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Abstract. Analysis of various card-shuffles – finding its mixing-time
is an old mathematical problem. The results show that e.g., it takes
O(log n) riffle-shuffles (Aldous and Diaconis, American Mathematical
Monthly, 1986) to shuffle a deck of n cards while one needs to perform
Θ(n log n) steps via cyclic to random shuffle (Mossel et al., FOCS, 2004).

Algorithms for generating pseudo-random permutations play a major
role in cryptography. Oblivious card shuffles can be seen as block ciphers
(and e.g., may be used for format-preserving encryption) while non-
oblivious card shuffles often are a building block for cryptographic prim-
itives (e.g., Spritz, RC4).

Unfortunately, all results about the mixing times of card shuffling algo-
rithms are in the black-box model. The model does not capture real-world
capabilities of adversaries who may be able to e.g., obtain some infor-
mation about the randomness used during the shuffling. In this paper
we investigate the impact on the mixing time of the riffle shuffle by an
adversary who is able to eavesdrop some portion of the random bits used
by the process. More precisely: assuming that each bit of the randomness
leaks independently with probability p we show that whenever RiffleSST
performs r = log 2

2−(1−p)2

(
n
2

)
+ log 2

2−(1−p)2

(
1

εn!

)
steps, it cannot be dis-

tinguished from a permutation selected uniformly at random with the
advantage larger than ε.
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1 Introduction

1.1 Card Shuffling and Cryptography

Shuffling procedures (or card shuffles) are used as cryptographic building blocks.
A card shuffle as a way to obtain a permutation can be seen as a block cipher.
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Due to efficiency reasons, only oblivious card shuffles are good candidates for
block ciphers (e.g., [14]). Non-oblivious card shuffles need to be used differ-
ently (e.g., as a key scheduling algorithm [13]). But card shuffles may also
help to design/describe higher-level systems e.g., ones which goal is to achieve
anonymity like: Private Information Retrieval schemes [10,22] or mixing with
application to voting [7,9].

Oblivious Shuffles. The applicability of oblivious card shuffles to cryptography
was noticed many years ago by e.g., Naor and Reingold [16] for Thorp shuffle.
Oblivious shuffles can be seen as block ciphers: suppose that a deck has n = 2l

cards then the message space and the ciphertext space is equal to the set of all
binary strings of length l. Randomness used by the process corresponds to the
trajectory of a given card, and one does not need to trace trajectories of other
cards. This point of view led to the proposals [8,14,15,17] (useful for e.g., format
preserving encryption schemes) with provable properties in the black-box model
(meaning that an adversary has only access to inputs and output of the shuffling
algorithm like in CPA-experiment [chosen-plaintext attack]).

Non-oblivious Shuffles. In non-oblivious shuffles one needs to trace a trajec-
tory of every of the n cards to be able to tell what is the final position of a single
card. Because of that non-oblivious shuffles are used as building blocks of cryp-
tographic schemes (in e.g., [12], and especially as Key Scheduling Algorithms in
e.g., RC4, Spritz [18], etc.) rather than being used as encryption schemes.

Then the security of a cryptographic scheme which uses some card shuffling
as a building block depends on the quality of the shuffle. This can be measured
by how a given shuffling is close to the uniform distribution (over all possible
permutations). This depends on:

1. the rate of convergence to the stationary distribution (depends on the shuffling
algorithm itself);

2. the number of steps made by the algorithm. (In particular we are interested
in the number of steps needed so that the distribution of the chain at the
given step is close to uniform one.)

One of the weaknesses found in RC4 is that its Key Scheduling Algorithm (KSA)
makes only n steps while the rate of convergence is O(n log n) [11,13].

1.2 Leakage

Classically, in (black-box) cryptography, the security definitions assume that
an attacker can have only access to inputs and outputs of a cryptographic
scheme – for instance, for encryption one considers CPA-security (Chosen Plain-
text Attack) or CCA-security (Chosen Cipertext Attack). These definitions
assume that no information about the secret-key (or some internal computa-
tions) is leaked. In reality however, a device (or particular scheme or protocol
implementation) may expose to an adversary lots of additional information, an
adversary may measure all kinds of side-channels e.g., electromagnetic [6], acous-
tic [5] etc. One of the most powerful kind of side-channel attacks are timing
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attacks (because an adversary may perform them remotely), see [1,21]; or the
combination of techniques [23].

Practice shows that an adversary may obtain some direct information about
the secret key: assume that b = (b1, . . . , bt) bits of key (or of a function of key) are
used in a given round of the algorithm. Then the Hamming weight HW (b) =∑t

i=1 bi can leak. More precisely Hamming weight with some Gaussian noise
leaking was considered e.g., in [19–21].

1.3 Our Contribution

In this paper we consider the model where each bit bi of the randomness used
by the shuffling algorithm leaks independently with some prescribed probability
p ∈ [0, 1). We analyze a single run of the Riffle Shuffle and our goal is to find
the number of rounds the algorithm needs to make in order not to reveal any
information about the resulting permutation (in the presence of an eavesdropping
adversary).

We analyze a non-oblivious shuffling algorithm called RiffleSST that is leak-
age resilient. We show that even if an adversary A learns each bit of the key K
with probability p (knowledge of bits of the key are denoted by Λp(K)) it cannot
tell much about the resulting permutation. Putting this in other words: even if
an adversary knows some bits of the key Λp(K), it cannot distinguish the permu-
tation produced by r rounds of the RiffleSST algorithm from the permutation
sampled from the uniform distribution with probability better than ε.

The contribution of this paper is the first analysis of a card shuffle
algorithm in the presence of a randomness-eavesdropper. The result is formu-
lated as Theorem 1.

Theorem 1. Let A be an adversary. Let K ∈ {0, 1}rn be a secret key. Let
Λp(K) be the random variable representing the leakage of the key such that A
learns each bit of the key independently at random with probability p. Let Sr,n(K)
be RiffleSST shuffle of n cards which runs for

r = log 2
2−(1−p)2

(
n

2

)

+ log 2
2−(1−p)2

(
1

εn!

)

steps with 0 < ε < 1/n!, then
∣
∣
∣
∣ Pr
K←{0,1}rn

[A(Λp,r,Sr,n(K)) = 1] − Pr
R←U(Sn)

[A(Λp,r, R) = 1]
∣
∣
∣
∣ ≤ ε.

2 Preliminary

2.1 Security Definition

In the rest of the paper, let Sn denote a set of all permutations of a set
{1, . . . , n} =: [n].
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We would like to model an adversary whose goal is to distinguish a permu-
tation which is a result of PRPG algorithm from a permutation sampled from
uniform distribution.

PRPG Algorithm. The PRPG algorithm starts with identity permutation of n
elements π0. In each round PRPG has access to a portion of n bits of the key
stream (i.e., in round l reads a portion of the key: Kl ∈ {0, 1}n).

Leakage. We consider adversaries A which in the lth round can learn a fraction
p of Kl, namely Λp,l(K) = fl,p(Kl), where a function fl,p has range {∗,�}n. More
precisely, fl,p = a1a2 . . . an where ai ∈ {∗,�}. If ai = � then the adversary sees
the corresponding bit of the key stream (learns Kl,i) and if ai = ∗ then the
adversary does not learn the bit at position i.

Example 1 (Adversary view). Let K3 = 101110 and f3 = 110100 = �� ∗ � ∗ ∗
then adversary’s view is: Λ3 = 1 0 ∗ 1 ∗ ∗. Which means that the adversary
learns that K3,1 = 1,K3,2 = 0,K3,4 = 1.

We restrict our analysis only to the adversaries for which each bit can be
eavesdropped independently with probability p, i.e., 1 − P (ai = ∗) = P (ai =
�) = p. This means that number of leaking bit has Bin(n, p) distribution in
each round (np bits are leaking in each round on average).

Let viewr denote the view of the adversary at the end of the algorithm:

viewr,p(K) = [Λ1,p, . . . , Λr,p].

The distinguishability game for the adversary is as follows:

Definition 1. The LEAK indistinguishability experiment ShuffleLEAKS,A (n, p, r):

1. S is initialized with:
(a) a key generated uniformly at random K ∼ U({0, 1}rn),
(b) S0 = π0 (identity permutation).

2. S is run for r rounds: Sr := S(K) and produces a permutation πr.
3. Adversary obtains leaked bits of the key viewr,p(K).
4. We set:

• c0 := πrand a random permutation from uniform distribution is chosen,
• c1 := πr.

5. A challenge bit b ∈ {0, 1} is chosen at random, permutation cb is sent to the
Adversary.

6. Adversary replies with b′.
7. The output of the experiment is defined to be 1 if b′ = b, and 0 otherwise.

In the case when adversary wins the game (if b = b′) we say that A succeeded.
Adversary wins the game if she can distinguish the random permutation from
the permutation being a result of the PRPG algorithm based on the leakage she
saw.
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Definition 2. A shuffling algorithm S generates indistinguishable permutations
in the presence of leakage if for all adversaries A there exists a negligible function
negl such that

Pr
[
ShuffleLEAKS,A (n, p, r) = 1

]
≤ 1

2
+ negl(n),

The above translates into:

Definition 3. A shuffling algorithm S generates indistinguishable permutations
in the presence of leakage if for all adversaries A there exists a negligible function
negl such that

∣
∣
∣
∣

Pr

K←{0,1}keyLen
[A(Λr,S(K)) = 1] − Pr

R←U(Sn)
[A(Λr, R) = 1]

∣
∣
∣
∣ ≤ negl(n).

2.2 Markov Chains and Rate of Convergence

Consider ergodicMarkov chain {Xk, k ≥ 0} on finite state spaceE={0, . . . ,M−1}
with stationary distribution ψ. Let L(Xk) denote the distribution of a chain at
time k. Stating some results about the rate of convergence of a chain to its station-
ary distribution means having some knowledge on some distance dist (or a bound
on it) between L(Xk) and ψ. By mixing time we mean the value of k making dist
small, since it depends on the measure of the distance we define it as

τdist
mix(ε) = inf{k : dist(L(Xk), ψ) ≤ ε}.

In our applications the state space is a set of permutations of [n], i.e., E := Sn

(thus |E| = n!) and stationary distribution is a uniform one on E (we denote
ψ = U(E)).

Typically in literature the mixing time is defined for dist being total variation
distance, i.e.,

dTV (L(Xk),U(E)) =
1
2

∑

σ∈Sn

|Pr(Xk = σ) − Pr(ψ = σ)| ,

which in our case is equivalent to:

dTV (L(Xk),U(E)) =
1
2

∑

σ∈Sn

∣
∣
∣
∣Pr(Xk = σ) − 1

n!

∣
∣
∣
∣ .

Note however that knowing that dTV is small for some k does not imply that∣
∣Pr(Xk = σ) − 1

n!

∣
∣ are “uniformly” small, i.e., that it is of order 1/n!. This

is very important observation, since it means that τdTV
mix (ε) is not an adequate

measure of mixing time for our applications (i.e., indistinguishability given in
Definition 2). Instead we consider so-called separation distance defined by

sep(L(Xk),U(E)) := max
σ∈E

(

1 − Pr(Xk = σ)
Pr(ψ = σ)

)
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which is:

sep(L(Xk),U(E)) := max
σ∈E

(1 − n! · Pr(Xk = σ))

If sep(L(Xk),U(E)) ≤ ε for some k (i.e., we know τsep
mix(ε)), then

∣
∣
∣
∣Pr(Xk = σ) − 1

n!

∣
∣
∣
∣ ≤ ε

n!
, (1)

what will be crucial for showing our results.

Strong Stationary Times. The definition of separation distance fits perfectly
into notion of Strong Stationary Time (SST) for Markov chains. This is a prob-
abilistic tool for studying the rate of convergence of Markov chains.

Definition 4. Random variable T is Strong Stationary Time (SST) if it is
randomized stopping time for chain {Xk, k ≥ 0} such that:

∀(i ∈ E) Pr(Xk = i|T = k) = ψ(i).

Having SST T for chain with uniform stationary distribution lets us bound
the separation distance (cf. [3])

sep(L(Xk),U(E)) ≤ Pr(T > k). (2)

We say that T is an optimal SST if sep(L(Xk),U(E)) = Pr(T > k).

Remark. It is easy to show that separation distance is an upper bound on total
variation distance, i.e. that dTV (L(Xk),U(E)) ≤ sep(L(Xk),U(E)).

3 RiffleSST– Leakage Resilient Shuffle

3.1 General Pseudo-random Permutation
Generator

Fig. 1. General pseudo-
random permutation gen-
erator (PRPG)

We also model some leakage of information (to be spec-
ified later). We identify elements of [n] with cards. We
consider the following general pseudo-random permu-
tation generator (PRPG) for generating a permutation
of [n]. Initially we start with identity permutation π0.
At each round (step) we perform procedure Shuffle
which takes the current permutation S and uses some
“randomness” (based on secret key K) and updates
the permutation. After r rounds the permutation is
denoted by πr. The algorithm stops depending on some
stopping rule represented by procedure StoppingRule
(Fig. 1).
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3.2 Description of RiffleSST Algorithm

Roughly speaking, it uses card shuffling scheme corresponding to time reversal
of Riffle Shuffle (see [4]).

Fig. 2. Leakage resilient shuffle RiffleSST algo-
rithm.

We do not specify here the
details of get bits, this should
be a procedure which returns n
bits from key K, can depend on
current round number r, current
permutation π, etc. (Fig. 2).

RiffleShuffle procedure
performs the following: for given
permutation of cards π ∈ Sn and
given Bits[i], i = 1, . . . , n (think
of assigning bit Bits[i] to card on
position i) we put all the cards
with assigned bit 0 to the top keeping their relative ordering. Sample execution
is given in Fig. 4: For example, for initial permutation (1, 2, 3, 4, 5, 6) we assign
bit 0 to cards 1, 2 and 4, whereas we assign bit 1 to cards 3, 5 and 6. Thus, the
resulting permutation is (1, 2, 4, 3, 5, 6).

procedure RiffleShuffle

Input permutation π, round r, Bits (of length n)
Output updated permutation π

s0:=1
s1:=sum(Bits)
tmp=vector(n)
for i := 0 to n − 1 do

card=S[i]
if(Bits[i]=1) do tmp[s1]=card; s1=s1+1
else tmp[s0]=card; s0=s0+1
end if

end for
π:=tmp

end procedure

Leakage Model. We assume that at each step and at each position i (indepen-
dently) a value of Bit[i] is leaking with probability p. Function bits leakage(p, n)
generates n dimensional vector of zeros and ones. We assume that each coor-
dinate is chosen independently being 1 with probability p and 0 with the
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remaining probability. Note that the number of leaking bits has Bin(n, p) dis-
tribution, thus on average np bits are leaking. The leakage is modeled by
get bits leakage indep procedure (here unif(0, 1) denotes a random variable
uniformly distributed on [0, 1]).

procedure get bits leakage indep

Input n, p
Output vector leak of n bits
for j = 1 to n do

leak(j) =1{unif(0, 1) < p}
end forreturn leak

end procedure

We simply run the algorithm for pre-defined number of steps expressed by
procedure StoppingRuleRiffle.

procedure StoppingRuleRiffle

Input n, p (leakage level), ε
Output {YES,NO}

if r < log 2
2−(1−p)2

(
n
2

)
+ log 2

2−(1−p)2

(
1

εn!

)
then return NO

else return YES

end if
end procedure

4 Proofs

As already mentioned, assuming random keys, the algorithm can be regarded as
(time reversal of) Riffle Shuffle scheme. The idea is similar to approach presented
in [13], following author’s notation we will call a version of the algorithm with
random keys as idealized one. Showing that after the execution of the algorithm
the adversary has no non-negligible knowledge (in both, leakage and no-leakage
version) corresponds to showing that after shuffling cards as many times as the
number of steps of the algorithm, the resulting permutation is close to uniform
one. In other words, proving the theorem reduces to studying the rate of conver-
gence of corresponding Markov chains. However, the typical bounds on the rate
of convergence involving total variation distance do not imply that the shuffling
algorithm generates permutation which is indistinguishable from random permu-
tation according to Definition 2. That is why we focus on bounds for separation
distance what is achieved by using Strong Stationary Times technique.
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Fig. 3. Idealized version of leakage resilient shuf-
fle RiffleSST

Consider the idealized version
of RiffleSST (call it RiffleSST∗)
which is defined by the specifica-
tion from Fig. 4. Roughly speak-
ing, there are two differences
compared to RiffleSST: (i) in
each round we take new n ran-
dom bits. (ii) instead of running
it pre-defined number of steps, we
use StoppingRuleRifflePairs
as stopping rule. The stopping
rule works as follows: Initially we
set all

(
n
2

)
pairs (i, j), i, j = 1, . . . , i < j as not-marked. (This can be simply rep-

resented as
(
n
2

)
-dimensional vector with all entries set to 0). Given the current

permutation π ∈ Sn and Bits[i], Bits leak[i], i = 1, . . . , n we mark the pair (i, j)
(or equivalently, we say that pair (i, j) is updated) if (Bits[i]⊕Bits[j] = 1) and
(Bits leak[i]∨Bits leak[j] = 0) (i.e., cards S[i] and S[j] were assigned different
bits and none is leaking). Formally, this is given in StoppingRuleRifflePairs
procedure (Fig. 3).

procedure StoppingRuleRifflePairs

Input set of already updated pairs(i, j), i < j, Bits, Bits leak
Output {YES,NO}

for each pair (i, j) do
if (Bits[i] ⊕ Bits[j] = 1) and (Bits leak[i] = Bits leak[j] = 0) then

mark pair (i, j)
end if

end for
if all

(
n
2

)
pairs are marked then return YES

elsereturn NO

end if
end procedure

The main ingredients of the proof of Theorem1 are the following Lemma 1 and
Theorem 2.

Lemma 1. The resulting permutation of RiffleSST∗ has a uniform distribution
over Sn.

Proof (of Lemma 1). For leakage level p = 0 the procedure RiffleSST∗ is exactly
the Markov chain corresponding to time-reversed Riffle Shuffle card shuffling. At
each step we consider all

(
n
2

)
pairs (i, j) and we “mark” each pair if either card

i was assigned 0 and card j was assigned 1, or vice-versa. Since these two events
have equal probability, thus relative ordering of these two cards is random at
such step. Let T be the first time all pairs are “marked”. Then all the pairs are in
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relative random order and thus the permutation is also random. In other words,
the distribution of Xk given T = k is uniform. This means that the running time
T of the algorithm is a Strong Stationary Time for riffle shuffle procedure and
the distribution of the chain at time T is uniform.

Note that we exchangeably use the term “mixed” and “updated”.
For general p ∈ [0, 1) the situation is not much different: We update only

pairs which are assigned different bits and such that both cards are not leaking.
Thus, once the pair is updated it means that it is in random relative order and
adversary has no knowledge about this order. After updating all the pairs she
has no knowledge about relative order of all the pairs, thus, from her perspec-
tive, resulting permutation is random. We note that the knowledge about the
permutation can already “vanish” earlier (i.e., before updating all the pairs),
but it is for sure that time till updating all the pairs is enough.

Note that the no leakage version (i.e., when p = 0) of the algorithm can be
written in a more compact way (similarly as in [4], the pairs are not involved
there directly), however this notation lets us relatively easy extend the algorithm
into a leakage resilient version.

Theorem 2. Let {Xk}k≥0 be the chain corresponding to RiffleSST∗. The mixing
time τsep

mix of the chain is given by

τsep
mix(ε) ≤ log 2

2−(1−p)2

(
n

2

)

+ log 2
2−(1−p)2

(
ε−1

)
.

Proof (of Theorem 2). In Lemma 1 we showed that T := infk{Xk = 0} (i.e., first
moment when all pairs are updated) is an SST.

Let Tij be the first time when cards i and j are updated. In one step, the
probability that given pair will not be updated is 1 − 1

2 (1 − p)2 = 2−(1−p)2

2 .
We have

Pr(T > k) = Pr

⎛

⎝
⋃

1≤i<j≤n

{Tij > k}
⎞

⎠ ≤
∑

1≤i<j≤n

Pr(Tij > k)

=
∑

1≤i<j≤n

(
1 − (1 − p)2 · 1

2

)k =
(

n

2

)(
2 − (1 − p)2

2

)k

.

For k = log 2
2−(1−p)2

(
n
2

)
+ log 2

2−(1−p)2

(
ε−1

)
we have Pr(T > k) ≤ ε, using (2)

finishes the proof.

In Theorem 1 we perform RiffleSST for r = τsep
mix(εn!) steps, what means

that separation distance is less or equal to εn!. From (1) we thus have that∣
∣Pr(Xr = σ) − 1

n!

∣
∣ ≤ ε for any permutation σ. This together with Lemma 1 and

Theorem 2 completes the proof of Theorem 2.

Remark 1. Note that if we replace τsep
mix with τdTV

mix in Theorem 2, we could not
conclude Theorem 1. This is because knowing that separation distance is smaller
than ε is much stronger than knowing that total variation distance is smaller
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than ε, in particular (1) holds. (Note that typically, e.g., coupling methods pro-
vide directly bounds on total variation distance). However, knowing that total
dTV (L(Xk),U(E)) ≤ ε implies (under some mild conditions - see Theorem 7
in [2]) that sep(L(X2k),U(E)) ≤ ε what means that twice as many steps would
be needed to achieve security claimed in Theorem 1.

5 Sample Execution of RiffleSST Algorithm

In Fig. 4 the sample execution with and without leakage is presented. At each
step, the left column represents the current permutation, whereas the right one
currently assigned bits. The leaking bits are represented by red-shaded boxes.
In Fig. 5 updated pairs for leakage and no leakage versions are given.

For example:

• No leakage version: At step 3. the current permutation is (1, 4, 6, 2, 3, 5) and
assigned bits are Bits = (1, 0, 1, 1, 1, 0). Thus, e.g., card on position 1 (1) and

Fig. 4. Sample execution of our PRPG RiffleSST∗ algorithm for n = 6. Current
permutation at each step is the left column (grayed) whereas right column are the
chosen bits. Red shaded bits are leaking. (Color figure online)

Fig. 5. Pairs “mixed” at each step of execution of PRPG given in Fig. 4. New pairs
are bolded. The idealized algorithm (both, in non leakage and leakage version) stops
when

(
6
2

)
= 15 pairs are mixed.
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card on position 2 (4) have different bits assigned (respectively 1 and 0), thus
this pair (1,4) is updated (it is bolded since it is first step when different bits
were assigned for this pair).

• Leakage version: At the same step 3. bits assigned to cards 1, 4 and 2 are
leaking. Thus all the pairs involving any of these cards are not considered,
what results only in updating pairs (3,5), (5,6).

6 Conclusions

We presented the first analysis of the rate of convergence of the riffle-shuffle in the
presence of leakage. We proved that no adversary can distinguish permutations
produced by the RiffleSST (after enough number of steps – Theorem1) from
permutations sampled from uniform distribution.

Fig. 6. Comparison of the expected
number of rounds for n = 256
and Riffle-Shuffle (without leakage –
orange) and RiffleSST with the leak-
age level p – blue. (Color figure
online)

Open Problems. Since the number of per-
mutations is of [n] is n! the entropy of the
uniform distribution on [n] is O(n log n). The
time-reversed riffle-shuffle is optimal (up to a
constant factor) shuffle since its mixing-time
is O(log n) and each round consumes n bits
of randomness, so in total O(n log n) bits are
used. In case of no leakage (p = 0) the mix-
ing time of RiffleSST ∗ - by Theorem 2 - is
O(n log n) and thus is optimal (Fig. 6).

Question: Is RiffleSST∗ optimal in the
presence of leakage with rate p > 0?
More precisely, can we use fewer bits than
O

(
n log 2

1−(1−p)2
n
)

bits to achieve the secu-
rity claimed in Theorem 1?
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