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Abstract. An algorithm we have introduced has a great effect on quan-
tifier elimination of a first order formula containing many equalities.
When the parametric ideal generated by the underlying equalities is not
radical, however, our algorithm tends to produce an unnecessarily com-
plicated formula. In this short paper, we show a result concerning Her-
mitian quadratic forms. It enables us to improve our algorithm so that
we can get a simple formula without any radical computation.
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1 Introduction

We have introduced an algorithm in [2] as a special type of a Quantifier Elim-
ination (QE) algorithm. It has a great effect on QE of a first order formula
containing many equalities. The essential part of the algorithm is to eliminate
all existential quantifiers ∃X̄ from the following basic first order formula:

φ(Ā) ∧ ∃X̄ (
∧

1≤i≤s

fi(Ā, X̄) = 0 ∧
∧

1≤i≤t

hi(Ā, X̄) > 0) (1)

with polynomials f1, . . . , fs, h1, . . . , ht in Q[Ā, X̄] such that the parametric ideal
I = 〈f1, . . . , fs〉 in C[X̄] is zero-dimensional for any specialization of the param-
eters Ā satisfying φ(Ā), where φ(Ā) is a quantifier free formula consisting only of
equality = and disequality �=. The algorithm computes a Comprehensive Gröbner
System (CGS) of the parametric ideal I, then applies the method of [6] (we
call CGS-QE method in this paper) which is based on the theory of real roots
counting by a Hermitian Quadratic Form (HQF) introduced in [5] with several
innovative improvements. The algorithm is further improved by several tech-
niques reported in [3] and implemented in Maple as freeware software [4]. It
achieves a good performance for first order formulas containing many equalities
as is reported in [1]. When the parametric ideal I is not radical, however, our
algorithm tends to produce a unnecessarily complicated formula. Although we
may get a simpler formula by computing a CGS of the radical ideal

√
I, such a

computation is very heavy in general in a parametric polynomial ring.
c© Springer International Publishing AG 2017
J. Blömer et al. (Eds.): MACIS 2017, LNCS 10693, pp. 258–263, 2017.
https://doi.org/10.1007/978-3-319-72453-9_18



On Real Roots Counting for Non-radical Parametric Ideals 259

In this paper, we study the structure of a HQF and show a result namely
Theorem 8. It enables us to compute a quantifier free formula equivalent to
(1) which is as simple as the one obtained using a CGS of

√
I without any

radical computation. The paper is organized as follows. In Sect. 2, we give a
quick review of our CGS-QE algorithm for understanding our result. In Sect. 3,
we introduce our main result together with an example which is simple but
enough for understanding how we can improve our CGS-QE algorithm.

2 Preliminary

2.1 Multivariate Real Roots Counting

In the rest of the paper, Q, R and C denote the fields of rational numbers, real
numbers and complex numbers respectively. X̄ and Ā denote some variables
X1, . . . , Xn and A1, . . . , Am. T (X̄) denotes a set of terms in X̄. For an ideal
I ⊂ R[X̄], let VR(I) = {c̄ ∈ Rn|∀f ∈ I f(c̄) = 0} and VC(I) = {c̄ ∈ Cn|∀f ∈
I f(c̄) = 0}. Let I be a zero dimensional ideal in a polynomial ring R[X̄].
Considering the residue class ring R[X̄]/I as a vector space over R, let v1, . . . , vq
be its basis. For an arbitrary h ∈ R[X̄]/I and each i, j (1 ≤ i, j ≤ q) we define a
linear map θh,i,j from R[X̄]/I to R[X̄]/I by θh,i,j(f) = hvivjf for f ∈ R[X̄]/I.
Let qh,i,j be the trace of θh,i,j and M I

h be a real symmetric matrix such that
its (i, j)-th component is given by qh,i,j . Regarding a real symmetric matrix
as a quadratic form, M I

h is called, a Hermitian Quadratic Form (HQF). The
characteristic polynomial of M I

h is denoted by χI
h(x). The dimension of R[X̄]/I

is denoted by dim(R[X̄]/I). For a polynomial f(x) ∈ R[x], the signature of f(x),
denoted sign(f(x)), is an integer which is equal to ‘the number of positive real
roots of f(x) = 0’ − ‘the number of negative real roots of f(x) = 0’, that is,
sign(f(x)) = #({c ∈ R|f(c) = 0, c > 0}) − #({c ∈ R|f(c) = 0, c < 0}). The
signature of M I

h , denoted sign(M I
h), is defined as the signature of χI

h(x). The
real root counting theorem introduced in [5] is the following assertion.

Theorem 1. sign(M I
h) = #({x̄ ∈ VR(I)|h(x̄) > 0})−#({x̄ ∈ VR(I)|h(x̄) < 0}).

2.2 Comprehensive Gröbner System

Definition 2. For a subset S of Cm, a finite set {S1, . . . ,Sr} of subsets of Cm

which satisfies ∪r
i=1Si = S and Si ∩ Sj = ∅(i �= j) is called a partition of S.

Each Si is called a segment.

Definition 3. Let � be an admissible term order on T (X̄). For a polynomial
f ∈ C[Ā, X̄], regarding f as a member of a polynomial ring C[Ā][X̄] over a
coefficient ring C[Ā], its leading term and coefficient are denoted by LT�(f) and
LC�(f) respectively. For a finite set F ⊂ Q[Ā, X̄] and a subset S of Cm, a finite
set of pairs G = {(S1, G1), . . . , (Sr, Gr)} with finite sets Gi of Q[Ā, X̄] for each
i satisfying the following properties 1, 2, 3 is called a (minimal) comprehensive
Gröbner system (CGS) of 〈F 〉 on S with parameters Ā w.r.t. the term order �.
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1. {S1, . . . ,Sr} is a partition of S.
2. For each i and any ā ∈ Si, Gi(ā) is a (minimal) Gröbner basis of 〈F (ā)〉 ⊂

C[X̄] w.r.t. �, where Gi(ā) = {g(ā, X̄)|g(Ā, X̄) ∈ Gi} and F (ā) = {f(ā, X̄)|
f(Ā, X̄) ∈ F}.

3. For each i, LC�(g)(ā) �= 0 for every g ∈ Gi and ā ∈ Si.

Remark 4. The set of leading terms of Gi(ā) is invariant for each ā ∈ Si,
hence the dimension of the ideal 〈Gi(ā)〉 is also invariant. A minimal CGS is
desirable for their computation. When the ideal 〈Gi(ā)〉 is zero-dimensional for
ā ∈ Si, using (Si, Gi) we can also compute a uniform representation of the HQF
M I

h on Si ∩Rm for any polynomial h ∈ Q[Ā, X̄]. More precisely, each element is
represented by a rational function p(Ā)/q(Ā) with p(Ā), q(Ā) ∈ Q[Ā] such that
q(ā) �= 0 is guaranteed for any ā ∈ Si ∩ Rm.

2.3 CGS-QE Algorithm

The following result is the most important contribution of our paper [2] for the
elimination of the quantifiers ∃X̄ from the basic first order formula (1) given in
Sect. 1.

Theorem 5. Let S = {ā ∈ Cm|φ(ā)} and G = {(S1, G1), . . . , (Sr, Gr)} be a
minimal CGS of the parametric saturation ideal I : h∞ on S with parameters Ā
w.r.t. an arbitrary term order, where I = 〈f1, . . . , fs〉 and h =

∏
1≤i≤t hi. For

each i and any ā ∈ Si ∩ Rm, the followings are equivalent:

1. ∃X̄ (
∧

1≤i≤s fi(ā, X̄) = 0 ∧ ∧
1≤i≤t hi(ā, X̄) > 0).

2.
∑

(e1,...,et)∈{0,1}t sign(M 〈Gi(ā)〉
h
e1
1 ···het

t (ā)
) > 0.

By Remark 4, for each i we have a uniform representation of M
〈Gi(ā)〉
h
e1
1 ···het

t (ā)
for

ā ∈ Si ∩ Rm. Using it together with Descartes’ rule of signs, we can construct
a quantifier free first order formula ψi(Ā) such that ψi(ā) is equivalent to the
property 2 of Theorem 5 for each ā ∈ Si ∩ Rm, then we have a quantifier free
first order formula φ(Ā) ∧ (

∨
1≤i≤r ψi(Ā)) equivalent to (1).

An essential and important difference between our CGS-QE algorithm of [2]
and the original CGS-QE algorithm of [6] is that our algorithm computes a CGS
of the saturation ideal I : h∞ whereas the original computes a CGS of I and
use the relation

∑
(e1,...,et)∈{1,2}t sign(M 〈Gi(ā)〉

h
e1
1 ···het

t (ā)
) > 0 which is also equivalent

to the property 1 of Theorem 5. When I : h∞ �= I, we have dim(R[X̄]/I) >

dim(R[X̄]/I : h∞) and the size of M
〈Gi(ā)〉
h
e1
1 ···het

t (ā)
is smaller in our algorithm, which

enables us to have a simpler representation formula of ψi(Ā). Even when I :
h∞ = I, we also have its simpler representation since the polynomial he1

1 · · · het
t

becomes more complicated if we allow e1, . . . , et to be 2.
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3 New Multivariate Real Roots Counting

As is mentioned at the end of the last section, the size of the HQF M
〈Gi(ā)〉
h
e1
1 ···het

t (ā)

effects the simplicity of the representation formula of ψi(Ā). Note that we can

replace M
〈Gi(ā)〉
h
e1
1 ···het

t (ā)
with M

√
〈Gi(ā)〉

h
e1
1 ···het

t (ā)
in Theorem 5. If 〈Gi(ā)〉 is not a radical

ideal, dim(R[X̄]/〈Gi(ā)〉) > dim(R[X̄]/
√〈Gi(ā)〉) and we may have a simpler

representation formula of ψi(Ā) using a CGS of the radical ideal
√

I : h∞.

Example 6. Consider the following simple example in a form of the basic first
order formula: A �= 0∧∃X((X−A)2 = 0∧X > 0). φ(A) is A �= 0, the parametric
ideal I is 〈(X −A)2〉 and h = X. A minimal CGS G of the parametric saturation
ideal I : h∞ on S = {a ∈ C|a �= 0} has the form G = {(S, {(X − A)2})},
whereas a minimal CGS G′ of the radical ideal

√
I : h∞ on S has the form

G′ = {(S, {X − A})}. Let G = {(X − A)2} and G′ = {X − A}. We have
the following uniform representations of the HQFs on S ∩ R:

M
〈G〉
1 =

(
2 2A
2A 2A2

)
, M

〈G〉
X =

(
2A 2A2

2A2 2A3

)
, M

〈G′〉
1 =

(
1
)
, M

〈G′〉
X =

(
A

)
.

Applying Descartes’ rule of signs and the simplification technique introduced in
the Sect. 3 of [3] to the characteristic polynomials of M

〈G〉
1 and M

〈G〉
X , (although

we do not need them for this simple example), we have an equivalent quantifier
free formula:

A �= 0 ∧ A2 + 1 > 0 ∧ A3 + A > 0.

On the other hand, if we use the characteristic polynomials of M
〈G′〉
1 and M

〈G′〉
X ,

we have a much simpler equivalent quantifier free formula:

A �= 0 ∧ 1 > 0 ∧ A > 0.

3.1 Main Result

Though a CGS of the radical ideal
√

I : h∞ may reduce the size of HQFs, a
radical computation is generally very heavy for a parametric polynomial ring.
In this section, we show a new result Theorem 8. It brings us a new CGS-QE
method which does not use any radical computation but produces a quantifier
free formula as simple as the one obtained using a CGS of the radical ideal.

Notation 7. For a q × q square matrix M and 1 ≤ b1 < . . . < bk ≤ q,
M(b1, . . . , bk) denotes a k × k square matrix such that its (i, j)-th component
is the (bi, bj)-th component of M for each i, j(1 ≤ i, j ≤ k).

We have the following property similar to Theorem1.

Theorem 8. Let I be a zero-dimensional ideal of R[X̄] such that dim(R[X̄]/I) =
q and rank(M I

1 ) = k, note that M I
1 is a q × q matrix, hence k ≤ q. Then there

exists a k−tuple (b1, . . . , bk) of integers such that 1 ≤ b1 < . . . < bk ≤ q and



262 R. Fukasaku and Y. Sato

det(M I
1 (b1, . . . , bk)) �= 0. For any such a k−tuple, we have the following equation

for every polynomial h ∈ R[X̄]:

sign(N I
h) = #({x̄ ∈ VR(I)|h(x̄) > 0}) − #({x̄ ∈ VR(I)|h(x̄) < 0}),

where N I
h denote a k × k real symmetric matrix M I

h(b1, . . . , bk).

By this theorem, we can replace M
〈Gi(ā)〉
h
e1
1 ···het

t (ā)
with N

〈Gi(ā)〉
h
e1
1 ···het

t (ā)
in Theorem 5.

Since dim(R[X̄]/
√〈Gi(ā)〉 ) = rank(M 〈Gi(ā)〉

1 ) by the theory of roots count-

ing, N
〈Gi(ā)〉
h
e1
1 ···het

t (ā)
and M

√
〈Gi(ā)〉

h
e1
1 ···het

t (ā)
have a same size and we can obtain a simple

formula.

Example 9. For the HQF M
〈G〉
1 in the previous example, q = 2 and k = 1. We

may have b1 = 1 or b1 = 2. For b1 = 1, we have N
〈G〉
1 = (2) and N

〈G〉
X = (2A)

which produces the same formula A �= 0 ∧ 1 > 0 ∧ A > 0 as the formula obtained
using the radical ideal. On the other hand, for b1 = 2, we have N

〈G〉
1 = (2A) and

N
〈G〉
X = (2A3) which produces the formula A �= 0 ∧ A2 > 0 ∧ A3 > 0.

4 Conclusion and Remarks

In Example 9, the obtained formula for b1 = 2 does not look much simpler
than the one obtained using M

〈G〉
1 and M

〈G〉
X . Though the formula obtained

using any k-tuple (b1, . . . , bk) is generally simple for a more complicated non-
radical ideal I, the choice of k-tuple makes a strong effect on its simplicity. For
the choice of a k-tuple we also have obtained the following criterion. Let � be
an admissible term order of T (X̄) and {v1, . . . , vq} = {v ∈ T (X̄)|v /∈ LT (I)}.
We can choose (b1, . . . , bk) so that each vbi is not dividable by vj for any j ∈
{1, . . . , q} \ {b1, . . . , bk}. Such a k-tuple produces a simple formula. Note that in
the previous example, b1 = 1 satisfies this criterion but b1 = 2 does not.
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