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Abstract. An algorithm we have introduced has a great effect on quan-
tifier elimination of a first order formula containing many equalities.
When the parametric ideal generated by the underlying equalities is not
radical, however, our algorithm tends to produce an unnecessarily com-
plicated formula. In this short paper, we show a result concerning Her-
mitian quadratic forms. It enables us to improve our algorithm so that
we can get a simple formula without any radical computation.
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1 Introduction

We have introduced an algorithm in [2] as a special type of a Quantifier Elim-
ination (QE) algorithm. It has a great effect on QE of a first order formula
containing many equalities. The essential part of the algorithm is to eliminate
all existential quantifiers 3X from the following basic first order formula:

A AIX (N fi(AX)=0n N\ hi(4,X)>0) (1)

1<i<s 1<i<t

with polynomials f1,..., fs,h1,...,hs in Q[A, X] such that the parametric ideal
I={f1,...,fs) in C[X] is zero-dimensional for any specialization of the param-
eters A satisfying ¢(A), where ¢(A) is a quantifier free formula consisting only of
equality = and disequality #. The algorithm computes a Comprehensive Grébner
System (CGS) of the parametric ideal I, then applies the method of [6] (we
call CGS-QF method in this paper) which is based on the theory of real roots
counting by a Hermitian Quadratic Form (HQF) introduced in [5] with several
innovative improvements. The algorithm is further improved by several tech-
niques reported in [3] and implemented in Maple as freeware software [4]. It
achieves a good performance for first order formulas containing many equalities
as is reported in [1]. When the parametric ideal I is not radical, however, our
algorithm tends to produce a unnecessarily complicated formula. Although we
may get a simpler formula by computing a CGS of the radical ideal v/, such a
computation is very heavy in general in a parametric polynomial ring.
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In this paper, we study the structure of a HQF and show a result namely
Theorem 8. It enables us to compute a quantifier free formula equivalent to
(1) which is as simple as the one obtained using a CGS of /I without any
radical computation. The paper is organized as follows. In Sect.2, we give a
quick review of our CGS-QE algorithm for understanding our result. In Sect. 3,
we introduce our main result together with an example which is simple but
enough for understanding how we can improve our CGS-QE algorithm.

2 Preliminary

2.1 Multivariate Real Roots Counting

In the rest of the paper, Q, R and C denote the fields of rational numbers, real
numbers and complex numbers respectively. X and A denote some variables
Xi,...,X, and Ay,..., A,,. T(X) denotes a set of terms in X. For an ideal
I C RIX], let Ve(I) = {¢ € R*"|Vf € I f(¢) = 0} and Vc(I) = {¢c € C*|Vf €
I f(e) = 0}. Let I be a zero dimensional ideal in a polynomial ring R[X].
Considering the residue class ring R[X]/I as a vector space over R, let vy, ..., v,
be its basis. For an arbitrary h € R[X]/I and each 4,5 (1 < 1,5 < q) we define a
linear map 0y, ; ; from R[X]/I to R[X]/I by 04 ;(f) = hvv; f for f € R[X]/I.
Let gp,;,; be the trace of 0, ;; and M] be a real symmetric matrix such that
its (4,7)-th component is given by ¢, ;. Regarding a real symmetric matrix
as a quadratic form, M} is called, a Hermitian Quadratic Form (HQF). The
characteristic polynomial of M/ is denoted by X/ (z). The dimension of R[X]/I
is denoted by dim(R[X]/I). For a polynomial f(x) € R[z], the signature of f(z),
denoted sign(f(x)), is an integer which is equal to ‘the number of positive real
roots of f(x) = 0’ — ‘the number of negative real roots of f(z) = 0’, that is,
sign(f(z)) = #({c € RIf(c) = 0,c > 0}) — #({c € RIf(c) = 0,c < 0}). The
signature of M}, denoted sign(M}), is defined as the signature of ! (z). The
real root counting theorem introduced in [5] is the following assertion.

Theorem 1. sign(M]) = #({z € Va(I)|h(z) > 0}) — #£({Z € Va(I)|h(z) < 0}).

2.2 Comprehensive Grobner System

Definition 2. For a subset S of C™, a finite set {S1,...,S,} of subsets of C™
which satisfies Uj_S; = S and S; N'S; = 0(i # j) is called a partition of S.
Each S; is called a segment.

Definition 3. Let > be an admissible term order on T(X). For a polynomial
f € C[A, X], regarding f as a member of a polynomial ring C[A][X] over a
coefficient ring C[A], its leading term and coefficient are denoted by LT, (f) and
LO. (f) respectively. For a finite set F C Q[A, X] and a subset S of C™, a finite
set of pairs G = {(S1,G1), ..., (S., G,)} with finite sets G; of Q[A, X] for each
i satisfying the following properties 1, 2, 3 is called a (minimal) comprehensive
Grébner system (CGS) of (F) on S with parameters A w.r.t. the term order - .
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1. {81,...,5:} is a partition of S.

2. For each i and any a € S;, G;(a) is a (minimal) Grébner basis of (F(a)) C
C[X] w.r.t. =, where G;(a) = {g(a, X)|g(A, X) € G;} and F(a) = {f(a, X)|
f(A, X) e F}.

3. For each i, LC. (g)(a) # 0 for every g € G; and a € S;.

Remark 4. The set of leading terms of G;(a) is invariant for each a € S;,
hence the dimension of the ideal (G;(a)) is also invariant. A minimal CGS is
desirable for their computation. When the ideal (G;(@)) is zero-dimensional for
a € S;, using (S;, G;) we can also compute a uniform representation of the HQF
M}{ on 8;NR™ for any polynomial h € Q[A, X]. More precisely, each element is
represented by a rational function p(A)/q(A) with p(A),q(A) € Q[A] such that
q(a) # 0 is guaranteed for any a € S; NR™.

2.3 CGS-QE Algorithm

The following result is the most important contribution of our paper [2] for the
elimination of the quantifiers 3X from the basic first order formula (1) given in
Sect. 1.

Theorem 5. Let S = {a € C™"|p(a)} and G = {(S1,G1),...,(S,Gr)} be a
minimal CGS of the parametric saturation ideal I : h®>° on S with parameters A
w.r.t. an arbitrary term order, where I = (fi,..., fs) and h = [, ;<, hi. For

each i and any a € S; NR™, the followings are equivalent:

13X (Ni<icy fila, X) = 0N Ny cicq hila, X) > 0).
. Gi(a
2. 2(617---76t)€{071}t Slgn(Mf(Lil'sl‘li)L%t (6)) >0.

for

By Remark 4, for each ¢ we have a uniform representation of M é?;_("’”
1

~hit(a
a € §; NR™. Using it together with Descartes’ rule of signs, we can Con(st)ruct
a quantifier free first order formula 1;(A) such that 1;(a) is equivalent to the
property 2 of Theorem 5 for each a € S; NR™, then we have a quantifier free
first order formula ¢(A4) A (\/,<,<, %i(A)) equivalent to (1).

An essential and important difference between our CGS-QE algorithm of [2]
and the original CGS-QE algorithm of [6] is that our algorithm computes a CGS

of the saturation ideal I : h*° whereas the original computes a CGS of I and
M<Gli(ﬁ))
hitehyt(a)

to the property 1 of Theorem 5. When I : ™ # I, we have dim(R[X]/I) >

dim(R[X]/I : h*°) and the size of Mﬁ*iﬁl,(a)

enables us to have a simpler representation formula of v;(A4). Even when I :
h°° = I, we also have its simpler representation since the polynomial h{' - - - hy!
becomes more complicated if we allow ey, ..., e; to be 2.

use the relation }-, . ey 2y sign( ) > 0 which is also equivalent

is smaller in our algorithm, which
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3 New Multivariate Real Roots Counting

As is mentioned at the end of the last section, the size of the HQF M ég(a}i)t @
1 t (@

effects the simplicity of the representation formula of 1;(A). Note that we can
replace M }jf’}(aZZt @ with M hv“1<~G~ih(i)(>a)
ideal, dim(R[X]/(G;(a))) > dim(R[X]/+/(Gi(a))) and we may have a simpler
representation formula of v;(A) using a CGS of the radical ideal v/I : h*.

in Theorem 5. If (G;(a)) is not a radical

Example 6. Consider the following simple example in a form of the basic first
order formula: A # 0AIX((X —A)?2 = 0AX > 0). ¢(A) is A # 0, the parametric
ideal I is (X — A)?) and h = X. A minimal CGS G of the parametric saturation
ideal I : h*° on S = {a € Cla # 0} has the form G = {(S,{(X — A)?})},
whereas a minimal CGS G’ of the radical ideal /I :h*>® on S has the form
G = {(S,{X — A}}. Let G = {(X — A)?} and G’ = {X — A}. We have
the following uniform representations of the HQFs on S NR:

@ _ (2 24 @ _ (24 242 @y _ (@) _
Ml <2A2A2)’ MX <2A22A3 ) Ml 7(1)’ MX 7(14)

Applying Descartes’ rule of signs and the simplification technique introduced in
the Sect. 3 of [3] to the characteristic polynomials of M1<G> and Mé(G), (although
we do not need them for this simple example), we have an equivalent quantifier
free formula:

A#AO0NA2+1>0NA3+A>0.

On the other hand, if we use the characteristic polynomials of M1<G/> and M§(G/>,
we have a much simpler equivalent quantifier free formula:

A#£0A1>0AA>0.

3.1 Main Result

Though a CGS of the radical ideal v/I : h>° may reduce the size of HQFs, a
radical computation is generally very heavy for a parametric polynomial ring.
In this section, we show a new result Theorem 8. It brings us a new CGS-QE
method which does not use any radical computation but produces a quantifier
free formula as simple as the one obtained using a CGS of the radical ideal.

Notation 7. For a q x q square matrix M and 1 < by < ... < b, < ¢q,
M(by,...,b;) denotes a k X k square matriz such that its (i,7)-th component
is the (b;, b;)-th component of M for each i,j(1 <4,j < k).

We have the following property similar to Theorem 1.

Theorem 8. Let I be a zero-dimensional ideal of R[X] such that dim(R[X]/I) =
q and rank(M{) = k, note that M{¥ is a ¢ x q matriz, hence k < q. Then there
exists a k—tuple (by,...,bx) of integers such that 1 < by < ... < by < ¢ and
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det(M{ (by,... b)) #0. For any such a k—tuple, we have the following equation
for every polynomial h € R[X]:

sign(N;) = #({z € Va(D)|n(z) > 0}) — #({z € Va(I)|h(z) < 0}),
where Nj denote a k x k real symmetric matriz M (b1, ..., by).

(Gi(a)) with Né?j_(‘_‘)) in Theorem 5.

By this theorem, we can replace M BT he (@) et (a)
t

Since dim(R[X]//(G = rank(M <G"(a») by the theory of roots count-
; (G 1(a)> V G (@)
g, Nyeoner @) 204 Mo e )
formula.

have a same size and we can obtain a simple

Example 9. For the HQF M1<G> in the previous example, ¢ =2 and k = 1. We
may have by = 1 or by = 2. For by = 1, we have Nl(G) (2) and N<G> (24)
which produces the same formula A #0A1>0AA >0 as the formula obtained
using the radical ideal. On the other hand, for by = 2, we have NfG> = (24) and
N)<(G> = (2A3) which produces the formula A # 0N A% >0A A% > 0.

4 Conclusion and Remarks

In Example 9, the obtained formula for by = 2 does not look much simpler
than the one obtained using M1<G> and M )((G>. Though the formula obtained
using any k-tuple (b1, ...,bx) is generally simple for a more complicated non-
radical ideal I, the choice of k-tuple makes a strong effect on its simplicity. For
the choice of a k-tuple we also have obtained the following criterion. Let > be
an admissible term order of T'(X) and {v1,...,v,} = {v € T(X)|v ¢ LT(I)}.
We can choose (b1,...,bs) so that each v, is not dividable by v; for any j €
{1,...,¢}\ {b1,...,bx}. Such a k-tuple produces a simple formula. Note that in
the previous example, by = 1 satisfies this criterion but b; = 2 does not.
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