
Integrating Algebraic and SAT Solvers

Jan Horáček1(B), Jan Burchard2, Bernd Becker2, and Martin Kreuzer1

1 Faculty of Informatics and Mathematics, University of Passau,
94030 Passau, Germany

{Jan.Horacek,Martin.Kreuzer}@uni-passau.de
2 Computer Architecture Group, Albert-Ludwigs-University Freiburg,

79110 Freiburg, Germany
{burchard,becker}@informatik.uni-freiburg.de

Abstract. For solving systems of Boolean polynomials whose zeros are
known to be contained in F

n
2 , algebraic solvers such as the Boolean Bor-

der Basis Algorithm (BBBA) and SAT solvers use very different and
possibly complementary methods to create new information. Based on
suitable implementations of these solvers and conversion methods from
Boolean polynomials to SAT clauses and back, we describe an automatic
framework integrating the two solving techniques and exchanging newly
found information between them. Using examples derived from cryp-
tographic attacks, we present some initial experiments indicating the
efficiency of this combination.

Keywords: Boolean polynomial · Border Basis Algorithm
SAT solving · Cryptographic attack

1 Introduction

Cryptographic attacks frequently require the solution of polynomial systems
defined over the field F2 = Z/2Z for which it is known that the desired solution
consists of one or more points in F

n
2 . In this case we may add the field equations

x2
i + xi = 0 to the given system, where i = 1, . . . , n, to express that fact that

we are looking for solutions (a1, . . . , an) such that ai ∈ F2. Equivalently, we may
consider the system as a system of Boolean polynomials, i.e., a system defined
by elements in

F2[x1, . . . , xn] / 〈x2
1 + x1, . . . , x2

n + xn〉.
Several methods have been developed to deal with this task.

Algebraic solvers consider the ideal I in F2[x1, . . . , xn] generated by the given
polynomials and the field equations and perform operations such as polynomial
addition and multiplication in order to find simple polynomials in I which allow
us to read off the solutions of the system. Examples for such methods are Boolean
Gröbner basis computations (see [3]) and the Boolean Border Basis Algorithm
(BBBA) (see [11,12]). After converting the polynomial system to a set of propo-
sitional logic clauses (see [1,10,13]), one can also use a SAT solver to determine
c© Springer International Publishing AG 2017
J. Blömer et al. (Eds.): MACIS 2017, LNCS 10693, pp. 147–162, 2017.
https://doi.org/10.1007/978-3-319-72453-9_11



148 J. Horáček et al.

a satisfying assignment for the logical variables, which in turn corresponds to a
solution of the Boolean polynomial system (see for instance [5]). SAT solvers use
logical reasoning (such as CDCL and DPLL) to eliminate large sets of assign-
ments which do not satisfy the given set of clauses.

In this paper we combine both algebraic solvers and SAT solvers by running
two processes in parallel and interchanging information between them. More
specifically, we describe an implementation of an automatic framework which
executes the Boolean Border Basis Algorithm (see [11]) and the SAT solver
antom (see [16]) concurrently, transforms newly found “interesting” polynomials
resp. SAT clauses using suitable conversion methods (see [10]), and introduces
this new information into the other process. Up to now, Gröbner bases compu-
tations have been used predominantly to speed up certain stages of a SAT solver
computation (see [6,7,17]). Hence this paper may be considered as a first step
towards a systematic combination of algebraic and logical reasoning in order to
solve Boolean polynomial systems.

Let us describe its contents in more detail. In Sect. 2 we recall some efficient
algorithms for performing certain operations with order ideals of terms used after-
wards, and in Sect. 3 we remind the reader of Boolean polynomials and spell out an
explicit method for their linear reduction and interreduction. In Sect. 4 we present
a version of the Boolean Border Basis Algorithm (originally presented in [11])
which is closer to the actual implementation and which allows us to introduce the
integration with the SAT solver explicitly at suitable points of the calculation.

Section 5 contains the description of the integration of this version of the
BBBA with a SAT solver. In particular, we have to select which polynomials
and which clauses we send to the respective other solver, keeping the amount
of transmitted data under control and providing that information which has the
best chances to improve the overall solving speed. Then, in Sect. 6, we describe
the design of the actual communication process between the two solvers. This
entails finding suitable entry points for the new information as well as a queu-
ing process for these data until a suitable point in time for the insertion is
reached. Section 7 contains some observations about the necessary modifications
to a standard SAT solver such as antom (cf. [16]).

Finally, in Sect. 8 we report some preliminary results about speed-ups of the
overall solving time we could achieve. Both for a manual insertion of new infor-
mation as well as for the automatic communication process described above,
we found cases with substantial improvements of the total solving time. How-
ever, sometimes the combination of the two processes was slower, and the effects
depend strongly on the chosen selection strategies for the transmitted informa-
tion. Thus further experimentation using the new tools is needed to optimize
the synergies which we can achieve.

Unless explicitly stated otherwise, we use the basic definitions and results
in [11,15].

2 Algorithms for Basic Operations with Order Ideals

The set of squarefree terms in the indeterminates x1, . . . , xn is denoted by S
n.

We order terms in S
n by a degree compatible term ordering σ. An order ideal



Integrating Algebraic and SAT Solvers 149

is a factor-closed set of terms. Let O be an order ideal in S
n. A set of terms

C = {t1, . . . , tk} ⊆ O is called a set of cogenerators of O (or we say that C
cogenerates O) if every term in O divides one of the terms t1, . . . , tk. A set of
cogenerators {t1, . . . , tk} is called minimal if no term ti divides tj for j �= i.
Thus order ideals are represented by their (unique) minimal set of cogenerators.
For a set of terms C ⊆ S

n, we denote by 〈C〉OI the order ideal cogenerated by C.
In this section, three different non-trivial operations with order ideals used in

the BBBA are discussed briefly. The order ideal membership problem is decided
by Algorithm 1. Its proof of correctness follows immediately from the definition
of cogenerators.

Algorithm 1. (Order Ideal Membership Test)
Input: Cogenerators C of an order ideal O in S

n, t ∈ S
n.

Output: True if t ∈ O, False otherwise.
1: a := False

2: foreach c in C do
3: if t divides c then
4: a := True

5: end if
6: end foreach
7: return a

The squarefree border of an order ideal O in S
n is defined as ∂O sf =(

(
⋃n

i=1 xiO) \ O) ∩ S
n. Next we present Algorithm 3 (and its subroutine Algo-

rithm 2) for computing the minimal set of cogenerators of an order ideal minus
a monomial ideal.

Algorithm 4 decides if the squarefree border of one order ideal is contained
in some other order ideal. These algorithms are variants of Propositions 7.4 and
7.5 in [11]. Step 11 of Algorithm 2 and Step 12 of Algorithm 4 can be computed
by removing terms that are divisible by others.

3 Linear Interreduction for Boolean Polynomials

In the following we let F2 = Z/2Z be the binary field and F2[x1, . . . , xn] a
polynomial ring over F2. The ideal F = 〈x2

1 + x1, . . . , x
2
n + xn〉 is called the

field ideal. The ring Bn = F2[x1, . . . , xn]/〈F 〉 is called the ring of Boolean
polynomials in the indeterminates x1, . . . , xn. We assume that its elements are
represented by polynomials whose support consists only of squarefree terms, i.e.
all operations with polynomials are performed modulo the field ideal.

A set of Boolean polynomials G ⊆ Bn is called linearly LTσ-interreduced
if LTσ(g) �= LTσ(g′) for all g, g′ ∈ G with g �= g′. Given an arbitrary set of
Boolean polynomials G ⊆ Bn, we can linearly LTσ-interreduce G via (sparse)
Gaußian elimination on the coefficient matrix of G. (Here the columns have to
be ordered w.r.t. σ.) For a better understanding of linear LTσ-interreduction,



150 J. Horáček et al.

Algorithm 2. (Order Ideal Minus a Monomial Ideal Generated by a Term)
Input: t ∈ S

n, the minimal set of cogenerators C of an order ideal O in S
n.

Output: The minimal set of cogenerators of the order ideal O \ 〈t〉.
1: D := ∅
2: foreach c in C do
3: if t divides c then
4: for i = 1 to n do
5: if xi divides t then
6: D := D ∪ { c

xi
}

7: end if
8: end for
9: end if

10: end foreach
11: Let A be the set of the minimal elements in (C ∪ D) \ 〈t〉 w.r.t. division.
12: return A

Algorithm 3. (Order Ideal Minus a Monomial Ideal)
Input: The minimal set of cogenerators C ′ of an order ideal U in S

n, a set of
squarefree terms T .
Output: The minimal set of cogenerators C of the order ideal U \ 〈T 〉.
Requires: Algorithm 2.
1: C := C′

2: foreach t in T do
3: if t ∈ 〈C′〉OI then
4: C :=Algorithm 2(t, C)
5: end if
6: end foreach
7: return C

we formulate the following definitions which are analogous to the rewriting rules
in the Gröbner basis theory (see [15, Definition 2.2.1]).

Definition 1. Let V ⊆ Bn, and let b, r, b′ ∈ Bn.

(a) We say that b linearly LTσ-reduces to b′ in one step using r if LTσ(b) =
LTσ(r) and b′ = a + r. We write b

r−→ b′.
(b) We say that b linearly LTσ-reduces to b′ using V if there exist vi ∈ V for

i = 1, . . . , k and b1, . . . , bk−1 ∈ Bn such that b
v1−→ b1

v2−→ . . .
vk−1−−−→ bk−1

vk−→
b′. We write b

V−→ b′.
(c) A polynomial b with the property that there is no r ∈ V such that b

r−→ b′ for
some b′ ∈ Bn is called linearly LTσ-irreducible with respect to V .

Obviously, we have b
b−→ 0 for any polynomial b. The following example shows

us that the result of a sequence of linear LTσ-reductions is not uniquely deter-
mined in general.



Integrating Algebraic and SAT Solvers 151

Algorithm 4. (Checking the Border)
Input: Cogenerators C ′ of an order ideal U in S

n, cogenerators D of an order
ideal O in S

n.
Output: True if ∂O sf ⊆ U , False otherwise; a set of squarefree terms C such
that 〈C〉OI = 〈C ′ ∪ ∂O sf〉OI.
1: a := True

2: B := ∅
3: foreach d in D do
4: for i = 1 to n do
5: d′ := xid
6: if d′ ∈ S

n and d′ /∈ 〈C′〉OI then
7: B := B ∪ {d′}
8: a := False

9: end if
10: end for
11: end foreach
12: Let C be the set of the minimal elements in (C′ ∪ B) w.r.t. division.
13: return (a, C)

Example 1. Let V = {x1x2 + 1, x1x2, x1 + 1} ⊆ B2. Then x1x2 + x1
x1x2+1−−−−−→

x1 + 1 x1+1−−−→ 0, and thus x1x2 + x1
V−→ 0. On the other hand, x1x2 + x1

x1x2−−−→
x1

x1+1−−−→ 1, and thus x1x2 + x1
V−→ 1.

If we would like to have unique linear LTσ-reducers (and hence unique linear
LTσ-reductions), the set V has to be linearly LTσ-interreduced.

Proposition 1. Let V be a linearly LTσ-interreduced set of Boolean polyno-
mials. Let b, b′ ∈ Bn such that b

V−→ b′. Then the polynomial b′ is uniquely
determined.

Proof. There exists exactly one element v1 ∈ V such that LTσ(b) = LTσ(v1),
because the leading terms of the elements of V are pairwise distinct. Let b1 =
b − v1. We have b

v1−→ b1. There exists at most one element v2 ∈ V such that
LTσ(b1) = LTσ(v2). If there is no such v2, the element b1 is the unique linear
LTσ-reduction of b. Otherwise, we continue with b2 = b1 − v2 in the same way,
and the result follows by induction. 
�

The following proposition gives us another useful property of a linearly LTσ-
interreduced set of Boolean polynomials.

Proposition 2. Let V be a linearly LTσ-interreduced set of Boolean polynomi-
als, and let b, r ∈ Bn. Then we have b

V−→ 0 if and only if b ∈ 〈V 〉F2 .

Proof. First we prove “⇒”. By definition, there exist v1, . . . , vk ∈ V and bi ∈ Bn

for i = 1, . . . , k − 1 such that b
v1−→ b1

v2−→ . . .
vk−1−−−→ bk−1

vk−→ 0. Hence we get
b = v1 + · · · + vk in Bn, and henceforth b ∈ 〈V 〉F2 .



152 J. Horáček et al.

Conversely, let b = v1+ · · ·+vk for some pairwise distinct elements v1, . . . , vk

in V . Because V is linearly LTσ-interreduced, there exists a unique index i1 ∈ N

with 1 ≤ i1 ≤ k such that LTσ(vi1) = LTσ(b). Hence b
vi1−−→ (b − vi1). There

exists a unique i2 ∈ N with 1 ≤ i2 ≤ k such that LTσ(vi2) = LTσ(b − vi1). By
induction we create a zero linear LTσ-reduction chain starting from b and having
linear LTσ-reducers vi1 , . . . , vik ∈ V . 
�
Example 2. Let V = {x1x2 + x1, x1x2 + x2} ⊆ B2. We can see that x1 + x2 ∈
〈V 〉F2 , but x1 + x2 is linearly LTσ-irreducible with respect to V .

We are now ready to introduce and analyze Algorithm 5 for computing suc-
cessive extensions of linearly LTσ-interreduced sets. As a pivoting strategy for
the reduction process, we first consider Boolean polynomials of smallest degree
and among them the ones having smallest support. Algorithm 5 will be applied
in Algorithm 8 in the next section.

Definition 2. Let f, g ∈ Bn. We write f ≺ g if and only if deg(f) < deg(g), or
deg(f) = deg(g) and #Supp(f) < #Supp(g).

Algorithm 5. (Extensions of Linearly LTσ-Interreduced Tuples)
Input: A non-zero Boolean polynomial b′, a linearly LTσ-interreduced set of
Boolean polynomials V ′, and a degree compatible term ordering σ.
Output: A set V ⊆ Bn such that V is linearly LTσ-interreduced and 〈V 〉F2 =
〈V ′ ∪ {b′}〉F2 .
1: b := b′, V := V ′

2: while there exists r ∈ V with LTσ(r) = LTσ(b) do
3: b := b + r
4: end while
5: if b �= 0 then
6: V := V ∪ {b}
7: end if
8: return V

Proposition 3. Algorithm 5 returns a linearly LTσ-interreduced list V such
that 〈V 〉F2 = 〈V ′ ∪ {b′}〉F2 holds.

Proof. In Step 2 we search for a unique polynomial in V ′ which has the same lead-
ing term as b. If such a polynomial does not exist, the polynomial b is appended
to V in Step 6.

The linear LTσ-reduction chain is constructed in Steps 2–4. If b′ V ′
−→ 0, then

b′ ∈ 〈V ′〉F2 ⊆ 〈V 〉F2 by Proposition 2. If we have b′ V ′
−→ b �= 0, then we have

b′ ∈ V by Step 6. 
�



Integrating Algebraic and SAT Solvers 153

4 The Boolean Border Basis Algorithm

To start with, we recall the definition of a Boolean O-border basis (see [11]).

Definition 3. Let P = F2[x1, . . . , xn], let O = {t1, . . . , tμ} be an order ideal in
S

n, and let ∂O sf = {b1, . . . , bν} be its squarefree border. Let I ⊆ F2[x1, . . . , xn]
be an ideal containing the field ideal F = 〈x2

1 + x1, . . . , x
2
n + xn〉.

(a) A set of polynomials G = {g1, . . . , gν} is called a Boolean O-border pre-
basis if gj = bj +

∑μ
i=1 cij ti with c1j , . . . , cμj ∈ F2 for j = 1, . . . , ν.

(b) A Boolean O-border prebasis G ⊂ I is called a Boolean O-border basis
of I if the residue classes O = {t̄1, . . . , t̄μ} in P/I form an F2-basis of P/I.

Let us motivate the idea of the BBBA using the problem of finding the F2-
rational solutions of a Boolean system f1 = · · · = fs = 0. Let V = {f1, . . . , fs}.
Define the ideal I = 〈f1, . . . , fs〉 ⊆ Bn. Suppose that the system has a unique
F2-rational solution. (For instance, this is common in the scenario of algebraic
attacks.) We are looking for a set of linear polynomials G ⊆ I such that G is a
linearly LTσ-interreduced basis of 〈G〉F2 and #Supp(G) = #G. Hence the goal
is to create new linearly independent linear polynomials in I and to keep the
support of polynomials in the system as small as possible at the same time.

Given a set of Boolean polynomials V = {f1, . . . , fs}, the BBBA generates
new polynomials by forming and linearly LTσ-interreducing V (+) = V ∪ x1V ∪
· · · ∪ xnV . Note that the multiplications are done in Bn. Every iteration of
V (+) is then followed by linear LTσ-interreduction. One could repeat these two
operations in order to obtain the desired basis. On the other hand, this approach
clearly leads to an exponentially large amount of work since all polynomials in
V are multiplied by n indeterminates.

Thus the operation V (+) in the BBBA is restricted by the order ideal U .
The order ideal U is called the universe and U is initially cogeneratored by⋃

i Supp(fi). The V (+) operation is restricted to polynomials that have their
support contained in the universe. In this way, the growth of V and the support
of the polynomials in V is lower. The universe is extended by the support of
polynomials that have leading terms contained in U . This extension of the uni-
verse is described in Algorithm 6 which is used in Step 12 of Algorithm 8. The
proof of correctness of Algorithm 6 is easy and left to the reader.

The successive computation of V (+) tends to repeat the consideration of
multiples of polynomials that have been already multiplied by all indeterminates.
To avoid this overhead, we introduce the following notion.

Definition 4. A Boolean polynomial f ∈ Bn is said to be covered in a linearly
LTσ-interreduced set V ⊆ Bn if xif

V−→ 0 for all i ∈ {1, . . . , n}.
Covered polynomials should be avoided because they do not introduce any

new leading terms. The definition is equivalent to the condition xif ∈ 〈V 〉F2 for
i = 1, . . . , n by Proposition 2. Checking the latter condition is quite expensive for
large sets V . When we repeat the V (+) operation and linear LTσ-interreduction,
we remember the polynomials that have been worked on as in the following
example.



154 J. Horáček et al.

Algorithm 6. (Extension of the Universe)
Input: Cogenerators C ′ of an order ideal U in S

n, a linearly LTσ-interreduced
set of Boolean polynomials V .
Output: A set of cogenerators C ⊇ C ′ such that LTσ(f) ∈ 〈C〉OI for f ∈ V
implies that f is contained in 〈C〉OI .
1: C := C′

2: repeat
3: D := C
4: foreach f in V do
5: if LTσ(f) ∈ 〈C〉OI and f is not contained in 〈C〉OI then
6: Let A be the set of the minimal cogenerators of 〈C ∪ Supp(f)〉OI .
7: C := A
8: end if
9: end foreach

10: until #D = #C
11: return C

Example 3. Let f = x1x2 + 1 ∈ B2 and V ′ = {f} ⊆ B2. Let us compute V ′(+)

iteratively with successive linear LTσ-interreduction. We compute x1f = x1x2 +
x1

f−→ x1+1 and x2f = x1x2+x2
f−→ x2+1. We get V = {x1x2+1, x1+1, x2+1}.

Then f is covered in V , and therefore multiplication of x1x2+1 by indeterminates
does not yield new linearly independent polynomials during the computation of
V (+). Thus we remember that the polynomial f is covered in V .

Algorithm 7 computes {b}(+) for b a Boolean polynomial and immediately
linearly LTσ-reduces the result against the known polynomials. To keep the
pseudo-code simple, the covered polynomials that are easily discoverable are
stored in the set M ⊆ V . The proof of correctness of Algorithm 7 follows directly
from Proposition 3.

Now we describe a restructured version of the BBBA in Algorithm 8. Its sub-
routine FinalReduction refers to the algorithm in [14, Proposition 17] whose
purpose is to extract the desired border basis from 〈V 〉F2 . Notice that this algo-
rithm can be easily modified to output only the polynomials having squarefree
border terms.

Proposition 4. In the setting of Algorithm 8, Algorithm 8 outputs the Boolean
Oσ(I)-border basis of I.

Proof. It is sufficient to prove that Algorithm 8 is equivalent to Algorithm 4.3
in [11]. The set Va denotes the set of all polynomials in V which are contained
in the current universe U = 〈C〉OI. Note that V may contain polynomials which
are not in 〈C〉OI. Thus the set V in Algorithm 4.3 in [11], corresponds to Va.

The only difference in the initialization (apart from defining the new set M)
occur in Steps 3–5. They are equivalent to linear LTσ-interreducing of the initial
generators V .



Integrating Algebraic and SAT Solvers 155

Algorithm 7. (Plus and Reduce)
Input: A non-zero Boolean polynomial b, a linearly LTσ-interreduced set of
Boolean polynomials V ′, a degree compatible term ordering σ, cogenerators C
of an order ideal U in S

n, and a set M ′ ⊆ V of covered polynomials in V .
Output: A linearly LTσ-interreduced set V such that 〈V ′ ∪ {x1b, . . . , xnb}〉F2 =
〈V 〉F2 if b is contained in 〈C〉OI, V = V ′ otherwise, and a set of covered polyno-
mials M .
Requires: Algorithm 5.
1: V := V ′, M := M ′

2: if b is contained in 〈C〉OI and b /∈ M then
3: for i = 1 to n do
4: b′ := xib
5: Update V by calling Algorithm 5(b′, V, σ).
6: end for
7: M := M ∪ {b}
8: end if
9: return (V, M)

Now we would like to show that Steps 7–13 computes the 〈C〉OI-stabilization
of Va, i.e. that 〈Va〉F2 = 〈V (+)

a 〉F2 ∩ 〈U〉F2 holds in Step 14. The inclusion “⊆” is
trivial. Let us look at the other inclusion. The set M contains polynomials in V
such that M (+) ⊆ 〈V 〉F2 , so elements in M can be omitted in Algorithm 7.

Let U = 〈C〉OI and v ∈ 〈V (+)
a 〉F2 ∩ 〈U〉F2 in Step 14. We know that v

V−→ 0
because 〈V (+)

a 〉F2 ⊆ 〈V 〉F2 after Step 11. This means that v ∈ 〈V 〉F2 by Propo-
sition 2 because V is linearly LTσ-interreduced. We would like to show that
v

Va−→ 0, which is equivalent to v ∈ 〈Va〉F2 . Let v = v1 + · · · + vk, where
{v1, . . . , vk} ⊆ V is a linearly LTσ-interreduced set. Then LTσ(v) = LTσ(vi)
for some 1 ≤ i ≤ k. Since LTσ(vi) = LTσ(v) ∈ U , we get vi ∈ 〈U〉F2 , i.e.
vi ∈ Va after Step 12. We continue with the polynomial v − vi and we get that
{v1, . . . , vk} ⊆ Va by induction.

The loop in Steps 9–11 enlarges V by elements in 〈V (+)
a 〉F2 such that updated

V is linearly LTσ-interreduced. (This is equivalent to Step 5 of Algorithm 4.3
in [11].) Step 12 enlarges the universe in the same way as Steps 6–10 of Algorithm
4.3 in [11] do.

The rest (i.e., Steps 15–17) continues in the same way as Steps 13–16 of
Algorithm 4.3 in [11]. 
�

5 The Integration of the BBBA with a SAT Solver

Many search problems can be encoded as systems of Boolean polynomials or
SAT-instances. Inputs of SAT-solvers are usually in CNF (Conjunctive Normal
Form), i.e. a conjunction of disjunctions of literals, where a literal is either a
logical variable or its negation.



156 J. Horáček et al.

Algorithm 8. The BBBA (Restructured Version)
Input: A set of polynomials V = {f1, . . . , fs} ⊆ Bn such that V ∪ F generates a
0-dimensional ideal I and a degree compatible term ordering σ.
Output: The polynomials of the Boolean Oσ(I)-border basis of I where Oσ(I) =
S

n \ LTσ(I).
Requires: Algorithms 3, 4, 5, 6, 7, FinalReduction.
1: V := ∅, M := ∅
2: Let C be a set of the minimal cogenerators of the order ideal 〈⋃s

i=1 Supp(fi)〉OI.
3: for i = 1 to s do
4: Update V by calling Algorithm 5(fi, V, σ).
5: end for
6: repeat
7: repeat
8: V ′ := V
9: foreach f chosen in the increasing order according to “≺” in V ′ do

10: Update (V, M) by calling Algorithm 7(f, V, σ, C, M).
11: end foreach
12: C :=Algorithm 6(C, V ).
13: until #V = #V ′

14: D := Algorithm 3(C, LTσ(V )).
15: Update (a, C) by calling Algorithm 4(C, D).
16: until a = True

17: Apply FinalReduction(V, 〈D〉OI) and return the result.

One can solve the same problem with the BBBA or a SAT solver individually.
There exist conversion methods that transform a Boolean system to a CNF
formula (and vice versa) such that the F2-rational zeros of the system correspond
to the satisfying assignments of the logical formula. Thus we may run both
solvers in parallel and let them interchange the “new information”, or one solver
can dynamically help the another one with a certain subproblem, etc. We will
focus on the scenario when an algebraic solver helps a SAT solver because it
provides the best results according to our initial experiments. For more details
on conversions, see [10].

Previously, we had handled the interaction of two solvers manually. During
our experiments, several examples were observed where one solver is sped up
by utilizing information derived by the other. Based on these observations, the
communication was automated with a view towards optimizing the achievable
gains.

The integration is tailored to be applicable for most SAT solvers. For our
experiments, we used the SAT solver antom [16]. Modern SAT solvers are mainly
based on CDCL. They produce many conflict clauses which contain new infor-
mation that can be potentially used in the BBBA after a conversion. On the
other hand, any new polynomial found in the ideal by the BBBA can be con-
verted and sent to a SAT solver. To reduce the amount of information that needs
to be transferred, we transmit only short clauses and short polynomials of a low



Integrating Algebraic and SAT Solvers 157

degree. Moreover, an additional filtering technique has been developed to fur-
ther reduce the number of clauses that are handled by the BBBA. This selection
strategy makes the BBBA sufficiently fast to keep up with the SAT solver. In this
way the BBBA is not stuck with computations which are potentially outdated
and irrelevant for the SAT solver by the time they are finished.

Description of the integration. Assume that the SAT solver is running on
a given CNF in the background. Our approach is divided into 7 steps (viewed
from the BBBA side) which repeat until the SAT solver stops:

1. Receiving clauses. The SAT solver sends a set of new conflict clauses C that
it has generated to the BBBA.

2. Clause filtration. We define a subset C ′ ⊆ C, where C ′ contains clauses c ∈ C
such that there exist c′ ∈ C with c �= c′ that shares at least one variable with
c. We buffer only the first 10 clauses on an as-they-come basis.

3. Converting clauses to polynomials. We use the standard conversion [10, Algo-
rithm 1] to produce Boolean polynomials from the selected clauses.

4. Computing a border basis. We call Algorithm 8 on the output of the previ-
ous step. We restrict the sets of indeterminates of the Boolean ring to the
indeterminates actually appearing in the input polynomials. We do not apply
FinalReduction.

5. Polynomial filtration. We choose only linear, quadratic or cubic polynomials
produced by Algorithm 8 that are different from the input of the BBBA.
Among them, we select polynomials with the smallest support.

6. Converting polynomials to clauses. We convert these polynomials to clauses
via the (sparse) truth-table method described in [10, Example 1]. We buffer
only the first 100 clauses on an as-they-come basis.

7. Sending the clauses. We send these clauses to the SAT solver and go to Step 1.

6 Design of the Communication

To combine the power of the SAT solver with the advanced reasoning of the
BBBA, a severe communication challenge has to be overcome. While it would
be possible to create a fully integrated BBBA-SAT hybrid solver, the mainte-
nance of such a solver would be difficult and the implementation of new features
into either base solver challenging. Therefore, a communication framework that
allows the exchange of data between the border basis and the SAT solver is devel-
oped instead. The design of this communication layer focused on two objectives:
1. The overhead for the data transfer must be low. 2. The base solvers should
be modified as little as possible.

To achieve the first design goal, a shared memory communication approach
is chosen. By defining a shared memory region that is accessible to both solvers,
large amounts of data can be transmitted at extremely high speeds. To sat-
isfy the second objective, the communication is restricted to consist only of
clauses. Furthermore, the shared memory communication is implemented with
the help of the Boost Interprocess Library [9]. This library allows different



158 J. Horáček et al.

processes to access a common, shared memory region. Thus, the SAT solver and
the BBBA can be executed independently and simply access the same shared
memory region.

The communication itself is combined into a handler class that performs the
generation of the shared memory region and the coordination and synchroniza-
tion of the data access. It furthermore provides a simple interface for the sending
and receiving of clauses. The handler class only needs to be instantiated by the
solvers to gain access to the shared memory region.

When the BBBA and the SAT solver are combined, there are two instances
of the shared memory manager that are communicating. Apart from the ini-
tialization of the shared memory region that is performed at the start of the
application, these instances behave exactly in the same way. For simplicity, the
two managers are referred to as m1 and m2 here. To allow for an efficient commu-
nication, each manager utilizes its own shared memory area for outgoing clauses,
o1 and o2. This enables a fast full duplex communication, as each manager can
send and receive at the same time.

When m1 is asked to transmit a clause to m2, it first stores the clause in
a local queue. The next clause of the local queue is transferred to the shared
region o1 when m2 indicates that it read the previously shared clause from that
area. Once the clause has been written to o1, m1 informs m2 that a new clause
is available. The manager m2 then copies the clause from o1 to its own memory
region and marks the clause as read. Thus, the next clause in the queue of m1

can be transmitted.
To avoid any idle waiting in the background, the check for new clauses and

the transmission of the next clause are only performed when the solvers update
their shared memory handler.

7 Modifications of the SAT Solver

The SAT solver constantly generates new conflict clauses. The shear volume
of conflict clauses makes it unfeasible to share all of them with the BBBA.
Instead, only conflict clauses below a certain size threshold are transmitted. A
new conflict clause is transmitted immediately after it has been generated. This
modification adds only a single line of code to the solver.

Receiving new clauses is slightly more challenging because of the way clauses
are stored and considered in the solver antom [16]. For efficiency reasons, the first
literal of every clause that is not satisfied must be free (i.e., currently not assigned
to a value). Therefore, each new clause that is received from the BBBA is first
sorted and then added. Depending on the variable assignment that is currently
under consideration by the SAT solver, a new clause might, furthermore, be
unsatisfied at the moment. In this case, the solver backtracks until the clause
is not unsatisfied anymore. Here the new clause acts similar to a conflict clause
and guides the solver away from unsatisfied regions of the search space. The
additional tasks that are required to handle a received clause are placed into a
new function. Thus, the main SAT solver code only needs to be extended by a
single line of code that checks for the arrival of new clauses.



Integrating Algebraic and SAT Solvers 159

The shared memory handler is updated once after every decision. This is suf-
ficiently often to receive any new clauses, but does not add any undue overhead
to the solver.

Overall, the SAT solver is modified only to a very small extent. Hence the
solver can be freely developed without worrying about complex dependencies.
Similarly, it should be comparatively easy to add the presented communication
layer to a different SAT solver, should the need arise.

8 Experiments and Timings

To evaluate the combination of BBBA and antom, two different kinds of experi-
ments have been performed. Timings in this paper were obtained on a computer
under Linux having a 2.60 GHz Intel Core i7-5600U CPU and a total of 16 GB
RAM. We note here that antom is deterministic, i.e. it gives the same result on
the same input for each run.

8.1 Manual Combination of the Information

The first set of experiments is meant to showcase the general usefulness of the
information that is derived by the BBBA for the SAT solver. Let C be a CNF
input instance for antom. We convert C into a set of Boolean polynomials S
via the standard conversion. Next we run the BBBA for 5 min and then stop
the execution. We select one linear polynomial f in V manually and convert f
back to CNF via the truth-table method. Let C ′ be its result. We run antom
twice: once with the input C and then with the input C ∧ C ′. The timings in
Table 1 illustrates the speed-up obtained by manual section of extra information
provided by the BBBA.

Table 1. Comparison of timings of antom on the Small Scale AES instances in [8]
without vs with extra clauses corresponding to a linear polynomial.

CNF instances antom antom + lin. poly

AES-2-1-2-8 11.80 3.50

AES-2-2-1-8 111.59 88.15

AES-2-2-4-4 196.06 21.76

AES-1-2-4-8 666.93 209.11

AES-2-4-2-4 3997.91 1432.24

8.2 Automatic Combination of the Information

For the second set of experiments, the newly developed Algorithm 8 and the inte-
gration framework with antom in C++ as described in Sect. 5 were used. In Table 2
we present the timings of this automation on various benchmarks. Instances



160 J. Horáček et al.

factoringx, y were generated by [2]. They encodes the factoring problem for
x · y. The other benchmarks encode algebraic attacks or algebraic fault attacks
on the cryptosystems Small Scale AES and LED-64. For the full description of
these benchmarks, we refer to [4,8]. The timeout limit was set to 1200 s.

Table 2. Timings of the integration of the BBBA with antom vs vanilla antom for
various SAT instances.

CNF instances antom BBBA + antom

factoring81551,100057 0.23 0.22

AES-2-2-4faultInNibble1with1faultyBits 3.12 2.35

factoring3981643,3981641 7.83 6.91

factoring2190823,2190821 19.53 74.25

factoring7367627,7367621 29.18 146.13

factoring12619463,12619427 40.43 101.34

AES-4-4-4faultInNibble1with4faultyBits 41.15 55.87

LED64faultInNibble1with1faultyBits 45.70 55.38

AES-4-4-4faultInNibble1with1faultyBits 49.02 48.61

factoring5160011,5160007 63.98 55.47

factoring5621809,5621809 81.54 110.07

factoring4752977,4752949 207.18 189.58

factoring5308571,5308553 282.91 37.22

AES-2-2-4-4algebraicCNF 268.70 235.39

factoring49987277,49999553 337.58 45.29

factoring12598967,12598951 441.88 78.60

factoring4593761,4593737 527.22 10.11

factoring5287813,5287801 605.76 102.48

factoring5620907,5620907 653.63 5.04

factoring10000079,10000019 >1200 760.41

During our experiments we found examples where the integration was slower
than the SAT solver by itself. In practice, we therefore suggest to run the SAT
solver alone on one machine and the integration in parallel on another machine.
In this way, we cannot be “unlucky” and we will always profit from the best tim-
ings. This is particularly relevant in cryptanalytic scenarios where the solution
of an instance implies breaking a cryptosystem.

Notice that the timings of the integration of the two solvers are sometimes
not stable, i.e. two timings for the same instance may differ substantially. These
differences occur because new clauses are added at different points in time.

The filtration techniques described in Sect. 5, as well as the integration itself,
are still preliminary. Our next goal is to develop deeper understanding of the syn-
ergy of both solvers. The main difficulty is that SAT solvers use various heuristics



Integrating Algebraic and SAT Solvers 161

for literal assignment and for the choice on what clause to work on next. This
makes it very hard to analyze which extra clauses from the BBBA affect the tim-
ings most. Nonetheless, our results show that the additional information from
the BBBA already greatly increases the speed of the SAT solver.

Acknowledgments. We would like to express our gratitude to Tobias Schubert for
providing us with the source code of the SAT solver antom. This work was financially
supported by the DFG project “Algebraische Fehlerangriffe” [KR 1907/6-1].

References

1. Bard, G., Courtois, N., Jefferson, C.: Efficient methods for conversion and solution
of sparse systems of low-degree multivariate polynomials over GF(2) via SAT-
solvers. In: IACR Cryptology ePrint Archive (2007). https://eprint.iacr.org/2007/
024.pdf

2. Bebel, J., Yuen, H.: Hard SAT instances based on factoring. In: SAT Competition
2013: Solver and Benchmark Descriptions, University of Helsinki, p. 102 (2013)

3. Brickenstein, M.: Boolean Gröbner Bases: Theory, Algorithms and Applications.
Logos Verlag, Berlin (2010)

4. Burchard, J., Gay, M., Messeng Ekossono, A.S., Horáček, J., Becker, B., Schubert,
T., Kreuzer, M., Polian, I.: AutoFault: towards automatic construction of algebraic
fault attacks. In: Proceedings of Conference on Fault Diagnosis and Tolarence in
Cryptography (FDTC 2017), Taipei (2017, to appear)

5. Burchard, J., Messeng Ekosonno, A.-S., Horáček, J., Gay, M., Becker, B.,
Schubert, T., Kreuzer, M., Polian, I.: Towards mixed structural-functional models
for algebraic fault attacks on ciphers. In: Proceedings of International Verification
and Security Workshop (IVSW 2017) (2017)

6. Condrat, C., Kalla, P.: A Gröbner basis approach to CNF-formulae preprocessing.
In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 618–631.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71209-1 48

7. Dreyer, A., Nguyen, T.H.: Improving Gröbner-based clause learning for SAT solv-
ing industrial sized Boolean problems. In: Young Researcher Symposium (YRS)
(Kaiserslautern 2013), Fraunhofer ITWM, pp. 72–77 (2013)

8. Gay, M., Burchard, J., Horáček, J., Messeng Ekossono, A.S., Schubert, T., Becker,
B., Kreuzer, M., Polian, I.: Small scale AES toolbox: algebraic and propositional
formulas, circuit-implementations and fault equations. In: Conference on Trust-
worthy Manufacturing and Utilization of Secure Devices (TRUDEVICE 2016),
Barcelona (2016)

9. Gaztanaga, I.: The Boost Interprocess Library, version 1.63.0. www.boost.org/doc/
libs/1 63 0/doc/html/interprocess.html

10. Horáček, J., Kreuzer, M.: On conversions from CNF to ANF. In: 2th Interna-
tional Workshop on Satisfiability Checking and Symbolic Computation, SC-square,
Kaiserslautern (2017)

11. Horáček, J., Kreuzer, M., Messeng Ekossono, A.S.: Computing Boolean border
bases. In: Symbolic and Numeric Algorithms for Scientific Computing (SYNASC
2016), Timisoara, pp. 465–472. IEEE (2016)

12. Horáček, J., Kreuzer, M., Messeng Ekossono, A.S.: A signature based border basis
algorithm. In: Conference on Algebraic Informatics, CAI, Kalamata (2017)

https://eprint.iacr.org/2007/024.pdf
https://eprint.iacr.org/2007/024.pdf
https://doi.org/10.1007/978-3-540-71209-1_48
www.boost.org/doc/libs/1_63_0/doc/html/interprocess.html
www.boost.org/doc/libs/1_63_0/doc/html/interprocess.html


162 J. Horáček et al.

13. Jovanovic, P., Kreuzer, M.: Algebraic attacks using SAT-solvers. Groups Complex.
Cryptol. 2, 247–259 (2010)

14. Kehrein, A., Kreuzer, M.: Computing border bases. J. Pure Appl. Algebra 205(2),
279–295 (2006)

15. Kreuzer, M., Robbiano, L.: Computational Commutative Algebra 1. Springer, Hei-
delberg (2000)

16. Schubert, T., Reimer, S.: Antom (2016). https://projects.informatik.uni-freiburg.
de/projects/antom

17. Zengler, C., Küchlin, W.: Extending clause learning of SAT solvers with boolean
Gröbner bases. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.)
CASC 2010. LNCS, vol. 6244, pp. 293–302. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-15274-0 26

https://projects.informatik.uni-freiburg.de/projects/antom
https://projects.informatik.uni-freiburg.de/projects/antom
https://doi.org/10.1007/978-3-642-15274-0_26
https://doi.org/10.1007/978-3-642-15274-0_26

	Integrating Algebraic and SAT Solvers
	1 Introduction
	2 Algorithms for Basic Operations with Order Ideals
	3 Linear Interreduction for Boolean Polynomials
	4 The Boolean Border Basis Algorithm
	5 The Integration of the BBBA with a SAT Solver
	6 Design of the Communication
	7 Modifications of the SAT Solver
	8 Experiments and Timings
	8.1 Manual Combination of the Information
	8.2 Automatic Combination of the Information

	References


