
Chapter 25

A Consistent Dynamic Finite-Strain Plate

Theory for Incompressible Hyperelastic

Materials

Yuanyou Li and Hui-Hui Dai

Abstract In this chapter, a dynamic finite-strain plate theory for incompressible
hyperelastic materials is deduced. Starting from nonlinear elasticity, we present the
three-dimensional (3D) governing system through a variational approach. By series
expansion of the independent variables about the bottom surface, we deduce a 2D
vector dynamic plate system, which preserves the local momentum-balance structure.
Then we propose appropriate position and traction boundary conditions. The 2D plate
equation guarantees that each term in the variation of the generalized potential energy
functional attains the required asymptotic order. We also consider the associated
weak formulations of the plate model, which can be applied to different types of
practical edge conditions.

25.1 Introduction

Plate structures are defined as plane elements with one small thickness dimension
compared with the other two planar dimensions. The theory of plates has been
widely studied by scientists in both mathematical and engineering communities since
the nineteenth century. The literature in this field is extremely plentiful, including
theories based on engineering intuitions and assumptions, derived theories from
three-dimensional elasticity, as well as direct theories (Timoshenko and Woinowsky-
Krieger, 1959; Naghdi, 1972; Reddy, 2007; Altenbach et al, 2010). We also refer the
readers to Dai and Song (2014) for a review of some selected works. For derived
plate theories, we usually focus on how to reduce the original 3D elasticity theory
to a two-dimensional (2D) approximate model while the fundamental mechanical
properties of plate structures can be appropriately captured.

Yuanyou Li · Hui-Hui Dai
Department of Mathematics, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong,
Hong Kong
e-mail: yuanyouli2-c@cityu.edu.hk,mahhdai@cityu.edu.hk

Approaches in Complex Materials 1, Advanced Structured Materials 89,
https://doi.org/10.1007/978-3-319-72440-9_25

487
H. Altenbach et al. (eds.), Generalized Models and Non-classical
© Springer International Publishing AG, part of Springer Nature 2018

yuanyouli2-c@cityu.edu.hk,mahhdai@cityu.edu.hk
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-72440-9_25&domain=pdf


488 Yuanyou Li and Hui-Hui Dai

Early attempts on plate theories relied on a priori hypotheses, either of geometrical
and mechanical nature or on the specific form of the solution (displacements and
stresses). Classical plate theories derived in this way include the Kirchhoff-Love
theory (Kirchhoff, 1850; Love, 1888), the von Kármán theory (von Kármán, 1910),
the Mindlin-Reissner theory (Mindlin, 1951). Despite the success of these theories to
various specific situations, their applicability for relatively thick plates and general
loadings (say, under shear tractions) may be limited.

One approach involves no explicit kinematic assumptions on displacements (or
deformed positions) except general power (or other function) series expansions

xxx(rrr,Z) =
N

∑
j=0

Z jxxx j(rrr). (25.1)

Normally, all the coefficients xxx j ( j � 1) are treated as independent unknowns. By
first integrating out the Z variable and conducting a truncation, the 2D potential
energy of the plate is formulated. Then the governing equations are derived from the
two-dimensional variational or virtual work principle. Such an approach has been
adopted by Kienzler (2002) based on linear elasticity. Based on nonlinear elasticity,
Meroueh (1986); Steigmann (2007) adopted Legendre polynomials of Z in (25.1)
and formulated a system in terms of generalized (high order) stress resultants for
finite-strain problems. It is worth mentioning that by imposing restrictions on the
high-order coefficients in (25.1) instead of treating them as independent unknowns,
Steigmann (2013) derived more proper plate and shell models which incorporate
both stretching and bending.

Based on a priori scalings between the plate thickness and the deformations (or
applied loads), some consistent mathematical approaches are utilized for deriving
asymptotically correct plate theories. The method of Gamma convergence (Friesecke
et al, 2002) is concerned with the two-dimensional variational problem in the limit
of small thickness, but it cannot be used to study dynamic problems and derive
plate theories incorporating both bending and stretching. The method of asymptotic
analysis, which aims at developing the leading-order weak formulation by formal
expansions with the thickness as the small parameter, was used to derive the von
Kármán plate equations from the 3D weak formulation in Ciarlet (1980). In Millet
et al (2001), based on the 3D differential formulation, a hierarchy of leading-order
plate equations were derived.

Most of the works in the literature consider compressible materials, the exist-
ing plate theories for incompressible materials are much fewer. With the Gamma
convergence method, Trabelsi (2005) formulated a nonlinear elastic thin membrane
model for incompressible materials, while Conti and Dolzmann (2008) extended the
plate theory derived in Friesecke et al (2002) to the case of incompressible materials.
By using the principle of virtual work, Batra (2007) proposed a compatible shear
and normal deformable theory for a plate made of an incompressible linear elastic
material, in which the orthonormal Legendre polynomials were adopted to derive the
high-order plate theory.



25 Dynamic Incompressible Plate Theory 489

Nowadays, soft materials and biological materials have attracted attentions of
researchers of different fields. It happens that most of soft materials are incompress-
ible. In this chapter, we intend to provide a dynamic plate theory for incompressible
materials. Taking the incompressibility constraint into account, we extend the con-
sistent plate theory proposed in Song and Dai (2016) to the case of incompressible
hyperelastic materials.

We organize this chapter as follows. In Sect. 25.2, the 3D governing system of
incompressible materials is derived through conventional variational approach. In
Sect. 25.3, according to the criterion of consistency we derive the 2D vector plate
equation and propose some proper edge boundary conditions as well. In Sect. 25.4,
we consider the associated weak formulations of the 2D plate equation and adopt
them to distinct types of boundary conditions. Finally, we make some concluding
remarks.

25.2 The 3D Governing Equations

In this section, we consider a homogeneous thin plate of constant thickness, which is
composed of an incompressible hyperelastic material. A material point of the plate
in the reference configuration κ = Ω × [0,2h] is denoted by XXX = (rrr,Z), where the
thickness 2h of the plate is small compared with the planar dimensions of the top (or
bottom) surface Ω . The coordinates of a material point in the current configuration κt
is denoted as xxx. Throughout the paper, symbols with typefaces a, aaa, A, A represent
scalar, vector, second-order tensor (matrix) and higher-order tensor, respectively. In
component forms, we adopt the convention that Latin indices run from 1 to 3 whereas
Greek indices run from 1 to 2, repeated summation convention is used and the index
after the comma indicates differentiation.

The deformation gradient tensor of a material point in the plate can then be
represented by

F =
∂xxx
∂XXX

=
∂xxx
∂rrr

+
∂xxx
∂Z
⊗kkk = ∇xxx+

∂xxx
∂Z
⊗kkk, (25.2)

where ∇ is the in-plane two-dimensional gradient and kkk is the unit outward normal
vector of the reference top surface Ω . More precisely, with rectangular Cartesian
coordinates rrr = X1EEE1 +X2EEE2, we have

∇xxx =
∂xxx
∂X1
⊗EEE1 +

∂xxx
∂X2
⊗EEE2.

Besides, we consider the following incompressibility constraint equation

R(F) = Det(F)−1 = 0, in Ω × [0,2h]. (25.3)

Suppose the material has the strain-energy density function Φ(F), the associated first
and second order elastic moduli are defined by
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A 1(F) =
∂ 2Φ
∂F∂F

(
A 1

i jkl =
∂ 2Φ

∂Fji∂Flk

)
, A 2(F) =

∂ 3Φ
∂F∂F∂F

. (25.4)

It is assumed that the strain energy function for the deformations concerned
satisfies the strong-ellipticity condition

aaa⊗bbb : A 1(F)[aaa⊗bbb]> 0, for all aaa⊗bbb �= 0, (25.5)

where the colon between second-order tensors means a scalar tensor product de-
fined by A : B = AklBlk and the square bracket after a higher-order modulus tensor
represents the operations{

A 1[A]
}

i j = A 1
i jklAlk,

{
A 2[A,B]

}
i j = A 2

i jklmnAlkBnm. (25.6)

For the dynamic case with dead-loading on the boundary, suppose qqqb is the body
force, qqq± are the applied tractions on the top and bottom surfaces, and qqq is the applied
traction on ∂Ωq. The kinetic energy, the strain energy and the load potential are given
by

K =
∫
κ

1
2
ρẋxx · ẋxxdXXX ,

Φ =
∫
κ

Φ(F)dXXX ,

V =−
∫
κ

qqqb(XXX) ·xxx(XXX)dXXX−
∫
Ω

qqq−(rrr) ·xxx(rrr,0)+qqq+(rrr) ·xxx(rrr,2h)drrr

−
∫

∂Ωq

2h∫
0

qqq(s,Z) ·xxx(s,Z)dZds,

where ρ is the mass density of the plate material and the overhead dot means time
derivative. The lateral surface of the plate, which is denoted as ∂Ω , is composed
of the position boundary ∂Ω0 and the traction boundary ∂Ωq. All the quantities are
defined in the reference configuration.

In order to calculate the minimum of the potential energy functional under the
constraint condition (25.3), we consider the following generalized potential energy
functional

Ψ(xxx, p;XXX) =

t2∫
t1

⎧⎨⎩Φ+V −K−
∫
κ

p(XXX)R(F)dXXX

⎫⎬⎭dt,

where p(XXX) plays the role of the Lagrangian multiplier. Next, the governing system
of the current plate model will be derived by calculating the variations of Ψ with
respect to the independent variables xxx and p.

First, from the Hamilton’s principle and upon using the divergence theorem, we
obtain the variation ofΨ with respect to xxx



25 Dynamic Incompressible Plate Theory 491

δΨ
δxxx

=

t2∫
t1

{∫
κ

(−DivS−qqqb +ρẍxx) ·δxxxdXXX−
∫
Ω

(STkkk|Z=0 +qqq−) ·δxxx(rrr,0)drrr

+
∫
Ω

(STkkk|Z=2h−qqq+) ·δxxx(rrr,2h)drrr+
∫

∂Ω0

2h∫
0

STNNN ·δxxx(s,Z)dZds

+
∫

∂Ωq

2h∫
0

(STNNN−qqq) ·δxxx(s,Z)dZds
}

dt, (25.7)

where

S =
∂Φ
∂F
− p

∂R
∂F

, (25.8)

is the nominal stress tensor of the incompressible material (Ogden, 1984)), NNN is the
unit outward normal to the lateral surface, and ẋxxδxxx is assumed to vanish at both t1 and
t2. Due to the arbitrariness of δxxx in (25.7), the equations of motion for any t ∈ (t1, t2)
together with boundary conditions are

DivS+qqqb = ρẍxx, in Ω × [0,2h],
STkkk|Z=0 =−qqq−, in Ω ,

STkkk|Z=2h = qqq+, in Ω ,
xxx = bbb(s,Z), on ∂Ω0× [0,2h],
STNNN = qqq(s,Z), on ∂Ωq× [0,2h],

(25.9)

where bbb is the prescribed position on the boundary ∂Ω0, and we omit the argument t
in all the above quantities. Next, we obtain the variation ofΨ with respect to p

δΨ
δ p

=−
t2∫

t1

∫
κ

R(F)δ pdXXXdt. (25.10)

We can obtain the constraint Eq.(25.3) from the above equation. Now we have
formulated the 3D governing system Eq.(25.3) and Eq.(25.9), which contains two
independent variables xxx and p.

25.3 The 2D Dynamic Plate Theory

In this section, we derive the 2D plate theory for incompressible materials from the
previous 3D governing partial differential equations system, including the consistent
dynamic plate equations, the boundary conditions as well as the associated weak
formulation. It is a general approach to make approximations to eliminate the Z
variable. Here we use the same consistency criterion proposed in Dai and Song
(2014):
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For all loadings that satisfy some smooth requirements, each term in the first variation of the
energy functional should be of a required asymptotic order (say, O(h4)) separately for the
plate approximation.

Without loss of generality, it is assumed that all the spatial variables are scaled by
the typical dimension of the in-plane surface, then 2h in fact represents the thickness
ratio of the plate. The derivation follows the similar lines proposed in Song and
Dai (2016); Wang et al (2016), but here we take into account the incompressibility
constraint. We start from the series expansion of the independent variables with
respect to Z.

25.3.1 Dynamic 2D Vector Plate Equation

Suppose that both xxx(XXX) and p(XXX) are C5 functions in their arguments, then we obtain
the following series expansions:

xxx(XXX) = xxx(0)(rrr)+Zxxx(1)(rrr)+
1
2

Z2xxx(2)(rrr)

+
1
6

Z3xxx(3)(rrr)+
1

24
Z4xxx(4)(rrr)+O(Z5), (25.11)

p(XXX) = p(0)(rrr)+Zp(1)(rrr)+
1
2

Z2 p(2)(rrr)

+
1
6

Z3 p(3)(rrr)+
1

24
Z4 p(4)(rrr)+O(Z5), (25.12)

where (·)(n) = ∂ n(·)/∂Zn|Z=0 (n = 1, . . . ,4). According to the expansion of xxx, the
deformation gradient tensor can also be expanded as

F(XXX) = F(0)(rrr)+ZF(1)(rrr)+
1
2

Z2F(2)(rrr)+
1
6

Z3F(3)(rrr)+O(Z4). (25.13)

By substituting (25.11) into (25.2) and comparing with (25.13), we obtain the
following relations

F(n) = ∇xxx(n) +xxx(n+1)⊗kkk, n = 0,1,2,3. (25.14)

An observation from (25.14) is that the dependence of F(n) on xxx(n+1) is linearly
algebraic. We also suppose the strain energy Φ(F) is C5 functions in their arguments,
so the nominal stress tensor can be expanded as

S(XXX) = S(0)(rrr)+ZS(1)(rrr)+
1
2

Z2S(2)(rrr)+
1
6

Z3S(3)(rrr)+O(Z4). (25.15)

Besides, from (25.8) and by using the chain rule, we obtain
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S = A(0)(F(0))+A (1)(F(0))[F−F(0)]+
1
2
A (2)(F(0))[F−F(0),F−F(0)]

+
1
6
A (3)(F(0))[F−F(0),F−F(0),F−F(0)]+ · · ·

−
{

p(0)(rrr)+Zp(1)(rrr)+
1
2

Z2 p(2)(rrr)+
1
6

Z3 p(3)(rrr)+ · · ·
}

×
{

R(0)(F(0))+R(1)(F(0))[F−F(0)]+
1
2
R(2)(F(0))[F−F(0),F−F(0)]

+
1
6
R(3)(F(0))[F−F(0),F−F(0),F−F(0)]+ · · ·

}
,

(25.16)

where A (i) (i = 1,2,3) are elastic moduli associated with Φ , the similar moduli R(i)

(i = 1,2,3) are defined by replacing Φ with the constraint R, and

A(0)(F(0)) =
∂Φ
∂F

∣∣∣∣
F=F(0)

,

R(0)(F(0)) =
∂R
∂F

∣∣∣∣
F=F(0)

= Det(F(0))(F(0))−1.

By substituting (25.13) into (25.16) and comparing with (25.15), we obtain the
following expressions for S(n)

S(0)(rrr) =A(0)− p(0)R(0),

S(1)(rrr) =A [F(1)]− p(1)R(0),

S(2)(rrr) =A [F(2)]−p(2)R(0)+A (2)[F(1),F(1)]− p(0)R(2)[F(1),F(1)]−2p(1)R(1)[F(1)],

S(3)(rrr) =A [F(3)]− p(3)R(0) +3A (2)[F(1),F(2)]+A (3)[F(1),F(1),F(1)]

−3p(0)R(2)[F(1),F(2)]− p(0)R(3)[F(1),F(1),F(1)]−3p(1)R(1)[F(2)]

−3p(1)R(2)[F(1),F(1)]−3p(2)R(1)[F(1)],

(25.17)

where the function of the new combined modulus

A = A (1)− p(0)R(1)

in this incompressible case resembles A (1) in the compressible case, and the ar-
gument F(0) in A(0), R(0), A (i) and R(i) (i = 1, . . . ,3) is omitted for brevity. Due
to the series expansions (25.11) and (25.12), we obtain totally 19 unknowns in the
governing system (including five vectors xxx(n) (n = 0, . . . ,4) and four scalars p(n)

(n = 0, . . . ,3)), which are necessary in formulating a closed system by some con-
sistent truncations of the 3D system. In addition, some equations in (25.9) serves
to eliminate most of the unknowns, leading to a single vector plate equation. From
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(25.14) and (25.17), we can observe that S(i) depend linearly on xxx(i+1) (i = 1,2,3) as
well, which plays a fundamental role in deriving the following recursion relations.

First, by substituting (25.17)1 into the bottom traction condition (25.9)2, we obtain

{S(0)}Tkkk =
{

A(0)(F(0))− p(0)R(0)(F(0))
}T

kkk

=
{

A(0)(∇xxx(0) +xxx(1)⊗kkk)− p(0)R(0)(∇xxx(0) +xxx(1)⊗kkk)
}T

kkk

=−qqq−.

(25.18)

Equation (25.18) provides three algebraic equations for the unknowns xxx(1) and p(0).
In order to ease the sequel derivations, we define

ggg(xxx(0))� R(0)Tkkk = Det(F(0))(F(0))−Tkkk = F(0)∗kkk = F(0)∗(EEE1∧EEE2)

= (F(0)EEE1)∧ (F(0)EEE2) = xxx(0),1 ∧xxx(0),2 ,

where ‘∗’ represents the adjugate and ‘∧’ means the cross product (Chadwick, 1999).
So (25.18) reduces to

A(0)T (F(0))kkk− p(0)ggg(xxx(0)) =−qqq−. (25.19)

Next, vanishing of the coefficients of Zn from (25.9)1 yields that

∇ ·S(n) +S(n+1)Tkkk+qqq(n)b = ρẍxx(n), n = 0,1,2. (25.20)

Equation (25.20) provides three linear algebraic equations for the unknowns xxx(n+1)

and p(n) (n = 1,2,3).
Furthermore, by substituting the series expansion (25.13) into the constraint Eq.

(25.3), we obtain

R(F(0))+R(0) :
{

ZF(1) +
1
2

Z2F(2) +
1
6

Z3F(3)
}

+
1
2

{
ZF(1) +

1
2

Z2F(2)
}

: R(1)
[

ZF(1) +
1
2

Z2F(2)
]

+
1
6

ZF(1) : R(2)[ZF(1),ZF(1)]+O(Z4) = 0.

The vanishing of the coefficients of Zn (n = 0,1,2,3) in the above equation leads
to
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R(F(0)) = (xxx(0),1 ∧xxx(0),2 ) ·xxx(1)−1 = ggg ·xxx(1)−1 = 0,

R(0) : F(1) = ggg ·xxx(2) +R(0) : ∇xxx(1) = 0,

R(0) : F(2) +F(1) : R(1)[F(1)] = 0,

R(0) : F(3) +3F(2) : R(1)[F(1)]+F(1) : R(2)[F(1),F(1)] = 0,

(25.21)

which provide the additional (linear) equations for the unknowns xxx(n) (n = 1,2,3,4)
and p(n) (n = 1,2,3).

These equations can be used to derive the recursion relations for xxx(n+1) and p(n)

(n = 1,2,3). For instance, substituting (25.17)2 into (25.20) (n = 0) furnishes

Bxxx(2) + fff (2)− p(1)ggg = ρẍxx(0),

where the second-order (acoustic) tensor B and the vector fff (2) are defined as

Bxxx = {A [xxx⊗kkk]}T kkk, ⇒ (B)|i j = A 3i3 j,

fff (2) =
{

A [∇xxx(1)]
}T

kkk+∇ ·S(0) +qqq(0)b .

By the strong-ellipticity condition in (25.5), B is invertible and positive-definite and
we obtain

xxx(2) =−B−1 fff (2) + p(1)B−1ggg+B−1ρẍxx(0). (25.22)

By substituting (25.22) into (25.21)2, we easily derive the expression of p(1):

p(1) =
1
g

(
ggg ·B−1 fff (2)−ggg ·B−1ρẍxx(0)−R(0) : ∇xxx(1)

)
, with g = ggg ·B−1ggg, (25.23)

where g > 0 due to the positive-definiteness of B. Similarly, we obtain the following
expressions of xxx(3) and p(2)

xxx(3) =−B−1 fff (3) + p(2)B−1ggg+B−1ρẍxx(1), (25.24)

p(2) =
1
g

(
ggg ·B−1 fff (3)−ggg ·B−1ρẍxx(1)−R(0) : ∇xxx(2)−F(1) : R(1)[F(1)]

)
, (25.25)

where

fff (3) =
{

A [∇xxx(2)]
}T

kkk+∇ ·S(1) +qqq(1)b

+
{
(A (2)− p(0)R(2))[F(1),F(1)]−2p(1)R(1)[F(1)]

}T
kkk.

The recursion relations for p(3) and xxx(4) are not needed in the following derivations,
however the relation (25.20) with n = 2 as a whole will be used to eliminate them.

Finally, the top traction condition in (25.9)3 states

S(0)Tkkk+2hS(1)Tkkk+2h2S(2)Tkkk+
4
3

h3S(3)Tkkk+O(h4) = qqq+, (25.26)
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which contains all the unknowns xxx(n) (n = 0, . . . ,4) and p(n) (n = 0, . . . ,3).
As for xxx(1) and p(0), it can be seen from (25.19) and (25.21)1 that they only depend

on ∇xxx(0). However, (25.19) and (25.21)1 are nonlinear algebraic equations of xxx(1) and
p(0), which can only be solved when the concrete form of the strain-energy density
Φ(F) is given. The strong-ellipticity condition and the implicit function theorem
imply that they can uniquely determined in terms of ∇xxx(0), as shown in Wang et al
(2016).

Finally, by subtracting (25.18) from (25.26) and further using (25.20), we can
obtain the dynamic 2D vector plate equation

∇ ·S+qqq = ρẍxx, (25.27)

where

qqq =
qqq++qqq−

2h
+qqq

b
,

xxx =
1
2h

2h∫
0

xxxdZ = xxx(0) +hxxx(1) +
2
3

h2xxx(2) +O(h3),

and S and qqq
b

are defined in the same way as xxx. The dynamic plate equation, after
substituting the recursion relations, becomes a fourth-order differential equation for
xxx(0) with an error of O(h3).

25.3.2 Edge Boundary Conditions

Besides the vector plate equation, we shall also reduce the original 3D lateral surface
conditions to appropriate boundary conditions for 2D equation. Since the plate
equation is of fourth order in spatial derivatives, on either the position boundary
∂Ω0 or the traction boundary ∂Ωq two conditions regarding xxx(0) or its derivatives are
required. Some conditions might involve time-derivative of xxx(0), which is different
from the boundary conditions proposed in Dai and Song (2014).

25.3.2.1 Case 1. Prescribed Position in the 3D Formulation

Suppose that on ∂Ω0×[0,2h] the position bbb is prescribed, then we adopt the following
two boundary conditions

xxx(0) = bbb(0)(s),
xxx = bbb on ∂Ω0

⇔ xxx(1) +
2
3

hxxx(2) +
1
3

h2xxx(3) +O(h3) =
1
h
(bbb−bbb(0)),

(25.28)
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where
bbb(0) = bbb|Z=0

and bbb represents the prescribed averaged position. The second condition contains
up to the third-order spatial-derivatives and third-order time-derivatives of xxx(0) upon
using the recursion relations.

25.3.2.2 Case 2. Prescribed traction in the 3D formulation

Suppose that on ∂Ωq× [0,2h] the traction qqq is specified and is C4 in Z, then we adopt
the following two boundary conditions

S(0)TNNN = qqq(0),

STNNN =
1
2h

2h∫
0

STNNNdZ =
1
2h

2h∫
0

qqqdZ = qqq0 on ∂Ωq

⇔
(

S(0) +hS(1) +
2
3

h2S(2) +
1
3

h3S(3) +O(h4)

)T

NNN = qqq0,

(25.29)

where
qqq(0) = qqq|Z=0

and qqq0 is the averaged traction along the thickness of the plate. As for the second
condition, we may utilize the traction condition at an arbitrary Z, or alternatively, use
the specified moment about the middle line

1
2h

2h∫
0

(Z−h)STNNNdZ =
1
2h

2h∫
0

(Z−h)qqqdZ =mmm(s)

⇔ 1
3
S(1)TNNN +

1
3

hS(2)TNNN +
1
5

h2S(3)TNNN +O(h3) =
mmm(s)

h2 ,

(25.30)

where mmm(s) can be expressed in terms of qqq(i) in the same way as the left-hand side.

25.3.3 Examination of the Consistency

According to the criterion introduced in Sect. 25.3, in order to examine the con-
sistency of the derived 2D dynamic vector plate equation system, we analyze the
asymptotic orders of the terms in the variations (25.7) and (25.10).

For the first term on the right hand side (r.h.s.) of (25.7), we consider the series
expansions of DivS in terms of Z. As the first three terms in the series expansion
(25.20) have been used together with (25.21)(2−4) to obtain the recursion relations



498 Yuanyou Li and Hui-Hui Dai

of xxx(i) (i = 2,3,4) and p(i) (i = 1,2,3), we have DivS = O(Z3). Thus the first term
in (25.7) is of O(h4). The second term on the r.h.s of (25.7) is exactly equal to zero
because Eq. (25.19) together with (25.21)1 have been used to derive the expressions
of xxx(1) and p(0). In Eq. (25.26), STkkk on the top surface has been expanded to O(h4),
which implies that the third term in (25.7) is O(h4).

Next, we examine the asymptotic order of the fourth term in (25.7) which involves
the prescribed position boundary condition on ∂Ω0× [0,2h]. We rewrite the integrand
in the following form

2h∫
0

STNNN ·δxxxdZ =

2h∫
0

S(0)TNNN ·
(
δxxx(0) +Zδxxx(1) +

1
2

Z2δxxx(2)
)

dZ

+

2h∫
0

ZS(1)TNNN ·
(
δxxx(0) +Zδxxx(1)

)
dZ

+

2h∫
0

1
2

Z2S(2)TNNN ·δxxx(0)dZ +O(h4).

(25.31)

From the position boundary conditions (25.28), it can be obtained that δxxx(0) = 0,
δxxx(1) = O(h) and δxxx(1) + 2/3hδxxx(2) = O(h2). By substituting these results into
(25.31), it is easy to check that all the three terms on the r.h.s. of (25.31) are of O(h4).
Thus, the fourth term in (25.7) also satisfies the consistency condition.

To examine the asymptotic order of the fifth term in (25.7), we denote

q̃qq = STNNN−qqq.

The coefficients of the series expansion of q̃qq are represented as q̃qq(i) (i = 0, . . . ,3).
Then the integration of the fifth term in (25.7) can be rewritten as

2h∫
0

q̃qq ·δxxxdZ =

2h∫
0

(
q̃qq(0) +Zq̃qq(1) +

1
2

Z2q̃qq(2)
)
·δxxx(0)dZ

+

2h∫
0

Z
(

q̃qq(0) +Zq̃qq(1)
)
·δxxx(1)dZ

+

2h∫
0

1
2

Z2q̃qq(0) ·δxxx(2)dZ +O(h4).

(25.32)

From the traction boundary conditions (25.29), it can be obtained that q̃qq(0) = 0,
q̃qq(1) = O(h) and q̃qq(1) +2/3hq̃qq(2) = O(h2). By substituting these results into (25.32),
it is easy to check that all the three terms on the r.h.s. of (25.32) are of O(h4). Thus,
the fifth term in (25.7) also satisfies the consistency condition.
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For the variation (25.10), we have considered the series expansion of R(F) in
terms of Z, where the coefficients of Zi (i = 0,1,2,3) are set to be zero to derive the
recursion relations of xxx(i+1) (i = 0,1,2,3). Thus the variation (25.10) also attains
O(h4), which satisfies the consistency condition. To sum up, the 2D vector plate
equation (25.27) and the edge boundary conditions (25.28) and (25.29) ensure each
term in the variations to be of an asymptotic order of O(h4), which satisfies the
consistency criterion.

25.4 The Associated Weak Formulations

In this section, we shall derive the associated weak formulations of the previous 2D
vector plate system to be prepared for future numerical calculations. Furthermore,
when the 3D edge conditions are unknown, suitable boundary conditions can be
proposed for practical loading cases according to the weak form.

First, by multiplying both sides of the plate equation (25.27) with ξξξ = δxxx(0) and
calculating the integrations over the region Ω , we obtain∫

Ω

(∇ ·S) ·ξξξdrrr =−
∫
Ω

qqq ·ξξξdrrr+
∫
Ω

ρẍxx ·ξξξdrrr

⇒
∫
∂Ω

(
STNNN

) ·ξξξds−
∫
Ω

S : ∇ξξξdrrr =−
∫
Ω

qqq ·ξξξdrrr+
∫
Ω

ρẍxx ·ξξξdrrr.
(25.33)

Generally, the weak formulation associated with the fourth-order plate equation
(25.27) should only contain up to the second-order derivative of xxx(0). However, the
weak formulation (25.33) involves the third-order derivatives, which originates from
the terms F(2) and p(2) in S(2) and should be eliminated.

By substituting (25.23) and (25.25) into (25.14) and through some manipulations,
we decompose p(2) and F(2) into two parts

p(2) = p(2)1 + p(2)2 , F(2) = F(2)
1 +F(2)

2 ,

where

p(2)1 =
1
g

{
ggg ·B−1

{
(A (2)− p(0)R(2))[F(1),F(1)]

}T
kkk−2p(1)ggg ·B−1

(
R(1)[F(1)]

)T
kkk

+ggg ·B−1qqq(1)b −ggg ·B−1ρẍxx(1)−F(1) : R(1)[F(1)]

}
,

p(2)2 =
1
g

{
ggg ·B−1

(
∇ ·S(1)

)
+ggg ·B−1

{
A [∇xxx(2)]

}T
kkk−R(0) : ∇xxx(2)

}
,
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F(2)
1 =p(2)1 B−1ggg⊗kkk−B−1

{
(A (2)− p(0)R(2))[F(1),F(1)]

}T
kkk⊗kkk

+2p(1)B−1
(
R(1)[F(1)]

)T
kkk⊗kkk−B−1qqq(1)b ⊗kkk+B−1ρẍxx(1)⊗kkk,

F(2)
2 =∇xxx(2)−B−1

{
A [∇xxx(2)]

}T
kkk⊗kkk−B−1(∇ ·S(1))⊗kkk+ p(2)2 B−1ggg⊗kkk.

It can be found that only p(2)2 and F(2)
2 involve the third-order derivative of xxx(0).

Correspondingly, we consider the following decomposition

S : ∇ξξξ = W1(∇∇xxx(0),∇ξξξ )+W2(∇∇∇xxx(0),∇ξξξ ), (25.34)

where

W1 = (S(0) +hS(1)) : ∇ξξξ +
2
3

h2
{

A [F(2)
1 ]− p(2)1 R(0)

}
: ∇ξξξ

+
2
3

h2
{
(A (2)− p(0)R(2))[F(1),F(1)]−2p(1)R(1)[F(1)]

}
: ∇ξξξ ,

W2 =
2
3

h2
{

A [F(2)
2 ]− p(2)2 R(0)

}
: ∇ξξξ .

(25.35)

In order to eliminate the third-order derivative terms of xxx(0), we then substitute the
expressions of F(2)

2 and p(2)2 into (25.35). Further manipulations yield the following
result

W2 =
2
3

h2
{

S0 : ∇xxx(2) +ηηη · (∇ ·S(1))
}
,

and

S0 = A [∇ξξξ +ηηη⊗kkk]−ζR(0),

ηηη =−B−1 {A [∇ξξξ ]}T kkk+ζB−1ggg,

ζ =
1
g

(
A [B−1ggg⊗kkk]−R(0)

)
: ∇ξξξ � P : ∇ξξξ .

(25.36)

In fact, it can be proved that

δ p(0) = ζ , δxxx(1) = ηηη , δS(0) = S0.

Then, integration by parts leads to∫
Ω

W2drrr =
2
3

h2
∫
∂Ω

(S T
0 NNN) ·xxx(2) + (S(1)TNNN) ·ηηηds+

∫
Ω

W3drrr,

W3 =−2
3

h2
{
(∇ ·S0) ·xxx(2) +S(1) : ∇ηηη

}
.

(25.37)

It can be seen from (25.37) that the third-order derivatives of xxx(0) have been elimi-
nated. Combining the results (25.33), (25.34) and (25.37), the following 2D weak
formulation can be derived
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Ω

(
W1 +W3 +(ρẍxx−qqq) ·ξξξ)drrr

=
∫
∂Ω

(
STNNN ·ξξξ − 2

3
h2S(1)TNNN ·ηηη− 2

3
h2S T

0 NNN ·xxx(2)
)

ds.
(25.38)

In the following, by considering the boundary conditions, the 2D weak formulation
(25.38) can be further simplified. We adapt it to two distinct types of boundary
conditions, i.e., the previous cases in Sect. 25.3.2 and other practical cases when 3D
edge conditions are unclear.

25.4.0.1 Case 1. Edge position and traction in the 3D formulation are known

From (25.28), it is easy to deduce that ξξξ = δxxx(0) = 000 and ηηη = δxxx(1) = O(h) on
∂Ω0, which together with (25.36) further implies that ∇ξξξ = O(h) and S0 = O(h).
Consequently, the boundary integral on ∂Ω0 in (25.38) is of O(h3) and can be
neglected.

While on ∂Ωq, it follows from conditions (25.29), (25.30) that

S T
0 NNN = δ [S(0)TNNN] = O(h2).

Thus, the third term in the boundary integral can be neglected. Besides, replacing
S(1)TNNN by the condition in (25.30) only causes a higher-order correction. Then, the
2D weak formulation (25.38) reduces to∫

Ω

(
W1 +W3 +(ρẍxx−qqq) ·ξξξ)drrr =

∫
∂Ωq

(
STNNN ·ξξξ − 2

3
h2S(1)TNNN ·ηηη

)
ds

=
∫

∂Ωq

qqq0 ·ξξξ −2mmm ·ηηηds.

25.4.0.2 Case 2. Edge position and traction in the 3D formulation are

unknown

In many practical situations, where the edge traction distribution (e.g. a pinned edge)
or displacement distribution (e.g. a clamped edge) is unknown, we should propose
the so-called natural boundary conditions according to the weak formulation. For
this purpose, we shall recast the boundary integral in (25.38) in terms of ξξξ and its
normal derivative ξξξ ,N .

For convenience, considering the last two terms in the boundary integral of (25.38),
we introduce a third-order tensor M through
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− 2
3

h2
(
S(1)TNNN ·ηηη+S T

0 NNN ·xxx(2)
)

=
2
3

h2
{

A
[
ttt⊗kkk−xxx(2)⊗NNN

]
+
(

xxx(2) ·R(0)TNNN−ttt ·ggg
)

P
}

: ∇ξξξ � (M [NNN])T : ∇ξξξ ,

(25.39)

where
ttt = B−1

(
S(1)TNNN +B1xxx(2)

)
, (B1)i j = A 3iα jNα .

Furthermore, we introduce the decomposition

∇ξξξ = ξξξ ,s⊗TTT +ξξξ ,N ⊗NNN, (25.40)

where TTT is the unit tangential vector, and ξξξ ,s is tangential derivative on ∂Ω . Substitut-
ing (25.39) and (25.40) into the boundary integral in (25.38) and a simple integration
by parts leads to∫
Ω

(
W1 +W3 +(ρẍxx−qqq) ·ξξξ)drrr =

∫
∂Ω

{
STNNN− (M [NNN]TTT ),s

}
·ξξξ +{M [NNN]NNN} ·ξξξ ,Nds.

(25.41)

If we regard
W := W1 +W3

as the variation of the plate stress work due to the virtual displacement ξξξ , the weak
formulation (25.41) can be rewritten as∫

Ω

(
W +(ρẍxx−qqq) ·ξξξ)drrr =

∫
∂Ω

q̂qq(s) ·ξξξ +m̂mm(s) ·ξξξ ,Nds, (25.42)

where q̂qq and m̂mm are respectively the applied generalized traction and bending mo-
ment at the edge. Based on (25.41) or (25.42), boundary conditions can be suitably
proposed for various practical cases (e.g., clamped, pinned, simply-supported).

25.5 Conclusions

In this chapter, we propose a consistent dynamic finite-strain plate theory for incom-
pressible hyperelastic materials with no special restrictions on loadings or the order of
deformations. The developed plate theory follows similar lines as the previous work,
except that the dynamic terms and an additional constraint equation are involved
into the recursion relations and the final dynamic system. It is consistent with the
3D weak formulation since each term in the variations of the generalized potential
energy functional attains the asymptotic order of O(h4). The current plate theory
can recover the 3D displacement and stress fields. For the convenience of numerical
calculations, we also derive the weak formulation of the 2D vector plate equation
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together with the position or traction edge boundary conditions. In comparison with
other plate theories, the present one takes into account dynamic, finite-strain, bending
and stretching effects together with incompressibility constraint, so it may provide a
general framework for studying mechanical behaviour of soft-material plates under
various loading conditions.
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