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Preface

Mathematical Aspects of Computer and Information Sciences (MACIS) is a series of
biennial conferences focusing on research in mathematical and computational aspects
of computing and information science. It is broadly concerned with algorithms, their
complexity, and their embedding in larger logical systems. At the algorithmic level
there is a rich interplay along the numerical/algebraic/geometrical/topological axes. At
the logical level, there are issues of data organization, interpretation, and associated
tools. These issues often arise in scientific and engineering computation where we need
experiments and case studies to validate or enrich the theory. At the application level,
there are significant applications in the areas of mathematical cryptography, machine
learning, and data analysis, and the various combinatorial structures and coding theory
concepts that are used in a pivotal role in computing and information sciences. MACIS
is interested in outstanding and emerging problems in all these areas. Previous MACIS
conferences have been held in Beijing (2006, 2011), Paris (2007), Fukuoka (2009),
Nanning (2013), and Berlin (2015). MACIS 2017 was held at the University of
Applied Sciences Technikum Wien located in the capital of Austria.

We are grateful to the track chairs and the Program Committee for their critical role
in putting together a very successful technical program, especially under strict dead-
lines. We also wish to extend our gratitude to all MACIS 2017 conference participants
– all of them contributed to making the conference a success. The conference would not
have been possible without the hard work of the local organizer from SBA Research,
Bettina Bauer. SBA Research is Austria’s leading center dedicated to information
security. One of its core research areas focuses on mathematical aspects of information
security. We are extremely fortunate to have received the generous support of our
sponsors: University of Applied Sciences Technikum Wien, Zuse Institute Berlin (in
particular, we are thankful to Winfried Neun for his efforts toward transferring the past
MACIS budget to this edition of MACIS), SBA Research, and the Vienna Convention
Bureau. Last but not least, we are thankful to the two invited speakers, Bruno Buch-
berger (RISC, Johannes Kepler University, Austria) and Dongming Wang (Beihang
University, China and CNRS, France), for honoring the conference with their partic-
ipation and stimulating talks.

The volume contains 36 refereed papers (28 regular and 8 short papers) carefully
selected out of 67 total submissions (53 regular, 14 short); thus, MACIS 2017 has an
overall acceptance rate of 54%. The papers are organized in different categories cor-
responding to four tracks featured in the MACIS 2017 conference. The topics of the
MACIS 2017 tracks cover a wide array of research areas, as follows:

Track 1: Foundation of Algorithms in Mathematics, Engineering and Scientific
Computation
Track Chairs: Matthew England, Jonathan Hauenstein, Laura Kovács, Elias
Tsigaridas



Track 2: Combinatorics and Codes in Computer Science
Track Chairs: Daniel Augot, Alexander May, Alfred Wasserman
Track 3: Data Modeling and Analysis
Track Chairs: Xiaoyu Chen, Joachim Giesen, Giorgos Kollias
Track 4: Mathematical Aspects of Information Security and Cryptography
Track Chairs: Jan Camenisch, Stefan Dziembowski, Guenael Renault

We wish to thank all the track chairs for their hard work in putting together these
tracks. Last but not least, we thank the Springer management and production team for
their support.

October 2017 Johannes Blömer
Ilias S. Kotsireas

Temur Kutsia
Dimitris E. Simos
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Automated Reasoning for Knot Semigroups
and π-orbifold Groups of Knots

Alexei Lisitsa1(B) and Alexei Vernitski2(B)

1 Department of Computer Science, University of Liverpool, Liverpool, UK
A.Lisitsa@liverpool.ac.uk

2 Department of Mathematical Sciences, University of Essex, Essex, UK
asvern@essex.ac.uk

Abstract. The paper continues the first author’s research which shows
that automatic reasoning is an effective tool for establishing properties of
algebraic constructions associated with knot diagrams. Previous research
considered involutory quandles (also known as keis) and quandles. This
paper applies automated reasoning to knot semigroups, recently intro-
duced and studied by the second author, and π-orbifold groups of knots.
We test two conjectures concerning knot semigroups (specifically, con-
jectures aiming to describe knot semigroups of diagrams of the trivial
knot and knot semigroups of 4-plat knot diagrams) on a large number of
examples. These experiments enable us to formulate one new conjecture.
We discuss applications of our results to a classical problem of the knot
theory, determining whether a knot diagram represents the trivial knot.

1 Main Definitions

Knot theory is an important part of topology because knots are, in a sense, sim-
plest three-dimensional objects. Studying two-dimensional knot diagrams and
studying algebraic constructions arising from knots are two of the most impor-
tant techniques of knot theory [17]. Frequently (as in this paper) these two
approaches are combined. This paper uses automated reasoning to improve our
understanding of some known and some new algebraic constructions related to
knots and knot diagrams.

1.1 Arcs and Crossings

By an arc we mean a continuous line on a knot diagram from one undercrossing
to another undercrossing. For example, consider the knot diagram t on Fig. 1;

Alexei Lisitsa—Part of this research was carried out during visits by the first named
author to the Department of Mathematical Sciences at the University of Essex in
2016. The visits were financed by a London Mathematical Society Scheme 7 Grant
(ref. SC7-1516-12). This research has been supported by the European Union’s Hori-
zon 2020 research and innovation programme under grant agreement No. H2020-
FETOPEN-2015-CSA 712689 (SC2).

c© Springer International Publishing AG 2017
J. Blömer et al. (Eds.): MACIS 2017, LNCS 10693, pp. 3–18, 2017.
https://doi.org/10.1007/978-3-319-72453-9_1



4 A. Lisitsa and A. Vernitski

it has three arcs, denoted by a, b and c. To denote a crossing on a knot diagram
we shall use notation x � y � z, where x and z are the two arcs terminating at
the crossing and y is the arc passing over the crossing. For example, the crossings
on diagram t are b � a � c, b � a � a and c � a � a.

1.2 Cancellative Semigroups and Knot Semigroups

A semigroup is called cancellative if it satisfies two conditions:

if xz = yz then x = y, and if xy = xz then y = z.

For each given knot diagram d, we define a cancellative semigroup which we call
the knot semigroup of d and denote by Kd; the construction has been introduced
and studied in [25]. To define the knot semigroup of a diagram d, assume that
each arc is denoted by a letter. Then at every crossing x � y � z, ‘read’ two
defining relations

xy = yz and yx = zy.

The cancellative semigroup generated by the arc letters with these defining rela-
tions is the knot semigroup Kd of d. For example, on diagram t we can read
relations ba = ac and ab = ca at the left-top crossing, relations ba = aa and
ab = aa at the right-top crossing and relations ca = aa and ac = aa at the bot-
tom crossing. Using these relations, one can deduce equalities of words in Kt.
In particular, from aa = ba = ca, using cancellation, one can deduce a = b = c,
that is, all generators are equal to one another; in other words, Kt is an infinite
cyclic semigroup.

1.3 Keis

A kei (also known as an involutory quandle) is defined as an algebra with one
binary operation � and three axioms

a � a = a, (a � b) � b = a and (a � b) � c = (a � c) � (b � c).

It is useful to know that every group can be considered as a kei with the operation
g � h = hg−1h. For a given knot diagram d, the kei IQd of the knot is a kei
generated by the arc letters with defining relations x � y = z and z � y = x
for each crossing x � y � z of d. The mnemonic behind notation x � y = z
is expressed in [11]: ‘x under y gives z’. The three axioms of a kei directly
correspond to the three Reidemeister moves [5].

1.4 π-orbifold Groups and Two-fold Groups

For a given knot diagram d, the π-orbifold group Od of the knot is a group
generated by the arc letters with the following relations. For each arc x of the
diagram d, introduce a relation x2 = 1. At every crossing x � y � z, introduce
a defining relation xy = yz (or, equivalently, yx = zy, or yxy = z, or yzy = x).
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Obviously, Od is a factor group of Kd. Denote the generating set of Od, that is,
the set of arcs of d, by A, and consider the natural homomorphism from the free
semigroup A+ onto Od. It is easy to see that for each element g of Od, either
only words of an odd length are mapped to g or only words of an odd length
are mapped to g. Accordingly, let us say that g is an element of an odd (even)
length in the former (latter) case. A subgroup of Od consisting of elements of an
even length is called the fundamental group of the 2-fold branched cyclic cover
space of a knot [20,26]; we shall shorten this name to the two-fold group of a
knot, and shall denote the group by Td.

1.5 Putting These Constructions Together

Consider a simple example. The π-orbifold group Ot3 of the trefoil knot diagram
t3 is the dihedral group D3. The group D3 naturally splits into two types of ele-
ments: 3 rotations and 3 reflections. The rotations form a subgroup of D3, which
is the group T t3, and which happens to be isomorphic to Z3. The reflections are
in a one-to-one correspondence with the arcs of the trefoil knot diagram, and the
subkei of D3 consisting of reflections is IQt3. Generalising this example, one can
notice that every group Od splits into the subgroup Td consisting of elements of
an even length and a subkei consisting of elements of an odd length; this subkei
is related to (and in many natural examples is isomorphic to) the kei of the knot
IQd.

1.6 Other Constructions: Knot Groups and Quandles

If one considers the diagram of a knot as an oriented curve, that is, in the
context of a specific prescribed direction of travel along the curve, another pair
of algebraic constructions can be introduced (whose definitions we shall skip,
because they are not directly related to the topic of the paper). One of them is
the knot group, which is historically the first and the best known construction
(see, for example, Sect. 6.11 in [9] or Chap. 11 in [16]). The other is the quandle
(also known as a distributive groupoid) of a knot; see, for example, [18]. These
two constructions are ‘larger’ than the ones we consider in the sense that the
π-orbifold group is a factor group of the knot group, and the kei is a factor kei
of the quandle.

2 Trivial Knots

Trivial knots can be characterised via algebaic constructions associated with
them, as the following results show.

Fact 1. The following are equivalent:

– A knot is trivial.
– The two-fold group of the knot is trivial [20,26].
– The kei of the knot is trivial [26].
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b

a c

Fig. 1. Knot diagrams t and t3

– The group of the knot is trivial [3].
– The quandle of the knot is trivial [11].

Since the π-orbifold group of a knot is ‘sandwiched’ between the two-fold group
of the knot and the group of the knot, the result also holds for π-orbifold groups.

The unusually simple structure of Kt in the example in Sect. 1 may be related
to the fact that t is a diagram of the trivial knot: it is easy to see that t is not
really ‘knotted’. A general conjecture was formulated in [25]:

Conjecture 1. A knot diagram d is a diagram of the trivial knot if and only if
Kd is an infinite cyclic semigroup.

When Conjecture 1 is fully proved, it will be a natural addition to the list of
results in Fact 1. In this paper we test Conjecture 1 on a series of knot diagrams
and check how efficient the technique suggested by it is at detecting trivial knots.
We conduct three types of computational experiments related to Conjecture 1:

– There are well-known examples of complicated diagrams of the trivial knot.
Given one of these diagrams d, we prove that Kd is cyclic.

– We consider a number of standard diagrams of non-trivial knots. For each of
these diagrams d, we prove that Kd is not cyclic or, equivalently, that Od is
not trivial.

– We can construct complicated diagrams of the trefoil, the simplest non-trivial
knot, by considering the sum of the standard trefoil diagram t3 and of one
the complicated diagrams of the trivial knot. Given a complicated diagram d
of the trefoil, we check how efficiently automated reasoning proves that Kd
is not cyclic.

For comparison, in [6] using automated reasoning was proposed for unknot
detection and experiments with proving and disproving triviality of IQd were
conducted. Yet another technique was used in [7]: the problem of checking if a
knot is trivial was reduced to comparing factor quandles of the knot with families
of pre-computed quandles, and this procedure, in its turn, was reduced to SAT
solving.

2.1 How to Test if a Knot Semigroup Is Cyclic

Consider a knot diagram d with n arcs a1, . . . , an. Let Rd be the set of relations
read on the crossings of d, as defined in Sect. 1.
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The equational theory of the knot semigroup Kd is EKd = Ecs ∪ Rd, where
Ecs is the set of equational axioms of cancellative semigroups (see them listed
explicitly in Subsect. 2.2).

By Birkhoff’s completeness theorem, two words are equal if and only if their
equality can be proved by equational reasoning [1,10]; hence the following state-
ment follows (a similar statement for keis is formulated as Proposition 1 in [6]).

Proposition 1. A knot semigroup Kd of a diagram d with n arcs a1, . . . , an is
cyclic if and only if EKd � ∧i=1...n−1(ai = ai+1), where � denotes derivability
in the equational logic, or, equivalently in the first-order logic with equality.

Proposition 1 suggests a practical way for experimental testing of Conjecture 1.
Given a knot diagram d (represented, for example, by its Gauss code [21]),
translate it into knot semigroup presentation Rd and further into its equational
theory EKd. Then apply an automated theorem prover and disprover to the
problem EKd � ∧i=1...n−1(ai = ai+1).

Note that if a complete prover is used (that is, given a valid formula it even-
tually produces a proof), the described procedure constitutes a semi-decision
algorithm: if a knot semigroup is cyclic then this fact will be eventually estab-
lished. Most common procedure for disproving is a finite model building [4],
which, given a formula, builds a finite model for the formula’s negation, thereby
refuting the original formula. Usually it is possible to ensure finite completeness
of a model builder: given a formula, it eventually produces a finite model refut-
ing it, providing such a model exists. In general, however, due to undecidability
of first-order logic, no complete disproving procedure is available. In particular,
sometimes only infinite models refuting an invalid formula exist; then the model
builder cannot build a model, even it is a complete finite model builder.

2.2 Cyclic Knot Semigroups

We applied automated theorem prover Prover91 [19] to several well-known dia-
grams of the trivial knot, and it has successfully proved that the knot semigroup
is cyclic in each case. To illustrate the approach we present the proof for the
simple diagram t in Sect. 1. The task specification for Prover9 is divided into
assumptions and goals parts. The assumptions part includes cancellative semi-
groups axioms Ecs:

( x ∗ y ) ∗ z = x ∗ ( y ∗ z ) .
x ∗ y = x ∗ z −> y = z .
y ∗ x = z ∗ x −> y = z .

and defining relations for diagram t:

1 We have chosen Prover9 and model builder Mace4 (below), primarily to be able to
compare efficiency of automated reasoning with semigroups with that for involutory
quandles in [6], where the same systems were used. Otherwise the choice is not very
essential and any other automated first order (dis)provers could be used instead.
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a ∗ a = a ∗ c . c ∗ a = a ∗ b .
b ∗ a = a ∗ a . a ∗ a = c ∗ a .
a ∗ c = b ∗ a . a ∗ b = a ∗ a .

The goals part is

( a = b) & (b = c ) .

For this task Prover9 produces the proof of length 14 in 0.05 s. Table 1
presents the results for several well-known diagrams of the trivial knot. Time
for the proof search grows with the size of the diagram. The diagram Ochiai,
II (45 crossings) is a distinctive outlier: for some reason, the proof search for it
took more than 8000 s, comparing with 368 s for Haken Gordian diagram with
141 crossings. We do not understand the reasons of why Ochiai, II diagram is so
difficult for the automated proof. We are planning to explore this case further
and to apply various automated provers and strategies to it.

Table 1. Proving that semigroups of diagrams of the trivial knot are cyclic

Name of unknot Reference # of crossings Time, s

Culprit [13] 10 0.4

Goerlitz [12] 11 2.5

Thistlethwaite [24] 15 6.1

Ochiai, I [22] 16 14.85

Freedman [23] 32 38.2

Ochiai, II [22] 45 8458.6

Ochiai, III [22] 55 195.2

Haken Gordian [15] 141 368

2.3 Non-cyclic Knot Semigroups: Small Knots

We applied an automated model builder Mace4 [19] to all standard knot dia-
grams with up to 9 crossings (a table defining these knots can be found, for
example, as Appendix 1 of [17]). The word model in this case means a finite non-
cyclic factor semigroup of the diagram’s knot semigroup. It is useful to note that
since every finite cancellative semigroup is a group, Mace4 actually finds a group
model. We illustrate the approach by considering the simplest untrivial knot, the
trefoil knot (diagram t3 in Sect. 1, entry 31 in Table 2). The task specification
for Mace4 includes the cancellative semigroup axioms (as in Subsect. 2.2) and
the defining relations for the knot semigroup of the trefoil knot:

a ∗ b = b ∗ c . b ∗ c = c ∗ a . c ∗ a = a ∗ b .
b ∗ a = c ∗ b . c ∗ b = a ∗ c . a ∗ c = b ∗ a .

The goal to disprove is

( a = b) & (b = c ) .
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Mace4 disproves the goal by finding a model in which both the cancellative
semigroup axioms and the defining relations are satisfied, but at the same time,
the goal statement is false. The model found by Mace4 is the dihedral group D3,
which is the knot’s π-orbifold group, as discussed in Subsect. 1.5.

Table 2 shows the results for all standard knot diagrams with up to 9 cross-
ings. For each diagram we list the size of the model found and the time taken to
find this model. The results presented in non-bold font are obtained by running
Mace4 with the default iterative search strategy; that is, the search for a model
starts with the size 2; if no model is found by an exhaustive search of models of a
certain size, the size is increased by 1 and the search continues. Thus, assuming
correctness of Mace4, entries in non-bold font represent smallest possible mod-
els. In all these cases the size of the model is two times the size of a smallest kei
model computed in [6]; this observation has led us to formulating the following
conjecture.

Conjecture 2. Consider a knot diagram d. Suppose the kei of d has a factor kei
of size n. Then the semigroup Kd has a factor semigroup of size 2n.

To add some more details regarding the conjecture, the smallest semigroup model
is frequently the knot’s π-orbifold group, which is frequently (see Fact 2) a dihe-
dral group, and the size of a dihedral group is two times the size of the corre-
sponding dihedral kei (that is, the kei consisting of reflections), which is then
the smallest kei model of the same knot diagram (Proposition 2 in [6], Theorem
3 in [7]). In some other cases (for example, 819 in Table 2, which is not a 4-plat),
the knot’s π-orbifold group is not a dihedral group, but the smallest semigroup
model, which is is a factor group of the knot’s π-orbifold group, happens to be
isomorphic to the dihedral group D3. We don’t know what happens to smallest
model sizes when the smallest semigroup model is not a dihedral group and the
smallest kei model is not a dihedral kei.

Table 2 contains remarks related to Conjecture 2. The entries in bold font
represent the diagrams for which the default iterative strategy of Mace4 has
failed to find a model in 50000 s. In this case we used Conjecture 2 to guess a
possible model size. These entries further split into three categories:

(1) the size is given with a marka, meaning the search has been completed
successfully for this particular size, predicted by Conjecture 2; the conjecture
is confirmed, but the model found is not necessarily minimal;

(2) the size is given with a markb, meaning the search has been done for increas-
ing model sizes and ended successfully, but this was not an exhaustive search,
as a time limit was imposed on search for each size; Conjecture 2 is con-
firmed, but the model found is not necessarily minimal;

(3) the size is given with a question mark and the time is given as N/F for ‘not
found’, meaning neither search strategy has succeeded to find a model in
50000 s; an estimated model size is given as predicted by Conjecture 2.

It is interesting to note that we could not find a model of the predicted size
30 in any entry in the table, as Mace4 search has timed out, although for larger
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values up to 46, Mace4 was able to find a model of predicted size. It might be just
a coincidence, but 30 is the only value in the table which is not two multiplied
by a prime number.

Table 2. Models for the standard knot diagrams with at most 9 crossings.

Knot 31 41 51 52 61 62 63 71

Size 6 10 10 14 6 22 26 14

Time 0.01 0.45 0.30 3.54 0.06 297 1362 5.02

Knot 72 73 74 75 76 77 81 82

Size 22 26 6 34 38a 6 26 34a

Time 339 1378 0.05 20193 5715 0.08 1484 285

Knot 83 84 85 86 87 88 89 810

Size 34a 38a 6 46a 46a 10 10 6

Time 247 1350 0.05 2569 2684 0.53 1.15 0.08

Knot 811 812 813 814 815 816 817 818

Size 6 58? 58? 62? 6 10 74? 6

Time 0.12 N/F N/F N/F 0.08 2.71 N/F 0.09

Knot 819 820 821 91 92 93 94 95

Size 6 6 6 6 6 38? 6 46b

Time 0.06 0.06 0.05 0.28 0.22 N/F 0.20 20316

Knot 96 97 98 99 910 911 912 913

Size 6 58? 62? 62? 6 6 10 74?

Time 0.34 N/F N/F N/F 0.39 0.19 13.10 N/F

Knot 914 915 916 917 918 919 920 921

Size 74? 6 6 6 82? 82? 82? 86?

Time N/F 0.05 0.33 0.16 N/F N/F N/F N/F

Knot 922 923 924 925 926 927 928 929

Size 30? 6 6 30? 94? 14 6 6

Time N/F 0.09 0.09 N/F N/F 65 0.05 0.12

Knot 930 931 932 933 934 935 936 937

Size 30? 10 118? 122? 6 6 30? 6

Time N/F 2.51 N/F N/F 0.09 0.28 N/F 0.17

Knot 938 939 940 941 942 943 944 945

Size 6 10 6 14 14 26a 30? 30?

Time 0.20 6.35 0.20 117 50.22 365 N/F N/F

Knot 946 947 948 949

Size 6 6 6 10

Time 0.37 0.09 0.05 9.47
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2.4 Non-cyclic Knot Semigroups: Sums of Knots

We applied automated finite model builder Mace4 to the sums of all named
trivial knot diagrams from Table 1 with the trefoil diagram in order to test
whether a suitable model can be found by automated reasoning. When applied
to the largest Haken Gordian diagram Mace4 generated an error message2. For
all other sample diagrams the model of the expected size 6 was found (the same
model as in the example presented in Subsect. 2.3). The iterative search starting
with models of size 2 did not always work because larger diagrams timed out at
a 1500 s limit. However, the search through models of size 6 has found a model
in under 0.2 s in all cases. The results are shown in Table 3.

Table 3. Search for models for the sum of a trivial knot and the trefoil

Name of unknot # of crossings in
the sum

Started with size
6 Time, s

Started with size
2 Time, s

Culprit 13 0.09 0.45

Goerlitz 14 0.06 1.39

Thistlethwaite 18 0.03 >1500

Ochiai, I 19 0.08 3.92

Freedman 35 0.09 >1500

Ochiai, II 48 0.14 >1500

Ochiai, III 58 0.12 >1500

Haken Gordian 144 N/A N/A

2.5 Efficiency Comparison

Our experiments demonstrate that automated reasoning using knot semigroups
can be applied for unknot detection (providing that Conjecture 1 is true), but it
is not as efficient as automated reasoning using keis or quandles.

As to recognising a diagram of the trivial knot, automated reasoning on keis
does it in under 1 s for all diagrams in Table 1 (reported in [6]), except Ochiai’s
unknots and Haken unknot. The sharpest difference is the Ochiai, II diagram,
whose kei is proved to be trivial by Prover9 in under 4 s, as compared with more
than 8000 s for semigroups. As to Haken unknot, the kei is proved to be trivial
in about 15 s, as compared with 368 s for semigroups.

As to finding models for non-trivial knots, Mace4 using knot semigroups (or
π-orbifold groups) has reported time out (50000 s) on 23 out of 84 diagrams
in Table 2. The corresponding kei models were found in [6] for all 9-crossing
diagrams with the average time 28.6 s.

An even more efficient automated reasoning procedure for detecting trivial
knots has been obtained in [7] by considering quandles and reducing the problem

2 Fatal Error: mace4: domain element too big.
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of finding a finite factor quandle by to SAT. One reason why detecting trivial
knots with keis and quandles is more efficient in practice than with semigroups
(or π-orbifold groups) is because in many natural examples, the smallest factor
kei of the knot kei is two times smaller than the smallest factor group of the
knot semigroup, as discussed in Conjecture 2.

3 4-plats

A 4-plat knot diagram is a braid with 4 strands whose ends on the left-hand side
and the right-hand side are connected to form one closed curve, as in the example
shown on Fig. 2 (taken from [25]). 4-plat knots, that is, knots represented by
4-plat diagrams, form an important class of knots and are also known as 2-
bridge knots and rational knots. Now we shall introduce some concepts which
we need to formulate Conjecture 3 which aims to describe knot semigroups of
4-plat diagrams.

Fig. 2. A 4-plat and labelling its arcs

Let B ⊆ Zn for some fixed positive integer n. By the alternating sum of a
word b1b2b3b4 . . . bk ∈ B+ we shall mean the value of the expression b1−b2+b3−
b4 + · · ·+(−1)k+1bk calculated in Zn. We shall say that two words u, v ∈ B+ are
in relation ∼ if and only u and v have the same length and the same alternating
sum. It is obvious that ∼ is a congruence on B+. We denote the factor semigroup
B+/∼ by AS(Zn, B) and call it an alternating sum semigroup [25]. For example,
consider an alternating sum semigroup with letters B = {0, 1, 2, 3, 4, 11, 14} in
the arithmetic modulo n = 17. In this semigroup we have 3 ·1 ·4 ·14 = 1 ·11 ·4 ·2
because 3 − 1 + 4 − 14 = 1 − 11 + 4 − 2 = 5 mod 17.

To assign useful numerical labels3 to the arcs of a 4-plat diagram d, label the
two leftmost arcs by 0 and 1, as on the example in Fig. 2. To distinguish between
arcs and their labels, we shall denote the label of an arc x by bx. Propagate the
labelling as follows: moving from the left to the right on the diagram, at each
crossing x � y � z, let bz = 2by − bx. After we have done this at every crossing,
two arcs will get two labels each: in our example, the top-right arc on the diagram
is labelled −6 and 11, and the bottom-right arc on the diagram is labelled 1 and
18. Considering either of the two equalities −6 = 11 or 1 = 18, we conclude that
we should treat the labels as numbers in the arithmetic modulo 17 (hence, for
convenience, −3 can be rewritten as 14). Given the modulus n (n = 17 in our
3 The described procedure is a version of so-called Fox coloring [17]. Note that in

general, labels of some distinct arcs may coincide.
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example) and the set of arc labels B (B = {0, 1, 2, 3, 4, 11, 14} in our example),
consider an alternating sum semigroup AS(Zn, B).

Proposition 2. AS(Zn, B) produced using the procedure above is a factor semi-
group of Kd.

Proof. Consider a mapping from Kd to AS(Zn, B) induced by the rule x 
→ bx,
where x is an arc. The knot semigroup Kd is defined by relations stating that at
each crossing x � y � z we have xy = yz and yx = zy. The two corresponding
equalities are satisfied in AS(Zn, B): indeed, words bxby and bybz both have
length 2; the alternating sum of bxby is bx − by, and since bz = 2by − bx, the
alternating sum of bybz is also bx − by; therefore, bxby = bybz; similarly, bybx =
bzby.

The following result4 is first proved as Proposition 3.2 in [2], or see [14]; the idea
originates from [8].

Fact 2. A knot is a 4-plat knot if and only if its π-orbifold group is dihedral.

Generalising the ‘only if’ part of Fact 2 to knot semigroups, we can state the
following conjecture (first formulated in [25], after having described knot semi-
groups of some subclasses of the class of 4-plat knots):

Conjecture 3. The homomorphism from Kd onto AS(Zn, B) described in Propo-
sition 2 is an isomorphism.

3.1 Defining Relations for an Alternative Sum Semigroup

In Subsect. 3.2 we present experiments which use automated reasoning to prove
Conjecture 3 for a number of 4-plats. Proving the isomorphism becomes possible
if AS(Zn, B) is redefined using defining relations. In this subsection we introduce
an algorithm for finding a finite list of defining relations for an alternating sum
semigroup.

Below we assume that set B contains 0; this is merely a convenience for
simpler notation, and all statements can be rewritten to use another element of
B instead of 0. All words below are assumed to be words over the alphabet B.

Let us say that a word w is zero-ending if its last letter is 0. For every word
w we shall define its canonical form c(w) as the smallest word (relative to the
right-to-left dictionary order) which is equal to w in AS(Zn, B).

Let us say that a pair of sets of words Y,Z is a basis if

1. For every w ∈ Y its canonical form c(w) is not zero-ending;
2. For every w ∈ Z its canonical form c(w) is zero-ending;
3. Every word is either contained in Y or has a suffix contained in Z.

4 We are grateful to José Montesinos (Universidad Complutense de Madrid),
Genevieve Walsh (Tufts University) and Vanni Noferini (University of Essex) for
attracting our attention to this result.
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Theorem 3. Suppose Y,Z is a basis. Then all equalities of words in AS(Zn, B)
can be deduced5 from defining relations w = c(w), where w ∈ Y ∪ Z.

Proof. We shall use the proof by induction on the length of words. For words
of length 1, there is no need to apply the defining relations because none of
words is equal to another word. Now assume that all equalities in AS(Zn, B)
for words shorter than the length we are considering can be deduced from the
defining relations. It is sufficient to prove that for each word v we can deduce
the equality v = c(v). Three cases are possible:

1. Suppose c(v) is not zero-ending. Consider v as a product of two words v = v1v2
and assume that c(v2) is zero-ending; then v is equal to a zero-ending word
v1c(v2), hence, c(v) is also zero-ending; since it is not so, we conclude that
none of suffixes of v has a zero-ending canonical form. Therefore, neither v
nor any of its suffixes is contained in in Z. Hence, v ∈ Y , and the equality
v = c(v) is one of the defining relations.

2. Suppose c(v) is zero-ending and v ∈ Z. Then the equality v = c(v) is one of
the defining relations.

3. Suppose c(v) is zero-ending and v �∈ Z. Then v is a product of two words
v = v1v2 such that v2 ∈ Z. Then c(v2) is zero-ending, and we can represent
it as c(v2) = t0 for some word t. Hence, v = v1t0. On the other hand, since
c(v) is zero-ending, we can represent it as c(v) = s0 for some word s. Thus,
v1t0 = s0; since AS(Zn, B) is cancellative, v1t = s. This is an equality of two
words whose length is less than that of v; thus, by induction, this equality
can be deduced from the defining relations. Therefore, the equality v = c(v)
can be deduced in the order v1v2 = v1t0 = s0, that is, first by applying the
defining relation v2 = c(v2), and then by applying all the defining relations
needed to prove that v1t = s.

Theorem 3 suggests a simple algorithm for building a basis for a given alternating
sum semigroup. Consider all words one after another, starting from the shorter
ones; as you consider a word w, add it to Y if c(w) is not zero-ending, or to
Z if c(w) is zero-ending, or to neither if a suffix of w is contained in Z. When
all possible suffixes of longer words have been added to Z, stop. This algorithm
will produce a basis; however, it would be nice to have an assurance that the
algorithm will terminate; it is provided by the following statement.

Proposition 3. Every sufficiently long word in an alternating sum semigroup
contains a suffix whose canonical form is zero-ending. Hence, each alternating
sum semigroup has a finite basis Y,Z.

Proof. We shall prove that the canonical form of every word w of length L ≥
2n2 is zero-ending. Indeed, there is a letter, say, a, which stands at least at n

5 Note that here we mean the usual semigroup deduction, not a more complicated
one used in cancellative semigroups. It is useful to remind oneself of this, because
knot semigroups are defined using a cancellative presentation, and it makes proving
equalities of words in knot semigroups more involved.
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distinct even positions in w. Notice that in an alternating sum semigroup we
have xyz = zyx for any three letters x, y, z. Applying these equalities as needed,
move n letters a to positions L,L − 2, . . . , L − 2n + 2; thus, we produce a word
w′ which is equal to w such that w′ = vax1ax2 · · · axn−1a for some word v and
letters x1, x2, . . . , xn−1. Notice that in an alternating sum semigroup AS(Zn, B)
the word w′ is equal to w′′ = v0x10x2 · · · 0xn−10. The word w′′ is equal to w
and is zero-ending; therefore, c(w) is zero-ending.

3.2 Experiments

To test Conjecture 3, we considered 4-plat knot diagrams with up to 9 cross-
ings; we restricted ourselves to canonical 4-plat knot diagrams (see, for example,
Proposition 12.13 in [3] and page 187 in [21]), that is, those in which every
crossing is either a clockwise half-twist of strands in positions 1 and 2 or an
anticlockwise half-twist of strands in positions 2 and 3, and the arcs on the left-
hand side of the diagram connect level 1 to level 2 and level 3 to level 4 (like on
the diagram in Subsect. 3). Note that a knot semigroup is defined for a diagram
and not for a knot, and two diagrams of the same knot can have non-isomorphic
semigroups; in our study of Conjecture 3 we consider all individual diagrams.
For instance, the number of distinct knots with 9 crossings is 49. However, when
we consider canonical 4-plat diagrams with 9 crossings, each of 9 crossings can
be in one of two possible positions, between levels 1 and 2 or between levels 2
and 3 on the diagram; in addition to this, the arcs on the right-hand side of the
diagram can be connected in two possible ways: level 1 to level 2 and level 3
to level 4, or level 1 to level 4 and level 2 to level 3. Therefore, we generated
29+1 = 1024 diagrams. Out of these, 664 diagrams were knots, and we confirmed
Conjecture 3 for each of them. Other diagrams are links and not knots, and we
discard them from consideration; knot semigroups of 4-plat links are not alter-
nating sum semigroups (for example, knot semigroups of a class of 4-plat links
is described in Sect. 6 in [25]).

For each diagram d out of these 664 diagrams, we produced an alternating
sum semigroup S = AS(Zn, B) using the procedure described before Propo-
sition 2 (we wrote a Python script to do this). Semigroup S is, according to
Proposition 2, a factor semigroup of the knot semigroup Kd. Thus, to prove
that Kd and S are isomorphic, it is sufficient to show that all defining relations
of S are derivable in EKd, the equational theory of Kd.

We wrote another Python script which finds defining relations for a given
alternating sum semigroup S using the procedure described in Subsect. 3.1 and
outputs the task EKd � ES to be used by Prover9, where ES means the con-
junction of all defining relations of S. The tasks were then passed to Prover9.
Due to a large size of ES , in order to get automated proofs, some tasks had to
be split into up to four subtasks EKd � Ei

S , with ES = ∪iE
i
S . Eventually all

proofs have been obtained with the time limit 1200 s for each task.



16 A. Lisitsa and A. Vernitski

4 Future Research

We are continuing working of proving Conjecture 1. Its ‘if’ part follows from the
observation below. The ‘only if’ part is much more difficult to prove.

Proposition 4. If Kd is an infinite cyclic semigroup then d represents the triv-
ial knot.

Proof. Indeed, if Kd is cyclic then its factor group Od is isomorphic to Z2, whose
subgroup Td is trivial. Since Td is trivial, by Fact 1, d represents the trivial knot.

Among algebraic constructions listed in Fact 1, computational experiments with
keis [6], quandles [7], semigroups and π-orbifold groups (in this paper) have been
conducted. Experiments with groups have been only started in [6], and experi-
ments with two-fold groups (which are smaller and may be easier to manipulate)
can be conducted in the future.

Using semigroups or π-orbifold groups to prove that a knot diagram rep-
resents the trivial knot is a topic for more future research. As discussed in
Subsect. 2.5, this is not the fastest method of proving that a knot is trivial.
However, we have reasons to believe that such proofs, if they are produced by
a specialised prover and properly presented, can be more human-readable than
others (for example, those based on keis). We shall continue studying such proofs
because of new mathematical constructions arising in them and because this is
an impressive example of how complicated computer-generated proofs can be
made human-readable.

5 Technical Details

We used Prover9 and Mace4 version 0.5 (December 2007) [19] and one of two
system configurations:

(1) AMD A6-3410MX APU 1.60 Ghz, RAM 4 GB, Windows 7 Enterprise when
producing Tables 1 and 3 (and results from [6] used in Subsects. 2.3 and 2.5);

(2) Intel(R) Core(TM) i7-4790 CPU 3.60 Ghz, RAM 32 GB, Windows 7 Enter-
prise when producing Table 2 and results in Sect. 3.

We have used default iterative Mace4 search strategy, except for the cases explic-
itly mentioned as using different strategies in Subsects. 2.3 and 2.4. We have
used default search strategies in Prover9, with the following exceptions. For
the results presented in Subsect. 2.2 we have used Knuth-Bendix term ordering
(KBO) instead of default choice of LPO (Lexicographic Path Ordering). In order
to handle large clauses occurring in the proofs reported in Subsect. 3.2 we have
set max weight (maximum weight of clauses) to 8000.

We have published all computer-generated proofs online6.

6 https://zenodo.org/record/1009577, https://doi.org/10.5281/zenodo.1009577.

https://zenodo.org/record/1009577
https://doi.org/10.5281/zenodo.1009577
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Abstract. Arithmetic expression dags are widely applied in robust
geometric computing. In this paper we restructure expression dags by
balancing consecutive additions or multiplications. We predict an asymp-
totic improvement in running time and experimentally confirm the theo-
retical results. Finally, we discuss some pitfalls of the approach resulting
from changes in evaluation order.

1 Introduction

Most theoretical algorithms in the field of computational geometry are based
on the real RAM model of computation and therefore assume exact real num-
ber arithmetic at unit cost. Actual processors cannot represent real numbers
and instead use floating-point arithmetic. Computing exact numerical values is
expensive and not always possible. Luckily, it is also seldom necessary to compute
exact values in order to ensure robustness in geometric algorithms. The Exact
Geometric Computation paradigm instead only demands that the decisions made
in a geometrical algorithm are correct [9,10]. A common technique used for
exact-decisions computation is to store the computation history in an arith-
metic expression dag and then adaptively (re)compute the result with a higher
precision until a verified decision can be made. Several expression-dag-based
number types have been developed with different evaluation strategies. Strate-
gies can be to gradually increase the precision bottom-up (LEA [1]) or fall back to
exact computation (CGAL::Lazy exact nt [8]) if a decision cannot be verified,
or to use a precision-driven1 evaluation (leda::real [2], Core::Expr [5,11],
Real algebraic [6]). All of the mentioned number types suffer from high per-
formance overhead compared to standard floating-point arithmetic.

In this work we make an attempt to improve the performance of dag-based
number types by restructuring the underlying expression dag in certain situa-
tions. Restructuring the expression dag was originally proposed by Yap [10]. To
our knowledge, there is no previous work that actually implements any restruc-
turing strategy. We focus on reducing the depth of an expression dag, i.e. the size

1 This should more correctly be called “accuracy-driven”, but we use the term
“precision-driven” throughout this paper for historical reasons.

c© Springer International Publishing AG 2017
J. Blömer et al. (Eds.): MACIS 2017, LNCS 10693, pp. 19–33, 2017.
https://doi.org/10.1007/978-3-319-72453-9_2
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of the longest path from any node to the root. The accuracy needed at a node
in an expression dag to guarantee a certain error at its root generally increases
with the size of the longest path between the node and the root. Therefore a
decrease in expression depth can be expected to lead to better error bounds at
lower precision and, consequently, to a better performance of dag-based number
types. We restructure the expression dag by “balancing” consecutive additions
and consecutive multiplications, such that the maximum depth of the involved
operators is minimized. By this we also increase the independence of the nodes,
which makes it more feasible to parallelize the evaluation. In this work, however,
we will not elaborate on advantages regarding parallelization.

We provide a theoretical analysis and evaluate our strategy based on the
number type Real algebraic introduced by Mörig et al. [6].

2 Theoretical Foundation

An expression dag is a rooted ordered directed acyclic graph, which is either

1. A single node containing a number or
2. A node representing a unary operation {√

,−} with one, or a binary operation
{+,−, ∗, /} with two, not necessarily disjoint, expression dags as children.

We call an expression dag E′ whose root is part of another expression dag E a
subexpression of E.

Let E be an expression dag, let ◦ ∈ {+, ∗} and let E′ be a subexpression of
E with root r of type ◦. Let T be a connected subgraph of E′, containing r, such
that all nodes in T − r have at most one predecessor in E and are of type ◦.
Then T is a tree and we call T an operator tree. The children of the leaves of T in
E are called operands of T . We restructure E by replacing all maximal operator
trees in E by a balanced operator tree with the same number of operands. For
a single tree, we call this replacement balancing the operator tree. If all maximal
operator trees in E are replaced, we call the process balancing the expression dag.

We determine the asymptotic running time of a single precision-driven eval-
uation before and after balancing the expression dag for a series of additions
or a series of multiplications. Assumptions on the unit costs for the arith-
metic operations and the increase in accuracy are consistent with leda::real,
Real algebraic and partly with Core::Expr.

2.1 Addition

Assume we have a dag-based number type that determines the result of an
addition z = x + y with absolute accuracy q in time Θ(q + log |z|) if x and y are
accurate up to q + c fractional digits, where c is some constant.

Let x1, ..., xn be distinct floating point numbers with exponent ≤ e, e ≥ 0.
We want to determine the running time to compute z =

∑n
i=1 xi with absolute

accuracy q. Any expression dag for z contains an operator tree consisting of all
addition nodes. Assume that the operator tree is a linear list, i.e. the computation
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order is equivalent to x1 +(x2 +(x3 + ...+(xn−1 +xn))). Then the i-th addition
(counting from the root) must be accurate up to qi = q + ic fractional digits and
the magnitude of its result is at most ei = e+ �log(n− i)	. Therefore we get the
time for computing z by adding the time needed on each level as

Tlist(q) = O

(
n−1∑

i=0

(qi + ei)

)

= O

(
n−1∑

i=0

(q + ic + e + log(n − i))

)

= O
(
nq + n2 + ne

)

This bound is tight if all summands have maximum exponent. Now assume the
operator tree is perfectly balanced, i.e. the computation order is equivalent to

((((x1 + x2) + (x3 + x4)) + ...) + (... + ((xn−3 + xn−2) + (xn−1 + xn))))

Then at level i there are 2i additions, which must be accurate up to qi = q + ic
fractional digits. The magnitude of their result is at most ei = e + log n − i. So
the asymptotic bound for the computation time shrinks to

Tbal(q) = O

(
logn∑

i=0

2i(q + ic + e + log n − i)

)

= O (nq + n log n + ne)

2.2 Multiplication

For multiplication we assume the number type computes the result of z = x ∗ y
with absolute accuracy q in time Θ((q+log |z|)log 3) if x is accurate up to q+c+
�log |y|	 and y up to q+c+�log |x|	 fractional digits, where c is some constant. We
determine the running time to compute z =

∏n
i=1 xi with absolute accuracy q.

We consider the operator tree consisting of all multiplication nodes in an
expression dag for z. Let e ≥ 0 be the maximum exponent of x1, ..., xn. In the
unbalanced case the accuracy needed increases by at most c + e with each level
top-down, whereas the maximum exponent of the result increases by e bottom-
up. Assuming that x1, ..., xn are exact, we do not need to increase the accuracy
of the leaves. Then we get

Tlist(q) = O

(
n−1∑

i=0

(qi + ei)log 3

)

= O

(
n−1∑

i=0

(q + i(c + e) + (n − i)e)log 3

)

= O
(
nqlog 3 + nlog 3+1 + nlog 3+1elog 3

)

This bound is tight if x1, ..., xn all have exponent e. When the operator
tree is balanced, the accuracy needed increases by c + ei+1 at level i, where
ei = 2logn−ie, so the requested accuracy at level i is

qi = q + ic +
i+1∑

j=0

2log n−je ≤ q + ic + 2logn+1e



22 M. Wilhelm

Therefore

Tbal(q) = O

(
logn∑

i=0

2i(q + ic + 2logn+1e + 2log n−ie)log 3

)

= O
(
nqlog 3 + n(log n)log 3 + nlog 3+1elog 3

)

If e > 0 the improvement we get from balancing the tree is dominated by the
cost for managing the increasing number of integer digits. If one can expect the
exponent to be bounded from above, the improvement gets asymptotically signif-
icant. Let emax be the largest exponent occurring during the whole computation.
Then

Tlist(q) = O

(
n−1∑

i=0

(q + i(c + emax) + emax)log 3

)

= O
(
nqlog 3 + nlog 3+1 + nlog 3+1elog 3

max

)

whereas

Tbal(q) = O

(
logn∑

i=0

2i(q + i(c + emax) + emax)log 3

)

= O
(
nqlog 3 + n(log n)log 3 + n(log n)log 3elog 3

max

)

The asymptotic bound for Tlist(q) is tight if the values of Θ(n) inner nodes
are of order emax.

3 Implementation

The balancing strategy has been implemented for the dag-based exact-decision
numbertype Real algebraic designed by Mörig et al. [6]. This number type
consists of a single- or multi-layer floating-point-filter [4], which falls back to
adaptive evaluation with bigfloats stored in an expression dag [3]. Balancing is
done at most once at each node, right before the first bigfloat evaluation. Other-
wise, existing results would have to be recomputed after changing the structure
of the dag, which could potentially lead to a massive overhead if subexpres-
sions need to be evaluated during dag construction. Once evaluated nodes are
therefore treated as operands in any subsequent balancing process.

We call evaluations of subexpressions of an expression dag E partial evalua-
tions of E. By preventing evaluated nodes to be part of another operator tree,
frequent partial evaluations during construction can fully negate the benefits of
the balancing strategy. If partial evaluations occur only sporadically, then their
impact on the expression depth of E, i.e. the maximum distance of any node to
its root, is small, since each of the involved subexpressions have been balanced
when they were evaluated for the first time.
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Observation 1. Let E be an expression dag consisting of n additions or n mul-
tiplications and n + 1 bigfloats. Let d be the expression depth of E after its
evaluation. If at most k partial evaluations of E occur before the evaluation of
E, then d ≤ k�log n

k 	.
On the first evaluation of a node that cannot be handled by the floating-

point-filter, the balancing process starts at this node recursively. If the current
node contains an addition or a multiplication and has not be balanced before,
all operands of the maximal operator tree containing this node as root will be
retrieved. If the depth of the operator tree can be reduced, it gets balanced
(cf. Algorithm 1). For almost-balanced trees a slight decrease in depth may not
justify restructuring a large tree. Therefore it might be useful to experimentally
decide on a factor tightening this condition in later implementations.

Algorithm 1. The relevant operator trees are retrieved in the form of an
operand list with an associated depth. By comparing the depth with the
number of operands it gets decided whether the trees should be balanced.
Data: current node node
if node is not balanced then

if node is addition or multiplication then
(operands, depth) = retrieve operands(node)
if depth > �log |operands|� then

balance current operation
end
foreach op ∈ operands do

recurse on op
end

else
recurse on children

end
mark node as balanced

end

The operands get retrieved through a depth-first search. Nodes can be
retrieved more than once and therefore the same node can represent multiple
operands. A node is treated as an operand if one of the following conditions
holds:

1. The node is not of the same type as the current operation (i.e. + or ∗).
2. The node has already been balanced (and therefore initialized).
3. The node has more than one parent.

The third condition is necessary, since the subexpression represented by this
node will be destroyed during balancing. If a full copy of the node would be
created instead, this may lead to an exponential blowup for highly self-referential
structures (cf. Fig. 1).

A similar observation as for the second condition (cf. Observation 1) can be
made. If few operator nodes have more than one parent, the overall impact on
the expression depth is small.
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Fig. 1. An expression dag computing a16 and its exponential expansion that results
from resolving multiple references through copying.

Observation 2. Let E be an expression dag consisting of n additions or n mul-
tiplications and n + 1 bigfloats. Let d be the expression depth of E after its
evaluation. If at most k operator nodes of E have more than one reference, then
d ≤ k�log n

k 	.
We balance an operation by combining two operands to a new operand until

only one node is left by treating the operand vector like a queue (cf. Algorithm2).
Note that this strategy does not preserve the evaluation order of the operands
if the number of operands is not a power of two. This can have consequences
for the running time and may obfuscate the experiments. If operand order is
of importance, it can be preserved by inserting dummy nodes with values 0 for
addition and 1 for multiplication up to the next power of two.

Algorithm 2. The operator tree is restructured by discarding all nodes
except the root and building a new balanced operator tree bottom-up by
repeatedly combining the two smallest subtrees to a new tree.
Data: operand vector operands, operation type ◦, root node root
size = operands.size();
for i = 0 to size − 2 do

operands.add(new Node(operands[2i], operands[2i + 1], ◦))
end
root.left = operands[2 ∗ size − 2];
root.right = operands[2 ∗ size − 1];

4 Experiments

All experiments are run on an Intel Core i5 660 with 8 GB RAM under Ubuntu
16.04 LTS. We use Boost interval arithmetic as floating-point-filter and MPFR
bigfloats for the bigfloat arithmetic. The code is compiled using g++ 5.4.0 with
C++11 on optimization level O3 and linked against Boost 1.62.0 and MPFR 3.1.0.
Test results are averaged over 25 runs each if not stated otherwise. The variance
for each data point is negligible.
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We will perform two simple experiments to evaluate our strategy. In our first
experiment we compute the sum of the square roots of the natural numbers 1
to n with accuracy q.

template <c l a s s NT> void sum_of_sqrts ( const i n t n , const long q){
NT sum = NT (0 ) ;
f o r ( i n t i = 1 ; i <= n ; ++i ) {

sum += sqrt ( NT ( i ) ) ;
}
sum . guarantee_absolute_error_two_to (q) ;

}

The second test computes the generalized binomial coefficient
(√

13
n

)
=

√
13(

√
13−1)···(√13−n+1)
n(n−1)···1

with accuracy q.

template <c l a s s NT> void bin_coeff ( const i n t n , const long q){
NT b = sqrt ( NT (13) ) ;
NT num = NT (1 ) ; NT denom = NT (1 ) ;
f o r ( i n t i = 0 ; i < n ; ++i ) {

num ∗= b − NT ( i ) ;
denom ∗= NT ( i+1) ;

}
NT bc = num / denom ;
bc . guarantee_absolute_error_two_to (q) ;

}

For each test we compare four different implementations. We distinguish
between no balancing (def), balancing only addition (add), balancing only mul-
tiplication (mul) and balancing both addition and multiplication (all).

The sum-of-square-roots test as well as the binomial coefficient test provide
simple examples for when balancing can be of use (cf. Fig. 2). Obviously balanc-
ing multiplication does not have a positive effect on the sum-of-square-roots test
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Fig. 2. Performance gain through balancing for sum of sqrts and bin coeff with a
requested accuracy of q = 50000 for different values of n.
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and balancing addition does not have a positive effect on the binomial coefficient
computation. There is a small overhead in these cases due to the traversal of the
dag. The overhead vanishes in all, since the same procedure is used for both
addition and multiplication.
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Fig. 3. Performance gain through balancing for sum of sqrts and bin coeff with a
requested accuracy of q = 25000. The relative gain is larger than for q = 50000 (cf.
Fig. 2).

The relative benefit of balancing increases if the precision increase due to the
number of operands is large relative to the requested accuracy for the result.
Figure 3 shows the performance gain through balancing for a requested accu-
racy of q = 25000. With 10000 operands, the relative gain is about 42% for
sum of sqrts and 51% for bin coeff compared to 26% and 34% for q = 50000.
The theoretical analysis from Sect. 2 predicts that the absolute performance gain
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Fig. 4. Absolute performance gain through balancing for sum of sqrts and bin coeff

for n = 10000 with different requested accuracies (average over five runs). The absolute
gain is almost independent of q. The relative gain decreases.
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primarily depends on the number of the operands that can be balanced and is
independent from the requested accuracy. The experimental results largely con-
firm this assumption as shown in Fig. 4. Since balancing is done before the first
evaluation, the overhead due to the balancing procedure only depends on the
size of the expression dag and the number of operands.

5 Caveats

When restructuring an expression dag there are some potential pitfalls one
should be aware of. Changing the structure of an expression dag leads to a
change in evaluation order, which may in turn influence the performance. Other
hurdles are even more subtle, since they result from implementation details of
the underlying bigfloat arithmetic. We show examples, where this leads to prob-
lems for balancing. However, the caveats are not restricted to balancing, but
apply to restructuring attempts in general.

5.1 Evaluation Order

When evaluating a dag-based number type recursively, a slight change in expres-
sion order can have an unexpectedly high impact on the evaluation time [7].
Balancing the dag may have a negative impact on the optimal expression order.
One example where this may occur is the computation of the geometric sum∑n

i=0 ri with r < 1.

template <c l a s s NT> void geometric_sum ( const i n t n , const long q){
NT r = sqrt ( NT (13) / NT (64) ) ;
NT ri = NT (1 ) ; NT s = ri ;
f o r ( i n t i=0; i<n ; ++i ){

ri ∗= r ;
s += ri ;

}
s . guarantee_absolute_error_two_to (q) ;

}

We call the multiplication node mi resulting from the i-th multiplication
deeper than the node mj resulting from the j-th multiplication if i < j and
shallower if j < i. If mj is shallower than mi then mj is an ancestor of mi

in the expression dag. When balancing the expression dag the accuracy needed
at the deeper multiplication nodes decreases, while the accuracy needed at the
shallower nodes increases. Since in geometric sum the shallower multiplication
nodes depend on the deeper ones, the balancing actually increases the final
accuracy needed at the deeper multiplication nodes by an amount logarithmic
in the total number of additions. To make things worse, the deeper nodes are
still evaluated first (with low precision) and therefore need to be recursively re-
evaluated for every shallower multiplication node, leading to a quadratic number
of evaluations (Fig. 5).

Note, that this does not happen for the linear computation order if we assume
the following increase in accuracy (cf. Sect. 2):



28 M. Wilhelm

+

+ ∗

+ ∗

+ ∗

∗

1 r

⇒

+

+ +

1 ∗ ∗ ∗

r

Fig. 5. Expression dags for geometric sum before and after balancing. After balancing,
all multiplication nodes are on the same level, with the deeper ones evaluated first,
inducing a quadratic number of evaluation steps.

– To evaluate z = x + y with accuracy q, both x and y must be accurate up to
q + 2 digits.

– To evaluate z = x ∗ y with accuracy q, x must be accurate up to q + 2 +
�log |y|	 and y must be accurate up to q + 2 + �log |x|	 digits.

Since for r < 1 also ri ≤ 1 the increase in accuracy is the same for addition
and multiplication. Therefore with linear computation order the multiplication
nodes do not need to be re-evaluated after their initial evaluation. If r > 1 the
linear dag and the balanced dag show similar behavior.2

To avoid extensive recomputations, we can compute a topological order and
determine the final accuracy needed at each node before recomputing it [7]. We
implement this strategy and compare it with recursive evaluation. The standard
recursive evaluation procedure essentially works as depicted in Algorithm3. At
each node the needed accuracy of its children is ensured and the value at this
node gets recomputed. Nodes can get recomputed several times if they have more
than one parent.

Algorithm 3. Evaluating an expression dag by recursively increasing the
accuracy of the children before recomputing the current operation.
Data: requested accuracy q
if error is larger than 2−q then

compute needed accuracy for children
recurse on children with their respective accuracy
recompute

end

When evaluating topologically we determine a topological order for all
inexact nodes and compute the maximum accuracy needed for those nodes.
2 Real algebraic usually overestimates the exponent by one, therefore in our tests r

is chosen to be smaller than 0.5.
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Afterwards we recompute the nodes with their maximum accuracy (cf. Algo-
rithm4). By following this procedure we can guarantee that no node is recom-
puted more than once during one evaluation of the expression dag.

Algorithm 4. Evaluating an expression dag by finding a topological order
and determining the maximum accuracy needed at each node before recom-
puting them.
Data: requested accuracy q
if error is larger than 2−q then

top = all inexact nodes in topological order
for i = 1 to |top| do

update the required error for the children of top[i]
end
for i = |top| downto 1 do

if top[i].error > top[i].requested error then
recompute top[i]

end

end

end

We execute the geometric sum experiment with the four balancing strate-
gies from before. Furthermore for each of these strategies we evaluate either
recursively (r) or in topological order (t).

As the results in Fig. 6 show, balancing the expression dag destroys a favor-
able evaluation order when computing the geometric sum. Switching to a topo-
logical evaluation order negates this effect. Note that the performance loss due
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Fig. 6. Balancing additions leads to a massive increase in running time for
geometric sum with q = 50000 by creating a bad evaluation order. Topological evalu-
ation solves the problem.
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Fig. 7. Comparison of the behavior of geometric sum for increasing n with the bal-
ancing procedure from Algorithm 2 and with order preserving balancing (OPB). The
original procedure leads to jumps in running time, while order preserving balancing
produces the expected quadratic behavior (q = 50000, averaged over 5 runs each).

to the logarithmic increase of precision in the balanced case is too small to show
in the measurements.

The values for n have been chosen to show spikes in the running time. As
pointed out in Sect. 3 our balancing algorithm does not necessarily preserve the
order of the operands. If the shallowest multiplication node is evaluated first,
this leads to an optimal evaluation order. Figure 7 compares our implementation
with an order-preserving balancing strategy.3

The algorithm we use to build a balanced tree results in large jumps when
stepping from 2k − 1 to 2k operands (k ∈ N). With 2k − 1 operands the pre-
viously rightmost operand, i.e. the shallowest multiplication node, becomes the
leftmost operand in the balanced tree and therefore the evaluation order is opti-
mal. With 2k operands the previous operand order is preserved by the algorithm
and is therefore the worst possible. If preserving order is enforced, the quadratic
increase in running time is evident.

5.2 Operands Matter

In some cases balancing can destroy a favorable dag structure independently from
the evaluation order. We compute the telescoping product

∏n−1
i=1

i+1
i through the

following algorithm.
template <c l a s s NT>
void telescoping_product ( const i n t n , const long q){

NT prod = NT (1 ) ;
f o r ( i n t i = 1 ; i < n ; ++i ) {

prod ∗= NT ( i+1)/ NT ( i ) ;
}
prod . guarantee_absolute_error_two_to (q) ;

}

3 This is implemented by inserting dummy nodes up to the next power of two.
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In the experimental results shown in Fig. 8a, a performance decrease due
to balancing is evident, which also cannot be corrected through a change in
evaluation order. The reason for this effect is that the naive order enables the
bigfloat arithmetic to make use of eliminating factors. Bigfloat multiplications
involving integers4 are less expensive5. In the original expression order the result
of each multiplication is an integer and can be determined as such. Therefore,
although significantly reducing the average need of accuracy, balancing has a
negative effect on the performance.
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Fig. 8. Performance of different variants of telescoping product before and after
balancing multiplications (q = 50000). In the original version balancing destroys
a favorable order of the operands, which cannot be corrected for by switching to
topological evaluation. When starting with i = 3, the order before balancing is less
favorable and the performance gain of balancing outweighs the loss for larger n. For
telescoping product reverse no favorable order is destroyed and balancing shows
the expected net benefit.

4 Or integers divided by a power of two.
5 This behavior was confirmed with both mpfr and leda bigfloats.



32 M. Wilhelm

If the product is computed starting with i = 3 only every third subexpression
evaluates to an integer. While there are still some favorable structures getting
disrupted by balancing the expression dag, the benefit of balancing surpasses
the loss as the number of operands increases (cf. Fig. 8b). The effect vanishes if
the product is computed in reverse order as depicted in the following algorithm.

template <c l a s s NT>
void telescoping_product_reverse ( const i n t n , const long q){

NT prod = NT (1 ) ;
f o r ( i n t i = n−1; i >= 1 ; −−i ) {

prod ∗= NT ( i+1)/ NT ( i ) ;
}
prod . guarantee_absolute_error_two_to (q) ;

}

By this, none of the subexpressions involved evaluates to an integer and only a
logarithmic amount of subexpressions evaluates to an integer divided by a power
of two. The results of the experiment for the reverse case are shown in Fig. 8c.
Now balancing has the expected positive effect on the overall performance. Note
that, as expected, the forward loop starting with i = 3 without balancing takes
approximately two third of the time of the reverse case.

5.3 Overhead

In all tests, except the telescoping product test with i ≥ 1, the overhead for the
balancing procedure as well as for the topological sorting was (usually much) less
than 0.5% of the final running time. The running time of telescoping product
is unusually small compared to its number of operations, therefore the relative
overhead of additional computations is higher. In this case the overhead amounts
to less than 2% for balancing and less than 3% for topological sorting.

6 Conclusion

Balancing additions and multiplications in an expression dag can significantly
reduce the computation time needed as demonstrated by the sum-of-square-roots
test and the binomial coefficient test. The experimental data indicates that the
overhead due to the balancing algorithm is small compared to the cost of the
bigfloat operations. Balancing may cause changes in the evaluation order that lead
to increased running time. Those issues can partially be addressed by switching
to a topological evaluation, which can be done with small overhead as well.

We conclude that it is useful to provide a number type supporting balanc-
ing of expression dags in combination with topological evaluation. The use of
this number type should be considered whenever an algorithm performs a large
number of consecutive additions or multiplications. Switching a number type is
usually less time-consuming than a deep analysis and adjustment of the used
algorithm.
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7 Future Work

In this paper we restricted restructuring of the dag to balancing additions and
multiplications. Performance increase due to further restructuring is imaginable.
Subtractions could easily be included in the balancing process by treating them
like an addition and a negation and propagating the negations to the operands.
It may also be useful to incorporate divisions into the multiplication balancing
process. Since inversions are much more expensive than negations, it seems not
feasible to replace them by a multiplication and an inversion. Instead a promising
strategy might be to reduce the number of divisions by raising them to the root.

Balancing an expression dag makes its nodes more independent and therefore
makes it more accessible for parallelization. Further restructuring with the goal
of faster parallelization, e.g. expanding products, might be profitable.
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Abstract. For a square system of analytic equations, a Newton-
invariant subspace is a set which contains the resulting point of a New-
ton iteration applied to each point in the subspace. For example, if
the equations have real coefficients, then the set of real points form a
Newton-invariant subspace. Starting with any point for which Newton’s
method quadratically converges to a solution, this article uses Smale’s
α-theory to certifiably determine if the corresponding solution lies in
a given Newton-invariant subspace or its complement. This approach
generalizes the method developed in collaboration with F. Sottile for
deciding the reality of the solution in the special case that the New-
ton iteration defines a real map. A description of the implementation in
alphaCertified is presented along with examples.
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1 Introduction

The increased computing capability has lead to a wide-spread use of computers
to study and solve a variety of problems in algebraic geometry and related areas.
One topic of particular interest in computational algebraic geometry, especially
when numerical computations are utilized, is the ability to develop certificates of
the computed result. Smale’s α-theory [17] provides a method for certifying the
quadratic convergence of Newton’s method using data computed at one point.
Since Newton’s method is a foundational tool for numerically solving polynomial
systems, the α-theoretic certificates provide a way to rigorously prove results
following numerical computations. For example, the implementation of α-theory
in alphaCertified [9,10] has been used to prove results in various applications,
such as enumerative geometry [4,7,9] and potential energy landscapes arising
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(a) (b) (c)

Fig. 1. Plots for (a) f(x, y), (b) G(x, y), and (c) GS(x, y) in (1)

in a physical or chemical system [13]. In these applications, which is common
in many applications, one is interested in certifying the reality or nonreality of
solutions. It was shown in [9] that certifying reality or nonreality is possible when
the map corresponding to a Newton iteration is a real map, that is, maps real
points to real points.

Two open problems related to α-theory are the ability to certify that an
overdetermined system of analytic equations has a solution and to certify a sin-
gular solution for a square system of analytic equations. One can prove quadratic
convergence of overdetermined Newton’s method to critical points of the non-
linear least squares problem [5], some of which need not be solutions. By ran-
domizing down to square systems, points which do not solve the overdetermined
system can be certifiably identified [9]. For singular solutions, the behavior of
Newton’s method nearby can vary drastically (e.g., convergence, repulsion, and
attracting cycles). Theorem 4 and Corollary 1 make progress towards these open
problems via Newton-invariant subspaces.

To illustrate the results presented in Theorem 4 and Corollary 1 with
Lemma 1, consider

f(x, y) =

[
x2 + y2 − 1
x + y2 − 1

]
, G(x, y) =

[
f(x, y)

x − y − 1

]
, and GS(x, y) =

[
1 0 3
0 1 2

]
· G(x, y)

(1)

which are plotted in Fig. 1. Example 1 shows that the set defined by y = x − 1
is Newton-invariant with respect to f . That is, if the input of Newton’s method
applied to f is a point on the line y = x − 1, the resulting point will also be
on the line y = x − 1. Even though GS is a randomized square system, G is
overdetermined, and one of the two solutions of G = 0 is singular with respect
to f , Theorem 4 and Corollary 1 together with Lemma 1 show that GS and G
can be used to prove the quadratic convergence of Newton’s method to solutions
of f = 0.

Newton-invariant sets can be considered as “side conditions.” The algorithm
Certify described in Sect. 3 certifiably decides if a point ξ which is a solution
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of a square system f = 0 is contained in a Newton-invariant set V or in its
complement C

n \ V using α-theory applied to a given numerical approxima-
tion of ξ. The “side conditions” could be defined via analytic equations, such as
y = x − 1. Another naturally arising case is deciding “reality” of solutions in
various coordinate systems. As mentioned above, the approach of [9] focuses on
reality of solutions in Cartesian coordinates. When the map defined by a Newton
iteration is a real map, the set of real points is a Newton-invariant subspace that
is not defined by analytic equations. For Cartesian coordinates, Remark 1 shows
that Certify reduces to the real certification approach of [9]. However, even
though the two approaches may appear similar, the use of certifying “side con-
ditions” as well as certifying “reality” in other coordinate systems show that this
generalization is useful in a wide variety of applications. For example, consider
a harmonic univariate polynomial h(z) [12]. That is, h(z) = p(z) + q(conj(z))
where p and q are univariate polynomials and conj(z) is the complex conjugate
of z. One can compute the solutions of h = 0 by letting z and z be independent
variables and solving the system

F (z, z) =
[

p(z) + q(z)
p(z) + q(z)

]
= 0

where p and q are univariate polynomials obtained by conjugating each coefficient
of p and q, respectively. In particular, the solutions of h = 0 correspond to the
solutions of F = 0 lying on the Newton-invariant set {(t, conj(t)) | t ∈ C}. Such
isotropic coordinates also arise naturally in algebraic kinematics [19].

The remainder of this section summarizes Smale’s α-theory. Section 2 con-
siders Newton invariant sets with Sect. 3 describing the algorithm Certify. The
main theoretical results are presented in Sect. 4 with Sect. 5 describing the imple-
mentation in alphaCertified along with examples.

1.1 Smale’s α-theory

For an analytic map f : Cn → C
n, the map Nf : Cn → C

n defined by

Nf (x) :=
{

x − Df(x)−1f(x) if Df(x) is invertible,
x otherwise,

is a Newton iteration of f at x where Df(x) is the Jacobian matrix of f at x.
With this definition, Nf is globally defined with the set of fixed points being

{x ∈ C
n | f(x) = 0 or rank Df(x) < n}.

Therefore, if Df(x) is invertible, Nf (x) = x if and only if f(x) = 0.
For each k ≥ 1, define

Nk
f (x) := Nf ◦ · · · ◦ Nf︸ ︷︷ ︸

k times

(x).
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A point x ∈ C
n is said to be an approximate solution of f = 0 if there is a point

ξ ∈ C
n such that f(ξ) = 0 and

‖Nk
f (x) − ξ‖ ≤

(
1
2

)2k−1

‖x − ξ‖ (2)

for each k ≥ 1 where ‖ · ‖ is the Euclidean norm on C
n. In this case, the point

ξ is called the associated solution to x and the sequence {Nk
f (x)}k≥1 converges

quadratically to ξ.
Smale’s α-theory describes sufficient conditions using data computable from

f and x for certifying that x is an approximate solution of f = 0. The algorithm
presented in Sect. 3 will be based on the following theorem, which follows from
results presented in [3, Chap. 8].

Theorem 1. Let f : Cn → C
n be analytic and x, y ∈ C

n such that Df(x) and
Df(y) are invertible. Define

α(f, x) := β(f, x) · γ(f, x),

β(f, x) := ‖x − Nf (x)‖ = ‖Df(x)−1f(x)‖, and

γ(f, x) := supk≥2

∥∥∥Df(x)−1Dkf(x)
k!

∥∥∥
1

k−1
.

1. If x is an approximate solution of f = 0 with associated solution ξ, then
Nf (x) is also an approximate solution with associated solution ξ and ‖x−ξ‖ ≤
2β(f, x) = 2‖x − Nf (x)‖.

2. If 4 · α(f, x) < 13 − 3
√

17, then x is an approximate solution of f = 0.
3. If α(f, x) < 0.03 and ‖x − y‖ · γ(f, x) < 0.05, then x and y are approximate

solutions of f = 0 with the same associated solution.

The value β(f, x) is called the Newton residual. In the definition of γ(f, x),
Dkf(x) is the kth derivative of f [11, Chap. 5]. That is, Dkf(x) is a symmetric
tensor that one may view as a linear map from Sk

C
n, the k-fold symmetric

power of Cn, to C
n whose entries are all of the partial derivatives of f of order

k. When restricting to polynomial systems, Dkf(x) = 0 for all sufficiently large
k so that γ(f, x) is a maximum over finitely many terms. That is, γ(f, x) could
be computed algorithmically. However, due to the possibly large-scale nature of
this computation, a commonly used upper bound for γ(f, x) for a polynomial
system f is described in [16]. A similar upper bound for polynomial-exponential
systems is presented in [8].

2 Newton-Invariant Sets

A set V ⊂ C
n is Newton-invariant with respect to an analytic system f : Cn →

C
n if

1. Nf (x) ⊂ V for every x ∈ V and
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2. limk→∞ Nk
f (x) ∈ V for every x ∈ V such that limk→∞ Nk

f (x) exists.

Clearly, if Nf (x) ∈ R
n for every x ∈ R

n, then R
n is Newton-invariant with

respect to f . Additionally, the set of solutions of f = 0 is also Newton-invariant.
The following two examples show other cases of Newton-invariant sets.

Example 1. Let f : C
2 → C

2 be the system defined in (1). Since f has real
coefficients, Nf is a real map so that V1 := R

2 is trivially a Newton-invariant set
for f . Consider the sets

V2 := {(0, y) | y ∈ C}, V3 := V2 ∩ R
2, V4 := {(1, y) | y ∈ C}, V5 := V4 ∩ R

2,

V6 := {(x, x − 1) | x ∈ C}, V7 := V6 ∩ R
2, V8 := {(x, 1 − x) | x ∈ C}, and V9 := V8 ∩ R

2.

One can show that V2, . . . , V9 are also Newton-invariant sets for f as follows.
Symbolically, Nf (x, y) = (x + Δx, y + Δy) where

Δx =
x(x − 1)
2x − 1

and Δy =
y

2
+

(x − 1)2

2y(2x − 1)
(3)

assuming that x 
= 1/2 and y 
= 0. For these special cases, Δx = Δy = 0 so they
are not a concern when showing Newton-invariance. The Newton-invariance of
V2, . . . , V5 follows directly from the fact that Δx = 0 when either x = 0 and
x = 1, and that Nf is a real map. If y = x− 1, it is easy to verify that Δx = Δy
which yields the Newton-invariance of V6 and V7. Finally, the Newton-invariance
of V8 and V9 follows from the fact that Δx = −Δy when y = 1 − x.

Example 2. The inverse kinematics problem of an RR dyad is the computation
of the required angles θ1 and θ2 of the revolute joints needed to position the end
effector at the point (px, py) ∈ R

2 given that the RR dyad is anchored at (0, 0)
with fixed leg lengths �1 > 0 and �2 > 0. In short, this corresponds to solving
the equations

�1 cos θ1 + �2 cos θ2 − px = �1 sin θ1 + �2 sin θ2 − py = 0. (4)

Following a commonly used technique in algebraic kinematics [19], we will trans-
form these equations into a polynomial system based on isotropic coordinates.
Let i =

√−1 and define

zj := cos θj + i · sin θj , zj := cos θj − i · sin θj , and p = px + i · py.

After substitution into (4), simplification, and addition of Pythagorean identities,
the resulting polynomial system is

F (z1, z1, z2, z2) =

⎡
⎢⎢⎣

�1z1 + �2z2 − p
�1z1 + �2z2 − conj(p)

z1z1 − 1
z2z2 − 1

⎤
⎥⎥⎦
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where conj() denotes complex conjugation. In the isotropic coordinates
(z1, z1, z2, z2), the corresponding set of “real” points is

V := {(z1, conj(z1), z2, conj(z2)) | zj ∈ C}.

Since each �j > 0, it is easy to verify that V is Newton-invariant with respect to F .

2.1 Finding Newton-Invariant Sets

In Example 1, Newton-invariant sets where determined by performing a Newton
iteration involving f : C

n → C
n. That is, one first symbolically performs a

Newton iteration for f to compute Δx = Df(x)−1f(x). Then, for example, the
linear Newton-invariant spaces are found by computing matrices A and vectors b
such that Ax+ b = 0 and AΔx = 0. One may also parameterize the linear space
and find the parameterizations which hold for x and x + Δx. The following
reconsiders Example 1 to highlight this procedure followed by a polynomial
system considered by Griewank and Osborne [6].

Example 3. Consider lines in C
2 which are invariant with respect to (3). That

is, we aim to find (m1,m2) ∈ P
1 and b ∈ C such that m1Δx = m2Δy whenever

m2y = m1x + b.
If m2 = 0, then we take m1 = −1 and aim to find b ∈ C such that Δx = 0

whenever x = b. From (3), it is clear that b = 0 or b = 1. These lines correspond
with V2, . . . , V5 in Example 1.

If m2 
= 0, then we take m2 = 1 and aim to find m1, b ∈ C such that
Δy = m1Δx whenever y = m1x + b. Upon substitution and simplification, this
requirement is equivalent to solving

m2
1 + 2bm1 + 1 = b2 − 1 = 0

which yields (m1, b) = (1,−1) or (−1, 1). These lines correspond with V6, . . . , V9

in Example 1.

Example 4. Consider computing all linear Newton-invariant sets of a polynomial
system first considered in [6], namely

G(x, y) =
[

29x3/16 − 2xy
y − x2

]
. (5)

For this system, which has a multiplicity 3 root at the origin, Griewank and
Osborne showed that Newton’s method diverges to infinity for almost all initial
points. We have

Δx =
3x3

32y − 23x2
and Δy =

29x4 − 55x2y + 32y2

32y − 23x2
. (6)

From (6), it is easy to verify that the vertical line x = 0 (over C and over
R) defines the only linear Newton-invariant set for G. We revisit this example
in Sect. 5.3.
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For larger polynomial systems f , it may be challenging to symbolically per-
form a Newton iteration for f , e.g., computing Δx = Df(x)−1f(x), thereby
making it difficult to find all (linear) Newton-invariant sets for f . However, for
particular applications, one often knows which Newton-invariant sets are of inter-
est. Moreover, one can construct systems having a particular Newton-invariant
set, as shown in the following.

Theorem 2. Let n1 and n2 be positive integers with n = n1+n2. Let g : Cn1 →
C

n such that g(0) = 0, A : Cn1 → C
n×n2 , and h : Cn2 → C

n2 all be analytic.
Then, V := {0}×C

n2 ⊂ C
n is a Newton-invariant set with respect to the square

analytic system F : Cn → C
n defined by

F (x, y) = g(x) + A(x) · h(y).

Moreover, if Nh is a real map, then VR := V ∩ R
n is Newton-invariant with

respect to F .

Proof. Suppose that y∗ ∈ C
n2 such that DF (0, y∗) is invertible. Thus, A(0) ·

Dh(y∗) is an n × n2 matrix of rank n2 so that Dh(y∗) is invertible. It is easy to
verify that Δx = 0 and Δy = Dh(y∗)−1h(y∗) is the unique solution of

DF (0, y∗)
[

Δx
Δy

]
= F (0, y∗)

showing that V is Newton-invariant with respect to F . The remaining statement
follows immediately from the fact that Δy is real whenever Nh is a real map.

By using a change of coordinates, it follows that every linear subspace of Cn

and R
n is a Newton-invariant set for some square system.

3 Certification Algorithm for Square Systems

Let f : Cn → C
n be analytic and V ⊂ C

n be Newton-invariant with respect
to f . Given an approximate solution x ∈ C

n of f = 0, this section develops
an algorithm which certifiably decides if ξ ∈ V or ξ ∈ C

n \ V where ξ is the
associated solution of x. This algorithm depends on a function which measures
the distance between a given point and V , say δV : Cn → R where

δV (z) = inf
v∈V

‖z − v‖. (7)

For example, δRn(z) = ‖z−conj(z)‖/2 with Remark 1 showing how the following
algorithm generalizes the test for determining if ξ ∈ R

n proposed in [9] when Nf

is a real map. Additionally, if computing δV (z) exactly is difficult, note that the
following algorithm can be easily modified to use upper and lower bounds on
δV (z) such that the upper bound limits to zero as z approaches V and the lower
bound becomes positive as z limits to a solution ρ of f = 0 provided δV (ρ) > 0.

The following procedure is shown to be a correct algorithm by Theorem 3.
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Procedure b = Certify(f, x, δV )
Input A square analytic system f : Cn → C

n such that γ(f, ·) can be computed
(or bounded above) algorithmically, a point x ∈ C

n which is an approximate
solution of f = 0 with associated solution ξ such that Df(ξ)−1 exists, and a
function δV : Cn → R defined by (7) for some Newton-invariant subspace V
which can be computed algorithmically.

Output A boolean b which is true if ξ ∈ V and false if ξ /∈ V .
Begin

1. Compute β := β(f, x), γ := γ(f, x), and α := β · γ.
2. If δV (x) > 2β, Return false.
3. If α < 0.03 and δV (x) < 0.05γ−1, Return true.
4. Update x := Nf (x) and go to Step 1.

Theorem 3. Procedure Certify is an algorithm, i.e., terminates after finitely
many steps, and develops a certificate of the correct answer.

Proof. Consider the setup described in Certify. To prove the theorem, we will
first show that if Certify returns in Step 2 or in Step 3, then the return value is
correct. Afterwards, we will show that Certify must terminate in finitely many
steps. Since each step in Certify is algorithmic, this shows that Certify is an
algorithm.

Suppose that Certify returned through Step 2. For every v ∈ V , the triangle
inequality and Item 1 of Theorem 1 yields

δV (x) ≤ ‖x − v‖ ≤ ‖x − ξ‖ + ‖ξ − v‖ ≤ 2β(f, x) + ‖ξ − v‖.

Therefore,
0 < δV (x) − 2β(f, x) ≤ inf

v∈V
‖ξ − v‖ = δV (ξ)

yielding ξ /∈ V since δV (ξ) > 0.
Similarly, suppose that Certify returned through Step 3. Then, since

δV (x) = inf
v∈V

‖x − v‖ < 0.05γ−1,

there must exist v∗ ∈ V such that ‖x− v∗‖ < 0.05γ−1. By Item 3 of Theorem 1,
both x and v∗ are approximate solutions of f = 0 with the same associated
solution ξ. Since v∗ ∈ V and V is Newton-invariant, it follows that ξ ∈ V .

To show termination of Certify, suppose that ξ /∈ V . Define δ := δV (ξ) > 0
and consider

B(ξ, δ/8) = {y ∈ C
n | ‖y − ξ‖ ≤ δ/8}.

Since Nk
f (x) → ξ as k → ∞, there exists some integer k0 such that Nk

f (x) ∈
B(ξ, δ/8) for all k ≥ k0. It immediately follows from the triangle inequality that
δV (Nk0

f (x)) ≥ 7δ/8 and β(f,Nk0
f (x)) = ‖Nk0

f (x) − Nk0+1
f (x)‖ ≤ δ/4. Thus,

δV (Nk0
f (x)) ≥ 7δ/8 > 2β(f,Nk0

f (x))

showing that Step 2 will force Certify to return after at most k0 loops.
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Similarly, suppose that ξ ∈ V . Then, since Df(ξ)−1 exists, γ(f, z) is bounded
in a neighborhood W of ξ, say by B. Thus, there exists an integer k0 such that
Nk

f (x) ∈ W for all k ≥ k0 so that γ(f,Nk
f (x)) ≤ B for all k ≥ k0. Since

β(f,Nk
f (x)) → 0 as k → ∞, we know that α(f,Nk

f (x)) → 0 as k → ∞. Hence,
there must exist some integer k1 such that α(f,Nk

f (x)) < 0.025 for all k ≥ k1.
Since ξ ∈ V , Item 1 of Theorem 1 yields

δV (z) ≤ ‖z − ξ‖ ≤ 2β(f, z) = 2α(f, z)γ(f, z)−1 < 0.05γ(f, z)−1

where z := Nk1
f (x). Therefore, Step 3 will force Certify to return after at most

k1 loops.

Remark 1. When Nf is a real map, Rn is an Newton-invariant subspace with
respect to f . For z ∈ C

n, let πR(z) ∈ R
n be the real part of z, i.e., πR(z) =

(z + conj(z))/2. Hence,

δRn(z) = ‖z − conj(z)‖/2 = ‖z − πR(z)‖.

Thus, Certify reduces to the algorithm CertifyRealSoln described in [9] in
this case.

4 Systems Constructed from Newton-Invariant Sets

In algorithm Certify, Newton iterations were performed on the square system
and used to test if a solution was contained in a given Newton-invariant set or
its complement, even if the Newton-invariant set was not defined by analytic
equations (complex conjugation is not analytic). In this section, we investigate
overdetermined systems constructed from a linear Newton-invariant set and ran-
domized square subsystems. In particular, Theorem 4 and Corollary 1 show that
if Newton’s method applied to such systems quadratically converges, then the
limit point is a solution of the original square system, even if it is singular with
respect to the original system. That is, the additional equations could turn a sin-
gular solution of the square system into a nonsingular solution of an overdeter-
mined and randomized square subsystem with certifiable quadratic convergence.
See Sects. 5.3 and 5.4 for examples involving traditional benchmarks.

The statements of Theorem 4 and Corollary 1 rely upon the following two
definitions. For an analytic system f : Cn → C

n, define

Singf := {x ∈ C
n | Df(x) is not invertible}.

Overdetermined Newton’s method for an analytic system g : C
n → C

N (i.e.,
n < N) is

Ng(x) := x − Dg(x)†g(x)

where Dg(x)† is the Moore-Penrose pseudoinverse of Dg(x).
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Unlike square systems, the fixed points of Ng need not be solutions of g = 0
and the fixed points for which the Jacobian is full rank need not be attracting.
For the former, consider

g(x) =
[

x
x − 4

]
.

Clearly, g = 0 has no solutions but x = 2 is a fixed point of Ng and minimizes
‖g‖2. For the latter, consider the system adapted from [5]:

h(x) =
[

x
x2 + 1

]
.

Clearly, h = 0 has no solutions but Nh has a fixed point at x = 0. It is shown in
[5] that x = 0 is a repulsive point for Newton’s method near the origin.

From a certification viewpoint, one can use the α-theoretic approach of [5]
to prove quadratic convergence to fixed points of Ng. The fixed points of Ng

which do not solve g = 0 can be certifiably identified using randomization via
the approach of [9]. The following provides an approach for certifiably showing
that a given fixed point of Ng is indeed a solution of g = 0 when g is con-
structed via Newton-invariant sets. As mentioned above, this fixed point may be
a singular solution of the original square system used to construct such an overde-
termined system g.

Since linear Newton-invariant sets for a system are invariant under a lin-
ear change of coordinates, we simplify the presentation of our results based on
systems having a coordinate subspace as a Newton-invariant set.

Lemma 1. Let 0 < m < n and f : Cm × C
n−m → C

n be an analytic system
such that V := {0} × C

n−m ⊂ C
n is Newton-invariant with respect to f and

V 
⊂ Singf . Let g(y) = f(0, y) and G(x, y) = {f(x, y), x}. If z ∈ C
n−m such that

(0, z) ∈ V \ Singf , R ∈ C
(n−m)×n, and S ∈ C

n×(n+m) such that rank DgR(y) =
n−m and rank DGS(0, z) = n where gR(y) = R·g(y) and GS(x, y) = S ·G(x, y),
then NGS

(0, z) = NG(0, z) = Nf (0, z) = (0, NgR
(z)) = (0, Ng(z)).

Proof. Let Δ := Df(0, z)−1 · f(0, z). Since (0, z) ∈ V , Δi = 0 for i = 1, . . . , m.
Let Δz ∈ C

n−m such that Δ = (0,Δz). Since DgR(z) and DGS(0, z) have full
column rank, the same is true for Dg(z) and DGS(0, z). Thus, the statement
follows since
DG(0, z) · Δ = G(0, z), DGR(0, z) · Δ = GR(0, z), Dg(z) · Δz = g(z), DgR(z) · Δz = gR(z).

Following the notation of Lemma 1, for simplicity, the following relate the
square system f , the overdetermined system g, and the randomized square sub-
system gR. These can be trivially extended via Lemma 1 to the overdetermined
system G and randomized square system GS .

Theorem 4. Let 0 < m < n and f : Cm × C
n−m → C

n be an analytic system
such that V := {0} × C

n−m ⊂ C
n is Newton-invariant with respect to f and

V 
⊂ Singf . Let g(y) = f(0, y). If (0, z) ∈ V \ Singf and R ∈ C
(n−m)×n such that

{Nk
gR

(z)}k≥1 quadratically converges to ξ ∈ C
n−m with rank DgR(ξ) = n − m

where gR(y) = R · g(y), then g(ξ) = f(0, ξ) = 0.
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Proof. Since gR is a square system with NgR
(ξ) = ξ and rank DgR(ξ) = n − m,

we know gR(ξ) = 0, α(gR, ξ) = 0, and γ(gR, ξ) < ∞. Thus, Theorem 1(3)
shows that, for the ball B ⊂ C

n−m centered at ξ with radius 0.05/γ(gR, ξ) > 0,
Newton’s method for gR starting at any point in B is an approximate solution of
gR = 0 with associated solution ξ. Define Wf := {y | (0, y) ∈ V \ Singf} ⊂ C

n−m.
Since V is not contained in Singf , it follows that B∩Wf is dense in B. Therefore,
we can construct {z�}�≥1 ⊂ B ∩ Wf such that 0 < ‖z� − ξ‖ < �−1. In particular,
this construction yields rank Df(0, z�) = n and rank DgR(z�) = n − m for all
� ≥ 1.

For each � ≥ 1, let Δz� := DgR(z�)−1gR(z�) = z� − NgR
(z�). By Lemma 1,

we know (0,Δz�) = (0, z�) − Nf (0, z�) = Df(0, z�)−1f(0, z�). If we assume that
‖Δz�‖ ≤ 2 · �−1, then

‖g(z�)‖ = ‖f(0, z�)‖ = ‖Df(0, z�) · (0,Δz�)‖ ≤ 2 · ‖Df(0, z�)‖ · �−1.

By continuity, g(z�) = f(0, z�) → g(ξ) = f(0, ξ) and Df(0, z�) → Df(0, ξ). Since
Df(0, ξ) is an n × n matrix with complex entries, we know ‖Df(0, ξ)‖ < ∞.
Taking limits, we have ‖g(ξ)‖ = ‖f(0, ξ)‖ = 0. Hence, g(ξ) = f(0, ξ) = 0.

Therefore, all that remains is to show ‖Δz�‖ ≤ 2 ·�−1 for all � ≥ 1. To reach a
contradiction, we assume that � ≥ 1 such that ‖Δz�‖ > 2 · �−1. By construction,
�−1 > ‖z� − ξ‖ > 0 so that

‖z� − NgR
(z�)‖ = ‖Δz�‖ > 2 · ‖z� − ξ‖ > 0.

The triangle inequality yields

‖z� − ξ‖ + ‖NgR
(z�) − ξ‖ ≥ ‖z� − NgR

(z�)‖ = ‖Δz�‖ > 2 · ‖z� − ξ‖ > 0

providing ‖NgR
(z�) − ξ‖ > ‖z� − ξ‖ > 0. However, since z� ∈ B, i.e., z� is

an approximate solution of gR = 0 with associated solution ξ, (2) yields the
impossible statement

1
2
‖z� − ξ‖ ≥ ‖NgR

(z�) − ξ‖ > ‖z� − ξ‖ > 0.

Corollary 1. Let 0 < m < n and f : Cm × C
n−m → C

n be an analytic system
such that V := {0}×C

n−m ⊂ C
n is Newton-invariant with respect to f and V 
⊂

Singf . Suppose that g(y) = f(0, y). If (0, z) ∈ V \ Singf such that {Nk
g (z)}k≥1

quadratically converges to ξ ∈ C
n−m with rank Df(0, Nk

g (z)) = n for all k ≥ 1
and rank Dg(ξ) = n − m, then g(ξ) = f(0, ξ) = 0.

Proof. Since rank Dg(ξ) = n − m, there is a Zariski open and dense U ⊂
C

(n−m)×n such that, for all R ∈ U , rank DgR(ξ) = n where gR(x) = R · g(x).
Fix R ∈ U . By Theorem 1(3), Newton’s method for gR starting at any point in
the ball B centered at ξ with radius 0.05/γ(gR, ξ) > 0 quadratically converges
to ξ. Since Nk

g (z) → ξ, let k0 ≥ 1 such that {Nk
g (z)}k≥k0 ⊂ B. Since DgR is full

rank on B, Lemma 1 yields Nk
g (z) = Nk

gR
(z) for all k ≥ k0. The statement now

follows immediately from Theorem 4.
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Example 5. Let f : C2 → C
2 be the polynomial system defined in (1). Example 1

showed the complex line V6 := {(x, x−1) | x ∈ C}, which is defined by x−y−1 =
0, is Newton-invariant with respect to f . Restricting to V6, f = 0 has two
solutions, namely ξ1 = (0,−1) and ξ2 = (1, 0). One can verify that Df(ξ1) is
invertible while ξ2 is a singular solution of f = 0. The overdetermined polynomial
system

G(x, y) =

⎡
⎣ x + y2 − 1

x2 + y2 − 1
x − y − 1

⎤
⎦

has rank DG(ξ1) = rank DG(ξ2) = 2, i.e., ξ1 is nonsingular with respect to
both f and G, but ξ2 is singular with respect to f and nonsingular with respect
to G. Using alphaCertified [10] with the points z1 = (1/250,−249/250) and
z2 = (251/250, 1/250), and square subsystem

GS(x, y) =
[

x + y2 − 1 + 3(x − y − 1)
x2 + y2 − 1 + 2(x − y − 1)

]
,

we know that {Nk
G(zj)}k≥1 = {Nk

GS
(zj)}k≥1 quadratically converges for j = 1, 2.

Theorem 4 and Corollary 1 together with Lemma 1 yield that the corresponding
limit points, ξj , are indeed solutions of f = 0.

5 Implementation Details and Examples

Before demonstrating the developed techniques on several examples, we first
briefly summarize its implementation in alphaCertified [10].

5.1 Implementation in alphaCertified

The software program alphaCertified can perform α-theoretic computations
in exact rational or arbitrary precision floating point arithmetic. When rational
computations are utilized, the internal computations are certifiable. The analytic
system f must either be a polynomial system or a polynomial-exponential system
and presented with constants that are rational complex numbers, i.e., in Q[i].
The value of γ(f, x) is bounded above using [16] or [8], respectively.

The algorithm Certify is implemented in version 1.3 of alphaCertified as
follows. For a Newton-invariant set V ⊂ C

n, the function δV defined by (7) is
assumed to be of the form

δV (z) = ‖z − (P · zR + i · Q · zI + r)‖ (8)

for n × n matrices P and Q and n vector r with rational complex entries where

zR = (z + conj(z))/2 and zI = i · (conj(z) − z)/2.

For example, if V = R
n, then P = In, Q = 0, and r = 0 where In is the n × n

identity matrix. Additionally, if V = {(x, conj(x)) | x ∈ C} ⊂ C
2, one can easily

verify that

P =
1
2

[
1 1
1 1

]
, Q =

1
2

[
1 −1

−1 1

]
, and r =

[
0
0

]
.
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5.2 A Basic Example

Reconsider the system f defined in (1) with the real Newton-invariant sets (see
Example 1)

V1 := R
2, V3 := {(0, y) | y ∈ R}, V5 := {(1, y) | y ∈ R},

V7 := {(x, x − 1) | x ∈ R}, and V9 := {(x, 1 − x) | x ∈ R}.

It is easy to verify that each δVj
can be presented in the form (8). Let Pj ,

Qj , and rj be the corresponding elements. Since each Vj ⊂ R
2, we have Qj = 0.

Additionally, since the origin is contained in V1 and V3, we also have r1 = r3 = 0.
The remaining elements are:

P1 =
[

1 0
0 1

]
, P3 =

[
0 0
0 1

]
, P5 =

[
0 0
0 1

]
, P7 =

1
2

[
1 1
1 1

]
, P9 =

1
2

[
1 −1

−1 1

]
,

r5 =
[

1
0

]
, r7 =

[
1/2

−1/2

]
, r9 =

[
1/2
1/2

]
.

Since the singular solution (1, 0) of f = 0 was considered in Example 5,
we now consider the two nonsingular solutions, namely (0,±1). Clearly, both of
(0,±1) lie in V1 and V3, with one in V7 and the other in V9. Algorithm Certify in
alphaCertified using exact rational arithmetic promptly proves the proceeding
statement starting with the approximations

(1/1502− i/3203, 1256/1255 + i/1842) and (−1/2934 + i/8472,−1483/1482− i/2384).

5.3 An Example from Griewank and Osborne

Reconsider the polynomial system G from [6] defined in (5) for which the vertical
line x = 0 is a Newton-invariant set. For any y 
= 0, NG(0, y) = (0, 0) so that
Newton’s method converges to the only solution of G = 0 in one iteration.

We now consider applying Newton’s method to the point P = (10−16, 1).
Figure 2 plots the Newton residual, i.e., β, for the first 200 iterations of Newton’s
method starting at P computed using alphaCertified. As suggested by this
plot, Newton’s method diverges to infinity. However, one can easily verify that
for the system

H(x, y) =
[

G(x, y)
x

]

as well as for a randomization of H down to a square system, Newton’s method
starting at P immediately quadratically converges to the origin in stark contrast
to the results of [6].
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5.4 A System with Embedded Points

Consider the system defining the cyclic 4-roots [2], namely

F4(x1, x2, x3, x4) =

⎡
⎢⎢⎣

x1 + x2 + x3 + x4

x1x2 + x2x3 + x3x4 + x4x1

x1x2x3 + x2x3x4 + x3x4x1 + x4x1x2

x1x2x3x4 − 1

⎤
⎥⎥⎦ .

The solution set defined by F4 = 0 has two irreducible curves while the ideal
generated by F4 in C[x1, . . . , x4] also has 8 embedded points. It is easy to verify
that the line {(−t,−t, t, t) | t ∈ C} is Newton-invariant with respect to F4

and contains 4 of the embedded points, namely when t = ±1,±√−1. For the
overdetermined system G4 constructed by appending the linear polynomials x1−
x2, x1+x3, and x1+x4 to the system F4, each of these four embedded points are
nonsingular solutions of G4 = 0. For a general randomization of G4, Bertini
[1] computed numerical approximations of its 20 nonsingular solutions. Using
the approach of [9], we are able to use alphaCertified to certifiably determine
16 of these solutions do not solve F4 = 0. With Theorem 4, we can now use
alphaCertified to certifiably show the other 4 solve F4 = 0.

Fig. 2. Plot of the Newton residual for 200 iterations starting at P

5.5 Four-Bar Linkages Using Isotropic Coordinates

A general four-bar linkage moves in a one-dimensional motion curve when the
joints are permitted to rotate. The nine-point path synthesis problem asks
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to compute the one-dimensional motion curves of four-bar linkages that pass
through nine given points. In [18], which showed there were 1442 motion curves
passing through nine points in general position, the formulation of this prob-
lem used isotropic coordinates. Naturally, one may rewrite this system using
Cartesian coordinates, which was used in the formulation of the problem in [15]
and certification of real solutions in [9]. However, with Certify, one can certify
directly using the isotropic formulation.

Let P = {P0, . . . , P8} ⊂ C
2 be a collection of nine points written using

isotropic coordinates. The polynomial system fP : C12 → C
12 corresponding to

the isotropic formulation of the nine-point path synthesis problem derived in [18]
depends upon the variables

{x, x, a, a, n, n, y, y, b, b,m,m}
and is constructed as follows. The first four polynomials are

f1 = n − ax, f2 = n − ax, f3 = m − by, and f4 = m − by.

The remaining eight polynomials arise from the displacement from P0 to the
other points Pj . Define Qj := (δj , δj) = Pj − P0, which is written via isotropic
coordinates. Then, for j = 1, . . . , 8,

f4+j = γjγj + γjγ
0
j + γjγ

0
j

where
γj = qx

j ry
j − qy

j rx
j , γj = rx

j py
j − ry

j px
j , γ0

j = px
j qy

j − py
j qx

j

and

px
j = n − δjx, qx

j = n − δjx, rx
j = δj(a − x) + δj(a − x) − δjδj ,

py
j = m − δjy, qy

j = m − δjy, ry
j = δj(b − y) + δj(b − y) − δjδj .

When P consists of points in general position, there is a six-to-one map from the
solution set of fP = 0 to four-bar motion curves which pass through the points
P arising from a two-fold symmetry and Roberts cognates. Moreover, when P
consists of 9 points that are “real” in isotropic coordinates, then δj = conj(δj)
and

V := {(x, conj(x), a, conj(a), n, conj(n), y, conj(y), b, conj(b), m, conj(m)) | x, a, n, y, b, m ∈ C}

is Newton-invariant with respect to fP .
As a demonstration of the algorithm Certify, we certify the solution to

two sets of real points. The first, called Problem 3 in Table 2 of [18], was also
considered in [9] using Cartesian coordinates. The corresponding δj are

δ1 = 0.27 + 0.1i, δ2 = 0.55 + 0.7i, δ3 = 0.95 + i, δ4 = 1.15 + 1.3i,
δ5 = 0.85 + 1.48i, δ6 = 0.45 + 1.4i, δ7 = −0.05 + i, δ8 = −0.23 + 0.4i

with δj = conj(δj). We used Certify implemented in alphaCertified to cer-
tify the approximations of the solutions obtained by Bertini [1]. Confirming
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previous computations in [9,18], this showed that 64 of the 1442 motion curves
through the corresponding nine points were real.

The second set of real points is modeled after Problem 4 in Table 2 of [18]
which took points on the ellipse x2 + y2/4 = 1. Since that collection of nine
points was contained in the discriminant locus, we took a collection of nine points
on this ellipse and perturbed them. For example, consider the following δj , with
δj = conj(δj), constructing in this fashion:

δ1 = 0.25 + 1.33i, δ2 = 0.5 + 1.74i, δ3 = 0.75 + 1.93i, δ4 = 1 + 2.01i,
δ5 = 1.25 + 1.95i, δ6 = 1.5 + 1.73i, δ7 = 1.75 + 1.33i, δ8 = 2 − 0.007i.

After using Bertini to generate approximations to the solutions, Certify
showed that 51 of the 1442 motion curves through the corresponding nine points
were real.

6 Discussion and Summary

Newton-invariant sets naturally arise when considering “real” solutions in other
coordinate systems. They could also arise in other situations, such as “side con-
ditions” for solution sets. Theorem 4 and Corollary 1 provide conditions in which
the limit of Newton’s method applied to an overdetermined system or a random-
ized square subsystem converges to a true solution. This article also described the
algorithm Certify which, from an approximation of a solution, can certifiably
determine if the corresponding solution is contained in a particular Newton-
invariant set or its complement. This approach adds to the certifiable toolbox
of methods that can be applied to various problems in computational algebraic
geometry.

The algorithm Certify is implemented in alphaCertified using both exact
rational and arbitrary precision floating point arithmetic. All computations are
completely rigorous when using rational arithmetic. If floating point arithmetic
is used, the current implementation does not fully control roundoff errors. One
could, for example, use interval arithmetic [14] to bound the errors and produce
certifiable computations in this case.

Acknowledgments. The author would like to thank Charles Wampler for helpful
discussions related to using isotropic coordinates in kinematics.
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Abstract. We study the decomposition of a multi-symmetric tensor T
as a sum of powers of product of linear forms in correlation with the
decomposition of its dual T ∗ as a weighted sum of evaluations. We use
the properties of the associated Artinian Gorenstein Algebra Aτ to com-
pute the decomposition of its dual T ∗ which is defined via a formal power
series τ . We use the low rank decomposition of the Hankel operator Hτ

associated to the symbol τ into a sum of indecomposable operators of
low rank. A basis of Aτ is chosen such that the multiplication by some
variables is possible. We compute the sub-coordinates of the evaluation
points and their weights using the eigen-structure of multiplication matri-
ces. The new algorithm that we propose works for small rank. We give a
theoretical generalized approach of the method in n dimensional space.
We show a numerical example of the decomposition of a multi-linear
tensor of rank 3 in 3 dimensional space.

1 Introduction

The decomposition of symmetric and multi-symmetric tensors has many appli-
cations in engineering disciplines such that signal processing [11], scientific data
analysis [9,18], statistics [17], in bioinformatics and spectroscopy [5], in neuro-
science, in phylogenetic.... For instance, the study of symmetric tensor decompo-
sition gives an idea about the geometric structure of intersecting fibers in human
brain using the Fibers Orientation Fibers Function described in [12], ou [8,19].
The decomposition of multi symmetric tensors of small rank appear in several
other contexts, for learning latent variable models which are algebraic statistics
models. This is the case for the analysis of phylogenetic trees model described
in [15] or for the analysis of contents of web pages model described in [1]. Here,
the mixture model is a collection of all non-negative probability tensors of low
rank.

The tensor decomposition problem is also very interesting from an algebraic
geometric point of view [10]. Important efforts have been developed over the
last decades to better understand the theoretical aspects, as well as the algo-
rithmic aspects of this difficult problem. Some of the well-known decomposition
c© Springer International Publishing AG 2017
J. Blömer et al. (Eds.): MACIS 2017, LNCS 10693, pp. 51–66, 2017.
https://doi.org/10.1007/978-3-319-72453-9_4
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methods use local optimization techniques such Alternate Least Square, Gradi-
ent Descents, Quasi-Newton, . . . to minimize the error between the tensor and
its decomposition. Some other approaches exploit the algebraic structure asso-
ciated to the tensor decomposition [3,4]. Homotopy techniques have also been
used recently to compute such decomposition [2].

In this paper, we describe a direct method for the decomposition of multi-
symmetric tensors, based on simple linear algebra tools. The decomposition algo-
rithm applies to tensors of low enough rank. We follow the approach in [3] but
directly apply numerically stable linear algebra tools on submatrices of the Han-
kel matrices to recover the decomposition. In particular, we show how to recover
directly the points and weights from eigenvectors of multiplication operators of
the quotient algebra associated to the decomposition. The algorithm does not
require the solution of polynomial equations. The proposed method extends the
techniques of [16] to more general tensors and to tensors of higher rank. It is
closely connected to the multivariate Prony method investigated in [14] and to
the structured low rank decomposition of Hankel matrix [7].

A multi-linear tensor is in correspondence with a multilinear map from a
product of vector spaces to the coefficient field. A tensor symmetric tensor is a
tensor whose components stay invariant by any permutation of indices. In the
following, we study the general class of multi symmetric tensor decomposition
problem, which contains these two classes. We show the correlation between the
dual of a tensor, formal power series and then the Hankel matrices associated to
them. We use the singular value decomposition of Hankel matrices to compute
the decomposition of a tensor of low rank. We exploit the properties of Artinian
Gorenstein Algebra to find out some multiplication matrices which help to know
the eigen-structure of points associated to linear forms and their weights. We
slice variables into bunches of sub-variables and we adapt the description of
Artinian Gorenstein Algebra to this case. We adapt the method of decomposition
of Hankel matrices of low rank described in [7] to a decomposition of multi linear
tensors method which is based on the decomposition of a formal power series as a
weighted sum of exponential described in [14]. The computation of multiplication
matrices depend on the dimension of tensor, and the number of given moments
or coefficients. We describe the algorithm in 3 dimensional space and we give its
numerical implementation using MAPLE. This description gives an idea about
the constraints and difficulties of the problem in n dimensional space. We show
a numerical example of the decomposition of a tensor of rank 3 with order one
in each bunch of 3 variables in 3 dimensional space.

Contributions. We study the decomposition of multi-linear tensor T as a sum of
product of powers of linear forms in correlation with the decomposition of its dual
T ∗ as a weighted sum of evaluations. T ∗ is defined via a formal power series τ .
We exploit the structure of the quotient algebra Aτ of the ring of multivariate
polynomials in bunches of sub-variables by the kernel of the Hankel operator
Hτ associated to τ . We choose two bases A1 and A2 of monomials such that all
given moments of the tensor T appear in the matrix Hτ associated to T in the
bases A1 and A2 and we substitute x0 by one. We compute the Singular Value
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Decomposition of the Hankel matrix associated to a chosen truncated bases of
A1 and A2 such that the multiplication of the matrix by one fixed variable is
well defined. We exploit the eigen-structure properties of multiplication opera-
tors to compute the sub-coordinates of points and their corresponding weights.
We show the constraints which arise from the computation of all multiplication
matrices in higher dimension spaces. We propose a new algorithm to compute
the sub-coordinates of points using the eigenvalues of multiplication matrices
and their transpose. We deduce weights from eigenvectors of a linear combina-
tion of multiplication matrices. This method is an adaptation of Structured Low
Rank Decomposition of Multivariate Hankel Matrices method proposed in [7]
which is the generalization of Prony method. We give a numerical interpretation
of the decomposition of a multi-linear tensor of low rank in 3 dimensional space.

Structure of the paper. In the following section, we recall the definition of multi
symmetric tensors of rank r and the affine decomposition theory of them. In
Sect. 2, we recall some important properties of Artinian Gorenstein Algebra that
we adapt to solve the dual decomposition problem which is resumed by the com-
putation of points and their weights. In Sect. 3, we give a theoretical approach of
the multi linear symmetric decomposition problem and a new algorithm to solve
the decomposition problem in 3 dimensional space. In Sect. 4, we give an imple-
mentation of our algorithm for one example using MAPLE and we interpret the
results.

2 Partial Symmetric Tensor Decomposition Problem

In this section we give the definition of a multi-symmetric tensor as a multi-
homogeneous polynomial of a different positive degree at each collection of vari-
ables. This polynomial can be defined as well as multi symmetric array of coeffi-
cients. In the opposite, for a multi symmetric array of coefficients we can define
a multi-homogeneous polynomial and then deshomogenize it. We recall the def-
inition of minimal affine decomposition of a multi symmetric tensor as weighted
sum of product of power of linear forms. We show the relationship between the
dual of deshomogenized tensor and the formal power series associated to it using
the apolar product. Then, after scaling by the linear form of the decomposition
and multiplying the weights by the scaling factor we deduce by linearity that
the dual of the Tensor can be decomposed as a weighted sum of evaluations.

Definition 1. Let (Ej)1≤j≤k be a family of nj + 1 dimensional vector spaces,
each one of them is of basis xj such that Ej = 〈xj〉 = 〈xj , . . . , xj,nj

〉.

Definition 2. Sδj (Ej) is the vector space of homogeneous polynomials in the
variables xj of degree δj.

Definition 3. Sδ1(E1) ⊗ Sδ2(E2) ⊗ . . . ⊗ Sδk(Ek) is the vector space of multi-
homogeneous polynomials of degree δj in each subset of variables xj for j =
1, . . . , k, an element [T ] of this vector space is called a multi symmetric tensor.
It is denoted hereafter as Sδ(E).
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Definition 4. A multi symmetric tensor of Sδ1(E1) ⊗ Sδ2(E2) ⊗ . . . ⊗
Sδk(Ek) can be interpreted as a multi symmetric array of coefficients [T ] =
[tα′

1,α
′
2,...,α

′
k
] |α′

j |=δj

α
′
j∈N

nj+1

such that each α
′
j = (α

′
j,pj

)0≤pj≤nj
is a multi-index for

1 ≤ j ≤ k.

For α ∈ N
n with |α| ≤ δ, we denote ᾱ = (δ − |α|, α1, . . . , αn). The multi sym-

metric tensor is defined as [T ] = [tᾱ1,ᾱ1,...,ᾱk
]|αj |≤δj

αj∈N
nj

.

Such tensor is identified with the multi-homogeneous polynomial

T (x1,x2, . . . ,xk) =
∑

|ᾱj |=δj

ᾱj∈N
nj+1

tᾱ1,ᾱ2,...,ᾱk
(x1)ᾱ1(x2)ᾱ2 . . . (xk)ᾱk

If we let xj = 1 for j = 1, . . . , k we get

T (x1,x2, . . . ,xk) =
∑

|αj |≤δj

αj∈N
nj

tα1,α2,...,αk
(x1)

α1(x2)
α2 . . . (xk)αk

where xj = (xj,1, . . . , xj,nj
) for j = 1, . . . , k because of (xj)

αj = (xj)ᾱj for
j = 1, . . . , k.

A multilinear tensor is defined when |ᾱj | = δj = 1 for j = 1, . . . , k, then by
abuse of notation we obtain ᾱj [ij ] = 1 for some 0 ≤ ij ≤ nj and 0 elsewhere,
so that the multi symmetric array associated to that tensor is defined as [T ] =
[ti1,i2,...,ik

]0≤ij≤nj

1≤j≤k

Given ej basis of Ej for j = 1, . . . , k, the tensor [T ] in the basis e1 ⊗ e2 ⊗
. . .⊗ek is equal to T =

∑
0≤i1≤n1
0≤i2≤n2

...
0≤ik≤nk

ti1,i2,...,ik
e1,i1 ⊗e2,i2 ⊗ . . .⊗ek,ik

, such a tensor

can be identified with the multi-homogeneous polynomial T (x1,x2, . . . ,xk) =∑
0≤i1≤n1
0≤i2≤n2

...
0≤ik≤nk

ti1,i2,...,ik
x1,i1x2,i2 . . . xk,ik

because of (xj)ᾱj = xj,ij
for some 0 ≤

ij ≤ nj and for all 1 ≤ j ≤ k.
The dual of the tensor is T ∗(y1,y2, . . . ,yk) =

∑
0≤i1≤n1
0≤i2≤n2

...
0≤ik≤nk

ti1,i2,...,ik
y1,i1

y2,i2 . . . yk,ik
because of (yj)ᾱj = yj,ij

for some 0 ≤ ij ≤ nj and for all 1 ≤ j ≤ k.
We denote Rδ1,δ2,...,δk

the space obtained by the deshomogeneisation of ele-
ments in Sδ(E) by setting xj = 1 for j = 1, . . . , k where R = C[x1,x2, . . . ,xk] is
the space of polynomials in the variables xj = (xj,1, . . . , xj,nj

) for j = 1, . . . , k

Definition 5. The tensor decomposition problem of T (x1,x2, . . . ,xk) is the
decomposition of T as a sum of product of power of linear forms such that
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T (x1,x2, . . . ,xk) =
∑r

p=1 ωpuδ1
p,1(x1)uδ2

p,2(x2) . . .uδk

i,k(xk) where up,j(xj) =
up,jxj + up,j,1xj,1 + . . . + up,j,nj

xj,nj
and

up = (up,j,pj
)0≤pj≤nj

1≤j≤k

=(up,1, up,1,1, . . . , up,1,n1 , up,2, up,2,1, . . . , up,2,n2 , . . . . . . ,

up,k, up,k,1, . . . , up,k,nk
) ∈ C

∑k
j=1(nj+1)

is the coefficient vector associated to the linear forms up,j(xj) in the basis xj for
j = 1, . . . , k.

Definition 6. The minimal number of terms in a decomposition of T (x) is
called the rank of T .

We say that T (x1,x2, . . . ,xk) has an affine minimal decomposition of the
previous form if up,j �= 0 for p = 1, . . . , r and j = 1, . . . , k where r is the rank
of T .

Definition 7. For T = (tα1,α2,...,αk
)|αj |≤δj

αj∈N
nj

∈ Sδ(E) we denote τα1,α2,...,αk

(T ) = τα1,α2,...,αk
= tα1,α2,...,αk

(
δ1
α1

)−1(δ2
α2

)−1
. . .

(
δk

αk

)−1
. The dual of the ten-

sor T (x1,x2, . . . ,xk) ∈ Sδ(E) is defined via the formal power series as
τ(y1,y2, . . . ,yk) = T ∗(y1,y2, . . . ,yk) =

∑
|αj |≤δj

αj∈N
nj

τα1,α2,...,αk

(y1)
ᾱ1

ᾱ1!
(y2)

ᾱ2

ᾱ2!
. . .

(yk)
ᾱk

ᾱk!
where (yj)ᾱj = (yj , yj,1, . . . , yj,nj

)(αj ,αj,1,...,αj,nj
) =

∏nj

pj=0 (yj,pj
)αj,pj for

j = 1, . . . , k

Definition 8. For a polynomial p ∈ R and a formal power series τ ∈ R∗, we
define the multiplication operator ∗ such that

p ∗ τ : R → C

q 
→ τ(p.q)

Definition 9. Let T1(x1,x2, . . . ,xk) and T2(x1,x2, . . . ,xk) be two tensors
of Sδ(E). The apolar product of T1(x1,x2, . . . ,xk) and T2(x1,x2, . . . ,xk) is
defined as

〈T1(x1,x2, . . . ,xk), T2(x1,x2, . . . ,xk)〉 =
∑

|αj |≤δj

αj∈N
nj

τ
(1)
α1,α2,...,αk τ̄

(2)
α1,α2,...,αk

(
δ
α

)

where
(

δ
α

)
=

(
δ1
α1

)(
δ2
α2

)
. . .

(
δk

αk

)
.

Definition 10. The dual operator of a tensor is defined as

T ∗ : (Rδ1,δ2,...,δk
) → (Rδ1,δ2,...,δk

)∗ (1)
T2 
→ T ∗(T2) = 〈T (x), T2(x)〉 (2)

Lemma 1. By a generic change of coordinates in each Ej, we may assume
that up,j �= 0 and that T has an affine decomposition. Then by scaling up(x) and
multiplying ωp by the dth power of the scaling factor we may assume that up,j = 1
for p = 1, . . . , r and j = 1, . . . , k. Thus the polynomial T (x) =

∑r
p=1 ω′

pu
′
p
δ(x) =

∑r
p=1 ω′

iu
′
p,1

δ1(x1)u
′
p,2

δ2(x2) . . .u′
p,k

δk(xk).
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Proposition 1. The dual of the product of powers of linear forms uδ1
1 uδ2

2 . . .uδk

k

is the evaluation eu at u = (u1,u2, . . . ,uk).

Proof. For T = uδ1
1 uδ2

2 . . .uδk

k and any T ′ ∈ Rδ1,δ2,...,δk
, we check that

〈T (x), T ′(x)〉 = T ′(u). This shows that T ∗ coincides with the evaluation eu.

Thus if T =
∑

i ωi uδ1
i,1u

δ2
i,2 . . .uδk

i,k, then T ∗ coincides with the weighted sum
of evaluations T ∗ =

∑
i ωi ebui

on Rδ1,δ2,...,δk
. We reduce the decomposition

problem of T to the decomposition of T ∗ as a weighted sum of evaluations
T ∗ =

∑
i ωi ebui

.

2.1 Solving Polynomial Equations by Eigenvector Computation

We recall the definition of quotient algebra A of the ring of polynomials in a
collection of variables x = [x1,x2, . . . ,xk] where xj = [xj,1,xj,2, . . . ,xj,nj

] for
j = 1, . . . , k by an ideal I of multivariate polynomials. We use eigen-structure
properties of multiplication operators and their transpose in a chosen basis of
A and its dual to compute the x’s coordinates of points in the decomposition of
the associated multi-linear tensor.

A quotient algebra A = C[x]/I is Artinian if it is of finite dimension over C.
In the case of partial symmetric tensor, the variables x and y are divided into
bunches of sub-variables such that x = [x1,x2, . . . ,xk] and y = [y1,y2, . . . ,yk].
Hereafter, in the case of multi-symmetric tensor the ideal I defines a finite num-
ber of roots V(I) = {ξ1, ξ2, . . . , ξr′} = {ξ ∈ C

n | ∀q ∈ I, q(ξ) = 0} where
n =

∑k
j=1(nj +1) such that nj +1 is the dimension of each vector space spanned

by xj and we have a decomposition of A as a sum of sub-algebras:

A = C[x]/I = A1 ⊕ · · · ⊕ Ar′

where Ap = uξp
A ∼ C[x]/Qp and Qp is the primary component of I associated

to the root ξp ∈ C
n. The elements u1, . . . ,ur′ satisfy the relations

u2
ξp

(x) ≡ uξp
(x),

r∑

i=1

uξp
(x) ≡ 1.

The polynomials uξ1 , . . . ,uξr′ are called idempotents of A. The dimension of Ap

is the multiplicity of the point ξp. For more details, see [6][Chap. 4].
For g ∈ C[x], the multiplication operator Mg is defined by

Mg : A → A
h 
→ Mg(h) = g h.

The transpose MT
g of the multiplication operator Mg is

MT
g : A∗ → A∗

Λ 
→ MT
g(Λ) = Λ ◦ Mg = g � Λ.

The main property that we will use to recover the roots is the following
[6][Theorem 4.23].



Decomposition of Low Rank Multi-symmetric Tensor 57

Proposition 2. Let I be an ideal of C[x] and suppose that V(I) =
{ξ1, ξ2, . . . , ξr′}. Then

– for all g ∈ A, the eigenvalues of Mg and MT
g are the values g(ξ1), . . . , g(ξr′)

of the polynomial g at the roots with multiplicities μp = dim Ap.
– The eigenvectors common to all MT

g with g ∈ A are - up to a scalar - the
evaluations eξ1 , . . . , eξr′ .

If B = {b1, . . . , br} is a basis of A, then the coefficient vector of the evaluation
eξp

in the dual basis of B is
[〈
eξp

|bj

〉]
β∈B

= [bj(ξp)]p=1...r = B(ξp). The previous
proposition says that if Mg is the matrix of Mg in the basis B of A, then

M T

g B(ξp) = g(ξp)B(ξp).

If moreover the basis B contains the monomials 1, x1,1, x1,2, . . . , x1,n1 , then the
common eigenvectors of M T

g are of the form vp = c [1, ξp,1,1, . . . , ξp,1,n1 , . . .] and
the x’s coordinates of the root ξp can be computed from the coefficients of vp

by taking the ratio of the coefficients of the monomials x1,1, . . . , x1,n1 by the
coefficient of 1: ξp,1,i1 = vp,1,i1+1

vp,1,1
. Thus computing the common eigenvectors of all

the matrices M T
g for g ∈ A yield the x’s coordinates of the roots ξp (p = 1, . . . , r).

In practice, it is enough to compute the common eigenvectors of
M T

x1,1
, . . . , M T

x1,n1
, since ∀g ∈ C[x1],M T

g = g(M T
x1,1

, . . . , M T
x1,n1

). Therefore, the
common eigenvectors M T

x1,1
, . . . , M T

x1,n1
are also eigenvectors of any M T

g .
The multiplicity structure, that is the dual Q⊥

p of each primary component
Qp of I, also called the inverse system of the point ξp can be deduced by linear
algebra tools (see e.g. [13]).

In the case of simple roots, we have the following property [6][Chap. 4]:

Proposition 3. If the roots {ξ1, ξ2, . . . , ξr} of I are simple (i.e. μp = dim
Ap = 1) then we have the following:

– u = {uξ1 , . . . ,uξr
} is a basis of A.

– The polynomials uξ1 , . . . ,uξr
are interpolation polynomials at the roots

ξp: uξp
(ξq) = 1 if p = q and 0 otherwise.

– The matrix of Mg in the basis u is the diagonal matrix diag(g(ξ1), . . . , g(ξr)).

This proposition tells us that if g is separating the roots, i.e. g(ξp) �= g(ξq) for
p �= q, then the eigenvectors of Mg are, up to a scalar, interpolation polynomials
at the roots.

2.2 Artinian Gorenstein Algebra of a Multivariate Hankel Operator

In this section, we detail the construction of the quotient algebra Aτ by the
kernel Iτ of the Hankel operator Hτ associated to the dual of the tensor T . We
compute a basis of Aτ such that the submatrix associated to it has a maximal
non-zero minor of a truncated matrix of Hτ . We recall how to compute the
multiplication matrices in this associated basis and its dual using some shifted
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submatrices of Hτ . We notice that not all of them are easy to compute. We
benefit from properties of generalized eigenvalues of multiplication matrices by
y′s to compute the x’s coordinates of points. We show how to use the generalized
eigenvectors of the multiplication matrices to compute the weights.

We associate to a Hankel operator Hτ , the quotient Aτ = C[x]/Iτ of the
polynomial ring C[x] modulo the kernel Iτ = {p ∈ C[x] | ∀q ∈ R, 〈τ | pq〉 = 0}
of Hτ . We check that Iτ is an ideal of C[x], so that Aτ is an algebra.

As Aτ = C[x]/Iτ ∼ img Hτ , the operator Hτ is of finite rank r, if and only
if, Aτ is Artinian of dimension dimC Aτ = r.

A quotient algebra A is called Gorenstein if its dual A∗ = HomC(A,C) is a
free A-module generated by one element.

In our context, we have the following equivalent properties [14]:

– τ =
∑r′

p=1 ωp(y)eξp
(y) with ωp ∈ C[y], ξp ∈ C

n and
∑r′

p=1 μ(ωp) = r where

n =
∑k

j=1(nj + 1),
– Hτ is of rank r,
– Aτ is an Artinian Gorenstein algebra of dimension r.

Another property that will be helpful to determine a basis of Aτ is the
following:

Lemma 2. Let B = {b1, . . . , br}, B′ = {b′
1, . . . , b

′
r} ⊂ C[x]. If the matrix

HB,B′
τ = (〈τ |bpb

′
q〉)1≤p,q≤r is invertible, then B and B′ are linearly independent

in Aτ .

By this Lemma, bases of Aτ can be computed by identifying non-zero minors
of maximal size of the matrix of Hτ .

Proposition 4. Let B,B′ be basis of Aτ and g ∈ C[x]. We have

HB,B′
g�τ = (MB

g )THB,B′
τ = HB,B′

τ MB′
g . (3)

where MB
g (resp. MB′

g ) is the matrix of the multiplication by g in the basis B
(resp. B′) of Aτ .

We deduce the following property:

Proposition 5. Let τ(y) =
∑r

p=1 ωp(y)eξp
(y) with ωp ∈ C[y]\{0} and ξp ∈ C

n

distinct and let B,B′ be bases of Aτ . We have the following properties:

– For g ∈ C[x], MB′
g = (HB,B′

τ )−1HB,B′
g�τ , (MB

g )T = HB,B′
g�τ (HB,B′

τ )−1.
– For g ∈ C[x], the generalized eigenvalues of (HB,B′

g�τ ,HB,B′
τ ) are g(ξp) with

multiplicity μp = μ(ωp), p = 1, . . . , r.
– The generalized eigenvectors common to all (HB,B′

g�τ ,HB,B′
τ ) for g ∈ C[x] are

- up to a scalar - (HB,B′
τ )−1 B(ξp), p = 1, . . . , r.

Proof. The two first points are direct consequences of Propositions 4 and 2. The
third point is also a consequence of Proposition 2, since the coordinate vector of
the evaluation eξp

in the dual basis of B is B(ξp) for p = 1, . . . , r.
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This proposition shows that the matrices of multiplication by an element g
in A, and thus the roots {ξ1, . . . , ξr} and their multiplicity structure, can be
computed from truncated Hankel matrices, provided we can determine bases
B, B′ of Aτ . In practice, it is enough to compute the generalized eigenvec-
tors common to (HB,B′

x1,i1�τ ,HB,B′
τ ) for i1 = 1, . . . , n1 to recover the roots. As

HB,B′
x1,i1�τ = H

x1,i1B,B′
τ = H

B,x1,i1 B′
τ , the decomposition can be computed from

sub-matrices of HB,B′+
τ or HB+,B′

τ where B+ = B ∪ x1,1B ∪ · · · ∪ x1,n1B,
B′+ = B′ ∪ x1,1B

′ ∪ · · · ∪ x1,n1B
′.

3 Multilinear Tensor Decomposition Problem

In this section, we analyze the easiest case of multi symmetric tensor where it
is of degree one at each bunch of sub-variables. Our goal is to decompose τ
which is equal to T ∗ as a weighed sum of evaluations by computing the eigen-
structure of Aτ which is based on the computation of multiplication operators.
We simplify notations by using subscripts of variables and coefficients instead of
multi-index exponents. We compute the truncated Singular Value Decomposition
of a generic linear combination of a shifted Hankel matrices by the first collection
of variables. By linearity and properties of the multiplication operators by one
variable described in Sect. 2, we deduce the multiplication operators by more
complex variables which could be used to compute weights and points.

We choose two monomial bases B1 and B2 indexing respectively rows and
columns of the Hankel matrix HB1,B2

T ∗ associated to the tensor T ∗, such that
the set of monomials {B1 ∗ B2xj,ij

, 0 ≤ ij ≤ nj , 1 ≤ j ≤ k} span the set of
deshomogenized polynomials Rδ1,δ2,...,δk

.
The matrix of the truncated Hankel operator in the basis B1 and the dual

basis B2 is HB1,B2
T ∗ = [ti1,i2,...,ik

]0≤i1≤n1
0≤i2≤n2

...
0≤ik≤nk

.

The Hankel matrix associated to the tensor x1,i1 ∗ T ∗ is defined as H1,i1 =
HB1,B2

x1,i1∗T ∗ = H
x1,i1∗B1,B2

T ∗ = [tα+β ]α∈x1,i1∗B1,β∈B2
, all the elements of the matrix

are divisible in x1,i1 and of degree δ.
For example, the Hankel matrix associated to x1 ∗T ∗ in the monomials basis

B1 and B2 is denoted by H0. Let λ(x1) = λ0 + λ1x1,1 + . . . + λn1x1,n1 is a
linear form with generic chosen coefficients λi1 , i1 = 0, . . . , n1, we build a linear
combination of H1,i1 , i1 = 0, . . . , n1 such that Ĥ0 =

∑n1
i1=0 λi1H1,i1 we compute

the singular value decomposition of it.
Computing the singular value decomposition of Ĥ0, we obtain

Ĥ0 = USV T

where S is the diagonal matrix of all singular values of Ĥ0 arranged in a decreas-
ing order, U is an unitary matrix whose columns are the left singular vectors of
Ĥ0, V is an unitary matrix whose columns are the right singular vectors of Ĥ0.
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We denote by UH the hermitian transpose of U and V the conjugate of V . We
denote by Ur and Vr the truncated matrices of the first r columns of U and V
and Sr the diagonal matrix of the first r rows and r columns of S.

We denote B1 = 〈1, x1,1, . . . , x1,n1〉 and B2 = 〈1, xk,1, . . . , xk,nk
〉. Let ui =

[uα,i]α∈B1
and vj = [vβ,j ]β∈B2

be respectively the ith and jth columns of UH

and V . We denote by ui(x1) = uT
i UH

r and vj(x1) = vT
j V r the corresponding

polynomials. The bases formed by these first r polynomials are denoted UH
r :=

(ui(x1))i=1,...,r and V r := (vj(x1))j=1,...,r. We will also denote by UH
r (resp. V r)

the corresponding coefficient matrix, formed by the first rows (resp. columns)
of UH (resp. V ). We denote by Sr the diagonal matrix of the first r rows and
columns of S, formed by the first r singular values.

We denote by Hr
0 , Hr

1,i1
and Ĥr

0 the matrices obtained by the truncated
singular value decomposition of H0 ,Hi1 and Ĥ0 respectively.

We have the following property

Hr
i1 = (MUH

r
x1,i1

)THr
0 = Hr

0MV r

x1,i1∗T

where M
UH

r
x1,i1

(resp. MV r
x1,i1

) is the multiplication matrix by x1,i1 in the basis UH
r

(resp. V r) and MV r

x1,i1∗T is the multiplication matrix by x1,i1 ∗T in the basis V r.

Then by linearity, we obtain Ĥr
0 =

∑n1
i1=0 λi1H

r
1,i1

= Hr
0

∑n1
i1=0 λi1M

V r

x1,i1∗T =

Hr
0MV r

λ(x1)∗T .

Then (Ĥr
0 )−1 = (MV r

λ(x1)∗T )−1(Hr
0 )−1 so multiplying by the first equation we

get
(Ĥr

0 )−1Hr
1,i1 = (MV r

λ(x1)∗T )−1MV r

x1,i1∗T = MV r

(x1,i1/λ(x1))∗T

We compute the eigenvalues and the eigenvectors of the multiplication matri-
ces MV r

(x1,i1/λ(x1))∗T in order to obtain the weights and the points of the decom-
position.

3.1 Algorithm

We describe now the algorithm to recover the sum T ∗(x,y, z) =
∑r

p=1 ωpeup
(x,y, z), ωp ∈ C \ {0},up ∈ C

∑3
l=1(nl+1), from the moments of

degree at most one at each bunch of coordinates (ti,j,k)0≤i≤n1
0≤j≤n2
0≤k≤n3

of the formal

power series. To simplify, we change notations to better understand the nine
dimensional multivariate space seen as three dimensional space. We only use 3
bunches of variables such that x1,i1 by xi and x2,i2 by yj and x3,i3 by zk.
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Algorithm 3.1. Decomposition of polynomial-exponential series with con-
stant weights
Input: the moments (ti,j,k)0≤i≤n1

0≤j≤n2
0≤k≤n3

of T ∗.

1. Compute the monomial sets A1 = (xiyj)0≤i≤n1
0≤j≤n2

and A2 = (z0, z1, . . . , zn3) and

substitute the x0, y0 and z0 by 1 to define B1 and B2.
2. Compute the Hankel matrix HB1,B2

T ∗ = [ti,j,k]0≤i≤n1
0≤j≤n2
0≤k≤n3

for the monomial sets B1

and B2.
3. Compute the singular value decomposition of HB1,B2

T ∗ = USV T where
B1 = 〈1, x1, . . . , xn1〉 and B2 = 〈1, z1, . . . , zn3〉 with singular values
s1 ≥ s2 ≥ · · · ≥ sm ≥ 0.

4. Determine its numerical rank, that is, the largest integer r such that sr
s1

≥ ε.

5. Form the multiplication matrices by yj in the basis V r, MV r
yj

= S−1
r UH

r HB1,B2
yj∗T ∗

V r where HB1,B2
yj∗T ∗ is the Hankel matrix associated to yj � T ∗ for j = 1, . . . , n2.

6. Compute the eigenvectors vp of
∑n2

j=1 ljM
V r
yj

such that |lj | ≤ 1, j = 1, . . . , n2

and for each p = 1, . . . , r do the following:
– The y′s coordinates of the up are the eigenvalues of the multiplication

matrices by yj . Use the formula MV r
yj

vp = up,2,jvp for p = 1, . . . , r and
j = 1, . . . , n2 and deduce the up,2,j .

– Write the matrix HB1,B2
T ∗ in the basis of interpolation polynomials(i.e. the

eigenvectors vp) and use the corresponding matrix T to compute the z′s
coordinates. Divide the kth row on the first row of the matrix T to obtain
the values of up,3,k for p = 1, . . . , r and k = 1, . . . , n3.

– The x′s coordinates of up are computed using the eigenvectors of the

transpose of the matrix MV r
yj

. They -are up to scalar- the evaluations,
they are represented by vectors of the form v∗

p = μp[1, up,1,1, . . . , up,1,n1 ].
Compute v∗

p as the pth column of the transpose of the inverse of the

matrix V = [v1, . . . , vr] for p = 1, . . . , r and deduce up,1,i =
v∗

p[i+1]

v∗
p[1]

for

p = 1, . . . , r and i = 1, . . . , n1.

– Compute ωp =
〈T ∗|vp〉
vp(up)

.

Output: r ∈ N, ωp ∈ C\(0), up ∈ C

∑3
l=1(nl+1), p = 1, . . . , r such that

T ∗(x,y, z) =
∑r

p=1 ωpeup(x,y, z) up to degree one at each bunch of
coordinates.

The cost of the SVD computation is in O(s3) where s ≥ r is the maximal
size of the Hankel matrix H0 and r the rank of the decomposition. The com-
putation of each multiplication matrice is in O(r2) and the eigencomputation
is in O(r3). This yields a complexity bound in O(s3 + n r2) for the complete
algorithm, where n = max(n1, n2, n3) is a bound on the dimension of the spaces.
This complexity bound extends to the decomposition of general multi-symmetric
tensors, provided r = rankH0.
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4 Example

In this section, we illustrate the decomposition algorithm on a multi-linear tensor
of degree one at each bunch of 3 variables and of rank 3.

If δl = 1 for all l = 1, . . . , k, k > 1 and nl = n, let k = 3, nl = n = 2, r = 3
and δl = 1 then we have x = (x0, x1, x2), y = (y0, y1, y2) and z = (z0, z1, z2).
For

ᾱ ∈ N
3, |ᾱ| = 1 ⇒ ᾱ = (1), (0, 1), (0, 1) ⇒ xᾱ = xi, i = 0, . . . , 2

β̄ ∈ N
3, |β̄| = 1 ⇒ β̄ = (1), (0, 1), (0, 1) ⇒ yβ̄ = yj , j = 0, . . . , 2

γ̄ ∈ N
3, |γ̄| = 1 ⇒ γ̄ = (1), (0, 1), (0, 1) ⇒ zγ̄ = zk, k = 0, . . . , 2

The multi symmetric tensor is defined by a multi symmetric array of coefficients
such that tα,β,γ := tᾱ,β̄,γ̄ = ti,j,k then T (x,y, z) =

∑
0≤i≤2
0≤j≤2
0≤k≤2

ti,j,kxiyjzk =

0.4461757334x0y0z0 − 0.2262004083x0y0z1 + 0.4427031740x0y0z2
− 0.2756785277x0y1z0 + 0.1612318550x0y1z1 − 0.3100164212x0y1z2
− 0.1209490221x0y2z0 + 0.1465160338x0y2z1 − 0.1169341103x0y2z2
−0.01239930649x1y0z0 − 0.05189330981x1y0z1 + 0.01803564422x1y0z2
−0.01336683543x1y1z0 + 0.02632784503x1y1z1 − 0.02598209626x1y1z2
−0.3195263612x1y2z0 + 0.09311605022x1y2z1 − 0.1116610246x1y2z2
−0.1460187051x2y0z0 + 0.06557223848x2y0z1 − 0.1734312692x2y0z2
+0.1010145926x2y1z0 − 0.05743078561x2y1z1 + 0.1238292801x2y1z2
−0.1485221955x2y2z0 + 0.03231415762x2y2z1 − 0.376925099e − 2x2y2z2.
Let x0 = y0 = z0 = 1 then T (x,y, z) =

∑
1≤i≤2
1≤j≤2
1≤k≤2

ti,j,kxiyj
zk

Then the tensor decomposition problem is T (x,y, z) =
∑r

p=1 ωpup,1

(x)up,2(y)up,3(z). Given all the moments of degree at most one at each bunch
of coordinates (ti,j,k)0≤i≤2

0≤j≤2
0≤k≤2

,

We create two sets A1 = (xᾱyβ̄)|ᾱ|=1
|β̄|=1

= (xiyj)0≤i≤2
0≤j≤2

and A2 = (zγ̄)|γ̄|=1 =

(zk)0≤k≤2 so that
A1 = (x0y0, x0y1, x0y2, x1y0, x1y1, x1y2, x2y0, x2y1, x2y2) and A2 = (z0,

z1, z2).
For x0 = y0 = z0 = 1 then B1 = (1, y1, y2, x1, x1y1, x2, x2y1, x2y2) and

B2 = (1, z1, z2), the Hankel matrix associated to the tensor in the monomial
basis B1 and B2 is
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H
B1,B2
T ∗ = [tᾱ+β̄+γ̄ ]|ᾱ|=1

|β̄|=1
|γ̄|=1

=

1 y1 y2 x1 x1y1 x1y2 x2 x2y1 x2y2
⎡

⎣

⎤

⎦
t0 t1 t2 t0,1 t0,2 t1,1 t1,2 t2,1 t2,2 1

t0,1 t1,1 t2,1 t0,1,1 t0,2,1 t1,1,1 t1,2,1 t2,1,1 t2,2,1 z1
t0,2 t1,2 t2,2 t1,2 t0,2,2 t1,1,2 t1,2,2 t2,1,2 t2,2,2 z2

=

1 y1 y2 x1 x1y1 x1y2 x2 x2y1 x2y2⎡

⎣

⎤

⎦
0.4461757 0.2756785 0.1209490 0.01239930 0.01336683 0.3195263 0.14601870 0.1010145 0.1485221

−0.2262004 0.1612318 0.1465160 0.05189330 0.02632784 0.09311605 0.06557223 0.05743078 0.03231415

0.4427031 0.3100164 0.1169341 .01803564 0.02598209 0.1116610 0.1734312 0.1238292 0.00376925

All the entries of this matrix are known, we choose B1 = 〈1, x1, x2〉 and
B2 = 〈1, z1, z2〉 to be able to multiply by y1 and to compute the multiplication
matrix. Computing the singular value decomposition of HB1,B2

T ∗ , we obtain

HB1,B2
T ∗ = USV T =

1 x1 x2⎡

⎣

⎤

⎦
t0 t1 t2 1

t0,1 t1,1 t2,1 z1
t0,2 t1,2 t2,2 z2

=

1 x1 x2[ ]0.4461757 −0.01239930 −0.1460187
−0.2262004 −0.05189330 0.06557223
0.4427031 0.01803564 −0.1734312

where S is the diagonal matrix of all singular values of HB1,B2
T ∗ arranged in a

decreasing order, U is an unitary matrix whose columns are the left singular
vectors of HB1,B2

T ∗ , V is an unitary matrix whose columns are the right singular
vectors of HB1,B2

T ∗ . We denote by UH the Hermitian transpose of U and V the
conjugate of V .

Let vi = [vα,i]α∈B1
and wj = [wβ,j ]β∈B2

be respectively the ith and jth

columns of UH and V . We denote by vi(x) = vT
i UH

r and wj(z) = wT
j V r the

corresponding polynomials. The bases formed by these first r polynomials are
denoted UH

r := (vi(x))i=1,...,r and V r := (wj(z))j=1,...,r. We will also denote
by UH

r (resp. V r) the corresponding coefficient matrix, formed by the first rows
(resp. columns) of UH (resp. V ). We denote by Sr the diagonal matrix of the
first r rows and columns of S, formed by the first r singular values. To compute
the multiplication matrices MV r

y1
and MV r

y2
we need to compute the following

matrices

HB1,B2
y1∗T ∗ =

y1 y1x1 x2y1⎡

⎣

⎤

⎦
t0,1 t1,1 t2,1 1

t0,1,1 t1,1,1 t2,1,1 z1
t0,1,2 t1,1,2 t2,1,2 z2

=

y1 y1x1 x2y1[ ]−0.2756785 −0.01336683 0.1010145
0.1612318 0.02632784 −0.05743078

−0.3100164 −0.02598209 0.1238292

HB1,B2
y2∗T ∗ =

y2 y2x1 x2y2⎡

⎣

⎤

⎦
t0,2 t1,2 t2,2 1

t0,2,1 t1,2,1 t2,2,1 z1
t0,2,2 t1,2,2 t2,2,2 z2

=

y2 y2x1 x2y2[ ]−0.1209490 −0.3195263 −0.1485221
0.1465160 0.09311605 0.03231415

−0.1169341 −0.1116610 −0.00376925
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Then we compute MV r
y1

= S−1
r UH

r HB1,B2
y1∗T ∗ V r and MV r

y2
= S−1

r UH
r HB1,B2

y2∗T ∗ V r,

and the eigenvectors vp of
∑2

j=1 ljM
V r
yj

such that |lj | ≤ 1, j = 1, . . . , 2. To
recover the points up ∈ C

n∗k for p = 1, . . . , r of the form

up =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

up,1,1 x1

up,1,2 x2

up,2,1 y1

up,2,2 y2

up,3,1 z1
up,3,2 z2

We do the following:
In general we have MV r

xj,ij
vi = ui,j,ij

vi, for i = 1, . . . , r, j = 1, . . . , k, ij =

1, nj so in this case we get MV r
y1

vp = up,2,1vp and MV r
y2

vp = up,2,2vp for p =
1, . . . , 3 so we compute up,2,1 and up,2,2 for p = 1, . . . , 3. So that we get

up,2,1 =
[
−0.746329870878 −0.293761776025 −0.304898408788

]

up,2,2 =
[
1.40328849510 −0.336304368405 −3.59031087599

]
.

The eigenvectors vp ∈ 〈1, x1, x2〉 for p = 1, . . . , 3 are up to a scalar the
interpolation polynomials at the roots so that if the dual of the tensor has
an affine decomposition T ∗(x,y, z) =

∑r
p=1 ωpeup

(x,y, z) then T ∗(vp) =∑r
p=1 ωpeup

(vp) = λpωp, T ∗(z1vp) =
∑r

p=1 ωpeup
(z1vp) = λpωpup,3,1 and

T ∗(z2vp) =
∑r

p=1 ωpeup
(z2vp) = λpωpup,3,2, for p = 1, . . . , 3. Then the values

of up,3,1 and up,3,2 for p = 1, . . . , 3 come from the computation of the matrix:

T =

v1 v2 v3⎡

⎣

⎤

⎦
T ∗(v1) T ∗(v2) T ∗(v3) 1

T ∗(z1v1) T ∗(z1v2) T ∗(z1v3) z1
T ∗(z2v1) T ∗(z2v2) T ∗(z2v3) z2

=

v1 v2 v3⎡

⎣

⎤

⎦
λ1ω1 λ2ω2 λ3ω3 1

λ1ω1u1,3,1 λ2ω2u2,3,1 λ3ω3u3,3,1 z1
λ1ω1u1,3,2 λ2ω2u2,3,2 λ3ω3u3,3,2 z2

Therefore the value of up,3,1 (resp. up,3,2) comes from the ratio of the second
row (resp. the third row) and the first row of the matrix for p = 1, . . . , 3. So that
we get

up,3,1 =
[
−0.655842579065 0.0321233423462 −0.520955291

]

up,3,2 =
[
1.24749588143 0.403506877499 0.242728128570

]
.

The common eigenvectors of all (MV r
yj

)T -are up to scalar- the evaluations,
they are represented by vectors of the form v∗

p = μp[1, up,1,1, up,1,2] in the dual
basis of B1 = 〈1, x1, x2〉 then the computation of the coordinates of up,1,1 and
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up,1,2 come from the eigenvectors of the transpose of multiplication operators
which are obtained by transposing the inverse of the matrix V of vectors of
MV r

yj
for j = 1, . . . , 2, therefore the value of up,1,1 (resp. up,1,2) comes from the

ratio of the second element of v∗
p (resp. the third element) and the first element

of it, so that

up,1,1 =
[
0.114279629148 −1.08600705528 1.23814628617

]

up,1,2 =
[
−0.405714894278 −0.567603220082 0.873482418287

]
.

Notice that the computation of ωp, p = 1, . . . , 3 can be done using the following
formula ωp = 〈T ∗|vp〉

vp(up)
since if vp ∈ 〈1, x1, x2〉 then vp = ap + x1bp + x2cp and

v∗
p = μp[1, up,1,1, up,1,2] ∈ (〈1, x1, x2〉)∗, so that vp(up) = ap+up,1,1bp+up,1,2cp =

〈vp|v∗
p〉, the computation gives

ω = (ωp)1≤p≤r =
[
0.318579752246 0.08897389360312 0.0386220875736

]
.
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Abstract. We consider Hilbert-type functions associated with finitely
generated inversive difference field extensions and systems of algebraic
difference equations in the case when the translations are assigned posi-
tive integer weights. We prove that such functions are quasi-polynomials
that can be represented as alternating sums of Ehrhart quasi-polynomials
of rational conic polytopes. In particular, we generalize the author’s
results on difference dimension polynomials and their invariants to the
case of inversive difference fields with weighted basic automorphisms.
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1 Introduction

The role of difference dimension polynomials in difference algebra is similar to
the role of Hilbert polynomials in commutative algebra and algebraic geometry,
as well as to the role of differential dimension polynomials in differential algebra.
In particular, difference dimension polynomials and their invariants play the key
role in the study of Krull-type dimension of difference and inversive difference
modules and algebras, as well as of difference and inversive difference field exten-
sions (see, for example, [8,10,11,13], and [9, Sects. 3.6, 4.6]). Furthermore, and
this is probably the most important application of difference dimension poly-
nomials outside of difference algebra, the difference dimension polynomial of a
system of algebraic difference equations expresses the A. Einstein’s strength of
the system (see [9, Chap. 7] for a detailed description of this concept). In this
connection, properties and methods of computation of difference dimension poly-
nomials play a significant role in the qualitative theory of difference equations.

In this paper, we prove the existence and determine some invariants of a
dimension quasi-polynomial associated with a finitely generated inversive differ-
ence field extension with weighted basic translations. We also show that such a
quasi-polynomial is an alternating sum of Ehrhart quasi-polynomials associated
with rational conic polytopes. Furthermore, we show that every “prime” system
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of algebraic difference equations with weighted translations (that is, a system of
the form fi(y1, . . . , yn) = 0, i ∈ I, where the left-hand sides generate a prime
reflexive difference ideal in the corresponding ring of inversive difference poly-
nomials) can be assigned a quasi-polynomial, which represents the Einstein’s
strength of the system. Note that systems of difference equations of these kind
arise, in particular, from finite difference approximations of systems of PDEs with
weighted derivatives, see, for example, [14,15]. One should also mention that our
work continues the study of dimension quasi-polynomials associated with differ-
ential and difference algebraic structures initiated by C. Dönch in his dissertation
[4]. In this work C. Dönch developed a Gröbner basis method for free difference-
differential modules with weighted basic derivations and translations and used
the developed technique to prove the existence of dimension quasi-polynomials
associated with finitely generated modules over rings of difference-differential
operators.

2 Preliminaries

In what follows Z, N, Z−, Q, and R denote the sets of all integers, non-negative
integers, non-positive integers, rational numbers, and real numbers, respectively.
If m ∈ Z, m ≥ 1, then by the product order on N

m we mean a partial order <P

such that (a1, . . . , am) <P (a′
1, . . . , a

′
m) if and only if ai <P a′

i for i = 1, . . . , m.
By a ring we always mean an associative ring with unity. Every ring homo-

morphism is unitary (maps unity onto unity), every subring of a ring contains
the unity of the ring.

A difference ring is a commutative ring R together with a finite set σ =
{α1, . . . , αm} of mutually commuting endomorphisms of R. The set σ is called
a basic set of R and the endomorphisms αi are called translations. We also say
that R is a σ-ring.

If α1, . . . , αm are automorphisms of R, we say that R is an inversive difference
ring with the basic set σ. In this case the set {α1, . . . , αm, α−1

1 , . . . , α−1
m } is

denoted by σ∗ and R is also called a σ∗-ring. If a difference ring with a basic
set σ is a field, it is called a difference (or σ-) field. If all αi are automorphisms,
it is called an inversive difference field or a σ∗-field. (We always use the upper
index ∗ in the notation that refers to inversive algebraic difference structures;
the corresponding notation without ∗ is common in the non-inversive case.)

In what follows we deal with inversive difference (σ∗-) rings and fields, where
the basic set consists of m translations (automorphisms) α1, . . . , αm. Further-
more, we will consider the free commutative group Γ generated by the set σ (we
use the multiplicative notation, so that elements of Γ are power products of the
form γ = αk1

1 . . . αkm
m where k1, . . . , km ∈ Z).

If R is a σ∗-ring and R0 a subring of R such that α(R0) ⊆ R0 for any α ∈ σ∗,
then R0 is said to be an inversive difference (or σ∗-) subring of R; we also say that
R is a σ∗-overring of R0. In this case the restriction of αi on R0 (1 ≤ i ≤ m) is
denoted by the same symbol αi. If R is an inversive difference (σ∗-) field and R0

a subfield of R which is also a σ∗-subring of R, then R0 is said to be an inversive
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difference (or σ∗-) subfield of R; R, in turn, is called an inversive difference (or
σ∗-) field extension (or overfield) of R0. In this case we also say that we have a
σ∗-field extension R/R0.

A subring (ideal) J of a σ∗-ring R is said to be a σ∗-subring of R (respectively,
a σ∗-ideal of R) if J is closed with respect to the action of any mapping αi ∈ σ∗.
If J is a σ∗-ideal of R, then the factor ring R/J has a natural structure of a
σ∗-ring with the same basic set σ where α(a + I) = α(a) + I for any coset
a + I ∈ R/I and α ∈ σ∗. If a σ∗-ideal is prime, it is referred to as a prime
σ∗-ideal.

If R is a σ∗-ring and S ⊆ R, then the intersection I of all σ∗-ideals of R
containing the set S is the smallest σ∗-ideal of R containing S; it is denoted by
[S]∗. Clearly, [S]∗ is generated, as an ideal, by the set {γ(a) | a ∈ S, γ ∈ Γ}). If
the set S is finite, S = {a1, . . . , ar}, we say that the σ-ideal J = [S]∗ is finitely
generated (we write this as J = [a1, . . . , ar]∗) and call a1, . . . , ar σ∗-generators
of J .

If R0 is a σ∗-subring of R and S ⊆ R, then the smallest σ∗-subring of R
containing R0 and S is denoted by R0{S}∗ (if S is finite, S = {η1, . . . , ηn}, we
write R0{η1, . . . , ηn}∗). As a ring, it is generated over R0 by the set {γs | γ ∈
Γ, s ∈ S}. (Here and below we frequently write γs for γ(s).)

A ring homomorphism of σ-rings φ : R −→ S is called a difference (or σ-)
homomorphism if φ(αa) = αφ(a) for any α ∈ σ, a ∈ R (of course, if R and S are
inversive, the equality holds for every α ∈ σ∗). It is easy to see that the kernel
of such a mapping is a σ∗-ideal of R.

If K is a σ∗-subfield of a σ∗-field L and S ⊆ L, then the smallest σ∗-
subfield of L containing K and S is denoted by K〈S〉∗. If the set S is finite,
S = {η1, . . . , ηn}, then K〈S〉∗ is written as K〈η1, . . . , ηn〉∗ and is said to be a
finitely generated inversive difference (or σ∗-) extension of K with the set of σ∗-
generators {η1, . . . , ηn}. It is easy to see that the field K〈η1, . . . , ηn〉∗ coincides
with the field K({γηi | γ ∈ Γ, 1 ≤ i ≤ n}).

If R is an inversive difference (σ∗-) ring and Y = {y1, . . . , yn} is a finite set of
symbols, then one can consider a countable set of symbols ΓY = {γyj |γ ∈ Γ, 1 ≤
j ≤ n} and the polynomial ring R[ΓY ] in the set of indeterminates ΓY over R
(the elements of ΓY will be called terms). This polynomial ring is naturally
viewed as a σ∗-ring where the action of the translations of σ∗ on R is extended
to R[ΓY ] by setting α(γyj) = (αγ)yj for any α ∈ σ∗, γ ∈ Γ , 1 ≤ j ≤ n. This
σ∗-ring (that contains R as its σ∗-subring) is denoted by R{y1, . . . , yn}∗; it is
called the ring of inversive difference (or σ∗-) polynomials in the set of inversive
difference (σ∗-) indeterminates y1, . . . , yn over R. Elements of R{y1, . . . , yn}∗ are
called inversive difference (or σ∗-) polynomials. If R is a σ∗-subring of a σ∗-ring
S, f ∈ R{y1, . . . , yn}∗ and η = (η1, . . . , ηn) ∈ Sn, then f(η) denotes the result
of the replacement of every entry γyi in f by γηi (γ ∈ Γ , 1 ≤ i ≤ n).

Let R be an inversive difference (σ∗-) ring and U =
{
u(λ)|λ ∈ Λ

}
a family

of elements of some σ∗-overring of R. We say that the family U is transformally
(or σ-algebraically) dependent over R, if the family

U∗
σ =

{
γu(λ) | γ ∈ Γ, λ ∈ Λ

}
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is algebraically dependent over R (that is, there exist elements v(1), . . . , v(k) ∈
U∗

σ and a nonzero polynomial f in k variables with coefficients in R such that
f
(
v(1), . . . , v(k)

)
= 0). Otherwise, the family U is said to be transformally (or

σ-algebraically) independent over R.
If K is an inversive difference (σ∗-) field and L a σ∗-field extension of K, then

a set B ⊆ L is said to be a difference (or σ-) transcendence basis of L over K if
B is σ-algebraically independent over K and every element a ∈ L is σ-algebraic
over K〈B〉∗ (that is, the set {γa | γ ∈ Γ} is algebraically dependent over K〈B〉∗).
If L is a finitely generated σ∗-field extension of K, then all σ-transcendence bases
of L over K are finite and have the same number of elements (see [9, Sect. 4.1]).
This number is called the difference (or σ-) transcendence degree of L over K (or
the σ-transcendence degree of the extension L/K ); it is denoted by σ-trdegK L.

3 Dimension Quasi-polynomials of Subsets of Nm and Z
m

A function f : Z → Q is called a quasi-polynomial of period q if there exist q
polynomials gi(x) ∈ Q[x] (0 ≤ i ≤ q − 1) such that f(n) = gi(n) whenever
n ∈ Z and n ≡ i (mod q).

An equivalent way of introducing quasi-polynomials is as follows.
A rational periodic number U(n) is a function U : Z → Q with the property

that there exists (a period) q ∈ N such that

U(n) = U(n′) whenever n ≡ n′ (mod q).

A rational periodic number is represented by a list of q its possible values as
follows:

U(n) = [a0, . . . , aq−1]n.

(U(n) = ai (0 ≤ i ≤ q − 1) whenever n ≡ i (mod q)).

For example, U(n) =
[
2
3
,

1
4
, 5

]

n

is a periodic number with period 3 such

that U(n) =
2
3

if n ≡ 0 (mod 3), U(n) =
1
4

if n ≡ 1 (mod 3), and U(n) = 5 if

n ≡ 2 (mod 3).

With the above notation, a quasi-polynomial of degree d is defined as a func-
tion f : Z → Q such that

f(n) = cd(n)nd + · · · + c1(n)n + c0(n) (n ∈ Z)

where ci(n)’s are rational periodic numbers and cd(n) �= 0 for at least one n ∈ Z.

One of the main applications of quasi-polynomials is their application to the
problem of counting integer points in rational polytopes. Recall that a rational
polytope in R

d is the convex hull of finitely many points (vertices) in Q
d (d is a

positive integer). Equivalently, a rational polytope P ⊆ R
d is the set of solutions

of a finite system of linear inequalities Ax ≤ b, where A is an m × d-matrix
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with integer entries (m ∈ Z, m ≥ 1) and b ∈ Z
m, provided that the solution set

is bounded. A rational polytope is said to be a lattice one if all its vertices are
integer points (that is, points with integer coordinates).

Let P ⊆ R
d be a rational polytope. (We assume that P has dimension d,

that is, P is not contained in a proper affine subspace of Rd.) Then a polytope

rP = {rx |x ∈ P}
(r ∈ N, n ≥ 1) is called the rth dilate of P . Clearly, if v1, . . . ,vk are all vertices
of P , then rP is the convex hull of rv1, . . . , rvk.

Given a rational polytope P , let L(P, r) denote the number of integer points
in rP (in other words, L(P, r) = Card(rP ∩ Z

d)). The following result is due to
Ehrhart, see [5].

Theorem 1. Let P ⊆ R
d be a rational polytope of dimension d. Then there

exists a quasi-polynomial φP (r) of degree d such that

(i) φP (r) = L(P, r) for all r ∈ N.
(ii) The leading coefficient of φP (r) is a constant that is equal to the Euclidean

volume of the polytope P .
(iii) The minimum period of φP (r) (that is, the least common multiple of the

minimum periods of its coefficients) is a divisor of the number D(P ) =
min{n ∈ N |nP is a lattice polytope}.

(iv) If P is a lattice polytope, then φP (r) is a polynomial of r with rational
coefficients.

The main tools for computation of Ehrhart quasi-polynomials are Alexander
Barvinok’s polynomial time algorithm and its modifications, see [1–3]. In some
cases, however, the Ehrhart quasi-polynomial can be found directly from the
Ehrhart’s theorem by evaluating the periodic coefficients of the quasi-polynomial
(by computing L(P, r) for the first several values of r ∈ N and then solving the
corresponding system of linear equations, see [12, Example 1]).

Let w1, . . . , wm be fixed positive integers (m > 0) and a = (a1, . . . , am) ∈ N
m.

Then the number
ordw a = w1a1 + · · · + wmam

is called the order of a with respect to the weights w1, . . . , wm. If the weights are
fixed, ordw a is simply called the order of a.

In what follows, λ
(m)
w (t) denotes the Ehrhart quasi-polynomial that describes

the number of integer points in the conic polytope

Pt = {(x1, . . . , xm) ∈ R
m |

m∑

i=1

wixi ≤ t, xj ≥ 0 (1 ≤ j ≤ m)}.

It follows from the Ehrhart’s Theorem that λ
(m)
w (t) is a quasi-polynomial of

degree m whose leading coefficient is
1

m!w1 . . . wm
. A polynomial time algorithm
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for computing λ
(m)
w (t) can be found, for example, in [3]. We will illustrate the

computation of such a quasi-polynomial with the use of the above-mentioned
method based on the Ehrhart’s theorem.

Example 1. Consider a conic polytope

P = {(x1, x2) ∈ R
2 |x1 ≥ 0, x2 ≥ 0, 2x1 + 3x2 ≤ 1}

whose rth dilate is

rP = {(x1, x2) ∈ R
2 |x1 ≥ 0, x2 ≥ 0, 2x1 + 3x2 ≤ r}.

By the Ehrhart’s theorem,

φP (r) = L(P, r) =
1
12

r2 + [a0, a1, a2, a3, a4, a5]rr + [b0, b1, b2, b3, b4, b5]r

where ai, bi ∈ Q (0 ≤ i ≤ 5). The direct computation of the number of integer
points in the first eleven dilated polytopes rP gives

φP (0) = b0 = 1, φP (1) = 1
12 + a1 + b1 = 1, φP (2) = 1

3 + 2a2 + b2 = 2,
φP (3) = 3

4 +3a3 + b3 = 3, φP (4) = 4
3 +4a4 + b4 = 4, φP (5) = 25

12 +5a5 + b5 = 5,
φP (6) = 3+6a0+b0 = 7; φP (7) = 49

12 +7a1+b1 = 8, φP (8) = 16
3 +8a2+b2 = 10,

φP (9) = 27
4 + 9a3 + b3 = 12, φP (10) = 25

3 + 10a4 + b4 = 14,
φP (11) = 121

12 + 11a5 + b5 = 16. Solving this system we obtain that ai = 1
2

(0 ≤ i ≤ 5), b0 = 1, b1 = 5
12 , b2 = 2

3 , b3 = 3
4 , b4 = 2

3 , and b5 = 5
12 , so that

φP (r) =
1
12

r2 +
3
4
r +

[
1,

5
12

,
2
3
,
3
4
,
2
3
,

5
12

]

r

.

Remark 1. In what follows we will also use Ehrhart quasi-polynomials that
describe (for sufficiently large r ∈ N) the numbers of integer points
(x1, . . . , xm) ∈ R

m satisfying the inequality |x1| + · · · + |xm| ≤ r. It is easy
to see that such a quasi-polynomial, denoted by μ

(m)
w (t), is an alternating sum

of quasi-polynomials of the form λ
(k)
w (t) that contains 2m terms λ

(m)
w (t) and the

other quasi-polynomials λ
(k)
w (t) in this sum have k < m. It follows that

μ(m)
w (t) =

2m

m!w1 . . . wm
tm + terms of degree less than m.

For any A ⊆ N
m, r ∈ N (and the fixed weight vector w = (w1, . . . , wm)),

we set
A(w)(r) = {a = (a1, . . . , am) ∈ A | ordw a ≤ r}.

Furthermore, V
(w)
A will denote the set of all m-tuples v = (v1, . . . , vm) ∈ N

m that
are not greater than or equal to any m-tuple from A with respect to the product
order ≤P . In other words, an element v = (v1, . . . , vm) ∈ N

m lies in V
(w)
A if and

only if for any element (a1, . . . , am) ∈ A there exists i ∈ N, 1 ≤ i ≤ m, such that
ai > vi.

The following theorem proved in [12] generalizes E. Kolchin’s result on dimen-
sion polynomials of subsets of Nm (see [6, Chap. 0, Lemma 16]).
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Theorem 2. With the above conventions, for any set A ⊆ N
m, there exists a

quasi-polynomial χ
(w)
A (t) in one variable t such that

(i) χ
(w)
A (r) = Card V

(w)
A (r) for all sufficiently large r ∈ N.

(ii) deg χ
(w)
A (t) ≤ m.

(iii) deg χ
(w)
A (t) = m if and only if A = ∅. In this case χ

(w)
A (t) = λ

(m)
w (t).

(iv) χ
(w)
A (t) = 0 if and only if (0, . . . , 0) ∈ A.

(v) Let A = {a(1), . . . , a(d)} be a finite subset of Nm and let a(i) = (ai1, . . . , aim)
for i = 1, . . . , d. For any l = 0, . . . , d, let Δ(l, d) denote the set of all l-element
subsets of {1, . . . , d} (Δ(0, d) = ∅) and for any set ε = {a(i1), . . . , a(il)} ∈
Δ(l, d) (1 ≤ i1 < · · · < il ≤ d), let cεj = max{aνj | ν = i1, . . . , il} (the
maximal jth coordinate of elements of ε). Furthermore, let cε = (cε1, . . . , cεm).
Then

χ
(w)
A (t) =

d∑

l=0

(−1)l
∑

ε∈Δ(l,d)

λ(m)
w (t − ordw cε). (1)

The quasi-polynomial χ
(w)
A (t) whose existence is established by Theorem 2

is called the dimension quasi-polynomial of the set A ⊆ N
m associated with

the weight vector (w1, . . . , wm). An example of computation of such a quasi-
polynomial can be found in [12, Example 2].

Note that if w1 = · · · = wm = 1, then χ
(w)
A (t) is the dimension polyno-

mial of the subset A of Nm introduced in [6, Chap. 0, Lemma 16]. Some prop-
erties of such polynomials and methods of their computation were obtained
in [7, Chap. 2]. If w1 = · · · = wm = w and w > 1, then it is easy to
see that λ

(m)
w (t) describes the number of integer points in the conic polytope

{(x1, . . . , xm) ∈ R
m | ∑m

i=1 xi ≤ ⌊
t
w

⌋} (�a� denotes the greatest integer not

exceeding a). Therefore, λ
(m)
w (t) =

(⌊
t
w

⌋
+ m

m

)
. Clearly, w is the minimum

period of this quasi-polynomial (λ(m)
w (t) =

( t−i
w + m

m

)
whenever t ∈ Z and

t ≡ i (modw), 0 ≤ i ≤ w − 1). It follows that in this case w is a period of the
dimension quasi-polynomial χ

(w)
A (t), since every term in the sum (1) is of the

form
(⌊

t−ordw cε

w

⌋
+ m

m

)
.

Now we extend previous considerations to subsets of Zm (m ∈ N, m ≥ 1). We
fix positive integers w1, . . . , wm (“weights”) and define the order of an m-tuple
a = (a1, . . . , am) ∈ Z

m (with respect to the given weights) as

ordw a = w1|a1| + · · · + wm|am|.
If A ⊆ Z

m and r ∈ N, we set A(r) = {a ∈ A | ordw a ≤ r}.
In what follows the set Z

m will be considered as the union

Z
m =

⋃

1≤j≤2m

Z
(m)
j (2)
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where Z
(m)
1 , . . . ,Z

(m)
2m are all distinct Cartesian products of m factors each of

which is either Z− or N. We assume that Z
(m)
1 = N

m and call a set Z
(m)
j (1 ≤

j ≤ 2m) an orthant of Zm.
The set Zm will be treated as a partially ordered set with respect to the order

� defined as follows: (x1, . . . , xm) � (y1, . . . , ym) if and only if (x1, . . . , xm) and
(y1, . . . , ym) belong to the same orthant of Zm and |xi| ≤ |yi| for i = 1, . . . , m.
For any set B ⊆ Z

m, VB will denote the set of all m-tuples in Z
m that exceed no

element of B with respect to �. Furthermore, we define a mapping ρ : Zm → N
2m

such that

ρ(z1, . . . , zm) = (max{z1, 0}, . . . ,max{zm, 0},max{−z1, 0}, . . . ,max{−zm, 0}).

The proof of the following theorem can be obtained by mimicking the proof of
the first three parts of Theorem 2.5.5 of [7] (with the use of Theorem 2 instead
of Theorem 2.2.5 of [7]).

Theorem 3. Let A be a subset of Z
m. Then there exists a quasi-polynomial

φ
(w)
A (t) with the following properties.

(i) φ
(w)
A (r) = Card VA(r) for all sufficiently large r ∈ N;

(ii) deg φ
(w)
A ≤ m.

(iii) Let ρ(A) = A (A ⊆ N
2m) and let bi (1 ≤ i ≤ m) be a 2m-tuple in N

2m

whose ith and (m+ i)th coordinates are 1 and all other coordinates are zeros.
Then for all r ∈ N, φ

(w)
A (r) = χ

(w)
B (r) where B = A ∪ {b1} ∪ · · · ∪ {bm} and

χ
(w)
B (t) is the dimension quasi-polynomial of the set B ⊆ N

2m associated with
the weight vector (w1, . . . , wm, w1, . . . , wm).

The quasi-polynomial φ
(w)
A (t) is called the dimension polynomial of the set

A ⊆ Z
m associated with the weight vector (w1, . . . , wm).

4 The Main Theorem

Let K be an inversive difference field of characteristic zero with a basic set
of translations σ = {α1, . . . , αm} that are assigned positive integer weights
w1, . . . , wm, respectively. As before, let Γ denote the free commutative group
generated by the set σ. For any element γ = αk1

1 . . . αkm
m ∈ Γ , the number

ordw γ =
m∑

i=1

wi|ki|

will be called the order of γ. Furthermore, for any r ∈ N, we set

Γw(r) = {γ ∈ Γ | ordw γ ≤ r}.

The following theorem establishes the existence of a dimension quasi-polynomial
associated with a finitely generated inversive difference field extension with
weighted basic translations.
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Theorem 4. With the above notation, let L = K〈η1, . . . , ηn〉∗ be a σ∗-field
extension of K generated by a finite set η = {η1, . . . , ηn}. For any r ∈ N, let
Lr = K({γηi |γ ∈ Γw(r), 1 ≤ i ≤ n}). Then there exists a quasi-polynomial
Ψ

(w)
η|K(t) such that

(i) Ψ
(w)
η|K(r) = trdegK Lr for all sufficiently large r ∈ N.

(ii) deg Ψ
(w)
η|K ≤ m.

(iii) Ψ
(w)
η|K is an alternating sum of Ehrhart quasi-polynomials associated with

rational conic polytopes in N
m.

(iv) The degree and leading coefficient of the quasi-polynomial Ψ
(w)
η|K are con-

stants that do not depend on the set of σ∗-generators η of the extension L/K.

Furthermore, the coefficient of tm in Ψ
(w)
η|K can be represented as

a2m

m!w1 . . . wm
where a is equal to the σ-transcendence degree of L/K.

The quasi-polynomial Ψ
(w)
η|K(t) is called the σ∗-dimension quasi-polynomial of

the σ∗-field extension L/K associated with the system of σ∗-generators η.

In order to prove Theorem4 we need some results on reduction and autore-
duced sets in the ring of inversive difference polynomials K{y1, . . . , yn}∗. In
what follows we will consider Z

m as the union (2) of 2m orthants Z
(m)
j (1 ≤

j ≤ 2m), and the group Γ will be considered as a union Γ =
⋃2m

j=1 Γj where

Γj = {αk1
1 . . . αkm

m | (k1, . . . , km) ∈ Z
(m)
j } (1 ≤ j ≤ 2m).

Let K{y1, . . . , yn}∗ be an algebra of σ∗-polynomials in σ∗-indeterminates
y1, . . . , yn over K; as before, ΓY will denote the set of terms {γyi|γ ∈ Γ, 1 ≤
i ≤ n}. By the order of a term u = γyj we mean the order of the element
γ ∈ Γ . Setting (ΓY )j = {γyi | γ ∈ Γj , 1 ≤ i ≤ n} (j = 1, . . . , 2m) we obtain a

representation of the set of terms as a union ΓY =
2m
⋃

j=1

(ΓY )j .

Definition 1. A term v ∈ ΓY is called a transform of a term u ∈ Y if and
only if u and v belong to the same set (ΓY )j (1 ≤ j ≤ 2m) and v = γu for some
γ ∈ Γj (in particular, u and v involve the same σ∗-indeterminate yi, 1 ≤ i ≤ n).
If γ �= 1, v is said to be a proper transform of u.

Definition 2. A well-ordering of the set ΓY is called a ranking of the family of
σ∗-indeterminates y1, . . . , yn (or a ranking of the set of terms ΓY ) if it satisfies
the following conditions. (We use the standard symbol ≤ for the ranking; it will
be always clear what order is denoted by this symbol.)

(i) If u ∈ (ΓY )j and γ ∈ Γj (1 ≤ j ≤ 2m), then u ≤ γu.
(ii) If u, v ∈ (ΓY )j (1 ≤ j ≤ 2m), u ≤ v and γ ∈ Γj, then γu ≤ γv.
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A ranking of the σ∗-indeterminates y1, . . . , yn is called orderly if for any
j = 1, . . . , 2m and for any two terms u, v ∈ ΓY , the inequality ordw u < ordw v
implies that u < v (as usual, v < w means v ≤ w and v �= w). As an exam-
ple of an orderly ranking one can consider the standard ranking defined as fol-
lows: u = αk1

1 . . . αkm
m yi ≤ v = αl1

1 . . . αlm
m yj if and only if the (2m + 2)-tuple

(
m∑

ν=1

|kν |, |k1|, . . . , |km|, k1, . . . , km, i) is less than or equal to the (2m + 2)-tuple

(
m∑

ν=1

|lν |, |l1|, . . . , |lm|, l1, . . . , lm, j) with respect to the lexicographic order on

Z
2m+2.

In what follows, we assume that an orderly ranking ≤ of the set of σ∗-
indeterminates y1, . . . , yn is fixed. If A ∈ K{y1, . . . , yn}∗, then the greatest (with
respect to ≤) term from ΓY that appears in A is called the leader of A; it is
denoted by uA. If u = uA and d = degu A, then the σ∗-polynomial A can be
written as A = Idu

d + Id−1u
d−1 + · · · + I0 where Ik (0 ≤ k ≤ d) do not contain

u. The σ∗-polynomial Id is called the initial of A; it is denoted by IA.

The ranking of the set of σ∗-indeterminates y1, . . . , yn generates the following
relation on K{y1, . . . , yn}∗. If A and B are two σ∗-polynomials, then A is said
to have rank less than B (we write A < B) if either A ∈ K,B /∈ K or A,B ∈
K{y1, . . . , yn}∗ \ K and uA < uB , or uA = uB = u and degu A < degu B. If
uA = uB = u and degu A = degu B, we say that A and B are of the same rank
and write rk A = rk B.

Let A,B ∈ K{y1, . . . , yn}∗. The σ∗-polynomial A is said to be reduced with
respect to B if A does not contain any power of a transform γuB (γ ∈ Γ ) whose
exponent is greater than or equal to deguB

B. If A ⊆ K{y1, . . . , yn} \ K, then a
σ∗-polynomial A ∈ K{y1, . . . , yn}∗, is said to be reduced with respect to A if A
is reduced with respect to every element of the set A.

A set A ⊆ K{y1, . . . , yn}∗ is said to be autoreduced if either it is empty or
A ⋂

K = ∅ and every element of A is reduced with respect to all other elements
of A. As it is shown in [9, Sect. 2.4], every autoreduced set is finite, distinct
elements of an autoreduced set have distinct leaders, and one has the following
result.

Theorem 5. Let A = {A1, . . . , Ap} be an autoreduced subset in K{y1, . . . , yn}∗

and let D ∈ K{y1, . . . , yn}∗. Furthermore, let I(A) denote the set of all σ∗-
polynomials B ∈ K{y1, . . . , yn} such that either B = 1 or B is a product of
finitely many polynomials of the form γ(IAi

) where γ ∈ Γ, i = 1, . . . , p. Then
there exist σ∗-polynomials J ∈ I(A) and E ∈ K{y1, . . . , yn} such that E is
reduced with respect to A and JD ≡ E(mod [A]).

The transition from a σ∗-polynomial D to the σ∗-polynomial E (called a
remainder of D with respect to A) can be realized by the algorithm described in
[9, p. 131]. In this case we say that D reduces to E modulo A.

In what follows the elements of an autoreduced set will be always written in
the order of increasing rank. If A = {A1, . . . , Ap} and B = {B1, . . . , Bq} are two



Dimension Quasi-polynomials of Inversive Difference Field Extensions 77

autoreduced sets of σ∗-polynomials, we say that A has lower rank than B and
write rk A < rk B if either there exists k ∈ N, 1 ≤ k ≤ min{p, q}, such that
rk Ai = rk Bi for i = 1, . . . , k − 1 and Ak < Bk, or p > q and rk Ai = rk Bi for
i = 1, . . . , q.

Mimicking the proof of [6, Chap. I, Proposition 3] we obtain that every
nonempty family of autoreduced subsets contains an autoreduced set of lowest
rank. In particular, if ∅ �= J ⊆ K{y1, . . . , yn}∗, then the set J contains an
autoreduced set of lowest rank called a characteristic set of J . We will need the
following properties of characteristic sets that follow from Theorem 5 (see [9,
Proposition 2.4.4]).

Proposition 1. Let K be an inversive difference (σ∗-) field, J a σ∗-ideal of the
algebra of σ∗-polynomials K{y1, . . . , ys}∗, and A a characteristic set of J . Then

(i) The ideal J does not contain nonzero σ∗-polynomials reduced with respect to
A. In particular, if A ∈ A, then IA /∈ J .

(ii) If J is a prime σ∗-ideal, then J = [A] : Υ (A) where Υ (A) denotes the set
of all finite products of elements of the form γ(IA) (γ ∈ Γ,A ∈ A).

Proof of Theorem4

Let P be the defining σ∗-ideal of the σ∗-field extension L = K〈η1, . . . , ηn〉∗,
that is P = Ker(K{y1, . . . , yn}∗ → L), yi �→ ηi. Let A = {A1, . . . , Ad} be a
characteristic set of P , let ui denote the leader of Ai (1 ≤ i ≤ d) and for every
j = 1, . . . , n, let

Ej = {(k1, . . . , km) ∈ Z
m|αk1

1 . . . αkm
m yj is a leader of a σ-polynomial in A}.

Let V = {u ∈ ΓY |u is not a transform of any ui (1 ≤ i ≤ s)} and for every
r ∈ N, let V (r) = {u ∈ V | ordw u ≤ r}.

By Proposition 1, the ideal P does not contain non-zero difference poly-
nomials reduced with respect to A. It follows that for every r ∈ N, the set
Vη(r) = {v(η) | v ∈ V (r)} is algebraically independent over K. Indeed, if there
exists a nonzero polynomial B ∈ K[X1, . . . , Xk] (k > 0) in k variables over
K and elements v1, . . . , vk ∈ Vη(r) such that B(v1(η), . . . , vk(η)) = 0. Then
B(v1, . . . , vk) ∈ P and this σ-polynomial is reduced with respect to A, so we
arrive at a contradiction.

If Ai ∈ A (1 ≤ i ≤ d), then Ai(η) = 0, hence ui(η) is algebraic over the
field K({γηj | γyj < ui (γ ∈ Γ, 1 ≤ j ≤ n)}). Therefore, any transform θui

(θ ∈ Γ ) is algebraic over the field K({γηj | γyj < θui (γ ∈ Γ, 1 ≤ j ≤ n)}).
By induction on the well-ordered set ΓY (and using the fact that if u, v ∈ ΓY
and u < v, then ordw u ≤ ordw v), we obtain that for every r ∈ N, the field
Lr = K({γηj | γ ∈ Γw(r), 1 ≤ j ≤ n}) is an algebraic extension of the field
K({v(η) | v ∈ V (r)}). It follows that Vη(r) is a transcendence basis of Lr over K
and trdegK Lr = Card Vη(r).

The number of terms αk1
1 . . . αkm

m yj in V (r) is equal to the number of m-tuples
k = (k1, . . . , km) ∈ Z

m such that ordw k ≤ r and k does not exceed any m-tuple
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in Ej with respect to the order � on Z
m. By Theorem 3, this number is expressed

by a quasi-polynomial of degree at most m. Therefore, for all sufficiently large
r ∈ N we have

trdegK Lr = Card Vη(r) =
n∑

j=1

φ
(w)
Ej

(r)

where φ
(w)
Ej

(t) is the dimension quasi-polynomial of the set Ej ⊆ Z
m. It follows

that the quasi-polynomial

Ψ
(w)
η|K(t) =

n∑

j=1

φ
(w)
Ej

(t)

satisfies the first two conditions of Theorem 4. Since each φ
(w)
Ej

(t) is equal to

a dimension quasi-polynomial χ
(w)
Bj

(t) of a subset Bj ⊆ N
2m (see part (iii) of

Theorem 3) and by Theorem 2 each χ
(w)
Bj

(t) (1 ≤ j ≤ n) is an alternating sum of

Ehrhart quasi-polynomials associated with conic polytopes, Ψ
(w)
η|K(t) has a similar

representation and satisfies condition (iii) of Theorem4.

If ζ = (ζ1, . . . , ζk) is another system of σ-generators of the extension L/K ,
so that L = K〈η1, . . . , ηn〉∗ = K〈ζ1, . . . , ζk〉∗, then there exists q ∈ N such that
η1, . . . , ηn ∈ K(

⋃k
i=1 Γw(q)ζi) and ζ1, . . . , ζk ∈ K(

⋃n
i=1 Γw(q)ηi). Therefore, for

all sufficiently large r ∈ N (namely, for all r ≥ q), one has

K(
n⋃

i=1

Γw(r)ηi) ⊆ K(
k⋃

i=1

Γw(r + q)ζi) and K(
k⋃

i=1

Γw(r)ζi) ⊆ K(
n⋃

i=1

Γw(r + q)ηi),

that is, Ψ
(w)
η|K(r) ≤ Ψ

(w)
ζ|K(r + q) and Ψ

(w)
ζ|K(r) ≤ Ψ

(w)
η|K(r + q). It follows that the

quasi-polynomials Ψ
(w)
η|K(t) and Ψ

(w)
ζ|K(t) have equal degrees and equals leading

coefficients.

In order to prove the last part of statement (iv) of our theorem, note first
that if the elements η1, . . . , ηn are σ-algebraically independent over K, then one
has

Ψ
(w)
η|K(t) = nμ(m)

w (t)

(see Remark 1). Indeed, if r ∈ N, and Ωi(r) = {ω = αk1
1 . . . αkm

m ηi | ki ∈
Z, ordw ξ ≤ r} for i = 1, . . . , n, then

⋃n
i=1 Ωi(r) is a transcendence basis of

the field extension K(
⋃n

i=1 Γw(r)ηi)/K and the number of elements of this basis
is equal to nCard{(k1, . . . , km) ∈ Z

m | ∑m
j=1 wj |kj | ≤ r} = nμ

(m)
w (r). Now one

can mimic the proof of the last part of [12, Theorem 4] (with the use of quasi-
polynomials μ

(m)
w (t) instead of λ

(m)
w (t)) to obtain that the coefficient of tm in

Ψ
(w)
η|K can be represented as

a2m

m!w1 . . . wm
where a is equal to the σ-transcendence

degree of L/K . �
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Theorem 4 allows one to assign a quasi-polynomial to a system of algebraic
difference equations with weighted basic translations

fi(y1, . . . , yn) = 0 (i = 1, . . . , p) (3)

(fi,∈ R = K{y1, . . . , yn} for i = 1, . . . , p) such that the σ∗-ideal P of R gen-
erated by the σ∗-polynomials f1, . . . , fp is prime (e.g. to a system of linear dif-
ference equations). Systems of this form arise, in particular, as finite difference
approximations of systems of PDEs with weighted derivatives (see, for example,
[14,15]).

Treating the quotient field L = qf(R/P ) as a finitely generated σ∗-field
extension of K, L = K〈η1, . . . , ηn〉∗ where ηi is the canonical image of yi in
R/P , one can consider the σ∗-dimension quasi-polynomial Ψ (w)(t) = Ψ

(w)
η|K(t)

associated with this extension. This quasi-polynomial, that is called the σ∗-
dimension quasi-polynomial of system (3), has a natural interpretation as the
Einstein’s strength of the system of partial difference equations with weighted
translations (see [9, Sect. 7.7]).

Example 2. Let K be an inversive difference field of zero characteristic with a
basic set σ = {α1, α2}, where α1 and α2 are assigned weights 3 and 1, respec-
tively, and let K{y}∗ be the ring of σ∗-polynomials in one σ∗-indeterminate y
over K. Let us consider the σ∗-equation

[a1(α1 + α−1
1 − 2) + a2(α2 + α−1

2 − 2)]y = 0 (4)

where a1 and a2 are constants of the field K. As it is shown in [9, Example
7.8.9], the σ∗-polynomials A = [a1(α1 + α−1

1 − 2) + a2(α2 + α−1
2 − 2)]y, α−1

1 A =
[a1(1+α−2

1 −2α−1
1 )+a2(α−1

1 α2+α−1
1 α−1

2 −2α−1
1 )]y, and α−1

1 α−1
2 A = [a1(α−1

2 +
α−2
1 α−1

2 − 2α−1
1 α−1

2 ) + a2(α−1
1 + α−1

1 α−2
2 − 2α−1

1 α−1
2 )]y form a characteristic set

of the prime σ∗-ideal [A]∗ (clearly, it is irrelevant that all translations in [9] have
weight 1). The leaders of these σ∗-polynomials are the terms α1y, α−1

1 α2y, and
α−1
1 α−2

2 y, respectively, so the σ∗-dimension polynomial of the Eq. (4) is equal
to the dimension polynomial of the subset M = {(1, 0), (−1, 1), (−1,−2)} of Z2.
In order to find this polynomial one can either represent it as an alternating
sum of Ehrhart quasi-polynomials of conic polytopes (using a partition of the
set VM into cones and the principle of inclusion and exclusion, as it is done in
[12, Example 2]) or compute the number of integer points of VM directly (in
this case VM(r) consists of points (0, i) with −r ≤ i ≤ r, points (j, 0) with
− r

3 ≤ j ≤ −1, and points (k,−1) with − r−1
3 ≤ k ≤ −1). We obtain that

dimension quasi-polynomial of the Eq. (4) is

Ψ(t) =
8
3
r +

[
0,

1
3
,−1

3

]

r

.
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Abstract. In this paper, we present an efficient algorithm for the cer-
tification of numeric solutions to eigenproblems. The algorithm relies on
a mixture of ball arithmetic, a suitable Newton iteration, and clustering
of eigenvalues that are close.
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1 Introduction

Let F be the set of floating point numbers for a fixed precision and a fixed
exponent range. We will denote F

� = {x ∈ F : x � 0}. Consider an n×n matrix
M ∈ F[i]n×n with complex floating entries. The numeric eigenproblem associated
to M is to compute a transformation matrix T ∈ F[i]n×n and a diagonal matrix
D ∈ F[i]n×n such that

D ≈ T−1MT. (1)

The entries of D are the approximate eigenvalues and the columns of T are the
approximate eigenvectors of M . In addition, we might require that T is normal-
ized. For instance, each of the columns might have unit norm. Alternatively, the
norm of the i-th column may be required to be the same as the norm of the i-th
row of T−1, for each i. There are several well-known algorithms for solving the
numeric eigenproblem [6].

Unfortunately, (1) is only an approximate equality. It is sometimes important
to have rigourous bounds for the distance between the approximate eigenvalues
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https://doi.org/10.1007/978-3-319-72453-9_6
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and/or eigenvectors and the genuine ones. More precisely, we may ask for a diag-
onal matrix Dr ∈ (F�)n×n and a matrix Tr ∈ (F�)n×n such that there exists
a matrix T ′ ∈ C

n×n for which

D′ = (T ′)−1MT

is diagonal and

|D′
i,i − Di,i| � (Dr)i,i

|T ′
i,j − Ti,j | � (Tr)i,j

for all i, j. This task will be called the certification problem of the numeric
solution (D,T ) to the eigenproblem for M . The matrices Dr and Tr can be
thought of as reliable error bounds for the numerical solution (D,T ) of the
eigenproblem.

It will be convenient to rely on ball arithmetic [11,14], which is a systematic
technique for this kind of bound computations. When computing with complex
numbers, ball arithmetic is more accurate than more classical interval arith-
metic [1,13,15,17,18,21], especially in multiple precision contexts. We will write
B = B(F[i], F�) for the set of balls z = B(zc, zr) = {z ∈ C : |z − zc| � zr}
with centers zc in F[i] and radii zr in F

�. In a similar way, we may consider
matricial balls M = B(Mc,Mr) ∈ B(F[i]n×n, (F�)n×n): given a center matrix
Mc ∈ F[i]n×n and a radius matrix Mr ∈ (F�)n×n, we have

M = B(Mc,Mr) = {M ∈ C
n×n : ∀i, j, |(Mc)i,j − Mi,j | � (Mr)i,j}.

Alternatively, we may regard B(Mc,Mr) as the set of matrices in B
n×n with ball

coefficients:

B(Mc,Mr)i,j = B((Mc)i,j , (Mr)i,j).

Standard arithmetic operations on balls are carried out in a reliable way. For
instance, if u,v ∈ B, then the computation of the product w = uv using ball
arithmetic has the property that uv ∈ w for any u ∈ u and v ∈ v. Given a ball
z ∈ B, it will finally be convenient to write �z� ∈ F

� and �z� ∈ F
� for certified

lower and upper bounds of |z| in F
�.

In the language of ball arithmetic, it is natural to allow for small errors in the
input and replace the numeric input M ∈ F[i]n×n by a ball input B(Mc,Mr) ∈
B

n×n. Then we may still compute a numeric solution

Dc ≈ T−1
c McTc, (2)

for the eigenproblem associated to the center Mc. Assume that the matrices
in B(Mc,Mr) are all diagonalizable. The generalized certification problem now
consists of the computation of a diagonal matrix Dr ∈ (F�)n×n and a matrix
Tr ∈ F[i]n×n such that, for every M ∈ B(Mc,Mr), there exist D ∈ B(Dc,Dr)
and T ∈ B(Tc, Tr) with

D = T−1MT.
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In absence of multiple eigenvalues, known algorithms for solving this problem
such as [20,23] proceed by the individual certification of each eigenvector, which
results in an O(n4) running time. From the more theoretical perspective of
α-theory [3], we also refer to [2] for numerically stable, strongly accurate, and
theoretically efficient algorithms for solving eigenproblems.

Extensions to a cluster of eigenvalues and the corresponding eigenvectors
have been considered in [4,22], with similar O(n4) complexity bounds. Fixed
points theorem based on interval arithmetic are used to prove the existence of
a matrix with a given Jordan block in the matrix interval domain. Such an
approach has been exploited for the analysis of multiple roots in [7,19]. A test
that provides an enclosing of all the eigenvalues has been proposed in [16]. Its
certification relies on interval and ball arithmetics. The complexity of the test
is in O(n3) but no iteration converging to the solution of the eigenproblem is
described.

In this paper, we present a new algorithm of time complexity O(n3) for
certifying and enclosing clusters of eigenvectors and eigenvalues in a single step.
We also provide an iterative procedure that converges geometrically to clusters
of solutions. This convergence is quadratic in the case of single eigenvalues.
Our algorithm extends a previous algorithm from [11] to the case of multiple
eigenvalues. This yields an efficient test for approximate eigenvalues.

From a more theoretical bit complexity point of view, our algorithm essen-
tially reduces the certification problem to a constant number of numeric matrix
multiplications. When using a precision of p bits for numerical computations,
it has recently been shown [9] that two n × n matrices can be multiplied
in time MM(n, p) = O

(
n2I(p) + nωp2O(lg∗ p−lg∗ n)I(lg n)/ lg n

)
. Here I(p) =

O(p lg pK lg∗ p) with K � 6 is the cost of p-bit integer multiplication [8,10] and
ω < 2.3728639 is the exponent of matrix multiplication [5]. If p is large enough
with respect to the log of the condition number, then O (MM(n, p)) yields an
asymptotic bound for the bit complexity of our certification problem.

We recall that it is very unlikely that the numeric matrix Mc ∈ F[i]n×n with
complex floating point coefficients has multiple eigenvalues. Indeed, small per-
turbations of matrices with multiple eigenvalues, as induced by rounding errors,
generically only have simple eigenvalues. Consequently, we may assume without
loss of generality that the numeric eigenproblem (2) has a reasonably accurate
solution (if necessary, we may slightly perturb Mc and increase Mr accordingly).
Using ball arithmetic, it is straightforward to compute the matricial ball

B(Nc, Nr) = B(Tc, 0)−1B(Mc,Mr)B(Tc, 0).

If our numerical algorithm is accurate, then the non diagonal entries of B(Nc, Nr)
tend to be small, whence B(Nc, Nr) can be considered as a small perturbation
of a diagonal matrix. If we can estimate how far eigenvalues and eigenvectors
of diagonal matrices can drift away under small perturbations, we thus obtain a
solution to the original certification problem.

Section 2 introduces notations. In Sect. 3, we perform a detailed study of
the eigenproblem for small perturbations M of diagonal matrices. We exhibit
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a Newton iteration for finding the solutions. This iteration has quadratic con-
vergence in the absence of multiple eigenvalues and is also an efficient tool for
doubling the precision of a solution. However, in the case of multiple eigenvalues,
the eigenproblem is ill-posed. Indeed, by a well-known observation, any vector
occurs as the eigenvector of a small perturbation of the 2×2 identity matrix. The
best we can hope for is to group eigenvectors with close eigenvalues together in
“clusters” (see also [22]) and only require T−1MT to be block diagonal. For this
reason, we present our Newton iteration in a sufficiently general setting which
encompasses block matrices. We will show that the iteration still admits geo-
metric convergence for sufficiently small perturbations and that the blockwise
certification is still sufficient for the computation of rigourous error bounds for
the eigenvalues. In Sect. 4, we will present explicit algorithms for clustering and
the overall certification problem.

In absence of multiple eigenvalues, the Analyziz library of the Mathemagix
system [12] contains an efficient implementation of our algorithm. The new algo-
rithm from this paper has still to be integrated.

2 Notations

2.1 Matrix Norms

Throughout this paper, we will use the max norm for vectors and the corre-
sponding matrix norm. More precisely, given a vector v ∈ C

n and an n × n
matrix M ∈ C

n×n, we set

‖v‖ = max{|v1|, . . . , |vn|}
‖M‖ = max

‖v‖=1
‖Mv‖.

For a second matrix N ∈ C
n×n, we clearly have

‖M + N‖ � ‖M‖ + ‖N‖
‖MN‖ � ‖M‖‖N‖.

Explicit machine computation of the matrix norm is easy using the formula

‖M‖ = max{|Mi,1| + · · · + |Mi,n| : 1 � i � n}. (3)

In particular, when changing certain entries of a matrix M to zero, its matrix
norm ‖M‖ can only decrease.

2.2 Clustering

Assume that we are given a partition

{1, . . . , n} = I1 
 · · · 
 Ip. (4)
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Such a partition will also be called a clustering and denoted by I. Two indices
i, j are said to belong to the same cluster if there exists a k with {i, j} ⊆ Ik

and we will write i ∼ j. Two entries Mi,j and Mi′,j′ of a matrix M ∈ C
n×n are

said to belong to the same block if i ∼ j and i′ ∼ j′. We thus regard M as a
generalized block matrix, for which the rows and columns of the blocks are not
necessarily contiguous inside M .

A matrix M ∈ C
n×n is said to be block diagonal (relative to the clustering)

if Mi,j = 0 whenever i � j. Similarly, we say that M is off block diagonal if
Mi,j = 0 whenever i ∼ j. For a general M ∈ C

n×n, we define its block diagonal
and off block diagonal projections Δ(M) = ΔI(M) and Ω(M) = ΩI(M) by

Δ(M)i,j =
{

Mi,j if i ∼ j
0 otherwise Ω(M)i,j =

{
0 if i ∼ j
Mi,j otherwise

By our observation at the end of Sect. 2.1, we have

‖Δ(M)‖ � ‖M‖
‖Ω(M)‖ � ‖M‖.

For the trivial clustering Ik = {k}, the matrices Δ(M) and Ω(M) are simply
the diagonal and off diagonal projections of M . In that case we will also write
Δ∗ = Δ and Ω∗ = Ω.

2.3 Diagonal Matrices

Below, we will study eigenproblems for perturbations of a given diagonal matrix

D =

⎛

⎜
⎝

λ1

. . .
λn

⎞

⎟
⎠ . (5)

It follows from (3) that the matrix norm μ = ‖D‖ of a diagonal matrix D is
given by

μ = max{|λ1|, . . . , |λn|}.
It will also be useful to define the separation number σ∗ = σ∗(D) by

σ∗ = min{|λi − λj | : i = j}.

More generally, given a clustering as in the previous subsection, we also define
the block separation number σ = σ(D) = σI(D) by

σ = min{|λi − λj | : i � j}
This number σ remains high if the clustering is chosen in such a way that the
indices i, j of any two “close” eigenvalues λi and λj belong to the same cluster.
In particular, if σ > 0, then λi = λj implies i ∼ j.
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3 Eigenproblems for Perturbed Diagonal Matrices

3.1 The Linearized Equation

Let D be a diagonal matrix (5). Given a small perturbation

M = D + H

of D, where H is an off diagonal matrix, the aim of this section is to find a small
matrix E ∈ C

n×n for which

M ′ = (1 + E)−1M(1 + E)

is block diagonal. In other words, we need to solve the equation

Ω((1 + E)−1(D + H)(1 + E)) = 0.

When linearizing this equation in E and H, we obtain

Ω([D,E] + H) = 0.

If E is strongly off diagonal, then so is [D,E], and the equation further reduces to

[D,E] = −Ω(H).

This equation can be solved using the following lemma:

Lemma 1. Given a matrix A ∈ C
n×n and a diagonal matrix D with entries

λ1, . . . , λn, let B = Φ(D,A) ∈ C
n×n be the strongly off diagonal matrix with

Bi,j =

{
0 if i ∼ j

Ai,j

λj−λi
otherwise

Then ‖B‖ � σ−1‖A‖ and

[D,B] = −Ω(A). (6)

Proof. The inequality follows from (3) and the definition of σ. One may check (6)
using a straightforward computation.

3.2 The Fundamental Iteration

In view of the lemma, we now consider the iteration

(D,H) �−→ (D′,H ′),

where

E = Φ(D,H)
M ′ = (1 + E)−1(D + H)(1 + E)
D′ = Δ∗(M ′)
H ′ = Ω∗(M ′)
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In order to study the convergence of this iteration, we introduce the quantities

μ = ‖D‖ μ′ = ‖D′‖
σ = σ(D) σ′ = σ(D′)

η1 = ‖Δ(H)‖ η′
1 = ‖Δ(H ′)‖

η2 = ‖Ω(H)‖ η′
2 = ‖Ω(H ′)‖

α = min
{

σ
6μ , 1

4

}
.

Lemma 2. For δ ∈ (0, 1], assume that

η1 + η2 � αδμ

η2 � αδσ.

Then ‖D′ − D‖ � δη2 and

μ′ � μ + δη2

σ′ � σ − 2δη2

η′
1 � η1 + δη2

η′
2 � δη2.

Proof. We have

M ′ − D = H + [D,E] + R

= Δ(H) + R,

where

R = E2(1 + E)−1(D + H)(1 + E) − E(D + H)E + [H,E].

Setting ε = ‖E‖ � σ−1η2 � αδ � 1
4 , the remainder R is bounded by

‖R‖ � ε2
1

1 − ε
(1 + αδ)μ(1 + ε) + ε(1 + αδ)με + 2(η1 + η2)ε

=
2ε2

1 − ε
(1 + αδ)μ + 2(η1 + η2)ε

� (4εμ + 2αδμ)ε
� 6αδμσ−1η2

� δη2.

Consequently,

‖D′ − D‖ = ‖Δ∗(M ′ − D)‖ = ‖Δ∗(R)‖
� ‖R‖ � δη2

η′
1 = ‖Δ(H ′)‖ = ‖Ω∗(Δ(M ′))‖ = ‖Ω∗(Δ(H + R))‖

� ‖H + R‖ � η1 + δη2

η′
2 = ‖Ω(H ′)‖ = ‖Ω(M ′)‖ = ‖Ω(R)‖

� δη2.
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The inequalities μ′ � μ + δη2 and σ′ � σ − 2δη2 follow from ‖D′ − D‖ � δη2.

3.3 Convergence of the Fundamental Iteration

Theorem 1. Assume that

η1 + η2 � 1
8αμ

η2 � 1
8ασ.

Then the sequence
(D,H), (D′,H ′), (D′′,H ′′), . . .

converges geometrically to a limit (M (∞),H(∞)) with ‖D(∞) − M‖ � η2 and
‖H(∞)‖ � η1 + η2. The matrix D(∞) + H(∞) is block diagonal and there exists
a matrix Ê with ‖Ê‖ � 3σ−1η2, such that

D(∞) + H(∞) = (1 + Ê)−1(D + H)(1 + Ê).

Proof. Let (D(i),H(i)) stand for the i-th fundamental iterate of (D,H) and
E(i) = Φ(H(i),D(i)). Denote μ(i) = ‖D(i)‖, σ(i) = σ(D(i)), η

(i)
1 = ‖Δ(H(i))‖ and

η
(i)
2 = ‖Ω(H(i))‖. Let us show by induction over i that

‖D(i) − D‖ � (1 − 1
2i )η2

μ(i) � μ + (1 − 1
2i )η2

σ(i) � 1
2 (1 + 1

2i )σ

η
(i)
1 � η1 + (1 − 1

2i )η2

η
(i)
2 � 1

2i η2.

This is clear for i = 0. Assume that the induction hypothesis holds for a given i
and let

α(i) = min
{

σ(i)

6μ(i)
,
1
4

}

Since (1 − 1
2i )η2 � 1

32μ, the induction hypothesis implies

μ(i) � 2μ

σ(i) � 1
2σ

α(i) � 1
4α.
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Applying Lemma 2 for (D(i),H(i)) and δ = 1
2 , we thus find

‖D(i+1) − D‖ � ‖D(i) − D‖ + ‖D(i+1) − D(i)‖
� (1 − 1

2i )η2 + 1
2i+1 η2 � (1 − 1

2i+1 )η2

μ(i+1) � μ(i) + 1
2η

(i)
2 � μ + (1 − 1

2i+1 )η2

σ(i+1) � σ(i) − 1
2η

(i)
2 � 1

2 (1 + 1
2i − 1

2i+1 )σ � 1
2 (1 + 1

2i+1 )σ

η
(i+1)
1 � η

(i)
1 + 1

2η
(i)
2 � η1 + (1 − 1

2i+1 )η2

η
(i+1)
2 � 1

2η
(i)
2 � 1

2i+1 η2.

This completes the induction.
Applying the induction to the sequence starting at D(i), we have for every

j � 0,

‖D(i+j) − D(i)‖ � (1 − 1
2j+1 )η(i)

2 � (1 − 1
2j+1 ) 1

2i+1 η2.

This shows that D(i) is a Cauchy sequence that tends to a limit D(∞) with
‖D(∞) − D‖ � η2. From this inequality, we also deduce that ‖D(∞) − D(i)‖ �

1
2i+1 η2, so D(i) converges geometrically to D(∞).

Moreover, for each i, we have ε(i) = ‖E(i)‖ � σ−1η
(i)
2 � 1

2i σ
−1η2. Hence, the

matrix
Ê = (1 + E(0))(1 + E(1))(1 + E(2)) · · · − 1

is well defined, and

log(1 + ‖Ê‖) � log(1 + ε(0)) + log(1 + ε(1)) + log(1 + ε(2)) + · · ·
� 2σ−1η2.

We deduce that

‖Ê‖ � e2σ−1η2 − 1 � 3σ−1η2,

since σ−1η2 � 1
32 .

We claim that M (i) = D(i) + H(i) converges geometrically to

M (∞) = (1 + Ê)−1M (0)(1 + Ê).

For any matrix M,E ∈ C
n×n with ‖E‖ < ε < 1, we have

‖(1 + E)−1M(1 + E) − M‖ = ‖ME − E(1 + E)−1M(1 + E)‖
� ‖M‖(ε + ε(1 + ε)‖(1 + E)−1‖)
� ε‖M‖(1 + (1 + ε)(1 − ε)−1)

=
2ε

1 − ε
‖M‖. (7)
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Let Ê(i) = (1 + E(i))(1 + E(i+1))(1 + E(i+2)) · · · − 1. By the same arguments
as above, we have ε̂i := ‖E(i)‖ � 3σ−1η

(i)
2 = 3

2i+1 σ−1η2. Since M (∞) = (1 +
Ê(i))−1M (i)(1 + Ê(i)), the inequality (7) implies

‖M (∞) − M (i)‖ � 2ε̂i

1 − ε̂i
(‖D(i)‖ + ‖H(i)‖)

� 2ε̂i

1 − ε̂i
(μi + η

(i)
1 + η

(i)
2 )

� 3
2i

σ−1η2
1 − ε̂i

(μ + η1 + η2).

This shows that M (i) converges geometrically to M (∞). We deduce that the
sequence H(i) = M (i) − D(i) also converges geometrically to a limit H(∞) with
‖H(∞)‖ � η1 + η2. Since limi→∞ η

(i)
2 = 0, we finally observe that M (∞) =

D(∞) + H(∞) is block diagonal.

Theorem 2. Assume Ik = {k} for all k. Then, under the assumptions of
Theorem1, the sequence (D,H), (D′,H ′), (D′′,H ′′), . . . converges quadratically
to (D(∞), 0).

Proof. The extra assumption implies that η
(i)
1 = 0 for all i. Let us show by

induction over i that we now have

η
(i)
2 � 1

22i−1 η2.

This is clear for i = 0. Assume that the result holds for a given i. Then we may
apply Lemma 2 to (D(i),H(i)) for δ = 2−2i+1, and obtain

η
(i+1)
2 � 1

22i−1 η
(i)
2

� 1

22i+1−1 .

Since ‖D(i+1) − D(i)‖ � η
(i)
2 , this establishes the quadratic convergence.

4 Algorithms

4.1 Clustering

Let M = D + H be the perturbation of a diagonal matrix (5) as in the previous
section. In order to apply Theorem 1, we first have to find a suitable cluster-
ing (4). For a given threshold separation δ, we will simply take the finest clus-
tering (i.e. for which p is maximal) with the property that |λi −λj | � δ ⇒ i ∼ j.
This clustering can be computed using the algorithm Cluster below.
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Algorithm Cluster
Input: eigenvalues λ1, . . . ,λn ∈ B and δ ∈ F

�

Output: the finest clustering (4) with �λi − λj� � δ ⇒ i ∼ j

– Let G be the graph with vertices 1, . . . , n and such that
i and j are connected if and only if �λi − λj� � δ.

– Let H be the transitive closure of G.
– Let H1, . . . , Hp the connected components of H.
– Let Ik be the set of vertices of Hk for each k.

4.2 Certification in the Case of Perturbed Diagonal Matrices

In order to apply Theorem 1, it now remains to find a suitable threshold δ for
which the conditions of the theorem hold. Starting with δ = 0, we will simply
increase δ to σ(D) whenever the conditions are not satisfied. This will force the
number p of clusters to decrease by at least one at every iteration, whence the
algorithm terminates. Notice that the workload of one iteration is O(n2), so the
total running time remains bounded by O(n3).

Algorithm DiagonalCertify
Input: a diagonal ball matrix D ∈ B

n×n with entries λ1, . . . ,λn

and an off diagonal ball matrix H ∈ B
n×n

Output: a clustering I and ε̂ ∈ F such that, for any M ∈ D and
H ∈ H, the conditions of theorem 1 hold and ‖Ê‖ � ε̂

δ := 0
Repeat

Compute the clustering I for λ1, . . . ,λn and δ using
Cluster
Let μ := ‖D‖, σ := σI(D), η1 := ‖ΔI(H)‖ and η2 :=
‖ΩI(H)‖
Let α := min

{
σ
6μ , 1

4

}

If �η1 + η2� � �αμ
8 � and �η2� � �ασ

8 �, then return
(I, � 3η2

σ �)
Set δ := �σ�

4.3 Certification of Approximate Eigenvectors and Eigenvalues

Let us now return to the original problem of certifying a numerical solution to
an eigenproblem. We will denote by 1n the n × n matrix of which all entries are
one.
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Algorithm EigenvectorCertify
Input: M = B(Mc,Mr) ∈ B

n×n and Tc ∈ F[i]n×n such that
T−1

c McTc is approximately diagonal
Output: a clustering I and T = B(Tc, Tr) ∈ B

n×n such that for any
M ∈ M , there exists a T ∈ T for which T−1MT is block
diagonal

Compute D := B(Tc, 0)−1MB(Tc, Tr)
Let (I, ε) := DiagonalCertify(Δ∗(D), Ω∗(D))
Let E := B(Tc, 0)B(0, ε)1n

Let (Tr)i,j := �Ei,j� for all i, j
Return (I,B(Tc, Tr))

Obviously, any eigenvalue λ ∈ C of a matrix M ∈ C
n×n satisfies |λ| � ‖M‖.

We may thus use the following modification of EigenvectorCertify in order to
compute enclosures for the eigenvalues of M .

Algorithm EigenvalueCertify
Input: M = B(Mc,Mr) ∈ B

n×n and Tc ∈ F[i]n×n

such that T−1
c McTc is approximately diagonal

Output: ball enclosures λ1, . . . ,λn ∈ B for the eigenvalues of M ,
with the appropriate multiplicities in cases of overlapping

Compute D := B(Tc, 0)−1MB(Tc, Tr)
Let (I, ε) := DiagonalCertify(Δ∗(D), Ω∗(D))
Let η1 := ‖ΔI(Ω∗(D))‖ and η2 := ‖ΩI(Ω∗(D))‖
For each k ∈ {1, . . . , p} do

If Ik = {i} for some i, then let λi := B((Dc)i,i, �η2�)
Otherwise

Let c be the barycenter of the Di,i with i ∈ Ik

Let r be the maximum of |Di,i − c| for i ∈ Ik

Let λi := c + B(0, �r + η1 + 2η2�) for all i ∈ Ik

Return (λ1, . . . ,λn)

5 Possible Extensions

Let M ∈ C
n×n be a matrix with a (numerically) multiple eigenvalue λ. We have

already stressed that it is generally impossible to provide non trivial certifications
for the corresponding eigenvectors. Nevertheless, two observations should be
made:

– If the eigenspace Eλ corresponding to λ has dimension 1, then small pertur-
bations of the matrix M only induce small perturbations of λ and Eλ.

– Let Fλ denote the full invariant subspace associated to the eigenvalue λ (or all
eigenvalues in the cluster of λ). Then small perturbations of M only induce
small perturbations of λ and Fλ.
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More precisely, in these two cases, we may search for ball enclosures for orthonor-
mal bases of the vector spaces Eλ resp. Fλ, which do not contain the zero vector.

When considering the numeric solution (1) of the eigenproblem for M ,
the column vectors which generate Fλ are usually far from being orthogonal.
Orthonormalization can only be done at the expense of making T−1MT only
upper triangular. Moreover, the orthogonalization implies a big loss of accuracy,
which requires the application of a correction method for restoring the accuracy.
It seems that the fundamental Newton iteration from Sect. 3.2 can actually be
used as a correction method. For instance, for small perturbations of the matrix

D =

⎛

⎜
⎜
⎝

λ1 1 0 0
0 λ1 0 0
0 0 λ2 1
0 0 0 λ2

⎞

⎟
⎟
⎠ ,

it can be shown that the fundamental iteration still converges. However, for
more general block diagonal matrices with triangular blocks, the details are
quite technical and yet to be worked out.

Yet another direction for future investigations concerns the quadratic con-
vergence. As a refinement of Lemma 1, we might replace D by a block diagonal
matrix with entries Λ1, . . . , Λp. Instead of taking Bi,j = Mi,j

λj−λi
, we then have to

solve equations of the form

Bi,jΛj − ΛiBi,j = Mi,j .

If the Λi are sufficiently close to λi Id, it might then be possible to adapt the
fundamental iteration accordingly so as to achieve quadratic convergence for the
strongly off diagonal part.
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Abstract. The Chinese remainder theorem is a key tool for the design of
efficient multi-modular algorithms. In this paper, we study the case when
the moduli m1, . . . , m� are fixed and can even be chosen by the user. If � is
small or moderately large, then we show how to choose gentle moduli that
allow for speedier Chinese remaindering. The multiplication of integer
matrices is one typical application where we expect practical gains for
various common matrix dimensions and bitsizes of the coefficients.

Keywords: Chinese remainder theorem · Algorithm · Complexity
Integer matrix multiplication

1 Introduction

Modular reduction is an important tool for speeding up computations in com-
puter arithmetic, symbolic computation, and elsewhere. The technique allows to
reduce a problem that involves large integer or polynomial coefficients to one or
more similar problems that only involve small modular coefficients. Depending
on the application, the solution to the initial problem is reconstructed via the
Chinese remainder theorem or Hensel’s lemma. We refer to [9, Chap. 5] for a
gentle introduction to this topic.

In this paper, we will mainly be concerned with multi-modular algorithms
over the integers that rely on the Chinese remainder theorem. Given a,m ∈ Z
with m > 1, we will denote by a rem m ∈ Rm := {0, . . . , m − 1} the remainder
of the Euclidean division of a by m. Given an r×r matrix A ∈ Zr×r with integer
coefficients, we will also denote A rem m ∈ Zr×r for the matrix with coefficients
(A rem m)i,j = Ai,j rem m.

One typical application of Chinese remaindering is the multiplication of
r × r integer matrices A,B ∈ Zr×r. Assuming that we have a bound M with
2|(AB)i,j | < M for all i, j, we proceed as follows:

1. Select moduli m1, . . . , m� with m1 · · · m� > M that are mutually coprime.
2. Compute A rem mk and B rem mk for k = 1, . . . , �.
3. Multiply C rem mk := (A rem mk)(B rem mk) rem mk for k = 1, . . . , �.
4. Reconstruct C rem M from the C rem mk with k = 1, . . . , �.
c© Springer International Publishing AG 2017
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The simultaneous computation of Ai,j rem mk from Ai,j for all k = 1, . . . , � is
called the problem of multi-modular reduction. In step 1, we need to perform 2r2

multi-modular reductions for the coefficients of A and B. The inverse problem
of reconstructing Ci,j rem M from the Ci,j rem mk with k = 1, . . . , � is called
the problem of multi-modular reconstruction. We need to perform r2 such recon-
structions in step 3. Our hypothesis on M allows us to recover C from C rem M .

Let us quickly examine when and why the above strategy pays off. In this
paper, the number � should be small or moderately large, say � � 64. The
moduli m1, . . . , m� typically fit into a machine word. Denoting by μ the bitsize
of a machine word (say μ = 32 or μ = 64), the coefficients of A and B should
therefore be of bitsize ≈ �μ/2.

For small �, integer multiplications of bitsize μ�/2 are usually carried out
using a naive algorithm, of complexity Θ(�2). If we directly compute the prod-
uct AB using r3 naive integer multiplications, the computation time is therefore
of order Θ(r3�2). In comparison, as we will see, one naive multi-modular reduc-
tion or reconstruction for � moduli roughly requires Θ(�2) machine operations,
whereas an r×r matrix multiplication modulo any of the mk can be done in time
Θ(r3). Altogether, this means that the above multi-modular algorithm for inte-
ger matrix multiplication has running time Θ(�2r2 + r3�), which is Θ(min(�, r))
times faster than the naive algorithm.

If � � r, then the cost Θ(�2r2) of steps 1 and 3 is negligible with respect to
the cost Θ(r3�) of step 2. However, if � and r are of the same order of magnitude,
then Chinese remaindering may take an important part of the computation time;
the main purpose of this paper is to reduce this cost. If � � r, then we notice
that other algorithms for matrix multiplication usually become faster, such as
naive multiplication for small �, Karatsuba multiplication [13] for larger �, or
FFT-based techniques [6] for very large �.

Two observations are crucial for reducing the cost of Chinese remaindering.
First of all, the moduli m1, . . . , m� are the same for all 2r2 multi-modular reduc-
tions and r2 multi-modular reconstructions in steps 1 and 3. If r is large, then
this means that we can essentially assume that m1, . . . , m� were fixed once and
for all. Secondly, we are free to choose m1, . . . , m� in any way that suits us. We
will exploit these observations by precomputing gentle moduli for which Chinese
remaindering can be performed more efficiently than for ordinary moduli.

The first idea behind gentle moduli is to consider moduli mi of the form
2sw − ε2i , where w is somewhat smaller than μ, where s is even, and ε2i < 2w.
In Sect. 3.1, we will show that multi-modular reduction and reconstruction both
become a lot simpler for such moduli. Secondly, each mi can be factored as
mi = (2sw/2 − εi)(2sw/2 + εi) and, if we are lucky, then both 2sw/2 − εi and
2sw/2 + εi can be factored into s/2 moduli of bitsize < μ. If we are very lucky,
then this allows us to obtain w� moduli mi,j of bitsize ≈ w that are mutually
coprime and for which Chinese remaindering can be implemented efficiently.

Let us briefly outline the structure of this paper. In Sect. 2, we rapidly
recall basic facts about Chinese remaindering and naive algorithms for this task.
In Sect. 3, we introduce gentle moduli and describe how to speed up Chinese
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remaindering with respect to such moduli. The last Sect. 4 is dedicated to the
brute force search of gentle moduli for specific values of s and w. We imple-
mented a sieving method in Mathemagix which allowed us to compute tables
with gentle moduli. For practical purposes, it turns out that gentle moduli exist
in sufficient number for s � 8. We expect our technique to be efficient for � � s2,
but this still needs to be confirmed via an actual implementation. The applica-
tion to integer matrix multiplication in Sect. 4.3 also has not been implemented
yet.

Let us finally discuss a few related results. In this paper, we have cho-
sen to highlight integer matrix multiplication as one typical application in
computer algebra. Multi-modular methods are used in many other areas and
the operations of multi-modular reduction and reconstruction are also known
as conversions between the positional number system (PNS) and the residue
number system (RNS). Asymptotically fast algorithms are based on remain-
der trees [3,8,14], with recent improvements in [2,4,10]; we expect such algo-
rithms to become more efficient when � exceeds s2.

Special moduli of the form 2n−ε are also known as pseudo-Mersenne moduli .
They have been exploited before in cryptography [1] in a similar way as in
Sect. 3.1, but with a slightly different focus: whereas the authors of [1] are keen
on reducing the number of additions (good for circuit complexity), we rather
optimize the number of machine instructions on recent general purpose CPUs
(good for software implementations). Our idea to choose moduli 2n − ε that can
be factored into smaller moduli is new.

Other algorithms for speeding up multiple multi-modular reductions and
reconstructions for the same moduli (while allowing for additional pre-
computations) have recently been proposed in [7]. These algorithms essen-
tially replace all divisions by simple multiplications and can be used in con-
junction with our new algorithms for conversions between residues modulo
mi = mi,1 · · · mi,s and residues modulo mi,1, . . . , mi,s.

2 Chinese Remaindering

2.1 The Chinese Remainder Theorem

For any integer m � 1, we recall that Rm = {0, . . . , m − 1}. For machine
computations, it is convenient to use the following effective version of the Chinese
remainder theorem:

Chinese Remainder Theorem. Let m1, . . . , m� be positive integers that are
mutually coprime and denote M = m1 · · · mm. There exist c1, . . . , c� ∈ RM such
that for any a1 ∈ Rm1 , . . . , a� ∈ Rm�

, the number

x = (c1a1 + · · · + c�a�) rem M

satisfies x rem mi = ai for i = 1, . . . , �.
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Proof. For each i = 1, . . . , �, let πi = M/mi. Since πi and mi are coprime, πi

admits an inverse ui modulo mi in Rmi
. We claim that we may take ci = πiui.

Indeed, for x = (c1a1 + · · · + c�a�) rem M and any i ∈ {1, . . . , �}, we have

x ≡ a1π1u1 + · · · + a�π�u� (mod mi)

Since πj is divisible by mi for all j �= i, this congruence relation simplifies into

x ≡ aiπiui ≡ ai (mod mi).

This proves our claim and the theorem.

Notation. We call c1, . . . , c� the cofactors for m1, . . . , m� in M and also denote
these numbers by cm1;M = c1, . . . , cm�;M = c�.

2.2 Modular Arithmetic

For practical computations, the moduli mi are usually chosen such that they fit
into single machine words. Let μ denote the bitsize of a machine word, so that
we typically have μ = 32 or μ = 64. It depends on specifics of the processor how
basic arithmetic operations modulo mi can be implemented most efficiently.

For instance, some processors have instructions for multiplying two μ-bit
integers and return the exact (2μ)-bit product. If not, then we rather have to
assume that the moduli mi fit into μ/2 instead of μ bits, or replace μ by μ/2.
Some processors do not provide efficient integer arithmetic at all. In that case,
one might rather wish to rely on floating point arithmetic and take μ = 52
(assuming that we have hardware support for double precision). For floating
point arithmetic it also matters whether the processor offers a “fused-multiply-
add” (FMA) instruction; this essentially provides us with an efficient way to
multiply two μ-bit integers exactly using floating point arithmetic.

It is also recommended to choose moduli mi that fit into slightly less than
μ bits whenever possible. Such extra bits can be used to significantly accelerate
implementations of modular arithmetic. For a more detailed survey of practically
efficient algorithms for modular arithmetic, we refer to [12].

2.3 Naive Multi-modular Reduction and Reconstruction

Let m1, . . . , m�, M = m1 · · · m�, a1 ∈ Rm1 , . . . , a� ∈ Rm�
and x ∈ RM be as in

the Chinese remainder theorem. We will refer to the computation of a1, . . . , a� as
a function of x as the problem of multi-modular reduction. The inverse problem is
called multi-modular reconstruction. In what follows, we assume that m1, . . . , m�

have been fixed once and for all.
The simplest way to perform multi-modular reduction is to simply take

ai := x rem mi (i = 1, . . . , �). (1)
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Inversely, the Chinese remainder theorem provides us with a formula for multi-
modular reconstruction:

x := (cm1;Ma1 + · · · + cm�;Ma�) rem M. (2)

Since m1, . . . , m� are fixed, the computation of the cofactors cm1;M can be
regarded as a precomputation.

Assume that our hardware provides an instruction for the exact multipli-
cation of two integers that fit into a machine word. If mi fits into a machine
word, then so does the remainder ai = x rem mi. Cutting cmi;M into � machine
words, it follows that the product cmi;Mai can be computed using � hardware
products and � hardware additions. Inversely, the Euclidean division of an �-
word integer x by mi can be done using 2�+O(1) multiplications and 2�+O(1)
additions/subtractions: we essentially have to multiply the quotient by mi and
subtract the result from x; each next word of the quotient is obtained through
a one word multiplication with an approximate inverse of mi.

The above analysis shows that the naive algorithm for multi-modular reduc-
tion of x modulo m1, . . . , m� requires 2�2 + O(�) hardware multiplications and
2�2+O(�) additions. The multi-modular reconstruction of x rem M can be done
using only �2 + O(�) multiplications and �2 + O(�) additions. Depending on the
hardware, the moduli mi, and the way we implement things, O(�2) more opera-
tions may be required for the carry handling—but it is beyond the scope of this
paper to go into this level of detail.

3 Gentle Moduli

3.1 The Naive Algorithms Revisited for Special moduli

Let us now reconsider the naive algorithms from Sect. 2.3, but in the case when
the moduli m1, . . . , m� are all close to a specific power of two. More precisely,
we assume that

mi = 2sw + δi (i = 1, . . . , �), (3)

where |δi| � 2w−1 and s � 2 a small number. As usual, we assume that the
mi are pairwise coprime and we let M = m1 · · · m�. We also assume that w is
slightly smaller than μ and that we have a hardware instruction for the exact
multiplication of μ-bit integers.

For moduli mi as in (3), the naive algorithm for the Euclidean division of
a number x ∈ R2�sw by mi becomes particularly simple and essentially boils
down to the multiplication of δi with the quotient of this division. In other
words, the remainder can be computed using ∼ �s hardware multiplications. In
comparison, the algorithm from Sect. 2.3 requires ∼ 2�s2 multiplication when
applied to (sw)-bit (instead of w-bit) integers. More generally, the computation
of � remainders a1 = x rem m1, . . . , a� = x rem m� can be done using ∼ �2s
instead of ∼ 2�2s2 multiplications. This leads to a potential gain of a factor 2s,
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although the remainders are (sw)-bit integers instead of w-bit integers, for the
time being.

Multi-modular reconstruction can also be done faster, as follows, using similar
techniques as in [1,5]. Let x ∈ RM . Besides the usual binary representation of x
and the multi-modular representation (a1, . . . , a�) = (x rem m1, . . . , x rem m�),
it is also possible to use themixed radix representation (orNewton representation)

x = b1 + b2m1 + b3m1m2 + · · · + b�m1 · · · m�−1,

where bi ∈ Rmi
. Let us now show how to obtain (b1, . . . , b�) efficiently from

(a1, . . . , a�). Since x rem m1 = b1 = a1, we must take b1 = a1. Assume that
b1, . . . , bi−1 have been computed. For j = i − 1, . . . , 1 we next compute

uj,i = (bj + bj+1mj + · · · + bi−1mj · · · mi−2) rem mi

using ui−1,i = bi−1 and

uj,i = (bj + uj+1,imj) rem mi

= (bj + uj+1,i · (δj − δi)) rem mi (j = i − 2, . . . , 1).

Notice that ui−1,i, . . . , u1,i can be computed using (i − 1)(s + 1) hardware mul-
tiplications. We have

x rem mi = (u1,i + bim1 · · · mi−1) rem mi = ai.

Now the inverse vi of m1 · · · mi−1 modulo mi can be precomputed. We finally
compute

bi = vi(ai − u1,i) rem mi,

which requires s2 + O(s) multiplications. For small values of i, we notice that
it may be faster to divide successively by m1, . . . , mi−1 modulo mi instead of
multiplying with vi. In total, the computation of the mixed radix representation
(b1, . . . , b�) can be done using

(
�
2

)
(s + 1) + �s2 + O(�s) multiplications. Having

computed the mixed radix representation, we next compute

xi = bi + bi+1mi + · · · + b�mi · · · m�−1

for i = �, . . . , 1, using the recurrence relation

xi = bi + xi+1mi.

Since xi+1 ∈ R2(�−i)sw , the computation of xi requires (� − i)s multiplications.
Altogether, the computation of x = x1 from (a1, . . . , a�) can therefore be done
using

(
�
2

)
(2s + 1) + �s2 ≈ �s(� + s) hardware multiplications.
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3.2 Combining Special Moduli into Gentle moduli

For practical applications, we usually wish to work with moduli that fit into one
word (instead of s words). With the mi as in the previous subsection, this means
that we need to impose the further requirement that each modulus mi can be
factored

mi = mi,1 · · · mi,s,

with mi,1, . . . , mi,s < 2μ. If this is possible, then the mi are called s-gentle
moduli . For given bitsizes w and s � 2, the main questions are now: do such
moduli indeed exist? If so, then how to find them?

If s = 2, then it is easy to construct s-gentle moduli mi = 22w + δi by taking
δi = −ε2i , where 0 � εi < 2(w−1)/2 is odd. Indeed,

22w − ε2i = (2w + εi)(2w − εi)

and gcd(2w +εi, 2w −εi) = gcd(2w +εi, 2εi) = gcd(2w +εi, εi) = gcd(2w, εi) = 1.
Unfortunately, this trick does not generalize to higher values s � 3. Indeed,
consider a product

(2w + η1) · · · (2w + ηs) = 2sw + (η1 + · · · + ηs)2(s−1)w +
((η1 + · · · + ηs)2 − (η2

1 + · · · + η2
s))2(s−2)w−1 + · · · ,

where η1, . . . , ηs are small compared to 2w. If the coefficient η1+· · ·+ηs of 2(s−1)w

vanishes, then the coefficient of 2(s−2)w−1 becomes the opposite −(η2
1 + · · ·+η2

s)
of a sum of squares. In particular, both coefficients cannot vanish simultaneously,
unless η1 = · · · = ηs = 0.

If s > 2, then we are left with the option to search s-gentle moduli by brute
force. As long as s is “reasonably small” (say s � 8), the probability to hit an
s-gentle modulus for a randomly chosen δi often remains significantly larger than
2−w. We may then use sieving to find such moduli. By what precedes, it is also
desirable to systematically take δi = −ε2i for 0 � εi < 2(w−1)/2. This has the
additional benefit that we “only” have to consider 2(w−1)/2 possibilities for εi.

We will discuss sieving in more detail in the next section. Assuming that we
indeed have found s-gentle moduli m1, . . . , m�, we may use the naive algorithms
from Sect. 2.3 to compute (x rem mi,1, . . . , x rem mi,s) from x rem mi and vice
versa for i = 1, . . . , �. Given x rem mi for all i = 1, . . . , �, this allows us to
compute all remainders x rem mi,j using 2�s2 +O(�s) hardware multiplications,
whereas the opposite conversion only requires �s2 + O(�s) multiplications. Alto-
gether, we may thus obtain the remainders x rem mi,j from x rem M and vice
versa using ∼ �s(� + 2s) multiplications.

4 The Gentle Modulus Hunt

4.1 The Sieving Procedure

We implemented a sieving procedure in Mathemagix [11] that uses the Mpari
package with an interface to Pari-GP [15]. Given parameters s, w,w′ and μ, the
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goal of our procedure is to find s-gentle moduli of the form

M = (2sw/2 + ε)(2sw/2 − ε) = m1 · · · ms

with the constraints that

mi < 2w′

gcd(mi, 2μ!) = 1,

for i = 1, . . . , s, and m1 � · · · � ms. The parameter s is small and even. One
should interpret w and w′ as the intended and maximal bitsize of the small
moduli mi. The parameter μ stands for the minimal bitsize of a prime factor of
mi. The parameter ε should be such that 4ε2 fits into a machine word.

In Table 1 below we have shown some experimental results for this sieving
procedure in the case when s = 6, w = 22, w′ = 25 and μ = 4. For ε < 1000000,
the table provides us with ε, the moduli m1, . . . , ms, as well as the smallest
prime power factors of the product M . Many hits admit small prime factors,
which increases the risk that different hits are not coprime. For instance, the
number 17 divides both 2132−3113852 and 2132−3765632, whence these 6-gentle
moduli cannot be selected simultaneously (except if one is ready to sacrifice
a few bits by working modulo lcm(2132 − 3113852, 2132 − 3765632) instead of
(2132 − 3113852) · (2132 − 3765632)).

In the case when we use multi-modular arithmetic for computations with
rational numbers instead of integers (see [9, Sect. 5 and, more particularly,
Sect. 5.10]), then small prime factors should completely be prohibited, since they
increase the probability of divisions by zero. For such applications, it is therefore
desirable that m1, . . . , ms are all prime. In our table, this occurs for ε = 57267
(we indicated this by highlighting the list of prime factors of M).

In order to make multi-modular reduction and reconstruction as efficient as
possible, a desirable property of the moduli mi is that they either divide 2sw/2−ε
or 2sw/2+ε. In our table, we highlighted the ε for which this happens. We notice
that this is automatically the case if m1, . . . , ms are all prime. If only a small
number of mi (say a single one) do not divide either 2sw/2 − ε or 2sw/2 + ε, then
we remark that it should still be possible to design reasonably efficient ad hoc
algorithms for multi-modular reduction and reconstruction.

Another desirable property of the moduli m1 � · · · � ms is that ms is as
small as possible: the spare bits can for instance be used to speed up matrix
multiplication modulo ms. Notice however that one “occasional” large modulus
ms only impacts on one out of s modular matrix products; this alleviates the
negative impact of such moduli. We refer to Sect. 4.3 below for more details.

For actual applications, one should select gentle moduli that combine all
desirable properties mentioned above. If not enough such moduli can be found,
then it depends on the application which criteria are most important and which
ones can be released.
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4.2 Influence of the Parameters s, w and w′

Ideally speaking, we want s to be as large as possible. Furthermore, in order
to waste as few bits as possible, w′ should be close to the word size (or half
of it) and w′ − w should be minimized. When using double precision floating
point arithmetic, this means that we wish to take w′ ∈ {24, 25, 26, 50, 51, 52}.
Whenever we have efficient hardware support for integer arithmetic, then we
might prefer w ∈ {30, 31, 32, 62, 63, 64}.

Let us start by studying the influence of w′ − w on the number of hits. In
Table 2, we have increased w by one with respect to Table 1. This results in an
approximate 5% increase of the “capacity” sw of the modulus M . On the one
hand, we observe that the hit rate of the sieve procedure roughly decreases by a
factor of thirty. On the other hand, we notice that the rare gentle moduli that
we do find are often of high quality (on four occasions the moduli m1, . . . , ms

are all prime in Table 2).
Without surprise, the hit rate also sharply decreases if we attempt to increase

s. The results for s = 8 and w = 22 are shown in Table 3. A further infortunate
side effect is that the quality of the gentle moduli that we do find also decreases.
Indeed, on the one hand, M tends to systematically admit at least one small
prime factor. On the other hand, it is rarely the case that each mi divides either
2sw/2 − ε or 2sw/2 + ε (this might nevertheless happen for other recombinations
of the prime factors of M , but only modulo a further increase of ms).

An increase of w′ while maintaining s and w′ − w fixed also results in a
decrease of the hit rate. Nevertheless, when going from w′ = 25 (floating point

Table 1. List of 6-gentle moduli for w = 22, w′ = 25, μ = 4 and ε < 1000000.

ε m1 m2 m3 m4 m5 m6 p
ν1
1 , p

ν2
2 , . . .

27657 28867 4365919 6343559 13248371 20526577 25042063 29, 41, 43, 547, . . .

57267 416459 1278617 2041469 6879443 25754563 28268089 416459, . . .

77565 7759 8077463 8261833 18751793 19509473 28741799 59, 641, . . .

95253 724567 965411 3993107 4382527 19140643 23236813 43, 724567, . . .

294537 190297 283729 8804561 19522819 19861189 29537129 232, 151, 1879, . . .

311385 145991 4440391 4888427 6812881 7796203 32346631 17, 79, 131, . . .

348597 114299 643619 6190673 11389121 32355397 32442427 31, 277, . . .

376563 175897 1785527 2715133 7047419 30030061 30168739 17, 127, 1471, . . .

462165 39841 3746641 7550339 13195943 18119681 20203643 67, 641, 907, . . .

559713 353201 873023 2595031 11217163 18624077 32569529 19, 59, 14797, . . .

649485 21727 1186571 14199517 15248119 31033397 31430173 19, 109, 227, . . .

656997 233341 1523807 5654437 8563679 17566069 18001723 79, 89, 63533, . . .

735753 115151 923207 3040187 23655187 26289379 27088541 53, 17419, . . .

801687 873767 1136111 3245041 7357871 8826871 26023391 23, 383777, . . .

826863 187177 943099 6839467 11439319 12923753 30502721 73, 157, 6007, . . .

862143 15373 3115219 11890829 18563267 19622017 26248351 31, 83, 157, . . .

877623 514649 654749 4034687 4276583 27931549 33525223 41, 98407, . . .

892455 91453 2660297 3448999 12237457 21065299 25169783 29, 397, 2141, . . .
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Table 2. List of 6-gentle moduli for w = 23, w′ = 25, μ = 4 and ε < 16000000.

ε m1 m2 m3 m4 m5 m6 p
ν1
1 , p

ν2
2 , . . .

936465 543889 4920329 12408421 15115957 24645539 28167253 19, 59, 417721, . . .

2475879 867689 4051001 11023091 13219163 24046943 28290833 867689, . . .

3205689 110161 12290741 16762897 22976783 25740731 25958183 59, 79, 509, . . .

3932205 4244431 5180213 5474789 8058377 14140817 25402873 4244431, . . .

5665359 241739 5084221 18693097 21474613 23893447 29558531 31, 41, 137, . . .

5998191 30971 21307063 21919111 22953967 31415123 33407281 101, 911, 941, . . .

6762459 3905819 5996041 7513223 7911173 8584189 29160587 43, 137, 90833, . . .

9245919 2749717 4002833 8274689 9800633 15046937 25943587 2749717, . . .

9655335 119809 9512309 20179259 21664469 22954369 30468101 17, 89, 149, . . .

12356475 1842887 2720359 7216357 13607779 23538769 30069449 1842887, . . .

15257781 1012619 5408467 9547273 11431841 20472121 28474807 31, 660391, . . .

Table 3. List of 8-gentle moduli for w = 22, w′ = 25, μ = 4 and ε < 10000000.

ε m1 m2 m3 m4 m5 m6 m7 m8 p
ν1
1 , p

ν2
2 , . . .

889305 50551 1146547 4312709 5888899 14533283 16044143 16257529 17164793 17, 31, 31, 59, . . .

2447427 53407 689303 3666613 4837253 7944481 21607589 25976179 32897273 31, 61, 103, . . .

2674557 109841 1843447 2624971 5653049 7030883 8334373 18557837 29313433 103, 223, 659, . . .

3964365 10501 2464403 6335801 9625841 10329269 13186219 17436197 25553771 23, 163, 607, . . .

4237383 10859 3248809 5940709 6557599 9566959 11249039 22707323 28518509 23, 163, 1709, . . .

5312763 517877 616529 879169 4689089 9034687 11849077 24539909 27699229 43, 616529, . . .

6785367 22013 1408219 4466089 7867589 9176941 12150997 26724877 29507689 23, 41, 197, . . .

7929033 30781 730859 4756351 9404807 13807231 15433939 19766077 22596193 31, 307, 503, . . .

8168565 10667 3133103 3245621 6663029 15270019 18957559 20791819 22018021 43, 409, 467, . . .

8186205 41047 2122039 2410867 6611533 9515951 14582849 16507739 30115277 23, 167, 251, . . .

arithmetic) to w′ = 31 (integer arithmetic), this is counterbalanced by the fact
that ε can also be taken larger (namely ε < 2w′

); see Table 4 for a concrete
example. When doubling w and w′ while keeping the same upper bound for ε,
the hit rate remains more or less unchanged, but the rate of high quality hits
tends to decrease somewhat: see Table 5.

It should be possible to analyze the hit rate as a function of the parameters
s, w, w′ and μ from a probabilistic point of view, using the idea that a random
number n is prime with probability (log n)−1. However, from a practical perspec-
tive, the priority is to focus on the case when w′ � 64. For the most significant
choices of parameters μ < w < w′ � 64 and s, it should be possible to compile
full tables of s-gentle moduli. Unfortunately, our current implementation is still
somewhat inefficient for w′ > 32. A helpful feature for upcoming versions of
Pari would be a function to find all prime factors of an integer below a specified
maximum 2w′

(the current version only does this for prime factors that can be
tabulated).
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Table 4. List of 6-gentle moduli for w = 28, w′ = 31, μ = 4 and ε < 1600000.
Followed by some of the next gentle moduli for which each mi divides either 2sw/2 −α
or 2sw/2 + α.

ε m1 m2 m3 m4 m5 m6 p
ν1
1 , p

ν2
2 , . . .

303513 42947057 53568313 331496959 382981453 1089261409 1176003149 292, 1480933, . . .

851463 10195123 213437143 470595299 522887483 692654273 1008798563 17, 41, 67, . . .

1001373 307261 611187931 936166801 1137875633 1196117147 1563634747 47, 151, . . .

1422507 3950603 349507391 490215667 684876553 693342113 1164052193 29, 211, 349, . . .

1446963 7068563 94667021 313871791 877885639 1009764377 2009551553 23, 71, 241, . . .

1551267 303551 383417351 610444753 1178193077 2101890797 2126487631 29, 43, 2293, . . .

1555365 16360997 65165071 369550981 507979403 1067200639 1751653069 17, 23, 67, . . .

4003545 20601941 144707873 203956547 624375041 655374931 1503716491 47, 67, . . .

4325475 11677753 139113383 210843443 659463289 936654347 1768402001 19, 41, . . .

4702665 8221903 131321017 296701997 496437899 1485084431 1584149417 8221903, . . .

5231445 25265791 49122743 433700843 474825677 907918279 1612324823 17, 1486223, . . .

5425527 37197571 145692101 250849363 291039937 456174539 2072965393 37197571, . . .

6883797 97798097 124868683 180349291 234776683 842430863 858917923 97798097, . . .

7989543 4833137 50181011 604045619 638131951 1986024421 2015143349 23, 367, . . .

Table 5. List of 6-gentle moduli for w = 44, w′ = 50, μ = 4 and ε < 200000. Followed
by some of the next gentle moduli for which each mi divides either 2sw/2−α or 2sw/2+α.

ε m1 m2 · · · m5 m6 p
ν1
1 , p

ν2
2 , . . .

15123 380344780931 774267432193 · · · 463904018985637 591951338196847 37, 47, 239, . . .

34023 9053503517 13181369695139 · · · 680835893479031 723236090375863 29, 35617, . . .

40617 3500059133 510738813367 · · · 824394263006533 1039946916817703 23, 61, 347, . . .

87363 745270007 55797244348441 · · · 224580313861483 886387548974947 71, 9209, . . .

95007 40134716987 2565724842229 · · · 130760921456911 393701833767607 19, 67, . . .

101307 72633113401 12070694419543 · · · 95036720090209 183377870340761 41, 401, . . .

140313 13370367761 202513228811 · · · 397041457462499 897476961701171 379, 1187, . . .

193533 35210831 15416115621749 · · · 727365428298107 770048329509499 59, 79, . . .

519747 34123521053 685883716741 · · · 705516472454581 836861326275781 127, 587, . . .

637863 554285276371 1345202287357 · · · 344203886091451 463103013579761 79, 1979, . . .

775173 322131291353 379775454593 · · · 194236314135719 1026557288284007 322131291353, . . .

913113 704777248393 1413212491811 · · · 217740328855369 261977228819083 37, 163, 677, . . .

1400583 21426322331 42328735049 · · · 411780268096919 626448556280293 21426322331, . . .

4.3 Application to Matrix Multiplication

Let us finally return to our favourite application of multi-modular arithmetic
to the multiplication of integer matrices A,B ∈ Zr×r. From a practical point of
view, the second step of the algorithm from the introduction can be implemented
very efficiently if rm2

i fits into the size of a word.
When using floating point arithmetic, this means that we should have rm2

i <
252 for all i. For large values of r, this is unrealistic; in that case, we subdivide the
r×r matrices into smaller ri ×ri matrices with rim

2
i < 252. The fact that ri may

depend on i is very significant. First of all, the larger we can take ri, the faster
we can multiply matrices modulo mi. Secondly, the mi in the tables from the
previous sections often vary in bitsize. It frequently happens that we may take
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all ri large except for the last modulus m�. The fact that matrix multiplications
modulo the worst modulus m� are somewhat slower is compensated by the fact
that they only account for one out of every � modular matrix products.

Several of the tables in the previous subsections were made with the applica-
tion to integer matrix multiplication in mind. Consider for instance the modulus
M = m1 · · · m6 = 2132 − 6569972 from Table 1. When using floating point arith-
metic, we obtain r1 � 82713, r2 � 1939, r3 � 140, r4 � 61, r5 � 14 and r6 � 13.
Clearly, there is a trade-off between the efficiency of the modular matrix mul-
tiplications (high values of ri are better) and the bitsize ≈ �w of M (larger
capacities are better).
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4. Bostan, A., Lecerf, G., Schost, É.: Tellegen’s principle into practice. In: Proceedings
of ISSAC 2003, pp. 37–44. ACM Press (2003)
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1 Introduction

For a polynomial system f with complex coefficients, the fundamental problem
of algebraic geometry is to understand the set of solutions of the system f =
0, denoted V(f). Numerical algebraic geometry (see, e.g., [5,25] for a general
overview) is based on using homotopy continuation methods for computing V(f).
Geometrically, one can decompose V(f) into its irreducible components, which
corresponds numerically to computing a numerical irreducible decomposition
with each irreducible component represented by a witness set. The first step of
computing a numerical irreducible decomposition is to compute witness point
supersets with the algorithms [13,22,24] relying upon a sequence of homotopies.
At each dimension where a solution component could exist, a generic linear space
of complementary dimension is used to slice the solution set; the witness points
are then the isolated points in the intersection of the solution component and
the linear slice. Accordingly, a crucial property of the algorithms employed is
that they must generate a finite set of points, say S, in the slice that includes
all isolated points of the slice.

In this article, we change the focus from irreducible components to connected
components. We present an approach that computes a finite set of points in V(f)
containing at least one point on each connected component of V(f) using a single
homotopy, built on a similar theoretical viewpoint as the nonconstructive app-
roach presented in [19, Theorem 7]. This work is complementary to methods for
computing a finite set of points in the set of real points in V(f), denoted VR(f),
containing at least one point on each connected component of VR(f) [1,11,21,30].

Our approach is particularly relevant to numerical elimination theory [5,
Chap. 16], which seeks to treat projections of algebraic sets in a similar fashion
as general algebraic sets but without having on hand polynomials that vanish on
the projection (and without computing such polynomials). This is a numerical
alternative to symbolic elimination methods [29]. In particular, suppose that
f(x, y) is a polynomial system that is defined on a product of two projective
spaces, and let X = π(V(f)) where π(x, y) = x. We do not have a polynomial
system that defines X, so we do all computations via points in its pre-image,
π−1(X)∩V(f). In particular, if we wish to compute a finite set of points S ⊂ V(f)
such that π(S) includes all isolated points of X, it suffices if S contains a point on
each connected component of V(f). Our new algorithm enables one to compute
such a set S using a single homotopy; one does not need to separately consider
each possible dimension of the fibers over the isolated points of X.

The viewpoint of computing based on connected components also has many
other applications, particularly related to so-called critical point conditions. For
example, the methods mentioned above in relation to real solutions, namely
[1,11,21,30], compute critical points of V(f) with respect to the distance function
(see also [9]). In [6,7], critical points of V(f) with respect to a linear projection
are used to numerically decompose real algebraic sets. (We discuss this in more
detail in Sect. 4.) Other applications include computing witness point sets for
irreducible components of rank-deficiency sets [2], isosingular sets [14], and defla-
tion ideals [17].
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To highlight the key point of this paper, consider computing rank-deficiency
sets as in [2]. With this setup, one adds new variables related to the null space
of the matrix. To make sure that all components of the rank-deficiency sets are
computed, traditional approaches need to consider all possible dimensions of the
null space. The point of this paper is to provide an algorithmic approach by
which one only needs to consider the smallest possible null space dimension,
thereby simplifying the computation.

The rest of the article is organized as follows. Section 2 derives an algorithmic
approach that computes at least one point on every connected component of V(f)
using one homotopy. This is discussed in relation to elimination theory in Sect. 3,
while Sect. 4 focuses on computing critical sets of projections of real algebraic
sets. An example illustrating this approach and its efficiency is presented in
Sect. 5.

2 Construction of Homotopies

The starting point for constructing one homotopy that computes at least one
point on each connected component of a solution set of polynomial equations
is [19, Theorem 7]. Since this theorem is nonconstructive, we derive an algo-
rithmic approach for performing this computation in Proposition 1 and sketch a
proof. We refer to [25] for details regarding algebraic and analytic sets with [19,
Appendix] providing a quick introduction to basic results regarding such sets.

Suppose that E is a complex algebraic vector bundle on an n-dimensional
irreducible and reduced complex projective set X. Denote the bundle projection
from E to X by πE . A section s of E is a complex algebraic map s : X → E such
that πE ◦ s is the identity; i.e., for all x ∈ X, (πE ◦ s)(x) = πE(s(x)) = x.

There is a nonempty Zariski open set U ⊂ X over which E has a trivialization.
Using such a trivialization, an algebraic section of E becomes a system of rank(E)
algebraic functions. In fact, all polynomial systems arise in this way and results
about special homotopies which track different numbers of paths, e.g., [16,20,26],
are based on this interpretation (see also [25, Appendix A]).

Let us specialize this to a concrete situation.

Example 1. Suppose that X ⊂ ∏r
j=1 P

nj is an irreducible and reduced n-
dimensional algebraic subset of a product of projective spaces. For example,
X could be an irreducible component of a system of multihomogeneous polyno-
mials in the variables

z1,0, . . . , z1,n1 , . . . , zr,0, . . . , zr,nr
,

where [zj,0, . . . , zj,nj
] are the homogeneous coordinates on the jth projective

space, Pnj . Each homogeneous coordinate zj,k has a natural interpretation as a
section of the hyperplane section bundle, denoted LP

nj (1). The dth power of the
hyperplane section bundle is denoted by LP

nj (d). A multihomogeneous polyno-
mial defined on

∏r
j=1 P

nj with multidegree (d1, . . . , dr) is naturally interpreted
as a section of the line bundle

L∏r
j=1 P

nj (d1, . . . , dr) := ⊗r
j=1π

∗
j LP

nj (dj),
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where πk :
∏r

j=1 P
nj → P

nk is the product projection onto the kth factor. A sys-
tem of n multihomogeneous polynomials

f :=

⎡

⎢
⎣

f1
...

fn

⎤

⎥
⎦ (1)

where fi has multidegree (di,1, . . . , di,ni
) is interpreted as a section of

E :=
n⊕

i=1

L∏r
j=1 P

nj (di,1, . . . , di,r).

The solution set of f = 0 is simply the set of zeroes of the section f .

The nth Chern class of E [8,10], which lies in the 2nth integer cohomology
group H2n(X,Z), is denoted by cn(E). Let d := cn(E)[X] ∈ Z, i.e., d denotes the
evaluation of cn(E) on X.

Example 2. Continuing from Example 1, let c :=
∑r

j=1 nj−n be the codimension
of X. Using multi-index notation for α = (α1, . . . , αr) where each αi ≥ 0 and
|α| =

∑r
i=1 αi, we can represent X in homology by

∑

|α|=c

eαHα

where Hi := π−1
i (Hi) with hyperplane Hi ⊂ P

ni and Hα = Hα1
1 · · · Hαr

r . More-
over, d := cn(E)[X] is simply the multihomogeneous Bézout number of the sys-
tem of multihomogeneous polynomials restricted to X, i.e., the coefficient of∏r

j=1 z
nj

j in the expression
⎛

⎝
∑

|α|=c

eαzα

⎞

⎠ ·
n∏

i=1

⎛

⎝
r∑

j=1

di,jzj

⎞

⎠ .

In particular, d is simply the number of zeroes of a general section of E
restricted to X.

A vector space V of global sections of E is said to span E if, given any point
e ∈ E , there is a section σ ∈ V of E with σ(πE(e)) = e. We assume that the rank
of E is n = dimX. If V spans E , then Bertini’s Theorem asserts that there is
a Zariski dense open set U ⊂ V with the property that, for all σ ∈ U , σ has d
nonsingular isolated zeroes contained in the smooth points of X, i.e., the graph
of σ meets the graph of the identically zero section of E transversely in d points
in the set of smooth points of X.

Let |V | := (V \{0})/C∗ be the space of lines through the origin of V . Given a
complex analytic vector bundle E spanned by a vector space of complex analytic
sections V , the total space Z ⊂ X × |V | of solution sets of s ∈ V is

Z := {(x, s) ∈ X × |V | : s(x) = 0} . (2)
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For simplicity, let p : Z → X and q : Z → |V | denote the maps induced by the
product projections X × |V | → X and X × |V | → |V |, respectively.

Since V spans E , the evaluation map

X × V → E
is surjective so that the kernel is a vector bundle of rank dimV − rank(E).
Let K denote the dual of this kernel and P(K) denote (K∗ \ X)/C∗, the space
of lines through the vector space fibers of the bundle projection of K∗ → X.
The standard convention of denoting (K∗ \ X)/C∗ by P(K) and not P(K∗) is
convenient in many calculations.

The space P(K) is easily identified with Z and the map p is identified with
the map P(K) → X induced by the bundle projection. From this identification,
we know that Z is irreducible.

Let E denote a rank n algebraic vector bundle on a reduced and irreducible
projective algebraic set spanned by a vector space V of algebraic sections of E .
Suppose that σ ∈ V and τ ∈ V have distinct images in |V | and let � := 〈σ, τ〉 ⊂
|V | denote the unique projective line, i.e., linear P

1, through the images of σ
and τ in |V |. Letting λ and μ be homogeneous coordinates on �, i.e., spanning
sections of L�(1), we have the section

H(x, λ, μ) := λσ + μτ (3)

of q∗
q−1(�)L�(1) ⊗ p∗E . Choosing a trivialization of E over a Zariski open dense

set U and a trivialization of L�(1) over a Zariski open dense set of �, e.g., the
set where μ �= 0, H is naturally interpreted as a homotopy. See Fig. 1 for an
illustration.

With this general setup, we are now ready to state a specialization of the
nonconstructive result [19, Theorem 7]. The key difference is that this special-
ization immediately yields a constructive algorithm for computing a finite set of
points containing at least one point on each connected component of σ−1(0).

Proposition 1. Let E denote a rank n algebraic vector bundle over an irre-
ducible and reduced n-dimensional projective algebraic set X. Let V be a vector
space of sections of E that spans E. Assume that d := cn(E)[X] > 0 and τ ∈ V
which has d nonsingular zeroes all contained in the smooth points of X. Let
σ ∈ V be a nonzero section of E, which is not a multiple of τ . Let � = 〈σ, τ〉
and H as in (3). Then, there is a nonempty Zariski open set Q ⊂ � such that

1. the map qZQ of ZQ :=
{
H−1(0) ∩ (X × Q)

}
to � is d-to-one; and

2. the finite set ZQ∩σ−1(0) contains at least one point of every connected subset
of σ−1(0).

Proof. Let Z as in (2). The projection map q : Z → |V | may be Stein factorized
[25, Theorem A.4.8] as q = s ◦ r where r : Z → Y is an algebraic map with
connected fibers onto an algebraic set Y and s : Y → |V | is an algebraic map with
finite fibers. The surjectivity of q implies that s is surjective and dim Y = dim |V |.
Since Z is irreducible, Y is irreducible.
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Solution path

Fig. 1. Illustration of the terminology of the paper. The upper space is in terms of
the variables of the problem, with solid lines representing solutions paths, starting at
the finite nonsingular zeros of some τi, and ending at some zero of σ. We show here
many τi systems, which all are deformed into σ. At the bottom, the patch represents
the vector space V and the lines � interpolate from some τi to σ.

It suffices to show that given any y ∈ Y , there is a complex open neighbor-
hood U of y with s(U) an open neighborhood of s(y). A line � ⊂ |V | is defined
by dim |V | − 1 linear equations. Thus, s−1(�) has all components of dimension
at least 1. The result follows from [25, Theorem A.4.17].

Remark 1. If X is a codimension c irreducible component of multiplicity one
of the solution set of a polynomial system f1, . . . , fc in the total space, we can
choose our homotopy so that the paths over (0, 1] are in the set where df1∧· · ·∧dfc

is non-zero.

3 Isolated Points of Images

With the theoretical foundation presented in Sect. 2, this section focuses on
computing a finite set of points containing at least one point on each connected
component in the image of an algebraic set which, in particular, provides a
finite superset of the isolated points in the image. Without loss of generality, it
suffices to consider projections of algebraic sets which corresponds algebraically
with computing solutions of an elimination ideal.
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Lemma 1. Let V be a closed algebraic subset of a complex quasiprojective alge-
braic set X. Let π : X → Y denote a proper algebraic map from X to a complex
quasiprojective algebraic set Y . If S is a finite set of points in V that contains
a point on each connected component of V , then π(S) is a finite set of points
in π(V ) which contains a point on each connected component of π(V ). In par-
ticular, π(S) is a finite superset of the zero-dimensional components of π(V ).

Proof. The image of a connected set under a proper algebraic map is connected.

Consider the concrete case where f is a polynomial system defined on C
N ×

P
M . Let V(f) ⊂ C

N ×P
M and Z(f) ⊂ P

N ×P
M be the closure of V(f) under the

natural embedding of CN into P
N . The approach of Proposition 1 provides one

homotopy which can be used to compute a point on each connected component
of Z(f). However, it may happen that a point computed on each connected
component of V(f) is at “infinity.” One special case is the following for isolated
points in the projection of V(f) onto C

N .

Corollary 1. Let f be a polynomial system defined on C
N × P

M and π denote
the projection C

N × P
M → C

N . By considering the natural inclusion of C
N

into P
N , let Z(f) be the closure of V(f) in P

N × P
M . Let S be a finite set of

points in Z(f) which contains a point on each connected component of Z(f) and
SC = S ∩ (CN × P

M ). Then, π(SC) is a finite set of points in π(V(f)) which
contains the isolated points in π(V(f)).

Proof. Suppose that x ∈ π(V(f)) ⊂ C
N is isolated. Let y ∈ P

M such that
(x, y) ∈ V(f). By abuse of notation, we have (x, y) ∈ Z(f) so that there is a
connected component, say C, of Z(f) which contains (x, y). Since x is isolated
in π(V(f)), we must have C ⊂ {x} × P

M . The statement follows from the fact
that C is thus naturally contained in C

N × P
M .

Example 3. To illustrate, consider the polynomial system

F (x) =
[
F1(x)
F2(x)

]

=
[
x2
1 + x2

2 + x2
3 + x2

4

x3
1 + x3

2 + x3
3 + x2

4

]

defined on C
4. The set V(F ) ⊂ C

4 is an irreducible surface of degree six con-
taining one real point, namely the origin, which is an isolated singularity. Since
the total derivatives dF1 and dF2 are linearly dependent at a singular point, we
can consider the following system defined on C

4 × P
1:

G(x, v) =
[

F (x)
v0 · dF1(x) + v1 · dF2(x)

]

.
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Since G consists of 6 polynomials defined on a 5 dimensional space, we reduce
to a square system via randomization1 which, for example, yields:

f(x, v) :=

⎡

⎢
⎢
⎢
⎢
⎣

x2
1 + x2

2 + x2
3 + x2

4

x3
1 + x3

2 + x3
3 + x2

4

v0(x1 + x4) + v1(3x2
1 + x4)

v0(x2 + x4) + v1(3x2
2 + x4)

v0(x3 + x4) + v1(3x2
3 + x4)

⎤

⎥
⎥
⎥
⎥
⎦

.

Consider the linear product [26] system:

g(x, v) :=

⎡

⎢
⎢
⎢
⎢
⎣

x2
1 + x2

2 + x2
3 + x4

4

x3
1 + x3

2 + x3
3 + x2

4

(v0 + v1)(x1 − 4x4 − 1)(x1 − 2)
(v0 − v1)(x2 + 2x4 − 1)(x2 − 3)
(v0 + 2v1)(x3 − 3x4 − 1)(x3 − 4)

⎤

⎥
⎥
⎥
⎥
⎦

together with the homotopy

H((x, v), [λ, μ]) = λf(x, v) + μg(x, v).

The symbols λ and μ are spanning sections from (3); in this context, they are
scalar values interpolating between f and g, and the homotopy “path” variables.
With this setup, g−1(0) has exactly d = 72 nonsingular isolated solutions which
can be computed easily. Further, 72 is the coefficient of a4b in the polynomial
(2a)(3a)(2a + b)3, one way to compute the 2-homogeneous root count [20].

We used Bertini [4] to track the 72 paths along a real arc contained in
the line 〈σ, τ〉 in which 30 paths diverge to infinity and 42 paths end at finite
points. Of the latter, 20 endpoints are nonsingular isolated solutions which are
extraneous in that they arose from the randomization and not actually in V(G).
The other 22 paths converged to points in {0} × P

1: 18 of which ended with
v = [0, 1] ∈ P

1 while the other 4 break into 2 groups of 2 with v of the form
[1, α] and [1, conj(α)] where α ≈ −0.351+0.504·√−1. In particular, even though
{0}×P

1 is a positive-dimensional solution component of V(f) and also of V(G),
we always obtain at least one point on this component showing that the origin
is the only point in V(F ) which is singular with respect to F .

1 In usual practice, “randomization” means replacing a set of polynomials with some
number of random linear combinations of the polynomials. When the appropriate
number of combinations is used, then in a Zariski-open subset of the Cartesian space
of coefficients of the linear combinations, the solution set of interest is preserved. See,
for example, [25, Sect. 13.5]. Here, for simplicity of illustration, we take very simple
linear combinations involving small integers. These happen to suffice, but in general
one would use a random number generator and possibly hundreds of digits to better
approximate the probability-one chance of success that is implied in a continuum
model of the coefficient space.
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4 Computing Critical Points of Projections

An application of Corollary 1 is to compute the critical points of an irreducible
curve X ⊂ C

N with respect to a nonconstant linear projection π : X → C.
In particular, assume that f = {f1, . . . , fN−1} is a polynomial system on C

N

such that X is an irreducible component of V(f) which has multiplicity one with
respect to f . A critical point of π with respect to X is a point x ∈ X such that
either

– x is a smooth point and dπ is zero on the tangent space of X at x; or
– x is a singular point of X.

In terms of rank-deficiency sets, the set of critical points is the set of points on
X such that

rank

⎡

⎢
⎢
⎢
⎣

dπ
df1
...

dfN−1

⎤

⎥
⎥
⎥
⎦

≤ N − 1. (4)

With this setup, there are finitely many critical points. In [7], which includes
an implementation of the curve decomposition algorithm of [18], a finite superset
of the critical points are needed to compute a cellular decomposition of the real
points of X. In fact, the points that are not critical points simply make the
cellular decomposition finer which can be merged away in a post-processing step.
Hence, one needs to compute at least one point in each connected component in
X × P

N−1 intersected with the solution set in C
N × P

N−1 of
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f1
...

fN−1⎡

⎢
⎢
⎢
⎣

dπ
df1
...

dfN−1

⎤

⎥
⎥
⎥
⎦

· ξ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 0.

The advantage here is that we obtain a finite superset of the critical points using
one homotopy regardless of the possibly different dimensions of the correspond-
ing null spaces, i.e., there is no need to cascade down the possible null space
dimensions.

The setup above naturally extends to computing witness point supersets for
the critical set of dimension k − 1 of an irreducible component of dimension k,
e.g., critical curves of a surface.

5 Example

Consider the 12-bar spherical linkage from [27,28]. This device can be viewed
as 20 rigid rods meeting in spherical joints at 9 points, or since a loop of three
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such rods forms a rigid triangle, as 12 rigid links meeting in rotational hinges
with the axes of rotation all intersecting at a central point. The arrangement
is most clearly seen in Fig. 2(c). The irreducible decomposition of the variety
in C

18 for the polynomial system F defined below for this linkage was first
computed in [11] and summarized in Table 1. Here, we consider computing a
superset of the critical points of the the curve C which is the union of the eight
one-dimensional irreducible components having degree 36 with respect to the
projection π defined below in (5). We will compare approaches computed using
Bertini [4].

Table 1. Decomposition of 12-bar spherical linkage system.

Dimension Degree # components

3 8 2

2 4 2

8 14

12 12

16 1

20 4

24 1

1 4 6

6 2

The ground link for the linkage is specified by fixing three points, namely
P0 = (0, 0, 0), P7 = (−1, 1,−1), and P8 = (−1,−1,−1). The three coordinates
of the other six points, P1, . . . , P6, are the 18 variables of polynomial system
F : C18 → C

17. The 17 polynomials in F are the following quadratics:

Gij = ‖Pi − Pj‖2 − 4,

(i, j) ∈ {(1, 2), (3, 4), (5, 6), (1, 5), (2, 6), (3, 7), (4, 8), (1, 3), (2, 4), (5, 7), (6, 8)};

Hk = ‖Pk‖2 − 3,

k ∈ {1, 2, 3, 4, 5, 6}.

Denoting the coordinates of Pi as Pi1, Pi2, Pi3, we choose2 a projection map
π : C18 → C defined by

π(P ) =
3

5
P11 +

13

17
P12 − 5

16
P13 +

26

27
P21 − 1

10
P22 +

1

6
P23 +

3

5
P31 +

7

17
P32 +

3

10
P33

+
1

4
P41 − 4

5
P42 +

1

3
P43 +

18

25
P51 +

14

29
P52 − 12

13
P53 − 17

30
P61 − 5

17
P62 +

13

20
P63 (5)

and consider the following system defined on C × P
17 ⊂ C

18 × P
17:

2 As before, we choose simple rational coefficients for simplicity of presentation.
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f(P, ξ) =

⎡

⎣
F (P )[
dπ

dF (P )

]

· ξ

⎤

⎦ .

Since each irreducible component in C has multiplicity one with respect to F ,
the irreducible components of V(f) ∩ (C × P

17) must be of the form {x} × L
for some point x ∈ C and linear space L ⊂ P

17. We aim to compute all such
points x.

With traditional methods, one would need to consider various dimensions of
the corresponding null spaces L. The advantage is that one obtains additional
information, namely witness point supersets for the irreducible components. The
first approach is to consider each possible dimension of P17 independently. Since
the zero-dimensional case is equivalent in terms of the setup and number of paths
to the new approach discussed below, we will just quickly summarize what would
be needed to perform this full computation. In particular, for each 0 ≤ i ≤ 16,
starting with a witness set for C × P

17, the corresponding start system, after
possible randomization, would require tracking 36 · (17− i), totaling 5508, paths
related to moving linear slices and the same number of paths to compute witness
point supersets.

Rather than treat each dimension independently, another option is to cascade
down through the dimensions, e.g., using the regenerative extension [15]. The
implementation in Bertini, starting with a witness set for C × P

17, requires
tracking 6276 paths for solving as well as tracking 3216 paths related to moving
linear slices. Using 64, 2.3 GHz processors, this computation took 618 s.

Instead of using a method designed for computing witness point supersets,
our new approach uses one homotopy to compute a point on each connected
component. This is all that is needed for the current application via Corollary 1.
Since dπ is constant and dF is a matrix with linear entries, we take our start
system to be

g(P, ξ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

F (P )
ξ0

�1(P ) · ξ1
...

�17(P ) · ξ17

⎤

⎥
⎥
⎥
⎥
⎥
⎦

restricted to C ×P
17 where each �i is a random linear polynomial. In particular,

V(g)∩(C×P
17) consists of d = 36·(171

)
= 612 points, each of which is nonsingular

with respect to g. The 612 solutions can be computed from a witness set for
C by tracking 612 paths related to moving linear slices. Then, a point on each
connected component of V(f)∩(C×P

17) is computed via Corollary 1 by tracking
612 paths. This computation in total, using the same parallel setup as above,
took 20 s.

Of the 612 paths, 492 diverge to infinity while 120 have finite endpoints. Of
the 120 finite endpoints of the form (P, ξ), 78 are real (i.e., have P ∈ R

18) with
22 distinct real points P since some points appear with multiplicity while others
have a null space with dimension greater than one so that the same P can appear
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Fig. 2. Solutions to the 12 bar spherical linkage obtained from the critical point com-
putation: (a) an equilateral spherical four-bar configuration, corresponding to a non-
singular critical point on a degree four irreducible component; (b) a degenerate config-
uration, coming from the intersection of such a component with a higher-dimensional
irreducible component; (c) a rigid configuration arising from the intersection of the
irreducible curves of degree six.

with several different null directions ξ. In detail, the breakdown of the 22 real
points is as follows:

– 14 real points are the endpoint of one path each. These points are smooth
points of C with rankdF = 17. Each lie on one of the degree 4 irreducible
components of C and is an equilateral spherical four-bar linkage of the type
illustrated in Fig. 2(a).

– 6 real points are the endpoint of 10 paths each. Each of these points has

rankdF = 12 with rank
[

dπ
dF

]

= 13 and arise where an irreducible compo-

nent of degree 4 in C intersects another irreducible component of V(F ). The
corresponding 12-bar linkage appears as in Fig. 2(b).

– 2 real points are the endpoint of 2 paths each. Each of these points P has

rankdF = 16 and rank
[

dπ
dF

]

= 17 so that the corresponding null vector

ξ ∈ P
17 is unique. Hence, the points (P, ξ) have multiplicity 2 with respect to

f . These points correspond to a rigid arrangement as shown in Fig. 2(c), one
the mirror image of the other.

To clarify the accounting, note that 14 · 1 + 6 · 10 + 2 · 2 = 78.

6 Conclusion

We have described an algorithmic approach for constructing one homotopy that
yields a finite superset of solutions to a polynomial system containing at least
one point on each connected component of the solution set. This idea naturally
leads to homotopies for solving elimination problems, such as computing critical
points of projections as well as other rank-constraint problems. This method
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allows one to compute such points directly without having to cascade through
all the possible dimensions of the auxiliary variables. This can provide consid-
erable computational savings, as we have demonstrated on an example arising
in kinematics, where the endpoints of a single homotopy include all the critical
points on a curve even though the associated null spaces at these points have
various dimensions.

We note that our approach has application to numerical elimination theory
but in that case leaves an open problem concerning sorting isolated from non-
isolated points. In the classical setting, when one finds a superset of the isolated
solutions, one can sift out the set of isolated solutions from a superset by using,
for example, either the global homotopy membership test [23] or the numerical
local dimension test [3]. In the elimination setting, a modified version of the
homotopy membership test as developed in [12] can sort out which points are
isolated under projection, but there is no local dimension test in this setting
as yet.
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Laboratoire d’informatique de l’École polytechnique LIX, UMR 7161 CNRS,
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Abstract. The efficient multiplication of polynomials over the finite
field F2 is a fundamental problem in computer science with several appli-
cations to geometric error correcting codes and algebraic crypto-systems.
In this paper we report on a new algorithm that leads to a practical
speed-up of about two over previously available implementations. Our
current implementation assumes a modern AVX2 and CLMUL enabled
processor.

1 Introduction

Modern algorithms for fast polynomial multiplication are generally based on
evaluation-interpolation strategies and more particularly on the discrete Fourier
transform (DFT). Taking coefficients in the finite field F2 with two elements, the
problem of multiplying in F2[x] is also known as carryless integer multiplication
(assuming binary notation). The aim of this paper is to present a practically
efficient solution for large degrees.

One major obstruction to evaluation-interpolation strategies over small finite
fields is the potential lack of evaluation points. The customary remedy is to work
in suitable extension fields. Remains the question of how to reduce the incurred
overhead as much as possible.

More specifically, it was shown in [7] that multiplication in F2[x] can be done
efficiently by reducing it to polynomial multiplication over the Babylonian field
F260 . Part of this reduction relied on Kronecker segmentation, which involves an
overhead of a factor two. In this paper, we present a variant of a new algorithm
from [11] that removes this overhead almost entirely. We also report on our
Mathemagix implementation that is roughly twice as efficient as before.

1.1 Related Work

For a long time, the best known algorithm for carryless integer multiplication
was Schönhage’s triadic variant [16] of Schönhage–Strassen’s algorithm [17] for
integer multiplication: it achieves a complexity O(n log n log log n) for the mul-
tiplication of two polynomials of degree n. Recently [8], Harvey, van der Hoeven
and Lecerf proved the sharper bound O(n log n8log

∗ n), but also showed that
several of the new ideas could be used for faster practical implementations [7].
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More specifically, they showed how to reduce multiplication in F2[x] to DFTs
over F260 , which can be computed efficiently due to the existence of many small
prime divisors of 260−1. Their reduction relies on Kronecker segmentation: given
two input polynomials A(x) =

∑
0�i<n aix

i and B(x) =
∑

0�i<n aix
i in F2[x],

one cuts them into chunks of 30 bits and forms Ã(y, z) =
∑m−1

i=0

∑29
j=0 a30i+jz

jyi

and B̃(y, z) =
∑m−1

i=0

∑29
j=0 b30i+jz

jyi, where m = �n/30� (the least integer
� n/30). Hence A(x) = Ã(x30, x), B(x) = B̃(x30, x), and the product C = AB
satisfies C(x) = C̃(x30, x), where C̃ = ÃB̃. Now Ã and B̃ are multiplied in
F260 [x] by reinterpreting z as the generator of F260 . The recovery of C̃ is possible
since its degree in z is bounded by 2 · 29 = 58 < 60. However, in terms of
input size, half of 60 coefficients of Ã(y, z) and B̃(y, z) in z are “left blank”,
when reinterpreted inside F260 . Consequently, this reduction method based on
Kronecker segmentation involves a constant overhead of roughly 2. In fact, when
considering algorithms with asymptotically softly linear costs, comparing relative
input sizes gives a rough approximation of the relative costs.

Recently van der Hoeven and Larrieu [11] have proposed a new way to reduce
multiplication of polynomials in Fq[x] to the computation of DFTs over an exten-
sion Fq� . Roughly speaking, they have shown that the DFT of a polynomial in
Fq� [x] could be computed almost � times faster if its coefficients happen to lie
in the subfield Fq. Using their algorithm, called the Frobenius FFT , it is theo-
retically possible to avoid the overhead of Kronecker segmentation, and thereby
to gain a factor of two with respect to [7]. However, application of the Frobe-
nius FFT as described in [11] involves computations in all intermediate fields
Fqe between Fq and Fq� . This makes the theoretical speed-up of two harder to
achieve and practical implementations more cumbersome.

Besides Schönhage–Strassen type algorithms, let us mention that other
strategies such as the additive Fourier transform have been developed for
F2k [x] [4,15]. A competitive implementation based on the latter transform has
been achieved very recently by Chen et al. [2]—notice that their preprint [2] does
not take into account our new implementation. For more historical details on the
complexity of polynomial multiplication we refer the reader to the introductions
of [7,8] and to the book by von zur Gathen and Gerhard [5].

1.2 Results and Outline of the Paper

This paper contains two main results. In Sect. 3, we describe a variant of the
Frobenius DFT for the special extension of F260 over F2. Using a single rewriting
step, this new algorithm reduces the computation of a Frobenius DFT to the
computation of an ordinary DFT over F260 , thereby avoiding computations in
any intermediate fields F2e with 1 < e < 60 and e | 60.

Our second main result is a practical implementation of the new algorithm
and our ability to indeed gain a factor that approaches two with respect to our
previous work. We underline that in both cases, DFTs over F260 represent the
bulk of the computation, but the lengths of the DFTs are halved for the new



Implementing Fast Carryless Multiplication 123

algorithm. Hence, the observed acceleration is due to our new algorithm and not
the result of ad hoc code tuning or hardware specific optimizations.

In Sect. 4, we present some of the low level implementation details concerning
the new rewriting step. Our timings are presented in Sect. 5. Our implementation
outperforms the reference library gf2x version 1.2 developed by Brent et al. [1]
for multiplying polynomials in F2[x]. We also outperform the recent implemen-
tation by Chen et al. [2]. Finally, the evaluation-interpolation strategy used by
our algorithm is particularly well suited for multiplying matrices of polynomials
over F2, as reported in Sect. 5.

2 Prerequisites

Discrete Fourier Transforms. Let ω be a primitive root of unity of order n in
Fq. The discrete Fourier transform (DFT) of an n-tuple a = (a0, . . . , an−1) ∈ F

n
q

with respect to ω is DFTω(a) := (â0, . . . , ân−1) ∈ F
n
q , where

âi := a0 + a1ω
i + · · · + an−1ω

(n−1)i.

Hence âi is the evaluation of the polynomial A(x) = a0+a1x+ · · ·+an−1x
n−1 at

ωi. For simplicity we often identify A with a and we simply write DFTω(A). The
inverse transform is related to the direct transform via DFT−1

ω = n−1 DFTω−1 ,
which follows from the well known formula

DFTω−1(DFTω(a)) = na.

If n properly factors as n = n1n2, then ωn1 is an n2-th primitive root of unity
and ωn2 is an n1-th primitive root of unity. Moreover, for any i1 ∈ {0, . . . , n1−1}
and i2 ∈ {0, . . . , n2 − 1}, we have

âi1n2+i2 =
∑

0�k1<n1

∑

0�k2<n2

ak2n1+k1ω
(k2n1+k1)(i1n2+i2)

=
∑

0�k1<n1

ωk1i2

⎛

⎝
∑

0�k2<n2

ak2n1+k1(ω
n1)k2i2

⎞

⎠ (ωn2)k1i1 . (1)

If A1 and A2 are algorithms for computing DFTs of length n1 and n2, we may
use (1) to construct an algorithm for computing DFTs of length n as follows.
For each k1 ∈ {0, . . . , n1 − 1}, the sum inside the brackets corresponds to the
i2-th coefficient of a DFT of the n2-tuple (a0n1+k1 , . . . , a(n2−1)n1+k1) ∈ F

n2
q with

respect to ωn1 . Evaluating these inner DFTs requires n1 calls to A2. Next, we
multiply by the twiddle factors ωk1i2 , at a cost of n operations in Fq. Finally,
for each i2 ∈ {0, . . . , n2 − 1}, the outer sum corresponds to the i1-th coefficient
of a DFT of an n1-tuple in F

n1
q with respect to ωn2 . These outer DFTs require

n2 calls to A1. Iterating this decomposition for further factorizations of n1 and
n2 yields the seminal Cooley–Tukey algorithm [3].
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Frobenius Fourier Transforms. Let A be a polynomial in Fq[x] and let ω
be a primitive root of unity in some extension Fq� of Fq. We write φq for the
Frobenius map a �→ aq in Fq� and notice that

A(φq(a)) = φq(A(a)), (2)

for any a ∈ Fq� . This formula implies many nontrivial relations for the DFT of
A: if ωi = φ◦k

q (ωj), then we have A(ωi) = φ◦k
q (A(ωj)). In other words, some

values of the DFT of A can be deduced from others, and the advantage of the
Frobenius transform introduced in [11] is to restrict the bulk of the evaluations
to a minimum number of points.

Let n denote the order of the root ω, and consider the set Ω = {1, ω, ω2, . . . ,
ωn−1}. This set is clearly globally stable under φq, so the group 〈φq〉 generated
by φq acts naturally on it. This action partitions Ω into disjoint orbits. Assume
that we have a section Σ of Ω that contains exactly one element in each orbit.
Then formula (2) allows us to recover DFTω(A) from the evaluations of A at
each of the points in Σ. The vector (A(σ))σ∈Σ is called the Frobenius DFT of A.

3 Fast Reduction from F2[x] to F260[x]

3.1 Variant of the Frobenius DFT

To efficiently reduce a multiplication in F2[x] into DFTs over F260 , we use an
order n that divides 260 − 1 and such that n = 61m for some integer m. We
perform the decomposition (1) with n1 = m and n2 = 61. Let ω be a primitive
n-th root of unity in F260 . The discrete Fourier transform of A ∈ F2[x]<n, given
by (A(1), A(ω), A(ω2), . . . , A(ωn−1)) ∈ F

n
260 , can be reorganized into 61 slices as

follows

DFTω(A) = ((A(ω61i))0�i<m, (A(ω61i+1))0�i<m, . . . , (A(ω61i+60))0�i<m).

The variant of the Frobenius DFT of A that we introduce in the present paper
corresponds to computing only the second slice:

Eω : F2[x]<60m → F
m
260

A �→ (A(ω61i+1))0�i<m.

Let us show that this transform is actually a bijection. The following lemma
shows that the slices (A(ω61i+2))0�i<m, . . . , (A(ω61i+60))0�i<m can be deduced
from the second slice (A(ω61i+1))0�i<m using the action of the Frobenius map φ2.

Lemma 1. Let Ωi = {ω61j+i : 0 � j < m} for 1 � i < 61. Then the action of
〈φ2〉 is transitive on the pairwise disjoint sets Ω1, . . . , Ω60.

Proof. Let 1 � i < 61 and 0 � j < m, we have φ2(ω61j+i) = ω61j′+(2i mod 61) for
some integer 0 � j′ < m, so the action of 〈φ2〉 onto Ω1, . . . , Ω60 is well defined.
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Notice that 2 is primitive for the multiplicative group F
×
61. This implies that for

any 1 � i < 61 there exists k such that 2k = i mod 61. Consequently we have
φ◦k
2 (ω61j+1) = ω61j′+i for some 0 � j′ < m, whence φ◦k

2 (Ω1) ⊆ Ωi. Since φ2 is
injective the latter inclusion is an equality.

If we were needed the complete DFTω(A), then we would still have to com-
pute the first slice (A(ω61i))0�i<m. The second main new idea with respect
to [11] is to discard this first slice and to restrict ourselves to input polynomials
A of degrees <60m. In this way, Eω can be inverted, as proved in the following
proposition.

Proposition 1. Eω is bijective.

Proof. The dimensions of the source and destination spaces of Eω over F2 being
the same, it suffices to prove that Eω is injective. Let A ∈ F2[x]<60m be such that
Eω(A) = 0. By construction, A vanishes at m distinct values, namely ω61i+1 for
0 � i < m. Under the action of 〈φ2〉 it also vanishes at 60(m − 1) other values
by Lemma 1, whence A = 0.

Remark 1. The transformation Eω being bijective is due to the fact that 2 is
primitive in the multiplicative group F

×
61. Among the prime divisors of 260 − 1,

the factors 3, 5, 11 and 13 also have this property, but taking n2 = 61 allows us
to divide the size of the evaluation-interpolation scheme by 60, which is optimal.

3.2 Frobenius Encoding

We decompose the computation of Eω into two routines. The first routine is
written Fω and called the Frobenius encoding :

Fω : F2[x]<60m → F260 [x]<m

A =
∑

0�k<60m

akxk �→
∑

0�k<m

ωk

⎛

⎝
∑

0�l<60

ak+mlθ
l

⎞

⎠ xk,where θ = ωm. (3)

Below, we will choose θ in such a way that Fω is essentially a simple reorgani-
zation of the coefficients of A.

We observe that the coefficients of Fω(A) are part of the values of the inner
DFTs of A in the Cooley–Tukey formula (1), applied with n1 = m and n2 = 61.
The second task is the computation of the corresponding outer DFT of order m:

DFTω̃ : F260 [x]<m → F
m
260

Ã �→ (Ã(ω̃i))0�i<m, where ω̃ = ω61.
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Proposition 2. Eω = DFTω̃ ◦Fω.

Proof. This formula follows from (1):

A(ω61i+1) =
∑

0�k<m

ωk

⎛

⎝
∑

0�l<61

ak+mlθ
l

⎞

⎠ ω̃ki = Fω(A)(ω̃i).

Summarizing, we have reduced the computation of a DFT of size 60n/61
over F2 to a DFT of size m = n/61 over F260 . This reduction preserves data size.

3.3 Direct Transforms

The computation of Fω involves the evaluation of m polynomials in F2[x]<60 at
θ = ωm ∈ F260 . In order to perform these evaluations fast, we fix the represen-
tation of F260 = F2[z]/(μ(z)) and the primitive root ν of unity of maximal order
260 − 1 to be given by

μ(z) = (z61 − 1)/(z − 1)
ν = z18 + z6 + 1 mod μ(z).

Setting ω = ν(260−1)/n and θ = ν(260−1)/61, it can be checked that θ =
z mod μ(z). Evaluation of a polynomial in F2[x]<60 at θ can now be done effi-
ciently.

Algorithm 1.
Input: A(x) =

∑
0�i<60m aix

i.
Output: Fω(A).
Assumption: n = 61m divides 260 − 1.

1. For i = 0, . . . ,m − 1, build Pi(z) =
∑

0�j<60 ai+mjz
j mod μ(z) ∈ F260 .

2. Return P0 + ωP1x + ω2P2x
2 + · · · + ωm−1Pm−1x

m−1.

Proposition 3. Algorithm1 is correct.

Proof. This deduces immediately from the definition of Fω in formula (3), using
the fact that θ = z mod μ(z) in our representation.

Algorithm 2.
Input: A ∈ F2[x]<60m.
Output: Eω(A).
Assumption: n = 61m divides 260 − 1.

1. Compute the Frobenius encoding Ã(x) ∈ F260 [x]<m of A by Algorithm 1.
2. Compute the DFT of Ã with respect to ω̃.

Proposition 4. Algorithm2 is correct.

Proof. The correctness simply follows from Propositions 2 and 3.
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3.4 Inverse Transforms

By combining Propositions 1 and 2, the map Fω is invertible and its inverse may
be computed by the following algorithm.

Algorithm 3.
Input: Ã(x) =

∑
i�0 ãix

i ∈ F260 [x]<m.
Output: F−1

ω (Ã).
Assumption: n = 61m divides 260 − 1.

1. For i = 0, . . . , m−1, build the preimage Pi(z) :=
∑

0�j<60 pi,jz
j of ω−iãi.

2. Return
∑

0�i<m

∑
0�j<60 pi,jx

i+mj .

Proposition 5. Algorithm3 is correct.

Proof. This is a straightforward inversion of Algorithm1 .

Algorithm 4.
Input: â ∈ F

m
260 .

Output: E−1
ω (â).

Assumption: n = 61m divides 260 − 1.
1. Compute the inverse DFT Ã ∈ F260 [x]<m of â with respect to ω̃.
2. Compute the Frobenius decoding A of Ã by Algorithm 3 and return A.

Proposition 6. Algorithm4 is correct.

Proof. The correctness simply follows from Propositions 2 and 5.

3.5 Multiplication in F2[x]

Using the standard technique of multiplication by evaluation-interpolation, we
may now compute products in F2[x] as follows:

Algorithm 5.
Input: A,B ∈ F2[x]<�.
Output: AB

1. Let m � (2� − 1)/60 be such that n = 61m divides 260 − 1.
2. Let ω = ν(260−1)/n be the privileged root of unity of order n.
3. Compute Eω(A) and Eω(B) by Algorithm 2.
4. Compute ĉ as the entry-wise product of Eω(A) and Eω(B).
5. Compute C(x) = E−1

ω (ĉ) by Algorithm 4 and return C.

Proposition 7. Algorithm4 is correct.

Proof. The correctness simply follows from Propositions 4 and 6 and using the
fact that Eω(AB) = Eω(A)Eω(B), since m � (2� − 1)/60.

For step 1, the actual determination of m has been discussed in [7, Sect. 3].
In fact it is often better not to pick the smallest possible value for m but a
slightly larger one that is also very smooth. Since 260 − 1 admits many small
prime divisors, such smooth values of m usually indeed exist.
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4 Implementation Details

We follow Intel’s terminology and use the term quad word to denote a unit of
64 bits of data. In the rest of the paper we use the C99 standard for presenting
our source code. In particular a quad word representing an unsigned integer is
considered of type uint64 t.

Our implementations are done for an AVX2-enabled processor and an oper-
ating system compliant to System V Application Binary Interface. The C++
library numerix of Mathemagix [13] (http://www.mathemagix.org) defines
wrappers for AVX types. In particular, avx uint64 t represents an SIMD vec-
tor of 4 elements of type uint64 t. Recall that the platform disposes of 16 AVX
registers which must be allocated accurately in order to minimize read and write
accesses to the memory.

Our new polynomial product is implemented in the justinline library
of Mathemagix. The source code is freely available from revision 10681 of
our SVN server (https://gforge.inria.fr/projects/mmx/). Main sources are in
justinline/src/frobenius encode f2 60.cpp for the Frobenius encoding and
in justinline/mmx/polynomial f2 amd64 avx2 clmul.mmx for the top level
functions. Related test and bench files are also available from dedicated direc-
tories of the justinline library. Let us further mention here that our Math-
emagix functions may be easily exported to C++ [12].

4.1 Packed Representations

Polynomials over F2 are supposed to be given in packed representation, which
means that coefficients are stored as a vector of contiguous bits in memory. For
the implementation considered in this paper, a polynomial of degree �−1 is stored
into ��/64� quad words, starting with the low-degree coefficients: the constant
term is the least significant bit of the first word. The last word is suitably padded
with zeros.

Reading or writing one coefficient or a range of coefficients of a polynomial
in packed representation must be done carefully to avoid invalid memory access.
Let A be such a polynomial of type uint64 t*. Reading the coefficient ai of
degree i in A is obtained as (A[i >> 6] >> (i & 63)) & 1. However, reading
or writing a single coefficient should be avoided as much as possible for efficiency,
so we prefer handling ranges of 256 bits. In the sequel the function of prototype

void load (avx uint64 t& d, const uint64 t* A,
const uint64 t& �, const uint64 t& i, const uint64 t& e);

returns the e � 256 bits of A starting from i into d. Bits beyond position � are
considered to be zero.

For arithmetic operations in F260 we refer the reader to [7, Sect. 3.1]. In the
sequel we only appeal to the function

uint64 t f2 60 mul (const uint64 t& a, const uint64 t& b);

that multiplies the two elements a and b of F260 in packed representation.

http://www.mathemagix.org
https://gforge.inria.fr/projects/mmx/
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We also use a packed column-major representation for matrices over F2. For
instance, an 8 × 8 bit matrix (Mi,j)0�i<8, 0�j<8 is encoded as a quad word whose
(8j + i)-th bit is Mi,j . Similarly, a 256× � matrix (Mi,j)0�i<256, 0�j<� may be seen
as a vector v of type avx uint64 t*, so Mi,j corresponds to the i-th bit of v[j].

4.2 Matrix Transposition

The Frobenius encoding essentially boils down to matrix transpositions. Our
main building block is 256 × 64 bit matrix transposition. We decompose this
transposition in a suitable way with regards to data locality, register allocation
and vectorization.

For the computation of general transpositions, we repeatedly make use of the
well-known divide and conquer strategy: to transpose an n× � matrix M , where

n and � are even, we decompose M =
(

A B
C D

)

, where A,B,C,D are n/2 × �/2

matrices; we swap the anti-diagonal blocks B and C and recursively transpose
each block A,B,C,D.

Transposing Packed 8 × 8 Bit Matrices. The basic task we begin with is
the transposition of a packed 8×8 bit matrix. The solution used here is borrowed
from [18, Chap. 7, Sect. 3].

Function 6.
Input: (Mi,j)0�i<8, 0�j<8 in packed representation.
Output: The transpose (Ni,j)0�i<8, 0�j<8 of M in packed representation.

uint64 t
packed matrix bit 8x8 transpose (const uint64 t& M) {
1. uint64 t N = M;
2. static const uint64 t mask 4 = 0x00000000f0f0f0f0;
3. static const uint64 t mask 2 = 0x0000cccc0000cccc;
4. static const uint64 t mask 1 = 0x00aa00aa00aa00aa;
5. uint64 t a;
6. a = ((N >> 28) ^ N) & mask 4; N = N ^ a;
7. a = a << 28; N = N ^ a;
8. a = ((N >> 14) ^ N) & mask 2; N = N ^ a;
9. a = a << 14; N = N ^ a;

10. a = ((N >> 7) ^ N) & mask 1; N = N ^ a;
11. a = a << 7; N = N ^ a;
12. return N; }
In steps 6 and 7, the anti-diagonal 4 × 4 blocks are swapped. In steps 8 and 9,

the matrix N is seen as four 4 × 4 matrices whose anti-diagonal 2 × 2 blocks are
swapped. In steps 10 and 11, the matrix N is seen as sixteen 2 × 2 matrices whose
anti-diagonal elements are swapped. All in all, 18 instructions, 3 constants and one
auxiliary variable are needed to transpose a packed 8 × 8 bit matrix in this way.
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One advantage of the above algorithm is that it admits a straightforward
AVX vectorization that we will denote by

avx uint64 t
avx packed matrix bit 8x8 transpose (const avx uint64 t& M);

This routine transposes four 8 × 8 bit matrices M0,M1,M2,M3 that are packed
successively into an AVX register of type avx uint64 t. We emphasize that this
task is not the same as transposing a 32 × 8 or 8 × 32 bit matrices.

Remark 2. The BMI2 technology gives another method for transposing 8×8 bit
matrices:

uint64 t mask = 0x0101010101010101;
uint64 t N= 0;
for (unsigned i = 0; i < 8; i++)

N |= pext u64 (M, mask << i) << (8 * i);

The loop can be unrolled while precomputing the shift amounts and masks,
which leads to a faster sequential implementation. Unfortunately this approach
cannot be vectorized with the AVX2 technology. Other sequential solutions even
exist, based on lookup tables or integer arithmetic, but their vectorization is
again problematic. Practical efficiencies are reported in Sect. 5.

Transposing Four 8 × 8 Byte Matrices Simultaneously. Our next task is
to design a transposition algorithm of four packed 8 × 8 byte matrices simulta-
neously. More precisely, it performs the following operation on a packed 32 × 8
byte matrix: ⎛

⎜
⎜
⎝

M0

M1

M2

M3

⎞

⎟
⎟
⎠ −→

⎛

⎜
⎜
⎝

M�
0

M�
1

M�
2

M�
3

⎞

⎟
⎟
⎠ ,

where the Mi are 8×8 blocks. This operation has the following prototype in the
sequel:

void avx packed matrix byte 8x8 transpose
(avx uint64 t* dest, const avx uint64 t* src);

This function works as follows. First the input src is loaded into eight AVX
registers r0, . . . , r7. Each ri is seen as a vector of four uint64 t: for j ∈ {0, . . . , 3},
r0[j], . . . , r7[j] thus represent the 8 × 8 byte matrix Mj . Then we transpose
these four matrices simultaneously in-register by means of AVX shift and blend
operations over 32, 16 and 8 bits entries in the spirit of the aforementioned divide
and conquer strategy.

Transposing 256 × 64 Bit Matrices. Having the above subroutines at our dis-
posal, we can now present our algorithm to transpose a packed 256×64 bit matrix.
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The input bit matrix of type avx int64 t is written (Mi,j)0�i<256, 0�j<64. The
transposed output matrix is written (Ni,j)0�i<64, 0�j<256 and has type uint64 t*.
We first compute the auxiliary byte matrix T as follows:

static avx uint64 t T[64];
for (int i= 0; i < 8; i++) {

avx packed matrix byte 8x8 transpose (T + 8*i, M + 8*i);
for (int k= 0; k < 8; k++)

T[8*i+k]= avx packed matrix bit 8x8 transpose(T[8*i+k]);

If we write Mi,k:l for the byte representing the packed bit vector (Mi,k, . . . ,Mi,l),
then T contains the following 32 × 64 byte matrix:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M0,0:7 . . . M56,0:7 M0,8:15 . . . M56,8:15 . . . M0,56:63 . . . M56,56:63

...
...

...
...

...
...

M7,0:7 . . . M63,0:7 M7,8:15 . . . M63,8:15 . . . M7,56:63 . . . M63,56:63

M64,0:7 . . . M120,0:7 M64,8:15 . . . M120,8:15 . . . M64,56:63 . . . M120,56:63

...
...

...
...

...
...

M71,0:7 . . . M127,0:7 M71,8:15 . . . M127,8:15 . . . M71,56:63 . . . M127,56:63

M128,0:7 . . . M184,0:7 M128,8:15 . . . M184,8:15 . . . M128,56:63 . . . M184,56:63

...
...

...
...

...
...

M135,0:7 . . . M191,0:7 M135,8:15 . . . M191,8:15 . . . M135,56:63 . . . M191,56:63

M192,0:7 . . . M248,0:7 M192,8:15 . . . M248,8:15 . . . M192,56:63 . . . M248,56:63

...
...

...
...

...
...

M199,0:7 . . . M255,0:7 M199,8:15 . . . M255,8:15 . . . M199,56:63 . . . M255,56:63

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

First, for all 0 � i � 7, we load column 8i into the AVX register ri. We inter-
pret these registers as forming a 32×8 byte matrix that we transpose in-registers.
This transposition is again performed in the spirit of the aforementioned divide
and conquer strategy and makes use of various specific AVX2 instructions. We
obtain

⎛
⎜⎜⎜⎝

M0,0:7 M1,0:7 . . . M7,0:7 M64,0:7 M65,0:7 . . . M71,0:7 . . .
M0,8:15 M1,8:15 . . . M7,8:15 M64,8:15 M65,8:15 . . . M71,8:15 . . .

...
...

...
...

...
...

M0,56:63 M1,56:63 . . . M7,56:63 M64,56:63 M65,56:63 . . . M71,56:63 . . .

⎞
⎟⎟⎟⎠ .

More precisely, for i = 0, . . . , 7, the group of four consecutive columns from
4i until 4i+3 is in the register ri. We save the registers r0, . . . , r7 at the addresses
N,N + 4, N + 64, N + 68, N + 128, N + 132, N + 192 and N + 196.

For each k = 1, . . . , 7, we build a similar 32×8 byte matrix from the columns
k, 8 + k, . . . , 56 + k of T , and transpose this matrix using the same algorithm.
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This time the result is saved at the addresses N ′, N ′ + 4, N ′ + 64, N ′ + 68, N ′ +
128, N ′ +132, N ′ +192 and N ′ +196, where N ′ = N +8k. This yields an efficient
routine for transposing M into N , whose prototype is given by

void packed matrix bit 256x64 transpose
(uint64 t* N, (const avx uint64 t*) M);

4.3 Frobenius Encoding

If the input polynomial A has degree less than � � 60m and is in packed repre-
sentation, then it can also be seen as a m × 60 matrix in packed representation
(except a padding with zeros could be necessary to adjust the size).

In this setting, the polynomials Pi of Algorithm 1 are simply read as the rows
of the matrix. Therefore, to compute the Frobenius encoding Fω(A), we only
need to transpose this matrix, then add 4 rows of zeros for alignment (because
we store one element of F260 per quad word) and multiply by twiddle factors.
This leads to the following implementation:

Function 7.
Input: A(x) =

∑
0�i<� aix

i ∈ F2[x].
Output: Fω(A) stored from pointer d to m allocated quad words.
Assumptions: n = 61m divides 260 − 1 and � � 60m.

void encode (uint64 t* d, const uint64 t& m,
const uint64 t* A, const uint64 t& �) {

1. uint64 t c = 1, i = 0, e = 0;
2. avx uint64 t v[64]; uint64 t w[256];
3. while (i < m) {
4. e = min (m - i, 256);
5. for (int j = 0; j < 64; j++)

load (v[j], A, �, i + m * j, e);
6. packed matrix bit 256x64 transpose (w, v);
7. for (int j = 0; j < e; j++) {

d[i + j] = f2 60 mul (w[j], c);
c = f2 60 mul (c, ω); }

8. i += e; }
Remark 3. To optimize read accesses, it is better to run loop 5 for j < �l/m�
and to initialize the remaining v[j] to zero. Indeed, for a product of degree d,
we typically multiply two polynomials of degree � d/2, which means � < 30m
when computing the direct transform.

The Frobenius decoding consists in inverting the encoding. The implemen-
tation issues are the same, so we refer to our source code for further details.
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5 Timings

The platform considered in this paper is equipped with an Intel(R) Core(TM)
i7-6700 CPU at 3.40 GHz and 32 GB of 2133 MHz DDR4 memory. This CPU
features AVX2, BMI2 and CLMUL technologies (family number 6 and model
number 94). The platform runs the Stretch GNU Debian operating system
with a 64 bit Linux kernel version 4.3. We compile with GCC [6] version 5.4.

We use version 1.2 of the gf2x library (https://gforge.inria.fr/projects/
gf2x/, released in July 2017)—it makes use of the CLMUL features of the plat-
form. We tuned it to our platform during the installation process up to 32000000
input quad words. We also compare to the implementation of the additive Fourier
transform by Chen et al. [2], using the GIT version of 2017, September, 1.

Frobenius Encoding. Concerning the cost of the Frobenius encoding and
decoding, Function 6 takes about 20 CPU cycles when compiled with the sole
-O3 option. With the additional options -mtune=native -mavx2 -mbmi2, the
BMI2 version of Remark 2 takes about 16 CPU cycles. The vectorized version
of Function 6 transposes four packed 8 × 8 bit matrices simultaneously in about
20 cycles, which makes an average of 5 cycles per matrix.

It is interesting to examine the performance of the sole transpositions made
during the Frobenius encoding and decoding (that is discarding products by
twiddle factors in F260). From sizes of a few kilobytes this average cost per quad
word is about 8 cycles with the AVX2 technology, and it is about 23 cycles
without. Unfortunately the vectorization speed-up is not as close to 4 as we
would have liked.

Since the encoding and decoding costs are linear, their relative contribution
to the total computation time of polynomial products decreases for large sizes.
For two input polynomials in F2[x] of 216 quad words, the contribution is about
15%; for 222 quad words, it is about 10%.

PolynomialProduct. In Fig. 1 we report timings in milliseconds for multiplying
two polynomials in F2[x]<�, hence each of input size ��/64� quad words—indicated
in abscissa and obtained from justinline/bench/polynomial f2 bench.mmx.
Notice that our implementation in [7] was faster than version 1.1 of gf2x, but is
now of similar speed as version 1.2. The additive FFT strategy of [2] achieves a
noticeable speed-up in favorable cases, but because of its staircase-effect its run-
time is roughly similar to the one of gf2x in average. With respect to our old
implementation, the new one finally achieves a speed-up that is not far from the
factor 2 predicted by the asymptotic complexity analysis. Let us mention that our
new implementation becomes faster than gf2x when ��/64� is larger than 2048.

Polynomial Matrix Product. As in [7], one major advantage of DFTs over
the Babylonian field F260 is the compactness of the evaluated FFT-representation
of polynomials. This makes linear algebra over F2[x] particularly efficient: instead

https://gforge.inria.fr/projects/gf2x/
https://gforge.inria.fr/projects/gf2x/
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Fig. 1. Products in F2[x]<�, input size ��/64� quad words, timings in milliseconds.

of multiplying r × r matrices over F2[x]<� naively by means of r3 polynomial
products of degree < �, we use the standard evaluation-interpolation approach.
In our context, this comes down to: (a) computing the 2r2 Frobenius encodings,
(b) the 2r2 direct DFTs of all entries of the two matrices to be multiplied, (c)
performing the ≈ 2�/60 products of r × r matrices over F260 , (d) computing the
r2 inverse DFTs and Frobenius decodings of the so-computed matrix products.

Timings for matrices over F2[x] are obtained from justinline/bench/
matrix polynomial f2 bench.mmx and are reported in Table 1. The row “this
paper” confirms the practical gain of this fast approachwithin our implementation.
For comparison, the row “gf2x” shows the cost of computing the product naively,
by doing r3 polynomial multiplications using gf2x. More efficient evaluation-
interpolation based approaches [10, Sect. 2] for matrix multiplication can in princi-
ple be combined with Schönhage’s triadic polynomial multiplication [16] as imple-
mented in gf2x. However, this would require an additional implementation effort
and also lead to an extra constant overhead with respect to our approach.

Table 1. Products of r × r matrices over F2[x], for degree 64 · 216, in milliseconds

r 1 2 4 8 16 32

This paper 12 51 212 896 3969 18953

gf2x 22 182 1457 11856 92858 745586
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6 Conclusion

The present paper describes a major new approach for the efficient computation
of large carryless products. It confirms the excellent arithmetic properties of
the Babylonian field F260 for practical purposes, when compared to the fastest
previously available strategies.

Improvements are still possible for our implementation of DFTs over F260 .
First, taking advantage of the more recent AVX-512 technologies is an important
challenge. This is difficult due to the current lack of 256 or 512 bit SIMD counter-
parts for the vpclmulqdq assembly instruction (carryless multiplication of two
quad words). However, larger vector instruction would be beneficial for matrix
transposition, and even more taking into account that there are twice as many
512 bit registers as 256 bit registers; so we can expect a significant speed-up
for the Frobenius encoding/decoding stages. The second expected improvement
concerns the use of truncated Fourier transforms [9,14] in order to smoothen the
graph from Fig. 1. Finally we expect that our new ideas around the Frobenius
transform might be applicable to other small finite fields.
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Gdańsk University of Technology, Gdańsk, Poland
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Abstract. We introduce interval scalar projection operation with tight
interval enclosure. Our approach relies on the solution to non-convex
optimization problem. We present an improved algorithm for computing
interval scalar projection for 2-dimensional box intervals and compare to
a simple algorithm based on natural interval extension method. Applica-
tions include automated verification of properties of geometric algorithms
and computing Voronoi diagrams over inexact input data.

Keywords: Interval arithmetic · Scalar projection
Non-convex optimization · Geometric algorithms verification
Computational geometry · Voronoi diagrams

1 Introduction

The scalar projection s(x1,x2) is an inner product of x1 and x̂2, where x1 ∈ R
n

and x̂2 is the unit vector in the direction of x2 ∈ R
n \ {0}.

One way to define interval scalar projection for n-dimensional box intervals is
to use its natural interval extension [8], i.e. using elementary interval arithmetic
operations such as interval multiplication, interval addition, interval square root
and interval division. Such straightforward computation contributes to an unnec-
essary overestimation, since it suffers from dependency effects [8,9]. Moreover,
at every step the intermediate result has to be promoted to a box interval, which
is especially problematic for interval normalization.

Over many years of research in interval analysis, numerous methods were
developed to improve enclosures of interval extensions, including interval split-
ting [8], affine arithmetic [17], Taylor methods [10] and more [3,11].

In automated theorem proving and verification systems [12,19], e.g. Coq,
PVS, the excessive overestimation can significantly slow down the verification
process or prevent it from completion.

In this article we propose a method for computing tight lower and upper
bounds of interval scalar projection [s](X1,X2). Our approach is to express [s]
as an optimization problem. We present an improved algorithm for comput-
ing interval scalar projection for 2-dimensional box intervals and compare it to
straightforward (natural interval extension) implementation.

c© Springer International Publishing AG 2017
J. Blömer et al. (Eds.): MACIS 2017, LNCS 10693, pp. 137–146, 2017.
https://doi.org/10.1007/978-3-319-72453-9_10
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2 Interval Extensions

Let a = (a1, a2, . . . , an) ∈ R
n, b = (b1, b2, . . . , bn) ∈ R

n. Interval [a, b] is an
n-dimensional box interval in interval space IR

n, if

[a, b] =
∏

1≤i≤n

[aibi], ai ≤ bi. (1)

For X = [a, b], we denote X = a as a lower bound and X = b as an upper
bound of X.

A function f(x1, . . . ,xk), where x1, . . . ,xk ∈ R
n, can be extended to a

function
f(X1, . . . , Xk) = {f(x1, . . . ,xk) | ∀1≤i≤k xi ∈ Xi}, (2)

where X1, . . . , Xk ⊆ R
n.

Let [f ] denote an interval extension of f , if for every X1, . . . , Xk ∈ IR
n

[f ](X1, . . . , Xk) ⊇ f(X1, . . . , Xk). (3)

We want enclosure of the interval extension to be as tight as possible.

3 Interval Scalar Projection in R
n

We say x̂ is a unit vector in the direction of x ∈ R
n \ {0}, if x̂ = x

‖x‖ , where

‖x‖ =
√〈x,x〉 (Euclidean �2 norm).

̂X is a set of unit vectors in the direction of elements in X ⊆ R
n \ {0}, if

̂X =
{

x̂
∣

∣

∣ x ∈ X
}

. (4)

Note that ̂X is a subset of a unit sphere, denoted ̂X ⊆ S
n.

We say s : Rn × (Rn \ {0}) → R is a scalar projection, if

s(x1,x2) = 〈x1,
x2

‖x2‖〉. (5)

A scalar projection in Euclidean space can be expressed in terms of cosine of
the angle, that is,

s(x1,x2) = ‖x1‖ cos ∠(x1,x2), (6)

where ∠(x1,x2) ∈ [0, π] is the smallest angle between x1 and x2.
For any x1 ∈ R

n and x2 ∈ R
n \ {0},

− ‖x1‖ ≤ s(x1,x2) ≤ ‖x1‖. (7)

Let X1,X2 ∈ IR
n, 0 /∈ X2.

An interval scalar projection is an interval extension [s](X1,X2) of s(X1,X2).
The problem of finding minimum and maximum of s(X1,X2) is a non-convex

optimization problem and has the form

minimize(maximize) s(x1,x2)
subject to x1 ∈ X1,x2 ∈ X2.

(8)
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Proposition 1. For X1,X2 ∈ IR
n, 0 /∈ X2, the minimum of s(X1,X2) is equal

to the negation of the maximum of s(−X1,X2).

Proof. The problem of minimization of s(x1,x2) can be solved as maximization
of −s(x1,x2), and by the definition of the inner product for any x1 ∈ R

n and
x̂2 ∈ S

n, −〈x1, x̂2〉 = 〈−x1, x̂2〉.

3.1 Lower and Upper Bounds of Interval Scalar Projection in R
n

Let g(X) be the set of all vertices of a box interval X ∈ IR
n.

For X = [(a1, a2, . . . , an), (b1, b2, . . . , bn)],

g(X) = {(x1, x2, . . . , xn) | xi = ai ∨ xi = bi}. (9)

Note that |g(X)| = 2n and X is a convex polytope of g(X), that is, X =
conv g(X).

Lemma 1. For every convex combination λ1a1 + . . . + λkak of {a1, . . . ,ak},
where ai ∈ R

n, and for a fixed b ∈ R
n,

min(〈a1, b〉, . . . , 〈ak , b〉) ≤ 〈λ1a1 + . . . + λkak , b〉 ≤ max(〈a1, b〉, . . . , 〈ak , b〉).
Proof. Let G = {〈a1, b〉, . . . , 〈ak , b〉} and f(λ1, . . . , λk) = 〈λ1a1 + . . . + λkak , b〉.

After expanding f(λ1, . . . , λk) to

λ1〈a1, b〉 + . . . + λk〈ak , b〉

we can see that f(λ1, . . . , λk) is a convex combination of G. And clearly
conv G = conv {min G, max G} for every finite set of real numbers G (the
detailed derivation is omitted).

Lemma 2. Let s be a scalar projection in R
n. For every A,B ∈ IR

n, 0 /∈ B,
s(A,B) = s(g(A), B).

Proof. Scalar projection function is continuous in R
n × (Rn \ {0}), therefore

for 0 /∈ B its interval extension s(A,B) = s(g(A), B) ⇐⇒ min s(A,B) =
min s(g(A), B) ∧ max s(A,B) = max s(g(A), B).

It is equivalent to demonstrating that for a fixed ̂b ∈ S
n and for every a ∈ A,

min s(g(A), {̂b}) ≤ s(a,̂b) ≤ max s(g(A), {̂b}),

which directly follows from Lemma 1, since a is a convex combination of g(A).

Proposition 2. To find maximum (or minimum) of s(A,B) it is enough to find
maximum (minimum) of s for all the corners of A, i.e.

max s(A,B) = max{max s({x}, B) | x ∈ g(A)}.

Proof. Directly follows from Lemma 2.
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Lemma 3. For a given x ∈ R
n \ {0}, X ∈ IR

n, 0 /∈ X, the maximum of
s({x},X) is equal to s(x,y) for any vector y ∈ X that is at the minimum angle
to x, i.e.

max s({x},X) = s

(

x, arg min
y∈X

∠(x,y)
)

.

Proof. A scalar projection in Euclidean space can be expressed in terms of cosine
of the angle (see Eq. 6).

The proof follows directly from the fact cos is monotonically decreasing in
[0, π].

Let pos G denote a set of conic combinations of a finite set G ⊂ R
n, with a

boundary ∂pos G. If 0 /∈ conv G, then pos G is non-trivial and convex polyhedral
(see [16,18]).

Proposition 3. For a given box interval X ∈ IR
n, 0 /∈ X, and x ∈ R

n,

max s({x},X) =

⎧

⎪

⎨

⎪

⎩

‖x‖ x ∈ pos g(X)

s

(

x, arg min
y∈∂pos g(X),y �=0

∠(x,y)

)

x /∈ pos g(X).

Proof. Note that x = 0 implies x ∈ pos g(X), since 0 ∈ pos g(X), and for any
y ∈ R

n \ {0}, max s(0,y) = 0.
In other cases, we follow Lemma 3.
If x �= 0 and x ∈ pos g(X), the minimal angle is equal to 0, therefore

max s({x},X) = ‖x‖ cos(0) = ‖x‖.
Note that pos g(X) is non-trivial and convex polyhedral, since g(X) is finite

and 0 /∈ X, X = conv g(X). Therefore, if x /∈ pos g(X), it is enough to search
for y at the boundary of pos g(X) (excluding the origin).

The problem of finding max s({x},X) can be solved using a solution to a
more general problem of finding critical angles between two convex cones [14],
except in our case one cone is a single ray (pos {x}).

In R3 (x ∈ R
3 and X ∈ IR

3, 0 /∈ X) we can use the fact that an argument
y ∈ ∂pos g(X) (y �= 0) between pos {x} and pos g(X) is either an orthogonal
projection of x onto ∂pos g(X) (the closest point of x to ∂pos g(X)) or it lies
on one of the extreme rays of pos g(X).

In R2, if y /∈ pos g(X), it is enough to calculate minimum of scalar projections
of x to extreme corners of X that are intersecting ∂pos g(X).

The general problem of finding orthogonal projection of a vector onto a con-
vex cone can be solved using Dykstra’s algorithm [2,6].

4 Computation of Interval Scalar Projection in R
2

In our implementations we are assuming that a library of elementary interval
operations is provided with following operations on 1-dimensional (real number)
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intervals: addition (intAdd), subtraction (intSub), multiplication (IntMul),
division (intDiv), square (intSq) and square root (intSqrt). We are assuming
implementation of those operations already have tight enclosures for a given
floating-point precision. Implementation of such operations and verification of
their correctness is discussed at length in [5].

4.1 Natural Interval Extension Method

A straightforward implementation of interval scalar projection in R
2 can be sim-

ply expressed using elementary interval arithmetic operations instead of usual
point-arithmetic operations (see Algorithm 1). This is often called natural inter-
val extension method [8].

Algorithm 1. Simple algorithm computing interval scalar projection in R
2

function intNorm([a , b])
P ← intSq([ax, bx]) � intSq denotes interval square operation
Q ← intSq([ay, by])
R ← intAdd(P, Q) � intAdd denotes interval addition
return intSqrt(R) � intSqrt denotes interval square root

end function

function intProd([a , b],[c,d ])
P ← intMul([ax, bx], [cx, dx]) � intMul denotes interval multiplication
Q ← intMul([ay, by], [cy, dy])
return intAdd(P, Q)

end function

function intScalarProj(A,B) � A ∈ IR
2,B ∈ IR

2, 0 /∈ B
N ← intNorm(B)
̂B ← intDiv(B, N)

return intProd(A, ̂B)
end function

4.2 Improved Algorithm

An improved algorithm is based on the solution to the optimization problem
stated in Eq. 8.

Let A ∈ IR
2, B ∈ IR

2, 0 /∈ B be a pair of input box intervals.
Let g(A) be the set of corners of A,

g(A) = {(Ax, Ay), (Ax, Ay), (Ax, Ay), (Ax, Ay)} (10)

Let e(A) = (e1,e2) be the ordered set (in clock-wise order) of extreme corners
of A touching the boundary of pos g(A), such that pos e(A) = pos g(A), e(A) ∩
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Algorithm 2. Improved algorithm computing interval scalar projection in R
2

function intSignedArea([a , b],[c,d ])
P ← intMul([ax, bx], [cy, dy])
Q ← intMul([ay, by], [cx, dx])
return intSub(P, Q)

end function

function insideCone(x ,e1,e2)
P ← intSignedArea([e1, e1], [x , x ])
Q ← intSignedArea([x , x ], [e2, e2])
return P ≥ 0 ∧ Q ≥ 0

end function

function maximize(x ,B) � x ∈ R
2,B ∈ IR

2, 0 /∈ B
(e1,e2) ← e(B) � e(B) is set of extreme corners of B in clock-wise order
if insideCone(x , e1, e2) then

R ← intNorm([x , x ])
return R

else
rmax ← −∞
for all y ∈ {e1,e2} do

R ← intScalarProj([x , x ], [y , y ])
rmax ← max(rmax, R)

end for
return rmax

end if
end function

function intScalarProjImproved(A,B) � A ∈ IR
2,B ∈ IR

2, 0 /∈ B
rmin ← +∞
rmax ← −∞
for all x ∈ g(A) do � g(A) is set of corners of A

rmin ← min(rmin, −maximize(−x , B))
rmax ← max(rmax,maximize(x , B))

end for
return [rmin, rmax]

end function

∂pos g(A) = e(A), e(A) ⊂ g(A) and signed area of a triangle (0,e1,e2) is non-
negative. If 0 /∈ A and A is non-degenerate (has width greater then zero), there
can be at most 2 extreme corners. For degenerate A (when A is a point) all
corners are equal, therefore e1 = e2. To find extreme corners it is enough to
consider 8 possible cases of box A crossing the Cartesian coordinate axes on the
plane.

We consider computation of g(A) and e(A) as a trivial implementation detail
that is omitted in the pseudo-code.
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As we have demonstrated in Proposition 2, we can solve global optimization
problem for s(A,B) by computing maximum (minimum) of s({x}, B) for every
corner x ∈ g(A). In Algorithm 2, the main function intScalarProjImproved
is iterating over g(A), and for every x ∈ g(A) computes a minimum of s({x}, B)
(expressed as −max s({−x}, B), see Proposition 1) and maximum of s({x}, B).

The maximization of s({x}, B) is implemented in the function maximize.
As in Proposition 3 we consider two cases, when x is inside or outside of
pos {e1,e2} = pos g(B).

The function insideCone is estimating signed area of two triangles (0,e1,x)
and (0,x,e2). In point arithmetic, to check if x is inside the cone, it would be
enough to check if areas of those two triangles are non-negative. To compensate
for floating-point precision inaccuracies, we check if the upper bounds of area
intervals are non-negative (intSignedArea returns an interval). Consequently,
in some cases insideCone may return true even if x is outside (but close to the
cone boundary). This may contribute to overestimation of the final result, but
will never lead to underestimation, because ‖x‖ (estimated by intNorm([x,x]))
is always greater or equal than any scalar projection of x (see Eq. 7).

If x is (strongly) outside of pos {e1,e2}, we calculate maximum of scalar
projection of x onto all extreme corners in {e1,e2}. The upper bound of scalar
projection is calculated simply by calling intScalarProj function from Algo-
rithm1. However, this time it is computed for degenerate intervals (points),
therefore, it will not suffer from excessive overestimation.

In fact, in our implementation we commonly use interval operations for
degenerate intervals (points) only to compensate for inaccuracies of floating-
point arithmetic.

4.3 Interval Enclosure Quality Comparison

In Fig. 1 we compare how two algorithms perform for examplary box intervals.
We can clearly see that Algorithm 2 (improved) provides tighter interval enclo-
sure across the whole domain. From our experiments, the overestimation of
resulting interval in Algorithm1 is (significantly) increasing when B is mov-
ing closer to the origin, while Algorithm2 remains numerically stable (unless
[0 − ε,0 + ε] ∈ B, where ε depends on floating-point precision and accuracy of
rational square root approximation).

5 Applications

Scalar projection operation can be used for computing closest distances between
points and hyperplanes (lines in R

2).
A bisector B(a, b) for a, b ∈ R

n is a hyperplane equidistant to a and b.
Let’s express signed �2 distance between a point x ∈ R

n and a bisector
B(a, b) using scalar projection function s,

δB(x,a, b) =
〈

a + b

2
− x,

b − a

‖b − a‖
〉

= s

(

a + b

2
− x, b − a

)

, (11)
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Fig. 1. Contour plot of lower and upper bounds of [s]({(x, y)}, B) for natural
interval extension method (top) and proposed improved method (bottom), where
B = [0.75, 1.25] × [0.25, 0.75]. Contour lines of lower bounds are dashed. In natu-
ral interval extension method (top) we shade area around B that represents (over-
estimated) normalized interval intDiv(B, intNorm(B)). While in improved method
(bottom) we shade pos g(B), which is the smallest cone enclosing B. Let’s com-
pare overestimation for a given interval A = [−4.25, −3.75] × [−1.25, −0.75]. The
first algorithm returns [s]1(A, B) = [−7.906, −2.057], while the second (improved)
[s]2(A, B) = [−4.431, −3.180]. Note that [s]1(A, B) is heavily overestimated and
[s]2(A, B) ⊂ [s]1(A, B).
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where a+b
2 ∈ B(a, b) and b−a

‖b−a‖ is a normal vector perpendicular to B(a, b).
An interval extension [δB] of δB can be simply expressed using interval exten-

sion of scalar projection,

[δB](X,A,B) = [s]
(

intSub

(

intAdd(A,B)
2

,X

)

, intSub(B,A)
)

. (12)

Many problems in computational geometry involve comparing distances
between a pair of geometric features, e.g. variants of nearest neighbor search
algorithms [1,15,20].

Let’s consider problem of finding closest point site in S ⊂ R
n to a given

query point in R
n, often called Post-Office Location Problem [15]. Additionally,

let’s assume sites are densely populated over a regular grid Gn, such that every
grid cell in Gn contains at least one site in S (similarly to [20]). Using interval
analysis, i.e. interval splitting and branch-and-bound methods [8], we can verify
computationally various properties of the algorithm. An example of such prop-
erty is the number of cells that have to be visited in the worst case in order to
find closest site in S for any query point in R

n. We can verify similar properties
in extended version of the problem, when sites are represented as line segments.
Tight enclosures of interval operations help to reduce the search space.

Other potential applications are algorithms for computing Voronoi diagrams
over inexact input data, also called partial Voronoi Diagrams [4,7,13].

A study of partial perpendicular bisectors, an interesting generalization of
interval bisectors, can be found in [7].

6 Conclusion and Future Work

We have presented an improved algorithm in R2 for computing interval scalar
projection with a tight interval enclosure and discussed potential applications.

The next step is to extend our method to R3 (and Rn for n > 3) using
theoretical framework and ideas presented in Sect. 3.

Eventually, we plan to develop a libarary that will contain a collection of
essential interval operations for automated verification of properties of a broad
class of algorithms in computational geometry.
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Abstract. For solving systems of Boolean polynomials whose zeros are
known to be contained in F

n
2 , algebraic solvers such as the Boolean Bor-

der Basis Algorithm (BBBA) and SAT solvers use very different and
possibly complementary methods to create new information. Based on
suitable implementations of these solvers and conversion methods from
Boolean polynomials to SAT clauses and back, we describe an automatic
framework integrating the two solving techniques and exchanging newly
found information between them. Using examples derived from cryp-
tographic attacks, we present some initial experiments indicating the
efficiency of this combination.

Keywords: Boolean polynomial · Border Basis Algorithm
SAT solving · Cryptographic attack

1 Introduction

Cryptographic attacks frequently require the solution of polynomial systems
defined over the field F2 = Z/2Z for which it is known that the desired solution
consists of one or more points in F

n
2 . In this case we may add the field equations

x2
i + xi = 0 to the given system, where i = 1, . . . , n, to express that fact that

we are looking for solutions (a1, . . . , an) such that ai ∈ F2. Equivalently, we may
consider the system as a system of Boolean polynomials, i.e., a system defined
by elements in

F2[x1, . . . , xn] / 〈x2
1 + x1, . . . , x2

n + xn〉.
Several methods have been developed to deal with this task.

Algebraic solvers consider the ideal I in F2[x1, . . . , xn] generated by the given
polynomials and the field equations and perform operations such as polynomial
addition and multiplication in order to find simple polynomials in I which allow
us to read off the solutions of the system. Examples for such methods are Boolean
Gröbner basis computations (see [3]) and the Boolean Border Basis Algorithm
(BBBA) (see [11,12]). After converting the polynomial system to a set of propo-
sitional logic clauses (see [1,10,13]), one can also use a SAT solver to determine
c© Springer International Publishing AG 2017
J. Blömer et al. (Eds.): MACIS 2017, LNCS 10693, pp. 147–162, 2017.
https://doi.org/10.1007/978-3-319-72453-9_11
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a satisfying assignment for the logical variables, which in turn corresponds to a
solution of the Boolean polynomial system (see for instance [5]). SAT solvers use
logical reasoning (such as CDCL and DPLL) to eliminate large sets of assign-
ments which do not satisfy the given set of clauses.

In this paper we combine both algebraic solvers and SAT solvers by running
two processes in parallel and interchanging information between them. More
specifically, we describe an implementation of an automatic framework which
executes the Boolean Border Basis Algorithm (see [11]) and the SAT solver
antom (see [16]) concurrently, transforms newly found “interesting” polynomials
resp. SAT clauses using suitable conversion methods (see [10]), and introduces
this new information into the other process. Up to now, Gröbner bases compu-
tations have been used predominantly to speed up certain stages of a SAT solver
computation (see [6,7,17]). Hence this paper may be considered as a first step
towards a systematic combination of algebraic and logical reasoning in order to
solve Boolean polynomial systems.

Let us describe its contents in more detail. In Sect. 2 we recall some efficient
algorithms for performing certain operations with order ideals of terms used after-
wards, and in Sect. 3 we remind the reader of Boolean polynomials and spell out an
explicit method for their linear reduction and interreduction. In Sect. 4 we present
a version of the Boolean Border Basis Algorithm (originally presented in [11])
which is closer to the actual implementation and which allows us to introduce the
integration with the SAT solver explicitly at suitable points of the calculation.

Section 5 contains the description of the integration of this version of the
BBBA with a SAT solver. In particular, we have to select which polynomials
and which clauses we send to the respective other solver, keeping the amount
of transmitted data under control and providing that information which has the
best chances to improve the overall solving speed. Then, in Sect. 6, we describe
the design of the actual communication process between the two solvers. This
entails finding suitable entry points for the new information as well as a queu-
ing process for these data until a suitable point in time for the insertion is
reached. Section 7 contains some observations about the necessary modifications
to a standard SAT solver such as antom (cf. [16]).

Finally, in Sect. 8 we report some preliminary results about speed-ups of the
overall solving time we could achieve. Both for a manual insertion of new infor-
mation as well as for the automatic communication process described above,
we found cases with substantial improvements of the total solving time. How-
ever, sometimes the combination of the two processes was slower, and the effects
depend strongly on the chosen selection strategies for the transmitted informa-
tion. Thus further experimentation using the new tools is needed to optimize
the synergies which we can achieve.

Unless explicitly stated otherwise, we use the basic definitions and results
in [11,15].

2 Algorithms for Basic Operations with Order Ideals

The set of squarefree terms in the indeterminates x1, . . . , xn is denoted by S
n.

We order terms in S
n by a degree compatible term ordering σ. An order ideal
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is a factor-closed set of terms. Let O be an order ideal in S
n. A set of terms

C = {t1, . . . , tk} ⊆ O is called a set of cogenerators of O (or we say that C
cogenerates O) if every term in O divides one of the terms t1, . . . , tk. A set of
cogenerators {t1, . . . , tk} is called minimal if no term ti divides tj for j �= i.
Thus order ideals are represented by their (unique) minimal set of cogenerators.
For a set of terms C ⊆ S

n, we denote by 〈C〉OI the order ideal cogenerated by C.
In this section, three different non-trivial operations with order ideals used in

the BBBA are discussed briefly. The order ideal membership problem is decided
by Algorithm 1. Its proof of correctness follows immediately from the definition
of cogenerators.

Algorithm 1. (Order Ideal Membership Test)
Input: Cogenerators C of an order ideal O in S

n, t ∈ S
n.

Output: True if t ∈ O, False otherwise.
1: a := False

2: foreach c in C do
3: if t divides c then
4: a := True

5: end if
6: end foreach
7: return a

The squarefree border of an order ideal O in S
n is defined as ∂O sf =(

(
⋃n

i=1 xiO) \ O) ∩ S
n. Next we present Algorithm 3 (and its subroutine Algo-

rithm 2) for computing the minimal set of cogenerators of an order ideal minus
a monomial ideal.

Algorithm 4 decides if the squarefree border of one order ideal is contained
in some other order ideal. These algorithms are variants of Propositions 7.4 and
7.5 in [11]. Step 11 of Algorithm 2 and Step 12 of Algorithm 4 can be computed
by removing terms that are divisible by others.

3 Linear Interreduction for Boolean Polynomials

In the following we let F2 = Z/2Z be the binary field and F2[x1, . . . , xn] a
polynomial ring over F2. The ideal F = 〈x2

1 + x1, . . . , x
2
n + xn〉 is called the

field ideal. The ring Bn = F2[x1, . . . , xn]/〈F 〉 is called the ring of Boolean
polynomials in the indeterminates x1, . . . , xn. We assume that its elements are
represented by polynomials whose support consists only of squarefree terms, i.e.
all operations with polynomials are performed modulo the field ideal.

A set of Boolean polynomials G ⊆ Bn is called linearly LTσ-interreduced
if LTσ(g) �= LTσ(g′) for all g, g′ ∈ G with g �= g′. Given an arbitrary set of
Boolean polynomials G ⊆ Bn, we can linearly LTσ-interreduce G via (sparse)
Gaußian elimination on the coefficient matrix of G. (Here the columns have to
be ordered w.r.t. σ.) For a better understanding of linear LTσ-interreduction,
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Algorithm 2. (Order Ideal Minus a Monomial Ideal Generated by a Term)
Input: t ∈ S

n, the minimal set of cogenerators C of an order ideal O in S
n.

Output: The minimal set of cogenerators of the order ideal O \ 〈t〉.
1: D := ∅
2: foreach c in C do
3: if t divides c then
4: for i = 1 to n do
5: if xi divides t then
6: D := D ∪ { c

xi
}

7: end if
8: end for
9: end if

10: end foreach
11: Let A be the set of the minimal elements in (C ∪ D) \ 〈t〉 w.r.t. division.
12: return A

Algorithm 3. (Order Ideal Minus a Monomial Ideal)
Input: The minimal set of cogenerators C ′ of an order ideal U in S

n, a set of
squarefree terms T .
Output: The minimal set of cogenerators C of the order ideal U \ 〈T 〉.
Requires: Algorithm 2.
1: C := C′

2: foreach t in T do
3: if t ∈ 〈C′〉OI then
4: C :=Algorithm 2(t, C)
5: end if
6: end foreach
7: return C

we formulate the following definitions which are analogous to the rewriting rules
in the Gröbner basis theory (see [15, Definition 2.2.1]).

Definition 1. Let V ⊆ Bn, and let b, r, b′ ∈ Bn.

(a) We say that b linearly LTσ-reduces to b′ in one step using r if LTσ(b) =
LTσ(r) and b′ = a + r. We write b

r−→ b′.
(b) We say that b linearly LTσ-reduces to b′ using V if there exist vi ∈ V for

i = 1, . . . , k and b1, . . . , bk−1 ∈ Bn such that b
v1−→ b1

v2−→ . . .
vk−1−−−→ bk−1

vk−→
b′. We write b

V−→ b′.
(c) A polynomial b with the property that there is no r ∈ V such that b

r−→ b′ for
some b′ ∈ Bn is called linearly LTσ-irreducible with respect to V .

Obviously, we have b
b−→ 0 for any polynomial b. The following example shows

us that the result of a sequence of linear LTσ-reductions is not uniquely deter-
mined in general.
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Algorithm 4. (Checking the Border)
Input: Cogenerators C ′ of an order ideal U in S

n, cogenerators D of an order
ideal O in S

n.
Output: True if ∂O sf ⊆ U , False otherwise; a set of squarefree terms C such
that 〈C〉OI = 〈C ′ ∪ ∂O sf〉OI.
1: a := True

2: B := ∅
3: foreach d in D do
4: for i = 1 to n do
5: d′ := xid
6: if d′ ∈ S

n and d′ /∈ 〈C′〉OI then
7: B := B ∪ {d′}
8: a := False

9: end if
10: end for
11: end foreach
12: Let C be the set of the minimal elements in (C′ ∪ B) w.r.t. division.
13: return (a, C)

Example 1. Let V = {x1x2 + 1, x1x2, x1 + 1} ⊆ B2. Then x1x2 + x1
x1x2+1−−−−−→

x1 + 1 x1+1−−−→ 0, and thus x1x2 + x1
V−→ 0. On the other hand, x1x2 + x1

x1x2−−−→
x1

x1+1−−−→ 1, and thus x1x2 + x1
V−→ 1.

If we would like to have unique linear LTσ-reducers (and hence unique linear
LTσ-reductions), the set V has to be linearly LTσ-interreduced.

Proposition 1. Let V be a linearly LTσ-interreduced set of Boolean polyno-
mials. Let b, b′ ∈ Bn such that b

V−→ b′. Then the polynomial b′ is uniquely
determined.

Proof. There exists exactly one element v1 ∈ V such that LTσ(b) = LTσ(v1),
because the leading terms of the elements of V are pairwise distinct. Let b1 =
b − v1. We have b

v1−→ b1. There exists at most one element v2 ∈ V such that
LTσ(b1) = LTσ(v2). If there is no such v2, the element b1 is the unique linear
LTσ-reduction of b. Otherwise, we continue with b2 = b1 − v2 in the same way,
and the result follows by induction. 
�

The following proposition gives us another useful property of a linearly LTσ-
interreduced set of Boolean polynomials.

Proposition 2. Let V be a linearly LTσ-interreduced set of Boolean polynomi-
als, and let b, r ∈ Bn. Then we have b

V−→ 0 if and only if b ∈ 〈V 〉F2 .

Proof. First we prove “⇒”. By definition, there exist v1, . . . , vk ∈ V and bi ∈ Bn

for i = 1, . . . , k − 1 such that b
v1−→ b1

v2−→ . . .
vk−1−−−→ bk−1

vk−→ 0. Hence we get
b = v1 + · · · + vk in Bn, and henceforth b ∈ 〈V 〉F2 .
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Conversely, let b = v1+ · · ·+vk for some pairwise distinct elements v1, . . . , vk

in V . Because V is linearly LTσ-interreduced, there exists a unique index i1 ∈ N

with 1 ≤ i1 ≤ k such that LTσ(vi1) = LTσ(b). Hence b
vi1−−→ (b − vi1). There

exists a unique i2 ∈ N with 1 ≤ i2 ≤ k such that LTσ(vi2) = LTσ(b − vi1). By
induction we create a zero linear LTσ-reduction chain starting from b and having
linear LTσ-reducers vi1 , . . . , vik ∈ V . 
�
Example 2. Let V = {x1x2 + x1, x1x2 + x2} ⊆ B2. We can see that x1 + x2 ∈
〈V 〉F2 , but x1 + x2 is linearly LTσ-irreducible with respect to V .

We are now ready to introduce and analyze Algorithm 5 for computing suc-
cessive extensions of linearly LTσ-interreduced sets. As a pivoting strategy for
the reduction process, we first consider Boolean polynomials of smallest degree
and among them the ones having smallest support. Algorithm 5 will be applied
in Algorithm 8 in the next section.

Definition 2. Let f, g ∈ Bn. We write f ≺ g if and only if deg(f) < deg(g), or
deg(f) = deg(g) and #Supp(f) < #Supp(g).

Algorithm 5. (Extensions of Linearly LTσ-Interreduced Tuples)
Input: A non-zero Boolean polynomial b′, a linearly LTσ-interreduced set of
Boolean polynomials V ′, and a degree compatible term ordering σ.
Output: A set V ⊆ Bn such that V is linearly LTσ-interreduced and 〈V 〉F2 =
〈V ′ ∪ {b′}〉F2 .
1: b := b′, V := V ′

2: while there exists r ∈ V with LTσ(r) = LTσ(b) do
3: b := b + r
4: end while
5: if b �= 0 then
6: V := V ∪ {b}
7: end if
8: return V

Proposition 3. Algorithm 5 returns a linearly LTσ-interreduced list V such
that 〈V 〉F2 = 〈V ′ ∪ {b′}〉F2 holds.

Proof. In Step 2 we search for a unique polynomial in V ′ which has the same lead-
ing term as b. If such a polynomial does not exist, the polynomial b is appended
to V in Step 6.

The linear LTσ-reduction chain is constructed in Steps 2–4. If b′ V ′
−→ 0, then

b′ ∈ 〈V ′〉F2 ⊆ 〈V 〉F2 by Proposition 2. If we have b′ V ′
−→ b �= 0, then we have

b′ ∈ V by Step 6. 
�
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4 The Boolean Border Basis Algorithm

To start with, we recall the definition of a Boolean O-border basis (see [11]).

Definition 3. Let P = F2[x1, . . . , xn], let O = {t1, . . . , tμ} be an order ideal in
S

n, and let ∂O sf = {b1, . . . , bν} be its squarefree border. Let I ⊆ F2[x1, . . . , xn]
be an ideal containing the field ideal F = 〈x2

1 + x1, . . . , x
2
n + xn〉.

(a) A set of polynomials G = {g1, . . . , gν} is called a Boolean O-border pre-
basis if gj = bj +

∑μ
i=1 cij ti with c1j , . . . , cμj ∈ F2 for j = 1, . . . , ν.

(b) A Boolean O-border prebasis G ⊂ I is called a Boolean O-border basis
of I if the residue classes O = {t̄1, . . . , t̄μ} in P/I form an F2-basis of P/I.

Let us motivate the idea of the BBBA using the problem of finding the F2-
rational solutions of a Boolean system f1 = · · · = fs = 0. Let V = {f1, . . . , fs}.
Define the ideal I = 〈f1, . . . , fs〉 ⊆ Bn. Suppose that the system has a unique
F2-rational solution. (For instance, this is common in the scenario of algebraic
attacks.) We are looking for a set of linear polynomials G ⊆ I such that G is a
linearly LTσ-interreduced basis of 〈G〉F2 and #Supp(G) = #G. Hence the goal
is to create new linearly independent linear polynomials in I and to keep the
support of polynomials in the system as small as possible at the same time.

Given a set of Boolean polynomials V = {f1, . . . , fs}, the BBBA generates
new polynomials by forming and linearly LTσ-interreducing V (+) = V ∪ x1V ∪
· · · ∪ xnV . Note that the multiplications are done in Bn. Every iteration of
V (+) is then followed by linear LTσ-interreduction. One could repeat these two
operations in order to obtain the desired basis. On the other hand, this approach
clearly leads to an exponentially large amount of work since all polynomials in
V are multiplied by n indeterminates.

Thus the operation V (+) in the BBBA is restricted by the order ideal U .
The order ideal U is called the universe and U is initially cogeneratored by⋃

i Supp(fi). The V (+) operation is restricted to polynomials that have their
support contained in the universe. In this way, the growth of V and the support
of the polynomials in V is lower. The universe is extended by the support of
polynomials that have leading terms contained in U . This extension of the uni-
verse is described in Algorithm 6 which is used in Step 12 of Algorithm 8. The
proof of correctness of Algorithm 6 is easy and left to the reader.

The successive computation of V (+) tends to repeat the consideration of
multiples of polynomials that have been already multiplied by all indeterminates.
To avoid this overhead, we introduce the following notion.

Definition 4. A Boolean polynomial f ∈ Bn is said to be covered in a linearly
LTσ-interreduced set V ⊆ Bn if xif

V−→ 0 for all i ∈ {1, . . . , n}.
Covered polynomials should be avoided because they do not introduce any

new leading terms. The definition is equivalent to the condition xif ∈ 〈V 〉F2 for
i = 1, . . . , n by Proposition 2. Checking the latter condition is quite expensive for
large sets V . When we repeat the V (+) operation and linear LTσ-interreduction,
we remember the polynomials that have been worked on as in the following
example.
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Algorithm 6. (Extension of the Universe)
Input: Cogenerators C ′ of an order ideal U in S

n, a linearly LTσ-interreduced
set of Boolean polynomials V .
Output: A set of cogenerators C ⊇ C ′ such that LTσ(f) ∈ 〈C〉OI for f ∈ V
implies that f is contained in 〈C〉OI .
1: C := C′

2: repeat
3: D := C
4: foreach f in V do
5: if LTσ(f) ∈ 〈C〉OI and f is not contained in 〈C〉OI then
6: Let A be the set of the minimal cogenerators of 〈C ∪ Supp(f)〉OI .
7: C := A
8: end if
9: end foreach

10: until #D = #C
11: return C

Example 3. Let f = x1x2 + 1 ∈ B2 and V ′ = {f} ⊆ B2. Let us compute V ′(+)

iteratively with successive linear LTσ-interreduction. We compute x1f = x1x2 +
x1

f−→ x1+1 and x2f = x1x2+x2
f−→ x2+1. We get V = {x1x2+1, x1+1, x2+1}.

Then f is covered in V , and therefore multiplication of x1x2+1 by indeterminates
does not yield new linearly independent polynomials during the computation of
V (+). Thus we remember that the polynomial f is covered in V .

Algorithm 7 computes {b}(+) for b a Boolean polynomial and immediately
linearly LTσ-reduces the result against the known polynomials. To keep the
pseudo-code simple, the covered polynomials that are easily discoverable are
stored in the set M ⊆ V . The proof of correctness of Algorithm 7 follows directly
from Proposition 3.

Now we describe a restructured version of the BBBA in Algorithm 8. Its sub-
routine FinalReduction refers to the algorithm in [14, Proposition 17] whose
purpose is to extract the desired border basis from 〈V 〉F2 . Notice that this algo-
rithm can be easily modified to output only the polynomials having squarefree
border terms.

Proposition 4. In the setting of Algorithm 8, Algorithm 8 outputs the Boolean
Oσ(I)-border basis of I.

Proof. It is sufficient to prove that Algorithm 8 is equivalent to Algorithm 4.3
in [11]. The set Va denotes the set of all polynomials in V which are contained
in the current universe U = 〈C〉OI. Note that V may contain polynomials which
are not in 〈C〉OI. Thus the set V in Algorithm 4.3 in [11], corresponds to Va.

The only difference in the initialization (apart from defining the new set M)
occur in Steps 3–5. They are equivalent to linear LTσ-interreducing of the initial
generators V .
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Algorithm 7. (Plus and Reduce)
Input: A non-zero Boolean polynomial b, a linearly LTσ-interreduced set of
Boolean polynomials V ′, a degree compatible term ordering σ, cogenerators C
of an order ideal U in S

n, and a set M ′ ⊆ V of covered polynomials in V .
Output: A linearly LTσ-interreduced set V such that 〈V ′ ∪ {x1b, . . . , xnb}〉F2 =
〈V 〉F2 if b is contained in 〈C〉OI, V = V ′ otherwise, and a set of covered polyno-
mials M .
Requires: Algorithm 5.
1: V := V ′, M := M ′

2: if b is contained in 〈C〉OI and b /∈ M then
3: for i = 1 to n do
4: b′ := xib
5: Update V by calling Algorithm 5(b′, V, σ).
6: end for
7: M := M ∪ {b}
8: end if
9: return (V, M)

Now we would like to show that Steps 7–13 computes the 〈C〉OI-stabilization
of Va, i.e. that 〈Va〉F2 = 〈V (+)

a 〉F2 ∩ 〈U〉F2 holds in Step 14. The inclusion “⊆” is
trivial. Let us look at the other inclusion. The set M contains polynomials in V
such that M (+) ⊆ 〈V 〉F2 , so elements in M can be omitted in Algorithm 7.

Let U = 〈C〉OI and v ∈ 〈V (+)
a 〉F2 ∩ 〈U〉F2 in Step 14. We know that v

V−→ 0
because 〈V (+)

a 〉F2 ⊆ 〈V 〉F2 after Step 11. This means that v ∈ 〈V 〉F2 by Propo-
sition 2 because V is linearly LTσ-interreduced. We would like to show that
v

Va−→ 0, which is equivalent to v ∈ 〈Va〉F2 . Let v = v1 + · · · + vk, where
{v1, . . . , vk} ⊆ V is a linearly LTσ-interreduced set. Then LTσ(v) = LTσ(vi)
for some 1 ≤ i ≤ k. Since LTσ(vi) = LTσ(v) ∈ U , we get vi ∈ 〈U〉F2 , i.e.
vi ∈ Va after Step 12. We continue with the polynomial v − vi and we get that
{v1, . . . , vk} ⊆ Va by induction.

The loop in Steps 9–11 enlarges V by elements in 〈V (+)
a 〉F2 such that updated

V is linearly LTσ-interreduced. (This is equivalent to Step 5 of Algorithm 4.3
in [11].) Step 12 enlarges the universe in the same way as Steps 6–10 of Algorithm
4.3 in [11] do.

The rest (i.e., Steps 15–17) continues in the same way as Steps 13–16 of
Algorithm 4.3 in [11]. 
�

5 The Integration of the BBBA with a SAT Solver

Many search problems can be encoded as systems of Boolean polynomials or
SAT-instances. Inputs of SAT-solvers are usually in CNF (Conjunctive Normal
Form), i.e. a conjunction of disjunctions of literals, where a literal is either a
logical variable or its negation.
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Algorithm 8. The BBBA (Restructured Version)
Input: A set of polynomials V = {f1, . . . , fs} ⊆ Bn such that V ∪ F generates a
0-dimensional ideal I and a degree compatible term ordering σ.
Output: The polynomials of the Boolean Oσ(I)-border basis of I where Oσ(I) =
S

n \ LTσ(I).
Requires: Algorithms 3, 4, 5, 6, 7, FinalReduction.
1: V := ∅, M := ∅
2: Let C be a set of the minimal cogenerators of the order ideal 〈⋃s

i=1 Supp(fi)〉OI.
3: for i = 1 to s do
4: Update V by calling Algorithm 5(fi, V, σ).
5: end for
6: repeat
7: repeat
8: V ′ := V
9: foreach f chosen in the increasing order according to “≺” in V ′ do

10: Update (V, M) by calling Algorithm 7(f, V, σ, C, M).
11: end foreach
12: C :=Algorithm 6(C, V ).
13: until #V = #V ′

14: D := Algorithm 3(C, LTσ(V )).
15: Update (a, C) by calling Algorithm 4(C, D).
16: until a = True

17: Apply FinalReduction(V, 〈D〉OI) and return the result.

One can solve the same problem with the BBBA or a SAT solver individually.
There exist conversion methods that transform a Boolean system to a CNF
formula (and vice versa) such that the F2-rational zeros of the system correspond
to the satisfying assignments of the logical formula. Thus we may run both
solvers in parallel and let them interchange the “new information”, or one solver
can dynamically help the another one with a certain subproblem, etc. We will
focus on the scenario when an algebraic solver helps a SAT solver because it
provides the best results according to our initial experiments. For more details
on conversions, see [10].

Previously, we had handled the interaction of two solvers manually. During
our experiments, several examples were observed where one solver is sped up
by utilizing information derived by the other. Based on these observations, the
communication was automated with a view towards optimizing the achievable
gains.

The integration is tailored to be applicable for most SAT solvers. For our
experiments, we used the SAT solver antom [16]. Modern SAT solvers are mainly
based on CDCL. They produce many conflict clauses which contain new infor-
mation that can be potentially used in the BBBA after a conversion. On the
other hand, any new polynomial found in the ideal by the BBBA can be con-
verted and sent to a SAT solver. To reduce the amount of information that needs
to be transferred, we transmit only short clauses and short polynomials of a low
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degree. Moreover, an additional filtering technique has been developed to fur-
ther reduce the number of clauses that are handled by the BBBA. This selection
strategy makes the BBBA sufficiently fast to keep up with the SAT solver. In this
way the BBBA is not stuck with computations which are potentially outdated
and irrelevant for the SAT solver by the time they are finished.

Description of the integration. Assume that the SAT solver is running on
a given CNF in the background. Our approach is divided into 7 steps (viewed
from the BBBA side) which repeat until the SAT solver stops:

1. Receiving clauses. The SAT solver sends a set of new conflict clauses C that
it has generated to the BBBA.

2. Clause filtration. We define a subset C ′ ⊆ C, where C ′ contains clauses c ∈ C
such that there exist c′ ∈ C with c �= c′ that shares at least one variable with
c. We buffer only the first 10 clauses on an as-they-come basis.

3. Converting clauses to polynomials. We use the standard conversion [10, Algo-
rithm 1] to produce Boolean polynomials from the selected clauses.

4. Computing a border basis. We call Algorithm 8 on the output of the previ-
ous step. We restrict the sets of indeterminates of the Boolean ring to the
indeterminates actually appearing in the input polynomials. We do not apply
FinalReduction.

5. Polynomial filtration. We choose only linear, quadratic or cubic polynomials
produced by Algorithm 8 that are different from the input of the BBBA.
Among them, we select polynomials with the smallest support.

6. Converting polynomials to clauses. We convert these polynomials to clauses
via the (sparse) truth-table method described in [10, Example 1]. We buffer
only the first 100 clauses on an as-they-come basis.

7. Sending the clauses. We send these clauses to the SAT solver and go to Step 1.

6 Design of the Communication

To combine the power of the SAT solver with the advanced reasoning of the
BBBA, a severe communication challenge has to be overcome. While it would
be possible to create a fully integrated BBBA-SAT hybrid solver, the mainte-
nance of such a solver would be difficult and the implementation of new features
into either base solver challenging. Therefore, a communication framework that
allows the exchange of data between the border basis and the SAT solver is devel-
oped instead. The design of this communication layer focused on two objectives:
1. The overhead for the data transfer must be low. 2. The base solvers should
be modified as little as possible.

To achieve the first design goal, a shared memory communication approach
is chosen. By defining a shared memory region that is accessible to both solvers,
large amounts of data can be transmitted at extremely high speeds. To sat-
isfy the second objective, the communication is restricted to consist only of
clauses. Furthermore, the shared memory communication is implemented with
the help of the Boost Interprocess Library [9]. This library allows different
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processes to access a common, shared memory region. Thus, the SAT solver and
the BBBA can be executed independently and simply access the same shared
memory region.

The communication itself is combined into a handler class that performs the
generation of the shared memory region and the coordination and synchroniza-
tion of the data access. It furthermore provides a simple interface for the sending
and receiving of clauses. The handler class only needs to be instantiated by the
solvers to gain access to the shared memory region.

When the BBBA and the SAT solver are combined, there are two instances
of the shared memory manager that are communicating. Apart from the ini-
tialization of the shared memory region that is performed at the start of the
application, these instances behave exactly in the same way. For simplicity, the
two managers are referred to as m1 and m2 here. To allow for an efficient commu-
nication, each manager utilizes its own shared memory area for outgoing clauses,
o1 and o2. This enables a fast full duplex communication, as each manager can
send and receive at the same time.

When m1 is asked to transmit a clause to m2, it first stores the clause in
a local queue. The next clause of the local queue is transferred to the shared
region o1 when m2 indicates that it read the previously shared clause from that
area. Once the clause has been written to o1, m1 informs m2 that a new clause
is available. The manager m2 then copies the clause from o1 to its own memory
region and marks the clause as read. Thus, the next clause in the queue of m1

can be transmitted.
To avoid any idle waiting in the background, the check for new clauses and

the transmission of the next clause are only performed when the solvers update
their shared memory handler.

7 Modifications of the SAT Solver

The SAT solver constantly generates new conflict clauses. The shear volume
of conflict clauses makes it unfeasible to share all of them with the BBBA.
Instead, only conflict clauses below a certain size threshold are transmitted. A
new conflict clause is transmitted immediately after it has been generated. This
modification adds only a single line of code to the solver.

Receiving new clauses is slightly more challenging because of the way clauses
are stored and considered in the solver antom [16]. For efficiency reasons, the first
literal of every clause that is not satisfied must be free (i.e., currently not assigned
to a value). Therefore, each new clause that is received from the BBBA is first
sorted and then added. Depending on the variable assignment that is currently
under consideration by the SAT solver, a new clause might, furthermore, be
unsatisfied at the moment. In this case, the solver backtracks until the clause
is not unsatisfied anymore. Here the new clause acts similar to a conflict clause
and guides the solver away from unsatisfied regions of the search space. The
additional tasks that are required to handle a received clause are placed into a
new function. Thus, the main SAT solver code only needs to be extended by a
single line of code that checks for the arrival of new clauses.
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The shared memory handler is updated once after every decision. This is suf-
ficiently often to receive any new clauses, but does not add any undue overhead
to the solver.

Overall, the SAT solver is modified only to a very small extent. Hence the
solver can be freely developed without worrying about complex dependencies.
Similarly, it should be comparatively easy to add the presented communication
layer to a different SAT solver, should the need arise.

8 Experiments and Timings

To evaluate the combination of BBBA and antom, two different kinds of experi-
ments have been performed. Timings in this paper were obtained on a computer
under Linux having a 2.60 GHz Intel Core i7-5600U CPU and a total of 16 GB
RAM. We note here that antom is deterministic, i.e. it gives the same result on
the same input for each run.

8.1 Manual Combination of the Information

The first set of experiments is meant to showcase the general usefulness of the
information that is derived by the BBBA for the SAT solver. Let C be a CNF
input instance for antom. We convert C into a set of Boolean polynomials S
via the standard conversion. Next we run the BBBA for 5 min and then stop
the execution. We select one linear polynomial f in V manually and convert f
back to CNF via the truth-table method. Let C ′ be its result. We run antom
twice: once with the input C and then with the input C ∧ C ′. The timings in
Table 1 illustrates the speed-up obtained by manual section of extra information
provided by the BBBA.

Table 1. Comparison of timings of antom on the Small Scale AES instances in [8]
without vs with extra clauses corresponding to a linear polynomial.

CNF instances antom antom + lin. poly

AES-2-1-2-8 11.80 3.50

AES-2-2-1-8 111.59 88.15

AES-2-2-4-4 196.06 21.76

AES-1-2-4-8 666.93 209.11

AES-2-4-2-4 3997.91 1432.24

8.2 Automatic Combination of the Information

For the second set of experiments, the newly developed Algorithm 8 and the inte-
gration framework with antom in C++ as described in Sect. 5 were used. In Table 2
we present the timings of this automation on various benchmarks. Instances



160 J. Horáček et al.

factoringx, y were generated by [2]. They encodes the factoring problem for
x · y. The other benchmarks encode algebraic attacks or algebraic fault attacks
on the cryptosystems Small Scale AES and LED-64. For the full description of
these benchmarks, we refer to [4,8]. The timeout limit was set to 1200 s.

Table 2. Timings of the integration of the BBBA with antom vs vanilla antom for
various SAT instances.

CNF instances antom BBBA + antom

factoring81551,100057 0.23 0.22

AES-2-2-4faultInNibble1with1faultyBits 3.12 2.35

factoring3981643,3981641 7.83 6.91

factoring2190823,2190821 19.53 74.25

factoring7367627,7367621 29.18 146.13

factoring12619463,12619427 40.43 101.34

AES-4-4-4faultInNibble1with4faultyBits 41.15 55.87

LED64faultInNibble1with1faultyBits 45.70 55.38

AES-4-4-4faultInNibble1with1faultyBits 49.02 48.61

factoring5160011,5160007 63.98 55.47

factoring5621809,5621809 81.54 110.07

factoring4752977,4752949 207.18 189.58

factoring5308571,5308553 282.91 37.22

AES-2-2-4-4algebraicCNF 268.70 235.39

factoring49987277,49999553 337.58 45.29

factoring12598967,12598951 441.88 78.60

factoring4593761,4593737 527.22 10.11

factoring5287813,5287801 605.76 102.48

factoring5620907,5620907 653.63 5.04

factoring10000079,10000019 >1200 760.41

During our experiments we found examples where the integration was slower
than the SAT solver by itself. In practice, we therefore suggest to run the SAT
solver alone on one machine and the integration in parallel on another machine.
In this way, we cannot be “unlucky” and we will always profit from the best tim-
ings. This is particularly relevant in cryptanalytic scenarios where the solution
of an instance implies breaking a cryptosystem.

Notice that the timings of the integration of the two solvers are sometimes
not stable, i.e. two timings for the same instance may differ substantially. These
differences occur because new clauses are added at different points in time.

The filtration techniques described in Sect. 5, as well as the integration itself,
are still preliminary. Our next goal is to develop deeper understanding of the syn-
ergy of both solvers. The main difficulty is that SAT solvers use various heuristics
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for literal assignment and for the choice on what clause to work on next. This
makes it very hard to analyze which extra clauses from the BBBA affect the tim-
ings most. Nonetheless, our results show that the additional information from
the BBBA already greatly increases the speed of the SAT solver.
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Abstract. Reasoning about computers and programming languages on
paper is most often done with set theory, while most proof assistant
formalizations of languages and programs use alternative mathematical
foundations. One of the few exceptions has been Mizar where the Simple
Concrete Model of computers has been used to verify programs expressed
as abstract programming language instruction sequences. The model uses
extended set theory features including structures and Fraenkel set com-
prehension operators. In this paper we show how to formally specify
such objects in the Isabelle object logic implementing the Mizar foun-
dations as definitional extensions. To show the adequacy and usability
of the mechanisms, we reformalize a number of Mizar definitions and
theorems related to structures and set comprehensions, including both
mathematical and programming language examples: groups, machines
and properties of computer memory states.

Keywords: Isabelle · Mizar · Structure · Set comprehension
Multiple inheritance

1 Introduction

Proof assistants are today increasingly used to certify software, hardware, as
well as mathematical proofs that involve computer programs [10]. One of the
earliest proof assistants, Mizar [7], has been developed as a tool to provide a
human-oriented environment which would allow proofs to be formally analyzed.
The system has already been developed over forty years with its most distinc-
tive features being a proof style that imitates informal mathematical proofs as
much as possible [16] and a rich type system that reflects how mathematicians
and computer scientists describe dependencies between objects [25]. Such sup-
port for formal proofs has given rise to one of the largest libraries of formalized
mathematics with many domains not covered in other libraries. One of such
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domains is the Simple Concrete Model (SCM) [17], which introduces a formal
model corresponding to random-access Turing machines, their instructions, and
programs and has been considered more realistic for modeling of real comput-
ers [21]. The development of SCMs and the proofs of their various properties
spans 66 Mizar Mathematical Library (MML) articles.

We build upon our recent work which aimed to specify foundations [13], nota-
tions [12], automation [14] of the Mizar system in the Isabelle Logical Frame-
work [24]. The most important motivation for the current work is to provide
the completely specified set theoretic formalizations of the model of computers,
instructions, languages, etc. There are multiple further directions for how we
plan to extend that work, as well as multiple reasons for these extensions:

– Specifying Mizar in a logical framework gives the complete semantics of the
system specified only on paper so far [6], including the underlying first-order
logic variant, the soft type system, definitional mechanisms, and automation
mechanisms.

– Despite various efforts [11], the contents of the MML are hard to access
for developers of other proof and knowledge management systems. Isabelle’s
structures can allow experiments with sharing proof techniques and automa-
tion across proof assistants.

– Mizar has a large monolithic kernel. Despite the implementers best efforts,
bugs in the code can result in incorrect proofs being accepted. This problem
can be significantly remedied by certifying proofs across systems.

– In the long run, develop an alternative environment for reverification and
development of proofs automatically exported from the MML.

In this work we introduce and develop two components used in Mizar neces-
sary to translate and certify the MML proofs on algebraic structures including
the SCM model of computers in Isabelle. The components are Mizar structures
and Mizar set comprehension operators.

Mizar structures (also referred to as aggregates or records) allow grouping
multiple other objects together with relations between them into a single entity.
This is useful for defining and reasoning about mathematical structures such as
rings, fields, and vector spaces. Mizar structures correspond to mechanisms in
other proof assistants like the Isabelle type classes [9] or Coq records used to
build an algebraic hierarchy [5]. The support for structures is a crucial part of
the Mizar language. Structures are built in to the Mizar verifier [6] and they
are heavily used in the MML. In fact 74% of the articles in the current MML
version 1289 rely directly or indirectly on the article struct_0.

Mizar set comprehension operators (referred to as Fraenkel in the Mizar
literature [6]) allow describing a set of terms whose argument list satisfies a
given predicate. Defining set comprehension in a sound and adequate way is an
important part of the Mizar foundations, as in any set theory this is where most
paradoxes (Russell’s paradox and its variants) originate from.

We use the already specified foundations of the Mizar system together with
the Tarski-Groethendieck axiomatization, and the first few formalized articles
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of the MML to formally define Mizar structures and Mizar set comprehension
operators. Both can be introduced as definitional extensions, without adding any
further axioms.

1.1 Related Work

B-Method [1] has aimed to ease the formalization of programs in a foundation
based on set theory, however like Mizar the structures and set comprehension are
a part of the system. Similarly, Metamath [20] does not have a built-in notion
of structures and focuses on n-tuples instead.

Turing machines have been formalized in Isabelle/HOL [26] allowing reason-
ing about their behavior in Hoare logic, as well as in Matita [2] focusing on
complexity theory. The main approach to formalization of imperative programs
in Isabelle is used in Imperative/HOL [4]. This approach was further refined to
allow for formalization of programs in separation logic [18].

Algebraic structures were often necessary early in the development of proof
assistants. In Isabelle/HOL type classes [9] allow for further control of the poly-
morphic type system adding mechanisms such as inheritance between types.
Various Isabelle automation mechanisms can translate type classes to predicates,
which is also how reasoning about algebraic structures with inheritance is usu-
ally performed in other HOL-based systems. Proof assistants based on versions
of type theory can store objects along with their properties in tuples (or records
with named fields). This has been used to build an algebraic hierarchy [5] in Coq
or to extend it to topologies as done in Matita [23]. Inheritance for records that
can allow for good automation has become an important field with developments
including canonical structures and type classes.

Lee and Rudnicki [19] proposed an alternative approach to defining structures
without special support in the Mizar system. The main motivation is to make
field structures into first-class objects, which allows more convenient reasoning
about graphs. The proposed approach directly uses other parts of the Mizar
language (including preceding parts of the MML) to define aggregates as Mizar
finite Functions. This allows defining what it means for an object to have
a field, rather than to fix which collections of fields constitute an aggregated
object.

The exports of Mizar to ATPs [3] require a specification of the Mizar set
comprehensions. The semantics of the exported objects is the same as that in
Mizar and in our formalizations, but they are axiomatized rather than defined.
We are not aware of any work that specifies the foundations of Mizar in a formal
system that would cover structures.

1.2 Contributions and Outline

We give a complete formal specification of Mizar structures formalized in the
Isabelle/Mizar object logic (Sect. 3). It supports strict structures (structures that
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do not include additional fields), domain of a structure (which allows restrict-
ing larger structures to smaller ones), and inheritance (which allows extending
structures to larger ones) including multiple inheritance.

We formally specify the Mizar Fraenkel set comprehension operator (Sect. 4).
Our approach allows defining it as a single meta-level functor, therefore a defi-
nitional extension as opposed to a part of the implementation of the checker
in Mizar. We further prove a number of properties of this functor.

We reformalize parts of the MML corresponding to the lattice of types focus-
ing on the simple concrete model of computers, and show that the defined mech-
anisms are appropriate and usable to formalize all of Mizar specifics in Isabelle
(Sect. 5).

2 Preliminaries

In this section we briefly introduce the Mizar foundations defined as an object
logic in the Isabelle framework. For more details see [13].

Four Isabelle types are used to model the Mizar foundations. The type of
propositions is already defined by the underlying Isabelle/FOL object logic. The
following types are further added: the type of Mizar sets Set and two types
used for the Mizar type system: Mode and Attr. Mizar modes are the elemen-
tary types assigned to all objects. Modes are guaranteed to be non-empty. Mizar
attributes allow restricting of a given mode or of another attribute. The only
attributes considered in this paper will be adjectives. Each adjective corresponds
to a (parameterizable) predicate on a given type. The type constructed by apply-
ing a number of adjectives to a given type corresponds to the elements of the
type which satisfy all the adjective-associated predicates. For example the type
non zero natural number restricts the type (mode) of numbers to both nat-
ural ones and those different from zero. For clarity, in the Isabelle formalization
the operation that combines attributes will be denoted using a single vertical
bar | and the operation of applying attributes to a mode will be denoted using a
double one ‖. More information about modes and attributes can be found in [7].

The Isabelle/Mizar object logic introduces constants that allow interacting
with the Mizar types, a constant for the choice operator, and five axioms that
specify these constants. Two axioms specify what it mean to define a new mode
and a new attribute. Two axioms express the meaning of the combinations of
attributes with attributes and with modes. The last one axiomatizes the Mizar
axiom of choice for non-empty types.

Next, notations that imitate the Mizar text are introduced for the first-order
logic symbols: &, or, implies, for x holds P, etc. Syntax and helper lemmas
are provided to allow defining functions, predicates, and new types in ways sim-
ilar to that used in Mizar. In particular the definition of a meta-level function
F which is to return type T in Mizar follows the pattern func F → T equals
D and definitions using the description operator use means rather than equals
and a predicate that the defined object should satisfy. These preliminaries are
sufficient to express the Tarski-Grothendieck set theory axiomatization in the



Formalization of Mizar Structures and Set Comprehensions 167

same way as in Mizar. Furthermore [13] showed, that it is sufficient to translate
all the definitions and theorems from the first few articles of the MML.

3 Structures

Mizar structures are used to define objects that are typically represented as
tuples in mathematics. For example the Mizar definition of ring 〈F,+, 0, · , 1〉
consists of Mizar types assigned to fields in the structure, in particular +, ·
are binary operations on F , and 0, 1 are members of F . To do this, unique
identifiers (referred to as a field selector or simply selector in the Mizar litera-
ture) are needed for each tuple element. In case of a ring these identifiers are
carrier, addF, ZeroF, multF, and OneF respectively. The Mizar syntax for the
tuple including the above mentioned types is presented on the left. The Isabelle
counterpart, which we will define later in this section is presented on the right
for comparison (for simplicity inheritance information is omitted here, it will be
discussed in Sect. 3.4):

struct doubleLoopStr (#
carrier → set,
addF → BinOp of the carrier,
ZeroF → Element of the carrier,
multF → BinOp of the carrier,
OneF → Element of the carrier

#)

definition
"struct doubleLoopStr (#

carrier → λS. set;
addF → λS. BinOp-of the carrier of S;
ZeroF → λS. Element-of the carrier of S;
multF → λS. BinOp-of the carrier of S;
OneF → λS. Element-of the carrier of S

#)"

The doubleLoopStr structure will correspond to a ring only with addi-
tional restrictions. Such restrictions are in Mizar introduced using adjectives
(see Sect. 2). In particular, a ring in the MML is defined as a doubleLoopStr

together with nine adjectives, such as Abelian and distributive with their
expected meanings. Certain extensions of a ring, such as a field, will only extend
the list of adjectives (for example by commutative), which permits all Mizar
mechanisms (functors, definitions, theorems) associated with rings to also work
with fields. Mizar allows adjectives to be used in the field selector types, which
corresponds to structures with restricted values. This is used for SCMs (see
Sect. 5.2).

Mizar structures also support inheritance discussed in more detail in Sect. 3.4.
Here it is only important to note that inheritance does allow not only ring
extensions, but also permits the use of group theory for rings and fields, since
the group tuple multLoopStr is a sub-tuple of that of doubleLoopStr. This
means that “being a group” defined for multLoopStr must allow tuples that
have more than the required selectors. However, there are cases where we want
to express the fact that a group has precisely the multLoopStr selectors, namely
that the tuple does not have any other elements. This is achieved using the Mizar
attribute strict that can be applied to any structure, which specifies that only the
selectors from that structure are allowed. The need for strict can be illustrated
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by the following example. Consider the set of all groups over Z3. This set is finite
if and only if we consider strict structures. The net hierarchy of basic algebraic
structures in the MML is depicted in Fig. 1.

3.1 Structure Preliminaries

In the Mizar literature the word structure is used both for structure prototypes
(e.g. the type of rings) and for actual structure instances (e.g. individual objects
that are of the type of rings). We will try to distinguish the two when it is not
clear from the context. Structure instances will be represented as set theoretic
functions. We will use our Isabelle reformalization of the Mizar set theoretic
relations for this purpose. Structure prototype definitions will correspond to
schemes of functions, which can be further restricted by the given adjectives.

3.2 Structure Operations

A structure prototype definition will describe functions given as sets of assign-
ments. Each assignment is of the form x → y, where x is a unique label (selector)
and y is the specification given to that field of the structure. As the specification
may refer to the other parts of the structure (for example the zero in the ring is
an element of the carrier), y needs to be a meta-level function which, when given
the structure instance as an argument returns the type of that field. We present
here the general definitions of the selector and of the single field in a structure
in our formalization:

definition TheSelectorOf ("the _ of _ " [90,90] 190) where
"func the selector of Term → object means λit.

for T be object st 〈selector,T〉 in Term holds it = T"

definition Field ("_ → _" 91) where
"selector → spec ≡ define_attr (λit.

the selector of it be spec(it) & selector in dom it)"

With this we can introduce a Mizar-like syntax for structure prototypes
(# f1; . . . ; fn #), where each field fi is described by an assignment sel → spec(it).
Most basic structure prototypes ignore the argument:

definition one_sorted :: "Mode" ("one-sorted") where
"struct one-sorted (# carrier → λ_. set #)"

We now define the domain of a structure prototype as the minimal set that is
contained in the domain of any instance. This allows the following definition to
be a global one, however the result makes sense only for a particular prototype.

definition domain_of::"Mode ⇒ Set" ("domain’_of _" 200) where
"func domain_of M → set means (λit.

(ex X be M st it = dom X) & (for X be M holds it ⊆ dom X))"
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Fig. 1. Net of basic algebraic and computer-related structures in the MML follow-
ing [8]. The presented ones have already been covered in our formalization. The lower
part of each node lists the selectors which are added w.r.t. the inherited ones. AMI
(Architecture Model for Instructions) is an abstract computer structure parametrized
by the data stored in its memory, further detailed in Sect. 5.2.

The fact that we know the domain globally also allows creating strict as an
attribute. The attribute should consider the domain of the structure type, which
may be the last argument after other attributes. Not to restrict the order of
attributes, the Isabelle version of strict requires an argument, which repeats the
mode. For example strict one-sorted || one-sorted.

definition strict :: "Mode ⇒ Attr" ("strict _" 200) where
"attr strict M means (λX. X be M & dom X = domain_of M)"

We can finally introduce the restriction of an instance to a strict structure
using the restriction of a function domain denoted with the slash operator.

definition the_restriction_of :: "Set ⇒ Mode ⇒ Set"
("the’_restriction’_of _ to _" 90) where

"func the_restriction_of X to Struct →
strict Struct ‖ Struct equals X | domain_of Struct"

3.3 Structure Prototype Introduction

To define an actual structure prototype, it is necessary to use an actual set
of labels which are pairwise different. In principle strings could be natural for
this purpose. However, as we prefer to reduce the required part of the library
foundations, we chose to use the set theoretic natural numbers defined by 0 = {}
and succ(X) = X ∪ {X}.
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Furthermore, to define an actual structure prototype, it is necessary to show
non-emptiness, that is that there exists a structure instance which fulfills the
structure prototype conditions. To show such existence, Mizar requires the non-
emptiness of all structure field specifications. For this, we use the global choice
operator ε. For each field (selector → specification) we take the pair 〈selector,
ε(specification)〉. We show that the set of such pairs for all fields of the struc-
ture fulfills the prototype conditions (with convenient automation to show such
existence, see Mizar_struct file). For example, for doubleLoopStr we use:

term "{〈carrier, the set〉} ∪
{〈addF, the BinOp-of the set〉} ∪ {〈ZeroF, the Element-of the set〉} ∪
{〈multF, the BinOp-of the set〉} ∪ {〈OneF,the Element-of the set〉}"

3.4 Inheritance and Multiple Inheritance

The original MML definition of doubleLoopStr includes information about
(multiple) inheritance:

struct (addLoopStr,multLoopStr_0) doubleLoopStr

which informs Mizar that doubleLoopStr should inherit all the fields contained
in addLoopStr, as well as those in multLoopStr_0. These are used to define
additive and multiplicative groups, respectively. Inheritance is transitive. Mul-
tiple inheritance causes the Mizar inheritance graph to become a DAG. There
are 168 structures defined in MML. This does not include their versions with
adjectives. Most structures (135 of them) inherit from 1-sorted. A part of the
graph restricted to the most basic algebraic structures is depicted in Fig. 1. In
our approach it is possible to verify that the domain of a structure is a subset of
the domain of another one allowing (automated) inheritance proofs at any point
after the definition.

4 Set Comprehension

Set comprehension is a key notion in Mizar set theory. It allows defining a set of
terms, which satisfy the given predicate (see [6, Fraenkel]), with Mizar syntax:

{t(v1,v2,. . .,vn) where v1 is Θ1, v2 is Θ2,. . .,vn is Θn:P[v1,v2,. . .,vn]}

Such an expression is of the type set in Mizar and it is not possible to further
specify the type. The built-in definition of the set comprehension operator is
automatically expanded in terms of set membership as follows:

x in {t(v1,v2,. . .,vn) where v1 is Θ1, v2 is Θ2,. . .,vn is Θn :P(v1,v2,. . .,vn)}
iff

ex v1 be Θ1, v2 be Θ2, . . .,vn be Θn st x = t(v1,v2,. . .,vn) & P[v1,v2,. . .,vn]
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The generality of the definition could quickly lead to a version of the Russell’s
paradox, as according to the Tarski-Groethendieck axiomatization everything is
a set. Therefore, the set comprehension operator is well-formed only when all the
types Θ1, Θ2, . . . , Θn have the sethood property (otherwise Mizar reports Error
86: “It is only meaningful for sethood property”, see [7] for more details).

Definition 1. A Mizar-type Θ has the sethood property if all objects of the type
Θ are elements of some set.

We define sethood in Isabelle/Mizar and make sure that it is proved for the
most important Mizar types (Mizar allows the inheritance of sethood). With
this, we can show the existence of sets described by comprehensions. The
Isabelle/Mizar statement and proof are quite involved, so we present these mostly
in mathematical setting.

Theorem 1. Let Θ be a Mizar type with the sethood property, P be a unary
predicate and F be a unary function defined on Θ. Then there exists a set C
such that each x is a member of C if and only if there exists a v of type Θ such
that x = F (v) ∧ P (v).

Proof. The proof only relies on the Tarski-Groethendieck axiom of Replacement.
Consider the set Sethood that contains all objects of the type Θ. Furthermore,
consider the binary relation R1 defined for a predicate P as R1(x, y) ⇐⇒ x =
y ∧ P (x). Then, by the axiom of Replacement, there exists a set Separation, such
that x is a member of Separation if and only if there exists y that is a member of
Sethood and R1(x, y). Now Separation contains the objects of the type Θ which
satisfy P and only such objects. We can use the Replacement axiom again for
the unary relation λy.∃x. y = F (x) and the set Sethood. This gives the image of
the function F on the set Sethood. This set fulfills the requirement of the theorem
statement. ��

The theorem was so far limited to unary predicates and functions. To adapt
it to multiple arguments, we can consider the Cartesian product together with
the property that two tuples are equal, if their corresponding elements are equal.
In our Isabelle/Mizar formalization we introduced the Cartesian product in the
zfmisc_1 theory corresponding to the Mizar article with the same name. This can
used to show set comprehensions with multiple arguments:

Theorem 2. Let Θ1, Θ2, . . . , Θn be Mizar types with the sethood property, P
be an n-argument predicate and F be an n-argument function defined for the
arguments of the types Θ1, Θ2, . . . , Θn. Then there exists a set C such that x is
a member of C if and only if there exists v1 be Θ1, v2 be Θ2, . . . , vn be Θn, such
that x = F (v1, v2, . . . , vn) ∧ P (v1, v2, . . . , vn).

Proof. Consider the sets Si which contain objects of the types Θi. Consider the
binary relation R1, defined as

λxy.x = y ∧ ∃v1,v2,...,vn
x = 〈〈. . . 〈〈v1, v2〉, v3〉, . . .〉, vn〉 ∧ P (v1, v2, . . . , vn)
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The Replacement axiom can be used to obtain the set Separation for which x
is a member of Separation if and only if there exists y that is a member of
(. . . ((S1 × S2)× S3) . . .)× Sn and R1(x, y). Using the Replacement axiom again
for the relation

λxy.∃v1,v2,...,vn
x = 〈〈. . . 〈〈v1, v2〉, v3〉, . . .〉, vn〉 ∧ y = F (v1, v2, . . . , vn)

and the set Sethood, we obtain the set C. ��
The following example collects the results of the function f on the set X and

can be shown to be equivalent to the range of the function restricted to the set.

term "{f. x where x be Element-of dom f: x in X}"

Set comprehensions are often used in the MML to define sets of
terms without additional properties. The following syntax has been intro-
duced so simplify such comprehension terms: the set of all t(v1,v2,. . .,vn) where
v1 is Θ1, v2 is Θ2,. . .,vn is Θn which abbreviates: {t(v1,v2,. . .,vn) where v1 is Θ1,
v2 is Θ2,. . .,vn is Θ2: non contradiction}. Just like for set comprehensions we add
this abbreviation together with the Mizar notation. It can be seen for example
in the following theorem:s

theorem funct_1_th_110:
assumes "B be non empty | functional ‖ set"

"f be Function" "f = union B"
shows

"dom f = union the set-of-all dom g where g be Element-of B"
"rng f = union the set-of-all rng g where g be Element-of B"

5 Case Studies

In this section we argue that our model of structures is not only correct based
on the Tarski-Groethendieck set theory axioms, but also that it is adequate for
Mizar-like formalization. For this, we formalized a part of Mizar’s group theory in
Isabelle defining the basic concepts as structures, the corresponding attributes,
and showing a number of their properties. We also show how groups combine
with set comprehensions and a more involved inheritance example. All Isabelle
examples have same identifiers as their Mizar counterparts to ease comparison.

5.1 Algebraic Structures

We first define the Mizar type of groups as the multiplicative magma structure
multMagma with three adjectives. We define the identity in the group and an
inverse, where the group operation is defined as usual.

abbreviation Group where
"Group ≡ Group-like | associative | non empty-struct ‖ multMagma"
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definition group_1_def_4 ("1’. _" [1000] 99) where
"assume G is unital
func 1.G → Element-of-struct G means λit.

for h being Element-of-struct G holds
h ⊗G it = h & it ⊗G h = h"

definition group_1_def_5 ( infix "−1
” 105) where

"func h−1
G → Element-of-struct G means λit.

h ⊗G it = 1.G & it ⊗G h = 1.G"

definition algstr_0_def_18 ("_ ⊗_ _" [96, 1000, 97] 96) where
"func x ⊗M y → Element-of-struct M equals

(the multF of M) . (| x , y |)"

Next, we show a number of theorems about groups. We show here only a
property that each group fulfils properties of semigroups with involution. The
Mizar formalization does not need to repeat the variable declarations, thanks to
the reserve mechanism, which is similar to Isabelle locales, but for each theorem
only the variables and assumptions that are actually needed for its statement
are exported. We do not have a complete mechanism of this kind yet.

theorem group_1_th_16:
assumes "G be Group"

"h be Element-of-struct G" "g be Element-of-struct G"
shows "(h ⊗G g)−1

G = g−1
G ⊗G h−1

G"

We have also reproved the 13 schemes that talk about set comprehension.
We show here two, one that combines set comprehension with functions, and
one that uses nested comprehensions.

theorem Fraenkel_sch_9:
assumes "A be set" "B be set" "X be set"

"f be Function-of A,B" "g be Function-of A,B"
"(f | X) = (g | X)"

"for u being Element-of A st u in X holds P(u) iff Q(u)"
shows "{ f. u where u be Element-of A : P(u) & u in X } =

{ g. v where v be Element-of A : Q(v) & v in X }"

theorem Fraenkel_sch_13:
assumes T0: "A be set" "B be set" "C be set"
"for x1 be object,x2 be object holds F(x1,x2) be Element-of C"

shows "{ st1 where st1 be Element-of C:
st1 in {F(s1,t1) where s1 be Element-of A,

t1 be Element-of B: P(s1,t1) } & Q(st1)} =
{ F(s2,t2) where s2 be Element-of A,t2 be Element-of B:

P(s2,t2) & Q(F(s2,t2))}"

We finally look at the combination of groups and set comprehensions. The
following two definitions introduce the set of all inverses and the set of results
of the group operation:

definition group_2_def_1 ( infix "˝−1
” 150) where

"func A˝−1
G → Subset-of-struct G equals

{g−1
G where g be Element-of-struct G : g in A}"
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definition group_2_def_2(" _ ⊗_ _" [66, 1000, 67] 66) where
"func A ⊗G B → Subset-of-struct G equals

{a ⊗G b where a be Element-of-struct G,
b be Element-of-struct G : a in A & b in B}"

We can now show the relationship between these two operations, which is
a consequence of the properties of semigroups with involution (group_1_th_16
above).

theorem group_2_th_11:
assumes "G be Group"

"A be Subset-of-struct G" "B be Subset-of-struct G"
shows "(A ⊗G B) ˝−1

G = B˝−1
G ⊗G A˝−1

G"

We finally show a multiple inheritance relation for the double loop structure.
It follows by simple rewriting just using the definitions of the structures.

theorem doubleLoopStr_inheritance:
assumes "X be doubleLoopStr"
shows "X be multLoopStr_0" "X be addLoopStr"

5.2 SCM Computer Model

The MML models computers as structures whose elements correspond to: the set
of instructions, the computer memory, and the functor Execution whose role is
to map each instruction to a function from memory states to memory states.

The instructions form a set which must fulfill four properties corresponding
to the following adjectives

abbreviation
"Instructions ≡ J|A-independent |homogeneous |with_halt |standard-ins‖set"

The standard-ins adjective specifies that any element i of the instruction set
is a triple

term "[InsCode i, JumpPart i, AddressPart i]"

where InsCode i is an instruction number represented by a natural number,
JumpPart i is a list of natural numbers used by the Execution functor to com-
pute the following instruction numbers, and AddressPart i is a list objects
passed to the instructions as arguments. The with_halt adjective means that
the set I includes a halt instruction. The halt instruction is represented as
[0,{},{}], where the empty set corresponds to the empty list. The adjectives
homogeneous and J|A-independent specify a subset of instructions which share
the number InsCode and are necessary for the definition of the Execution func-
tor. homogeneous specifies, that the JumpPart lists of arguments given to the
InsCode instruction are always of the same length (for example goto always
requires one argument). J|A-independent specifies that every list of the appro-
priate length can be handled (for the goto example, Execution must be able to
perform a goto instruction to every location).
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definition compos_0_def_5 ("homogeneous") where
"attr homogeneous means (λI.

I be non empty |standard-ins‖set &
(for i,j be Element-of I st InsCode i = InsCode j holds

dom JumpPart i = dom JumpPart j))"

definition compos_0_def_7 ("J|A-independent") where
"attr J|A-independent means (λI.

I be non empty |standard-ins‖set &
(for n be Nat, f1,f2 be NAT-valued ‖Function, p be object

st dom f1 = dom f2 & [n,f1,p] in I holds [n,f2,p] in I))"

The next structure in the formalization is the computer memory (see Fig. 1).
It is also modeled as a structure. The main field, carrier, corresponds to the
actual memory and the set N gives the kind of data that can be stored within it.
Note that that in SCMs all memory locations are of the same size [17]. The ZeroF

field is the instruction counter. It corresponds to the number of the instruction
performed in the given state. Object-Kind indicates the kind of data stored in
the given memory location and ValuesF gives the value range for the given type.

definition MemStruct_over ("Mem-Struct-over _") where
"struct Mem-Struct-over N (#

carrier → λS. set;
ZeroF → λS. Element-of the carrier of S;
Object-Kind → λS. Function-of the carrier of S, N;
ValuesF → λS. ManySortedSet-of N

#)"

An actual memory state is defined as a function that associates each memory
location in the carrier with the stored data, where the value must be one of
the allowed values.

definition memstr_0_def_2 ( "the’_Values’_of _ " 190) where
"func the_Values_of M → ManySortedSet-of the carrier of M equals

the ValuesF of M ◦ the Object-Kind of M"

abbreviation memstr_0_mode_2 ("State-of _" 190)
where "State-of M ≡

(the carrier of M):total | the_Values_of M-compatible ‖ Function"

We can now formulate the Mizar type of a computer and show the non-
emptiness of this type. The type is a structure parametrized by the data stored
in the memory of the computer. The name AMI (for Architecture Model for
Instructions) is used in the Mizar dictionaries to refer to this structure as a type
and SCM is an object of the type [17].

definition AMI_Struct_over ("AMI-Struct-over _") where
"struct AMI-Struct-over N (#

carrier → λS. set;
ZeroF → λS. Element-of the carrier of S;
InstructionsF → λ_. Instructions;
Object-Kind → λS. Function-of the carrier of S, N;
ValuesF → λS. ManySortedSet-of N;
Execution → λS. Action-of the InstructionsF of S,

product ((the ValuesF of S)*‘the Object-Kind of S)#)"
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We subsequently reformalize a machine with the halt instruction and we
show that all the indicated fields have their corresponding types, and that this
construction uniquely defines a computer. The proof corresponding to the below
definition requires 83 lines of Isabelle proof to justify.

definition extpro_1_def_1 ("Trivial-AMI _") where
"func Trivial-AMI N → strict AMI-Struct-over N‖AMI-Struct-over N

means (λit.
the carrier of it = {0} &

the ZeroF of it = 0 &
the InstructionsF of it = {[0,{},{}]} &

the Object-Kind of it = {0} –-> 0 &
the ValuesF of it = N –-> NAT &

the Execution of it = {[0,{},{}]} –-> id product(N –-> NAT ◦ {0} –-> 0))"

Next, we introduce the Exec functor. Applying the instruction I to (the

Execution of S) we should obtain a function that can be given a memory
state as input and returns a memory state. Again showing the correctness of the
definitions and that these properties hold requires 57 lines of Isabelle proofs.

definition extpro_1_def_2( "Exec _’(_ , _’)" 190) where
"func Exec S(I,s) → State-of S equals

((the Execution of S).I).s "

definition extpro_1_def_3("halting _") where
"attr halting S means (λI.

I be Instruction-of S &
(for s be State-of S holds Exec S(I,s) = s))"

We finally show, that Trivial-AMI N is of the computer type and that it does
halt, which shows the non-emptiness of the Mizar type of computers.

theorem extpro_1:
assumes "N be with_zero‖set"
shows "haltTrivial-AMI N is halting Trivial-AMI N"

6 Conclusion

Mizar structures and set comprehension operators complete the foundations of
Mizar as an Isabelle object logic. This allows manual translation of the MML to
Isabelle/Mizar, as we have shown with the Mizar theory of basic algebraic struc-
tures including SCMs. We have defined 90 concepts where 27 of them required
justifications and proved 105 registrations, 31 theorems that discuss based alge-
braic structures and set comprehensions, as well as inheritance relations between
15 structures. We have defined also 27 concepts where 14 of them required justifi-
cation and proved 12 registrations, 3 theorems about SCMs. The total combined
size of the development is 513 kB and 8295 lines of proofs. It is available at:
http://cl-informatik.uibk.ac.at/cek/macis2017/

The Isabelle proofs are mostly longer are than their Mizar counterparts. This
is predominantly because of the lack of type automation for the type system,
even if the Mizar type system could be handled by ATPs [15]. Similarly, many
Isabelle proofs require more labels than the corresponding Mizar ones, which

http://cl-informatik.uibk.ac.at/cek/macis2017/
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we hope to remedy by developing legibility tools similar to the ones available
for Mizar [22]. Finally it would be interesting to mechanically translate MML
statements or even proofs and imitate the behavior of Mizar’s automation.

Acknowledgements. This work has been supported by the European Research Coun-
cil (ERC) grant no. 714034 SMART and the Polish National Science Center granted
by decision n◦DEC-2015/19/D/ST6/01473.
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Abstract. The Jordan canonical form (JCF) of a square matrix is a
foundational tool in matrix analysis. If the matrix A is known exactly,
symbolic computation of the JCF is possible though expensive. When the
matrix contains parameters, exact computation requires either a poten-
tially very expensive case discussion, significant expression swell or both.
For this reason, no current computer algebra system (CAS) of which we
are aware will compute a case discussion for the JCF of a matrix A(α)
where α is a (vector of) parameter(s). This problem is extremely difficult
in general, even though the JCF is encountered early in most curricula.

In this paper we make some progress towards a practical solution. We
base our computation of the JCF of A(α) on the theory of regular chains
and present an implementation built on the RegularChains library of
the Maple CAS. Our algorithm takes as input a matrix in Frobenius
(rational) canonical form where the entries are (multivariate) polynomi-
als in the parameter(s). We do not solve the problem in full generality,
but our approach is useful for solving some examples of interest.

Keywords: Jordan form · Rational canonical form
Parametric linear algebra · Regular chains
Triangular decomposition

1 Introduction

The Jordan canonical form (JCF) of a matrix and its close cousin the Weyr
canonical form are foundational tools in the analysis of eigenvalue problems and
dynamical systems. For a summary of theory, see for instance Chap. 6 in The
Handbook of Linear Algebra [1]; for the Weyr form, see [2].

The first use usually seen for the JCF is as a canonical form for matrix
similarity: two matrices are similar if and only if they have identical (sets of,
up to ordering) Jordan canonical forms [3]. Of course, there are other (often
better) canonical forms for similarity such as the Frobenius (rational) canonical
form, or the rational Jordan form [4,5].

This work is supported by The Natural Sciences and Engineering Research Council
of Canada (NSERC).
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The JCF is well known to be discontinuous with respect to changes in the
entries if the base field K has nonempty open sets. We typically take K = C, the
field of complex numbers. Therefore, the JCF cannot be computed numerically
with small forward error, even when using a numerically stable algorithm. This
has forced the development of alternatives to the JCF, such as the Schur form,
which is numerically stable and useful in the computation of matrix functions via
the Parlett recurrences, for instance [6]. Consider the computation of the matrix
exponential. First computing the JCF is one of the famous “Nineteen Dubious
Ways to Compute the Exponential of a Matrix” [6,7]; computing the matrix
exponential remains of serious interest today (or perhaps is even of increased
interest) because of new methods for “geometric” numerical integration of large
systems [8–10].

Analysis of small systems containing symbolic parameters is also of great
interest, in mathematical biology especially (models of disease dynamics in pop-
ulations and in individual hosts, evolutionary or ecological models) but also in
many other dynamical systems applications such as fluid-structure interactions,
robot kinematics, and electrical networks. The algorithmic situation for systems
containing parameters is much less well-developed than is the corresponding sit-
uation for numerical systems. Although alternatives to the JCF exist for the
analysis of these systems, the JCF has become a standard tool with implemen-
tations available in every major CAS.

The current situation in Maple is that explicit computation of the JCF of
a matrix containing parameters of dimension 5 or more may fail in some sim-
ple cases. For example, Maple simply does not provide a result for the JCF
of the Frobenius companion matrix of p(x) = x5 + x4 + x3 + x2 + x + a. Simi-
lar failures occur for the MatrixFunction and MatrixExponential procedures.
Wolfram Alpha gives the generic answers, but fails to give non-generic ones.
Computing matrix functions may succeed in cases where computing the JCF
does not because the JCF need not be used (an interpolation algorithm can be
used instead); see for instance Definition 1.4 in [6].

Most computer algebra systems (CAS) have adopted some variation of the
definition of algebraic functions as implicit roots of their defining polynomials.
In Maple, the syntax uses RootOf; together with an alias facility. This gives
a useful way to encode the mathematical statement (for instance) “Let α be a
root of the polynomial x5 + εx + 1 = 0”.

> alias(alpha = RootOf(x^5+ eps*x+1,x)):

This should, in theory, allow symbolic computation of the JCF of (small) matri-
ces, even ones containing parameters. To date in practice it has not.

In this paper, we offer some progress, although we note that combinatorial
growth of the resulting expressions remains a difficulty. However, the tools we
provide here are already useful for some example applications and go some way
towards filling a scientific and engineering need. We aim to minimize unnecessary
growth throughout the computation. The tools we use here include provisos [11]
and comprehensive square-free factorization with the RegularChains package.
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Fig. 1. Our implementation provides a full case discussion of the JCF of a matrix with
5 parameters. Two non-trivial cases are shown.

Consider, for example, the Jacobian matrix in [12]. Maple’s built-in
JordanForm command returns a diagonal matrix where the eigenvalues are large
nested radical expressions as a result of explicitly solving the characteristic poly-
nomial. In contrast, our ComprehensiveJordanForm method gives a full case dis-
cussion. Two interesting cases where the JCF is non-trivial are shown in Fig. 1.
Further details of this example are given in Sect. 6.4.

In Sect. 5, we present an algorithm for computing the JCF of a matrix in
Frobenius form where the entries are multivariate polynomials whose indetermi-
nants are regarded as parameters. Our approach uses comprehensive square-free
factorization to provide a complete case discussion. Classical approaches for com-
puting the JCF rely on elementary row and column operations that maintain a
similarity relation at each step [13–15]. Because the entries of the matrices we
are considering are multivariate polynomials, row and column operations lead to
significant expression growth that can be difficult to control. Additionally, this
would require us to work over matrices of multivariate rational functions in the
parameters, again making it difficult to control expression growth. By instead
computing fraction free square-free factorizations, we are able to maintain bet-
ter control over expression growth. Because our implementation does not use
elementary row and column operations, we do not compute the similarity trans-
formation matrix Q such that J = Q−1AQ gives the Jordan form J of A. We
leave this problem for future work.

We present an implementation of our algorithm in Sect. 6 and use it to solve
several problems taken from the literature. These examples are not in Frobenius
form and we do not discuss in detail how we obtain the Frobenius form. The
Frobenius form implementation uses standard algorithms based on GCD com-
putations of parametric polynomials to find the Smith form of A − xI and the
relation between this and the Frobenius form of A [5].
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Section 4 presents a new approach for computing the JCF of a non-parametric
matrix in Frobenius form over the splitting field of the characteristic polynomial.
Our discussion is based on the theory of regular chains. We do not apply this
splitting field approach in the parametric case because the square-free factoriza-
tion approach we use gives the complete structure of the JCF. Constructing the
splitting field would be vastly more expensive than the approach of Sect. 5.

2 Some Prior Work

As previously mentioned, the JCF of a matrix A ∈ C
n×n as a function of the

entries of A has discontinuities. These discontinuities are often precisely what
is important in applications. This also means that even numerically stable algo-
rithms can sometimes give results with O(1) forward error. This is often also
stated by saying that “computing the JCF is an ill-posed problem” [13]. This
has not prevented people from trying to compute the JCF numerically any-
way (see [13] and the references therein), but in general such efforts cannot
always be satisfactory: discontinuous is ill-posed, and without regularization such
efforts are (sometimes) doomed. There have been at least three responses in the
literature.

One is to find other ways to solve your problem, i.e. compute matrix functions
such as An and exp(tA), without first computing the JCF, and the invention of
the numerically stable Schur factoring and the Parlett recurrences for instance
has allowed significant success [6].

The second response is to find a canonical form that explicitly preserves
the continuity or smoothness of the matrix; the versal forms of [16] do this.
Incidentally, the Frobenius form with parameters is an example of a versal form
(Arnol’d calls this a Sylvester family), but there are others. The paper [17] uses
Carleman linearization to do something similar.

The third response is to assume exact input and try to do exact or sym-
bolic computation of the JCF. Early attempts, e.g. [14], had high complexity:
O(n8) [15] in the dimension n and with expression growth O(2n2

). A key step is
the computation of the Frobenius form, and the current best complexity algo-
rithm is O(n3) field operations, and keeps expression swell to a minimum [18].
Boolean circuit complexity results can be found in [5].

Inclusion of symbolic parameters makes things much more complicated and
expensive, of course. Early work by Guoting Chen, who used with a single param-
eter [19] does not seem to have been improved upon. Some modern computer
algebra systems simply give up when asked to compute the JCF of a matrix
bigger than 5 × 5 that contains a parameter as we showed in Sect. 1.

There has been a significant body of relevant computational algebraic work,
in computing the Frobenius form, the Zigzag form, and the Smith form [18,20]
but relatively few works [16,19] on matrices with parameters. The difficulty
appears to be combinatorial growth in the number of possible different cases. In
the context of solving parametric linear systems, not eigenvalues, a significant
amount of work has been done [21–26]. Parametric nonlinear systems are studied
in [27–29] and the references therein.
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3 Preliminaries

Sections 3.1 and 3.2 gather the basic concepts and results from polynomial alge-
bra that are needed in this paper. Meanwhile, Sects. 3.3 and 3.4 review the
notions of the Frobenius canonical form and the Jordan canonical form.

3.1 Regular Chain Theory

Let K be a field and K its algebraic closure. Let X1 < · · · < Xs be s ≥ 1
ordered variables. We denote by K[X] the ring of polynomials in the variables
X = X1, . . . , Xs with coefficients in K. For F ⊂ K[X], we denote by 〈F 〉 and
V (F ), the ideal generated by F in K[X] and the algebraic set of K

s
consisting

of the common roots of the polynomials of F . For a non-constant polynomial
p ∈ K[X], the greatest variable of p is called the main variable of p and denoted
mvar(p), and the leading coefficient of p w.r.t. mvar(p) is called the initial of
p, denoted by init(p). The Zariski closure of W ⊆ K

s
, denoted by W , is the

intersection of all algebraic sets V ⊆ K
s

such that W ⊆ V holds.
A set T ⊂ K[X] \ K is triangular if mvar(t) �= mvar(t′) holds for all t �= t′ in

T . Let hT be the product of the initials of the polynomials in T . We denote by
sat(T ) the saturated ideal of T ; if T is empty, then sat(T ) is defined as the trivial
ideal 〈0〉, otherwise it is the ideal 〈T 〉 : h∞

T . The quasi-component W (T ) of T is
defined as V (T ) \ V (hT ). The following property holds: W (T ) = V (sat(T )).

A triangular set T ⊂ K[X] is a regular chain if either T is empty, or the
set T ′ is a regular chain, and the initial of p is regular (that is, neither zero
nor zero divisor) modulo sat(T ′), where p is the polynomial of T with largest
main variable, and T ′ := T \ {p}. Let T ⊂ K[X] be a regular chain. If T con-
tains s polynomials t1(X1), t2(X1,X2), . . . , ts(X1, . . . , Xs), then T generates a
zero-dimensional ideal which is equal to sat(T ). If, in addition, the ideal sat(T )
is prime (and, thus maximal in this case), then T is an encoding of the field
extension L := K[X]/〈T 〉. Let H ⊂ K[X]. The pair [T,H] is a regular system if
each polynomial in H is regular modulo sat(T ); the zero set of [T,H], denoted
by Z(T,H), consists of all points of Ks satisfying t = 0 for all t ∈ T , h �= 0 for
all h ∈ H ∪ {hT }. A regular chain T , or a regular system [T,H], is square-free
if for all t ∈ T , the polynomial der(t) is regular w.r.t. sat(T ), where der(t) = ∂t

∂v
and v = mvar(t).

The zero set S of an arbitrary system of polynomial equations and inequations
is called a constructible set and can be decomposed as the union of the zero sets of
finitely many square-free regular systems [T1,H1], . . . , [Te,He]. When this holds
we have S = Z(T1,H1)∪ · · · ∪Z(Te,He) and we say that [T1,H1], . . . , [Te,He] is
a triangular decomposition of S.

We specify below a core routine thanks to which triangular decompositions
can be computed. For more details about the theory of regular chains and its
algorithmic aspects, we refer to [30].

Notation 1. The function Squarefree RC(p, T,H) computes a set of triples
((bi,1, . . . , bi,�i), Ti,Hi) with 1 ≤ i ≤ e, such that [T1,H1], . . . , [Te,He] are regular
systems forming a triangular decomposition of Z(T,H), and for all 1 ≤ i ≤ e:
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1. bi,1, . . . , bi,�i are polynomials with the same main variable v = mvar(p) such
that we have p ≡ ∏�i

j=1 bj
i,j mod sat(Ti),

2. all discriminants discr(bi,j , v) and all resultants res(bi,j , bi,k, v) are regular
modulo sat(Ti), thus

∏�i
j=1 bj

i,j is a square-free factorization of p modulo
sat(Ti).

3.2 Regular Chain Representation of a Splitting Field

Let p(x) ∈ K[x] be a monic univariate polynomial. The splitting field of p(x) over
K is the smallest field extension of K over which p(x) splits into linear factors,

p(x) =
�∏

i=1

(x − ri)mi . (1)

The set {r1, . . . , r�} generates L over K. That is, L = K(r1, . . . , r�).
Assume that p(x) is an irreducible, monic polynomial in K[x] of degree n ≥ 2.

To construct the splitting field L of p(x) and compute the factorization of p(x)
into linear factors over L, we proceed as follows.

1. Initialize i := 1, yi := x, L := K, T := {}, P := {} and F := {p}; the set F
is assumed to maintain a list of univariate polynomials in yi, irreducible over
the current value of L and, of degree at least two,

2. While F is not empty do
(S1) pick a polynomial f(yi) ∈ F over L,
(S2) let αi be a root of f(yi) (in the algebraic closure of K),
(S3) replace L by L(αi), that is, by adjoining αi to L,
(S4) replace T by T ∪ {ti(y1, . . . , yi)}, where the multivariate ti(y1, . . . , yi) is

obtained from f(yi) after replacing the algebraic numbers α1, . . . , αi−1

with the variables y1, . . . , yi−1,
(S5) replace P by P ∪ {x − yi},
(S6) factor f(yi) into irreducible factors over L, then add the obtained factors

of degree 1 (resp. greater than 1) to P (resp. F); when adding a factor
to P, replace α1, . . . , αi−1 with y1, . . . , yi−1; when adding a factor to F ,
replace yi with yi+1.

(S7) if F is not empty then i := i + 1.
3. Set s := i and return (s, T,P).

At the end of this procedure, the set T is a regular chain in the polynomial
ring K[y1, . . . , ys] generating a maximal ideal such that K[y1, . . . , ys]/〈T 〉 is iso-
morphic to the splitting field K(p) of p(x). This procedure can be derived from
Landau’s paper [31]; note that the factorization at Step (S6) can be performed,
for instance, by the algorithm of Trager [32]. Example: with p(x) = x3 − 2, one
can find T = {y3

1 − 2, y2
2 + y1y2 + y2

1} and P = {x − y1, x − y2, x + y2 + y1}.
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3.3 The Frobenius Canonical Form

Throughout the sequel of this section, we denote by A a square matrix of dimen-
sion n with entries in a field K.

Let p(x) = xn + an−1x
n−1 + · · · + a1x + a0 be a monic polynomial in K[x].

The Frobenius companion matrix1 of p(x) is a square n × n matrix of the form

C(p(x)) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0 · · · 0 −a0

1 0 · · · 0 −a1

0 1 · · · 0 −a2

...
...

. . .
...

...
0 0 · · · 1 −an−1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (2)

A matrix F ∈ K
n×n is said to be in Frobenius (rational) canonical form if

it is a block diagonal matrix where the blocks are companion matrices of monic
polynomials ψi(x) ∈ K[x]

F =
m⊕

i=1

C(ψi(x)) (3)

such that ψi−1 | ψi for i = 1, . . . ,m − 1. The polynomials ψi are the invariant
factors of F . We recall a few properties below, see [5,33,34] for details:

1. Every companion matrix is in Frobenius canonical form.
2. For all i = 1, . . . ,m, the companion matrix C(ψi) is non-derogatory2.
3. There exists a nonsingular matrix Q ∈ K

n×n such that F := Q−1AQ is in
Frobenius canonical form. The matrix F is called the Frobenius canonical
form of A and the matrices A and F are said to be similar. We note that A
and F have the same invariant factors.

4. The polynomial ψ1 is the minimal polynomial of F and the product
∏

ψi is
the characteristic polynomial of F .

3.4 The Jordan Canonical Form

An element λ ∈ K is an eigenvalue of A if it satisfies det(A − λIn) = 0 where In

is the identity matrix of dimension n. The algebraic multiplicity of an eigenvalue
λ is its multiplicity as a root of the characteristic polynomial of A, and its
geometric multiplicity is the dimension of the null space of A − λIn.

Let F = diag(C(ψ1), C(ψ2), . . . , C(ψm)) be the Frobenius form of A where
C(ψi) is the companion matrix of the ith invariant factor ψi of A. We note that
the geometric multiplicity of an eigenvalue λ of A is the number of invariant
factors that λ is a solution for. Thus, the Frobenius form of A tells us both the
algebraic and geometric multiplicities of all eigenvalues of A.
1 There are many other companion matrices, but in this paper a “companion matrix”

is a Frobenius companion matrix.
2 The characteristic polynomial and the minimal polynomial coincide up to a factor

of ±1.



186 R. M. Corless et al.

A matrix is called a Jordan block of dimension n if it is zero everywhere
except for ones along its superdiagonal, and a single value λ along its main
diagonal. A Jordan block has one eigenvalue λ with geometric multiplicity 1 and
algebraic multiplicity n. We use the notation JBMn(λ) to denote a Jordan block
of dimension n with eigenvalue λ.

Let F be a matrix in Frobenius form as in Eq. (3). The Jordan canonical
form of F is given by

J =
m⊕

i=1

JCF(C(ψi(x))) (4)

where JCF(C(ψ(x))) is the Jordan form of a companion matrix of ψ(x), see
Chapter VI, Sect. 6 of [33] for a proof.

4 JCF over a Splitting Field

4.1 Jordan Form of a Companion Matrix

Let ψ(x) ∈ K[x] be a univariate monic polynomial of degree n. Let L be the
splitting field of ψ(x) over K. Let C = C(ψ(x)) be the companion matrix of
ψ(x). Assume that the complete factorization into linear factors of ψ(x) writes

ψ(x) =
�∏

i=1

(x − ri)mi (5)

where ri ∈ L for i = 1 . . . � and ri �= rj for i �= j. Then, the Jordan form of C is
given by

J =
�⊕

i=1

JBMmi
(ri) (6)

where the entries of J are in L. Thus, once the splitting field of ψ(x) is computed,
the Jordan canonical form of the companion matrix of ψ(x) can be constructed.

Using the algorithm described in Sect. 3.2, the roots r1, . . . , r� of ψ(x) are
represented by the residue classes of multivariate polynomials r1(y1, . . . , ys), . . .,
r�(y1, . . . , ys) modulo 〈T 〉, since the regular chain T = t1(y1), . . . , ts(y1, . . . , ys)
encodes the splitting field K(ψ) of ψ(x) in the sense that this field is isomorphic
to K[y1, . . . , yi]/〈T 〉. Therefore, the Jordan form of C is given by

�⊕

i=1

JBMmi
(ri(y1, . . . , ys)) (7)

together with the regular chain T .

4.2 Frobenius Form to Jordan Form

Let F ∈ K
n×n be in Frobenius form, with F = diag(C(ψ1), C(ψ2), . . . , C(ψm)),

where the polynomials ψi are the invariant factors of F . By Eq. (4), the Jordan
form of F is given by J =

⊕m
i=1 JCF(C(ψi)) and a regular chain T defining the

splitting field of ψ1. This is, indeed, sufficient to compute all the entries of the
JCF of F , since every subsequent polynomial ψi divides ψ1.
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4.3 Example

Let ψ(x) = (x3 + x2 + x − 1)(x2 + x + 1)2, where the coefficients are in Q. Let
C be the companion matrix of ψ. The JCF of C over the splitting field L of ψ
over Q is ⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y1 0 0 0 0 0 0
0 y3 0 0 0 0 0
0 0 1 − y1 − y3 0 0 0 0
0 0 0 y2 1 0 0
0 0 0 0 y2 0 0
0 0 0 0 0 −1 − y2 1
0 0 0 0 0 −1 − y2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

where (y1, y2, y3) are any point in the zero set V (T ) where T is

T = {y2
1 + (1 + y3)y1 + y2

3 + y3 + 1, y2
2 + y2 + 1, y3

3 + y2
3 + y3 − 1}.

5 JCF of a Matrix with Parameters

In this section we show how to compute a complete case discussion for the JCF of
a matrix F in Frobenius form where the entries are polynomials in K[α1, . . . , αs].
Note that, as Arnol’d points out in [16], a parametric Frobenius form is contin-
uous in its parameters, though its Jordan form may not be. Throughout this
section, T ⊂ K[α] will be a regular chain and H ⊂ K[α] a set of polynomial
inequations such that [T,H] forms a regular system.

5.1 Square-Free Factorization of a Parametric Polynomial

Let α1 < · · · < αs be s ≥ 1 ordered variables. Let K[α] = K[α1, . . . , αs] be the
ring of polynomials in the variables α = α1, . . . , αs. Let x be a variable. Let K[x]
(resp. K[α][x]) be the ring of polynomials in x with coefficients in K (resp. K[α]).
A polynomial p(x;α) ∈ K[α][x] is called a univariate, parametric polynomial in
x and takes the form

p(x;α) = an(α)xn + · · · + a1(α)x + a0(α) (8)

where the coefficients ai(α) are polynomials in K[α].
Let p(x;α) =

∏�
i=1 bi(x;α)i be a square-free factorization of p(x;α), regarded

as a univariate polynomial in K[α][x]. Then, the following properties must hold:

1. each polynomial bi(x;α) is square-free as a polynomial in K[α][x], and
2. the GCD of bi(x;α) and bj(x;α), as polynomials in K[α][x], has degree zero

in x, for all 1 ≤ i < j ≤ �.

We note that each of the square-free factors b1, . . . , b� of p(x;α) is uniquely
defined up to a multiplicative element of K[α].
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Definition 1. We say that the sequence of polynomials b1, . . . , b� specializes well
at a point α∗ = (α∗

1, . . . , α
∗
s) ∈ K

s
whenever

1. the degree in x of the specialized polynomial bi(x;α∗) is the same as the degree
in x of bi as a polynomial in K[α][x], for all 1 ≤ i ≤ �;

2. each specialized polynomial bi(x;α∗) is square-free, as a polynomial in K[x],
for all 1 ≤ i ≤ �; and

3. the GCD of bi(x;α∗) and bj(x;α∗), as polynomials in K[x], has degree zero
in x, for all 1 ≤ i < j ≤ �.

From the theory of border polynomials [27–29] the following result holds.

Proposition 1. The set of points α ∈ K
s
at which the sequence of polynomials

b1, . . . , b� specializes well is the complement of the algebraic set given by

{ i=e⋃

i=1

V (Δi)
}

∪
{ ⋃

1≤i<j≤e

V (Ri,j)
}

, (9)

where Δi := discr(bi(x;α), x) denotes the discriminant of bi(x;α) w.r.t. x and
Ri,j := res(bi(x;α), bj(x;α), x) denotes the resultant of bi(x;α) and bj(x;α)
w.r.t. x.

Definition 2. We call the proviso of the sequence of polynomials b1, . . . , b�

the algebraic set (actually hypersurface) given by Eq. (9) and denote it by
Proviso(b1, . . . , b�). We call the square-free factorization with proviso of p(x;α)
the pair (

∏�
i=1 bi(x;α)i,Proviso(b1, . . . , b�)).

We note that the zero set of the border polynomial of p(x;α) (in the sense
[27,29]) is usually defined whenever p(x;α) is square-free w.r.t. x, in which case
it coincides with Proviso(b1, . . . , b�).

We are now interested in obtaining a complete case discussion for
the square-free factorization of p(x;α), that is, including the cases where
α∗ ∈ Proviso(p(x;α), x) holds. This can be achieved by using the function
Squarefree RC(p, T,H) specified in Sect. 3.1.

5.2 JCF of a Companion Matrix with Parameters

From now on, we assume that the field K is C. Let C ∈ K[α]n×n be a compan-
ion matrix with characteristic polynomial ψ(x;α) ∈ K[α][x]. Let

∏�
i=1 bi(x;α)i

be a square-free factorization of ψ(x;α). We observe that in the complement
of Proviso(b1, . . . , b�), the roots (in x) of b1, . . . , b�, as functions of α, define
continuous, disjoint graphs. Let us denote those functions by λi,1, . . . , λi,ni

cor-
responding to the polynomial bi, for 1 ≤ i ≤ �. Therefore, one can construct the
JCF of C uniformly over the complement of Proviso(b1, . . . , b�) as follows

�⊕

i=1

ni⊕

j=1

JBMi(λi,j). (10)
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More generally, for a regular system [T,H] let ((bi,1, . . . , bi,�i), Ti,Hi), with
1 ≤ i ≤ e, be the output of Squarefree RC(ψ(x;α), T,H). Then, for every 1 ≤
i ≤ e, one can construct the JCF of C uniformly over Z(Ti,Hi) as the regular
systems [T1,H1], . . . , [Te,He] form a triangular decomposition of Z(T,H).

5.3 Frobenius Form to JCF with Parameters

Let F ∈ K[α]n×n be a matrix in Frobenius form with invariant factors
ψi(x;α) ∈ K[α][x] for 1 ≤ i ≤ m. Let

∏�
i=1 bi(x;α)i be a square-free fac-

torization of the minimal polynomial, ψ1(x;α). The JCF over the comple-
ment of Proviso(b1, . . . , b�) is defined continuously for each companion matrix
C(ψi(x;α)), 1 ≤ i ≤ m. This is a consequence of the property that each subse-
quent ψi(x;α) divides ψ1(x;α).

The construction of the JCF of C(ψ1(x;α)) defines a decomposition of the
complement of Proviso(b1, . . . , b�) into the zero sets of finitely many square-free
regular systems [T1,H1], . . . , [Te,He]. Over each regular system, the JCF of each
companion matrix C(ψi(x;α)) for 1 ≤ i ≤ m is defined continuously.

6 Experimentation

We are actively developing a package called ParametricMatrixTools in Maple
that implements algorithms for computations on matrices with parameters.
The source for this package, including numerous examples, is available at
github.com/StevenThornton/ParametricMatrixTools and is compatible the ver-
sion of the RegularChains library included in Maple 2016 and later. The
ComprehensiveJordanForm method implements the algorithm discussed in
Sect. 5. Further details can be found at regularchains.org.

For each of the examples that follow, we have first computed a full case dis-
cussion for the Frobenius form using the ComprehensiveFrobeniusForm routine
in our package. The details of the Frobenius form implementation have been
omitted and we are actively working to improve our current implementation.

6.1 Kac-Murdock-Szegö matrices

The inverse matrix K−1
n (ρ) from [35] is

1
1 − ρ2

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 −ρ 0 · · · 0 0 0
−ρ 1 + ρ2 −ρ · · · 0 0 0
0 −ρ 1 + ρ2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 1 + ρ2 −ρ 0
0 0 0 · · · −ρ 1 + ρ2 −ρ
0 0 0 · · · 0 −ρ 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The cost to compute a full case discussion of the JCF of (1 − ρ2)K−1
n (ρ) grows

exponentially with n. See Fig. 2.

https://github.com/steventhornton/ParametricMatrixTools
http://regularchains.org/
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Fig. 2. Time to compute the JCF of each Frobenius form in the full case discussion of
the Frobenius form of the matrix in Sect. 6.1. For all n, the Frobenius form splits into
two cases: ρ = 0 and ρ �= 0. The JCF is computed over each of these branches. Note
the exponential growth. Timing was done on a 2016, 3.3 GHz quad-core Intel Core i7
iMac with 16 GB of RAM using Maple 2016.2.

6.2 The Belousov-Zhabotinskii Reaction

The report [36] contains a very readable account of the famous B-Z reaction and
its history. This is a chemical oscillator. In non-dimensional form with ε = δ = 1
we have

ẋ = qy − xy + x(1 − x)
ẏ = −qy − xy + fz

ż = x − z

The equilibria include x = z being a positive root of the quadratic

x(x − 1 + f) + q(x − 1 − f) = 0. (11)

The Jacobian at the equilibrium is

A =

⎡

⎣
1 − x − y q − x 0

−y −(q + x) f
1 0 −1

⎤

⎦ (12)

and the Jordan form of A splits into many cases. One non-trivial example is

J =

⎡

⎣
α 0 0
0 β 1
0 0 β

⎤

⎦ (13)
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where

α =
1

9994
(−81q5 + 804q4 − 3882q3 + 12209q2 − 6288q − 59636)

β =
1
2
(−α + 3q − 10)

under the following constraints on the indeterminates of A:

x = z = −2y

f = −1

(q5 − 13q4 + 86q3 − 359q2 + 911q − 742)z − 4q2 − 8 = 0

q6 − 15q5 + 112q4 − 531q3 + 1633q2 − 2564q + 1492 = 0.

There are real values of q satisfying this equation, and hence this case is real.

6.3 Nuclear Magnetic Resonance

In [6], Sect. 2.2, we find a concise description of an application of the matrix
exponential to solve the so-called Solomon equations

Ṁ = −RM, M(0) = I by M(t) = e−Rt. (14)

Here R is a symmetric, diagonally dominant matrix called the relaxation matrix,
and M is the matrix of intensities. Suppose R is in fact tridiagonal, with ones on
the sub- and super-diagonals, and diagonal parameters |ri| > 1. Using Maple’s
built-in MatrixExponential gets answers (e.g. when the dimension n is 3) but
we are not convinced that the generic answer returned is correct, always. So we
try computing the JCF. Doing so, we find that indeed there are special cases
that the generic code missed. For example, when R is of dimension 3, the JCF
of R is ⎡

⎣
(r1 + r2 + r3)/3 1

0 (r1 + r2 + r3)/3 1
0 0 (r1 + r2 + r3)/3

⎤

⎦ (15)

when

r21 + r22 + r23 − r1r2 − r1r3 − r2r3 + 6 = 0 (16)

((r1 − r3)2 − 1)((r1 − r3)2 + 8) = 0. (17)

When discr(CharPoly(A)) �= 0 the JCF is simply diag(λ1, λ2, λ3) for the distinct
eigenvalues λ1, λ2, λ3. And for the remaining parameter values, the JCF consists
of a Jordan block of dimension 2 with eigenvalue λ1, and a Jordan block of
dimension 1 with eigenvalue λ2 for λ1 �= λ2. The only case corresponding to real
values of r1, r2, r3 is the trivial diagonal case. In the cases where the JCF is not
a diagonal matrix, the result computed by the MatrixExponential function in
Maple contains discontinuities.
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6.4 Bifurcation Studies

The mathematical methods used in bifurcation studies are highly sophisticated,
both symbolically and numerically. Tools used include normal forms and the
action of symmetry groups. Consider the matrix

J =

⎡

⎣
0 2ρ 0
a 2β 2v
b −2v 2β

⎤

⎦ (18)

which is the Jacobian matrix of a dynamical system at equilibrium. The analysis
of this system in [12] is quite complete, yet the evolution of trajectories near the
equilibria, governed by

ξ′ = Jξ, ξ(0) = I (19)

or ξ = exp(tJ), is of interest. When the JCF of J is nontrivial, one can antici-
pate phenomena such as greater sensitivity to modelling error, for instance. Our
implementation is able to find a complete case discussion of the JCF, starting
from the complete case discussion of the Frobenius form, in approximately 2
seconds. We find cases corresponding to each of the 5 possible Jordan structures
for a 3 × 3 matrix with a total of 46 cases. Of the 46 cases, 14 are defined by
polynomials of total degree greater than 4. The worst case contains a polynomial
of degree 12 in the parameters with 19 terms.

One non-trivial case we were able to automatically identify is where the JCF
of J is given by ⎡

⎣
2β 0 0
0 β 1
0 0 β

⎤

⎦ (20)

when 2ρa + β2 = 0, v = 0, and a, ρ and β are non-zero.
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4 Université Paris-Sud, Orsay, France
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Abstract. There is a large ecosystem of mathematical software systems.
Individually, these are optimized for particular domains and function-
alities, and together they cover many needs of practical and theoret-
ical mathematics. However, each system specializes on one particular
area, and it remains very difficult to solve problems that need to involve
multiple systems. Some integrations exist, but the are ad-hoc and have
scalability and maintainability issues. In particular, there is not yet an
interoperability layer that combines the various systems into a virtual
research environment (VRE) for mathematics.

The OpenDreamKit project aims at building a toolkit for such VREs.
It suggests using a central system-agnostic formalization of mathematics
(Math-in-the-Middle, MitM) as the needed interoperability layer. In this
paper, we report on a case study that instantiates the MitM paradigm
the systems GAP, SageMath, and Singular to perform computation in
group and ring theory.

Our work involves massive practical efforts, including a novel formal-
ization of computational group theory, improvements to the involved
software systems, and a novel mediating system that sits at the center of
a star-shaped integration layout between mathematical software systems.

1 Introduction

There is a large and vibrant ecosystem of open-source software systems for math-
ematics. These range from calculators, which perform simple computations, via
mathematical databases, which curate collections of a mathematical objects, to
powerful modeling tools and computer algebra systems (CAS).

Most of these systems are very specific – they focus on one or very few
aspects of mathematics. For example, among databases, the “Online Encyclope-
dia of Integer Sequences” (OEIS) focuses on sequences over Z and their prop-
erties, and the “L-Functions and Modular Forms Database” (LMFDB) [Cre16,
LMFDB] on objects in number theory pertaining to Langland’s program. Among
c© Springer International Publishing AG 2017
J. Blömer et al. (Eds.): MACIS 2017, LNCS 10693, pp. 195–210, 2017.
https://doi.org/10.1007/978-3-319-72453-9_14
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CAS, GAP [GAP] excels at discrete algebra with a focus on group theory,
Singular [SNG] focuses on polynomial computations with special emphasis on
commutative and non-commutative algebra, algebraic geometry, and singularity
theory, and SageMath [Sage] aims to be a general purpose software for compu-
tational pure mathematics by loosely integrating many systems including the
aforementioned ones.

For a mathematician, however, (a user, which we call Jane) the systems them-
selves are not relevant. Instead, she only cares about being able to solve problems.
Because it is typically not possible to solve a mathematical problem using only a
single program, Jane has to work with multiple systems and combine the results
to reach a solution. Currently there is very little tool support for this practice,
so Jane has to isolate sub-problems that the respective systems are amenable
to, formulate them in the respective input language, collect intermediate results
and reformulate them for the next system – a tedious and error-prone process at
best, a significant impediment to scientific progress at worst. Solutions for some
situations certainly exist, which can help get Jane unstuck, but these are ad-hoc
and only for specific often-used system combinations. Moreover, each of these
ad hoc solutions requires a lot of maintenance and scales badly to multi-system
integration.

One goal of the OpenDreamKit project is tackling these problems system-
atically by building virtual research environments (VRE) on top of the exist-
ing systems. To build a VRE from individual systems, we need a joint user
interface – the OpenDreamKit project adopts Jupyter [Jup] and active docu-
ments [Koh+11] – and an interoperability layer that allows passing problems
and results between the disparate systems. For the latter, it proposes the Math-
in-the-Middle (MitM [Deh+16]) paradigm, an interoperability framework based
on a central, system-independent ontology of mathematical knowledge. In this
paper we instantiate the MitM paradigm in a concrete case study using a dis-
tributed computation involving GAP, SageMath, and Singular.

We will use the following running example from computational group theory:
Jane wants to experiment with invariant theory of finite groups. She works in
the polynomial ring R = Z[X1, . . . , Xn], and wants to construct an ideal I in this
ring that is fixed by a group G ≤ Sn acting on the variables, linking properties
of the group to properties of I and the quotient of R by I.

To construct an ideal that is invariant under the group action, it is natural
to pick some polynomial p from R and consider the ideal I of R that is gener-
ated by all elements of the orbit O = Orbit(G,R, p) ⊆ R. For effective further
computation with I, she needs a Göbner base of I.

Jane is a SageMath user and wants to receive the result in SageMath, but
she wants to use GAP’s orbit algorithm and Singular’s Gröbner base algorithm,
which she knows to be very efficient. For the sake of example, we will work with
n = 4, G = D4 (the dihedral group1), and p = 3 · X1 + 2 · X2, but our results
apply to arbitrary values.

1 Incidentally, this group is called D4 in SageMath but D8 in GAP due to differing
conventions in different mathematical communities – a small example of the obstacles
to system interoperability that MitM tackles.
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In Sect. 2, we recap the MitM paradigm. MitM solutions consist of three
parts: a central ontology, specifications of the abstract languages of the involved
systems (which we call system dialects), and the distributed computation infras-
tructure that connects the systems via the ontology as an intermediate repre-
sentation. The rest of the paper develops these three parts for our case study:
In Sect. 3, we contribute a fragment to the MitM ontology that formalizes com-
putational group theory. In Sect. 4, we specify the abstract languages of GAP,
SageMath, and Singular and their relation to the ontology. Finally in Sect. 5,
we present the resulting virtual research environment built on these systems in
action. Section 6 concludes the paper and compares MitM-based interoperability
with other approaches.

2 Math-in-the-Middle Interoperability

A B
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EF
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H

MitM

a b
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Fig. 1. MitM paradigm

Figure 1 shows the basic MitM design. We want
to make the systems A to H with system dialects
a to h interoperable. A P2P translation regime
(n(n − 1) translations between n systems) is
already intractable for the systems in the Open-
DreamKit project (more than a dozen). Alterna-
tively, an “industry standard” regime, where one
system dialect is declared as the standard is infea-
sible because no system dialect subsumes all oth-
ers – not to mention the political problems such
a standardization would induce. Instead, MitM
uses a central mathematical ontology that pro-
vides an independent mediating language, via which all participating systems are
aligned. All mathematical knowledge shared between the systems and exposed to
the high-level VRE user is expressed using the vocabulary of this ontology. Cru-
cially, while every system dialect makes implementation-driven, system-specific
design choices, the MitM ontology can remain close to the knowledge published
in the mathematical literature, which already serves as an informal interoper-
ability layer.

The following sections describe the three components of the MitM paradigm
in more detail.

2.1 The MitM Ontology

In the center, we have the MitM Ontology, which is a formalization of
the mathematical knowledge behind the systems A to H. As a formaliza-
tion framework, it uses the OMDoc/MMT format [Koh06,RK13,MMT], which
was designed with this specific application in mind. We do not go into the
details of OMDoc/MMT here – for our purposes, it suffices to assume that an
OMDoc/MMT theory graph formalizes a language for mathematical objects as a
set of typed symbols with a (formal or informal) specification of their semantics.



198 M. Kohlhase et al.

For example, the MitM-symbol PolynomialRing takes a ring r of coefficients
and a number n of variables and returns the ring r[X1, . . . , Xn] of polynomials.

Note that the purpose of the MitM ontology is not the formal verification of
mathematical theorems (as for most existing formalizations of group theory), but
to act as a pivot point for integrating systems. This means that it can be much
nearer to the informal but rigorous presentation of mathematical knowledge in
the literature. While each system dialect makes compromises and optimizations
needed for a particular application domain, the MitM ontology follows the exist-
ing and already informally standardized mathematical knowledge and can thus
serve as a standard interface layer between systems.

Importantly, the MitM ontology does not have to include any definitions2

or proofs – it only has to declare the types of all relevant symbols and state
(but not prove) the relevant theorems. This makes it possible for users like Jane
to extend the MitM ontology quickly whereas extending formalizations usually
requires extensive efforts by specialists.

2.2 Specifying System Dialects

System Dialects. It is unavoidable that each system induces its own language
for mathematical objects. This is the cause of much incompatibility because
even subtle differences make naive integration impossible. Moreover, due to the
difficulty of the involved mathematics and the effort of maintaining the imple-
mentations, such differences are aplenty.

Fortunately, we can at least easily abstract from the user-facing surface syn-
tax of these languages: scalable interoperability can anyway only be achieved
by acting on the internal data structures of the systems. Thus, only the much
simpler internal abstract syntax needs to be considered.

The symbols that build the abstract syntax trees can be split into two kinds:
constructors build primitive objects without involving computation, and oper-
ations compute objects from other objects (including predicates, which we
see as operations that return booleans). For purposes of interoperability it is
desirable to abstract from this distinction and consider both as typed symbols.
This abstraction is important because systems often disagree on the choice of
constructors. Thus, we can represent the interfaces of the systems A to H as
OMDoc/MMT theory graphs a to h that declare the constructors and opera-
tions (but omit all implementations of the operations) of the respective system.

Given the theory graph a representing the system dialect of A, we can express
all objects in the language of system A as OMDoc/MMT objects using the sym-
bols of a. We refer to these objects as A-objects. It is conceptually straight-
forward to write (or even automatically generate) the theory graph a and to
implement a serializer and parser for A-objects as a part of A.3 This is because
no consideration of interoperability and thus no communication with the devel-
opers of other systems is needed.

2 Of course, definitions are one possible way to specify the semantics of MitM-symbols.
3 However, as we see below, this may still be surprisingly difficult in practice.
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Alignments with the Ontology. The above reduces the interoperability problem
to relating each system dialect to the MitM ontology. Each system dialect over-
laps with the language of the ontology, but no system implements all ontology
symbols and every system implements idiosyncratic operations that are not use-
ful as a part of the ontology. Therefore, some system dialect symbols are related
to corresponding symbols in the MitM ontology. We use these symbols of the
MitM ontology as an intermediate representation to bridge between any two sys-
tems, e.g., by translating A-objects to the corresponding ontology objects and
then those to the corresponding B-objects.

However, even when A and B deal with the “same mathematical objects”,
these may be constructed and represented differently, e.g., symbols can differ in
name, argument order/number, types, etc. A major difficulty for system inter-
operability is correctly handling these subtle differences. To formalize the details
of this relation, [Mül+17b] introduced OMDoc/MMT alignments. Technically,
these are pairs of OMDoc/MMT symbol identifiers decorated by a set of key-
value pairs. The alignments of a-symbols with the MitM ontology determine
which A-objects correspond to MitM-objects.

The alignment of a-symbols to ontology symbols must be spelled out manu-
ally. But this is usually straightforward and easy even for inexperienced users. For
example, the following line aligns GAP’s symbol IsCyclic (in the file lib/grp.gd)
with the corresponding symbol cyclic in the MitM ontology. The key-value pairs
are used to signify that this alignment is part of a group of alignments called
“VRE” and can be used for translations in both directions.

gap:/lib?grp?IsCyclic mitm:/smglom/algebra?group?cylic
direction="both" type="VRE"

Thus we can reduce the problem of interfacing n systems to (i) curating
the MitM ontology for the joint mathematical domain, (ii) generating n theory
graphs for the system dialects, (iii) maintaining n collections of alignments with
the MitM ontology.

Alignments form an independent part of the MitM interoperability infras-
tructure. Incidentally, they obey a separate development schedule: the MitM
ontology is developed by the community as a whole as the understanding of a
mathematical domain changes. The system dialects are released together with
the systems according to their respective development cycle. The alignments
bridge between them and have to mediate these cycles.

2.3 MitM-Based Distributed Computation

The final missing piece for a system interoperability layer for a VRE toolkit is a
practical way of transporting objects between systems. This requires two steps.

Firstly, if the system dialects and alignments are known, we can automatically
translate A-objects to B-objects in two steps: A to ontology and ontology to B.
This two-step translation has been implemented in [Mül+17a] based on the MMT
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system [Rab13,MMT], which implements the OMDoc/MMT format along with
logical and knowledge management algorithms.

Secondly, each system A has to be able to serialize/parse A-objects and to
send them to/receive them from MMT. In the OpenDreamKit project we use
the OpenMath SCSCP (Symbolic Computation Software Composability) pro-
tocol [Fre+] for that. It is straightforward to extend a parser/serializer for A-
objects to an SCSCP clients/server by implementing the SCSCP protocol on top
of, e.g., sockets or using an existing SCSCP library.

3 The MitM Ontology for Computational Group Theory

Jane’s use case involves groups and actions, polynomials, rings and ideals, and
Gröbner bases, all of which must be formalized in the MitM ontology. Due to
space restrictions, we only describe the ontology for computational group theory
(CGT) as an example. This formalization can be found at [Mitb].

3.1 Type Theory and Logic

OMDoc/MMT formalizations must be relative to foundational logic, which is
itself formalized in OMDoc/MMT. As foundation for all formalizations in MitM
[Mita], we use a polymorphic dependently typed λ-calculus with two universes
type and kind (roughly analogous to sets and proper classes in set theory) and
subtyping. It provides dependent function types {a:A}B(a), representing the type
of all functions mapping an argument a:A to some element of type B(a). If B
does not depend on the argument a, we obtain the simple function type A→B.

For formulas, we use a type prop and a higher order logic where quantifiers
range over any type. We furthermore follow the judgments-as-type paradigm by
declaring a function �:prop→type mapping propositions to the type of their
proofs, which allows us to declare proof rules as functions mapping proofs (of
the premises) to a proof (of the conclusion).

The judgment A<:B expresses that A is a subtype of B. We use power types
(the type of subtypes of a type) and predicate subtyping {’a:A | P(a)’}. The latter
makes type-checking undecidable, but that is necessary for natural formalizations
in many areas of mathematics.

Fig. 2. MitM ontology fragment

Additionally we extend our type
theory with record types, which is
critical for formalizing mathematical
structures. In particular, ModelsOf T
is the record type of models of the
theory T. This lets us, e.g., define
groups by the theory of operations
and its signature and axioms, while
group = ModelsOf group theory is the
type of all models of said theory, i.e., all groups, as seen in Fig. 2. Any ele-
ment g:group thus represents an actual group, whose operations and axioms can
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be accessed via record field projections (e.g. g.inverse yields the inverse operation
of g. Since axioms are turned into record type fields as well, actually construct-
ing a record of type group corresponds to proving that the field universe and the
operations provided in the record do in fact form a group.

3.2 Group Theory

Our formalization of CGT follows the template of its implementation in GAP,
and requires different levels of abstraction – currently abstract, representation,
implementation, and concrete. From our experience, we expect this pattern to
be applicable across computational algebra, possibly with additional levels of
abstraction. The left box in Fig. 3 shows the levels and their relation to the
constructors and operations of GAP.

Level

abstract

repn.

impl.

concrete

MitM Ontology

Abstract GT

Permutation
Groups

Matrix
Groups

Finitely
Presented
Groups

G ≤ Symmetric([1..n]) G ≤ GL(n, F ) G = Fn/K

Mathieu(11) ≤ Symmetric([1..11])

GAP API

IsGroup

IsPermGroup IsMatrixGroup IsFpGroup

Group((1,2,3))

Group([[0, 1], [2, 0]])

MathieuGroup(11)

Fig. 3. Alignments between the MitM ontology and the GAP API

Abstract Level. This contains the theory of Groups: the group axioms, generat-
ing sets, homomorphisms, group actions, stabilisers, and orbits. This also easily
leads into definitions of centralisers – i.e. stabilisers of elements under conjuga-
tion – and normalisers – i.e. stabilisers of subgroups under conjugation, stabiliser
chains, Sylow-p subgroups, Hall subgroups, and many other concepts.

OMDoc/MMT also allows expressing that there are different equivalent def-
initions of a concept: We defined group actions in two ways and used views to
express their equivalence.

Representation Level. Abstract groups are represented in different ways as con-
crete objects suitable for computation: as groups of permutations, groups of
matrices, finitely presented groups, algebraic constructions of groups, or using
polycyclic presentations.

Many representations arise naturally from group actions: If we are consider-
ing symmetry in a setting where we want to apply group theory, we start with a
group action, for example a group acting on a graph by permuting its vertices.

The universal tool to bridge the gap between groups, representations and
canonical representatives are group homomorphisms, particularly embeddings
and isomorphisms, which are used extensively in GAP. This is reflected in our
approach.
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Implementation Level. At this level we encode implementation details: Permu-
tation groups in GAP are considered as finite subgroups of the group SN+, and
defined by providing a set of generating permutations. GAP then computes a
stabiliser chain for a group that was defined this way, and naturally considers
the group to be a subgroup of S[1...n], where n is the largest point moved.

Concrete Level. It is at the concrete level where the computation happens: while
the higher levels are suitable for mathematical deduction and inference, this level
is where GAP (or any other system providing computational group theory) does
its work. If a group (or a group action) has been constructed by giving generators
through MitM, GAP can now compute the size of the group, its isomorphism
type, and perform all the other operations that are available via the GAP system
dialect.

4 The System Dialects of GAP, SageMath, and Singular

We now show how we produce OMDoc/MMT theory graphs that specify the
system dialects of GAP, Singular, and SageMath. The three systems are suffi-
ciently different that we can consider the development presented in this section
a meaningful case study in the methodology and difficulty of exposing the APIs
of real-world systems as of formally described system dialects.

In each case, we had to overcome major implementation difficulties and invest
significant manpower. In fact, even the serialization of internal abstract syntax
trees as OMDoc/MMT objects proved difficult, for different system-specific rea-
sons. In the following, we summarize these efforts.

4.1 SageMath

We first consider our previous work [Deh+16] regarding a direct (i.e., with-
out MitM) integration of SageMath and GAP. Here SageMath’s native interface
to GAP is upgraded from the handle paradigm to the semantic handles
paradigm. In the former, when a system A delegates a calculation to a system
B, the result r of the calculation is not converted to a native A object (unless
it is of some basic type); instead B just returns a handle h (i.e., some kind of
reference) to the B-object r. Later, A can run further calculations with r by
passing it as argument to functions or methods implemented by B. Addition-
ally, with a semantic handle, h behaves in A as if it was a native A object. In
other words, one adapts the API satisfied by r in B to match the API for the
same kind of objects in A. For example, the method call h.cardinality() on a
SageMath handle h to a GAP group G triggers in GAP the corresponding function
call Size(G).

This approach avoids the overhead of back and forth conversions between A
and B and enables the manipulation of B-objects from A even if they have no
native representation in A. However, if these B-objects need to be acted on by
native operations of A or other systems (as in Jane’s scenario), we actually have
to convert the objects r between A and B.
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API. In [Deh+16] we describe the extraction of some of SageMath’s API from
its categories. This exploited the mathematical knowledge explicitly embedded
in the code to cover a fairly large area of mathematics (hundreds of kinds of
algebraic structures such as groups, algebras, fields, . . . ), with little additional
efforts or need to curate the output. This extraction did not cover the construc-
tors, knowledge about which is critical for (de)serialization, nor other areas of
mathematics (graph theory, elliptic curves, . . . ) where SageMath developers cur-
rently do not use categories (usually because the involved hierarchies of abstract
classes are shallow and easily maintained by hand).

To extract more APIs, we took the following approach:

1. We constructed a list of typical SageMath objects.
2. We used introspection to analyze those objects, crawling recursively through

their hierarchy of classes to extract constructors and available methods
together with some mathematical knowledge.

At this stage, the list of objects was crafted by hand to cover Jane’s scenarios
and some others. In a later stage, we plan to take advantage of one of SageMath’s
coding standards: every concrete type must be instantiated at least once in
SageMath’s tests and the instance passed trough a generic test suite that runs
sanity checks for its advertised properties (e.g. associativity, . . . ). Therefore, by a
simple instrumentation of SageMath’s test framework, we could run our exporter
on a fairly complete collection of SageMath objects.

The process remains brittle and the export will eventually require much
curation:

– The signature of methods is incomplete: it specifies the number and names of
the arguments, but only the type of the first argument.

– For constructors, the type of all the arguments is known, but only for the
specific call that led to the construction of the introspected object.

– There is no distinction between mathematically relevant methods and purely
technical ones like data structure manipulation helpers.

– The export is very large and seems of limited use without alignments with
the MitM ontology. At this stage we do not foresee much opportunities to
produce such alignments other than manually.

Nonetheless, we consider this an important first step toward fully automatic
extraction of the SageMath API. Moreover, we expect further improvements
by code annotations in SageMath (e.g., the ongoing porting of SageMath from
Python 2 to Python3 will enable gradual typing, which we hope to become
widely adopted by the community) or using type inference in SageMath and/or
MitM.

Serialization and Deserialization. Because SageMath is based on Python, it
benefits from its native serialization support. For example, the dihedral group
D4 is serialized as a binary string, which encodes the following straight line
program to be executed upon deserialization:
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pg unreduce = unpickle global(’sage.structure.unique representation’, ’unreduce’)
pg DihedralGroup =

unpickle global(’sage.groups.perm gps.permgroup named’, ’DihedralGroup’)
pg make integer = unpickle global(’sage.rings.integer’, ’make integer’)
pg unreduce(pg DihedralGroup, (pg make integer(’4’),), {})

The first three lines recover the constructors for integers and for dihedral groups
from SageMath’s library. The last line applies them to construct successively the
integer 4 and D4.

Up to concrete syntax, this serialization is already close to the desired Sage-
Math system dialect. We can therefore extend Python’s native (de)serializer
to use OMDoc/MMT as an alternative serialization format (using the Python
library [POMa]). This has the advantage of using optimizations implemented in
Python’s serialization, e.g., structure sharing for identical subexpressions.

Still, systematically expanding OMDoc/MMT serialization to the entire Sage-
Math library requires significant manpower and can only be a long-term goal.
To increase community support, our design elegantly decouples the problem into
(i) instrumenting the serialization to generate OMDoc/MMT as an alternative
target format, and (ii) structural improvements of the serialization that benefit
SageMath in general.

In particular, our serialization of SageMath objects is by construction
rather than by representation, i.e., we serialize the constructor call that was
used to build an object instead of the low-level Python representation of the
resulting object. This is important to hide implementation details and allow
for straightforward alignments. From the origin, the SageMath community has
internally promoted good support for serialization as this is a fundamental build-
ing block for communication between parallel processes, databases, etc. Thus, it
already values serialization by construction as superior because it is usually more
concise and more robust under changes to SageMath. Therefore, independent of
the purposes of this paper, we expect a synergy with the SageMath community
toward improving serialization.

4.2 GAP

In [Deh+16], we already described our general approach to extract APIs from
the GAP system. We have now improved on this work considerably.

Firstly, we improved the MitM foundation so that the primitives of GAP’s
type system can be expressed in the MitM ontology.4 GAP’s type system heavily
uses subtyping: filters express finer and finer subtypes of the universal type
IsObject. Moreover, an object in GAP can learn about its properties, meaning its
type is refined at runtime: a group can learn that it is Abelian or nilpotent and
change its type accordingly.

Secondly, we devised and implemented a special treatment of GAP’s construc-
tors during serialization. As GAP only has a weak notion of object construction,

4 In the future MMT might even serve as an external type-checker for GAP.
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we achieved this by manually identifying and annotating all functions that cre-
ate objects in the GAP code base and then instrumenting them to store which
arguments they were called with. With the constructor annotation in place, it
is possible to have GAP represent any object in a running session as either a
primitive type (integers, permutations, transformations, lists, floats, strings), or
as a constructor applied to a list of arguments.

The instrumentation itself is minimal – 57 lines of GAP code, plus 100 lines
for serializing and parsing. The main – and indeed considerable – challenge was
to identify the constructors and their arguments. In GAP, objects are created
by calling the function Objectify with a type and some arguments. Hence we
analyzed all call-sites to this function and some light inference of the enclosing
function. This amounted to 665 call sites in the GAP library and an additional
1664 in the standard package distribution. The instrumentation will be released
as part of a future version of GAP, making GAP fully MitM capable.

As a major positive side-effect of our work, this instrumentation led to general
improvements of the type infrastructure in GAP. For example, it enables static
type analysis, which can be used to optimize the dynamic method dispatch and
thus hopefully lead to efficiency gains in the system.

4.3 Singular

As we only need a very small part of Singular for our case study, we were able to
use the existing OpenMath content dictionaries for polynomials [OMCP] as the
Singular system dialect. These are part of a standard group of content dictionaries
that describe (some) mathematical objects at a high level of abstraction to be
universally applicable. OMDoc/MMT understands OpenMath, i.e., it can use
these content dictionaries as OMDoc/MMT theories.

Building on the OpenMath toolkits for OpenMath phrasebooks [POMa] and
SCSCP communication [POMb] in Python – which were developed for SageMath
in the OpenDreamKit project, we wrapped Singular in a thin layer of Python
code that provides SCSCP communication. This work was undertaken by the
sixth author as part of a summer internship in about a week without prior expert
knowledge of the system. Of course, if we want to achieve a more comprehensive
coverage of the Singular dialect, we will have to either manually write a theory
graph or instrument Singular for extraction as we did for SageMath or GAP above.

4.4 Alignments

Finally we have to curate the alignments between the system dialects and the
MitM ontology. These alignments are currently produced and curated manually
using the approach, repository, and syntax described in [Mül+17b,Mül+17a].
In the future, we will also consider automatically extracting alignments from
the existing ad-hoc SageMath-to-X translations. These are (mainly) given as
SageMath code annotations that relate SageMath operations and constructors
with those of system X.
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Fig. 4. MitM interaction in Jane’s use case

5 Distributed Computational Group Theory

Figure 4 shows the overall architecture with an MitM server as the central medi-
ator. All arrows represent the transfer of OMDoc/MMT objects via SCSCP.
Critically, the MitM server also maintains the alignments and uses them to con-
vert between system dialects.

We have extended the MMT system [Rab13] with an SCSCP server/client
so that it can receive/send objects from/to computation systems. For the GAP
server, we built on pre-existing SCSCP support. To obtain an SCSCP server for
Singular, which does not have native SCSCP support, we wrapped Singular in a
python script that includes the pyscscp library [POMb]. In SageMath, we directly
programmed the client interface to the MitM server.

The resulting system forms the nucleus of the OpenDreamKit interoperabil-
ity layer. It can already delegate computations between the three participating
systems as long as the exchanged objects are covered by the MitM ontology, the
alignments, and the formalizations of the system dialects.

Jane’s Use Case. Initially, Jane has already built in SageMath the ring R =
Z[X1,X2,X3,X4], the group G = D4, the action A of G on R that permutes the
variables, and the polynomial p = 3 · X1 + 2 · X2. She now calls

MitM.Singular(MitM.Gap.orbit(G, A, p)).Ideal().Groebner().sage()

which results in the following steps (the numbers on the edges of the graph of
Fig. 4 indicate the order of communications when processing Jane’s use case):

1. Jane uses SageMath to call the MitM server with the command above, which
includes both the computation to be performed and information about which
system to use at which step.

2. The MitM server translates MitM.Gap.orbit(G, A, p) to the GAP system dialect
and sends it to GAP.

3. GAP returns the orbit:

O = [3X1 + 2X2, 2X3 + 3X4, 3X2 + 2X3, 3X3 + 2X4,

2X2 + 3X3, 3X1 + 2X4, 2X1 + 3X4, 2X1 + 3X2].
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4. The MitM server translates MitM.Singular(O).Ideal().Groebner() to the Singu-
lar system dialect and sends it to Singular.

5. Singular returns the Gröbner base B.
6. The MitM server translates B to the SageMath system dialect and sends it

to SageMath, where the result is shown to Jane.

B = [X1 − X4,X2 − X4,X3 − X4, 5 ∗ X4].

Alternative Use Case. Suppose Jon, one of Jane’s colleagues, prefers working
in GAP, and he wants to compute the Galois group of the rational polynomial
p = x5 − 2. He discovers the GAP package radiroot, which promises this func-
tionality, but unfortunately the package does not work for this polynomial and
thus GAP alone cannot solve Jon’s problem.

Jon hears from Jane that he should use SageMath, because she knows it can
compute Galois groups. So, from GAP, he calls

G := MitM(”Sage”, ”GaloisGroup”,p)

which gives him the desired Galois group as a GAP permutation group. Having
heard of Jane’s experiments, he can further run her orbit and Gröbner basis
calculation starting from this new group, without leaving his favorite computing
environment.

Finally, Jon, being a proficient GAP user, also knows that he can now install
a method in GAP by calling

InstallMethod(GaloisGroup, ”for a polynomial”, [IsUnivariatePolynomial],
p −> MitM(”Sage”, ”GaloisGroup”, p))

that will compute the Galois group of any rational polynomial transparently
for him whenever he calls GaloisGroup for a rational polynomial in GAP. And
thus (at the price of using multiple systems) a significant part of the 1800-line
radiroot package can be replaced by a few lines in GAP, taking advantage of the
work of the SageMath community and participating in any future improvements
of SageMath. In fact, Sage itself delegates to the PARI system – another one of
the OpenDreamKit systems – for this computation. So in the future GAP might
directly delegate to PARI instead, bypassing the need of iterated translations.

6 Conclusion

We have implemented the MitM approach to integrating mathematical software
system based on formalizations of the underlying mathematical knowledge. The
main investment here was the curation of an MitM Ontology, the generation of
formal specifications of system APIs for SageMath, GAP, and Singular, identifying
the alignments of these APIs with the ontology, implementing an MitM server
that can use alignments to translate between systems, and implementing the
SCSCP protocol for all involved systems.
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Our case study showed that MitM-based integration is an achievable goal.
Delegation-based workflows can either be programmed directly or embedded into
the interaction language of the mathematical software systems.

The main advantages and challenges claimed by the MitM framework come
from its loosely coupled and knowledge-based nature. Compared to ad-hoc trans-
lations, MitM-based interoperability is relatively expensive as objects have to be
serialized into (possibly large) OMDoc/MMT objects, transferred via SCSCP to
MMT, parsed, translated into another system dialect, serialized and transferred,
and parsed again. On the other hand, instead of implementing and maintaining
n2 translations, we only have to establish and maintain n collections of system
APIs and their alignments to the MitM ontology. This makes the management
of interoperability much more tractable:

1. The MitM ontology is developed and maintained as a shared resource by the
community. We expect it to be well-maintained, since it can directly be used
as a documentation of the functionality of the respective systems.

2. All the workflows are star-shaped: instead of requiring expert knowledge in
two systems – a rare commodity even in open-source projects, and even for
the system experts involved in this paper – and keeping up with their changes,
the MitM approach only needs expertise and change management for single
systems.

All in all, these translate into a “business model” for MitM-based cooperation
in terms of the necessary investment and achievable results, which is based on
the well-known network effects : the joining costs are in the size of the respective
system, whereas the rewards – i.e. the functionality available by delegation – is
in the size of the network.

This network effect can be enhanced by technical refinements we are cur-
rently studying: For instance, if we annotate alignments with a “priority” value
that specifies how canonically/efficiently/powerfully a given system implements
a given MitM operation, then we can let the MMT mediator automatically choose
a suitable target system for a requested computation (as opposed to our cur-
rent setup where Jane specifies which systems she wants to use). On the other
hand, for workflows where we do not need or want service-discovery, alignments
can be “compiled” into n2 transport-efficient direct translations that may even
eliminate the need for serialization and parsing.
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Abstract. We oppose interval-symbol methods with zero rewriting
developed by Shirayanagi and Sekigawa [14,31–33] to the exact geometric
computation paradigm [17,37], especially to exact decisions computation
via lazy adaptive evaluation with expression-dags, in doing so carving out
analogies and disparities.

Keywords: Interval-symbol method · Exact geometric computation
Robustness and precision issues · Verified numerical computing

1 Introduction

In a sequence of papers Shirayanagi and Sekigawa [14,31–33] propose so-called
interval methods with zero rewriting to get exact results with bigfloat interval
arithmetic in order to avoid expensive exact arithmetic. They propose to use
bigfloat interval arithmetic of a fixed precision and to replace any zero-containing
interval I arising during computation by the zero interval, i.e., the point interval
representing zero. This is called zero rewriting. So the rule is “if we don’t know
the sign for sure, we assume it is zero”. If the result of the computation cannot be
verified, computation is repeatedly started over with increased bigfloat precision.
Their goal of using interval methods with zero rewriting is getting both exact
numerical and exact combinatorial results more efficiently.

Intuitively, interval methods with zero rewriting give us correct results if the
underlying bigfloat precision is sufficiently high: During a finite computation
we compute only finitely many numerical values. If our precision suffices to let
the bigfloat interval arithmetic separate the non-zero values from zero, all zero
rewritings are correct. This observation is made formal by Sweedler and Shi-
rayangi in their stabilization theorem [28,29]. However, usually we don’t know
the sufficient precision in advance. Therefore, Shirayanagi and co-workers sug-
gest to repeatedly increase the precision until correctness can be verified. In
Sect. 3 we recap the various intervals methods with zero rewriting as well as the
corresponding approaches to result verification.

In contrast to the interval methods with zero rewriting, the primary motiva-
tion for the exact geometric computation paradigm [37] is achieving numerical
c© Springer International Publishing AG 2017
J. Blömer et al. (Eds.): MACIS 2017, LNCS 10693, pp. 211–226, 2017.
https://doi.org/10.1007/978-3-319-72453-9_15
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robustness by avoiding inconsistent decisions: If all evaluations of geometric pred-
icates are exact, inconsistencies are a non-issue. The emphasis is on getting exact
combinatorial results; numerical data need not be exact. In this paper we com-
pare interval methods with zero rewriting to techniques that are used in compu-
tational geometry for implementing the exact geometric computation paradigm,
in particular to lazy adaptive evaluation with expression-dags, a general purpose
approach for exact geometric computation with real algebraic numbers.

Shirayanagi and his co-workers were initially interested in algebraic algo-
rithms only, especially in reducing the cost of algorithms manipulating polyno-
mials by using floating-point arithmetic [30]. In polynomial algebra exactness of
the coefficients of the computed polynomials is inevitable. The situation is some-
what different in computational geometry where exactness of the numerical part
of the output is usually much less important than exactness of the combinatorial
part. Often, together with the numerical data in the input, the combinatorial
part serves as an exact symbolic representation of the numerical data in the
output. For example, knowing the sites giving rise to a Voronoi vertex suffices
to recover its numerical coordinates exactly.

In [33], Shirayanagi and Sekigawa apply their approach to geometric com-
puting, more precisely, to planar convex hull computation. Are interval-symbol
methods with correct zero rewriting a valuable alternative to the techniques used
to implement the exact geometric computation paradigm? We discuss this ques-
tion by comparing different versions of interval methods with zero rewriting to
techniques used in computational geometry to implement the exact geometric
computation paradigm. Our comparative discussion is accompanied by experi-
ments on convex hull computation in the plane.

2 Exact Geometric Computation Paradigm

Let us call a representation of a real number r exact if we can read-off the sign
of r directly without any further computation and the representation allows us
to approximate r to any accuracy we want. While exact arithmetic always main-
tains exact representations, exact decisions computation ensures only that all
comparisons of numerical values as well as all sign computations are correct.
Note that exact values are not always necessary (actually, as it turns out, in our
context, they are never necessary) for exact decisions, sufficiently close approxi-
mations are adequate. The exact geometric computation paradigm advocated by
Yap [37] extends this relaxation from the arithmetic level to the geometric level.
It asks for exact results of geometric predicates only. The error-free evaluation of
predicates makes robustness problems a non-issue in geometric computing. Since
exact geometric computation allows for incorrect decisions within the evaluation
of geometric predicates, it is less strict than exact decisions computation. Of
course, computation with exact arithmetic subsumes exact decisions computa-
tion and exact geometric computation can be implemented by exact decisions
computation. The latter approach is sometimes called exact decisions geometric
computation as well. Structural filtering [9] carries the relaxation even further.
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It asks for exact substeps only. Intermediate inexactness is permitted and
repaired at the end of the execution of a substep where necessary. A substep
might involve several predicates or might even embrace a whole algorithm,
depending on the application.

The precision and robustness problem is closely related to the problem of
degeneracies in geometric computing. On the one hand, exact decisions compu-
tation is required to detect and handle degeneracies exactly, on the other hand,
exact decisions computation is a prerequisite for symbolic perturbation methods
that allow one to circumvent the handling of degeneracies. Avoiding the handling
of degeneracies is the goal of the topology-oriented approaches by Sugihara and
his co-workers [34–36] and of controlled perturbation [10–12,18]. Both approaches
try to get along with floating-point arithmetic. Designing such algorithms seems
to be more difficult and overall, compared to the exact geometric computation
paradigm, these approaches still seem to be less mature or less applicable in gen-
eral. And of course, this way we can get approximate solutions only.

Over the years effective techniques [38] have been used and developed
to support the efficient implementation of the exact geometric computation
paradigm, most notably floating-point filters [7] and approaches exploiting error-
free floating-point transformations [27]. A general purpose approach is coupling
lazy adaptive evaluation with expression dags [1]. This can be done both on
the arithmetic level [1,3,13] and on the geometric level [8,23]. Main ingredients
of these approaches are approximate expression evaluation, arithmetic filters,
and constructive zero separation bounds, where a zero separation bound for an
arithmetic expression E is a positive real number sep(E) which is a lower bound
on the absolute value of E. For expressions involving operations +,−, ·, / and
k
√ and integer (or rational) operands, zero separation bounds can be computed
inductively according to the structure of an expression [4,6,19,24–26]. Zero sepa-
ration bounds allow us to verify that an expression is zero if we have a sufficiently
close approximation: If the sum of the absolute value of the approximation and
the error bound are smaller than the zero separation bound we may conclude
that the actual value is zero. The exact geometric computation paradigm is
implemented in the C++-software libraries CGAL [5] and LEDA [16].

Lazy Adaptive Evaluation with Expression-Dags. In the sequel we focus
on arithmetic expression-dags since they are more closely related to the interval
with symbols approach by Shirayanagi and Sekigawa. Recording the computa-
tion history of numerical values in expression-dags, i.e., expression-“trees” that
may share common subexpressions, allows one to (re)compute an approximation
of the value of the expression at any time at any accuracy. Using such dags we
can adaptively compute the sign of an expression correctly by repeatedly increas-
ing the precision until the error is less than the absolute value or constructive
zero separation bounds allow us to conclude that the actual value is zero. Fur-
thermore, we apply lazy evaluation to sign computation, i.e., sign computation
is delayed until the sign is actually needed. This strategy is implemented in
C++-number types in CORE [13], leda::real [3], and RealAlgebraic [20]. Since all
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sign computations and hence all decisions in geometric predicates are exact, we
banish inconsistencies caused by numerical imprecision.

3 Variants of Interval Methods with Zero Rewriting

Over the years Shirayanagi and Sekigawa and Shirayanagi and Katayama came
up with different versions of interval methods with zero rewriting.

Interval Method with Zero Rewriting. In the simplest version, Shirayanagi
and Sekigawa [32] propose to replace every zero-containing interval I arising
during bigfloat interval computation with a certain precision by the zero interval
immediately, without any verification of this step, and to verify the result of the
overall computation afterwards. If this verification fails the whole computation is
re-done with increased precision of bigfloat interval arithmetic. This is repeated
until verification succeeds, see Fig. 1(a).

Zero rewriting reminds one of epsilon tolerancing, also called epsilon tweak-
ing, where we replace tests for zero by comparisons of absolute values with
certain epsilons. In contrast to zero rewriting where we get “sound epsilons”
through interval arithmetic, finding epsilons for epsilon tolerancing is often guess
work and “an art that requires infinite patience” [22]. Usually, people applying
epsilon tweaking do not attempt to verify results. Of course, epsilon tweaking
does not implement the exact geometric computation paradigm. Unfortunately,
like epsilon tweaking, zero rewriting does not abolish inconsistencies. For exam-
ple, equality testing is not transitive. We might rewrite the distance between
a and b to zero as well as the distance between b and c, but not the distance
between a and c. Since inconsistent decisions can still arise, epsilon tweaking is
not a recommended approach to precision and robustness problems in computa-
tional geometry.

Correcting afterwards presumes that the algorithm runs until the end regard-
less of whether zero rewriting is correct. Therefore, interval method with plain
zero rewriting can be used only with (quasi-)robust algorithms which always
compute some (kind of) useful output, which can be verified afterwards. How-
ever, designing a robust geometric algorithm is a difficult task. Since many geo-
metric algorithms are not (quasi-)robust, applicability of the initial version of
interval methods with zero rewriting is rather limited. The idea of correcting
afterwards is present in structural filtering approaches in computational geome-
try, too. While Shirayanagi and Sekigawa suggest to simply rerun the algorithm
with higher precision, structural filtering aims at repairing the result of a struc-
turally filtered step using other exact methods. Kettner and Welzl [15] apply
the idea to convex hull computation in the plane. Funke et al. discuss the above
robustness problem for structural filtering at the algorithm level in [9].

Zero rewriting takes place immediately when a new zero-containing bigfloat
interval is created. One could think of lazy zero rewriting as well, where zero
rewriting takes place only if we ask for the sign of a numerical value approximated
by a bigfloat interval.
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Intervals with Symbols. Since output verification without exact numerical
values might be difficult, Shirayanagi and Sekigawa [32] propose to maintain
symbolic information in addition to the approximating bigfloat intervals. They
store symbol strings to record the computation history of a numerical value.
Keeping track of the history of a value allows one to get exact representations
for the numerical values approximated by the intervals at the very end of the
computation.

There are two versions presented in [32]. In a first version, the symbol strings
of the operands of an arithmetic operation are copied into the symbol string of
the result, together with a symbol representing the arithmetic operation per-
formed. These symbol strings are stored with the intervals. Unfortunately, this
lets the size of the symbol strings grow quickly, since the same information is
stored in several places. Therefore, Shirayanagi and Sekigawa propose a second
version where intervals with symbols share computation histories: They main-
tain a global symbol list where each entry records an operation together with
list indices for the operands. Now only a list index is stored with an interval.
List index and global symbol list allow one to reconstruct the computation his-
tory for a value and hence enable exact (re-)computation. Still, zero rewriting
is applied whenever a zero-containing interval arises. No attempt is made yet to
verify that the actual value is zero.

Recording computation history enables reconstruction of exact values and
eases verification of the computed result afterwards. As before, if verification of
the computed output fails, computation is restarted from scratch with higher pre-
cision bigfloat interval arithmetic until we obtain a correct result. As discussed
above output verification must be possible somehow. If we have a selective geomet-
ric problem, where all numerical data of the output is present in the input already,
there is no need to verify these numerical data and inspection of the combinato-
rial part suffices. If we have a constructive geometric problem, i.e., new numerical
data is constructed, we can make use of the symbolic information stored with the
intervals and the symbol list to verify these data. However, according to [32], the
symbolic part is erased when zero rewriting takes place. Unfortunately this way
we lose the option to check zero values for correctness at the end of computation
and it is unclear how exactness is ensured in such a case.

Maintenance of computation history in a global symbol list is similar to
maintenance of computation history in expression dags. Copying is avoided and
common subexpressions are shared. However, while expression dags use refer-
ence counting to detect when subexpressions are not needed anymore, there is
no corresponding mechanism in the global symbol list. The symbol list then
contains information for many numerical values that are not existent anymore.
Therefore, global symbol list grows continuously and can become quite large even
for flat computations which are typical for most algorithms for low-dimensional
geometric problems.

Interval-Symbol Method with Correct Zero Rewriting. The use of sym-
bols also allows for the verification of zero rewritings [32]. This verification is
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(a) (b)

(c) (d)

0 ∈ I ? I ← 0 exact computation verification interval dag
using symbol list(s) recomputation evaluation

Fig. 1. Pictorial outlines of (a) simple plain interval method with zero rewriting,
(b) interval-symbol method with correct zero rewriting, (c) improved version of (b), and
(d) lazy adaptive evaluation with expression-dags. In cases (a)–(c) we convert numeri-
cal data to bigfloat intervals with precision p before running the algorithm and restart
the process with increased precision if output verification fails (a) or if we detect an
incorrect zero rewriting (b), (c), where in (c) we determine the new precision based on
the incorrect zero rewriting. Zero rewriting takes place when a new interval is created
while lazy evaluation is postponed to decision steps.
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done by an exact computation according to the computation history recorded in
the symbol strings or list. The overall strategy is to restart computation from
scratch with increased precision as soon as verification by exact computation fails
to confirm zero rewriting, i.e., computation is re-started with increased precision
if the current precision bigfloat interval arithmetic does not suffice to separate a
non-zero value from zero, see Fig. 1(b).

Intervals with correct zero rewriting reminds us of floating-point filters. With
a floating-point filter we try to verify non-degeneracy by fast hardware-supported
floating-point arithmetic and error bounds, i.e. interval arithmetic. If verification
fails, we switch to an exact computation or some other exact method. Of course,
one can generalize floating-point filters to arithmetic filters using bigfloat arith-
metic instead of hardware-supported floating-point arithmetic. With standard
floating-point filters, whenever we have a zero-containing interval we use exact
arithmetic to compute the exact sign. However, now that we know the exact sign
we continue our computation with the evaluation of other geometric predicates.
There is no restart from scratch. In order to compute the exact sign we must
have access to the exact input data. Hence, such filters are most applicable in
geometric predicates that operate on the input data directly. In cascaded com-
putations we must have some other means for getting access to exact input data,
e.g. maintaining expression dags.

Recently, Katayama and Shirayanagi [14] revised and improved the iteration
strategy. Now, whenever interval arithmetic with the current precision gives us a
zero-containing interval where verification fails, using the information in symbol
strings or list, only the computation of this interval is rerun with repeatedly
increased precision until we get an interval that does not contain zero anymore.
The final sufficient precision is then used when re-staring the overall computation
from scratch, see Fig. 1(c).

Besides the differences in expression-dags and symbols lists pointed out
above, the strategy of lazy adaptive evaluation with expression-dags is sub-
stantially different in other aspects as well, see Fig. 1(d). With lazy adaptive
evaluation on expression-dags we never restart from scratch. Moreover, verified
sign computation is lazy, i.e., it takes place only if requested by the algorithm
in a decision step, not as soon as a zero-containing interval arises. Furthermore,
precision is increased locally only, i.e., within the subexpression whose sign we
would like to know, similar to what Katayama and Shirayanagi propose. How-
ever, the precision of other interval computations is not automatically increased
as well. This way we can save a lot of computation time, since we use higher
precision only where we need it. Usually, approximate evaluation is precision-
driven. This means, we do not use the same precision for all bigfloat interval
computations everywhere, but compute precisions sufficient for the operands in
order to guarantee a requested approximation error at a dag node. Thus, even
for the evaluation for a single value we do not use interval arithmetic with uni-
form precision in lazy adaptive evaluation with expression dags. Finally, there
is no verification by exact arithmetic, i.e., exact computation in the usual sense.
Verification is done by constructive zero separation bounds. Of course, this gives
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us the correct sign, so in this sense it is an exact computation as well. By the
underlying iterative approach interval methods with correct zero rewriting throw
away a lot of knowledge already gained in previous iterations, since we redo com-
putation with higher precision and hence more expensive bigfloat arithmetic, no
matter whether this higher precision is necessary or not. With lazy adaptive eval-
uation with expression-dags iteration is always local to the sign computation and
never affects re-evaluation on a global basis.

The idea of iterative trial-and-error computation is present in controlled per-
turbation as well. There, current computation is stopped whenever floating-point
arithmetic does not suffice to verify non-degeneracy of the current perturbed
input. Then computation is re-started with a larger perturbation. Usually, the
precision of the floating-point arithmetic is not increased, since software bigfloats
are much more expensive than hardware-supported floats.

4 Experiments

In [33], Shirayanagi and Sekigawa use planar convex hull computation to illus-
trate the use of interval methods with zero rewriting and so do we. Shirayanagi
and Sekigawa use a computer algebra system, more precisely, maple 12, to imple-
ment their code. While a computer algebra system provides a perfect infrastruc-
ture for exact computation, implementation in C++, the programming language
used for exact geometric computation in the software libraries CGAL [5] and
LEDA [16], is somewhat more challenging. Since the infrastructure provided by
CGAL and LEDA does not supply an exact arithmetic in the strong sense for
real algebraic numbers, we use a symbolic representation and exact decision eval-
uation via leda::real in the verification part of zero rewriting. This works for
expressions involving radicals.

We implement the interval method with symbol list and correct zero rewrit-
ing as described in Sect. 3. Additionally, we implement a variant with lazy zero
rewriting which does not apply zero rewriting at construction time, but defers
zero rewriting to decision steps via sign computations. Initially, we used CGAL’s
Gmpfi class for bigfloat interval arithmetic which is based on mpfi, a multiple
precision interval arithmetic library based on mpfr [21]. Since Gmpfi does unfor-
tunately not allow us to limit the precision to less than 53 bits, we now use
leda bigfloat interval, another CGAL class which couples LEDA’s bigfloat
number type with boost::numeric::interval form Boost [2]. LEDA’s bigfloat
number type allows us to limit the precision to less than 53 bits.

We maintain a global symbol list to avoid storing redundant information.
This allows us to encapsulate all arithmetic and zero rewriting in a C++ number
type and to use this number type together with CGAL’s geometric algorithms.
Together with a list of exact operands the symbol list allow us to re-compute
a value using another exact number type whenever zero rewriting takes place.
We use C++ exception handling to interrupt computation whenever verification
of zero rewriting fails. If this happens we increase bigfloat precision and re-start
computation again after clearing exact operand and symbol list. Since constants
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0 and 1 arise frequently during geometric computations with CGAL, we store
and reuse symbols for these constants at the beginning of the symbol list, thereby
avoiding further blow-up of the symbol list. Remember that a symbol list never
shrinks during an iteration with fixed precision.

At first, we consider the convex hull experiments from [33] in our C++-based
framework. Note that Shirayanagi and Sekigawa use decimal arithmetic and talk
about decimal places when referring to precision whereas we use binary places.
They consider test data in several categories, cf. [33]:

Example 1. 5000 points with coordinates (x, y), where x and y are randomly
generated integers satisfying 0 ≤ x, y ≤ 200.

Example 2. 5000 points with coordinates (x, y), where x and y are randomly
generated integers satisfying −200 ≤ x, y ≤ 200 and x2 + y2 ≤ 2002.

Example 3. 5000 points with coordinates (x, y), where x and y are randomly
generated integers satisfying 0 ≤ x, y ≤ 400, x2 + y2 ≤ 4002, and y2 ≤ 3x2.

Example 4. The origin (0, 0) and 4999 points with coordinates (x, y), where
x and y are randomly generated integers satisfying 1 ≤ x, y ≤ 6000, and
9
10 ≤ x

y ≤ 1.

We use CGAL’s random point generators to create the test data accordingly
and use CGAL’s default convex hull algorithm which in contrast to the maple
code used in [33] avoids division operations. Therefore we can use arbitrary
precision integers like CGAL’s Gmpz or leda::integer in the verification step
of zero rewriting. Since the integers generated in the categories above are fairly
small, division-free computation with double precision always gives correct inte-
ger result everywhere. In order to observe dependence on precision we have to
use LEDA’s bigfloats with binary precision limited to less than 53 bits. Note
that such bigfloat computation with lower precision is somewhat more expen-
sive than bigfloat computation with default precision 53. Besides the two variants
described above, we implemented a version without symbol list, analogously
to the maple code made available for convex hull computation by Sekigawa.
This approach defers zero rewriting to decision steps as well. In contrast to the
two other variants, interval-symbol method with correct zero rewriting is not
wrapped in a number type, but implemented via CGAL’s traits concept for
planar convex hull computation.

Since running time depends on the precision we start with, we measure and
report the running time of the last successful iteration of convex hull computation
only. The measured time includes the cost of conversion from int to our number
type wrapping intervals with symbols, see Table 1.

In a second set of examples, Shirayanagi and Sekigawa [33] use irrational coor-
dinates. Corresponding to example i above there is example i+4 where instead of
coordinates (x, y) points we now have coordinates (sign(x) ·√|x|, sign(y) ·√|y|),
and x and y are generated as described above for example i:

Example 5. 5000 points with coordinates (
√
x,

√
y), where x and y are ran-

domly generated integers satisfying 0 ≤ x, y ≤ 200.



220 S. Schirra and M. Wilhelm

Table 1. Convex hull with integer points for four random data sets in example classes 1
to 4. Interval method with correct zero rewriting is based on leda bigfloat intervals
with verification of zero rewritings via exact integer arithmetic (leda::integer). Lazy
adaptive evaluation is leda::real. Running times are for the last successful iteration
only.

ISCZ ISCZ

lazy

Without

symbol list

Sufficient

precision

# zero

rewritings

Length of

symbol list

Exact

integer

Lazy adapt.

expr.-dags

1.1 0.188 0.144 0.124 14 0 255326 0.008 0.001

1.2 0.172 0.136 0.124 14 0 248680 0.008 0.001

1.3 0.136 0.120 0.104 14 1 247816 0.004 0.001

1.4 0.160 0.132 0.120 15 0 254182 0.004 0.001

2.1 0.160 0.128 0.132 15 0 165348 0.004 0.001

2.2 0.188 0.152 0.124 16 0 164694 0.004 0.001

2.3 0.132 0.108 0.096 16 0 165078 0.004 0.001

2.4 0.148 0.120 0.100 14 0 167378 0.004 0.001

3.1 0.152 0.124 0.104 15 0 152204 0.004 0.001

3.2 0.120 0.100 0.084 16 0 151001 0.004 0.001

3.3 0.132 0.108 0.088 14 1 147124 0.004 0.001

3.4 0.088 0.076 0.068 13 0 148892 0.001 0.001

4.1 0.116 0.104 0.088 19 18 136789 0.001 0.001

4.2 0.204 0.168 0.148 20 17 144338 0.001 0.001

4.3 0.180 0.148 0.132 22 7 138070 0.001 0.001

4.4 0.132 0.112 0.096 17 24 135256 0.001 0.001

Example 6. 5000 points with coordinates (sign(x) ·√|x|, sign(y) ·√|y|), where
x and y are randomly generated integers satisfying −200 ≤ x, y ≤ 200 and
x2 + y2 ≤ 2002.

Example 7. 5000 points with coordinates (
√
x,

√
y), where x and y are ran-

domly generated integers satisfying 0 ≤ x, y ≤ 400, x2 + y2 ≤ 4002, and
y2 ≤ 3x2.

Example 8. The origin (0, 0) and 4999 points with coordinates (
√
x,

√
y), where

x and y are randomly generated integers satisfying 1 ≤ x, y ≤ 6000, and
9
10 ≤ x

y ≤ 1.

For example classes 5 to 8, it was not obvious anymore how to do verification
of zero rewriting, since in contrast to computer algebra systems we did not
have exact arithmetic in the strong sense for such real algebraic numbers at
hand. We use an exact decision number type for real algebraic numbers, namely
leda::real, which wraps lazy adaptive evaluation with expression dags. Results
of experiments for examples 5 to 8 are shown in Table 2.

While Shirayanagi and Sekigawa observe a huge difference in running time
between their maple-based versions with and without symbols list, running
times of all our C++-based versions are roughly on the same order of magnitude.
The gain of the variant without symbol lists is evident but much smaller.
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Table 2. Convex hull with radical coordinates for four random data sets in
example classes 5 to 8. Interval method with correct zero rewriting is based on
leda bigfloat intervals with verification via leda::real. Lazy adaptive evaluation
is leda::real. Running times are for the last successful iteration only.

ISCZ ISCZ
lazy

Without
symbol list

Sufficient
precision

# zero
rewritings

Length of
symbol list

Lazy adaptive
expr.-dags

5.1 0.656 0.568 0.368 18 19109 241019 0.112

5.2 2.608 2.420 1.296 23 19712 243501 0.112

5.3 2.976 2.768 1.464 24 19952 247434 0.116

5.4 0.604 0.560 0.388 19 21037 221522 0.116

6.1 1.820 1.660 1.024 21 9065 207104 0.080

6.2 0.580 0.520 0.440 19 9064 205591 0.080

6.3 1.468 1.348 0.868 21 8635 203722 0.080

6.4 0.876 0.808 0.576 20 8760 202851 0.080

7.1 0.660 0.612 0.424 18 5167 164377 0.044

7.2 0.556 0.508 0.372 18 4178 161568 0.040

7.3 0.356 0.336 0.288 20 3763 160906 0.036

7.4 0.496 0.456 0.356 20 4351 163229 0.040

8.1 0.672 0.588 0.536 26 52 137443 0.016

8.2 0.396 0.360 0.320 22 48 136970 0.016

8.3 0.472 0.420 0.376 23 48 142530 0.012

8.4 0.476 0.424 0.436 23 55 137351 0.016

Planar convex hull computation is a selective geometric problem of very low
computational depth. For such problems floating-point filters are very effective
for random input data. Moreover, efficient methods based on error-free trans-
formation techniques and others are known for exact geometric computing of
planar convex hulls. These methods are much more efficient than arbitrary pre-
cision integer arithmetic and hence much more efficient than (our implemen-
tation of) interval-symbol methods with correct zero rewriting. Therefore we
consider cascaded geometric computations as well. Such cascaded computations
are numerically more demanding and since we do not have access to exact input
data anymore in the geometric predicates of later stages, many of the techniques
applicable to planar convex hull computation can not be directly used anymore.

Given a set of line segments we compute the convex hull of their intersection
points. So the coordinates of the points whose convex hull we are interested in
are not part of the input, but numerical values computed during computation.
In cascaded computations, we have to record computation history somehow in
order to enable verification of zero rewriting, thus in contrast to the previous
examples symbol lists are not dispensable anymore. We use CGAL’s geometric
object generators to create input segments.
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Example 9. 300 segments whose endpoints are random points with double
coordinates (almost) on a circle of radius 250, cf. Fig. 2(a).

Example 10. 150 pairwise disjoint segments with endpoints on vertical line seg-
ments with integral x-coordinate and double y-coordinates and 150 disjoint
segments with endpoints on two horizontal lines with integral y-coordinates
and double x-coordinates, cf. Fig. 2(b).

(a) (b)

Fig. 2. Segments generated using CGAL’s sample code for geometric object generators.
(a) 300 segments with endpoints with double coordinates (almost) on circle of radius
250 centered at the origin. (b) 300 segments with endpoints on two vertical and two
horizontal segments.

Table 3. Results for examples 9 and 10: computing convex hull of intersection points
of segments as shown in Fig. 2.

ISCZ Sufficient
precision

# zero
rewritings

Length of
symbol list

Exact
rational

Lazy adaptive
expr.-dags

9 1.78 31 1283 1748414 2.59 0.31

10 8.97 61 748 2224428 0.56 0.38

Table 3 shows results for examples 9 and 10. In example 9, precision 31 was
sufficient, 1283 zero rewritings took place and the running time of the iteration
with precision 31 was 1.78 s. Exact computation with leda::rational took
2.59 s, which means that interval-symbol method with zero rewriting indeed can
save computation time with respect to computation with exact arithmetic if
we start at a precision close to sufficient. However, using leda::real, running
time was 0.31 s only. In example 10, the computation of the convex hull of the
intersection points between a vertical fan of segments and a horizontal fan of
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segments, we get many collinear points on the 4 convex hull edges. In this exam-
ple, precision 61 suffices, 748 zero rewritings occurred, and running time was
8.97 s. However, both leda::rational and leda::real are significantly faster.

We close with a remark on the number of zero rewritings. While there are
no zero rewritings with data sets in examples 1 to 3 there are many zero rewrit-
ings in examples 5 to 7. Note that we count zero rewritings in the last iteration
only, so all these zero rewritings are correct. In all these data sets the number
of points we generate is larger than the number of different integer coordinates
we allow. So points are not in general position. The resulting degeneracies cause
correct zero rewritings. These are the zero rewritings showing up in examples
5 to 7. They do not show up in examples 1 to 3, because the precision of the
bigfloat arithmetic suffices to perform integer arithmetic exactly, i.e., we get sin-
gleton intervals, especially zero intervals, and there is no need for zero rewriting.
Thus, in examples 1 to 3, the bigfloat interval arithmetic already verifies degen-
eracies, whereas in examples 5 to 7, we have inaccurate approximations only
due to the square root operations. Thus, in examples 5 to 7, interval arithmetic
does not deliver zero intervals for the point coordinates, and hence coordinate
degeneracies cause zero rewritings.

At http://wwwisg.cs.uni-magdeburg.de/ag/ISCZECG the code we use in our
experiments is made available. It is based on CGAL 4.10 and LEDA 6.5.

5 Conclusions

Without verification of zero rewriting, interval methods suffer from the same
problems as epsilon tweaking, since many geometric algorithms are not robust
and inconsistencies can still arise. After all, this non-robustness of geometric
algorithms is the motivation for the exact geometric computation paradigm.

With correct zero rewriting interval methods somewhat work like floating-
point filters with bigfloat arithmetic. If a zero-containing interval is detected
we consult exact computation. However, floating-point filters are lazy. Exact
verification of the sign of a value takes place only if the sign is requested, not
immediately upon creation. More important, while an incorrect zero rewriting
causes a restart from scratch with increased bigfloat precision, a floating-point
filter failure just triggers an exact sign computation and overall computation
continues based on a decision with the exact sign. There is no restart of the
overall algorithm.

Compared to lazy adaptive evaluation with expression dags, interval-symbol
methods with correct zero rewriting has a severe performance handicap. With
present interval methods with correct zero rewriting all computations are per-
formed with the same precision, the maximum of the minimum precisions
required to separate from zero where the maximum is taken over all numer-
ical values arising during computation. With lazy adaptive evaluation we use
the precision required for the local sign computation only. This precision is
in principle independent of precisions required elsewhere. Degeneracies and
near-degeneracies often require higher precision than configurations in general

http://wwwisg.cs.uni-magdeburg.de/ag/ISCZECG
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position. With interval methods with correct zero rewriting such demanding
degeneracies and near-degeneracies determine the precision used for all inter-
val computations, including those for less-demanding general position configu-
rations. Lazy adaptive evaluation however always adapts the precision to the
situation under investigation and thus uses less precision for general position
configurations whenever possible. Furthermore, recording computation history
in symbol lists suffers from list blow-up. Expression-dag based exact geometric
computation uses reference counting to detect when a numerical value is not
used any longer and frees corresponding memory space. Our implementations
show that interval-symbol method with correct zero rewriting is manageable in
C++ as well. However, in view of the performance issues discussed above the cur-
rent approach is most likely not competitive for exact geometric computing, at
least for exact geometric computing with algebraic numbers of small algebraic
degree.
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Abstract. In this paper, we give new sparse interpolation algorithms for
black box univariate and multivariate rational functions h = f/g whose
coefficients are integers with an upper bound. The main idea is as follows:
choose a proper integer β and let h(β) = a/b with gcd(a, b) = 1. Then f
and g can be computed by solving the polynomial interpolation problems
f(β) = ka and g(β) = ka for some unique integer k. Experimental results
show that the univariate interpolation algorithm is almost optimal.

1 Introduction

The interpolation for a sparse multivariate rational function h = f/g given as a
black box is a basic computational problem [1,2,6–8]. Here, sparse means that an
upper bound for the number of terms in f and g is given. In many interpolation
algorithms, an upper bound for the degrees of f and g is also given.

In [3], a new constraint in sparse interpolation is considered: it is assumed
that the coefficients of the sparse polynomial are taken from a known finite set.
The method in [3] can be considered as a generalization for Kronecker’s idea of
interpolating polynomials [9]. Comparing to [9], the main contributions of [3]
are that polynomials with rational numbers as coefficients could be interpolated
and an improved Kronecker type substitution is used to reduce multivariate
interpolation to univariate interpolation.

In this paper, we extend the algorithm in [3] to rational functions. Consider
the interpolation of h = f/g ∈ Z(x1, x2, . . . , xn), where T,D,C are upper bounds
for the terms, degrees, and the absolute values of the coefficients of f and g,
respectively. The main idea of the algorithm is reduce the interpolation of h into
that of f and g.

In the univariate case, let β ∈ N
+, h(β) = a/b, gcd(a, b) = 1, and μ =

gcd(f(β), g(β)). We prove that if β ≥ 2TC2 + 1, then for k ∈ N (k ≤ μ), k = μ
if and only if there exist p, q ∈ Z[x] such that p(β) = ka, q(β) = kb, and the
coefficients of p and q are bounded by C. Thus we can find μ by computing
univariate polynomials p(β) = ka, q(β) = kb for k = 1, 2, . . . and check whether
the coefficients of p and q are bounded by C. The value for β can be further
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reduced in two ways. If we evaluate h at two sample points h(β) and h(β+1), then
β can be taken as β = �√2TC�. For β = 3C + 1, we can obtain a probabilistic
algorithm.

In the multivariate case, similar idea is used to give a probabilistic algorithm.
The sample point used is βi = (β + ci)(2D+1)i−1

, i = 1, 2, . . . , n, where β =
2TC2 +1, and c1 ≤ c2 ≤ · · · ≤ cn are random numbers. We show that with high
probability, we can recover h from h(β1, . . . , βn). The substitution is a variant
of Kronecker’s substitution [9], where the shifts β + ci are introduced to avoid
the appearance of common factors for the numerator and numerator after the
substitution. New Kronecker type substitutions can also be found in [5].

The arithmetic complexity of the univariate interpolation is O(μT log2 D)
and the length of the data is O(D(log C + log T )). The arithmetic complexity
of the multivariate interpolation is O(μnT log2 D) and the length of the data is
O(Dn log(TC2 + N).

Extensive experiments are done for the algorithms. It is shown that the uni-
variate interpolation algorithm is almost optimal in the sense that the time for
interpolating f/g is almost the same as that of interpolating f and g, which
means that μ is small in most cases. When μ is small, the bit complexity is
linear in TD, which is optimal. In the multivariate case, the algorithm is less
sensitive for T but is quite sensitive for D and n, because the sample data is of
height Dn due to the use of the Kronecker substitution.

2 Preliminary Algorithms

In this section, we will present some preliminary algorithms which will be used
in this paper. Assume f(x) = c1x

d1 + c2x
d2 + · · · + ctx

dt , where d1, d2, . . . , dt ∈
N, d1 < d2 < · · · < dt, and c1, c2, · · · , ct ∈ A, where A ⊂ C is a finite set.
Introduce the following notations

C := max
a∈A

(|a|), ε := min(ε1, ε2) (1)

where ε1 := mina,b∈A,a�=b |a − b| and ε2 := mina∈A,a�=0 |a|. We have

Theorem 1 ([3]). If β ≥ 2C
ε +1, then f(x) can be uniquely determined by f(β).

Based on the above theorem, the following interpolation algorithm for polyno-
mials in Q[x] is given in [3], which is needed in this paper.

Algorithm 2 (UPolySIRat) [3, Algorithm 2.14]

Input: H,C ∈ N, β = 2CH(H − 1), and ρ = f(β) for a black box polynomial
f(x) ∈ Q[x] whose coefficients are in A = { b

a | 0 < a ≤ H, | b
a | ≤ C, a, b ∈ Z}.

Output: The exact form of f(x).

Theorem 3 ([3]). The arithmetic complexity of Algorithm 2 is O(t log2 d log H)
and the bit complexity is ˜O(td log H(log C + log H)), where d = deg(f) and
t = #f .
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We can compute the degree of f(x) as follows.

Lemma 1 ([3]). Assume β ≥ 2C
ε + 1. If k ≤ dt, then | f(β)

βk | > ε
2 ; if k > dt, then

| f(β)
βk | < ε

2 . In particular, dt = 	logβ 2|f(β)|
.
We need the following special case of Algorithm 2, where f ∈ Z[x].

Algorithm 4 (UPolySIInt)

Input: β ≥ 2C + 1, ρ = f(β) ∈ Z, a variable x, an upper bound C ≥ ‖f‖∞.
Output: The exact form of f(x), or failure if the polynomial f obtained satis-
fying ‖f‖∞ > C.

The following theorem is a corollary of Theorem 3.

Theorem 5. The arithmetic complexity of Algorithm 4 is O(t log2 d) and the
bit complexity is ˜O(td log C), where t = #f , d = deg(f).

3 Univariate Rational Function Interpolation

In this section, we give several sparse interpolation algorithms for univariate
rational functions.

3.1 A Basic Interpolation Algorithm

In this subsection, we give a polynomial-time deterministic interpolation algo-
rithm which is the starting point for more efficient algorithms.

We first introduce some notations. In this paper, for f(x), g(x) ∈ Z[x],
gcd(f, g) also contains the greatest common factor of the coefficients of f and g.
Let h = f(x)

g(x) ∈ Z(x) be a rational function, where gcd(f, g)= 1. Denote deg(h) :=
max{deg(f),deg(g)}, #h := max{#f,#g}, ‖h‖∞ := max{‖f‖∞, ‖g‖∞}, where
#f is the number of the terms of f and ‖f‖∞ is the maximal absolute value of
the coefficients of f .

For a positive integer β, let h(β) = a
b , where a, b ∈ Z and gcd(a, b) = 1. Let

μ = gcd(f(β), g(β)) > 0. Then, we have

a =
f(β)

μ
, b =

g(β)
μ

(2)

Denote f1(x) := 1
μf(x), g1(x) := 1

μg(x). If ‖h‖∞ ≤ C, then f1(β) = a, g1(β) = b,
and the coefficients of f1(x), g1(x) are in { a

μ ∈ Z||a| ≤ C}. If we can give an
upper bound H for μ and let β ≥ 2CH(H −1)+1, then we can recover f1 and g1
using the Algorithm 2 and hence f/g = f1/g1. Therefore, a key issue in sparse
interpolation for rational functions is to determine an upper bound for μ. The
following lemmas give such an estimation.

Lemma 2 [10, p. 147]. Let f, g ∈ Z[x], and n = deg(f) ≥ m = deg(g) ≥ 1.
Then |res(f, g, x)| ≤ (n + 1)m/2(m + 1)n/2 ‖ f ‖m

∞‖ g ‖n
∞.
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Lemma 3. If f, g ∈ Z[x], and D ≥ max{deg(f),deg(g)}, C ≥ max{‖f‖∞,
‖g‖∞}, then μ ≤ (D + 1)DC2D, where μ is defined in (2).

Proof. Since gcd(f, g) = 1, res(f, g, x) �= 0. By [10, p.147], there exist two
nonzero polynomials s, t ∈ Z[x], such that fs + gt = res(f, g, x). So we have
f(β)s(β) + g(β)t(β) = res(f, g, x). Since res(f, g, x) is an integer, we have
gcd(f(β), g(β))|res(f, g, x). By Lemma 2, μ ≤ |res(f, g, x)| ≤ (D + 1)DC2D. �
Theorem 6. Let h(x) ∈ Z(x) with D ≥ deg(h) and C ≥ ‖h‖∞. Denote H :=
(D + 1)DC2D. If β ≥ 2CH(H − 1) + 1, then h(x) can be recovered from h(β).

Proof. Use the notations in (2). If we can interpolate the polynomials
1
μf(x), 1

μg(x) from the values a and b, then we finish the interpolation. By
Lemma 3, we know |μ| ≤ H, so the coefficients of 1

μf, 1
μg are in the finite

set { s
t ∈ Q||t| ≤ H, |s| ≤ C}. Let ε = 1

H(H−1) , when β ≥ 2CH(H − 1) + 1,
we can interpolate 1

μf(x), 1
μg(x) from a, b with Algorithm 2. Thus, h(x) can be

recovered from h(β). �
We now give the algorithm.

Algorithm 7 (URFunSI0)

Input: A black box h ∈ Z(x), D,C ∈ N, where D ≥ deg(h), C ≥ ‖h‖∞.
Output: The exact form of h(x).

Step 1: Let H := (D + 1)DC2D, β := 2CH(H − 1) + 1. Evaluate h(β) = a
b .

Step 2: Let f(x) :=UPolySIRat(C,H, β, a), g(x) :=UPolySIRat(C,H, β, b).
Step 3: Return f(x)

g(x) .

Theorem 8. The arithmetic complexity of Algorithm 7 is O(TD log C +
TD log D) and the bit complexity is ˜O(TD3 log2 C).

Proof. By Theorem 3, the arithmetic complexity of Algorithm UPolySIRat
is O(T log H) and bit complexity is O(TD(log H log C + log2 H)). Since H =
(D + 1)DC2D, the theorem follows immediately. �

It should be pointed out that Theorem 8 is a theoretical result, since the
number β is too large. Practical algorithms will be given in the following sections,
which are modifications of Algorithm 7.

3.2 Deterministic Incremental Interpolation

In Algorithm 7, we use an upper bound for μ. In this section, an algorithm will
be given, where μ will be searched incrementally. We first give a lemma.

Lemma 4. Let f, f1, g, g1 ∈ Z[x], gcd(f, g) = 1,deg(f1) ≤ deg(f),deg(g1) ≤
deg(g). If f1

g1
= f

g , then there is a nonzero integer δ, such that f1 = δf, g1 = δg.
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Proof. Since f1
g1

= f
g , we have f1g = g1f and hence f |gf1. Since gcd(f, g) = 1,

we have f |f1. From deg(f1) ≤ deg(f), there exists a rational number a
b , such

that f1 = a
b f . For the same reason we have g1 = a

b g. Since f1, g1 ∈ Z[x], all their
coefficients are integers. So b divides all the coefficients of f, g, as gcd(f, g) = 1,
and hence b = ±1. So δ = a

b is an integer. �

Theorem 9. Let h(x) = f(x)
g(x) ∈ Z(x), T ≥ #h,C ≥ ‖h‖∞. If β ≥ 2TC2 + 1,

then h(x) can be recovered from h(β).

Proof. Let a, b, μ be introduced in (2). We claim that for i = 1, 2, · · · , only
when i = μ, the values a · i, b · i correspond to two polynomials with coefficients
bounded by C. We prove the claim by contradiction. Assume there exists an
i0 < μ, such that a · i0, b · i0 corresponding to two polynomials f1, g1 in Z[x]
with C ≥ ‖f1‖∞, ‖g1‖∞. Since |i0a| < |μa|, |i0b| < |μb|, we have deg(f1) ≤
deg(f),deg(g1) ≤ deg(g) by Lemma 1. Then we have f(β)

g(β) = f1(β)
g1(β)

. This can
be changed into f(β)g1(β) = f1(β)g(β). If we let w(x) := f(x)g1(x), v(x) :=
f1(x)g(x), then w(β) = v(β). Since T ≥ #h, TC2 ≥ ‖w‖∞, ‖v‖∞. Since β ≥
2TC2 +1, we have w(x) = v(x), which can be changed into f(x)

g(x) = f1(x)
g1(x)

. By the
Lemma 4, we have f1(x) = δf(x), g1(x) = δg(x), where δ is a nonzero integer,
then |i0a| = |f1(β)| = |δf(β)| ≥ |f(β)| = |μa|. This is a contradiction, so we
prove the theorem. �

Theorem 9 leads to the following deterministic algorithm.

Algorithm 10 (URFunSI1)

Input: A black box h(x) ∈ Z(x), T,C ∈ N, where T ≥ #h,C ≥ ‖h‖∞.
Output: The exact form of h(x).

Step 1: Let β := 2TC2 + 1.
Step 2: Evaluate h(β), assume h(β) = a

b .
Step 3: Let i = 1;
Step 4: f := UPolySInt(β, a · i, x, C);

if (f = failure or #f > T ) then i := i + 1; go to Step 4; end if
Step 5: g := UPolySIInt(β, b · i, x, C);

if (g = failure or #g > T ) then i := i + 1; go to Step 4; end if
Step 6: return f

g .

Theorem 11. The arithmetic complexity of Algorithm 10 is O(μT log2 D), and
the height of the data is O(D(log C + log T )), where μ is defined in (2). In
particular, when μ = 1, the arithmetic complexity is O(T log2 D).

Proof. Since it calls μ Algorithm 4, by Theorem 5, the arithmetic complexity is
O(μT log2 D). Since β = 2TC2 + 1, f(β) is O(C(TC2)D) and the height of the
data is O(D(log C + log T )). �
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3.3 Deterministic Incremental Interpolation with Two Points

In Algorithm 10, we recover h(x) from h(β) for β = 2TC2 + 1. In this section,
we show that h(x) can be recovered from h(β) and h(β + 1) for a much smaller
β = �√2TC�. The following lemma shows how to recover a polynomial from two
smaller points.

Lemma 5. Let f(x) =
∑t

i=1 cix
di ∈ Z[x], d1 < d2 < · · · < dt, and C ≥ ‖f‖∞.

If β ≥ √
2C, then f(x) can be recovered from f(β) and f(β + 1).

Proof. Assume that there exists another g(x) =
∑s

i=1 aix
ki ∈ Z[x], k1 < k2 <

· · · < ks, and C ≥ ‖g‖∞, such that g(β) = f(β), g(β + 1) = f(β + 1).
Firstly, we prove d1 = k1. It is clear that d1 (k1) is the largest integer such
that mod(f(β), βd1) = mod(f(β + 1), (β + 1)d1) = 0 (mod(g(β), βk1) =
0,mod(g(β + 1), (β + 1)k1) = 0). Since f(β) = g(β), f(β + 1) = g(β + 1),
we have d1 = k1. Next, we prove a1 = c1. From f(β)

βd1
mod β = c1,

g(β)
βd1

mod β = a1,
f(β+1)
(β+1)d1

mod (β+1) = c1,
g(β+1)
(β+1)d1

mod (β+1) = a1, we have
(a1 − c1) mod β = 0 and (a1 − c1) mod (β + 1) = 0. Since gcd(β, β + 1) = 1,
we have (a1 − c1) mod β(β + 1) = 0. |a1|, |c1| ≤ C, so |a1 − c1| ≤ 2C. But
|β(β + 1)| ≥ √

2C(
√

2C + 1) > 2C, so a1 = c1. The other terms can be proved
by induction. �
Theorem 12. Let h(x) = f(x)

g(x) ∈ Z(x), T ≥ #h,C ≥ ‖h‖∞. If β ≥ �√2TC�,
h(x) can be recovered from h(β) and h(β + 1).

Proof. Use the same notations as Theorem 9. We still prove it by contradic-
tion. Assume there exists an i0 < μ, such that a · i0, b · i0 correspond to two
integer polynomials with C ≥ ‖f1‖∞, ‖g1‖∞. Since |i0a| < |μa|, |i0b| < |μb|, we
have deg(f1) ≤ deg(f),deg(g1) ≤ deg(g). Then we have f(β)

g(β) = f1(β)
g1(β)

, f(β+1)
g(β+1) =

f1(β+1)
g1(β+1) . This can be change to f(β)g1(β) = f1(β)g(β), f(β + 1)g1(β + 1) =
f1(β + 1)g(β + 1). Let w(x) := f(x)g1(x), v(x) := f1(x)g(x). Then w(β) =
v(β), w(β + 1) = v(β + 1). Since T ≥ max{#f,#g}, TC2 ≥ max{‖w‖∞, ‖v‖∞}.
From β ≥ �√2TC�, by Lemma 5, we have w(x) = v(x), or f(x)

g(x) = f1(x)
g1(x)

. By
Lemma 4, the same reason as Theorem 9, we prove the theorem. �

Based on the above theorem, an interpolation algorithm using two points can
be given. In the following algorithm, we assume T ≥ 5. In this case,

√
2TC ≥

2C+1, so the evaluation satisfies the input condition of Algorithm UPolySIInt.

Algorithm 13 (URFunSI2)

Input: A black box h(x) ∈ Z(x), T,C, where T ≥ #h,C ≥ ‖h‖∞.
Output: The exact form of h(x).

Step 1: Let T1 := max(T, 5), β := �√2T1C�.
Step 2: Evaluate h(β), h(β + 1) and assume h(β) = a1

b1
, h(β + 1) = a2

b2
.
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Step 3: i = 1;
Step 4: f := UPolySIInt(β, a1 · i, x, C);

if (f = failure or #f > T ) then i := i + 1; go to Step 4; end if
Step 5: g := UPolySIInt(β, b1 · i, x, C);

if (g = failure or #g > T ) then i := i + 1; go to Step 4; end if
Step 6: if f(β+1)

g(p+1) = a2
b2

then return f
g ; else i := i + 1; go to Step 4.

Theorem 14. The arithmetic complexity of Algorithm 13 is O(μT log2 D), and
the length of the data is O(D(log C + log T )). In particular, when μ = 1, the
arithmetic complexity is O(T log2 D).

Proof. The analysis of arithmetic complexity is the same as Theorem 11. �
Note that the complexity of Algorithm 13 is the same as that of Algorithm
10, but Algorithm 13 is practically much faster than Algorithm 10 as shown in
Sect. 5.

3.4 Probabilistic Univariate Rational Function Interpolation

In Algorithms 10 and 13, β = 2TC2 + 1 and β = �√2TC�, respectively. In
this section, we will give a probabilistic algorithm where β = 3C + 1 under the
condition that a degree bound for f is known.

Lemma 6. Assume h(x) = f(x)
g(x) ∈ Z(x), C ≥ ‖h‖∞,D ≥ deg(f). Let β ≥

2C + 1, h(β) = a
b , and μ = gcd(f(β), g(β)). Then |μ| ≤ 	βD+1

2|a| 
.

Proof. By Lemma 1, | f(β)
βD+1 | < 1

2 . Since h(β) = a
b , we have a = 1

μf(β), and
|a|

βD+1 = |
1
μ f(β)

βD+1 | < 1
2|μ| . Then we can give an upper bound |μ| < βD+1

2|a| . Since μ is

an integer, |μ| ≤ 	βD+1

2|a| 
. �

We can give a lower bound of degree of f(x). Assume h(β) = a
b . By Lemma

1, the smallest number d satisfying |a|
βd+1 < 1

2 is a lower degree bound of f(x).
The lower and upper degree bounds will avoid lots of computing.

In this subsection, we use two points h(β), h(β + 1) to interpolate h(x). The
following theorems will show some relations between the two points.

Lemma 7. Let f(x) =
∑t

i=1 cix
di ∈ Z[x], C ≥ ‖f‖∞, d1 < d2 < · · · < dt. If

β ≥ 2C + 1 and Q := f(β)/βdt

f(β+1)/(β+1)dt
, E := 1 + 2C

β(β−1) , then 1
E < Q < E.

Proof. Denote q1 :=
∑t−1

i=1 ciβ
di

βdt
and q2 :=

∑t−1
i=1 ci(β+1)di

(β+1)dt
. Then Q= f(β)/βdt

f(β+1)/(β+1)dt

= ct+q1
ct+q2

= 1+ q1−q2
ct+q2

. Since |ct| ≥ 1, |q2| < ε
2 = 1

2 (by Lemma 1), we have |ct+q2| >
1
2 . So | q1−q2

ct+q2
| < 2|q1 − q2|. From |q1 − q2| = |∑t−1

i=1 ci( 1
βdt−di

− 1
(β+1)dt−di

)| ≤
C|∑t−1

i=1(
1

βdt−di
− 1

(β+1)dt−di
)| ≤ C|∑dt

i=1(
1
βi − 1

(β+1)i )| = C
∑dt

i=1
1
βi − C

∑dt

i=1
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1
(β+1)i = C

1
β − 1

βdt+1

1− 1
β

− C
1

β+1− 1
(β+1)dt+1

1− 1
β+1

= C
1− 1

βdt−1 + β−1
(β+1)dt

β(β−1) < C
β(β−1) . So

|Q − 1| ≤ 2|q1 − q2| < 2C
β(β−1) , so we prove the first inequality. Note that

1
Q = f(β+1)/(β+1)dt

f(β)/βdt
= ct+q2

ct+q1
= 1 + q2−q1

ct+q1
. We also have | q2−q1

ct+q1
| < 2C

β(β−1) . So
| 1Q −1| < 2C

β(β−1) . Now we have 1− 2C
β(β−1) < Q < 1+ 2C

β(β−1) and 1− 2C
β(β−1) < 1

Q <

1+ 2C
β(β−1) , which is 1− 2C

β(β−1) < Q < 1+ 2C
β(β−1) and 1

1+ 2C
β(β−1)

< Q < 1
1− 2C

β(β−1)
.

Since 1 + 2C
β(β−1) ≤ 1

1− 2C
β(β−1)

and 1 − 2C
β(β−1) ≤ 1

1+ 2C
β(β−1)

, we proved the lemma.
�

Lemma 8. Let h(x) = f(x)
g(x) ∈ Z(x) and h(β) = a1

b1
, h(β + 1) = a2

b2
, where

gcd(a1, b1) = 1, gcd(a2, b2) = 1, D ≥ deg(f) ≥ d. If a1 = f(β)
μ1

, a2 = f(β+1)
μ2

and

Q1 := a1/βd

a2/(β+1)d , Q2 := a1/βD

a2/(β+1)D , E := 1 + 2C
β(β−1) , then |Q1| 1E < |μ2

μ1
| < |Q2|E.

Proof. Let Q := f(β)/βdt

f(β+1)/(β+1)dt
. Then we have Q1 = μ2

μ1

f(β)
f(β+1)

(β+1)dt

βdt

βdt−d

(β+1)dt−d =

Qμ2
μ1

βdt−d

(β+1)dt−d and Q2 = μ2
μ1

f(β)
f(β+1)

(β+1)dt

βdt

(β+1)D−dt

βD−dt
= Qμ2

μ1

(β+1)D−dt

βD−dt
. By Lemma

7, 1
E < Q < E. Then |Q1| < |μ2

μ1
| βdt−d

(β+1)dt−d E ⇒ |μ2
μ1

| > |Q1| (β+1)dt−d

βdt−d
1
E ≥ |Q1| 1E

and |Q2| > |μ2
μ1

| (β+1)D−dt

βD−dt

1
E ⇒ |μ2

μ1
| < |Q2| βD−dt

(β+1)D−dt
E ≤ |Q2|E. �

It is easy to see that we have the best result if D = d = deg(f(x)).

Corollary 1. If |Q1| ≥ E, then |μ2| > |μ1|. If |Q2| ≤ 1
E , then |μ2| < |μ1|.

Proof. By Lemma 8, we have |Q1| 1E < |μ2
μ1

| < |Q2|E, and the lemma follows
from this. �

Now we give the algorithm.

Algorithm 15 (URFunSIP)

Input: A black box h(x) = f(x)
g(x) ∈ Z(x), D,C, where D ≥ deg(h), C ≥ ‖h‖∞.

Output: The exact form of h(x) or a wrong rational function.

Step 1: Let β := 3C + 1.
Step 2: Evaluate h(β), h(β + 1), and assume h(β) = a1

b1
, h(β + 1) = a2

b2
.

Step 3: Let d= max(	logβ(2a1)
, 	logβ+1(2a2)
)(due to Lemma 1), k1=	βD+1

|a1| 
,
k2 = 	 (β+1)D+1

|a2| 
, Q1 = | a1/βd

a2/(β+1)d |, Q2 = | a1/βD

a2/(β+1)D |, E = 1 + 2C
β(β−1) .

Step 4: Let i := 1. If Q1 ≥ E then goto step 5; If Q2 ≤ 1
E then goto step 6.

If k1 < k2, then goto step 5; Else goto step 6.
Step 5: while an integer in (Q1

E i, Q2Ei) do
a: Let f := UPolySIInt(β, a1 · i, x, C) and g := UPolySIInt(β, b1 · i, x, C).
b: if f = failure or g = failure then i := i + 1; goto step 5;
c: if h(β + 1) = f(β+1)

g(β+1) , then return f(x)
g(x) .
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Step 6: while an integer in ( 1
Q2E i, E

Q1
i) do

a: Let f := UPolySIInt(β + 1, a2 · i, x, C) and g := UPolySIInt(β + 1, b2 ·
i, x, C);

b: if f = failure or g = failure then i := i + 1; goto step 6;
c: if h(β) = f(β)

g(β) then return f(x)
g(x) .

Theorem 16. The algorithm is correct. The arithmetic complexity of the algo-
rithm is O(μD log2 D), where μ ≤ (1 + 1

3C )D−d+2 min{μ1, μ2}. The height of
the data is O(D log C). In particular, when μ = 1, the arithmetic complexity is
O(T log2 D).

Proof. Assume gcd(a1, b1) = 1, f(β) = μ1a1, g(β) = μ1b1, gcd(a2, b2) = 1, f(β +
1) = μ2a2, g(β +1) = μ2b2, and μ1, μ2 > 0. The main idea of the algorithm is to
find one of μ1, μ2, and thus the exact value f(β) or f(β + 1). Since β ≥ 2C + 1,
we can recover f(x) and g(x) by Algorithm 4. In this algorithm, we use an
incremental approach to find the probably smaller one in {μ1, μ2}. We give some
simple criterions to compare which one is small due to Corollary 1. We explain
each step of the algorithm below.

In step 1, we use β = 3C + 1 instead of 2C + 1. This trick is used to avoid
certain computing. For example, if 0 < i < μ1, then ia1 < μ1a1 = f(β). So when
we apply Algorithm UPolySIInt(ia1, β, x, C), it may return failure, since with
high probability, one of the coefficients is not in [−C,C]. On the other hand, this
will never happen when β = 2C + 1.

In step 3, we find a lower degree bound d of f(x). k1, k2 are the upper bounds
of μ1, μ2 by Lemma 6. Q1, Q2, E are the quantities defined in Lemma 8.

In step 4, by Lemma 8, if Q1 ≥ E, then μ2
μ1

> |Q1|
E ≥ 1, or μ2 > μ1. If

Q2 ≤ 1
E , then μ2

μ1
< Q2E ≤ 1, or μ2 < μ1. If both of them are not satisfied, then

we just compare the bounds k1, k2 of μ1, μ2, respectively.
In step 5, we handle the probably case μ2 > μ1. We first use h(β) to recover

h(x). We need to know the number μ1. We let i increases from 1 to k1 and
μ1 is one of them. We check three cases: (1) From Lemma 8, we know Q1

1
E <

μ2
μ1

< Q2E, so Q1
1
E μ1 < μ2 < Q2Eμ1. If the interval (Q1

E i, Q2Ei) includes an
integer, it could be μ1; if it does not, then i cannot be μ1. (2) If f = failure

or g = failure, then we increase i by one. (3) If h(β + 1) = f(β+1)
g(β+1) , then we

return the result. Note that the probabilistic property of the algorithm comes
from here: even if h(β+1) = f(β+1)

g(β+1) , we are not sure whether we have the correct
h. In step 6, we handle the probably case μ1 > μ2, which is similar to step 5.

We now prove the bound of μ. If Q1 ≥ E or Q2 ≤ 1
E , then it is easy to

see that μ = min{μ1, μ2}. So now we assume Q1 < E and Q2 > 1
E . Firstly, we

have E = 1 + 2C
β(β−1) < 1 + 1

β and Q1 = Q2
βD−d

(β+1)D−d . Since Q1
1
E < μ2

μ1
< Q2E,

Q2 > 1
E and Q1 < E, we have μ2

μ1
> Q1

1
E = Q2

βD−d

(β+1)D−d
1
E > βD−d

(β+1)D−d ( 1
E )2 >

βD−d+2

(β+1)D−d+2 . So μ1 < (β+1)D−d+2

βD−d+2 μ2 < (1 + 1
3C )D−d+2μ2. For the similar reason,

we have μ2 < (1 + 1
3C )D−d+2μ1. So we have μ ≤ (1 + 1

3C )D−d+2 min{μ1, μ2}.



236 Q.-L. Huang and X.-S. Gao

The analysis of arithmetic complexity is similar to that of Theorem 11. Since
the missing factor μ may destroy the sparse structure, we use D instead of T .
Since β = 3C + 1, f(β) is O(CD) and the height of the data is O(D log C). �

4 Multivariate Rational Function Interpolation

4.1 Multivariate Polynomial Interpolation with Kronecker
Substitution

In this section, we will give an algorithm based on a variant Kronecker substi-
tution, which will be used in the multivariate rational function interpolation.

In the rest of section, we assume that the variables are ordered as x1 ≺
x2 ≺ · · · ≺ xn, and the lexicographic monomial order will be used. Let m =
xk1
1 xk2

2 · · · xkn
n be a monomial and β1, β2, · · · , βn ∈ N. Then we denote m̂ :=

βk1
1 βk2

2 · · · βkn
n .

Lemma 9. Let m1,m2 be monomials, degxj
(mi) ≤ D, j = 1, 2, · · · , n, i = 1, 2.

If m1 > m2 in the lexicographic order and β1 > 1, βi ≥ βD+1
i−1 , i = 2, . . . , n, then

m̂1 > m̂2 and m̂2
m̂1

≤ 1
β1

.

Proof. Assume m1 = xk1
1 xk2

2 · · · xkn
n ,m2 = xs1

1 xs2
2 · · · xsn

n . As m1 > m2,
without loss of generality, assume kn > sn. First we have βs1

1 βs2
2 · · · βsn

n ≤
βD
1 βD

2 · · · βD
n−1β

kn−1
n and βkn

n ≤ βk1
1 βk2

2 · · · βkn
n . It is sufficient to prove

βD
1 βD

2 · · · βD
n−1β

kn−1
n < βkn

n . Dividing βkn−1
n on both sides, it is sufficient to

prove βD
1 βD

2 · · · βD
n−1 < βn. Since β1 · βD

1 βD
2 · · · βD

n−1 = βD+1
1 βD

2 · · · βD
n−1 ≤

βD+1
2 βD

3 · · · βD
n−1 ≤ · · · ≤ βD+1

n−1 ≤ βn, we have β1 · βD
1 βD

2 · · · βD
n−1 ≤ βn.

Since β1 > 1, βD
1 βD

2 · · · βD
n−1 < βn. So we have m̂1 > m̂2. We have proved

the first part. Since m̂2
m̂1

= β
s1
1 β

s2
2 ···βsn

n

β
k1
1 β

k2
2 ···βkn

n

, we assume there exists an i such that

ki+1 = si+1, ki+2 = si+2, . . . , kn = sn, and ki > si. Then m̂2
m̂1

= β
s1
1 β

s2
2 ···βsi

i

β
k1
1 β

k2
2 ···βki

i

≤
βD
1 βD

2 ···βD
i−1β

ki−1
i

β
k1
1 β

k2
2 ···βki−1

i−1 β
ki
i

= βD
1 βD

2 ···βD
i−1

βi
· 1

β
k1
1 β

k2
2 ···βki−1

i−1

≤ 1
β1

. �

Lemma 10. Let f =
∑t

i=1 cimi ∈ Z[x1, x2, . . . , xn], ‖f‖∞ ≤ C, deg(f) ≤ D,
β1 ≥ 2C + 1, and βi ≥ βD+1

i−1 for i = 2, 3, . . . , n. Then f(x) can be uniquely
determined by f(β1, β2, . . . , βn).

Proof. Assume mt is the leading term and mt = xd1
1 xd2

2 · · · xdn
n . First

we show that mt is unique determined by f(β1, β2, . . . , βn). Let An =
|f(β1, β2, . . . , βn)|, Aj = |f(β1,β2,...,βn)|

β
dj+1
j+1 β

dj+2
j+2 ···βdn

n

, j = 1, 2, . . . , n − 1. Now we prove that

for any j = 1, 2, . . . , n, if k ≤ dj , then Aj

βk
j

> 1
2 . If k > dj , then Aj

βk
j

< 1
2 . Since

βj > 1, it is sufficient to show that if k = dj , then |Aj

βk
j

| > 1
2 ; if k = dj + 1,

then |Aj

βk
j

| < 1
2 . First note m̂i

m̂t
=

∏t−1
j=i

m̂j

m̂j+1
≤ 1

βt−i
1

. When k = dj , we have
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|f(β1, β2, · · · , βn)| ≥ |ct|m̂t − C
∑t−1

i=1 m̂i = m̂t(|ct| − C
∑t−1

i=1
m̂i

m̂t
) ≥ m̂t(|ct| −

C
∑t−1

i=1
1
βi
1
) ≥ m̂t(1− C

β1−1 + C
βt
1−βt−1

1
) > 1

2m̂t. So Aj

βk
j

> 1
2

m̂t

βk
j β

dj+1
j+1 β

dj+2
j+2 ···βdn

n

≥ 1
2 .

When k = dj + 1, |f(β1, β2, · · · , βn)| ≤ C
∑t

i=1 m̂i = Cm̂t(1 +
∑t−1

i=1
m̂i

m̂t
) ≤

Cm̂t(1 +
∑t−1

i=1
1
βi
1
) = Cm̂t

β1− 1
β

t−1
1

β1−1 = m̂t
C

β1−1 (β1 − 1
βt−1
1

) ≤ 1
2m̂tβ1 − 1

2m̂t
1

βt−1
1

.

Clearly, m̂tβ1

βk
j β

dj+1
j+1 β

dj+2
j+2 ···βdn

n

≤ 1, so Aj

βk
j

< 1
2 . So d1, d2, . . . , dn can be deter-

mined by f(β1, β2, · · · , βn). Now we show that ct also can be determined. Let
g =

∑t−1
i=1 cimi. So f = g + ctmt. By the above, we have |g(β1,β2,··· ,βn)|

m̂t
< 1

2 .

So f(β1,β2,··· ,βn)
m̂t

= g(β1,β2,··· ,βn)
m̂t

+ ct, which is | |f(β1,β2,··· ,βn)
m̂t

− ct| < 1
2 . So

ct = 	 f(β1,β2,··· ,βn)
m̂t

+ 1
2
. The rest can be proved by induction. �

Lemma 11. Let f =
∑t

i=1 fix
di
n ∈ Z[x1, x2, . . . , xn], fi ∈ Z[x1, x2, . . . , xn−1],

deg(f) ≤ D, ‖f‖∞ ≤ C, and #f ≤ T . If β1 ≥ 2C +1, βi ≥ βD+1
i−1 , i = 2, 3, . . . , n,

then |fi(β1, β2, . . . , βn−1)| < CβD
n−1

β1
β1−1 , i = 1, 2, . . . , t.

Proof. It is easy to see that T,D,C are also the corresponding bounds of fi.
Assume that fi =

∑s
i=1 cimi, and m1 < m2 < · · · < ms in lexicographic order.

By Lemma 9, we have |fi(β1, β2, . . . , βn−1)| ≤ C
∑s

i=1 m̂i = Cm̂s(
∑s

i=1
m̂i

m̂s
) ≤

CβD
n−1(1 +

∑T−1
i=1

1
βi
1
) = CβD

n−1

β1− 1
β

T−1
1

β1−1 < CβD
n−1

β1
β1−1 . �

Since 2|fi(β1, β2, . . . , βn−1)| ≤ 2CβD
n−1

β1− 1
β

T−1
1

β1−1 < βD
n−1β1 ≤ βD+1

n−1 ≤ βn,
2|fi(β1, β2, . . . , βn−1)|+1 ≤ βn, we can give the following recursive interpolation
algorithm. Note that we regard the upper bound C ≥ ‖f‖∞ as a fixed number
in the recursive process.

The parameter ρ in the input needs some explanation. If the interpolation is
for a polynomial f , then ρ = f(β1, β2, . . . , βn) and the algorithm will return f .
In Algorithm 20, ρ = kf(β1,β2,...,βn)

μ for some integers k and μ. For k = μ, the
algorithm returns f and for k �= μ the algorithm may fail.

Algorithm 17 (MPolySIInt)

Input: A list β1, β2, . . . , βn in N, which satisfy the condition of Lemma 11; ρ ∈ Z;
T,D ∈ N, where T ≥ #f,D ≥ deg(f).
Output: The exact form of f(x1, x2, . . . , xn) or failure.

Step 1: If n = 1, then C1 := C, else C1 := 	CβD
n−1

β1
β1−1
.

Step 2: Let g := UPolySIInt(βn, ρ, C1, xn); if (g = failure or deg(g) > D)
then return failure; end if ; Assume g = c1x

d1
n + c2x

d2
n + · · · + ctx

dt
n .

Step 3: If n = 1, then return g;
Step 4: Let f := 0;

for i = 1, 2, . . . , t do
Let M := MPolySIInt(β1, β2, . . . , βn−1, ci, T −t+1,D−di). if M = failure
then return failure; end if . Let f := f + Mxdi

n ;
Step 5: return f .
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Theorem 18. The algorithm is correct. The arithmetic complexity is
O(nT log2 D), and the height of the data is O(Dn log C).

Proof. By Theorem 5, the arithmetic operations of Algorithm UPolySIInt are
O(T log2 D), and we call n times Algorithm UPolySIInt, so the arithmetic
operations are O(nT log2 D). The reason for the height of the data is the same
as Theorem 5. �

4.2 Probabilistic Multivariate Rational Function Interpolation

In this and the next subsections, we denote x = (x1, x2, . . . , xn),k =
(k1, k2, . . . , kn), f(xk) = f(xk1

1 , xk2
2 , · · · , xkn

n ), x+x = (x1+x, x2+x, . . . , xn+x),
fc(x) = f(x+c1, (x+c2)2D+1, . . . , (x+cn)(2D+1)n−1

), where c = (c1, c2, . . . , cn).
Assume h = f/g ∈ Z(x), gcd(f, g) = 1, T ≥ #h,D ≥ deg(h), C ≥ ‖h‖∞. We

first prove a lemma.

Lemma 12. Assume f, g ∈ Z[x], gcd(f, g) = 1. If k1, k2, . . . , kn are any positive
numbers, then gcd(f(xk), g(xk)) = 1.

Proof. Let hi = res(f, g, xi)= sif +tig, i= 1, 2, . . . , n. From gcd(f, g) = 1, we have
hi �= 0. Replacing xj by x

kj

j , j = 1, 2, . . . , n, we have hi(xk)= si(xk)f(xk)+ ti(xk)
g(xk). So gcd(f(xk), g(xk))|hi(xk), i= 1, 2, . . . , n. Since hi �= 0, it is easy to see
that hi(xk) �= 0, and we know hi(xk) does not contain xi. So gcd(f(xk), g(xk))
does not contain xi, i= 1, 2, . . . , n. So we have gcd(f(xk), g(xk))= 1. �
Lemma 13. Let f, g ∈ Z[x] and gcd(f, g) = 1. Then gcd(f(x+x), g(x+x)) = 1.

Proof. Lethi = res(f, g, xi)= sif+tig, i = 1, 2, . . . , n. Fromgcd(f, g) = 1,wehave
hi �= 0. Replacing xj by xj + x, j = 1, 2, . . . , n, we have gcd(f(x + x), g(x +
x))|hi(x + x). Since hi(x + x) does not contain xi, gcd(f(x + x), g(x + x))
contains variable x only. Denote u(x) := gcd(f(x + x), g(x + x)). Then f(x +
x)= u(x)a, g(x+x)= u(x)b, where a, b ∈ Z[x,x]. If u(x) is not a nonzero constant,
then let β ∈ C be a root of u(x), and we have f(x + β) = u(β)a(β,x) = 0. Since
the terms not containing variate x in f are the same as the the ones in (f(x + β)),
f(x + β) �= 0. This is a contradiction. So gcd(f(x + x), g(x + x)) = 1. �
Theorem 19. Let f, g ∈ Z[x], gcd(f, g) = 1, D ≥ max{deg(f),deg(g)},
x, c1, c2, . . . , cn new variables. Then we have gcd(fc(x), gc(x)) = 1.

Proof. By the two lemmas above, we can easily obtain the theorem. �
By Theorem 19, R = res(fc(x), gc(x), x) is a nonzero polynomial about
c1, c2, . . . , cn. Then when we randomly choose c1, c2, . . . , cn, with high probabil-
ity, that R(c1, c2, . . . , cn) �= 0. So we reduce the multivariate case into univariate
case. But the procedure will destroy the sparse structure. In order to avoid this
problem, we randomly choose c1, c2, . . . , cn satisfying c1 ≤ c2 ≤ · · · ≤ cn, and
then randomly choose a β ≥ 2C+1 and let βi = (β+ci)(2D+1)i−1

, i = 1, 2, . . . , n.
Then these βi, i = 1, 2, . . . , n satisfy the condition of Lemma 10.

Assume h(β1, β2, . . . , βn) = a
b , gcd(a, b) = 1, a = f(β1,β2,...,βn)

μ , b =
g(β1,β2,··· ,βn)

μ .
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Lemma 14. Suppose h = f
g ∈ Z(x). Let c1 ≤ c2 ≤ · · · ≤ cn be positive integers

such that gcd(fc(x), gc(x)) = 1, and β ≥ 2TC2 + 1. Then there exists a unique
h(x1, x2, . . . , xn) with C ≥ ‖h‖∞ corresponding to hc(β).

Proof. When gcd(fc(x), gc(x)) = 1, h(x) is in one-to-one correspondence with
hc(x). Assume there exists another rational function f1(x)

g1(x)
with C ≥ ‖ f1

g1
‖∞

such that fc(β)
gc(β)

= f1c(β)
g1c(β)

, which can be changed into fc(β)g1c(β) = gc(β)f1c(β).
Define w(x) := f(x)g1(x) and v(x) := f1(x)g(x). Then wc(β) = vc(β). Since
2D ≥ deg(w),deg(v), TC2 ≥ ‖w‖∞, ‖v‖∞, by Lemma 10, we have w(x) = v(x),
so f(x)

g(x) = f1(x)
g1(x)

, and the lemma is proved. �

Now we can give a probability algorithm.

Algorithm 20 (MRFunSI1)

Input: A black box h = f
g ∈ Z(x), D,T,C,N , where D ≥ deg(h), T ≥ #h,C ≥

‖h‖∞, N is a big positive integer.
Output: The exact form of h(x) or a wrong rational function.

Step 1: Let β = 2TC2 +1. Randomly choose c1, c2, . . . , cn ∈ {1, 2, . . . , N} such
that c1 ≤ c2 ≤ · · · ≤ cn. Let βi = (β + ci)(2D+1)i−1

, i = 1, 2, . . . , n.
Step 2: Evaluate h(β1, β2, · · · , βn) = a

b , where gcd(a, b) = 1.
Step 3: i = 1;
Step 4: Let f = MPolySIInt(β1, β2, . . . , βn, a · i, T,D,C);

if f = failure then i := i + 1; go to Step 4; end if
Step 5: Let g = MPolySIInt(β1, β2, . . . , βn, b · i, T,D,C);

if g = failure then i := i + 1; go to Step 4; end if
Step 6: Return f

g .

Theorem 21. The algorithm is correct. The arithmetic complexity is O(μnT
log2 D), and the height of the data is O((2D)n log(TC2 + N)).

Proof. By Lemma 14, if gcd(fc(x), gc(x)) = 1, then we can find a rational func-
tion with coefficients bounded by C only when i = μ. So in this case, the algo-
rithm returns a correct h. Otherwise, it may return a wrong rational function.

By Theorem 18, the arithmetic complexity of Algorithm MPolySIInt is
O(nT log2 D). The algorithm calls algorithm MPolySIInt at most μ times, so
the arithmetic complexity is O(μnT log2 D). The reason for the height of the
data is the same as Theorem 5. In this case, the degree is O((2D)n), and β is
O(TC2 + N). So the height of the data is O(Dn log(TC2 + N)). �

We now analyze the successful rate of Algorithm 20.

Lemma 15. Let R be an integral domain, S1, S2, . . . , Sn ⊆ R finite sets with
N = #Si, i = 1, 2, . . . , n, and r ∈ R[x] a polynomial of total degree at most
d ∈ N. If r is not the zero polynomial, then r has at most dNn−1 zeros in
S1 × S2 × · · · × Sn.
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Proof. We prove it by induction on n. The case n = 1 is clear, since a nonzero
univariate polynomial of degree at most d over an integral has at most d zeros.
For the induction step, we write r as a polynomial in xn: r =

∑

0≤i≤k rix
i
n with

ri ∈ R[x1, x2, . . . , xn−1] for 0 ≤ i ≤ k and rk �= 0. Then deg(rk) ≤ d − k.
By the induction hypothesis, rk has at most (d − k)Nn−2 zeroes in S1 × S2 ×
· · · × Sn−1. So that there are at most (d − k)Nn−1 common zeroes of r and
rk in S1 × S2 × · · · × Sn. Furthermore, for each a ∈ S1 × S2 × · · · Sn−1 with
rk(a) �= 0, the univariate polynomial ra =

∑

0≤i≤k ri(a)xi
n ∈ R[xn] of degree k

has at most k zeros, so that the total number of zeros of r in Sn is bound by
(d − k)Nn−1 + kNn−1 = dNn−1. �
Theorem 22. S1, S2, . . . , Sn are n different positive integer sets with #Si = N .
Assume ai < aj for i < j and any elements ai ∈ Si and aj ∈ Sj. If c1, c2, . . . , cn

are randomly chosen in S1 × S2 · · · × Sn, then Algorithm 20 returns the correct
result with probability at least 1 − 2(2D+1)2n

N .

Proof. By Lemma 14, when gcd(fc(x), gc(x)) = 1 in the above algorithm, we
obtain the correct result. By Theorem 19, we know res(fc(x), gc(x), x) �= 0. We
can see degx fc(x) < (2D + 1)n,degx gc(x) < (2D + 1)n, degc fc(x) < (2D +
1)n,degc gc(x) < (2D + 1)n, so degc res(fc(x), gc(x), x) < 2(2D + 1)2n. By
Lemma 15, if c1, c2, . . . , cn are randomly chosen from S1 × S2 · · · × Sn, then the
probability of resultant polynomial be zero at point (c1, c2, . . . , cn) is no more
than 2(2D+1)2n

N . So the success rate of Algorithm 20 is at least 1 − 2(2D+1)2n

N . �

5 Experimental Results

The algorithms are implemented in Maple and their practical performances will
be presented in this section. The data are collected on a desktop with Windows
system, 3.60 GHz Core i7 − 4790 CPU, and 8 GB RAM memory. The Maple
codes can be found in

http://www.mmrc.iss.ac.cn/∼xgao/software/siratfunc.zip

Five randomly constructed rational functions are used to obtain the average
times. We have three groups of experiments to present. The first and second
groups are about univariate rational function interpolation. The third group is
about multivariate rational function interpolation. We use some tricks in our
implementations to improve the efficiency, which can be found in the arXiv
version of this paper [4].

In Figs. 1 and 2, we compare the two deterministic algorithms URFunSI1
and URFunSI2 for univariate rational function interpolation. By the Base
Case, we mean the sum of the times of interpolating f and g separately. From
the data, we can see that: (1) the algorithm using two points are faster than that
using one point and (2) the times for interpolating h = f

g are almost the same
as that of interpolating f and g, which means that our interpolation algorithm
for univariate rational functions are almost optimal.

http://www.mmrc.iss.ac.cn/~xgao/software/siratfunc.zip
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Fig. 1. Univariate: aver-
age running times with
varying T

Fig. 2. Univariate: aver-
age running times with
varying D

Fig. 3. URFunSIP:
average running times
with varying T

Fig. 4. URFunSIP:
average running times
with varying D

Fig. 5. MRFunSIP1:
average running times
with varying T

Fig. 6. MRFunSIP1:
average running times
with varying D

In Figs. 3 and 4, we present the practical performance for the probabilistic
algorithm for univariate rational functions. We compare it with the base case.
Comparing Figs. 1 and 3, we can see that the probabilistic algorithm is faster
than the one point deterministic algorithm and comparable with the two points
deterministic algorithm.

For the multivariate algorithm, in Figs. 5 and 6, we present the practical
performances. We also give the time which is the sum of the times of interpolating
f and g from h = f

g for comparison. We can see that the algorithm is less sensitive
to T and quite sensitive to D. But unlike the univariate case, the interpolation
of the multivariate rational function is much more difficult than interpolating its
denominator and numerator separatively.

6 Conclusion

In this paper, we consider interpolation of sparse rational functions under the
assumption that their coefficients are integers with a given bound. This assump-
tion allows us to recover the rational function h = f/g from evaluations of
h at one “large” sample point. Experimental results show that the univariate
interpolation algorithm is almost optimal, while the multivariate interpolation
algorithm needs further improvements. The main problem is that the sample
data is of exponential size in n, due to the use of Kronecker type substitution.
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Abstract. To support mathematical research, engineering, and edu-
cation by computer systems, we need to deal with the differences
between mathematical content collections and information systems avail-
able today. Unfortunately, these systems – ranging from Wikipedia to
theorem prover libraries are usually only accessible via a dedicated web
information system or a low-level API at the level of the raw database
content. What we would want is a “programmatic, mathematical API”
which would give access to the knowledge-bases programmatically via
their mathematical constructions and properties.

This paper takes a step into this direction by interpreting large
knowledge bases as OMDoc/MMT theories – modular representations
of mathematical objects and their properties. For this, we generalize
OMDoc/MMT theories to “virtual theories” – theories so big that they
do not fit into main memory – and update its knowledge management
algorithms so that they can work directly with objects stored in external
knowledge bases. An additional technical contribution is the introduction
of a codec system that bridges between low-level encodings in databases
and the abstract construction of mathematical objects.

1 Introduction

There are various large-scale sources of mathematical knowledge. These include

– generic information systems like Wikipedia,
– collections of informal but rigorous mathematical documents – e.g. research

libraries, publisher’s “digital libraries”, or the Cornell preprint arXiv,
– literature information systems like zbMATH or MathSciNet,
– databases of mathematical objects – like the GAP group libraries, the Online

Encyclopedia of Integer sequences (OEIS [Slo03,OEIS]), and the L-Functions
and Modular Forms Database (LMFDB [Cre16,LMFDB]),

– fully formal theorem prover libraries like those of Mizar, Coq, PVS, and the
HOL systems.

We will use the term mathematical knowledge bases to refer to them col-
lectively and restrict ourselves to those that are available digitally. They are very

c© Springer International Publishing AG 2017
J. Blömer et al. (Eds.): MACIS 2017, LNCS 10693, pp. 243–257, 2017.
https://doi.org/10.1007/978-3-319-72453-9_17
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useful in mathematical research, applications, and education. Commonly these
systems are only accessible via a dedicated web interface that allows humans
to query or browse the databases. A programmatic interface, if it exists at all,
is usually system specific, to use it, users need to be familiar both with the
mathematical background and internal structure of the system in question. No
predominant standard exists, and these interfaces usually only expose the low-
level raw database content. We claim that mathematicians and other scientists
desire a “programmatic, mathematical API” that gives access to the knowledge-
bases programmatically via their mathematical constructions and properties. We
focus on addressing this problem in this paper.

For our implementation we interpret mathematical knowledge bases as
OMDoc/MMT theory graphs – modular, flexi-formal representations of math-
ematical objects, their properties, and relations. This embedding gives us a
common conceptual framework to handle different knowledge sources, and the
modular and heterogeneous nature of OMDoc/MMT theory graph can be used
to reconcile differing ontological commitments of the knowledge sources with in
this conceptual framework.

To cope with the scale of common mathematical knowledge bases we gen-
eralize OMDoc/MMT theories to “virtual theories”, which allow for unlimited,
dynamically growing number of declarations. We also update the knowledge
management algorithms in the MMT system so that they can directly deal with
the databases underlying the knowledge bases. Here we provide a systematic
solution for encoding/decoding between low-level representations in standard
databases and high-level mathematical representations.

This paper proceeds as follows: In Sect. 2 we give a short overview of
OMDoc/MMT theory graphs along with the Math-In-The-Middle approach
developed in the OpenDreamKit project, our primary use-case for virtual the-
ories. Section 3 discusses LMFDB and its interface as an example of a very large
state-of-the-art mathematical knowledge base, and Sect. 4 shows how it can be
represented as a set of virtual theories. Section 5 introduces the codec architec-
ture and describes how to access virtual theories at the semantic/mathematical
level, and Sect. 6 makes QMT queries aware of virtual theories. Section 7 con-
cludes the paper.

2 Virtual Research Environments for Mathematics:
The Math-in-the-Middle Approach

The work reported in this paper originates from in the EU-funded OpenDreamKit
[ODK] project that aims to create virtual research environments (VRE) enabling
mathematicians to make efficient use of existing open-source mathematical
knowledge systems. These systems include computer algebra systems like Sage-
Math and GAP as well as mathematical data bases such as the LMFDB, which
must be made interoperable for integration into a VRE. In the OpenDreamKit
project we have developed the Math-in-the-Middle (MitM) approach, which
posits a central ontology of mathematical knowledge, which acts as a pivot point
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for interoperability; see [Deh+16] for a description of the approach and [Koh+17]
for a technical refinement and large-scale interoperability case study.
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Fig. 1. The MiTM
approach to connecting
systems.

The MitM ontology in the center of Fig. 1 mod-
els the true, underlying mathematical semantics in
OMDoc/MMT and allows translation between this
centrally formalized knowledge and the systems on the
boundary via views and alignments. This mathemat-
ical knowledge is modeled using the well-established
theory graph paradigm and is stored inside our
OMDoc/MMT-based MathHub system [MH].

The knowledge in the mathematical software sys-
tems – denoted by square boxes in Fig. 1 – also mod-
eled via OMDoc/MMT theory graphs the API the-
ories – the corresponding red circles; these are gen-
erated from the knowledge bases in the systems by a

custom process. The API theories allow us to implement translation with the
help of OMDoc/MMT views and alignments between the ontology – the Math-In-
The-Middle – and each of the systems and use these translations for transporting
computational tasks between the systems.

The realization of the MitM approach crucially depends on the information
architecture of the OMDoc/MMT language [Koh06,RK13] and its implementa-
tion in the MMT system [Rab13,MMT].

In OMDoc/MMT knowledge is organized in theories, which contain infor-
mation about mathematical concepts and objects in the form of declarations.
Theories are organized into an “object-oriented” inheritance structure via inclu-
sions and structures (for controlled multiple inheritance), which is augmented
via truth-preserving mappings between theories called views, which allow to
relate concepts of pre-existing theories and transport theorems between these.
Inclusions, structures, and views impose a graph structure on the represented
mathematical knowledge, called a theory graph.

We observe that even very large mathematical knowledge spaces about
abstract mathematical domains can be represented by small, but densely con-
nected, theory graphs, if we make all inherited material explicit in a pro-
cess called flattening. The OMDoc/MMT language provides systematic names
(MMT URIs) for all objects, properties, and relations in the induced knowledge
space, and given the represented theory graph, the MMT system can compute
them on demand.

Generally, knowledge in a knowledge space given by a theory graph loaded
by the MMT system can be accessed by either giving it’s MMT URI, or by
uniquely describing it via a set of conditions. To achieve the latter, MMT has
a Query Language called QMT [Rab12], which allows even complex conditions
to be specified. Currently, the MMT system loads the theory graph into main
memory at startup and interleaves incremental flattening and query evaluation
operations on the MMT data structures until the result has been produced.
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In [Koh+17] we show that the MitM approach, its OMDoc/MMT-based real-
ization, and distribution via the SCSCP protocol are sufficient for distributed,
federated computation between multiple computer algebra systems (Sage, GAP,
and Singular), and that the MitM ontology of abstract group theory can be
represented in OMDoc/MMT efficiently. This setup is effective because

– the knowledge spaces behind abstract and computational mathematics can be
represented in theory graphs very space-efficiently: The compression factors
between a knowledge space and its theory graph – we call it the TG factor
– exceeds two orders of magnitude even for small domains.

– only small parts of the knowledge space are traversed for a given computation.

But the OpenDreamKit VRE must also include mathematical data sources
like the LMFDB or the OEIS, which contain millions of mathematical objects.
For such knowledge sources, the classical MMT system is not yet suitable:

– the knowledge space corresponding to the data base content cannot be com-
pressed by “general mathematical principles” like inheritance. Indeed, redun-
dant information is already largely eliminated by the data base schema and
the “business logic” of the information system it feeds.

– typically large parts of the knowledge space need to be traversed to obtain
the intended results to queries.

Therefore, we extend the concept of OMDoc/MMT theories – which carry
the implicit assumption of containing only a small number of declarations
(see [FGT92] for a discussion) – to virtual theories, which can have an unlim-
ited (possibly infinite) number of declarations. To contrast the intended uses we
will call the classical OMDoc/MMT theories concrete theories. In practice, a
virtual theory is represented by concrete approximations: OMDoc/MMT works
with a concrete theory, whose size changes dynamically as a suitable backend
infrastructure generates declarations on demand.

3 Example: The API and Structure of LMFDB

The “L-Functions and Modular Forms Database” (LMFDB [LMFa]) is a large
database, storing among other mathematical objects several thousand L-
Functions and curves along with their properties. Technically, it uses a Mon-
goDB database with a Python web frontend. We use this as an example of a
virtual theory. Before we go into this in more detail, we have a closer look at the
structure and existing APIs to of LMFDB.

3.1 The Structure of LMFDB

LMFDB has several sub-databases, e.g., for elliptic curves or transitive groups.
Within each of these, every object is stored as a single JSON record. Figure 2
shows an example: each property of this JSON object corresponds to a property
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{
”degree”: 1,
”x−coordinates of integral points”: ”[5,16]”,
”isogeny matrix”: [[1,5,25],[5,1,5],[25,5,1]],
”label”: ”11a1”,
” id”: ”ObjectId(’4f71d4304d47869291435e6e’)”,
...

}

Fig. 2. Part of an elliptic curve in LMFDB (some fields omitted for brevity)

of the underlying mathematical object. For example, the degree property –
here 1 – of the JSON objects corresponds to the degree of the underlying elliptic
curve.

Other properties are more complex: the value of the isogeny_matrix prop-
erty is a list of lists representing a matrix. This disconnect between JSON
encoding and mathematical meaning can become much more severe, e.g., the
x-coordinates_of_integral_points field is semantically a list of integers but
(due to the sizes limits on integers) is encoded as a string.

3.2 An API for LMFDB Objects

Querying is an important application for mathematical knowledge bases. The
LMFDB API [Lmf] exposes a querying interface that can be used either by
humans via the web or programmatically via JSON-based GET requests over
HTTP. A screenshot of the former interface can be seen in Fig. 3.

Fig. 3. The web-interface for the LMFDB API.

Queries must name the sub-database to be queried and consist of a set of
key-value pairs that correspond to an SQL where clause. However, while LMFDB
offers a programmable API for accessing its contents, this API sits at the level
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of the underlying MongoDB, and not the level of mathematical objects. For
example, to retrieve all Abelian objects in the subdatabase of transitive groups,
we expect to use the key-value pair commutative= true. However, these values
need to be encoded to be understood by MongoDB. We need to realize that the
database schema actually uses the key ab for commutativity, that it has boolean
values, and that the schema encodes true as 1. Thus, the actual query to send
is http://www.lmfdb.org/api/transitivegroups/groups/?ab=1.

In this example, all steps are relatively straightforward. But in general, e.g.
when searching for all elliptic curves with a specific isogeny matrix, this not only
requires good familiarity with the mathematical background but also with the
system internals of the particular LMFDB sub-database; a skill set commonly
found in neither research programmers nor average mathematicians.

Our diagnosis is that LMFDB – and most other mathematical knowledge
databases – suffer from two problems:

– human/computer mismatch: humans have problems interacting with LMFDB
programmatically, because they must speak the system language instead of
mathematical language.

– computer/computer mismatch: mathematical computer systems cannot inter-
operate with LMFDB without extending their code, because their system lan-
guages differ.

Using the MitM approach we have presented in Sect. 2, we can solve both prob-
lems at the same time by lifting the communication to the level of OMDoc/MMT-
encoded MitM objects, which both MitM-compatible software systems and
humans can understand.

4 LMFDB as a Set of Virtual Theories

The mathematical software systems to be integrated via the MitM approach
have so far been computation-oriented, e.g., computer algebra systems. Their
API theories typically declare types and functions on these types (the latter
including constants seen as nullary functions). Even though database systems
differ drastically from these in many respects, they are very similar at the MitM
level: a database like LMFDB defines

– some types: each table’s schema is essentially one type definition,
– many constants: each table entry is one constant of the corresponding type.

Thus, we can apply essentially the same approach. In particular, the API theories
must contain definitions of the database schemas.

From a system perspective, virtual theories behave just like concrete theories,
but without the assumption of being able to load all declarations from some file
on disk at once. Instead, virtual theories load declarations in a lazy fashion
when they are needed. MMT stores concrete theories as XML files. Because
most external knowledge bases use databases with low-level APIs, we must allow
virtual theories to be stored in external database. Apart from standard software
engineering tasks, this leaves three conceptual problems we had to solve:

http://www.lmfdb.org/api/transitivegroups/groups/?ab=1
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P1. Turn the database schemas and tables into OMDoc/MMTtheories and dec-
larations.

P2. Lift data in physical representation (as records of the underlying database)
to OMDoc/MMTobject in semantic representation.

P3. Translate semantic queries to queries about physical representations so that
they can be executed directly on the database without loading the entire
theory into MMT.

We deal with P1 here, with P2 in Sect. 5, and with P3 in Sect. 6.

Numbers

Z
+ : type

Z : type
Z
+ ⊂ Z

Matrices

matrix : type → Z
+ → Z

+ → type

Codecs

codec : type → type

standardInt : codec Z

standardMatrix : {T, n,m} codec T → codec matrix(n,m, T )

Elliptic Curve

ec : type
from record : record → ec

curveDegree : ec → Z

isogenyMatrix : ec → matrix(3, 3,Z)

Elliptic Curve Schema Theory

degree ?implements curveDegree

?codec StandardInt

isogeny matrix ?implements isogenyMatrix

?codec StandardMatrix(3, 3, StandardInt)

LMFDB Elliptic Curves

Elliptic Curve Database Theory

11a1 : ec = . . .
11a2 : ec = . . .
. . .

lazily loads from implements

describes

Fig. 4. Virtual theory for LMFDB elliptic curves (some declarations omitted) (Color
figure online)

A sketch of our overall solution is given in Fig. 4. The math in the middle
comprises preexisting formalizations of general mathematics, here numbers and
matrices (in green), and novel LMFDB-specific ones, here elliptic curves (in red).
Moreover, we introduce a specification of various codecs to translate between
physical and semantic representations. The remaining theories (in blue) form
the LMFDB API theories: the schema theory and the database theory, which we
describe below.
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The set of constants in a database table – while finite – can be arbitrarily
large. In particular, all LMFDB tables1 are just finite subsets of infinite sets,
whose size is not limited by mathematical specifications but by computational
power: the database holds all objects that users have computed so far and grows
constantly as more objects are computed. LMFDB tables usually include a nam-
ing system that defines unique identifiers (which are used as the database keys)
for these objects, and these identifiers are predetermined even for those objects
that have not been computed yet. Thus, it is not practical to fix a set of concrete
API theories. Instead, the API theories must be split into two parts: for each
database table, we need

– a concrete theory called the schema theory that defines the schema and
other relevant information about the type of objects in the table and

– a virtual theory called the database theory that contains one definition for
each value of that type (using the LMFDB identifier as the name of the defined
constant).

LMFDB’s technical realization does not require formalizing the schema of each
table. Instead, the tables are generated systematically and therefore follow an
implicit schema that can – in principle – be obtained from the documentation or
reverse-engineered from the tables. However (and here LMFDB critically differs
from, e.g. the OEIS), the mathematics involved in the tables is so deep that
this is not possible in practice for all but a few experts. Therefore, we sat down
with the original author of one of the best-documented tables – John Cremona
for the table of elliptic curves – and formalized the corresponding schema in
OMDoc/MMT.

In the following, we will use this table as a running example. Our methods
extend immediately to any other table once its schema has been formalized.

Our formalization models elliptic curves in a very simple fashion by using
an abstract type ec. The constructor from_record takes an MMT record and
returns an elliptic curve. Properties of elliptic curves are formalized as functions
out of this type. We list only two here as examples: the degree, an integer, and the
isogeny matrix, a 3×3 matrix of integers. We omit the relevant axioms, which are
not essential for our purposes here. Recall that the Math-in-the-Middle approach
models mathematical knowledge “in the middle” independent of any particular
system. This is exactly the case here – the model of elliptic curves does not
rely on LMFDB, nor any other system, so that we can integrate other knowledge
sources about elliptic curves or to future versions of the LMFDB with changed
structure.

1 Technically, LMFDB is implemented using MongoDB and comprises a set of sets
(each one called a database) of JSON objects. However, due to the conventions used,
we can also understand it conceptually as a set of tables of a relational database,
keeping in mind that every row is a tuple of arbitrary JSON objects.
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5 Accessing Virtual Theories

We now address P2: lifting physical to semantic representations. Intuitively, it is
straightforward how to implement a virtual theory V : we use an initially empty
concrete theory C, and whenever an identifier id of V is requested, MMT dynami-
cally adds the corresponding declaration of id to C. MMT already abstracts from
the physical realizations of persistent storage using the backend interface: essen-
tially a backend is any component that allows loading declarations. Thus, we
only have to implement a new backend that connects to LMFDB, retrieves the
JSON object with identifier id, and turns it into an OMDoc/MMT declaration.

However, this glosses over a major problem: the databases used for the scal-
able physical storage of large datasets usually offer only very simple data struc-
tures. For example, a JSON database (as underlies LMFDB) offers only limited-
precision integers, boolean, strings, lists, and records as primitive objects and
does not provide a type system. Consequently, the objects stored in the database
are very different from the sophisticated mathematical objects expected by the
schema theory. Therefore, databases like LMFDB must encode this complex
mathematical objects as simple database objects.

5.1 Concrete Encodings of Mathematical Objects

Consider, for example, the field degree from Fig. 2 above. Its semantic type in
the MitM-formalization is Z. However, its physical type in LMFDB is IEEE754
a mixture of 64-bit floating point numbers and strings: integers that exceeds
253 − 1 are stored as JSON strings containing the corresponding decimal rep-
resentation. We speak of encoding when translating semantic objects to their
physical representations and of decoding in the dual case, and we speak of codecs
when referring to a pair of an encoding and a decoding function.

To formally specify codecs, we introduce a new OMDoc/MMT theory Codecs
as a part of the MitM ontology. Our codecs are indexed by semantic types: the
type constructor codec maps a semantic type to a new type of codecs for it. For
instance, the object StandardInt of type codec Z is a codec that translates
between LMFDB’s idiosyncratic float/string-representation and MitM’s integers.
Note that there can be multiple different codecs for the same semantic type. For
example, IntAsArray encodes integers x as lists of 64-bit integers consisting of
the digits of x with respect to base 264.

We do not (and do not have to) define the actual encoding/decoding func-
tions in OMDoc/MMT. It is more important to identify the codecs needed in
practice, introduce names for them, and spell out their semantics. Then it is
straightforward to implement them in any other programming language used
interfacing with LMFDB.

In particular, we have implemented them in Scala, the language underlying
the MMT system. Additionally, the Codecs theory annotates each codec declara-
tion with a reference to the Scala class implementing the codec. That way, MMT
can run the encoding/decoding functions of the codec.
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Codecs

codec : type → type

StandardPos : codec Z
+

JSON number if small enough,
else JSON string of decimal expansion

StandardNat : codec N

StandardInt : codec Z

IntAsArray : codec Z JSON List of Numbers
IntAsString : codec Z JSON String of decimal expansion
StandardBool : codec B JSON Booleans
BoolAsInt : codec B JSON Numbers 0 or 1
StandardString : codec S JSON Strings

Fig. 5. Codecs specified in MMT (N, Z, Z+ are as usual, B are booleans, and S are
Unicode strings)

M =

⎛
⎝

1 5 25
5 1 5
25 5 1

⎞
⎠

The above is only sufficient for atomic semantic types,
which typically correspond to one (or more) atomic codecs.
Consider now the field isogeny_matrix of elliptic curves.
The semantic representation of one possible value (namely for the curve 11a1)
of this field is the matrix on the right.

The semantic type operator Matrix takes 1 type argument (the element type,
integers in this case) and two value arguments (the dimensions, 3 and 3 in this
case) and constructs the respective matrix type. In principle, one could give a
codec for each matrix type that comes up in a database schema. But a much more
elegant solution is to specify codec operators in analogy to type operators. A
codec operator for a type operator with k type and l value arguments, takes k
codec and l value arguments. For example, a codec operator for matrices takes
a codec C : codecE for the element type E and the dimensions m and n and
returns a codec of type codec (MatrixEmn).

Codecs (continued)

StandardList : {T} codec T → codec List(T ) JSON list, recursively
coding each element of
the list

StandardVector : {T, n} codec T → codec Vector(n, T ) JSON list of fixed
length n

StandardMatrix : {T, n,m} codec T → codec Matrix(n,m, T ) JSON list of n lists of
length m

Fig. 6. Second annotated subset of the codecs theory containing a selection of codec
operators found in MMT. Compare with Fig. 5.

Like codecs, codec operators are represented in MMT in two ways: as dec-
larations inside the theory Codecs (see Fig. 6 for a list, compare again with
Fig. 4) and as a corresponding Scala function that maps codecs to codecs. When
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reading the declarations, note that we make use of the dependent function types
of the MitM foundation: curly brackets denote dependent function arguments,
i.e., arguments that may occur in later argument types and the result type.

With these declarations, we recover the LMFDB encoding of isogeny matri-
ces by applying the codec operator StandardMatrix, which encodes matrices as
lists of lists, to the codec StandardInt and the dimension 3 and 3. The result-
ing codec StandardMatrix(Z, 3, 3, StandardInt) encodes the above matrix as
[[1.0,5.0,25.0],[5.0,1.0,5.0],[25.0,5.0,1.0]].

5.2 Choosing Encodings in Schema Theories

If we ignore encoding issues, schema theories are straightforward: they contain
one declaration of the same name for each field within an LMFDB record. This
specifies only the semantic type of each field and does not relate it to the MitM
formalization. To handle the encoding as a physical type, we annotate each decla-
ration with the codec that the databases for the values of that field. Moreover, to
connect the schema theories to the MitM formalization, we additionally annotate
each field with the corresponding property of elliptic curves from the MitM the-
ory. We can now understand the last unexplained parts of Fig. 4. ?implements
is the symbol used to annotate the metadatum, which MitM property a schema
field corresponds to. And ?codec similarly annotates the codec to each field.

For example, the degree field implements the curveDegree property in
the elliptic curve theory and uses the StandardInt codec. Thus, the schema
theories determine the entire relation between semantic and physical objects.

The database theory is a virtual theory and contains one declaration per
LMFDB record. Given the URI of an object in the respective database, our MMT
backend for LMFDB first retrieves the appropriate record from LMFDB – in the
case of 11a1 this corresponds to retrieving the JSON found in Fig. 2. Then, for
each field, it uses the annotated codec (which is an OMDoc/MMT expression)
to build an actual codec (as a runnable Scala function) and runs its decoding
function. Next, it passes the resulting record to the from_record constructor,
which yields an elliptic curve in the MitM theories. Finally, this elliptic curve is
added as a new declaration in the database theory.

6 Translating Queries

Recall that MMT has a general-purpose Query Language called QMT [Rab12],
which allows users to find knowledge subject to even complex conditions. We
continue by briefly addressing P3: query translation; for a complete discussion
we refer the interested reader to [Wie17].

In practice, most queries involving virtual theories so far have a shape similar
to the one that LMFDB supports: Finding all objects within a single sub-database
for which a specific field has a specific value. As an example, consider again
the query of finding all Abelian transitive groups. QMT has an MMT-powered
surface syntax, which can be used to express this query as:
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x in (related to ( literal ‘lmfdb:db/transitivegroups?group ) by (object declares))
| holds x (x commutative x ∗=∗ true)

The example consists of two parts, first we find all objects declared in the
lmfdb:db/transitivegroups?group theory (line 1), and then we restrict this
set of results to all those for which the commutative property is true (line 2).
Notice that this the example shown here is the formal equivalent of the LMFDB
query shown in Sect. 3.2. The key difference is that this query does not require
knowing the record structure of LMFDB – apart from knowing the proper sub-db,
instead it only relies on knowing the mathematical semantics (commutativity)
of the query in question.

Recall that to evaluate a query prior to the introduction of virtual theories,
the MMT system loaded the theory graph into main memory and then inter-
leaved incremental flattening and query evaluation operations on the MMT data
structures until a result had been produced. But it is infeasible to first load all
potentially relevant data into memory, and only then proceed with evaluation.
This would require loading a copy of LMFDB into main memory, something that
virtual theories were designed to avoid.

The low-level API of LMFDB and similar system provides a new approach
for making queries towards virtual theories. First, the MMT query is translated
into a system-specific information-retrieval language – in the case of LMFDB this
is a MongoDB-based syntax. Next, this translated query is sent to the external
API. Upon receiving the results, these are translated back into OMDoc/MMT
with the help of already existing functionality in the appropriate virtual theory
backend.

This leaves just one problem unsolved – translating queries into the system-
specific API. However, it is insufficient to simply translate queries as a whole:
One hand a general QMT query may or may not involve a virtual theory, on the
other hand, it may also involve several (unrelated) virtual theories. This makes
it necessary to filter out queries involving virtual theories, and assign them to a
specific backend, and then translate only these parts.

Achieving this automatically is a non-trivial problem. Queries are inductive
in nature, and one could attempt to intercept each of the intermediate results.
However, this would require a check on each intermediate result to first determine
if it comes from a virtual theory or not, and then potentially switching the entire
evaluation strategy, leading to a computationally expensive implementation.

Instead of intercepting each result, we extended the Query Language to allows
users to annotate sub-queries for evaluation with a specific virtual theory back-
end. This allows the system to immediately know which parts of a query have
to be evaluated in MMT memory, and which have to be translated and sent to
an external system. This turns the example above into:

use"lmfdb"for {*

x in (related to ( literal ‘lmfdb:db/transitivegroups?group )

by (object declares)) | holds x (x commutative x *=* true)

*}
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Here, we have simply wrapped the entire query with a use lmfdb statement,
indicating the query should be evaluated using LMFDB.

The encoding of this specific query can be achieved using codecs – in fact we
have already seen above in Sect. 3.2 how this is achieved. The query corresponds
to the URL http://www.lmfdb.org/api/transitivegroups/groups/?ab=1. Next,
the LMFDB API returns a set of JSON objects corresponding to all Abelian
transitive groups. These can then be decoded into OMDoc/MMT objects using
the procedure described in Sect. 5.2, i.e. for each field we look up the correspond-
ing codec and use it to deconstruct the field, eventually creating an MMT record.
Afterwards, these OMDoc/MMT terms can then be passed to the user as a result
to the query.

7 Conclusion

We have shown how to extend the Math-in-the-Middle framework for integrating
systems to mathematical data bases like the LMFDB. The main idea is to embed
knowledge sources as virtual theories, i.e. theories that are not – theoretically or
in practice – limited in the number of declarations and allow dynamic loading
and processing. For accessing real-world knowledge sources, we have developed
the notion of codecs and integrated them into the MitM ontology framework.
These codecs (and their MitM types) lift knowledge source access to the MitM
level and thus enable object-level interoperability and allow humans (mathe-
maticians) access using the concepts they are familiar with. Finally, we have
shown a prototypical query translation facility that allows to delegate some of
the processing to the underlying knowledge source and thus avoid thrashing of
virtual theories.

Related Work. Most other integration schemes employ a homogenous app-
roach, where there is a master system and all data is converted into that sys-
tem. A paradigmatic example of this is the Wolfram Language [Wik17] and the
Wolfram Alpha search engine [Wol], which are based on the Mathematica kernel.
This is very flexible for anyone owning a Mathematica license and experienced
in the Mathematica language and environment.

The MitM-based approach to interoperability of data sources and systems
proposed in this paper is inherently a heterogeneous approach: systems and
data sources are kept “as is”, but their APIs are documented in a machine-
actionable way that can be utilized for remote procedure calls, content format
mediation, and service discovery. As a consequence, interaction between systems
is very flexible. For the data source integration via virtual theories presented
in this paper this is important. For instance, we can just make an extension of
MMT or Sage which just act as a programmatic interface for e.g. LMFDB.

Future Work. We have discussed the MitM+virtual theories methodology on
the elliptic curves sub-base of the LMFDB, which we have fully integrated. We
are currently working on additional LMFDB sub-bases. The main problem to be

http://www.lmfdb.org/api/transitivegroups/groups/?ab=1
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solved is to elicit the information for the respective schema theories from the
LMFDB community. Once that is accomplished, specifying them in the format
discussed in this paper and writing the respective codecs is straightforward.

Moreover, we are working on integrating the Online Encyclopedia of Integer
Sequences (OEIS [Slo03,OEIS]). Here we have a different problem: the OEIS
database is essentially a flat ASCII file with different slots (for initial segments
of the sequences, references, comments, and formulae); all minimally marked
up ASCII art. In [LK16] we have already (heuristically) flexiformalized OEIS
contents in OMDoc/MMT; the next step will be to come up with codecs based
on this basis and develop schema theories for OEIS.
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Abstract. An algorithm we have introduced has a great effect on quan-
tifier elimination of a first order formula containing many equalities.
When the parametric ideal generated by the underlying equalities is not
radical, however, our algorithm tends to produce an unnecessarily com-
plicated formula. In this short paper, we show a result concerning Her-
mitian quadratic forms. It enables us to improve our algorithm so that
we can get a simple formula without any radical computation.

Keywords: Hermitian quadratic form
Comprehensive Gröbner system · Quantifier elimination

1 Introduction

We have introduced an algorithm in [2] as a special type of a Quantifier Elim-
ination (QE) algorithm. It has a great effect on QE of a first order formula
containing many equalities. The essential part of the algorithm is to eliminate
all existential quantifiers ∃X̄ from the following basic first order formula:

φ(Ā) ∧ ∃X̄ (
∧

1≤i≤s

fi(Ā, X̄) = 0 ∧
∧

1≤i≤t

hi(Ā, X̄) > 0) (1)

with polynomials f1, . . . , fs, h1, . . . , ht in Q[Ā, X̄] such that the parametric ideal
I = 〈f1, . . . , fs〉 in C[X̄] is zero-dimensional for any specialization of the param-
eters Ā satisfying φ(Ā), where φ(Ā) is a quantifier free formula consisting only of
equality = and disequality �=. The algorithm computes a Comprehensive Gröbner
System (CGS) of the parametric ideal I, then applies the method of [6] (we
call CGS-QE method in this paper) which is based on the theory of real roots
counting by a Hermitian Quadratic Form (HQF) introduced in [5] with several
innovative improvements. The algorithm is further improved by several tech-
niques reported in [3] and implemented in Maple as freeware software [4]. It
achieves a good performance for first order formulas containing many equalities
as is reported in [1]. When the parametric ideal I is not radical, however, our
algorithm tends to produce a unnecessarily complicated formula. Although we
may get a simpler formula by computing a CGS of the radical ideal

√
I, such a

computation is very heavy in general in a parametric polynomial ring.
c© Springer International Publishing AG 2017
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In this paper, we study the structure of a HQF and show a result namely
Theorem 8. It enables us to compute a quantifier free formula equivalent to
(1) which is as simple as the one obtained using a CGS of

√
I without any

radical computation. The paper is organized as follows. In Sect. 2, we give a
quick review of our CGS-QE algorithm for understanding our result. In Sect. 3,
we introduce our main result together with an example which is simple but
enough for understanding how we can improve our CGS-QE algorithm.

2 Preliminary

2.1 Multivariate Real Roots Counting

In the rest of the paper, Q, R and C denote the fields of rational numbers, real
numbers and complex numbers respectively. X̄ and Ā denote some variables
X1, . . . , Xn and A1, . . . , Am. T (X̄) denotes a set of terms in X̄. For an ideal
I ⊂ R[X̄], let VR(I) = {c̄ ∈ R

n|∀f ∈ I f(c̄) = 0} and VC(I) = {c̄ ∈ C
n|∀f ∈

I f(c̄) = 0}. Let I be a zero dimensional ideal in a polynomial ring R[X̄].
Considering the residue class ring R[X̄]/I as a vector space over R, let v1, . . . , vq
be its basis. For an arbitrary h ∈ R[X̄]/I and each i, j (1 ≤ i, j ≤ q) we define a
linear map θh,i,j from R[X̄]/I to R[X̄]/I by θh,i,j(f) = hvivjf for f ∈ R[X̄]/I.
Let qh,i,j be the trace of θh,i,j and M I

h be a real symmetric matrix such that
its (i, j)-th component is given by qh,i,j . Regarding a real symmetric matrix
as a quadratic form, M I

h is called, a Hermitian Quadratic Form (HQF). The
characteristic polynomial of M I

h is denoted by χI
h(x). The dimension of R[X̄]/I

is denoted by dim(R[X̄]/I). For a polynomial f(x) ∈ R[x], the signature of f(x),
denoted sign(f(x)), is an integer which is equal to ‘the number of positive real
roots of f(x) = 0’ − ‘the number of negative real roots of f(x) = 0’, that is,
sign(f(x)) = #({c ∈ R|f(c) = 0, c > 0}) − #({c ∈ R|f(c) = 0, c < 0}). The
signature of M I

h , denoted sign(M I
h), is defined as the signature of χI

h(x). The
real root counting theorem introduced in [5] is the following assertion.

Theorem 1. sign(M I
h) = #({x̄ ∈ VR(I)|h(x̄) > 0})−#({x̄ ∈ VR(I)|h(x̄) < 0}).

2.2 Comprehensive Gröbner System

Definition 2. For a subset S of Cm, a finite set {S1, . . . ,Sr} of subsets of Cm

which satisfies ∪r
i=1Si = S and Si ∩ Sj = ∅(i �= j) is called a partition of S.

Each Si is called a segment.

Definition 3. Let � be an admissible term order on T (X̄). For a polynomial
f ∈ C[Ā, X̄], regarding f as a member of a polynomial ring C[Ā][X̄] over a
coefficient ring C[Ā], its leading term and coefficient are denoted by LT�(f) and
LC�(f) respectively. For a finite set F ⊂ Q[Ā, X̄] and a subset S of Cm, a finite
set of pairs G = {(S1, G1), . . . , (Sr, Gr)} with finite sets Gi of Q[Ā, X̄] for each
i satisfying the following properties 1, 2, 3 is called a (minimal) comprehensive
Gröbner system (CGS) of 〈F 〉 on S with parameters Ā w.r.t. the term order �.
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1. {S1, . . . ,Sr} is a partition of S.
2. For each i and any ā ∈ Si, Gi(ā) is a (minimal) Gröbner basis of 〈F (ā)〉 ⊂

C[X̄] w.r.t. �, where Gi(ā) = {g(ā, X̄)|g(Ā, X̄) ∈ Gi} and F (ā) = {f(ā, X̄)|
f(Ā, X̄) ∈ F}.

3. For each i, LC�(g)(ā) �= 0 for every g ∈ Gi and ā ∈ Si.

Remark 4. The set of leading terms of Gi(ā) is invariant for each ā ∈ Si,
hence the dimension of the ideal 〈Gi(ā)〉 is also invariant. A minimal CGS is
desirable for their computation. When the ideal 〈Gi(ā)〉 is zero-dimensional for
ā ∈ Si, using (Si, Gi) we can also compute a uniform representation of the HQF
M I

h on Si ∩R
m for any polynomial h ∈ Q[Ā, X̄]. More precisely, each element is

represented by a rational function p(Ā)/q(Ā) with p(Ā), q(Ā) ∈ Q[Ā] such that
q(ā) �= 0 is guaranteed for any ā ∈ Si ∩ R

m.

2.3 CGS-QE Algorithm

The following result is the most important contribution of our paper [2] for the
elimination of the quantifiers ∃X̄ from the basic first order formula (1) given in
Sect. 1.

Theorem 5. Let S = {ā ∈ C
m|φ(ā)} and G = {(S1, G1), . . . , (Sr, Gr)} be a

minimal CGS of the parametric saturation ideal I : h∞ on S with parameters Ā
w.r.t. an arbitrary term order, where I = 〈f1, . . . , fs〉 and h =

∏
1≤i≤t hi. For

each i and any ā ∈ Si ∩ R
m, the followings are equivalent:

1. ∃X̄ (
∧

1≤i≤s fi(ā, X̄) = 0 ∧ ∧
1≤i≤t hi(ā, X̄) > 0).

2.
∑

(e1,...,et)∈{0,1}t sign(M 〈Gi(ā)〉
h
e1
1 ···het

t (ā)
) > 0.

By Remark 4, for each i we have a uniform representation of M
〈Gi(ā)〉
h
e1
1 ···het

t (ā)
for

ā ∈ Si ∩ R
m. Using it together with Descartes’ rule of signs, we can construct

a quantifier free first order formula ψi(Ā) such that ψi(ā) is equivalent to the
property 2 of Theorem 5 for each ā ∈ Si ∩ R

m, then we have a quantifier free
first order formula φ(Ā) ∧ (

∨
1≤i≤r ψi(Ā)) equivalent to (1).

An essential and important difference between our CGS-QE algorithm of [2]
and the original CGS-QE algorithm of [6] is that our algorithm computes a CGS
of the saturation ideal I : h∞ whereas the original computes a CGS of I and
use the relation

∑
(e1,...,et)∈{1,2}t sign(M 〈Gi(ā)〉

h
e1
1 ···het

t (ā)
) > 0 which is also equivalent

to the property 1 of Theorem 5. When I : h∞ �= I, we have dim(R[X̄]/I) >

dim(R[X̄]/I : h∞) and the size of M
〈Gi(ā)〉
h
e1
1 ···het

t (ā)
is smaller in our algorithm, which

enables us to have a simpler representation formula of ψi(Ā). Even when I :
h∞ = I, we also have its simpler representation since the polynomial he1

1 · · · het
t

becomes more complicated if we allow e1, . . . , et to be 2.
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3 New Multivariate Real Roots Counting

As is mentioned at the end of the last section, the size of the HQF M
〈Gi(ā)〉
h
e1
1 ···het

t (ā)

effects the simplicity of the representation formula of ψi(Ā). Note that we can

replace M
〈Gi(ā)〉
h
e1
1 ···het

t (ā)
with M

√
〈Gi(ā)〉

h
e1
1 ···het

t (ā)
in Theorem 5. If 〈Gi(ā)〉 is not a radical

ideal, dim(R[X̄]/〈Gi(ā)〉) > dim(R[X̄]/
√〈Gi(ā)〉) and we may have a simpler

representation formula of ψi(Ā) using a CGS of the radical ideal
√

I : h∞.

Example 6. Consider the following simple example in a form of the basic first
order formula: A �= 0∧∃X((X−A)2 = 0∧X > 0). φ(A) is A �= 0, the parametric
ideal I is 〈(X −A)2〉 and h = X. A minimal CGS G of the parametric saturation
ideal I : h∞ on S = {a ∈ C|a �= 0} has the form G = {(S, {(X − A)2})},
whereas a minimal CGS G′ of the radical ideal

√
I : h∞ on S has the form

G′ = {(S, {X − A})}. Let G = {(X − A)2} and G′ = {X − A}. We have
the following uniform representations of the HQFs on S ∩ R:

M
〈G〉
1 =

(
2 2A
2A 2A2

)
, M

〈G〉
X =

(
2A 2A2

2A2 2A3

)
, M

〈G′〉
1 =

(
1
)
, M

〈G′〉
X =

(
A

)
.

Applying Descartes’ rule of signs and the simplification technique introduced in
the Sect. 3 of [3] to the characteristic polynomials of M

〈G〉
1 and M

〈G〉
X , (although

we do not need them for this simple example), we have an equivalent quantifier
free formula:

A �= 0 ∧ A2 + 1 > 0 ∧ A3 + A > 0.

On the other hand, if we use the characteristic polynomials of M
〈G′〉
1 and M

〈G′〉
X ,

we have a much simpler equivalent quantifier free formula:

A �= 0 ∧ 1 > 0 ∧ A > 0.

3.1 Main Result

Though a CGS of the radical ideal
√

I : h∞ may reduce the size of HQFs, a
radical computation is generally very heavy for a parametric polynomial ring.
In this section, we show a new result Theorem 8. It brings us a new CGS-QE
method which does not use any radical computation but produces a quantifier
free formula as simple as the one obtained using a CGS of the radical ideal.

Notation 7. For a q × q square matrix M and 1 ≤ b1 < . . . < bk ≤ q,
M(b1, . . . , bk) denotes a k × k square matrix such that its (i, j)-th component
is the (bi, bj)-th component of M for each i, j(1 ≤ i, j ≤ k).

We have the following property similar to Theorem1.

Theorem 8. Let I be a zero-dimensional ideal of R[X̄] such that dim(R[X̄]/I) =
q and rank(M I

1 ) = k, note that M I
1 is a q × q matrix, hence k ≤ q. Then there

exists a k−tuple (b1, . . . , bk) of integers such that 1 ≤ b1 < . . . < bk ≤ q and
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det(M I
1 (b1, . . . , bk)) �= 0. For any such a k−tuple, we have the following equation

for every polynomial h ∈ R[X̄]:

sign(N I
h) = #({x̄ ∈ VR(I)|h(x̄) > 0}) − #({x̄ ∈ VR(I)|h(x̄) < 0}),

where N I
h denote a k × k real symmetric matrix M I

h(b1, . . . , bk).

By this theorem, we can replace M
〈Gi(ā)〉
h
e1
1 ···het

t (ā)
with N

〈Gi(ā)〉
h
e1
1 ···het

t (ā)
in Theorem 5.

Since dim(R[X̄]/
√〈Gi(ā)〉 ) = rank(M 〈Gi(ā)〉

1 ) by the theory of roots count-

ing, N
〈Gi(ā)〉
h
e1
1 ···het

t (ā)
and M

√
〈Gi(ā)〉

h
e1
1 ···het

t (ā)
have a same size and we can obtain a simple

formula.

Example 9. For the HQF M
〈G〉
1 in the previous example, q = 2 and k = 1. We

may have b1 = 1 or b1 = 2. For b1 = 1, we have N
〈G〉
1 = (2) and N

〈G〉
X = (2A)

which produces the same formula A �= 0 ∧ 1 > 0 ∧ A > 0 as the formula obtained
using the radical ideal. On the other hand, for b1 = 2, we have N

〈G〉
1 = (2A) and

N
〈G〉
X = (2A3) which produces the formula A �= 0 ∧ A2 > 0 ∧ A3 > 0.

4 Conclusion and Remarks

In Example 9, the obtained formula for b1 = 2 does not look much simpler
than the one obtained using M

〈G〉
1 and M

〈G〉
X . Though the formula obtained

using any k-tuple (b1, . . . , bk) is generally simple for a more complicated non-
radical ideal I, the choice of k-tuple makes a strong effect on its simplicity. For
the choice of a k-tuple we also have obtained the following criterion. Let � be
an admissible term order of T (X̄) and {v1, . . . , vq} = {v ∈ T (X̄)|v /∈ LT (I)}.
We can choose (b1, . . . , bk) so that each vbi is not dividable by vj for any j ∈
{1, . . . , q} \ {b1, . . . , bk}. Such a k-tuple produces a simple formula. Note that in
the previous example, b1 = 1 satisfies this criterion but b1 = 2 does not.
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Abstract. We present upper bounds on the bit-size of coefficients of
non-radical purely lexicographical Gröbner bases (triangular sets) in
dimension zero. This extends a previous work [4], constrained to radical
triangular sets; it follows the same technical steps, based on interpolation.
However, key notion of height of varieties is not available for points with
multiplicities; therefore the bounds obtained are thus less universal and
depend on some input data. We also introduce a related family of non-
monic polynomials that have smaller coefficients, and smaller bounds. It
is not obvious to compute them from the initial triangular set though.

1 Introduction

Triangular sets are the core objects of the triangular decomposition methods
to solve polynomial systems [1,2,6,7,11]. Algorithms in this realm are some-
what based on the generalization of algorithms for univariate polynomials to
multivariate ones, yielding some splittings viz. “decomposition”. The outputs
are most of the time regular chains (a.k.a regular sets). In dimension zero they
can be made particularly simple: they form a reduced lexicographic Gröbner
basis (t1(x1), t2(x1, x2), . . . , tn(x1, . . . , xn)). We will refer to such a family as a
triangular set in this article.

To solve polynomial systems, it is enough to represent the radical ideal gen-
erated by the input polynomials, thereby most previous works focus on radical
triangular sets. However, triangular sets have the ability to represent some non-
radical ideals (called thereafter triangular ideals); Moreover the radical of the
ideal generated by a triangular set is not necessarily triangular, requiring extra
work to decompose it into triangular sets. If we compare with the Rational Uni-
variate Representation (RUR, see [10]), only the multiplicity (which is just a
number) of a root is given. Therefore beyond the theoretical interest, it is worth
studying non-radical triangular sets.

In this article we unveil the structure and prove upper bounds on the bit-size
of coefficients of such triangular sets. This is an attempt of generalization from
radical to non-radical triangular sets, of the results given in [4]. Let us recall
briefly the strategy of this paper, since we will follow it.

Step (1) Given the solution points, some interpolation formulas are proved
to reconstruct the triangular set from the points.

Work supported by the JSPS grant Wakate B No. 50567518.

c© Springer International Publishing AG 2017
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Step (2) These formula allows to control the growth of coefficients in function
of that of the points.

Step (3) A tool from Diophantine geometry called height of variety defined
through a Chow form is introduced. It measures somewhat the arithmetic com-
plexity of the variety, and is endowed of an arithmetic analogue of the Bézout
theorem (degree of intersection). This “Arithmetic Bézout theorem” provides
upper bounds in function of any input polynomial system.

Step (4) A simple modification of the interpolation formulas, called barycen-
tric form of Lagrange interpolation defines a family of non-monic polynomials
which have smaller coefficients.

We present extensions of Steps (1)–(2), and partially (4), to non-radical tri-
angular sets. As for Step (3) the tool (height of variety) is not available for
multiple points. While interpolation in [4] is multivariate Lagrange, it is here
relevant of multivariate Hermite. The input data are not points but primary
ideals assumed to be given by a triangular set (see (1)). The related family of
non-monic polynomials mentioned in Step (4) and denoted N� are defined in
Theorem 1. In comparison with [4], they seem not easy to compute from the
triangular set T (see [12]) for an attempt in two variables).

Related work. For the bit-size bounds, a selection of related work concerned
with the RUR, triangular sets, and lexicographic Gröbner bases is [3,4,8,9]. The
bounds presented are the first ones dealing with non-radical systems having a
general type of singularities. Comparatively, a RUR can represent multiplicities
(recall that this is just a number) but not a full singularity type.

Notation. k will denote any field Q ⊆ k � Q. A polynomial ring over k, in n
variables x1, . . . , xn implicitly ordered such as x1 ≺ x2 ≺ · · · ≺ xn, a triangular
set T = (T1(x1), . . . , Tn(x1, . . . , xn)) with degxj

(Tj) = dj . Its set of zeros in k
n

is denoted V . For a subset S of an arbitrary Cartesian product Em, S≤� will
denote the projection of S on the first � coordinates.

2 Interpolation Formula

Input data. In the radical case, we want to interpolate points. Here, the raw
input data are primary ideals associated to each solution point in k

n
. Thanks

to Theorem 2.4 of [5] the primary ideals of a triangular set are triangular: the
lexicographic Gröbner basis of these primary ideals are triangular sets. Still over
k, a prime ideal associated with 〈T 〉 is of the form 〈x1 − α1, . . . , xn − αn〉, for
a solution point (α1, . . . , αn). The corresponding primary ideal 〈t(α)〉 has the
following shape (Proposition 2.2 of [5]): First t

(α)
1 (x1) = (x1 − α1)δ1(α) and in

general t
(α)
n (x1, . . . , xn) is equal to:

(xn − αn)δn(α) +
δ1(α1)−1∑

i1=0

. . .

δn−1(α)−1∑

in−1=0

δn(α)−1∑

in=0

cα[i1, . . . , in]
n∏

j=1

(xj − αj)ij (1)
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where:

(i) For 1 ≤ u ≤ n, degxu
(c[i1, . . . , in]) < δu(α),

(ii) c[0, . . . , 0, i�] = 0 for all i� < δ�(α) and for � = 2, . . . , n.
(iii) Note that Taylor expansion gives: c[i1, . . . , in] = 1

i1! ··· in!
∂i1 + ··· + in tn

∂x
i1
1 ··· ∂xin

n

(α1, . . . , αn).

We denote by T�+1[α] the polynomial T�+1 mod 〈t(α)
≤� 〉. Theorem 3.1 of [5],

the ring k̄[x1, . . . , xn]/〈t(α)
≤� 〉 is Henselian. Hence T�+1[α] admits a unique factor-

ization as follows:

T�+1[α] ≡
∏

β∈V≤�+1

t
(β)
�+1 mod 〈t(α)

≤� 〉,where (β1, . . . , β�) = (α1, . . . , α�). (2)

and t
(β)
�+1 = (x�+1 − β�+1)δ�+1(β) +

∑
i1,··· ,i�,r cβ [i1, . . . , i�, r](x�+1 − β�+1)r ·

∏�
j=1(xj − αj)ij for some cβ [i1, . . . , i�, r] ∈ k̄. This key result allows to prove

Proposition 1.

Notation. A sequence α1 ∈ V≤1, α
2 ∈ V≤2, . . . , α

� ∈ V≤� will not denote “j-th
power of α”, but points αj = (αj

1, . . . , α
j
j) with the additional convention that

(αj
1, . . . , α

j
j) = (αj+1

1 , . . . , αj+1
j ). We say that αj+1 extends αj .

Proposition 1. Let γ ∈ V≤�+1 be a root that extends α = (α1, . . . , α�) ∈ V≤�.

1. e�+1(γ) ≡ T�+1[α]

t
(γ)
�+1

mod 〈t(α)
≤� 〉 is a polynomial in (k[x1, . . . , x�]/〈t(α)

≤� 〉)[x�+1]

2. Orthogonality: Given β 	= γ ∈ V≤�+1:
e�+1(β) · e�+1(γ) = 0 in Aα := k[x1, . . . , x�+1]/〈t(α)

1 , . . . , t
(α)
� , T�+1[α]〉.

3. There are polynomials u�+1(γ) and v such that
u�+1(γ)e�+1(γ) + v t

(γ)
�+1 ≡ 1 mod 〈t(α)

≤� 〉, with degx�+1
(u�+1(γ)) < degx�+1

(t(γ)�+1).

4. e�+1(β) ≡ 0 mod 〈t(β′)
≤�+1〉 if β′ 	= β, and ẽ�+1(γ) ≡ 1 mod 〈t(γ)≤�+1〉.

Denote ẽ�+1(γ) ≡ u�+1(γ)e�+1(γ) mod 〈t(α)
≤� 〉. The family {ẽ�+1(γ)}γ is a

complete family of orthogonal idempotents of the algebra Aα.

Have in mind that Lagrange and Hermite interpolation use idempotents.

Theorem 1. Write t
(α)
≤� = (t(α)

1 , . . . , t
(α)
� ) the triangular sets defining the pri-

mary ideal of associated prime 〈x1 − α1, . . . , x� − α�〉.

T�+1 ≡
∑

α1∈V≤1

∑

α2∈V≤2

· · ·
∑

α�∈V≤�

ẽ1(α1) · · · ẽ�(α�) · T�+1[α�] mod 〈t(α)
≤� 〉. (3)

where it is assumed that αj+1 ∈ V≤j+1 extends αj ∈ V≤j. We define N�+1 by the
same formula, using polynomials ei(αi) instead of ẽi(αi).
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Since the family of idempotents used to define T�+1 is complete, T�+1 is monic.
This is not the case for N�+1. Therefore they cannot be used to perform reduction
through a division, but their interest lies in their small coefficients, and in that
they generate the same ideal as 〈T1, . . . , T�〉 hence encode the same information;
In the radical case they were used in conjunction of modular methods.

A natural question is whether we can compute the polynomials N�’s from
the T�’s. The answer is not trivial and not addressed in these pages. However it
is not unreasonable to expect an almost linear complexity algorithm to compute
them, as shown for the case of two variables in [12]. It boils down to compute
the polynomial denoted F�+1 hereunder

Proposition 2. We have F�+1T�+1 ≡ N�+1 mod 〈T1, . . . , T�〉, with:
F�+1 :=

∑
α1∈V≤1

∑
α2∈V≤2

· · · ∑α�∈V≤�
e1(α1) · · · e�(α�)

and where the same convention on α1, α2, . . . as in Theorem1 is adopted.

In the radical case, it is easy to show that F� = ∂T1
∂x1

· · · ∂T�

∂x�
.

3 Bit-Size Consideration

Preliminary. This last section states and comments on some upper-bounds on
the bit-size of coefficients in Q appearing in the polynomials T and N . The
difficulties compared to the radical case are first, that the interpolation formulas
are more complicated to handle, and second, that there is no notion of Chow
form, yet of notion height of varieties, in our non-radical context; Whereas it was
a key tool in [4] to obtain intrinsic bit-size bounds (see Step (3) in Introduction).
The upper bounds that we can obtain are less universal: we assume that the input
primary ideals are given in triangular form, which we have written t(α), while
universal bounds would not need this assumption (another input for the primary
ideals may well have smaller coefficients, hence yield better bounds). However
bounds (6) give a reasonable indication on the bit-size, and are also of interest
to understand the growth of coefficients in multivariate (barycentric) Hermite
interpolation.

Statement. We use the formalism of height of polynomials classical in Dio-
phantine approximation theory. The notation h(f) denotes the height of the
polynomial f , and can be thought as the max bit-size of its coefficients. Recall
that the input “raw” data are the triangular sets {t(α), α ∈ V } generating the
primary ideals of 〈T 〉. With the notations of (1), this includes the exponents
δi(α) and coefficients cα[i1, . . . , i�]. We define:

H�(β�) := max
i1,...,i�

h(cβ [i1, . . . , i�]) + i1h(β1) + · · · + i�h(β�), (4)

and L�(T ) := maxα∈V≤�
(
∑�

i=1 Hi(βi)). Denote by μ�(β�) := δ1(β1) · · · δ�(β�) the
local multiplicity at β�, and finally:

H�(T ) :=
∑

β�∈V≤�

H�(β�), μ�(T ) := max
β�∈V≤�

μ�(β�), D� :=
∑

i≤�

di (5)
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The bit-sizes of any coefficient of N�+1, or T�+1, are lower than quantities
whose dominating terms are respectively:

H�+1(T )+Õ(L�(T ) ·D�+1 ·μ�(T )), �D�+1H�+1(T )+Õ(� ·L�(T ) ·D2
�+1 ·μ�(T ))

(6)

Rationale. Õ( . ) is a big-Oh notation that hides any additional logarithmic fac-
tors. The quantity H�(β�) of (4) should be thought as a generalization to primary
components of the height of a projective point: coefficients and exponents in the
Taylor expansion (1) are simply “naturally” taken into account. If the point is
simple, then this quantity coincides with the “traditional” height of a point. In
addition, the quantity H�(T ) of (5) reflects a certain additivity of the “height”
under distinct primary components; this also generalizes the additivity of the
height of varieties under disjoint union. Therefore, the quantities involved are
“natural” extension to those more traditional used in the case of simple points.
The occurrence of quantities like L�(T ) or the multiplicity at a point μ�(β�) is
due to technical details inherent to the presence of multiplicities

If T generates a radical ideal, then μ�(β�) = 1, H�(β�) = h(β�); moreover
H�(T ) ≈ h(V≤�), D� ≤ deg(V≤�) which are respectively the height of the variety
V≤� and its degree, and if we discard the values L�(T ) then the bounds in (6)
become roughly h(V�) + Õ(deg(V )) for N�+1, and deg(V�)h(V�) + Õ(deg(V≤�)2)
for T�+1. These bounds are similar to the ones obtained in [4]. This shows that
the bounds (6) “faithfully” extend the ones of the radical case. The difference
between the bounds for N�+1 and for T�+1 is roughly the factor D�, and this
ratio is comparable to that of [4].

Finally, experiments not reported here (but see Table 1 in [12] for some data
in two variables) show that the size of polynomials T� can be dramatically larger
than N�’s.
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Abstract. We analyse integrals representing the Lambert W function,
paying attention to computations using various rules. Rates of conver-
gence are investigated, with the way in which they vary over the domain
of the function being a focus. The first integral evaluates with errors
independent of the function variable over a significant range. The second
integral converges faster, but the rate varies with the function variable.

1 Introduction

Expressing functions as definite integrals is well established in mathematics: two
obvious examples being the Gamma function and the Bessel functions. Integral
representations can be used, for example, to prove properties, or membership
of a function class, or for numerical evaluation. For numerical evaluation, rapid
convergence is desirable. Here we examine two integrals and their suitability
for numerical evaluation. We are interested in applying the rapidly converging
trapezoidal rule [3,6]. We first re-examine an integral representation of Lambert
W that was recently considered in [2]. We demonstrate that the convergence
rate is largely independent of the function argument, except for the immediate
neighborhood of the branch point. Then we consider an integral posed by Poisson
[5]. The convergence rate is higher, but the rate depends upon the function
argument.

2 First Integral

It was shown in [4] that W (x)/x is a Stieltjes function, because it can be
written as

f(x) =
W (x)

x
=

1
π

∫ ∞

1/e

φ(t)
x + t

dt.

Here, φ(t) = �W (−t)/t. For computation, the integral is unsatisfactory because
it defines W in terms of W , and numerically it is slow to converge. The self-
reference can be removed by making the substitution v = �W (−t). Then from
[1, Eq. (4.1)], we have that t = v csc ve−v cot v,

v

t

dt

dv
= 1 + v2 csc2 v − 2v cot v = v2 + (1 − v cot v)2, (1)

c© Springer International Publishing AG 2017
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and the integral becomes

K(x, v) =
v2 + (1 − v cot v)2

x + v csc v exp(−v cot v)
,

f(x) =
W (x)

x
=

1
π

∫ π

0

K(x, v) dv. (2)

Since the integrand is symmetric, K(x,−v) = K(x, v), the integral can be writ-
ten so that the integrand is periodic:

W (x)
x

=
1
2π

∫ π

−π

K(x, v) dv. (3)

In this form, it is clearly a candidate for the rapid convergence of the trapezoidal
rule, observed for periodic functions and described in [6].

2.1 Trapezoidal Rule

The trapezoidal rule was applied to (3) in [2]. Translating their algorithm into
Maple syntax, we have1

IaconoBoyd := proc (x, N) local t, h, j, K, S;
h := 2*Pi/N;
S := 0;
K := (x, t)->((1-t*cot(t))^2+t^2)/(x+t*csc(t)*exp(-t*cot(t)));
for j to N do

t := -Pi+(j-1+sqrt(31/71))*h;
S := S+evalf(K(x, t));

end do;
S/N ;

end proc;

The basic theory of trapezoidal integration is phrased in terms of periodic
functions [6], and hence it may seem that all numerical schemes must be based
on the interval over which the function is periodic. The integrand under consid-
eration possesses a symmetry of which we can take advantage, and the question
arises whether this will change the convergence rate. It does not. Specifically,
there is no reason to avoid (2). To apply the trapezoidal rule to (2), we first note
that although both K(x, 0) and K(x, π) are undefined, the limits exist:

lim
v→0+

K(x, v) =

{
0 , x �= −1/e ,

2e , x = −1/e ,

lim
v→π− K(x, v) = 0.

Therefore these points can be omitted from the sum for x �= −1/e. It becomes
1 Maple programmers will be jumping to improve this code for style and efficiency, but

the issue is rate of convergence, not programming efficiency, and the code reflects
the algorithm as given in [2].
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F_approx := proc (x, N) local h;
h := evalf(Pi/N);
add(K(x, k*h), k = 1 .. N-1)/N;

end proc;

This procedure does not experience the errors reported in [2].

2.2 Convergence Rate

The function f(x) is monotonically decreasing, with f(−1/e) = e and f(0) = 1,
and f(x) → 0 as x → ∞. We have measured the absolute error in the evaluation
of this function. This differs from [2], who measured the absolute error in xf(x) =
W (x) which grows monotonically from −1 to ∞.

The error was computed for values of x = −0.35 + 0.4k for k = 0, 50 and
n = 10 + 10� for � = 0..40. Computations were made close to the branch point
x = −1/e, using x = −0.36,−0.367,−0.3678. Maple was used with the setting
Digits:=30. Since the values being calculated are of O(1), this setting of Digits
corresponds to a absolute errors of 10−30, and in plots of log of the error the
limit of error reduction is seen to be ln(10−30) ≈ −70. Figure 1 shows the log of
the absolute error against

√
n for the various x. The three points close to the

branch point are plotted in green crosses, while the remainder are plotted in
circles of various colours.

Fig. 1. A plot of ln |f(x)−Fapprox(x,n)| against
√
n for various values of x. The crosses

correspond to the three values closest to the branch point. The symbols for other points
are superimposed on each other. (Color figure online)

We observe that the convergence rate is practically independent of x for all
points except the three closest to the branch point. Even for x = −0.36, the
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error follows the other points for n > 100. In other words, the errors decay to
leading order as αe−β

√
n for a β > 0 that is independent of x. The data shows

the error is approximately proportional to e−3.5
√

n.

3 Second Integral

In 1823, Poisson derived an integral for W :

W (x) =
2
π

∫ π

0

cos 3
2θ − xe− cos θ cos

(
5
2θ + sin θ

)
1 − 2xe− cos θ cos(θ + sin θ) + x2e−2 cos θ

cos 1
2θ dθ, (4)

The integrand is periodic with period 2π, but is symmetric, and therefore the
trapezoidal rule can be restricted to the interval [0, π]. The integrand is non-zero
at θ = 0 but can be evaluated everywhere without special considerations. Unlike
the first integral, this integral is valid only in the interval (−1/e, e). We plot
the errors in Figs. 2 and 3. Since the integral is exactly 0 for θ = 0, the error
is minimum there. Consequently, we have plotted separately the cases of x < 0
and x > 0. In this case, the plots are the log of the absolute error in the estimate
of W (x) against n. Thus the convergence is faster than for the first integral.
The behaviour with x is different from the first integral. Now to leading order
the error is αe−β(x)n. Another contrast with the first integral is that the error
maintains its functional form as the branch point is approached, albeit with a
decreasing β.

Fig. 2. A plot of the log of the absolute error against n for various positive x; the
legend is + = 2.5; × = 2.0; � = 1.0; © = 0.5. The negative slope increases as x
decreases to zero.
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Fig. 3. A plot of the log of the absolute error against n for various negative x: + =
−0.25; � = −0.3; • = −0.36; � = −0.367. The negative slope decreases as x decreases
to the branch point x = −1/e.
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Abstract. Stirling’s asymptotic expansion for the Gamma function can
be derived from an expansion of the Lambert W function about one of its
branch points. Although the series expansions around this branch point
have been known for some time, the coefficients in the series were only
known as solutions of nonlinear recurrence relations. Here we show that
the coefficients can be expressed using associated Stirling numbers.

1 Introduction

The Lambert W function is the multivalued inverse of the map W �→ WeW .
The branches, denoted by Wk (k ∈ Z), are defined through the equations [4]

∀z ∈ C, Wk(z) exp(Wk(z)) = z , (1)
Wk(z) ∼ lnk z as |z| → ∞ , (2)

where lnk z = ln z+2πik, and ln z is the principal branch of natural logarithm [5].
The function possesses a branch point at z = −1/e, where we have

p = ±
√

2(ez + 1) , (3)

Wk(z) =
∞∑

�=0

μ�p
� = −1 + p − 1

3p2 + 11
72p3 . . . , (4)

and the choice of sign determines the particular branch of W . The coefficients
are given by [2,4] μ0 = −1, μ1 = 1, α0 = 2, and α1 = −1, and

μk =
k − 1
k + 1

(μk−2

2
+

αk−2

4

)
− αk

2
− μk−1

k + 1
, (5)

αk =
k−1∑

j=2

μjμk+1−j . (6)

The connection with Stirling’s approximation for the Gamma, or factorial,
function comes through the related expansions [1,3,7]

W0

(− exp(−1 − 1
2z2)

)
=

∑

n≥0

anzn , (7)

c© Springer International Publishing AG 2017
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where the an are given by a0 = −1, a1 = 1 and

an =
−1

(n + 1)a1

(

an−1 +
n−1∑

k=2

kakan+1−k

)

. (8)

Euler’s integral for n! can then be expressed using this expansion, the final result
being the asymptotic series

n! ∼ nn+1

en

∑

k≥0

(2k + 1)a2k+1

(
2
n

)k+1/2

Γ
(
k + 1

2

)
, (9)

where Γ is the gamma function.
We obtain expressions for ak and μk, following the methods of [6]. In [6], we

obtained expressions for derivatives of W around a general point (excluding the
branch point), while here we choose the branch point. For an analytic function
y = f(x) with f(0) = 0, f ′(0) �= 0, the inverse function x =

∨
f(y) can be

expressed as

∨
f(y) =

∑

n≥1

anyn ,

where

an =
1
n!

lim
x→0

dn−1

dxn−1

xn

f(x)n
.

We, however, shall use an alternative, equivalent, expression:

an =
1
n

[
xn−1

]
(

x

f(x)

)n

, (10)

where we have used the notation of Knuth that [xm]g(x) equals the coefficient
of xm in a Taylor series expansion of g(x) in the variable x.

2 First Expansion

Definition 1. The r-associated Stirling numbers of the first kind, more briefly
Stirling r-cycle numbers, are defined by the generating function

⎛

⎝ln
1

1 − z
−

r−1∑

j=1

zj

j

⎞

⎠

m

= m!
∑

n≥rm

[
n

m

]

≥r

zn

n!
. (11)

These numbers have combinatorial significance: they count the number of
ways in which m cycles can be formed from n distinct objects, with each cycle
required to have a minimum of r objects. The case r = 1 was studied by Stirling.
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Theorem 1. The coefficients an defined in (7)–(8) are

an =
1
n

n−1∑

k=0

(−n/2
k

)
k! 2k

(n + 2k − 1)!

[
n + 2k − 1

k

]

≥3

, (12)

=
1
n!!

n−1∑

k=0

(−1)k

(n + 2k − 1)!!

[
n + 2k − 1

k

]

≥3

. (13)

Proof. We set W (− exp(−1 − z2/2)) = −1 + A, then from (1) we have

(−1 + A) exp(−1 + A) = − exp(−1 − z2/2) .

Simplifying and taking the logarithm of both sides, we have

ln(1 − A) + A = −z2/2 .

Now solving for z gives us

z =

√

2 ln
1

1 − A
− 2A .

Lagrange inversion, using (10), gives A =
∑

n=1 anzn, where

an =
1
n

[
An−1

]
⎛

⎝ A
√

2 ln 1
1−A − 2A

⎞

⎠

n

=
1
n

[
An−1

](
ln(1/(1 − A)) − A

A2/2

)−n/2

,

and the notation of (10) has been used. In order to connect with Stirling num-
bers, we rearrange the expression:

an =
1
n

[
An−1

] (
1 +

ln(1/(1 − A)) − A − A2/2
A2/2

)−n/2

. (14)

Now using the binomial expansion, we get

an =
1
n

[
An−1

] ∑

k≥0

(−n/2
k

)
2k k!

∑

m=3k

[
m

k

]

≥3

vm−2k

m!
.

With further simplification, we obtain (12), which can be rewritten using stan-
dard identities to complete the theorem.

We can also express the coefficients using Stirling 2-cycle numbers.

Theorem 2. The coefficients an defined in (7)–(8) are

an =
( 3n

2 − 1
n − 1

) n−1∑

k=0

(−1)k(n − 1)!
(n − k − 1)!

2k

(n + 2k)!

[
n + 2k − 1

k

]

≥2

, (15)

=
(n

2
+ 1

)n−1 n−1∑

k=0

(−1)k

(n − k − 1)!
2k

(n + 2k)!

[
n + 2k − 1

k

]

≥2

. (16)
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Proof. We start from (14). We apply the binomial theorem twice.

an =
1
n

[
An−1

] ∑

k≥0

(−n/2
k

)
2k

∑

�>0

(
k

�

)
(−1)k−�

(
ln(1/(1 − A)) − A

A2/2

)�

.

Expanding the final term as Stirling numbers completes the proof.

3 Second Expansion

We now turn to the expansion given in (4).

Definition 2. We define r-associated Stirling numbers of the second kind, more
briefly called Stirling r-partition numbers, by

⎛

⎝ez −
r−1∑

j=0

zj

j!

⎞

⎠

m

= m!
∑

n≥rm

{
n

m

}

≥r

zn

n!
. (17)

As with the cycle numbers defined above, these numbers have combinatorial
significance. They count the number of ways in which n distinct objects can be
partitioned into m subsets, which each subset having at least r members.

Theorem 3. The coefficients μk defined in (4)–(6) are given by

B(n, 0) = 1 (18)

B(n,m) =
m∑

k=1

(−n/2
k

)
k! 2k

(m + 2k)!

{
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k

}
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, m > 0, (19)

μn =
n−1∑

m=0

nn−m−2

(n − m − 1)! 2n−m−1
B(n,m). (20)

Proof. Set W = −1 − v. If v is assumed positive, then this describes the W−1

branch, which means the series in p will be all positive terms. From (3), we have
z = −e−1(1 − p2/2). Then WeW = z becomes

p2 = 2 − 2e−v − 2ve−v

So Lagrange inversion gives v =
∑

vnpn and
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1
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There is still the factor env/2 to be included. Expanding this and collecting terms
completes the theorem.

4 Concluding Remarks

We noted in the introduction that the expansion coefficients are related to Stir-
ling’s approximation to n! [7]. It is convenient to substitute form (13) into (9)
and use the result

Γ

(
k +

1
2

)
=

(2k − 1)!!
2k

√
π ,

to obtain

n! ∼
√

2πn
(n

e

)n ∑

k≥0

1
(2n)k

2k∑

�=0

(−1)�

2� (� + k)!

[
2k + 2�

�

]

≥3

. (21)

A similar expression can be obtained using 2−cycle numbers from the expressions
in Theorem 2.

The present results, together with those in [6], replace recurrence relations
with explicit expressions in terms of known combinatorial numbers. The expres-
sions in the paper have all been programmed in Maple, where they can be written
in a single line, in contrast to the recurrence relations, which take several lines
ad run more slowly. The “Stirling’s approximation” considered here is in fact
one of several variations existing in the literature [1], and it would be interest-
ing to see whether the coefficients in other forms can also be found in terms
of Stirling numbers. Substituting the expressions found here into the previously
known recurrence relations yields combinatorial identities which are challenging
to prove independently.
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Abstract. Cylindrical algebraic decomposition (CAD) is a core algo-
rithm within Symbolic Computation, particularly for quantifier elimina-
tion over the reals and polynomial systems solving more generally. It is
now finding increased application as a decision procedure for Satisfiabil-
ity Modulo Theories (SMT) solvers when working with non-linear real
arithmetic. We discuss the potentials from increased focus on the logical
structure of the input brought by the SMT applications and SC2 project,
particularly the presence of equational constraints. We also highlight the
challenges for exploiting these: primitivity restrictions, well-orientedness
questions, and the prospect of incrementality.

1 Introduction

1.1 Cylindrical Algebraic Decomposition

The original aim of Cylindrical Algebraic Decomposition (CAD), as introduced
by [Col75], was Quantifier Elimination (QE). More precisely, given

Qk +1xk +1 . . . QnxnΦ(x1, . . . , xn) (1)

where Qi ∈ {∀,∃} and Φ is a Tarski Formula; produce an equivalent formula,
Ψ(x1, . . . , xk) which is quantifier free. Here a Tarski Formula is a Boolean com-
bination of predicates fj σj , 0 with σj ∈ {=, �=, >,≥, <,≤}, fj ∈ Q[x1, . . . , xn].

The CAD of [Col75] was a major breakthrough, with a running time “merely”
doubly-exponential in n, as opposed to previous methods [Tar51].

The methodology of Collins’ CAD is broadly as follows:

1. Retaining from (1) only the fj (call this set Sn) and the order of the xi,
compute a CAD of Rn, sign-invariant for the fi.
(a) Repeatedly project S� ⊂ Q[x1, . . . , x�] to S� − 1 := PC(S�) ⊂

Q[x1, . . . , x� − 1] where PC is Collins’ projection operator.
(b) Isolate real roots of S1 to produce a CAD of R1 sign-invariant for S1.

c© Springer International Publishing AG 2017
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(c) Repeatedly lift the decomposition of R� − 1 to one of R�, sign-invariant
for S�. To lift over a cell in R�−1 we substitute a sample point of the cell
into S�; perform univariate root isolation and decompose accordingly. PC

is chosen so that the sample point is representative of the whole cell.
2. Using the Qi and Φ identify cells of the induced CAD of Rk true for (1).
3. Deduce Ψ .

There have been many improvements since [Col75]: we quote only two here,
referring to [BDE+16] for a more detailed summary.

[McC84]: This replaced the operator PC by a much smaller operator PM ,
simultaneously replacing “sign-invariant” by “order-invariant” in Step 1. How-
ever, the system has to be “well-oriented”, which can only be seen with hindsight,
when a lack of it manifests itself by a polynomial being nullified, i.e. vanishing
entirely, over a cell of dimension > 0.

[Laz94]: This replaced the operator PM by a slightly smaller operator PL

and significantly modified the lifting procedure, simultaneously replacing “order-
invariant” by what is now called “Lazard-valuation-invariant” in Step 1. A gap
in the proof of [Laz94] was soon spotted. It was rectified recently by [MH16], but
using the technology of order-invariant and under the well-oriented restriction.
A complete resolution, in terms of Lazard invariance, has been presented in the
preprint [MPP17].

1.2 New Applications: SC2

The authors are involved in the EU Project SC2 which aims to forge interaction
between the communities of Symbolic Computation and Satisfiability Checking
[SC2]. CAD and QE are traditionally found in the former but recently the tech-
nology behind them have been applied in Satisfiability Modulo Theory (SMT)
solvers [JdM12, for example] where the problem is usually not to perform full
QE but to test satisfiability, finding either a witness point or (minimal) proof
of unsatisfiability. Such solvers are used routinely in industries such as software
verification. The problem sets are different to those typical in CAD: often lower
degree polynomials but far more of them and in more variables. Viewed from
Satisfiability Checking the CAD procedure outlined above is curious, particular
in its discarding of the logical structure in Step 1.

2 Potentials

2.1 Equational Constraint

The fact that the σj and Φ are essentially ignored in Step 1 was noticed in [Col98],
at least for the special case

Φ(x1, . . . , xn) ≡ F1(x1, . . . , xn) = 0 ∧ Φ′(x1, . . . , xn) (2)

(where F1 depends non-trivially on xn and is primitive): intuitively the key
idea is that we do not care about the polynomials in Φ′ away from F1 = 0.
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We refer to F1 = 0 as an equational constraint (more generally, an equation
implied by the formula). This was formalised in [McC99]. The key result there
is the following.

Theorem 1 ([McC99, Theorem 2.2]). Let r > 2, let f(x1, . . . , xr) and
g(1, . . . , xr) be real polynomials of positive degrees in the main variable xr, let
R(x1, . . . , xr − 1) be the resultant of f and g, and suppose that R �= 0. Let S be
a connected subset of Rr − 1 on which f is delineable and in which R is order-
invariant. Then g is sign-invariant in each section of f over S.

In the context of (2) this justifies replacing PM (Sr) by the reduced projection
operator

PM (F1;Sr) := PM ({F1}) ∪ {Resxr
(F1, fi) : fi ∈ Φ′}, (3)

at least for the first projection. If Sr has n polynomials of degree d, PM (Sr) has
1
2n(n + 1) polynomials of degree O(d2) whereas PM (F ;Sr) has n such.

2.2 Multiple Equational Constrains

If there are multiple equational constraints then it is possible to use a variant
(slightly enlarged) of the reduced operator (3) for projections beyond the first.
The idea is to propagate the constraints by noticing their resultant is also implied
by the formula but does not contain the main variable [McC01].

More recently, in [EBD15] the present authors identified savings in the lifting
phase: the fact that Theorem 1 provides not just delineability but sign-invariance
for g means there is no need to isolate and decompose with respect to the real
roots of g. This, combined with the use of Gröbner Basis technology to control the
degree growth of projection polynomials allowed us to present an improved com-
plexity analysis of CAD with multiple equational constraints in [ED16]. Broadly
speaking, we decrease the double exponent by one for each equational constraint.

2.3 Equational Constraints of Sub-formulae

If instead of (2), our problem has the form

Φ(x1, . . . , xn) ≡ (f1 = 0 ∧ Φ1) ∨ (f2 = 0 ∧ Φ2) ∨ · · · , (4)

then we can write it in the form (2) by letting F1 =
∏

fi. However, as was
observed in [BDE+13], we can do better by analysing the inter-dependencies
in (4) more carefully, building a truth-table invariant CAD (TTICAD) for the
collection of sub-formulae. Intuitively the key idea is that we do not care about
the polynomials in Φi outside fi = 0. TTICAD was expanded in [BDE+16] to the
case where not every disjunct has an equation (so there is no overall equational
constraint for Φ).

3 Challenges

Section 2 identifies a wealth of technology for making greater use of the logical
structure of the CAD input. However, there are a number of challenges.



The Potential and Challenges of CAD 283

3.1 Need for Primitivity

All the theory of reduced projection operators requires that the constraint be
primitive. No technology currently exists (beyond reverting to sign-invariance)
for the non-primitive case (although ideas were sketched in [EBD15]). Note that
the restriction is not just on the input but also constraints found through propa-
gation. In [DE16] the Davenport-Heinz examples [DH88] used to demonstrate the
doubly exponential complexity of CAD were shown to lack primitivity, showing
that the non-primitive case is genuinely more difficult.

3.2 Well-Orientedness

All the existing theory of reduced projection operators rests on the mathematics
of order-invariance developed for PM . The reduced operators not only require
this condition of PM but actually extend it (they are less complete). The lack of
this condition is only discovered at the end of CAD (when we lift with respect
to the offending polynomials). For traditional CAD this means a large waste of
resources starting the calculation again.

As described in Sect. 1 there is a new sign-invariant projection operator PL

which achieves the savings of PM without sacrificing completeness. It may be
possible to expand this to a family of reduced operators, but this requires devel-
opment of the corresponding Lazard valuation invariance theory.

3.3 Incremental CAD

A key requirement for the effective use of CAD by SMT-solvers is that the CAD
be incremental: that polynomials can be added and removed to the input with
the data structures of the CAD edited rather than recalculated. Such incremental
CAD algorithms are now under development by the SC2 project [SC2].

These could offer a partial solution to the difficulties of well-orientedness.
i.e. if a particular operator is found to not be well-oriented at the end of a
CAD calculation the next step would be to revert to a less efficient operator
which is usually a superset of the original one. Hence we could edit the existing
decomposition to take into account these additional polynomials.

However, the use of CAD with equational constraints incrementally may
exhibit strange behaviour in the SMT context. For example, removing a con-
straint that was equational could actually grow the output CAD since it neces-
sitates the use of a larger projection operator. Correspondingly, adding an equa-
tional constraint could allow a smaller operator and shrink the output. It is not
clear how SMT solvers heuristics should be adapted to handle these possibilities.

Acknowledgements. The authors are supported by the European Union’s Hori-
zon 2020 research and innovation programme under grant agreement No H2020-
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1 Introduction

It is a well-known fact that explicit construction of discrete structures can be
a hard task, because of the combinatorial explosion of possibilities that need to
be checked in an exhaustive search. If the structures under investigation fulfil
many properties, they tend to be rare in the search space and this often makes
the search infeasible. One approach is to add further constraints and thus reduce
the size of the search space, all in hope that our sought structures satisfy these
constraints.

In this paper we perform a search for combinatorial designs with rather strong
conditions. A t-(v, k, λ) design D consists of a v-element set of points P together
with a collection B of k-element subsets called blocks, such that every t-element
subset of points is contained in exactly λ blocks. If we denote the number of
blocks by b := |B|, it follows immediately that b = λ

(
v
t

)
/
(
k
t

)
. The design is

said to be simple if B contains no repeated blocks. A table of parameter sets
for which the existence of simple t-(v, k, λ) designs has been established can be
found in [4]. New existence results appear in [1,2,6,8–10]. Our challenge was
to fill some of the remaining gaps and find some missing designs by computer
search. We were successful for parameters 4-(18, 9, 56), 4-(18, 9, 70), 4-(19, 9, 84),
and 4-(19, 9, 105).

This work has been fully supported by the Croatian Science Foundation under the
project 1637.
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An automorphism of D is a permutation of points leaving B invariant. The set
of all automorphisms forms a group under composition, the full automorphism
group Aut(D). The additional constraint in our construction procedure will be a
prescribed subgroup G ≤ Aut(D). We shall assume automorphism groups which
allow us either to perform an exhaustive search, or to find at least one design
and thus settle the existence problem. A short description of the construction
method and some computational details are given in the next section. Our results
are presented in Sects. 3 and 4.

2 Construction Method

Our natural search space consists of families of size b containing k-element sub-
sets of the point set P = {1, . . . , v}. Therefore, its size is

((vk)
b

)
. Let G be given

as a permutation group on the set P. This action induces the action of G on the
subsets of P as well. Let T1, . . . , Tr and K1, . . . ,Kc be the orbits of G on t-element
subsets and on k-element subsets of P, respectively. Our task is to choose some
block orbits, the union of which forms B and satisfies the λ-balancing property.
Note that the group action might shrink the search space down to size

((vk)/|G|
b/|G|

)
.

Let aij be the number of subsets K ∈ Kj containing a given T ∈ Ti. This
number does not depend on the choice of T . The r × c matrix A = [aij ] is
the Kramer-Mesner matrix. Clearly, the aij ’s corresponding to the chosen block
orbits need to sum up row-wise to λ. In other words, simple t-(v, k, λ) designs
with G as an automorphism group exist if and only if the system of linear
equations A · x = λj has 0–1 solutions x ∈ {0, 1}c, where j = (1, . . . , 1)τ is
the all-one vector of length r. This is the celebrated method of construction
introduced by Kramer and Mesner in [5]. It has been used thereafter to find
many new designs with prescribed automorphism groups.

We use GAP [3] to compute the orbits Ti, Kj and the matrix A. The second
step of the construction, computationally the most challenging one, is to find
solutions of the Kramer-Mesner system A · x = λj. Solving systems of linear
equations over {0, 1} is a known NP complete problem. We use Wasserman’s
solver [11] based on the LLL algorithm. Finally, to decide whether the con-
structed designs are isomorphic and to compute their full automorphism groups,
we use nauty/Traces by McKay and Piperno [7].

The choice of the automorphism group G is crucial for the construction to be
successful. Designs with parameters t-(v, k, λ) often have a cyclic automorphism
of order u ∈ {v−2, v−1, v}, but in the cases of our interest this assumption does
not reduce the search space sufficiently. We shall therefore assume a nonabelian
semidirect product G ∼= Zu.Zw as automorphism group.

3 Designs with 18 Points

In this section we consider the existence of 4-(18, 9, λ) designs. A necessary con-
dition is that λ is divisible by λmin = 14, i.e. of the form λ = 14m. Simple
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designs can exist only for λ ≤ λmax =
(
v−t
k−t

)
=

(
14
5

)
. The supplementary design

with B′ =
(P

k

)
\ B as the set of blocks is a simple 4-(18, 9, λmax − λ) design, and

therefore is suffices to consider designs with λ = 14m ≤ λmax/2. We shall denote
the largest m satisfying this inequality by M ; in this case we have M = 71.

According to the Handbook of Combinatorial Designs [4], simple 4-
(18, 9, 14m) designs exist for m ∈ {3, 6, . . . , 71}. We shall prove their existence
for m ∈ {4, 5} by prescribing automorphisms α = (1, 2, . . . , 17) and

β = (2, 4, 10, 11, 14, 6, 16, 12, 17, 15, 9, 8, 5, 13, 3, 7).

They generate a nonabelian group G1 = 〈α, β〉 isomorphic to the semidirect
product Z17.Z16 of order 272.

Theorem 1. Up to isomorphism there are exactly 38 simple 4-(18, 9, 70) designs
with G1 as automorphism group.

Proof. The group G1 generates r = 14 orbits on 4-element subsets and c = 190
orbits on 9-element subsets of P = {1, . . . , 18}. The Kramer-Mesner system
A · x = λj is of size 14 × 190 and can be solved exhaustively by the solver [11]
in less than a minute of CPU time. There are 38 solutions; using nauty [7] we
checked that the corresponding designs are non-isomorphic and that G1 is their
full automorphism group.

Generally, it may happen that different solutions of the Kramer-Mesner sys-
tem correspond to isomorphic designs. The number of isomorphism classes is
usually smaller than the number of solutions. The fact that the opposite occurs
in Theorem 1 is due to G1 being the full automorphism group of the 38 designs
and the normalizer of G1 in the symmetric group S18 being G1 itself. Any iso-
morphism mapping one design onto another is contained in the normalizer of
the full automorphism group of the second design. Because of NS18(G1) = G1,
the 38 designs can only be mapped onto themselves.

We present one of the 4-(18, 9, 70) designs by listing its base blocks in Table 1.
The design is the union of the corresponding G1-orbits. Group generators and
base blocks for all 38 designs from Theorem 1, as well as for other designs con-
structed in this paper are available on the web page

https://web.math.pmf.unizg.hr/∼krcko/results/newdesigns.html

Table 1. Base blocks for a 4-(18, 9, 70) design with G1.

{1, 2, 3, 4, 5, 6, 7, 9, 11}, {1, 2, 3, 4, 5, 6, 8, 11, 16}, {1, 2, 3, 4, 5, 6, 9, 13, 18},
{1, 2, 3, 4, 6, 7, 8, 9, 12}, {1, 2, 3, 4, 5, 7, 11, 12, 16}, {1, 2, 3, 4, 5, 7, 8, 14, 18},
{1, 2, 3, 4, 5, 8, 10, 14, 18}, {1, 2, 3, 5, 11, 13, 14, 15, 18}

We turn now to the m = 4 case, i.e. to simple 4-(18, 9, 56) designs. The
Kramer-Mesner system from the proof of Theorem 1 has no solutions for λ = 56,

https://web.math.pmf.unizg.hr/~krcko/results/newdesigns.html
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and thus these designs with G1 as automorphism group do not exist. We look for
examples with a smaller automorphism group G2 = 〈α, β2〉 ∼= Z17.Z8 of order
136. Now there are r = 28 orbits of 4-element subsets and c = 380 orbits of
9-element subsets. The corresponding 28 × 380 Kramer-Mesner system is too
large to be solved exhaustively, but after several weeks of CPU time the
solver [11] found one solution. This proves the following theorem.

Theorem 2. Simple 4-(18, 9, 56) designs with G1 as automorphism group do
not exist. There is at least one such design with G2 as automorphism group.

Base blocks for this design are given in Table 2.

Table 2. Base blocks for a 4-(18, 9, 56) design with G2.

{1, 2, 4, 8, 9, 12, 13, 15, 17}, {1, 2, 6, 8, 9, 10, 13, 15, 17}, {1, 2, 8, 9, 10, 12, 15, 17, 18},
{1, 5, 8, 9, 11, 12, 15, 17, 18}, {1, 4, 5, 6, 8, 9, 10, 15, 17}, {1, 4, 5, 8, 9, 11, 15, 17, 18},
{1, 5, 6, 8, 9, 11, 12, 15, 16}, {1, 5, 6, 8, 9, 14, 15, 17, 18}, {1, 5, 8, 9, 10, 15, 16, 17, 18},
{1, 3, 4, 8, 9, 10, 12, 15, 17}, {1, 6, 7, 8, 9, 11, 15, 17, 18}, {1, 8, 9, 11, 12, 14, 15, 17, 18}

The existence of 4-(18, 9, 14m) designs remains open for m ∈ {1, 2}. We
checked that these designs do not allow G1 or G2 as automorphism groups, nor
several other permutation groups roughly of the same size.

4 Designs with 19 Points

Using the same notation as in the previous section, for 4-(19, 9, λ) designs we have
λ = 21m, λmin = 21, λmax =

(
15
5

)
, and M = 71. According to the Handbook [4],

these designs exist for m ∈ {3, 6, . . . , 71}. Once more we can settle the gap
m ∈ {4, 5}. Let γ = (1, 2, . . . , 19) and

δ = (2, 3, 5, 9, 17, 14, 8, 15, 10, 19, 18, 16, 12, 4, 7, 13, 6, 11)

be generators of the group G3 = 〈γ, δ〉 of order 342 isomorphic to the semidirect
product Z19.Z18. The corresponding Kramer-Mesner system is of size 14 × 280.
It seems within reach for an exhaustive search, but at the time of this writing
the solver [11] is still running. So far it found more than 100000 solutions.

Theorem 3. Up to isomorphism there are at least 100000 simple 4-(19, 9, 105)
designs with G3 as automorphism group.

All of the found designs have G3 as their full automorphism group and
NS19(G3) = G3 holds, and thus different solutions correspond to non-isomorphic
designs. Interestingly, simple 4-(19, 9, 105) designs can also be constructed from
the group G1 from the previous section. In that case the Kramer-Mesner system
is of size 18×360 and we performed a partial search. The solver [11] found some
solutions fairly quickly.
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Theorem 4. There is at least one simple 4-(19, 9, 105) design with G1 as auto-
morphism group.

Base blocks for one design for each of the groups G1 and G3 is given in
Table 3.

Table 3. Base blocks for 4-(19, 9, 105) designs with G1 and G3.

{1, 2, 3, 4, 5, 6, 8, 9, 13}, {1, 2, 3, 4, 5, 6, 8, 9, 18}, {1, 2, 3, 4, 5, 6, 8, 13, 14},
{1, 2, 3, 4, 5, 6, 9, 12, 14}, {1, 2, 3, 4, 5, 6, 10, 12, 18}, {1, 2, 3, 4, 5, 7, 8, 10, 18},
{1, 2, 3, 4, 5, 7, 11, 12, 16}, {1, 2, 3, 4, 5, 7, 14, 18, 19}, {1, 2, 3, 4, 5, 7, 16, 18, 19},
{1, 2, 3, 4, 5, 8, 9, 13, 19}, {1, 2, 3, 4, 5, 8, 15, 18, 19}, {1, 2, 3, 4, 5, 10, 13, 18, 19},
{1, 2, 3, 4, 6, 7, 9, 10, 19}, {1, 2, 3, 4, 6, 9, 13, 15, 19}, {1, 2, 3, 5, 11, 13, 14, 15, 18},
{1, 2, 3, 5, 11, 13, 14, 15, 19}
{1, 2, 3, 4, 5, 6, 7, 10, 15}, {1, 2, 3, 4, 5, 6, 7, 12, 15}, {1, 2, 3, 4, 5, 6, 9, 11, 12},
{1, 2, 3, 4, 5, 6, 10, 13, 14}, {1, 2, 3, 4, 5, 7, 8, 9, 16}, {1, 2, 3, 4, 5, 7, 11, 14, 15},
{1, 2, 3, 4, 5, 8, 9, 11, 13}, {1, 2, 3, 4, 5, 8, 9, 16, 17}, {1, 2, 3, 4, 5, 8, 10, 12, 14},
{1, 2, 3, 4, 5, 8, 13, 15, 16}, {1, 2, 3, 4, 6, 7, 9, 10, 11}, {1, 2, 3, 4, 6, 8, 13, 14, 17}

Similarly as before, in the m = 4 case the group G3 does not give rise to
designs. Simple 4-(19, 9, 84) designs can either be constructed non-exhaustively
from the group G1, or from a subgroup of G3. The group G4 = 〈γ, δ2〉 ∼= Z19.Z9 of
order 171 leads to a Kramer-Mesner system of size 24×546. The solver [11] found
some solutions of both systems quickly, but the searches were not completed.

Theorem 5. Simple 4-(19, 9, 84) design with G3 as automorphism group do not
exist. There is at least one such design with G1 as automorphism group and at
least one such design with G4 as automorphism group.

Proof. Base blocks are given in Table 4.

Table 4. Base blocks for 4-(19, 9, 84) designs with G1 and G4.

{1, 2, 3, 4, 5, 6, 7, 8, 13}, {1, 2, 3, 4, 5, 6, 8, 10, 11}, {1, 2, 3, 4, 5, 6, 9, 10, 12},
{1, 2, 3, 4, 5, 6, 9, 15, 18}, {1, 2, 3, 4, 5, 7, 10, 12, 18}, {1, 2, 3, 4, 5, 7, 14, 15, 19},
{1, 2, 3, 4, 5, 7, 16, 18, 19}, {1, 2, 3, 4, 5, 8, 9, 10, 18}, {1, 2, 3, 4, 5, 8, 15, 18, 19},
{1, 2, 3, 4, 5, 10, 13, 18, 19}, {1, 2, 3, 4, 6, 9, 11, 15, 19}, {1, 2, 3, 4, 6, 10, 12, 16, 19},
{1, 2, 3, 4, 9, 11, 13, 18, 19}
{1, 2, 3, 4, 5, 8, 9, 12, 17}, {1, 2, 3, 4, 5, 9, 12, 13, 15}, {1, 2, 3, 5, 6, 7, 9, 10, 18},
{1, 2, 3, 5, 6, 8, 9, 14, 17}, {1, 2, 3, 5, 6, 12, 14, 17, 19}, {1, 2, 3, 5, 7, 8, 9, 11, 19},
{1, 2, 3, 5, 7, 8, 9, 14, 19}, {1, 2, 3, 5, 7, 9, 13, 14, 16}, {1, 2, 3, 5, 8, 9, 10, 13, 17},
{1, 2, 3, 5, 8, 9, 12, 13, 14}, {1, 2, 3, 5, 9, 10, 12, 14, 16}, {1, 2, 3, 5, 9, 10, 15, 17, 18},
{1, 2, 3, 5, 9, 11, 12, 15, 16}, {1, 2, 3, 5, 9, 11, 13, 14, 17}, {1, 2, 3, 5, 9, 11, 13, 15, 17},
{1, 2, 3, 5, 9, 11, 13, 15, 18}, {1, 2, 3, 5, 9, 11, 14, 15, 16}, {1, 2, 3, 6, 9, 10, 15, 17, 19}
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To conclude, the designs with v = 19 points constructed in this section allow
automorphism groups of the form Zu.Zw for u ∈ {v − 2, v}. The designs with
v = 18 points from the previous section allow such automorphism groups for
u = v − 1. We also tried to construct 4-(19, 9, 21m) designs for m ∈ {1, 2},
but failed to find suitable automorphism groups. The existence of these designs
remains open.
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Abstract. It was proved recently by Jungnickel and Tonchev (2017)
that for every integer v = 3m−1w, m ≥ 2, and w ≡ 1, 3 (mod 6), there is
a ternary linear [v, v − m] code C, such that every Steiner triple system
STS(v) on v points and having 3-rank v −m, is isomorphic to an STS(v)
supported by codewords of weight 3 in C. In this paper, we consider
the ternary [3n, 3n − n] code Cn (n ≥ 3), that supports representatives
of all isomorphism classes of STS(3n) of 3-rank 3n − n. We prove some
structural properties of the triple system supported by the codewords of
Cn of weight 3. Using these properties, we compute the exact number of
distinct STS(27) of 3-rank 24 supported by the code C3. As an applica-
tion, we prove a lower bound on the number of nonisomorphic STS(27)
of 3-rank 24, and classify up to isomorphism all STS(27) supported by
C3 that admit a certain automorphism group of order 3.

1 Introduction

A block design (or simply a design) D is a pair of a finite set X of v points and a
collection B of b subsets of X called blocks [3,6]. In this paper we consider only
designs that have no repeated blocks. Given non-negative integers t ≤ k ≤ v, λ,
a t-(v, k, λ) design D = (X,B) is a design with v points and blocks of size k such
that every t-subset of X is contained in exactly λ blocks. The incidence matrix
A = (aij) of a design D is a b × v (0, 1)-matrix with columns labeled by the
points and rows labeled by the blocks, where ai,j = 1 if the ith block contains
the jth point, and ai,j = 0 otherwise. Two designs are isomorphic if there is a
bijection between their point sets that induces a bijection of the block sets. An
automorphism of a design is any isomorphism of the design to itself. The set of
all automorphisms of D forms the automorphism group Aut(D) of D.
c© Springer International Publishing AG 2017
J. Blömer et al. (Eds.): MACIS 2017, LNCS 10693, pp. 295–305, 2017.
https://doi.org/10.1007/978-3-319-72453-9_24
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A linear [n, k] code C over a finite field GF(q) is a k-dimensional vector
subspace of GF(q)n [4]. A generator matrix of C is a k × n matrix whose rows
form a basis of C, and a parity check matrix of C is an (n−k)×n matrix whose
rows form a basis of the null space (or dual code) C⊥ of C. An automorphism
of a code C is any permutation on the n coordinates which preserves C. The
Hamming weight of a vector is the number of its nonzero components. The
support supp(x) of a vector x = (x1, . . . , xn) is the set of the coordinate indices
of its nonzero components.

A typical way to associate a block design D with a linear [n, k] code C is by
considering the n code coordinates, {1, 2, . . . , n}, as point set, and the supports
of codewords of a given Hamming weight w as blocks [2,22]. In such a case, we
refer to D as a design supported by C.

A triple system is a block design with blocks of size 3, and a Steiner triple
system is a 2-(v, 3, 1) design. We will use the notation STS(v) for a Steiner triple
system on v points. An STS(v) exists if and only if v ≡ 1, 3 (mod 6), and the
number of nonisomorphic STS(v) grows exponentially with linear growth of v
[6, II.2.4]. The largest value of v for which all STS(v) have been classified up to
isomorphism is v = 19 [11].

If p is a prime number, the p-rank of a design D is defined as the rank of its
incidence matrix over the finite field of order p, GF(p).

In [8], Doyen, Hubaut and Vandensavel proved that the p-rank of an STS(v)
with v ≥ 7 can be smaller than v only if p = 2 or p = 3, and showed how
the 2-ranks and 3-ranks of Steiner triple systems can be determined in terms
of projective and affine hyperplanes, which were studied by Teirlinck [17,18]. In
particular, it was proved in [8] that the 3-rank of any Steiner triple system D on
3n points is greater than or equal to 3n − n − 1, and equality holds if and only
if D is isomorphic to the classical Steiner triple system AG1(n, 3) of the points
and lines in the n-dimensional affine geometry AG(n, 3).

In [1], Assmus proved that for every v ≡ 1, 3 (mod 6), v = 2k · u − 1 > 7,
u odd, and any integer i in the range 1 ≤ i < k, there is a binary [v, v − k + i]
code C such that every STS(v) having 2-rank v −k + i is supported by C. As an
application of this result, explicit formulas for the exact total number of distinct
STS(2n − 1) of 2-rank 2n − n, as well as the exact total number of distinct 3-
(2n, 4, 1) designs of 2-rank 2n − n, were found in [20,21]. The formula from [20]
was used in [15] to classify up to isomorphism all STS(31) of 2-rank 27.

A ternary analogue of Assmus’s result was proved recently in [9], showing
that for every v = 3m−1w, m ≥ 2, and w ≡ 1, 3 (mod 6), there is a ternary
[v, v − m] code C, such that every STS(v) of 3-rank v − m is isomorphic to an
STS(v) supported by C. In particular, the ternary [3n, 3n−n−1] code spanned by
the incidence matrix of the classical STS(3n) of the points and lines in AG(n, 3),
has a parity check matrix Hn of the form (1),

Hn =
(

1 . . . 1
B

)
, (1)

where B is an n × 3n matrix whose column set consists of all distinct vectors in
GF(3)n. Furthermore, if 1 ≤ i ≤ n, and Bi is an (n − i) × 3n matrix obtained
by deleting i rows of B, then the (n + 1 − i) × 3n matrix
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Hn,i =
(

1 . . . 1
Bi

)
(2)

is the parity check matrix of a ternary [3n, 3n − n − 1 + i] code that contains
representatives of all isomorphism classes of STS(3n) having 3-rank smaller than
or equal to 3n − n − 1 + i [9].

We note that the column set of the (n − i) × 3n matrix Bi in (2) consists
of all vectors of GF(3)n−i, where each vector appears exactly 3i times as a
column of Bi [9]. Thus, the matrix Bi, and consequently, Hn,i, is unique up to
a permutation of columns.

In this paper, we consider the ternary [3n, 3n − n] code Cn with a parity
check matrix H = Hn,1 that supports representatives of all isomorphism classes
of STS(3n) of 3-rank 3n − n. Since the only (up to isomorphism) STS(32) is the
affine plane of order 3, having 3-rank equal to 6 = 32 − 2 − 1, we will assume
that n ≥ 3. We prove some structural properties of the triple system supported
by the codewords of Cn of weight 3. Using these properties, we compute the
exact number of distinct STS(27) of 3-rank 33 − 3 = 24 supported by the code
C3. As an application, we prove a lower bound on the number of nonisomorphic
STS(27) of 3-rank 24, and classify up to isomorphism all STS(27) supported by
C3 which admit a certain automorphism of order 3.

In [10], general bounds for the number of STS(2n − 1) and STS(3n) with
prescribed rank are given, which confirm our results.

2 The Triple System Supported by Cn

For convenience of notation, we will assume that the columns of the parity check
matrix H = Hn,1 of Cn (cf. (2)), are ordered lexicographically. The columns of
the submatrix B1 of H can be viewed as points of the (n− 1)-dimensional affine
geometry AG(n − 1, 3), each point repeated three times. Thus, the columns of
B1 with indices 3j+1, 3j+2, 3j+3, j = 0, 1, . . . , 3n−1 are three identical vectors
being the ternary presentation of j, and H has the following form:

H =

⎛
⎜⎜⎝

111 111 . . . 111
000 000 . . . 222
. . . . . . . . . . . .
000 111 . . . 222

⎞
⎟⎟⎠ . (3)

Theorem 1. (i) The code Cn is invariant under a group G which is a wreath
product of two groups G1 and G2, where G1 is the direct product of 3n−1

copies of the symmetric group S3, where each copy of S3 acts on a triple of
identical columns of the parity check matrix H, and G2 is the collineation
group of the (n − 1)-dimensional affine geometry AG(n − 1, 3).

(ii) The order of G is equal to

63
n−1 · 3n−1(3n−1 − 1)(3n−1 − 3) · · · (3n−1 − 3n−2). (4)
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Proof. The statements of the theorem follow directly from the structure of the
column set of the parity check matrix H as given in (3). We note that the
columns of the (n−1)×3n submatrix of H obtained by deleting the first all-one
row, has as columns the vectors representing the points of AG(n − 1, 3), each
point repeated three times.

A block design D = (X,B) is a group divisible design with parameters λ1, λ2

if the point set X is a union of pairwise disjoint subsets Gi, called groups, such
that every two distinct points that belong to the same group appear together in
λ1 blocks, while every two points that belong to different groups appear together
in λ2 blocks.

Theorem 2. (i) The number of codewords of weight 3 in Cn is

3n−1(3n+1 − 7). (5)

(ii) The triple system Dn supported by the codewords of Cn of weight 3 is a group
divisible design with groups Gi (1 ≤ i ≤ 3n−1) of size 3, and parameters
λ1 = 1, λ2 = 3.

(iii) The automorphism group of Dn coincides with the automorphism group of
Cn.

(iv) Dn is an 1-(3n, 3, (3n+1 − 7)/2) design.
(v) If B′ = {p1, p2, p3}, B′′ = {p1, p2, p4} are two distinct blocks sharing two

points p1, p2, then p1, p2 belong to two different groups Gi1 , Gi2 , i1 �= i2,
and p3 and p4 belong to a third group Gi3 , i3 �= i1, i3 �= i2.

Proof. (i) Consider the following partition of the columns of H =
(h1, h2, . . . , h3n) (cf. (3)) in 3n−1 groups Gi of size 3:

G1 = {h1, h2, h3}, G2 = {h4, h5, h6}, . . . , G3n−1 = {h3n−2, h3n−1, h3n}. (6)

Every group Gi (1 ≤ i ≤ 3n−1) consists of three identical columns, and columns
belonging to different groups are different and label different points of AG(n −
1, 3). Let x = (x1, . . . , xn) be a codeword of weight 3 with nonzero components
xi, xj , xk. Since x is orthogonal to the all-one vector, being the first row of the
parity check matrix H, we have xi = xj = xk. Without loss of generality, we may
assume xi = xj = xk = 1. We claim that either (a) the indices i, j, k label three
columns of H belonging to the same group, Gs, or (b) label columns belonging
to three different groups, Gsi , Gsj , Gsk .

To see this, we first note that the three columns in any given group obviously
determine a codeword of weight 3. Now suppose that the two groups Gsi and
Gsj are the same, while the third index k determines a different group Gsk .
Subtracting x from the codeword determined by the group Gsi then gives a
codeword y of weight 2, with one of its two nonzero entries being a 1 in the third
column belonging to Gsi , and the other nonzero entry a 2 in a column belonging
to the different group Gsk . Then y has to be orthogonal to all rows of H, which
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clearly implies that the vector of length 3n−1 and weight 2 with entries 1 in
position si and 2 in position sk is orthogonal to the matrix H ′ obtained by using
just one of the three columns in each group, that is, the matrix Hn−1 in (1). As
Hn−1 is the parity check matrix for the code determined by the lines in the affine
space AG(n−1, 3), this contradicts the well-known fact that the minimum weight
vectors in this code have weight 3 (they are the vectors associated with the lines
of this space); see, for instance, [19, Sect. 3]. Thus (b) is the only alternative to
(a), as claimed.

In case (a), there are 3n−1 codewords with xi = xj = xk = 1, and 3n−1

codewords with xi = xj = xk = 2. Thus, the total number of codewords of
weight 3 obtained in case (a) is

2 · 3n−1. (7)

The three columns of H labeled by the support of a codeword in the second case
(b) correspond to a line in the affine space AG(n − 1, 3). The number of lines in
AG(n − 1, 3) is 3n−2(3n−1 − 1)/2. Since every point of AG(n − 1, 3) is labeled
by three identical columns of H, the number of codewords of weight 3 obtained
in case (b) is

33 · 3n−2(3n−1 − 1). (8)

Adding (7) and (8) and simplifying completes the proof of part (i).
In what follows, we will refer to a codeword of weight 3 as being of type (a)

or (b) respectively.

(ii) The groups of Dn correspond to the groups Gi (1 ≤ i ≤ 3n−1) (cf. (6))
of triples of identical columns of H. As seen from the proof of part (i),
every pair of points {pi, pj}, where pi, pj are the indices of two columns of
H belonging to a group Gi, appears in exactly one block B = {pi, pj , pk},
where pk is the index of the third column in Gi. Thus, λ1 = 1, and the groups
(6) determine a set S of 3n−1 pairwise disjoint blocks (or a parallel class)
that must belong to every STS(3n) supported by the code Cn. Equivalently,
the blocks in S are supports of codewords of weight 3 of type (a) from the
proof of part (i).
Let now pi, pj be two points of Dn belonging to two different blocks B′,
B′′ from S. If L = {pi, pj , pk} is a block containing pi and pj , then pk
belongs to a block B′′′ from S, different from B′ and B′′. It follows that L
is the support of a codeword of type (b), and there are exactly two more
blocks that contain pi, and pj , namely {pi, pj , pm} and {pi, pj , pu}, where
B′′′ = {pk, pm, pu}. Thus, λ2 = 3, and the proof of (ii) is complete.

(iii) It was proved in [9] that for every n ≥ 3, the code Cn supports repre-
sentatives of all nonisomorphic STS(3n) having 3-rank equal to 3n − n. In
addition, it was proved in [9,17], that for every n ≥ 3 and every integer
r in the range 3n − n − 1 ≤ r ≤ 3n − 1, there exists an STS(3n) having
3-rank equal to r. Consequently, for every n ≥ 3, the code Cn contains an
STS(3n) of 3-rank 3n − n. This implies that the code Cn is spanned by the
set of all codewords of weight 3. Since every codeword of weight 3 has all
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its nonzero entries equal to either 1 or 2, it follows that Cn coincides with
the linear span over GF(3) of the rows of the incidence matrix of Dn, and
the statement (iii) follows.

(iv) By Theorem 2, part (iii), and Theorem 1, the automorphism group of Dn

acts transitively on the set of points, hence Dn is a 1-design. Thus, the
number of blocks containing a given point is equal to 3b/3n, where b is
the number of blocks of Dn. By part (i) b = (3n−1(3n+1 − 7))/2, and the
statement (iv) follows.

(v) Any two blocks that share two points must be the supports of codewords
of type (b), and the statement (v) follows from the proofs of (i) and (ii).

3 Counting STS(27) Supported by the Code C3

The known lower bound 1011 on the number of nonisomorphic STS(27) [13,
II.1.3] indicates that a complete classification up to isomorphism of all such
designs is computationally infeasible. Various classes of STS(27) possessing some
additional properties or symmetry have been investigated and classified, for
example, all STS(27) possessing a transitive automorphism group have been
classified in [7].

In this section, we use properties of the triple system Dn proved in Theorem
2 to compute the exact number of distinct STS(27) supported by the code C3.

By Theorem 2, part (i), the code C3 contains exactly 666 codewords of weight
3. The set of minimum weight codewords consists of 333 (0, 1)-codewords, that
can be viewed as the rows of an incidence matrix of the triple system D3, and the
remaining 333 codewords are (0, 2)-vectors, being scalar multiples of the rows of
the incidence matrix of D3. An incidence matrix of D3 is available at

http://www.math.mtu.edu/∼tonchev/dn333.txt

The incidence matrix of any STS(27) supported by C3 consists of 117 (0, 1)-
codewords of weight 3, sharing pairwise at most one nonzero positions, or equiv-
alently, a constant weight code C ′ with 117 codewords of weight 3 and Hamming
distance 4. We note that the code C ′ is an optimal constant weight code meeting
the unrestricted Johnson bound.

We define a graph Γ333 having as vertices the blocks of D3, where two blocks
are adjacent if they share at most one point. Then every STS(27) supported by
C3 is a maximal clique of size 117 in STS(27). An attempt to find and store all
117-cliques using Cliquer [14] crashes quickly due to the enormous number of
117-cliques in Γ333 which fill up all available RAM memory of every computer
we were able to use.

Another approach to find all STS(27) is by using a
(
27
2

)×333 Kramer-Mesner
matrix B with rows labeled by the 2-subsets of the point set {1, 2, . . . , 27}, and
columns labeled by the blocks of D3, with an entry equal to 1 if the corresponding
2-subset is contained in the corresponding block, and 0 otherwise. Any STS(27)
in C3 corresponds to a set of 117 columns of B whose sum is the all-one column
of size 351. We used a program implementing this approach written by the

http://www.math.mtu.edu/~tonchev/dn333.txt
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second author in APL and a parallel version of the “dancing links” algorithm
by Knuth [12]. It took approximately one day on the computer cluster of the
University of Bayreuth to count all solutions without storing.

A much more elegant approach that allowed us to count all STS(27) in the
code C3 easily on a single computer is based on a simple, but as it turned out,
very helpful observation.

Recall that by Theorem 2, (ii), every pair of points belonging to some of the
nine blocks B1 = {1, 2, 3}, B2 = {4, 5, 6}, . . . , B9 = {25, 26, 27} from the parallel
class S, defined by the groups Gi, 1 ≤ i ≤ 9, appear exactly in one block of D3,
while any two points which belong to different blocks Bi, Bj , 1 ≤ i < j ≤ 9,
appear together in three blocks. By Theorem 2, (iv), D3 is a 1-design with every
point appearing in 37 blocks.

We consider the partition of the set of 333 blocks of D3 into two parts, D1,2,3,
and D̄1,2,3, where D1,2,3 is the set of 109 blocks of D3 containing at least one of
the points 1, 2, 3, and D̄1,2,3 is the set of the remaining 224 blocks of D3, that
is, the blocks that do not contain any of the points 1, 2, 3.

Let Γ1,2,3 and Γ̄1,2,3 be the induced subgraphs of Γ333 on D1,2,3 and D̄1,2,3

respectively. If B = {x, y, z} is a block of an STS(27), there are exactly 37 blocks
that contain at least one of the points x, y, z: the block B itself, plus three disjoint
sets of 12 blocks each, passing through one of the points x, y, and z, respectively.

Thus, every STS(27) supported by C3 has 37 blocks from D1,2,3, and the
remaining 80 blocks are from D̄1,2,3. By Theorem 2, (v), every block of D3 from
D1,2,3 meets every block of D3 from D̄1,2,3 in at most one point. Consequently,
every vertex of Γ1,2,3 is adjacent in Γ333 to every vertex of Γ̄1,2,3. Thus, we have
the following.

Lemma 1. (1) Every 117-clique in Γ333 is a union of a 37-clique in Γ1,2,3 with
an 80-clique in Γ̄1,2,3.

(2) The total number of 117-cliques in Γ333 is equal to the product of the number
of 37-cliques in Γ1,2,3 and the number of 80-cliques in Γ̄1,2,3.

Luckily, Cliquer [14] was able to compute quickly on a personal computer
with 8 GB RAM memory, that Γ1,2,3 contains exactly 20, 736 37-cliques, and
Γ̄1,2,3 contains exactly 429, 981, 696 80-cliques.

Thus, we have the following.

Theorem 3. The total number of distinct STS(27) supported by the code C3 is
equal to

N3 = 8, 916, 100, 448, 256. (9)

We consider two designs D′, D′′ as distinct, if at least one block of D′ is not
a block of D′′.

The code C3 contains STS(27) having 3-rank 24 or 23. Any STS(27) of 3-rank
23 is isomorphic to the design AG1(3, 3) of lines in AG(3, 3) [8].

We can identify an STS(27) of 3-rank 23 supported by C3 as follows. We
extend the parity check matrix H to a matrix H ′ obtained by adding one extra
row to H, having entries equal to 0, 1, 2 in every three positions corresponding



302 D. Jungnickel et al.

to a group Gi (1 ≤ i ≤ 9). The matrix H ′ is a parity check matrix of a ternary
[27, 23] code C ′ being the span of the incidence matrix of an STS(27) isomorphic
to A1(3, 3) (this is a special case of a more general result from [9,19]). We
note that H ′ is a generator matrix of a ternary [27, 4] code equivalent to the
generalized first order Reed-Muller code of length 27 over GF(3).

The code C ′ has minimum weight 3, and the supports of the minimum weight
codewords form an STS(27) isomorphic to AG1(3, 3). Each codeword of weight
3 in C ′ is a codeword of weight 3 in C3, which is orthogonal to the extra row of
H ′.

After identifying 117 rows of the 333 × 27 incidence matrix A of D3 that
form the incidence matrix of a design D′ being an STS(27) of 3-rank 23, we
add one extra column to A, having 1’s in the rows corresponding to the blocks
of D′, and 0’s elsewhere, and then compute with Magma [5] the automorphism
group of the resulting 333 × 28 matrix. This group G′, being the intersection of
the automorphism group of D′ with the automorphism group of D3, is of order
23,328.

Dividing the group order of the automorphism group of D3 (cf. Theorem
1) by the order of G′ gives the exact number of STS(27) of 3-rank 23 that are
supported by C3.

Theorem 4. The number of STS(27) of 3-rank 23 supported by C3 is

186, 624. (10)

Theorems 3 and 4 imply the following.

Theorem 5. The number of STS(27) of 3-rank 24 supported by C3 is

N3,24 = 8, 916, 100, 261, 632. (11)

According to the results of [9], the code C3 contains representatives of all
nonisomorphic STS(27) of 3-rank 24. Classifying all STS(27) of 3-rank 24 up to
isomorphism will be the subject of future work.

Let m denote the number of the nonisomorphic STS(27) of 3-rank 24 sup-
ported by C3, and let E1, . . . , Em be a set of m pairwise nonisomorphic STS(27)
of 3-rank 24. Then we have the obvious equation

N3,24 =
m∑
i=1

|G|
|Aut(Ei)| ,

where |G| = 4, 353, 564, 672 is the order of the automorphism group of D3 and
Aut(Ei) denotes the order of the automorphism group of Ei.

Using the trivial lower bound |Aut(Ei)| ≥ 1 implies the following lower
bound on the number of nonisomorphic STS(27) of 3-rank 24.

Theorem 6. The number of nonisomorphic STS(27) of 3-rank 24 is greater
than or equal to 2048.
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4 A Class of STS(27) Invariant Under a Group
of Order 3

The computational complexity of classifying STS(27) supported by C3 up to iso-
morphism, dramatically reduces by assuming that the designs have the additional
property of being invariant under an automorphism of order 3. We illustrate this
by choosing the permutation

f = (1, 2, 3)(4, 5, 6)...(25, 26, 27)

as such an automorphism, that acts regularly on each of the groups Gi of the
group divisible design D3. The 333 blocks of D3 are partitioned into 117 orbits
under the action of the cyclic group of order 3 generated by f : 108 orbits of
length 3 and 9 fixed blocks, being the blocks B1, . . . , B9, corresponding to the
groups Gi, 1 ≤ i ≤ 9.

We define a graph Γ117 having as vertices the 117 orbits under 〈f〉, where
two orbits are adjacent if every two blocks belonging to the union of these orbits
meet each other in at most one point. Cliquer finds quickly that the graph
Γ117 contains exactly 531,441 45-cliques, and correspondingly, 531,441 distinct
STS(27) invariant under 〈f〉 that are supported by the code C3. To classify
these 531,441 distinct STS(27) up to isomorphism, we used the normalizer N =
NS27(〈f〉) of 〈f〉 in the symmetric group S27, and the stabilizer of D3 in N ,
whose actions split the solutions into subclasses of isomorphic designs, which
were subsequently divided into 11 isomorphism classes of STS(27). For these
computations, we used DESIGN Package (Version 1.6) for GAP developed by
Soicher [16], as well as special algorithms developed by the authors. The results
of this partial classification are formulated in the following theorem.

Table 1. Summary table of the 11 isomorphism types of STS(27)s admitting an auto-
morphism of order 3.

Iso class |G| Point orbit lengths Block orbit lengths

1 303,264 27 117

2 11,664 27 9,108

3 972 9,18 3,6,9,18,81

4 972 9,18 3,6,9,18,81

5 972 9,18 3,6,9,18,81

6 972 9,18 3,6,9,18,81

7 432 3,24 1,8,36,72

8 216 3,12,12 1,4,4,18,18,36,36

9 216 3,12,12 1,4,4,18,18,36,36

10 162 9,9,9 3,3,3,27,27,27,27

11 108 3,6,6,12 1,2,2,4,9,9,18,18,18,36
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Theorem 7. (i) The code C3 contains eleven isomorphism classes of STS(27)
invariant under the group of order 3 generated by f . (ii) One of these eleven
designs has 3-rank 23, hence is isomorphic to AG1(3, 3). The remaining ten
designs are of 3-rank 24 and have full automorphism groups of the following
orders: 11, 664 (one design), 972 (four designs), 432 (one design), 216 (two
designs), 162 (one design), and 108 (one design).

We note that the design with full group of order 11, 664 is isomorphic to a
design 27z9z3.14 invariant under a transitive automorphism group found in [7].

Table 1 contains information about the point and block orbit lengths of the
11 designs. Block orbit representatives of the eleven designs and data about their
groups is available at

http://www.math.mtu.edu/∼tonchev/sts27f3
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Abstract. ECO-method and its corresponding succession rules allow
to recursively define and construct combinatorial objects. The induced
generating trees can be coded by corresponding pattern avoiding per-
mutations. We refine succession rules by using succession functions in
case when avoided patterns are regular or c-regular. Although regular
patterns are hard to be recognized in general, we give a characteriza-
tion for its right-justified property which is a prerequisite in the defini-
tion of the regular pattern. Based on this characterization, we show the
(c-)regularity for various classes of permutations avoiding sets of patterns
with variable lengths. Last, the technique of succession functions permits
to construct general recursive generating models for classes of (c-) reg-
ular pattern avoiding permutations, which are constant amortized time
for all classes mentioned in the paper.

Keywords: c-regular patterns · Exhaustive generating
Pattern avoiding permutations · Right-justified patterns
Regular patterns · Variable length patterns

1 Introduction

The field of pattern avoiding permutations has been showing an increasing inter-
est in the last two decades. A very powerful way to define and describe such class
of permutations is the ECO method for enumerations and recursive construc-
tions of combinatorial object classes [1,4]. This is a recursive description of a
combinatorial object class which explains how an object of size n can be reached
from one and only one object of smaller size. More precisely, it presents a system
of succession rules which induces a generating tree such that each node can be
labeled by the number of its successors, and the set of succession rules assigns to
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each node the label of its successors (see for example [2,7,9,10,14]). Occasion-
ally, a generating tree can be encoded by one or more classes of pattern avoiding
permutations in which each tree level is encoded by permutations of the same
length. In this case, we can say that the succession rule of the tree corresponds to
each of these classes. The root is coded by the identity permutation with length
one. Let α be an n-length permutation in a generating tree; each successor is
obtained from α by inserting (n + 1) into certain positions also known as the
active sites of α. Notice that the sites are numbered from right to left, from 1 to
(n+1). We refer to some previous work for more details on specific combinatorial
objects [3,5,6,11,12,18].

In the algorithmic sense, the number of nodes in a generating tree is usually
proportional to the number of recursive calls of the exhaustive procedure for the
corresponding permutations. However, an inserting operation into an active site
of a permutation may cause a lot of switch operations inside. In order to build an
efficient generating algorithm, one wishes to apply the inserting operation only at
the rightmost site of a permutation, and other permutations are obtained sequen-
tially by switching two consecutive positions in its neighbor permutation. There-
fore, active sites should be aligned by consecutive sites from the rightmost one.
This is defined as right-justified property for a pattern which is a prerequisite in
the concept of regular patterns first mentioned in [13]. We redefine this concept
by using the right-justified property and generalize to the concept of color regular
pattern (c-regular pattern for short). One can remark that checking the regularity
of a pattern set is often an exhaustive routine since we have to take into account the
number of active sites of each node as well as the number of active sites of each of
its successors. Although it is hard to characterize regular patterns, it is possible to
characterize right-justified patterns (Proposition 2). This somehow helps to reduce
the exhaustive routine by replacing the fact of finding all active sites of a permu-
tation by determining only the maximum active site. Nevertheless, most popular
right-justified patterns in the literature are either regular or c-regular. Notice that
the idea of color labeling for succession rules has been mentioned in [3,6].

Last, based on the right-justified property, we use an extension definition
of succession rule, call succession function, to derive two general exhaustive
generating models for all classes of regular and c-regular patterns. The generality
of these algorithm models allows to easily experiment the exhaustive generation
of pattern avoiding permutations. This is very useful to guess new classes of
pattern avoiding permutations corresponding to classical sequences. We show an
exhaustive list of well-known classes of regular and c-regular patterns together
with their succession functions. These classes can be exhaustively generated in
Constant Amortized Time (CAT for short) by our general models.

2 A Characterization for Right-Justified Permutation
Patterns

In this section, after recalling some preliminaries on pattern avoiding permuta-
tions and right-justified patterns [11,13], we show a criterion for determining
whether a pattern set is right-justified or not in Propositions 1 and 2.
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Let Sn be the set of permutations on {1, 2, . . . , n}. For the sake of simplicity,
we use the one-line notation to represent a permutation. For that a permutation
α will be written as a sequence α = a1, a2, . . . , an ∈ Sn, where ai is the image
of element i of α. Let s = s1, s2, · · · , sk be a sequence of k pairwise distinct
positive integers. The reduction of s, denoted by red(s), is the permutation
α = a1, a2, · · · ak of Sk such that ai < aj whenever si < sj . For example,
red(63594) = 41352.

Given a permutation τ ∈ Sk. A permutation α ∈ Sn is called containing τ ,
and τ is called a pattern, if we can extract a k-element subsequence s of α such
that red(s) = τ . Otherwise, we say that α avoids τ .

Example: The permutation 85217634 ∈ S8 contains pattern 312 as its subse-
quence 8, 1, 3 satisfies that red(8, 1, 3) = 312. Whereas, 43768521 avoids 312.

Let P be a set of patterns. Denote

Sn(P ) = ∩τ∈P {α ∈ Sn : α avoids τ},

the set of permutations of length n avoiding all patterns of P , and

S(P ) = ∪∞
n=1Sn(P ),

the set of all permutations avoiding P .

In the literature, the enumeration for permutations avoiding a pattern or a
set of patterns received much attention. Some popular enumerations for Sn(P )
are listed together with their detailed references in Tables 1, 2 and 3. From
that we can see that many classical sequences like Fibonacci, Binary strings,
Lucas numbers, etc. are variously counted as permutations avoiding different
pattern sets. Moreover, when investigating pattern avoiding permutations one
often considers pattern sets whose lengths are small. As seen in the tables, almost
all considered patterns have length 3 or 4.

We also perceive that each element of Sn(P ) can be obtained from one in
Sn−1(P ) by inserting n into one of its slots. Therefore, permutations avoiding
P can be represented on a rooted generating tree whose nth level contains all
elements of Sn(P ). For pattern sets P possessing some good property like right-
justified or regular pattern, generating permutations avoiding P is more effective
in the sense that the insertion operation in the generating tree can be replaced
by the one-position transition to the left on each level.

Next, we recall the definition of right-justified patterns which is an essen-
tial factor for the regular pattern definition in [11,13]. Note that many patterns
considered in the literature are regular although showing their right-justifiedness
was often mentioned weakly or even omitted. In this manuscript, we would like to
give a simple criterion for recognizing right-justified patterns. Using this char-
acterization, we will give two efficient algorithms for generating permutations
avoiding (c-)regular patterns in Sects. 3 and 4.

Let α ∈ Sn. When the entry n is not at the rightmost (resp. leftmost) posi-
tion, denote α→ (resp. α←) the permutation obtained from α by moving the high-
est entry n of α to the right (resp. left) one position. For instance, 3142→ = 3124,
3142← = 3412, and there does not exist 3124→ or 4312←.
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Definition 1. Given a pattern set P . We say that P is right-justified if for any
permutation α avoiding P , we can move n to the right (if it is possible) and still
have a permutation α→ which avoids P .

Example:

(i) P = {132} is not right-justified since we have 3412 ∈ S4(132) but
3142 /∈ S4(132), where 3142 is obtained from 3412 by moving 4 to the
right. Moreover, it is easily seen that P = {312} is right-justified by consid-
ering the highest element and element swapped in each permutation avoid-
ing 312. More generally, a pattern set P containing a unique permutation
a1, a2, · · · , ak ∈ Sk is a right-justified pattern if and only if a1 = k.

(ii) P = {312, 123} is not right-justified since 132 /∈ S3(P ) but moving 3 to its
right we get 123 which in fact contains 123 of P . Later, we will see that
showing P = {312, 132} is right-justified is easy using the right-justified
characterization.

In order to do that, we first consider P whose elements are of the same length.
We have the following

Proposition 1. Given a positive integer k. Let P be a pattern set such that
every element of P is of length k. Then P is right-justified if and only if for each
τ ∈ P we have τ← ∈ P . In other words, for any permutation of P we can move
k to the left one position and then have a permutation in P .

Proof. Assume that P is right-justified and τ ∈ P . On the contrary, we suppose
that τ← /∈ P . Consider all permutations of length k of S(P ). By the Definition 1,
since τ← /∈ Sk(P ), we have τ = (τ←)→ /∈ S(P ) which contradicts the hypothesis
that τ ∈ P .

Conversely, let α /∈ Sn(P ). Assume that αi = n. We consider a sub-sequence
u of τ←.

u = a′
i1 , a

′
i2 , . . . , a

′
i�

– If � �= k, then since all permutations in P have the same length, we must have
then red(u) /∈ P .

– If � = k and if {i, i + 1} is not a subset of {i1, i2, . . . , i�}, then u is also a
k-subsequence of α. Since α avoids P , then red(u) /∈ P .

– If � = k and if {i, i + 1} is a subset of {i1, i2, . . . i�}, then

u = a′
i1 , a

′
i2 , . . . , ai+1, n . . . a′

ik

and
red(u) = b1, b2, . . . , bp, k, . . . bk

Consider the sequence v obtained from u by moving element n to the left one
position. In fact,

v = ai1 . . . aip
, n, ai+1, . . . , aik

.

It is straightforward that v is a k-subsequence of α and red(v) = red(u)←.
Since α /∈ S(P ) and since all permutations of P have the length k, we have
red(v) /∈ P . By the hypothesis, red(u) = red(v)→ /∈ P .
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Therefore, in any cases, red(u) /∈ P , and hence α→ /∈ Sn(P ). This completes the
proof. �

Now, we consider pattern sets P whose patterns may have different lengths.
Actually, in this case, to check whether P is right-justified or not looks more
complicated. We have to decompose P in subsets Pi where all permutations in
Pi have the same lengths. Let k1 < k2 < · · · < kp be the different lengths of the
permutations in P and let Pi be the subset of P containing all the permutations
with length ki of P . Then

P = P1 ∪ P2 ∪ · · · ∪ Pp

We have the following

Proposition 2. Let P be a pattern set. Then, P is right-justified if and only if
for each τ ∈ Pk, for k = 1, 2, . . . , p, we have that τ← does not avoid ∪i≤kPi. In
other words, for any permutations of P , we can move its highest entry to the left
one position and still have a permutation not avoiding P .

Proof. Assume that P is right-justified. Let τ ∈ P . On the contrary, suppose
that τ← avoids P . Since P is right-justified, we have τ = (τ←)→ avoids P which
is a contradiction.

Conversely, let α ∈ Sn(P ) such that ai = n. We need to prove that α→ ∈
Sn(P ). On the contrary, let u be a subsequence with minimum length of α→

such that red(u) = τ ∈ P and τ has length k.

u = a′
t1 , a

′
t2 , . . . , a

′
t�

.

It is straightforward that {i, i + 1} is a subset of {t1, t2, . . . , t�}, or otherwise
u is also a sub-sequence of α, and that α does not avoid P . Hence,

u = a′
t1 , a

′
t2 , . . . , ai+1, n, . . . , a′

t�
,

and
red(u) = b1, b2, . . . , bp, k, . . . , bk ∈ P.

Since P satisfies the sufficient conditions in the Proposition,

red(u)← = b1, b2, . . . , k, bp, . . . , bk

contains a pattern with length ≤ k of P . Consider the sequence v obtained from
u by interchange entry n and ai+1. It is easily seen that v is a subsequence of
α and red(v) = red(u)←. This gives that α contains a pattern of P which is a
contradiction. �

As a sequence, the following patterns are right-justified. Note that these
patterns were investigated in many contexts of pattern avoiding permutations,
generating trees in the literature.
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– P = {321, 231}, where Sn(P ) counts the sequence {2n−1}n≥1;
– P = {321, 3412, 4123}, where Sn(P ) counts Pell numbers;
– P = {321, 3412}, where Sn(P ) counts even index Fibonacci numbers;
– P = {2134, 2143, 2413, 4213}, where Sn(P ) counts central binomial coeffi-

cients
(
2n−2
n−1

)
;

– P = {321, 312, 23 . . . (p + 1)1}, where Sn(P ) counts p-generalized Fibonacci
numbers.

It is noted that for two permutations τ and α, deciding whether τ is a pattern
of α is an NP-complete problem [17]. The following conjecture is for the NP-
completeness of the right-justified checking problem.

Conjecture 1. It is an NP-complete problem to check whether a pattern set is
right-justified or not.

However, for a pattern set P in which every pattern has the same length
k, checking its right-justifiedness can be done in O(km log m) by the following
simple algorithm, where m is the number of patterns in P .

Algorithm 1. Algorithm for checking a pattern set P , in which every pattern has
the same length k, is right-justified or not.

BOOL Check Right Justified(P, m, k)
〈 Sort P in the lexicographic order in O(km log m) 〉
for i := 2 to m do

α ← the ith pattern in P
α′ ← the (i − 1)th pattern in P
if α← = α′ then

return FALSE
end if

end for
return TRUE
end procedure

3 Regular Patterns

In this section, after giving the definition of regular pattern we will show the
succession function for the permutation class avoiding a pattern set.

For α ∈ Sn, we denote α↓i the permutation obtained from α by inserting
(n + 1) into position i from the right of α. Now let P be a permutation pattern
set. A site i of a permutation α ∈ Sn(P ) is called an active site associated to P
if α↓i ∈ Sn+1(P ). In that case we say that α↓i is a successor of α. Notice that for
right-justified patterns, active sites of a permutation avoiding it are numbered
consecutively from 1. Let χP (i, α) be the number of active sites of α↓i. We have
the following definition

Definition 2 (Regular pattern). Let P be a set of permutation patterns. P
is called regular if it satisfies the following properties:
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– permutation 1 ∈ S1(P ) has two successors;
– P is right-justified;
– for any n ≥ 1, and α ∈ Sn(P ), χP (i, α) does not depend on α but solely on

i and the number k of active sites of α. In this case, we denote χP (i, α) by
χP (i, k) and we call it succession function.

Let P be a regular set of patterns characterized by its succession function χ.
The set of productions

(k) � (χP (1, k)) . . . (χP (k, k)),

for k ≥ 1, is called the succession rule corresponding to P . For instance, Fig. 1
shows the generating tree for permutations avoiding pattern 321 and Fig. 2 shows
the same generating tree where each node is labeled by the number of active sites
of its corresponding nodes. We can see that, in Fig. 2, for instance, node (3) at
the level 2 illustrates that the corresponding permutation 12 in Fig. 1 has two
active sites. Moreover, every node labeled by (3) in Fig. 2 will generate nodes
labeled sequentially by (4), (2), and (3).

Fig. 1. The first four levels of the generating tree corresponding to χ(i, k) = i for
i = 2, 3, · · · , k and χ(i, k) = k + 1 for i = 1 producing S(321) permutations in Table 1.
The generating tree coincides with the computation tree of the generating procedure.

The succession functions for some well-known classes of regular patterns are
given in Tables 1 and 2.

Fig. 2. The first four levels of the generating tree illustrating the number of active sites
for each node of the tree in Fig. 1
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Table 1. Several classes of regular patterns given by counting sequences together with
the χ(i, k) function.

Class P χP (i, k)

2n−1[3] {321, 312} 2

{321, 231} k + 1 if i = 1

1 otherwise

Pell numbers [3,16] {321, 3412, 4123} 3 if i = 1

2 otherwise

{312, 4321, 3421} 3 if i = 2

2 otherwise

Even index Fibonacci
numbers [3,16]

{321, 3412} k + 1 if i = 1

2 otherwise

{321, 4123} 3 if i = 1

i otherwise

{312, 4321} 3 if k = 3 and i = 3

i + 1 otherwise

Catalan numbers [20] {312} i + 1

{321} k + 1 if i = 1

i otherwise

Schröder numbers [15] {1234, 2134} k + 1 if i = 1 or i = 2

i otherwise

{1324, 2314} k + 1 if i = 1 or i = k

i + 1 otherwise

{4123, 4213} k + 1 if i = k

i + 2 otherwise

Grand Dyck [16] {1234, 1324, 2134, 2314}
k + 1 if i = 1

3 if i = 2

i otherwise

{1324, 2314, 3124, 3214} 3 if i = 1

i + 1 otherwise

Fibonacci numbers [6] {321, 312, 231} 1 if i = 2

2 otherwise

4 c-Regular patterns

Recall that not all right-justified patterns are regular. Actually, there exist right-
justified patterns where the numbers of active sites of successors of a node α with
k active sites may vary according to the shape of α. In case for each shape of
α, if we can get the same rule for the number of active sites of its successors,
then exhaustive algorithms as well as generating trees still reveal interesting
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Table 2. Several classes of regular patterns given by variable length patterns together
with the χ(i, k) function. Notice that for each class of variable length pattern here, for
some particular values of p or m, we retrieve some cases in the Tables 1 and 2. For
example, the case T = {321, 231, (p + 1)12 . . . p}, if p = 2, then we retrieve the case
T = {321, 231, 321} in the Table 1; and p = ∞ corresponds to the case T = {321, 231}
above.

Class P χP (i, k)

A pattern of length 3 and
a variable length pattern

{321, (p + 1)12 . . . p} [3,8]

k + 1 if i = 1 and k < p

p if i = 1 and k = p

i otherwise

{321, p(p + 1)12 . . . (p − 1)}
[3,8]

k + 1 if i = 1

i if 1 < i < p − 1

p − 1 otherwise

{312, (p + 1)p . . . 21} [8]
p if k = p and i = p

i + 1 otherwise

A pattern of length 3,
a pattern of length 4 and
a variable length pattern

{321, 3412, (p+1)12 . . . p} [3]

k + 1 if i = 1 and k < p

p if i = 1 and k = p

2 otherwise

Generalized Fibonacci
numbers

{321, 231, (p + 1)12 . . . p} [3]

k + 1 if i = 1 and k < p

k if i = 1 and k = p

1 otherwise

A pattern of length 3 and
two variable length
pattern

{321, p(p + 1)12 . . . (p − 1),
(p + 1)12 . . . p} [3]

k + 1 if i = 1 and k < p

p if i = 1 and k = p

p − 1 if i = p and k = p

i otherwise

properties. This section is to investigate such patterns, which are called c-regular
patterns.

Let α ∈ Sn(P ). We associate to α a non-zero integer, called its color. If
the numbers of active sites of its successors does not depend on α but only the
number of its active sites, we say that α has no color or the color of α is 0.
We extend the previous function χ such that it transforms a triple (i, α, c) into
a couple (μ(i, α, c), ν(i, α, c)) satisfying that if α ∈ Sn(P ) has the color c then
α↓i ∈ Sn+1(P ) has μ active sites and color ν. Precisely, we have the following
definition.

Definition 3 (c-regular pattern). A set of patterns P is called colored regular
(c-regular for short) if

– permutation 1 ∈ S1(P ) has two successors;
– P is right-justified;



Right-Justified Characterization for Generating Regular Pattern 315

– for any n ≥ 1 and α ∈ Sn(P ), χP (i, α, c) does not depend on α but only
on i, on c and on the number k of active sites of α. In this case we denote
χP (i, α, c) by χP (i, k, c) generalizes the succession function χ(i, k).

Let P be a regular set of patterns characterized by its succession function
χP (i, k, c) = (μ(i, k, c), ν(i, k, c)). The set of productions

(kc) � (μ(1, k, c)ν(1,k,c)) . . . (μ(k, k, c)ν(k,k,c)),

is called colored succession rule which corresponds to the set P of patterns. See
Fig. 3 for an example. In this figure, both permutations 21 and 123 have 2 active
sites, but they have different colors. Hence, we can see that they will generate
nodes whose number of active sites are different. Moreover, permutations 21 and
132 have the same number of active sites and colors. Both of them are labeled
by (21) and they both generate nodes labeled (1) and 20. It is also noted that in
this case, pattern set {321, 312, 2341} is c-regular but it is not regular.

Fig. 3. The first four levels of the generating tree corresponding the class of gen-
eralize Fibonacci numbers with its succession rule described in Table 3 producing
S(321, 312, 2341) permutations. The generating tree coincides with the computation
tree of the generating procedure.

The succession functions for some well-known classes of c-regular patterns
are given in Table 3.

5 Constant Amortized Time Algorithms

In this section, we introduce two general algorithm models to generate all per-
mutations avoiding a given regular or c-regular pattern. Algorithm 2 is first
mentioned by Duckes et al. in [13], but they do not show the efficacy of the
algorithm for the generated objects. Here we prove the ‘CAT-ity’ of our gener-
ating algorithms for all classes given in the tables.
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Table 3. Several classes of c-regular patterns given by counting sequences together
with the χ(i, k, c) = (μ(i, k, c), ν(i, k, c)) function.

Class P μP (i, k, c) νP (i, k, c)

Grand Dyck {2134, 2143, 2413, 4213}
[16]

0 if i < k − p

k + 1 otherwise

k + 1 − i if i ≥ k − p

0 otherwise

{1234, 1243, 1423, 4123}
[16]

0 if i < k − p

k + 1 otherwise

p + 1 if i = k

k − i if k − p ≤ i < k

0 otherwise

Generalized Fibonacci

numbers

{321, 312, 23 . . . (p +

1)1} [6]

1 if c = p − 2

and i = 2

2 otherwise

0 if i = 1 or

c = p − 2

c + 1 otherwise

A pattern of length 3,

a pattern of length 4 and

a variable length pattern

{321, 4123, 34 . . . (p +

1)12} [3]

2 if i = 2 or (i = 3

and c = p − 3)

3 otherwise

c + 1 if i = 3

and c < p − 3

0 otherwise

Algorithm 2. Algorithm for generating permutations avoiding a regular pattern
characterized by the succession function χ(i, k). The first call is Gen Avoid(1, 2).

procedure Gen Avoid(size, k)
local i
if size = n then

Print(α)
else

size := size + 1
α := [α, size] (* insert the value size to the end of α *)
Gen Avoid(size, χ(1, k))
for i := 2 to k do

α := α · (size − i + 2, size − i + 1)
Gen Avoid(size, χ(i, k))

end for
for i := k downto 2 do

α := α · (size − i + 2, size − i + 1)
end for

end if
end procedure

Let α ∈ Sn(P ). We have α↓i and α↓(i+1) differ by a transposition. More
precisely, α↓i = α↓(i+1) · (n − i + 2, n − i + 1). Generally, the insertion of an
element in a list is not an efficient operation but the transposition of two element
is an efficient elementary operation. Those are crucial in the efficaciousness of
our generating algorithms. Further algorithm details are shown in Algorithms 2
and 3.

Lemma 1 ([19]). If a recursive generating procedure satisfies the following three
properties:
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Algorithm 3. Algorithm for generating permutations avoiding a c-regular
pattern characterized by the succession function χ(i, k, c). The first call is
Gen Avoid(1, 2, 0). The initial permutation is 1. In case when only one color is allowed,
Gen Avoid(size, k, c) coincides with Gen Avoid(size, k).

procedure Gen Avoid(size, k, c)
local i, u, v
if size = n then

Print(α)
else

size := size + 1
α := [α, size]
(u, v) := χ(1, k, c)
Gen Avoid(size, u, v)
for i := 2 to k do

α := α · (size − i + 2, size − i + 1)
(u, v) := χ(i, k, c)
Gen Avoid(size, u, v)

end for
for i := k downto 2 do

α := α · (size − i + 2, size − i + 1)
end for

end if
end procedure

(i) the computation amount of a given call is proportional to its degree, disre-
garding the recursive calls;

(ii) each call has degree zero or at least two;
(iii) at the completion of each recursive call a new word is generated,

then the generating procedure is CAT.

The CAT property of the generating algorithm for Fibonacci family has
already proved in [6]. Note that the number of recursive calls is the value of
succession function (χ(i, k) or μ(i, k, c)) and the number of operations in each
Gen Avoid(size, k) and Gen Avoid(size, k, c) is negligible.

For the generating algorithm of the second succession function of the binary
words in the first row of Table 1, considering the level n, we have:

#recursive calls

#generated objects
=

2n + 2n−1 + . . . + 2 + 1
2n

� 2

satisfying the requirement of a CAT algorithm.
Apart from that, regarding all other succession functions χ(i, k), χ(i, k, c) in

this paper, we perceive that all of them are at least 2 which satisfies Lemma 1.

6 Conclusion and Open Problems

We have characterized the right-justified property of regular patterns. This
allows to build recursive generating algorithms for given classes of regular
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patterns avoiding permutations, which has the CAT property. By using the suc-
cession function method and its induced generating algorithms, we may easily
guess some new classes of pattern avoiding permutations. Usually, the proofs of
new pattern avoiding permutation classes are only technical issues and take too
long space, so let we show them in a long version of the paper.

Besides, by changing the values of the parameters i, j, k, we can obtain new
succession functions generating objects with the same cardinality as the con-
sidered class. However, the corresponding pattern avoiding permutations is not
easy to obtain. For example, for Pell numbers, although changing its succession
function to:

χP (i, k) =
{

3 if i = k,
2 otherwise,

generates Pell numbers, we have not found yet any corresponding class of pattern
avoiding permutations. It would be more interesting if we can find a changing
parameters way from existing succession functions to explore new combinatorial
object classes.
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Abstract. In this paper we define a family of polytopes called Ehrhart
Interpolation Polytopes with respect to a given polytope and a parameter
corresponding to the dilation of the polytope. We experimentally study
the behavior of the number of lattice points in each member of the family,
looking for a member with a single lattice point. That single lattice point
is the h* vector of the given polytope. Our study is motivated by efficient
algorithms for lattice point enumeration.

1 Introduction

A fundamental problem in discrete and computational geometry is to efficiently
count or enumerate the lattice points of a polytope. Let P ⊆ R

d be a full
dimensional polytope and L a lattice in R

n. For any positive integer t, let tP =
{tp : p ∈ P} be the t-fold dilation of P and LP (t) = #(tP ∩L) be the counting
function for the number of lattice points contained in tP . Now, let P be a
lattice polytope, i.e., the vertices of P are lattice points. It is known, due to
Ehrhart [2], that there exist rational numbers a0, . . . , ad such that LP (t) =
adt

d + ad−1t
d−1 + · · · + a1t + a0. LP (t) is called the Ehrhart polynomial of P .

Note that the degree of LP (t) is equal to the dimension of polytope P . Instead
of considering LP (t) in the monomial basis, we can also view it as a polynomial
in the binomial basis

{(
t+d−i

d

)}
i=0,...,d

of polynomials of degree up to d. Then

from [6], we have that

LP (t) =
d∑

j=0

h∗
j

(
t + d − j

d

)
and h∗

j ∈ N (1)

where (h∗
0, h

∗
1, . . . , h

∗
d) is the h∗ vector of P .

The h∗ vector was the subject of many studies in the last decades [1,6,8]. A
lot of interesting results exist, but we will only mention the ones relevant for the
definition of the Ehrhart Interpolation Polytope (see Sect. 2).

c© Springer International Publishing AG 2017
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2 The Ehrhart Interpolation Polytope

In this section, we define the main object of our study, the Ehrhart Interpolation
Polytope. For this we will use the H∗ polyhedron. The main idea is that there
is a number of known linear inequalities for h∗ vectors, thus defining a polyhe-
dron. This polyhedron is contained in the non-negative orthant of Rd+1, since
h∗ vectors are non-negative.

Definition 1 (H∗ polyhedron). Given d ∈ N
∗ , let

H∗ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ R
d+1 :

x0 = 1 [2]
xi ≥ 0 ,0 ≤ i ≤ d [6]
xi ≥ x1 ,2 ≤ i < d [1]
xd + xd−1 + · · · + xd−i ≤ x0 + x1 + · · · + xi+1 ,0 ≤ i ≤ �d−1

2 � [1]
x0 + x1 + · · · + xi ≤ xd + xd−1 + · · · + xd−i ,0 ≤ i ≤ �d−1

2 � [1]
x1 + x2 + · · · + xi ≤ xd−1 + xd−2 + · · · + xd−i ,0 ≤ i ≤ �d−1

2 � [8]
xd−1 + xd−2 + · · · + xd−i ≤ x2 + x3 + · · · + xi+1 ,0 ≤ i ≤ �d−1

2 � [8]

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Lemma 1. All h∗ vectors of d-dimensional polytopes with at least one interior
lattice point are lattice points in H∗.

For special cases of d it is possible to have more constraints that could yield
a more refined H∗.

The polyhedron H∗ depends only on the dimension d. If we are given a
polytope P ⊆ R

d, we can obtain upper bounds for the h∗ vector of P . In [7],
Stanley proves the following monotonicity theorem.

Theorem 1 ([7]). If P and Q are polytopes in R
n and P ⊆ Q, then h∗

P,i ≤ h∗
Q,i,

where h∗
P and h∗

Q are the h∗ vectors of P and Q respectively.

The above result could yield upper bounds for the h∗ vector of a given poly-
tope P by constructing the smallest hypercube C containing P . The h∗ vectors
of lattice hypercubes are easy to compute and this way we bound from above
all coordinates of the h∗ vector of P as h∗

P,i ≤ h∗
C,i for 0 ≤ i ≤ d. We use the

constraints coming from the bounding hypercube together with the one defined
by Eq. 1 to define the Ehrhart Interpolation Polytope.

Definition 2 (Ehrhart Interpolation Polytope). Given a polytope P ⊆ R
d

with at least one lattice point in its interior and t ∈ N
∗, we define the Ehrhart

Interpolation Polytope of P in dilation t

EP (t) =

⎧
⎪⎪⎨
⎪⎪⎩

x ∈ R
d+1 :

x ∈ H∗,∑d
i=0 xi

(
t+d−i

d

)
= LP (t) ,

xi ≤ h∗
C,i, 0 ≤ i ≤ d

⎫
⎪⎪⎬
⎪⎪⎭

(2)

where C ⊆ R
d is the smallest cube containing P .
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Fig. 1. The polytope P (left) and the associated EP (t) (right) from Example 1.

Note that EP (t) is indeed a bounded polyhedron, since it is contained in the
intersection of the positive orthant with a hyperplane whose normal vector is a
strictly positive vector (containing binomial coefficients). Moreover, observe that
the h∗ vector of P is contained in EP (t) for all t ∈ N

∗ by construction, for all
polytopes P containing at least one lattice point in their interior. Generically,
H∗ and EP (t) will have dimension d and d − 1 respectively.

Example 1. Let P ⊆ R
2 be the convex hull of the points (1, 1), (1, 4), (2, 5), (6, 2).

Then the Ehrhart Interpolation Polytope EP (t) is an 1-dimensional polytope
in R

3.
Figure 1 depicts P and EP (t) for t = 1, 2, . . . , 8. For t = 1, 2, . . . , 8, there are

12, 3, 6, 2, 3, 2, 3, 1 lattice points in each segment respectively. For t = 8 (purple),
EP (t) contains a single lattice point. This lattice point is the h∗ vector of the
polytope P . Note that for dilations greater than 8, it is possible to have more
than one lattice points, see Sect. 3.

The single lattice point in EP (8) is (1, 12, 9). The binomial basis for polyno-
mials in dimension 2 is

{
(t+1)(t+2)

2 , t(t+1)
2 , (t−1)t

2

}
. By evaluating Eq. 1 we get

the Ehrhart polynomial of P which is 11t2 + 3t + 1.

3 Experiments and Statistics

We experimentally study the number of lattice points of the EP (t) as a function
of the dilation t. The goal is to find a dilation t such that EP (t) contains a single
lattice point. Then, that lattice point is the h∗ vector of P . Our experiments
indicate that as we increase the dilation, after some point, the h∗ vector becomes
a vertex of the integer hull of the Ehrhart Interpolation Polytope. Moreover,
experimental evidence indicates that after a certain threshold, for some dilations
the integer hull of the Ehrhart Interpolation Polytope is 0-dimensional, i.e., a
single point. This can already be observed in the low dimensions; see Example 1.
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Fig. 2. The number of lattice points in the Ehrhart Interpolation Polytope for dilations
600–800 (left) and dilations 1200–1227 (right). Dilation 1227 contains one lattice point.

Fig. 3. Number of lattice points in the Ehrhart Interpolation Polytope for the per-
mutahedron in dimension 4 (left) and for some solids (right) for dilations 5 to 30.

In this section we present some statistics about the number of lattice points
in the Ehrhart Interpolation Polytope.

For our study we concentrate on cross polytopes, permutahedra, random
simplices, and zonotopes in dimensions 3, 4, and 5, as well as Platonic solids that
are lattice polytopes. For the exploration presented here we used the computer
algebra system Sage [5].

We first focus on the permutahedron in dimension 5, to show some observa-
tions that hold for other families of polytopes as well. In Fig. 2, we see that the
number of lattice points in successive dilations exhibits a periodic behavior. The
lowest point during a period is related to the dimension of the polytope. Note
that the permutahedron in dimension d is a d − 1-dimensional polytope.

In Fig. 3, we can see that the Ehrhart Interpolation Polytope of the permu-
tahedron in dimension 4 contains a single lattice point in dilation 30 on the
left. On the right, we see the behavior of some Platonic Solids that are lattice
polytopes.

Regarding timings, all above experiments have been performed on a personal
computer in order of seconds.
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4 Conclusion

The purpose of this short paper is to start a discussion on the study of Ehrhart
Interpolation Polytopes. Our preliminary results indicate that it should be inter-
esting to study more their combinatorial properties and provide rigorous exper-
imental or analytical results.

Our original motivation for the definition of Ehrhart Interpolation Polytope
was the computation of Ehrhart polynomials, using good approximations of the
volume in large dilates of the polytope. Matthias Köppe [4] suggested to use Inte-
ger Linear Programming for finding the h∗ vector in the Ehrhart Interpolation
Polytope.

Interestingly, finding the Ehrhart polynomial reduces to a non-convex opti-
mization problem, namely finding the minimum of the function counting the
number of lattice points of a polytope varying dilation t. Finally, practical vol-
ume approximation algorithms [3] can be applied to yield bounds on the number
of lattice points that could be used to refine EP (t).

Acknowledgments. The second author acknowledges support from the project BAP
2016-A-27 of Gebze Technical University.
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Abstract. Using Delsarte, Goethals and Seidel’s fundamental theorem
of spherical codes and designs, we investigate the complexity of graph-iso-
morphism testing. We derive a set of basic conditions under which testing
isomorphism of graphs of bounded eigenvalue multiplicity is immediately
reducible to testing isomorphism of graphs of bounded color multiplicity.

1 Introduction

Determining the computational complexity of testing isomorphism of finite
algebraic and combinatorial structures is a long-standing unresolved problem.
Since all such structures can be canonically represented by graphs, the graph-
isomorphism problem has historically attracted the most attention.

By bounding graph parameters, a number of studies have demonstrated con-
siderable success. In particular, two of the earliest and most fundamental work
approached the problem by bounding graphs’ vertex-color multiplicity and sepa-
rately eigenvalue multiplicity (in [2,3], respectively). In this report, we will revisit
these two classes of graphs.

While both classes of graphs admit polynomial-time solutions, the problem
for graphs of bounded color multiplicity has been regarded “easier”, at least
informally, than that for graphs of bounded eigenvalue multiplicity. The former
has long been known to be fixed-parameter tractable (i.e., the bounded parameter
is not involved in the exponent of the complexity) by Babai’s seminal “tower-
of-groups” method (see [2,9]; cf. [1]), whereas, for the latter, no simple solution
exists to achieve fixed-parameter tractability (cf. [8]). In [3], the tower-of-groups
algorithm is in fact used as a critical subroutine to solve the latter problem; how-
ever, in the end, the bounded parameter is involved in the exponent of the com-
plexity, thereby not achieving fixed-parameter tractability. Our overall objective
is to investigate deeper the relationship between the two problems.

In spectral graph theory, the automorphism groups of graphs of n vertices are
often studied as embeddings in the real orthogonal group On(R). In this work,
we will take a look at natural geometries in Rn induced by such embeddings
and apply a fundamental theorem of spherical codes and designs.

In their seminal work [7], Delsarte, Goethals and Seidel lay the foundations
of what is now called the Delsarte theory of spherical codes and designs (cf. [4]).

c© Springer International Publishing AG 2017
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Their starting point is a theorem that gives an upper bound for the cardinality
of a finite s-distance set (in which there can only be s distinct distances between
any two points) on the unit sphere in Rd as a function of s and d (see [7, Theorem
4.8]). In our investigation, it turns out that the orbits of the automorphism groups
of graphs can naturally be mapped to such spherical sets. With the help of this
theorem, we will derive a set of basic conditions under which testing isomorphism
of graphs of bounded eigenvalue multiplicity is immediately reducible to testing
isomorphism of graphs of bounded color multiplicity.

In the theory of permutation groups, primitive groups form central build-
ing blocks and thus have been the main subject of intense study. Of particular
focus have been primitive groups of low rank (here, the rank means the num-
ber of orbits in the natural coördinate-wise action on the cartesian square of the
underlying set). Indeed, our main result will assert that, given graphs of bounded
eigenvalue multiplicity, if the automorphism groups act on partitioned subsets of
vertices as primitive groups of low rank, then the subsets define vertex colorings
of bounded color multiplicity. While a great deal has been known about primi-
tive groups (see, e.g., [6]), our proof requires no such knowledge and is algebraic-
combinatorial in nature based on the Delsarte–Goethals–Seidel theorem.

To formally state the main result, we begin with some definitions. Let X =
(V,E) be a graph of n vertices. For V = {v1, . . . , vn}, consider an n-dimensional
real inner-product space Rn with an orthonormal basis {ev1 , . . . , evn

}. An action
of a group on V then induces an orthogonal action, called the permutation rep-
resentation, on Rn by permuting the coördinates of the vectors of Rn.

For a partition V = C1 ∪ · · · ∪ Cs and an orthogonal direct-sum decomposi-
tion Rn = W1⊕· · ·⊕Wt, we call ((C1, . . . , Cs), (W1, . . . , Wt)) a partition-decom-
position pair for X, provided that all Ci and Wj are invariant under Aut(X) for
i = 1, . . . , s and j = 1, . . . , t. We further call such a pair stable if it satisfies the
following conditions (i)–(iii) for each of i = 1, . . . , s and j = 1, . . . , t.

In what follows, p∗
Wj

: V → Wj denotes an extension of the orthogonal pro-
jection pWj

: Rn → Wj defined by p∗
Wj

(v) := pWj
(ev) for v ∈ V , and ∼j denotes

an equivalence relation on V defined by v ∼j v′ if p∗
Wj

(v) = p∗
Wj

(v′) for v, v′ ∈ V .

(i) All vectors in p∗
Wj

(Ci) have the same length.
(ii) All equivalence classes of ∼1 |Ci

∧ · · · ∧ ∼j |Ci
have the same size.

(iii) 〈p∗
Wj

(Ci)〉 = 0 or Wj .

Such partition-decomposition pairs are easily obtainable from adjacency
matrices via spectral decompositions by a “refinement” algorithm (see [3, §4]);
thus, if X’s eigenvalue multiplicity is at most d, then dimR(Wj) ≤ d for
j = 1, . . . , t.

Theorem 1. Let X be a graph of eigenvalue multiplicity at most d such
that Aut(X) acts primitively on all its orbits. If X has a stable partition-
decomposition pair ((C1, . . . , Cs), (W1, . . . , Wt)) such that the rank of Aut(X)|Ci

is at most r for i = 1, . . . , s, then the following hold.

(i) |Ci| ≤ f(d, r) :=
(
d+r−2
r−1

)
+

(
d+r−3
r−2

)
for i = 1, . . . , s.

(ii) Isomorphism of such graphs can be tested in O(f(d, r)!2nc) time for an abso-
lute constant c > 0.



On Testing Isomorphism of Graphs of Bounded Eigenvalue Multiplicity 327

Theorem 1(ii) asserts that testing isomorphism of such graphs is fixed-param-
eter tractable. It is a consequence of Theorem 1(i); that is, we regard (C1, . . . , Cs)
as a vertex coloring and appeal to the aforementioned tower-of-groups algorithm
to test isomorphism of graphs of bounded color multiplicity (see [2,9]).

2 Permutation Representations and Projections

We begin with a brief summary of the basic facts we will need. For the founda-
tions of this subject, we refer the reader to [5].

Let X = (V,E) be a graph of n vertices defined by an n × n adjacency
matrix A. Regarding A as a real symmetric matrix, consider its distinct eigenval-
ues λ1, . . . , λt, all of which are real, and corresponding eigenspaces W1, . . . , Wt.
Recall then that Rn = W1⊕· · ·⊕Wt, where W1, . . . , Wt are mutually orthogonal
to one another. If the multiplicity of λi is di, then dimR(Wi) = di for i = 1, . . . , t;
if X is a graph of eigenvalue multiplicity at most d, then it means that di ≤ d
for i = 1, . . . , t.

For V = {v1, . . . , vn}, consider the symmetric group Sym(V ) and its natural
action on the set of all unordered pairs of vertices

(
V
2

)
. The automorphism group

of X is defined by Aut(X) := {g ∈ Sym(V ) : Eg = E}.
The symmetric group Sym(V ) also acts on Rn by permuting the coördinates

of the vectors of Rn. It is defined by, for an orthonormal basis {ev1 , . . . , evn
} of

Rn, the permutation representation * : Sym(V ) → GLn(R) such that eg
∗

vi
= evg

i

for i = 1, . . . , n and g ∈ Sym(V ). That is, the image Sym(V )∗, consisting of all
n × n permutation matrices, is a subgroup of the real orthogonal group On(R).
Under this representation, regarding A as a real n × n matrix, it is easy to see
that Aut(X) = {g ∈ Sym(V ) : g∗−1Ag∗}, which in turn implies

Aut(X) = {g ∈ Sym(V ) : W g∗
i = Wi for i = 1, . . . , t}.

If X is a graph of eigenvalue multiplicity at most d, then, as Aut(X) must
stabilize the eigenspaces, Aut(X) is embeddable in Od(R) × · · · × Od(R).

By contrast, if X is a graph of color multiplicity at most k, then it means that
X is equipped with a vertex coloring φ : V → {1, . . . , s} such that the number
of vertices sharing the same color is at most k, i.e., X has a partition of vertices
V = C1 ∪ · · · ∪ Cs such that |Ci| ≤ k for i = 1, . . . , s. In this case, the group of
color-preserving automorphisms is embeddable in Sk × · · · × Sk.

We next state two elementary lemmas concerning orthogonal projections (cf.
[3]). As usual, for a subspace W of Rn, pW : Rn → W denotes the orthogonal
projection of Rn on W .

Lemma 2. If W is a subspace of Rn, and g ∈ On(R), then W g = W if and
only if pW (v)g = pW (vg) for all v ∈ Rn. ��
Lemma 3. Let E = {e1, . . . , en} be an orthonormal basis of Rn and G be a
subgroup of On(R) of permutation matrices acting on E. If F is a G-invariant
subset of E, and W is a G-invariant subspace of Rn, then the following hold.
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(i) Let ∼ be an equivalence relation on F defined by e ∼ e′ if pW (e) = pW (e′)
for e, e′ ∈ F . The equivalence classes F/∼ form a G-invariant partition.

(ii) The action of G on F/∼ is isomorphic to the action of G on pW (F ). ��

3 Bounding Vertex Partitions

We will sketch the proof of the main theorem. It is based on a fundamental the-
orem of the so-called Delsarte theory of spherical codes and designs (cf. [4]).

We first recall from [7, Theorem 4.8].

Theorem 4 (Delsarte–Goethals–Seidel). If S is a finite set of points on
the unit sphere in Rd, and s := |{(x, y) : x, y ∈ S and x = y}|, then

|S| ≤
(

d + s − 1
s

)
+

(
d + s − 2

s − 1

)

(where ( , ) denotes the usual inner product in Rd). ��
Its proof is based on basic properties of harmonic polynomials and spherical

harmonics. This novel approach has subsequently been extended to many other
problems in spherical codes and designs (cf. [4]).

Central to the proof of Theorem 1(i) is the following.

Proposition 5. Let X be a graph such that Aut(X) acts primitively on all its
orbits. For a stable partition-decomposition pair ((C1, . . . , Cs), (W1, . . . , Wt)) for
X, let ri denote the rank of Aut(X)|Ci

for i = 1, . . . , s and dj := dimR(Wj) for
j = 1, . . . , t. Then, for each Ci, there is Wj such that

|Ci| ≤
(

dj + ri − 2
ri − 1

)
+

(
dj + ri − 3

ri − 2

)
.

Proof. First, recall from p. 2 the stability conditions (i)–(iii) of partition-
decomposition pairs, in particular, for j = 1, . . . , t, the extension p∗

Wj
: V → Wj

of the orthogonal projection pWj
: Rn → Wj and the equivalence relation

∼j defined by v ∼j v′ if p∗
Wj

(v) = p∗
Wj

(v′) for v, v ∈ V . Throughout, write
G := Aut(X).

First, consider arbitrary Ci and ∼j . By Lemma 3(ii), Ci/∼j is a G-invariant
partition. Since G acts primitively on all its orbits, by the stability condition (ii)
of partition-decomposition pairs, |Ci/∼j | = |Ci| or 1.

Clearly, ev1 , . . . , evn
are all distinct, so the equivalence relation ∼1 ∧ · · · ∧ ∼t

is in fact the equality relation =. Thus, for each Ci, there exists ∼j such that
|Ci/∼j | = |Ci|. From now on, we consider Ci and ∼j such that |Ci/∼j | = |Ci|.

If |Ci| = 1, then we are done. So, we assume that |Ci| ≥ 2. Since |p∗
Wj

(Ci)| =
|Ci/∼j | = |Ci|, by the stability condition (iii) of partition-decomposition pairs,
〈p∗

Wj
(Ci)〉 = Wj = 0.

Now, let * : G → GLn(R) denote the permutation representation of G on Rn

and S := p∗
Wj

(Ci). By Lemma 3(ii), the G-action on Ci is isomorphic to the G∗-
action on S. By the stability condition (i) of partition-decomposition pairs, all the
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vectors in S have the same length and thus form a spherical set. The G∗-action on
S is clearly orthogonal and thus preserves the inner-products of the vectors of S.
Since the rank of G|Ci

is ri, the cardinality of the set {(x, y) : x, y ∈ S and x = y}
is at most ri − 1. Consequently, if dj := dimR(Wj), then, by Theorem 4,

|Ci| = |S| ≤
(

dj + ri − 2
ri − 1

)
+

(
dj + ri − 3

ri − 2

)

as required. ��
Theorem 1(i) asserts that the graph X’s vertex partition (C1, . . . , Cs) defines

a vertex coloring of color multiplicity at most k, making Aut(X) embeddable
in Sk × · · · × Sk, for k = f(d, r) :=

(
d+r−2
r−1

)
+

(
d+r−3
r−2

)
. By the tower-of-groups

algorithm, Aut(X) is then computable in O(k!2nc) time for an absolute constant
c > 0 (see [2,9]). In general, to test isomorphism of two connected graphs, it
suffices to compute the automorphism group of the union of the two. Thus,
testing isomorphism of such graphs is also fixed-parameter tractable.
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Abstract. The pattern matching problem with swaps is to find all
occurrences of a pattern in a text while allowing the pattern to swap
adjacent symbols. The goal is to design fast matching algorithm that
takes advantage of the bit parallelism of bitwise machine instructions and
has only streaming access to the input. We introduce a new approach
to solve this problem based on the graph theoretic model and compare
its performance to previously known algorithms. We also show that an
approach using deterministic finite automata cannot achieve similarly
efficient algorithms. Furthermore, we describe a fatal flaw in some of the
previously published algorithms based on the same model. Finally, we
provide experimental evaluation of our algorithm on real-world data.

1 Introduction

In the Pattern Matching problem with Swaps (Swap Matching, for short), the
goal is to find all occurrences of any swap version of a pattern P in a text T ,
where P and T are strings over an alphabet Σ of length p and t, respectively. By
the swap version of a pattern P we mean a string of symbols created from P by
swapping adjacent symbols while ensuring that each symbol is swapped at most
once (see Sect. 2 for formal definitions). The solution of Swap Matching is a set of
indices which represent where occurrences of P in T begin. Swap Matching is an
intensively studied problem due to its use in practical applications such as text
and music retrieval, data mining, network security and biological computing [5].

The swap of two consecutive symbols is one of the most typical typing errors.
It also represent a simpler version of swaps that appear in nature. In particular,
the phenomenon of swaps occurs in gene mutations and duplications such as in
the region of human chromosome 5 that is implicated in the disease called spinal
muscular Atrophy, a common recessive form of muscular dystrophy [15]. While
the biological swaps occur at a gene level and have several additional constraints
and characteristics, which make the problem much more difficult, they do serve as
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334 V. Blažej et al.

a convincing pointer to the theoretical study of swaps as a natural edit operation
for the approximation metric [2]. Indeed Wagner and Lowrance [17] suggested
to add the swap operation when considering the edit distance of two strings.

Swap Matching was introduced in 1995 as an open problem in non-standard
string matching [16]. The first result was reported by Amir et al. [2] in 1997, who
provided an O(tp

1
3 log p)-time solution for alphabets of size 2, while also showing

that alphabets of size exceeding 2 can be reduced to size 2 with a little overhead.
Amir et al. [4] also came up with solution with O(t log2 p) time complexity for
some very restrictive cases. Several years later Amir et al. [3] showed that Swap
Matching can be solved by an algorithm for the overlap matching achieving the
running time of O(t log p log |Σ|). This algorithm as well as all the previous ones
is based on fast Fourier transformation (FFT).

In 2008 Iliopoulos and Rahman [14] introduced a new graph theoretic app-
roach to model the Swap Matching problem and came up with the first efficient
solution to Swap Matching without using FFT (we show it to be incorrect). Their
algorithm based on bit parallelism runs in O((t + p) log p) time if the pattern
length is similar to the word-size of the target machine. One year later Cantone
and Faro [8] presented the Cross Sampling algorithm solving Swap Matching
in O(t) time and O(|Σ|) space, assuming that the pattern length is similar to
the word-size in the target machine. In the same year Campanelli et al. [7]
enhanced the Cross Sampling algorithm using notions from Backward directed
acyclic word graph matching algorithm and named the new algorithm Backward
Cross Sampling. This algorithm also assumes short pattern length. Although
Backward Cross Sampling has O(|Σ|) space and O(tp) time complexity, which
is worse than that of Cross Sampling, it improves the real-world performance.

In 2013 Faro [11] presented a new model to solve Swap Matching using reac-
tive automata and also presented a new algorithm with O(t) time complex-
ity assuming short patterns. The same year Chedid [10] improved the dynamic
programming solution by Cantone and Faro [8] which results in more intuitive
algorithms. In 2014 a minor improvement by Fredriksson and Giaquinta [12]
appeared, yielding slightly (at most factor |Σ|) better asymptotic time complex-
ity (and also slightly worse space complexity) for special cases of patterns. The
same year Ahmed et al. [1] took ideas of the algorithm by Iliopoulos and Rah-
man [14] and devised two algorithms named Smalgo-I and Smalgo-II which
both run in O(t) for short patterns, but bear the same error as the original
algorithm.

Our Contribution. We design a simple algorithm which solves the Swap
Matching problem. The goal is to design a streaming algorithm, which is given
one symbol per each execution step until the end-of-input arrives, and thus does
not need access to the whole input. This algorithm has O(� p

w �(|Σ| + t) + p)
time and O(� p

w �|Σ|) space complexity where w is the word-size of the machine.
We would like to stress that our solution, as based on the graph theoretic app-
roach, does not use FFT. Therefore, it yields a much simpler non-recursive algo-
rithm allowing bit parallelism and is not suffering from the disadvantages of the



A Simple Streaming Bit-Parallel Algorithm for Swap Pattern Matching 335

convolution-based methods. While our algorithm matches the best asymptotic
complexity bounds of the previous results [8,12] (up to a |Σ| factor), we believe
that its strength lies in the applications where the alphabet is small and the
pattern length is at most the word-size, as it can be implemented using only
7 + |Σ| CPU registers and few machine instructions. This makes it practical for
tasks like DNA sequences scanning. Also, as far as we know, our algorithm is
currently the only known streaming algorithm for the swap matching problem.

We continue by proving that any deterministic finite automaton that solves
Swap Matching has number of states exponential in the length of the pattern.

We also describe the Smalgo (swap matching algorithm) by Iliopoulos and
Rahman [14] in detail. Unfortunately, we have discovered that Smalgo and
derived algorithms contain a flaw which cause false positives to appear. We
have prepared implementations of Smalgo-I, Cross Sampling, Backward Cross
Sampling and our own algorithm, measured the running times and the rate of
false positives for the Smalgo-I algorithm. All of the sources are available for
download.1

This paper is organized as follows. First we introduce all the basic definitions,
and also recall the graph theoretic model introduced in [14] and its use for
matching in Sect. 2. In Sect. 3 we show our algorithm for Swap Matching problem
and follow it in Sect. 4 with the proof that Swap Matching cannot be solved
efficiently by deterministic finite automata. Then we describe the Smalgo in
detail in Sect. 5 and finish with the experimental evaluation of the algorithms in
Sect. 6.

2 Basic Definitions and the Graph Theoretic Model

In this section we state the basic definitions, present the graph theoretic model
and show a basic algorithm that solves Swap Matching using the model.

2.1 Notations and Basic Definitions

We use the word-RAM as our computational model. That means we have access
to memory cells of fixed capacity w (e.g., 64 bits). A standard set of arithmetic
and bitwise instructions include And (&), Or (|), Left bitwise-shift (LShift) and
Right bitwise-shift (RShift). Each of the standard operations on words takes
single unit of time. In order to compare to other existing algorithms, which are
not streaming, we define the access to the input in a less restrictive way – the
input is read from a read-only part of memory and the output is written to a
write-only part of memory. However, it will be easy to observe that our algorithm
accesses the input sequentially. We do not include the input and the output into
the space complexity analysis.

A string S over an alphabet Σ is a finite sequence of symbols from Σ and |S|
is its length. By Si we mean the i-th symbol of S and we define a substring

1 http://users.fit.cvut.cz/blazeva1/gsm.html.

http://users.fit.cvut.cz/blazeva1/gsm.html
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Fig. 1. P -graph PP for the pattern P = abcbbac

S[i,j] = SiSi+1 . . . Sj for 1 ≤ i ≤ j ≤ |S|, and prefix S[1,i] for 1 ≤ i ≤ |S|.
String P prefix matches string T n symbols on position i if P[1,n] = T[i,i+n−1].

Next we formally introduce a swapped version of a string.

Definition 1 (Campanelli et al. [7]). A swap permutation for S is a permu-
tation π : {1, . . . , n} → {1, . . . , n} such that:

(i) if π(i) = j then π(j) = i (symbols at positions i and j are swapped),
(ii) for all i, π(i) ∈ {i − 1, i, i + 1} (only adjacent symbols are swapped),
(iii) if π(i) �= i then Sπ(i) �= Si (identical symbols are not swapped).

For a string S a swapped version π(S) is a string π(S) = Sπ(1)Sπ(2) . . . Sπ(n)

where π is a swap permutation for S.

Now we formalize the version of matching we are interested in.

Definition 2. Given a text T = T1T2 . . . Tt and a pattern P = P1P2 . . . Pp,
the pattern P is said to swap match T at location i if there exists a swapped
version π(P ) of P that matches T at location i, i.e., π(P ) = T[i,i+p−1].

2.2 A Graph Theoretic Model

The algorithms in this paper are based on a model introduced by Iliopoulos and
Rahman [14]. In this section we briefly describe this model.

For a pattern P of length p we construct a labeled graph PP = (V,E, σ) with
vertices V , edges E, and a vertex labeling function σ : V → Σ (see Fig. 1 for
an example). Let V = V ′ \ {m−1,1,m1,p} where V ′ = {mr,c | r ∈ {−1, 0, 1}, c ∈
{1, 2, . . . , p}}. For mr,c ∈ V we set σ(mr,c) = Pr+c. Each vertex mr,c is identified
with an element of a 3 × p grid. We set E′ := E′

1 ∪ E′
2 ∪ · · · ∪ E′

p−1, where
E′

j := {(mk,j ,mi,j+1) | k ∈ {−1, 0}, i ∈ {0, 1}} ∪ {(m1,j ,m−1,j+1)}, and let
E = E′ ∩ V × V . We call PP the P-graph. Note that PP is directed acyclic
graph, |V (PP )| = 3p − 2, and |E(PP )| = 5(p − 1) − 4.

The idea behind the construction of PP is as follows. We create vertices V ′

and edges E′ which represent every swap pattern without unnecessary restric-
tions (equal symbols can be swapped). We remove vertices m−1,1 and m1,p which
represent symbols from invalid indices 0 and p + 1.
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Algorithm 1. The basic matching algorithm (BMA)
Input: Labeled directed acyclic graph G = (V, E, σ), set Q0 ⊆ V of starting
vertices, set F ⊆ V of accepting vertices, text T , and position k.

1: Let D′
1 := Q0.

2: for i = 1, 2, 3, . . . , p do
3: Let Di := {x | x ∈ D′

i, σ(x) = Tk+i−1}.
4: if Di = ∅ then finish.

5: if Di ∩ F �= ∅ then we have found a match and finish.

6: Define the next iteration set D′
i+1 as vertices which are successors of Di, i.e.,

D′
i+1 := {d ∈ V (PP ) | (v, d) ∈ E(PP ) for some v ∈ Di}.

The P -graph now represents all possible swap permutations of the pattern P
in the following sense. Vertices m0,j represent ends of prefixes of swapped version
of the pattern which end by a non-swapped symbol. Possible swap of symbols Pj

and Pj+1 is represented by vertices m1,j and m−1,j+1. Edges represent symbols
which can be consecutive. Each path from column 1 to column p represents
a swap pattern and each swap pattern is represented this way.

Definition 3. For a given Σ-labeled directed acyclic graph G = (V,E, σ) ver-
tices s, e ∈ V and a directed path f = v1, v2, . . . , vk from v1 = s to vk = e, we
call S = σ(f) = σ(v1)σ(v2) . . . σ(vk) ∈ Σ∗ a path string of f .

2.3 Using Graph Theoretic Model for Matching

In this section we describe an algorithm called Basic Matching Algorithm (BMA)
which can determine whether there is a match of pattern P in text T on a
position k using any graph model which satisfies the following conditions.

– It is a directed acyclic graph,
– V = V1 
 V2 
 · · · 
 Vp (we can divide vertices to columns),
– E = {(u,w) | u ∈ Vi, w ∈ Vi+1, 1 ≤ i < p} (edges lead to next column).

Let Q0 = V1 be the starting vertices and F = Vp be the accepting vertices.
BMA is designed to run on any graph which satisfies these conditions. Since
P -graph satisfies these assumptions we can use BMA for PP .

The algorithm runs as follows (see also Algorithm 1). We initialize the algo-
rithm by setting D′

1 := Q0 (Step 1). D′
1 now holds information about vertices

which are the end of some path f starting in Q0 for which σ(f) possibly prefix
matches 1 symbol of T[k,k+p−1]. To make sure that the path f represents a pre-
fix match we need to check whether the label of the last vertex of the path f
matches the symbol Tk (Step 3). If no prefix match is left we did not find a
match (Step 4). If some prefix match is left we need to check whether we already
have a complete match (Step 5). If the algorithm did not stop it means that we
have some prefix match but it is not a complete match yet. Therefore we can
try to extend this prefix match by one symbol (Step 6) and check whether it is
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Algorithm 2. BMA in terms of prefix match signals
1: Let I0(v) := 1 for each v ∈ Q0 and I0(v) := 0 for each v /∈ Q0.
2: for i = 0, 1, 2, 3, . . . , p − 1 do
3: Filter signals by a symbol Tk+i.
4: if Ii(v) = 0 for every v ∈ PP then finish.

5: if Ii(v) = 1 for any v ∈ F then we have found a match and finish.

6: Propagate signals along the edges.

a1 c b a4 b5

a c3 b a

c b2 a b

Fig. 2. BMA of T[2,6] = abcab on a P -graph of the pattern P = acbab. The prefix
match signal propagates along the dashed edges. Index j above a vertex v represent
that Ij(v) = 1, otherwise Ij(v) = 0.

a valid prefix match (Step 3). Since we extend the matched prefix in each step,
we repeat these steps until the prefix match is as long as the pattern (Step 2).

Having vertices in sets is not handy for computing so we present another way
to describe this algorithm. We use their characteristic vectors instead.

Definition 4. A Boolean labeling function I : V → {0, 1} of vertices of PP is
called a prefix match signal.

The algorithm can be easily divided into iterations according to the value
of i in Step 2. We denote the value of the prefix match signal in j-th iteration
as Ij and we define the following operations:

– propagate signal along the edges, is an operation which sets Ij(v) := 1 if and
only if there exists an edge (u, v) ∈ E with Ij−1(u) = 1,

– filter signal by a symbol x ∈ Σ, is an operation which sets I (v) := 0 for each v
where σ(v) �= x,

– match check, is an operation which checks whether there exists v ∈ F such
that I(v) = 1 and if so reports a match.

With these definitions in hand we can describe BMA in terms of prefix match
signals as Algorithm 2. See Fig. 2 for an example of use of BMA to figure out
whether P = acbab swap matches T = babcabc at a position 2.

2.4 Shift-And Algorithm

The following description is based on [9, Chap. 5] describing the Shift-Or
algorithm.
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For a pattern P and a text T of length p and t, respectively, let R be a
bit array of size p and Rj its value after text symbol Tj has been processed. It
contains information about all matches of prefixes of P that end at the position j
in the text. For 1 ≤ i ≤ p, Rj

i = 1 if P[1,i] = T[j−i+1,j] and 0 otherwise. The
vector Rj+1 can be computed from Rj as follows. For each positive i we have
Rj+1

i+1 = 1 if Rj
i = 1 and Pi+1 = Tj+1, and Rj+1

i+1 = 0 otherwise. Furthermore,
Rj+1

1 = 1 if P1 = Tj+1 and 0 otherwise. If Rj+1
p = 1 then a complete match can

be reported.
The transition from Rj to Rj+1 can be computed very fast as follows. For each

x ∈ Σ let Dx be a bit array of size p such that for 1 ≤ i ≤ p,Dx
i = 1 if and only

if Pi = x. The array Dx denotes the positions of the symbol x in the pattern P .
Each Dx can be preprocessed before the search. The computation of Rj+1 is then
reduced to three bitwise operations, namely Rj+1 = (LShift(Rj) | 1) & DTj+1 .
When Rj

p = 1, the algorithm reports a match on a position j − p + 1.

3 Our Algorithm

In this section we will show an algorithm which solves Swap Matching. We
call the algorithm GSM (Graph Swap Matching). GSM uses the graph theo-
retic model presented in Sect. 2.2 and is based on the Shift-And algorithm from
Sect. 2.4.

The basic idea of the GSM algorithm is to represent prefix match signals
(see Definition 4) from the basic matching algorithm (Sect. 2.3) over PP in bit
vectors. The GSM algorithm represents all signals I in the bitmaps RX formed
by three vectors, one for each row. Each time GSM processes a symbol of T ,
it first propagates the signal along the edges, then filters the signal and finally
checks for matches. All these operations can be done very quickly thanks to
bitwise parallelism.

First, we make the concept of GSM more familiar by presenting a way to
interpret the Shift-And algorithm by means of the basic matching algorithm
(BMA) from Sect. 2.3 to solve the (ordinary) Pattern Matching problem. Then
we expand this idea to Swap Matching by using the graph theoretic model.

3.1 Graph Theoretic View of the Shift-And Algorithm

Let T and P be a text and a pattern of lengths t and p, respectively. We create
the T -graph TP = (V,E, σ) of the pattern P .

Definition 5. Let S be a string. The T-graph of S is a graph TS = (V,E, σ)
where V = {vi | 1 ≤ i ≤ |S|}, E = {(vi, vi+1) | 1 ≤ i ≤ |S − 1|} and σ : V → Σ
such that σ(vi) = Si.

We know that the T -graph is directed acyclic graph which can be divided into
columns Vi, 1 ≤ i ≤ p (each of them containing one vertex vi) such that the edges
lead from Vj to Vj+1. This means that the T -graph satisfies all assumptions of
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BMA. We apply BMA to TP to figure out whether P matches T at a position j.
We get a correct result because for each i ∈ {1, . . . , p} we check whether Tj+i−1 =
σ(vi) = Pi.

To find every occurrence of P in T we would have to run BMA for each
position separately. This is basically the naive approach to solve the pattern
matching. We can improve the algorithm significantly when we parallelize the
computations of p runs of BMA in the following way.

The algorithm processes one symbol at a time starting from T1. We say that
the algorithm is in the j-th step when a symbol Tj has been processed. BMA
represents a prefix match as a prefix match signal I : V → {0, 1}. Its value in
the j-th step is denoted Ij . Since one run of the BMA uses only one column of
the T -graph at any time we can use other vertices to represent different runs of
the BMA. We represent all prefix match indicators in one vector so that we can
manipulate them easily. To do that we prepare a bit vector R. Its value in j-th
step is denoted Rj and defined as Rj

i = Ij(vi).
First operation which is used in BMA (propagate signal along the edges) can

be done easily by setting the signal of vi to value of the signal of its predeces-
sor vi−1 in the previous step. I.e., for i ∈ {1, . . . , p} we set Ij(vi) = 1 if i = 1 and
Ij(vi) = Ij−1(vi−1) otherwise. In terms of Rj this means just Rj = LSO(Rj−1),
where LSO is defined as LSO(x) = LShift(x) | 1.

We also need a way to set I (vi) := 0 for each vi for which σ(vi) �= Tj+i which
is another basic BMA operation (filter signal by a symbol). We can do this using
the bit vector Dx from Sect. 2.4 and taking R&Dx. I.e., the algorithm computes
Rj as Rj = LSO(Rj−1) & DTj+1 .

The last BMA operation we have to define is the match detection. We do
this by checking whether Rj

p = 1 and if this is the case then a match starting at
position j − p + 1 occurred.

3.2 Our Algorithm for Swap Matching Using the Graph Theoretic
Model

Now we are ready to describe the GSM algorithm.
We again let PP = (V,E, σ) be the P -graph of the pattern P , apply BMA

to PP to figure out whether P matches T at a position j, and parallelize p runs
of BMA on PP .

Again, the algorithm processes one symbol at a time and it is in the j-th step
when a symbol Tj is being processed. We again denote the value of the prefix
match signal I : V → {0, 1} of BMA in the j-th step by Ij . I.e., the semantic
meaning of Ij(mr,c) is that Ij(mr,c) = 1 if there exists a swap permutation π
such that π(c) = c + r and π(P )[1,c] = T[j−c+1,j]. Otherwise Ij(mr,c) is 0.

We want to represent all prefix match indicators in vectors so that we can
manipulate them easily. We can do this by mapping the values of I for rows
r ∈ {−1, 0, 1} of the P -graph to vectors RU ,RM , and RD, respectively. We
denote value of the vector RX ∈ {RU ,RM,RD} in j-th step as RXj . We define
values of the vectors as RU j

i = Ij(m−1,i), RM j
i = Ij(m0,i), and RDj

i = Ij(m1,i),
where the value of Ij(v) = 0 for every v /∈ V .
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Algorithm 3. The graph swap matching (GSM)
Input: Pattern P of length p and text T of length t over alphabet Σ.
Output: Positions of all swap matches.

1: Let RU0 := RM0 := RD0 := 0p.
2: Let Dx := 0p, for all x ∈ Σ.
3: for i = 1, 2, 3, . . . , p do DPi

i := 1

4: for j = 1, 2, 3, . . . , t do
5: RU ′j := LSO(RDj−1), RM ′j := LSO(RM j−1 | RU j−1)
6: RD′j := LSO(RM j−1 | RU j−1).
7: RU j := RU ′j&LShift(DTj ), RM j := RM ′j&DTj , RDj := RD′j&RShift(DTj ).
8: if RU j

p = 1 or RM j
p = 1 then report a match on position j − p + 1.

We define BMA propagate signal along the edges operation as setting the
signal of mr,c to 1 if at least one of its predecessors have signal set to 1.
I.e., we set Ij+1(m−1,i) := Ij(m1,i−1), Ij+1(m0,i) := Ij(m−1,i−1) | Ij(m0,i−1),
Ij+1(m0,1) := 1, Ij+1(m1,i) := Ij(m−1,i−1) | Ij(m0,i−1), and Ij+1(m1,1) := 1.
We can perform the above operation using the LSO(R) operation. We obtain the
propagate signal along the edges operation in the form RU ′j+1 := LSO(RDj),
RM ′j+1 := LSO(RM j | RU j), and RD′j+1 := LSO(RM j | RU j).

The operation filter signal by a symbol can be done by first constructing a bit
vector Dx for each x ∈ Σ as Dx

i = 1 if x = Pi and Dx
i = 0 otherwise. Then we use

these vectors to filter signal by a symbol x by taking RU j := RU ′j&LShift(DTj ),
RM j := RM ′j & DTj , and RDj := RD′j & RShift(DTj ).

The last operation we define is the match detection. We do this by checking
whether RU j

p = 1 or RM j
p = 1 and if this is the case, then a match starting at

a position j − p + 1 occurred.
The final GSM algorithm (Algorithm3) first prepares the D-masks Dx for

every x ∈ Σ and initializes RU0 := RM0 := RD0 := 0 (Steps 1–3). Then the
algorithm computes the value of vectors RU j , RM j , and RDj for j ∈ {1, . . . , t}
by first using the above formula for signal propagation (Steps 5 and 6) and then
the formula for signal filtering (Step 7) and checks whether RU j

p = 1 or RM j
p = 1

and if this is the case the algorithm reports a match (Step 8).
Observe that Algorithm 3 accesses the input sequentially and thus it is a

streaming algorithm. We now prove correctness of our algorithm. To ease the
notation let us define Rj(mr,c) to be RU j

c if r = −1, RM j
c if r = 0, and RDj

c

if r = 1. We define R′j(mr,c) analogously. Similarly, we define Dx(mr,c) as
(LShift(Dx))c = Dx

c−1 if r = −1, Dx
c if r = 0, and (RShift(Dx))c = Dx

c+1 if
r = 1. By the way the masks Dx are computed on lines 2 and 3 of Algorithm 3,
we get the following observation.

Observation 1. For every mr,i ∈ V and every j ∈ {i, . . . t} we have
DTj (mr,i) = 1 if and only if Tj = Pr+i.

The following lemma constitutes the crucial part of the correctness proof.



342 V. Blažej et al.

Lemma 1. For every mr,i ∈ V and every j ∈ {i, . . . t} we have Rj(mr,i) = 1
if and only if there exists a swap permutation π such that π(P )[1,i] = T[j−i+1,j]

and π(i) = i + r.

Due to space constraints, we defer the proof of this lemma to the full version
of this paper, see also its ArXiv version [6].

Our GSM algorithm reports a match on position j − p + 1 if and only if
Rj(mp,−1) = 1 or Rj(mp,0) = 1. However, by Lemma 1, this happens if and only
if there is a swap match of P on position j − p + 1 in T . Hence, the algorithm
is correct.

Theorem 2. The GSM algorithm runs in O(� p
w �(|Σ| + t) + p) time and uses

O(� p
w �|Σ|) memory cells (not counting the input and output cells), where t is

the length of the input text, p length of the input pattern, w is the word-size of
the machine, and |Σ| size of the alphabet.2

Proof. The initialization of RX and Dx masks (lines 1 and 2) takes O(� p
w �|Σ|)

time. The bits in Dx masks are set according to the pattern in O(p) time (line 3).
The main cycle of the algorithm (lines 4–8) makes t iterations. Each iteration con-
sists of computing values of RX in 13 bitwise operations, i.e., in O(� p

w �) machine
operations, and checking for the result in O(1) time. This gives O(� p

w �(|Σ|+t)+p)
time in total. The algorithm saves 3 RX masks (using the same space for all j
and also for RX ′ masks), |Σ| Dx masks, and constant number of variables for
other uses (iteration counters, temporary variable, etc.). Thus, in total the GSM
algorithm needs O(� p

w �|Σ|) memory cells. ��

Corollary 1. If p = cw for some constant c, then the GSM algorithm runs in
O(|Σ| + p + t) time and has O(|Σ|) space complexity. Moreover, if p ≤ w, then
the GSM algorithm can be implemented using only 7 + |Σ| memory cells.

Proof. The first part follows directly from Theorem 2. Let us show the second
part. We need |Σ| cells for all D-masks, 3 cells for R vectors (reusing the space
also for R′ vectors), one pointer to the text, one iteration counter, one constant
for the match check and one temporary variable for the computation of the more
complex parts of the algorithm. Altogether, we need only 7 + |Σ| memory cells
to run the GSM algorithm. ��

From the space complexity analysis we see that for some sufficiently small
alphabets (e.g. DNA sequences) the GSM algorithm can be implemented in
practice using solely CPU registers with the exception of text which has to be
loaded from the RAM.

2 To simplify the analysis, we assume that log t < w, i.e., the iteration counter fits
into one memory cell.
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4 Limitations of the Finite Deterministic Automata
Approach

Many of the string matching problems can be solved by finite automata. The
construction of a non-deterministic finite automaton that solves Swap Matching
can be done by a simple modification of the P -graph. An alternative approach
to solve the Swap Matching would thus be to determinize and execute this
automaton. The drawback is that the determinization process may lead to an
exponential number of states. We show that in some cases it actually does,
contradicting the conjecture of Holub [13], stating that the number of states of
this determinized automaton is O(p).

Theorem 3. There is an infinite family F of patterns such that any deter-
ministic finite automaton AP accepting the language LS(P ) = {uπ(P ) | u ∈
Σ∗, π is a swap permutation for P} for P ∈ F has 2Ω(|P |) states.

Proof. For any integer k we define the pattern Pk := ac(abc)k. Note that the
length of Pk is Θ(k). Suppose that the automaton AP recognizing language L(P )
has s states such that s < 2k. We define a set of strings T0, . . . , T2k−1 where Ti

is defined as follows. Let bi
k−1, b

i
k−2 . . . bi

0 be the binary representation of the
number i. Let Bi

j = abc if bi
j = 0 and let Bi

j = bac if bi
j = 1. Then, let

Ti := acBi
k−1B

i
k−2 . . . Bi

0. See Table 1 for an example. Since s < 2k, there
exist 0 ≤ i < j ≤ 2k − 1 such that both Ti and Tj are accepted by the
same accepting state q of the automaton A. Let m be the minimum number
such that bi

k−1−m �= bj
k−1−m. Note that bi

m = 0 and bj
m = 1. Now we define

T ′
i = Ti(abc)(m+1) and T ′

j = Tj(abc)(m+1). Let X = (T ′
i )[3(m+1)+1,3(m+1+k)+2]

and Y = (T ′
j)[3(m+1)+1,3(m+1+k)+2] be the suffices of the strings T ′

i and T ′
j both of

length 3k + 2. Note that X begins with bc . . . and Y begins with ac . . . and that
block abc or bac repeats for k times in both. Therefore pattern P swap matches Y
and does not swap match X. Since for the last symbol of both Ti and Tj the
automaton is in the same state q, the computation for T ′

i and T ′
j must end in the

same state q′. However as X should not be accepted and Y should be accepted
we obtain contradiction with the correctness of the automaton A. Hence, we may
define the family F as F = {P1, P2, . . . }, concluding the proof. ��

Table 1. An example of the construction from proof of Theorem 3 for k = 3.

P = T0 acabcabcabc
T1 acabcabcbac
T2 acabcbacabc
T3 acabcbacbac
T4 acbacabcabc
T5 acbacabcbac
T6 acbacbacabc
T7 acbacbacbac
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This proof shows the necessity for specially designed algorithms which solve
the Swap Matching. We presented one in the previous section and now we reit-
erate on the existing algorithms.

5 Smalgo Algorithm

In this section we discuss how Smalgo by Iliopoulos and Rahman [14] and
Smalgo-I by Ahmed et al. [1] work. Since they are bitwise inverse of each other,
we will introduce them both in terms of operations used in Smalgo-I.

Before we show how these algorithms work, we need one more definition.

Definition 6. A degenerate symbol w over an alphabet Σ is a nonempty set of
symbols from alphabet Σ. A degenerate string S is a string built over an alphabet
of degenerate symbols. We say that a degenerate string ˜P matches a text T at a
position j if Tj+i−1 ∈ ˜Pi for every 1 ≤ i ≤ p.

5.1 Smalgo-I

The Smalgo-I [1] is a modification of the Shift-And algorithm from Sect. 2.4
for Swap Matching. The algorithm uses the graph theoretic model introduced in
Sect. 2.2.

First let ˜P = {P1, P2} . . . {Px−1, Px, Px+1} . . . {Pp−1, Pp} be a degenerate
version of pattern P . The symbol in ˜P on position i represents the set of symbols
of P which can swap to that position. To accommodate the Shift-And algorithm
to match degenerate patterns we need to change the way the Dx masks are
defined. For each x ∈ Σ let ˜Dx

i be the bit array of size p such that for 1 ≤ i ≤
p, ˜Dx = 1 if and only if x ∈ ˜Pi.

While a match of the degenerate pattern ˜P is a necessary condition for a swap
match of P , it is clearly not sufficient. The way the Smalgo algorithms try to fix
this is by introducing P-mask P (x1, x2, x3) which is defined as P (x1, x2, x3)i = 1
if i = 1 or if there exist vertices u1, u2, and u3 and edges (u1, u2), (u2, u3) in PP

for which u2 = mr,i for some r ∈ {−1, 0, 1} and σ(un) = xn for 1 ≤ n ≤ 3, and
P (x1, x2, x3)i = 0 otherwise. One P -mask called P (x, x, x) is used to represent
the P -masks for triples (x1, x2, x3) which only contain 1 in the first column.

Now, whenever checking whether P prefix swap matches T k + 1 symbols
at position j we check for a match of ˜P in T and we also check whether
P (Tj+k−1, Tj+k, Tj+k+1)k+1 = 1. This ensures that the symbols are able to swap
to respective positions and that those three symbols of the text T are present in
some π(P ).

With the P-masks completed we initialize R1 = 1& ˜DT1 . Then for every j = 1
to t we repeat the following. We compute Rj+1 as Rj+1 = LSO(Rj) & ˜DTj+1 &
RShift( ˜DTj+2) & P (Tj , Tj+1, Tj+2). To check whether or not a swap match
occurred we check whether Rj

p−1 = 1. This is claimed to be sufficient because
during the processing we are in fact considering not only the next symbol Tj+1

but also the symbol Tj+2.
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a b a b

a b a

b a b

Fig. 3. Smalgo flaw represented in the P -graph for P = abab

5.2 The Flaw in the Smalgo, Smalgo-I and Smalgo-II

We shall see that for a pattern P = abab and a text T = aaba all Smalgo
versions give false positives.

The concept of Smalgo is based on the assumption that we can find a path
in PP by searching for consecutive paths of length 3 (triplets), where each two
consecutive share two columns and can partially overlap. However, this only
works if the consecutive triplets actually share the two vertices in the common
columns. If the assumption is not true then the found substring of the text might
not match any swap version of P .

The above input gives such a configuration and therefore the assumption is
false. The Smalgo-I algorithm actually reports match of pattern P = abab on
a position 1 of text T = aaba. This is obviously a false positive, as the pattern
has two b symbols while the text has only one.

The reason behind the false positive match is as follows. The algorithm checks
whether the first triplet of symbols (a, a, b) matches. It can match the swap
pattern aabb. Next it checks the second triplet of symbols (a, b, a), which can
match baba. We know that baba is not possible since it did not appear in the
previous check, but the algorithm cannot distinguish them since it only checks
for triplets existence. Since each step gave us a positive match the algorithm
reports a swap match of the pattern in the text.

In the Fig. 3 we see the two triplets which Smalgo assumes have two vertices
in common. The Smalgo-II algorithm saves space by maintaining less informa-
tion, however it simulates how Smalgo-I works and so it contains the same
flaw. The ArXiv version of our paper [6] provides more details on the execution
of Smalgo-I algorithm on pattern P = abab and text T = aaba and also a
detailed analysis of the Smalgo-II algorithm.

6 Experiments

We implemented our Algorithm 3 (GSM), described in Sect. 3.2, the Bitwise Par-
allel Cross Sampling (BPCS) algorithm by Cantone and Faro [8], the Bitwise
Parallel Backward Cross Sampling (BPBCS) algorithm by Campanelli et al. [7],
and the faulty SMALGO algorithm by Iliopoulos and Rahman [14]. All these
implementations are available online. (see footnote 1)
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Table 2. Comparison of the running times. Each value is the average over 10,000
patterns randomly selected from the text in milliseconds.

Data (|Σ|) Algor. Pattern length

3 4 5 6 8 9 10 12 16 32

CH (5) SMALGO 426 376 355 350 347 347 344 347 345 345

BPCS 398 353 335 332 329 329 326 328 329 327

BPBCS 824 675 555 472 366 328 297 257 199 112

GSM 394 354 338 333 332 331 329 333 331 333

HS (19) SMALGO 4.80 4.73 4.72 4.74 4.70 4.71 4.71 4.71 4.72 4.70

BPCS 4.43 4.36 4.36 4.36 4.34 4.33 4.34 4.34 4.35 4.34

BPBCS 7.16 5.80 4.79 4.05 3.03 2.70 2.44 2.06 1.62 0.95

GSM 4.42 4.38 4.41 4.46 4.45 4.45 4.45 4.44 4.53 4.48

BIB (62) SMALGO 8.60 8.38 8.29 8.34 8.32 8.33 8.30 8.35 8.35 8.33

BPCS 7.53 7.36 7.28 7.29 7.26 7.27 7.26 7.28 7.29 7.25

BPBCS 12.43 10.03 8.26 7.03 5.44 4.93 4.52 3.93 3.19 1.88

GSM 7.52 7.37 7.31 7.35 7.38 7.40 7.38 7.42 7.44 7.40

We tested the implementations on three real-world datasets. The first dataset
(CH) is the 7th chromosome of the human genome3 which consists of 159 M char-
acters from the standard ACTG nucleobases and N as for non-determined. Second
dataset (HS) is a partial genome of Homo sapiens from the Protein Corpus4 with
3.3 M characters representing proteins encoded in 19 different symbols. The last
dataset (BIB) is the Bible text of the Cantenbury Corpus5 with 4.0 M characters
containing 62 different symbols. For each length from 3, 4, 5, 6, 8, 9, 10, 12, 16, and
32 we randomly selected 10,000 patterns from each text and processed each of
them with each implemented algorithm.

All measured algorithms were implemented in C++ and compiled
with -O3 in gcc 6.3.0. Measurements were carried on an Intel Core
i7-4700HQ processor with 2.4 GHz base frequency and 3.4 GHz turbo
with 8 GiB of DDR3 memory at 1.6 GHz. Time was measured using
std::chrono::high resolution clock::now() from the C++ chrono library.
The resulting running times, shown in Table 2, were averaged over the 10,000
patterns of the given length.

The results show, that the GSM algorithm runs approximately 23% faster
than Smalgo (ignoring the fact that Smalgo is faulty by design). Also, the
performance of GSM and BPCS is almost indistinguishable and according to
our experiments, it varies in the span of units of percents depending on the
exact CPU, cache, RAM and compiler setting. The seemingly superior average
performance of BPBCS is caused by the heuristics BPBCS uses; however, while
the worst-case performance of GSM is guaranteed, the performance of BPBCS for

3 ftp://ftp.ensembl.org/pub/release-90/fasta/homo sapiens/dna/.
4 http://www.data-compression.info/Corpora/ProteinCorpus/.
5 http://corpus.canterbury.ac.nz/descriptions/large/bible.html.

ftp://ftp.ensembl.org/pub/release-90/fasta/homo_sapiens/dna/
http://www.data-compression.info/Corpora/ProteinCorpus/
http://corpus.canterbury.ac.nz/descriptions/large/bible.html
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Table 3. Found occurrences across datasets: The value is simply the sum of occurrences
over all the patterns.

Algorithm Dataset

CH HS BIB

SMALGO 86243500784 51136419 315612770

Rest 84411799892 51034766 315606151

certain patterns is worse than that of GSM. Also note that GSM is a streaming
algorithm while the others are not.

Table 3 visualizes the accurateness of Smalgo-I with respect to its flaw by
comparing the number of occurrences found by the respective algorithms. The
ratio of false positives to true positives for the Smalgo-I was: CH 2.17%, HS
0.20% and BIB 0.002%.
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Abstract. The last two decades, the emergence of new infectious dis-
eases and the occasional rapid increase of their cases worldwide, the
intense concern about bioterrorism, pandemic influenza or/and other
Public Health threats, and the increasing volumes of epidemiologi-
cal data, are all key factors that made necessary the development
of advanced biosurveillance systems. Additionally, these factors have
resulted in the awakening of the scientific community for introducing
new and more efficient epidemic outbreak detection methods. As seen
from above, the biosurveillance is a dynamic scientific activity which pro-
gresses and requires systematic monitoring of developments in the field
of health sciences and biostatistics. This paper deals with the develop-
ment of statistical regression modelling techniques in order to provide
guidelines for the selection of the optimal periodic regression model for
early and accurate outbreak detection in an epidemiological surveillance
system, as well as for its proper use and implementation.

Keywords: Statistical modelling · Data analysis
Periodic regression model · Computer science · Biosurveillance
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1 Introduction

1.1 Objectives/Goals

The health of the population is a valuable commodity in the center of interest
of society and health services [23]. Continuous rapid changes in the environment
and the socio-economic conditions, as well as the observed changes in the epi-
demiology of diseases and the burden they cause on humanity are the main axes
that impose the necessity of infectious disease surveillance (see [8,15,25]). The
major challenges in this expanding field derive from its focus on detection of
outbreaks as they arise, in a sufficiently timely fashion to enable effective con-
trol measures to be taken. The process governing these issues is now referred to
as biosurveillance [20].

c© Springer International Publishing AG 2017
J. Blömer et al. (Eds.): MACIS 2017, LNCS 10693, pp. 349–363, 2017.
https://doi.org/10.1007/978-3-319-72453-9_29
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A specific sector of biosurveillance related solely to the human population,
is epidemiological surveillance, which can be defined as “the continuous, sys-
tematic collection, analysis and interpretation of health-related data needed for
the planning, implementation, and evaluation of public health practice” [31].
Epidemiological surveillance aims at monitoring the distribution and trends of
the incidence of diseases as well as their further processing in order to design,
implement and evaluate health policies and public health actions [11], with the
ultimate aim of reducing morbidity and mortality, and hence improve health indi-
cators of the population (see [12,14]). The modern definition of epidemiological
surveillance includes aspects such as controlling the validity of data, analyzing
data via advanced statistical methods as well as extracting safe conclusions with
scientific and methodological adequacy [7].

As seen from above, the biosurveillance is a dynamic scientific activity which
progresses and requires systematic monitoring of developments in the field of
health sciences and biostatistics. The need for timely and accurate prediction of
the time occurrence of an epidemic wave remains, and has led to further devel-
opments, as also evidenced by the implementation of statistical routine methods
to detect outbreaks in biosurveillance systems in several European countries [10]
and Centers for Disease Control and Prevention (CDC). Biosurveillance systems
present various challenges regarding the source of data, the statistical quality
control, the monitoring (follow-up), the evaluation of statistical techniques used
to detect outbreaks, anomalies and outliers in biosurveillance data, and extreme
timeliness of detection.

The combination of a new requirement of timeliness, a high level of applied
work building early warning systems, and a set of research questions that need
to be addressed to facilitate the applied work suggests that it may be beneficial
to view valid and early detection of outbreaks as an area of new scientific inquiry
and to ask what the theoretical underpinnings of this field are, what constitutes
the relevant existing body of knowledge, and how this scientific field can facilitate
the applied work. Towards this end, this paper aims at the development of cutting
edge methodology for the automated, efficient, accurate, very early detection
and modelling of outbreaks in biosurveillance systems. More specifically, the
goals of the paper are described as follows: 1. to review in brief the literature
and identify the mathematical foundations of early outbreak detection; 2. to
develop regression approaches (within this framework, periodic regression models
that work best for monitoring processes will be recommended); 3. to evaluate
(qualitatively and quantitatively) and compare the developed methodologies by
conducting a retrospective analysis of epidemiologic time series.

1.2 State of the Art

Perhaps the simplest regression model for outbreak detection is that described
by Stroup et al. in [24], which ensures that seasonal effects are automatically
adjusted for by design rather than by explicit modelling, thus providing some
element of robustness. However, this model does not incorporate time trends. A
commonly used fully parametric outbreak detection regression model is based on
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that of Serfling in [19], who modelled historical baselines using a trigonometric
function with linear trend, assuming normal errors with constant variance. This
model has subsequently been used to detect the onset of epidemics of influenza
by Costagliola et al. in [5] and in [4]. An automated version of the Serfling model
with cubic trend and three trigonometric terms, with model selection based on
the Akaike Information Criterion (AIC), has been developed for prospective and
retrospective surveillance by Pelat et al. in [17].

As documented above, a rich array of statistical methodologies is available for
the early detection of epidemic activity in biosurveillance systems. This alone
raises the research question “Which is the most appropriate methodology to
use?” It is not feasible to make detailed recommendations as to which method is
“best”, because this depends critically on the specific details of the application
and implementation, as well as its purpose and context. During the past decade,
a rapid growth of research interest was observed as well as a widespread use of
advanced statistical modelling techniques (regression models, time series mod-
els, Bayesian and Markov models, spatio-temporal models) for biosurveillance
purposes. In the relevant areas of biostatistics and biosurveillance, we find sev-
eral detailed reviews of these statistical methods in the recent literature, such as
those of Sonesson and Bock in [22], Farrington and Andrews in [6], Buckeridge
et al. in [2], Shmueli and Burkom in [20], and Unkel et al. in [27]. This paper
focuses on the study of parametric statistical periodic regression models aiming
at the early and accurate detection of outbreaks in epidemiological surveillance
systems.

2 Materials and Methods

2.1 Sentinel Epidemiological Surveillance System

In Greece, since 1999, a system of epidemiological surveillance (sentinel surveil-
lance system) is working and is based on voluntary participation of physicians,
general practitioners and pediatricians of Primary Health Care (PHC) through-
out Greece. The sentinel systems in PHC through registration, processing, anal-
ysis and results/conclusions export procedures, provide general guidelines for
optimal decision making in health services. Sentinel systems are the most impor-
tant source of primary care epidemiological diseases data. Through the sentinel
system, the evolution of the frequency of certain diseases is recorded by carefully
selected reporting sites and health workers who report cases of the disease or
syndrome under surveillance, based on clinical diagnoses. In particular, the sen-
tinel medical doctors send weekly epidemiological data regarding the number of
consultations for all causes and the number of consultations for each syndrome
under surveillance, according to a specified clinical definition. These reporting
forms enable the Hellenic Center for Disease Control and Prevention (HCDCP)
to estimate the weekly number of syndrome cases per 1,000 visits, i.e., the pro-
portional morbidity, which reflects the activity of the syndrome under study.
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After the completion of the reorganization and the changes in the operating
parameters of the sentinel system, during the period 2014–2015, under the Oper-
ational Programme “Human Resources Development” of the National Strategic
Reference Framework (NSRF) 2007–2013, action “Primary Health Care services
(private and public) networking for epidemiological surveillance and control of
communicable diseases”, the national priorities were posed again for the syn-
dromes monitored through the sentinel system. The influenza-like illness (ILI)
and gastroenteritis were established as syndromes of main interest. The study
of the evolution of these two syndromes is a major public health concern, since
despite the fact that they belong to the sentinel epidemiological surveillance pri-
orities of the country, are also monitored traditionally by sentinel systems in the
European region, while they are high in terms of international interest, due to
their potential for widespread transmission (with ILI also representing a poten-
tial pandemic risk). Moreover, the surveillance of these two syndromes through
the sentinel system allows studying the existence of seasonality, the determina-
tion of the signaled start and end weeks and the intensity of epidemic waves
for influenza-like illness, as well as the determination of epidemic outbreaks for
gastroenteritis nationwide.

2.2 Two Season Influenza Historical Data

As aforementioned, through the sentinel system, the evolution of the frequency of
certain diseases is recorded by carefully sampled reporting units, based on clinical
diagnoses. These include influenza, or better, clinical manifestations compatible
with flu, i.e., ILI. In the context of the reorganization of the sentinel system
in Greece, the system was harmonized with the updated European and inter-
national standards-instructions. At the same time though, the recent sentinel
surveillance system data (week40/2014 to date) are not considered comparable
to those of previous years (past influenza seasons until week39/2014). Thus, this
paper focuses on the study of weekly ILI rate data between September 29, 2014
and October 2, 2016, which were used for analysis purposes, in order to determine
the signaled start and end weeks for the past two seasonal influenza outbreaks,
and also to establish optimal empirical epidemic thresholds. Therefore, we con-
ducted a retrospective analysis for the period from 2014 to 2016, based on a
model fit to two season historical data (week40/2014 to week39/2016) with the
main objectives being the prediction of the time interval for which an influenza
outbreak is expected, and the estimation of its duration based on the available
past data, as well as the early detection of possible epidemics.

2.3 Research Methodology

Two types of analysis exist for surveillance time series: retrospective analysis,
to locate and quantify the impact of past epidemics, and prospective analysis,
for real time detection of epidemics [17]. This paper focuses on retrospective
analysis, epidemic detection and quantification from time series data. In such a
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case (detection of influenza epidemics in time series), four steps are necessary to
be followed:

1. Determination of the training period: a subset of data, i.e., training data, is
selected from the whole time series to estimate the baseline level;

2. Purge of the training period: a rule is used to selectively discard epidemic
events from the training data, so that the baseline level is estimated from
truly non epidemic data;

3. Estimation of the regression equation: a periodic regression model is fitted to
the training data;

4. Epidemic alert notification: the model is used to define an epidemic threshold
and/or estimate excess morbidity.

The relevant R codes that have been appropriately adjusted are freely avail-
able in “Additional file 1” by Pelat et al. in [17].

Determination of the Training Period. It is not generally the case that
all data should be included in the training period even if long time series are
available [18]. Actually, as discussed by Pelat et al. in [17], changes in case
reporting or/and demographics will likely be present over long time periods,
and this fact may affect how well the baseline model fits the data. Modelling
of influenza morbidity or/and mortality typically uses the five preceding years
in baseline determination. In this paper, all data were included in the training
period, and thus we used the whole dataset in the model fitting for retrospective
analysis (as done, for example, in [17,21,30]), since after the completion of the
reorganization of the sentinel system in Greece, the recent two season historical
data (week40/2014 to week39/2016) are not considered comparable to those of
previous years. Including more past seasons improves the seasonal components
estimates, while limiting the quantity of data allows capturing recent trends [17].
A minimum of one year historical data is required to fit the models, but more
reliable predictions require at least two or three year historical data to calculate
the baseline level, as pointed out by Pelat et al. in [17].

Purge of the Training Period. The model must be fitted on non-epidemic
data in order to model the non-epidemic baseline level. For seasonal diseases
such as influenza, epidemics typically occur every year, thus it is difficult to
find long epidemic-free periods. There exist two alternative choices to deal with
the presence of epidemics in the training data, as discussed in [17]. The first
choice is to identify epidemics, and then exclude the corresponding data from the
series, whereas, the second and less common choice, requires explicit modelling
of the epidemic periods during the training data. In the latter case, an epidemic
indicator must be included as a covariable in the model. However, the availability
of an independent epidemic indicator is uncommon in practice as pointed out
by Pelat et al. in [17].

In the first choice, epidemics must first be identified, and several rules have
been suggested in the literature in this respect, such as excluding the 25% highest
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values from the training period [30], removing all data above a given threshold
(more than three influenza-like illness cases per sentinel general practitioner) [5],
or excluding the months with “reported increased respiratory disease activity
or a major mortality event” [16]. In other studies, entire epidemic periods are
deleted, for example December to April [21], or September to mid-April [28]. In
this paper, we selected to exclude the 15% highest observations from the training
period, that is the default value selected by Pelat et al. in [17].

Estimation of the Regression Equation. Several different formulations may
be used for the regression equation, such as linear regression [5], linear regression
on the log-transformed series [1], Poisson regression [26], and Poisson regression
allowing for over-dispersion [29]. In this paper, linear regression is applied on the
available two season historical data series (weekly ILI rate data). The weekly
estimated number of influenza-like syndrome cases per 1,000 visits (ILI rate)
is a time series with specific characteristic properties, i.e., tendency (tends to
increase/decrease for a certain time) and seasonality (seasonal variations). In
the regression equation, the trend is usually modelled using a linear term or a
polynomial (of 2nd or 3rd degree) [17]. Regarding the seasonality, it is generally
modelled using sine and cosine terms with period one year, however, refined
models are found in the literature, often with terms of period six months [5],
sometimes 3 months [9], and, rarely, smaller [13].

In this paper, we follow an exhaustive search process in order to identify the
optimal fit of the baseline model. Thus, linear, quadratic and cubic trends are
considered, and regarding the seasonal component, the most widely used peri-
odicities are implemented, i.e. 12, 6 and 3 months. Higher degree polynomials or
alternative seasonal terms have not been considered due to the fact that they
may be more prone to result in unidentifiable models or other problems with
model fit [17]. As a result, the time period under study is the explanatory vari-
able, the observed time series values (weekly ILI rate) is the dependent variable,
and all regression equations for the observed value Y (t) are special cases of the
following model:

Y (t) = α0 + α1t + α2t
2 + α3t

3 + γ1 cos(
2πt

n
) + δ1 sin(

2πt

n
)

+γ2 cos(
4πt

n
) + δ2 sin(

4πt

n
) + γ3 cos(

8πt

n
) + δ3 sin(

8πt

n
) + ε(t), (1)

where ε(t) are centered zero-mean random variables with variance σ2, n denotes
the sample size, and model coefficients are estimated by least squares regression.

Selection of the best fitting model is made possible by an exhaustive search
and selection process which is relied on Analysis Of Variance (ANOVA) com-
parison (significance level is chosen to be 0.05) to select between nested models,
and on Akaike’s Criterion (AIC) or on Schwarz’s Bayesian Information Crite-
rion (BIC) criterion, to select between non-nested models. The latter process is
described step-by-step as follows: The exhaustive process starts comparing, by
ANOVA, the simplest model labelled as M11 (Y (t) = α0 + α1t + γ1 cos( 2πt

n ) +
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δ1 sin(2πt
n ) + ε(t)) with the two models in which it is nested, labelled as M12

(Y (t) = α0 +α1t+γ1 cos( 2πt
n )+δ1 sin(2πt

n )+γ2 cos( 4πt
n )+δ2 sin(4πt

n )+ε(t)) and
M21 (Y (t) = α0 + α1t + α2t

2 + γ1 cos( 2πt
n ) + δ1 sin(2πt

n ) + ε(t)). In the case that
none of the alternative models (M12 and M21) is significantly better than the
initial one (M11), the process retains M11 and stops. If one of the two alternative
models is better than the initial one, the algorithmic process keeps it and goes
on. If both alternative models are better than the initial one, the algorithmic
process keeps the one with the lowest AIC or BIC and goes on. The procedure is
repeated until finding the “best overall” model over the nine considered models
(combining the three choices for the trend and periodicity).

Epidemic Alert Notification. The standard deviation of the residuals (differ-
ence between observed and model value) may be used to estimate the variation
around the model fit, as the baseline model is fitted to the observations. In
this way, assuming that the baseline model holds in the future, it is possible to
obtain forecast intervals for future observations [17]. The epidemic thresholds
which signal an unexpected change are typically obtained by taking an upper
percentile for the prediction distribution (assumed to be normal), typically the
upper 95th percentile [5], or upper 90th percentile [21]. Increasing this value
will lead to less observations outside the thresholds and more specific detection,
whereas decreasing the threshold will increase sensitivity and timeliness of the
alerts. In this paper, the epidemic threshold are obtained by taking the upper
95th percentile of the prediction distribution. A rule is then used to define when
epidemic alerts are produced, such as “a series of observations fall above the epi-
demic threshold”. The latter step is necessary to avoid making alerts for isolated
data points, and a minimum duration above the epidemic threshold may there-
fore be required. In this paper, the rule was set to be “a series of observations
fall above the epidemic threshold during 2 weeks” (see [17,30]). The beginning
of the epidemic is the first time the series exceeds the threshold, and the end the
first time the series returns below the threshold.

3 Experimental Study

We conducted a retrospective analysis; the whole time series, i.e., week40/2014
to week39/2016, was therefore included in the training period. Then, we chose
to exclude the top 15% observations from the training period (89 kept values
from the total of 105, 84.76% of the entire series). Models selected through the
model selection pathway based on ANOVA comparison, and AIC or BIC criterion
were M11 (with linear trend and annual periodicity), M12 (with linear trend,
annual and semi-annual periodicity), M22 (with quadratic trend, annual and
semi-annual periodicity) and M23 (with quadratic trend, annual, semi-annual
and quarterly periodicity), using either AIC or BIC criterion. Using the algo-
rithm pathway, the model final kept and chosen for baseline influenza morbidity,
was M23 with quadratic trend, and annual, semi-annual and quarterly periodic
terms (one year and six months and 3 months harmonics), using either AIC or
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BIC criterion. Then, the forecast interval was set to be 95%, that is the upper
limit of the prediction interval which is used as a threshold to detect epidemics.
Finally, the alert rule was chosen to be “an epidemic is declared when 2 weekly
successive observations are above the estimated threshold”.

The mathematical form of model M23 is described as follows:

Y (t) = α0 + α1t + α2t
2 + γ1 cos(

2πt

n
) + δ1 sin(

2πt

n
)

+γ2 cos(
4πt

n
) + δ2 sin(

4πt

n
) + γ3 cos(

8πt

n
) + δ3 sin(

8πt

n
) + ε(t). (2)

The estimated parameters together with the standard errors (sd), the statistic
values (t-value) and the associated p-values of the selected model are presented
in Table 1. The nine periodic regression models are described in Table 2, in which
the components included in each model are indicated by “*”. Models selected
through the algorithm pathway are in italics (M11, M12, M22 and M23), and
the model finally kept (M23) is in bold italics. Table 2 also presents the AIC and
BIC criteria values, as well as the multiple R2 and adjusted R2 values for each
of the examined models. Figures 1 and 2 illustrate the model selection pathway,
using AIC or BIC criterion, respectively. Models selected through the algorithm
pathway are presented in italics and the model finally chosen appears in bold
italics in Figs. 1 and 2.

Additionally, a comparative study was conducted in order to examine how
the selected model (M23) compares to typical trend or/and seasonality detec-
tion models (discussed in Subsect. 1.2) in terms of prediction performance. The
standard modelling techniques of a linear trend (LT), a simple moving aver-
age of 3 terms (MA3), a simple exponential smoothing with parameter equal
to 0.1065 (SES), the Holt’s linear exponential smoothing with parameters equal
to 0.0981 & 0.0246 (Holt’s model), the Brown’s quadratic exponential smooth-
ing with parameter equal to 0.0296 (Brown’s model), the Winter’s exponential
smoothing with parameters equal to 0.1062, 0.1032 & 0.1036 (Winter’s model),
and the standard CDC algorithm for flu detection assuming the signal follows
a sinusoid with a period of one year (Serfling’s cyclic regression model), were
examined. Evaluation criteria such as the Root Mean Squared Error (RMSE),
AIC and BIC were employed in the comparative study. The choice of RMSE
among other widely used metrics was based on the fact that, it has the ben-
efit of giving higher weighting to unfavorable conditions (observations further
away from the mean), hence it is usually better at revealing model performance
differences [3]. The criteria values (smaller-the-better) for each examined model
are presented in Table 3. The proposed model (M23) was found to be superior
in terms of prediction error (smaller RMSE value) and seems to provide overall
the better fit (smaller AIC and second smaller BIC value) compared to all other
models considered. Hence, the proposed model can be considered as an ideal
founding mathematical model for early and accurate outbreak detection.

Plots of the time series, the predicted baseline level, and the threshold are
illustrated in Figs. 3 and 4. The epidemics detected by the model (M23) appear
in red in Fig. 3. The predicted baseline and threshold values at each date in
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Table 1. Selected model M23 output

Parameter Estimate sd t-value p-value

α0 34.137 1.888 18.084 <.001

α1 −0.470 0.072 −6.511 <.001

α2 0.003 0.001 5.167 <.001

γ1 −14.030 0.837 −16.771 <.001

δ1 19.678 0.855 23.002 <.001

γ2 0.771 0.743 1.038 0.303

δ2 −7.182 0.908 −7.907 <.001

γ3 −0.858 0.764 −1.124 0.264

δ3 3.153 0.770 4.096 <.001

Table 2. Models selected through the algorithm pathway

Trend Periodicity Information criterion R2

Model t t2 t3 1 year 6months 3months AIC BIC Multiple R2 Adjusted R2

M11 * * 610.47 622.91 0.799 0.793

M12 * * * 580.76 598.18 0.863 0.855

M13 * * * * 571.51 593.91 0.882 0.872

M21 * * * 602.26 617.19 0.821 0.813

M22 * * * * 561.57 581.48 0.892 0.884

M23 * * * * * 547.89 572.77 0.911 0.903

M31 * * * * 603.21 620.63 0.823 0.813

M32 * * * * * 558.25 580.65 0.898 0.889

M33 * * * * * * 546.79 574.17 0.914 0.904

Table 3. Comparative performance of forecasting models

Model RMSE AIC BIC

M23 12.02 547.89 572.77

LT 48.34 818.44 823.75

MA3 13.51 554.72 565.33

SES 16.06 585.05 587.00

Holt’s model 16.94 598.15 606.70

Brown’s model 18.87 618.87 620.65

Winter’s model 25.55 686.57 694.37

Serfling’s model 18.81 610.47 622.91
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the dataset are illustrated in Table 4 (see also Fig. 4). Detected epidemics also
appear in the last column of Table 4 in bold. Table 5 presents the results of the
retrospective evaluation of the excess influenza morbidity in Greece for 2014–
2016, using the M23 periodic regression model. In particular, Table 5 shows the
dates and excess morbidity for all detected epidemics. The excess morbidity is
defined as the cumulative difference between observations and baseline over the
entire epidemic period. Excess percentages are also provided in Table 5, calcu-
lated as the observed size divided by the sum of expected values throughout each
epidemic.

Fig. 1. Model selection pathway (ANOVA & AIC)

Fig. 2. Model selection pathway (ANOVA & BIC)
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Table 4. Model results: Predicted baseline and epidemic threshold values

Week Datea PBb THc Week Datea PBb THc

201440 2014-09-29 21.8 31.1 201441 2014-10-06 23.7 33.0

201442 2014-10-13 25.4 34.7 201443 2014-10-20 26.8 36.0

201444 2014-10-27 27.8 37.0 201445 2014-11-03 28.5 37.8

201446 2014-11-10 29.3 38.5 201447 2014-11-17 30.3 39.6

201448 2014-11-24 32.0 41.3 201449 2014-12-01 34.5 43.8

201450 2014-12-08 37.8 47.1 201451 2014-12-15 41.9 51.2

201452 2014-12-22 46.4 55.7 201501 2014-12-29 50.9 60.1

201502 2015-01-05 54.8 64.1 201503 2015-01-12 57.9 67.1

201504 2015-01-19 59.7 68.9 201505 2015-01-26 60.1 69.3

201506 2015-02-02 59.1 68.4 201507 2015-02-09 57.0 66.3

201508 2015-02-16 54.2 63.4 201509 2015-02-23 50.9 60.1

201510 2015-03-02 47.5 56.8 201511 2015-03-09 44.2 53.5

201512 2015-03-16 41.2 50.5 201513 2015-03-23 38.3 47.6

201514 2015-03-30 35.4 44.6 201515 2015-04-06 32.2 41.5

201516 2015-04-13 28.6 37.9 201517 2015-04-20 24.5 33.7

201518 2015-04-27 19.9 29.1 201519 2015-05-04 15.0 24.2

201520 2015-05-11 10.1 19.4 201521 2015-05-18 5.71 15.0

201522 2015-05-25 2.13 11.4 201523 2015-06-01 0.00 8.91

201524 2015-06-08 0.00 7.67 201525 2015-06-15 0.00 7.62

201526 2015-06-22 0.00 8.53 201527 2015-06-29 0.76 10.0

201528 2015-07-06 2.41 11.7 201529 2015-07-13 3.81 13.1

201530 2015-07-20 4.66 13.9 201531 2015-07-27 4.81 14.1

201532 2015-08-03 4.30 13.6 201533 2015-08-10 3.34 12.6

201534 2015-08-17 2.23 11.5 201535 2015-08-24 1.33 10.6

201536 2015-08-31 0.94 10.2 201537 2015-09-07 1.26 10.5

201538 2015-09-14 2.33 11.6 201539 2015-09-21 4.04 13.3

201540 2015-09-28 6.16 15.4 201541 2015-10-05 8.41 17.7

201542 2015-10-12 10.5 19.8 201543 2015-10-19 12.3 21.5

201544 2015-10-26 13.6 22.9 201545 2015-11-02 14.8 24.0

201546 2015-11-09 15.8 25.1 201547 2015-11-16 17.1 26.4

201548 2015-11-23 19.0 28.3 201549 2015-11-30 21.7 31.0

201550 2015-12-07 25.3 34.5 201551 2015-12-14 29.6 38.8

201552 2015-12-21 34.4 43.6 201553 2015-12-28 39.2 48.5

201601 2016-01-04 43.6 52.9 201602 2016-01-11 47.2 56.5

201603 2016-01-18 49.6 58.8 201604 2016-01-25 50.6 59.8

201605 2016-02-01 50.2 59.5 201606 2016-02-08 48.6 57.9

201607 2016-02-15 46.2 55.5 201608 2016-02-22 43.3 52.6

201609 2016-02-29 40.3 49.5 201610 2016-03-07 37.3 46.6

201611 2016-03-14 34.6 43.8 201612 2016-03-21 32.0 41.3

201613 2016-03-28 29.5 38.7 201614 2016-04-04 26.7 35.9

201615 2016-04-11 23.5 32.8 201616 2016-04-18 19.8 29.1

201617 2016-04-25 15.6 24.9 201618 2016-05-02 11.1 20.4

201619 2016-05-09 6.56 15.8 201620 2016-05-16 2.39 11.6

201621 2016-05-23 0.00 8.23 201622 2016-05-30 0.00 5.88

201623 2016-06-06 0.00 4.76 201624 2016-06-13 0.00 4.85

201625 2016-06-20 0.00 5.95 201626 2016-06-27 0.00 7.72

201627 2016-07-04 0.46 9.71 201628 2016-07-11 2.27 11.5

201629 2016-07-18 3.57 12.8 201630 2016-07-25 4.19 13.4

201631 2016-08-01 4.13 13.4 201632 2016-08-08 3.57 12.8

201633 2016-08-15 2.80 12.1 201634 2016-08-22 2.18 11.4

201635 2016-08-29 2.03 11.3 201636 2016-09-05 2.56 11.8

201637 2016-09-12 3.84 13.1 201638 2016-09-19 5.79 15.0

201639 2016-09-26 8.20 17.5
aDate denotes the week start date;
bPB denotes the predicted baseline;
cTH denotes the threshold.
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Table 5. Retrospective evaluation of the excess influenza morbidity in Greece 2014–
2016

SW a EW a Excess cases Expected cases Cases Excess percentage

201501 201513 523 676 1199 77%

201601 201608 222 379 601 58%
aSW and EW denote the signaled start and end weeks for epidemics, respec-
tively.

Fig. 3. Detected epidemics in Greece 2014–2016 (Color figure online)

Fig. 4. Weekly influenza morbidity in Greece 2014–2016
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4 Concluding Remarks

In this paper, we conducted a retrospective analysis for the estimation of the
influenza-like syndrome morbidity burden in Greece for the period 2014–2016
(week40/2014 to week39/2016). The model was fitted over all data to estimate
the baseline level and the epidemic threshold for the whole observation period,
allowing us to extract the signaled start (sw) and end weeks (ew) of the epidemics
(i.e., sw01-ew13/2015, sw01-ew08/2016), and to measure the excess during these
epidemic periods. Periodic regression models were used to estimate an expected
baseline level for the time series, associated with a prediction interval. In this
way, the dates of epidemics were extracted, the related morbidity burden was
estimated, and alert thresholds could be used to perform real time surveillance of
influenza-like syndrome. The periodic regression model selected as the optimal
one, succeeded in detecting the beginning and end of the epidemic wave for both
periods (2014–2015, 2015–2016), and therefore identified the pattern that best
matches the recent influenza activity. It is worth noting that it also succeeded in
detecting as epidemic the period between the two peaks of the epidemic wave for
the period of 2014–2015. Moreover, the selected model (M23) compared to typical
trend or/and seasonality detection models was found to perform favorably.

Within this framework, the present work provided general recommendations
to serve critical needs of Public Health for the very early and accurate detection
of epidemic activity by conducting a comparative experimental real data study.
The interconnection of statistical research with Health professional’s structures
ensures the scientific merit of the findings from a statistical as well as an epidemi-
ological perspective. This interaction of scientific areas and ideas will benefit all
stakeholders with the ultimate aim of exploitation and application of the scien-
tific findings in clinical and public health practice.
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Abstract. Analysis of data for identifying patterns and building models
has been used as a strong tool in different domains, including medical
domains. In this paper, we analyse the registry of brain stroke patients
collected over fifteen years in south London hospitals, known as South
London Stroke Register. Our attempt is to identify the similar patterns
between patients’ background and living conditions, their cognitive abil-
ity, the treatments they received, and the speed of their cognitive recov-
ery; based on which most effective treatment can be predicted for new
admitted patients. We designed a novel strategy which takes into account
two different approaches. First is to predict, for each of the potential
intervention treatments, whether that particular treatment would lead to
recovery of a new patient or not. Second is to suggest a treatment (treat-
ments) for the patient based on those that were given to the patients who
have recovered and are most similar to the new patient. We built differ-
ent classifiers using various state of the art machine learning algorithms.
These algorithms were evaluated and compared based on three perfor-
mance metrics, defined in this paper. Given that time is very crucial for
stroke patients, main motivation of this research work is identifying the
most effective treatment immediately for a new patient, and potentially
increase the probability of their cognitive recovery.

Keywords: Data mining · Modelling and analysis of clinical data
Machine learning algorithms

1 Introduction

Brain stroke is one of the major health concerns. According to the statistics [1],
in 2010 stroke was the fourth largest cause of death in the UK after cancer,
heart disease and respiratory disease; causing almost 50,000 deaths. Further,
more than half of all stroke survivors are left dependent on others for everyday
activities. There are approximately 152,000 brain strokes reported in the UK
every year, and it is a leading cause of adult disability. According to a recent
report, there is an alarming increase in the numbers of people having a stroke
in working age [2].

It is important to treat stroke patients immediately with the most effi-
cient treatment. Understanding how recovery and treatments are influenced by
c© Springer International Publishing AG 2017
J. Blömer et al. (Eds.): MACIS 2017, LNCS 10693, pp. 364–377, 2017.
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patients’ individual extent of injury (brain damage), and their socio-demographic
and medical background could results in more faster and more effective treat-
ments. In other words, individual stroke treatment decision making is more prob-
able to be successful. Prognosis for recovery of an acute stroke patient given a
particular intervention treatment can aid the decision making by healthcare
professionals. Moreover, suggestions of potentially effective treatments for a new
patient based on the other patients with similar clinical, medical and socio-
demographical factors who have recovered in the past, can be a guide to decide
an appropriate and reliable treatment approach. Prognosis can be done using
a model that is based on classifiers which use a set of pre-treatment assess-
ment variables for prediction (classification). These classifiers can be built using
machine learning techniques as an alternative to the usual approach of analysing
the stroke-data through logistic regression models. Machine learning approach
allows exploration of the data leading to interesting, previously unknown, pat-
terns being revealed. Additionally, the greatest strength of machine learning
techniques lies in their potential to improve performance by easily incorporating
newly available data [24].

Presented here, is an observational study that explores the possibility of using
various machine learning techniques to build a tool for assisting medical experts
in selecting the most effective intervention-treatment approach. For cases such
as stroke, there is a very small window of time, during which treatments can
be the most effective and hence a fast and accurate choice of treatment can
significantly increases the chances of recovery for a patient after an acute stroke.
More specifically, we study various machine-learning algorithms that can be used
to train distinct classifiers which can, later, be combined into one software tool,
or application, to be used by medical experts.

The paper is organised as follows: The next section provides a short literature
review and specifies the contribution of this study. The following section gives
an insight into the data used for this study, followed by Sect. 4 which explains
the details of the methodology adopted. After that, Sect. 5 covering the aspects
of modelling the data follows. Results obtained are presented and discussed in
Sect. 6. Section 7 concludes the study presented.

2 Related Work

Thus far, there have been a few studies adopting machine learning techniques
for analysing the stroke-data. Recently, a study utilizes one machine learning
technique, support vector machine (SVM), on computerized tomography (CT)
images along with clinical variables, for prediction of symptomatic intracranial
haemorrhage (SICH) associated with intravenous thrombolysis administered to
acute ischemic stroke patients [6]. Another recent study applies machine learning
algorithms in acute ischemic stroke outcome prediction in relation to treatment
by endovascular intervention [4]. Another study, using MRI of rats, compares
five predictive algorithms (generalized linear model (GLM), generalized additive
model, support vector machine, adaptive boosting, and random forest) to predict
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brain infarction, and differentiate potentially salvageable tissue from irreversibly
damaged tissue [7]. Yet another study uses spatially regularized SVM on brain
images of acute stroke patients to detect brain areas associated with motor
outcome at 90 days, based on diffusion-weighted images acquired at the acute
stage [9].

Our Contribution. There are numerous instances of the research work done
earlier which employ machine learning techniques for predicting the outcomes of
the stroke treatment. However, the prognostic models designed in these studies
only focus on whether administering a particular treatment will be beneficial;
moreover, only one machine learning method (SVM) is mostly used.

To the best of our knowledge, no attempts have been made to apply a broad
range of machine learning algorithms for building a comprehensive multifactorial
model which can predict the outcome of each of the usual intervention-treatment
approaches and can suggest, in addition, potentially more promising treatments
based on the similarity of the patient to the patients who have recovered. More
specifically, this is the first study which incorporates the following:

1. Applying a range of machine learning algorithms for building a comprehen-
sive multifactorial model which can predict the outcome of each of the usual
intervention-treatment approaches.

2. Devicing a strategy that is working on two horizons:
– First Approach: Predicting whether a patient would recover or not if a

particular treatment is used, for each of the possible treatments.
– Second Approach: Suggesting the subtype of each treatment-type based

on similarity of the patient with recovered patients.

3 Dataset

The dataset used in the study is a sample set obtained from the community-based
South London Stroke Register (SLSR)1. The SLSR is a prospective population-
based stroke register set up in January 1995, recording all first-ever strokes in
patients of all ages for an inner area of South London based on 22 electoral wards
in Lambeth and Southwark, over 20 years. In the data-set being used, patients
were assessed for cognitive function using Abbreviated Mental Test [11] or Mini-
Mental State Examination [15] at the onset, 3 months, and annually thereafter.
In addition, various details related to socio-demographics, various risk factors
prior to stroke, previous medical history, stroke symptoms and the severity of
stroke are noted and taken into account to decide for the acute intervention
methods. Later, various medical tests like ECG, ECHO, blood investigations
and brain imaging are used for stroke classification.

1 details can be found online at: KCL Faculty of Life Sciences and Medicine, Stroke re
search group.

http://www.kcl.ac.uk/lsm/research/divisions/hscr/research/groups/stroke/current/index.aspx
http://www.kcl.ac.uk/lsm/research/divisions/hscr/research/groups/stroke/current/index.aspx
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4 Methodology

Our methodology to study the SLSR dataset comprised of three steps, as follows:

1. We designed the strategy for addressing the problem, i.e. defined the criteria
to build classifiers and identified the classes to train classifiers.

2. Data was pre-processed which included classifying the data, cleaning up the
data, bringing it in the form required by the classification techniques and
splitting the dataset to obtain the required subsets.

3. Data was modelled by training classifiers on the pre-processed data using dif-
ferent classification algorithms. Training was followed by comparing the per-
formance of the different classification algorithms to study the pros and cons
of various classifiers with respect to their application to the SLSR dataset.

The first two steps have been described in the following subsections while the
third step has been elaborated in Sect. 5.

4.1 Defining Classifications Criteria

Figure 1 demonstrates different types (classes) of treatments and the sub-types
under each main class. The solution was designed using two different strate-
gies for developing a prediction-model that could assist in choosing the most
promising intervention-treatment.

– First Approach: Predicting whether a patient would recover or not
if a particular treatment is used.
In this approach each sub-type of the main treatment types was viewed as
representation of a treatment-class. For each type of the possible treatment-
classes, a classifier was built to predict whether that particular treatment-type
would result in a patient being recovered or not.

– Second Approach: Suggesting the subtype of each treatment-type
based on similar records of recovered patients.
Each record of a recovered patient, in this approach, was seen as a point in a
space with number of dimensions equal to that of predictive-attributes being
considered. For prediction, similarity of the new record (new patient) from the
other records (patients who recovered in the past) was calculated and ‘k’ (a
pre-defined positive constant number) nearest neighbours were decided to be
considered. Class of the majority of these k nearest neighbours, i.e. treatment
given to the majority of these similar patients, would be assigned to the new
record. Thus, for each treatment type, its subtype could be suggested using
this approach.

4.2 Pre-processing Data

For training classifiers, instances (records) had to be dichotomised in classes
corresponding to recovered and not-recovered patients. It was decided after a



368 R. Kundu and T. Mahmoodi

Fig. 1. Different types of acute intervention treatments and their sub-types

discussion with a medical expert that the recovery status could be determined
by the scores used to access cognitive impairment. In the given dataset, following
scores were recorded:
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Table 1. Different types of treatments considered in the classifiers.

Treatment index Type of treatment

1 Antiplatelet therapy (marked as Antiplatelet)

2 Aspirin

3 Anticoagulation-subcutaneous (marked as Anticoag subcutaneous)

4 Anticoagulation-oral (marked as Anticoagulation oral)

5 Thrombolysis-oral (marked as Thrombo oral)

6 Cholesterol lowering drugs (marked as Cholesterol)

7 Naso-gastric or PEG feeding (marked as NP feeding)

8 Intavenous fluids (marked as Intavenous)

– AMT score (recorded 1 January, 2000 onwards) : Abbreviated mental test
score is assigned on a scale of 10. 7 is used as the threshold, i.e. score less
than or equal to 7 implies cognitive impairment [25].

– MMSE score (recorded before 1 January, 2000): Mini-mental state examination
score is rated on a scale of 30 and 24 is considered as the threshold [25].

Since AMT score was observed in the follow-ups as well, an appropriate criteria
seemed to label a record as recovered where AMT score was above the threshold
for every observation and tag a record as not-recovered if AMT score was below
the threshold for each observation. In the cases where MMSE score was noted
initially, it was scaled accordingly to reflect a corresponding value on AMT
scale of 10. Since there was no clear monotonous trend in the observations,
moving average technique was used to smooth out the short-term fluctuations
and capture a long-term stable trend. A window of 3 was taken for the running
average.

After labelling, cleaning-up was performed followed by categorisation of the
numeric values so as to convert them to nominal (as required by many classifier-
training algorithms) and removal of unnecessary attributes. We obtained 520
labelled records in total after labelling and cleaning-up.

Next, data was split as follows: For the first approach, data (n = 520) was
split along the lines of the treatment-classes, i.e. data-records corresponding to
the patients given that treatment were separated from the rest. These subsets
of the data were then used (one at a time) to train different classifiers for clas-
sifying new records into classes corresponding to ‘recovered-patients’ and ‘not-
recovered-patient’. All the treatments listed in Table 1 had been considered for
the experiment as they had sufficient data to result in an effective classifier.

For the second approach, only the records labelled as ‘recovered’ were consid-
ered (n = 390). Subsets of the data had been generated such that the considered
category of treatments were non-empty. Therefore, the first seven categories of
Table 1 were considered while lines 3 and 4 of the table were considered as a
single category of “AntiCogulation”. This completes the pre-processing stage of
our methodology.
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5 Modelling Data

For modelling SLSR data, we used a number of supervised-learning algorithms
representing different approaches of machine learning and these also have been
used widely in data-mining studies done so far on medical data. After training the
classifiers, their performance in modelling the data was examined and compared.

5.1 Software Tool

The software tool used for training the classifiers as well as for evaluating their
performance is Weka [13]. Weka (Waikato Environment for Knowledge Analysis),
developed by the University of Waikato, is a cross-platform open source and one
of the most popular software for machine learning based applications. It has been
written in Java and contains a collection of visualization tools and algorithms
for data-mining tasks such as data analysis and predictive modelling2.

5.2 Classification Techniques

In principle, any of the machine learning algorithms can be used to train a
classifier, but each of them has its own benefits and limitations depending on
the type of data it is being applied. Following algorithms were employed based
on their default parameters of the WEKA application on the subsets of the data
obtained by splitting the pre-processed and cleaned data.

First Approach

1. Naive Bayes classifier: Probabilistic classifier based on Bayes Theorem. For each
class value, it predicts the probability that a given instance belongs to that class.
The class having the highest probability is assigned to that instance [16].

2. Support Vector Machine (SVM): It is hyper-plane classifier based on margin
maximisation between the target classes by mapping input space to higher
dimensional space and thus achieving linear separability [17].

3. Multilayer Perceptron (MLP): A feed-forward back-propagation network con-
sisting of input, output, and one or more hidden layers. It extracts useful
information while learning to assign weighted coefficients to components of
the input layer [22].

4. Conjective Rule based classifier: It is based on a decision-making rule that
uses AND logical relation to correlate stimulus attributes. This rule consists
of antecedents (attributes) “AND” ed together and the class value for the
classification. It uses Information Gain to select the antecedent [14].

5. Decision Tables based classifier: It is also a rule-based classifier that builds a
decision table based on the labelled instances [18].

2 For this study Weka 3.6.11 has been used.
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6. Alternating Decision Tree: It is a generalisation of decision tree, voted decision
tree, and voted decision stumps. It has two types of nodes - decision node
(containing a predicate) and prediction node (containing a single number). It
is different from the other decision trees such as C4.5 in which an instance
travels only a single path through the tree. In ADTree, an instance follows all
the paths for which decision nodes are true, summing up any predicate nodes
traversed [12].

7. C4.8: It is an extension of Quinlan’s earlier ID3 algorithm. It produces a
decision tree from labelled instances using the concept of information entropy
[21]. It is ‘J48’ in Weka.

8. Naive Bayes classifier based Decision Tree : It is a hybrid of decision tree and
naive Bayes classifiers. It produces a decision tree with naive Bayes classifiers
at the leaves [20].

Second Approach

1. K-nearest neighbours classifier(KNN): It is an instance based classifier that
uses similarity of a given instance with other instances to choose its neigh-
bours and uses the majority of neighbours to classify that instance. K is a
positive integer [3]. It is same as ‘IBk’ in Weka.

2. KStar (K*): It is also an instance-based classifier similar to KNN classifier
but it uses entropy as the distance measure [8].

The value of k = 3 has been used for the above two algorithms.

5.3 Testing Technique

10-fold Cross Validation [23] was used as the testing technique to minimize the
bias associated with random sampling of training and test data samples [19].

5.4 Performance Metrics for Evaluation

We have evaluated different classification techniques using three performance
indicators: Prediction accuracy, Kappa measure, and Area under Receiver Oper-
ating Characteristics (ROC) curve.

The prediction accuracy was computed based on the proportion of instances
classified correctly. In this study, accuracy was calculated by averaging the results
from 10 runs of 10-fold cross validation. The second performance metric chosen
was Kappa measure because Cohen’s Kappa statistic is mostly in agreement
with the overall accuracy but proves to be better in case of unbalanced datasets
as it compensates for the classification that may be due to chance [5]. The
third metric selected was Area under ROC Curve (AUC). A Receiver Operating
Characteristics (ROC) graph is a technique for selecting classifiers based on their
performance. It is one of the most commonly used evaluation criteria of classifiers
in medical-domain. Area under the two-dimensional ROC curve is a well-used
method for comparing classifiers [10].
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6 Evaluation Results and Comparison

Figures 2a, b, and c demonstrate evaluation results from the first approach, cor-
responding to the chosen performance metrics (Accuracy, Kappa measure and
AUC). Evaluation results obtained for the second approach are illustrated in
the Figs. 3a, b, and c. All of these figures also compare different algorithms used
for training each of the classifiers (corresponding to every data subset). These
results achieved by evaluating various classifiers are analysed and discussed in
the following subsections.

6.1 First Approach

We summarize the results from the first approach (Fig. 2) in Table 2, in which the
best performing algorithms based on each of the performance-metrics on each of
the data-subsets can be seen. Overall, NB, MLP and tree-based algorithms are
performing quite well, in comparison with the rule-based algorithms. Addition-
ally, it can be seen that Accuracy and Kappa measure are in agreement with
each other, but AUC has different behaviour for a particular dataset. Moreover,
it can be observed that SVM is performing worst on all of the datasets according
to all three comparison-parameters.

Table 2. First approach: Best performing classification algorithms for each of the
data-subsets

Accuracy (in %) Kappa measure Area under ROC

Antiplatelet J48 J48 ADTree

87.0968 0.578 0.871

Aspirin ADTree ADTree NB

85.7988 0.5375 0.846

Anticoag-subcut All except SVM NB, NBTree NB, NBTree

90.9091 0.6207 1

Anticoag-oral MLP, ConjuctiveRules, ADTree, J48 NB, DecisionTable, NBTree ADTree

72.7273 0.2326 0.75

Thrombo-oral NB, J48, NBTree J48 NB, J48, NBTree

90 0.76447 1

Cholesterol ADTree ADTree ADTree, J48

86.3095 0.4889 0.883

Intavenous ADTree ADTree ADTree

79.3814 0.4476 0.807

NP feeding MLP MLP NB, NBTree

81.8182 0.581 0.867
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Fig. 2. First approach: Comparison of classifiers’ (a) accuracy (b) Kappa measure (c)
AUC.
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Fig. 3. Second approach: Comparison of classifiers’ (a) accuracy (b) Kappa measure
(c) AUC.

6.2 Second Approach

As can be seen from Table 3, both of the chosen algorithms are performing bad
on the basis of Kappa measure. However, based on the other two metrics, it can
be inferred that KStar is performing better than KNN for the first four datasets
while KNN is the clear winner for the remainder of three datasets. In addition, it
seems that all the three comparison parameters are approximately in agreement
with each other for this approach, which is in contrast to the results obtained
for the first approach.
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Table 3. Second approach: Best performing classification algorithms for each of the
data-subsets

Accuracy (in %) Kappa measure Area under ROC

Antiplatelet Both KStar KStar

65.019 0.168 0.612

Aspirin KStar KStar KStar

54.5455 0.2287 0.634

Anticoagulation KNN KStar KStar

88.9734 0.0504 0.565

Thrombolysis KNN KNN KStar

88.5496 0.0041 0.562

Cholesterol-oral KNN KNN KNN

64.9805 0.1647 0.68

Intavenous KNN KNN KNN

67.6113 0.2676 0.709

NP feeding KNN KStar KNN

91.8605 0.179 0.82

7 Conclusion

In this paper, we applied data mining methods, i.e. machine learning, to the
historical data from stroke patients obtained from SLSR. This dataset recorded
various details of the patients related to socio-demographics, various risk fac-
tors prior to stroke, previous medical history, stroke symptoms, and the severity
of stroke. We designed a novel strategy which takes into account two different
approaches. First, to predict, for each of the potential intervention treatments,
whether that particular treatment would lead to recovery of a new patient or
not. Second, to suggest treatment(s) for the new patient, based on those which
were given to the patients in the past, with similar profile to the new patient,
and were successful. We built different classifiers using various machine learning
algorithms. These algorithms were evaluated and compared based on three per-
formance metrics: Accuracy, Kappa measure, and Area under ROC. Comparison
of the algorithms for each of the classifiers let us gain a clearer insight into which
classification algorithm would work better on which of the classifier (subset of
the dataset).

Given that most of the existing studies on medical data using machine learn-
ing techniques are limited in terms of focussing on prediction of the outcome
after stroke for a particular treatment, there is a need for more thorough mod-
els. Our proposed model, therefore, covers all the possible treatment options at
the same time and results in more accurate analysis, if used with a sufficiently
large dataset. The outcome of our model can be used in clinical decision making
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to significantly increase the probability of recovery by choosing the appropriate
intervention treatment.

The ultimate, more usable, outcome of this work can be in the form of a user
friendly software that combines different classifiers from both the approaches
which are analysed here, for making the treatment suggestions. This software
application can be used by medical experts to assist them in quickly choosing
the most promising treatment so that the chances of recovery of the patient
increases.
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Abstract. The median trick is a technique to boost the success proba-
bility of algorithms. We apply it to empirical risk minimization (ERM)
and related problems. We obtain a parallel ERM principle, i.e. we get
parallel, scalable algorithms for many learning problems. We provide
generalization bounds and carry out computer experiments to demon-
strate the practical effectiveness of the median trick. Our results can be
summarized as follows: The median trick applies to a large class of clas-
sification and regression problems. It is simple to implement, scales well,
and is robust due to the application of the median. The trade-off is a
slightly decreased accuracy compared to sequential algorithms.

Keywords: Empirical risk minimization · Parallel algorithms
Median trick · Generalization bounds · Classification · Regression

1 Introduction

Parallel and distributed learning algorithms are increasingly important due to
the need for analyzing large data sets. A common approach to analyze mid-sized
to large data sets is to employ parallel and distributed algorithms for solving the
underlying optimization problems. In this work we pursue a different approach.
We present a technique to parallelize a given sequential learning algorithm. The
technique is based on the median trick or median-of-means. It can be seen as
meta-algorithm, see Algorithm 1, that solves, say, a binary classification via hinge
loss optimization by partitioning the data into groups of equal size. It then solves
the hinge loss optimization problem on every group in parallel. The subsolutions
are combined via the median. Since the subproblems can be solved in parallel
and since there are fast parallel algorithms for median selection, this technique
yields fast parallel algorithms. The important step in this meta-algorithm is
median selection. It assures high accuracy.
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The immediate question, that will be the major focus of this work, is whether
the accuracy of a parallelized sequential algorithm matches that of the sequential
algorithm (that works on the complete data set). To be me more precise, we
consider, say, an SVM algorithm and compare its accuracy on the whole data
set to the accuracy of its parallelization via the median trick. Clearly, if the
accuracy gets considerable worse by parallelization, the parallelized algorithms
are of no practical value. The major insight of our work is a positive answer to the
question. Applying the median trick causes only a minor decrease of accuracy.

To answer the question in detail we derive the parallel ERM principle,
Theorem 1, and conduct computer experiments. ERM is a basic principle in
computational and statistical learning theory that can be seen as a reduction
from learning to optimization. Theorem1 can be seen as a parallel or scalable
version of this reduction. It states that the generalization error LD(hmed) of
hmed, as computed in Algorithm 1, is with high probability close to the best
possible hypothesis, i.e.

LD(hmed) ≤ min
h∈H

LD(h) + ε

for a hypothesis class H of bounded VC-dimension and for {0, 1}-valued loss
function � and with generalization error LD(h) := Ez∼D[�(h, z)]. The benefit of
this connection to statistical learning theory is that we immediately get general-
ization bounds (i.e. bounds on the classification and prediction error of parallel
learning via the median trick) and bounds on the sample complexity. The latter
relate to the group size in the median trick, Algorithm1. The VC-dimension and
the group size are closely related. In particular, the group size should be roughly
a constant multiple of the VC-dimension of the hypothesis class.

We also conduct computer experiments to study the accuracy of implemen-
tations of parallel learning on real and artificial data sets. The results are sum-
marized in Table 1 for binary classification on the validation set. We see that the
accuracy values of the parallelized algorithms are close to those of the sequential
algorithms that work on the whole data set. This is on par with theory. Fur-
thermore, our computer experiments suggest that the median trick also yields
meaningful results for problems such as (linear) regression, see Table 2, an insight
that does not follow from statistical learning theory and our parallel ERM prin-
ciple directly. Another reason for our computer experiments is that in practice
the assumption of ERM may not be fulfilled. Most critical, the data may not
be completely i.i.d. We thus test on real data sets (with the same results as on
artificial i.i.d. data). Tables 3 and 4 show the accuracy and fitness on the training
set, i.e. the training error.

We describe our method in Sect. 2. We discuss the median and its appli-
cation (Algorithm 1), and why we can use instead of the median any robust
estimator that satisfies some combinatorial property, Definition 1. We will also
see that approximate medians can satisfy this property. In Sect. 4, we describe
our experiments in detail for binary classification and (linear) regression. We
discuss the selected algorithms and data sets. The focus in this section is on the
accuracy of learning on (real) data sets. Another important topic that we discuss
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in this section is the group size. Our theorems, in particular the parallel ERM
principle, can be found in Sect. 3.

1.1 Related Work

Perhaps one of the first applications of the median trick is [12]. Jerrum and
Valiant consider the problem of amplifying (or boosting) the success probabil-
ity of randomized approximate counting algorithms. There have been similar
applications to randomized algorithms later on, i.e. the goal is to boost some
success probability that is slightly better than 1

2 to something at least 1 − e−r

after r repetitions. In contrast, we apply the median trick to learning algorithms
(instead of randomized algorithms). Here, the inputs are random. We are pri-
marily interested in generalization bounds (i.e. the quality of learning).

More recently, the median trick or median-of-means has been applied to
parameter estimation [15,18,21]. Statistical learning and parameter estimation
do not relate easily. Parameter estimation does not yield generalization bounds
(in general). Another crucial difference to our work is that [15,21] employ multi-
variate generalizations of the median, the geometric median and discrete geomet-
ric median especially. The univariate median, that we employ, has fast parallel
algorithms in comparison to the (discrete) geometric median.

Another approach to parallelization is to solve the underlying optimization
problem in parallel or even distributed; see e.g. [4,23] and the references therein.
This requires the design, analysis, and implementation of special algorithms for
the different (convex) optimization problems. The efficient and parallel running
time of our algorithms come from the use of median selection algorithms (or
sorting algorithms). Thus there is no need to explicitly design new parallel algo-
rithms given that sequential algorithms are known.

Notable contributions to the design and analysis of algorithms for median
selection and sorting are [1–3,5].

2 Method

Our method for classification and regression is a meta-algorithm that applies
a given ERM algorithm A in parallel and combines the results via the median,
Algorithm 1. The parallel execution is done by partitioning the input into groups
of equal size s, Line 1 in Algorithm 1. Note that we do not use SN+1 = S \ (S1 ∪
· · ·∪SN ) in the algorithm. The group size s is a parameter of the algorithm that
we discuss in detail in Sects. 4 and 3. The ERM algorithm A solves an (empirical
risk) minimization problem, Line 2 in Algorithm1. This is a restriction of our
approach that can be relaxed in practice. We will discuss this issue in Sect. 4.

Empirical risk minimization is the following optimization problem. For
a hypothesis class H, a loss function �, and given samples S :=
{(x1, y1), . . . , (xm, ym)} that are i.i.d. according to some distribution D the
objective is to find h ∈ H that minimizes the empirical risk

LS(h) :=
1
m

·
m∑

i=1

�(h, (xi, yi))
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We denote by hS ∈ H some h that minimizes LS(h), i.e. some optimal solution
to the ERM problem. Examples are given below.

The last step of our meta-algorithm, the median selection, is in Line 3 of
Algorithm 1. We define the median in Sect. 2.1. There we also discuss that we
can use any univariate robust estimator that satisfies a certain combinatorial
property, Definition 1. Most notable, approximate medians, that may be easier
to compute, suffice for our need.

Algorithm 1. Parallelize
Input: Samples S := {(x1, y1), . . . , (xm, ym)}
Output: Some hypothesis h ∈ H
Parameters: Group size s and algorithm A
1. Partition S into N + 1 sets S1, ..., SN ⊆ S s.t. |Si| = s for i = 1, . . . , N .
2. For i = 1, . . . , N : Compute

hi := arg min
h∈H

LSi(h)

and vi := LSi(hi) with A.
3. Compute the median j of {v1, . . . , vN} and output hmed := hj .

Example 1. Number of misclassifications. We define the loss �#(h, (x, y)) as 1 if
h(x) = y and as 0 otherwise for x ∈ R

d and y ∈ {−1,+1}. Other domains than
R

d are possible. The resulting ERM is NP-hard if, for example, the hypothesis
class H is the class of all linear functions.

Example 2. Hinge loss. This is a standard loss function in binary classification
and due to [10]. We define it as �hinge(h, (x, y)) := max(0, 1−y ·h(x)) for x ∈ R

d,
y ∈ {−1,+1}, and h : Rd → {−1,+1}. The optimization problem, i.e. finding
the minimum to LS(h), is convex for linear h. This case is also known as linear
Support Vector Machines (SVM), see e.g. [6]. To apply Algorithm 1, we set the
group size to a constant multiple of the VC-dimension of H, which is d in our
case. To solve the hinge loss optimization problem in Line 2, we can use any
linear SVM algorithm.

Example 3. Least squares loss. This is a standard loss function in regression:
�2(h, (x, y)) := (y − h(x))2. Similar to hinge loss optimization, the resulting
ERM rule LS(h) is convex for the class of linear h and also known as Ordinary
Least Squares. Here, x ∈ R

d, y ∈ R, and h : Rd → R. A rule of thumb, that we
study in detail in Sect. 4, is to set the group size to a constant multiple of the
dimension d.

2.1 Medians

Our definition of the median slightly deviates from more common definitions. For
a set P ⊆ R and x ∈ P , let rankP (x) be the position of x in the sorted sequence
of numbers in P . Let n := |P |. The median of P is x ∈ P with rankP (x) =

⌊
n
2

⌋
.
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We denote it by med(P ). (We could also have chosen rankP (x) =
⌈

n
2

⌉
.) An x ∈ P

is a β-approximate median with rank
⌊

n+1
2

⌋ − βn
2 ≤ rankP (x) ≤ ⌈

n+1
2

⌉
+ βn

2 .
A β-approximate median estimator, 0 ≤ β ≤ 1, is any function f , defined over
any finite set of reals, such that f(P ) is a β-approximate median for any finite
P ⊆ R.

The following definition of a robust estimator captures the combinatorial
nature of the median and other estimators, see Lemma1. It is this property that
we need for the proof of the parallel ERM, Theorem1.

Definition 1. Let 0 ≤ α ≤ 1 and T be a real-valued function defined over any
finite set of reals. Then, T is an α-robust estimator iff for all finite P ⊆ R and
for all closed intervals I ⊆ R the following property holds:

|P ∩ I| > α|P | + 1 implies T (P ) ∈ P ∩ I.

Lemma 1. Any β-approximate median estimator is a (1+β
2 )-robust estimator.

In particular, the median is a 1
2 -robust estimator.

Proof. Let T be a β-approximate median estimator. Fix some P ⊆ R with
|P | = n. Assume that |P ∩ I| > (1+β

2 )n + 1. Let I = [a, b]. Let L be the left half

of P , i.e. L :=
{

x ∈ P : rankP (x) <
⌊

n+1
2

⌋ − βn
2

}
, and R be the right part of P ,

i.e. R :=
{

x ∈ P : rankP (x) >
⌈

n+1
2

⌉
+ βn

2

}
, and let M := P \ (L ∪ R) be the

middle part. Define the intervals L′ := (−∞,max(L)] and R′ := [min(R),+∞).
If a ∈ L′ and b ∈ R′, then T (P ) ∈ P ∩I since I is an interval. If a 	∈ L′ or b 	∈ R′,
then P ∩I contains elements either only from L∪M or only from R∪M . It holds
that |L| = |R| =

⌊
n+1
2

⌋ − 1 −
⌊

βn
2

⌋
. Thus |L ∪ M | = n − |R| ≤ ( 12 + β)n + 1 and

|R∪M | = n−|L| ≤ (12 +β)n. This implies |P ∩I| ≤ |(L∪M)∩I| ≤ ( 12 +β)n+1
or |P ∩ I| ≤ |(R ∪ M) ∩ I| ≤ (12 + β)n + 1. A contradiction in both cases to our
assumption that |I ∩ P | > ( 1+β

2 )n + 1. To see that n − |R| ≤ (12 + β)n + 1 and

n − |L| ≤ ( 12 + β)n + 1, note that n − ⌊
n+1
2

⌋ ≤ n
2 and

⌊
βn
2

⌋
≤ βn

2 . The second
claim of the lemma follows from the first by setting β = 0. 
�

2.2 Discussion of Method

Remark 1. Robustness. The median is robust against outliers in data. See for
example [26]. This robustness, formulated as a high breakdown in robust statis-
tics [26], carries over to Algorithm 1: If less than half of the groups contain one
or more outliers, Algorithm 1 still yields proper models. This is also true for our
notion of α-robust estimators, Definition 1. It is easy to see that an α-robust
estimator exhibits a high breakdown point.

Remark 2. Computation. Median selection and rank computations can be done
in deterministic sequential time O(n) [3]. In practice, if no such implementation is
available, we can use sorting. This yields algorithms of running time O(n log(n)).
We can use parallel sorting algorithms [1] that employ up to p ≤ n processors
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in parallel to find the median in deterministic time O(n
p log(n)). The sorting

networks (algorithms) in [1] are however not used in practice due to their (com-
binatorial) complexity. Implementations usually run in time O(n

p log(n)2) [2].
Moreover, this computational approach fits into distributed computing environ-
ments such as MapReduce [8] and more generally in models similar to Valiant’s
model of bulk-synchronous parallel computation [31]. Regarding the fastest par-
allel algorithms with running time bounds, the algorithm of Cole and Yap [5]
runs in O((log log n)2) parallel deterministic time on O(n) processors in Valiant’s
model.

Remark 3. Online learning. Although we are not dealing with it here, a possible
approach to online learning is simply to adapt our meta-algorithm for it. Assume
that the samples are presented one by one. We form the groups by adding new
elements to the group SN as long as |SN | < s. If a |SN | = s, we solve the ERM
on SN and update the median of {v1, . . . , vN} (and continue with a new group
SN+1). This can be done in time O(log(N)) and with storage O(N).

Remark 4. Alternatives to the median. Our definition of robust estimators,
Definition 1, is related to the breakdown point of estimators of location. High
breakdown estimators may be an alternative to the median. For example,
Rousseeuw and Leroy [26] (p. 158) remark that univariate, high breakdown esti-
mators arise from robust linear regression. Another option may be univariate
mode estimators with a high breakdown point. However, to the best of our
knowledge, none of these estimators can be computed faster than the median.
The most interesting alternatives to the computation of the medians seem to be
algorithms for approximate medians, as defined above.

3 Theorems

We prove our main theorem, Theorem 1. We recall that the VC-dimension (see
Definition 6.5 in [27] on p. 70) of a hypothesis class H of functions h of the form
X → {0, 1} is the maximal size of a set C ⊂ X that can be shattered by H, where
a set H shatters C if the restriction of H to C is the set of all functions from C to
{0, 1}. We denote it by V Cdim(H). If H can shatter sets of arbitrarily large size
we say that H has infinite VC-dimension. As an example, V Cdim(H) ≤ log(|H|)
for every finite H.

Theorem 1. Parallel Empirical Risk Minimization. Let H be a hypothesis class
of VC-dimension d and let � be a {0, 1}-valued loss function. Let s ∈ N, S be a
set of i.i.d. samples, and S1, . . . , SN+1 be a partition of S such that |Si| = s for
all i ∈ {1, . . . , N}. Let ε > 0. Let hmed be as in Algorithm1. If

s ≥ C2 · 16 · d + log(15)
ε2

then the probability over S that

LD(hmed) ≤ min
h∈H

LD(h) + ε
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holds is at least 1 − 4 · e−N . (The constant C2 is independent of H, �, ε. See
Theorem2 below.)

Before we continue with proof of the theorem, we discuss shortly the necessary
tools from statistical learning theory. A set S of samples that are i.i.d. according
to some D is ε-representative, ε > 0, iff for all h ∈ H, |LS(h) − LD(h)| ≤ ε.
We say that a hypothesis class H has the uniform convergence property if there
exists a function mUC

H : (0, 1)2 → N such that for every ε, δ ∈ (0, 1) and for every
distribution D over Z, if S is a sample of m ≥ mUC

H (ε, δ) examples drawn i.i.d.
according to D, then, with probability of at least 1 − δ, S is ε-representative.

The uniform convergence property is essentially equivalent with the prereq-
uisites of the theorem. One direction is stated in the following theorem.

Theorem 2 (Theorem6.8 in [27] on p. 72). Let H be a hypothesis class of
functions from a domain X to {0, 1} and let the loss function be {0, 1}-valued.
Assume that V Cdim(H) = d < ∞. Then, there are absolute constants C1, C2

such that H has the uniform convergence property with sample complexity C1 ·
d+log(1/δ)

ε2 ≤ mUC
H (ε, δ) ≤ C2 · d+log(1/δ)

ε2 .

Our proof relies on the uniform convergence property. Together with the median
trick, an application of a Chernoff bound, and the previous theorem, we can
prove our theorem.

Proof. Let Si be the i-th group and hi be the ERM rule minimizer and let h∗

minimize LD(·). Assume that each group Si is ε′-representative with probability
of at least 1 − p0 (we will fix it below) and with ε′ := ε

4 . Then, for all i ∈
{1, . . . , N}:

|LSi
(hi) − LD(hi)| ≤ ε′

by definition (and with probability of at least 1 − p0) and

|LD(hi) − LD(h∗)| ≤ 2ε′

since LD(hi) ≤ LD(h∗) + 2ε′. This implies

|LSi
(hi) − LD(h∗)| ≤ 3ε′ (1)

also with probability of at least 1−p0. Then, if with probability of at least 1−p1,

|LS(hmed) − LD(h∗)| ≤ 3ε′

holds, and if with probability of at least 1 − p2,

|LS(hmed) − LD(hmed)| ≤ ε′

holds, then

|LD(hmed) − LD(h∗)| ≤ 4ε′ = ε

holds with probability of at least 1 − p1 − p2 by the union bound.
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It remains to give upper bounds on the probabilities p1 and p2 and to fix
p0. For p1 we apply the median trick. We apply Theorem 2 for both bounds. We
start with p1 and the median trick. Let Wi be 1 if Eq. 1 does not hold and 0
otherwise. Define W :=

∑N
i=1 Wi. Then,

Pr(|LS(hmed) − LD(h∗)| > 3ε′) ≤ Pr(W >
N

2
+ 1) (2)

by Lemma 1. To see this, observe that |LS(hmed) − LD(h∗)| > 3ε′ is equivalent
to LS(hmed) 	∈ I := [LD(h∗)−3ε′, LD(h∗)+3ε′] which is equivalent to med(P ) 	∈
P ∩ I for P := {v1, . . . , vN}. By Lemma 1 and by the definition of robust esti-
mators, Definition 1, we conclude that |P ∩ I| ≤ 1

2 · |P | + 1 = N
2 + 1 which is

equivalent to |P ∩ Ī| > N
2 + 1. This proves Eq. 2.

We want to apply a Chernoff bound. Let μ := E(W ). Then, for any c > 1,
Pr(W ≥ (1 + c)μ) ≤ e−(c/3)μ. Note that the random variables Wi are mutually
independent since the samples in S are i.i.d. and that μ ≤ p0N . Also note that
if (1 + c)μ ≤ (1 + c)p0N < N/2 + 1, then Pr(W > N

2 + 1) ≤ Pr(W ≥ (1 + c)μ).
Fix c := 6. We thus have to ensure that 7μ ≤ 7p0N < N/2 + 1 by applying
Theorem 2 appropriately. We set ε = 4ε′ and p0 = δ = 1/15. We have: 7

15 <
1
2 + 1

N for all N ≥ 1. Thus, we have to assume that the group size s is at least
C2 · 16 · d+log(15)

ε2 ≥ mUC
H (4ε′, 1

15 ) to get:

p1 ≤ Pr(W > (1 + c)μ) ≤ e−(c/3)N/2 = e−N

To derive a bound for p2, we directly apply Theorem 2 for all the m′ = N · s
samples in the partition S1, . . . , SN and with ε = 4ε′ and with δ to be determined
next. We have N · C2 · 16 · d+log(15)

ε2 ≤ N · s = m′ and mUC
H (4ε′, δ) ≤ m′ ≤

C2 · 16 · d+log(1/δ)
ε2 by Theorem 2. Putting it together:

N · C2 · 16 · d + log(15)
ε2

≤ m′ ≤ C2 · 16 · d + log(1/δ)
ε2

iff
N · (d + log(15)) − d ≤ log(1/δ)

which implies
p2 ≤ e−(N ·(d+log(15))−d) = e−(N−1)·d

Thus we have 1 − p1 − p2 ≥ 1 − e−N − e−(N−1)d ≥ 1 − 4 · e−N . 
�

4 Experiments

Here, we study the accuracy of Algorithm 1 and its single parameter, the group
size s, and compare the accuracy of A and the accuracy of its parallelization.
The results for binary classification are in Tables 1 and 3. These results are on
par with theory, Theorem1, and show that the accuracy of Algorithm1 drops
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slightly in comparison to A (when run on the complete data set). We discuss
these results together with similar results on (linear) regression, Tables 2 and 4,
in detail in Sect. 4.1. In Sect. 4.2, we derive a heuristic for how to set the group
size s. Finally, we discuss in Sect. 4.3 why a slight but very natural variation of
Algorithm 1 does not yield accurate results.

Table 1. Results of classification experiments, validation (or test) set; higher numbers
are better

s = 20d C-SVM Log. Regr. LDA AdaBoost KNN

ACC 1 ACC 2 ACC 1 ACC 2 ACC 1 ACC 2 ACC 1 ACC 2 ACC 1 ACC 2

Art. data 91.40 83.40 91.40 89.35 90.65 90.80 90.95 87.45 90.85 90.70

Haberm. s. [17] 74.19 70.97 74.19 72.58 74.19 74.19 61.29 74.19 77.42 62.90

Blood [33] 78.00 78.67 79.33 78.00 78.67 78.00 74.67 76.00 76.67 69.33

Prima [17] 79.87 79.87 79.22 77.92 79.22 77.92 77.27 78.57 78.57 68.83

Tic tac toe [17] 62.50 62.50 64.58 60.42 64.06 58.33 100.00 94.27 81.25 72.40

Mammogr. [9] 83.13 81.93 84.34 84.34 81.33 80.12 75.90 81.93 80.72 80.12

Monks 3 [17] 83.78 86.49 78.38 83.78 81.98 83.78 98.20 99.10 99.10 93.69

Mushroom [17] 98.67 96.46 95.04 99.56 93.98 94.42 99.73 99.73 100.00 96.37

Magic [17] 79.71 79.21 80.02 78.42 79.15 77.00 88.91 82.47 81.23 73.13

Bank [22] 87.87 88.84 89.14 88.40 89.19 88.50 90.39 88.54 87.92 87.87

Adult [17] 80.72 79.93 81.91 79.06 81.08 78.60 84.25 81.11 77.01 72.69

4.1 Comparison of Accuracy

In this chapter we present experimental results for empirical risk minimization
problems on artificial and real data (binary classification and linear regression).
All except one of the real world data sets are taken from the UCI machine
learning repository [17]. The additional data set consists of energy data of a
photovoltaic system for several months. Prior to the experiments the data sets
are cleaned up by removing rows containing missing values. For each method we
set the hyper-parameters to default values.

In order to get unbiased evaluation results, we split each data set in a train-
ing and test set (80 : 20). On the one hand, we train models via conventional
empirical risk minimization on the whole training set. On the other hand, we
apply our parallel empirical risk minimization approach on the training set. The
goal is to test if the two resulting models perform equally well (i.e. result in
similar accuracy values) on the test set (ACC 1 is based on conventional ERM,
ACC 2 is based on parallel ERM). Hence, the crucial aspect is the deviation
between both accuracy values. In the classification experiments accuracy indi-
cates the proportion of correctly classified samples and in the regression experi-
ments the accuracy values correspond to the root-mean-square error calculated
by

√
1
n

∑n
j=1(yj − ŷj)2.

In Tables 1 and 2 we list results of these classification and regression exper-
iments on the validation set. Each row represents the results for one particular
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Table 2. Results of regression experiments, validation (or test) set; lower numbers are
better

s = 30d eps-SVM L1 L2 LTS KNN

ACC 1 ACC 2 ACC 1 ACC 2 ACC 1 ACC 2 ACC 1 ACC 2 ACC 1 ACC 2

Art. data 34.80 33.97 34.93 35.23 31.28 31.84 37.26 37.17 34.07 32.77

Compr. str. [32] 11.53 11.30 11.63 12.12 10.91 11.07 16.78 15.99 9.64 11.84

Skillcraft1 [28] 0.97 0.98 0.97 0.98 0.97 0.98 0.98 0.98 1.07 1.10

Wine qual. [7] 0.75 0.78 0.75 0.76 0.75 0.77 0.75 0.76 0.82 0.87

Parkinsons [29] 7.63 7.91 7.64 8.05 7.52 7.86 7.88 8.03 5.77 8.19

Power pl. [13,30] 4.57 4.63 4.57 4.78 4.56 4.67 4.57 4.69 3.91 6.16

Year pred. [17] 9.79 9.83 9.80 9.94 9.70 9.88 10.04 10.25 11.44 11.41

Photovoltaic 80.20 82.55 82.53 79.93 79.10 79.43 165.55 150.82 42.56 71.01

Table 3. Results of classification experiments, training set; higher numbers are better

s = 20d C-SVM Log. Regr. LDA AdaBoost KNN

ACC 1 ACC 2 ACC 1 ACC 2 ACC 1 ACC 2 ACC 1 ACC 2 ACC 1 ACC 2

Art. data 90.73 83.19 90.74 88.16 90.81 90.78 100.00 87.51 92.94 90.50

Haberm. s. [17] 75.41 74.18 75.82 76.23 75.41 74.18 98.36 77.87 78.28 77.05

Blood [33] 75.75 76.25 76.59 74.75 76.42 76.25 93.48 74.08 81.44 70.23

Prima [17] 76.38 75.90 77.36 77.52 77.20 76.38 100.00 82.08 79.32 73.29

Tic tac toe [17] 66.06 66.06 71.02 65.40 70.76 67.62 100.00 95.43 86.03 74.02

Mammogr. [9] 82.98 80.72 83.13 84.04 81.02 82.08 93.52 83.58 84.94 78.61

Monks 3 [17] 79.23 80.14 76.98 79.23 77.65 81.04 99.10 98.87 98.87 95.94

Mushroom [17] 98.74 95.22 94.71 99.76 93.13 93.62 99.89 99.53 99.98 96.52

Magic [17] 79.15 78.44 78.85 78.27 78.30 77.55 100.00 81.89 85.88 71.88

Bank [22] 88.41 88.89 89.09 88.37 89.22 88.70 100.00 88.41 91.10 88.17

Adult [17] 80.87 80.31 82.06 79.09 81.11 78.62 99.99 80.95 83.03 72.33

data set. The group size is set to s = 20d (classification) and s = 30d (regression).
In addition, we also provide the training accuracy values in Tables 3 and 4.

We can conclude that the parallel ERM approach results in very adequate
models compared to standard ERM both on artificial and on real world data.
Due to the parallelization of ERM the running time can be reduced significantly.
Concerning our classification experiments the running times can be reduced on
average by 34.34% (C-SVM), 9.76% (Log. Regr.) and 54.36% (AdaBoost). Espe-
cially for high-dimensional data a large reduction of running time is possible.
Concerning our regression experiments the running times can be reduced on
average by 57.58% (L1), 61.57% (L2), 54.96% (LTS) and 70.53% (eps-SVM). All
experiments are performed using the software environment R [24] and appropri-
ate R packages [11,14,16,19,20,25]. In general, we expect that the running time
of our parallelization scales well with the number of processors (or computing
cores).
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Table 4. Results of regression experiments, training set (i.e. model fitness); higher
numbers are better

s = 30d eps-SVM L1 L2 LTS KNN

ACC 1 ACC 2 ACC 1 ACC 2 ACC 1 ACC 2 ACC 1 ACC 2 ACC 1 ACC 2

Art. data 33.71 33.01 33.84 34.11 30.74 31.16 36.06 35.97 27.19 32.62

Compr. str. [32] 10.54 10.39 10.58 11.04 10.22 10.50 14.44 13.81 7.29 10.31

Skillcraft1 [28] 0.99 1.01 0.99 7.38 0.99 10.96 12.50 10.15 0.87 1.04

Wine qual. [7] 0.75 0.78 0.75 0.76 0.75 0.76 0.76 0.77 0.66 0.86

Parkinsons [29] 7.62 7.81 7.64 8.06 7.46 7.71 7.76 8.09 4.48 7.82

Power pl. [13,30] 4.57 4.68 4.57 4.81 4.56 4.71 4.58 4.73 3.22 6.11

Year pred. [17] 9.64 9.78 9.67 9.77 9.35 9.45 9.94 10.10 9.15 10.65

Photovoltaic 79.92 82.33 82.74 80.67 78.72 78.87 168.46 153.18 32.15 69.79

4.2 Group Size

How to set the group size s? Hyper-parameter optimization is particular sim-
ple here since s is monotone, i.e. the larger s the better the accuracy. Thus, a
binary search that looks for the smallest s that satisfies accuracy or running
time requirements will work.

A different, heuristic approach that avoids hyper-parameter search is to set
the group size between 10d to 30d where d is the “dimension”. In most situ-
ations, d is the dimension of the point cloud or the number of features. The
motivation comes from the proof of Theorem 1. To apply the median trick the
event LD(hi) ≤ minh∈H LD(h) + ε should hold with some probability bounded
away from 1

2 , say at least 2
3 . (The event states that the error LD(hi) of hi as in

Algorithm 1 is not much worse than the error minh∈H LD(h) best possible for
the hypothesis class H.) This motivates the rule of thumb in situations in which
a linear dependency on d suffices. Note however that learning or estimating more
complex models than we did in our experiments, e.g. covariance matrices, may
require other group sizes. For example s = Ω(d log(d)) or s = Ω(d2) for covari-
ance matrices. In case of learning the probability table of d binary variables we
may need at least s = Ω(2d) samples per group.

4.3 Min-of-Min Counterexample

Another natural variant of our parallel ERM technique would be to apply the
minimum instead of the median. One advantage of the minimum is the compu-
tational efficiency. Computing the minimum can be done slightly faster. Both
problems can be solved in linear time. Nevertheless, this approach leads to inad-
equate models under certain circumstances. In order to illustrate this behavior
we train a binary C-SVM classifier on a two-dimensional artificial data set and
apply conventional ERM, parallel ERM via the median trick and parallel ERM
using the minimum. The results are visualized in Fig. 1. Whereas the application
of the median results in an appropriate model, the minimum is not a good choice
in this case.
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conventional ERM
parallel ERM (median)
parallel ERM (min)

Fig. 1. Conventional ERM, parallel ERM (median) and parallel ERM (min)

5 Summary

We showed that the median trick applies to ERM and related problems. It
yields fast parallel, scalable algorithms for important learning problems. The
connection to statistical learning theory has helped us to identify and solve some
problems. Most notable, we derived bounds and heuristics for the adequate group
size. The median trick is an appropriate technique if we want to use multiple
processors (or computing cores) to speed-up machine learning, especially in case
of mid-sized to large data sets for which the known sequential algorithms are
too slow.
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23. Peteiro-Barral, D., Guijarro-Berdiñas, B.: A survey of methods for distributed
machine learning. Prog. Artif. Intell. 2(1), 1–11 (2013)

24. R Core Team: R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria (2017). https://www.R-project.
org/

https://CRAN.R-project.org/package=Hmisc
https://CRAN.R-project.org/package=quantreg
https://CRAN.R-project.org/package=caret
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://CRAN.R-project.org/package=microbenchmark
https://CRAN.R-project.org/package=e1071
https://CRAN.R-project.org/package=e1071
https://www.R-project.org/
https://www.R-project.org/


Parallel and Robust Empirical Risk Minimization via the Median Trick 391

25. Rousseeuw, P., Croux, C., Todorov, V., Ruckstuhl, A., Salibian-Barrera, M.,
Verbeke, T., Koller, M., Maechler, M.: Robustbase: Basic Robust Statistics. R
package version 0.92-7 (2016). http://CRAN.R-project.org/package=robustbase

26. Rousseeuw, P.J., Leroy, A.M.: Robust Regression and Outlier Detection. Wiley,
Hoboken (2005)

27. Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning - From The-
ory to Algorithms. Cambridge University Press, Cambridge (2014)

28. Thompson, J.J., Blair, M.R., Chen, L., Henrey, A.J.: Video game telemetry as a
critical tool in the study of complex skill learning. PLoS ONE 8(9), 1–12 (2013)

29. Tsanas, A., Little, M.A., McSharry, P.E., Ramig, L.O.: Accurate telemonitoring of
Parkinson’s disease progression by noninvasive speech tests. IEEE Trans. Biomed.
Eng. 57, 884–893 (2010)
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Abstract. Analysis of various card-shuffles – finding its mixing-time
is an old mathematical problem. The results show that e.g., it takes
O(log n) riffle-shuffles (Aldous and Diaconis, American Mathematical
Monthly, 1986) to shuffle a deck of n cards while one needs to perform
Θ(n log n) steps via cyclic to random shuffle (Mossel et al., FOCS, 2004).

Algorithms for generating pseudo-random permutations play a major
role in cryptography. Oblivious card shuffles can be seen as block ciphers
(and e.g., may be used for format-preserving encryption) while non-
oblivious card shuffles often are a building block for cryptographic prim-
itives (e.g., Spritz, RC4).

Unfortunately, all results about the mixing times of card shuffling algo-
rithms are in the black-box model. The model does not capture real-world
capabilities of adversaries who may be able to e.g., obtain some infor-
mation about the randomness used during the shuffling. In this paper
we investigate the impact on the mixing time of the riffle shuffle by an
adversary who is able to eavesdrop some portion of the random bits used
by the process. More precisely: assuming that each bit of the randomness
leaks independently with probability p we show that whenever RiffleSST
performs r = log 2

2−(1−p)2

(
n
2

)
+ log 2

2−(1−p)2

(
1

εn!

)
steps, it cannot be dis-

tinguished from a permutation selected uniformly at random with the
advantage larger than ε.

Keywords: Leakage resilience
Pseudo-random permutation generator · Markov chains · Mixing time
Card shuffle · Riffle Shuffle · Stream cipher · Distinguisher

1 Introduction

1.1 Card Shuffling and Cryptography

Shuffling procedures (or card shuffles) are used as cryptographic building blocks.
A card shuffle as a way to obtain a permutation can be seen as a block cipher.
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Due to efficiency reasons, only oblivious card shuffles are good candidates for
block ciphers (e.g., [14]). Non-oblivious card shuffles need to be used differ-
ently (e.g., as a key scheduling algorithm [13]). But card shuffles may also
help to design/describe higher-level systems e.g., ones which goal is to achieve
anonymity like: Private Information Retrieval schemes [10,22] or mixing with
application to voting [7,9].

Oblivious Shuffles. The applicability of oblivious card shuffles to cryptography
was noticed many years ago by e.g., Naor and Reingold [16] for Thorp shuffle.
Oblivious shuffles can be seen as block ciphers: suppose that a deck has n = 2l

cards then the message space and the ciphertext space is equal to the set of all
binary strings of length l. Randomness used by the process corresponds to the
trajectory of a given card, and one does not need to trace trajectories of other
cards. This point of view led to the proposals [8,14,15,17] (useful for e.g., format
preserving encryption schemes) with provable properties in the black-box model
(meaning that an adversary has only access to inputs and output of the shuffling
algorithm like in CPA-experiment [chosen-plaintext attack]).

Non-oblivious Shuffles. In non-oblivious shuffles one needs to trace a trajec-
tory of every of the n cards to be able to tell what is the final position of a single
card. Because of that non-oblivious shuffles are used as building blocks of cryp-
tographic schemes (in e.g., [12], and especially as Key Scheduling Algorithms in
e.g., RC4, Spritz [18], etc.) rather than being used as encryption schemes.

Then the security of a cryptographic scheme which uses some card shuffling
as a building block depends on the quality of the shuffle. This can be measured
by how a given shuffling is close to the uniform distribution (over all possible
permutations). This depends on:

1. the rate of convergence to the stationary distribution (depends on the shuffling
algorithm itself);

2. the number of steps made by the algorithm. (In particular we are interested
in the number of steps needed so that the distribution of the chain at the
given step is close to uniform one.)

One of the weaknesses found in RC4 is that its Key Scheduling Algorithm (KSA)
makes only n steps while the rate of convergence is O(n log n) [11,13].

1.2 Leakage

Classically, in (black-box) cryptography, the security definitions assume that
an attacker can have only access to inputs and outputs of a cryptographic
scheme – for instance, for encryption one considers CPA-security (Chosen Plain-
text Attack) or CCA-security (Chosen Cipertext Attack). These definitions
assume that no information about the secret-key (or some internal computa-
tions) is leaked. In reality however, a device (or particular scheme or protocol
implementation) may expose to an adversary lots of additional information, an
adversary may measure all kinds of side-channels e.g., electromagnetic [6], acous-
tic [5] etc. One of the most powerful kind of side-channel attacks are timing
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attacks (because an adversary may perform them remotely), see [1,21]; or the
combination of techniques [23].

Practice shows that an adversary may obtain some direct information about
the secret key: assume that b = (b1, . . . , bt) bits of key (or of a function of key) are
used in a given round of the algorithm. Then the Hamming weight HW (b) =∑t

i=1 bi can leak. More precisely Hamming weight with some Gaussian noise
leaking was considered e.g., in [19–21].

1.3 Our Contribution

In this paper we consider the model where each bit bi of the randomness used
by the shuffling algorithm leaks independently with some prescribed probability
p ∈ [0, 1). We analyze a single run of the Riffle Shuffle and our goal is to find
the number of rounds the algorithm needs to make in order not to reveal any
information about the resulting permutation (in the presence of an eavesdropping
adversary).

We analyze a non-oblivious shuffling algorithm called RiffleSST that is leak-
age resilient. We show that even if an adversary A learns each bit of the key K
with probability p (knowledge of bits of the key are denoted by Λp(K)) it cannot
tell much about the resulting permutation. Putting this in other words: even if
an adversary knows some bits of the key Λp(K), it cannot distinguish the permu-
tation produced by r rounds of the RiffleSST algorithm from the permutation
sampled from the uniform distribution with probability better than ε.

The contribution of this paper is the first analysis of a card shuffle
algorithm in the presence of a randomness-eavesdropper. The result is formu-
lated as Theorem 1.

Theorem 1. Let A be an adversary. Let K ∈ {0, 1}rn be a secret key. Let
Λp(K) be the random variable representing the leakage of the key such that A
learns each bit of the key independently at random with probability p. Let Sr,n(K)
be RiffleSST shuffle of n cards which runs for

r = log 2
2−(1−p)2

(
n

2

)

+ log 2
2−(1−p)2

(
1

εn!

)

steps with 0 < ε < 1/n!, then
∣
∣
∣
∣ Pr
K←{0,1}rn

[A(Λp,r,Sr,n(K)) = 1] − Pr
R←U(Sn)

[A(Λp,r, R) = 1]
∣
∣
∣
∣ ≤ ε.

2 Preliminary

2.1 Security Definition

In the rest of the paper, let Sn denote a set of all permutations of a set
{1, . . . , n} =: [n].
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We would like to model an adversary whose goal is to distinguish a permu-
tation which is a result of PRPG algorithm from a permutation sampled from
uniform distribution.

PRPG Algorithm. The PRPG algorithm starts with identity permutation of n
elements π0. In each round PRPG has access to a portion of n bits of the key
stream (i.e., in round l reads a portion of the key: Kl ∈ {0, 1}n).

Leakage. We consider adversaries A which in the lth round can learn a fraction
p of Kl, namely Λp,l(K) = fl,p(Kl), where a function fl,p has range {∗,�}n. More
precisely, fl,p = a1a2 . . . an where ai ∈ {∗,�}. If ai = � then the adversary sees
the corresponding bit of the key stream (learns Kl,i) and if ai = ∗ then the
adversary does not learn the bit at position i.

Example 1 (Adversary view). Let K3 = 101110 and f3 = 110100 = �� ∗ � ∗ ∗
then adversary’s view is: Λ3 = 1 0 ∗ 1 ∗ ∗. Which means that the adversary
learns that K3,1 = 1,K3,2 = 0,K3,4 = 1.

We restrict our analysis only to the adversaries for which each bit can be
eavesdropped independently with probability p, i.e., 1 − P (ai = ∗) = P (ai =
�) = p. This means that number of leaking bit has Bin(n, p) distribution in
each round (np bits are leaking in each round on average).

Let viewr denote the view of the adversary at the end of the algorithm:

viewr,p(K) = [Λ1,p, . . . , Λr,p].

The distinguishability game for the adversary is as follows:

Definition 1. The LEAK indistinguishability experiment ShuffleLEAKS,A (n, p, r):

1. S is initialized with:
(a) a key generated uniformly at random K ∼ U({0, 1}rn),
(b) S0 = π0 (identity permutation).

2. S is run for r rounds: Sr := S(K) and produces a permutation πr.
3. Adversary obtains leaked bits of the key viewr,p(K).
4. We set:

• c0 := πrand a random permutation from uniform distribution is chosen,
• c1 := πr.

5. A challenge bit b ∈ {0, 1} is chosen at random, permutation cb is sent to the
Adversary.

6. Adversary replies with b′.
7. The output of the experiment is defined to be 1 if b′ = b, and 0 otherwise.

In the case when adversary wins the game (if b = b′) we say that A succeeded.
Adversary wins the game if she can distinguish the random permutation from
the permutation being a result of the PRPG algorithm based on the leakage she
saw.
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Definition 2. A shuffling algorithm S generates indistinguishable permutations
in the presence of leakage if for all adversaries A there exists a negligible function
negl such that

Pr
[
ShuffleLEAKS,A (n, p, r) = 1

]
≤ 1

2
+ negl(n),

The above translates into:

Definition 3. A shuffling algorithm S generates indistinguishable permutations
in the presence of leakage if for all adversaries A there exists a negligible function
negl such that

∣
∣
∣
∣

Pr

K←{0,1}keyLen
[A(Λr,S(K)) = 1] − Pr

R←U(Sn)
[A(Λr, R) = 1]

∣
∣
∣
∣ ≤ negl(n).

2.2 Markov Chains and Rate of Convergence

Consider ergodicMarkov chain {Xk, k ≥ 0} on finite state spaceE={0, . . . ,M−1}
with stationary distribution ψ. Let L(Xk) denote the distribution of a chain at
time k. Stating some results about the rate of convergence of a chain to its station-
ary distribution means having some knowledge on some distance dist (or a bound
on it) between L(Xk) and ψ. By mixing time we mean the value of k making dist
small, since it depends on the measure of the distance we define it as

τdist
mix(ε) = inf{k : dist(L(Xk), ψ) ≤ ε}.

In our applications the state space is a set of permutations of [n], i.e., E := Sn

(thus |E| = n!) and stationary distribution is a uniform one on E (we denote
ψ = U(E)).

Typically in literature the mixing time is defined for dist being total variation
distance, i.e.,

dTV (L(Xk),U(E)) =
1
2

∑

σ∈Sn

|Pr(Xk = σ) − Pr(ψ = σ)| ,

which in our case is equivalent to:

dTV (L(Xk),U(E)) =
1
2

∑

σ∈Sn

∣
∣
∣
∣Pr(Xk = σ) − 1

n!

∣
∣
∣
∣ .

Note however that knowing that dTV is small for some k does not imply that∣
∣Pr(Xk = σ) − 1

n!

∣
∣ are “uniformly” small, i.e., that it is of order 1/n!. This

is very important observation, since it means that τdTV
mix (ε) is not an adequate

measure of mixing time for our applications (i.e., indistinguishability given in
Definition 2). Instead we consider so-called separation distance defined by

sep(L(Xk),U(E)) := max
σ∈E

(

1 − Pr(Xk = σ)
Pr(ψ = σ)

)
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which is:

sep(L(Xk),U(E)) := max
σ∈E

(1 − n! · Pr(Xk = σ))

If sep(L(Xk),U(E)) ≤ ε for some k (i.e., we know τsep
mix(ε)), then

∣
∣
∣
∣Pr(Xk = σ) − 1

n!

∣
∣
∣
∣ ≤ ε

n!
, (1)

what will be crucial for showing our results.

Strong Stationary Times. The definition of separation distance fits perfectly
into notion of Strong Stationary Time (SST) for Markov chains. This is a prob-
abilistic tool for studying the rate of convergence of Markov chains.

Definition 4. Random variable T is Strong Stationary Time (SST) if it is
randomized stopping time for chain {Xk, k ≥ 0} such that:

∀(i ∈ E) Pr(Xk = i|T = k) = ψ(i).

Having SST T for chain with uniform stationary distribution lets us bound
the separation distance (cf. [3])

sep(L(Xk),U(E)) ≤ Pr(T > k). (2)

We say that T is an optimal SST if sep(L(Xk),U(E)) = Pr(T > k).

Remark. It is easy to show that separation distance is an upper bound on total
variation distance, i.e. that dTV (L(Xk),U(E)) ≤ sep(L(Xk),U(E)).

3 RiffleSST– Leakage Resilient Shuffle

3.1 General Pseudo-random Permutation
Generator

Fig. 1. General pseudo-
random permutation gen-
erator (PRPG)

We also model some leakage of information (to be spec-
ified later). We identify elements of [n] with cards. We
consider the following general pseudo-random permu-
tation generator (PRPG) for generating a permutation
of [n]. Initially we start with identity permutation π0.
At each round (step) we perform procedure Shuffle
which takes the current permutation S and uses some
“randomness” (based on secret key K) and updates
the permutation. After r rounds the permutation is
denoted by πr. The algorithm stops depending on some
stopping rule represented by procedure StoppingRule
(Fig. 1).
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3.2 Description of RiffleSST Algorithm

Roughly speaking, it uses card shuffling scheme corresponding to time reversal
of Riffle Shuffle (see [4]).

Fig. 2. Leakage resilient shuffle RiffleSST algo-
rithm.

We do not specify here the
details of get bits, this should
be a procedure which returns n
bits from key K, can depend on
current round number r, current
permutation π, etc. (Fig. 2).

RiffleShuffle procedure
performs the following: for given
permutation of cards π ∈ Sn and
given Bits[i], i = 1, . . . , n (think
of assigning bit Bits[i] to card on
position i) we put all the cards
with assigned bit 0 to the top keeping their relative ordering. Sample execution
is given in Fig. 4: For example, for initial permutation (1, 2, 3, 4, 5, 6) we assign
bit 0 to cards 1, 2 and 4, whereas we assign bit 1 to cards 3, 5 and 6. Thus, the
resulting permutation is (1, 2, 4, 3, 5, 6).

procedure RiffleShuffle

Input permutation π, round r, Bits (of length n)
Output updated permutation π

s0:=1
s1:=sum(Bits)
tmp=vector(n)
for i := 0 to n − 1 do

card=S[i]
if(Bits[i]=1) do tmp[s1]=card; s1=s1+1
else tmp[s0]=card; s0=s0+1
end if

end for
π:=tmp

end procedure

Leakage Model. We assume that at each step and at each position i (indepen-
dently) a value of Bit[i] is leaking with probability p. Function bits leakage(p, n)
generates n dimensional vector of zeros and ones. We assume that each coor-
dinate is chosen independently being 1 with probability p and 0 with the
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remaining probability. Note that the number of leaking bits has Bin(n, p) dis-
tribution, thus on average np bits are leaking. The leakage is modeled by
get bits leakage indep procedure (here unif(0, 1) denotes a random variable
uniformly distributed on [0, 1]).

procedure get bits leakage indep

Input n, p
Output vector leak of n bits
for j = 1 to n do

leak(j) =1{unif(0, 1) < p}
end forreturn leak

end procedure

We simply run the algorithm for pre-defined number of steps expressed by
procedure StoppingRuleRiffle.

procedure StoppingRuleRiffle

Input n, p (leakage level), ε
Output {YES,NO}

if r < log 2
2−(1−p)2

(
n
2

)
+ log 2

2−(1−p)2

(
1

εn!

)
then return NO

else return YES

end if
end procedure

4 Proofs

As already mentioned, assuming random keys, the algorithm can be regarded as
(time reversal of) Riffle Shuffle scheme. The idea is similar to approach presented
in [13], following author’s notation we will call a version of the algorithm with
random keys as idealized one. Showing that after the execution of the algorithm
the adversary has no non-negligible knowledge (in both, leakage and no-leakage
version) corresponds to showing that after shuffling cards as many times as the
number of steps of the algorithm, the resulting permutation is close to uniform
one. In other words, proving the theorem reduces to studying the rate of conver-
gence of corresponding Markov chains. However, the typical bounds on the rate
of convergence involving total variation distance do not imply that the shuffling
algorithm generates permutation which is indistinguishable from random permu-
tation according to Definition 2. That is why we focus on bounds for separation
distance what is achieved by using Strong Stationary Times technique.
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Fig. 3. Idealized version of leakage resilient shuf-
fle RiffleSST

Consider the idealized version
of RiffleSST (call it RiffleSST∗)
which is defined by the specifica-
tion from Fig. 4. Roughly speak-
ing, there are two differences
compared to RiffleSST: (i) in
each round we take new n ran-
dom bits. (ii) instead of running
it pre-defined number of steps, we
use StoppingRuleRifflePairs
as stopping rule. The stopping
rule works as follows: Initially we
set all

(
n
2

)
pairs (i, j), i, j = 1, . . . , i < j as not-marked. (This can be simply rep-

resented as
(
n
2

)
-dimensional vector with all entries set to 0). Given the current

permutation π ∈ Sn and Bits[i], Bits leak[i], i = 1, . . . , n we mark the pair (i, j)
(or equivalently, we say that pair (i, j) is updated) if (Bits[i]⊕Bits[j] = 1) and
(Bits leak[i]∨Bits leak[j] = 0) (i.e., cards S[i] and S[j] were assigned different
bits and none is leaking). Formally, this is given in StoppingRuleRifflePairs
procedure (Fig. 3).

procedure StoppingRuleRifflePairs

Input set of already updated pairs(i, j), i < j, Bits, Bits leak
Output {YES,NO}

for each pair (i, j) do
if (Bits[i] ⊕ Bits[j] = 1) and (Bits leak[i] = Bits leak[j] = 0) then

mark pair (i, j)
end if

end for
if all

(
n
2

)
pairs are marked then return YES

elsereturn NO

end if
end procedure

The main ingredients of the proof of Theorem1 are the following Lemma 1 and
Theorem 2.

Lemma 1. The resulting permutation of RiffleSST∗ has a uniform distribution
over Sn.

Proof (of Lemma 1). For leakage level p = 0 the procedure RiffleSST∗ is exactly
the Markov chain corresponding to time-reversed Riffle Shuffle card shuffling. At
each step we consider all

(
n
2

)
pairs (i, j) and we “mark” each pair if either card

i was assigned 0 and card j was assigned 1, or vice-versa. Since these two events
have equal probability, thus relative ordering of these two cards is random at
such step. Let T be the first time all pairs are “marked”. Then all the pairs are in
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relative random order and thus the permutation is also random. In other words,
the distribution of Xk given T = k is uniform. This means that the running time
T of the algorithm is a Strong Stationary Time for riffle shuffle procedure and
the distribution of the chain at time T is uniform.

Note that we exchangeably use the term “mixed” and “updated”.
For general p ∈ [0, 1) the situation is not much different: We update only

pairs which are assigned different bits and such that both cards are not leaking.
Thus, once the pair is updated it means that it is in random relative order and
adversary has no knowledge about this order. After updating all the pairs she
has no knowledge about relative order of all the pairs, thus, from her perspec-
tive, resulting permutation is random. We note that the knowledge about the
permutation can already “vanish” earlier (i.e., before updating all the pairs),
but it is for sure that time till updating all the pairs is enough.

Note that the no leakage version (i.e., when p = 0) of the algorithm can be
written in a more compact way (similarly as in [4], the pairs are not involved
there directly), however this notation lets us relatively easy extend the algorithm
into a leakage resilient version.

Theorem 2. Let {Xk}k≥0 be the chain corresponding to RiffleSST∗. The mixing
time τsep

mix of the chain is given by

τsep
mix(ε) ≤ log 2

2−(1−p)2

(
n

2

)

+ log 2
2−(1−p)2

(
ε−1

)
.

Proof (of Theorem 2). In Lemma 1 we showed that T := infk{Xk = 0} (i.e., first
moment when all pairs are updated) is an SST.

Let Tij be the first time when cards i and j are updated. In one step, the
probability that given pair will not be updated is 1 − 1

2 (1 − p)2 = 2−(1−p)2

2 .
We have

Pr(T > k) = Pr

⎛

⎝
⋃

1≤i<j≤n

{Tij > k}
⎞

⎠ ≤
∑

1≤i<j≤n

Pr(Tij > k)

=
∑

1≤i<j≤n

(
1 − (1 − p)2 · 1

2

)k =
(

n

2

)(
2 − (1 − p)2

2

)k

.

For k = log 2
2−(1−p)2

(
n
2

)
+ log 2

2−(1−p)2

(
ε−1

)
we have Pr(T > k) ≤ ε, using (2)

finishes the proof.

In Theorem 1 we perform RiffleSST for r = τsep
mix(εn!) steps, what means

that separation distance is less or equal to εn!. From (1) we thus have that∣
∣Pr(Xr = σ) − 1

n!

∣
∣ ≤ ε for any permutation σ. This together with Lemma 1 and

Theorem 2 completes the proof of Theorem 2.

Remark 1. Note that if we replace τsep
mix with τdTV

mix in Theorem 2, we could not
conclude Theorem 1. This is because knowing that separation distance is smaller
than ε is much stronger than knowing that total variation distance is smaller



Leakage-Resilient Riffle Shuffle 405

than ε, in particular (1) holds. (Note that typically, e.g., coupling methods pro-
vide directly bounds on total variation distance). However, knowing that total
dTV (L(Xk),U(E)) ≤ ε implies (under some mild conditions - see Theorem 7
in [2]) that sep(L(X2k),U(E)) ≤ ε what means that twice as many steps would
be needed to achieve security claimed in Theorem 1.

5 Sample Execution of RiffleSST Algorithm

In Fig. 4 the sample execution with and without leakage is presented. At each
step, the left column represents the current permutation, whereas the right one
currently assigned bits. The leaking bits are represented by red-shaded boxes.
In Fig. 5 updated pairs for leakage and no leakage versions are given.

For example:

• No leakage version: At step 3. the current permutation is (1, 4, 6, 2, 3, 5) and
assigned bits are Bits = (1, 0, 1, 1, 1, 0). Thus, e.g., card on position 1 (1) and

Fig. 4. Sample execution of our PRPG RiffleSST∗ algorithm for n = 6. Current
permutation at each step is the left column (grayed) whereas right column are the
chosen bits. Red shaded bits are leaking. (Color figure online)

Fig. 5. Pairs “mixed” at each step of execution of PRPG given in Fig. 4. New pairs
are bolded. The idealized algorithm (both, in non leakage and leakage version) stops
when

(
6
2

)
= 15 pairs are mixed.
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card on position 2 (4) have different bits assigned (respectively 1 and 0), thus
this pair (1,4) is updated (it is bolded since it is first step when different bits
were assigned for this pair).

• Leakage version: At the same step 3. bits assigned to cards 1, 4 and 2 are
leaking. Thus all the pairs involving any of these cards are not considered,
what results only in updating pairs (3,5), (5,6).

6 Conclusions

We presented the first analysis of the rate of convergence of the riffle-shuffle in the
presence of leakage. We proved that no adversary can distinguish permutations
produced by the RiffleSST (after enough number of steps – Theorem1) from
permutations sampled from uniform distribution.

Fig. 6. Comparison of the expected
number of rounds for n = 256
and Riffle-Shuffle (without leakage –
orange) and RiffleSST with the leak-
age level p – blue. (Color figure
online)

Open Problems. Since the number of per-
mutations is of [n] is n! the entropy of the
uniform distribution on [n] is O(n log n). The
time-reversed riffle-shuffle is optimal (up to a
constant factor) shuffle since its mixing-time
is O(log n) and each round consumes n bits
of randomness, so in total O(n log n) bits are
used. In case of no leakage (p = 0) the mix-
ing time of RiffleSST ∗ - by Theorem 2 - is
O(n log n) and thus is optimal (Fig. 6).

Question: Is RiffleSST∗ optimal in the
presence of leakage with rate p > 0?
More precisely, can we use fewer bits than
O

(
n log 2

1−(1−p)2
n
)

bits to achieve the secu-
rity claimed in Theorem 1?
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retrieval with a trusted hardware unit – revisited. In: Lai, X., Yung, M., Lin, D.
(eds.) Inscrypt 2010. LNCS (LNAI and LNBI), vol. 6584, pp. 373–386. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21518-6 26

11. Kulis, M., Lorek, P., Zagorski, F.: Randomized stopping times and provably
secure pseudorandom permutation generators. In: Phan, R.C.-W., Yung, M. (eds.)
Mycrypt 2016. LNCS, vol. 10311, pp. 145–167. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-61273-7 8
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Abstract. We present a method for producing pairing-friendly, simple,
ordinary Jacobian varieties of genus 2 hyperelliptic curves defined over a
prime field Fp. The proposed method heavily relies on the construction
of a suitable p-Weil number and a corresponding quartic CM-field. Our
Jacobians are absolutely simple and for this special class of Jacobians
we give the first examples in the literature with ρ-values below 4, while
previous results had in general ρ-values between 6 and 8. These examples
derive from “families” of pairing-friendly Jacobians, which are basically
polynomial representations of the Jacobian parameters.

Keywords: Pairing · Hyperelliptic curves · Jacobian
Embedding degree

1 Introduction

An asymmetric pairing is a bilinear, non-degenerate, efficiently computable map
ê : G1 × G2 −→ GT, where G1,G2,GT are cyclic groups of prime order r with
G1 �= G2. A crucial cryptographic requirement is that the discrete logarithm
problem (DLP) is computationally infeasible in all pairing groups G1,G2,GT.
We call G1,G2 the source groups and GT the target group. Initially the source
groups were set as r-order subgroups of ordinary elliptic curves over a finite field,
while the target group was an r-order subgroup of a finite field.

Since elliptic curves are genus 1 algebraic curves, an obvious question is
whether pairings on higher genus curves can be also used in implementations.
In this case G1 and G2 consist of elements in the Jacobian variety of a genus g
hyperelliptic curve defined over a finite field. By [2,19], this can be an advanta-
geous choice especially when g = 2, since genus 2 curves and their Jacobians:

1. are competitive to elliptic curves in performance and security [2,19].
2. result in efficient Tate pairing calculations [11].
3. have efficient CM-constructions [20,25] and point operations [4].
4. have points with smaller size.

c© Springer International Publishing AG 2017
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This is our motivation for constructing “pairing-friendly”, ordinary Jacobians of
genus 2 hyperelliptic curves over a prime field Fp, called the base field.

An affine genus 2 hyperelliptic curve C over Fp is defined by the equation
C/Fp : y2 = F (x), where F (x) ∈ Fp[x] is monic with deg F ∈ {5, 6}. For any
extension k of Fp, we denote by C(k) the set of all points with coordinates in k

satisfying the hyperelliptic curve equation. Unlike the genus 1 case this set is not
a group and hence we cannot define DLP-based protocols on C(k). However, to
each such curve we associate a special object called the Jacobian [18] of C/Fp,
denoted by J(Fp). This is a 2-dimensional abelian variety, hence an algebraic
group, with order #J(Fp) ≈ p2. The elements of J(Fp) are equivalence classes
of zero degree divisors, defined over Fp, under the linear equivalence of divisors
(see Sect. 2). This can be generalized to any extension k of Fp. In our context
we assume that J(Fp) contains a cyclic subgroup of prime order r and that it is
ordinary, simple and absolutely simple [21] (see also Sect. 2).

For asymmetric pairings on Jacobians, the source groups are distinct r-order
subgroups of J(Fpk) and the target group is an r-order subgroup of the mul-
tiplicative group of the extension field Fpk . In other words a pairing maps two
divisors of order r, defined over Fpk , to an rth root of unity. This positive integer
k is called the embedding degree of J(Fp) with respect to r and it is the smallest
positive integer such that Fpk contains all rth roots of unity. In pairing-based
applications such Jacobians are chosen according to the following rules:

1. The order of the Jacobian has a large prime factor r, i.e. #J(Fp) = hr, for
h ≥ 1. This ensures that J(Fp) (hence J(Fpk)) contains points of order r.

2. The prime r is large enough, so that the DLP in G1,G2 is computationally
hard. According to today’s requirements, r should be at least 256 bit large,
to avoid Pollard’s rho attack, with running time O(

√
r).

3. The embedding degree k is large enough, so that the DLP in GT ⊂ F
∗
pk is

as hard as in G1,G2. In practice Fpk must be resistant to the variants of the
number field sieve (NFS) attack [7,14,17].

4. k is relatively small, for efficient operations in GT. This means that the exten-
sion field must be as large as to ensure security and no larger.

5. The ρ-value ρ = 2 log p/ log r of the Jacobian is close to 1. This saves band-
width by keeping the representation of Jacobian elements small. Examples
with ρ ≈ 1 are still absent for ordinary, absolutely simple Jacobians.

Hyperelliptic curves and the corresponding Jacobians satisfying these properties
are called pairing-friendly.

In this paper we describe a method for producing pairing-friendly ordinary
Jacobians of genus 2 hyperelliptic curves defined over prime fields. We present
new examples of absolutely simple Jacobians, with the best reported ρ-values so
far in the literature, for various embedding degrees. Particularly, our examples
reduce the ρ-value to be up to 4, while previous results for the same embedding
degrees have in general ρ-values between 6 and 8 [8], or around 8 [20].

In Sect. 2 we present the necessary background for pairing-friendly
2-dimensional Jacobians and a summary of methods for their construction. We
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analyze our proposal and demonstrate our recommendations in Sect. 3. Numer-
ical results of cryptographic value are provided in Sect. 4 and we conclude the
paper in Sect. 5, summarizing our recommendations.

2 Background

Genus 2 Hyperelliptic Curves and Jacobians. Let C be a genus 2 hyper-
elliptic curve over a prime field Fp and C(k) the set of points on the curve with
coordinates in an extension k of Fp. Since C(k) is not a group, in hyperelliptic
curve cryptography we are working with the Jacobian J(Fp) of C/Fp [18], which
is a 2-dimensional abelian variety and hence an algebraic group [21]. It is also
a quotient group, whose elements are equivalence classes of zero degree divisors
under the linear equivalence of divisors. In particular, two zero degree divisors
are linearly equivalent, if their difference is a principal divisor, i.e. a divisor of a
rational function in the function field of the curve C/Fp [21,23]. In dimension 2,
each equivalence class consists of exactly two elements.

In this paper we are working with simple Jacobians which are also absolutely
simple. A 2-dimensional Jacobian is simple if it does not split over Fp to a
product of elliptic curve groups and it is absolutely simple, if it remains simple
over Fp [21]. We denote by End(J(Fp)) the endomorphism ring containing all
homomorphisms from J(Fp) to itself. One of these elements is the Frobenius
endomorphism, denoted by π, which acts by raising a divisor in J(Fp) to the pth
power. When J(Fp) is simple, the Frobenius endomorphism satisfies a quartic,
monic polynomial P (x) ∈ Z[x] called the characteristic polynomial of Frobenius:

P (x) =
4

∏

i=1

[x − σi(π)] = x4 + Ax3 + Bx2 + Apx + p2, (1)

where σi are the embeddings of the number field K = Q(π) into C. Thus, π is
an algebraic integer and also a p-Weil number, meaning ππ = p, where π is the
complex conjugate of π. In our case, J(Fp) will be ordinary and K a quartic
CM-field, i.e. an imaginary quadratic extension of a totally real field [21].

The order of the Jacobian and P (x) are related by #J(Fp) = P (1) [5].
Additionally, J(Fp) is ordinary if gcd(B, p) = 1 [13] and it is simple if P (x) is
irreducible over Z[x] [23]. Finally, in order to check if J(Fp) is absolutely simple
we use the next fact [13].

Proposition 1. Let J(Fp) be a 2-dimensional Jacobian, with characteristic
polynomial of Eq. (1). Then exactly one of the following holds: (1) J(Fp) is
absolutely simple. (2) A = 0. (3) A2 = p+B. (4) A2 = 2B. (5) A2 = 3B −3p. In
cases (2), (3), (4) and (5), the smallest extension of Fp over which J(Fp) splits,
is quadratic, cubic, quartic and sextic respectively.

Proof. See Theorem 6, p. 145 in [13].
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Pairing-Friendly Conditions. Recall that for asymmetric pairings on Jaco-
bians, G1,G2 are distinct subgroups of J(Fpk), while GT is an r-order subgroup
of the multiplicative group of Fpk , where k is the embedding degree. This is the
smallest positive integer such that Fpk contains the group μr of rth roots of
unity. Equivalently, it is the smallest positive integer, such that r | (pk − 1) [8].

Freeman et al. [9] described the conditions for g-dimensional Jacobians to
have embedding degree k. Here we are restricted to g = 2.

Proposition 2. Let J(Fp) be an ordinary 2-dimensional Jacobian with Frobe-
nius endomorphism π and characteristic polynomial of Frobenius P (x) ∈ Z[x].
Let k be a positive integer and Φk(x) the kth cyclotomic polynomial and suppose
that gcd(r, p) = 1 and K = Q(π) is a quartic CM-field. If

#J(Fq) = P (1) ≡ 0 mod r and Φk(p) ≡ 0 mod r, (2)

then J(Fp) has embedding degree k with respect to r.

Proof. See Proposition 2.1 in [9].

Thus, in order to construct ordinary and simple 2-dimensional Jacobians over
Fp with embedding degree k and an r-order subgroup, it suffices to search for
a Frobenius endomorphism π ∈ End(J(Fp)) and a quartic CM-field K = Q(π),
such that System (2) is satisfied. Note that the second equation in System (2)
implies that p is a primitive kth root of unity in (Z/rZ)∗.

As stated in Sect. 1, r must be a large prime so that the DLP in the r-order
subgroups G1,G2 ⊆ J(Fpk) is computationally hard and the embedding degree k
must be large enough so that the DLP in GT ⊆ F

∗
pk is approximately of the same

difficulty as in G1,G2. Note that k should be the smallest such integer, since the
extension field Fpk must not be unnecessarily large. The ideal case appears when
#J(Fp) and r have approximately the same size. Since #J(Fp) ≈ p2, this means
that the ρ-value ρ = 2 log p/ log r must be close to 1 [9]. The recommended sizes
of Jacobian parameters and the security levels that they provide are discussed
in Sect. 4 (see also [1]). The simple and ordinary Jacobians having the properties
we studied in this paragraph are called pairing-friendly [8].

Parametric Families. The most common way to produce pairing-friendly
Jacobians is to represent its parameters as polynomials, which when evaluated at
certain integers will produce the actual Jacobian parameters. This idea was first
introduced by Brezing and Weng [3] for elliptic curves and generalized by David
Freeman [8] for higher dimensional abelian varieties. In this case the Frobenius
endomorphism is represented by a polynomial π(x) ∈ K[x] with characteristic
polynomial of Frobenius P (t) ∈ Q[t]:

P (t) =
4

∏

i=1

[t − σi(π(x))] = t4 + A(x)t3 + B(x)t2 + A(x)pt + p2, (3)

for the four embeddings σi : K −→ C and some A(x), B(x) ∈ Z[x]. Such a
polynomial representation allows us to work with polynomial families of pairing-
friendly Jacobians. The precise definition is the following [8].
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Definition 1. Let K be a quartic CM-field, π(x) ∈ K[x] and r(x) ∈ Q[x].
The pair [π(x), r(x)] parametrizes a family of pairing-friendly Jacobians with
embedding degree k, if the following conditions are satisfied:

1. p(x) = π(x)π(x) ∈ Q[x] and p(x) represents primes.
2. r(x) is non-constant, irreducible, integer-valued, with lc(r) > 0.
3. P (1) ≡ 0 mod r(x).
4. Φk(p(x)) ≡ 0 mod r(x), where Φk(x) is the kth cyclotomic polynomial.

By saying that p(x) represents primes we mean that it is non-constant,
irreducible, with lc(p) > 0 and it returns primes for finitely (or infinitely)
many x ∈ Z [8]. Condition (3) ensures that the Jacobian order factorizes as
#J(Fp) = h(x)r(x), for some h(x) ∈ Q[x], while condition (4) implies that p(x)
is a primitive kth root of unity in Q[x]/〈r(x)〉. Although r(x) can be chosen as
any polynomial with rational coefficients satisfying condition (2) of Definition 1,
it is usually considered as the kth cyclotomic polynomial. Finally, the ρ-value of
a polynomial family [π(x), r(x)] is defined as the ratio:

ρ(π, r) = lim
x→∞

2 log p(x)
log r(x)

=
2 deg p

deg r
.

Previous Constructions. Methods for constructing absolutely simple Jaco-
bians are given in [8,9,20], with ρ-value in the range 6 ≤ ρ ≤ 8. However
better ρ-values can be achieved by non-absolutely simple Jacobians. For exam-
ple see [6,10,12,15,16], with generic ρ ≤ 4, where the best results appear in [6],
with 2 ≤ ρ < 4. Unfortunately there are still no examples with ρ < 2 for simple,
ordinary Jacobians. All methods in [6,8,10,12,15,16] use polynomial families
of pairing-friendly Jacobians. An alternative approach is presented by Lauter–
Shang in [20]. Representing the Frobenius element π ∈ K in an appropriate
form, they derive a system of three equations in four variables, whose solutions
lead to few examples of absolutely simple Jacobians with ρ ≈ 8.

Contribution. In this paper we focus on pairing-friendly 2-dimensional, abso-
lutely simple and ordinary Jacobians. Their construction depends mainly on
the choice of the quartic CM-field K and the representation of the Frobenius
endomorphism π. We present a procedure for constructing polynomial fami-
lies of pairing-friendly Jacobians based on Lauter-Shang’s [20], Dry�lo’s [6] and
new polynomial representations of the Frobenius endomorphism. In each case
the problem of constructing the families is reduced to a system of three equa-
tions in four variables. By their solutions we produced polynomial families of
2-dimensional, absolutely simple Jacobians with the best ρ-values so far in the
literature. In particular our families have in general ρ(π, r) ≤ 4 for various
embedding degrees, while previous results had ρ(π, r) between 6 and 8. Using
our families we produced various numerical examples of cryptographic value.
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3 Constructing Pairing-Friendly Jacobians

Let C/Fp be a genus 2 hyperelliptic curve for some prime p, with a simple and
ordinary Jacobian J(Fp) and suppose that #J(Fp) = hr, for some prime r,
with gcd(r, p) = 1 and h > 0. Let also k be a positive integer and K a quartic
CM-field. We can determine suitable parameters of a 2-dimensional Jacobian by
searching for a Frobenius element π ∈ K, such that System (2) is satisfied:

P (1) ≡ 0 mod r and Φk(p) ≡ 0 mod r ⇐⇒ p = ππ ≡ ζk mod r, (4)

where P (x) ∈ Z[x] is the characteristic polynomial of Frobenius given by Eq. (1)
and ζk a primitive kth root of unity.

Since we will be working with polynomial families we need to transfer the
above situation in terms of polynomial representations. This means that the
Frobenius endomorphism is a polynomial π(x) ∈ K[x], with characteristic poly-
nomial of Frobenius P (t) ∈ Z[t] given by Eq. (3). The complete process for
constructing polynomial families of pairing-friendly, 2-dimensional Jacobians is
described in Algorithm 1. We first fix an integer k > 0, a quartic CM-field K
and set L as the number field containing ζk and K. Usually L is taken as the
lth cyclotomic field Q(ζl) for some l ∈ Z>0, such that k | l. In step 1, we con-
struct the polynomial r(x) such that it satisfies condition (2) of Definition 1. If
L = Q(ζl), then r(x) = Φl(x). With this choice we know that the polynomial
u(x) = x is a primitive lth root of unity in Q[x]/〈r(x)〉. Then the primitive
kth roots of unity can be obtained by computing the powers u(x)i mod r(x), for
every i = 1, . . . , ϕ(l) − 1, such that l/ gcd(i, l) = k. The fourth step is the most
demanding since we are searching for the Frobenius polynomial π(x) ∈ K[x],
such that the family of Jacobians is pairing-friendly. To come to this conclusion
we also need to verify that the polynomial p(x) = π(x)π(x) represents primes
(step 5). The output of Algorithm1 is a polynomial family [π(x), r(x)] of pairing-

Algorithm 1. Constructing families of pairing-friendly 2-dimensional Jacobians.
Input: An integer k > 0, a quartic CM-field K, a number field L containing ζk, K.
Output: A polynomial family [π(x), r(x)] of pairing-friendly, 2-dimensional Jacobian
variety, with embedding degree k.

1: Find an r(x) ∈ Q[x] satisfying condition (2) of Definition 1, s.t. L ∼= Q[x]/〈r(x)〉.
2: Let u(x) ∈ Q[x] be a primitive lth root of unity in Q[x]/〈r(x)〉.
3: For every i = 1, . . . , ϕ(l) − 1, such that l/ gcd(i, l) = k, do the following:
4: Find a polynomial π(x) ∈ K[x], satisfying the following System:

#J(Fp) = P (1) ≡ 0 mod r(x) and p(x) = π(x)π(x) ≡ u(x)i mod r(x) (5)

5: If p(x) = π(x)π(x) represents primes return the family [π(x), r(x)].
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friendly 2-dimensional Jacobians with embedding degree k and ρ-value:

ρ(π, r) =
2 deg p

deg r
=

2(deg π + deg π)
deg r

≤ 2(2 deg r − 2)
deg r

= 4 − 4
deg r

< 4.

This is a significant improvement compared to [8,9,20], which for absolutely
simple Jacobians have 6 ≤ ρ(π, r) ≤ 8.

3.1 Lauter-Shang’s Frobenius Elements

Lauter and Shang [20] considered quartic CM-fields K = Q(η), with positive
and square-free discriminant ΔK (primitive CM-fields), where η is:

η =

⎧

⎨

⎩

i
√

a + b
√

d, if d ≡ 2, 3 mod 4

i

√

a + b
−1 +

√
d

2
, if d ≡ 1 mod 4

(6)

for some a, b, d ∈ Z, where d is positive and square-free. The Frobenius endo-
morphism π is an element of K and hence it is of the form:

π = X + Y
√

d + η
(

Z + W
√

d
)

, (7)

for X,Y,Z,W ∈ Q and since π is a p-Weil number, it must satisfy ππ = p, or:

(X2 +dY 2 +α(Z2 +dW 2)+2βdZW )+ (2XY +2αZW +β(Z2 +dW 2))
√

d = p,

where (α, β) = (a, b), when d ≡ 2, 3 mod 4 and (α, β) = ((2a − b)/2, b/2), when
d ≡ 1 mod 4. With this setting, the characteristic polynomial of Frobenius is:

P (x) = x4 − 4Xx3 +
(

2p + 4X2 − 4dY 2
)

x2 − 4Xpx + p2.

By the first equation of System (5), the order of the Jacobian must be divisible
by r. Combining the facts that p must be a prime integer, with p ≡ ζk mod r
and #J(Fp) = P (1), we are searching for solutions (X,Y,Z,W ) of the system:

X2 + dY 2 + α(Z2 + dW 2) + 2βdZW ≡ ζk mod r
2XY + 2αZW + β(Z2 + dW 2) = 0

(ζk + 1 − 2X)2 − 4dY 2 ≡ 0 mod r

⎫

⎬

⎭

(8)

Remark 1. The first and third equation of System (8) are solved in Z/rZ and the
second in Q. Such solutions are presented in [20], giving examples with ρ ≈ 8.
Alternatively, we can solve all equations modulo r and then search for lifts of
X,Y,Z,W in Q, such that the second equation is satisfied in Q. ��
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Since we are working with polynomial families, we need to transfer this anal-
ysis to Q[x]/〈r(x)〉, for an r(x) ∈ Q[x] satisfying condition (2) of Definition 1
and follow Algorithm1. We first fix a number field L = Q(ζl) ∼= Q[x]/〈r(x)〉 for
l ∈ Z>0, such that k | l and set u(x), z(x), η(x) as the polynomials representing
ζl,

√
d, η in Q[x]/〈r(x)〉 (see [22,24]). We set the Frobenius polynomial:

π(x) = X(x) + Y (x) + η
(

Z(x) + W (x)
√

d
)

, (9)

for some X(x), Y (x), Z(x),W (x) ∈ Q[x]/〈r(x)〉 and the characteristic polyno-
mial of Frobenius is now expressed in Q[t], with coefficients in Q[x]. In order
to construct polynomial families of pairing-friendly Jacobians we work as fol-
lows. We first solve System (8) in Z/rZ and obtain solutions (X,Y,Z,W ) ∈ Q

4.
Then we represent these solutions as polynomials [X ′(x), Y ′(x), Z ′(x),W ′(x)] in
Q[x]/〈r(x)〉 and finally we take lifts fX(x), fY (x), fZ(x), fW (x) ∈ Q[x], so that

2X(x)Y (x) + 2αZ(x)W (x) + β
[

Z(x)2 + dW (x)2
]

= 0,

namely the second equation of System (8) is satisfied in Q[x], where:

X(x) = fX(x)r(x) + X ′(x), Y (x) = fY (x)r(x) + Y ′(x)
Z(x) = fZ(x)r(x) + Z ′(x), W (x) = fW (x)r(x) + W ′(x)

The field polynomial derives from p(x) = π(x)π(x) and it must represent primes,
according to Definition 1. This is equivalent to finding m,n ∈ Z, such that p(mx+
n) ∈ Z[x] and contains no constant or polynomial factors.

Examples of Absolutely Simple Jacobians. Let K = Q(η) be a primitive
quartic CM-field and ζk a primitive kth root of unity. A solution of System (8)
in Z/rZ is represented by the quadruple:

(X,Y,Z,W ) =
(

(
√

ζk + 1)2

4
,± (

√
ζk − 1)2

4
√

d
,±ζk − 1

4η
,±ζk − 1

4η
√

d

)

. (10)

Below we give an example derived from the above solution, which first appeared
in [8]. Our method can be also extended for arbitrary polynomials r(x) satisfying
condition (2) of Definition 1.

Example 1. Set l = k = 5 and K = Q(i
√

10 + 2
√

5). Take L = Q(ζ5) and
r(x) = Φ5(x), so that u(x) = x is a primitive 5th root of unity in Q[x]/〈r(x)〉.
The representation of

√
5 and η in Q[x]/〈r(x)〉 is:

z(x) = 2x3 + 2x2 + 1 and η(x) = −2x3 + 2x2.

For i = 4 in Algorithm 1, and for lifts fX(x) = 1/4, fY (x) = 1/20, fZ(x) = 1/8
and fW (x) = −1/40, we get the following solution [X(x), Y (x), Z(x),W (x)]:

X(x) = (x4 + 2x2 + 1)/4, Y (x) = (x4 + 6x3 + 6x2 + 6x + 1)/20

Z(x) = (x4 + x3 + 2x2 + x + 1)/8, W (x) = −(x4 + 3x3 + 2x2 + 3x + 1)/40
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By Eq. (9) the Frobenius polynomial π(x) ∈ K[x] is:

π(x) = X(x) + Y (x)
√

5 + i

√

10 + 2
√

5
(

Z(x) + W (x)
√

5
)

,

Setting the field polynomial as p(x) = π(x)π(x) we conclude to:

p(x) =
1
5
(x8 + 2x7 + 8x6 + 9x5 + 15x4 + 9x3 + 8x2 + 2x + 1),

which is integer-valued for all x ≡ 1 mod 5. The characteristic polynomial of
Frobenius P (t) has integer coefficients and it is irreducible over Z. Additionally
none of conditions (2)–(5) of Proposition 1 is satisfied and the middle coefficient
B(x) of P (t) satisfies gcd[B(x), p(x)] = 1. Thus the pair [π(x), r(x)] represents a
polynomial family of pairing-friendly, absolutely simple, ordinary, 2-dimensional
Jacobian varieties with embedding degree k = 5 and ρ(π, r) = 4. ��

3.2 Generalized Dry�lo’s Frobenius Elements

The following analysis is based on Dry�lo [6]. Let K = Q(ζs,
√−d), for a square-

free d > 0 and some primitive sth root of unity ζs. For quartic CM-fields K
there are two cases to consider:

1. If
√−d /∈ Q(ζs), then ϕ(s) = 2 and so s ∈ {3, 4, 6}.

2. If
√−d ∈ Q(ζs), then ϕ(s) = 4 and so s ∈ {5, 8, 10, 12}.

We take the Frobenius element π ∈ K as a linear combination of ζs and
√−d:

π = X + Y
√−d + ζs

(

Z + W
√−d

)

, (11)

for some X,Y,Z,W ∈ Q. Setting X = Y = 0 we recover Dry�lo’s Frobenius
elements [6] leading to non-absolutely simple Jacobian varieties. We study the
case

√−d /∈ Q(ζs) and construct the equations derived from System (4).
Let ζs be a primitive sth root of unity where s ∈ {3, 4, 6} and so ϕ(s) = 2.

Condition ππ = p of System (4) is equivalent to:
[

X2 + Z2 + d(Y 2 + W 2) + (ζs + ζs)(XZ + dY W )
]

+
[

(ζs − ζs)(XW − Y Z)
] √−d = p

The coefficients A,B of the characteristic polynomial of Frobenius are:

A = − [

4X + 2(ζs + ζs)Z
]

, B = 2p + (A/2)2 + d(ζs − ζs)
2W 2

and so the second condition, namely #J(Fp) ≡ 0 mod r implies:

[p + 1 + A/2]2 + d(ζs − ζs)
2W 2 ≡ 0 mod r
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According to the above analysis, System (5) is transformed to:
[

X2 + Z2 + d(Y 2 + W 2) + (ζs + ζs)(XZ + dY W )
] ≡ ζk mod r

XW − Y Z = 0
[p + 1 + A/2]2 + d(ζs − ζs)2W 2 ≡ 0 mod r

⎫

⎬

⎭

(12)

We are working with polynomial families and so we fix the number field L =
Q(ζl) ∼= Q[x]/〈r(x)〉, where r(x) = Φl(x), for some l > 0, such that

√
d, ζs, ζk ∈

L. In particular this is done by setting l = lcm(s,m, k), where m is the smallest
positive integer such that

√
d ∈ Q(ζm). Then the generalized Dry�lo Frobenius

polynomial π(x) ∈ K[x] becomes:

π(x) = X(x) + Y (x)
√−d + ζs

(

Z(x) + W (x)
√−d

)

, (13)

for some X(x), Y (x), Z(x),W (x) ∈ Q[x]/〈r(x)〉 and its characteristic polynomial
is P (t) ∈ Q[t] as in Eq. (3), with coefficients in Q[x].

Examples of Absolutely Simple Jacobians with s = 3. We give a few
examples of polynomial families obtained by the solutions of System (12) for
s = 3. Such a solution is the following:

X = Y = [(
√

3d + 1)(ζk − 1) + (
√−d +

√−3)(ζk + 1)]/[2
√−3(d + 1)]

Z = W = [(ζk − 1) + (ζk + 1)
√−d]/[

√−3(d + 1)]
(14)

For the second equation of System (12) there is no need to take any lifts, since
Solution (14) satisfies this equation in Q. We then expect that the constructed
Jacobian varieties will have ρ(π, r) < 4.

Remark 2. In the following examples the characteristic polynomial of Frobenius
P (t) satisfies P (1) ≡ 0 mod r(x), but has rational coefficients. It can be trans-
formed to a polynomial with integer coefficients by applying a linear transforma-
tion t → (MT + N), so that for every t ≡ N mod M , we have P (t) ∈ Z. ��
Example 2. Let l = 24, so that L = Q(ζ24). Set r(x) = Φ24(x) and u(x) = x.
For s = 3 and d = 6, the representation of

√−6 and
√−3 in Q[x]/〈r(x)〉 is:

z(x) = −2x7 − x5 + x3 − x, w(x) = 2x4 − 1,

respectively. For i = 3 in Algorithm 1 we have k = 8 and by Solution (14):

X(x) = Y (x) = (2x7 − 3x6 + 3x5 − 2x4 − x3 + 3x2 + 1)/21

Z(x) = W (x) = (−2x7 − 3x6 + 3x5 + 2x4 − 2x3 − 3x − 4)/21

The Frobenius polynomial is represented by Eq. (13), while the field polynomial
is calculated by p(x) = π(x)π(x). We find that this is integer-valued for every
x ≡ {7, 19} mod 21. It is easy to verify that none of the conditions (2)–(5) of
Proposition 1 is satisfied and also gcd[B(x), p(x)] = 1. Thus the pair [π(x), r(x)]
represents a family of absolutely simple, ordinary, pairing-friendly, 2-dimensional
Jacobians with embedding degree k = 8 and ρ(π, r) = 3.5. ��
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Table 1. Absolutely simple Jacobians from Solution (14).

l k d i x ρ(π, r)

24 3 6 16 {87, 144} mod 147 3.5000

4 18 {5, 103} mod 147

12 2 {16, 94, 104} mod 147

24 17 {10, 20} mod 21

In Table 1 we give more families derived by Solution (14). The integer l > 0
defined the number field L = Q(ζl) and the 2nd column is the embedding degree,
obtained by taking the ith power (4th column) of ζl. The 3rd column is the
square-free integer d > 0 defining the CM-field K = Q(ζ3,

√−d). The column x
refers to the congruence that the inputs of p(x) must satisfy, in order to obtain
integer values. Finally the last column is the ρ-value of the family. In all cases
of Table 1, the characteristic polynomial of Frobenius P (t) has content equal to
1/7, which disappears by setting t ≡ N mod 7, for some N ∈ Z/7Z.

3.3 Alternative Representation

An alternative representation of a quartic CM-field is K = Q(
√

d1,
√−d2), for

some d1, d2 ∈ Z>0, with d1 �= d2, such that [K : Q] = 4. Additionally, K2 is an
imaginary quadratic extension of the totally real field K1. Then π ∈ K is:

π = X + Y
√

d1 +
√

−d2

(

Z + W
√

d1

)

, (15)

for some X,Y,Z,W ∈ Q. By the property of π being a Weil p-number, we get:

(X2 + d1Y
2 + d2Z

2 + d1d2W
2) + (XY + d2ZW )

√

d1 = p

and the characteristic polynomial of Frobenius is

P (x) = x2 − 4Xx3 + 4
(

X2 − d1Y
2
)

x2 − 4Xpx + p2. (16)

Additionally, the condition #J(Fq) = P (1) ≡ 0 mod r is equivalent to

(p + 1 + 2X)2 − 4d1Y
2 ≡ 0 mod r. (17)

Using the fact that p ≡ ζk mod r, we conclude to the following system:

X2 + d1Y
2 + d2Z

2 + d1d2W
2 ≡ ζk mod r

XY + d2ZW = 0
(ζk + 1 + 2X)2 − 4d1Y

2 ≡ 0 mod r

⎫

⎬

⎭

(18)

For polynomial families we set L = Q(ζl) ∼= Q[x]/〈r(x)〉, where l ∈ Z>0 is an inte-
ger, such that

√
d1,

√−d2, ζk ∈ Q(ζl). This is done by choosing l = lcm(m1,m2, k),
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where m1,m2 are the smallest positive integers for which
√

d1 ∈ Q(ζm1) and√−d2 ∈ Q(ζm2). Then the Frobenius polynomial π(x) ∈ K[x] is:

π(x) = X(x) + Y (x)
√

d1 +
√

−d2

(

Z(x) + W (x)
√

d1

)

(19)

for X(x), Y (x), Z(x),W (x) ∈ Q[x]/〈r(x)〉. Note that we need to find the
polynomial representation z1(x) and z2(x) of

√
d1 and

√−d2 respectively in
Q[x]/〈r(x)〉.

Absolutely Simple Jacobians. We give a few examples of polynomial families
obtained by solving System (18). Such a solution is:

X = −d2Z, Z =
(

(ζk − 1) − (ζk + 1)
√−d2

)

/
(

2(d2 + 1)
√−d2

)

Y = W, W = − (

(ζk + 1) + (ζk − 1)
√−d2

)

/
(

2(d2 + 1)
√

d1
) (20)

For the second equation of System (18) we do not need to take any lifts, since
Solution (20) satisfies this equation in Q. Again we expect that the Jacobian
families will have ρ-values less than 4. Such examples are presented in Table 2.

Remark 3. Like Remark 2, in the examples of Table 2 P (t) has rational coeffi-
cients. It can be transformed into a polynomial with integer coefficients by apply-
ing a linear transformation t → (MT + N), so that for every t ≡ N mod M , we
have P (t) ∈ Z. An analogous transformation is also required for p(x). ��

Table 2. Absolutely simple Jacobians from Solution (20).

l k d1 d2 i x ρ(π, r)

56 7 7 2 8 {34, 58, 70} mod 84 3.6667

28 2 {5, 47, 70} mod 84

40 8 10 2 5 {5, 9, 21} mod 30 3.7500

20 18 {19, 25} mod 30

The 5th column refers to the powers i, so that l/ gcd(l, i) = k, while the 6th
column refers to the congruence that the inputs x of the field polynomial must
satisfy, in order for p(x) to be an integer.

4 Implementation and Numerical Examples

The process of generating suitable Jacobian parameters when given a polynomial
family [π(x), r(x)] is summarized in Algorithm 2. This involves a simple search
for some x0 ∈ Z, such that r(x0) is a large prime of a desired size. Additionally
we require p(x0) to be a large prime.

In all inputs [π(x), r(x)] of Algorithm 2 we need to ensure that p(x) is integer-
valued. This means that there must be integers a, b ∈ Z, such that p(x) ∈ Z,
for all x ≡ b mod a. Algorithm 2 outputs the parameters (π, p, r). Using these
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Algorithm 2. Generating suitable parameters for 2-dimensional Jacobians.
Input: A polynomial family [π(x), r(x)] and a desired bit size Sr.
Output: A Frobenius element π, a prime q and a (nearly) prime r.

1: Find a, b ∈ Z, such that q(x) ∈ Z, for every x ≡ a mod b.
2: Search for x0 ≡ b mod a, such that r(x0) = nr, for some prime r and n ≥ 1.
3: Set π = π(x0), p = π(x0)π(x0) and r = r(x0)/n.
4: If log r ≈ Sr and p is prime, return (π, p, r).

triples we can generate a 2-dimensional Jacobian J(Fp), with r | #J(Fp) and
Frobenius endomorphism π.

In all examples we considered pairing-friendly parameters of Jacobians pro-
viding a security level of at least 128 bits. These parameters are chosen according
to Table 3, originally presented [1].

Table 3. Bit sizes of parameters and embedding degrees for various security levels.

Security level Subgroup size Extension field size Embedding degree

ρ ≈ 2 ρ ≈ 3 ρ ≈ 4

128 256 3000–5000 12–20 8–13 6–10

192 384 8000–10000 20–26 13–17 10–13

256 512 14000–18000 28–36 18–24 14–18

In this table we describe the sizes of the prime r, the extension field Fpk and
the ρ-values, for which we achieve a specific security level. Note that we consider
only ρ-values in the range [2, 4], since examples of ordinary Jacobians with ρ < 2
are unknown. Below we give a few numerical results.

Example 3. By Example 2 for K = Q(ζ3,
√−6), with l = 24 and k = 8:

x0 = 4360331437 ≡ 7 mod 21, n = 1, ρ = 3.4766, log r = 256, log p = 445

r =130664020295440239360148881846091837359009346429494904425530738531174381452561

p =171046316283046997631101982147226433010436996605236129699564843205065855733868250024048761970

211501639650588258201899642085549804939611

The Frobenius element is given by Eq. (11), where:

X = Y =19977689332165391591174792446457449401947760321021273055515383733481/7

Z = W = − 19977689345910463237518246909307679021587331482569818571002780858907/7

Example 4. By Table 2 for K = Q(
√

7,
√−2), with l = 56 and k = 7:

x0 = 2598994 ≡ 34 mod 84, n = 1, ρ = 3.6438, log r = 511, log p = 931

r =9022494905482440642156104982971858815207530469056747233233268739491473066039292219239167201726

638118449868190013063767741523986037176815281479499089989361

p =2123990466890433381770997315533869062330038580235229400132856200704261835179582741593234260532

2832768615507034012734372791904975600115792770236906989325917343177462816585017087069598844577

018879126319445522756402197057566307655766948839347408923900736910854533045150375678369784389
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The Frobenius element is given by Eq. (19), where:
X = − 25696905011664630705833341687313930844434718089380678968458180995099296363752388806813678716

6925109022918932740112208519677615493671272/3

Y =9540868035283041934919627558174745693150068543223429828831864810964304269787178041064158774558

3932895176493302068835260976463136917395676795/3 = W

Z =1284845250583231535291667084365696542221735904469033948422909049754964818187619440340683935834

62554511459466370056104259838807746835636/3

Example 5. By Table 1 for K = Q(ζ3,
√−6), with l = 24 and k = 12:

x0 = 345544178999371 ≡ 16 mod 147, n = 1, ρ = 3.4870, log r = 386, log p = 673

r =2032491089460688724039963061950528515843117116130102470135684399683393199021902484158830022128

53851518240674936575281

p =4942561683169973784102370422037557441523192508845616436066304742642814180391704748985101035354

5013012861367881998488951953564984807636710392167837727193801811243040731972574701711205346152

400140614733741

The Frobenius element is given by Eq. (14), where:
X = Y =588200066152579158854583283139019284498909436781505965977463407723762779944351429654041129

602047528721/7

Z = W =588200066152578591440340377072067475914169308074137461318144114893941258301910395154905139

480417211818/7

5 Conclusion

We presented a method for producing polynomial families of pairing-friendly
Jacobians of dimension 2. We used different representations of the Frobenius
element in a quartic CM-field from where we derived a system of three equa-
tions in four variables. Using the solutions of this system we constructed families
of 2-dimensional, simple and ordinary Jacobians. Particularly, in this paper we
focused on absolutely simple Jacobians, for which only few examples are known.
The families we presented have the best ρ-values so far in the literature. We
argue though that the strategy we followed in this work can be used to produce
families of non-absolutely simple Jacobians as well. Finally, we provided numer-
ical examples of suitable parameters for a security level of at least 128 bits in
r-order subgroups of a Jacobian J(Fpk) and in the extension field Fpk . More
examples can be derived from our proposed families by using Algorithm2.
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Abstract. We present a new statistical test (GGRTest) which is based
on the generalized gambler’s ruin problem (with arbitrary winning/losing
probabilities). The test is able to detect non-uniformity of the outputs
generated by the pseudo-random bit generators (PRNGs).

We also propose a new method, called BitTracker, of processing bits of
a PRNG. In most of the statistical test-suites, bits are read in 31/32-bit
groups. For many tests (e.g., OPERM) only a few first bits of the group
are taken into account. Instead of “wasting” bits (in some statistical
tests), the method takes into account every single bit of the PRNG’s
output.

1 Introduction

Random numbers have lots of applications, e.g., in physics, simulations, gaming,
gambling, cryptography (e.g., for generating a secret/public key). Pseudorandom
number generators (PRNGs) are the algorithms outputting numbers (bits) which
should be indistinguishable from truly random numbers (bits). We are unable
to prove that a given PRNG returns numbers which are indistinguishable from
truly random ones. All we can do is to invent/design some statistical tests and
to state which PRNGs fail and which do not fail them. The better the PRNG
is, the more tests it should pass.

Particularly, the cryptography requires high quality PRNGs, since the out-
put bits are used e.g., to generate secret and public keys. The straightforward
application of PRNGs is especially visible in the case of stream ciphers. Here
the use of a weak PRNG/stream cipher may immediately lead to breaking the
secrecy [2]. To evaluate the aforementioned quality of PRNGs, a variety of tests
can be applied to their output. They aim at checking if the sequence of num-
bers – or bits, depending on the actual implementation – produced by PRNG
resembles a sequence of elements generated independently and uniformly at ran-
dom. Because of the significance of the problem, lots of testing procedures were
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developed in recent years. Most of them are based on results from the probability
theory: results on bin-and-boxes schemes, results on simple random walks (e.g.,
law of iterated logarithm [19]), duration of gamblers’ ruin game [11], or hitting
time distributions [10]. One can then compare the realization obtained from a
PRNG with what should happen.

A single statistical test checks only some specific property (or few of them, in
the best case) that holds for truly random numbers. If a given PRNG passes the
test, it does not imply that it produces truly random numbers. It only means
that the tested sequence have this particular property. That is why batteries of
tests were created. They run a series of tests on output of a given PRNG. We
should interpret their output as follows: the more tests are passed, the better
the PRNG is. There are some famous collections of tests, e.g., NIST800-90A
Test Suite [4], DieHard tests (considered deprecated), DieHarder [6], or TestU01
tests [12]. The last one by L’Ecuyer and Simard is considered as a state of the
art in the field.

1.1 Related Work

RC4 family. Most of the experiments were conducted on variations of RC4
algorithm, the stream cipher designed by Ronald Rivest back in 1987. RC4 and
its variations are known to have defects: the weaknesses were e.g., shown in
[8]; distributions of some biases were shown in [9]; a famous attack on RC4
implemented in WPA-TKIP was given in [18]; weaknesses of RC4+ (which was
introduced in [16]) were given [3]; in [1] authors introduced the new bias, they
were able to retrieve the RC4 secret key given the state table.

Gambler’s ruin problem. The tests of Kim et al. [11] (titled “Tests of ran-
domness by the gambler’s ruin algorithm”) were based on the expectation and
the variation of the duration of a gambler’s game. Assume initially a gambler
has s dollars and a bank has N − s dollars. At each step the gambler either wins
a dollar with probability p or loses a dollar with the remaining probability. The
game ends when the gambler is broke (reaches 0) or he wins (reaches N). The
expectation and variance of the duration of the game is known in specific cases
(authors’ algorithms A1–A5 and B1–B5, for their algorithms C1–C5 it was not
known earlier). Authors split the output of a PRNG into intervals of some pre-
specified number of bits, each sequence is then treated as a binary representation
of a number from the interval [0, 1]. For the starting point s the PRNG is used
until 0 or N is reached, the whole procedure is repeated 20000 times and a sam-
ple of the mean of the games’ duration is calculated, finally the standard Z-test
is performed. Authors do not rely on a single starting point s, but for N = 300
they start the gambler’s game for each s = 1, . . . , N and they judge the PRNG
depending on for how many starting points it fails. They claim “hidden defects”
in some generators, including commonly used Mersenne Twister generator [14].
However, for each starting point s the same seed is used at each iteration. Thus,
the games cannot be treated as independent. For example, this is one of the
obvious dependencies: if the game started at say 10 finishes at 0 (i.e., losing),
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then so do the games started at 1, . . . , 9. This also translates in obvious way to
game’s duration. The authors were aware that “the Z-values corresponding to
different starting points are highly correlated”, nevertheless they proceeded with
“we can regard a Z-value to each starting point as a separate test result”. The
criticism was raised by Ekkehard and Grønvik in [7], where they baldly pointed
out the mistakes. Moreover, Ekkehard and Grønvik [7] show that tests of Kim et
al. [11] performed properly do not show any defects in Mersenne Twister (and
some other) PRNG.

1.2 Our Contribution

We present two main contributions.

BitTracker. Many random-walk-based tests perform the following:

S1 Split the sequence of bits returned by PRNG into sequences of pre-defined
length (usually 16 or 32-bit length)

S2 Treat each one as an integer or as a number from [0, 1]
S3 Perform some walk (e.g., go left or right) according to the number obtained

in S2 independently of the current state.
S4 Iterate S1–S3, calculate some statistics and compare them to known facts

about the statistic (distribution, expectation etc.).

The main drawback of the above procedure are steps S1 and S3. Imagine
gambler’s ruin problem where at each step we either go left or right with proba-
bility 1/2. Then, treating consecutive 32 bits as a binary notation of a number,
we actually test every 32-nd bit. Of course if we know that the probability is
1/2 we can simply apply 1-bit long sequence. However, such a test can overlook
some dependencies between the bits. We obviate the obstacle by applying as
many bits as is needed (see Sect. 3 on BitTracker) and by using varying prob-
abilities (which depend on the current state). The latter feature also eliminates
the drawback of S3.

Generalized gambler’s ruin test. The second contribution is the new sta-
tistical test. In spirit, our approach is similar to Kim et al. [11], we also use
gambler’s ruin based test. However, there are two main differences:

• we consider a generalized version (with arbitrary winning/losing probabili-
ties);

• our test is based on winning probability (instead of a game duration).

The generalization is following: being at state i : 0 < i < N (for some fixed
N) we go right with probability p(i), go left with probability q(i) and stay with
probability 1 − p(i) − q(i). Then, for each starting point s we calculate winning
probabilities using recent results from [13]. We compare it to simulations’ results.
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Summarizing, we will introduce test (actually, a family of tests) GGRTest
(Generalized Gambler’s Ruin Test) which heavily exploits the results on winning
probability in a generalization of gambler’s ruin problem (Theorem1). There is
a large number of publications introducing a single test which usually tests just
one or few aspects of PRNGs. The new test proposed in this paper shows its
generality – by modifying parameters it can detect different weaknesses. This is
achieved due to the fact that we use varying probabilities p(i), q(i) and we use
“as many bits as needed” via our BitTracker algorithm (see Algorithm 1).

Our family of tests while it is general it still is able to spot a weak crypto-
graphic generators like Spritz or RC4-like generators.

2 Gambler’s Ruin Problem: Explicit Formulas
for Winning Probabilities

Fix N and sequences {p(i)}i=1,...,N−1, {q(i)}i=1,...,N−1 s.t. for i ∈ {1, . . . , N −1}
we have p(i) > 0, q(i) > 0 and p(i) + q(i) ≤ 1. Consider Markov chain X =
{Xk}k≥0 on E = {0, 1, . . . , N} with transition probabilities

PX(i, j) =

⎧
⎨

⎩

p(i) if j = i + 1,
q(i) if j = i − 1,
1 − (p(i) + q(i)) if j = i,

with convention p(0) = q(0) = p(N) = q(N) = 0. For i ∈ {0, . . . , N} define

ρ(i) = P (τN < τ0|X0 = i),

where τk = inf{n ≥ 0 : Xn = k} (note that ρ(N) = 1 and ρ(0) = 0). This is an
extension of classical Gambler’s ruin problem, 1 − ρ(i) is the ruin probability of
a gambler having initially capital i. We have

Theorem 1 ([13], version simplified to 1 dimension). Consider generalized
gambler’s ruin problem: for fixed N the gambler starts with capital 0 ≤ s ≤ N .
Having s dollars he wins 1 with probability p(s) or loses 1 with probability q(s) for
any {p(i)}i=1,...,N−1, {q(i)}i=1,...,N−1 such that p(i) > 0, q(i) > 0, p(i)+q(i) ≤ 1.
Then, the probability of winning is given by

ρ(s) =

s∑

n=1

n−1∏

r=1

(
q(r)
p(r)

)

N∑

n=1

n−1∏

r=1

(
q(r)
p(r)

) . (1)

Remark. Note that for p(r) = p, q(r) = q we recover the result for classical
gambler’s ruin problem (with possible ties)

ρ(s) =

s∑

n=1

(
q

p

)n−1

N∑

n=1

(
q

p

)n−1
=

⎧
⎨

⎩

1−( q
p )s

1−( q
p )N

if p �= q,

s
N if p = q.

(2)
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3 BitTracker: Transforming Bit Strings into Intervals

It is a common practice to interpret a string of 0s and 1s as a binary represen-
tation of fractional part of a real number from the range [0, 1). Such a repre-
sentation has many flaws, for instance, the significance of bits is very biased.
As already mentioned, the typical approach is to split bit string into strings of
equal length and then to treat each one separately as a binary representation of a
number from [0, 1). This is especially critical when the representation is used to
place the real number in one of several intervals. For instance, given a sequence
of bits ‘01101100’ and the interval [0, 0.12), only the first bit is actually used to
determine that the real number defined by the sequence (0.011011002) is within
the given interval.

There are also other cases, when the finite, fixed representation has other
flaws, like intervals with infinite binary representations of their end points (e.g.,
[13 , 2

3 )).
We propose a different method of transforming bit string into numbers from

the range [0, 1). Roughly speaking, the method requires “as many bits as needed”
to determine in which interval it is. Let P = (x0 = 0, x1, x2, . . . , xK = 1) be a
partition of interval [0,1). The result of the method is not a number per se, but
one of the intervals. If bit string is a string of truly random and independent
bits, then the probability of each interval to be selected is equal to its length.
The algorithm is given in Algorithm1.

Algorithm 1. BitTracker
Require: Partition P = (x0 = 0, x1, x2, . . . , xK = 1), bit string B = (b0, b1, . . .).
Ensure: Interval [xi−1, xi) ∈ P determined by B, number of consumed bits i.
1: i = 0, l0 = 0, r0 = 1
2: if ∃ A ∈ P s.t. [li, ri) ⊆ A then
3: return A, i and STOP
4: end if
5: take a bit bi from the bit stream
6: split the interval [li, ri) into two halves [li, mi), [mi, ri) where mi = li+ri

2

7: if bi = 0 then proceed with the left interval: li+1 = li, ri+1 = mi else take the
right interval: li+1 = mi, ri+1 = ri.

8: i := i + 1
9: goto 2

Sample execution of BitTracker for partition P =
(
0,

√
2
2 , 1

)
and bit string

B = 1001110 is given in Fig. 1.

3.1 BitTracker – Every Bit Counts

The overlapping 5-permutations test (OPERM5) takes five consecutive random
(32-bit) numbers and check if orderings of these numbers occur with statistically
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Fig. 1. BitTracker: Sample binary-to-interval conversion: Partition P =
(
0,

√
2
2

, 1
)
,

bit string: B = 1, 0, 0, 1, 1, 1, 0... (three first digits determine the interval)

equal probability. For the OPERM5 test only the most significant bits are taken
into account. If one generates numbers in the form xi,1xi,2 . . . xi,32 where xi,j

are equal 0 and 1 with the same probability for j = 1, . . . , 6 and xi,j = 0 for
i > 6 then the sequence of bits xi would likely pass the test. This is because less
significant bits play little role.

Now, if one applies BitTracker to the sequence and wants to apply the
OPERM5 test, the situation changes.

The OPERMn takes n numbers and returns its relative order, which is then
encoded into one of the possible n! numbers. To perform OPERM5 with Bit-
Tracker on, one can do the following: Divide [0, 1) into [0, 1

n ), [ 1n , 2
n ), . . . , [n−1

n , 1)
and check which interval is selected. – this is the position of the first num-
ber. To tell what is the relative position of the second number: divide [0, 1)
into [0, 1

n−1 ), [ 1
n−1 , 2

n−1 ), . . . , [n−2
n−1 , 1) and use BitTracker to tell which interval is

chosen.
The position of j-th number is determined using the BitTracker on intervals:

[ i
n−j+1 , i+1

n−j+1 ) for i = 0, . . . , n − j.

4 Testing Procedure

4.1 General Approach

Fix N and sequences {p(i)}i=1,...,N−1, {q(i)}i=1,...,N−1 such that p(i) > 0, q(i) >
0, p(i) + q(i) ≤ 1. From Theorem 1 we know the distribution of Y (i) = 1(τN <

τ0|X0 = i). Let Y
(i)
j , j = 1, . . . , n be i.i.d. samples form distribution of Y i. The

law of large numbers states that ρ̂n(i) = 1
n

∑n
j=1 Y

(i)
j (classical Crude Monte

Carlo estimator) converges, as n → ∞, to EY (i) = ρ(i). Moreover, from Central
Limit Theorem we know that

Z(i) =
ρ̂n(i) − EY (i)

√
V ar(Y (i))/

√
n

=
ρ̂n(i) − ρ(i)

√
ρ(i)(1 − ρ(i))

√
n
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has N(0, 1) distribution. Z(i) is often called Z-statistics. Thus, for a given
starting point i we compare Z(i) with the critical value at 99% and 95%. If
|Z(i)| > 2.58 (|Z(i)| > 1.96) we say that the point i “fails” the test at confidence
level 99% (95%), i.e., we mean that the numbers generated by a given PRNG
and used for this point were not random. Finally, we count the number of points
for which test fails and say that the PRNG fails if more than 1% (5%) of the
points failed the test.

Our testing procedure GGRTest(G, N, l, n, {p(i)}, {ρ(s)}) is presented as
Algorithm 2.

Algorithm 2. GGRTest(P,G, N,M, l, n, {p(i), q(i), ρ(i)}i=1,...,N−1)
1: Generate B ← BitGeneration(P, G, M, l) as M l-bit long sequences from the gener-

ator G.
2: for all s ∈ {1, . . . , N − 1} do
3: Run n Gambler’s ruin simulations starting at point s with the one-step proba-

bility of winning (losing) at point x is equal to p(x) (q(x)), using bits of B to
estimate the winning probability:

ρ̂n(s) =
1

n

n∑
k=1

Y
(s)
j,k ,

where Y
(s)
j,k = 1 if the k-th simulation ended with winning and Y

(s)
j,k = 0 otherwise.

4: For obtained ρ̂n(s) calculate Z-statistic:

Z(s) =
ρ̂n(s) − ρ(s)√
ρ(s)(1 − ρ(s))

√
n.

5: Denote Fs = 1 if Z(s) > 2.58 and Fs = 0 otherwise (for confidence level 99%,
for confidence level 95% we set Fs = 1 if Z(s) > 1.96 and Fs = 0 otherwise).

6: end for
7: Calculate F =

∑N−1
s=1 Fs.

8: return F

4.2 Actual Parameters and Testing Procedure

We run GGRTest(P,G, N,M, l, n, {p(i)}i=1,...,N−1, {ρ(s)}s=1,...,N−1) for the fol-
lowing parameters:

• N = 129 – number of starting points,
• M = 1 – number of separate bit sequences,
• l = 235 – length of the sequence B of bits of a given PRNG G (4 GB),
• n = 200000 – number of simulations estimating the winning probability.
• P = “GAMBLER 0001#” – per-run prefix for key derivation function.

The test was run for different generators G and for different gambler’s ruin
games. In fact we consider three different tests T1, T2, T3 which are defined
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by the sequences of the winning probabilities {p(i)}i=1,...,N−1. In all cases we
choose p(i), q(i) such that p(i) + q(i) = 1 for all i. More precisely, the tests are
defined as Algorithms 3, 4, 5.

Algorithm 3. TestT1(P,G, N,M, l, n)
1: For i = 1, . . . , N − 1 set p(i) = 1 − q(i) = 0.48
2: Set the winning probability (the same as the winning probability of the classical

Gambler’s ruin problem) to:

ρ(s) =
1 − (

0.52
0.48

)s

1 − (
0.52
0.48

)N

3: return GGRTest(P, G, N, M, l, n, {p(i), q(i), ρ(i)}i=1,...,N−1)

Algorithm 4. TestT2(P,G, N,M, l, n)
1: For p(i) = i

2i+1
, q(i) = i+1

2i+1
,

2: Set

ρ(s) =

s∑
n=1

n−1∏
i=1

(
i + 1

i

)

N∑
n=1

n−1∏
i=1

(
i + 1

i

) =

s∑
n=1

n

N∑
n=1

n

=
s(s + 1)

N(N + 1)
.

3: return GGRTest(P, G, N, M, l, n, {p(i), q(i), ρ(i)}i=1,...,N−1)

4.3 Bit Derivation

One more thing requires explanation. Namely, the way we “produce” bits B from
a given PRNG G. Recall l = 235 which corresponds to 4 GB.

Subsequently, the simulations are performed in the following way. Being
at point s we apply BitTracker with partition P = (0, p(s), 1) (in our cases
T1–T3 we have p(s) + q(s) = 1) with the output of the PRNG taken as the
input. Tests reuse bits from the output only in case they run out of them (so-
called bit-wrapping). We have found, that for the parameters described as above,
the sequences wrap at most twice.

5 Experimental Results

We applied the procedure described in Sect. 4 to the following PRNGs:

• RC4. The above described RC4 with key of size 256 bits
• RC4-64. The version of RC4 using key of size 64 bits, where first 24 bits

correspond to an IV.
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• RC4+ was introduced in 2008 in [16]. It is a modification of RC4 that intro-
duced much more complex three-phase key schedule algorithm (taking about
3× as long as RC4) and slightly modified generation function.

• RC4A was introduced in 2004 in [17]. It is a modification of RC4 that is based
on two independent internal permutations (states) interleaved in generation
process.

• VMPC was introduced in 2004 in [20]. It is a modification of RC4 that uses
a slightly modified KSA and a PRNG.

• Spritz is a recent (2014) sponge construction by Ronald Rivest that bears
constructional similarities to RC4, see [15] for details. It can be used as ran-
dom bit generator

• Salsa20 which was introduced in 2008 in [5]. The stream cipher is based on
pseudorandom function and ARX (add-rotate-xor) operations.

• AES256-CTR. AES with 256-bit key, counter mode.
• Urandom.
• RandU LCG known to be totally broken.

Algorithm 5. TestT3(P,G, N,M, l, n)

1: For i = 1, . . . , N − 1 set p(i) = i3

i3+(i+1)3
, q(i) = (i+1)3

i3+(i+1)3
.

2: Set

ρ(s) =

s∑
n=1

n3

N∑
n=1

n3

=
s2(s + 1)2

N2(N + 1)2
.

3: return GGRTest(P, G, N, M, l, n, {p(i), q(i), ρ(i)}i=1,...,N−1)

Algorithm 6. BitGeneration(P,G,M, l)
1: for all r in range {1, . . . , M} do
2: Calculate master key Kr = SHA-256(P ||r)
3: The key used for G is computed as λ-byte suffix of Kr, where λ denotes the

length of the PRNG key.
3: Run G to obtain an l-bit long string B[r] = G(Kr)�l.
4: end for
5: return B

In Fig. 2 we present results of one experiment: number of points failing test
means number of starting points for which the (absolute value of) z-statistic was
larger then 2.58 (for confidence level 99%) or 1.96 (for confidence level 95%).
Note that for 128 starting points we should have, on average 1.28 (for conf. level
99%) or 6.4 (for conf. level 95%) failing points.

The z-statistics for chosen PRNGs are presented in Fig. 3. The Z-statistics
for RandU deviated significantly from the others, therefore we placed them in
separate plot.
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Fig. 2. Simulations results for N = 129 and T1–T3. Number of points for which given
test failed.

5.1 The χ2 Test

We performed 31 times the experiment (whose results are presented in Fig. 2)
for T2 and starting points 41–122 (we also excluded randu). Let Oi denotes
number of times (out of 31) for the test failed for i starting points. Note that
each point fails with probability 0.05 (conf. level 95%) or 0.01 (conf. level 99%),
thus the number of failing points has Bin(82, p) distribution (p = 0.05 for conf.
level 95% and p = 0.01 for conf. level 99%). Thus, on average, there should
be Ei = 31

(
82
i

)
pi(1 − p)81−i failing points observed. We can test it using χ̃2

statistics:

χ̃2 =
n0∑

i=1

(Oi − Ei)2

Ei
.

In our experiments the maximal observed value was 12 (i.e., in one of the sim-
ulations there were 12 (for conf. level 95%) failing points (6 for conf. level 99%)
for some specific - Spritz - test), we truncate it to n0 = 13 (conf. level 95%) or
n0 = 7 (conf. level 99%). Thus, the χ̃2 statistic has χ2 distribution with 12 (or 6)
degrees of freedom. The results are presented in Fig. 4. For χ2 Test we excluded
RandU, urandom and included Mersenne-Twister.

6 Summary

We presented a new, general technique called BitTracker – to handle bit
sequences that are about to feed a statistical test. We also proposed and imple-
mented a family of statistical tests which are based on properties of the gen-
eralized gambler’s ruin problem. The preliminary results show that the new
test-family has a potential to spot weaknesses in cryptographic bit generators
(e.g., Spritz).
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Fig. 4. χ2 test for 31 experiments for T2, starting points 41–122.
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Abstract. We take a critical look at established security definitions
for predicate encryption (PE) with public index under chosen-plaintext
attack (CPA) and under chosen-ciphertext attack (CCA). We identify
three different formalizations of key handling in the literature, implicitly
assumed to lead to the same security notion. Contrary to this assump-
tion, we prove that the corresponding models result in two different
security notions under CPA and three different security notions under
CCA. Similarly to the recent results for PKE and conventional key-
encapsulation mechanism (KEM), we analyze subtleties in the security
definitions for PE and predicate key-encapsulation mechanism (P-KEM)
regarding the so-called “no-challenge-decryption” condition. While the
results for PE and PKE are similar, the results for P-KEM significantly
differ from the corresponding results for conventional KEM. As a conse-
quence of our work, we suggest security definitions for PE and P-KEM
under different attack scenarios.

Keywords: Predicate encryption with public index
Key-encapsulation mechanism · Chosen-plaintext attack
Chosen-ciphertext attack

1 Introduction

Over the last decades, cryptographic primitives and schemes considered in mod-
ern cryptography have become more complex. Therefore, it is important that
security models are rigorously studied and made accessible to the cryptographic
community through comprehensive and perspicuous explanations, especially
when these models are translated into new contexts. In a recent work Bellare
et al. [5] have analyzed security definitions for public-key encryption under
chosen-ciphertext attacks, which were assumed to lead to the same security
notion. They proved that these definitions are not all equivalent and that some
of them are too weak. If even these security definitions suffer from weaknesses,
what about new and more involved cryptographic schemes and their security
models, which are often justified by their origin in well-known definitions?

The authors were partially supported by the German Research Foundation (DFG)
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In this paper we look at predicate encryption (PE) with public index and
predicate key-encapsulation mechanism (P-KEM) with public index. On the one
hand, these cryptographic primitives have been extensively studied due to their
usefulness in cryptographic applications. On the other hand, established security
definitions for PE and P-KEM lean to a large extent on the corresponding secu-
rity definitions for PKE and KEM, even though the functionality of predicate-
based schemes is more complex compared to conventional PKE and KEM.

PE with public index (also payload hiding PE) is a relatively new but already
established and well-studied primitive. It can be used to realize fine-grained
access control to data by cryptographic encryption. In a PE scheme for predicate
R the data are encrypted under ciphertext indices cInd, which specify access
requirements and are not confidential. The users hold secret keys with key indices
kInd, which represent their access rights. A user with a secret key for kInd can
reconstruct the message, encrypted under cInd, if the predicate is satisfied by the
indices, that is if R (kInd, cInd) = 1. In turn, P-KEM can be seen as specialized
PE, which is used to encrypt a random bit string. P-KEMs are applied in hybrid
constructions together with symmetric-key encryption schemes.

The study of PE started when Shamir introduced the idea of identity-based
encryption (IBE) [23], a predicate encryption for the equality predicate. The first
fully-functional IBE was presented in [10]. The study of PE for more sophisti-
cated predicates started with [22]. Furthermore, the more general concept of
functional encryption (FE) was introduced in [12].

If we look at the security models previously used in the context of PE, we
recognize that they originate from the security models for IBE (cf. [22]), which
in turn go back to the security models for PKE (cf. [10]). Starting with [10]
the indistinguishability (IND) definition for PKE was adapted and used for IBE
[16–18,24] and for more sophisticated PE [1,3,7,19,20,22,25,26]. Consequently,
in [2] security models for IBE were studied under different attack scenarios.
One of the results of this work was an equivalence proof of semantic secu-
rity definitions and IND-definitions. In contrast, for the more general con-
text of functional encryption the IND-definition was proved not to be suitable
(cf. [12,21]). Surprisingly, and seemingly contradicting the previous results,
in [12] the authors also proved that semantic security can not be achieved even for
IBE. This impossibility result was identified in [4,6] as a consequence of the so-
called key-revealing selective-opening attacks (SOA-Ks), which were implicitly
covered by the semantic security definitions of [12,21], but were not considered
in [2]. The analysis of [4,6,12,21] was restricted to the CPA attack scenario.

Main Contributions. In this paper we use indistinguishability of encryption
under CCA as our basic security model. For a proof that semantic security and
indistinguishability of encryption under CCA are equivalent for PE as long as
the SOA-Ks are not considered, we refer to the full version of this work [8]. This
equivalence result is not surprising, but closes the gap between [2] and [4,6,12,21]

How to handle user secret keys? Whereas in the context of conventional PKE
there is only a single secret key in question, in PE schemes there are many user
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secret keys generated from the master secret key by a trusted authority. Hence,
the authority manages access to the encrypted data. Several users may hold
different keys for the same key index. Already security definitions for IBE [10]
explicitly prevent user collusion and formalize this by an additional key genera-
tion oracle. We identify three different formalizations for PE regarding the user
secret keys in the literature and name these as follows:

One-Key model (OK-model)
One-Use model (OU-model)
Covered-Key model (CK-model).

In the first two models the adversary (denoted by A) has access to the oracles
KGen(·) and Dec(·, ·), when the CCA scenario is considered. For the first oracle
A specifies a key index and receives a secret key for this key index. For the
second oracle A specifies a ciphertext as well as a key index, and the ciphertext
is decrypted using a secret key for the specified key index. The OK-model and
the OU-model differ in the handling of the user secret keys in these oracles. In
the OK-model a unique secret key for kInd is generated and stored if this index
is submitted by A for the first time. This user secret key is used to answer all
oracle queries related to kInd. In turn, in the OU-model the challenger generates
a new secret key for every key generation query and for every decryption query.
Hence, every generated user secret key is used only once. Under CCA the OK-
model has previously been used e.g. in [10,16,25,26] and the OU-model has
previously been used e.g. in [11,17]. The CK-model has previously been used
in [7]. In this model the user secret keys are generated and numbered in the
co-called covered key generation oracle CKGen(·). The adversary can then ask
to reveal the generated keys. For decryption queries A specifies the number of
the secret key which has to be used for decryption. This models the fact that
different keys, even for the same key index, are held and used by different users
and an adversary might be able to realize chosen-ciphertext attacks on these
users and their secret keys (cf. [7]).

The three identified models have previously been used and most researcher
seem to think they refer to the same security notion. However, already in [9]
Boneh et al. shortly discuss the OK-model and the OU-model for the case that
the key generation algorithm in IBE is probabilistic. They state that “The result-
ing security definitions [. . . ] seem incomparable, and there does not appear to be
a reason to prefer one over the other.” For PE we prove that under CCA the
three security notions are different and that the security notion achieved from
the CK-model is the strongest one. The weakness of the OK-model is not sur-
prising, since already under CPA there are OK-secure IBE schemes which are
not OU-secure (cf. [11,13]). The weakness of the OU-model and its relation to
the CK-model under CCA is more surprising. Except for [7], the CK-model has
not been considered and hence, we examine the CK-security of known OK/OU-
secure PE schemes.

When and how should a challenge decryption be disallowed? We consider this
question in the context of PE and P-KEM following the results in [5] for PKE
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and KEM. While it is not surprising that we can prove similar results for PE,
the situation is different when KEMs are considered. Namely, in the context
of conventional KEM six different security notions were identified and proved
to be equivalent in [5]. First of all, we consider two additional security notions
(due to the additional key generation oracle) and prove that four of the eight
security definitions are too weak in general. The other four notions are in fact
equivalent, although some reductions between these notions are not tight. As
a consequence of our results, in the context of P-KEM one can disallow the
decapsulation query on the challenge encapsulation only in the second query
phase and can, equivalently, model this restriction both in the penalty-style
(SP) and in the exclusion-style (SE). In contrast to this result, the first query
phase can be completely dropped for conventional KEM [5].

Conclusion. Summarizing our results, under chosen-ciphertext attack we suggest
to use the CK-model to handle user secret keys. Under chosen-plaintext attack
the simpler OU-model is appropriate. This suggestion holds for PE as well as
for P-KEM. Finally, under CCA the SE-model is the most advisable model to
handle the no-challenge-decryption condition for both PE and P-KEM.

Organization. In Sect. 2 we present definitions of PE and P-KEM. Section 3 con-
tains indistinguishability templates for security definitions of PE and P-KEM.
Based on these templates we look at different formalizations regarding handling
of user secret keys in Sect. 4. Finally, in Sect. 5 we consider security notions orig-
inating from restrictions of adversaries to query the decryption of the challenge
ciphertext.

2 Preliminaries

We denote by α := a the assignment of the value a to the variable α. Let X be
a random variable on a finite set S. We denote by [X] the support of X. This
notation can be extended to probabilistic polynomial time (ppt) algorithms, since
every ppt algorithm A on input x defines a finite output probability space which
we denote by A (x). That is, [A (x)] denotes the set of all possible outcomes of
A on input x. We write α ← X to denote the sampling of an element from S
according to the distribution defined by X (y ← A (x) for ppt algorithms). We
also write α ← S when sampling an element from S according to the uniform
distribution.

2.1 Predicate-Based Schemes with Public Index

Let Ω, Σ be arbitrary sets. A predicate family RΩ,Σ is a set of binary relations
RΩ,Σ =

{
Rκ : Xκ × Yκ → {0, 1}}

κ∈Ω×Σ
, where Xκ and Yκ are sets called the

key index space and the ciphertext index space of Rκ, respectively. The following
conditions must hold:

– Membership test for Xκ: There exists a polynomial-time algorithm which on
input (κ, kInd) ∈ (Ω × Σ) × {0, 1}∗ returns one if and only if kInd ∈ Xκ.
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– Membership test for Yκ: There exists a polynomial-time algorithm which on
input (κ, cInd) ∈ (Ω × Σ) × {0, 1}∗ returns one if and only if cInd ∈ Yκ.

– Easy to evaluate: There exists a polynomial-time algorithm which on input
(κ, kInd, cInd) ∈ (Ω × Σ) × Xκ × Yκ returns Rκ (kInd, cInd).

For example, in key-policy ABE Xκ is a set of Boolean formulas φ over variables
x1, . . . , xn, set Yκ is the power set of the xi’s, and Rκ (φ, γ) = 1 ⇔ φ(γ) = 1
(xi ∈ γ for γ ∈ Yκ means xi = 1). Let κ = (des, σ). Indices des ∈ Ω specify
some general description properties of the corresponding predicates (e.g. the size
of γ in the example above might be restricted), and indices σ ∈ Σ specify the
domains of computation which depend on the security parameter (e.g. Zp).

Definition 2.1. A predicate key encapsulation mechanism with public index Π
for predicate family RΩ,Σ and family of key spaces K = {Kλ}λ∈N

consists of
four ppt algorithms:

Setup
(
1λ,des

) → (msk,ppκ): Setup algorithm generates a master secret key
msk and public parameters ppκ for index κ = (des, σ) ∈ Ω × Σ.

KeyGen
(
1λ,ppκ,msk, kInd

) → sk: Key generation algorithm outputs a user
secret key sk for key index kInd.

Encaps
(
1λ,ppκ, cInd

) → (K,CT): Encapsulation algorithm outputs a key K ∈
Kλ and an encapsulation CT of K under ciphertext index cInd.

Decaps
(
1λ,ppκ, sk,CT

) → K: Decapsulation algorithm outputs a key K ∈ Kλ

or the error symbol ⊥ /∈ Kλ.

Correctness: For every security parameter λ, every des ∈ Ω, every (msk,ppκ) ∈[
Setup

(
1λ,des

)]
, every kInd ∈ Xκ, cInd ∈ Yκ which satisfy Rκ (kInd, cInd) = 1,

and every (K,CT) ∈ [
Encaps

(
1λ,ppκ, cInd

)]
it must hold

Pr
[
Decaps

(
1λ,ppκ,KeyGen

(
1λ,ppκ,msk, kInd

)
,CT

)
= K

]
= 1.

We assume for convenience that the public parameters ppκ have length at
least λ, and that λ and κ ∈ Ω×Σ can be efficiently determined from ppκ. Hence,
we avoid to write 1λ as input of the algorithms except for the setup algorithm.
Furthermore, if the public parameters are fixed and obvious from the context,
we also avoid to write ppκ as input of the algorithms. The definition of predicate
encryption for message space M is as usual. The algorithms Encaps and Decaps
are replaced by algorithms Enc and Dec, respectively.

3 Indistinguishability Templates for PE and P-KEM

Next, we define the indistinguishability templates for PE as well as for P-KEM.
These templates are based on the usual formalization of indistinguishabiity
experiments for encryption schemes (see for example [15]). In these templates
we abstract from concrete attack scenarios, denoted by ATK. Hence, the oracles
remain unspecified for the time being. Furthermore, for later purposes we use a
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IND-PE
ATK
Π,A (λ, des) :

b ← {0, 1} ; (msk, ppκ) ← Setup
(
1λ

, des
)
;

cInd∗
, m0, m1, St

) ← AOATK
1 (·)

1

(
1λ

, ppκ

)
;

Output b ∧ BadQuery if A1 outputs ⊥;

CT∗ ← Enc ppκ, cInd∗
, mb

)
;

b
′ ← AOATK

2 (·)
2 CT∗

, St
)
;

Output b = b
′ ∧ BadQuery;

P-KEM
ATK
Π,A (λ, des) :

b ← {0, 1} ; (msk, ppκ) ← Setup
(
1λ

, des
)
;

cInd∗
, St

) ← AOATK
1 (·)

1

(
1λ

, ppκ

)
;

Output b ∧ BadQuery if A1 outputs ⊥;

K0,CT∗) ← Encaps ppκ, cInd∗)
; K1 ← Kλ;

K∗ := Kb;

b
′ ← AOATK

2 (·)
2 K∗

,CT∗
, St

)
;

Output b = b
′ ∧ BadQuery.

Fig. 1. Indistinguishability experiments for PE and P-KEM.

so-called BadQuery event in the experiments, which can be utilized to specify
restrictions of adversarial queries. The convention is that the BadQuery event
occurs if an adversary violates these restrictions.

Let Π be a PE scheme for predicate family RΩ,Σ and message space M.
An indistinguishability adversary A = (A1,A2) against Π is a pair of algorithms
with oracle access such that A1, given correctly generated public parameters ppκ,
outputs the error symbol ⊥ or a tuple (cInd∗,m0,m1, St) satisfying cInd∗ ∈
Yκ, m0,m1 ∈ M and |m0| = |m1|. Algorithm A2 always outputs a bit. The
ciphertext index cInd∗ is called the challenge ciphertext index. The set of IND-
adversaries against Π is denoted by AIND

Π,PE or just by AIND
PE , if Π is obvious

from the context. The set AIND
Π,P-KEM of adversaries against P-KEM scheme Π is

defined similarly except for the output of A1, which does not contain messages.
The indistinguishability experiments are presented in Fig. 1, where in the case
of P-KEM the family of key spaces of Π is denoted by K = {Kλ}λ∈N

.
Differently from the usual indistinguishability experiments for PE, we allow

A1 to abort using the error symbol ⊥. We explain this modification next. In
security definitions for PE the adversary is allowed to query secret keys, which
models collusion attacks. We call a key index kInd a corrupted key index, if A
queries a key for kInd. A is prohibited to corrupt kInd if R (kInd, cInd∗) = 1,
where cInd∗ is the challenge ciphertext index. To the best of our knowledge, in
all previous security definitions for PE this restriction has always been modeled
in exclusion-style (in terms of [5]). That is, adversaries which violate this restric-
tion are not considered at all. Due to our modification, we can formally justify
this restriction for the first query phase. Furthermore, we remark that A cannot
increase her advantage (defined in the following section) using the error symbol
⊥ as output after the first query phase, but this behavior is also not penalized.
Indeed, as long as A1 does not cause the event BadQuery, the output of the
experiment is 1 with probability 1/2 in the case when A1 outputs ⊥.

4 Handling of User Secret Keys

Whereas in the context of conventional PKE there is only a single secret key in
question, in predicate-based schemes there are many user secret keys generated
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Table 1. Oracle specification for different models under CCA attacks.

OK OU CK
KGen (kInd): KGen (kInd): CKGen (kInd):

If (kInd, sk) ∈ Sk return sk; sk ← KeyGen (msk, kInd); sk ← KeyGen (msk, kInd);
sk ← KeyGen (msk, kInd); Return sk; i++; Sk.add ((i, sk)) ;
Sk.add ((kInd, sk)); Decaps (CT, kInd): Open (i):
Return sk; sk := KGen (kInd) Return sk from (i, sk) ∈ Sk;

Decaps (CT, kInd): Return Decaps (sk,CT); Decaps (CT, i):
sk := KGen (kInd); Return Decaps (sk,CT),
Return Decaps (sk,CT); if (i, sk) ∈ Sk;

Sk contains all keys which have been generated by KGen / CKGen.

from the same master secret key. Actually, several users may hold different keys
for the same key index. The goal of this section is to consider different ways
of handling user secret keys in security experiments. We identify three different
formalizations in the literature and name these as follows: one-key model (OK-
model), one-use model (OU-model), and covered key model (CK-model). The
oracles for these models under CCA attacks are presented in Table 1. As men-
tioned in the previous section we can assume w.l.o.g. that A never corrupts a key
index kInd if R (kInd, cInd∗) = 1. Hence, in this section we use the BadQuery
event to penalize A2 for a decapsulation query on CT∗ if R (kInd, cInd∗) = 1 for
the challenge ciphertext index cInd∗ and the key index kInd specified for this
decapsulation query. Under CPA attacks the decapsulation oracle is dropped.

In the OK-model the challenger generates and stores a unique secret key for
kInd, if this index is submitted by A for the first time. This user secret key is
used to answer all oracle queries related to kInd. In particular, the oracle query
KGen(kInd) always results in the same key. The OK-model was previously used
e.g. in [10,16,25,26]. In the OU-model the challenger generates a new secret
key for every query and the generated key is used only once. This model was
previously used e.g. in [11,17]. In the CK-model the adversary specifies not
only the key indices, but also the keys which are used to answer the decryption
queries. This is formalized using an additional covered key generation oracle. The
CK-model reflects the fact that users hold specific secret keys and use their keys
for decryption. Hence, adversaries realizing chosen ciphertext attacks might not
only know the access rights of the users (that is, the key indices of their keys),
but could also exploit the fact that the same secret key is used several times.
The CK-model was previously used in [7].

In this section, we prove that under CCA attacks the OK-model and the
OU-model are weaker than the CK-model (cf. Fig. 2). We notice that using the
CKGen oracle and the Open oracle we can simulate the behavior of every
adversary in the other two models. Hence, CK-security implies OK-security and
OU-security. Furthermore, under CPA the CK-model and the OU-model are
equivalent due to the absence of the decryption oracle. The weakness of the OK-
model under CPA can be argued from the corresponding result under CCA. All
mentioned results hold for PE as well as for P-KEM. We show the separation
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A barred arrow is a separation. A dashed arrow denotes obvious implication.

Fig. 2. Relation between different security models for PE and P-KEM under CCA
attacks on the left and under CPA attacks on the right.

results for P-KEM, since the constructions in the proofs are a bit more involved
in this case.

In order to consider the relations between the introduced security models
MOD ∈ {OK,OU,CK}, we define sets of adversaries AMOD

P-KEM. We replace the
generic oracles available for A ∈ AIND

P-KEM by oracles defined in Table 1. The
corresponding security experiments are denoted by P-KEMATK,MOD

Π,A (λ,des).

Definition 4.1. Let MOD ∈ {OK,OU,CK}, ATK ∈ {CPA,CCA}, and RΩ,Σ

be a predicate family. A P-KEM Π with public index for RΩ,Σ is called secure in
model MOD under attack ATK (also MOD-ATK-secure) if for every des ∈ Ω and
every ppt adversary A ∈ AMOD

P-KEM, the advantage Adv-P-KEMATK,MOD
Π,A (λ,des)

of A defined by 2 · Pr
[
P-KEMATK,MOD

Π,A (λ,des) = 1
]

− 1 is negligible.

In the following subsections we also write MOD-secure instead of MOD-ATK-
secure, when the attack scenario is obvious from the context.

4.1 OK-Security Does Not Imply OU-Security and CK-Security

In this subsection we construct an OK-secure scheme which is neither OU-secure
nor CK-secure. We start from an OK-secure scheme and assume existence of
pseudorandom functions (PRFs) [14].

Theorem 4.1. Let ATK ∈ {CPA,CCA}, and PRF be a family of PRFs. Sup-
pose Π is an OK-ATK-secure P-KEM for predicate family RΩ,Σ. Then, there
exists an OK-ATK-secure P-KEM scheme Π′ for RΩ,Σ which is neither OU-
ATK-secure nor CK-ATK-secure.

Proof. Let 〈·〉 be any canonical representation of the master secret keys of
scheme Π. W.l.o.g. we assume that for every des ∈ Ω and every (msk,ppκ) ∈[
Setup

(
1λ,des

)]
it holds |〈msk〉| = MKLen (λ) for some polynomial MKLen(·).

Π′ is the same as Π with two extensions. The master secret key is extended by
PRF f : Xκ 	→ {0, 1}MKLen(λ). Every secret key is extended by the value rand
which takes the value of f (kInd) or the value of f (kInd) ⊕ 〈msk〉 each with
probability 1/2.
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Scheme Π′ is trivially broken in the OU-model and in the CK-model, where
the adversary can get several keys for the same key index and hence, learns msk.
At the same time Π′ remains OK-secure, since the adversary receives for every
kInd either f (kInd) or f (kInd) ⊕ 〈msk〉 and hence, due to the property of the
PRF the values rand are useless for A. ��

The construction in the proof reveals the weakness of the OK-model even
though the scheme is artificial. Namely, the OK-model does not cover the fact
that several keys for the same key index exist. At least potentially, user secret
keys for the same key index can leak more information about the master secret
key than user secret keys for different key indices. Hence, already under CPA the
OK-model makes unwarranted restrictions of adversarial abilities which might
cause security issues. In [11,13], the authors present CPA-secure IBE schemes
and explicitly prevent generation of different user secret keys for the same iden-
tity. For these purposes the master secret key is extended by a PRF F and
the user secret key for kInd is generated using random bits F (kInd). The basic
schemes without this modification are still secure in the OK-model, but are
insecure in the OU-model. It is important to observe that this generic technique
to achieve OU-security is insufficient if schemes with additional functionality
such as key delegation are considered. Namely, delegation of the user secret keys
requires generation of new (more restrictive) keys by the users.

4.2 OU-Security Does Not Imply OK-Security and CK-Security
Under Chosen-Ciphertext Attack

In this subsection we consider only chosen-ciphertext attacks and construct an
OU-secure scheme which is neither OK-secure nor CK-secure.

Theorem 4.2. Suppose Π is an OU-CCA-secure P-KEM for predicate family
RΩ,Σ and family of key spaces K = {Kλ}. Then, there exists an OU-CCA-secure
P-KEM scheme Π′ for RΩ,Σ and K which is neither OK-CCA-secure nor CK-
CCA-secure.

Proof. Let Kλ = {0, 1}KLen(λ) for polynomial KLen (λ). In the construction
of Π′ we assume w.l.o.g. that for all λ, all (msk,ppκ) ∈ [

Setup
(
1λ,des

)]
, all

kInd ∈ Xκ, and all sk ∈ [KeyGen (msk, kInd)] it holds |〈sk〉| = KLen (λ), where
〈·〉 is any canonical representation of the user secret keys. P-KEM scheme Π′ is
as follows:

– Setup′ (1λ,des
)

= Setup
(
1λ,des

)
.

– KeyGen′ (msk, kInd): generate sk ← KeyGen (msk, kInd), choose a bit string
r ← {0, 1}|〈sk〉|, output sk′ := (sk, r).

– Encaps′ (cInd): generate (CT,K) ← Encaps (cInd) set CT′ = 00‖CT and
output

(
CT′,K

)
.

– Decaps′ (sk′,CT′): parse sk′ = (sk, r) and CT′ = b1b2‖CT where b1, b2 ∈
{0, 1}. Output Decaps (sk,CT) if b1 = b2 = 0; output r if b1 = 1 ∧ b2 = 0;
output r ⊕ 〈sk〉 if b1 = b2 = 1; and output ⊥ otherwise.
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Π′ is OU-secure since using the decapsulation oracle the OU-adversary will be
able to learn either r or r ⊕ 〈sk〉 which on their own are useless. This is due to
the fact that every key is used only once in OU-model. In the other two security
models the adversary can get every user secret key using only two decapsulation
queries and can trivially break the scheme. ��

Even though the scheme Π′ in the proof is artificial, it reveals the main
weakness of the OU-model under CCA. Namely, this model does not ensure
that the decapsulation oracle does not leak partial information about the user
secret key if queried with an ill-formed encapsulation. One general technique to
achieve CK-security from OU-secure schemes is to rerandomize the user secret
key for every decapsulation. However, schemes considered in the next subsection
achieve CK-security without this costly modification.

4.3 Discussion and Recommendation

As mentioned in the introduction to this section most known PE schemes are
proved secure in the OK-security model or in the OU-security model. The rela-
tion between OK-security and OU-security under CPA is quite simple. Hence,
in this section we examine the CK-CCA-security of several known schemes.

It is important to observe that the correctness property of PE ensures that
decryption of a correctly generated ciphertext using a proper key always results
in the correct message. In contrast, for an ill-formed ciphertext decryption using
different keys for the same key index might result in different outputs, which
matters in the CK-security model. Many CCA-secure schemes perform consis-
tency checks for the ciphertexts during decryption, which allow us to argue about
their CK-security. However, for most known PE schemes for involved predicates
the correct form of the ciphertexts with respect to the encryption algorithm
cannot be efficiently checked. Hence, consistency checks do not provide a generic
method to achieve CK-security.

In the IBE scheme from [10] keys are unique by construction and hence, all
three security notions are identical for this scheme. But usually IBE schemes do
not have unique user secret keys (cf. [16,17,24]). In the basic scheme from [16]
ill-formed ciphertexts are explicitly rejected by the decryption algorithm and
the output is independent of the used key. The second scheme from [16] uses
fresh randomness during the decryption and rejects ill-formed ciphertexts with
overwhelming probability independently of the used key. The schemes in [17]
reject ill-formed ciphertexts with overwhelming probability due to the authenti-
cated symmetric encryption. Furthermore, the generic CPA-to-CCA transforma-
tions for attribute-based encryption (ABE) [25] and for predicate encryption [26]
require the existence of verification algorithms which ensure that the output
of the decryption algorithm is independent of the used secret key. Hence, all
schemes considered so far are secure in the CK-security model. For the schemes
from [11,20,25] it is not obvious how to argue from the original proofs whether
the CK-security notion is satisfied or not. We leave this as an open question.
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Due to the results of this section we encourage to use the CK-model under
CCA in order to specify the security guarantees of the schemes precisely. If CPA
attacks are considered we recommend to use the simpler OU-model.

5 When and How to Restrict Challenge Decryptions

Let us briefly recall four security notions for PKE identified and formalized
in [5]. There are two dimensions in the definition of CCA-security regarding the
restriction of adversaries to query the decryption of the challenge ciphertext.
The first dimension specifies the style of restrictions, or rather how these queries
are disallowed. The authors differentiate between the penalty style definition
(denoted by P) and the exclusion style definition (denoted by E). So far we
have used the former style in this work. That is, an adversary that violates
restrictions of the security experiment is penalized at the end of the experiment
(we model this using the BadQuery event). In the exclusion style definition, the
set of adversaries is restricted from the beginning such that for every considered
adversary the probability that the restrictions are violated is zero. Furthermore,
one can disallow the adversary to query the decryption of the challenge ciphertext
only in the second query phase (denoted by S) or in both query phases (denoted
by B). This results in four security notions denoted by SP, SE, BP, and BE. For
example, in the BP-model the output of the experiment is defined to be zero
(adversary looses) if A queries the decryption of the challenge ciphertext CT∗

in the first or in the second query phase. In contrast, in the BE-model we do not
consider adversary A, if the probability that A violates the restriction is non-
zero. In order to prove that BE-security implies BP-security we have to show
that given an adversary A with non-negligible advantage in the BP-model we can
construct an adversary A′ with non-negligible advantage in the BE-model. This
is a non-trivial task, since in the first query phase the challenge ciphertext is not
known. In contrast, SE-security trivially implies SP-security. Finally, security in
a penalty style model implies security in the corresponding exclusion style model
by design.

For PE, we can prove the same relations between the mentioned notions as for
PKE which is not surprising and was stated without proof for IBE schemes in [5].
We refer to the full version [8] for details. For conventional KEMs two additional
notions are considered in [5]. Namely, the first query phase can be completely
dropped mainly due to the fact that the adversary cannot influence the generated
challenge. This results in two additional security models denoted by OP and OE,
where “O” stands for “One phase”. For conventional KEM all six security notions
are equivalent [5]. However, we show that P-KEM substantially differ from KEM,
since the adversary might be able to influence the ciphertext index of the target
encapsulation. We prove that, due to this property, the corresponding security
notions are not all equivalent. First of all, because of the key generation oracle
we consider two additional security notions, where the adversary has access to
this oracle in both phases, but the decapsulation oracle is available only in the
second query phase. The corresponding penalty style security model is denoted
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Fig. 3. Relation between different security notions for P-KEM.

by OdP and the exclusion style model is denoted by OdE. Here “Od” stands for
“One decapsulation” phase.

We prove that the OdE and the OdP security notions are weaker than the BE
security notion (cf. Fig. 3). The one-phase security notions OE and OP are even
weaker. We also prove that the other four security notions (SP, SE, BP, and BE)
are equivalent for P-KEM. Nevertheless, the reductions are not tight. The main
difference between KEM and P-KEM is that whereas security of conventional
KEM implies smoothness [5], this is not the case for P-KEM. Rather, BE-security
implies that every ppt algorithm has only a negligible advantage in finding a
ciphertext index with only few possible encapsulations. We call such a ciphertext
index a weak ciphertext index.

The CCA-security experiment for all models is defined in Fig. 4. The oracles
are as defined in Table 1 for CK-model, with restrictions of adversaries for every
model as explained above (see the full version for the formal definition). Fur-
thermore, we refer to the full version [8] for the separation result between OE
and OdE.

OdE �⇒ BE. Compared to BE-adversaries OdE-adversaries do not make decap-
sulation queries in the first query phase. Consider a predicate family R of prefix
predicates with Xκ = Yκ = {0, 1}≤n, where n = 2 ·λ, that is Rκ (kInd, cInd) = 1
if and only if kInd is a prefix of cInd. Note that CCA-secure P-KEM for R can be
realized from hierarchical IBE [18]. We additionally require an injective one-way
function family F (see e.g. [14] for formal definitions). Injectivity of F simplifies
the proof, but is not necessary.

Theorem 5.1. Suppose F is a family of injective one-way functions and Π is an
OdE-secure P-KEM for predicate family R and a family of key spaces K. Then,
there exists a P-KEM Π′ for R and K which is OdE-secure but not BE-secure.
In particular, for every des ∈ Ω and every ppt A ∈ AOdE

Π′,P-KEM there exist ppt
adversaries B,B′ ∈ AOdE

Π,P-KEM and a ppt inverter I for F such that

Adv-P-KEMCCA,OdE
Π′,A (λ,des) ≤ Adv-P-KEMCCA,OdE

Π,B (λ,des) + Adv-InvF,I (λ)

+ 4 · λ · Adv-P-KEMCCA,OdE
Π,B′ (λ,des) .
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P-KEMCCA,MOD
Π,A (λ,des) :

b ← {0, 1} ;S1, S2, Sk ← ∅; (msk, ppκ) ← Setup
(
1λ, des

)
;

(cInd∗, St) ← ACKGen(·),Open(·),Decaps1(·,·)
1

(
1λ, ppκ

)
;

Output b if the output of A1 is ⊥;

(K0,CT∗) ← Enc (ppκ, cInd∗) ; K1 ← Kλ; K∗ := Kb;

b′ ← ACKGen(·),Open(·),Decaps2(·,·)
2 (K∗,CT∗, St) ;

Output : MOD ∈ {SE,BE,OdE,OE} : return b′ = b;

MOD ∈ {SP,OdP,OP} : return b′ = b ∧ (CT∗ /∈ S2) ;

MOD = BP : return b′ = b ∧ (CT∗ /∈ S1 ∪ S2) .

Si contains all encapsulations submitted to Decapsi.

Fig. 4. CCA-security experiment for different security notions of P-KEM.

Proof. Assume w.l.o.g. that K = {Kλ}λ∈N
, Kλ = {0, 1}λ and that the encapsu-

lations under cInd are of the form (cInd, ct). Π′ constructed from Π as follows:

Setup′ (1λ,des
)
: Choose (ppκ,msk) ← Setup

(
1λ,des

)
, r = (r1, . . . , rλ) ←

{0, 1}λ. Set cIndw := 1λ‖r and for all i ∈ [λ] denote kIndi = cIndi = 1i.
For every i ∈ [λ] generate (CTi,Ki) ← Encaps

(
1λ, cIndi

)
until the i’th bit of

Ki is equal ri. Choose Kw ← Kλ, f ← F , and compute Y := f (r). Output
msk and pp′

κ := (ppκ, f,Kw, Y,CT1, . . . ,CTλ).
KeyGen′ (pp′

κ,msk, kInd): Output sk ← KeyGen (ppκ,msk, kInd).
Encaps′ (pp′

κ, cInd): If cInd = 1λ‖r′ and f (r′) = Y output Kw and CT′ =
1‖ (

cInd, 1λ
)
. Otherwise compute (K,CT) ← Encaps (ppκ, cInd) and output

K and CT′ := 0‖CT.
Decaps′ (pp′

κ,CT′, sk
)
: Parse CT′ = b‖ (cInd, ct). Output Kw if b = 1, ct =

1λ, cInd = 1λ‖r′, and f (r′) = Y . If b = 1 output ⊥. Otherwise output
Decaps (ppκ, (cInd, ct) , sk).

Obviously, Π′ is not BE-secure, since the weak ciphertext index cIndw = 1λ‖r
can be revealed using the decapsulation oracle on CTi’s.

To show that Π′ is OdE-secure, observe that, informally, the OdE-security
of Π ensures that an OdE adversary against Π′ cannot learn information from
CTi ∈ pp′

κ in the first query phase without querying a key for a prefix of cIndλ.
However, if A queries such a key, she cannot use cIndw for the challenge anymore.
Next we sketch how to turn this intuition into a formal proof that Π′ is OdE-
secure. Given A = (A1,A2) ∈ AOdE

Π′,P-KEM we construct B = (B1,B2) ∈ AOdE
Π,P-KEM

which extends the given public parameters, simulates A and exploits her success
probability except for the case that A1 outputs cInd∗ = cIndw. Then, we prove
that the probability for cInd∗ = cIndw is negligible. Namely, we construct an
inverter I for F , which given the challenge (f, Y ) generates the public parameters
as defined in the scheme except for {CTi}i∈[λ] computed by Encaps

(
1λ, cIndi

)
.
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I wins if A1 outputs the challenge index cInd∗ = cIndw = 1λ‖r′, f (r′) = Y .
The last step is to prove that the probability for cInd∗ = cIndw in the real
experiment and in the experiment with public parameters as generated by I
is the same except for negligible probability. For this step we consider hybrid
distributions, one for each modification of a single CTi which results in the
reduction algorithm B′. ��
BE ⇒ SE. Finally we state our result that BE-security implies SE-security for
P-KEMs. A proof for this result is given in the full version [8]

Theorem 5.2. Suppose Π is a BE-secure P-KEM for predicate family RΩ,Σ.
Then, Π is SE-secure. In particular, for every A = (A1,A2) ∈ ASE

P-KEM and
every des ∈ Ω there exist A′,A′′ ∈ ABE

P-KEM such that

Adv-P-KEMCCA,SE
Π,A (λ,des) ≤ (l + 1) · Adv-P-KEMCCA,BE

Π,A′ (λ,des)

+ l ·
√

2 · (l + 1) · Adv-P-KEMCCA,BE
Π,A′′ (λ,des) ,

where l = l (λ,des) is the upper bound for the maximum number of decapsulation
queries of A1 in P-KEMCCA,SE

Π,A (λ,des).

Even for smooth schemes the reduction given by this theorem is not tight.
Namely, the security guarantees linearly decrease in the number of decapsu-
lation queries of adversary in the first query phase even for smooth schemes. In
contrast, the corresponding reduction for conventional KEMs from [5] is tight.

Summarizing our results, we see that the security notions SP, SE, BP,
and BE are equivalent for P-KEMs. But some of the reductions are tight, e.g.
Theorem 5.2. For the implication BP ⇒ SP a tight reduction can be presented
for smooth schemes. To the best of our knowledge all practical predicate encryp-
tion schemes are smooth and hence, we could also use the BP-model for these
schemes. Since the probability for the event CT∗ ∈ S1 can always be estimated
by l ·SmthΠ (λ,des), we do not really get any advantage from this model. Hence,
we recommend to use the SE-model.
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Abstract. In this paper we show that it is possible to extend the frame-
work of Persichetti’s Nierreiter-based KEM [11] and create a secure KEM
based on the McEliece protocol. This provides greater flexibility in the
application of coding theory as a basis for cryptographic purposes.

1 Introduction

A Hybrid Encryption scheme is a cryptographic protocol that uses public-key
encryption as means to securely exchange a key, while delegating the task of
encrypting the body of the message to a symmetric scheme. The public-key
component is known as Key Encapsulation Mechanism (KEM). The first code-
based KEM, utilizing the Niederreiter framework [9], was presented by Per-
sichetti in [11] and successively implemented in [3]. In this paper, we expand on
Persichetti’s work and prove that if we use the McEliece approach [7] we are
still able to obtain a secure KEM. This is a novel construction, with a great
potential impact, especially considering NIST’s recent call for papers for secure
post-quantum primitives [1].

2 Preliminaries

2.1 The McEliece Cryptosystem

We consider here a more “modern” version compared to McEliece’s original cryp-
tosystem [7]. In the description that we use (Table 2, AppendixA), we consider
families of codes to which is possible to associate an efficient decoding algorithm;
we denote this with DecodeΔ, where Δ is a description of the selected code that
depends on the specific family considered. For instance, in the case of binary
Goppa codes, the associated algorithm is Patterson’s algorithm [10] and Δ is
given by a Goppa polynomial g(x) and its support (α1, . . . , αn). For MDPC
codes [8], decoding is given by Gallager’s bit-flipping algorithm [6] and Δ is a
sparse parity-check matrix H for the code. Also, we denote with Wq,n,w the set
of words of Fn

q with Hamming weight w.
The security of the scheme follows from the two following computational

assumptions.
c© Springer International Publishing AG 2017
J. Blömer et al. (Eds.): MACIS 2017, LNCS 10693, pp. 454–459, 2017.
https://doi.org/10.1007/978-3-319-72453-9_36



Code-Based Key Encapsulation from McEliece’s Cryptosystem 455

Assumption 1 (Indistinguishability). The k×n matrix G output by KeyGen
is computationally indistinguishable from a same-size uniformly chosen matrix.

Assumption 2 (Decoding Hardness). Let G be a generator matrix for an
[n, k] linear code C over Fq and y a word of Fn

q . It is hard to find a codeword
c ∈ C with d(c, y) ≤ w.

Assumption 2 is also known as the General Decoding Problem (GDP), which
was proved to be NP-complete in [2], and it is believed to be hard on average,
and not just on the worst-case instances (see for example Sendrier [12]).

2.2 Encapsulation Mechanisms and the Hybrid Framework

A Key Encapsulation Mechanism (KEM) is essentially a Public-Key Encryption
scheme (PKE), with the exception that the encryption algorithm takes no input
apart from the public key, and returns a pair (K,ψ0). The string K has fixed
length �K , specified by the KEM, and ψ0 is an “encryption” of K in the sense
that Decsk(ψ0) = K. The key K produced by the KEM is then passed on to
a Data Encapsulation Mechanism (DEM), which is in charge of encrypting the
actual message. The formulation of a DEM, that normally comprises additional
tools for security such as Message Authentication Codes (MAC), is outside the
scope of this paper, and we refer the reader to [5] for more details.

A KEM is required to be sound for at least all but a negligible portion of
public key/private key pairs, that is, if Encpk( ) = (K,ψ0) then Decsk(ψ0) = K
with overwhelming probability.

The security notions for a KEM are similar to the corresponding ones for
PKE schemes. The one we are mainly interested in (representing the highest
level of security) is IND-CCA, which we describe below.

Definition 1. The adaptive Chosen-Ciphertext Attack game for a KEM pro-
ceeds as follows:

1. Query a key generation oracle to obtain a public key pk.
2. Make a sequence of calls to a decryption oracle, submitting any string ψ0 of

the proper length. The oracle will respond with DecKEMsk (ψ0).
3. Query an encryption oracle. The oracle runs EncKEMpk to generate a pair

(K̃, ψ̃0), then chooses a random b ∈ {0, 1} and replies with the “challenge”
ciphertext (K∗, ψ̃0) where K∗ = K̃ if b = 1 or K∗ is a random string of length
�K otherwise.

4. Keep performing decryption queries. If the submitted ciphertext is ψ∗
0 , the

oracle will return ⊥.
5. Output b∗ ∈ {0, 1}.
The adversary succeeds if b∗ = b. More precisely, we define the advantage of A
against KEM as

AdvKEM(A, λ) =
∣
∣
∣Pr[b∗ = b] − 1

2

∣
∣
∣. (1)

We say that a KEM is secure if the advantage AdvKEM of any polynomial-time
adversary A in the above CCA attack model is negligible.
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It has then been proved that, given a CCA adversary A for the hybrid scheme
(HY), there exist an adversary A1 for KEM and an adversary A2 for DEM
running in roughly the same time as A, such that for any choice of the security
parameter λ we have AdvHY(A, λ) ≤ Adv′

KEM(A1, λ)+AdvDEM(A2, λ). See Cramer
and Shoup [5, Theorem 5] for a complete proof.

3 The New KEM Construction

The KEM we present here follows closely the McEliece framework, and is thus
based on the hardness of GDP. Note that, compared to the original PKE, a
slight modification is introduced in the decryption process. As we will see later,
this is necessary for the proof of security. The ephemeral key K is obtained via
a Key Derivation Function KDF (see Appendix B).

Table 1. The McEliece KEM.

Setup Fix public system parameters q, n, k, w ∈ N, then choose a family F of
w-error-correcting [n, k] linear codes over Fq

KeyGen Choose a code C ∈ F with code description Δ and compute a generator

matrix G. Generate a random s
$←− F

k
q . Public key is G and private key is

(Δ, s)

Enc On input a public key G choose random words x ∈ F
k
q and e ∈ Wq,n,w,

then compute K = KDF(x||e, �K), ψ0 = xG + e and return the
key/ciphertext pair (K, ψ0)

Dec On input a private key Δ and a ciphertext ψ0, compute DecodeΔ(ψ0). If
the decoding succeeds, use its output (x, e) to compute
K = KDF(x||e, �K). Otherwise, set K = KDF(s||ψ0, �K). Return K

If the ciphertext is correctly formed, decoding will always succeed, hence
the KEM is perfectly sound. Furthermore, it is possible to show that, even if
with this formulation DecKEM never fails, there is no integrity loss in the hybrid
encryption scheme thanks to the check given by the MAC (Table 1).

We prove the security of the KEM in the following theorem.

Theorem 1. Let A be an adversary in the random oracle model for the
Niederreiter KEM as in Definition 1. Let θ be the running time of A, nKDF

and nDec be two bounds on, respectively, the total number of random oracle
queries and the total number of decryption queries performed by A, and set
N = qk · |Wq,n,w|. Then there exists an adversary A′ for GDP such that
AdvKEM(A, λ) ≤ AdvGDP(A′, λ)+nDec/N . The running time of A′ will be approx-
imately equal to θ plus the cost of nKDF matrix-vector multiplications and some
table lookups.
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Proof. We replace KDF with a random oracle H mapping elements of the form
(x, e) ∈ F

k
q ×Wq,n,w to bit strings of length �K . To prove our claim, we proceed as

follows. Let’s call G0 the original attack game played by A, and S0 the event that
A succeeds in game G0. We define a new game G1 which is identical to G0 except
that the game is halted if the challenge ciphertext ψ∗

0 = x∗G+e∗ obtained when
querying the encryption oracle had been previously submitted to the decryption
oracle: we call this event F1. Since the number of valid ciphertexts is N , we have
Pr[F1] ≤ nDec/N . It follows that

∣
∣
∣Pr[S0] − Pr[S1]

∣
∣
∣ ≤ nDec/N , where S1 is the

event that A succeeds in game G1. Next, we define game G2 which is identical
to G1 except that we generate the challenge ciphertext ψ∗

0 at the beginning of
the game, and we halt if A ever queries H at (x∗||e∗): we call this event F2.
By construction, since H(x∗||e∗) is undefined, it is not possible to tell whether
K∗ = K, thus we have Pr[S2] = 1/2, where S2 is the event that A succeeds in
game G2. We obtain that

∣
∣
∣Pr[S1] − Pr[S2]

∣
∣
∣ ≤ Pr[F2] and we just need to bound

Pr[F2].
We now construct an adversary A′ against GDP. A′ interacts with A and is

able to simulate the random oracle and the decryption oracle with the help of
two tables T1 and T2, initially empty, as described below.

Key Generation: On input the instance (G, y∗, w) of GDP, return the public
key pk = G.

Challenge Queries: When A asks for the challenge ciphertext:

1. Generate a random string K∗ of length �K .

2. Set ψ∗
0 = y∗.

3. Return the pair (K∗, ψ∗
0).

Random Oracle Queries: Upon A’s random oracle query (x, e) ∈ F
k
q ×Wq,n,w:

1. Look up (x, e) in T1. If (x, e, y,K) is in T1 for some y and K, return K.
2. Compute y = xG + e.
3. If y = y∗ then A′ outputs c = xG and the game ends.
4. Look up y in T2. If (y,K) is in T2 for some K (i.e. the decryption oracle has

been evaluated at y), return K.
5. Set K to be a random string of length �K and place (x, e, y,K) in table T1.
6. Return K.

Decryption Queries: Upon A’s decryption query y ∈ F
n
q :

1. Look up y in T2. If (y,K) is in T2 for some K, return K.
2. Look up y in T1. If (x, e, y,K) is in T1 for some x, e and K (i.e. the random

oracle has been evaluated at (x, e) such that y = xG + e), return K.
3. Generate a random string K of length �K and place the pair (y,K) in T2.
4. Return K.
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Note that, in both random oracle and decryption queries, we added the initial
steps to guarantee the integrity of the simulation, that is, if the same value is
queried more than once, the same output is returned. A fundamental issue is
that it is impossible for the simulator to determine if a word is decodable or not.
If the decryption algorithm returned ⊥ if and only if a word was not decodable,
then it would be impossible to simulate decryption properly. We have resolved
this problem by insisting that the KEM decryption algorithm always outputs a
hash value. With this formulation, the simulation is flawless and A′ outputs a
solution to the GDP instance with probability equal to Pr[F2]. ��

4 Conclusions

In this paper, we have introduced a key encapsulation method based on the
McEliece cryptosystem. This novel approach enjoys a simple construction and
a tight security proof as for the case of the Niederreiter KEM presented in [11].
We believe that our new construction will offer an important alternative while
designing quantum-secure cryptographic primitives.

A The McEliece Cryptosystem

Table 2. The McEliece cryptosystem.

Setup Fix public system parameters q, n, k, w ∈ N, then choose a family F of
w-error-correcting [n, k] linear codes over Fq

K Kpubl the set of k × n matrices over Fq

Kpriv the set of code descriptions for F
P The vector space F

k
q

C The vector space F
n
q

KeyGen Generate at random a code C ∈ F given by its code description Δ and
compute a publica generator matrix G. Publish the public key G ∈ Kpubl

and store the private key Δ ∈ Kpriv

Enc On input a public key G ∈ Kpubl and a plaintext φ = x ∈ P, choose a
random error vector e ∈ Wq,n,w, then compute y = xG + e and return the
ciphertext ψ = y ∈ C

Dec On input the private key Δ ∈ Kpriv and a ciphertext ψ ∈ C, compute
DecodeΔ(ψ). If the decoding succeeds, return its output φ = x.
Otherwise, output ⊥

a While the original version proposes to use scrambling matrices S and P (see [9] for
details), this is not necessary and alternative methods can be used, depending on the
chosen code family.
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B Other Cryptographic Tools

In this section we introduce another cryptographic tool that we need for our
construction.

Definition 2. A Key Derivation Function (KDF) is a function that takes as
input a string x of arbitrary length and an integer � ≥ 0 and outputs a bit string
of length �.

A KDF is modelled as a random oracle, and it satisfies the entropy smoothing
property, that is, if x is chosen at random from a high entropy distribution,
the output of KDF should be computationally indistinguishable from a random
length-� bit string.

Intuitively, a good choice for a KDF could be a hash function with a variable
(arbitrary) length output, such as the new SHA-3, Keccak [4].
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