Leakage-Resilient Riffle Shuffle

Paweł Lorek², Michał Kulis¹, and Filip Zagórski^{1(⊠)}

Department of Computer Science, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wrocław, Poland filip.zagorski@pwr.edu.pl

Faculty of Mathematics and Computer Science, Mathematical Institute, Wrocław University, Wrocław, Poland

Abstract. Analysis of various card-shuffles – finding its mixing-time is an old mathematical problem. The results show that e.g., it takes $\mathcal{O}(\log n)$ riffle-shuffles (Aldous and Diaconis, American Mathematical Monthly, 1986) to shuffle a deck of n cards while one needs to perform $\Theta(n \log n)$ steps via cyclic to random shuffle (Mossel et al., FOCS, 2004).

Algorithms for generating pseudo-random permutations play a major role in cryptography. *Oblivious* card shuffles can be seen as block ciphers (and e.g., may be used for format-preserving encryption) while non-oblivious card shuffles often are a building block for cryptographic primitives (e.g., Spritz, RC4).

Unfortunately, all results about the mixing times of card shuffling algorithms are in the black-box model. The model does not capture real-world capabilities of adversaries who may be able to e.g., obtain some information about the randomness used during the shuffling. In this paper we investigate the impact on the mixing time of the riffle shuffle by an adversary who is able to eavesdrop some portion of the random bits used by the process. More precisely: assuming that each bit of the randomness leaks independently with probability p we show that whenever RiffleSST performs $r = \log_{\frac{2}{2-(1-p)^2}}\binom{n}{2} + \log_{\frac{2}{2-(1-p)^2}}(\frac{1}{\varepsilon n!})$ steps, it cannot be distinguished from a permutation selected uniformly at random with the advantage larger than ε .

Keywords: Leakage resilience

Pseudo-random permutation generator \cdot Markov chains \cdot Mixing time Card shuffle \cdot Riffle Shuffle \cdot Stream cipher \cdot Distinguisher

1 Introduction

1.1 Card Shuffling and Cryptography

Shuffling procedures (or card shuffles) are used as cryptographic building blocks. A card shuffle as a way to obtain a permutation can be seen as a block cipher.

Authors were supported by Polish National Science Centre contract number DEC-2013/10/E/ST1/00359.

[©] Springer International Publishing AG 2017

J. Blömer et al. (Eds.): MACIS 2017, LNCS 10693, pp. 395-408, 2017.

Due to efficiency reasons, only *oblivious* card shuffles are good candidates for block ciphers (e.g., [14]). *Non-oblivious* card shuffles need to be used differently (e.g., as a key scheduling algorithm [13]). But card shuffles may also help to design/describe higher-level systems e.g., ones which goal is to achieve anonymity like: Private Information Retrieval schemes [10,22] or mixing with application to voting [7,9].

Oblivious Shuffles. The applicability of oblivious card shuffles to cryptography was noticed many years ago by e.g., Naor and Reingold [16] for Thorp shuffle. Oblivious shuffles can be seen as block ciphers: suppose that a deck has $n=2^l$ cards then the message space and the ciphertext space is equal to the set of all binary strings of length l. Randomness used by the process corresponds to the trajectory of a given card, and one does not need to trace trajectories of other cards. This point of view led to the proposals [8,14,15,17] (useful for e.g., format preserving encryption schemes) with provable properties in the black-box model (meaning that an adversary has only access to inputs and output of the shuffling algorithm like in CPA-experiment [chosen-plaintext attack]).

Non-oblivious Shuffles. In *non-oblivious* shuffles one needs to trace a trajectory of every of the n cards to be able to tell what is the final position of a single card. Because of that non-oblivious shuffles are used as building blocks of cryptographic schemes (in e.g., [12], and especially as Key Scheduling Algorithms in e.g., RC4, Spritz [18], etc.) rather than being used as encryption schemes.

Then the security of a cryptographic scheme which uses some card shuffling as a building block depends on the quality of the shuffle. This can be measured by how a given shuffling is close to the uniform distribution (over all possible permutations). This depends on:

- 1. the rate of convergence to the stationary distribution (depends on the shuffling algorithm itself);
- 2. the number of steps made by the algorithm. (In particular we are interested in the number of steps needed so that the distribution of the chain at the given step is close to uniform one.)

One of the weaknesses found in RC4 is that its Key Scheduling Algorithm (KSA) makes only n steps while the rate of convergence is $O(n \log n)$ [11,13].

1.2 Leakage

Classically, in (black-box) cryptography, the security definitions assume that an attacker can have only access to inputs and outputs of a cryptographic scheme – for instance, for encryption one considers CPA-security (Chosen Plaintext Attack) or CCA-security (Chosen Cipertext Attack). These definitions assume that no information about the secret-key (or some internal computations) is leaked. In reality however, a device (or particular scheme or protocol implementation) may expose to an adversary lots of additional information, an adversary may measure all kinds of side-channels e.g., electromagnetic [6], acoustic [5] etc. One of the most powerful kind of side-channel attacks are timing

attacks (because an adversary may perform them remotely), see [1,21]; or the combination of techniques [23].

Practice shows that an adversary may obtain some direct information about the secret key: assume that $\mathbf{b} = (b_1, \dots, b_t)$ bits of key (or of a function of key) are used in a given round of the algorithm. Then the Hamming weight $HW(\mathbf{b}) = \sum_{i=1}^{t} b_i$ can leak. More precisely Hamming weight with some Gaussian noise leaking was considered *e.g.*, in [19–21].

1.3 Our Contribution

In this paper we consider the model where each bit b_i of the randomness used by the shuffling algorithm leaks independently with some prescribed probability $p \in [0,1)$. We analyze a single run of the Riffle Shuffle and our goal is to find the number of rounds the algorithm needs to make in order not to reveal any information about the resulting permutation (in the presence of an eavesdropping adversary).

We analyze a non-oblivious shuffling algorithm called RiffleSST that is leakage resilient. We show that even if an adversary \mathcal{A} learns each bit of the key K with probability p (knowledge of bits of the key are denoted by $\Lambda_p(K)$) it cannot tell much about the resulting permutation. Putting this in other words: even if an adversary knows some bits of the key $\Lambda_p(K)$, it cannot distinguish the permutation produced by r rounds of the RiffleSST algorithm from the permutation sampled from the uniform distribution with probability better than ε .

The contribution of this paper is the first analysis of a card shuffle algorithm in the presence of a randomness-eavesdropper. The result is formulated as Theorem 1.

Theorem 1. Let A be an adversary. Let $K \in \{0,1\}^{rn}$ be a secret key. Let $\Lambda_p(K)$ be the random variable representing the leakage of the key such that A learns each bit of the key independently at random with probability p. Let $S_{r,n}(K)$ be RiffleSST shuffle of n cards which runs for

$$r = \log_{\frac{2}{2-(1-p)^2}} \binom{n}{2} + \log_{\frac{2}{2-(1-p)^2}} \left(\frac{1}{\varepsilon n!}\right)$$

steps with $0 < \varepsilon < 1/n!$, then

$$\left| \Pr_{K \leftarrow \{0,1\}^{rn}} \left[\mathcal{A}(\Lambda_{p,r}, \mathcal{S}_{r,n}(K)) = 1 \right] - \Pr_{R \leftarrow \mathcal{U}(\mathcal{S}_n)} \left[\mathcal{A}(\Lambda_{p,r}, R) = 1 \right] \right| \leq \varepsilon.$$

2 Preliminary

2.1 Security Definition

In the rest of the paper, let S_n denote a set of all permutations of a set $\{1, \ldots, n\} =: [n]$.

We would like to model an adversary whose goal is to distinguish a permutation which is a result of PRPG algorithm from a permutation sampled from uniform distribution.

PRPG Algorithm. The PRPG algorithm starts with identity permutation of n elements π_0 . In each round PRPG has access to a portion of n bits of the key stream (i.e., in round l reads a portion of the key: $\mathcal{K}_l \in \{0,1\}^n$).

Leakage. We consider adversaries \mathcal{A} which in the lth round can learn a fraction p of \mathcal{K}_l , namely $\Lambda_{p,l}(\mathcal{K}) = f_{l,p}(\mathcal{K}_l)$, where a function $f_{l,p}$ has range $\{*, \square\}^n$. More precisely, $f_{l,p} = a_1 a_2 \dots a_n$ where $a_i \in \{*, \square\}$. If $a_i = \square$ then the adversary sees the corresponding bit of the key stream (learns $\mathcal{K}_{l,i}$) and if $a_i = *$ then the adversary does not learn the bit at position i.

Example 1 (Adversary view). Let $\mathcal{K}_3 = 101110$ and $f_3 = 110100 = \square\square *\square **$ then adversary's view is: $\Lambda_3 = \boxed{1} \boxed{0} *\boxed{1} **$. Which means that the adversary learns that $\mathcal{K}_{3,1} = 1, \mathcal{K}_{3,2} = 0, \mathcal{K}_{3,4} = 1$.

We restrict our analysis only to the adversaries for which each bit can be eavesdropped independently with probability p, *i.e.*, $1 - P(a_i = *) = P(a_i = \square) = p$. This means that number of leaking bit has Bin(n, p) distribution in each round (np) bits are leaking in each round on average).

Let $view_r$ denote the view of the adversary at the end of the algorithm:

$$\mathrm{view}_{r,p}(\mathcal{K}) = [\Lambda_{1,p}, \dots, \Lambda_{r,p}].$$

The distinguishability game for the adversary is as follows:

 $\textbf{Definition 1.} \ \ \textit{The LEAK indistinguishability experiment Shuffle} \\ \textbf{S}...^{\textit{LEAK}}(n,p,r):$

- 1. S is initialized with:
 - (a) a key generated uniformly at random $\mathcal{K} \sim \mathcal{U}(\{0,1\}^{rn})$,
 - (b) $S_0 = \pi_0$ (identity permutation).
- 2. S is run for r rounds: $S_r := S(K)$ and produces a permutation π_r .
- 3. Adversary obtains leaked bits of the key $view_{r,p}(\mathcal{K})$.
- 4. We set:
 - $c_0 := \pi_{rand}$ a random permutation from uniform distribution is chosen,
 - $c_1 := \pi_r$.
- 5. A challenge bit $b \in \{0,1\}$ is chosen at random, permutation c_b is sent to the Adversary.
- 6. Adversary replies with b'.
- 7. The output of the experiment is defined to be 1 if b' = b, and 0 otherwise.

In the case when adversary wins the game (if b = b') we say that \mathcal{A} succeeded. Adversary wins the game if she can distinguish the random permutation from the permutation being a result of the PRPG algorithm based on the leakage she saw.

Definition 2. A shuffling algorithm S generates indistinguishable permutations in the presence of leakage if for all adversaries A there exists a negligible function negl such that

$$Pr\left[\mathit{Shuffle}_{\mathsf{S},\mathcal{A}}^{\mathit{LEAK}}(n,p,r) = 1\right] \leq \frac{1}{2} + \mathit{negl}(n),$$

The above translates into:

Definition 3. A shuffling algorithm S generates indistinguishable permutations in the presence of leakage if for all adversaries A there exists a negligible function negl such that

$$\left| \Pr_{K \leftarrow \{0,1\}^{keyLen}} \left[\mathcal{A}(\Lambda_r, \mathcal{S}(K)) = 1 \right] - \Pr_{R \leftarrow \mathcal{U}(\mathcal{S}_n)} \left[\mathcal{A}(\Lambda_r, R) = 1 \right] \right| \leq \textit{negl}(n).$$

2.2 Markov Chains and Rate of Convergence

Consider ergodic Markov chain $\{X_k, k \geq 0\}$ on finite state space $\mathbb{E} = \{0, \ldots, M-1\}$ with stationary distribution ψ . Let $\mathcal{L}(X_k)$ denote the distribution of a chain at time k. Stating some results about the rate of convergence of a chain to its stationary distribution means having some knowledge on some distance dist (or a bound on it) between $\mathcal{L}(X_k)$ and ψ . By mixing time we mean the value of k making dist small, since it depends on the measure of the distance we define it as

$$\tau_{mir}^{dist}(\varepsilon) = \inf\{k : dist(\mathcal{L}(X_k), \psi) < \varepsilon\}.$$

In our applications the state space is a set of permutations of [n], *i.e.*, $\mathbb{E} := \mathcal{S}_n$ (thus $|\mathbb{E}| = n!$) and stationary distribution is a uniform one on \mathbb{E} (we denote $\psi = \mathcal{U}(\mathbb{E})$).

Typically in literature the mixing time is defined for *dist* being total variation distance, i.e.,

$$d_{TV}(\mathcal{L}(X_k), \mathcal{U}(\mathbb{E})) = \frac{1}{2} \sum_{\sigma \in \mathcal{S}_n} |Pr(X_k = \sigma) - Pr(\psi = \sigma)|,$$

which in our case is equivalent to:

$$d_{TV}(\mathcal{L}(X_k), \mathcal{U}(\mathbb{E})) = \frac{1}{2} \sum_{\sigma \in \mathcal{S}_n} \left| Pr(X_k = \sigma) - \frac{1}{n!} \right|.$$

Note however that knowing that d_{TV} is small for some k does not imply that $\left|Pr(X_k=\sigma)-\frac{1}{n!}\right|$ are "uniformly" small, *i.e.*, that it is of order 1/n!. This is very important observation, since it means that $\tau_{mix}^{d_{TV}}(\varepsilon)$ is not an adequate measure of mixing time for our applications (i.e., indistinguishability given in Definition 2). Instead we consider so-called **separation distance** defined by

$$sep(\mathcal{L}(X_k),\mathcal{U}(\mathbb{E})) := \max_{\sigma \in \mathbb{E}} \left(1 - \frac{Pr(X_k = \sigma)}{Pr(\psi = \sigma)}\right)$$

which is:

$$sep(\mathcal{L}(X_k), \mathcal{U}(\mathbb{E})) := \max_{\sigma \in \mathbb{E}} (1 - n! \cdot Pr(X_k = \sigma))$$

If $sep(\mathcal{L}(X_k), \mathcal{U}(\mathbb{E})) \leq \varepsilon$ for some k (i.e., we know $\tau_{mix}^{sep}(\varepsilon)$), then

$$\left| Pr(X_k = \sigma) - \frac{1}{n!} \right| \le \frac{\varepsilon}{n!},$$
 (1)

what will be crucial for showing our results.

Strong Stationary Times. The definition of separation distance fits perfectly into notion of Strong Stationary Time (SST) for Markov chains. This is a probabilistic tool for studying the rate of convergence of Markov chains.

Definition 4. Random variable T is Strong Stationary Time (SST) if it is randomized stopping time for chain $\{X_k, k \geq 0\}$ such that:

$$\forall (i \in \mathbb{E}) \ Pr(X_k = i | T = k) = \psi(i).$$

Having SST T for chain with uniform stationary distribution lets us bound the separation distance (cf. [3])

$$sep(\mathcal{L}(X_k), \mathcal{U}(\mathbb{E})) \le Pr(T > k).$$
 (2)

We say that T is an optimal SST if $sep(\mathcal{L}(X_k),\mathcal{U}(\mathbb{E})) = Pr(T > k)$.

Remark. It is easy to show that separation distance is an upper bound on total variation distance, i.e. that $d_{TV}(\mathcal{L}(X_k),\mathcal{U}(\mathbb{E})) \leq sep(\mathcal{L}(X_k),\mathcal{U}(\mathbb{E}))$.

3 RiffleSST- Leakage Resilient Shuffle

3.1 General Pseudo-random Permutation Generator

We also model some leakage of information (to be specified later). We identify elements of [n] with cards. We consider the following general pseudo-random permutation generator (PRPG) for generating a permutation of [n]. Initially we start with identity permutation π_0 . At each round (step) we perform procedure Shuffle which takes the current permutation S and uses some "randomness" (based on secret key K) and updates the permutation. After r rounds the permutation is denoted by π_r . The algorithm stops depending on some stopping rule represented by procedure StoppingRule (Fig. 1).

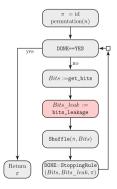


Fig. 1. General pseudorandom permutation generator (PRPG)

3.2 Description of RiffleSST Algorithm

Roughly speaking, it uses card shuffling scheme corresponding to time reversal of Riffle Shuffle (see [4]).

We do not specify here the details of get_bits, this should be a procedure which returns n bits from key K, can depend on current round number r, current permutation π , etc. (Fig. 2).

RiffleShuffle procedure performs the following: for given permutation of cards $\pi \in \mathcal{S}_n$ and given $Bits[i], i = 1, \ldots, n$ (think of assigning bit Bits[i] to card on position i) we put all the cards

```
RiffleSST

get_bits := (not specified)
bits_leakage := get_bits_leakage_indep
Shuffle := RiffleShuffle
StoppingRule := StoppingRuleRiffle
```

Fig. 2. Leakage resilient shuffle RiffleSST algorithm.

with assigned bit 0 to the top *keeping* their relative ordering. Sample execution is given in Fig. 4: For example, for initial permutation (1, 2, 3, 4, 5, 6) we assign bit 0 to cards 1, 2 and 4, whereas we assign bit 1 to cards 3, 5 and 6. Thus, the resulting permutation is (1, 2, 4, 3, 5, 6).

```
procedure RiffleShuffle
Input permutation \pi, round r, Bits (of length n)
Output updated permutation \pi

s0:=1
s1:=sum(Bits)
tmp=vector(n)
for i:=0 to n-1 do
card=S[i]
if(Bits[i]=1) do tmp[s1]=card; s1=s1+1
else tmp[s0]=card; s0=s0+1
end if
end for
\pi:=tmp
end procedure
```

Leakage Model. We assume that at each step and at each position i (independently) a value of Bit[i] is leaking with probability p. Function $bits_leakage(p, n)$ generates n dimensional vector of zeros and ones. We assume that each coordinate is chosen independently being 1 with probability p and 0 with the

remaining probability. Note that the number of leaking bits has Bin(n,p) distribution, thus on average np bits are leaking. The leakage is modeled by $get_bits_leakage_indep$ procedure (here unif(0,1) denotes a random variable uniformly distributed on [0,1]).

```
procedure GET_BITS_LEAKAGE_INDEP

Input n, p
Output vector leak of n bits

for j = 1 to n do

leak(j) = \mathbf{1}\{unif(0, 1) < p\}
end forreturn leak
end procedure
```

We simply run the algorithm for pre-defined number of steps expressed by procedure StoppingRuleRiffle.

```
procedure StoppingRuleRiffle Input n, p (leakage level), \varepsilon Output {YES,NO}  \begin{aligned} & \text{if } r < \log_{\frac{2}{2-(1-p)^2}} \binom{n}{2} + \log_{\frac{2}{2-(1-p)^2}} \left(\frac{1}{\varepsilon n!}\right) \text{ then return NO} \\ & \text{else return YES} \\ & \text{end if} \\ & \text{end procedure} \end{aligned}
```

4 Proofs

As already mentioned, assuming random keys, the algorithm can be regarded as (time reversal of) Riffle Shuffle scheme. The idea is similar to approach presented in [13], following author's notation we will call a version of the algorithm with random keys as *idealized* one. Showing that after the execution of the algorithm the adversary has no non-negligible knowledge (in both, leakage and no-leakage version) corresponds to showing that after shuffling cards as many times as the number of steps of the algorithm, the resulting permutation is close to uniform one. In other words, proving the theorem reduces to studying the rate of convergence of corresponding Markov chains. However, the typical bounds on the rate of convergence involving total variation distance do not imply that the shuffling algorithm generates permutation which is indistinguishable from random permutation according to Definition 2. That is why we focus on bounds for separation distance what is achieved by using Strong Stationary Times technique.

Consider the *idealized* version of RiffleSST (call it $RiffleSST^*$) which is defined by the specification from Fig. 4. Roughly speaking, there are two differences compared to RiffleSST: (i) in each round we take new n random bits. (ii) instead of running it pre-defined number of steps, we use StoppingRuleRifflePairs as stopping rule. The stopping rule works as follows: Initially we

```
RiffleSST*

get_bits := get_bits_rand
bits_leakage := get_bits_leakage_indep
Shuffle := RiffleShuffle
StoppingRule := StoppingRuleRifflePairs
```

Fig. 3. Idealized version of leakage resilient shuffle RiffleSST

set all $\binom{n}{2}$ pairs $(i,j), i,j=1,\ldots,i < j$ as not-marked. (This can be simply represented as $\binom{n}{2}$ -dimensional vector with all entries set to 0). Given the current permutation $\pi \in \mathcal{S}_n$ and $Bits[i], Bits.leak[i], i=1,\ldots,n$ we mark the pair (i,j) (or equivalently, we say that pair (i,j) is updated) if $(Bits[i] \oplus Bits[j] = 1)$ and $(Bits.leak[i] \vee Bits.leak[j] = 0)$ (i.e., cards S[i] and S[j] were assigned different bits and none is leaking). Formally, this is given in StoppingRuleRifflePairs procedure (Fig. 3).

```
procedure StoppingRuleRifflePairs

Input set of already updated pairs(i,j), i < j, Bits, Bits\_leak
Output {YES,NO}

for each pair (i,j) do

if (Bits[i] \oplus Bits[j] = 1) and (Bits\_leak[i] = Bits\_leak[j] = 0) then mark pair (i,j)
end if
end for
if all \binom{n}{2} pairs are marked then return YES
elsereturn NO
end if
end procedure
```

The main ingredients of the proof of Theorem 1 are the following Lemma 1 and Theorem 2.

Lemma 1. The resulting permutation of RiffleSST* has a uniform distribution over S_n .

Proof (of Lemma 1). For leakage level p=0 the procedure RiffleSST* is exactly the Markov chain corresponding to time-reversed Riffle Shuffle card shuffling. At each step we consider all $\binom{n}{2}$ pairs (i,j) and we "mark" each pair if either card i was assigned 0 and card j was assigned 1, or vice-versa. Since these two events have equal probability, thus relative ordering of these two cards is random at such step. Let T be the first time all pairs are "marked". Then all the pairs are in

relative random order and thus the permutation is also random. In other words, the distribution of X_k given T = k is uniform. This means that the running time T of the algorithm is a Strong Stationary Time for riffle shuffle procedure and the distribution of the chain at time T is uniform.

Note that we exchangeably use the term "mixed" and "updated".

For general $p \in [0,1)$ the situation is not much different: We update only pairs which are assigned different bits and such that both cards are not leaking. Thus, once the pair is updated it means that it is in random relative order and adversary has no knowledge about this order. After updating all the pairs she has no knowledge about relative order of all the pairs, thus, from her perspective, resulting permutation is random. We note that the knowledge about the permutation can already "vanish" earlier (i.e., before updating all the pairs), but it is for sure that time till updating all the pairs is enough.

Note that the no leakage version (i.e., when p = 0) of the algorithm can be written in a more compact way (similarly as in [4], the pairs are not involved there directly), however this notation lets us relatively easy extend the algorithm into a leakage resilient version.

Theorem 2. Let $\{X_k\}_{k\geq 0}$ be the chain corresponding to RiffleSST*. The mixing time τ_{mix}^{sep} of the chain is given by

$$\tau_{mix}^{sep}(\varepsilon) \leq \log_{\frac{2}{2-(1-p)^2}} \binom{n}{2} + \log_{\frac{2}{2-(1-p)^2}} \left(\varepsilon^{-1}\right).$$

Proof (of Theorem 2). In Lemma 1 we showed that $T := \inf_k \{X_k = 0\}$ (i.e., first moment when all pairs are updated) is an SST.

Let T_{ij} be the first time when cards i and j are updated. In one step, the probability that given pair will not be updated is $1 - \frac{1}{2}(1-p)^2 = \frac{2-(1-p)^2}{2}$. We have

$$Pr(T > k) = Pr\left(\bigcup_{1 \le i < j \le n} \{T_{ij} > k\}\right) \le \sum_{1 \le i < j \le n} Pr(T_{ij} > k)$$
$$= \sum_{1 \le i < j \le n} \left(1 - (1 - p)^2 \cdot \frac{1}{2}\right)^k = \binom{n}{2} \left(\frac{2 - (1 - p)^2}{2}\right)^k.$$

For $k = \log_{\frac{2}{2-(1-p)^2}} \binom{n}{2} + \log_{\frac{2}{2-(1-p)^2}} (\varepsilon^{-1})$ we have $Pr(T > k) \le \varepsilon$, using (2) finishes the proof.

In Theorem 1 we perform RiffleSST for $r=\tau_{mix}^{sep}(\varepsilon n!)$ steps, what means that separation distance is less or equal to $\varepsilon n!$. From (1) we thus have that $\left|Pr(X_r=\sigma)-\frac{1}{n!}\right|\leq \varepsilon$ for any permutation σ . This together with Lemma 1 and Theorem 2 completes the proof of Theorem 2.

Remark 1. Note that if we replace τ_{mix}^{sep} with $\tau_{mix}^{d_{TV}}$ in Theorem 2, we could not conclude Theorem 1. This is because knowing that separation distance is smaller than ε is much stronger than knowing that total variation distance is smaller

than ε , in particular (1) holds. (Note that typically, e.g., coupling methods provide directly bounds on total variation distance). However, knowing that total $d_{TV}(\mathcal{L}(X_k),\mathcal{U}(\mathbb{E})) \leq \varepsilon$ implies (under some mild conditions - see Theorem 7 in [2]) that $sep(\mathcal{L}(X_{2k}),\mathcal{U}(\mathbb{E})) \leq \varepsilon$ what means that twice as many steps would be needed to achieve security claimed in Theorem 1.

5 Sample Execution of RiffleSST Algorithm

In Fig. 4 the sample execution with and without leakage is presented. At each step, the left column represents the current permutation, whereas the right one currently assigned bits. The leaking bits are represented by red-shaded boxes. In Fig. 5 updated pairs for leakage and no leakage versions are given.

For example:

• No leakage version: At step 3. the current permutation is (1, 4, 6, 2, 3, 5) and assigned bits are Bits = (1, 0, 1, 1, 1, 0). Thus, e.g., card on position 1 (1) and

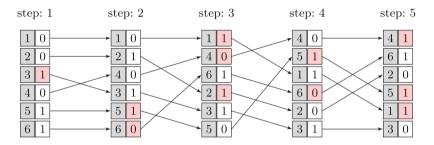


Fig. 4. Sample execution of our PRPG RiffleSST* algorithm for n=6. Current permutation at each step is the left column (grayed) whereas right column are the chosen bits. Red shaded bits are leaking. (Color figure online)

	step: 1	step: 2	step: 3	step: 4	step: 5
No leakage	(1,3), (1,5), (1,6) (2,3), (2,5), (2,6) (3,4), (4,5), (4,6)	(2,4) ,(2,6)	(1,4), (1,5) (2,4), (2,6) (3,4), (3,5), (5,6)		
	sum(pairs)=9	$\mathbf{sum}(pairs){=}13$	sum(pairs)=15 STOP		
Leakage	(1,5), (1,6) (2,5), (2,6) (4,5), (4,6)	(1,2), (1,3) (2,4) (3,4)	(3,5), (5,6)	(1,2),(1,4) (2,3) (3,4)	(2,6) (3,6)
	sum(pairs)=6	$\mathbf{sum}(pairs) = 10$	$\mathbf{sum}(pairs) = 12$	sum(pairs)=14	$\begin{array}{c} \mathbf{sum}(pairs){=}15 \\ \mathtt{STOP} \end{array}$

Fig. 5. Pairs "mixed" at each step of execution of PRPG given in Fig. 4. New pairs are **bolded**. The idealized algorithm (both, in non leakage and leakage version) stops when $\binom{6}{2} = 15$ pairs are mixed.

card on position 2 (4) have different bits assigned (respectively 1 and 0), thus this pair (1,4) is updated (it is bolded since it is first step when different bits were assigned for this pair).

• Leakage version: At the same step 3. bits assigned to cards 1, 4 and 2 are leaking. Thus all the pairs involving any of these cards are not considered, what results only in updating pairs (3,5), (5,6).

6 Conclusions

We presented the first analysis of the rate of convergence of the riffle-shuffle in the presence of leakage. We proved that no adversary can distinguish permutations produced by the RiffleSST (after enough number of steps – Theorem 1) from permutations sampled from uniform distribution.

Open Problems. Since the number of permutations is of [n] is n! the entropy of the uniform distribution on [n] is $O(n \log n)$. The time-reversed riffle-shuffle is optimal (up to a constant factor) shuffle since its mixing-time is $O(\log n)$ and each round consumes n bits of randomness, so in total $O(n \log n)$ bits are used. In case of no leakage (p=0) the mixing time of RiffleSST * - by Theorem 2 - is $O(n \log n)$ and thus is optimal (Fig. 6).

Question: Is RiffleSST* optimal in the presence of leakage with rate p>0? More precisely, can we use fewer bits than $O\left(n\log_{\frac{2}{1-(1-p)^2}}n\right)$ bits to achieve the security claimed in Theorem 1?

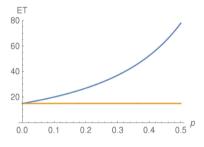


Fig. 6. Comparison of the expected number of rounds for n=256 and Riffle-Shuffle (without leakage – orange) and RiffleSST with the leakage level p – blue. (Color figure online)

References

- Albrecht, M.R., Paterson, K.G.: Lucky microseconds: a timing attack on Amazon's s2n implementation of TLS. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 622–643. Springer, Heidelberg (2016). https://doi.org/ 10.1007/978-3-662-49890-3_24
- 2. Aldous, D., Diaconis, P.: Shuffling cards and stopping times. Am. Math. Mon. 93(5), 333–348 (1986)
- Aldous, D., Diaconis, P.: Strong uniform times and finite random walks. Adv. Appl. Math. 97, 69–97 (1987)
- Diaconis, P., Shahshahani, M.: Generating a random permutation with random transpositions. Zeitschrift fur Wahrscheinlichkeitstheorie und Verwandte Gebiete 57(2), 159–179 (1981)
- Genkin, D., Pachmanov, L., Pipman, I., Tromer, E.: Stealing keys from PCs using a radio: cheap electromagnetic attacks on windowed exponentiation. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 207–228. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48324-4_11

- Genkin, D., Shamir, A., Tromer, E.: RSA key extraction via low-bandwidth acoustic cryptanalysis. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 444–461. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_25
- Gomułkiewicz, M., Klonowski, M., Kutyłowski, M.: Rapid mixing and security of Chaum's visual electronic voting. In: Snekkenes, E., Gollmann, D. (eds.) ESORICS 2003. LNCS, vol. 2808, pp. 132–145. Springer, Heidelberg (2003). https://doi.org/ 10.1007/978-3-540-39650-5_8
- Hoang, V.T., Morris, B., Rogaway, P.: An enciphering scheme based on a card shuffle. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 1–13. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_1
- 9. Jakobsson, M., Juels, A., Rivest, R.: Making mix nets robust for electronic voting by randomized partial checking. In: USENIX Security Symposium (2002)
- Krzywiecki, L., Kutyłowski, M., Misztela, H., Strumiński, T.: Private information retrieval with a trusted hardware unit – revisited. In: Lai, X., Yung, M., Lin, D. (eds.) Inscrypt 2010. LNCS (LNAI and LNBI), vol. 6584, pp. 373–386. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21518-6-26
- Kulis, M., Lorek, P., Zagorski, F.: Randomized stopping times and provably secure pseudorandom permutation generators. In: Phan, R.C.-W., Yung, M. (eds.) Mycrypt 2016. LNCS, vol. 10311, pp. 145–167. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61273-7_8
- 12. Lorek, P., Zagórski, F., Kulis, M.: Strong stationary times and its use in cryptography. IEEE Trans. Dependable Secure Comput. 1–14 (2017)
- Mironov, I.: (Not so) Random shuffles of RC4. In: Yung, M. (ed.) CRYPTO 2002.
 LNCS, vol. 2442, pp. 304–319. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9_20
- Morris, B., Rogaway, P., Stegers, T.: How to encipher messages on a small domain. Deterministic encryption and the thorp shuffle. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 286–302. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_17
- Morris, B., Rogaway, P.: Sometimes-recurse shuffle. Almost-random permutations in logarithmic expected time. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 311–326. Springer, Heidelberg (2014). https://doi.org/ 10.1007/978-3-642-55220-5_18
- Naor, M., Reingold, O.: On the construction of pseudo-random permutations. In: Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing - STOC 1997, New York, USA, pp. 189–199. ACM Press (1997)
- 17. Ristenpart, T., Yilek, S.: The mix-and-cut shuffle: small-domain encryption secure against N queries. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 392–409. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_22
- 18. Schuldt, J.C.N., Rivest, R.L.: Spritz–a spongy RC4-like stream cipher and hash function. Technical report (2014)
- Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 30–46. Springer, Heidelberg (2005). https://doi.org/10.1007/11545262_3
- Standaert, F.-X., Pereira, O., Yu, Y.: Leakage-resilient symmetric cryptography under empirically verifiable assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS (LNAI and LNBI), vol. 8042, pp. 335–352. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_19

- Standaert, F.-X., Pereira, O., Yu, Y., Quisquater, J.-J., Yung, M., Oswald, E.: Leakage resilient cryptography in practice. In: Sadeghi, A.R., Naccache, D. (eds.) Towards Hardware-Intrinsic Security. ISC, pp. 99–134. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14452-3_5
- 22. Yang, Y., Ding, X., Deng, R.H., Bao, F.: An efficient PIR construction using trusted hardware. In: Wu, T.-C., Lei, C.-L., Rijmen, V., Lee, D.-T. (eds.) ISC 2008. LNCS, vol. 5222, pp. 64–79. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85886-7_5
- Yarom, Y., Genkin, D., Heninger, N.: CacheBleed: a timing attack on OpenSSL constant time RSA. In: Gierlichs, B., Poschmann, A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 346–367. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53140-2_17