
Chapter 9

Evolution Equations for Defects in Finite

Elasto-Plasticity

Sanda Cleja-Ţigoiu

Abstract The paper deals with continuous models of elasto-plastic materials with
microstructural defects such as dislocations and disclinations. The basic assumptions
concern the existence of plastic distortion and so-called plastic connection with
metric property and the existence of the free energy function. This is dependent on the
Cauchy-Green strain tensor, and its gradient with respect to the plastically deformed
anholonomic configuration, and on the dislocation and disclination densities. The
defect densities are defined in terms of the incompatibility of the plastic distortion
and non-integrability of the plastic connection. The evolution of plastic distortion
and disclination tensor has been postulated under the appropriate viscoplastic and
dissipative type equations, which are compatible with the principle of the free energy
imbalance. The associated small distortion model is provided. The present model
and the previous ones have been also compared.

9.1 Introduction

The paper deals with defects in crystalline materials, when the differential geometry
description is used in order to characterize lattice defects existing at the micro
structural level, see Kröner (1990). Here we restrict ourselves to dislocations and
disclinations and we make reference to different continuous descriptions which are
close to the background of our finite elasto-plastic model.
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9.1.1 Defects in Linear eElasticity

The elastic model for the defects such as dislocations and disclinations have been
described by the solutions of the linear theory of elasticity having the displacement
fields discontinuous along cut-off surfaces, see de Wit (1973a,b); Teodosiu (1982).
The problems formulated by de Wit (1973c) and Kossecka and de Wit (1977) concern
the finding of the elastic basic fields (i.e. strain and bent twist tensors) and the stress,
when the plastic fields, namely the defect densities, ααα for dislocations and ωωω for
disclinations, have been prescribed (without specifying the nature of these defects).
The incompatibilities in linear elasticity were reviewed by de Wit (1970, 1981);
Kossecka and de Wit (1977), see also Fressengeas et al (2011). Traditionally the
dislocations are determined by Burgers vector, bbb, which is equal to the translational
displacement, and the disclinations are characterized by Frank vector, ΩΩΩ , which is
equal to the rotational displacement, see de Wit (1973a,c); Kossecka and de Wit
(1977). The internal mechanical state of solids with defects leads Kröner (1992), to
solve the elastic problems with given incompatibilities.

9.1.2 Defects in Non-Linear Elasticity

Yavari and Goriely (2013) considered the cases of a single wedge disclination and
a parallel cylindrically-symmetric distribution of wedge disclination, respectively.
They solved the problem of existence of the residual stress: find the stress distri-
bution in an Neo-Hookean material, which is stress free, namely zero traction is
applied on the outer radius of the cylinder, when the wedge disclination densities, as
those mentioned above, have been given. First Yavari and Goriely (2013) construct a
Riemannian material manifold which is metric compatible having zero torsion and
non-zero curvature, for the given disclination density identified with the curvature
tensor. The manifold corresponds to Volterra’s geometrical description of wedge
disclination in a cylindrical body: cut, following by removing or inserting material,
and weld operations. As an example of Riemann-Cartan geometry Yavari and Goriely
(2012) built the material manifold which is dependent on the distribution of dislo-
cations, namely for a screw and a cylindrically-symmetric distribution of parallel
screw dislocations, respectively. The material manifold has torsion and vanishing
non-metricity, and corresponds to Volterra’s description of screw dislocation: cut a
half axial plane of the cylinder followed by the displacement with Burgers vector
along the symmetry axis, and weld procedure with removing the axis. The authors
found the residual stress for a generalized Neo-Hookean elastic body induced by
several distributed dislocations, including also the radially-symmetric distributed
edge dislocations.
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9.1.3 Defects in Nonlocal Elasticity

An improvement has been obtained using the nonlocal elasticity instead of the
classical one, namely the stress and strain energy singularities, which are present
in classical elasticity, have been eliminated. The nonlocal elasticity is given by
an integral type constitutive equations, which are characterized by the so-called
nonlocal kernel. The approaches to nonlocal elasticity proposed and discussed in
Eringen (2002) replace the integral operators with a special class of kernels by certain
differential operators. The integral representation of the stress is given in terms of
the Hookean stress. The displacement fields are identical with the classical forms
obtained by integrating the stress-strain relations of linear elasticity. Solutions for
screw dislocation, edge dislocation and wedge disclination have been described
and analyzed within the nonlocal elasticity, with Gaussian kernel, and for a special
class of kernels, which are Green functions of the Helmholtz equation in Eringen
(2002) and for bi-Helmholtz equation in Lazar et al (2006). Lazar and Maugin
(2004a,b), developed first a constitutive framework of gradient micropolar isotropic
elasticity, which was connected to the nonlocal micropolar elasticity given by Eringen
(2002). Second, Lazar and Maugin examined the mentioned defects in gradient
micropolar elasticity. The micropolar distortion and bent twist tensors satisfy the
appropriate inhomogeneous Helmholtz equations, with the inhomogeneities identified
with classical elastic expressions for the stress and couple stress tensor. The authors
did not derive the associate boundary conditions because they considered an infinite
extended medium. Only in a small region in the vicinity of r = 0, the stress calculated
in nonlocal elasticity of Helmholtz or bi-Helmholtz type is different, both of them
being zero at r = 0. Eringen’s results were recovered too.

9.1.4 Elasto-Plastic Models for Defects

Continuum models of these defects involve the couple stresses within the microp-
olar materials and Cosserat continuum, see Clayton et al (2006); Fressengeas et al
(2011). In the models developed by Arsenlis and Parks (1999); Gurtin (2002) the
Burgers vector has been defined by the geometrically necessary dislocation (GND)
tensor GGG = FFF pcurlFFF p in the lattice space. The GND density tensor is decomposed
in the appropriate edge and screw dislocations. Clayton et al (2006) introduced the
geometrically necessary defect density tensors in the deformed configuration, ααα
and θθθ , accounting for the incompatibilities induced by the torsion and curvature
tensor, which are associated with the connection ΓΓΓ . The connection coefficients were
defined as in Minagawa (1979) in terms of non-Riemannian’s type connection (using
(FFFL )−1) and a third order tensor field QQQ with assigned skew-symmetry. We recall the
multiplicative decomposition FFF =FFFL FFF p assumed by Clayton et al (2006), where
the lattice part FFFL is given by FFFL =FFFeFFFi, FFFe is the elastic part, FFFi is the residual
part due to the micro-heterogeneity in the presence in the of lattice defects. The free
energy function in the intermediate configuration is dependent on elastic Cauchy-
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Green strain tensor (expressed in terms of FFFe), defect density tensors pulled back
to the intermediate configuration by FFFe, i.e. α̃αα and θ̃θθ , the symmetric and positive
definite part of FFFi, and so on.

9.1.5 Aim of this Paper

Fressengeas et al (2011) proposed a field defect (dislocation and disclination), re-
stricted to small strains. The non-symmetric Cauchy stress, TTT , and couple- stress
tensor, mmm, are described in terms of elastic strain and bent-twist, εεεe and κκκe, with
macro forces, TTT and mmm, satisfying the balance equation formulated by Fleck et al
(1994). The evolution equations for basic plastic fields, εεε p,κκκ p, are dependent on the
density of dislocations and disclinations, ααα and θθθ , and on the macro forces. The
dislocation density θθθ generates a Frank vector ΩΩΩ .

In this paper we propose a model for structural defects such as dislocations and
disclinations, which can be viewed as an improvement of the models provided by
Cleja-Ţigoiu (2014); Cleja-Ţigoiu et al (2016), within the constitutive framework
developed by Cleja-Ţigoiu (2007, 2010). The key point is related to the expression
of the free energy density, this time also dependent on the gradient of the Cauchy-
Green elastic strain with respect to the plastically deformed configuration or the
so-called configuration with torsion. The basic assumptions concern the existence
of plastic distortion and so-called plastic connection with metric property and the
existence of the free energy function. This function is dependent on the Cauchy-Green
strain tensor and its gradient with respect to the plastically deformed anholonomic
configuration, and on dislocation and disclination densities. The defect densities are
defined in terms of the incompatibility of the plastic distortion and non-integrability of
the plastic connection, respectively. The free energy imbalance principle is postulated
in a similar form with those presented by Cleja-Ţigoiu (2007, 2010), following the
ideas given by Gurtin (2002); Gurtin et al (2010). The balance equation for micro
forces have been considered in the form provided by Cleja-Ţigoiu (2007, 2017). The
constitutive and evolution equations for plastic distortion and disclination tensor are
derived to be compatible with the free energy imbalance principle. The evolution of
plastic distortion and disclination tensor has been postulated under the appropriate
viscoplastic and dissipative type equations. The associated small distortion model is
also provided. The proposed model is compared with the previous models discussed
in Cleja-Ţigoiu et al (2016); Cleja-Tigoiu and Maugin (2000).

9.1.6 List of Notations

Further the following notations will be used:
E - the three dimensional Euclidean space, with the vector space of translations V ;
Lin - the set of the linear mappings from V to V , i.e the set of second order tensor,
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Sym2,Skw2 ⊂ Lin are the sets of all symmetric and skew-symmetric second order
tensors, respectively; uuu ·vvv,uuu×vvv,uuu⊗vvv denote scalar, cross and tensorial products
of vectors; (uuu,vvv,zzz) := (uuu×vvv) ·zzz is the mixed product of the vectors from V . aaa⊗bbb
and aaa⊗bbb⊗ccc are defined to be a second order tensor and a third order tensor by
(aaa⊗bbb)uuu = aaa(bbb ·uuu),(aaa⊗bbb⊗ccc)uuu = (aaa⊗bbb)(ccc ·uuu), for all vectors uuu.

For AAA ∈ Lin− a second order tensor, we introduce:
the notations {AAA}S,{AAA}a for the symmetric and skew-symmetric parts of the tensor;
definition of the trace: trAAA((uuu×vvv) · zzz) = (AAAuuu,vvv,zzz) + (uuu,AAAvvv,zzz) + (uuu,vvv,AAAzzz). III is the
identity tensor in Lin, AAAT denotes the transpose of AAA ∈ Lin, ∂AAAφ(x) denotes the
partial differential of the function φ with respect to the field AAA.

Let χ : B×RRR → V defines the motion of the body B. The deformation gradient
and its gradient are expressed in coordinate systems by

FFF(XXX , t) = ∇χ(XXX , t) =
∂xi

∂X j gggi ⊗GGG j, ∇FFF(XXX , t) =
∂ 2xi

∂X j∂Xk gggi ⊗GGG j ⊗GGGk. (9.1)

Here {gggi}i=1,2,3 and {GGGi}i=1,2,3 are local bases in the actual and reference configura-
tions, respectively.

In what follows the anholonomic basis vectors, in the so-called plastically de-
formed configuration or the configuration with torsion, generically denoted by K ,
are related with the crystal and defined by eee j =FFF pGGG j. Let {GGGi}i=1,2,3 be the recipro-
cal basis in the reference configuration. The plastic connection is represented by its
coefficients in a component representation given by

(p)
ΓΓΓ = Γ α

β γGGGα ⊗GGGβ ⊗GGGγ . (9.2)

The differential of smooth field AAA, with respect to the anholonomic configuration K ,
obeys the rule

∇K AAA = (∇AAA)(FFF p)−1. (9.3)

curl of a second order tensor field AAA is defined by the second order tensor field

(curlAAA)(uuu×vvv) := (∇AAA(uuu))vvv− (∇AAA(vvv))uuu ∀uuu,vvv ∈ V ,

(curlAAA)pi = ε i jk
∂Apk

∂x j

(9.4)

are the components of curlAAA given in a Cartesian basis.
The transpose of the third order tensor tensor field is defined by

A T (uuu) := (A uuu)T , ∀uuu ∈ V . (9.5)

The third order tensors, denoted by A , are linear mapping defined as element of the
set Lin{V ,Lin}, which are represented in a Cartesian basis {eeei}i=1,2,3 as

A := Ai jkeeei ⊗eee j ⊗eeek. (9.6)
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The scalar product of second order tensors AAA and BBB, and of the third order tensors A
and B, are defined in terms of their Cartesian components by

AAA ·BBB = Ai jBi j, ∀AAA,BBB ∈ Lin,
A ·B = Ai jkBi jk, ∀ A ,B ∈ Lin{V ,Lin}. (9.7)

For any ΛΛΛ 1, ΛΛΛ 2 ∈ Lin we define a third order tensor associated with them, denoted
ΛΛΛ 1 ×ΛΛΛ 2, by

((ΛΛΛ 1 ×ΛΛΛ 2)uuu)vvv = (ΛΛΛ 1uuu)× (ΛΛΛ 2vvv), ∀ uuu,vvv. (9.8)

The notations SymA and SkwA are introduced for all A ∈ Lin{V ,Lin,} by

SymA ∈ Lin{V ,Lin}, Sym(A ) = A +A T ,
SkwA ∈ Lin{V ,Lin}, ((SkwA )uuu)vvv := (A uuu)vvv− (A vvv)uuu ∀uuu ∈ V .

(9.9)

The following identity holds

A ·Sym(CCCB) = (CCC(SymA )) ·B ∀CCC ∈ Sym2, A ,B ∈ Lin{V ,Lin}. (9.10)

The third order tensor, denoted by A [FFF1,FFF2], is associated to the set of tensors
A ∈ Lin(V ,Lin), and FFF1,FFF2 ∈ Lin, and is defined by

((A [FFF1,FFF2])uuu)vvv = (A (FFF1uuu))FFF2vvv, ∀ uuu,vvv ∈ V . (9.11)

or by its Cartesian components (A [FFF1,FFF2])ilq = Ai jk(FFF1) jl(FFF2)kq. Two types of
second order tensors that can be associated with any pair of third order tensors,
A ,B, following the rules written below

(A �B) ·LLL = A [III,LLL] ·B = AiskLsnBink,
(A r �B) ·LLL = A · (LLLB) = Ai jkLinBn jk, LLL ∈ Lin. (9.12)

9.2 Elasto-Plastic Materials with Lattice Defects

We recall our basic relationships which characterize the elasto-plastic material from
the geometrical point of view. The motion of the body, χ, induces a second order
deformation which is defined by (FFF ,ΓΓΓ := (FFF)−1(∇FFF)), ΓΓΓ is called the motion
connection.

The multiplicative decomposition of the deformation gradient FFF into its elastic
and plastic components, FFFe and FFF p, called distortions, namely

FFF =FFFeFFF p (9.13)

is considered.



9 Evolution Equations for Defects in Finite Elasto-Plasticity 185

Definition 9.1. The Cauchy-Green elastic strain tensor,CCCe, and Cauchy-Green plastic
strain tensor, CCCp, are expressed by

CCCe = (FFFe)TFFFe, =⇒ CCCe = (FFF p)−TCCC(FFF p)−1, where CCC =FFFTFFF ,

CCCp = (FFF p)TFFF p.
(9.14)

The gradient of CCCe with respect to the configuration K can be expressed by

∇K CCCe = (FFF p)−T
(
∇CCC−Sym{CCC

(p)
A })[(FFF p)−1,(FFF p)−1] (9.15)

As a direct consequence of the multiplicative decomposition formula (9.19) the
following relationships hold

LLL = LLLe +FFFeLLLp(FFFe)−1, where LLLe = ḞFFe
(FFFe)−1, LLLp = ḞFF p

(FFF p)−1. (9.16)

The plastic rate tensors with respect to the plastically deformed and reference config-
urations, respectively, and denoted by LLLp and lll p, are related by

LLLp =FFF plll p(FFF p)−1, where lll p = (FFF p)−1ḞFF p
. (9.17)

The following time derivatives can be computed

d
dt
(CCCp)−1 =−lll p(CCCp)−1 − (CCCp)−1(lll p)T ,

ĊCC = 2FFFTDDDFFF , where DDD = {LLL}S,

∇ĊCC = (ĊCCΓΓΓ )T +FFFT (∇χDDD)[FFF ,FFF ]+ĊCCΓΓΓ , where ΓΓΓ =FFF−1∇FFF ,

d
dt
{(CCCp)−1(ΛΛΛ ×III)}=−(lll p(CCCp)−1 +(CCCp)−1(lll p)T )(ΛΛΛ ×III)+

+(CCCp)−1(Λ̇ΛΛ ×III).

(9.18)

Here ΛΛΛ is a second order tensor.

Proposition 9.1. Under the hypothesis of the multiplicative decomposition of the
deformation gradient FFF , postulated in (9.19), we get the composition rule of the
motion connection

ΓΓΓ = (FFF p)−1
(e)
A K [FFF p,FFF p]+

(p)
A ,

where
(e)
A K := (FFFe)−1∇K FFFe,

(p)
A := (FFF p)−1∇FFF p.

(9.19)

(e)
A K and

(p)
A define Bilby’s type connections (see Bilby, 1960) with respect to the

so-called configuration with torsion, and initial one, respectively.
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Based on the definitions for elastic strain CCCe and its gradient ∇K CCCe the following
relation holds

∇K CCCe = (CCCe
(e)
A K )T +CCCe(

(e)
A K ), (9.20)

see (9.19) together with (9.14).

The formula (9.20) states that the so-called elastic Bilby’s connection
(e)
A K has

metric property in K with respect to the elastic metric tensor CCCe, using a definition
given by Schouten (1954), see also Yavari and Goriely (2012).

9.2.1 Plastic Connection with Metric Property

We accepted the existence of the plastic connection with metric property, see Cleja-
Ţigoiu (2010).

Definition 9.2. The connection
(p)
ΓΓΓ has metric property if and only if the following

relationship holds

∇CCCp = (CCCp
(p)
ΓΓΓ )T +CCCp

(p)
ΓΓΓ . (9.21)

The relationship (9.21) is similarly to (9.20).

Proposition 9.2. The plastic connection, which is metric compatible with respect to
the metric tensor CCCp, is represented under the form

(p)
ΓΓΓ =

(p)
A +(CCCp)−1(ΛΛΛ ×III), (9.22)

where the third order tensor ΛΛΛ × III is generated by the second order (covariant)
tensor ΛΛΛ , which is called disclination tensor.

Proof. The proof can be found in Cleja-Ţigoiu (2010).

Definition 9.3. The (Cartan) torsion associated with the plastic connection (9.22) is
calculated in a given coordinate system by the skew-symmetric part of the connection,
as it follows

(SSSpvvv)uuu ≡ (
(p)
ΓΓΓ vvv)uuu− (

(p)
ΓΓΓ uuu)vvv ≡ ((SkwΓΓΓ )uuu)vvv. (9.23)

Let us remark that the Cartan torsion (9.23) can be expressed as a consequence of
the formula (9.22) by

SSSp = Skw
(p)
A +Skw((CCCp)−1(

(p)
ΛΛΛ ×III)). (9.24)
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Proposition 9.3. The second order torsion tensor N p, which is associated with
Cartan torsion (9.24), is expressed by

N p = (FFF p)−1curlFFF p +(CCCp)−1
(
(tr ΛΛΛ)III − (ΛΛΛ)T

)
,

where (SSSpuuu)vvv = N p(uuu×vvv).
(9.25)

Proof. The formula (9.31) follows directely from the mentioned calculus rules:

1. ∀N ∈ Lin(V ,Lin) there exists

ΩΩΩ<N > ∈ Skw2, such that SkwN =ΩΩΩ<N >(III ×III),
which means ((SkwN )uuu)vvv =ΩΩΩ<N >(uuu×vvv), ∀ uuu,vvv ∈ V .

(9.26)

2. The following component representations hold

(SkwN )i jk = (ΩΩΩ<N >)imεmk j,

2(ΩΩΩ<N >)im = (SkwN )i jkεmk j.
(9.27)

Here εmk j denotes components of Ricci’s permutation tensor, namely εεε .
3. The following results can be proved

Skw
(p)
A = curlFFF p(III ×III), that is

((Skw
(p)
A )uuu)vvv = (curlFFF p)(uuu×vvv), ∀ uuu,vvv ∈ V ,

Skw(ΛΛΛ ×III) = (trΛΛΛIII −ΛΛΛT )(III ×III), namely
(Skw(ΛΛΛ ×III)uuu)vvv = (trΛΛΛIII −ΛΛΛT )(uuu×vvv).

(9.28)

9.2.2 Measure of Defects

The disclination tensor with respect to the configuration with torsion will be denoted
by Λ̃ΛΛ , see Cleja-Ţigoiu (2010), and it will be introduced here through

Λ̃ΛΛ = FFF pΛΛΛ(FFF p)−1. (9.29)

We define Burgers and Frank vectors in terms of the plastic distortion FFF p and
disclination tensor Λ̃ΛΛ . Both vectors are associated with a circuit C0. Let A0 be a
surface with normal NNN, which is surrounded by C0 in the reference configuration.

Definition 9.4. The Frank vector associated with a circuit C0 is defined by

ΩΩΩK =
∫

CK

Λ̃ΛΛ dxxxK =
∫
C0

Λ̃ΛΛFFF p dXXX =
∫
A0

curl(FFF pΛΛΛ)NNNdA. (9.30)
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Definition 9.5. The disclination density tensor with respect to the reference configu-
ration is defined by

ωωω = curl(FFF pΛΛΛ). (9.31)

The Burgers vector is defined in terms of the plastic distortion FFF p.

Definition 9.6. The Burgers vector associated with the circuit C0 is defined by

bbbK =
∫
C0

FFF p dXXX =
∫
A0

(curlFFF p)NNNdA. (9.32)

The dislocation density tensor ααα is expressed by

ααα := (FFF p)−1(curl FFF p), or ααα(III ×III) = Skw(SSSp). (9.33)

ααα is a measure of the incompatibility of the plastic distortion FFF p, and its expression
is involved in (9.25).

Note 9.1. Starting from the definition of the Cartan torsion SSSp, via the second order
torsion tensor N p expressed by (9.25), and using the definitions of the defect
densities, (9.31) and (9.33), we can say that SSSp is a measure of the coupling between
continuously distributed dislocations and disclinations.

9.3 Free Energy Imbalance Principle Formulated in K

The local free energy imbalance is formulated with respect to the configuration with
torsion K , since the defects are relevant at the level of the lattice microstructure.
First we introduce the expression of the free energy density postulated with respect
to the configuration with torsion.

9.3.1 Free Energy Function

We assume that the free energy density in K is dependent on the second order elastic
deformation in terms of (CCCe,∇K CCCe), and it is also influenced by the state of defects,
i.e. SSSp

K ,ΛΛΛ and ∇K ΛΛΛ . The Cartan torsion SSSp pushed away to the plastically deformed
configuration is related to SSSp

K , in terms of the plastic distortion as it follows

SSSp
K =−FFF pSSSp[(FFF p)−1,(FFF p)−1]. (9.34)

Axiom 9.1 The free energy density with respect to the plastically deformed config-
uration, K , is postulated to be a function of the second order elastic deformation,
which is also dependent on the defects, and it is given by
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ψ = ψK (CCCe −III,∇K CCCe,SSSp
K ,Λ̃ΛΛ ,∇K Λ̃ΛΛ). (9.35)

Now we compare the free energy density function postulated in the paper Cleja-
Ţigoiu (2014) and the expression (9.35) considered herein. We recall here the basic

relationships between ΓΓΓ ,
(p)
ΓΓΓ and the so-called elastic connection in K ,

(e)
ΓΓΓ K

ΓΓΓ =
(p)
ΓΓΓ +(FFF p)−1

(e)
ΓΓΓ K [FFF p,FFF p],

(e)
ΓΓΓ K =

(e)
A K −ΛΛΛK ×III, where ΛΛΛK =

1
detFFF p Λ̃ΛΛ ,

(9.36)

that can be found in a detailed presentation in Cleja-Ţigoiu (2007) and Cleja-Tigoiu
and Maugin (2000).

The torsion of the elastic type connection
(e)
ΓΓΓ K is defined by

SSSe
K = Skw

(e)
ΓΓΓ K

(9.37)

and the relationship between torsions of the appropriate connections

SSSe
K =−SSSp

K (9.38)

can be proved as a direct consequences of the formulae (9.36), (9.37) together with
(9.29) and (9.37).

Proposition 9.4. The constitutive representation for the free energy density as de-

pendent on the second order elastic deformation in terms of (CCCe,
(e)
A K ) and on the

defects through (SSSe
K ,Λ̃ΛΛ), namely

ψ = ψK (CCCe,
(e)
A ,SSSe

K ,Λ̃ΛΛ), (9.39)

which has been postulated in Cleja-Ţigoiu (2014), can be viewed as a function of
arguments given by (9.35) if the dependence on ∇ΛΛΛ is ignored.

Proof. In order to justify the statement, first we recall the following theorem referring
to the compatible connection and which is written in component representations.

Theorem 9.1. The plastic Bilby connection allows the following representation

(p)
A = γγγ p +WWW p,

((γγγ puuu)vvv) ·zzz =
1
2
(CCCp)−1[((∇CCCp)uuu)vvv ·zzz+((∇CCCp)vvv)uuu ·zzz−((∇CCCp)zzz)uuu ·vvv],

(WWW puuu)vvv =
1
2
((SSSp)uuu)vvv− 1

2
(CCCp)−1((CCCpSSSpuuu)Tvvv+(CCCpSSSpvvv)Tuuu

)
,

(9.40)
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defined for all uuu,vvv,zzz ∈ V or in component representation the Levi-Civita (plastic)
connection is given by

(γγγ p)s
jk =

1
2

Gsi(∂Gik

∂X j +
∂Gi j

∂Xk − ∂G jk

∂Xi

)
,

and the (plastic) contorsion is expressed in terms of the torsion components as

(WWW p)i
jk =

1
2
(SSSp)i

jk −
1
2

Gis(G jm(SSSp)m
sk +Gkm(SSSp)m

s j
)
.

Here the components of the plastic metric tensors CCCp and (CCCp)−1 are denoted by Gi j
and Gi j, respectively. We mention here the symmetry properties of the fields defined
above

((γγγ p)uuu)vvv = (γγγ pvvv)uuu ∀ uuu,vvv ∈ V ,
WWW puuu ∈ Skew2 ∀ uuu ∈ V .

(9.41)

The proof can be found, for instance, in Schouten (1954), see also Yavari and Goriely

(2012). In addition, we apply the formulae (9.40) to the connection
(e)
A K , with respect

to the anholonomic configuration K . This means that gradient ∇ is replaced by
∇K . Consequently, having in mind the decomposition (9.40) the presence of the
fields (CCCe,∇K CCCe,SSSe

K ) in the formula (9.35) can be justified. Thus the presence of
the elastic torsion written with respect to the configuration K has been replaced by
the plastic torsion with respect to the same configuration via the relationship (9.38).

Note 9.2. The free energy density is influenced by the dislocation density αααK , which
is defined by

αααK (ũuu× ṽvv) = (Skw(
(e)
A K )ũuu)ṽvv, with the property

αααK (ũuu× ṽvv) =− 1
detFFF p FFF pααα(FFF p)−1(uuu×vvv), (FFF p)−1(ũuu) = uuu,(FFF p)−1(ṽvv) = vvv,

(9.42)

and by the disclination tensor Λ̃ΛΛ , both tensors being defined with respect to the
configuration with torsion K .

We mention that the elastic strain field

CCCe −III = (FFF p)−T (CCC−CCCp)(FFF p)−1, (9.43)

its gradient formula written in (9.15) together with (9.34), and (9.29) suggest that the
free energy density can be rewritten with respect to the reference configuration. When
the fields were pulled back to the reference configuration by (FFF p)−1, the function ψ
can be written under the form

ψ = ψ(CCC−CCCp,∇CCC−Sym{CCC
(p)
A },SSSp,ΛΛΛ ,∇ΛΛΛ). (9.44)
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As SSSp is considered to be a measure of dislocation-disclination interplay we
introduce a more general representation, which contains separately the influence of
dislocation and disclination defects, given by

ψ = ψe(CCC−CCCp,∇CCC−Sym{CCC
(p)
A })+

+ ψ(Skw(
(p)
A ),(CCCp)−1Skw(ΛΛΛ ×III),ΛΛΛ ,∇ΛΛΛ).

(9.45)

The time derivative of the free density function (9.45) is computed by

ψ̇ = ∂CCCeψe · (ĊCC−ĊCCp
)+

+∂∇CCCeψe · [∇ĊCC−Sym{CCC d
dt
(
(p)
A )}−Sym{ĊCC

(p)
A }]+ ψ̇.

(9.46)

The derivatives of the mentioned fields will be replaced by their appropriate expres-
sions.

9.3.2 Free Energy Imbalance Principle

The local free energy imbalance states the internal power expended during the elasto-
plastic process is equal or greater than the time derivative of the free energy density.

Axiom 9.2 The elasto-plastic constitutive description of the material is restricted to
satisfy in K the free energy imbalance principle

(Pint)K − ψ̇K ≥ 0, (9.47)

for any virtual (isothermal) processes.

The expression of the internal power is the result of the superposed elastic, plastic
and defect effects and will be written here in a slightly modified version of the
corresponding expression postulated in Cleja-Ţigoiu (2010).

Axiom 9.3 The internal power in the configuration with torsion is postulated to be
given by the expression

(Pint)K =
1
ρ
(TTT s) ·LLLe +

1
ρ̃
ϒϒϒ p ·LLLp +

1
ρ̃
μμμ p ·∇K LLLp+

+
1
ρ̃
μμμK · ((FFFe)−1(∇χLLL)[FFFe,FFFe]−∇K LLLp)+

+
1
ρ̃
ϒϒϒλ · D

Dt
Λ̃ΛΛ +

1
ρ̃
μμμλ ·∇K

D
Dt

Λ̃ΛΛ .

(9.48)

Note 9.3. The gradient of the plastic rate LLLp = ḞFF p
(FFF p)−1 with respect to the plasti-

cally deformed configuration is related to the time derivative of
(p)
A = (FFF p)−1∇FFF p,
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and moreover ∇lll p is involved in the expression of the previous one, as can be seen
from the following formulae:

d
dt

( (p)
A

)
= (FFF p)−1(∇K LLLp)[FFF p,FFF p] = ∇lll p − lll p

(p)
A +

(p)
A [III,lll p]. (9.49)

We represent now the stresses and stress momenta as associated measures with
respect to the reference configuration by pulled back procedure, see Cleja-Ţigoiu
et al (2016). For instance the Mandel stress tensors, associated with plastic and
disclination behaviour, are introduced with respect to the reference configuration by

1
ρ0
ΣΣΣ p

0 =
1
ρ̃
(FFF p)Tϒϒϒ p(FFF p)−T ,

1
ρ0
ΣΣΣλ

0 =
1
ρ̃
(FFF p)Tϒϒϒλ (FFF p)−T , (9.50)

while the appropriate micro stress momenta with respect to the reference configura-
tion are given by

1
ρ0

μμμ0 = (FFF p)T 1
ρ̃
μμμK [(FFF p)−T ,(FFF p)−T ],

1
ρ0

μμμ p
0 = (FFF p)T 1

ρ̃
μμμ p[(FFF p)−T ,(FFF p)−T ],

1
ρ0

μμμλ
0 = (FFF p)T 1

ρ̃
μμμλ [(FFF p)−T ,(FFF p)−T ].

(9.51)

Proposition 9.5. The internal power postulated by (9.48) is reformulated in terms of
the stresses and stress momenta associated with the reference configuration, (9.50)
and (9.51), under the form

1
ρ
(TTT s) · (LLL−FFFlll pFFF−1)−2∂CCCeψe ·FFFTDDDFFF +

1
ρ0
ΣΣΣ p

0 · lll p +
1
ρ0

μμμ p
0 ·

d
dt
(
(p)
A )+

+
1
ρ̃0

μμμ0 · (
(
FFF−1(∇χLLL)[FFF ,FFF ]− d

dt
(
(p)
A )

)
+∂CCCeψe · [CCCplll p +(lll p)TCCCp]−

−∂∇CCCeψe · {Sym(ĊCCΓΓΓ )+FFFT (∇χDDD)[FFF ,FFF ]}+
+∂∇CCCeψe · [Sym{CCC d

dt
(
(p)
A )}+Sym{ĊCC

(p)
A }]+

+
1
ρ0
ΣΣΣλ

0 · Λ̇ΛΛ +
1
ρ0

μμμλ
0 · {

(p)
A [III,Λ̇ΛΛ ]+∇Λ̇ΛΛ − Λ̇ΛΛ

(p)
A }− ψ̇ ≥ 0.

(9.52)

In order to derive the consequences that follow from the dissipation inequality (9.52)
we introduce certain identities involving the operators defined by (9.12).

The following identities written for any A and B ∈ Lin(V ,Lin) are direct conse-
quences of the given definitions
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(A �B)T = B�A , (A r �B)T = B r �A ,

{Sym(A �B)}s =
1
2
(A �B+A T �B+B�A +B�A T ),

{Sym(A r �B)}s =
1
2
(A r �B+A T

r �B+B r �A +B r �A ).

(9.53)

(SkwA )� (SkwB) = (ΩΩΩ<A > ·ΩΩΩ<B>)III +(ΩΩΩ<B>)
TΩΩΩ<A >,

(SkwA ) r � (SkwB) = 2ΩΩΩ<A >(ΩΩΩ<B>)
T ,

(9.54)

Moreover

A ·B = 2ΩΩΩ<A > ·ΩΩΩ<B>. (9.55)

9.4 Constitutive Restrictions Imposed by the Imbalance Free

Energy Principle

First we derive the elastic type constitutive equations, starting from the supposition
that no variation of the irreversible behaviour can occur.

9.4.1 Elastic Type Constitutive Equations

Proposition 9.6. We suppose that LLLp = 0 or lll p = 0 (then LLLe = LLL) and Λ̇ΛΛ = 0. Thus
the imbalance free energy relation is reduced to the following inequality

(
1
ρ
(TTT s)−2FFF∂CCCeψeFFFT ) ·DDD+

1
ρ0

μμμ0 ·FFF−1(∇χLLL)[FFF ,FFF ]
)−

−∂∇CCCeψe · {Sym(ĊCCΓΓΓ )+FFFT ∇χDDD[FFF ,FFF ]}+∂∇CCCeψe ·Sym{ĊCC
(p)
A } ≥ 0,

(9.56)

which holds for any LLL and ∇χLLL.

Theorem 9.2. The elastic free energy, denoted by ψe is potential for the macro stress
and macro stress momentum, respectively, related to the reference configuration,
namely

1
2ρ

πππ0 = ∂CCCeψe +{Sym(∂∇CCCeψe) r � (ΓΓΓ−
(p)
A )}S,

1
ρ0

μμμ0 = Sym(CCC∂∇CCCeψe),

(9.57)

were ΓΓΓ−
(p)
A ≡ (FFF p)−1

(e)
A [FFF p,FFF p].
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Proof. In order to compare the terms written in (9.56) we use the rule (9.12)

∂∇CCCeψe ·Sym
(
ĊCC(ΓΓΓ−

(p)
A )

)
=
(
(Sym∂∇CCCeψe) r � (ΓΓΓ−

(p)
A )

) ·ĊCC, (9.58)

and we pass from DDD to ĊCC via the relation (9.18)2. The inequality (9.56) is written
finally under the form

{ 1
2ρ

πππ0 −∂CCCeψe) ·ĊCC− (
(Sym∂∇CCCeψe)r � (ΓΓΓ−

(p)
A )

)} ·ĊCC+

+
1
ρ0

FFF−T (μμμ0 −Sym(CCC∂∇CCCeψe)
)
[FFFT ,FFFT ] ·∇χLLL ≥ 0,

(9.59)

which holds for any LLL and ∇χLLL. In (9.59) the expression of the Piola-Kirchhoff stress
tensor with respect to the reference configuration, πππ0, has been introduced

1
ρ 0

πππ0 =
1
ρ

FFF−1TTTFFF−T , (9.60)

Note 9.4. The non-symmetric Cauchy stress, TTT , and couple-stress tensor, mmm, satisfy
the balance equations formulated by Fleck et al (1994), see also Cleja-Ţigoiu and
Ţigoiu (2011). In this model μμμ0zzz ∈ Sym2 and consequently TTT a is vanishing. The
(equilibrium) balance equations for macro forces, say (TTT ,μμμ) in the actual configura-
tion is reduced to the classical one, divTTT = 0, if the mass density of the body and
couple forces are neglected.

9.4.2 Dissipation Inequality

In order to derive the restrictions imposed by the free energy imbalance related to the
plastic behaviour, we return to the inequality (9.52).

Theorem 9.3. The reduced dissipation inequality is derived under the form

{ 1
ρ0

(μμμ p
0 −μμμ0)+CCCSym(∂∇CCCeψe)−Skw(∂Z1ψ)} · d

dt

(p)
A +

+{ 1
ρ0
ΣΣΣ p

0 +2CCCp∂CCCeψe +∂Z2ψ r � (CCCp)−1Skw(ΛΛΛ ×III)+

+Skw(ΛΛΛ ×III) r � (CCCp)−1∂Z2ψ} · lll p +(
1
ρ0

μμμλ
0 −∂∇ΛΛΛψ) ·∇Λ̇ΛΛ+

+
( 1
ρ0
ΣΣΣλ

0 −∂ΛΛΛψ+
(p)
A � 1

ρ0
μμμλ

0 − 1
ρ0

μμμλ
0 r�

(p)
A

) · Λ̇ΛΛ+

+{εεε · ((CCCp)−1∂Z2ψ
)
III − (
εεε r � ((CCCp)−1∂Z2ψ)

)} · Λ̇ΛΛ ≥ 0,

(9.61)
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when we put into evidence the terms which contain the rates of the appropriate

fields and their gradients, namely lll p,
d
dt
(
(p)
A ), Λ̇ΛΛ and ∇Λ̇ΛΛ . Here εεε denotes Ricci’s

permutation tensor.

Proof. First we introduce the expression for the time derivative of non-elastic free
energy function ψ, in which we use the notations mentioned below

ψ = ψ(Skw(
(p)
A ),(CCCp)−1Skw(ΛΛΛ ×III),ΛΛΛ ,∇ΛΛΛ)≡ ψ(Skw(Z1,Z2,ΛΛΛ ,∇ΛΛΛ),

where Z1 = Skw(
(p)
A ), Z2 = (CCCp)−1Skw(ΛΛΛ ×III).

(9.62)

The time derivative of the non elastic free energy function (9.62) is expressed as

ψ̇ = ∂Z1ψ ·Skw(
d
dt
(
(p)
A )+∂Z2ψ ·Skw

( d
dt

(
(CCCp)−1(ΛΛΛ ×III)

)
+

+∂ΛΛΛψ · Λ̇ΛΛ +∂∇ΛΛΛψ ·∇Λ̇ΛΛ .
(9.63)

Using the time derivative formula written in (9.18)4, (9.7)4 and the rules (9.12) we
obtain

∂Z2ψ ·Skw
d
dt

(
(CCCp)−1(ΛΛΛ ×III)

)
=−(

∂Z2ψ r �Skw(CCCp)−1(ΛΛΛ ×III)
) · lll p−

−(
(CCCp)−1∂Z2ψr

�Skw(ΛΛΛ ×III)
) · (lll p)T−

−εεε · ((CCCp)−1∂Z2ψ
)
III · Λ̇ΛΛ +

(
εεε r � ((CCCp)−1∂Z2ψ)

) · Λ̇ΛΛ .

(9.64)

The reduced dissipation inequality is derived from (9.52) together with the elastic
type constitutive relation (9.57)1, were ψ̇ is given by the formulae (9.63) together
with (9.64).

9.5 Viscoplastic Type Evolution Equations for Plastic Distortion

and Disclination Tensor

HHHypotheses. The energetic type constitutive equations will be defined for micro
momenta related to the plastic and disclination mechanism, namely

1
ρ0

μμμ p
0 =

1
ρ0

μμμ0 −CCCSym(∂∇CCCeψe)+Skw(∂Z1ψ),

1
ρ0

μμμλ
0 = ∂∇ΛΛΛψ.

(9.65)
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Theorem 9.4. Under the hypotheses formulated by (9.65) the reduced dissipation
inequality can be written under the form

{ 1
ρ0
ΣΣΣ p

0 +2Skw∂Z2ψ r � (CCCp)−1(ΛΛΛ ×III)+

+(ΛΛΛ ×III) r �
(
(CCCp)−1Skw(∂Z2ψ)

)
+2CCCp∂CCCeψe} · lll p+

+
( 1
ρ0
ΣΣΣλ

0 −∂ΛΛΛψ+
(p)
A � 1

ρ0
μμμλ

0 − 1
ρ0

μμμλ
0 r�

(p)
A

) · Λ̇ΛΛ+

+{εεε · ((CCCp)−1∂Z2ψ
)
III − (
εεε r � ((CCCp)−1∂Z2ψ)

)} · Λ̇ΛΛ ≥ 0

(9.66)

Proof. As a direct consequence of (9.61) together with (9.65) the inequality (9.66)
follows at once. The variables Z1 and Z2 have been defined in (9.62). Here Mandel’s

type stress tensor,
1
ρ0
ΣΣΣ p

0 , appears to be power conjugate to the rate of plastic distor-

tion lll p. For physical meaning and properties of Mandel and Eshelby stress tensors
see for instance Maugin (1994); Cleja-Tigoiu and Maugin (2000).

Axiom 9.4 The evolution equations for plastic distortion and disclination tensor are
supposed to be given by

ξ1 lll p =
1
ρ0
ΣΣΣ p

0 +Skw(∂Z2ψ) r �
(
(CCCp)−1Skw(ΛΛΛ ×III)

)
+

+Skw(ΛΛΛ ×III) r �
(
(CCCp)−1Skw(∂Z2ψ)

)
+2CCCp∂CCCeψe,

ξ2 Λ̇ΛΛ =
1
ρ0
ΣΣΣλ

0 −∂ΛΛΛψ+
(p)
A � 1

ρ0
μμμλ

0 − 1
ρ0

μμμλ
0 r�

(p)
A +

+εεε · ((CCCp)−1∂Z2ψ
)
III −εεε� ((CCCp)−1∂Z2ψ).

(9.67)

As a direct consequence of (9.67) the dissipation inequality (9.66) becomes

ξ1 lll p · lll p +ξ2 Λ̇ΛΛ · Λ̇ΛΛ ≥ 0. (9.68)

The last inequality holds for any non-negative constitutive functions ξ1,ξ2.

Concerning the expression of the Mandel type stress tensors,
1
ρ0
ΣΣΣ p and

1
ρ0
ΣΣΣλ

defined by (9.50), we shall use the balance equations for micro forces provided in the
paper by Cleja-Ţigoiu (2017). We recall the micro balance equation for the plastic
mechanism

1
ρ̃
(
ϒϒϒ p −ΣΣΣK

)
= div

( 1
ρ̃
(μμμ p −μμμK )(FFF p)−T )+BBBp, (9.69)

and the appropriate micro balance equation related to the disclination mechanism

1
ρ̃
ϒϒϒλ = div

( 1
ρ̃
μμμλ (FFF p)−T )+BBBλ . (9.70)
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Here ρ̃BBBp and ρ̃BBBλ are mass densities of couple body forces.

Definition 9.7. The Piola-Kirchhoff macroscopic stress tensor, πππ0, the macro stress
tensor, ΣΣΣK , and the Cauchy stress TTT are related by the following relationships

1
ρ̃
ΣΣΣK =

1
ρ0

(FFF p)−TCCCπππ0(FFF p)T =
1
ρ
(FFFe)−TTTT (FFFe)T . (9.71)

Note 9.5. Clayton et al (2006) assumed that the geometrically necessary density
tensors α̃αα and θ̃θθ do not contribute to the free energy dissipation, namely

σ̃ =
∂ψ̃
∂ α̃αα

, μ̃μμ =
∂ψ̃
∂ θ̃θθ

,

and the microforces with respect to the intermediate configuration satisfy the Fleck
et al (1994) type balance equations.

9.5.1 Quadratic Free Energy

We restrict ourself to the case of the free energy function which is quadratic with
respect to above mentioned variables, given by

ψ = ψe +ψ,

ψe =
1
8
E (CCC−CCCp) · (CCC−CCCp)+

1
4
β1(∇CCC−

−Sym{CCC
(p)
A }) · (∇CCC−Sym{CCC

(p)
A }),

ψ =
1
4
β2{Skw

(p)
A +β̃ (CCCp)−1Skw(ΛΛΛ ×III)} · {Skw

(p)
A +

+β̃ (CCCp)−1Skw(ΛΛΛ ×III)}+ 1
2
β3ΛΛΛ ·ΛΛΛ +

1
2
β4∇ΛΛΛ ·∇ΛΛΛ .

(9.72)

Note 9.6. If β̃ = 1 then the non-elastic part of the free energy postulated here coin-
cides with those introduced by Cleja-Ţigoiu et al (2016).

The appropriate partial derivatives of the free energy function (9.72) determine the
elastic type constitutive equations (9.57), the energetic representation for the micro
stress momenta (9.65) as well as the evolution equations for plastic distortion and
disclination tensor (9.67).

We do not provide here the particular constitutive model associated with the free
energy function (9.72) for the conciseness of the exposure. We pass directly to the
case of small distortions, that follows directly from the finite deformation model.
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9.5.2 Elasto-Plastic Model for Dislocations and Disclinations in
the Case of Small Distortions

The case of small elastic and plastic distortions is defined by the following conditions

FFFe = III +HHHe, FFF p = III +HHH p, FFF = III +HHH,
HHH = ∇uuu, HHH =HHHe +HHHe, for ‖HHHe ‖� 1,‖HHH p ‖� 1, (9.73)

The following approximated formulae can be put into evidence

CCC = III +2εεε, εεε =
1
2
(∇uuu+∇uuuT ), CCCp = III + εεε p, (9.74)

where

εεε p =
1
2
(HHH p +(HHH p)T )

1
2
β1
(
∇CCC−Sym({CCC

(p)
A }))= ∇εεε−∇εεε p,

(p)
A = ∇HHH p, ΓΓΓ = ∇HHH, Z1 = Skw∇HHH p, Z2 = Skw(ΛΛΛ ×III).

The elastic type constitutive equations, namely the formulae (9.57), can be repre-
sented under the form

1
ρ 0

πππ0 = E (εεε− εεε p)+
1
2
β1{(∇εεε−∇εεε p) r � (∇HHH −∇HHH p)

+(∇HHH −∇HHH p) r � (∇εεε−∇εεε p)},
1
ρ0

μμμ0 = β1(∇εεε−∇εεε p).

(9.75)

The energetic expressions for the plastic and disclination momenta are given by

1
ρ0

μμμ p = β2
(
Skw∇HHH p + β̃Skw(ΛΛΛ ×III)

)
,

1
ρ0

μμμλ = β4∇ΛΛΛ .
(9.76)

The evolution equations for plastic distortion and disclination tensor become

ξ1 lll p =
1
ρ0
ΣΣΣ p

0 +E (εεε− εεε p)+

+β2Skw(ΛΛΛ ×III) r �
(
Skw∇HHH p + β̃Skw(ΛΛΛ ×III)

)
+

+β2
(
Skw∇HHH p + β̃Skw(ΛΛΛ ×III)

)
r �Skw(ΛΛΛ ×III),

(9.77)
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ξ2 Λ̇ΛΛ =
1
ρ0
ΣΣΣλ

0 +β4 ∇HHH p �∇ΛΛΛ −β4∇ΛΛΛ r �∇HHH p −β3ΛΛΛ+

+
1
2
β2 ∈ ·(Skw∇HHH p + β̃Skw(ΛΛΛ ×III

)
III−

−1
2
β2 ∈ r �

(
Skw∇HHH p + β̃Skw(ΛΛΛ ×III)

)
.

(9.78)

Using the identities (9.54) and (9.55), together with the property Ω<∈> = −III the
evolution equation for the disclination tensor ΛΛΛ will be given by

ξ2 Λ̇ΛΛ =
1
ρ0
ΣΣΣλ

0 +β4 ∇HHH p �∇ΛΛΛ −β4∇ΛΛΛ r �∇HHH p −β3ΛΛΛ−
−2β2 tr (curlHHH p)III −4β2 β̃ tr(ΛΛΛ)III +β2 (curlHHH p)T +β2β̃

(
tr(ΛΛΛ)III −ΛΛΛ)

)(9.79)

Proposition 9.7. In the case of small distortions the evolution equations for the
plastic distortion HHH p and ΛΛΛ are given by

ξ1 ḢHH p
=

1
ρ0
ΣΣΣ p

0 +E (εεε− εεε p)+β2
(
(trΛΛΛ)III −ΛΛΛT )(curlHHH p)T+

+β2 (curlHHH p)
(
(trΛΛΛ)III −ΛΛΛ

)
+2β2β̃

(
(trΛΛΛ)III −ΛΛΛT )((trΛΛΛ)III −ΛΛΛ

)
,

ξ2 Λ̇ΛΛ =
1
ρ0
ΣΣΣλ

0 +β4 ∇HHH p �∇ΛΛΛ −β4∇ΛΛΛ r �∇HHH p −β3ΛΛΛ−
−2β2 tr (curlHHH p)III −4β2 β̃ tr(ΛΛΛ)III+
+β2 (curlHHH p)T +β2β̃

(
tr(ΛΛΛ)III −ΛΛΛ

)
.

(9.80)

The appropriate Mandel stress tensors are approximated by

ΣΣΣ p
0 =ϒϒϒ p, ΣΣΣλ

0 =ϒϒϒλ , ΣΣΣK = πππ0 = TTT , ρ̃ = ρ0, (9.81)

and are characterized by the micro balance equations (9.69) and (9.70) reduced to
the following ones

1
ρ0

(
ϒϒϒ p −πππ0

)
= div

1
ρ0

(μμμ p
0 −μ), (9.82)

where

div (
1
ρ0

μμμ p
0) =−β2curl

(
curlHHH p)−β2β̃ ∈ (∇trΛΛΛ)+β2β̃ curl(ΛΛΛT ),

div (
1
ρ0

μμμ0) = β1(Δεεε−Δεεε p).

and

1
ρ0
ϒϒϒλ = β4 ΔΛΛΛ , (9.83)

when the mass density of couple body forces were neglected.
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Theorem 9.5. Finally, the evolution equations for the unknowns HHH p and ΛΛΛ are given
by

ξ1 ḢHH p
=

1
ρ0

TTT +E (εεε− εεε p)−β1(Δεεε−Δεεε p)+

−β2curl
(
curlHHH p)−β2β̃ ∈ (∇trΛΛΛ)+β2β̃ curl(ΛΛΛT )+

+β2
(
(trΛΛΛ)III −ΛΛΛT )(curlHHH p)T +β2 (curlHHH p)

(
(trΛΛΛ)III −ΛΛΛ

)
+

+2β2β̃
(
(trΛΛΛ)III −ΛΛΛT )((trΛΛΛ)III −ΛΛΛ

)
,

ξ2 Λ̇ΛΛ = β4 ΔΛΛΛ +β4 ∇HHH p �∇ΛΛΛ −β4∇ΛΛΛ r �∇HHH p −β3ΛΛΛ−
−2β2 tr (curlHHH p)III −4β2 β̃ tr(ΛΛΛ)III+
+β2 (curlHHH p)T +β2β̃

(
tr(ΛΛΛ)III −ΛΛΛ

)
.

(9.84)

Here TTT is given by the relationship (9.75) when the hypothesis of small distortions is
accepted.

9.6 Conclusions

The proposed model of structural defects such as dislocations and disclinations
appears to be a continuation of the previous ones proposed by Cleja-Ţigoiu (2014);
Cleja-Ţigoiu et al (2016).

• The postulated free energy functions contain somehow the same variables de-
scribing the defects, excepting the gradient of the disclination tensor which is not
involved in Cleja-Ţigoiu (2014).

The elastic constitutive functions have been essentially changed, as follows

• The elastic response is characterized here by the formulae (9.57). The Piola-
Kirchhoff stress tensor is expressed in terms of the partial derivatives ∂CCCeψ,∂∇CCCeψ,

as well as Bilby’s elastic connection,
(e)
A , while

1
ρ 0

πππ = ∂CCCeψ

in Cleja-Ţigoiu (2014).
• The macro stress momentum with respect to the reference configuration is given

in terms of ∂∇CCCeψ via the relation (9.57)2, while in Cleja-Ţigoiu (2014) the macro
stress momentum is not a third order symmetric tensor and it depends on ∂A eψ,
and ∂SSSeψ. We used the notations

A e ≡
(e)
A K

and
SSSe ≡ SSSe

K .
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The evolution equations for plastic distortion, FFF p, and disclination tensor, Λ̃ΛΛ , were
provided to be compatible with the reduced dissipation inequality. We derived also
peculiar evolution equations for HHH p and Λ̃ΛΛ within the small distortions framework.

The evolution equations provided here for β = 1 are similar with those derived
in Cleja-Ţigoiu et al (2016) for the small strains, apart from the terms induced by
the elastic effect, namely the first three terms involved in right-hand side of the
evolution equation (9.84)1. In Cleja-Ţigoiu (2014) the micro stress associated with
the disclination mechanism remained undefined, and the disclination tensor, Λ̃ΛΛ , was
viewed as internal variable, see Maugin (2006). The presence of the gradient ∇K Λ̃ΛΛ
in the free energy function allowed us to define the micro stressϒϒϒλ , introduced in
(9.48) via (9.70). Thus both evolution equations are viscoplastic and diffusion type.
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