when ˇ > � by
choosing p` / 2�.�Cˇ/`=2; so that

V`=p` / 2�.ˇ��/`=2; p` C` / 2�.ˇ��/`=2:
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It is not possible when ˇ�� , and for these cases the estimators in [25] have infinite
expected cost.

2.3 Multi-Index Monte Carlo

In standard MLMC, there is a one-dimensional set of levels, with a scalar level index
`, although in some applications changing ` can change more than one aspect of the
computation, such as both timestep and spatial discretisation in a parabolic SPDE
application [13]. In [21], Haji-Ali, Nobile and Tempone generalised this, with the
Multi-Index Monte Carlo (MIMC) method defining “levels” in multiple directions,
so that the level index ` is now a vector of integer indices. This is illustrated in Fig. 1
for a 2D MIMC application.

Generalising (1) to D dimensions in [21], Haji-Ali, Nobile and Tempone first
define a backward difference operator in one particular dimension, �dP` � P` �
P`�ed where ed is the unit vector in direction d, and then define the cross-difference


P` �
 

DY

dD1
�d

!

P`

so that the telescoping sum becomes

EŒP� D
X

`�0
EŒ
P`�: (2)

As an example, Fig. 1 marks the four locations at which P` must be computed to
determine the value of
P.5;4/ in the 2D application.

Following the presentation in [10], the MIMC theorem formulated in [21] can be
expressed in a form which matches quite closely the formulation of the MLMC

Fig. 1 “Levels” in 2D
multi-index Monte Carlo
application

�1

�2

four evaluations for
cross-difference DP(5,4)



430 M. B. Giles

�1

�2 L

�1

�2

Fig. 2 Two choices of 2D MIMC summation region L

theorem. If the level ` MIMC estimator Z` , with variance V` and cost C` , per
sample, satisfies

1.
ˇ
ˇ̌
EŒP` � P�

ˇ
ˇ̌ �! 0 as min

d
`d �!1

2. EŒZ` � D EŒ
P`�

3.
ˇ
ˇ̌
EŒZ` �

ˇ
ˇ̌ � c1 2

�˛�`

4. V` � c2 2
�ˇ�`

5. C` � c3 2
� �`;

then the complexity is O."�2/ provided ˇd > �d for all dimensions d, with
additional j log "j factors introduced if ˇd D �d for some d.

This complexity is achieved by truncating the set of increments in Eq. (2).
It might seem natural that the summation region L should be rectangular, as
illustrated on the left in Fig. 2, so that

X

`2L
EŒZ` � D EŒPL�

whereL is the outermost point on the rectangle. However, [21] proves that in general
this does not give the optimal order of complexity, and instead it is often best to use
a region which in 2D is triangular, as illustrated on the right in Fig. 2. This is very
similar to the use of sparse grid methods in high-dimensional PDE approximations
[7], and indeed MIMC can be viewed as a combination of sparse grid methods and
Monte Carlo sampling.

3 The General Smooth Case

In this first section, we consider the case in which g is a smooth function. A
particular case of interest is the VaR application which was discussed in the Sect. 1.
If one can estimate moments of the loss function L.X/, then an approximation of
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the loss CDF can be generated using Maximum Entropy reconstruction [2, 19]. The
critical loss value L˛ can then be determined from this CDF approximation.

3.1 MLMC Treatment

Following the presentation in [10], we are interested in estimating quantities of the
form E Œg .EŒ f .X;Y/jX�/ � where X is an outer random variable, and EŒ f .X;Y/jX�
is a conditional expectation with respect to an independent inner random vari-
able Y.

This can be simulated using nested Monte Carlo simulation with N outer samples
X.n/, M inner samples Y.m;n/ and a standard Monte Carlo estimator:

Z D N�1
NX

nD1
g

 

M�1
MX

mD1
f .X.n/;Y.m;n//

!

Note that to improve the accuracy of the estimate we need to increase both M and
N, and this will significantly increase the cost. In fact, it can be proved [18] that
the root-mean-square error is O.M�1C N�1=2/, so to achieve r.m.s. accuracy of
" it is best to choose M D O."�1/; N D O."�2/, giving a complexity which is
O."�3/.

An MLMC implementation is straightforward; on level ` we can use M` D 2`
inner samples. To construct a low variance estimate for EŒP`�P`�1� where

EŒP`� � E

"

g

 

M�1
`

MX̀

mD1
f .X;Y.m//

!#

;

we use an antithetic approach and split the M` samples for the “fine” value into two
subsets of size M`�1 for the “coarse” value:

Z` D N�1
`

NX̀

nD1

(

g

 

M�1
`

MX̀

mD1
f .X.n/;Y.m;n//

!

� 1
2
g

 

M�1
`�1

M`�1X

mD1
f .X.n/;Y.m;n//

!

� 1
2
g

0

@M�1
`�1

MX̀

mDM`�1C1
f .X.n/;Y.m;n//

1

A

9
=

;

Note that this has the correct expectation, i.e. EŒZ`� D EŒP`�P`�1�.
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If we define

M�1
`�1

M`�1X

mD1
f .X.n/;Y.m;n// D EŒ f .X.n/;Y/�C�f .n/1 ;

M�1
`�1

MX̀

mDM`�1C1
f .X.n/;Y.m;n// D EŒ f .X.n/;Y/�C�f .n/2 ;

then if g is twice differentiable a Taylor series expansion gives

Z` 
 � 1

4N`

NX̀

nD1
g00 �

EŒ f .X.n/;Y/�
� �
�f .n/1 ��f .n/2

	2
:

By the Central Limit Theorem,�f .n/1 ; �f .n/2 D O.M�1=2
` / and therefore

g00 �
EŒ f .X.n/;Y/�

� �
�f .n/1 ��f .n/2

	2 D O.M�1
` /:

It follows that EŒZ`� D O.M�1
` / and V` D O.M�2

` /. For the MLMC theorem, this
corresponds to ˛D1, ˇD2, �D1, so the complexity is O."�2/.

This antithetic approach to nested simulation has been developed independently
by several authors [6, 8, 20], and is related to an earlier use of an antithetic MLMC
estimator for SDEs [14].

Haji-Ali [20] used it in a mean field model for the motion of crowds, in which
each person is modelled as a independent agent subject to random forcing and an
additional force due to the collective influence of the crowd. This same approach is
also relevant to mean field problems which arise in plasma physics [26].

Bujok et al. [6] used multilevel nested simulation for a financial credit derivative
application. In their case, the function g was piecewise linear, not twice differen-
tiable, and so the rate of variance convergence was slightly lower, with ˇ D 1:5.
This will be discussed in Sect. 4, but it is still sufficient to achieve an overall O."�2/
complexity.

3.2 MIMC Treatment

The previous analysis assumes we can compute f .X;Y/ with O.1/ cost, but suppose
now that Y represents a complete Brownian path, and f .X;Y/ cannot be evaluated
exactly; it can only be approximated using some finite number of timesteps. Using
MLMC, on level ` we could use 2` timesteps and a Milstein discretisation (giving
first order weak and strong convergence) which would still give ˛ D 1, ˇ D 2.
However, we would now have � D 2, because on successive levels we would be
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using twice as many timesteps as well as twice as many inner samples. This then
leads to an overall MLMC complexity which is O."�2.log "/�2/.

Instead we can use MIMC to recover an optimal complexity of O."�2/. We now
have a pair of level indices .l1; l2/, with the number of inner samples equal to 2`1

and the number of timesteps proportional to 2`2 . If we use the natural extension
of the MLMC estimator to the corresponding MIMC estimator, which means (for
l1 > 0; l2 > 0) using

Z`DN�1
`

NX̀

nD1

8
<

:
g

0

@2�`1
2`1X

mD1
f`2 .X

.n/;Y.m;n//

1

A � 1
2
g

0

@2�`1C1
2`1�1X

mD1
f`2.X

.n/;Y.m;n//

1

A

� 1
2
g

0

@2�`1C1
2`1X

mD2`1�1C1
f`2 .X

.n/;Y.m;n//

1

A

� g

0

@2�`1
2`1X

mD1
f`2�1.X.n/;Y.m;n//

1

AC 1
2
g

0

@2�`1C1
2`1�1X

mD1
f`2�1.X.n/;Y.m;n//

1

A

C 1
2
g

0

@2�`1C1
2`1X

mD2`1�1C1
f`2�1.X.n/;Y.m;n//

1

A

9
=

;

The subscript on the f terms denotes the level of timestep approximation.
Carrying out the same analysis as before, performing the Taylor series expansion

around EŒ f .X.n/;Y/�, we obtain

Z` 
 � 1

4N`

NX̀

nD1
g00 .EŒ f .X.n/;Y/�/

��
�f .n/1;`2

��f .n/2;`2

	2 �
�
�f .n/1;`2�1��f .n/2;`2�1

	2�
:

The difference of squares can be re-arranged as

�
�f .n/1;`2

��f .n/2;`2

	2 �
�
�f .n/1;`2�1��f .n/2;`2�1

	2

D
�
.�f .n/1;`2

C�f .n/1;`2�1/ � .�f .n/2;`2
C�f .n/2;`2�1/

	
�

�
.�f .n/1;`2

��f .n/1;`2�1/ � .�f .n/2;`2
��f .n/2;`2�1/

	

Due to the Central Limit Theorem, we have

�f .n/1;`2
C�f .n/1;`2�1 D O.2�`1=2/; �f .n/2;`2

C�f .n/2;`2�1 D O.2�`1=2/;
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and assuming first order strong convergence we also have

�f .n/1;`2
��f .n/1;`2�1 D O.2�`1=2�`2 /; �f .n/2;`2

��f .n/2;`2�1 D O.2�`1=2�`2/:

Combining these results we obtain

�
�f .n/1;`2

��f .n/2;`2

	2 �
�
�f .n/1;`2�1��f .n/2;`2�1

	2 D O.2�`1�`2 /

and therefore EŒZ`� D O.2�`1�`2 / and V` D O.2�2`1�2`2 / with a cost per sample
which is O.2`1C`2/. In the MIMC theorem this corresponds to ˛1 D ˛2 D 1, ˇ1 D
ˇ2D2, and �1D�2D1, so the overall complexity is O."�2/.

3.3 Nested MLMC

MIMC is not the only way in which to generalise MLMC to multiple dimensions.
Another option, which can sometimes be equivalent, but is often not, is to use
nested MLMC, with an inner MLMC being used to generate samples within an
outer MLMC computation.

The application in the previous section gives rise to a natural example of
this. Ideally, we would like to generate exact samples of f .X;Y/ with O.1/ cost
per sample. However, it is just as good to produce samples which have the
correct expected value EŒ f .X;Y/jX�, with an expected cost which is O.1/. This
can be achieved by using the randomised MLMC discussed in Sect. 2.2, so that
f .X.n/;Y.m;n// is replaced by

�
f .X.n/;Y.m;n/` /� f .X.n/;Y.m;n/`�1 /

	
= p`;

where the level ` which determines the number of timesteps is a random variable
taking integer value `0 � 0 with probability p`0 > 0. The only requirement is that
the variance for this inner randomised MLMC must decay faster with the number
of timesteps than the increase in the computational cost, so that p`0 can be specified
appropriately to achieve both finite variance and finite expected cost.

4 EVPPI

For the estimation of the difference EVPI� EVPPI defined in the Sect. 1, we define
a level ` approximation as

P` D max
d

fd
` �max

d
fd
`
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where maxd fd
`

and fd
`

represent averages over 2` independent values of Y.i/ for one
particular value of X, so that

EVPI � EVPPI D lim
`!1EŒP`�:

Following the ideas in [6, 10, 20] we use the antithetic MLMC estimator

Z` D 1
2



max

d
fd
.a/ Cmax

d
fd
.b/
�
� max

d
fd

where

• fd
.a/

is an average of fd.X;Y/ over 2`�1 independent samples for Y;

• fd
.b/

is an average over a second independent set of 2`�1 samples;
• fd is an average over the combined set of 2` inner samples.

The MLMC variance can be analysed by following the approach used by Giles
and Szpruch for Theorem 5.2 in [14], which is also similar to the analysis by Bujok
et al. in [6]. Define

Fd.X/ D EY Œ fd.X;Y/� ; dopt.X/ D arg max
d

Fd.X/

so the domain for X is divided into a number of regions in which the optimal decision
dopt.X/ is uniform, with a dividing lower-dimensional decision manifold K on which
dopt.X/ is not uniquely-defined.

Note that 1
2
. fd

.a/C fd
.b/
/ � fd D 0, and therefore Z` D 0 if the same decision

d maximises each of the terms in its definition. This is the key advantage of the

antithetic estimator, compared to the alternative fd
.a/� fd. When ` is large and so

there are many samples, fd
.a/
; fd

.b/
; fd will all be close to Fd.X/, and therefore it is

highly likely that Z`D0 unless X is very close to K at which there is more than one
optimal decision. This idea leads to a theorem on the MLMC variance, but first we
need to make three assumptions.

Assumption 1 E Œ j fd.X;Y/jp� is finite for all p�2.

Comment: this enables us to bound the difference between fd
.a/
; fd

.b/
; fd and Fd.X/.

Assumption 2 There exists a constant c0>0 such that for all 0<�<1

P



min
x2K
kX�xk � �

�
� c0 �:

Comment: this bounds the probability of X being close to the decision manifold K.
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Assumption 3 There exist constants c1; c2 > 0 such that if X … K, then

max
d

Fd.X/� max
d¤dopt.X/

Fd.X/ > min



c1; c2 min

x2K
kX�xk

�
:

Comment: on K itself there are at least 2 decisions d1; d2 which yield the same
optimal value Fd.X/; this assumption ensures at least a linear divergence between
the values as X moves away from K.

Theorem 1 If Assumptions 1–3 are satisfied, and Z` is as defined previously for
level `, then for any ı>0

V ŒZ`� D o.2�.3=2�ı/`/; E ŒZ`� D o.2�.1�ı/`/:

The proof of the theorem is given in [11], but a heuristic explanation is as
follows:

• Because of Assumption 1, for any X, fd � Fd.X/ D O.2�`=2/;
• Because of Assumption 2, there is an O.2�`=2/ probability of X being within

O.2�`=2/ of the decision manifold K, in which case Z` D O.2�`=2/;
• Because of Assumption 3, if it is further away from K then there is a clear

separation between the different decision values, and hence Z` D 0 with very
high probability.

• This results in EŒZ2` � D O.2�`=2/ � �O.2�`=2/
�2 D O.2�3`=2/.

The conclusion from the theorem is that the parameters for the MLMC theorem
are ˇ
3=2, ˛
1, and �D1, giving the optimal complexity of O."�2/. Numerical
results support this prediction.

A final comment is that sometimes the random variables in X or Y correspond
to Bayesian posterior distributions, with samples generated by MCMC methods.
In that case, it is possible to pre-generate a large set of MCMC samples, after the
initial burn-in, and then MLMC can uniformly and randomly take samples from this
dataset as required.

5 Value-at-Risk

The Value-at-Risk problem has been defined in Sect. 1. In this section, we begin
by introducing the idea of portfolio sub-sampling, and then proceed to discuss
the difficulties in constructing efficient MLMC estimators for VaR because of the
discontinuous nature of the indicator function.
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5.1 Portfolio Sub-sampling

In Sects. 3.2 and 3.3, we considered Y to represent the driving Brownian motion, and
the inner conditional expectation was with respect to this. However, in the context of
the Value-at-Risk application, where we are considering estimation of moments of
the loss for the purpose of Maximum Entropy reconstruction, there is an important
second aspect to this conditional expectation.

The loss function L.X/ has contributions from a large number of financial options
within a portfolio, so that it may be written as

L.X/ D
NoX

iD1
Li.X/; Li.X/ � E Œ fi.X;Y/ jX� ;

where Li.X/ is the loss from the ith option. In the existing literature, standard
treatments evaluate each sample of the total loss by summing the contributions from
all of the financial options, and the computational cost is inevitably proportional to
No, the number of options. However, instead we can express the loss as

L.X/ D E ŒLi.X/=pi� :

where the integer index i is randomly sampled from the set f1; 2; : : : ;Nog with
probability pi.

Adding back in the expectation with respect to the Brownian motion we obtain
the conditional expectation

L.X/ D E Œ fi.X;Y/=pi jX� ;

in which the expectation is now over both the Brownian motion and the index
of the option being sampled. When 2` samples are generated to approximate
the conditional expectation, they each can have a different option index as well
as a different Brownian path sample. The overall benefit is to achieve a com-
plexity, for a given accuracy " expressed as a fraction of the total portfolio
value, which no longer depends on No, the number of financial options in the
portfolio.

This idea of sub-sampling a portfolio has been investigated by Wenhui Gou
[19] whose research combined it with Maximum Entropy reconstruction of the
loss distribution, but used an analytic expression for the conditional expectation
with respect to the driving Brownian motion, and also used a control variate which
substantially reduced the variance of the estimator.
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5.2 Previous Work on VaR

As explained in the Sect. 1, we are interested in determining

P

h
L.X/ � L�

i
� E

h
1
�
L.X/ � L��

i

This is again a nested simulation problem, but the indicator function makes it much
harder than EVPPI, because small differences between the “coarse” and “fine”
estimates for the conditional expectation in L.X/ can lead to a ˙1 change in the
indicator value.

Gordy and Juneja [18] considered this problem, using a single level Monte Carlo
method with M inner samples Y.m;n/ for each of N outer samples X.n/ to estimate

L.X/ � EŒ f .X;Y/�

for each of N outer samples X.n/, so that the overall estimate for the probability of
exceeding the loss threshold is

P

h
L.X/ � L�i 
 N�1

NX

nD1
1

 

M�1
MX

mD1
f .X.n/;Y.m;n/ � L�/

!

This problem setup assumes that it is possible to exactly simulate f .X.n/;Y/ at unit
cost. Given this, they proved that the resulting RMS error is

O.M�1CN�1=2/;

and hence, to achieve an " RMS accuracy requires M D O."�1/, N D O."�2/ and
so the complexity is O."�3/.

Broadie et al. [5] improved on this, by noting that unless L.X/ � L� is small,
we usually don’t need many samples to determine whether L.X/ � L�. Their paper
presents a rigorously analysed adaptive algorithm based on the theory of sequential
sampling but here we give a simplified heuristic analysis. When using M inner
samples, if

�2.X/ D VŒ f .X;Y/jX�; d.X/ D
ˇ
ˇ
ˇEŒ f .X;Y/jX� � L�

ˇ
ˇ
ˇ

then the usual CLT confidence interval for the estimate of EŒ f .X;Y/jX� � L� has
size ˙3 �=pM. Hence, we need roughly

M D 9 �2.X/=d2.X/
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inner samples to be sure whether or not EŒ f .X;Y/jX� � L�. If we now use

M D min
�
c "�1; 9 �2.X/=d2.X/

�

then the cross-over point between the two terms in the minimum is at d D O."1=2/,
and it follows that the average number of inner samples required is

M D O."�1=2/;

reducing the overall complexity to O."�5=2/.
This is clearly a significant improvement on the complexity of the uniform

sampling algorithm of Gordy and Juneja, but in both papers they are not using the
sub-sampling introduced in Sect. 5.1 but are instead evaluating the full portfolio
each time so the complexity is also proportional to the number of options in the
portfolio. Furthermore, their analysis does not consider the additional cost which is
incurred when one needs to approximate an SDE for the underlying assets.

5.3 Current Research

Current research by the author and Abdul-Lateef Haji-Ali builds on the adaptive
approach of Broadie et al. [5] by incorporating MLMC ideas.

The first step is to extend Wenhui Gou’s work to Monte Carlo estimation of the
inner conditional expectations:

NoX

iD1
EŒ fi.X;Y/jX� 
 M�1

MX

mD1
fim.X;Wm/ = pim

where Wm represents the Brownian path and any additional random inputs needed
for the conditional expectation. This essentially combines, or unifies, the Monte
Carlo averaging over the portfolio samples with the averaging over the Brownian
paths.

If we do this with the uniform inner sampling with M` D 4` samples on level
`, assuming that fpm.X;Wm/ can be computed exactly at unit cost, then the error

in the inner estimate is O.M�1=2
` / D O.2�`/. There is an O.2�`/ probability of

being within O.2�`/ of the indicator step, producing an O.1/ value for the MLMC
estimator sample, so the MLMC variance is V` � 2�`: In addition we get bias �
M�1
` � 4�`; C` � M` � 4`; so ˛ 
 2; ˇ 
 1; � 
 2 and therefore the complexity

is O."�5=2/. The advantage over the previous method due to Broadie et al is that the
complexity is independent of the value of No the number of options in the portfolio,
but it still falls short of our target of O."�2/.



440 M. B. Giles

To further improve things, we add in the adaptive approach of Broadie et al, with
the number of inner samples dependent on both X and the level `, along the lines of

M`.X/ D max
�
c1 2

`;min
�
c2 4

`; 9 �2.X/=d2.X/
��
:

This gives approximately the same asymptotic behaviour in the variance and the
bias, i.e. bias � 4�`; V` � 2�`; but the cost is reduced to approximately C` � 2`:
This leads to ˛ 
 2; ˇ 
 1; � 
 1 and hence the complexity is approximately
O."�2/, independent of No.

The final challenge comes from the approximation of the underlying SDE. At first
sight this looks very difficult, but the algorithm does not require the exact sampling
of fim.X;Wm/; it is sufficient to have an unbiased estimate with a unit expected cost.
Following the ideas in Sect. 3.3, this is precisely what can be supplied in many cases
by Rhee and Glynn’s unbiased single-term estimator based on randomised MLMC.
This requires the use of the Milstein time discretisation, because of the improved
strong order of convergence and hence rate of MLMC variance convergence
compared to an Euler-Maruyama discretisation. The complexity analysis is largely
unchanged, and again we achieve an overall complexity of approximately O."�2/,
to within log terms.

In practice, it is also very important to use an effective control variate, similar to
the one used by Wenhui Gou [19], but the details are omitted here.

5.4 Future Research

There are other aspects of the VaR problem to be investigated in the future.
One is associated with the fact that the different financial options within a

portfolio vary greatly, both in their variance (in part due to differences in their
financial magnitude) and in the computational cost involved in their simulation.
Both of these factors need to be taken into account in optimising the probability
pi for sampling the option with index i. It might even be desirable to identify a few
options which should always be sampled because of their large value, and apply the
randomised sub-sampling to the remainder.

Secondly, the discussion so far has been about the simpler problem of
determining

P.L.X/�L�/ � E
�
1L.X/�L�

�
;

for some given loss value L�. The research must be extended to the full VaR
definition which requires some root-finding algorithm to determine L˛ defined
implicitly for some ˛ by

P.L.X/�L˛/ D ˛:
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We also need to consider other risk measures such as CVaR, or expected shortfall,

CVaR D E ŒL.X/ j L.X/�L˛� D ˛�1
E
�
L.X/ 1L.X/�L˛

�
:

6 Conclusions

In this paper we have reviewed progress in applying MLMC ideas to problems with
nested expectations. Such applications lead quite naturally to the use of the Multi-
Index Monte Carlo method and other generalisations of MLMC such as nested
MLMC. Randomised MLMC for the inner conditional expectation is particularly
helpful as it is unbiased, which simplifies the treatment.

One important nested expectation application is the estimation of EVPPI, the
Expected Value of Partial Perfect Information. Substantial progress has been made
on this topic, in both the construction and the analysis of efficient algorithms.

In the context of the financial Value-at-Risk application, we have pointed out
the benefits to be achieved from sub-sampling the portfolio. Combining this with
an adaptive MLMC estimator addresses the challenge due to the discontinuous
indicator function in the outer expectation. This use of adaptive algorithms within
MLMC fits well with other current research [9, 12, 15].
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A Note on Some Approximation Kernels
on the Sphere

Peter Grabner

Dedicated to Ian H. Sloan on the occasion of his 80th birthday.

Abstract We produce precise estimates for the Kogbetliantz kernel for the approx-
imation of functions on the sphere. Furthermore, we propose and study a new
approximation kernel, which has slightly better properties.

1 Introduction

For d � 1, let Sd D fz 2 R
dC1 W hz; zi D 1g denote the d-dimensional unit sphere

embedded in the Euclidean space RdC1 and h�; �i be the usual inner product. We use
d�d for the surface element and set !d D

R
Sd d�d.

In [3] E. Kogbetliantz studied Cesàro means of the ultraspherical Dirichlet
kernel. Let C�

n denote the n-th Gegenbauer polynomial of index�. Then for � D d�1
2

K�;0
n .hx; yi/ D

nX

kD0

kC �
�

C�
k .hx; yi/

is the projection kernel on the space of harmonic polynomials of degree � n on
the sphere S

d. The kernel could be studied for all � > 0, but since we have
the application to polynomial approximation on the sphere in mind, we restrict
ourselves to half-integer and integer values of �. Throughout this paper d will denote
the dimension of the sphere and � D d�1

2
will be the corresponding Gegenbauer

parameter.
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Kogbetliantz [3] studied how higher Cesàro-means improve the properties of the
kernel K�;0

n : for ˛ � 0 set

K�;˛
n .t/ D 1

�nC˛
n

�
nX

kD0

 
n � kC ˛

n� k

!
kC �
�

C�
k .t/:

He proved that the kernels .K�;˛
n /n have uniformly bounded L1-norm, if ˛ > � and

that they are non-negative, if ˛ � 2�C1. There is a very short and transparent proof
of the second fact due to Reimer [4]. In this paper, we will restrict our interest to the
kernel K�;2�C1

n , which we will denote by K�
n for short.

The purpose of this note is to improve Kogbetliantz’ upper bounds for the kernel
K�

n . Especially, the estimates for K�
n .t/ given in [3] exhibit rather bad behaviour at

t D �1. This is partly a consequence of the actual properties of the kernel at that
point, but to some extent the estimate used loses more than necessary. Furthermore,
the estimates given in [3] contain unspecified constants. We have used some effort
to provide good explicit constants.

In the end of this paper we will propose a slight modification of the kernel
function, which is better behaved at t D �1 and still shares all desirable properties
of K�

n .

2 Estimating the Kernel Function

In the following we will use the notation

A˛n D
 

nC ˛
n

!

:

Notice that

1X

nD0
A˛n zn D 1

.1 � z/˛C1 : (1)

Let C�
n denote the n-th Gegenbauer polynomial with index �. The Gegenbauer

polynomials satisfy two basic generating function relations (cf. [1, 3])

1X

nD0
C�

n .cos#/zn D 1

.1 � 2z cos# C z2/�
(2)

1X

nD0

nC �
�

C�
n .cos#/zn D 1 � z2

.1 � 2z cos# C z2/�C1 : (3)
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Several different kernel functions for approximation of functions on the sphere
and their saturation behaviour have been studied in [2]. We will investigate the
kernel

K�
n .cos#/ D 1

A2�C1
n

nX

kD0
A2�C1

n�k

kC �
�

C�
k .cos#/;

which has been shown to be positive by E. Kogbetliantz [3] for � > 0.
By the generating functions (1) and (3) it follows

1X

nD0
A2�C1

n K�
n .cos#/zn D 1C z

.1 � 2z cos# C z2/�C1.1 � z/2�C1 : (4)

Thus we can derive integral representations for K�
n using Cauchy’s integral formula.

As pointed out in the introduction, we will restrict the values of � to integers or half-
integers. The main advantage of this is the fact that the exponent of .1 � z/ in (4) is
then an integer.

For � D k 2 N0 we split the generating function (4) into two factors

1C z

.1 � 2z cos# C z2/.1 � z/
� 1

.1 � 2z cos# C z2/k.1 � z/2k
:

The first factor is essentially the generating function of the Fejér kernel, namely

1

2�i

I

jzjD 1
2

1C z

.1 � 2z cos# C z2/.1 � z/

dz

znC1 D
 

sin.nC 1/#
2

sin #
2

!2
� 1

.sin #
2
/2
: (5)

Notice that this is just the kernel .nC 1/K0
n .

We compute the coefficients of the second factor using Cauchy’s formula

Qk
n.cos#/ D 1

2�i

I

jzjD 1
2

1

.1 � 2z cos# C z2/k.1 � z/2k

dz

znC1 : (6)

In order to produce an estimate for Qk
n, we first compute Q1

n. This is done by
residue calculus and yields

Q1
n.cos#/ D 1

4
�
sin #

2

�2



nC 2 � sin.nC 2/#

sin#

�
: (7)
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This function is obviously non-negative and satisfies

Q1
n.cos#/ � nC 2

2
�
sin #

2

�2 : (8)

Now the functions Qk
n are formed from Q1

n by successive convolution:

QkC1
n .cos#/ D

nX

mD0
Qk

m.cos#/Q1
n�m.cos#/:

Inserting the estimate (8) and an easy induction yields

Qk
n.cos#/ � 1

2k
�
sin #

2

�2k

kX

rD0

 
k

r

! 
nC rC k � 1

n

!

: (9)

Remark 1 Asymptotically, this estimate is off by a factor of 2�, but as opposed to
Kogbetliantz’ estimate it does not contain a negative power of sin# , which would
blow up at # D � . The size of the constant is lost in the transition from (7) to (8),
where the trigonometric term (actually a Chebyshev polynomial of the second kind)
is estimated by its maximum. On the one hand this avoids a power of sin# in the
denominator, on the other hand it spoils the constant.

Putting (5) and (9) together yields

A2kC1
n Kk

n.cos#/ � 1

2k.sin #
2
/2kC2

kX

`D0

 
k

`

! 
nC kC `

n

!

; (10)

where we have used the identity

nX

iD0

 
iC m

i

!

D
 

nC mC 1
n

!

:

Remark 2 Since the generating function of A2kC1
n Kk

n.cos#/ is a rational function
in this case, an application of residue calculus would have of course been an
option. The calculation of the residues at e˙i# produces a denominator containing
.sin#/2k�1. Computation of the numerators for small values of k show that this
denominator actually cancels, but we did not succeed in proving this in general.
Furthermore, keeping track of the estimates through this cancellation seems to be
difficult. This denominator could also be eliminated by restricting C

n � # � � � C
n ,

but this usually spoils any gain in the constants obtained before. This was actually
the technique used in [3].
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For � D 1
2
C k we split the generating function (4) into the factors

1p
1� 2z cos# C z2.1 � z/

� 1C z

.1 � 2z cos# C z2/kC1.1 � z/2kC1 (11)

with k 2 N0. The second factor is exactly the generating function related to the case
of integer parameter � studied above.

For the coefficients of the first factor in (11) we use Cauchy’s formula again

Rn.cos#/ D 1

2�i

I

jzjD 1
2

1p
1 � 2z cos# C z2.1 � z/

dz

znC1 :

We deform the contour of integration to encircle the branch cut of the square root,
which is chosen to be the arc of the circle of radius one connecting the points e˙i#

passing through�1 (Fig. 1). This deformation of the contour passes through1 and
the simple pole at z D 1, where we collect a residue. This gives

Rn.cos#/ D 1

2 sin #
2

� 1

2
p
2�

2��#Z

#

cos.nC 1/tp
cos# � cos t sin t

2

dt:

We estimate this by

Rn.cos#/ � 1

2 sin #
2

C 1

2
p
2�

2��#Z

#

1p
cos# � cos t sin t

2

dt D 1

sin #
2

: (12)

This estimate is the best possible independent of n, because R2n.�1/ D 1.

Fig. 1 The contour of
integration used for deriving
Rn.cos #/

(z)

(z)

10

eiθ

e−iθ
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Putting the estimates (10) and (12) together we obtain

A2kC2
n K

kC 1
2

n .cos#/ � 1

2k
�
sin #

2

�2kC3
kX

`D0

 
k

`

! 
nC kC `C 1

n

!

: (13)

Summing up, we have proved the following.

Theorem 1 Let � D d�1
2

be a positive integer or half-integer. Then the kernel K�
n

satisfies the following estimates

K�
n .cos#/ �

8
ˆ̂
<

ˆ̂
:

1

2b�c �sin #
2

�2�C2
b�cX

`D0

 
b�c
`

!
.2�C 1/`C1

.nC 2�C 1/`C1 for 0 < # � �
.nC4�C1/n
.nC2�/n for 0 � # � �;

(14)

where .a/n D a.a � 1/ � � � .a � n C 1/ denotes the falling factorial (Pochhammer
symbol).

Remark 3 The estimate (14) is best possible with respect to the behaviour in n for
a fixed # 2 .0; �/, as well as for the power of sin #

2
. The constant in front of

the main asymptotic term could still be improved, especially its dependence on the
dimension. The second estimate is the trivial estimate by K�

n .1/.

3 A New Kernel

The kernel K�
n .cos#/ exhibits a parity phenomenon at # D � , which occurs in the

first asymptotic order term (see Fig. 2 for illustration). This comes from the fact that
the two singularities at e˙i# collapse to one singularity of twice the original order

Fig. 2 Comparison between the kernels K
3
2

10, K
3
2

11, L
3
2

10, and L
3
2

11. The kernels K show oscillations
and a parity phenomenon at # D �
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for this value of # . In order to avoid this, we propose to study the kernel given by
the generating function

.1C z/2�C2

.1 � 2z cos# C z2/�C1.1� z/2�C1 D
1 � z2

.1 � 2z cos# C z2/�C1

� .1C z/2�C1

.1 � z/2�C2 : (15)

Let B�n be given by

1X

nD0
B�n zn D .1C z/2�C1

.1 � z/2�C2 ; (16)

then the kernel is given by

L�n .cos#/ D 1

B�n

nX

kD0
B�n�k

kC �
�

C�
k .cos#/ (17)

D 1

B�n

2�C1X

`D0

 
2�C 1
`

!

A2�C1
n�` K�

n�`.cos#/: (18)

The coefficients B�n satisfy

B�n D
2�C1X

`D0

 
2�C 1
`

! 
n � `C 2�C 1

n � `

!

D
2�C1X

`D0
.�1/`

 
2�C 1
`

!

22�C1�`
 

n � `C 2�C 1
n

!

� 22�C1n2�C1

.2�C 1/Š :

The expression in the second line, which allows to read of the asymptotic
behaviour immediately, is obtained by expanding the numerator in (16) into powers
of 1 � z.

For � 2 N0 we write the generating function of B�n L�n .cos#/ as



.1C z/2

.1 � 2z cos# C z2/.1 � z/2

��
� .1C z/2

.1 � 2z cos# C z2/.1 � z/
: (19)
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The coefficients of the first factor are denoted by S�n .cos#/. They are obtained by
successive convolution of

S1n.cos#/ D 1

2�i

I

jzjD 1
2

.1C z/2

.1 � 2z cos# C z2/.1 � z/2
dz

znC1

D nC 1
�
sin #

2

�2

 

1 � cos #
2

sin.nC 1/#
2.nC 1/ sin #

2

!

:

In order to estimate S1n.cos#/, we estimate the sinc-function by its minimum

sinc.t/ D sin t

t
� �C0 D �0:217233628211221657408279325562 : : : :

The value was obtained with the help of Mathematica. This gives

1 � cos
#

2

sin.nC 1/#
2.nC 1/ sin #

2

D 1 � sinc..nC 1/#/ cos #
2

sinc. #
2
/

� 1C C0 DW C D 1:217233628211221657408279325562 : : : ;
where we have used that cos #

2
� sinc. #

2
/ for 0 � # � � . From this we get the

estimate

S1n.cos#/ � C
nC 1
�
sin #

2

�2

and consequently

S�n.cos#/ � C�

�
sin #

2

�2�

 
nC 2� � 1

n

!

(20)

by successive convolution as before.

Remark 4 This expression is bit simpler than the corresponding estimate for Q�
n ,

because the iterated convolution of the terms nC1 is a binomial coefficient, whereas
the iterated convolution of terms nC2 can only be expressed as a linear combination
of binomial coefficients. The growth order is the same.

In a similar way we estimate the coefficient of the second factor in (19)

1

2�i

I

jzjD 1
2

.1C z/2

.1 � 2z cos# C z2/.1 � z/

dz

znC1

D 1

2
�
sin #

2

�2 .2 � cos n# � cos.nC 1/#/ � 2
�
sin #

2

�2 :
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As before, this is the kernel function for � D 0.
Putting this estimate together with (20) we obtain

B�n L�n.cos#/ � 2C�

�
sin #

2

�2�C2

 
nC 2�

n

!

(21)

for � 2 N0.
For � D kC 1

2
(k 2 N0) we factor the generating function as

.1C z/p
1 � 2z cos# C z2.1 � z/

� .1C z/2kC2

.1 � 2z cos# C z2/kC1.1 � z/2kC1 : (22)

We still have to estimate the coefficient of the first factor, which is given by the
integral

Tn.cos#/ D 1

2�i

I

jzjD 1
2

.1C z/p
1 � 2z cos# C z2.1 � z/

dz

znC1 :

We transform this integral in the same way as we did before using the contour in
Fig. 1 which yields

Tn.cos#/ D 1

sin #
2

� 1

�
p
2

2��#Z

#

cos t
2

cos.nC 1
2
/tp

cos# � cos t sin t
2

dt: (23)

The modulus of the integral can be estimated by

p
2

�

�Z

#

cos t
2p

cos# � cos t sin t
2

dt D � � #
� sin #

2

� 1

sin #
2

:

This gives the bound

Tn.cos#/ � 2

sin #
2

: (24)

Putting this estimate together with (21) we obtain

B�n L�n .cos#/ � 4Ck

�
sin #

2

�2kC3

 
nC 2kC 1

n

!

(25)

for � D kC 1
2
.
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Fig. 3 Plots of the functions K
3
2

20.cos #/.sin #
2
/5, K

3
2

21.cos #/.sin #
2
/5, L

3
2

20.cos #/.sin #
2
/5, and

L
3
2

21.cos #/.sin #
2
/5 . Again the parity phenomenon for the kernel K is prominently visible

Summing up, we have proved the following. As before, the second estimate is
just the trivial estimate by L�n .1/.

Theorem 2 Let � D d�1
2

be a positive integer or half-integer. Then the kernel L�n
satisfies the following estimates

L�n .cos#/ �
8
<

:

D�
Cb�c

B�n.sin #
2 /

2�C2

�nC2�
n

�
for 0 < # � �

1

B�n

P2�C2
`D0

�
2�C2
`

�
22�C2�`.�1/`�nC4�C2�`

n

�
for 0 � # � �;

(26)

where D� D 2 for � 2 N and D� D 4, if � 2 1
2
C N0.

Remark 5 Notice that the orders of magnitude in terms of n and the powers of
sin #

2
are the same for L�n as for the kernel K�

n . This fact is illustrated by Fig. 3. The
coefficient of the asymptotic leading term of the estimate decays like .2�C1/.C=4/�
for L�n , whereas this coefficient decays like .2�C 1/.1=2/� for K�

n .
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Modern Monte Carlo Variants for
Uncertainty Quantification in Neutron
Transport

Ivan G. Graham, Matthew J. Parkinson, and Robert Scheichl

Dedicated to Ian H. Sloan on the occasion of his 80th birthday.

Abstract We describe modern variants of Monte Carlo methods for Uncertainty
Quantification (UQ) of the Neutron Transport Equation, when it is approximated
by the discrete ordinates method with diamond differencing. We focus on the
mono-energetic 1D slab geometry problem, with isotropic scattering, where the
cross-sections are log-normal correlated random fields of possibly low regularity.
The paper includes an outline of novel theoretical results on the convergence of
the discrete scheme, in the cases of both spatially variable and random cross-
sections. We also describe the theory and practice of algorithms for quantifying
the uncertainty of a functional of the scalar flux, using Monte Carlo and quasi-
Monte Carlo methods, and their multilevel variants. A hybrid iterative/direct solver
for computing each realisation of the functional is also presented. Numerical
experiments show the effectiveness of the hybrid solver and the gains that are
possible through quasi-Monte Carlo sampling and multilevel variance reduction. For
the multilevel quasi-Monte Carlo method, we observe gains in the computational "-
cost of up to two orders of magnitude over the standard Monte Carlo method, and
we explain this theoretically. Experiments on problems with up to several thousand
stochastic dimensions are included.

1 Introduction

In this paper we will consider the Neutron Transport equation (NTE), sometimes
referred to as the Boltzmann transport equation. This is an integro-differential
equation which models the flux of neutrons in a reactor. It has particular applications
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for nuclear reactor design, radiation shielding and astrophysics [44]. There are many
potential sources of uncertainty in a nuclear reactor, such as the geometry, material
composition and reactor wear. Here, we will consider the problem of random
spatial variation in the coefficients (the cross-sections) in the NTE, represented by
correlated random fields with potentially low smoothness. Our aim is to understand
how uncertainty in the cross-sections propagates through to (functionals of) the
neutron flux. This is the forward problem of Uncertainty Quantification.

We will quantify the uncertainty using Monte Carlo (MC) type methods, that
is, by simulating a finite number of pseudo-random instances of the NTE and by
averaging the outcome of those simulations to obtain statistics of quantities of
interest. Each statistic can be interpreted as an expected value of some (possibly
nonlinear) functional of the neutron flux with respect to the random cross-sections.
The input random fields typically need to be parametrised with a significant number
of random parameters leading to a problem of high-dimensional integration. MC
methods are known to be particularly well-suited to this type of problem due to
their dimension independent convergence rates.

However, convergence of the MC algorithm is slow and determined byp
V.�/=N , where V.�/ is the variance of the quantity of interest and N is the number

of samples. For this reason, research is focussed on improving the convergence,
whilst retaining dimensional independence. Advances in MC methods can broadly
be split into two main categories: improved sampling and variance reduction.
Improved sampling methods attempt to find samples that perform better than
the pseudo-random choice. Effectively, they aim to improve the

p
1=N term in

the error estimate. A major advance in sampling methods has come through the
development of quasi-Monte Carlo (QMC) methods. Variance reduction methods,
on the other hand, attempt to reduce the V.�/ term in the error estimate and thus
reduce the number of samples needed for a desired accuracy. Multilevel Monte
Carlo (MLMC) methods (initiated in [18, 28] and further developed in, e.g.,
[7, 9, 10, 20, 27, 32, 34, 47]) fall into this category. A comprehensive review of
MLMC can be found in [19].

The rigorous theory of all of the improvements outlined above requires regularity
properties of the solution, the verification of which can be a substantial task.
There are a significant number of published papers on the regularity of parametric
elliptic PDEs, in physical and parameter space, as they arise, e.g., in flow in
random models of porous media [9, 12, 13, 23, 32–34]. However, for the NTE, this
regularity question is almost untouched. Our complementary paper [25] contains a
full regularity and error analysis of the discrete scheme for the NTE with spatially
variable and random coefficients. Here we restrict to a summary of those results.

The field of UQ has grown very quickly in recent years and its application to
neutron transport theory is currently of considerable interest. There are a number
of groups that already work on this problem, e.g. [4, 17, 21] and references
therein. Up to now, research has focussed on using the polynomial chaos expansion
(PCE), which comes in two forms; the intrusive and non-intrusive approaches. Both
approaches expand the random flux in a weighted sum of orthogonal polynomials.
The intrusive approach considers the expansion directly in the differential equation,
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which in turn requires a new solver (‘intruding’ on the original solver). In contrast,
the non-intrusive approach attempts to estimate the coefficients of the PCE directly,
by projecting onto the PCE basis cf. [4, Eq. (40)]. This means the original solver
can be used as a ‘black box’ as in MC methods. Both of the approaches then
use quadrature to estimate the coefficients in the PCE. The main disadvantage
of standard PCE is that typically the number of terms grow exponentially in the
number of stochastic dimensions and in the order of the PCE, the so-called curse of
dimensionality.

Fichtl and Prinja [17] were some of the first to numerically tackle the 1D slab
geometry problem with random cross-sections. Gilli et al. [21] improved upon
this work by using (adaptive) sparse grid ideas in the collocation method, to
tackle the curse of dimensionality. Moreover, [5] constructed a hybrid PCE using a
combination of Hermite and Legendre polynomials, observing superior convergence
in comparison to the PCE with just Hermite polynomials. More recently [4] tackled
the (time-independent) full criticality problem in three spatial, two angular and one
energy variable. They consider a second expansion, the high-dimensional model
representation (HDMR), which allows them to expand the response (e.g. functionals
of the flux) in terms of low-dimensional subspaces of the stochastic variable. The
PCE is used on the HDMR terms, each with their own basis and coefficients. We
note however, that none of these papers provide any rigorous error or cost analysis.

The structure of this paper is as follows. In Sect. 2, we describe the model
problem, a 1D slab geometry simplification of the Neutron Transport Equation
with spatially varying and random cross-sections. We set out the discretisation of
this equation and discuss two methods for solving the resultant linear systems; a
direct and an iterative solver. In Sect. 3, the basic elements of a fully-discrete error
analysis of the discrete ordinates method with diamond differencing applied to the
model problem are summarised. The full analysis will be given in [25]. In Sect. 4,
we introduce a number of variations on the Monte Carlo method for quantifying
uncertainty. This includes a summary of the theoretical computational costs for
each method. Finally, Sect. 5 contains numerical results relating to the rest of the
paper. We first present a hybrid solver that combines the benefits of both direct and
iterative solvers. Its cost depends on the particular realisation of the cross-sections.
Moreover, we present simulations for the UQ problem for the different variants of
the Monte Carlo methods, and compare the rates with those given by the theory.

2 The Model Problem

The Neutron Transport Equation (NTE) is a physically derived balance equation,
that models the angular flux .r; �;E/ of neutrons in a domain, where r is position,
� is angle and E is energy. Neutrons are modelled as non-interacting particles
travelling along straight line paths with some energy E. They interact with the
larger nuclei via absorption, scattering and fission. The rates �A, �S and �F at which
these events occur are called the absorption, scattering and fission cross-sections,
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respectively. They can depend on the position r and the energy E of the neutron. The
scattering cross-sections also depend on the energy E0 after the scattering event, as
well as on the angles � and �0 before and after the event.

The two main scenarios of interest in neutron transport are the so-called fixed
source problem and the criticality problem. We will focus on the former, which
concerns the transport of neutrons emanating from some fixed source term f . It has
particular applications in radiation shielding. We will further simplify our model to
the 1D slab geometry case by assuming

• no energy dependence;
• dependence only on one spatial dimension and infinite extent of the domain in

the other two dimensions;
• no dependence of any cross-sections on angle;
• no fission.

The resulting simplified model is an integro-differential equation for the angular
flux  .x; �/ such that

�
@ N 
@x
.x; �/ C �.x/ .x; �/ D �S.x/.x/ C f .x/ ; (1)

where .x/ D 1

2

Z 1

�1
 .x; �0/ d�0 ; (2)

for any x 2 .0; 1/ and � 2 Œ�1; 1�, subject to the no in-flow boundary conditions

 .0; �/ D 0; for � > 0 and  .1; �/ D 0; for � < 0 : (3)

Here, the angular domain is reduced from S2 to the unit circle S1 and parametrised
by the cosine � 2 Œ�1; 1� of the angle. The equation degenerates at � D 0, i.e. for
neutrons moving perpendicular to the x-direction. The coefficient function �.x/ is
the total cross-section given by � D �S C �A. For more discussion on the NTE see
[11, 37].

2.1 Uncertainty Quantification

An important problem in industry is to quantify the uncertainty in the fluxes due to
uncertainties in the cross-sections. Most materials, in particular shielding materials
such as concrete, are naturally heterogeneous or change their properties over time
through wear. Moreover, the values of the cross-sections are taken from nuclear
data libraries across the world and they can differ significantly between libraries
[36]. This means there are large amounts of uncertainty on the coefficients, and this
could have significant consequences on the system itself.
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To describe the random model, let .˝;A ;P/ be a probability space with ! 2 ˝
denoting a random event from this space. Consider a (finite) set of partitions of
the spatial domain, where on each subinterval we assume that �S D �S.x; !/ and
� D �.x; !/ are two (possibly dependent or correlated) random fields. Then the
angular flux and the scalar flux become random fields and the model problem (1), (2)
becomes

�
@ N 
@x
.x; �; !/ C �.x; !/ .x; �; !/ D �S.x; !/.x; !/ C f .x/ ; (4)

where .x; !/ D
Z 1

�1
 .x; �0; !/d�0 (5)

and  .�; �; !/ satisfies the boundary conditions (3). The set of Eqs. (4), (5), (3) have
to hold for almost all realisations ! 2 ˝ .

For simplicity, we restrict ourselves to deterministic �A D �A.x/ with

0 < �A;min � �A.x/ � �A;max < 1 ; for all x 2 Œ0; 1� ; (6)

and assume a log-normal distribution for �S.x; !/. The total cross-section �.x; !/ is
then simply the log-normal random field with values �.x; !/ D �S.x; !/C�A.x/. In
particular, we assume that log �S is a correlated zero mean Gaussian random field,
with covariance function defined by

C�.x; y/ D �2var

21��

� .�/



2
p
�
jx � yj
�C

��
K�



2
p
�
jx � yj
�C

�
: (7)

This class of covariances is called the Matérn class. It is parametrised by the
smoothness parameter � � 0:5; �C is the correlation length, �2var is the variance,
� is the gamma function and K� is the modified Bessel function of the second kind.
The limiting case, i.e. � ! 1, corresponds to the Gaussian covariance function
C1.x; y/ D �2var exp.�jx � yj2=�2C/.

To sample from �S we use the Karhunen-Loève (KL) expansion of log �S, i.e.,

log�S.x; !/ D
1X

iD1

p
�i �i.x/ Zi.!/ ; (8)

where Zi � N .0; 1/ i.i.d. Here �i and �i are the eigenvalues and the L2.0; 1/-
orthogonal eigenfunctions of the covariance integral operator associated with kernel
given by the covariance function in (7). In practice, the KL expansion needs to
be truncated after a finite number of terms (here denoted d). The accuracy of this
truncation depends on the decay of the eigenvalues [38]. For � < 1, this decay is
algebraic and depends on the smoothness parameter �. In the Gaussian covariance
case the decay is exponential. Note that for the Matérn covariance with � D 0:5, the
eigenvalues and eigenfunctions can be computed analytically [38]. For other cases
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of �, we numerically compute the eigensystem using the Nyström method—see, for
example, [16].

The goal of stochastic uncertainty quantification is to understand how the
randomness in �S and � propagates to functionals of the scalar or angular flux. Such
quantities of interest may be point values, integrals or norms of  or  . They are
random variables and the focus is on estimating their mean, variance or distribution.

2.2 Discretisation

For each realisation ! 2 ˝ , the stochastic 1D NTE (4), (5), (3) is an integro-
differential equation in two variables, space and angle. For ease of presentation,
we suppress the dependency on ! 2 ˝ for the moment.

We use a 2N-point quadrature rule
R 1

�1 f .�/d� 
 PN
jkjD1 wkf .�k/ with nodes

�k 2 Œ�1; 1�nf0g and positive weights wk to discretise in angle, assuming the (anti-)
symmetry properties ��k D ��k and w�k D wk. (In later sections, we construct
such a rule by using N-point Gauss-Legendre rules on each of Œ�1; 0/ and .0; 1�.)

To discretise in space, we introduce a mesh 0 D x0 < x1 < : : : < xM D 1

which is assumed to resolve any discontinuities in the cross-sections �; �S and is
also quasiuniform—i.e. the subinterval lengths hj WD xj � xj�1 satisfy �h � hj �
h WD maxjD1;:::M hj; for some constant � > 0. Employing a simple Crank-Nicolson
method for the transport part of (4), (5) and combining it with the angular quadrature
rule above we obtain the classical diamond-differencing scheme:

�k
�k;j � �k;j�1

hj
C �j�1=2

�k;j C �k;j�1
2

D �S;j�1=2˚j�1=2 C Fj�1=2 ; j D 1; : : : ;M; jkj D 1; : : : ;N; (9)

where

˚j�1=2 D 1

2

NX

jkjD1
wk
�k;j C �k;j�1

2
; j D 1; : : : ;M : (10)

Here �j�1=2 denotes the value of � at the mid-point of the interval Ij D .xj�1; xj/,
with the analogous meaning for �S;j�1=2 and Fj�1=2. The notation reflects the fact
that (in the next section) we will associate the unknowns �k;j in (9) with the nodal
values  k;h.xj/ of continuous piecewise-linear functions  k;h 
  .�; �k/.

Finally, (9) and (10) have to be supplemented with the boundary conditions
�k;0 D 0, for k > 0 and �k;M D 0, for k < 0. If the right-hand side of (9)
were known, then (9) could be solved simply by sweeping from left to right (when
k > 0) and from right to left (when k < 0). The appearance of ˚j�1=2 on the
right-hand side means that (9) and (10) consitute a coupled system with solution
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.�;˚/ 2 R
2NM�RM . It is helpful to think of � as being composed of 2N subvectors

�k, each with M entries �k;j, consisting of approximations to  .xj; �k/ with xj

ranging over all free nodes.
The coupled system (9) and (10) can be written in matrix form as



T �˙S

�P I

�

�

˚

�
D



F
0

�
: (11)

Here, the vector ˚ 2 R
M contains the approximations of the scalar flux at the

M midpoints of the spatial mesh. The matrix T is a block diagonal 2NM � 2NM
matrix, representing the left hand side of (9). The 2N diagonal blocks of T, one per
angle, are themselves bi-diagonal. The 2NM �M matrix ˙S simply consists of 2N
identical diagonal blocks, one per angle, representing the multiplication of ˚ by �S

at the midpoints of the mesh. The M � 2NM matrix P represents the right hand side
of (10), i.e. averaging at the midpoints and quadrature. The matrix I denotes the
M �M identity matrix. The vector F 2 R

2NM contains 2N copies of the source term
evaluated at the M midpoints of the spatial mesh.

2.3 Direct and Iterative Solvers

We now wish to find the (approximate) fluxes in the linear system (11). We note that
the matrix T is invertible and has a useful sparsity structure that allows its inverse
to be calculated in O.MN/ operations. However, the bordered system (11) is not as
easy to invert, due to the presence of ˙S and P.

To exploit the sparsity of T, we do block elimination on (11) obtaining the Schur
complement system for the scalar flux, i.e.,

�
I � PT�1˙S

�
˚ D PT�1F ; (12)

which now requires the inversion of a smaller (dense) matrix. Note that (12)
is a finite-dimensional version of the reduction of the integro-differential equa-
tion (4), (5) to the integral form of the NTE, see (20). In this case, the two
dominant computations with O.M2N/ and O.M3/ operations respectively, are the
triple matrix product PT�1˙S in the construction of the Schur complement and the
LU factorisation of the M �M matrix

�
I � PT�1˙S

�
. This leads to a total

theoretical cost of the direct solver � O.M2.M C N// : (13)

We note that for stability reasons (see Sect. 3, also [42] in a simpler context), the
number of spatial and angular points should be related. A suitable choice is M � N,
leading to a cost of the direct solver of O.M3/ in general.
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The second approach for solving (11) is an iterative solver commonly referred to
as source iteration, cf. [8]. The form of (12) naturally suggests the iteration

˚.k/ D PT�1 �˙S˚
.k�1/ C F

�
; (14)

where ˚.k/ is the approximation at the kth iteration, with ˚.0/ D PT�1F. This can
be seen as a discrete version of an iterative method for the integral equation (20).

In practice, we truncate after K iterations. The dominant computations in the
source iteration are the K multiplications with PT�1˙S. Exploiting the sparsity of
all the matrices involved, these multiplications cost O.MN/ operations, leading to
an overall

theoretical cost of source iteration � O .M N K/ : (15)

Our numerical experiments in Sect. 5 show that for N D 2M the hidden constants
in the two estimates (13) and (15) are approximately the same. Hence, whether the
iterative solver is faster than the direct solver depends on whether the number of
iterations K to obtain an accurate enough solution is smaller or larger than M.

There are sharp theoretical results on the convergence of source iteration for
piecewise smooth cross-sections [8, Thm 2.20]. In particular, if .K/.!/ denotes the
approximation to .!/ after K iterations, then

�
��
��

1=2
�
 � .K/�

�
��
�
2

� C0


�

�
��
�
�S

�

�
��
�1

�K

; (16)

for some constant C0 and � � 1. That is, the error decays geometrically with rate
no slower than the spatial maximum of �S=� . This value depends on ! and will
change pathwise. Using this result as a guide together with (6), we assume that the
convergence of the L2-error with respect to K can be bounded by

k � .K/k2 � C

�
�
�
�
�S

�

�
�
�
�

K

1
; (17)

for some constant C that we will estimate numerically in Sect. 5.

3 Summary of Theoretical Results

The rigorous analysis of UQ for PDEs with random coefficients requires estimates
for the error when discretisations in physical space (e.g. by finite differences) and
probability space (e.g. by sampling techniques) are combined. The physical error
estimates typically need to be probabilistic in form (e.g. estimates of expectation
of the physical error). Such estimates are quite well-developed for elliptic PDEs—



Modern Monte Carlo Variants for Uncertainty Quantification in Neutron Transport 463

see for example [9] but this question is almost untouched for the transport equation
(or more specifically the NTE). We outline here some results which are proved in
the forthcoming paper [25]. This paper proceeds by first giving an error analysis
for (1), (2) with variable cross-sections, which is explicit in �; �S, and then uses this
to derive probabilistic error estimates for the spatial discretisation (9), (10).

The numerical analysis of the NTE (and related integro-differential equation
problems such as radiative transfer) dates back at least as far as the work of Keller
[30]. After a huge growth in the mathematics literature in the 1970s and 1980s,
progress has been slower since. This is perhaps surprising, since discontinuous
Galerkin (DG) methods have enjoyed a massive recent renaissance and the solution
of the neutron transport problem was one of the key motivations behind the original
introduction of DG [43]. Even today, an error analysis of the NTE with variable
(even deterministic) cross-sections (with explicit dependence on the data) is still not
available, even for the model case of mono-energetic 1D slab geometry considered
here.

The fundamental paper on the analysis of the discrete ordinates method for
the NTE is [42]. Here a full analysis of the combined effect of angular and
spatial discretisation is given under the assumption that the cross-sections � and �S

in (4) are constant. The delicate relation between spatial and angular discretisation
parameters required to achieve stability and convergence is described there. Later
research e.g. [2, 3] produced analogous results for models of increasing complexity
and in higher dimensions, but the proofs were mostly confined to the case of cross-
sections that are constant in space. A separate and related sequence of papers (e.g.
[35, 48], and [1]) allow for variation in cross-sections, but error estimates explicit in
this data are not available there.

The results outlined here are orientated to the case when �; �S have relatively
rough fluctuations. As a precursor to attacking the random case, we first consider
rough deterministic coefficients defined as follows. We assume that there is some
partition of Œ0; 1� and that �; �S are C� functions on each subinterval of the partition
(with � 2 .0; 1�), but that �; �S may be discontinuous across the break points. We
assume that the mesh fxjgMjDo introduced in Sect. 2.2 resolves these break points.
(Here C� is the usual Hölder space of index � with norm k � k�.) We also assume that
the source function f 2 C�.

When discussing the error when (9), (10) is applied to (1), (2), it is useful to
consider the “pure transport” problem:

�
du

dx
C �u D g; with u.0/ D 0; when � > 0 and u.1/ D 0 when � < 0; (18)

and with g 2 C a generic right-hand side (where � ¤ 0 is now a parameter).
Application of the Crank-Nicolson method (as in (9)) yields

�



Uj �Uj�1

hj

�
C �j�1=2



Uj C Uj�1

2

�
D gj�1=2 ; for j D 1; : : : ;M ; (19)
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with analogous boundary conditions, where, for any continuous function c, we use
cj�1=2 to denote c.xj�1=2/. Letting Vh denote the space of continuous piecewise linear
functions with respect to the mesh fxjg, (19) is equivalent to seeking a uh 2 Vh (with
nodal values Uj) such that

Z

Ij



�

duh

dx
Ce�uh

�
D
Z

Ij

eg ; j D 1; : : : ;M; where Ij D .xj�1; xj/;

andec denotes the piecewise constant function with respect to the grid fxjg which
interpolates c at the mid-points of subintervals.

It is easy to show that both (18) and (19) have unique solutions and we denote
the respective solution operators by S� and S h

� , i.e.

u D S�g and uh D S h
�g :

Bearing in mind the angular averaging process in (2) and (10), it is useful to then
introduce the corresponding continuous and discrete spatial operators:

.K g/.x/ WD 1

2

Z 1

�1
�
S�g

�
.x/d�; and .K h;Ng/.x/ D 1

2

NX

jkjD1
wk.S

h
�k

g/.x/ :

It is easy to see (and well known classically—e.g. [29]) that

.K g/.x/ D 1

2

Z 1

0

E1.j	.x; y/j/g. y/dy;

where E1 is the exponential integral and the function 	.x; y/ D R y
x � is known

as the optical path. In fact (even when � is merely continuous), K is a compact
Fredholm integral operator on a range of function spaces and K h;N is a finite rank
approximation to it. The study of these integral operators in the deterministic case
is a classical topic, e.g. [45]. In the case of random � , K is an integral operator
with a random kernel which merits further investigation. Returning to (1), (2), we
see readily that

 .x; �/ D S�.�S C f /.x/; so that  D K .�S C f /: (20)

Moreover (9) and (10) correspond to a discrete analogue of (20) as follows.
Introduce the family of functions  h;N

k 2 Vh, jkj D 1; : : : ;N, by requiring  h;N
k

to have nodal values �k;j. Then set

h;N WD 1

2

NX

jkjD1
wk 

h;N
k 2 Vh;
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and it follows that (9) and (10) may be rewritten (for each j D 1; : : : ;M)

Z

Ij

 

�k
d h;N

k

dx
Ce� h;N

k

!

D
Z

Ij

egh;N ; where gh;N D �S
h;N C f :

and thus

 
h;N
k D S h

�k

�
�S

h;N C f
�
; so that h;N D K h;N.�S

h;N C f / : (21)

The numerical analysis of (9) and (10) is done by analysing (the second equation
in) (21) as an approximation of the second equation in (20). This is studied in detail
in [42] for constant �; �S. In [25] we discuss the variable case, obtaining all estimates
explicitly in �; �S. Elementary manipulation on (20) and (21) shows that

 � h;N D .I �K h;N�S/
�1.K �K h;N/.�S C f /; (22)

and so

k � h;Nk1 � k.I �K h;N�S/
�1k1k.K �K h;N/.�S C f /k1: (23)

The error analysis in [25] proceeds by estimating the two terms on the right-
hand side of (23) separately. We summarise the results in the lemmas below. To
avoid writing down the technicalities (which will be given in detail in [25]), in
the following results, we do not give the explicit dependence of the constants
Ci; i D 1; 2; : : : ; on the cross sections � and �S. For simplicity we restrict our
summary to the case when the right-hand side of (19) is the average of g over Ij

(rather than the point value f ; �; �S2C2 without jumps and when gj�1=2). The actual
scheme (19) is then analysed by a perturbation argument, see [25].

Lemma 1 Suppose N is sufficiently large and h log N is sufficiently small. Then

k.I �K h;N�S/
�1k1 � C1 ; (24)

where C1 depends on � and �S, but is independent of h and N.

Sketch of Proof The proof is obtained by first obtaining an estimate of the form (24)
for the quantity k.I �K �S/

�1k1, and then showing that the perturbation kK �
K h;Nk1 is small, when N is sufficiently large and h log N is sufficiently small.
(The constraint linking h and log N arises because the transport equation (1) has a
singularity at � D 0.) The actual values of h;N which are sufficient to ensure that
the bound (24) holds depend on the cross-sections � , �S.

Lemma 2

k.K �K h;N/.�S C f /k1 �



C2 h log N C C3 h� C C4
1

N

�
kfk� ;

where C2;C3;C4 depend again on � and �S, but are independent of h;N and f .
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Sketch of Proof Introducing the semidiscrete operator:

.K Ng/.x/ D 1

2

NX

jkjD1
wk.S�k g/.x/

(corresponding to applying quadrature in angle but no discretisation in space), we
then write K �K h;N D .K �K N/ C .K N �K h;N/ and consider, separately,
the semidiscrete error due to quadrature in angle:

.K �K N/.�S C f / D 1

2

0

@
Z 1

�1
 .x; �/d� �

NX

jkjD1
wk .x; �k/

1

A ; (25)

and the spatial error for a given N:

.K N �K h;N/.�S C f / D 1

2

NX

jkjD1
wk

�
S�k �S h

�k

	
.�S C f /: (26)

The estimate for (25) uses estimates for the regularity of  with respect to �
(which are explicit in the cross-sections), while (26) is estimated by proving stability
of the Crank-Nicolson method and a cross-section-explicit bound on kk�.

Putting together Lemmas 1 and 2, we obtain the following.

Theorem 1 Under the assumptions outlined above,

k � h;Nk1 � C1



C2 h log N C C3 h� C C4

1

N

�
kfk� :

Returning to the case when �; �S are random functions, this theorem provides
pathwise estimates for the error. In [25], these are turned into estimates in the cor-
responding Bochner space provided the coefficients Ci are bounded in probability
space. Whether this is the case depends on the choice of the random model for �; �S.

In particular, using the results in [9, §2], [23], it can be shown that Ci 2 Lp.˝/,
for all 1 � p <1, for the specific choices of � and �S in Sect. 2. Hence, we have:

Corollary 1 For all 1 � p <1,

k � h;NkLp.˝;L1.0;1// � C



h log N C h� C 1

N

�
kfk� ;

where C is independent of h;N and f .
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4 Modern Variants of Monte Carlo

Let Q.!/ 2 R denote a functional of  or  representing a quantity of interest.
We will focus on estimating EŒQ�, the expected value of Q. Since we are not
specific about what functionals we are considering, this includes also higher order
moments or CDFs of quantities of interest. The expected value is a high-dimensional
integral and the goal is to apply efficient quadrature methods in high dimensions. We
consider Monte Carlo type sampling methods.

As outlined above, to obtain samples of Q.!/ the NTE has to be approximated
numerically. First, the random scattering cross section �S in (4) is sampled using
the KL expansion of log �S in (8) truncated after d terms. The stochastic dimension
d is chosen sufficiently high so that the truncation error is smaller than the other
approximation errors. For each n 2 N, let Zn 2 R

d be a realisation of the
multivariate Gaussian coefficient Z WD .Zi/iD1;:::;d in the KL expansion (8). Also,
denote by Qh.Zn/ the approximation of the nth sample of Q obtained numerically
using a spatial grid with mesh size h and 2N angular quadrature points. We assume
throughout that N � 1=h, so there is a single discretisation parameter h.

We will consider various unbiased, sample-based estimators bQh for the expected
value EŒQ� and we will quantify the accuracy of each estimator by its mean square
error (MSE) e.bQh/

2. Since bQh is assumed to be an unbiased estimate of EŒQh�, i.e.
EŒbQh� D EŒQh�, the MSE can be expanded as

e.bQh/
2 D E

h
.bQh � EŒQ�/2

i
D .E ŒQ � Qh�/

2 C VŒbQh� ; (27)

i.e., the squared bias due to the numerical approximation plus the sampling (or
quadrature) error VŒbQh� D EŒ.bQh � EŒQh�/

2�. In order to compare computational
costs of the various methods we will consider their �-cost C� , that is, the number of
floating point operations to achieve a MSE e.bQh/

2 less than �2.
To bound the �-cost for each method, we make the following assumptions on the

discretisation error and on the average cost to compute a sample from Qh:

ˇ
ˇ̌
E ŒQ �Qh�

ˇ
ˇ̌ D O.h˛/ ; (28)

E ŒC .Qh/� D O.h�� / ; (29)

for some constants ˛; � > 0. We have seen in Sect. 2 that (29) holds with � between
2 and 3. The new theoretical results in Sect. 3 guarantee that (28) also holds for
some 0 < ˛ � 1. Whilst the results of Sect. 3 (and [25]) are shown to be sharp in
some cases, the practically observed values for ˛ in the numerical experiments here
are significantly bigger, with values between 1.5 and 2.

In recent years, many alternative methods for high-dimensional integrals have
emerged that use tensor product deterministic quadrature rules combined with
sparse grid techniques to reduce the computational cost [4, 6, 17, 21, 26, 40, 49]. The
efficiency of these approaches relies on high levels of smoothness of the parameter
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to output map and in general their cost may grow exponentially with the number
of parameters (the curse of dimensionality). Such methods are not competitive with
Monte Carlo type methods for problems with low smoothness in the coefficients,
where large numbers of parameters are needed to achieve a reasonable accuracy.
For example, in our later numerical tests we will consider problems in up to 3600
stochastic dimensions.

However, standard Monte Carlo methods are notoriously slow to converge,
requiring thousands or even millions of samples to achieve acceptable accuracies. In
our application, where each sample involves the numerical solution of an integro-
differential equation this very easily becomes intractable. The novel Monte Carlo
approaches that we present here, aim to improve this situation in two complementary
ways. Quasi-Monte Carlo methods reduce the number of samples to achieve a
certain accuracy dramatically by using deterministic ideas to find well distributed
samples in high dimensions. Multilevel methods use the available hierarchy of
numerical approximations to our integro-differential equation to shift the bulk of
the computations to cheap, inaccurate coarse models while providing the required
accuracy with only a handful of expensive, accurate model solves.

4.1 Standard Monte Carlo

The (standard) Monte Carlo (MC) estimator for EŒQ� is defined by

bQMC
h WD 1

NMC

NMCX

nD1
Qh.Z

n/ ; (30)

where NMC is the number of Monte Carlo points/samples Zn � N .0; I/. The
sampling error of this estimator is VŒbQMC

h � D VŒQh�=NMC .
A sufficient condition for the MSE to be less than �2 is for both the squared

bias and the sampling error in (27) to be less than �2=2. Due to assumption (28),
a sufficient condition for the squared bias to be less than �2=2 is h � �1=˛ . Since
VŒQh� is bounded with respect to h! 0, the sampling error ofbQMC

h is less than �2=2
for NMC � ��2. With these choices of h and NMC , it follows from Assumption (29)
that the mean �-cost of the standard Monte Carlo estimator is

E

h
C�.bQMC

h /
i
D E

"
NMCX

nD1
C .Qh.Z

n//

#

D NMC E ŒC .Qh/�

D O
�
��2� �

˛

	
: (31)

Our aim is to find alternative methods that have a lower �-cost.
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4.2 Quasi-Monte Carlo

The first approach to reduce the �-cost is based on using quasi-Monte Carlo (QMC)
rules, which replace the random samples in (30) by carefully chosen deterministic
samples and treat the expected value with respect to the d-dimensional Gaussian Z
in (8) as a high-dimensional integral with Gaussian measure.

Initially interest in QMC points arose within number theory in the 1950’s, and
the theory is still at the heart of good QMC point construction today. Nowadays, the
fast component-by-component construction (CBC) [41] provides a quick method
for generating good QMC points, in very high-dimensions. Further information on
the best choices of deterministic points and QMC theory can be found in e.g. [14,
15, 39, 46].

The choice of QMC points can be split into two categories; lattice rules and
digital nets. We will only consider randomised rank-1 lattice rules here. In particular,
given a suitable generating vector z 2 Z

d and R independent, uniformly distributed
random shifts .�r/

R
rD1 in Œ0; 1�d, we construct NQMC D R P lattice points in the unit

cube Œ0; 1�d using the simple formula

v.n/ D frac
�nz

P
C�r

	
; n D 1; : : : ;P; r D 1; : : : ;R

where “frac” denotes the fractional part function applied componentwise and the
number of random shifts R is fixed and typically small e.g. R D 8; 16. To transform
the lattice points vn 2 Œ0; 1�d into “samples” eZn 2 R

d, n D 1; : : : ;NQMC , of the
multivariate Gaussian coefficients Z in the KL expansion (8) we apply the inverse
cumulative normal distribution. See [24] for details.

Finally, the QMC estimator is given by

bQQMC
h WD 1

NQMC

NQMCX

nD1
Qh.eZn/ ;

Note that this is essentially identical in its form to the standard MC estimator (30),
but crucially with deterministically chosen and then randomly shifted eZn. The
random shifts ensure that the estimator is unbiased, i.e. EŒbQQMC

h � D EŒQh�.
The bias for this estimator is identical to the MC case, leading again to a choice

of h � "1=˛ to obtain a MSE of "2. Here the MSE corresponds to the mean square
error of a randomised rank-1 lattice rule with P points averaged over the shift � �
U .Œ0; 1�d/. In many cases, it can be shown that the quadrature error, i.e., the second
term in (27), converges with O.N�1=2�

QMC /, with � 2 . 1
2
; 1�. That is, we can potentially

achieve O.N�1
QMC/ convergence for bQQMC

h as opposed to the O.N�1=2
MC / convergence

for bQMC
h . A rigorous proof of the rate of convergence requires detailed analysis of

the quantity of interest (the integrand), in an appropriate weighted Sobolev space,
e.g. [23]. Such an analysis is still an open question for this class of problems, and
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we do not attempt it here. Moreover, the generating vector z does in theory have
to be chosen problem specific. However, standard generating vectors, such as those
available at [31], seem to also work well (and better than MC samples). Furthermore,
we note the recent developments in “higher-order nets” [12, 22], which potentially
increase the convergence of QMC methods to O.N�q

QMC/, for q � 2.
Given the improved rate of convergence of the quadrature error and fixing the

number of random shifts to R D 8, it suffices to choose P � ��2� for the quadrature
error to be O."2/. Therefore it follows again from Assumption (29) that the �-cost
of the QMC method satisfies

E�

h
C�.bQQMC/

i
D O

�
��2�� �

˛

	
: (32)

When � ! 1
2
, this is essentially a reduction in the �-cost by a whole order of �. In

the case of non-smooth random fields, we typically have � 
 1 and the �-cost grows
with the same rate as that of the standard MC method. However, in our experiments
and in experiments for diffusion problems [24], the absolute cost is always reduced.

4.3 Multilevel Methods

The main issue with the above methods is the high cost for computing the samples
fQh.Z.n//g, each requiring us to solve the NTE. The idea of the multilevel Monte
Carlo (MLMC) method is to use a hierarchy of discrete models of increasing cost
and accuracy, corresponding to a sequence of decreasing discretisation parameters
h0 > h1 > : : : > hL D h. Here, only the most accurate model on level L is designed
to give a bias of O.�/ by choosing hL D h � �1=˛ as above. The bias of the other
models can be significantly higher.

MLMC methods were first proposed in an abstract way for high-dimensional
quadrature by Heinrich [28] and then popularised in the context of stochastic
differential equations in mathematical finance by Giles [18]. MLMC methods were
first applied in uncertainty quantification in [7, 10]. The MLMC method has quickly
gained popularity and has been further developed and applied in a variety of
other problems. See [19] for a comprehensive review. In particular, the multilevel
approach is not restricted to standard MC estimators and can also be used in
conjunction with QMC estimators [20, 32, 34] or with stochastic collocation [47].
Here, we consider multilevel variants of standard MC and QMC.

MLMC methods exploit the linearity of the expectation, writing

EŒQh� D
LX

`D0
EŒY`� ; where Y` WD Qh` � Qh`�1 and Qh

�1 WD 0:

Each of the expected values on the right hand side is then estimated separately. In
particular, in the case of a standard MC estimator with N` samples for the `th term,
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we obtain the MLMC estimator

bQMLMC
h WD

LX

`D0
bYMC
` D

LX

`D0

1

N`

NX̀

nD1
Y`.Z

`;n/ : (33)

Here, fZ`;ngN`nD1 denotes the set of i.i.d. samples on level `, chosen independently
from the samples on the other levels.

The key idea in MLMC is to avoid estimating EŒQh� directly. Instead, the
expectation EŒY0� D EŒQh0 � of a possibly strongly biased, but cheap approximation
of Qh is estimated. The bias of this coarse model is then estimated by a sum of
correction terms EŒY`� using increasingly accurate and expensive models. Since the
Y` represent small corrections between the coarse and fine models, it is reasonable
to conjecture that there exists ˇ > 0 such that

VŒY`� D O.hˇ` / ; (34)

i.e., the variance of Y` decreases as h` ! 0. This is verified for diffusion problems
in [9]. Therefore the number of samples N` to achieve a prescribed accuracy on level
` can be gradually reduced, leading to a lower overall cost of the MLMC estimator.
More specifically, we have the following cost savings:

• On the coarsest level, using (29), the cost per sample is reduced from O.h�� / to
O.h��

0 /. Provided VŒQh0 � 
 VŒQh� and h0 can be chosen independently of �, the
cost of estimating EŒQh0 � to an accuracy of " in (33) is reduced to O.��2/.

• On the finer levels, the number of samples N` to estimate EŒY`� to an accuracy of
" in (33) is proportional to VŒY`���2. Now, provided VŒY`� D O.hˇ` /, for some
ˇ > 0, which is guaranteed if Qh` converges almost surely to Q pathwise, then
we can reduce the number of samples as h` ! 0. Depending on the actual values
of ˛; ˇ and � , the cost to estimate EŒYL� on the finest level can, in the best case,
be reduced to O.���=˛/.

The art of MLMC is to balance the number of samples across the levels to
minimise the overall cost. This is a simple constrained optimisation problem to
achieve VŒbQMLMC

h � � �2=2. As shown in [18], using the technique of Lagrange
Multipliers, the optimal number of samples on level ` is given by

N` D
&

2��2
 

LX

`D0

p
VŒY`�=C`

!
p
VŒY`�C`

'

; (35)

where C` WD E ŒC .Y`/�. In practice, it is necessary to estimate VŒY`� and C` in (35)
from the computed samples, updating N` as the simulation progresses.

Using these values of N` it is possible to establish the following theoretical
complexity bound for MLMC [10].
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Theorem 2 Let us assume that (28), (34) and (29) hold with ˛; ˇ; � > 0. Then,
with L � log.��1/ and with the choice of fN`gLlD0 in (35) we have

E

h
C�.bQMLMC

hL
/
i
D O

�
�

�2�max
�
0;

��ˇ
˛

		
: (36)

When ˇ D � , then there is an additional factor log.��1/.

Using lattice points eZ`;n, as defined in Sect. 4.2, instead of the random samples
Z`;n we can in the same way define a multilevel quasi-Monte Carlo (MLQMC)
estimator

bQMLQMC
h WD

LX

`D0
bYQMC
` D

LX

`D0

1

eN`

eNX̀

nD1
Y`.eZ`;n/ : (37)

The optimal values for eN` can be computed in a similar way to those in the MLMC
method. However, they depend strongly on the rate of convergence of the lattice rule
and in particular on the value of � which is difficult to estimate accurately. We will
give a practically more useful approach below.

It is again possible to establish a theoretical complexity bound, cf. [32, 34].

Theorem 3 Let us assume that (28) and (29) hold with ˛; � > 0 and that there
exists � 2 . 1

2
; 1� and ˇ > 0 such that

V�ŒbY
QMC
` � D O

�
eN�1=�
` hˇ`

	
: (38)

Let the number of random shifts on each level be fixed to R and let L � log.��1/.
Then, there exists a choice of fN`gLlD0 such that

E�

h
C�.bQ

MLQMC
hL

/
i
D O

�
�

�2��max
�
0;

��ˇ�
˛

		
: (39)

When ˇ� D � , then there is an additional factor log.��1/1C�.

The convergence rate can be further improved by using higher order QMC rules
[13], but we will not consider this here.

It can be shown, for the theoretically optimal values of N`, that there exists a
constant C such that

V�ŒbY
QMC
` �

C`
D C ; (40)

independently of the level ` and of the value of � (cf. [32, Sect. 3.3]). The same holds
for MLMC. This leads to the following adaptive procedure to choose N` suggested
in [20], which we use in our numerical experiments below instead of (35).
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In particular, starting with an initial number of samples on all levels, we alternate
the following two steps until VŒbQMLMC

h � � �2=2:

1. Estimate C` and V�ŒbY
QMC
` � (resp. VŒbYMC

` �).
2. Compute

`� D L
argmax
`D0

 
V�ŒbY

QMC
` �

C`

!

and double the number of samples on level `�.

This procedure ensures that, on exit, (40) is roughly satisfied and the numbers of
samples across the levels N` are quasi-optimal.

We use this adaptive procedure for both the MLMC and the MLQMC method.
The lack of optimality typically has very little effect on the actual computational
cost. Since the optimal formula (35) for MLMC also depends on estimates of C`
and VŒY`�, it sometimes even leads to a better performance. An additional benefit in
the case of MLQMC is that the quadrature error in rank-1 lattice rules is typically
lowest when the numbers of lattice points is a power of 2.

5 Numerical Results

We now present numerical results to confirm the gains that are possible with the
novel multilevel and quasi-Monte Carlo method applied to our 1D NTE model (1)–
(3). We assume that the scattering cross-section �S is a log-normal random field
as described in Sect. 2.1 and that the absorption cross section is constant, �A �
exp.0:25/. We assume no fission, �F � 0, and a constant source term f D exp.1/.
We consider two cases, characterised by the choice of smoothness parameter �
in the Matérn covariance function (7). For the first case, we choose � D 0:5.
This corresponds to the exponential covariance and in the following is called the
“exponential field”. For the second case, denoted the “Matérn field”, we choose
� D 1:5. The correlation length and the variance are �C D 1 and �2var D 1,
respectively. The quantity of interest we consider is

Q.!/ D
Z 1

0

j.x; !/jdx : (41)

For the discretisation, we choose a uniform spatial mesh with mesh width h D
1=M and a quadrature rule (in angle) with 2N D M points. The KL expansion of
log.�S/ in (8) is truncated after d terms. We heuristically choose d to ensure that
the error due to this truncation is negligible compared to the discretisation error.
In particular, we choose d D 8h�1 for the Matérn field and d D 225h�1=2 for the
exponential field, leading to a maximum of 2048 and 3600 KL modes, respectively,
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for the finest spatial resolution in each case. Even for such large numbers of KL
modes, the sampling cost does not dominate because the randomness only exists in
the (one) spatial dimension.

We introduce a hierarchy of levels ` D 0; : : : ;L corresponding to a sequence of
discretisation parameters h` D 2�`h0 with h0 D 1=4, and approximate the quantity
of interest in (41) by

Qh.!/ WD 1

M

MX

jD1
j˚j�1=2.!/j:

To generate our QMC points we use an (extensible) randomised rank-1 lattice
rule (as presented in Sect. 4.2), with R D 8 shifts. We use the generating vector
lattice-32001-1024-1048576.3600, which is downloaded from [31].

5.1 A Hybrid Direct-Iterative Solver

To compute samples of the neutron flux and thus of the quantity of interest,
we propose a hybrid version of the direct and the iterative solver for the Schur
complement system (12) described in Sect. 2.3.

The cost of the iterative solver depends on the number K of iterations that we
take. For each !, we aim to choose K such that the L2-error k.!/ � .K/.!/k2
is less than �. To estimate K we fix h D 1=1024 and d D 3600 and use the direct
solver to compute h for each sample !. Let 
.!/ WD k�S.�; !/=�.�; !/k1. For a
sufficiently large number of samples, we then evaluate

log
���h.!/ � 

.K/
h .!/

��
2

	

K log
�

.!/

�

and find that this quotient is less than log.0:5/ in more than 99% of the cases, for
K D 1; : : : ; 150, so that we can choose C D 0:5 in (17). We repeat the experiment
also for larger values of h and smaller values of d to verify that this bound holds in
at least 99% of the cases independently of the discretisation parameter h and of the
truncation dimensions d.

Hence, a sufficient, a priori condition to achieve kh.!/ � .K/h .!/k2 < � in at
least 99% of the cases is

K D K.�; !/ D max

�
1;

�
log .2�/

log
�

.!/

�
� �

; (42)

where d�e denotes the ceiling function. It is important to note that K is no longer
a deterministic parameter for the solver (like M or N). Instead, K is a random
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variable that depends on the particular realisation of �S. It follows from (42),
using the results in [9, §2], [23] as in Sect. 3, that EŒK.�; �/� D O.log.�// and
VŒK.�; �/� D O

�
log.�/2

�
, with more variability in the case of the exponential field.

Recall from (13) and (15) that, in the case of N D 2M, the costs for the direct and
iterative solvers are C1M3 and C2KM2, respectively. In our numerical experiments,
we found that in fact C1 
 C2, for this particular relationship between M and N.
This motivates a third “hybrid” solver, presented in Algorithm 1, where the iterative
solver is chosen when K.!/ < M and the direct solver when K.!/ � M. This
allows us to use the optimal solver for each particular sample.

We finish this section with a study of timings in seconds (here referred to as
the cost) of the three solvers. In Fig. 1, we plot the average cost (over 214 samples)
divided by M3

` , against the level parameter `. We observe that, as expected, the
(scaled) expected cost of the direct solver is almost constant and the iterative solver
is more efficient for larger values of M`. Over the range of values of M` considered
in our experiments, a best fit for the rate of growth of the cost with respect to the
discretisation parameter h` in (29) is � 
 2:2, for both fields. Thus our solver has
a practical complexity of O.n1:1/, where n � M2 is the total number of degrees of
freedom in the system.

Algorithm 1 Hybrid direct-iterative solver of (12), for one realisation
Require: Given �S, � and a desired accuracy �

K D
�

log.2�/ = log.
/

�

if K < M then
Solve using K source iterations

else
Solve using the direct method

end if
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Fig. 1 Comparison of the average costs of the solvers (actual timings in seconds divided by M3
` )

for the Matérn field (left) and for the exponential field (right)
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5.2 A Priori Error Estimates

Studying the complexity theorems of Sect. 4, we can see that the effectiveness
of the various Monte Carlo methods depends on the parameters ˛, ˇ, � and �
in (28), (29), (34) and (38). In this section, we will (numerically) estimate these
parameters in order to estimate the theoretical computational cost for each approach.

We have already seen that � 
 2:2 for the hybrid solver. In Fig. 2, we present
estimates of the bias EŒQ � Qh` �, as well as of the variances of Qh` and of Y`,
computed via sample means and sample variances over a sufficiently large set of
samples. We only explicitly show the curves for the Matérn field. The curves for
the exponential field look similar. From these plots, we can estimate ˛ 
 1:9 and
ˇ 
 4:1, for the Matérn field, and ˛ 
 1:7 and ˇ 
 1:9, for the exponential field.

To estimate � in (38), we need to study the convergence rate of the QMC method
with respect to the number of samples NQMC . This study is illustrated in Fig. 3.
As expected, the variance of the standard MC estimator converges with O.N�1

MC/.
On the other hand, we observe that the variance of the QMC estimator converges
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Fig. 2 Estimates of the bias due to discretisation errors (left) and of the variances of Qh` and Y`
(right), in the case of the Matérn field
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Fig. 3 Convergence of standard Monte Carlo and quasi-Monte Carlo estimators: Matérn field
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approximately with O.N�1:6
QMC/ and O.N�1:4

QMC/ (or � D 0:62 and � D 0:71) for the
Matérn field and for the exponential field, respectively.

We summarise all the estimated rates in Table 1.

5.3 Complexity Comparison of Monte Carlo Variants

For a fair comparison of the complexity of the various Monte Carlo estimators,
we now use the a priori bias estimates in Sect. 5.2 to choose a suitable tolerance
�L for each choice of h D hL. Let 	` be the estimated bias on level `. Then, for
each L D 2; : : : ; 6, we choose h D hL and �L WD

p
2 	L, and we plot in Fig. 4 the

actual cost of each of the estimators described in Sect. 4 against the estimated bias
on level L. The numbers of samples for each of the estimators are chosen such that
VŒbQh� � �2`=2. The coarsest mesh size in the multilevel methods is always h0 D 1=4.
We can clearly see the benefits of the QMC sampling rule and of the multilevel
variance reduction, and the excellent performance of the multilevel QMC estimator
confirms that the two improvements are indeed complementary. As expected, the
gains are more pronounced for the smoother (Matérn) field.

We finish by comparing the actual, observed �-cost of each of the methods with
the �-cost predicted theoretically using the estimates for ˛, ˇ, � and � in Sect. 5.2.
Assuming a growth of the �-cost proportional to ��r , for some r > 0, we compare
in Table 2 estimated and actual rates r for all the estimators. Some of the estimated
rates in Sect. 5.2 are fairly crude, so the good agreement between estimated and
actual rates is quite impressive.

Table 1 Summary of
estimated rates
in (28), (29), (34) and (38)

˛ ˇ � �

Matérn field 1.9 4.1 2.2 0.62

Exponential field 1.7 1.9 2.2 0.71
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Fig. 4 Actual cost plotted against estimated bias on level L for standard Monte Carlo, QMC,
multilevel MC and multilevel QMC: Matérn field (left) and exponential field (right)
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Table 2 Comparison of the estimated theoretical and actual computational �-cost rates, for
different Monte Carlo methods, using the hybrid solver

MC QMC MLMC MLQMC

Field Estimated Actual Estimated Actual Estimated Actual Estimated Actual

Matérn 3.2 3.4 2.4 2.7 2.0 2.1 1.2 1.5

Exponential 3.3 3.6 2.7 2.4 2.2 2.5 1.9 1.9

6 Conclusions

To summarise, we have presented an overview of novel error estimates for the
1D slab geometry simplification of the Neutron Transport Equation, with spa-
tially varying and random cross-sections. In particular, we consider the discrete
ordinates method with Gauss quadrature for the discretisation in angle, and a
diamond differencing scheme on a quasi-uniform grid in space. We represent the
spatial uncertainties in the cross-sections by log-normal random fields with Matérn
covariances, including cases of low smoothness. These error estimates are the first
of this kind. They allow us to satisfy key assumptions for the variance reduction in
multilevel Monte Carlo methods.

We then use a variety of recent developments in Monte Carlo methods to study
the propagation of the uncertainty in the cross-sections, through to a non-linear
functional of the scalar flux. We find that the Multilevel Quasi Monte Carlo method
gives us significant gains over the standard Monte Carlo method. These gains can be
as large as almost two orders of magnitude in the computational �-cost for � D 10�4.

As part of the new developments, we present a hybrid solver, which automatically
switches between a direct or iterative method, depending on the rate of convergence
of the iterative solver which varies from sample to sample. Numerically, we observe
that the hybrid solver is almost an order of magnitude cheaper than the direct
solver on the finest mesh, on the other hand the direct solver is almost an order
of magnitude cheaper than the iterative solver on the coarsest mesh we considered.

We conclude that modern variants of Monte Carlo based sampling methods
are extremely useful for the problem of Uncertainty Quantification in Neutron
Transport. This is particularly the case when the random fields are non-smooth and
a large number of stochastic variables are required for accurate modelling.
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On the Representation of Symmetric
and Antisymmetric Tensors

Wolfgang Hackbusch

Dedicated to Ian H. Sloan on the occasion of his 80th birthday.

Abstract Various tensor formats are used for the data-sparse representation of
large-scale tensors. Here we investigate how symmetric or antisymmetric tensors
can be represented. We mainly investigate the hierarchical format, but also the use
of the canonical format is mentioned.

1 Introduction

We consider tensor spaces of huge dimension exceeding the capacity of computers.
Therefore the numerical treatment of such tensors requires a special representation
technique which characterises the tensor by data of moderate size. These rep-
resentations (or formats) should also support operations with tensors. Examples
of operations are the addition, the scalar product, the componentwise product
(Hadamard product), and the matrix-vector multiplication. In the latter case, the
‘matrix’ belongs to the tensor space of Kronecker matrices, while the ‘vector’ is a
usual tensor.

In certain applications the subspaces of symmetric or antisymmetric tensors
are of interest. For instance, fermionic states in quantum chemistry require anti-
symmetry, whereas bosonic systems are described by symmetric tensors. The
appropriate representation of (anti)symmetric tensors is seldom discussed in the
literature. Of course, all formats are able to represent these tensors since they are
particular examples of general tensors. However, the special (anti)symmetric format
should exclusively produce (anti)symmetric tensors. For instance, the truncation
procedure must preserve the symmetry properties.
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The formats in use are the r-term format (also called the canonical format), the
subspace (or Tucker) format, and the hierarchical representation including the TT
format. In the general case, the last format has turned out to be very efficient and
flexible. We discuss all formats concerning application to (anti)symmetric tensors.

The r-term format is seemingly the simplest one, but has several numerical
disadvantages. In Sect. 2 we discuss two different approaches to representing
(anti)symmetric tensors. However, they inherit the mentioned disadvantages.

As explained in Sect. 3, the subspace (or Tucker) format is not helpful.
The main part of the paper discusses the question how the TT format can be

adapted to the symmetry requirements. The analysis leads to unexpected difficulties.
In contrast to the general case, the subspaces Uj involved in the TT format (see
Sect. 4.3) have to satisfy conditions which are not easy to check. We can distinguish
the following two different situations.

In the first case we want to construct the TT format with subspaces Uj not
knowing the tensor v to be represented in advance. For instance we change Uj to
obtain a variation of v; or the dimension of Uj is reduced to obtain a truncation. In
these examples, v is obtained as a result on the chosen Uj: It turns out that the choice
of Uj is delicate. If Uj is too small, no nontrivial tensors can be represented. On the
other hand, Uj may contain a useless nontrivial part, i.e., Uj may be larger than
necessary. The algebraic characterisation of the appropriate Uj is rather involved.

In the second case, we start from v and know the minimal subspaces Umin
j .v/

(cf. (9)). Then Umin
j .v/ 	 Uj is a sufficient condition. However, as soon as we want

to truncate the tensor v; its result v0 must be determined from modified subspaces
U0

j so that we return to the difficulties of the first case.
In Sect. 8 we describe the combination of the TT format and the ANOVA

technique for symmetric tensors. This leads to a favourable method as long as the
ANOVA degree is moderate.

Quite another approach for antisymmetric tensors is the so-called ‘second
quantisation’ (cf. Legeza et al. [13, §2.3]) which does not fit into the following
schemes.

1.1 Tensor Notation

1.1.1 Tensors Spaces

In the general case, vector spaces Vj (1 � j � d) are given which determine the
algebraic tensor space V WD Nd

jD1 Vj: The common underlying field of the vector
spaces Vj is either R or C: In the following we write K for either of the fields. In
the particular case of

Vj D V for all 1 � j � d (1)



On the Representation of Symmetric and Antisymmetric Tensors 485

we write V WD ˝dV: Set

D WD f1; : : : ; dg (2)

and consider any nonempty subset ˛ 	 D: We set

V˛ WD
O

j2˛ Vj : (3)

Note that V D VD is isomorphic to V˛ ˝ VDn˛ :
We assume that V is a pre-Hilbert space with the scalar product h�; �i : Then V and

each V˛ is defined as a pre-Hilbert space with the induced scalar product uniquely
defined by (cf. [10, Lemma 4.124])

DO

j2˛ v
. j/;

O

j2˛ w. j/
E
D
Y

j2˛
˝
v. j/;w. j/

˛
: (4)

1.1.2 Functionals

Let '˛ 2 V0̨ be a linear functional. The same symbol '˛ is used for the linear map
'˛ W V! VDn˛ defined by

'˛

�Od

jD1 v
. j/
	
D '˛

�O

j2˛ v
. j/
	O

j2Dn˛ v
. j/ (5)

(it is sufficient to define a linear map by its action on elementary tensors, cf. [10,
Remark 3.55]). In the case of (1) and ' 2 V 0 we introduce the following notation.
The linear mapping '.k/ W ˝dV !˝d�1V is defined by

'.k/
�Od

jD1 v
. j/
	
D ' �v.k/�

O

j¤k
v. j/: (6)

1.1.3 Permutations and (Anti)symmetric Tensor Spaces

A permutation � 2 Pd is a bijection of D onto itself. For �; � 2 D, the permutation
��� is the transposition swapping the positions � and �: If � D �; ��� is the
identity id: Let V D ˝dV . Then the symbol of the permutation � is also used for
the linear map � W V! V defined by

�
�Od

jD1 v
. j/
	
D
Od

jD1 v
.��1. j//:

Each permutation � is a (possibly empty) product of transpositions: � D ��1�1 ı
��2�2 ı : : : ı��k�k with �i ¤ �i (1 � i � k). The number k determines the parity˙1
of the permutation: sign.�/ D .�1/k :
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A tensor v 2 ˝dV is called symmetric if �.v/ D v for all permutations, and
antisymmetric if �.v/ D sign.�/v: This defines the (anti)symmetric tensor space:

Vsym WD
˚
v 2 ˝dV W �.v/ D v

�
; (7a)

Vanti WD
˚
v 2 ˝dV W �.v/ D sign.�/v

�
: (7b)

If the parameter d should be emphasised, we also write V.d/sym and V.d/anti. Correspond-
ingly, if U 	 V is a subspace, the (anti)symmetric tensors in ˝dU are denoted by
U.d/sym, resp. U.d/anti: Another notation for V.d/anti is

Vd V using the exterior product ^.
Besides the well-known applications in physics (cf. [3]), symmetric and antisym-

metric tensors occur in different mathematical fields.
The symmetric tensor space is related to multivariate polynomials which are

homogenous of degree d, i.e., p.�x/ D �dp.x/: These polynomials are called
quantics by Cayley [7]. If n D dim.V/; the symmetric tensor space V.d/sym is
isomorphic to the vector space of n-variate quantics of degree d (cf. [10, §3.5.2]).

The antisymmetric spaces are connected with the Clifford algebra C`d of R
n,

which is isomorphic to the direct sum
Ld

jD1
Vj

R
n (cf. Lounesto [14, Chap. 22]).

1.1.4 Properties

Since all permutations are products of transpositions�i;iC1; the next remark follows.

Remark 1 A tensor v 2 ˝dV is symmetric (resp. antisymmetric) if and only if
�.v/ D �i;iC1.v/ (resp. �.v/ D ��i;iC1.v/) holds for all transpositions with 1 �
i < d:

Let V WD ˝dV . The linear maps

S D Sd WD 1

dŠ

X

�2Pd

� W V! V; A D Ad WD 1

dŠ

X

�2Pd

sign.�/� W V! V (8)

are projections onto Vsym and Vanti; respectively (For a proof note that S D S �

and A D sign.�/A � so that the application of 1
dŠ

P
�2Pd

yields S D SS and
A D AA ). S and A are called the symmetrisation and alternation, respectively.

Remark 2 Let 'Dn˛ 2 V0
Dn˛ be a functional1 (no symmetry condition assumed). If

v 2 V.D/sym or v 2 V.D/anti, then 'Dn˛.v/ 2 V.˛/sym or 'Dn˛.v/ 2 V.˛/anti; respectively.

The following expansion lemma will be used in the following.

1Compare the definition (5) with interchanged subsets ˛ and Dn˛:
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Lemma 1 Let fu1; : : : ; urg be a basis of the subspace U 	 V: Any tensor v 2 ˝kU
can be written in the form

v D
rX

`D1
vŒ`� ˝ u` with vŒ`� 2 ˝k�1U:

Let f'1; : : : ; 'rg 	 U0 be a dual basis of fu1; : : : ; urg; i.e., 'i.uj/ D ıij: Then the
tensors vŒ`� are defined by vŒ`� D '`.v/:

A consequence of the last equation and Remark 2 is the following.

Remark 3 If v 2 ˝kU is (anti-)symmetric, then so is vŒ`� 2 ˝k�1U.

1.2 Minimal Subspaces

Given a tensor v 2 V DN
j2D Vj and a subset ˛ 	 D; the corresponding minimal

subspace is defined by

Umin
˛ .v/ WD

n
'Dn˛v W 'Dn˛ 2 V0

Dn˛
o
2 V˛ (9)

(cf. (5); [10, §6]). Umin
˛ .v/ is the subspace of smallest dimension with the property

v 2 Umin
˛ .v/˝ VDn˛ . The dual space V0

Dn˛ in (9) may be replaced by
N

j2Dn˛ V 0
j :

For a subset V0 	 V we define Umin
˛ .V0/ WD spanfUmin

˛ .v/ W v 2 V0g:
Remark 4 Let ; ¤ ˇ ¤ ˛ 	 D be nonempty subsets. Then Umin

ˇ .v/ D
Umin
ˇ .Umin

˛ .v//:

A conclusion from Remark 2 is the following statement.

Conclusion 1 If v 2 Vsym [or Vanti], then Umin
˛ .v/ 	 V.˛/sym [or Umin

˛ .v/ 	 V.˛/anti].

2 r-Term Format for (Anti)symmetric Tensors

Let r 2 N0 WD N [ f0g. A tensor v 2 V D ˝dV can be represented in the r-term
format (or canonical format) if there are v. j/

� 2 V for 1 � j � d and 1 � � � r such
that

v D
rX

�D1

Od

jD1 v
. j/
� :

We recall that the smallest possible r in the above representation is called the rank
of v and denoted by rank.v/: The number r used above is called the representation
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rank. Since the determination of rank.v/ is NP hard (cf. Håstad [11]) we cannot
expect that r � rank.v/ holds with an equal sign.

Two approaches to representing (anti)symmetric tensors by the r-term format are
described in Sects. 2.1 and 2.2.

2.1 Indirect Representation

A symmetric tensor v 2 Vsym may be represented by a general tensor w 2 V with
the property S .w/ D v; where S .A / is the symmetrisation (alternation) defined
in (8). The representation of w 2 V uses the r-term format: w DPr

iD1
Nd

jD1 w. j/
i :

This approach is proposed by Mohlenkamp, e.g., in [4]. For instance, v D a˝ a˝
b C a ˝ b ˝ a C b ˝ a ˝ a 2 Vsym is represented by w D 3a ˝ a ˝ b: This
example indicates that w may be of a much simpler form than the symmetric tensor
v D S .w/:

However, the cost (storage size) of the representation is only one aspect. Another
question concerns the tensor operations. In the following we discuss the addition,
the scalar product, and the matrix-vector multiplication.

The addition is easy to perform. By linearity of S ; the sum of v0 D S .w0/ and
v00 D S .w00/ is represented by w0 C w00: Similar in the antisymmetric case.

The summation within the r-term format does not require computational work,
but increases the representation rank r: This leads to the question how to truncate
w D w0Cw00 to a smaller rank. It is known that truncation within the r-term format
is not an easy task. However, if one succeeds to split w into OwC ıw; where Ow has
smaller rank and ıw is small, this leads to a suitable truncation of v D OvC ıv with
Ov D S . Ow/; ıv D S .ıw/; since kıvk � kıwk with respect to the Euclidean norm.

The computation of the scalar product hv0; v00i of v0; v00 in Vsym or Vanti is more
involved. In the antisymmetric case, hv0; v00i with v0 D A .w0/; v00 D A .w00/ and

w0 D
X

i0

Od

jD1 w0. j/
i0 ; w00 D

X

i00

Od

jD1 w00. j/
i00

can be written as the sum hv0; v00i DPi0;i00 si0i00 with the terms

si0 i00 WD
*

A

0

@
dO

jD1
w0. j/

i0

1

A ;A

0

@
dO

jD1
w00. j/

i00

1

A

+

:

The latter product coincides with the determinant

si0i00 D det


�
hw0.�/

i0 ;w00.�/
i00 i

	

1��;��d

�

(cf. Löwdin [15, (35)]). If the respective representation ranks of v0 and v00 are r0 and
r00; the cost amounts to O.r0r00d3/:
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While in the antisymmetric case the determinant can be computed in polynomial
time, this does not hold for the analogue in the symmetric case. Instead of the
determinant one has to compute the permanent.2 As proved by Valiant [17], its
computation is NP hard. Hence the computation of the scalar product is only feasible
for small d or in special situations.

Next we consider the multiplication of a symmetric Kronecker matrix A 2
Lsym 	 ˝dL.V/ (cf. Sect. 9) by a tensor v 2 Vsym=anti 	 ˝dV: A is represented

by B 2 ˝dL.V/ via A D S .B/ and B D P
�

Nd
jD1 B. j/

� ; while v D S .w/ or

v D A .w/ is represented by w D P
�

Nd
jD1 w. j/

� : The property v 2 Vsym=anti

implies the respective property Av 2 Vsym=anti. Unfortunately, Av is not the
(anti)symmetrisation of Bw. Instead one may use (cf. Lemma 9)

Av D S .Aw/ D S .Bv/ or Av D A .Aw/ D A .Bv/; resp.

However, this requires that either the symmetric tensor A or the (anti)symmetric
tensor v must be constructed explicitly, which contradicts the intention of the
indirect representation. Similarly, the Hadamard product v0ˇv00 and the convolution
v0 ? v00 are hard to perform within this format.

Conclusion 2 The indirect representation is suited to antisymmetric tensors if only
the addition and the scalar product is required. In the case of symmetric tensors, the
computation of the scalar product is restricted to small d:

Let v 2 Vsym=anti be a tensor of rank rv: The indirect representation uses
the rw-term representation of some w 2 V: The gain is characterised by the
ratio rv=rw where rw is the smallest possible rank. rv=rw takes values from 1
to dŠ. According to Seigal (private communication, 2016), the generic reduction
factor rv=rw approaches d for large dim.V/: The proof uses the results of Abo–
Vannieuwenhoven [1] and Abo et al. [2]. Note that low-rank tensors belong to the
measure-zero set of non-generic tensors.

2.2 Direct Symmetric r-Term Representation

While the previous approach uses general (nonsymmetric) tensors, we now repre-
sent the symmetric tensors by an r-term representation involving only symmetric
rank-1 tensors:

v D
rX

iD1
˛i ˝d vi for suitable r 2 N0 and vi 2 V; ˛i 2 K (10)

2The permanent of A 2 R
d�d is Perm.A/ D P

�2Pd

Qd
iD1 ai;�.i/:
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(cf. [10, p. 65]).3 The minimal r in this representation is called the symmetric rank
of v 2 Vsym and is denoted by ranksym.v/: Details about symmetric tensors and the
symmetric tensor rank are described, e.g., by Comon–Golub–Lim–Mourrain [8].

Since the symmetric rank is at least as large as the standard tensor rank, the
required r may be large. A difficulty of the r-term format is caused by the fact that,
in general, the set

˚
v 2 ˝dV W rank.v/ � r

�
is not closed. The simplest counter-

examples are symmetric tensors of the form lim"!0
1
"

�˝3.vC "w/�˝3v� :4
Therefore also the subset of the symmetric tensors (10) is not closed.

3 Subspace (Tucker) Format

Let v 2 V be the tensor to be represented. The subspace format (Tucker format)
uses subspaces Uj 	 Vj with the property v 2Nd

jD1 Uj: In the (anti)symmetric case

one can choose equal subspaces U 	 V (set, e.g., U D Td
jD1 Uj/: Let fu1; : : : ; urg

be a basis of U: Then the explicit Tucker representation of v takes the form

v D
rX

i1;:::;idD1
ci1;:::;id

dO

jD1
uij (11)

with the so-called core tensor c 2Nd
jD1Kr: Obviously, v is (anti)symmetric if and

only if c is so. Therefore the difficulty is shifted into the treatment of the core tensor.
The representation (11) itself does not help to represent (anti)symmetric tensors.
One may construct hybrid formats, using one of the other representations for c:

4 Hierarchical Format

In the general case the hierarchical format is a very efficient and flexible representa-
tion (cf. [10, §§11–12]). Here we briefly describe the general setting, the TT variant,
and first consequences for its application to (anti)symmetric tensors.

4.1 General Case

The recursive partition of the set D D f1; : : : ; dg is described by a binary partition
tree TD. It is defined by the following properties: (a) D 2 TD is the root; (b) the

3If K D C or if d is odd, the factor ˛i can be avoided since its d-th root can be combined with vi:
4The described limit x satisfies ranksym.x/ � rank.x/ D d (cf. Buczyński–Landsberg [6]),
although it is the limit of tensors with symmetric rank 2.
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singletons f1g; : : : ; fdg are the leaves; (c) if ˛ 2 TD is not a leaf, the sons ˛0; ˛00 2 TD

are disjoint sets with ˛ D ˛0 [ ˛00:
The hierarchical representation of a tensor v 2 V D Nd

jD1 Vj is algebraically
characterised by subspaces U˛ 	 V˛ (V˛ defined in (3)) for all ˛ 2 TD with

v 2 UD; (12a)

U˛ 	 U˛0 ˝ U˛00 .˛0; ˛00 sons of ˛/; if ˛ is not a leaf. (12b)

Let the dimensions of U˛ be r˛ WD dim.U˛/: Since UD D span.v/ is sufficient,
rD D 1 is the general value.

4.2 Implementation

The subspaces U˛ are described by bases fb.˛/k W k D 1; : : : ; r˛g. For leaves ˛ 2 TD;

the basis is stored explicitly. Otherwise, condition (12b) ensures that

b.˛/` D
r˛0X

iD1

r˛00X

jD1
c.˛;`/ij b.˛

0/
i ˝ b.˛

00/
j .˛0; ˛00 sons of ˛/: (13)

Therefore it is sufficient to store the coefficients matrices .c.˛;`/ij /1�i�r˛0
;1�j�r˛00

; as

well as the vector cD 2 K
rD for the final representation v DPi cD

i b.D/i (cf. (12a)).

4.3 TT Variant

The TT format is introduced in Oseledets [16] (cf. [10, §12]). It is characterised
by a linear tree TD. That means that the non-leaf vertices ˛ 2 TD are of the form
˛ D f1; : : : ; jgwith the sons ˛0 D f1; : : : ; j�1g and ˛00 D f jg: The embedding (12b)
is Uf1;:::;jC1g 	 Uf1;:::;jg ˝ Uf jg:

Below we shall consider the case V D ˝dV; i.e., Vj D V is independent of j:
Also their subspaces are independent of j and denoted by Uf jg D U: We abbreviate
Uf1;:::;jg by Uj and denote its dimension by rj WD dim.Uj/; r WD r1 D dim.U/ (note
that U D U1). Now the nested inclusion (12b) becomes

UjC1 	 Uj ˝U: (14)

Similarly, we rewrite Umin
f1;:::;jg.v/ as Umin

j .v/:
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4.4 (Anti)symmetric Case

Conclusion 1 proves that (anti)symmetric tensors v lead to (anti)symmetric minimal
subspaces: Umin

˛ .v/ 	 V.˛/sym or Umin
˛ .v/ 2 V.˛/anti; respectively.

The hierarchical representation (12a,b) of v 2 V.D/sym should also use subspaces

with the property U˛ 	 V.˛/sym (similar in the antisymmetric case).

The basic task is the determination of a basis b.˛/` 2 U˛ 	 V.˛/sym (1 � ` �
r˛ WD dim.U˛/) by suitable linear combinations of the tensors b.˛

0/
i ˝ b.˛

00/
j . The

assumptions b.˛
0/

i 2 V.˛
0/

sym and b.˛
00/

j 2 V.˛
00/

sym lead to a partial symmetry, but, in

general, ���.b
.˛/

` / D b.˛/` is not satisfied for � 2 ˛0 and � 2 ˛00.
Using (14) and symmetry, we conclude that

Uj 	
�˝jU

�\ V. j/
sym D U. j/

sym: (15)

Remark 5

(a) Because of (15) we can restrict the vector space V in (7a,b) to U:
(b) If we want to represent the tensor v, the subspace Uj must satisfy

Umin
j .v/ 	 Uj:

4.5 Dimensions of Umin
j in the (Anti)symmetric Case

The following statement shows that, in the case of antisymmetric tensors, the hierar-
chical approach becomes costly for high dimensions d: The simplest antisymmetric
tensor is the antisymmetrisation of an elementary tensor:

a WD A
�Od

jD1 u. j/
	
:

To ensure a ¤ 0; the vectors u. j/ must be linearly independent. In that case the

minimal subspace Umin
k .v/ is spanned by all tensors A

�Nk
jD1 u.ij/

	
with 1 � i1 <

i2 < : : : < ik � d. There are
�k

d

�
tensors of this form. Since they are linearly

independent, dimUmin
k .a/ D �k

d

�
follows. The sum

Pd
kD1 dimUmin

k .a/ is 2d � 1:
Hence, this approach cannot be recommended for large d.

The situation is different in the symmetric case, since the vectors in
S .

Nd
jD1 u. j// need not be linearly independent. The next lemma uses the symmetric

rank defined in Sect. 2.2.

Lemma 2 All symmetric tensors v satisfy dimUmin
k .v/ � ranksym.v/:
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Proof Let v D Pr
iD1 ˛i ˝d vi with r D ranksym.v/: Then all minimal subspaces

Umin
k .v/ are contained in the r-dimensional space span

˚˝kvi W 1 � i � r
�
: ut

The following symmetric tensor describes, e.g., the structure of the Laplace
operator (a; b of the next example are the identity map and one-dimensional
Laplacian, respectively).

Example 1 An important example is the symmetric tensor v WD S .˝d�1a ˝ b/,
where a; b 2 V are linearly independent. In this case we have

dim.Umin
k .v// D 2 for 1 � k < d:

More precisely, Umin
k .v/ is spanned by˝ka and Sk

�
b˝ �˝k�1a

��
:

5 TT Format for Symmetric Tensors

In the following we focus on the representation of symmetric tensors in the TT
format (cf. Sect. 4.3). In principle, the same technique can be used for antisymmetric
tensors (but compare Sect. 4.5).

In Sect. 5.4 we try to construct the space UjC1 from Uj. This will lead to open
questions in Sect. 5.4.6. If we start from v and the related minimal subspaceUmin

j .v/;
then an appropriate choice is Uj D Umin

j .v/ (see Sect. 5.5).

5.1 The Space
�
Uj ˝ U

� \ S
�
Uj ˝ U

�
and the Principal Idea

We want to repeat the same construction of nested spaces as in (14). In contrast to
the general case, we also have to ensure symmetry. By induction, we assume that Uj

contains only symmetric tensors:

Uj 	 V. j/
sym: (16)

On the one hand, the new space UjC1 should satisfy UjC1 	 Uj ˝ UI on the other

hand, symmetry UjC1 	 V. jC1/
sym is required. Together, UjC1 	

�
Uj ˝U

� \ V. jC1/
sym

must be ensured.

Remark 6
�
Uj ˝ U

� \ V. jC1/
sym D �

Uj ˝ U
� \ SjC1

�
Uj ˝ U

�
holds with the

symmetrisation SjC1 in (8).

Proof Let v 2 �
Uj ˝ U

� \ V. jC1/
sym : Since v 2 V. jC1/

sym ; S .v/ D v holds. Since

v 2 Uj ˝ U; v D S .v/ 2 S
�
Uj ˝ U

�
follows. This proves

�
Uj ˝ U

� \V. jC1/
sym 	�

Uj ˝ U
� \ S

�
Uj ˝ U

�
: The reverse inclusion follows from S

�
Uj ˝ U

� 	
V. jC1/

sym : ut
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This leads us to the condition

UjC1 	 OUjC1 WD
�
Uj ˝ U

� \ S
�
Uj ˝U

�
(17)

for the choice of the next subspace UjC1:
It must be emphasised that, in general, S

�
Uj ˝ U

�
is not a subspace of Uj˝U:

Example 5 will show nontrivial subspaces Uj;U that may even lead to OUjC1 D f0g.
To repeat the construction (13), we assume that there is a basis fb. j/

1 ; : : : ;b
. j/
rj g of

Uj and the basis fu1; : : : ; urg of U. Then the basis fb. jC1/
1 ; : : : ;b. jC1/

rjC1 g of UjC1 can
be constructed by (13) which now takes the form

b. jC1/
k D

rjX

�D1

rX

�D1
c.k/��b

. j/
� ˝ u� .1 � k � rjC1/: (18)

In order to check linear independence and to construct orthonormal bases, we
also have to require that we are able to determine scalar products. Assuming by
induction that the scalar products hb. j/

�0

;b. j/
�00

i and
˝
u�0 ; u�00

˛
are known, the value of

hb. jC1/
k0

;b. jC1/
k00

i follows from (4). Therefore, we are able to form an orthonormal
basis of UjC1:

To avoid difficulties with a too small intersection OUjC1; an alternative idea could
be to choose the subspace UjC1 in S

�
Uj ˝ U

�
and not necessarily in Uj ˝ U.

Then, instead of (18), we have b. jC1/
k D P

�;� c.k/��S .b. j/
� ˝ u�/: This would be

a very flexible approach, were it not for the fact that we need knowledge of the

scalar products
D
s. j/
��; s

. j/
�0�0

E
for s. j/

�� WD S .b. j/
� ˝ u�/ (otherwise, an orthonormal

basis fb. jC1/
k g cannot be constructed). One finds that

D
s. j/
��; s

. j/
�0�0

E
D ı��0

jC1
D
b. j/
� ;b

. j/
�0

E
C

j
jC1

D
b. j/
�;Œ�0 �

;b. j/
�0 ;Œ��

E
where the expression b. j/

�;Œ�0�
is defined in Lemma 1. The scalar

products
D
b. j/
�;Œ�0 �;b

. j/
�0;Œ��

E
can be derived from

D
s. j/
��;Œ`�; s

. j/
�0�0 ;Œ`0 �

E
: This expression, how-

ever, requires the knowledge of
D
b. j�1/
�;Œ`;�0 �;b

. j�1/
�0;Œ`0 ;��

E
(concerning the subscript Œ`; �0�

compare (22)). Finally, we need scalar products of the systems fb.d/� g; fb.d�1/
� g,

fb.d�1/
�;Œ�� g; fb.d�2/

�;Œ`m�g; : : : ; fb. j/
�;Œ`1;`2;:::;`j� �

g with j� D minf j; d � jg; : : :. This leads to a

data size increasing exponentially in d:

5.2 The Spaces
�
Uj ˝ U

� \ S
�
Uj ˝ U

�
and Umin

jC1.v/

Let v 2 . ˝d V/ \ V.d/sym be the symmetric tensor which we want to represent. We
recall the minimal subspaces defined in Sect. 1.2. According to the notation of the
TT format, Umin

j .v/ is the space Umin
f1;:::;jg.v/ 	 ˝jV defined in (9). The minimality
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property of Umin
j .v/ (cf. [10, §6]) implies that the subspaces U and Uj must satisfy

U � Umin
1 .v/; Uj � Umin

j .v/I (19)

otherwise v cannot be represented by the TT format.
The next theorem states that (19) guarantees that there is a suitable subspace Uj

with OUj � Uj � Umin
j .v/; so that the requirement (19) is also valid for jC 1:

Theorem 1 Let (19) be valid for v 2 U.d/sym and let j < d: Then OUjC1 in (17) satisfies
OUjC1 � Umin

jC1.v/:

Proof We have Uj ˝ U � Umin
j .v/ ˝ Umin

1 .v/: A general property of the minimal
subspace is

Umin
j .v/˝ Umin

1 .v/ � Umin
jC1.v/

(cf. [10, Proposition 6.17]). Since Umin
jC1.v/ is symmetric (cf. Conclusion 1), it

follows that

S
�
Uj ˝ U

� � S .Umin
j .v/˝ Umin

1 .v// � S .Umin
jC1.v// D Umin

jC1.v/:

This inclusion together with the previous inclusion Uj ˝ U � Umin
jC1.v/ yields the

statement. ut
So far, we could ensure that there exists a suitable subspace UjC1 � Umin

jC1.v/.
Concerning the practical implementation, two questions remain:

(a) How can we find the subspace OUjC1 	 Uj ˝ U‹
(b) Given OUjC1; how can we ensure UjC1 � Umin

jC1.v/‹

The next subsection yields a partial answer to the first question.

5.3 Criterion for Symmetry

According to Lemma 1, any v 2 Uj ˝ U is of the form

v D
rX

`D1
vŒ`� ˝ u` .vŒ`� 2 Uj/: (20)

The mapping v 2 V. jC1/ 7! vŒ`� 2 V. j/ can be iterated:

vŒ`� 2 V. j/ 7! .vŒ`�/Œm� D vŒ`�Œm� D vŒ`;m� 2 V. j�1/:
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In the case of j D 1; the empty product ˝j�1V is defined as the field K, i.e., vŒ`;m�
is a scalar.

Lemma 3 A necessary and sufficient condition for v 2 V. jC1/
sym is

vŒ`� 2 V. j/
sym and vŒ`;m� D vŒm;`� for all 1 � `;m � r: (21)

Here, vŒ`� refers to (20), and vŒ`;m� is the expansion term of vŒ`� 2 ˝jV:

Proof

(a) Assume v 2 V. jC1/
sym : vŒ`� 2 V. j/

sym is stated in Remark 3. Applying the expansion
to vŒ`� in (20), we obtain

v D
rX

`;mD1
vŒ`;m� ˝ um ˝ u`: (22)

Note that the tensors fum ˝ u` W 1 � `;m � rg are linearly independent.
Therefore, transposition um ˝ u` 7! u` ˝ um and symmetry of v imply that
vŒ`;m� D vŒm;`�:

(b) Assume (21). Because of vŒ`� 2 V. j/
sym; v is invariant under all transpositions

�i;iC1 for 1 � i < j: Condition vŒ`;m� D vŒm;`� ensures that v is also invariant
under the transposition �j;jC1: This proves the symmetry of v (cf. Remark 1).

ut
To apply this criterion to the construction of OUjC1 WD

�
Uj ˝ U

� \S
�
Uj ˝ U

�
;

we search for a symmetric tensor (18) of the form

b D
rjX

�D1

rX

�D1
c��b. j/

� ˝ u�: (23)

The tensor b corresponds to vŒ`� WDPrj

�D1 c�`b
. j/
� in (20). vŒ`� 2 V. j/

sym is satisfied
because of (16). The condition vŒ`;m� D vŒm;`� in (21) becomes

rjX

�D1
c�`b

. j/
�;Œm� D

rjX

�D1
c�mb

. j/
�;Œ`�: (24)

The tensors b. j/
�;Œm� and b. j/

�;Œ`� belong to Uj�1: The new (nontrivial) algebraic task is to
find the set of coefficients c�� satisfying (24) for all 1 � `;m � r:

Remark 7 The ansatz (23) has rrj � 1 free parameters (one has to be subtracted
because of the normalisation). Condition (24) describes r.r � 1/=2 equations in the
space Uj�1 equivalent to r.r�1/

2
rj�1 scalar equations.
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5.4 TT Symmetrisation

In the following approach we obtain a symmetric tensor in S
�
Uj ˝ U

�
; but not

necessarily in Uj ˝ U:

5.4.1 Symmetrisation OperatorSjC1

In the present approach we directly symmetrise the tensors. The general symmetri-
sation map S consists of dŠ terms. However, since Uj is already symmetric, tensors
in Uj ˝ U can be symmetrised by only jC 1 transpositions � i;jC1.

Theorem 2 Let v. j/ 2 V. j/
sym and w 2 V: Applying

OSjC1 WD 1

jC 1
jC1X

iD1
�i;jC1

to v. j/ ˝ w 2 V. jC1/ yields a symmetric tensor:

s WD OSjC1
�
v. j/ ˝ w

� 2 V. jC1/
sym :

Proof According to Remark 1, we have to show that �k;kC1s D s for all 1 � k � j.
First we consider the case of k < j: If i … fk; k C 1g; we have �k;kC1�i;jC1 D
�i;jC1�k;kC1: For i 2 fk; kC 1g we obtain

�k;kC1�k;jC1 D �kC1;jC1�k;kC1; �k;kC1�kC1;jC1 D �k;jC1�k;kC1:

This proves �k;kC1 OSjC1 D OSjC1�k;kC1 and

�k;kC1s D OSjC1�k;kC1
�
v. j/ ˝ w

� D OSjC1
�
�k;kC1v. j/ ˝ w

�
:

Symmetry of v. j/ implies �k;kC1v. j/ D v. j/ so that �k;kC1s D s is proved.
The remaining case is k D j: For i < j; the identity �j;jC1�i;jC1 D �i;jC1�i;j

together with �i;jv. j/ D v. j/ implies �j;jC1�i;jC1.v. j/ ˝ w/ D �i;jC1.v. j/ ˝ w/: For
i 2 f j; jC 1g we obtain

�j;jC1�j;jC1 D id D �jC1;jC1; �j;jC1�jC1;jC1 D �j;jC1 � id D �j;jC1I

i.e., �j;jC1
�
�i;jC1 C �jC1;jC1

� D �i;jC1C�jC1;jC1:Hence, also �j;jC1s D s is proved.
ut

Corollary 1 The corresponding antisymmetrisation is obtained by

OAd WD 1

d

dX

iD1
.�1/d�i �id:
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Although the symmetrisation ensures that s 2 S
�
Uj ˝ U

�
; there is no guaranty

that s 2 Uj ˝ U: Hence, whether s 2 OUjC1 holds or not is still open.

5.4.2 Expansion of s

Since v. j/ ˝ w 2 ˝jC1U; the symmetrisation s D OSjC1.v. j/ ˝ w/ also belongs to

˝jC1U: By Lemma 1 there is a representation s DPr
`D1 sŒ`�˝u` with sŒ`� 2 U. j/

sym:

Lemma 4 Let w D Pr
`D1 c`u` and v. j/ 2 U. j/

sym: Then s WD OSjC1.v. j/ ˝ w/
satisfies

s D
rX

`D1
sŒ`� ˝ u` with sŒ`� WD 1

jC 1

 

c`v. j/ C
jX

iD1
�i;j .v

. j/
Œ`� ˝ w/

!

: (25)

The latter sum
Pj

iD1 �i;j.v
. j/
Œ`� ˝ w/ can be written as j OSj.v

. j/
Œ`� ˝ w/:

Proof Using �jC1;jC1 D id; we obtain

. jC 1/ s D v. j/˝wC
jX

iD1
�i;jC1.v. j/˝w/ D

rX

`D1
c`v. j/˝u`C

jX

iD1
�i;jC1.v. j/˝w/:

Since �i;jC1 D �i;j�j;jC1�i;j for i � j and v. j/ DPr
`D1 v

. j/
Œ`� ˝ u` 2 U. j/

sym, we have

�i;jC1.v. j/ ˝ w/ D �i;j�j;jC1
�
.�i;jv. j//˝ w

� D �i;j�j;jC1
�
v. j/ ˝ w

�

D �i;j�j;jC1
rX

`D1
v. j/
Œ`� ˝ u` ˝ w D �i;j

rX

`D1
v. j/
Œ`� ˝ w˝ u`D

rX

`D1

�
�i;j.v

. j/
Œ`� ˝ w/

	
˝ u`:

Together we obtain . jC 1/ s DPr
`D1

�
c`v. j/ CPr

`D1
�
�i;j.v

. j/
Œ`� ˝ w/

		
˝ u`: ut

The last equation explicitly provides the expansion of s defined in Lemma 1.

5.4.3 Scalar Products

The definition of s WD OSjC1.v. j/ ˝ w/ seems a bit abstract, since (25) contains
the permuted tensor which not necessarily belongs to Uj ˝ U. Even in that case

it is possible to determine the scalar products hs;b. j/
� ˝ u�i with the basis vectors

b. j/
� ˝ u� of Uj ˝ U: The first term in (25) yields

˝
v. j/ ˝ u`;b. j/

� ˝ u�
˛ D ˝v. j/;b. j/

�

˛ ˝
u`; u�

˛
:
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By induction, we assume that the scalar product of v. j/ 2 Uj and b. j/
� is known.

Usually, the basis fu`g is chosen orthonormal so that
˝
u`; u�

˛ D ı`�: The other
terms yield the products

D
�i;j

�
v. j/
Œ`� ˝ w˝ u`

	
;b. j/

� ˝ u�
E
D
D
�i;j

�
v. j/
Œ`� ˝ w

	
;b. j/

�

E ˝
u`; u�

˛
:

Using the selfadjointness of �i;j and b. j/
� 2 V. j/

sym; we obtain

D
�i;j

�
v. j/
Œ`� ˝ w

	
;b. j/

�

E
D
D
v. j/
Œ`� ˝ w; �i;jb. j/

�

E
D
D
v. j/
Œ`� ˝ w;b. j/

�

E

D
�
v. j/
Œ`� ˝ w;

rX

kD1
b. j/
�;Œk� ˝ uk

�
D

rX

kD1

D
v. j/
Œ`� ;b

. j/
�;Œk�

E
hw; uki :

If fu`g is an orthogonal basis, hw; uki D ck holds (cf. Lemma 4).

Remark 8 Let the bases fb. j/
� W 1 � � � rjg and fu` W 1 � ` � rg be orthonormal. If

s WD OSjC1.v. j/ ˝ w/ 2 Uj ˝ U; the explicit representation is given by

s D
rjX

�D1

rX

�D1
c��b. j/

� ˝ u� (26)

with coefficients c�� D hs;b. j/
� ˝ u�i, which are computable as explained above.

Even if s … Uj ˝ U; the right-hand side in (26) is computable and describes the
orthogonal projection PUj˝Us of s onto the space Uj ˝ U:

The check whether s belongs to Uj˝U is equivalent to the check whether PUj˝Us
is symmetric (cf. Sect. 5.3), as stated next.

Criterion 1 s 2 Uj ˝ U [and therefore also s 2 OUjC1; cf. (17)] holds if and only if

PUj˝Us D s 2 V. jC1/
sym (implying PUj˝Us 2 OUjC1 in the positive case).

Proof

(a) Abbreviate PUj˝U by P. Let s 2 Uj ˝ U: This implies Ps D s: Since, by
construction, s is symmetric, Ps 2 V. jC1/

sym holds.

(b) Assume Ps 2 V. jC1/
sym : Because of s D Ps C .I � P/s; also s? WD .I � P/s 2

.Uj ˝ U/? is symmetric. The properties of projections show

hs?; s?i D h.I � P/s; .I � P/si D hs; .I � P/si D hSjC1.v. j/ ˝ w/; s?i:

Since SjC1 is selfadjoint and s? is symmetric, we have

hs?; s?i D hv. j/ ˝ w;SjC1s?i D hv. j/ ˝ w; s?i D 0
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because of v. j/ ˝ w 2 Uj ˝ U and s? 2 �Uj ˝ U
�?
: This proves s? D 0 and

s D PUj˝Us; i.e., s 2 Uj ˝ U: ut

5.4.4 Geometric Characterisation

Let fb. j/
� W 1 � � � rjg and fu� W 1 � � � rg be orthonormal bases of Uj 	 U. j/

sym

and U; respectively. b. j/
�;Œ`� are the expansion terms: b. j/

� DP` b
. j/
�;Œ`� ˝ u`: They give

rise to the scalar products

B.�;�/;.�0;�0/ WD
D
b. j/
�;Œ�0 �;b

. j/
�0;Œ��

E
.1 � �; �0 � rj; 1 � �;�0 � r/:

Let B 2 K
I�I be the corresponding matrix, where I D f1; : : : ; rjg � f1; : : : ; rg: The

orthonormality of fb. j/
� g is equivalent to

P
` B.�;`/;.�0;`/ D ı�;�0 : Note that B D BH.

Consider the tensor v D Prj

�D1
Pr

�D1 c��b
. j/
� ˝ u�: The normalisation kvk D 1

gives
P

�;� jc��j2 D 1: The entries c�� define the vector c 2 K
I:

Theorem 3 The spectrum of B is bounded by 1: The above defined tensor v is
symmetric if and only if c is an eigenvector of B corresponding to the eigenvalue
1.

Proof Let s D SjC1v: The projection property of SjC1 implies that hv; si � 1:

Criterion 1 states that v is symmetric (i.e., v D s) if and only if hv; si D 1:

Calculating the scalar product according to Sect. 5.4.3 yields . j C 1/ hv; si D
1C j .Bc; c/ ; where .�; �/ is the Euclidean product of KI: The inequality hv; si � 1
shows that all eigenvalues of B are bounded by 1. The equality hv; si D 1 requires
that .Bc; c/ D 1 D maxf.Bc0; c0/ W kc0k D 1g; i.e., c is the eigenvector with
eigenvalue � D 1. ut

The questions from above take now the following form: (a) How can we ensure
that 1 belongs to the spectrum of B; (b) what is the dimension of the corresponding
eigenspace?

5.4.5 Examples

The following examples use tensors of order d D 3. The case d D 2 is too easy
since tensors of ˝2U correspond to matrices via v DPr

�;�D1 c��u� ˝ u� 7! C WD
.c��/r�;�D1: Hence symmetric tensors v are characterised by symmetric matrices C:

In the following examples u1 D a; u2 D b 2 V are orthonormal vectors. A
possible choice is V D K

2:

Example 2 We want to represent the symmetric tensor s WD a˝a˝a:We use U D
spanfa; bg and the symmetric subspace U2 WD spanfb.2/1 g 	 S .U ˝ U/ 	 U ˝ U

with b.2/1 WD a ˝ a: Symmetrisation of U2 ˝ U D spanfa ˝ a ˝ a; a ˝ a ˝ bg
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yields S .U2 ˝ U/ D spanfa ˝ a ˝ a; 1
3
.a˝ a˝ bC a˝ b˝ aC b˝ a˝ a/g:

Obviously, S .U2 ˝ U/ is not a subspace of U2 ˝ U.

The reason for S .U2 ˝ U/ 6	 U2 ˝ U in Example 2 may be seen in the choice
of U D spanfa; bg: This space is larger than necessary: U D Umin

1 .s/ D spanfag is
sufficient and this choice leads to S .U2 ˝U/ D U2 ˝ U:

In the next example, U is chosen as Umin
1 .s/:

Example 3 We want to represent the symmetric tensor s WD a˝ a˝ aC b˝ b˝ b:
We use U D spanfa; bg and the symmetric subspace U2 WD spanfb.2/1 ;b.2/2 g 	
S .U ˝ U/ 	 U ˝ U with b.2/1 WD a ˝ a and b.2/2 WD b ˝ b: The tensor space
U2 ˝ U is spanned by a ˝ a ˝ a; b ˝ b ˝ b; a ˝ a ˝ b; b ˝ b ˝ a: The first
two tensors are already symmetric. The symmetrisation of a ˝ a ˝ b leads to a
tensor which is not contained in U2˝U: The same holds for the last tensor. Hence,
S .U2 ˝ U/ 6	 U2 ˝ U.

In Examples 2 and 3, we can omit the tensors b.2/i ˝ uj whose symmetrisation
does not belong to U2 ˝U; and still obtain a subspace containing the tensor s to be
represented. The latter statement is not true in the third example.

Example 4 We want to represent the symmetric tensor s WD ˝3 .aC b/ C
˝3 .a � b/ : We use U D spanfa; bg and the symmetric subspace U2 WD
spanfb.2/1 ;b.2/2 g 	 S .U ˝ U/ 	 U ˝ U with b.2/1 WD ˝2 .aC b/ and

b.2/2 WD ˝2 .a � b/ : The tensor space U2 ˝ U is spanned by four tensors b.2/i ˝ uj.

For i D j D 1; we have b.2/1 ˝ a D .aC b/˝ .aC b/˝ a; whose symmetrisation
does not belong to U2 ˝ U: The same holds for the other three tensors. Hence,
S .U2 ˝ U/ 6	 U2 ˝ U.

Note that the setting of Example 4 coincides with Example 3 when we replace
the orthonormal basis fu1 D a; u2 D bg with fu1 D .aCb/=

p
2; u2 D .a�b/=

p
2g:

The next example underlines the important role of condition Umin
j .v/ 	 Uj.

Example 5 Let U2 WD spanfb.2/1 g with b.2/1 WD a˝ bC b˝ a: A general tensor in

U2 ˝ U has the form b.2/1 ˝ .˛aC ˇb/: There is no symmetric tensor of this form,
except the zero tensor (˛ C ˇ D 0). This shows that U2 is too small: there is no
nontrivial symmetric tensor v with Umin

2 .v/ 	 U2:

5.4.6 Open Questions AboutS .Uj ˝ U/ \ �
Uj ˝ U

�

We repeat the definition OUjC1 WD S .Uj ˝ U/ \ �Uj ˝ U
�
: The main questions

are:

• What is the dimension of OUjC1; in particular, compared with dim.Umin
j .v//, if v

is the tensor to be represented?
• Is there a constructive description of OUjC1‹
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The minimal set, which is needed for the construction of the tensors in OUjC1; is

LUj WD
X

v2 OUjC1

Umin
j .v/:

By definition, LUj 	 Uj holds, but it is not obvious whether LUj D OUj: This yields the
next question:

• Does LUj D Uj hold?

In the negative case, there is a direct sum Uj D LUj ˚ Zj; where Zj ¤ f0g
contains symmetric tensors in V. j/

sym which cannot be continued to symmetric tensors

in V. jC1/
sym : Using Uj instead of LUj would be inefficient.

5.4.7 Answers for d D 3 and r D 2

The questions from above can be answered for the simple case of d D 3 (transfer
from d D 2 to d D 3/ and r D 2: Hence we have

dim.U/ D 2; U1 D U; U2 	 U.2/sym

and have to investigate the space OU3 WD S3.U2 ˝ U/ \ .U2 ˝ U/ : We recall that
LU2 D P

w2 OU3 U
min
2 .w/ 	 U2 is the smallest subspace of U2 with the property

S3. LU2 ˝ U/ \
� LU2 ˝U

	
D OU3: Hence, if dim.U2/ > dim. LU2/; U2 contains

tensor which are useless for the construction of symmetric tensor in OU3:
The symmetric tensors v 2 U2 correspond to symmetric 2 � 2 matrices. Since

dim.U.2/sym/ D 3, the following list of cases is complete. The general assumption of
the following theorems is dim.U/ D 2:
Theorem 4 (Case dim.U2/ D 1) Let dim.U2/ D 1 and U2 D spanfb1g 	 U.2/sym. If
rank.b1/ D 1 then

LU2 D U2; dim. OU3/ D 1I

otherwise we have rank.b1/ D 2 and

LU2 D f0g 	 U2; OU3 D f0g:

Proof Note that rank.b1/ � dim.U/ D 2. rank.b1/ D 0 is excluded because of
b1D0 and the assumption that U2 D spanfb1g is one-dimensional. Hence, rank.b1/
only takes the values 1 and 2.
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If rank.b1/ D 1; b1 D a˝a0 follows. Symmetry shows that b1 D a˝a (possibly
after changing the sign5). Then

OU3 D spanfb1 ˝ ag D spanfa˝ a˝ ag:

If rank.b1/ D 2; the general form of w 2 U2˝U is w D b1˝.�aC�b/. Assume
.�; �/ ¤ 0: Then the only symmetric tensor of this form is w D ˝3.�aC �b/; i.e.,
b1 D .�aC �b/˝ .�aC �b/: The contradiction follows from rank.b1/ D 1: Hence
� D � D 0 leads to the assertion.

The statements about LU2 follow from the definition LU2 D Umin
2 . OU3/: ut

Theorem 5 (dim.U2/ D 2) Let dim.U2/ D 2: Then

LU2 D U2; dim. OU3/ D 2:

The precise characterisation of OU3 	 U.3/sym is given in the proof.

Proof

(i) There are two linearly independent and symmetric tensors b1, b2 with U2 D
spanfb1;b2g: Fixing linearly independent vectors a; b 2 U D spanfa; bg; the
tensors have the form

b1 D ˛ a˝ aC ˇ b˝ bC � .a˝ bC b˝ a/ ;

b2 D ˛0a˝ aC ˇ0b˝ bC � 0 .a˝ bC b˝ a/

In part (vi) we shall prove that dim. OU3/ � 2: The discussion of the cases 1–3 will
show that dim. OU3/ � 2; so that dim. OU3/ D 2 follows.

(ii) Case 1: � D � 0 D 0: One concludes that U2 D spanfa˝ a; b˝ bg: Then the
first case in Theorem 4 shows that a˝ a˝ a and b ˝ b ˝ b belong to OU3 so
that dim. OU3/ � 2 and part (vi) prove

OU3 D spanfa˝ a˝ a; b˝ b˝ bg: (27)

(iii) Case 2: .�; � 0/ ¤ 0: W.l.o.g. assume � ¤ 0:We introduce the matrices

M˛ WD
�
˛ ˛0
� � 0


; Mˇ WD

�
� � 0
ˇ ˇ0


:

5If K D C; the representation b1 D a ˝ a holds in the strict sense, If K D R; either b1 D a ˝ a
or b1 D �a ˝ a can be obtained. Since the purpose of b1 is to span the subspace, we may w.l.o.g.
replace b1 D �a ˝ a by b1 D a ˝ a:
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Since � ¤ 0; both matrices have a rank � 1: If rank.M˛/ D rank.Mˇ/ D
1; .˛; ˇ; �/ and .˛0; ˇ0; � 0/ would be linearly dependent in contradiction to the
linear independence of fb1;b2g:Hence, at least one matrix has rank 2 and is regular.
W.l.o.g. we assume that rank.M˛/ D 2 (otherwise interchange the roles of a and
b).

(iv) For any .A;B/ 2 K
2 the system

M˛

�
�

�


D Mˇ

�
A
B


(28)

can be solved for .�; �/ 2 K
2: Then the tensor

w WD .Ab1 C Bb2/˝ aC .�b1 C �b2/˝ b

is symmetric and belongs to OU3: For a proof apply Lemma 3: w 2 U.3/sym is
equivalent to 'b .Ab1 C Bb2/ D 'a .�b1 C �b2/ ;where the functionals defined
by 'a.a/ D 'b.b/ D 1, 'a.b/ D 'b.a/ D 0 apply to the last argument. The
latter equation is equivalent to (28).

Let .�; �/ be the solution of (28) for .A;B/ D .1; 0/ ; while .� 0; �0/ is the solution
for .A;B/ D .0; 1/ : Hence we have found a two-dimensional subspace

spanfb1 ˝ aC .�b1 C �b2/˝ b; b2 ˝ aC �� 0b1 C �0b2
�˝ bg 	 OU3: (29)

(v) In both cases (27) and (29) the minimal subspace LU2 D Umin
2 . OU3/ coincides

with U2:
(vi) For an indirect proof of dim. OU3/ � 2 assume dim. OU3/ � 3: Let 'a W OU3 !

Umin
2 . OU3/DU2 be the mapping wDv1 ˝ aC v2 ˝ b 7! v1: Since dim. OU3/ >

dim.U2/; there is some w 2 OU3;w ¤ 0 with 'a.w/ D 0: This implies w D
v2 ˝ b and therefore, by symmetry, w D b ˝ b ˝ b up to a nonzero factor:
Similarly, there are an analogously defined functional 'b and w 2 OU3;w ¤ 0

with 'b.w/ D 0 proving a ˝ a ˝ a 2 OU3: From a ˝ a ˝ a; b ˝ b˝ b 2 OU3
we conclude that LU2 WD Umin

2 . OU3/ � spanfa˝ a; b˝ bg: Then LU2 	 U2 and
dim.U2/ D 2 prove dim. OU3/ � 2:

ut
Theorem 6 (dim.U2/ D 3) If dim.U2/ D 3, U2 coincides with space U.2/sym of all

symmetric tensors in U ˝ U and generates all tensors in U.3/sym:

LU2 D U2 D U.2/sym;
OU3 D U.3/sym with dim. OU3/ D 4:

Proof The statements follow from dim.U.2/sym/ D 3: ut
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5.5 Direct Use of Umin
j .v/

Statement (19) emphasises the important role of the minimal subspace Umin
j .v/:

5.5.1 Case of Known Umin
j .v/

If the minimal subspaces Umin
j .v/ of a symmetric tensor v 2 U.d/sym are given, the

above problems disappear. In this case we may define Uj WD Umin
j .v/: This ensures

that

LUj D Uj and OUjC1 � Umin
jC1.v/

(cf. Theorem 19).
If we want to be able to represent all tensors of a subspace V0 D

spanfv1; : : : ; vkg 	 U.d/sym; we may use

Uj WD Umin
j .V0/ D

kX

�D1
Umin

j .v�/:

Lemma 6 shows that Uj satisfies (32).
Next we consider the case that Umin

j .v/ is not given explicitly, but can be
determined by symmetrisation.

5.5.2 Case of v D S .w/

As in Sect. 2.1 we assume that the symmetric tensor 0 ¤ v 2 U.d/sym is the
symmetrisation S .w/ of a known tensor w 2 ˝dV: Unlike in Sect. 2.1, we assume
that w is given in the TT format with minimal subspaces6 Umin

j .w/: The obvious
task is to transfer Umin

j .w/ into Umin
j .v/ D Umin

j .S .w//:
We solve this problem by induction on d D 1; : : : : The proof also defines an

recursive algorithm.
For d D 1 nothing is to be done since v D S .w/ D w: Formally, Umin

0 .v/ is
the field K and U1 	 K˝ U corresponds to (14).

The essential part of the proof and of the algorithm is the step from d � 1 to d:

Lemma 5 Let SŒ j� W ˝dV ! ˝dV (1 � j � d) be the symmetrisation operator
Sd�1 in (8) applied to the directions Dnf jg (cf. (2)). Using the transpositions �1j,

6In the case of hierarchical tensor representations it is easy to reduce the subspaces to the minimal
ones by introducing the HOSVD bases (cf. Hackbusch [10, §11.3.3]).
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�j1; the explicit definition is

SŒ j� D �1j .id˝Sd�1/ �j1 :

Then the symmetrisation operator Sd is equal to

Sd D 1

d

dX

jD1
SŒ j� �dj :

This lemma proves the next result.

Conclusion 3 Let w 2 ˝dU and ' 2 U0: Then

'.d/.Sdw/ D 1

d
Sd�1

dX

jD1
'. j/.w/

holds with '. j/ defined in (6).

The f1; : : : ; d � 1g-plex rank rd�1 of x 2 ˝dU introduced by Hitchcock [12] is
the smallest rd�1 with x DPrd�1

�D1 x�˝ y� (x� 2 ˝d�1U; y� 2 U/: For instance, this
representation is the result of the HOSVD representation (cf. [10, §11.3.3]). The
minimal subspace Umin

d�1.x/ is the span of fx� W 1 � � � rd�1g :
Alternatively, choose the standard basis fu� W 1 � � � rg of U and the represen-

tation x DPr
�D1 z�˝ u� together with the dual basis f'�g of fu�g: Then the tensors

z� D '�.x/may be linearly dependent so that some of them may be omitted. Let x�
(1 � � � rd�1) be the remaining ones: Umin

d�1.x/ D spanfx� W 1 � � � rd�1g:
Remark 4 states that

Umin
d�2.x/ D Umin

d�2.Umin
d�1.x// D

rd�1X

�D1
Umin

d�2.x�/: (30)

This allows us to determine the minimal subspaces recursively.
Let the TT representation of w 2 ˝dU be given. The TT format is also called

the matrix product representation since w 2 ˝dU can be written as

w D
X

k1;k2;:::;kd�1

v
.1/
1;k1
˝ v.2/k1;k2

˝ v.3/k2;k3
˝ � � � ˝ v.d/kd�1;1

;

where the vectors v. j/
kj;kjC1

2 U are data available from the TT representation. kj varies

in an index set Ij with #Ij D dim.Umin
j .w//. The tensor '. j/.w/ 2 ˝d�1U takes the

matrix product form

'. j/.w/ D
X

kj�1;kj

'.v
. j/
kj�1;kj

/
X

k1;:::;kj�2;
kjC1;:::;kd�1

v
.1/
1;k1
˝ � � � ˝ v. j�1/

kj�2;kj�1
˝ v. jC1/

kj;kjC1
˝ � � � ˝ v.d/kd�1;1

:



On the Representation of Symmetric and Antisymmetric Tensors 507

These tensors can be added within the TT format: w� WD Pd
D1 '

. j/
� .w/ 2 ˝d�1U:

We conclude that

Umin
d�1.v/ D Umin

d�1.Sdw/ D spanfSd�1w� W 1 � � � rd�1g:

According to (30) the next minimal subspace Umin
d�2.v/ can be written asP

� U
min
d�2.Sd�1w�/ so that we can apply the inductive hypothesis.

6 Operations

The computation of scalar products is already discussed. Next we investigate the
tensor addition.

Assume that v0 and v00 are two symmetric tensors represented by subspaces U0
k

and U00
k and corresponding bases. For k D 1; we use the notation U0 WD U0

1 and
U00 WD U00

1 : By assumption, we have

Umin
kC1.v0/ 	 U0

kC1 	 SkC1.U0
k ˝ U0/ \ �U0

k ˝ U0� ; (31a)

Umin
kC1.v00/ 	 U00

kC1 	 SkC1.U00
k ˝ U00/ \ �U00

k ˝ U00� : (31b)

Lemma 6 The sum s WD v0 C v00 can be represented by the subspaces

Uk WD U0
k C U00

k ; U WD U0 C U00:

These spaces satisfy again the conditions

Umin
kC1.s/ 	 UkC1 	 SkC1.Uk ˝ U/\ .Uk ˝ U/ : (32)

Proof The inclusions (31a,b) imply

Umin
kC1.v0/C Umin

kC1.v00/ 	 UkC1 D U0
kC1 C U00

kC1
	 �SkC1.U0

k ˝ U0/\ �U0
k ˝U0��C �SkC1.U00

k ˝ U00/\ �U00
k ˝ U00�� :

Since Umin
kC1.s/ 	 Umin

kC1.v0/ C Umin
kC1.v00/; the first part of (32) follows: Umin

kC1.s/ 	
UkC1. The inclusion U0

k ˝ U0 	 Uk ˝ U implies that

SkC1.U0
k ˝ U0/\ �U0

k ˝ U0� 	 SkC1.Uk ˝ U/\ .Uk ˝U/ :

The analogous statement for SkC1.U00
k ˝ U00/ \ �U00

k ˝ U00� yields

�
SkC1.U0

k ˝ U0/\ �U0
k ˝ U0��C �SkC1.U00

k ˝ U00/ \ �U00
k ˝U00��

	 SkC1.Uk ˝ U/\ .Uk ˝ U/ :
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Hence also the second part of (32) is proved. ut
The computation of the orthonormal basis of Uk is performed in the order k D

1; 2; : : :. As soon as orthonormal bases of Uk and U are given, the orthonormal basis
of UkC1 can be determined.

Since the spaces Uk D U0
k C U00

k may be larger than necessary, a truncation is
advisable.

7 Truncation

The standard truncation procedure uses the SVD. Formally, we have for any tensor
u 2 V and any k 2 f1; : : : ; d � 1g a singular value decomposition

u D
ruX

�D1
��v� ˝ w�; (33)

where fv� W 1 � � � rug 	 ˝kV and fw� W 1 � � � rug 	 ˝d�kV are ortho-
normal systems and f�1 � �2 � : : :g are the singular values. The usual approach is
to choose some s < ru and to define the tensor

Ou D
sX

�D1
��v� ˝ w�

which can be represented with subspaces of lower dimension.
In the case of symmetric tensors u 2 V.d/sym, we have v� 2 V.k/sym and w� 2 V.d�k/

sym :

However, the standard truncation cannot be used since there is no guarantee that the
truncated tensor Ou DPs

�D1 ��v� ˝ w� again belongs to V.d/sym:

7.1 Truncation for k D 1 and k D d � 1

In the cases k D 1 and k D d � 1; the truncation can be performed as follows.
For k D 1; the standard truncation u 7! Ou can be written as Ou D .P˝ I/ u; where
P W V ! V is the orthogonal projection onto the subspace

OU WD spanfv� W 1 � � � sg 	 V;

while I D ˝d�1I is the identity on ˝d�1V:
In the symmetric case, we need a symmetric mapping. If we delete the com-

ponents fv� W � > sg in the first direction, the same must be done in the other
directions. The corresponding mapping is the orthogonal projection

P WD ˝dP
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onto the subspace OU.d/sym 	 V.d/sym: Note that the error u� Pu does not only consist of
the omitted terms

Pru
�DsC1 ��v� ˝ w�; but also of

Ps
�D1 ��v� ˝

�
I �˝d�1P

�
w�:

In the case of k D d� 1; w� belongs to V and the analogous construction can be
performed. If d D 3; the cases k D 1 and k D d � 1 cover all possible ones.

7.2 Open Problem for 1 < k < d � 1

If d > 3; there are integers k with 1 < k < d � 1: Then both v� and w� in (33)
are tensors of order � 2: It is not obvious how the analogue of the previous
mapping P could look like. The advantage of a symmetric projection P would be
the existence of a tensor v0 D Pv 2 Usym: Define w0 WD Ps

�D1 ��v� ˝ w� and
w00 WD Pru

�DsC1 ��v� ˝ w� by SVD. Assume that Pw0 ¤ 0 while Pw00 D 0: Then
Pv D PS .w0Cw00/ D S .Pw0CPw00/ D S .Pw0/ (cf. Lemma 9) does not vanish,
i.e., v0 ¤ 0 ensures the existence of a nontrivial subspaces Umin

j .v0/ .1 � j � d/:

Let Pk W V.k/sym ! V.k/sym be the orthogonal projection onto spanfv� W 1 � � � sg;
so that Pk WD Pk˝.˝d�kI/maps u to the SVD truncation Ou DPs

�D1 ��v�˝w�: The

symmetrisation P D S .Pk/ defines u0 WD Pu 2 U.d/sym: Since hu;u0i D hu;Pui D
hu;S .Pk/ui D hu;S .Pku/i D hS .u/;Pkui D hu;Pkui D hOu; Oui ; the tensor
u0 does not vanish. However, it is not obvious that dim.Umin

k .u0// � s holds, as
intended by the truncation.

A remedy is a follows. Assume that the (not truncated) tensor uses the subspaces
Uj satisfying (17). Let the SVD for index k reduce Uk to U0

k: Since U0
k 	 Uk; U0

k still

belongs to U.k/sym: Moreover

OU0
kC1 WD

�
U0

k ˝U
� \ S

�
U0

k ˝ U
� 	 .Uk ˝ U/ \ S .Uk ˝ U/ D OUkC1

guarantees the existence of a subspace U0
kC1 	 OU0

kC1 so that the construction can be

continued. However, may it happen that U0
k is too small and OU0

kC1 D f0g holds?

8 Combination with ANOVA

As already mentioned in [10, §17.4.4] the ANOVA7 representation has favourable
properties in connection with symmetric tensors. The ANOVA technique is briefly
described in Sect. 8.1 (see also Bohn–Griebel [5, §4.3]). The ANOVA approxima-
tion uses terms with low-dimensional minimal subspaces. Therefore the combina-
tion with the TT format is an efficient approach.

7ANOVA abbreviates ‘analysis of variance’.
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8.1 ANOVA Technique

Let 0 ¤ e 2 V be a special element. In the case of multivariate functions, e may be
the constant function e.x/ D 1: In the case of mappings, e is the identity mapping.
Define

E WD spanfeg; VV WD E?: (34)

The choice of the orthogonal complement E? simplifies later computations. Theo-
retically, it would be sufficient to choose VV such that there is a direct sum

V D E˚ VV:

The space VV gives rise to the symmetric tensor space VV.d/sym:

We introduce the following notation of symmetric tensors in V.d/sym generated by

tensors from VV.k/sym:

S.vI d/ WD Sd.v˝ .˝d�ke// for v 2 VV.k/sym with 1 � k � d: (35)

The tensors in (35) form the following subspaces of V.d/sym:

VV0 WD ˝dE; VVk WD Sd. VV.k/sym ˝ .˝d�kE// for 1 � k � d:

Lemma 7 If (34) holds, there is an orthogonal decomposition V.d/sym DLd
jD0 VVj:

Proof Let k > `; v 2 VVk; w 2 VV`: Tensor v can be written as a sum of elementary
tensors v� DNd

jD0 v
. j/
� containing k vectors v. j/

� 2 VV . Correspondingly, w is a sum

of w� D Nd
jD0 w. j/

� with d � ` vectors w. j/
� D e: Because of ` < k; there must be

some j with v. j/
� 2 VV orthogonal to w. j/

� D e: Hence
˝
v�;w�

˛ D 0 holds for all pairs
implying hv;wi D 0: ut

The ANOVA representation of a (symmetric) tensor v 2 V.d/sym is the sum

v D
LX

kD0
vk with vk 2 VVk for some 0 � L � d: (36)

We call L the ANOVA degree.

Remark 9

(a) The motivation of ANOVA is to obtain an approximation (36) for a relative
small degree L:
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(b) Let vex D Pd
kD0 vk be the exact tensor. In order to approximate vex by v

from (36) we have to assume that the terms vk are (rapidly) decreasing.

8.2 Representation

We assume that (36) holds with vk D S.xkI d/. The tensors xk 2 VV.k/sym are given
together with their minimal subspaces Umin

k .xk/ as described in Sect. 5.5.
We generalise the notation S.�I d/ in (35) to subspaces:

S.XI d/ D spanfS.xI d/ W x 2 Xg for X 	 VV.k/sym:

If X D spanfx� W 1 � � � Ng; we have S.XI d/ D spanfS.x�I d/ W 1 � � � Ng:
We remark that Umin

d .v/ D spanfvg for v 2 ˝dV:

Lemma 8 Let vk 2 VVk. Then

Umin
j .S.vkI d// D

maxfk;d�jgX

�Dminf j;k�jg
S.Umin

� .vk/I j/: (37)

Proof By definition of Umin
j .�/; functionals in d � j directions are to be applied. Let

� be associated with vk and d � j � � with ˝d�ke: This leads to the inequalities
0 � � � k and 0 � d � j � � � d � k: Together they imply minf j; k � jg � � �
maxfk; d � jg:

Consider the case of j D d�1: Applying ' with '.e/ D 1 and '.v/ D 0 (v 2 VV),
we obtain '.d/.S.vkI d// D S.vkI d � 1/; provided that k < d. On the other hand, '
with '.e/ D 0 yields '.d/.S.vkI d// D S.'.vk/I d � 1/: This proves

Umin
d�1.S.vkI d// D S.vkI d � 1/C S.Umin

k�1.vk/I d � 1/:

Since spanfS.vkI d�1/g D S.Umin
k .vk/I d�1/; this coincides with (37) for j D d�1:

For the other j apply Remark 4 recursively. ut
The ANOVA tensor is the sum v DPk vk:As Umin

j .aCb/ 	 Umin
j .a/CUmin

j .b/;
we obtain from (37) that

Umin
j

�
S
�X

k
vkI d

		
	
X

k;�
S.Umin

� .vk/I j/:

The dimension of the right-hand side may be larger than Umin
j .v/; but here we want

to separate the spaces E and VU 	 VV: For instance, the tensor v D .aC e/˝ .aC e/
has the one-dimensional minimal subspace Umin

1 .v/ D spanfaC eg; but here we use

EC VU with VU D spanfag:
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8.3 Example

Consider an expression of the form
P

i S.a0
iI d/ C S.bI d/; where a0

i 2 V and

b 2 V.2/sym: We assume that b can be approximated by
P

k

�
b0

k ˝ c0
k C c0

k ˝ b0
k

�
.

Orthogonalisation of a0
i; b

0
k; c

0
k with respect to some e yields the vectors ai; bk; ck

and the ANOVA form

v D ˛S.1I d/C
N1X

iD1
S.xiI d/C

N2X

kD1
S.ak ˝ bk C bk ˝ akI d/; (38)

where xi represents ai and multiples of bk and ck. Note that S.1I d/ D ˝de: In the
following we give the details for

v D ˛S.1I d/C S.xI d/C S.a˝ bC b˝ aI d/:

The combined ANOVA-TT format uses the spaces

j D 1 W U1 D spanfe; x; a; bg; (39)

j D 2 W U2 D spanfS.1I 2/; S.xI 2/; S.aI 2/; S.bI 2/; S.a˝ bC b˝ a; 2/g;
:::

j < d W Uj D spanfS.1I j/; S.xI j/; S.aI j/; S.bI j/; S.a˝ bC b˝ a; j/g;
j D d W Ud D spanfvg:

The essential recursive definition (18) of the basis reads as follows:

S.1I j/ D S.1I j� 1/˝ e;

S.xI j/ D S.xI j� 1/˝ eC S.1I j� 1/˝ x;

S.aI j/; S.bI j/ W analogously,

S.a˝ bC b˝ a; j/ D S.a˝ bC b˝ a; j� 1/˝ e

C S.aI j� 1/˝ bC S.bI j� 1/˝ a:

The final step follows from

v D˛S.1I d � 1/C S.xI d � 1/˝ eC S.1I d � 1/˝ x

C S.a˝ bC b˝ a; d � 1/˝ eC S.aI d � 1/˝ bC S.bI d � 1/˝ a:
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Remark 10 The terms

˛S.1I d/ and
N2X

kD1
S.ak ˝ bk C bk ˝ akI d/

in (38) lead to 3N2C 1 basis vectors in Uj: Let N0 vectors xi be linearly independent
of spanfak; bk W 1 � k � N2g: Then

PN1
iD1 S.xiI d/ requires N0 additional basis

vectors in Uj:

8.4 Operations

Concerning scalar product one can exploit Lemma 7: hS.vI d/; S.wI d/i D 0 for

v 2 VVk; w 2 VV` with k ¤ `: If the basis of Uj should be orthonormalised, it is

sufficient to orthonormalise only the contributions S.v�I j/ for all v� 2 VVk separately
(cf. (39)).

One can possibly use that for tensors v�;w� 2 VVk; k � j; the scalar product
hS.vI j/; S.wI j/i is a fixed multiple of hv;wi ; provided that he; ei D 1:

hS.vI j/; S.wI j/i D jŠ

kŠ
hv;wi :

In principle, the operations within the TT format are as usual. However, one has
to take care that the result is again of the ANOVA form.

As an example we consider the Hadamard product ˇ (pointwise product) for
multivariate functions. For the standard choice that e is the constant function with
value 1, we have e ˇ e D e (and a ˇ e D e ˇ a D a for any a). If v is of the
form (36) with L D Lv; while w corresponds to L D Lw, the product z WD v ˇ w
satisfies (36) with degree Lz D minfd;Lv C Lwg: Enlarging L increases the storage
cost and the arithmetic cost of operations involving z. A truncation Lz 7! L0

z < Lz

could be helpful, provided that omitted terms are small. Here we need that z satisfies
the assumption of Remark 9b.

Let Z D L.V/ be the space of linear maps of V into V: Another example is the
multiplication of an operator (Kronecker matrix) A DPLA

kD0Ak 2 Z.d/sym and a tensor

v D PLv
kD0 vk 2 V.d/sym: Let the identity be the special element I of Z (replacing e in

the general description). This guarantees Ie D e: Again w WD Av is of the form (36)
with Lw D minfd;LA C Lvg: Only under the assumption that all maps in Umin

1 .A/
possess e as an eigenvector, we have Lw D Lv:
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9 Operators, Kronecker Matrices

If V is a matrix space, the corresponding tensor space contains Kronecker matrices.
More generally, linear operators on multivariate functions can be described by
tensors. In this case, there is an operator A and a vector v as well as the product
Av. For completeness we list the relations between (anti)symmetric operators and
(anti)symmetric tensors v. The proofs are obvious and therefore omitted.

The expression �A used below means the application of the permutation � to
the tensor A 2˝d L.V/ 	 L.V/; where L.V/ are the linear maps from V into itself.
Concerning˝dL.V/ 	 L.V/ compare [10, Proposition 3.49].

Lemma 9 Let V D ˝dV; A W V! V a linear map and � a permutation. Then the
action of �A can be expressed by the action of A:

.�A/ u D � �A ���1u
��

for all u 2 V:

If A is symmetric then �.Au/ D A.�u/: If u 2 Vsym then .S .A//u D S .Au/: If
A W V! V is symmetric then AS .u/ D S .Au/:

The last statement implies that if A W V! V is symmetric, then A W Vsym! Vsym

and A W Vanti! Vanti:

The adjoint of A is denoted by A�; i.e., hAu; vi D hu;A�vi : Any permutation
satisfies �� D ��1 and .�A/� D �A�: In particular, permutations of selfadjoint
operators are again selfadjoint.
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Direct and Inverse Results on Bounded
Domains for Meshless Methods via
Localized Bases on Manifolds

Thomas Hangelbroek, Francis J. Narcowich, Christian Rieger,
and Joseph D. Ward

Dedicated to Ian H. Sloan on the occasion of his 80th Birthday

Abstract This article develops direct and inverse estimates for certain finite dimen-
sional spaces arising in kernel approximation. Both the direct and inverse estimates
are based on approximation spaces spanned by local Lagrange functions which are
spatially highly localized. The construction of such functions is computationally
efficient and generalizes the construction given in Hangelbroek et al. (Math Comput,
2017, in press) for restricted surface splines on R

d. The kernels for which the theory
applies includes the Sobolev-Matérn kernels for closed, compact, connected, C1
Riemannian manifolds.

1 Introduction

This article investigates both direct estimates and inverse inequalities for certain
finite dimensional spaces of functions. These spaces are spanned by either Lagrange
or local Lagrange functions generated by certain positive definite or conditionally
positive definite kernels.

While the topics of direct and inverse theorems for kernel-based approximation
spaces have been considered in the boundary-free setting by a number of authors
(see [10, 16–18, 20] as a partial list), the results for such theorems on compact
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domains is less well developed. The main results in this article pertain to inverse
estimates (Sect. 5.3) and direct theorems (Sect. 6) for certain kernel based approxi-
mation spaces on compact domains in a fairly general setting.

The primary focus of this article pertains to certain positive definite kernels
defined on a closed, compact, connected, C1 Riemannian manifold, which will
be denoted by M throughout the sequel. We restrict to this setting; inverse theorems
in the Euclidean space setting were recently given in [15].

Rather than dealing with the standard finite dimensional kernel spaces S.X/ D
span�2Xk.�; �/, where k.�; �/ is a positive definite kernel and X, the set of centers,
is a suitably chosen finite set of points, we will consider subspaces of S.X/ that are
generated by Lagrange functions f�� W � 2 Xg, which, for certain kernels, are highly
localized. These subspaces are designed to deal with problems involving a compact
domain˝ ¨ M, where˝ is subject to some mild restrictions discussed in Sect. 5.1.

Specifically, we look at spaces of the form V„ D span�2„�� , where �� is a
Lagrange function for X, which is assumed to be suitably dense in a neighborhood
of ˝ , and „ is a subset of X. An important feature, perhaps unusual for RBF and
kernel approximation, is that the centers X used to construct the Lagrange functions
f�� W � 2 Xg and centers„ defining the function spaces V„, do not always coincide,
because V„ comprises only the Lagrange functions associated with � 2 „. The
spaces V„ differ slightly from S.X/ and are important for obtaining inverse estimates
over ˝ . We will discuss these spaces in Sect. 5 and provide inverse estimates in
Theorem 3.

We also consider, in Sect. 4, locally (and efficiently) constructed functions b� ,
which we call local Lagrange functions. These have properties similar to the �� ’s
and also to those used in [6]. In Theorem 4, we give inverse estimates for QV„ D
span�2„b� .

1.1 Overview and Outline

In Sect. 2, a basic explanation and background on the manifolds and kernels used in
this article will be given.

The direct and inverse theorems in this paper are associated with two approxima-
tion spaces V„ and QV„. In Sect. 3, we introduce the Lagrange basis (the functions
which form a basis for the space V„) associated with the kernels described in
Sect. 2.2. Such Lagrange functions are known to have stationary exponential decay
(this notion is introduced in Sect. 3.1). To illustrate the power of these highly
localized bases, we finish the section by providing estimates that control the Sobolev
norm (i.e. W�

2 .M/) of a function in V„ by the l2 norm on the Lagrange coefficients.
That is, for s DP�2„ a��� we show

kskW�
2 .M/
� Chd=2��k.a�/�2„kl2.„/:

This estimate is a crucial first step for the inverse estimates.
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Section 4 introduces the other stable basis considered in this paper: the local
Lagrange basis, which generates the space QV„. Unlike the Lagrange functions, the
local Lagrange bases will be shown to be computationally efficient while enjoying
many of the same (or similar) properties of the Lagrange bases. The local Lagrange
bases, which generate the spaces QV„, provide the focal point of this paper. We first
give sufficient conditions to prove existence and stability of such a basis, given
Lagrange functions with stationary exponential decay. The section culminates with
Theorem 2 which states that there is a constant C so that for any s DP�2„ a�b�

kskW�
2 .M/
� Chd=2��k.a�/�2„kl2.„/

holds.
Section 5 provides lower stability estimates (i.e. bounding kskL2 below in terms

of the coefficients k.a�/�2„kl2) for elements of either V„ or QV„. Section 5.3
presents the complete Sobolev inverse estimates for both the spaces V„ and QV„
in Theorems 3 and 4 respectively.

Finally in Sect. 6 the direct theorems are given. More specifically, both spaces
V„ and QV„ are shown to provide approximation orders for functions of varying
smoothness. For a continuous function f with no known additional orders of
smoothness, Theorem 5 shows that both the interpolant I„f or the quasi-interpolant
Q„f approximate f pointwise at a rate comparable to the pointwise modulus of
continuity !. f ;Khj ln hj; x0/ where

!. f ; t; x0/ WD max
jx�x0j�t

j f .x/� f .x0/j:

These are the first pointwise estimates of their kind for RBF approximation schemes.
The next result applies to smoother functions f . For a point set„e which is quasi-

uniform over the manifold M and given kernel �m, we show that the smoothness of
f is captured in the estimate

distp;M. f ; S.�// � Ch�k fkB�p;1 ; 1 � p � 1; 0 < � � 2m;

where the Besov space B�p;1.M/ is defined in (27).
Our final result shows that optimal L1 approximation rates, when approximating

a smooth function f on˝ can be obtained from data sites contained in a set “slightly
larger” than˝ . The result illustrates the local nature of the bases f��g or fb�g.

Let f 2 Ck.˝/ and let fe 2 Ck.M/ be a smooth extension of f to M, i.e., fej˝ D
f j˝ . Let S D fx 2Mn˝; dist.x;˝/ � Kh log h�1g and„ a discrete quasi-uniform
set contained in ˝ [ S with fill distance h. Finally let „e be a quasi-uniform
extension of„ to all of M as given in Lemma 2. Also let �m be a kernel as described
in Sect. 2.2 with associated spaces

QV„e D span�2„e
fb�g and QV„ D span�2„fb�g:
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The result then states that dist1;˝. f ; QV„/ � dist1;M. fe; QV„e/—that is they are
within constant multiples of each other. The upshot is that there are several results
on estimating dist1;M. fe; QV„e/:

2 Background: Manifolds and Kernels

2.1 The ManifoldM

As noted above, throughout this article M is assumed to be a closed, com-
pact, connected, C1 Riemannian manifold. The metric for M, in local coordi-
nates .x1; � � � ; xd/, will be denoted by gj;k and the volume element by d� Dp

det.gj;k/dx1 � � � dxd. Such manifolds have the following properties:

1. Geodesic completeness. M is geodesically complete, by the Hopf-Rinow The-
orem [7, Section 7.2]. Thus, M is a metric space with the distance dist.x; y/
between x; y 2 M given by the length of the shortest geodesic joining x and
y. The diameter of M, which is finite by virtue of the compactness of M, will
be denoted by dM. The injectivity radius rM, [7, p. 271], which is the infimum
of the radius of the smallest ball on which geodesic normal coordinates are non
singular, is positive and finite. Of course, rM � dM.

2. Lp embeddings. For ˝ 	 M, we define vol.˝/ D R
˝

d�. In addition, with
respect to d�, the inner product h�; �i and all Lp norms are defined in the usual
way, and these standard embeddings hold:

Lp.M/ 	 Lq.M/ for 1 � q � p � 1

3. Bounded geometry. M has bounded geometry [4, 19], which means that M has
a positive injectivity radius and that derivatives of the Riemannian metric are
bounded (see [12, Section 2] for details). This fact already implies the Sobolev
embedding theorem, as well as a smooth family of local diffeomorphisms
(uniform metric isomorphisms), [12, (2.6)], which induce a family of metric
isomorphisms [12, Lemma 3.2] between Sobolev spaces on M and on R

d.
4. Volume comparisons. Denote the (geodesic) ball centered at x 2 M and having

radius r by B.x; r/, where 0 < r � dM. There exist constants 0 < ˛M < ˇM <1
so that, for all 0 < r � dM,

˛Mrd � vol.B.x; r// � ˇMrd: (1)

This inequality requires the volume comparison theorem of Bishop and Gromov
[8, 11]. See Sect. 7 for a proof and explicit estimates on ˛M and ˇM.
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2.1.1 Point Sets

Given a set D 	M and a finite set X 	 D, we define its fill distance (or mesh norm)
h and the separation radius q to be:

h.X;D/ WD sup
x2D

dist.x;X/ and q.X/ WD 1

2
inf

�;�2X;�¤�
dist.�; �/: (2)

The mesh ratio 
 WD h.X;D/=q.X/measures the uniformity of the distribution of X
in D. If 
 is bounded, then we say that the point set X is quasi-uniformly distributed
(in D), or simply that X is quasi-uniform.

We remark that for quasi-uniform X and any � 2 X, we have, as a consequence
of (1), this useful inequality:

Lemma 1 Let h D h.X;M/ and let f W Œ0;1/! Œ0;1/ be decreasing and satisfy
the following: There is a continuous function g W Œ0;1/! Œ0;1/ such that f .xh/ �
g.x/ and that xd�1g.x/ is decreasing for x � 1, and is integrable on Œ0;1/. Then

X

�¤�2X

f .dist.�; �// � 2dd 
dˇM

˛M

Z 1

0

g.r/rd�1dr: (3)

Proof Divide M into N 
 dM=h annuli an, with center � and inner and outer radii
.n�1/h and nh, n � 2. The cardinality of centers in each annulus an is approximately

#an 
 vol.B.�; nh//� vol.B.�; .n � 1/h//
vol.B.�; q//

:

By (1), we see that

#an 
 ˇM

˛M

.nh/d � ..n � 1/h/d
qd

� dˇM
qd˛M

hdnd�1 D d
dˇM

˛M
nd�1

By the assumption that f is decreasing, we have, using nd�1 � 2d.n� 1/d�1, n � 2,

X

�2an

f .dist.�; �// � d
dˇM

˛M
f ..n � 1/h/nd�1 � 2dd 
dˇM

˛M
g..n � 1//.n � 1/d�1:

Since g.x/xd�1 is decreasing, we have
PN

nD2 g..n�1//.n�1/d�1 � R1
0

g.r/rd�1dr.
This and the previous inequality then imply (3). ut

Given D and X 	 D, we wish to find an extensioneX � X so that the separation
radius is not decreased and the fill distance is controlled.
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Lemma 2 Suppose X 	 D 	 M has fill distance h.X;D/ D h and separation
radius q.X/ D q. Then there is a finite seteX so thateX\D D X, q.eX/ D min.q; h=2/
and h.eX;M/ D h.

Proof We extend X by taking Z D M nS�2X B.X; h/. Cover Z by a maximal �-net
with � D h as follows.

Consider the set of discrete subsets D D fD 	 Z j h.D;Z/ D h; q.D/ D h=2g.
This is a partially ordered set under 	 and therefore has a maximal element D� by
Zorn’s lemma. This maximal element must satisfy q.D�/ D h=2 (since it’s in D)
and must cover Z (if x 2 Z nSz2D�

B.z; h/ then D� is not maximal). It follows that
eX D X [D� has fill distance h.eX;M/ D h and q.eX/ D min.q; h=2/. ut

2.1.2 Sobolev Spaces

We can define Sobolev spaces in a number of equivalent ways. In this article, we
focus on W	

p .˝/, where 	 2 N and 1 � p < 1. For p D 1, we make use of the
short hand notation (usual for approximation theory) W	1 D C	 (i.e., substituting
the L1 Sobolev space by the Hölder space).

Our definition is the one developed in [2], by using the covariant derivative
operator. This permits us to correctly define Sobolev norms and semi-norms on
domains. Namely,

k fkW	
p .˝/
D
 

	X

kD0

Z

˝

.hrkf ;rkf ix/p=2dx

!1=p

:

See [2, Chapter 2], [12, Section 3] or [19, Chapter 7] for details.
Here bounded geometry means that M has a positive injectivity radius and that

derivatives of the Riemannian metric are bounded (see [12, Section 2] for details).
This fact already implies the Sobolev embedding theorem, as well as a smooth
family of local diffeomorphisms (uniform metric isomorphisms), [12, (2.6)], which
induce a family of metric isomorphisms [12, Lemma 3.2] between Sobolev spaces
on M and on R

d.

2.2 Sobolev-Matérn Kernels

The kernels we consider in this article are positive definite. Much of the theory
extends to kernels that are conditionally positive definite; for a discussion, see [14].

A positive definite kernel k WM �M! R satisfies the property that for every
finite set X 	M, the collocation matrix

KX WD .k.�; �//�;�2X

is strictly positive definite.
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If 	 > d=2, then W	
2 .M/ is a reproducing kernel Hilbert space, and its kernel

is positive definite. Conversely, every continuous positive definite kernel is the
reproducing kernel for a Hilbert space of continuous functions N .k/ on M.

The positive definite kernels we consider in this article are the Sobolev-Matérn
kernels, which are reproducing kernels for the Sobolev space Wm

2 .M/. These were
introduced in [12]; we will denote them by �m. They are also the fundamental
solution of the elliptic differential operator, L D Pm

jD0.r j/�r j of order 2m. This
fact, although not used directly, is a key fact used to establish the stationary energy
decay estimates considered in Sect. 3.1.

For finite X 	 M we define S.X/ WD span�2Xk.�; �/. The guaranteed invertibility
of KX is of use in solving interpolation problems—given y 2 R

X , one finds a 2 R
X

so that KXa D y. It follows that
P

�2X a�k.�; �/ is the unique interpolant to .�; y�/�2X

in S.X/. It is also the case that
P

�2X a�k.�; �/ is the interpolant to .�; y� /�2X with
minimum N .k/ norm.

3 Lagrange Functions and First Bernstein Inequalities

In this section we introduce the Lagrange functions, which are a localized basis
generated by the kernel �m. After this we give our first class of Bernstein estimates,
valid for linear combinations of Lagrange functions.

3.1 Lagrange Functions

For a positive definite kernel k and a finite X 	M, there exists a family of uniquely
defined functions .��/�2X 	 S.X/ that satisfy ��.�/ D ı.�; �/ for all � 2 X, and
have the representation �� DP�2X A�;�k.�; �/. The ��’s are the Lagrange functions
associated with X; they are easily seen to form a basis for S.X/.

The A�;�’s can be expressed in a useful way, in terms of an inner product. Let
h�; �iN .k/ denote the inner product for the reproducing Hilbert space N .k/. Because
�� 2 N .k/, we have that h�� ; �m.�; �/iN .k/ D ��.�/. Representing a second �� by
�� DP�2X A�;�k.�; �/, we obtain

˝
�� ; ��

˛
N .k/

D ˝�� ;
X

�2X

A�;�k.�; �/
˛
N .k/

D
X

�2X

A�;���.�/ D A�;� : (4)

If k D �m W M � M ! R is a Sobolev-Matérn kernel, then, by virtue of �m

being a reproducing kernel for N .�m/ 
 Wm
2 .M/, we can make the following

“bump estimate” on the A�;�’s. Consider a C1 function  �;q W M ! Œ0; 1� that
is compactly supported in B.�; q/ and that satisfies  �;q.�/ D 1. Moreover, the
condition on supp. �;q/ implies that, for any � 2 X,  �;q.�/ D ı.�; �/. Because
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 �;q 2 Wm
2 
 N .�m/ and �� is the minimum norm interpolant to � ! ı.�; �/, we

have that

k��kN .�m/ � k �;qkN .�m/ � Ck �;qkWm
2 .M/
� Cq

d
2�m:

As a consequence, the A�;�’s are uniformly bounded:

jA�;�j D jh��; ��iN .�m/j � Cqd�2m: (5)

This bound is rather rough, and can be substantially improved. In fact, when X is
sufficiently dense in M, there exist constants C, and � > 0, which depend on �m

(see[9]), so that the coefficient bound

jA�;�j D jh��; ��iN .�m/j � Cqd�2mexp



�� dist.�; �/

h

�
(6)

holds. The proof of this estimate is, mutatis mutandis, the same as that for [9,
Eqn. 5.6].

Under the same hypotheses, we have the spatial decay of the Lagrange function:

j��.x/j � C
m�d=2exp



��dist.x; �/

h

�
; (7)

with � D 2�. Both (7) and (6) are consequences of the zeros estimate [14, (A.15)]
on M and a more basic estimate,

k��kWm
2 .MnB.�;R// � Cqd=2�mexp



��R

h

�
(8)

which we call an energy estimate. When (8) holds for a system of Lagrange
functions, we say it exhibits stationary exponential decay of order m.

Stationary decay of order m was demonstrated for Lagrange functions generated
by Sobolev-Matérn kernels on compact Riemannian manifolds in [12]. (Specifically,
these results are found in [12, Corollary 4.4] for (8) and in [12, Proposition 4.5]
for (7).) Similar bounds hold for Lagrange functions associated with other kernels,
both positive definite and conditionally positive definite, as discussed in [14] and
[15].

We stress that to get estimates (8), (7) and (6), the point set X must be dense in
M. This is clearly problematic when we consider behavior over˝ ¨ M and X 	 ˝
(which is a focus of this article). To handle this, for a given point set we require the
dense, quasi-uniform extension to M that was developed in Lemma 2.
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3.2 Bernstein Type Estimates for (Full) Lagrange Functions

We develop partial Bernstein inequalities for functions of the form s DP�2X a��� .
Our goal is to control Sobolev norms kskW�

2
by the `2.X/ norm on the coefficients:

kak`2.X/. We have the following theorem.

Theorem 1 If X is sufficiently dense in˝ and 0 � � � m, then there exists C <1
such that

�
�
X

�2X

a���
�
�

W�
2 .˝/
� C
mhd=2����a

�
�
`2.X/

: (9)

Proof Since ˝ � M and W�
2 .˝/ � W�

2 .M/, we only need to prove the result for
˝ D M. In addition, we can replace X with eX, the extension of X to M, whose
existence was shown in Lemma 2. The point is that once the result is shown true for
eX, we just restrict a�’s to � 2 X, setting a� D 0 for � 2 eX n X.

To begin, we use (6) to observe that �� 2 Wm
2 .M/, whence we obtain

��
X

�2eX
a���

��2
Wm
2 .M/
� C

��
X

�2eX
a���

��2
N .�m/

D C
X

�2eX

X

�2eX
ja� jja�j

ˇ
ˇh�� ; ��iN .�m/

ˇ
ˇ

� Cqd�2m
X

�2eX

X

�2eX
ja� jja�je�� dist.�;�/

h

� Cqd�2m


X

�2eX
ja� j2 C

X

�2eX

X

�2eX;�¤�
ja� jja�je�� dist.�;�/

h

�
:

From this we have kP�2eX a���kWm
2 .M/

� Cqd=2�m
�
kak`2.eX/ C .II/1=2

	
. We

focus on the off-diagonal part II. Since each term appears twice, we can make the
estimate

X

�2eX

X

�¤�
ja� jja�je�� dist.�;�/

h �
X

�2eX

X

�2eX;�¤�
ja� j2e�� dist.�;�/

h

� C
d


Z 1

0

e��rrd�1dr

�X

�2eX
ja� j2:
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The first inequality uses the estimate ja� jja�j � 1
2
.ja� j2 C ja�j2/. The second

inequality follows from (3). We have demonstrated that

�
�
X

�2eX
a���

�
�

Wm
2 .M/
� C
d=2qd=2�mkak`2.eX/ � C
mhd=2�m kak`2.eX/ : (10)

On the other hand, using (7) we have

�
�
X

�2eX
a���

�
�2

L2.M/
�
X

�2eX

X

�¤�
ja� jja�jjh��; ��i2j

� C
2m�d
X

�2eX

X

�2eX;�¤�
ja� jja�j

Z

M

e�2� dist.x;�/
h e�2� dist.x;�/

h dx:

The integral can be estimated over two disjoint regions (the part of M closer to �
and the part closer to �) to obtain

�
�
X

�2eX
a���

�
�2

L2.M/
� C
2m�dhd

X

�2eX

X

�2eX;�¤�
ja� jja�je�� dist.�;�/

h

� C
2mhd
X

�2eX
ja� j2:

The second inequality repeats the estimate used to bound
�
�P

�2eX a���
�
�

Wm
2 .M/

. It
follows that

�
�
X

�2eX
a���

�
�

L2.M/
� C
mhd=2

�
�a
�
�
`2.eX/: (11)

Define the operator V W `2.eX/ ! Wm
2 .M/ W a 7! P

�2eX a��� . We
interpolate between (10) and (11), using the fact that W�

2 .M/ D B�2;2.M/ D
ŒL2.M/;Wm

2 .M/� �
m ;2

(cf. [19]). As noted at the start, this implies the result for

˝ �M and X 	 ˝ . ut

4 Local Lagrange Functions

We now consider locally constructed basis functions. We employ a small set of
centers from X to construct “local” Lagrange functions: For each � 2 X, we define

$ .�/ WD f� 2 X j dist.�; �/ � Khj log hjg;

where K > 0 is a parameter used to adjust the number of points in $ .�/.
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We define the local Lagrange function b� at � to be the Lagrange function for
$ .�/. We will call $ .�/ the footprint of b� . Of course, b� 2 S.$ .�//. The choice
of the parameter K depends on the constants appearing in the stationary exponential
decay (8), the conditions we place on the manifold M and the rate at which we wish
b� to have decay away from �.

K may be chosen so that for a prescribed J, which depends linearly on K and
other parameters, we can ensure that k�� � b�kL

1

.M/ D O.hJ/ holds. (See (17).)
The main goal of this section is to provide Sobolev estimates on the difference

between locally constructed functions b� and the analogous (full Lagrange) func-
tions �� . As in [9] the analysis of this new basis is considered in two steps. First, an
intermediate basis function e�� is constructed and studied: the truncated Lagrange
function. These functions employ the same footprint as b� (i.e., they are members of
S.$ .�//) but their construction is global rather than local. This topic is considered
in Sect. 4.1. Then, a comparison is made between the truncated Lagrange function
and the local Lagrange function. In Sect. 4.2, we will show that the error between
local and truncated Lagrange functions is controlled by the size of the coefficients
in the expansion of b� �e�� in the standard (kernel) basis for S.$ .�//.

4.1 Truncated Lagrange Functions

For a (full) Lagrange function �� D P
�2X A�;�k.�; �/ 2 S.X/ on the point set X,

the truncated Lagrange functione�� D
P

�2$ .�/ A�;�k.�; �/ is a function in S.$ .�//
obtained by removing the A�;�’s for � not in $ .�/. The cost of truncating can be
measured using the norm of the omitted coefficients (the tail).

Lemma 3 Let M be as in Sect. 2.1 and let �m be a Sobolev-Matérn kernel
generating f�� W � 2 Xg. Suppose X 	 M has fill distance 0 < h � h0
and separation radius q > 0. Let K > .4m � 2d/=� and for each � 2 X, let
$ .�/ D f� 2 X j dist.�; �/ � Khj log hjg. Then

X

�2Xn$ .�/
jA�;�j � C
2mhK�=2Cd�2m:

Proof The inequality (6) guarantees that

X

�2Xn$ .�/
jA�;�j � Cqd�2m

X

dist.�;�/�Khj log hj
exp



�� dist.�; �/

h

�

� Cq�2m
Z

y2MnB.�;Khj log hj/
exp



�� dist.�; y/

h

�
dy

� Cq�2m
Z 1

Khj log hj
exp

�
�� r

h

	
rd�1dr:
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A simple way1 to estimate this involves splitting � D �=2C �=2 and writing

X

�2Xn$ .�/
jA�;�j � Chdq�2m


Z 1

Kj log hj
rd�1 exp

�
�Kj log hj�

2

	
exp

�
�r
�

2

	
dr

�

� Chdq�2mhK�=2:

The lemma follows. ut
Standard properties of reproducing Hilbert kernels imply that, because M is a

compact metric space, �m.x; y/ is continuous on M �M. Consequently, �m.x; x/ D
k�m.�; x/k2N .�m/

is uniformly bounded in x. Moreover, since N .�m/ and Wm
2 .M/ are

norm equivalent, there is a constant � such that

sup
x2M
k�m.�; x/kWm

2 .M/
� C sup

x2M
k�m.�; x/kN .�m/ � ��m :

From Lemma 3 and the inequality above, we have that

k�� �e��kWm
2 .M/
� ��m

X

�2Xn$ .�/
jA�;�j � C��m


2mhK�=2�2mCd: (12)

Applying the Sobolev embedding theorem then yields the result below.

Proposition 1 Let �m the Sobolev-Matérn kernel, with m > d=2. Then, if 1 � p <
1 and � � m � . d

2
� d

p /C, or if p D 1 and 0 � � < m � d=2, we have

k�� �e��kW�
p .M/
� C��m


2mhK�=2Cd�2m; C D C�;m;p: (13)

In particular, if p D 1 and � D 0, we have

k�� �e��kL
1

.M/ � Cm��m

2mhK�=2Cd�2m: (14)

Proof This follows from (12) by applying the Sobolev embedding theorem to k���
e��kW�

p .M/
. ut

4.2 Local Lagrange Function Distance Estimates

In this section, we consider bounding the distance between b� and �� and also b�
ande�� , using Sobolev norms. The argument we will use is essentially the one used
on the sphere in [9].

1The integral can be done exactly. However, we don’t need to do that here.
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By construction, both b� and e�� are in S.$ .�//, and thus b� � e�� 2 S.$ .�//
is, too. Hence, b� �e�� D

P
�2$ .�/ a��m.�; �/. Let a WD .a�/�2$ .�/ and y D .b� �

e��/j$ .�/. where a and y are related by K$ .�/a D y.
We can write y another way. Since b� is a Lagrange function for $ .�/, we have

that b�.�/ D ı�;� when � 2 $ .�/. However, because �� is a Lagrange function for
all X, it also satisfies ��.�/ D ı�;� , � 2 $ .�/. Consequently, y D .�� �e��/j$ .�/.

Using this form of y we have that kyk1 � .#$ .�//kyk1 � .#$ .�//k�� �
e��kL

1

.M/. From (14) and the bound #$ .�/ � C
dj log hjd, we arrive at

kyk1 � C
2mCdhK�=2Cd�2mj log hjd:

The matrix .K$ .�//
�1 has entries .A�;�/�;�2$ .�/. These can be estimated by (5):

jA�;�j � Cqd�2m. It follows that .K$ .�//
�1 has `1 matrix norm

�� �K$ .�/

��1 ��
1!1
� C.#$ .�//qd�2m � C
2mj log hjdhd�2m:

This and the bound on kyk1 above imply that

kak1 �
�
� �K$ .�/

��1 ��
1!1
kyk1 � C
4mCdj log hj2dhK�=2C2d�4m: (15)

Under the conditions in Proposition 1, b� �e�� is in W�
p .M/, as are the �m.�; �/’s.

Consequently, kb� �e��kW�
p .M/
� kak1 maxz2M k�m.�; z/kW�

p .M/
� ��mkak1. Using

the triangle inequality, the bound in (15), and the estimate above, we have the
following result:

Lemma 4 Let M be as in Sect. 2.1 and let �m be a Sobolev-Matérn kernel. Then,
we have, for 0 � � � m � .d=2� d=p/C, or with p D1 and 0 � � < m � d=2,

�
�b� � ��

�
�

W�
p .M/
� C��m


4mCdhK�=2C2d�4mj log hj2d; C D Cm;p;� (16)

We remark that j log hj2d � Ch�1, so that either by finding a sufficiently small
h�, so that this holds for h < h�, or by increasing the constant, or both we have

�
�b� � ��

�
�

W�
p .M/
� C
4mCdhK�=2C2d�4m�1: (17)

4.3 Bernstein Type Estimate for Local Lagrange Functions

In this section we discuss the local Lagrange functions b� generated by �m and the
centers X. We develop partial Bernstein inequalities, where for functions of the form
s D P

�2X a�b� the norms kskW�
2

are controlled by an `2 norm on the coefficients:
kak`2.X/.
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We will now obtain estimates similar to (9) for the expansion
P

�2X a�b� . In
contrast to the full Lagrange basis, which is globally decaying, we have a family of
functions .b�/�2X whose members are uniformly small (on compact sets), but do not
necessarily decay (at least not in a stationary way).

Theorem 2 Suppose X is sufficiently dense in˝ . Assume K�Cd�4m�1 � d=2�� .
Then there is C, depending on the constants appearing in (1) and (7) so that

��
X

�2X

a�b�
��

W�
2 .˝/
� CM


4mC2dhd=2��kak`2.X/: (18)

Proof As in the case of Theorem 1, because ˝ � M, we only have to prove the
result for M. We start with the basic splitting

s WD
X

�2X

a�b� D
�X

�2X

a���
�C �

X

�2X

a�.b� � ��/
� DW GC B:

Applying the Sobolev norm gives ksk2W�
2 .M/
� kGk2W�

2 .M/
CkBk2W�

2 .M/
. From (9), we

have kGkW�
2 .M/
� C
mhd=2��kak`2.X/.

We now restrict our focus to B. For j˛j � m, Hölder’s inequality ensures that

kP�2X a�r˛.b� � ��/kx �
�P

�2X ja� j2
�1=2�P

�2X kr˛.b� � ��/k2x
�1=2

: Here we
have used, for a rank ˛-covariant tensor field F (i.e., a smooth section of the
vector bundle of rank ˛ covariant tensors), the norm on the fiber at x given by the
Riemannian metric, i.e., kFkx is the norm of the tensor F.x/.

Therefore, for 0 � � � m,

kBkW�
2 .M/
� kak`2.X/

�
�
X

�2X

.b� � ��/
�
�

W�
2 .M/

� kak`2.X/
X

�2X

�
�.b� � ��/

�
�

W�
2 .M/

� kak`2.X/.#X/max
�2X

�
�.b� � ��/

�
�

W�
2 .M/

The inequality kBkW�
2 .M/

� C
4mC2dhK�=2Cd�4m�1kak`2.X/ follows by applying
Lemma 4, and the fact that #X � C
dh�d. Inequality (18) follows, which completes
the proof. ut

5 Stability Results and Inverse Inequalities

In this section we consider finite dimensional spaces of the form V� D span�2���
andeV� D span�2�b� , using the Lagrange and local Lagrange functions considered
in Sects. 3.2 and 4.3. We note that the localized functions �� and b� are indexed by
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a dense set of centers X 	 M, but the spaces V� and eV� are constructed using a
restricted set of centers � D X \ ˝ , corresponding to the centers located inside
˝ 	M, which the underlying region over which we take the L2 norm.

5.1 The Domain˝

We now consider a compact region˝ 	M. This presents two challenges.
The first concerns the density of point sets � 	 ˝ . Unless ˝ D M, the given

set � does not itself satisfy the density condition h.�;M/ < h0. For this, we need
a larger set X 	 M with points lying outside of ˝ (in fact, when working with
local Lagrange functions b� , it suffices to consider X 	 fx 2 M j dist.x;˝/ <
Khj log hjg). This assumption is in place to guarantee decay of the basis functions.
It would be quite reasonable to be “given” initially only the set � 	 ˝ and to use
this to construct X. Lemma 2 demonstrates that it is possible to extend a given set of
centers X 	 ˝ in a controlled way to obtain a dense subset of M.

The second challenge concerns the domain ˝ . Previously we have not needed
to make extra assumptions about such a region, but for estimates relating kak`2
and kP� a�b�kL2.M/ or kP� a���kL2.M/, the boundary becomes slightly more
important. Fortunately, the extra assumption we make on ˝ is quite mild—it is
given below in Assumption 1.

For the remainder of the article, we assume ˝ 	 M satisfies the Boundary
Regularity condition and � 	 ˝ is finite. We utilize the extended point set e�
from Lemma 2; this gives rise to the family .��/�2e� . With this setup, we define

V� WD span�2��� .Full Lagrange/ and eV� WD span�2�b� .Local Lagrange/:

We note that V� 	 S.e�/, whileeV� 	 S.e� \ fx 2M j dist.x;˝/ � Khj log hjg/ 	
S.e�/: A property of M, in force throughout the article, is the following.

Assumption 1 (Boundary Regularity) There exists a constant 0 < ˛˝ for which
the following holds: for all x 2 ˝ and all r � dM,

˛˝rd � vol.B.x; r/ \˝/:

Note that this holds when ˝ satisfies an interior cone condition.

5.2 Stability of Full and Local Lagrange Functions on˝

In this section we show that the synthesis operators a 7! P
�2� a��� and a 7!P

�2� a�b� are bounded above and below from `p.�/ to Lp.˝/.



532 T. Hangelbroek et al.

In addition to the pointwise and coefficient decay (namely (7) and (6)) stemming
from (8), we can employ the following uniform equicontinuity property of the
Lagrange functions. There is 0 < � � 1 so that

j��.x/� ��. y/j � C

�
dist.x; y/

q

�
(19)

with constant C depending only on �, the mesh ratio 
 D h=q, and the constants
in (8). This follows from the energy estimate (8) and a zeros estimate [14, Corollary
A.15], and the embedding C�.M/ 	 Wm

2 .M/ where 0 < � < m � d=2. We refer the
interested reader to [13, Lemma 7.2] for details.

Proposition 2 Let ˝ � M be a compact domain satisfying Assumption 1. Then
for the Lagrange functions corresponding to �m, there exist constants c;C > 0 and
q0 > 0, so that for q < q0, for 1 � p � 1 and for all functions in V� ,

c kak`p.�/
� q�d=pk

X

�2�
a���kLp.˝/ � C kak`p.�/

: (20)

If, in addition K�=2C 2d� 4m� 2 DW " > 0, with K chosen sufficiently large, then

c

2
kak`p.�/

� q�d=pk
X

�2�
a�b�kLp.˝/ �

3C

2
kak`p.�/

: (21)

Proof We begin with the case in which ˝ D M and s D P
�2� a��� 2 V� .

Then (20) follows directly from [13, Proposition 3.10]. In particular, we note that
the boundary regularity assumption guarantees that M satisfies [13, Assumption
2.1]. The family of functions .��/�2� fulfills the three requirements on .v� /�2� .

1. They are Lagrange functions on � (this is [13, Assumption 3.3]),
2. The decay property given in (7) guarantees that [13, Assumption 3.4] holds (with

rM D diam.M/,
3. The equicontinuity assumption [13, Assumption 3.5] is a consequence of the

Hölder property (19).

The case˝ ¤M is more difficult, and the proof too long to be given here. It may
be carried out by following the proofs of [15, Lemma B.1] and [15, Lemma B.6],
with appropriate modifications.

To establish (21), we begin by using (17), with K�=2C 2d � 4m � 2 WD " > 0

and � D 0, to obtain k�� � b�kLp.˝/ � k�� � b�kLp.M/ � C0
4mCdh1C". From this,
the triangle inequality, and

P
�2� ja� j � .#X/1�1=pkak`p � C0q�d.1�1=p/, we have

that, for q0 sufficiently small,

q�d=pk
X

�2�
a�.�� � b�/kLp.˝/ � C0
4mCd�"�1q"0kak`p
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Again applying the triangle inequality and employing (20), we arrive at

c.1 � C0
4mCd�"�1q"0/ kak`p.�/
� q�d=pk

X

�2�
a�b�kLp.˝/

� C.1C C0
4mCd�"�1q"0/ kak`p.�/
:

Next, taking q0 < 1, and (by increasing K if necessary) q"0 � 
�4m�dC"C1

2C0

, and using
these in the previous inequality results in (21). ut

5.3 Inverse Inequalities for Full and Local Lagrange
Functions on˝

At this point we can prove the inverse inequality for both full and local Lagrange
functions. We start with the full Lagrange functions.

Theorem 3 Let˝ �M be a compact domain satisfying Assumption 1. Then for the
Lagrange functions corresponding to �m, there exist constants C > 0 and h0 > 0, so
that for h < h0 if � 	 ˝ has fill distance h, mesh ratio 
, and e� 	M is a suitable
extension of� (for instance, the one given by Lemma 2) then V� 	 Wm

2 .˝/ and for
all s DP�2� a��� 2 V� and for 0 � � � m, we have

kskW�
2 .˝/
� C
mCd=2h��kskL2.˝/:

Proof From (9), we have kskW�
2 .˝/
� C
mhd=2����a

�
�
`2.X/

, and from (20), with p D
2 and q D h=
, we have c kak`2.�/ � h�d=2
d=2kP�2� a���kLp.˝/. Combining the
two inequalities completes the proof. ut

The proof for the local version is the same, except that we use (18) and (21).

Theorem 4 Let ˝ 	 M be a compact domain satisfying Assumption 1. Then for
the local Lagrange functions corresponding to �m, with K sufficiently large, we have
that here exists a constant h0 > 0, so that for h < h0 if � 	 ˝ has fill distance
h, mesh ratio 
, and e� 	 M is a suitable extension of � (for instance, the one
given by Lemma 2) then for all s D P

�2� a�b� 2 eV� the following holds for all
0 � � � m,

kskW�
2 .˝/
� C
mCd=2h��kskL2.˝/:
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6 Implications for Quasi-Interpolation and Approximation

At this point, we are able to state several results that satisfactorily answer questions
concerning interpolation, quasi-interpolation, and approximation properties of the
spaces V� and QV� . Some of these results have appeared previously in more
restrictive settings while other results, such as pointwise error estimates for quasi-
interpolation of continuous functions, are entirely new.

The first result is that the Lebesgue constant for interpolation is uniformly
bounded. For the setting considered here (compact Riemannian manifolds and
Sobolev-Matérn kernels), this has been proven in [12].

Proposition 3 (Lebesgue Constant, [12, Theorem 4.6]) Suppose that m > d
2
. For

a sufficiently dense set � 	 M with mesh ratio 
, the Lebesgue constant � WD
sup˛2M

P
�2� j��.˛/j, associated with the Sobolev-Matérn kernel �m, is bounded

by a constant depending only on m, 
, and M.

We remark that the key to proving this result is the pointwise exponential decay
of the Lagrange function �� , as given in (7). The same kind of bound also holds for
local Lagrange functions. This can be shown by using the “perturbation” technique
employed to prove (21).

Similar results hold for other kernels on specific compact manifolds [14]. In
the case where the manifold is not compact, one typically is more interested in
Lagrange functions based on finite point sets which are quasi-uniform with respect
to a compact subset ˝ 	 M. Nevertheless, a similar pointwise decay estimate for
Lagrange functions holds for that setting as well [15, Inequality 3.5].

There are two kinds of stability associated with the spaces V� and eV� . The
first concerns basis stability. In Proposition 2, we showed that both local and full
Lagrange bases were very stable.

The second kind of stability, which was established in [13], concerns the Lp norm
of the L2 projector. Let W W C#� ! V.�m; �/ WD V� be a “synthesis operator” so
W W .a�/�2� !P

�2� a�v� for a basis .v� /�2� of V� . Likewise, let W� W L1.M/!
C

#� be its formal adjoint W� W f ! .hf ; v�i/j�2� . The L2 projector is then

T� WD W.W�W/�1W� W L1.M/! V� (22)

in the sense that when f 2 L2.M/, T� f is the best L2 approximant to f from V� .
The L2 norm of this projector is one—because it is orthogonal—while the Lp and

Lp0 norms are equal because it is self-adjoint. Thus to estimate its Lp operator norm
.1 � p � 1/ it suffices to estimate its L1 norm.

Proposition 4 (Least Squares Projector, [13, Theorem 5.1]) For the Sobolev-
Matérn kernels, for all 1 � p � 1, the Lp norm of the L2 projector T� is bounded
by a constant depending only on M; 
 and �m.
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For applications, the local Lagrange functions fb�g�2� are substantially more
computationally efficient than the full Lagrange functions. Nevertheless the bases
fb�g�2� and the space QV� D span�2�b� , under appropriate assumptions, enjoy
essentially all the key properties as f��g�2� and V� do.

In particular, Proposition 1 shows that the spaces V� and QV� can be quite close in
Hausdorff distance and that the bases fb�g�2� are slight perturbations of the bases
f��g�2� even on compact subsets of the manifold. For the compact Riemannian
manifold setting, under appropriate assumptions, the set fb�g�2� is Lp stable and
each b� has pointwise polynomial decay of high order. This can be shown in the
same way as in [9, Thm 6.5].

A method to implement approximation from the space QV� is by means of the
quasi-interpolation operator

Q� f WD
X

�2�
f .�/b� :

The quasi-interpolation operator provides L1 convergence estimates at the same
asymptotic rate as the interpolation operator. Indeed

jI� f .x/ � Q� f .x/j �
X

�2�
jb�.x/ � ��.x/k f .�/j

� C.#�/k fkL1.M/ max
�2�
kb� � ��kL1.M/:

where Lemma 4 guarantees that kb� � ��kL1.M/ is as small as one likes depending
on the “footprint” of b� . Moreover the operators provide optimal L1 approximation
orders when the Lebesgue constant is uniformly bounded (see Proposition 3). So,
for example, it is shown in [14, Cor 5.9] that restricted surface spline interpolation
satisfies kI� f � fkL1.M/ � Ch� for f 2 C2m.S2/ when � D 2m and f 2 B�1;1.S2/
for � � 2m. Thus Q� inherits the same rate of approximation.

The quasi-interpolation operator also provides two more useful approximation
properties. The first deals with pointwise error estimates for continuous functions.
In the early 1990s, Brown [3] showed that, for several classes of RBFs, if the density
parameter h� decreased to zero for point sets � in compact˝ , then

dist1. f ;V�/! 0

for any continuous function f . The argument given was nonconstructive. The next
result gives pointwise error estimates when approximating an arbitrary continuous
function f on M in terms of its modulus of continuity. The result is reminiscent of a
similar one for univariate splines.
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6.1 Approximation Rates Based on Local Smoothness

Recall that the global modulus of continuity of f is !. f ; t/ WD maxjx�yj�t j f .x/ �
f .y/j, the modulus of continuity at x0 is !. f ; t; x0/ WD maxjx�x0j�t j f .x/� f .x0/j and
� is the Lebesgue constant. The constants K and J are discussed in Sect. 4.

Theorem 5 Assume the conditions and notation of Theorem 2 and Proposition 3
hold. Then for each x0 2M; f 2 C.M/ with k fkL

1

.M/ D 1, the following hold.

i) j f .x0/ � I� f .x0/j � maxf�!. f ;Khj log hj/; 2hJ�1g
ii) k f � I� fkL

1

.M/ � �.K C 1/!. f ; hj log hj/
iii) j f .x0/ �Q� f .x0/j � maxf�!. f ;Khj log hj; x0/; hJ�2g
iv) k f � Q� fkL

1

.M/ D O.k f � I� fkL
1

.M//

Proof Note that

j f .x0/ � I� f .x0/j �
X

�2�

ˇ
ˇ f .x0/� f .�/

ˇ
ˇj��.x0/j C Ck fkL1.M/j1 �

X

�2�
��.x0/j:

By Corollary 1 below, j1�P�2� ��.x/j D O.h2m/. Let Bx0 WD B.x0;Kh ln h�1/ and
BC

x0 WD MnBx0 . Then

j f .x0/ � I� f .x0/j �
X

�2Bx0\�
j f .�/ � f .x0/j j��.x0/j

C
X

�2BC
x0

\�
j f .x0/ � f .�/j j��.x0/j C Ck fkL

1

.M/h
2m

� max
�2Bx0\� j f .�/ � f .x0/j

X

�2Bx0\�
j��.x0/j

C Ck fkL1.M/

� X

�2BC
x0

\�

�
1C dist.x0;�/

h

��J C h2m
�

� �!. f ;Khj log hj/.x0/C C max.hJ�1; h2m/k fkL
1

.M/:

The second inequality follows from !. f ;Kt/ � .K C 1/!. f ; t/ and the fact that if
!. f ; t/=t! 0 as t! 0, then f is a constant [5]. Inequality iii) follows from

j f .x0/ �Q� f .x0/j � j f .x0/� I� f .x0/j C jI� f .x0/ �Q� f .x0/j
� j f .x0/� I� f .x0/j C

X

�2�
j f .�/j j��.x0/� b�.x0/j

� j f .x0/� I� f .x0/j C k fkL1.M/

X

�2�
k�� � b�k1
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� �!. f ;Khj log hj/.x0/C ChJ.#�/

� �!. f ;Khj log hj/.x0/C C
dhJ�d:

The last inequality is clear. ut
We remark that the pointwise estimate in the first inequality above requires only

continuity at a single point, and boundedness elsewhere.

6.2 Rates for Functions with Higher Smoothness

By the global boundedness of the Lebesgue constant, we know that interpolation is
“near-best”. Similarly, by Theorem 5 (iv), quasi-interpolation is near-best as well.
In this subsection, we establish precise rates of decay dist1. f ; S.�//. This is
established using an approximation scheme similar to the one employed in [6]—
it uses the fact that the kernel is a fundamental solution for L D Pm

jD0.r j/�r j

(pointed out in Sect. 2.2) to obtain the identity f .x/ D R
M
L f .˛/�m.x; ˛/d˛ for f 2

C2m.M/. As in [6], for every ˛ 2 M, we use a modified kernel Q�.x; ˛/ constructed
from � by taking Q�.�; ˛/ 2 S.�/, with coefficients depending continuously on ˛.
We may then replace �m by Q� in the reproduction formula for f .

For ˛ 2M, define �˛ as follows:

�˛ WD
(
� [ f˛g; dist.˛;�/ � h=2

� [ f˛g n f��g; dist.˛;�/ � h=2

where �� is the nearest point of� to ˛. For this point set, we have h.�˛;M/ � 3h=2
and q.�˛/ � min.q; h=2/.

For every ˛ 2 M, we consider the Lagrange function �˛ 2 S.�˛/ centered at ˛.
We can express this Lagrange function as �˛ DP

�2�˛ A˛;��m.�; �/. Let a.�; ˛/ WD
�A˛;�=A˛;˛ for � 2 �˛ n f˛g. The approximation scheme is given by way of the
operator

S� f WD
X

�2�
c��m.�; �/

with c� D
R
M
L f .˛/a.�; ˛/d˛.

This works because the kernel �m used in the reproduction of smooth f can be
replaced by a modified kernel Q�.x; ˛/ DP�2�˛;�¤˛ a.�; ˛/�m.�; �/, which is a linear
combination of the original kernel sampled from �˛ . We measure the difference of
the two kernels as:

err.x; ˛/ WD �m.x; ˛/ � Q�.x; ˛/ D �m.x; ˛/ �
X

�2�˛
�¤˛

a.�; ˛/�m.�; �/ D 1

A˛;˛
�˛.x/:
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To further control this error, we estimate jA˛;˛j from below. We do this by
applying the zeros lemma for balls [14] on the set B.˛;Mh/ (for a sufficiently large
constant M—a constant which depends only on M and m). Thus, we have

j�˛.˛/j � k�˛kL
1

.B.˛;Mh// � C
�
Mh
�m�d=2k�˛kWm

2 .M/

D Chm�d=2jh�˛; �˛ij1=2 (23)

Replacing �˛.˛/ with 1 and h�˛; �˛i with jA˛;˛j, we have a lower bound for jA˛;˛j.
Namely, there is a constant C > 0 depending only on m;M so that

jA˛;˛j � Chd�2m (24)

Combining (23), (24) and the pointwise decay rates for the Lagrange functions,
we obtain the bound

jerr.x; ˛/j � C
m�d=2h2m�de��
�

dist.x;˛/
h

	

: (25)

At this point, we have the following result for approximation of smooth
functions.

Theorem 6 For 1 � p <1 and f 2 W2m
p .M/, or f 2 C2m.M/ when p D 1, there

is a constant C <1 depending only on m and M so that

kf � S� fkLp.M/
� Ch2mk fkW2m

p .M/

Proof The Lp error kf � S� fkp is controlled by the norm of the integral operator
Err W g 7! R

M
g.˛/jerr.�; ˛/jd˛, which has non-negative kernel jerr.x; ˛/j. Indeed,

we have j f .x/� S� f .x/j � R
M
jL f .˛/j jerr.x; ˛/j d˛, so

k f � S� fkLp.M/ � kL fkLp.M/kErrkLp!Lp :

We estimate the norm of this operator on L1 and L1—the Lp result then follows
by interpolation. In other words, we estimate kErrk1!1 � max˛2M

R
M
jerr.x; ˛/jdx

and kErrk1!1 � maxx2M
R
M
jerr.x; ˛/jd˛. Using (25) and symmetry, both are

bounded by

C
m�d=2h2m�d max
˛2M

Z

M

e��
�

dist.x;˛/
h

	

dx � C
m�d=2h2m (26)

and the theorem follows. ut
A result for lower smoothness is also possible. Let us define the Besov space

B�p;1.M/ as a real interpolation space between Lp.M/ and W2m
p .M/. Let B�p;1.M/
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be the set of (equivalence classes) of functions f 2 Lp.M/ for which the expression

k fkB�p;1.M/ WD sup
t>0

t��=2m inf
g2W2m

p .M/

�k f � gkLp.M/ C tkgkW2m
p .M/

�
(27)

is finite. (When p D1, we replace Lp.M/ by C.M/ and W2m
p .M/ by C2m.M/.) That

this is a Banach space and the above is a norm can be found in [1, 5] or [19]. We note
in particular that [19] shows this definition is equivalent to other standard, intrinsic
constructions of Besov spaces on manifolds, and relates these to the Sobolev scale
and other families of smoothness spaces. Of special interest is the case of the Hölder
spaces with fractional exponent: C� .M/ D B�1;1.M/.

Theorem 7 Let f 2 B�p;1.M/ for 1 � p � 1 and 0 < � � 2m. Then we have

distp;M. f ; S.�// � Ch�k fkB�p;1.M/:

Proof The follows from a standard K-functional argument, by splitting f D g C
. f �g/, with g 2 W2m

p .M/ (or C2m.M/) and f �g 2 Lp.M/ (or C.M/). In particular,
for h > 0, set t D h2m. and find g so that

k f � gkLp.M/ C tkgkW2m
p .M/ � 2t�=2mk fkB�p;1.M/:

This ensures that

k f � gkLp.M/ � 2h�k fkB�p;1.M/ and kgkW2m
p .M/ � 2h��2mk fkB�p;1.M/:

Finally, we take S�g as our approximant to f , obtaining the desired result by
applying the triangle inequality and Theorem 6. ut

A drawback of the previous results in this section is that the approximation
scheme S� is not easy to implement. The good news is that the stability of the
schemes I� , Q� and T� imply that these operators inherit the same convergence
rate. This is a consequence of the Lebesgue constants being bounded (Proposition 3)
and the small error between I� and Q� .

Corollary 1 There exists a constant C > 0 so that for 0 < � � 2m and f 2 C� .M/,
we have

k f � I� fkL
1

.M/ � Ch�k fkC� .M/ andk f �Q� fkL
1

.M/ � Ch�k fkC� .M/:

For 0 < � � 2m, 1 � p � 1 and f 2 B�p;1.M/ or f 2 W2m
p .M/ when � D 2m, we

have

k f � T� fkLp.M/ � Ch�k fkB�p;1.M/;

where T� is the least-squares projector defined in (22).
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6.3 Approximation on Bounded Regions

As a final note, we observe that the approximation power of spaces S.X/ on M,
where X is dense in M, extends to the setting of approximation over a compact
domain ˝ 	 M having a Lipschitz boundary and satisfying Assumption 1, using
QV� , with � dense in the union of˝ and an “annulus” around˝ .

Our final result shows that optimal L1 approximation rates, when approximating
a smooth function f on ˝ , can be obtained from data sites either inside or “close”
to ˝ . The result illustrates the local nature of the basis fb�g.

Let f 2 C� .˝/, where � > 0 is an integer, and let Qf 2 C� .M/ be a smooth
extension of f to M, i.e., Qf j˝ D f j˝ . Suppose that A D fx 2 Mn˝ W dist.x;˝/ �
Khj log hjg and that � is a finite set contained in ˝ [ A , with fill distance h. In
addition, let e� be a quasi-uniform extension of � to all of M, as given in Lemma 2.
Finally, let �m be a kernel as described in Sect. 2.2 with associated spaces

QV� D span�2�b� and QVe� D span�2e�b� :

Theorem 8 If � � 2m, then dist1;˝. f ; QVX/ � dist1;M. fe; QVeX/ �
(

Ch�k fkC� .˝/

Ch�k fekC� .M/:

Proof By the global boundedness of the Lebesgue constant �, we know that
interpolation is near-best approximation. Similarly, by Theorem 5(iv), quasi-
interpolation is near-best approximation as well. Hence, with J D K�=2� 2mC d,
we have that

max
x2˝ j f .x/�

X

�2�
Qf .�/b�.x/j � max

x2˝ j f .x/�
X

�2�e

fe.�/b�.x/j

Cmax
x2˝

X

�2e�n�
jQf .�/b�.x/j

� max
x2˝ j f .x/ �

X

�2e�
Qf .�/b� .x/j C k fk1

X

�2e�n�

�
1C dist.x0;�/

h

	�J

� max
x2˝ j f .x/ �

X

�2e�
Qf .�/b� .x/j C k fk1hJ�1

where hJ can be chosen small compared to the first term, because, by (12), the
parameter K in J can be chosen large enough for this to happen. The theorem then
follows from Corollary 1. ut

We remark that one only needs to have local information in a small annulus
outside ˝ to obtain full approximation order. Moreover, as previously discussed,
approximation order on manifolds is often known.
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7 Volume Comparisons

Proposition 5 We assume that M is a closed, compact, connected d-dimensional
C1 Riemannian manifold. There exist constants 0 < ˛M < ˇM < 1 so that any
ball B.x; r/ satisfies

˛Mrd � vol.B. p; r// � ˇMrd (28)

for all 0 � r � dM.

Proof By Property 3, M has bounded geometry, so the Ricci curvature, Ric, is
bounded below. Hence, there is a k 2 R such that Ric � .d � 1/k. Let Md

k denote
one of the canonical manifolds (sphere, Rd, hyperbolic space) having constant
sectional curvature k. In addition, let p 2 M, Qp 2 M

d
k , Vr WD vol.B.p; r// and

Vk
r WD vol.Bk.Qp; r//. The Bishop-Gromov Comparison theorem states that the ratio

Vr=Vk
r is non increasing and, as r # 0, Vr=Vk

r ! 1, no matter which p; Qp are chosen.
Since Ric may become negative, we can handle all of the cases at once by assuming
that k < 0, which means that Md

k is a hyperbolic space.
The model that we take for Md

k will be the Poincaré ball, so that Md
k D fx D

.x1; : : : ; xd/ 2 R
d j kxk22 < �4=kg. Let A WD 1C.k=4/kxk22. In these coordinates, the

Riemannian metric is given by gjk D ıjk=A2; equivalently, ds2 D Pd
jD1.dxj/2=A2.

We want to introduce geodesic normal coordinates, centered at xj D 0, j D 1; : : : ; d.
Let t � 0 and set xj D 2pjkj tanh.

pjkjt=2/� j, where � D .�1; : : : ; �d/ 2 %d�1. A
straightforward computation shows that

ds2 D dt2 C 1

jkj sinh2.
p
jkjt/ds2

%d�1 ; (29)

where t the length of the geodesic joining the origin to xj D t� j . It follows that the
volume element in these coordinates is

d�k D 1
pjkj d�1 sinhd�1.

p
jkjt/dtd�%d�1 ; (30)

and, consequently,

Vk
r D vol.Bk.Qp; r// D 1

pjkj d�1 !d�1
Z r

0

sinhd�1.
p
jkjt/dt: (31)

We will need bounds on Vk
r for r � R, where R is fixed. These are easy to obtain,

since 1 � sinh.x/
x � sinh.X/

X for all 0 � x � X. Just take X D pjkjR:

1 �



sinh.
pjkjt/

pjkjt
�d�1

�



sinh.
pjkjR/

pjkjR
�d�1

WD ˇd;k;R:
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Multiplying both sides by !d�1td�1 and integrating results in this inequality:

!d�1
d

rd �
Z r

0

!d�1



sinh.
pjkjt/

pjkjt
�d�1

td�1dt � ˇd;k;R
!d�1

d
rd:

Using this in (31) results in

!d�1
d

rd � Vk
r � ˇd;k;R

!d�1
d

rd: (32)

We can now employ the Bishop-Gromov Theorem to obtain (1). Since Vr=Vk
r is

non increasing and tends to 1 as r # 0, we have that Vr � Vk
r � !d�1

d rd. Also,
we have that Vr=Vk

r � VdM=Vk
dM

. Thus, Vr �
�
VdM=Vk

dM
/Vk

r . Employing (32) in
conjunction with these inequalities yields

!d�1
d

rd � Vr � ˇd;k;dM
!d�1

d

�
VdM=Vk

dM

�
rd:

We want to refine this. To do that, we begin by observing that B.p; dM/ D M,
because no point in B.p; dM/ is at a distance from p greater than the diameter dM;
thus, VdM D vol.M/. Next, by (32), Vk

dM
� !d�1

d dd
M

. Finally, using these in the
inequality above yields

!d�1
d

rd � Vr � ˇd;k;dMd�d
M

vol.M/rd;

from which (1) follows with ˛M D !d�1

d and ˇM D ˇd;k;dMd�d
M

vol.M/. ut
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A Discrete Collocation Method
for a Hypersingular Integral Equation
on Curves with Corners

Thomas Hartmann and Ernst P. Stephan

Dedicated to Ian H. Sloan on the occasion of his 80th birthday.

Abstract This paper is devoted to the approximate solution of a hypersingular
integral equation on a closed polygonal boundary in R

2. We propose a fully
discrete method with a trial space of trigonometric polynomials, combined with
a trapezoidal rule approximation of the integrals. Before discretization the equation
is transformed using a nonlinear (mesh grading) parametrization of the boundary
curve which has the effect of smoothing out the singularities at the corners and
yields fast convergence of the approximate solutions. The convergence results are
illustrated with some numerical examples.

1 Introduction

In this paper we consider the hypersingular integral equation

Wu.z/ WD 1

�

@

@nz

Z

�

@

@n�
log jz � �ju.�/ ds� D f .z/ (1)

with additional constraint
Z

�

u.�/ ds� D 0: (2)
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where � denotes the boundary of a simply connected bounded domain ˝ in R
2.

Equation (1) arises in solving the Neumann problem for Laplace’s equation on ˝ ,
using a double layer potential ansatz. Hypersingular integral equations arise in the
context of acoustic wave scattering by thin screens and elastic wave scattering by
cracks. Plane elastostatic crack problems can be described and solved in terms of
hypersingular integral equations, where the crack opening displacements are the
unknown functions. The results can be used to derive the crack tip stress intensity
factors, which are essential in fracture analysis. For the derivation of these equations
we refer to [1] and [12]. More applications of hypersingular integral equations can
be found in [13].

In the paper [6] results on stability and optimal convergence for spline collocation
methods of arbitrarily high order for Symm’s weakly singular integral equation
are available for polygonal � . Here the mesh grading transformation method has
been applied to obtain a rapidly convergent numerical method (see also [10, 14])
Analogous results for a fully discrete version of the method in [6] are obtained in [7].
A discrete collocation method using trigonometric polynomials as trial functions is
investigated for Symm’s integral equation in [8] and high order of convergence can
be achieved provided the given function f is smooth. In this paper we extend this
method to a hypersingular integral equation.

The paper is organized as follows. In Sect. 2 we introduce the mesh grading
transformation and give a complete ellipticity and solvability analysis of the mesh
grading transformed hypersingular integral equation in an appropriate Sobolev
space setting. In Sect. 3 we introduce a trigonometric collocation method and
present an error analysis. In Sect. 4 we introduce and analyze a corresponding
discrete collocation method. We show that both methods converge with a rate as
high as justified by the (finite) order of mesh grading and the regularity of the given
data. Following the spirit of the results of [6] and [8] we only prove stability if the
approximate solution is cut off by zero over some number of intervals near each
corner. This is typical when Mellin convolution operators are discretized (see also
[9]). This modification of the collocation method seems not to be needed in practice.
The numerical examples presented in Sect. 5 show that the method with no cut-offs
appears to be perfectly stable.

2 Properties of the Transformed Integral Equation

We assume � is an (infinitely) smooth curve with the exception of a corner at a
point x0. In the neighbourhood of x0 the curve � should consist of two straight lines
intersecting with an interior angle !. We make this restriction, because we apply
Mellin techniques (see [4, 9]) The extension to curves with more than one corner is
straightforward, see [6, 7].
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From [4] we know that the operator W in (1) is bijective from VH1=2.� / WD fu 2
H1=2.� / j R� u D 0g to H�1=2.� / where H1=2.� / is the trace space and H�1=2.� /
is its dual.

In the following we use for the interior angle the representation ! D .1 � �/� ,
i.e. we have 0 < j�j < 1. As in [8] we rewrite (1) using an appropriate nonlinear
parametrization � W Œ0; 1� ! � which varies more slowly than the arc-length
parametrization in the vicinity of x0. We take a parametrization �0 W Œ0; 1� ! �

such that �0.0/ D �0.1/ D x0 and j� 0
0.s/j > 0 for all 0 < s < 1. With a grading

exponent q 2 N and selecting a function � such that

� 2 C1Œ0; 1�; �.0/ D 0; �.1/ D 1; �0.s/ > 0; 0 < s < 1; (3)

we define the mesh grading transformation

�.s/ D �0. Q!.s//; (4)

where

Q!.s/ D �q.s/

�q.s/C �q.1 � s/
:

The parametrization � we have chosen is graded with exponent q near the corner.
Using the change of variables x D �.s/; � D �.�/, and multiplying by j� 0.s/j
Eq. (1) becomes

Kw.s/ WD 1

�

@

@nx

Z 1

0

@

@n�
log jx � �j j� 0.�/jj� 0.s/jw.�/ d� D g.s/;

s 2 Œ0; 1�; (5)

where

w.�/ D u.�.�//; g.s/ D j� 0.s/j f .�.s//: (6)

As shown in Theorem 2 below the solution w of the transformed equation (5) may be
made as smooth as desired on Œ0; 1� provided f is smooth and the grading exponent
is sufficiently large, and w can be optimally approximated using trigonometric
polynomials as basis functions.

Now let us look more closely at the behaviour of K near the corner. Without
loss of generality we assume that the corner is located at x0 D 0. Then the
parametrization (4) (possibly after rotation) takes the form with " > 0, sufficiently
small,

�.s/ D
�
.�s/q.� cos��; sin��/ s 2 .�"; 0/

sq.1; 0/ s 2 .0; "/ : (7)
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In the following lemma we give a representation of the operator K and its kernel.
These results will be used below to show that the operator K is bijective between
suitably chosen spaces (Theorem 1). Furthermore the representation (11) will be
used in the proof of Theorem 3.

Lemma 1 Let  be a 1-periodic non-negative cut-off function such that  � 1 in
some neighbourhood of x0 D 0. Then we have

 K D  C C E;

where E is compact from VH1.R/ to VH0.R/, and where C is given by (v 2 VH1.R/):

Cv.s/ D
Z 1

�1
c.s; �/v.�/ d� (8)

with

c.s; �/ D 1

�

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

q2�q�1sq�1

.�q�sq/2
s > 0; � > 0

q2�q�1.�s/q�1Œ�2q cos��C.�s/2q cos��C2�q.�s/q�
Œ�2qC2�q.�s/q cos��C.�s/2q�2

s < 0; � > 0
q2.��/q�1sq�1Œ.��/2q cos��Cs2q cos��C2.��/qsq�

Œ.��/2qC2.��/qsq cos��Cs2q�2
s > 0; � < 0

q2.��/q�1.�s/q�1

..��/q�.�s/q/2
s < 0; � < 0

: (9)

Further there holds c.s; �/ D D�
ek.s; �/ with

ek.s; �/ D q

�

8
ˆ̂
ˆ̂<

ˆ̂
ˆ̂
:

� sq�1

�q�sq s > 0; � > 0
.�s/2q�1C.�s/q�1�q cos��
�2qC2�q.�s/q cos��C.�s/2q s < 0; � > 0

� s2q�1Csq�1.��/q cos��
�2qC2.��/qsq cos��C.�s/2q s > 0; � < 0

.�s/q�1

.��/q�.�s/q s < 0; � < 0

(10)

and c.s; �/ D D�Dsbk.s; �/ with

bk.s; �/ D 1

�

8
ˆ̂<

ˆ̂
:

log j�q � sqj s > 0; � > 0
log j�2q C 2�q.�s/q cos�� C .�s/2qj s < 0; � > 0
log j�2q C 2.��/qsq cos�� C .�s/2qj s > 0; � < 0

log j.��/q � .�s/qj s < 0; � < 0

: (11)

Locally we have  C D�1 D � eK with

eKv.s/ D
Z 1

�1
ek.s; �/v.�/ d�; (12)

where D�1 denotes the antiderivative of  .
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Proof The kernel k.s; �/ of K in (5) can be written as k.s; �/ D k1.s; �/C k2.s; �/
with [11]

k1.s; �/ WD � 1
�

hn.x/; n.�/i
jx � �j2 j�

0.s/j j� 0.�/j;

k2.s; �/ WD 2

�

hx � �; n.x/ihx � �; n.�/i
jx � yj4 j� 0.s/j j� 0.�/j:

Using

n.�.s// D �i� 0.s/=j� 0.s/j (13)

and (7), we derive (9) which yields (10) and (11).
The assertion (12) can be seen by integration by parts as follows.

C D�1v.s/ D
Z 1

�1
c.s; �/D�1

� v.�/ d� D
Z 1

�1
D�
ek.s; �/D�1

� v.�/ d�

D �
Z 1

�1
ek.s; �/v.�/ d� D �eKv.s/:

ut
In the proof of Theorem 1 we will use results from [6] concerning the operator

eK in (12). It was shown in [6] that eK acting on L2.R/ can be identified with 2-
by-2-matrices of Mellin convolution operators acting on L2.RC/ � L2.RC/. The
calculation of the symbol of the Mellin convolution operator and using localisation
techniques give more precise mapping properties of eK. Before we can use the results
of [6] to analyse the operator K in (5) we introduce some more notation.

Let I D .0; 1/ and let Ht.I/; t 2 R; be the usual Sobolev space of 1-periodic
functions (distributions) on the real line. Its norm is given by

kvk2t D j Ov.0/j2 C
X

m¤0
jmj2tj Ov.m/j2;

where the Fourier coefficients of v are defined by

Ov.m/ D .v; ei2�ms/ D
Z 1

0

v.s/e�i2�ms ds:

Further we define the Sobolev space

VHs.I/ WD fu 2 Hs.I/ j
Z 1

0

u.s/ds D 0g:
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In order to investigate the mapping properties of K in VHs.I/ we introduce

Aw.s/ D �2
Z 1

0

log j2e�1=2 sin.�.s � �//jw.�/ d� (14)

D �2
Z 1

0

log j2 sin.�.s � �//jw.�/ d� C
Z 1

0

w.�/ d� DW Vw.s/CJ w:

The operator A takes the form [2]

Av.s/ D
X

m2Z

bv.m/
max.1; jmj/e

i2�ms; (15)

and that A is an isomorphism of Ht.I/ to HtC1.I/ for any real t. Its inverse is given
by

A�1 D �H DCJ D �DH CJ ; (16)

where Dv.s/ D v0.s/ is the periodic differentiation operator, J v.s/ D bv.0/ and
H denotes the Hilbert transform

H v.s/ D �
Z 1

0

cot.�.s � �//v.�/ d�; (17)

and we have

H v.s/ D 0 for v.s/ D const: (18)

Using the Fourier coefficients we obtain the representation

A�1v.s/ D
X

m2Z
max.1; jmj/bv.m/ei2�ms: (19)

Further we need the well-known formulas

DVw.s/ DH w.s/; (20)

where V is defined in (14), and

H 2 D �I CJ : (21)

We decompose the hypersingular integral operator in (5) as

Kw D A�1wC Bw D g (22)
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with

Bw.s/ D Kw.s/ � A�1w.s/ D
Z 1

0

b.s; �/w.�/ d�: (23)

The kernel function b is 1-periodic in both variables and C1 for 0 < s; � < 1,
but different from the case of a smooth curve � it has fixed singularities at the four
corners of the square Œ0; 1� � Œ0; 1�.

First we derive from (16), (21) and (18):

A�2 D .�DH CJ /A�1 D �DH .�H DCJ /CJ A�1

D DH 2D � DH J CJ A�1 D �D2 C DJ DCJ A�1 D �D2 CJ A�1;

and, using (19) and the fact that

JA �1v D 0 for v 2 VHs.I/; (24)

we have

A�2v D �D2v for v 2 VHs.I/: (25)

Thus we obtain from (22) with M WD A�1B and e WD A�1g for all w 2 VHs.I/:

A�1Kw D A�1.A�1 C B/w D �D2wC A�1Bw D �D2wCMw D e (26)

Theorem 1 The operators A�1K W VH1.I/ ! VH�1.I/ and K W VH1.I/ ! VH0.I/ are
continuously invertible, and we have the strong ellipticity estimate

<h.A�1K C T1/v; vi � C kDvk20 v 2 VH1.I/; (27)

with some compact operator T1 mapping from VH1.I/ to VH�1.I/ and a constant
C > 0.

Proof First we consider KD�1. This operator (up to a compact perturbation) can be
represented by a Mellin convolution operatoreK near the corner (cf. Lemma 1). From
[6] we know that the Mellin symbol of eK does not vanish. Hence a regularizer of eK
as well as of KD�1 can be given. Since D�1 is an invertible mapping from VH0.I/ to
VH1.I/ the operator K is a Fredholm operator. As in [6] a homotopy argument yields

that the index of K is independent of the grading parameter q. Let w 2 VH1.I/ satisfy
Kw D 0. Using the definition of w (6) we obtain u.s/ D w.��1.s// with Wu D 0

where W is given in (1). Therefore u is constant. Thus w is constant as well and
therefore K W VH1.I/ ! VH0.I/ is invertible. Since A�1 is an isomorphism of Hs.I/
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onto Hs�1.I/ as well as of VHs.I/ onto VHs�1.I/ we derive from the invertibility of K
the invertibility of A�1K.

In order to obtain the strong ellipticity (27) we decompose A�1K with (25)
and (16) and we use that for any v 2 VHs.I/ we have A�1 D �DH D �H D
and D�1Dv D v. Hence

A�1K D A�2 C A�1.K � A�1/ D �D2 �DH .K � A�1/

D �D2 �DH .K CH D/ D �D2 �DH .KD�1 CH /D:

From Lemma 1 we derive

KD�1 D �eK C E

with a compact operator E from VH0.I/ onto VH0.I/. Hence we have for v 2 VH1.I/

<hA�1Kv; vi D <h.�D2 � DH .KD�1 CH /D/v; vi

D <h.�D2 �DH .H �eK C E/D/v; vi D <h.I CH .H �eK C E//Dv;Dvi;

where we have used that the adjoint operator to D is given by �D. From [6] we
recall there exists a compact operator T W VH0.I/! VH1.I/ and a constant C > 0 with

<h.I CH .H � eK/C T/Dv;Dvi � C kDvk20; v 2 VH1.I/: (28)

Hence setting T1 WD DH ED � DTD finishes the proof of the strong ellipticity. ut
For the solution of the integral equation (5) we have the following regularity result.

Theorem 2 Let l 2 N and f in (1) be smooth enough. Then the solution w of (5)
satisfies w 2 VHl.I/, if the grading exponent q in (4) is chosen with q > .l�1=2/.1C
j�j/.
Proof From [4] we know that the solution u of (1) has near the vertex x0 (which is
identified with x D 0) the expansion u � x˛C higher order terms, where ˛ D 1

1Cj�j
and ! D .1 � �/� denotes the interior angle of � at x0. Hence due to (6) and (7)
the solution w of (5) satisfies

jDm
�w.�/j � C �q˛�m:

Choosing q > .l � 1=2/.1C j�j/ we have with a suitable � > 0

jDm
�w.�/j � C � l�1=2C��m: (29)

Thus w is contained in Hl.I/ since Dl
�w 2 L2.I/. ut
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The following result is obtained by applying Lemma 1 and will be used in the
error analysis in Sect. 3.

Theorem 3 On each compact subset of R�Rn.Z�Z/, the derivatives Di
sD

m
� b.s; �/

of order i C m � q � 2 of the kernel b.s; �/ in (23) are bounded and 1-periodic.
Moreover, for s; � 2 Œ�1=2; 1=2� n f0g we have the estimates

jDi
sD

m
� b.s; �/j � C .jsj C j� j/�i�m�2; 0 � iC mC 2 � q: (30)

Proof Using Lemma 1 we have for the kernel of K

k.s; �/ D DsD�
bk.s; �/C l.s; �/;

where l.s; �/ is a smooth function. On the other hand for the kernel of �DH we
have with (16) and (17)

�Ds cot.�.s � �// D �DsD� log j sin.�.s � �//j:

Hence the kernel of B given in (23) satisfies with (11):

b.s; �/ D DsD�

bk.s; �/
log j sin.�.s � �//j C l.s; �/; (31)

where l.s; �/ is a smooth function. For example, for s > 0; � > 0 the representation
of Ok.:; :/ in (11) yields

b.s; �/ D DsD� log

ˇ̌
ˇ
ˇ

�q � sq

sin�.s � �/
ˇ̌
ˇ
ˇ ;

which satisfies (30) by application of Theorem 2.3 in [8] or [7]. ut

3 Trigonometric Collocation

Introduce the collocation points

sj D jh; j 2 Z; j ¤ 0 mod 2nC 1 ; where h WD 1=.2nC 1/; (32)

and let T 0
h denote the space of trigonometric polynomials of degree � n with the

standard basis

'k.s/ D ei2�ks; jkj � n; k ¤ 0: (33)
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Then, for any continuous 1-periodic function v with
R 1
0
v.s/ds D 0, the interpolatory

projection Qhv onto T 0
h is well defined by

.Qhv/.sj/ D v.sj/; j D 1; : : : ; 2n; (34)

and satisfies [3]

kv �Qhvkt � C hr�tkvkr; v 2 Hr.I/; for r > 1=2; r � t � 0: (35)

Using the basis (33), the projection Qh is given by

Qhv.s/ D
nX

kD�n;k¤0
˛k'k.s/; ˛k WD h

nX

jD�n

v.sj/'k.sj/I

see [2] or [15, Kap. 2.3].
The collocation method for (5) consists of solving for wh 2 T 0

h

Kwh.sj/ D g.sj/; j D 1; : : : ; 2n:

This can be written using (22) and the interpolatory projection as

Qh.A
�1 C B/wh D Qhg; wh 2 T 0

h ;

and since Qh commutes with A�1 on T 0
h , we have the equivalent form

.A�1 C QhB/wh D Qhg; wh 2 T 0
h : (36)

Due to the derivation of (26) from (22) we rewrite (36) as the second kind equation

A�1.A�1 C QhB/ D �D2 C RhA�1BCJ A�1:

With (24) and Rh WD A�1QhA the collocation method (36) is equivalent to

.�D2 C RhA�1B/wh D Rhe; wh 2 T 0
h : (37)

Here Rh is a well defined projection operator of VHr.I/ onto T 0
h which satisfies

kv � Rhvkt � C hr�tkvkr; v 2 VHr.I/; for r > �1=2; r � t � �1: (38)

Furthermore we have for v 2 VHr.I/ the estimate

kRhvk�1 � kRhv � vk�1 C kvk�1 � C hkvk0 C kvk�1: (39)



Discrete Collocation for Hypersingular Integral Equation on Curves with Corners 555

It is well known that for Mellin convolution operators one proves only stability for a
slightly modified method. For 	 > 0 sufficiently small, we introduce the truncation
T	 of the 1-periodic extension

T	 v.s/ D
�
0; s 2 .�	; 	/;
v.s/; s 2 .�1=2;�	/[ .	; 1=2/: (40)

Now we consider instead of (37) the modified collocation method

.�D2 C RhA�1BTi�h/wh D Rhe; wh 2 T 0
h : (41)

where i� is a fixed integer independent of h. If i� D 0 then (41) coincides with (37).

Lemma 2

1. For v 2 T 0
h there holds

k��1v.�/k0 � C kDvk0: (42)

2. Let w 2 Hl.I/ solve Kw D g, then there holds for . j D 0; : : : ; l/:

k��j.I � Ti�h/wk0 � C hl�jkwkl: (43)

The constant C in 1. and 2. is independent of h.

Proof To show assertion 1. we write v 2 T 0
h as a linear combination of the set of

functions fsin.2�k�/; cos.2�k�/j k D 1; : : : ; ng. Integration by parts gives

k��1 sin.2�k�/k20 D
Z 1

0

��2 sin2.2�k�/ d� D 2�k
Z 1

0

��1 sin.4�k�/ d�

� �8.�k/2
Z 1

0

log � d� D 8.�k/2;

which yields with

kD� sin.2�k�/k0 D C k; k D 1; : : : ; n:

the desired relation (42) for v D sin 2�k� . For cos.2�k�/ we can estimate
similarly, and the proof of (42) is complete.

To show 2. we find with (29)

k��j.I � Ti�h/wk20 D
Z i�h

�i�h
��2jw2.�/d� � C

Z i�h

�i�h
��2jj� j2l�1C2�d� � C h2l�2j:

(For j D 0 this estimate is proved in [6].) ut



556 T. Hartmann and E. P. Stephan

The analysis of the collocation method depends heavily on the stability of a
“finite section” approximation�D2CA�1BT	 to the operator A�1K (cf. (26)) which
is given in the next lemma. We follow [6].

Lemma 3 There exists C > 0 and 	0 > 0 such that for all q � 1

k.�D2 C A�1BT	 /vk�1 � CkDvk0; (44)

for all v 2 VH1.I/ and 0 < 	 � 	0 with T	 as in (40).

Proof In order to derive the lemma we follow Theorem 6 of [6]. which gives the
lemma by replacing ICA�1.K�A/ and v 2 H0, considered in [6], by �D2CA�1B
and v 2 VH1.I/, considered here. With the decomposition

v! .T	v; .I � T	 /v/
T

the map v! .�D2 C A�1BT	 /v is represented by the matrix operator



T	v

.I � T	 /v

�
!



T	 .�D2 C A�1B/T	 0

.I � T	 /A�1BT	 �D2

� 

T	 v

.I � T	 /v

�
:

Its inverse is represented by

 
T	v

.I � T	 /v

!

!
 

.T	 .�D2 C A�1B/T	 /�1 0

�D�2.I � T	 /A�1B.T	 .�D2 C A�1B/T	 /�1 D�2

!  
T	v

.I � T	 /v

!

:

Lemma 3 is derived by using the representations given above in the proof of
Theorem 6 of [6]. ut

By the following theorem the (modified) collocation method (41) converges with
optimal order in the H1 norm.

Theorem 4 Let q � 2 and suppose that i� is sufficiently large. Then there holds

1. The method (41) is stable, that is the estimate

k.�D2 C RhA�1BTi�h/vk�1 � C kDvk0 � C kvk1; v 2 T 0
h (45)

holds for all h sufficiently small, where C is independent of h and v.
2. If, in addition, the hypothesis of Theorem 2 holds, then (41) has a unique solution

for all h sufficiently small and there holds the estimate

kw � whk1 � C hl�1 (46)

with C a constant which depends on i� and w but is independent of h.
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Proof With the triangle inequality we have

k.�D2 C RhA�1BTi�h/vk�1
� k.�D2 C A�1BTi�h/vk�1 � k.I � Rh/A

�1BTi�hvk�1: (47)

In order to estimate the second term on the right hand side of (47) we use the fact
that I � Rh annihilates the constants and obtain from (16) and (38)

k.I � Rh/A
�1BTi�hvk�1 � k.I � Rh/H DBTi�hvk�1 � C hkDBTi�hvk0: (48)

Using Theorem 3 yields

jDBTi�hv.s/j D
ˇ
ˇ
ˇ
ˇ̌
Z

Ji�h

Dsb.s; �/v.�/ d�

ˇ
ˇ
ˇ
ˇ̌

� C
Z

Ji�h

.jsj C j� j/�3jv.�/j d�

� C=.i�h/
Z

Ji�h

j� j2
.jsj C j� j/3 j�

�1v.�/j d�;

where Ji�h D .�1=2;�i�h/[.i�h; 1=2/. Taking L2 norms and using the fact that the

integral operator with Mellin convolution kernel j� j2
.jsjCj� j/3 is bounded on H0.0;1/

gives with (42)

kDBTi�hvk0 � C =.i�h/k��1v.�/k0 � C=.i�h/kDvk0: (49)

Combining (48) and (49) gives

k.I � Rh/A
�1BTi�hvk�1 � C=i�kDvk0: (50)

Now choose i� in such a way, that C=i� with C given in (50) is smaller than C given
in (44). Then combining (50) and (44) yields (45). Note that the norms kDvk0 and
kvk1 are equivalent for v 2 T 0

h .
To prove the error estimate (46) we note that

kw � whk1 � k.I � Rh/wk1 C kwh � Rhwk1 (51)

and estimate the first term in (51) by (38). To estimate the second term we derive an
auxiliary equation which can be composed from (26) and (41):

� RhD2wC RhMw D Rhe D .�D2 C RhMTi�h/wh: (52)
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Thus for the second term in (51) we obtain with (44) and (52):

kwh � Rhwk1 � C k.�D2 C RhMTi�h/.wh � Rhw/k�1
D C kRh.�D2 CM/wCD2Rhw� RhMTi�hRhwk�1 (53)

D C k � RhD2wC D2w �D2wC D2RhwC RhMw � RhMTi�hw

CRhMTi�hw � RhMTi�hRhwk�1
� C k.I � Rh/D

2wk�1 C C kD2.I � Rh/wk�1
CC kRhM.I � Ti�h/wk�1 C C kRhMTi�h.I � Rh/wk�1: (54)

With (38) we have for the first and second term:

k.I � Rh/D
2wk�1 � C hl�1kD2wkl�2 � C hl�1kwkl;

kD2.I � Rh/wk�1 � k.I � Rh/wk1 � C hl�1kwkl;

and further with (39) and the invertibility of A�1:

kRhM.I � Ti�h/wk�1 � C hkM.I � Ti�h/wk0 C kM.I � Ti�h/wk�1
� C hkDB.I � Ti�h/wk0 C ckB.I � Ti�h/wk0: (55)

For the first term on the right hand side of (55) we have the estimate:

DB.I � Ti�h/w.s/ D
Z 1

0

Dsb.s; �/.I � Ti�h/w.�/ d�

�
Z 1

0

1

.jsj C j� j/3 j.I � Ti�h/w.�/j d�

�
Z 1

0

j� j2
.jsj C j� j/3 j�

�2.I � Ti�h/w.�/j d�:

Taking L2 norms and using (43) yields

kDB.I � Ti�h/wk0 � C k��2.I � Ti�h/w.�/k0 � C hl�2kwkl:

The second term in (55) can be estimated alike. For the fourth term in (54) we have

kRhMTi�h.I � Rh/wk�1 � C hkMTi�h.I � Rh/wk0 C kMTi�h.I � Rh/wk�1
� C hkDBTi�h.I � Rh/wk0 C kBTi�h.I � Rh/wk0 (56)
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and further

DsBTi�h.I � Rh/w.s/ D
Z

Ji�h

Dsb.s; �/.I � Rh/w.�/ d�

�
Z

Ji�h

1

.jsj C j� j/3 j.I � Rh/w.�/j d�

� C=.i�h/2
Z

Ji�h

j� j2
.jsj C j� j/3 j.I � Rh/w.�/j d�:

Again, taking L2 norms and using (38) we obtain:

kDBTi�h.I � Rh/wk0 � C h�2k.I � Rh/w.�/k0 � C hl�2kwkl:

The second term on the right hand side in (56) can be estimated in the same way
and hence (46) is proved. ut

Using the solution wh of (36) we can derive an approximation uh to the solution
of the original equation (1). Due to (6) we define

uh.�.�// WD wh.�/ � wh0; (57)

where the constant wh0 is given by

wh0 WD
R 1
0

wh.s/j� 0.s/j ds
R 1
0
j� 0.s/j ds

:

This definition insures that the additional constraint
R
�

uh D 0 in (1) is satisfied.

4 Discrete Collocation

For a fully discrete version of the collocation method (36), introduce the quadrature
points

�j D jhC h=2; j 2 Z; where h WD 1=.2nC 1/: (58)

To evaluate the integral

I.v/ D
Z 1

0

v.�/ d�



560 T. Hartmann and E. P. Stephan

for a 1-periodic continuous function v, we approximate it by a trapezoidal rule

Ih.v/ D h
2nX

jD0
v.�j/:

Due to Theorem 3 the kernel b of the operator B is bounded only on compact subsets
of Œ0; 1� � Œ0; 1�, but has singular behaviour at the corners of Œ0; 1� � Œ0; 1�, like r�2,
where r denotes the distance to the corner. Therefore we regularize the hypersingular
integral by subtracting v.0/. After regularization the integral is defined as a Cauchy
singular integral. Now the integral operator B in (36) is approximated by

Bhv.s/ WD Ih.b.s; �/.v.�/� v.0// D h
2nX

jD0
b.s; �j/.v.�j/ � v.0//: (59)

Now the discrete collocation method for (5) is defined by replacing B with Bh

in (36) and consists in solving for wh 2 T 0
h

A�1wh.sj/C Bhwh.sj/ D g.sj/; j D 1; : : : ; 2n:

The discrete collocation method can be written in the form

.A�1 C QhBh/wh D Qhg; wh 2 T 0
h : (60)

To obtain a linear system for finding wh, let

wh.s/ D
nX

kD�n

˛k'k.s/

and calculate the coefficients ˛k from (see (19)):

nX

kD�n;k¤0
˛k
�
'k.sj/jkj C .Bh'k/.sj/

� D g.sj/; j D 1; : : : ; 2n: (61)

Similarly to [8] our convergence analysis follows the same lines as in the previous
section: instead of (60) we consider the modified method

.A�1 CQhBhTi�h/wh D Qhg; wh 2 T 0
h : (62)

Using the projection Rh (62) can be written as

.�D2 C RhMhTi�h/wh D Rhe; wh 2 T 0
h ; (63)
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where Mh D A�1Bh. In our analysis we use the following standard estimate for the
trapezoidal rule. This lemma is also used in [7] and goes back to [5].

Lemma 4 Let l 2 N, and suppose that v has 1-periodic continuous derivatives of
order < l on R and that Dlv is integrable on .0; 1/. Then

jI.v/� Ih.v/j � C hl
Z 1

0

jDlv.�/jd�;

where C does not depend on v and h.

Theorem 5

1. Let q � 2, and suppose i� � 1 is sufficiently large Then the estimate

k.�D2 C RhMhTi�h/vk�1 � C kDvk0 � C kvk1; v 2 T 0
h (64)

holds for all h sufficiently small, where C is independent of v and h.
2. If the hypothesis of Theorem 2 holds and hence we have w 2 VHl.I/, then

kw � whk1 � c hl�1 (65)

with a constant c independent of h.

Proof Let v 2 T 0
h . Due to the decomposition

k.�D2 C RhMhTi�h/vk�1 � k.�D2 C RhMTi�h/vk�1 � kRh.M �Mh/Ti�hvk�1
and (45) it is sufficient to verify that for each � � 0 there exists i� such that

kRh.M �Mh/Ti�hvk�1 � �kDvk0: (66)

With (39) we have

kRh.M �Mh/Ti�hvk�1 � C hkD.B � Bh/Ti�hvk0 C C k.B � Bh/Ti�hvk0 (67)

and further using Lemma 4 and Theorem 3

C hjD.B� Bh/Ti�hv.s/j C C j.B � Bh/Ti�hv.s/j

� Ch2
Z

Ji�h

jDsb.s; �/jjD�v.�/j d� C C h2
Z

Ji�h

jD�Dsb.s; �/j jv.�/j d�

CC h
Z

Ji�h

jD�b.s; �/j jv.�/j d� C C h
Z

Ji�h

jb.s; �/j jD�v.�/j d�



562 T. Hartmann and E. P. Stephan

� C h2
Z

Ji�h

1

.jsj C j� j/3 jD�v.�/j d� C C h2
Z

Ji�h

1

.jsj C j� j/4 jv.�/j d�

C C h
Z

Ji�h

1

.jsj C j� j/3 jv.�/j d� C C h
Z

Ji�h

1

.jsj C j� j/2 jD�v.�/j d� (68)

� C=.i�/2
Z

Ji�h

j� j2
.jsj C j� j/3 jD�v.�/j d�CC=.i�/2

Z

Ji�h

j� j3
.jsjCj� j/4 j�

�1v.�/j d�

CC=i�
Z

Ji�h

j� j2
.jsj C j� j/3 j�

�1v.�/j d� C C=i�
Z

Ji�h

j� j
.jsj C j� j/2 jD�v.�/j d�:

Hence

chkD.B� Bh/Ti�hvk0 C Ck.B � Bh/Ti�hvk0 � C=i�kDvk0 C C=i�k��1v.�/k0:

For i� sufficiently large this yields with (42) the desired estimate (66) and hence the
stability of the discrete collocation method.

To estimate the error we proceed as in Theorem 4:

kw � whk1 � k.I � Rh/wk1 C kwh � Rhwk1;

where the first term is due to (38) of order hl�1. Using (64) we have:

kwh � Rhwk1 � C k.�D2 C RhMhTi�h/.wh � Rhw/k�1
� C k.�D2 C RhMhTi�h/wh � .�D2 C RhMhTi�h/Rhwk�1:

Combining (63) and (26), we have an auxiliary equation like (52) but with Mh

instead of M on the right hand side. This yields

kwh � Rhwk1 � C kRh.�D2 CM/w � .�D2 C RhMhTi�h/Rhwk�1
� kRh.�D2 CM/w � .�D2 C RhMTi�h/Rhwk�1
CkRh.M �Mh/Ti�hRhwk�1: (69)

For the first term on the right hand side of (69) the estimate is given in Theorem 4,
see (53). For the second term we have:

kRh.M �Mh/Ti�hRhwk�1 � kRh.M �Mh/Ti�hwk�1
CkRh.M �Mh/Ti�h.I � Rh/wk�1: (70)
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With (39) we derive for the first term in (70):

kRh.M �Mh/Ti�hwk�1 � C k.B � Bh/Ti�hwk0 C C hkD.B � Bh/Ti�hwk0: (71)

With Lemma 4 we have

jDs.B � Bh/Ti�hw.s/j � C hl�2
Z

Ji�h

l�2X

mD0
jDsD

m
� b.s; �/Dl�m�2

� w.�/j d�

� C hl�2
Z

Ji�h

l�2X

mD0

1

.jsj C j� j/mC3 jDl�m�2
� w.�/j d�

� C hl�2
Z

Ji�h

l�2X

mD0

j� jmC2

.jsj C j� j/mC3 j��m�2Dl�m�2
� w.�/j d�:

Taking L2 norms yields

kDs.B � Bh/Ti�hw.s/k0 � C hl�2k��m�2Dl�m�2
� w.�/k0; (72)

and with (29) there exists � > 0 arbitrary such that

j��m�2Dl�m�2
� w.�/j � cj��m�2� l�1=2C��lCmC2j � C j��1=2C�j:

Hence the L2 norm on the right hand side in (72) is bounded. Putting together (72)
and (71) gives the estimate for the first term in (70). To estimate the second term
in (70) we substitute v WD .I � Rh/w and argue similarly to (68).

C hjD.B� Bh/Ti�hv.s/j C C j.B � Bh/Ti�hv.s/j

� C
Z

Ji�h

j� j2
.jsj C j� j/3 jD�v.�/j d� C C h�1

Z

Ji�h

j� j3
.jsj C j� j/4 jv.�/j d�

CC h�1
Z

Ji�h

j� j2
.jsj C j� j/3 jv.�/j d� C C

Z

Ji�h

j� j
.jsj C j� j/2 jD�v.�/j d�:

Hence

kRh.M �Mh/Ti�hvk�1 � C h�1kvk0 C C kDvk0 � C h�1kvk0 C C kvk1:

Substituting v WD .I � Rh/w and using (38) gives

kRh.M�Mh/Ti�h.I�Rh/wk�1 � C h�1k.I�Rh/wk0CC k.I�Rh/wk1 � C hl�1kwkl:

Thus the error estimate (65) is proved. ut
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5 Numerical Results

Here we present a numerical example for the solution of Eq. (1) when � is the
boundary of a “teardrop-shaped” region with a simple corner at the origin which
corresponds to s D 0 and s D 1. The parametrization of � is given by

�0.s/ D sin�s.cos.1� �/�s; sin.1 � �/�s/T ; s 2 Œ0; 1�; � 2 .0; 1/

with exterior angle .1C �/� at the origin. As right hand side in (5) we use

g.s/ D 5s4.1 � s/4.1 � 2s/:

(Note: g.s/ D Ds.s5.1 � s/5/). Now the integral of g on Œ0; 1� vanishes and so does
the integral of f in (1) on � , where f corresponds to g by (6). Further this choice
of g insures that f in (1) is sufficiently smooth. For the numerical implementation
we use �.s/ D s in (4). In our numerical experiments below, no modification of
the collocation method was necessary to insure stability and throughout we have set
i� D 0. Since the exact solution of (5) is unknown, we have the error kw � whk1
approximated by kw� � whk1, where w� is the solution of the discrete collocation
method with 2  512 trial functions. Empirically determined convergence rates
are given in columns headed “EOC” in Table 1 for � D 0:76. Those numbers
demonstrate the improvement of the convergence order for increasing values of the
grading exponent q as expected from Theorem 5.

Table 1 H1-errors of the transformed density, � D 0:76

q D 1 q D 2 q D 3 q D 5

n kwh � w�k1 EOC kwh � w�k1 EOC kwh � w�k1 EOC kwh � w�k1 EOC

30 1:235� 5 2:35� 5 1:29� 5 5:62� 6

0:19 0:70 1:28 2:54

40 1:170� 5 1:92� 5 8:94� 6 2:70� 6

0:16 0:70 1:27 2:50

50 1:129� 5 1:64� 5 6:74� 6 1:55� 6

0:14 0:70 1:26 2:47

60 1:101� 5 1:45� 5 5:35� 6 9:85� 7

0:12 0:71 1:27 2:45

70 1:081� 5 1:29� 5 4:40� 6 6:75� 7

0:10 0:73 1:27 2:44

80 1:068� 5 1:17� 5 3:71� 6 4:87� 7

0:09 0:75 1:28 2:42

90 1:056� 5 1:08� 5 3:19� 6 3:66� 7

0:07 0:77 1:30 2:42

100 1:048� 5 9:91� 6 2:78� 6 2:84� 7
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Table 2 H1-errors of the transformed density, � D 0:30

q D 1 q D 2 q D 3 q D 5

n kwh � w�k1 EOC kwh � w�k1 EOC kwh � w�k1 EOC kwh � w�k1 EOC

30 4:29� 6 7:71� 7 1:22� 7 1:37� 8

0:20 1:09 1:78 3:43

40 4:05� 6 5:65� 7 7:29� 8 5:09� 9

0:22 1:08 1:79 3:42

50 3:86� 6 4:44� 7 4:89� 8 2:37� 9

0:24 1:07 1:80 3:41

60 3:69� 6 3:65� 7 3:52� 8 1:28� 9

0:26 1:07 1:80 3:40

70 3:55� 6 3:09� 7 2:67� 8 7:56� 10

0:28 1:07 1:81 3:39

80 3:42� 6 2:68� 7 2:09� 8 4:81� 10

0:30 1:07 1:81 3:38

90 3:30� 6 2:36� 7 1:69� 8 3:27� 10

0:32 1:07 1:82 3:38

100 3:19� 6 2:11� 7 1:40� 8 2:26� 10

Note that Theorem 5 predicts the convergence rates 0.07, 0.64, 1.20 and 2.34 for
q D 1; 2; 3; 5, respectively. For a second experiment we chose � D 0:30 and give
the results in Table 2. In this case one would expect the convergence rates 0.27, 1.04,
1.81 and 3.35 corresponding to q D 1; 2; 3; 5, respectively.

References

1. Ang, W.-T.: Hypersingular Integral Equations in Fracture Analysis. Elsevier Science and
Technology, Amsterdam (2013)

2. Atkinson, K.E.: A discrete Galerkin method for first kind integral equations with a logarithmic
kernel. J. Integral Equ. Appl. 1, 343–363 (1988)

3. Atkinson, K.E., Sloan, I.H.: The numerical solution of first-kind logarithmic-kernel integral
equations on smooth open arcs. Math. Comput. 56, 119–139 (1991)

4. Costabel, M., Stephan, E.P.: The normal derivative of the double layer potential on polygons
and Galerkin approximation. Appl. Anal. 16, 205–228 (1983)

5. Davis, P.J., Rabinowitz, P.: Numerical Integration. Blaisdell, Waltham (1967)
6. Elschner, J., Graham, I.G.: An optimal order collocation method for first kind boundary integral

equations on polygons. Numer. Math. 70, 1–31 (1995)
7. Elschner, J., Graham, I.G.: Quadrature methods for Symm’s integral equation on polygons.

IMA J. Numer. Anal. 17, 643–664 (1997)
8. Elschner, J., Stephan, E.P.: A discrete collocation method for Symm’s integral equation on

curves with corners. J. Comput. Appl. Math. 75, 131–146 (1996)
9. Elschner, J., Jeon, Y., Sloan, I.H., Stephan, E.P.: The collocation method for mixed boundary

value problems in domains with curved polygonal boundaries. Numer. Math. 76, 355–381
(1997)



566 T. Hartmann and E. P. Stephan

10. Jeon, Y.: A quadrature for the Cauchy singular integral equations. J. Integral Equ. Appl. 7,
425–461 (1995)

11. Kieser, R., Kleemann, B., Rathsfeld A.: On a full discretization scheme for a hypersingular
integral equation over smooth curves. Zeitschrift für Analysis und ihre Anwendungen 11, 385–
396 (1992)

12. Krishnasamy, G., Schmerr, L.W., Rudolphi, T.J., Rizzo F.J.: Hypersingular boundary integral
equations: some applications in acoustic and elastic wave scattering. J. Appl. Mech. 57, 404–
414 (1990)

13. Lifanov, I.K., Poltavskiii, L.N., Vainikko, G.M.: Hypersingular Integral Equations and Their
Applications. CRC Press, New York (2003)

14. Prössdorf, S., Rathsfeld, A.: Quadrature methods for strongly elliptic singular integral equa-
tions on an interval. In: Operator Theory: Advances and Applications, vol. 41, pp. 435–471.
Birkhäuser, Basel (1989)

15. Prössdorf, S., Silbermann, B.: Projektionsverfahren und die näherungsweise Lösung singulärer
Gleichungen. Teubner, Leipzig (1977)



On the Complexity of Parametric ODEs
and Related Problems

Stefan Heinrich

Dedicated to Ian H. Sloan on the occasion of his 80th birthday.

Abstract We present an iterative Monte Carlo procedure to solve initial value
problems for systems of ordinary differential equations depending on a parameter. It
is based on a multilevel Monte Carlo algorithm for parametric indefinite integration.
As an application, we also obtain a respective method for solving almost linear first
order partial differential equations. We also consider deterministic algorithms.

We study the convergence and, in the framework of information-based com-
plexity, the minimal errors and show that the developed algorithms are of optimal
order (in some limit cases up to logarithmic factors). In this way we extend recent
complexity results on parametric ordinary differential equations. Moreover, we
obtain the complexity of almost linear first-order partial differential equations,
which has not been analyzed before.

1 Introduction

Monte Carlo (one-level) methods for integrals depending on a parameter were first
considered in [8]. Multilevel Monte Carlo methods for parametric integration were
developed in [15], where the problem was studied for the first time in the frame of
information-based complexity theory (IBC). These investigations were continued in
[3], where the complexity of parametric indefinite integration was studied for the
first time.

Recently there arose considerable interest in the numerical solution of various
parametric problems, also in connection with random partial differential equations,
see [1, 7, 19, 20] and references therein. Deterministic methods for solving para-
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metric initial value problems for systems of ordinary differential equations (ODEs)
were first considered in [9].

The study of ODEs in IBC was begun in [16] for the deterministic case and
in [17, 18] for the stochastic case. The complexity in the randomized setting was
further studied in [2, 12, 13]. The complexity of parametric initial value problems
for systems of ODEs was investigated in [4] and [5], where multilevel Monte Carlo
algorithms for this problem were developed and shown to be of optimal order.

Here we study function classes satisfying a weaker Lipschitz condition than those
considered in [4]. This is needed for the applications to the complexity analysis
for almost linear partial differential equations (PDEs). Moreover, we present a new
approach to solve initial value problems for ODEs depending on a parameter. We
develop an iterative Monte Carlo procedure, based on a multilevel algorithm for
parametric indefinite integration. This leads to an iterative multilevel Monte Carlo
method for solving almost linear first order PDEs. We also consider deterministic
algorithms.

We prove convergence rates, determine the minimal errors in the framework of
IBC, and show that the developed algorithms are of optimal order (in some limit
cases up to logarithmic factors). In this way we extend recent complexity results
of [4] on parametric ordinary differential equations. Moreover, the complexity of
almost linear first-order partial differential equation is determined, a topic, which
has not been considered before.

The paper is organized as follows. In Sect. 2 we provide the needed notation.
In Sects. 3 and 4 we recall the algorithms from [3] on Banach space valued
and parametric indefinite integration, respectively, and improve some convergence
results. Section 5 contains the main results. Based on the results of Sect. 4 we study
the iterative solution of initial value problems for parametric ordinary differential
equations. Finally, in Sect. 6 we apply the results of Sect. 5 to the analysis of the
complexity of almost linear partial differential equations.

2 Preliminaries

Let N D f1; 2; : : : g and N0 D f0; 1; 2; : : : g. For a Banach space X the norm is
denoted by k kX , the closed unit ball by BX , the identity mapping on X by IX , and
the dual space by X�. The Euclidean norm on R

d .d 2 N/ is denoted by k kRd . Given
another Banach space Y, we let L .X;Y/ be the space of bounded linear mappings
T W X ! Y endowed with the canonical norm. If X D Y, we write L .X/ instead of
L .X;X/. We assume all considered Banach spaces to be defined over the field of
reals R.

Concerning constants, we make the convention that the same symbol c, c1, c2; : : :
may denote different constants, even in a sequence of relations. Furthermore, we use
the following notation: For nonnegative reals .an/n2N and .bn/n2N we write an � bn

if there are c > 0 and n0 2 N such that for all n � n0; an � cbn. We also write
an � bn if simultaneously an � bn and bn � an. If not specified, the function log
means log2.
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Given a set D � R
d which is the closure of an open set, and a Banach space

X, we define Cr.D;X/ to be the space of all functions f W D ! X which are r-
times continuously differentiable in the interior of D and which together with their
derivatives up to order r are bounded and possess continuous extensions to all of D.
This space is equipped with the norm

k fkCr.D;X/ D sup
j˛j�r; s2D

��
�
�
�
@j˛jf .s/
@s˛

��
�
�
�

X

with ˛ D .˛1; : : : ; ˛d/ 2 N
d
0 and ˛ D j˛1j C � � � C j˛dj. If r D 0 then we also write

C.D;X/, and if X D R then we also write Cr.D/ and C.D/.
The type 2 constant of a Banach space X is denoted by 	2.X/. We refer to [21] as

well as to the introductions in [3, 4] for this notion and related facts. Let X˝Y be the
algebraic tensor product of Banach spaces X and Y. For z DPn

iD1 xi ˝ yi 2 X ˝ Y
define

�.z/ D sup
u2BX�

; v2BY�

ˇ
ˇ̌

nX

iD1
hxi; ui hyi; vi

ˇ
ˇ̌
:

The injective tensor product X ˝� Y is defined as the completion of X ˝ Y with
respect to the norm �. Definitions and background on tensor products can be found
in [6, 22]. Let us mention, in particular, the canonical isometric identification

C.D;X/ D X ˝� C.D/ (1)

for compact D 	 R
d. We also note that for Banach spaces X1;X2;Y1;Y2 and

operators T1 2 L .X1;Y1/, T2 2 L .X2;Y2/, the algebraic tensor product T1 ˝ T2 W
X1 ˝ X2 ! Y1 ˝ Y2 extends to a bounded linear operator T1 ˝ T2 2 L .X1 ˝�
X2;Y1 ˝� Y2/ with

kT1 ˝ T2kL .X1˝�X2;Y1˝�Y2/ D kT1kL .X1;Y1/kT2kL .X2;Y2/: (2)

Let Q D Œ0; 1�d. For r;m 2 N we let Pr;d;X
m 2 L .C.Q;X// be d-tensor product

Lagrange interpolation of degree r, composite with respect to the partition of Q D
Œ0; 1�d into md subcubes of sidelength m�1. Thus, Pr;d;X

m interpolates on � d
rm, where

� d
k D

˚
i
k W 0 � i � k

�d
for k 2 N. If X D R, we write Pr;d

m . Note that in the sense
of (1) we have Pr;d;X

m D IX ˝ Pr;d
m . Furthermore, there are constants c1; c2 > 0 such

that for all Banach spaces X and all m

�
�Pr;d;X

m

�
�
L .C.Q;X//

� c1; sup
f 2BCr .Q;X/

�
� f � Pr;d;X

m f
�
�

C.Q;X/
� c2m

�r: (3)

This is well-known in the scalar case, for the easy extension to Banach spaces see
[3].
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3 Banach Space Valued Indefinite Integration

Let X be a Banach space and let the indefinite integration operator be given by

SX
0 W C.Œ0; 1�;X/! C.Œ0; 1�;X/; .SX

0 f /.t/ D
Z t

0

f .	/d	 .t 2 Œ0; 1�/:

First we recall the Monte Carlo method from Section 4 of [14], here for integration
domain Œ0; 1�. Given n 2 N, we define ti D i

n .0 � i � n/. Let �i W ˝ ! Œti; tiC1�
be independent uniformly distributed random variables on a probability space
.˝;˙;P/. For f 2 C.Q;X/ and ! 2 ˝ we define g! W � 1

n ! R by

g!.ti/ D 1

n

X

0�j<i

f .�j.!// .0 � i � n/:

Let r 2 N0. If r D 0, we set

A0;0;Xn;! f WD P1;1;Xn g!;

and if r � 1,

A0;r;Xn;! f D SX
0 .Pr;1;X

n f /C A0;0;Xn;! . f � Pr;1;X
n f /: (4)

We write S0 and A0;rn;! if X D R. Observe that in the sense of identification (1) we
have

SX
0 D IX ˝ S0; A0;r;Xn;! D IX ˝ A0;rn;!; (5)

moreover, A0;r;Xn;! 2 L .C.Œ0; 1�;X// and, since g!.0/ D 0,

�
A0;r;Xn;! f

�
.0/ D 0 .r 2 N0/: (6)

We need the following result which complements Proposition 2 in [3].

Proposition 1 Let r 2 N0. Then there are constants c1; c2 > 0 such that for all
Banach spaces X, n 2 N, ! 2 ˝ , and f 2 C.Œ0; 1�;X/ we have

kSX
0 f � A0;r;Xn;! fkC.Œ0;1�;X/ � c1k fkC.Œ0;1�;X/ (7)

.E kSX
0 f � A0;r;Xn;! fk2C.Œ0;1�;X//1=2 � c2	2.X/n

�1=2k fkC.Œ0;1�;X/: (8)

Proof Relation (7) directly follows from the definitions. By Proposition 2 in [3],
there is a constant c > 0 such that for all Banach spaces X, n 2 N, and
f 2 C.Œ0; 1�;X/ we have

�
E kSX

0 f � A0;0;Xn;! fk2C.Œ0;1�;X/
	1=2 � c	2.X/n

�1=2k fkC.Œ0;1�;X/: (9)
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This is the case r D 0 of (8). Now assume r � 1. Then (3), (4), and (9) give

�
E kSX

0 f � A0;r;Xn;! fk2C.Œ0;1�;X/
	1=2

D
�
E kSX

0 . f � Pr;1;X
n f /� A0;0;Xn;! . f � Pr;1;X

n f /k2C.Œ0;1�;X/
	1=2

� c	2.X/n
�1=2k f � Pr;1;X

n fkC.Œ0;1�;X/ � c	2.X/n
�1=2k fkC.Œ0;1�;X/:

ut
We shall further study the multilevel procedure developed in [3]. Let .Tl/

1
lD0 	

L .X/. For convenience we introduce the following parameter set

M D
n�

l0; l1; .nl0/
l1
lDl0

	
W l0; l1 2 N0; l0 � l1; .nl0/

l1
lDl0
	 N

o
: (10)

For � 2M we define an approximation A0;r�;! to SX
0 as follows:

A0;r�;! D Tl0 ˝ A0;rnl0 ;!
C

l1X

lDl0C1
.Tl � Tl�1/˝ A0;0nl;!

; (11)

where the tensor product is understood in the sense of (1). We assume that the
random variables A0;rnl0 ;!

and
�
A0;0nl;!

�l1
lDl0C1 are independent. We have

A0;r�;! 2 L .C.Œ0; 1�;X//:

Denote

Xl D clX.Tl.X// .l 2 N0/ (12)

Xl�1;l D clX..Tl � Tl�1/.X// .l 2 N/; (13)

where clX denotes the closure in X. In particular, Xl and Xl�1;l are endowed with the
norm induced by X. The following result complements Proposition 3 in [3].

Proposition 2 There is a constant c > 0 such that for all Banach spaces X and
operators .Tl/

1
lD0 as above, for all � 2M

sup
f 2BC.Œ0;1�;X/

�
E kSX

0 f � A0;r�;! fk2C.Œ0;1�;X/
	1=2

� kIX � Tl1kL .X/ C c	2.Xl0 /kTl0kL .X/n
�1=2
l0

Cc
l1X

lDl0C1
	2.Xl�1;l/k.Tl � Tl�1/kL .X/n

�1=2
l : (14)
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Proof Denote

Rl D Tl ˝ IC.Œ0;1�/ 2 L .C.Œ0; 1�;X//: (15)

From (5) and (11) we get

A0;r�;! D A0;r;Xnl0 ;!
Rl0 C

l1X

lDl0C1
A0;0;Xnl;!

.Rl � Rl�1/: (16)

To prove (14), let f 2 BC.Œ0;1�;X/. Then by (16),

kSX
0 f � A0;r�;! fkC.Œ0;1�;X/

� kSX
0 f � SX

0Rl1 fkC.Œ0;1�;X/ C kSX
0Rl0 f � A0;r;Xnl0 ;!

Rl0 fkC.Œ0;1�;Xl0 /

C
�
�
�
�
��

l1X

lDl0C1

�
SX
0 .Rl � Rl�1/f � A0;0;Xnl;!

.Rl � Rl�1/f
�
�
�
�
�
��

C.Œ0;1�;Xl�1;l/

: (17)

We have, using (2),

kSX
0 f � SX

0Rl1 fkC.Œ0;1�;X/ � kSX
0 kL .C.Œ0;1�;X//k f � Rl1 fkC.Œ0;1�;X/

� kIX � Tl1kL .X/k fkC.Œ0;1�;X/ � kIX � Tl1kL .X/: (18)

Furthermore, by Proposition 1,

E

�
kSX

0Rl0 f � A0;r;Xnl0 ;!
Rl0 fk2C.Œ0;1�;Xl0 /

	1=2

� c	2.Xl0 /kTl0kL .X/n
�1=2
l0

: (19)

For l0 < l � l1 we obtain

E

�
kSX

0 .Rl � Rl�1/f � A0;0;Xnl;!
.Rl � Rl�1/fk2C.Œ0;1�;Xl�1;l/

	1=2

� c	2.Xl�1;l/kTl � Tl�1kL .X/n
�1=2
l : (20)

The combination of (17)–(20) yields the result. ut
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4 Parametric Indefinite Integration

Let d 2 N, Q D Œ0; 1�d. The indefinite parametric integration operator S1 W C.Q �
Œ0; 1�/! C.Q � Œ0; 1�/ is given by

.S1f /.s; t/ D
Z t

0

f .s; 	/d	 .s 2 Q; t 2 Œ0; 1�/:

This problem is related to the Banach space case from the previous section as
follows. With X D C.Q/ we have the identifications

C.Q � Œ0; 1�/ D C.Œ0; 1�;X/; S1 D SC.Q/
0 :

Let r1 D max.r; 1/ and define for l 2 N0

Tl D Pr1;d
2l 2 L .C.Q//: (21)

By (3),

kTlkL .C.Q// � c1; k J � TlJkL .Cr.Q/;C.Q// � c22
�rl; (22)

where J W Cr.Q/ ! C.Q/ is the embedding. For � D
�

l0; l1; .nl0 /
l1
lDl0

	
2 M the

algorithm A0;r�;! defined in (11) takes the following form. For f 2 C.Q � Œ0; 1�/

A1;r�;! f D Pr1;d
2l0

 �
A0;rnl0 ;!

. fs/
	

s2� d
r12

l0

!

C
l1X

lDl0C1

�
Pr1;d
2l � Pr1;d

2l�1

	
 
�

A0;0nl;!
. fs/

	

s2� d
r12l

!

; (23)

where for s 2 Q we used the notation fs D f .s; � /. Then

card
�

A1;r�;!
	
� c

l1X

lDl0

nl2
dl .! 2 ˝/; (24)

where card
�

A1;r�;!
	

denotes the cardinality of algorithm A1;r�;! , that is, the number

of function values used in algorithm A1;r�;! (see also the general remarks before
Theorem 1 below). Moreover, we have A1;r�;! 2 L .C.Q � Œ0; 1�// and it follows
from (6) that

�
A1;r�;! f

	
.s; 0/ D 0 .s 2 Q/: (25)
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We also consider the following subset M0 	 M corresponding to one-level
algorithms

M0 D f� 2M W � D .l0; l0; nl0 /g (26)

thus, for �0 2M0,

A1;r�0;! f D Pr1;d
2l0

 
�

A0;rnl0 ;!
. fs/

	

s2� d
r12

l0

!

: (27)

Parts of the following result (relations (30) and (33)) were shown in [3, Propo-
sition 4]. We prove that algorithm A1;r�;! simultaneously satisfies the estimates (32)
and (33). The former is crucial for the stability analysis of the iteration in Sect. 5.
We note that, due to the multilevel structure of A1;r�;! relation (32) is not trivial (a
trivial estimate would be c log.nC1/). Some of the choices of multilevel parameters
from [3] are not suitable to obtain both estimate simultaneously. So here we provide
modified choices and verify the needed estimates for them, still using the analysis
of [3].

Proposition 3 Let r 2 N0, d 2 N. There are constants c1; : : : ; c6 > 0 such that the
following hold. For each n 2 N there is a �0.n/ 2M0 such that for all ! 2 ˝

card
�

A1;r�0.n/;!

	
� c1n (28)

sup
f 2BC.Q�Œ0;1�/

kS1f � A1;r�0.n/;! fkC.Q�Œ0;1�/ � c2 (29)

sup
f 2BCr .Q�Œ0;1�/

kS1f � A1;r�0.n/;! fkC.Q�Œ0;1�/ � c3n
� r

dC1 : (30)

Moreover, for each n 2 N there is a �.n/ 2M such that

max
!2˝ card

�
A1;r�.n/;!

	
� c4n (31)

sup
f 2BC.Q�Œ0;1�/

�
E kS1f � A1;r�.n/;! fk2C.Q�Œ0;1�/

	1=2 � c5 (32)

sup
f 2BCr .Q�Œ0;1�/

�
E kS1f � A1;r�.n/;! fk2C.Q�Œ0;1�/

	1=2 � c6n
��1.log.nC 1//�2 (33)

with

�1 D
(

rC1=2
dC1 if r

d >
1
2

r
d if r

d � 1
2

�2 D

8
<̂

:̂

1
2

if r
d >

1
2

2 if r
d D 1

2

r
d if r

d <
1
2
:

(34)
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Proof Let n 2 N, put

l� D
�

log2.nC 1/
d

�
; l0 D

�
d

d C 1 l�
�
; nl0 D 2d.l��l0/ (35)

and �0.n/ D .l0; l0; nl0 /. For this choice relations (28) and (30) were shown in [3].
Relation (29) readily follows from (3), (7) of Proposition 1, and (27).

To prove (31)–(34), let �.n/ D
�

l0; l1; .nl0 /
l1
lDl0

	
2 M , with l0 and nl0 given

by (35), and l1, .nl0 /
l1
lDl0C1 to be fixed later on. For brevity we denote for % 2 N0,

E%.�.n// WD sup
f 2BC%.Q�Œ0;1�/

�
E kS1f � A1;r�.n/;! fk2C.Q�Œ0;1�/

	1=2
:

We show that for % 2 f0; rg

E%.�.n// � c2�%l1 C c.l0 C 1/1=2n�%�1=2
l0

C c
l1X

lDl0C1
.lC 1/1=22�%ln�1=2

l : (36)

By (63) in [3], this holds for % D r. It remains to prove the corresponding estimate
for r � 1, % D 0. By (12) and (21)

Xl D Pr1;d
2l .C.Q//; (37)

therefore Xl�1 � Xl and, by (13), also Xl�1;l � Xl for l � 1. As shown in [3],

	2.Xl�1;l/ � 	2.Xl/ � c.lC 1/1=2: (38)

We conclude from (14) of Proposition 2, (22), and (38) that

E0.�.n// � cC c.l0 C 1/1=2n�1=2
l0
C c

l1X

lDl0C1
.lC 1/1=2n�1=2

l ; (39)

which shows (36) for % D 0.
From (35) we conclude

d.l� � l0/ � dl�

dC 1 � l0;

thus,

n�%�1=2
l0

D 2�.%C1=2/d.l��l0/ � 2�%l0�d.l��l0/=2 D 2�%l0n�1=2
l0

:
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This means that we can include the middle term in (36) into the sum, which gives

E%.�.n// � c2�%l1 C c
l1X

lDl0

.lC 1/1=22�%ln�1=2
l .% 2 f0; rg/: (40)

If r > d=2, we set

� D .rC 1=2/d
r.d C 1/ ; l1 D d� l�e :

Then

d

dC 1 < � < 1:

Indeed, the left hand inequality is obvious, while the right-hand inequality is a
consequence of the assumption r > d=2. With (35) it follows that

l0 � l1 � l�:

We choose a ı > 0 in such a way that

r � ı=2 > d=2; (41)

ı



� � d

dC 1
�
< d.1� �/ (42)

and put

nl D
l
2d.l��l/�ı.l�l0/

m
.l D l0 C 1; : : : ; l1/:

From (40)–(42) and (35) we obtain

Er.�.n// � c2�rl1 C c.l� C 1/1=2
l1X

lDl0

2�rl0�.r�ı=2/.l�l0/�d.l��l/=2

� c2� .rC1=2/d
dC1 l� C c.l� C 1/1=22�rl0�d.l��l0/=2

� c.l� C 1/1=22� .rC1=2/d
dC1 l� � cn� rC1=2

dC1 .log.nC 1//1=2:
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Furthermore, using (40) and (42),

E0.�.n// � cC c.l� C 1/1=2
l1X

lDl0

2ı.l�l0/=2�d.l��l/=2

� cC c.l� C 1/1=22ı.l1�l0/=2�d.l��l1/=2

� cC c.l� C 1/1=22ı
�
�� d

dC1

	
l�
2 �d.1��/ l�

2 � c:

By (24) the number of function values fulfills

card
�

A1;r�.n/;!

	
� c

l1X

lDl0

nl2
dl � c2dl1 C c

l1X

lDl0

2dl��ı.l�l0/ � cn: (43)

This proves (31)–(34) for r > d=2.
If r D d=2, we set l1 D l�, put

nl D max
�
2d.l��l/;

l
.l� C 1/2d.l��l/=2

m	
.l D l0 C 1; : : : ; l1/

and get from (35) and (40),

Er.�.n// � c2�rl� C c.l� C 1/1=2
l�X

lDl0

2�rl�d.l��l/=2

� c.l� C 1/3=22�dl�=2 � cn�1=2.log.nC 1//3=2; (44)

E0.�.n// � cC c.l� C 1/1=2
l1X

lDl0

n�1=2
l � cC c

l�X

lDl0

2�d.l��l/=4 � c: (45)

The cardinality satisfies

card
�

A1;r�.n/;!

	
� c

l�X

lDl0

nl2
dl � c2dl� C c

l�X

lDl0

�
2dl� C .l� C 1/2d.l�Cl/=2

	

� c.l� C 1/2dl� � cn log.nC 1/: (46)

Transforming n log.n C 1/ into n in relations (44)–(46) proves (31)–(34) for this
case.

Finally, if r < d=2, we set

l1 D l� � ˙d�1 log2.l
� C 1/� ; (47)
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choose a ı > 0 in such a way that

.d � ı/=2 > r (48)

and put

nl D
l
2d.l��l/�ı.l1�l/

m
.l D l0 C 1; : : : ; l1/: (49)

This is the same choice as in the respective case of the proof of Proposition 4 in
[3]. Clearly, there is a constant c > 0 such that l0 � l1 for n � c. For n < c
the statements (32) and (33) are trivial. It was shown in [3] that with the choice
above card

�
A1;r�.n/;!

� � cn and that relation (33) holds. Arguing similarly, we derive
from (35), (36), (47), and (49) for the case % D 0

E0.�.n// � cC c.l� C 1/1=22�d.l��l0/=2

Cc.l� C 1/1=2
l1X

lDl0C1
2�d.l��l1/=2�.d�ı/.l1�l/=2

� cC c.l� C 1/1=22�d.l��l1/=2

� cC c.l� C 1/1=22�.log2.l
�C1//=2 � c;

which is (32). ut

5 Fixed Point Iteration for Parametric ODEs

Here we apply the above results to the following problem. Let d; q 2 N, r 2 N0,
Q D Œ0; 1�d, and let Cr

Lip.Q � Œ0; 1� � R
q;Rq/ be the space of functions f 2 Cr.Q �

Œ0; 1� � R
q;Rq/ satisfying for s 2 Q, t 2 Œ0; 1�, z1; z2 2 R

q

j f jLip WD sup
s2Q;t2Œ0;1�;z1¤z22Rq

k f .s; t; z1/� f .s; t; z2/kRq

kz1 � z2kRq
<1: (50)

The space Cr
Lip.Q � Œ0; 1� �R

q;Rq/ is endowed with the norm

k fkCr
Lip.Q�Œ0;1��Rq ;Rq/ D max

�k fkCr.Q�Œ0;1��Rq ;Rq/; j f jLip
�
: (51)

If r D 0, we also write CLip.Q� Œ0; 1��Rq;Rq/. We consider the numerical solution
of initial value problems for systems of ODEs depending on a parameter s 2 Q

@u.s; t/

@t
D f .s; t; u.s; t// .s 2 Q; t 2 Œ0; 1�/ (52)

u.s; 0/ D u0.s/ .s 2 Q/ (53)
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with f 2 CLip.Q�Œ0; 1��Rq;Rq/ and u0 2 C.Q;Rq/. A function u W Q�Œ0; 1�! R
q

is called a solution if for each s 2 Q, u.s; t/ is continuously differentiable as a
function of t and (52)–(53) are satisfied. Due to the assumptions on f and u0 the
solution exists, is unique, and belongs to C.Q� Œ0; 1�;Rq/. Let the solution operator

S2 W CLip.Q � Œ0; 1� � R
q;Rq/ � C.Q;Rq/! C.Q � Œ0; 1�;Rq/

be given by S2. f ; u0/ D u, where u D u.s; t/ is the solution of (52)–(53).
Furthermore, fix � > 0 and let

Fr
2.�/ D �BCr

Lip.Q�Œ0;1��Rq ;Rq/ � �BCr.Q;Rq/: (54)

Classical results on the regularity with respect to t and the parameter s (see, e.g.,
[24]) give

sup
. f ;u0/2Fr

2.�/

kS2. f ; u0/kCr.Q�Œ0;1�;Rq/ � c: (55)

Now let f 2 CLip.Q � Œ0; 1� � R
q;Rq/ and u0 2 C.Q;Rq/. We rewrite (52)–(53)

in the equivalent form

u.s; t/ D u0.s/C
Z t

0

f .s; 	; u.s; 	//d	 .s 2 Q; t 2 Œ0; 1�/: (56)

Let m 2 N and ti D im�1 .i D 0; : : : ;m/. We solve (56) and thus (52)–(53) in m
steps on the intervals Œti; tiC1� .i D 0; : : : ;m � 1/. Let

S1;i W C.Q � Œti; tiC1�;Rq/! C.Q � Œti; tiC1�;Rq/

be the q-dimensional version of the solution operator of parametric indefinite
integration on Œti; tiC1�, i.e., for g 2 C.Q � Œti; tiC1�;Rq/

�
S1;ig

�
.s; t/ D

 Z t

ti

gl.s; 	/d	

!q

lD1
.t 2 Œti; tiC1�/; (57)

where gl are the components of g. Let A1;r�;i;! be algorithm A1;r�;! from (23), scaled to
Œti; tiC1� and applied to each component of g, that is

�
A1;r�;i;!g

�
.s; t/ D

�
m�1�A1;r�;!g�

l

�
.s;m.t � ti//

	q

lD1 .t 2 Œti; tiC1�/; (58)

with

g�
l .s; 	/ D gl.s; ti C m�1	/ .	 2 Œ0; 1�/: (59)



580 S. Heinrich

Let

N D ˚�
m;M; k; .�j/

k�1
jD0
� W m;M; k 2 N; .�j/

k�1
jD0 	M

�
(60)

N0 D
˚�

m;M; k; .�j/
k�1
jD0
� 2 N W .�j/

k�1
jD0 	M0

� 	N ; (61)

where M and M0 were defined in (10) and (26), respectively, and let r1 D
max.r; 1/. For � D

�
m;M; k; .�j/

k�1
jD0
	
2 N define u0;0 D Pr1;d

M u0 and for

i D 0; : : : ;m � 1, j D 0; : : : ; k � 1, s 2 Q the iteration

ui;jC1.s; t/ D ui;0.s/C .A1;r�j;i;!
gij/.s; t/ .t 2 Œti; tiC1�/; (62)

where

gij.s; t/ D f .s; t; uij.s; t// .t 2 Œti; tiC1�/; (63)

and

uiC1;0.s/ D uik.s; tiC1/ .t 2 ŒtiC1; tiC2�; i � m � 2/: (64)

We assume that the involved random variables .A1;r�j;i;!
/m�1;k�1

i;jD0 are independent.
Furthermore, for s 2 Q, t 2 Œ0; 1� put

u�.s; t/ D
�

uik.s; t/ if t 2 Œti; tiC1/; i � m � 2
um�1;k.s; t/ if t 2 Œtm�1; tm�

(65)

A2;r�;!. f ; u0/ D u�: (66)

Clearly, uij 2 C.Q � Œti; tiC1�;Rq/. Moreover, it follows from (58) and (25) that

.A1;r�j;i;!
gij/.s; ti/ D 0;

and therefore (62) yields

uik.s; ti/ D ui;0.s/ D ui�1;k.s; ti/ .1 � i � m � 1; s 2 Q/;

hence v 2 C.Q � Œ0; 1�;Rq/. Next we give error and stability estimates for A2;r�;! .

Proposition 4 Let r 2 N0, d; q 2 N, � > 0. Then there are constants c1; : : : ; c6 > 0
such that the following hold. For each n 2 N there is a �0.n/ 2 N0 such that for all
! 2 ˝

card
�

A2;r�0.n/;!

	
� c1n (67)

sup
. f ;u0/2Fr

2.�/

kS2. f ; u0/ � A2;r�0.n/;!. f ; u0/kC.Q�Œ0;1�;Rq/ � c2n
� r

dC1 (68)
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and for . f ; u0/; .Qf ; Qu0/ 2 F02.�/

kA2;r�0.n/;!. f ; u0/� A2;r�0.n/;!.
Qf ; Qu0/kC.Q�Œ0;1�;Rq/

� c3
�k f � QfkC.Q�Œ0;1��Rq ;Rq/ C ku0 � Qu0kC.Q;Rq/

�
: (69)

Moreover, for each n 2 N there is a �.n/ 2 N such that

max
!2˝ card

�
A2;r�.n/;!

	
� c4n; (70)

sup
. f ;u0/2Fr

2.�/

�
E kS2. f ; u0/ � A2;r�.n/;!. f ; u0/k2C.Q�Œ0;1�;Rq/

	1=2

� c5n
��1.log.nC 1//�2 ; (71)

with �1 and �2 given by (34), and for . f ; u0/; .Qf ; Qu0/ 2 F02.�/

�
E kA2;r�.n/;!. f ; u0/ � A2;r�.n/;!.Qf ; Qu0/k2C.Q�Œ0;1�;Rq/

	1=2

� c6
�k f � QfkC.Q�Œ0;1��Rq ;Rq/ C ku0 � Qu0kC.Q;Rq/

�
: (72)

Proof We prove (70)–(72), the proof of (67)–(69) is analogous, just simpler. For the
sake of brevity we set

".n/ D n��1.log.nC 1//�2 : (73)

By Proposition 3 and (57)–(59) there are constants c; c.1/; c.2/ > 0 and a sequence
.�.n//1nD1 	M such that for m; n 2 N

max
!2˝ card

�
A1;r�.n/;i;!

	
� cn; (74)

for f 2 C.Q � Œti; tiC1�;Rq/

�
E kS1;if � A1;r�.n/;i;! fk2C.Q�Œti ;tiC1�;R

q/

	1=2 � c.1/m�1k fkC.Q�Œti ;tiC1�;Rq/ (75)

and for f 2 Cr.Q � Œti; tiC1�;Rq/

�
E kS1;if � A1;r�.n/;i;! fk2C.Q�Œti ;tiC1�;Rq/

	1=2

� c.2/m�1".n/k fkCr.Q�Œti ;tiC1�;Rq/: (76)

In the rest of the proof we reserve the notation c.1/ and c.2/ for the constants in (75)
and (76). We need the following stability property, which is a consequence of (75)
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and the linearity of A�.n/;i;! : For f1; f2 2 C.Q � Œti; tiC1�;Rq/

�
E kA1;r�.n/;i;! f1 � A1;r�.n/;i;! f2k2C.Q�Œti ;tiC1�;R

q/

	1=2

� kS1;i. f1 � f2/kC.Q�Œti ;tiC1�;Rq/

C
�
E kS1;i. f1 � f2/ � A1;r�.n/;i;!. f1 � f2/k2C.Q�Œti ;tiC1�;R

q/

	1=2

� .c.1/C 1/m�1k f1 � f2kC.Q�Œti ;tiC1�;Rq/: (77)

We choose m 2 N in such a way that

� WD .c.1/C 1/m�1� � 1=2: (78)

Now we fix n 2 N and define

M D ˙
n1=d

�
; k D

�
�1 log2 nC log2 m

� log2 �

�
C 1; (79)

nj D
l

n�
k�1�j
�1C1

m
. j D 0; : : : ; k � 1/; (80)

and set

�.n/ D �m;M; k; �.nj/
k�1
jD0
�
:

Then the cardinality of algorithm A2;r�.n/;! satisfies

card
�

A2;r�.n/;!

	
� cMd C cm

k�1X

jD0
nj � cnC cm

k�1X

jD0

l
n�

k�1�j
�1C1

m
� cn

(note that by the choice (78), m is just a constant). This shows (70).
Next we prove the error estimate (71). Let . f ; u0/ 2 Fr

2.�/. By (3) and (34)

ku. � ; 0/� u0;0kC.Q;Rq/ D
�
�u0 � Pr1;d

M u0
�
�

C.Q;Rq/
� cn�r=d � cn��1 : (81)

Setting

g.s; t/ D f .s; t; u.s; t//; (82)

we get from (55)

kgkCr.Q�Œ0;1�;Rq/ � c: (83)



On the Complexity of Parametric ODEs and Related Problems 583

Moreover, (63) implies

kg � gijkC.Q�Œti;tiC1�;R
q/ � �ku � uijkC.Q�Œti;tiC1�;R

q/: (84)

We have

u.s; t/ D u.s; ti/C .S1;ig/.s; t/ .s 2 Q; t 2 Œti; tiC1�/:
We estimate, using (83), (84), (76), and (77)

�
E ku � ui;jC1k2C.Q�Œti ;tiC1�;Rq/

	1=2

�


E

�
�
�u. � ; ti/C S1;ig � ui;0 � A1;r�.nj/;i;!

gij

�
�
�
2

C.Q�Œti ;tiC1�;Rq/

�1=2

�
�
E ku. � ; ti/� ui;0k2C.Q;Rq/

	1=2 C


E

�
�
�S1;ig � A1;r�.nj/;i;!

g
�
�
�
2

C.Q�Œti ;tiC1�;R
q/

�1=2

C


EE


�
��A1;r�.nj/;i;!

g � A1;r�.nj/;i;!
gij

�
��
2

C.Q�Œti ;tiC1�;R
q/

ˇ
ˇ̌uij

��1=2

�
�
E ku. � ; ti/� ui;0k2C.Q;Rq/

	1=2 C


E

�
�
�S1;ig � A1;r�.nj/;i;!

g
�
�
�
2

C.Q�Œti ;tiC1�;Rq/

�1=2

C.c.1/C 1/m�1 �
E
�
�g � gij

�
�2

C.Q�Œti;tiC1�;Rq/

	1=2

�
�
E ku. � ; ti/� ui;0k2C.Q;Rq/

	1=2 C c.1/m�1".nj/

C�
�
E
�
�u � uij

�
�2

C.Q�Œti ;tiC1�;R
q/

	1=2
: (85)

We get from (85) by recursion over j

�
E ku � uikk2C.Q�Œti ;tiC1�;R

q/

	1=2

�
�
E ku. � ; ti/ � ui;0k2C.Q;Rq/

	1=2 k�1X

jD0
� j C c.1/m�1

k�1X

jD0
� j".nk�j�1/

C� k
�
E ku � ui;0k2C.Q�Œti ;tiC1�;R

q/

	1=2

� � k ku � u. � ; ti/kC.Q�Œti;tiC1�;Rq/ C
�
E ku. � ; ti/� ui;0k2C.Q;Rq/

	1=2 kX

jD0
� j

Cc.1/m�1
k�1X

jD0
� j".nk�j�1/: (86)
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By (55) and (79),

� k ku � u. � ; ti/kC.Q�Œti;tiC1�;R
q/ � c� k � cm�1n��1 : (87)

Moreover, (78) implies

kX

jD0
� j D



1C � 1 � �

k

1 � �
�
� 1C 2�: (88)

Finally, using (80) and (73), we obtain

k�1X

jD0
� j".nk�j�1/ D

k�1X

jD0
� jn��1

k�j�1.log.nk�j�1 C 1//�2

�
k�1X

jD0
� jn��1�� �1j

�1C1 .log.nC 1//�2

D n��1 log.nC 1//�2
k�1X

jD0
�

j
�1C1 � cn��1 log.nC 1//�2 : (89)

Combining (86)–(89), we conclude

�
E ku � uikk2C.Q�Œti ;tiC1�;R

q/

	1=2

� cm�1n��1.log.nC 1//�2 C .1C 2�/
�
E ku. � ; ti/� ui;0k2C.Q;Rq/

	1=2
: (90)

In particular, taking into account (64), (78), and (81), we obtain by recursion over i,

�
E ku. � ; tiC1/� uiC1;0k2C.Q;Rq/

	1=2

� cm�1n��1.log.nC 1//�2
iX

lD0
.1C 2�/l C .1C 2�/iC1ku. � ; 0/� u0;0kC.Q;Rq/

� c.1C 2�/mn��1.log.nC 1//�2 � cn��1.log.nC 1//�2 :

Inserting this into (90), we get

�
E ku � uikk2C.Q�Œti ;tiC1�;R

q/

	1=2 � cn��1.log.nC 1//�2
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and hence,

�
E ku � A2;r�.n/;!. f ; u0/k2C.Q�Œ0;1�;Rq/

	1=2

D
�
E ku � u�.n/k2C.Q�Œ0;1�;Rq/

	1=2 � cmn��1.log.nC 1//�2 � cn��1.log.nC 1//�2;

which is (71).
Finally we prove the stability (72) of algorithm A2;r�.n/;! . Let . f ; u0/; .Qf ; Qu0/ 2

F02.�/, let Quij and Qgij be defined analogously to (62)–(64) and set

g�
ij.s; t/ D f .s; t; Quij.s; t// .s 2 Q; t 2 Œti; tiC1�/: (91)

From (62) we get

�
E kui;jC1 � Qui;jC1k2C.Q�Œti ;tiC1�;R

q/

	1=2

�
�
E kui;0 � Qui;0k2C.Q;Rq/

	1=2

C


E

�
�
�A1;r�.nj/;i;!

gij � A1;r�.nj/;i;!
g�

ij

�
�
�
2

C.Q�Œti ;tiC1�;R
q/

�1=2

C


E

�
��A1;r�.nj/;i;!

g�
ij � A1;r�.nj/;i;!

Qgij

�
��
2

C.Q�Œti ;tiC1�;R
q/

�1=2
: (92)

We have by (82) and (91)

gij.s; t/ � g�
ij.s; t/ D f .s; t; uij.s; t// � f .s; t; Quij.s; t//;

hence

kgij � g�
ijkC.Q�Œti ;tiC1�;Rq/ � �kuij � QuijkC.Q�Œti ;tiC1�;Rq/:

It follows from (77) that



E

�
�
�A1;r�.nj/;i;!

gij � A1;r�.nj/;i;!
g�

ij

�
�
�
2

C.Q�Œti ;tiC1�;R
q/

�1=2

D


EE


�
�
�A1;r�.nj/;i;!

gij � A1;r�.nj/;i;!
g�

ij

�
�
�
2

C.Q�Œti;tiC1�;R
q/

ˇ
ˇ
ˇ.uij; Quij/

��1=2

� .c.1/C 1/m�1
�
E kgij � g�

ijk2C.Q�Œti ;tiC1�;R
q/

	1=2

� .c.1/C 1/m�1�
�
E
�
�uij � Quij

�
�2

C.Q�Œti ;tiC1�;R
q/

	1=2
: (93)
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Similarly,

g�
ij.s; t/ � Qgij.s; t/ D f .s; t; Quij.s; t// � Qf .s; t; Quij.s; t//;

which yields

kg�
ij � QgijkC.Q�Œti ;tiC1�;Rq/ � k f � QfkC.Q�Œ0;1��Rq ;Rq/:

Using again (77), we conclude



E

�
�
�A1;r�.nj/;i;!

g�
ij � A1;r�.nj/;i;!

Qgij

�
�
�
2

C.Q�Œti;tiC1�;R
q/

�1=2

D


EE


�
�
�A1;r�.nj/;i;!

g�
ij � A1;r�.nj/;i;!

Qgij

�
�
�
2

C.Q�Œti ;tiC1�;R
q/

ˇ
ˇ
ˇQuij

��1=2

� .c.1/C 1/m�1
�
E kg�

ij � Qgijk2C.Q�Œti ;tiC1�;Rq/

	1=2

� .c.1/C 1/m�1k f � QfkC.Q�Œ0;1��Rq ;Rq/: (94)

Combining (78), and (92)–(94), we obtain

�
E kui;jC1 � Qui;jC1k2C.Q�Œti ;tiC1�;Rq/

	1=2

�
�
E kui;0 � Qui;0k2C.Q;Rq/

	1=2 C .c.1/C 1/m�1k f � QfkC.Q�Œ0;1��Rq ;Rq/

C�
�
E
��uij � Quij

��2
C.Q�Œti;tiC1�;R

q/

	1=2
:

Recursion over j together with (88) gives

�
E kuik � Quikk2C.Q�Œti ;tiC1�;Rq/

	1=2

�

�

E kui;0 � Qui;0k2C.Q;Rq/

	1=2 C .c.1/C 1/m�1k f � QfkC.Q�Œ0;1��Rq ;Rq/

�

�.1C � C � � � C � k�1/C � k
�
E kui;0 � Qui;0k2C.Q;Rq/

	1=2

� .1C 2�/.c.1/C 1/m�1k f � QfkC.Q�Œ0;1��Rq ;Rq/

C.1C 2�/
�
E kui;0 � Qui;0k2C.Q;Rq/

	1=2
: (95)
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Consequently, recalling (64) and using recursion over i, we obtain

�
E kuiC1;0 � QuiC1;0k2C.Q;Rq/

	1=2

� .1C 2�/.c.1/C 1/m�1k f � QfkC.Q�Œ0;1��Rq ;Rq/

C.1C 2�/
�
E kui;0 � Qui;0k2C.Q;Rq/

	1=2

� .1C 2� C .1C 2�/2 C � � � C .1C 2�/iC1/.c.1/C 1/m�1

�k f � QfkC.Q�Œ0;1��Rq ;Rq/ C .1C 2�/iC1ku0 � Qu0kC.Q;Rq/

� c.k f � QfkC.Q�Œ0;1��Rq ;Rq/ C ku0 � Qu0kC.Q;Rq//:

Combining this with (95) yields

�
E kuik � Quikk2C.Q�Œti ;tiC1�;R

q/

	1=2 � c.k f � Qf kC.Q�Œ0;1��Rq ;Rq/ C ku0 � Qu0kC.Q;Rq//;

and finally

�
E kA2;r�.n/;!. f ; u0/ � A2;r�.n/;!.Qf ; Qu0/k2C.Q�Œ0;1�;Rq/

	1=2

� c.k f � QfkC.Q�Œ0;1��Rq ;Rq/ C ku0 � Qu0kC.Q;Rq//:

ut
Now we will work in the setting of information-based complexity theory (IBC), see
[23, 25]. For the precise notions used here we also refer to [10, 11]. An abstract
numerical problem is described by a tuple .F;G; S;K; �/, with F an arbitrary
set—the set of input data, G a normed linear space and S W F ! G an arbitrary
mapping, the solution operator, which maps the input f 2 F to the exact solution
Sf . Furthermore, K is an arbitrary set and � is a set of mappings from F to K—the
class of admissible information functionals.

The cardinality of an algorithm A, denoted by card.A/, is the number of
information functionals used in A. Let edet

n .S;F;G/, respectively eran
n .S;F;G/,

denote the n-th minimal error in the deterministic, respectively randomized setting,
that is, the minimal possible error among all deterministic, respectively randomized
algorithms of cardinality at most n. The cardinality of an algorithm A is closely
related to the arithmetic cost, that is, the number of arithmetic operations needed to
carry out A. For many concrete algorithms, including all those considered here, the
arithmetic cost is within a constant or a logarithmic factor of card.A/.

To put the parametric ODE problem into the setting above, let

S D S2; F D Fr
2.�/; G D C.Q � Œ0; 1�;Rq/; K D R

q;
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and let �2 be the following class of function values

�2 D fıs;t;z W s 2 Q; t 2 Œ0; 1�; z 2 R
qg [ fıs W s 2 Qg;

where ıs;t;z. f ; u0/ D f .s; t; z/ and ıs. f ; u0/ D u0.s/.
The following theorem extends a result on the complexity of parametric ODEs

from [4]. There the Lipschitz condition was imposed on f and on certain derivatives
of f up to order r, here the Lipschitz condition is required for f alone. This is also
of importance for the applications to PDEs in the next section.

Theorem 1 Let r 2 N0, d; q 2 N, � > 0. Then the deterministic n-th minimal
errors satisfy

edet
n .S2;F

r
2.�/;C.Q � Œ0; 1�;Rq// � n� r

dC1 :

For the randomized n-th minimal errors we have the following: If r=d > 1=2 then

eran
n .S2;F

r
2.�/;C.Q � Œ0; 1�;Rq// � n� rC1=2

dC1 .log n/
1
2 ;

if r=d D 1=2 then

n� 1
2 .log n/

1
2 � eran

n .S2;F
r
2.�/;C.Q � Œ0; 1�;Rq// � n� 1

2 .log n/2;

and if r=d < 1=2 then

eran
n .S2;F

r
2.�/;C.Q � Œ0; 1�;Rq// � n� r

d .log n/
r
d :

Proof Proposition 4 gives the upper bounds. To prove the lower bounds, we let
u0 � 0 and consider functions f D f .s; t/ not depending on z. In this sense we have
�BCr.Q�Œ0;1�;Rq/ 	 Fr

2.�/ and for f 2 �BCr.Q�Œ0;1�;Rq/

.S2.0; f //.s; 1/ D
Z 1

0

f .s; t/dt .s 2 Q/:

This means that parametric definite integration of Cr.Q � Œ0; 1�;Rq/ functions
reduces to S2, so that the required lower bounds for parametric ODEs follow from
[15]. ut

6 Almost Linear First Order PDEs

Let d; r 2 N (note that throughout this section we assume r � 1), Q D Œ0; 1�d, and
� > 0. Given

. f ; g; u0/ 2 Fr
3.�/ WD �BCr.Œ0;1��Rd ;Rd/ � �BCr.Œ0;1��Rd �R/ � �BCr.Rd/; (96)
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f D . f1; : : : ; fd/, we consider the following scalar first order almost linear PDE

@u.t; x/

@t
C

dX

iD1
fi.t; x/

@u.t; x/

@xi
D g.t; x; u.t; x// .x 2 R

d; t 2 Œ0; 1�/; (97)

u.0; x/ D u0.x/: (98)

A solution is a continuously differentiable function u W Œ0; 1� � R
d ! R

satisfying (97)–(98). Due to the definition of Fr
3.�/, the solution exists and is unique,

see, e.g., [24], as well as the discussion of the relations to ODEs below. We seek to
determine the solution at time t D 1 on Q, thus, we set G3 D C.Q/ and define the
solution operator by

S3 W Fr
3.�/! C.Q/; .S3. f ; g; u0//.x/ D u.1; x/ .x 2 Q/:

Furthermore, we put K D R
d [ R and let �3 be the following class of function

values

�3 D fıt;x W t 2 Œ0; 1�; x 2 R
dg [ fıt;x;z W t 2 Œ0; 1�; x 2 R

d; z 2 Rg [ fıx W x 2 Qg;

where

ıt;x. f ; g; u0/ D f .t; x/; ıt;x;z. f ; g; u0/ D g.t; x; z/; ıx. f ; g; u0/ D u0.x/:

We use the method of characteristics. We want to find � W Q � Œ0; 1�! R
d such

that for s 2 Q, t 2 Œ0; 1�,
@�.s; t/

@t
D f .t; �.s; t// (99)

�.s; 1/ D s: (100)

Observe that, due to (96) and the assumption r � 1,

k fkCr
Lip.Q�Œ0;1��Rd ;Rd/ �

p
d� (101)

(in the sense that f D f .t; z/ is considered as a function not depending on s 2 Q).
Thus, the solution of (99)–(100) exists and is unique. Denote

�0 W Q! R
d; �0.s/ D s .s 2 Q/:

Let

QS2 W CLip.Q � Œ0; 1� � R
d;Rd/ � C.Q;Rd/! C.Q � Œ0; 1�;Rd/
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be the solution operator of parametric ODEs studied in Sect. 5, with the difference
that the starting time is t D 1 and the ODE is considered backward in time (clearly,
this does not affect the error estimates of Proposition 5, provided the algorithms are
modified in the corresponding way). So we have

� D QS2. f ; �0/:

Furthermore, k�0kCr.Q;Rd/ D
p

d, and consequently, by (55) and (101), there is a
�1 > 0 depending only on r; d and � such that

k�kCr.Q�Œ0;1�;Rd / � �1: (102)

We define h 2 CLip.Q � Œ0; 1� �R/ and w0 2 C.Q/ by setting

h.s; t; z/ D g.t; �.s; t/; z/ (103)

w0.s/ D u0.�.s; 0// (104)

for s 2 Q, t 2 Œ0; 1�, z 2 R. By (96) and (102), there is a �2 > 0 also depending only
on r; d and � such that

.h;w0/ 2 Fr
2.�2/ � F02.�2/: (105)

Next we seek to find w W Q � Œ0; 1�! R with

@w.s; t/

@t
D h.s; t;w.s; t// .s 2 Q; t 2 Œ0; 1�/

w.s; 0/ D w0.s/ .s 2 Q/:

Then we have

w D S2.h;w0/; (106)

where

S2 W CLip.Q � Œ0; 1� � R/ � C.Q/! C.Q � Œ0; 1�/

is the respective solution operator of parametric ODEs, here with q D 1 and starting
time t D 0. The following is well-known (see again, e.g., [24]).

Lemma 1 If u.t; x/ is the solution of (97)–(98), then

u.t; �.s; t// D w.s; t/ .s 2 Q; t 2 Œ0; 1�/: (107)

It follows from (100) and (107) that

u.1; s/ D w.s; 1/ .s 2 Q/;
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hence by (106)

S3. f ; g; u0/ D .S2.h;w0// . � ; 1/: (108)

Now let � D . Q�; �/ 2 N 2, where N was defined in (60), and let QA2;rQ�;! be

the algorithm (62)–(66) for QS2. Similarly, let A2;r�;! be the respective algorithm for

S2. We assume that the random variables QA2;rQ�;! and A2;r�;! are independent. Define
�Q� 2 C.Q � Œ0; 1�;Rd/ by

�Q� D QA2;rQ�;!. f ; �0/ (109)

and hQ� 2 CLip.Q � Œ0; 1� � R/, w0;Q� 2 C.Q/ by setting for s 2 Q, t 2 Œ0; 1�, z 2 R

hQ�.s; t; z/ D g.t; �Q�.s; t/; z/ (110)

w0;Q�.s/ D u0.�Q�.s; 0//: (111)

It follows from (96) that

.hQ�;w0;Q�/ 2 F02.�/: (112)

We define algorithm A3;r�;! for S3 by setting for s 2 Q

�
A3;r�;!. f ; g; u0/

�
.s/ D �A2;r�;!.hQ�;w0;Q�/

�
.s; 1/: (113)

We have A3;r�;!. f ; g; u0/ 2 C.Q/. The following result provides error estimates for
A3;r�;! (recall also the definition (61) of N0).

Proposition 5 Let r; d 2 N, � > 0. There are constants c1; : : : ; c4 > 0 such that
the following holds. For each n 2 N there is a �0.n/ 2 N 2

0 such that for all ! 2 ˝

card
�

A3;r�0.n/;!

	
� c1n (114)

sup
. f ;g;u0/2Fr

3.�/

kS3. f ; g; u0/ � A3;r�0.n/;!. f ; g; u0/kC.Q/ � c2n
� r

dC1 : (115)

Moreover, for each n 2 N there is a �.n/ 2 N 2 such that

sup
!2˝

card
�

A3;r�.n/;!

	
� c3n (116)

sup
. f ;g;u0/2Fr

3.�/

�
E kS3. f ; g; u0/ � A3;r�.n/;!. f ; g; u0/k2C.Q/

	1=2

� c4n
��1.log.nC 1//�2 ; (117)

with �1; �2 given by (34).
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Proof Again we only prove the stochastic case (116)–(117), the deterministic
case being analogous. Let . Q�.n//1nD1 be such that (70)–(72) of Proposition 4
hold for QS2. Similarly, let .�.n//1nD1 be a respective sequence for S2. We put
�.n/ D . Q�.n/; �.n//. Now let n 2 N, . f ; g; u0/ 2 Fr

3.�/. By (71)–(72) of
Proposition 4, (105), (112), (113), and (108)



E

�
�
�S3. f ; g; u0/ � A3;r�.n/;!. f ; g; u0/

�
�
�
2

C.Q/

�1=2

D


E

��
�.S2.h;w0//. � ; 1/�

�
A2;r�.n/;!.hQ�.n/;w0;Q�.n//

	
. � ; 1/

��
�
2

C.Q/

�1=2

�


E

�
�
�S2.h;w0/� A2;r�.n/;!.hQ�.n/;w0;Q�.n//

�
�
�
2

C.Q�Œ0;1�/

�1=2

�


E

�
�
�S2.h;w0/� A2;r�.n/;!.h;w0/

�
�
�
2

C.Q�Œ0;1�/

�1=2

C


EE

�
�
�A2;r�.n/;!.h;w0/� A2;r�.n/;!.hQ�.n/;w0;Q�.n//

�
�
�
2

C.Q�Œ0;1�/

ˇ
ˇ
ˇ�Q�.n/

�1=2

� cn��1.log.nC 1//�2 C c
�
E kh � hQ�.n/k2C.Q�Œ0;1��R/

	1=2

Cc
�
E kw0 � w0;Q�.n/k2C.Q/

	1=2
: (118)

By (103), (110), and (96), for s 2 Q, t 2 Œ0; 1�, z 2 R

jh.s; t; z/ � hQ�.n/.s; t; z/j D jg.t; �.s; t/; z/ � g.t; �Q�.n/.s; t/; z/j
� pd�k�.s; t/ � �Q�.n/.s; t/kRd ; (119)

and similarly, by (104), (111), and (96),

jw0.s/ � w0;Q�.n/.s/j D ju0.�.s; 0//� u0.�Q�.n/.s; 0//j
� pd�k�.s; 0/ � �Q�.n/.s; 0/kRd : (120)

Furthermore, using (101) and (71) of Proposition 4, we obtain

�
E k� � �Q�.n/k2C.Q�Œ0;1�;Rd /

	1=2

D


E

�
�
�QS2. f ; �0/� QA2;rQ�.n/;!. f ; �0/

�
�
�
2

C.Q�Œ0;1�;Rd/

�1=2

� cn��1.log.nC 1//�2 : (121)
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From (119)–(121) we conclude

�
E kh � hQ�.n/k2C.Q�Œ0;1��R/

	1=2 � cn��1.log.nC 1//�2 (122)

�
E kw0 � w0;Q�.n/k2C.Q/

	1=2 � cn��1.log.nC 1//�2: (123)

Combining (118) and (122)–(123), we obtain the desired result (117). Relation (116)
follows from the definition of A3;r�.n/;! and (70) of Proposition 4. ut

The following theorem gives the deterministic and randomized minimal errors of
the first order almost linear PDE problem.

Theorem 2 Let r; d 2 N and � > 0. Then in the deterministic setting,

edet
n .S3;F

r
3.�/;C.Q// � n� r

dC1 :

In the randomized setting, if r=d > 1=2

eran
n .S3;F

r
3.�/;C.Q// � n� rC1=2

dC1 .log n/
1
2 ;

if r=d D 1=2, then

n� 1
2 .log n/

1
2 � eran

n .S3;F
r
3.�/;C.Q// � n� 1

2 .log n/2;

and if r=d < 1=2, then

eran
n .S3;F

r
3.�/;C.Q// � n� r

d .log n/
r
d :

Proof The upper bounds follow from Proposition 5 above. To show the lower
bounds, we set f � 0, u0 � 0, and consider g D g.t; x/ not depending on z.
Let Cr

Q.Œ0; 1� � R
d/ be the subspace of Cr.Œ0; 1� � R

d/ consisting of all functions g
satisfying

supp g.t; �/ � Q .t 2 Œ0; 1�/:

Then g 2 �BCr
Q.Œ0;1��Rd / implies .0; g; 0/ 2 Fr

3.�/. Moreover,

.S3.0; g; 0//.x/ D
Z 1

0

g.t; x/dt .x 2 Q/;

thus parametric definite integration of Cr
Q.Œ0; 1� � R

d/ functions reduces to S3, and
the lower bounds follow from [15] (it is readily seen from the proof in [15] that the
lower bound also holds for the subclass of functions with support in Q). ut
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Note that to obtain this result it was crucial to have Proposition 4 and Theorem 1 for
parametric ODEs under the Lipschitz condition as imposed in definitions (50), (51),
and (54). If we wanted to apply the results of [4] to get the upper bounds as stated
in Theorem 2, we would have to ensure the stronger Lipschitz condition from
[4] (involving derivatives up to order r). This would mean to require . f ; g; u0/ 2
FrC1
3 .�/, which, in turn, would lead to gaps between the upper and lower bounds in

Theorem 2 (in the lower bounds r would have to be replaced by rC 1).
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Adaptive Quasi-Monte Carlo Methods
for Cubature

Fred J. Hickernell, Lluís Antoni Jiménez Rugama, and Da Li

Dedicated to Ian H. Sloan on the occasion of his 80th birthday
with many thanks for his friendship and leadership.

Abstract High dimensional integrals can be approximated well by quasi-Monte
Carlo methods. However, determining the number of function values needed to
obtain the desired accuracy is difficult without some upper bound on an appropriate
semi-norm of the integrand. This challenge has motivated our recent development
of theoretically justified, adaptive cubatures based on digital sequences and lattice
nodeset sequences. Our adaptive cubatures are based on error bounds that depend
on the discrete Fourier transforms of the integrands. These cubatures are guaranteed
for integrands belonging to cones of functions whose true Fourier coefficients decay
steadily, a notion that is made mathematically precise. Here we describe these new
cubature rules and extend them in two directions. First, we generalize the error
criterion to allow both absolute and relative error tolerances. We also demonstrate
how to estimate a function of several integrals to a given tolerance. This situation
arises in the computation of Sobol’ indices. Second, we describe how to use control
variates in adaptive quasi-Monte cubature while appropriately estimating the control
variate coefficient.

1 Introduction

An important problem studied by Ian Sloan is evaluating multivariate integrals by
quasi-Monte Carlo methods. After perhaps a change of variable, one may pose the
problem as constructing an accurate approximation to

� D
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given a black-box function f that provides f .x/ for any x 2 Œ0; 1/d. Multivariate inte-
grals arise in applications such as evaluating financial risk, computing multivariate
probabilities, statistical physics, and uncertainty quantification.

We have developed and implemented quasi-Monte Carlo (qMC) cubature algo-
rithms that adaptively determine the sample size needed to guarantee that an error
tolerance is met, provided that the integrand belongs to a cone C of well-behaved
functions [2, 10, 13, 15]. That is, given a low discrepancy sequence x0; x1; : : : and
function data f .x0/; f .x1/; : : :, we have a stopping rule based on the function data
obtained so far that chooses n for which

j� �b�nj � "; whereb�n D 1

n

n�1X

iD0
f .xi/; f 2 C : (1)

Here, b�n is the sample average of function values taken at well-chosen points
whose empirical distribution mimics the uniform distribution. The cone C contains
integrands whose Fourier coefficients decay in a reasonable manner, thus allowing
the stopping rule to succeed. Specifically, the size of the high wavenumber
components of an integrand in C cannot be large in comparison to the size of the
low wavenumber components. Rather than choosing the xi to be independent and
identically distributed (IID) U Œ0; 1/d points, we use shifted digital sequences [3, 20]
and sequences of nodesets of shifted rank-1 lattices [11, 17, 18, 24]. Sequences that
are more evenly distributed than IID points are the hallmark of qMC algorithms.

Traditional qMC error analysis produces error bounds of the form [4, 8]

j� �b�nj � D.fxign�1
iD0 / kfk;

where the integrand, f , is assumed to lie in some Banach space with (semi-)norm
k�k, and kfk is often called the variation of f . Moreover, the discrepancy D.�/ is a
measure of quality of the sample, fxign�1

iD0 . For integrands lying in the ball B WD f f W
kfk � �g one may construct a non-adaptive algorithm guaranteeing j� �b�nj � "
by choosing n D min

˚
n0 2 N W D.fxign0�1

iD0 / � "=�
�
.

Our interest is in adaptive qMC algorithms, where n depends on the function data
observed, not on a priori bounds on the variation of the integrand. A few methods
have been proposed for choosing n:

Independent and identically distributed (IID) replications. [22] Compute

b�n;R D 1

R

RX

rD1
b�.r/n ; b�.r/n D

1

n

n�1X

iD0
f .x.r/i /; r D 1; : : : ;R;

where
˚
x.1/i

�1
iD0; : : : ;

˚
x.R/i

�1
iD0 are IID randomizations of a low discrepancy

sequence, and E
�
b�.r/n

� D �. A multiple of the standard deviation of these b�.r/n

is proposed as an upper bound for j� �b�n;Rj. To justify this approach one must
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make assumptions about the higher order moments of the b�.r/n to confidently
bound their variance and then employ a Berry-Esseen inequality, or some similar
inequality, to construct a confidence interval for �. This may require rather strict
assumptions on the higher order moments or an unattractively large number of
replications.
Internal replications. [22] Compute

b�nR D 1

R

RX

rD1
b�.r/n D

1

nR

nRX

rD1
f .xi/; b�.r/n D

1

n

rn�1X

iD.r�1/n
f .xi/; r D 1; : : : ;R:

A multiple of the standard deviation of these b�.r/n is proposed as an upper bound
for j� �b�nRj. This method does not have a supporting theory.
Quasi-standard error. [7] Compute

b�n;R D 1

R

RX

rD1
b�.r/n ; b�.r/n D

1

n

n�1X

iD0
f .xi;.r�1/dC1Wrd/; r D 1; : : : ;R;

where fxig1iD0 is now an Rd dimensional sequence, and xi;.r�1/dC1Wrd denotes the
.r�1/dC1st through rdth components of the ith point in the sequence. A multiple
of the standard deviation of these b�.r/n is proposed as an upper bound for j� �
b�n;Rj. However, see [23] for cautions regarding this method.

Since the error bounds proposed above are homogeneous, the sets of integrands
for which these error bounds are correct are cones. That is, if one of the above error
bounds above is correct for integrand f , it is also correct for integrand cf , where c is
an arbitrary constant. In this article we review our recent work developing adaptive
qMC algorithms satisfying (1). We describe the cones C for which our algorithms
succeed. We also extend our earlier algorithms in two directions:

• Meeting more general error criteria than simply absolute error, and
• Using control variates to improve efficiency.

Our data-based cubature error bounds are described in Sect. 2. This section also
emphasizes the similar algebraic structures of our two families of qMC sequences.
In Sect. 3, we describe how our error bounds can be used to satisfy error criteria that
are more general than that in (1). Section 4 describes the implementation of our new
adaptive qMC algorithms and provides numerical examples. Control variates with
adaptive qMC cubature is described in Sect. 5. We conclude with a discussion that
identifies problems for further research.
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2 Error Estimation for Digital Net and Lattice Cubature

Here we summarize some of the key properties of cubature based on digital
sequences and rank-1 lattice node sequences. We use a common notation for both
cases to highlight the similarities in analysis. We focus on the base 2 setting for
simplicity and because it is most common in practice. Always, n D 2m for non-
negative integer m. See [10] and [15] for more details.

Let f0 D z0; z1; : : :g be a sequence of distinct points that is either a digital
sequence or a rank-1 lattice node sequence. Let ˚ W Œ0; 1/d � Œ0; 1/d ! Œ0; 1/d

denote an addition operator under which the sequence is a group and the first 2m

points form a subgroup. For some shift,
 2 Œ0; 1/d, the data sites used for cubature
in (1) are given by xi D zi˚
 for all i 2 N0. Typical examples of a digital sequence
and a rank-1 lattice node sequence are given in Fig. 1.

There is a set of integer vector wavenumbers, K, which is a group under its
own addition operator, also denoted ˚. There is also a bilinear functional, h�; �i W
K � Œ0; 1/d ! Œ0; 1/, which is used to define a Fourier basis for L2Œ0; 1/d, given by˚
e2�

p�1hk;�i�
k2K. The integrand is expressed as a Fourier series,

f .x/ D
X

k2K
Of .k/e2�

p�1hk;xi 8x 2 Œ0; 1/d; f 2 L2Œ0; 1/d;

where Of .k/ WD
Z

Œ0;1/d
f .x/e�2�p�1hk;xi dx:

Cubature requires function values so we assume throughout that this Fourier series
is absolutely convergent, i.e.,

P
k2KjOf .k/j <1.

Fig. 1 Two dimensional projections of a digitally shifted and Matoušek [19] scrambled digital
sequence (left) and a shifted rank-1 lattice node set (right)
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Fig. 2 One-dimensional Walsh functions corresponding to k D 0; 1; 2; 3; 4, and 5

In the case of digital sequences, ˚ denotes digit-wise addition modulo 2 for
points in Œ0; 1/d and wavenumbers in K D N

d
0. The digits of z1; z2; z4; z8; : : :

correspond to elements in the generator matrices for the usual method for con-
structing digital sequences [3, Sec. 4.4]. Also, hk; xi is one half of an `2 inner
product of the digits of k and x modulo 2, implying that hk; xi 2 f0; 1=2g. The
e2�

p�1hk;�i D .�1/2hk;�i are multivariate Walsh functions (see Fig. 2).
In the case of rank-1 lattice node sequences, ˚ denotes addition modulo 1 for

points in Œ0; 1/d and ordinary addition for wavenumbers in K D Z
d . Moreover,

hk; xi D kTx mod 1. The e2�
p�1hk;�i are multivariate complex exponential func-

tions.
The dual set corresponding to the first n D 2m unshifted points, fz0; : : : ; z2m�1g,

is denoted Km and defined as

K0 WD K; Km WD fk 2 K W hk; z2`i D 0 for all ` D 0; : : : ;m � 1g; m 2 N:

The dual set satisfies

1

2m

2m�1X

iD0
e2�

p�1hk;zii D
(
1; k 2 Km;

0; otherwise:

The discrete Fourier transform of a function f using n D 2m data is denoted Qfm
and defined as

Qfm.k/ WD 1

2m

2m�1X

iD0
f .xi/e

�2�p�1hk;xii

D Of .k/C
X

l2Kmnf0g
Of .k˚ l/e2�

p�1hl;
i; (2)
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after applying some of the properties alluded to above. This last expression
illustrates how the discrete Fourier coefficient Qfm.k/ differs from its true counterpart,
Of .k/, by the aliasing terms, which involve the other wavenumbers in the coset
k˚Km. As m increases, wavenumbers leave Km, and so the aliasing decreases.

The sample mean of the function data is the k D 0 discrete Fourier coefficient:

b�n D 1

2m

2m�1X

iD0
f .xi/ D Qfm.0/ D

X

l2Km

Of .l/e2�
p�1hl;
i:

Hence, an error bound for the sample mean may be expressed in terms of those
Fourier coefficients corresponding to wavenumbers in the dual set:

j� �b�nj D
ˇ
ˇ
ˇ Of .0/� Qfm.0/

ˇ
ˇ
ˇ D

ˇ̌
ˇ
ˇ
ˇ
ˇ

X

l2Kmnf0g
Of .l/e2�

p�1hl;
i
ˇ̌
ˇ
ˇ
ˇ
ˇ
�

X

l2Kmnf0g

ˇ
ˇ
ˇ Of .l/

ˇ
ˇ
ˇ : (3)

Our aim is to bound the right hand side of this cubature error bound in terms of
function data, more specifically, in terms of the discrete Fourier transform. However,
this requires that the true Fourier coefficients of the integrand do not decay too
erratically. This motivates our definition of C , the cone of integrands for which our
adaptive algorithms succeed.

To facilitate the definition of C we construct a bijective ordering of the
wavenumbers, Qk W N0 ! K satisfying Qk.0/ D 0 and

˚Qk.�C�2m/
�1
�D0 D Qk.�/˚Km

for � D 0; : : : ; 2m � 1 and m 2 N0, as described in [10, 15]. This condition implies

the crucial fact that
ˇ
ˇ̌Qfm.Qk.� C �2m//

ˇ
ˇ̌ is the same for all � 2 N0. Although there is

some arbitrariness in this ordering, it is understood that Qk.�/ generally increases in
magnitude as � tends to infinity. We adopt the shorthand notation Of� WD Of .Qk.�// and
Qfm;� WD Qfm.Qk.�//. Then, the error bound in (3) may be written as

j� �b�nj �
1X

�D1

ˇ
ˇ
ˇ Of�2m

ˇ
ˇ
ˇ : (4)

The cone of functions whose Fourier series are absolutely convergent and whose
true Fourier coefficients, Of� , decay steadily as � tends to infinity is

C D f f 2 AC.Œ0; 1/d/ WbS`;m. f / � b!.m � `/VSm. f /; ` � m;

VSm. f / � V!.m � `/S`. f /; `� � ` � mg; (5a)
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where

Sm. f / WD
2m�1X

�Db2m�1c

ˇ
ˇ
ˇ Of�
ˇ
ˇ
ˇ ; bS`;m. f / WD

2`�1X

�Db2`�1c

1X

�D1

ˇ
ˇ
ˇ Of�C�2m

ˇ
ˇ
ˇ ; (5b)

VSm. f / WDbS0;m. f /C � � � CbSm;m. f / D
1X

�D2m

ˇ
ˇ
ˇ Of�
ˇ
ˇ
ˇ ; (5c)

and where `;m 2 N0 and ` � m. The positive integer `� and the bounded functions
b!; V! W N0 ! Œ0;1/ are parameters that determine how inclusive C is and how
robust our algorithm is. Moreover, V!.m/ ! 0 as m ! 1. The default values are
provided in Sect. 4.

We now explain the definition of the cone C and the data driven cubature error
bound that we are able to derive. The argument may be outlined as follows:

1. The absolute error is bounded by the a sum of the absolute Fourier coefficients,
bS0;m as given in (4), a well-known result.

2. The sumbS0;m is assumed to be no larger than a multiple,b!.m/, of the tail sum of

the absolute Fourier coefficients, VSm. f /, by (5).
3. Also by (5), the tail sum VSm. f / is in turn no larger than a multiple, V!.r/, of a

some sum of the lower wavenumber absolute Fourier coefficients, Sm�r. f /. The
sum Sm�r. f / involves the Fourier coefficients that are r blocks from the end of
the first 2m coefficients.

4. Finally, Sm�r. f /, which involves the true Fourier coefficients may be bounded
by a multiple of the analogous sum based on the discrete Fourier coefficients,
eSm�r;m. f /, defined in (7). This is justified by definition of C in (5), which limits
the effects of aliasing.

For illustration we use the functions depicted in Fig. 3. The one on the left
lies inside C because its Fourier coefficients decay steadily (but not necessarily
monotonically), while the one on the right lies outside C because its Fourier
coefficients decay erratically. The function lying outside C resembles the one lying
inside C but with high wavenumber noise.

The sum of the absolute values of the Fourier coefficients appearing on the right
side of error bound (4) isbS0;m. f / according to the definition in (5b). In Fig. 3, m D
11, andbS0;11. f / corresponds to the sum of jOf� j for � D 2048; 4096; 6144; : : :. Since
only n D 2m function values are available, it is impossible to estimate the Fourier
coefficients appearing inbS0;m. f / directly by discrete Fourier coefficients.

By the definition in (5c), it follows that bS0;m. f / � VSm. f /. In Fig. 3, VS11. f /
corresponds to the sum of all jOf� j with � � 2048. The definition of C assumes
thatbS0;m. f / � b!.m/VSm. f /, where b!.m/ could be chosen as 1 or could decay with
m. This is up to the user.

Still, VSm. f / involves high wave number Fourier coefficients that still cannot be
approximated by discrete Fourier coefficients. The definition of C also assumes
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Fig. 3 A typical function lying inside C and its Fourier Walsh coefficients (left) in contrast to a
function lying outside C and its Fourier Walsh coefficients (right)

that VSm. f / � V!.r/Sm�r. f / for any non-negative r � m � `�. This means that the
infinite sum of the high wavenumber coefficients, VSm. f / cannot exceed some factor,
V!.r/, times the finite sum of modest wavenumber coefficients Sm�r. f /. In Fig. 3,
r D 4, and the graph on the left shows VS11. f / 
 0:0003 and S7. f / 
 0:01. Thus,
VS11. f / is bounded above by V!.4/S7. f / for a modest value of V!.4/. Recall from
the definition in (5b) that S7. f / is the sum of the absolute values of the Fourier
coefficients corresponding to 64; : : : ; 127. In contrast, the function depicted in the
right of Fig. 3 violates the assumption that VS11. f / � V!.4/S7. f / because S7. f / 

0:00000001 in that case. Thus, the function on the right in Fig. 3 lies outside C .

Based on the above argument, it follows in general that for f 2 C ,

1X

�D1

ˇ
ˇ
ˇ Of�2m

ˇ
ˇ
ˇ DbS0;m. f / � b!.m/VSm. f / � b!.m/ V!.r/Sm�r. f /;

m � rC `� � `�: (6)

This implies an error bound in terms of the true Fourier coefficients with modest
wavenumber. In particular (6) holds for the function depicted on the left side of
Fig. 3, but not the one on the right side.
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Before going on, we explain the roles of the parameters `�; r;b!, and V!, which
have not been specified. They reflect the robustness desired by the user, and they are
meant to be kept constant rather than changed for every problem. The wavenumber
2`� is the minimum wavenumber for which we expect steady decay to set in. A
sum of absolute values of discrete Fourier coefficients in a given block is used to
bound a sum of true Fourier coefficients r or more blocks away. The functions b!
and V! are inflation factors for bounding one sum of Fourier coefficients in terms
of another. Equation (20) in Sect. 4 provides the default choices in our algorithm
implementations.

While (6) is a step forward, it involves the unknown true Fourier coefficients and
not the known discrete Fourier coefficients. We next bound the infinite sum Sm�r. f /
in terms of a finite sum of discrete Fourier coefficients:

eS`;m. f / WD
2`�1X

�Db2`�1c

ˇ
ˇQfm;�

ˇ
ˇ : (7)

By (2), the triangle inequality, and the definition of C , it follows that

eSm�r;m. f / D
2m�r�1X

�Db2m�r�1c

ˇ
ˇQfm;�

ˇ
ˇ

�
2m�r�1X

�Db2m�r�1c

�ˇ
ˇ̌ Of�
ˇ
ˇ̌�

1X

�D1

ˇ
ˇ̌ Of�C�2m

ˇ
ˇ̌


D Sm�r. f /�bSm�r;m. f /

� Sm�r. f /Œ1 �b!.r/ V!.r/�: (8)

This provides an upper bound on Sm�r. f / in terms of the data-based eSm�r;m. f /,
provided that r is large enough to satisfy b!.r/ V!.r/ < 1. Such a choice of r ensures
that the aliasing errors are modest.

Combining (6) and (8) with (4), it is shown in [10, 15] that for any f 2 C ,

j��b�nj � errn WD C.m; r/eSm�r;m. f /; m � `� C r; (9a)

where C.m; r/ WD b!.m/ V!.r/
1 �b!.r/ V!.r/ ; (9b)

provided that b!.r/ V!.r/ < 1. SinceeSm�r;m. f / depends only on the discrete Fourier
coefficients, (9) is a data-based cubature error bound. One may now increment m
(keeping r fixed) until errn is small enough, where again n D 2m.

If $. f / denotes the cost of one function value, then evaluating f .x0/; : : : ; f .x2m�1/
requires $. f /n operations. A fast transform then computes Qfm;0; : : : ; Qfm;2m�1 in an
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additional O.n log.n// D O.m2m/ operations. So computing err2m for each m costs
O
�
Œ$. f /Cm�2m

�
operations. For integrands that are cheap to evaluate the $. f / term

is negligible compared to m, but for integrands that are expensive to integrate $. f /
may be comparable to m given that m might be ten to twenty.

Using an analogous reasoning as in (8),

S`. f / D
2`�1X

�Db2`�1c

ˇ̌
ˇ Of�
ˇ̌
ˇ

�
2`�1X

�Db2`�1c

�ˇ̌Qfm;�
ˇ̌ �

1X

�D1

ˇ
ˇ̌ Of�C�2m

ˇ
ˇ̌


DeS`;m. f /�bS`;m. f /

�eS`;m. f /=Œ1Cb!.m � `/ V!.m � `/�: (10)

Therefore, from (8) and (10), for any `;m;m0 2 N such that `� � ` � min.m;m0/,
it must be the case that

eS`;m. f /

1Cb!.m � `/ V!.m � `/ � S`. f / � eS`;m0 . f /

1 �b!.m0 � `/ V!.m0 � `/ ; (11)

providedb!.m0�`/ V!.m0�`/ < 1. Equation (11) is a data-based necessary condition
for an integrand, f , to lie in C . If it is found that the right hand side of (11) is
smaller than the left hand side of (11), then f must lie outside C . In this case the
parameters defining the cone should be adjusted to expand the cone appropriately,
e.g., by increasing b! or V! by a constant.

By substituting inequality (10) in the error bound (9), we get

errn � b!.m/ V!.r/
1 �b!.r/ V!.r/ Œ1Cb!.r/ V!.r/�Sm�r. f /:

We define m�,

m� WD min

�
m � `� C r W b!.m/ V!.r/

1 �b!.r/ V!.r/ Œ1Cb!.r/ V!.r/�Sm�r. f / � "
�
; (12)

Here m� depends on the fixed parameters of the algorithm, `�; r;b!; and V!. Note
that err2m� � ".

Recall from above that at each step m in our algorithm the computational cost
is O

�
Œ$. f / C m�2m

�
. Thus, the computational cost for our adaptive algorithm to

satisfy the absolute error tolerance, as given in (1), is O.˚.m�/2m�

/, where
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˚.m�/ D Œ$. f /C 0�2�m� C � � � C Œ$. f /C m��20. Since

˚.m� C 1/� ˚.m�/ D $. f /2�m��1 C 2�m� C � � � C 20 � $. f /2�m��1 C 2;

it follows that

˚.m�/ D Œ˚.m�/� ˚.m� � 1/�C � � � C Œ˚.1/ � ˚.0/�
� Œ$. f /2�m� C 2�C � � � C Œ$. f /2�1 C 2�
� 2Œ$. f /C m��:

Thus, the cost of making our data based error bound no greater than " is bounded
above by O

�
Œ$. f /C m��2m�

�
.

The algorithm does not assume a rate of decay of the Fourier coefficients
but automatically senses the rate of decay via the discrete Fourier coefficients.
From (12) it is evident that the dependence of the computational cost with " depends
primarily on the unknown rate of decay of Sm�r. f / with m, and secondarily on the
specified rate of decay of b!.m/, since all other parameters are fixed. For example,
assuming b!.m/ D O.1/, if Of� D O.��p/, then Sm�r. f / D O.2�.p�1/m/, and the
total computational cost is O."�1=.p�1/�ı/ for all ı > 0. If b!.m/ decays with m,
then the computational cost is less.

3 General Error Criterion

The algorithms summarized above are described in [10, 15] and implemented in
the Guaranteed Automatic Integration Library (GAIL) [2] as cubSobol_g and
cubLattice_g, respectively. They satisfy the absolute error criterion (1) by
increasing n until errn defined in (9) is no greater than the absolute error tolerance, ".

There are situations requiring a more general error criterion than (1). In this
section we generalize the cubature problem to involve a p-vector of integrals, �,
which are approximated by a p-vector of sample means, b�n, using n samples, and
for which we have a p-vector of error bounds, errn, given by (9). This means that
� 2 Œb�n � errn;b�n C errn� for integrands in C . Given some

• function v W ˝ � R
p ! R,

• positive absolute error tolerance "a, and
• relative error tolerance "r < 1,

the goal is to construct an optimal approximation to v.�/, denoted Ov, which depends
on b�n and errn and satisfies the error criterion

sup
�2˝\Œb�n�errn;b�nCerrn�

tol.v.�/; Ov; "a; "r/ � 1; (13a)
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Table 1 Examples of the tolerance function in (13) and the optimal approximation to the integral
when p D 1 and v.�/ D �

Kind tol.�; Ov; "a; "r/ Optimal Ov Optimal tol.�; Ov; "a; "r/

Absolute "r D 0 .�� Ov/2
"2a

b�n err2n
"2a

Relative "a D 0 .�� Ov/2
"2r�

2

max.b�2n � err2n; 0/

b�n

err2n
"2r max.b�2n; err2n/

Hybrid .�� Ov/2
max."2a ; �

2
r�

2/

See (18) See (19)

tol.v; Ov; "a; "r/ WD .v � Ov/2
max."2a; �2r jvj2/

; ."a; "r/ 2 Œ0;1/ � Œ0; 1/ n f0g: (13b)

Our hybrid error criterion is satisfied if the actual error is no greater than either the
absolute error tolerance or the relative error tolerance times the absolute value of the
true answer. If we want to satisfy both an absolute error criterion and a relative error
criterion, then “max” in the definition of tol.�/ should be replaced by “min”. This
would require a somewhat different development than what is presented here. By
optimal we mean that the choice of Ov we prescribe yields the smallest possible left
hand side of (13a). This gives the greatest chance of satisfying the error criterion.
The dependence of O� on n is suppressed in the notation for simplicity.

The common case of estimating the integral itself, p D 1 and v.�/ D �, is
illustrated in Table 1. This includes (1) an absolute error criterion (see (1)), (2) a
relative error criterion, and (3) a hybrid error criterion that is satisfied when either
the absolute or relative error tolerances are satisfied. Note that Ov is not necessarily
equal to O�n. For a pure relative error criterion, Ov represents a shrinkage of the sample
mean towards zero. Figure 4 illustrates how the optimal choice of Ov may satisfy (13),
when Ov D O� does not.

Define v˙ as the extreme values of v.�/ for b� satisfying the given error bound:

v� D inf
�2˝\Œb�n�errn;b�nCerrn�

v.�/; vC D sup
�2˝\Œb�n�errn;b�nCerrn�

v.�/ (14)

Then the following criterion is equivalent to (13):

sup
v

�

�v0�v
C

tol.v0; Ov; "a; "r/ � 1: (15)
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Fig. 4 Example of v.�/ D � with the relative error criterion, i.e. "a D 0. For the optimal choice
of Ov, sup

�2Œb�n�errn;b�nCerrn�
tol.�; Ov; "a; "r/ < 1 < sup

�2Œb�n�errn ;b�nCerrn �
tol.�;b�n; "a; "r/

We claim that the optimal value of the estimated integral, i.e., the value of Ov
satisfying (15), is

Ov D v� max."a; "r jvCj/C vC max."a; "r jv�j/
max."a; "r jvCj/Cmax."a; "r jv�j/ (16a)

D

8
ˆ̂̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:

v� C vC
2

; "r jv˙j � "a;

vsŒ"a C v�s"rsign.vs/�

"a C "r jvsj ; "r jv�sj � "a < "r jvsj ; s 2 fC;�g;
jvCv�j Œsign.vC/C sign.v�/�

jvCj C jv�j ; "a < "r jv˙j :
(16b)

From (16a) it follows that Ov 2 Œv�; vC�. Moreover, by (16b) Ov is a shrinkage
estimator: it is either zero or has the same sign as .v�CvC/=2, and its magnitude is
no greater than j.v� C vC/=2j. Our improved GAIL algorithms cubSobol_g and
cubLattice_g, which are under development, are summarized in the following
theorem.

Theorem 1 Let our goal be the computation of v.�/, as described at the beginning
of this section. Let the tolerance function be defined as in (13b), let the extreme
possible values of v.�/ be defined as in (14), and let the approximation to v.�/ be
defined in terms of b�n and errn as in (16). Then, Ov is the optimal approximation to
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v.�/, and the tolerance function for this optimal choice is given as follows:

inf
Ov0

sup
�2˝\Œb�n�errn;b�nCerrn�

tol.v.�/; Ov0; "a; "r/

D inf
Ov0

sup
v

�

�v0�v
C

tol.v0; Ov0; "a; "r/ (17a)

D sup
v

�

�v0�v
C

tol.v0; Ov; "a; "r/ (17b)

D tol.v˙; Ov; "a; "r/ (17c)

D .vC � v�/2

Œmax."a; "r jvCj/Cmax."a; "r jv�j/�2 : (17d)

By optimal, we mean that the infimum in (17a) is satisfied by Ov as claimed in (17b).
Moreover, it is shown that the supremum in (17b) is obtained simultaneously at vC
and v�.

Our new adaptive quasi-Monte Carlo cubature algorithms increase n D 2m

by incrementing m by one until the right side of (17d) is no larger than one. The
resulting Ov then satisfies the error criterion tol.v.�/; Ov; "a; "r/ � 1.

Proof The gist of the proof is to establish the equalities in (17). Equality (17d)
follows from the definition of Ov and v˙. Equality (17c) is proven next, and (17b) is
proven after that. Equality (17a) follows from definition (14).

The derivative of tol.�; Ov; "a; "r/ is

@tol.v0; Ov; "a; "r/

@v0 D

8
ˆ̂
<

ˆ̂
:

2.v0 � Ov/
"2a

;
ˇ
ˇv0ˇˇ <

"a

"r
;

2.v0 � Ov/ Ov
"2r v

03 ;
ˇ
ˇv0ˇˇ >

"a

"r
:

The sign of this derivative is shown in Fig. 5. For either "r jv˙j � "a or "a � "r jv˙j,
the only critical point in Œv�; vC� is v0 D Ov, where the tolerance function vanishes.

Fig. 5 The sign of
@tol.v0; Ov; "a; "r/=@v

0
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Thus, the maximum value of the tolerance function always occurs at the boundaries
of the interval. For "r jv�sj � "a < "r jvsj, s 2 fC;�g, there is also a critical point
at v0 D sign.vs/"a="r. However, since vs and Ov have the same sign (see (16b)), the
partial derivative of the tolerance function with respect to v0 does not change sign at
this critical point. Hence, the maximum value of the tolerance function still occurs
at the boundaries of the interval, and (17c) is established.

To prove assertion (17b), consider Ov0, some alternative to Ov. Then

tol.v˙; Ov0; "a; "r/� tol.v˙; Ov; "a; "r/ D .v˙ � Ov0/2 � .v˙ � Ov/2
max."2a; "2r v

2˙/

D . Ov0 � Ov � 2v˙/. Ov0 � Ov/
max."2a ; "2r v

2
˙/

:

This difference is positive for theC sign if Ov0 2 .�1; Ov/ and positive for the� sign
if Ov0 2 . Ov;1/. Thus, the proof of Theorem 1 is complete. ut

We return to the special case of v.�/ D �. The following corollary interprets
Theorem 1 for this case, and the theorem that follows extends the computational
cost upper bound in (12) for these new quasi-Monte Carlo cubature algorithms.

Corollary 1 For p D 1 and v.�/ D �, it follows that v˙ D �n ˙ errn,

Ov D .b�n � errn/max."a; "r jb�n C errnj/C .b�n C errn/max."a; "r jb�n � errnj/
max."a; "r jb�n C errnj/Cmax."a; "r jb�n � errnj/ ;

(18)

sup
b�n�errn���b�nCerrn

tol.�; Ov; "a; "r/

D 4err2n
Œmax."a; "r jb�n C errnj/Cmax."a; "r jb�n � errnj/�2 : (19)

Theorem 2 For the special case described in Corollary 1, the computational cost
of obtaining an approximation to the integral � satisfying the generalized error
criterion tol.�; Ov; "a; "r/ � 1 according to the adaptive quasi-Monte Carlo cubature
algorithm described in Theorem 1 is O

�
Œ$. f /C m��2m�

�
, where

m� WD min fm � `� C r W

.1C "r/
b!.m/ V!.r/
1 �b!.r/ V!.r/ Œ1Cb!.r/ V!.r/�Sm�r. f / � max."a; "r j�j/

�
:

Proof For each n D 2m, we know that our algorithm producesb�n and errn satisfying
b�n � errn � � � b�n C errn. This implies that

max."a; "r jb�n C errnj/Cmax."a; "r jb�n � errnj/ � 2max."a; "r j�j/ � 2"rerrn:
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Thus, the right hand side of (19) must be no greater than one if

errn � max."a; "r j�j/
1C "r

:

Applying the logic that leads to (12) completes the proof. ut
The cost upper bound depends on various parameters as one would expect. The

computational cost may increase if

• "a decreases,
• "r decreases,
• j�j decreases,
• the Fourier coefficients of the integrand increase, or
• the cone C expands because `�, b!, or V! increase.

4 Numerical Implementation

The adaptive algorithm described here is included in the latest release of GAIL [2]
as cubSobol_g and cubLattice_g, coded in MATLAB. These two functions
use the Sobol’ sequences provided by MATLAB [27] and the lattice generator
exod2_base2_m20.txt from Dirk Nuyens’ website [21], respectively. Our
algorithm sets its default parameters as follows:

`� D 6; r D 4; b!.m/ D V!.m/ D 2�mC3; C.m; 4/ D 16

3
� 2�m: (20)

These choices are based on experience and are used in the examples below. A larger
`� allows the Fourier coefficients of the integrand to behave erratically over a larger
initial segment of wavenumbers. A larger r decreases the impact of aliasing in
estimating the true Fourier coefficients by their discrete analogues. Increasing `�
or r increases 2`�

Cr, the minimum number of sample points used by the algorithms.
The inputs to the algorithms are

• a black-box p-vector function f , such that � D EŒf .X/� for X � U Œ0; 1�d,
• a solution function v W Rp ! R,
• functions for computing v˙ as described in (14),
• an absolute error tolerance, "a, and
• a relative error tolerance "r.

The algorithm increases m incrementally until the right side of (17d) does not exceed
one. At this point the algorithm returns Ov as given by (16).
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Example 1 We illustrate the hybrid error criterion by estimating multivariate
normal probabilities for a distribution with mean 0 and covariance matrix†:

v.�/ D � D P Œa � X � b� D
Z

Œa;b�

e�xT†�1x=2

.2�/d=2 j†j1=2 dx: (21)

The transformation proposed by Genz [5] is used write this as an integral over the
d � 1 dimensional unit cube. As discussed in [5, 9], when a D �1, †ij D � if
i ¤ j, and †ii D 1, the exact value of (21) reduces to a 1-dimensional integral that
can be accurately estimated by a standard quadrature rule. This value is taken to be
the true �.

We perform 1000 adaptive integrations: 500 using our cubature rule based
on randomly scrambled and digitally shifted Sobol’ sequences (cubSobol_g)
and 500 using our cubature rule based on randomly shifted rank-1 lattice node
sequences, (cubLattice_g). Default parameters are used. For each case we
choose � � U Œ0; 1�, dimension d D b500Dc with D � U Œ0; 1�, and b �
U Œ0;

p
d�d. The dependence of b on the dimension of the problem ensures that the

estimated probabilities are of the same order of magnitude for all d. Otherwise,
the probabilities being estimated would decrease substantially as the dimension
increases. The execution time and tol.�; Ov; 0:01; 0:05/ are shown in Fig. 6.

Satisfying the error criterion is equivalent to having tol.�; Ov; 0:01; 0:05/ � 1,
which happens in every case. A very small value of tol.�; Ov; 0:01; 0:05/ means
that the approximation is much more accurate than required, which may be due
to coincidence or due to the minimum sample size used, n D 210. In Fig. 6
the error tolerances are fixed and do not affect the computation time. However,
the computation time does depend on the dimension, d, since higher dimensional

Success Success

Fig. 6 On the left, 500 integration results using scrambled and digitally shifted Sobol’ sequences,
cubSobol_g. On the right, tolerance values and computation times of integrating 500 multivari-
ate normal probabilities using randomly shifted rank-1 lattice node sequences, cubLattice_g.
If an integrand is in C , its dot must lie to the left of the vertical dot-dashed line denoting
tol.�; Ov; 0:01; 0:05/ D 1. The solid and dashed curves represent the empirical distributions of
tolerance values and times respectively
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problems tend to be harder to solve. The performances of cubSobol_g and
cubLattice_g are similar.

Example 2 Sobol’ indices [25, 26], which arise in uncertainty quantification,
depend on more than one integral. Suppose that one is interested in how an output,
Y WD g.X/ depends on the input X � U Œ0; 1�d, and g has a complicated or unknown
structure. For example, g might be the output of a computer simulation. For any
coordinate indexed by j D 1; : : : ; d, the normalized closed first-order Sobol’ index
for coordinate j, commonly denoted as 	2j =�

2, involves three integrals:

v.�/ WD �1

�2 � �23
; �1 WD

Z

Œ0;1/2d
Œg.xj W x0�j/� g.x0/�g.x/ dx dx0; (22a)

�2 WD
Z

Œ0;1/d
g.x/2 dx; �3 WD

Z

Œ0;1/d
g.x/ dx: (22b)

Here, .xj W x0�j/ 2 Œ0; 1/d denotes a point whose rth coordinate is xr if r D j, and
x0

r otherwise. By definition, the values of these normalized indices must lie between
0 and 1, and both the numerator and denominator in the expression for v.�/ are
non-negative. Therefore, the domain of the function v is ˝ WD f� 2 Œ0;1/2 � R W
0 � �1 � �2 � �23g. Thus, given b�n and errn, the values of v˙ defined in (14) are

v˙ D

8
ˆ̂
<̂

ˆ̂
:̂

0; �n;1 ˙ errn;1 � 0;
1; �n;1 ˙ errn;1 > max

�
0; �n;2 � errn;2 � .�n;3 ˙ errn;3/

2
�
;

�n;1 ˙ errn;1

�n;2 � errn;2 � .�n;3 ˙ errn;3/2
; otherwise:

(23)

We estimate the first-order Sobol’ indices of the test function in Bratley et al.
[1] using randomly scrambled and digitally shifted Sobol’ sequences and the same
algorithm parameters as in Example 1 for an absolute error tolerance of 0:005:

g.X/ D
6X

iD1
.�1/i

iY

jD1
Xj:

j 1 2 3 4 5 6

n 8 192 4 096 1 024 1 024 1 024 1 024

v 0:6529 0:1791 0:0370 0:0133 0:0015 0:0015

Ov 0:6554 0:1781 0:0409 0:0111 0:0012 0:0013
v.b�n/ 0:6660 0:1734 0:0408 0:0111 0:0012 0:0013

tol.v; Ov; 0:005; 0/ 0:2540 0:0461 0:6008 0:1962 0:0033 0:0020
tol.v; v.b�n/; 0:005; 0/ 6:9343 1:2952 0:5760 0:2006 0:0034 0:0021

The value of n chosen by our adaptive algorithm and the actual value of the tolerance
function, tol.v; Ov; 0:005; 0/, are shown. Since none of those tolerance values exceed
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one, our algorithm correctly provides Ov for each coordinate j. In the fifth row above,
we replaced our optimal Ov defined in (16) by v.b�n/ for the same n as returned
by our algorithm. Interestingly, this approximation to the Sobol’ indices, while
perhaps intuitive, does not satisfy the absolute error criterion because sometimes
tol.v; v.b�n/; 0:005; 0/ exceeds one. This reflects how v.b�n/ differs from v much
more than Ov does. An extensive study on how to estimate first-order and total effect
Sobol’ indices using the automatic quasi-Monte Carlo cubature is provided in [14].

5 Control Variates

The results in this section mainly follow the work of Da Li [16]. Control variates
are commonly used to improve the efficiency of IID Monte Carlo integration. If one
chooses a vector of functions g W Œ0; 1/d ! R

q for which �g WD
R
Œ0;1/d

g.x/ dx is
known, then

� WD
Z

Œ0;1/d
f .x/ dx D

Z

Œ0;1/d
hˇ.x/ dx; where hˇ.x/ WD f .x/C ˇT.�g � g.x//;

for any choice of ˇ. The goal is to choose an optimal ˇ to make

b�ˇ;n WD 1

n

n�1X

iD0
hˇ.xi/

sufficiently close to � with the least expense, n, possible.
If x0; x1; : : : are IID U Œ0; 1/d, then b�ˇ;n is an unbiased estimator for � for any

choice of ˇ, and the variance of the control variates estimator may be expressed as

var.b�ˇ;n/ D var.hˇ.x0//
n

D 1

n

1X

�D1

ˇ̌
ˇ Of� � ˇT Og�

ˇ̌
ˇ
2

;

where Og� are the Fourier coefficients of g. Since ˇT�g is constant, it does not enter
into the calculation of the variance. The optimal choice of ˇ, which minimizes
var.b�ˇ;n/, is

ˇMC D
cov

�
f .x0/; g.x0/

�

var
�
g.x0/

� : (24)

Although ˇMC cannot be computed exactly, it may be well approximated in terms
of sample estimates of the quantities on the right hand side.
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However, if x0; x1; : : : are the points described in Sect. 2, then the error depends
on only some of the Fourier coefficients, and (4) and (9) lead to

ˇ̌
��b�ˇ;n

ˇ̌ �
1X

�D1

ˇ
ˇ̌ Of�2m � ˇT Og�2m

ˇ
ˇ̌ � b!.m/ V!.r/

1 �b!.r/ V!.r/
eSm�r;m. f � ˇTg/;

provided f � ˇTg 2 C : (25)

Assuming that f � ˇTg 2 C for all ˇ, it makes sense to choose ˇ to minimize the
rightmost term. There seems to be some advantage to choose ˇ based oneSm�r;m. f �
ˇTg/; : : : ;eSm;m. f � ˇTg/. Our experience suggests that this strategy makes ˇ less
dependent on the fluctuations of the discrete Fourier coefficients over a small range
of wave numbers. In summary,

ˇqMC D argmin
b

rX

tD0
eSm�t;m. f � bTg/ D argmin

b

2m�1X

�Db2m�r�1c

ˇ
ˇQfm;� � bT Qgm;�

ˇ
ˇ :

As already noted in [12], the optimal control variate coefficients for IID and low
discrepancy sampling are generally different. Whereas ˇMC might be strongly
influenced by low wavenumber Fourier coefficients of the integrand, ˇqMC depends
on rather high wavenumber Fourier coefficients.

Minimizing the sum of absolute values is computationally more time consuming
than minimizing the sum of squares. Thus, in practice we choose ˇ to be

ěqMC D argmin
b

2m�1X

�Db2m�r�1c

ˇ
ˇQfm;� � bT Qgm;�

ˇ
ˇ2 :

This choice performs well in practice. Moreover, we often find that there is little
advantage to updating ěqMC for each m.

Example 3 Control variates may be used to expedite the pricing of an exotic option
when one can identify a similar option whose price is known exactly. This often
happens with geometric Brownian motion asset price models. The geometric mean
Asian payoff is a good control variate for estimating the price of an arithmetic mean
Asian option. The two payoffs are,

f .x/ D e�rT max

0

@1
d

dX

jD1
Stj.x/ � K; 0

1

A D arithmetic mean Asian call;

g.x/ D e�rT max

0

B
@

2

4
dY

jD1
Stj.x/

3

5

1=d

� K; 0

1

C
A D geometric mean Asian call;
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Stj.x/ D S0e.r��2=2/tjC�Zj.x/ D stock price at time tj;
0

B
@

Z1.x/
:::

Zd.x/

1

C
A D A

0

B
@

˚�1.x1/
:::

˚�1.xd/

1

C
A ; AAT D C WD

�
min.ti; tj/

	d

i;jD1:

Here C is the covariance matrix of the values of a Brownian motion at the discrete
times t1; : : : ; td. We choose A via a principal component analysis (singular value)
decomposition of C as this tends to provide quicker convergence to the answer than
other choices of A.

The option parameters for this example are S0 D 100, r D 2%, � D 50%,
K D 100, and T D 1. We employ weekly monitoring, so d D 52, and tj D j=52,
where the option price is about $11:97. Parameter ěqMC is estimated at the first
iteration of the algorithm when m D 10, but not updated for each m. For "a D 0:01
and "r D 0, cubSobol_g without control variates requires 16;384 points while
only 4096 when using control variates.

Figure 7 shows the Fourier Walsh coefficients of the original payoff, f , and the
function integrated using control variates, hěqMC

D f C ěqMC.�g � g/, with given
ě

qMC D 1:06, a typical value of ˇ chosen by our algorithm. The squares correspond
to the coefficients in the sumseS6;10. f / andeS6;10.hěqMC

/, respectively, which are used
to bound the Sobol’ cubature error. The circles are the first coefficients from the
dual net that appear in error bound (4). From this figure we can appreciate how
control variates reduces the magnitude of both the squares and the circles. For this
example, the control variate coefficient estimated via (24) and sample quantities is
ˇMC D 1:09, which is quite similar to ěqMC.

Fig. 7 Fourier Walsh coefficients for f .x/ on the left and h1:06.x/ on the right. The value ěqMC

effectively decreased the size of the coefficients involved in both the data-based error bound (9)
and the error bound (4)
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6 Discussion and Conclusion

Ian Sloan has made substantial contributions to the understanding and practical
application of quasi-Monte Carlo cubature. One challenge is how to choose the
parameters that define these cubatures in commonly encountered situations where
not much is known about the integrand. These parameters include

(a) the generators of the sequences themselves,
(b) the sample size, n,
(c) the choice of importance sampling distributions,
(d) the control variate coefficients [12],
(e) the parameters defining multilevel (quasi-)Monte Carlo methods [6], and
(f) the parameters defining the multivariate decomposition method [28].

The rules for choosing these parameters should work well in practice, but not
be simply heuristic as they are for some of the adaptive algorithms highlighted in
the introduction. There should be a theoretical justification. Item (a) has received
much attention. This article has addressed items (b) and (d). We realize that the
question of choosing n is now replaced by the question of choosing the parameters
defining the cone of integrands, C . However, we have made progress because when
our adaptive algorithms fail, we can pinpoint the cause. We would encourage further
investigations into the best way to choose n. We also hope for more satisfying
answers for the other items on the list in the future.

As demonstrated in Sect. 3, it is now possible to set relative error criteria or
hybrid error criteria. We also now know how to accurately estimate a function of
several means. In addition to the problem of Sobol’ indices, this problem may arise
in Bayesian inference, where the posterior mean of a parameter is the quotient of
two integrals.

As already pointed out some years ago in [12], the choice of control variate for
IID sampling is not necessarily the right choice for low discrepancy sampling. Here
in Sect. 5, we have identified a natural way to determine a good control variate
coefficient for digital sequence or lattice sequence sampling.
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Carlo and Quasi-Monte Carlo Methods 2010. Springer Proceedings in Mathematics and
Statistics, vol. 23, pp. 557–572. Springer, Berlin (2012)

19. Matoušek, J.: On the L2-discrepancy for anchored boxes. J. Complexity 14, 527–556 (1998)
20. Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. CBMS-NSF

Regional Conference Series in Applied Mathematics. SIAM, Philadelphia (1992)
21. Nuyens, D.: https://people.cs.kuleuven.be/~dirk.nuyens/qmc-generators/genvecs/exod2_

base2_m20.txt
22. Owen, A.B.: Monte Carlo, quasi-Monte Carlo, and randomized quasi-Monte Carlo. In:

Niederreiter H., Spanier J. (eds.) Monte Carlo, Quasi-Monte Carlo, and Randomized Quasi-
Monte Carlo, pp. 86–97. Springer, Berlin (2000)

23. Owen, A.B.: On the Warnock-Halton quasi-standard error. Monte Carlo Methods Appl. 12,
47–54 (2006)

24. Sloan, I.H., Joe, S.: Lattice Methods for Multiple Integration. Oxford University Press, Oxford
(1994)

25. Sobol’, I.M.: On sensitivity estimation for nonlinear mathematical models. Matem. Mod. 2(1),
112–118 (1990)

26. Sobol’, I.M.: Global sensitivity indices for nonlinear mathematical models and their Monte
Carlo estimates. Math. Comput. Simul. 55(1–3), 271–280 (2001)

27. The MathWorks, Inc.: MATLAB 9.2. The MathWorks, Inc., Natick, MA (2017)
28. Wasilkowski, G.W.: On tractability of linear tensor product problems for 1-variate classes of

functions. J. Complex. 29, 351–369 (2013)

https://people.cs.kuleuven.be/~dirk.nuyens/qmc-generators/genvecs/exod2_base2_m20.txt
https://people.cs.kuleuven.be/~dirk.nuyens/qmc-generators/genvecs/exod2_base2_m20.txt


Upwind Hybrid Spectral Difference
Methods for Steady-State Navier–Stokes
Equations

Youngmok Jeon and Dongwoo Sheen

Dedicated to Ian H. Sloan on the occasion of his 80th birthday.

Abstract We propose an upwind hybrid spectral difference method for the steady-
state Navier–Stokes equations. The (upwind) hybrid spectral difference method
is based on a hybridization as follows: (1) an (upwind) spectral finite difference
approximation of the Navier–Stokes equations within cells (the cell finite difference)
and (2) an interface finite difference on edges of cells. The interface finite difference
approximates continuity of normal stress on cell interfaces. The main advantages
of this new approach are three folds: (1) they can be applied to non-uniform grids,
retaining the order of convergence, (2) they are stable without using a staggered
grid and (3) the schemes have an embedded static condensation property, hence,
there is a big reduction in degrees of freedom in resulting discrete systems. The
inf-sup condition is proved. Various numerical examples including the driven cavity
problem with the Reynolds numbers, 5000–20,000, are presented.

1 Introduction

Although the finite difference method (FDM) is simple to implement and it can
solve many physical problems efficiently [9, 22], several weak points are known
compared to the finite element method and the finite volume method. For instance,
some difficulties arise in the application of FDM in dealing with problems with
complicated geometries, which may be overcome somehow by introducing proper
geometric transforms [9, 25]. Also, uniform grids are usually necessary to have
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optimal-order convergence. In particular, an application of standard FDM to the
Stokes/Navier–Stokes equations using a non-staggered grid causes instability of
checker-board pattern [22, 27], which may be resolved by introducing a staggered
grid. Usually, using a staggered grid requires more programming efforts and treating
boundary conditions is not a friendly task. In two dimension, one may avoid using
a staggered grid simply by adopting the stream–vorticity formulation.

The aim of the current paper is to relax some of the above mentioned difficulties
among the existing FDMs. We introduce a hybrid spectral difference (HSD) method
and its upwind version. The hybrid spectral difference method is a hybridization,
which is well-known in the community of domain decomposition methods, of the
following two types of finite difference approximations; a cell finite difference (cell
FD) and an interface finite difference (interface FD). The cell finite difference
solves a local cell problem at interior nodes of each cell. The interface finite
difference imposes the normal stress continuity at nodes on inter-cell boundaries.
Therefore, the HSDs have a better flux conservation property, which is important to
have a physically relevant solution for transport problems. When applying the cell
FD for each cell the ideas in the ŒQm�

2 �Qm�2 spectral element [4] are employed.
The spectral difference (SD) methods are developed mainly for conservation

laws, and they are very simple to implement and can be defined on both the triangu-
lar and rectangular meshes: for instance, see [2, 26, 28] and the references therein. In
[10] an entropy stable finite difference method is introduced for conservation laws,
where the spatial finite difference scheme within a cell is constructed to satisfy the
summation-by-part (SBP) property. The SBP condition is similar to the discrete
divergence theorem (Theorem 1) in this paper.

By using the two dimensional interpolation as in the SD method our HSD
method may be also defined on a triangular mesh as well. However, the HSD on
a rectangular mesh also can manage a complicated geometry somewhat well (see
[17]), in which boundary cells are modified to contain a portion of the curved
boundary. In comparison with the HDG methods the HSD can be understood as
the finite difference version of the HDG method. The HSD is easier to implement
than the HDG since it barely involves numerical integration. Moreover, pinpoint
application of an upwind scheme is possible in the upwind HSD, while the upwind
scheme must be applied in an integration sense in the HDG.

Our approach has the following several notable features. First of all, the HSD and
upwind HSD are stable without resorting to a staggered grid for flow problems. Sec-
ondly, both schemes do not lose convergence order even on non-uniform grids [14].
A comparison between the HSD and its upwind version can be given as follows.
The former achieves a higher order of convergence rate than the latter whenever
convection does not dominate diffusion significantly. However, the upwind method
is favorable if convection dominates. Numerical results will be shown to confirm
these facts. Thirdly, our methods induce a natural variational formulation, which
makes easy related numerical analysis. In [14] the HSD is introduced for the Poisson
and Stokes equations and some elementary numerical analysis is provided. In [17]
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numerical analysis for HSDs of a diffusion equation is provided by introducing
a discrete divergence theorem. Finally, a static condensation property is naturally
embedded, hence, the degrees of freedom are reduced significantly for high-order
difference methods.

The paper is organized as follows. In Sect. 2 the hybrid spectral difference
method for the Oseen equations and its upwind version are presented. The steady-
state Navier–Stokes equations are then to be solved by repeating the Oseen
procedure. In Sect. 3 the inf-sup condition is proved, which is an essential part
for stability of numerical methods. In Sect. 4 some numerical results illuminating
convergence properties are presented and several those for a driven-cavity problem
with Reynolds numbers ranging from 5000 to 20,000 on a 40 � 40 geometric
grid. The streamline pictures show the primary and secondary vortices. Numerical
results are also compared with well-known benchmark results in [8, 11]. Concluding
remarks are briefly given in the final section.

2 The Hybrid Difference Methods

For a rectangle R denote by Qm.R/ the space of polynomials in R of degree less than
or equal to m in each variable. Wherever no confusion arises, the domain will be
circumvented so that Qm will mean the space of polynomials of degree less than or
equal to m in each variable. The notation T .Qm/ represents an .mC 1/ � .mC 1/
mesh on which a polynomial p 2 Qm can be uniquely determined.

One of the main objects of this paper is to introduce an inf-sup stable upwind
hybrid spectral difference method on Qm mesh for the Oseen equations. The velocity
fields are approximated at the Qm points while the pressure is approximated at the
interior Qm�2 points. For this reason we will use the notation, T .Qm/ � T .Qm�2/
mesh as well for the T .Qm/mesh. In order to stabilize our scheme we introduce an
upwind version by applying the upwind finite difference to the convection term.

For the sake of simplicity, let the domain ˝ be a simply connected domain
of which boundary is composed of lines that are parallel to axes. However, a
generalization to domains with curved boundary can be treated with adequate
modifications [17]. For a shape regular rectangular partition Th the skeleton Kh of
Th is composed of all edges. In each cell of Th the nodes are located as in Figs. 1
and 2. Let Nh.˝/,Nh.� / andNh.Kh/ denote the set of all nodes in˝ and on� and
Kh, respectively. Let R denote a typical element in Th; by h1 and h2 its horizontal
and vertical sizes, and by �jk and �jk D �j�k; (j; k D 1; � � � ;m � 1) the Gauss–
(Legendre) points and weights in R: For each cell R, Nh.R/ and Nh.@R/ correspond
to the cell versions of Nh.˝/ and Nh.� /, respectively.
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h1

R1

h2

R2

h3 h4 h5 h6 h7

h8

R3

h9

h10 h11 h12

h13

Fig. 1 T .Q2/� T .Q0/ meshes: jR1j D h1 � k1, jR2j D h2 � k1, jR3j D h1 � k2

h01 h11 h21 h31 h41

h02 h12 h22 h32 h42

h03 h13 h23 h33 h43

h14 h24 h34

h10 h20 h30
h00 h40

h04 h44

Fig. 2 A T .Q4/ � T .Q2/ mesh: jRj D h1 � h2. The interior nodes are used for both u and p
while those on the skeleton are only for u. The point values at the four vertices f�jk W i; j D 0; 4g
are not used in computation

2.1 Hybridization

We begin with the following steady-state Navier–Stokes equations:

� 1
Re
�uC u � ruCrp D f in ˝;

r � u D 0 in ˝;

u D 0 on �;
Z

˝

p dx D 0;
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which can be solved by the following Oseen iteration:

� 1

Re
�u.nC1/ C u.n/ � ru.nC1/ Crp.nC1/ D f in ˝; (1)

r � u.nC1/ D 0 in ˝; (2)

u.nC1/ D 0 on �; (3)
Z

˝

p.nC1/ dx D 0: (4)

Let .Th/0<h<1 be a quasi-uniform family of rectangular triangulations such that
the intersection of the closure of two rectangles is an edge or a vertex if it is not an
empty set. The standard hybridization procedure is then to restrict Eqs. (1)–(4) to
each rectangle with a suitable interface condition on its inter-element boundary. We
thus have, for R;R0 2 Th;

� 1

Re
�u.nC1/ C u.n/ � ru.nC1/ Crp.nC1/ D f in R; (5)

r � u.nC1/ D 0 in R; (6)
��
� 1

Re
@�u.nC1/ C .� � u.n//u.nC1/ C p.nC1/�


D 0 on @R \ @R0; (7)

u.nC1/ D 0 on @R \ @˝; (8)
Z

˝

p.nC1/ dx D 0: (9)

Here, @�u D � � ru, and � and �0 are the outward unit normal vectors to R and R0,
respectively, so that � D ��0 on e D @R\ @R0. The notation ŒŒ � ��e denotes the jump
across e:

As the values of u from one side to the other side of an interface agree at the
nodes on the cell interfaces, the stress continuity condition (7) can be simplified as

��
� 1

Re
@�u.nC1/ C p.nC1/�


D 0 on @R \ @R0: (10)

The jump term in (10) will be designated by J .u.nC1/; p.nC1// from now on.
The hybrid spectral difference method (HSD) of the Oseen equations is based on

the FD approximations of Eqs. (5)–(9).

2.2 1-d Finite Difference Formulas

We derive finite difference formulas in terms of degree of precision.
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Let m � 1 be a fixed integer and consider an increasing sequence of nodes a D
x0 < x1 < � � � < xm�1 < xm D b with h D b � a: For � D 1; � � � ;m; consider the

problem to find
�

w.�/jk

	m

j;kD0 such that

1

h�

mX

jD0
.xj/

`w.�/jk D
d�.x`/

dx�
jxDxk .`; k D 0; 1; � � � ;m/: (11)

For fixed � and k, Eq. (11) has a unique solution
�

w.�/jk

	m

jD0 as the system (11) forms

a Vandermonde matrix system.

Definition 1 Based on
�

w.�/jk

	m

j;kD0 as in (11), a class of general �th-order finite

difference operators .Dh
x/
�; � D 1; 2; � � � ;m; is defined as follows:

.Dh
x/
�f .xk/ D 1

h�

mX

jD0
f .xj/w

.�/
jk ; 0 � k � m; 8f 2 CmC1Œa; b�:

By the Taylor theorem, the following approximation property is immediate:

ˇ̌
ˇ
ˇ.D

h
x/
�f .xk/ � d�

dx�
f .xk/

ˇ̌
ˇ
ˇ . hm��C1k f .mC1/kL1 Œa;b� 8k D 0; 1; � � � ;m:

Here and in what follows, the notation “L . R” means that there exists a constant
c > 0, independent of h, such that L � cR:

The upwind finite differences are obtained by using the m-nodes out of m C 1
nodes in the upwind direction for approximation of first derivative ˛Dxu, where ˛
is a convection coefficient.

Dh;UP;C
x f .xk/ D 1

h

m�1X

jD0
w.1;C/j;k f .xj/; 1 � k � m � 1 for ˛.xk/ > 0;

Dh;UP;�
x f .xk/ D 1

h

mX

jD1
w.1;�/j;k f .xj/; 1 � k � m � 1 for ˛.xk/ < 0:

Then,

jDx f .xk/ �Dh;UP;˙
x f .xk/j . hm�1k f .m/kL1 Œa;b�; 1 � k � m � 1:

The notations Dh;UP;C
x or Dh;UP;�

x are simplified as Dh;UP
x as long as there can be no

misunderstanding.
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Let us consider the extrapolationsE L
h and E R

h such that E L
h . f /.xj/ D E R

h . f /.xj/ D
f .xj/ for 1 � j � m � 1, and

E L
h . f /.x0/ D

m�1X

jD1
wL

j f .xj/; E R
h . f /.xm/ D

m�1X

jD1
wR

j f .xj/: (12)

Such wL
j ;w

R
j ; j D 1; � � � ;m� 1; exist given the nodes x0 < x1 < � � � < xm. Designate

by Eh either E L
h or E R

h , depending on the direction of extension. Then,

jEh. f /.x�/ � f .x�/j . hm�1k f .m�1/kL1 Œa;b�; x� D x0; xm:

The above one dimensional finite difference formula can be naturally extended
to approximate partial derivatives in the two dimension as follows:

�hu D Dh
xxuC Dh

yyu; rh � .u1; u2/ D Dh
xu1 C Dh

yu2

rhu D .Dh
xu;Dh

yu/T ; rh;UPu D .Dh;UP
x u;Dh;UP

y u/T :

Here, Dh
xx D .Dh

x/
2 and Dh

yy D .Dh
y/
2.

2.3 The ŒQ22 � Q0 HSD

To illustrate simplicity of the HSD in terms of implementation issue we consider the
following case as illustrated in Fig. 1, where the pressure is defined only on nodes
�4, �6 and �11. Therefore, the extension Eh.p/ (see (12) and the paragraph containing
it, for the definition Eh) is necessary to define the value of p at cell interface nodes.
For the ŒQ2�

2 � Q0 HSD, Eh.p/ is constant on each cell, and rEh.p/ D 0 on each
cell. For the sake of simplicity, denoting by u D .u1; u2/;U D .U1;U2/, and p;
respectively, the variables u.nC1/, u.n/; and p.nC1/ in Eqs. (5)–(9) and choosing R D
R1 and the nodes as described in Fig. 1, we have the cell finite difference and the
interface finite difference as follows:

� 1
Re
�hu.�4/C U � rhu.�4/

D � 1
Re

�
u.�5/� 2u.�4/C u.�3/

.h1=2/2
C u.�8/ � 2u.�4/C u.�1/

.k1=2/2



CU1.�4/
u.�5/� u.�3/

h1
C U2.�4/

u.�8/ � u.�1/
k1

D f.�4/;

rh � u.�4/ D u1.�5/� u1.�3/

h1
C u2.�8/ � u2.�1/

k1
D 0;
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and

J .u; p/�5 D

8
ˆ̂̂
<̂

ˆ̂
ˆ̂:

1
Re

3u1.�5/�4u1.�4/Cu1.�3/
h1

C 1
Re
3u1.�5/�4u1.�6/Cu1.�7/

h2

�p.�4/C p.�6/ D 0;

1
Re

3u2.�5/�4u2.�4/Cu2.�3/
h1

C 1
Re
3u2.�5/�4u2.�6/Cu2.�7/

h2
D 0;

and

J .u; p/�8 D

8
ˆ̂
ˆ̂<

ˆ̂
ˆ̂:

1
Re
3u1.�8/�4u1.�4/Cu1.�1/

k1
C 1

Re
3u1.�8/�4u1.�11/Cu1.�13/

k2
D 0;

1
Re
3u2.�8/�4u2.�4/Cu2.�1/

k1
C 1

Re
3u2.�8/�4u2.�11/Cu2. p13/

k2

�p.�4/C p.�11/ D 0:
The HSD is the finite difference version of the hybridized finite element method

[7, 14, 15]. The main advantage of the HSD is that it does not involve any numerical
integration except for approximation of

R
˝

pdx D 0. Secondly, the finite differences
are of one dimensional nature (they are not related to two or three dimensional
polynomial interpolation). Therefore, we can handle the boundary data exactly even
on a domain with a curved boundary by extending the line of derivative evaluation
up to the given curved boundary and taking the intersection as a nodal point [17].

2.4 The ŒQm
2 � Qm�2 Upwind HSD

Higher order methods can be obtained by considering the cell configuration Fig. 2,
where T Qm � T .Qm�2/ nodes with m D 4 are illustrated for R 2 Th, the
configuration of which looks similar to the spectral element method for fluid
problems in [4]. As in the previous subsection the pressure is defined only on the
interior nodes. To obtain values of p on the skeleton nodes we use the extrapolation
Eh.p/. Here, the interior nodes are Gaussian points and they are projected to
boundaries to obtain the skeleton nodes. Therefore, those interior and skeleton nodes
does not constitute the Gauss-Lobatto nodes. The hybrid spectral difference method
is to find the nodal values of .uh; ph/ that satisfies the cell FD:

� 1

Re
�huh.�jk/C U.�jk/ � rhuh.�jk/Crhph.�jk/ D f.�ij/; (13)

rh � uh.�ij/ D 0

for each R and 1 � i; j � m � 1, and the interface FD:
��
� 1

Re
@h
�uh C �Eh. ph/



�

D 0; � 2 Nh.Kh/; (14)
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with Qh.ph/ D 0, where Qh.p/ 

R
˝ p dx is a composite Gaussian quadrature

approximation.
One of the main objects of this paper is to introduce an upwind HSD. To handle

flows with a very high Reynolds number, it is necessary to introduce an upwind
scheme. Our upwind HSD is obtained by applying the upwind finite difference to
the convection term in (13) so that

� 1

Re
�huh.�ij/CU.�ij/ � rh;UPuh.�ij/Crhph.�ij/ D f.�ij/; (15)

rh � uh.�ij/ D 0 (16)

for each R and 1 � i; j � m � 1, with the interface FD (14).
The major differences between the traditional spectral difference schemes [20,

24, 29] and ours are as follows. Most existing schemes are basically defined on
staggered grids such that the solution and flux variables are approximated at the
.m � 1/ Gauss–Legendre or Chebyshev points and the .m C 1/ Gauss–Lobatto
points, respectively. The use of staggered grids is essential to guarantee the stability
of their spectral difference scheme. Staggered grids based on Gauss–Chebyshev
points have been also introduced [20] to approximate compressible Navier–Stokes
equations. This scheme is conservative which extends the Euler method studied by
Kopriva and Kolias [19, 21]. The approximation of the velocity is approximated
on staggered grids componentwisely in a different setting [3]. A stable spectral
collocation method has been introduced by Carpenter et al. [6]. The conservative
staggered-grid method, which enforces weakly the continuity of the solution and
the viscous fluxes at subdomain interfaces, has advantages over methods based on
Lobatto grids, e.g., [13, 20].

However, our method adopts a single grid based on .m � 1/ Gauss-Legendre
points; the velocity fields are approximated at these .m� 1/ Gauss-Legendre points
plus the two projected points on the two cell boundaries in each direction, say -1 and
1 on the interval Œ�1; 1�; while the pressure variable is approximated at the .m � 1/
interior Gauss-Legendre points only.

2.5 A Variational Formulation

Let C.˝/ be the space of continuous functions in ˝ and introduce an equivalence
relation u � v for u; v 2 C.˝/ if u.�/ D v.�/ for all � 2 Nh.˝/ [ Nh.� /.
Denote by Ch.˝/ the space of its equivalent classes. Similarly, set˘R2ThC.R/ as the
space of piecewise continuous functions and introduce another equivalence relation
u � v on ˘R2ThC.R/ if u.�/ D v.�/ for all � 2 Nh.R/ nNh.@R/ for all R 2 Th;

and denote this equivalent class by Lh.˝/: Next, define a discrete inner product on
Ch.˝/[ Lh.˝/ as follows:

.u; v/h D
X

R2Th

.u; v/R;h; .u; v/R;h WD jRj
X

1�j;k�m�1
�jku.�jk/v.�jk/: (17)
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where jRj represents the area of R: Denote by Lh.Kh/ the space of piecewise
continuous functions ˘e�@R;R2ThC.e/ whose equivalence class is defined as u � v

on Lh.Kh/ if u.�/ D v.�/ for all � 2 Nh.Kh/: A discrete inner product on Lh.Kh/

is then defined as

hu; vih D
X

R2Th

hu; vi@R;h; hu; vi@R;h WD
X

e�@R

hu; vie;h; (18)

hu; vie;h WD jej
m�1X

kD1
�ku.�k/v.�k/;

where �j; j D 1; � � � ;m � 1; are the Gaussian nodes associated with weights �j; j D
1; � � � ;m� 1 on e. It is worth to note that the Gaussian quadrature has the degree of
precision .2m � 3/.

The (upwind) hybrid spectral difference method ((15), (16) and (14)) can be
rewritten in the following variational form: Find .uh; ph/ 2 ŒCh.˝/�2 � Lh.˝/ that
satisfies

Ah.uh; phI v; q/ D .f; v/h; .v; q/ 2 ŒCh.˝/�2 � Lh.˝/; (19)

where

Ah.uh; phI v; q/ D .� 1
Re
�huh CU � rh;UPuh Crhph; v/h (20)

C.rh � uh; q/h C h 1
Re
@h
�uh � �Eh. ph/; vi

h
:

Remark 1 With the cell configuration in Fig. 2 let us augment the boundary node
set by including the four vertices of R ( say, VR D f�00; �0m; �m0; �mmg with m D 4).
For a rectangular subdivision Th let Vh be the set of all vertices. Let eCh.˝/ be the
set of equivalence classes on C.˝/, where the equivalence relation is given as u � v
if u.�/ D v.�/ for � 2 Nh.˝/[Nh.� / [ Vh. Then,eCh.˝/ is an equivalent space
to Qm.˝/, and Lh.˝/ corresponds to Qm�2.Th/, respectively. Here,

Qm.˝/ D fu 2 C.˝/ W ujR 2 Qm.R/g; Qm�2.Th/ D f p 2 L2.˝/ W pjR 2 Qm�2.R/g:

3 The inf-sup Condition

We begin with proving the discrete divergence theorem.

Theorem 1 (Discrete Divergence Theorem) For .v; p/ 2 ŒeCh.R/�2 � Lh.R/

.rhp; v/R;h C .rh � v; p/R;h � h�Eh. p/; vi@R;h D 0

witheCh.R/ D eCh.˝/jR and Lh.R/ D Lh.˝/jR:
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Proof For j D 1; � � � ;m � 1; set Ij D �0j�mj and Jj D �j0�jm. Then, from the
definition (18) it follows that

h�Eh. p/; vi@R;h D h2

m�1X

jD1
�jh�Eh. p/; vi@Ij

C h1

m�1X

jD1
�jh�Eh. p/; vi@Jj

: (21)

By using the equivalences of the function spaces we regard eCh.R/ D Qm.R/ and
Lh.R/ D Qm�2.R/. Set v D .v1; v2/. Notice that Eh.p/ D p as functions. By the
integration by parts

h�Eh. p/; vi@Ij
D Eh. p/.�mj/v1.�mj/� Eh. p/.�0j/v1.�0j/

D
Z

Ij

@.v1Eh. p//

@x
dx

D
Z

Ij

@v1

@x
p dxC

Z

Ij

v1
@p

@x
dx

D h1

m�1X

kD1
�k
@v1

@x
.�kj/p.�kj/C h1

m�1X

kD1
�kv1.�kj/

@p

@x
.�kj/:

The last line follows from the fact that @v1
@x p and v1

@p
@x are polynomials of degree

� 2m � 3 in x-variable along Ij. From (11) and (12) we have that @v
@x D Dh

xv and
@p
@x D Dh

xp for v 2 Qm.R/ and p 2 Qm�2.R/, respectively. Therefore,

h2

m�1X

jD1
�jh�Eh. p/; vi@Ij

D jRj
m�1X

jD1

m�1X

kD1
�jk
˚
Dh

xv1.�kj/p.�kj/C v1.�kj/D
h
xp.�kj/

�
: (22)

Similarly,

h1

m�1X

jD1
�jh�Eh. p/; vi@Jj

D jRj
m�1X

jD1

m�1X

kD1
�jk
˚
Dh

yv2.�kj/p.�kj/C v2.�kj/D
h
yp.�kj/

�
: (23)

A combination of (21)–(23) proves the theorem. ut
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An immediate, but important consequence of Theorem 1 is that (20) can be
simplified as follows.

Corollary 1 For any uh 2 Qm.R/ and ph 2 Qm�2.R/, we have

Ah.uh; phIuh; ph/ D .� 1
Re
�huh C U � rh;UPuh;uh/h C 1

Re
h@h
�uh;uhih:

The ellipticity proof of Ah.uh; phIuh; ph/ without the advection term (the case,
U D 0) is obtained in [17]. For the Q2 upwind method an ellipticity result for
the convection diffusion equation can be found in [16]. Ellipticity of a higher order
method for the nonzero advection case might be obtained by a similar manner as in
[17], and it will be a subject of future research.

In order to derive the inf-sup condition, let us introduce a discrete L2-norm on
Lh.˝/ as follows:

kuk2
Lh
2.˝/
D
X

R2Th

kuk2
Lh
2.R/
; 8u 2 Lh.˝/;

where

kuk2
Lh
2.R/
D jRj

X

1�j;k�m�1
�jkju.�jk/j2:

The discrete L2-norm becomes a seminorm on Ch.˝/.
Using the finite dimensionality, scaling invariance and the fact that the partition

is quasi-uniform, it holds that

kukLh
2.R/
� cmkukL2.R/ 8u 2 Qm.R/: (24)

From here on L . R means that there exists a constant cm > 0 such that L � cmR.
We will prove the discrete inf-sup condition: there exist ˇm > 0; independent of h,
such that

sup
w2ŒeCh.˝/�2

.rh � w; q/h
krhwkLh

2.˝/

� ˇmkqkLh
2.˝/

; q 2 Lh.˝/: (25)

In order to prove (25), we introduce some useful interpolation and projection. For
each R 2 Th, define an interpolation ˘R W ŒC.R/ \ H1.R/�2 ! ŒQm.R/�2 by
˘Ru.�/ D u.�/ for all � 2 Nh.R/[Nh.@R/[ Vh.R/: Then, we have

kr˘RukL2.R/ . krukL2.R/: (26)
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An immediate application of Theorem 1 to ˘Ru leads to

.r �˘Ru; q/R;h D �.˘Ru;rhq/R;h

Ch� � u;Eh.q/i@R;h; u 2 ŒC.R/�2; q 2 Lh.R/ (27)

since r �˘Ru D rh �˘Ru and u D ˘Ru on Nh.@R/ [ Vh.R/ for each R 2 Th.
Next, for each R 2 Th; define a projection ĕR W ŒC.˝/ \ H1.R/�2 ! ŒQm.R/�2

such that for u 2 ŒC.R/ \H1.R/�2

.ĕRu;rhq/R;h D �.r � u; q/R C h� � u;Eh.q/i@R;h; q 2 Qm�2; (28)

and ĕRu D u on Nh.@R/[ Vh.R/. To fulfill (28), define ĕR W ŒC.R/ \ H1.R/�2 !
ŒQm.R/�2 as follows:

p1. .ĕRu �˘Ru;rhq/R;h D �.r � u; q/R C .r �˘Ru; q/R;h for q 2 Qm�2.R/,
p2. .ĕRu �˘Ru; r/R;h D 0 for r 2 ŒrQm�2.R/�?,
p3. ĕRu D ˘Ru on @R

Here, ŒrQm�2.R/�? is the orthogonal compliment of rQm�2.R/ in ŒQm�2.R/�2 with
respect to the inner product .�; �/h;R on ŒQm�2.R/�2. Notice that ĕRu 2 ŒQm.R/�2 is
well-defined by (p1)–(p3). Also observe that (28) is obtained by subtracting (p1)
from (27), and the property (p2) is considered for uniqueness of the projection.

The global projections ˘ W ŒC.˝/ \ H1.˝/�2 ! ŒQm.˝/�
2 and ĕ W ŒC.˝/ \

H1.˝/�2 ! ŒQm.˝/�
2 are then defined elementwise such that ˘ jRD ˘R and

ĕ jRD ĕR for each R 2 Th:

Lemma 1 For u 2 ŒC.˝/ \ H1.˝/�2; the projection ĕu satisfies the following
properties:

.r � ĕRu; q/R;h D .r � u; q/R; q 2 Qm�2.R/ 8R 2 ThI (29)

kr ĕukLh
2.˝/

. krukL2.˝/: (30)

Proof Let u 2 ŒC.˝/\H1.˝/�2 be arbitrary. By Theorem 1, for each R 2 Th, ĕRu
satisfies

.r � ĕRu; q/R;h D �.ĕRu;rhq/R;h C h� � u;Eh.q/i@R;h; q 2 Qm�2.R/:

Subtracting the above equation from (28) we have (29).
Now, we proceed to prove (30). For r 2 ŒQm�2.R/�2; decompose it orthogonally

as r D rq C .r � rq/ for some q 2 Qm�2.R/ such that q vanishes at least one
interior node �� 2 Nh.R/: Then, a simple calculation yields that

q.�/ D h
m�1X

k;lD1

h
ckl
� Dh

xq.�kl/C dkl
� Dh

yq.�kl/
i
;
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where the coefficients ckl
� ; d

kl
� ; .1 � k; l � m � 1/ are independent of h. In general,

we have

kqkLh
2.R/

. hkrhqkLh
2.R/
;

q 2 fq 2 Qm�2.R/ W q.��/ D 0; some �� 2 Nh.R/g: (31)

By (24) and (26) and the exactness of the Gaussian quadrature for
R

R q2 dx (recalling
that the degree of q2 � 2m � 4 � 2m � 3)

kr˘RukLh
2.R/

. kr˘RukL2.R/ . krukL2.R/; (32)

kqkLh
2.R/
D kqkL2.R/: (33)

Note that rhq.�ij/ D rq.�ij/ (i; j D 1; � � � ;m � 1) for q 2 Qm�2.R/. Using (p2),
(p1), (32), (33) and (31) sequentially, one has

j.ĕRu�˘Ru; r/R;hj D j.ĕRu �˘Ru;rhq/R;hj
� j � .r � u; q/R C .r �˘Ru; q/R;hj
. krukL2.R/kqkL2.R/ C kr˘RukLh

2.R/
kqkLh

2.R/

. krukL2.R/kqkLh
2.R/

. hkrukL2.R/krhqkLh
2.R/

. hkrukL2.R/krkLh
2.R/
:

As a result we have

kĕRu �˘RukLh
2.R/

. hkrukL2.R/:

Note that ĕRu � ˘Ru D 0 on @R. Since .Th/0<h<1 is quasi-uniform, the inverse
estimate yields that

kr.ĕRu �˘Ru/kLh
2.R/

. krukL2.R/: (34)

A combination of (32) and (34) and summation over all R 2 Th, (30) follows:

kr ĕukLh
2.˝/

. kr˘ukLh
2.˝/
C kr.ĕu�˘u/kLh

2.˝/
. krukL2.˝/:

This completes the proof. ut
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The inf-sup condition (25) follows by the framework of analysis in [5, 12] as follows.
Using Lemma 1

sup
w2ŒeCh.˝/�2

.r � w; q/h
krwkLh

2.˝/

� sup
u2ŒC.˝/\H1.˝/�2

.r � ĕu; q/h
kr ĕukLh

2.˝/

D sup
u2ŒC.˝/\H1.˝/�2

.r � u; q/˝
kr ĕukLh

2.˝/

� cm sup
u2ŒC.˝/\H1.˝/�2

.r � u; q/˝
krukL2.˝/

�ecmkqkL2.˝/ DecmkqkLh
2.˝/

for q 2 Lh.˝/ and
R
˝

q dx D 0.
We summarize the above as in the following theorem.

Theorem 2 The following inf-sup condition holds; for some ˇm > 0

sup
w2ŒeCh.˝/�2

.rh � w; q/h
krhwkLh

2.˝/

� ˇmkqkLh
2.˝/

; q 2 Lh.˝/;

where .q; 1/˝ D 0:

4 Numerical Experiments

We present three different examples. Examples 1 and 2 are to test the convergence
properties of the HSD and upwind HSD for the Oseen equations with a smooth
solution and a singular solution, respectively. Finally, Example 3 treats the driven
cavity problem of the steady-state Navier–Stokes equations. For all examples the
domain of computation is the unit square, Œ0; 1� � Œ0; 1�, and the computational grid
is the T .Q4/ � T .Q2/ as in Fig. 2. Since the exact solutions in Examples 2 and 3
have known singularities at the corners of the domain, it is desirable to use a graded
grid (a geometric grid). Therefore, we consider the following form of graded grid
for Examples 2 and 3.

.Qx; Qy/ D



x2

x2 C .1 � x/2
;

y2

y2 C .1 � y/2

�
;

where .x; y/ is a uniform grid. In Figs. 3, 4 and 5 the errors are estimated in the
discrete L2-norm for u and p, and the number in the slope box represents the order
of convergence.

Example 1 Consider the Oseen equations:

� 1
Re
�uC U � ruCrp D f in ˝;

r � u D 0; in ˝;

u D g on �;
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Fig. 3 Convergence history of the HSD for Example 1 with Re D 1 Ï 104
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Fig. 4 Convergence history of the upwind HSD for Example 1 with Re D 1 Ï 104
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Fig. 5 Convergence history of the upwind HSD for Example 2 (Re D 104) with two different
meshes; graded (Grad.) and uniform (Unif)

Table 1 The history of convergence for the HSD and upwind HSD for Example 1 with Re D 10,
and ˛ represents the rate of convergence

HSD Upwind HSD

N ku � uhkLh
2.˝/

˛ k p � phkLh
2.˝/

˛ ku � uhkLh
2.˝/

˛ k p � phkLh
2.˝/

˛

6 1.0873e�06 3.0056e�06 2.1611e�06 1.5846e�05

12 4.1744e�08 4.70 2.2280e�07 3.75 2.4450e�07 3.14 2.2892e�06 2.79

18 5.7051e�09 4.91 4.4872e�08 3.95 7.9219e�08 2.78 7.1239e�07 2.88

24 1.3743e�09 4.95 1.4193e�08 4.00 3.5443e�08 2.80 3.0807e�07 2.91

30 4.5411e�10 4.96 5.7862e�09 4.02 1.8852e�08 2.83 1.6010e�07 2.93

36 1.8355e�10 4.97 2.7758e�09 4.03 1.1201e�08 2.86 9.3588e�08 2.94

where f and g are given to have the exact solution u.x; y/ D .exp.x/ cos.y/;
� exp.x/ sin.y// and p D x2 � 1

3
. Here, U D .x2 C y2 � 1;�2xy C 1/ with

Re D 1 Ï 104. From here on, Re represents the Reynolds number.

Figures 3 and 4 represent numerical results for Example 1, and Table 1 represents the
corresponding numerics when Re D 10. For the HSD we observe the convergence,
ku � uhjjLh

2.˝/
D O.h5/ and k p � phkLh

2.˝/
D O.h4/ for Re D 1 Ï 102. For

u the above convergence is optimal, and the theoretically expected convergence
is of O.h3/ for p. Numerical results show a super convergence for p, which
phenomenon happens often when error is measured with nodal values. However,
erratic convergence is observed as Re increases up to 104. For the upwind method
the apparent orders of Lh

2-convergence for the velocity and pressure variables are
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identical, i.e., ku � uhkLh
2.˝/
D O.h3/ and k p � phkLh

2.˝/
D O.h3/. Over all, the

HSD yields better approximation in the case of smooth solution problems with low
Reynolds numbers. An advantage of using the upwind HSD is that the convergence
order of numerical solutions is barely influenced by Reynolds numbers.

Example 2 Now consider the Oseen equations with Re D 104 as in Example 1,
but with singular solutions given as u.x; y/ D .y1:5; x1:5/ and p D x2 � 1

3
. Hence,

u 2 ŒH2��.˝/�2 with arbitrary � > 0.

Figure 5 represents numerical results for Example 2. If one uses a graded mesh the
order of convergence can be improved for the both HSD and upwind HSD. Here,
only graphs for the upwind HSD are presented in this case.

Example 3 We consider the driven-cavity flow problem:

� 1
Re
�uC u � ruCrp D 0 in ˝

r � u D 0 in ˝

with the watertight boundary condition:

u.x1; x2/ D
�
.1; 0/T ; 0 < x1 < 1; x2 D 1;
.0; 0/T ; otherwise:

The solution u belongs to the Sobolev space ŒH1��.˝/�2 for � > 0with singularities
at the upper two corners of the domain [1, 18]. In view of numerical experiments in
Example 2 the graded mesh is used for numerical experiments of the cavity problem.

The Navier–Stokes equations is solved by iteratively solving the Oseen
equations;

� 1
Re
�u.nC1/ Ceu.n/ � ru.nC1/ Crp.nC1/ D 0 in ˝;

r � u.nC1/ D 0 in ˝;

with the watertight boundary condition. A relaxation parameter is introduced for the
convection term such that

eu.n/ D 	u.n/ C .1 � 	/u.n�1/; 0 < 	 � 1:

Figures 6 and 7 represent convergence properties of the Oseen iteration depending
on the relaxation parameter 	 for the HSD and upwind HSD, respectively. For the
HSD numerical experiments are presented up to Re D 7000, and it is observed that
the HSD fails to converge for Re � 10;000 even on a relatively fine 40 � 40 mesh
with a small 	 . However, if the upwind HSD is adopted, the Oseen iteration performs
quite stably up to Re D 20;000 if the relaxation parameter 	 is properly chosen.
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Fig. 6 Convergence history of the Oseen iteration for various choice of relaxation parameter 	
with the HSD (Example 3). Re D 1000–7000
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Fig. 7 Convergence history of the Oseen iteration for various choice of relaxation parameter 	 for
the upwind HSD (Example 3). Re D 5000–20,000
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Fig. 8 Solutions of Example 3 with Re D 5000–20,000

If 	 is small the Oseen iteration converges monotonically, but slowly. If 	 
 1

the convergence can be faster whenever the iteration is convergent; however, the
iteration becomes divergent as the Reynolds number becomes larger for a fixed mesh
size. As shown in the figures the upwind HSD performs more reliably, especially
for large Reynolds number flows. In view of Fig. 7 we use the upwind HSD with the
choices of the relaxation parameters, 	 D 1

2
when Re D 5000–15,000 and 	 D 1

5

when Re D 20;000 for our numerical experiments in Figs. 8, 9, 10 and 11. The
stopping criterion is ku.nC1/ � u.n/kLh

2.˝/
< 10�3. We use the 40� 40 graded mesh,

which corresponds roughly to a 160� 160 grid mesh for the usual FDM. As shown
in Table 2 the total vorticity ! D R

˝ r � u dx is computed almost exactly up to a
machine precision. The volumetric flow rates (see [8, 23] for details) are zero for
the exact solution. The approximated volumetric flow rates are computed almost
exactly as well. The primary vorticity is measured and compared with the 400�400
grid case in [8].

Figure 8 shows the fluid motions with Re D 5000–20,000. As the Reynolds
number becomes higher the primary vortex tends to shift to the center more, and
more and larger secondary vortices start to form at corners. Figure 9 shows the



Upwind HSD for N-S Equations 641

0 0.1 0.2 0.3 0.4
0.6

0.7

0.8

0.9

1

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

Fig. 9 Secondary vortices with Re D 20;000

0 0.2 0.4 0.6 0.8 1
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Re=5000

0 0.2 0.4 0.6 0.8 1
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Re=10000

0 0.2 0.4 0.6 0.8 1
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Re=15000

0 0.2 0.4 0.6 0.8 1
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Re=20000

Fig. 10 Centerline velocity profiles of u with u D .u; v/. The discrete circles represent the
reference data from [11] and the *-marked data from [8] (Example 3)



642 Y. Jeon and D. Sheen

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6
Re=5000

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6
Re=10000

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6
Re=15000

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6
Re=20000

Fig. 11 Centerline velocity profiles of v with u D .u; v/. The discrete circles represent the
reference data from [11] and the *-marked data from [8] (Example 3)

Table 2 Total vorticity, volumetric flow rates and the primary vorticity for the upwind HSD with
the graded 40� 40 mesh for Example 3

Re 1000 5000 10,000 15,000 20,000

! (vorticity) 1.0000 1.0000 1.0000 1.0000 1.0000R
ucds �8.36e�12 �3.46e�10 �1.94e�10 1.99e�10 1.12e�11R
vcds �1.49e�10 �1.52e�10 3.35e�10 �2.61e�10 6.07e�10

Primary vorticity: HSD �2.057231 �1.920731 �1.847845 �1.789383 �1.741744

Primary vorticity:

FDM in [8] �2.062761 �1.909448 �1.853444 �1.809697 �1.769594

The last row is the primary vorticity with the FDM on a 400� 400 uniform mesh in [8]

detailed fluid motions at four corners of the domain with Re D 20;000. These
coincide with existing results by using other methods [8, 11].

In order to test the accuracy of our algorithms, some velocity components are
compared with well-known benchmark results, and they are shown in Figs. 10 and
11, which show that the results are in good agreement. The solid line represents
numerical results by our algorithm, the discrete circles represent those in [11] and
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the *-marked data are obtained from [8]. These graphs include computed u-velocity
along the vertical center line (uc) and v-velocity along the horizontal center line
(vc). In [11] numerical results are obtained by using the stream function-vorticity
formulation and the third order FDM on the 128 � 128 mesh for Re � 3200 and on
the 257� 257 grid for Re � 5000, respectively. In [8] they use the stream function–
vorticity formulation with the 2nd order central FD approximations and numerical
results on the 400 � 400, 512 � 512, 600 � 600 uniform grids and its Richardson
extrapolation are presented.

5 Concluding Remarks

In this paper an HSD and a upwind HSD methods are introduced, and the inf-sup
condition is proved. For the static condensation of the methods we refer to [14].

In view of analysis in [14, 17] and the inf-sup condition in this paper convergence
analysis can be done in discrete energy norm for u and discrete L2-norm for p for
Stokes flows. For a complete analysis of the HSD for the Navier-Stokes equations
ellipticity of the convection term is necessary, and it remains as a future work.
Some of the experimental rates of convergence in Sect. 4 are inconsistent with
our intuition, and a rigorous convergence analysis will be also a subject of future
research.

Numerical experiments for the steady-state Navier Stokes equations suggest
that the (upwind) HSD is very effective for flows with a wide range of Reynolds
numbers. For flow problems with very high Reynolds number and low regularity
solution it is observed that the combination of the upwind HSD and a geometric
mesh produces more reliable numerical solutions.
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On Nyström and Product Integration
Methods for Fredholm Integral
Equations

Peter Junghanns, Giuseppe Mastroianni, and Incoronata Notarangelo

Dedicated to Ian H. Sloan on the occasion of his 80th birthday.

Abstract The aim of this paper is to combine classical ideas for the theoretical
investigation of the Nyström method for second kind Fredholm integral equations
with recent results on polynomial approximation in weighted spaces of continuous
functions on bounded and unbounded intervals, where also zeros of polynomials
w.r.t. exponential weights are used.

1 Introduction

There exists a huge literature on numerical methods for Fredholm integral equations
of second kind,

f .x/ �
Z

I
K.x; y/f . y/ dy D g.x/ ; x 2 I ; (1)

where I is a bounded or unbounded interval. A very famous method is the Nyström
method which is based on an appropriate quadrature rule applied to the integral
and on considering (1) in the space of (bounded) continuous functions on I. Such
quadrature rules can be of different type. In the present paper we will focus
on Gaussian rules and product integration rules based on zeros of orthogonal
polynomials. The aim of this paper is to combine classical ideas for the theoretical
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investigation of the Nyström method, in particular the results of Sloan [34, 35],
with recent results on polynomial approximation in weighted spaces of continuous
functions on bounded and unbounded intervals, where also zeros of polynomials
w.r.t. exponential weights come into the play (cf. [13, 27]). Note that the Nyström
method, in general, is based on the application of a quadrature rule to the integral
part of the operator. Here we focus on quadrature rules of interpolatory type, which
are constructed with the help of zeros of orthogonal polynomials, i.e., which are of
Gaussian type. Of course, there exists a lot of other possibilities. As an example, let
us only mention the paper [12], where quasi-Monte Carlo rules are applied to the
case of kernel functions of the form K.x; y/ D h.x � y/.

Considering weighted spaces of continuous functions is motivated by the fact,
that in many practical examples for the unknown function it is known that it has
some kind of singularities at the endpoints of the integration interval. Moreover,
the kernel function of the integral operator can have endpoint singularities in both
variables. For recent attempts to combine the idea of the Nyström method with
weighted polynomial approximation, we refer the reader to [11, 24, 30].

The present paper is organized as follows. In Sect. 2 we present the notion of
collectively compact and strongly convergent operator sequences and the classical
result on the application of this concept for proving stability and convergence of
approximation methods for operator equations. After formulating the results of
Sloan from the 1980s on the application of quadrature methods to Fredholm integral
equations of the second kind, we show how these results can be generalized by using
weighted spaces of continuous functions, where we prefer a unified approach for
both bounded and unbounded integration intervals (see Definition 1 and Lemma 2).
In Sect. 3 we prove a general convergence result for the classical Nyström method
(see Corollary 2), where “classical” means that usual quadrature rules are used for
the discretization of the integral operator, not product integration rules. In Sects. 3.1
and 3.2, this result is applied to the interval .�1; 1/ involving Jacobi weights and
to the half line .0;1/ involving exponential weights, respectively. Finally, Sect. 4
contains the most important results of the paper and is devoted to the application
of product integration rules in the Nyström method, where again the Jacobi weight
case and the exponential weight case are considered separately. In particular, in
both cases we show how one can use the respective L logC L function classes, in
order to weaken the conditions on the kernel function of the integral operator (see
Propositions 5 and 6).

2 Basic Facts

In the sequel, by c we will denote real positive constants, which can assume different
values at different places, and by c ¤ c.a; b; : : :/ we will explain, that c does
not depend on a; b; : : : If ˛ and ˇ are positive real numbers depending on certain
parameters a; b; : : :, then by ˛ �a;b;::: ˇ is meant that there is a positive constant
c ¤ c.a; b; : : :/ such that c�1˛ � ˇ � c˛.
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We say, that a sequence .Kn/
1

nD1 of linear operators Kn W X �! X in the
Banach space X is collectively compact, if the set fKn f W f 2 X; k fk � 1; n 2 Ng
is relatively compact in X, i.e., the closure of this set is compact. The concept
of collectively compact sets of operators goes back to Anselone and Palmer
[1, 2, 4–6].

For the following proposition, see, for example, [3], or Sections 10.3 and 10.4 in
[15, 16], or [17], or Section 4.1 in [7].

Proposition 1 Let X be a Banach space and K W X �! X , Kn W X �! X ,
n 2 N be given linear operators with lim

n!1 kKn f �K fk D 0 for all f 2 X (i.e.,

the operators Kn converge strongly to K in X/. For g 2 X, consider the operator
equations

.I �K /f D g (2)

where I is the identity operator in X, and

.I �Kn/fn D g : (3)

If the sequence .Kn/
1

nD1 is collectively compact and if dim ker.I �K / D 0, then,
for all sufficiently large n Eq. (3) has a unique solution f �

n 2 X, where

�
� f �

n � f ��� � c kKn f � �K f �k ; c ¤ c.n; g; f �/ ; (4)

and f � 2 X is the unique solution of (2).

Let us consider the situation that X is equal to the space of continuous functions
C.I/, where I D .I; d/ is one of the compact metric spaces I D Œ�1; 1� , I D Œ0;1�,
or I D Œ�1;1�, the distance function of which can be given, for example, by

d.x; y/ D ja.x/ � a.y/j or d.x; y/ D ja.x/� a.y/j
1C ja.x/� a.y/j with a.x/ D arctan.x/. As

usual, the norm in C.I/ is defined by k fk1 WD max fj f .x/j W x 2 Ig. As operators
K and Kn we take

.K f /.x/ D
Z

I
K.x; y/f . y/ dy as well as .Kn f /.x/ D

knX

kD1
�nk.x/f .xnk/ ; (5)

where the �nk’s are certain quadrature weights and we assume xnk 2 I .k D
1; : : : ; kn/ , xn1 < xn2 < : : : < xn kn , as well as

(K1)
Z

I
jK.x; y/j dy <1, i.e., K.x; :/ 2 L1.I/ for all x 2 I,

(K2) lim
x!x0
kK.x; :/ � K.x0; :/kL1.I/ D lim

x!x0

Z

I
jK.x; y/ � K.x0; y/j dy D 0 for all

x0 2 I,
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(K3) lim
n!1

knX

kD1
�nk.x/f .xnk/ D

Z

I
K.x; y/f .y/ dy for all x 2 I and all f 2 C.I/,

(K4) lim
x!x0

sup

(
knX

kD1
j�nk.x/��nk.x0/j W n 2 N

)

D 0 for all x0 2 I.

Note that conditions (K1) and (K2) are necessary and sufficient for the operator
K W C.I/ �! C.I/ being a compact one, which is a consequence of the Arzela-
Ascoli Theorem characterizing the relatively compact subsets of C.I/. Moreover,
the following lemma is true and crucial for our further considerations (see [34,
Section 2, Lemma] and [35, Section 3, Theorem 1]).

Lemma 1 Suppose that conditions (K1) and (K2) are fulfilled. The operators Kn W
C.I/ �! C.I/ , n 2 N, defined in (5), form a collectively compact sequence, which
converges strongly to K , if and only if (K3) and (K4) are satisfied.

Remark 1 For example, in case I D Œ0;1�, conditions (K1)–(K4) can be written
equivalently as (cf. [35, (3.1)–(3.3)])

(K1’) K.x; :/ 2 L1.0;1/ 8 x 2 Œ0;1/,
(K2’) lim

x!x0
kK.x; :/ � K.x0; :/kL1.0;1/ D 0 8 x0 2 Œ0;1/,

(K3’) lim
x!1 sup

�Z 1

0

ˇ
ˇK.x0; y/ � K.x; y/

ˇ
ˇ dy W x0 > x

�
D 0,

(K4’) lim
n!1

knX

kD1
�nk.x/f .xnk/ D

Z 1

0

K.x; y/f .y/ dy 8 x 2 Œ0;1/ and 8 f 2
CŒ0;1�,

(K5’) lim
x!x0

sup

(
knX

kD1
j�nk.x/ ��nk.x0/j W n 2 N

)

D 0 for all x0 2 Œ0;1/,

(K6’) lim
x!1 sup

x0>x
sup

(
knX

kD1
j�nk.x/��nk.x0/j W n 2 N

)

D 0.

Now, we assume that the kernel function K.x; y/ and the quadrature weights�nk.x/
in (5) are represented in the form

K.x; y/ D H.x; y/S.x; y/ and �nk.x/ D �F
nk.H.x; ://S.x; xnk/ ; (6)

respectively, and consider the conditions (H1)–(H3) below. For this, we need the
following notions.

Definition 1 Let I0 D .�1; 1/ , I0 D .0;1/, or I0 D .�1;1/, and let v be a
positive weight function on I0, where v W I �! Œ0;1/ is assumed to be continuous
and having the property that p.x/v.x/ is continuous in I for all polynomials p.x/. By
eCv D eCv.I0/ we denote the Banach space of all functions f W I0 �! C, for which
vf W I0 �! C can be extended to a continuous function on the whole interval I,
where the norm on eCv is given by kgkeCv D kgkv;1 WD max fjv.x/g.x/j W x 2 Ig.
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Moreover, let Cv 	 eCv be the closure (w.r.t. the eCv-norm) of the set P of all
algebraic polynomials.

Now, we formulate the above mentioned conditions.

(H1) The �F
nk’s, k D 1; : : : ; kn , n 2 N, are linear and bounded functionals on

a Banach space X0 continuously imbedded in L1
v�1 .I/, where Lv�1 .I/ D˚

f W v�1f 2 L1
�

with k fkL1
v�1
D ��v�1f

�
�
1
WD ��v�1f

�
�
L1 .

(H2) For all x 2 I , H.x; :/ 2 X0 and S.x; :/ 2 Cv , and for all x0 2 I,

lim
x!x0
kH.x; :/ �H.x0; :/kX0 D 0 :

(H3) It holds lim
n!1

knX

kD1
�F

nk. f / g.xnk/ D
Z

I
f .y/g.y/ dy for all f 2 X0 and all g 2

Cv.I0/.

In case of v.x/ � 1 and I D Œ�1; 1�, the following lemma is proved in [34, Section 3,
Theorem 2].

Lemma 2 Assume that K.x; y/ and �nk.x/ in (5) are of the form (6), where the
conditions (H1)–(H3) are fulfilled and where S.x; y/v.y/ is continuous on I2. Then,
conditions (K1)–(K4) are satisfied.

Proof Condition (K1) follows from

Z

I
jK.x; y/j dy � kH.x; :/kL1

v�1
kS.x; :/kv;1 � c kH.x; :/kX0 kS.x; :/kv;1

and condition (H2). Moreover,

kK.x; :/ � K.x0; :/kL1

� kH.x; :/ � H.x0; :/kL1
v�1
kS.x; :/vk

1

C kH.x0; :/kL1
v�1
kS.x; :/v � S.x0; :/vk

1

� kH.x; :/ � H.x0; :/kX0 kS.x; :/vk1 C kH.x0; :/kX0 kS.x; :/v � S.x0; :/vk
1

�! 0

if x ! x0 2 Œ�1; 1� because of (H2) and the (uniform) continuity of S.x; y/v.y/ on
I2. Hence, (K2) is also satisfied. Using (6), (H2), and (H3), we get, for f 2 C.I/,

knX

kD1
�nk.x/f .xnk/ D

knX

kD1
�F

nk.H.x; ://S.x; xnk/f .xnk/ �!
Z

I
H.x; y/S.x; y/f . y/ dy ;
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since together with S.x; :/ 2 Cv also S.x; :/f belongs to Cv . This shows the validity
of (K3). It remains to consider (K4). For this, define Gn W X0 �! C�

v , f 7! Gn f
with

.Gn f /.g/ D
knX

kD1
�F

nk. f /g.xnk/ for all g 2 Cv :

Indeed, Gn f 2 C�
v , since j.Gn f /.g/j �

knX

kD1

j�F
nk. f /j
v.xnk/

kgkv;1 : Moreover, it is easily

seen that

kGn fkC�

v
D

knX

kD1

j�F
nk. f /j
v.xnk/

:

If we fix f 2 X0, then sup fj.Gn f /.g/j W n 2 Ng <1 for every g 2 Cv , due to (H3).
Consequently, in virtue of the principle of uniform boundedness,

sup
n
kGn fkC�

v
W n 2 N

o
<1 for every f 2 X0 : (7)

Taking into account �F
nk 2 X�

0 and

kGn fkC�

v
D

knX

kD1

j�F
nk. f /j
v.xnk/

�
knX

kD1

�
��F

nk

�
�
X�

0

v.xnk/
k fkX0 ; (8)

we see that Gn belongs to L .X0;C�
v /. Again by the principle of uniform bound-

edness and by (7), we obtain c0 WD sup
n
kGnkX0!C�

v
W n 2 N

o
< 1. This implies,

together with (8),

knX

kD1

j�F
nk. f /j
v.xnk/

� c0k fkX0 8 f 2 X0 :

Hence,

knX

kD1

ˇ̌
�nk.x/��nk.x0/

ˇ̌

D
knX

kD1

ˇ
ˇ
ˇ
h
�F

nk.H.x; ://� �F
nk.H.x0; ://

i
S.x; xnk/

C�F
nk.H.x0; :// ŒS.x; xnk/� S.x0; xnk/�

ˇ
ˇ
ˇ
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�
knX

kD1

ˇ
ˇ�F

nk.H.x; :/ � H.x0; ://
ˇ
ˇ

v.xnk/
kS.x; :/vk1

C
knX

kD1

ˇ
ˇ�F

nk.H.x0; ://
ˇ
ˇ

v.xnk/
kS.x; :/v � S.x0; :/vk1

� c0
�kH.x; :/ � H.x0; :/kX0 kS.x; :/vk1 C kH.x0; :/kX0 kS.x; :/v � S.x0; v/k1

�
;

and (K4) follows by (H2) and the continuity of S.x; y/v.y/ on I2. ut

3 The Classical Nyström Method

Let u be a positive weight function and w , w1 be weight functions on I0, where
u W I �! Œ0;1/ is assumed to be continuous. For example, all these three weight
functions can be Jacobi weights (see Sect. 3.1) or weights of exponential type (see
Sect. 3.2). Consider a Fredholm integral equation of the second kind

ef .x/ �
Z

I

eK.x; y/w. y/ef . y/ dy Deg.x/ ; x 2 I0 ; (9)

whereeg 2 eCu and eK W I2 �! C are given functions andef 2 eCu is looked for. Using
a set of nodes xnk 2 I0 satisfying

xn1 < xn2 < : : : < xn;kn (10)

and a quadrature rule

Z

I

ef .x/w.x/ dx �
knX

kD1
�nkef .xnk/ ; (11)

we look for an approximate solutionef n.x/ for Eq. (9) by solving

ef n.x/�
knX

kD1
�nkeK.x; xnk/ef n.xnk/ Deg.x/ : (12)

If we define f .x/ WD u.x/ef .x/ , g.x/ WD u.x/eg.x/,

K.x; y/ D u.x/eK.x; y/w. y/

u. y/
; (13)
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and

�nk.x/ D �nku.x/eK.x; xnk/

u.xnk/
DW �nkK1.x; xnk/ ; (14)

then (9) considered in eCu.I0/ together with (12) is equivalent to (2) considered in
C.I/ together with (3), where K and Kn are given by (5).

Recall, that the function (cf. (12))

ef n.x/ D
knX

kD1
�nkeK.x; xnk/ef n.xnk/Ceg.x/

is called Nyström interpolant at the nodes xnk. For its construction, one needs the
values �nk D ef n.xnk/, which can be computed by considering (12) for x D xnj ,
j D 1; : : : ; kn and solving the system of linear equations

�nj �
knX

kD1
�nkeK.xnj; xnk/�nk Deg.xnj/ ; j D 1; : : : ; kn :

Note, that the convergence of the Nyström interpolant to the solution of the
original integral equation is the main feature of the Nyström method. For that
reason, the natural spaces, in which the Nyström method together with the integral
equation should be considered, are spaces of continuous functions. Moreover, the
natural class of integral equations, to which the Nyström method together with the
concept of collectively compact and strongly convergent operator sequences can be
applied, is the class of second kind Fredholm integral equations, since collective
compactness and strong convergence imply the compactness of the limit operator.

Nevertheless, there were developed modifications of the Nyström method appli-
cable to integral equations with noncompact integral operators (see, for example,
[9, 10, 21]).

We formulate the conditions

(A) K0.x; y/ WD u.x/eK.x; y/w1.y/ is continuous on I2,
(B) .w1u/

�1 w 2 L1.I/,
(C) there exists a positive weight function u1 W I0 �! Œ0;1/ continuous on I, such

that K1.x; :/ D u.x/eK.x; :/u�1.:/ 2 Cu1 .I0/ for all x 2 I,
(D) u�1

1 w 2 L1.I/,
(E) for the quadrature rule (11), we have

lim
n!1

knX

kD1
�nk f .xnk/ D

Z

I
f .x/w.x/ dx

for all f 2 Cu1 .I0/,
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(F) the inequalities

knX

kD1

�nk

u.xnk/w1.xnk/
� c (15)

hold true for all n 2 N, where c ¤ c.n/.

The following corollary is concerned with condition (E).

Corollary 1 Let (D) be satisfied. If the quadrature rule (11) is exact for polynomi-
als of degree less than �.n/, where �.n/ tends to infinity if n �!1, and if

knX

kD1

�nk

u1.xnk/
� c (16)

for all n 2 N, where c ¤ c.n/, then

(a) lim
n!1

knX

kD1
�nk f .xnk/ D

Z

I
f .x/w.x/ dx 8 f 2 Cu1 .I0/,

(b)

ˇ
ˇ̌
ˇ
ˇ

Z

I
f .x/w.x/ dx �

knX

kD1
�nk f .xnk/

ˇ
ˇ̌
ˇ
ˇ
� c E�.n/�1. f /u1;1 ; c ¤ c.n; f /,

where Em. f /u1;1 D inf fk f � pku1;1 W p 2 Pmg is the best weighted uniform
approximation of the function f by polynomials of degree less or equal to m.
Moreover, if (E) is satisfied then (16) and (b) hold.

Proof Define the linear functionals Fn W Cu1 .I0/ �! C by

Fn f D
knX

kD1
�nk f .xnk/ :

Then, in virtue of (16),

jFn f j �
knX

kD1

�nk

u1.xnk/
k fku1;1 � ck fku1;1 8 f 2 Cu1 ; c ¤ c.n; f / :

Hence, the linear functionalsFn W Cu1 .I0/ �! C are uniformly bounded. Moreover,
due to our assumptions,

lim
n!1Fn f D

Z

I
f .x/w.x/ dx 8 f 2 P ;
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and the Banach-Steinhaus Theorem gives the assertion (a). For all p 2 P�.n/�1, we
get

ˇ
ˇ̌
ˇ
ˇ

Z

I
f .x/w.x/ dx �

knX

kD1
�nk f .xnk/

ˇ
ˇ̌
ˇ
ˇ

�
Z

I
j f .x/ � p.x/jw.x/ dxC

knX

kD1
�nk j f .xnk/ � p.xnk/j

�
"Z

I

w.x/ dx

u1.x/
C

knX

kD1

�nk

u1.xnk/

#

k f � pku1;1 :

It remains to take into account (D) and (16), and also (b) is proved.
Finally, we make the following observation. The norm of the functionals Fn W

Cu1 .I0/ �! C is equal to
knX

kD1

�nk

u1.xnk/
. Hence, due to the uniform boundedness

principle, condition (16) is also necessary for assertion (a) to be fulfilled. ut
Proposition 2 If the conditions (A)–(F) are fulfilled, then the operators Kn 2
L .C.I//, defined in (5) and (14), form a collectively compact sequence of strongly
convergent to K .cf. (5) and (13)/ operators in C.I/.

Proof We check if conditions (K1)–(K4) are fulfilled. Condition (K1) is a conse-
quence of

Z

I
jK.x; y/j dy

(13)D
Z

I
jK1.x; y/jw. y/ dy

.C/;.D/� kK1.x; :/ku1;1
��.u1/�1w

��
L1.I/ :

Analogously, (K2) follows from

Z

I
jK.x; y/� K.x0; y/j dy D

Z

I
jK0.x; y/� K0.x0; y/j w. y/

u. y/w1. y/
dy

by applying the continuity of K0.x; y/ and condition (B). In view of (14), condition
(C), and condition (E),

knX

kD1
�nk.x/f .xnk/ D

knX

kD1
�nkK1.x; xnk/f .xnk/

�!
Z

I
K1.x; y/f . y/w. y/ dy D

Z

I
K.x; y/f . y/ dy
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if n �! 1 for all f 2 C.I/ and all x 2 I, i.e., K.x; y/ satisfies also (K3). Finally,
for every " > 0, there is a ı > 0 such that jK0.x; y/ � K0.x0; y/j < " for all .x; y/ 2
Uı.x0/� I, where Uı.x0/ D fx 2 I W d.x; x0/ < ıg. Consequently, according to (15),

knX

kD1
j�nk.x/ ��nk.x0/j D

knX

kD1
�nkjK1.x; xnk/ � K1.x0; xnk/j

D
knX

kD1

�nk

u.xnk/w1.xnk/
jK0.x; xnk/� K0.x0; xnk/j < c "

for all x 2 Uı.x0/, which shows the validity of (K4). The application of Lemma 1
completes the proof. ut
Remark 2 In case of u�1u1 D w1, for the proof of Proposition 2, one can also
use Lemma 2. Indeed, if we set v D u1 and define H.x; y/ D w.y/ , S.x; y/ D
K1.x; y/ , X0 D spanfwg with k:kX0 D k:kL1

v�1 .I/
, �F

nk.�w/ D ��nk for � 2 C,

then, we have X0 	 L1
v�1 .I/ continuously .see (D) which now coincides with (B)/,

K.x; y/ D H.x; y/S.x; y/ with the continuous function S.x; y/v.y/ (see (A)), and
�nk.x/ D �F

nk.w/S.x; xnk/ (cf. (14)). Moreover, for all f D �w 2 X0 and all g 2
Cv.I0/,

lim
n!1

knX

kD1
�F

nk. f /g.xnk/ D lim
n!1 �

knX

kD1
�nkg.xnk/ D

Z

I
f . y/g. y/ dy

in view of condition (E). Consequently, conditions (H1)–(H3) are fulfilled and
Lemma 2 can be applied.

Corollary 2 Assume (A)–(F). Consider the Eqs. (9) and (12) with eg 2 eCu.I0/.
Assume further, that the homogeneous equation (9) .i.e.,eg � 0/ has in eCu.I0/ only
the trivial solution. Then, for all sufficiently large n, Eq. (12) possesses a unique
solutionef �

n 2 eCu.I0/ converging toef �, whereef � 2 eCu is the unique solution of (9).
If the assumptions of Corollary 1 are satisfied, then

�
�ef � �ef �

n

�
�

u;1 � c sup
n
E2n�1

�
u.x/eK.x; :/ef ��

u1;1 W x 2 I
o
; (17)

where c ¤ c.n; g/ . (Note that, due to condition (C), u.x/eK.x; :/ef � 2 Cu1 .I0/ for all
x 2 I .)

Proof In virtue of Proposition 2, we can apply Proposition 1 with X D C.I/ to
Eqs. (2) and (3) with the above definitions (13) and (14). Estimate (4) gives

�
�ef �

n �ef ���
u;1 D

�
� f �

n � f ���1 � c kKn f � �K f �k1 ;
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where f � 2 C.I/ and f �
n 2 C.I/ are the solutions of (2) and (3), respectively, and

where
�
�Kn f � �K f �

�
�

1

D sup

( ˇˇ
ˇ̌
ˇ

knX

kD1

�nk.x/f
�.xnk/�

Z

I
K.x; y/f �. y/ dy

ˇ
ˇ
ˇ̌
ˇ
W x 2 I

)

D sup

( ˇˇ
ˇ̌
ˇ

knX

kD1

�nku.x/eK.x; xnk/ef �.xnk/�
Z

I
u.x/eK.x; y/ef �. y/w. y/ dy

ˇ
ˇ
ˇ̌
ˇ
W x 2 I

)

:

It remains to use u.x/eK.x; :/ef � 2 Cu1 .I0/ (cf. (C)) and Corollary 1, (b). ut

3.1 The Case of Jacobi Weights

Let us apply the above described Nyström method in case of

ef .x/ �
Z 1

�1
eK.x; y/v˛;ˇ. y/ef . y/ dy Deg.x/ ; �1 < x < 1 ; (18)

whereeg 2 eCu D eCu.�1; 1/ and eK W .�1; 1/2 �! C are given continuous functions
and where v˛;ˇ.x/ D .1 � x/˛.1 C x/ˇ , ˛; ˇ > �1, and u.x/ D v�;ı.x/ , �; ı � 0,
are Jacobi weights, and eCu D eCv�;ı . We set u1.x/ D v�1;ı1 .x/ , w1.x/ D v˛1;ˇ1 .x/
and assume that

(A1) K0 W Œ�1; 1�2 �! C is continuous, where K0.x; y/ D v�;ı.x/eK.x; y/v˛1;ˇ1.y/,
(B1)

Z 1

�1
v˛;ˇ.x/ dx

v�;ı.x/v˛1;ˇ1 .x/
<1 ; i.e., � C ˛1 < ˛ C 1 and ı C ˇ1 < ˇ C 1,

(C1) 0 � �1 , 0 � ı1, and � C ˛1 < �1 < ˛ C 1 , ı C ˇ1 < ı1 < ˇ C 1.

Setting w.x/ WD v˛;ˇ.x/, the conditions (A1) and (B1) are equivalent to (A) and (B)
in the present situation, respectively. Condition (C1) leads immediately to (C) and
(D), since in case u.x/ D v�;ı.x/ and �; ı � 0, the set Cu is equal to the set of all
f 2 eCu satisfying

lim
x!1�0 u.x/f .x/ D 0 if � > 0 and lim

x!�1C0 u.x/f .x/ D 0 if ı > 0 :

As quadrature rule (11) we take the Gaussian rule w.r.t. the Jacobi weight w.x/ D
v˛;ˇ.x/, i.e., kn D n, the xnk D x˛;ˇnk ’s are the zeros of the nth (normalized) Jacobi

polynomial p˛;ˇn .x/ w.r.t. w.x/ D v˛;ˇ.x/ and the �nk D �
˛;ˇ
nk ’s are the respective

Christoffel numbers. Then, for Corollary 1 we have �.n/ D 2n � 1. Moreover,
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condition (C1) guarantees that (15) and (16) are also fulfilled, which is due to the
following lemma.

Lemma 3 ([31], Theorem 9.25) For v˛;ˇ.x/ and v˛1;ˇ1.x/, assume that ˛ C ˛1 >
�1 and ˇ C ˇ1 > �1, and let j 2 N be fixed. Then, for each polynomial q.x/ with
deg q � jn,

nX

kD1
�
˛;ˇ
nk

ˇ
ˇ
ˇq.x˛;ˇnk /

ˇ
ˇ
ˇ v˛1;ˇ1

�
x˛;ˇnk

	
� c

Z 1

�1
jq.x/jv˛;ˇ.x/v˛1;ˇ1.x/ dx ;

where c ¤ c.n; q/.

Hence, all conditions (A)–(F) are in force and we can apply Corollary 2 together
with the estimate (b) of Corollary 1 to Eq. (18) and the Nyström method

ef n.x/ �
nX

kD1
�
˛;ˇ
nk
eK.x; x˛;ˇnk /

ef n.x
˛;ˇ
nk / Deg.x/ ; �1 < x < 1 ; (19)

to get the following proposition.

Proposition 3 Assume that (A1), (B1), and (C1) are fulfilled and that Eq. (18) has
only the trivial solution in eCv�;ı in case ofeg.x/ � 0. Then, foreg 2 eCv�;ı and all
sufficiently large n, Eq. (19) has a unique solutionef �

n 2 eCv�;ı and

�
�ef � �ef �

n

�
�
�;ı;1 � c sup

n
E2n�1

�
v�;ı.x/eK.x; :/ef ��

v�1;ı1 ;1 W �1 � x � 1
o
;

whereef � 2 eCv�;ı is the unique solution of (18) and c ¤ c.n; g/ . (Again we note that
the assumptions of the proposition guarantee that v�;ı.x/eK.x; :/ef � 2 Cv�1;ı1 for all
x 2 Œ�1; 1�, cf. Corollary 2.)

For checking (15) and (16), we used Lemma 3. The following Lemma will allow us
to prove these assumptions also in other cases.

Lemma 4 Let w W I0 �! Œ0;1/ and v W I0 �! Œ0;1/ be weight functions and
�nk > 0 , xnk 2 I0 , k D 1; : : : ; n , be given numbers satisfying the conditions xn1 <

xn2 < : : : < xnn and

(a) v�1w 2 L1.I/,
(b) �nk �n;k �xnkw.xnk/ , k D 1; : : : ; n , where �xnk D xnk � xn;k�1 and xn0 < xn1 is

appropriately chosen,
(c) �xnk �n;k �xn;k�1 , k D 2; : : : ; n ,
(d) for each closed subinterval Œa; b� 	 I0 , v�1w W Œa; b� �! R is continuous and

lim
n!1 max f�xnk W xnk 2 Œa; b�g D 0 ; (20)
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(e) there exists a subinterval ŒA;B� 	 I0 such that v�1w W fx 2 I0 W x � Ag �! R

and v�1w W fx 2 I0 W x � Bg �! R are monotone.

Then, there is a constant c ¤ c.n/ such that

nX

kD1

�nk

v.xnk/
� c

Z

I

w.x/

v.x/
dx : (21)

Proof By assumption (b) we have
nX

kD1

�nk

v.xnk/
�n

nX

kD1

w.xnk/

v.xnk/
�xnk. Moreover,

lim
n!1 sup

�ˇˇ
ˇ
ˇ
w.x/

v.x/
� w.xnk/

v.xnk/

ˇ
ˇ
ˇ
ˇ W x 2 Œxn;k�1; xnk�; xnk 2 ŒA;B�

�
D 0 ;

due to assumption (d). Hence,

w.xnk/

v.xnk/
�xnk � c

Z xnk

xn;k�1

w.x/

v.x/
dx 8 xnk 2 ŒA;B� with c ¤ c.n; k/ :

If v�1w W fx 2 I0 W x � Ag �! R is non-increasing, then

w.xnk/

v.xnk/
�xnk �

Z xnk

xn;k�1

w.x/

v.x/
dx 8 xnk < A; k � 1 :

If v�1w W fx 2 I0 W x � Ag �! R is non-decreasing, then we use assumption (c) and
get

w.xnk/

v.xnk/
�xnk �n;k

w.xnk/

v.xnk/
�xn;kC1 �

Z xn;kC1

xnk

w.x/

v.x/
dx 8 xnk < A; k � 1 ;

with (if necessary) an appropriately chosen xn;nC1 > xnn. For xnk > B we can
proceed analogously (noting that B can be chosen sufficiently large such that, for all
n � n0 , v�1w is monotone on the interval Œxn;k0�1; xn;k0 / containing B). Summarizing
we obtain (21). ut
It is obvious how we have to formulate Lemma 4 in case �nk > 0 and xnk 2 I0 are
given for k D k1.n/; : : : ; k2.n/.

3.2 The Case of an Exponential Weight on .0;1/

Consider the integral equation

ef .x/ �
Z 1

0

eK.x; y/w. y/ef . y/ dy Deg.x/ ; 0 < x <1; (22)
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whereeg 2 eCu.0;1/ and eK W .0;1/2 �! C are given functions and where w.x/ D
w˛;ˇ.x/ D e�x�˛�xˇ , ˛ > 0 , ˇ > 1 , u.x/ D ua;ı.x/ D .1 C x/ıŒw.x/�a , a � 0 ,
ı � 0 . Here we use the Gaussian rule w.r.t. the weight w.x/ D w˛;ˇ.x/ and study
the Nyström method

ef n.x/ �
nX

kD1
�w

nk
eK.x; xw

nk/
ef n.x

w
nk/ Deg.x/ ; 0 < x <1 : (23)

Let us check conditions (A)–(F), for which we choose

w1.x/ D ua0;ı0 .x/ WD .1C x/ı0 Œw.x/�a0 ; ı0; a0 2 R ;

and

u1.x/ D ua1;ı1 .x/ D .1C x/ı1 Œw.x/�a1 ; ı1 � 0 ; 0 < a1 � 1 ;

and assume that

(A2) K0.x; y/ WD u.x/eK.x; y/w1.y/ is continuous on Œ0;1�2,
(B2) 0 < aC a0 < 1 , ı C ı0 � 0 or aC a0 D 1 , ı C ı0 > 1,
(C2) 0 < a1 < 1 , ı1 � 0 or a1 D 1 , ı1 > 1,
(D2) a1 > a0 C a.

Note that, due to Lemma 4 (cf. [22, Prop. 3.8], for checking the conditions of
Lemma 4 see also [14, 19, 27])

nX

kD1

�w
nk

u1.xw
nk/
� c with c ¤ c.n/ (24)

if u�1
1 w 2 L1.0;1/, which is equivalent to assumption (C2). We also see that

(B2) implies .w1u/�1w 2 L1.0;1/. Condition (A2) together with (D2) guarantees
that u.x/eK.x; :/u�1 2 Cu1 .0;1/ for all x 2 Œ0;1�. Hence, we see that (A2)–(D2)
together with Corollary 1, (a) imply (A)–(F), and we can apply Corollary 2 together
with Corollary 1, (b) to (22) and (23) to get the following.

Proposition 4 Let w.x/ D e�x�˛�xˇ , ˛ > 0 , ˇ > 1, and u.x/ D .1C x/ıŒw.x/�a ,
a � 0 , ı � 0. Assume that (A2), (B2), (C2), and (D2) are fulfilled and that Eq. (22)
has only the trivial solution ineCu.0;1/ in case ofeg.x/ � 0. Then, foreg 2 eCu.0;1/
and all sufficiently large n, Eq. (23) has a unique solutionef �

n 2 eCu.0;1/ and

�
�ef � �ef �

n

�
�

u;1 � c sup
n
E2n�1

�
u.x/eK.x; :/ef ��

u1;1 W 0 � x � 1
o
;

whereef � 2 eCu.0;1/ is the unique solution of (22) and c ¤ c.n; g/.
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4 The Nyström Method Based on Product Integration
Formulas

Let again I0 and I be equal to .�1; 1/ , .0;1/, or .�1;1/ and Œ�1; 1� , Œ0;1�,
or Œ�1;1�, respectively. Here we discuss the numerical solution of the Fredholm
integral equation (9) by means of approximating the operator

fK W eCu.I0/ �! eCu.I0/ ; ; ef 7!
Z

I

eK.:; y/w. y/ef . y/ dy (25)

by

�fK nef
�
.x/ D

Z

I

eH.x; y/
u. y/

�
LneS.x; :/uef

�
. y/w. y/ dy ; x 2 I0 ; (26)

where eK.x; y/ D eH.x; y/eS.x; y/ and Lng is the algebraic polynomial of degree less
than n with .Lng/.xnk/ D g.xnk/ , k D 1; : : : ; n. Using the formula

.Lng/.x/ D
nX

kD1
g.xnk/`nk.x/ with `nk.x/ D

nY

jD1; j¤k

x � xnj

xnk � xnj
;

we conclude

�fK nef
�
.x/ D

nX

kD1

Z

I

eH.x; y/
u. y/

`nk. y/w. y/ dyeS.x; xnk/u.xnk/ef .xnk/ :

So, here we have kn D n. Furthermore, this means that, for Eq. (2) considered in
the space C.I/, the operator K W C.I/ �! C.I/ defined in (5) is approximated by
Kn W C.I/ �! C.I/ also given by (5), where K.x; y/ is defined in (13) and where
(cf. (6))

�nk.x/ D
Z

I
H.x; y/`nk. y/ dy S.x; xnk/ D �F

nk.H.x; ://S.x; xnk/ (27)

with H.x; y/ D u.x/eH.x; y/w.y/
u.y/

, S.x; y/ DeS.x; y/, and

�F
nk. f / D

Z

I
f . y/`nk. y/ dy : (28)
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In order to check, under which conditions the assumption (H3) is satisfied, we
should use
ˇ
ˇ̌
ˇ
ˇ

nX

kD1
�F

nk. f /g.xnk/�
Z

I
f . y/g. y/ dy

ˇ
ˇ̌
ˇ
ˇ
D
ˇ̌
ˇ
ˇ

Z

I
f . y/ Œ.Lng/. y/� g. y/� dy

ˇ̌
ˇ
ˇ

�

Z

I

ˇ
ˇ
ˇ̌ f . y/

u. y/

ˇ
ˇ
ˇ̌
p

dy

� 1
p

k.Lng � g/ukLq.I/ ;

(29)

where p > 1 , 1p C 1
q D 1, and u is an appropriate weight function.

4.1 The Case of Jacobi Weights

Consider the case where w.x/ D v˛;ˇ.x/ , ˛; ˇ > �1, and v.x/ D v�;ı.x/ , �; ı � 0.

Lemma 5 Let w D v˛;ˇ , ˛; ˇ > �1 , p > 1 , �0; ı0 � 0 , �0 > ˛
2
C 1

4
C 1

p � 1 ,

and ı0 >
ˇ

2
C 1

4
C 1

p � 1 . Then, condition (H3) is fulfilled for `nk.x/ D `w
nk.x/ D

nY

jD1; j¤k

x � x˛;ˇnj

x˛;ˇnk � x˛;ˇnj

in (28) as well as X0 D Lp
v��0;�ı0

and Cv D C, i.e. v � 1.

Proof First, X0 D Lp
v��0;�ı0

is continuously embedded in L1, since �0; ı0 � 0.
Second, we can use the fact (cf. [32, Theorems 1 and 2]) that there is a constant
c > 0 such that

�
�.g �L w

n g/v�0;ı0
�
�

q
� c En�1.g/1 for all g 2 C if and only if

v�0;ı0p
w'
2 Lq with '.x/ D p1 � x2, i.e.,

�0 � ˛
2
� 1
4
> �1

q
and ı0 � ˇ

2
� 1
4
> �1

q
:

Hence, (29) can be applied to all f 2 X0, all g 2 C, and u D v�0;ı0 . ut
Remark 3 We remark that Lemma 5 improves the result mentioned in [35, Sec-
tion 4.5], where �0 and ı0 are chosen as

max

�
˛

2
C 1

4
; 0

�
and max

�
ˇ

2
C 1

4
; 0

�
;

respectively.

As a consequence of Lemma 5 and of Lemma 2, we have to assume that H.x; :/
satisfies condition (H2) for X0 D Lp

v��0 ;�ı0
with appropriate �0; ı0 and p as in
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Lemma 5. The aim of the remaining part of this subsection is to weaken this
condition in a certain way.

By L logC L.a; b/ we denote the set of all measurable functions f W .a; b/ �! C

for which the integral 
C. f / WD
Z b

a
j f .x/j �1C logC j f .x/j� dx is finite. For f 2

L1.a; b/, by H b
a f we denote the Hilbert transform of f ,

�
H b

a f
�
.x/ WD

Z b

a

f . y/ dy

y � x
; a < x < b

(as Cauchy principal value integral). From [33, (1),(2)] we infer the following.

Lemma 6 Let �1 < a < b <1. If f 2 L logC L.a; b/ and g 2 L1.a; b/, then

�
�gH b

a f
�
�
1
C �� fH b

a g
�
�
1
� ckgk1
C. f / (30)

with c ¤ c. f ; g/ and

Z b

a
g.x/

�
H b

a f
�
.x/ dx D �

Z b

a
f .x/

�
H b

a g
�
.x/ dx : (31)

Let us use the abbreviations w.x/ D v˛;ˇ.x/ , pn.x/ D p˛;ˇn .x/ , xnk D x˛;ˇnk , and
�xnk D xnk � xn;k�1 , k D 1; : : : ; n, xn0 D �1, Lp D Lp.�1; 1/, and L logC L D
L logC L.�1; 1/, as well as H DH 1�1. The relations

(R1) j pn.x/j
p

w.x/'.x/ � c for x 2 An WD
�

xn1 � 1
2

;
xnn C 1
2


, c ¤ c.n/,

(R2)
1

ˇ
ˇ p0

n.xnk/
ˇ
ˇ �n;k �xnk

p
w.xnk/'.xnk/ (see [32, (14)]),

(R3) for a fixed summable function v W Œ�1; 1� �! C and a fixed ` 2 N,

nX

kD1
�xnk j p.xnk/v.xnk/j � c

Z

An

j p.x/v.x/j dx

for all polynomials p 2 P`n WD fP 2 P W deg P � `ng and with c ¤ c.n; p/

are well-known. Note that (R1) is a consequence of the estimate (see [8, Theo-
rem 1.1])

ˇ̌
p˛;ˇn .x/

ˇ̌ 
p
1 � xC 1

n

�˛C 1
2

p

1C xC 1

n

�ˇC 1
2

� c ¤ c.n; x/ ; (32)
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�1 < x < 1, and the relation �n;k�1 � �nk �n;k
1
n , k D 1; : : : ; nC 1, n 2 N, where

�nk 2 Œ0; �� and xnk D cos �nk, �n;nC1 D 0 (cf. [28, (5)]).

Lemma 7 Let w.x/ D v˛;ˇ.x/ and v.x/ D v�;ı.x/ be Jacobi weights satisfying

˛

2
C 1

4
> � � 0 and

ˇ

2
C 1

4
> ı � 0 : (33)

Then, there is a constant c ¤ c.n; f ; g/ such that, for all functions f W .�1; 1/ �! C

with fv 2 L1 and all g with
gp
w'
2 L logC L,

�
�gL w

n f
�
�
1
� c 
C



gp
w'

�
k fvk1 :

Proof Write
�
�gL w

n f
�
�
1
D J1 C J2 C J3, where

J1 D
�
�gL w

n f
�
�
L1.An/

; J2 D
�
�gL w

n f
�
�
L1
�
�1; xn1�1

2

	 ; J3 D
�
�gL w

n f
�
�
L1
�

xnnC1
2 ;1

	 :

Define

epn. y/ WD
(

pn. y/ W y 2 An ;

0 W y 62 An ;
and egn. y/ WD

(
g. y/ W y 2 An ;

0 W y 62 An ;

as well as hn.y/ WD sgn
�
g.y/

�
L w

n f
�
.y/
�
, and consider

J1 D
Z

An

hn. y/g. y/
�
L w

n f
�
. y/ dy D

nX

kD1

f .xnk/

p0
n.xnk/

Z

An

pn. y/

y � xnk
g. y/hn. y/ dy

.R2/� ck fvk1
nX

kD1
�xnk

p
w.xnk/'.xnk/

v.xnk/
jGn.xnk/j ;

where

Gn.x/ D
Z

An

pn. y/Qn. y/ � pn.x/Qn.x/

y � x

g. y/hn. y/

Qn. y/
dy
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for some polynomial Qn 2 P`n positive on An (` 2 N fixed). Then, due to Gn 2
P`nCn�1 and (R3),

J1 � ck fvk1
Z

An

jGn.x/j
p

w.x/'.x/

v.x/
dx

� ck fvk1
"Z 1

�1

p
w.x/'.x/

v.x/
.H epnegnhn/ .x/ k1n.x/ dx

C
Z 1

�1

p
w.x/'.x/

v.x/
jepn.x/jQn.x/



H

ghn

Qn

�
.x/ k2n.x/ dx

#

DW ck fvk1
�

J0
1 C J00

1

�
;

where k1n.x/ D sgn Œ.H epnegnhn/ .x/� and k2n.x/ D sgn

�

H

ghn

Qn

�
.x/


. With the

help of (31), (R1), and (30), we get

J0
1 D �

Z 1

�1
epn.x/egn.x/hn.x/



H

p
w'

v
k1n

�
.x/ dx

� c

�
�
�
�

gp
w'

H

p
w'

v
k1n

�
�
�
�
1

� c

�
�
�
�

p
w'

v

�
�
�
�1


C



gp
w'

�

and, by choosing Qn.x/ �n;x

p
w.x/'.x/ for x 2 An (see [26, Lemma 2.1]),

J00
1 � c

Z 1

�1

p
w.x/'.x/

v.x/



H

ghn

Qn

�
.x/ k2n.x/ dx

D �c
Z 1

�1
g.x/hn.x/

Qn.x/



H

p
w'

v
k2n

�
.x/ dx

� c

�
�
��

gp
w'

H

p
w'

v
k2n

�
�
��
1

� c

�
�
��

p
w'

v

�
�
��1


C



gp
w'

�
:

Now, let us estimate J3, the term J2 can be handled analogously. We get

J3 D
Z 1

xnnC1
2

hn. y/g. y/
�
L w

n f
�
. y/ dy D

nX

kD1

f .xnk/

p0
n.xnk/

Z 1

xnnC1
2

pn. y/

y � xnk
g. y/hn. y/ dy

.R2/� ck fvk1
nX

kD1
�xnk

p
w.xnk/'.xnk/

v.xnk/

Z 1

xnnC1
2

j pn. y/g. y/j
y � xnk

dy
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Note that, due to the assumptions on w and u, ˛ C 1
2
> 0. Hence, in view of (32),

j pn. y/jpw. y/'. y/

y � xnk
� c

1� xnk
; y 2

�
xnn C 1
2

; 1


;

since, for y 2
�

xnn C 1
2

; 1


, we have y � xnk � 1 � xnk

2
. We conclude

J3 � ck fvk1
nX

kD1

p
w.xnk/'.xnk/

v.xnk/.1 � xnk/

Z 1

xnn
2 C1

jg. y/j dy
p

w. y/'. y/

.R3/� ck fvk1
Z 1

�1

p
w.x/'.x/

.1 � x/v.x/
dx

�
�
�
�

gp
w'

�
�
�
�
1

� ck fvk1 
C



gp
w'

�
;

since
˛

2
C 1

4
� � � 1 > �1. ut

Lemma 8 Let v W I �! Œ0;1/ be a weight function as in Definition 1 and R W
I2 �! C be a function such that Rx 2 Cv for all x 2 I, where Rx.y/ D R.x; y/,
and such that R.x; y/v.y/ is continuous on I2. Then, for every n 2 N, there is a
function Pn.x; y/ such that Pn;x.y/ D Pn.x; y/ belongs to Pn for every x 2 I and
lim

n!1 sup
˚jR.x; y/� Pn.x; y/jv.y/ W .x; y/ 2 I2

� D 0.

Proof Let "n > 0 and, for every x 2 I, choose Pn;x 2 Pn such that

k.Rx � Pn;x/vk1 < En.Rx/v;1 C "n :

It remains to prove that lim
n!1 sup fEn.Rx/v;1 W x 2 Ig D 0. If this is not the case,

then there are an " > 0 and n1 < n2 < : : : such that Enk.Rxk/v;1 � 2" for certain
xk 2 I. Due to the compactness of I, we can assume that xk �! x� for k �! 1. In
virtue of the continuity of R.x; y/v.y/, we can conclude that k.Rxk � Rx�/vk1 < "

for all k � k0. Since k.Rxk � p/vk1 � 2" for all p 2 Pnk and k 2 N, we obtain, for
p 2 Pnk and k � k0,

2" � k.Rxk � p/vk1 � k.Rxk � Rx�/vk1Ck.Rx� � p/vk1 < "Ck.Rx� � p/vk1
and, consequently, k.Rx� � p/vk1 > " for all p 2 Pnk and k 2 N, in contradiction
to Rx� 2 Cv . ut
Let us come back to the integral operator K W CŒ�1; 1� �! CŒ�1; 1�,

.K f /.x/ D
Z 1

�1
K.x; y/f . y/ dy (34)
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and its product integration approximation Kn W CŒ�1; 1� �! CŒ�1; 1�,

.Kn f /.x/ D
nX

kD1
�nk.x/f .x

w
nk/ D

Z 1

�1
H.x; y/

�
L w

n Sx f
�
.x/ dx ; (35)

where Sx.y/ D S.x; y/,

K.x; y/ D H.x; y/S.x; y/ ; and �nk.x/ D S.x; xw
nk/

Z 1

�1
H.x; y/`w

nk. y/ dy :

(36)

Proposition 5 Consider (34) and (35) together with (36) in the Banach space
CŒ�1; 1�. If the Jacobi weights w D w˛;ˇ and v D v�;ı satisfy the conditions of
Lemma 7 and if

(a)
Hxp
w'
2 L logC L for all x 2 Œ�1; 1�, where Hx.y/ D H.x; y/,

(b) sup

�

C



Hxp
w'

�
W �1 � x � 1

�
<1,

(c) lim
x!x0


C



Hx � Hx0p
w'

�
D 0 for all x0 2 Œ�1; 1�,

(d) the map Œ�1; 1�2 �! C, .x; y/ 7! S.x; y/v.y/ is continuous with Sx 2 Cv for all
x 2 Œ�1; 1�,

then the operators Kn form a collectively compact sequence, which converges
strongly to the operator K .

Proof At first we show that Kn converges strongly to K . Indeed, for f 2 CŒ�1; 1�,
a function P.x; y/, which is a polynomial in y of degree less than n, and Px.y/ D
P.x; y/, we have

j.Kn f / .x/ � .K f / .x/j

�
Z 1

�1

ˇ
ˇH.x; y/

�
L w

n .Sx f � Px/
�
.x/
ˇ
ˇ dxC

Z 1

�1

jH.x; y/ ŒS.x; y/f . y/� P.x; y/�j dx

� c

�



C



Hxp
w'

�
C ��Hxv

�1
�
�
1


k.Sx f � Px/vk

1

;

where we took into account Lemma 7 and that condition (a) together with (33)
implies Hxv

�1 2 L1.�1; 1/. Moreover, sup
˚��Hxv

�1��
1
W �1 � x � 1� < 1 due to

condition (b). Thus,

kKn f �K fk1 � c sup
�1�x�1

k.Sx f � Px/vk1 ;
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which proves the desired strong convergence by referring to Lemma 8. A con-
sequence of this is that the set fkKn fk1 W f 2 CŒ�1; 1�; k fk1 � 1g is bounded.
Furthermore, for k fk1 � 1,

j.Kn f /.x/� .Kn f /.x0/j

�
Z 1

�1

ˇ̌
H.x; y/

�
L w

n .Sx � Sx0 /f
�
. y/
ˇ̌

dy

C
Z 1

�1

ˇ
ˇŒH.x; y/ � H.x0; y/�

�
L w

n Sx0 f
�
. y/
ˇ
ˇ dy

Lemma 7� c

�

C



Hxp
w'

�
k.Sx � Sx0 /vk1 C 
C



Hx �Hx0p

w'

�
kSx0vk1


:

Hence, due to (b)–(d), the set fKn f W f 2 CŒ�1; 1�; k fk1 � 1g is equicontinuous
in each point x0 2 Œ�1; 1�, and so equicontinuous on Œ�1; 1�. ut

4.2 The Case of an Exponential Weight on .0;1/

Here, in case w.x/ D w˛;ˇ.x/ D x˛e�xˇ , 0 < x <1, ˛ � 0, ˇ > 1
2
, we are going to

prove results analogous to Lemma 7 and Proposition 5. Note that quadrature rules
with such weights were introduced and investigated in [25]. Moreover, we mention
that in [20] there are considered numerical methods and presented numerical results
for Fredholm integral equations of second kind, basing on interpolation processes
w.r.t. the nodes xw

nk.
We again set pn.x/ D pw

n .x/ and xnk D xw
nk and, additionally, xn;nC1 D an, where

an D an.
p

w/ �n n
1
ˇ is the Mhaskar-Rahmanov-Saff number associated with the

weight
p

w.x/. Let us fix � 2 .0; 1/, set n� D fmin k 2 1; : : : ; n W xnk � �ang, and
define, for a function f W .0;1/! C,

L �
n f D

n�X

kD1
f .xnk/`

�
nk ; `�

nk.x/ D
pw

n .x/.an � x/

p0
n.xnk/.x � xnk/.an � xnk/

: (37)

Then, we have
�
L �

n f
�
.xnk/ D f .xnk/ for k D 1; : : : ; n� and

�
L �

n f
�
.xnk/ D 0 for

k D n� C1; : : : ; nC1, as well as, for�xnk D xnk� xn;k�1, k D 1; : : : ; n, xn0 D 0,

(R4) sup
˚ j pn.x/j

q
w.x/

pjan � xjx W 0 < x < 1� � c < 1 with a constant
c ¤ c.n/ (see [14, 19]),

(R5)
1

ˇ
ˇ p0

n.xnk/
ˇ
ˇ �n;k �xnk

q
w.xnk/

p
.an � xnk/xnk ; k D 1; : : : ; n (see [14, 19]),
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(R6) for fixed ` 2 N, there is a constant c ¤ c.n; p/ such that (see [18])

n�X

kD1
�xnk j p.xnk/j � c

Z �an

0

j p.x/j dx for all p 2 P`n :

Remark 4 The constant on the right-hand side of (30) does not depend on the
interval Œa; b�, i.e., we have, for �1 < a < b <1,

�
�gH b

a f
�
�
1
C �� fH b

a g
�
�
1
� ckgk1
C. f / (38)

for all g 2 L1.a; b/ and f 2 L logC L.a; b/, where c ¤ c. f ; g; a; b/.

Indeed, if c1 is the constant in (30) in case a D 0 and b D 1, then, by setting
x D �.t/ D .b � a/tC a and y D �.s/,
Z b

a

ˇ
ˇ
ˇ
ˇg.x/

Z b

a

f . y/ dy

y � x

ˇ
ˇ
ˇ
ˇ dxC

Z b

a

ˇ
ˇ
ˇ
ˇ f .x/

Z b

a

g. y/ dy

y� x

ˇ
ˇ
ˇ
ˇ dx

D .b � a/

"Z 1

0

ˇ
ˇ
ˇ
ˇ
ˇ
g.�.t//

Z 1

0

f .�.s// ds

s � t

ˇ
ˇ
ˇ
ˇ
ˇ

dtC
Z 1

0

ˇ
ˇ
ˇ
ˇ
ˇ
f .�.t//

Z 1

0

g.�.s// ds

s� t

ˇ
ˇ
ˇ
ˇ
ˇ

dt

#

� c1kgk1;Œa;b�

Z 1

0
j f .�.t//j

�
1C logC j f .�.t//j

	
dt D c1kgk1;Œa;b�
C;Œa;b�. f / :

Lemma 9 Let  .x/ D px, x � 0 and v.x/ D .1 C x/ı
p

w.x/, ı � 1
4
. Then,

there is a constant c ¤ c.n; f ; g/ such that, for all functions f W .0;1/ �! C with

fv 2 L1.0;1/ and all g with
gp
w 
2 L logC L.0;1/,

�
�gL �

n f
�
�
L1.0;1/

� c 
C



gp
w 

�
k fvk1 :

Proof Write
�
�gL �

n f
�
�
L1.0;1/

D �
�gL �

n f
�
�
L1.0;2an/

C ��gL �
n f
�
�
L1.2an;1/

DW J1 C J2.

Using (R5) we get, with hn.y/ D sgn
�
g.y/

�
L �

n f
�
.y/
�
,

J1 � ck fvk1
n�X

kD1
�xnk

p
w.xnk/ .xnk/

v.xnk/.an � xnk/
3
4

ˇ
ˇ
ˇ̌
Z 2an

0

pn. y/.an � y/g. y/hn. y/

y � xnk
dy

ˇ
ˇ
ˇ̌

D ck fvk1
n�X

kD1
�xnk

.xnk/
1
4

.1C xnk/ı.an � xnk/
3
4

ˇ̌
ˇ
ˇ

Z 2an

0

pn. y/.an � y/g. y/hn. y/

y � xnk
dy

ˇ̌
ˇ
ˇ

� c
k fvk1
.an/

3
4

n�X

kD1
�xnk jGn.xnk/j ;
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where

Gn.t/ D
Z 2an

0

pn. y/.an � y/Qn. y/� pn.t/.an � t/Qn.t/

y � t

g. y/hn. y/

Qn. y/
dy

and Qn 2 P`n a polynomial positive on .0; an/ (` 2 N fixed). Since Gn 2 P.`C1/n,
with the help of (R6) we can estimate

J1 � ck fvk1
.an/

3
4

�Z 2an

0

ˇ
ˇ
ˇ
�
H 2an
0 pn.an � �/ghn

	
.x/
ˇ
ˇ
ˇ dx

C
Z 2an

0

ˇ̌
ˇ
ˇ pn.x/.an � x/Qn.x/



H 2an
0

ghn

Qn

�
.x/

ˇ̌
ˇ
ˇ dx


DW J0

1 C J00
1 :

Defining k1n.x/ D sgn
h�

H 2an
0 pn.am � �/ghn

	
.x/
i

and using (31) and (R4), we

obtain

J0
1 �

ck fvk1
.an/

3
4

Z 2an

0

pn.x/.an � x/g.x/hn.x/
�
H 2an
0 k1n

	
.x/ dx

� ck fvk1
Z 2an

0

jg.x/j
p

w.x/ .x/

ˇ̌
ˇ
�
H 2an
0 k1n

	
.x/
ˇ̌
ˇ dx

(38)� ck fvk1
C



gp
w 

�
:

In order to estimate J00
1 , we choose Qn 2 P`n such that Qn.x/ �n;x

p
w.x/ .x/ for

x 2 .0; 2an/ (see [29]). Then, due to (R4) and (31),

J00
1 � ck fvk1k2n.x/



H 2an
0

ghn

Qn

�
.x/ dx

� ck fvk1
Z 2an

0

ˇ
ˇ
ˇ̌
ˇ

g.x/
p

w.x/ .x/

�
H k2n

�
.x/

ˇ
ˇ
ˇ̌
ˇ

dx
(38)� ck fvk1
C



gp
w 

�
;

where k2n.x/ D sgn
h�

H 2an
0

ghn
Qn

	
.x/
i
. Finally, let us consider J2. Again taking into

account (R5), we get

J2 � ck fvk
1

n�X

kD1

�xnk

p
w.xnk/ .xnk/

v.xnk/.an � xnk/
3
4

ˇ̌
ˇ
ˇ

Z
1

2an

pn.y/.an � y/g.y/hn.y/

y � xnk
dy

ˇ̌
ˇ
ˇ

D ck fvk
1

n�X

kD1

�xnk
.xnk/

1
4

.1C xnk/ı.an � xnk/
3
4

ˇ̌
ˇ
ˇ

Z
1

2an

pn.y/.an � y/g.y/hn.y/

y � xnk
dy

ˇ̌
ˇ
ˇ

� ck fvk
1

.an/
3
4

n�X

kD1

�xnk

Z
1

2an

jpn.y/j
q

w.y/
p

y.y� an/

.an/
1
4



y� an

y� xnk

� 3
4 jg.y/j
p

w.y/ .y/
dy ;
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where we also used that y�xnk � 2an�an D an. Hence, in virtue of



y � an

y � xnk

� 3
4

� 1

for y > 2an,
n�X

kD1
�xnk � an, and (R1),

J2 � ck fvk1
Z 1

2an

jg. y/j
p

w. y/ . y/
dy � ck fvk1
C



gp
w 

�
:

ut
Let us apply Lemma 9 to the integral operator K W CŒ0;1� �! CŒ0;1�,

.K f /.x/ D
Z 1

0

K.x; y/f . y/ dy (39)

and its product integration approximation Kn W CŒ0;1� �! CŒ0;1�,

.Kn f /.x/ D
n�X

kD1
��

nk.x/f .x
w
nk/ D

Z 1

0

H.x; y/
�
L �

n Sx f
�
.x/ dx ; (40)

where w.x/ D w˛;ˇ.x/ D x˛e�xˇ , ˛ > �1, ˇ > 1
2
, where L �

n is defined in (37), and
where Sx.y/ D S.x; y/,

K.x; y/ D H.x; y/S.x; y/ ; ��
nk.x/ D S.x; xw

nk/

Z 1

0

H.x; y/`�
nk. y/ dy : (41)

Proposition 6 Consider (39) and (40) together with (41) in the Banach space
CŒ0;1�. If v.x/ D .1C x/ı

p
w.x/ with ı � 1

4
and if

(a)
Hxp
w 
2 L logC L.0;1/ for all x 2 Œ0;1�, where Hx.y/ D H.x; y/,

(b) sup

�

C



Hxp
w'

�
W 0 � x � 1

�
<1,

(c) lim
d.x;x0/!0


C



Hx �Hx0p
w 

�
D 0 for all x0 2 Œ0;1�,

(d) the map Œ0;1�2 �! C, .x; y/ 7! S.x; y/v.y/ is continuous with Sx 2 Cv for all
x 2 Œ�1; 1�,

then the operators Kn form a collectively compact sequence, which converges
strongly to the operator K .

Proof We proceed in an analogous way as in the proof of Proposition 5. For f 2
CŒ0;1� and a function P.x; y/ D Px.y/, which is a polynomial in y of degree less
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than n, we have

j.Kn f / .x/� .K f / .x/j

�
Z 1

�1

ˇ
ˇH.x; y/

�
L �

n .Sx f � Px/
�
.x/
ˇ
ˇ dxC

Z 1

0

ˇ̌
ˇ
ˇ
ˇ
ˇ
H.x; y/

nC1X

kDn�C1
Px.x

w
nk/`

�
nk.y/

ˇ̌
ˇ
ˇ
ˇ
ˇ
dy

C
Z 1

�1
jH.x; y/ ŒS.x; y/f .y/� P.x; y/�j dx DW J1 C J1 C J3 ;

By Lemma 9,

J1 � c 
C



Hxp
w'

�
k.Sx f � Px/vk1 :

Condition (a) together with ı � 1
4

implies Hxv
�1 2 L1.�1; 1/, and hence

J3 �
�
�Hxv

�1��
1
k.Sx f � Px/vk1 :

Consequently, since we have also sup
˚��Hxv

�1��
1
W �1 � x � 1� <1 by condition

(b), we get

J1 C J3 � c sup
�1�x�1

k.Sx f � Px/vk1 : (42)

To estimate J2, we recall that (see [27, (2.3)])

kPnukL1.xn� ;1/ � c e�ec n kPnuk1 for Pn 2 Pm.n/

(m.n/ < n, lim
n!1 m.n/ D 1) for some positive constants c ¤ c.n;Pn/ andec ¤

ec.n;Pn/ and (cf. [23, pp. 362,373])

nC1X

kDn�C1

v.x/`�
nk.x/

v.xw
nk/

� c n�

for some � > 0 and c ¤ c.n; x/. Thus,

J2 � c n�
��Hxv

�1��
1
kPxvkL1.xn� ;1/ � cn�e�ec n

��Hxv
�1��

1
kPxvk1 ;

where Px 2 Pm.n/ can be chosen in such a way that sup fkPxvk1 W x 2 Œ0;1�g <
1 (in view of Lemma 8). Hence, together with (42) we conclude the strong
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convergence of Kn to K . Consequently, the set

fkKn fk1 W f 2 CŒ0;1�; k fk1 � 1g

is bounded. Furthermore, for k fk1 � 1,

j.Kn f /.x/� .Kn f /.x0/j

�
Z 1

�1

ˇ
ˇH.x; y/

�
L �

n .Sx � Sx0 /f
�
. y/
ˇ
ˇ dy

C
Z 1

�1

ˇ̌
ŒH.x; y/ � H.x0; y/�

�
L �

n Sx0 f
�
. y/
ˇ̌

dy

Lemma 9� c

�

C



Hxp
w'

�
k.Sx � Sx0 /vk1 C 
C



Hx �Hx0p

w'

�
kSx0vk1


:

Hence, due to (b)–(d), the set fKn f W f 2 CŒ�1; 1�; k fk1 � 1g is equicontinuous
in each point x0 2 Œ0;1�, and so equicontinuous on Œ0;1�. ut
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Properties and Numerical Solution
of an Integral Equation to Minimize
Airplane Drag

Peter Junghanns, Giovanni Monegato, and Luciano Demasi

Dedicated to Ian H. Sloan on the occasion of his 80th birthday.

Abstract In this paper, we consider an (open) airplane wing, not necessarily
symmetric, for which the optimal circulation distribution has to be determined. This
latter is the solution of a constraint minimization problem, whose (Cauchy singular
integral) Euler-Lagrange equation is known. By following an approach different
from a more classical one applied in previous papers, we obtain existence and
uniqueness results for the solution of this equation in suitable weighted Sobolev
type spaces. Then, for the collocation-quadrature method we propose to solve the
equation, we prove stability and convergence and derive error estimates. Some
numerical examples, which confirm the previous error estimates, are also presented.
These results apply, in particular, to the Euler-Lagrange equation and the numerical
method used to solve it in the case of a symmetric wing, which were considered in
the above mentioned previous papers.

1 Introduction

In [3], the authors have studied the induced drag minimization problem for an open
symmetric airplane wing. In particular, by applying a classical variational approach,
they have derived the associated Euler-Lagrange (integral) equation (ELE) for
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the unknown wing circulation distribution. In its final form, this equation is a
Cauchy singular one, for which existence and uniqueness of its solution have
been assumed. For the solution of this equation, the authors have proposed a
discrete polynomial collocation method, based on Chebyshev polynomials and a
corresponding Gaussian quadrature. Although the convergence of this method has
been confirmed by an intensive numerical testing, no error estimates have been
obtained.

Later, in [4], by using an alternative (weakly singular) formulation of the above
ELE of Symm’s type, existence and uniqueness of the optimal circulation has been
proved under the assumption that the curve transfinite diameter is different from 1.
The authors have however conjectured that this property should hold without this
restriction.

In this paper, we consider an open wing (also called lifting curve), not necessarily
symmetric, and examine the associated Euler-Lagrange equation. The main physical
quantities and formulas, that are needed to describe the minimization problem, are
briefly recalled in Sect. 2. Then, in Sect. 3, by following an approach different from
the more classical one applied in [4], we obtain existence and uniqueness results in
suitable weighted Sobolev type spaces, without requiring the above mentioned curve
restriction. In Sect. 3, we derive an error estimate for the collocation-quadrature
method we use to solve the ELE. In the case of a symmetric lifting line, the method
naturally reduces to that proposed in [3]. Finally, in the last section, to test the
efficiency of the proposed method and the error estimate previously obtained for
it, we apply the method to four different open curves.

2 The Drag Minimization Problem

Following [3], we consider a wing defined by a single open lifting line ` in
the cartesian y-z plane. This is represented by a curve `, having parametric

representation  .t/ D �
 1.t/  2.t/

�T
, j 0.t/j ¤ 0, t 2 Œ�1; 1�. The corresponding

arc length abscissa � is then defined by

�.t/ D
Z t

0

ˇ
ˇ 0.s/

ˇ
ˇ ds; (1)

where, here and in the following, j�j denotes the Euclidean norm. This abscissa
will run from �.�1/ D �b to �.1/ D a for some positive real numbers a and b.
Moreover, �.0/ D 0.

For simplicity, it is also assumed that the lifting line ` is sufficiently smooth. That
is, it is assumed that i.t/; i D 1; 2; are continuous functions together with their first
m � 2 derivatives on the interval Œ�1; 1� (i.e., i 2 CmŒ�1; 1�). A point on the lifting

line, where the aerodynamic forces are calculated, is denoted by r D �
y z
�T 2 `,

where r D r.�/ D � y.�/ z.�/
�T D � 1.t/  2.t/

�T
in correspondence with (1).
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Using the arc length abscissa, the expressions of the wing lift L and induced drag
Dind are obtained in terms of the (unknown) circulation � :

L D L.� / D �
1V1
Z a

�b
	y.�/� .�/ d� (2)

Dind D Dind.� / D �
1
Z a

�b
vn.�/� .�/d�: (3)

The quantities 
1 and V1 are given positive constants which indicate the density
and freestream velocity, respectively. Further, 	y.�/ D y0.�/ is the projection on
the y-axis of the unit vector tangent to the lifting line, while vn is the so-called
normalwash. This latter has the representation

vn .�/ D 1

4�

Z a

�b
� � 0 .�/ Y .�; �/ d�; �b < � < a; (4)

where

Y .�; �/ D � d

d�
ln jr .�/ � r .�/j : (5)

The function Y .�; �/, which is the kernel of the associated integral transform, has
a singularity of order 1 when � D �, and the integral in (4) is a Cauchy principal
value one.

The problem we need to solve is the minimization, in a suitable space, of the
functional Dind.� /, subject to the prescribed lift constraint

L.� / D Lpres: (6)

In the next sections we will go back to the interval Œ�1; 1�. For this, we use the
notations

�0.t/ WD � .�.t//; r0.t/ WD r.�.t// D  .t/;

and

Y0.t; s/ WD � d

dt
ln jr0.s/� r0.t/j (7)

for t; s 2 Œ�1; 1�, as well as the respective relations

� 0
0 .t/ D � 0.�.t//�0.t/;  0

1.t/ D y0.�.t//�0.t/; Y0.t; s/ D Y.�.t/; �.s//�0.t/:
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Condition (6) then takes the new form

Z 1

�1
 0
1.t/�0.t/ dt D �0 WD � Lpres


1V1
: (8)

Moreover, from (3) and (4) we get

Dind D Dind.�0/ D �
1
4�

Z 1

�1

Z 1

�1
� Y0.t; s/�

0
0 .s/ ds�0.t/ dt: (9)

3 The Euler-Lagrange Equation and Its Properties

For a Jacobi weight 
.t/ WD v˛;ˇ.t/ D .1 � t/˛.1 C t/ˇ with ˛; ˇ > �1, let us
recall the definition of the Sobolev-type space (cf. [1]) L2;r
 D L2;r
 .�1; 1/, r � 0.
For this, by L2
 D L2;0
 we denote the real Hilbert space of all (classes of) quadratic
summable (w.r.t. the weight 
.t/) functions f W .�1; 1/ �! R equipped with the
inner product

h f ; gi
 WD
Z 1

�1
f .t/g.t/
.t/ dt

and the norm k fk
 D
ph f ; f i
. In case ˛ D ˇ D 0, i.e., 
 � 1, we write h f ; gi and

k fk instead of h f ; gi
 and k fk
, respectively. If
˚

p
n W n 2 N0

�
denotes the system

of orthonormal (w.r.t. 
.t/) polynomials p
n.t/ of degree n with positive leading
coefficient, then

L2;r
 WD
(

f 2 L2
 W
1X

nD0
.1C n/2r

ˇ
ˇh f ; p
ni


ˇ
ˇ2 <1

)

:

Equipped with the inner product

h f ; gi
;r D
1X

nD0
.1C n/2rh f ; p
ni
hg; p
ni


and the norm k fk
;r WD
ph f ; f i
;r, the set L2;r
 becomes a Hilbert space. Note that,

in cases ˛ D ˇ D � 1
2

and ˛ D ˇ D 1
2
, the spaces L2;r
 were also introduced in [6,

Section 1] with a slightly different notation. Let '.t/ D p1 � t2 and define

V WD
n

f D 'u W u 2 L2;1'
o

together with h f ; giV WD h'�1f ; '�1gi';1 and k fkV WD
�
�'�1f

�
�
';1

.
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In the following, we denote by D the operator of generalized differentiation. An
important property of this operator with respect to the L2;r
 spaces is recalled in the
next lemma, where we have set 
.1/.t/ D .1 � t/1C˛.1C t/1Cˇ D 
.t/.1 � t2/.

Lemma 1 ([2], Lemma 2.7; cf. also [1], Theorem 2.17) For r � 0, the operator
D W L2;rC1


 �! L2;r

.1/

is continuous.

Lemma 2 For f 2 V, we have f 2 CŒ�1; 1� with f .˙1/ D 0.

Proof Let f D 'g with g 2 L2;1' . Due to Lemma 1, Dg 2 L2
'3

. Hence, for 0 < t < 1,

jg.t/j D
ˇ
ˇ
ˇ
ˇg.0/C

Z t

0

.Dg/.s/ ds

ˇ
ˇ
ˇ
ˇ � jg.0/j C

sZ t

0

.1� s2/� 3
2 ds kDgk'3

and

Z t

0

.1� s2/� 3
2 ds �

Z t

0

.1 � s/� 3
2 ds D 2



1p
1 � t

� 1
�
:

This implies f .1/ D limt!1�0 '.t/g.t/ D 0. Analogously, one can show that also
f .�1/ D 0 holds for f 2 V. ut

Now, the problem we aim to solve (cf. [3]) is the following:

(P) Find a function �0 2 V, which minimizes the functional .cf. (9)/

F.�0/ WD �
Z 1

�1

Z 1

�1
� Y0.t; s/�

0
0 .s/ ds�0.t/ dt

subject to the condition .cf. (8)/ h 0
1; �0i D �0.

If we define the linear operator

.A f / .t/ D � 1
�

Z 1

�1
� Y0.t; s/f

0.s/ ds; �1 < s < 1; (10)

then the problem can be reformulated as follows:

(P) Find a function �0 2 V, which minimizes the functional F.�0/ WD hA �0; �0i
on V subject to the condition h 0

1; �0i D �0.
The formulation of this problem is correct, which can be seen from the following
lemma.

Lemma 3 If  j 2 CmŒ�1; 1� for some integer m � 2 and j 0.t/j ¤ 0 for t 2
Œ�1; 1�, then the function Y0.t; s/ has the representation

Y0.t; s/ D 1

s � t
C K.t; s/; (11)
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where the function K W Œ�1; 1�2 �! R is continuous together with its partial

derivatives
@jCkK.t; s/

@tj@sk
, k; j 2 N0, jC k � m � 2.

Proof Note that, by definition,

Y0.t; s/ D Œ 1.s/�  1.t/� 0
1.t/C Œ 2.s/ �  2.t/� 0

2.t/

Œ 1.s/�  1.t/�2 C Œ 2.s/ �  2.t/�2 :

Hence,

K.t; s/ D Y0.t; s/ � 1

s � t
D ˝.t; s/

�.t; s/
;

where

˝.t; s/ D G1.t; s/g1.t; s/C G2.t; s/g2.t; s/; �.t; s/ D Œg1.t; s/�2 C Œg2.t; s/�2;

gj.t; s/ D  j.s/�  j.t/

s� t
D
Z 1

0

 0
j

�
sv C t.1 � v/� dv

Gj.t; s/ D
 0

j .t/ � gj.t; s/

s � t
D
Z 1

0

 00
j

�
sv C t.1 � v/�.1 � v/ dv;

and the assertion of the lemma follows by taking into account �.t; s/ ¤ 0 for all
.t; s/ 2 Œ�1; 1�2. ut
Lemma 4 The operator A W V �! L2' is a linear and bounded one and,
consequently, hA f ; f i is well defined for all f 2 V.

Proof Let Un D p'n and Tn D p'
�1

n . Then, for f 2 V,

kD fk2' D
1X

nD0

ˇ̌hD f ; '�1Tni'
ˇ̌2 D

1X

nD0
jhD f ;Tnij2 D

1X

nD1
jh f ; n Un�1ij2

D
1X

nD0
.1C n/2

ˇ
ˇh'�1f ;Uni'

ˇ
ˇ2 D ��'�1f

�
�2
';1
D k fk2V;

i.e., D f 2 L2' . By relation (11), the operator A defined in (10) can be written in the
form A D �.S CK /D with

.S f /.t/ WD 1

�

Z 1

�1
� f .s/ ds

s � t
; .K f /.t/ D 1

�

Z 1

�1
K.t; s/f .s/ ds; �1 < t < 1:
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It is well known that the Cauchy singular integral operator S W L2' �! L2' is
bounded [5, Theorem 4.1] and that K W L2' �! L2' is compact. Consequently, for
f D 'u 2 V we have that hA f ; f i D hA f ; ui' is a finite number, since both A f
and u belong to L2' . ut

In the following lemma we give a representation of the operator A defined
in (10), which is crucial for our further investigations. From this representation,
it is seen that the operator A is an example of a hypersingular integral operator
in the sense of Hadamard (cf., for example, the representation of Prandtl’s integro-
differential operator in [2, Section 1], where r0.t/ D t and B is equal to the Cauchy
singular integral operator).

Lemma 5 For all f 2 V, the relation

A f D DBf (12)

holds true, where

.Bf /.t/ D 1

�

Z 1

�1
ln jr0.s/� r0.t/j f 0.s/ ds (13)

and where D is the operator of generalized differentiation already used in the proof
of Lemma 2.

Proof Since D W V �! L2' is an isometrical mapping (cf. the proof of Lemma 4),
it suffices to show that �.S CK /g D DB0g is valid for all g 2 L2' , where

.B0g/ .t/ D 1

�

Z 1

�1
ln jr0.s/ � r0.t/j g.s/ ds:

Since

Z0.t; s/ WD ln jr0.s/� r0.t/j D ln js � tj C K0.t; s/ (14)

with a function K0 W Œ�1; 1�2 �! R which is continuous together with
@K0.t; s/

@t
D

�K.t; s/, the operator B0 W L2' �! L2;1
'�1 is bounded (see [7, Section 5] and [1,

Lemma 4.2]). Moreover, D W L2;1
'�1 �! L2' is continuous [2, Lemma 2.7], such that

on the one hand, the operator DB0 W L2' �! L2' is linear and bounded. On the
other hand, the operator S CK W L2' �! L2' is also linear and bounded. Thus, it
remains to prove that

Z 1

�1
� Y0.t; s/g.s/ ds D � d

dt

Z 1

�1
Z0.t; s/g.s/ ds; �1 < t < 1 (15)
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for all g from a linear and dense subset of L2' . For this, let g W Œ�1; 1� �! R be a
continuously differentiable function and consider

 0.t/ WD
Z 1

�1
Z0.t; s/g.s/ ds D lim

"!C0 ".t/

with  ".t/ WD

Z t�"

�1
C
Z 1

tC"

�
Z0.t; s/g.s/ ds. For every t 2 .�1; 1/, it follows

 0
".t/ D �

 Z t�"

�1
C
Z 1

tC"

!

Y0.t; s/g.s/ dsC Z0.t; t � "/g.t � "/� Z0.t; tC "/g.tC "/

D �
 Z t�"

�1
C
Z 1

tC"

!

Y0.t; s/g.s/ dsC ln "Œg.t � "/� g.tC "/�

C K0.t; t � "/g.t � "/ � K0.t; tC "/g.tC "/

�! �
Z 1

�1
� Y0.t; s/g.s/ ds if " �! C0;

where, as before, the last integral is defined in the Cauchy principal value sense. For
every ı 2 .0; 1/, this convergence is uniform w.r.t. t 2 Œ�1C ı; 1 � ı�. Indeed, for
0 < "1 < "2 < ı and for

g".t/ WD

Z t�"

�1
C
Z 1

tC"

�
Y0.t; s/g.s/ ds;

we have

g"1.t/ � g"2.t/ D
Z t�"1

t�"2
Y0.t; s/g.s/ dsC

Z tC"2

tC"1
Y0.t; s/g.s/ ds

D
Z t�"1

t�"2
Y0.t; s/Œg.s/ � g.t/� dsC

Z tC"2

tC"1
Y0.t; s/Œg.s/ � g.t/� ds

C g.t/

�Z t�"1

t�"2
Y0.t; s/ dsC

Z tC"2

tC"1
Y0.t; s/ ds



D

Z t�"1

t�"2
C
Z tC"2

tC"1

�
Œ1C .s � t/K.t; s/�

g.s/� g.t/

s � t
ds

Cg.t/


Z t�"1

t�"2
C
Z tC"2

tC"1

�
K.t; s/ ds:
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Consequently,

jg"1.t/ � g"2.t/j � M."2 � "1/

with MD2 .M1 kg0k1 CM2kgk1/, M1D1Cmax fj.s� t/K.t; s/j W �1 � s; t � 1g,
and M2 D max fjK.t; s/j W �1 � s; t � 1g. This uniform convergence implies that
 0.t/ is differentiable for all t 2 .�1; 1/, where

 0
0.t/ D

d

dt

�
lim
"!C0  ".t/


D lim

"!C0 
0
".t/ D �

Z 1

�1
� Y0.t; s/g.s/ ds

and  0
0.t/ D

d

dt

Z 1

�1
Z0.t; s/g.s/ ds, and (15) is proved. ut

Lemma 6 The operator A W V �! L2' is symmetric and positive, i.e. 8 f ; g 2 V,
hA f ; gi D h f ;A gi and, 8 f 2 V n f0g, hA f ; f i > 0.

Proof Using relation (12), Lemma 2, partial integration, and Fubini’s theorem, we
get, for all f ; g 2 V,

hA f ; gi D � 1
�

Z 1

�1

Z 1

�1
f 0.s/ ln jr0.s/ � r0.t/j ds g0.t/ dt D h f ;A gi: (16)

Hence,

hA f ; f i D 1

�

Z 1

�1

Z 1

�1
ln

1

jr0.s/ � r0.t/j f 0.s/f 0.t/ ds dt

corresponds to the logarithmic energy of the function f 0, where
Z 1

�1
f 0.t/ dt D 0

due to Lemma 2. Consequently (see [8], Section I.1, and in particular Lemma 1.8),
hA f ; f i is positive if f 0 ¤ 0 a.e. Hence, hA f ; f i D 0 implies f 0.t/ D 0 for almost
all t 2 .�1; 1/ and, due to f .˙1/ D 0, also f .t/ D 0 for all t 2 Œ�1; 1�. ut

For � 2 R, define the (affine) manifold V� WD
˚

f 2 V W h f ;  0
1i D �

�
. The

following result then holds.

Proposition 1 The element � �
0 2 V�0 is a solution of Problem (P) if and only if

there is a number ˇ 2 R such that

A � �
0 D ˇ 0

1: (17)

This solution is unique, if it exists.
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Proof Assume that � �
0 2 V�0 and F.� �

0 / D min
˚

F.�0/ W �0 2 V�0
�
. This implies

G0.0/ D 0 for G.˛/ D F.� �
0 C ˛f / and for all f 2 V0 n f0g. Since

G.˛/ D F.� �
0 /C 2˛hA � �

0 ; f i C ˛2h f ; f i (18)

and

G0.˛/ D 2hA � �
0 ; f i C 2˛h f ; f i;

this condition gives hA � �
0 ; gi' D 0 for all g 2 L2;1' with hg;  0

1i' D 0, which is
equivalent to (17). On the other hand, if � �

0 2 V�0 and ˇ 2 R fulfil (17) and if
f 2 V0 n f0g, then we get from (18) for ˛ D 1

F.� �
0 C f / D F.� �

0 /C 2hA � �
0 ; f i C h f ; f i

D F.� �
0 /C 2hA � �

0 � ˇ 0
1; f i C h f ; f i

D F.� �
0 /C h f ; f i > F.� �

0 /;

which shows the uniqueness of the solution (if it exists). ut
Remark 1 Using relation (12), Eq. (17) can be written equivalently as

B� �
0 D ˇ 1 C �; � �

0 2 V�0 ; ˇ; � 2 R: (19)

Moreover, by applying partial integration to the integral in (13) and taking into
account f .˙1/ D 0 for f 2 V (see Lemma 2), we get

.Bf / .t/ D lim
"!C0

1

�


Z t�"

�1
C
Z 1

tC"

�
ln jr0.s/ � r0.t/j f 0.s/ ds

D lim
"!C0

1

�

�
f .t � "/ ln jr0.t � "/� r0.t/j � f .t C "/ ln jr0.tC "/� r0.t/j

�

� lim
"!C0

1

�


Z t�"

�1
C
Z 1

tC"

�
f .s/

d

ds
ln jr0.s/� r0.t/j ds

(7)D 1

�

Z 1

�1
� Y0.s; t/f .s/ ds

Hence, we obtain the identity

Bf D A0f 8 f 2 V; (20)
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where (cf. (11))

.A0f /.t/ D 1

�

Z 1

�1
� Y0.s; t/f .s/ ds D �.S f /.t/C .K0f /.t/

with

.K0f /.t/ D 1

�

Z 1

�1
K.s; t/f .s/ ds: (21)

Note that Eq. (17), hence its equivalent representation one obtains from (19)
and equality (20), defines the Euler-Lagrange equation for the drag minimization
problem.

The following Lemma is a consequence of the well-known relation

S 'p'n D �p'
�1

nC1; n 2 N0: (22)

Lemma 7 The operators S W L2
'�1 �! L2

'�1;0
and S W 'L2;r' �! L2;r

'�1;0
, r > 0,

are invertible, where L2
;0 D
n

f 2 L2
 W h f ; 1i
 D 0
o

and L2;r
;0 D L2;r
 \ L2
;0.

In the following proposition we discuss the solvability of (19).

Proposition 2 Assume that  j 2 C3Œ�1; 1�. Then,

(a) the operator A0 W L2'�1 �! L2
'�1 has a trivial null space, i.e.,

N.A0/ D
n

f 2 L2
'�1 W A0f D 0

o
D f0gI

(b) if  1.t/ is not a constant function, then Eq. (19) possesses a unique solution
.� �

0 ; ˇ; �/ 2 V�0 � R
2;

(c) if  1.t/ is not a constant function, then Problem (P) is uniquely solvable.

Proof Let f0 2 L2
'�1 and A0f0 D 0. Hence, S f0 D K0f0 2 C1Œ�1; 1� 	 L2;1

'�1 , due

to Lemma 3. By Lemma 7, we get K0f0 2 L2;1
'�1;0

and, consequently, f0 2 'L2;1' D
V. On the other hand, due to (12) and (20) (cf. also the proof of Lemma 6), we have

0 < hA f ; f i D �hA0f ;D f i 8 f 2 V n f0g:

This implies f0 D 0, and (a) is proved.
Since, by Lemma 7, the operator S W L2

'�1 �! L2
'�1 is Fredholm with index�1

and since, due to the continuity of the function K.s; t/ (cf. Lemma 3), the operator
K0 W L2'�1 �! L2

'�1 is compact, also the operator A0 D �S CK0 W L2'�1 �!
L2
'�1 is Fredholm with index �1. Hence, we conclude that the codimension of the



686 P. Junghanns et al.

image

R.A0/ D
n
A0f W f 2 L2

'�1

o

is equal to 1. Hence, the intersection W1 WD R.A0/ \ fˇ 1 C � W ˇ; � 2 Rg is at
least one-dimensional. If this dimension is equal to 1 and if W1 D span f 0g, then
there is a unique �0 2 L2

'�1 , such that A0�0 D  0. Again using Lemma 3, we

get S �0 D K0�0 �  0 2 C1Œ�1; 1� and, consequently, �0 2 V. We show that
h�0;  0

1i ¤ 0. If this is not the case, then, because of Proposition 1 and Remark 1,
Problem (P) has only a solution for �0 D 0. But, this (unique) solution is identically

zero. This implies �0 D 0 in contradiction to  0 ¤ 0. Hence, � �
0 D

�0

h�0;  0
1i
�0 is

the solution of (19) with ˇ 1 C � D �0

h�0;  0
1i
 0.

To complete the proof of (b), finally we show that dimW1 D 2 is not possible.
Indeed, in that case W1 D span f 1; 0g with  0.t/ D 1, and we have (cf. the
previous considerations) two linearly independent solutions � j

0 2 V of A �
j
0 D  j

with h� j
0 ;  

0
1i ¤ 0, j D 0; 1. Hence, � j;�

0 D
�0

h� j
0 ;  

0
1i
�

j
0 , j D 1; 2, are two linearly

independent solutions of (19) and, in virtue of Proposition 1, also of Problem (P) in
contradiction to the uniqueness of a solution of (P).

Assertion (c) is an immediate consequence of (b), together with Proposition 1
and Remark 1. ut

In the case of the wing problem examined in [3] and [4], where the line ` is
symmetric in the x � z plane with respect to the z-axis and where it cannot be
a vertical segment, we note that the problem formulation (19) can be simplified
significantly. In particular, for it, the following result holds (see also the associated
numerical method, described at the end of the next section).

Corollary 1 If the lifting line ` is symmetric w.r.t. the z-axis, i.e.,  1.�t/ D � 1.t/
and  2.�t/ D  2.t/, and if  1.t/ is not constant, then the unique solution � �

0 2 V
of Problem (P) is an even function. Moreover, in (19) we have � D 0.

Proof In virtue of Proposition 1, Remark 1, and Proposition 2, there exist unique
ˇ; � 2 R such that .� �

0 ; ˇ; �/ 2 V�0 � R
2 is the unique solution of (19). By

assumption, Z0.�t;�s/ D Z0.t; s/ (cf. (14)). Set g.t/ D � �
0 .�t/. From (19) it

follows

ˇ 1.t/ � � D �ˇ 1.�t/ � � D � 1
�

Z 1

�1
Z0.�t; s/.� �

0 /
0.s/ ds

D � 1
�

Z 1

�1
Z0.�t;�s/.� �

0 /
0.�s/ ds D 1

�

Z 1

�1
Z0.t; s/g

0.s/ ds;

which means that .g; ˇ;��/ D .� �
0 ; ˇ; �/. ut
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Remark 2 Note that � D 0 implies that the problem defined by (19) can be
reformulated as follows: Find � �

0 2 V and ˇ 2 R such that

B� �
0 D ˇ 1;

˝
 0
1; �

�
0

˛ D �0: (23)

This is only apparently a system of two equations. Indeed, since we must necessarily
have ˇ 6D 0, by introducing the new unknown �

�
0 D � �

0 =ˇ we obtain

B�
�
0 D  1; ˇ

˝
 0
1; �

�
0

˛ D �0: (24)

which is exactly the decoupled system that has been derived in [3]. Solving the first
equation we obtain �

�
0 , from the second equation we get the value of ˇ, and finally

we find the solution � �
0 .

4 A Collocation-Quadrature Method

Here, we describe a numerical procedure for the approximate solution of Eq. (19).
For this, we write this equation in the form (cf. (20), (21))

A0f D ˇ 1 C �; . f ; ˇ; �/ 2 V�0 � R
2 (25)

with A0 D �S CK0 W L2'�1 �! L2
'�1 and

.S f /.t/ D 1

�

Z 1

�1
� f .s/ ds

s� t
and .K0f /.t/ D 1

�

Z 1

�1
K.s; t/f .s/ ds:

For any integer n � 1 we are looking for an approximate solution . fn; ˇn; �n/ 2
R.Pn/ � R

2 of (25), where R.Pn/ is the image space of the orthoprojection Pn W
L2
'�1 �! L2

'�1 defined by

Pnf D
n�1X

kD0
h f ;Uki 'Uk;

where Uk D p'k denotes the normalized second kind Chebyshev polynomial of
degree k, by solving the collocation equations

� .S fn/.tjn/C .K 0
n fn/.tjn/ D ˇn 1.tjn/C �n; j D 1; : : : ; nC 1; (26)

together with

�

nC 1
nX

iD1
'.sin/ 

0
1.sin/fn.sin/ D �0; (27)
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where tjn D cos
.2j� 1/�
2nC 2 and sin D cos

i�

nC 1 are Chebyshev nodes of first and

second kind, respectively, and where

.K 0
n fn/.t/ D 1

nC 1
nX

iD1
'.sin/K.sin; t/fn.sin/: (28)

Note that fn.t/ can be written, with the help of the weighted Lagrange interpolation
polynomials

è'
kn.t/ D

'.t/`'kn.t/

'.skn/
with `

'
kn.t/ D

Un.t/

.t � skn/U0
n.skn/

; k D 1; : : : ; n;

in the form

fn.t/ D
nX

kD1
�kn
è'

kn.t/; �kn D fn.skn/: (29)

Let L j
n, j D 1; 2, denote the interpolation operators which associate to a function

g W .�1; 1/ �! R the polynomials

.L 1
n g/.t/ D

nC1X

jD1

g.tjn/TnC1.t/
.t � tjn/T 0

nC1.tjn/
and .L 2

n g/.t/ D
nX

iD1

g.sin/Un.t/

.t � sin/U0
n.sin/

;

where Tn D p'
�1

n . Now, the system (26), (27) can be written as operator equation

Anfn D ˇnL
1

n  1 C �n; fn 2 R.Pn/ (30)

together with

hL 2
n  

0
1; fni D �0; (31)

where An D �SnCKn, Sn D L 1
n SPn, and Kn D L 1

n K
0

n Pn. The equivalence
of (27) and (31) follows from the algebraic accuracy of the Gaussian rule w.r.t. the
Chebyshev nodes of second kind. The assertion of the following lemma is well-
known (see [9, Theorem 14.3.1]).

Lemma 8 For all f 2 CŒ�1; 1�, lim
n!1

�
� f �L 1

n f
�
�
'�1 D 0 and lim

n!1
�
� f �L 2

n f
�
�
'

D 0.

The next lemma provides convergence rates for the interpolating polynomials and
will be used in the proof of Proposition 3.
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Lemma 9 ([1], Theorem 3.4) If r > 1
2
, then there exists a constant c > 0 such that,

for any real p, 0 � p � r and all n � 1,

(a)
�
� f �L 1

n f
�
�
'�1;p

� c np�rk fk'�1;r for all f 2 L2;r
'�1 ,

(b)
�
� f �L 2

n f
�
�
';p
� c np�rk fk';r for all f 2 L2;r' .

Lemma 10 Let  j 2 C2Œ�1; 1�, j D 1; 2. Then,

(a) lim
n!1 kKn �K0kL2

'�1!L2
'�1
D 0,

(b) there exist constants � > 0 and n0 2 N such that

kAnfnk'�1 � � k fnk'�1 8 fn 2 R.Pn/; 8 n � n0:

Proof At first, recall that the operator A0 W L2'�1 �! L2
'�1 is Fredholm with

index �1 (cf. the proof of Proposition 2). By Banach’s theorem, the operator
A0 W L2'�1 �!

�
R.A0/; k:k'�1

�
has a bounded inverse. Hence, there is a constant

�0 > 0 with

kA0fk'�1 � �0k fk'�1 8 f 2 L2
'�1 : (32)

By definition of K 0
n and in virtue of the algebraic accuracy of the Gaussian rule, for

fn 2 R.Pn/ we have

.K 0
n fn/.t/ D 1

�

Z 1

�1
L 2

n

�
K.:; t/'�1fn

�
.s/'.s/ ds D 1

�

Z 1

�1
L 2

n ŒK.:; t/�.s/fn.s/ ds;

which implies

�
��K 0

n �K0

�
Pnf

�
�1 �

1

�
sup

n�
�L 2

n ŒK.:; t/� � K.:; t/
�
�
'
W �1 � t � 1

o
k fk'�1 ;

where k:k1 is the norm in CŒ�1; 1�, i.e., k fk1 D max fj f .t/j W �1 � t � 1g. Since,
due to Lemma 8 and the principle of uniform boundedness, the operator sequence
L 1

n W CŒ�1; 1� �! L2
'�1 is uniformly bounded, the last estimate together with

Lemma 8 (applied to L 2
n ) leads to

lim
n!1

�
�Kn �L 1

n K0Pn

�
�
L2
'�1!L2

'�1
D 0:

Again Lemma 8, the strong convergence of Pn D P�
n �! I (the identity

operator), and the compactness of the operator K0 W L 2
'�1 �! CŒ�1; 1� give us

lim
n!1

�
�L 1

n K0Pn �K0

�
�
L2
'�1!L2

'�1
D 0, and (a) is proved.
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Formula (22) implies the relation Sn D SPn, from which, together with (a),
we conclude

k.An �A0/ fnk'�1 � ˛n k fnk'�1 8 fn 2 R.Pn/; (33)

where ˛n �! 0. Together with (32), this leads to (b). ut
Proposition 3 Assume  j 2 C3Œ�1; 1�, j D 1; 2, �0 ¤ 0, and let  1.t/ be not
constant. Then, for all sufficiently large n (say n � n0), there exists a unique solution
. f �

n ; ˇ
�
n ; �

�
n / 2 R.Pn/ �R

2 of (30), (31). Moreover,

lim
n!1

q�
� f �

n � f ���2
'�1 C jˇ�

n � ˇ�j2 C j��
n � ��j2 D 0; (34)

where . f �; ˇ�; ��/ is the unique solution of (25). If  j 2 CmŒ�1; 1�, j D 1; 2, for
some integer m > 2, then

q�
� f �

n � f ���2
'�1 C jˇ�

n � ˇ�j2 C j��
n � ��j2 � c n2�m (35)

with a constant c > 0 independent of n.

Proof Due to the Fredholmness of A0 W L2'�1 �! L2
'�1 with index �1 and due

to N.A0/ D f0g (Proposition 2, (a)), we have L2
'�1 D R.A0/ ˚ span fg0g (direct

orthogonal sum w.r.t. h:; :i'�1 ) for some g0 2 L2
'�1 with kg0k'�1 D 1.

By H we denote the Hilbert space of all pairs . f ; ı/ 2 L2
'�1 � R equipped with

the inner product h. f1; ı1/; . f2; ı2/iH D h f1; f2i'�1Cı1ı2. For a continuous function
g1 2 CŒ�1; 1� with hg1; g0i'�1 ¤ 0 and for n 2 N, define the linear and bounded
operators

B0 W H �! L2
'�1 ; . f ; ı/ 7! A0f � ıg1

and

Bn W H �! L2
'�1 ; . f ; ı/ 7! Anf � ıL 1

n g1:

Let us consider the auxiliary problems

B0. f ; ı/ D g 2 CŒ�1; 1�; . f ; ı/ 2 L2
'�1 � R (36)

and

Bn. fn; ın/ D L 1
n g; . fn; ın/ 2 R.Pn/ �R: (37)
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An immediate consequence of (33) is the relation

kBn. fn; ı/ �B0. fn; ı/k'�1 � ˛n k fnk'�1 C jıj ��L 1
n g1 � g1

�
�
'�1

� ˇn k. fn; ı/kH 8 . fn; ı/ 2 R.Pn/ �R;

(38)

where ˇn D
q
˛2n C

�
�L 1

n g1 � g1
�
�2
'�1 �! 0. Equation (36) is uniquely solvable,

since R.A0/ D
n

f 2 L2
'�1 W h f ; g0i'�1 D 0

o
and, consequently, the part ı� 2 R of

the solution . f �; ı�/ of (36) is uniquely determined by the condition

hgC ıg1; g0i'�1 D 0; i.e., ı� D � hg; g0i'�1

hg1; g0i'�1

;

and f � 2 L2
'�1 is the unique solution (cf. Proposition 1, (a)) of A0f D g C ı�g1.

Hence, in virtue of Banach’s theorem, the operator B0 W H �! L2
'�1 is boundedly

invertible, which implies that there is a constant �1 > 0, such that

kB0. f ; ı/k'�1 � �1 k. f ; ı/kH 8 . f ; ı/ 2 H: (39)

Putting this together with (38), we can state that there is a number n0 2 N, such that

kBn. fn; ı/k'�1 � �1

2
k. fn; ı/kH 8 . fn; ı/ 2 R.Pn/ � R; 8 n � n0: (40)

This implies that, for n � n0, the mapBn W R.Pn/�R �! span
˚
Tj W jD0; 1; : : : ; n

�

is a bijection, such that (37) is uniquely solvable for all n � n0. Moreover, if . f �
n ; ı

�
n /

is the solution of (37), then

�
�. f �

n ; ı
�
n /� .Pnf �; ı�/

�
�
H

� 2

�1

�
�L 1

n g �Bn.Pnf �; ı�/
�
�
'�1

� 2

�1

���L 1
n g �B0.Pnf �; ı�/

��
'�1 C k.B0 �Bn/.Pnf �; ı�/k'�1

	

� 2

�1

��
�L 1

n g �B0.Pnf �; ı�/
�
�
'�1 C ˇn k.Pnf �; ı�/kH

	
;

(41)

which implies

lim
n!1

�
�. f �

n ; ı
�
n /� . f �; ı�/

�
�
H D 0: (42)
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Now, let . f �; ˇ�; ��/ 2 V�0 � R
2 be the unique solution of (25) (cf. Proposition 2,

(b)). There exist ˇ�
1 ; �

�
1 2 R such that hg1; gi'�1 D 0 and kg1k'�1 D 1, where

g D ˇ� 1 C �� and g1 D ˇ�
1  1 C ��

1 . Because of

dim .R.A0/\ fˇ 1 C � W ˇ; � 2 Rg/ D 1
(cf. the proof of Proposition 2), we have g1 62 R.A0/, i.e., hg1; g0i'�1 ¤ 0. With
these notations, . f �; 0/ 2 L2

'�1 � R is the unique solution of (36). Taking into
account the previous considerations, we conclude that, for all sufficiently large n,
there is a unique . f 1n ; ı

1
n/ 2 R.Pn/ � R satisfying

Anf 1n � ı1nL 1
n .ˇ

�
1  1 C ��

1 / D L 1
n .ˇ

� 1 C ��/

or equivalently

Anf 1n D .ˇ� C ı1nˇ�
1 /L

1
n  1 C �� C ı1n��

1 ;

where, due to (42),
�
� f 1n � f ���

'�1 �! 0 and ı1n �! 0. It follows

hL 2
n  

0
1; f

1
n i D hL 2

n  
0
1; '

�1f 1n i' �! h 0
1; '

�1f �i' D h 0
1; f

�i D �0:
Consequently, for all sufficiently large n, hL 2

n  
0
1; f

1
n i ¤ 0 and . f �

n ; ˇ
�
n ; �

�
n / with

f �
n D

�0f 1n
hL 2

n  
0
1; f

1
n

i; ˇ�
n D

�0.ˇ
� C ı1nˇ�

1 /

hL 2
n  

0
1; f

1
n i

; ��
n D

�0.�
� C ı1n��

1 /

hL 2
n  

0
1; f

1
n i

is a solution of (30), (31). This solution is unique, since . f 1n ; ı
1
n/ was uniquely

determined. Furthermore,

f �
n �! f � in L2

'�1 and ˇ�
n �! ˇ�; ��

n �! ��;

and (34) follows. To prove the error estimate (35), first we recall that  j 2
CmŒ�1; 1�, j D 1; 2, for some m > 2 implies, due to Lemma 3, the continuity of the

partial derivatives
@kK.s; t/

@tk
, k D 1; : : : ;m � 2, for .s; t/ 2 Œ�1; 1�2. Consequently,

�S f � D ˇ� 1 C �� �K0f
� 2 Cm�2Œ�1; 1� 	 L2;m�2

'�1 ;

i.e., in virtue of Lemma 7, f � 2 'L2;m�2
' . Taking into account the uniform

boundedness of L 1
n W CŒ�1; 1� �! L2

'�1 (see Lemma 8) and Lemma 9, we get,
for all fn 2 R.Pn/,

k.Kn �K0/fnk'�1

� ��L 1
n .K

0
n �K0/fn

�
�
'�1 C

�
�.L 1

n K0 �K0/fn
�
�
'�1
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� sup
n�
�L 2

n K.:; t/ � K.:; t/
�
�
'
W �1 � t � 1

o
k fnk'�1 C ��.L 1

n K0 �K0/fn
�
�
'�1

� c n1�m
�
sup

˚kK.:; t/k';m�1 W �1 � t � 1� k fnk'�1 C kK0fnk'�1;m�1
�

� cn1�m k fnk'�1 ;

where we have also used that K0 W L2'�1 �! Cm�2Œ�1; 1� 	 L2;m�2
'�1 is bounded (cf.

[1, Lemma 4.2]). Hence, in (33) and (38) we have ˛n D O.n2�m/ and, since g1 D
ˇ�
1  1 C �� 2 L2;m

'�1 , also ˇn D O.n2�m/. From (41) and g D ˇ� 1 C �� 2 L2;m
'�1

we obtain the bound

�
�. f 1n ; ı

1
n/ � .Pnf �; 0/

�
�
H

� 2

�1


�
�L 1

n g � g
�
�
'�1 C kA0kL2

'�1!L2
'�1
k f � �Pnf �k'�1 C ˇn k f �k'�1

�

� c n2�m:

Now, (35) easily follows. ut
Remark 3 From the proof of Proposition 3 it is seen that the first assertion
including (34) remains true if the assumption  j 2 C3Œ�1; 1� is replaced by
 j 2 C2Œ�1; 1� together with dim N.A0/ D 0 (cf. Proposition 2).

5 Implementation Features

Let us discuss some computational aspects. Because of fn 2 R.Pn/ we have, taking
into account (22) and TnC1.tjn/ D 0,

.S fn/.tjn/ D
nX

kD1

fn.skn/

'.skn/U0
n.skn/

1

�

Z 1

�1
'.s/Un.s/

.s � skn/.s � t/
ds

D
nX

kD1

fn.skn/

'.skn/U0
n.skn/

1

�

Z 1

�1



1

s � skn
� 1

s � tjn

�
'.s/Un.s/ ds

1

skn � tjn

D �
nX

kD1

TnC1.skn/

'.skn/U0
n.skn/

fn.skn/

skn � tjn
D

nX

kD1

'.skn/

nC 1
fn.skn/

skn � tjn
:



694 P. Junghanns et al.

From this, the following expression is obtained:

�.S fn/.tjn/C .K 0
n fn/.tjn/ D 1

nC 1
nX

kD1
'.skn/Y0.skn; tjn/fn.skn/; j D 1; : : : ; nC1

(cf. (11), (28), and (26)). Thus, to find the solution . fn; ˇn; �n/ of (26), (27), we have
to solve the algebraic linear system of equations

An�n D �n; (43)

where �n D
�
�jn

�nC2
jD1 D

�
0 : : : 0 �0

�T 2 R
nC2 is given and �n D

�
�kn

�nC2
kD1 D�

fn.s1n/ : : : fn.snn/ ˇn �n

�T 2 R
nC2 is the vector we are looking for, and where the

matrix An D
�

ajk

� nC2
j;kD1 is defined by

ajk D '.skn/Y0.skn; tjn/

nC 1 ; j D 1; : : : ; nC 1; k D 1; : : : ; n;

aj;nC1 D � 1.tjn/; aj;nC2 D �1; j D 1; : : : ; nC 1;

anC2;k D �'.skn/ 
0
1.skn/

nC 1 ; k D 1; : : : ; n; anC2;nC1 D anC2;nC2 D 0:

In the case of a symmetric wing, the above numerical method can be significantly
simplified. Indeed, it turns out that the ideas used in the proof of Corollary 1, which
have led to (24), also work for the discrete system (43). This can be shown as
follows.

First, note that in this case we have

Y0.�t; s/ D �Y0.t;�s/ and Y0.�t;�s/ D �Y0.t; s/: (44)

Then, let n D 2m be sufficiently large, let

��
n D

�
f �
n .s1n/ : : : f �

n .snn/ ˇ
�
n �

�
n

�T 2 R
nC2

be the unique solution of (43), and define e�n D
�

f �
n .snn/ : : : f �

n .s1n/ ˇ
�
n ���

n

�T
.

Then, the jth entry of An
e�n equals

�
Ane�n

	

j

D
nX

kD1

'.skn/Y0.skn; tjn/

nC 1 f �

n .snC1�k;n/C ˇ�

n  1.tjn/ � ��

n

D �
nX

kD1

'.snC1�k;n/Y0.snC1�k;n; tnC2�j;n/

nC 1 f �

n .snC1�k;n/C ˇ�

n  1.tnC2�j;n/C ��

n D 0
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for j D 1; : : : ; nC 1, and

�
An
e�n

	

nC2 D
nX

kD1

'.skn/ 
0
1.skn/

nC 1 f �
n .snC1�k;n/

D
nX

kD1

'.snC1�k;n/ 
0
1.snC1�k;n/

nC 1 f �
n .snC1�k;n/ D �0

for j D nC2, where we have taken into account (44) and the identities snC1�k;n D skn

and tnC2�j;n D tjn. This means that e�n also solves (43) and, due to the solution
uniqueness, we have only to compute the mC 1 D n=2C 1 values ��

kn D f �
n .skn/ D

f �
n .snC1�k;n/, k D 1; : : : ;m, and ��

nC1;n D ˇ�
n , while ��

nC1;nC1 D ��
n D 0. The system

we have to solve can now be written in the form

mX

kD1
bjk�kn D ˇn 1.tjn/; j D 1; : : : ;m;

mX

kD1

2'.skn/ 
0
1.skn/

nC 1 �kn D �0; (45)

where bjk D ajk C aj;nC1�k, and where we have used the properties that, for j D
1; : : : ;m, the .nC 2 � j/th equation in (43) is identical to the jth equation and that
the .m C 1/th equation is automatically fulfilled (bmC1;k D 0 and  1.tmC1;n/ D 0,
since tmC1;n D 0), in virtue of the assumed symmetries. Of course, (45) is, with
N�n D �kn=ˇn, equivalent to

mX

kD1
bjk
N�kn D  .tjn/; j D 1; : : : ;m; ˇn

mX

kD1

2'.skn/ 
0
1.skn/

nC 1
N�kn D �0;

since ˇ� ¤ 0 and ˇ�
n �! ˇ� (cf. Remark 2 with (23) and (24)), and thus for all

sufficiently large n we have ˇ�
n ¤ 0. This latter system is precisely the method used

in [3], for which we have now proved its convergence and given an error estimate.
A similar simplification can be obtained also for n D 2mC 1.

Finally, we discuss the question if, under the assumptions of Proposition 3, the
condition numbers of the matrices An are uniformly bounded or if it is necessary to
apply a preconditioning to An. Note that, under the assumptions of Proposition 3,
the operator sequence Bn W R.Pn/ � R

2 �! Pn � R (Pn being the set of all real
algebraic polynomials of degree less than or equal to n) defined by

Bn. fn; ˇ; �/ D
�
Anfn � ˇL 1

n  1 � �; hL 2
n  

0
1; fni

�

(cf. (30) and (31)) is a bounded and stable one, i.e., the norms of Bn and of B�1
n

(which exist for all sufficiently large n) are uniformly bounded (as a consequence of
Proposition 3 together with Lemma 10). Hereby, the norms in H1

n WD R.Pn/ � R
2
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and H2
n WD Pn �R are given by

k. fn; ˇ; �/kH1n D
q
k fnk2'�1 C jˇj2 C j� j2 and k. pn; ı/kH2n D

q
k pnk2'�1 C jıj2;

respectively. Set !n D
r

�

nC 1 and define the operators

En W H1
n �! R

nC2; . fn; ˇ; �/ 7!
�
!nfn.s1n/; : : : ; !nfn.snn/; ˇ; �

�

and

Fn W H2
n �! R

nC2; . pn; ı/ 7!
�
!npn.t1n/; : : : ; !npn.tnC1;n/; ı

�
;

where the space R
nC2 is equipped with the usual Euclidean inner product. These

operators are unitary ones. To prove this, we recall the representation (29) of fn.t/,
in order to see that, for all . fn; ˇ; �/ 2 H1

n and .�1; : : : ; �nC2/ 2 R
nC2,

hEn. fn; ˇ; �/; .�1; : : : ; �nC2/i D !n

nX

kD1
fn.skn/�k C ˇ�nC1 C ��nC2

D
Z 1

�1
fn.s/

1

!n

nX

kD1
�k
è'

kn.s/ dsC ˇ�nC1 C ��nC2

D h. fn; ˇ; �/;E
�1

n .�1; : : : ; �nC2/iH1n :

Analogously, one can show that

hFn. pn; ı/; .�1; : : : ; �nC2/i D h. pn; ı/;F
�1
n .�1; : : : ; �nC2/iH2n

holds true for all .pn; ı/ 2 H2
n and .�1; : : : ; �nC2/ 2 R

nC2. As a consequence we get,

that an appropriate matrix Bn D
�

bjk

� nC2
j;kD1 can be defined by

Bn.�1; : : : ; �nC2/ D FnBnE
�1

n .�1; : : : ; �nC2/ D EnBn

 

!�1
n

nX

kD1

�kè
'
kn; �nC1; �nC2

!

D En

 

!�1
n

nX

kD1

�kAnè
'
kn � �nC1L

1
n  1 � �nC2; !n

nX

kD1

'.skn/ 
0

1.skn/�k

!
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D
0

@

" nX

kD1

�
Anè

'
kn

	
.tjn/�k � !n 1.tjn/�nC1 � !n�nC2

#nC1

jD1

; !n

nX

kD1

'.skn/ 
0

1.skn/�k

1

A

D
0

@
" nX

kD1

ajk�k C !naj;nC1�nC1 C !naj;nC2�nC2

#nC1

jD1

;

nX

kD1

!�1
n anC2;k�k

1

A ;

i.e., bjk D ajk for j D 1; : : : ; nC 1, k D 1; : : : ; n, bjk D !najk for j D 1; : : : ; nC 1,
k D nC 1; nC 2, and bnC2;k D !�1

n anC2;k, k D 1; : : : ; n. This means that

Bn D FnAnE
�1
n with En D diag

�
1 : : : 1 !�1

n !�1
n

�
; Fn D diag

�
1 : : : 1 !�1

n

�
;

and we can solve the system Bn
e� D e� instead of An� D �, wheree� D Fn� and

e� D En�.
Therefore, in the following numerical examples we can check the stability of the

method by computing the condition number of the matrix Bn w.r.t. the Euclidean

norm, which is equal to the quotient
smax.Bn/

smin.Bn/
of its biggest and its smallest singular

values. Moreover, the left hand side in (35) can be approximated by the following
discretization of it

err D
vu
u
t �

N C 1
NX

kD1

�
f �
n .skN/ � f �

N .skN/
�2 C ˇˇˇ�

n � ˇ�
N

ˇ
ˇ2 C ˇˇ��

n � ��
N

ˇ
ˇ2 (46)

with N >> n.

6 Numerical Examples

To test the numerical method, we have proposed, and the associated convergence
estimate (35), we have considered four simple curves. The first one is the following
non symmetric part of the unit circle:

 1.t/ D cos
��
8
.3tC 13/

	
;  2.t/ D sin

��
8
.3tC 13/

	
; �1 � t � 1:

The second one is a symmetric part of the ellipse having semi-axis a D 1; b D 0:2

and centered at the point .0; b/, given by:

 1.t/ D a cos
�
.
�

2
C 0:01/tC 3�

2

	
;  2.t/ D b sin

�
.
�

2
C 0:01/tC 3�

2

	
;

� 1 � t � 1:
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The third one is the non symmetric C3-continuous curve

 1.t/ D t; �1 � t � 1;  2.t/ D
(

t4

4
; �1 � t � 0;

t4

2
; 0 < t � 1;

while the last one is the (non symmetric and C2) open curve defined by the following
natural (smooth) cubic spline:

 1.t/ D t; �1 � t � 1;

 2.t/ D
(

aCb
4
.1C t/3 � �aC aCb

4

�
.1C t/C a ; �1 � t � 0;

aCb
4
.1 � t/3 C �bC aCb

4

�
t � aCb

4
; 0 < t � 1;

where we have chosen a D 0:1; b D 0:25.
In Tables 1, 2, 3, and 4 we report the (global) error, defined by (46), and the

errors jˇ�
N �ˇ�

n j and j��
N � ��

n j, we have obtained for some values of n and N. In all
examples, we take �0 D �1 (cf. (8)). Moreover, in the last two tables we also present
some values nr  err for an appropriate r in order to determine the convergence rate,
where err is given by (46). We can see that the convergence rate is higher than
that forecasted by Proposition 3 (remember that  is C3 in Example 3 and C2 in
Example 4.

Table 1 Example 1: non symmetric circular arc, N D 256

n (46) ˇ�

n ��

n jˇ�

N � ˇ�

n j j��

N � ��

n j cond(Bn) cond(An)

4 8.99e-04 �0:6926674 0:1832556 6:68e�06 1:77e�06 2:5770 3:3097

8 3.68e-08 �0:6926607 0:1832538 1:18e�14 9:74e�15 2:5771 5:2093

16 9.98e-14 �0:6926607 0:1832538 1:22e�14 3:97e�15 2:5771 9:1997

256 �0:6926607 0:1832538 2:5771 130:1899

Table 2 Example 2: symmetric ellipse arc, N D 256

n (46) ˇ�

n ��

n jˇ�

N � ˇ�

n j j��

N � ��

n j cond(Bn) cond(An)

4 6.05e-03 �0:5984153 0:0000000 1:88e�04 6:40e�16 2:6788 2:8100

8 1.44e-04 �0:5982318 0:0000000 4:92e�06 1:21e�15 2:6919 4:0774

16 7.15e-07 �0:5982269 0:0000000 9:14e�10 1:03e�15 2:6918 7:0137

32 1.25e-10 �0:5982269 0:0000000 2:22e�16 8:98e�16 2:6918 13:0283

256 �0:5982269 0:0000000 2:6918 97:6167
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Hyperbolic Conservation Laws and L2

Barbara Lee Keyfitz and Hao Ying

Dedicated to Ian H. Sloan on the occasion of his 80th birthday.

Abstract Taking as background the fact that conservation laws in a single space
variable are well-posed in the space of functions of bounded variation, while
multidimensional systems enjoy short-time well-posedness in Sobolev spaces Hs,
we attempt to resolve the discrepancies between these two theories by exploring
what can be said about stability of one-dimensional systems in L2. We summarize
some positive results for special cases, and also show by a conterexample that there
is no straightforward way to resolve the difficulty.

1 Motivation

The topic of this paper is well-posedness for systems of hyperbolic conservation
laws of the form

@F0.u/
@t

C
dX

1

@Fi.u/
@xi

D 0 ; u 2 R
n ; x 2 R

d : (1)

Here F0 2 R
n is a vector of conserved quantities, functions of the state variables u,

and the vectors Fi, 1 � i � d, are flux vectors. Examples of such systems abound
in mechanics, fluid dynamics, aerodynamics, and similar contexts. The systems that
arise in such applications have a number of features in common, which we will draw
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upon to motivate some constraints on the nonlinear functions Fi. One important
constraint is that the system be symmetrizable hyperbolic. The meaning of this is as
follows. Upon carrying out the differentiations in (1), one obtains a system where
the vectors of derivatives are multiplied by n � n Jacobian matrices. This results in
the so-called quasilinear form of the system:

A0.u/
@u
@t
C

dX

1

Ai.u/
@u
@xi
D 0 ; (2)

with each Ai D dFi. The original system is symmetric hyperbolic if all the Aj

are symmetric and A0 is in addition positive definite. It is often the case that although
the Jacobian derivatives Ai are not symmetric, the system can be multiplied by
a positive definite matrix that puts all the coefficient matrices simultaneously in
symmetric form, with the matrix multiplying the first vector still positive definite. In
that case, the system is said to be symmetrizable hyperbolic. Typically, it is also the
case that the hyperbolicity conditions hold only for u in some open set G 	 R

n. For
example, the equations of compressible gas dynamics, comprising the system (13)
described in Sect. 2, give rise to a positive definite matrix A0 only when the density

 is positive.

We consider the Cauchy problem for Eq. (2) with the initial condition

u.x; 0/ D u0.x/ :

For sufficiently smooth initial data, u0 2Hs.˝/, where ˝ 	R
d and s> d=2 C 1,

there is an equally smooth solution in some time interval Œ0;T�, with T > 0.
Specifically, we have the existence, uniqueness and continuous dependence on data
of a solution

u 2 C .Œ0;T�;Hs.˝//\ C 1.Œ0;T�;Hs�1.˝// :

Various forms of this result were proved by Leray and Ohya [16], Lax [13], and Kato
[10]. For a modern exposition of this theory, see Majda [18], Serre [21] or Taylor
[23]. Two common choices for ˝ are R

d itself and T
d, corresponding to periodic

data. To avoid some non-trivial considerations associated with boundary conditions,
we will focus on the case ˝ D R

d in this paper.
The fact that well-posedness theory for system (1) or (2) has been developed in

the Sobolev space Hs is significant. We expand on this in Sect. 1.1. Solutions in Hs,
for sufficiently large s, are known as classical solutions; indeed, from the Sobolev
Embedding Theorem, if s > d=2C 1 the solutions are continuously differentiable
(that is C 1) in x, and hence also in t.

Systems (1) and (2) are clearly reversible in time, and classical solutions to the
Cauchy problem with u0 2 Hs, s > d=2C1, exist on an open interval around t D 0.
In [18, 21, 23] cited above it is proved that for almost all initial data the lifespan
of classical solutions is finite, and when there is a maximal time of existence, then
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either kruk1 becomes infinite as t tends to a critical value T� or u leaves every
compact subset of G as t ! T�. Beyond that time, if solutions to (1) exist, it can
only be that they take the form of weak solutions. Finding a proof of existence of
weak solutions for multidimensional conservation laws is an open problem in the
analysis of quasilinear hyperbolic partial differential equations.

An important point here is that the conservation form of (1) is required in
the definition of a weak solution for hyperbolic systems. This follows from the
distribution theory definition of a weak solution. In the case of (1), multiplying by a
smooth test function and integrating by parts removes all derivatives of u. Then we
say that u is a weak solution in the sense of distributions if u and Fj.u/ are locally
integrable functions that satisfy the integrated equation for all smooth test functions.
In the case of a general quasilinear system (2), if the matrices Ai are not derivatives
of functions Fi then after integration by parts the system still contains derivatives of
u, multiplying functions of u. The difficulty which this poses for nonlinear systems
is that while derivatives of integrable functions are well-defined as distributions,
multiplication of integrable functions by distributions is not well-defined in general.
Hence, one does not expect to find a theory for weak solutions of any quasilinear
systems other than systems that arise from conservation laws of the form (1). We
emphasize that there is at present no existence theory for weak solutions of systems
of conservation laws in dimensions d > 1. Not only is there no general theory, but
to our knowledge there are not even any examples of systems where existence of
nontrivial solutions to the Cauchy problem has been proved.

In practice, the criterion that defines a weak solution of (1) as a distribution
satisfying the integrated form of the equation is not sufficient to define a weak
solution uniquely. A definition of weak solution that guarantees well-posedness was
developed by Kružkov [12] for scalar equations (n D 1). For systems in a single
space variable (d D 1), the original existence theorem for weak solutions is due to
Glimm [6]. Much more recently it has been extended by Bressan and his colleagues
(see [3] and the references therein) to well-posedness results, though, as is also the
case for Glimm’s result [6], only for data close to a constant. Dafermos’s monograph
[5] provides a good exposition of the one-dimensional theory.

In one space dimension, the theory is based on constructing approximate
solutions, and the construction incorporates some constraints, usually known as
“entropy conditions”, that guarantee uniqueness. Entropy conditions also, as the
name suggests, destroy the time-reversibility of the system. Both Glimm and
Bressan considered data and solutions with u.�; t/ in the function space BV \ L1.
(By BV we mean the space of functions of bounded variation; L1 can generally be
replaced by L1loc, to handle data that approach different constants at x D �1 and
x D 1.) The usual statement is that “conservation laws in one space dimension
are well-posed in BV ”. The spaces BV do not fit easily into the classification of
Sobolev spaces. In particular,BV \L1 contains as a proper subset the Sobolev space
W1;1 consisting of absolutely continuous functions of a single variable. However,
functions in BV may have countably many discontinuities, and BV is not a
separable Banach space.
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A simple example shows that solutions to conservation laws have better prop-
erties in L1 than in L2. The prototype for a scalar, one-dimensional equation is
Burgers’ equation,

ut C uux D 0 :
A typical feature, both for Burgers’ equation and more complex systems, is a
centered rarefaction wave. An example of such a wave is

u.x; t/ D
8
<

:

0 ; x < 0 ;
x
t ; 0 < x < t ;
1 ; x > t ;

(3)

a solution of Burgers’ equation. This has first derivative ux D 1=t for 0 < x < t,
and so

Z t

0

jux.x; t/jp dx D t1�p

is unbounded for p > 1. In this example, the W1;p norm blows up for p > 1 as t
decreases to zero. This solution is time-reversible and we see that for u D x=.1� t/,
corresponding to a compression wave, the W1;p norm, for p > 1, increases without
bound until t D 1 when a shock forms.

Shocks, the other typical feature of Burgers’ and all conservation law systems,
are jump discontinuities. The indicator function of an interval is in Ws;p for sp < 1,
which means that in one dimension a function with a jump discontinuity is in Ws;1

only for s < 1 and in Ws;2 only for s < 1=2.
Linear hyperbolic equations in any number of space dimensions are well-posed

in Hs D Ws;2, for any s, positive or negative, while, as we noted above, quasilinear
hyperbolic systems are locally well-posed (that is, for short times) in Hs for s >
d=2 C 1, where d is the space dimension. Specifically, this rules out times after
shocks have formed. The monograph of Taylor [23] has complete statements on
well-posedness for both linear and quasilinear systems. The definitions of Sobolev
spaces Ws;p for p ¤ 2 and s not an integer are somewhat intricate. As we will not
use them in this paper, we omit the definitions, but refer to [25] for details.

If the space dimension is greater than one, then most hyperbolic equations are
well-posed only in Sobolev spaces based on L2, and not in Lp for any p ¤ 2.
We expand on this in Sect. 1.1. This important consideration leads to the current
quest for a function space other than BV in which to seek well-posedness, even for
systems in a single space dimension.

Now we can explain the point of this paper. A linear system with constant or
bounded coefficients is not sensitive to scalings of the form u 7! ˛u where ˛ is a
constant scale factor. In particular, this means that, no matter what norm is used,
bounds of the form

ku.�; t/k � C.t/ku.�; 0/k (4)



Hyperbolic Conservation Laws and L2 707

are precisely the types of bounds one might seek in order to confirm wellposedness
for linear equations. Expectations for continuity of the data-to-solution map for
quasilinear equations might be quite different. First, of course, any candidates for
useful bounds will be of the form

kv.�; t/� w.�; t/k � C.t/kv.�; 0/�w.�; 0/k ; (5)

in the norm under consideration (this property is often called “stability”), and in
addition might require pointwise restrictions of the form u.x; t/ 2 G , where G 	 R

n

was defined in the discussion following (2) as the subset of state space in which
the system is symmetric hyperbolic. Pointwise constraints are consistent with the
existence theorems for classical solutions, which show that solutions remain in a
compact subset of G for some time.

Another difficulty in attempting to establish well-posedness for weak solutions
of quasilinear systems (1) is that we expect it may be necessary to impose more
restrictive size constraints of the form ku.x; t/ � constk < ", since such constraints
are required for well-posedness of systems in one space dimension. The value of "
depends on the geometry (nonlinearity) of the flux vectors. In one space dimension,
when the data u0 are bounded in BV then the solution u.�; t/ is uniformly bounded
in BV for all t, and this implies that the solution satisfies uniform pointwise
bounds. However, it may be the case that in d > 1 space dimensions we should
not expect pointwise boundedness. For example, in the case of the linear wave
equation, there is a generic phenomenon of focusing, which produces solutions that
become unbounded on lower dimensional subsets. In the case of nonlinear systems
the compressible gas dynamics equations are an example where lower bounds for
the density may not exist because a vacuum state at which hyperbolicity fails may
form spontaneously.

1.1 Expectations for Well-Posedness

The fact, mentioned earlier, that hyperbolic systems are not well-posed in any
Sobolev space Ws;p for p ¤ 2, was originally proved for the wave equation by
Littman [17], and later for general first order linear hyperbolic systems by Brenner
[2]. The observation that Brenner’s argument extends to quasilinear systems is due
to Rauch [20]. Littman’s argument is easy to articulate. Looking at the case d D 2

(from which all higher-dimensional cases follow), one can check that

u.x; y; t/ � u.r; t/ D 1

2�

Z t

r

g.t � 	/p
	2 � r2

d	 ; (6)

is a rotationally invariant solution of the wave equation

uxx C uyy � utt � urr C 1

r
ur � utt D 0 (7)
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whenever t 62 supp g. Littman defines the Lp energy of a solution,

Ep.uI t/ � Ep.t/ �
Z

R2

�juxjp C juyjp C jutjp
�

dx dy ; (8)

for any p, and then for a suitable choice of g, with support in Œ0; t0�, shows that for
a fixed t1 > t0, the ratio Ep.t1/=Ep.t0/ tends to zero or to infinity as t0 ! 0. This
follows from the form of the solution in (6). In fact, if g were constant then we
would have, in polar coordinates .x; y/ D .r cos �; r sin �/,

u.r; t/ D log

 
1Cp1 � �2

�

!

� U.�/ ; � D r

t
; 0 < � � 1 : (9)

That is, u depends on r and t through the ratio r=t alone, and

ut D � r

t2
U0.�/ D �1

t
�U0.�/ and ur D 1

t
U0.�/ : (10)

We may ignore the difference between jurjp and juxjp C juyjp. We find that the Lp

energy defined by (8) at time t is

Ep.uI t/ D
Z t

0

�jutjp C jurjp
�
r dr D t2

Z 1

0

�jutjp C jurjp
�
� d�

D t2�p
Z 1

0

.�p C 1/jU0.�/jp d� : (11)

This equation makes it clear that Ep.t1/=Ep.t0/ is bounded, above and below, only
if p D 2. The simple argument presented here is merely heuristic, since u does not
satisfy the homogeneous wave equation with this choice of g. To produce a solution
of (7) for all r and t, one needs a better choice for g in (6), and Littman’s paper
[17] achieves this and turns the simple estimate in (11) into a rigorous proof. The
expression in (9), which is closely related to the fundamental solution of the wave
equation, gives the basic reason that we expect Ep to behave badly for any p ¤ 2.

The theorem of Brenner [2] is much more general; it applies to any system of
the form (2) where the Aj are constant. Brenner’s result is that unless either all
the Aj commute or d D 1, then no bound in Ws;p of the form (4) can exist for
p ¤ 2. The somewhat startling condition of commuting matrices can be explained
as follows. The fundamental solution of the wave equation, which appears in Eq. (6),
comes directly from the equation for the characteristic normals, 	2 D �2 C �2. A
homogeneous quadratic equation for the characteristic normals appears because the
characteristic determinant of (the first-order system derived from) the wave equation
cannot be factored into linear factors. Now observe that

det
�

A0	 C
X

Ai�i
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factors into linear factors if and only if the matrices have a common basis of
eigenvectors, which is the case precisely when the matrices commute. It is easy to
verify that if the two-dimensional wave equation is written as a first-order system,
the matrices do not commute. This makes intuitively reasonable Brenner’s result
that any system where the solution, or any part of it, behaves like a solution of the
wave equation will be well-posed only when p D 2. In the case of commuting
eigenvectors, all components of u (in a coordinate system where the matrices are
simultaneously diagonalized) propagate in time like solutions u D f .x � at/ of a
linear transport equation, utCaux D 0. Thus the norm of solutions is well-controlled
in time, in any norm. Brenner’s masterful proof uses Hörmander’s theory of Fourier
multipliers in Lp, but the result, when you see the connection to Littman’s proof, is
not unexpected.

To complete this argument, Rauch [20] showed that, at least as long as classical
solutions exist, injecting some nonlinearity into the system cannot cure the difficulty.
Again, intuitively, one can see the reason for this in Littman’s original observation
that for the mode of wave propagation associated with the wave equation the L2

norm, alone, is well-controlled in time.
Dafermos [4] has proved that one can actually show L2 stability—that is,

inequality (5) using the L2 norm—for conservation law systems in any number
of space variables when only one of the functions v and w is a classical solution,
provided the other is an admissible weak solution. His proof requires only that the
system have a convex entropy function (which is equivalent to the system being
symmetrizable hyperbolic). This is not a significant restriction. However, the proof
relies in an essential way on the hypothesis that one solution is classical. Entropies
and an explanation of Dafermos’ result [4] are the subject of Sect. 2 of this paper.

1.2 Solution Bounds and Derivative Bounds

The derivatives of a linear system satisfy the original system of equations up to
lower-order terms; and so if the data and solution are in Hs, then first derivatives
are in Hs�1 and so on. Among other things, this makes it reasonable to talk about
distribution solutions of linear systems, and to expect well-posedness even for
negative values of s. The situation is different for quasilinear systems. A curious
situation obtains here. The first derivatives satisfy a system whose structure is
different from that of the original system in an important way, but the form of
the equations for higher derivatives reverts to that of the original system. A simple
calculation using Burgers’ equation as an example should suffice to make the point.
Differentiating ut C uux D 0 with respect to x and letting v D ux we obtain



@

@t
C u

@

@x

�
v C v2 D 0 ; (12)
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from which one discovers that v becomes infinite in finite time along the character-
istic from .x0; 0/ with speed u if v.x0; 0/ D ux.x0; 0/ < 0. This is the well-known
gradient catastrophe leading to shock formation, and Eq. (12) is just another way
to see it. This observation is, by the way, the basis of Fritz John’s famous proof in
[9] that for genuinely nonlinear hyperbolic systems in one space dimension data of
compact support always lead to the formation of shocks.

However, if we differentiate Burgers’ equation a second time with respect to x
and let uxx D w then we have



@

@t
C u

@

@x

�
wC 3vw D 0 :

That is, the higher-order derivatives of the solution u satisfy linear equations with
coefficients that depend on the lower-order derivatives. These do not generate
further singularities. This fact was used in the proof of nonuniform dependence
of solutions on initial data for the equations of compressible hydrodynamics in [7]
and [11]. Proofs that it holds in the general case can be found in Majda’s book [18,
Theorem 2.2, Corollary 1], and in Taylor’s [23, Chapter 16, Corollary 1.6].

2 Entropies in Conservation Laws

This short section gives some background intended to help understand the role of
entropy functions in proving stability. It is not needed for the main result in Sect. 4.

We illustrate the notion of entropy with an example. The system of two equations
representing isentropic gas dynamics in one space dimension is


t C mx D 0 ;

mt C



m2



C 1

�

�
�

x

D 0 :
(13)

Here 
 is the density and m the momentum of the gas at a point x and time t,
suitably non-dimensionalized. The constant � , the so-called ratio of specific heats,
is typically between 1 and 3; for air it is approximately 1:4. The two equations
represent conservation of mass and momentum. That they form a closed system
results from an assumption that the non-dimensionalized pressure is a function of the
density, p.
/ D 
�=� . A brief calculation verifies that if 
 and m are differentiable
solutions to these two equations then a third equation also holds:

�t C qx �



m2



C 2

�.� � 1/

�

�

t

C



m3


2
C 2

� � 1m
��1
�

x

D 0 : (14)
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The quantity � is a strictly convex function of 
 and m; it is the specific energy
(kinetic plus potential), again suitably scaled; q is called the energy flux. Now,
weak solutions of (13) will not in general satisfy (14). For example, at a shock
discontinuity with speed dx=dt D s the weak form of a conservation law system
ut C F.u/x D 0 is sŒu� D ŒF.u/�, where the brackets indicate jumps in quantities
across the discontinuity, and the weak form of (13) is inconsistent with the weak
form of (14). In short, although the energy is also a conserved quantity for classical
solutions, energy is not conserved in the presence of discontinuities.

One method of identifying admissible weak solutions is to require that for any
weak solution the quantity

Z 1

�1
�.x; t/ dx �

Z 1

�1



m2



C 2

�.� � 1/

�

�
dx (15)

not increase in time. This has the reasonable physical interpretation that energy,
conserved for classical solutions, will decrease rather than increase in time for weak
solutions. If one considers, instead of (13), a more complete formulation of gas
dynamics with an additional equation for conservation of energy and a third state
variable, either the internal energy or the pressure, and closes the system with a
modeling assumption about the energy flux, then there is a fourth equation that
follows from the first three for classical solutions. In this case, the fourth equation
represents conservation of entropy. In this more complete formulation, entropy is
the quantity that fails to be conserved when classical solutions break down. True
thermodynamic entropy is a concave function of density, momentum and pressure,
and is an increasing function of time for weak solutions. Mathematical terminology
changes the sign to obtain a convex function and in conservation law parlance we
always speak of “entropy decrease”. It can be proved that a conservation law system
that can be put in symmetric hyperbolic form always possesses a convex entropy,
and conversely [4].

There are several ways that the existence of a convex entropy like (15) has been
used to establish some L2 stability results.

First, a smooth strictly convex function can be approximated locally by a
quadratic function, so �.
;m/ above is equivalent to a homogeneous quadratic
function, and hence bounds the L2 norm. The same is true for any strictly convex
entropy for a symmetrizable hyperbolic system in the form (1), in any number of
space variables.

Second, one can look at the difference �.v/ � �. Qw/, where one of v and Qw is a
classical solution and the other is a weak solution, admissible in the sense that the
convex entropy function decreases in time. The L2 norm of �.v/� �. Qw/ will satisfy
an inequality which can be used to bound the L2 difference of v � Qw as a function
of t. This nice result is due to Dafermos [4]. The relative entropy method used to
obtain the results in Sect. 3.1 is a variant of this approach.
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3 Current Progress on L2 Stability in One Space Dimension

Given the background of Sect. 1, it appears that a promising direction in which to
resolve the gap between results for weak solutions in one dimension and results
for classical solutions in multidimensional systems is to establish results in L2 for
one-dimensional systems. In this section, we summarize some interesting results.
However, we have found a significant obstruction to this program, which we present
in Sect. 4.

For the remainder of this paper, we assume d D 1.

3.1 Stability in L2 of a Single Shock

Recent interest in L2 results for conservation laws in one space dimension has been
stimulated by work of Vasseur and his student Leger. We mention the papers [14, 15]
and [22], though this is not a complete list. The technique exploited in this research
is the relative entropy method. In Sect. 2 we noted that “entropy” is one of several
admissibility criteria, and that convex entropies also provide a way of bounding
Lp norms of solutions for p > 1. Relative entropy is a way of measuring the
difference between two solutions, or between a solution and a constant (solution).
For scalar equations, this idea is the basis of Kružkov’s definition [12] of a weak
solution for scalar equations in any number of space dimensions. Specifically, in
[12] Kružkov gave a complete characterization of admissible weak solutions for
a scalar equation by comparing a candidate for a weak solution with all constant
solutions. No generalization of this characterization to systems is known, even in a
single space dimension.

The research of Leger, Vasseur and others looks at a specific type of stability: the
behavior of a shock wave under perturbation. For a one-dimensional system,

@

@t
uC @

@x
F.u/ D 0 ;

they consider a self-similar shock discontinuity of the form

w.x; t/ D
�
wL ; x < � t ;
wR ; x � � t ;

where wL, wR and � satisfy the Rankine-Hugoniot relation

�.wR � wL/ D F.wR/� F.wL/ ;

which is necessary for a discontinuous function to be a weak solution. They compare
this solution to a weak solution v corresponding to a nearby initial condition v0.
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The result in [15] applies to extremal shocks. Extremal shocks have the property
that on one side (x < 0 for the slowest, x > 0 for the fastest waves) there are no
outgoing characteristics. Stability is proved under the condition that the perturbation
is smaller on the upstream side of the shock (x < 0 for the slowest shocks), where
all the characteristics are incoming, than downstream (the half-line x > 0 in the
case of slow shocks), where there are n � 1 outgoing characteristics in a system of
n equations. Their result is stated in terms of the integral of the squared distance
between w and v on each side of the discontinuity, with different conditions on the
two sides. One might think of these as “one-sided” L2 norms. Specializing to a slow
shock for concreteness, we summarize their result by saying that if the difference
between v0 and wL in this one-sided L2 norm (integrating from �1 to 0) is of order
"2, and the L2 norm of the perturbation v0 � wR on the right is of order

p
", Leger

and Vasseur [15] prove that the path of the perturbed shock, s.t/, will differ from the
unperturbed path by an amount also of order

p
":

js.t/ � � tj � C
p
"t.1C t/ ; (16)

and the difference between the perturbed solution and its unperturbed shadow, up to
that translation, is of the same order as the perturbation in the initial data; that is,

Z 0

�1
jv.xC s.t/; t/ � wLj2 dx � "4 ;

Z 1

0

jv.xC s.t/; t/ �wRj2 dx � C".1C t/ :

There is a similar result, with the bounds on the left and right sides of the shock
reversed, for a fast shock. It is noted by Texier and Zumbrun [24] that the relative
entropy technique allows a strengthening of earlier results using other, weaker
entropy criteria.

In an earlier paper on scalar equations, Leger [14] finds a consistent result. For
a scalar equation with convex flux, any shock is extremal from both sides and there
are no outgoing characteristics, so the tighter restriction of the perturbation to order
"2 on one side is not needed. In addition, it is not necessary to assume that the
perturbation is small. Leger’s result in the L2 norm is of the form

kv.� C s.t/C � t; t/ � w.�/k2 � kv0.�/� w.�/k2 ;

where w is the shock solution to the Riemann problem with states wL and wR and
speed � , and s.t/ now satisfies

js.t/j � Ckv0 � wk2
p

t ;

where C may depend on ku0k1, on w, and on the flux function.
An interesting paper by Adimurthi et al. [1] generalizes Leger’s result to obtain

stability of a single shock in Lp, for any p > 1, for a convex scalar equation. These
authors use a completely different method, the well-known Lax-Oleı̆nik formula
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[13] which relates the conservation law to a Hamilton-Jacobi equation. The Lax-
Oleı̆nik formula is valid only for a scalar, one-dimensional equation, but the proof
in [1] could possibly be made more general, since the argument relies principally on
tracing characteristics and on generalized characteristics.

3.2 An Example of Stability

For a scalar conservation law, it has been known for a long time, see [12], that the
stability bound (5) holds in L1 with C.t/ � 1. The following elementary example
shows that one cannot expect an L2 estimate of this nature, even for a scalar equation.
Consider two solutions of Burgers equation with square-wave data

w.x; 0/ D
�
0 ; x < 0 ; x > `
A ; x 2 Œ0; `� ; v.x; 0/ D

�
0 ; x < 0 ; x > `
AC " ; x 2 Œ0; `� :

We have kv � wk2.0/ D "
p
`. For t > 0, the position of the shock in w is at

xw.t/ D `C At=2 and the shock in v is at xv.t/ D `C .AC "/t=2 so a calculation
gives

kv � wk22 D
A2t

2
"C



`C At

2

�
"2 C "3t

6
;

for small t (t < 2`=A). Thus, kv � wk2 � A
p
"t=2 for small positive times.

Continuing the calculation, for t > 2`=A, the shock and the rarefaction generated
by the initial data interact, and the shock strength and position change. For w, the
position of the shock is xw.t/ D

p
2`At; the shock in v is at xv.t/ D

p
2`.AC "/t,

and a calculation of the L2 norm yields

kv � wk22 D
p
2`3t

�p
A"C c"2 C : : : � ;

so the difference in the L2 norms is of order
p
" for large t as well as for small t.

This suggests the possibility of a stability property like

kv.�; t/ � w.�; t/k2 � C.t/kv.�; 0/ � w.�; 0/k1=22 ;

rather than the dependence suggested in (5).
In this piecewise constant example, the “mismatch” in shock speeds created by an

L2 difference of " in the data causes a difference in the L2 norm of solutions that is of
size
p
". Leger and Vasseur’s estimate (16) in [15] of the mismatch in shock speeds

is optimal, and holds for an arbitrary small L2 perturbation. The simple estimate in
this example is also consistent with Leger’s result [14] for a scalar equation, where a
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shock is simultaneously slow and fast. The occurrence of square roots in the example
suggests that it might be possible to find an estimate of the form

kv.�; t/ �w.�; t/k2 � C.t/kv.�; 0/�w.�; 0/k˛2 ; (17)

in the L2 norm, for some ˛ < 1. However, we show in Sect. 4 that this conjecture
fails.

4 A Counterexample

Although the results of Leger, Vasseur and Serre [14, 15, 22] suggest that some
form of L2 stability may be possible, no general result of the form (17) can exist.
We give a proof by constructing a counterexample for Burgers’ equation. This
immediately implies the result for any convex scalar equation, and for any system
in a single space dimension where there is at least one genuinely nonlinear family
(even locally). In more than one space dimension, our counterexample also suggests
that an L2 stability result will not be possible without further constraints.

The counterexample builds on the idea, demonstrated in the example in Sect. 3.2,
that if two choices of step function data differ by an amount "n, then the L2 difference
in the corresponding solutions is

p
"n. Suppose that

P
"n converges but

Pp
"n

does not, and that the data and solutions are such that those sums bound their L2

norms above and below. Then we have a demonstration of instability. To carry out
this construction, we let v0 and w0, with v0 � w0, be two non-negative step functions
of compact support, containing a large step upward and then decreasing in steps of
unit length, as illustrated in Fig. 1. To be specific, for N � 2 and a positive parameter
a to be determined, we define w0 by

w0.x/ � wj D a.N � jC 1/ ; for j � 1 < x � j ; for 1 � j � N ;
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Fig. 1 Illustration of the example with N D 9, a D b D 1
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and w0.x/ D 0 otherwise. Then take v0, with support the same as w0, and

v0.x/ D wj C bj ; for j� 1 < x � j ; and bj D b

j
; for 1 � j � N :

Here b is another positive parameter. For use in the summations below, define
wNC1 D 0 and bNC1 D 0.

We have

u0 � v0 � w0 D fbjg

(with obvious notation) and

ku0k22 D
NX

1

b2j D
NX

1

b2

j2
D b2SN I ku0k2 D b

p
SN :

Now, SN ! �2=6 as N ! 1. The L1 norm of u0 is b
P
1=j, which is finite but

unbounded as N !1. Later in the argument we will see that we can adjust a and b
as functions of N so that the L1 and L1 norms of the data remain bounded. Thus we
cannot destroy the counterexample by a introducing a constraint such as restricting
consideration to small data.

Since v and w are solutions of Burgers’ equation, utC uux D 0, in both cases the
solution begins (reading from the left) with a rarefaction followed by N shocks. In
the interior of the rarefaction, u.x; t/ D x=t as in the example (3). The rarefaction
extends from x D 0 to x D aNt (for w) and to x D a.N C b1/t (for v). For all j,
1 � j � N, the jth shock in w (emanating from x D j) separates states wj and wjC1
and has speed

sw;j D wj C wjC1
2

D a.N � jC 1C N � j/

2
D a



N � jC 1

2

�
;

and position

jC sw;jt D jC a



N � jC 1

2

�
t :

The jth shock in v has speed

sv;j D vj C vjC1
2

D wj C wjC1
2

C bj C bjC1
2

D
(

a
�
N � jC 1

2

�C b
2

�
1
j C 1

jC1
	
; 1 � j < N ;

1
2

�
aC b

N

�
; j D N ;
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and position

(
jC sw;jtC b

2

�
1
j C 1

jC1
	

t ; 1 � j < N ;

N C sw;NtC bt
2N ; j D N ;

so the corresponding shocks in the two solutions separate at the rate

�jt �
(

b
2

�
1
j C 1

jC1
	

t ; 1 � j < N ;
bt
2N ; j D N :

In the interval between two corresponding shocks, as in Sect. 3.2 example, the
difference u between v and w is

uj � vj � wjC1 D wj C bj � wjC1 > a ;

since bj > 0. In the data we have v0 � w0 and the same is true of the solutions. The
L2 difference between v and w is bounded below by the difference between v and w
in these “gaps”, and we can estimate

kv.�; t/ � w.�; t/k22 >
NX

1

a2�jt D a2bt

2

 
N�1X

1



1

j
C 1

jC 1
�
C 1

N

!

D a2bt

 
NX

1

1

j
� 1
2

!

> a2bt


Z NC1

1

1

x
dx � 1

2

�
D a2bt



log.N C 1/� 1

2

�
:

As a result, we get a lower bound for the difference:

ku.�; t/k2 D kv.�; t/ � w.�; t/k2 � a
p

bt.log.N C 1/� 1=2/ ;

as desired. To complete the argument, we note that we can choose t to be a fixed
number, independent of a, b and N, as long as a and b are bounded above. For
example, if a � 1 and b � 1, we find that the shocks do not intersect each other
and do not intersect the rarefactions until some time after t D 1=2. Then for any
t � 1=2, we compute the ratio

kv.�; t/ � w.�; t/k2
kv0 � w0k2 � at1=2

p
log.N C 1/� 1=2p

bSN
: (18)

For fixed a and b, this grows without bound as N !1.
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To obtain two sequences
n
w.N/0

o
and

n
v
.N/
0

o
that violate L2 stability even more

dramatically, we note that

kw0k2 < kv0k2 D
 

NX

1



a.N � jC 1/C b

j

�2!1=2

: (19)

We can achieve an arbitrarily large growth rate for data that are arbitrarily small. To
do so, let us fix the ratio a=

p
b D 1, say, and fix an arbitrary constant M. Then to

have ku.�; t/k2=ku0k2 > M
p

t, for all t � 1=2, it suffices to take

log.N C 1/ > �2

6
M2 ; or N > ecM2

;

and once N has been so chosen, we can choose a D a.N/ and b D b.N/, using (19)
to achieve a bound on the data in L2. For any " > 0, if

a � "

N3=2
; and b D a2 D "

N3

then we have (18) for data with L2 norm initially of order ". In fact, a similar
calculation applied to the L1 norms, where

kw0k1 < kv0k1 D
NX

1



a.N � jC 1/C b

j

�
;

shows that we can also achieve an arbitrarily large ratio in (18) with data that are
small in L1, and in BV \ L1.

5 Conclusions

The construction in Sect. 4 used data of compact support, but involved a sequence
of initial conditions whose support grew with N. This is an essential feature of the
construction. At least for scalar equations, growth in the support of the data appears
to be a necessary condition to obtain ill-posedness in L2. For if supp u 	 ˝ then
applying Hölder’s inequality we have

kuk1 D
Z

˝

juj dx D
Z

˝

1 � juj dx �

Z

˝

1 dx
Z

˝

juj2 dx

�1=2
D .diam˝/1=2kuk2 ;
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while on the other hand we have the standard Hölder inequality

kuk2 � kuk1kuk1 :

For scalar conservation laws, we can take advantage of both a maximum principle
[8, 19] and L1 contraction [12]. Thus, if v and w are both supported in ˝ , we have

ku.�; t/k2 D kv.�; t/ � w.�; t/k2 � kv.�; t/ � w.�; t/k1kv.�; t/ � w.�; t/k1
� .kv.�; t/k1 C kw.�; t/k1/ kv0 � w0k1
� .diam˝/1=2 .kv0k1 C kw0k1/
� kv0 � w0k2 : (20)

Thus, a rather trivial calculation gives a form of stability in L2, for a scalar equation.
However, the condition of uniformly bounded supports is not a natural condition for
hyperbolic problems. In addition, although systems of conservation laws are stable
in L1, the L1 contraction property that holds for scalar equations does not generalize
to systems, so the estimate (20) appears to be valid only for a scalar equation.

The analysis presented in this paper represents another step in a continuing search
for a definitive answer to a central conundrum of multidimensional conservation
laws. Based on the reasoning behind theorems, summarized in Sect. 1.1, that show
that L2-based function spaces are the only spaces in which classical solutions to
quasilinear systems are well-posed in space dimensions greater than one, we have
examined whether weak solutions in a single space dimension are stable in L2.
On the evidence presented in Sect. 4, this question has a negative answer for the
simple reason that the speed of a discontinuity in a solution depends strongly on its
amplitude.

Two possible ways to resolve the problem emerge. One might consider restricting
the class of data, for example to initial conditions of uniformly bounded support.
Alternatively, one might explore function spaces that are equivalent to L2 for
sufficiently smooth functions but are more forgiving of mismatched discontinuities.

Acknowledgements In a different context, Feride Tığlay suggested the idea of looking for bounds
of the form (17). We are indebted to her and to John Holmes for helpful conversations about this
problem.
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Integral Equation Methods in Inverse
Obstacle Scattering with a Generalized
Impedance Boundary Condition

Rainer Kress

Dedicated to Ian H. Sloan on the occasion of his 80th birthday.

Abstract The inverse problem under consideration is to reconstruct the shape of
an impenetrable two-dimensional obstacle with a generalized impedance boundary
condition from the far field pattern for scattering of time-harmonic acoustic or
E-polarized electromagnetic plane waves. We propose an inverse algorithm that
extends the approach suggested by Johansson and Sleeman (IMA J. Appl. Math.
72(1):96–112, 2007) for the case of the inverse problem for a sound-soft or
perfectly conducting scatterer. It is based on a system of nonlinear boundary integral
equations associated with a single-layer potential approach to solve the forward
scattering problem which extends the integral equation method proposed by Cakoni
and Kress (Inverse Prob. 29(1):015005, 2013) for a related boundary value problem
for the Laplace equation. In addition, we also present an algorithm for reconstructing
the impedance function when the shape of the scatterer is known. We present the
mathematical foundations of the methods and exhibit their feasibility by numerical
examples.

1 Introduction

The use of generalized impedance boundary conditions (GIBC) in the mathematical
modeling of wave propagation has gained considerable attention in the literature
over the last decades. This type of boundary conditions is applied to scattering
problems for penetrable obstacles to model them approximately by scattering
problems for impenetrable obstacles in order to reduce the cost of numerical
computations. In this paper, we will consider boundary conditions that generalize
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the classical impedance boundary condition, which is also known as Leontovich
boundary condition, by adding a term with a second order differential operator.
As compared with the Leontovich condition, this wider class of impedance con-
ditions provides more accurate models, for example, for imperfectly conducting
obstacles (see [7, 8, 16]).

To formulate the generalized impedance condition and the corresponding scatter-
ing problem, let D be a simply connected bounded domain in R

2 with boundary @D
of Hölder class C4;˛ and denote by � the unit normal vector to @D oriented towards
the complement R2 n D. We consider the scattering problem to find the total wave
u D ui C us 2 H2

loc.R
2 n D/ satisfying the Helmholtz equation

�uC k2u D 0 in R
2 n D (1)

with positive wave number k and the generalized impedance boundary condition

@u

@�
C ik



�u � d

ds
�

du

ds

�
D 0 on @D (2)

where d=ds is the tangential derivative and � 2 C2.@D/ and � 2 C1.@D/
are complex valued functions. We note that the classical Leontovich condition is
contained in (2) as the special case where � D 0. The incident wave ui is assumed
to be a plane wave ui.x/ D eik x�d with a unit vector d describing the direction of
propagation, but we also can allow other incident waves such as point sources. The
scattered wave us has to satisfy the Sommerfeld radiation condition

lim
r!1
p

r



@us

@r
� ikus

�
D 0; r D jrj; (3)

uniformly with respect to all directions. The derivative for uj@D 2 H
3
2 .@D/ with

respect to arc length s in (2) has to be understood in the weak sense, that is, u has to
satisfy

Z

@D



�
@u

@�
C ik��uC ik�

d�

ds

du

ds

�
ds D 0 (4)

for all � 2 H
3
2 .@D/.

The Sommerfeld radiation condition is equivalent to the asymptotic behavior of
an outgoing cylindrical wave of the form

us.x/ D eik jxj
pjxj

�
u1.Ox/C O



1

jxj
��

; jxj ! 1; (5)

uniformly for all directions Ox D x=jxj where the function u1 defined on the unit
circle S1 is known as the far field pattern of us. Besides the direct scattering problem
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to determine the scattered wave us for a given incident wave ui the two inverse
scattering problems that we will consider are to determine the boundary @D, for
given impedance functions, or the impedance coefficients � and �, for a given
boundary, from a knowledge of the far field pattern u1 on S

1 for one or several
incident plane waves. The first problem we will call the inverse shape problem and
the second the inverse impedance problem.

For further interpretation of the generalized impedance boundary condition we
refer to [1–3] where the direct and the inverse scattering problem are analyzed
by variational methods. For the solution of a related boundary value problem for
the Laplace equation with the generalized impedance boundary condition of the
form (2), Cakoni and Kress [4] have proposed a single-layer potential approach
that leads to a boundary integral equation or more precisely a boundary integro-
differential equation governed by a pseudo-differential operator of order one. In
Sect. 2 we will extend this approach to the direct scattering problem (1)–(3). As
to be expected, the single-layer approach fails when k2 is an interior Dirichlet
eigenvalue for the negative Laplacian in D and to remedy this deficiency we describe
a modified approach by a combined single- and double-layer approach that leads to
a pseudo-differential operator of order two. For simplicity, confining ourselves to
the single-layer potential approach, we then proceed in Sect. 3 with describing the
numerical solution of the integro-differential equation via trigonometric interpola-
tion quadratures and differentiation that lead to spectral convergence.

Our analysis of the two inverse problems is based on a nonlinear boundary
integral equation method in the spirit of Johansson and Sleeman [10] (see also
[6, Section 5.4]) and follows the approach for the Laplace equation as developed
by Cakoni and Kress [4]. We begin in Sect. 4 with a review on uniqueness and
then proceed in Sect. 5 with the solution of the inverse shape problem followed by
the solution of the inverse impedance problem in Sect. 6. In both cases we present
the theoretical basis for the inverse algorithms and illustrate them by a couple of
numerical examples.

2 The Boundary Integral Equation

In this section we describe a boundary integral equation method for solving the
direct obstacle scattering problem and begin by establishing uniqueness of the
solution. Throughout our analysis we will assume that

Re� � 0; Re� � 0; j�j > 0; (6)

where the first two conditions ensure uniqueness and the third condition is required
for our existence analysis.

Theorem 1 Any solution u 2 H2
loc.R

2 n D/ to (1)–(2) satisfying the Sommerfeld
radiation condition vanishes identically.
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Proof Inserting � D Nuj@D in the weak form (4) of the boundary condition we
obtain that

Z

@D
Nu @u

@�
ds D �ik

Z

@D

(

�juj2 C �
ˇ̌
ˇ
ˇ
du

ds

ˇ̌
ˇ
ˇ

2
)

ds:

Hence in view of our assumption (6) we can conclude that

Im
Z

@D
Nu @u

@�
ds � 0

and from this and the radiation condition the statement of the theorem follows from
Rellich’s lemma, see Theorem 2.13 in [6]. ut
Corollary 1 The scattering problem (1)–(3) has at most one solution.

We recall the fundamental solution of the Helmholtz equation

˚.x; y/ D i

4
H.1/
0 .kjx � yj/; x ¤ y;

in R
2 in terms of the Hankel function H.1/

0 of the first kind of order zero. Further,
following [6, Section 3.1] we introduce the classical boundary integral operators in
scattering theory given by the single- and double-layer operators

.S'/.x/ WD 2
Z

@D
˚.x; y/'. y/ ds. y/; x 2 @D; (7)

.K'/.x/ WD 2
Z

@D

@˚.x; y/

@�. y/
'. y/ ds. y/; x 2 @D; (8)

and the corresponding normal derivative operators

.K0'/.x/ WD 2
Z

@D

@˚.x; y/

@�.x/
'. y/ ds. y/; x 2 @D; (9)

.T'/.x/ WD 2 @

@�.x/

Z

@D

@˚.x; y/

@�. y/
'. y/ ds. y/; x 2 @D: (10)

For the subsequent analysis in contemporary Sobolev spaces, we note that for
@D 2 C4;˛ the operators S W H

1
2 .@D/ ! H

3
2 .@D/, S;K W H

3
2 .@D/ ! H

5
2 .@D/, T W

H
3
2 .@D/! H

1
2 .@D/ and K0 W H 1

2 .@D/! H
1
2 .@D/ are all bounded (see [11, 15]).

In a first attempt, extending the approach proposed in [4] for the Laplace
equation, we try to find the solution of (1)–(3) in the form of a single-layer potential
for the scattered wave

us.x/ D
Z

@D
˚.x; y/'. y/ ds. y/; x 2 R

2 nD; (11)
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with density ' 2 H
1
2 .@D/ and note that the regularity ' 2 H

1
2 .@D/ guarantees that

u 2 H2
loc.R

2 n D/ (see [15]). From the asymptotics for the Hankel function H.1/
0 .t/

as t!1, it can be deduced that the far field pattern of us is given by

u1.Ox/ D �
Z

@D
e�ik Ox�y'. y/ ds. y/; Ox 2 S

1; (12)

where

� D ei �4p
8�k

: (13)

Letting x approach the boundary @D from inside R2 nD, from the jump relations
for single-layer potentials (see [6, Theorem 3.1]) we observe that the boundary
condition (2) is satisfied provided ' solves the integro-differential equation

' � K0' � ik



� � d

ds
�

d

ds

�
S' D g (14)

where we set

g WD 2 @ui

@�

ˇ
ˇ
ˇ
ˇ
@D

C 2ik



� � d

ds
�

d

ds

�
uij@D (15)

in terms of the incident wave ui. After defining a bounded linear operator A W
H

1
2 .@D/! H� 1

2 .@D/ by

A' WD ' � K0' � ik



� � d

ds
�

d

ds

�
S' (16)

we can summarize the above into the following theorem.

Theorem 2 The single-layer potential (11) solves the scattering problem (1)–(3)
provided the density ' satisfies the equation

A' D g: (17)

Lemma 1 The operator M W H 3
2 .@D/! H� 1

2 .@D/ given by

M' WD d2'

ds2
C
Z

@D
' ds (18)

is bounded and has a bounded inverse.

Proof We parametrize the boundary @D with the arc length s as parameter and
identify Hp.@D/with Hp

perŒ0;L�where L is the length of @D and Hp
perŒ0;L� 	 HpŒ0;L�
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is the subspace of L periodic functions (or more precisely bounded linear functionals
if p < 0) (see [12, Section 8.5]). Using the Fourier series representation of Hr

perŒ0;L�

it can be seen that indeed M W H 3
2 .@D/! H� 1

2 .@D/ is an isomorphism. ut
Lemma 2 The operator A � ik�MS W H 1

2 .@D/! H� 1
2 .@D/ is compact.

Proof The boundedness of the operators S;K0 W H
1
2 .@D/ ! H

3
2 .@D/ and K0 W

H
1
2 .@D/ ! H

1
2 .@D/ and our assumption � 2 C1.@D/ implies that all terms in the

sum (16) defining the operator A are bounded from H
1
2 .@D/ into H

1
2 .@D/ except

the term

' 7! ik
d

ds
�

d

ds
S':

Therefore, after splitting

d

ds
�

d S'

ds
D � d2 S'

ds2
C d�

ds

d S'

ds

and using our assumption � 2 C1.@D/ we observe that the operator A � ik�MS W
H

1
2 .@D/ ! H

1
2 .@D/ is bounded. Hence the statement of the theorem follows from

the compact embedding of H
1
2 .@D/ into H� 1

2 .@D/. ut
Theorem 3 Provided k2 is not a Dirichlet eigenvalue for the negative Laplacian
in D, for each g 2 H� 1

2 .@D/ Eq. (17) has a unique solution ' 2 H
1
2 .@D/ and this

solution depends continuously on g.

Proof Since under our assumption on k the operator S W H
1
2 .@D/ ! H

3
2 .@D/ is

an isomorphism, by Lemma 1 and our assumptions on � the operator ik�MS W
H

1
2 .@D/ ! H� 1

2 .@D/ also is an isomorphism. Therefore, in view of Lemma 2, by
the Riesz theory it suffices to show that the operator A is injective. Assume that
' 2 H

1
2 .@D/ satisfies A' D 0. Then, by Theorem 2 the single-layer potential u

defined by (11) solves the scattering problem for the incident wave ui D 0. Hence,
by the uniqueness Theorem 1 we have u D 0 in R

2 nD. Taking the boundary trace
of u it follows that S' D 0 and consequently ' D 0. ut

To remedy the failure of the single-layer potential approach at the interior
Dirichlet eigenvalues, as in the case of the classical impedance condition, we modify
it into the form of a combined single- and double-layer potential for the scattered
wave

us.x/ D
Z

@D

�
˚.x; y/C i

@˚.x; y/

@�. y/

�
'. y/ds. y/; x 2 R

2 n D; (19)
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with density ' 2 H
3
2 .@D/. The regularity ' 2 H

3
2 .@D/ implies u 2 H2

loc.R
2 n D/.

Letting x approach the boundary @D from inside R2 nD, we observe that the bound-
ary condition (2) is satisfied provided ' solves the integro-differential equation

' � K0' � iT' � ik



� � d

ds
�

d

ds

�
.S' C i' C iK'/ D g (20)

with g given by (15). We define a bounded linear operator B W H 3
2 .@D/! H� 1

2 .@D/
by

B' WD ' � K0' � iT' � ik



� � d

ds
�

d

ds

�
.S' C i' C iK'/ (21)

and then have the following theorem.

Theorem 4 The combined single- and double-layer potential (19) solves the
scattering problem (1)–(3) provided the density ' satisfies the equation

B' D g: (22)

Lemma 3 The operator B � k�M W H 3
2 .@D/! H� 1

2 .@D/ is compact.

Proof The boundedness of S;K W H
3
2 .@D/ ! H

5
2 .@D/, K0 W H

1
2 .@D/ ! H

1
2 .@D/

and T W H 3
2 .@D/! H

1
2 .@D/ mentioned above implies that all terms in the sum (21)

defining the operator A are bounded from H
3
2 .@D/ into H

1
2 .@D/ except the term

' 7! k
d

ds
�

d'

ds
:

Therefore, as in the proof of Lemma 2 we can deduce that the operator B � k�M W
H

3
2 .@D/ ! H

1
2 .@D/ is bounded and the statement follows from the compact

embedding of H
1
2 .@D/ into H� 1

2 .@D/. ut
Theorem 5 For each g 2 H� 1

2 .@D/ the integral equation (22) has a unique solution
' 2 H

3
2 .@D/ and this solution depends continuously on g.

Proof By our assumption on � we have that k�M W H
3
2 .@D/ ! H� 1

2 .@D/ is an
isomorphism. Therefore, in view of Theorem 4 and Lemma 3 by the Riesz theory it
suffices to show that the operator B is injective. Assume that ' 2 H

3
2 .@D/ satisfies

B' D 0. Then, by Theorem 4 the combined single- and double-layer potential u
defined by (19) solves the scattering problem for the incident wave ui D 0. Hence,
by the uniqueness Theorem 1 we have u D 0 in R

2 nD. Taking the boundary trace of
u it follows that S'C i'C iK' D 0. From this, proceeding as in the corresponding
existence proof for the scattering problem with Dirichlet boundary condition (see
Theorem 3.11 in [6]) we can conclude that ' D 0. ut
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Summarizing, we finally have our main result of this section.

Theorem 6 The direct scattering problem (1)–(3) has a unique solution.

In addition to the potential approach for setting up the boundary integral
equations, of course, following the so-called direct approach one can also derive
integral equations based on Green’s representation formula. Passing to the boundary
@D in Huygens’ principle (see Theorem 3.14 in [6]) and incorporating the boundary
condition (2) we obtain the equation

�� K� � ikS



� � d

ds
�

d

ds

�
� D 2uij@D (23)

for the boundary trace � WD uj@D of the total field. Obviously, the operator on the
left-hand side of (23) is the adjoint of A with respect to the L2 bilinear form and
therefore, by the Fredholm alternative, Eq. (23) also is uniquely solvable, provided
k2 is not a Dirichlet eigenvalue for the negative Laplacian in D.

3 Numerical Solution

For the numerical solution, for simplicity we confine ourselves to Eq. (14). We
employ a collocation method based on numerical quadratures using trigonometric
polynomial approximations as the most efficient method for solving boundary inte-
gral equations for scattering problems in planar domains with smooth boundaries
(see [6, Section 3.5]). Here, additionally we need to be concerned with presenting
an approximation for the operator ' 7! d

ds �
d'
ds as the new feature in the integro-

differential equations for the generalized impedance boundary condition. For this,
we apply trigonometric differentiation.

Both for the numerical solution and later on for the presentation of our inverse
algorithm we assume that the boundary curve @D is given by a regular 2� periodic
counter clockwise parameterization

@D D fz.t/ W 0 � t � 2�g: (24)

Then, via  D ' ı z we introduce the parameterized single-layer operator by

.eS /.t/ WD i

2

Z 2�

0

H.1/
0 .kjz.t/ � z.	/j/ jz0.	/j .	/ d	

and the parameterized normal derivative operator by

.eK0 /.t/ WD ik

2

Z 2�

0

Œz0.t/�? � Œz.	/ � z.t/�

jz0.t/j jz.t/ � z.	/j H.1/
1 .kjz.t/ � z.	/j/ jz0.	/j .	/ d	
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for t 2 Œ0; 2��. Here we made use of H.1/0
0 D �H.1/

1 with the Hankel function H.1/
1

of order zero and of the first kind. Furthermore, we denote a? WD .a2;�a1/ for any
vector a D .a1; a2/, that is, a? is obtained by rotating a clockwise by 90ı. Then the
parameterized form of (14) is given by

 �eK0 � ik� ı zeS C 1

jz0j
d

dt

� ı z

jz0j
d

dt
eS D g ı z (25)

We construct approximations via trigonometric interpolation quadratures and
trigonometric differentiation based on equidistant interpolation points tj D j�=n
for j D 1; : : : ; 2n with n 2 N. For the operators eS and eK0 we make use of
approximationeSn and eK0

n via trigonometric interpolation quadratures that take care
of the logarithmic singularities of the Hankel functions as described in Section 3.5
of [6] or in [14]. We refrain from repeating the details.

To approximate the operator ' 7! d
ds �

d'
ds we simply use numerical differentia-

tion via trigonometric interpolation, i.e., we approximate the derivative  0 of a 2�
periodic function by the derivative .Pn /

0 of the unique trigonometric polynomial
Pn of degree n (without the term sin nt) that interpolates .Pn /.tj/ D  .tj/ for
j D 1; : : : ; 2n. For the resulting weights we refer to [12, Section 13.5]. We set
P0

n WD .Pn /
0 and approximate

1

jz0j
d

dt

� ı z

jz0j
d

dt
eS 
 1

jz0j P0
n

� ı z

jz0j P0
n
eSn :

Summarizing, our numerical solution method approximates the integro-differential
equation (25) by

 n �eK0
n n � ik� ı zeSn n C 1

jz0j P0
n

� ı z

jz0j P0
n
eSn n D g ı z (26)

which is solved for the trigonometric polynomial  n by collocation at the nodal
points tj for j D 1; : : : ; 2n.

Since the operators

' 7! d2

ds2
S' and ' 7! d

ds
S

d'

ds

have the same principal part, the error and convergence analysis for numerically
solving the hypersingular equation of the first kind with the operator T, defined
in (10), via Maue’s formula and trigonometric differentiation as carried out in [13]
and based on Theorem 13.12 and Corollary 13.13 in [12], can be transferred to the
approximation (26) with only minor modifications. In particular, such an analysis
would predict spectral convergence in the case of analytic�; � and z. However, since
our main emphasis is on the inverse scattering problem we refrain from carrying out
the details. Instead of this we will conclude with a numerical example exhibiting the
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Fig. 1 Reconstruction of the apple (27) for exact data after 30 iterations (left) and for 5% noise
after 10 iterations (right)

spectral convergence. Before doing so we note, that an approximate solution of (20)
including an error analysis can be obtained analogously using the approximations
for S;K;K0 from [6, Section 3.5] and the approximation of T via Maue’s formula
that we just mentioned (see [13]).

For numerical examples we consider scattering by an apple-shaped obstacle with
parametric representation

z.t/ D 0:5C 0:4 cos tC 0:1 sin 2t

1C 0:7 cos t
.cos t; sin t/; 0 � t � 2�; (27)

(see Fig. 1) and by a peanut-shaped obstacle with parametric representation

z.t/ D
p

cos2 tC 0:25 sin2 t .cos t; sin t/; 0 � t � 2�; (28)

(see Fig. 2). As impedance functions we choose

�.z.t// D 1

1 � 0:1 sin 2t
and �.z.t// D 1

1C 0:3 cos t
(29)

for t 2 Œ0; 2�� and note that for both examples we can interpret the impedance
functions as given in a neighborhood of @D depending only on the polar angle.

After approximately solving the integro-differential equation for the density
' the far field pattern is obtained from (12) by the composite trapezoidal rule.
Rather than presenting tables with the far field pattern for plane wave incidence
we find it more convenient to just illustrate the spectral convergence by Table 1
which shows the maximum norm (over the collocation points) of the error En WD
ku1 � u1;nk1 between the exact and the approximate far field pattern for a point
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Fig. 2 Reconstruction of the peanut (28) for exact data after 30 iterations (left) and for 5% noise
after 10 iterations (right)

Table 1 Error decay for
apple-shaped and
peanut-shaped scatterer

2n En;apple En;peanut

k D 2 16 5.02e-04 5.32e-05

32 3.55e-05 1.33e-07

64 5.52e-08 8.19e-14

128 1.16e-13 1.45e-14

k D 8 16 1.00e-02 1.00e-01

32 2.43e-05 1.95e-05

64 1.38e-08 3.71e-14

128 5.86e-14 8.94e-15

source us D i
4

H.1�
0 .kjx � x0j/ located at some x0 2 D which has far field pattern

u1.Ox/ D � e�ik Ox�x0 . In the examples we chose x0 D .0:1; 0:2/.

4 Inverse Scattering: Uniqueness

We now turn our attention to the inverse scattering problems. The most general
inverse scattering problem is the inverse shape and impedance problem to determine
@D, � and � from a knowledge of one (or finitely many) far field patterns u1 of
solutions u to (1)–(3). In this paper we will be only concerned with two less general
cases, namely the inverse shape problem and the inverse impedance problem. The
inverse shape problem consists in determining @D from one (or finitely many) far
field patterns knowing the impedance coefficients � and �. With the roles reversed,
the inverse impedance problem requires to determine the impedance functions �
and � from one (or finitely many) far field patterns for a known shape @D.
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The first question to ask is what is the minimum amount of data, i.e., the minimal
number of far field patterns, to guaranty the uniqueness of the solution for the inverse
impedance problem or the inverse shape problem. The following theorem shows
that three far field patterns uniquely determine both impedance functions � and �
provided that @D is known.

Theorem 7 For a given shape @D, three far field patterns corresponding to the
scattering of three plane waves with different incident directions uniquely determine
the impedance functions � and �.

Proof Plane waves with different directions clearly are linearly independent. Con-
sequently the corresponding total waves u1; u2; u3 are also linearly independent.
Therefore, the proof of Theorem 3.1 in [4] for the case of the Laplace equation can
be carried over without any changes to the Helmholtz equation since it only uses
the differential equation on the boundary as given by the generalized impedance
boundary condition. ut

Extending the counter example given in [4] for the Laplace case, the following
example illustrates non-uniqueness issues for the inverse impedance problem using
two far field patterns. Let D be a disc of radius R centered at the origin, let � and
� be constants satisfying (6), and consider the two incident waves given in polar
coordinates by ui.r; �/ D Jn.kr/ e˙in� in terms of the Bessel function Jn of order
n 2 N. Then the corresponding total wave is given by

u.r; �/ D � Jn.kr/� anH.1/
n .kr/

�
e˙in�

with the Hankel function H.1/
n of the first kind of order n and

an D kR2J0
n.kR/C ik.n2�C �R2/Jn.kR/

kR2H.1/0
n .kR/C ik.n2�C �R2/H.1/

n .kR/
: (30)

We note that the uniqueness Theorem 1 ensures that the denominator in (30) is
different from zero. Clearly, there are infinitely many combinations of positive
real numbers � and � giving the same value for an, that is, the same two linearly
independent total fields.

The following uniqueness result for the full inverse shape and impedance
problem was obtained by Bourgeois et al. [3].

Theorem 8 Both the shape and the impedance functions of a scattering obstacle
with generalized impedance condition are uniquely determined by the far field
patterns for an infinite number of incident waves with different incident directions
and one fixed wave number.

The main idea of the proof in [6, Theorem 5.6] for the case � D 0 remains
valid. We only need to convince ourselves that the mixed reciprocity relation for
scattering of point sources and plane waves, see [6, Theorem 3.16] extends from
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the case � D 0 to the general case as consequence of the weak form (4) of the
generalized impedance condition.

We conclude this short section on uniqueness for the inverse problem with
outlining the proof for the identifiability of a disc and its constant impedance
coefficients from the far field pattern for one incident plane wave.

Theorem 9 A disc with constant impedance coefficients is uniquely determined by
the far field pattern for one incident plane wave.

Proof Using polar coordinates the Jacobi–Anger expansion (see [6, p. 75]) reads

eik x�d D
1X

nD�1
in Jn.kr/ ein� ; x 2 R

2; (31)

where � is the angle between x and d. From this it can be seen that the scattered
wave us for scattering from a disc of radius R centered at the origin has the form

us.x/ D
1X

nD�1
an in H.1/

n .kr/ ein� ; r > R; (32)

with the coefficients an from (30). Using the asymptotics of the Bessel and Hankel
functions for large n (see [6, Section 3.4]) uniform convergence can be established
for the series (32) in compact subsets of R2 n f0g. In particular, this implies that the
scattered wave us has an extension as solution to the Helmholtz equation across the
boundary into the interior of the disc with the exception of the center.

Now assume that two discs D1 and D2 with centers z1 and z2 have the same
far field pattern u1;1 D u1;2 for scattering of one incident plane wave. Then by
Rellich’s lemma (see [6]) the scattered waves coincide us

1 D us
2 in R

2 n .D1 [ D2/

and we can identify us D us
1 D us

2 in R
2 n .D1 [ D2/. Now assume that z1 ¤

z2. Then us
1 has an extension into R

2 n fz1g and us
2 an extension into R

2 n fz2g.
Therefore, us can be extended from R

2 n .D1 [ D2/ into all of R2, that is, us is an
entire solution to the Helmholtz equation. Consequently, since us also satisfies the
radiation condition it must vanish identically us D 0 in all of R

2. Therefore the
incident field ui.x/ D eik x�d must satisfy the generalized impedance condition on D1

with radius R1. Parameterizing x � d D R1 cos � the boundary condition then implies

�
cos � C �C k2� sin2 � C 1

R1
ik� cos �

�
eikR1 cos � D 0

for all � 2 Œ0; 2��. However this is a contradiction and therefore z1 D z2.
In order to show that D1 and D2 have the same radius and the same impedance

coefficients, we observe that by symmetry, or by inspection of the explicit solution
given above, the far field pattern for scattering of plane waves from a disc with
constant impedance coefficients depends only on the angle between the observation
direction and the incident direction. Hence, knowledge of the far field pattern for
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one incident direction implies knowledge of the far field pattern for all incident
directions. Now the statement follows from the above Theorem 8. ut

5 Solution of the Inverse Shape Problem

We now proceed describing an iterative algorithm for approximately solving the
inverse shape problem by extending the method proposed by Johansson and
Sleeman [10] for sound-soft or perfectly conducting obstacles. After introducing
the far field operator

S1 W H 1
2 .@D/! L2.S1/

by

.S1'/.Ox/ WD �
Z

@D
e�ik Ox�y'. y/ ds. y/; Ox 2 S

1; (33)

from (11) and (12) we observe that the far field pattern for the solution to the
scattering problem (1)–(3) is given by

u1 D S1' (34)

in terms of the solution to (14). We note that S1 is compact and state the following
theorem as theoretical basis of our inverse algorithm. For this we note that the
operators and the right-hand side g depend on the boundary curve @D.

Theorem 10 For a given incident field ui and a given far field pattern u1, assume
that @D and the density ' satisfy the system

' � K0' � ik



� � d

ds
�

d

ds

�
S' D g (35)

and

S1' D u1 (36)

where g is given in terms of the incident field by (15). Then @D solves the inverse
shape problem.

The ill-posedness of the inverse shape problem is reflected through the ill-posed-
ness of the second equation (36), the far field equation that we denote as the data
equation. Note that the system (35)–(36) is linear with respect to the density ' and
nonlinear with respect to the boundary @D. This opens up a variety of approaches to
solve (35)–(36) by linearization and iteration. In this paper, we are going to proceed
as follows. Given an approximation for the unknown @D we solve Eq. (35) that
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we denote as the field equation for the unknown density '. Then, keeping ' fixed
we linearize the data equation (36) with respect to the boundary @D to update the
approximation.

To describe this in more detail, we also need the parameterized version

eS1 W H 1
2 Œ0; 2��! L2.S1/

of the far field operator given by

.eS1 /.Ox/ WD �
Z 2�

0

e�ik Ox�z.	/ jz0.	/j .	/ d	; Ox 2 S
1: (37)

Then the parameterized form of (35)–(36) is given by

 �eK0 � ik� ı zeS C 1

jz0j
d

dt

� ı z

jz0j
d

dt
eS D g ı z (38)

and

eS1. ; z/ D u1 (39)

where  D ' ı z.
The Fréchet derivativeeS01 of the operatoreS1 with respect to the boundary curve

z in the direction � is given by

eS01. I �/.Ox/ WD �
Z 2�

0

e�ik Ox�z.	/
�
�ik Ox � �.	/ jz0.	/j C z0.	/ � � 0.	/

jz0.	/j

 .	/ d	

for Ox 2 S
1. Then the linearization of (39) at z with respect to the direction � becomes

eS1 CeS01. I �/ D u1 (40)

and is a linear equation for the update �.
Now, given an approximation for the boundary curve @D with parameterization

z, each iteration step of the proposed inverse algorithm consists of two parts.

1. We solve the well-posed field equation (38) for  . This can be done through the
numerical method described in Sect. 3.

2. Then we solve the ill-posed linearized equation (40) for � and obtain an updated
approximation for @D with the parameterization z C �. Since the kernels of
the integral operators in (40) are smooth, for its numerical approximation the
composite trapezoidal rule can be employed. Because of the ill-posedness, the
solution of (40) requires stabilization, for example, by Tikhonov regularization.

These two steps are now iterated until some stopping criterion is satisfied. In our
numerical examples the iterations were stopped when the decrease in the residual of
the data equation became smaller than a given threshold.
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In principle, the parameterization of the update is not unique. To cope with this
ambiguity, one possibility, which we pursued in our numerical examples, is to allow
only parameterizations of the form

z.t/ D r.t/.cos t; sin t/; 0 � t � 2�; (41)

with a non-negative function r representing the radial distance of @D from the origin.
Consequently, the perturbations are of the form

�.t/ D q.t/.cos t; sin t/; 0 � t � 2�; (42)

with a real function q. In the approximations we assume r and its update q to have
the form of a trigonometric polynomial of degree J, in particular,

q.t/ D
JX

jD0
aj cos jtC

JX

jD1
bj sin jt: (43)

Then the update equation (40) is solved in the least squares sense, penalized via
Tikhonov regularization, for the unknown coefficients a0; : : : ; aJ and b1; : : : ; bJ of
the trigonometric polynomial representing the update q. Since (43) requires the
coefficients to be real valued we turn the linear system (40) with a complex matrix
and complex right hand side into an equivalent real system by taking the real and
imaginary parts of (40). It is advantageous to use an Hp Sobolev penalty term rather
than an L2 penalty in the Tikhonov regularization, i.e., to interpreteS01 as an ill-posed
linear operatoreS01 W HpŒ0; 2��! L2.S1/ for some small p 2 N.

As a theoretical basis for the application of Tikhonov regularization from [9] we
cite that, after the restriction to star-like boundaries of the form (42), the operator
eS01 is injective if k20 is not a Neumann eigenvalue for the negative Laplacian in D.

The above algorithm has a straightforward extension for the case of more than
one incident wave. Assume that ui

1; : : : ; u
i
M are M incident waves with different

incident directions and u1;1; : : : ; u1;M the corresponding far field patterns for
scattering from @D. Given an approximation z for the boundary we first solve
the field equations (38) for the M different incident fields to obtain M densities
 1; : : : ;  M . Then we solve the linearized equations

eS1 m CeS01. mI �/ D u1;m; m D 1; : : : ;M; (44)

for the update � by interpreting them as one ill-posed equation with an operator from
HpŒ0; 2�� into .L2.S1//M and applying Tikhonov regularization.

The numerical examples are intended as proof of concept and not as indications
of an already fully developed method. In particular, the regularization parameters
and the number of iterations are chosen by trial and error instead of, for example,
a discrepancy principle. In all examples, to avoid committing an inverse crime the
synthetic far field data are obtained by solving the integral equation (20) for the
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combined single- and double-layer approach whereas the inverse solver is based on
the single-layer approach via the integral equation (14).

For both examples the impedance functions are given by (29). The number of
quadrature points is 2n D 64 both on the boundary curve and on the circle for the
far field pattern. The wave number is k D 2. The degree of the polynomials (43)
is chosen as J D 4 and the regularization parameter for an H2 regularization of the
linearized data equation (40) is ˛ D 0:05 � 0:9m for the m-th iteration step. For
the perturbed data, random noise is added point wise with relative error in the L2

norm. The iterations are started with an initial guess given by a circle of radius 0:6
centered at the origin. In both examples we used two incident waves, for the apple
shape the incident directions are d D .˙1; 0/ and for the peanut shape d D .0;˙1/.
In the figures the exact @D is given as dotted (magenta), the reconstruction as full
(red) and the initial guess as dashed (blue) curve.

6 Solution of the Inverse Impedance Problem

Turning to the solution of the inverse impedance problem, we note that we can
understand the data equation (36) as its main basis. Knowing the boundary @D,
assuming again that k2 is not a Dirichlet eigenvalue for the negative Laplacian in D
we can represent us from u1 as a single-layer potential with density ' on @D. In
order to attain the given far field pattern the density has to satisfy

S1' D u1: (45)

Once the density ' is known, the values of u and @�u, i.e., the Cauchy data of u on
the boundary can be obtained through the jump relations

uj@D D uij@D C 1

2
S' (46)

and

@u

@�

ˇ
ˇ
ˇ
ˇ
@D

D @ui

@�

ˇ
ˇ
ˇ
ˇ
@D

C 1

2
K0' � 1

2
': (47)

For the numerical solution of (45) and the evaluation of (46) and (47) the
approximations of the integral operators described in Sect. 3 are available. The
derivative of uj@D with respect to s can be obtained by trigonometric differentiation.
Knowing the Cauchy data on @D we now can recover the impedance functions �
and � from the boundary condition (2).

The uniqueness result of Theorem 7 suggests that we need three incident plane
waves with different directions leading to three far field patterns u1;1; u1;2; u1;3

to reconstruct � and �. Solving the corresponding data equations (45) by Tikhonov
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regularization and using (46) and (47), we obtain three Cauchy pairs u1; @�u1 and
u2; @�u2 and u3; @�u3 for which we can exploit the boundary condition to construct
� and �. For this we proceed somewhat differently than in [4] and mimic the idea
of the proof of Theorem 7.

Multiplying the impedance condition (2) for u1 by u2 and the impedance
condition for u2 by u1 and subtract we obtain

ik
d

ds
�



u1

du2
ds
� u2

du1
ds

�
D u1

@u2
@�
� u2

@u1
@�

on @D:

From this it follows that

ik�



u1

du2
ds
� u2

du1
ds

�
D I

�
u1
@u2
@�
� u2

@u1
@�

�
C C12 on @D (48)

where C12 is a complex constant and I denotes integration over @D from a fixed
x0 2 @D to x 2 @D. Proceeding the same way with the two other possible
combinations of u2 and u3 and of u3 and u1 we obtain two analogous equations with
two more constants C23 and C31. We approximate the unknown (parameterized)
impedance function � by a trigonometric polynomial of degree J and collocate the
parametrized three equations of the form (48) at the 2n collocation points tj D j�=n,
j D 1; : : : ; 2n. The resulting linear system of 6n equations for the .2J C 1/ Fourier
coefficients of �approx and the three integration constants C12;C23;C31 then is solved
in the least squares sense.

Having reconstructed �, the remaining coefficient � can be obtained from the
impedance condition for any of the three functions u1, u2, or u3. For symmetry,
approximating the unknown function � also by a trigonometric polynomial of
degree J we collocate the boundary condition (2) for all three solutions u1, u2, and
u3 and solve the resulting linear system of 6n equations for the .2J C 1/ Fourier
coefficients of �approx in the least squares sense.

For both our numerical examples the impedance functions are given by (29).
The wave number is k D 1 and the three incident directions are d D .1; 0/

and d D .cos 2�=3;˙ sin 2�=3/. As in the examples of Sect. 4 the number of
quadrature points is 2n D 64 on each curve. The integration I is approximated
by trigonometric interpolation quadrature. The degree of the polynomials for the
approximation of the impedance functions is chosen as J D 2. We approximate
the density ' via H2 Tikhonov regularization of (45) by a trigonometric polynomial
of degree J' D 12. The regularization parameter ˛ is chosen by trial and error as
˛exact D 10�10 and ˛noise D 10�5.

Figures 3 and 4 show the reconstruction of the impedances for an ellipse with
parametrization

z.t/ D .cos t; 0:7 sin t/; 0 � t � 2�; (49)
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Fig. 3 Reconstruction of the impedance functions for the ellipse (49) for exact data (left) and 1%
noise (right)
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Fig. 4 Reconstruction of the impedance functions for the peanut (28) for exact data (left) and 1%
noise (right)

and for the peanut (28). The exact � is given as dotted (magenta) curve and the
reconstruction as full (red) curve, the exact � is dashed-dotted (green) and the
reconstruction dashed (blue). In general, the examples and our further numerical
experiments indicate that the simultaneous reconstruction of both impedance func-
tions is very sensitive to noise.

In conclusion, we note that we have presented a method for the reconstruction
of the shape (for known impedance functions) and a method for the reconstruction
of the impedance functions (for known shape) with numerical examples as proof of
concept. Further research is required for the solution of the full inverse problem by
simultaneous linearization of the system (35) and (36) with respect to both the shape
and the impedance analogous to [5].
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Ian Sloan and Lattice Rules

Peter Kritzer, Harald Niederreiter, and Friedrich Pillichshammer

Dedicated to Ian H. Sloan on the occasion of his 80th birthday.

Abstract Lattice rules are a powerful and popular form of quasi-Monte Carlo
rules that are based on integration lattices. The study of the theory and application
of lattice rules is intimately connected with the name Ian H. Sloan. We take the
opportunity of Ian’s 80th birthday to give an overview of his wide-ranging and
fruitful contributions to this topic.

1 Introduction and Background

Ian Sloan is a major force in the area of numerical integration, and one of his
main contributions to this subject is the theory of lattice rules. Therefore we find
it very appropriate to devote an article appreciating his work on lattice rules to this
anniversary volume.

Lattice rules belong to the family of quasi-Monte Carlo methods for numerical
integration. The emphasis of these methods is on the multidimensional case. It
is well known that quasi-Monte Carlo methods are effective even for integration
problems of very high dimensions as they appear, for instance, in computational
finance. We refer to the books of Dick and Pillichshammer [5] and Leobacher and
Pillichshammer [43] as well as to the extensive survey article by Dick et al. [10]
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for a general background on quasi-Monte Carlo methods. An older monograph on
quasi-Monte Carlo methods is [47].

Quasi-Monte Carlo methods are, in a nutshell, deterministic versions of Monte
Carlo methods. We normalize the integration domain to be the s-dimensional unit
cube Is WD Œ0; 1�s for some s � 1. For a Lebesgue-integrable function f on Is, the
Monte Carlo method uses the estimate

Z

Is
f .u/du 
 1

N

NX

nD1
f .xn/; (1)

where x1; : : : ; xN are independent and uniformly distributed random samples from
Is. If f 2 L2.Is/, then the expected error in (1) has the order of magnitude N�1=2
(note that the convergence rate is independent of the dimension s). The quasi-
Monte Carlo method for the same integral uses again the approximation (1), but
now x1; : : : ; xN 2 Is are deterministic points that are chosen to obtain a smaller
error bound than the Monte Carlo error bound. Since O

�
N�1=2� is the mean-square

error in (1) averaged over all samples of N points in Is, such deterministic points
must exist. One of the main issues in the theory of quasi-Monte Carlo methods
is the explicit construction of deterministic point sets that yield better numerical
integration schemes than the Monte Carlo method for large families of integrands.
There are three principal approaches: (1) via Halton sequences and their variants
(see [5, Section 3.4]); (2) via the theory of nets (see most parts of [5]); (3) via the
theory of lattice rules. In this article, we focus on the third approach since it is here
where Ian has made most of his contributions.

A lattice rule is a generalization of the classical one-dimensional numerical
integration rule

Z 1

0

f .u/du 
 1

N

NX

nD1
f
�n � 1

N

	
(2)

called a rectangle rule which, in the case of an integrand f with f .0/ D f .1/,
agrees with the N-point trapezoidal rule for the interval Œ0; 1�. Lattice rules can be
introduced from a group-theoretic and a geometric perspective.

We start with the first point of view. For a given dimension s � 1, the Euclidean
space R

s is an abelian group under addition which has Zs as a subgroup. Thus, we
can form the factor group R

s=Zs, also called the s-dimensional torus group. Now
we consider, for the moment, the nodes 0; 1N ; : : : ;

N�1
N in (2) and their corresponding

cosets 0CZ; 1N CZ; : : : ; N�1
N CZ in the one-dimensional torus group R=Z. Clearly,

these cosets form a finite subgroup of R=Z; in fact, it is the cyclic group generated
by 1

NCZ. The generalization is now obvious. For an arbitrary s, let L=Zs be any finite
subgroup of Rs=Zs and let ynCZ

s with yn 2 Œ0; 1/s for n D 1; : : : ;N be the distinct
cosets making up the group L=Zs. The point set consisting of the points y1; : : : ; yN
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is called a lattice point set and the corresponding quasi-Monte Carlo approximation

Z

Is
f .u/du 
 1

N

NX

nD1
f . yn/ (3)

is called a lattice rule.
Why do we speak of a “lattice rule” and not, for instance, of a “finite-group

rule”? The reason is a nice geometric interpretation of lattice rules. Recall that an s-
dimensional lattice is defined to be a discrete subgroup of Rs that is not contained in
any proper linear subspace of Rs. Equivalently, an s-dimensional lattice is obtained
by taking a basis b1; : : : ; bs of the vector space Rs and forming the set

L D
n sX

iD1
kibi W ki 2 Z for 1 � i � s

o

of all linear combinations of b1; : : : ; bs with integer coefficients. The lattices
corresponding to lattice rules must have an additional property expressed in the
following definition.

Definition 1 An s-dimensional lattice is called an s-dimensional integration lattice
if it contains Zs as a subset.

If we take an s-dimensional integration lattice L as the starting point, then the
intersection L \ Œ0; 1/s is a finite set since L is discrete, and this finite set of points
in Œ0; 1/s forms a lattice point set. Furthermore, all lattice point sets can be obtained
in this way.

An important concept for the analysis of lattice rules is that of the dual lattice of
a given integration lattice.

Definition 2 The dual lattice L? of the s-dimensional integration lattice L is
defined by

L? D ˚h 2 R
s W h � y 2 Z for all y 2 L

�
;

where � denotes the standard inner product on R
s.

It is easy to see that the dual lattice of an s-dimensional integration lattice is
always a subgroup of Zs.

An interesting special case arises if the finite subgroup L=Zs of Rs=Zs is cyclic.
Let N be the order of the group L=Zs and let y C Z

s be a generator of L=Zs. Then
Ny 2 Z

s, and so y D 1
N g for some g 2 Z

s. The lattice rule (3) then attains the form

Z

Is
f .u/du 
 1

N

NX

nD1
f
�nn � 1

N
g
o	
; (4)
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where the curly brackets denote fractional parts, that is, the points n�1
N g, n D

1; : : : ;N, are considered modulo 1 in each coordinate. The numerical integration
schemes in (4) were historically the first lattice rules and they are collectively known
as the method of good lattice points. In this context, we call g the generating vector
of the lattice rule.

We conclude this section with some comments on the history of lattice rules. The
special case of the method of good lattice points was introduced by Korobov [28] in
1959 and a few years later independently by Hlawka [23]. The Soviet school quickly
developed a quite satisfactory theory of the method of good lattice points, which is
summarized in the book of Korobov [30] from 1963.

The first steps in the direction of general lattice rules were taken by Frolov [14]
in 1977, but it was Ian who developed a systematic approach to the subject. His
general perspective was first presented at a workshop in Canberra in December 1983
(see [68]). His fundamental paper [69] with Kachoyan on general lattice rules was
submitted in August 1984, but unfortunately it took until 1987 to get published. In
the meantime, his paper [63] had also advertised general lattice rules. Specialists
in numerical integration got a first-hand exposure to general lattice rules through
Ian’s talk at an Oberwolfach workshop in November 1987 (see [73]). The second
author first met Ian on a local train from Freudenstadt to Wolfach on their way to this
workshop, but it was only after some curiosity-driven small talk that they were able
to identify each other. Since then, Ian has had very close contacts with the Austrian
community in the area of quasi-Monte Carlo methods, and we take this opportunity
to thank him wholeheartedly for all his help and support.

An excellent summary of Ian’s contributions to the theory of lattice rules as of
1994 can be found in his book [67] written jointly with Stephen Joe.

2 The Structure of Lattice Rules

In Sect. 1, we have defined lattice rules as quasi-Monte Carlo methods using the
points of an integration lattice in Is as the integration nodes. An obvious question is
how such lattice rules can be represented in general. From (4), it can be seen that at
least some lattice rules QN;s for approximating the integral of a function f defined
on Is by N lattice points can be written as

QN;s. f / D 1

N

NX

jD1
f
�n j � 1

N
g
o	
:

One may observe that the above representation is not unique. Indeed, choosing
an integer m � 2 and replacing N and g by mN and mg, respectively, yields an
integration rule with mN points, each of them occurring with multiplicity m, such
that the newly obtained rule is effectively equivalent to the one we started with.
Furthermore, it is easy to construct examples where for the same N two distinct
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generating vectors g1 and g2 yield rules with identical sets of integration nodes.
Another question is of course whether there are maybe other lattice rules that can
be represented in a different way than the one above. Hence, it is natural to ask for a
canonical way of denoting lattice rules that makes it easier to structure and classify
these, and to detect equivalences. Regarding this problem, it was Ian Sloan who,
together with James Lyness, made substantial progress in providing a systematic
way of representing lattice rules. We state a crucial theorem from [70] here.

Theorem 1 (Sloan and Lyness) Let QN;s be an s-dimensional lattice rule with N �
2 points. Then there exist uniquely determined integers

• r, with r 2 f1; : : : ; sg,
• and n1; : : : ; nr > 1 with nkC1jnk for 1 � k � r � 1, and N D n1 � � � nr,

such that QN;s applied to a function f can be represented as

QN;s. f / D 1

N

nrX

jrD1
� � �

n1X

j1D1
f


�
j1 � 1

n1
z1 C � � � C jr � 1

nr
zr

��
;

where z1; : : : ; zr are linearly independent (over Q) integer vectors in Z
s.

The proof of Theorem 1 is based on the group structure of lattice points, and can
be found in [70], see also [67] and [51, Section 4.3.2].

Remark 1 The integer r in Theorem 1 is called rank of the lattice rule QN;s, and
n1; : : : ; nr are the invariants.

Theorem 1 implies that the rank and the invariants of any given lattice rule
are determined uniquely. What about the generating vectors z1; : : : ; zr of a rank-
r lattice rule? In general, these cannot be determined uniquely. However, Sloan
and Lyness [71] identified a class of lattice rules for which even the generating
vectors can, in a certain sense, be identified unambiguously. This class is known
as projection-regular lattice rules, which shall be described briefly here (we
follow [67] and [71] in our terminology). Given an s-dimensional lattice rule QN;s

and d 2 f1; : : : ; sg, we speak of the d-dimensional principal projection of QN;s

when we consider the d-dimensional lattice rule obtained by omitting the last s � d
components of the integration nodes.

Note now that we can modify the representation of lattice rules outlined in
Theorem 1 to a so-called extended canonical form by setting nrC1 D � � � D ns D 1,
and by choosing arbitrary integer vectors zrC1; : : : ; zs. Then we can represent a
lattice rule QN;s as

QN;s. f / D 1

N

nsX

jsD1
� � �

n1X

j1D1
f


�
j1 � 1

n1
z1 C � � � C js � 1

ns
zs

��
;
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where we now trivially have N D n1 � � � ns. Furthermore the rank r is in this case
the maximal index such that nr > 1. Using the latter representation of lattice rules,
projection regularity is defined as follows (cf. [71]).

Definition 3 Let QN;s be an s-dimensional lattice rule with invariants n1; : : : ; ns

in its extended canonical form. The rule QN;s is called projection regular if for
any choice of d 2 f1; : : : ; sg the d-dimensional principal projection of QN;s has
invariants n1; : : : ; nd.

The benefit of projection-regular lattice rules is that, by demanding some
structure of the generating vectors, their choice is unique. Indeed, note that, given
a lattice rule QN;s in its extended canonical form, we can define an s � s-matrix Z
with the generating vectors z1; : : : ; zs as its rows, i.e. Z D .z1; : : : ; zs/

>. The matrix
Z corresponding to a lattice rule is simply called Z-matrix in [71]. We say that Z is
unit upper triangular if Z is upper triangular and has only 1s as the entries on the
main diagonal. Using this terminology, we can state the following theorem, which
is the main result of [71].

Theorem 2 (Sloan and Lyness) A lattice rule QN;s is projection-regular if and only
if the rule QN;s can be represented in an extended canonical form such that the
corresponding Z-matrix is unit upper triangular.

A question that remains is whether a projection-regular lattice rule can be
represented in two different ways in an extended canonical form with unit upper
triangular Z-matrices? The answer to this question is, as shown in [71], no, so it
makes sense to speak of the standard form of a projection-regular lattice with unit
upper triangular Z-matrix. For further details, we refer to the monograph [67] and
the original paper [71]. We also remark that, for the special case of rank-2 lattices,
Ian, again together with James Lyness, showed alternative representations, which
subsequently made computer searches more effective (see, e.g., [44]). An overview
of results related to the ones outlined in this section can also be found in [64].

A further important topic regarding the structure of lattice rules that was studied
extensively by Ian and his collaborators is that of copy rules. Even though, due to
their simple structure, rank-1 lattice rules have many convenient properties and have
frequently been studied in many papers, Ian has pointed out on various occasions
that also lattice rules of higher rank should be considered. To be more precise, as
stated, e.g., in [13], lattice rules of higher or even maximal rank may perform better
than rules of rank 1 with respect to certain criteria, such as the quantity P˛ used in
the classical literature on lattice rules. A prominent way of obtaining higher-rank
lattice rules are copy rules. The basic idea of copy rules is elegant and simple: given
a lattice rule QN;s based on an integration lattice L, we obtain an integration rule
consisting of ms scaled “copies” of QN;s by considering the lattice rule based on
the integration lattice m�1L for some positive integer m. In other words, a copy
rule is obtained by scaling the original rule QN;s and copying it to each of the
cubes obtained by partitioning Is into cubes of volume m�s. Using the canonical
representation form, let us suppose we start with a rank-1 rule QN;s with generating
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vector z, i.e.,

QN;s. f / D 1

N

NX

jD1
f


�
j� 1

N
z
��

:

The ms copy rule Qm;N;s is then given by

Qm;N;s. f / D 1

msN

mX

ksD1
� � �

mX

k1D1

NX

jD1
f


�
j � 1
mN

zC .k1 � 1; : : : ; ks � 1/
m

��
:

It was shown by Sloan and Lyness in [70] that an ms copy rule has rank s; to be
more precise, an s-dimensional lattice rule is of rank s if and only if it is an ms copy
rule obtained from a rule of lower rank. Furthermore, in the paper [13], Disney and
Sloan gave numerical results indicating that copy rules perform better with respect
to P˛ than rank-1 rules of comparable size. We refer to [13] and [67] for further
details.

The rank of lattice rules plays a role in yet another variant of lattice rules, namely
so-called embedded (sometimes also imbedded) lattice rules. The crucial feature of
embedded lattice rules is that, at least up to a certain point, these can be extended
by adding additional points to the rule without having to discard previous ones.
This property can be a desirable advantage in practical implementations. In this
context one then more precisely speaks of sequences of embedded integration rules,
a concept that not only occurs with lattice rules but also other types of quadratures.
Sequences of embedded lattice rules, as they shall be presented here, were originally
described by Ian together with Stephen Joe (see [25] and [67]); they have the
additional property that the more points we add, the higher the rank of the lattice
rule gets. In [67, p. 164], the following is remarked:

Embedded sequences of quadrature rules open up the possibility of obtaining an error
estimate with little extra cost. The hope is that such an error estimate, along with the
full set of approximate integrals obtained from the sequence of embedded rules, can give
valuable information about the reliability of the final (and hopefully best) approximation in
the sequence.

Using a representation form similar to the canonical representation form introduced
above, a sequence of embedded lattice rules is defined as follows. For a fixed
positive integer m that is relatively prime to N, let for r 2 f0; 1; : : : ; sg the rule
Qr;m;N;s be defined by

Qr;m;N;s. f / D 1

mrN

mX

krD1

� � �
mX

k1D1

NX

jD1

f


�
j � 1

N
zC .k1 � 1; : : : ; kr � 1; 0; : : : ; 0/

m

��
;

where z is a generating vector with components that are relatively prime to m. As
pointed out in [25], the Qr;m;N;s have the property that the integration nodes in
Qr;m;N;s also occur in QrC1;m;N;s for 0 � r � s � 1, and that Qr;m;N;s is a lattice
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rule with mrN points and rank r for 0 � r � s, the only exception being the rank
of Q0;m;N;s, which is 1. Hence, we see that Qs;m;N;s, which is the rule based on the
largest number of integration nodes and, thus, intuitively the “most precise”, has
maximal rank. From the representation of the Qr;m;N;s we see much similarity to
copy rules, and indeed it is shown in [25] that Qs;m;N;s is nothing but an ms copy
rule obtained from Q0;m;N;s. The papers [25, 27], and again the book [67] contain
further remarks, results, and numerical experiments related to this subject. Results
on component-by-component constructions (see Sect. 4) of embedded lattice rules
are outlined in [34]. We also remark that, though sometimes using slightly different
techniques, the question of how to extend the number of points of lattice rules has
been addressed in numerous papers from theoretical and practical viewpoints, see,
for example, [3, 9, 21, 22, 48].

3 Error Bounds for Lattice Rules

Integration rules have to be accompanied by an error analysis in order to be useful
in practice. There are, in principle, two ways of establishing an upper bound on the
integration error for the lattice rule (3). One method is based on the general Koksma-
Hlawka inequality for an integrand f of bounded variation V. f / in the sense of
Hardy and Krause (see [31, Chapter 2]). This inequality yields the bound

ˇ̌
ˇ
Z

Is
f .u/du� 1

N

NX

nD1
f .yn/

ˇ̌
ˇ � V. f /D�

N.L/;

where D�
N.L/ is the star discrepancy of the integration nodes y1; : : : ; yN correspond-

ing to the integration lattice L. Recall that

D�
N.L/ D sup

J

ˇ
ˇ̌A. JIL/

N
� �s. J/

ˇ
ˇ̌
;

where J runs through all half-open subintervals of Is with one vertex at the origin,
A. JIL/ is the number of integers n with 1 � n � N such that yn 2 J, and �s denotes
the s-dimensional Lebesgue measure.

Thus, one arrives at the problem of bounding the star discrepancy D�
N.L/ that was

treated by Niederreiter and Sloan [49]. We need some notation in order to state their
results. Let Cs.N/ be the set of all nonzero h D .h1; : : : ; hs/ 2 Z

s with �N=2 <
hi � N=2 for 1 � i � s. For integers h 2 .�N=2;N=2�, we put

r.h;N/ D
(

N sin.�jhj=N/ if h ¤ 0;
1 if h D 0:
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For h D .h1; : : : ; hs/ 2 Cs.N/, we write

r.h;N/ D
sY

iD1
r.hi;N/:

Then for an arbitrary s-dimensional integration lattice L with exactly N points in
Œ0; 1/s, we define

R.L/ D
X

h2Cs.N/\L?

1

r.h;N/
; (5)

where L? is the dual lattice in Definition 2. According to [49, Proposition 3], the set
Cs.N/ \ L? is nonempty for s � 2 and N � 2. The following discrepancy bound
was shown in [49].

Theorem 3 (Niederreiter and Sloan) Let L be an s-dimensional integration lattice
with exactly N points in Œ0; 1/s, where s � 2 and N � 2. Then

D�
N.L/ �

s

N
C R.L/:

An important quantity related to R.L/ is the figure of merit 
.L/, sometimes also
called the Zaremba index of L. For h 2 Z put r.h/ D max.1; jhj/, and for h D
.h1; : : : ; hs/ 2 Z

s put

r.h/ D
sY

iD1
r.hi/:

Then for L as in Theorem 3, 
.L/ is defined by


.L/ D min
h2L?

h¤0

r.h/:

Now we can state the following result from [49].

Theorem 4 (Niederreiter and Sloan) For L as in Theorem 3, we have

R.L/ <
1


.L/

� 2

log 2

	s�1�
.log N/s C 3

2
.log N/s�1

	
:

Lower bounds for R.L/ have been proved in [42, 59]. Theorem 4 suggests that
the figure of merit 
.L/ should be large for a useful integration lattice L. This is also
demonstrated by the following lower bound on the star discrepancy from [49].
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Theorem 5 (Niederreiter and Sloan) For L as in Theorem 3, we have

D�
N.L/ �

cs


.L/
;

where cs is an explicitly known positive constant depending only on s.

An interesting practical problem arises in connection with R.L/ in (5), namely
how to compute this quantity efficiently. Joe and Sloan [26] use an asymptotic series
in order to obtain a very good approximation to R.L/ which can be computed in
O.N/ operations. This should be compared with the definition of R.L/ in (5) which
requires the summation of Ns�1 � 1 terms.

Now we turn to the second method of bounding the integration error in (3). Here
we assume that the integrand f is a sufficiently regular periodic function on R

s of
period 1 in each variable such that f is represented by its absolutely convergent
Fourier series

f .u/ D
X

h2Zs

bf .h/ exp.2�ih � u/;

wherebf .h/ D R
Is f .u/ exp.�2�ih � u/du is the hth Fourier coefficient of f . For a

real number ˛ > 1, we say that f 2 E ˛ if there exists a constant c. f / � 0 such that

jbf .h/j � c. f /r.h/�˛ for all h 2 Z
s:

Let g 2 Z
s be a generating vector of a lattice rule of rank 1. Then for f 2 E ˛ we

have the error bound

ˇ
ˇ
ˇ
Z

Is
f .u/du� 1

N

NX

nD1
f
�n � 1

N
g
	ˇˇ
ˇ � c. f /P˛.g;N/; (6)

where

P˛.g;N/ D
X

h

r.h/�˛

with the summation running over all nonzero h 2 Z
s with h � g � 0 .mod N/.

The bound (6) raises the question of how small we can make the quantity
P˛.g;N/. Disney and Sloan [12] have shown that for every s � 3 and every ˛ > 1

we have

min
g2Zs

P˛.g;N/ � ..2e=s/˛s C o.1//
.log N/˛s

N˛
as N !1: (7)

This implies that with the method of good lattice points we can obtain a convergence
rate O.N�˛/ for f 2 E ˛ , up to logarithmic factors.
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4 The Search for Good Lattice Rules

So far there exists no general construction principle for lattice rules with excellent
properties with respect to a given quality measure such as the star discrepancy,
the criteria P˛ , R, or the figure of merit 
. (The only exception is in dimension
s D 2 where one can use a relation to Diophantine approximation to find explicit
constructions, see [2, 47, 67] or [51, Example 4.3.15]. In this context we would like
to particularly mention so-called Fibonacci lattice rules.)

For dimensions s larger than two there are mainly averaging arguments which
guarantee the existence of lattice rules which behave excellently with respect to
a given quality criterion. The simple idea behind this principle is that there must
exist a lattice point set for which a given quality criterion is at least as small as the
average of the same criterion extended over all possible lattice point sets. However,
such results give no information about how to obtain a good lattice point set.

For a long time, good lattice point sets were found by a brute force computer
search, see, for example, [18, 19, 45, 46, 61]. But this is infeasible if N and s are not
very small. For example for the method of good lattice points for given N one has
to search for g within the set f0; 1; : : : ;N � 1gs which means that in the worst case
one has to check Ns integer vectors to ensure success.

Since the 1980s Ian Sloan has contributed important results to the search for
lattice rules. For example, we mention his work together with Linda Walsh [73, 74]
(see also [67, Eq. (5.8)]) concerning the effective search for rank-2 lattice rules with
small values of the quality criterion P˛ . In their work Ian and Walsh restricted their
attention to relatively coprime invariants m and n, which allows to write the rank-2
lattice rule in a very symmetric three-sum form. This representation makes it easier
to eliminate “geometrically equivalent” rules from the search. Since P˛ is invariant
for geometrically equivalent rules it suffices to calculate P˛ only for one member of
a geometrically equivalent family. This is an important observation since there may
be a huge number of rules which are distinct but geometrically equivalent.

Back to the nowadays most important case of rank-1 rules: One way to reduce
the search space for good lattice points is a method that goes back to Korobov [29].
He suggested considering only lattice points of the form

g.g/ D .1; g; g2; : : : ; gs�1/ where g 2 f1; : : : ;N � 1g:

This restriction reduces the size of the search space from Ns to N�1, since for given
N one only has to search for g in the set f1; 2; : : : ;N � 1g. The limitation to good
lattice points of so-called “Korobov form” is in many cases justified by averaging
results that are basically of the same quality as the averaging results over all lattice
points from f0; 1; : : : ;N � 1gs (see, for example, [29, 47, 51]). The method is very
effective and in fact some of the good lattice points in the tables in [19, 46, 61] are
of the specific Korobov form.

In [84] Ian, together with Xiaoqun Wang and Josef Dick, studied Korobov
lattice rules in weighted function spaces. As the quality criterion they chose the
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worst-case integration error in weighted Korobov spaces which is more general than
the classical quality measure P˛ (in fact, in the unweighted case, P˛ of a lattice
rule is exactly the squared worst-case error of the same rule). For simplicity we
restrict ourselves to the unweighted case and state the following special case of [84,
Algorithm 1].

In the following let ZN WD f1; 2; : : : ;N � 1g and let �.ˇ/ D P
j�1 j�ˇ be the

Riemann zeta function.

Algorithm 1 (Korobov Lattice Rule) Let N be a prime number and let s 2 N. The
optimal Korobov generator is found by minimizing the measure

P˛.g.g/;N/ D �1C 1

N

N�1X

kD0

X

h1;:::;hs2Z

sY

jD1

1

r.hj/˛
exp



2�ik

hjg j�1

N

�
;

with respect to g 2 ZN.

It is pointed out in [84] that the number of operations needed to find the optimal
Korobov lattice rule for even ˛ (in this case one can get rid of the infinite sums
in the definition of P˛) and a single dimension s is O.sN2/. This is a remarkable
improvement compared to the order O.Ns/ for a full search. Now the surprise is that
the so found lattice rule is also of good quality. The following result is a specific
case of the more general [84, Theorem 4]:

Theorem 6 (Wang, Sloan, and Dick) Let N be a prime number and assume that
g� was found by Algorithm 1. Then for arbitrary 	 2 Œ1; ˛/ we have

P˛.g.g�/;N/ � Cs.˛; 	/
� s

N � 1
		
;

where Cs.˛; 	/ D exp.2s	�. ˛
	
//.

Ian’s most important contribution to effective search routines for lattice rules,
however, is the so-called component-by-component (CBC) construction of good
lattice points. Although already described in the year 1963 by Korobov [30], this
method fell into oblivion and it was Ian who re-invented it in a joint paper with
Andrew V. Reztsov [72] in the year 2002. With this method good lattice points can
be constructed one component at a time. At this time, this was a big surprise. We
quote Ian and Reztsov, who wrote: “The results may be thought surprising, since it
is generally accepted that knowledge of a good lattice rule in s dimensions does not
help in finding a good rule in sC 1 dimensions.” (cf. [72, p. 263]).

To be more precise, given N and a quality measure, say, e.g., P˛ , one starts with
a sufficiently good one-dimensional generator .g1/. To this generator one appends
a second component g2 which is chosen as to minimize the quality criterion, in our
case P˛. In a next step, one appends to the now two-dimensional generator .g1; g2/
a third component g3 which is again chosen as to minimize P˛ . This procedure is
repeated until one obtains an s-dimensional generating vector g D .g1; g2; : : : ; gs/.
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In each of the s steps the search space ZN has cardinality N�1 and hence the overall
search space for the CBC method is reduced to a size of order O.sN/. Hence this
provides a feasible way of finding a generating vector.

The use of the CBC method is justified by the following result which guarantees
that the obtained generating vector is of excellent quality. In order to stress the
dependence of P˛ on the dimension s we will in the following write P.s/˛ for the
s-dimensional case. We state [72, Theorem 2.1]:

Theorem 7 (Sloan and Reztsov)

i) For arbitrary ˇ > 1 and prime N, with N � 2�.ˇ/C 1, there exists a sequence
.gj/

1
jD1, with gj 2 ZN, such that for all s � 1 and all ˛ � ˇ

P.s/˛ ..g1; : : : ; gs/;N/ � .1C 2�.ˇ//s˛=ˇ
N˛=ˇ

: (8)

ii) The members gj of a sequence .gj/
1
jD1 satisfying (8) can be determined recur-

sively, by setting g1 D 1 and taking gsC1 2 ZN to be the least value of g 2 ZN

that minimizes P.sC1/ˇ ..g1; : : : ; gs; g/;N/.

From this result Ian and Reztsov deduced the following:

Theorem 8 (Sloan and Reztsov)

i) Let ˛ > 1 and let smax � 2 be a fixed positive integer, and let N be a prime
number satisfying

N > esmax
˛

˛�1 :

There exists a finite sequence .gj/
smax
jD1 such that for any s satisfying 1 � s � smax

P.s/˛ ..g1; : : : ; gs/;N/ � D.s; ˛/
.log N/s˛

N˛
;

where

D.s; ˛/ WD


3

smax

�s˛

esmax˛:

ii) The sequence .gj/
smax
jD1 can be constructed as in part (ii) of Theorem 7, with ˇ

given by

ˇ WD log N

log N � smax
:

The bound on P˛ from Theorem 8 should be compared to that in (7).
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The search procedure from Theorem 7 is nowadays called the “CBC algorithm”
and can be summarized in concise form as follows:

Algorithm 2 (CBC Algorithm) Let s;N 2 N.

1. Choose g1 D 1.
2. For s D 1; 2; : : : ; smax � 1, assume that g1; : : : ; gs are already found. Choose

gsC1 2 ZN to minimize P.sC1/˛ ..g1; : : : ; gs; g/;N/ as a function of g 2 ZN.

It is pointed out in [72] that the total cost of the CBC construction for P˛ is of
order of magnitude O.s2N2/. This construction cost is typical for a straightforward
implementation of the CBC algorithm based on P˛ and also other quality measures.
Sometimes this cost can easily be reduced to O.sN2/ under the assumption of a
memory capacity of order O.N/. This is comparable to the search for generators
of Korobov form and makes the CBC algorithm applicable for moderately large N.
However, if one is interested in lattice rules with really large N, one has to further
reduce the factor N2 in the construction cost to get a feasible construction method.
A breakthrough with respect to this problem was obtained by Dirk Nuyens and
Ronald Cools [57, 58] in 2006 using fast Fourier transform (FFT) methods for the
construction of lattice point sets. This way, it is possible to construct, for a given
prime number N, an s-dimensional generating vector g in O.sN log N/ operations,
compared to O.sN2/ operations for the usual CBC algorithm. The modified CBC
construction is commonly known as “fast CBC construction”.

The CBC construction is even more suited for the construction of good lattice
rules in weighted spaces where the successive coordinates of the integrands have
decreasing influence on the integral. This was already indicated in [72] although
this paper only deals with P˛, i.e., the unweighted case. We quote from [72, p. 264]:

Lattice rules obtained by the present component-by-component algorithm may be particu-
larly valuable if the user knows that for the integrand under consideration the first coordinate
is more important than the second, the second than the third, and so on. This is because the
error bounds in Theorems 2.1 and 4.1 [here Theorems 7 and 8] hold simultaneously for all s
up to the dimension of the particular integral. Thus the error bounds hold for all the principal
projections obtained by omitting one or more of the later coordinates of the integrand.

The different importance of the coordinate projections is usually modeled by
a sequence of weights. For weighted spaces the CBC construction automatically
adapts the constructed lattice point to the given sequence of weights. This means
that a good lattice point constructed by CBC for a given sequence of weights need
not be good for another weight sequence.

Nowadays the fast CBC construction is used with great success also for other
quality measures such as the criterion R (see for example [43, Chapter 4]) or the
(mean square) worst-case error of (shifted) lattice rules in weighted Sobolev spaces
and Korobov spaces. This will be discussed further in Sect. 5.
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5 Randomizations and Generalizations of Lattice Rules

Lattice rules are perfectly configured for the numerical integration of smooth and
in each variable one-periodic functions. It is well known that they can achieve the
optimal convergence rate in the class E ˛ (see Sect. 3) or, in a more modern setting,
in weighted Korobov spaces of smoothness ˛.

Let ˛ > 1 and let � D .�j/j2N be a sequence of positive weights.1 Then the
�-weighted Korobov space Hs;˛;� of smoothness ˛ is a reproducing kernel Hilbert
space (see [1] for general information about reproducing kernel Hilbert spaces) of
one-periodic, complex valued functions with reproducing kernel

Ks;˛;� .x; y/ D
X

h2Zs

exp.2�ih � .x � y//
r˛;� .h/

;

where for h D .h1; h2; : : : ; hs/, r˛;� .h/ D Qs
jD1 r˛;�j .hj/, and for h 2 Z and � > 0,

r˛;� .h/ D ��1jhj˛ if h 6D 0 and r˛;� .0/ D 1. The corresponding inner product is

h f ; gis;˛;� D
X

h2Zs

r˛;� .h/bf .h/bg.h/;

wherebf .h/ D RIs f .x/ exp.�2�ih �x/dx is the hth Fourier coefficient of f . The norm

in Hs;˛;� is defined as k � ks;˛;� D h�; �i1=2s;˛;� .
The worst-case error of a linear integration rule

QP;a. f / D
NX

jD1
aj f .xj/ for f 2Hs;˛;�

based on a point set P D fx1; : : : ; xNg in Is and coefficients a D .a1; : : : ; aN/ 2 R
N

is defined as

e.Hs;˛;� ;P; a/ D sup
f

ˇ
ˇ
ˇ̌
Z

Is
f .x/dx� QP;a. f /

ˇ
ˇ
ˇ̌ ;

where the supremum is extended over the unit ball of Hs;˛;� , i.e., over all f 2Hs;˛;�

with k fks;˛;� � 1. If a D .1=N; : : : ; 1=N/, then the integration rule is a quasi-Monte
Carlo rule QP;a and we omit the parameter a in the notation. There is a convenient
formula for the worst-case error in Hs;˛;� of rank-1 lattice rules,

e2.Hs;˛;� ;P.g;N// D �1C
X

h2Zs
g�h�0 .mod N/

1

r˛;� .h/
;

see [77, Eq. (15)]. This formula should be compared to the definition of P˛ in Sect. 3.

1For simplicity here we only consider weights of product form, i.e., so-called product weights.
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Let us first consider the unweighted case, i.e., the weights satisfy �j D 1 for
all j 2 N (in this case we also omit � in the notation). Then for prime N one can
construct by a CBC algorithm a lattice point g 2 Zs

N such that

e2.Hs;˛;P.g;N// � .1C 2�.˛//s 1C 2
˛.sC1/.1C log N/˛s

N˛
:

Note that the order of magnitude in N is, up to the log N-factor, best possible since
it is known that for arbitrary N-element point sets P in Is, a 2 R

N , and for every
˛ > 1 we have

e2.Hs;˛;P; a/ � C.s; ˛/
.log N/s�1

N˛
;

where C.s; ˛/ > 0 depends only on ˛ and s, but not on N.
This means that asymptotically, for N tending to infinity, lattice rules can achieve

the optimal rate of convergence for the worst-case integration error in (unweighted)
Korobov spaces. However, the question is how long one has to wait to see this
excellent asymptotic behavior especially when the dimension s is large. This issue is
the subject of tractability, a further topic to which Ian made significant contributions
during the last two decades. We now switch again to the weighted setting.

The Nth minimal error in Hs;˛;� is given by

e.N; s/ WD inf
a;P

e.Hs;˛;� ;P; a/;

where the infimum is taken over all N-element point sets P in Is and coefficients a.
Furthermore, for " 2 .0; 1� and s 2 N the information complexity is the minimal

number of information evaluations needed to achieve a minimal error of at most ",
to be more precise

N."; s/ D minfN 2 N W e.N; s/ � "g:

The subject of tractability deals with the question in which way the information
complexity depends on " and s; cf. the three books [52–54].

• The curse of dimensionality holds if there exist positive numbers C, 	 , and "0
such that

N."; s/ � C.1C 	/s for all " � "0 and infinitely many s:

• Weak tractability holds if

lim
"�1Cs!1

log N."; s/

"�1 C s
D 0:
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• Polynomial tractability holds if there exist non-negative numbers C; 	1; 	2 such
that

N."; s/ � Cs	1"�	2 for all s 2 N; " 2 .0; 1/:

• Strong polynomial tractability holds if there exist non-negative numbers C and 	
such that

N."; s/ � C"�	 for all s 2 N; " 2 .0; 1/:

The exponent 	� of strong polynomial tractability is defined as the infimum of 	
for which strong polynomial tractability holds.

It follows from a work of Ian together with Henryk Woźniakowski [75] that one
has the curse of dimensionality for integration in the unweighted Korobov space.
The following result is [75, Theorem 1]:

Theorem 9 (Sloan and Woźniakowski) Consider integration in the Korobov
space Hs;˛ . If N < 2s, then e.N; s/ D 1.

In other words, the number of function evaluations required to achieve a worst
case error less than one is exponential in the dimension. To prove this result, the
authors constructed for given ˛ and for given integration nodes P and coefficients
a a so-called bump function h which belongs to the unit ball of the Korobov space
Hs;˛ and which satisfies

R
Is h.x/dx D 1 and QP;a.h/ D 0. From this it follows that

e.Hs;˛;P; a/ �
ˇ̌
ˇ
ˇ

Z

Is
h.x/dx� QP;a.h/

ˇ̌
ˇ
ˇ D

ˇ̌
ˇ
ˇ

Z

Is
h.x/dx

ˇ̌
ˇ
ˇ D 1:

To obtain positive results for tractability one has to change to the weighted
setting. The concept of weighted function spaces was first introduced by Ian
and Henryk Woźniakowski in the seminal paper [76] titled “When are quasi
Monte Carlo algorithms efficient for high-dimensional problems?” (in fact, this
question is programmatic for large parts of Ian’s work during the last 20 years,
see also his talk “On the unreasonable effectiveness of QMC” [66] given at the
9th International Conference on Monte Carlo and Quasi-Monte Carlo Methods in
Scientific Computing in Warsaw in 2010, or the essay [65]). For the basic idea
underlying the weighted setting, which is nowadays standard in this theory, we quote
from [77, p. 699]:

The motivation lies in the idea [. . . ] that it may be useful to order the coordinates
x1; x2; : : : ; xd in such a way that x1 is the most important coordinate, x2 the next, and so on;
and to quantify this by associating non-increasing weights �1; �2; : : : ; �d to the successive
coordinate directions.

The problem of tractability in weighted Korobov spaces was tackled by Ian and
Henryk Woźniakowski in [77]. The main results of this paper are summarized in
the following theorem (we remark that the third item of the following theorem was
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not explicitly mentioned in [77], but can easily be deduced from the results shown
there):

Theorem 10 (Sloan and Woźniakowski) Numerical integration in Hs;˛;� is

1. strongly polynomially tractable if and only if
P1

jD1 �j <1. If �0 is the infimum

over all � � 1 such that
P1

jD1 ��j < 1 holds, then the "-exponent 	� of strong
polynomial tractability lies in the interval Œ2˛�1;max.2˛�1; 2�0/�. In particular,
if �0 � ˛�1, then the "-exponent 	� of strong polynomial tractability is 2˛�1.

2. polynomially tractable if and only if lim sups!1
Ps

jD1 �j= log s <1 holds.
3. weakly tractable if and only if lims!1

Ps
jD1 �j=s D 0 holds.

For s > 1 and N prime, there exist lattice rules that achieve the corresponding upper
bounds on the worst-case error.

The above result guarantees the existence of lattice rules that achieve the
upper bounds on the worst-case error. In fact, these lattice rules can be efficiently
constructed with the CBC approach (see Sect. 4) as shown by Kuo [32] in 2003 and
even by the fast CBC approach according to Nuyens and Cools [57]. Extensions of
these results to composite N were given in [4, 33] and results for Korobov spaces
with general weights were obtained in [7]. So the problem of numerical integration
in weighted Korobov spaces is very well understood. However, these results for
Korobov spaces are not often usable in practice because integrands are typically not
fully periodic. Since the early 1990s Ian works on the question how lattice rules can
also be applied to numerical integration of not necessarily periodic functions. Early
works in this direction are [60] and [50]. Nowadays, there are various strategies
which can be used in order to apply lattice rules also to not necessarily periodic
functions.

One such strategy are methods for periodization, i.e., methods for transforming
a sufficiently smooth non-periodic integrand into a periodic integrand without
changing its value of the integral. Such periodization techniques can be found,
for example, in [10, Section 5.10] or in [47, Section 5.1]. A disadvantage of
periodization is that the norm of the transformed integrand can be exponentially
large in s. Hence this method is generally only feasible for moderate s.

Another possible strategy are randomly shifted lattice rules. For given quasi-
Monte Carlo points P D ft1; : : : ; tNg in Is and
 2 Is let

P C
 D fftj C
g W j D 1; 2; : : : ;Ng

denote the shifted point set. Then the quasi-Monte Carlo rule based on P C 
 is
called a shifted quasi-Monte Carlo rule. In this sense a shifted lattice rule is of the
form

QN;s. f ;
/ D 1

N

NX

jD1
f


�
j � 1

N
gC


��
:
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In the context of randomly shifted lattice rules one studies the so-called shift-
averaged worst-case error. Let .H ; k � kH / be a normed space of functions defined
on the s-dimensional unit cube Is. Then the worst-case error of a quasi-Monte Carlo
rule QN;s which is based on a point set P is

e.H ;P/ D sup
f

ˇ
ˇ̌
ˇ

Z

Is
f .x/dx� QN;s. f /

ˇ
ˇ̌
ˇ ;

where the supremum is extended over all f 2 H with k fkH � 1. The shift-
averaged worst-case error of a shifted lattice rule is defined by

esh.H ;P. g;N// D

Z

Is
e2.H ;P. g;N/C
/d


�1=2
:

This can be used to bound the root-mean-square error over uniformly distributed
random shifts
 from Is via the estimate

s

E

ˇ
ˇ
ˇ
ˇ

Z

Is
f .x/dx� QN;s. f ;
/

ˇ
ˇ
ˇ
ˇ

2

� esh.H ;P. g;N//k fkH :

Randomly shifted lattice rules are applied very successfully in weighted Sobolev
spaces which shall be briefly introduced now. We just speak about the Hilbert space
case with smoothness one and distinguish between the anchored space H t

s;� and the
unanchored (or ANOVA) space H A

s;� . In both cases the weighted Sobolev spaces
are s-fold tensor products of one-dimensional reproducing kernel Hilbert spaces
H ?

s;� D H ?
1;�1
˝ : : : ˝ H ?

s;�s
where ? 2 ft;Ag. The one-dimensional building

blocks are reproducing kernel Hilbert spaces with reproducing kernel of the form

K?
1;� .x; y/ D 1C ��?.x; y/

where in the anchored case

�t.x; y/ D
8
<

:

min.x; y/� c if x; y > c;
c �max.x; y/ if x; y < c;
0 otherwise,

with anchor c 2 Œ0; 1�, and in the unanchored case

�A.x; y/ D 1
2
B2.jx � yj/C .x � 1

2
/. y � 1

2
/;

where B2.x/ D x2 � x C 1
6

is the second Bernoulli polynomial. More detailed
information on these spaces can be found, for example, in [10, Sections 4.2 and 4.3].

In [78] Ian, Frances Kuo, and Stephen Joe constructed randomly shifted lattice
rules in the weighted anchored Sobolev space with the CBC algorithm. Furthermore,
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in [79] the three also introduced a CBC algorithm to construct a deterministic shift
besides the generating vector. With these constructions one can achieve tractability
for the integration problem depending on the decay of the weights. However, in
these works only a convergence rate of order O.N�1=2/ was proved. Later Kuo [32]
showed that even the optimal convergence rate of order of magnitude O.N�1/ can
be achieved. Further results in this direction are due to Kuo and Joe [33] and due to
Dick [4].

The following result (see [10, Section 5] for a proof) summarizes this develop-
ment. Let

eZN WD fg 2 f1; 2; : : : ;N � 1g W gcd.g;N/ D 1g:

Theorem 11 (Optimal CBC Error Bound) Let ? 2 ft;Ag. The generating vector
g 2 eZs

N constructed by the CBC algorithm, minimizing the squared shift-averaged
worst-case error esh.H ?

s;� ;P.g;N// for the corresponding weighted Sobolev space
in each step, satisfies

Œesh.H ?
s;� ;P.g;N//�2 �

0

@ 1

'.N/

0

@�1C
sY

jD1



1C ��j



2�.2�/

.2�2/�
C ˇ�?

��
1

A

1

A

1=�

for all � 2 .1=2; 1�, where ' denotes the Euler totient function, ˇA D 0, and ˇt D
c2 � cC 1=3 in the anchored case with anchor c.

The error estimate in the above theorem guarantees a convergence rate of
order of magnitude O.N�1C"/ for " > 0. Furthermore, under the assumption of
sufficiently fast decreasing weights, tractability for the shift-averaged worst-case
error is obtained. For example,

P1
jD1 �j <1 implies strong polynomial tractability.

If further �0 is the infimum over all � � 1 such that
P1

jD1 ��j < 1 holds, then the
"-exponent of strong polynomial tractability is at most 2�0.

In practice it may happen that unbounded integrands arise resulting from the use
of the cumulative inverse normal transformation in order to map the integral from
the unbounded domain R

s to the unit cube Is. In [38, 85] Ian and his co-workers
studied randomly shifted lattice rules for such types of integrands. Thereby they can
achieve a convergence rate close to the optimal order O.N�1/.

Very briefly we report about a third strategy how to apply lattice rules to non-
periodic integrands, namely tent transformed lattice rules. The tent transformation
 W Œ0; 1�! Œ0; 1� is given by .x/ D 1�j2x�1j. For vectors x the tent transformed
point .x/ is understood componentwise. A tent transformed lattice rule is of the
form

Q
N;s. f / D 1

N

NX

jD1
f






�
j � 1

N
g
���

:
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In [11] such rules are used for the integration of cosine series which are not
necessarily periodic. The authors obtained convergence rates for the worst-case
errors that are optimal in the order of magnitude in N. Furthermore, under certain
conditions on the weights one can also achieve tractability. We remark that these
results are also valid for the unanchored Sobolev space H A

s;� . Via embeddings one

can transfer these results also to the anchored Sobolev space H t
s;� . The first who

used the tent transform in the context of lattice rules was Hickernell [20].
Finally, we would like to mention that there is also the concept of polynomial

lattice rules which was introduced by Niederreiter, see, for example [47]. Polyno-
mial lattice rules are special instances of digital nets. Their overall structure is very
similar to lattice rules. The main difference is that lattice rules are based on number
theoretic concepts whereas polynomial lattice point sets are based on algebraic
methods (polynomial arithmetic over a finite field). Also polynomial lattice rules
work well for the integration of not necessarily periodic functions. A contribution
of Ian to this topic is the paper [6]. This paper stood at the beginning of an intensive
and fruitful collaboration of the third author with members of Ian’s group in Sydney
with several visits in both directions. The third author wishes to thank Ian and his
colleagues at the University of New South Wales for their warm hospitality during
these visits in Sydney.

6 Applications of Lattice Rules

Ian Sloan has always been an influential proponent of making theoretical results
applicable to real-world problems, and telling the story of Ian and lattice rules would
be incomplete without dealing with his rich work on applications to various topics.
We shall try to give an overview of his numerous results on applications of lattice
rules, ranging from function approximation to financial mathematics and, recently,
partial differential equations.

One of the areas that are most frequently highlighted as fields of application of
quasi-Monte Carlo methods is financial mathematics. Ian Sloan has not restricted his
research on lattice rules to theoretical results, but has always been very interested
in actually applying his methods. One of his co-authors on this subject is Xiaoqun
Wang, with whom he published, e.g., the papers [81–83]. The first two of these
papers, [81, 82], address an issue that is often not explicitly dealt with in theoretical
studies on weighted spaces, namely: how should one, for a given problem from
practice, choose the coordinate weights in order to obtain a low error of numerical
integration?

The paper [81] first shows that it might be a very bad choice to “blindly” use
lattice rules that have been optimized with respect to classical (i.e., non-weighted)
error measures. Indeed, applying such rules to problems from financial mathematics
can lead to an error behavior that is worse than applying Monte Carlo methods.
However, Ian and Wang outline how to choose the weights for a given finance
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problem, such as pricing arithmetic average Asian options. Numerical evidence
is given that, for pricing such derivatives, lattice rules with a suitable choice of
weights (which have the form �j D a	 j for some (positive real) parameters a and 	)
may outperform crude Monte Carlo and also another quasi-Monte Carlo algorithm
based on Sobol’ sequences. The weights are chosen according to a matching strategy
based on relative sensitivity indices, which are in turn related to the ANOVA
decomposition, of the function at hand. Once the weights are fixed, the generating
vectors of lattice rules are chosen according to one of the usual algorithms that
optimize the integration rules with respect to a certain error criterion (as for example
a CBC or acceptance-rejection algorithm). The choice of coordinate weights is
also addressed in the paper [82], where not only product weights, but also general
weights are allowed. A further focus of [82] is dimension reduction methods, such
as principal component analysis (PCA) or the Brownian bridge. Indeed, it is shown
in [82] for a model problem that dimension reduction techniques combined with a
suitable choice of coordinate weights can lead to bounds on the integration error that
are independent of the dimension. Ian and Wang refine their dimension reduction
strategies even further in [83], where again theoretical and numerical results on
option pricing are presented. We also refer to [15] for a survey on quasi-Monte
Carlo methods applied to finance problems.

The idea of applying lattice rules to problems such as function approximation can
already be found, e.g., in [30] and [24]. In the field of information-based complexity,
dealing with high-dimensional problems in general and approximation problems in
particular, several authors proposed using similar methods when studying function
approximation in certain function spaces. This was for example done in the
important paper [55] with Erich Novak and Henryk Woźniakowski, where (among
other related questions) the approximation of functions in weighted Korobov spaces
by means of lattice rules is studied. The underlying idea of the approximation
algorithms analyzed in that paper is to approximate the largest Fourier coefficients
of an element of a Korobov space by lattice rules. To be more precise, suppose that
a one-periodic s-variate function f which is an element of a (weighted) Korobov
space Hs;˛;� and thus has an absolutely convergent Fourier series expansion,

f .x/ D
X

h2Zs

bf .h/ exp.2�ih � x/ for x 2 Œ0; 1/s;

is given. As before,bf .h/ denotes the hth Fourier coefficient of f . The strategy for
function approximation using (rank-1) lattice rules is then to first choose a finite set
A � Z

s corresponding to the “largest” Fourier coefficients, and then to approximate
the Fourier coefficientsbf .h/ of f for which h 2 A . Hence, f is approximated by

X

h2A

�bf .h/
‚ …„ ƒ0

@ 1
N

NX

jD1
f


�
j� 1

N
g
��

exp



�2�ih �

�
j � 1

N
g
��
1

A exp.2�ih � x/
„ ƒ‚ …

�f .x/
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for x 2 Is, where g is a suitably chosen generating vector of a lattice rule. By
noting that this approximation algorithm is a linear algorithm, it is then possible
to analyze the approximation problem using the machinery from information-based
complexity. Care has to be taken of the difficulty in simultaneously choosing the set
A and its size, as well as the lattice rule and its number of points.

This idea was further pursued in the paper [35] with Kuo and Woźniakowski.
In particular, the paper [35] contains a component-by-component construction
of generating vectors of lattice rules, by which one can obtain tractability of
approximation in the worst-case setting, under conditions on the coordinate weights
that are similar to those for high-dimensional integration. To be more precise, one
of the main results in [35] is the following.

Theorem 12 (Kuo, Sloan, and Woźniakowski) Consider function approximation
based on function evaluations for weighted Korobov spaces Hs;˛;� in the worst-case
setting. Then the following statements hold true.

(a) If the sequence of weights .�j/j�1 in the weighted Korobov space satisfies the
condition

1X

jD1
�j <1;

the function approximation problem is strongly polynomially tractable. A
generating vector of a lattice rule yielding this result can be found by a
component-by-component algorithm.

(b) If the sequence of weights .�j/j�1 in the weighted Korobov space satisfies the
condition

lim sup
s!1

Ps
jD1 �j

log.sC 1/ <1;

the function approximation problem is polynomially tractable. A generating
vector of a lattice rule yielding this result can be found by a component-by-
component algorithm.

While the paper [55] considers the worst-case, randomized, and the quantum
settings, [35] focuses on the worst-case setting only. A further paper of Ian with
Kuo and Woźniakowski deals with the average-case setting, see [36]. Overall, it can
clearly be said that Ian’s research in these papers has triggered numerous further
results on lattice rules employed for function approximation in modern problem
settings.

One of the most recent additions to the fields of application of quasi-Monte
Carlo techniques is that of partial differential equations with random coefficients.
Ian’s paper [16], together with Graham, Kuo, Nuyens, and Scheichl, is one of the
first papers addressing quasi-Monte Carlo methods used in combination with finite
elements. In this context, randomly shifted lattice rules are (among other quasi-
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Monte Carlo methods) used for computing the expectations of nonlinear functionals
of solutions of certain elliptic PDEs with random coefficients. The observations in
[16] are motivated by an example from physics, namely modeling fluid flow through
porous media. After the paper [16], several others on this and related subjects
followed, many of them co-authored by Ian (see, e.g., [17, 40, 41]). It is beyond
the scope of this article to outline the details of the PDE problem these observations
are based on, but we refer to the paper [39] of Ian with Frances Kuo and Christoph
Schwab for a summary highlighting some particular issues from the quasi-Monte
Carlo point of view. Without going into great detail, it should be mentioned in this
context that these papers motivate some of the latest developments in the research
on quasi-Monte Carlo methods in general and lattice rules in particular. Among
them are increased efforts in deriving results that hold not only for the integration
of Hilbert space elements, but more general function classes, integration problems
with an unbounded number of variables, and the introduction of new classes of
weights. Indeed, the paper [40] introduced new kinds of coordinate weights, so-
called product and order dependent (POD) weights. These are of the form

�u WD �juj
Y

j2u
�j;

for u � f1; : : : ; sg, for two sequences .�j/j�1 and .�j/j�1. Note that in the definition
of �u, the factor �juj only depends on the cardinality of u, while the other factor has
the usual product form. The introduction of this kind of weights in [40] stems from
the problem of choosing the weights for a particular integrand in such a way that the
overall integration error (or a suitable upper bound on it) is small. The structure of
POD weights is such that it allows for a (fast) CBC construction. For further details
we refer to the aforementioned papers.

Ian also worked on quasi-Monte Carlo methods applied to integrals appearing in
certain problems in statistics. Indeed, the evaluation of the likelihood in generalized
response models, as for example occurring in time series regression analysis, leads
to multivariate integrals over unbounded regions. This problem in combination
with quasi-Monte Carlo methods was first addressed in the paper with Kuo et
al. [37], where, due to certain properties of the integrands under consideration,
the integration problem over an unbounded region cannot simply be solved by
transforming the integral into one over the unit cube. Indeed, the authors of [37]
use recentering and rescaling methods before the transformation. The theory in [37]
was extended in [62], by using POD weights as they were introduced in [40]. The
idea of how to choose POD weights for integration is nicely summarized in [62,
p. 633] as follows:

The integration error is bounded by the product of the worst-case error (depending only on
the QMC point set) and the norm of the function (depending only on the integrand). We
choose weights that minimise a certain upper bound on this product.

Let us, finally, mention yet another field to which Ian applied the theory of lattice
points, namely integral equations. Ian has made many important contributions to the
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research on integral equations, so for him it seems natural to combine it with the field
of quasi-Monte Carlo methods. This idea was already dealt with in, for example, [24,
80], and [86]. The paper [8], however, considers the solution of certain Fredholm
integral equations of the second kind in a weighted Korobov setting. Indeed, let us
consider the Fredholm integral equation

f .x/ D g.x/C
Z

Is
�.x; y/f . y/dy;

where � satisfies a convolution assumption, i.e., �.x; y/ D k.x � y/. Furthermore k
and g are assumed to be elements of a weighted Korobov space, so they are one-
periodic and continuous. The solution f is then approximated by a lattice-Nyström
method based on lattice points. Let y1; : : : ; yN be the integration nodes of a lattice
rule. Then f is approximated by

fN.x/ D g.x/C 1

N

NX

nD1
�.x; yn/fN. yn/:

The function values fN. y1/; : : : ; fN. yN/ are obtained by solving the linear system
fN. yk/ D g. yk/C 1

N

PN
nD1 �. yk; yn/fN. yn/, 1 � k � N. Under suitable assumptions

on k and N, existence and stability of a unique solution of the integral equation can
be shown. The group structure of lattice points ensures that the linear system from
above can be solved using the fast Fourier transform (cf. [86]). The paper [8] then
studies the worst-case error of approximating f by fN , and a CBC construction of
lattice rules yielding a small error. Furthermore, conditions for obtaining tractability
are discussed. The conditions on the weights in the Korobov space to obtain (strong)
polynomial tractability are similar to those for numerical integration.

On a personal note, the paper [8] was partly written when the first author of the
current paper visited Australia and Ian Sloan’s group at the University of New South
Wales for the first time—a trip which resulted in fruitful scientific collaborations and
wonderful friendships with Ian and his colleagues.
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7. Dick, J., Sloan, I.H., Wang, X., Woźniakowski, H.: Good lattice rules in weighted Korobov
spaces with general weights. Numer. Math. 103, 63–97 (2006)

8. Dick, J., Kritzer, P., Kuo, F.Y., Sloan, I.H.: Lattice-Nyström method for Fredholm integral
equations of the second kind with convolution type kernels. J. Complex. 23, 752–772 (2007)

9. Dick, J., Pillichshammer, F., Waterhouse, B.J.: The construction of good extensible rank-1
lattices. Math. Comput. 77, 2345–2373 (2008)

10. Dick, J., Kuo, F.Y., Sloan, I.H.: High-dimensional integration: the quasi-Monte Carlo way. Acta
Numer. 22, 133–288 (2013)

11. Dick, J., Nuyens, D., Pillichshammer, F.: Lattice rules for nonperiodic smooth integrands.
Numer. Math. 126, 259–291 (2014)

12. Disney, S., Sloan, I.H.: Error bounds for the method of good lattice points. Math. Comput. 56,
257–266 (1991)

13. Disney, S., Sloan, I.H.: Lattice integration rules of maximal rank formed by copying rank 1
rules. SIAM J. Numer. Anal. 29, 566–577 (1992)

14. Frolov, K.K.: On the connection between quadrature formulas and sublattices of the lattice of
integral vectors. Sov. Math. Dokl. 18, 37–41 (1977)

15. Giles, M.B., Kuo, F.Y., Sloan, I.H., Waterhouse, B.J.: Quasi-Monte Carlo for finance applica-
tions. ANZIAM J. 50, C308–C323 (2008)

16. Graham, I.G., Kuo, F.Y., Nuyens, D., Scheichl, R., Sloan, I.H.: Quasi-Monte Carlo methods
for elliptic PDEs with random coefficients and applications. J. Comput. Phys. 230, 3668–3694
(2011)

17. Graham, I.G., Kuo, F.Y., Nichols, J.A., Scheichl, R., Schwab, C., Sloan, I.H.: Quasi-Monte
Carlo finite element methods for elliptic PDEs with lognormal random coefficients. Numer.
Math. 131, 329–368 (2015)

18. Haber, S.: Experiments on optimal coefficients. In: Zaremba, S.K. (ed.) Applications of
Number Theory to Numerical Analysis, pp. 11–37. Academic, New York (1972)

19. Haber, S.: Parameters for integrating periodic functions of several variables. Math. Comput.
41, 115–129 (1983)

20. Hickernell, F.J.: Obtaining O.n�2C�/ convergence for lattice quadrature rules. In: Fang, K.T.,
Hickernell, F.J., Niederreiter, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2000,
pp. 274–289. Springer, Berlin (2002)

21. Hickernell, F.J., Niederreiter, H.: The existence of good extensible rank-1 lattices. J. Complex.
19, 286–300 (2003)

22. Hickernell, F.J., Hong, H.S., L’Ecuyer, P., Lemieux, C.: Extensible lattice sequences for quasi-
Monte Carlo quadrature. SIAM J. Sci. Comput. 22, 1117–1138 (2000)

23. Hlawka, E.: Zur angenäherten Berechnung mehrfacher Integrale. Monatsh. Math. 66, 140–151
(1962)

24. Hua, L.K. Wang, Y.: Applications of Number Theory to Numerical Analysis. Springer, Berlin
(1981)

25. Joe, S., Sloan, I.H.: Imbedded lattice rules for multidimensional integration. SIAM J. Numer.
Anal. 29, 1119–1135 (1992)

26. Joe, S., Sloan, I.H.: On computing the lattice rule criterion R. Math. Comput. 59, 557–568
(1992)

27. Joe, S., Sloan, I.H.: Implementation of a lattice method for numerical multiple integration.
ACM Trans. Math. Softw. 19, 523–545 (1993)

28. Korobov, N.M.: The approximate computation of multiple integrals. Dokl. Akad. Nauk SSSR
124, 1207–1210 (1959) (Russian)



Ian Sloan and Lattice Rules 767

29. Korobov, N.M.: Properties and calculation of optimal coefficients. Dokl. Akad. Nauk SSSR
132, 1009–1012 (1960) (Russian)

30. Korobov, N.M.: Number-Theoretic Methods in Approximate Analysis. Fizmatgiz, Moscow
(1963) (Russian)

31. Kuipers, L., Niederreiter, H.: Uniform Distribution of Sequences. Wiley, New York (1974)
32. Kuo, F.Y.: Component-by-component constructions achieve the optimal rate of convergence

for multivariate integration in weighted Korobov and Sobolev spaces. J. Complex. 19, 301–
320 (2003)

33. Kuo, F.Y., Joe, S.: Component-by-component construction of good lattice rules with a
composite number of points. J. Complex. 18, 943–976 (2002)

34. Kuo, F.Y., Joe, S.: Component-by-component construction of good intermediate-rank lattice
rules. SIAM J. Numer. Anal. 41, 1465–1486 (2003)
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Abstract We consider the approximation of functions of s variables, where s is
very large or infinite, that belong to weighted anchored spaces. We study when
such functions can be approximated by algorithms designed for functions with only
very small number dimtrnc."; s/ of variables. Here " is the error demand and we
refer to dimtrnc."; s/ as the "-truncation dimension. We show that for sufficiently
fast decaying product weights and modest error demand (up to about " 
 10�5) the
truncation dimension is surprisingly very small.

1 Introduction

In this paper, we consider weighted anchored spaces of s-variate functions with
bounded (in Lp norm, 1 � p � 1) mixed partial derivatives of order one. More
precisely, the functions being approximated are from the Banach space Fs;p;� whose
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norm is given by

k fkFs;p;� D
 
X

u

��p
u

Z

Œ0;1�juj

j f .u/.ŒxuI 0�u�/jpdxu

!1=p

:

Here, the summation is with respect to the subsets u of Œs� D f1; : : : ; sg (when
s D 1 the summation is with respect to all finite subsets of N), and f .u/.ŒxuI 0�u�/

denotes the mixed partial derivatives
Q

j2u @
@xj

of f with values of xj for j … u being

zero. Note that f .u/ is a mixed partial distributional derivative, i.e., a function in
Lp. In [4, Section 2] it is elaborated why the sections f .u/.ŒxuI 0�u�/ are meaningful
(see also [2] for a discussion). A crucial role is played by the weights �u, which
are non-negative real numbers that quantify the importance of sets xu D .xj/j2u of
variables.

We continue our considerations from [6], where we dealt with low truncation
dimension for numerical integration. We are interested in a very large number
s of variables including s D 1. Similar to [6], by "-truncation dimension (or
truncation dimension for short) we mean (roughly) the smallest number k such that
the worst case error (measured in the Lq space) of approximating s-variate functions
f .x1; : : : ; xs/ by fk D f .x1; : : : ; xk; 0; : : : ; 0/ is no greater than the error demand "
(see Definition 1 for more). We denote this minimal number k by dimtrnc."; s/.

Note that if the truncation dimension is small, say dimtrnc."; s/ D 3, then the
s-variate approximation problem can be replaced by the much easier dimtrnc."; s/-
variate one, and any efficient algorithm for dealing with functions of only very few
variables becomes also efficient for functions of s variables.

The main result of this paper is observing that the "-truncation dimension is
surprisingly small for modest error demand " and the weights decaying sufficiently
fast. For instance, for product weights

�u D
Y

j2u
j�a

and the parameters p D q D 2, we have the following upper bounds k."/ for
dimtrnc."/ WD dimtrnc.";1/ and a D 3; 4; 5:

" 10�1 10�2 10�3 10�4 10�5 10�6
k."/ 2 5 12 31 79 198 a D 3
k."/ 2 3 6 11 22 42 a D 4
k."/ 1 2 4 6 11 18 a D 5

We stress that our definition of truncation dimension is different from the one
proposed in the statistical literature. There the dimension depends on a particular
function via its ANOVA decomposition which, in general, cannot be computed.
Moreover, for functions from spaces with ANOVA decomposition, small truncation
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dimension can, according to the state of the art in the literature, only be utilized to
some extent, see [1–5, 7]. In particular, there is an equivalence independent of s for
product weights that are summable, with the equivalence constant bounded from
above by

X

u

�u <1:

For the product weights mentioned above we have, for a > 1,

X

u

�u D
1Y

jD1
.1C j�a/ < 1

and hence the corresponding efficient algorithms for anchored spaces can also be
used efficiently for ANOVA spaces.

The paper is structured as follows. In Sect. 2.1, we define the anchored spaces
Fs;p;� , and in Sect. 2.2 we outline the problem setting. We give our results for
anchored spaces in Sect. 3, and discuss examples of special kinds of weights in
Sects. 3.1 and 3.2.

2 Basic Concepts

2.1 Anchored Spaces

In this section, we briefly recall definitions and basic properties of �-weighted
anchored Sobolev spaces of s-variate functions. More detailed information can be
found in [4, 5, 11].

Here we follow [11, Section 2]: For p 2 Œ1;1� let F D W1
p;0.Œ0; 1�/ be the space

of functions defined on Œ0; 1� that vanish at zero, are absolutely continuous, and have
bounded derivative in the Lp norm. We endow F with the norm k fkF D k f 0kLp for
f 2 F.

For s 2 N and

Œs� WD f1; 2; : : : ; sg;

we will use u; v to denote subsets of Œs�, i.e.,

u; v � Œs�:
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Moreover, for x D .x1; x2; : : : ; xs/ 2 Œ0; 1�s and u � Œs�, ŒxuI 0�u� denotes the s-
dimensional vector with all xj for j … u replaced by zero, i.e.,

ŒxuI 0�u� D . y1; y2; : : : ; ys/ with yj D
�

xj if j 2 u;

0 if j … u:

We also write xu to denote the juj-dimensional vector .xj/j2u and

f .u/ D @jujf
@xu

D
Y

j2u

@

@xj
f with f .;/ D f :

For s 2 N and nonempty u � Œs�, let Fu be the completion of the space spanned
by f .x/ D Qj2u fj.xj/ for fj 2 F and x D .x1; : : : ; xs/ 2 Œ0; 1�s, with the norm

k fkFu D k f .u/kLp :

Note that Fu is a space of functions with domain Œ0; 1�s that depend only on the
variables listed in u. Moreover, for any f 2 Fu and x D .x1; : : : ; xs/, f .x/ D 0 if
xj D 0 for some j 2 u. For u D ;, let Fu be the space of constant functions with the
natural norm.

Consider next a sequence � D .�u/u�Œs� of non-negative real numbers, called
weights. Since some weights could be zero, we will use

U D fu � Œs� W �u > 0g

to denote the collection of positive weights. For p 2 Œ1;1�, we define the
corresponding weighted anchored space

Fs;p;� D span

 
[

u2U
Fu

!

with the norm

k fkFs;p;� D
8
<

:

�P
u2U 1

�
p
u
k f .u/.Œ�uI 0�u�/kp

Lp

	1=p
if p <1;

maxu2U 1
�u

ess supxu2Œ0;1�juj

j f .u/.ŒxuI 0�u�/j if p D 1:

Remark 1 Some of the results of this paper are extended to spaces of functions with
countably many variables. In such cases, Œs� D N, the sets u are finite subsets of N,
and x D .xj/j2N with xj 2 Œ0; 1�. Moreover, the anchored space is the completion of
span

�S
u Fu

�
with respect to the norm given above.
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An important class of weights is provided by product weights

�u D
Y

j2u
�j

for positive reals �j. When dealing with them, we will assume without any loss of
generality that

�j � �jC1 > 0 for all j:

Note that for product weights we have U D 2Œs� D fu W u � Œs�g.
For p D 2, Fs;2;� is a reproducing kernel Hilbert space with kernel

K.x; y/ D
X

u2U
�2u

Y

j2u
min.xj; yj/;

for x D .x1; : : : ; xs/ and analogously for y, which for product weights reduces to

K.x; y/ D
sY

jD1

�
1C �2j min.xj; yj/

�
:

2.2 The Function Approximation Problem

We follow [11]. Let q 2 Œ1;1�. For u 2 U, let Su W Fu ! Lq.Œ0; 1�
juj/ be the

embedding operator,

Su. fu/ D fu for all fu 2 Fu:

It is well known that

kSuk D kSkjuj (1)

for the space Fu, where S W F ! Lq.Œ0; 1�/ is the univariate embedding operator.
Let further Lq be a normed linear space such that Fs;p;� is its subspace and the

norm k�kLq
is such that

kfukLq
D kfukLq.Œ0;1�juj/ for all fu 2 Fu:

Denote by Ss the embedding operator

Ss W Fs;p;� ! Lq; Ss. f / D f :
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In order to make sure that Ss is continuous, we assume from now on that

X

u2U

 

q

p� C 1
��juj=q

�u

!p�

<1;

where here and throughout this paper p� denotes the conjugate of p, i.e., 1=p C
1=p� D 1. To see that this condition indeed ensures continuity of Ss, we recall the
following proposition from [11].

Proposition 1 We have

kSk �



q

p� C 1
��1=q

and kSsk �
2

4
X

u2U

 

q

p� C 1
��juj=q

�u

!p�

3

5

1=p�

:

Note that for product weights we have

X

u2U

 

q

p� C 1
��juj=q

�u

!p�

D
sY

jD1

 

1C �p�

j



q

p� C 1
��p�=q

!

:

We are interested in algorithms for approximating f 2 Fs;p;� of the form

As. f / D .L1. f /; : : : ;Ln. f //;

where Lj’s are linear or non-linear functionals

Lj W Fs;p;� ! R

and  W Rn ! Lq. An important class of algorithms is provided by the class of
linear algorithms that use standard information, which are of the form

As. f / D
nX

jD1
f .xj/gj

for gj 2 Fs;p;� . We study the worst case setting, where the error of an algorithm As

is the operator norm of Ss � As, i.e.,

e.AsIFs;p;�/ WD kSs � Ask D sup
k f kFs;p;��1

k f � As. f /kLq :

Remark 2 The results of this paper can easily be extended to approximation of
linear operators that are not necessarily the embeddings from Fu into Lq.Œ0; 1�

juj/.
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Indeed, one can consider linear operators Su from Fu into normed spaces Gu that
satisfy the following conditions for every u 2 U:

kSuk � kSkjuj;

Lq contains the spaces Gu as subspaces, and

kSu. fu/kLq � kSu. fu/kGu :

3 Anchored Decomposition and Truncation Dimension

It is well known, see, e.g., [8], that any f 2 Fs;p;� has the unique anchored
decomposition

f D
X

u2U
fu; (2)

where fu is an element of Fu, depends only on xj for j 2 u, and

fu.x/ D 0 if xj D 0 for some j 2 u: (3)

For the empty set u, f; is a constant function. We stress that in general we do not
know what the elements fu are and algorithms are only allowed to evaluate the
original function f .

The anchored decomposition has the following important properties, see,
e.g., [4]:

f .u/.Œ�uI 0�u�/ � f .u/u ; (4)

fu � 0 iff f .u/.Œ�uI 0�u�/ � 0;

k fkFs;p;� D
�
��
�
�

X

u2U
fu

�
��
�
�

Fs;p;�

D
 
X

u2U
��p
u k f .u/u kp

Lp

!1=p

for p <1;

and

k fkFs;1;� D max
u2U
k f .u/u kL

1

�u
for p D1:
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For any u 6D ;, there exists (unique in the Lp-sense) g 2 Lp.Œ0; 1�
juj/ such that

fu.x/ D
Z

Œ0;1�juj

g.t/
Y

j2u
1Œ0;xj/.tj/dt and f .u/u D g;

where 1J.t/ is the characteristic function of the set J, i.e., 1J.t/ D 1 if t 2 J and 0
otherwise.

Moreover, for any u,

f .Œ�uI 0�u�/ D
X

v�u

fv:

In particular, for k < s we have

f .ŒxŒk�I 0�Œk��/ D f .x1; : : : ; xk; 0; : : : ; 0/ D
X

v�Œk�
fv.x/ (5)

which allows us to compute samples and approximate the truncated function

fk.x1; : : : ; xk/ WD
X

v�Œk�
fv.x/:

Moreover, fk 2 Fk;p;� � Fs;p;� and

k fkkFk;p;� D k f .Œ�Œk�I 0�Œk��/kFs;p;� D
�
�
��
�
�

X

u�Œk�
fu

�
�
��
�
�

Fs;p;�

:

This leads to the following concept.

Definition 1 For a given error demand " > 0, by "-truncation dimension for the
approximation problem (or truncation dimension for short), denoted by dimtrnc."; s/,
we mean the smallest integer k such that

�
��
�
�
�

X

u6�Œk�
fu

�
��
�
�
�
Lq

� "

�
��
�
�
�

X

u6�Œk�
fu

�
��
�
�
�

Fs;p;�

for all f D
X

u2U
fu 2 Fs;p;� :

We also denote dimtrnc."/ WD dimtrnc.";1/.
A practical estimate for the truncation dimension is the following upper bound.
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Theorem 1 We have

dimtrnc."; s/ � min

8
<̂

:̂
k W

0

@
X

u6�Œk�

�
p�

u

. q
p�

C 1/p� juj=q

1

A

1=p�

� "

9
>=

>;
for p > 1;

and

dimtrnc."; s/ D min

�
k W max

u6�Œk�
�u � "

�
for p D 1:

Here
P

u6�Œk� means summation over all u � Œs� with u 6� Œk� and similarly for
maxu6�Œk�.

The proof of the theorem is in the proof of the next, Theorem 2.
For a given k < s, let Ak be an algorithm for approximating functions from the

space Fk;p;� . We use it to define the following approximation algorithms for the
original space Fs;p;� ,

Atrnc
s;k . f / D Ak. f .Œ�Œk�I 0�Œk��// D Ak. fk/: (6)

Since the functions fk belong to Fs;p;� , the algorithms Atrnc
s;k are well defined.

We have the following result.

Theorem 2 For every k < s, the worst case error of Atrnc
s;k is bounded by

e.Atrnc
s;k IFs;p;�/ �

0

@Œe.AkIFk;p;�/�
p� C

X

u6�Œk�

�
p�

u

.
q

p�

C 1/p�juj=q

1

A

1=p�

for p > 1

and by

e.Atrnc
s;k IFs;1;�/ � max



e.AkIFk;1;�/ ; max

u6�Œk�
�u

�
for p D 1:

Moreover, if k � dimtrnc."; s/ then

e.Atrnc
s;k IFs;p;�/ �

�
Œe.AkIFk;p;�/�

p� C "p�

	1=p�

:

Proof We prove the theorem for p > 1 only since the proof for p D 1 is very similar.
Let us first assume that 1 < p <1. For any f 2 Fs;p;� it holds that

�
�Ss. f /� Atrnc

s;k . f /
�
�
Lq
D kSs. f /� Ak. fk/kLq

D
��
�
�
�
�

Sk. fk/ � Ak. fk/C
X

u6�Œk�
Su. fu/

��
�
�
�
�
Lq
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� e.AkIFk;p;�/ k fkkFk;p;� C
�
�
��
�
�

X

u6�Œk�
Su. fu/

�
�
��
�
�
Lq

(7)

� e.AkIFk;p;�/ k fkkFk;p;� C
X

u6�Œk�
kSu. fu/kLq

� e.AkIFk;p;�/ k fkkFk;p;� C
X

u6�Œk�
kfukFu

kSuk :

We now have

X

u6�Œk�
kfukFu

kSuk D
X

u6�Œk�
��1
u kfukFu

�u kSuk

�
2

4
X

u6�Œk�


kfukFu

�u

�p
3

5

1=p2

4
X

u6�Œk�
.�u kSuk/p�

3

5

1=p�

�
2

4
X

u6�Œk�


kfukFu

�u

�p
3

5

1=p2

4
X

u6�Œk�

�
�u kSku

�p�

3

5

1=p�

�
2

4
X

u6�Œk�


kfukFu

�u

�p
3

5

1=p2

4
X

u6�Œk�

 

�u



q

p� C 1
��juj=q

!p�

3

5

1=p�

;

where we used (1) and Proposition 1 in the last two steps, respectively.
Hence, putting together, we get

�
�Ss. f / � Atrnc

s;k . f /
�
�
Lq
� e.AkIFk;p;�/

0

@
X

u�Œk�
��p
u k f .u/u kp

Lp

1

A

1=p

C
0

@
X

u6�Œk�

�
p�

u

.
q

p�

C 1/p�juj=q

1

A

1=p� 0

@
X

u6�Œk�
��p
u k f .u/u kp

Lp

1

A

1=p

:

Using the Hölder inequality once more, we obtain

�
�Ss. f / � Atrnc

s;k . f /
�
�
Lq

�
0

@
X

u�Œk�
��p
u k f .u/u kp

Lp
C
X

u6�Œk�
��p
u k f .u/u kp

Lp

1

A

1=p
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�
0

@Œe.AkIFk;p;�/�
p� C

X

u6�Œk�

�
p�

u

. q
p�

C 1/p�juj=q

1

A

1=p�

D
0

@
X

u�Œs�
��p
u k f .u/u kp

Lp

1

A

1=p 0

@Œe.AkIFk;p;�/�
p� C

X

u6�Œk�

�
p�

u

.
q

p�

C 1/p�juj=q

1

A

1=p�

D k fkFs;p;�

0

@Œe.AkIFk;p;�/�
p� C

X

u6�Œk�

�
p�

u

.
q

p�

C 1/p�juj=q

1

A

1=p�

:

This shows the result in the first two points of Theorem 2 for 1 < p < 1. For
p D 1, the result is obtained by letting p!1.

Regarding the proof of the last point in Theorem 2, suppose that k � dimtrnc."; s/.
Then, starting from (7) we can deduce, in a similar way as above,

�
�Ss. f /� Atrnc

s;k . f /
�
�
Lq
� e.AkIFk;p;� / k fkkFk;p;� C

�
�
�
�
��

X

u6�Œk�
Su. fu/

�
�
�
�
��
Lq

D e.AkIFk;p;� / k fkkFk;p;� C
�
�
�
��
�

X

u6�Œk�
fu

�
�
�
��
�
Lq

� e.AkIFk;p;� / k fkkFk;p;� C "
�
�
�
��
�

X

u6�Œk�
fu

�
�
�
��
�

Fs;p;�

:

Using the latter estimate, we can, in the same way as above deduce that indeed

e.Atrnc
s;k IFs;p;�/ �

�
Œe.AkIFk;p;�/�

p� C "p�

	1=p�

;

as claimed.
Regarding the result in Theorem 1, we again show the result for p > 1. Suppose

that k 2 N is minimal such that

0

@
X

u6�Œk�

�
p�

u

. q
p�

C 1/p� juj=q

1

A

1=p�

� ":
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Then we have, again starting from (7), and following the argument above,

�
�
�
��
�

X

u6�Œk�
Su. fu/

�
�
�
��
�
Lq

�
0

@
X

u6�Œk�

�
p�

u

. q
p�

C 1/p�juj=q

1

A

1=p� 0

@
X

u6�Œk�
��p
u k f .u/u kp

Lp

1

A

1=p

D
0

@
X

u6�Œk�

�
p�

u

.
q

p�

C 1/p�juj=q

1

A

1=p�
�
�
�
�
��

X

u6�Œk�
fu

�
�
�
�
��

Fs;p;�

� "
�
�
�
�
�
�

X

u6�Œk�
fu

�
�
�
�
�
�

Fs;p;�

:

Hence we see that k � dimtrnc."; s/. This is the result in Theorem 1. ut
Remark 3 In view of the last point of Theorem 2, a strategy to obtain a small error
of Atrnc

s;k in Fs;p;� is to choose k � dimtrnc."; s/, and n (i.e., the number of functionals
used by Ak) large enough to solve the k-variate approximation problem in Fk;p;�

by Ak within an error threshold of ", which then yields an overall error of at most
21=p�

". Alternatively, we can replace " by "=.21=p�

/ to obtain an overall error bound
of ".

Remark 4 In view of the role of the term

X

u6�Œk�

�
p�

u

.
q

p�

C 1/p�juj=q

in the above results, we shall refer to this term as the “truncation error” in the
following.

We now apply this theorem to two important classes of weights: product weights
and product order-dependent weights.

3.1 Product Weights

We assume in this section that the weights have the following product form

�u D
Y

j2u
�j for 1 � �j � �jC1 > 0;

introduced in [10]. Here the empty product is considered to be 1, i.e., �; D 1. As
already mentioned, for product weights we always have U D 2Œs�.
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Proposition 2 For product weights and k < s, the truncation error is bounded by

0

@
X

u6�Œk�

�
p�

u

. q
p�

C 1/p�juj=q

1

A

1=p�

�
sY

jD1

 

1C �
p�

j

. q
p�

C 1/p�=q

!1=p�

�
0

@1 � exp

0

@ �1
.

q
p�

C 1/p�=q

sX

jDkC1
�

p�

j

1

A

1

A

1=p�

for p > 1, and it is equal to

max
u6�Œk�

�u for p D 1:

Proof The proof for p D 1 is trivial. For p > 1, we have

X

u6�Œk�

�
p�

u

. q
p�

C 1/p�juj=q
D
X

u�Œs�

�
p�

u

. q
p�

C 1/p�juj=q
�
X

u�Œk�

�
p�

u

. q
p�

C 1/p�juj=q

D
sY

jD1

 

1C �
p�

j

.
q

p�

C 1/p�=q

!

�
kY

jD1

 

1C �
p�

j

.
q

p�

C 1/p�=q

!

D
sY

jD1

 

1C �
p�

j

.
q

p�

C 1/p�=q

!0

@1 �
sY

jDkC1

 

1C �
p�

j

.
q

p�

C 1/p�=q

!�11

A :

We have

1 �
sY

jDkC1

 

1C �
p�

j

.
q

p�

C 1/p�=q

!�1
D 1 � exp

0

@�
sX

jDkC1
log

 

1C �
p�

j

.
q

p�

C 1/p�=q

!1

A

� 1 � exp

0

@�
sX

jDkC1

�
p�

j

.
q

p�

C 1/p�=q

1

A ;

where log denotes the natural logarithm, and the last inequality is due to log.1Cx/ �
x for all x > �1. This completes the proof. ut
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We have the following corollaries:

Corollary 1 Consider product weights. Then dimtrnc."; s/ is bounded from above by

min

8
ˆ̂
<

ˆ̂
:

k W 1 � exp

0

@ �1
.

q
p�

C 1/p�=q

sX

jDkC1
�

p�

j

1

A � "p�

Qs
jD1



1C �

p�

j

.
q

p�

C1/p�=q

�

9
>>=

>>;

for p > 1, and is equal to

min

�
k W max

u6�Œs�
�u � "

�

for p D 1.

Corollary 2 Consider product weights and k < s.
Then the error e.Atrnc

s;k IFs;p;�/ is bounded from above by

 

Œe.AkIFk;p;�/�
p�

C
sY

jD1

 

1C �
p�

j

. q
p�

C 1/p�=q

! 0

@1 � exp

0

@ �1
. q

p�

C 1/p�=q

sX

jDkC1
�

p�

j

1

A

1

A

!1=p�

for p > 1, and by

max



e.AkIFk;1;�/ ; max

u6�Œk�
�u

�

for p D 1. Note that since we assumed �j � 1 for all j we have that
maxu6�Œk� �u D �kC1.

Therefore, for the worst case error of Atrnc
s;k not to exceed the error demand " > 0,

it is enough to choose k D k."/ so that

1 � exp

0

@ �1
. q

p�

C 1/p�=q

sX

jDkC1
�

p�

j

1

A � 1

2
"p�

sY

jD1

 

1C �
p�

j

. q
p�

C 1/p�=q

!�1
; (8)

(or �kC1 � " for p D 1), and next to choose the number n D n."/ of functional
evaluations Lj. f / used by Ak so that

e.AkIFk;p;�/ � "

21=p�

:
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Clearly the inequality (8) for p > 1 is equivalent to

sX

jDkC1
�

p�

j � �



q

p� C 1
�p�=q

� log

0

@1 � 1
2
"p�

sY

jD1

 

1C �
p�

j

. q
p�

C 1/p�=q

!�11

A : (9)

Example 1 Consider large s including s D1 and

�u D
Y

j2u
j�a for a > 1=p�:

For p D 1, we have

dimtrnc."/ D ˙
"�1=a � 1� :

In particular we have

" 10�1 10�2 10�3 10�4 10�5 10�6
dimtrnc."/ 3 9 31 99 316 999 a D 2
dimtrnc."/ 2 4 9 21 46 99 a D 3
dimtrnc."/ 1 3 5 9 17 31 a D 4
dimtrnc."/ 1 2 3 6 9 15 a D 5

Consider next p > 1. Unlike in the case p D 1, we do not know the exact
values of the truncation dimension. However, we have its upper bounds k."/ that are
relatively small,

dimtrnc."/ � k."/:

We use the estimate

.kC 1/�ap�C1

ap� � 1 D
Z 1

kC1
x�ap�

dx <
1X

jDkC1
j�ap� �

Z 1

kC1=2
x�ap�

dx

D .kC 1=2/�ap�C1

a p� � 1 :

Note that the relative error when using the upper bound to approximate the sum
satisfies

ˇ
ˇ
ˇ
P1

jDkC1 j�ap� � R1
kC1=2 x�ap�

dx
ˇ
ˇ
ˇ

R1
kC1=2 x�ap� dx

D a p� � 1
2.kC 1/ C O.k�2/
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and is small for large k. To satisfy (9), it is enough to take k D k."/ given by

k D

2

6
66
6
6
6
66

0

BB
B
B
@

�. q
p�

C 1/�p�=q .ap� � 1/�1

log

 

1 � "p�

2

Qs
jD1



1C j�ap�

.
q

p�

C1/p�=q

��1!

1

CC
C
C
A

1=.ap��1/

� 1
2

3

7
77
7
7
7
77

:

For p D p� D 2, which corresponds to the classical Hilbert space setting, we
have

k."/ D

2

66
6
6
6

0

BB
@

�. q
2
C 1/�2=q .2 a � 1/�1

log



1 � "2

2

Qs
jD1

�
1C j�2a

.
q
2C1/2=q

	�1�

1

CC
A

1=.2a�1/

� 1
2

3

77
7
7
7

: (10)

If also q D 2, then

k."/ D

2

6
6
66

0

@�2 .2 a� 1/ log

0

@1 � "
2

2

sY

jD1



1C j�2a

2

��1
1

A

1

A

�1=.2a�1/

� 1
2

3

7
7
77
:

Since s could be huge or s D 1, in calculating the values of k."/, we slightly

overestimated the product
Qs

jD1
�
1C j�2a

2

	
in the following way:

sY

jD1



1C j�2a

2

�
�

1Y

jD1



1C j�2a

2

�
�

1000Y

jD1



1C j�2a

2

�
exp

0

@
1X

jD1001

j�2a

2

1

A

�
1000Y

jD1



1C j�2a

2

�
exp



1

2

Z 1

1000:5

x�2adx

�

D
1000Y

jD1



1C j�2a

2

�
exp



1

2 .2a� 1/ 1000:5
�2aC1

�
:

This gave us the following estimations for
Qs

jD1
�
1C j�2a

2

	
for p D 2:

1:56225 for a D 2; 1:51302 for a D 3; 1:50306 for a D 4; 1:50075 for a D 5:
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Below we give values of k."/ for a D 2; 3; 4; 5 and p D q D 2 using the estimates
above.

" 10�1 10�2 10�3 10�4 10�5 10�6
k."/ 4 17 80 373 1733 8045 a D 2
k."/ 2 5 12 31 79 198 a D 3
k."/ 2 3 6 11 22 42 a D 4
k."/ 1 2 4 6 11 18 a D 5

It is clear that k."/ decreases with increasing a. To check whether the estimates
above are sharp, we also calculated k."/ for s D 1;000;000 directly by computing

sY

jD1



1C j�2a

2

�
�

kY

jD1



1C j�2a

2

�

and choosing the smallest k for which the difference above is not greater than "2=2.
The values of k."/ obtained this way are exactly the same.

We now consider p D 1 and q D 2. By computing

sY

jD1



1C j�a

p
3

�
�

kY

jD1



1C j�a

p
3

�

we obtained the following values of k."/ for s D 1;000;000, which is the smallest k
for which the difference above is not greater than "=2.

" 10�1 10�2 10�3 10�4 10�5 10�6
k."/ 26 261 2603 25;433 206;959 722;968 a D 2
k."/ 3 10 32 101 319 1010 a D 3
k."/ 2 4 9 19 40 86 a D 4
k."/ 1 3 5 8 15 26 a D 5

Obviously, the values of k."/ for a D 2 are too large to be of practical interest.
For some particular values of q, the norm of the embedding operator S is known,

as for example for q D 1, in which case it equals .1C p�/�1=p�

.
Let us now consider the case p D p� D 2, s D 1;000;000, and q D 1. In this

case we obtain from (10):

" 10�1 10�2 10�3 10�4 10�5 10�6
k."/ 4 16 76 354 1643 7628 a D 2
k."/ 2 5 12 30 76 192 a D 3
k."/ 2 3 6 11 21 41 a D 4
k."/ 1 2 4 6 10 17 a D 5
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For comparison, we also consider the values of k."/, by using the precise formula
for kSuk D kSkjuj D .1C p�/�juj=p�

in the proof of Theorem 2. This yields, instead
of (10):

k."/ D

2

6
66
6

0

@�3 .2 a � 1/ log

0

@1 � "
2

2

sY

jD1



1C j�2a

3

�
�1
1

A

1

A

�1=.2a�1/

� 1
2

3

7
77
7
: (11)

Then we obtain from (11):

" 10�1 10�2 10�3 10�4 10�5 10�6
k."/ 3 14 67 312 1449 6727 a D 2
k."/ 2 4 11 28 71 178 a D 3
k."/ 1 3 5 10 20 39 a D 4
k."/ 1 2 4 6 10 17 a D 5

We see that the values of k."/ computed using the precise value of kSk are lower
than our general bounds, but not too much.

3.2 Product Order-Dependent Weights

We assume in this section that the weights have the following product order-
dependent (POD) form,

�u D c1 .jujŠ/b
Y

j2u
�j;

introduced in [9]. Here c1 is a positive constant. Since the truncation error for p D 1
is maxu6�Œk� �u, we restrict the attention in this section to p > 1, i.e., p� < 1. We
will use ŒkC 1 W s� to denote

ŒkC 1 W s� D fkC 1; kC 2; : : : ; sg or fkC 1; kC 2; : : : g if s D 1:

Proposition 3 For POD weights and k < s, the truncation error is bounded by

0

@
X

u6�Œk�

�
p�

u

. q
p�

C 1/p�juj=q

1

A

1=p�

�
0

@
X

v�Œk�

�
p�

v

. q
p�

C 1/p�jvj=q

1

A

1=p�

T.k/;

where

T.k/ D

0

B
B
@

s�kX

lD1



.lC k/Š

kŠ

�b p�

1

. q
p�

C 1/p�l=q

X

w�ŒkC1Ws�
jwjDl

Y

j2w
�

p�

j

1

C
C
A

1=p�

:
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Proof Of course we have

X

u6�Œk�

�
p�

u

.
q

p�

C 1/p�juj=q
D
X

v�Œk�

X

;6Dw�ŒkC1Ws�

�
p�

v[w

.
q

p�

C 1/p�.jvjCjwj/=q

D
X

v�Œk�

�
p�

v

. q
p�

C 1/p�jvj=q
T.v; k/p

�

;

where

T.v; k/p
� D

X

;6Dw�ŒkC1Ws�



.jvj C jwj/Š
jvjŠ

�b p�

1

.
q

p�

C 1/p�jwj=q

Y

j2w
�

p�

j

D
s�kX

lD1



.jvj C l/Š

jvjŠ
�b p�

1

. q
p�

C 1/p�l=q

X

w�ŒkC1Ws�
jwjDl

Y

j2w
�

p�

j :

Since jvj � k, we have

.jvj C l/Š

jvjŠ � .kC l/Š

kŠ
:

This completes the proof. ut
Example 2 Consider large s and

�j D c2
ja

for a > max.1=p�; b/:

Clearly

X

w�ŒkC1Ws�
jwjDl

Y

j2w
�

p�

j D clp�

2

sX

j1DkC1
j�a p�

1

sX

j2Dj1C1
j�a p�

2 : : :

sX

jlDjl�1C1
j�a p�

l

� clp�

2

Z 1

kC1=2
x�a p�

1

Z 1

x1

x�a p�

2 : : :

Z 1

xl�1

x�a p�

l dxl : : : dx2dx1

D
 

cp�

2

.kC 1=2/a p��1 .a p� � 1/

!l
1

lŠ
:
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Therefore

T.k/ �
 

s�kX

lD1



.lC k/Š

kŠ

�b p�

yl

lŠ

!1=p�

D
 

s�kX

lD1
..kC 1/ � � � .lC k//b p� yl

lŠ

!1=p�

(12)

with

y D cp�

2

.
q

p�

C 1/p�=q .a p� � 1/ .kC 1=2/a p��1 :

Hence the upper bound in (12) can be computed efficiently using nested multiplica-
tion. We provide now the pseudo-code for doing that:

y WD cp�

2 =..q=p�C 1/p�=q.a p� � 1/.kC 1=2/a p��1/

T WD y sb p�

=.s � k/

for l D s� k � 1 to 1 step� 1do
T WD .T C 1/.lC k/b p�

y=l

endfor

T WD T1=p�

:

Furthermore, for k � 2,

0

@
X

v�Œk�

�
p�

v

.
q

p�

C 1/p�jvj=q

1

A

1=p�

� c1

0

B
B
@1C cp�

2

kX

jD1

j�a p�

.q=p� C 1/p�=q
C
X

u�Œk�
juj�2

.jujŠ/b p�

cjuj p�

2

.q=p� C 1/p�juj=q

Y

j2u
j�a p�

1

C
C
A

1=p�

:

Now we provide an estimate for the last sum in this expression. We have

X

u	Œk�
juj�2

.jujŠ/b p�

cjuj p�

2

.q=p� C 1/p�juj=q

Y

j2u
j�a p�

D
kX

`D2

.`Š/b p�

c` p�

2

.q=p� C 1/p�`=q

X

u	Œk�
jujD`

Y

j2u
j�a p�
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D
kX

`D2

.`Š/b p�

c` p�

2

.q=p� C 1/p�`=q

X

u�Œk�
jujD`
f1g�u

Y

j2u
j�a p� C

k�1X

`D2

.`Š/b p�

c` p�

2

.q=p� C 1/p�`=q

X

u�Œ2Wk�
jujD`

Y

j2u
j�a p�

D
kX

`D2

.`Š/b p�

c` p�

2

.q=p� C 1/p�`=q

X

u�Œ2Wk�
jujD`�1

Y

j2u
j�a p� C

k�1X

`D2

.`Š/b p�

c` p�

2

.q=p� C 1/p�`=q

X

u�Œ2Wk�
jujD`

Y

j2u
j�a p�

:

For the two inner sums in the last expression we can now use the same method as in
the derivation of (12) for the terms with indices ` D 2; : : : ; k � 1, and hence obtain

X

u	Œk�
juj�2

.jujŠ/b p�

cjuj p�

2

.q=p� C 1/p�juj=q

Y

j2u
j�a p�

�
k�1X

`D2
.`Š/b p��1

 
cp�

2

.q=p� C 1/p�=q.ap� � 1/1:5ap��1

!`

.`.ap� � 1/1:5ap��1 C 1/

C .kŠ/
b p��a p�

ckp�

2

.q=p� C 1/p�k=q
: (13)

In analogy to product weights and using the upper bounds above, we calculated
numbers k D k."/ which guarantee that

0

@
X

u6�Œk�

�
p�

u

.
q

p�

C 1/p�juj=q

1

A

1=p�

� "

21=p�

:

Since the upper bound (13) is not sharp for large k, i.e., small ", we calculated the
values of k."/ only for a D 4. More precisely we did it for s D 10;000, b D c1 D
c2 D 1, q D 2, p D 2 and p D1, and a D 4.

" 10�1 10�2 10�3 10�4 10�5 10�6
k."/ 3 8 26 81 256 809 p D1
k."/ 2 5 12 29 74 185 p D 2
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On Nonnegativity Preservation in Finite
Element Methods for the Heat Equation
with Non-Dirichlet Boundary Conditions

Stig Larssonand Vidar Thomée

Dedicated to Ian Sloan on the occasion of his 80th birthday.

Abstract By the maximum principle the solution of the homogeneous heat equa-
tion with homogeneous Dirichlet boundary conditions is nonnegative for positive
time if the initial values are nonnegative. In recent work it has been shown that
this does not hold for the standard spatially discrete and fully discrete piecewise
linear finite element methods. However, for the corresponding semidiscrete and
Backward Euler Lumped Mass methods, nonnegativity of initial data is preserved,
provided the underlying triangulation is of Delaunay type. In this paper, we study
the corresponding problems where the homogeneous Dirichlet boundary conditions
are replaced by Neumann and Robin boundary conditions, and show similar results,
sometimes requiring more refined technical arguments.

1 Introduction

We shall first recall some known results concerning piecewise linear finite element
methods for the model problem to find u D u.x; t/ for x 2 ˝; t � 0; satisfying the
homogeneous heat equation with homogeneous Dirichlet boundary conditions,

ut D �u in ˝; with u D 0 on @˝; for t � 0;
u.�; 0/ D v in ˝;

where˝ is a polygonal domain in R
2, ut D @u=@t, and� the Laplacian. The initial

values v are thus the only data of the problem, and its solution may be written
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u.t/ D E .t/v, for t � 0, where E .t/ is the solution operator. By the maximum
principle, E .t/ is a nonnegative operator, so that

v � 0 in ˝ implies E .t/v � 0 in ˝; for t � 0: (1)

The basis for the finite element methods studied is the variational formulation of
the problem, to find u D u.�; t/ 2 H1

0 D H1
0.˝/ for t � 0, such that

.ut; '/C A.u; '/ D 0; 8' 2 H1
0 ; for t � 0; with u.0/ D v; (2)

where .v;w/ D .v;w/L2.˝/; A.v;w/ D .rv;rw/. The methods are based on
regular triangulations Th D f	g of ˝; with h D max	2Th diam.	/, using the finite
element spaces

Sh D f� 2 C . N̋ / W � linear in each 	 2 ThI � D 0 on @˝g;

and the spatially semidiscrete Standard Galerkin method is then to determine uh D
uh.�; t/ 2 Sh for t � 0 such that

.uh;t; �/C A.uh; �/ D 0; 8� 2 Sh; for t � 0; with uh.0/ D vh; (3)

where vh 2 Sh is an approximation to v.
Let now fPjgmjD1 be the interior nodes of Th, and f˚jgmjD1 	 Sh the corresponding

nodal basis, thus with ˚j.Pi/ D ıij. We may then write uh.t/ D Pm
jD1 ˛j.t/˚j and

vh D Pm
jD1 �j˚j. The problem (3) may then be expressed in matrix form, with

˛ D .˛1; : : : ; ˛m/
T and � D .�1; : : : ; �m/

T , as

M˛0 C S˛ D 0; for t � 0; with ˛.0/ D �; (4)

where the mass matrix M D .mij/; mij D .˚j; ˚i/, and the stiffness matrix S D
.sij/; sij D A.˚j; ˚i/, are both symmetric positive definite. The solution of (4) is
then, with E.t/ the solution matrix,

˛.t/ D E.t/�; where E.t/ D e�tH ; H D M�1S; for t � 0: (5)

We note that the semidiscrete solution uh.t/ is � 0 .> 0/ if and only if ˛.t/ � 0

.> 0/, and that this holds for all � � 0 .> 0/ if and only if E.t/ � 0 .> 0/. Here
and below, for vectors and matrices, � and > denote elementwise inequalities.

It was proved in [10] that, for the semidiscrete Standard Galerkin method, the
discrete analogue of (1) is not valid for all t � 0. However, in the case of the Lumped
Mass method, to be discussed below, for which the mass matrix is diagonal, E.t/ � 0
for all t � 0 if and only if the triangulation is of Delaunay type, so that the sum of
the angles opposite any interior edge is � �; for triangulations with all angles� 1

2
�

this was shown already in [3]. In the case of the Standard Galerkin method, when the
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solution matrix is not nonnegative for all positive times, the possible nonnegativity
of E.t/ for larger time was also discussed in [1, 9], with the smallest t0 such that
E.t/ � 0 for t � t0 > 0 referred to as the threshold of nonnegativity. If f�jgmjD1, with
�jC1 � �j, and f'jgmjD1, 'j D .'j;1; : : : ; 'j;m/

T , are the eigenvalues and eigenvectors
of H, and if the principal eigenvector '1 > 0, then E.t/ > 0 if

mX

jD2
e��j t�2j < e��1 t; where �j D max

l
.j'j;lj='1;l/: (6)

As a fully discrete method we consider the Backward Euler method, for which
the approximate solution of (5) at tn D nk is, with k the time step,

˛n D En
k�; where Ek D .I C kH/�1: (7)

It was shown in [5], under a weak assumption on Th, that Ek cannot be nonnegative
for small k > 0. However, if H�1 > 0, then there exists k0 > 0 such that Ek > 0 for
k � k0, and H�1 � 0 is a necessary condition for this conclusion. If Th is strictly
Delaunay and quasiuniform, then k0 may be chosen as k0 D �0h2 for some �0 > 0.

For the Lumped Mass method, the Backward Euler solution matrix Ek is
nonnegative for all k > 0 if and only if the triangulation is of Delaunay type, and, if
this is not the case, it is positive for large k if S�1 > 0.

Our purpose here is to investigate to what extent these known results for the case
of Dirichlet boundary conditions carry over to other boundary conditions. More
precisely, in Sects. 2 and 3, respectively, we study Neumann and Robin boundary
conditions. In these cases the variational formulation (2) has to be modified which
results in different matrix formulations (4). In Sect. 4 we investigate the application
to the particular case of a standard uniform triangulation of the unit square, and in
Sect. 5 to a uniform partition of a unit one-dimensional interval, in both cases with
numerical illustrations.

2 Neumann Boundary Conditions

We now consider the Neumann problem

ut D �u in ˝; with
@u

@n
D 0 on @˝; for t � 0;

u.�; 0/ D v in ˝;

(8)

where n is the exterior unit normal to @˝ . By the maximum principle, the solution
operator E .t/, with E .t/v D u.�; t/, is still a nonnegative operator, so that (1) holds.
In fact, if u is negative at some point then by the maximum principle it must have
a negative minimum on the parabolic boundary, and if v � 0, then this would be
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attained at a point .x0; t0/ with x0 2 @˝ , t0 > 0. But then, by the boundary point
lemma, cf. [4, Chapter 3, Theorem 6], we have @u.x0; t0/=@n < 0, in conflict with
the Neumann boundary condition. Since E .t/1 � 1, we also deduce that

min
x2 N̋ v.x/ � E .t/v � max

x2 N̋ v.x/; for t � 0:

The variational formulation of (8) is to find u D u.�; t/ 2 H1 D H1.˝/ for t � 0,
such that, again with A.v;w/ D .rv;rw/,

.ut; '/C A.u; '/ D 0; 8' 2 H1; for t � 0; with u.0/ D v: (9)

Note that the boundary conditions on @˝ are now natural boundary conditions,
which are not strongly imposed in (9).

2.1 The Standard Galerkin Method

The finite element methods for (8), or (9), now use the piecewise linear finite
element spaces Sh D f� 2 C . N̋ / W � linear in each 	 2 Thg; where the functions
are not required to vanish on @˝ . The spatially semidiscrete method uses the
analogue of (9) restricted to Sh, i.e., to find uh D uh.t/ 2 Sh for t � 0 such that

.uh;t; �/C A.uh; �/ D 0; 8� 2 Sh; t � 0; with uh.0/ D vh; (10)

where vh 2 Sh is an approximation of v.
As in Sect. 1 we may formulate the semidiscrete equation in matrix form (4),

with the difference that the fPjgmjD1 are now all the nodes of Th, including those on
the boundary @˝ , and correspondingly for the nodal basis functions f˚jgmjD1 	 Sh.

Again M is symmetric positive definite, but S is only symmetric positive
semidefinite. The solution of (4) may be written, with E.t/ the solution matrix,

˛.t/ D E.t/�; where E.t/ D e�tH ; H D M�1S; for t � 0: (11)

The values sij of the elements of S for Pi;Pj neighbors will be of particular interest
below, and simple calculations show, see, e.g., [2],

sij D
8
<

:
� sin.˛ij C ˇij/

2 sin˛ij sinˇij
; if Pi;Pj neighbors, not both on @˝;

� 1
2

cot �ij; if Pi;Pj neighbors, both on @˝:
(12)
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Here ˛ij and ˇij are the angles opposite the interior edge PiPj, and �ij is the angle
opposite the boundary edge PiPj. We note that, since

Pm
jD1 ˚j D 1, we have, with

1 D .1; : : : ; 1/T ,

.S1/i D
mX

jD1
sij D

mX

jD1
.r˚i;r˚j/ D .r˚i;r1/ D 0; i D 1; : : : ;m; (13)

and

M1 � 1 D
mX

i;jD1
mij D

mX

i;jD1
.˚i; ˚j/ D

�
�
�

mX

iD1
˚i

�
�
�
2 D

Z

˝

1 dx D j˝j: (14)

Again we note that the semidiscrete solution uh.t/ is � 0 if and only if,
elementwise, ˛.t/ � 0, and that this holds for all � � 0 if and only if E.t/ � 0

elementwise. As for Dirichlet boundary conditions we have the following negative
result.

Theorem 1 E.t/ D e�tH ; H D M�1S; cannot be � 0 for all t > 0.

Proof We show that E.t/ � 0 for all t > 0 leads to a contradiction. With H D .hij/,
we first note that hij � 0 for j ¤ i, as follows from E.t/ D e�tH D I�tHCO.t2/ � 0,
as t ! 0. Let P1 be a node, e.g., a boundary node, such that every neighbor of P1
has a neighbor which is not a neighbor of P1. Let Pi be any node¤ P1 which is not
a neighbor of P1. Then since mi1 D si1 D 0 and MH D S, we have

P
j¤1 mijhj1 D 0.

But mij � 0; hj1 � 0, so that mijhj1 � 0, and thus mijhj1 D 0 for j ¤ 1. Hence
hj1 D 0 when mij > 0, i.e., when j D i, and also when Pj is a neighbor of P1,
since we can then choose Pi as a neighbor of Pj. Thus hj1 D 0 for all j ¤ 1. Thus
the first column of H only contains one possible nonzero element, namely h11. But
h11 ¤ 0, since otherwise the first column of H and hence that of S D MH would be
zero, which it is not. But then the first columns of M and S would be proportional.
However,

Pm
jD1 sj1 D 0 and

Pm
jD1 mj1 > 0, which gives a contradiction. ut

Note that the proof depends on the fact that mij > 0, for Pi;Pj neighbors, which
does not hold for the Lumped Mass method.

We remark that H D M�1S is symmetric positive semidefinite with respect to the
inner product M˛ � ˇ and that H therefore has nonnegative eigenvalues f�jgmjD1 with
�j � �jC1, and orthonormal eigenvectors f'jgmjD1. Here, since MH˛ � ˛ D S˛ � ˛ D
kr.Pj ˛j˚j/k2, and using also (14), we find that �1 D 0 is a simple eigenvalue,

with positive principal eigenvector '1 D !1, where ! D j˝j�1=2.
Any � 2 R

m has the eigenvector expansion

� D
mX

jD1
e� j'j; wheree� j D M� � 'j: (15)
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We note that if � � 0; � ¤ 0, we havee�1 D M� � '1 > 0; and, for 2 � j � m,

je� jj D jM� � 'jj � .M� � '1/�j De�1�j;

with �j D max
l
.j'j;lj='1;l/ D !max

l
j'j;lj: (16)

Hence � > 0 if
Pm

jD2 je� jj�j <e�1. In fact, we have, for l D 1; : : : ;m;

�l D
mX

jD1
e� j'j;l �e�1'1;l �

mX

jD2
je� jj j'j;lj � '1;l

�
e�1 �

mX

jD2
je� jj�j

	
> 0: (17)

The following result shows that even though E.t/ is not � 0 for all t � 0, we
have E.t/ > 0 for sufficiently large t.

Theorem 2 E.t/ > 0 if
Pm

jD2 e��jt�2j < 1.

Proof By (15) we have E.t/� DPm
jD1 e��jte� j'j. We find, if � � 0, � 6D 0, by (16),

mX

jD2
e��jtje� jj�j �e�1

mX

jD2
e��jt�2j <e�1:

Hence, for l D 1; : : : ;m,

.E.t/�/l D
mX

jD1
e��j te� j'j;l � '1;l

�
e�1 �

mX

jD2
e��j tje� jj�j

	
> 0:

Thus, E.t/� > 0 for � � 0; � ¤ 0, and hence E.t/ > 0. ut
We now show that, if E.t/ � 0 for some t � 0, then, as in the continuous case,

the maximum and minimum of E.t/� lie between the maximum and minimum at
t D 0.

Theorem 3 For t � 0, if E.t/ � 0, then minj �j 1 � E.t/� � maxj �j 1 for � 2 R
m.

Proof By (13) we have S1 D 0 and hence H1 D 0 and E.t/1 D e�tH1 D 1. With
E.t/ D .eij.t//, this may be expressed as

Pm
jD1 eij.t/ D 1 for i D 1; : : : ;m. Hence, if

E.t/ � 0, then .E.t/�/i DPm
jD1 eij.t/�j is bounded above and below as stated. ut

We turn to the Backward Euler method, with solution matrix Ek D r.kH/, where
r.�/ D .1 C �/�1 and H D M�1S. As for Dirichlet boundary conditions we have
the following negative result.

Theorem 4 Ek cannot be � 0 for all k > 0.
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Proof If Ek � 0 for all k, we conclude that

E.t/ D e�tH D lim
n!1

�
I C t

n
H
	�n D lim

n!1 En
t=n � 0; for any t > 0;

in contradiction to Theorem 1. ut
However, Ek is positive for k sufficiently large. In fact, using (15) we have, for

� � 0; � ¤ 0, sincee�1'1 > 0,

Ek� D
mX

jD1
r.k�j/e� j'j De�1'1.1C O.k�1// > 0; for k large:

Further, for any k, En
k� is positive for large n. More precisely, we have the following

result which is shown similarly to Theorem 2.

Theorem 5 En
k > 0 if

Pm
jD2 r.k�j/

n�2j < 1.

This shows that Ek > 0 for k sufficient large, and also that, for any k > 0, En
k > 0

for n large enough. Recall that in the case of Dirichlet boundary conditions we had
to impose the condition H�1 > 0, whereas for Neumann conditions H is singular.

Under a stronger condition, a more precise result holds:

Theorem 6 If sij < 0 for all .i; j/ 2 N WD f.i; j/ W Pi;Pj neighborsg, then Ek � 0
for k � maxN .mij=jsijj/.
Proof For the k stated we have mij C ksij � 0 for i ¤ j, i.e., the positive
definite matrix M C kS is a Stieltjes matrix, and hence .M C kS/�1 � 0, cf. [11],
Corollary 3.24. Thus, Ek D .M C kS/�1M � 0. ut

It follows, for example, that if fThg is a quasiuniform family, so that j	 j � ch2,
with c > 0, for all 	 2 Th, and all angles of the Th are uniformly < �=2, then
mij � Ch2; jsijj � c > 0, and thus Ek � 0 for k � �0h2 with �0 D C=c > 0.

If Ek � 0, the maximum and minimum of the time discrete solution En
k� are

attained for tn D nk D 0:

Theorem 7 For any k � 0, if Ek � 0, then minj �j 1 � Ek� � maxj �j 1 for
� 2 R

m.

Proof Follows as in Theorem 3 from Ek1 D 1 for k � 0. ut
For the Backward Euler matrix the nonnegativity threshold is the smallest k0 � 0

such that Ek0 � 0.

Theorem 8 If Ek0 � 0, then Ek � 0 for k � k0.

Proof This is equivalent to saying that if .�0I C H/�1 � 0, then .�I C H/�1 � 0
for 0 < � � �0. Clearly there is a smallest �1 � 0 such that .�I C H/�1 � 0 for
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�1 � � � �0, and we want to show that �1 D 0. Assume �1 > 0 and let � D �1 � ı
with ı small. We may write

.�I C H/�1 D .�1I C H � ıI/�1 D .�1I C H/�1.I � K/�1; K D ı.�1I C H/�1:

By assumption K � 0 and therefore, if ı is so small that, for some matrix norm,
kKk < 1, then we have .I � K/�1 D P1

jD0 Kj � 0. Thus .�I C H/�1 � 0 for ı
small, which contradicts the definition of �1. ut

2.2 The Lumped Mass Method

The spatially semidiscrete Lumped Mass method for (8) is to find uh.t/ 2 Sh, for
t � 0, such that

.uh;t; �/h C A.uh; �/ D 0; 8� 2 Sh; for t � 0; with uh.0/ D vh: (18)

Here the first term in (9) is evaluated by means of quadrature, using

. ; �/h D
X

	2Th

Q	;h. �/; Q	;h. f / D 1
3
j	 j

3X

jD1
f .P	;j/ 


Z

	

f dx; (19)

where fP	;jg3jD1 are the vertices of 	 , and j	 j D area.	/. In matrix form (18) may be
written

D˛0 C S˛ D 0; for t � 0; with ˛.0/ D �; (20)

where the stiffness matrix is that for the Standard Galerkin method, but the mass
matrix is now D whose elements are dij D .˚i; ˚j/h, which vanish for i ¤ j, so that
D is a diagonal matrix. The solution matrix of (20) is E.t/ D e�tH ; where this time
H D D�1S. Correspondingly, the solution matrix of the Backward Euler method is
Ek D .I C kH/�1. In this case we have the following.

Theorem 9 If E.t/ � 0 for small t > 0, or if Ek � 0 for small k > 0, then sij � 0,
j ¤ i. On the other hand, if sij � 0 for j ¤ i, then E.t/ � 0 for all t � 0, and Ek � 0
for all k � 0, and we then have for � 2 R

m

min
j
�j 1 � E.t/� � max

j
�j 1; for t � 0I min

j
�j 1 � Ek� � max

j
�j 1; for k � 0:

Proof If E.t/ � 0 for small t > 0, then E.t/ D I � tH C O.t2/ as t ! 0; and we
then have hij � 0 for j ¤ i. The argument for Ek is the same. Hence, sij D diihij � 0
for j ¤ i.
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Conversely, if sij � 0 for j ¤ i, then, for any k > 0, DC kS is a Stieltjes matrix.
Hence .DC kS/�1 � 0 and Ek D .I C kH/�1 D .DC kS/�1D � 0. Also,

E.t/ D e�tH D lim
n!1.I C

t

n
H/�n � 0; for t � 0:

The remaining inequalities are then shown as for the Standard Galerkin method. ut
It follows from (12) that sij � 0 for i ¤ j is equivalent to ˛ij C ˇij � � and

�ij � 1
2
� for all corresponding neighbors Pi;Pj, and sij D 0 for Pi;Pj not neighbors.

Even if the condition sij � 0 for i ¤ j does not hold, E.t/ is nonnegative for
large t, which is shown in the same way as Theorem 2, noting that again �1 D 0 is
a simple eigenvalue of H, with positive eigenvector '1 D !1. Thus, we have:

Theorem 10 E.t/ D e�tH > 0 if
Pm

jD2 e��jt�2j < 1.

We also have the following analogue of Theorem 5, with the analogous proof.

Theorem 11 En
k D r.kH/n > 0 if

Pm
jD2 r.k�j/

n�2j < 1.

Thus also in this case Ek > 0 for k sufficiently large, and, for any k > 0, En
k > 0

for n large enough, without special conditions on H.

3 Robin Boundary Conditions

We now consider the model problem with Robin boundary conditions on @˝ ,

ut D �u in ˝; with
@u

@n
C ˇu D 0 on @˝; for t � 0;

u.�; 0/ D v in ˝;

(21)

where the coefficient ˇ.x/ > 0 on @˝ . By the maximum principle one shows again
that E .t/ is a nonnegative operator, so that (1) holds. In this case, at a negative
minimum u.x0; t0/, with x0 2 @˝ , t0 > 0, we would have @u.x0; t0/=@n < 0 in
conflict with the Robin boundary condition. We also note for future reference that
the principal eigenvalue �1 of �� with Robin boundary conditions is simple and
positive with a principal eigenfunction 1 > 0 in N̋ , see [6, Theorem 11.10]. This
theorem states only that 1 � 0; the strict positivity then follows from the strong
maximum principle and Hopf’s boundary lemma [4, Chapter 2, Theorem 7].

The variational formulation of (21) is now to find u D u.�; t/ 2 H1 D H1.˝/ for
t � 0, such that

.ut; '/C B.u; '/ D 0; 8' 2 H1 for t � 0; with u.0/ D v; (22)
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where

B.v;w/ D .rv;rw/C hv;wiˇ; with hv;wiˇ D
Z

@˝

ˇvw ds: (23)

Note that again the boundary conditions on @˝ are natural boundary conditions
which are not strongly imposed.

3.1 The Standard Galerkin Method

The spatially semidiscrete method is now to find uh.t/ 2 Sh for t � 0, such that

.uh;t; �/C B.uh; �/ D 0; 8� 2 Sh; for t � 0; with uh.0/ D vh; (24)

where vh 2 Sh is an approximation of v, or, in matrix form (4), where now the mass
matrix M D .mij/, mij D .˚j; ˚i/, and the stiffness matrix S D .sij/, sij D B.˚j; ˚i/,
are both symmetric positive definite. This time we have, for Pi;Pj neighbors,

sij D
8
<

:
�1
2

sin.˛ij C ˇij/

sin ˛ij sinˇij
; if Pi;Pj not both on @˝;

� 1
2

cot �ij C �ij; if Pi;Pj both on @˝;
(25)

where ˛ij; ˇij; and �ij are as in (12), and �ij D h˚i; ˚jiˇ: The solution of (4) again
takes the form (5).

As in the case of Neumann boundary conditions we have the following negative
result, which is proved in the same way as Theorem 1.

Theorem 12 E.t/ D e�tH ; H D M�1S; cannot be � 0 for all t > 0.

Again, the solution matrix could be nonnegative for larger t. The principal
eigenvalue �1 is now positive, and we shall sometimes need to assume that H has
a positive principal eigenvector '1. By the Perron–Frobenius theorem, this holds
if H�1 is eventually positive, i.e., if H�q > 0 for some q > 0. Another way to
justify the assumption that '1 > 0 is to note that it is close to the corresponding
continuous positive principal eigenfunction 1 in the maximum norm for small h.
More precisely, the error is O.h/ in the energy norm, see [7, Theorem 6.2]. Together
with the “almost Sobolev” inequality kvhkL

1

� C max.1; log.1=h//1=2kvhkH1 for
vh 2 Sh, valid under mild assumptions for finite elements in two dimensions, [8,
Lemma 6.4], this leads to an o.1/ error bound in the maximum norm as h! 0.

The following result, proved as Theorem 2, shows that E.t/ > 0 for large t. Here
and in the following, when '1 > 0, we define �j D maxl.j'j;lj='1;l/.
Theorem 13 Assume '1 > 0. Then E.t/ > 0 if

Pm
jD2 e��jt�2j < e��1t .

We now have the following analogue of Theorem 3.
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Theorem 14 Assume '1 > 0. If E.t/ � 0 for some t � 0, then

e��1 t min
j
.�j='1;j/'1 � E.t/� � e��1t max

j
.�j='1;j/'1; for � 2 R

m: (26)

Proof We enclose the initial vector � between the largest and smallest possible
multiples of '1,

c�'1 D min
j
.�j='1;j/'1 � � � max

j
.�j='1;j/'1 D cC'1:

Since E.t/.cC'1��/ D e��1 tcC'1�E.t/� , the right hand inequality of (26) follows.
The left hand bound is shown analogously. ut

As for Dirichlet and Neumann boundary conditions we have the following result
for the Backward Euler method, with Ek D .I C kH/�1.

Theorem 15 Ek cannot be � 0 for all k > 0.

In analogy with the Dirichlet case, we have the following result, see Sect. 1
and [5].

Theorem 16 If H�1 > 0, then there exists k0 > 0 such that Ek > 0 if k � k0, and
H�1 � 0 is necessary for this to hold.

Proof Since Ek D �.�I C H/�1, � D k�1, this follows at once by continuity. ut
We also have the following analogue of Theorem 5.

Theorem 17 Assume '1 > 0. Then En
k > 0 if

Pm
jD2.r.k�j=r.k�1//n�2j < 1.

For any k > 0 this is satisfied for large n. For n D 1 a necessary condition for
this to hold for large k is

Pm
jD2.�1=�j/�

2
j � 1.

Finally, we state the following analogues of Theorems 6, 7, and 8; for the proof
of Theorem 19 see Theorem 14.

Theorem 18 If sij < 0 for all .i; j/ 2 N WD f.i; j/ W Pi;Pj neighborsg, then Ek � 0
for k � maxN .mij=jsijj/.
Theorem 19 Assume '1 > 0. If Ek � 0 for some k > 0, then we have

.1C k�1/
�1 min

j
.�j='1;j/'1 � Ek� � .1C k�1/

�1 max
j
.�j='1;j/'1; for � 2 R

m:

Theorem 20 If Ek0 � 0, then Ek � 0 for k � k0.

3.2 The Lumped Mass Method

The spatially semidiscrete Lumped Mass method for (21) is now

.uh;t; �/h C B.uh; �/ D 0; 8� 2 Sh; with uh.0/ D vh;
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where .�; �/h is defined in (19) and B.�; �/ in (23). In matrix form we again have (20)
and H D D�1S, where the stiffness matrix S D .sij/ now has the elements sij D
B.˚i; ˚j/ in (25). With the same proof as in Theorem 9, we now have:

Theorem 21 If E.t/ � 0 for small t > 0, or if Ek � 0 for small k > 0, then sij � 0,
j ¤ i. On the other hand, if sij � 0 for j ¤ i then E.t/ � 0 for all t � 0, and Ek � 0
for all k � 0. If '1 > 0, we then have for � 2 R

m

e��1t min
j
.�j='1;j/'1 � E.t/� � e��1 t max

j
.�j='1;j/'1; for t � 0;

.1C k�1/
�1 min

j
.�j='1;j/'1 � Ek� � .1C k�1/

�1 max
j
.�j='1;j/'1; for k � 0:

The condition sij � 0 for all neighbors Pi;Pj is now, by (25), equivalent to ˛ij C
ˇij � � and �ij D h˚i; ˚jiˇ � 1

2
cot �ij for the corresponding i; j.

Again, even if the condition sij � 0 for i ¤ j does not hold, E.t/ and Ek may be
nonnegative for large t and k, respectively, which is shown as earlier:

Theorem 22 Assume '1 > 0. Then E.t/ > 0 if
Pm

jD2 e��jt�2j < e��1t .

Theorem 23 If S�1 > 0, then there exists k0 > 0 such that Ek > 0 for k � k0, and
S�1 � 0 is a necessary condition for this to hold.

Theorem 24 Assume '1 > 0. Then En
k > 0 if

Pm
jD2.r.k�j=r.k�1//n�2j < 1.

4 A Uniform Triangulation of the Unit Square

In this section we consider the above problems in the special case of the unit square
˝ D .0; 1/�.0; 1/, with a standard uniform triangulationTh as follows. Let m0 be a
positive integer, h0 D 1=m0, and set xj D yj D jh0 for j D 0; : : : ;m0. This partitions
˝ into squares Œxj; xjC1��Œ yl; ylC1�, and the triangulation is completed by connecting
the nodes .xj; ylC1/ and .xjC1; yl/, see Fig. 1. The number of nodes fPigmiD1 is m D
.m0C1/2, and h D p2h0. We note that this is a Delaunay triangulation, but since the
sum of the angles opposite a diagonal edge equals � , the corresponding elements
sij of the stiffness matrix vanish. The case of Dirichlet boundary conditions was
studied in [1], where, in particular, it was shown that for the Standard Galerkin
method, E.t/ � 0 for t large, and Ek � 0 for k � 0:46 h2: For the Lumped Mass
method, since Th is Delaunay, we have E.t/ � 0 for t � 0 and Ek � 0 for k � 0.
In this section we shall study the analogous problems with Neumann and Robin
boundary conditions.
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Fig. 1 Uniform triangulation
of the unit square

h0

h0

h0

h0

1

h0 xjh0h0 h0 10

h0

h0

ym

4.1 Neumann Boundary Conditions

We shall say that Pj 2 ˝ if Pj is an interior mesh point, that Pj 2 @˝ if Pj is a
boundary mesh point but not a corner, and we let Q D Q1 [ Q2 denote the corners
with Q1 D f.1; 0/; .0; 1/g and Q2 D f.0; 0/; .1; 1/g. For the stiffness and mass
matrices we have for the diagonal elements corresponding to the node Pi:

sii D kr˚ik2 D

8
ˆ̂̂
<̂

ˆ̂
ˆ̂:

4;

2;

1;

1;

mii D k˚ik2 D

8
ˆ̂̂
<̂

ˆ̂
ˆ̂:

1
4
h2; if Pi 2 ˝;
1
8
h2; if Pi 2 @˝;
1
12

h2; if Pi 2 Q1;
1
24

h2; if� Pi 2 Q2:

The off-diagonal elements are zero, except when Pi, Pj are neighbors, in which case
PiPj is an edge of the triangulation. We distinguish between horizontal and vertical
interior edges Z1, boundary edges Z2, and diagonal edges Z3. We then have, cf. (12),

sij D .r˚i;r˚j/ D

8
ˆ̂<

ˆ̂
:

�1;
� 1
2
;

0;

mij D .˚i; ˚j/ D

8
ˆ̂<

ˆ̂
:

1
24

h2; if PiPj 2 Z1;
1
48

h2; if PiPj 2 Z2;
1
24

h2; if PiPj 2 Z3:

In particular, S is an irreducible Stieltjes matrix and thus S�1 > 0 and H�1 D
S�1M > 0, cf. Corollary 3.24 and Theorem 6.5 in [11]. Hence, the semidiscrete
Standard Galerkin solution matrix is nonnegative for large t by Theorem 2 and
both the semidiscrete and Backward Euler solution matrices for the Lumped Mass
method are nonnegative for t � 0 and k � 0, respectively, by Theorem 9. We shall
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show that, even though the assumptions of Theorem 6 are not satisfied, the Standard
Galerkin Backward Euler matrix Ek D .M C kS/�1M is � 0 for k � �0h2 with
�0 > 0 suitably chosen.

Let I1, I2, I3, I4 be diagonal matrices such that I1;ii D 1, if Pi 2 ˝ , I2;ii D 1, if
Pi 2 @˝ , I3;ii D 1, if Pi 2 Q1, I4;ii D 1, if Pi 2 Q2, with the remaining elements
equal to 0. Let J1, J2, J3 be matrices such that J1;ij D 1, if PiPj 2 Z1, J2;ij D 1, if
PiPj 2 Z2, J3;ij D 1, if PiPj 2 Z3, with the remaining elements equal to 0. Then we
have

M D 1
4
h2
�
I1 C 1

2
I2 C 1

3
I3 C 1

6
I4
�C 1

24
h2
�

J1 C 1
2
J2 C J3

�
;

S D 4I1 C 2I2 C I3 C I4 � J1 � 1
2
J2:

Hence, with � D k=h2, � D 4�C 1
4
, we find

M C kS D .4�C 1
4
/h2I1 C 1

2
.4�C 1

4
/h2I2 C .�C 1

12
/h2I3 C .�C 1

24
/h2I4

� .� � 1
24
/h2J1 � 1

2
.� � 1

24
/h2J2 C 1

24
h2J3

D �h2
n�

I1 C 1
2
I2 C .�C 1

12
/��1I3 C .�C 1

24
/��1I4

� .� � 1
24
/��1. J1 C J2/C 1

24
��1J3

o
:

Setting � D .� � 1
24
/��1; � D 1

24
��1; we thus have

M C kS D �h2
�
D � �J C �J3

� D �h2D1=2
�

I � �eJ C �eJ3
	

D1=2;

where we have defined

D D I1 C �2I2 C �3I3 C �4I4; with �2 D 1
2
; �3 D .�C 1

12
/=�; �4 D .�C 1

24
/=�;

J D J1 C 1
2
J2; eJ D D�1=2JD�1=2; eJ3 D D�1=2J3D�1=2:

Our aim is now to show that
�
I � �eJ C �eJ3

��1 � 0. We write

I � �eJ C �eJ3 D I � �eJ C 1
2
�eJ2 � 1

2
�
�eJ2 � 2eJ3

� D L � N; (27)

where L D I � �eJ C 1
2
�eJ2; N D 1

2
�
�eJ2 � 2eJ3

�
: We will prove that N � 0 and

determine � so that L�1 � 0 and kL�1Nk < 1. In view of (27) this shows

�
I � �eJ C �eJ3

��1 D �L� N
��1 D �I � L�1N

��1
L�1 D

� 1X

nD0

�
L�1N

�n
	

L�1;

and thus that Ek D .M C kS/�1M � 0 for � chosen as indicated.
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That L�1 � 0 for � suitably chosen will follow from the following lemma.

Lemma 1 Let � > 0 and 0 < 4! � �2. Then the zeros x1;2 of P.x/ D 1��xC!x2

satisfy 0 < x1 � x2, and we have, with �j > 0,

1

P.x/
D

1X

jD0
�jx

j; for 0 � x < x1 WD �

2!

�
1 �

p
1 � 4!=�2

	
>
1

�
:

If A is a nonnegative symmetric matrix with kAk < x1, for some matrix norm, then
P.A/�1 � 0 and kP.A/�1k � P.kAk/�1.
Proof The zeros of P.x/ are x1;2 D .�=.2!//

�
1 ˙ p

1 � 4!=�2�, which shows

the first statement. With 	 D �2=.4!/ we have x1 D 2��1	
�
1 � p1 � 1=	� D

��12=
�
1 Cp1 � 1=	� > ��1. Further, if 0 < 4! � �2, then by the formula for

the product of power series, we have, for 0 � x < x1,

1

P.x/
D 1

!

1

.x � x1/.x � x2/
D 1

!

1

x1x2

1X

jD0

� x

x1

	j 1X

jD0

� x

x2

	j

D 1

!

1

x1x2

1X

jD0

� jX

lD0

1

xl
1x

j�l
2

	
xj D

1X

jD0
�jx

j:

The statements about P.A/ are now obvious. ut
We now note that L D P.eJ/ and apply Lemma 1 with A DeJ. We set ! D �=2 and

choose � > 0 so that�2=4! D 1, i.e., the positive root of .�� 1
24
/2� 1

12
.4�C 1

24
/ D

0, which is � D 11
24

. With this value of � we have � D 1
50

, � D 1
5
, � D 25

12
; �3 D

13
50
; �4 D 6

25
, and x1 D �

�
D 10. Thus, if keJk WD max1�i�m

Pm
jD1 jeJijj < 10, then we

may conclude from Lemma 1 that L�1 D P.eJ/�1 � 0.
To bound keJk we note that for non-diagonal neighbors Pi;Pj and with D D

diag.dj/, we haveeJij D d�1=2
i Jijd

�1=2
j and considering the various possibilities for

Pi;Pj we find for the row sums ineJ

mX

jD1

jeJijj D

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

4 � 1 � 1 � 1 or 2.1 � 1 � 1C 1 � 1 � p
2/ or 3 � 1 � 1 � 1C p

2; if Pi 2 ˝;
p
2 � 1 � 1C 2 � p

2 � 1
2

� p
2 or

p
2 � 1 � 1C p

2 � 1
2

� p
2C p

2 � 1
2

� �l
�

1
2 ; l D 3 or 4; if Pi 2 @˝;

2 � p
2 � 1

2
� �l

�

1
2 ; l D 3 or 4; if Pi 2 Q;

(28)

and we conclude that keJk D 2.1Cp2/ 
 4:83 < 10.
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Thus L�1 D P.eJ/�1 � 0. Since it also follows that kL�1k � P.keJk/�1 and that
kNk D !keJ2 � 2eJ3k � !keJk2, and since �keJk 
 0:2 � 4:83 < 1, we find

kL�1Nk � kNk
P.keJk/ �

!keJk2
1 � �keJk C !keJk2 < 1: (29)

It remains to show that N D eJ2 � 2eJ3 � 0. This is equivalent to JD�1J � 2J3,
and to show this we consider the various possibilities for diagonal edges PiPj. We
note that, with D D diag.dl/, the non-zero elements of JD�1J are obtained as

. JD�1J/ij D
mX

lD1
Jild

�1
l Jlj D Jil1d

�1
l1 Jl1j C Jil2d

�1
l2 Jl2j;

where PiPl1Pj and PiPl2Pj are the two unique paths of non-diagonal edges connect-
ing Pi to Pj. Therefore we find, recalling that �4 D 6

25
� 1

4
,

. JD�1J/ij D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

1 � 1 � 1C 1 � 1 � 1 D 2; when Pi;Pj 2 ˝;
1
2
� 2 � 1C 1 � 1 � 1 D 2; when Pi 2 @˝;Pj 2 ˝;

1
2
� 2 � 1C 1

2
� 2 � 1 D 2; when Pi 2 Q1;Pj 2 ˝;

1
2
� ��1
4 � 12 C 1 � 1 � 1 � 2; when Pi;Pj 2 @˝;

so that JD�1J � 2J3. Thus Ek � 0 for k � �0h2, with �0 D 11
24

 0:46.

4.2 Robin Boundary Conditions

We now turn to Robin boundary conditions, with ˇ D 1, for simplicity. The mass
matrix is the same as before. For the stiffness matrix we have

sii D

8
ˆ̂
<

ˆ̂:

4; if Pi 2 ˝;
2C 2

3
h0; if Pi 2 @˝;

1C 2
3
h0 if Pi 2 Q1 [ Q2;

and sij D

8
ˆ̂
<

ˆ̂:

�1; if PiPj 2 Z1;

� 1
2
C 1

6
h0; if PiPj 2 Z2;

0; if PiPj 2 Z3:

As for Neumann boundary conditions S is an irreducible Stieltjes matrix and
thus S�1 > 0, so that H�1 D S�1M > 0 and the principal eigenvector '1 > 0 by
the Perron–Frobenius theorem. Hence the semidiscrete Standard Galerkin solution
matrix is nonnegative for large t by Theorem 13 and both the semidiscrete and
Backward Euler solution matrices for the Lumped Mass method are nonnegative
for t � 0 and k � 0, respectively, by Theorem 21. We shall show that, even though
the assumptions of Theorem 6 are not satisfied, the Standard Galerkin Backward
Euler matrix Ek D .M C kS/�1M � 0 for k � �0h2 with �0 > 0 suitably chosen.
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Here we find, again with � D k=h2,� D 4�C 1
4
; � D .�� 1

24
/��1; � D 1

24
��1;

M C kS D �h2
�
bD � �J1 � 1

2
.� � 1

3
h0�=�/J2 C �J3

� D �h2
�bD � �bJ C �J3

�
;

wherebJ D J1 C ıJ2; with ı D 1
2
.1 � 1

3
h0�=.��//; and

bD D I1 Cb�2I2 Cb�3I3 Cb�4I4; whereb� l D �l C 2
3
h0�=�; l D 2; 3; 4:

Hence, with MJ D bD�1=2bJbD�1=2, MJ3 D bD�1=2J3bD�1=2, we have

M C kS D �h2bD1=2
�
I � �MJ C � MJ3

�
bD1=2:

After some numerical experiments we chose � D 0:53 and restrict ourselves to
h0 � 1

4
. We then have � 
 2:37; � 
 0:21; � 
 0:018; �3 
 0:26; �4 
 0:24,

b� l D �l C 2
3
h0�=� 
 �l C 0:15 h0; l D 2; 3; 4; ı 
 0:5 � 0:18 h0: By numerical

computation we then find

.bJbD�1bJ/ij D

8
ˆ̂
ˆ̂<

ˆ̂
ˆ̂:

1 � 1 � 1C 1 � 1 � 1 D 2; when PiPj 2 ˝;
ı �b��1

2 � 1C 1 � 1 � 1 � 1:84; when Pi 2 @˝;Pj 2 ˝;
ı �b��1

2 � 1C ı �b��1
2 � 1 � 1:69; when Pi D Q1;Pj 2 ˝

ı �b��1
4 � ı C 1 � 1 � 1 � 1:74; when Pi;Pj 2 @˝:

We thus havebJbD�1bJ � 1:69 J3 and we write, with ! D �=1:69 
 0:010,

I � �MJ C � MJ3 D I � �MJ C ! MJ2 � !.MJ2 � 1:69 MJ3/:

To apply Lemma 1 with this ! and A D MJ, we must bound kMJk D kbD�1=2bJbD�1=2k.
It is obvious that all elements of MJ decrease when the parameter p D h0�=�
increases, so to bound the norm it suffices to consider p D 0. We then obtain
the same calculations as in (28), with the present �l; l D 2; 3; 4; and, since these
increase with �, it suffices to consider � D 11

24
as before. We conclude that

kMJk � 2.1Cp2/ 
 4:83 < 4:85 
 1=� < x1: In particular, �kMJk < 1 so that the
analogue of (29) holds. Following the proof for Neumann boundary conditions we
may thus show that Ek � 0 for k � 0:53 h2.

4.3 Numerical Illustrations

In order to illustrate our above results in the case of the unit square we have
computed nonnegativity thresholds for the different boundary conditions and with
various meshsizes, and displayed the results in Table 1. The matrix E.t/ D e�tH
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Table 1 Nonnegativity thresholds for Dirichlet, Neumann, and Robin boundary conditions

Dirichlet Neumann Robin (ˇ D 1)

E.t/ Ek E.t/ Ek E.t/ Ek

h0 h t0 k0 k1 t0 k0 k1 t0 k0 k1
0.100 0.141 0.046 0.0053 0.0092 0.070 0.0053 0.0092 0.070 0.0054 0.0106

0.050 0.070 0.035 0.0013 0.0023 0.042 0.0014 0.0023 0.042 0.0014 0.0027

0.025 0.035 0.021 0.0003 0.0006 0.023 0.0003 0.0006 0.023 0.0003 0.0007

was computed by MATLAB’s matrix exponential function and we then determined
the visibly unique point t0 where the minimal element passes from negative to
nonnegative values. We also computed upper bounds for the thresholds according
to (6) and Theorems 2 and 13. This was done by computing the eigenvalues
and eigenvectors of H with MATLAB and finding the zeros of the functions
t 7! Pm

jD2 e��jt�2j � e��1t. These bounds are essentially independent of h and
approximately equal to 0:2 for all three boundary conditions. They thus greatly
overestimate the thresholds.

Similarly we computed the nonnegativity thresholds k0 for Ek D .MCkS/�1M. In
this case we know from the theory that the threshold is bounded above by k1 D �0h2
with �0 
 0:46 for Dirichlet and Neumann and �0 
 0:53 for Robin boundary
conditions (ˇ D 1), and these bounds are also included in the table.

5 A Special Case in One Space Dimension

In this final section we discuss some analogues in one space dimension of our earlier
results. We begin by recalling known results for the case of Dirichlet boundary
conditions from [1], and then turn to Neumann and Robin boundary conditions.
We shall thus consider the initial-boundary value problem

ut D uxx; in ˝ D .0; 1/; with u.0; t/ D u.1; t/ D 0; for t > 0;

u.x; 0/ D v.x/; in ˝:
(30)

We partition ˝ D .0; 1/ uniformly into subintervals Ij D Œxj�1; xj� by xj D jh;
j D 0; : : : ;m; h D 1=m; and let Sh be the continuous piecewise linear functions �
on this partition, with �.0/ D �.1/ D 0: The basis functions f˚igm�1

iD1 	 Sh, are
defined by ˚i.xj/ D ıij.

With .�; �/ D .�; �/L2.˝/, the spatially semidiscrete analogue of (30) is

.uh;t; �/C .u0
h; �

0/ D 0; 8� 2 Sh; for t � 0; with uh.0/ D vh: (31)
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In matrix form, this may be written as (4), where the .m � 1/ � .m � 1/ mass and
stiffness matrices have elements mij D .˚i; ˚j/ and sij D .˚ 0

i ; ˚
0
j /, respectively, and

we find

M D h

0

B
B
B
@

2=3 1=6 0 : : : 0

1=6 2=3 1=6 : : : 0
:::

:::
: : :

0 0 : : : 2=3

1

C
C
C
A

and S D h�1

0

B
B
B
@

2 �1 0 : : : 0

�1 2 �1 : : : 0
:::

:::
: : :

0 0 : : : 2

1

C
C
C
A
:

The solution matrix is E.t/ D e�tH , with H D M�1S; and it was shown in [1] that,
as in the two-dimensional case, E.t/ cannot be nonnegative for all t > 0. However,
we could have E.t/ � 0 for large t: With f'jgm�1

jD1 the eigenvectors of H we have a
positive principal eigenvector '1;l D c sin.�xl/ with normalizing factor c > 0, and
it was shown in [1] that E.t/ > 0 if

m�1X

jD2
e��jt�2j < e��1t; where �j D max

l
.j'j;lj='1;l/: (32)

For the Backward Euler method, Ek D .I C kH/�1; where H D M�1S. We quote
from [1] that Ek � 0 if and only if � D k=h2 � 1

6
, i.e., that k0 D 1

6
h2 is the

nonnegativity threshold.
For the Lumped Mass method we use . ; �/h D h

Pm�1
jD1  j�j to replace . ; �/

in (31). This gives the mass matrix M D hI, and thus H D h�1S, and we then have
that E.t/ � 0 for t � 0, and Ek � 0 for k � 0.

We now turn to the Neumann and Robin boundary conditions and consider the
problem

ut D uxx in .0; 1/; u0.0; t/ D ˇu.0/; u0.1; t/ D �ˇu.1; t/; for t > 0;

with given initial values u.x; 0/ D v.x/: Here the constant ˇ is � 0, with ˇ D 0 for
Neumann boundary conditions and ˇ > 0 for Robin boundary conditions.

This time we use for Sh the .mC 1/-dimensional space of continuous piecewise
linear functions on the Ij, and the basis functions are now f˚igmiD0 	 Sh, defined by
˚i.xj/ D ıij. The semidiscrete problem is then

.uh;t; �/C .u0
h; �

0/C ˇuh.0/�.0/C ˇuh.1/�.1/ D 0; 8� 2 Sh; for t � 0;
with uh.0/ D vh: The matrix formulation (4) now uses the .mC 1/� .mC 1/ mass
and stiffness matrices

M D h

0

BB
B
@

1=3 1=6 0 : : : 0

1=6 2=3 1=6 : : : 0
:::

:::
: : :

0 0 : : : 1=3

1

CC
C
A

and Sˇ D h�1

0

BB
B
@

1C ˇh �1 0 : : : 0

�1 2 �1 : : : 0
:::

:::
: : :

0 0 : : : 1C ˇh

1

CC
C
A
;
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where M and Sˇ with ˇ > 0 are positive definite and S0 is positive semidefinite.
Note that Sˇ is an irreducible Stieltjes matrix for ˇ > 0 so that S�1

ˇ > 0, and thus

H�1 D S�1
ˇ M has a positive principal eigenvector. If ˇ D 0, then �1 D 0 and

'1 D 1 is a positive principal eigenvector. Analogously to Theorem 1 we have the
following.

Theorem 25 E.t/ D e�tH, H D M�1Sˇ, cannot be � 0 for small t > 0.

Proof If E.t/ � 0 for small t > 0, then hij � 0 for j ¤ i, because E.t/ D e�tH D
I � tH C O.t2/ as t! 0.

Using the diagonal matrix Dˇ D diag. 1
2
.1 C ˇh/; 1; : : : ; 1; 1

2
.1 C ˇh// and the

matrix J with elements 1 in the two main bidiagonals and all other elements 0, the
mass matrix may be written M D h. 2

3
D0 C 1

6
J/ D 2

3
hD0.I C 1

4
D�1
0 J/, and thus

M�1 D 3
2
h�1.I C 1

4
D�1
0 J/�1D�1

0 D 3
2
h�1

1X

jD0
.�1/j. 1

4
D�1
0 J/j D�1

0 ;

where the series converges since, in maximum norm, kD�1
0 Jk D 2. Further, .D�1

0 J/j

has nonzero elements only in bidiagonals of even order when j is even, and of odd
order when j is odd. It follows that the elements of M�1 are positive in bidiagonals
of even order and negative in those of odd order. Since Sˇ D h�1.2Dˇ � J/, the
same holds for H D M�1Sˇ, in contradiction to hij � 0 for j ¤ i. ut

In the same way as in Theorem 2 one shows:

Theorem 26 E.t/ > 0 if
PmC1

jD2 e��jt�2j < e��1t; where �j D maxl.j'j;lj='1;l/:
We now turn to the Backward Euler matrix Ek D .I C kH/�1; H D M�1Sˇ and

show again that k0 D 1
6
h2 is the nonnegativity threshold.

Theorem 27 Ek � 0 if and only if � D k=h2 � 1=6.

Proof We have M D h. 2
3
D0 C 1

6
J/; Sˇ D h�1.2Dˇ � J/; and hence

M C kSˇ D h
�
2
3
D0 C 2�Dˇ C . 16 � �/J

�
:

Since this matrix is a Stieltjes matrix for � � 1=6, it has a nonnegative inverse. Thus
Ek D .M C kSˇ/�1M � 0.

For the converse, we first note that if Ek0 � 0, then Ek � 0 for k � k0, as follows
as in Theorem 8. Let now � < 1

6
and set � D 1

6
� �. Then, with eD D 2

3
D0 C 2�Dˇ;

Ek D .M C kSˇ/
�1M D h�1.eDC �J/�1M D .I C �eD�1J/�1eD�1. 2

3
D0 C 1

6
J/

D .I � �eD�1J/eD�1. 2
3
D0 C 1

6
J/C O.�2/ D P � �QC O.�2/; as � ! 0;



On Nonnegativity Preservation in Finite Element Methods 813

Table 2 Nonnegativity
thresholds for the different
boundary conditions

h Dirichlet Neumann Robin

0.020 0.0082 0.0086 0.0086

0.010 0.0044 0.0045 0.0045

0.005 0.0023 0.0023 0.0023

where the elements pij of P vanish for ji � jj > 1 and the elements qij of Q are
positive for ji � jj D 2. Hence the elements of Ek in the second bidiagonals are
negative for small �, so that Ek 6� 0 for � < 1=6: ut

For the Lumped Mass method we replace . ; �/ by

. ; �/h D 1
2
h 0�0 C 1

2
h m�m C h

m�1X

jD1
 j�j;

which gives the mass matrix M D hD0 and thus H D h�1D�1
0 Sˇ. We now have:

Theorem 28 For the Lumped Mass method we have E.t/ � 0 for all t � 0 and
Ek � 0 for all k � 0.

Proof Since obviously MC kSˇ D h.D0C 2�Dˇ � �J/ is a Stieltjes matrix, so that
.M C kSˇ/�1 � 0, we have Ek D .M C kSˇ/�1M � 0. Further,

E.t/ D e�tH D lim
n!1

�
I C t

n
H
	�n D lim

n!1 En
t=n � 0; for t � 0:

The proof is complete. ut
In order to illustrate our results we computed numerically the nonnegativity

thresholds for the matrix E.t/ D e�tH for the three boundary conditions, with
ˇ D 1 in the Robin case, and for different h. The computations were carried
out in the same way as in Sect. 4.3 and the results are displayed in Table 2. We
also computed upper bounds for the thresholds according to (32) and Theorem 26.
These bounds are essentially independent of h and approximately 0:052, 0:080, and
0:078, respectively, for the three boundary conditions. We see that they greatly
overestimate the thresholds. For Ek we know already from the theory that the
threshold is k0 D 1

6
h2.
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Numerical Solutions of a Boundary Value
Problem on the Sphere Using Radial
Basis Functions

Quoc T. Le Gia

Dedicated to Ian H. Sloan on the occasion of his 80th birthday.

Abstract Boundary value problems on the unit sphere arise naturally in geophysics
and oceanography when scientists model a physical quantity on large scales. Robust
numerical methods play an important role in solving these problems. In this article,
we construct numerical solutions to a boundary value problem defined on a spherical
sub-domain (with a sufficiently smooth boundary) using radial basis functions
(RBFs). The error analysis between the exact solution and the approximation is
provided. Numerical experiments are presented to confirm theoretical estimates.

1 Introduction

Boundary value problems on the unit sphere arise naturally in geophysics and
oceanography when scientists model a physical quantity on large scales. In that
situation, the curvature of the Earth cannot be ignored, and a boundary value
problem has to be formulated on a subdomain of the unit sphere. For example, the
study of planetary-scale oceanographic flows in which oceanic eddies interact with
topography such as ridges and land masses or evolve in closed basin lead to the
study of point vortices on the surface of the sphere with walls [2, 13]. Such vortex
motions can be described as a Dirichlet problem on a subdomain of the sphere for
the Laplace-Beltrami operator [4, 21]. Solving the problem exactly via conformal
mapping methods onto the complex plane was proposed by Crowdy in [4]. Kidambi
and Newton [21] also considered such a problem, assuming the sub-surface of the
sphere lent itself to method of images. A boundary integral method for constructing
numerical solutions to the problem was discussed in [11]. In this work, we propose
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a collocation method using spherical radial basis functions. Radial basis functions
(RBFs) present a simple and effective way to construct approximate solutions to
partial differential equations (PDEs) on spheres, via a collocation method [26] or a
Galerkin method [22]. They have been used successfully for solving transport-like
equations or semilinear parabolic equations on the sphere [6, 7, 36]. The method
does not require a mesh, and is simple to implement.

While meshless methods using RBFs have been employed to derive numerical
solutions for PDEs on the sphere only recently, it should be mentioned that
approximation methods using RBFs for PDEs on bounded domains have been
around for the last two decades. Originally proposed by Kansa [19, 20] for fluid
dynamics, approximation methods for many types of PDEs defined on bounded
domains in R

n using RBFs have since been used widely [5, 9, 16, 17].
To the best of our knowledge, approximation methods using RBFs have not been

investigated for boundary value problems defined on subdomains of the unit sphere.
Given the potential of RBF methods on these problems, the present paper aims to
present a collocation method for boundary value problems on the sphere and provide
a mathematical foundation for error estimates.

The paper is organized as follows: in Section Preliminaries we review some
preliminaries on functions spaces, positive definite kernels, radial basis functions
and the generalized interpolation problem on discrete point sets on the unit sphere.
In Section Boundary Value Problems on the Sphere we define the boundary value
problem on a spherical cap, then present a collocation method using spherical radial
basis functions and our main result, Theorem 4. We conclude the paper by giving
some numerical experiments in the last section.

Throughout the paper, we denote by c; c1; c2; : : : generic positive constants that
may assume different values at different places, even within the same formula.

For two sequences fa`g`2N0 and fb`g`2N0 , the notation a` � b` means that there
exist positive constants c1 and c2 such that c1b` � a` � c2b` for all ` 2 N0.

2 Preliminaries

Let Sn be the unit sphere, i.e. Sn WD ˚
x 2 R

nC1 W kxk D 1� in the Euclidean space
R

nC1, where kxk WD px � x denotes the Euclidean norm of RnC1, induced by the
Euclidean inner product x � y of two vectors x and y in R

nC1. The surface area of the
unit sphere Sn is denoted by !n and is given by

!n WD jSnj D 2�.nC1/=2

� ..nC 1/=2/:

The spherical distance (or geodesic distance) distSn.x; y/ of two points x 2 S
n

and y 2 S
n is defined as the length of a shortest geodesic arc connecting the two
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points. The geodesic distance distSn.x; y/ is the angle in Œ0; �� between the points x
and y, thus

distSn.x; y/ WD arccos.x � y/:

Let ˝ be an open simply connected subdomain of the sphere. For a point set
X WD fx1; x2; : : : ; xNg 	 S

n, the (global) mesh norm hX is given by

hX D hX;Sn WD sup
x2Sn

inf
xj2X

distSn.x; xj/;

and the local mesh norm hX;˝ with respect to the subdomain˝ is defined by

hX;˝ WD sup
x2˝

inf
xj2X\˝ distSn.x; xj/:

The mesh norm hX2;@˝ of X2 	 @˝ along the boundary @˝ is defined by

hX2;@˝ WD sup
x2@˝

inf
xj2X2

dist@˝.x; xj/; (1)

where distx2@˝ is here the geodesic distance along the boundary @˝ .

2.1 Sobolev Spaces on the Sphere

Let˝ be Sn or an open measurable subset of Sn. Let L2.˝/ denote the Hilbert space
of (real-valued) square-integrable functions on ˝ with the inner product

h f ; giL2.˝/ WD
Z

˝

f .x/g.x/d!n.x/

and the induced norm k fkL2.˝/ WD h f ; f i1=2L2.˝/
. Here d!n is the Lebesgue surface

area element of the sphere Sn.
The space of continuous functions on the sphere Sn and on the closed subdomain

˝ are denoted by C.˝/ and C.˝/ and are endowed with the supremum norms

k fkC.Sn/ WD sup
x2Sn
j f .x/j and k fkC.˝/ WD sup

x2˝
j f .x/j;

respectively.
A spherical harmonic of degree ` 2 N0 (for the sphere S

n) is the restriction of
a homogeneous harmonic polynomial on R

nC1 of exact degree ` to the unit sphere
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S
n. The vector space of all spherical harmonics of degree ` (and the zero function)

is denoted by H`.S
n/ and has the dimension Z.n; `/ WD dim.H`.S

n// given by

Z.n; 0/ D 1 and Z.n; `/ D .2`C n� 1/� .`C n � 1/
� .`C 1/� .n/ for ` 2 N:

By f Y`;k W k D 1; 2; : : : ;Z.n; `/g, we will always denote an L2.Sn/-orthonormal
basis of H`.S

n/ consisting of spherical harmonics of degree `. Any two spherical
harmonics of different degree are orthogonal to each other, and the union of all
sets f Y`;k W k D 1; 2; : : : ;Z.n; `/g constitutes a complete orthonormal system for
L2.Sn/. Thus any function f 2 L2.Sn/ can be represented in L2.Sn/-sense by its
Fourier series (or Laplace series)

f D
1X

`D0

Z.n;`/X

kD1
bf `;kY`;k;

with the Fourier coefficientsbf `;k defined by

bf `;k WD
Z

Sn
f .x/Y`;k.x/d!n.x/:

The space of spherical polynomials of degree � K (that is, the set of the
restrictions to S

n of all polynomials on R
nC1 of degree � K) is denoted by PK.S

n/.
We have PK.S

n/ DLK
`D0H`.S

n/ and dim.PK.S
n// D Z.nC 1;K/ � .K C 1/n.

Any orthonormal basis f Y`;k W k D 1; 2; : : : ;Z.n; `/g of H`.S
n/ satisfies the

addition theorem (see [27, p. 10])

Z.n;`/X

kD0
Y`;k.x/Y`;k.y/ D Z.n; `/

!n
P`.nC 1I x � y/; (2)

where P`.nC 1I �/ is the normalized Legendre polynomial of degree ` in R
nC1. The

normalized Legendre polynomials fP`.nC 1I �/g`2N0 , form a complete orthogonal
system for the space L2.Œ�1; 1�I .1 � t2/.n�2/=2/ of functions on Œ�1; 1� which are
square-integrable with respect to the weight function w.t/ WD .1 � t2/.n�2/=2. They
satisfy P`.nC 1I 1/ D 1 and

Z C1

�1
P`.nC 1I t/Pk.nC 1I t/.1 � t2/.n�2/=2dt D !n

!n�1Z.n; `/
ı`;k; (3)

where ı`;k is the Kronecker delta (defined to be one if ` D k and zero otherwise).
The Laplace-Beltrami operator �� (for the unit sphere Sn) is the angular part of

the Laplace operator� DPnC1
jD1 @2=@x2j for RnC1. Spherical harmonics of degree `

on S
n are eigenfunctions of ���, more precisely,

���Y` D �`Y` for all Y` 2 H`.S
n/ with �` WD `.`C n � 1/:
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For s 2 R
C
0 , the Sobolev space Hs.Sn/ is defined by (see [24, Chapter 1,

Remark 7.6])

Hs.Sn/ WD
8
<

:
f 2 L2.S

n/ W
1X

`D0
.1C �`/s

Z.n;`/X

kD1
jbf `;kj2 <1

9
=

;
:

The space Hs.Sn/ is a Hilbert space with the inner product

h f ; giHs.Sn/ WD
1X

`D0
.1C �`/s

Z.n;`/X

kD1
bf `;kbg`;k

and the induced norm

k fkHs.Sn/ WD h f ; f i1=2Hs.Sn/ D
1X

`D0
.1C �`/s

Z.n;`/X

kD1
jbf `;kj2: (4)

If s > n=2, then Hs.Sn/ is embedded into C.Sn/, and the Sobolev space Hs.Sn/ is
a reproducing kernel Hilbert space. This means that the evaluation functional over
Hs.Sn/ is a bounded operator. From the Riesz representation theorem, there exists a
unique element Kx 2 Hs.Sn/ with the reproducing property

h f ;KxiHs.Sn/ D f .x/; 8f 2 Hs.Sn/:

Since Kx is itself a function in Hs.Sn/, for every y 2 S
n, there exists a Ky 2 Hs.Sn/

such that

Kx.y/ D hKx;KyiHs.Sn/:

This allows us to define the reproducing kernel as a function Ks W Sn � S
n ! R by

Ks.x; y/ D hKx;KyiHs.Sn/:

From this definition, it is easy to see that K is both symmetric and positive definite.
Sobolev spaces on S

n can also be defined using local charts (see [24]). Here we
use a specific atlas of charts, as in [18].

Let z be a given point on S
n, the spherical cap centered at z of radius � is defined

by

G.z; �/ D fy 2 S
n W cos�1.z � y/ < �g; � 2 .0; �/;

where z � y denotes the Euclidean inner product of z and y in R
nC1.
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Let On and Os denote the north and south poles of Sn, respectively. Then a simple
cover for the sphere is provided by

U1 D G. On; �0/ and U2 D G.Os; �0/; where �0 2 .�=2; 2�=3/: (5)

The stereographic projection �On of the punctured sphere Sn n fOng onto R
n is defined

as a mapping that maps x 2 S
n n fOng to the intersection of the equatorial hyperplane

fz D 0g and the extended line that passes through x and On. The stereographic
projection �Os based on Os can be defined analogously. We set

 1 D 1

tan.�0=2/
�OsjU1 and  2 D 1

tan.�0=2/
�OnjU2 ; (6)

so that  k, k D 1; 2, maps Uk onto B.0; 1/, the unit ball in R
n. We conclude that

A D fUk;  kg2kD1 is a C1 atlas of covering coordinate charts for the sphere. It is
known (see [30]) that the stereographic coordinate charts f kg2kD1 as defined in (6)
map spherical caps to Euclidean balls, but in general concentric spherical caps are
not mapped to concentric Euclidean balls. The projection  k, for k D 1; 2, does not
distort too much the geodesic distance between two points x; y 2 S

n, as shown in
[23].

With the atlas so defined, we define the map �k which takes a real-valued function
g with compact support in Uk into a real-valued function on R

n by

�k.g/.x/ D
�

g ı  �1
k .x/; if x 2 B.0; 1/;

0; otherwise :

Let f�k W Sn ! Rg2kD1 be a partition of unity subordinated to the atlas, i.e., a pair
of non-negative infinitely differentiable functions �k on S

n with compact support in
Uk, such that

P
k �k D 1. For any function f W Sn ! R, we can use the partition of

unity to write

f D
2X

kD1
.�kf /; where .�kf /.x/ D �k.x/f .x/; x 2 S

n:

The Sobolev space Hs.Sn/ is defined to be the set

f f 2 L2.S
n/ W �k.�kf / 2 Hs.Rn/ for k D 1; 2g ;

which is equipped with the norm

k fkHs.Sn/ D
 

2X

kD1
k�k.�kf /k2Hs.Rn/

!1=2

: (7)

This Hs.Sn/ norm is equivalent to the Hs.Sn/ norm given previously in (4) (see
[24]).
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Let˝ 	 S
n be an open connected set with sufficiently smooth boundary. In order

to define the Sobolev spaces on ˝ , let Dk D  k.˝ \ Uk/ for k D 1; 2: The local
Sobolev space Hs.˝/ is defined to be the set

f 2 L2.˝/ W �k.�kf /jDk 2 Hs.Dk/ for k D 1; 2; Dk ¤ ;;

which is equipped with the norm

k fkHs.˝/ D
 

2X

kD1
k�k.�kf /jDkk2Hs.Dk/

!1=2

(8)

where, if Dk D ;, then we adopt the convention that k � kHs.Dk/ D 0.
It should be noted that if s D m which is a positive integer, we can define the

local Sobolev norm via the following formula

k fkHm.˝/ D
 

mX

kD0
hrkf ;rkf iL2.˝/

!1=2
; (9)

where r is the surface gradient on the sphere.
Now we state an extension theorem for a local domain on the sphere. We follow

a framework set out in [33, Chapter 4.4]. To this end, let us consider Sobolev spaces
Hs.RnC/, with R

nC D fx 2 R
n W x1 > 0g. For k � 0 an integer, let

Hk.RnC/ D fu 2 L2.RnC/ W D˛u 2 L2.RnC/ for j˛j � kg:

Here, D˛u is considered as a distribution on the interior RnC. We claim that each
u 2 Hk.RnC/ is the restriction to R

nC of an element of Hk.Rn/. To see this, fix an
integer N � kC 1, for an u in the Schwartz class S .RnC/ let

Eu.x/ D
(

u.x/ for x1 � 0;
PN

jD1 aju.�jx1; x0/; for x1 < 0:

Lemma 1 There exist coefficients a1; : : : ; aN such that the map E has a unique
continuous extension to

E W Hk.RnC/! Hk.Rn/; for k � N � 1:

Proof Given u 2 S .Rn/, we get an Hk-estimate on Eu provided all the derivatives
of Eu of order N � 1 match up at x1 D 0, that is, provided

NX

jD1
.�j/`aj D 1; for ` D 0; 1; : : : ;N � 1: (10)
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The system (10) is a linear system of N equations for N unknowns aj; its determinant
is a Vandermonde determinant that is non-zero, so aj can be found. ut
Theorem 1 (Extension Theorem) Let˝ 	 S

n be a local region with a sufficiently
smooth boundary. For real s � 0, there exists a bounded extension operator

E W Hs.˝/! Hs.Sn/: (11)

Proof For k � 0 being an integer, let Hk.˝/ be the space of all u 2 L2.˝/ such that
Pu 2 L2.˝/ for all differential operators P of order� k with coefficients in C1.˝/.
By covering a neighbourhood of @˝ 	 S

n with coordinate patches and locally using
the extension operator E from above, we get, for each finite N, an extension operator

E W Hk.˝/! Hk.Sn/; 0 � k � N � 1: (12)

For real s � 0, we can use interpolation between Banach spaces (see [33,
Chapter 4.2]) to define

E W Hs.˝/! Hs.Sn/:

ut
Theorem 2 (Trace Theorem) Let ˝ 	 S

n be a local region with a sufficient
smooth boundary. Then, for s > 1=2, the restriction of f 2 Hs.˝/ to @˝ is well
defined, belongs to Hs�1=2.@˝/, and satisfies

k fkHs�1=2.@˝/ � Ck fkHs.˝/:

Proof The boundary @Dk of Dk D  k.˝\Uk/ is given by k.@˝\Uk/ for k D 1; 2.
Then,

k fk2Hs�1=2.@˝/
D

2X

kD1
k.�k�k f /j@Dkk2Hs�1=2.@Dk/

:

Using the trace theorem for bounded domains in R
n [37, Theorem 8.7], there are

constants ck > 0 for k D 1; 2 so that

k.�k�k f /j@DkkHs�1=2.@Dk/
� ckk.�k�k f /jDkkHs.Dk/:

Hence

k fk2Hs�1=2.@˝/
� maxfc21; c22g

2X

kD1
k.�k�kf /jDkk2Hs.Dk/

D maxfc21; c22gk fk2Hs.˝/:

ut
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2.2 Positive Definite Kernels on the Sphere and Native Spaces

A continuous real-valued kernel  W Sn � S
n ! R is called positive definite on S

n if
(1) .x; y/ D .y; x/ for all x; y 2 S

n and (2) for every finite set of distinct points
X D fx1; x2; : : : ; xNg on S

n, the symmetric matrix Œ.xi; xj/�i;jD1;2;:::;N is positive
definite.

A kernel  W Sn � S
n ! R defined via .x; y/ WD ˚.x � y/, x; y 2 S

n, with a
univariate function ˚ , is called a zonal kernel.

Since the normalized Legendre polynomials fP`.nC 1I �/g`2N0 , form a complete
orthogonal system for L2.Œ�1; 1�I .1� t2/.n�2/=2/, any function˚ 2 L2.Œ�1; 1�I .1�
t2/.n�2/=2/ can be expanded into a Legendre series (see (3) for the normalization)

˚.t/ D 1

!n

1X

`D0
a`Z.n; `/P`.nC 1I t/; (13)

with the Legendre coefficients

a` WD !n�1
Z C1

�1
˚.t/P`.nC 1I t/.1 � t2/.n�2/=2dt:

Due to (13) and the addition theorem (2), a zonal kernel .x; y/ WD ˚.x � y/, x; y 2
S

n, where ˚ 2 L2.Œ�1; 1�I .1 � t2/.n�2/=2/, has the expansion

.x; y/ D 1

!n

1X

`D0
a`Z.n; `/P`.nC 1I x � y/ D

1X

`D0

Z.n;`/X

kD1
a`Y`;k.x/Y`;k.y/: (14)

In this paper we will only consider positive definite zonal continuous kernels 
of the form (14) for which

1X

`D0
ja`jZ.n; `/ <1: (15)

This condition implies that the sums in (14) converge uniformly.
In [3], a complete characterization of positive definite kernels is established: a

kernel  of the form (14) satisfying the condition (15) is positive definite if and only
if a` � 0 for all ` 2 N0 and a` > 0 for infinitely many even values of ` and infinitely
many odd values of ` (see also [32] and [38]).

With each positive definite zonal continuous kernel  of the form (14) and
satisfying the condition (15), we associate a native space: Consider the linear space

F WD
8
<

:

NX

jD1
˛j.�; xj/ W ˛j 2 R; xj 2 S

n; j D 1; 2; : : : ;NI N 2 N

9
=

;
;
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endowed with the inner product

h
NX

jD1
˛j.�; xj/;

MX

iD1
ˇi.�; yi/i WD

NX

jD1

MX

iD1
˛jˇi.xj; yi/

and the associated norm k fk WD h f ; f i1=2 . The native space N associated with
 is now defined as the completion of F with respect to the norm k � k . By
construction, the native space N is a Hilbert space, and we will denote its inner
product and norm also by h�; �i and k � k , respectively.

The native space N is a (real) reproducing kernel Hilbert space with the
reproducing kernel . This means that (1)  is symmetric, (2) .�; y/ 2 N for
all (fixed) y 2 S

n, and (3) the reproducing property holds, that is,

h f ; .�; y/i D f .y/; for all f 2 N and all y 2 S
n: (16)

It is known that [28, 35] the native space N associated with a positive definite
continuous zonal kernel , given by (14) and satisfying the conditions (15) and
a` > 0 for all ` 2 N0, can be described by

N D
8
<

:
f 2 L2.S

n/ W
1X

`D0

Z.n;`/X

kD1

jbf `;kj2
a`

<1
9
=

;
;

equipped with the inner product

h f ; gi D
1X

`D0

Z.n;`/X

kD1

bf `;kbg`;k
a`

and the associated norm

k fk D h f ; f i1=2 D
0

@
1X

`D0

Z.n;`/X

kD1

jbf `;kj2
a`

1

A

1=2

: (17)

If a` > 0 for all ` 2 N0, we can conclude, from the assumption (15), that the Fourier
series of any f 2 N converges uniformly and that the native space N is embedded
into C.Sn/.

Comparing (17) with (4), we see that if a` � .1C�`/�s, then k � k and k � kHs.Sn/

are equivalent norms, and hence N and Hs.Sn/ are the same space.
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2.3 Generalized Interpolation with RBFs

Let  W Sn � S
n ! R be a positive definite zonal continuous kernel given by (14)

and satisfying the condition (15). Since the native space N is a reproducing kernel
Hilbert space with reproducing kernel , any continuous linear functional L on
N has the representer L2.�; �/. (Here the index 2 in L2.�; �/ indicates that L is
applied to the kernel  as a function of its second argument. Likewise L1.�; �/ will
indicate that L is applied to the kernel  as a function of its first argument.)

For a linearly independent set � D fL 1;L 2; : : : ;L Ng of continuous linear
functionals on N , the generalized radial basis function (RBF) interpolation
problem can be formulated as follows: Given the values L 1f ;L 2f ; : : : ;L Nf of a
function f 2 N , find the function�� f in the N-dimensional approximation space

V� WD span
n
L j
2.�; �/ W j D 1; 2; : : : ;N

o

such that the conditions

L i.�� f / D L if ; i D 1; 2; : : : ;N; (18)

are satisfied. We will call the function �� f 2 V� the radial basis function
approximant (RBF approximant) of f .

Writing the RBF approximant�� f as

�� f .x/ D
NX

jD1
˛jL

j
2.x; �/; x 2 S

n;

the interpolation conditions (18) can therefore be written as

NX

jD1
˛jhL j

2.�; �/;L i
2.�; �/i D

NX

jD1
˛jL

i
1L

j
2.�; �/ D L if ;

i D 1; 2; : : : ;N: (19)

Since f 2 N , we have L if D h f ;L i
2.�; �/i, i D 1; 2; : : : ;N, and we see that

�� f is just the orthogonal projection of f 2 N onto the approximation space V�
with respect to h�; �i . Therefore,

k f ��� fk � k fk : (20)

The linear system has always a unique solution, because its matrix

ŒL i
1L

j
2.�; �/�i;jD1;2;:::;N

is the Gram matrix of the representers of the linearly independent functionals in � .
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We observe here that the linear system (19) can be solved for any given data set
fL if W i D 1; 2; : : : ;Ng, where the data does not necessarily has to come from
a function in the native space N , but may come from any function f for which
L if is well-defined for all i D 1; 2; : : : ;N. Even if f is not in the native space
we will use the notation �� f for the solution of the generalized RBF interpolation
problem (18).

2.4 Sobolev Bounds for Functions with Scattered Zeros

We need the following results from [14] concerning functions with scattered zeros
on a subdomain of a Riemannian manifold.

Theorem 3 Let M be a Riemannian manifold, ˝ 	 M be a bounded, Lipschitz
domain that satisfies a certain uniform cone condition. Let X be a discrete set with
sufficiently small mesh norm h. If u 2 Wm

p .˝/ with m > d=p satisfies ujX D 0, then
we have

kukWk
p .˝/
� Cm;k;p;Mhm�kkukWm

p .˝/

and

kukL1.˝/ � Cm;k;p;Mhm�d=pkukWm
p .˝/

:

3 Boundary Value Problems on the Sphere

After all these preparations we can formulate a boundary value problem for an
elliptic differential operators L. Our standard application (and numerical example
in Section Numerical Experiments) will be L D �2I � ��, where I is the identity
operator and � is some fixed constant, on simply connected subregion˝ on S

n with
a Lipschitz boundary @˝ . This partial differential equation occurs, for example,
when solving the heat equation and the wave equation with separation of variables
(for � ¤ 0) or in studying the vortex motion on the sphere (for � D 0).

Let s > 2, and let˝ be a simply connected subregion with a Lipschitz boundary.
Assume that the functions f 2 Ws�2

2 .˝/ and g 2 C.@˝/ are given. We consider the
following Dirichlet problem

Lu D f on ˝ and u D g on @˝: (21)

The existence and uniqueness of the solution to (21) follows from the general
theory of existence and uniqueness of the solution to Dirichlet problems defined on
Lipschitz domains in a Riemannian manifold [25].
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Lemma 2 Let n � 2, and let ˝ be a sub-domain on S
n with a Lipschitz boundary.

Let L D �2I � �� for some fixed constant � � 0 and let s � 2C n=2. Then L has
the following properties:

(i) There exists a positive constant c such that

kLfkHs�2.˝/ � ck fkHs.˝/:

(ii) There exists a positive constant c such that

hLf ; f iL2.˝/ � ck fk2L2.˝/

for all f 2 Ws
2.˝/\ C.˝/ with f D 0 on @˝ .

(iii) For all f 2 Ws
2.˝/\ C.˝/ which satisfy Lf D 0 on˝ , we have

k fkC.˝/ � k fkC.@˝/:

Proof

(i) Suppose s D m, where m is an integer. Using definition (9) and the fact that
�� D �r�r, where r� denote the surface divergent on the sphere, we have

kLuk2
Wm�2
2 .˝/

D
m�2X

kD0
hrkLu;rkLuiL2.˝/

D
m�2X

kD0
hrk.�2u ���u/;rk.�2u ���u/iL2.˝/

D
m�2X

kD0
�4hrku;rkuiL2.˝/ � 2�2hrkC1u;rkC1uiL2.˝/

C hrkC2u;rkC2uiL2.˝/

� maxf�4; 2�2; 1g
mX

kD0
hrku;rkuiL2.˝/

� Ckuk2Ws
2.˝/

:

The case that s is a real number follows from interpolation between bounded
operators.

(ii) With the assumption on s, the Sobolev imbedding theorem for functions
defined on Riemannian manifolds [15, p.34] implies that Ws

2.˝/ 	 C2.˝/.
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From Green’s first surface identity [10, (1.2.49)], or more generally, the first
Green’s formula for compact, connected, and oriented manifolds in R

nC1 [1,
p.84], we find for any f 2 Ws

2.˝/\ C.˝/ with f D 0 on @˝ that

h.�2 ���/f ; f iL2.˝/ D �2k fk2L2.˝/ � h��f ; f iL2.˝/

D �2k fk2L2.˝/ C krfk2L2.˝/ �
Z

@˝

f .x/
@f .x/
@�

d�.x/

D �2k fk2L2.˝/ C krfk2L2.˝/;

where r is the surface gradient, � the (external) unit normal on the boundary
@˝ , and d� the curve element of the boundary (curve) @˝ . From the Poincaré
inequality for a bounded domain on a Riemannian manifold [31],

krfkL2.˝/ � ck fkL2.˝/

for all f 2 Ws
2.˝/\ C.˝/ with f D 0 on @˝ . Thus

h.�2 ���/f ; f iL2.˝/ � .cC �2/k fk2L2.˝/;

from which property (ii) is proved.
(iii) The property (iii) follows from the maximum principle for elliptic PDEs on

manifolds. From [29, Theorem 9.3], we know that every g 2 C1.˝/ which
satisfies

��g � �2g � 0 on ˝ and g � 0 on ˝

in a distributional sense satisfies the strong maximum principle, that is, if
g.y0/ D 0 for some y0 2 ˝ then g � 0 in ˝ . In particular, this implies if
g 2 C1.˝/\ C.˝/ that g assumes its zeros on the boundary.

In our case f 2 Ws
2.˝/ \ C.˝/, and since Ws

2.˝/ 	 C2.˝/, we consider
(twice differentiable) classical solutions of �2f � ��f D 0. From the strong
maximum principle we may conclude that every f 2 Ws

2.˝/ \ C.˝/ that
satisfies �2f ���f D 0 has the property

sup
x2˝
j f .x/j D sup

x2@˝
j f .x/j; (22)

which establishes property (iii) in the Theorem.
This can be seen as follows: Consider f 2 Ws

2.˝/ \ C.˝/ that satisfies
�2f ���f D 0. Let y1 2 ˝ and y2 2 ˝ be such that

f .y1/ D min
y2˝

f .y/ � f .x/ � max
y2˝

f .y/ D f .y2/ for all x 2 ˝:
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Then

sup
x2˝

j f .x/j D

8
ˆ̂<

ˆ̂
:

f .y2/ if f � 0 on ˝;
�f .y1/ if f � 0 on ˝;
maxf�f .y1/; f .y2/g if f assumes negative and positive values

(23)

If f .y1/ � 0, consider g1.x/ WD f .x/ � f .y1/. Then g1.y1/ D 0 and g1.x/ � 0
on ˝, and we have

.�� � �2/g1 D .�� � �2/f C �2f .y1/ D �2f .y1/ � 0:

Thus the strong maximum principle implies that g1 assumes its zeros on the
boundary and hence y1 2 @˝ . If f .y2/ � 0, consider g2.x/ WD f .y2/ � f .x/.
Then g2.y2/ D 0 and g2.x/ � 0 on˝ , and we find

.�� � �2/g2 D ��2f .y2/� .�� � �2/f D ��2f .y2/ � 0:

Thus the strong maximum principle implies that g2 assumes its zeros on the
boundary and hence y2 2 @˝ . Thus (23) implies (22). ut

We now discuss a method to construct an approximate solution to the Dirichlet
problem (21) using radial basis functions. Assume that the values of the functions
f and g are given on the discrete sets X1 WD fx1; x2; : : : ; xMg 	 ˝ and X2 WD
fxMC1; : : : ; xNg 	 @˝ , respectively. Furthermore, assume that the local mesh norm
hX1;˝ of X1 and the mesh norm hX2;@˝ of X2 along the boundary @˝ (see (1) below)
are sufficiently small. We wish to find an approximation of the solution u 2 Ws

2.˝/\
C.˝/ of the Dirichlet boundary value problem

Lu D f on ˝ and u D g on @˝:

Let � D �1 [�2 with �1 WD fıxj ı L W j D 1; 2; : : : ;Mg and �2 WD fıxj W j D
M C 1; : : : ;Ng.

We choose an RBF  such that N D Hs.Sn/ for some s > 2Cbn=2C1c. Under
the assumption that � is a set of linearly independent functionals, we compute the
RBF approximant��u, defined by

��u D
MX

jD1
˛jL2.�; xj/C

NX

jDMC1
˛j.�; xj/; (24)

in which the coefficients ˛j, for j D 1; : : : ;N, are computed from the collocation
conditions

L.��u/.xj/ D f .xj/; j D 1; 2; : : : ;M; (25)

��u.xj/ D g.xj/; j D M C 1; : : : ;N: (26)
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We want to derive L2.˝/-error estimates between the approximation and the
exact solution, which is stated in the following theorem.

Theorem 4 Let n � 2, and let ˝ be a simply connected sub-domain on S
n with

a Lipschitz boundary. Let L D �2I � �� for some fixed constant � � 0 and let
s � 2C bn=2C 1c. Consider the Dirichlet boundary value problem

Lu D f on ˝ and u D g on @˝;

where we assume that the unknown solution u is in Ws
2.˝/ \ C.˝/ and that

f 2 Ws�2
2 .˝/ and g 2 C.@˝/. Assume that f is given on the point set

X1 D fx1; x2; : : : ; xMg 	 ˝ with sufficiently small local mesh norm hX1;˝ , and
suppose that g is given on the point set X2 D fxMC1; : : : ; xNg 	 @˝ with sufficiently
small mesh norm hX2;@˝ . Let  be a positive definite zonal continuous kernel of the
form (14) for which

a` � .1C �`/�s: (27)

Let ��u denote the RBF approximant (24) which satisfies the collocation condi-
tions (25) and (26). Then

ku ���ukL2.˝/ � c maxfhs�2
X1;˝

; hs�n=2
X2;@˝
gkukWs

2.˝/
: (28)

Our general approach follows the one discussed in [8, 9], and in [35, Chapter 16]
for the case of boundary problems on subsets of R

n. In contrast to the approach
in [35, Chapter 16], where the error analysis is based on the power function, we
also use the results on functions with scattered zeros (see Theorem 3) locally via
the charts. Similar problems on bounded flat domains were analyzed in [12] using
results on functions with scattered zeros.

Proof

Step 1 First we prove the following inequality using the ideas from [9, Theo-
rem 5.1].

ku ���ukL2.˝/ � ckLu � L.��u/kL2.˝/ C j˝j1=2ku ���ukC.@˝/; (29)

where c is a constant from Lemma 2 and j˝j denotes the volume of the domain
˝ . Since the boundary value problem has a unique solution, there exists a function
w 2 Ws

2.˝/\ C.˝/ such that

Lw D Lu on ˝ and w D ��u on @˝: (30)

From the triangle inequality,

ku ���ukL2.˝/ � ku � wkL2.˝/ C kw ���ukL2.˝/ (31)
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Since L.u � w/ D 0 on ˝ (from (30)), the property (iii) from Lemma 2 and (30)
imply

ku � wkL2.˝/ � j˝j1=2ku � wkC.˝/

� j˝j1=2ku � wkC.@˝/ D j˝j1=2ku ���ukC.@˝/:
(32)

Since w � ��u D 0 on @˝ (from (30)), the property (ii) from Lemma 2 and the
Cauchy-Schwarz inequality yield that

kw ���uk2L2.˝/ � chL.w���u/;w ���uiL2.˝/
� ckL.w ���u/kL2.˝/kw ���ukL2.˝/;

thus implying

kw ���ukL2.˝/ � ckLw � L.��u/kL2.˝/ D ckLu � L.��u/kL2.˝/; (33)

where we have used Lw D Lu on ˝ in the last step. Applying (32) and (33) in (31)
gives (29).

Step 2 In this step, we will estimate the first term in the right hand side of (29). By
using Theorem 3, we obtain

kLu � L.��u/kL2.˝/ � chs�2
X1;˝
kLu � L.��u/kWs�2

2 .˝/

� chs�2
X1;˝
ku ���ukWs

2.˝/
; (34)

where we have used the fact that kLgkWs�2
2 .˝/ � CkgkWs.˝/, see Lemma 2 part (i).

Next, our assumptions on the region ˝ allow us to extend the function u 2
Ws
2.˝/ to a function Eu 2 Ws

2.S
n/. Moreover, since X 	 ˝ and Euj˝ D uj˝ ,

the generalized interpolant��u coincides with the generalized interpolant��.Eu/
on˝ . Finally, the Sobolev space norm on Ws

2.S
n/ is equivalent to the norm induced

by the kernel  and the generalized interpolant is norm-minimal. This all gives

ku ���ukWs
2.˝/
D kEu ���EukWs

2.˝/
� kEu ���EukWs

2.S
n/

� kEukWs
2.S

n/ � CkukWs
2.S

n/; (35)

which establishes the stated interior error estimate.

Step 3 In this step, we will estimate the second term in the right hand side of (29).
For the boundary estimate, by using Theorem 3 for @˝ , which is manifold of
dimension n� 1, we obtain

ku ���ukC.@˝/ � chs�1=2�.n�1/=2
X2;@˝

ku ���uk
W

s�1=2
2 .@˝/

: (36)
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Using the trace theorem (Theorem 2) and (35), we have

ku ���uk
W

s�1=2
2 .@˝/

� Cku ���ukWs
2.˝/
� CkukWs

2.˝/
: (37)

The boundary estimate then follows from (36)–(37).
The L2.˝/-error estimate (28) follows from combining (29), (34)–(35) and

(36)–(37). ut

4 Numerical Experiments

In this section, we consider the following boundary value problem on the spherical
rectangular region ˝ which is defined in terms of longitudes and latitudes as
Œ0; 50ıN� � Œ0; 100ıE�:

(
Lu.x/ WD ���u.x/ D ıp.x/; x 2 ˝;
u.x/ D 0 x 2 @˝; (38)

where

ıp.x/ D 1

�
p
�

exp.�.cos�1.p � x/=�/2/:

The example is motivated by the problem of vortex motion on a spherical shell
with a solid boundary on its surface [21]. The flow due to a vortex of unit strength
located at a point p 2 ˝ . In the original equation, the right hand side is the Dirac
delta function centered at p which we will approximate by ıp with � D 0:1 and p is
a fixed point in ˝ with longitude/latitude .25ıN; 26ıE/.

Even though the algorithm allows the collocation points to be scattered freely on
the sphere, choosing sets of collocation points distributed roughly uniformly over
the whole sphere significantly improves the quality of the approximate solutions and
condition numbers. To this end, the sets of points used to construct the approximate
solutions are generated using a uniform partition adapted to a spherical rectangle.

The RBF used is Wendland’s function [34]

 .r/ D .1 � r/8C.1C 8rC 25r2 C 32r3/
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Table 1 Interior errors
between the approximation
and the reference solution

M hX1 kek EOC

264 0:0349 1:0204e�04
1176 0:0175 3:3285e�06 4:9586

4851 0:0087 1:8440e�07 4:1397

and

.x; y/ D  .jx � yj/ D  .p2 � 2x � y/:

It can be shown that  is a kernel which satisfies condition (27) with s D 9=2 [28].
The kernel  is a zonal function, i.e. .x; y/ D ˚.x �y/ where˚.t/ is a univariate

function. For zonal functions, the Laplace-Beltrami operator can be computed via

��˚.x � y/ D L˚.t/; t D x � y;

where

L D d

dt
.1 � t2/

d

dt

The normalized interior L2 error kek is approximated by an `2 error, thus in principle
we define

kek WD


1

j˝j
Z

˝

ju.x/ ���u.x/j2dx
�1=2

and in practice approximate this by the midpoint rule,

0

@ 1

jG j
X

x.�;/2G
ju.�; /���u.�; /j2 sin �

1

A

1=2

;

where G is a longitude-latitude grid in the interior of ˝ containing the centers of
rectangles of size 0:9ı � 1:8ı and jG j D 811.

The errors are computed against a reference solution which are generated by
using 30;876 interior points and 750 boundary points.

As can be seen from Table 1 the numerical results show a better convergence rate
predicted by Theorem 4 (Figs. 1 and 2).
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further discussed in one dimensional space.

T. Li (�)
School of Mathematical Sciences, Fudan University, Shanghai, China

Shanghai Key Laboratory for Contemporary Applied Mathematics, Shanghai, China

Nonlinear Mathematical Modeling and Methods Laboratory, Shanghai, China
e-mail: dqli@fudan.edu.cn

X. Lu
School of Mathematical Sciences, Fudan University, Shanghai, China
e-mail: xinglu12@fudan.edu.cn

B. Rao
Institut de Recherche Mathématique Avancée, Université de Strasbourg, Strasbourg, France

School of Mathematical Sciences, Fudan University, Shanghai, China
e-mail: bopeng.rao@math.unistra.fr

© Springer International Publishing AG, part of Springer Nature 2018
J. Dick et al. (eds.), Contemporary Computational Mathematics – A Celebration
of the 80th Birthday of Ian Sloan, https://doi.org/10.1007/978-3-319-72456-0_37

837

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-72456-0_37&domain=pdf
mailto:dqli@fudan.edu.cn
mailto:xinglu12@fudan.edu.cn
mailto:bopeng.rao@math.unistra.fr
https://doi.org/10.1007/978-3-319-72456-0_37


838 T. Li et al.

1 Introduction and Preliminaries

Consider the following coupled system of wave equations with Neumann boundary
controls:

8
ˆ̂
<

ˆ̂
:

U00 ��U C AU D 0 in .0;C1/ �˝;
U D 0 on .0;C1/ � �0;
@�U D DH on .0;C1/ � �1

(1)

and the corresponding initial data

t D 0 W U D U0; U0 D U1 in ˝; (2)

where˝ 	 R
n is a bounded domain with smooth boundary� D �1[�0, @� denotes

the outward normal derivative on the boundary, A D .aij/ is a matrix of order N, D is
a full column-rank N �M.M � N/ matrix, both A and D having constant elements,
U D .u.1/; � � � ; u.N//T and H D .h.1/; � � � ; h.M//T denote the state variables and the
boundary controls, respectively.

Denote

H0 D L2.˝/; H1 D H1
�0
.˝/; L D L2.0;TIL2.�1//; (3)

where H1
�0
.˝/ is the subspace of H1.˝/, composed of all the functions with null

trace on �0, while T > 0 is a given constant.
If �0 D ;, we modify the space H0 by H0 D f f 2 L2.˝/ W R

˝
f .x/dx D 0g:

However, in order to simplify the presentation, we only consider the case that
mes.�0/ > 0 in this paper. The hypothesis � 1 \ � 0 D ; is necessary to
guarantee the smoothness of solutions to differential equations with mixed boundary
conditions. Moreover, we assume that ˝ satisfies the usual geometric control
condition [1], namely, there exists an x0 2 R

n, such that for m D x � x0 we have

.m; �/ � 0; 8x 2 �0; .m; �/ > 0; 8x 2 �1; (4)

where .�; �/ denotes the inner product in R
n.

By Li and Rao [7], if the number of boundary controls is adequate, namely,
if M D N, then for any given initial data .U0;U1/ 2 .H1/

N � .H0/
N , there

exists a boundary control H in L N , such that system (1) is exactly boundary
null controllable. However, if there is a lack of boundary controls: M < N,
then system (1) does not possess the exact boundary null controllability. Thus,
it is natural to ask whether there are some kinds of controllabilities in a weak
sense when there is a lack of boundary controls under the geometric control
condition. In [5] and [6], Li and Rao have proposed the concepts of the approximate
boundary null controllability and the approximate boundary synchronization for a
coupled system of wave equations with Dirichlet boundary controls and discussed
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them thoroughly. In this paper, we will take the consideration on the approximate
boundary null controllability and the approximate boundary synchronization of the
coupled system (1) with Neumann boundary controls, and will get similar results to
that of the system with Dirichlet boundary controls.

It is well-known that the solution to the wave equation with Neumann boundary
condition does not possess the hidden regularity on the boundary, which is
different from that with Dirichlet boudary condition, it requires us to consider the
inhomogeneous problem in a smoother function space of initial data. To be specific,
the approximate controllability and the approximate synchronization no longer stay
in function space of L2.˝/�H�1.˝/ as in the case of Dirichlet boundary controls.
Moreover, under Neumann boundary controls, up to now, the Kalman’s criterion is
known to be sufficient only for diagonalizable systems in the one-space-dimensional
case (see Sect. 3). However, under Dirichlet boundary controls, this criterion is
sufficient not only for diagonalizable systems in the one-space-dimensional case,
but also for N � N cascade systems, and some specific 2 � 2 systems.

Let

˚ D ..1/; � � � ; .N//T :

Consider the following adjoint problem:

8
ˆ̂
ˆ̂<

ˆ̂
ˆ̂:

˚ 00 ��˚ C AT˚ D 0 in .0;C1/ �˝;
˚ D 0 on .0;C1/ � �0;
@�˚ D 0 on .0;C1/ � �1;
t D 0 W ˚ D ˚0; ˚ 0 D ˚1 in ˝;

(5)

where AT is the transpose of A. Define the linear unbounded operator �� in H0 by

D.��/ D f˚ 2 H2.˝/ W ˚ j�0 D 0; @�˚ j�1 D 0g:

Clearly, �� is a positively definite self-adjoint operator, then, for any given s 2 R,
we can define the operator .��/ s

2 with the domain

Hs D D..��/ s
2 /

which, endowed with the norm k˚ks D k.��/ s
2 ˚k (where k � k is the norm in

L 2.˝/), constitutes a Hilbert space, and its dual space is H 0
s DH�s. In particular,

we have

H1 D D.
p��/ D f˚ 2 H1.˝/ W ˚ j�0 D 0g:

Let C0
loc.Œ0;C1/IHs/ stand for the space of continuous functions of t, defined

on Œ0;C1/ with the values in Hs, and equipped with the uniform norm for any
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finite T > 0:

k fkC0.Œ0;T�IHs/ D sup
0�t�T

k f .t/kHs : (6)

Similarly, let C1
loc.Œ0;C1/IHs�1/ stand for the space of continuously differentiable

functions of t, defined on Œ0;C1/ with the values and the derivatives in Hs�1, and
equipped with the uniform norm for any finite T > 0:

k fkC1.Œ0;T�IHs�1/ D sup
0�t�T

�k f .t/kHs�1 C k f 0.t/kHs�1

�
: (7)

By Li and Rao [7], we have

Lemma 1 For any given initial data .˚0; ˚1/ 2 .Hs/
N � .Hs�1/N with s 2 R, the

adjoint problem (5) admits a unique solution

˚ 2 �C0
loc.Œ0;C1/IHs/

�N \ �C1
loc.Œ0;C1/IHs�1/

�N
;

Lemma 2 For any given initial data .U0;U1/ 2 .H1�s/
N � .H�s/

N with s > 1
2

and for any given boundary function H 2 L M, the mixed initial-boundary value
problem (1)–(2) admits a unique weak solution in the sense of duality, such that

U 2 �C0
loc.Œ0;C1/IH1�s/

�N \ �C1
loc.Œ0;C1/IH�s/

�N
;

and the linear mapping

R W .U0;U1;H/! .U;U0/ (8)

is continuous with respect to the corresponding topologies.

2 Approximate Boundary Null Controllability

Definition 1 Let s > 1
2
. System (1) is approximately null controllable at the time

T > 0, if for any given initial data .U0;U1/ 2 .H1�s/
N � .H�s/

N , there exists a
sequence fHng of boundary controls in L M with compact support in Œ0;T�, such
that the sequence fUng of the solutions to the corresponding mixed initial-boundary
value problem (1)–(2) satisfies

�
Un.T/;U

0
n.T/

� �! 0 in .H1�s/
N � .H�s/

N as n! C1 (9)

at t D T, or, equivalently,

�
Un;U

0
n

� �! 0 in
�
C0

loc.ŒT;C1/IH1�s �H�s/
�N

as n! C1: (10)



Approximate Boundary Null Controllability and Synchronization with. . . 841

Obviously, the exact boundary null controllability implies the approximate
boundary null controllability. However, since we can not get the convergence of
the sequence fHng of boundary controls from Definition 1, generally speaking, the
approximate boundary null controllability does not lead to the exact boundary null
controllability.

Similarly to the coupled system of wave equations with Dirichlet boundary
controls [5, 6], we give the following

Definition 2 For .˚0; ˚1/ 2 .Hs/
N � .Hs�1/N .s > 1

2
/, the adjoint problem (5) is

D-observable on Œ0;T�, if

DT˚ � 0 on Œ0;T� � �1) .˚0; ˚1/ � 0; then ˚ � 0: (11)

In order to find the equivalence between the approximate boundary null control-
lability of the original system (1) and the D-observability of the adjoint problem (5),
let C be the set of all the initial states .V.0/;V 0.0// of the following backward
problem:

8
ˆ̂̂
<̂

ˆ̂̂
:̂

V 00 ��V C AV D 0 in .0;T/ �˝;
V D 0 on .0;T/ � �0;
@�V D DH on .0;T/ � �1;
V.T/ D 0; V 0.T/ D 0 in ˝

(12)

with all admissible boundary controls H 2 L M .
By Lemma 2, we have

Lemma 3 For any given T > 0, for any given final data .V.T/;V 0.T// 2
.H1�s/

N � .H�s/
N, where s > 1

2
, and any given boundary function H in L M, the

backward problem (12) (in which the null final condition is replaced by the given
final data) admits a unique weak solution in the sense of duality, such that

V 2 �C0.Œ0;T�IH1�s/
�N \ �C1.Œ0;T�IH�s/

�N
;

and a result similar to (8) holds, too.

Lemma 4 System (1) possesses the approximate boundary null controllability in
the sense of Definition 1, if and only if

NC D .H1�s/
N � .H�s/

N : (13)

Proof Assume that NC D .H1�s/
N � .H�s/

N . By the definition of C , for any given
.U0;U1/ 2 .H1�s/

N � .H�s/
N , there exists a sequence fHng of boundary controls

in L M with compact support in Œ0;T�, such that the sequence fVng of the solutions
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to the corresponding backward problem (12) satisfies

�
Vn.0/;V

0
n.0/

�! .U0;U1/ in .H1�s/
N � .H�s/

N as n! C1: (14)

Let R be the continuous linear mapping defined by (8). We have

R.U0;U1;Hn/ D R.U0 � Vn.0/;U1 � V 0
n.0/; 0/CR.Vn.0/;V

0
n.0/;Hn/: (15)

On the other hand, by the definition of Vn, we have

R.Vn.0/;V
0
n.0/;Hn/.T/ D 0: (16)

Therefore,

R.U0;U1;Hn/.T/ D R.U0 � Vn.0/;U1 � V 0
n.0/; 0/.T/: (17)

By Lemma 2, and noting (14), we then get

kR.U0;U1;Hn/.T/k.H1�s/N�.H
�s/N (18)

�ck.U0 � Vn.0/;U1 � V 0
n.0//k.H1�s/N�.H

�s/N ! 0 as n!C1:

Here and hereafter, c always denotes a positive constant. Thus, system (1) is
approximately null controllable.

Inversely, assume that system (1) is approximately null controllable. For any
given .U0;U1/ 2 .H1�s/

N � .H�s/
N , there exists a sequence fHng of boundary

controls in L M with compact support in Œ0;T�, such that the sequence fUng of the
solutions to the corresponding mixed problem (1)–(2) satisfies

�
Un.T/;U

0
n.T/

� D R.U0;U1;Hn/.T/! .0; 0/ in .H1�s/
N � .H�s/

N (19)

as n ! C1: Taking such Hn as the boundary control, we solve the backward
problem (12) and get the corresponding solution Vn. By the linearity of the mapping
R, we have

R.U0;U1;Hn/ �R.Vn.0/;V
0
n.0/;Hn/ D R.U0 � Vn.0/;U1 � V 0

n.0/; 0/: (20)

By Lemma 3 and noting (19), we have

kR.U0 � Vn.0/;U1 � V 0
n.0/; 0/.0/k.H1�s/N�.H

�s/N (21)

�ck.Un.T/� Vn.T/;U
0
n.T/ � V 0

n.T/k.H1�s/N�.H
�s/N

Dck.Un.T/;U
0
n.T//k.H1�s/N�.H

�s/N ! 0 as n! C1:
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Combining (20), we then get

k.U0;U1/� .Vn.0/;V
0
n.0//k.H1�s/N�.H

�s/N (22)

DkR.U0;U1;Hn/.0/ �R.Vn.0/;V
0
n.0/;Hn/.0/k.H1�s/N�.H

�s/N

�ckR.U0 � Vn.0/;U1 � V 0
n.0/; 0/.0/k.H1�s/N�.H

�s/N ! 0 as n!C1;

which shows that NC D .H1�s/
N � .H�s/

N . ut
Theorem 1 System (1) is approximately null controllable at the time T > 0 in the
sense of Definition 1, if and only if the adjoint problem (5) is D-observable on Œ0;T�
in the sense of Definition 2.

Proof Assume that system (1) is not approximately null controllable at the time T >
0. By Lemma 4, there is a nontrivial vector .�˚1;˚0/ 2 C?. Here and hereafter,
the orthogonal complement space is always defined in the sense of duality. Thus,
.�˚1;˚0/ 2 .Hs�1/N � .Hs/

N . Taking .˚0; ˚1/ as the initial data, we solve the
adjoint problem (5) and get the solution ˚ 6� 0. Multiplying ˚ on the both sides of
the backward problem (12) and integrating by parts, we get

hV.0/; ˚1i.H1�s/N I.Hs�1/N � hV 0.0/; ˚0i.H
�s/N I.Hs/N

D
Z T

0

Z

�1

.DH; ˚/d� dt: (23)

The righthand side of (23) is meaningful due to

˚ 2 �C0.Œ0;T�IHs/
�N
,! �

L2.0;TIL2.�1//
�N
; s >

1

2
: (24)

Noticing .V.0/;V 0.0// 2 C and .�˚1;˚0/ 2 C?, it is easy to see from (23) that
for any given H in L M , we have

Z T

0

Z

�1

.DH; ˚/d� dt D 0:

Then, it follows that

DT˚ � 0 on Œ0;T� � �1: (25)

But˚ 6� 0, which implies that the adjoint problem (5) is not D-observable on Œ0;T�.
Inversely, assume that the adjoint problem (5) is not D-observable in Œ0;T�, then

there exists a nontrivial initial data .˚0; ˚1/ 2 .Hs/
N � .Hs�1/N , such that the

solution ˚ to the corresponding adjoint problem (5) satisfies (25). For any given
.U0;U1/ 2 NC , there exists a sequence fHng of boundary controls in L M , such that
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the solution Vn to the corresponding backward problem (12) satisfies

Vn.0/! U0; V 0
n.0/! U1 in .H1�s/

N � .H�s/
N as n! C1: (26)

Similar to (23), multiplying ˚ on the both sides of the backward problem (12) and
noting (25), we get

hVn.0/; ˚1i.H1�s/N I.Hs�1/N � hV 0
n.0/; ˚0i.H

�s/N I.Hs/N D 0: (27)

Let n!C1, noting (26) we get

h.U0;U1/; .�˚1;˚0/i.H1�s/N�.H
�s/N I.Hs�1/N�.Hs/N D 0; 8.U0;U1/ 2 NC ;

which indicates that .�˚1;˚0/ 2 NC?, thus NC 6D .H1�s/
N � .H�s/

N : ut
Theorem 2 If for any given initial data .U0;U1/ 2 .H1/

N � .H0/
N, system (1) is

approximately null controllable in the sense of Definition 1 for some s .> 1
2
/, then

for any given initial data .U0;U1/ 2 .H1�s/
N � .H�s/

N, system (1) possesses the
same approximate boundary null controllability, too.

Proof For any given initial data .U0;U1/ 2 .H1�s/
N � .H�s/

N .s > 1
2
/, by

the density of .H1/
N � .H0/

N in .H1�s/
N � .H�s/

N , we can find a sequence
f.Un

0;U
n
1/gn2N in .H1/

N � .H0/
N , satisfying

.Un
0 ;U

n
1/! .U0;U1/ in .H1�s/

N � .H�s/
N as n!C1: (28)

By the assumption, for any fixed n � 1, there exists a sequence fHn
k gk2N of boundary

controls in L M with compact support in Œ0;T�, such that the solution fUn
k g to the

corresponding mixed problem (1)–(2) satisfies

.Un
k .T/; .U

n
k /

0.T//! .0; 0/ in .H1�s/
N � .H�s/

N as k!C1: (29)

For any given n � 1, let kn be an integer such that

kR.Un
0 ;U

n
1 ;H

n
kn
/.T/k.H1�s/N�.H

�s/N (30)

Dk.Un
kn
.T/; .Un

kn
/0.T//k.H1�s/N�.H

�s/N �
1

2n
:

Thus, we get a sequence fkng with kn ! C1 as n! C1. For the sequence fHkng
of the boundary controls in L M , we have

R.Un
0;U

n
1 ;H

n
kn
/.T/! 0 in .H1�s/

N � .H�s/
N as n! C1: (31)
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Therefore, by the linearity of R, the combination of (28) and (31) gives

R.U0;U1;H
n
kn
/ D R.U0 �Un

0 ;U1 �Un
1 ; 0/CR.Un

0;U
n
1 ;H

n
kn
/! 0 (32)

in .H1�s/
N � .H�s/

N as n! C1; which indicates that the sequence of boundary
controls fHn

kn
g realize the approximate boundary null controllability for .U0;U1/,

then for any given initial data .U0;U1/ 2 .H1�s/
N � .H�s/

N , system (1) is
approximately null controllable, too. ut
Remark 1 Since .H1/

N � .H0/
N 	 .H1�s/

N � .H�s/
N .s > 1

2
/, if system (1)

is approximately null controllable in the sense of Definition 1 for any given initial
data .U0;U1/ 2 .H1�s/

N�.H�s/
N .s > 1

2
/, then it possesses the same approximate

boundary null controllability for any given initial data .U0;U1/ 2 .H1/
N � .H0/

N ,
too.

Remark 2 Theorem 2 and Remark 1 indicate that for system (1), the approximate
boundary null controllability for the initial data in .H1�s/

N � .H�s/
N .s > 1

2
/ is

equivalent to the approximate boundary null controllability for the initial data in
.H1/

N � .H0/
N with the same convergence space .H1�s/

N � .H�s/
N .

Remark 3 In a similar way, we can prove that for any given initial data .U0;U1/ 2
.H1�s/

N � .H�s/
N .s > 1

2
/, system (1) is approximately null controllable in the

sense of Definition 1, then for any given initial data .U0;U1/ 2 .H1�s0/N � .H�s0/N

.s0 > s/, system (1) is still approximately null controllable.

Corollary 1 If M D N, then system (1) is approximately null controllable.

Proof Since M D N, the observations given by (11) become

˚ � 0 on Œ0;T� � �1:

By Holmgren’s uniqueness theorem [9], we then get the D-observability of the
adjoint problem (5). Hence, by Theorem 1 we get the approximate boundary null
controllability of system (1). ut

By means of Theorem 1, we can give a necessary condition for the approximate
boundary null controllability.

Theorem 3 If system (1) is approximately null controllable at the time T > 0, then
we have the following Kalman’s criterion:

rank.D;AD; � � � ;AN�1D/ D N: (33)

In order to prove Theorem 3, we first give the following

Lemma 5 (See [6]) Let A be a matrix of order N, D an N �M matrix. Let d � 0
be an integer. Then the rank condition

rank.D;AD; � � � ;AN�1D/ � N � d
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holds, if and only if Ker.DT/ does not contain any invariant subspace V of AT , such
that dim.V/ > d.

Proof (Proof of Theorem 3) By Lemma 5 (in which we take d D 0), we only need
to prove that Ker.DT/ does not contain any nontrivial invariant subspace of AT .

If not, let en be the solution to the following eigenvalue problem:

8
ˆ̂
<

ˆ̂
:

��en D �2nen in ˝;

en D 0 on �0;

@�en D 0 on �1:

(34)

Since mes.�0/ > 0, we have �n > 0. Assume that AT possesses a nontrivial
invariant subspace V such that V � Ker.DT/. For any fixed integer n > 0, define

W D fenw W w 2 Vg:

Clearly, W is a finitely dimensional invariant subspace of �� C AT , then, we can
solve the adjoint problem (5) in W and express the solutions as ˚ D enw.t/, where
w.t/ 2 V satisfies

w00 C .�2nI C AT/w D 0; w.0/ D w0 2 V; w0.0/ D w1 2 V:

Since w.t/ 2 V for any given t � 0, ˚ satisfies the condition of D-observation:

DT˚ D enDTw.t/ � 0 on Œ0;T� � �1:

However, ˚ 6� 0, then the adjoint problem (5) is not D-observable on Œ0;T�, which
is a contradiction. The proof is complete. ut

3 Sufficiency of Kalman’s Criterion in One Dimensional
Space

In this section, we discuss the sufficiency of Kalman’s criterion (33). Generally
speaking, similar to the approximate boundary null controllability for a coupled
system of wave equations with Dirichlet boundary controls, Kalman’s criterion is
not sufficient. The reason is that Kalman’s criterion does not depend on T, then if it is
sufficient, the approximate boundary null controllability of the original system (1),
or the D-observability of the adjoint problem (5) could be immediately realized,
however, this is impossible since the wave propagates with a finite speed.

Theorem 4 Let �2n and en be defined by (34). Assume that the set

� D f.m; n/ W �n ¤ �m; em D en on �1g (35)



Approximate Boundary Null Controllability and Synchronization with. . . 847

is not empty. For any given .m; n/ 2 �, setting

" D �2m � �2n
2

; (36)

the adjoint problem

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

00 �� C " D 0 in .0;C1/ �˝;
 00 �� C " D 0 in .0;C1/ �˝;
 D  D 0 on .0;C1/ � �0;
@� D @� D 0 on .0;C1/ � �1

(37)

admits a nontrivial solution .;  / 6� .0; 0/, such that

 � 0 on Œ0C1/ � �1: (38)

Proof Let

 D .en � em/;  D .en C em/; �2 D �2m C �2n
2

: (39)

It is easy to check that .;  / satisfies the following system:

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

�2 C� � " D 0 in .0;C1/ �˝;
�2 C� � " D 0 in .0;C1/ �˝;
 D  D 0 on .0;C1/ � �0;
@� D @� D 0 on .0;C1/ � �1:

(40)

Moreover, noting the definition (35) of �, we have

 D 0 on �1: (41)

Then, let

� D ei�t;  � D ei�t : (42)

It is easy to see that .�;  �/ is a nontrivial solution to the adjoint problem (37),
which satisfies condition (38). ut

In order to illustrate the validity of the assumptions given in Theorem 4, we may
examine the following situations, in which the set � is indeed not empty.
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1. ˝ D .0; �/, �1 D f�g. In this case, we have

�n D nC 1

2
; en D .�1/n sin.nC 1

2
/x; en.�/ D em.�/ D 1: (43)

Thus, .m; n/ 2 � for all m ¤ n.
2. ˝ D .0; �/ � .0; �/, �1 D f�g � Œ0; ��. Let

�m;n D
r

.mC 1

2
/2 C n2; em;n D .�1/m sin.mC 1

2
/x sin ny: (44)

We have

em;n.�; y/ D em0;n.�; y/ D sin ny; 0 � y � �: (45)

Thus, .fm; ng; fm0; ng/ 2 � for all m ¤ m0 and n � 1.

Remark 4 Theorem 4 implies that Kalman’s criterion (33) is not sufficient in
general. As a matter of fact, for the adjoint problem (37) which satisfies the
condition of observation (38), we have N D 2,

A D


0 "

" 0

�
; D D



1

0

�
; .D;AD/ D



1 0

0 "

�
; (46)

and the corresponding Kalman’s criterion is satisfied. Theorem 4 shows that
Kalman’s criterion can not guarantee the D-observability of the adjoint problem
(37). Nevertheless, for some special system (1), Kalman’s criterion is still sufficient
for the approximate boundary null controllability.

Similar to a coupled system of wave equations with Dirichlet boundary con-
trols, in the case of one dimensional space, for coupling matrix A under some
assumptions, Kalman’s criterion is also sufficient for the approximate boundary null
controllability of the original system.

By an Ingham’s inequality given in [3], we first give some lemmas.
Let Z denote the set of all the integers, fˇ.l/n g1�l�m;n2Z be a strictly increasing

real sequence:

� � �ˇ.1/�1 < � � � < ˇ.m/�1 < ˇ
.1/
0 < � � � < ˇ.m/0 < ˇ

.1/
1 < � � � < ˇ.m/1 < � � � (47)

Definition 3 The sequence feiˇ
.l/
n tg1�l�mIn2Z is !-linearly independent in L 2.0;T/,

if for T > 0 large enough, the following conditions

X

n2Z

mX

lD1
a.l/n eiˇ

.l/
n t D 0 on Œ0;T�; with

X

n2Z

mX

lD1
ja.l/n j2 < C1
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imply that

a.l/n D 0; n 2 Z; 1 � l � m:

By Li and Rao [6], we have

Lemma 6 Assume that (47) holds, and there exist positive constants c; s and � ,
such that

ˇ
.l/
nC1 � ˇ.l/n � m�; (48)

c

jnjs � ˇ
.lC1/
n � ˇ.l/n � � (49)

for all l with 1 � l � m and all n 2 Z with jnj large enough. Then the sequence

feiˇ
.l/
n tg1�l�mIn2Z is !-linearly independent in L 2.0;T/, provided that T > 2�DC,

where DC is the upper density of the sequence fˇ.l/n g1�l�mIn2Z, defined by

DC D lim sup
R!C1

N.R/

2R
; (50)

where N.R/ denotes the number of fˇ.l/n g contained in the interval Œ�R;R�.

Corollary 2 For

ı1 < ı2 < � � � < ım; (51)

we define

8
<

:
ˇ
.l/
n D

q
.nC 1

2
/2 C ıl"; l D 1; 2; � � � ;m; n � 0;

ˇ
.l/�n D �ˇ.l/n ; l D 1; 2; � � � ;m; n � 1;

(52)

where j"j > 0 is small enough. Then the sequence feiˇ
.l/
n tg1�l�mIn2Z is !-linearly

independent in L 2.0;T/, provided that T > 2m� .

Proof For j"j > 0 small enough, it is easy to see that the sequence fˇ.l/n g1�l�mIn2Z
satisfies (47). On the other hand, for j"j > 0 small enough and for jnj > 0 large
enough, we have

ˇ
.l/
nC1 � ˇ.l/n D O.1/: (53)
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In fact, for n � 0, by the first equation of (52), we have

ˇ
.l/
nC1 � ˇ.l/n D

r

.nC 3

2
/2 C ıl" �

r

.nC 1

2
/2 C ıl" (54)

D .nC 3
2
/2 � .nC 1

2
/2

q
.nC 3

2
/2 C ıl"C

q
.nC 1

2
/2 C ıl"

D 2nC 2
q
.nC 3

2
/2 C ıl"C

q
.nC 1

2
/2 C ıl"

:

Therefore, (53) holds as n > 0 is large enough. Then, by the second equation
of (52), we can finally prove (53).

Moreover, for j"j > 0 small enough and for jnj > 0 large enough, we have

ˇ.lC1/n � ˇ.l/n D O
�ˇˇ
ˇ
"

n

ˇ
ˇ
ˇ
	
: (55)

In fact, for n � 0, by the first equation of (52), we have

ˇ.lC1/n � ˇ.l/n D
.ılC1 � ıl/"q

.nC 1
2
/2 C ılC1"C

q
.nC 1

2
/2 C ıl"

:

Then, (55) holds for n > 0 large enough. Again, using the second equation of (52),
we can finally prove (55).

Thus, the sequence fˇ.l/n g1�l�mIn2Z satisfies all the assumptions given in
Lemma 6, in which s D 1. Moreover, by definition (50), a computation shows
DC D m. This complete the proof. ut

Now consider the following one dimensional adjoint problem:

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

˚ 00 ��˚ C "AT˚ D 0; t > 0; 0 < x < �;

˚.t; 0/ D 0; t > 0;

@�˚.t; �/ D 0; t > 0;

t D 0 W ˚ D ˚0; ˚ 0 D ˚1; 0 < x < �

(56)

with the observation on x D �:

DT˚.t; �/ D 0 on Œ0;T�; (57)

where j"j > 0 is small enough.
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Assume that the N � N matrix AT is diagonalizable with m .� N/ distinct real
eigenvalues:

ı1 < ı2 < � � � < ım; (58)

and the corresponding eigenvectors w.l;�/:

ATw.l;�/ D ılw
.l;�/; 1 � l � m; 1 � � � �l; (59)

we have

mX

lD1
�l D N: (60)

Let

en D .�1/n sin.nC 1

2
/x; n � 1: (61)

en is an eigenfunction of �� in H1, satisfying

8
ˆ̂
<

ˆ̂
:

��en D �2nen; in 0 < x < �;

en D 0 on x D 0;
@�en D 0 on x D �;

(62)

in which �n D .nC 1
2
/. Thus, enw.l;�/ is an eigenvector of��C"AT , corresponding

to the eigenvalue .nC 1
2
/2Cıl". Still defining fˇ.l/n g1�l�mIn2Z by (52), it is clear that

in .H1/
N � .H0/

N the eigenvector of the corresponding system (56) is

E.l;�/n D
 

enw.l;�/

iˇ
.l/
n

enw.l;�/

!

; 1 � l � m; 1 � � � �l; n 2 Z; (63)

where we define e�n D en for all n � 1. Thus, fE.l;�/n g1�l�m;1����l;n2Z forms a
Riesz basis in .H1/

N � .H0/
N (see [2]).

By Remark 1, we only need to consider any given initial data in .H1/
N � .H0/

N :



˚0

˚1

�
D
X

n2Z

mX

lD1

�lX

�D1
˛.l;�/n E.l;�/n ; (64)
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the solution to the corresponding adjoint problem (56) is given by



˚

˚ 0
�
D
X

n2Z

mX

lD1

�lX

�D1
˛.l;�/n eiˇ

.l/
n tE.l;�/n : (65)

In particular, we have

˚ D
X

n2Z

mX

lD1

�lX

�D1

˛
.l;�/
n

iˇ.l/n

eiˇ
.l/
n tenw.l;�/; (66)

and the corresponding condition of observation (57) leads to

X

n2Z

mX

lD1
DT
� �lX

�D1

˛
.l;�/
n

iˇ.l/n

w.l;�/
	

eiˇ
.l/
n t D 0 on Œ0;T�: (67)

Theorem 5 Assume that A and D satisfy Kalman’s criterion (33). Assume further-
more that AT is diagonalizable with (58)–(59). Then the adjoint problem (56) is
D-observable for j"j > 0 small enough, provided that T > 2m� .

Proof Since AT satisfies (58)–(59), as T > 2m� , applying Corollary 2 to each
component of the relation (67), we get

DT
� �lX

�D1

˛
.l;�/
n

iˇ.l/n

w.l;�/
	
D 0; 1 � l � m; n 2 Z: (68)

Since Kalman’s criterion (33) holds, by the case d D 0 in Lemma 5, Ker.DT/ does
not contain any nontrivial invariant subspace of AT , then it follows that

�lX

�D1

˛
.l;�/
n

iˇ.l/n

w.l;�/ D 0; 1 � l � m; n 2 Z: (69)

Then

˛.l;�/n D 0; 1 � � � �l; 1 � l � m; n 2 Z; (70)

hence, we get ˚ � 0, namely, the adjoint problem (56) is D-observable. ut
Similar to a coupled system of wave equations with Dirichlet boundary controls,

the control time for the approximate boundary null controllability could be further
reduced in the case that AT possesses N distinct real eigenvalues.



Approximate Boundary Null Controllability and Synchronization with. . . 853

Theorem 6 Under the assumptions of Theorem 5, assume furthermore that AT

possesses N distinct real eigenvalues:

ı1 < ı2 < � � � < ıN : (71)

Then the adjoint problem (56) is D-observable for j"j > 0 small enough, provided
that T > 2�.N �M C 1/, where M D rank.D/.

Proof Let w.1/;w.1/; � � � ;w.N/ be the eigenvectors corresponding to the eigenvalues
ı1; ı2; � � � ; ıN , respectively. In the present case, (67) can be written as

X

n2Z

NX

lD1
DT ˛

.l/
n

iˇ.l/n

w.l/eiˇ
.l/
n t D 0 on Œ0;T�: (72)

Since rank.D/ D M; without loss of generality, we may assume that DTw.1/; � � � ,
DTw.M/ are linearly independent, then, there exists an invertible matrix S of order
M, such that

SDT.w.1/; � � � ;w.M// D .e1; � � � eM/; (73)

where e1; � � � eM are the canonical basis vectors in R
N . Multiplying S to (72) from

the left, we get

X

n2Z

n MX

lD1

˛
.l/
n

iˇ.l/n

ele
iˇ
.l/
n t C

NX

kDMC1

˛
.k/
n

iˇ.k/n

SDTw.k/eiˇ
.k/
n t
o
D 0 on Œ0;T�: (74)

Noting the specific form of the canonical basis .e1; � � � eM/, it is easy to check
that for each 1 � l � M, the upper density DC

l of the corresponding sequence

fˇ.l/n ; ˇ
.k/
n gMC1�k�NIn2Z is equal to .N�MC 1/. Then, applying Corollary 2 to each

equality of (74), we get (70), provided that T > 2�.N � M C 1/. The proof is
complete. ut

4 Approximate Boundary Synchronization

Definition 4 Let s > 1
2
. System (1) is approximately synchronizable at the time

T > 0, if for any given initial data .U0;U1/ 2 .H1�s/
N � .H�s/

N , there exists a
sequence fHng of boundary controls in L M with compact support in Œ0;T�, and a
function u 2 C0

loc.Œ0;1/IH1�s/ \ C1
loc.Œ0;1/IH�s/, such that the sequence fUng

of the solutions to the corresponding mixed initial-boundary value problem (1)–(2)
satisfies

�
u.k/n .T/; .u

.k/
n /

0.T/
�! .u.T/; u0.T// in H1�s �H�s as n! C1 (75)
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for 1 � k � N at the time t D T, or, equivalently,

�
u.k/n ; .u

.k/
n /

0�! .u; u0/ in C0
loc.ŒT;C1/IH1�s �H�s/ as n! C1 (76)

for 1 � k � N. Here, u, being unknown a priori, is called the corresponding
approximately synchronizable state.

Similarly to [5], we can easily get the following

Theorem 7 Assume that system (1) is approximately synchronizable at the time
T > 0 in the sense of Definition 4. Assume furthermore that at least for one
initial data .U0;U1/ 2 .H1�s/

N � .H�s/
N, the corresponding approximately

synchronizable state u 6� 0. Then the coupling matrix A D .aij/ should satisfy
the following condition of compatibility:

NX

jD1
aij

def:D a .i D 1; � � � ;N/; (77)

where a is a constant independent of i D 1; � � � ;N. This condition of compatibil-
ity (77) is called the row sum condition.

Proof If system (1) is approximately synchronizable, by the definition, we have

u00 ��uC
� NX

jD1
aij

	
u D 0; i D 1; � � � ;N in D0..T;C1/ �˝/ (78)

as t � T. Hence, for i; k D 1; � � � ;N, we have

� NX

jD1
akj �

NX

jD1
aij

	
u D 0 in D0..T;C1/ �˝/: (79)

Noticing that u 6� 0 for at least one initial data .U0;U1/, we have

NX

jD1
akj D

NX

jD1
aij; i; k D 1; � � � ; n; (80)

which is the desired condition of compatibility (77). ut
Remark 5 If for any given initial data .U0;U1/ 2 .H1�s/

N � .H�s/
N , the

corresponding approximately synchronizable state u � 0, we get the trivial case
of approximate boundary null controllability. Therefore, we need to exclude this
situation beforehand.
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Now let C be the set of all the initial states .V.0/;V 0.0// of the solutions to the
backward problem

8
ˆ̂
ˆ̂
<

ˆ̂̂
:̂

V 00 ��V C AV D 0 in .0;T/ �˝;
V D 0 on .0;T/ � �0;
@�V D DH on .0;T/ � �1;
V.T/ D v0e; V 0.T/ D v1e in ˝

(81)

as .v0; v1/ varies in H1�s �H�s .s > 1
2
/ and H varies in L M , where

e D .1; 1; � � � ; 1/T : (82)

Lemma 7 Under the condition of compatibility (77), system (1) possesses the
approximate boundary synchronization in the sense of Definition 4, if and only if

NC D .H1�s/
N � .H�s/

N : (83)

Proof Assume that NC D .H1�s/
N�.H�s/

N .s > 1
2
/: Then for any given .U0;U1/ 2

.H1�s/
N � .H�s/

N , by the definition of C , there exist the final state .v0ne; v1ne/ 2
.H1�s/

N � .H�s/
N at t D T and a sequence fHng of boundary controls in L M with

compact support in Œ0;T�, such that the solution Vn to the corresponding backward
problem (81) satisfies

.Vn.0/;V
0
n.0//! .U0;U1/ in .H1�s/

N � .H�s/
N as n!C1: (84)

Let R be the continuous linear mapping defined by (8):

R W .U0;U1;H/! .U;U0/:

Thus, we have

R.U0;U1;Hn/ �R.Vn.0/;V
0
n.0/;Hn/ D R.U0 � Vn.0/;U1 � V 0

n.0/; 0/: (85)

By the definition of Vn, we have

R.Vn.0/;V
0
n.0/;Hn/.T/ D .v0ne; v1ne/;

then

R.U0;U1;Hn/.T/ � .v0ne; v1ne/ D R.U0 � Vn.0/;U1 � V 0
n.0/; 0/.T/: (86)
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By Lemma 2, we get

kR.U0 � Vn.0/;U1 � V 0
n.0/; 0/.T/k.H1�s/N�.H

�s/N (87)

�ck.U0 � Vn.0/;U1 � V 0
n.0//k.H1�s/N�.H

�s/N :

Noting (84), it follows from (86)–(87) that

kR.U0;U1;Hn/.T/ � .v0ne; v1ne/k.H1�s/N�.H
�s/N ! 0 as n!C1;

which indicates that for any given .U0;U1/ 2 .H1�s/
N � .H�s/

N , there exists a
sequence fHng of boundary controls in L M with compact support in Œ0;T�, such
that system (1) is approximately synchronizable.

Inversely, assume that system (1) is approximately synchronizable. Then for any
given .U0;U1/ 2 .H1�s/

N � .H�s/
N .s > 1

2
/, there exists a sequence fHng of

boundary controls in L M and .v0e; v1e/ 2 .H1�s/
N�.H�s/

N , such that the solution
to the mixed problem (1)–(2) satisfies

R.U0;U1;Hn/.T/! .v0e; v1e/ in .H1�s/
N � .H�s/

N as n!C1: (88)

Taking the boundary condition corresponding to such boundary control Hn and
.v0e; v1e/ as the final state at t D T, we solve the backward problem (81) and
get its solution Vn. By the linearity of R, we have

R.U0;U1;Hn/ �R.Vn.0/;V
0
n.0/;Hn/ D R.U0 � Vn.0/;U1 � V 0

n.0/; 0/: (89)

Noting (88), by the wellposedness of the corresponding backward problem of
system (1), we have

kR.U0 � Vn.0/;U1 � V 0
n.0/; 0/.0/k.H1�s/N�.H

�s/N (90)

�ck.Un.T/ � Vn.T/;U
0
n.T/ � V 0

n.T//k.H1�s/N�.H
�s/N

Dck.Un.T/ � v0e;U0
n.T/ � v1ek.H1�s/N�.H

�s/N ! 0 as n! C1:

Then, by (89) we get

k.U0;U1/ � .Vn.0/;V
0
n.0//k.H1�s/N�.H

�s/N (91)

DkR.U0;U1;Hn/.0/�R.Vn.0/;V
0
n.0/;Hn/.0/k.H1�s/N�.H

�s/N

DkR.U0 � Vn.0/;U1 � V 0
n.0/; 0/.0/k.H1�s/N�.H

�s/N ! 0 as n! C1;

which indicates that NC D .H1�s/
N � .H�s/

N : ut
Lemma 8 Under the condition of compatibility (77), system (1) is approximately
synchronizable at the time T > 0 in the sense of Definition 4, if and only if
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the solution ˚ to the adjoint problem (5) possesses the following synchronizable
observability: for .˚0; ˚1/ 2 .Hs/

N � .Hs�1/N .s > 1
2
/, if

DT˚ � 0 on Œ0;T� � �1 (92)

and

.˚.T/; e/ � 0; .˚ 0.T/; e/ � 0 in ˝; (93)

then ˚ � 0, where e is given by (82).

Proof First, let ˚ be the solution to the adjoint problem (5). Multiplying ˚ on the
both sides of the backward problem (81) and integrating by parts, we get

h˚.T/; v1ei.Hs/N�.H
�s/N � h˚ 0.T/; v0ei.Hs�1/N�.H 1�s/

N (94)

DhV 0.0/; ˚0i.H
�s/N�.Hs/N � hV.0/; ˚1i.H1�s/N�.Hs�1/N C

Z T

0

Z

�1

.DH; ˚/d� dt;

where s > 1
2
.

Assume that system (1) possesses the synchronizable observability, but is not
approximately synchronizable. By Lemma 7, there exists a nontrivial initial data
.�˚1; ˚0/ 2 C ? with .�˚1;˚0/ 2 .Hs�1/N � .Hs/

N . Taking such .˚0; ˚1/ as the
initial data, we solve the corresponding adjoint problem (5), and its solution˚ 6� 0.
Thus, noting (94) and the definition of C , for any given .v0; v1/ 2H1�s�H�s and
H 2 L M , we have

h˚.T/; v1ei.Hs/N�.H
�s/N � h˚ 0.T/; v0ei.Hs�1/N�.H1�s/N

D
Z T

0

Z

�1

.DH; ˚/d� dt: (95)

The righthand side of the above formula is meaningful because of (24). Thus the
conditions of observation (92)–(93) hold, but ˚ 6� 0, hence, the synchronizable
observability fails, which is a contradiction.

Inversely, assume that system (1) is approximately synchronizable. Assume that
the solution ˚ to the adjoint problem (5) with the initial data .˚0; ˚1/ 2 .Hs/

N �
.Hs�1/N .s > 1

2
/ satisfies the conditions of observation (92)–(93). For any given

.U0;U1/ 2 C , by the definition of C , there exist .v0e; v1e/ 2 .H1�s/
N � .H�s/

N

and a sequence fHng of boundary controls in L M, such that the solution Vn to the
corresponding backward problem (81) satisfies

Vn.0/! U0; V 0
n.0/! U1 in .H1�s/

N � .H�s/
N as n!C1: (96)
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Noting the conditions of observation (92)–(93), by (94) we have

hV 0
n.0/; ˚0i.H

�s/N�.Hs/N � hVn.0/; ˚1i.H1�s/N�.Hs�1/N D 0: (97)

Taking n!C1, we get

h.U0;U1/; .�˚1;˚0/i.H1�s/N�.H
�s/N I.Hs�1/N�.Hs/N D 0; 8.U0;U1/ 2 C ; (98)

then .�˚1;˚0/ 2 C
?

. Thus, C 6D .H1�s/
N � .H�s/

N : By Lemma 7, system (1) is
not approximately synchronizable, which is a contradiction. The proof is complete.

ut
We know that the exact boundary synchronization of system (1) is equivalent

to the exact boundary null controllability of its reduced system (see [4]). For the
approximate boundary synchronization, similar result holds, too.

Lemma 9 (See [8]) Let

C D

0

B
B
B
@

1 �1
1 �1
: : :

: : :

1 �1

1

C
C
C
A

.N�1/�N

(99)

be the corresponding synchronization matrix. C is a full row-rank matrix, and
Ker.C/ D Spanfeg, where e is given by (82). Then the following properties are
equivalent:

(1) The condition of compatibility (77) holds;
(2) e D .1; 1; � � � ; 1/T is a right eigenvector of the matrix A, corresponding to the

eigenvalue a;
(3) Ker.C/ is an one dimensional invariant subspace of A:

AKer.C/ � Ker.C/I (100)

(4) There exists a unique matrix A of order .N � 1/, such that

CA D AC: (101)

By Lemma 9, under the condition of compatibility (77), setting W D CU, we get
the following reduced problem of the original problem (1)–(2):

8
ˆ̂
<̂

ˆ̂
:̂

W 00 ��W C AW D 0 in .0;C1/ �˝;
W D 0 on .0;C1/ � �0;
@�W D DH on .0;C1/ � �1;
t D 0 W W D CU0

def.D W0; W 0 D CU1
def.D W1 in ˝;

(102)
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where D D CD.
Let

� D . .1/; � � � ;  .N�1//T :

Consider the adjoint problem of the reduced problem (102):

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

� 00 ��� C A
T
� D 0 in .0;C1/ �˝;

� D 0 on .0;C1/ � �0;
@�� D 0 on .0;C1/ � �1;
t D 0 W � D �0; � 0 D �1 in ˝:

(103)

Definition 5 For .�0; �1/ 2 .Hs/
N�1 � .Hs�1/N�1 .s > 1

2
/, the reduced adjoint

problem (103) is CD-observable on Œ0;T�, if

.CD/T� � 0 on Œ0;T� � �1 H) .�0; �1/ � 0; then � � 0:
(104)

Theorem 8 Under the condition of compatibility (77), system (1) is approximately
synchronizable, if and only if the reduced adjoint problem (103) is CD-observable
on Œ0;T�.

Proof By Lemma 8, we only need to prove that the CD-observability of the reduced
adjoint problem (103) is equivalent to the synchronizable observability of the
adjoint problem (5). By Lemma 9, e D .1; 1; � � � ; 1/T is a right eigenvector of the
matrix A, corresponding to the eigenvalue a, where a is given by (77). Let E 2 R

N

be the corresponding left eigenvector, such that

Ae D ae; ETA D aET :

Assume that the reduced adjoint problem (103) is CD-observable. Let ˚ be the
solution to the adjoint problem (5), which satisfies the conditions of observation
(92)–(93). Let

e̊ D .˚; e/E:

Using the coupled system of wave equations in (5), we have

e̊00 ��e̊ C AT e̊ D .˚ 00 ��˚ C AT˚; e/E D 0: (105)

Moreover, by the condition of observation (93), we have

e̊.T/ D e̊0.T/ D 0: (106)
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By (105)–(106), noting that e̊ is subjected to the homogeneous boundary condition,
we get

e̊ � 0;

then, noting Ker.C/ D Spanfeg, we have

˚ 2 fSpanfegg? D Im.CT/:

Thus, there exists a � such that

˚ D CT�: (107)

Substituting it into the coupled system of wave equations in (5), and noting (101),
we get

CT� 00 � CT�� C ATCT� D CT.� 00 ��� C A
T
�/ D 0:

Since CT is an injection, we have

� 00 ��� C A
T
� D 0 in ˝: (108)

Furthermore, by the condition of observation (92), we have

.CD/T� � 0 on Œ0;T� � �1: (109)

Therefore, it follows from the CD-observability of the reduced adjoint problem
(103) that

� � 0; then ˚ � 0; (110)

thus, system (1) is approximately synchronizable.
Inversely, assume that system (1) is approximately synchronizable. Let � be the

solution to the reduced adjoint problem (103), and ˚ be defined by (107). Noting
(101), it is easy to get that

˚ 00 ��˚ C AT˚ D 0: (111)

On the other hand, by Definition 5, the boundary observation gives

DT˚ � 0 on Œ0;T� � �1: (112)
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Noticing Ce D 0, it is easily seen that as t � 0 we have

.˚; e/ � 0; .˚ 0; e/ � 0: (113)

Hence, ˚ is the solution to the adjoint problem (5) and satisfies the conditions of
observation (92)–(93). By Lemma 8, we have

˚ � 0: (114)

Thus, since CT is an injection, we have

� � 0; (115)

that is to say, the reduced adjoint problem (103) is CD-observable. ut
Remark 6 Theorem 8 indicates that under the condition of compatibility (77),
the approximate boundary synchronization of system (1) is equivalent to the
approximate boundary null controllability of the reduced system (102).

Theorem 9 Under the condition of compatibility (77), if for any given initial data
.U0;U1/ 2 .H1/

N � .H0/
N, system (1) is approximately synchronizable for some

s .> 1
2
/, then system (1) possesses the same approximate boundary synchronization

for any given initial data .U0;U1/ 2 .H1�s/
N � .H�s/

N, too.

Proof Suppose that for any given initial data .U0;U1/ 2 .H1/
N�.H0/

N , system (1)
is approximately synchronizable. Then, under the condition of compatibility (77),
the reduced system (102) is approximately null controllable for any given initial
data in .H1/

N�1 � .H0/
N�1, thus by Theorem 2, the reduced system (102) is

approximately null controllable for any given initial data in .H1�s/
N�1�.H�s/

N�1,
too. Then, by Theorem 1, the reduced adjoint problem (103) is CD-observable on
Œ0;T� in .H1�s/

N�1 � .H�s/
N�1. Finally, by Theorem 8, the original system (1) is

approximately synchronizable in .H1�s/
N � .H�s/

N , too. ut
Remark 7 Obviously, if for any given initial data .U0;U1/ 2 .H1�s/

N � .H�s/
N

.s > 1
2
/, system (1) is approximately synchronizable, then for any given initial data

.U0;U1/ 2 .H1/
N � .H0/

N , system (1) is also approximately synchronizable for
this s .> 1

2
/.

Corollary 3 Under the condition of compatibility (77), if rank.CD/ D N � 1, then
system (1) is approximately synchronizable.

Proof Since .CD/T is an injection, the condition of observation in Definition 5 gives

� � 0 on Œ0;T� � �1:

By means of Holmgren’s uniqueness theorem [9], we get the CD-observability of the
reduced adjoint problem (103) on Œ0;T�, then by Theorem 8, we get the approximate
boundary synchronization of system (1). ut
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Noting (101), by Theorem 3, we get the following criterion of Kalman’s type for
the approximate boundary synchronization of system (1).

Theorem 10 Under the condition of compatibility (77), if system (1) is approxi-
mately synchronizable at T > 0, then we have the following criterion of Kalman’s
type:

rank.CD;CAD; � � � ;CAN�1D/ D N � 1: (116)

Proof Since system (1) is approximately synchronizable, its reduced problem (102)
is approximately null controllable, thus, applying Theorem 3, we have

rank. ND; NA ND; � � � ; NAN�2 ND/ D N � 1: (117)

By Cayley-Hamilton’s Theorem, we get

rank. ND; NA ND; � � � ; NAN�2 ND/ D rank. ND; NA ND; � � � ; NAN�1 ND/: (118)

Noting (101), we have

.CD;CAD; � � � ;CAN�1D/ D . ND; NA ND; � � � ; NAN�1 ND/: (119)

Then, combining (117)–(119), we get (116). ut

5 Approximate Boundary Synchronization by Groups

When rank.D;AD; � � � ;AN�1D/ is further reduced, we can consider the approximate
boundary synchronization by p .� 1/-groups (when p D 1, it is just the approximate
boundary synchronization).

Let p .� 1/ be an integer, and

0 D m0 < m1 < m2 < � � � < mp D N:

The approximate boundary synchronization by p-groups means that the components
of U are divided into p groups:

.u.1/; � � � ; u.m1//; .u.m1C1/; � � � ; u.m2//; � � � ; .u.mp�1C1/; � � � ; u.mp//; (120)

and each group possesses the corresponding approximate boundary synchroniza-
tion, respectively.

Definition 6 Let s > 1
2
. System (1) is approximately synchronizable by p-groups

at T > 0, if for any given initial data .U0;U1/ 2 .H1�s/
N � .H�s/

N , there exists
a sequence fHng of boundary controls in L M with compact support in Œ0;T� and
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functions ur 2 C0
loc.ŒT;C1/IH1�s/ \ C1

loc.ŒT;C1/IH�s/ .1 � r � p/, such
that the corresponding sequence fUng of the solutions to the mixed initial-boundary
value problem (1)–(2) satisfies

�
u.k/n .T/; .u

.k/
n /

0.T/
�! .ur.T/; u

0
r.T// in H1�s �H�s as n!C1 (121)

for mr�1 C 1 � k � mr . 1 � r � p/, or, equivalently,

u.k/n ! ur in C0
loc.ŒT;C1/IH1�s/\ C1

loc.ŒT;C1/IH�s/ as n! C1 (122)

for mr�1 C 1 � k � mr . 1 � r � p/. Here, .u1; � � � ; up/, being unknown a prior, is
called the approximately synchronizable state by p-groups.

Let

Cr D

0

B
B
B
@

1 �1
1 �1
: : :

: : :

1 �1

1

C
C
C
A
; 1 � r � p (123)

be an .mr �mr�1 � 1/ � .mr �mr�1/ matrix with full row-rank, and

C D

0

B
BB
@

C1
C2

: : :

Cp

1

C
CC
A

(124)

be the .N � p/ � N matrix of synchronization by p-groups. Clearly,

Ker.C/ D Spanfe1; � � � ; epg; (125)

where

.er/j D
(
1; mr�1 C 1 � j � mr;

0; otherwise:

Thus, (122) can be written as

.Un;U
0
n/!

� pX

rD1
urer;

pX

rD1
u0

rer

	
in .C0

loc.ŒT;C1/IH1�s �H�s//
N

(126)

as n! C1:
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Theorem 11 Assume that system (1) is approximately synchronizable by p-groups
in the sense of Definition 6. Assume furthermore that at least for one initial data
.U0;U1/ 2 .H1�s/

N � .H�s/
N, the components of .u1; � � � ; up/ are mutually linear

independent. Then the coupling matrix A D .aij/ should satisfy the following
condition of compatibility:

AKer.C/ � Ker.C/; (127)

or, equivalently, there exists a unique matrix A of order .N � p/, such that

CA D AC: (128)

Proof Let .U0;U1/ 2 .H1�s/
N � .H�s/

N . s > 1
2
/, fHng be the sequence of

boundary controls which realizes the approximate boundary synchronization by p-
groups for system (1), and fUng be the sequence of solutions to the corresponding
problem (1)–(2). Multiplying C from the left to (1), and taking n! C1, it follows
from (122) and (125) that

pX

rD1
urCAer D 0 in D0..T;C1/ �˝/: (129)

By the second hypothesis of Theorem 11, at least for one initial data .U0;U1/, the
components u1; u2; � � � ; up of the corresponding approximately synchronizable state
by p-groups are linearly independent, then we have

CAer D 0; 1 � r � p; (130)

namely, (127) holds. ut
Remark 8 If for any given initial data .U0;U1/ 2 .H1�s/

N � .H�s/
N , the com-

ponents of .u1; � � � ; up/ are linearly dependent, then, through a suitable reversible
linear transformation of the state variables U, the corresponding approximately
synchronizable state .u1; � � � ; up/ by p-groups contains at least one null component.
We exclude this special situation beforehand.

Now, let C be the set of all the initial states .V.0/;V 0.0// of the backward
problem

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

V 00 ��V C AV D 0 in .0;T/ �˝;
V D 0 on .0;T/ � �0;
@�V D DH on .0;T/ � �1;
V.T/ D V0; V 0.T/ D V1 in ˝

(131)
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as .V0;V1/ varies in .H1�s/
N � .H�s/

N . s > 1
2
/ with CV0 D CV1 D 0, and H

varies in L M.

Lemma 10 Under the condition of compatibility (127), system (1) is approximately
synchronizable by p-groups in the sense of Definition 6, if and only if

NC D .H1�s/
N � .H�s/

N : (132)

Proof Similar to the proof of Lemma 7. ut
Lemma 11 Under the condition of compatibility (127), system (1) is approximately
synchronizable by p-groups in the sense of Definition 6, if and only if the solution ˚
to the adjoint problem (5) possesses the following synchronizable observability by
p-groups: for any given initial data .˚0; ˚1/ 2 .Hs/

N � .Hs�1/N .s > 1
2
/, if

DT˚ D 0 on Œ0;T� � �1 (133)

and

˚.T/; ˚ 0.T/ 2 fKer.C/g?; (134)

then ˚ � 0, where C is the matrix of synchronization by p-groups defined by (124).

Proof Similar to the proof of Lemma 8. ut
Similarly, using the matrix C of synchronization by p-groups, defined by (124),

we can get the corresponding reduced adjoint problem (103) and its CD-
observability (see Definition 5).

Theorem 12 Under the condition of compatibility (127), system (1) is approxi-
mately synchronizable by p-groups in the sense of Definition 6, if and only if the
reduced adjoint problem (103) is CD-observable on Œ0;T�.

Proof By Lemma 11, we only need to prove that the CD-observability of the
reduced adjoint problem (103) is equivalent to the observability of synchronization
by p-groups of the adjoint problem (5).

Assume that the reduced adjoint problem (103) is CD-observable on Œ0;T�. Let
˚ be the solution to the adjoint problem (5) with (133)–(134). By the condition of
compatibility (127), there exist real coefficients ˛rk such that

Aek D
pX

rD1
˛rker; 1 � k � p: (135)
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Let k D .ek; ˚/. Taking the inner product of (5) with ek, and noting (134)
and (125), for 1 � k � p we get

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

00
k ��k CPp

rD1 ˛rkr D 0 in .0;C1/ �˝;
k D 0 on .0;C1/ � �0;
@�k D 0 on .0;C1/ � �1;
t D T W k D 0

k D 0 in ˝:

(136)

Then we get

t � 0 W 1 D 2 D � � � D p � 0; (137)

hence

˚ 2 fKer.C/g? D Im.CT/: (138)

Therefore, there exists � D . .1/; � � � ;  .N�p//T such that

˚ D CT�: (139)

Substituting (139) into (5) and (133), and noting (128) and the fact that CT is an
injection, we have

� 00 ��� C A
T
� D 0 in ˝ (140)

and

.CD/T� D 0 on Œ0;T� � �1: (141)

Thus, by the CD-observability of problem (103) on Œ0;T�, we get

� � 0; then ˚ � 0: (142)

This implies that the adjoint problem (5) possesses the observability of synchroniza-
tion by p-groups on Œ0;T�.

Inversely, assume that the adjoint problem (5) possesses the observability
of synchronization by p-groups. Let � be the solution to the reduced adjoint
problem (103), and ˚ be defined by (139). Noting (125) and (128), we have

˚ 00 ��˚ C AT˚ D 0; (143)

DT˚ D 0 on Œ0;T� � �1 (144)
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and

t � 0 W ˚ 2 fKer.C/g?; (145)

which shows that ˚ is the solution to the adjoint problem (5), and satisfies
the conditions of observation by p-groups (133)–(134). By the observability of
synchronization by p-groups of the adjoint problem (5), we have

˚ D CT� � 0; then � � 0; (146)

namely, the reduced adjoint system (103) is CD-observable on Œ0;T�. ut
Noting (128), by Theorem 3, we get the following criterion of Kalman’s type for

the approximate boundary synchronization by p-groups for system (1).

Theorem 13 Under the condition of compatibility (127), if system (1) is approxi-
mately synchronizable by p-groups at T > 0, then we have the following criterion
of Kalman’s type:

rank.CD;CAD; � � � ;CAN�1D/ D N � p; (147)

where the matrix C of synchronization by p-groups is defined by (124).

Proof Applying Theorem 3 to the corresponding reduced adjoint problem (103),
which is CD-observable by Theorem 12, we get

rank.CD;ACD; � � � ;AN�p�1
CD/ D N � p: (148)

The remaining part of the proof is similar to that of Theorem 10. ut
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Sparse Support Vector Machines
in Reproducing Kernel Banach Spaces

Zheng Li, Yuesheng Xu, and Qi Ye

Dedicated to Ian H. Sloan on the occasion of his 80th birthday.

Abstract We present a novel approach for support vector machines in reproducing
kernel Banach spaces induced by a finite basis. In particular, we show that the sup-
port vector classification in the 1-norm reproducing kernel Banach space is mathe-
matically equivalent to the sparse support vector machine. Finally, we develop fixed-
point proximity algorithms for finding the solution of the non-smooth minimization
problem that describes the sparse support vector machine. Numerical results are
presented to demonstrate that the sparse support vector machine outperforms the
classical support vector machine for the binary classification of simulation data.

1 Introduction

Although reproducing kernel Hilbert spaces (RKHS) are a classical subject [2],
reproducing kernels became popular only recently in the field of machine learning
[1, 5, 14, 17]. Since Banach spaces have a richer geometric structure compared
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to Hilbert spaces, there has been much interest in generalizing results for Hilbert
spaces to Banach spaces in machine learning. The paper [20] proposed the new
concept of reproducing kernel Banach spaces (RKBSs) in the context of machine
learning. Based on the new theory of RKBSs, sampling, embedding probability
measures, and vector quantization were generalized from RKHSs to RKBSs
respectively in [7, 15] and [18]. Moreover, the recent papers [6, 19] showed how
to construct explicit representations of support vector machines in RKBSs, which
can be easily computed and coded in a similar way as for RKHSs.

RKBSs (see Definition 1) are a natural generalization of RKHSs. We present
the underlying idea of RKBSs using the simple framework provided by a finite
basis. The goal of this article is to extend the classical support vector machines in
RKHSs to RKBSs using finite bases. Specifically, we construct the p-norm RKBSs
for 1 � p � 1 using a finite basis. Because a finite-dimensional normed space is
always reflexive and complete, we can obtain the same theoretical results as [19]
in this simple case without complex assumptions. Moreover, the support vector
machine in the 1-norm RKBSs is mathematically equivalent to the sparse support
vector machine developed in [16, 21]. By Theorem 3, the special support vector
machines in the pm-norm RKBSs can be solved explicitly when pm D 2m

2m�1 (see
Eqs. (13) and (14) below). Theorem 4 assures that the pm-norm support vector
machine solution is convergent to the 1-norm support vector machine solution when
pm tends to 1. This shows that the sparse support vector machines are constructed
well in the 1-norm RKBSs.

We organize this paper in six sections. In Sect. 2 we present a sparse support
vector machine. Section 3 is devoted to a description of RKBSs. We introduce, in
Sect. 4, support vector machines in p-norm RKBSs. In Sect. 5 we use the fixed-
point proximity algorithm to solve both the classical support vector machines and
sparse support vector machines. Numerical experiments are presented in Sect. 5
to demonstrate that the sparse support vector machines outperform the classical
support vector machines for simulated data.

2 Sparse Support Vector Machines

The goal of this section is to motivate the idea of sparse support vector machines.
We begin with the standard binary classification problem: We choose a hyperplane

H WD ˚x 2 R
d W fD.x/ WD aT

DxC bD D 0
�
;

to separate a training data site D WD f.xk; yk/ W k 2 NNg composed of input data
points x1; : : : ; xN 2 ˝ � R

d and output data values y1; : : : ; yN 2 f˙1g, where
NN WD f1; 2; : : : ;Ng. Let X WD fxk W k 2 NNg. Using the training data D, we can
obtain a classification rule induced by the hyperplane H or the decision function fD
to predict labels at unknown locations, that is,

r.x/ WD sign . fD.x// ; for x 2 ˝:
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The coefficients aD; bD of the optimal hyperplane are obtained by the hard margin
support vector machine

min
.a;b/2Rd�R

kak22

s.t. yk
�
aTxk C b

� � 1; for all k 2 NN :

(1)

It is also called the maximal margin classifier. To relax the constraints of the
optimization problem (1), we introduce some slack variables �k � 0 and obtain
the coefficients aD; bD of the optimal hyperplane by the soft margin support vector
machine

min
.a;b/2Rd�R

C
X

k2NN

�k C 1

2
kak22

s.t. yk
�
aTxk C b

� � 1 � �k; �k � 0; for all k 2 NN ;

(2)

where the constant C is a free positive parameter for balancing the margins and
the errors. Introducing the positive parameter � WD .2NC/�1, the optimization
problem (2) is then equivalent to

min
.a;b/2Rd�R

1

N

X

k2NN

�
1 � yk

�
aTxk C b

��
C C � kak22 ; (3)

where .�/C is the cutoff function, that is, .z/C WD z when z � 0 otherwise .z/C WD 0.
The linear classification may be extended to the nonlinear classification in the

sense that the hyperplane is replaced by a manifold. To be more precise, the mani-
fold is given by a decision function fD composed of a basis fk W ˝ ! R W k 2 Nng,
that is,

M WD ˚x 2 ˝ W fD.x/ WD aT
D�.x/ D 0

�
;

where� WD .k W k 2 Nn/. To simplify the discussion and the notation in this article,
we focus on finite bases only. However, we do not exclude large basis sizes in the
sense n � N. Analogously to the optimization problem (3), the coefficients aD of
the optimal manifold are obtained by solving the optimization problem

min
a2Rn

1

N

X

k2NN

�
1 � ykaT� .xk/

�
C C � kak22 : (4)

Next, we transfer the optimization problem (4) to another low-dimensional
optimization problem. Let the linear space

H WD ˚ f WD aT� W a 2 R
n
�
;
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be equipped with the norm

k fkH WD kak2 :

Clearly, the space H is a Hilbert space. We also find that H is a RKHS with the
reproducing kernel K.x; y/ WD �.x/T�.y/ such that

(i) K.x; �/ 2H and (ii) f .y/ D . f ;K.x; �//H ;

for all x 2 ˝ and all f 2 H , where .�; �/H is an inner product of H . More
precisely,

. f ; g/H WD aTb; for f D aT�; g D bT� 2H :

With respect to support vector machines, we can view the RKHS H as a feature
space induced from a feature map ˚ W ˝ !H such that ˚.x/ D K.x; �/ and

K.x; y/ D .K.�; y/;K.x; �//H D .˚.y/; ˚.x//H :

Here, we can roughly see � as an equivalent representer of the feature map ˚ in the
sense ˚.x/ D �.x/T�.

Remark 1 Usually, the basis fk W k 2 Nng is constructed by the positive eigenval-
ues �1 � � � � � �n and orthonormal eigenfunctions fen W k 2 Nng � L2.˝/ of a
positive definite kernel K, that is,

k WD
p
�kek; for k 2 Nn;

and

�kek.x/ D
Z

˝

K.x; y/ek.y/dy; for all k 2 Nn:

According to the Mercer theorem [17, Theorem 4.49], the positive definite kernel
K can possess countable infinite eigenvalues and eigenfunctions such that we can
obtain a countable infinite basis.

The construction of the reproducing kernel Hilbert space H assures that the
optimization problem (4) is equivalent to

min
f 2H

1

N

X

k2NN

.1 � ykf .xk//C C � k fk2H : (5)

This shows that the support vector machines can be formulated in the feature spaces.
By the representer theorems of RKHSs [17, Theorem 5.5], the solution of the
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optimization problem (5) can be represented by a linear combination of the kernel
basis, that is,

fD.x/ WD cT
DkX.x/;

where cD 2 R
N is a suitable parameter vector and kX.x/ WD .K.x; xk/ W k 2 NN/.

Moreover, since

�
�cTkX

�
�
H
D kckKX

WD
p
cTKXc;

where the matrix KX WD
�
K.xj; xk/ W j; k 2 NN

� 2 R
N�N is positive definite, the

optimization problem (5) can be equivalently formulated as

min
c2RN

1

N

X

k2NN

�
1 � ykcTkX .xk/

�
C C � kck2KX

: (6)

Moreover, the optimal coefficients aD of fD based on � can be represented by the
optimal coefficients cD of fD based on kX in the sense

aD D ˚XcD

with the matrix ˚X WD .�.xk/ W k 2 NN/ 2 R
n�N . Here, both aD and cD are

the optimal coefficients of the decision function while aD and cD depend on
different bases of the reproducing kernel Hilbert spaces. Comparing the equivalent
optimization problems (4) and (6), we find that the optimization problem (6) reduces
the dimension of the original optimization problem (4).

Fast numerical algorithms for sparse sampling play a central role in the area of
signal and image processing. Thus, people are interested in investigating whether
support vector machines possess sparsity such as discussed in [16]. A simple idea
is to generalize the optimization problem (4) to the 1-norm support vector machines
in [21] such as

min
a2Rn

1

N

X

k2NN

�
1 � ykaT� .xk/

�
C C � kak1 : (7)

Remark 2 The 1-norm regularization is a rigorous tool to obtain sparse solutions.
Generally speaking, sparse solutions of the 0-norm regularization are affected by
the sparsity of the matrix ˚X , that is, the smallest number of the linearly dependent
columns from˚X . By relaxing the 0-norm to the 1-norm, we obtain sparse solutions
by convex relaxation techniques. In many practical applications, optimally sparse
learning solutions may not be necessary and we only need certain sparsity in the
learning solutions. Many theoretical results of sparse modeling can be found in the
well-known review papers [3, 4].
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One may expect that the optimization problem (7) could be mathematically
transferred into

min
c2RN

1

N

X

k2NN

�
1 � ykcTkX .xk/

�
C C � kck1 : (8)

However, the optimization problem (8) then loses the connection to the feature
maps. In this article, we shall show that sparse support vector machines such as
the optimization problem (7) can also be formulated in feature spaces. To be more
precise, we will define the sparse support vector machine in the 1-norm RKBSs.
However, solutions of the sparse support vector machines will be different from
those of the optimization problem (8).

3 Reproducing Kernel Banach Spaces

In this section, we describe theory of RKBSs defined by a finite basis.
Let B be a Banach space with the dual space B0. The dual bilinear product h�; �iB

is defined on B and B0, that is,

h f ;GiB WD G. f /; for all f 2 B and all G 2 B0:

This shows that the norm of B0 can be written as

kGkB0

D sup
k f kBD1

h f ;GiB:

We say that a normed space F is isometrically equivalent to the dual space B0 if
there is a bijective continuous map T from F onto B0 such that kgkF D kT.g/kB0

.
Hence, F can be viewed as a duplicate space of B0 and g 2 F can be seen as a
duplicate element of G D T.g/ 2 B0. We denote that F Š B0. Thus, the dual
bilinear product h�; �iB can be defined on B and F as

h f ; giB WD h f ;T.g/iB; for all f 2 B and all g 2 F :

Now we recall the definition of the RKBSs introduced in [19].

Definition 1 Let ˝ 	 R
d be a domain. Let B be a Banach space composed of

functions f W ˝ ! R. Let F be a normed space composed of functions g W ˝ ! R
such that the dual space B0 of B is isometrically equivalent to F . Let K W ˝�˝ !
R be a kernel function. We call B a reproducing kernel Banach space and K its
reproducing kernel if

(i) K.x; �/ 2 F ; (ii) h f ;K.x; �/iB D f .x/; for all x 2 ˝ and all f 2 B;

(iii) K.�; y/ 2 B; (iv) hK.�; y/; giB D g.y/; for all y 2 ˝ and all g 2 F :
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Remark 3 The RKBS given in Definition 1 is called a two-sided RKBS in [19,
Definition 2.1]. In [6, 19], the RKBSs can be divided into right-sided and left-sided
RKBSs and the right-sided and left-sided domains of the reproducing kernels can be
different. For convenience, we only discuss the two-sided RKBSs in this article and
let the right-sided and left-sided domains of the reproducing kernels be the same.
Thus, we shorten the terms two-sided RKBSs and two-sided reproducing kernels by
using RKBSs and the reproducing kernels instead. Moreover, the RKBSs given in
[20] can still be viewed as the typical case of the RKBSs discussed here. Clearly,
the reflexivity and smoothness are not the necessary conditions of the RKBSs.

Now we construct the p-norm RKBS for 1 � p � 1 and the reproducing kernel
K by a sequence of functions k W ˝ ! R for k 2 Nn. Consider the vector � WD
.k W k 2 Nn/ and the kernel

K.x; y/ WD �.x/T�.y/; for x; y 2 ˝:
In this article, these functions fk W k 2 Nng will be called a basis of the RKBSs.
Thus, we suppose that fk W k 2 Nng are linearly independent, that is, aT� D 0

implies that a D 0. Then we can use the basis vector � to construct the linear space

Bp WD ˚ f WD aT� W a 2 R
n
�
;

equipped with the norm

k fkBp WD kakp :

Remark 4 In this article, we only look at RKBSs set up by a finite basis. It is clear
that any finite-dimensional normed space is always reflexive and complete. As a
result, for this case the complex assumptions and the technical restrictions as stated
in [19] are not necessary to construct the p-norm RKBSs. Being different from [19],
all theorems for this case can be proved easily by the construction of finite bases.

Theorem 1 The space Bp for 1 � p � 1 is a reproducing kernel Banach space
with the reproducing kernel K.

Proof Clearly, Bp is a Banach space because it is a finite-dimensional normed
space. Moreover, the linear independence of fk W k 2 Nng assures that Bp and lp
are isometrically isomorphic, where lp is the collection of all sequences of n scalars
with the standard norm k�kp. Since the dual space of lp is isometrically equivalent to
lq, the dual space of Bp is isometrically equivalent to Bq where q is the conjugate
of p. This assures that the dual bilinear product h�; �iBp can be represented as

h f ; giBp WD aTb; for f D aT� 2 Bp and g D bT� 2 Bq Š .Bp/0 :

Hence, we can verify for all x; y 2 ˝ that

h f ;K.x; �/iBp D aT�.x/ D f .x/; hK.�; y/; giBp D bT�.y/ D g.y/:
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This completes the proof. ut
Remark 5 In this article, we only focus on the finite basis to reduce the mathemat-
ical complexity. But, in [19], the RKBSs are introduced by the infinite dimensional
basis and the infinite-dimensional basis requires additional conditions for the
construction of the p-norm RKBSs in [19, Chapter 3].

Next, we study the map ˚ W ˝ ! Bp defined by ˚.x/ WD �.x/T�. Clearly, ˚
is also a map from˝ to Bq. The reproducing properties of Bp assure that

K.x; y/ D hK.�; y/;K.x; �/iBp D h˚.y/; ˚.x/iBp :

This shows that the feature map ˚ is also well-posed for the p-norm RKBSs and we
can call the RKBS Bp a feature space induced by the feature map ˚ .

In the following, we prove advanced properties of the p-norm RKBSs.

Theorem 2

(i) The basis fk W k 2 Nng is orthonormal in Bp such that hk; liBp D ıkl for all
k; l 2 Nn, where ıkl is the Kronecker delta function.

(ii) The linear span f˚.x/ W x 2 ˝g is equal to Bp.
(iii) The point evaluation functional ıx is continuous on Bp for any x 2 ˝ .
(iv) The RKBS B2 is also a RKHS with the reproducing kernel K.
(v) If fk W k 2 Nng � C.˝/, then Bp � C.˝/ and K 2 C.˝ �˝/.

Proof By the construction of Bp, we can verify the properties (i)–(viii) by the same
methods of [19, Chapter 2]. ut

To close this section, we present several examples of the basis
˚
k W k 2 N

d
m

�

induced by the eigenvalues and eigenfunctions of the classical positive definite
kernels. Here k WD .k1; : : : ; kd/

T is an integer vector in the integer set N
d
m WD

˝d
jD1Nm and the total number of the basis is n WD md.

(I) Min Kernels.

�k .x/ WD
dY

jD1

1

kj�
sin.kj�xj/;

for x WD .x1; : : : ; xd/
T 2 Œ0; 1�d and k 2 N

d
m.

(II) Gaussian Kernels with the shape parameters � > 0.

�k .x/ WD
dY

jD1

p

�;kj e�;kj.xj/; (9)
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for x WD .x1; : : : ; xd/
T 2 R

d and k 2 N
d
m, where


�;k WD .1 � w� /wk�1
� ; e�;k.x/ WD

 �
1C 4�2�1=4
2k�1.k � 1/Š

!1=2

e�u� x2Hk�1

��
1C 4�2�1=4 x

	
;

w� WD 2�2

1C .1C 4�2/1=2 C 2�2 ; u� WD 2�2

1C .1C 4�2/1=2 :

Here Hk is the Hermite polynomial of degree k, that is,

Hk.x/ WD .�1/kex2 dk

dxk

�
e�x2

	
:

(III) Power Series Kernels.

�k .x/ WD
dY

jD1

p
ckjx

kj

j ;

for x WD .x1; : : : ; xd/
T 2 .�1; 1/d and k 2 N

d
m, where the coefficients ck are

the positive coefficients of an analytic function �, that is, �.z/ D P
k2N0 ckzk.

For example,

�.z/ WD ez; �.z/ WD 1

1 � �z
with 0 < � < 1; �.z/ WD I0.2z1=2/;

where I0 is the modified Bessel function of the first kind of order 0. For
this typical basis, the analytic coefficients and the power functions are not
the eigenvalues and eigenfunctions of the power series kernels. Moreover, the
elements of k can be endowed with 0.

4 Support Vector Machines in p-Norm Reproducing Kernel
Banach Spaces

In this section, we study support vector machines induced by loss functions.
According to [17], we suppose that loss functions L.y; �/ are convex for any y 2

f˙1g. Interesting examples of loss functions include

the hinge loss: L. y; t/ WD .1 � yt/C ;

the squared hinge loss: L. y; t/ WD .1 � yt/2C ;

the least square loss: L. y; t/ WD .1 � yt/2 :

(10)
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For given training data D � ˝ � f˙1g, the decision function will be obtained by
the support vector machine defined in the p-norm RKBSs Bp, for 1 � p � 1. That
is,

min
f 2Bp

1

N

X

k2NN

L . yk; f .xk//C � k fkBp ; (11)

where the regularization parameter � is positive. We call the optimization prob-
lem (11) the p-norm support vector machine. By the construction of the RKBS Bp

(see Theorem 1), the optimization problem (11) can be equivalently stated as

min
a2Rn

1

N

X

k2NN

L
�

yk; aT�.xk/
�C � kakp ; (12)

where � is composed of the orthonormal basis of Bp. Obviously, when L is
the hinge loss and p D 1, the optimization problem (12) is the same as the 1-
norm support vector machine described in Eq. (7). For convenience, we further
suppose that �.x1/; : : : ;�.xN/ are linearly independent. This ensures that the
feature elements ˚.x1/; : : : ; ˚.xN/ are linearly independent.

We shall mainly focus on the sparse support vector machines such as the 1-
norm support vector machines. Before the discussion of the sparse support vector
machines, we study the typical support vector machines defined in the strictly
convex and smooth RKBSs first. Let

pm WD 2m

2m � 1 and qm WD 2m; for m 2 N:

Then, pm ! 1 when m ! 1, and the pm-norm RKBS Bpm is strictly convex
and smooth because lpm is strictly convex and smooth when pm > 1. By the
strict convexity and smoothness of the pm-norm RKBS Bpm , [19, Theorem 5.10]
guarantees that the optimization problem

min
f 2Bpm

1

N

X

k2NN

L . yk; f .xk//C � k fkBpm ; (13)

has the unique solution

f �m
D .x/ WD ˇ�m

N .c�m
D /Tk�m

X .x/; for x 2 ˝; (14)

where c�m
D 2 R

N is the suitable parameter vector and the multivariate kernel vector

k�m
X .x/ WD �K�m .x; xk1 ; : : : ; xk2m�1 / W k1; : : : ; k2m�1 2 NN

�
:
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We define the vector-valued function

ˇ�m
N .c/ WD

0

@
2m�1Y

jD1
ckj W k1; : : : ; k2m�1 2 NN

1

A ; for c WD .ck W k 2 NN/ 2 R
N ;

and the multivariate kernel K�m W ˝2m�1
jD1 ˝ ! R

K�m.x; y1; : : : ; y2m�1/ WD �.x/T��m.y1; : : : ; y2m�1/; for x; y1; : : : ; y2m�1 2 ˝;

where

��m.y1; : : : ; y2m�1/ WD
0

@
2m�1Y

jD1
k.yj/ W k 2 Nn

1

A :

Clearly, we have that ��1 D �, K�1 D K, k�1
X D kX , and ˇ�1

N .c
�1
D / D c�1

D D cD.
This indicates that f �1

D is consistent with the classical decision function fD obtained
in the reproducing kernel Hilbert space H DB2.

Remark 6 For convenience of presentation, we change the notation of the paper
[19] slightly. The main technique of the representation of the decision function in
the pm-norm RKBS Bpm is based on the representer theorem in the RKBSs which
verifies that the Gâteaux derivatives of the pm-norm at the decision functions are the
linear combinations of the feature elements ˚.x1/; : : : ; ˚.xN/. More details of the
proof can be found in [19, Section 2.6].

Next, we discuss how a suitable parameter vector c�m
D is obtained. Note that

[19, Theorem 5.10] also provides a representation of the pm-norm of the decision
function, that is,

�
�ˇ�m

N .c/Tk�m
X

�
�
Bpm D kckK�m

X
WD �cTK�m

X ˇ�m
N .c/

�1�1=2m
; (15)

where the matrix K�m
X WD

�
k�m

X .xk/ W k 2 N
�T 2 R

N�N2m�1
.

Remark 7 It is clear that K�1
X D KX . Actually, K�m

X can be viewed as a 2m-
dimensional positive definite matrix or a tensor. More precisely, the matrix K�m

X
can be rewritten as

�
K�m.xk1 ; xk2 ; : : : ; xk2m/ W k1; k2; : : : ; k2m 2 NN

� 2 R
N�:::�N :

Since the 2m-dimensional positive definite matrix is a new concept, we do not
consider the high-dimensional format of K�m

X here and just view K�m
X as a regular

matrix.



880 Z. Li et al.

Theorem 3 The pm-norm support vector machine (13) has a unique solution f �m
D

given in Eq. (14), where the parameter vector c�m
D uniquely solves the optimization

problem

min
c2RN

1

N

X

k2NN

L
�

yk;ˇ
�m
N .c/Tk�m

X .xk/
�C � kckK�m

X
: (16)

Proof Combining Eqs. (14) and (15), the optimization problem (13) can be equiva-
lently stated as the optimization problem (16). ut

When m D 1, c�1
D D cD are the coefficients of the decision function f �1

D D fD
based on the kernel basis k�1

X D kX . But c�m
D are not the coefficients of another

decision function f �m
D based on the multivariate kernel basis k�m

X when m > 1.
Generally, the coefficients ˇ�m

N .c�m
D / of f �m

D based on k�m
X are obtained by the vector-

valued function ˇ�m
N at c�m

D . Moreover, the parameter vector c�m
D will be different for

various m and the decision function f �m
D needs to be solved case-by-case for m.

We next look at the coefficients of the decision function f �m
D based on �. By

expansion of Eq. (14), the decision function f �m
D can be rewritten as

f �m
D D a�m

X .c�m
D /T�;

where

a�m
X .c�m

D / WD �˚Xc�m
D

�2m�1 D diag
�
˚Xc�m

D

�2m�2 �
˚Xc�m

D

�
:

Here, the power m of a vector a WD .ak W k 2 Nn/ 2 R
n is defined by

am WD �am
k W k 2 Nn

�
;

and the diag is defined by

diag.a/ WD

0

B
@

a1 � � � 0
: : :

0 � � � an

1

C
A 2 R

n�n:

Then, a�1
X .c

�m
D / D ˚XcD is the same as the coefficients of the classical decision

function fD based on �. This shows that the support vector machines defined in
Banach spaces can also be reduced to the low-dimensional optimization problems.

Now we investigate the 1-norm support vector machines

min
a2Rn

1

N

X

k2NN

L
�

yk; aT�.xk/
�C � kak1 : (17)
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The geometrical structure of the 1-norm assures that the optimization problem (17)
possesses sparse solutions for n� N. By the construction of the 1-norm RKBS B1,
optimization problem (17) is equivalent to

min
f 2B1

1

N

X

k2NN

L . yk; f .xk//C � k fkB1 : (18)

We have the following approximation theorem.

Theorem 4 The 1-norm support vector machine (18) has a solution f �
D which is a

weak* accumulation point of the sequence
˚

f �m
D W m 2 N

�
given in Theorem 3.

Proof According to [19, Theorem 5.9], the decision function f �
D given by the

optimization problem (18) can be approximated by the decision function f �m
D given

by the optimization problems (13) such that f �m
D is weakly* convergent to f �

D . ut
Here, the weak* accumulation point in Theorem 4 means that there exists a

subsequence
˚

f �mk
D W k 2 N

�
of
˚

f �m
D W m 2 N

�
such that f �mk

D converges to the
decision function f �

D in the weak* topology, that is,

h g; f �mk
D iB1 ! h g; f �

D iB1 ; when mk !1;

for all g 2 B1. This indicates that

f �mk
D .x/ D h˚.x/; f �mk

D iB1 ! h˚.x/; f �1
D iB1 D f �

D .x/; when mk !1;

for all x 2 ˝ . Let a� be the coefficients of f �
D based on �, that is, f �

D D a�T
�. If we

take g WD j for all j 2 Nn, then

a�mk
X .c�mk

D /! a�; when mk !1I

hence

�
�a�mk

X .c�mk
D /� a���

1
! 0; when mk !1;

and

�
� f �mk

D � f �
D

�
�
B1 ! 0; when mk !1:

Remark 8 In this article, we only focus on the finite-dimensional RKBSs. As a
result, the basis vector � is finite. If � is infinite, the weak* convergence may not
imply the 1-norm convergence because the feature elements f˚.x/ W x 2 ˝g are not
the Schauder bases of the infinite-dimensional RKBSs and we can only determine
that span f˚.x/ W x 2 ˝g is dense in the infinite-dimensional RKBSs. However, the
multivariate kernel bases of the decision functions in the finite-dimensional RKBSs



882 Z. Li et al.

are still finite. More details of the learning problems in the infinite-dimensional
RKBSs may be found in [19].

Since the 1-norm geometry is not strictly convex, solutions of the 1-norm opti-
mization problems may not be unique. Thus, there will be different subsequences
of
˚

f �m
D W m 2 N

�
which converge to various optimal solutions. If the optimization

problem (18) has the unique solution f �
D (e.g., L.y; �/ is strictly convex for any

y 2 f˙1g), then the sequence
˚

f �m
D W m 2 N

�
converges to f �

D , that is, f �m
D ! f �

D
when m ! 1. In fact, we only need one sparse solution to construct the support
vector classifiers. In the following section, we shall investigate numerical algorithms
of the sparse support vector machines.

5 Numerical Experiments

In this section, we develop efficient algorithms to solve the optimization prob-
lems (4) and (7). Because the optimization problems (4) and (7) are equivalent to
the support vector machines in the RKHS and the 1-norm RKBS, respectively, we
call the optimization problem (4) the 2-norm SVM and (7) the 1-norm SVM.

As we see, the hinge loss function and the `1-norm are non-differentiable, which
poses a big challenge for solving the problems (4) and (7). However, we shall use
the recently developed fixed-point proximity algorithm [8–13] to directly solve
these problems. We first follow the same idea in [10] to rewrite the hinge loss
function as an equivalent compact form for the convenience of developing proximity
algorithms. We define a N � n matrix

B WD diag. yi W i 2 NN/ˆX :

For z 2 R
N , let

L .z/ WD 1

N

X

i2NN

.1� zi/C: (19)

Then the hinge loss function can be rewritten as L .Ba/. We remark that the squared
hinge loss function can thus be rewritten as Ls.Ba/ with

Ls.z/ WD 1

N

X

i2NN

.1 � zi/
2C: (20)

Since the proximity operator is essential in developing fixed-point proximity
algorithms, we first recall it. The proximity operator of a convex function g is
defined for z 2 R

n by

proxg.z/ WD argmin

�
1

2
ks � zk22 C g.s/ W s 2 R

n

�
:
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Now we present a fixed-point proximity algorithm to solve the 2-norm SVM.
Note that by the above reformulation, the objective function of the 2-norm SVM
consists of two terms including the differentiable 2-norm regularization term and
the non-differentiable term. A class of proximity algorithms were developed in [12]
to handle optimization problems of this kind. We follow the same idea to derive an
algorithm to solve the problem (4).

Algorithm 1 Fixed-point proximity algorithm to solve the 2-norm SVM
Given: the identity matrix I, the reformulation matrix B, the positive parameters � , �, and � 2
.0; 1/;
Initialization: v0;
for k D 1; 2; : : : ; do

vkC1 D .1� �/vk C �.I � prox 1
�L

/.vk � �

2�
BB>vk/I

end for
Denote by v the convergent point, compute a D � �

2�
B>v.

We next consider the 1-norm SVM (7). Let

R.z/ WD �kzk1 for any z 2 R
n: (21)

We observe from the above reformulation that the objective function of the 1-
norm SVM consists of two non-differentiable terms. The fixed-point proximity algo-
rithms [8–11, 13] have shown their nice performance for solving non-differentiable
optimization problems. In particular, a class of two-step fixed-point proximity
algorithms for specifically solving the 1-norm SVM problems were developed in
[10]. Therefore, we apply one of the efficient algorithms in [10] to solve problem (7).

Algorithm 2 Two-step fixed-point proximity algorithm for solving the 1-norm SVM
Given: the identity matrix I, the reformulation matrix B, the positive parameters � , ˇ, �, and !;
Initialization: a0; v0;
for k D 1; 2; : : : ; do

vkC1 D .I � prox 1
�L

/.vk C B.ak C !.ak � ak�1///

akC1 D prox 1
�ˇR

.ak � �

�ˇ
B>.vkC1 C .1� !/.vkC1 � vk///:

(22)

end for

Remark 9 The convergence of Algorithms 1 and 2 can be found in [10].
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We summarize the relationships of the above support vector machines in the
following table:

Support vector machines Equivalent optimization problems

General p-norm, general loss (11), (12)

Typical pm-norm, general loss (13), (16)

1-norm, general loss (17), (18)

1-norm, hinge loss (7)

2-norm, hinge loss (4), (5)

Hyperplane, hinge loss (2), (3) � (1)

The 2-norm, pm-norm, and 1-norm RKBSs have the same reproducing kernels
K, feature maps ˚ , and basis �. But, their support vector machines induced by the
same loss functions are still different such as

Support vector machines 2-norm RKBSs pm-norm RKBSs 1-norm RKBSs

Decision functions fD D f �1
D f �m

D f �

Kernel basis kX D k�1
X , K D K�1 k�m

X , K�m Non

Coefficients of kernel basis cD D c�1
D ˇ�m

N

�
c�m

D

�
Non

Coefficients of � ˚XcD D a�1
X

�
c�1

D

�
a�m

X

�
c�m

D

�
a�

Below, we present numerical results to demonstrate advantages of learning in
RKBS over that in RKHS. Specifically, we implement Algorithms 1 and 2 for
problem (4) and (7), respectively, with both the hinge loss function and the squared
hinge loss function. All the numerical experiments are implemented on a personal
computer with a 2.6 GHz Intel Core i5 CPU and an 8G RAM memory.

We compare these methods on two artificial data sets. The first data set contains
500 instances. They are randomly generated on the domain Œ0; 1� � Œ0; 1�. The
instance lying inside the circle x21Cx22 D 0:252 or .x1�0:75/2C.x2�0:5/2 D 0:252
has the positive label C1, others have the negative label �1. We randomly choose
200 instances as training data, and 300 instances as testing data. We use the Gaussian
kernel bases introduced in (9) in Sect. 3 with d D 2 and m D 10 for both of the
algorithms. Thus, the total number of the basis functions is m2 D 100, see (9)
in Sect. 3 for more details. We apply Algorithm 1 to train the 2-norm SVM and
Algorithm 2 to train the 1-norm SVM on this data set. The hinge loss function and
the squared hinge loss function are used as the fidelity term for each of the models. In
all cases, the parameters are tuned to approximately achieve the best test accuracy
performance. We compare the numbers of support vectors, the training accuracy
and the test accuracy of training by the 1-norm SVM and the 2-norm SVM. We
remark that the support vector is valid if the value of its coefficient is greater than
10�8. The stopping criterion of each algorithm is set to be the relative error between
the successive iterations less than a given tolerance, which we set as 10�8 in these
experiments. The numerical results are presented in Figs. 1, 2, and Table 1.
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Fig. 1 The result of training the 2-norm SVM and the 1-norm SVM with hinge loss function for
binary classification in the domain Œ0; 1�2. An instance with label C1 is denoted by a circle, and
an instance with label �1 is denoted by a star. The blue symbols are training data and the red
symbols are testing data. The left figure is the result of training the 2-norm SVM with the model
parameter � D 1 and the Gaussian bases parameters � D 10;m D 10. The right figure shows that
result of training the 1-norm SVM with the model parameter � D 0:0001 and the Gaussian bases
parameters � D 2;m D 10
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Fig. 2 The result of training the 2-norm SVM and the 1-norm SVM with squared hinge loss
function for binary classification in the domain Œ0; 1�2. An instance with label C1 is denoted by a
circle, and an instance with label �1 is denoted by a star. The blue symbols are training data and
the red symbols are testing data. The left figure is the result of training the 2-norm SVM with the
model parameter � D 1 and the Gaussian bases parameters � D 10;m D 10. The right figure
shows that result of training the 1-norm SVM with the model parameter � D 0:0001 and the
Gaussian bases parameters � D 2;m D 10

The second data set is a little more complex than the first one. It contains 400
instances, and is also randomly generated on the domain Œ0; 1�� Œ0; 1�. The instance
lying inside the circle x21 C x22 D 0:252, .x1 � 0:75/2 C .x2 � 0:5/2 D 0:252, or
x21 C .x2 � 1/2 D 0:252 has the positive label C1, others have the negative label
�1. Therefore, this data set has three separate regions for the positive data. We set
200 instances as training data, and 200 instances as testing data. We also apply
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Table 1 Comparison of 2-norm SVM and 1-norm SVM in the numbers of support vectors,
training accuracy and testing accuracy

Data set 1 HL Data set 1 SHL Data set 2 HL

SVs Train (%) Test (%) SVs Train (%) Test (%) SVs Train (%) Test (%)

`2-SVM 100 96.00 96.00 100 96.00 96.00 100 92.00 92.50

`1-SVM 35 98.50 97.00 42 98.00 98.00 68 100.00 95.00

Data Set 1 HL is the first data set we mentioned above with hinge loss function used as the fidelity
term, Data Set 1 SHL is also the first data set and squared hinge loss function is used as the fidelity
term, and Data Set 2 HL is the second data set and the hinge loss function is used as the fidelity
term
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Fig. 3 The result of training 2-norm SVM and 1-norm SVM with hinge loss function for binary
classification in the domain Œ0; 1�2. This figure is different from Fig. 1; it has three separate region
for label C1. An instance with label C1 is denoted by a circle, and an instance with label �1 is
denoted by a star. The blue symbols are training data and the red symbols are testing data. The left
figure is the result of training 2-norm SVM with the model parameter � D 0:1 and the Gaussian
bases parameters � D 10;m D 10. The right figure shows that result of training 1-norm SVM with
the model parameter � D 0:00001 and the Gaussian bases parameters � D 2;m D 10

Algorithm 1 to train the 2-norm SVM and Algorithm 2 to train the 1-norm SVM on
this data set. The hinge loss function is used as the fidelity term. We also compare
the numbers of support vectors, the training accuracy and the testing accuracy of
training by the 1-norm SVM and the 2-norm SVM. We present the numerical result
in Fig. 3 and Table 1.

We observe from Figs. 1, 2, 3 and Table 1 that in the two datasets, 1-norm SVM
achieves higher training and testing accuracy, while using much less support vectors.
This strongly shows the advantage of learning in RKBSs over that in RKHSs.
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Mean Convergence of Interpolation at
Zeros of Airy Functions

Doron S. Lubinsky

Dedicated to Ian H. Sloan on the occasion of his 80th birthday.

Abstract The classical Erdős-Turán theorem established mean convergence of
Lagrange interpolants at zeros of orthogonal polynomials. A non-polynomial
extension of this was established by Ian Sloan in 1983. Mean convergence of
interpolation by entire functions has been investigated by Grozev, Rahman, and
Vértesi. In this spirit, we establish an Erdős-Turán theorem for interpolation by
entire functions at zeros of the Airy function.

1 Introduction

The classical Erdős-Turán theorem involves a weight w on an compact interval,
which we take as Œ�1; 1�. We assume that w � 0 and is positive on a set of positive
measure. Let pn denote the corresponding orthonormal polynomial of degree n � 0,
so that for m; n � 0,

Z 1

�1
pnpmw D ımn:

Let us denote the zeros of pn in Œ�1; 1� by

�1 < xnn < xn�1;n < � � � < x2n < x1n < 1:
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Given f W Œ�1; 1�! R, let Ln Œ f � denote the Lagrange interpolation polynomial to f
at
˚
xjn
�n

jD1, so that Ln Œ f � has degree at most n � 1 and

Ln Œ f �
�
xjn
� D f

�
xjn
�
; 1 � j � n:

Theorem 1 (Erdős-Turán Theorem) Let f W Œ�1; 1�! R be continuous. For n �
1, let Ln Œ f � denote the Lagrange interpolation polynomial to f at the zeros of pn.
Then

lim
n!1

Z 1

�1
. f � Ln Œ f �/

2 w D 0:

The ramifications of this result continue to be explored to this day. It has
been extended in numerous directions: for example, rather than requiring f to be
continuous, we can allow it to be Riemann integrable. We may replace w by a
positive measure�, which may have non-compact support. In addition, convergence
in L2 may be replaced, under additional conditions on w, by convergence in Lp.
There is a very large literature on all of this. See [4, 10–13, 22, 23] for references
and results.

Ian Sloan and his coauthor Will Smith ingeniously used results on mean con-
vergence of Lagrange interpolation in various Lp norms, to establish the definitive
results on convergence of product integration rules [14, 16, 18–21]. This is a subject
of substantial practical importance, for example in numerical solution of integral
equations.

One can speculate that it was this interest in product integration that led to Ian
Sloan extending the Erdős-Turán theorem to non-polynomial interpolation. Here is
an important special case of his general result [17, p. 99]:

Theorem 2 (Sloan’s Erdös-Turán Theorem on Sturm-Liouville Systems) Con-
sider the eigenvalue problem

p .x/ u00 .x/C q .x/ u0 .x/C Œr .x/C �� u .x/ D 0
with boundary conditions

.cos˛/ u .a/C .sin˛/ u0 .a/ D 0I

.cosˇ/ u .b/C .sinˇ/ u0 .b/ D 0:

Assume that p00; q0; r are continuous and real valued on Œa; b�, that p > 0 there, while
˛; ˇ are real. Let fungn�0 be the eigenfunctions, ordered so that the corresponding
eigenvalues f�ng are increasing. Given continuous f W Œa; b�! R, let Ln Œ f � denote
the linear combination of

˚
uj
�n

jD0 that coincides with f at the nC 1 zeros of unC1 in
the open interval .a; b/. Let

w .x/ D 1

p .x/
exp


Z x

a

q .t/

p .t/
dt

�
; x 2 Œa; b� :
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Then

lim
n!1

Z b

a
. f .x/�Ln Œ f � .x//

2 w .x/ dx D 0;

provided f .a/ D 0 if sin ˛ D 0 and f .b/ D 0 if sinˇ D 0. Moreover, there is a
constant c independent of n and f such that for all such f ,

Z b

a
. f .x/ �Ln Œ f � .x//

2 w .x/ dx

� C inf
c0;c1;:::;cn

Z b

a

0

@ f .x/�
nX

jD0
cjuj .x/

1

A

2

w .x/ dx:

As a specific example, Sloan considers the Bessel equation. His general theorem
[17, p. 102], from which the above result is deduced, involves orthonormal
functions, associated reproducing kernels, and interpolation points satisfying two
boundedness conditions. In 1988, M. R. Akhlaghi [2] extended Sloan’s result to
convergence in Lp for p � 1.

Interpolation by trigonometric polynomials is closely related to that by algebraic
polynomials, in as much as every even trigonometric polynomial has the form
P .cos �/ where P is an algebraic polynomial. From trigonometric polynomials, one
can pass via scaling limits to entire functions of exponential type, and the latter have
a long and gloried history associated with sampling theory. However, to this author’s
knowledge, the first general result on mean convergence of entire interpolants at
equispaced points is due to Rahman and Vértesi [15, Theorem 1, p. 304]. Define the
classic sinc kernel

S .t/ D
(

sin� t
� t ; t ¤ 0;
1; t D 0:

Given a function f W R! R, and 	 > 0, define the (formal) Lagrange interpolation
series

L	 Œ f I x� D
1X

kD�1
f



k�

	

�
S



	



x � k�

	

��
:

It is easily seen that this series converges uniformly in compact sets if for some
p > 1, we have

1X

kD�1

ˇ
ˇ
ˇ̌ f



k�

	

�ˇˇ
ˇ̌
p

<1:
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Theorem 3 (Theorem of Rahman and Vértesi) Let f W R ! R be Riemann
integrable over every finite interval and satisfy for some ˇ > 1

p ,

j f .x/j � C .1C jxj/�ˇ ; x 2 R:

Then

lim
	!1

Z 1

�1
j f .x/� L	 Œ f I x�jp dx D 0:

Butzer, Higgins and Stens later showed that this result is equivalent to the
classical sampling theorem, and as such is an example of an approximate sampling
theorem [3]. Of course there are sampling theorems at nonequally spaced points
(see for example [7, 25]), and in the setting of de Branges spaces, there are more
general expansions involving interpolation series. However, as far as this author is
aware, there are no analogues of the Rahman-Vértesi theorem in that more general
setting. Ganzburg [5] and Littman [9] have explored other aspects of convergence
of Lagrange interpolation by entire functions.

One setting where mean convergence has been explored, is interpolation at zeros
of Bessel functions, notably by Grozev and Rahman [6, Theorem 1, p. 48]. Let
˛ > �1 and

J˛ .z/ D
� z

2

	˛ 1X

kD0
.�1/k

�
z
2

�2k

kŠ� .˛ C kC 1/

denote the Bessel function of order ˛. It is often convenient to instead use its entire
cousin,

G˛ .z/ D z�˛J˛ .z/ :

J˛ has positive zeros

j˛;1 < j˛;2 < j˛;3 < � � � ;

and matching negative zeros

j˛;�k D �j˛;k; k � 1;

so for f W R! C, and 	 > 0, one can define the formal interpolation series

L˛;	 Œ f I x� D
1X

kD�1;k¤0
f



j˛;k
	

�
`˛;k .	z/ ;
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where for k ¤ 0,

`˛;k .z/ D G˛ .z/

G0̨ . j˛;k/ .z � j˛;k/
:

Theorem 4 (Theorem of Rahman and Grozev) Let ˛ � � 1
2

and p > 1, or let
�1 < ˛ < � 1

2
and 1 < p < 2

j2˛C1j . Let f W R ! R be Riemann integrable over
every finite interval and satisfy for some ı > 0,

j f .x/j � C .1C jxj/�˛� 1
2� 1

p �ı
; x 2 R:

Then

lim
	!1

Z 1

�1

ˇ̌
ˇjxj˛C 1

2 . f .x/� L	 Œ f I x�/
ˇ̌
ˇ
p

dx D 0:

Note that p D 2 is always included. The proof of this theorem involves a lot
of tools: detailed properties of entire functions of exponential type and of Bessel
functions, and a converse Marcinkiewicz-Zygmund inequality that is itself of great
interest.

In this paper, we explore convergence of interpolation at scaled zeros of Airy
functions. Recall that the Airy function Ai is given on the real line by [1, 10.4.32,
p. 447]

Ai .x/ D 1

�

Z 1

0

cos



1

3
t3 C xt

�
dt:

The Airy function Ai is an entire function of order 3
2
, with only real negative zeros˚

aj
�
, where

0 > a1 > a2 > a3 > � � � :

Ai satisfies the differential equation

Ai00 .z/ � zAi .z/ D 0:

The Airy kernel Ai .�; �/, much used in random matrix theory, is defined [8] by

Ai .a; b/ D
(

Ai.a/Ai0.b/�Ai0.a/Ai.b/
a�b ; a ¤ b;

Ai0 .a/2 � aAi .a/2 ; a=b.

Observe that

`j .z/ D Ai
�
z; aj

�

Ai
�
aj; aj

� D Ai .z/

Ai0
�
aj
� �

z� aj
� ;
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is the Airy analogue of a fundamental of Lagrange interpolation, satisfying

`j .ak/ D ıjk:

There is an analogue of sampling series and Lagrange interpolation series involving˚
`j
�
:

Definition 1 Let G be the class of all functions g W C ! C with the following
properties:

(a) g is an entire function of order at most 3
2
;

(b) There exists L > 0 such that for ı 2 .0; �/, some Cı > 0, and all z 2 C with
jarg zj � � � ı,

jg .z/j � Cı .1C jzj/L
ˇ
ˇ
ˇ
ˇexp



�2
3

z
3
2

�ˇˇ
ˇ
ˇ I

(c)

1X

jD1

ˇ
ˇg
�
aj
�ˇˇ2

ˇ
ˇaj

ˇ
ˇ1=2

<1:

In [8, Corollary 1.3, p. 429], it was shown that each g 2 G admits the expansion

g .z/ D
1X

jD1
g
�
aj
� Ai

�
z; aj

�

Ai
�
aj; aj

� :

Moreover, for f ; g 2 G , there is the quadrature formula [8, Corollary 1.4, p. 429]

Z 1

�1
f .x/ g .x/ dx D

1X

jD1

. fg/
�
aj
�

Ai
�
aj; aj

� :

In analogy with the entire interpolants of Grozev-Rahman, we define for f W R! R,
the formal series

L	 Œ f I z� D
1X

jD1
f
�aj

	

	
`j .	z/ D

1X

jD1
f
�aj

	

	
Ai
�
	z; aj

�

Ai
�
aj; aj

� : (1)

Note that it samples f only in .�1; 0/.
We prove:

Theorem 5 Let f W R ! R be bounded and Riemann integrable in each finite
interval, with f .x/ D 0 in Œ0;1/. Assume in addition that for some ˇ > 1

2
, and

x 2 R,

j f .x/j � C .1C jxj/�ˇ : (2)
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Then

lim
	!1

Z 1

�1
. f .x/ � L	 Œ f I x�/2 dx D 0: (3)

Observe that the integration is over the whole real line. We expect that there is
an analogue of this theorem at least for all p > 1. However, this seems to require
a converse Marcinkiewicz-Zygmund inequality estimating Lp norms of appropriate
classes of entire functions in terms of their values at Airy zeros. This is not available,
so we content ourselves with a weaker result for the related operator

L
�
	 Œ f I z� D

1X

jD1
f
�a2j�1
	

	 �
`2j�1 .	z/C `2j .	z/

�
:

This interpolates f at each a2j�1

	
, but not at a2j

	
.

Theorem 6

(a) For bounded functions f W R! R, and 	 � ja1j,

sup
x2R
jL�
	 Œ f I x�j � C sup

j

ˇ
ˇ
ˇ f
�a2j�1
	

	ˇˇ
ˇ ; (4)

where C is independent of 	 � 1 and f .
(b) Let 4

5
< p < 1. Let f W R ! R be bounded and Riemann integrable in each

finite interval, with f .x/ D 0 in Œ0;1/.Assume in addition that for some ˇ > 1
p ,

and x 2 R, we have (2). Then

lim
	!1

Z 1

�1
j f .x/ � L

�
	 Œ f I x�jp dx D 0: (5)

Note that L�
	

�
f I z

	

� 2 G , so this also establishes density of that class of functions
in a suitable space of functions containing those in Theorem 6. The usual approach
to Erdős-Turan theorems is via quadrature formulae and density of polynomials, or
entire functions of exponential type, in appropriate spaces. The latter density is not
available for G . So in Sect. 2, we establish convergence for characteristic functions
of intervals. We prove Theorems 5 and 6 in Sect. 3. Throughout C;C1;C2; : : :
denote positive constants independent of n; x; z; t; 	 , and possibly other specified
quantities. The same symbol does not necessarily denote the same constant in
different occurrences, even when used in the same line.
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2 Interpolation of Step Functions

We prove:

Theorem 7 Let r > 0, and f denote the characteristic function �Œ�r;0� of the interval
Œ�r; 0�. Then for p > 4

5
,

lim
	!1

Z 1

�1
jL	 Œ f I x� � f .x/jp dx D 0: (6)

and

lim
	!1

Z 1

�1
jL�
	 Œ f I x� � f .x/jp dx D 0: (7)

This section is organized as follows: we first recall some asymptotics associated
with Airy functions. Then we prove some estimates on integrals involving the
fundamental polynomials `j. Next we prove the case p D 2 of Theorem 7. Then
we estimate a certain sum and finally prove the general case of Theorem 7.

Firstly, the following asymptotics and estimates are listed on pp. 448–449 of [1]:
see (10.4.59–61) there.

Ai .x/ D 1

2�1=2
x�1=4 exp



�2
3

x
3
2

�
.1C o .1//; x!1I (8)

Ai .�x/ D ��1=2x�1=4
�

sin



2

3
x
3
2 C �

4

�
C O

�
x� 3

2

	
; x!1: (9)

Then as Ai is entire, for x 2 Œ0;1/,

jAi .x/j � C .1C x/�1=4 exp



�2
3

x
3
2

�
and (10)

jAi .�x/j � C .1C x/�1=4 I

Ai0 .�x/ D ���1=2x1=4 cos



2

3
x
3
2 C �

4

��
1C O

�
x� 4

3

		
(11)

C O
�

x� 2
3

	
; x!1:

Next, the zeros
˚
aj
�

of Ai satisfy [1, p. 450, (10.4.94,96)]

aj D � Œ3� .4j� 1/ =8�2=3


1C O



1

j2

��
(12)

D �


3�j

2

�2=3
.1C o .1// :
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Consequently,

ˇ
ˇajC1

ˇ
ˇ� ˇˇaj

ˇ
ˇ D �

ˇ
ˇaj

ˇ
ˇ1=2

.1C o .1// : (13)

In addition,

Ai0
�
aj
� D .�1/j�1 ��1=2



3�

8
.4j� 1/

�1=6 �
1C O

�
j�2
��

(14)

D .�1/j�1 ��1=2 ˇˇaj

ˇ
ˇ1=4 .1C o .1// :

A calculation shows that

ˇ
ˇAi0

�
aj
�ˇˇ� ˇˇAi0

�
aj�1

�ˇˇ D C0j
�5=6.1CO

�
j�1
�
/; C0 D 1

6



3

2�2

�1=6
: (15)

Define the Scorer function [1, p. 448, (10.4.42)]

Gi .x/ D 1

�

Z 1

0

sin



t3

3
C xt

�
dt: (16)

We shall use an identity for the Hilbert transform of the Airy function [24, p. 71,
eqn. (4.4)]:

1

�
PV

Z 1

�1
Ai .t/

t � x
dt D �Gi .x/ : (17)

Here PV denotes Cauchy principal value integral. We also use [1, p. 450, eqn.
(10.4.87)]

Gi .�x/ D ��1=2x�1=4
�

cos



2

3
x
3
2 C �

4

�
C o .1/


; x!1: (18)

Finally the Airy kernel Ai .a; b/ satisfies [8, p. 432]

Z 1

�1
Ai
�
aj; s

�
Ai .s; ak/ ds D ıjkAi

�
aj; aj

� D ıjkAi0
�
aj
�2
:

Thus
Z 1

�1
`j .s/ `k .s/ ds D ıjk

1

Ai
�
aj; aj

� D ıjk
1

Ai0
�
aj
�2 : (19)
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Lemma 1

(a) As j!1,

Z 1

�1
`j .t/ dt D �

ˇ̌
aj

ˇ̌1=2 .1C o .1//: (20)

(b) Uniformly in j; r with r >
ˇ
ˇaj

ˇ
ˇ,

Z 0

�r
`j .t/ dt D �

ˇ
ˇaj

ˇ
ˇ1=2

.1C o .1/C O

 
1

ˇ
ˇaj

ˇ
ˇ1=4 r3=4

�
r � ˇˇaj

ˇ
ˇ�

!

: (21)

Proof

(a) Now (17) yields

1

�

Z 1

�1
`j .t/ dt D �Gi

�
aj
�

Ai0
�
aj
� (22)

Here using (12),

cos



2

3

ˇ̌
aj

ˇ̌ 3
2 C �

4

�
D .�1/j C O



1

j

�
;

so from (18),

Gi
�
aj
� D ��1=2 ˇˇaj

ˇ
ˇ�1=4 .�1/j .1C o .1// :

Substituting this and (14) into (22) gives

1

�

Z 1

�1
`j .t/ dt D 1

ˇ̌
aj

ˇ̌1=2 .1C o .1//:

(b) Using the bound (10),

Z 1

0

ˇ
ˇ`j .t/

ˇ
ˇ dt � C

ˇ
ˇAi0

�
aj
�ˇˇ

Z 1

0

t�1=4 exp
�
� 2
3
t
3
2

	

t � aj
dt

� C
ˇ
ˇajAi0

�
aj
�ˇˇ � C

ˇ
ˇaj

ˇ
ˇ�5=4 ; (23)
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recall (14). Next,

ˇ
ˇ̌
ˇ

Z �r

�1
`j .t/ dt

ˇ
ˇ̌
ˇ D

1
ˇ
ˇAi0

�
aj
�ˇˇ

ˇ
ˇ̌
ˇ

Z 1

r

Ai .�x/

xC aj
dx

ˇ
ˇ̌
ˇ (24)

D 1
ˇ
ˇAi0

�
aj
�ˇˇ

ˇ
ˇ̌
ˇ
ˇ
��1=2

Z 1

r

x�1=4 sin
�
2
3
x
3
2 C �

4

	

xC aj
dx

C O

 Z 1

r

x�7=4
ˇ
ˇxC aj

ˇ
ˇdx

! ˇˇ
ˇ̌
ˇ
;

by (9). Here,

I D
Z 1

r

x�1=4 sin
�
2
3
x
3
2 C �

4

	

xC aj
dx

D
Z 1

r

�x� 3
4

d
dx

h
cos

�
2
3
x
3
2 C �

4

	i

xC aj
dx

D cos
�
2
3
r3=2 C �

4

�

r3=4
�
r � ˇˇaj

ˇ
ˇ� C

Z 1

r
cos



2

3
x
3
2 C �

4

�
d

dx

"
1

x3=4.x � ˇˇaj

ˇ
ˇ/

#

dx

D O

 
1

r3=4
�
r � ˇˇaj

ˇ
ˇ�

!

CO

 Z 1

r

ˇ
ˇ
ˇ
ˇ
ˇ

d

dx

"
1

x3=4.x � ˇˇaj

ˇ
ˇ/

#ˇˇ
ˇ
ˇ
ˇ
dx

!

D O

 
1

r3=4
�
r � ˇˇaj

ˇ
ˇ�

!

; (25)

as 1

x3=4.x�jajj/ is decreasing in Œr;1/. Next,

Z 1

r

x�7=4
ˇ
ˇxC aj

ˇ
ˇdx � 1

r � ˇˇaj

ˇ
ˇ

Z 1

r
x�7=4dx � C

r3=4
�
r � ˇˇaj

ˇ
ˇ� :

Thus, using also (25) in (24),

ˇ̌
ˇ
ˇ

Z �r

�1
`j .t/ dt

ˇ̌
ˇ
ˇ �

C
ˇ
ˇaj

ˇ
ˇ1=4 r3=4

�
r � ˇˇaj

ˇ
ˇ�
:

Together with (20) and (23), this gives the result (21).
ut
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Lemma 2 Let L � 1, and

SL .x/ D
LX

jD1
`j .x/ D

LX

jD1

Ai
�
x; aj

�

Ai
�
aj; aj

� : (26)

Then

lim
L!1

1

jaLC1j
Z 1

�1

�
SL .x/ � �ŒaLC1;0� .x/

	2
dx D 0: (27)

Proof Using (19), and then (14),

Z
1

�1

�
SL .x/ � �ŒaLC1;0� .x/

	2
dx

D
LX

jD1

1

Ai0
�
aj
�2 � 2

LX

jD1

Z 0

aLC1

`j .x/ dxC jaLC1j

D
LX

jD1

�
ˇ
ˇaj

ˇ
ˇ1=2

.1C o .1//

� 2
LX

jD1

(
�

ˇ
ˇaj

ˇ
ˇ1=2

 

1C o .1/C O

 
1

jaLC1j3=4
ˇ
ˇaj

ˇ
ˇ1=4 �jaLC1j �

ˇ
ˇaj

ˇ
ˇ�

!!)

C jaLC1j

D jaLC1j �
LX

jD1

�
ˇ̌
aj

ˇ̌1=2 .1C o .1//

CO

0

@jaLC1j�3=4
LX

jD1

1
ˇ̌
aj

ˇ̌1=4 �jaLC1j �
ˇ̌
aj

ˇ̌�

1

A ; (28)

by (14) and (21). Here using (13),

LX

jD1

�
ˇ
ˇaj

ˇ
ˇ1=2
D

LX

jD1

�ˇ̌
ajC1

ˇ̌� ˇ̌aj

ˇ̌�
.1C o .1// D jaLC1j .1C o .1// : (29)

Also, from (12),

jaLC1j�3=4
LX

jD1

1
ˇ
ˇaj

ˇ
ˇ1=4 �jaLC1j �

ˇ
ˇaj

ˇ
ˇ�

� C jaLC1j�7=4
LX

jD1

1

j1=6
�
1 � j

LC1
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� C jaLC1j�7=4
Z L

0

1

x1=6
�
1 � x

LC1
�dx

� C jaLC1j�7=4 L5=6 log L

� C jaLC1j�1=2 log L: (30)

Substituting this and (29) into (28), gives

Z 1

�1

�
SL .x/ � �ŒaLC1;0� .x/

	2
dx

D o .jaLC1j/C O
�

C jaLC1j�1=2 log L
	
D o .jaLC1j/ :

ut
Proof of Theorem 7 for p D 2 Given 	 � ja1j =r, choose L D L .	/ by the
inequality

jaLj � 	r < jaLC1j : (31)

Then

L	 Œ f I x� D
X

aj=	2Œ�r;0�

`j .	x/ D
LX

jD1
`j .	x/ : (32)

By Lemma 2,
Z 1

�1

�
L	 Œ f I x� � �ŒaLC1;0� .	x/

	2
dx

D 1

	

Z 1

�1

0

@
LX

jD1
`j .t/ � �ŒaLC1;0� .t/

1

A

2

dt

D 1

	
o .jaLC1j/ D o .1/ ;

as 	 !1. Also, as 	 !1,
Z 1

�1

�
�Œr;0� .x/ � �ŒaLC1;0� .	x/

	2
dx

D
Z 1

�1
�h aLC1

	 ;r
i .x/2 dx

D jaLC1j
	
� r � jaLC1j � jaLj

	
D O

�
L�1=3	�1� D o .1/ :
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Then (6) follows. Since L	 Œ f I x� D L
�
	 Œ f I x� if L above is even, (7) also follows. The

case of odd L is easily handled by estimating separately the single extra term. ut
Next we bound a generalization of SL .x/:

Lemma 3 Let A > 0, 0 � ˇ < 5
4

and
˚
cj
�1

jD1 be real numbers such that for j � 1,

c2j D c2j�1; (33)

and

ˇ
ˇc2j�1

ˇ
ˇ � A

�
1C ˇˇa2j

ˇ
ˇ��ˇ : (34)

Let

OS .x/ D
1X

jD1
cj`j.x/:

Then the series converges and for all real x,

ˇ
ˇ̌OS .x/

ˇ
ˇ̌ � CA .1C jxj/�ˇ : (35)

Here C is independent of x;A, and
˚
cj
�1

jD1.

Proof We may assume that A D 1. We assume first that x 2 .�1; 0/, as this is
the most difficult case. Set a0 D 0. Choose an even integer j0 � 2 such that x 2
Œaj0 ; aj0�2/. Let us first deal with central terms: assume that j � 1 and j j� j0j � 3.
Then

ˇ
ˇ`j .x/

ˇ
ˇ D 1

ˇ
ˇAi0

�
aj
�ˇˇ

ˇ
ˇ
ˇ
ˇ̌
Ai .x/ � Ai

�
aj
�

x � aj

ˇ
ˇ
ˇ
ˇ̌ D

ˇ
ˇ
ˇ
ˇ̌

Ai0 .t/
Ai0
�
aj
�

ˇ
ˇ
ˇ
ˇ̌ ;

for some t between x and aj, so .jtj C 1/ = ˇˇaj

ˇ
ˇ � 1. Using (11), (14), and the

continuity of Ai0, we see that

ˇ
ˇ`j .x/

ˇ
ˇ � C

.1C jtj/1=4
ˇ
ˇaj

ˇ
ˇ1=4

� C:

Thus as jxj C 1 � ˇˇaj0

ˇ
ˇ, and (34) holds,

X

jWj j�j0j�3

ˇ
ˇcj`j .x/

ˇ
ˇ � C .1C jxj/�ˇ : (36)
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Again, we emphasize that C is independent of L and x and
˚
cj
�
. We turn to the

estimation of

S� .x/ D
0

@
j0�4X

jD1
C

1X

jDj0C3

1

A cj`j .x/ :

Recall from (14) that Ai0
�
aj
�

has sign .�1/j�1. Then

S� .x/

D Ai .x/

0

@
. j0�4/=2X

kD1

C
1X

kDj0=2C2

1

A c2k�1

�
1

jAi0 .a2k�1/j .x � a2k�1/
� 1

jAi0 .a2k/j .x� a2k/



D Ai .x/ .˙1 C˙2/ ; (37)

where

˙1 D
0

@
. j0�4/=2X

kD1
C

1X

kDj0=2C2

1

A c2k�1
jAi0 .a2k�1/j



1

x � a2k�1
� 1

x � a2k

�

D
0

@
. j0�4/=2X

kD1
C

1X

kDj0=2C2

1

A c2k�1
jAi0 .a2k�1/j

a2k�1 � a2k

.x � a2k�1/ .x � a2k/
(38)

and

˙2 D
0

@
. j0�4/=2X

kD1
C

1X

kDj0=2C2

1

A c2k�1



1

jAi0 .a2k�1/j �
1

jAi0 .a2k/j
�

1

x � a2k
:

Then if I denotes the set of integers k with either 1 � k � . j0 � 4/ =2 or k �
j0=2 C 2, we see that jx�a2kj

jx�a2k�1j , and ja2k�1�a2kj
ja2k�2�a2kj are bounded above and below by

positive constants independent of k; x, so using (14) and (34), so

˙1 � C
X

k2I

1

ja2kj1=4Cˇ
ja2k�2 � a2kj
.x � a2k/

2

� C
Z

Œja1j;1/nŒjaj0�3j;jaj0C1j�
1

t1=4Cˇ
1

.jxj � t/2
dt

D C
ˇ
ˇaj0

ˇ
ˇ5=4Cˇ

Z

Œ
ja1jjaj0 j ;1/n

" jaj0�3j
jaj0 j ;

jaj0C1j
jaj0 j

# 1

s1=4Cˇ
1



jxj
jaj0 j � s

�2 ds
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� C
ˇ
ˇaj0

ˇ
ˇ5=4Cˇ

0

B
@

8
<̂

:̂

ˇ
ˇaj0

ˇ
ˇˇ�3=4

; ˇ > 3=4

log
ˇ
ˇaj0 ;

ˇ
ˇ ˇ D 3=4

1; ˇ < 3=4

9
>=

>;
C

ˇ
ˇaj0

ˇ
ˇ

ˇ̌jxj � ˇ̌aj0�3
ˇ̌ˇ̌ C

ˇ
ˇaj0

ˇ
ˇ

ˇ̌jxj � ˇ̌aj0C1
ˇ̌ˇ̌

1

C
A

� C

 
1

ˇ̌
aj0

ˇ̌�1=4Cˇ C
ˇ
ˇaj0

ˇ
ˇ1=2

ˇ̌
aj0

ˇ̌1=4Cˇ

!

� C .1C jxj/1=4�ˇ ; (39)

recall that ˇ < 5
4
, and that

ˇ
ˇjxj � ˇˇaj0�3

ˇ
ˇ
ˇ
ˇ � ˇˇˇˇaj0

ˇ
ˇ� ˇˇaj0�2

ˇ
ˇ
ˇ
ˇ � C

ˇ
ˇaj0

ˇ
ˇ�1=2, by (13).

Next, using (13)–(15) and (34),

j˙2j � C
X

k2I

k�5=6

ja2kjˇ jAi0 .a2k�1/j jAi0 .a2k/j
1

jx � a2kj

� C
X

k2I

.ja2kj � ja2k�2j/
ja2kj5=4Cˇ

1

jx � a2kj

� C
Z

Œja1j;1/nŒjaj0�3j;jaj0C1j�
1

t5=4Cˇ jjxj � tjdt

� C
ˇ
ˇaj0

ˇ
ˇ5=4Cˇ

Z

Œ
ja1jjaj0 j ;1/n

" jaj0�3j
jaj0 j ;

jaj0C1j
jaj0 j

# 1

s5=4Cˇ
1

ˇ
ˇ̌
ˇ

jxj
jaj0 j � s

ˇ
ˇ̌
ˇ

ds

� C
ˇ
ˇaj0

ˇ
ˇ5=4Cˇ

 
ˇ
ˇaj0

ˇ
ˇ1=4Cˇ C

ˇ
ˇ
ˇ
ˇ̌log

ˇ
ˇ
ˇ
ˇ̌
jxj
ˇ
ˇaj0

ˇ
ˇ �

ˇ̌
aj0�3

ˇ̌

ˇ
ˇaj0

ˇ
ˇ

ˇ
ˇ
ˇ
ˇ̌

ˇ
ˇ
ˇ
ˇ̌C

ˇ
ˇ
ˇ
ˇ̌log

ˇ
ˇ
ˇ
ˇ̌
jxj
ˇ
ˇaj0

ˇ
ˇ �

ˇ̌
aj0C1

ˇ̌

ˇ
ˇaj0

ˇ
ˇ

ˇ
ˇ
ˇ
ˇ̌

ˇ
ˇ
ˇ
ˇ̌

!

� C
�ˇ
ˇaj0

ˇ
ˇ�1 C ˇˇaj0

ˇ
ˇ�5=4�ˇ log j0

	
� C .1C jxj/1=4�ˇ ;

recall ˇ < 5
4
. Substituting this and (39) into (37) gives

jS� .x/j � C jAi .x/j .1C jxj/1=4�ˇ � C .1C jxj/�ˇ ;

in view of (10). This and (36) gives (35). Finally, the case where x � 0 is easier. ut
We deduce:

Proof of Theorem 7 for the general case Recall that f D �Œ�r;0�. Assume first p >
2. The previous lemma (with all cj D 1 and ˇ D 0) shows that

jL	 Œ f I x� � f .x/j � sup
x2R
jL	 Œ f I x�j C 1 � C;
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where C is independent of 	 . We can then apply the case p D 2 of Theorem 7:

lim sup
	!1

Z 1

�1
jL	 Œ f I x� � f .x/jp dx

� Cp�2 lim sup
	!1

Z 1

�1
jL	 Œ f I x� � f .x/j2 dx D 0:

Next, if 4
5
< p < 2, and s � 2r, Hölder’s inequality gives

lim sup
	!1

Z s

�s
jL	 Œ f I x� � f .x/jp dx

� lim sup
	!1


Z s

�s
jL	 Œ f I x� � f .x/j2 dx

� p
2

.2s/1�
p
2 D 0: (40)

Next, for jxj � s > 2r, and all 	 , we have

jL	 Œ f I x� � f .x/j �
X

aj2Œ�	r;0�

jAi .	x/j
ˇ
ˇAi0

�
aj
�ˇˇ
ˇ
ˇ	x � aj

ˇ
ˇ

� C
jAi .	x/j
	 jxj

X

aj2Œ�	r;0�

1
ˇ
ˇaj

ˇ
ˇ1=4

� C .	 jxj/�5=4
X

j�C.	r/3=2

1

j1=6

� C .	 jxj/�5=4 .	r/5=4 D Cr5=4 jxj�5=4 :
Thus

lim sup
	!1

Z

jxj�s
jL	 Œ f I x� � f .x/jp dx � C

Z

jxj�s
jxj�5p=4 dx � Cs1�5p=4 ! 0

as s ! 1, recall p > 4=5. Together with (40), this gives (6). Of course (7) also
follows as L�

	 Œ f I x� differs from L	 Œ f I x� in at most one term, which can easily be
estimated. ut

3 Proof of Theorems 5 and 6

Proof of Theorem 5 Suppose first that f is bounded and Riemann integrable, and
supported in .�r; 0�, some r > 0. Let " > 0. Then we can find a (piecewise constant)
step function g also compactly supported in .�r; 0� such that both

g � f in R and
Z 1

�1
. f � g/2 < "2:
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This follows directly from the theory of Riemann sums and the boundedness of f .
Theorem 7 implies that for any such step function g,

lim
	!1


Z 1

�1
.g .x/� L	 ŒgI x�/2 dx

�1=2
D 0:

Then using also the orthonormality relation (19),

lim sup
	!1


Z 1

�1
. f .x/� L	 Œ f I x�/2 dx

�1=2

�

Z 1

�1
. f .x/� g .x//2 dx

�1=2
C lim sup

	!1


Z 1

�1
.g .x/� L	 ŒgI x�/2 dx

�1=2

C lim sup
	!1


Z 1

�1
L	 Œg � f I x�2 dx

�1=2

� "C 0C lim sup
	!1

0

B
@
1

	

Z 1

�1

0

@
1X

jD1
. f � g/

�aj

	

	
`j .x/

1

A

2

dx

1

C
A

1=2

D "C lim sup
	!1

0

@1
	

X

aj2.�	r;0/

. f � g/2
� aj

	

�

Ai0
�
aj
�2

1

A

1=2

D "C C lim sup
	!1

0

B
@

X

aj
	 2.�r;0/

 ˇ
ˇaj

ˇ
ˇ

	
�
ˇ
ˇaj�1

ˇ
ˇ

	

!

. f � g/2
�aj

	

	
1

C
A

1=2

D "C C


Z 0

�r
j f � gj2 .x/ dx

�1=2
� C":

Here C is independent of "; g and f , and we have used (13), (14), that maxj

� jajj
	
�

jaj�1j
	

	
! 0 as 	 !1, and the theory of Riemann sums. So we have the result for

such compactly supported f . Now assume that f is supported in .�1;�r/ and for
some ˇ > 1

2
, (2) holds. Then using (19) again,


Z 1

�1
. f .x/ � L	 Œ f I x�/2 dx

�1=2

�

Z 1

r
f 2 .x/ dx

�1=2
C
0

@1
	

X

aj2.�1;�	r/

f 2
� aj

	

�

Ai0
�
aj
�2

1

A

1=2
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� C


Z 1

r
.1C jxj/�2ˇ dx

�1=2
C C

0

B
BB
@
1

	

X

aj2.�1;�	r/


 jajj
	

��2ˇ

ˇ
ˇaj

ˇ
ˇ1=2

1

C
CC
A

� Cr
1
2�ˇ C C

0

@1
	

X

aj2.�1;�	r/

 ˇ
ˇaj

ˇ
ˇ

	

!�2ˇ
�ˇ̌

aj

ˇ̌� ˇ̌aj�1
ˇ̌�
1

A

1=2

� Cr
1
2�ˇ C C



	�1C2ˇ

Z 1

	r
t�2ˇdt

�1=2
� Cr1=2�ˇ;

where C is independent of r and 	 . So

lim sup
	!1


Z 1

�1
. f .x/� L	 Œ f I x�/2 dx

�1=2
� Cr1=2�ˇ:

This can be made arbitrarily small for large enough r. Together with the case above,
this easily implies the result. ut
Proof of Theorem 6

(a) From Lemma 3 with ˇ D 0,

sup
x2R

ˇ
ˇ
ˇ
ˇ
ˇ̌

1X

jD1
f
�a2j�1
	

	 �
`2j�1 .	x//C `2j .	x/

�
ˇ
ˇ
ˇ
ˇ
ˇ̌ � C sup

j

ˇ
ˇ
ˇ f
�a2j�1
	

	ˇˇ
ˇ :

Here C is independent of f ; 	 .
(b) For p D 2, the exact same proof as of Theorem 5 gives

lim
	!1

Z 1

�1
�
L

�
	 Œ f I x� � f .x/

�2
dx D 0:

If p > 2, we can use the boundedness of the operators, to obtain

lim sup
	!1

Z 1

�1
jL�
	 Œ f I x� � f .x/jp dx

� lim sup
	!1



sup
x2R
jL�
	 Œ f I x� � f .x/j

�p�2 Z 1

�1
jL�
	 Œ f I x� � f .x/j2 dx

� C kfkp�2
L

1

.R/
lim sup
	!1

Z 1

�1
jL�
	 Œ f I x� � f .x/j2 dx D 0:
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Now let 4
5
< p < 2. Let s > 0. Hölder’s inequality gives

lim sup
	!1

Z s

�s
jL�
	 Œ f I x� � f .x/jp dx

� lim sup
	!1


Z s

�s
jL�
	 Œ f I x� � f .x/j2 dx

� p
2

.2s/1�
p
2 D 0; (41)

by the case p D 2. Next, our bound (2) on f and Lemma 3 show that for all x,

jL�
	 Œ f I x� � f .x/j � C .1C jxj/�ˇ :

Then
Z

jxj�s
jL�
	 Œ f I x� � f .x/jp dx

� C
Z 1

s
.1C jxj/�pˇ dx � Cs1�pˇ ! 0 as s!1;

as ˇ > 1
p .

ut
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Exponential Sum Approximations for t�ˇ

William McLean

Dedicated to Ian H. Sloan on the occasion of his 80th birthday.

Abstract Given ˇ > 0 and ı > 0, the function t�ˇ may be approximated
for t in a compact interval Œı;T� by a sum of terms of the form we�at, with
parameters w > 0 and a > 0. One such an approximation, studied by Beylkin and
Monzón (Appl. Comput. Harmon. Anal. 28:131–149, 2010), is obtained by applying
the trapezoidal rule to an integral representation of t�ˇ , after which Prony’s method
is applied to reduce the number of terms in the sum with essentially no loss of
accuracy. We review this method, and then describe a similar approach based on
an alternative integral representation. The main difference is that the new approach
achieves much better results before the application of Prony’s method; after applying
Prony’s method the performance of both is much the same.

1 Introduction

Consider a Volterra operator with a convolution kernel,

K u.t/ D .k  u/.t/ D
Z t

0

k.t � s/u.s/ ds for t > 0; (1)

and suppose that we seek a numerical approximation to K u at the points of a
grid 0 D t0 < t1 < t2 < � � � < tNt D T. For example, if we know Un 
 u.tn/
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and define (for simplicity) a piecewise-constant interpolant QU.t/ D Un for t 2 In D
.tn�1; tn/, then

K u.tn/ 
K QU.tn/ D
nX

jD1
!njU

j where !nj D
Z

Ij

k.tn � s/ ds:

The number of operations required to compute this sum in the obvious way for 1 �
n � Nt is proportional to

PNt
nD1 n 
 N2

t =2, and this quadratic growth can be
prohibitive in applications where each Uj is a large vector and not just a scalar.
Moreover, it might not be possible to store Uj in active memory for all time levels j.

These problems can be avoided using a simple, fast algorithm if the kernel k
admits an exponential sum approximation

k.t/ 

LX

lD1
wle

blt for ı � t � T; (2)

provided sufficient accuracy is achieved using only a moderate number of terms L,
for a choice of ı > 0 that is smaller than the time step �tn D tn � tn�1 for all n.
Indeed, if �tn � ı then ı � tn � s � T for 0 � s � tn�1 so

n�1X

jD1
!njU

j D
Z tn�1

0

k.tn � s/ QU.s/ ds 

Z tn�1

0

LX

lD1
wle

bl.tn�s/ QU.s/ ds D
LX

lD1
�n

l ;

where

�n
l D wl

Z tn�1

0

ebl.tn�s/ QU.s/ ds D
n�1X

jD1
�lnjU

j and �lnj D wl

Z

Ij

ebl.tn�s/ ds:

Thus,

K QU.tn/ 
 !nnUn C
LX

lD1
�n

l ; (3)

and by using the recursive formula

�n
l D �ln;n�1Un�1 C ebl�tn�n�1

l for n � 2; with �1
l D 0;

we can evaluate K QU.tn/ for 1 � n � N to an acceptable accuracy with a number
of operations proportional to LNt—a substantial saving if L � Nt. In addition, we
may overwrite�n�1

l with�n
l , and overwrite Un�1 with Un, so that the active storage

requirement is proportional to L instead of Nt.
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In the present work, we study two exponential sum approximations to the
kernel k.t/ D t�ˇ with ˇ > 0. Our starting point is the integral representation

1

tˇ
D 1

� .ˇ/

Z 1

0

e�ptpˇ
dp

p
for t > 0 and ˇ > 0; (4)

which follows easily from the integral definition of the Gamma function via the
substitution p D y=t (if y is the original integration variable). Section 2 discusses
the results of Beylkin and Monzón [3], who used the substitution p D ex in (4) to
obtain

1

tˇ
D 1

� .ˇ/

Z 1

�1
exp.�tex C ˇx/ dx: (5)

Applying the infinite trapezoidal rule with step size h > 0 leads to the approximation

1

tˇ

 1

� .ˇ/

1X

nD�1
wne�ant (6)

where

an D ehn and wn D heˇnh: (7)

We will see that the relative error,


.t/ D 1 � tˇ

� .ˇ/

1X

nD�1
wne�ant; (8)

satisfies a uniform bound for 0 < t <1. If t is restricted to a compact interval Œı;T�
with 0 < ı < T < 1, then we can similarly bound the relative error in the finite
exponential sum approximation

1

tˇ

 1

� .ˇ/

NX

nD�M

wne�ant for ı � t � T; (9)

for suitable choices of M > 0 and N > 0.
The exponents an D enh in the sum (9) tend to zero as n ! �1. In Sect. 3

we see how, for a suitable threshold exponent size a�, Prony’s method may be
used to replace

P
an�a�

wne�ant with an exponential sum having fewer terms. This
idea again follows Beylkin and Monzón [3], who discussed it in the context of
approximation by Gaussian sums.
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Section 4 introduces an alternative approach based on the substitution p D
exp.x � e�x/, which transforms (4) into the integral representation

1

tˇ
D 1

� .ˇ/

Z 1

�1
exp

��'.x; t/�.1C e�x/ dx; (10)

where

'.x; t/ D tp � ˇ log p D t exp.x � e�x/� ˇ.x � e�x/: (11)

Applying the infinite trapezoidal rule again leads to an approximation of the
form (6), this time with

an D exp
�
nh� e�nh

�
and wn D h.1C e�nh/ exp

�
ˇ.nh � e�nh/

�
: (12)

As x!1, the integrands in both (5) and (10) decay like exp.�tex/. However, they
exhibit different behaviours as x! �1, with the former decaying like eˇx D e�ˇjxj
whereas the latter decays much faster, like exp.�ˇe�x/ D exp.�ˇejxj/, as seen in
Fig. 1 (note the differing scales on the vertical axis).

Fig. 1 Top: the integrand from (10) when ˇ D 1=2 for different t. Bottom: comparison between
the integrands from (5) and (10) when t D 0:01; the dashed line is the former and the solid line the
latter
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Li [5] summarised several alternative approaches for fast evaluation of a frac-
tional integral of order ˛, that is, for an integral operator of the form (1) with kernel

k.t/ D t˛�1

� .˛/
D sin�˛

�

Z 1

0

e�ptp�˛ dp for 0 < ˛ < 1 and t > 0; (13)

where the integral representation follows from (4), with ˇ D 1�˛, and the reflection
formula for the Gamma function, � .˛/� .1 � ˛/ D �= sin�˛. She developed a
quadrature approximation,

Z 1

0

e�ptp�˛ dp 

QX

jD1
wje

�pjtp�˛
j for ı � t <1; (14)

which again provides an exponential sum approximation, and showed that the error
can be made smaller than � for all t 2 Œı;1/ with Q of order .log ��1 C log ı�1/2.

More recently, Jiang et al. [4] developed an exponential sum approximation for
t 2 Œı;T� using composite Gauss quadrature on dyadic intervals, applied to (5),
with Q of order

.log ��1/ log
�
Tı�1 log ��1�C .log ı�1/ log

�
ı�1 log ��1�:

In other applications, the kernel k.t/ is known via its Laplace transform,

Ok.z/ D
Z 1

0

e�ztk.t/ dt;

so that instead of the exponential sum (2) it is natural to seek a sum-of-poles
approximation,

Ok.z/ 

LX

lD1

wl

z � bl

for z in a suitable region of the complex plane; see, for instance, Alpert et al. [2] and
Xu and Jian [7].

2 Approximation Based on the Substitution p D ex

The nature of the approximation (6) is revealed by a remarkable formula for the
relative error [3, Section 2]. For completeness, we outline the proof.
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Theorem 1 If the exponents and weights are given by (7), then the relative error (8)
has the representation


.t/ D �2
1X

nD1
R.n=h/ cos

�
2�.n=h/ log t �˚.n=h/

�
(15)

where R.�/ and ˚.�/ are the real-valued functions defined by

� .ˇ C i2��/

� .ˇ/
D R.�/ei˚.�/ with R.�/ > 0 and ˚.0/ D 0:

Moreover, R.�/ � e�2�� j�j=.cos �/ˇ for 0 � � < �=2 and �1 < � <1.

Proof For each t > 0, the integrand f .x/ D exp.�tex C ˇx/ from (5) belongs to the
Schwarz class of rapidly decreasing C1 functions, and we may therefore apply the
Poisson summation formula to conclude that

h
1X

nD�1
f .nh/ D

1X

nD�1
Qf .n=h/ D

Z 1

�1
f .x/ dxC

X

n¤0
Qf .n=h/;

where the Fourier transform of f is

Qf .�/ D
Z 1

�1
e�i2��xf .x/ dx D

Z 1

�1
exp

��tex C .ˇ � i2��/x
�

dx:

The substitution p D tex gives

Qf .�/ D 1

tˇ�i2��

Z 1

0

e�ppˇ�i2�� dp

p
D � .ˇ � i2��/

tˇ�i2��
;

so, with an and wn defined by (7),

1

� .ˇ/

1X

nD�1
wne�ant D 1

tˇ
C 1

tˇ
X

n¤0

� .ˇ � i2�n=h/

� .ˇ/
ti2�n=h:

The formula for 
.t/ follows after noting that � .ˇ C i2��/ D � .ˇ � i2��/ for all
real �; hence, R.��/ D R.�/ and ˚.��/ D �˚.�/.

To estimate R.�/, let y > 0 and define the ray C� D f sei� W 0 < s < 1g. By
Cauchy’s theorem,

� .ˇ C iy/ D
Z

C�

e�ppˇCiy dp

p
D
Z 1

0

e�sei�
.sei� /ˇCiy ds

s
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and thus

j� .ˇ C iy/j �
Z 1

0

e�s cos �e��ysˇ
ds

s
D e��y

.cos �/ˇ

Z 1

0

e�ssˇ
ds

s
D e��y

.cos �/ˇ
� .ˇ/;

implying the desired bound for R.�/. ut
In practice, the amplitudes R.n=h/ decay so rapidly with n that only the first term

in the expansion (15) is significant. For instance, since [1, 6.1.30]

ˇ
ˇ� .1

2
C iy/

ˇ
ˇ2 D �

cosh.�y/
;

if ˇ D 1=2 then R.�/ D .cosh 2�2�/�1=2 � p2e��2� so, choosing h D 1=3, we
have R.1=h/ D 1:95692 � 10�13 and R.2=h/ D 2:70786 � 10�26. In general, the
bound R.n=h/ � e�2��n=h=.cos�/ˇ from the theorem is minimized by choosing
tan � D 2�n=.ˇh/, implying that

R.n=h/ � �1C .rn=ˇ/
2
�ˇ=2

exp
��rn arctan.rn=ˇ/

�
where rn D 2�n=h:

Since we can evaluate only a finite exponential sum, we now estimate the two
tails of the infinite sum in terms of the upper incomplete Gamma function,

� .ˇ; q/ D
Z 1

q
e�ppˇ

dp

p
for ˇ > 0 and q > 0:

Theorem 2 If the exponents and weights are given by (7), then

tˇ
1X

nDNC1
wne�ant � � .ˇ; teNh/ provided teNh � ˇ;

and

tˇ
�M�1X

nD�1
wne�ant � � .ˇ/� � .ˇ; te�Mh/ provided te�Mh � ˇ:

Proof For each t > 0, the integrand f .x/ D exp.�tex C ˇx/ from (5) decreases
for x > log.ˇ=t/. Therefore, if Nh � log.ˇ=t/, that is, if teNh � ˇ, then

tˇh
1X

nDNC1
f .nh/ � tˇ

Z 1

Nh
f .x/ dx D

Z 1

teNh
e�ppˇ

dp

p
D � .ˇ; teNh/;



918 W. McLean

where, in the final step, we used the substitution p D tex. Similarly, the func-
tion f .�x/ D exp.�te�x�ˇx/ decreases for x > log.t=ˇ/ so if Mh � log.t=ˇ/, that
is, if te�Mh � ˇ, then

tˇh
�M�1X

nD�1
f .nh/ D tˇh

1X

nDMC1
f .�nh/ � tˇ

Z 1

Mh
f .�x/ dx D

Z te�Mh

0

e�ppˇ
dp

p
;

where, in the final step, we used the substitution p D te�x. ut
Given �RD > 0 there exists h > 0 such that

2

1X

nD1
j� .ˇ C i2�n=h/j D �RD� .ˇ/; (16)

and by Theorem 1,

j
.t/j � �RD for 0 < t <1;

so �RD is an upper bound for the relative discretization error. Similarly, given a
sufficiently small �RT > 0, there exist xı > 0 and XT > 0 such that ıexı � ˇ and
Te�XT � ˇ with

� .ˇ; ıexı / D �RT� .ˇ/ and � .ˇ/� � .ˇ;Te�XT / D �RT� .ˇ/: (17)

Thus, by Theorem 2,

tˇ

� .ˇ/

1X

nDNC1
wne�ant � �RT for t � ı and Nh � xı;

and

tˇ

� .ˇ/

�M�1X

nD�1
wne�ant � �RT for t � T and Mh � XT ;

showing that 2�RT is an upper bound for the relative truncation error. Denoting the
overall relative error for the finite sum (9) by


N
M.t/ D 1 �

tˇ

� .ˇ/

NX

nD�M

wne�ant; (18)
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we therefore have

j
N
M.t/j � �RD C 2�RT for ı � t � T;Nh � xı and Mh � XT : (19)

The estimate for R.�/ in Theorem 1, together with the asymptotic behaviours

� .ˇ; q/ � qˇ�1e�q as q!1;

and

� .ˇ/ � � .ˇ; q/ � qˇ

ˇ
as q! 0;

imply that (19) can be satisfied with

h�1 � C log ��1
RD; N � Ch�1 log.ı�1 log ��1

RT /; M � Ch�1 log.T��1
RT /:

Figure 2 shows the relation between �RD and 1=h given by (16), and confirms
that 1=h is approximately proportional to log ��1

RT . In Fig. 3, for each value of �
we computed h by solving (16) with �RD D �=3, then computed xı and XT by
solving (17) with �RT D �=3, and finally put M D dXT=he and N D dxı=he.

Fig. 2 The bound �RD for the
relative discretization error,
defined by (16), as a function
of 1=h for various choices
of ˇ
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Fig. 3 The growth in M and N as the upper bound for the overall relative error (18) decreases, for
different choices of T and ı

3 Prony’s Method

The construction of Sect. 2 leads to an exponential sum approximation (9) with
many small exponents an. We will now explain how the corresponding terms can
be aggregated to yield a more efficient approximation.

Consider more generally an exponential sum

g.t/ D
LX

lD1
wle

�alt;

in which the weights and exponents are all strictly positive. Our aim is to
approximate this function by an exponential sum with fewer terms,

g.t/ 

KX

kD1
Qwke�Qakt; 2K � 1 < L;

whose weights Qwk and exponents Qak are again all strictly positive. To this end, let

gj D .�1/jg. j/.0/ D
LX

lD1
wla

j
l:
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We can hope to find 2K parameters Qwk and Qak satisfying the 2K conditions

gj D
KX

kD1
Qwk Qaj

k for 0 � j � 2K � 1; (20)

so that, by Taylor expansion,

g.t/ 

2K�1X

jD0
gj
.�t/j

jŠ
D

KX

kD1
Qwk

2K�1X

jD0

.�Qakt/j

jŠ



KX

kD1
Qwke�Qakt:

The approximations here require that the gj and the Qakt are nicely bounded, and
preferably small.

In Prony’s method, we seek to satisfy (20) by introducing the monic polynomial

Q.z/ D
KY

kD1
.z � Qak/ D

KX

kD0
qkzk;

and observing that the unknown coefficients qk must satisfy

KX

mD0
gjCmqm D

KX

mD0

KX

kD1
Qwk QajCm

k qm D
KX

kD1
Qwk Qaj

k

KX

mD0
qm Qam

k D
KX

kD1
Qwk Qaj

kQ.Qak/ D 0;

for 0 � j � K � 1 (so that jC m � 2K � 1 for 0 � m � K), with qK D 1. Thus,

K�1X

mD0
gjCmqm D bj; where bj D �gjCK; for 0 � j � K � 1;

which suggests the procedure Prony defined in Algorithm 1. We must, however,
beware of several potential pitfalls:

1. the best choice for K is not clear;
2. the K � K matrix ŒgjCk� might be badly conditioned;
3. the roots of the polynomial Q.z/ might not all be real and positive;

Algorithm 1 Prony.a1; : : : ; aL;w1; : : :wL;K/
Require: 2K � 1 � L

Compute gj D PL
lD1 wla

j
l for 0 � j � 2K � 1

Find q0 , . . . , qK�1 satisfying
PK�1

mD0 gjCmqm D �gjCK for 0 � j � K � 1, and put qK D 1

Find the roots Qa1, . . . , QaK of the polynomial Q.z/ D PK
kD0 qkzk

Find Qw1, . . . , QwK satisfying
PK

kD1 Qaj
k Qwk � gj for 0 � j � 2K � 1

return Qa1, . . . , QaK , Qw1, . . . , QwK
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4. the linear system for the Qwk is overdetermined, and the least-squares solution
might have large residuals;

5. the Qwk might not all be positive.

We will see that nevertheless the algorithm can be quite effective, even when K D 1,
in which case we simply compute

g0 D
LX

lD1
wl; g1 D

LX

lD1
wlal; Qa1 D g1=g0; Qw1 D g0:

Example 1 We took ˇ D 3=4, ı D 10�6, T D 10, � D 10�8, �RD D 0:9� 10�8 and
�RT D 0:05 � 10�8. The methodology of Sect. 2 led to the choices h D 0:47962,
M D 65 and N D 36, and we confirmed via direct evaluation of the relative error
that j
N

M.t/j � 0:92 � 10�8 for ı � t � T. We applied Prony’s method to the first
L terms of the sum in (9), that is, those with �M � n � L � M, thereby reducing
the total number of terms by L � K. Table 1 lists, for different choices of L and K,
the additional contribution to the relative error, that is, max1�p�P j�.tp/j where

�.t/ D tˇ

� .ˇ/


 KX

kD1
Qwke�Qakt �

LX

lD1
wl0 e

�al0 t

�
; l0 D l�M C 1; (21)

Table 1 Performance of Prony’s method for different L and K using the parameters of
Example 1

L K D 1 K D 2 K D 3 K D 4 K D 5 K D 6

66 9.64e�01 4.30e�01 6.15e�02 3.02e�03 4.77e�05 2.29e�07

65 8.11e�01 1.69e�01 9.89e�03 1.80e�04 9.98e�07 1.66e�09
64 5.35e�01 4.59e�02 1.03e�03 6.85e�06 1.35e�08 7.96e�12

63 2.72e�01 9.17e�03 7.76e�05 1.89e�07 1.36e�10 2.74e�14

62 1.12e�01 1.46e�03 4.64e�06 4.19e�09 1.11e�12 3.58e�16

61 3.99e�02 1.98e�04 2.38e�07 8.05e�11 8.28e�15 3.52e�16

60 1.28e�02 2.43e�05 1.10e�08 1.41e�12 4.63e�16 2.24e�16

59 3.82e�03 2.78e�06 4.81e�10 2.36e�14 4.63e�16 1.25e�16

58 1.10e�03 3.05e�07 2.02e�11 4.46e�16 1.23e�16 6.27e�17

57 3.07e�04 3.27e�08 8.25e�13 5.60e�17 8.40e�17

56 8.43e�05 3.44e�09 3.32e�14 8.96e�17 5.60e�17

55 2.29e�05 3.59e�10 1.32e�15 4.48e�17 4.48e�17

48 2.30e�09 3.98e�17 2.58e�18

47 6.16e�10 3.92e�18 1.54e�18

For each K, we seek the largest L for which the maximum relative error (shown in bold) is less
than � D 10�8
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and we use a geometric grid in Œı; 1� given by tp D T.p�1/=.P�1/ı.P�p/=.P�1/ for 1 �
p � P with P D 751. The largest reduction consistent with maintaining overall
accuracy was when L D 65 and K D 6, and Fig. 4 (Top) plots j�.t/j in this case, as
well as the overall relative error (Bottom) for the resulting approximation,

1

tˇ

 1

� .ˇ/


 KX

kD1
Qwke�Qakt C

NX

nDL�M

wne�ant

�
for 10�6 � t � 10: (22)

In this way, the number of terms in the exponential sum approximation was reduced
from MC 1CN D 102 to .MCK�L/C 1CN D 43, with the maximum absolute
value of the relative error growing only slightly to 1:07 � 10�8. Figure 4 (Bottom)
shows that the relative error is closely approximated by the first term in (15), that is,

M

N .t/ 
 �2R.h�1/ cos
�
2�h�1 log t �˚.h�1/

�
for ı � t � T.

Fig. 4 Top: the additional contribution j�.t/j to the relative error from applying Prony’s method
in Example 1 with L D 65 and K D 6. Bottom: the overall relative error for the resulting
approximation (22) of t�ˇ requiring L � K D 59 fewer terms
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4 Approximation Based on the Substitution p D exp.x � e�x/

We now consider the alternative exponents and weights given by (12). A different
approach is needed for the error analysis, and we define

I . f / D
Z 1

�1
f .x/ dx and Q. f ; h/ D h

1X

nD�1
f .nh/ for h > 0;

so that Q. f ; h/ is an infinite trapezoidal rule approximation to I . f /. Recall the
following well-known error bound.

Theorem 3 Let r > 0. Suppose that f .z/ is continuous on the closed strip j=zj � r,
analytic on the open strip j=zj < r, and satisfies

Z 1

�1
�j f .xC ir/j C j f .x � ir/j� dx � Ar

with
Z r

�r
j f .x˙ iy/j dy! 0 as jxj ! 1:

Then, for all h > 0,

jQ. f ; h/�I . f /j � Are�2�r=h

1 � e�2�r=h
:

Proof See McNamee et al. [6, Theorem 5.2]. ut
For t > 0, we define the entire analytic function of z,

f .z/ D exp
��'.z; t/�.1C e�z/; (23)

where '.z; t/ is the analytic continuation of the function defined in (11). In this way,
t�ˇ D I . f /=� .ˇ/ by (10).

Lemma 1 If 0 < r < �=2, then the function f defined in (23) satisfies the
hypotheses of Theorem 3 with Ar � Ct�ˇ for 0 < t � 1, where the constant C > 0

depends only on ˇ and r.

Proof A short calculation shows that

<'.x˙ iy; t/ D t exp.x � e�x cos y/ cos. yC e�x sin y/� ˇ.x � e�x cos y/;
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and that if 0 < � < �=2� r, then

0 � yCe�x sin y � �

2
�� for x � x� D log

sin r

�=2 � r � � and 0 � y � r: (24)

Thus, if x � x� then cos.rC e�x sin r/ � cos.�=2� �/ D sin � so

<'.x˙ ir; t/ � t exp.x � e�x�

cos r/ sin � � ˇxC ˇe�x cos r � ctex � ˇx;

where c D exp.�e�x�

cos r/ sin � > 0. If necessary, we increase x� so that x� > 0.
Since j1C e�.x˙ir/j � 1C e�x,

Z 1

x�

j f .x˙ ir/j dx D
Z 1

x�

exp
��<'.x˙ ir; t/

�ˇˇ1C e�.x˙ir/
ˇ
ˇ dx

�
Z 1

x�

exp.�ctex C ˇx/.1C e�x/ dx;

and the substitution p D ex then yields, with p� D ex�

,

Z 1

x�

j f .x˙ ir/j dx �
Z 1

p�

e�ctppˇ.1C p�1/
dp

p
� �1C . p�/�1

� Z 1

p�

e�ctppˇ
dp

p

D 1C . p�/�1

.ct/ˇ

Z 1

ctp�

e�ppˇ
dp

p
� 1C . p�/�1

.ct/ˇ

Z 1

0

e�ppˇ
dp

p
� Ct�ˇ:

Also, if x � 0 then

<'.x˙ ir; t/ � �t exp.x � e�x cos r/ � ˇ.x � e�x cos r/ � �tex � ˇx

so

Z x�

0

j f .x˙ ir/j dx �
Z x�

0

exp.tex C ˇx/.1C e�x/ dx � 2x� exp
�
tex� C ˇx��;

which is bounded for 0 < t � 1. Similarly, if x � 0 then exp.x � e�x cos r/ � 1 so
<'.x˙ ir; t/ � �tC ˇe�x cos r and therefore, using again the substitution p D ex,

Z 0

�1
j f .x˙ ir/j dx �

Z 0

�1
exp.t � ˇe�x cos r/.1C e�x/ dx

D
Z 1

0
exp.t � ˇex cos r/.1C ex/ dx D et

Z 1

1
e�ˇp cos r.1C p/

dp

p
;

which is also bounded for 0 < t � 1. The required estimate for Ar follows.
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If x � x�, then the preceding inequalities based on (24) show that

Z r

�r
j f .xC iy/j dy � 2r max

j yj�r
j f .xC iy/j � 2r exp.�ctex C ˇx/.1C e�x/;

which tends to zero as x!1 for any t > 0. Similarly, if x � 0, then <'.x˙ iy/ �
�tC ˇe�x cos r for j yj � r, so

Z r

�r
j f .xC iy/j dy � 2r exp.t � ˇe�x cos r/.1C e�x/;

which again tends to zero as x! �1. ut
Together, Theorem 3 and Lemma 1 imply the following bound for the relative

error (8) in the infinite exponential sum approximation (6).

Theorem 4 Let h > 0 and define an and wn by (12). If 0 < r < �=2, then there
exists a constant C1 (depending on ˇ and r) such that

j
.t/j � C1e
�2�r=h for 0 < t � 1:

Proof The definitions above mean that hf .nh/ D wne�ant. ut
Thus, a relative accuracy � is achieved by choosing h of order 1= log ��1. Of

course, in practice we must compute a finite sum, and the next lemma estimates the
two parts of the associated truncation error.

Lemma 2 Let h > 0, 0 < � < 1 and 0 < t � 1. Then the function f defined in (23)
satisfies

h

� .ˇ/

�M�1X

MD�1
f .nh/ � C2 exp.�ˇeMh/ for Mh �

8
<

:
log.ˇ�1 � 1/; 0 < ˇ < 1=2;

0; ˇ � 1=2;
(25)

and

h

� .ˇ/

1X

nDNC1
f .nh/ � C3

tˇ
exp

��� teNh�1� for Nh � 1C log.ˇt�1/: (26)

When 0 < ˇ � 1, the second estimate holds also with � D 1.

Proof If n � 0, then '.nh; t/ � �tC ˇe�nh so

f .nh/ � g1.�nh/ where g1.x/ D exp.t � ˇex/.1C ex/:
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The function g1.x/ decreases for x > log.ˇ�1�1/ if 0 < ˇ < 1=2, and for all x � 0
if ˇ � 1=2, so

h
�M�1X

nD�1
f .nh/ � h

1X

nDMC1
g1.nh/ �

Z 1

Mh
g1.x/ dx for M as in (25),

and the substitution p D ex gives

Z 1

Mh
g1.x/ dx D

Z 1

eMh
et�ˇp.1C p/

dp

p
� 2et

Z 1

eMh
e�ˇp dp D 2et

ˇ
exp.�ˇeMh/;

so the first estimate holds with C2 D 2e=� .ˇ C 1/.
If n � 0 we have '.nh; t/ � t exp.nh� 1/� ˇnh and 1C e�nh � 2, so

f .nh/ � g2.nh/ where g2.x/ D 2 exp.�tex�1 C ˇx/:

The function g2.x/ decreases for x > 1C log.ˇt�1/, so

h
1X

nDNC1
f .nh/ �

Z 1

Nh
g2.x/ dx for N as in (26),

and the substitution p D ex gives

Z 1

Nh
g2.x/ dx � 2

Z 1

eNh
e�te�1ppˇ

dp

p
D 2



e

t

�ˇ Z 1

teNh�1

e�ppˇ�1 dp:

Since teNh�1 � ˇ, if 0 < ˇ � 1 then the integral on the right is bounded above
by ˇˇ�1 exp.�teNh�1/. If ˇ > 1, then pˇ�1e�.1��/p is bounded for p > 0 so

Z 1

teNh�1

e�ppˇ�1 dp D
Z 1

teNh�1

e��p. pˇ�1e�.1��/p/ dp � C exp.�� teNh�1/;

completing the proof. ut
It is now a simple matter to see that the number of terms L D MC 1CN needed

to ensure a relative accuracy � for ı � t � 1 is of order .log ��1/ log.ı�1 log ��1/.

Theorem 5 Let an and wn be defined by (12). For 0 < ı � 1 and for a sufficiently
small � > 0, if

1

h
� 1

2�r
log

3C1
�
; M � 1

h
log



1

ˇ
log

3C2
�

�
; N � 1C1

h
log



1

�ı
log

3C3
�

�
;
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then

j
N
M.t/j � � for ı � t � 1:

Proof The inequalities for h, M and N imply that each of C1e�2�r=h, C2 exp.�ˇeMh/

and C3 exp.�� teNh�1/ is bounded above by �t�ˇ=3, so the error estimate is a
consequence of Theorem 4, Lemma 2 and the triangle inequality. Note that the
restrictions on M and N in (25) and (26) will be satisfied for � sufficiently small. ut

Although the error bounds above require t 2 Œı; 1�, a simple rescaling allows us
to treat a general compact subinterval Œı;T�. If Lan D an=T and Lwn D wn=Tˇ , then

1

tˇ
D 1

Tˇ
1

.t=T/ˇ

 1

� .ˇ/

NX

nD�M

Lwne�Lant

for ı � t=T � 1, or in other words for ı � T � t � T. Moreover, the relative error
L
N
M.t/ D 
N

M.t=T/ is unchanged by the rescaling.

Example 2 We took the same values for ˇ, ı, T, �, �RD and �RT as in Example 1.
Since the constant C1 of Theorem 4 is difficult to estimate, we again used (16) to
choose h D 0:47962. Likewise, the constant C3 in Lemma 2 is difficult to estimate,
so we chose N D dh�1xı=Te D 40. However, knowing C2 D 2e=� .ˇC1/ we easily
determined that C2 exp.�ˇeMh/ � �RT for M D 8. The exponents and weights (12)
were computed for the interval Œı=T; 1�, and then rescaled as above to create an
approximation for the interval Œı;T� with MC1CN D 49 terms and a relative error
whose magnitude is at worst 2:2 � 10�8.

The behaviour of the relative error 
N
M.t/, shown in Fig. 5, suggests a modified

strategy: construct the approximation for Œı; 10T� but use it only on Œı;T�. We found
that doing so required N D 45, that is, 5 additional terms, but resulted in a nearly
uniform amplitude for the relative error of about 0:97�10�8. Finally, after applying
Prony’s method with L D 17 and K D 6 we were able to reduce the number of
terms from M C 1C N D 54 to 43 without increasing the relative error.

To compare these results with those of Li [5], let 0 < ˛ < 1 and let k.t/ D
t˛�1=� .˛/ denote the kernel for the fractional integral of order ˛. Taking ˇ D 1�˛
we compute the weights wl and exponents al as above and define

kN
M.t/ D

1

� .˛/� .1 � ˛/
NX

nD�M

wne�ant for ı � t � T:

The fast algorithm evaluates

.K N
M U/n D

Z tn�1

0

kN
M.t � s/ QU.s/ dsC

Z tn

tn�1

k.tn � s/ QU.s/ ds
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Fig. 5 The relative error for the initial approximation from Example 2

and our bound j
N
M.t/j � � implies that jkN

M.t/ � k.t/j � �t˛�1=� .˛/ for ı � t � T,
so

ˇ̌
.K N

M U/n � .K QU/.tn/
ˇ̌ � �

Z tn�1

0

.tn � s/˛�1

� .˛/
j QU.s/j ds � �t˛n

� .˛ C 1/ max
1�j�n

jUjj;

provided �tn � ı and tn � T. Similarly, the method of Li yields .KQU/n but with
a bound for the absolute error in (14), so that jkQ.t/ � k.t/j � �0 for ı0 � t < 1.
Thus,

ˇ̌
.KQU/n � .K QU/.tn/

ˇ̌ � �0 sin�˛

�

Z tn�1

0

j QU.s/j ds � �0tn
sin�˛

�
max
1�j�n

jUjj;

provided �tn � ı. Li [5, Fig. 3 (d)] required about Q D 250 points to achieve an
(absolute) error �0 � 10�6 for t � ı0 D 10�4 when ˛ D 1=4 (corresponding to ˇ D
1�˛ D 3=4). In Examples 1 and 2, our methods give a smaller error � � 10�8 using
only M C 1C N D 43 terms with a less restrictive lower bound for the time step,
ı D 10�6. Against these advantages, the method of Li permits arbitrarily large tn.
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5 Conclusion

Comparing Examples 1 and 2, we see that, for comparable accuracy, the approxi-
mation based on the second substitution results in far fewer terms because we are
able to use a much smaller choice of M. However, after applying Prony’s method
both approximations are about equally efficient. If Prony’s method is not used,
then the second approximation is clearly superior. Another consideration is that the
first approximation has more explicit error bounds so we can, a priori, more easily
determine suitable choices of h, M and N to achieve a desired accuracy.
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Approximate Quadrature Measures
on Data-Defined Spaces

Hrushikesh N. Mhaskar

Dedicated to Ian H. Sloan on the occasion of his 80th birthday.

Abstract An important question in the theory of approximate integration is to study
the conditions on the nodes xk;n and weights wk;n that allow an estimate of the form

sup
f 2B�

ˇ
ˇ
ˇ
ˇ̌
X

k

wk;n f .xk;n/ �
Z

X

fd��
ˇ
ˇ
ˇ
ˇ̌ � cn�� ; n D 1; 2; � � � ;

where X is often a manifold with its volume measure ��, and B� is the unit ball of
a suitably defined smoothness class, parametrized by � . In this paper, we study this
question in the context of a quasi-metric, locally compact, measure space X with
a probability measure ��. We show that quadrature formulas exact for integrating
the so called diffusion polynomials of degree < n satisfy such estimates. Without
requiring exactness, such formulas can be obtained as a solutions of some kernel-
based optimization problem. We discuss the connection with the question of optimal
covering radius. Our results generalize in some sense many recent results in this
direction.

1 Introduction

The theory of approximate integration of a function based on finitely many samples
of the function is a very old subject. Usually, one requires the necessary quadrature
formula to be exact for some finite dimensional space. For example, we mention
the following theorem, called Tchakaloff’s theorem [28, Exercise 2.5.8, p. 100].
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(For simplicity of exposition, the notation used in the introduction may not be the
same as in the rest of this paper.)

Theorem 1 Let X be a compact topological space, fjgN�1
jD0 be continuous real

valued functions on X, and �� be a probability measure on X (i.e., �� is a positive
Borel measure with ��.X/ D 1). Then there exist N C 1 points x1; � � � ; xNC1, and
non-negative numbers w1; � � � ;wNC1 such that

NC1X

kD1
wk D 1;

NC1X

kD1
wkj.xk/ D

Z

X

j.x/d�
�.x/; j D 0; � � � ;N � 1: (1)

It is very easy to see that under the conditions of Theorem 1, if f W X ! R is
continuous, and VN D spanf1; 0; � � � ; N�1g then

ˇ
ˇ
ˇ
ˇ̌
Z

X

f .x/d��.x/ �
NC1X

kD1
wkf .xk/

ˇ
ˇ
ˇ
ˇ̌ � 2 min

P2VN
max
x2X j f .x/ � P.x/j: (2)

A great deal of modern research is concerned with various variations of this theme,
interesting from the point of view of computation. For example, can we ensure all
the weights wk to be equal by a judicious choice of the points xk, or can we obtain
estimates similar to (2) with essentially arbitrary points xk, with or without requiring
that the weights be positive, or can we obtain better rates of convergence for
subspaces (e.g., suitably defined Bessel potential spaces) of the space of continuous
functions than that guaranteed by (2)? Of course, this research typically requires X
to have some additional structure.

The current paper is motivated by the spate of research within the last couple of
years, in particular, by the results in [5–9]. The focus in [6, 7] is the case when X

is the unit sphere Sq embedded in R
qC1, and the weights are all equal. A celebrated

result by Bondarenko et al. in [4] shows that for every large enough n, there exist
O.nq/ points on S

q such that equal weight quadrature formulas based at these points
are exact for integrating spherical polynomials of degree < n. In these papers (see
also [20]), it is shown that for such formulas an estimate of the following form holds:

ˇ
ˇ̌
ˇ
ˇ

Z

Sq
f .x/d��.x/� 1

n

X

k

f .xk/

ˇ
ˇ̌
ˇ
ˇ
� c

ns
k fks;p;q; (3)

where k � ks;p;q is a suitably defined Bessel potential subspace of Lp.��/ and the
smoothness index s satisfies s > q=p, so that functions in this subspace are actually
continuous. More generally, the systems of points xk for which an estimate of the
form (3) holds is called an approximate QMC design. Various constructions and
properties of such designs are studied. The papers [5, 8] study certain analogous
questions in the context of a smooth, compact, Riemannian manifold. The case of a
Grassmanian manifold is studied in [9], with numerical illustrations.
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Our paper is also motivated by machine learning considerations, where one is
given a data set of the form f.xj; yj/g, sampled from some unknown probability
distribution �. The objective is to approximate f .x/ D E.yjx/. In this context, P D
fxjg is usually referred to as a point cloud, and is considered to be sampled from
the marginal distribution ��. Thus, in contrast to the research described above, the
points fxjg in this context are scattered; i.e., one does not have a choice of stipulating
their locations in advance.

Typically, the points fxjg are in a high dimensional ambient space, and the classi-
cal approximation results are inadequate for practical applications. A very powerful
relatively recent idea to work with such problems is the notion of a data-defined
manifold. Thus, we assume that the points fxjg lie on a low dimensional manifold
embedded in the ambient space. This manifold itself is not known, but some relation
on the set P is assumed to be known, giving rise to a graph structure with vertices
on the manifold. Various quantities such as the eigenvalues and eigenfunctions of
the Laplace-Beltrami (or a more general elliptic partial differential) operator on the
manifold can be approximated well by the corresponding objects for the so called
graph Laplacian that can be computed directly from the points fxjg themselves (e.g.,
[1–3, 23, 29, 30]). It is shown in [21] that a local coordinate chart on such data-
defined manifolds can be obtained in terms of the heat kernel on the manifold.

In our theoretical investigations, we will not consider the statistical problem of
machine learning, but assume that the marginal distribution �� is known. Since the
heat kernel can be approximated well using the eigen-decomposition of the graph
Laplacian [10], we find it convenient and essential to formulate all our assumptions
in this theory only in terms of the measure �� on the manifold and the heat kernel.
In particular, we do not consider the question of estimating the eigenvalues and
eigenfunctions of this kernel, but assume that they are given.

In [14, 15], we have studied the existence of quadrature formulas exact for certain
eigenspaces in this context. They play a critical role in approximation theory based
on these eigenspaces; e.g., [13, 24, 25]. Although our proofs of the existence of
quadrature formulas based on scattered data so far require the notion of gradient on
a manifold, the approximation theory itself has been developed in a more general
context of locally compact, quasi-metric, measure spaces.

In this paper, we will prove certain results analogous to those in [6, 7] in the
context of locally compact, quasi-metric, measure spaces. In order to do so, we
need to generalize the notion of an approximate QMC design to include non-equal
weights, satisfying certain regularity conditions. We will show that an estimate of
the form (3) holds if and only if it holds for what we call diffusion polynomials of
certain degree. Conversely, if this estimate holds with non-negative weights, then
the assumption of regularity is automatically satisfied. We will also point out the
connection between such quadratures and the so called covering radius of the points
on which they are based. Our results include their counterparts in [6, 7], except that
we deal with slightly larger smoothness classes. We will discuss a construction of
the approximate quadratures that yield a bound of the form (3), without referring to
the eigen-decomposition itself.
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We describe our general set up in Sect. 2, and discuss the main results in Sect. 3.
The proofs are given in Sect. 5. Section 4 reviews some preparatory results required
in the proofs.

2 The Set-Up

In this section, we describe our general set up. In Sect. 2.1, we introduce the notion
of a data-defined space. In Sect. 2.2, we review some measure theoretic concepts.
The smoothness classes in which we study the errors in approximate integration are
defined in Sect. 2.3.

2.1 The Quasi-Metric Measure Space

Let X be a non-empty set. A quasi-metric on X is a function 
 W X � X ! R that
satisfies the following properties: For all x; y; z 2 X,

1. 
.x; y/ � 0,
2. 
.x; y/ D 0 if and only if x D y,
3. 
.x; y/ D 
.y; x/,
4. there exists a constant �1 � 1 such that


.x; y/ � �1f
.x; z/C 
.z; y/g; x; y; z 2 X: (4)

For example, the geodesic distance on a Riemannian manifold X is a quasi-metric.
The quasi-metric 
 gives rise to a topology on X, with

f y 2 X W 
.x; y/ < rg; x 2 X; r > 0:

being a basis for the topology. In the sequel, we will write

B.x; r/ D f y 2 X W 
.x; y/ � rg; �.x; r/ D X n B.x; r/; x 2 X; r > 0:

In remainder of this paper, let �� be a fixed probability measure on X. We fix
a non-decreasing sequence f�kg1kD0 of nonnegative numbers such that �0 D 0, and
�k " 1 as k ! 1. Also, we fix a system of continuous, bounded, and integrable
functions fkg1kD0, orthonormal with respect to ��; namely, for all nonnegative
integers j; k,

Z

X

k.x/j.x/d�
�.x/ D

�
1; if j D k;
0; otherwise.

(5)
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We will assume that 0.x/ D 1 for all x 2 X.
For example, in the case of a compact Riemannian manifold X, we may take the

(normalized) volume measure on X to be ��, and take k’s to be the eigenfunctions
of the Laplace–Beltrami operator on X, corresponding to the eigenvalues ��2k . If a
different measure is assumed, then we may need to consider differential operators
other than the Laplace–Beltrami operator. Also, it is sometimes not necessary to
use the exact eigenvalues of such operators. For example, in the case when X is the
unit sphere embedded in R

3, the eigenvalues of the (negative) Laplace–Beltrami
operator are given by

p
k.kC 1/. The analysis is sometimes easier if we use k

instead. In general, while the exact eigenvalues might be hard to compute, an
asymptotic expression is often available. While these considerations motivate our
definitions, we observe that we are considering a very general scenario with quasi-
metric measure spaces, where differential operators are not defined. Nevertheless,
we will refer to each k as an eigenfunction corresponding to the eigenvalue �k,
even though they are not necessarily obtained from an eigen-decomposition of any
predefined differential or integral operator.

In our context, the role of polynomials will be played by diffusion polynomials,
which are finite linear combinations of fjg. In particular, an element of

˘n WD spanfj W �j < ng

will be called a diffusion polynomial of degree < n.
For reasons explained in the introduction, we will formulate our assumptions in

terms of a formal heat kernel. The heat kernel on X is defined formally by

Kt.x; y/ D
1X

kD0
exp.��2k t/k.x/k. y/; x; y 2 X; t > 0: (6)

Although Kt satisfies the semigroup property, and in light of the fact that �0 D 0,
0.x/ � 1, we have formally

Z

X

Kt.x; y/d�
�. y/ D 1; x 2 X; (7)

yet Kt may not be the heat kernel in the classical sense. In particular, we need not
assume Kt to be nonnegative.

Definition 1 The system � D .X; 
; ��; f�kg1kD0; fkg1kD0/) is called a data-
defined space if each of the following conditions are satisfied.

1. For each x 2 X and r > 0, the ball B.x; r/ is compact.
2. There exist q > 0 and �2 > 0 such that the following power growth bound

condition holds:

��.B.x; r// D �� .f y 2 X W 
.x; y/ < rg/ � �2rq; x 2 X; r > 0: (8)
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3. The series defining Kt.x; y/ converges for every t 2 .0; 1� and x; y 2 X. Further,
with q as above, there exist �3; �4 > 0 such that the following Gaussian upper
bound holds:

jKt.x; y/j � �3t�q=2 exp



��4 
.x; y/

2

t

�
; x; y 2 X; 0 < t � 1: (9)

There is a great deal of discussion in the literature on the validity of the conditions
in the above definition and their relationship with many other objects related to
the quasi-metric space in question, (cf. for example, [11, 17–19]). In particular,
it is shown in [11, Section 5.5] that all the conditions defining a data-defined
space are satisfied in the case of any complete, connected Riemannian manifold
with non-negative Ricci curvature. It is shown in [22] that our assumption on
the heat kernel is valid in the case when X is a complete Riemannian manifold
with bounded geometry, and f��2j g, respectively fjg, are eigenvalues, respectively
eigenfunctions, for a uniformly elliptic second order differential operator satisfying
certain technical conditions.

The bounds on the heat kernel are closely connected with the measures of the
balls B.x; r/. For example, using (9), Lemma 1 below, and the fact that

Z

X

jKt.x; y/jd��. y/ �
Z

X

Kt.x; y/d�
�. y/ D 1; x 2 X;

it is not difficult to deduce as in [18] that

��.B.x; r// � crq; 0 < r � 1: (10)

In many of the examples cited above, the kernel Kt also satisfies a lower bound to
match the upper bound in (9). In this case, Grigoryán [18] has also shown that (8) is
satisfied for 0 < r < 1.

We remark that the estimates (8) and (10) together imply that �� satisfies the
homogeneity condition

��.B.x;R// � c1.R=r/q��.B.x; r//; x 2 X; r 2 .0; 1�; R > 0; (11)

where c1 > 0 is a suitable constant.
In the sequel, we assume that � is a data-defined space, and make the following

convention.

Constant Convention In the sequel, the symbols c; c1; � � � will denote positive
constants depending only on X, 
, ��, �1; � � � ; �5, and other similar fixed quantities
such as the parameters denoting the various spaces. They will not depend upon the
systems fkg, f�kg by themselves, except through the quantities mentioned above.
On occasions when we need to have the constants depend upon additional variables,
these will be listed explicitly. Their values may be different at different occurrences,
even within a single formula. The notation A � B will mean c1A � B � c2A.
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2.2 Measures

In this paper, it is necessary to consider a sequence of sets Cn D fx1;n; � � � ; xMn ;ng,
and the quadrature weights wk;n, leading to sums of the form

X

1�k�Mn
xk;n2B

wk;n f .xk;n/;

where B � X. The precise locations of the points of Cn, or the numbers wk;n, or
even the numbers Mn will play no role in our theoretical development. Therefore, we
find it convenient to use a sequence of measures to abbreviate sums like the above.
Accordingly, In this subsection, we review some measure theoretical notation and
definitions.

If � is a (signed) measure defined on a sigma algebra M of X, its total variation
measure j�j is defined by

j�j.B/ D sup
1X

kD1
j�.Uk/j;

where the supremum is taken over all countable partitions fUkg � M of B. Here,
the quantity j�j.X/ is called the total variation of �. If � is a signed measure, then its
total variation is always finite. If � is a positive measure, it is said to be of bounded
variation if its total variation is finite. The measure � is said to be complete if for
any B 2 M with j�j.B/ D 0 and any subset A � B, A 2 M and j�j.A/ D 0.
Since any measure can be extended to a complete measure by suitably enlarging the
underlying sigma algebra, we will assume in the sequel that all the measures to be
introduced in this paper are complete.

If C � X is a finite set, the measure � that associates with each x 2 C the mass
wx, is defined by

�.B/ D
X

x2B

wx:

for subsets B � X. Obviously, the total variation of the measure � is given by

j�j.B/ D
X

x2B

jwxj; B � X:

If f W C ! C, then for B � X,

Z

B
fd� D

X

x2C\B

wx f .x/:
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Thus, in the example at the start of this subsection, if �n is the measure that
associates the mass wk;n with xk;n for k D 1; � � � ;Mn, then we have a concise notation

X

1�k�Mn
xk;n2B

wk;n f .xk;n/ D
Z

B
fd�n



D
Z

B
f .x/d�n.x/

�
:

In the sequel, we will assume that every measure introduced in this paper is a
complete, sigma finite, Borel measure; i.e., the sigma algebra M on which it is
defined contains all Borel subsets of X. In the rest of this paper, rather than stating
that � is defined on M, we will follow the usual convention of referring to members
of M as �-measurable sets without mentioning the sigma algebra explicitly.

2.3 Smoothness Classes

If B � X is �-measurable, and f W B! C is a �-measurable function, we will write

k fk�IB;p WD

8
<̂

:̂

�Z

B
j f .x/jpdj�j.x/

� 1=p

; if 1 � p <1;
j�j � ess sup

x2B
j f .x/j; if p D 1:

We will write Lp.�IB/ to denote the class of all �-measurable functions f for which
k fk�IB;p <1, where two functions are considered equal if they are equal j�j-almost
everywhere. We will omit the mention of � if � D �� and that of B if B D X.
Thus, Lp D Lp.��IX/. The Lp closure of the set of all diffusion polynomials will
be denoted by Xp. For 1 � p � 1, we define p0 D p=.p � 1/ with the usual
understanding that 10 D 1,10 D 1.

In the absence of a differentiability structure on X, perhaps, the easiest way to
define a Bessel potential space is the following. If f1 2 Lp, f2 2 Lp0

then

h f 1; f2i WD
Z

X

f1.x/f2.x/d�
�.x/:

In particular, we write

Of .k/ D h f ; ki; k D 0; 1; � � � :

For r > 0, the pseudo-differential operator�r is defined formally by

b�rf .k/ D .�k C 1/r Of .k/; k D 0; 1; � � � :
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The class of all f 2 Xp for which there exists �rf 2 Xp with b�rf .k/ as above is
denoted by Wp

r . This definition is sometimes abbreviated in the form

Wp
r D

8
<

:
f 2 Xp W

�
��
�
�

X

k

.�k C 1/r Of .k/k

�
��
�
�

p

<1
9
=

;
:

However, since the series expansion need not converge in the Lp norm, we prefer
the distributional definition as we have given.

While the papers [5–9] all deal with the spaces which we have denoted by Wp
r ,

we find it easier to consider a larger class, Hp
� , defined as follows. If f 2 Xp, r > 0,

we define a K-functional for ı > 0 by

!r. pI f ; ı/ WD inffk f � f1kp C ırk�rf1kp W f1 2 Wp
r g: (12)

If � > 0, we choose r > � , and define the smoothness class Hp
� to be the class of all

f 2 Xp such that

k fkH
p
�
WD k fkp C sup

ı2.0;1�
!r. pI f ; ı/

ı�
<1: (13)

For example, if X D R=.2�Z/, �� is the arc measure on X, fkg’s are the
trigonometric monomials f1; cos.kı/; sin.kı/g1kD1, and the eigenvalue �k corre-
sponding to cos.kı/, sin.kı/ is jkj, then the class W1

2 is the class of all twice
continuously differentiable functions, while the class H1

2 includes f .x/ D j sin xj.
The importance of the spaces Hp

� is well known in approximation theory [12]. We
now describe the connection with approximation theory in our context.

If f 2 Lp, W � Lp, we define

dist. pI f ;W/ WD inf
P2W
k f � Pkp:

The following theorem is shown in [24, Theorem 2.1] (where a different notation
is used).

Proposition 1 Let f 2 Xp. Then

k fkH
p
�
� k fkp C sup

n>0
n�dist. pI f ; ˘n/: (14)

In particular, different values of r > � give rise to the same smoothness class with
equivalent norms (cf. [12]). We note that Wp

r 	 Hp
r for every r > 0.
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3 Main Results

In this paper, we wish to state our theorems without the requirement that the
quadrature formulas have positive weights, let alone equal weights. A substitute for
this requirement is the notion of regularity (sometimes called continuity) condition.
The space of all signed (or positive), complete, sigma finite, Borel measures on X

will be denoted by M .

Definition 2 Let d > 0. A measure � 2M will be called d-regular if

j�j.B.x; d// � cdq; x 2 X: (15)

The infimum of all constants c which work in (15) will be denoted by jjj�jjjR;d, and
the class of all d-regular measures will be denoted by Rd.

For example, �� itself is in Rd with jjj��jjjR;d � �2 for every d > 0 (cf. (8)). If
C 	 X, we define the mesh norm ı.C / (also known as fill distance, covering radius,
density content, etc.) and minimal separation �.C / by

ı.C / D sup
x2X

inf
y2C 
.x; y/; �.C / D inf

x;y2C ; x 6Dy

.x; y/: (16)

It is easy to verify that if C is finite, the measure that associates the mass �.C /q

with each point of C is �.C /-regular [25, Lemma 5.3].

Definition 3 Let n � 1. A measure � 2 M is called a quadrature measure of
order n if

Z

X

Pd� D
Z

X

Pd��; P 2 ˘n: (17)

An MZ (Marcinkiewicz-Zygmund) quadrature measure of order n is a quadra-
ture measure � of order n for which jjj�jjjR;1=n <1.

Our notion of approximate quadrature measures is formulated in the following
definition.

Definition 4 Let @ D f�ng1nD1 	 M , � > 0, 1 � p � 1. We say that @ is a
sequence of approximate quadrature measures of class A .�; p/ if each of the
following conditions hold.

1.

sup
n�1
j�nj.X/ <1: (18)

2.

sup
n�1
jjj�njjjR;1=n <1: (19)
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3. For n � 1,

ˇ
ˇ̌
ˇ

Z

X

Pd�� �
Z

X

Pd�n

ˇ
ˇ̌
ˇ � A

kPkH
p
�

n�
; P 2 ˘n; (20)

for a positive constant A independent of P, but possibly dependent on @ in
addition to the other fixed parameters.

With an abuse of terminology, we will often say that � is an approximate quadrature
measure of order n (and write � 2 A .�; p; n/) to mean tacitly that it is a member of
a sequence @ of approximate quadrature measures for which (20) holds.

Clearly, if each �n is a quadrature measure of order n, then (20) is satisfied for
every � > 0 and 1 � p � 1. In the case of a compact Riemannian manifold
satisfying some additional conditions, the existence of quadrature measures based
on scattered data that satisfy the other two conditions in the above definition are
discussed in [14, 15]. In particular, we have shown in [15] that under certain
additional conditions, a sequence @, where each �n is a positive quadrature measure
of order n necessarily satisfies the first two conditions in Definition 4. In Theorem 5
below, we will give the analogue of this result in the present context.

First, we wish to state a theorem reconciling the notion of approximate quadra-
ture measures with the usual notion of worst case error estimates.

Theorem 2 Let n � 1, 1 � p � 1, � > q=p, � be a 1=n-regular measure satisfying
j�j.X/ <1 and (20). Then for every f 2 Hp

� ,

ˇ
ˇ
ˇ
ˇ

Z

X

fd�� �
Z

X

fd�

ˇ
ˇ
ˇ
ˇ � c

�
AC jjj�jjj1=p

R;1=n.j�j.X//1=p0

	 k fkH
p
�

n�
: (21)

For example, if C 	 X is a finite set with �.C / � jC j�1=q, and � is the measure
that associates the mass jC j�1 with each point of C , then our notion of approximate
quadrature measures generalizes the notion of approximate QMC designs in [6–8].
Since an MZ quadrature measure of order n on a compact Riemannian manifold
is in A .�; p; n/, Theorem 2 generalizes essentially [20, Theorem 5] (for the spaces
denoted there by B�p;1, which are our Hp

� ) as well as [5, Asssertions (B), (C)] (except
that we consider the larger smoothness class than defined directly with the Bessel
potentials). We note finally that together with Proposition 3, Theorem 2 implies that
if � 2 A .�; p; n/ then � 2 A .�; p; ˛n/ for any positive ˛ > 0 (although the various
constants will then depend upon ˛).

Next, we demonstrate in Theorem 3 below that a sequence of approximate
quadrature measures can be constructed as solutions of certain optimization prob-
lems under certain additional conditions. These optimization problems involve
certain kernels of the form G.x; y/ D P

k b.�k/k.x/k.y/, where (intuitively)
b.�k/ � .�k C 1/�ˇ for some ˇ. In the case of integrating functions in L2, only
the order of magnitude estimates on the coefficients b.�k/ play a role. In the other
spaces, this is not sufficient because of an absence of the Parseval identity. On the
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other hand, restricting ourselves to Bessel potentials is not always an option in the
case of the data-defined spaces; there is generally no closed form formula for these.
A middle ground is provided by the following definition [25, Definition 2.3].

Definition 5 Let ˇ 2 R. A function b W R ! R will be called a mask of type
ˇ if b is an even, S times continuously differentiable function such that for t > 0,
b.t/ D .1C t/�ˇFb.log t/ for some Fb W R ! R such that jF.k/b .t/j � c.b/, t 2 R,
k D 0; 1; � � � ; S, and Fb.t/ � c1.b/, t 2 R. A function G W X�X! R will be called
a kernel of type ˇ if it admits a formal expansion G.x; y/ D P1

jD0 b.�j/j.x/j.y/
for some mask b of type ˇ > 0. If we wish to specify the connection between G and
b, we will write G.bI x; y/ in place of G.

The definition of a mask of type ˇ can be relaxed somewhat, for example, the
various bounds on Fb and its derivatives may only be assumed for sufficiently large
values of jtj rather than for all t 2 R. If this is the case, one can construct a new
kernel by adding a suitable diffusion polynomial (of a fixed degree) to G, as is
customary in the theory of radial basis functions, and obtain a kernel whose mask
satisfies the definition given above. This does not add any new feature to our theory.
Therefore, we assume the more restrictive definition as given above.

Theorem 3 Let 1 � p � 1, ˇ > q=p, G be a kernel of type ˇ in the sense of
Definition 5. For a measure �, we denote

Mp.�/ D
�
�
�
�

Z

X

G.x; ı/d�.x/�
Z

X

G.x; ı/d��.x/
�
�
�
�

p0

: (22)

Let n > 0, K be any compact subset of measures such that sup�2K j�j.X/ � c and
sup�2K jjj�jjjR;2�n � c. If there exists a quadrature measure �� of order 2n in K,

and �# 2 K satisfies

Mp.�
#/ � c inf

�2K
Mp.�/: (23)

Then �# satisfies (20) for every � , 0 < � < ˇ, and in particular, �# 2 A .�; p; 2n/

for each such � .

The main purpose of Theorem 3 is to suggest a way to construct an approximate
quadrature measure �# by solving a minimization problem involving different
compact sets as appropriate for the applications. We illustrate by a few examples.

In some applications, the interest is in the choice of the points, stipulating the
quadrature weights. For example, in the context of the sphere, the existence of
points yielding equal weights quadrature is now known [4]. So, one may stipulate
equal weights and seek an explicit construction for the points to yield equal weights
approximate quadrature measures as in [6]. In this case, K can be chosen to be the set
of all equal weight measures supported at points on S

q, the compactness of this set
following from that of the tensor product of the spheres. In the context of machine
learning, the points cannot be chosen and the interest is in finding the weights of
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an approximate quadrature measure. The existence of positive quadrature formulas
(necessarily satisfying the required regularity conditions) are known in the case of
a manifold, subject to certain conditions on the points and the manifold in question
[14, 15]. In this case, the set K can be taken to be that of all positive unit measures
supported at these points. In general, if X is compact, Tchakaloff’s theorem shows
that one could seek to obtain approximate quadrature measures computationally by
minimizing the quantity Mp.�/ over all positive unit measures � supported on a
number of points equal to the dimension of ˘n for each n.

We make some remarks regarding the computational aspects. The problem of
finding exact quadrature weights is the problem of solving an under-determined
system of equations involving the eigenfunctions. Since these eigenfunctions are
themselves known only approximately from the data, it is desirable to work directly
with a kernel. In the case of L2, the minimization problem to find non-negative
weights is the problem of minimizing

X

j;`

wjw`G
�.xj; x`/; xj; x` 2 C 	P

over all non-negative wj with
P

j wj D 1, where

G�.x; y/ D
1X

kD1
b.�k/

2k.x/k. y/:

Thus, the optimization problem involves only the training data. In the context of
semi-supervised learning, a large point cloud P is given, but the labels are available
only at a much smaller subset C 	 P . In this case, we need to seek approximate
quadrature measures supported only on C , but may use the entire set P to compute
these. Thus, in order to apply Theorem 3, we may choose K to be the set of all
measures with total variation� 1, supported on C , and estimate the necessary norm
expressions using the entire point cloud P . We observe that we have not stipulated
a precise solution of an optimization problem, only a solution in the sense of (23).
In the context of data-defined spaces, the data-based kernels themselves are only
approximations of the actual kernels, and hence, Theorem 3 provides a theoretical
justification for using algorithms to find sub-optimal solutions to the minimization
problem in order to find approximate quadrature formulas.

We end this discussion by observing a proposition used in the proof of
Theorem 3.

Proposition 2 Let 1 � p � 1, ˇ > q=p, G be a kernel of type ˇ in the sense of
Definition 5. If n > 0, �# 2M , and Mp.�

#/ � QA2�nˇ, then �# satisfies (20) with 2n

replacing n and A D c QA.

Next, we consider the density of the supports of the measures in a sequence
of approximate quadrature measures. It is observed in [7, 8] that there is a close
connection between approximate QMC designs and the (asymptotically) optimal
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covering radii of the supports of these designs. The definition in these papers is given
in terms of the number of points in the support. Typically, for a QMC design of order
n, this number is� nq. Therefore, it is easy to interpret this definition in terms of the
mesh norm of the support of a QMC design of order n being � 1=n. Our definition
of an approximate quadrature measure sequence does not require the measures
involved to be finitely supported. Therefore, the correct analogue of this definition
seems to be the assertion that every ball of radius� 1=n should intersect the support
of an approximate quadrature measure of order n. The following Theorem 4 gives a
sharper version of this sentiment.

Theorem 4 Let � > 0, 1 � p � 1 and @ D f�ng be a sequence in A .�; p/. Let
Qp D 1C q=.�p0/. Then there exists a constant C1 such that for n � c,

j�nj.B.x;C1=n1=Qp// � c1n
�q=Qp; x 2 X: (24)

In particular, if @ is a sequence of approximate quadrature measures of class
A .�; 1/, then

j�nj.B.x;C1=n// � c1n
�q; x 2 X: (25)

The condition (25) ensures that the support of the measure � 2 A .�; 1; n/ must
contain at least cnq points. In several papers, including [5], this fact was used to show
the existence of a function in Hp

� for which there holds a lower bound corresponding
to the upper bound in (20). The construction of the “bad function” in these papers
involves the notion of infinitely differentiable functions and their pointwise defined
derivatives. Since we are not assuming any differentiability structure on X, so the
notion of a C1 function in the sense of derivatives is not possible in this context.

Finally, we note in this connection that the papers [5–7] deal exclusively with
non-negative weights. The definition of approximate QMC designs in these papers
does not require a regularity condition as we have done. We show under some extra
conditions that if @ is a sequence of positive measures such that for each n � 1, �n

satisfies (20) with p D 1 and some � > 0, then @ 2 A .�; 1/.
For this purpose, we need to overcome a technical hurdle. In the case of the

sphere, the product of two spherical polynomials of degree< n is another spherical
polynomial of degree< 2n. Although a similar fact is valid in many other manifolds,
and has been proved in [15, 16] in the context of eigenfunctions of very general
elliptic differential operators on certain manifolds, we need to make an explicit
assumption in the context of the present paper, where we do not assume any
differentiability structure.

Product Assumption For A;N > 0, let

�A;N WD sup
�j;�k�N

dist.1Ijk; ˘AN/: (26)
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We assume that there exists A� � 2 with the following property: for every R > 0,
lim

N!1 NR�A�;N D 0.

In the sequel, for any H W R! R, we define formally

˚N.HI x; y/ WD
1X

jD0
H.�j=N/j.x/j. y/; x; y 2 X; N > 0: (27)

In the remainder of this paper, we will fix an infinitely differentiable, even function
h W R ! R such that h.t/ D 1 if jtj � 1=2, h.t/ D 0 if jtj � 1, and h is non-
increasing on Œ1=2; 1�. The mention of this function will be usually omitted from
the notation; e.g., we write ˚n.x; y/ in place of ˚n.hI x; y/.
Theorem 5 Let n > 0, 1 � p � 1, � be a positive measure satisfying (20) for
some � > 0. We assume that the product assumption holds, and that in addition the
following inequality holds: there exists ˇ > 0 such that

min
y2B.x;ˇ=m/

j˚m.x; y/j � cmq; x 2 X; m � 1: (28)

Then

�.B.x; 1=n// � cn�q=p; x 2 X: (29)

In particular, if p D 1 then j�j.X/ � c, � 2 R1=n, and jjj�jjjR;1=n � c.

The condition (28) is proved in [15, Lemma 7.3] in the case of compact Rieman-
nian manifolds satisfying a gradient condition on the heat kernel (in particular, the
spaces considered in the above cited papers).

4 Preparatory Results

In this section, we collect together some known results. We will supply the proofs
for the sake of completeness when they are not too complicated.

4.1 Results on Measures

The following proposition (cf. [15, Proposition 5.6]) reconciles different notions of
regularity condition on measures defined in our papers.

Proposition 3 Let d 2 .0; 1�, � 2M .

(a) If � is d-regular, then for each r > 0 and x 2 X,

j�j.B.x; r// � cjjj�jjjR;d ��.B.x; c.rC d/// � c1jjj�jjjR;d.rC d/q: (30)
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Conversely, if for some A > 0, j�j.B.x; r// � A.r C d/q or each r > 0 and
x 2 X, then � is d-regular, and jjj�jjjR;d � 2qA.

(b) For each ˛ > 0,

jjj�jjjR;˛d � c1.1C 1=˛/qjjj�jjjR;d � c21.1C 1=˛/q.˛ C 1/qjjj�jjjR;˛d; (31)

where c1 is the constant appearing in (30).

If K � X is a compact subset and � > 0, we will say that a subset C � K is
�-separated if 
.x; y/ � � for every x; y 2 C , x 6D y. Since K is compact, there exists
a finite, maximal �-separated subset fx1; � � � ; xMg of K. If x 2 Kn[M

kD1B.xk; �/, then
fx; x1; � � � ; xMg is a strictly larger �-separated subset of K. So, K � [M

kD1B.xk; �/.
Moreover, with �1 as in (4), the balls B.xk; �=.3�1// are mutually disjoint.

Proof of Proposition 3 In the proof of part (a) only, let � > jjj�jjjR;d, r > 0, x 2 X,
and let f y1; � � � ; yNg be a maximal 2d=3-separated subset of B.x; r C 2d=3/. Then
B.x; r/ � B.x; r C 2d=3/ � [N

jD1B.yj; 2d=3/. So,

j�j.B.x; r// � j�j.B.x; rC 2d=3// �
NX

jD1
j�j.B. yj; 2d=3//

�
NX

jD1
j�j.B. yj; d// � �Ndq:

The balls B.yj; d=.3�1// are mutually disjoint, and[N
jD1B.yj; d=.3�1// � B.x; c.rC

d//. In view of (10), dq � c��.B.yj; d=.3�1/// for each j. So,

j�j.B.x; r// � �Ndq � c�
NX

jD1
��.B. yj; d=.3�1/// D c���.[N

jD1B. yj; d=.3�1///

� c���.B.x; c.rC d///:

Since � > jjj�jjjR;d was arbitrary, this leads to the first inequality in (30). The second
inequality follows from (8). The converse statement is obvious. This completes the
proof of part (a).

Using (30) with ˛d in place of r, we see that

j�j.B.x; ˛d// � c1.˛ C 1/qdqjjj�jjjR;d D c1.1C 1=˛/q.˛d/qjjj�jjjR;d:

This implies the first inequality in (31). The second inequality follows from the first,
applied with 1=˛ in place of ˛. ut

Next, we prove a lemma (cf. [25, Proposition 5.1]) which captures many details
of the proofs in Sect. 4.2.
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Lemma 1 Let � 2 Rd, N > 0. If g1 W Œ0;1/! Œ0;1/ is a nonincreasing function,
then for any N > 0, r > 0, x 2 X,

Nq
Z

�.x;r/
g1.N
.x; y//dj�j. y/ � c

2q.1C .d=r/q/q

1 � 2�q
jjj�jjjR;d

�
Z 1

rN=2
g1.u/u

q�1du: (32)

Proof By replacing � by j�j=jjj�jjjR;d, we may assume that � is positive, and
jjj�jjjR;d D 1. Moreover, for r > 0, �.B.x; r// � c.1 C .d=r/q/rq. In this proof
only, we will write A.x; t/ D f y 2 X W t < 
.x; y/ � 2tg. We note that
�.A.x; t// � c2q.1C .d=r/q/tq, t � r, and

Z 2R

2R�1

uq�1du D 1 � 2�q

q
2Rq:

Since g1 is nonincreasing, we have

Z

�.x;r/
g1.N
.x; y//d�. y/ D

1X

RD0

Z

A.x;2Rr/
g1.N
.x; y//d�. y/

�
1X

RD0
g1.2

RrN/�.A.x; 2Rr// � c2q.1C .d=r/q/
1X

RD0
g1.2

RrN/.2Rr/q

� c
2q.1C .d=r/q/q

1 � 2�q
rq

1X

RD0

Z 2R

2R�1

g1.urN/uq�1du

D c
2q.1C .d=r/q/q

1 � 2�q
rq
Z 1

1=2

g1.urN/uq�1du

D c
2q.1C .d=r/q/q

1 � 2�q
N�q

Z 1

rN=2
g1.v/v

q�1dv:

This proves (32). ut

4.2 Results on Kernels

In our theory, a fundamental role is played by the kernels defined formally in (27):

˚N.HI x; y/ WD
1X

jD0
H.�j=N/j.x/j. y/; x; y 2 X; N > 0: (33)
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To describe the properties of this kernel, we introduce the notation

kjHjkS WD max
0�k�S

max
x2R jH

.k/.x/j:

A basic and important property of these kernels is given in the following theorem.

Theorem 6 Let S > q be an integer, H W R ! R be an even, S times continuously
differentiable, compactly supported function. Then for every x; y 2 X, N > 0,

j˚N.HI x; y/j � cNqkjHkjS
max.1; .N
.x; y//S/

: (34)

Theorem 6 is proved in [24], and more recently in much greater generality in [27,
Theorem 4.3]. In [24], Theorem 6 was proved under the conditions that the so called
finite speed of wave propagation holds, and the following spectral bounds hold for
the so called Christoffel (or spectral) function (defined by the sum expression in (35)
below):

X

�j<N

jj.x/j2 � cNq; x 2 X; N > 0: (35)

We have proved in [14, Theorem 4.1] that (9) with y 6D x is equivalent to the finite
speed of wave propagation. We have also shown in [14, Proposition 4.1] and [25,
Lemma 5.2] that (9) with y D x is equivalent to (35).

The following proposition follows easily from Lemma 1 and Theorem 6.

Proposition 4 Let S, H be as in Theorem 6, d > 0, � 2 Rd, and x 2 X.

(a) If r � 1=N, then

Z

�.x;r/
j˚N.HI x; y/jdj�j. y/ � c.1C .dN/q/.rN/�SCqjjj�jjjR;dkjHkjS: (36)

(b) We have

Z

X

j˚N.HI x; y/jdj�j. y/ � c.1C .dN/q/jjj�jjjR;dkjHkjS; (37)

k˚N.HI x; ı/k�IX;p � cNq=p0

.1C .dN/q/1=pjjj�jjj1=p
R;dkjHkjS; (38)

and
��
�
�

Z

X

j˚N.HI ı; y/jdj�j. y/

��
�
�

p

� c.1C .dN/q/1=p0 jjj�jjj1=p0

R;d

� .j�j.X//1=pkjHkjS: (39)
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Proof Without loss of generality, we assume that � is a positive measure and
assume also the normalizations jjj�jjjR;d D kjHkjS D 1. Let x 2 X, N > 0. For
r � 1=N, d=r � dN. In view of (34) and (32), we have for x 2 X:

Z

�.x;r/
j˚N.HI x; y/jd�. y/ � cNq

Z

�.x;r/
.N
.x; y//�Sd�. y/

� c.1C .dN/q/
Z 1

rN=2
v�SCq�1dv

� c.1C .dN/q/.rN/�SCq:

This proves (36).
Using (36) with r D 1=N, we obtain that

Z

�.x;1=N/
j˚N.HI x; y/jd�. y/ � c.1C .dN/q/: (40)

We observe that in view of (34), and the fact that �.B.x; 1=N// � c.1=N C d/q �
cN�q.1C .dN/q/,

Z

B.x;1=N/
j˚N.HI x; y/jd�. y/ � cNq�.B.x; 1=N// � c.1C .dN/q/:

Together with (40), this leads to (37).
The estimate (38) follows from (34) in the case p D1, and from (37) in the case

p D 1. For 1 < p <1, it follows from the convexity inequality

kFk�IX;p � kFk1=p0

�IX;1kFk1=p
�IX;1: (41)

The estimate (39) is the same as (37) in the case when p D 1. In addition, using
(37) with �� in place of �, 1=N in place of d, we obtain

Z

X

j˚N.HI x; y/jd��.x/ D
Z

X

j˚N.HI y; x/jd��.x/ � c:

Therefore,

Z

X

Z

X

j˚N.HI x; y/jdj�j. y/d��.x/ D
Z

X

Z

X

j˚N.HI x; y/jd��.x/dj�j. y/ � cj�j.X/:

This proves (39) in the case when p D 1. The estimate in the general case follows
from the cases p D 1;1 and (41). ut
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Next, we study some operators based on these kernels. If � is any measure on X

and f 2 Lp, we may define formally

�N.HI �I f ; x/ WD
Z

X

f . y/˚N.HI x; y/d�. y/: (42)

The following is an immediate corollary of Proposition 4, used with �� in place
of �, d D 0.

Corollary 1 We have

sup
x2X

Z

X

j˚N.HI x; y/jd��. y/ � ckjHkjS; (43)

and for every 1 � p � 1 and f 2 Lp,

k�N.HI��I f /kp � ckjHkjSk fkp: (44)

We recall that h W R ! R denotes a fixed, infinitely differentiable, and even
function, nonincreasing on Œ0;1/, such that h.t/ D 1 if jtj � 1=2 and h.t/ D 0 if
jtj � 1. We omit the mention of h from the notation, and all constants c; c1; � � � may
depend upon h. As before, we will omit the mention of � if � D �� and that of H
if H D h. Thus, ˚N.x; y/ D ˚N.hI x; y/, and similarly �N. f ; x/ D �N.hI��I f ; x/,
�N.�I f ; x/ D �N.hI �I f ; x/. The slight inconsistency is resolved by the fact that we
use ��, �, Q� etc. to denote measures and h, g, b, H, etc. to denote functions. We do
not consider this to be a sufficiently important issue to complicate our notations.

The following proposition gives the approximation properties of the kernels, and
summarizes some important inequalities in approximation theory in this context.
Different parts of this proposition are proved in [24, 25].

Proposition 5 Let 1 � p � 1, N > 0, r > 0.

(a) For f 2 Lp,

dist. pI f ; ˘N/ � k f � �N. f /kp � cdist. pI f ; ˘N=2/: (45)

(b) If f 2 Wp
r , then

dist. pI f ; ˘N/ � k f � �N. f /kp � cN�rk�rfkp: (46)

(c) For P 2 ˘N,

k�rPkp � cNrkPkp: (47)

(d) For f 2 Lp,

!r. pI f ; 1=N/ � k f � �N. f /kp C N�rk�r�N. f /kp � c!r. pI f ; 1=N/: (48)
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Proof If P 2 ˘N=2 is chosen so that k f�Pkp � 2dist.pI f ; ˘N=2/, then (44) implies
that

k f � �N. f /kp D k f � P � �N. f � P/kp � ck f � Pkp � cdist. pI f ; ˘N=2/:

This proves part (a).
The parts (b) and (c) are proved in [24, Theorem 6.1].
Next, let f1 be chosen so that k f � f1kp C N�rk�rf1kp � 2!r.pI f ; 1=N/. Then

using (44), (46), and (47), we deduce that

k f � �N. f /kp C N�rk�r�N. f /kp

� k f � f1 � �N. f � f1/kp C k f1 � �N. f1/kp

CN�r
�k�r�N. f � f1/kp C k�r�N. f1/kp

�

� cfk f � f1kp C N�rk�rf1kp C k�N. f � f1/kp C N�rk�N.�
rf1/kpg

� cfk f � f1kp C N�rk�rf1kpg � c!r. pI f ; 1=N/:

This proves (48). ut
We note next a corollary of this proposition.

Corollary 2 Let r > � > 0, ı 2 .0; 1�, 1 � p � 1, f 2 Xp, and n � 1. Then

!r. pI �n. f /; ı/ � c!r. pI f ; ı/ k�n. f /kH
p
�
� ck fkH

p
�
: (49)

Proof Let N � 1 be chosen such that 1=.2N/ < ı � 1=N. A comparison of the
Fourier coefficients shows that

�N.�n. f // D �n.�N. f //; �r.�N.�n. f /// D �n.�
r.�N. f ///:

Consequently, using (48), we conclude that

!r. pI �n. f /; ı/ � !r. pI �n. f /; 1=N/

� k�n. f / � �N.�n. f //kp C 1

Nr
k�r.�N.�n. f ///kp

D k�n. f / � �n.�N. f //kp C 1

Nr
k�n.�

r.�N. f ///kp

� cfk f � �N. f /kp C 1

Nr
k�r.�N. f //kpg

� c!r. pI f ; 1=N/ � c1!r. pI f ; 1=.2N// � c1!r. pI f ; ı/:
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This proves the first inequality in (49). The second inequality is now immediate
from the definitions. ut

Next, we state another fundamental result, that characterizes the space Hp
� in

terms of a series expansion of the functions. In the sequel, we will write for f 2
X1 \ X1, x 2 X,

	j. f ; x/ D
�
�1. f ; x/; if j D 0;
�2j. f ; x/ � �2j�1 . f ; x/; if j D 1; 2; � � � :

The following lemma summarizes some relevant properties of these operators.

Lemma 2 Let 1 � p � 1, f 2 Xp.

(a) We have

f D
1X

jD0
	j. f /; (50)

with convergence in the sense of Lp.
(b) For each j D 2; 3; � � � ,

k	j. f /kp � cdist. pI f ; ˘2 j�2 / � c
1X

kDj�1
k	k. f /kp: (51)

In particular, if � > 0 and f 2 Hp
� , then

k fkp C sup
j�0

2j�k	j. f /kp � k fkH
p
�
: (52)

(c) If j � 2, d > 0, and � 2 Rd then

k	j. f /k�I1 � .1C .2jd/q/1=pjjj�jjj1=p
R;d.j�j.X//1=p0k	j. f /kp: (53)

Proof Part (a) is an immediate consequence of (45). Since ˘2 j�2 	 ˘2j�1 , (45)
implies

k	j. f /kp � k f � �2j. f /kp C k f � �2j�1 . f /kp � cdist. pI f ; ˘2 j�2 /:

This proves the first estimate in (51). The second follows from (50). The estimate
(52) can be derived easily using (51) and Proposition 1. This completes the proof of
part (b).

Next, we prove part (c). In this proof only, let

QG.t/ D h.t=2/� h.4t/; g.t/ D h.t/ � h.2t/:
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Then g is supported on Œ1=4; 1�, while

QG.t/ D
8
<

:

0; if 0 � t � 1=8;
1; if 1=4 � t � 1;
0; if t � 2:

Therefore, it is easy to verify that QG.t/g.t/ D g.t/ for all t, 	j. f / D �2j .gI f /, and
hence, for all f 2 L1, x 2 X,

	j. f ; x/ D
Z

X

	j. f ; y/˚2j. QGI x; y/d��. y/:

Using Hölder inequality followed by (39) with p0 in place of p and QG in place of H,
we obtain that

Z

X

j	j. f ; x/jdj�j.x/ �
Z

X

Z

X

j˚2j. QGI x; y/jdj�j.x/jj	j. f ; y/jd��. y/

�
�
��
�

Z

X

j˚2j. QGI x; ı/jdj�j.x/
�
��
�

p0

k	j. f /kp

� cf.1C .d2j/q/g1=pjjj�jjj1=p
R;d.j�j.X//1=p0k	j. f /kp:

This proves (53). ut
We will use the following corollary of this lemma in our proofs.

Corollary 3 If n � 1, 0 < � < r, P 2 ˘n, then

sup
ı2.0;1�

!r. pIP; ı/
ır

: � k�rPkp � cnr��kPkH
p
�
: (54)

Further,

kPkH
p
�
� cfkPkp C k��Pkpg � cn�kPkp: (55)

Proof In view of the fact that �2n.P/ D P, we conclude from (48) used with 2n in
place of N that

1

.2n/r
k�rPkp D kP � �2n.P/kp C 1

.2n/r
k�r�2n.P/kp � c!r. pIP; 1=.2n//:

This shows that

k�rPkp � c sup
ı2.0;1�

!r. pIP; ı/
ır

:
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The estimate in (54) in the other direction follows from the definition of !r.pIP; ı/.
Let m be an integer, 2m � n < 2mC1. Since the expansion for P as given in (50)

is only a finite sum, we see that

k�rPkp D
�
�
�
�
��

X

j

�r	j.P/

�
�
�
�
��

p

D
�
�
�
�
��

mC2X

jD0
�r	j.P/

�
�
�
�
��

p

�
mC2X

jD0
k�r	j.P/kp:

Hence, using (47) and (52), we deduce that

k�rPkp � c
mC2X

jD0
2j.r��/2j�k	j.P/kp � c2m.r��/kPkH

p
�
:

This implies the last estimate in (54).
If N � n then dist.p;P; ˘N/ D 0. If N < n, then the estimate (46) yields

dist. p;P; ˘N/ � cN��k��Pk:

Hence, Proposition 1 shows that

kPkH
p
�
� kPkp C sup

N�1
N�dist. p;P; ˘N/ � cfkPkp C k��Pkg:

This proves the first estimate in (55); the second follows from (47). ut
Next, we recall yet another preparatory lemma. The following lemma is proved

in [26, Lemma 5.4]. (In this lemma, the statement (57) is stated only for p D1, but
the statement below follows since �� is a probability measure.)

Lemma 3 Let N � 1, P 2 ˘N, 0 < p1 � p2 � 1. Then

kPkp2 � cNq.1=p1�1=p2/kPkp1 : (56)

Further, let the product assumption hold, P1;P2 2 ˘N, 1 � p; p1; p2 � 1, and
R > 0 be arbitrary. Then there exists Q 2 ˘A�N such that

kP1P2 �Qkp � c.R/N�RkP1kp1kP2kp2 : (57)

The following embedding theorem is a simple consequence of the results stated
so far.

Lemma 4

(a) Let 1 � p1 < p2 � 1, � > q.1=p1 � 1=p2/, f 2 Hp1
� . Then

k fkH
p2
��q.1=p1�1=p2/

� ck fkH
p1
�
: (58)
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(b) Let 1 � p <1, � > q=p, and f 2 Hp
� . Then f 2 H1

��q=p ( f 2 X1 in particular),
and

k fkH1

��q=p
� ck fkH

p
�
: (59)

Proof In this proof only, we will write ˛ D q.1=p1 � 1=p2/. Let n � 0, f 2 Hp1
� ,

and r > � . Without loss of generality, we may assume that k fkH
p1
�
D 1. In view of

(48),

1

2nr
k�r�2n. f /kp1 � c2�n� :

Since �r�2n. f / 2 ˘2n , Lemma 3 shows that

1

2nr
k�r�2n. f /kp2 �

2n˛

2nr
k�r�2n. f /kp1 � c2�n.��˛/: (60)

Further, since each 	j. f / 2 ˘2j , we deduce from (56), (52), and the fact that � > ˛,
that

1X

jDnC1
k	j. f /kp2 � c

1X

jDnC1
2j˛k	j. f /kp1 � c

1X

jDnC1
2�j.��˛/ D c2�n.��˛/: (61)

Consequently, the series

�2n. f /C
1X

jDnC1
	j. f /

converges in Lp2 , necessarily to f . Therefore, f 2 Xp2 . Further, (61) shows that

k f � �2n. f /kp2 � c2�n.��˛/:

Together with (60) we have thus shown that

k f � �2n. f /kp2 C
1

2nr
k�r�2n. f /kp2 � c2�n.��˛/:

In view of (48), this proves (58).
Part (b) is special case of part (a). ut
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5 Proofs of the Main Results

We start with the proof of Theorem 2. This proof mimics that of [20, Theorem 5].
However, while this theorem was proved in the case of the sphere for (exact)
quadrature measures, the following theorem assumes only approximate quadratures
and is, of course, valid for generic data-defined spaces.

Proof of Theorem 2 Without loss of generality, we may assume in this proof that
k fkH

p
�
D 1. Let m � 0 be an integer such that 2m � n < 2mC1. Proposition 3(b)

shows that

jjj�jjjR;2�m � jjj�jjjR;1=n � jjj�jjjR;2�m�1 � c:

Since � > q=p, Lemma 4 shows that f 2 X1, so that Lemma 2(a) leads to

f D �2m. f /C
1X

jDmC1
	j. f /;

where the series converges uniformly. Hence, using (53) with d D 2�m and (52), we
obtain

ˇ
ˇ
ˇ̌
Z

X

fd� �
Z

X

�2m. f /d�

ˇ
ˇ
ˇ̌ �

1X

jDmC1

ˇ
ˇ
ˇ̌
Z

X

	j. f /d�

ˇ
ˇ
ˇ̌ �

1X

jDmC1
k	j. f /k�I1

� cjjj�jjj1=p
R;d.j�j.X//1=p0

1X

jDmC1
2. j�m/q=pk	j. f /kp

� c2�mq=pjjj�jjj1=p
R;d.j�j.X//1=p0

1X

jDmC1
2�j.��q=p/

D c2�m� jjj�jjj1=p
R;d.j�j.X//1=p0

: (62)

In view of (20), we obtain using Corollary 2 that
ˇ
ˇ
ˇ̌
Z

X

�2m. f /d�� �
Z

X

�2m. f /d�

ˇ
ˇ
ˇ̌ � A

2m�
k�2m. f /kH

p
�
� c

A

2m�
k fkH

p
�
D c

A

2m�
:

Using this observation and (62), we deduce that
ˇ
ˇ
ˇ
ˇ

Z

X

fd�� �
Z

X

fd�

ˇ
ˇ
ˇ
ˇ D

ˇ
ˇ
ˇ
ˇ

Z

X

�2m. f /d�� �
Z

X

fd�

ˇ
ˇ
ˇ
ˇ

�
ˇ
ˇ̌
ˇ

Z

X

�2m. f /d�� �
Z

X

�2m. f /d�

ˇ
ˇ̌
ˇC

ˇ
ˇ̌
ˇ

Z

X

fd� �
Z

X

�2m. f /d�

ˇ
ˇ̌
ˇ

� c
�

AC jjj�jjj1=p
R;d.j�j.X//1=p0

	
2�m� :
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This proves Theorem 2. ut
In order to prove Theorem 3, we first summarize in Proposition 6 below some

properties of the kernels G introduced in Definition 5, including the existence of
such a kernel. This proposition is proved in [25, Proposition 5.2]; we state it with
p0 in [25, Proposition 5.2] replaced by p per the requirement of our proof. Although
the set up there is stated as that of a compact smooth manifold without boundary,
the proofs are verbatim the same for data-defined spaces.

Let b be a mask of type ˇ 2 R. In the sequel, if N > 0, we will write bN.t/ D
b.Nt/.

Proposition 6 Let 1 � p � 1, ˇ > q=p, G be a kernel of type ˇ.

(a) For every y 2 X, there exists  y WD G.ı; y/ 2 Xp0

such that h y; ki D
b.�k/k.y/, k D 0; 1; � � � . We have

sup
y2X
kG.ı; y/kp0 � c: (63)

(b) Let n � 1 be an integer, � 2 R2�n , and for F 2 L1.�/\ L1.�/, m � n,

Um.F; x/ WD
Z

y2X
fG.x; y/� ˚2m.hb2m I x; y/gF. y/d�. y/:

Then

kUm.F/kp0 � c2�mˇ2q.m�n/=pk�kR;2�nkFk�IX;p0 : (64)

It is convenient to prove Proposition 2 before proving Theorem 3.

Proof of Proposition 2 Let P 2 ˘2n , and we define

DG.P/.x/ D
X

j

OP. j/

b.�j/
j.x/; x 2 X:

Then it is easy to verify that

P.x/ D
Z

X

G.x; y/DG.P/. y/d��. y/: (65)

Using Fubini’s theorem and the condition that Mp.�
#/ � QA2�nˇ, we deduce that

ˇ̌
ˇ
ˇ

Z

X

P.x/d�#.x/ �
Z

X

P.x/d��.x/
ˇ̌
ˇ
ˇ

D
ˇ
ˇ
ˇ̌
Z

X

DG.P/. y/

�Z

X

G.x; y/d�#.x/ �
Z

X

G.x; y/d��.x/
�

d��. y/

ˇ
ˇ
ˇ̌

� kDG.P/kpMp.�
#/ � QA2�nˇkDG.P/kp: (66)
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Let 0 < � < r < ˇ. We have proved in [25, Lemma 5.4(b)] that

kDG.P/kp � c2n.ˇ�r/k�rPkp:

Hence, Corollary 3 implies that

kDG.P/kp � c2n.ˇ��/kPkH
p
�
:

Using (66), we now conclude that

ˇ
ˇ̌
ˇ

Z

X

P.x/d�#.x/ �
Z

X

P.x/d��.x/
ˇ
ˇ̌
ˇ � QA2�nˇkDG.P/kp � c QA2�nˇ2n.ˇ��/kPkH

p
�
:

Thus, �# satisfies (20). ut
Proof of Theorem 3 We note that

Z

X

fG.x; y/ �˚2n.hb2n I x; y/g d��.x/ D 0; y 2 X:

Since �� 2 K, �� is a quadrature measure of order 2n, and ˚2n.hb2n I x; ı/ 2 ˘2n ,
we obtain that

Mp.�
#/ � c inf

�2K
Mp.�/ � cMp.�

�/

D c

�
��
�

Z

X

fG.x; ı/�˚2n.hb2n I x; ı/g d��.x/

�
Z

X

fG.x; ı/� ˚2n.hb2n I x; ı/g d��.x/
�
�
�
�

p0

D c

�
�
�
�

Z

X

fG.x; ı/�˚2n.hb2n I x; ı/g d��.x/
�
�
�
�

p0

: (67)

We now use Proposition 6(b) with F � 1, m D n, to conclude that

Mp.�
#/ � c2�nˇ: (68)

Thus, �# satisfies the conditions in Proposition 2, and hence, (20). ut
The main idea in the proof of Theorem 4 below is to show that the localization

of the kernels ˚N imply via Proposition 4 that the integral of ˚N.x; �/ on X is
concentrated on a ball of radius � 1=N around x.
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Proof of Theorem 4 Let n � 1, � D �n 2 @, and x 2 X. In this proof only, let
˛ 2 .0; 1/ be fixed (to be chosen later), N be defined by

N�Cq=p0 D .˛n/� I i.e.; N D .˛n/1=Qp: (69)

We consider the polynomial P D ˚N.x; ı/ and note that P 2 ˘N � ˘n. Since �
satisfies (20),

ˇ
ˇ
ˇ̌1 �

Z

X

P. y/d�. y/

ˇ
ˇ
ˇ̌ D

ˇ
ˇ
ˇ̌
Z

X

P. y/d��. y/ �
Z

X

P. y/d�. y/

ˇ
ˇ
ˇ̌ � c

n�
kPkH

p
�
: (70)

In view of (55) in Corollary 3, and Proposition 1, we deduce using the definition
(69) that

kPkH
p
�
� cN�kPkp � cN�Cq=p0kPk1 � cN�Cq=p0 D c˛�n� :

Therefore, (70) leads to

ˇ
ˇ
ˇ
ˇ1 �

Z

X

P. y/d�. y/

ˇ
ˇ
ˇ
ˇ � c˛� :

We now choose ˛ to be sufficiently small to ensure that

ˇ
ˇ
ˇ
ˇ1 �

Z

X

˚N.x; y/d�. y/

ˇ
ˇ
ˇ
ˇ D

ˇ
ˇ
ˇ
ˇ1 �

Z

X

P. y/d�. y/

ˇ
ˇ
ˇ
ˇ � 1=2; n � 1: (71)

Next, we use (36) with h in place of H, d D 1=n, and r D �=N for sufficiently large
� � 1 to be chosen later. Recalling that N � n, this yields

ˇ
ˇ
ˇ̌
Z

�.x;�=N/
P. y/d�. y/

ˇ
ˇ
ˇ̌ �

Z

�.x;�=N/
j˚N.x; y/jdj�j. y/

� c.1C .N=n/q/.�/�SCq � c��SCq; (72)

where we recall our convention that jjj�jjjR;1=n is assumed to be bounded indepen-
dently of n. We now choose � to be large enough so that

Z

�.x;�=N/
j˚N.x; y/jdj�j. y/ � 1=4: (73)

Together with (71), (72), this leads to

1=4 �
Z

B.x;�=N/
˚N.x; y/d�. y/ � 7=4; n � 1: (74)
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Since j˚N.x; y/j � cNq (cf. (34)), we deduce that

1=4 �
Z

B.x;�=N/
˚N.x; y/d�. y/ �

Z

B.x;�=N/
j˚N.x; y/jdj�j. y/

� cNqj�j.B.x; �=N//:

This implies (24). ut
Finally, the proof of Theorem 5 mimics that of [15, Theorem 5.8] (see also [15,

Theorem 5.5(a)] to see the connection with regular measures). Unlike in that proof,
we use only the approximate quadrature measures rather than exact quadrature
measures.

Proof of Theorem 5 Let x 2 X. With A� defined as in the product assumption and
ˇ as in (28), let QA D max.A�; 1=ˇ/. In view of (28) and the fact that � is a positive
measure, we obtain that

n2q�.B.x; 1=n// � c
Z

B.x;1=n/
j˚n=QA.x; y/j2d�. y/ �

Z

X

j˚n=QA.x; y/j2d�. y/: (75)

Let R � 1. In view of (57) in Lemma 3, there exists Q 2 ˘n such that

k˚n=QA.x; ı/2 � Qk1 � cn�Rk˚n=QA.x; ı/k21 � cn�R: (76)

Since � satisfies (20), we obtain first that

ˇ
ˇ
ˇ
ˇ

Z

X

0d�
� �

Z

X

0d�

ˇ
ˇ
ˇ
ˇ � c;

so that j�j.X/ � c, and then conclude using (76) that

ˇ
ˇ
ˇ
ˇ

Z

X

j˚n=QA.x; y/j2d��. y/�
Z

X

j˚n=QA.x; y/j2d�. y/

ˇ
ˇ
ˇ
ˇ

�
Z

X

jj˚n=QA.x; y/j2 �Q. y/jd��. y/C
Z

X

jj˚n=QA.x; y/j2 � Q. y/jd�. y/

C
ˇ
ˇ̌
ˇ

Z

X

Qd�� �
Z

X

Qd�

ˇ
ˇ̌
ˇ �

c

nR
C c
kQkH

p
�

n�
: (77)

Since Q 2 ˘n, Lemma 3, Corollary 3, and (76) lead to

kQkH
p
�

n�
� ckQkp � cnq=p0kQk1 � cnq=p0

n
k˚n=QA.x; ı/2 � Qk1 C k˚n=QA.x; ı/2k1

o

� cnq=p0fn�R C k˚n=QA.x; ı/2k1g: (78)
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In view of (38) in Proposition 4, used with �� in place of �, d D 0, p D 2, we see
that

k˚n=QA.x; ı/2k1 D k˚n=QA.x; ı/k22 � cnq:

Therefore, (78) and (77) imply that

Z

X

j˚n=QA.x; y/j2d�. y/ � cnqCq=p0

:

Together with (75), this leads to (29). ut

Acknowledgements The research of this author is supported in part by ARO Grant W911NF-15-
1-0385. We thank the referees for their careful reading and helpful comments.

References

1. Belkin, M., Niyogi, P.: Semi-supervised learning on Riemannian manifolds. Mach. Learn.
56(1–3), 209–239 (2004)

2. Belkin, M., Niyogi, P.: Convergence of Laplacian eigenmaps. Adv. Neural Inf. Proces. Syst.
19, 129 (2007)

3. Belkin, M., Niyogi, P.: Towards a theoretical foundation for Laplacian-based manifold
methods. J. Comput. Syst. Sci. 74(8), 1289–1308 (2008)

4. Bondarenko, A., Radchenko, D., Viazovska, M.: Optimal asymptotic bounds for spherical
designs. Ann. Math. 178(2), 443–452 (2013)

5. Brandolini, L., Choirat, C., Colzani, L., Gigante, G., Seri, R., Travaglini, G.: Quadrature rules
and distribution of points on manifolds. Ann. Sc. Norm. Super. Pisa Cl. Sci 13, 889–923 (2014)

6. Brauchart, J., Saff, E., Sloan, I., Womersley, R.: QMC designs: optimal order quasi monte carlo
integration schemes on the sphere. Math. Comput. 83(290), 2821–2851 (2014)

7. Brauchart, J.S., Dick, J., Saff, E.B., Sloan, I.H., Wang, Y.G., Womersley, R.S.: Covering of
spheres by spherical caps and worst-case error for equal weight cubature in Sobolev spaces. J.
Math. Anal. Appl. 431(2), 782–811 (2015)

8. Breger, A., Ehler, M., Graef, M.: Points on manifolds with asymptotically optimal covering
radius. Preprint at arXiv:1607.06899 (2016)

9. Breger, A., Ehler, M., Graef, M.: Quasi monte carlo integration and kernel-based function
approximation on Grassmannians. Preprint at arXiv:1605.09165 (2016)

10. Coifman, R.R., Lafon, S.: Diffusion maps. Appl. Comput. Harmon. Anal. 21(1), 5–30 (2006)
11. Davies, E.B.: Lp spectral theory of higher-order elliptic differential operators. Bull. Lond.

Math. Soc. 29(05), 513–546 (1997)
12. DeVore, R.A., Lorentz, G.G.: Constructive Approximation, vol. 303. Springer Science &

Business Media, Berlin (1993)
13. Ehler, M., Filbir, F., Mhaskar, H.N.: Locally learning biomedical data using diffusion frames.

J. Comput. Biol. 19(11), 1251–1264 (2012)
14. Filbir, F., Mhaskar, H.N.: A quadrature formula for diffusion polynomials corresponding to a

generalized heat kernel. J. Fourier Anal. Appl. 16(5), 629–657 (2010)
15. Filbir, F., Mhaskar, H.N.: Marcinkiewicz–Zygmund measures on manifolds. J. Complex. 27(6),

568–596 (2011)



962 H. N. Mhaskar

16. Geller, D., Pesenson, I.Z.: Band-limited localized Parseval frames and Besov spaces on
compact homogeneous manifolds. J. Geom. Anal. 21(2), 334–371 (2011)

17. Grigor’yan, A.: Estimates of heat kernels on Riemannian manifolds. Lond. Math. Soc. Lect.
Note Ser. 273, 140–225 (1999)

18. Grigor’yan, A.: Heat kernels on metric measure spaces with regular volume growth. In:
Handbook of Geometric Analysis, no. 2. Adv. Lect. Math. (ALM), vol. 13, pp. 1–60. Int. Press,
Somerville (2010)

19. Grigor’yan, A.: Heat kernels on weighted manifolds and applications. Contemp. Math 398,
93–191 (2006)

20. Hesse, K., Mhaskar, H.N., Sloan, I.H.: Quadrature in Besov spaces on the Euclidean sphere. J.
Complex. 23(4), 528–552 (2007)

21. Jones, P.W., Maggioni, M., Schul, R.: Manifold parametrizations by eigenfunctions of the
Laplacian and heat kernels. Proc. Natl. Acad. Sci. 105(6), 1803–1808 (2008)

22. Kordyukov, Y.A.: Lp-theory of elliptic differential operators on manifolds of bounded geome-
try. Acta Appl. Math. 23(3), 223–260 (1991)

23. Lafon, S.S.: Diffusion maps and geometric harmonics. Ph.D. thesis, Yale University (2004)
24. Maggioni, M., Mhaskar, H.N.: Diffusion polynomial frames on metric measure spaces. Appl.

Comput. Harmon. Anal. 24(3), 329–353 (2008)
25. Mhaskar, H.N.: Eignets for function approximation on manifolds. Appl. Comput. Harmon.

Anal. 29(1), 63–87 (2010)
26. Mhaskar, H.N.: A generalized diffusion frame for parsimonious representation of functions on

data defined manifolds. Neural Netw. 24(4), 345–359 (2011)
27. Mhaskar, H.N.: A unified framework for harmonic analysis of functions on directed graphs and

changing data. Appl. Comput. Harmon. Anal. Published online June 28 (2016)
28. Rivlin, T.J.: The Chebyshev Polynomials. Wiley, New York (1974)
29. Rosasco, L., Belkin, M., Vito, E.D.: On learning with integral operators. J. Mach. Learn. Res.

11, 905–934 (2010)
30. Singer, A.: From graph to manifold Laplacian: the convergence rate. Appl. Comput. Harmon.

Anal. 21(1), 128–134 (2006)



Tractability of Multivariate Problems
for Standard and Linear Information
in the Worst Case Setting: Part II

Erich Novak and Henryk Woźniakowski

Dedicated to Ian H. Sloan on the occasion of his 80th birthday.

Abstract We study QPT (quasi-polynomial tractability) in the worst case setting
for linear tensor product problems defined over Hilbert spaces. We assume that the
domain space is a reproducing kernel Hilbert space so that function values are well
defined. We prove QPT for algorithms that use only function values under the three
assumptions:

1. the minimal errors for the univariate case decay polynomially fast to zero,
2. the largest singular value for the univariate case is simple and
3. the eigenfunction corresponding to the largest singular value is a multiple of the

function value at some point.

The first two assumptions are necessary for QPT. The third assumption is necessary
for QPT for some Hilbert spaces.

1 Introduction

In Part I [6] we presented a lower error bound for approximating linear multivariate
operators defined over Hilbert spaces with algorithms that use function values. In
this Part II we study upper bounds and algorithms for the same problem. We want
to understand the intrinsic difficulty of approximation of d-variate problems when
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d is large. Algorithms that approximate d-variate problems may use finitely many
functionals from the class �all of information or from the standard class �std of
information. The class �all consists of arbitrary linear functionals, whereas the
class �std consists of only function values.

We wish to approximate a d-variate problem in the worst case setting to within
an error threshold " 2 .0; 1/. The intrinsic difficulty is measured by the information
complexity which is defined as the minimal number of linear functionals from the
class � 2 f�all; �stdg which is needed to find an "-approximation, see (2) for the
precise definition.

Tractability deals with how the information complexity depends on d and on "�1,
see [3–5]. In particular, we would like to know when the information complexity is
exponential in d, the so-called curse of dimensionality, and when we have a specific
dependence on d which is not exponential. There are various ways of measuring the
lack of exponential dependence and that leads to different notions of tractability. In
particular, we have polynomial tractability (PT) when the information complexity is
polynomial in d and "�1, and quasi-polynomial tractability (QPT) if the information
complexity is at most proportional to

exp
�

t .1C ln "�1/.1C ln d/
� D �e "�1�t.1Cln d/

for some non-negative t independent of d and ". This means that the exponent of "�1
may depend weakly on d through ln d.

In this paper we study QPT for linear (unweighted) tensor product problems,
S D fSdg with Sd D S ˝ d

1 and a compact linear non-zero S1 W F1 ! G1 for Hilbert
spaces F1 and G1. Since we want to use function values we need to assume that
F1 is a reproducing kernel Hilbert space of univariate functions defined on a non-
empty D � R. For simplicity we consider real valued functions. By

K1 W D1 � D1 ! R

we denote the reproducing kernel of F1. Then S ˝ d W F ˝ d
1 ! G ˝ d

1 and F ˝ d
1 is a

reproducing kernel Hilbert space of d-variate functions defined on D � D � � � � � D
(d times) with the reproducing kernel

Kd.x; t/ D
dY

jD1
K1.xj; tj/ for all xj; tj 2 D1:

Obviously, tractability may depend on which class�std or�all is used. Tractabil-
ity results for�std cannot be better than for�all. The main question is when they are
more or less the same. In particular, it is known when QPT holds for�all. Namely, let
f�j; �jg be the ordered sequence of eigenvalues �j and orthonormal eigenfunctions
�j of S�

1S1 W F1 ! F1. Here S�
1 W G1 ! F1 is the adjoint operator of S1. Let

decay� WD supf r � 0 W lim
j!1 j r�j D 0 g
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denote the polynomial decay of the eigenvalues �j. Since S1 is assumed to be non-
zero and compact, we have �1 > 0, limj �j D 0, and decay� is well defined.
However, it may happen that decay� D 0.

It is known, see [1], that

S is QPT for �all iff �2 < �1 and decay� > 0:

Furthermore, if �2 > 0 then S is not PT for�all (and for�std). On the other hand,
if �2 D �1 > 0 then S suffers from the curse of dimensionality for the class �all

(and for �std).
We now discuss QPT for �std. To motivate the need for the assumption on the

eigenfunction �1 corresponding to the largest eigenvalue �1, we cite a result from
Part I, see [6], for the Sobolev space

F1 with the reproducing kernel K�
1 .x; t/ D 1Cmin.x; t/ for x; t 2 Œ0; 1�:

Then S suffers from the curse of dimensionality if

�1 6D ˙ ŒK�
1 .t; t/�

�1=2 K�
1 .�; t/ D ˙ .1C t/�1=2 .1Cmin.�; t//

for all t 2 Œ0; 1�: (1)

Furthermore, for the approximation problem, S1f D APP1f D f 2 G1 D L2.Œ0; 1�/,
the assumption (1) holds, �2 < �1 and decay� D 2. Therefore for APP D fAPP ˝ d

1 g
we have

Curse for�std and QPT for �all:

In this paper we prove that the assumption (1) is essential for the curse and QPT can
hold for the class �std if (1) is not satisfied.

This will be shown by establishing a result for general linear non-zero tensor
product problems for which F1 is an arbitrary reproducing kernel Hilbert space with
the reproducing kernel K1 W D1�D1 ! R. For the class�std, the role of the sequence
� D f�jg is replaced by the sequence e D fen.S1/g of the minimal worst case errors
of algorithms that use at most n function values. First of all, note that

lim
n

en.S1/ D 0:

Indeed, this holds for S1 being a continuous linear functional, see [4, p. 79] and
for a compact linear operator S1 and for all positive " it is enough to approximate
sufficiently well finitely many linear functionals. We define the polynomial decay
of the minimal errors en.S1/ as for the eigenvalues by

decaye WD supf r � 0 W lim
n!1 nren.S1/ D 0 g:
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The main result of this paper is the following theorem.

Theorem 1 Let S be a non-zero linear tensor product with a compact linear S1 for
which

• �2 < �1,
• decaye > 0,
• �1 D ˙K1.t; t/�1=2 K1.�; t/ for some t 2 D1.

Then S is QPT for the class �std.

We now comment on the assumptions of this theorem. The first assumption is
the same as for the class �all. As already said, for �2 D �1 > 0 we have the curse
of dimensionality for �std. The second assumption is necessary for QPT and the
class �std. Indeed, if decaye D 0 then even the univariate case cannot be solved
polynomially in "�1. This assumption corresponds to the assumption decay� > 0

for the class�all. For many problems we have decaye D decay�. However, there are
problems for which decay� D 1, decaye D 0, and en.S1/ can go to zero arbitrarily
slowly, i.e., like 1= ln.ln.� � � ln.n////, where the number of ln can be arbitrarily large,
see [2] which is also reported in [5] pp. 292–304. In this case, i.e., when decay� > 0
and decaye D 0, we have QPT for �all and no QPT for �std.

We now discuss the last assumption which states that the eigenfunction �1
corresponding to the largest eigenvalue �1 is of a very special form. First of all, note
that the scaling which is used in (1) and here is needed to guarantee that k�1k D 1.
This implies that K1.t; t/ > 0. For �1 D ˙K1.t; t/�1=2 K1.�; t/ we have

h f ; �1iF1 D ˙K1.t; t/
�1=2 h f ;K1.�; t/iF1 D ˙K1.t; t/

�1=2 f .t/:

This means that the inner product h f ; �1iF1 now can be computed exactly by one
function value. Apparently, this important property allows us to achieve QPT for the
class �std. If this last assumption is not satisfied then we may decrease F1 slightly
by a rank 1 modification to obtain QPT for the modified problem, see Sect. 6.

Theorem 1 will be proved constructively by presenting an algorithm Ad;" that
computes an "-approximation and uses at most O

�
exp

�
t .1C ln "�1/.1C ln d/

��

function values for some t independent of d and "�1. The algorithm Ad;" is a
modification of the Smolyak (sparse grid) algorithm applied to components of the
operators Sd, see [7, 9] and Chapter 15 of [4] as well as Chapter 27 of [5].

It seems interesting to apply Theorem 1 to the space F1 with the reproducing
kernel K�

1 which was used before. Combining the results of Part I with Theorem 1
we obtain the following corollary.

Corollary 1 Consider the spaces with K�
1 as above. Then S is QPT for the class

�std iff

• �2 < �1,
• decaye > 0,
• �1 D ˙ .1C t/�1=2 .1Cmin.�; t// for some t 2 D1.



Standard Information in the Worst Case Setting 967

2 Preliminaries

Let S W F ! G be a continuous linear non-zero operator, where F is a
reproducing kernel Hilbert space of real functions f defined over a common non-
empty domain D 	 R

k for some positive integer k, and G is a Hilbert space. We
approximate S by algorithms An that use at most n function values, i.e., we use the
class�std. Without loss of generality we may assume that A is linear, see e.g., [3, 8].
That is,

An f D
nX

jD1
f .tj/ gj

for some tj 2 D and gj 2 S.F/ � G. The worst case error of An is defined as

e.An/ D sup
k f kF�1

kSf � An fkG D kS � AnkF!G:

For n D 0, we take An D 0 and then we obtain the initial error which is

e.0/ D e0.S/ D kSkF!G:

Since S is non-zero, the initial error is positive.
We are ready to define the information complexity for the class �std and for the

so-called normalized error criterion. It is defined as the minimal number of function
values which are needed to reduce the initial error by a factor " 2 .0; 1/. That is,

n."; S/ D minf n W 9An such that e.An/ � " e0.S/g: (2)

Assume now that we have a sequence

S D fSdg1dD1

of continuous linear non-zero operators Sd W Fd ! Gd, where Fd is a reproducing
kernel Hilbert space of real functions defined over a non-empty Dd 	 R

d and Gd

is a Hilbert space. In this case, we want to verify how the information complexity
n."; Sd/ depends on "�1 and d. We say that S is quasi-polynomially tractable (QPT)
for the class �std iff there are non-negative numbers C and t such that

n."; Sd/ � C exp
�

t .1C ln "�1/.1C ln d/
�

for all " 2 .0; 1/; d 2 N:

More about other tractability concepts can be found in [3–5].
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3 Linear Tensor Products

We obtain a linear tensor product problem if the spaces F D Fd and G D Gd as
well as S D Sd are given by tensor products of d copies of F1 and G1 as well as
a continuous linear non-zero operator S1 W F1 ! G1, respectively, where F1 is a
reproducing kernel Hilbert space of real univariate functions defined over a non-
empty D1 	 R and G1 is a Hilbert space. To simplify the notation we assume that
F1 is of infinite dimension. Then Fd is an infinite dimensional space of d-variate real
functions defined on Dd D D1 � D1 � � � � � D1 (d times).

We assume that S1 is compact. Then all Sd are also compact. Let .�j; �j/ be the
eigenpairs of W1 D S�

1S1 W F1 ! F1 with

�1 � �2 � � � � � 0 and
˝
�i; �j

˛
F1
D ıi;j:

Clearly, kS1kF1!G1 D
p
�1. Since S is non-zero, �1 > 0. We have f 2 F1 iff

f D
1X

jD1

˝
f ; �j

˛
F1
�j with k fk2F1 D

1X

jD1

˝
f ; �j

˛2
F1
<1:

Then

S1f D
1X

jD1

˝
f ; �j

˛
F1

S1�j; (3)

where

˝
S1�i; S1�j

˛
G1
D ˝�i;W1�j

˛
F1
D �jıi;j:

This means that the sequence fS1�jg is orthogonal in G1 and

kS1fk2G1 D
1X

jD1

˝
f ; �j

˛2
F1
�j:

For d � 2, the eigenpairs .�j; �j/ of Wd D S�
d Sd W Fd ! Fd are given in terms of

the eigenpairs .�j; �j/ of the univariate operator W1 D S�
1 S1 W F1 ! F1. We have

f�d;jg1jD1 D f�j1�j2 � � ��jdg1j1;j2;:::;jdD1:

Similarly, the eigenfunctions of Wd are of product form

f�d;jg1jD1 D f�j1 ˝ �j2 ˝ � � � ˝ �jd g1j1;j2;:::;jdD1;
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where

Œ�j1 ˝ �j2 ˝ � � � ˝ �jd �.x/ D
dY

kD1
�jk .xk/ for all x D Œx1; : : : ; xd� 2 Dd

and

˝
�i1 ˝ �i2 ˝ � � � ˝ �id ; �j1 ˝ �j2 ˝ � � � ˝ �jd

˛
Fd
D ıi1;j1 ıi2;j2 � � � ıid ;jd :

Then kSdkFd!Gd D kWdk1=2Fd!Fd
D �d=2

1 . Hence, the initial error is e0.Sd/ D �d=2
1 .

We have f 2 Fd iff

f D
X

. j1;j2;:::;jd/2Nd

˝
f ; �j1 ˝ � � � ˝ �jd

˛
Fd
�j1 ˝ � � � ˝ �jd

with

k fk2Fd
D

X

. j1;j2;:::;jd/2Nd

˝
f ; �j1 ˝ � � � ˝ �jd

˛2
Fd
<1:

In particular, for x D .x1; x2; : : : ; xd/ 2 Dd we have

f .x/ D
X

. j1;j2;:::;jd/2Nd

˝
f ; �j1 ˝ � � � ˝ �jd

˛
Fd
�j1 .x1/ � � ��jd.xd/:

4 Decomposition of Linear Tensor Products

In this section we assume, as in Theorem 1, that

�1 D ˙K1.t; t/
�1=2K1.�; t/ for some t 2 D1:

Then for j � 2 we obtain

0 D ˝�1; �j
˛
F1
D K1.t; t/

�1=2 �j.t/:

Hence, �j.t/ D 0 for all j � 2. This implies that

f .t; : : : ; t/ D ˝ f ; �˝ d
1

˛
Fd
�d
1.t/;
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and for any k D 1; 2; : : : ; d � 1 and any vector x D .t; : : : ; t; xkC1; : : : ; xd/ we have

f .x/ D
X

. jkC1;:::;jd/2Nd�k

˝
f ; �˝ k

1 ˝ �jkC1
� � � ˝ �jd

˛
Fd

Œ�1.t/�
k�jkC1

.xkC1/ � � ��jd .xd/: (4)

We start the decomposition of Sd from the univariate case, d D 1. From (3) we
have

S1 D V1 C V2

with

V1f D h f ; �1iF1 S1�1 D ˙K1.t; t/
�1=2 f .t/ S1�1;

V2f D
1X

jD2

˝
f ; �j

˛
F1

S1�j

for all f 2 F1. Clearly,

kV1kF1!G1 D kS1�1kG1 D
p
�1 and kV2kF1!G1 D kS1�2kG1 D

p
�2:

We stress that we can compute V1f exactly by using one function value.
For d � 2, we obtain

Sd D .V1 C V2/
˝ d D

X

. j1;j2;:::;jd/2f1;2gd

Vj1 ˝ Vj2 ˝ � � � ˝ Vjd :

For j D . j1; j2; : : : ; jd/ 2 f1; 2gd we define

j jj2 D jf ji j ji D 2gj

as the number of indices equal to 2. Clearly,

kVj1 ˝ Vj2 ˝ � � � ˝ VjdkFd!Gd D kV1k d�j jj2
F1!G1

kV2k j jj2
F1!G1

D �.d�j jj2/=2
1 �

j jj2=2
2 :

5 Algorithms for Linear Tensor Products

We now derive an algorithm for linear tensor products for which the assumptions
of Theorem 1 hold and we conclude QPT for the class �std from an estimate of the
worst case error of this algorithm.
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To simplify the notation we assume that �1 D 1. This can be done without loss
of generality since otherwise we can replace S1 by ��1=2

1 S1.
For �1 D 1 and due to the first assumption in Theorem 1, we have

kV1kF1!G1 D 1 and kV2kF1!G1 D �1=22 < 1:

Consider first V2;d D V ˝d
2 with an exponentially small norm since

kV2;dkFd!Gd D �d=2
2 :

From the assumptions decaye > 0 and �2 < 1, it was concluded in [9], see in
particular Lemma 1 and Theorem 2 of this paper, that for all d 2 N there is a
Smolyak/sparse grid algorithm

Ad;nf D
nX

mD1
f .td;n;m/ gd;n;m for all f 2 Fd

for some td;n;m 2 Dd and gd;n;m D gd;n;m;1˝� � �˝gd;n;m;d with gd;n;m;` 2 V1.F1/ � G1,
such that

e.Ad;n/ D kV2;d � Ad;nkFd!Gd � ˛ n�r for all d; n 2 N (5)

for some positive ˛ and r. We stress that ˛ and r are independent of d and n.
From the third assumption of Theorem 1 we know that

�1 D ı K1.t; t/
�1=2K1.�; t/; where ı 2 f�1; 1g:

For an integer k 2 Œ0; d�, consider V ˝ .d�k/
1 ˝ V ˝ k

2 . For k D 0 we drop the
second factor and for k D d we drop the first factor so that V ˝ d

1 ˝ V ˝ 0
2 D V ˝ d

1

and V ˝ 0
1 ˝ V ˝ d

2 D V ˝ d
2 .

For k D 0, we approximate V ˝ d
1 by the algorithm

Ad;n;0f D ıd

K1.t; t/d=2
f .t; t; : : : ; t/ .S1�1/

˝ d for all f 2 Fd:

Clearly, the error of this approximation is zero since Ad;n;0 D V ˝ d
1 and Ad;n;0 uses

one function value.
For k D d, we approximate V ˝ d

2 by the algorithm Ad;n with error at most ˛ n�r.

For k D 1; 2; : : : ; d � 1, we approximate V ˝ .d�k/
1 ˝ V ˝k

2 by the algorithm

Ad;n;kf D ıd�k

ŒK1.t; t/�.d�k/=2

nX

mD1
f .t; : : : ; t; tk;n;m/.S1�1/

˝ .d�k/ ˝ gk;n;m
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for all f 2 Fd. We now show that

Ad;n;k D V ˝ .d�k/
1 ˝ Ak;n: (6)

Indeed, we know that V1�j D 0 for all j � 2. Then

.V ˝ .d�k/
1 ˝ Ak;n/f

D .V ˝ .d�k/
1 ˝ Ak;n/

X

. j1;:::;jd/2Nd

˝
f ; �j1 ˝ � � � ˝ �jd

˛
Fd
�j1 ˝ � � � ˝ �jd

D
X

. j1;:::;jd/2Nd

˝
f ;˝d

`D1�j`

˛
Fd
.V1�j1 /˝ � � � ˝ .V1�jd�k /˝ Ak;n.�jd�kC1

˝ � � � ˝ �jd /

D ˛k

X

. jd�kC1;:::;jd/2Nk

D
f ; �˝ .d�k/

1 ˝k
`D1 �jd�kC`

E

Fd

.S1�1/
˝ .d�k/ ˝

nX

mD1

�˝k
`D1�jd�kC`

�
.tk;n;m/gk;n;m

D ıd�k

ŒK1.t; t/�.d�k/=2

nX

mD1
hm.S1�1/

˝ .d�k/ ˝ gk;n;m;

where ˛k D ıd�kK1.t; t/.d�k/=2�1.t/d�k and

hm D
X

. jd�kC1;:::;jd/2Nk

D
f ; �˝ .d�k/

1 ˝ �jd�kC1
˝ � � � ˝ �jd

E

Fd

� �1.t/d�k
�
�jd�kC1

˝ � � � ˝ �jd

�
.tk;n;j/:

From (4) we conclude that

hj D f .t; : : : ; t; tk;n;j/

and

V ˝ .d�k/
1 ˝ Ak;n D Ad;n;k;

as claimed. From this, we see that

V ˝ .d�k/
1 ˝ V ˝ k

2 � Ad;n;k D V ˝ .d�k/
1 ˝ .V ˝ k

2 � Ak;n/

and

e.Ad;n;k/ D kV ˝ k
2 � Ak;nkFk!Gk � ˛ n�r:
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We now explain how we approximate Vj1 ˝ � � � ˝ Vjd for an arbitrary

j D . j1; : : : ; jd/ 2 f1; 2gd:

The idea is the same as before, i.e., for the indices j` D 1 we approximate Vj`
by itself, and for the rest of the indices, which are equal to 2, we apply the
Smolyak/sparse grid algorithm for proper parameters. More precisely, let k D j jj2.
The cases k D 0 and k D d have been already considered. Assume then that
k 2 Œ1; d � 1� WD f1; 2; : : : ; d � 1g. Let `i 2 Œ1; d� be the ith occurrence of 2 in
the vector j, i.e., 1 � `1 < `2 < � � � < `k � d, and j`1 D j`2 D � � � D j`k D 2.

Define the algorithm

Ad;n;jf D ıd�k

K1.t; t/.d�k/=2

nX

mD1
f . yd;n;j;m/ hd;n;j;m;1 ˝ � � � ˝ hd;n;j;m;d;

where the vector yd;n;j;m D .yd;n;j;m;1; : : : ; yd;n;j;m;d/ is given by

yd;n;j;m;` D
(

t if j` D 1;
tk;n;m;i if j` D 2 and ` D `i;

and

hd;n;j;m:` D
(

S1�1 if j` D 1;
gk;n;m;i if j` D 2 and ` D `i

for ` D 1; 2; : : : ; d.
The error of the algorithm Ad;n;j is the same as the error of the algorithm Ad;n;j jj2

since for (unweighted tensor) products the permutation of indices does not matter.
Hence, for all j 2 f1; 2g, the algorithm Ad;n;j uses at most n function values and

e.Ad;n;j/ � ˛ n�r; (7)

and this holds for all d.
We now define an algorithm which approximates Sd with error at most " 2 .0; 1/.

The idea of this algorithm is based on approximation of all Vj1 ˝ � � � ˝ Vjd whose

norm is kV2kj jj2 D �
j jj2=2
2 . If �j jj2=2

2 � "=2 we approximate Vj1 ˝ � � � ˝ Vjd by zero
otherwise by the algorithm Ad;n;j for specially chosen n. More precisely, let

k D min

 

d;

&
2 ln 2

"

ln 1
�2

'!

:
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Define the algorithm

Ad;n;" D
X

j2f1;2gd

Ad;n;";j (8)

with

Ad;n;";j D
(
0 if j jj2 > k;

Ad;n;j if j jj2 � k:

Note that non-zero terms in (8) correspond to j jj2 � k and each of them uses at most
n function values. Therefore the algorithm Ad;n;" uses at most

card.Ad;n;"/ � n
kX

`D0

 
d

`

!

function values.
We now analyze the error of Ad;n;". We have

Sd �Ad;n;" D
X

j2f1;2gd ; j jj2�k

�
Vj1 ˝ � � � ˝ Vjd � Ad;n;";j

�C
X

j2f1;2gd ; j jj2>k

Vj1 ˝ � � �˝Vjd :

Note that the second operator in the sum above is zero if k D d. For k < d the terms
of the second operator are orthogonal and therefore it has norm at most �k=2

2 � "=2
by the definition of k.

From (7) we conclude

kSd � Ad;n;"kFd!Gd � ˛ n�r
kX

`D0

 
d

`

!

C "=2:

We now consider two cases k � d=2 and k > d=2. We opt for simplicity at the
expense of some error overestimates which are still enough to establish QPT.

• Case k � d=2.
Then the binomial coefficients

�d
`

�
are increasing and

kX

`D0

 
d

`

!

� .kC 1/
 

d

k

!

� .kC 1/ dk

kŠ
� 2dk:
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If we take n such that

2˛ dk

nr
� "=2 (9)

then

e.Ad;n;"/ D kSd � Ad;n;"kFd!Gd � ":

Since k � 1C 2 ln.2"�1/= ln.��1
2 /, we have

dk � ˛1.1C "�1/˛2 .1Cln d/

for some ˛1 and ˛2 independent of d and "�1. Therefore

n D O
�
exp

�
O..1C ln "�1/.1C ln d//

��

satisfies (9). Furthermore, the cardinality of Ad;n;" is bounded by

2dk n D O
�
exp

�
O..1C ln "�1/.1C ln d//

��
:

• Case k > d=2.
We now have d � 2k � 2.1 C 2 ln.2"�1/= ln.��1

2 // D O.1 C ln "�1/. We
estimate

Pk
`D0

�d
`

�
by 2d D exp.O.1C ln "�1//. Then 2˛ 2d n�r � "=2 for

n D O
�
exp

�
O.1C ln "�1/

��
:

Hence

e.Ad;n;"/ � "

and the cardinality of Ad;n;" is bounded by

2d n D O
�
exp

�
O.1C ln "�1/

��
:

In both cases, k � d=2 and k > d=2, we show that the error of the algorithm Ad;n;"

is at most " and the number of function values used by this algorithm is at most

˛3 exp
�
˛4 .1C ln "�1/.1C ln d/

�

for some ˛3 and ˛4 independent of "�1 and d. This shows that the problem S D fSdg
is QPT. This also proves Theorem 1.
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6 Final Comments

Let us assume, as in Theorem 1, that S is a non-zero linear tensor product problem
with a compact linear S1 for which

• �2 < �1,
• decaye > 0,

but the last condition is not fulfilled, i.e.,

�1 6D ˙K1.t; t/
�1=2 K1.�; t/ for all t 2 D:

Then, as we have seen, we cannot in general conclude QPT for the class �std.
We can ask whether we can modify the problem somehow, by decreasing the

class F1, in order to obtain QPT for the modified (smaller) spaces. It turns out that
this is possible. For notational convenience we assume again that �1 D 1.

Since �1 is non-zero, there exists a point t� 2 D such that �1.t�/ 6D 0. Define

eF1 D f f 2 F1 j hf ; �1iF1 D Œ�1.t�/��1f .t�/g:

Note that �1 2 eF1 andeF1 is a linear subspace of F1. Let

ef D �1 � K1.�; t�/
�1.t�/

:

Clearly,ef 2 F1 andef 6D 0. TheneF1 can be rewritten as

eF1 D f f 2 F1 j
˝
f ;ef
˛
F1
D 0g:

It is easy to verify that the reproducing kernel eK1 ofeF is

eK1.x; y/ D K1.x; y/�
ef .x/ef . y/

kef k 2 for all x; y 2 D:

Furthermore, it is also easy to check that

�1 D eK1.t
�; t�/�1=2eK1.�; t�/:

The operatoreS1 D S1
ˇ̌
eF1 , which is the restriction of S1 to the subspaceeF1 satisfies

all assumptions of Theorem 1. Indeed, lete�n be the ordered eigenvalues of

eW1 DeS�
1
eS1 W eF1 !eF1:
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Since �1 2 eF1 we havee�1 D �1 D 1, wherease�n � �n for all n � 2 sinceeF1 � F1.
Thereforee�2 <e�1. Similarly, for both classes�all and�std, the minimal worst case
errors foreS1 are no larger than the minimal worst case errors for S1. Hence, applying
Theorem 1 foreS˝ d

1 , we conclude QPT for the modified problem.
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The Analysis of Vertex Modified Lattice
Rules in a Non-periodic Sobolev Space

Dirk Nuyens and Ronald Cools

Dedicated to Ian H. Sloan’s beautiful contributions to the
existence and construction of lattice rules, on the occasion of
his 80th birthday.

Abstract In a series of papers, in 1993, 1994 and 1996, Ian Sloan together with
Harald Niederreiter introduced a modification of lattice rules for non-periodic
functions, called “vertex modified lattice rules”, and a particular breed called
“optimal vertex modified lattice rules”, see Numerical Integration IV (Birkhäuser
1993) pp. 253–265, J Comput Appl Math 51(1):57–70, 1994, and Comput Math
Model 23(8–9):69–77, 1996. These are like standard lattice rules but they distribute
the point at the origin to all corners of the unit cube, either by equally distributing
the weight and so obtaining a multi-variate variant of the trapezoidal rule, or by
choosing weights such that multilinear functions are integrated exactly. In the 1994
paper, Niederreiter and Sloan concentrate explicitly on Fibonacci lattice rules, which
are a particular good choice of 2-dimensional lattice rules. Error bounds in this series
of papers were given related to the star discrepancy.

In this paper we pose the problem in terms of the so-called unanchored Sobolev
space, which is a reproducing kernel Hilbert space often studied nowadays in which
functions have L2-integrable mixed first derivatives. It is known constructively
that randomly shifted lattice rules, as well as deterministic tent-transformed lattice
rules and deterministic fully symmetrized lattice rules can achieve close to O.N�1/
convergence in this space, see Sloan et al. (Math Comput 71(240):1609–1640,2002)
and Dick et al. (Numer Math 126(2):259–291, 2014) respectively, where possible
logs.N/ terms are taken care of by weighted function spaces.

We derive a break down of the worst-case error of vertex modified lattice rules in
the unanchored Sobolev space in terms of the worst-case error in a Korobov space,
a multilinear space and some additional “mixture term”. For the 1-dimensional case
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this worst-case error is obvious and gives an explicit expression for the trapezoidal
rule. In the 2-dimensional case this mixture term also takes on an explicit form for
which we derive upper and lower bounds. For this case we prove that there exist
lattice rules with a nice worst-case error bound with the additional mixture term of
the form N�1 log2.N/.

1 Introduction

We study the numerical approximation of an s-dimensional integral over the unit
cube

I. f / WD
Z

Œ0;1�s
f .x/ dx:

A (rank-1) lattice rule with N points in s dimensions is an equal weight cubature
rule

Q. f I z;N/ WD 1

N

N�1X

kD0
f


�
zk
N

��
; (1)

where z 2 Z
s is the generating vector of which the components are most often

chosen to be relatively prime to N, and the curly braces f�g mean to take the
fractional part componentwise. Clearly, as this is an equal weight rule, the constant
function is integrated exactly. The classical theory, see [6, 14], is mostly concerned
with periodic functions and then uses the fact that f can be expressed in an absolutely
converging Fourier series to study the error. See also [11] for a recent overview of
this “spectral” error analysis and its application to lattice rules. In this paper we only
consider real-valued integrand functions.

In a series of papers [7–9] Niederreiter and Sloan introduced vertex modified
lattice rules, and, more general, vertex modified quasi-Monte Carlo rules, to also
cope with non-periodic functions. In this paper we revisit these vertex modified
lattice rules using the technology of reproducing kernel Hilbert spaces, more
precisely the unanchored Sobolev space of smoothness 1. The inner product for
the one-dimensional unanchored Sobolev space is defined by

h f ; giusob1;1;�1 WD
Z 1

0

f .x/ dx
Z 1

0

g.x/ dxC 1

�1

Z 1

0

f 0.x/ g0.x/ dx; (2)
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where, more generally, �j is a “product weight” associated with dimension j, which
is used to model the importance of different dimensions, see, e.g., [15]. In the
multivariate case we take the tensor product such that the norm is defined by

k fk2usob1;s;� WD
X

u�f1Wsg
��1
u

Z

Œ0;1�juj

 Z

Œ0;1�s�juj

@juj

@xu
f .x/ dx�u

!2
dxu

D
X

u�f1Wsg
��1
u

�
�
��
�

Z

Œ0;1�s�juj

@juj

@xu
f .x/ dx�u

�
�
��
�

2

L2

; (3)

with �u D Q
j2u �j. We use the short hand notation f1 W sg D f1; : : : ; sg and thus

in (3) u ranges over all subsets of f1; : : : ; sg, and �u is the complement with respect
to the full set, �u D f1 W sg n u. Note that (3) is a sum of L2-norms of mixed first
derivatives for all variables in u where all other variables are averaged out.

2 Vertex Modified Lattice Rules

The vertex modified lattice rule proposed in [7] is given by

Qvm. f I z;N;w/ D
X

a2f0;1gs

w.a/f .a/C 1

N

N�1X

kD1
f


�
zk
N

��
; (4)

with well chosen vertex weights w.a/ such that the constant function is still
integrated exactly. It is assumed that gcd.zj;N/ D 1, for all j D 1; : : : ; s, such
that only the lattice point for k D 0 is on the edge of the domain Œ0; 1�s, and this
is why the second sum only ranges over k D 1; : : : ;N � 1, i.e., the interior points.
We note that typically N equals the number of function evaluations. This is not true
anymore for vertex modified lattice rules. We define M to be the total number of
function evaluations, and this is given by

M D 2s C N � 1: (5)

The 2s term makes us focus on the low-dimensional cases only, and we derive
explicit results for s D 2 later. The vertex modified rule can then be represented
as a standard cubature rule of the form

Q. f I f.wk; xk/gMkD1/ D Q. f / D
MX

kD1
wk f .xk/; (6)
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with appropriate choices for the pairs .wk; xk/. For the vertex modified rules we
only need to specify the weights at the vertices of the unit cube, all other remain
unchanged from the standard lattice rule and are 1=N.

Two particular choices for the weights w.a/ have been proposed [7–9]. The first
one has constant weights w.a/ � 1=.2sN/which mimics the trapezoidal rule in each
one-dimensional projection:

T. f I z;N/ WD Qvm. f I z;N; 1

2sN
/ D 1

2sN

X

a2f0;1gs

f .a/C 1

N

N�1X

kD1
f


�
zk
N

��
:

A second particular choice of weights w�.a/ leads to the so-called optimal vertex
modified lattice rule [7]:

Q�. f I z;N/ WD Qvm. f I z;N;w�/ D
X

a2f0;1gs

w�.a/f .a/C 1

N

N�1X

kD1
f


�
zk
N

��
:

This rule integrates all multilinear polynomials exactly, i.e.,

Q�. f I z;N/ D Qvm. f I z;N;w�/ D I. f / for all f .x/ D
sY

jD1
x

kj

j with kj 2 f0; 1g:

There is no need to solve a linear system of equations to find the weights w�.a/.
The following result from [7] shows they can be determined explicitly.

Proposition 1 For every a 2 f0; 1gs define u to be the support of a, i.e., u D u.a/ D
f1 � j � s W aj ¤ 0g. Then the weight w�.a/ is given by

w�.a/ D w�
u D

1

2s
� 1

N

N�1X

kD1
`u


�
zk
N

��
where `u.x/ WD

Y

j2u
xj

Y

j2f1Wsgnu
.1 � xj/:

Proof The idea is to use a kind of a Lagrange basis which is 0 in all vertex points
a 2 f0; 1gs except in one. For this purpose, consider the basis, for u � f1 W sg,

`u.x/ D
Y

j2u
xj

Y

j2f1Wsgnu
.1 � xj/

such that `u.a/ D 1u.a/Du. Demanding that Q.`u/ D I.`u/ for some u � f1 W sg,
gives

X

a2f0;1gs

w�.a/ `u.a/C 1

N

N�1X

kD1
`u


�
zk
N

��
D
Z

Œ0;1�s
`u.x/ dx

from where the result follows. ut
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3 Reproducing Kernel Hilbert Spaces

In this section we collect some well known results. For more details the reader is
referred to, e.g., [2, 3, 5, 10, 11].

The reproducing kernel K W Œ0; 1�� Œ0; 1�! R of a one-dimensional reproducing
kernel Hilbert space H .K/ is a symmetric, positive definite function which has the
reproducing property

f . y/ D h f ;K.�; y/iK for all f 2H .K/ and y 2 Œ0; 1�:

The induced norm in the space will be denoted by k fkK D
ph f ; f iK . If the space

has a countable basis f'hgh which is orthonormal with respect to the inner product
of the space, then, by virtue of Mercer’s theorem, the kernel is given by

K.x; y/ D
X

h

'h.x/ 'h. y/:

For the multivariate case we consider the tensor product space and the kernel is then
given by

Ks.x; y/ D
sY

jD1
K.xj; yj/:

We define the worst-case error of integration using a cubature rule Q to be

wce.QIK/ WD sup
f 2H .K/
k f kK �1

jQ. f /� I. f /j:

For a general cubature formula Q. f / DPM
kD1 wk f .xk/ the squared worst-case error

can be written as, see, e.g., [5],

wce.QIK/2 D
Z

Œ0;1�2s
K.x; y/ dxdy� 2

MX

kD1
wk

Z

Œ0;1�s
K.xk; y/ dy

C
MX

k;`D1
wkw` K.xk; x`/: (7)

For all kernels in the remainder of the text we have that
R 1
0

R 1
0

K.x; y/ dxdy D 1 and
R 1
0

K.x; y/ dy D 1 for all x 2 Œ0; 1� and this also holds for the multivariate kernel due
to the product structure.
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3.1 The Korobov Space

A well known example is the Korobov space which consists of periodic functions
which can be expanded in an absolutely converging Fourier series. We refer
the reader to the general references in the beginning of this section for further
information on the Korobov space. Denote the Fourier coefficients by

Of .h/ WD
Z

Œ0;1�s
f .x/ exp.�2�i h � x/ dx; h 2 Z

s:

In the one-dimensional case, if we assume an algebraic decay of h�˛, ˛ > 1=2, by
means of

k fk2kor˛;1;�1 WD j Of .0/j2 C
X

0¤h2Z
j Of .h/j2 ��1

1 jhj2˛ <1;

then the reproducing kernel is given by

Kkor˛
1;�1

.x; y/ WD 1C �1
X

0¤h2Z

exp.2�i h.x � y//

jhj2˛ :

We now specifically concentrate on the case ˛ D 1 as this will be of use throughout
the paper. For ˛ D 1 the reproducing kernel for the s-variate case can be written as

Kkor1
s;� .x; y/ D

sY

jD1

�
1C 2�2�jB2.fxj � yjg/

� D
X

u�f1Wsg

Y

j2u
2�2�jB2.fxj � yjg/;

where B2.t/ D t2 � t C 1
6
D 1

2�2

P
0¤h2Z

exp.2� i ht/
h2

, for 0 � t � 1, is the 2nd
degree Bernoulli polynomial and � D f�jgsjD1 is a set of product weights which are
normally used to model dimension importance. Here we will not make use of the
weights � , except for scaling, such that the worst-case error of one space shows up
in the worst-case error expression of another space.

For a general cubature rule Q. f / DPM
kD1 wk f .xk/, with

PM
kD1 wk D 1, using (7)

one obtains

wce.QIKkor1
s;� /

2 D
MX

k;`D1
wkw`

X

;¤u�f1Wsg

Y

j2u
2�2�jB2.fxk;j � x`;jg/: (8)

In case Q. f / D Q. f I z;N/ is a lattice rule then the difference of two points is also a
point of the point set and therefore the squared worst-case error formula simplifies to

wce.Q.�I z;N/IKkor1
s;� /

2 D 1

N

N�1X

kD0

X

;¤u�f1Wsg

Y

j2u
2�2�jB2.xk;j/:
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We remark that, apart from the higher cost, using a vertex modified lattice rule in
the Korobov space makes no difference to the worst-case error,

wce.Qvm.�I z;N;w/IKkor˛
s;� / D wce.Q.�I z;N/IKkor˛

s;� /; (9)

since Kkor˛
s;� .a; 0/ D Kkor˛

s;� .0; 0/ for all a 2 f0; 1gs and the weights w.a/ are such that
they sum to 1=N due to the constraint of integrating the constant function exactly.

3.2 The Space of Multilinear Functions

Define the following multilinear functions, for u � f1 W sg,

gu.x/ WD
Y

j2u

p
12 .xj � 1

2
/ D

Y

j2u

p
12B1.xj/;

so g;.x/ D 1, gf1g.x/ D
p
12 .x1� 12 / and so on, where B1.t/ D t� 1

2
is the 1st degree

Bernoulli polynomial. These functions form an orthonormal basis fgugu�f1Wsg with
respect to the standard L2 inner product and we can thus construct a reproducing
kernel for this finite dimensional space:

Klin
s;�.x; y/ WD

X

u�f1Wsg
�u gu.x/ gu.y/ D 1C

X

;¤�f1Wsg

Y

j2u
12 �j B1.xj/B1. yj/;

where we introduced standard product weights. The worst-case error for a general
cubature rule Q. f / DPM

kD1 wk f .xk/, for which
PM

kD1 wk D 1, is given by

wce.QIKlin
s;�/

2 D
MX

k;`D1
wkw`

X

;¤u�f1Wsg

Y

j2u
12 �j .xk;j � 1

2
/ .x`;j � 1

2
/: (10)

We remark that this space is not such an interesting space on its own. The
one-point rule which samples at the point . 1

2
; : : : ; 1

2
/ has worst-case error equal to

zero in this space, as can be seen immediately from (10). The worst-case error in
this multilinear space will show up as part of the worst-case error in the Sobolev
space that we will discuss next. Also note that, by construction, the optimal vertex
modified lattice rule has

wce.Q�IKlin
s;�/ D 0:

Naturally for s D 1 also wce.TIKlin
1;� / D 0.



986 D. Nuyens and R. Cools

3.3 The Unanchored Sobolev Space of Smoothness 1

The reproducing kernel of the unanchored Sobolev space of smoothness 1 is
given by

Kusob1
s;� .x; y/ WD

sY

jD1



1C �jB1.xj/B1. yj/C �j

B2.fxj � yjg/
2

�
;

and the norm by (3). (The inner product is built as the tensor product based on the
one-dimensional inner product (2).) We note that for functions from the Korobov
space with ˛ D 1

k fkusob1;s;� D k fkkor1;s;�=.2�/2 for all f 2H .Kkor1
s;� /;

where �=.2�/2 means all weights are rescaled by a factor of 1=.2�/2, which can
easily be seen from the one-dimensional case using (2) and the Fourier series of f ,
see also [3].

Lattice rules were studied in the unanchored Sobolev space in [3] using the tent-
transform and were shown to achieve O.N�1/ convergence rate without the need
for random shifting as was previously known. A second approach in that paper used
full symmetrisation of the point set (reflection around 1

2
for each combination of

dimensions; this is the generalization of the 1-point rule at 1
2

for the multilinear
space as discussed above, making sure all multilinear functions are integrated
exactly). In a way we can look at vertex modified lattice rules Qvm as being only
the symmetrisation of the node 0 but with different weights. Using equal weights
leads to the rule T.�I z;N/ which is the full symmetrisation of the point 0 (but does
not necessarily integrate the multilinear functions exactly). For the rule Q�.�I z;N/
the weights are chosen in a more intrinsic way such that they integrate multilinear
functions exactly and we will concentrate our analysis on this rule.

4 Error Analysis

4.1 Decomposing the Error for the Unanchored Sobolev Space

We study the worst-case error of using a vertex modified lattice rule in the
unanchored Sobolev space. First note

Kusob1
s;� .x; y/ D 1C

X

;¤u�f1Wsg

Y

j2u
�jB1.xj/B1. yj/C

X

;¤u�f1Wsg

Y

j2u
�j

B2.fxj � yjg/
2

C
X

;¤u�f1Wsg

X

;¤v�u

Y

j2u
�jB1.xj/B1. yj/

Y

j02v
�j0

B2.fxj0 � yj0g/
2

: (11)
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From this the following break down of the worst-case error can be obtained.

Proposition 2 The squared worst-case error for a general cubature rule Q. f / DPM
kD1 wk f .xk/, with

PM
kD1 wk D 1, in the unanchored Sobolev space of smooth-

ness 1 is given by

wce.QIKusob1
s;� /2 D wce.QIKlin

s;�=12/
2 C wce.QIKkor1

s;�=.2�/2/
2

C
MX

k;`D1
wkw`

X

;¤u�f1Wsg

X

;¤v�u

Y

j2unv
�jB1.xk;j/B1.x`;j/

Y

j02v
�j0

B2.fxk;j0 � x`;j0g/
2

:

Proof This can be found by direct calculation using (11) in (7) and comparing terms
with the worst-case errors in the Korobov space (8) and the multilinear space (10).

ut
This means our worst-case error is constituted of the worst-case error in the

multilinear space (with the weights scaled by 1=12) and the worst-case error in
the Korobov space of smoothness 1 (with the weights rescaled by 1=.2�/2) plus a
“mixture term”. For the optimal modified lattice rule Q� the error in the multilinear
space is zero. Additionally, the worst-case error in the Korobov space does not
change for a vertex modified lattice rule as it just distributes the weight of the point 0
to the other vertices, but such that the sum of all vertex weights is still 1=N, see (9).

Obviously, in only one dimension, the mixture term is not present as we cannot
take both u and v non-empty, and then the worst-case error in the Sobolev space
of smoothness 1 equals the worst-case error of the respective lattice rule in the
Korobov space of smoothness 1 (with rescaled weights) when multilinear functions
are integrated exactly. In two dimensions the mixture term can be rewritten into a
nice form as we show in the next proposition which gives the worst-case errors for
s D 1 and s D 2.

Proposition 3 For s D 1 with any Q. f / DPM
kD1 wk f .xk/, where

PM
kD1 wk D 1,

wce.QIKusob1
1;� /2 D wce.QIKlin

1;�=12/
2 C wce.QIKkor1

1;�=.2�/2
/2:

Specifically the one-dimensional trapezoidal rule, T. f / D 1
N

PN�1
kD1 f .k=N/ C

. f .0/ C f .1//=.2N/, which is equal to the optimal vertex modified rule for s D 1,
gives

wce.TIKusob1
1;� / D wce.Q�IKusob1

1;� / D
r
�1

12

1

N
:
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For s D 2 we have for an optimal vertex modified lattice rule Q�.�I z;N/, with
gcd.z1;N/ D 1 and gcd.z2;N/ D 1,

wce.Q�IKusob1
2;� /2 D wce.Q�IKkor1

2;�=.2�/2
/2

C �1�2

8 �2N2

X

j2f1;2g

X

h�1
h6
0 .mod N/

cot2.�hwj=N/

h2
; (12)

where we have set w1 � z�1
1 z2 .mod N/ and w2 � z�1

2 z1 .mod N/, such that w2 �
w�1
1 .mod N/. Furthermore

wce.Q�IKusob1
2;� /2 > wce.Q�IKkor1

2;�=.2�/2
/2 C �1�2

8 �2N2

X

j2f1;2g

N�1X

hD1

cot2.�hwj=N/

h2

wce.Q�IKusob1
2;� /2 < wce.Q�IKkor1

2;�=.2�/2
/2 C �1�2

48N2

X

j2f1;2g

N�1X

hD1

cot2.�hwj=N/

h2
:

Proof For s D 1 and the trapezoidal rule we see from Proposition 2 that we only
need to consider the error for the space Kkor1

1;�1=.2�/2
since T D Q� for s D 1. So we

need to look at the twofold quadrature of B2.fx� yg/. Since this function is periodic
the trapezoidal rule T reduces to the standard lattice rule (1) such that

wce.TIKkor1
1;�=.2�/2

/2 D �1

N2

N�1X

k;`D0

B2..k � ` mod N/=N/

2
D �1

N

N�1X

kD0

B2.k=N/

2
D �1

12N2
:

For s D 2 and a general cubature rule Q. f / D PM
kD1 wk f .xk/ there are two 2-

dimensional mixture terms in Proposition 2: for j D 1, j0 D 2 and j D 2, j0 D 1 we
have

MX

k;`D1

wkw` �j B1.xk;j/B1.x`;j/ �j0
B2.fxk;j0 � x`;j0g/

2
(13)

D �j �j0

.2�/2

MX

kD1

wkB1.xk;j/

MX

`D1

w`B1.x`;j/
X

0¤h2Z

exp.2� i h.xk;j0 � x`;j0 //

h2

D �j �j0

.2�/2

X

0¤h2Z

1

h2

"
MX

kD1

wkB1.xk;j/ exp.2� i hxk;j0/

#"
MX

`D1

w`B1.x`;j/ exp.�2� i hx`;j0 /

#

D �j �j0

.2�/2

X

0¤h2Z

1

h2

ˇ̌
ˇ̌
ˇ

MX

kD1

wkB1.xk;j/ exp.2� i hxk;j0/

ˇ̌
ˇ̌
ˇ

2

;
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where we used the Fourier expansion of B2 as given in Sect. 3.1. We now focus on
the 2-dimensional cubature sum inside the modulus. For the optimal vertex modified
lattice rule Q� this cubature sum gives

MX

kD1
wk B1.xk;j/ exp.2�i hxk;j0/

D
X

a2f0;1g2
w�.a/B1.aj/ exp.2�i haj0/C 1

N

N�1X

kD1
B1


�
zjk

N

��
exp.2�i hzj0k=N/:

In the first part the exponential disappears as exp.2�i haj0/ D 1 for all a 2 f0; 1g2.
Furthermore the whole sum over a 2 f0; 1g2 vanishes as, using gcd.zj;N/ D 1,

Q�.B1.xj/I z;N/ D 0

D
X

a2f0;1g2
w�.a/B1.aj/C 1

N

N�1X

kD1
B1


�
zjk

N

��
D

X

a2f0;1g2
w�.a/B1.aj/;

where the equality to zero follows from the exactness for multilinear functions
and the sum over k vanishes due to symmetry. Thus, using Q� and making use
of the forthcoming Lemma 1 and the fact that gcd.zj0 ;N/ D 1, we find, for
wj D z�1

j zj0 mod N, with z�1
j the multiplicative inverse of zj modulo N,

1

N

N�1X

kD1
B1


�
zjk

N

��
exp.2�i hzj0k=N/

D
(
0 when hwj � 0 .mod N/;

�i cot.�hwj=N/=.2N/ otherwise:

It thus follows that, for Q D Q�, each mixture term takes the form

�j �j0

.2�/2

X

0¤h2Z

1

h2

ˇ
ˇ
ˇ
ˇ̌

MX

kD1
wkB1.xk;j/ exp.2�i hxk;j0/

ˇ
ˇ
ˇ
ˇ̌

2

D �j �j0

.4�/2N2

X

0¤h2Z
hwj 6
0 .mod N/

cot2.�hwj=N/

h2
:
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Making use of gcd.wj;N/ D 1 and using the sign-symmetry on the sum we obtain

2 �j �j0

.4�/2N2

X

h�1
hwj 6�0 .mod N/

cot2.�hwj=N/

h2
D �j �j0

8�2N2

X

h�1
h6�0 .mod N/

cot2.�hwj=N/

h2

D �j �j0

8�2N2

X

`�0

N�1X

hD1

cot2.�.`N C h/wj=N/

.`N C h/2

D �j �j0

8�2N2

X

`�0

N�1X

hD1

cot2.�hwj=N/

.`N C h/2

D �j �j0

8�2N2

N�1X

hD1

cot2.�hwj=N/

h2
X

`�0

1

.`N=hC 1/2

<
�j �j0

8 �2N2

N�1X

hD1

cot2.�hwj=N/

h2
X

`�1

1

`2

D �j �j0

48N2

N�1X

hD1

cot2.�hwj=N/

h2
:

For the upper bound we have set h D N � 1 in the sum over ` � 0 and then used
N=.N � 1/ > 1 and

P
`�1 `�2 D �2=6. The lower bound is easily derived from the

same line by considering the case ` D 0 only. ut
It is a little bit unfortunate that the cot2-sum for both w1 and w2 appears in (12).

We strongly believe that the infinite sum over h is the same for w1 and w2, and this
is equivalent to obtaining the same value for (13). If this is true than also in the
upper and lower bound we just remain with twice either of the sums. We verified
the equality on (13) numerically for all N � 4001 and z 2 f1; : : : ;N � 1g with
gcd.z;N/ D 1 and could not find a counter example. Moreover in Corollary 1,
forthcoming, we show equality to always hold in case of Fibonacci lattice rules.
Therefore we make the following conjecture.

Conjecture 1 Given integers z and N, with gcd.z;N/ D 1, we have

N�1X

k;`D1
B1.k=N/B2..z.k � `/ mod N/=N/B1.`=N/

D
N�1X

k;`D1
B1.k=N/B2..z

�1.k � `/ mod N/=N/B1.`=N/;

where z�1 is the multiplicative inverse of z modulo N.
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The following lemma was used in the proof of Proposition 3 for the cubature
sum of the linear Bernoulli polynomial in dimension j with a single exponential
function in dimension j0, taking � D hzj0 . The lemma is also valid for a product of
exponential functions which in the case of lattice rules would give � D hu � zu for
some u 	 f1 W sg.
Lemma 1 For � 2 Z and gcd.zj;N/ D 1, denote by z�1

j the multiplicative inverse
of zj modulo N, then

1

N

N�1X

kD1
B1


�
zjk

N

��
exp.2�i � k=N/ D

8
<

:

0; if � � 0 .mod N/;

�i

2N
cot.�z�1

j �=N/; otherwise:

Proof With a D exp.2�i z�1
j �=N/ and z�1

j � 6� 0 .mod N/ we have

1

N

N�1X

kD1
B1



k

N

�
ak D � 1

2N

N�1X

kD1
ak C 1

N

N�1X

kD1

k

N
ak;

where
PN�1

kD1 ak D �1 as aN D 1. Now using

N�1X

kD1

k

N
. f .kC 1/� f .k// D � 1

N

N�1X

kD1
f .k/C N � 1

N
f .N/;

and, for a ¤ 1,

ak D akC1

a � 1 �
ak

a � 1
we find

N�1X

kD1

k

N
ak D � 1

N

1

a � 1
N�1X

kD1
ak C N � 1

N

aN

a � 1;

where again aN D 1 and
PN�1

kD1 ak D �1. Thus

1

N

N�1X

kD1
B1



k

N

�
ak D 1

2N
C 1

N

1

a � 1:

The proof is then completed by taking t D �z�1
j �=N in the identity �i cot.t/ D

1C 2=.exp.2i t/� 1/. ut
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4.2 Upper and Lower Bound

In Proposition 3 we already obtained an upper and a lower bound on
wce.Q�IKusob1

2;� /2, but they were in terms of the sum

1

N2

N�1X

hD1

cot2.�hw=N/

h2
; (14)

with gcd.w;N/ D 1. In fact also the sum with w�1, the multiplicative inverse of w
modulo N, should be considered if Conjecture 1 is false. If the conjecture would be
false then this can be fixed in the end by assuming N to be large enough (see the
remark after Proposition 4). Note that the sum is 1-periodic in t D w=N as well as
having the symmetry cot2.�t/ D cot2.�.1 � t// D cot2.��t/.

Below we will use the series

HN.a/ WD
NX

hD1

1

ha
; (15)

where we consider a � 1. This is known as the harmonic number of N of order a. If
we set N D1 we get the Riemann zeta function

�.a/ WD
1X

hD1

1

ha
; (16)

which is finite for a > 1. Since �.1/ D1 we can look at how HN.1/ increases. For
N � 3 we have

HN.1/ � 11

6 log.3/
log.N/: (17)

The above elementary bound follows from the definition of the Euler–Mascheroni
constant limN!1 HN.1/� log.N/ 
 0:5772, which converges monotonically from
above. Solving H3.1/ D c log.3/ results in (17) for N � 3. We will also make use
of the following identity

1

N � 1
N�1X

wD1
cot2.�w=N/ D N � 2

3
; (18)

which can be seen by the closed form solution of the Dedekind sum S.z;N/ with
z D 1.

The standard approach to show existence of a good generating vector is to prove
a good upper bound for the average over all possible generating vectors. We first
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show a general lower bound and then an upper bound for the average choice of
generating vector on the above cot2-sum.

Lemma 2 For N � 3 and any choice of w such that gcd.w;N/ D 1, the following
lower bound holds:

1

N2

N�1X

hD1

cot2.�hw=N/

h2
>

1

6N2
:

Proof We have fhw mod N W h 2 f1; : : : ;N � 1gg D f1; : : : ;N � 1g since
gcd.w;N/ D 1, thus

N�1X

hD1

cot2.�hw=N/

h2
>

N�1X

hD1

cot2.�hw=N/

.N � 1/2 D
N�1X

hD1

cot2.�h=N/

.N � 1/2 D
N � 2
3.N � 1/ ;

where we used (18). ut
The previous lemma shows that we cannot expect the worst-case error to be better

behaving than 1=N which is not a surprise as this is the expected convergence for
1D. We now check what happens if we uniformly pick a w from f1; : : : ;N � 1g for
prime N � 3. Surprisingly this can be calculated exactly.

Lemma 3 For a prime N � 3, the average over w 2 f1; : : : ;N � 1g of the cot2-
sum (14) is given by

1

N � 1
N�1X

wD1

1

N2

N�1X

hD1

cot2.�hw=N/

h2
D N � 2

3N2
HN�1.2/ � �2

18N
:

Proof Since N is prime we have gcd.h;N/ D 1 and thus fhw mod N W w 2
f1; : : : ;N � 1gg D f1; : : : ;N � 1g. Therefore

1

N � 1
N�1X

wD1

1

N2

N�1X

hD1

cot2.�hw=N/

h2
D 1

N2

N�1X

hD1

1

h2
1

N � 1
N�1X

wD1
cot2.�w=N/

D N � 2
3N2

N�1X

hD1

1

h2
� �.2/

3N
D �2

18N
;

where we used (18). ut
Unfortunately the above result only allows us to say that the expected worst-case

error is only as good as the Monte Carlo rate of N�1=2 (since the sum (14) appears in
the squared worst-case error). To get a better bound we need another approach. If we
pick the w which gives the best possible value for the square root of the sum (14)
then this will also be the best value for the sum directly. Furthermore, using the
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following inequality, often called “Jensen’s” inequality, we have

 
1

N2

N�1X

hD1

cot2.�hw=N/

h2

!1=2

� 1

N

N�1X

hD1

j cot.�hw=N/j
h

: (19)

We now use a popular trick in proving existence: the value for the best choice w�
to minimize (either side of) (19) will be at least as small as the average over all
possible choices of w, thus

1

N

N�1X

hD1

j cot.�hw�=N/j
h

� 1

N � 1
N�1X

wD1

1

N

N�1X

hD1

j cot.�hw=N/j
h

:

The next lemma will give an upper bound for the right hand side above. The
argument that the best choice will be at least as good as the average is used numerous
times in Ian Sloan’s work and is also used inductively in component-by-component
algorithms to construct lattice rules achieving nearly the optimal convergence order,
see, e.g., [2, 16, 17].

Lemma 4 For a prime N � 3, the average over w 2 f1; : : : ;N�1g of the j cot j-sum
in (19) is given by

1

N � 1
N�1X

wD1

1

N

N�1X

hD1

j cot.�hw=N/j
h

� HN�1.1/
N

6

�
log.N/:

Proof Similar as in the proof of Lemma 3 we use the fact that the multiplicative
inverse of h exists and we can thus just look at the sum over w. For N � 3

1

N � 1
N�1X

wD1
j cot.�w=N/j D 2

N � 1

2

4cot.�=N/C
.N�1/=2X

wD2
cot.�w=N/

3

5

� 2

N � 1

"

cot.�=N/C
Z .N�1/=.2N/

1=N
cot.�t/N dt

#

D 2

N � 1
�

cot.�=N/C N

�
.� log.2 sin.�=.2N////



<
2:2

�
.1C log.4N=3//

<
3

�
log.3N/;

where we used 2= sin.�=.2N// � 4N=3 for N � 3, with equality for N D 3, and
some elementary bounds. ut



The Analysis of Vertex Modified Lattice Rules in a Non-periodic Sobolev Space 995

We can now combine the previous results in estimating an upper bound for the
worst-case error of a good choice of w for the optimal vertex modified rule Q� for
s D 2. From Proposition 3, again using Jensen’s inequality by taking square-roots
on both sides, we obtain

wce.Q�IKusob1
2;� / < wce.Q�IKkor1

2;�=.2�/2
/C
p
�1�2p
48N

X

j2f1;2g

N�1X

hD1

j cot.�hwj=N/j
h

(20)

where the sum over j could be replaced by
p
2 if Conjecture 1 is true.

Piecing everything together we obtain the following result.

Proposition 4 Given a sufficiently large prime N, then there exist w 2 f1; : : : ;N �
1g such that the optimal vertex modified rule Q�, with generating vector z D .1;w/,
has worst-case error in the unanchored Sobolev space for s D 2 of

wce.Q�IKusob1
2;� / < wce.Q�IKkor1

2;�=.2�/2
/C 11

p
2 �1�2

�
p
48 log 3

log2.N/

N
:

If Conjecture 1 is true then sufficiently large can be replaced by a prime N � 3.

Proof From Proposition 3 we obtain (20) and combine this with Eq. (17) and
Lemma 4. ut

It is well known that there exist lattice rules for the Korobov space of order 1
which have convergence N�1Cı for ı > 0, see, e.g., [2, 14]. The question of finding
a good optimal vertex modified rule for the unanchored Sobolev space now boils
down to having N large enough such that the set of good w for the Korobov space
and the set of good w for the j cot j-sum overlap. This is done by showing there
exist at least N=2 good choices that satisfy twice the average and then necessarily
these two sets overlap. We will not digress here. See, e.g., [1] for such a technique.
Similarly, if the conjecture is not true, then the same technique can be applied by
taking N large enough such that all three good sets overlap and one obtains the
desired convergence.

4.3 Fibonacci Lattice Rules

In [8], Niederreiter and Sloan turn to Fibonacci lattice rules as it is well known
they perform best possible in view of many different quality criteria for numerical
integration in two dimensions, see, e.g., [6]. The Fibonacci numbers can be defined
recursively by F0 D 0, F1 D 1 and Fk D Fk�1CFk�2 for k � 2. A Fibonacci lattice
rule then takes the number of points a Fibonacci number N D Fk and the generating
vector z D .1;Fk�1/, for k � 3.
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We can now show that Conjecture 1 is true for the explicit case of Fibonacci
lattice rules.

Lemma 5 For z D Fk�1 or Fk�2 and N D Fk, k � 3, we have gcd.z;N/ D 1, and

N�1X

k;`D1
B1.k=N/B2..z.k � `/ mod N/=N/B1.`=N/

D
N�1X

k;`D1
B1.k=N/B2..z

�1.k � `/ mod N/=N/B1.`=N/;

where z�1 is the multiplicative inverse of z modulo N.

Proof It is known that F�1
k�1 � ˙Fk�1 .mod Fk/ with a plus sign for k even and a

minus sign for k odd. The result follows from the symmetry B2.t/ D B2.1 � t/ for
0 � t � 1. ut

Combining Lemma 5 with Proposition 3 gives then an exact expression for the
worst-case error in case of Fibonacci lattice rules. Note that N does not need to be
prime for this proof.

Corollary 1 For Q�
k an optimal vertex modified lattice rule based on a Fibonacci

lattice rule with generator .1;Fk�1/ modulo Fk, k � 4, we have

wce.Q�
k IKusob1

2;�=.2�/2
/2 D wce.Q�

k IKkor1
2;� /

2 C �1�2

4�2N2

X

h�1
h6
0 .mod N/

cot2.�hw=N/

h2

where w D Fk�1 and N D Fk.

5 Numerics and a Convolution Algorithm

In this section we restrict ourselves to N prime. Similar in spirit as [11, 12] it is
possible to evaluate the sum

SN.z=N/ WD 1

N2

N�1X

hD1

cot2.�hz=N/

h2

for all z 2 f1; : : : ;N � 1g simultaneously by a (fast) convolution algorithm. Take a
generator for the cyclic group Z

�
N WD f1; : : : ;N � 1g D hgi and represent z D hgˇi
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Table 1 Optimal choices of generating vector .1; z/ for a selection of prime N for the unanchored
Sobolev space of order 1

N z wce2.Q�;Kusob1
2;1 / D wce2.Q�;Kkor1

2;1=.2�/2
/C mixingterm

17 5 2:16 � 10�3 1:92 � 10�3 2:39 � 10�4

37 11 5:33 � 10�4 4:57 � 10�4 7:63 � 10�5

67 18 1:73 � 10�4 1:46 � 10�4 2:66 � 10�5

131 76 4:67 � 10�5 3:92 � 10�5 7:47 � 10�6

257 76 1:37 � 10�5 1:12 � 10�5 2:47 � 10�6

521 377 3:48 � 10�6 2:83 � 10�6 6:48 � 10�7

1031 743 9:75 � 10�7 7:81 � 10�7 1:94 � 10�7

2053 794 2:70 � 10�7 2:13 � 10�7 5:70 � 10�8

4099 2511 7:06 � 10�8 5:53 � 10�8 1:53 � 10�8

8209 3392 1:88 � 10�8 1:46 � 10�8 4:19 � 10�9

16;411 6031 4:82 � 10�9 3:73 � 10�9 1:09 � 10�9

32;771 20;324 1:26 � 10�9 9:71 � 10�10 2:91 � 10�10

65;537 25;016 3:34 � 10�10 2:55 � 10�10 7:90 � 10�11

131;101 80;386 8:97 � 10�11 6:79 � 10�11 2:18 � 10�11

262;147 159;921 2:30 � 10�11 1:74 � 10�11 5:64 � 10�12

and h D hg�� i, where h�i denotes calculation modulo N. Then consider for all
0 � ˇ � N � 2

SN.hgˇi/ D 1

N2

N�2X

�D0

cot2.�hgˇ�� i=N/

hg��i2 :

This is the cyclic convolution of two length N � 1 vectors and can be calculated
by an FFT algorithm. In Table 1 we show the best choice of z obtained by this
method and the associated squared worst-case errors. Instead of using h2 in the
denominator of SN we actually used a generalized zeta function �.2; h=N/=N2 which
is the exact value of the infinite sum in Proposition 3. These results are plotted
in Fig. 1. Several reference lines have been superimposed with different powers of
log.N/. We note that for this range of N the log2.N/=N, see Proposition 4, seems to
be an overestimate for the square root of the mixing term. On the other hand, from
the figure we see that the total error for this range of N behaves like log1=2.N/=N
for all practical purposes. It is interesting to compare this behavior with the results
in [4, 18] which shows a different algorithm for modifying two-dimensional quasi-
Monte Carlo point sets to the non-periodic setting (with M D 5N�2, while here we
have M D N C 3 for 2D) where an upper bound of log1=2.N/=N is shown (which is
also proven to be the lower bound there).
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Fig. 1 Plot of optimal worst-case error and square root of mixture term from Table 1

6 Conclusion

In this paper we revisited (optimal) vertex modified lattice rules [7–9] introduced
by Niederreiter and Sloan, and studied their error in the unanchored Sobolev space
which is one of the typical reproducing kernel Hilbert spaces used to study lattice
rules nowadays. The analysis makes use of a breakdown of the squared worst-case
error into the squared worst-case error in a multilinear space, the Korobov space
and an additional “mixture” term where combinations of basis functions from those
two previous spaces appear. For s D 2 we showed that there exist optimal vertex
modified lattice rules for which the square root of the mixture term converges like
N�1 log2.N/. Because of the 2s cost of evaluating the integrand on all vertices of
the unit cube, it does not look very interesting to extend the analysis to an arbitrary
number of dimensions. Although we restricted our detailed analysis to the case s D
2, we remark that a similar breakdown was achieved in terms of the L2 discrepancy
in [13], which shows that the cost of 2s vertices still pays off for s < 12 in their
numerical tests. Such tests would also be useful for the analysis in this paper, as
would a component-by-component algorithm for s > 2. Finally, a comparison with
the bounds in [4, 18] suggests the power of the log.N/ term could be improved, as
is hinted at by our numerical results. These are suggestions for future work.
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Matching Schur Complement
Approximations for Certain Saddle-Point
Systems

John W. Pearson and Andy Wathen

Dedicated to Ian H. Sloan on the occasion of his 80th birthday.

Abstract The solution of many practical problems described by mathematical
models requires approximation methods that give rise to linear(ized) systems of
equations, solving which will determine the desired approximation. This short
contribution describes a particularly effective solution approach for a certain class
of so-called saddle-point linear systems which arises in different contexts.

1 Introduction

Iterative methods are now widely used in various applications for the solution of
linear(ized) systems of equations. A key aspect is preconditioning [38]. Without
appropriate preconditioners, convergence can be unacceptably slow, whereas an
effective preconditioner can enable the solution of matrix systems of vast dimen-
sion, and thus allow large scale computational modelling.

There continues important work on algebraic preconditioners—preconditioners
which require only the entries of a (sparse) matrix for construction; triangular
factorization remains an important paradigm, and algebraic multigrid techniques
are finding ever wider application. However, it is now keenly realised that precondi-
tioners which exploit matrix structures often have considerable utility. In particular,
state-of-the-art preconditioners for so-called saddle-point systems [5] have found
application in many areas [6, 7, 13, 15, 17, 20].
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In this short contribution, we examine matrices with a particular type of saddle-
point structure, namely

2

4
˛2A 0 BT

0 �2A �A
B �A 0

3

5

„ ƒ‚ …
A3

2

4
u
v
w

3

5 D
2

4
f
g
h

3

5 ; (1)

where A;B 2 R
n�n, with A being symmetric and invertible, and with ˛; � non-zero

(real) parameters. We survey applications which give rise to equations of this form
in Sect. 4 below, and believe the methodology presented could be applied to areas
of research other than those specifically mentioned.

In fact, by simple block elimination, it is easily seen that (1) is equivalent to the
2 � 2 block system

�
˛2A BT

B ���2A



„ ƒ‚ …
A2

�
u
w


D
�

f
hC ��2g


;

with v D ��2wC ��2A�1g.
Further block elimination leads to the equivalent “1�1 block system”—the Schur

complement system

�
��2AC ˛�2BA�1BT

�

„ ƒ‚ …
S

w D ˛�2BA�1f � h � ��2g:

In this case u D ˛�2A�1f � ˛�2A�1BTw, and v can be recovered as above.
As an alternative, one may decompose the 2 � 2 block system to write

�
˛2AC �2BTA�1B

�

„ ƒ‚ …
S1

u D fC �2BTA�1hC BTA�1g;

and then recover w D �2A�1Bu � �2A�1h � A�1g and v as above.
The equivalence of these 3 � 3, 2 � 2 and 1 � 1 block systems is well known—

see, for example, [16]—and, via the result of [19, 21], the solution of any of them
crucially depends on having a good approximation for the Schur complement matrix
S D ��2AC˛�2BA�1BT or S1. ApproximationsbS for which the eigenvalues ofbS�1S
do not depend on the parameters ˛; � , or on any implicit parameters (such as mesh
size) which arise in A;B, are particularly valuable since they lead to iterative solvers
which converge in a number of iterations independent of all such parameters, as we
shall demonstrate.
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Given the 3 � 3 block system, use of a block diagonal preconditioner

P3 D
2

4
˛2A 0 0

0 �2A 0
0 0 S

3

5

allows the solution of (1) in exactly 3 iterations using the Krylov subspace iteration
method MINRES [21]. Similarly, given the 2 � 2 block system, use of

P2 D
�
˛2A 0
0 S



and MINRES [22] again is guaranteed to yield the solution for any right hand
side vector in 3 iterations. In either case, replacing S with a bS for which the
eigenvalues ofbS�1S do not depend on any problem parameters yields solvers based
on MINRES which require not 3, but just a few more iteration steps, and still a
number independent of the parameters ˛; � and the problem dimension. For the
1� 1 system, the Conjugate Gradient method can also be employed effectively with
bS as a preconditioner. These guarantees will be described below, but we first describe
in generality a ‘matching Schur complement approximation’ for which the required
parameter-independent eigenvalues are guaranteed.

2 Matching Schur Complement Approximation

By simple calculation it is seen that

S WD ��2AC ˛�2BA�1BT DbS � ˛�1��1.BC BT/;

wherebS WD �
��1AC ˛�1B

�
A�1 ���1AC ˛�1B

�T
. The original motivation for this

choice of approximation,bS, arose in the context of PDE-constrained optimization
[26], where it was argued that the approximation allows one to match all terms
except for ˛�1��1.BCBT /.1 Previous suggestions had more significant ‘unmatched’
terms [31].

Theorem 1 If A is positive definite then all eigenvalues ofbS�1S are real, and are
greater than or equal to 1

2
. If further the symmetric part of B is positive or negative

semi-definite, then the eigenvalues ofbS�1S all lie in the real interval Œ 1
2
; 1�.

1In more detail, the multiplication of the terms
�
��1A

�
A�1

�
��1A

�
withinbS allows one to capture

the first term of the exact Schur complement, ��2A. In a similar way, the multiplication of the

terms
�
˛�1B

�
A�1

�
˛�1B

�T
withinbS leads to the second term of S, that is ˛�2BA�1BT .
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Proof The desired eigenvalues are bounded by the extreme values of the generalized
Rayleigh quotient

R WD ��2xTAxC ˛�2xTBA�1BTx
��2xTAxC ˛�2xTBA�1BTxC ˛�1��1xT.BC BT/x

:

Since A is symmetric and positive definite, we can write a WD ��1A1=2x, b WD
˛�1A�1=2BTx so that

R D aTaC bTb
aTaC bTbC aTbC bTa

D 1

2
C 1

2

.a � b/T.a � b/
.aC b/T.aC b/

;

which evidently implies that R � 1
2

whatever the properties of B. Further, since
we are at liberty to choose the signs of ˛ and � , if B C BT is semi-definite then
aTb C bTa � 0 with appropriate choice of signs, so that the denominator in R is
clearly greater than or equal to the numerator. This gives the result. ut

Some comments are in order. The multiplicative form ofbS means that application
of its inverse requires the solution of two systems with coefficient matrix ��1A C
˛�1B, and multiplication with A. In Sect. 4, we describe situations where these com-
putations are relatively straightforward using, for example, multigrid technology.
That the eigenvalue spectrum is so tightly confined is somewhat remarkable, but
very helpful, in particular in the context of Krylov subspace iterative methods.

Furthermore, one may use a similar analysis2 to show that the eigenvalues of
bS�1
1 S1 are also contained in Œ 1

2
; 1�, where

bS1 WD .˛AC �B/T A�1 .˛AC �B/ :

Both results are useful, depending on which arrangement of the saddle-point system
we examine.

3 Predicted Convergence Rate of the Krylov Subspace
Method

We now wish to analyze the convergence rate we can expect from an iterative
method combined with our choice of preconditioner, focusing on the 3 � 3 block
matrix A3 with a suitable preconditioner, applied within the MINRES algorithm.

2The analysis reads the same as presented for Theorem 1, except with a WD ˛A1=2x; b WD
�A�1=2Bx.
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3.1 Eigenvalue Bounds for Preconditioned System cP�1
3
A3

Let us first consider eigenvalue bounds for cP�1
3 A3, where

cP3 WD
2

4
˛2bA 0 0

0 �2bA 0
0 0 bS

3

5 ;

in other words where the .1; 1/ block of the preconditioner is suitably approximated
using a matrix bA, and a matching strategy is used to approximate the Schur
complement of A3.

The starting point of our analysis is the following fundamental result of Rusten
and Winther [32]:

Theorem 2 Consider the saddle-point matrix

A˚;� D
�
˚ � T

� 0


;

where ˚ is symmetric positive definite, and � has full rank. Let �max and �min

denote the largest and smallest eigenvalues of ˚ , and let �max and �min denote the
largest and smallest singular values of � . Then the spectrum of A˚;� satisfies

� .A˚;� / 2
�
1

2



�min �

q
�2min C 4�2max

�
;
1

2



�max �

q
�2max C 4�2min

�

[
�
�min;

1

2



�max C

q
�2max C 4�2max

�
:

We suppose that the positive definite approximationbA is such that the eigenvalues
ofbA�1A are contained in Œ1 � �; 1 C ��, for some (preferably small) constants � 2
Œ0; 1/, � � 0. Within cP3, the Schur complement approximation is obtained using
our matching strategy, and we assume for now that it is applied exactly.

Note that the eigenvalues of the preconditioned matrix cP�1
3 A3 are the same as

those of the following (similar) matrix:

cP�1=2
3 A3

cP�1=2
3 D

2

4
˛2bA 0 0

0 �2bA 0
0 0 bS

3

5

�1=22

4
˛2A 0 BT

0 �2A �A
B �A 0

3

5

2

4
˛2bA 0 0

0 �2bA 0
0 0 bS

3

5

�1=2

D
2

4
bA�1=2AbA�1=2 0 ˛�1bA�1=2BTbS�1=2

0 bA�1=2AbA�1=2 ���1bA�1=2AbS�1=2
˛�1bS�1=2BbA�1=2 ���1bS�1=2AbA�1=2 0

3

5 :
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Thus consider the eigenvalues of cP�1=2
3 A3

cP�1=2
3 . In the setting of Theorem 2,

˚ D
"
bA�1=2AbA�1=2 0

0 bA�1=2AbA�1=2

#

; � D �˛�1bS�1=2BbA�1=2 ���1bS�1=2AbA�1=2 � :

First, observing that the matrix bA�1=2AbA�1=2 is similar to bA�1A gives straightfor-
wardly that

�min D 1 � �; �max D 1C �;

again using the notation of Theorem 2.
To find values for �min and �max, we then need to look for the singular values of

� , which are equal to the square root of the eigenvalues of

�� T D ˛�2bS�1=2BbA�1BTbS�1=2 C ��2bS�1=2AbA�1AbS�1=2: (2)

The matrix (2) is similar to

bS�1
�
˛�2BbA�1BT C ��2AbA�1A

	
;

and so its eigenvalues may be bounded by the extreme values of the Rayleigh
quotient

xT.˛�2BbA�1BT C ��2AbA�1A/x
xTbSx

D xT.˛�2BbA�1BT C ��2AbA�1A/x
xTSx„ ƒ‚ …

R1

� x
TSx

xTbSx„ƒ‚…
R2

: (3)

Note that

R1 D xT.˛�2BbA�1BT C ��2AbA�1A/x
xT.˛�2BA�1BT C ��2AA�1A/x

D xTCbA�1
2 CTx

xTCA�1
2 CTx

;

where A2 WD blkdiag.A;A/,bA2 WD blkdiag.bA;bA/, and

C D �˛�1B ��1A
�

is full rank by assumption. Thus, with y D A�1=2
2 CTx, we have

R1 D yTA1=22 bA�1
2 A1=22 y

yTy
;
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from which it readily follows that R1 2 Œ1��; 1C��. We also know from Theorem 1
that R2 2 Œ 12 ; 1�. Putting these pieces together, we see that

�min �
r
1 � �
2

; �max �
p
1C �:

Applying Theorem 2 along with our bounds for �min, �max, �min and �max gives
us the following result:

Lemma 1 The eigenvalues of the preconditioned system cP�1
3 A3 are contained in

�
1

2

�
1 � � �

p
.1 � �/2 C 4.1C �/

	
;
1

2

�
1C ��

p
.1C �/2 C 2.1� �/

	

[
�
1 � �; 1

2

�
1C �C

p
5C 6�C �2

	
;

where � 2 Œ0; 1/ and � � 0 are constants such that the bounds �.bA�1A/ 2 Œ1 �
�; 1C �� are exactly attained.

Note that in the case � D 0 D �, which corresponds to the situation where the
only approximation in the preconditioner cP3 is the matching approximationbS for
the exact Schur complement S, we have

�.cP�1
3 A3/ 2

�
1

2
.1 �p5/; 1

2
.1 �p3/


[
�
1;
1

2
.1Cp5/


:

3.2 Convergence Rate of MINRES

It is possible to exploit the result of Lemma 1 to guarantee a resulting convergence
rate of the MINRES algorithm with preconditioner cP3. To do this, we make use of
the following theorem [13, Theorem 4.14]:

Theorem 3 After k steps of the preconditioned MINRES method, applied to a system
with matrix A and preconditioner P , the residual r.k/ satisfies

kr.k/kP�1

kr.0/kP�1

� 2
 p

ad �pbcp
adCpbc

!b k
2 c
;

where a; b; c; d > 0 are such that a � b D d � c, and

�.P�1A / 2 Œ�a;�b� [ Œc; d�:
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Therefore, considering our preconditionercP3 for the matrix A3, we may write

a D 1

2

�
�1C � C

p
.1 � �/2 C 4.1C �/

	
; c D 1 � �;

b D 1

2

�
�1 � �C

p
.1C �/2 C 2.1� �/

	
;

d D 1

2

�
1C �C

p
5C 6�C �2

	
: (4)

Clearly, in this setting, the condition a� b D d � c is not satisfied. In fact it may be
readily shown that a � b < d � c, as

bC d D 1

2

�p
.1C �/2 C 2.1� �/C

p
.1C �/2 C 4.1C �/

	

� 1

2

�p
.1 � �/2 C 2.1� �/C

p
.1 � �/2 C 4.1C �/

	

>
1

2

�
1 � � C

p
.1 � �/2 C 4.1C �/

	

D cC a:

However, it may clearly be stated that

�.cP�1
3 A3/ 2 Œ�bC c � d;�b� [ Œc; d�;

as the left interval has been stretched and includes the original interval Œ�a;�b�. We
may use this to state the following result:

Lemma 2 After k steps of the preconditioned MINRES method, applied to the 3� 3
block system A3 and preconditioned by cP3, the residual r.k/ will satisfy

kr.k/kbP�1
3

kr.0/kbP�1
3

� 2
 p

d.d � cC b/�pbc
p

d.d � cC b/Cpbc

!b k
2 c
;

where b; c; d are the quantities stated in (4).

This result illustrates that the matching strategy outlined in the previous section
is able to achieve rapid and robust convergence for the class of matrix systems under
consideration, since the convergence bound in Lemma 2 is independent of ˛; � and
the dimensions of A;A , provided only that �; � have such independence.
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3.3 Approximate Application of bS

An important question is whether such a strategy can be readily applied if the Schur
complement approximationbS is applied inexactly. In more detail, the matrices L WD
��1A C ˛�1B and LT may not be straightforward to invert, so one may wish to
instead approximate the Schur complement by

eS WDbLA�1bLT ;

where bL is some suitable (cheap) approximation of L. This then fits into the
preconditioner

fP3 WD
2

4
˛2bA 0 0

0 �2bA 0
0 0 eS

3

5 :

To analyse the performance of this preconditioner, we need to consider the
eigenvalues of fP�1=2

3 A3
fP�1=2

3 . Then, in the notation of Theorem 2,

˚ D
"
bA�1=2AbA�1=2 0

0 bA�1=2AbA�1=2

#

; � D �˛�1eS�1=2BbA�1=2 ���1eS�1=2AbA�1=2 � :

The quantities �min and �max are therefore identical to the values whenbS is applied
exactly (i.e.eS DbS) within the preconditioner.

To find suitable values for �min and �max, we may apply a similar working as
above, and consider the Rayleigh quotient

xT.˛�2BbA�1BT C ��2AbA�1A/x

xTeSx
D xT.˛�2BbA�1BT C ��2AbA�1A/x

xTSx„ ƒ‚ …
R1

� x
TSx

xTbSx„ƒ‚…
R2

� x
TbSx

xTeSx„ƒ‚…
R3

:

As for (3), we may write that R1 2 Œ1 � �; 1C �� and R2 2 Œ 12 ; 1�. We now wish to
know what can be said about the quantity R3. A useful observation, in particular if
the matrix A is well conditioned, is that

R3 D xTLA�1LTx

xTbLA�1bLTx
D xTLA�1LTx

xTLLTx
� x

TLLTx

xTbLbLTx
� xTbLbLTx

xTbLA�1bLTx

D yTy
yTAy

� x
TLLTx

xTbLbLTx
� z

TAz
zTz

;
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where y D A�1=2LTx and z D A�1=2bLTx. It is clear that yTy=yTAy 2 Œ 1
�max.A/

; 1
�min.A/

�

and zTAz=zTz 2 Œ�min.A/; �max.A/�, where �min.A/ and �max.A/ denote the
minimum and maximum eigenvalues of A, respectively.

The remaining quantity is that of xTLLTx=xTbLbLTx, and the question becomes: if
bL is a good approximation of L, does this imply that bLbLT is a good approximation
of LLT? In general this is in fact not the case; however, as observed by Braess and
Peisker in [11], if one takesbL to be m steps of a convergent iterative process applied
to a symmetric L, one may state that

xTL2x

xTbLbLTx
2 �.1 � !m/

2; .1C !m/
2
�
:

Here !m relates to the rate of convergence of the iterative method for L, and satisfies
!m ! 0 as m!1. Similar observations can possibly be applied to nonsymmetric
matrices L, as LLT itself is clearly symmetric.

Using this property, we may bound the constants �min and �max as follows:

�min �
s
1� �
2�.A/

.1 � !m/; �max �
p
.1C �/�.A/ .1C !m/;

where �.A/ denotes the condition number of A. Inserting the bounds for �min, �max,
�min and �max into the result of Theorem 2 tells us that �.fP�1

3 A / 2 Œ�ea;�eb�[Œc;ed�,
where

ea D 1

2

�
�1C � C

p
.1 � �/2 C 4.1C �/.1C !m/2�.A/

	
;

eb D 1

2

 

�1 � �C
s

.1C �/2 C 2.1� �/
�.A/

.1 � !m/2

!

;

ed D 1

2

�
1C �C

p
.1C �/2 C 4.1C �/.1C !m/2�.A/

	
:

We note that these bounds for the eigenvalues of fP�1
3 A are weak, sometimes

extremely so, as when the approximations of L become increasingly accurate (i.e.
!m ! 0), the values of ea;eb;ed should tend to those of a; b; d in (4). However,
in the above expressions, the factors of �.A/ remain when inserting !m D 0.
Therefore, if �.A/ is well conditioned, as for many problems in PDE-constrained
optimization for example, the theoretical guarantee of the effectiveness of fP3 is
obtained straightforwardly. If this is not the case, this highlights the necessity of
a potent scheme to approximate the (inverse action of) L and LT appropriately. In
practice, a number of cycles of a tailored multigrid scheme is often found to perform
this function, for instance.

We highlight that the theoretical issues surrounding the approximation of
matrices of the form LLT is not restricted to the matching strategy presented in
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this paper, and arises when using many different preconditioners for saddle-point
systems, due to the structure of the Schur complement of the saddle-point system
itself.

3.4 Comments on 2 � 2 and 1 � 1 Block Cases

The analysis presented in this section has focused on solving matrix systems of the
structure A3 using preconditioner cP3 within the MINRES algorithm. Of course, it
is perfectly legitimate to reduce the system to the form A2, and solve this using
MINRES with preconditioner

cP2 WD
"
˛2bA 0
0 bS

#

:

Literature such as [33] considers eigenvalue bounds for saddle-point systems with
non-zero .2; 2/ block, which arise when considering the matrix of importance in
this case:

cP�1=2
2 A2

cP�1=2
2 D

"
bA�1=2AbA�1=2 ˛�1bA�1=2BTbS�1=2
˛�1bS�1=2BbA�1=2 ���2bS�1=2AbS�1=2

#

:

The analysis in this case of 2 � 2 blocks is more standard and is summarised,
for example, in Chapter 4 of [13], or [28]. It can be applied to demonstrate that
a similar MINRES convergence rate to the 3� 3 case is to be expected for such 2� 2
systems when the same approximations are employed within the preconditioner. The
matching strategy is also, therefore, an effective approach for systems of the form
A2.

It is also possible to consider the Schur complement (1 � 1 block) system itself,
and apply preconditioned Conjugate Gradients with our matching strategy. In this
case the potency of the iterative method will depend directly on the effectiveness of
the matching strategy, which we have ascertained to guarantee compact eigenvalue
bounds. However, we emphasize that such a solver will require a matrix-vector
multiplication with S or S1, and therefore an exact representation of A�1 will
generally be required. Such a method should therefore only be applied if A has a
simple structure, for instance if it is a diagonal matrix.

4 Applications of Matching Approach

In this section, we wish to briefly survey applications in which the matching strategy
discussed in this paper has been applied.
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PDE-Constrained Optimization The class of problems for which the authors
originally derived this approach was that of PDE-constrained optimization problems
of the following form:

min
y;c

1

2
k y �byk2L2.˝/ C

ˇ

2
kck2L2.˝/

s.t. L y D c; in ˝;

y D h; on @˝:

Here, y and c denote state and control variables which we wish to find, with by
a given desired state and ˇ > 0 a regularization parameter. The constraints of the
optimization problem are derived from a PDE operatorL on a domain˝ , and given
Dirichlet boundary conditions h on the boundary @˝ of the domain. Other boundary
conditions are possible, though boundary control problems have a slightly different
form [18].

If the PDE operator L D �r2Cw �r, where w is some given wind vector, then
the problem under consideration is that of convection–diffusion control, and upon
discretization of this problem the matrix system to be solved is [26, 27]

2

4
M 0 NKT

0 ˇM �M
NK �M 0

3

5

2

4
y
c
p

3

5 D
2

4
f
0
h

3

5 ; (5)

with y, c and p the discretized state, control and adjoint variables, and f and h
including terms arising from the desired state and boundary conditions. Here, M
is a finite element mass matrix which is symmetric positive definite, and NK is a
finite element matrix relating to L which has the property that NK C NKT is positive
semidefinite. If w D 0, then the control problem reduces to that of Poisson control,
and NK D NKT D K is a stiffness matrix. For either problem, the system (5) is of the
form A3, with A D M, B D NK, ˛ D 1, � D pˇ, and the theory of this paper can be
applied (see [26, 27]). Such problems have the additional convenient property that
the mass matrix M is well conditioned.

This theory has been extended to a range of other PDE-constrained opti-
mization problems of different structure, for example to time-independent and
time-dependent fluid flow control problems [23, 24, 36], reaction-diffusion control
problems from chemical reactions and pattern formation processes in mathematical
biology [25, 37], and active set Newton methods for problems with additional bound
constraints [29]. Further, the papers [3, 4] examine PDE-constrained optimization
problems with uncertain inputs using this strategy, low-rank methods are derived
for a class of time-dependent problems in [35], and optimization problems with
fractional differential equation constraints are studied in [12] (where a result of the
type shown in Theorem 1 is proved using the Binomial Theorem).
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Complex Valued Linear Systems Matrix systems of similar type to the 2 � 2
block form A2 are discussed in [1] in the context of complex valued linear systems.
In more detail, consider the solution of the complex matrix system Cz D d, where
C D AC iB, z D u C iw and d D fC ih. Therefore .AC iB/.u C iw/ D f C ih,
whereupon comparing real and imaginary parts gives the matrix system

�
A �B
B A

 �
u
w


D
�
f
h


: (6)

It is clear that, if A and B are symmetric, one may rearrange the system (6) to a
symmetric matrix of form A2, with ˛ D � D 1.

In [1], the authors derive a preconditioner for the system (6) based on the
matching strategy. Further, in [2], preconditioned modified Hermitian and skew-
Hermitian splitting (PMHSS) iteration methods for 2 � 2 block linear systems are
considered using the same methodology.

Cahn–Hilliard Models Another major application area of the approach we have
outlined is that of the numerical solution of Cahn–Hilliard models describing phase
separation. For instance, in [9] the authors consider the H�1–gradient flow of the
Ginzburg–Landau energy

E.u/ WD
Z

˝

ı"

2
jruj2 C 1

"
 .u/ d˝;

with ı; " > 0, and an obstacle potential given by  .u/ D 1
2
.1�u2/C IŒ�1;1�.u/ with

an indicator function I (though there are other possible choices for this potential).
Upon discretizing the resulting PDEs, the authors are required to solve matrix

systems of the form

��H M
M 	K

 �
u
w


D
�
f
h


;

where M;K are defined as above, H is a symmetric matrix which involves the sum
of a stiffness matrix and terms involving  0.u/, and 	 > 0 is the time-step used
within the numerical method. Although this system is not precisely of the form A2,
the authors were able to use convenient properties of H to obtain good numerical
results for certain restrictions of the time-step (i.e. 	 < "2). In [8] some theoretical
guarantees are provided for similar preconditioners for image inpainting problems.

We note that many scientists have applied the matching strategy to Cahn–Hilliard
models. In [10] preconditioners for large scale binary Cahn–Hilliard models are
considered, matrix systems arising from the evolution of diblock copolymer melts
are tackled in [14], and solvers for the phase field crystal equation, which is itself of
Cahn–Hilliard type, are constructed in [30].

We note that the fields categorised above do not represent an exhaustive list of
applications for the approach presented in this paper. For instance, see [34] for a
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discussion of preconditioners for discontinuous Galerkin time-stepping methods,
and many other papers discussing optimal control problems and Cahn–Hilliard
equations, for other recent developments of this method.

5 Concluding Remarks

We have considered block preconditioners for a particular class of saddle-point
matrices which arise in various applications. Specifically, we have demonstrated the
efficacy of an approach which employs a ‘matching strategy’ for the approximation
of a Schur complement. The use of the resulting preconditioners is shown to enable
the iterative solution of corresponding systems of equations in a number of iterations
independent of parameters in the problem and of the dimension of the relevant
matrices. This is therefore a highly effective solution approach for such systems
of equations.
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Regularized Quadrature Methods for
Fredholm Integral Equations of the First
Kind

Sergei V. Pereverzev, Evgeniya V. Semenova, and Pavlo Tkachenko

Dedicated to Ian H. Sloan on the occasion of his 80th birthday.

Abstract Although quadrature methods for solving ill-posed integral equations of
the first kind were introduced just after the publication of the classical papers on the
regularization by A.N. Tikhonov and D.L. Phillips, there are still no known results
on the convergence rate of such discretization. At the same time, some problems
appearing in practice, such as Magnetic Particle Imaging (MPI), allow one only a
discretization corresponding to a quadrature method. In the present paper we study
the convergence rate of quadrature methods under general regularization scheme in
the Reproducing Kernel Hilbert Space setting.

1 Introduction

The so-called direct or discretization methods for solving Fredholm integral equa-
tions can be conventionally subdivided into three groups, namely: (1) degenerate-
kernel methods, (2) projection methods, including collocation methods, Galerkin
methods, least squares methods, and others, and (3) the Nyström or quadrature
methods. Note that the well-known Sloan iteration [5, 27] belongs to the first named
group. It can be built on the top of all projection methods, but was initially used with
a Galerkin approximation.

For Fredholm equations of the second kind, there exist fairly complete results on
the analysis and optimization of methods from all the above mentioned groups. Just
to mention a few references, we refer to the books [1, 11, 23, 26].
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As to Fredholm equations of the first kind with a smooth kernel function, due to
the fact that they are usually ill-posed, direct methods for solving them are usually
combined with a regularization procedure. Of course, for unperturbed equations
a regularization is less crucial [21], but in general it is unavoidable. Regularized
degenerate-kernel methods were studied extensively. A few selected references are
[7, 12, 25]. There are also studies on regularized collocation methods [10, 18, 24].

At the same time, quadrature methods have not been investigated enough for
ill-posed Fredholm equations of the first kind. In spite of the fact that a quadrature
method is the first direct method suggested for such equations [28], to the best of our
knowledge, no results about convergence rates of regularized quadrature methods
are known in the literature up to now. Our paper sheds a light on this issue.

The distinguishing feature of a quadrature method for a Fredholm integral
equation of the first kind

Z

˝

s.t; x/c.x/d˝.x/ D u.t/; t 2 ! 	 R
d2 ; x 2 ˝ 	 R

d1 (1)

is that it uses another type of information than Galerkin type or collocation methods.
Namely, for a Galerkin type method we should be given Fourier coefficients of the
kernel s.t; x/ and the right-hand side u. A collocation method uses the values of the
right-hand side u at the collocation points ftigNiD1 2 ! and the information about the
kernel s.t; x/ in the form

Z

˝

s.ti; x/s.tj; x/d˝.x/:

However such kind of information is not available for some problems. For example,
the information acquisition of Magnetic Particle Imaging (MPI) technology [4, 22]
allows an access only to a discretized form of the corresponding Eq. (1) with respect
to x in such a way that one should deal with the following system

MX

jD1
wjs.t; x

j/c.xj/ D u.t/; (2)

where wj are some positive weights and fxjg 	 ˝ is a system of knots that
can be formed by the so-called Lissajous nodes, for example [4]. Therefore, a
quadrature method naturally appears for such problems and further investigation
of the properties of this discretization strategy is required.

It is intended that the discrete solution of (2) approximates the vector of values
of the solution of (1) at knots. The following simple argument kindly provided by
an anonymous referee shows the difficulty with a straightforward application of
quadrature methods by inverting (2).



Regularized Quadrature Methods 1019

Write a system corresponding to (2) as

SWc D u; (3)

where W is a diagonal matrix composed of the quadrature weights, S is a matrix
with elements sij D s.ti; xj/, c D .c.x1/; : : : ; c.xM//, u D .u.t1/; : : : ; u.tN//.

Assume that the system (3) is nonsingular for some quadrature rule, say the
midpoint rectangular rule. Then S is also nonsingular. To see the difficulty with an
unregularized quadrature approximation, assume that a second quadrature method
is used, say Simpson’s method, using the same quadrature node points fxjgMjD1 and
the same points ftigNiD1. Denote the corresponding approximation by

SW�c� D u

noting that the matrix S does not change. The invertibility of S implies

W�c� D Wc

Then, if the approximation c converges to u, it is not possible that c� can converge
to u as the weights in W� are different from those in W, but instead

W�1W�c� ! u:

Thus, only one quadrature method, at most, can lead to a convergent schema,
an absurd conclusion; and this indicates the difficulty of a purely quadrature-based
approach and the need for an analysis of a regularized algorithm.

The paper organized as follows: In the next section we introduce some basic
assumptions and definitions. Then, in Sect. 3 we consider quadrature methods for
the discretization of Fredholm integral equations of the first kind and investigate
some of their characteristics. In Sect. 4 we discuss the application of the general
regularization scheme for dealing with the ill-posedness of the problem and estimate
the rate of convergence of the proposed method. Finally, in the last section the
algorithms and some numerical illustrations are presented.

2 Preliminaries

Let L2.˝/,˝ 	 R
d1 , and L2.!/; ! 	 R

d2 be the Hilbert spaces of square summable
functions on ˝ and ! equipped with the standard inner products with respect to
the measures d˝.x/ and d!.t/. Moreover we also consider the space C.˝/ of
continuous functions on˝ .
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The discretization (2) presupposes that the integral operator of (1) acts from
the space allowing the evaluation of functions at the points of ˝: It is known
that Reproducing Kernel Hilbert Spaces (RKHS) are natural spaces with such
property [19, 20]. It is also known that any RKHS, say HK , can be generated by the
corresponding reproducing kernel K D K.x; y/; x; y 2 ˝; which is a symmetric and
positive-definite function. Moreover, HK is equipped with an inner product h�; �iHK

such that for any f 2 HK we have

f .x/ D h f ;KxiHK ; (4)

where Kx D Kx.�/ D K.x; �/:
Let’s consider a compact integral operator S˝ W HK ! L2.!/ given by

S˝c.t/ WD
Z

˝

s.t; x/c.x/d˝.x/; t 2 !: (5)

Further we impose additional assumptions on the space HK and the kernel s.t; x/.

Assumption 1 Let HK be compactly embedded in L2.˝/ and the kernel K.x; y/ be
such that

K.x; y/ WD
X

l

ˇlTl.x/Tl. y/;

where for any l ˇl > 0; Tl.x/ 2 C.˝/, and fTl.x/g1lD1 is a linearly independent
system of functions.

Assumption 2 Let W	 be the so-called space with a given rate of convergence
	 D 	.N/ for the system fTl.x/g1lD1 (see details about such spaces in [2]), i.e. W	 is
a normed space embedded in C.˝/ such that for any f 2 W	 it holds true

min
u2spanfTlgN

lD1

k f � ukC.˝/ � 	.N/k fkW	 : (6)

Remark 1 To illustrate Assumption 2, let us consider the space Wr1.˝/, ˝ D
Œ�1; 1�; of functions on ˝ having absolutely continuous derivatives of order up to
.r � 1/ and k f .r/kL

1

� 1,

k fkWr
1

.˝/ D
rX

lD0

�
� f .l/

�
�

L
1

Consider the system Tl.x/ D cos.l arccos x/; x 2 Œ�1; 1�; of Chebyshev polynomials
of the first kind, that are extensively used in the context of MPI-technology with
Lissajous acquisition points [4]. Then from [3] it follows that for any f 2 Wr1.˝/
the condition (6) holds with 	.N/ D O.N�r/: Thus, Wr1.˝/ can be seen as W	 with
	.N/ D cN�r:
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Assumption 3 Let the sequence fˇlg be such that for any N

1X

lDNC1
ˇlkTlk2C.˝/ � 	2.N/: (7)

Remark 2 In the context of Remark 1 it is enough to assume that ˇl D O.l�� / for
� > 2rC 1:

3 Discretization by a Quadrature Rule

In this section we introduce quadrature methods for discretizing the operator S˝ and
show that under our assumptions the discretization error is of order O.	.N//:

Consider a quadrature rule Qw;M such that for any g.x/ 2 HK

Qw;M.g/ D
MX

jD1
wjg.x

j/; (8)

where fxjgMjD1 	 ˝ and fwjgMjD1 	 R
C are the systems of quadrature knots and

weights respectively.

Assumption 4 Let for any natural N there exists M D M.N/ such that for l1; l2 D
1; 2; : : : ;N it holds

Qw;M.Tl1Tl2 / D
Z

˝

Tl1 .x/Tl2 .x/d˝.x/:

Remark 3 In the context of Remark 1 the Gaussian quadrature formula Qw;M meets
Assumption 4 with M D NC1 for Tli D cos.li arccos.x//; i D 1; 2; xj D cos. 2j�1

2M �/

and wj D �
M . However, in general the set fTl1 .x/Tl2 .x/g consists of N2 different

functions, and therefore M could be of order O.N2/.

Now we apply the quadrature rule Qw;M for the discretization of the operator S˝ .
According to our notation we have

Sw;Mc D .Sw;Mc/.t/ WD Qw;M.s.t; �/c.�// D
MX

jD1
wjs.t; x

j/c.xj/; (9)

where Sw;M W HK ! L2.!/:
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Assumption 5 Let fekg1kD1 be an orthonormal basis of L2.!/: Assume that

(i) for any � the function S�.�/ D
R
! e�.t/s.t; �/d!.t/ belongs to W	 ;

(ii) there exists some constant c1 such that .
P

� kS�k2W	 /1=2 � c1I
(iii) for any fixed t 2 ! the function g.y/ D R˝ s.t; x/Ky.x/d˝.x/ belongs to HK.

Remark 4 We illustrate Assumption 5 (conditions (ii)) in terms of the space
W	 D Wr1.˝/ for ! D ˝ D Œ�1; 1�: Suppose that the kernel s.t; x/ has

bounded continuous 1-periodic mixed partial derivatives @lC1

@xl@t
s.t; x/, l D 1; : : : ; r,

and the orthonormal basis fekg1kD1 is the system of trigonometric functions. From
the integration by parts formula it follows that for any 1-periodic continuously
differentiable function g

ˇ
ˇ
ˇ
ˇ

Z

!

g.t/e�.t/d!.t/

ˇ
ˇ
ˇ
ˇ � c��1 max

t2˝
ˇ
ˇg0.t/

ˇ
ˇ ;

where c is come constant that does not depend on �. Using the above inequality and
the definition of the norm in Wr1.˝/ we have

kS�.x/k2Wr
1

.˝/ D
 

rX

lD0
max
x2˝

ˇ
ˇ
ˇ
ˇ

Z

!

@ls.t; x/

@xl
e�.t/d!.t/

ˇ
ˇ
ˇ
ˇ

!2

�
 

c��1
rX

lD0
max

t;x2Œ�1;1�

ˇ
ˇ
ˇ
ˇ
@lC1s.t; x/
@xl@t

ˇ
ˇ
ˇ
ˇ

!2

�



c��1r max
l2.1;:::;r/ max

t;x2Œ�1;1�

ˇ
ˇ
ˇ̌@

lC1s.t; x/
@xl@t

ˇ
ˇ
ˇ̌
�2
:

By summing over all � we finally obtain

sX

�

kS�k2W	 � cr

sX

�

��2 max
l2.1;::;r/ max

t;x2Œ�1;1�

ˇ
ˇ
ˇ
ˇ
@lC1s.t; x/
@xl@t

ˇ
ˇ
ˇ
ˇ

D cr max
l2.1;::;r/ max

t;x2Œ�1;1�

ˇ
ˇ
ˇ
ˇ
@lC1s.t; x/
@xl@t

ˇ
ˇ
ˇ
ˇ <1:

Thus the condition (ii) fulfills.

We need the following lemmas to estimate the accuracy of the quadrature
approximation (9) for operator S˝:
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Lemma 1 Let f .x/ 2 W	 . If Assumptions 2, 4 are satisfied then for M D M.N/ and
any l < N it holds

ˇ
ˇ
ˇ
ˇ

Z

˝

f .x/Tl.x/d˝.x/�Qw;M. fTl/

ˇ
ˇ
ˇ
ˇ � 2�˝	.N/k fkW	 kTlkC.˝/;

where �˝ D
R
˝

d˝.x/:

Proof According to Assumption 2 there exist a function u 2 spanfTlgNlD1 such that
(6) is satisfied. Then taking into account Assumption 4 we obtain

ˇ
ˇ
ˇ̌
Z

˝

f .x/Tl.x/d˝.x/�Qw;M. fTl/

ˇ
ˇ
ˇ̌

D
ˇ
ˇ
ˇ
ˇ

Z

˝

. f .x/ � u.x//Tl.x/d˝.x/� Qw;M.. f � u/Tl/

ˇ
ˇ
ˇ
ˇ

� 2�˝k f � ukC.˝/kTlkC.˝/ � 2�˝	.N/k fkW	 kTlkC.˝/;

which proves the statement. ut
Lemma 2 Let f 2 W	 and Assumptions 1–4 be satisfied. Then

�
�
��

Z

˝

f .x/Ky.x/d˝.x/� Qw;M. fKy/

�
�
��

HK

� 2�˝
p
1C 	2.0/k fkW	 	.N/:

Proof Using the Assumption 1 and (4) we get

��
�
�
�
�

Z

˝

f .x/Ky.x/d˝.x/�
MX

jD1
wjf .x

j/Ky.x
j/

��
�
�
�
�

2

HK

D
*Z

˝

f .x/Ky.x/d˝.x/�
MX

jD1
wjf .x

j/Ky.x
j/;

Z

˝

f .ex/Ky.ex/d˝.ex/ �
MX

iD1
wif .x

i/Ky.x
i/

+

HK

D
Z

˝

f .ex/
Z

˝

f .x/
˝
Ky.ex/;Ky.x/

˛
HK

d˝.x/d˝.ex/

�
Z

˝

f .x/
MX

iD1
wif .x

i/
˝
Ky.x/;Ky.x

i/
˛
HK

d˝.x/

�
Z

˝

f .ex/
MX

jD1
wjf .x

j/
˝
Ky.ex/;Ky.x

j/
˛
HK

d˝.ex/
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C
MX

jD1
wjf .x

j/

MX

iD1
wif .x

i/
˝
Ky.x

j/;Ky.x
i/
˛
HK

D
Z

˝

f .ex/
Z

˝

f .x/K.x;ex/d˝.x/d˝.ex/�
Z

˝

f .x/
MX

iD1
wif .x

i/K.x; xi/d˝.x/

�
Z

˝

f .ex/
MX

jD1
wjK.ex; xj/d˝.ex/C

MX

jD1
wjf .x

j/

MX

iD1
wif .x

i/K.xj; xi/

D
1X

lD1
ˇl

�Z

˝

f .ex/Tl.ex/d˝.ex/
Z

˝

f .x/Tl.x/d˝.x/

�
Z

˝

f .x/Tl.x/d˝.x/
MX

iD1
wif .x

i/Tl.x
i/

�
Z

˝

f .ex/Tl.ex/d˝.ex/
MX

jD1
wjf .x

j/Tl.x
j/C

MX

jD1
wjf .x

j/Tl.x
j/

MX

iD1
wif .x

i/Tl.x
i/

3

5

D
1X

lD1
ˇl

"Z

˝

f .x/Tl.x/d˝.x/�
MX

iD1
wif .x

i/Tl.x
i/

#2

:

Taking into account Lemma 1 and Assumption 3 we obtain

1X

lD1
ˇl

"Z

˝

f .x/Tl.x/d˝.x/�
MX

iD1
wif .x

i/Tl.x
i/

#2

D
NX

lD1
ˇl

"Z

˝

f .x/Tl.x/d˝.x/�
MX

iD1
wif .x

i/Tl.x
i/

#2

C
1X

lDNC1
ˇl

"Z

˝

f .x/Tl.x/d˝.x/�
MX

iD1
wif .x

i/Tl.x
i/

#2

�
NX

lD1
4ˇl�

2
˝	

2.N/k fk2W	 kTlk2C.˝/ C
1X

lDNC1
4ˇl�

2
˝k fk2W	 kTlk2C.˝/

� 4�2˝	2.N/k fk2W	 .1C 	2.0//

that completes the proof. ut
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Theorem 1 Let Assumptions 1–5 be satisfied. Then it holds

kS˝ � Sw;MkHK!L2.!/ � c2	.N/; (10)

where c2 D 2�˝c1
p
1C 	2.0/:

Proof For the orthonormal basis fekg1kD1 2 L2.!/ the Parseval identity asserts that
for S˝c � Sw;Mc 2 L2.!/

kS˝c � Sw;MckL2.!/ D
sX

�

hS˝c � Sw;Mc; e�i2L2.!/: (11)

Thus, to prove the theorem it is necessary to bound the corresponding inner product
in (11).

Since c.x/ can be represented by using (4) we have

S˝c.t/ � Sw;Mc.t/ D
Z

˝

s.t; x/c.x/d˝.x/ �
MX

jD1
wjs.t; x

j/c.xj/

D
Z

˝

s.t; x/hc;KxiHK d˝.x/�
MX

jD1
wjs.t; x

j/hc;KxjiHK

D
*

c;
Z

˝

s.t; x/Kxd˝.x/�
MX

jD1
wjs.t; x

j/Kxj

+

HK

:

Then using Cauchy-Schwarz inequality and Lemma 2 we get

hS˝c � Sw;Mc; e�i D
Z

!

e�.t/

*

c;
Z

˝

s.t; x/Kxd˝.x/�
MX

jD1
wjs.t; x

j/Kxj

+

HK

d!.t/

D
*

c;
Z

˝

S�.x/Kxd˝.x/�
MX

jD1
wjKxj S�.x

j/

+

HK

� kckHK

�
��
�
�
�

Z

˝

S�.x/Kxd˝.x/�
MX

jD1
wjKxj S�.x

j/

�
��
�
�
�

HK

� kckHK2�˝
p
1C 	2.0/kS�.x/kW	 	.N/:
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Substituting this bound into (11) and taking into account Assumption 5 we can
finally obtain

kS˝c � Sw;MckL2.!/ � 2�˝
p
1C 	2.0/	.N/kckHK

sX

�

kS�.x/kW	

� 2�˝c1
p
1C 	2.0/kckHK 	.N/: ut

4 Regularization

As we already mentioned in Introduction, Fredholm integral equations of the
first kind with a smooth kernel function are usually ill-posed, and therefore
regularization is needed for their stable solution [6, 8, 9].

Consider now a noisy version of Eq. (1) that can be written as

S˝c D uı; (12)

where uı is such that ku�uıkL2.!/ � ı:We assume that (12) for ı D 0 has solutions
and denote by c) the so-called Moore-Penrose solution. From [13] we know that
there is always a continuous, strictly increasing function ; .0/ D 0, called index
function such that c) 2 HK belongs to the range of the operator .S�̋ S˝/. By S�̋
we denote the adjoint of S˝ .

Furthermore we assume that the index function  is operator monotone.

Definition 1 The function  is operator monotone on .0; a/ if for any pair of self-
adjoint operators A;B with spectrum in .0; a/; where a D maxfkAk; kBkg, we have
.A/ � .B/ whenever A � B:

It is known [14] that if  is an operator monotone function on .0; a/ then for any
pair of self-adjoint operators A;B, kAk; kBk � b, b < a there exists a constant d1
such that

k.A/� .B/k � d1.kA � Bk/: (13)

Moreover from [17] we know that the operator monotone functions satisfy the
inequality

.t/=t � T.s/=s; whenever 0 < s < t < a; (14)

where T is some constant. Summarizing our discussion above we impose the
following assumption.
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Assumption 6 Let c) D .S�̋ S˝/v; where kvkHK � 1, and  is an operator
monotone function on the interval .0; kS�̋ S˝k�.

For regularization of Eq. (12) we consider general regularization scheme com-
bined with the discretization according to (9), namely the approximate solution cN

˛;ı

is calculated as cN
˛;ı WD g˛.S�

w;MSw;M/S�
w;Muı, where fg˛.�/g ; 0 < � � kS�̋ S˝k is a

parametric family of bounded functions with ˛ being a regularization parameter.
Of course, not every family can be used as a regularization.

Definition 2 A family fg˛g is called a regularization, if there are constants
��1; �1=2, �0 for which

sup
0<��kS�

˝S˝k
j1 � �g˛.�/j � �0

sup
0<��kS�

˝S˝k

p
� jg˛.�/j � �1=2p

˛

sup
0<��kS�

˝S˝k
jg˛.�/j � ��1

˛
:

Moreover, due to (14) the following properties of fg˛.�/g ; 0 < � � kS�̋ S˝k can
be derived [16]

sup
0<��kS�

˝S˝k
j1 � �g˛.�/j.�/ � �.˛/; (15)

where the number � does not depend on ˛ and .

Remark 5 For Tiknonov-Phillips regularization, which will be used in the next
section

g˛.�/ D 1

˛ C �;

and the above mentioned conditions are satisfied with ��1 D �0 D � D 1; �1=2 D
1=2.

Next we prove the following lemma.

Lemma 3 Under Assumptions 1–6 it holds

kc) � cN
˛;ıkHK � �.˛/C �0d1.c2	.N//C

�1=2ıp
˛
C �1=2c2	.N/kc)kHKp

˛
:

Proof The statement of the lemma follows from [15, formula (4)], but for complete-
ness we present the proof here as well.
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Taking into account the above properties of the regularization family g˛.�/ we
have

kc) � cN
˛;ıkHK � k.I � g˛.S

�
w;mSw;m/S

�
w;mSw;m/.S

�
w;mSw;m/kHK!HK

C k.I � g˛.S
�
w;mSw;m/S

�
w;mSw;m/..S

�
w;mSw;m/� .S�̋ S˝/kHK!HK

C kg˛.S�
w;mSw;m/S

�
w;m.u � uı/kHK

C kg˛.S�
w;mSw;m/S

�
w;m.S˝ � Sw;m/kHK!HKkc)kHK

� �.˛/C �0k.S�
w;mSw;m/ � .S�̋ S˝/kHK !HK C �1=2

ıp
˛

C �1=2kc)kHK

kSw;m � S˝kHK!L2.!/p
˛

:

Using the property (13) and Theorem 1 we complete the proof:

kc) � cN
˛;ıkHK � �.˛/C �0d1.c2	.N//C �1=2

ıp
˛
C �1=2kc)kHK

c2	.N/p
˛
: ut

Theorem 2 Let N be the smallest positive integer such that

c2	.N/ �
�
˛; .t/ � pt
ı; .t/ <

p
t
:

Then for ˛ D ��1.ı/, where �.t/ D pt.t/; t 2 Œ0; kS˝k2�, we have

kc) � cN
˛;ıkHK � c.��1.ı//;

with some constant c that does not depend on ı;N;M.

Proof If .�/ � p�; t 2 Œ0; kS˝k2�, then from Lemma 3 we conclude that

kc) � cN
˛;ıkHK � �.˛/C �0d1.˛/C

�1=2ıp
˛
C �1=2

p
˛kc)kHK

� .�C �0d1 C �1=2kc)kHK /.˛/C
�1=2ıp
˛
:

Thus from the definition of the function �.t/ it holds that ı=
p
��1.ı/ D .��1.ı//

and we obtain

kc) � cN
˛;ıkHK � c.��1.ı//:
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For the case .�/ <
p
�; t 2 Œ0; kS˝k2�; from Lemma 3 the following estimation

holds true

kc) � cN
˛;ıkHK � �.˛/C �0d1.ı/C

�1=2ıp
˛
C �1=2ıkc)kHKp

˛
:

Taking into account that .ı/ <
p
ı and ˛ D ��1.ı/ > ı we finally obtain

kc) � cN
˛;ıkHK � c.��1.ı//: ut

Remark 6 It is known [16] that the error bound of order O..��1.ı/// is optimal
for c) 2 Range..S�̋ S˝//; i.e. it can’t be improved for the class of solutions under
consideration.

5 Algorithms and Numerical Illustrations

In this section we compare two discretization strategies for Fredholm integral
equation of the first kind: the regularized collocation method studied in [18] and
the regularized quadrature approximation described in the present paper. For reader
convenience we describe both algorithm in ready-to-use form below. Note that the
presented descriptions correspond to the Tikhonov-Phillips regularization scheme,
namely g˛.�/ D 1=.˛C �/.

5.1 Regularized Collocation Method

According to [18], the solution cN
˛;ı can be represented as

cN
˛;ı D

MX

jD1
cjwjs.tj; �/;

where the vector c 2 R
M of the coefficients cj can be found from the system

˛cC Ac D uı;

with A D MW,

W D diag.w1; : : : ;wM/; M D �mij
�
; mij D

Z

˝

s.tj; t/s.ti; t/d˝.t/;

uı D .uı.t1/; : : : ; uı.tM//:
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5.2 Regularized Quadrature Method

Recall that for a regularization of Eq. (12) we use Tikhonov-Phillips method
combined with the discretization according to (9), namely

˛cC S�
w;MSw;Mc D S�

w;Muı; (16)

where for any b.t/ 2 L2.!/

.S�
w;Mb/.�/ D

MX

jD1
wjK.�; xj/

Z

!

s.t; xj/b.t/d!.t/: (17)

Note that the solution of (16) belongs to Range.S�
w;M/. It means that due to (17)

the element cN
˛;ı can be represented as

cN
ı;˛ D

MX

kD1
ckK.�; xk/:

Thus, the solution of Eq. (16) is derived from the system of linear equations with
respect to ck; k D 1; ::;M, namely the values ck can be found from the system

˛ck C
MX

pD1
cpsk;p D uık; k D 1::M;

where uık D
R
! s.t; xk/uı.t/d!.t/ and

sk;p D
MX

�D1
wkw�K.x�; xp/

Z

!

s.t; x�/s.t; xk/d!.t/:

5.3 Numerical Comparison

In our numerical tests we put both algorithms side-by-side for integral equations (1)
defined on ! D ˝ D Œ0; 1� with kernels

s.t; x/ D
DX

lD1

DX

mD1
dlm

cos.2�lt/ cos.2�mx/

.2�l/p.2�m/q
;
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and the exact solutions

c).t/ D
DX

kD1
c)k

cos.2�kt/

.2�k/�
;

where dlm; l;m D 1; : : : ;D and c)k ; k D 1; : : : ;D, are uniformly distributed random
numbers from .0; 1/. In our experiments D D 100, p D 1, q D f1; 3g, and � D 2.

We choose such values of the parameters p and q to demonstrate the advantage in
the sense of the accuracy of the quadrature method over the collocation in the case
when kernels s.t; x/ are smoother with respect to integration variables.

It is clear that for such kernels and solutions the right-hand sides u.t/ can be
calculated explicitly as well:

u.t/ D
DX

lD1

DX

mD1
dlm

cos.2�lt/c)k
2.2�l/p.2�m/qC� :

Then we generate the noisy data uı as follows

uı.t/ D
DX

lD1
cos.2�lt/

DX

mD1

 

dlm
c)k

2.2�l/p.2�m/qC� C ı�l

!

;

where ı is the noise intensity and �l; l D 1; : : : ;D are uniformly distributed random
numbers from .�1; 1/.

Both considered methods are tested with ti D xi D i
M ; i D 1; 2; : : : ;M;M D

100. Moreover, we consider a quadrature rule with equal weights.
Note that for the realization of the quadrature method one should also define

the RKHS HK , and for simplicity we consider K.x; x0/ D PM
jD1 lj.x/lj.x0/, where

lj; j D 1; 2; : : : ;M, are the fundamental interpolation functions associated with the
knots xj; j D 1; 2; : : : ;M. In this case K.xi; xj/ D ıij.

We employed Tikhonov-Phillips regularization with the optimal choice of ˛ from
the set ˛i D 10�20 � 1:08i�1; i D 1; 2 : : : ; 1000.

Tables 1 and 2 report the mean relative error over 10 simulations as described
above. Figures 1 and 2 show a result of a particular simulation. The presented results
demonstrate the advantage of a quadrature method. Moreover, in view of Remarks 1
and 4 one may conclude that for q D 1 the convergence rate 	 D 	.N/ is worse than

Table 1 Average errors of collocation and quadrature methods over 10 simulations of the noisy
data, p D 1; q D 3; � D 2

Mean relative error

ı D 10�5 ı D 10�6 ı D 10�7 ı D 10�8 ı D 10�9

Collocation method 0:4615 0:1764 0:1542 0:1547 0:1547

Quadrature method 0:4021 0:1749 0:1040 0:0722 0:0380



1032 S. V. Pereverzev et al.

Table 2 Average errors of collocation and quadrature methods over 10 simulations of the noisy
data, p D 1; q D 1; � D 2

Mean relative error

ı D 10�5 ı D 10�6 ı D 10�7 ı D 10�8 ı D 10�9

Collocation method 0:2744 0:2262 0:2262 0:2261 0:2261

Quadrature method 0:3197 0:1553 0:0863 0:0787 0:0783

Fig. 1 Reconstruction of c) (exact solution) by the collocation and quadrature methods, ı D
10�9; p D 1; q D 3; � D 2

Fig. 2 Reconstruction of c) (exact solution) by the collocation and quadrature methods, ı D
10�9; p D 1; q D 1; � D 2

for q D 3. Therefore, in view of Theorem 1 for sufficiently small noise ı and q D 1
one should expect larger error than for q D 3. The comparison of Tables 1 and 2, as
well as Figs. 1 and 2, confirms the above expectation.



Regularized Quadrature Methods 1033

Acknowledgements This work was done while the second author was visiting Johann Radon
Institute within the EU-Horizon 2020 MSC-RISE project AMMODIT.

The authors affiliated with Johann Radon Institute gratefully acknowledge the support of the
Austrian Science Fund (FWF): project I1669.

References

1. Atkinson, K.E.: The Numerical Solution of Integral Equations of the Second Kind. Cambridge
University Press, Cambridge (1997)

2. Cohen, A., DeVore, R., Kerkyacharian, G., Picard, D.: Maximal spaces with given rate of
convergence for thresholding algorithms. Appl. Comput. Harmon. Anal. 11, 167–191 (2001)

3. Dzyadyk, V.K., Shevchuk, I.A.: Theory of Uniform Approximation of Functions by Polyno-
mials. Walter de Gruyter, Berlin (2008)

4. Erb, W., Kaethner, C., Ahlborg, M., Buzug, T.M.: Bivariate Lagrange interpolation at the node
points of non-degenerate Lissajous curves. Numer. Math. 133, 685–705 (2016)

5. Graham, I.G., Atkinson, K.E.: On the Sloan iteration applied to integral equations of the first
kind. IMA J. Numer. Anal. 13, 29–41 (1993)

6. Groetsch, C.W.: The Theory of Tikhonov Regularization for Fredholm Equations of the First
Kind. Research Notes in Mathematics. Pitman, London (1984)

7. Groetsch, C.W.: Convergence analysis of a regularized degenerate kernel methods for Fred-
holm integral equations of the first kind. Integr. Equ. Oper. Theory 13, 63–75 (1990)

8. Groetsch, C.W.: Stable Approximate Evaluation of Unbounded Operators. Lecture Notes in
Mathematics. Springer, Berlin (2007)

9. Kirsch, A.: An Introduction to the Mathematical Theory of Inverse Problems. Springer, Berlin
(2011)

10. Krebs, J., Louis, A.K., Wendland, H.: Sobolev error estimates and a priori parameter selection
for semi-discrete Tikhonov regularization. J. Inverse Ill-Posed Prob. 17, 845–869 (2009)

11. Kress, R.: Linear Integral Equations. Springer, Berlin (2014)
12. Maas, P., Pereverzev, S.V., Ramlau R., Solodky, S.G.: An adaptive discretization for Tikhonov-

Phillips regularization with a posteriori parameter selection. Numer. Math. 87, 485–502 (2001)
13. Mathé, P., Hofmann, B.: How general are general source conditions? Inverse Prob. 24, 1–5

(2008)
14. Mathé, P., Pereverzev, S.V.: Moduli of continuity for operator valued functions. Numer. Funct.

Anal. Optim. 23, 623–631 (2002)
15. Mathé, P., Pereverzev, S.V.: Discretization strategy for ill-posed problems in variable Hilbert

scales. Inverse Prob. 19, 1263–1277 (2003)
16. Mathé, P., Pereverzev, S.V.: Geometry of linear ill-posed problems in variable Hilbert scales.

Inverse Prob. 19, 789–803 (2003)
17. Mathé, P., Pereverzev, Sergei V.: Regularization of some linear ill-posed problems with

discretized random noisy data. Math. Comput. 75, 1913–1929 (2006)
18. Nair, M.T., Pereverzev, S.: Regularized collocation method for Fredholm integral equations of

the first kind. J. Complex. 23, 454–467 (2007)
19. Nashed, M., Wahba, G.: Regularization and approximation of linear operator equations in

reproducing kernel spaces. Bull. Am. Math. Soc. 80, 1213–1218 (1974)
20. Nashed, M., Wahba, G.: Generalized inverses in reproducing kernel spaces: an approach to

regularization of linear operator equations. SIAM J. Math. Anal. 5, 974–987 (1974)
21. Nédélec, J.: Curved finite element methods for the solution of singular integral equations on

surfaces in R
3. Comput. Methods Appl. Mech. Eng. 8, 61–80 (1976)

22. Panagiotopoulos, N., Duschka, R., Ahlborg, M., Bringout, G., Debbeler, C., Graeser, M.,
Kaethner, C., Lüdtke-Buzug, K., Medimagh, H., Stelzner, J., Buzug, T.M., Barkhausen,
J., Vogt, F. M., Haegele, J.: Magnetic particle imaging – current developments and future
directions. Int. J. Nanomedicine 10, 3097–3114 (2015)



1034 S. V. Pereverzev et al.

23. Pereverzev, S.V.: Optimization of Methods for Approximate Solution of Operator Equations.
Nova Science Publishers, New York (1996)

24. Pereverzev, S.V., Solodky, S.G., Volynets, E.A.: The balancing principle in solving semi-
discrete inverse problems in Sobolev scales by Tikhonov method. Appl. Anal. 91, 435–446
(2012)

25. Plato, R., Vainikko, G.: On the regularization of projection methods for solving ill-posed
problems. Numer. Math. 57, 63–79 (1990)

26. Reinhard, H.-J.: Analysis of Approximation Methods for Differential and Integral Equations.
Springer, New York (1985)

27. Sloan, I.H.: Error analysis for a class of degenerate kernel methods. Numer. Math. 25, 231–238
(1976)

28. Twomey, S.: On the numerical solution of Fredholm integral equations of the first kind by the
inversion of the linear system produced by quadrature. J. Assoc. Comput. Mach. 10, 97–101
(1963)



On Linear Versus Nonlinear
Approximation in the Average Case
Setting

Leszek Plaskota

Dedicated to Ian H. Sloan on the occasion of his 80th birthday.

Abstract We compare the average errors of n-term linear and nonlinear approxima-
tions assuming that the coefficients in an orthogonal expansion of the approximated
element are scaled i.i.d. random variables. We show that generally the n-term
nonlinear approximation can be even exponentially better than the n-term linear
approximation. On the other hand, if the scaling parameters decay no faster than
polynomially then the average errors of nonlinear approximations do not converge
to zero faster than those of linear approximations, as n!C1. The main motivation
and application is the approximation of Gaussian processes. In this particular case,
the nonlinear approximation is, roughly, no more than n times better than its linear
counterpart.

1 Introduction

Let F be a linear space over the reals. For a given countable dictionary

D WD ˚
�j j j D 1; 2; : : :

� 	 F;

the n-term linear approximation relies on approximating elements of F by elements
of the linear subspace

Vn WD spanf�1; : : : ; �ng D
n nX

jD1
cj�j

ˇ
ˇ cj 2 R

o

L. Plaskota (�)
Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw, Warsaw, Poland
e-mail: leszekp@mimuw.edu.pl

© Springer International Publishing AG, part of Springer Nature 2018
J. Dick et al. (eds.), Contemporary Computational Mathematics – A Celebration
of the 80th Birthday of Ian Sloan, https://doi.org/10.1007/978-3-319-72456-0_46

1035

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-72456-0_46&domain=pdf
mailto:leszekp@mimuw.edu.pl
https://doi.org/10.1007/978-3-319-72456-0_46


1036 L. Plaskota

with respect to a given norm k � k. In the n-term nonlinear approximation, the
approximations are in the nonlinear manifold

eVn WD
n nX

jD1
cj�ij

ˇ
ˇ cj 2 R; i1 < i2 < � � � < in

o
:

The nonlinear approximation is an important practical tool because of its possible
applications to, e.g., data storage or compressed sensing. Therefore it is important
to know whether it offers better results than linear approximation. This topic has
usually been studied assuming that the approximated elements are of deterministic
nature. We only mention [3, 5–8, 12, 14] as examples. Much less is known
on nonlinear approximation in non-deterministic cases where the approximated
elements are assumed to be random elements or processes, see, e.g., [1, 2, 4, 9, 17].

In this paper, we consider the average error of approximation with respect to a
probability measure � defined on F. Denoting by

dist. f ;Vn/ WD inf
vn2Vn

k f � vnk and dist. f ;eVn/ WD inf
vn2eVn

k f � vnk

the minimal errors of linear and nonlinear approximations for each individual f 2 F,
respectively, we are interested in the average errors

eave
� .n/ D


Z

F
dist. f ;Vn/

2 �.df /

�1=2
and eeave

� .n/ D

Z

F
dist. f ;eVn/

2 �.df /

�1=2
:

The author’s motivation to study relations between eave
� .n/ and eeave

� .n/ comes
from the average case approximation based on partial information only, which is
studied in information-based complexity theory [15]. Here F is a separable Banach
space, � is a zero mean Gaussian measure, and the error is taken with respect
to a Hilbert norm. In this case, the optimal choice of the dictionary leads to the
situation where one approximates f 2 F from its coefficients in an orthonormal
expansion, where the coefficients are scaled normally distributed random variables.
This corresponds to the Karhunen-Loéve decomposition in the theory of random
processes. See Sect. 2 for details.

In order to obtain some general results, we consider in Sect. 3 a more general
situation where the coefficients in the orthogonal expansion are arbitrary scaled
i.i.d.’s. Our general results show that the n-term nonlinear approximation can be
exponentially (and no more than exponentially) better than the n-term linear approx-
imation. On the other hand, if the scaling parameters decay at most polynomially
then the orders of linear and nonlinear approximations are the same. In the particular
Gaussian case we have an additional result that the nonlinear approximation is,
roughly, no more than n times better than its linear counterpart, see Corollary 2
of Sect. 4. Finally, we compare the average case errors for Gaussian measures with
the corresponding worst case errors over the unit ball of F, see Remark 2.
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2 Motivation: Approximation of Gaussian Processes

Let F be a real separable Banach space with a norm k �kF, equipped with a Gaussian
measure � defined on the corresponding �-field of Borel sets. Let the mean element
of � be zero and its covariance operator C� W F� ! F, i.e.,

Z

F
L. f / �.df / D 0 8L 2 F�

and
Z

F
L1. f /L2. f / �.df / D L1.C�L2/; 8L1;L2 2 F�:

(See e.g. [10, 16] for more about Gaussian measures in Banach spaces.) Suppose
we want to approximate elements f 2 F with error measured in another norm k � k:
We assume that the only a priori knowledge of f is that it is distributed according to
�: We first collect some information about f and then combine this information to
obtain an approximation An. f /. Specifically, we assume that the norm k�k is weaker
than the original norm k � kF and is generated by an inner product h�; �i. Let H be
the completion of F to a Hilbert space with respect to h�; �i; so that .F; k � kF/ is
continously embedded in .H; k � k/. The allowed approximations to f 2 F are of the
form

An. f / D n.L1 f ;L2 f ; : : : ;Lnf /

where Lj; 1 � j � n; are some continuous linear functionals on F; and n W
R

n ! H is an arbitrary measurable mapping. The average error of approximation is
defined as

errave
� .An/ WD


Z

F
k f � An. f /k2�.df /

�1=2
:

In this setting, for fixed n, the optimal approximation A�
n (i.e., the one that uses

n functional evaluations and minimizes the average error) is as follows, see e.g.
[11, 13, 15]. Define W� W H ! H as

W�f D C�Lf where Lf D h�; f i:

W� is a self-adjoint, nonnegative definite operator with finite trace. Let ��
j , j � 1,

be a complete and orthonormal in H system of eigenelements of W�, and �j be the
corresponding eigenvalues,

W��
�
j D �j�

�
j ; j � 1; (1)
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where

�1 � �2 � � � � � 0 and
C1X

jD1
�j < C1:

Then each f 2 F admits the orthonormal expansion

f D
C1X

jD1
cj�

�
j with cj D h f ; ��

j i D �1=2j yj; (2)

where yj are i.i.d. standard normal variables. The optimal approximation is given by
the partial sum

A�
n . f / D

nX

jD1
h f ; ��

j i��
j ;

and

errave
� .A

�
n / D

vu
u
t

C1X

jDnC1
�j:

Thus A�
n . f / is just the H-orthogonal projection of f onto V�

n D span.��
1 ; �

�
2 ; : : : ; �

�
n /

and therefore is simultaneously the best n-term linear approximation, errave
� .A

�
n / D

eave
� .n/: Even more, the dictionary

D� D f ��
1 ; �

�
2 ; �

�
3 ; : : : g

is optimal in the sense that it offers the minimal average errors of the n-term linear
approximation for all n � 1.

It follows that in order to have an approximation with error " it is necessary and
sufficient to perform

n."/ D min

�
n
ˇ
ˇ

C1X

jDnC1
�j � "2

�

functional evaluations. A natural question is whether for f 2 F it is necessary to
store all the n."/ coefficients h f ; ��

j i, 1 � j � n."/, to represent the approximation
without losing its quality. The answer is strictly related to the quality of nonlinear
approximation as follows.
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Denote byeA�
m. f / the optimal m-term nonlinear approximation for f with respect

to the dictionary D�. It is given as

eA�
m. f / D

X

j2U. f /

h f ; ��
j i��

j ;

where U. f / D f i1; i2; : : : ; img is the set of m indexes j for which the coefficients
jh f ; ��

j ij are largest possible. It is important to notice that this approximation is
generally not feasible since it requires m largest coefficients from the potentially
infinite number of coefficients. However, it is completely feasible to apply the
best m-term nonlinear approximation to A�. f / where we know that only the first
n coefficients h f ; ��

j i are nonzero. That is, we let

eAn;m. f / DeA�
m

�
A�

n . f /
� D

X

j2Un. f /

h f ; ��
j i��

j ;

where m � n and Un. f / is the set of m indexes j amongst f1; 2; : : : ; ng for which
jh f ; ��

j ij are largest possible. Since f � A�
n . f / and A�

n . f / � eAn;m. f / 2 V�
n are

H-orthogonal, we have

k f �eAn;m. f /k2 D k f � A�
n . f /k2 C kA�

n . f / �eA�
m

�
A�

n . f /
�k2

� k f � A�
n . f /k2 C k f �eA�

m. f /k2:
This immediately implies

eeave
� .m/ � errave

� .
eAn;m/ �

q
eave
� .n/

2 Ceeave
� .m/

2

and limn!C1 errave
� .
eAn;m/ Deeave

� .m/:
We conclude that it is indeed possible to reduce the number of coefficients in the

expansion of the approximation of f without losing the quality of approximation, if
eeave
� .n/ decreases faster than eave

� .n/ as n ! C1. Hence the question now is when
and how much is the nonlinear approximation better than linear approximation.

3 A General Setting

In order to study the relation between best n-term linear and nonlinear approxima-
tions we consider a more general setting than that of Sect. 2; namely, we assume
that the yj’s in the expansion (2) are not necessarily normally distributed. Then the
problem “linear versus nonlinear approximation” can be conveniently reformulated
as follows.

Let Z be a real nonnegative random variable with expectation

EZ D 1;
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and let x D .x1; x2; : : :/ be an infinite sequence of independent and identically
distributed copies of Z. Let a D .a1; a2; : : :/ be a non-increasing and summable
sequence,

a1 � a2 � � � � � 0;

so that

E


C1X

jD1
ajxj

�
D

C1X

jD1
aj < C1: (3)

Suppose we want to maximally reduce the expectation (3) by removing n compo-
nents ajxj from the sum. It is clear that then the best nonadaptive strategy (n-term
linear approximation) is to remove the n first components, and the best adaptive
strategy (n-term nonlinear approximation) is to remove the n largest components.1

We correspondingly define the errors

en.Z; a/ D E


 C1X

jDnC1
ajxj

�
D

C1X

jDnC1
aj;

and

een.Z; a/ D E


 X

j…U.x/

ajxj

�
;

where U.x/ is the set of n indexes for which ajxj are largest possible.
Note that the adaptive strategy and its error are well defined since the condition

(3) ensures that the sum
PC1

jD1 ajxj is finite almost surely. Moreover, both strategies
are independent of a:

We immediately observe that en.Z; a/ is independent of aj for j � n, and that
both, en.Z; a/ andeen.Z; a/, depend monotonically on a. That is, if Qa � a (coordinate-
wise) then en.Z; Qa/ � en.Z; a/ andeen.Z; Qa/ �een.Z; a/.

We are interested in the ratio

Rn.Z; a/ D een.Z; a/
en.Z; a/

(with convention 0=0 D 1). Obviously, 0 < Rn.Z; a/ � 1.

1The word ‘adaptive’ here means that the removed components depend on x.
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Remark 1 The assumption EZ D 1 is only to simplify some formulas. Since the
quantities en.Z; a/ andeen.Z; a/ are homogeneous with respect to multiplication of
Z by a constant, for any Z and c > 0 we have Rn.cZ; a/ D Rn.Z; a/.

3.1 Worst Case Scenario

We first fix Z and n and ask for the ‘worst’ possible a, i.e., we are interested in the
quantity

rn.Z/ D inf
a

Rn.Z; a/:

In other words, rn.Z/ is the maximum gain from using adaptive strategy instead of
nonadaptive strategy. Knowing it is especially important when a is unknown.

Theorem 1 For any Z and n � 0 we have

rn.Z/ D een.Z; a�/

where a� D .1; 1; : : : ; 1„ ƒ‚ …
nC1

; 0; 0; 0; : : :/.

Proof We first show that the theorem holds in case where only finitely many aj’s are
positive. Let k be the largest integer for which anCk > 0. We can assume without
loss of generality that k � 1 since otherwise en.Z; a/ Deen.Z; a/ D 0. We proceed
by induction on k.

Let k D 1. Then, letting Qa D .anC1; : : : ; anC1„ ƒ‚ …
nC1

; 0; 0; : : :/, we have

een.Z; a/ � een.Z; Qa/ D anC1een.Z; a�/ D en.Z; a/een.Z; a�/:

Assume k � 2. Then we have almost surely that U.x/ D f1; 2; : : : ; nC kg n T.x/
where T.x/ is the set of k indexes with smallest ajxj, 1 � j � n C k. It can be
decomposed as

T.x/ D T0.x/ [ ft.x/g;

where T0.x/ is the set of .k � 1/ ‘smallest’ indexes from f1; 2; : : : ; nC k � 1g, and
t.x/ is the ‘smallest’ index from f1; 2; : : : ; nC kg n T0.x/. By inductive assumption
applied to the sequence a0 D .a1; a2; : : : ; anCk�1; 0; 0; : : :/ we have

E


 X

j2T0.x/

ajxj

�
D een.Z; a0/ � een.Z; a�/ en.Z; a0/ D een.Z; a�/


 nCk�1X

jDnC1
aj

�
:

(4)
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Observe also that the expectation E
�
at.x/xt.x/

�
is not smaller thaneen.Z; Qa/ where

Qa D .anCk; : : : ; anCk„ ƒ‚ …
nC1

; 0; 0; : : :/; since for such Qa almost surely t.x/ is the ‘smallest’

index from f1; 2; : : : ; nC 1g: This and case k D 1 yield

E
�
at.x/xt.x/

� � een.Z; Qa/ � een.Z; a�/ en.Z; Qa/ D een.Z; a�/ anCk: (5)

Taking together (4) and (5) we obtain

een.Z; a/ D E


 X

j2T.x/

ajxj

�
D E


 X

j2T0.x/

ajxj C at.x/xt.x/

�

D E


 X

j2T0.x/

ajxj

�
C E

�
at.x/xt.x/

�

�een.Z; a�/

 nCk�1X

jDnC1
aj C anCk

�

Deen.Z; a�/ en.Z; a/:

Consider now an arbitrary a D .a1; a2; : : :/. Let am D .a1; : : : ; am; 0; 0; : : :/.
Since

een.Z; am/ � een.Z; a/ � een.Z; am/C
C1X

jDmC1
aj;

we have een.Z; a/ D limm!C1een.Z; am/. A similar equality holds for en.Z; a/.
Hence

Rn.Z; a/ D lim
m!C1 Rn.Z; am/ � Rn.Z; a�/;

as claimed. ut
Now we want to see how small rn.Z/ can be, i.e., how much the adaptive strategy

helps. In particular, we want to know how rn.Z/ depends on the cummulative
distribution function

FZ.t/ D Prob.Z � t/

of the random variable Z. For this end, observe that rn.Z/ D EX where

X D min
1�j�nC1 xj:
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Since

Prob .X � t/ D 1 � Prob .X > t/

D 1 �
nC1Y

jD1
Prob

�
xj > t

�

D 1 � .1 � FZ.t//
nC1;

we obtain the following result.

Corollary 1

rn.Z/ D
Z C1

0

.1 � FZ.t//
nC1 dt:

We immediately see that rn.Z/ D 1 for all n if Z � 1, and in all other cases
rn.Z/ is a strictly decreasing function of n. It can decrease even at exponential rate
which is the case, for instance, for the Bernoulli trials. Indeed, suppose Z D 0 or
Z D 2 with probabilities 1=2. Then rn.Z/ equals 2 times the probability of success
in .nC 1/ trials, which is 2�n. We can generalize this example as follows. Suppose
0 < FZ.0/ < 1. Then

rn.Z/ � .1 � FZ.0//
n
Z C1

0

.1 � FZ.t// dt D .1 � FZ.0//
n;

i.e., rn.Z/ decreases exponentially fast.
Actually, rn.Z/ cannot decrease faster than exponentially. Indeed, let t0 > 0 be

such that FZ.t0/ < 1. (Such t0 always exists since otherwise Z � 0.) Then

rn.Z/ �
Z t0

0

.1 � FZ.t0//
nC1 dt D t0.1 � FZ.t0//

nC1;

as claimed.
On the other hand, if FZ.t0/ D 0 for some t0 > 0 then rn.Z/ � t0 and rn.Z/ does

not converge to zero; that is, adaptive strategy does not help.
The discussion above shows that the really ‘interesting’ cases are those for which

FZ.0/ D 0 and FZ.t/ > 0 for all t > 0. Since then the integral

Z C1

t0

.1 � FZ.t//
nC1 dt � .1 � FZ.t0//

n
Z C1

t0

.1 � FZ.t// dt

converges exponentially fast to zero for any positive t0, the convergence of rn.Z/
depends only on FZ.t/ in the neighborhood of 0.
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For illustration, we consider two examples.

Example 1 Let

FZ.t/ D
�
.t=c/1=p 0 � t � c;
1 t > c:

Here p > 0 and c D pC 1 is the normalizing parameter. In other words, Z D c jUjp
where U is uniform on Œ�1; 1�. In this case we can derive exact formula for rn.Z/;
namely, we have

rn.Z/ D
Z c

0

�
1 � .t=c/1=p

�nC1
dt D c .n; p/ (6)

where

 .n; p/ D p
Z 1

0

.1 � u/nC1 up�1 du:

Integrating by parts we find that

 .n; p/ D



nC 1
pC 1

�
 .n � 1; pC 1/

which, together with (6) and  .0; p/ D 1=. pC 1/, yields the exact formula

rn.Z/ D
nC1Y

kD2

k

pC k
: (7)

We have that rn.Z/ � n�p as n ! C1.2 Indeed we take the logarithm in (7)
and then estimate the resulting sum from below and from above by the integral of
ln.x=. p C x// on the intervals Œ1; n C 1� and Œ3=2; n C 3=2�, respectively. Using
these estimates we obtain the desired result with the asymptotic constant between
e�p. pC 1/pC1 and e�p.2=3/3=2. pC 3=2/pC3=2.

Example 2 Suppose now that Z D c jGjp, p > 0, where G � N .0; 1/ is the
standard Gaussian (normal) distribution on R, and c D .ejGjp/�1 is the normalizing
parameter. That is,

FZ.t/ D
r
2

�

Z .t=c/1=p

0

exp.�u2=2/ du:

In this case we have FZ.t/ 

p
2=� .t=c/1=p � t1=p as t! 0C which, by Example 1,

immediately yields rn.Z/ � n�p:

2For two positive sequences, we write an � bn iff there are 0 < c < C < C1 and n0 such that
c � an=bn � C holds for all n � n0: We write an � bn iff limn!C1

an=bn D 1.
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3.2 Asymptotics

For a given problem, i.e., for given a, we typically ask how fast the error for adaptive
strategy converges to zero as n ! C1 compared to the error of nonadaptive
strategy. The results of the previous section do not provide a complete answer to this
question since the ‘worst’ a depends on n. What we know right now is that Rn.Z; a/
cannot decay faster than exponentially, and this exponential decay is achieved, e.g.,
for the Bernoulli trials. We now investigate in more detail the behavior of Rn.Z; a/
for fixed a and n! C1.

We first show the following simple, but useful fact.

Lemma 1 Let 0 < p � 1. Suppose that Z takes only two values: 1=p (success) and
0 (failure), with probability of success p. Then

een.Z; a/ D
C1X

kDnC1
ak qn;k�1

where qn;k D Pk
iDn

�k
i

�
pi.1 � p/k�i is the probability of at least n successes in k

trials.

Proof Observe that the n largest components akxk are just the n first nonzero
components. Letting Ai be the event that xi is a success and there are exactly n
successes in the first i trials, we have

een.Z; a/ D
C1X

iDn

E


 C1X

kDiC1
akxk

ˇ
ˇ
ˇAi

�
Prob.Ai/ D

C1X

iDn


 C1X

kDiC1
ai

�
Prob.Ai/

D
C1X

kDnC1
ak


 k�1X

iDn

Prob.Ai/

�
D

C1X

kDnC1
akqn;k�1;

as claimed. ut
Using the above lemma we can easily show that it is possible to achieve

exponential decay of Rn.Z; a/ if ak rapidly goes to zero.

Example 3 Let a1 D 1 and akC1 D 2�kak, k � 1, so that

ak D 2� .k�1/k
2 :

Consider the nonlinear approximation for Z as in Lemma 1 with p D 1=2. Then

een.Z; a/ D pnanC1 C
C1X

kDnC2
ak � anC1

2n
C anC1

� 1
2n
C 1

2n2nC1 C � � �
	
� 3anC1

2n
:
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Since we always have en.Z; a/ � anC1, then

Rn.Z; a/ � 3

2n
:

This example has only theoretical interest. More important is the following result.

Theorem 2 If the sequence a D .a1; a2; : : :/ decays no faster than polynomially
then for any Z

Rn.Z; a/ � 1:

Hence adaptive schemes do not give a better convergence rate than nonadaptive
schemes.

Proof Choose an arbitrary t0 > 0 such that

p WD Prob.Z > t0/ > 0;

and consider the two-valued random variable Z0 which takes t0 with probability p
and 0 with probability 1� p. (Note that E.Z0/ D pt0 which need not be 1.) Since for
the corresponding cummulative distribution functions is FZ0.t/ � FZ.t/ for all t, we
have

een.Z; a/ � een.Z
0; a/:

For k � dn=pe, the probability qn;k that there are at least n successes in k trials can
be bounded from below by some c > 0 for all n sufficiently large, n � n0 (where
c 
 1=2 as n0 ! C1). Then, by Lemma 1 and polynomial decay of a1; a2; a3 : : : ;

een.Z
0; a/ � p t0 c

C1X

kDdn=pe
ak �

C1X

kDnC1
ak D en.Z; a/

as claimed. ut

4 Back to Gaussian Processes

We now relate the results of Sect. 3 to the average case approximation with respect
to Gaussian measures of Sect. 2. Using the notation of Sect. 3, this corresponds to
Z D jGj2 with G � N .0; 1/, as in Example 2, and

eeave
� .n/

eave
� .n/

D p
Rn.Z; a/;
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where a D .�1; �2; : : :/ are given by (1). We have the following corollary.

Corollary 2 Consider the average case linear and nonlinear approximations with
respect to Gaussian measures �.

• There exists c > 0 such that for any � and any n

eeave
� .n/

eave
� .n/

� c

n
:

• If the eigenvalues �1 � �2 � � � � associated with � decay no faster than
polynomially then

lim inf
n!C1

eeave
� .n/

eave
� .n/

> 0:

We stress that the polynomial decay of the eigenvalues �j is rather standard for
Gaussian measures, such as the Wiener sheet measures. In these cases, nonlinear
approximation does not give better convergence rate than linear approximation.

Remark 2 In this final remark, we compare the results of this paper with the
corresponding results in the worst case setting, where the error of approximation
is defined by the worst case error with respect to the unit ball of F (instead of the
average error with respect to �). We now assume that .F; k � kF/ is a Hilbert space
that is compactly embedded in .H; k � k/: The worst case error of an approximation
An is defined as

errwor.An/ WD sup
k f kF�1

k f � An. f /k:

In this setting, the best n-term linear approximation A�
n is as follows, see, e.g., [15].

Let W W H ! H be defined by the equation h � ; f i D h � ;Wf iF: Then W is a self-
adjoint, nonnegative definite and compact operator. Let ��

j , j � 1, be a complete and
orthonormal in H system of eigenelements of W, and

W��
j D �j�

�
j ; j � 1;

where �1 � �2 � � � � � 0; limj!C1 �j D 0: Then

A�
n . f / D

nX

jD1
h f ; ��

j i��
j

and errwor.A�
n / D

p
�nC1: It is not difficult to see that the error of the best n-term

nonlinear approximationeA�
n for the dictionary

D� D f��
1 ; �

�
2 ; �

�
3 ; : : :g
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equals

errwor.eA�
n / D


 nC1X

jD1
��1

j

��1=2
;

and is achieved when f DPC1
iD1 fi��

i with

fi D


�i

nC1X

jD1
��1

j

��1=2
for 1 � i � nC 1;

and fi D 0 for i � n C 1. Hence the ratio between the errors of the best n-term
nonlinear and linear approximations is

eewor.n/

ewor.n/
D

 nC1X

jD1

�nC1
�j

��1=2
:

We easily see that this ratio is minimal when �j D 1 for all 1 � j � n C 1, and
then it equals .nC 1/�1=2. We have the same order for polynomially decaying �j’s,
and only for very fast decaying �j’s the nonlinear approximation does not help.
Hence we have an opposite situation to that in the average case, where the faster the
eigenvalues decay the more the nonlinear approximation helps.
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Integral Equations, Quasi-Monte Carlo
Methods and Risk Modeling

Michael Preischl, Stefan Thonhauser, and Robert F. Tichy

Dedicated to Ian H. Sloan on the occasion of his 80th birthday.

Abstract We survey a QMC approach to integral equations and develop some new
applications to risk modeling. In particular, a rigorous error bound derived from
Koksma-Hlawka type inequalities is achieved for certain expectations related to the
probability of ruin in Markovian models. The method is based on a new concept of
isotropic discrepancy and its applications to numerical integration. The theoretical
results are complemented by numerical examples and computations.

1 Introduction

During the last two decades quasi-Monte-Carlo methods (QMC-methods) have
been applied to various problems in numerical analysis, statistical modeling and
mathematical finance. In this paper we will give a brief survey on some of these
developments and present new applications to more refined risk models involving
discontinuous processes. Let us start with Fredholm integral equations of the second
kind:

f .x/ D g.x/C
Z

Œ0;1�s
K.x; y/f .y/dy; (1)

where the kernel is given by K.x; y/ D k.x � y/ with k.x/ having period 1 in
each component of x D .x1; : : : ; xs/. As it is quite common in applications of
QMC-methods (see for example [13, 26, 37]) it is assumed that g and k belong
to a weighted Korobov space. Of course, there exists a vast literature concerning
the numerical solution of Fredholm equations, see for instance [7, 23] or [40]. In

M. Preischl (�) · S. Thonhauser · R. F. Tichy
Institute of Analysis and Number Theory, Graz University of Technology, Graz, Austria
e-mail: preischl@math.tugraz.at; stefan.thonhauser@math.tugraz.at; tichy@tugraz.at

© Springer International Publishing AG, part of Springer Nature 2018
J. Dick et al. (eds.), Contemporary Computational Mathematics – A Celebration
of the 80th Birthday of Ian Sloan, https://doi.org/10.1007/978-3-319-72456-0_47

1051

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-72456-0_47&domain=pdf
mailto:preischl@math.tugraz.at
mailto:stefan.thonhauser@math.tugraz.at
mailto:tichy@tugraz.at
https://doi.org/10.1007/978-3-319-72456-0_47


1052 M. Preischl et al.

particular, we want to mention the work of I. Sloan in the late 1980’s where he
explored various quadrature rules for solving integral equations and applications to
engineering problems ([35, 36] and [25]), which have also, after some modifications,
been applied to Volterra type integral equations (see [10] or [11]). In [13] the authors
approximate f using the Nyström method based on QMC rules.

For points t1; : : : ; tN in Œ0; 1�s the N-th approximation of f is given by

fN.x/ WD g.x/C 1

N

NX

nD1
K.x; tn/fN.tn/; (2)

where the function values fN.t1/; : : : ; fN.tN/ are obtained by solving the linear
system

fN.tj/ D g.tj/C 1

N

NX

nD1
K.tj; tn/fN.tn/; j D 1; : : : ;N: (3)

Under some mild conditions on K;N; and the integration points t1; : : : ; tN ; it is
shown in [13] that there exists a unique solution of (3). Furthermore, the authors
analyze the worst case error of this, so-called QMC-Nyström method. In addition,
good lattice point sets t1; : : : ; tN are presented. Its convergence rate is best possible.
A special focus of this important paper lies on the study of tractability and strong
tractability of the QMC-Nyström method. For tractability theory in general we refer
to the fundamental monograph of [31]. Using ideas of Hlawka [21] the third author
of the present paper worked on iterative methods for solving Fredholm and Volterra
equations, see also Hua-Wang [22].

The idea is to approximate the solution of integral equations by means of iterated
(i.e. multi-dimensional) integrals. The convergence of this procedure follows from
Banach’s fixed point theorem and error estimates can be established following the
proof of the Picard-Lindelöf approximation for ordinary differential equations. To
be more precise, let us consider integration points t1; : : : ; tN 2 Œ0; 1�s with star
discrepancy D�

N defined as usual by

D�
N D sup

J�Œ0;1�s

ˇ
ˇ
ˇ̌ 1
N
]fn � N W tn 2 Jg � �. J/

ˇ
ˇ
ˇ̌ ; (4)

where the supremum is taken over all axis-aligned boxes J with one vertex in
the origin and Lebesgue measure �. J/. In [39] the following system of r integral
equations has been considered for given functions gj on Œ0; 1�sCr and hj on Œ0; 1�s:

fj.x/ D
Z x1

0

: : :

Z xs

0

gj.�1; : : : ; �s; f1.�/; : : : ; fr.�//d�s : : : d�1

C hj.x/ ; j D 1; : : : ; r (5)
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where we have used the notations x D .x1; : : : ; xs/ 2 Œ0; 1�s and � D .�1; : : : ; �s/.
Furthermore, we assume that the partial derivatives up to order s of the functions
gj and hj, j D 1; : : : ; r, are bounded by some constants G and H, respectively.
Then, for a given point set t1; : : : ; tN in Œ0; 1�s with discrepancy D�

N , the solution
f D . f1; : : : ; fr/ of the system (5) can be approximated by the quantities f.k/ D
. f .k/1 ; : : : ; f .k/r /; given recursively by

f .kC1/
j .x/ D x1 � � � xs

N

NX

nD1
gj.x1t1;n; : : : ; xsts;n; f

.k/
1 .x � tn/; : : : ; f .k/r .x � tn//I (6)

here x � tn stands for the inner product x1t1;nC : : :C xsts;n, where tn D .t1;n; : : : ; ts;n/.
In [39] it is shown, that based on the classical Koksma-Hlawka inequality the worst
case error, i.e., k f.k/ � f k1 (sum of componentwise supremum norms) can be
estimated in terms of the bounds G and H and the discrepancy D�

N of the integration
points. This method was also extended to integral equations with singularities, such
as Abel’s integral equation. The main focus of the present paper lies on applications
in mathematical finance. In Albrecher and Kainhofer [3] the above method was
used for the numerical solution of certain Cramér-Lundberg models in risk theory.
However, it turned out that in these models certain discontinuities occur. This means,
that one cannot assume bounds for the involved partial derivatives and simply
apply the classical Koksma-Hlawka inequality. Moreover, the involved functions
are indicator functions of simplices, thus not of bounded variation in the sense of
Hardy and Krause, see Drmota and Tichy [14] and Kuipers and Niederreiter [24].

Albrecher and Kainhofer [3] considered a risk model with non-linear dividend
barrier and made some assumptions to overcome the difficulties caused by disconti-
nuities. For such applications it could help to use a different notion of variation for
multivariate functions. Götz [18] proved a version of the Koksma-Hlawka inequality
for general measures, Aistleitner and Dick [1] considered functions of bounded
variation with respect to signed measures and Brandolini et al. [8, 9] replaced the
integration domain Œ0; 1�s by an arbitrary bounded Borel subset of Rs and proved the
inequality for piecewise smooth integrands. Based on fundamental work of Harman
[20], a new concept of variation was developed for a wide class of functions, see
Pausinger and Svane [33] and Aistleitner et al. [2].

In the following we give a brief overview on concepts of multivariate variation
and how they can be applied for error estimates in numerical integration. Let f .x/ be
a function on Œ0; 1�s and a D .a1; : : : ; as/ � b D .b1; : : : ; bs/ points in Œ0; 1�s, where
� denotes the natural componentwise partial order. Following the notation of Owen
[32] and Aistleitner et al. [2] for a subset u � f1; : : : ; sg we denote by au W b�u the
point with ith coordinate equal to ai if i 2 u and equal to bi otherwise. Then for the
box R D Œa;b� we introduce the s-dimensional difference operator

�.d/. f IR/ D �. f IR/ D
X

u

.�1/jujf .au W b�u/;
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where the summation is extended over all subsets u 2 f1; : : : ; sg with cardinality
juj and complement �u. Next we define partitions of Œ0; 1�s as they are used in the
theory of multivariate Riemann integrals, which we call here ladder. A ladder Y
in Œ0; 1�s is the Cartesian product of one-dimensional partitions 0 D yj

1 < : : : <

yj
kj
< 1 (in any dimension j D 1; : : : ; s). Define the successor .yj

i/C of yj
i to be

yj
iC1 if i < kj and .yj

kj
/C D 1. For y D .y1i1 ; : : : ; y

s
is
/ 2 Y we define the successor

yC D ..y1i1 /C; : : : ; .ys
is
/C/ and have

�. f I Œ0; 1�s/ D
X

y2Y
�. f I Œy; yC�/:

Using the notation

VY . f I Œ0; 1�s/ D
X

y2Y
�. f I Œy; yC�/

the Vitali variation of f over Œ0; 1�s is defined by

V. f I Œ0; 1�s/ D sup
Y

VY . f I Œ0; 1�s/: (7)

Given a subset u � f1; : : : ; sg; let

�u. f I Œa;b�/ D
X

v�u

.�1/jvjf .av W b�v/

and set 0 D .0; : : : ; 0/; 1 D .1; : : : ; 1/ 2 Œ0; 1�s. For a ladder Y there is a
corresponding ladder Yu on the juj-dimensional face of Œ0; 1�s consisting of points
of the form xu W 1�u. Clearly,

�u. f I Œ0; 1�s/ D
X

y2Yu

�u. f I Œy; yC�/:

Using the notation

VYu. f I Œ0; 1�s/ D
X

y2Yu

�u. f I Œy; yC�/

for the variation over the ladder Yu of the restriction of f to the face of Œ0; 1�s

specified by u, the Hardy-Krause variation is defined as

V . f / D VHK. f I Œ0; 1�s/ D
X

;¤u�f1;:::;sg
sup
Yu

VYu. f I Œ0; 1�s/:
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Assuming that f is of bounded Hardy-Krause variation, the classical Koksma-
Hlawka inequality reads as follows:

ˇ
ˇ
ˇ
ˇ
ˇ
1

N

NX

nD1
f .xn/�

Z

Œ0;1�s
f .x/dx

ˇ
ˇ
ˇ
ˇ
ˇ
� V . f /D�

N ; (8)

where x1; : : : ; xN is a finite point set in Œ0; 1�s with star discrepancy D�
N . In the case

f W Œ0; 1�s ! R has continuous mixed partial derivatives up to order s the Vitali
variation (7) is given by

V . f I Œ0; 1�s/ D
Z

Œ0;1�s

ˇ
ˇ
ˇ
ˇ

@sf

@x1 � � � @xs
.x/

ˇ
ˇ
ˇ
ˇ dx: (9)

Summing over all non-empty subsets u � Œ0; 1�s immediately yields an explicit
formula for the Hardy-Krause variation in terms of integrals of partial derivatives,
see Leobacher and Pillichshammer [27, Ch.3, p. 59]. In particular, the Hardy-Krause
variation can be estimated from above by an absolute constant if we know global
bounds on all partial derivatives up to order s.

In the remaining part of the introduction we briefly sketch a more general concept
of multidimensional variation which was recently developed in [33]. Let D denote
an arbitrary family of measurable subsets of Œ0; 1�s which contains the empty set ;
and Œ0; 1�s. Let L .D/ denote the R-vectorspace generated by the system of indicator
functions 1A with A 2 D .

A set A � Œ0; 1�s is called an algebraic sum of sets in D if there exist A1; : : : ;Am 2
D such that

1A D
nX

iD1
1Ai �

mX

iDnC1
1Ai ;

and A is defined to be the collection of algebraic sums of sets in D . As in [33] we
define the Harman complexity h.A/ of a non-empty set A 2 A ;A ¤ Œ0; 1�s as the
minimal number m such there exist A1; : : : ;Am with

1A D
nX

iD1
1Ai �

mX

iDnC1
1Ai ;

for some 1 � n � m and Ai 2 D or Œ0; 1�s n Ai 2 D . Moreover, set h.Œ0; 1�s/ D
h.;/ D 0 and for f 2 L .D/

V�
D. f / D inf

(
mX

iD1
j˛ijhD.Ai/ W f D

mX

iD1
˛i1Ai ; ˛i 2 R; Ai 2 D

)

:
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Furthermore, let V1.D/ denote the collection of all measurable, real-valued
functions on Œ0; 1�s which can be uniformly approximated by functions in L .D/:
Then the D-variation of f 2 V1.D/ is defined by

VD . f / D inff lim inf
i!1 V�

D. fi/ W fi 2 L .D/; f D lim
i!1 fi g; (10)

and set VD. f / D1 if f … V1.D/: The space of functions of bounded D-variation
is denoted by V .D/. Important classes of sets D are the class K of convex sets and
the class R� of axis aligned boxes containing 0 as a vertex. In Aistleitner et al. [2] it
is shown that the Hardy-Krause variation V . f / coincides with VR�. f /. For various
applications the D-variation seems to be a more natural and suitable concept. A
convincing example concerning an application to computational geometry is due to
Pausinger and Edelsbrunner [15]. Pausinger and Svane [33] considered the variation
VK . f / with respect to the class of convex sets. They proved the following version
of the Koksma-Hlawka inequality:

ˇ̌
ˇ
ˇ
ˇ
1

N

NX

nD1
f .xn/�

Z

Œ0;1�s
f .x/dx

ˇ̌
ˇ
ˇ
ˇ
� VK . f / QDN ;

where QDN is the isotropic discrepancy of the point set x1; : : : ; xN , which is defined
as follows

QDN D sup
C2K

ˇ̌
ˇ
ˇ
1

N
]fn � N W xn 2 Cg � �.C/

ˇ̌
ˇ
ˇ :

Pausinger and Svane [33] have shown that twice continuously differentiable func-
tions f admit finite VK . f /, and in addition they gave a bound which will be useful
in our context.

Our paper is structured as follows. In Sect. 2 we introduce specific Markovian
models in risk theory where in a natural way integral equations occur. These
equations are based on arguments from renewal theory and only in particular cases
they can be solved analytically. In Sect. 3 we develop a QMC method for such
equations. We give an error estimate based on Koksma-Hlawka type inequalities
for such models. In Sect. 4 we compare our numerical results to exact solutions in
specific instances.

2 Discounted Penalties in the Renewal Risk Model

2.1 Stochastic Modeling of Risks

In the following we assume a stochastic basis .˝; F ; P/ which is large enough
to carry all the subsequently defined random variables. In risk theory the surplus
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process of an insurance portfolio is modeled by a stochastic process X D .Xt/t�0. In
the classical risk model, going back to Lundberg [29], X takes the form

Xt D xC c t �
NtX

iD1
Yi; (11)

where the deterministic quantities x � 0 and c � 0 represent the initial capital
and the premium rate. The stochastic ingredient St D PNt

iD1 Yi is the cumulated
claims process which is a compound Poisson process. The jump heights—or claim

amounts—are f Yigi2N for which Yi
iid� FY with FY.0/ D 0. The counting process

N D .Nt/t�0 is a homogeneous Poisson process with intensity � > 0. A crucial
assumption in the classical model is the independence between f Yigi2N and N. A
major topic in risk theory is the study of the ruin event. We introduce the time of
ruin 	 D infft � 0 jXt < 0g, i.e., the first point in time at which the surplus becomes
negative. In this setting 	 is a stopping time with respect to the filtration generated
by X, fF X

t gt�0 with F X
t D �fXs j 0 � s � tg. A first approach for quantifying the

risk of X, is the study of the associated ruin probability

 .x/ D Px.Xt < 0 for some t � 0/ D Px.	 <1/;

which is non-degenerate if Ex.X1/ > 0, and satisfies the integral equation

c

�
 .x/ D

Z 1

x
.1 � FY. y//dyC

Z x

0

 .x � y/.1 � FY. y//dy:

In Gerber and Shiu [16, 17] so-called discounted penalty functions are introduced.
This concept allows for an integral ruin evaluation and is based on a function w W
R

C � R
C ! R which links the deficit at ruin jX	 j and the surplus prior to ruin

X	� WD limt%	 Xt via the function

V.x/ D Ex
�
e�ı	w.jX	 j;X	�/ 1f	<1g

�
:

The time of ruin 	 is included by means of a discounting factor ı > 0 which gives
more weight to an early ruin event. In this setting specific choices of w allow for an
unified treatment of ruin related quantities. In the literature, this kind of expected,
discounted penalty function is often called a Gerber-Shiu function.

Remark 1 When putting a focus on the study of  .x/, the condition Ex.X1/ > 0 is
crucial. It says that on average premiums exceed claim payments in one unit of time.
Standard results, see Asmussen and Albrecher [6], show that under this condition
limt!1 Xt D C1 P-a.s. From an economic perspective the accumulation of an
infinite surplus is unrealistic and risk models including shareholder participation
via dividends are introduced in the literature. We refer to [6] for model extensions
in this direction.
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2.2 Markovian Risk Model

In the following we consider an insurance surplus process X D .Xt/t�0 of the form

Xt D xC
Z t

0

c.Xs�/ds�
NtX

iD1
Yi:

The quantity x � 0 is called the initial capital, the cumulated claims are represented
by St DPNt

iD1 Yi and the state-dependent premium rate is c.�/. The cumulated claims
process S D .St/t�0 is given by a sequence f Yigi2N of positive, independently and
identically distributed (iid) random variables and a counting process N D .Nt/t�0.
For convenience we assume that the claims distribution admits a continuous density
fY W RC ! R

C. In our setup we model the claim counting process N D .Nt/t�0
as a renewal counting process which is specified by the inter-jump times fWigi2N
which are positive and iid random variables. Then, the time of the i-th jump is Ti D
W1 C : : :CWi and if we assume that W1 admits a density fW , the jump intensity of
the process X is �.t0/ D fW .t0/

1�R t0
0 fW .s/ds

. Here t0 denotes the time since the last jump.

A common assumption we are going to adopt, is the independence between f Yigi2N
and fWigi2N.

We choose, in contrast to classical models, a non-constant premium rate to model
the effect of a so-called dividend barrier a > 0 in a smooth way. A barrier at level
a > 0 has the purpose that every excess of surplus of this level is distributed
as a dividend to shareholders which allows to include economic considerations
in insurance modeling. Mathematically, this means that the process X is reflected
at level a. Now instead of directly reflecting the process we use the following
construction. Fix " > 0 and for some Qc > 0, define

c.x/ D
8
<

:

Qc; x 2 Œ0; a � "/;
f .x/; x 2 Œa � "; a�;
0; x > a;

(12)

with some positive and twice continuously differentiable function f which fulfills
f .a � "/ D Qc; f .a/ D 0; f 0.a � "/ D f 0.a/ D f 00.a � "/ D f 00.a/ D 0. Altogether,
we assume c.�/ 2 C 2Œ0; a� with some Lipschitz constant L > 0 and c0.a � "/ D
c0.a/ D 0, c00.a � "/ D c00.a/ D 0, c0 � 0 and bounded derivatives c0, c00. Then
limx%a c.x/ D 0 and the process always stays below level a if started in Œ0; a/.

A concrete choice for f would be

c.a � x/3
�
15".x� a/C 6.a� x/2 C 10"2�

"5
: (13)

In the following we do not specify f any further.



QMC Methods in Risk Modeling 1059

In this setting we add X0 D x into the definition of the time of ruin, i.e., 	x D
infft � 0 jXt < 0; X0 D xg.
Remark 2 In this model setting ruin can only take place at some jump time Tk and
since the process is bounded a.s. we have that Px.	x <1/ D 1. If an approximation
to classical reflection of the process at level a is implemented, then the process
virtually started above a is forced to jump down to a � " and continue from this
starting value. Consequently, we put the focus on starting values x 2 Œ0; a/.
In the remainder of this section we will study analytic properties of the discounted
value function which in this framework takes the form

V.x/ D Ex
�
e�ı	x w.jX	x j;X	x�/

�
; (14)

with ı > 0 and a continuous penalty function w W RC � Œ0; a/! R.
To have a well defined function, typically the following integrability condition is

used
Z 1

0

Z 1

0

jw.x; y/jfY.xC y/dy dx <1;

see [6]. Since our process is kept below level a and w is supposed to be continuous
in both arguments we can naturally replace the above condition by

sup
z2Œ0;a/

Z 1

0

jw.jz� yj; z/jfY. y/dy DW M <1; (15)

which we will assume in the following. The condition from Eq. (15) holds true for
example, if jw.x; y/j � .1CjxjC jyj/p and FY admits a finite p-th moment for some
p � 1. The condition (15) is motivated by the observation that X	x� 2 Œ0; a/ and

jX	x j D jX	x� � YN	x j where YN	x
d� fY . Consequently, we get

V.x/ � Ex .jw.jX	x j;X	x�/j/ � sup
z2Œ0;a/

Z 1

0

jw.jz� yj; z/j fY. y/dy:

Remark 3 From the construction of X we have that QX D . QXt/t�0 with QXt D
.Xt; t0.t/; t/ is a piecewise-deterministic Markov process, see Davis [12]. Since the
jump intensity depends on t0 D t � TNt , one needs this additional component for
the Markovization of X. But on the discrete time skeleton fTigi2N with T0 D 0 the
process X D fXTkgk2N has the Markov property.

Remark 4 In risk theory surplus models including a reflection at some level a > 0

with dynamics of the form

dXt D c 1fXt<agdt � dSt; X0 D x � 0;
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arise when studying dividend strategies which pay out every excess over the level a
immediately to shareholders. This is motivated by the following observation: when
studying ruin probabilities it is crucial having Ex.X1 � x/ > 0, which results in
P.Xt < 0 for some t > 0 or limt!1 Xt D 1/ D 1. This says that on the
favourable set f! 2 ˝ j 	x.!/ D 1g the surplus becomes arbitrarily large. As
a reaction to this unrealistic behaviour, a shareholder participation via dividend
payments is introduced. An overview on the dividend problem in risk theory and
related results can for instance be found in [4]. In the present setting, we introduce
a smoothed reflection to make relevant computations accessible to an application
of QMC methods, a feature which does not show up in the corresponding literature.
Results on a classical QMC treatment in the situation of a non-linear dividend barrier
can be found in [3].

2.3 Analytic Properties and a Fixed Point Problem

We start with showing some elementary analytical properties of the function V
defined in (14).

Theorem 1 The function V W Œ0; a/! R is bounded and continuous.

Proof The boundedness of V follows directly from the assumption made in (15).
For proving continuity we split off the expectation defining V into two parts

which we separately deal with. Let x > y and observe

jV.x/ � V. y/ j D
ˇ
ˇ
ˇE
h
e�ı	x w.jXx

	x
j;Xx

	x�/� e�ı	y w.jXy
	y
j;Xy

	y�/
iˇˇ
ˇ

�E �e�ı	x
ˇ
ˇw.jXx

	x
j;Xx

	x�/� w.jXy
	x
j;Xy

	x�/
ˇ
ˇ 1f	xD	yg

�

C E

hˇˇ
ˇe�ı	x w.jXx

	x
j;Xx

	x�/ � e�ı	y w.jXy
	y
j;Xy

	y�/
ˇ
ˇ
ˇ 1f	x>	yg

i

DAC B:

For A we fix some T > 0 and notice the following bound

A �E �e�ı	x jw.jXx
	x
j;Xx

	x�/� w.jXy
	x
j;Xy

	x�/j1f	xD	y�Tg
�

C 2M P.	x > T/ � 2M: (16)

Before going on we need some estimates on the difference of two paths, one starting
in x and the other in y. For fixed ! 2 ˝ we have that on .0;T1.!/ the surplus fulfills
@Xt.!/

@t D c.Xt.!// with initial condition X0 D 0, T1.!/ is finite with probability
one. Standard arguments on ordinary differential equations, see for instance Stoer
and Bulirsch [38, Th. 7.1.1–7.1.8], yield that an appropriate solution exists and is
continuously differentiable in t and continuous in the initial value x. We even get the
bound jXx

t � Xy
t j � eL t jx� yj for fixed !, where Xx

t denotes the path which starts in
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x and L > 0 the Lipschitz constant of c.�/. From these results we directly obtain for
a given path

jXx
T1� � Xy

T1�j � eLT1 jx � yj;

which by iteration results in

jXx
Tn� � Xy

Tn�j D jXx
Tn
� Xy

Tn
j � eLTn jx � yj;

because jXx
Tn
�Xy

Tn
j D jXx

Tn� � Yn � .Xy
Tn� � Yn/j D jXx

Tn� �Xy
Tn�j. Since ruin takes

place at some claim occurrence time Tk we get that on f! 2 ˝ j 	x D 	y � Tg the
quantities jXx

	x
j and Xx

	x� converge to the corresponding quantities started in y, all
possible differences are bounded by eLT jx� yj. Therefore, sending y to x in (16) and
then sending T to infinity, we get that A converges to zero because P.	x < 1/ D
1 and bounded convergence. We can repeat the argument for x ! y when using
P.	y > T/ in (16).

Now consider part B. We first observe that B � 2MP.	x > 	y/. Consequently, we
need to show that P.	x > 	y/ tends to zero if y ! x or x ! y. Again, fix ! 2 ˝
for which 	x.!/ > 	y.!/, this implies that there is a claim amount Yn, occurring at
some point in time Tn, for which

Xx
Tn�.!/ � Yn.!/ > Xy

Tn�.!/;

i.e., causing ruin for the path started in y, .Xy
t /, but not causing ruin for the one

started in x, .Xx
t /. From the construction of the drift c.�/, it is decreasing to zero, we

have that, suppressing the ! dependence,

0 < Yn � Xy
Tn� � Xx

Tn� � Xy
Tn� � x � y:

Since Xy
Tn� 2 Œ0; a/ we have

P.	x > 	y/ � sup
q2Œ0;a/

P.0 < Y � q � x � y/ D sup
q2Œ0;a/

fFY.x � yC q/� FY.q/g;

which approaches zero whenever x and y tend to each other since FY is continuous.
ut

Define for functions f 2 Cb.Œ0; a// the operator A by

A f .x/ WD Ex
�
e�ıT1 f .XT1 /1fT1<	xg C e�ı	x w.jXT1 j;XT1�/1f	xDT1g

�
: (17)

The Markov property of the sequence fXTigi2N and the definition of V in (14) allow
us to derive that V D A V , or explicitly written

V.x/ D Ex
�
e�ıT1V.XT1 /1fT1<	xg C e�ıT1w.jXT1 j;XT1�/1f	xDT1g

�
:
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We can state the following lemma.

Lemma 1 If ı > 0, the operator A W Cb.Œ0; a// ! Cb.Œ0; a// defined in (17) is a
contraction with respect to jj � jj1.

Proof Let f 2 Cb.Œ0; a// be bounded by some constant M0, then

A f .x/ D Ex
�
e�ıT1 f .XT1 /1fT1<	xg C e�ı	x w.jXT1 j;XT1�/1f	xDT1g

�
;

is bounded by maxfM;M0g. From the integral representation of A f .x/ we get
continuity in x,

A f .x/ D
Z 1

0

e�ıt1 fW.t1/
"Z Xt1�

0

f .Xt1� � y1/dFY. y1/C

Z 1

Xt1�

w.jXt1� � y1j;Xt1�/dFY. y1/

#

dt1;

where Xt1� is the ODE’s solution up to time t1 with X0 D x. From Stoer and Bulirsch
[38, Th. 7.1.4] we have that Xt1� is continuous in its initial value which shows that
A f .x/ is continuous in x.

Let f ; g 2 Cb.Œ0; a//, then we have for all x 2 Œ0; a/ that

jA . f � g/.x/j �
Z 1

0

e�ıt1 fW.t1/
Z Xt1

0

jf .Xt1 � y1/� g.Xt1 � y1/jdFY. y1/dt1

� jjf � gjj1
Z 1

0

e�ıt1 fW.t1/dt1 D jjf � gjj1EŒe�ıT1 �:

Since ı > 0 and T1 > 0 P-a.s., A is contractive with Lipschitz constant QL D
EŒe�ıT1 � < 1. ut
For a possible application of quasi-Monte Carlo techniques we need to examine the
structure of A ,

A v.x/ D
Z 1

0

e�ıt1 fW.t1/
Z Xt1�

0

v.Xt1� � y1/dFY. y1/dt1C
Z 1

0

e�ıt1 fW.t1/
Z 1

Xt1�

w. y1 � Xt1�;Xt1�/dFY. y1/dt1

DW G v.x/CH .x/:

For n 2 N the probabilistic interpretation of iterated applications of A is A nv.x/ D
Ex
�
e�ıTnv.XTn/1fTn<	xg C e�ı	x w.jX	x j;X	x�/1f	x�Tng

�
. Using G and H we can
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write

A nv.x/ D G nv.x/C
n�1X

kD0
G kH .x/;

where G nv.x/ D Ex.e�ıTnv.XTn/1fTn<	g/ and

G k�1H .x/ D
Z 1

0

� � �
Z 1

0

Z 1

X
Ntk�

Z X
Ntk�1�

0

� � �
Z X

Nt1�

0

 
kY

iD1
e�ıti fW.ti/

!

w. yk � XNtk�;XNtk�/dFY. yk/ � � � dFY. y1/dtk � � � dt1:

Here, Nt WD Pk
iD1 ti and represents the time of the k-th jump. We see that via

XNtk D XNtk�1
� yk�1C

R Ntk
Ntk�1

c.Xs/ds the path of the process depends on all integration
variables .t1; : : : ; tk; y1; : : : ; yk/.

For dealing with the situation ı D 0, i.e., when the contraction argument fails,
we can use a probabilistic argument. Since limn!1 Tn D 1 and P.	x < 1/ D
1 we have that limn!1 G nv.x/ D limn!1 Ex

�
e�ıTnv.XTn/1fTn<	g

� D 0 for v 2
Cb.Œ0; a//. Using jA nv.x/�V.x/j D jG nv.x/�G nV.x/ jwe get limn!1 A nv.x/ D
V.x/ pointwise, even in the case if ı D 0.

In what follows we put the focus on the determination of G kH .x/.

3 Approximation Procedure

For the application of QMC methods we need to transform in a first step the
integration domain in

G k�1H .x/ D
Z 1

0

� � �
Z 1

0

Z 1

X
Ntk�

Z X
Ntk�1�

0

� � �
Z X

Nt1�

0

 
kY

iD1
e�ıti fW.ti/

!

w. yk � XNtk�;XNtk�/dFY. yk/ � � � dFY. y1/dtk � � � dt1

to Œ0; 1�2k. This is achieved by use of the following substitutions

˛i WD e�ti ) ti D � log˛i for i 2 f1; : : : ; kg
ˇi WD yi

XNti�
) yi D XNti�ˇi for i 2 f1; : : : ; k � 1g

ˇk WD eX
Ntk� e�yk ) yk D XNtk� � logˇk:
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Here it has to be taken into account that the values of the reserve process X have to
be calculated recursively, i.e., XNti� depends on t1; : : : ; ti and y1; : : : ; yi�1. Since the
Jacobian matrix of this transformation has a lower triangular form, the determinant
can easily be found as 1

˛1:::˛k
XNt1� � � �XNtk�1� 1

ˇk
. Altogether, we arrive at

G k�1H .x/ D
Z

Œ0;1�2k

kY

iD1
˛ıi fW.ti.˛i//

kY

iD1
fY. yi.˛1; : : : ; ˛i; ˇ1; : : : ; ˇi//

1

˛1 : : : ˛k
XNt1� � � �XNtk�1�

1

ˇk
w.� logˇk;XNtk�/ d˛1 : : : d˛kdˇ1 : : : dˇk:

Consequently, for recovering the Koksma-Hlawka type error bound we need to
examine the variation of the integrand:

F.˛1; : : : ; ˛k; ˇ1; : : : ; ˇk/ D
 

k�1Y

iD1
˛ı�1i fW.� log.˛i//

! 
k�1Y

iD1
fY.ˇiXNti�/XNti�

!

�


˛ı�1k fW.� log.˛k//fY.XNtk� � log.ˇk//

1

ˇk
w.� logˇk;XNtk�/

�
: (18)

Here we denote by .t; s/ the solution to @
@t x.t/ D c.x.t// with x.0/ D s.

Consequently, we can write

XNti� D XNti�1� � yi�1 C .ti;XNti�1� � yi�1/:

Or in terms of ˛i, putting Oxi�1 D XNti�1� � yi�1 D XNti�1�.1 � ˇi�1/ and

XNti� D Oxi�1 C .� log.˛i/; Oxi�1/: (19)

In the following proposition we show that with a particular choice of model
parameters it is possible to apply results from [33] to show that the integrand in
(18) is in some sense of finite variation. Its proof shows that probabilistic and
deterministic model ingredients are considerably interconnected.

Theorem 2 Let fW.t/ D �e��t1ft�0g .� > 0/, fY.y/ D �e��y1f y�0g .� > 0/,
w � 1 and c.�/ be specified by (13). Then, under the assumption � C ı � 3 and
� � 3 the variation VK .F/ (see (10) with D DK ) of F, defined in (18), is finite.

Proof The main idea of the proof is the application of [33, Th. 3.12]. For this
purpose we need to show that M.F/ D supfkHess.F; x/k j x 2 Œ0; 1�2kg, sup F and
inf F are finite, with the implication

VK .F/ � sup F � inf F CM.F/:
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Since in this theorem the operator (matrix) norm kHess.F; x/k is arbitrary we use
the 2-norm and exploit the relation

kHess.F; x/k2 �
0

@
2kX

iD1

2kX

jD1
ŒHess.F; x/�2ij

1

A

1
2

:

We will show that ŒHess.F; x/�ij is finite for all x 2 Œ0; 1�2k. At first we observe that
when taking derivatives with respect to ˛i and ˇj, the structure of (19) implies the
appearance of the following terms:

@

@t
.t; s/ D c..t; s//;

@2

@t2
.t; s/ D c0..t; s//c..t; s//;

@

@s
.t; s/ DW y.t; s/ D e

R t
0 c0..u;s//du;

@2

@t@s
.t; s/ D c0..t; s//y.t; s/;

@2

@s2
.t; s/ DW z.t; s/ D y.t; s/

Z t

0

c00..u; s//y.u; s/du:

The functions y; z correspond to the first and second derivative of the ODE’s
solution with respect to the initial value. They can be derived from the associated
first and second order variational equations (see [19]). From our assumptions on c.�/
we have that y is bounded by one (c0 � 0) and all other derivatives including z are
bounded as well. The boundedness of z can be derived from the boundedness of
c00.�/ and an analysis of the growth behaviour of y.

For the structure of ŒHess.F; x/�ij we can derive the following

 
kY

lD1
˛
ıC��aij

l ˇ
��bij

k e��. y1C���Cyk�1CX
Ntk�

/

!

�

Qij



ˇ1; : : : ; ˇk�1; ;

@

@t
;
@2

@t2
;
@

@s
;

@2

@t@s
;
@2

@s2


�
;

for aij; bij 2 f1; 2; 3g and a function Qij. Qij is evaluated at the integration points
and  and its derivatives which themselves are evaluated in points of the form
.� log.˛l/; Oxl�1/ 2 .0;1/ � Œ0; a/ for l 2 f1; : : : ; kg. If  and its derivatives are
considered to be variables, neglecting their dependence on the ˛ls and ˇls, then
Qij is a polynomial of degree k. The degree of the polynomial is produced by the
recursive structure of the paths and its dependence on all previous jump times and
sizes. From this inspection we get that under the conditions �C ı � 3 and � � 3
all entries of the Hessian matrix are bounded. Furthermore, the conditions on the
parameters �; ı; � ensure that sup F is finite and inf F D 0. ut
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Remark 5 We can combine the above result with the convergence rate from
Banach’s fixed point theorem and obtain for our specific situation

�
�
��
�

nX

kD0
OG kH � V

�
�
��
�

1
�
�
�
��
�

nX

kD0
. OG kH � G kH /

�
�
��
�

1
C kA n � Vk1 C kG nvk1

�
nX

kD0
VK .Fk/ QDNk C

QLn

1 � QLkA v � vk1 CM0



�

ı C �
�n

:

Here Fk denotes the integrand from (18) in dimension 2k, QDNk the isotropic
discrepancy of a pointset with Nk elements in Œ0; 1�2k and OG kH is the QMC
approximation for G kH . For the last term we used that v is bounded by some
M0 > 0 and the fact the Tn follows a Gamma distribution � .n; �/.

From the type of arguments we used for the proof of Theorem 2, we expect
that the result holds true for � -distributed inter-claim times and jump heights and
w.y; z/ D ykzl with similar conditions on the parameters. Hence the method is also
applicable for this more general situation. A detailed study of this claim is part of
future research.

4 Numerical Results

In this section, we evaluate the integrals from Sect. 3 by applying Monte Carlo and
quasi-Monte Carlo methods for different choices of the penalty function w.

Note that in the general case, determining the Gerber-Shiu function analytically
is a profoundly hard problem, since only certain parameter constellations allow for
explicit results. For constant parameter settings, in particular constant drift c, inter-
claim times and jumps following phase-type distributions and special choices of
w, the problem can be handled by matrix-analytic methods. For an overview on
these techniques see [6], or for exemplary results one may consult [5] and [28]. A
main focus in the risk theoretic literature lies on asymptotical approximations as the
initial value x becomes large, these results are referred to as Cramér-Lundberg type
approximations, see [6] and [34]. In contrast to these probabilistic approximations,
the literature on the numerical treatment of some examples of Gerber-Shiu functions
is scarce. For a survey on the use of collocation methods we refer to [30].

4.1 The Discounted Time of Ruin

Letting w.y; z/ WD 1, we arrive at V.x/ D Ex.e�ı	x w.jX	x j;X	x�// D Ex.e�ı	x/

which is the discounted time of ruin. Lin et al. [28] found an analytic expression for
this discounted time of ruin if both the inter-arrival times of the claims and the claim



QMC Methods in Risk Modeling 1067

sizes are exponentially distributed. To have a reference value, we also adopt these
assumptions and denote the parameters of the exponential distributions with � for
the parameter of the inter-arrival times and � for the parameter of the claim sizes.
The premium rate c.�/ was chosen as in Sect. 2.2 with f from Eq. (13), with Qc D 2,
a D 3 and " was set to 0:001. Note that the results of Lin et al. [28] were proved
for a reflected process in the classical sense, which means c.x/ D Qc for x � a and
c.x/ D 0 for x > a. Since Theorem 2 requires a premium rate satisfying certain
smoothness conditions, we cannot use a discontinuous c and thus have a methodic
error in our simulations. However, we will see that this error is, at least for small ",
very small.

We list the parameters together with the approximation values for increasing
numbers of (Q)MC points and k D 20 iterations of the algorithm in Fig. 1c, whereas
Fig. 1d shows the approximation values for k D 100 iterations of the algorithm.
Figure 1a, b shows the MC points (green) with 95% confidence intervals, together
with QMC points from Sobol sequences (blue) and Halton sequences (orange).

The red line at height 0:7577marks the analytically found value for the reflected
process. We use it as a reference value here but, again, remark that it is not the exact
value for our smoothed process. As can be seen in Fig. 1a, the algorithm has not yet
converged for k D 20, whereas Fig. 1b shows that k D 100 already yields a very
good approximation. The computation time of the above example, for k D 100, was
under 4min for both choices of QMC sequences, whereas the MC method has a
runtime of more than 30 min. The exact computation times are given in Fig. 2.

To illustrate the speed of convergence, we also plotted the absolute error, both
for the MC approach as well as for QMC points (again taken from Sobol and
Halton sequences) for varying numbers of points N. Figures 3 and 4 show the values
obtained for k D 40 iterations of the algorithm. Obviously, k D 40 is also not yet
enough to reach the actual value. But notice that the absolute error even for more
iterations cannot converge to zero because of the smoothed reflection procedure.
For both of the QMC methods, a scramble improved the results. In the Sobol case
however, an “unlucky” choice in the scramble and the skip value (i.e. how many
elements are dropped in the beginning) can lead to relatively high variation in the
output, whereas the Halton set shows a more stable performance (compare Figs. 3
and 4).

For Fig. 5 we evaluated k D 40 iterations of the algorithm with N D 30; 000

(Q)MC points for different starting values x, ranging from 0:7 to 2. As expected, the
discounted time of ruin decreases for increasing x.

4.2 The Deficit at Ruin

If we set w.y; z/ WD y, and ı D 0, we have V.x/ D Ex.jX	x j/, the expected deficit
at ruin. We use the same premium rate c.�/ as before and again choose exponential
distributions for the inter-arrival times and claim sizes with parameters � and �
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Fig. 2 Times to obtain the plots in Fig. 1a and b in seconds
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Fig. 3 “Lucky” choice of QMC points
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Fig. 4 “Unlucky” choice of QMC points
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Fig. 5 Influence of the starting value

respectively, since also in this case the true value Ex.jX	x j/ D 1
�

(for a classically
reflected process) can be found in [28]. Figure 6a, b shows the results for k D 20

and k D 100 iterations respectively. The reference value is again shown as a red
line, in our case at 1:25. The MC points are drawn in green, the Sobol points blue
and the Halton points in orange. Figure 6c, d contains the precise values along with
the corresponding parameters.

Note again the difference between Fig. 6a and b, resulting from a different
number of iterations k. The computation times for these plots deviate very little
from those given in Fig. 2.

Remark 6 We considered in our numerical examples two test cases for which
explicit (approximate) reference values are available. Certainly our approach is not
restricted to this particular choice of model ingredients—which are fY , fW and the
penalty function w.

Again, we plotted the absolute error for k D 40 iterations of the algorithm and
a varying number of (Q)MC points N. Figure 7 shows the results using the same
colorings as before.

While there are several approximation techniques for discounted penalty func-
tions, it is precisely this flexibility that makes the (Q)MC approach favourable in
many situations.
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Fig. 7 The absolute error for the deficit at ruin

Acknowledgements The authors are supported by the Austrian Science Fund (FWF) Project
F5510 (part of the Special Research Program (SFB) “Quasi-Monte Carlo Methods: Theory and
Applications”).

References

1. Aistleitner, C., Dick, J.: Functions of bounded variation, signed measures, and a general
Koksma-Hlawka inequality. Acta Arith. 167(2), 143–171 (2015)

2. Aistleitner, C., Pausinger, F., Svane, A.M., Tichy, R.F.: On functions of bounded variation.
Math. Proc. Camb. Philos. Soc. 162(3), 405–418 (2017)

3. Albrecher, H., Kainhofer, R.: Risk theory with a nonlinear dividend barrier. Computing 68(4),
289–311 (2002)

4. Albrecher, H., Thonhauser, S.: Optimality results for dividend problems in insurance. Rev. R.
Acad. Cienc. Exactas Fís. Nat. Ser. A Math. 103(2), 295–320 (2009)

5. Albrecher, H., Constantinescu, C., Pirsic, G., Regensburger, G., Rosenkranz, M.: An algebraic
operator approach to the analysis of Gerber–Shiu functions. Insur. Math. Econ. 46(1), 42–51
(2010)

6. Asmussen, S., Albrecher, H.: Ruin Probabilities, 2nd edn. World Scientific, River Edge (2010)
7. Atkinson, K.E.: The numerical solution of Fredholm integral equations of the second kind.

SIAM J. Numer. Anal. 4(3), 337–348 (1967)
8. Brandolini, L., Colzani, L., Gigante, G., Travaglini, G.: A Koksma–Hlawka inequality for

simplices. In: Trends in Harmonic Analysis, pp. 33–46. Springer, New York (2013)
9. Brandolini, L., Colzani, L., Gigante, G., Travaglini, G.: On the Koksma–Hlawka inequality. J.

Complex. 29(2), 158 – 172 (2013)
10. Brunner, H.: Iterated collocation methods and their discretizations for Volterra integral

equations. SIAM J. Numer. Anal. 21(6), 1132–1145 (1984)



QMC Methods in Risk Modeling 1073

11. Brunner, H.: Implicitly linear collocation methods for nonlinear Volterra equations. Appl.
Numer. Math. 9(3), 235–247 (1992)

12. Davis, M.H.A.: Markov Models and Optimization. Chapman and Hall, London (1993)
13. Dick, J., Kritzer, P., Kuo, F.Y., Sloan, I.H.: Lattice-Nyström method for Fredholm integral

equations of the second kind with convolution type kernels. J. Complex. 23(4), 752–772 (2007)
14. Drmota, M., Tichy, R.F.: Sequences, Discrepancies and Applications. Lecture Notes in

Mathematics, vol. 1651. Springer, Berlin (1997)
15. Edelsbrunner, H., Pausinger, F.: Approximation and convergence of the intrinsic volume. Adv.

Math. 287, 674–703 (2016)
16. Gerber, H.U., Shiu, E.S.W.: On the time value of ruin. N. Am. Actuar. J. 2(1), 48–78 (1998)
17. Gerber, H.U., Shiu, E.S.W.: The time value of ruin in a Sparre Andersen model. N. Am. Actuar.

J. 9(2), 49–84 (2005)
18. Götz, M.: Discrepancy and the error in integration. Monatsh. Math. 136(2), 99–121 (2002)
19. Grigorian, A.: Ordinary Differential Equation. Lecture Notes (2009). Available at https://www.

math.uni-bielefeld.de/~grigor/odelec2009.pdf
20. Harman, G.: Variations on the Koksma-Hlawka inequality. Unif. Distrib. Theory 5(1), 65–78

(2010)
21. Hlawka, E.: Funktionen von beschränkter Variation in der Theorie der Gleichverteilung. Ann.

Mat. Pura Appl. 54(1), 325–333 (1961)
22. Hua, L.K., Wang, Y.: Applications of Number theory to Numerical Analysis. Springer, Berlin;

Kexue Chubanshe (Science Press), Beijing (1981). Translated from the Chinese
23. Ikebe, Y.: The Galerkin method for the numerical solution of Fredholm integral equations of

the second kind. SIAM Rev. 14(3), 465–491 (1972)
24. Kuipers, L., Niederreiter, H.: Uniform Distribution of Sequences. Pure and Applied Mathemat-

ics. Wiley, New York (1974)
25. Kumar, S., Sloan, I.H.: A new collocation-type method for Hammerstein integral equations.

Math. Comput. 48(178), 585–593 (1987)
26. Kuo, F.Y.: Component-by-component constructions achieve the optimal rate of convergence for

multivariate integration in weighted Korobov and Sobolev spaces. J. Complex. 19(3), 301–320
(2003)

27. Leobacher, G., Pillichshammer, F.: Introduction to Quasi-Monte Carlo Integration and Appli-
cations. Compact Textbook in Mathematics. Birkhäuser/Springer, Cham (2014)

28. Lin, X.S., Willmot, G.E., Drekic, S.: The classical risk model with a constant dividend barrier:
analysis of the Gerber–Shiu discounted penalty function. Insur. Math. Econ. 33(3), 551–566
(2003)

29. Lundberg, F.: Approximerad framställning av sannolikhetsfunktionen. Aterförsäkring av
kollektivrisker. Akad. Afhandling. Almqvist o. Wiksell, Uppsala (1903)

30. Makroglou, A.: Numerical solution of some second order integro-differential equations arising
in ruin theory. In: Proceedings of the third Conference in Actuarial Science and Finance, pp.
2–5 (2004)
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A Note on the Multidimensional Moment
Problem

Liqun Qi

Dedicated to Ian H. Sloan on the occasion of his 80th birthday.

Abstract In this note, we show that if a multidimensional sequence generates
Hankel tensors and all the Hankel matrices, generated by this sequence, are positive
semi-definite, then this sequence is a multidimensional moment sequence.

1 Introduction

The multidimensional moment problem is an important topic in mathematics [1, 2,
6–9, 12, 14]. In this note, we show that if a multidimensional sequence generates
Hankel tensors and all the Hankel matrices, generated by this sequence, are positive
semi-definite, then this sequence is a multidimensional moment sequence. We do
this in Sect. 2. Some further questions are raised in Sect. 3.

We use small letters for scalars, bold letters for vectors, capital letters for
matrices, and calligraphic letters for tensors.

2 The Multidimensional Moment Problem

Denote N for the set of all positive integers, and NC as the set of all nonnegative
integers. According to [2, 12], a multidimensional sequence

S D fbj1:::jn�1 W j1; : : : ; jn�1 2 NCg (1)
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is called a multidimensional moment sequence if there is a nonnegative measure
� on <n�1 satisfying:

bj1:::jn�1 D
Z

<n�1

tj1
1 : : : t

jn�1

n�1d�; for j1; : : : ; jn�1 2 NC; (2)

are all finite. For a given multidimensional sequence S defined by (1), is it a
multidimensional moment sequence? i.e., Is there a nonnegative measure � such
that (2) holds? This problem is called the multidimensional moment problem
[1, 2, 12].

For any m 2 N, we may define a homogeneous polynomial of n variables and
degree m:

f .x/ D
X
fbj1:::jn�1

mŠ

j1Š : : : jn�1Š.m � j1 � : : : � jn�1/Š
xj1
1 : : : x

jn�1

n�1xm�j1�:::�jn�1

0

W j1; : : : ; jn�1 � 0; j1 C : : :C jn�1 � mg: (3)

According to [12], S is a multidimensional moment sequence if and only if for all
m, f .x/ a sum of mth power (SOM) form.

A homogeneous polynomial f .x/ of n variables and degree m is corresponding to
an mth order n-dimensional symmetric tensor A D .ai1:::im/, where

ai1:::im D bj1:::jn�1 ; (4)

for jn�1 � 0; j1 C : : :C jn�1 � m, if in f i1; � � � ; img, the frequency of k is exactly jk,
k D 1; � � � ; n�1. Then f .x/ is an SOM form if and only if there are vectors uk 2 <n

for k D 1 : : : ; r such that

A D
rX

kD1
um

k ; (5)

where for a vector v 2 <n, vm D .vi1 : : : vim/ denotes a symmetric rank-one tensor.
Such a symmetric tensor is called a completely decomposable tensor in [11, 15].

Thus, a given multidimensional sequence S defined by (1), is a multidimensional
moment sequence if and only if all the symmetric tensors A generated by it are
completely decomposable tensors for all m. Note that when m is odd, a symmetric
tensor is always completely decomposable [11].

Suppose now that for j1; : : : jn�1; l1; : : : ; ln�1 2 NC, we have

bj1:::jn�1 D bl1:::ln�1 (6)

if

j1 C 2j2 C : : :C .n � 1/jn�1 D l1 C 2l2 C : : :C .n � 1/ln�1: (7)
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By (4), for i1; : : : in; k1; : : : ; kn 2 NC, we have

ai1:::im D ak1:::km (8)

as long as i1 C : : : C im D k1 C : : : C km. By [3–5, 10, 11, 15], such a tensor is
called a Hankel tensor. Thus, we call a multidimensional sequence S satisfying (8)
a Hankel multidimensional sequence.

For an mth order n-dimensional Hankel tensor A D .ai1:::im/, by [10], there
is a generating vector v D .v0; : : : ; vmn/

> such that ai1:::im D vi1C:::Cim . If m is
even, then v also generates a Hankel matrix A. If the associated Hankel matrix A is
positive semi-definite, such a Hankel tensor A is called a strong Hankel tensor. By
[15], a strong Hankel tensor is completely decomposable. An explicit decomposition
expression of a strong Hankel tensor is given in [5].

Furthermore, by (6), we see that

vj1C2j2C:::C.n�1/jn�1 D bj1:::jn�1 ; (9)

for j1; : : : ; jn�1 2 NC, i.e., the components of v are independent from m. Thus, (9)
defines an infinite sequence V D fvk W k 2 NCg. This infinite sequence V generates
a sequence of Hankel matrices Hp D .hij/, with i; j D 0; : : : ; p � 1; p 2 N, and
hij D viCj for i; j 2 NC.

By these, we have the following theorem.

Theorem 1 Suppose that a given multidimensional sequence S defined by (1),
satisfies (6), i.e., it is a Hankel multidimensional sequence. If all the Hankel tensors
generated by V are strong Hankel tensors, i.e., all the Hankel matrices Hp generated
by the sequence V are positive semi-definite, then S is a multidimensional moment
sequence.

This links the classical result for the Hamburger moment problem [6, 12], and
gives an application of the results in [5, 10, 11, 15].

We may call such a sequence V a strong Hankel sequence. The well-known
strong Hankel sequence is the Hilbert sequence f1; 1

2
; 1
3
; : : :g [13].

3 Some Further Questions

The first question is: Are there any other Hankel multidimensional moment
sequences, for which that infinite dimensional Hankel matrix H is not positive
semi-definite? Another way to ask this question is as follows: Is there an infinite
sequence V D fvk W k 2 NCg, not all the Hankel matrices Hp generated by it are
positive semi-definite, but all the n-dimensional Hankel tensors generated by it, for
any order m 2 N, are completely decomposable? Here n � 3 is a fixed positive
integer. Thus, the simplest case is that n D 3. We thus may ask: Is there an infinite
sequence V D fvk W k 2 NCg, not all the Hankel matrices Hp generated by it are
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positive semi-definite, but all the 3-dimensional Hankel tensors, generated by it,
for any order m 2 N are completely decomposable? In [11], a class of sixth order
three dimensional truncated Hankel tensors are discussed. Such Hankel tensors are
not strong Hankel tensors [11, 15], but still completely decomposable [15]. Can we
build an infinite sequence V to answer this question, based upon such sixth order
three dimensional truncated Hankel tensors?

If such a sequence V exists, then the next question is: what are the necessary and
sufficient conditions such a sequence V should satisfy?

Note that until now, all the known positive semi-definite Hankel tensors are
SOS [4, 11, 15], but there are positive semi-definite Hankel tensors which are
not completely decomposable. This situation may make such a characterization
somewhat subtle.

Another question is: Are there multidimensional moment sequences, which are
not Hankel multidimensional sequences, i.e., condition (6) is not satisfied. If the
answer to this question is “yes”, then how to characterize such multidimensional
sequences?

Acknowledgements The author is thankful to Weiyang Ding for his comments. The author
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On a Novel Resonant Ermakov-NLS
System: Painlevé Reduction

Colin Rogers and Wolfgang K. Schief

Dedicated to Ian H. Sloan on the occasion of his 80th birthday.

Abstract A novel resonant Ermakov-NLS system is introduced which admits sym-
metry reduction to a hybrid Ermakov-Painlevé II system. If the latter is Hamiltonian
then combination with a characteristic Ermakov invariant provides an algorithmic
integration procedure. The latter involves the isolation of positive solutions of
a concomitant integrable Painlevé XXXIV equation. Explicit expressions for a
multi-parameter class of wave packet representations for the original Ermakov-
NLS system are obtained via the iterated application of a Bäcklund transformation
admitted by the canonical Painlevé II equation.

1 Introduction

A variant of the nonlinear Schrödinger (NLS) equation of the type

i�t C�� C �j� j2 D s
�j� j
j� j � (1)

incorporating a de Broglie-Bohm quantum potential term �j� j=j� j as introduced
in [8, 13] was derived ‘ab initio’ via Maxwell’s equations in the context of the self-
trapping of optical beams in [54]. In that nonlinear optics setting, the parameter
s < 1 and reduction may be made to the standard NLS equation with the de
Broglie-Bohm term removed. A 1+1-dimensional version of (1) was subsequently
derived in [31] in connection with the Jackiw-Teitelbaum gravity model in general
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relativity. However, in that case, the parameter s > 1 and reduction to the canonical
cubic NLS equation is not admitted and, accordingly, does not directly inherit such
geometric properties as possession of an auto-Bäcklund transformation which is key
in soliton theory (see, e.g., [43, 44]). The appearance of resonant solitonic behaviour
involving novel fusion and fission phenomena in NLS equations (1) with de Broglie-
Bohm potential and s > 1 has led to the terminology ‘resonant’ NLS equation for
(1). NLS equations with underlying Hamiltonian structure have been set down in
[32] which may be reduced to the 1+1-dimensional resonant NLS equation. The
latter has subsequently been derived in a plasma physics context, where it describes
the uni-axial propagation of long magneto-acoustic waves in a cold collisionless
plasma subject to a transverse magnetic field [25]. In that setting, s > 1 and the
resonant NLS model was shown to be equivalent to a canonical two-component
system contained as a basic member of the AKNS hierarchy of integrable equations
amenable to the inverse scattering transform method [2]. Therein, invariance under a
novel Bäcklund-Darboux transformation was established along with a concomitant
nonlinear superposition principle (permutability theorem). The latter was applied to
analyse the solitonic nonlinear interaction of pairs of magneto-acoustic waves.

A 2+1-dimensional resonant Davey-Stewartson system was introduced in [52] in
the context of a classical Korteweg-type capillarity model. A subsequent Painlevé
analysis in [26] of this system is consistent with its integrability. An equivalent
symmetric integrable 2+1-dimensional version of the Whitham-Broer-Kaup shallow
water system was investigated in [41] and resonant solitonic interaction exhibited
via a bilinear representation.

In [17], in a nonlinear optics setting, a class of symmetry reductions of the
standard 1+1-dimensional NLS equation was introduced which resulted in the
Painlevé II equation with zero parameter ˛. The existence of bounded dark solitons
was revealed numerically for a restricted range of the ratio of nonlinearity to
dispersion. Here, a natural extension of this class of similarity transformations is
applied to a novel resonant Ermakov-Ray-Reid-NLS system and reduction made to
an underlying hybrid Ermakov-Painlevé II system.

Nonlinear coupled systems of Ermakov-Ray-Reid type have their roots in the
classical work of Ermakov [15] and were originally introduced by Ray and Reid in
[33, 34]. The systems adopt the form

RuC !.t/u D 1

u2v
S.v=u/; Rv C !.t/v D 1

v2u
T.u=v/ (2)

and admit a distinctive integral of motion, namely the invariant

E D 1

2
.u Pv � v Pu/2 C

Z v=u

S.z/ dzC
Z u=v

T.w/ dw; (3)

where, in the above, the dot indicates a derivative with respect to the independent
variable t. Subsequently, 2+1-dimensional Ermakov-Ray-Reid systems were con-
structed in [48] and extensions to arbitrary order and dimension which admit char-
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acteristic Ermakov invariants were presented in [53]. Multi-component Ermakov-
Ray-Reid systems were derived in the physical context of N-layer hydrodynamic
systems in [42]. The importance of Ermakov-Ray-Reid systems in nonlinear optics
is well-documented (see, e.g., [12, 18–20, 22, 50]) and literature cited therein). In
that context, such systems have been derived, notably, to describe the evolution
of the size and shape of the light spot and wave front in elliptic Gaussian
beams. In addition, in recent years, integrable Ermakov-Ray-Reid systems have
been shown to arise in a wide range of other physical contexts including warm-
core oceanographic eddy theory [35], rotating shallow water hydrodynamics [39],
anisentropic gasdynamics [45] and magnetogasdynamics [46]. They also arise in a
spiralling elliptic soliton model in [14] and its extension in a Bose-Einstein setting
in [1]. The Ermakov-Ray-Reid connections in the latter cases have been established
in [51].

Here, the class of hybrid Ermakov-Painlevé II systems as obtained via a symme-
try reduction of a coupled resonant NLS system is delimited under the constraint
that it be Hamiltonian. An algorithmic solution procedure is presented which
makes use of the Ermakov invariant associated with the Hamiltonian Ermakov-
Painlevé II system. It involves, in particular, the Painlevé XXXIV equation in a
squared amplitude ˙ > 0. Thus, the isolation of positive solutions of Painlevé
XXXIV is necessary to the method. In this regard, regions on which solutions
of Painlevé XXXIV involving either Yablonskii-Vorob’ev polynomials or classical
Airy functions are positive have been delimited in [7]. In that electrolytic context
as described in [4–6, 9, 49], the solutions of Painlevé XXXIV determine the ion
concentrations and so are necessarily positive.

2 A Resonant Ermakov-NLS System: Symmetry Reduction

Here, we introduce the two-component coupled Ermakov-NLS system

i˚z C�˚ � s
�j˚ j
j˚ j ˚ C �.j˚ j

2 C j� j2/˚ D S.j� j=j˚ j/
j˚ j3j� j ˚

i�z C�� � s
�j� j
j� j � C �.j˚ j

2 C j� j2/� D T.j˚ j=j� j/
j� j3j˚ j �;

(4)

where � D @2=@x21 C � � � C @2=@x2n, which incorporates de Broglie-Bohm potential
terms �j˚ j=j˚ j and �j� j=j� j. The quantities ˚ and � are scalar complex
functions and S and T are real functions of their respective arguments, while s and �
denote real constants. A priori, all functions are defined locally with the independent
variables x1; : : : ; xn and z being real. For S D T D 0, system (4) constitutes a
‘resonant’ two-component Manakov system which may be transformed into the
standard complex two-component Manakov system or its ‘real’ variant, depending
on the value of the parameter s [38]. In particular, for S D T D 0 and n D 1,
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the above system is integrable. On the other hand, in [36], it has been shown that
for S D T D 0, the resonant Manakov system (4) admits a symmetry reduction
to a Ermakov-Painlevé system with particular non-vanishing associated Ermakov
terms S�.j� j=j˚ j/ and T�.j˚ j=j� j/. Arbitrary such terms may be obtained by
introducing the Ermakov terms S.j� j=j˚ j/ and T.j˚ j=j� j/ in (4). Thus, the above
Ermakov-NLS system constitutes a natural extension of the resonant Manakov
system. It is noted that, in 1974, Manakov [29], in the context of self-focussing
electromagnetic wave propagation, introduced the celebrated integrable coupled
NLS system which now bears his name. Later, Wai et al. [55] showed that the
Manakov model accurately describes the propagation of stable pulses in optical
devices consisting of birefringent fibres in the presence of random mode coupling.
Empirical evidence for Manakov solitons in crystals was subsequently described
by Kang et al. in [23]. The Manakov system has been also derived in a Kerr-
type approximation of photoreactive crystals context by Kutuzov et al. in [24].
An N-component version of the Manakov system was shown to be integrable by
Makhan’kov and Pashaev in [27]. The importance of such systems is current in
connection with the construction of multimode optical fibre devices (see [30] and
work cited therein).

A wave packet ansatz is now introduced into the n C 1-dimensional nonlinear
system (4) according to

˚ D Œ�.�/C i	.�/�ei�;  D Œ.�/C i .�/�ei�; (5)

where

� D ˛zC ˇz2 C � � x; � D �z3 C ız2 C �zC �z� � xC � � x (6)

and, as demonstrated below, the constant scalars ˛; ˇ; �; ı; �; � and vectors �;�
have to be chosen appropriately. In the 1+1-dimensional case, in [17], symmetry
representations of this type have been applied to the single component standard
cubic NLS equation and reduction obtained to Painlevé II with zero parameter
and interpreted in a nonlinear optics context. Here, we derive a nonlinear coupled
dynamical system in the dependent variables �; 	 and ; and independent variable
�. Thus, the linear structure of the variables � and � in x implies that the Ermakov-
NLS system subject to the constraints (5) and (6) may be formulated as

i˚z C�˚ C A.�/˚ D 0; i�z C�� C B.�/� D 0; (7)

wherein the functions A.�/ and B.�/may be read off the system (4). Insertion of the
ansatz (5) into (7)1 and subsequent separation of real and imaginary terms yield

�2��� � Œ2�z�2 C 2 � � �C ˛ C 2ˇz�	�

� Œ3�z2 C 2ızC � C � � � xC .�z�C �/2�� C A.�/� D 0
�2	�� C Œ2�z�2 C 2 � � �C ˛ C 2ˇz���

� Œ3�z2 C 2ızC � C � � � xC .�z�C �/2�	 C A.�/	 D 0:

(8)
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Collection of the terms independent of z leads to

�2��� � k	� � .� C �� C �2/� C A.�/� D 0
�2	�� C k�� � .� C �� C �2/	 C A.�/	 D 0;

(9)

where the constant k is defined by

k D ˛ C 2 � � �; (10)

while the terms proportional to z give rise to

.2��2 C 2ˇ/	� C .2ı � �˛ C 2� � � �/� D 0
.2��2 C 2ˇ/�� � .2ı � �˛ C 2� � � �/	 D 0:

(11)

Here, terms of the type � �x in (8) have been eliminated in favour of � and z via (6)1.
The terms multiplying z2 produce the constraint

3� � �ˇ C �2�2 D 0 (12)

and the conditions (11) are resolved by restricting the constants in (6) according to

��2 C ˇ D 0; 2ı � �˛ C 2� � � � D 0: (13)

Finally, for reasons of symmetry, the second Eq. (7)2 does not impose any additional
constraints on the available constants and may be formulated as the pair

�2�� � k � � .� C �� C �2/ C B.�/ D 0
�2 �� C k� � .� C �� C �2/ C B.�/ D 0:

(14)

Hence, we are left with the analysis of the pairs of ordinary differential equations
(9) and (14), wherein

A.�/ D �.j˚ j2 C j� j2/� s�2
j˚ j��
j˚ j �

S.j� j=j˚ j/
j˚ j3j� j

B.�/ D �.j˚ j2 C j� j2/� s�2
j� j��
j� j �

T.j˚ j=j� j/
j� j3j˚ j

(15)

with j˚ j2 D �2 C 	2 and j� j2 D 2 C  2.
We first observe that the pairs (9) and (14), in turn, yield

�2.	��� � �	��/ � k.��� C 		� / D 0
�2. �� �  ��/ � k.� C   �/ D 0

(16)
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so that the coupled system (9), (14) admits the first integrals

I D �2.	�� � �	�/ � k

2
.�2 C 	2/

J D �2. � �  �/ � k

2
.2 C  2/:

(17)

Furthermore, it is readily verified that

j˚ jj˚ j�� D ���� C 		�� C .	�� � �	�/2
�2 C 	2

j� jj� j�� D �� C   �� C . � �  �/2
2 C  2

(18)

which, in conjunction with the first integrals (17), shows that the linear combinations
� �(9)1 C 	 �(9)2 and �(14)1 C  �(14)2 may be expressed entirely in terms of the
amplitudes j˚ j and j� j, namely

j˚ j�� C Œc1 C c2� C c3.j˚ j2 C j� j2/�j˚ j D 1

.1 � s/



I 2

�4j˚ j3 C
S.j� j=j˚ j/
�2j˚ j2j� j

�

j� j�� C Œc1 C c2� C c3.j˚ j2 C j� j2/�j� j D 1

.1 � s/



J 2

�4j� j3 C
T.j˚ j=j� j/
�2j� j2j˚ j

�
;

(19)

where, in the above,

c1 D 1

.1 � s/�2



k2

4�2
� � � �2

�
; c2 D �

.s � 1/�2 ; c3 D �

.1 � s/�2
(20)

and it is assumed that s ¤ 1.
In the sequel, we set �� D c1 C c2�, whence, with c22 D 2 without loss of

generality, (19) reduces to the hybrid Ermakov-Painlevé II system

j˚ j���� C ��

2
j˚ j C ��.j˚ j2 C j� j2/j˚ j D S�.j� j=j˚ j/

j˚ j2j� j

j� j���� C ��

2
j� j C ��.j˚ j2 C j� j2/j� j D T�.j˚ j=j� j/

j� j2j˚ j ;

(21)

where �� D c3=2 and

S�

 j� j
j˚ j

�
D 1

2.1� s/

�
I 2

�4
j� j
j˚ j C

1

�2
S


 j� j
j˚ j

�

T�

 j˚ j
j� j

�
D 1

2.1� s/

�
J 2

�4
j˚ j
j� j C

1

�2
T


 j˚ j
j� j

�
:

(22)
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It is observed that, even in the case of the resonant Manakov system corresponding
to S D T D 0, system (21) contains non-vanishing Ermakov terms S� and T�.
Therefore, as indicated at the beginning of this section, by virtue of the algebraic
form of S� and T�, the inclusion of the Ermakov terms S and T turns out to be
natural.

3 An Integrable Ermakov-Painleve II System

Standard Ermakov-Ray-Reid systems (1) which admit a Hamiltonian have been
delimited in [39, 50]. The Ermakov invariant together with the Hamiltonian, in that
case, allow the algorithmic integration of such Ermakov-Ray-Reid systems. Here,
the non-autonomous Ermakov-Painlevé II system (21) is considered subject to the
Hamiltonian-type conditions

1

j˚ j2j� jS
�

 j� j
j˚ j

�
D � @V

@j˚ j ;
1

j� j2j˚ jT
�

 j˚ j
j� j

�
D � @V

@j� j ; (23)

whence, it may be shown to adopt the form (cf. [39, 50])

j˚ j���� C
�
��

2
C ��.j˚ j2 C j� j2/


j˚ j D 2

j˚ j3 J


 j� j
j˚ j

�
C j� jj˚ j4 J0


 j� j
j˚ j

�

j� j���� C
�
��

2
C ��.j˚ j2 C j� j2/


j� j D � 1

j˚ j3 J0

 j� j
j˚ j

�
;

(24)

where the prime denotes a derivative with respect to the argument j� j=j˚ j. Since the
system (21) is of Ermakov form (1) if one formally sets !.��/ D ��=2C ��.j˚ j2C
j� j2/, the associated Ermakov invariant (2) is still applicable and, in the current
Hamiltonian case, we obtain the invariant

E D 1

2
.j˚ jj� j�� � j� jj˚ j��/2 C j˚ j

2 C j� j2
j˚ j2 J


 j� j
j˚ j

�
: (25)

On use of the identity,

.j˚ j2 C j� j2/.j˚ j2��

C j� j2��

/

�.j˚ jj� j�� � j� jj˚ j��/2 D .j˚ jj˚ j�� C j� jj� j��/2;
(26)

the above Ermakov invariant adopts the form

E D
�
1

2
.j˚ j2��

C j� j2��

/C J.j� j=j˚ j/
j˚ j2


˙ � 1

8
˙2
��

; ˙ D j˚ j2 C j� j2;
(27)
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while an appropriate linear combination of the pair (24) delivers the relation

1

2
.j˚ j2��

C j� j2��

/
��

C 1

2

�
��

2
C ��˙


˙�� D �

�
J.j� j=j˚ j/
j˚ j2



��

: (28)

Now, elimination of J between the latter two relations, importantly, produces the
canonical integrable Painlevé XXXIV equation in standard form [10], namely

˙���� � 1

2˙
˙2
��

C ��˙ C 2��˙2 � 4E
˙
D 0; (29)

if we set ��2 D 1 without loss of generality and make the identification

E D � .˙˛
� � ��=2/2

8
< 0: (30)

It is noted that, with ˝ D ˙1=2, (29) may be formulated as the single component
hybrid Ermakov-Painlevé II equation

˝���� C
�
��

2
C ��˝2


˝ D 2E

˝3
: (31)

In the present context, it is seen that attention must be restricted to regions in
which the solutions ˙ of Painlevé XXXIV are positive. The physical importance
of positive solutions of Painlevé XXXIV arises naturally in the setting of two-
ion electrodiffusion. Thus, in the electrolytic context of [7], the ion concentrations,
which are necessarily positive, were shown to be determined by Painlevé XXXIV.
This positivity constraint and attendant conditions were treated therein.

3.1 Determination of the Amplitudes j˚j and j� j

To find j� j=j˚ j so that, together with a known solution ˙ > 0 of the Painlevé
XXXIV equation, the variables j˚ j and j� j in the Ermakov-Painlevé II system (24)
are determined, return is made to the Ermakov invariant relation (25). Thus, on
introduction of � according to

� D 2j˚ jj� j
j˚ j2 C j� j2 ; (32)

it is readily shown that

��� D 2 j˚ j
2 � j� j2

.j˚ j2 C j� j2/2 .j˚ jj� j�� � j� jj˚ j��/; (33)
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whence the Ermakov invariant (25) may be formulated as

E D 1

8

.j˚ j2 C j� j2/4

.j˚ j2 � j� j2/2 �
2
��

C j˚ j
2 C j� j2
j˚ j2 J


 j� j
j˚ j

�
: (34)

Now, in terms of the new independent variable N� defined by

d N� D ˙�1d��; (35)

the Ermakov invariant (34) shows that

�2
N� D 8



1 � .j� j=j˚ j/2
1C .j� j=j˚ j/2

�2 "

E �
 

1C

 j� j
j˚ j

�2!

J


 j� j
j˚ j

�#

: (36)

The relation (32) gives j� j=j˚ j in terms of � according to

j� j
j˚ j D

1˙p1 ��2

�
(37)

so that � is obtained as an implicit function of N� via

˙ 1

23=2

Z
L.�/ d� D N�; L.�/ D

s
�

.1 ��2/ŒE� � 2L .�/�
; (38)

where

L .�/ D j� jj˚ jJ

 j� j
j˚ j

�
: (39)

Hence, corresponding to positive solutions ˙ of the Painlevé XXXIV equation
(29) and � determined by (38) for appropriate J.j� j=j˚ j/ via (39), the squared
amplitudes of ˚ and � in the Hamiltonian Ermakov-Painleve II system (24) are
given by the relations

j˚ j2 D 1

2
.1˙

p
1 ��2/˙; j� j2 D 1

2
.1�

p
1 ��2/˙: (40)

3.2 Determination of the Phases of ˚ and �

To complete the solution procedure for �; 	 and ; in the original wave packet
representations (5), we return to the first integrals (17) involving I and J . These
yield, in turn,

c2�
2 d

d��
�

tan�1 �
	

	
� k

2
D I

�2 C 	2 (41)
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and

c2�
2 d

d��



tan�1 
 

�
� k

2
D J

2 C  2 ; (42)

whence, on integration,

c2�
2 tan�1 �

	
D k

2
��CI

Z
d��

j˚ j2 ; c2�
2 tan�1 

 
D k

2
��CJ

Z
d��

j� j2 : (43)

Thus, the quantities �; 	 and ; are given by the relations

� D ˙j˚ j sin

�
1

c2�2



k

2
�� CI

Z
d��

j˚ j2
�

	 D ˙j˚ j cos

�
1

c2�2



k

2
�� CI

Z
d��

j˚ j2
�

 D ˙j� j sin

�
1

c2�2



k

2
�� CJ

Z
d��

j� j2
�

 D ˙j� j cos

�
1

c2�2



k

2
�� CJ

Z
d��

j� j2
�
;

(44)

where j˚ j2 and j� j2 are determined by (40). In the above, on use of the relations
(35) and (38), the integrals in the above phases may be reformulated as

Z
d��

j˚ j2 D
Z

2 d N�
1˙p1��2

D ˙ 1

21=2

Z
L.�/

1˙p1 ��2
d�

Z
d��

j� j2 D
Z

2 d N�
1�p1��2

D ˙ 1

21=2

Z
L.�/

1�p1 ��2
d�:

(45)

4 Solution Generation Techniques

In the preceding, we have established that wave packet solutions of the Ermakov-
NLS system (4) may, in principle, be obtained, by isolating positive solutions ˙
of the Painlevé XXXIV equation (29) and, subsequently, performing associated
quadratures (35), (38) and (45). Here, we briefly demonstrate how this can be
done in concrete terms. It is noted that the challenges posed by the numerical
treatment of the classical Painleve I-VI equations have been described in [16].
The Cauchy problem for Painlevé I-VI has been investigated in [3]. The numerical
treatment of the hybrid Ermakov-Painleve II system of the present paper remains to
be investigated.
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For convenience, we focus on the case �� D �1 and the Ermakov invariant
E D �.˛� C 1

2
/2=8 (cf. (30)) so that the Painlevé equation XXXIV (29) adopts the

form

˙���� D ˙2
��

2˙
� ��˙ C 2˙2 � .˛

� C 1
2
/2

2˙
: (46)

All other cases may be treated in a similar manner. The latter may be formulated as
the pair of first-order differential equations

Y�� D �Y2 � �
�

2
C˙; ˙�� D 2Y˙ C ˛� C 1

2
: (47)

Indeed, elimination of the auxiliary variable Y leads to (46). On the other hand, if
we regard (47)1 as a definition of ˙ then the Painlevé II equation

Y���� D 2Y3 C ��Y C ˛� (48)

results. Hence, we have retrieved the classical link between the Painlevé II and
XXXIV equations (see [10, 11] and references therein). This connection may be
exploited to generate algebraically an infinite sequence of solutions of the Painlevé
XXXIV equation by means of the Bäcklund transformation for the Painlevé II
equation. Specifically, for any solution Y˛� of the Painlevé II equation corresponding
to the parameter ˛� and an associated solution ˙˛� of the Painlevé XXXIV
equation, another solution Y˛�C1 of the Painlevé II equation corresponding to the
parameter ˛� C 1 is given by [11]

Y˛�C1 D �Y˛� � ˛
� C 1

2

˙˛�

: (49)

The action of this Bäcklund transformation on the solutions of Painlevé XXXIV
may be formulated as

˙˛�C1 D �˙˛� C 2Y2˛�C1 C ��: (50)

Thus, firstly, if we start with the solution Y0 D 0 of the Painlevé II equation,
corresponding to the parameter ˛� D 0 and the solution˙0 D ��=2 of the Painlevé
XXXIV equation then their Bäcklund transforms are given by Y1 D �1=�� and
˙1 D 2=��2 C ��=2 respectively. Iterative application of the Bäcklund transforma-
tion leads to a sequence of rational solutions of the Painlevé II and XXXIV equations
which may be expressed in terms of Yablonskii-Vorob’ev polynomials [10] and, as
required in the current Ermakov-NLS context, the solutions ˙˛� , ˛� 2 N of the
Painlev’e XXXIV equation may be shown to be positive in suitable regions [7].
Secondly, it is well known that

Y 1
2
D �A��

A
; (51)
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Fig. 1 The solution ˙3
2

of the Painlevé XXXIV equation

where A is a solution of the Airy equation

A���� C ��

2
A D 0; (52)

constitutes a solution of the Painlevé II equation associated with the parameter ˛� D
1=2. The associated solution of the Painlevé XXXIV equation is given by

˙1
2
D 2Y21

2

C ��; (53)

as may be concluded from (47)1. Hence, iterative application of the above Bäcklund
transformation to this type of solution leads to an infinite sequence of solutions
˙˛� , ˛� D N C 1

2
of the Painlevé XXXIV equation which are parametrised in

terms of Airy functions [10] and, once again, may be shown to satisfy the positivity
requirement in appropriate regions [7] if one makes the choice A D Ai.�2�1=3��/,
where Ai denotes the Airy function of the first kind. Specifically, evaluation of (49)
and (50) for ˛� D 1=2 produces

˙3
2
D 21� 2�

�R � 4R3

.2R2 C ��/2
; R D A��

A
: (54)

As depicted in Fig. 1,˙3
2

has an infinite number of zeros ��
0 < �

�
1 < �

�
2 < � � � but it

is positive for �� < ��
0 with ˙3

2
! 0 as �� ! �1.

The next step in the procedure is to express � encoded in (38) as an implicit
function of N� as a function of ��. To this end, the relation (35) has to be integrated
so that N� becomes a known function of ��. Remarkably, it turns out that the action
of the above Bäcklund transformation may be extended to the variable N�. Thus, if
N�˛� is associated with a solution ˙˛� of the Painlevé equation XXXIV via

d N�˛� D ˙�1
˛�

d�� (55)

then it may be shown [47] that, up to an additive constant,

N�˛�C1 D
.˛� C 1

2
/ N�˛� C ln.˙˛�C1˙˛� /

˛� C 3
2

(56)
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is the solution of

d N�˛�C1 D ˙�1
˛�C1d�

�; (57)

where ˙˛�C1 is the Bäcklund transform of ˙˛� . Accordingly, for the above-
mentioned rational and Airy-type solutions ˙ of the Painlevé XXXIV equation
(29), the change of variables (35) may be achieved explicitly. For instance, for
the Airy-type seed solution ˙1

2
, (55) may be integrated directly to obtain N� 1

2
D

ln.2A2��

C ��A2/ so that (56) results in

N� 3
2
D 1

2
lnŒ2.1 � 2��R � 4R3/A2�: (58)

Finally, in order to complete the solution procedure, the quadratures (38) and
(45) need to be addressed. Here, we focus on the canonical case L .�/ D const. By
definition (39), this case corresponds to

J


 j� j
j˚ j

�
D j˚ jj� jL (59)

so that comparison of the Ermakov-Painlevé II systems (21) and (24) reveals that
S� D T� D L . It is noted that conventional Ermakov-Ray-Reid systems (2) with
S D T D const arise in moving shoreline analysis in 2+1-dimensional shallow water
theory [39], variational approximation in nonlinear optics [51] and in the study of
integrable structure in modulated NLS models [37, 40]. The latter arise notably in a
nonlinear optics context, in particular, in connection with soliton management [28]
in the context of the propagation of Bloch waves in optical lattices (see, e.g., [56]),
wherein modulation was related to the classical Ermakov equation. Now, reality of
the integral (38) dictates that

L D 1

2
A E ; A > 1 (60)

so that we obtain the elliptic integral

Z
L.�/ d� D 1p�E

Z
�

p
.1 ��2/.A ��/�d�: (61)

In terms of the incomplete elliptic integrals of the first and third kinds [21]

F.z; �/ D ˘.z; 0; �/; ˘.z; a; �/ D
Z z

0

1

.1� at2/
p
1 � t2

p
1 � �2t2 dt; (62)
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we find that, up to an additive constant of integration,
Z

L.�/ d� D 1p�L Œ˘.z; a; �/ � F.z; �/�; (63)

where

z D
r

2�

1C�; a D 1

2
; � D

r
1CA

2A
: (64)

It is emphasised that the relation (38), that is,

˘.z; a; �/ � F.z; �/ D ˙
p
�8L N�; (65)

is invertible due to the positivity of the integrand L.�/. Hence, the function

� W Œ0; N�max�! Œ0; 1�; N�max D ˘.a; �/ � F.�/p�8L (66)

is well defined. Here, we have chosen the plus sign in (65) and F.�/ and ˘.a; �/
constitute the complete elliptic integrals of the first and third kinds respectively.
Moreover,�. N�/may be defined for all N� by considering the even periodic extension
of (66) obtained by including the additive constant of integration and exploiting
the arbitrary sign in (65). Even though this extended function is not differentiable
everywhere since d�=d N� � 1=

p
� for small �, the quantity �2, which is the

key ingredient in the squares (40) of the amplitudes j˚ j and j� j, is differentiable
everywhere (cf. Fig. 2). It is noted that we may also incorporate a global constant of
integration N�t in (65) corresponding to N� ! N� C N�t.

The remaining integrals (45) may also be expressed in terms of elliptic integrals.
Indeed, one may directly verify that

p
�L

Z
L.�/

1˙p1 ��2
d� D F.z; �/�2E.z; �/�

p
2p
A

p
A ��p
�

 p
1 ��p
1C� � 1

!

;

(67)

where

E.z; �/ D
Z z

0

p
1 � �2t2p
1 � t2

dt (68)

Fig. 2 The even periodic
extension (dotted) of �2

(solid) for A D 2 and
E D �1=2
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denotes the incomplete elliptic integral of the second kind. Once again, an additive
constant of integration may be included. We conclude by remarking that the
quadratures (38) and (45) may also be performed explicitly in the case L .�/ �
��1 which, in particular, captures the resonant Manakov system (S D T D 0) for
equal first integrals I DJ .

As an illustration, we now briefly examine the nature of the wave packet solutions
of the Ermakov-NLS system associated with the solution ˙3

2
of the Painlevé

XXXIV equation. To this end, we observe that the signs in the expressions (40)
for the (squares of the) amplitudes j˚ j and j� j do not have to be fixed globally
but may vary from region to region as long as, for any fixed ��, j˚ j and j� j are
associated with opposite signs so that j˚ j2 C j� j2 D ˙ . Accordingly, we consider
the quantities

Q˙ D 1

2
.1˙

p
1 ��2/˙3

2
: (69)

For A D 2 (and E D �1=2 due to ˛� D 3=2), these are depicted in Fig. 3 for
the relevant region �� � ��

0 on which ˙3
2
� 0. It is seen that if we define the

squares j˚ j2 and j� j2 by ‘alternating’ between QC and Q� then j˚ j2 and j� j2
may be regarded as encoding two wave trains which are enveloped by ˙ . Indeed,
since there exists an infinite sequence of points � � � < ���2 < ���1 < ��

0 at which
QC D Q� D ˙3

2
=2, we may set

j˚ j2 D 1

2
.1C .�1/m

p
1 ��2/˙3

2
;

j� j2 D 1

2
.1 � .�1/m

p
1 ��2/˙3

2
;

�� 2 Œ��
m�1; ��

m�; (70)

which are differentiable everywhere. Thus, the solution˙3
2

of the Painlevé XXXIV
equation gives rise to wave train solutions of the Ermakov-NLS system (4) which
travel at constant speed if ˇ D 0 or accelerate uniformly if ˇ ¤ 0.

Fig. 3 The positive part of the solution ˙3
2

(dotted) of the Painlevé XXXIV equation and its

constituents Q
C

(black) and Q
�

(grey) for A D 2 and N�t D 0:3, encoding the squared amplitudes
j˚ j2 and j� j2 via suitable ‘glueing’
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An Upper Bound of the Minimal
Dispersion via Delta Covers

Daniel Rudolf

Dedicated to Ian H. Sloan on the occasion of his 80th birthday.

Abstract For a point set of n elements in the d-dimensional unit cube and a class of
test sets we are interested in the largest volume of a test set which does not contain
any point. For all natural numbers n, d and under the assumption of the existence
of a ı-cover with cardinality j�ıj we prove that there is a point set, such that the
largest volume of such a test set without any point is bounded above by log j�ı j

n C ı.
For axis-parallel boxes on the unit cube this leads to a volume of at most 4d

n log. 9n
d /

and on the torus to 4d
n log.2n/.

1 Introduction and Main Results

For a point set P of n elements in the unit cube Œ0; 1�d and for a set B of measurable
subsets of Œ0; 1�d the quantity of interest is the dispersion, given by

disp.P;B/ WD sup
P\BD;;B2B

�d.B/: (1)

Here �d denotes the d-dimensional Lebesgue measure and B is called set of test
sets. The dispersion measures the size of the largest hole which does not contain any
point of P. The shape of the hole is specified by the set of test sets. We are interested
in point sets with best possible upper bounds of the dispersion, which thus allow
only small holes without any point. Of course, any estimate of disp.P;B/ depends
on n, d and B.

Classically, the dispersion of a point set P was introduced by Hlawka [12] as the
radius of the largest ball, with respect to some metric, which does not contain any
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point of P. This quantity appears in the setting of quasi-Monte Carlo methods for
optimization, see [14] and [15, Chapter 6]. The notion of the dispersion from (1)
was introduced by Rote and Tichy in [21] to allow more general test sets. There the
focus is on the dependence of n (the cardinality of the point set) of disp.P;B/. In
contrast to that, we are also interested in the behavior with respect to the dimension.

There is a well known relation to the star-discrepancy, namely, the dispersion
is a lower bound of this quantity. For further literature, open problems, recent
developments and applications related to this topic we refer to [5, 6, 15, 16, 19].

For the test sets we focus on axis-parallel boxes. Point sets with small dispersion
with respect to such axis-parallel boxes are useful for the approximation of rank-
one tensors, see [2, 17]. In computational geometry, given a point configuration the
problem of finding the largest empty axis-parallel box is well studied. Starting with
[13] for d D 2, there is a considerable amount of work for d > 2, see [7, 8] and the
references therein. Given a large dataset of points, the search for empty axis-parallel
boxes is motivated by the fact that such boxes may reveal natural constraints in the
data and thus unknown correlations, see [9].

The minimal dispersion, given by

dispB.n; d/ WD inf
P�Œ0;1�d ;jPjDn

disp.P;B/;

quantifies the best possible behavior of the dispersion with respect to n, d and B.
Another significant quantity is the inverse of the minimal dispersion, that is, the
minimal number of points NB.d; "/ with minimal dispersion at most " 2 .0; 1/, i.e.,

NB.d; "/ D minfn 2 N j dispB.n; d/ � "g:

By virtue of a result of Blumer et al. [4, Lemma A2.1, Lemma A2.2 and
Lemma A2.4] one obtains

dispB.n; d/ �
2dB

n
log2

� 6n

dB

	
for n � dB; (2)

or stated differently

NB.d; "/ � 8dB"
�1 log2.13"

�1/; (3)

where log2 is the dyadic logarithm and dB denotes the VC-dimension1 of B. The
dependence on d is hidden in the VC-dimension dB. For example, for the set of test
sets of axis-parallel boxes

Bex D f˘ d
kD1Œxk; yk/ � Œ0; 1�d j xk < yk; k D 1; : : : ; dg;

1The VC-dimension is the cardinality of the largest subset T of Œ0; 1�d such that the set system
fT \ B j B 2 Bg contains all subsets of T.
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it is well known that dBex D 2d. However, the concept of VC-dimension is not
as easy to grasp as it might seem on the first glance and it is also not trivial to
prove upper bounds on dB depending on B. For instance, for periodic axis-parallel
boxes, which coincide with the interpretation of considering the torus instead of the
unit cube, given by

Bper D f˘ d
kD1Ik.x; y/ j x D .x1; : : : ; xd/; y D . y1; : : : ; yd/ 2 Œ0; 1�dg

with

Ik.x; y/ D
(
.xk; yk/ xk < yk

Œ0; 1� n Œ yk; xk� yk � xk;

the dependence on d in dBper is not obvious. The conjecture here is that dBper behaves
similar as dBex , i.e., linear in d, but we do not have a proof for this fact.

The aim of this paper is to prove an estimate similar to (2) based on the concept
of a ı-cover of B. For a discussion about ı-covers, bracketing numbers and VC-
dimension we refer to [10]. LetB be a set of measurable subsets of Œ0; 1�d. A ı-cover
for B with ı > 0 is a finite set �ı �B which satisfies

8B 2 B 9LB;UB 2 �ı with LB � B � UB

such that �d.UB n LB/ � ı. The main abstract theorem is as follows.

Theorem 1 For a set of test sets B assume that for ı > 0 the set �ı is a ı-cover of
B. Then

dispB.n; d/ �
log j�ıj

n
C ı: (4)

The cardinality of the ı-cover plays a crucial role in the upper bound of the
minimal dispersion. Thus, to apply the theorem to concrete sets of test sets one has
to construct suitable, not too large, ı-covers.

For Bex the best results on ı-covers we know are due to Gnewuch, see [10]. As a
consequence of the theorem and a combination of [10, Formula (1), Theorem 1.15,
Lemma 1.18] one obtains

Corollary 1 For Bex and n > 2d we have

dispBex
.n; d/ � 4d

n
log

�9n

d

	
: (5)

(For n � 2d the trivial estimate dispBex
.n; d/ � 1 applies.) In particular,

NBex."; d/ � 8d"�1 log.33"�1/: (6)
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Obviously, this is essentially the same as the estimates (2) and (3) in the setting of
Bex. Let us discuss how those estimates fit into the literature. From [1, Theorem 1
and (4)] we know that

log2 d

4.nC log2 d/
� dispBex

.n; d/ � 1

n
min

n
27dC1; 2d�1˘ d�1

iD1 pi

o
; (7)

where pi denotes the ith prime. The upper bound 27dC1=n is due to Larcher
based on suitable .t;m; d/-nets and for d � 54 improves the super-exponential
estimate 2d�1˘ d�1

iD1 pi=n of Rote and Tichy [21, Proposition 3.1] based on the Halton
sequence. The order of convergence with respect to n is optimal, but the dependence
on d in the upper bound is exponential. In the estimate of Corollary 1 the optimal
order in n is not achieved, but the dependence on d is much better. Already for d D 5
it is required that n must be larger than 5 � 1072 to obtain a smaller upper bound
from (7) than from (5). By rewriting the result of Larcher in terms of NBex."; d/ the
dependence on d can be very well illustrated, one obtains

NBex."; d/ � 27dC1"�1:

Here, for fixed " there is an exponential dependence on d, whereas in the estimate
of (6) there is a linear dependence on d. Summarizing, according to NBex."; d/ the
result of Corollary 1 reduces the gap with respect to d, we obtain2

.1=4� "/"�1 log2 d � NBex."; d/ � 8d"�1 log.33"�1/:

As already mentioned for Bper the estimates (2) and (3) are not applicable, since
we do not know the VC-dimension. We construct a ı-cover in Lemma 2 below and
obtain the following estimate as a consequence of the theorem. Note that, since
Bex 	 Bper, we cannot expect something better than in Corollary 1.

Corollary 2 For Bper and n � 2 we have

dispBper
.n; d/ � 4d

n
log.2n/: (8)

2After acceptance of the current paper a new upper bound of NBex ."; d/ was proven in [22]. From
[22] one obtains for " 2 .0; 1=4/ that

NBex ."; d/ � c" log2 d

with c" D "�."�2
C2/.4 log "�1 C 1/ for "�1 2 N. In particular, it shows that the lower bound

cannot be improved with respect to the dimension. Note that the dependence on "�1 is not as good
as in (6).
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In particular,

NBper."; d/ � 8d"�1Œlog.8d/C log "�1�: (9)

Indeed, the estimates of Corollary 2 are not as good as the estimates of Corollary 1.
By adding the result of Ullrich [23, Theorem 1] one obtains

minf1; d=ng � dispBper
.n; d/ � 4d

n
log.2n/;

or stated differently,

d"�1 � NBper."; d/ � 8d"�1Œlog.8d/C log "�1�: (10)

In particular, (10) illustrates the dependence on the dimension, namely, for fixed
" 2 .0; 1/ Corollary 2 gives, except of a log d term, the right dependence on d.

In the rest of the paper we prove the stated results and provide a conclusion.

2 Auxiliary Results, Proofs and Remarks

For the proof of Theorem 1 we need the following lemma.

Lemma 1 For ı > 0 let �ı be a ı-cover of B. Then, for any point set P 	 Œ0; 1�d
with n elements we have

disp.P;B/ � ı C max
A\PD;; A2�ı

�d.A/:

Proof Let B 2 B with B \ P D ;. Then, there are LB;UB 2 �ı with LB � B � UB

such that

�d.B n LB/ � �d.UB n LB/ � ı:

In particular, LB \ P D ; and

disp.P;B/ � sup
P\BD;;B2B

.�d.UB n LB/C �d.LB// � ı C max
A\PD;; A2�ı

�d.A/:

ut
Remark 1 In the proof we actually only used that there is a set LB � B with �d.B n
LB/ � ı. Thus, instead of considering ı-covers it would be enough to work with set
systems which approximate B from below up to ı.

By probabilistic arguments similar to those of [3, Section 8.1] we prove the main
theorem. As in [11, Theorem 1 and Theorem 3] for the star-discrepancy, it also turns
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out that such arguments are useful for studying the dependence on the dimension of
the dispersion.

Proof of Theorem 1 By Lemma 1 it is enough to show that there is a point set P
which satisfies

max
A\PD;; A2�ı

�d.A/ � log j�ıj
n

: (11)

Let .˝;F ;P/ be a probability space and .Xi/1�i�n be an iid sequence of uniformly
distributed random variables mapping from .˝;F ;P/ into Œ0; 1�d. We consider the
sequence of random variables as “point set” and prove that with high probability the
desired property (11) is satisfied. For .cn/n2N 	 .0; 1/ we have

P

�
max

A2�ı; A\fX1;:::;XngD;
�d.A/ � cn

	
D P

� \

A2�ı
f1A\fX1;:::;XngD; � �d.A/ � cng

	

D 1 � P

� [

A2�ı
f1A\fX1;:::;XngD; � �d.A/ > cng

	

� 1 �
X

A2�ı
P

�
1A\fX1;:::;XngD; � �d.A/ > cn

	

> 1 � j�ıj.1 � cn/
n:

By the fact that 1 � j�ıj�1=n � log j�ı j
n and by choosing cn D log j�ı j

n we obtain

P

�
max

A2�ı; A\fX1;:::;XngD;
�d.A/ � log j�ıj

n

	
> 0:

Thus, there exists a realization of .Xi/1�i�n, say .xi/1�i�n 	 Œ0; 1�d, so that for
P D fx1; : : : ; xng the inequality (11) is satisfied. ut
Remark 2 By Lemma 1 and the same arguments as in the proof of the theorem one
can see that a point set of iid uniformly distributed random variables X1; : : : ;Xn

satisfies a “good dispersion bound” with high probability. In detail,

P .disp.fX1; : : : ;Xng;B/ � 2ı/ � P

�
max

A2�ı; A\fX1;:::;XngD;
�d.A/ � ı

	

> 1 � j�ıj.1� ı/n:

In particular, for confidence level ˛ 2 .0; 1� and

n WD log.j�ıj˛�1/
ı

� log.j�ıj˛�1/
log.1 � ı/�1
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the probability that the random point set has dispersion smaller than 2ı is strictly
larger than 1 � ˛. This implies

NB.d; "/ � 2"�1 log j�"=2j; (12)

where the dependence on d is hidden in j�"=2j.
In the spirit of [18–20] we are interested in polynomial tractability of the minimal

dispersion, that is, NB.d; "/ may not grow faster than polynomial in "�1 and d. The
following corollary is a consequence of the theorem and provides a condition on the
ı-cover for such polynomial tractability.

Corollary 3 For ı 2 .0; 1/ and the set of test sets B let �ı be a ı-cover satisfying

9c1 � 1 & c2; c3 � 0 s.t. j�ıj � .c1dc2ı�1/c3d:

Then, for n > c3d one has

dispB.n; d/ �
c3d

n

h
log

�c1dc2�1n
c3

	
C 1

i
:

Proof Set ı D c3d=n in (4) and the assertion follows. ut
This implies the result of Corollary 1.

Proof of Corollary 1 By [10, Formula (1), Theorem 1.15, Lemma 1.18] one has

j�ıj � 1

2
.2ı�1 C 1/2d � .2d/2d

.dŠ/2
� .6eı�1/2d:

Here the last inequality follows mainly by dŠ >
p
2�d.d=e/d and the assertion is

proven by Corollary 3 with c1 D 6e, c2 D 0, c3 D 2. ut
For Bper we need to construct a ı-cover.

Lemma 2 For Bper with ı > 0 and m D d2d=ıe the set

�ı D
˚
˘ d

kD1Ik.a; b/ j a; b 2 Gm
�

with

Gm D f.a1; : : : ; ad/ 2 Œ0; 1�d j ak D i=m; i D 0; : : : ;mI k D 1; : : : ; dg

is a ı-cover and satisfies j�ıj D .mC 1/2d.
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Proof For arbitrary x; y 2 Œ0; 1�d with x D .x1; : : : ; xd/ and y D .y1; : : : ; yd/ there
are

a D .a1; : : : ; ad/ 2 Gm; Na D .Na1; : : : ; Nad/ 2 Gm

b D .b1; : : : ; bd/ 2 Gm; Nb D .Nb1; : : : ; Nbd/ 2 Gm;

such that

ak � xk � Nak � ak C 1=m; bk � yk � Nbk � bk C 1=m:

Define B.x; y/ D ˘ d
kD1Ik.x; y/ and note that it is enough to find LB;UB 2 �ı with

LB � B.x; y/ � UB and �d.UB n LB/ � ı. For any coordinate k 2 f1; : : : ; dg we
distinguish four cases illustrated in Fig. 1:

1. Case: jxk � ykj � 1=m and xk < yk:
Define IL

k D ; and IU
k D .ak; Nbk/. (Here IL

k D Œ0; 1� n Œ0; 1� D ;.)
2. Case: jxk � ykj � 1=m and xk � yk:

Define IL
k D Œ0; 1�n Œbk; Nak� and IU

k D Œ0; 1�n Œak; ak�. (Here IU
k D Œ0; 1�n fakg.)

3. Case: jxk � ykj > 1=m and xk < yk:
Define IL

k D .Nak; bk/ and IU
k D .ak; Nbk/.

4. Case: jxk � ykj > 1=m and xk � yk:
Define IL

k D Œ0; 1� n Œbk; Nak� and IU
k D Œ0; 1� n ŒNbk; ak�.

Fig. 1 The four cases from
the proof of Lemma 2 to
show the existence of IL

k ; I
U
k

such that IL
k � Ik.x; y/ � IU

k
and �1.I

U
k n IL

k / � 2=m are
illustrated

0
1
m . . . 1

1. Case:
IUk = (ak, bk)

ILk = ∅
xk yk

ak
ak = bk︸ ︷︷ ︸ bk

0
1
m . . . 1

2. Case:
IUk = [0, 1] \ {ak}

ILk = [0, 1] \ [bk, ak]

yk xk

bk
bk = ak︸ ︷︷ ︸ ak

0
1
m . . . 1

3. Case:
IUk = (ak, bk)

ILk = (ak, bk)

xk yk

ak ak bk bk

0
1
m . . . 1

4. Case:
IUk = [0, 1] \ [bk, ak]

ILk = [0, 1] \ [bk, ak]

yk xk

bk bk ak ak
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In all cases we have IL
k � Ik.x; y/ � IU

k as well as �1.IU
k n IL

k / � 2=m. For
LB D ˘ d

iD1IL
i 2 �ı and UB D ˘ d

iD1IU
i 2 �ı the inclusion property with respect to

B.x; y/ does hold and

�d.UB n LB/ D ˘ d
iD1�1.IU

i /�˘ d
iD1�1.IL

i /

D
dX

kD1

�
˘ k�1

iD1 �1.IL
i /.�1.I

U
k / � �1.IL

k //˘
d
iDkC1�1.IU

i /
� � 2d

m
:

By the choice of m the right-hand side 2d=m is bounded by ı and the assertion is
proven. ut

Now we easily can prove an upper bound of the minimal dispersion according to
Bper as formulated in Corollary 2.

Proof of Corollary 2 By the previous lemma we know that there is a ı-cover with
cardinality bounded by .4dı�1/2d. Then by Corollary 3 with c1 D 4, c2 D 1 and
c3 D 2 the proof is finished. ut

3 Conclusion

Based on ı-covers we provide in the main theorem an estimate of the minimal
dispersion similar to the one of (2). In the case where the VC-dimension of the set of
test sets is not known, but a suitable ı-cover can be constructed our Theorem 1 leads
to new results, as illustrated for Bper. One might argue, that we only show existence
of “good” point sets. However, Remark 2 tells us that a uniformly distributed random
point set has small dispersion with high probability. As far as we know, an explicit
construction of such point sets is not known.

Acknowledgements The author thanks Aicke Hinrichs, David Krieg, Erich Novak and Mario
Ullrich for fruitful discussions to this topic.
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A Local Inverse Formula and a
Factorization

Gilbert Strang and Shev MacNamara

With congratulations to Ian Sloan!

Abstract When a matrix has a banded inverse there is a remarkable formula that
quickly computes that inverse, using only local information in the original matrix.
This local inverse formula holds more generally, for matrices with sparsity patterns
that are examples of chordal graphs or perfect eliminators. The formula has a long
history going back at least as far as the completion problem for covariance matrices
with missing data. Maximum entropy estimates, log-determinants, rank conditions,
the Nullity Theorem and wavelets are all closely related, and the formula has found
wide applications in machine learning and graphical models. We describe that local
inverse and explain how it can be understood as a matrix factorization.

1 Introduction

Here is the key point in two sentences. If a square matrix M has a tridiagonal
inverse, then M�1 can be determined from the tridiagonal part M0 of the original
M. The formula for M�1 is “local” and fast to compute—it uses only 1�1 and 2�2
submatrices (assumed invertible) along the main diagonal of M0.

Outside of M0, the entries of M could be initially unknown (“missing data”).
They are determined by the requirement that M�1 is tridiagonal. That requirement
maximizes the determinant of the completed matrix M: the entropy.
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This theory (developed by others) extends to all chordal matrices: the non-
zero positions .i; j/ in M0 correspond to edges of a chordal graph. In applications
these come primarily from one-dimensional differential and integral equations.
We believe that this special possibility of a local inverse should be more widely
appreciated. It suggests a fast preconditioner for more general problems.

In our first examples of this known (and surprising) formula, M�1 will be block
tridiagonal:

M�1 D
0

@
B11 B12 0

B21 B22 B23
0 B32 B33

1

A : (1)

This imposes a strong condition on M itself, which we identify now. M will be
written in the same block form with n square blocks along the main diagonal: n D 3
above. When all blocks are 1 � 1, the entries of M�1 are known to be cofactors
of M divided by the determinant of M. Those zero cofactors (away from the three
central diagonals) mean that M is “semiseparable:” all submatrices that don’t cross
the main diagonal have rank 1.

In other words, all the 2�2 submatrices of M (that do not cross the main diagonal)
will be singular. There is a well-developed theory for these important matrices [20]
that allows wider bands for M0 and M�1.

Here are equivalent conditions on M that make M�1 block tridiagonal. The key
point is that the entries in M0 determine all other entries in M. Those entries are
shown explicitly in condition 2.

1. The completion from M0 to M maximizes the determinant of M (the entropy).
2. The completion for n D 3 is given by

M D
0

@
M11 M12 M12M�1

22
M23

M21 M22 M23

M32M�1
22
M21 M32 M33

1

A : (2)

Applying this rule recursively outward from the main diagonal, M is obtained
from M0 for any matrix size n.

3. The completed entries M13 and M31 minimize the ranks of



M12 M13

M22 M23

�
and



M21 M22

M31 M32

�
:

This extends the “zero cofactor” condition to the block case. For ordinary tridiagonal
matrices M, all 2 � 2 blocks (except those crossing the main diagonal) have rank 1.
The Nullity Theorem [19] says that the dimensions of the null spaces of these 2� 2
block matrices match the number of columns in the zero blocks in M�1.
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Early motivation for these matrix problems came in statistics where a covariance
matrix might have missing entries because complete data was not available. For
instance in finance, perhaps two assets are not traded frequently enough or not on
sufficiently comparable time-scales to provide data that would lead to a sensible
estimate of a covariance. An example of an incomplete covariance matrix could be
(although more complicated patterns of missing entries are possible)

0

@
M11 M12 ‹

M21 M22 M23

‹ M32 M33

1

A :

A naïve first remedy is to replace the missing entries by zeros, but that is usually not
a good idea; amongst other issues that choice is not guaranteed to always result in
a positive definite completion. Dempster [4] suggested completing to a covariance
matrix by instead inserting zeros in the inverse matrix in positions that correspond to
missing values in the original incomplete covariance matrix. For this example, that
leads to a sparsity pattern for M�1 displayed in (1), and eventually to the completion
to M displayed in (2). In general, the entries of the inverse covariance matrix (the
concentration matrix or the precision matrix) can be interpreted as the information,
so setting these entries to zero reflects the situation that in the absence of data we
have no information. More than that, in the multivariate Gaussian case where a
vector x 2 R

d has probability density

p.x/ D 1
p
.2�/d

p
det M

exp.�x>M�1x=2/;

the entropy
R

p.x/ log p.x/dx (an integral in d-dimensions) of the distribution is
maximized by maximizing the determinant. The zeros in the inverse matrix are
a consequence of maximizing the determinant [8] subject to the constraint of
being consistent with the initial data. That seems intuitively satisfying because
maximizing an entropy corresponds in some sense to assuming as little as possible
while remaining consistent with the partial data. This also leads to the maximum
likelihood estimator.

Zeros in the concentration matrix M�1 correspond to conditional independence
and the non-zero pattern of the concentration matrix corresponds to edges in the
graph of the associated Gaussian Markov Random Field [15]. Extending these ideas
to estimate covariance matrices in high dimensions is an important and active line
of work, connecting to methods that impose sparsity on the concentration matrix via
l1-regularization while still optimizing log-determinant objective functions [7, 13].

Other references include: Gohberg et al. [5, 6], Johnson and Lundquist [8, 9],
Lauritzen [11, page 145], Speed and Kiiveri [15] and Strang and Nguyen [16, 19].
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2 The Local Inverse Formula

At first sight it is hard to believe that the inverse of an n�n matrix (or block matrix)
can be found from “local inverses.” But if M�1 is a tridiagonal (or block tridiagonal)
matrix, that statement is true. The only inverses you need are 1 � 1 and 2 � 2 along
the main diagonal of M. The 1 � 1 inverses, M�1

2;2 , : : :, M�1
n�1;n�1, come from the

diagonal blocks. The 2 � 2 inverses Z�1
i come from adjacent blocks:

Z�1
i D



Mi;i Mi;iC1

MiC1;i MiC1;iC1

��1
:

In other words, we only need the tridiagonal part of M to find the tridiagonal
matrix M�1.

From n�2 inverses M�1
i;i and n�1 inverses Z�1

i , here is the local inverse formula
(when n D 3):

M�1 D

0

B
@



M11 M12

M21 M22

��1 1

C
AC

0

B
@



M22 M23

M32 M33

��1

1

C
A �

0

@ M�1
22

1

A (3)

D

0

B
BB
B
B
@

0

@ Z�1
1

1

A

1

C
CC
C
C
A
C

0

B
BB
B
B
@

0

@ Z�1
2

1

A

1

C
CC
C
C
A
�

0

B
BB
B
B
@

M�1
22

1

C
CC
C
C
A
:

We emphasize that M itself need not be tridiagonal. It rarely is. The construction of
M does start with a tridiagonal matrix, M0. That matrix is completed to M in such a
way that M�1 is tridiagonal. It becomes reasonable to expect that M�1 depends only
on the starting tridiagonal matrix M0. But still the simplicity of the local inverse
formula is unexpected and attractive.

This local formula for M�1 can be established in several ways. Direct matrix
multiplication will certainly succeed. Johnson and Lundquist [9] show how this 3�
3 block case extends by iteration to larger matrices (with wider bands or general
chordal structures, described next). The present paper looks at the triangular LDU
factorization—which produces banded or chordal factors. And we view the matrix
algebra in the A>CA framework that is fundamental to applied mathematics.

The generalisation to matrices M�1 with five non-zero block diagonals is
straightforward. Thus M0 is pentadiagonal, and its extension to M is determined
so that M�1 is also pentadiagonal. Then the local inverse formula goes directly from
M0 to M�1, bypassing the completed matrix M. The formula involves the 2 � 2
inverses Z�1

i together with the 3 � 3 inverses Y�1
i . The submatrices Yi come from

three adjacent rows and columns (i; i C 1; i C 2) of M0 and M. The local inverse
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formula assembles the inverse as before (displayed for n D 4):

M�1 D

0

B
B
B
B
B
@

0

@ Y�1
1

1

A

1

C
C
C
C
C
A
C

0

B
B
B
B
B
@

0

@ Y�1
2

1

A

1

C
C
C
C
C
A
�

0

B
B
B
B
B
@

�
Z�1
2

�

1

C
C
C
C
C
A

D 5-diagonal matrix.

The formula extends to wider bands in M0 in a natural way. Beyond that come
‘staircase matrices’ that are unions of overlapping square submatrices Yi centered
on the main diagonal. The sizes of the Yi can vary and the overlaps (intersections)
are the Zi. The inverse formula remains correct.

The ultimate extension is to chordal matrices M0 and M�1 [9]. Their non-
zero entries produce a chordal graph [1, 2, 10]. Beyond that we cannot go. Two
equivalent definitions of the class of chordal matrices are:

• Suppose M0 has non-zero entries in positions .i0; i1/; .i1; i2/; : : : ; .im; i0/. If m �
4 then that closed path has a “shortcut” chord from an iJ to an iL ¤ iJC1 for
which M0.iJ ; iL/ ¤ 0.

• There are permutations P and Q> of the rows and columns of M0 so that the
matrix A D PM0Q> allows “perfect elimination with no fill-in:”

A D LDU D (lower triangular) (diagonal) (upper triangular)

with Lij D 0 and Uij D 0 whenever Aij D 0:

We may assume [14] that M0 comes in this perfect elimination order. Then it is
completed to M in such a way that M has the same elimination order as M0.

3 Completion ofM and Triangular Factorizations

When does a 3 � 3 block matrix M have a tridiagonal inverse? If the tridiagonal
part of M itself is prescribed, the entries in the upper right and lower left corners are
determined by the requirement that the corresponding entries in M�1 are zero:

M D
0

@
M11 M12 M12M�1

22
M23

M21 M22 M23

M32M�1
22
M21 M32 M33

1

A : (4)
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It is this completed matrix M (also in (2)) that multiplies the matrix in (3) to
give the identity matrix and verify the local inverse formula. Suppose M is block
upper triangular: call it U, with unit diagonal blocks. Then the matrices and the
local inverse formula become particularly simple. Here are the incomplete U0, the
completed U and the inverse U�1:

U0 D
0

@
I U12 ‹

0 I U23

0 0 I

1

A

U D
0

@
I U12 U12U23
0 I U23

0 0 I

1

A (5)

U�1 D
0

@
I �U12 0

0 I �U23

0 0 I

1

A :

The local inverse formula separates U�1 in three parts:

U�1 D
0

@
I �U12 0

0 I 0

0 0 0

1

AC
0

@
0 0 0

0 I �U23

0 0 I

1

A �
0

@
0 0 0

0 I 0

0 0 0

1

A : (6)

We vainly hoped that this simple idea could apply to each factor of M D LDU
and produce factors of M�1. That idea was destined to fail—the correct factors mix
upper with lower (just as elimination does). Still it would be attractive to understand
the general chordal case through its triangular factors. The key property of “no fill-
in” distinguishes chordal matrices in such a beautiful way.

Example

Consider the 3 � 3 matrix

M0 � 1

4

0

@
3 2 ?
2 4 2

? 2 3

1

A



A Local Inverse Formula and a Factorization 1115

that is completed to

M D 1

4

0

@
3 2 1

2 4 2

1 2 3

1

A ;

with inverse

M�1 D
0

@
2 �1 0

�1 2 �1
0 �1 2

1

A :

In this symmetric example, U D L> and M D LDU D LDL> where

L D
0

@
1 0 0
2
3
1 0

1
3
1
2
1

1

A and D D 1

12

0

@
9 0 0

0 8 0

0 0 6

1

A :

Notice these examples of L and of U satisfy the formats displayed in (5) and in (6).
Our example illustrates these formats in the scalar case but those formats remain
true in the block matrix case.

4 The A>CA Framework: A Matrix Factorization
Restatement

Applied mathematics is a broad subject far too diverse to be summarized by merely
one equation. Nevertheless, A> C A offers a matrix framework to understand a
great many of the classical topics, including: least squares and projections, positive
definite matrices and the Singular Value Decomposition, Laplace’s equation with
A> D �div and the Laplacian as �r2 D �div.grad/ D A>A, networks and graph
Laplacians [17]. The assembly process used in the finite element method also fits
this framework [21]. It is therefore satisfying to place the local inverse formula in
this framework.

Consider a square n � n invertible matrix M such that the inverse matrix
satisfies the ‘local inverse formula.’ We will express the local inverse formula as
the following factorization of the inverse matrix

M�1 D A> C�1 A (7)

and factorization of the original matrix

M D G> C G: (8)
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Such factorizations are often represented by commutative diagrams. Here we
represent x D M�1b as

C�1
R

m  � R
m

A> ?
y

x
? A

R
n  � R

n

M�1

and we reverse the directions of all four arrows to represent Mx D b as

C
R

m �! R
m

G
x
?

?
y G>

R
n �! R

n

M

Notice that in this approach we start with the inverse matrix M�1, and then we
invert the inverse to arrive at the original matrix: .M�1/�1 D M. To describe the
factorizations we must identify the matrices C, A and G, but first we introduce
notation.

Our setting is that the non-zero sparsity pattern of M�1 is a chordal graph on
n nodes, with a clique tree (sometimes called a junction tree) on cb nodes that
represent the cb maximal cliques (square submatrices of M0 with no missing entries).
There are cb ‘blocks’ and co ‘overlaps’ in the corresponding local inverse formula.
Let c D cb C co be the sum of these counts. Denote these block matrices by Ck

for k D 1; : : : ; c. Order these matrices so that all the cb blocks that correspond to
maximal cliques come first, and all the c � cb blocks that correspond to overlaps
come last. Let dk denote the size of clique k so that Ck is a dk � dk matrix, and let

m D
cX

kD1
dk D

cbX

kD1
dk C

cX

kDcbC1
dk:

Note that m > n:
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Define the m � m block diagonal matrix

C �

0

B
BB
B
B
B
BB
B
B
B
BB
B
B
@

C1
C2

: : :

Ccb

�CcbC1

: : :

�Cc

1

C
CC
C
C
C
CC
C
C
C
CC
C
C
A

:

The minus signs in front of the blocks in the bottom right corner correspond to
overlaps.

Because each block Ck corresponds to a subset of nodes in the original graph,
each row (i D 1; : : : ;m) of C corresponds to a node (j D 1; : : : ; n) in the original
graph. Define the m � n matrix A of 0s and 1s to encode this correspondence:

Ai;j �
(
1 if node j corresponds to row i of C

0 otherwise:

Note that each row of A contains precisely one non-zero entry and that entry is 1.
The total number of non-zero entries in A is m. Each column of A contains one or
more 1s.

It is a necessary condition for the local inverse formula to apply that all of
the blocks Ck be separately invertible. Then C is an invertible matrix, and C�1 is
the block diagonal matrix with blocks C�1

1 ; : : : ;C
�1
c . With these definitions, the

factorization M�1 D A> C�1 A in (7) is simply matrix notation for the local inverse
formula: M�1 is “the sum of the inverses of the blocks, minus the inverses of the
overlaps.”

It remains to describe the factorization M D G>CG in (8). Intuitively, this is
arrived at by reversing the directions of the arrows in the commutative diagram for
M�1. It is easy to see that replacing C�1 by C will reverse the direction of the arrow
at the top of the diagram in a way that correctly inverts the action of C�1.

It is not so easy to see that we can find matrices G> and G such that the
directions of the arrows corresponding to A and to A> are reversed with the desired
effect. Indeed, at first glance that seems to be tantamount to finding the ‘inverse’
of the A matrix, but that is impossible because A W Rn ! R

m is not a square
matrix. However, there is redundancy in the action of A. Although A maps from
a smaller n-dimensional space to a larger m-dimensional space, the matrix only has
n columns, so the column space reached by A is only an n-dimensional subspace
of Rm. (Columns of A are independent because each row contains precisely one 1.)
This makes it possible to choose G> so that we only ‘invert’ on the subspace that
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we need to. A possible choice is the pseudoinverse of A, i.e.

F � .A>A/�1A>:

Note that FA D In is the n � n identity matrix (but AF ¤ Im). So F is a left inverse
for A. Instead of F, we could choose another left inverse of A, namely G>, where G
is the matrix described next.

The last step is to now find the matrix G that will ‘undo’ the effect of A>. Note
that in our factorization, the matrix A> acts only on the range of C�1A (and not on
all of Rm). In other words, in our factorization, it is the column space of C�1A that
is the ‘input space’ to A>. So we only need to invert on that subspace, by

G � C�1AM:

This choice makes it clear that G has two desirable properties:

• the columns of G are linear combinations of the columns of C�1A, so the range
of G is in the n-dimensional subspace of Rm that is reached by C�1A, and

• G>CG D G>C.C�1A/M D .G>A/M D .I/M D M.

The second property, that LACG D M, is not unique to our choice of G—it holds for
any matrix LA that is a left inverse of A. (Then we have LACG D LAC.C�1A/M D
.LAA/M D .I/M D M.) We have already seen that F is a left inverse of A so F is a
possible choice for a factorization to recover the original matrix, i.e. FCG D M. To
see that G> is also a left inverse of A, recall the definition G � C�1AM. By the rule
for a transpose of a product, G> D M>A>.C�1/>. So

G>A D M>A>.C�1/>A D M>.A>C�1A/> D M>.M�1/> D I;

as required.
These choices also have three more notable properties: A>G D .A>C�1A/M D

M�1M D I, FG D .A>A/�1, and AF is a projection matrix.

Example

We now exhibit the A>CA factorization for the same 3 � 3 matrix example that we
used earlier in (7) to demonstrate the LDU factorization

M � 1

4

0

@
3 2 1

2 4 2

1 2 3

1

A with inverse M�1 D
0

@
2 �1 0

�1 2 �1
0 �1 2

1

A :
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The graph of non-zeros is a line of three nodes. The maximal cliques are

C1 � 1

4



3 2

2 4

�
and C2 � 1

4



4 2

2 3

�
:

The overlap is

C3 � 1

4

�
4
� D .1/;

so in this example m D 2C 2C 1 D 5. The m �m block diagonal matrix C is

C � 1

4

0

B
B
BB
B
@

3 2 0 0 0

2 4 0 0 0

0 0 4 2 0

0 0 2 3 0

0 0 0 0 �4

1

C
C
CC
C
A
:

The matrix that sends ‘node space’ (the three columns could correspond to the three
nodes) to ‘clique space’ (rows 1; 2; 3; 4; 5 correspond to nodes 1; 2; 2; 3; 2) is

A �

0

B
BB
B
B
@

1 0 0

0 1 0

0 1 0

0 0 1

0 1 0

1

C
CC
C
C
A
:

Direct matrix multiplication confirms that A>C�1A does indeed give M�1, as
expected from the local inverse formula. In this example

F � .A>A/�1A> D
0

@
1 0 0 0 0

0 1
3
1
3
0 1
3

0 0 0 1 0

1

A

and

G � C�1AM D

0

B
B
B
BB
@

1 0 0

0 1 1
2

1
2

1 0

0 0 1

� 1
2
�1 � 1

2

1

C
C
C
CC
A
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and FCG D G>CG D M. Typically and in this example, the local inverse formula
only applies in going from M to M�1, and

M ¤ A> C A D 1

4

0

@
3 2 0

2 4 2

0 2 3

1

A :

5 Applications

We now showcase by example some of the especially elegant applications of the
local inverse formula.

Example: A Toeplitz Matrix

Complete the missing entries in M0 to arrive at a first example via

M0 D

0

B
B
@

2 �1 ‹ ‹

�1 2 �1 ‹

‹ �1 2 �1
‹ ‹ �1 2

1

C
C
A �!

0

B
B
@

2 �1 1
2
� 1
4

�1 2 �1 1
2

1
2
�1 2 �1

� 1
4

1
2
�1 2

1

C
C
A D M

so that the completed matrix has an inverse with zeros in the locations where entries
were missing in the original matrix:

M�1 D 1

6

0

B
B
@

4 2 0 0

2 5 2 0

0 2 5 2

0 0 2 4

1

C
C
A (9)

D 1

6

0

@
4 2

2 4

1

AC 1

6

0

BB
@
4 2

2 4

1

CC
AC

1

6

0

BB
@ 4 2

2 4

1

CC
A

�

0

B
B
@

1
2

1

C
C
A �

0

B
B
@ 1

2

1

C
C
A : (10)
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The local inverse formula assembles M�1 in (10) from the inverses of the three
repeating blocks in M



2 �1
�1 2

��1
D 1

6



4 2

2 4

�

and subtracting the inverses, .2/�1 D 1=2, of the two overlaps.
To appreciate the significance of those zeros in M�1 in (9), it helps to recall that

the derivative of the determinant with respect to the entries of the matrix is given
by a cofactor up to scaling by the determinant (this result comes quickly from the
cofactor expansion of the determinant along one row of the matrix, for example).
This leads to an especially simple form of derivative of the log-determinant, which
in the symmetric case is simply the corresponding entry of the inverse matrix:

@

@aij
log det M D .M�1/ij:

The zeros in the inverse matrix, such as appear in (9), correspond to setting
derivatives to zero, which corresponds to a local optimum. The log-determinant is
convex on the cone of symmetric positive definite matrices so a local optima is also
a global maximum in this case.

This first example suggests a second example, by generalizing to a doubly infinite
Toeplitz matrix [5]. A Toeplitz matrix is constant along diagonals: the .i; j/ entry is
a function of .i � j/, so specifying one row of the matrix completely specifies all
entries of the matrix. In the doubly infinite Toeplitz case, the entries of a row are the
Fourier series of an associated function s known as the symbol of the matrix. The
matrix completion problem becomes a problem of Fourier series for functions. We
must complete the missing Fourier coefficients for a function s so that the Fourier
series of the reciprocal function 1=s has zero coefficients corresponding to missing
entries in the Fourier series of s. For example,

0

B
B
@

: : :

� � � ‹ ‹ �1 2 �1 ‹ ‹ � � �
: : :

1

C
C
A

�1

D

0

B
B
@

: : :

� � � 0 0 ‹ ‹ ‹ 0 0 � � �
: : :

1

C
C
A

is completed to

0

B
B
@

: : :

� � � � 1
4
1
2
�1 2 �1 1

2
� 1
4
� � �

: : :

1

C
C
A

�1

D 1

6

0

B
B
@

: : :

� � � 0 0 2 5 2 0 0 � � �
: : :

1

C
C
A :
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The general principle is to complete the symbol

s.x/ D
1X

�1
akeikx with inverse

1

s.x/
D

1X

�1
bkeikx

so that bk D 0 when ak was not specified. This maximizes the log-determinant

Z 2�

0

log
1X

�1
akeikxdx

amongst symmetric positive definite Toeplitz matrices.

Banded Matrices with Banded Inverse

In very exceptional cases [16] a banded matrix can have a banded inverse. Then
the local inverse formula applies in ‘both directions’ (leading to a class of ‘chordal
matrices with chordal inverse’). This will give a (new?) algorithm for the analysis
and synthesis steps in a discrete wavelet transform (known as a filter bank)
[3, 12, 18]. Here is an example of one of the celebrated Daubechies wavelets in
this framework.

Example: A Daubechies Wavelet

Set

s D p3; B1 D



1C s 3C s
�1C s 3 � s

�
; and B2 D



3 � s 1 � s
�3 � s 1C s

�
:

Notice B1 and B2 are singular. Set

t0 D ��.3C s/ 1C s 0 0 0 0
�

and t D p32 t0

jjt0jj2
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and

b0 D � 0 0 0 0 .1C s/ 3C s
�

and b D p32 b0

jjb0jj2 :

With these definitions a matrix corresponding to a Daubechies D4 wavelet is

M D 1p
32

0

B
B
@

t
B1 B2 0
0 B1 B2

b

1

C
C
A

D

0

BB
B
B
B
BB
@

�0:8660 0:5000 0 0 0 0

0:4830 0:8365 0:2241 �0:1294 0 0

0:1294 0:2241 �0:8365 0:4830 0 0

0 0 0:4830 0:8365 0:2241 �0:1294
0 0 0:1294 0:2241 �0:8365 0:4830

0 0 0 0 0:5000 0:8660

1

CC
C
C
C
CC
A

:

Then, as desired for a wavelet basis, M is orthogonal so M�1 D M> is also banded.
(There are also important non-orthogonal wavelets with banded M and M�1.)

Early motivation for the local inverse formula came from problems with covari-
ance matrices, which are symmetric positive definite. But the local inverse formula
can also apply to matrices that are not symmetric positive definite, as in this
Daubechies wavelet matrix example.

More interestingly in the context of our present article, in this example, the local
inverse formula applies in both directions. We have

A>C�1A D M�1 (11)

(this is the local inverse formula that we have come to expect when M�1 is chordal)
and

M D A>CA

(this is not a local inverse formula, and it happens only in the special case that the
nonzero pattern of M is subordinate to the same chordal graph associated with M�1).
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The matrix A is

A D

0

B
BB
B
B
B
BB
B
B
B
B
BB
B
B
B
BB
B
B
B
B
BB
B
B
B
BB
B
B
B
@

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 1 0 0 0 0

0 0 1 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 1 0 0

0 0 0 0 1 0

1

C
CC
C
C
C
CC
C
C
C
C
CC
C
C
C
CC
C
C
C
C
CC
C
C
C
CC
C
C
C
A

:

The matrix C is block diagonal with blocks, in this order,

C1 D
0

@
�0:8660 0:5000 0

0:4830 0:8365 0:2241

0:1294 0:2241 �0:8365

1

A ; C2 D
0

@
0:8365 0:2241 �0:1294
0:2241 �0:8365 0:4830

0 0:4830 0:8365

1

A ;

C3 D
0

@
�0:8365 0:4830 0

0:4830 0:8365 0:2241

0:1294 0:2241 �0:8365

1

A ; C4 D
0

@
0:8365 0:2241 �0:1294
0:2241 �0:8365 0:4830

0 0:5000 0:8660

1

A ;

�C5 D

�0:8365 �0:2241
�0:2241 0:8365

�
; �C6 D



0:8365 �0:4830
�0:4830 �0:8365

�
;

�C7 D

�0:8365 �0:2241
�0:2241 0:8365

�
:

For the special class of matrices for which the local inverse formula applies in both
directions, and analogous to the way a block diagonal C is defined from that part of
M corresponding to the chordal graph of M0, we could also define a block diagonal
matrix D from that part of M�1 corresponding to the same chordal graph. Then

A>D�1A D M (12)
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(compared to (11), here (12) is the local inverse formula in the opposite direction,
by assembling M from inverses of blocks and overlaps in M�1) and

M�1 D A>DA:

In this example D is the same as C>, but there are other examples for which the
local inverse formula applies in both directions where D ¤ C>.

Acknowledgements The authors gratefully acknowledge a grant from The Mathworks that made
this work possible.
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Ian Sloan’s Legacy in Integral Equation
Methods

Thanh Tran

Dedicated to Ian H. Sloan on the occasion of his 80th birthday.

Abstract In almost four decades, from the early 1970s until the first decade of
this century, Ian Sloan has contributed immensely in the area of integral equation
methods for elliptic boundary value problems. A search on MathSciNet with entries
“Author=Sloan” and “Title=integral equation” reveals 44 papers. This review article
sheds some lights on this historic path.

1 Introduction

Trained as a theoretical physicist, Ian H. Sloan published his first Physics paper
in 1964 [16] and his potentially last Physics paper in 1977 [21]. Within a span of
slightly more than a decade, he published nearly 50 articles in this area of research.
This is no doubt a target that many researchers wish to achieve.

However, starting from 1968 Sloan has gradually moved away from Theoretical
Physics and ventured into Numerical Analysis. His first stop was error analysis
for numerical methods of integral equations. For four decades, he has played
a leading role in the area of integral equation methods for elliptic boundary
value problems which can be reformulated as elliptic or strongly elliptic pseudo-
differential equations.

The aim of this article is to look into this historical path to highlight Sloan’s major
contributions in the development of numerical methods for integral equations. This
is not a rigorous mathematical review article, namely that we shall not discuss in
depth the methods and the mathematics behind them. We would rather emphasise
motivations which instigate these developments and their significance.
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2 The Early Days: Motivation from Physics

Ian Sloan’s first paper in integral equations is probably a joint paper with Elvin
Moore in Journal of Physics B in 1968 [26] in which the authors studied the problem
of electron-hydrogen collisions. Later, together with his postdoc Sadhan Adhikari,1

Sloan solved singular integral equations of the Lippmann-Schwinger type arising
from the study of the two-body t-matrix in the three-body problem [1, 25]. The
degenerate-kernel method suggested in [25] is in fact an extension of Sloan’s almost
concurrent joint paper (with Brian Burn and N. Datyner) for Fredholm integral
equations of the second kind [33].

The authors of [33] consider the equation

y.t/ D f .t/C �
Z b

a
K.t; s/y.s/ ds; a � t � b; (1)

or, in the operator form,

y D f C �K y; (2)

where y and f are real- or complex-valued functions in L2.a; b/, the kernel K is
square-integrable in .a; b/ � .a; b/, and K is an integral operator defined for any
v 2 L2.a; b/ by

K v.t/ WD
Z b

a
K.t; s/v.s/ ds; a � t � b: (3)

The integral equation arising from the three-body problem that Sloan and Adhikari
considered in [1, 25], namely

T. p; p0I s/ D V. p; p0/C
Z 1

0

V. p; p00/T. p00; p0I s/
s � p002=.2�/

d p00;

is of Lippmann-Schwinger type and is a special case of (1).
The article [33], though published in a physics journal, is written in a language

that is familiar and easily understandable to pure mathematicians. Soon, Sloan
started to publish in mathematical journals [17–20]. The next section reviews some
of these early contributions.

1Adhikari later became a full Professor at the Institute of Theoretical Physics, UNESP SQao Paulo
State University, Brazil.



Ian Sloan’s Legacy in Integral Equation Methods 1129

3 A Turn of Career Path: Numerical Analysis

Being a very successful researcher in Physics, in 1970s Sloan gradually changed
his research field. Within a year or so he published three papers [18–20] in top
journals in numerical analysis, journals that numerical analysts at all times aim
to publish in: Numerische Mathematik, Mathematics of Computation, and SIAM
Journal on Numerical Analysis. These papers analyse errors in the degenerate-kernel
approximation and iterated Galerkin method.

3.1 Degenerate-Kernel Methods

In order to understand the analysis in [18, 20], a recall of the degenerate-kernel
method is required. In a degenerate-kernel approach, one seeks to approximate the
solution y of (2) by yN which is the solution to

yN D f C �KNyN ; (4)

where KN is an integral operator defined in the same manner as K , see (3), with
the kernel K.t; s/ replaced by a finite-rank operator

KN.t; s/ D
NX

nD1
˛n.t/ˇn.s/: (5)

Here the functions ˛n are assumed to be linearly independent.
The advantage of the degenerate form (5) is to reduce Eq. (4) to a system of

algebraic linear equations. This can be easily seen by seeking the solution yN in the
form

yN.x/ D f .x/C
NX

nD1
an˛n.x/:

Substituting this into (4) one finds that the coefficients an satisfy the linear system

an � �
NX

mD1
�nmam D �fn; n D 1; : : : ;N; (6)

where

fn D . f ; ˇn/ and �nm D .˛m; ˇn/:
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Here, .�; �/ is the L2-inner product defined by

.u; v/ D
Z b

a
u.s/v.s/ ds; u; v 2 L2.a; b/:

This method is not new. Indeed, earlier works by Russian mathematicians [8, 13]
have studied this topic. The authors of these monographs suggest to define KN.t; s/
so as to constructKN to be a good approximation toK , as an operator. For example,
one can define KN.t; s/ as the Taylor polynomial of degree N of K.t; s/; see [8, 13].

Contrarily, Sloan and his co-authors in [33] try to approximate K in the context
this operator actually occurs in the integral equation. In other words, they aim at
finding a good approximation of K y by KNyN . Thus these authors construct KN in
such a way that

KNu D K u 8u 2 VN ; (7)

where VN is a finite-dimensional space (to be specified later) that contains a good
approximation to y. Needless to say, if y 2 VN then the approximation is exact.

For (7) to hold, Sloan et al define KN by

KN.t; s/ D
NX

m;nD1
Kun.t/Dnmvm.s/; (8)

where fu1; : : : ; uNg is a linearly independent set of functions in L2.a; b/ to be chosen
for their suitability as a basis set for approximating y, the set fv1; : : : ; vNg is a
second linearly independent set in L2.a; b/ to be specified later, and where the
coefficients Dnm are entries of a matrix whose inverse has entries defined by

.D�1/mn D .un; vm/; m; n D 1; : : : ;N: (9)

The invertibility of D imposes a condition on the choice of the set fv1; : : : ; vNg. It is
true that, regardless of the choice of this set, the definition (8) of KN.t; s/ implies (7)
with VN D spanfu1; : : : ; uNg: Indeed, for any j D 1; : : : ;N we have

KNuj.t/ D
NX

nD1

NX

mD1
Dnm.uj; vm/Kun.t/ D

NX

nD1
ınjKun.t/ DKuj.t/;

where ınj is the Kronecker delta. A simple choice of vj is vj D uj, j D 1; : : : ;N. This
choice ensures the invertibility of D because the matrix with entries defined by (9)
is a Gram matrix. For convergence analysis, it is assumed in [20] that fung and fvng
are complete sets in L2.a; b/.

There is another benefit of defining KN by (8), which can be seen in the error
analysis of the approximation. Let PN be the orthogonal projection into VN . Then it
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follows from (7) that

KNPN DK PN ;

and hence that

.K �KN/y D .K �KN/. y � PNy/:

This implies

k.K �KN/yk � kK �KNkk y � PNyk;

where the norms are the usual norm in L2.a; b/ and the corresponding operator
norm. A conventional analysis for degenerate-kernel methods makes use of the
estimate

k.K �KN/yk � kK �KNkk yk:

The difference can be seen in the following theorem.

Theorem 1 ([20, Theorem 1]) Let ˘N W L2.a; b/ ! VN be a linear operator
defined by

˘Nu D
NX

iD1

� NX

jD1
Dij.u; vj/

	
ui: (10)

If there exists M > 0 such that

k˘Nk � M; (11)

then

k y � yNk � ˇNk y � PNyk; (12)

where

ˇN D j�jk.I � �KN/
�1kkK �KNk ! 0 as N !1:

It can be seen that

˘Nu D u 8u 2 VN :

Hence ˘2
N D ˘N , i.e., ˘N is a projection onto VN . However, in general ˘N is

different from the orthogonal projection PN .



1132 T. Tran

More discussion for the simple choice vi D ui, i D 1; : : : ;N, is worthwhile. The
definitions (10) and (9) yield, for n D 1; : : : ;N,

.˘Nu; un/ D
NX

iD1

� NX

jD1
Dij.u; uj/

	
.ui; un/ D

NX

jD1

� NX

iD1
.D�1/niDij

	
.u; uj/

D
NX

jD1
ınj.u; uj/ D .u; un/:

This means ˘N D PN , so that (11) holds due to k˘Nk D 1. Moreover, the

representation yN D
NX

nD1
anun, (4), and (7) imply

yN D f C �K yN D f C �
NX

nD1
anKun; (13)

so that the coefficients an satisfy the system of N linear equations

NX

nD1

�
.un; um/ � �.Kun; um/

�
an D . f ; um/; m D 1; : : : ;N: (14)

(In fact the same system holds true for any choice of vi, not necessarily vi D ui.)
The method described above is very similar to the method of moment described

in [8, 13], for which the solution ymom
N DPN

nD1 bnun 2 VN satisfies

ymom
N D PNf C �PNK ymom

N ;

or

. ymom
N � �K ymom

N ; um/ D . f ; um/; m D 1; : : : ;N:

Substituting the representation of ymom
N into the above system results in the same

linear system (14), so that an D bn. This and (13) imply

yN D f C �K ymom
N : (15)

In other words, yN and ymom
N are related by a single iteration of the integral equation

or more precisely of the operator . fI C �K / with I being the identity operator.
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More can be said about the errors k y � yNk and k y � ymom
N k. Recalling that PN

is the orthogonal projection from L2.a; b/ onto VN and that y � ymom
N D PN

.y�ymom
N /C .I�PN/.y�ymom

N / we have (due to orthogonality and ymom
N D PNymom

N )

k y � ymom
N k2 D kPN. y � ymom

N /k2 C k.I � PN/. y � ymom
N /k2

D kPN. y � ymom
N /k2 C k y � PNyk2

� k y � PNyk2:

This together with (12) gives

k y � yNk � ˇNk y � ymom
N k; (16)

which shows that for sufficiently large N, the error in the method suggested by Sloan
et al. in [18, 33] is smaller than that of the method of moment suggested in [8, 13].

Numerical experiments carried out in [18, 33] underline the theoretical result
proved in Theorem 1 and support the above observation.

Motivated by Sloan [18], in the same year Sloan wrote two other papers, one
published in Mathematics of Computation [19] which proposed an iteration method
to improve the approximation of solution of integral equations, and another in SIAM
Journal on Numerical Analysis [20] which discussed the same issue for eigenvalue
problems. That is the topic of the next subsection.

3.2 Iterated Galerkin

The paper [19] is concerned with the approximate solution of the equation

y D f CK y; (17)

where f and y belong to a separable Hilbert space H, and K is a compact linear
operator in H. Note that the integral operator K in (2) is a compact linear operator
in H D L2.a; b/ if the kernel K is square-integrable in .a; b/� .a; b/.

To generalise his observation (15) and (16), Sloan shows that from an approxi-
mation of y, either by the best approximation, or the Galerkin or collocation solution
of (17), one can obtain a better approximation by use of an iteration of the form (15).

More precisely, let fuig be a complete sequence in H (which exists due to
the assumption that H is separable), and let VN D spanfu1; : : : ; uNg: Denoting
by PVN the orthogonal projection from H onto VN , it is known that PVN y D
argminz2VN

k y � zk: It is proved in [19, Theorem 1] that if y.1/N D PVN y and

y.2/N D f CK y.1/N (18)
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then

k y � y.2/N k � ˛Nk y � y.1/N k;

where ˛N D kK �K PNk ! 0 as N !1. This means an iteration of the form (18)
yields an approximation that converges faster.

Similarly, [19, Theorem 3] shows that if y.1/N 2 VN is the (Bubnov- or Petrov-)

Galerkin solution to (17), and y.2/N is defined by (18), then

k y � y.2/N k � ˇNk y � y.1/N k;

where ˇN ! 0 as N !1. An explicit form for ˇN is given in [19]. It is noted that
the computation of y.2/N for Galerkin solutions can be carried out without extra work,
since the Galerkin methods already require the calculation of the quantitiesKui, i D
1; : : : ;N. For instance, in the case of the Bubnov-Galerkin method one finds y.1/N DPN

iD1 aN;iui 2 VN by solving

NX

iD1
aN;iŒ.ui; uj/ � .Kui; uj/� D . f ; uj/; j D 1; : : : ;N:

A repeated iteration of the form (18) gives an even faster convergence. Super-
convergence of the Galerkin iterates for this type of equations is analysed in a joint
paper with Thomée [28].

The paper [20] performs the same study for the approximation of the solution of
the eigenvalue problem

y D �K y;

where K is a compact linear operator in a complex Banach space E. We omit the
details.

All the above-mentioned equations are Fredholm integral equations of the second
kind. It is in the late 1980s that Sloan switched his interest to Fredholm integral
equations of the first kind. For almost a decade, he spent efforts to develop
quadrature-based approaches to improve the collocation method. It can be said that
with these achievements he put his stamp on the integral equation method.

4 The Pinnacle: The Qualocation Method

Sloan coined the term the qualocation method in his 1988 paper [22] and the
nomenclature technically means a quadrature-based generalisation of the colloca-
tion method. Some American author [35] amusingly refers to this method as the
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koalacation method, because according to them the method was introduced and
mostly developed in Australia.

In fact, in [22] the author’s address was Mathematisches Institut A, Universität
Stuttgart, Federal Republic of Germany (with his permanent address being the
School of Mathematics, University of New South Wales, Australia). This indicates
that the work was carried out during Sloan’s sabbatical leave sometime in 1987 at
Stuttgart, where Wolfgang Wendland, one of the founders of theories of boundary
integral equation methods, was based. One can guess that Wendland’s works on
first-kind Fredholm integral equations stimulated Sloan to change his interests from
Fredholm integral equations of the second kind (inherited from his Physics years)
to equations of the first kind.

Roughly speaking, the qualocation method is a compromise between the
Galerkin and collocation methods, which aims to achieve the benefits of the
Galerkin method at the cost comparable to the collocation method.

Before starting to discuss qualocation methods, it is worth reviewing the two
well-known collocation and Galerkin methods.

4.1 The Collocation and Galerkin Methods

Some notations are required. We denote the inner product for 1-periodic functions
by .u; v/ WD R 1

0
uv. With I denoting the interval Œ0; 1/ D R=Z and n W I ! C

the exponential function n.x/ D ei2�nx we define the Fourier coefficients of a 1-
periodic function u W I ! C by Ou.n/ D .u; n/. For any s 2 R, the Sobolev space Hs

is defined by

Hs WD fv W Œ0; 1/! C W kvk2s WD j Ov.0/j2 C
X

n2Z
jnj2sj Ov.n/j2 <1g:

In [4], Chandler and Sloan considered the equation

L u D f ; (19)

in which L is a pseudo-differential operator ( do) of order ˇ 2 R. More precisely,

L D L0 CK ; (20)

where the principal part L0 is defined by

L0v WD
X

n2Z
Œn�ˇ Ov.n/n 8v 2 Hs; (21)
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with Œn�ˇ defined by

Œn�ˇ WD
(
1; n D 0;
jnjˇ; n 6D 0; (22)

or

Œn�ˇ WD
(
1; n D 0;
.sign n/jnjˇ; n 6D 0: (23)

Hence, L0 is an isometry from Hs to Hs�ˇ for all s 2 R. The operatorK is required
to be a mapping from Hs to Ht for all s; t 2 R. In practice, it is an integral operator
with a smooth kernel, which is a compact perturbation of L0 and plays only a minor
role in the analysis.

Examples of the  do L can be found in [15]. We present one example arising
from the solution of the Dirichlet problem for the Laplacian, i.e,

�˚ D 0 in ˝;

˚ D ˚D on �:
(24)

Here ˝ is a simply connected bounded domain in R
2 with smooth boundary � . It

is well known that for x 2 ˝ , the potential ˚.x/ can be represented as

˚.x/ D 1

2�

Z

�

@˚

@n
.y/ log

˛

jx � yj d�y� 1

2�

Z

�

˚D.y/
@

@ny
log

˛

jx� yj d�y; (25)

for any positive parameter ˛. By passing to the limit when x approaches a point on
the boundary � and using the jump relations (see e.g. [9]) one can prove that U WD
@˚=@n satisfies

1

2�

Z

�

U. y/ log
˛

jx� yj d�y D F.x/; x 2 �; (26)

where

F.x/ D 1

2
˚D.x/C 1

2�

Z

�

˚D.y/
@

@ny
log

˛

jx � yj d�y; x 2 �:

Hence, finding ˚ reduces to finding U by solving the boundary integral Eq. (26),
a Fredholm integral equation of the first kind. Introducing a parametrisation of
the smooth curve � by a 1-periodic smooth function � W R ! � which
satisfies j� 0.x/j 6D 0, we can rewrite (26) as

Z 1

0

log
˛

j�.x/� �. y/ju. y/ dy D f .x/; x 2 Œ0; 1�; (27)
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where

u.x/ D 1

2�
UŒ�.x/�j� 0.x/j and f .x/ D FŒ�.x/�; x 2 R: (28)

Since

log
˛

j�.x/� �. y/j D log
˛

j2 sin.�.x � y//j C log

ˇ̌
ˇ
ˇ
�.x/� �. y/

2 sin.�.x � y//

ˇ̌
ˇ
ˇ

D log˛ C
1X

mD1

1

m
cos.2�m.x � y//C log

ˇ
ˇ
ˇ
ˇ
�.x/� �. y/

2 sin.�.x � y//

ˇ
ˇ
ˇ
ˇ ;

Eq. (27) can be written in the form (19) with L0 defined by

L0v.x/ D .log˛/ Ov.0/C
X

n2Z

Ov.n/
2jnj e

i2�nx (29)

and K by

K u.x/ D
Z 1

0

u. y/ log

ˇ̌
ˇ
ˇ
�.x/� �. y/

2 sin.�.x � y//

ˇ̌
ˇ
ˇ dy: (30)

Thus L is a  do of order ˇ D �1. The parameter ˛ is chosen to be greater than
the logarithmic capacity of � so that L satisfies

.L v; v/ � ckvk2H�1=2 8v 2 H�1=2:

For an explanation of the logarithmic capacity, see [6].
It is noted that if � is the unit circle then K D 0 and L D L0. It is also

noted that the Fourier mode v.x/ D ei2�kx for k 6D 0 is an eigenfunction of L0 with
eigenvalue 1=.2jkj/.

We now return to the general Eq. (19). Two classical methods to solve this equa-
tion are the collocation method and the Galerkin method. Consider for simplicity a
uniform partition of the (periodic) interval Œ0; 1/ by xk D kh with h D 1=N being the
step-size, and use the periodic labelling convention, xkCN D xk for all k. We denote
bySr

h the space of smoothest splines of order r � 1 on the partition fxkg, namely,Sr
h

contains functions vh 2 Cr�2 which are polynomials of degree not greater than r�1
on each sub-interval Œxk; xkC1�. The space S1

h contains piecewise-constant functions,
whereas S2

h contains continuous piecewise-linear functions.
The standard collocation method approximates u by uc

h 2 Sr
h satisfying

L uc
h.x

c
k/ D f .xc

k/; k D 0; 1; : : : ;N � 1; (31)
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where

xc
k D

(
xk if r is even,

.xk C xkC1/=2 if r is odd.

The Galerkin method approximates u by uG
h 2 Sr

h satisfying

.L uG
h ; v/ D . f ; v/ 8v 2 Sr

h: (32)

Under some conditions on r so that both the collocation and Galerkin methods are
well defined, then both methods achieve the optimal error estimate

ku � uc
hks � Cht�skukt and ku � uG

h ks � Cht�skukt:

However, for the collocation method it is required that

ˇ � s � t � r; s < r � 1=2; and ˇ C 1=2 < t;

whereas for the Galerkin method s and t satisfy

ˇ � r � s � t � r and s < r � 1=2:

Therefore, the highest orders of convergence for the two methods are

ku � uc
hkˇ � Chr�ˇkukr and ku � uG

h kˇ�r � Ch2r�ˇkukr: (33)

Note that for negative values of ˇ, both norms on the left-hand sides of
the estimates in (33) are negative norms. The importance of a higher order of
convergence in a negative norm can be seen by considering again the example
discussed above with the Dirichlet problem for the Laplacian in ˝ , which entails
the solution to the logarithmic-kernel integral Eq. (27). Recall that for this problem
ˇ D �1; see (21). With r D 2 so that uc

h and uG
h are continuous piecewise-linear

functions, (33) becomes

ku � uc
hk�1 � Ch3kuk2 and ku � uG

h k�3 � Ch5kuk2: (34)

On the other hand, it follows from (25)–(28) that

˚.x/ D
Z 1

0

u. y/ log
˛

jx � �. y/j dy� 1

2�

Z

�

˚D.y/
@

@ny
log

˛

jx � yj d�y; x 2 ˝:
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Hence, the potential˚ being the solution of (24) can be approximated by˚ c
h and˚G

h
computed from uc

h and uG
h , respectively, as follows:

˚ c
h.x/ D

Z 1

0

uc
h. y/ log

˛

jx � �. y/j dy � 1

2�

Z

�

˚D.y/
@

@ny
log

˛

jx � yj d�y; x 2 ˝;

˚G
h .x/ D

Z 1

0

uG
h . y/ log

˛

jx � �. y/j dy � 1

2�

Z

�

˚D.y/
@

@ny
log

˛

jx � yj d�y; x 2 ˝:

Hölder’s inequality and (34) give, for x 2 ˝ ,

j˚.x/ �˚ c
h .x/j �

�
�� log

˛

jx � �.�/j
�
��
1
ku � uc

hk�1 � Ch3kuk2;

j˚.x/� ˚G
h .x/j �

��
� log

˛

jx � �.�/j
��
�
3
ku � uG

h k�3 � Ch5kuk2:

Clearly, the Galerkin method yields a better approximation for ˚.x/. However, this
method is harder to implement than the collocation method, as the left-hand side
of (32) involves the evaluation of two integrals, compared to one integral evaluation
in (31).

The aim of the qualocation method is to achieve at least the same order of
convergence obtained by the Galerkin method, at the cost comparable to the
collocation method. Between 1987 and 2000, one witnesses different stages of
development of qualocation. In his review paper [24] Sloan names them first-
generation and second-generation qualocation methods.

4.2 First-Generation Qualocation

The qualocation method is a discrete version of the Galerkin method in which the
outer integral in (32) is approximated by a composite quadrature rule determined by
points �j and weights wj satisfying

0 � �1 < � � � < �J < 1; wj > 0 and
JX

jD1
wj D 1: (35)

The qualocation rule is defined by

QN. f / WD h
N�1X

kD0

JX

jD1
wjf .xk C h�j/ 


Z 1

0

f .x/ dx; (36)
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which in turn allows us to define the discrete inner product

. f ; g/h WD QN. f g/: (37)

Hence, instead of solving (32) we solve

.L uq
h; vh/h D . f ; vh/h 8vh 2 Sr

h (38)

for uq
h 2 Sr

h. The initial results for this method were first obtained in [22, 30] and
later generalised in [4].

There is great freedom in the choice of the quadrature rule QN in (36). Instead of
the usual choices such as composite Simpson’s rule or composite Gaussian rule,
Sloan aims at finding rules most profitable to the problem at heart, namely L
andSr

h.2 It should be emphasised that in the implementation of the Galerkin method,
i.e., in solving (32), in general one has to apply a quadrature rule at least to the outer
integral in this equation. The development of the qualocation method aims to choose
a rule most beneficial to the solution.

Defining

�N WD
�
� 2 Z W �N

2
< � � N

2

�
;

we note that [2] for any v 2 Sr
h there holds

Ov.m/ D
��

m

	r Ov.�/ if m � �;m 6D 0:

The idea of qualocation is to choose the quadrature so that for � 2 �N , the Fourier
coefficients Ouq

h.�/ � Ou.�/ behave like O ..�=N/�// for a large value of �. More
details on choices of QN depending on L and Sr

h can be found in [4].
To illustrate the method we go back to our example of the logarithmic-kernel

integral Eq. (27), with Sr
h D S2

h. For this problem, a 2-point rule (i.e., J D 2) is
used, namely,

�1 D 0; �2 D 1=2; w1 D 3=7; and w2 D 4=7: (39)

Analogously to (34) we now have

ku � uq
hk�4 � Ch5kuk4; (40)

2We have seen this unconventional approach in Sloan’s development of degenerate-kernel methods,
where he aims at finding a good approximation of K y by KNyN , differently to the traditional
approach of finding a good approximation KN.t; s/ to the kernel K.t; s/; see Sect. 3.1 and (7).



Ian Sloan’s Legacy in Integral Equation Methods 1141

which means the qualocation method in this case achieves the same highest order
of convergence as the Galerkin method. Interestingly, the same estimate is achieved
for the same rule (39) with Sr

h D S1
h. In this case, the qualocation method performs

better than the Galerkin method, as the latter achieves an order of convergence of 3
only; cf. (33).

It is not surprising that the advantage of the qualocation over the Galerkin
method is obtained at the cost of an extra requirement on the regularity of the
exact solution u. In general, with suitable choice of �j and wj, j D 1; : : : ; J, so that
the qualocation method is well defined and stable, analogously to (33), the method
achieves the following highest order of convergence:

ku � uq
hkˇ�b � ChrCb�ˇkukrCb (41)

for some additional order of convergence b � 0. Details of the derivation of different
rules can be found in [4]. It is noted that if b > r then the qualocation method
achieves a higher order of convergence than the Galerkin method; cf. (33). For the
example discussed above which yields the estimate (40), b D 2 when r D 2 and
b D 3 when r D 1.

Before moving to the next part on the second-generation qualocation methods,
we note that both the Galerkin and qualocation methods can be defined with a test
space different from the trial space. We seek uG

h ; u
q
h 2 Sr

h satisfying

.L uG
h ; vh/ D . f ; vh/ and .L uq

h; vh/h D . f ; vh/h 8vh 2 Sr0

h : (42)

This version of the Galerkin method is called the Petrov-Galerkin method.

4.3 Second-Generation Qualocation

The second-generation qualocation rules are defined for  do L defined with
principal symbols being combinations of (22) and (23). The operator has the form

L v WD bCL ˇ
Cv C b�L ˇ�v CK v; (43)

where b˙ are 1-periodic complex-valued C1 functions, and L
ˇ
C is defined by (21),

(22), whereas L ˇ� is defined by (21), (23). The operator K can include any
combination of  do’s of lower order:

K WD
1X

iD0
ai;CL

ˇ�i
C C ai;�L ˇ�i� CK 0;

where ai;˙ belongs to C1 with only a finite number of the ai;˙ 2 C1 allowed to
be nonzero, and K 0 is an integral operator with a kernel which is a C1 function of
both variables.
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An example is the singular integral equation

A.x/U.a/CB.x/
i�

Z

�

U. y/
y � x

dyCC.x/
Z

�

K.x; y/U. y/ dy D F.x/; x 2 �; (44)

where� is a smooth curve in the complex plane, A, B, C are smooth complex-valued
functions, and K is a given weakly singular kernel of the form

K.x; y/ WD log jx � yj C K0.x; y/

with K0 a C1 function of both variables. With � parametrised by the C1 function �
and with a.x/ WD A.�.e2� ix/ and b.x/ WD B.�.e2� ix/.

A convergence of the type (41) is proved for the general Eq. (43); see [31, 32].

4.4 Tolerant Qualocation

It is observed from (41) that the extra order of convergence is obtained at the
expense of extra smoothness requirement on the exact solution. The tolerant
qualocation methods developed in [34] for first generation methods, and in [29]
for second generation methods remove this requirement. The remedy is to replace
the quadrature on the right-hand side of (38) by an exact integral. More precisely,
we approximate the solution u of (19) by utq

h 2 Sr
h satisfying

.L utq
h ; vh/h D . f ; vh/ 8vh 2 Sr0

h : (45)

This seemingly small change has profound effects. In the first place, it turns out
that it eliminates the extra smoothness requirement: the smoothness requirement is
now exactly the same as in the corresponding Petrov-Galerkin method. However,
this small change necessitates a redesign of the qualocation method, and fresh
convergence analysis, even though the techniques are traditional for the analysis
of the collocation and qualocation methods.

The following error estimate is obtained for tolerant qualocation methods

kutq
h � uks � cht�skukt

where

ˇ � b � s � t � r; s < r � 1=2; and ˇ C 1=2 < t:

Here the additional order of convergence b satisfies 0 < b � r0 and is obtained by
an appropriate choice of the quadrature rule (36).
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In the implementation, the exact integral on the right-hand side of (45) can
be calculated by using an appropriate Gaussian quadrature, as in the case of the
Galerkin method.

5 Other Contributions

Almost contemporaneously with the development of the qualocation method, Sloan
and his co-authors made other contributions in the analyses of the equations

�
Z

�

log jt � sj y.s/ d`s D f .t/; t 2 �

and

�
Z

�

log jt � sjz.s/ d`s C ! D f .t/; t 2 �;
Z

�

z.s/ d`s D b;

where � is a rectifiable open or closed curve in the plane, y is the unknown in
the first equation, whereas z and ! are unknowns in the second, while f is a given
function and b is a given real number.

In [27] Sloan and Spence develop a robust yet conceptually simple analysis of the
Galerkin method for the above equations. The method is robust in the sense that it
copes easily with � being an open arc, a smooth and closed curve, or the boundary
of a region with corners and cusps. Their approach abandons the coercivity property
which is employed in previous works by e.g. Le Roux [11], Hsiao and Wendland [7],
Richter [14], Wendland [36], and Chandler [3]. As a consequence, they are no longer
concerned with the special function spaces that one usually has to resort to in the
presence of corners; see e.g. Costabel and Stephan [5] and McLean [12].

Another approach for open curves, closed curves, and polygons, using Fourier
analysis is developed by Yan and Sloan in [37]. They also consider mesh grading in
the case of domains with corners [38]. An analysis for the first-kind integral equation
arising from the Helmholtz equation is carried out together with Kress in [10].

Sloan’s survey paper [23] presents a nice introduction to boundary integral
equation methods and summarises the above-mentioned results.

6 Conclusion

Over a period of almost four decades, starting as a theoretical physicist and by using
unconventional approaches, Ian Sloan has played a leading role and contributed
significantly in the area of numerical methods for boundary integral equations.
His tireless research activities do not stop there. After qualocation he moved to
numerical integration, lattice rules, quasi-Monte-Carlo methods, and the many other
topics.
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A Qualocation Method for Parabolic
Partial Integro-Differential Equations in
One Space Variable

Lok Pati Tripathi, Amiya K. Pani, and Graeme Fairweather

Dedicated to Ian H. Sloan on the occasion of his 80th birthday.

Abstract In this article, a qualocation method is formulated and analyzed for
parabolic partial integro-differential equations in one space variable. Using a new
Ritz–Volterra type projection, optimal rates of convergence are derived. Based
on the second-order backward differentiation formula, a fully discrete scheme is
formulated and a convergence analysis is derived. Results of numerical experiments
are presented which support the theoretical results.

1 Introduction

During the last several decades, much attention has been devoted to the formulation,
analysis and implementation of collocation methods involving smoothest splines
for the approximate solution of second-order two-point boundary value problems
(TPBVPs) and for the spatial discretization in time dependent partial differential
equations. Invariably, these methods use C2 cubic splines and are of suboptimal
accuracy. Oft ignored is the work of de Boor [14] who proved that C2 cubic nodal
spline approximations for TPBVPs cannot be more than second order accurate
when one would expect fourth order accuracy. Also overlooked are the fundamental
works of Archer [4, 5] and Daniel and Swartz [18] who devised optimal nodal
spline collocation methods based on a perturbed differential equation. Optimal nodal
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cubic spline collocation methods for TPBVPs and elliptic problems have also been
developed in [1, 2, 6, 7, 10]. Similar work was carried out by Houstis et al. [25] for
C1 quadratic spline collocation for TPBVPS, by Christara [16] for elliptic problems
in two space variables and by Christara et al. [17] for parabolic problems in one
space variable; see also [12, 22].

The drawback of these optimal methods is that, in general, they require the spatial
mesh to be uniform. In [29], a cubic spline method for linear second-order TPBVPs,
called a qualocation method is formulated and analyzed. This method can be viewed
as a Petrov–Galerkin method using a cubic spline trial space, a piecewise linear test
space, and a simple quadrature rule for the integration (compound Simpson’s rule
or compound two-point Gauss quadrature), and may also be considered a discrete
version of the H1-Galerkin method. It is proved that the error in the Wi

p norm for
i D 0; 1; 2, 1 � p � 1 is of order 4� i. A key feature of this method is that it allows
an arbitrary mesh. The results in [29] were generalized to higher order TPBVPS
using higher order smoothest splines in [23, 24]. Jones and Pani [26] considered
qualocation for a semilinear second-order TPBVP and derived optimal estimates
in the Wi

p norm for i D 0; 1; 2, 1 � p � 1. Pani [28] considered qualocation
for the spatial discretization in the numerical solution of a semilinear parabolic
problem in one space variable and both the linearized backward Euler method
and the extrapolated Crank–Nicolson scheme for the time-stepping, and established
optimal estimates. This method is further generalized to a one dimensional Stefan
problem in [27] and optimal error estimates derived. For the solution of elliptic,
parabolic and hyperbolic equations in two space variables using a qualocation-like
approach for the spatial discretization, see [8, 9, 11, 13].

In this paper, we formulate a qualocation method for the parabolic partial integro-
differential equations in one space variable of the form

ut.x; t/ �A u.x; t/ DB.t/u.x; t/C f .x; t/; .x; t/ 2 I � J; (1a)

subject to the boundary conditions

u.0; t/ D u.1; t/ D 0; t 2 J; (1b)

and the initial condition

u.x; 0/ D u0.x/; x 2 I; (1c)

where I WD .0; 1/, J WD .0;T� with T < 1; and the operators A and B are of the
form of

A u.x; t/ WD uxx.x; t/�b.x/ux.x; t/�c.x/u.x; t/; B.t/u.x; t/ WD
tZ

0

B.t; s/u.x; s/ds;

with

B.t; s/u.x; s/ WD uxx.x; s/C b1.xI t; s/ux.x; s/C c1.xI t; s/u.x; s/:
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We assume that u0, f , b, c, b1, and c1 are sufficiently smooth.
The major contributions of this article are the following.

• Using the Ritz–Volterra projection introduced in Sect. 3, we derive optimal error
estimates for the semidiscrete case in Sect. 4.

• Replacing the time derivative by the second order backward differentiation
formula (BDF2) and the integral in time by compound trapezoidal rule, we obtain
a fully discrete scheme for which optimal estimates are established in Sect. 5.

• Finally in Sect. 6, we present the results of numerical experiments which confirm
our theoretical findings.

2 Preliminaries

For I D .0; 1/, m 2 N [ f0g and p 2 Œ1;1�, the spaces Cm.I/, C.I/ D C0.I/,
Wm;p.I/, Wm;p

0 .I/, Lp.I/ D W0;p.I/, Hm.I/ D Wm;2.I/ and Hm
0 .I/ D Wm;2

0 .I/
are the standard function spaces introduced in [3]. Further, for a Banach space
X , the spaces Wm;p.0;TIX /; T > 0, Lp.0;TIX / D W0;p.0;TIX / and
Hm.0;TIX / D Wm;2.0;TIX / denote the standard Banach valued (X -valued)
function spaces introduced in [19]. The norm corresponding to a Banach space X
will be denoted by k � kX . We shall frequently use the following notations also

k � k D k � kL2 ; k � km D k � kHm and k � km;p D k � kWm;p :

The weak formulation of the problem (1a)–(1c), which is appropriate for the H1-
Galerkin formulation, is defined to be a function u W Œ0;T� ! H2 \ H1

0 such that

�.ut; vxx/C .A u; vxx/ D �.B.t/u; vxx/� . f ; vxx/; v 2 H2 \ H1
0 ; t 2 J; (2a)

u.0/ D u0: (2b)

Given M � 1, let 0 D x0 < x1 < � � � < xM D 1 be an arbitrary partition of Œ0; 1�
with the property that h! 0 as n!1, where

Ii D Œxi�1; xi�; hi D xi � xi�1; i D 1; � � � ;M;

and h D max
1�i�M

hi:

Let Sh WD f� 2 C2.NI/ W �jIi 2 P3; i D 1; � � � ;Mg;
S0h WD f� 2 Sh W �.0/ D �.1/ D 0g;

and

Th WD f�xx W � 2 S0hg D fv 2 C.NI/ W vjIi 2 P1; i D 1; � � � ;Mg;
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where Pm is the space of polynomials of degree� m.
In the standard H1-Galerkin procedure for the solution of (1a)–(1c), we seek a

function Nuh W Œ0;T�! S0h satisfying

�.Nuh;t; �xx/C .A Nuh; �xx/C .B.t/Nuh; �xx/ D �. f ; �xx/; � 2 S0h; t 2 J; (3)

with uh.0/ given.
In practice, the integrals in (3) are rarely evaluated exactly. Therefore, we replace

the exact inner product .�; �/ by the discrete approximation h�; �i, where

hv;wi D Qh.vw/;

and Qh is the fourth-order composite 2-point Gauss quadrature rule given by

Qhg D 1

2

MX

iD1
hiŒg.xi;1/C g.xi;2/�; (4)

with

xi;` D 1

2
.xi C xi�1/C .�1/` hi

2
p
3
; ` D 1; 2:

The resulting scheme is a quadrature based modification of the collocation method
often called a qualocation method. For the quadrature error

�h.g/ WD
Z 1

0

g.x/dx� Qh.g/;

a use of Peano Kernel Theorem [20] yields the following error bound:

j�h.g/j � C
MX

iD1
h4i kg.4/kL1.Ii/: (5)

The qualocation approximation of (2a)–(2b) is then defined to be a function uh W
Œ0;T�! S0h satisfying

� huh;t; �xxi C hA uh; �xxi C hB.t/uh; �xxi D � h f ; �xxi ; � 2 S0h; t 2 J; (6a)

uh.0/ D u0h; (6b)

which is equivalent to find a function uh W Œ0;T�! S0h satisfying

� huh;t; vi C hA uh; vi C hB.t/uh; vi D � h f ; vi ; v 2 Th; t 2 J; (7a)

uh.0/ D u0h; (7b)
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where u0h is a suitable approximation of u0 in S0h to be defined later. In the conver-
gence analysis, we use (6a)–(6b) whereas we employ (7a)–(7b) in computations.

The semidiscrete problem (6a)–(6b) leads to a system of linear integro-
differential equations. An application of Picard’s theorem yields the existence
of a unique solution of (6a)–(6b) for t 2 J.

The following result which is used to derive some basic inequalities is stated
without proof. For a proof, see [21].

Lemma 1 For all f and g in Sh,

� h f ; gxxi D . fx; gx/ � fgxj10 C
1

1080

MX

iD1
. fxxx;i/.gxxx;i/h

5
i ;

where fxxx;k is the (constant) value of the third derivative of f and g in Ik.

From Lemma 1,

� hv; vxxi � kvxk2; v 2 S0h:

From (5), it follows that

h p; 1i D
Z 1

0

pdx; p 2 P3:

Hence,

hvxx; vxxi WD ŒŒvxx��
2 D kvxxk2; v 2 Sh: (8)

Moreover, from [21],

ŒŒvx��
2 � kvxk2; v 2 Sh: (9)

Throughout this paper, C denotes a generic positive constant whose dependence can
be traced from the proof.

3 The Ritz–Volterra Type Projection and Related Estimates

Let Qu W Œ0;T�! S0h be the projection of u defined by

hA .u � Qu/; �xxi C hB.t/.u � Qu/; �xxi D 0; 8� 2 S0h: (10)
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In order to prove the existence of a unique solution Qu.t/ 2 S0h of (10) for a given

u.t/; t 2 Œ0;T�, we choose figMC1
iD1 as a basis for S0h, and write Qu.t/ D

MC1X

jD1
˛j.t/j.

On substituting Qu.t/ in (10) and choosing � D i; i D 1; 2; : : : ;M C 1, we obtain
the system

E˛.t/C
Z t

0

F.t; s/˛.s/ds D G.t/; (11)

where

˛.t/ WD Œ˛1.t/; ˛2.t/; : : : ; ˛MC1.t/�T ; E D .Ei;j/
MC1
i;jD1; Ei;j D

˝
A j; ixx

˛
;

F.t; s/ D .Fi;j.t; s//
MC1
i;jD1 ; Fi;j.t; s/ D

˝
B.t; s/j; ixx

˛
;

G.t/ D .Gi.t//
MC1
iD1 ; Gi.t/ D hA u.t/CB.t/u.t/; ixxi :

For sufficiently small h, E is invertible (see [29]) and hence (11) can be written as a
system of linear Volterra equations of the form

˛.t/C
Z t

0

eF.t; s/˛.s/ds D eG.t/;

where eF D E�1F and eG D E�1G. Using Picard’s theorem there exists a unique
solution ˛.t/ of this system. Thus, for sufficiently small h, the problem (10) has a
unique solution.

In the following lemma, we derive estimates of � WD u � Qu.

Lemma 2 Let u 2 W2;1.0;TIW6;p.I//; p 2 Œ1;1�; and � satisfy (10). Then, for
sufficiently small h and i D 0; 1; 2;
���
�
@j

@tj
�.t/

���
�

i;p

� Ch4�i

 
jX

lD0

���
�
@l

@tl
u.t/

���
�
6;p

C
Z t

0

ku.s/k6;pds

!

; j D 0; 1; 2; p 2 Œ1;1�:

Proof With

A � WD  xx C .b /x � c ;

let  be the unique solution of

A � D  in I; (12a)

 .0/ D  .1/ D 0; (12b)
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satisfying

k k2;q � CkA � kLq D CkkLq ; (13)

where 1
p C 1

q D 1.

For � 2 S0h and  2 Lq, (12a) and (10) yield

.�; / D .A �;  /

D .A �;  � �xx/C .A �; �xx/� hA �; �xxi C hA �; �xxi
D .A �;  � �xx/C �h..A �/�xx/C �h..B.t/�/�xx/

� .B.t/�; �xx �  / � .B.t/�;  /:
With �xx D  h D Ih , where Ih is the piecewise linear interpolant of , and using
estimate (a) in [29, Lemma 4.2], we obtain

j.�; /j � kA �kLpk � Ih kLq C j�h..A �/.Ih //j C j.�h..B.t/�/.Ih //j

C kB.t/�kLpk � Ih kLq C
ˇ̌
ˇ
ˇ

Z t

0

.�;B�.t; s/ /ds

ˇ̌
ˇ
ˇ

� C

(

h2k�k2;pk k2;q C .hk�kLp C h4kuk6;p/kIh k1;q

C
�

h
Z t

0

k�.s/kLp dsC h4
Z t

0

ku.s/k6;pds
	
kIh k1;q

C h2
� Z t

0

k�k2;pds
	
k k2;q C

� Z t

0

k�kLp ds
	
k k2;q

)

:

Note that

kIh k1;q � kIh �  k1;q C k k1;q � Chk k2;q C k k1;q � Ck k2;q: (14)

Using (13), we obtain

k�kLp � C

�
h2


k�k2;p C

Z t

0

k�k2;pds

�
C h



k�kLp C

Z t

0

k�kLp ds

�

C h4


kuk6;p C

Z t

0

kuk6;pds

�
C C

Z t

0

k�kLp ds:

If h is chosen so that .1�Ch/ > 0, then an application of Gronwall’s Lemma yields

k�kLp � C

�
h2


k�k2;p C

Z t

0

k�k2;pds

�
C h4



kuk6;p C

Z t

0

kuk6;pds

�
: (15)
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Now we need to estimate k�xxkLp . To this end, let Ph be the L2 projection operator
onto Th defined by

.w� Phw; �xx/ D 0; � 2 S0h: (16)

Note that, from [15], the L2-projection is stable in Lp, i.e.,

kPhwkLp � CkwkLp 8 w 2 Lp: (17)

Now,

k�xxkLp D kuxx � QuxxkLp � kuxx � PhuxxkLp C kPhuxx � QuxxkLp : (18)

From [15],

kuxx � PhuxxkLp � Ch2kuxxk2;p � Ch2kuk4;p: (19)

For the second term on the right of (18),

.Phuxx � Quxx; �xx/ D .uxx � Quxx; �xx/ D .�xx; �xx/

D .A �C b�x C c�; �xx/

D .A �; �xx/� hA �; �xxi � hB.t/�; �xxi C .B.t/�; �xx/

� .B.t/�; �xx/C .b�x C c�; �xx/;

on using (10). Using estimate (b) in [29, Lemma 4.2], we obtain

.Phuxx � Quxx; �xx/ D �h..A �/.�xx//C �h..B.t/�/.�xx//

� .B.t/�; �xx/C ..b�x C c�/; �xx/

� C

��
h3


kuk5;p C

Z t

0

kuk5;pds

�
C h4



kuk6;p C

Z t

0

kuk6;pds

�

Ck�k1;p C
Z t

0

k�k2;pds

�
k�xxkLq :
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Let Q be an arbitrary element of Lq. Then, using the definition of Ph Q in (16), it
follows that

j.Phuxx � Quxx; Q/j D j.Phuxx � Quxx;Ph Q/j

� C

��
h3


kuk5;p C

Z t

0

kuk5;pds

�
C h4



kuk6;p C

Z t

0

kuk6;pds

�

Ck�k1;p C
Z t

0

k�k2;pds

�
kPh QkLq

� C

��
h3


kuk5;p C

Z t

0

kuk5;pds

�
C h4



kuk6;p C

Z t

0

kuk6;pds

�

Ck�k1;p C
Z t

0

k�k2;pds

�
k QkLq ;

where in the last step we have used (17) with p replaced by q. Hence,

kPhuxx � QuxxkLp � C

��
h3


kuk5;p C

Z t

0

kuk5;pds

�
C h4



kuk6;p C

Z t

0

kuk6;pds

�

Ck�k1;p C
Z t

0

k�k2;pds

�
: (20)

On combining (18)–(20), we find that

k�xxkLp � C

��
h3


kuk5;p C

Z t

0

kuk5;pds

�
C h4



kuk6;p C

Z t

0

kuk6;pds

�

Ch2kuk4;p C k�k1;p C
Z t

0

k�k2;pds

�
:

Note that

k�k2;p � k�k1;p C k�xxkLp ;

and from the interpolation inequality in [29, (4.4)]), we obtain

k�k1;p � C
�
h�1k�kLp C hk�k2;p

�
: (21)

Thus, for sufficiently small h,

k�k2;p � C

��
h3


kuk5;p C

Z t

0

kuk5;pds

�
C h4



kuk6;p C

Z t

0

kuk6;pds

�

Ch2kuk4;p C h�1k�kLp C
Z t

0

k�k2;pds

�
;
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On using (15), we obtain

k�k2;p � C

��
h2kuk4;p C h3



kuk6;p C

Z t

0

kuk6;pds

�

Chk�k2;p C
Z t

0

k�k2;pds

�
:

With h chosen so that 1 � Ch > 0, an application of Gronwall’s Lemma yields

k�k2;p � C

�
h2


kuk4;p C

Z t

0

kuk4;pds

�
C h3



kuk6;p C

Z t

0

kuk6;pds

�

� Ch2


kuk6;p C

Z t

0

kuk6;pds

�
: (22)

Therefore, on using this estimate in (15), we obtain

k�kLp � Ch4


kuk6;p C

Z t

0

kuk6;pds

�
: (23)

Moreover, from (21)–(23),

k�ki;p � Ch4�i



kuk6;p C

Z t

0

kuk6;pds

�
; i D 0; 1; 2: (24)

Now, for  2 Lq and � 2 S0h,

.�t; / D .�t;A
� / D .A �t;  /

D .A �t;  � �xx/C .A �t; �xx/ � hA �t; �xxi

� hB.t; t/�; �xxi �
�Z t

0

Bt.t; s/�.s/ds; �xx

�

C .B.t; t/�; �xx/C

Z t

0

Bt.t; s/�.s/ds; �xx

�

� .B.t; t/�; �xx �  / �

Z t

0

Bt.t; s/�.s/ds; �xx �  
�

� .B.t; t/�;  / �

Z t

0

Bt.t; s/�.s/ds;  

�
:
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Let �xx D Ih 2 Th, then again by using estimate .a/ in [29, Lemma 4.2], we obtain

.�t; / D .A �t;  /

D .A �t;  � Ih /C �h..A �t/.Ih //C �h..B.t; t/�/.Ih //

C �h



Z t

0

Bt.t; s/�.s/ds

�
.Ih /

�

� .B.t; t/�; Ih �  / �

Z t

0

Bt.t; s/�.s/ds; Ih �  
�

� .�;B�.t; t/ / �
Z t

0

.�.s/;B�
t .t; s/ /ds

� C
n
h2k�tk2;pk k2;q C

�
hk�tkLp C h4kutk6;p C hk�kLp C h4kuk6;p

C h
Z t

0

k�kLp dsC h4
Z t

0

kuk6;pds
	
kIh k1;q

C
�

h2k�k2;p C h2
Z t

0

k�k2;pdsC k�kLp C
Z t

0

k�kLp ds
	
k k2;q

o
:

Using (13), (14) and (24), we obtain

j.�t; /j � C
h
h2k�tk2;p C hk�tkLp C h4

�
kutk6;p C kuk6;p C

Z t

0

kuk6;p
	i
kkLq :

Again, for sufficiently small h, we find that

k�tkLp � C
h
h2k�tk2;p C h4

�
kutk6;p C kuk6;p C

Z t

0

kuk6;p
	i
:

By using similar steps as in the estimation of k�k2;p, we arrive at

k�tk2;p � Ch2
�
kutk6;p C kuk6;p C

Z t

0

kuk6;p
	
:

Hence,

k�tki;p � Ch4�i



kutk6;p C kuk6;p C

Z t

0

kuk6;pds

�
; i D 0; 1; 2:

Now, a similar procedure yields the estimates of higher order time derivatives. This
completes the rest of the proof. ut



1158 L. P. Tripathi et al.

4 Error Estimates for the Semi-Discrete Scheme

We write e as

e D u � uh D .u � Qu/ � .uh � Qu/ D � � �; (25)

and note that it is sufficient to estimate � as estimates of � are known from Lemma 2.
From (2a) and (6a) and using the projection (10), we obtain

� h�t; �xxi C hA �; �xxi D � hB.t/�.t/; �xxi � h�t; �xxi ; � 2 Sh: (26)

Lemma 3 Let uh be the solution of (6a)–(6b) with uh.0/ D u0h D Qu.x; 0/. Then

k�kL1.0; tI H1/ � Ch4
�kukL2.0; tI W6;1/ C kutkL2.0; tI W6;1/

�
:

Proof Choose � D � in (26) to obtain

� h�t; �xxi C h�xx; �xxi D � hB.t/�.t/; �xxi � h�t; �xxi C hb�x C c�; �xxi
D I1 C I2 C I3: (27)

From Lemma 1, the first term on the left hand side of (27) becomes

� h�t; �xxi D .�tx; �x/C 1

1080

MX

iD1
h5i .�txxx;i/.�xxx;i/

D 1

2

d

dt

 

k�xk2 C 1

1080

MX

iD1
h5i .�xxx;i/

2

!

:

Upon integration with respect to time from 0 to t, we obtain

�
Z t

0

h�	 .	/; �xx.	/i d	 � 1

2
k�x.t/k2:

From (8), it follows that

h�xx.t/; �xx.t/i D ŒŒ�xx.t/��
2 D k�xx.t/k2:

For I1, using (8) and (9) together with the Poincaré inequality for � 2 S0h, we
arrive at

jI1j � C.�/
Z t

0

.k�xx.	/k2 C k�x.	/k2/d	 C �k�xx.t/k2:
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To estimate the term I2, we apply Young’s inequality,

ab � a2=2�C �b2=2; a; b 2 R; � > 0 (28)

together with (8) to obtain

jI2j � C.�/k�t.t/k2L1

C �k�xx.t/k2:

Finally, for the estimation of I3, using (8) and (9) and the Poincaré inequality for
� 2 S0h, we obtain

jI3j � C.�/k�x.t/k2 C �k�xx.t/k2:

On combining these estimates and integrating with respect to time from 0 to t, it
follows that

k�x.t/k2 C .2 � 6�/
Z t

0

k�xx.	/k2d	 � C.�/

�Z t

0

Z 	

0

k�xx.	
0/k2d	 0d	

C
Z t

0

k�x.	/k2d	 C
Z t

0

k�	 .	/k2L1

d	


:

Choosing � D 1=6 and using Lemma 2, we obtain

k�x.t/k2 C
Z t

0

k�xx.	/k2d	 � Ch8
Z t

0

fku.	/k2W6;1 C ku	 .	/k2W6;1gd	

C C


Z t

0

k�x.	/k2d	 C
Z t

0

Z 	

0

k�xx.	
0/k2d	 0d	

�
:

An application of Gronwall’s Lemma completes the proof. ut
Lemma 4 Let uh be the solution of (6a)–(6b) with uh.0/ D u0h D Qu.x; 0/. Then

k�xxkL1.0; tI L2/ � Ch4
"

1X

lD0

�
��
�
@lu

@tl

�
��
�

L1.0; tI W6;1/

C
2X

lD0

�
��
�
@lu

@tl

�
��
�

L2.0; tI W6;1/

#

:

Proof Choose � D �t in (26). Then integrating from 0 to t gives

�
Z t

0

h�	 .	/; �	xx.	/i d	 C
Z t

0

h�xx.	/; �	xx.	/i d	

D �
Z t

0

hB.	/�.	/C �	 .	/ � b�x.	/ � c�.	/; �	xx.	/i d	:
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Using integration by parts on right hand side yields

�
Z t

0

h�	 .	/; �	xx.	/i d	 C
Z t

0

h�xx.	/; �	xx.	/i d	 D
Z t

0

D Z 	

0

B	 .	; 	
0

/�.	
0

/d	
0

C B.	; 	/�.	/C �		 .	/ � b�	x.	/� c�	 .	/; �xx.	/
E
d	

� hB.t/�.t/C �t.t/ � b�x.t/ � c�.t/; �xx.t/i D I1 C I2:

By Lemma 1,

� h�t; �txxi D .�tx; �tx/C 1

1080

MX

iD1
h5i .�txxx;i/

2 � k�txk2;

and

h�xx; �txxi D 1

2

d

dt
h�xx; �xxi D 1

2

d

dt
ŒŒ�xx�� D 1

2

d

dt
k�xxk2:

To estimate I1 and I2, we use Young’s inequality (28) together with (8) and (9) to
obtain

jI1j � C.�/
Z t

0

�k�x.	/k2 C k�xx.	/k2 C k�		 .	/k2L1

�
d	 C �

Z t

0

k�	x.	/k2d	;

and

jI2j � C.�/


Z t

0

.k�x.	/k2 C k�xx.	/k2/d	 C k�t.t/k2L1

C k�x.t/k2
�
C �k�xx.t/k2:

Combining these estimates, we arrive at

.1 � �/
Z t

0

k�	x.	/k2d	 C


1

2
� �

�
k�xx.t/k2 � C.�/

h
k�t.t/k2L1

C
Z t

0

k�		 .	/k2L1

d	 C k�x.t/k2 C
Z t

0

k�x.	/k2d	
i
C C.�/

Z t

0

k�xx.	/k2d	

Choose � appropriately so that .1 � 2�/ D 1
4
. Then, the use of Lemmas 2 and 3

together with Gronwall’s Lemma completes the rest of the proof. ut
Using Lemmas 3, 4 and 2, we have the following error estimate for the semi-

discrete problem.
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Theorem 1 Let u 2 H2.0;TIW6;1.I// and uh be the solution of (6a)–(6b) with
uh.0/ D u0h D Qu.x; 0/. Then

kekL1. JI Hj.I// � Ch4�j; j D 0; 1; 2;
and

kekL1. JI Wj;1.I// � Ch4�j; j D 0; 1:

5 Second Order Backward Difference (BDF2) Scheme

Let

0 D t0 < t1 < � � � < tN D TI tn � tn�1 D k; 1 � n � N;

be a uniform partition of Œ0;T�. Then the fully discrete scheme based on the second-
order backward differentiation formula in time and qualocation in space takes the
form: find Un

h 2 S0h; 1 � n � N, such that U0
h D u0h, and

˝
DtU

n
h ; v

˛ � ˝A Un
h ; v

˛ D ˝Bk.tn/U
n
h ; v

˛C h f n; vi 8 v 2 Th; (29)

where

f n.x/ WD f .x; tn/;

Bk.tn/U
n
h WD k

nX

jD0
wjB.tn; tj/U

j
h; wj WD

(
0:5; if j D 0; n;
1; if 1 � j � n � 1,

and DtU
n
h WD

8
<̂

:̂

N@tU
n
h D

Un
h �Un�1

h

k
if n D 1,

3

2
N@tU

n
h �

1

2
N@tU

n�1
h D 3Un

h � 4Un�1
h CUn�2

h

2k
if n � 2.

At each time step, the discrete problem (29) gives rise to a system of linear algebraic
equations which is easily shown to be nonsingular. Thus the solution of (29) is
unique.

5.1 Error Estimates for BDF2 Scheme

Since Th D f�xx W � 2 S0hg, we can rewrite (29) as

˝
DtU

n
h ; �xx

˛ � ˝A Un
h ; �xx

˛ D ˝Bk.tn/U
n
h; �xx

˛C h f n; �xxi ; 8 � 2 S0h: (30)
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If un.x/ WD u.x; tn/; 0 � n � N, then, for 2 � n � N, (1a)–(1c) yields

hDtu
n; �xxi � hA un; �xxi D hBk.tn/u

n; �xxi C h f n; �xxi
� h	n.u/; �xxi C h"n.B.tn; �/u/; �xxi ;
8 � 2 S0h; (31)

where

"n./ WD
Z tn

0

.t/dt � k
nX

jD0
wj.tj/;

and

	n./ WD t.tn/� Dt.tn/:

Furthermore, using Taylor series, we obtain, for  2 W2;1. J/,

"n./ D �1
2

nX

jD1

Z tj

tj�1

.t � tj�1/.tj � t/tt.t/dt; (32)

and for  2 W3;1. J/;

	 n./ D

8
ˆ̂̂
<

ˆ̂̂
:

1

k

Z tn

tn�1

.t � tn�1/tt.t/dt; if n D 1,

1

k

Z tn

tn�1

.t � tn�1/
2ttt.t/dt � 1

4k

Z tn

tn�2

.t � tn�2/
2ttt.t/dt; if n � 2.

(33)

We now write

en
h D u.tn/ �Un

h D
�
u.tn/� Qu.tn/

� � �Qu.tn/� Un
h

� D �n ��n:

On subtracting (30) from (31) and using (10) at t D tn, we have

� hDt�
n; �xxi C hA�n; �xxi D � hBk.tn/�

n; �xxi C h�n; �xxi ;
8 � 2 S0h; (34)

where

�n WD �	n.u/C "n.B.tn; �/u/� "n.B.tn; �/�/ � Dt�
n:
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Lemma 5 Let U0
h D Qu.x; 0/. Then there exists a positive constant k0 such that for

0 < k � k0,

k�n
xk2 C k

nX

jD1

k�j
xxk2 � C

h
k4
�
kuk2W2;1.0; kI W1;1/

C kuk2H3.0; tnI L1/
C kuk2H2.0; tnI W2;1/

	

C k4h4kuk2H2.0; tnI W6;1/
C h8kuk2H1.0; tnI W6;1/

i
; 1 � n � N:

Proof Let n � 2 and set � D �n in (34). Then

� ˝Dt�
n; �n

xx

˛C ˝�n
xx; �

n
xx

˛ D � ˝Bk.tn/�
n; �n

xx

˛C hb�n
x C c�n; �n

xxi C
˝
�n; �n

xx

˛

D I1 C I2 C I3: (35)

From Lemma 1 and the relation

2.3a� 4bC c; a/ D a2 � b2 C .2a� b/2 � .2b� c/2 C .a � 2bC c/2

� a2 � b2 C .2a � b/2 � .2b� c/2; a; b; c 2 R;

the first term on the left hand side of (35) can be estimated as

� ˝Dt�
n; �n

xx

˛ D .Dt�
n
x ; �

n
x /C

1

1080

MX

iD1
h5i .Dt�

n
xxx;i/.�

n
xxx;i/

� 1

4
N@t
�k�n

xk2 C k2�n
x ��n�1

x k2�

C 1

1080

MX

iD1

h5i
4
N@t
�j�n

xxx;ij2 C j2�n
xxx;i ��n�1

xxx;ij2
�
:

On multiplying by k on both sides and then summing from n D 2 to m � N, we
obtain

�k
mX

nD2

˝
Dt�

n; �n
xx

˛ � 1

4

�k�m
x k2 C k2�m

x ��m�1
x k2�

C 1

1080

MX

iD1

h5i
4

�j�m
xxx;ij2 C j2�m

xxx;i ��m�1
xxx;i j2

�

� 5
4

�
k�1

xk2 C
1

1080

MX

iD1
h5i j�1

xxx;ij2
	

� 1

4
k�m

x k2 �
5

4

�
k�1

xk2 C
1

1080

MX

iD1
h5i j�1

xxx;ij2
	
:
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For the second term on right hand side of (35), we have

h�n
xx; �

n
xxi D ŒŒ�n

xx��
2 D k�n

xxk2:

To estimate the terms I1 and I2, the use of (8) and (9) together with the Poincaré
inequality for�n 2 S0h and Young’s inequality yields

jI1j � jhk
nX

jD1
wjB.tn; tj/�

j; �n
xxij

� C.�/

0

@k.k�1
xxk2 C k�1

xk2/C k
nX

jD2
.k�j

xxk2 C k�j
xk2/

1

AC �k�n
xxk2;

jI2j � C.�/k�n
xk2 C �k�n

xxk2:

For I3, using Young’s inequality, we have

jI3j � C.�/k�nk2L1

C �k�n
xxk2:

On combining these estimates in (35) and summing from n D 2 to m � N, it follows
that

k�m
x k2 C .4 � 12�/k

mX

nD2

k�n
xxk2 � C.�/

 

k�1
xk2 C

1

1080

MX

iD1

h5i j�1
xxx;ij2 C kk�1

xxk2

C k
mX

nD2

k� nk2L1

C k
mX

nD2

�
k�n

xk2 C k
nX

jD2

k�j
xxk2

	!

:

Choose � D 1
4

and k1 > 0 so that 1 � kC.�/ > 0, for 0 < k � k1. Then, for
0 < k � k1, it follows that, for 2 � m � N,

k�m
x k2 C k

mX

nD2

k�n
xxk2 � C

h
k�1

xk2 C
1

1080

MX

iD1

h5i j�1
xxx;ij2 C kk�1

xxk2 C k
mX

nD2

k� nk2L1

C k
m�1X

nD2

�k�n
xk2 C k

nX

jD2

k�j
xxk2

�i
;
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where we have used the summation convention
NX

nDM

D 0 for N < M. An application

of Gronwall’s Lemma then yields, for 2 � m � N,

k�m
x k2 C k

mX

nD2
k�n

xxk2

� C

 

k�1
xk2 C

1

1080

MX

iD1
h5i j�1

xxx;ij2 C kk�1
xxk2 C k

mX

nD2
k�nk2L1

!

: (36)

To estimate the first two terms on right hand side, let n D 1 and � D �1 in (34).
Then

� ˝Dt�
1;�1

xx

˛C k�1
xxk2 D �

˝
Bk.t1/�

1;�1
xx

˛C hb�1
x C c�1;�1

xxi
C ˝�1;�1

xx

˛
: (37)

Note that

� ˝Dt�
1;�1

xx

˛ D � ˝N@t�
1;�1

xx

˛ D �1
k

˝
�1;�1

xx

˛

D 1

k

 

k�1
xk2 C

1

1080

MX

iD1
h5i j�1

xxx;ij2
!

;

� ˝Bk.t1/�
1;�1

xx

˛ D �
�

k

2
B.t1; t1/�

1;�1
xx

�
� Ck.k�1

xxk2 C k�1
xk2/;

and

˝
�1;�1

xx

˛ D ˝�	1.u/;�1
xx

˛C ˝"1.B.t1; �/u/� "1.B.t1; �/�/ � Dt�
1;�1

xx

˛

� Ck �	1.u/�
x
kL1k�1

xk
C Ck"1.B.t1; �/u/� "1.B.t1; �/�/ � Dt�

1kL1k�1
xxk: (38)

To estimate the first term on right hand side of (38), we use

jh	1.u/;�1
xxij D

ˇ
ˇh	1.u/� Ih.	

1.u//;�1
xxi C hIh.	

1.u//;�1
xxi
ˇ
ˇ

D
ˇ
ˇ
ˇ
ˇ̌

MX

iD1
h	1.u/� Ih.	

1.u//;�1
xxii �

MX

iD1

Z xi

xi�1



@

@x
Ih.	

1.u//

�
�1

x dx

ˇ
ˇ
ˇ
ˇ̌

� C
MX

iD1

 

hik.	1.u//xkL1.Ii/k�1
xxkL2.Ii/ C

�
�
�
�
@

@x
Ih.	

1.u//

�
�
�
�

L1.Ii/

k�1
xkL2.Ii/

!

;
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where Ih W CŒ0; 1� ! Th is the piecewise linear interpolation operator. Using the
inverse inequality yields

jh	1.u/;�1
xxij � Ck.	1.u//xkL1k�1

xk:

By using Young’s inequality in (38), we have

˝
�1;�1

xx

˛ � �

k
k�1

xk2 C �k�1
xxk2

C C.�/

 

kk �	1.u/�x k2L1

C
�
���"

1.B.t1; �/u/ � "1.B.t1; �/�/ � 1
k

Z k

0

�s.s/ds

�
���

2

L1

!

:

On combining the above estimates in (37) with � D 1
4
, there exists k2 > 0 such that,

for 0 < k � k2,

k�1
xk2 C

1

1080

MX

iD1
h5i j�1

xxx;ij2 C kk�1
xxk2 � Ck

 

kk �	1.u/�
x
k2L1

C
�
�
�
�"

1.B.t1; �/u/� "1.B.t1; �/�/ � 1
k

Z k

0

�s.s/ds

�
�
�
�

2

L1

!

Use of (32), (33) and Lemma 2 yields

k�1
xk2 C

1

1080

MX

iD1
h5i j�1

xxx;ij2 C kk�1
xxk2

� Ck

 

k3kuttk2L1.0; kI W1;1/
C k5kuttk2L2.0; kI W2;1/

C k5h4
2X

iD0

��
�
�
@iu

@ti

��
�
�

2

L2.0; kI W6;1/

C h8
�kutk2L1.0; kI W6;1/

C kuk2L2.0; kI W6;1/

�
!

(39)

Using (32), (33) and Lemma 2, the last term in (36) can be estimated as follows:

k
mX

nD2
k�nk2L1

� C

 

k4kutttk2L2.0; tmI L1/
C k4kuttk2L2.0; tmI W2;1/

C k4h4
2X

iD0

�
�
�
�
@iu

@ti

�
�
�
�

2

L2.0; tmI W6;1/

C h8
1X

iD0

�
�
�
�
@iu

@ti

�
�
�
�

2

L2.0; tmI W6;1/

!

(40)

Combining (36), (39) and (40) completes the proof with k0 D min.k1; k2/. ut
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Lemma 6 With U0
h D Qu.x; 0/, there exists a positive constant k0 such that for 0 <

k � k0

k
nX

jD1
kN@t�

j
hxk2 C k�n

hxxk2 � C

"

kkN@t�
1
xk2 C k

MX

iD1
h5i j N@t�

1
xxx;ij2 C k�1

xxk2

C k4
�
kuk2W2;1.0; kI W1;1/

C kuk2W3;1.0; tnI L1/

C kuk2H4.0; tnI L1/
C kuk2H3.0; tnI W2;1/

	
C k4h4kuk2H2.0; tnI W6;1/

C h8
�
kuk2W1;1.0; tnI W6;1/

C kuk2H2.0; tnI W6;1/

	
#

; 1 � n � N:

Proof With � D k N@t�
n D �n ��n�1 in (34) and summing from n D 2 to m � N,

we obtain

� k
mX

nD2

˝
Dt�

n; N@t�
n
xx

˛C k
mX

nD2

˝
�n

xx;
N@t�

n
xx

˛ D �k
mX

nD2

˝
Bk.tn/�

n; N@t�
n
xx

˛

� k
mX

nD2

˝
b�n

x C c�n; N@t�
n
xx

˛C k
mX

nD3

˝
�n; N@t�

n
xx

˛C ˝�2;�2
xx ��1

xx

˛
:

Using the summation by parts formula,

k
NX

nDM

An.N@tBn/ D �k
NX

nDM

.N@tAn/Bn�1 C ANBM � AM�1BM�1 W An; Bn 2 R;

on the right hand side yields

� k
mX

nD2

˝
Dt�

n; N@t�
n
xx

˛C k
mX

nD2

˝
�n

xx;
N@t�

n
xx

˛

D
�

k
mX

nD2

˝N@t.Bk.tn/�
n/;�n�1

xx

˛ � ˝Bk.tm/�
m; �m

xx

˛C ˝Bk.t1/�
1;�1

xx

˛ 	

C
�

k
mX

nD2

˝N@t.b�
n
x C c�n/;�n�1

xx

˛ � ˝b�m
x C c�m; �m

xx

˛C ˝b�1
x C c�1;�1

xx

˛ 	

�
�

k
mX

nD3

˝N@t�
n; �n�1

xx

˛C ˝�m; �m
xx

˛ � ˝�2;�1
xx

˛ 	

D I1 C I2 C I3: (41)
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Using Lemma 1 and the relation

2.a� b; a/ D a2 � b2 C .a � b/2 � a2 � b2; a; b 2 R; (42)

we find that

� ˝Dt�
n; N@t�

n
xx

˛ D .Dt�
n
x ;
N@t�

n
x /C

1

1080

MX

iD1
h5i .Dt�

n
xxx;i/.

N@t�
n
xxx;i/

D kN@t�
n
xk2 C

1

2
.N@t�

n
x � N@t�

n�1
x ; N@t�

n
x /

C 1

1080

MX

iD1
h5i



j N@t�

n
xxx;ij2 C

1

2
.N@t�

n
xxx;i � N@t�

n�1
xxx;i;
N@t�

n
xxx;i/

�

� 5

4
kN@t�

n
xk2 �

1

4
kN@t�

n�1
x k2

C 1

1080

MX

iD1
h5i



5

4
j N@t�

n
xxx;ij2 �

1

4
j N@t�

n�1
xxx;ij2

�
:

Hence

�k
mX

nD2

˝
Dt�

n; N@t�
n
xx

˛ � k
mX

nD2
kN@t�

n
xk2 �

1

4
k
�
kN@t�

1
xk2 C

1

1080

MX

iD1
h5i j N@t�

1
xxx;ij2

	
:

A use of (8) with (42) shows

k
mX

nD2
h�n

xx;
N@t�

n
xxi �

1

2

mX

nD2

�
ŒŒ�n

xx��
2 � ŒŒ�n�1

xx ��2
� D 1

2

�
ŒŒ�m

xx��
2 � ŒŒ�1

xx��
2
�

D 1

2

�k�m
xxk2 � k�1

xxk2
�
:

To estimate I1; I2 and I3, we use Young’s inequality (28) together with (8) and (9)
to obtain

jI1j � Ck
mX

nD2

.kN@t.Bk.tn/�
n/k2 C k�n�1

xx k2/C C.�/kBk.tm/�
mk2 C �k�m

xxk2

C Ck.k�1
xxk2 C k�1

xk2/

� Ck
mX

nD2

�
k

n�1X

jD1

.k�j
xxk2 C k�j

xk2/C k�n�1
xx k2 C k�n�1

x k2 C k�n
xxk2 C k�n

xk2
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C C.�/k
mX

nD1

.k�n
xxk2 C k�n

xk2/C �k�m
xxk2 C Ck.k�1

x k2 C k�1
xxk2/

� C.�/
�

kk�1
xxk2 C kk�1

x k2 C k
mX

nD2

k�n
xk2
	
C .� C C.�/k/k�m

xxk2;

jI2j � C.�/
�

kk�1
xxk2 C k

m�1X

nD2
k�n

xxk2
	
C �k

mX

nD2
kN@t�

n
xk2

C C.�/k�m
x k2 C �k�m

xxk2 C Ck.kN@t�
1
xk2 C k�1

xxk2/

� C.�/
�

kkN@t�
1
xk2 C kk�1

xxk2 C k2kN@t�
m
x k2 C k

m�1X

nD2
k�n

xxk2
	

C �k�m
xxk2 C �k

mX

nD2
kN@t�

n
xk2:

and

jI3j � C.�/
�
k�1

xxk2 C k�2k2L1

C k�mk2L1

C k
mX

nD3

kN@t�
nk2L1

C k
m�1X

nD2

k�n
xxk2

	
C �k�m

xxk2:

On combining these estimates in (41) with � D 1
12

, it follows that

k
mX

nD2
kN@t�

n
xk2 C .1 � Ck/k�m

xxk2 � C
�

kkN@t�
1
xk2 C k

MX

iD1
h5i j N@t�

1
xxx;ij2 C k�1

xxk2

C k�m
x k2 C k

mX

nD2
k�n

xk2 C k
m�1X

nD2
k�n

xxk2

C k�2k2L1

C k�mk2L1

C k
mX

nD3
kN@t�

nk2L1

	

� C
�

kkN@t�
1
xk2 C k

MX

iD1
h5i j N@t�

1
xxx;ij2 C k�1

xxk2 C max
2�n�m

k�n
xk2

C max
2�n�m

k�nk2L1

C k
mX

nD3
kN@t�

nk2L1

C k
m�1X

nD2
k�n

xxk2
	
:
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There exists a number k0 > 0 such that 8k � k0, 1 � Ck > 0 and hence,

k
mX

nD2

kN@t�
n
xk2 C k�m

xxk2 � C
�

kkN@t�
1
xk2 C k

MX

iD1

h5i jN@t�
1
xxx;ij2 C k�1

xxk2 C max
2�n�m

k�n
x k2

C max
2�n�m

k� nk2L1

C k
mX

nD3

kN@t�
nk2L1

C k
m�1X

nD2

k�n
xxk2

	
:

Apply Gronwall’s Lemma to obtain

k
mX

nD2

kN@t�
n
xk2 C k�n

xxk2 � C
�

kkN@t�
1
xk2 C k

MX

iD1

h5i jN@t�
1
xxx;ij2 C k�1

xxk2 C max
2�n�m

k�n
x k2

C max
2�n�m

k� nk2L1

C k
mX

nD3

kN@t�
nk2L1

	
: (43)

Now, using (32), (33) and Lemma 2, one can easily derive the following estimates:

k�nk2L1

� C

 

k4kutttk2L1.tn�2; tnI L1/ C k4kuttk2L2.0; tnI W2;1/

C k4h4
2X

iD0

��
�
�
@iu

@ti

��
�
�

2

L2.0; tnI W6;1/

C h8
 

1X

iD0

�
�
�
�
@iu

@ti

�
�
�
�

2

L1.tn�2; tnI W6;1/

C kuk2L2.0; tnI W6;1/

!!

(44)

and

k
mX

nD3
kN@t�

nk2L1

� C

 

k4kuttttk2L2.0; tmI L1/
C k4kutttk2L2.0; tmI W2;1/

C k4h4
2X

iD0

�
�
��
@iu

@ti

�
�
��

2

L2.0; tmI W6;1/

C h8
2X

iD0

�
�
��
@iu

@ti

�
�
��

2

L2.0; tmI W6;1/

!

: (45)

Thus, the use of Lemma 5, (44) and (45) in (43) yields the required result. ut
Finally, Lemmas 2, 5 and 6 with (39) give the following convergence estimate

for the fully discrete scheme.

Theorem 2 Let u 2 H2.0;TIW6;1.I//\H3.0;TIW2;1.I//\H4.0;TIL1.I// and
Un

h ; 1 � n � N; be the solution of (29) with U0
h D u0h D Qu.x; 0/. Then there exists

a positive constant k0 such that for 0 < k � k0,

max
1�n�N

ku.�; tn/�Un
hkHm.I/ � C.k2 C h4�m/; m D 0; 1;
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and

max
1�n�N

ku.�; tn/� Un
hkH2.I/ � C.k1C` C h2/:

Moreover,

max
1�n�N

ku.�; tn/ �Un
hkL1.I/ � C.k2 C h4/;

and

max
1�n�N

ku.�; tn/�Un
hkW1;1.I/ � C.k1C` C h3/;

where ` D 1
2
, however, if the solution at first time level, i.e. U1

h , is obtained by using
Crank-Nicolson method instead of backward Euler then the above estimates hold
for ` D 1.

6 Numerical Experiments

In this section, we present numerical results obtained using the fully discrete
scheme (29). In our test problem,

b.x/ D x; c.x/ D e�x; b1.xI t; s/ D �xe2s�t; c1.xI t; s/ D e�xC2s�t;

and the forcing function f .x; t/ is chosen so that u.x; t/ D x.x � 1/ex�t is the exact
solution of (1a)–(1c). In addition, consider uniform partitions

0 D x0 < x1 < � � � < xM D 1I xi � xi�1 D h; 1 � i � M;

and

0 D t0 < t1 < � � � < tN D TI tn � tn�1 D k; 1 � n � N;

of I D .0; 1/ and J D .0;T�; T D 1; respectively, and select k D h2 (i.e., N D M2)
to verify the rate of convergence with respect to the norms

max
1�n�N

ku.�; tn/ �Un
hkm 
 max

1�n�N

vuu
t
 

mX

sD0

MX

iD1

hi

2

4X

lD1

wl



@s

@xs

�
u.�i;l; tn/� Un

h.�i;l/
��2

!

WD E m
h I m D 0; 1; 2;
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max
1�n�N

ku.�; tn/ �Un
hkm;1 
 max

1�n�N

mX

sD0

0

@ max
0�i�M
0�j�100

ˇ
ˇ̌
ˇ
@s

@xs

�
u.xi;j; tn/ � Un

h.xi;j/
�
ˇ
ˇ̌
ˇ

1

A

WD E m;1
h I m D 0; 1;

and

max
1�n�N
0�i�M

ˇ
ˇ
ˇ
ˇ
@m

@xm

�
u.xi; tn/ �Un

h.xi/
�
ˇ
ˇ
ˇ
ˇ WD E m;nodal

h I m D 0; 1:

where

xi;0 D xi; 0 � i � M; xi;j � xi;j�1 D hiC1
100

; 0 � i � M � 1; 1 � j � 100;

�i;l WD xi�1 C xi

2
C hi

2
�l;

and

l D 1 2 3 4

�l D
r

3
7
� 2

7

q
6
5
�
r

3
7
� 2

7

q
6
5

r
3
7
C 2

7

q
6
5
�
r

3
7
C 2

7

q
6
5

wl D 18Cp
30

36
18Cp

30
36

18�p
30

36
18�p

30
36

The corresponding convergence rate is determined from the formula

Rm WD log2

 
E m

h

E m
h=2

!

; m D 0; 1; 2:

The rates of convergence corresponding to E m;nodal
h and E m;1

h are denoted by
Rm;nodal and Rm;1, respectively.

To approximate the integrals involved in the error term max1�n�N ku.�; tn/�Un
hkm

without degrading the actual rate of convergence, we use a 4-point Gauss quadrature
formula the nodes and weights of which are given in preceding table.

In Table 1 we present the errors in various norms together with corresponding
convergence rates. These results support the estimates given in Theorem 2. The
third block of Table 2 shows the superconvergence in first spatial derivative at nodal
points.
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Table 1 Errors and corresponding rates of convergence

M # E 0h R0 E 1h R1 E 2h R2 E
0;1

h R0;1 E
1;1
h R1;1

8 4.50e�05 0:0 3.03e�04 0:0 1.38e�02 0:0 6.68e�05 0:0 9.31e�04 0:0

16 3.49e�06 3:7 3.52e�05 3:1 3.46e�03 2:0 5.22e�06 3:7 1.08e�04 3:1

32 2.38e�07 3:9 4.24e�06 3:1 8.63e�04 2:0 3.56e�07 3:9 1.24e�05 3:1

64 1.54e�08 4:0 5.23e�07 3:0 2.16e�04 2:0 2.29e�08 4:0 1.45e�06 3:1

Table 2 Nodal errors and
corresponding rates of
convergence

M # E
0;nodal

h R0;nodal E
1;nodal

h R1;nodal

8 5.31e�05 0:0 2.47e�04 0:0

16 4.30e�06 3:6 2.12e�05 3:5

32 2.96e�07 3:9 1.60e�06 3:7

64 1.91e�08 4:0 1.10e�07 3:9
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Analysis of Framelet Transforms on a
Simplex

Yu Guang Wang and Houying Zhu

Dedicated to Ian H. Sloan on the occasion of his 80th birthday
with our gratitude for his constant supervision, support and
encouragement.

Abstract In this paper, we construct framelets associated with a sequence of
quadrature rules on the simplex T2 in R

2. We give the framelet transforms—
decomposition and reconstruction of the coefficients for framelets of a function on
T2. We prove that the reconstruction is exact when the framelets are tight. We give
an example of construction of framelets and show that the framelet transforms can
be computed as fast as FFT.

1 Introduction

Multiresolution analysis on a simplex T2 in R
2 has many applications such as in

numerical solution of PDEs and computer graphics [6, 10, 11]. In this paper, we
construct framelets (or a framelet system) on T2, following the framework of [18],
and give the transforms of coefficients for framelets.

Framelets are localised functions associated with quadrature rules of T2. Each
framelet is scaled at a level j, j D 0; 1; : : : and translated at a node of a quadrature
rule of level j. The framelet coefficients for a square-integrable function f on the
simplex are the inner products of the framelets with f on T2. We give the framelet
transforms which include the decomposition and reconstruction of the coefficients
for framelets. Since the framelets are well-localised, see e.g. [15], the decomposition
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gives all approximate and detailed information of the function f . This plays an
important role in signal processing on the simplex.

For levels j and j C 1, the decomposition estimates the framelet coefficients of
level j C 1 by the coefficients of level j. The reconstruction is the inverse, which
estimates the coefficients of level j by the level jC 1. Such framelet transforms are
significant as by decompositions or reconstructions, we are able to estimate high-
level framelet coefficients from the bottom level 0, or the inverse.

We show that when the quadrature rules and masks have good properties, the
reconstruction is exact and invertible with the decomposition, see Sect. 4. We also
show that the framelet transforms can be computed as fast as the FFTs, see Sect. 6.

We construct framelets using the tensor-product form of Jacobi polynomials and
triangular Kronecker lattices [2] with equal weights, see Sect. 5.

2 Framelets on Simplex

In the paper, we consider the simplex (or the triangle)

T2 WD fx WD .x1; x2/jx1 � 0; x2 � 0; x1 C x2 � 1g:

Let L2.T2/ be the space of complex-valued square integrable functions on T2 with
respect to the normalized Lebesgue area measure � on R

2 (i.e.
R

T2 d�.x/ D 1),
provided with inner product hf ; gi WD hf ; giL2.T2/ WD

R
T2 f .x/d�.x/, where g is

the complex conjugate of g, and endowed with the induced L2-norm k fkL2.T2/ WDph f ; f i for f 2 L2.T2/.
For ` � 0, let V` WD V`.T2/ be the space of orthogonal polynomials of degree `

with respect to the inner product h�; �iL2.T2/. The dimension of V` is ` C 1, see [9].
The elements of V` are said to be the polynomials of degree ` on T2. The union of
all polynomial spaces [1̀D0V` is dense in L2.T2/.

As a compact Riemannian manifold, the simplex T2 has the Laplace-Beltrami
operator

� WD
2X

iD1
xi.1 � xi/

@2

@x2i
� 2

X

1�i<j�2
xixj

@2

@xi@xj
C

2X

iD1
.1 � 3xi/

@

@xi
;

with polynomials P` in V` as the eigenfunctions and with (square-rooted) eigenval-
ues �` WD

p
`.`C 2/:

��P` D �2` P`; ` 2 N0;

where N0 WD f0; 1; 2; : : : g, see [1].
Let L1.R/ be the space of absolutely integrable functions on R with respect to

the Lebesgue measure and let l1.Z/ be the set of l1 summable sequences on Z. For
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r � 1, let � WD f˛Iˇ1; : : : ; ˇrg be a set of .r C 1/ functions in L1.R/, which are
associated with a filter bank � WD faI b1; : : : ; brg 	 l1.Z/ satisfying

b̨.2�/ Dba.�/b̨.�/; b̌n.2�/ D bbn.�/b̨.�/; n D 1; : : : ; r; � 2 R; (1)

wherebg.�/ WD R
R

g.x/e�2� ix� dx, � 2 R is the Fourier transform for g 2 L1.R/ and
bh.�/ WD P

k2Z hke�2� i� is the Fourier series of a sequence h WD .hk/k2Z in l1.Z/.
Here, the sequences a and bn are said to be low-pass (mask) and high-pass (mask)
respectively.

We introduce the continuous and semi-discrete framelets on the simplex follow-
ing the construction and notation of [8, 18]. The continuous framelets on the simplex
T2 are, for j 2 N0,

'j;y.x/ WD
1X

`D0
b̨


�`

2j

�
P`.y/P`.x/;

 n
j;y.x/ WD

1X

`D0
b̌n



�`

2j

�
P`.y/P`.x/; n D 1; : : : ; r:

(2)

The continuous framelets in (2) are analogues of continuous wavelets in R. The
level “j” indicates the “dilation” scale and “y” is the point at which the framelet is
“translated”.

Let QN WD f.wj; xj/gNjD1, which is a set of N pairs of weights wj in Rnf0g and
points xj on T2. We define the quadrature rule

QN Œ f � WD
NX

kD1
wjf .xj/

for continuous functions f on T2. Let QNj WD f.!j;k; xj;k/gNj

kD1, j 2 N0, be a sequence
of such quadrature rules. For j D 0; 1; : : : , the semi-discrete framelets 'j;k and  n

j;k0

associated with quadrature rules QNj are defined as the continuous framelets 'j;y and
 n

j;y translated at xj;k and xjC1;k0 respectively. That is, for k D 1; : : : ;Nj,

'j;k.x/ WD p!j;k 'j;xj;k
.x/ D p!j;k

1X

`D0
b̨


�`

2j

�
P`.xj;k/P`.x/; (3)

and for k0 D 1; : : : ;NjC1 and n D 1; : : : ; r,

 n
j;k0

.x/ WD p!jC1;k0  n
j;xjC1;k0

D p!jC1;k0

1X

`D0
b̌n



�`

2j

�
P`.xjC1;k0/P`.x/: (4)

We say 'j;k and  n
j;k0

are low-pass framelet and high-pass framelet respectively.
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Note that here we use the QNjC1
for high-passes due to the scale of  n

j;k0

is at
jC 1. This will be clear in Sect. 5.

We also use the notation  n
j;k for  n

j;k0

if no confusion arises.
The framelets 'j;k and  n

j;k corresponding to the low-pass a and high-pass bn

carry the information of approximations and details in framelet transforms, as we
will show below.

3 Decomposition for Framelets

In practice, we need to estimate the framelet coefficients of high levels from low-
level coefficients. This can be achieved by the decomposition of framelets.

The decomposition for framelets can be realized by the operations of convolution
and downsampling as we introduce now.

Let h 2 l1.Z/ be a mask satisfying that the support of the Fourier seriesbh of h is
a subset of Œ0; 1=2�. Let l.N/ be the set of complex-valued sequences with supports
in Œ0;N�. Let QNj WD f.!j;k; xj;k/gNj

kD1, j 2 N0, be the quadrature rules for framelets.
Let l.QNj/ be the set of sequences v in l.Nj/ satisfying that there exists a sequence u
in l1.Z/ such that

.v/k D p!j;k

1X

`D0
u` P`.xj;k/; k D 1; : : : ;Nj:

We letbv` WD u` (with abuse of notation) be the (generalized) Fourier coefficients of
v for the orthonormal basis P` and the quadrature rule QNj on T2.

The (discrete) convolution v j h of a sequence v with the mask h is a sequence
in l.QNj/ given by

.v j h/k WD
1X

`D0
bv`bh



�`

2j

�p
!j;k P`.xj;k/; k D 1; : : : ;Nj: (5)

Then, the Fourier coefficients of v j h are .1v j h/` Dbv`bh
�
�`
2j

	
, ` 2 N0.

The downsampling v#j, j � 1, of a sequence v 2 l.QNj/ is a sequence in l.QNj�1 /

given by

.v#j/k WD
X

�`�2j�1

bv`
p
!j;k P`.xj;k/; k D 1; : : : ;Nj�1: (6)

For semi-discrete framelets in (3) and (4), the inner products h f ;'j;ki and
h f ; n

j;k0

i, n D 1; : : : ; r, j 2 N0, k D 1; : : : ;Nj and k0 D 1; : : : ;NjC1, are said to
be framelet coefficients for f . For convenience, we let vj and wn

j denote the vectors
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of the framelet coefficients for f :

.vj/k WD h f ;'j;ki; .wn
j /k0 WD h f ; n

j;k0

i: (7)

The Fourier coefficients of a function f 2 L2.T2/ arebf ` WD h f ;P`i, ` 2 N0. Let
h be a mask in l1.Z/ and h? be the mask whose Fourier series is conjugate to the
Fourier series of h.

The following proposition shows the decomposition for framelet coefficients
between adjacent levels.

Proposition 1 Let the framelet coefficients for semi-discrete framelets in (3) and (4)
be given by (7), where the supports of b̨ and b̌n are subsets of Œ0; 1=2�. For j D
1; 2; : : : , the decomposition from level j into level j � 1 is

vj�1 D .vj j a?/#j; wn
j�1 D vj j b?n ; n D 1; : : : ; r: (8)

Proof For f 2 L2.T2/, by the orthonormality of P` and (7),

.vj�1/k D p!j�1;k
1X

`D0
b̨


�`

2j�1

�
bf ` P`.xj�1;k/; k D 1; : : : ;Nj�1;

.wn
j�1/k0 D p!j;k0

1X

`D0
b̌n



�`

2j�1

�
bf ` P`.xj;k0/; k0 D 1; : : : ;Nj; n D 1; : : : ; r:

For low-pass, by (1), (5) and (6), for k D 1; : : : ;Nj�1,

.vj�1/k D p!j�1;k
X

�`�2j�1

bf ` b̨


�`

2j�1

�
P`.xj�1;k/

D p!j�1;k
X

�`�2j�1

bf ` b̨


�`

2j

�
ba


�`

2j

�
P`.xj�1;k/

D p!j�1;k
X

�`�2j�1

b.vj/`ba


�`

2j

�
P`.xj�1;k/

D �.vj j a?/#j
�

k
:

For high-passes, for k0 D 1; : : : ;Nj and n D 1; : : : ; r,

.wn
j�1/k0 D p!j;k0

X

�`�2j�1

bf ` b̌n



�`

2j�1

�
P`.xj;k0/

D p!j;k0

X

�`�2j�1

bf ` b̌n



�`

2j

�
bbn



�`

2j

�
P`.xj;k0/



1180 Y. G. Wang and H. Zhu

D p!j;k0

X

�`�2j�1

b.vj/` bbn



�`

2j

�
P`.xj;k0/

D .vj j b?n/k0 :

These give (8). ut

4 Reconstruction for Tight Framelets

We say the set of framelets f'j;k; 
n
j;k0

jn D 1; : : : ; r; k D 1; : : : ;Nj; k0 D
1; : : : ;NjC1; j 2 N0g a tight frame for L2.T2/ if the framelets are all in L2.T2/,
and in the L2 sense,

f D
N0X

kD1
h f ;'j;ki'j;k C

1X

jD0

NjC1X

k0D1

rX

nD1
h f ; n

j;k0

i n
j;k0

for all f 2 L2.T
2/;

or equivalently,

k fk2L2.T2/ D
N0X

kD1

ˇ
ˇh f ;'j;ki

ˇ
ˇ2 C

1X

jD0

NjC1X

k0D1

rX

nD1

ˇ
ˇh f ; n

j;k0

iˇˇ2 for all f 2 L2.T
2/:

The framelets are then said to be (semi-discrete) tight framelets.
If the framelets are tight on the simplex, a function in L2.T2/ can be represented

using the framelet coefficients. The following property as a consequence of [18,
Theorem 2.4] shows that the tightness of framelets is equivalent to a multiscale
representation of framelets of a level by lower levels.

Proposition 2 ([18]) The semi-discrete framelets in (3) and (4) are tight if and only
if for all f 2 L2.T2/, the following identities hold:

lim
j!1

NjX

kD1

ˇ
ˇh f ;'j;ki

ˇ
ˇ2 D k fk2L2.T2/;

NjC1X

kD1

ˇ
ˇh f ;'jC1;ki

ˇ
ˇ2 D

NjX

kD1

ˇ
ˇh f ;'j;ki

ˇ
ˇ2 C

NjC1X

kD1

rX

nD1

ˇ
ˇh f ; n

j;ki
ˇ
ˇ2; j 2 N0: (9)

The condition in (9) implies that high-level framelet coefficients can be estimated
by low levels. This then gives the reconstruction for framelets.

The reconstruction depends on the property of the quadrature rules QNj for
framelets. A quadrature rule QN WD f.wj; xj/gNjD1 is said to be exact for polynomials
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up to degree ` if for `0 D 0; : : : ; `,
Z

T2
p`0.x/d�.x/ D

NX

jD1
wjp`0.xj/ for all p`0 2 V`0 :

When the quadrature rule QNj , j 2 N0, for framelets 'j;k and  n
j;k is exact for

polynomials up to degree 2j, the tightness of the framelets is equivalent to the
following condition on masks:

lim
j!1ba



�`

2j

�
D 1;

ˇ
ˇ
ˇ̌ba


�`

2j

�ˇˇ
ˇ̌
2

C
rX

nD1

ˇ
ˇ
ˇ̌bbn



�`

2j

�ˇˇ
ˇ̌
2

D 1 for j; ` 2 N0; (10)

see [18, Theorem 2.1 and Corollary 2.6].
The upsampling v"j, j � 1, of a sequence v 2 l.QNj�1 / is a sequence in l.QNj/

given by

.v"j/k WD
X

�`�2j�2

bv`
p
!j;k P`.xj;k/; k D 1; : : : ;Nj;

wherebv` are the Fourier coefficients of v for basis P` and quadrature rule QNj�1 on
T2.

The reconstruction involving the operations of convolution and upsampling is
given by the following proposition.

Proposition 3 Let the framelet coefficients for semi-discrete framelets in (3) and (4)
be given by (7), where the supports of b̨ and b̌n are subsets of Œ0; 1=2�, and (10)
holds. Then, for j � 1, the reconstruction from level j� 1 to level j is

vj D .vj�1"j/ j aC
rX

nD1
wn

j�1 j bn: (11)

Proof By Proposition 1, for k D 1; : : : ;Nj,

..vj�1"j/ j a/k D p!j;k

X

�`�2j�1

b.vj/`

ˇ
ˇ
ˇ̌ba


�`

2j

�ˇˇ
ˇ̌
2

P`.xj;k/

and

.wn
j�1 j bn/k D p!j;k

X

�`�2j�1

b.vj/`

ˇ
ˇ
ˇ̌bbn



�`

2j

�ˇˇ
ˇ̌
2

P`.xj;k/; n D 1; : : : ; r:



1182 Y. G. Wang and H. Zhu

These give

�
.vj�1"j/ j aC

rX

nD1
wn

j�1 j bn

	

k

D p!j;k

X

�`�2j�1

b.vj/`

 ˇ
ˇ̌
b̌a


�`

2j

�ˇˇ̌
ˇ

2

C
rX

nD1

ˇ
ˇ̌
b̌bn



�`

2j

�ˇˇ̌
ˇ

2
!

P`.xj;k/

D p!j;k

X

�`�2j�1

b.vj/` P`.xj;k/

D .vj/k;

thus proving (11). ut
Remark 1 [18, Theorem 3.1] proves (11) for general Riemannian manifolds when
the quadrature rule is exact for polynomials up to degree 2j and under condition (10).
Here we do not require that the quadrature rules of the framelets satisfy the
polynomial exactness.

Repeatedly using the decomposition and reconstruction in Propositions 1 and 3
gives multi-level framelet transforms. Figure 1 illustrates the decomposition and
reconstruction for levels 0; : : : ; j. In the decomposition, each level is decomposed
into a low-pass (framelet) coefficient and r high-pass coefficients of the next (lower)

Fig. 1 The left diagram illustrates the decomposition of the framelets coefficients which computes
all coefficients in lower levels by vj. The right shows the reconstruction of framelet coefficients vj

from the coefficients v0 and wn
0; : : : ;w

n
j�1 of lower levels
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level. In the reconstruction, the low-pass coefficient at level j is estimated by the
low-pass coefficient and high-pass coefficients at the level j� 1.

5 Constructive Examples

From the above analysis, the construction of semi-discrete framelets needs an
orthonormal basis for L2.T2/ and appropriate masks and quadrature rules.

Orthonormal Bases One orthonormal basis can be constructed by the tensor
product of Jacobi polynomials, see [9, Proposition 2.4.1]. For 	; � > �1 and ` � 0,
let P.	;�/` .t/ be the Jacobi polynomial of degree ` with respect to the weight .1 �
t/	 .1C t/� on [-1,1]. For x WD .x1; x2/ 2 T2 and ` 2 N0 and m D 0; : : : ; `, let

P`;m.x/ WD
p
.`C 1/.2mC 1/ P.2mC1;0/

`�m .2x1 � 1/.1� x1/
m

� P.0;0/m



2x2
1 � x1

� 1
�
: (12)

Then fP`;mjm D 0; : : : ; `g is an orthonormal basis of V` and fP`;mjm D
0; : : : ; `; ` � 0g forms an orthonormal basis of L2.T2/.

Sun [17] constructs another orthonormal basis for L2.T2/, which is useful in
discrete Fourier analysis on T2, see [13, 14].

Masks We give an example of masks with two high-passes. Let

�.t/ WD t4.35� 84tC 70t2 � 20t3/; t 2 R:

By [5, Chapter 4], the masks a; b1 and b2 can be defined by their Fourier series as

ba.�/ WD
8
<

:

1; j�j < 1
8
;

cos
�
�
2
�.8j�j � 1/�; 1

8
� j�j � 1

4
;

0; 1
4
< j�j � 1

2
;

(13)

bb1.�/ WD
8
<

:

0; j�j < 1
8
;

sin
�
�
2
�.8j�j � 1/�; 1

8
� j�j � 1

4
;

cos
�
�
2
�.4j�j � 1/�; 1

4
< j�j � 1

2
:

(14)

bb2.�/ WD
�
0; j�j < 1

4
;

sin
�
�
2
�.4j�j � 1/�; 1

4
� j�j � 1

2
;

(15)

which satisfy (10).
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The corresponding scaling functions are

b̨.�/ D
8
<

:

1; j�j < 1
4
;

cos
�
�
2
�.4j�j � 1/�; 1

4
� j�j � 1

2
;

0; else;
(16)

b̌1.�/ D
8
<

:

sin
�
�
2
�.4j�j � 1/� ; 1

4
� j�j < 1

2
;

cos2
�
�
2
�.2j�j � 1/� ; 1

2
� j�j � 1;

0; else;
(17)

b̌2.�/ D
8
<

:

0; j�j < 1
2
;

cos
�
�
2
�.2j�j � 1/� sin

�
�
2
�.2j�j � 1/� ; 1

2
� j�j � 1;

0; else:
(18)

Here, supp b̨ � Œ0; 1=2� and supp b̌n � Œ1=4; 1�, n D 1; 2. This means that the
scaling of the framelet 'j;k in (3) with the low-pass scaling function in (16) is half
of the scaling of the framelets  1

j;k and  2
j;k in (4) with high-pass scaling functions

in (17) and (18). The high-pass framelets thus need to use a quadrature rule at the
level jC 1, one level higher than 'j;k.

Figure 2 shows the Fourier series of masks a, b1 and b2 in (13), (14) and (15).

Quadrature Rules We use triangular Kronecker lattices of Basu and Owen [2]
with equal weights as the quadrature rules for framelets, which are shifted lattice
points intersecting with the simplex. For the quadrature rule QNj of framelets, we
use the triangular Kronecker lattice with at least 22j nodes, which are the translation
points of the low-pass framelets 'j;k at level j and those of high-pass framelets

Fig. 2 The red curve shows
the Fourier series of the
low-pass maskba in (13)
which has support in Œ0; 1=4�.
The blue and green curves
show the Fourier series of
high-pass masks bb1 and bb2
in (14) and (15) whose
supports are subsets of
Œ0; 1=2�

0 1/8 3/16 1/4 3/8 1/2
0

0.2

0.4

0.6

0.8

1



Analysis of Framelet Transforms on a Simplex 1185

Fig. 3 Triangular Kronecker
lattice with 65 nodes for
framelets '3;k and  n

2;k

 n
j�1;k0

at level j � 1. Figure 3 shows the triangular Kronecker lattice with N D 65

nodes on T2 used for framelets at levels 2 and 3.

Framelets Using the orthonormal basis in (12), scaling functions in (16)–(18)
and triangular Kronecker lattices with equal weights, the framelets are, for j 2 N0,

'j;k.x/ D
1
p

Nj

1X

`D0

X̀

mD0
b̨

 p
`.`C 2/
2j

!

P`;m.xj;k/P`;m.x/; k D 1; : : : ;Nj;

(19)

and for n D 1; 2,

 n
j;k0

.x/ D 1
p

NjC1

1X

`D0

X̀

mD0

b̌n

 p
`.`C 2/
2j

!

P`;m.xjC1;k0 /P`;m.x/; k0 D 1; : : : ;NjC1:

(20)

Figure 4 shows the framelets 'j;k,  1
j;k0

and  2
j;k0

at level j D 5 with k D 512 and
k0 D 2048, using orthonormal basis (12) and scaling functions (16)–(18), translated
at the triangular Kronecker lattice points x5;512, x6;2048 and x6;2048. The total number
of low-pass framelets 'j;k at level j D 5 is N5 D 1025 and the total number of high-
pass framelets  n

j;k0

, n D 1 or 2, at level j D 5 is N6 D 4097. The pictures show

that the framelets '5;512,  
1
5;2048 and  2

5;2048 are radial functions on T2 with centers
at the translation points x5;512, x6;2048 and x6;2048 respectively.

We observe that the high-pass framelets  1
5;2048 and  2

5;2048 are highly con-
centrated at the translation point x6;2048, and are more localised than the low-pass
framelet at the same level. This illustrates that the high-pass framelets can be used
to depict details of a function on T2 in multiresolution analysis.
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j5,512

y 1
5,2048 y 2

5,2048

Fig. 4 The three pictures show framelets '5;512,  
1
5;2048 and  25;2048 given by (19) and (20) at level j D 5

6 Fast Computing

The framelet transforms on T2 can be represented by discrete Fourier transforms on
the simplex. This implies a fast computational strategy of the decomposition and
reconstruction for framelets.

We use the notation of Sects. 3 and 4. Let j 2 N0 and let�j be the largest integer `
such that �` � 2j�1. The discrete Fourier transform (DFT) for a sequence u 2 l.�j/

is the sequence Fju in l.Nj/ such that

.Fju/k WD
�jX

`D0
u`
p
!j;k P`.xj;k/; k D 0; : : : ;Nj: (21)

The adjoint discrete Fourier transform (adjoint DFT) F�
j of a sequence v 2 l.Nj/ is

the sequence F�
j v in l.�j/ such that

.F�
j v/` WD

NjX

kD0
vk
p
!j;k P`.xj;k/; ` D 0; : : : ; �j: (22)
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The DFTs on the simplex in (21) and (22) using the orthonormal basis P` are the
analogues of DFTs for square-integrable periodic functions on R which use the
orthogonal basis e2� i`0x, `0 2 Z.

By (21) and (22), we can rewrite the decomposition in (8) and reconstruction
in (11) as

vj�1 D Fj�1.2vj j a?/; wn
j�1 D Fj.

4vj j .bn/
?/; n D 1; : : : ; r

and

vj D
�
F�

j .vj�1/
� j aC

rX

nD1

�
F�

j .w
n
j�1/

� j bn:

This means that the decomposition from level j to level j � 1 is the DFTs of con-
volutions of the level-j framelet coefficients with masks, and that the reconstruction
from level j � 1 to level j is the sum of convolutions of the adjoint DFTs of level-
. j � 1/ coefficients with masks. Since the convolution is the sum of point-wise
multiplications, the computational steps of the framelet transforms are in proportion
to those of DFTs on the simplex.

The FFT on T2 uses, up to log factors, O.N/ operations for an input sequence of
size N. If for j � 1, the ratio Nj=Nj�1 of the numbers of the nodes of the quadrature
rules QNj and QNj�1 is equivalent to a constant C, C > 1, the computational steps
of the framelet transforms (both the decomposition and reconstruction) between
levels 0; 1; : : : ; J, J � 1, are O..r C 1/NJ/ for the sequence vJ of the framelet
coefficients of size NJ , and the redundancy rate of the framelet transforms is also
O..r C 1/NJ/. The framelets with the quadrature rules using triangular Kronecker
lattices, as shown in Sect. 5, satisfy that Nj=Nj�1 � 4. Thus, the framelet transforms
between levels 0 to J have computational steps in proportion to 22J.

7 Discussion

In the paper, we only consider the framelet transforms for one framelet system with
starting level 0. The results can be generalized to a sequence of framelet systems as
[12, 18], which will allow one more flexibility in constructing framelets.

The decomposition holds for framelets with any quadrature rules on the simplex.
In order to achieve the tightness of the framelets and thus exact reconstruction for
functions on the simplex by framelets, the quadrature rules are required to be exact
for polynomials, see Sects. 3 and 4. However, polynomial-exact rules are generally
difficult to construct on the simplex, see [9, Chapter 3].

Triangular Kronecker lattices with equal weights used in Sect. 5 are low-
discrepancy [2], but not exact for polynomials. In this case, the reconstruction will
incur errors. To overcome this, the masks and quadrature rules shall be constructed



1188 Y. G. Wang and H. Zhu

to satisfy the condition

ba


�`

2j

�
ba


�`0

2j

�
U`;`0 .QNj�1 /C

rX

nD1
bbn



�`

2j

�
bbn



�`0

2j

�
U`;`0 .QNj/ D U`;`0 .QNj/;

for j � 1 and for `; `0 2 N0 satisfying b̨
�
�`
2j

	
b̨
�
�`0

2j

	
¤ 0, where U`;`0 .QNj/ WD

PNj

kD0 !j;kP`.xj;k/P`0.xj;k/ is the numerical integration of P`P`0 over T2 by quadra-
ture rule QNj , see [18, Theorem 2.4]. This condition requires that the quadrature
rules for framelets have good properties for numerical integration over the simplex.
Besides the triangular Kronecker lattices used in the paper, one may consider other
quadrature rules with low discrepancy on the simplex, for example, the analogues
to quasi-Monte Carlo (QMC) points in the cube and spheres, see [3, 4, 7, 16].

To implement the fast algorithms for the DFTs in (21) and (22), we need fast
transforms for the bases P`. For example, we can represent the bases P`;m in (12) by
trigonometric polynomials and apply the FFT on R to achieve fast algorithms for
the DFTs on T2.
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Solving Partial Differential Equations
with Multiscale Radial Basis Functions

Holger Wendland

Dedicated to Ian H. Sloan on the occasion of his 80th birthday.

Abstract The goal of this paper is to review, discuss and extend the current theory
on multiscale radial basis functions for solving elliptic partial differential equations.
Multiscale radial basis functions provide approximation spaces using different
scales and shifts of a compactly supported, positive definite function in an orderly
fashion. In this paper, both collocation and Galerkin approximation are described
and analysed. To this end, first symmetric and non-symmetric recovery is discussed.
Then, error estimates for both schemes are derived, though special emphasis is
given to Galerkin approximation, since the current situation here is not as clear
as in the case of collocation. We will distinguish between stationary and non-
stationary multiscale approximation spaces and multilevel approximation schemes.
For Galerkin approximation, we will establish error bounds in the stationary setting
based upon Cea’s lemma showing that the approximation spaces are indeed rich
enough. Unfortunately, convergence of a simple residual correction algorithm,
which is often applied in this context to compute the approximation, can only be
shown for a non-stationary multiscale approximation space.

1 Introduction

Radial basis functions are by now a well-established tool in multivariate approxi-
mation theory with many areas of applications such as image registration, meshfree
methods for partial differential equations, fluid-structure interaction, learning theory
and many more. There are several books (for example [3, 12, 39]) and survey articles
[2, 16, 35] available.
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Multiscale radial basis functions and multilevel algorithms for the approximation
of functions have been introduced in [15, 34], right after compactly supported
radial basis functions were invented in [37, 43]. However, though earlier attempts at
proving convergence have been made in [20, 30] they did not apply to the algorithms
developed in [15]. Further numerical observations were made in [4, 11, 13, 38], this
time already for the solution of partial differential equations.

The first sophisticated proofs of convergence were given in [24, 25, 28] for
multilevel interpolation on the sphere and, based upon this, in [41] for multilevel
interpolation on bounded domains. Further improvements for interpolation were
then given in [9, 23, 27, 36]. A recent overview is in [42].

After that, proofs of convergence were also given for multilevel methods for
solving partial differential equations. For example, proofs for methods based upon
collocation are given in [5, 6, 8, 26], while [7] discusses Galerkin approximation.

Finally, multilevel schemes like those discussed here have been used in computer
graphics [32], in the context of neural networks [14] and in the context of machine
learning [44].

The goal of this paper is to review, discuss and extend results on multiscale
radial basis functions and multilevel algorithms for the numerical solution of elliptic
partial differential equations. We will address both major techniques in this context,
collocation and Galerkin projection. The next section is devoted to laying the
mathematical ground for this. It discusses single-scale or one-step discretisation
techniques based on radial basis functions in a rather general form. Special emphasis
is given to the difference between symmetric and non-symmetric recovery. In
Sect. 3, our main section, we will first give a general definition of multiscale RBF
approximation spaces and state a general multilevel algorithm. After that, we will
discuss results for collocation. The main part of this section is devoted to results
on Galerkin projections. Here, a new convergence proof is given and compared to
previous results.

2 One-Level Approximation

Before we can discuss multiscale approximation spaces and multilevel methods
based on radial basis functions, it is necessary to have a look at the standard one-
level radial basis function method for solving partial differential equations. We will
do this in the context of optimal recovery but also discuss unsymmetric recovery.

The general setup is as follows. We are given a Hilbert space H consisting of
functions f W ˝ ! R, where ˝ � R

d is a bounded domain. We want to recover
a function u 2 H , for which we only have discrete data �1.u/; : : : ; �N.u/, given
by linearly independent functionals �1; : : : ; �N 2H �, where H � denotes the dual
space to H .
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Definition 1 The optimal or symmetric recovery s� 2 H of a function u 2 H
from the data f1 WD �1.u/; : : : ; fN WD �N.u/ given by �1; : : : ; �N 2 H � is the
unique element s� 2H which solves

min
˚kskH W s 2H with �j.s/ D fj; 1 � j � N

�
:

It is well-known (see for example [39]) that the solution s� is indeed unique.
Moreover, it can be computed directly if the Riesz representers of the functionals
are known.

Theorem 1 Let �1; : : : ; �N 2 H � be linearly independent. Let v1; : : : ; vN 2 H
denote their Riesz representers, respectively, i.e. we have �j.v/ D hv; vjiH for
1 � j � N and v 2H . Then, the optimal recovery s� of u is given by

s� D
NX

jD1
˛jvj;

where the coefficients are determined by the linear system A�˛ D f with A� 2
R

N�N having entries aij D hvi; vjiH D �i.vj/ D �j.vi/ and f 2 R
N having entries

fi WD �i.u/.

While the above theorem seems to be satisfactory, we will soon see that it might
be reasonable to change the set-up a little. Instead of having one set of linearly
independent functionals �1; : : : ; �N 2 H � with Riesz representers v1; : : : ; vN ,
let us now assume that we have a second set of linearly independent functionals
�1; : : : ; �N 2 H � with Riesz representers w1; : : : ;wN 2 H . We will only assume
that each family of functionals is linearly independent but not that the �j functionals
are independent of the �j functionals. As a matter of fact, we will allow �j D �j so
that we are back in the situation of optimal recovery.

Definition 2 The unsymmetric recovery s�;M 2 H of a function u 2 H from the
data f1 WD �1.u/; : : : ; fN WD �N.u/ using the functionals �1; : : : ; �N 2 H � with
Riesz representers w1; : : : ;wN is defined to be the element

s�;M D
NX

jD1
˛jwj

where ˛ 2 R
N is the solution of A�;M˛ D f , where A�;M has entries aij D �i.wj/ D

hvi;wjiH , provided that A�;M is invertible, and f 2 R
N is given by fj WD �j.u/.

In the case of �j D �j for 1 � j � N the unsymmetric recovery becomes
the symmetric recovery. From this point of view, the unsymmetric recovery is a
generalisation of the symmetric case.

In contrast to symmetric or optimal recovery, where the collocation matrix A�
is positive definite by definition and hence invertible, the situation is not so clear
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in the case of unsymmetric collocation, where the matrix A�;M might not even be
symmetric any more and might even become singular. We will discuss this in more
details later on.

We will use all of this in the specific situation of H being a reproducing kernel
Hilbert space, since this allows us to state the Riesz representers of functionals
explicitly.

Definition 3 A Hilbert space H consisting of continuous functions f W ˝ ! R

with ˝ � R
d is called a reproducing kernel Hilbert space, if there is a unique

function ˚ W ˝ �˝ ! R with the properties

• ˚.�; x/ 2H for all x 2 ˝ ,
• f .x/ D hf ; ˚.�; x/iH for all f 2H and all x 2 ˝ .

The function ˚ is called the reproducing kernel of H .

The second property shows that the point evaluation functional ıx has ˚.�; x/ as
its Riesz representer, i.e. the Riesz representer is given by applying this functional
to the second argument of the kernel. This is also true for any other functional � 2
H �. To see this, we first note that the kernel is necessarily symmetric, since

˚.x; y/ D h˚.�; y/; ˚.�; x/iH D h˚.�; x/; ˚.�; y/iH D ˚.y; x/:

Hence, if v� 2H denotes the Riesz representer of � 2H � then

�.˚.x; �// D h˚.x; �/; v�iH D hv�; ˚.�; x/iH D v�.x/:

As a consequence, we can express the system matrices A� and A�;M completely
in terms of the kernel. In the following we will use the notation �x˚.�; x/ to indicate
that the functional � acts with respect to the second variable of the kernel.

Corollary 1 Let H be a reproducing kernel Hilbert space with reproducing kernel
˚ . Let� D f�1; : : : ; �Ng �H � and M D f�1; : : : ; �Ng �H � denote two sets of
linearly independent functionals. Then, the system matrices associated to symmetric
and unsymmetric collocation are given by

A� D
�
�xi �

y
j˚.x; y/

	
; A�;M D

�
�xi�

y
j˚.x; y/

	
:

Let us shortly discuss what this means when it comes to solving a simple elliptic
boundary value problem with either collocation or a Galerkin approach. In both
cases, we will assume that the kernel ˚ W ˝ � ˝ ! R is actually defined on
R

d � R
d and is translation invariant, i.e. there is an even function  W Rd ! R such

that

˚.x; y/ D .x� y/ D .y � x/; x; y 2 R
d:
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We start with collocation and look at the toy problem

��u D f in ˝; u D g on @˝:

In the case of collocation, we want to enforce these equations on discrete points.
Hence, we can pick data sites X1 D fx1; : : : ; xng � ˝ and X2 D fxnC1; : : : ; xNg �
@˝ and define the test functionals �j via

�j.u/ D
(
��u.xj/ for 1 � j � n;

u.xj/ for nC 1 � j � N:

Then, the symmetric recovery will form approximants as

s�.x/ D
NX

jD1
˛j�

y
j˚.x; y/ D �

nX

jD1
˛j�.x� xj/C

NX

jDnC1
˛j.x � xj/:

The associated system matrix has a natural block structure of the form

A� D


�2.xi � xj/ ��.xi � xj/

��.xi � xj/ .xi � xj/

�
;

and the right-hand side f 2 R
N has entries fj D f .xj/ for 1 � j � n and fj D g.xj/

for nC 1 � j � N.
This matrix is symmetric and positive definite and this type of symmetric

collocation has been studied extensively, for example in [10, 17–19, 29, 40], giving
explicit error and stability results on the collocation process.

However, since it requires twice the application of the differential operator to
compute the system matrix, one often also sees the unsymmetric approach, where
the functionals �j.u/ D ıj.u/ D u.xj/ and their Riesz representers wj D ˚.�; xj/ D
.��xj/ are used to form the approximation space. In this situation the unsymmetric
recovery becomes

s�;M.x/ D
NX

jD1
˛j.x� xj/

with the system matrix

A�;M D

��.xi � xj/

.xi � xj/

�
;

which clearly requires only one application of the differential operator. However, it
is also apparent that the system matrix is no longer symmetric and, as a matter of
fact, might even become singular [22].
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We can conclude from this simple example that when it comes to collocation,
the symmetric approach is the mathematically sound one and this is the one we will
further investigate later on.

For our second example, we slightly change the toy problem. This time, we look
at

��uC u D f in ˝;
@u

@n
D 0 on @˝;

where n denotes the unit outer normal vector on @˝ . The reason for this change is
that the weak formulation for this new toy problem becomes

a.u; v/ WD
Z

˝

.ru � rv C uv/ dx D
Z

˝

fvdx; u; v 2 H1.˝/;

so that the bilinear form is coercive for H1.˝/ and not only for H1
0.˝/.

To discretise this weak problem using our symmetric or unsymmetric recovery
strategies, we choose again discretisation points X D fx1; : : : ; xNg � ˝ and define
functionals

�j.u/ WD a.u; ˚.�; xj//; 1 � j � N:

Interestingly, these functionals employ the Riesz representers of our second family
of functionals �j defined by �j.u/ D u.xj/ so that we can also write

�j.u/ D a.u; �y
j˚.�; y//:

Since a is H1.˝/-coercive, this shows that this time the unsymmetric approach is
the better one. For the unsymmetric approach, we form approximants as

s�;M.x/ D
NX

jD1
˛j�

y
j˚.�; y/ D

NX

jD1
˛j˚.�; xj/ (1)

and determine the coefficients ˛j using the system matrix

A�;M D .�xi�y
j˚.x; y// D .�xi˚.x; xj// D .a.˚.�; xj/; ˚.�; xi///:

This matrix is now positive definite and symmetric and the reconstruction (1) is the
Galerkin approximation to u from VX D spanf˚.�; x1/; : : : ; ˚.�; xN/g.
Corollary 2 In the case of functionals �j.u/ D a.u; ˚.�; xj// and �j.u/ D u.xj/,
the unsymmetric approach gives the Galerkin best approximation as the recovery.
In particular, by Cea’s Lemma we have the error estimate

ku � s�;MkH1.˝/ � C inf
s2VX
ku � skH1.˝/:
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Nonetheless, it is interesting to see that we could also look at the symmetric
approach. Here, the approximant would be of the form

s�.x/ D
NX

jD1
˛j�

y
j˚.x; y/ D

NX

jD1
˛ja.˚.x; �/; ˚.�; xj//:

The coefficients are again determined by solving a linear system with the system
matrix A� having entries

aij D �xi �yj˚.x; y/ D ax.˚.x; xi/; ay.˚.x; y/; ˚.y; xj///;

where the index at the bilinear form a indicates the variable with respect to which a
is applied.

In the case of a translation invariant and even kernel ˚.x; y/ D .x� y/ this can
be reformulated as

aij D �
Z

˝

Z

˝

r.y � xj/ � H.x � y/r.x� xi/dxdy

C
Z

˝

Z

˝

.y � xj/r.x � y/ � r.x� xi/dxdy

C
Z

˝

Z

˝

.x � xi/r.x� y/ � r.y � xj/dxdy

C
Z

˝

Z

˝

.x � y/.y � xj/.x � xi/dxdy;

where H denotes the Hessian matrix having entries .H/ij D @i@j. Clearly, this
approach has the disadvantage of requiring second order derivatives of  and also
requiring the computation of double integrals. Hence, it is not surprising that so far
this approach has not been investigated.

From both examples we can summarise our findings as follows. When it comes
to collocation then the symmetric approach is the right choice, when it comes to
Galerkin approximation then the unsymmetric approach is the right choice.

3 Multilevel Approximation

We will now describe the general setup of multiscale radial basis functions. To
this end, we have to understand how scaling affects a reproducing kernel of a
reproducing kernel Hilbert space. Since we are mainly interested in solving elliptic
PDEs we will, from now on, concentrate on Sobolev spaces H� .˝/, which are
known to be reproducing kernel Hilbert spaces if the Sobolev embedding theorem
holds, i.e. if � > d=2. If˝ has a Lipschitz boundary then it is well-known that each



1198 H. Wendland

function can be extended to become a function in H� .Rd/. Thus, we will concentrate
on reproducing kernels of Sobolev spaces H� .Rd/. The functions u 2 H� .Rd/ can
be described using Fourier transforms. To be more precise, if we define the Fourier
transform of a function u 2 L1.Rd/ by

bu.!/ D .2�/�d=2
Z

Rd
u.x/e�ixT!dx

and extend this definition in the usual way to functions u 2 L2.Rd/, then we have
the following definition.

Definition 4 For � � 0, the Sobolev space H�.Rd/ consists of all functions u 2
L2.Rd/ with

kuk2H� .Rd/
D
Z

Rd
jbu.!/j2.1C k!k2�2 /d! <1; (2)

Though the reproducing kernel of a reproducing kernel Hilbert space is unique, it
is possible to equip this space with another reproducing kernel by altering the inner
product of the space. This is frequently used in the theory of radial basis functions.
The example, which is relevant for us here, is as follows. Assume that  W Rd ! R

is an integrable function having a Fourier transformb satisfying

c1.1C k!k2�2 /�1 �b.!/ � c2.1C k!k2�2 /�1; ! 2 R
d: (3)

with certain fixed constants c1; c2 > 0 and � > d=2. Then, ˚.x; y/ D .x � y/ is
also a reproducing kernel of H� .Rd/ but with respect to the inner product

hf ; gi WD
Z

Rd

bf .!/bg.!/
b.!/

d!; f ; g 2 H�.Rd/:

The induced norm k � k2 WD h�; �i is obviously equivalent to the norm defined
by (2), where the equivalence constants are determined by c1 and c2 from (3).

Important for us is yet another matter. On H� .Rd/ with � � 0, we can introduce
a scaled norm as follows.

Definition 5 Let � � 0 be given. Then for each ı > 0, the Sobolev space H� .Rd/

can be equipped with a scaled norm defined by

kuk2H�
ı
WD
Z

Rd
jbu.!/j2.1C .ı2k!k22/�/d!:

Obviously, this indeed defines a norm on H� .Rd/ but this time the norm
equivalence constants depend on ı. To be more precise, it is straight-forward to
see that we have for each � > 0 and each ı 2 .0; 1�,

kukH�
ı
� kukH� .Rd/ � ı��kukH�

ı
; u 2 H� .Rd/: (4)
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If we now come back to the case � > d=2 and scale a function  having a Fourier
transform satisfying (3) by setting ı WD ı�d.�=ı/ then its Fourier transform is
given by bı D b.ı�/ such that ı generates a norm which is equivalent to the H�

ı

norm, i.e. it satisfies

c1kukı � kukH�
ı
� c2kukı ; u 2 H�.Rd/:

This can be rephrased as follows.

Lemma 1 Let  define a reproducing kernel ˚ for H� .Rd/, � > d=2, i.e. let b
satisfy (3). Then, ı defines also a reproducing kernel˚ı of H�.Rd/. For 0 < ı � 1,
the norms satisfy

c1kukı � kukH�
ı
� kukH� .Rd/ � ı��kukH�

ı
� c2ı

��kukı ; u 2 H� .Rd/:

This simple observation allows us now to introduce a sequence of reproducing
kernels and our multiscale approximation spaces.

Definition 6 Let � > d=2 and let  2 L1.Rd/ satisfy (3) such that ˚.x; y/ D
.x� y/ is a reproducing kernel of H� .Rd/. Let 1 � ı1 � ı2 � � � � � ım � � � � be a
non-increasing sequence of scales and define the scaled kernels

˚j.x; y/ WD ı�d
j .

�
x � y/=ıj

�
; x; y 2 R

d: (5)

Let ˝ � R
d be a bounded domain. For each j 2 N let Mj D f�. j/

1 ; : : : ; �
. j/
Nj
g �

H�.˝/� be a set of linearly independent functionals. Then, a single-scale approxi-
mation space of level j is defined as

Wj WD span
˚
�y˚j.�; y/ W � 2 Mj

�

and the multiscale approximation space of level j is defined as

Vj WD W1 C � � � CWj:

Often, the functionals �. j/
k 2 Mj have a one point support x. j/

k meaning that

�
. j/
k .f / D 0 for all f 2 C.˝/ with x. j/

k 62 supp.f /. Later on, we will see that this is
indeed the case for the discretisations discussed in this paper. In such a case the fill
distance of the set Xj D fx. j/

1 ; : : : ; x
. j/
Nj
g � ˝ defined by

hj WD hXj;˝ WD sup
x2˝

min
x. j/

k 2Xj

kx � x. j/
k k2

will play a crucial role and we will distinguish our multiscale approximation spaces
in the following way.
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Definition 7 If each functional �k 2 Mj has a one point support x. j/
k 2 Xj � ˝ ,

then the multiscale approximation spaces Vj are called

• stationary, if there is a constant � > 0 such that ıj D �hj.
• non-stationary, if hj=ıj ! 0 for j!1.

One of the reasons for looking at multiscale approximation spaces is that in the
stationary setting the single-scale approximation spaces are usually not rich enough
to provide good approximations, see [3, 33, 39].

Throughout this paper, we will work with kernels ˚.x; y/ D .x � y/, where
 W Rd ! R has compact support. Without restriction, we will assume that the
support of  is given by the closed unit ball about zero. If in this case the functionals
also have a one point support then the single-scale approximation spaces Wj are built

from local basis functions .�. j/
k /

y˚.�; y/ having the closed ball of radius ıj about x. j/
k

as support. In this situation we will call Wj also a local approximation space.
We will discuss such spaces for both collocation and Galerkin methods. Before

that we will give a simple algorithm to determine an approximation from the space
Vj to a given function f 2 H� .˝/. This algorithm is based on an iterative residual
correction and can be formulated in general form using yet another sequence of
functionals.

Hence, for each j 2 N let �j WD f�. j/
1 ; : : : ; �

.Nj/

j g � H�.˝/� be another set
of linearly independent functionals, then, the residual correction algorithm can be
described as in Algorithm 1. Note that the sets Mj of functionals are used implicitly
to define the approximation spaces Wj and hence Vj.

Obviously, the crucial point of Algorithm 1 is to find the approximant sj 2 Wj,

where Wj is the space built with the trial functionals �. j/
k , using the test functionals

�
. j/
k . This can be done in various ways. We will mainly be interested in generalised

interpolation, where the approximant satisfies �. j/
k .sj/ D �. j/

k .ej�1/, 1 � k � Nj, i.e.
for each level j we have to invert a system matrix as described in Corollary 1. Taking
the comments after Corollary 1 into account, we will do this only for combinations
of test and trial functionals which guarantee an invertible system matrix. We could,
however, also use other techniques like least-squares to determine the approximant
sj, if the system matrix is not invertible.

Algorithm 1 Multilevel approximation
Input: Right-hand side f , number of levels n, sets of functionals �j.
Output: Approximate solution un 2 Vn D W1 C � � � C Wn

Set u0 D 0, e0 D f .
for j D 1; 2; : : : ; n do

Determine a single-scale approximant sj 2 Wj to ej�1 such that �.sj/ is close to �.ej�1/ for
all � 2 �j.
Set uj D uj�1 C sj.
Set ej D ej�1 � sj.

end for
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3.1 Multilevel Collocation

We now want to discuss the ideas of using multiscale approximation spaces to solve
partial differential equations with collocation. In this context, Algorithm 1 is an
appropriate tool.

Following the ideas above, we will employ symmetric recovery to determine the
single-scale approximant sj. Let us hence look again at a typical elliptic problem

Lu D f in ˝; u D g on @˝; (6)

with given right-hand sides f ; g and given elliptic operator L.
To describe the multiscale spaces and the multilevel algorithm, we slightly

change the notation. To define the functionals �j on level j, we choose discrete
point sets Xj D Yj [ Zj � ˝ consisting of interior points Yj � ˝ and boundary
points Zj � @˝ to represent the functionals in the interior and on the boundary
separately. Then, a typical functional �k 2 �j takes the form

�k.u/ WD
(

Lu.xk/ if xk 2 Yj

u.xk/ if xk 2 Zj:

Furthermore, for a practical realisation of Algorithm 1 it is more important to
record the residuals fj D fj�1 � Lsj and gj D gj�1 � sj rather than the error ej D
ej�1�sj. These residuals have only to be computed on the discrete point sets starting
with level j C 1 and, if the point sets Xj are nested, then the residuals have only to
be computed on the finest level n.

Taking this into account, the generic multilevel algorithm becomes the multilevel
collocation algorithm, given in Algorithm 2.

Algorithm 2 Multilevel collocation algorithm
Input: Right-hand sides f and g, number of levels n.
Output: Approximate solution un 2 Vn D W1 C � � � C Wn.
Set u0 D 0; f0 D f ; g0 D g
for j D 1; 2; 3 : : : do

Determine the single-scale correction sj to fj�1 and gj�1 with
Lsj.y/ D fj�1.y/; y 2 Yj,
sj.z/ D gj�1.z/; z 2 Zj.

Update the global approximation and the residuals:
uj D uj�1 C sj

fj D fj�1 � Lsj

gj D gj�1 � sj

end for
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This multilevel scheme has been thoroughly investigated in [8]. Hence, we will
only report here on the main convergence result since we want to compare the results
to those of the Galerkin multilevel scheme which we will introduce next.

To state the convergence result, we have to recall the fill distance, which is usually
employed when it comes to measuring convergence in the area of scattered data
approximation.

For point sets Yj � ˝ and Zj � @˝ , the fill distance on ˝ and @˝ , respectively,
are defined as

hYj;˝ WD sup
x2˝

min
xj2Yj
kx � xjk2; hZj;@˝ WD sup

x2@˝
min
xj2Zj

dist.x; xj/;

where dist denotes the intrinsic distance function on @˝ , i.e. the length of the
shortest connecting curve.

Theorem 2 Let ˝ � R
d have a Ck;s-boundary for s 2 Œ0; 1/, k 2 N0 with k > d=2.

Assume that u 2 W�
2 .˝/ solves (6) with � D k C s. Let Y1;Y2; : : : be a sequence

of point sets in ˝ and let Z1;Z2; : : : be a sequence of point sets in @˝ having fill
distances hYj;˝ and hZj;@˝ , respectively. Define hj WD maxfhXj;˝ ; hYj;@˝g and assume
that there are constants � 2 .0; 1/ and � 2 .0; 1� such that

��hj � hjC1 � �hj (7)

for j D 1; 2; : : :. Let  W Rd ! R be a continuous, compactly supported function
with a Fourier transform satisfying (3). Define the scaled kernels ˚j by (5), where
the scales ıj satisfy

ıj D



hj

�

�1� 2
�

: (8)

Then, provided that h1 � � is sufficiently small, there exist constants C;C1 > 0,
independent of �; u; j such that

ku � unkL2.˝/ � C1.C�
��2/nkukH� .˝/; n D 1; 2; 3; : : : : (9)

Hence, if the constant � 2 .0; 1/ has been chosen sufficiently small, so that ˛ WD
C���2 < 1, the multiscale approximation un converges linearly in the number of
levels to u.

As mentioned above, a proof of this result can be found in [8]. Here, we want to
point out a few additional things.

First of all, since ıj is not proportional to hj, but follows the rule (8), we have a
non-stationary multiscale approximation space. This has the disadvantage that the
collocation matrices become denser and denser from level to level. Another disad-
vantage is that the condition number also grows from level to level. Nonetheless,
the improvement when compared to the non-stationary single-scale approximation
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is significant. However, it would be desirable to have also convergence of the
multilevel algorithm in the case of a stationary multiscale approximation space.
Unfortunately, numerical results from [11] indicate that in this case the simple
multilevel algorithm does not converge. Suggestions of improving the algorithm
have been given in [11, 13] but more research in this direction seems to be necessary.

Finally, note that (9) actually also gives convergence orders in terms of the fill
distance. To see this, assume for simplicity that we have hjC1 D �hj for all j and

h1 D �. Then, we obviously have hn D �n or � D h1=n
n . Inserting this into (9) gives

the following result.

Corollary 3 Under the assumption of Theorem 2 let � D 1, i.e. hjC1 D �hj. Let
� > 0 and choose � 2 .0; 1/ so small that C�� < 1. Then, we have the error bound

ku � unkL2.˝/ � C1h
��2��
n kukH� .˝/:

Proof As mentioned above, we have �n D hn. Moreover, from (9) and the fact that
C�� < 1, we see that

ku � unkL2.˝/ � C1.C�
����2��/nkukH� .˝/

< C1�
.��2��/nkukH� .˝/

D C1h
��2��
n kukH� .˝/: ut

It is interesting to see that, with � going to zero, this yields the same approxi-
mation order � � 2 which the one-level approach with a fixed support radius would
yield.

3.2 Multilevel Galerkin Approximation

The idea of using a multilevel scheme in the context of Galerkin approximation
has been suggested in [38] and has then further been investigated in [7]. However,
there have been different observations regarding the convergence of the multilevel
algorithm and we will take a closer look at this now.

The idea is as follows. Again assume that we want to solve a strictly elliptic PDE
with natural boundary conditions of the form

�div.Aru/C u D f in ˝; n � Aru D 0 on @˝

with a positive definite matrix A 2 R
d�d. Then the weak formulation means to find

a function u 2 H1.˝/ such that

a.u; v/ WD
Z

˝

Œ.Aru/ � rv C uv� dx D F.v/ WD
Z

˝

fvdx; v 2 H1.˝/: (10)
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Solving this problem in a multiscale radial basis function setting means that we
pick increasingly finer data sets X1;X2; : : : � ˝ and a non-increasing sequence of
scales ı1 � ı2 � : : : to define approximation spaces

Wj WD spanf˚j.�; x/ W x 2 Xjg;
Vj WD W1 C � � � CWj:

Then, the classical Galerkin approach leads to the following definition.

Definition 8 The approximate Galerkin solution to the weak problem (10) is
defined as the function u�

n 2 Vn satisfying

a.u�
n ; v/ D F.v/; v 2 Vn:

Since the bilinear form a is H1.˝/-coercive, Cea’s lemma tells us now that
u�

n approximates the true solution u 2 H1.˝/ approximately as good as the best
H1.˝/-approximation to u from Vn. This gives in particular the following result.

Theorem 3 Let ˝ � R
d be a bounded domain with a Lipschitz boundary. Let

 W Rd ! R be a continuous, compactly supported function with Fourier transform
satisfying (3) with � > d=2. Assume that the solution u of (10) satisfies u 2 H�.˝/.
Let the scaled kernel ˚j of (5) be defined with ıj D hj=�, where hj is the fill distance
of Xj in ˝ and � 2 .0; 1/ is fixed. Finally, assume that hjC1 D �hj. Then, for each
� > 0 there is a �0 D �0.�/ 2 .0; 1/ such that the approximate Galerkin solution
u�

n 2 Vn satisfies the error bound

ku � u�
nkH1.˝/ � Ch��1��

n kukH� .˝/;

provided � � �0.�/.
Proof By Cea’s lemma we have

ku � u�
nkH1.˝/ � C inf

v2Vn

ku � vkH1.˝/:

The latter best approximation error can be bounded by a multilevel interpolant,
which gives the stated error bound, see [41] and the extensions in [42]. ut

The question remains how to efficiently compute the approximate Galerkin
solution of the multiscale approximation space. A natural choice is to use our
multilevel residual correction algorithm. In this situation it takes the specific form
given in Algorithm 3.

It is important to note that un 2 Vn produced by this algorithm is not the
approximate Galerkin solution u�

n . Nonetheless, the sequences fujg, fsjg and fejg
produced by Algorithm 3 satisfy the following relations.

Proposition 1 The sequences fujg, fsjg and fejg from Algorithm 3 have the
following properties.
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Algorithm 3 Multilevel Galerkin approximation
Input: Right-hand side f , number of levels n
Output: Approximate solution un 2 Vn WD W1 C � � � C Wn

Set u0 D 0, e0 D f .
for j D 1; 2; : : : ; n do

Determine a single-scale approximant sj 2 Wj to ej�1 with

a.sj; v/ D F.v/� a.uj�1; v/; v 2 Wj:

Set uj D uj�1 C sj.
Set ej D ej�1 � sj.

end for

1. As before, we have un D s1 C � � � C sn and en D en�1 � sn D u � un.
2. The function uj 2 Vj satisfies a.uj; v/ D F.v/ for all v 2 Wj. Hence,

ku � ujkH1.˝/ � C inf
v2Wj
ku � uj�1 � vkH1.˝/:

3. The function sj is the approximate Galerkin solution to ej�1, i.e a.sj; v/ D
a.ej�1; v/ for all v 2 Wj. Hence,

kej�1 � sjkH1.˝/ � C inf
v2Wj
kej�1 � vkH1.˝/:

4. The sequence fejg is monotone decreasing in the energy norm, i.e. a.ej; ej/ �
a.ej�1; ej�1/ and hence it possesses the stability property

kejkH1.˝/ � CkukH1.˝/; j 2 N0:

In each case, the constant C > 0 is independent of the sequences and the level.

Proof The first property follows as usual by induction. For the second property we
note that we have F.v/ D a.uj�1 C sj; v/ D a.uj; v/ for all v 2 Wj by construction
and thus a.u � uj; v/ D 0 for all v 2 Wj. Hence, if we denote the energy norm by
kuk2a WD a.u; u/ we have for an arbitrary v 2 Wj that

ku � ujk2a D a.u � uj; u � uj/ D a.u� uj; u � uj�1 � sj/

D a.u � uj; u � uj�1 � v/ � ku � ujkaku � uj�1 � vka:

Dividing by ku � ujka and using the fact that v 2 Wj was arbitrary gives

ku � ujka � inf
v2Wj

ku � uj�1 � vka: (11)

Using now the norm equivalence of k � ka with k � kH1.˝/ yields the second property.
The third statement is just the second statement using the identities ej D u�uj D

u � uj�1 � sj D ej�1 � sj.
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Finally, choosing v D 0 in (11) yields kejka � kej�1ka. This shows in particular
kejka � ke0ka D kuka and the norm equivalence between the energy and the
H1.˝/-norm finally gives kejkH1.˝/ � CkukH1.˝/. ut

Thus, while u�
n is the Galerkin approximation to u from the multiscale space Vn,

the function un 2 Vn only satisfies the Galerkin orthogonality for Wn in the above
sense.

It is an open question, whether un nonetheless converges to u or not and if it
converges in which sense. This is of particular interest in the stationary multiscale
setting. Here, [38] contains numerical evidence indicating that the multilevel
algorithm seems not to converge. However, in [7] a proof for convergence was given
and a numerical example seems to corroborate this. In both cases the numerical
evidence has to be considered carefully since the numerical results depend on
numerical integration adding additional errors to the scheme.

Unfortunately, in the proof of [7] an approximation result for the single-
scale approximation was used, which was too optimistic for the given situation.
We will now give a convergence proof of the multilevel scheme in a weaker
form. As mentioned above, in [7] the stationary situation of choosing ıj D �hj

was investigated. However, if the too optimistic assumption on the single-scale
approximation is replaced, their proof only works in the situation of a non-stationary
setting. To be more precise, we will see that ıj D �h1=3j is required to achieve
convergence with this proof. This, of course, means that the support radii also grow
from level to level leading to denser matrices.

To prove this result, we need to recap some results from the one-level approxi-
mation. The first auxiliary result is a sampling inequality which is usually used in
this context. We will employ it in a form coming from [31].

Lemma 2 Let ˝ � R
d be a bounded domain with Lipschitz boundary. Let � >

d=2. Let X � ˝ be a finite point set with sufficiently small fill distance hX;˝ . Then,
there is a constant C > 0, independent of X, such that for all f 2 H� .˝/ vanishing
on X, we have

kfkH�.˝/ � Ch���
X;˝ kfkH� .˝/:

for 0 � � � � .

The second auxiliary result comes from [41], to be more precise, it is a summary
of Lemmas 4 and 5 in [41]. It gives an approximation result for band-limited
functions from weighted Sobolev spaces. Recall that a function f 2 L2.Rd/ is band-
limited if there is a 	 > 0 such thatbf is compactly supported in B	 .0/, the ball about
zero with radius 	 . We will denote the collection of all such functions by B	 . We
also need the separation distance

qX WD min
j¤k
kxj � xkk2

of a point set X D fx1; : : : ; xNg.



Solving Partial Differential Equations with Multiscale Radial Basis Functions 1207

Lemma 3 Let � � ˇ > d=2, ı 2 .0; 1� and X D fx1; : : : ; xNg � R
d with qX � ı.

Then, there exists a constant � > 0, independent of X and ı such that to each
f 2 Hˇ.Rd/ there is a band-limited function f�=qX 2 B�=qX with f�=qX jX D f jX and

kf � f�=qXkH
ˇ
ı

� 5kfk
H
ˇ
ı

; (12)

kf�=qXkH�
ı
� C.�ı=qX/

��ˇkfk
H
ˇ

ı

: (13)

Note that function f�=qX might also depend on ı, though this is not explicitly
stated.

With this result, we can bound the H1.˝/-error of an interpolant for functions
of H2.˝/. In its proof, as in what follows, we need a universal, linear and bounded
extension operator, which is described in our final auxiliary result, see [1].

Lemma 4 Let ˝ � R
d be a bounded domain with a Lipschitz boundary. Then,

there is a linear, extension operator E W H� .˝/! H� .Rd/ satisfying

1. Ef j˝ D f ,
2. kEfkH� .Rd/ � C�kfkH� .˝/

for all f 2 H� .˝/ and all � � 0.

Now we are in the position to formulate the single-scale approximation result
that we require for proving convergence of the non-stationary multilevel scheme.

Proposition 2 Let d � 3. Let ˝ � R
d be bounded with a Lipschitz boundary.

Let X D fx1; : : : ; xNg � ˝ be quasi-uniform in the sense that hX;˝ � cquqX. Let
 W Rd ! R satisfy (3) and denote the interpolant to f 2 H2.˝/ on X using
ı D ı�d.�=ı/ by IX;ıf . Then, there is a constant C > 0 such that

kf � IX;ıfkH1.˝/ � C
hX;˝

ı2
kfkH2.˝/: (14)

Proof Since d � 3, the Sobolev embedding theorem guarantees H2.˝/ � C.˝/.
Since f � IX;ıf vanishes on X, the sampling inequality from Lemma 2 yields

kf � IX;ıfkH1.˝/ � ChX;˝kf � IX;ıfkH2.˝/:

Next, we chooseef WD .Ef /�=qX from Lemma 3 and split the latter term as

kf � IX;ıfkH2.˝/ D kEf � IX;ı.Ef /kH2.˝/

� kEf �efkH2.˝/ C kef � IX;ıefkH2.˝/;

where we used the fact that f jX D Ef jX Def jX and hence the interpolants to each
of these functions are the same.
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The first term in the above inequality can be bounded by

kEf �ef kH2.˝/ � kEf �efkH2.Rd/ � ı�2kEf �efkH2
ı
� 5ı�2kEfkH2

ı

� 5ı�2kEfkH2.Rd/ � Cı�2kfkH2.˝/;

using (4), (12) and the continuity of the extension operator. Next, using the sampling
inequality from Lemma 2, the norm equivalence from Lemmas 1, 3 and 4 yields

kef � IX;ıefkH2.˝/ � Ch��2
X;˝ kef � IX;ıef kH� .Rd/ � h��2

X;˝ ı
��kef � IX;ıefkH�

ı

� Ch��2
X;˝ ı

��kefkH�
ı
� Ch��2

X;˝ ı
��


�ı

qX

���2
kef kH2

ı

� C



hX;˝

qX

���2
ı�2kefkH2

ı
� Cı�2kefkH2.Rd/

� Cı�2kEfkH2.Rd/ � Cı�2kfkH2.˝/:

Taking this all together yields the stated result. ut
A similar result can be found in [21, Lemma 4.6], for more general Sobolev

spaces and without the condition that X has to be quasi-uniform. But the result
there is not given for the interpolant but only guarantees the existence of an element
s 2 Vn satisfying the inequality.

Unfortunately, in our proof below we will need L2.˝/-estimates for our approx-
imate Galerkin solution. To derive these, we will assume that we can apply the
Aubin-Nitsche trick, i.e. the solution of the dual problem satisfies Friedrich’s
inequality. To be more precise:

Assumption 1 The solution w 2 H1.˝/ of the dual problem a.v;w/ D F.v/ D
hf ; viL2.˝/ for all v 2 H1.˝/ satisfies w 2 H2.˝/ and kwkH2.˝/ � CkfkL2.˝/.

It is well-known, that Assumption 1 is, for example, satisfied if ˝ has a smooth
boundary or if ˝ is convex with a Lipschitz boundary.

While the previous result (14) should replace the too optimistic bound from [7,
Theorem 3.1], which does not hold in the case of scaled radial basis functions, the
following result is the correct version to replace the too optimistic [7, Lemma 3.2].

Proposition 3 Let u 2 H1.˝/ be the solution of (10) and let s 2 Wı D spanfı.� �
x/ W x 2 Xg be the approximate Galerkin approximation, where X � ˝ is a discrete,
quasi-uniform set with qX � ı � 1 and  W Rd ! R satisfies (3). Let Assumption 1
be satisfied. Then,

ku � skL2.˝/ � C
hX;˝

ı2
ku � skH1.˝/: (15)
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Proof The proof is given by the Aubin-Nitsche trick. We choose w 2 H1.˝/ as the
solution of a.v;w/ D hu � s; viL2.˝/, v 2 H1.˝/ and know by Assumption 1 that
w 2 H2.˝/ with kwkH2.˝/ � Cku � skL2.˝/. Then, we have for v D IX;ıw 2 Wı

that

ku � sk2L2.˝/ D hu � s; u � siL2.˝/
D a.u � s;w/ D a.u � s;w � v/
� Cku � skH1.˝/kw � vkH1.˝/

� C
hX;˝

ı2
kwkH2.˝/ku � skH1.˝/

� C
hX;˝

ı2
ku � skL2.˝/ku � skH1.˝/:

Dividing now by ku � skL2.˝/ gives the desired result. ut
The estimate given in (15) has two consequences. Obviously, we can use the

bound on the H1.˝/-norm to derive

ku � skL2.˝/ � C
h2

ı4
kukH2.˝/:

We will not need this inequality but will employ the following one. The Galerkin
orthogonality and Lemma 1 yield

ku � skH1.˝/ � CkukH1.˝/ � CkEukH1.Rd/ � Cı�1kEukH1
ı
;

where E denotes the extension operator again, such that we also have

ku � skL2.˝/ �
hX;˝

ı3
kEukH1

ı
: (16)

We are now in the position to formulate and prove convergence of the non-
stationary multilevel Galerkin method.

Theorem 4 Let ˝ � R
d with d � 3 be bounded. Let u 2 H1.˝/ denote the

solution of (10). Let Assumption 1 be satisfied. Let  2 L1.Rd/ be continuous and
compactly supported with Fourier transform satisfying (3). Let X1;X2; : : : � ˝ be
a sequence of quasi-uniform discrete sets with fill distances hj WD hXj;˝ satisfying
��hj � hjC1 � �hj with some fixed � 2 .0; 1� and � 2 .0; 1/. Let fıjg be a
non-increasing sequence of support radii satisfying

ıj D
h1=3j

�1=9
:
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Finally, let un 2 Vn be the approximate multilevel Galerkin approximation to u.
Then, there are constants C;C1 > 0 such that

ku � unkL2.˝/ � C1.C�
1=3/nkukH1.˝/: (17)

In particular, there is a �0 2 .0; 1� such that the method converges for all � � �0
linearly in the number of levels.

Proof For j D 1; 2; : : : let ej D u � uj D ej�1 � sj denote the error. We want to
establish the recurrence

kEejkH1
ıjC1

� C�1=3kEej�1kH1
ıj
: (18)

We start by splitting

kEejk2H1
ıjC1

D
Z

Rd
jcEej.!/j2.1C ı2jC1k!k22/d!

D
Z

Rd
jcEej.!/j2d!C ı2jC1

Z

Rd
jcEej.!/j2k!k22d!: (19)

For the first integral on the right-hand side we notice that ej D ej�1 � sj, where sj is
the approximate Galerkin approximation to ej�1 from Wj such that (16) yields, with
u D ej�1, s D sj and ı D ıj,

Z

Rd
jcEej.!/j2d! D kEejk2L2.Rd/

� Ckejk2L2.˝/ � C

 
hj

ı3j

!2
kEej�1k2H1

ıj

� C�2=3kEej�1k2H1
ıj

:

For the second integral in (19) we have the estimate

ı2jC1
Z

Rd
jcEej.!/j2k!k22d! � ı2jC1

Z

Rd
jcEej.!/j2.1C k!k22/d!

� Cı2jC1kejk2H1.˝/
� Cı2jC1kej�1k2H1.˝/

� Cı2jC1kEej�1k2H1.Rd/

� C



ıjC1
ıj

�2
kEej�1k2H1

ıj

� C�2=3kEej�1k2H1
ıj

:
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Taking this together and taking the root gives indeed (18). Finally, Proposition 3
yields

ku � unkL2.˝/ D kenkL2.˝/ � C
hn

ı2n
kenkH1.˝/

� C
hn

ı2nınC1
kEenkH1

ınC1

� CkEenkH1
ınC1

;

where, in the last step, we have used that

hn

ı2nınC1
D hn

ı3n

ın

ınC1
� �1=3



1

��

�1=3
D ��1=3:

Applying the recursion (18) now n times proves the final result. ut
It is interesting to note that the convergence is given in the L2.˝/-norm rather

than the more natural H1.˝/-norm. Moreover, even if we needed Friedrich’s
inequality to derive the error estimate, the norm on the right-hand side of (17) is the
H1.˝/-norm instead of the H2.˝/-norm. This might have two consequences. On
the one hand, it might be possible to derive this result without relying on Friedrich’s
inequality. This would give a true H1.˝/ theory. Then, of course, it is natural that
the convergence has to be measured in a weaker norm, i.e. the L2.˝/-norm. On the
other hand, it might be possible to improve the result so that the final error estimate
will employ the H2.˝/-norm on the right-hand side of (17). Both of these possible
consequences are subject to further research.

In the same spirit is the following observation. We can express the convergence
again in terms of the fill distance of the finest level, as we have done in Corollary 3
for collocation. Here, assuming again hjC1 D �hj, we see that for each � 2 .0; 1=3/,
we can find a �0 such that

ku � unkL2.˝/ � Ch
1
3��
n kukH1.˝/:

This is rather weak since it gives less than linear convergence. It also means that the
proof does not guarantee convergence in the H1.˝/-norm. But the above discussion
is a starting point for investigating this further.

In the case of the stationary multiscale approximation spaces, the situation is
as follows. By Theorem 3 we know that the spaces Vn are rich enough to provide
good approximations. Moreover, by Proposition 1 we know that the approximation
generated by the residual correction algorithm (Algorithm 3) is stable, but there is
no convergence proof yet. It might very well be that the algorithm does not capture
enough of the information provided by the multiscale space. In [38] it was suggested
to use an iterative projection method, which is known to converge to the Galerkin
approximation u�

n 2 Vn. Unfortunately, the convergence seems to be slow. Hence,
an improved algorithm might be required.
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1 Introduction

Much recent research in information-based complexity has dealt with the issue of
tractability. To what extent is it computationally feasible to solve this problem? To
get an idea of the scope of this area, see the three-monograph series [7–9]. Most of
the work in this area has dealt with the integration problem (which was the initial
impetus for studying tractability in the first place) and the approximation problem
(mainly in Lp-norms, with most of the work for the case p D 2). This paper deals
with the latter.1

It has long been known that the L2-approximation problem for the unit ball of
Hs.Id/ over the unit d-cube Id has nth minimal error �.n�s=d/, so that �."�d=s/

information evaluations are necessary and sufficient for an "-approximation. Were it
not for the�-factors, this would imply that this problem suffers from what Richard
Bellman [1] called “the curse of dimensionality”, i.e., an exponential dependence on
the dimension d. It turns out that things are not quite as bad as this. To avoid some
technical difficulties, we’ll use spaces Hs.Td/ defined over the d-torus T

d, rather
than over the d-dimensional unit cube Id. Kühn et al. [5] showed that the �-factors
decay polynomially in d, and that this problem does not suffer from the curse of
dimensionality.

However, we would much prefer something stronger; in particular, we would
like to have polynomial tractability, with nth minimal error at most Cdq"�p for C
p, and q independent of " and d or (better yet) strong polynomial tractability, with
nth minimal error at most C"�p for C and p independent of " and d. However, the
results in [5] imply that the aforementioned problem is not polynomially tractable.
So if we want a better tractability result, we need to change the space of functions
being approximated.

Now the spaces Hs.Td/ are isotropic—all variables are equally important. This
has led many authors to use anisotropic spaces. In particular, we have used weighted
spaces that (algebraically) are tensor products of H1.I/, with the weight family �
entering into the norm. These are weighted versions of spaces having mixed
smoothness, as per [6]. In [11], we were able to find conditions on certain weights
families � that were necessary and sufficient for the L2.Td/-approximation problem
to be (strongly) polynomially tractable.

We would like to extend these results to weighted spaces of hybrid smoothness,
see [10]. These are weighted versions of the spaces Hs1;s2 .Td/, the members
of which being periodic functions having isotropic smoothness of order s1 and
dominating mixed smoothness of order s2.

1This introduction is merely an overview. Precise definitions are given in Sect. 2.
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In this paper, we make a first step in such a study. We will consider
spaces Hs;1

� .T
d/. Functions belonging to this space have Sobolev derivatives of

order s, said derivatives themselves having one derivative in each coordinate
direction. The weights only apply to the anisotropic part of the Hs;1.Td/-norm.
We measure error in the Hr.Td/-sense. Here r and s are non-negative integers, with
r � s.

We have an ulterior motive for studying these particular spaces. Suppose we
are trying to solve the elliptic problem ��u C qu D f over Td, with f ; q in the
unit ball of H0;1.Td/. Suppose further that we have an elliptic regularity result,
saying that u 2 H2;1

� .Td/ for f ; q 2 H0;1
� .T

d/. Then the error of a Galerkin
method using an optimal test/trial space will roughly be the minimal error for the
H1.Td/-approximation problem over H2;1.Td/. This explains our interest in the
Hr.Td/-approximation problem for Hs;1

� .T
d/ with r D 1 and s D 2. In this paper,

we study the general case (with r � s), which is as easy to handle as the special
case r D 1 and s D 2. In addition, we expect the results of this paper to hold for
negative r; this is important because the case r D �1 occurs in non-regular second-
order elliptic problems, see (e.g.) [3] for further discussion.

The overall structure of this paper is as follows. In Sect. 2, we precisely define
the terminology surrounding the problem we’re trying to solve. The results we seek
depend on spectral information of a particular linear operator on Hs;1

� .T
d/, which

we give in Sect. 3. Finally, Sect. 4 gives the tractability results for our approximation
problem:

1. If App�;0;0 has a given level of tractability, then App�;r;s has at least the same
level of tractability, and the exponent(s) for App�;r;s are bounded from above by
those for App�;0;0.

2. Under certain boundedness conditions, App�;r;s has a given level of tractability
iff App�;0;0 has at least the same level of tractability. We give estimates relating
the exponents for these two problems.

3. For the unweighted case, App�;r;s is quasi-polynomially tractable, with exponent
2= ln 2

:D 2:88539.
4. For bounded product weights:

(a) App�;r;s is always quasi-polynomially tractable. We give an estimate of the
exponent.

(b) We give conditions on the weights that are necessary and sufficient to guaran-
tee (strong) polynomial tractability, along with estimates of the exponents.

5. For bounded finite-order and finite-diameter weights, App�;r;s is always polyno-
mially tractable. We give estimates for the exponents.
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2 Problem Definition

In this section, we define the approximation problem to be studied and recall some
basic concepts of information-based complexity.

First, we establish some notational conventions. We let N denote the strictly
positive integers, with N0 D N [ f0g denoting the natural numbers. (As usual,
we let Z denote the integers.) Next, we let T denote the torus Œ0; 2��, so that Td is
the d-torus. We identify opposite points on the d-torus, so that for any f WTd ! C,
we have f .x/ D f .y/ whenever x � y 2 2� Z

d. In this sense, functions on the d-
torus are periodic. We denote points in R

d by boldface italic letters, and points in
Z

d (including multi-indices) by boldface roman letters. The unit ball of a normed
space X is denoted by BX. Any product over the empty set is defined to be the
appropriate multiplicative identity.

We now describe some Sobolev spaces, see (e.g.) [4, 5, 10, 13] for further
discussion. Let L2.Td/ denote the space of complex-valued square-integrable
functions over Td and let r 2 N0. Then

Hr.Td/ D ˚f 2 L2.T
d/ W Dmf 2 L2.T

d/ for jmj � r
�
;

is the (classical) isotropic Sobolev space of order r, which is a Hilbert space under
the usual inner product

hf ; giHr.Td/ D
X

jmj�r

hDmf ;DmgiL2.Td/:

Here, for m D .m1;m2; : : : ;md/ 2 N
d
0, we write

Dm D
dY

jD1

@mj

@x
mj

j

and zm D
dY

jD1
z

mj

j 8 z D .z1; : : : ; zd/ 2 C
d;

as well as jmj D Pd
jD1 mj. Here, the partial derivative @=@xj is in the distributional

sense.
For s 2 N0, we define the space2

Hs;1.Td/ D f v 2 Hs.Td/ W @uv 2 Hs.Td/ for all u � Œd� g

of hybrid smoothness, which is a Hilbert space under the inner product

hv;wiHs;1.Td/ D
X

u�Œd�
h@uv; @uwiHs.Td/ 8 v;w 2 Hs;1

� .T
d/:

2The superscript 1 in Hs;1.Td/ means that we are taking dominating mixed derivatives of order 1.
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Here, we write

@u D
Y

i2u

@

@xi
8 u � Œd�;

where Œd� WD f1; 2; : : : ; dg.
Our final Sobolev space is a weighted version of the space Hs;1.Td/. Let

� D f �d;u � 0 W u � Œd�; d 2 N g

be a given set of non-negative weights �d;u, with �u;; D 1 for all d 2 N. Then we
let Hs;1

� .T
d/ be Hs;1.Td/, but under the inner product

hv;wiHs;1
� .Td/

D
X

u�Œd�
�d;u>0

��1
d;uh@uv; @uwiHs.Td/ 8 v;w 2 Hs;1

� .T
d/: (1)

Clearly Hs;1
� .T

d/ is a Hilbert space under this inner product.
We now describe the problem we wish to solve. Let r; s 2 N0, with r � s. Our

goal is to approximate functions from BHs;1
� .T

d/ in the Hr.Td/-norm. This approx-
imation problem is described by the embedding operator Appd;�;r;sWHs;1

� .T
d/ !

Hr.Td/, which is defined as

Appd;�;r;s f D f 8f 2 Hs;1
� .T

d/:

Remark 1 We note some special cases of this problem:

1. Suppose that r D s D 0. Then Appd;�;r;s D Appd;�;0;0, and our problem

is that of approximating functions from BH0;1
� .T

d/ in the L2.Td/-norm. This
problem is analogous to the problem that was extensively covered in [11], the
main difference being that [11] dealt with functions defined over the unit cube,
rather than the unit torus.

2. Let � .;/ be given by

�d;u D
(
1 if u D ;;
0 otherwise:

8 u � Œd�; d 2 N:

Allowing a slight abuse of language, we call � .;/ empty weights. Then
Appd;�;r;s D Appd;� .;/;r;s, and our problem is that of approximating functions
from BHs.Td/ in the Hr.Td/-norm. This problem was studied for the case r D 0
in [5, 13] and for arbitrary r � 0 in [10].
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3. Let � .UNW/ be defined as

�d;u D 1 8 u � Œd�:

Then Appd;�;r;s D Appd;� .UNW/;r;s and we are trying to solve the unweighted
case. Our problem is now that of approximating functions from BHs;1.Td/ in
the Hr.Td/-norm. A non-periodic version of this problem (over the unit cube,
rather than the torus) was discussed in [11, Section 4.1.1].

4. If � .…/ is a set of weights defined by

�d;u D
Y

j2u
�d;j 8 u � Œd�; d 2 N; (2)

where

�d;1 � �d;2 � � � � � �d;d > 0 8 d 2 N; (3)

the � .…/ is said to be a set of product weights. We may refer to the set f �d;j W
j 2 Œd�; d 2 N g as being the weightlets for � .…/.

5. We say that � .FOW/ is a family of finite-order weights if there exists ! 2 N0

such that

�d;u D 0 for all d 2 N and u such that juj > !:

The smallest ! for which this holds is said to be the order of � .FOW/. As a
special case, we say that � .FDW/ is a family of finite-diameter weights if

�d;u D 0 for all d 2 N and all u with diam.u/ � q:

The smallest q for which this holds is said to be the diameter of � .FDW/. ut
Remark 2 We can slightly simplify the sum appearing in (1), as in [12]. If we adopt
the convention that 0=0 D 0, we can write

hv;wiHs;1
� .Td/

D
X

u�Œd�
��1

d;uh@uv; @uwiHs.Td/ 8 v;w 2 Hs;1
� .T

d/;

provided that we require

@uw D 0 for any u � Œd� such that �d;u D 0 8w 2 Hs;1
� .T

d/:

Of course, if @uv D 0, then @vw D 0 for any superset v of u. This imposes the
natural condition

�d;u D 0 H) �d;v D 0 for any v � Œd� for which v � u: (4)



Tractability of Approximation for Some Weighted Spaces of Hybrid Smoothness 1221

In the remainder of this paper, we shall assume that (4) holds. Now suppose
that �d;j D 0 for some j 2 Œd� and d 2 N. Using (4), we see that �d;u D 0

for any u containing j as an element, and so the variable xj plays no part in the
problem Appd;�;r;s. So there is no essential loss of generality in assuming that

�d;j > 0 8 j 2 Œd�; d 2 N: (5)

In the remainder of this paper, we shall also assume that (5) holds for product
weights. ut

An approximation is given by an algorithm Ad;�;r;s;n using at most n linear func-
tionals on Hs;1

� .T
d/. That is, there exist continuous linear functionals L1;L2 : : : ;Ln

on Hs;1
� .T

d/ and a function nWRn ! Hr.Td/ such that

Ad;�;r;s;n.f / D n .L1.f /;L2.f /; : : : ;Ln.f // 8 f 2 BHs;1
� .T

d/:

The worst case error of Ad;�;n;r;s is given by

e.Ad;�;r;s;n/ D sup
f 2BHs;1

� .Td/

kf � Ad;�;r;s;nfkHr.Td/:

For simplicity’s sake, we measure the cost of an algorithm by the number of
information evaluations it uses.

Let " > 0 be a given error tolerance. An algorithm yields an "-approximation
if its error is at most ". We define the information complexity n.";Appd;�;r;s/ as
the minimal number of linear functionals defined on Hs;1

� .T
d/ needed to find an

algorithm whose error as most ".
As in [11], we have kAppd;�;r;s k D 1. Hence it follows that

e.0;Appd;�;r;s/ D e.Ad;r;s;0;Appd;�;r;s/ D 1;

where Ad;r;s;0 is the zero algorithm defined by

Ad;�;r;s;0f � 0 8 f 2 Hs;1
� .T

d/:

Thus n.";Appd;�;r;s/ D 0 for " � 1. So in the remainder of this paper, we assume
that " 2 .0; 1/, since the problem is trivial otherwise.

It is well-known that there exist algorithms with arbitrarily small error iff the
operator Appd;�;r;s is compact. Since we want to find "-approximations for any " 2
.0; 1/, we shall assume that Appd;�;r;s is compact in the remainder of this paper. This
compactness holds if either r < s (by Rellich’s Theorem, see e.g. [2, p. 219]) or if
at least one of the weights �d;u is positive (from the results in [11]).
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Let f.�d;n; ed;n/gn2N denote the eigensystem of Wd;�;r;s D App�
d;�;r;s Appd;�;r;s,

with Hs;1
� .T

d/-orthonormal eigenvectors ed;n and with the eigenvalues �d;n forming
a non-increasing sequence

�d;1 D 1 � �d;2 � � � � > 0;

Then the algorithm

An.f / D
nX

iD1
hf ; ed;iiHs;1

� .Td/
ed;i D

nX

iD1
��1

d;i hf ; ed;iiL2.Td/ed;i 8 f 2 BHs;1
� .T

d/

minimizes the worst case error among all algorithms using n linear functionals
on Hs;1

� .T
d/, with error

e.An/ D
p
�d;nC1;

so that

n.";Appd;�;r;s/ D inff n 2 N0 W �d;n > "
2 g: (6)

We are now ready to describe various levels of tractability for the approximation
problem App�;r;s D fAppd;�;r;sgd2N. This problem can satisfy any of the following
tractability criteria, listed in decreasing order of desirability, see [7] for further
discussion.

1. The problem is strongly (polynomial) tractable if there exists p � 0 such that

n.";Appd;�;r;s/ � C



1

"

�p

8 " 2 .0; 1/; d 2 N: (7)

When this holds, we define

p.App�;r;s/ D inf f p � 0 W (7) holdsg

to be the exponent of strong tractability.
2. The problem is (polynomially) tractable if there exist non-negative numbers C,

p, and q such that

n.";Appd;�;r;s/ � C



1

"

�p

dq 8 " 2 .0; 1/; d 2 N: (8)

Numbers p D p.App�;r;s/ and q D q.App�;r;s/ such that (8) holds are called "-
and d-exponents of tractability; these need not be uniquely defined.
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3. The problem is quasi-polynomially tractable if there exist C � 0 and t � 0 such
that

n."; Sd/ � C exp
�
t.1C ln "�1/.1C ln d/

� 8 " 2 .0; 1/;8 d 2 N: (9)

The infimum of all t such that (9) holds is said to be the exponent of quasi-
polynomial tractability, denoted tqpoly.

4. Let t1 and t2 be non-negative numbers. The problem is .t1; t2/-weakly tractable if
non-negative numbers, with

lim
"�1Cd!1

ln n.";Appd;�;r;s/

"�t1 C dt2
> 0: (10)

The problem is said to be weakly tractable if it is .1; 1/-weakly tractable, and
uniformly weakly tractable if it is .t1; t2/-weakly tractable for all positive t1
and t2. For more details, see [10].

5. The problem is intractable if it is not .t1; t2/-weakly tractable for any non-
negative t1 and t2.

6. The problem suffers from the curse of dimensionality if there exists c > 1 such
that3

n.";Appd;�;r;s/ � cd 8 d 2 N: (11)

3 Spectral Results

If we want to follow the prescription for determining minimal error algorithms for
our problem, we clearly need to know the eigenvalues and eigenvectors of Wd;�;r;s.
That’s what we’ll be doing in this section.

First, a bit more notation. Let i D p�1. For k D .k1; k2; : : : ; kd/ 2 Z
d and

x D .x1; x2; : : : ; xd/ 2 T
d, let k � x DPd

jD1 kjxj. Define

ed;k.x/ D 1

.2�/d=2
exp.i k � x/ 8 x 2 T

d:

For any f 2 Hr.Td/, we have

Dmf D
X

k2Zd

.i k/mcd;k.f / ed;k for jmj � r;

3We follow [5, (5.3)] in using 1C c with c > 0 rather than c > 1.
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where

cd;k.f / D
Z

Td
f .x/ exp.�i k � x/ dx

is the kth Fourier coefficient of f and convergence is in the L2.Td/-sense.

Theorem 1 For k 2 Z
d, let

�d;k;�;r;s D ˇd;r;k

ˇd;s;k
˛d;k;� ; (12)

where

˛d;k;� D

 X

u�Œd�
�d;u>0

��1
d;u

Y

j2u
k2j

��1
(13)

and

ˇd;r;k D
X

jmj�r

k2m: (14)

Then the following hold:

1. The vectors fed;kgk2Zd form an orthogonal basis for Hs;1
� .T

d/, with

ked;kk2Hs;1
� .Td/

D ˛�1
d;k;� ˇd;s;k 8 k 2 Z

d : (15)

2. The vectors fed;kgk2Zd form an orthogonal basis for Hr.Td/, with

ked;kk2Hr.Td/
D ˇd;r;k 8 k 2 Z

d: (16)

3. The eigensystem of Wd;�;r;s is given by f.�d;k;�;r;s; ed;k/gk2Zd , so that

Wd;�;r;sed;k D �d;k;�;r;s ed;k 8 k 2 Z
d: (17)

4. The information complexity is given by

n.";Appd;�;r;s/ D
ˇ
ˇf k 2 Z

d W �d;k;�;r;s > "
2 gˇˇ : (18)



Tractability of Approximation for Some Weighted Spaces of Hybrid Smoothness 1225

Proof For part 1, we need to show that that fed;kgk2Zd is an orthogonal basis
for Hs;1

� .T
d/. Let v 2 Hs;1

� .T
d/. Now for any k 2 Z

d and any u � Œd�, we have

@uDmed;k D
Y

j2u
.�i kj/

dY

jD1
.�i kj/

mj ed;k D .�i/jujCjmjkmed;k

and so we may integrate by parts and use periodicity to see that

h@uDmv; @uDmed;kiL2.Td/ D .�1/jujCjmjhv; @2uD2med;kiL2.Td/

D .�1/jujCjmj.�i/2.jujCmj/

Y

j2u
k2j

�
k2jmjhv; ed;kiL2.Td/

D

Y

j2u
k2j

�
k2mhv; ed;kiL2.Td/:

Hence for any k 2 Z
d, we have

hv; ed;kiHs;1
� .Td/

D
X

u�Œd�
�d;u>0

��1
d;uh@uv; @ued;kiHs.Td/

D
X

u�Œd�
�d;u>0

��1
d;u

X

jmj�s

h@uDmv; @uDmed;kiL2.Td/

D

 X

u�Œd�
�d;u>0

��1
d;u

Y

j2u
k2j

�
 X

jmj�s

k2jmj
�
hv; ed;kiL2.Td/

D ˛�1
d;k;� ˇd;s;khv; ed;kiL2.Td/:

(19)

In particular, we see that

hed;p; ed;kiHs;1
� .Td/

D ˛�1
d;k;� ˇd;s;k ıp;k 8 k;p 2 Z

d; (20)

with ık;p being the Kronecker delta. Hence fed;kgk2Zd is an Hs;1
� .T

d/-orthogonal
set, the norm of whose elements being given by (15). To see that this set is a
basis, we need only show that this set is Hs;1

� .T
d/-complete. So let v 2 Hs;1

� .T
d/

satisfy hv; ed;kiHs;1
� .T

d/
D 0 for all k 2 Z

d. Once again using (19), it follows that

hv; ed;kiL2.Td/ D 0 for all k 2 Z
d. Since fed;kgk2Zd is an orthogonal basis for L2.Td/,

it follows that v D 0. Hence fed;kgk2Zd is Hs;1
� .T

d/-complete, as required.
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Setting � D � .;/ in part 1, we immediately have part 2.
To see that part 3 holds, note that

hWd;�;r;sed;k; ed;piHs;1
� .Td/

D hed;k; ed;piHr.Td/ D ˇd;r;k ık;p; 8 k;p 2 Z
d;

the second equality following from part 2. Since fed;kgk2Zd is an orthogonal basis
for Hs;1

� .T
d/, it follows that Wd;�;r;sed;k must be a multiple of ed;k, which means

that ed;k is an eigenvector of Wd;�;r;s. Thus Wd;�;r;sed;k D �d;k;�;r;sed;k for some
�d;k;�;r;s > 0, with

�d;k;�;r;s D
ked;kk2Hr.Td/

ked;kk2
Hs;1
� .Td/

; (21)

as usual. Part 3 follows once we use (15) and (16) in (21).
Finally, part 4 follows immediately from (6), along with the remaining parts of

this theorem.

As a special case, let s D r. Then the problem Appd;�;r;r is equivalent to the
problem Appd;�;0;0:

Corollary 1 The following results hold for the problem Appd;�;r;r:

1. The operators Wd;�;r;r and Wd;�;0;0 both have f.ed;k; ˛d;k;� /gk2Zd as their eigen-
systems.

2. Minimal errors, minimal error algorithms, and levels of tractability are the same
for our problem Appd;�;r;r and for the problem Appd;�;0;0. ut
Just as we have reduced the problem Appd;�;r;r to the problem Appd;�;0;0, we can

also reduce the problem Appd;�;r;s to the simpler problem Appd;�;0;s�r . Let

�d;k D 1C
dX

jD1
k2j : (22)

We then have

Theorem 2 Let r; s 2 N0, with s � r.

1. The eigenvectors of Wd;�;r;s are given by f ed;k W k 2 Z
d g.

2. The eigenvalues of Wd;�;r;s satisfy the inequality

1

rŠ.s � r/Š
�d;k;�;0;s�r � 1

rŠ

˛d;k;�

�s�r
d;k

� �d;k;�;r;s � sŠ
˛d;k;�

�s�r
d;k

� sŠ �d;k;�;0;s�r (23)

for all k 2 Z
d.
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Proof Let d 2 N and k 2 Z
d. As in [5], we may use the multinomial theorem to see

that

ˇd;`;k � �`d;k � `Š ˇd;`;k: 8` 2 N0:

We then have

1

rŠ .s � r/Š ˇd;s�r;k
� 1

rŠ �s�r
d;k

� ˇd;r;k

ˇd;s;k
� sŠ

�s�r
d;k

� sŠ

ˇd;s�r;k
:

This result now follows from Theorem 1 and (18). ut
From Theorem 2, we see that minimal errors for our problem Appd;�;r;s and for

the simpler problem Appd;�;0;s�r are essentially the same.

4 Tractability Results

We now compare the tractability of our problem App�;r;s D fAppd;�;r;sgd2N with the
problem App�;0;0 D fAppd;�;0;0gd2N. The papers [11, 12] studied this latter problem,
except for functions defined over the unit cube instead of the unit torus.

4.1 General Weights

We first give tractability results that hold for any weights, regardless of their
structure (or lack thereof), depending only some boundedness conditions. Our main
result is that our approximation problem App�;r;s has the same level of tractability as
the problem App�;0;0, which is the periodic version of the problem studied in [12].
In what follows, we let

Md D max

�
1;max

j2Œd�
�d;fjg

�
and md D min

u�Œd�
�d;u>0

�d;u: (24)

Clearly both Md and md are positive numbers.
First, we compare the information complexity of these problems.

Theorem 3 For all d 2 N and " 2 .0; 1/, we have

n.";Appd;�;r;s/ � n
��

rŠMs�r
d

�1=.2.s�rC1//
"1=.s�rC1/;Appd;�;0;0

	
; (25)

n.";Appd;�;r;s/ � n

 

ms�r

d

sŠ

�1=.2.s�rC1//
"1=.s�rC1/;Appd;�;0;0

!

; (26)
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and

n.";Appd;�;r;s/ � n.";Appd;�;0;0/: (27)

Proof We first show that (25) holds. Let k 2 Z
d. From (5), (13), (18), and (22), it

follows that

˛�1
d;k;� � 1C

dX

jD1
��1

d;j k2j � 1Cmin
j2Œd� �

�1
d;j

dX

jD1
k2j � M�1

d



1C

dX

jD1
k2j

�
D M�1

d �d;k:

Since ��1
d;k � M�1

d ˛d;k;� , we may use Theorem 2 to see that

�d;k;�;r;s � 1

rŠ

˛d;k;�

�s�r
d;k

� 1

rŠMs�r
d

˛s�rC1
d;k;� :

Using part 4 of Theorem 1 and the previous estimate, we now have

n.";Appd;�;r;s/ D
ˇ
ˇf k 2 Z

d W �d;k;�;r;s > "
2 gˇˇ

�
ˇ
ˇ
ˇ̌
�
k 2 Z

d W 1

rŠMs�r
d

˛s�rC1
d;k;� > "2

� ˇˇ
ˇ̌

D
ˇ
ˇ
ˇ
n
k 2 Z

d W ˛d;k;� >
�
rŠMs�r

d "2
�1=.s�rC1/ oˇˇ

ˇ

D n
��

rŠMs�r
d

�1=.2.s�rC1//
"1=.s�rC1/;Appd;�;0;0

	
;

as required.
The proof of (26) is similar to that of (25), except that we start with the bound

˛�1
d;k;� D

X

u�Œd�
�d;u>0

��1
d;u

Y

j2u
k2j � m�1

d

X

u�Œd�
�d;u>0

Y

j2u
k2j � m�1

d ˇd;1;k D m�1
d �d;k:

Finally, (27) follows from (18) and Theorem 1. ut
We now show that the level of tractability of our problem App�;r;s is often the

same as that of the problem App�;0;0.

Theorem 4 If App�;0;0 has a given level of tractability, then App�;r;s has at least
the same level of tractability, and the exponent(s) for App�;r;s are bounded from
above by those for App�;0;0. Moreover, recalling the definition (24) of Md, we have
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the following:

1. If

M WD sup
d2N

Md <1 (28)

then the following hold:

a. App�;r;s is strongly polynomially tractable iff App�;0;0 is strongly polynomially
tractable, in which case the exponents of strong tractability satisfy the
inequality

1

s � rC 1 p.App�;0;0/ � p.App�;r;s/ � p.App�;0;0/: (29)

b. App�;r;s is quasi-polynomially tractable iff App�;0;0 is quasi-polynomially
tractable, in which case the exponents of strong quasi-polynomial tractability
satisfy the inequality

1

max
˚
s � r; 1

2
ln.rŠMs�r/

�C 1 tqpoly.App�;0;0/ � tqpoly.App�;r;s/

�tqpoly.App�;0;0/:

(30)

2. If

sup
d2N

d�qMd <1 (31)

for some q � 0, then App�;r;s is polynomially tractable iff App�;0;0 is polynomi-
ally tractable.

Proof The first statement in the theorem follows immediately from (27).
For part 1, suppose that (28) holds.
We first prove part 1(a). From the first statement in the theorem, it suffices to

show that if App�;r;s is strongly polynomially tractable, then the same is true for
App�;0;0, and that the first inequality in (29) holds. So let App�;r;s be strongly
polynomially tractable, so that for any p > p.App�;r;s/, there exists C > 0 such
that

n.";Appd;�;r;s/ � C"�p 8 " 2 .0; 1/; d 2 N:

Set

"d D
�
rŠMs�r

d

�1=.2.s�rC1//
"1=.s�rC1/; (32)
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so that

"�1 D .rŠMs�r
d /1=2"

�.s�rC1/
d :

Using (25) and (32), we see that

n."d;Appd;�;0;0/ � n.";Appd;�;r;s/ � C"�p D C
�
Ms�r

d rŠ
�p=2

"
�.s�rC1/p
d

� C .Ms�rrŠ/p=2 "�.s�rC1/p
d :

Varying " > 0, we see that "d can assume arbitrary positive values here. Since
p may be chosen arbitrarily close to p.App�;r;s/, we see that App�;0;0 is strongly
polynomially tractable, and that (29) holds, as required.

We now prove part 1(b). It suffices to show that if App�;r;s is strongly quasi-
polynomially tractable, then so is App�;0;0, and that the first inequality in (30)
holds. So suppose that App�;0;0 is quasi-polynomially tractable. Then for any
t > tqpoly.App�;0;0/, there exists C > 0 such that

n.";Appd;�;r;s/ � C exp
�
t.1C ln "�1/.1C ln d/

� 8 " 2 .0; 1/; d 2 N:

Once again, define "d by (32) and use (25) to see that

n."d;Appd;�;0;0/ � n.";Appd;�;r;s/ � C exp
�
t.1C ln "�1/.1C ln d/

�

D C exp
�
t
�
1C .s� rC 1/ ln "�1

d C 1
2
ln.rŠMs�r

d /
�
.1C ln d/

�

� C exp
�
t
�
1C .s � rC 1/ ln "�1

d C 1
2
ln.rŠMs�r/

�
.1C ln d/

�
(33)

Define gW Œ0;1/! Œ0;1/ as

g.�/ D 1C .s� rC 1/� C 1
2
ln.rŠMs�r/

1C � 8 � � 0:

We find that

sup
��0

g.�/ D max

�
g.0/; lim

�!1 g.�/

�
D max

˚
s � r; 1

2
ln.rŠMs�r/

�C 1:

From (33), we now see that

n."d;Appd;�;0;0/ � C exp
�
t1.1C ln "�1

d /.1C ln d/
�
;

where

t1 D t sup
d2N

g.ln "�1
d / D t

�
max

˚
s � r; 1

2
ln.rŠMs�r/

�C 1� : (34)
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Arguing as in the strongly polynomial case, we see that App�;0;0 is quasi-
polynomially tractable, with

tqpoly.App�;r;s/ �
�
max

˚
s � r; 1

2
ln.rŠMs�r/

�C 1� tqpoly.App�;0;0/;

as required.
For part 2, suppose that (31) holds, so that M WD supd2N d�qMd < 1. Suppose

also that App�;r;s is polynomially tractable, so that there exist positive C, `, and p
such that such that

n.";Appd;�;0;0/ � Cd`"�p 8 d 2 N; " 2 .0; 1/:

Once again defining "d as in (32), we have

n."d;Appd;�;0;0/ � C d`"�p D C d`.rŠMs�r
d /p=2"

�.s�rC1/p
d

� C d`.rŠMs�r/p=2"
�.s�rC1/p
d :

Hence App�;0;0 is polynomially tractable. ut
Remark 3 The non-trivial results in Theorem 4 hold when the boundedness condi-
tions (28) or (31) are satisfied. Suppose that we allow unbounded weights. Although
the tractability of App�;r;s is no worse than the tractability of App�;0;0, we can say
nothing in the opposite direction in this case. As an extreme example, we show
a choice of (unbounded) weights such that App�;r;s to be strongly polynomially
tractable, but for which App�;0;0 suffers from the curse of dimensionality.

Define our weight set � as

�d;u D

8
ˆ̂<

ˆ̂
:

1 if u D ;;
.1C c/2d if u D f1g;
0 otherwise:

This is actually a sequence of univariate problems, for which

˛1;k;� D
�
1C .1C c/�2d

�
k2 and �1;k D 1C k2:

From Theorem 2, we see that the eigenvalues of W1;�;r;s satisfy

�1;k � sŠ
˛1;k;�

�s�r
1;k

D sŠ
�
1C .1C c/�2d.1C k2/

�
.1C k2/s�r

� sŠ

.1C k2/s�r
:
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Hence we may use (23) to see that

n.";Appd;�;r;s/ �
ˇ
ˇ
ˇ
ˇ

�
k 2 Z W sŠ

.1C k2/s�r
> "2

�ˇˇ
ˇ
ˇ D 2

$s

sŠ

"2

�
� 1

%

� 1

D � �"1=.s�r/
�
;

and so App�;r;s is strongly polynomially tractable, provided that r < s. On the other
hand, we have

n.";Appd;�;0;0/‘ D jf k 2 Z W ˛1;k;� > "2 gj D jf k 2 Z W 1C .1C c/�2dk2 > "2 gj
D 2

j
.1C c/d

p
"�2 � 1

k
� 1 D � �.1C c/d"�1� ;

and so App�;0;0 suffers from the curse of dimensionality. ut
Remark 4 If we are willing to live with an upper bound that depends on d, we
can improve the "-exponent in Theorem 4. (This is an example of the tradeoff of
exponents, as described several places in [7].) To be specific, suppose that App�;0;0
is strongly polynomially tractable. Then for any p > p.App�;0;0/, there exists C > 0

such that

n.";Appd;�;0;0/ � C"�p 8 " 2 .0; 1/; d 2 N:

Choosing such a p, d, and ", let

"d D



ms�r
d

sŠ

�1=.2.s�rC1//
"1=.s�rC1/;

where md is defined by (24). Using (26), the previous inequality tells us that

n.";Appd;�;r;s/ � n."d;App�;0;0/ � C



sŠ

ms�r
d

�p=.2.s�rC1//
"�p=.s�rC1/: (35)

Let m D infd2N md. There are two cases to consider:

1. Suppose that m > 0. Then the Hs;1
� .T

d/-norms are equivalent to the Hs;1.Td/-
norms, with equivalence factors independent of d. As we shall see in Sect. 4.2, the
problems App� .UNW/;r;s and App� .UNW/;0;0 are both quasi-polynomially tractable,
each having exponent 2= ln 2

:D 2:88539. Hence the same is true for the
problems App�;r;s and App�;0;0. Thus part 1(a) of Theorem 4 never comes into
play when m > 0, and so the estimate (35) does not apply.
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2. Suppose that m D 0. Then the bound (35) truly depends on d. To cite two
examples:

• Suppose that md � C˛d�˛ for some ˛ > 0 and C˛ > 0. Using (35), and
letting

C1 D C



sŠ

Cs�r
˛

�p=.2.s�rC1//
;

we see that

n.";Appd;�;r;s/ � C1 d˛p.s�r/=.2.s�rC1// "�p=.s�rC1/:

Since p can be chosen arbitrarily close to p.App�;0;0/, this is a polynomially-
tractable upper bound on n.";Appd;�;r;s/, with

d-exponent:
˛.s � r/ p.App�;0;0/

2.s� rC 1/ and "�1-exponent:
p.App�;0;0/

s� rC 1 :

• Suppose that for any ˛ > 0, there exists C˛ > such that md � C˛d�˛ . (For
instance, this holds if md is bounded from below by a power of log d.) We
now see that the results of the previous case hold for positive ˛, no matter
how small. Hence we find that App�;r;s is polynomially tractable for such � ,
with

d-exponent: 0 and "�1-exponent:
1

s� rC 1p.App�;0;0/:

This is close to, but not identical to, a strong polynomial bound for which

p.App�;r;s/ D
1

s � rC 1 p.App�;0;0/: (36)

We might describe such a bound as being almost strongly polynomial. ut
Remark 5 From Remark 4 we see that the left-hand inequality in (29) cannot be
improved. However, this fact does not imply that there are problems for which (36)
holds. To see that such problems do exist, suppose we choose our weights as

�d;u D
(
1 if u D ; or u D f1g;
0 otherwise:

We claim that (36) holds for this problem. Indeed, the eigenvalues of Wd;�;0;0 are
given by 1=.1 C k2/ for k 2 Z, so that Theorem 2 tells us that the eigenvalues
of Wd;�;r;s are bounded from below by 1=

�
rŠ.1C k2/s�rC1� and from above by
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sŠ=.1C k2/s�rC1. It now follows that n.";App�;0;0/ D �."�1/ and n.";App�;r;s/ D
�."�1=.s�rC1//. Since p.App�;0;0/ D 1 and p.App�;r;s/ D 1=.s � r C 1/, we see
that (36) holds, as claimed. ut
Remark 6 Note that Theorem 4 doesn’t mention .r1; r2/-weak tractability. That’s
because .r1; r2/-weak tractability simply never arises. To see this, we distinguish
between two cases:

1. Suppose that we allow � to contain an unbounded sequence of weights. Using
Remark 3, we can find a case in which App�;0;0 suffers from the curse of
dimensionality, but App�;r;s is strongly polynomially tractable.

2. The alternative is to suppose that the weights are uniformly bounded, with
M D supd2N maxu�Œd� �d;u < 1. We claim that App�;0;0 is always (at least)
quasi-polynomially tractable in this case, so that the same is true for App�;r;s by
part 1(b) of Theorem 4.

Indeed, to see that App�;0;0 with weights bounded by M is always (at
least) quasi-polynomially tractable, note that this problem is no harder than
the problem App�;0;0 for which �d;u � M. From Theorem 1, we see that the
eigenvalues of this latter problem are given by

�d;k;�;0;0 D ˛d;k;� D M
dY

jD1

1

1C k2j
:

As in Remark 4, this latter problem is quasi-polynomially tractable. Hence
App�;0;0 is at least quasi-polynomially tractable, as claimed. ut
The right-hand inequality in Theorem 3 may be summarized as saying that

our approximation problem Appd;�;r;s is no harder than the approximation prob-
lem Appd;�;0;0 studied in [11]. The left-hand inequality tells us that Appd;�;r;s may be
easier than Appd;�;0;0. Despite this gap, we find that these two problems sometimes
share the same level of tractability, as we shall see in what follows.

4.2 The Unweighted Case

If we specify the structure of the weights, we can get more detailed results. We first
look at the unweighted case � D � .UNW/, see item 1 in Remark 1. Our main result
is that this problem is quasi-polynomially tractable.

Theorem 5 Suppose that � D � .UNW/. Let

	� D 1

ln 2
:D 1:44270 (37)
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and

c1 D
0

@
1X

jD�1



1

1C k2

�	�

1

A

1=	�

:D 2:09722:

Then

n.";Appd;� .UNW/;r;s/ � c1 exp
�
2	�.1C ln d/.1C ln "�1/

�
;

and so App� .UNW/;r;s is quasi-polynomially tractable. Moreover, its exponent is

tqpoly.App� .UNW/;r;s/ D 2	� D 2

ln 2
:D 2:88539:

Proof From [7, Theorem 23.2], we have

tqpoly.App� .UNW/;r;s/ D 2 inff 	 > 0 W C	 <1g;

where

C	 D sup
d2N

C	;d;

with

C	;d D 1

d2


X

k2Zd

�
	.1Cln d/
d;k;�1;r;s

�1=	
:

Moreover,

n.";App� .UNW/;r;s/ � C	
	 exp

�
2	.1C ln "�1/.1C ln d/

�

for any 	 > 0 such that C	 < 1. It suffices to show that 	� is the minimal 	 for
which C	 <1.

Choose 	 > 0 such that C	 < 1; we must show that 	 � 	�. For any p > 0,
Theorem 2 tells us that

X

k2Zd

�
p
d;k;� .UNW/;r;s �



1

.s� r/Š

�p X

k2f0;1gd

 
˛d;k;� .UNW/

�s�r
d;k

!p

:

But for k 2 f0; 1gd, we have

�d;k D 1C
dX

jD1
k2j � 1C d
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and

˛d;k;� .UNW/ D
dY

jD1

1

1C k2j
D � 1

2

�jf j2Œd�WkjD1 gj
:

Hence for any p � 0, we have

X

k2Zd

�
p
d;k;� .UNW/;r;s �



1

.s� r/Š.1C d/s�r

�p X

k2f0;1gd

�
1
2

�pjf j2Œd�WkjD1 gj

D



1

.s � r/Š.1C d/s�r

�p dX

jD0

 
d

j

!
�
1
2

�pj

D



1

.s � r/Š.1C d/s�r

�p �
1C � 1

2

�p�d
:

Let p D 	.1C ln d/ and take logarithms. Then

ln

� X

k2Zd

�
	.1Cln d/
d;k;� .UNW/;r;s


� d ln

h
1C � 1

2

�	.1Cln d/
i
�	.1Cln d/ ln

�
.s�r/Š.1Cd/s�r

�
:

Since ln.1C ı/ � ı � 1
2
ı2 for ı � 0, we have

ln
h
1C � 1

2

�	.1Cln d/
i
� � 1

2

�	.1Cln d/
�
1 � � 1

2

�	.1Cln d/C1	
:

Since d 2 N and 	 > 0, we have
�
1
2

�	.1Cln d/C1 � � 1
2

�	C1 � 1
2
, and so

ln
h
1C � 1

2

�	.1Cln d/
i
� 1

2

�
1
2

�	.1Cln d/ D 2�.	C1/d�	 ln 2:

Without loss of generality, let d � 2, so that

	.1C ln d/ ln
�
.s� r/Š.1C d/s�r

�

� 	


1C 1

ln 2

�2
ln2 dC 	



1C 1

ln 2

�
Œln.s � r/ŠC .s � r/ ln d�:
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Thus

ln

� X

k2Zd

�
	.1Cln d/
d;k;� .UNW/;r;s


� 2�.	C1/d1�	 ln 2 � 	



1C 1

ln 2

�2
ln2 d�

	



1C 1

ln 2

�
Œln.s� r/ŠC .s� r/ ln d�;

and so

ln C	;d D 	�1 ln

� X

k2Zd

�
	.1Cln d/
d;k;� .UNW/;r;s


� 2 ln d

� 	�12�.	C1/d1�	 ln 2

�
"

1C 1

ln 2

�2
ln2 dC

�
3C 1

ln 2
.s � r/


ln dC



1C 1

ln 2

�
ln.s � r/Š

#

:

Since supd2N C	;d must be finite, we see that the exponent of d must be non-positive.
Hence we must have

	 � 	� D 1

ln 2
:D 1:44270;

as required.
It remains to show that C	� < 1. From (27), it suffices to show that C	� < 1

for App�;0;0. Suppose first that d D 1. Again using (27), we see that

�1;k;� .UNW/;r;s � �1;k;� .UNW/;0;0 D 1

1C k2
;

and so

C	�

	�;1 � c1 WD
X

k2Z
�	

�

1;k;� .UNW/;0;0 D
1X

kD�1



1

1C k2

�	�

:

Since the terms in the series are�.k�2	�

/, with 	� :D 1:44270, the series converges;
using Mathematica, we find that c1

:D 2:09722.
Now suppose that d � 2. Since

�d;k;� .UNW/;r;s � �d;k;� .UNW/;0;0 � ˛d;k;� .UNW/ D
dY

jD1

1

1C k2j
;
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we have

C	�

	�;d �
1

d2
X

k2Zd

�
	�.1Cln d/
d;k;� .UNW/;0;0 �

1

d2
X

k12Z

X

k22Z
� � �
X

kd2Z


 dY

jD1

1

1C k2j

�	�.1Cln d/

D 1

d2

� 1X

kD�1



1

1C k2

�	�.1Cln d/ d

: (38)

Since d � 2 and 	� D 1= ln 2, we have

1X

kD�1



1

1C k2

�	�.1Cln d/

D
1X

kD�1
.de/� ln.1Ck2/= ln 2

D 1

de

1X

kD�1
.de/� lnŒ.1Ck2/=2�= ln 2

� 1

de

1X

kD�1
.2e/� lnŒ.1Ck2/=2�= ln 2

D 1

de

1X

kD�1



2

1C k2

�1C1= ln 2

:

(39)

Since the terms in the series

c2 WD
1X

kD�1



2

1C k2

�1C1= ln 2

(40)

are �.j�2.1C1= ln 2// and 2.1 C 1= ln 2/ > 1, the series converges; again using
Mathematica, we find that c2

:D 7:70707. Combining (38)–(40), we find that

sup
d�2

C	�

	� ;d � sup
d�2

1

d2

� c2
de

	d D 1

4

� c2
2e

	2 DW c3;

where c3
:D 0:502423, which is finite, completing the proof for the case d � 2.

Combining the results for d D 1 and d � 2, we see that

C	� D sup
d�2

C	�;d D maxfc1; c3g1=	� :D 1:67089;

as needed to prove the theorem. ut
Remark 7 Note that the exponent of quasi-polynomial tractability is 2= ln 2, inde-
pendent of the values of r and s. ut
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4.3 Product Weights

In this section, we look at product weights � .…/, which are defined by (2), subject
to the condition (3) on the weightlets. As was the case for the space studied in [11,

12], we find that H0;1
� .…/.T

d/ D
h
H0;1
� .…/.T/

i˝d
has a tensor product structure for

product weights, with

˛d;k;� D
dY

jD1

�d;j

�d;j C k2j
8 k 2 Z

d:

In what follows, we shall assume that the weightlets �d;j are uniformly bounded, i.e.,
that there exists M > 0 such that

�d;j � M 8 j 2 Œd�; d 2 N: (41)

Remark 8 What happens if (41) does not hold? If we allow weightlets that are not
uniformly bounded, then App�;r;s can suffer from the curse of dimensionality. One
such instance is given by choosing �d;j � d for all j 2 Œd� and d 2 N. For a given
d 2 N, let

"d D 1

2
p
.s � r/Š.1C d/s�r.1C d�1/d

� 1

2
p
.s � r/Š " ds�r

as d!1:

Following the approach in [12, Section 5.2], we can show that �d;k;�;r;s > "
2
d for any

k 2 f0; 1gd. Since jf0; 1gdj D 2d, it follows that n."d;App�;r;s/ � 2d. ut

4.3.1 Quasi-Polynomial Tractability

We claim that our approximation problem is always quasi-polynomially tractable
for bounded product weights. Indeed, let ˘M denote product weights for which
�d;j � M. Then App� .…/;r;s is no harder than App� .˘M/;r;s, since

˛d;k;� .…/ � ˛d;k;� .˘M/ D
dY

jD1

1

1C k2j =M
:

It is now easy to see that App� .˘M/;r;s is quasi-polynomially tractable, whence
App� .…/ is also quasi-polynomially tractable. The exponents of quasi-polynomial
tractability satisfy

tqpoly.App� .…/;r;s/ � tqpoly.App� .˘M/;r;s/ D
2

ln.1CM�1/
:
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Moreover, the bound in this inequality is sharp, being attained by choosing equal
weightlets˘ D ˘M . To see why this is so, simply reiterate the proof of Theorem 5,
replacing k2j by k2j =M and 1

2
by 1 C 1=M and making sure to use the upper bound

�d;k � 1C d2=M.

4.3.2 Polynomial and Strong Polynomial Tractability

From Theorem 4, we see that since our weights are bounded, our approximation
problem App�;r;s is (strongly) polynomially tractable iff the same is true for the
approximation problem App�;0;0. We now look at (strong) polynomial tractability in
more detail:

Theorem 6 We have the following results for bounded product weights.

1. App�;r;s is strongly polynomially tractable iff there exists 	 > 1
2

such that A	 <
1, where

A	 D sup
d2N

dX

jD1
�	d;j:

a. The exponent of strong polynomial tractability satisfies the inequality

p.App�;r;s/ 2
�

max

�
1;

1

s � rC 1p.App�;0;0/

�
; p.App�;0;0/


:

Hence when pqpoly.App�;0;0/ D 1, we have

pqpoly.App�;r;s/ D pqpoly.App�;0;0/:

b. Let

p.App�;0;0/ D 2	�;

where

	� D inff 	 > 1
2
W A	 <1g � 1

2
:

Then for all 	 > 	�, we have

n.";Appd;�;r;s/ � n.";Appd;�;0;0/ � "�2	 exp
�
2 �.2	/��2	A	

�
;
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where

�.s/ D
1X

jD1

1

js

denotes the Riemann zeta function.

2. App�;r;s is polynomially tractable iff there exists 	 > 1
2

such that B	 <1, where

B	 D lim sup
d!1

1

ln d

dX

jD1
�	d;j:

When this holds, then for any q	 > B	 there exists a positive C	 such that

n."; Sd/ � C	 d q	 "�2	 8 " 2 .0; 1/; d 2 N:

3. For product weights independent of d, i.e., such that �d;j � �j for all d 2
N, strong polynomial tractability and polynomial tractability for App�;r;s are
equivalent.

Proof Follow the proof of [12, Thm. 5.3]. Take account of the following changes:

1. The factor �2 in [12, Thm. 5.3] does not appear.
2. The expression .kj � 1/2 in [12, Thm. 5.3] becomes k2j .
3. Sums are over Zd or Z, rather than over Nd

0 or N0. ut

4.4 Bounded Finite-Order and Finite-Diameter Weights

As seen in Remark 3, if we allow unbounded weights, then we can run into situations
in which App�;r;s is strongly polynomially tractable, but App�;0;0 suffers from the
curse of dimensionality. So we’re only interested in bounded finite-order and finite-
diameter weights, so that there exists M > 0 such that

M WD sup
d2N

sup
u�Œd�

�d;u <1:

Now Theorem 3 tells us that our problem Appd;�;r;s is no harder than the prob-
lem Appd;�;0;0. So we may follow the approach in the proof of [12, Theorem 5.4],
which relies on [11, Theorem 4.1], to see that for any 	 > 0, there exist C	;! > 0

such that

n.";App�;r;s/ � C	;!M	=2d!"�	 : (42)
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Thus App�;r;s is always polynomially tractable for finite-order weights. Finally,
since finite-diameter weights are a special case of finite-order weights of order 1,
we may substitute ! D 1 in (42) to get a polynomially-tractable upper bound
for App�;r;s with finite-diameter weights.

Acknowledgements I am happy to thank Erich Novak and Henryk Woźniakowski for their helpful
and insightful remarks. Moreover, the referees made suggestions that improved the paper, for which
I also extend my thanks.
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Efficient Spherical Designs with Good
Geometric Properties

Robert S. Womersley

Dedicated to Ian H. Sloan on the occasion of his 80th birthday
in acknowledgement of his many fruitful ideas and generosity.

Abstract Spherical t-designs on S
d 	 R

dC1 provide N nodes for an equal weight
numerical integration rule which is exact for all spherical polynomials of degree at
most t. This paper considers the generation of efficient, where N is comparable to
.1C t/d=d, spherical t-designs with good geometric properties as measured by their
mesh ratio, the ratio of the covering radius to the packing radius. Results for S

2

include computed spherical t-designs for t D 1; : : : ; 180 and symmetric (antipodal)
t-designs for degrees up to 325, all with low mesh ratios. These point sets provide
excellent points for numerical integration on the sphere. The methods can also be
used to computationally explore spherical t-designs for d D 3 and higher.

1 Introduction

Consider the d-dimensional unit sphere

S
d D ˚x 2 R

dC1 W jxj D 1�

where the standard Euclidean inner product is x � y DPdC1
iD1 xiyi and jxj2 D x � x.

A numerical integration (quadrature) rule for Sd is a set of N points xj 2 S
d; j D

1; : : : ;N and associated weights wj > 0; j D 1; : : : ;N such that

QN.f / WD
NX

jD1
wjf .xj/ 
 I.f / WD

Z

Sd
f .x/d�d.x/: (1)
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Here �d.x/ is the normalised Lebesgue measure on S
d with surface area

!d WD 2�.dC1/=2

� ..dC 1/=2/;

where � .�/ is the gamma function.
Let Pt.S

d/ denote the set of all spherical polynomials on S
d of degree at most t.

A spherical t-design is a set of N points XN D fx1; : : : ; xNg on S
d such that equal

weight quadrature using these nodes is exact for all spherical polynomials of degree
at most t, that is

1

N

NX

jD1
p.xj/ D

Z

Sd
p.x/d�d.x/; 8p 2 Pt.S

d/: (2)

Spherical t-designs were introduced by Delsarte, Goethals and Seidel [24] who
provided several characterizations and established lower bounds on the number of
points N required for a spherical t-design. Seymour and Zaslavsky[55] showed that
spherical t-designs exist on S

d for all N sufficiently large. Bondarenko, Radchenko
and Viazovska [8] established that there exists a Cd such that spherical t-designs on
S

d exist for all N � Cd td , which is the optimal order. The papers [5, 19, 21] provide
a sample of many on spherical designs and algebraic combinatorics on spheres.

An alternative approach, not investigated in this paper, is to relax the condition
wj D 1=N that the quadrature weights are equal so that jwj=.1=N/ � 1j � � for
j D 1; : : : ;N and 0 � � < 1, but keeping the condition that the quadrature rule is
exact for polynomials of degree t (see [57, 69] for example).

The aim of this paper is not to find spherical t-designs with the minimal number
of points, nor to provide proofs that a particular configuration is a spherical t-design.
Rather the aim is to find sequences of point sets which are at least computationally
spherical t-designs, have a low number of points and are geometrically well-
distributed on the sphere. Such point sets provide excellent nodes for numerical
integration on the sphere, as well as hyperinterpolation [39, 56, 59] and fully discrete
needlet approximation [65]. These methods have a requirement that the quadrature
rules are exact for certain degree polynomials. More generally, [40] provides a
summary of numerical integration on S

2 with geomathematical applications in mind.

1.1 Spherical Harmonics and Jacobi Polynomials

A spherical harmonic of degree ` on S
d is the restriction to S

d of a homogeneous
and harmonic polynomial of total degree ` defined on R

dC1. Let H` denote the set
of all spherical harmonics of exact degree ` on S

d. The dimension of the linear space
H` is

Z.d; `/ WD .2`C d � 1/ � .`C d � 1/
� .d/� .`C 1/ � .`C 1/

d�1; (3)
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where a` � b` means c b` � a` � c0 b` for some positive constants c, c0, and the
asymptotic estimate uses [47, Eq. 5.11.12].

Each pair H`, H`0 for ` ¤ `0 � 0 is L2-orthogonal, PL.S
d/ D LL

`D0H` and
the infinite direct sum

L1
`D0H` is dense in Lp.S

d/, p � 2, see e.g. [64, Ch.1]. The
linear span of H`, ` D 0; 1; : : : ;L, forms the space PL.S

d/ of spherical polynomials
of degree at most L. The dimension of PL.S

d/ is

D.d;L/ WD dim PL.S
d/ D

LX

`D0
Z.d; `/ D Z.dC 1;L/: (4)

Let P.˛;ˇ/` .z/, �1 � z � 1, be the Jacobi polynomial of degree ` for ˛; ˇ > �1.
The Jacobi polynomials form an orthogonal polynomial system with respect to the
Jacobi weight w˛;ˇ.z/ WD .1 � z/˛.1C z/ˇ , �1 � z � 1. We denote the normalised
Legendre (or ultraspherical/Gegenbauer) polynomials by

P.dC1/
` .z/ WD P

. d�2
2 ; d�2

2 /
` .z/

P
. d�2

2 ; d�2
2 /

` .1/

;

where, from [61, (4.1.1)],

P.˛;ˇ/` .1/ D � .`C ˛ C 1/
� .`C 1/� .˛ C 1/ ; (5)

and [61, Theorem 7.32.2, p. 168],

ˇ
ˇP.dC1/
` .z/

ˇ
ˇ � 1; �1 � z � 1: (6)

The derivative of the Jacobi polynomial satisfies [61]

d P.˛;ˇ/` .z/

d z
D `C ˛ C ˇ C 1

2
P.˛C1;ˇC1/
`�1 .z/; (7)

so

d P.dC1/
` .z/

d z
D .`C d � 1/.`C d=2/

d
P.dC3/
`�1 .z/: (8)

Also if ` is odd then the polynomials P.dC1/
` are odd and if ` is even the polynomials

P.dC1/
` are even.

A zonal function K W Sd � S
d ! R depends only on the inner product of the

arguments, i.e. K.x; y/ D K.x � y/, x; y 2 S
d, for some function K W Œ�1; 1� ! R.

Frequent use is made of the zonal function P.dC1/
` .x � y/.
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Let fY`;k W k D 1; : : : ;Z.d; `/; ` D 0; : : : ;Lg be an orthonormal basis for
PL.S

d/. The normalised Legendre polynomial P.dC1/
` .x � y/ satisfies the addition

theorem (see [3, 61, 64] for example)

Z.d;`/X

kD1
Y`;k.x/Y`;k.y/ D Z.d; `/P.dC1/

` .x � y/: (9)

1.2 Number of Points

Delsarte, Goethals and Seidel [24] showed that an N point t-design on S
d has N �

N�.d; t/ where

N�.d; t/ WD
8
<

:

2
�dCk

d

�
if t D 2kC 1;

�dCk
d

�C �dCk�1
d

�
if t D 2k:

(10)

On S
2

N�.2; t/ WD
8
<

:

.tC1/.tC3/
4

if t odd;

.tC2/2
4

if t even:
(11)

Bannai and Damerell [6, 7] showed that tight spherical t-designs which achieve the
lower bounds (10) cannot exist except for a few special cases (for example except
for t D 1; 2; 3; 5 on S

2).
Yudin [68] improved (except for some small values of d; t, see Table 2), the lower

bounds (10), by an exponential factor .4=e/dC1 as t!1, so N � NC.d; t/ where

NC.d; t/ WD 2
R 1
0
.1 � z2/.d�2/=2 dz

R 1
�
.1 � z2/.d�2/=2 dz

D
p
�� .d=2/=� ..dC 1/=2/
R 1
�
.1� z2/.d�2/=2 dz

; (12)

and � is the largest zero of the derivative dP
.dC1/
t .z/

dz and hence the largest zero of

P.˛C1;˛C1/
t�1 .z/ where ˛ D .d � 2/=2. Bounds [2, 61] on the largest zero of P.˛;˛/n .z/

are

cos



j0.�/

nC ˛ C 1=2
�
� �

�
s

.n � 1/.nC 2˛ � 1/
.nC ˛ � 3=2/=.nC ˛ � 1=2/ cos



�

nC 1
�
; (13)

where j0.�/ is the first positive zero of the Bessel function J�.x/.
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Numerically there is strong evidence that spherical t-designs with N D D.2; t/ D
.t C 1/2 points exist, [17] and [18] used interval methods to prove existence of
spherical t-designs with N D .t C 1/2 for all values of t up to 100, but there is
no proof yet that spherical t-designs with N � D.2; t/ points exist for all degrees
t. Hardin and Sloane [33, 34] provide tables of designs with modest numbers of
points, exploiting icosahedral symmetry. They conjecture that for d D 2 spherical
t-designs exist with N D t2=2C o.t2/ for all t. The numerical experiments reported
here and available from [66] strongly support this conjecture.

McLaren [45] defined efficiency E for a quadrature rule as the ratio of the number
of independent functions for which the rule is exact to the number of arbitrary
constants in the rule. For a spherical t-design with N points on S

d (and equal
weights)

E D dim Pt.S
d/

dN
D D.d; t/

dN
: (14)

In these terms the aim is to find spherical t-designs with E � 1. McLaren [45]
exploits symmetry (in particular octahedral and icosahedral) to seek rules with
optimal efficiency. The aim here is not to maximise efficiency by finding the
minimal number of points for a t-design on S

d, but rather a sequence of efficient

t-designs with N � D.d;t/
d � .1Ct/d

d . Such efficient t-designs provide a practical tool
for numerical integration and approximation.

1.3 Geometric Quality

The Geodesic distance between two points x; y 2 S
d is

dist.x; y/ D cos�1.x � y/;

while the Euclidean distance is

jx� yj D
p
2.1� x � y/ D 2 sin.dist.x; y/=2/:

The spherical cap with centre z 2 S
d and radius � 2 Œ0; �� is

C .zI �/ D ˚x 2 S
d W dist.x; z/ � �� :

The separation distance

ı.XN/ D min
i¤j

dist.xi; xj/



1248 R. S. Womersley

is twice the packing radius for spherical caps of the same radius and centers in XN .
The best packing problem (or Tammes problem) has a long history [21], starting
with [53, 62]. A sequence of point sets fXNg with N ! 1 has the optimal order
separation if there exists a constant cpck

d independent of N such that

ı.XN/ � cpck
d N�1=d :

The separation, and all the zonal functions considered in subsequent sections, are
determined by the set of inner products

A .XN/ WD
˚
xi � xj; i D 1; : : : ;N; j D iC 1; : : : ;N� (15)

which has been widely used in the study of spherical codes, see [21] for example.
Then

max
z2A .XN /

z D cos.ı.XN//:

Point sets are only considered different if the corresponding sets (15) differ, as
they are invariant under an orthogonal transformation (rotation) of the point set and
permutation (relabelling) of the points.

The mesh norm (or fill radius)

h.XN/ D max
x2Sd

min
jD1;:::;N dist.x; xj/

gives the covering radius for covering the sphere with spherical caps of the same
radius and centers in XN . A sequence of point sets fXNg with N ! 1 has the
optimal order covering if there exists a constant ccov

d independent of N such that

h.XN/ � ccov
d N�1=d:

The mesh ratio is


.XN/ D 2hXN

ıXN

� 1:

A common assumption in numerical methods is that the mesh ratio is uniformly
bounded, that is the point sets are quasi-uniform. Minimal Riesz s-energy and best
packing points can also produce quasi-uniform point sets [9, 23, 35].

Yudin [67] showed that a spherical t-design with N points has a covering
radius of the optimal order 1=t. Reimer extended this to quadrature rules exact
for polynomials of degree t with positive weights. Thus a spherical t-design with
N D O.td/ points provides an optimal order covering.

The union of two spherical t-designs with N points is a spherical t-design with
2N points. A spherical design with arbitrarily small separation can be obtained as
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one N point set is rotated relative to the other. Thus an assumption on the separation
of the points of a spherical design is used to derive results, see [37] for example.
This simple argument is not possible if N is less than twice a lower bound (10)
or (12) on the number of points in a spherical t-design.

Bondarenko, Radchenko and Viazovska [10] have shown that on S
d well-

separated spherical t-designs exist for N � c0
d td. This combined with Yudin’s result

on the covering radius of spherical designs mean that there exist spherical t-designs
with N D O.td/ points and uniformly bounded mesh ratio.

There are many other “geometric” properties that could be used, for example the
spherical cap discrepancy, see [31] for example, (using normalised surface measure
so jSdj D 1)

sup
x2Sd ;�2Œ0;��

ˇ
ˇ̌
ˇjC .x; �/j �

jXN \ C .x; �/j
N

ˇ
ˇ̌
ˇ ;

or a Riesz s-energy, see [12] for example,

Es.XN/ D
X

1�i<j�N

1

jxi � xjjs :

In distinguishing between spherical t-designs with the same number N of points
we prefer those with lower mesh ratio. Note that some authors, see [9, 35] for
example, define the mesh ratio as Q
.XN/ D h.XN/=ı.XN/ � 1=2.

2 Variational Characterizations

Delsarte, Goethals and Seidel [24] showed that XN D fx1; : : : ; xNg 	 S
d is a

spherical t-design if and only if the Weyl sums satisfy

r`;k.XN/ WD
NX

jD1
Y`;k.xj/ D 0 k D 1; : : : ;Z.d; `/; ` D 1; : : : ; t; (16)

as the integral of all spherical harmonics of degree ` � 1 is zero from orthogonality
with the constant (` D 0) polynomial Y0;1 D 1 which is not included.

In matrix form

r.XN/ WD Ye D 0

where e D .1; : : : ; 1/T 2 R
N and Y 2 R

D.d;t/�1�N is the spherical harmonic basis
matrix excluding the first row.
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Let  t W Œ�1; 1�! R be a polynomial of degree t � 1 with

 t.z/ D
tX

`D1
a`P

.dC1/
` .z/; a` > 0 for ` D 1; : : : ; t; (17)

so the generalised Legendre coefficients a` for degrees ` D 1; : : : ; t are all strictly
positive. Clearly any such function t can be scaled by an arbitrary positive constant
without changing these properties.

Consider now an arbitrary set XN of N points on S
d. Sloan and Womersley [58]

considered the variational form

Vt;N; .XN/ WD 1

N2

NX

iD1

NX

jD1
 t.xi � xj/

which from (6) satisfies

0 � Vt;N; .XN/ �
tX

`D1
a` D  t.1/:

Moreover the average value is

Vt;N; WD
Z

Sd
� � �
Z

Sd
Vt;N; .x1; : : : ; xN/d�d.x1/ � � � d�d.xN/ D  t.1/

N
:

As the upper bound and average of Vt;N; .XN/ depend on  t.1/, we concentrate on
functions  for which  t.1/ does not grow rapidly with t.

From the addition theorem (9), Vt;N; .XN/ is a weighted sum of squares with
strictly positive coefficients

Vt;N; .XN/ D 1

N2

tX

`D1

a`
Z.d; `/

Z.d;`/X

kD1
.r`;k.XN//

2 D 1

N2
r.XN/

T D r.XN/; (18)

where D is the diagonal matrix with strictly positive diagonal elements a`
Z.d;`/ for

k D 1; : : : ;Z.d; `/; ` D 1; : : : ; t. Thus, from (16), XN is a spherical t-design if and
only if

Vt;N; .XN/ D 0:

Moreover, if the global minimum of Vt;N; .XN/ > 0 then there are no spherical
t-designs on S

d with N points.
Given a polynomial b t.z/ of degree t and strictly positive Legendre coefficients,

the zero order term may need to be removed to get  t.z/ D b t.z/� a0 where for Sd
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and ˛ D .d � 2/=2,

a0 D
Z 1

�1
b t.z/

�
1 � z2

�˛
dz:

Three examples of polynomials on Œ�1; 1� with strictly positive Legendre coeffi-
cients for Sd and zero constant term, with ˛ D .d � 2/=2 are:

Example 1

 1;t.z/ D zt�1 C zt � a0 (19)

where

a0 D � .˛ C 3=2/p
�

8
<

:

� .t=2/
� .˛C1Ct=2/ t odd;

� ..tC1/=2/
� .˛C3=2Ct=2/ t even:

(20)

For d D 2 this simplifies to a0 D 1=t if t is odd and a0 D 1=.tC 1/ if t is even. This
function was used by Grabner and Tichy [31] for symmetric point sets where only
even values of t need to be considered, as all odd degree polynomials are integrated
exactly.

Example 2

 2;t.z/ D


1C z

2

�t

� a0 (21)

where

a0 D 2p
�
4˛� .˛ C 3=2/ � .˛ C 1C t/

� .2˛ C 2C t/
: (22)

For d D 2 this simplifies to a0 D 1=.1C t/. This is a scaled version of the function
.1C z/t used by Cohn and Kumar [19] for which a0 must be scaled by 2t producing
more cancellation errors for large t.

Example 3

 3;t.z/ D P.˛C1;˛/
t .z/ � a0 (23)

where a0 is given by (22). The expansion in terms of Jacobi polynomials in
Szegő [61, Section 4.5] gives

tX

`D0
Z.d; `/P.dC1/

` .z/ D 1

a0
P.˛C1;˛/

t .z/:
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For S2 this is equivalent to

tX

`D1
.2`C 1/P.dC1/

` .z/ D .tC 1/P.1;0/t .z/ � 1

used in Sloan and Womersley [58].

3 Quadrature Error

The error for numerical integration depends on the smoothness of the integrand.
Classical results are based on the error of best approximation of the integrand f by
polynomials [51], (see also [40] for more details on S

2). For f 2 C�.Sd/, there exists
a constant c D c.�; f / such that the numerical integration error satisfies

ˇ
ˇ̌
ˇ
ˇ
ˇ

Z

Sd
f .x/d�d.x/ � 1

N

NX

jD1
f .xj/

ˇ
ˇ̌
ˇ
ˇ
ˇ
� c t�� :

If N D O.td/ then the right-hand-side becomes N��=d. Thus for functions with
reasonable smoothness it pays to increase the degree of precision t.

Similar results are presented in [13], building on the work of [36, 38], for
functions f in a Sobolev space H

s.Sd/, s > d=2. The worst-case-error for equal
weight (quasi Monte-Carlo) numerical integration using an arbitrary point set XN is

WCE.XN ; s; d/ WD sup
f 2Hs.Sd/;jjf jj

Hs .Sd /�1

ˇ
ˇ
ˇ
ˇ
ˇ̌

Z

Sd
f .x/d�.x/ � 1

N

NX

jD1
f .xj/

ˇ
ˇ
ˇ
ˇ
ˇ̌ : (24)

From this it immediately follows that the error for numerical integration satisfies

ˇ
ˇ
ˇ
ˇ̌
ˇ

Z

Sd
f .x/d�d.x/� 1

N

NX

jD1
f .xj/

ˇ
ˇ
ˇ
ˇ̌
ˇ
� WCE.XN ; s; d/ kfkHs.Sd/:

Spherical t-designs XN with N D O.td/ points satisfy the optimal order rate of decay
of the worst case error, for any s > d=2, namely

WCE.XN ; s; d/ D O
�
N�s=d

�
; N !1:

Thus spherical t-designs with N D O.td/ points are ideally suited to the numerical
integration of smooth functions.
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4 Computational Issues

The aim is to find a spherical t-design with N points on S
d by finding a point set XN

achieving the global minimum of zero for the variational function Vt;N; .XN/. This
section considers several computational issues: the evaluation of Vt;N; .XN/ either as
a double sum or using its representation (18) as a sum of squares; the parametrisation
of the point set XN ; the number of points N as a function of t and d; the choice
of optimization algorithm which requires evaluation of derivatives with respect
to the chosen parameters; exploiting the sum of squares structure which requires
evaluating the spherical harmonics and their derivatives; and imposing structure on
the point set, for example symmetric (antipodal) point sets. An underlying issue is
that optimization problems with points on the sphere typically have many different
local minima with different characteristics. Here we are seeking both a global
minimizer with value 0 and one with good geometric properties as measured by
the mesh ratio.

The calculations were performed using Matlab, on a Linux computational cluster
using nodes with up to 16 cores. In all cases analytic expressions for the derivatives
with respect to the chosen parametrisation were used.

4.1 Evaluating Criteria

Although the variational functions are nonnegative, there is significant cancellation
between the (constant) diagonal elements  t.1/ and all the off-diagonal elements
with varying signs as

Vt;N; .XN/ D 1

N
 t.1/C

NX

iD1

NX

jD1

j¤i

 t.xi � xj/:

Accurate calculation of such sums is difficult, see [41] for example, especially
getting reproducible results on multi-core architecture with dynamic scheduling of
parallel non-associative floating point operations [25]. Example 1 has  1;t.1/ D 2

and Example 2 has  2;t.1/ D 1, both independent of t, while Example 3 has

 3;t.1/ D � .tC ˛ C 2/
� .tC 1/� .˛ C 2/ � 1;

which grows with the degree t (for d D 2,  3;t.1/ D t). These functions are
illustrated in Fig. 1. As the variational objectives can be scaled by an arbitrary
positive constant, you could instead have used  3;t

� .tC1/� .˛C2/
� .tC˛C2/ . Ratios of gamma

functions, as in the expressions for a0, should not be evaluated directly, but rather
simplified for small values of d or evaluated using the log-gamma function. The
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Fig. 1 For d D 2, t D 30, a spherical t-design with N D 482, the functions  k;t and arrays
 k;t.xi � xj/ for k D 1; 2; 3

derivatives, essential for large scale non-linear optimization algorithms, are readily
calculated using

rxk Vt;N; .XN/ D 2
NX

iD1

i¤k

 0
t .xi � xk/xi

and the Jacobian of the (normalised) spherical parametrisation (see Sect. 4.2).
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Because of the interest in the use of spherical harmonics for the representation of
the Earth’s gravitational field there has been considerable work, see [42, 43] and [28,
Section 7.24.2] for example, on the evaluation of high degree spherical harmonics
for S2. For .x; y; z/T 2 S

2 the real spherical harmonics [54, Chapter 3, Section 18]
are usually expressed in terms of the coordinates z D cos.�/ and . In terms of the
coordinates .x; 2/ D .cos.1/; 2/, see (28) below, they are the Z.2; `/ D 2`C 1
functions

Y`;`C1�k.x; 2/ WD Oc`;k.1 � x2/k=2S.k/` .x/ sin.k2/; k D 1; : : : ; `;
Y`;`C1.x; 2/ WD Oc`;0S.0/` .x/; (25)

Y`;`C1Ck.x; 2/ WD Oc`;k.1 � x2/k=2S.k/` .x/ cos.k2/; k D 1; : : : ; `:

where S.k/` .x/ D
q

.`�k/Š

.`Ck/ŠP
k
`.x/ are versions of the Schmidt semi-normalised

associated Legendre functions for which stable three-term recurrences exist for
high (about 2700) degrees and orders. The normalization constants Oc`;0, Oc`;k are,
for normalised surface measure,

Oc`;0 D
p
2`C 1; Oc`;k D

p
2
p
2`C 1; k D 1; : : : ; `;

For S2 these expressions can be used to directly evaluate the Weyl sums (16), and
hence their sum of squares, and their derivatives.

4.2 Spherical Parametrisations

There are many ways to organise a spherical parametrisation of Sd. For i 2 Œ0; ��
for i D 1; : : : ; d � 1 and d 2 Œ0; 2�/ define x 2 S

d by

x1 D cos.1/ (26)

xi D
i�1Y

kD1
sin.k/ cos.i/; i D 2; : : : ; d (27)

xdC1 D
dY

kD1
sin.k/ (28)

The inverse transformation used is, for i D 1; : : : ; d � 1

i D

8
<̂

:̂

0 if xk D 0; k D i; : : : ; dC 1;
cos�1



xi=

qPdC1
kDi x2k

�
otherwiseI (29)

d D tan�1 .xdC1=xd/ : (30)
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The last component can be calculated using the four quadrant atan2 function
and periodicity to get d 2 Œ0; 2�/. Spherical parametrisations introduce potential
singularities when i D 0 or i D � for any i D 1; : : : ; d � 1.

As all the functions considered are zonal, they are invariant under an orthogonal
transformation (rotation). Thus the point sets are normalised so that the d C 1 by N
matrix X D Œx1 � � � xN � has

Xi;j D 0 for i D jC 1; : : : ; d C 1; j D 1; : : : ;min.d;N/

Xi;i � 0 for i D 1; : : : ;min.d;N/:

The first normalised point is x1 D e1 D .1; 0; : : : ; 0/ 2 R
dC1. Such a rotation can

easily be calculated using the QR factorization of X combined with sign changes to
the rows Q. The corresponding normalised spherical parametrisation has

˚i;j D 0 for i D j; : : : ; d; j D 1; : : : ;min.d;N/;

where the jth column of ˚ corresponds to the point xj, j D 1; : : : ;N. The
optimisation variables are then ˚i;j; i D 1; : : : ;min.j � 1; d/; j D 2; : : : ;N, stored
as the vector � 2 R

n where

n D
(

N.N�1/
2

for N � d;

Nd � d.dC1/
2

for N > d;
(31)

so

�p D ˚i;j; i D 1; : : : ;min.j � 1; d/; j D 2; : : : ;N;

p D
(

min.j�1;d/.min.j�1;d/�1/
2

C i for j D 2; : : : ;min.d;N/
d.d�1/
2
C .j � d � 1/dC i for j D d C 1; : : : ;N; N > d:

It is far easier to work with a spherical parametrisation with bound constraints than
to impose the quadratic constraints xj � xj D 1; j D 1; : : : ;N, especially for large
N. As the optimization criteria have the effect of moving the points apart, the use
of the normalised point sets reduces difficulties with singularities at the boundaries
corresponding to ˚i;j D 0 or ˚i;j D � , i D 1; : : : ; d � 1.

For S2, these normalised point sets may be rotated (the variable components re-
ordered) using

Q D
2

4
0 1 0

0 0 1

1 0 0

3

5

to get the commonly [27, 57, 66] used normalization with the first point at the north
pole and the second on the prime meridian.
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A symmetric (or antipodal) point set (x 2 XN ” �x 2 XN) must have N
even, so can be represented as X D ŒX �X� where the dC 1 by N=2 array of points
X is normalised as above.

If only zonal function functions depending just on the inner products xi � xj are
used then you could use the variables Zi;j D xi � xj, so

Z 2 R
N�N ; ZT D Z; Z � 0; diag.Z/ D e; rank.Z/ D d C 1;

where e D .1; : : : ; 1/T 2 R
N and Z � 0 indicates Z is positive semi-definite.

The major difficulties with such a parametrisation are the number N.N � 1/=2 of
variables and the rank condition. Semi-definite programming relaxations (without
the rank condition) have been used to get bounds on problems involving points on
the sphere (see, for example, [4]).

4.3 Degrees of Freedom for Sd

Using a normalised spherical parametrisation of N points on S
d 	 R

dC1 there are
n D Nd � d.dC 1/=2 variables (assuming N � d). The number of conditions for a
t-design is

m D
tX

`D1
Z.d; `/ D D.d; t/ � 1 D Z.d C 1; t/� 1:

Using the simple criterion that the number of variables n is at least the number of
conditions m, gives the number of points as

bN.d; t/ WD
�
1

d



Z.d C 1; t/C d.dC 1/

2
� 1

��
: (32)

For S2 there are n D 2N � 3 variables and m D .tC 1/2 � 1 conditions giving

bN.2; t/ WD ˙.tC 1/2/=2�C 1:

Grabner and Sloan [30] obtained separation results for N point spherical t-designs
when N � 	 2N� and 	 < 1. For d D 2, bN is less than twice the lower bound N� as

bN.2; t/ D 2N�.2; t/ � t;

but the difference is only a lower order term. The values for bN.2; t/, N�.2; t/ and
the Yudin lower bound NC.2; t/ are available in Tables 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15 and 16.
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The idea of exploiting symmetry to reduce the number of conditions that a
quadrature rule should satisfy at least goes back to Sobolev [60]. For a symmetric
point set (both xj;�xj in XN) then all odd degree polynomials Y`;k or P.dC1/

` are
automatically integrated exactly by an equal weight quadrature rule. Thus, for t
odd, the number of conditions to be satisfied is

m D
.t�1/=2X

`D1
Z.d; 2`/ D � .tC d/

� .dC 1/� .t/ � 1: (33)

The number of free variables in a normalised symmetric point set X D ŒX �X�
(assuming N=2 � d) is

n D



Nd

2
� d.dC 1/

2

�
: (34)

Again the simple requirement that n � m gives the number of points as

N.d; t/ WD 2
�
1

d



� .tC d/

� .dC 1/� .t/ � 1C
d.dC 1/

2

��
: (35)

For d D 2 this simplifies, again for t odd, to

N.2; t/ WD 2
�

t2 C tC 4
4

�
:

N.2; t/ is slightly less thanbN.2; t/, comparable to twice the lower bound N�.2; t/ as

N.2; t/ D 2N�.2; t/ � 3
2

tC
�
3
2

if mod .t; 4/ D 1;
1
2

if mod .t; 4/ D 3:

However N.2; t/ is not less than 	 2N�.2; t/, 	 < 1, as required by Grabner and
Sloan [30].

The leading term of both bN.d; t/ and N.d; t/ is D.d; t/=d, see Table 1, where
D.d; t/ defined in (4) is the dimension of Pt.S

d/. From (14), a spherical t-design

Table 1 The lower bound N�.d; t/, the number of points N.d; t/ (symmetric point set) andbN.d; T/
to match the number of conditions and the dimension of Pt.S

d/ for d D 2; 3; 4; 5

d N�.d; t/ N.d; t/ bN.d; t/ D.d; t/

2 t2

4
C t C O.1/ t2

2
C t

2
C O.1/ t2

2
C t C O.1/ t2 C 2t C 1

3 t3

24
C 3t2

8
C O.t/ t3

9
C t2

3
C O.t/ t3

9
C t2

2
C O.t/ t3

3
C 3t2

2
C O.t/

4 t4

192
C t3

12
C O.t2/ t4

48
C t3

8
C O.t2/ t4

48
C t3

6
C O.t2/ t4

12
C 2t3

3
C O.t2/

5 t5

1920
C 5t4

384
C O.t3/ t5

300
C t4

30
C O.t3/ t5

300
C t4

24
C O.t3/ t5

60
C 5t4

24
C O.t3/
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with bN.d; t/ or N.d; t/ points has efficiency E 
 1. Also the leading term of both
N.d; t/ and bN.d; t/ is 2d=d times the leading term of the lower bound N�.d; t/.

4.4 Optimization Algorithms

As with many optimization problems on the sphere there are many distinct (not
related by an orthogonal transformation or permutation) point sets giving local
minima of the optimization objective. For example, Erber and Hockney [26] and
Calef et al. [16] studied the minimal energy problem for the sphere and the large
number of stable configurations.

Gräf and Potts [32] develop optimization methods on general Riemannian
manifolds, in particular S2, and both Newton-like and conjugate gradients methods.
Using a fast method for spherical Fourier coefficients at non-equidistant points they
obtain approximate spherical designs for high degrees.

While mathematically it is straight forward to conclude that if Vt;N; .XN/ D 0

then XN is a spherical t-design, deciding when a quantity is zero with the limits
of standard double precision floating point arithmetic with machine precision � D
2:2 � 10�16 is less clear (should 10�14 be regarded as zero?). Extended precision
libraries and packages like Maple or Mathematica can help. A point set XN with
Vt;N; .XN/ 
 � does not give a mathematical proof that is XN is a spherical t-design,
but XN may still be computationally useful in applications.

On the other hand showing that the global minimum of Vt;N; .XN/ is strictly
positive, so no spherical t-design with N points exist, is an intrinsically hard
problem. Semi-definite programming [63] provides an approach [50] to the global
optimization of polynomial sum of squares for modest degrees.

For d D 2 a variety of gradient based bound constrained optimization methods,
for example the limited memory algorithm [15, 46], were tried both to minimise the
variational forms Vt;N; .XN/. Classically, see [48] for example, methods can exploit
the sum of squares structure r.XN/

Tr.XN/. In both cases it is important to provide
derivatives of the objective with respect to the parameters. Using the normalised
spherical parametrisation � of XN , the Jacobian of the residual r.�/ is A W Rn !
R

m�n where n D dN � d.dC 1/=2 and m D D.d; t/ � 1

Ai;j.�/ D @ri.�/

@j
; i D 1; : : : ;m; j D 1; : : : ; n;

where i D .` � 1/Z.dC 1; ` � 1/C k, for k D 1; : : : ;Z.d; `/; ` D 1; : : : ; t.
For symmetric point sets with N D N.d; t/ points, the number of variables n is

given by (34) and the number of conditions m by (33) corresponding to even degree
spherical harmonics.
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The well-known structure of a nonlinear least squares problem, see [48] for
example, gives, ignoring the 1=N2 scaling in (18),

f .�/ D r.�/T D r.�/; (36)

rf .�/ D 2A.�/TDr.�/; (37)

r2f .�/ D 2A.�/TDA.�/C 2
mX

iD1
ri.�/Diir2ri.�/: (38)

If �� has r.��/ D 0 and A.��/ has rank n, the Hessian r2f .��/ D
2A.��/TDA.��/ is positive definite and �� is a strict global minimizer. Here
this is only possible when n D m, for example when d D 2 and t is odd, see
Tables 2, 3, 4, 5, 6, 7, 8 and 9, and in the symmetric case when t mod 4 D 3, see
Tables 10, 11, 12, 13, 14, 15 and 16. For d D 2 the other values of t have n D mC1,
so there is generically a one parameter family of solutions even when the Jacobian
has full rank. When d D 3, the choice N D bN.3; t/ gives n D m, n D m C 1 or
n D mC 3 depending on the value of t, see Table 18. Thus a Levenberg-Marquadt
or trust region method, see [48] for example, in which the search direction satisfies

�
ATDAC �I� d D ATDr

was used. When n > m the Hessian of the variational form Vt;N; .XN/ evaluated
using one of the three example functions (19), (21) or (23) will also be singular at
the solution. These disadvantages could have been reduced by choosing the number
of points N so that n < m, but then there may not be solutions with Vt;N; .XN/ D 0,
that is spherical t-designs may not exist for that number of points.

Many local solutions were found as well as (computationally) global solutions
which differed depending on the starting point and the algorithm parameters (for
example the initial Levenberg-Marquadt parameter �, initial trust region, line search
parameters etc.). Even when n D m there are often multiple spherical designs for
same t, N, which are strict global minimisers, but have different inner product sets
A .XN/ in (15) and different mesh ratios.

4.5 Structure of Point Sets

There are a number of issues with the spherical designs studied here.

• There is no proof that spherical t-designs on S
d with N D td=dC O.td�1/ points

exist for all t (that is the constant in the Bondarenko et al. result [8] is Cd D 1=d
(or lower), as suggested by [33] for S2).
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• The point sets are not nested, that is the points of a spherical t-design are not
necessarily a subset of the points of a t0-design for some t0 > t.

• The point sets do not lie on bands of equal 1 (latitude on S
2) making them less

amenable for FFT based methods.
• The point sets are obtained by extensive calculation, rather than generated by a

simple algorithms as for generalized spiral or equal area points on S
2 [52]. Once

calculated the point sets are easy to use.

An example of a point set on S
2 that satisfies the last three issues are the HELAPix

points[29], which provide a hierarchical, equal area (so exact for constants), iso-
latitude set of points widely used in cosmology.

5 Tables of Results

5.1 Spherical t-Designs with no Imposed Symmetry for S2

From Tables 2, 3, 4, 5, 6, 7, 8 and 9 the variational criteria based on the three
functions  1;t,  2;t and  3;t all have values close to the double precision machine
precision of � D 2:2 � 10�16 for all degrees t D 1; : : : ; 180. Despite being
theoretically non-negative, rounding error sometimes gives negative values, but still
close to machine precision. The potential values using  3;t are slightly larger due to
the larger value of  3;t.1/. The tables also give the unscaled sum of squares

ft.XN/ D r.XN/
Tr.XN/; (39)

which are plotted in Fig. 2. These tables also list both the Delsarte, Goethals
and Seidel lower bounds N�.2; t/ and the Yudin lower bound NC.2; t/, plus the
actual number of points N. The number of points N D bN.2; t/, apart from t D
3; 5; 7; 9; 11; 13; 15 when N D bN.2; t/ � 1. There may well be spherical t-designs
with smaller values of N and special symmetries, see [33] for example. For all these
point sets the mesh ratios 
.XN/ are less than 1:81, see Fig. 2. All these point sets
are available from [66].

5.2 Symmetric Spherical t-Designs for S2

For S
2 a t-design with a sightly smaller number of points N.2; t/ can be found

by constraining the point sets to be symmetric (antipodal). A major computational
advantage of working with symmetric point sets is the reduction (approximately
half), for a given degree t, in the number of optimization variables n and the number
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Fig. 2 Sum of squares of Weyl sums and mesh ratios for spherical t-designs on S
2

of terms m in the Weyl sums and hence the unscaled sum of squares (39). Tables 10,
11, 12, 13, 14, 15 and 16 list the characteristics of the calculated t-designs for
t D 1; 3; 5; : : : ; 325, as a symmetric 2k-design is automatically a 2k C 1-design.
These tables have t D N.2; t/ except for t D 1; 7; 11. These point sets, again
available from [66], provide excellent sets of points for numerical integration on
S
2 with mesh ratios all less than 1:78 for degrees up to 325, as illustrated in Fig. 3.

5.3 Designs for d D 3

For d D 3, Z.3; `/ D .` C 1/2, so the dimension of the space of polynomials of
degree at most t in S

3 is D.3; t/ D Z.4; t/ D .tC1/.tC2/.2tC3/=6. Comparing the
number of variables with the number of conditions, with no symmetry restrictions,
gives

bN.3; t/ D
�
2t3 C 9t2 C 13tC 36

18

�
;
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Fig. 3 Sum of squares of Weyl sums and mesh ratios for symmetric spherical t-designs on S
2

while for symmetric spherical designs on S
3

N.3; t/ D 2
�

t3 C 3t2 C 2tC 30
18

�
:

There are six regular convex polytopes with N D 5; 8; 16; 24; 120 and 600
vertices on S3 [22] (the 5-cell, 16-cell, 8-cell, 24-cell, 600-cell and 120-cell
respectively) giving spherical t-designs for t D 2; 3; 5; 7; 9; 11 and 11. The energy
of regular sets on S

3 with N D 2; 3; 4; 5; 6; 8; 10; 12; 13; 24; 48 has been studied
by [1]. The N D 24 vertices of the D4 root system [20] provides a one-parameter
family of 5-designs on S

3. The Cartesian coordinates of the regular point sets are
known, and these can be numerically verified to be spherical designs. The three
variational criteria using (19), (21) and (23) are given for these point sets in Table 17.
Figure 4 clearly illustrates the difference between the widely studied [11, 21, 24]
inner product set A .XN) for a regular point set (the 600-cell with N D 120) and a
computed spherical 13-design with N D 340.
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Fig. 4 Inner product sets A .XN / for 600-cell with N D 120 and 13-design with N D 340 on S
3

The results of some initial experiments in minimising the three variational criteria
are given in Tables 18 and 19. These point sets, including any updates, are again
available from [66]. For d > 2, it is more difficult to quickly generate a point set
with a good mesh ratio to serve as an initial point for the optimization algorithms.
One strategy is to randomly generate starting points, but this both makes the
optimization problem harder and tends to produce nearby point sets which are local
minimisers and have poor mesh ratios as the random initial points may have small
separation [14]. Another possibility is the generalisation of equal area points to
d > 2 by Leopardi [44]. For a given t and N there are still many different point sets
with objective values close to 0 and different mesh ratios. To fully explore spherical
t-designs for d > 2, a stable implementation of the spherical harmonics is needed,
so that least squares minimisation can be fully utilised.

Acknowledgements This research includes extensive computations using the Linux computa-
tional cluster Katana supported by the Faculty of Science, UNSW Sydney.
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Optimal Points for Cubature Rules
and Polynomial Interpolation on a
Square

Yuan Xu

Dedicated to Ian H. Sloan on the occasion of his 80th birthday.

Abstract The nodes of certain minimal cubature rule are real common zeros of a
set of orthogonal polynomials of degree n. They often consist of a well distributed
set of points and interpolation polynomials based on them have desired convergence
behavior. We report what is known and the theory behind by explaining the situation
when the domain of integrals is a square.

1 Introduction

A numerical integration rule is a finite linear combination of point evaluations that
approximates an integral. The degree of precision of such a rule is the highest total
degree of polynomials that are evaluated exactly. For a fixed degree of precision,
the minimal rule uses the smallest number of point evaluations. Finding a minimal
rule is a difficult problem and the most challenging part lies in identifying the set
of nodes used in the rule, which is often a desirable set of points for polynomial
interpolation. For integration on subsets of the real line, a Gaussian quadrature
rule is minimal; its nodes are known to be zeros of orthogonal polynomials and
polynomial interpolation based on the nodes has desired convergence behavior. The
problem is far less understood in higher dimension, where we have fewer answers
and many open questions. The purpose of this paper is to explain the situation when
the integral domain is a square on the plane, for which we know more than on any
other domain.

We can work with any fixed square and will fix our choice as
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throughout the paper. Let ˘2
n denote the space of polynomials of (total) degree at

most n in two real variables, where the total degree means the sum of degrees in
both variables. It is known that dim˘2

n D .nC1/.nC2/=2. Let W be a nonnegative
weight function on the square. For the integral with respect to W, a cubature rule of
degree of precision m (abbreviated as degree m from now on) is a finite sum, defined
below, such that

Z

�
f .x; y/W.x; y/dxdy D

NX

kD1
�k f .xk; yk/; for all f 2 ˘2

m; (1)

and there exists at least one f 2 ˘2
mC1 such that the equality (1) fails to hold. The

integer N is the number of nodes. The points .xk; yk/ 2 R
2 are called nodes and the

numbers �k are called weights of the cubature rule, respectively. We consider only
positive cubature rules for which �k are all positive.

As in the case of one variable, the nodes of a minimal cubature rule are closely
related to the zeros of orthogonal polynomials. A polynomial P is an orthogonal
polynomial of degree n with respect to the weight function W if P 2 ˘2

n and

Z

�
P.x; y/Q.x; y/W.x; y/dxdy D 0 for all Q 2 ˘2

n�1:

Let Vn.W/ denote the space of orthogonal polynomials of degree n. Then

dimVn.W/ D nC 1;

as can be seen by applying the Gram-Schmidt process to xn; xn�1y; : : : ; xyn�1; yn.
However, the structure of zeros for polynomials of more than one variable can be
complicated and what is needed is the common zeros of a family of orthogonal
polynomials of degree n. A common zero of a family of polynomials is a point
which is a zero for every polynomial in the family. To be more precise, what we
often need is to identify a polynomial ideal, I, generated by a family of orthogonal
polynomials in Vn.W/, so that its variety, V , is real and zero-dimensional, and the
cardinality of V equals the codimension of I. Given the status of real algebraic
geometry, this is difficult in general. Only in a few cases can we establish the
existence of a minimal, or near minimal, cubature rule and identify its generating
polynomial ideal explicitly. The nodes of such a cubature rule are good points for
polynomial interpolation. Indeed, using the knowledge on orthogonal polynomial
that vanish on the nodes, it is not difficult to construct a polynomial subspace
˘�

n , so that the problem of finding p such that p.xi; yi/ D f .xi; yi/ for all nodes
.xi; yi/ of the cubature rule has a unique solution in˘�

n . Moreover, this interpolation
polynomial is easy to compute and has desirable convergence behavior. The above
rough description applies to all cubature rules. Restricting to the square allows us to
describe the idea and results without becoming overly tangled by notations.
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The minimal or near-minimal cubature rules offer highly efficient tools for high-
precision computation of integrals. It is unlikely, however, that they will become
a major tool for numerical integration any time soon, because we do not know
how to construct them in most cases. Moreover, their usage is likely restricted to
lower dimension integrals, since they are even less understood in higher dimensions,
where the difficulty increases rapidly as the dimension goes up, and, one could
also add, truly high-dimensional numerical integration is really a different problem
(see, for example, [7]). Nevertheless, with their deep connection to other fields
in mathematics and their promise as high dimensional substitute for Gaussian
quadrature rules, minimal cubature rules are a fascinating object to study. It is our
hope that this paper will help attract researchers into this topic.

The paper is organized as follows. We review the theoretic results in the following
section. In Sect. 3, we discuss minimal and near minimal cubature rules for the
Chebyshev weight functions on the square, which includes a discussion on the
Padua points. In Sect. 4, we discuss more recent extensions of the results in previous
section to a family of weight functions that have a singularity on the diagonal of the
square. Finally, in Sect. 5, we describe how cubature rules of lower degrees can be
established for unit weight function on the square.

2 Cubature Rules and Interpolation

We are interested in integrals with respect to a fixed weight function W over the
square, as in (1), and we assume that all moments of W are finite. A typical example
of W is the product weight function

W˛;ˇ.x; y/ WD .1 � x2/˛.1 � y2/ˇ; ˛; ˇ > �1:

This weight function is centrally symmetric, which means that it is symmetric with
respect to the origin; more precisely, it satisfies W.x; y/ D W.�x;�y/. If we replace
.1� x2/˛ by .1� x/˛.1C x/� , with � ¤ ˛, the resulting weight function will not be
centrally symmetric.

Many of the results below hold for cubature rules with respect to integrals on all
domains in the plane, not just for the square. We start with the first lower bound for
the number of nodes of cubature rules [23].

Theorem 1 Let n be a positive integer and let m D 2n�1 or 2n�2. If the cubature
rule (1) is of degree m, then its number of nodes satisfies

N � dim˘2
n�1 D

n.nC 1/
2

: (2)

A cubature rule of degree m is called Gaussian if the lower bound (2) is attained.
In the one-dimensional case, it is well-known that the Gaussian quadrature rule of
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degree 2n� 1 has n D dim˘n�1 nodes, where˘n denote the space of polynomials
of degree at most n in one variable, and the same number of nodes is needed for the
quadrature rule of degree 2n � 2.

For n D 0; 1; 2; : : :, let fPn
k W 0 � k � ng be a basis of Vn.W/. We denote by Pn

the set of this basis and we also regard Pn as a column vector

Pn D .Pn
0;P

n
1; : : : ;P

n
n/

t;

where the superscript t denotes the transpose. The Gaussian cubature rules can be
characterized as follows:

Theorem 2 Let Ps be a basis of Vs.W/ for s D n and n � 1. Then

1. A Gaussian cubature rule (1) of degree 2n� 1 exists if, and only if, its nodes are
common zeros of the polynomials in Pn;

2. A Gaussian cubature rule (1) of degree 2n� 2 exists if, and only if, its nodes are
common zeros of the polynomials in

Pn C � Pn�1;

where � is a real matrix of size .nC 1/ � n.

For m D 2n� 1, the characterization is classical and established in [19]; see also
[8, 20]. For m D 2n � 2, the characterization was established in [18, 21, 27]. As in
the classical Gaussian quadrature rules, a Gaussian cubature rule, if it exists, can be
derived from integrating the Lagrange interpolation based on its nodes [25].

Let .xk; yk/ W 1 � k � dim˘2
n�1 be distinct points in R

2. The Lagrange
interpolation polynomial, denoted by Lnf , is a polynomial of degree n, such that

Lnf .xk; yk/ D f .xk; yk/; 1 � k � dim˘2
n�1:

If .xk; yk/ are zeros of a Gaussian cubature rule, then the Lagrange interpolation
polynomial is uniquely determined. Moreover, let Kn.�; �/ be the reproducing kernel
of the space Vn.W/, which can be written as

Kn..x; y/; .x
0; y0// WD

nX

mD0

mX

kD0
Pm

k .x; y/P
m
k .x

0; y0/;

where fPm
k W 0 � k � mg is an orthonormal basis of Vm.W/; then the Lagrange

interpolation polynomial based on the nodes .xk; yk/ of the Gaussian cubature rule
can be written as

Lnf .x; y/ D
NX

kD0
f .xk; yk/`k;n.x; y/; `k;n WD Kn�1..x; y/; .xk; yk//

Kn�1..xk; yk/; .xk; yk//
;
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where �k are the cubature weights; moreover, �k D 1=Kn�1..xk; yk/; .xk; yk// is
clearly positive.

Another characterization, more explicit, of the Gaussian cubature rules can be
given in terms of the coefficient matrices of the three-term relations satisfied by the
orthogonal polynomials.

For n D 0; 1; 2; : : :, let fPn
k W 0 � k � ng be an orthonormal basis of Vn.W/. Then

there exist matrices An;i W .nC 1/� .nC 2/ and Bn;i W .nC 1/� .nC 1/ such that [8],

xiPn.x/ D An;iPnC1.x/C Bn;iPn.x/C At
n�1;iPn�1.x/; x D .x1; x2/; (3)

for i D 1; 2. The coefficient matrices Bn;i are necessarily symmetric. Furthermore,
it is known that Bn;i D 0 if W is centrally symmetric.

Theorem 3 Let n 2 N, Assume that the cubature rule (1) is of degree 2n� 1.

1. The number of nodes of the cubature rule satisfies

N � dim˘2
n�1 C

1

2
rank.An�1;1At

n�1;2 � An�1;2At
n�1;1/: (4)

2. The cubature is Gaussian if, and only if, An�1;1At
n�1;2 D An�1;2At

n�1;1.
3. If W is centrally symmetric, then (4) becomes

N � dim˘2
n�1 C

jn

2

k
D n.nC 1/

2
C
jn

2

k
DW Nmin: (5)

In particular, Gaussian cubature rules do not exist for centrally symmetric weight
functions.

The lower bound (5) was established by Möller in his thesis (see [17]). The more
general lower bound (4) was established in [26], which reduces to (5) when W is
centrally symmetric. The non-existence of the Gaussian cubature rule of degree 2n�
1 for centrally symmetric weight functions motivates the consideration of minimal
cubature rules, defined as the cubature rule(s) with the smallest number of nodes
among all cubature rules of the same degree for the same integral. Evidently, the
existence of a minimal cubature rule is a tautology of its definition.

Cubature rules of degree 2n � 1 that attain Möller’s lower bound Nmin in (5) can
be characterize in terms of common zeros of orthogonal polynomials as well.

Theorem 4 Let W be centrally symmetric. A cubature rule of degree 2n� 1 attains
Möller’s lower bound (5) if, and only if, its nodes are common zeros of .nC1/�� n

2

˘

many orthogonal polynomials of degree n in Vn.W/.

This theorem was established in [17]. In the language of polynomial ideal and
variety, we say that the nodes of the cubature rule are the variety of a polynomial
ideal generated by

�
nC1
2

˘ C 1 many orthogonal polynomials of degree n. More
general results of this nature were developed in [26], which shows, in particular,
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that a cubature rule of degree 2n � 1 with N D Nmin C 1 exists if its nodes are
common zeros of

�
nC1
2

˘
many orthogonal polynomials of degree n in Vn.W/.

These cubature rules can also be derived from integrating their corresponding
interpolating polynomials. However, since Nmin is not equal to the dimension of
˘2

n�1, we need to define an appropriate polynomial subspace in order to guarantee
that the Lagrange interpolant is unique. Assume that a cubature rule of degree 2n�1
with N D Nmin exists. Let � D �

n
2

˘
and let Pn WD fP1; : : : ;Pn��g be the set of

orthogonal polynomials whose common zeros are the nodes of the cubature rule.
We can assume, without loss of generality, that these polynomials are mutually
orthogonal and they form an orthonormal subset of Vn.W/. Let Qn WD fQ1; : : : ;Q�g
be an orthonormal basis of Vn.W/nspanPn, so that Pn[Qn is an orthonormal basis
of Vn.W/. Then it is shown in [26] that there is a unique polynomial in the space

˘�
n WD ˘2

n�1 [ spanQn (6)

that interpolates a generic function f on the nodes of the minimal cubature rule; that
is, there is a unique polynomial Lnf 2 ˘�

n such that

Lnf .xk; yk/ D f .xk; yk/; 1 � k � Nmin;

where .xk; yk/ are zeros of the minimal cubature rule. Furthermore, this polynomial
can be written as

Lnf .x; y/ D
NX

kD0
f .xk; yk/`k;n.x; y/; `k;n WD K�

n ..x; y/; .xk; yk//

K�
n ..xk; yk/; .xk; yk//

; (7)

where

K�
n ..x; y/; .x

0; y0// D Kn�1..x; y/; .x0; y0//C
�X

jD1
Qj.x; y/Qj.x

0; y0/: (8)

Integrating Lnf gives a cubature rule with Nmin nodes that is exact for all polynomials
in ˘2

2n�1 and, in particular, �k D 1=K�
n ..xk; yk/; .xk; yk//. Furthermore, the above

relation between cubature rules and interpolation polynomials hold if � D b n
2
c C 1

and the cubature rule has Nmin C 1 points.
All our examples are given for cubature rules for centrally symmetric cases. We

are interested in cubature rules that either attain or nearly attain the lower bounds,
which means Gaussian cubature of degree 2n� 2 or cubature rules of degree 2n� 1
with Nmin nodes or Nmin C 1 nodes. When such a cubature rule exists, the Lagrange
interpolation polynomials based on its nodes possesses good, close to optimal,
approximation behavior.

Because our main interest lies in the existence of our cubature rules and
the convergence behavior of our interpolation polynomials, we shall not state
cubature weights, �k in (1), nor explicit formulas for the interpolation polynomials
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throughout this paper. For all cases that we shall encounter below, these cubature
weights can be stated explicitly in terms of known quantities and interpolation
polynomials can be written down in closed forms, which can be found in the
references that we provide.

3 Results for Chebyshev Weight Function

We start with the product Gegenbauer weight function defined on Œ�1; 1�2 by

W�.x; y/ D .1 � x2/��1=2.1 � y2/��1=2; � > �1=2:

The cases � D 0 and � D 1 are the Chebyshev weight functions of the first and the
second kind, respectively. One mutually orthogonal basis of Vn.W/ is given by

Pn
k.x; y/ WD C�

n�k.x/C
�
k .y/; 0 � k � n;

where C�
n denotes the usual Gegenbauer polynomial of degree n. When � D 0, C�

n
is replaced by Tn, the Chebyshev polynomial of the first kind, and when � D 1,
C�

n D Un, the Chebyshev polynomial of the second kind. Setting x D cos � , we
have

Tn.x/ D cos n� and Un.x/ D sin.nC 1/�
sin �

:

In the following we always assume that C�
k .x/ D Uk.x/ D Tk.x/ D 0 if k < 0.

The first examples of minimal cubature rules were given for Chebyshev weight
functions soon after [17]. We start with the Gaussian cubature rules for Chebyshev
weight function of the second type in [18].

Theorem 5 For the product Chebyshev weight function W1 of the second kind, the
Gaussian cubature rules of degree 2n � 2 exist. Their nodes can be explicitly given
by

.cos 2i�
nC2 ; cos .2j�1/�

nC1 /; 1 � i � .nC 1/=2; 1 � j � .nC 1/=2;
.cos .2i�1/�

nC2 ; cos 2j�
nC1 /; 1 � i � n=2C 1; 1 � j � n=2;

(9)

which are common zeros of the polynomials

Un�k.x/Uk.y/�Uk.x/Un�1�k.y/; 0 � k � n:

However, W1 remains the only weight function on the square for which the
Gaussian cubature rules of degree 2n � 2 are known to exist for all n. For other
weight functions, for example, the constant weight function W1=2.x; y/ D 1, the
existence is known only for small n; see the discussion in the last section.
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For minimal cubature of degree 2n� 1 that attains Möller’s lower bound, we are
in better position. The first result is again known for Chebyshev weight functions.

Theorem 6 For the product Chebyshev weight function W0 of the first kind, the
cubature rules of degree 2n � 1 that attain the lower bound (5) exist. Moreover, for
n D 2m, their nodes can be explicitly given by

.cos i�
m ; cos .2jC1/�

2m /; 0 � i � m; 0 � j � m � 1;
.cos .2iC1/�

m ; cos j�
m /; 0 � i � m; 1 � j � m;

(10)

which are common zeros of the polynomials

T2m�kC1.x/Tm�1.y/� Tk�1.x/Tm�kC1.y/; 1 � k � mC 1:

For n D 2m, this was first established in [18], using the characterization in [17],
and it was later proved by other methods [1, 16]. The case for n D 2m � 1 is
established more recently in [31], for which the structure of orthogonal polynomials
that vanish on the nodes is more complicated, see the discussion after Theorem 4.2.
The analog of the explicit construction in the case n D 2m holds for cubature rules
of degree 2n�1, with n D 2m�1, that have one more node than the lower bound (5)
[26]. The nodes of these formulas are by Xu [28]

.cos 2i�
2m�1 ; cos 2j�

2m�1 /; 0 � k � m � 1; 0 � j � m � 1;
.cos .2m�2i�1/�

2m�1 ; cos .2m�j�1/�
2m�1 /; 0 � i � m � 1; 1 � j � m � 1;

(11)

and they are common zeros of the polynomials

T2m�k.x/Tk�1.y/� Tk�1.x/T2m�k.y/; 1 � k � m:

These points are well distributed. Two examples are depicted in Fig. 1.
The Lagrange interpolation polynomials based on the nodes of these cubature

rules were first studied in [28]. Let Lnf .x; y/ denote the Lagrange interpolation
polynomial based on the nodes (10) for n D 2m and on (11) for n D 2m� 1, which
belongs to the space ˘�

n defined in (6). Using the Christoffel-Darboux formula
in two variables, these interpolation polynomials can be given explicitly. Their
convergence behavior is about optimal among all interpolation polynomials on the
square. To be more precise, we introduce the following notation.

Let k � kp denote the usual Lp norm of the space Lp.�;W0/ for 1 � p <1, and
define it as the uniform norm on the square � when p D 1. For f 2 C.�/, let
En.f /1 be the error of best approximation by polynomials from ˘2

n in the uniform
norm; that is,

En.f /1 D inf
P2˘2

n

kf � Pk1:
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Fig. 1 Left: 180 nodes for minimal cubature rule of degree 35. Right: 162 nodes for near-minimal
cubature rule of degree 33

Theorem 7 Let f be a continuous function on �. Then

1. There is a constant c > 0, independent of n and f , such that

kf � Lnfkp � c En.f /1; 1 � p <1I
2. The Lebesgue constant kLnk1 WD supkf k

1

¤0 kLnfk1 satisfies

kLnk1 D O..log n/2/;

which is the optimal order among all projection operators from C.˝/ 7! ˘�
n .

The first item was proved in [28], which shows that Lnf behaves like polynomials
of best approximation in Lp norm when 1 � p < 1. The second one was proved
more recently in [3], which gives the upper bound of the Lebesgue constant; that
this upper bound is optimal was established in [24]. These results indicate that the
set of points (10) is optimal for both numerical integration and interpolation. These
interpolation polynomials were also considered in [12], and further extended in [13,
14], where points for other Chebyshev weights [18], including .1�x2/˙ 1

2 .1�y2/ 1
2 ,

are considered.
The interpolation polynomial Lnf defined above is of degree n and its set of

interpolation points has the cardinality dim˘2
n�1 C bn=2c or one more. One could

ask if it is possible to identify another set of points, say Xn, that has the cardinality
dim˘2

n and is just as good, which means that the interpolation polynomials based
on Xn should have the same convergence behavior as those in Theorem 7 and the
cubature rule with Xn as the set of nodes should be of the degree of precision 2n�1.
If such an Xn exists, the points in Xn need to be common zeros of polynomials of the
form

PnC1 C �1Pn C �2Pn�1;
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where �1 and �2 are matrices of sizes .nC2/� .nC1/ and .nC2/�n, respectively.
For W0, such a set indeed exists and known as the Padua points [2, 4]. One version
of these points is

Xn W D
n
.cos 2i�

n ; cos .2j�1/�
nC1 /; 0 � i � b n

2
c 1 � j � b n

2
c C 1;

.cos .2i�1/�
n ; cos .2j�2/�

nC1 /; 1 � i � b n
2
c C 1; 1 � j � b n

2
c C 2

o
;

(12)

which are common zeros of polynomials QnC1
k , 0 � k � nC 1, defined by

QnC1
0 .x; y/ D TnC1.x/ � Tn�1.x/; (13)

QnC1
k .x; y/ D Tn�kC1.x/Tk.y/C Tn�kC1.y/Tk�1.x/; 1 � k � nC 1: (14)

Theorem 8 For n 2 N, let Xn be defined as in (12). Then jXnj D dim˘2
n and

1. There is a cubature rule of degree 2n � 1 with Xn as its set of nodes.
2. There is a unique polynomial of degree n that interpolates at the points in Xn,

which enjoys the same convergence as that of Lnf given in Theorem 7.

One interesting property of the Padua points is that they are self-intersection
points of a Lissajous curve. For Xn given in (12), the curve is given by QnC1

0 or, in
parametric form,

.� cos..nC 1/t/;� cos.nt//; 0 � t � .2nC 1/�;

as shown in Fig. 2. The generating curve offers a convenient tool for studying the
interpolation polynomial based on Padua points.

Fig. 2 Seventy-eight Padua
points (n D 11) and their
generating curve
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More generally, a Lissajous curve takes of the form .cos..nC p/t/; cos.nt// with
positive integers n and p such that n and n C p are relatively prime. It is known
[11] that such a curve has .n � 1/.n C p � 1/=2 self-intersection points inside
Œ�1; 1�2. For p ¤ 1, the number is not equal to the full dimension of ˘m for any m
in general. Nonetheless, these points turn out to be good points for cubature rules
and for polynomial interpolation, as shown in [9, 10].

4 Results for a Family of Weight Functions

In this section we consider a family of weight functions that include the Chebyshev
weight functions as special cases. Let w be a weight function on the interval Œ�1; 1�.
For � > �1=2, we define a weight function

W� .x; y/ WDw.cos.� � //w.cos.� C //jx2 � y2j.1 � x2/� .1 � y2/� ;

where x D cos �; y D cos; .x; y/ 2 Œ�1; 1�2:
When w is the Jacobi weight function w˛;ˇ.x/ WD .1 � x/˛.1C x/ˇ , we denote the
weight function W� by W˛;ˇ;� . It is not difficult to verify that

W˛;ˇ;� .x; y/ WD jxC yj2˛C1jx � yj2ˇC1.1 � x2/� .1� y2/� : (15)

In the special cases of ˛ D ˇ D � 1
2

and � D ˙ 1
2
, these are exactly the Chebyshev

weight functions. It was proved recently in [29, 31], rather surprisingly, that the
results in the previous section can be extended to these weight functions. First,
however, we describe a family of mutually orthogonal polynomials. To be more
precise, we state this basis only for the weight function W˛;ˇ;˙ 1

2
.

For ˛; ˇ > �1, let p.˛;ˇ/n be the normalized Jacobi polynomial of degree n, so that
c˛;ˇ

R 1
�1 jp.˛;ˇ/n .x/j2w˛;ˇ.x/dx D 1 and p.˛;ˇ/0 .x/ D 1. For x D cos � and y D cos,

we define

P
˛;ˇ;� 1

2

k;n .2xy; x2 C y2 � 1/
WD p.˛;ˇ/n .cos.� � //p.˛;ˇ/k .cos.� C //C p.˛;ˇ/k .cos.� � //p.˛;ˇ/n .cos.� C //;

P
˛;ˇ; 12
k;n .2xy; x2 C y2 � 1/

WD p.˛;ˇ/nC1 .cos.� � //p.˛;ˇ/k .cos.� C //� p.˛;ˇ/k .cos.� � //p.˛;ˇ/nC1 .cos.� C //
2 sin � sin

:

It turns out that P
˛;ˇ;˙ 1

2

k;n .u; v/ itself is a polynomial of degree n in the variables u
and v, as can be seen by the elementary trigonometric identities

2xy D cos.� � /C cos.� C / and x2 C y2 � 1 D cos.� � / cos.� C /;
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and the fundamental theorem of symmetric polynomials. Furthermore, P
˛;ˇ;˙ 1

2

k;n
.u; v/, first studied in [15], are orthogonal polynomials with respect to a weight
function on a domain bounded by a parabola and two straight lines and the weight
function admit Gaussian cubature rules of all degrees [22]. These polynomials
are closely related to the orthogonal polynomials in Vn.W˛;ˇ;� 1

2
/, as shown in the

following proposition established in [30]:

Proposition 1 Let ˛; ˇ > �1. A mutually orthogonal basis for V2m.W˛;ˇ;� 1
2
/ is

given by

1Q
˛;ˇ;˙ 1

2

k;2m .x; y/ WD P
˛;ˇ;˙ 1

2

k;m .2xy; x2 C y2 � 1/; 0 � k � m;

2Q
˛;ˇ;˙ 1

2

k;2m .x; y/ WD .x2 � y2/P
˛C1;ˇC1;˙ 1

2

k;m�1 .2xy; x2 C y2 � 1/; 0 � k � m � 1;
(16)

and a mutually orthogonal basis for V2mC1.W˛;ˇ;˙ 1
2
/ is given by

1Q
˛;ˇ;˙ 1

2

k;2mC1.x; y/ WD.xC y/P
˛;ˇC1;˙ 1

2

k;m .2xy; x2 C y2 � 1/; 0 � k � m;

2Q
˛;ˇ;˙ 1

2

k;2mC1.x; y/ WD.x � y/P
˛C1;ˇ;˙ 1

2

k;m�1 .2xy; x2 C y2 � 1/; 0 � k � m:
(17)

The orthogonal polynomials in (16) of degree 2n are symmetric polynomials
in x and y, and they are invariant under .x; y/ 7! .�x;�y/. Notice, however, that
the product Chebyshev polynomials do not possess such symmetries, even though
W� 1

2 ;� 1
2 ;˙ 1

2
are the Chebyshev weight functions.

We now return to cubature rules and interpolation and state the following
theorem.

Theorem 9 The minimal cubature rules of degree 2n � 1 that attain the lower
bound (5) exist for the weight function W˙ 1

2
when n D 2m. Moreover, the same

holds for the weight function W˛;ˇ;˙ 1
2

when n D 2mC 1.

The orthogonal polynomials whose common zeros are nodes of these cubature
rules, as described in Theorem 4, can be identified explicitly. Let us consider only

W˛;ˇ;� 1
2
. For n D 2m, these polynomials can be chosen as 1Q

˛;ˇ;� 1
2

k;2m , 0 � k � m,

in (16). For n D 2m C 1, they can be chosen as 2Q
˛;ˇ;� 1

2

k;2mC1, 0 � k � m, in (17),
together with one more polynomial

qm.x; y/ D .xC y/
�
p.˛;ˇC1/

m .cos.� � //p.˛C1;ˇ/
m .cos.� C //

Cp.˛;ˇC1/
m .cos.� C //p.˛C1;ˇ/

m .cos.� � //�

in V2mC1.W˛;ˇ;� 1
2
/, as shown in [31]. For n D 2m, the nodes of the minimal cubature

rules for W˛;ˇ;� 1
2

are not as explicit as those for n D 2m. For interpolation, it is often
easier to work with the near minimal cubature rule of degree 2n�1when n D 2mC1,
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whose number of nodes is just one more than the minimal number Nmin in (5). The

nodes of the these near minimal rules are common zeros of 2Q
˛;ˇ;� 1

2

k;2mC1, 0 � k � m,

and a quasi-orthogonal polynomial of the form 1Q
˛;ˇ;� 1

2

k;2mC2� ak;m1Q
˛;ˇ;� 1

2

k;2m , where ak;m

are specific constants [31, Theorem 3.5].
The nodes of these cubature rules can be specified. For ˛; ˇ > �1 and 1 � k �

m, let cos �˛;ˇk;m be the zeros of the Jacobi polynomial P˛;ˇm so that

0 < �
˛;ˇ
1;m < : : : < �˛;ˇm;m < �;

and we also define �˛;ˇ0;m D 0. We further define

s˛;ˇj;k WD cos �j;n��k;n

2
and t˛;ˇj;k WD cos �j;nC�k;n

2
; where �k;n D �˛;ˇk;n :

For n D 2m, the nodes of the minimal cubature rule of degree 2n � 1 consist of

X˛;ˇ2m WD f.s˛;ˇj;k ; t
˛;ˇ
j;k /; .t

˛;ˇ
j;k ; s

˛;ˇ
j;k /; .�s˛;ˇj;k ;�t˛;ˇj;k /; .�t˛;ˇj;k ;�s˛;ˇj;k / W 1 � j � k � mg:

For n D 2mC1, the nodes of the near minimal cubature rule of degree 2n�1 consist
of

X˛;ˇ2mC1 WD f.s˛C1;ˇ
j;k ; t˛C1;ˇ

j;k /;.t˛C1;ˇ
j;k ; s˛C1;ˇ

j;k /; .�s˛C1;ˇ
j;k ;�t˛C1;ˇ

j;k /;

.�t˛C1;ˇ
j;k ;�s˛C1;ˇ

j;k / W 0 � j � k � mg:

The weight function W˛;ˇ;� 1
2

has a singularity at the diagonal y D x of the square

when ˛ ¤ � 1
2
, or at the diagonal y D �x of the square when ˇ ¤ � 1

2
, or at both

diagonals when neither ˛ nor ˇ equal to � 1
2
. This is reflected in the distribution of

the nodes, which are propelled away from these diagonals. Furthermore, for a fixed
m, the points in X2m and X2mC1 will be propelled further away for increasing values
of ˛ and/or ˇ. In Fig. 3 we depict the nodes of the minimal cubature rules of degree
31 for W 1

2 ;
1
2 ;� 1

2
, which has singularity on both diagonals, and for W 1

2 ;� 1
2 ;� 1

2
, which

has singularity at the diagonal y D x. Writing explicitly, these weight functions are

W 1
2 ;
1
2 ;� 1

2
.x; y/ D .x � y/2.xC y/2p

1 � x2
p
1 � y2

and W 1
2 ;� 1

2 ;� 1
2
.x; y/ D .x � y/2p

1 � x2
p
1 � y2

:

We also depicted the curves that bound the region that does not contain any nodes,
which are given in explicit parametric formulas in [31, Proposition 3.6]. The region
without nodes increases in size when ˛ and/or ˇ increase for a fixed m, but they
are getting smaller when m increases while ˛ and ˇ are fixed. These figures can be
compared to those in Fig. 1 for the case ˛ D ˇ D � 1

2
, where the obvious symmetry

in X˛;ˇn is not evident.
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Fig. 3 One hundred forty-four nodes for minimal cubature rule of degree 31 for the weight
functions W 1

2 ;
1
2 ;�

1
2

(left) and W 1
2 ;�

1
2 ;�

1
2

(right)

Let L˛;ˇn f be the interpolation polynomial based on X˛;ˇ2m when n D 2m and on

X˛;ˇ2mC1 when n D 2m C 1, as defined in (7). The asymptotics of the Lebesgue
constants for these interpolation polynomials can be determined [29, 31].

Theorem 10 Let ˛; ˇ � �1=2. The Lebesgue constant of the Lagrange interpola-
tion polynomial L ˛;ˇ

n f satisfies

kL ˛;ˇ
n k1 D O.1/

(
n2maxf˛;ˇgC1; maxf˛; ˇg > �1=2;
.log n/2; maxf˛; ˇg D �1=2: (18)

It should be mentioned that an explicit formula for the kernel K�
n in (8) is known,

so that the interpolation polynomials L˛;ˇn f can be written down in closed form
without solving a large linear system of equations.

5 Minimal Cubature Rules for Constant Weight

The weight functions in the previous two sections contain the Chebyshev weight
functions but do not include the weight functions .1� x2/�.1� y2/� for � ¤ ˙ 1

2
. In

particular, it does not include the constant weight function W.x; y/ D 1.
For these weight functions, it is possible to establish their existence when n

is small. In this section we discuss how these formulas can be constructed. For
cubature rules of degree 2n � 2, we consider the Gaussian cubature rules described
in the item 2 of Theorem 2. For cubature rules of degree 2n�1, we consider minimal
cubature rules that attain the lower bound (5). Both these cases can be characterized
by non-linear system of equations, which may or may not have solutions. We shall
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describe these equations and solve them for the constant weight function for small
n. The known cases for these cubature rules are listed in [5, 6].

Throughout the rest of this section, we shall assume that W.x; y/ D 1. Let Vn be
the space of orthogonal polynomials of degree n with respect to the inner product
hf ; gi D 1

2

R
� f .x; y/g.x; y/dxdy. Then an orthonormal basis of Vn is given by

Pn
k.x; y/ DbPn�k.x/bPk.y/; 0 � k � n;

where bPn D
p
2nC 1Pn and Pn is the classical Legendre polynomial of degree

n. In this case, the coefficients Bn;i in the three-term relations (3) are zero and the
three-term relations take the form

xPn.x; y/ D An;1PnC1.x; y/C At
n�1;1Pn�1.x; y/;

yPn.x; y/ D An;2PnC1.x; y/C At
n�1;2Pn�1.x; y/;

where Pn D .Pn
0; : : : ;P

n
n/

t, An;1 and An;2 are given by

An;1 D

2

6
4

an � 0
: : :

:::

� a0 0

3

7
5 and An;2 D

2

6
4

0 a0 �
:::

: : :

0� an

3

7
5 ;

in which

ak WD kC 1
p
.2kC 1/.2kC 3/ ; k D 0; 1; 2; : : : :

5.1 Minimal Cubature Rules of Degree 2n � 2

By Theorem 2, the nodes of a Gaussian cubature rule of degree 2n � 2, if it exists,
are common zeros of PnC�nPn�1 for some matrix �n of size .nC 1/� n. The latter
is characterized in the following theorem [27].

Theorem 11 The polynomials in Pn C �nPn�1 have n.nC 1/=2 real, distinct zeros
if, and only if, �n satisfies

An�1;1�n D � t
n At

n�1;1; An�1;2�n D � t
n At

n�1;2; (19)

� t
n .A

t
n�1;1An�1;2 � At

n�1;2An�1;1/�n D .An�1;1At
n�1;2 � An�1;2At

n�1;1/: (20)

The equations in (19) imply that �n can be written in terms of a Hankel matrix
Hn D .hiCj/ of size .nC 1/ � n,

� D GnHnGt
n�1; where Gn D diagfgn;0; gn�1;1; : : : ; g1;n�1; g0;ng (21)
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with

gn�k;k D �n�k�k and �k D .2k/Š
p
2kC 1

2kkŠ2
:

Thus, solving the system of equations in Theorem 11 is equivalent to solving (20)
for the Hankel matrix Hn, which is a nonlinear system of equations and its solution
may not exist. Since the matrices in both sides of (20) are skew symmetric, the
nonlinear system consists of n.n� 1/=2 equations and 2n variables. The number of
variables is equal to the number of equations when n D 5.

We found the solution when n D 3; 4; 5, which gives Gaussian cubature rules
of degree 4; 6; 8. These cases are known in the literature, see the list in [5]. In the
case n D 3 and n D 4, we were able to solve the system analytically instead of
numerically. For n D 3, the matrix H3 takes the form

H3 D 4

27
p
7

2

6
6
4

� 11
25
0 1

0 1 0

1 0 2
5

0 2
5
0

3

7
7
5 :

The case H4 is too cumbersome to write down. In the case n D 5, the system is
solved numerically, which has multiple solutions but essentially one up to symmetry.
This solution, however, has one common zero (or node of the Gaussian cubature rule
of degree 8) that lies outside of the square, which agrees with the list in [6].

Solving the system for n > 5 numerically yields no solution. It is tempting to
proclaim that the Gaussian cubature rules of degree 2n � 2 for the constant weight
function on the square do not exist for n � 6, but a proof is still needed.

5.2 Minimal Cubature Rules of Degree 2n � 1

Here we consider minimal cubature rules of degree 2n � 1 that attain the lower
bound (5). By Theorem 4, the nodes of such a cubature rule are common zeros of
.nC 1/� bn=2cmany orthogonal polynomials of degree n, which can be written as
the elements of Ut

Pn, where U is a matrix of size .nC 1/� .nC 1� bn=2c/ and U
has full rank.

Theorem 12 There exist .nC 1/ � bn=2c many orthogonal polynomials of degree
n, written as Ut

Pn, that have n.nC1/Cb n
2
c real, distinct common zeros if, and only

if, U satisfies UtV D 0 for a matrix V of size .nC 1/ � b n
2
c that satisfies

An�1;1.VV t � I/At
n�1;2 D An�1;2.VV t � I/At

n�1;2; (22)

VV t.At
n�1;1An�1;2 � At

n�1;2An�1;1/VV t D 0; (23)
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where I denotes the identity matrix.

The Eq. (22) implies that the matrix VV t can be written in terms of a Hankel matrix
Hn of size .nC 1/ � .nC 1/,

VV t D I C GnHnGt
n WD W;

where Gn is defined as in (21). Thus, to find the matrix V we need to solve (23) for
Hn and make sure that the matrix W is nonnegative definite and has rank b n

2
c, so

that it can be factored as VV t. The non-linear system (23) consists of n.n C 1/=2
equations and has 2nC 1 variables, which may not have a solution.

Comparing with the Gaussian cubature rules of even degree in the previous
subsection, however, the situation here is more complicated. We not only need to
solve (23), similar to solving (20), for Hn, we also have to make sure that the
resulting W is non-negative definite and has rank b n

2
c, which poses an additional

constraint that is not so easy to verify.
We found the solutions when n D 3; 4; 5 and 6, which gives minimal cubature

rules of degree 5; 7; 9; 11. These cases are all known in the literature, see the list in
[5] and the references therein. In the case of n D 4, there are multiple solutions;
for example, one solution has all 12 points inside the square and another one has 2
points outside. In the case n D 3; 4; 5, we were able to solve the system analytically
instead of numerically. We give Hankel matrices Hn for those cases that have all
nodes of the minimal cubature rules inside the square:

H3 D 4

135

2

6
6
4

� 8
35
0 1 0

0 1 0 0

1 0 0 0

0 0 0 4
35

3

7
7
5 ; H4 D 44

14385

2

6
6
6
6
6
4

94
231

1 1 1 � 82
55

1 1 1 � 82
55

1

1 1 � 82
55

1 1

1 � 82
55

1 1 1

� 82
55

1 1 1 94
231

3

7
7
7
7
7
5
;

and

H5 D 96

77875

2

6
6
66
6
6
6
66
6
6
6
66
4

1151
2079

10
p
86

189
� 31
86
� 1
9

q
43
2

1 0

10
p
86

189
� 31
86
� 1
9

q
43
2

1 0 1

� 31
86
� 1
9

q
43
2

1 0 1 1
9

q
43
2

� 1
9

q
43
2

1 0 1 1
9

q
43
2
� 31
86

1 0 1 1
9

q
43
2
� 31
86
� 10

p
86

189

0 1 1
9

q
43
2
� 31
86
� 10

p
86

189
1151
2079

3

7
7
77
7
7
7
77
7
7
7
77
5

:

Once Hn is found, it is easy to verify that W satisfies the desired rank condition and
is non-negative definite. We can then find U, or the set of orthogonal polynomials,
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and then find common zeros. For example, when n D 5, we have 4 orthogonal
polynomials of degree 5 given by

Q1.x; y/ D10
p
86

189
P50.x; y/C

1081
p
11

2835
p
3

P51.x; y/C P55.x; y/;

Q2.x; y/ D 205

21
p
33

P50.x; y/C
10
p
86

189
P51.x; y/C P54.x; y/;

Q3.x; y/ D� 5
p
438

27
p
77

P50.x; y/C
62
p
5

81
p
21

P51.x; y/C P53.x; y/;

Q4.x; y/ D� 10
p
5

3
p
77

P50.x; y/�
p
430

9
p
21

P51.x; y/C P52.x; y/;

which has 17 real common zeros inside the square. Only numerical results are
known for the case n D 6. We also tried the case n D 7, but found no solution
numerically.
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