Advanced Structured Materials

Holm Altenbach - Joél Pouget
Martine Rousseau - Bernard Collet
Thomas Michelitsch Editors

Generalized Models
and Non-classical
Approaches in
Complex Materials 1



Advanced Structured Materials

Volume 89

Series editors

Andreas Ochsner, Faculty of Mechanical Engineering, Esslingen University of
Applied Sciences, Esslingen, Germany

Lucas F. M. da Silva, Department of Mechanical Engineering, University of Porto,
Porto, Portugal

Holm Altenbach, Institute of Mechanics, Faculty of Mechanical Engineering,
Otto-von-Guericke-University Magdeburg, Magdeburg, Saxony-Anhalt, Germany



Common engineering materials reach in many applications their limits and new
developments are required to fulfil increasing demands on engineering materials.
The performance of materials can be increased by combining different materials to
achieve better properties than a single constituent or by shaping the material or
constituents in a specific structure. The interaction between material and structure
may arise on different length scales, such as micro-, meso- or macroscale, and offers
possible applications in quite diverse fields.

This book series addresses the fundamental relationship between materials and
their structure on the overall properties (e.g. mechanical, thermal, chemical or
magnetic etc.) and applications.

The topics of Advanced Structured Materials include but are not limited to

e classical fibre-reinforced composites (e.g. class, carbon or Aramid reinforced
plastics)

metal matrix composites (MMCs)

micro porous composites

micro channel materials

multilayered materials

cellular materials (e.g. metallic or polymer foams, sponges, hollow sphere
structures)

porous materials

truss structures

nanocomposite materials

biomaterials

nano porous metals

concrete

coated materials

smart materials

Advanced Structures Material is indexed in Google Scholar and Scopus.

More information about this series at http://www.springer.com/series/8611



Holm Altenbach - Jo€l Pouget
Martine Rousseau - Bernard Collet
Thomas Michelitsch

Editors

Generalized Models

and Non-classical
Approaches in Complex
Materials 1

@ Springer



Editors

Holm Altenbach

Institut fiir Mechanik

Otto-von-Guericke-Universitét
Magdeburg

Magdeburg

Germany

Joél Pouget
Centre National de la Recherche
Scientifique, UMR 7190,
Institut Jean Le Rond d’Alembert
Sorbonne Université

Bernard Collet
Centre National de la Recherche
Scientifique, UMR 7190,
Institut Jean Le Rond d’Alembert
Sorbonne Université
Paris
France

Thomas Michelitsch

Centre National de la Recherche
Scientifique, UMR 7190,
Institut Jean Le Rond d’Alembert

Paris Sorbonne Université
France Paris
France

Martine Rousseau
Centre National de la Recherche
Scientifique, UMR 7190,
Institut Jean Le Rond d’Alembert
Sorbonne Université
Paris
France

ISSN 1869-8433

Advanced Structured Materials
ISBN 978-3-319-72439-3 ISBN 978-3-319-72440-9 (eBook)
https://doi.org/10.1007/978-3-319-72440-9

ISSN 1869-8441 (electronic)

Library of Congress Control Number: 2018934438

© Springer International Publishing AG, part of Springer Nature 2018

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper
This Springer imprint is published by the registered company Springer International Publishing AG

part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland
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Foreword

Gérard A. Maugin born at Angers
(France) on December 2, 1944, mar-
ried to Eleni Zachariadou in 1978,
passed away in Villejuif (France) on
September 22, 2016, 7 p. m.

He had retired from the University
of Paris VI since 2010. His longstand-
ing scientific activity in Continuum
Mechanics and Continuum Physics is
well known in the Community of Me-
chanics. In these fields he enjoys a
well-established reputation. His inter-
ests covered almost all disciplines of
Continuum Mechanics and his stud-
ies have been addressed fundamental Gérard A. Maugin
problems of mechanics and electro-
magnetism and applications as well.

One of his first papers (1965) is concerned with The Race Tidal Power Plant, a
topical subject in the current engineering applications. A few years later he published
a series of papers in the Comptes Rendus de I’ Académie des sciences, Paris (1970-71),
on the macroscopic description of magnetic media in the relativistic framework. His
striking versatility in scientific research, which emerged since the very beginning of
his career, cannot be unnoticed. In April 1971 he defended his PhD dissertation thesis
on micromagnetism, supervisor Prof. Cemal A. Eringen from Princeton University.
The Princeton University Press has published the thesis with the title Micromagnetism
and Polar Media, 1-294, (1971). Four years later, in May 1975, Prof. Maugin achieved
his “habilitation” (Doctorat d’Etat en Sciences Mathématiques) in Paris, supervisor
Prof. Paul Germain de I’ Académie des sciences.

By 1975, Gérard Maugin already had a ripe scientific curriculum studiorum
in Mechanics and Physics: 45 papers published in the most well known scientific
journals of mechanics and mathematics (Ann. Inst. Henri Poincaré, J. of Physics, J.
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viii Foreword

of Mathematical Physics, General Relativity and Gravitation, J. de Mécanique and
others).

His favourite topics in this period are the behaviour of electromagnetic materials
in the relativistic framework and in the Galilean approximation as well. Specifically,
the behaviour of deformable dielectrics, ferro-magnetic and ferri-magnetic bodies
are examined and explored in such frameworks.

His training in relativity and in electromagnetism presumably developed in his
mind a specific sensitivity toward the mathematical description of Continua with
coupled-fields, Continua with structures and/or Microstructures.

In 1980 Gérard Maugin published the paper The method of virtual power in
Continuum Mechanics: Application to Coupled Fields, Acta Mechanica, 35, 1-70,
(1980). The energetic approach therein proposed represents one of the most powerful
methods for describing complex materials from the viewpoint of continua. The
method also provides the proper tools, with which to attack problems of structured
continua, both, from the theoretical viewpoint and from the standpoint of applications.
The method of virtual power, such as expounded in the aforementioned paper, is
formulated in its most general form and is applied to electromagnetic materials in
their various aspects (thermo-elastic dielectrics with polarisation gradients, dielectrics
with quadrupoles, ferromagnets, liquid crystals in external electromagnetic fields,
et cetera). This contribution of Prof. Maugin stands as a referential point to many
searchers in continuum mechanics.

Wave propagation was also one of his favourite topics of interest. To this topic
he devoted his attention and his studies since the very beginning of his studies. Due
to the interesting results achieved in applied problems of wave propagation, he was
awarded by a scientific prize, the Prize of Mechanics Doisteau-Blutet of the French
Academy of Sciences in 1982. His interest in wave propagation never ceased nor
decreased in the subsequent years, even when his main efforts were focused on
other fields. As a result of the expertise that he had acquired in this field, Gérard
Maugin was invited to deliver a course on Physical and Mathematical Models of
Nonlinear Waves in Solids, in Udine, at the International Centre for Mechanical
Sciences (CISM), in 1993. Springer-Verlag will publish the lecture notes of this
course in the series CISM Courses and Lectures. Afterward, he also published the
book Nonlinear Waves in Elastic Crystals, Oxford University Press (1999).

This specific attention to the dynamical problems in continua is often transferred
to his graduate students. Some of them investigated the possibility of “soliton-
propagation” in structured materials, under his advice. Interesting and unexpected
results are shown in evidence by their studies, with the help of numerical techniques.

Gérard Maugin not only provided his students with an excellent professional
training in Continuum Mechanics and Physics he also transferred to his students and
co-workers enthusiasm in research along with motivations and scientific curiosity.
These qualities represent the primary source of his prolific scientific activity.

An impressive number of papers and many books and monographs (published by
Springer-Verlag, McGraw-Hill, Elsevier, Oxford University Press UK, Cambridge
University Press UK) emerge from his Curriculum and numerous awards and honours.
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A detailed list can be found on the website:
http://www.dalembert.upmc. fr/home/maugin/.
Gérard Maugin was a member of the editorial board of many scientific journals,
among them
e International Journal of Engineering Science from 1976 to December 1995,

e Wave Motion since 1986,

e Journal of Thermal Stresses,

e Journal of Technical Physics of the Polish Academy of Science,

e International Journal of Applied Electromagnetics and Mechanics - one of its
founders in 1990,

e Applied Mechanics Reviews - Associate Editor since 1985,

e Journal of Non-equilibrium Thermodynamics,

e FEgyptian Journal of Mathematics,

e Archives of Applied Mechanics (formerly Ingenieur-Archiev),

e Yugoslav Journal of Mechanics,

e Archives of Mechanics of the Polish Academy of Science,

e ARI - Associate Editor since its creation 1997,

e Proceedings of the Estonian Academy of Science since 1997,

e Mechanics Research Communications - one of the five Editors since July 1999,

and
e the Marocain Revue de Mécanique Appliquée et Théorique.

He held a membership in scientific societies (in most of the cases as member of the
executive committee or of the advisory board)

Society of Natural Philosophy (SNP), USA,

Society of Engineering Science, (SES), USA, Life member,

Society for Industrial and Applied Mathematics (SIAM), USA,

American Physical Society (APS), USA,

American Mathematical Society (AMS), USA,

Acoustical Society of America (ASA), USA,

Gesellschaft fiir angewandte Mathematik und Mechanik (GAMM), Germany,
International Society for the Interaction of Mathematics and Mechanics (ISIMM)
- Member of the Executive Committee 1986-1990, 1997-2001,

Société Frangaise d’ Acoustique (SFA), France,

Association Frangaise de Mécanique (AFM), France, and

EUROMECH Society (European Society of Mechanics),

and was appointmented as consulting editor (for Springer, John Wiley & Sons,
Kluwer, Oxford University Press) or as expert for research contracts and grants (in
USA, Canada, UK, Belgium, France and other countries). In addition, he acted as
a Series Editor of the CRC Series on Continuum Modelling and Discrete Systems
(CRC, Boca Raton, Florida, USA) and Applied Electromagnetics and Mechanics
(Elsevier, then 1.O.S. Press, The Netherlands).

He was a visiting professor and visiting scientist at Princeton, Belgrade, Warsaw,
Istanbul, at the Royal Institute of Technology in Stockholm, at the TU Berlin, Rome,
Tel Aviv, the Lomonosov University, Kyoto, Darmstadt and Berkeley. In 2001 he
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received the Max Planck Research Award, was the 1991/92 Fellow of the Berlin
Institute for Advanced Study, and in 2001 received an honorary doctorate from
the Technical University of Darmstadt. In 1982 he received the mechanics Prize of
French Academy of Sciences and in 1977 the Medal of the CNRS in physics and
engineering. He was a member of the Polish Academy of Sciences (1994), of the
Estonian Academy of Sciences and was awarded an honorary professorship by the
Moscow State University. In 2003, he received the A. Cemal Eringen Medal.

I would like rather to emphasise his natural attitude as searcher and as teacher.
This attitude combined with his skill in finding the proper (and often the simplest)
mathematical tools, through which to expound and to clarify the physical nature of
the phenomenon under consideration.

The so-called Configurational Mechanics or Material Mechanics is the “novel”
field, to which Gérard Maugin devoted his main interest during the last decades.
He initiated the search and the studies of configurational forces in elasticity, being
concerned with the elastic energy-momentum tensor, a notion introduced by Eshelby
in a few seminal papers in the fifties. It is not difficult to show that the Eshelby tensor
naturally applies to defective materials and in fracture mechanics. For instance, based
on this tensor, one is able to recover all known invariant integrals around a defect,
including the celebrated J-integral around the tip of a crack. In addition, fracture
criteria can be (and indeed, are) properly extended to elastic dielectrics and to elastic
magnetised materials.

The early studies of Gérard Maugin and others in this field are also concerned with
inhomogeneous materials. Specifically, Maugin and others re-proposed the Eshelby
tensor in finite elasticity, basing on Noll’s notion of homogeneity and uniformity.
Such an extension of the Eshelby tensor shows in evidence important physical proper-
ties and relevant geometrical features, which are hidden in the linear framework. All
these features eventually address the notion of configurational force. Gérard Maugin
and others suddenly realised that the notion of configurational force confers to the
Eshelby stress tensor a deeper physical meaning. They also realised that the notion
of configurational (or material) force could not be confined to the in-homogeneities
in the elasto-static framework. Hence, the important role of this force was enquired
in dynamics. One of the relevant results is the natural relationship of the material
force with the so-called material-momentum, or pseudo-momentum. Such a result
also represents a turning point for the introduction of the so-called configurational
mechanics, which now stands on firm bases. In addition, configurational mechanics
is also shown to be the natural framework for thermodynamical transformations, such
as solid-phase-transitions.

The notion of configurational force becomes even more powerful in complex
materials and materials with structures. Based on this notion, Gérard Maugin (with a
second author) contributed to disentangling the following quarrel in liquid crystals
(Int. J. Engng. Sci., 33, 1663-1678, 1995): as to whether the Ericksen stress tensor
should be regarded as related to a configurational force or to the classical traction.
The point is that the Ericksen tensor for liquid crystals has the form of an energy-
stress tensor, just like the Eshelby stress. Hence, one could be tempted to incorrectly
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identify the one with the other. It is worth noticing that the quarrel involved Ericksen
and Eshelby themselves, along with Kroner and other prominent people.

Eventually, the interest arises in discriminating configurational forces from traction
in the more general context of structured continua. This interest becomes a crucial
need in the case of electromagnetic materials. In this regard, it is worth recalling
that Eshelby was initially inspired by the Maxwell stress tensor of electromagnetism.
The latter however, though possessing the form of an energy-stress, is undoubtedly
related to the classical traction. In order to avoid misunderstandings, one envisages the
existence of two meaningful energy-stress-tensors in continua and, more specifically,
in electromagnetic materials. The introduction of the material energy-stress (namely,
the Eshelby tensor) provides a novel standpoint, which allows one to enlighten
unclear issues or rather obscure aspects of electromagnetic materials. One of these is
the proper form of the electromagnetic momentum. Basing on a criterion established
by Gérard Maugin and others, one is able to distinguish between momentum and
pseudo-momentum or crystal-momentum, in the language of Solid State Physics.
These themes are still nowadays open to further developments. New applications of
these ideas are proposed from time to time in the community of continuum mechanics,
in which a steadily increasing interest is recorded on this subject.

It should be noted that Gérard Maugin delivered his knowledge and new research
results immediately to the PhD and post graduated students. One of his loveliest
places for lectures was the International Center of Mechanical Sciences (CISM,
Udine, Italy), where he presented not only the aforementioned course on wave
propagation. He was involved, for example, in the following activities:

e Non-Equilibrium Thermodynamics with Application to Solids (coordinated by
W. Muschik in 1992): lectures on "Non-Equilibrium Thermodynamics of Electro-
magnetic Solids",

e Nonlinear Waves in Solids (coordinated by A. Jeffrey and J. Engelbrecht in 1993):
lectures on "Physical and Mathematical Models of Nonlinear Waves in Solids",

e Configurational Mechanics of Materials (coordinated by R. Kienzler and G.A.
Maugin in 2001): lectures on "Elements of Field Theory in Inhomogeneous
and Defective Materials" and "Material Mechanics of Electromagnetic Solids"
(together with C. Trimarco),

e Surface Waves in Geomechanics: Direct and Inverse Modeling for Soils and
Rocks (coordinated by K. Wilmanski and C.G. Lai in 2004): 6 lectures on waves
on interfaces, in thin layers on linear media, on surfaces with curvature, grating
and roughness, nonlinear surface waves, propagation of surface soliton packages,
interactions with nonmechanical fields,

e Generalised Continua and Dislocation Theory. Theoretical Concepts, Compu-
tational Methods and Experimental Verification (coordinated by C. Sansour in
2007): 4 lectures on defects, dislocations and the general theory of material
inhomogeneities,

e Mechanics and Electrodynamics of Magneto- and Electro-Elastic Materials (coor-
dinated by R.W. Ogden and D.J. Steigman in 2009): 7 lectures on the basics of
electromagnetics in matter, with emphasis placed on the notions of electromag-
netic forces, momentum and stresses, on the general thermomechanical framework,
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and on applications to magnetoelasticity at different scales, the notions of inter-
nal stresses, internal variables, homogenization, ferromagnetic polycrystals and
configurational force,

e Generalized Continua from the Theory to Engineering Applications (coordinated
by H. Altenbach and V. Eremeyev in 2011): 6 lectures on electromagnetism
and generalized continua, ponderomotive couple, electromagnetic microstructure,
resonance couplings with classical deformation, effects on configurational forces
(fracture and phase transformation).

Gérard Maugin was also greatly attracted by researches in Epistemology and
the History of Science. The naissance of fundamental concepts of Mechanics and
Physics and their evolution through the centuries were fascinating topics for him.
Toward these topics he had developed a unique sensitivity, since he was a young
researcher. To them he devoted his efforts in the last years until the end of his life by
writing a history of Continuum Mechanics in the following three volumes published
by Springer, Solid Mechanics and Applications Series:

e Continuum Mechanics Through the Twentieth Centuries: A Concise Historical
Perspectives (2013),

e Continuum Mechanics Through the Eighteenth and Nineteenth Centuries: Histori-
cal Perspectives from John Bernoulli (1727) to Ernst Hellinger (1914) (2014),

e Continuum Mechanics Through the Ages: From the Renaissance to the Twentieth
Century (2016).

Last but not least, he offered clear and reliable explanations of over 100 keywords in
Continuum Mechanics for better understanding the fundamental concepts

e Non-Classical Continuum Mechanics - A Dictionary (2017).

This book was published also by Springer in the Advanced Structured Materials
Series (Series Editors: Andreas Ochsner, Lucas EM. da Silva, and Holm Altenbach)
as volume 51.

His memory will endure among his many friends and in the Scientific Community
of Mechanics.

Universita di Pisa, Italia, January 2018 Carmine Trimarco
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At the beginning of February 2017 the invitation letters for a special remembrance
book were sent to approximately 70 friends and colleagues of the great French
scientist in the field of Continuum Mechanics (or more general Continuum Physics)
Gérard A. Maugin who died on September 22nd, 2016. As usual in such case that
the response is 50% sending a kind reply that they will submit a paper and finally
one gets 15-20 papers. In the case of Gérard the resonance was overwhelming - the
editors got finally approximately 60 papers and the decision was made to publish
two volumes. This is the first one including 40 papers from authors living in more
than 20 countries.

The scientific interests of Gérard are well reflected by variety of subjects covered
by the contributions to this book including the following branches of Continuum
Mechanics

relativistic continuum mechanics,

micromagnetism,

electrodynamics of continua,

electro-magneto-mechanical interaction,

mechanics of deformable solids with ferroic states (ferromagnetics, ferroelectrics,
etc.),

thermomechanics with internal state variables,

linear and nonlinear surface waves on deformable structures,
nonlinear waves in continua,

Lighthill-Whitham wave mechanics,

lattice dynamics,

Eshelbian Mechanics of continua on the material manifold,
geometry and thermomechanics of material defects,

material equations and

biomechanical applications (tissue and long bones growth).

In addition, he published several papers and books on the history of continuum
mechanics. This was reason that the authors of this book have submitted so different
papers with the focus on the research interests of Gérard.

Xiii
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We have to thank all contributors for their perfect job. Last but not least, we
gratefully acknowledge Dr. Christoph Baumann (Springer Publisher) supporting the
book project.

Magdeburg, Paris Holm Altenbach
January 2018 Joél Pouget
Martine Rousseau

Bernard Collet

Thomas Michelitsch



Contents

1  Effective Coefficients and Local Fields of Periodic Fibrous
Piezocomposites with 622 Hexagonal Constituents . . .............. 1
Ransés Alfonso-Rodriguez, Julidan Bravo-Castillero, Renald
Brenner, Raul Guinovart-Diaz, Leslie D. Pérez-Fernandez, Reinaldo
Rodriguez-Ramos, and Federico J. Sabina
1.1 Introduction
1.2 A Boundary Value Problem of the Linear Piezoelectricity Theory . 3

1.3 Homogenization, Local Problems and Effective Coefficients .. ... 4
1.3.1 Explicit Form of the Homogenized Problem, Effective
Coefficients and Local Problems . .................... 5
132 LocalFields ......... ..o 6
1.4  Application to a Binary Fibrous Piezocomposite with Perfect
Contact Conditions at the Interfaces . ...................... ... 7
1.5  Local Problems for Fibrous Composites with Constituents of 622
Hexagonal Class ..........cooiuiiiiniii i, 9
1.5.1  Local Problems L* and L'.......................... 10
1.5.2  Effective Coefficients Related with the Local Problems
LBandL' ... 14
1.53  Local Problems L'? and L? and Related Effective
Coefficients .......... ...t 14
1.5.4  On the Computation of the Local Fields from the
Solutions of the Local Problem L3 ... ................ 17
1.6  Numerical Examples ............ . ... ... 18
1.6.1  Square Array Distribution .......................... 19
1.6.2  Rectangular Array Distribution ...................... 20
1.6.3  Spatial Distribution of Local Fields................... 21
1.7 Concluding Remarks ....... ... ... . ... i 24
References . . ... .. 24

XV



XVi

Contents

High-Frequency Spectra of SH Guided Waves in Continuously

Layered Plates . . .. ... .. .. . . 27
Vladimir I. Alshits and Jerzy P. Nowacki
2.1 Introduction ............. ... 27
2.2 Statement of the Problem and Main Equations ................. 28
2.3 The Propagator Matrix and Its Adiabatic Approximation ........ 30
24  Boundary Problems and Their General Solutions ............... 32
2.4.1  Spectral Regions Without Division Points ............. 33
24.1.1  The Range s < min{$(y)}(/, in Fig. 2.2) ..... 33
2.4.1.2  The Range s > max{$(y)} (L in Fig. 2.2) .. ... 33
2.4.2  Spectral Regions with one Division Point ............. 33
24.2.1  The Case §'(a) > 0 (the Range Il in Fig. 2.2).. 34
2422 TheCase§(a) <O .....oooviineiiinin.. 34
2.4.3  Spectral Regions with two Division Points. ............ 35
24.3.1 TheCase §(a) >0,§(b)<0............... 35
2432  The Case §'(a) < 0,§(b) > 0 (the Range III
mFig.2.2) ... .. 35
244  Extension for an Arbitrary Number of Division Points ... 36
24.4.1  An Odd Number of Division Points
N=2n—1mn>1) ... .. 36
2.4.4.2  An Even Number of Division Points
N=2n(n>1) ..o, 38
2.5  The Low-Slowness Approximation and the Cut-Off Frequencies .. 39
2.6  Example of Inhomogeneity Admitting an Explicit Analysis . ..... 40
2.6.1 The Region 0 < s <8p «vvvvvninneiiiii i 41
2.6.1.1  The Cut-Off Frequencies of the Spectrum .... 41
2.6.1.2  Spectrum just Under the Level s, =8y ....... 42
2.6.2 TheRegion sy << vvveneineiniiin .. 43
2.6.2.1  Spectrum just Over the Level s, =8y ........ 44
2.6.2.2  Spectrum Under the Asymptote s =§,,....... 44
2.7  Levels Related to Extreme Points on the Slowness Profile. . ...... 45
277.1  An Absolute Minimum of the Function §(y) ........... 45

2.7.1.1 Spectral Features just Under the Level s = §; . 45
2.7.1.2  Spectrum Features just Over the Level s = §; . 47

2.7.2  The Level Related to an Inflection Point............... 49
273  Asymptote Related to Maximum at the Profile §(y) ..... 50
2.8  ConcCluSIONS . ...\ttt 51
References . ... e 52

Nonlinear Schrodinger and Gross - Pitaevskii Equations in the

Bohmian or Quantum Fluid Dynamics (QFD) Representation . . . . . . 53
Attila Askar

3.1 Introduction . .........coouiiun e 53
3.2 Polar Representation of the Wave Function .................... 54

33 Conservation Laws . ............ . i 55



Contents Xvii

3.3.1  Mass Conservation Equation ........................ 55
3.3.2  Energy Conservation Equation ...................... 55
3.3.3  The Momentum Equation........................... 56
3.34  Pressure Interpretation .............. ... ... 56
3.3.5 The Lagrangian Representation ...................... 56
34  Adding a Dissipation Term as in Navier - Stokes Equation ... .... 57
35 VOItICILY .. ooee e 58
36 ClosingRemarks............ ... ... ... . il 59
References ... ... 60

4  The Stability of the Plates with Circular Inclusions under Tension .. 61
Svetlana M. Bauer, Stanislava V. Kashtanova, Nikita F. Morozov, and
Boris N. Semenov

4.1 Introduction . .......... 61
42 Problem Statement ................ ... .. 63
4.3 Stability LosS. . ..o ot 64
43.1 Case with Different Poisson’s Ratio .................. 64
432 A Plate with a Circular Inclusion under Biaxial Tension . 67
References . ... e 68

5  Unit Cell Models of Viscoelastic Fibrous Composites for Numerical
Computation of Effective Properties. ........................... 69
Harald Berger, Mathias Wiirkner, José A. Otero, Raidl Guinovart-Diaz,
Julidn Bravo-Castillero, and Reinaldo Rodriguez-Ramos

5.1 Introduction . ........ .. ... .. i 70
5.2 Linear viscoelasticrelations ...................c.cciuinain... 71
5.3  Numerical Homogenization Model........................... 72
54  Results . ... 75
5.5  ConcluSionsS . ........couiiniii 80
References . ... ... 80

6  Inner Resonance in Media Governed by Hyperbolic and Parabolic

Dynamic Equations. Principle and Examples .................... 83
Claude Boutin, Jean-Louis Auriault, and Guy Bonnet
6.1  INtroduction . ... .........oiouniiinn i e 84
6.2  Dynamic Descriptions of Heterogeneous Linear Elastic Media
Without and With Inner Resonance........................... 87
6.2.1 Long Wavelength Descriptions ...................... 87
6.2.2  Short Wavelength Descriptions ...................... 90
6.3  Inner Resonance in Elastic Composites ....................... 91
6.3.1  Requirements for the Occurrence of Inner Resonance in
Elastic Bi-Composites .............ccoooiiiiiennn... 91
6.3.2  Elastic Bi-Composites: High Contrast of Stiffness,
Moderate Contrast of Density ....................... 93

6.3.2.1 Derivation of the Inner-Resonance Behavior
by Homogenization....................... 94



XVviii

Contents

6.3.22  ComMmENnts .........oveuueiiiniiiiaennn. 98
6.3.3  Elastic Bi-Composites: Significant Contrast of Stiffness
andof Density ........ ... 101
6.3.3.1  Co-Dynamics Regime at Anti-Resonance
Frequencies ............. ... ... oo 102
6.3.32 Comments ...........ouveiiiiiinniiinnn. 106
6.3.4  Synthesis on the Resonant and Anti-Resonant
Co-Dynamic Regimes....................... ..., 107
6.3.5 Reticulated Media: Inner Resonance by Geometrical
CONrast .. ...ttt 108
6.4  Inner Resonance in Poro-Acoustics .......................o.. 112
6.4.1  Double Porosity Media: Inner Resonance by High
Permeability Contrast . ...............cooviiiin.... 114
6.4.1.1  Homogenized Behavior ................... 116
6.4.1.2  Comments and Generalization to Other
Diffusion Phenomena ..................... 119
6.4.2  Embedded Resonators in Porous Media: Inner
Resonance by Geometrical Contrast .................. 120
6.4.2.1  Helmholtz Resonator ..................... 121
6.4.2.2  Homogenized Behavior ................... 122
6.4.23 Comments ...........oiiiiiiiiinneeinnn. 123
6.5  Inner Resonance in Poroelastic Media: Coupling Effect ......... 125
6.5.1  Double Porosity Poro-Elastic Media - Problem Statement 125
6.5.2  Homogenized Behavior ............................ 127
653  Comments ..............ooiiiiiiiiiiiiiii... 129
6.6 CONCIUSIONS . . .\ttt e 130
Appendix: Elastic Bi-Composites: Moderate Stiffness Contrast and High
Density Contrast . .........oiiiiiii e 131
References .. ... .. 132
The Balance of Material Momentum Applied to Water Waves . . . . .. 135
Manfred Braun
7.1 Introduction................iiiiiiiii 135
7.2 The Balance of Physical Momentum ......................... 137
7.3 The Balance of Material Momentum ......................... 139
74  TheEnergyBalance ........ ... ... 0. i 144
7.5 Gerstner’s Wave . ...t 145
7.6  Change of Reference Configuration .......................... 150
7.7  Concluding Remarks ........... ... ... i 152
Appendix: Derivatives of the Lagrangian............................ 153
References .. ... 154

Electromagnetic Fields in Meta-Media with Interfacial Surface
Admittance. . . ... .. .. 155
David C. Christie and Robin W. Tucker

8.1  INtroduction......... ...ttt 155



Contents XixX

8.2  Mathematical Preliminaries . ............. ... ... 157
8.3  General Maxwell Equations and their Fourier Transform ........ 159
8.4  Maxwell Equations in a Source-Free Domain of an Ohmic,
Homogeneous, Isotropic, Dispersive, Linear Medium . .......... 161
8.5 Electromagnetic Fields in a Source-Free Domain of an Ohmic,
Homogeneous, Isotropic, Dispersive, Linear Medium . .......... 162

8.6 Plane Wave Solutions in Terms of the Complex Rotation Group .. 163
8.7  Interface Conditions for Media Containing Anisotropic,

Homogeneous, Planar Interface Consitutive Relations . .......... 164
8.8  Consequences of the Interface Conditions . .................... 167
8.9  Solving the Interface Conditions. ............... ..., 172
8.10 ConClusion. . ..... ...ttt 175
References ... .ot e 177
9  Evolution Equations for Defects in Finite Elasto-Plasticity ......... 179
Sanda Cleja-Tigoiu

9.1  IntroduCtion . .............uiiiiiunne i 179
9.1.1 Defects in Linear eElasticity ........................ 180
9.1.2  Defects in Non-Linear Elasticity ..................... 180
9.1.3  Defects in Nonlocal Elasticity ....................... 181
9.1.4  Elasto-Plastic Models for Defects .................... 181
9.1.5 AimofthisPaper............ .. ... .. 182
9.1.6  Listof Notations ..............cccoiiiiiiiinnnaa.. 182
9.2  Elasto-Plastic Materials with Lattice Defects .................. 184
9.2.1  Plastic Connection with Metric Property .............. 186
9.22 Measureof Defects ................ i 187
9.3 Free Energy Imbalance Principle Formulated in 2" . ............ 188
9.3.1 Free Energy Function .............................. 188
9.3.2  Free Energy Imbalance Principle..................... 191

9.4  Constitutive Restrictions Imposed by the Imbalance Free Energy
Principle. .. ..o 193
9.4.1  Elastic Type Constitutive Equations .................. 193
9.4.2  Dissipation Inequality . ................ . oot 194

9.5  Viscoplastic Type Evolution Equations for Plastic Distortion and
Disclination Tensor. .. ........... o i 195
9.5.1  Quadratic Free Energy .......................... ... 197

9.5.2  Elasto-Plastic Model for Dislocations and Disclinations
in the Case of Small Distortions ..................... 198
9.6 CONCIUSIONS . . ..ottt et e e e 200

References .. ... 201



XX

Contents

10 Viscoelastic effective properties for composites with rectangular

11

12

cross-section fibers using the asymptotic homogenization method . .. 203
Oscar L. Cruz-Gonzélez, Reinaldo Rodriguez-Ramos, José A. Otero,

Julian Bravo-Castillero, Raul Guinovart-Diaz, Radl Martinez-Rosado,
Federico J. Sabina, Serge Dumont, Frederic Lebon, and Igor Sevostianov

10.1 Introduction.............. ..ot 204
10.2  Statement of the Viscoelastic Heterogeneous Problem........... 205
10.3 Two-Scale Asymptotic Homogenization Method to Solve the
Heterogeneous Problem .............. .. ... i it 207
10.3.1 Contribution of the Level E~2 Problem ............... 209
10.3.2  Contribution of the Level E~! Problem ............... 210
10.3.3  Contribution of the Level £° Problem................. 211
10.4 Two Phase Viscoelastic Composite. .................oouunn... 212
10.5 Numerical Results......... ... ... i i 214
10.5.1 Model ... i 214
1052 ModelIl ... 216

10.5.3  Viscoelastic Effective Constants for Composites
with Rectangular Cross-Section Fibers: Double

Homogenization .................. ... .. 218

10.6  CONCIUSIONS .« o e vttt ettt et 220
References .. ... .o 221
A Single Crystal Beam Bentin Double Slip ... ................... 223
Xiangyu Cui and Khanh Chau Le
I1.1 INtroduCtion . .. ......coutiu et 223
11.2  3-D Models of Crystal Beam Bent in Double Slip .............. 225
11.3  Energy Minimization .............c.ciiiiiiiiinneeennnn... 229
11.4  Numerical Simulations............ .. ... ... 235
11.5 Non-Zero Dissipation .. .......ovuiennin i 238
11.6  Numerical Simulation ............ .. ... i, 242
11.7 Discussion and Outlook .. ........ ... ... .. ... ... ... ..., 244
References . .. ... 245
Acoustic Metamaterials Based on Local Resonances:
Homogenization, Optimization and Applications ................. 247
Fabio di Cosmo, Marco Laudato, and Mario Spagnuolo
12,1 IntroducCtion . .........coouuiiiimi i 247
12.2  Locally Resonant Microstructures ........................... 250
12.3 A Survey of Homogenization Techniques ..................... 253

12.3.1 Periodic Homogenization ........................... 254

12.3.2 Dynamic Homogenization and Willis-Type Constitutive

Relations ........ ... ... i 255

12.3.3 Homogenization from Scattering Properties. ........... 257

12.4  Topology Optimization ..............cceeeeiiiienennnnnnnnn. 259

12.4.1 Topology Optimizationfor LocalResonant Sonic Materials 259



Contents XX1

13

14

15

12.4.2 Topology Optimization for Hyperbolic Elastic

Metamaterials .......... .. .. i 260

12.4.3  Topology Optimization for Hyperelastic Plates ......... 262

12.5 Principal Applications: Phononic Crystals..................... 263
12.6 ConClusions . ...ttt 268
References ............ i 268
On Nonlinear Waves in Media with Complex Properties . .......... 275

Jiiri Engelbrecht, Andrus Salupere, Arkadi Berezovski, Tanel Peets, and
Kert Tamm

13,1 IntroduCtion .. ...........uuuiiiiiiiin i, 275
13.2 The Governing Equations ................oiiiiiinennnaan.. 276
13.2.1 Boussinesq-Type Models ........................... 277
13.2.2  Evolution-Type (KdV-Type) Models.................. 278
13.2.3 CoupledFields......... ... 280
13.3 Physical Effects. ... 281
13.4  DISCUSSION & ot v vttt ettt e et e e e e 284
References .. ... 285
The Dual Approach to Smooth Defects. ... ...................... 287
Marcelo Epstein
141 Dedication .. ... ....ououtiu et 287
142 Summary of the Direct Approach ............................ 287
14.3 The Dual Perspective ..., 289
14.4 A Brief Review of Differential Forms ........................ 290
14.4.1 Pictorial Representation of Covectors and 1-Forms .. ... 290
14.42 Exterior Algebra ............. .. ... ... . ... 291
14.4.3 The Exterior Derivative ............................ 292
1444 INtegration . .............uuieeimuinneeennnnnnennn 293
14.5 An Application to SMecticS . ... ...vvviintiin i 293
14.6  An Application to Nanotubes ................ccoiviiinenn... 296
14.7 A Volterra Dislocation . .............ccoiiiiiiiiininnennn.. 298
References . ..... ... 300
A Note on Reduced Strain Gradient Elasticity ................... 301
Victor A. Eremeyev and Francesco dell’Isola
15.1 IntroduCtion . ............ouuiiiiuuinn .. 301
15.2 Reduced Strain Gradient Elasticity. Examples ................. 303
15.2.1 Structural Mechanics .............................. 303
15.2.2  Continual Models for Pantographic Beam Lattices . .. ... 304
15.2.3  Smectics and Columnar Liquid Crystals............... 306
15.2.4  Other Spatially Non-Symmetric Models............... 307
15.3  ConCluSiONS . . .« evv ettt 308

References .. ... 308



XXii Contents

16 Use and Abuse of the Method of Virtual Power in Generalized
Continuum Mechanics and Thermodynamics . . ..................
Samuel Forest
16.1  IntroduCtion . ..........c.uuuiiiiiuiin ..
16.2  Micromorphic and Gradient Plasticity ........................

16.2.1 The Micromorphic Approach to Gradient Plasticity .. ...
16.2.2  Direct Construction of Gradient Plasticity Theory ......
16.3 Gradient of Entropy or Temperature Models ...................
16.3.1 A Principle of Virtual Power for Entropy ..............
16.3.2  Gradient of Entropy or Gradient of Temperature? .......
16.4 The Method of Virtual Power Applied to Phase Field Modelling . .
16.5 On the Construction of the Cahn—Hilliard Diffusion Theory . ... ..
16.5.1 Usual Presentation Based on the Variational Derivative . .
16.5.2 Method of Virtual Power with Additional Balance

Equation ........ ... oo
16.5.3 Second Gradient Diffusion Theory ...................
16.5.3.1 Variational Formulation of Classical Diffusion

16.5.3.2 Variational Formulation of Second Gradient
Diffusion .......... ... ... i
16.6  CONCIUSIONS . .« e vttt ettt e e e
References .. ... ..o

17 Forbidden Strains and Stresses in Mechanochemistry of Chemical
Reaction Fronts . . ....... ... ... ... .. . . .
Alexander B. Freidin and Leah L. Sharipova
17.1  IntrodUCton . .. ...ttt e
17.2  Chemical Affinity in the Case of Small Strains . ................
17.3 ForbiddenZones . ....... ...ttt
References .. ... .o

18 Generalized Debye Series Theory for Acoustic Scattering: Some
Applications . . ... .
Alain Gérard
18.1 INtroduCtion . .. ....uttr ettt ittt ie e
18.2  Generalized Debye Series ...............coiiiiiiiiiii...

18.2.1 Formulation of the Problem .........................

321
322

328

18.2.2 "Local" Modal Reflection and Refraction Coefficients . .. 354

18.2.2.1 Reflection and Refraction of a Wave Incident

from Medium 1 (Fluid) on Medium 2 (Solid) . 354

18.2.2.2 Reflection and Refraction of Wave Incident
from Medium 2 on Medium 1 ..............
18.3 Transmitted Waves ........... ...
18.4  Contribution to the Resonance Scattering Theory...............
18.4.1 Case of Solid Submerged Elastic Objects..............
18.4.2 Case of Solid Submerged Lossy Elastic Objects ........
18.4.3 Case of Submerged Elastic Shells ....................



Contents

19

20

21

xxiii

18.5 Non Resonant Background ................................. 361
18.6  Space-Time Dependence of a Bounded Beam Inside an Elastic

Cylindrical Guide . ....... ... 364

18.6.1 Propagation Equations ............................. 365

18.6.2 Initial Conditions and Limiting Conditions ............ 365

18.6.3  Solution of the Problem: Generalized Debye Series . . ... 366

18.6.4 Velocity Fields and Simulation ...................... 369

18.7 ConCIUSIONS . . . o\ttt ettt e e e 371

References ... 372

Simplest Linear Homogeneous Reduced Gyrocontinuum as an
Acoustic Metamaterial ........ ... ... .. .. ... . . .. 375
Elena F. Grekova

19.1 INtroduCtion . ... ..ottt i e 376
19.2  Basic Equations for the Linear Reduced Gyrocontinuum . ....... 377
19.3  Special SolutioninCase W =g ..........ccovvvereruenennn.. 379
19.4 Longitudinal Waves and Spectral Problem for the

Shear-Rotational Wave . .......... ... i, 379
19.5 Shear-Rotational Wave. Reduced Spectral Problem ............. 380
19.6  Shear-Rotational Wave Propagating Perpendicular to the Rotors’

Axes (k-m=0). ... 381
19.7 Shear-Rotational Wave Propagating Parallel to the Rotors” Axes

(RXm=0). ... 382
19.8 Shear-Rotational Wave Directed in General Way with Respect to

the ROtOrs” AXES . ..o vt 383
19.9  ConcCluSIONS . . .o\ttt 385
References . . ... ..o 386
A Mathematical Model of Nucleic Acid Thermodynamics. ......... 387
Sonia Guarguagli and Franco Pastrone
20.1  IntroduCtion . ............uniiiiiunn i 387
20.2 Denaturation of DNA . ... .. ... 388
20.3 Mathematical Model. ....... ... ... . i 389
20.4 The Role of Parameterd ............... . ... iiiiiiia.. 391
20.5 DISCUSSION .« vttt ettt e e et e e 391
20.6  CoNCIUSION. .« v vttt e e e 393
References . ..... ... 394

Bulk Nonlinear Elastic Strain Waves in a Bar with Nanosize
Inclusions . . ... ... . . 395
Igor A. Gula and Alexander M. Samsonov ()

21.1
21.2
21.3

Introduction . . .....oo it 395
Refinement of the Model of a Continuous Microstructured Medium397
Nonlinear Strain WavesinaBar............................. 401

21.3.1 The Model for Wave Propagation in an Isotropic Bar . . .. 401



XXiV

22

23

24

Contents

21.3.2 The Refined Model Application for a Bar with Nanosize

Inclusions . . ...t 405
214 CONCIUSIONS .+« vttt ettt e e et e e e 411
215 Supplement ... ... e 412
21.5.1 The Model for Longitudinal Nonlinearly Elastic
Damping Waves Propagation in a Microstructured Medium412
21.5.2 Coefficients of the Coupled Equations in (21.24) ....... 414
References . . ... ... 415
On the Deformation of Chiral Piezoelectric Plates ................ 417
Dorin Iesan and Ramon Quintanilla
22,1 IntroduCtion . ...........uuniiiiiuin i 417
222 BasicEquations............... i e 418
22.3  Chiral Piezoelectric Plates .. ......... ... ... oot 420
224 General Theorems. .. .....oouuiii it 423
22.5 Equilibrium Theory ........ ... i 433
22.6 Effects of a Concentrated Charge Density ..................... 434
2277 CONCIUSIONS .+« vttt ettt e et e e 436
References . ... ... 437

Non-Equilibrium Temperature and Reference Equilibrium Values
of Hidden and Internal Variables .............................. 439
David Jou and Liliana Restuccia

23,1 IntroduCtion . ............uuiiiiinn i 439
23.2 Internal Variables and Hidden Variables ...................... 440
23.3  Temperatures in Steady States. . ..........c.ooviineineennn.. 443
23.3.1 Asymptotic Equilibrium Expressions for Caloric and
Entropic Temperatures . .............c...ccoveenn. .. 443
23.3.2 Dynamical Steady-State Expressions for Caloric and
Entropic Temperatures ..............c.coveuuneenn.... 444
23.4 A Model for System’s Aging.........ccovviiiiiiiniiinnennn.. 447
23.5 Concluding Remarks .......... ... ... i 448
References . ..... .. 449

On the Foundation of a Generalized Nonlocal Extensible Shear
Beam Model from Discrete Interactions . . ....................... 451
Attila Kocsis and Noél Challamel

24.1
242
243

Introduction......... ... 451
The Mechanical Model .............. ... ... ... ... .. ... 453
Extensible Engesser Elastica . ............................... 454
24.3.1 Discrete Extensible Engesser Elastica................. 454
243.1.1 BucklingLoads .......................... 456
24.3.1.2 Analytical Solution for Short Linkages ...... 458
24.3.1.3 Numerical Solution....................... 462

24.3.2 Asymptotic Limit: the Local Extensible Engesser Elastica462
24.3.3 Continualized Nonlocal Extensible Engesser Elastica ... 466



Contents XXV

25

26

24.3.3.1 Numerical Solution: Discrete Versus

Nonlocal Extensible Engesser Elastica. ... ... 467

24.4 Extensible Haringx Elastica. ............. ... ...t 467
24.4.1 Discrete Extensible Haringx Elastica ................. 469
24.4.1.1 BucklingLoads ..................u... 470

24.4.1.2 Analytical Solution for Short Linkages ...... 472

24.4.1.3 Numerical Solution....................... 475

24.4.2  Asymptotic Limit: the Local Extensible Haringx Elastica 475
2443 Continualized Nonlocal Extensible Haringx Elastica . ... 479
24.43.1 Numerical Solution: Discrete Versus

Nonlocal Extensible Haringx Elastica ....... 480
24.5 ConcCluSionS . . ...ttt e 480
ApPPendixX A ... 480
Appendix B ... 483
References .. ... ..o 484
A Consistent Dynamic Finite-Strain Plate Theory for
Incompressible Hyperelastic Materials. .. ....................... 487
Yuanyou Li and Hui-Hui Dai
25.1 IntroduCtion . ..........c..iiriiei e 487
25.2  The 3D Governing Equations .................... ... ... 489
25.3 The 2D Dynamic Plate Theory .................. ..ot 491
25.3.1 Dynamic 2D Vector Plate Equation................... 492
25.3.2 Edge Boundary Conditions ......................... 496
25.3.2.1 Case 1. Prescribed Position in the 3D
Formulation ............................. 496
25.3.2.2 Case 2. Prescribed traction in the 3D
formulation ......... ... ... . . 497
25.3.3 Examination of the Consistency ..................... 497
25.4 The Associated Weak Formulations .......................... 499
25.4.0.1 Case 1. Edge position and traction in the 3D
formulation are known .................... 501
25.4.0.2 Case 2. Edge position and traction in the 3D
formulation are unknown . ................. 501
255 ConClUSIONS . . ..ttt t et e 502
References . ... 503

A One-Dimensional Problem of Nonlinear Thermo-Electroelasticity

with Thermal Relaxation ..................................... 505
‘Wael Mahmoud, Moustafa S. Abou-Dina, Amr R. El Dhaba, Ahmed F.
Ghaleb, and Enaam K. Rawy

26.1 Introduction ............ ... i 505
26.2 The Nonlinear Equations ....................... . .......... 507
26.3 The Associated System of Linear Equations ................... 508
264 Numerical Scheme ......... ... ... i 511

26.5 ConCIUSIONS . . .ottt e e 513



XXVi

27

28

29

Contents

References . ... 515
Analysis of Mechanical Response of Random Skeletal Structure . ... 517
Maria-Belén Martinez-Pavetti and Shoji Imatani
27.1  INtrodUuCtion . ... v vttt et et e e 517
27.2  Material Characterization. .. ............c.couiniiieunnnaa.. 519
27.2.1 Extended Voronoi Tessellation....................... 519
2722 BasicEquations............... ... i, 521
27.2.3  Finite Element Discretization. ....................... 522
27.3  Analyses and Discussions ...............ciiiiiiiiiiiaa.. 524
27.3.1 Preparation of Skeletal Model ....................... 524
2732 StaticTension ...........c...iiiiiiiiiinniiiinnn.. 525
27.3.3 Dynamic Loading ............. ... oo, 527
27.4 Concluding Remarks .......... ... ... . ... . 529
References . ....oooii i e 530
On the Influence of the Coupled Invariant in Thermo-Electro-
Elasticity ........... . . . 533
Markus Mehnert, Tiphaine Mathieu-Pennober, and Paul Steinmann
28.1 IntroducCtion . ............uuiiiiiii i e 534
28.1.1 Kinematics . .........oviiiiinniiiiiii 535
28.1.2 Balance Laws in Electrostatics ...................... 536
28.1.2.1 Spatial Configuration ..................... 536
28.1.2.2 Material Configuration .................... 538
28.1.3 HeatEquation ...............cciiiiiiiiiiniinnn.n. 539
28.1.4 Energy Function .............. ... oo, 541
28.2 Non-Homogeneous Boundary Value Problems ................. 543
28.2.1 Deformation of a Cube with a Uniaxially Applied
ElectricField ....... ... .. . o i 544
28.2.2 Extension and Torsion of a Cylindrical Tube ........... 546
283  CONCIUSIONS .« . v ottt ettt et e e 551
References . ... 552

On Recurrence and Transience of Fractional Random Walks in

Lattices . .. ... .. .. 555
Thomas Michelitsch, Bernard Collet, Alejandro Perez Riascos, Andrzej
Nowakowski, and Franck Nicolleau

20.1 IntroduCtion . .............iiuiiniii it 556
29.2  Time Discrete Markovian Random Walks on Undirected Networks 558
29.3 Probability Generating Functions - Green’s Functions . . ......... 561
29.4 The Fractional Random Walk ............................... 565
29.5 Universality of Fractional Random Walks ..................... 567
29.5.1 Universal Behavior in the Limitoc — 0 ............... 567

29.5.2 Recurrence Theorem for the Fractional Random Walk
on Infinite Simple Cubic Lattices .................... 568

29.5.3  Universal Asymptotic Scaling: Emergence of Lévy Flights571



Contents XXVii

30

31

32

29.6 Transient Regime 0 < a < 1 for the Inifinite One-Dimensional

Chain . ... 573
29.7  CONCIUSIONS .« .\ttt ettt et e e e e e 577
References ... ... 579
Micropolar Theory with Production of Rotational Inertia: A
Rational Mechanics Approach. . ......... .. .. .. .. ... ... .. ... 581
Wolfgang H. Miiller and Elena N. Vilchevskaya
30.1 Review of the Current State-of-the-Art ....................... 582
30.2 Productions of Microinertia and the Coupling Tensor for
Transversally Isotropic Media . .............. .. ... oa.. 586
30.3 Discussion of Special Cases for the Production Term for the
Moment of Inertia, Y7 .....ovvreinnne i 588
30.3.1 Examples for the Isotropic Case ..................... 589
30.3.2  Structural Change I: Purely Deviatoric Production . .. ... 590
30.3.3 Structural Change II: Purely Axial Production.......... 593
30.4 Dynamics of Micropolar Media with Time-Varying Micro-Inertia . 599
30.4.1 GeneralRemarks............... .. ... ... 599
30.4.2 Axial Elongation and Shrinkage ..................... 600
30.5 Conclusions and Outlook . ......... ... ... .. .. 601
APPENAICES . . . ettt e 602
Representation of the Production of Moment of Inertia .......... 603
Restrictions on the Production of Moment of Inertia by the
SecondLaw ........ ... .o i i 604
References . ... 605
Contact Temperature as an Internal Variable of Discrete Systems
in Non-Equilibrium. .. ....... ... ... ... ... . ... .. .. .. .. ..., 607
Wolfgang Muschik
31.1 Introduction............... .. ... i il 607
31.2 Contact Temperature . ............c.oeeuueeuuneennnennnennn. 608
3121 Definition ...ttt 608
31.2.2 Contact Temperature and Internal Energy ............. 609
31.3 State Space and Entropy Rate ............... ... .. .. ..... 610
31.4 Equilibrium and Reversible "Processes" ...................... 611
31.5 Brief Overview of Internal Variables ......................... 613
31.6 Contact Temperature as an Internal Variable .................. 615
APPENdICES . ...t 616
Heat Exchange and Contact Temperature ..................... 616
Contact Temperature and Efficiency ....................... ... 618
References ... ... 620

Angular Velocities, Twirls, Spins and Rotation Tensors in the
Continuum Mechanics Revisited . . .. ........................... 621
Konstantin Naumenko and Holm Altenbach

32,1 Introduction................ ... 621



XXViii Contents

33

34

35

32.2  Rotation Tensor and Angular Velocity Vector .................. 622
32.3 Rotation Tensors and Spins in the Classical Continuum Mechanics 623
32.3.1 Rotations of Principal Directions and Twirls ........... 624
32.3.2 Logarithmic Spin ...............ccoiiiiniiiinn... 627
324 ConClUSIONS . .« v v vttt ettt e 630
Appendix: Some Operations with Second Rank Tensors ............... 630
Dot Products of a Second Rank Tensor and a Vector ............ 630
Cross Products of a Second Rank Tensor and a Vector. .......... 630
Vector Invariant. . ...t 631
References .. ... 632
Towards Continuum Mechanics with Spontaneous Violations of the
Second Law of Thermodynamics .............................. 633
Martin Ostoja-Starzewski and Bharath V. Raghavan
33.1 Dissipation Function in Thermomechanics within Second Law . .. 633
33.2 Dissipation Function in Statistical Physics beyond Second Law . . . 635
33.3 Stochastic Dissipation Function ............................. 637
3331 BasiCs ..ottt 637
33.3.2 Atomic Fluid in Couette Flow ....................... 638
334 ClOSUIE .« o vttt et e e e e e e e e e e e 639
References . . ... .. 640
Nonlocal Approach to Square Lattice Dynamics . . ................ 641
Alexey V. Porubov, Alena E. Osokina, and Thomas M. Michelitsch
341 IntroduCtion . ..........coouunii et 641
342 Linear LocalModel ............. . ... i 644
343 Nonlocal Linear Model .......... ... ... ... . . 646
34.4 Dispersion Relations Analysis...............coooiiiiina... 648
34.5 Continuum Equations . ............ ... . i i 649
345.1 LocalModel........ ..ot 650
3452 NonlocalModel . ............... oo, 650
34.5.3 Nonlinear Interaction .............. ... cooiienn. .. 652
34.6 ConClUSION. . ..o ottt e 653
References ... ... ..o 653
A New Class of Models to Describe the Response of
Electrorheological and Other Field Dependent Fluids . ............ 655
Vit Prisa and Kumbakonam R. Rajagopal
35.1 Introduction...............ouniiiiiii i 655
35.2 Preliminaries . ............oouniiii 657
35.3 Constitutive Relation ............. . ... .. . 659
354 Simple Shear Flow ....... .. ... o i 662
35.4.1 Extra Stress Tensor S is a Linear Function of the
Symmetric Part of the Velocity Gradient D ............ 666

35.4.2 Symmetric Part of the Velocity Gradient D is a Linear
Function of the Extra Stress Tensor S................. 667



Contents

36

37

38

XXix
35.4.3 Extra stress tensor S is a function of the symmetric part
of the velocity gradient .. ......... ... ... .. ... . ... 667
35.4.4 Fully Implicit Constitutive Relation — Constitutive
Relation with Bilinear Tensorial Terms................ 668
355 Conclusion.............oo i il 670
References ......... ..o i 671

Second Gradient Continuum: Role of Electromagnetism Interacting
with the Gravitation on the Presence of Torsion and Curvature . . . .. 675
Lalaonirina R. Rakotomanana

36.1 Introduction................ .. .. i il 675
36.2 Electromagnetism in Minkowski Spacetime ................... 676
36.2.1 Maxwell’s 3D Equationsin Vacuum . ................. 676
36.2.2 Covariant Formulation of Maxwell’s Equations ........ 678
36.3 Electromagnetism in Curved Continuum . ..................... 679
36.3.1 Variational Method and Covariant Maxwell’s Equations . 679
36.3.2 Field Equations and Conservation Laws . .............. 681
36.4 Electromagnetism in Twisted and Curved Continuum ........... 684
36.4.1 Faraday Tensor in Twisted Continuum . ............... 684
36.4.2 Field Equations, Wave Equations .................... 685
36.4.3 Electromagnetism and Continuum Defects ............ 688
36.5 Concluding Remarks ............ ... . i i, 691
References ... 693

Optimal Calculation of Solid-Body Deformations with Prescribed
Degrees of Freedom over Smooth Boundaries . . .................. 695
Vitoriano Ruas

37.1 Introduction ... ............uiiiii 695
37.2 Method Description .......... ...ttt 697
37.3 Method Experimentation ..............c.couuuuneirnnennnennn. 699
37.3.1 Deflections of an Elastic Membrane .................. 699
37.3.2 Torsion of an Elastic Annulus ....................... 701
37.4 Final COomments . .........ueunitinneeie e, 703
References . . ... ... 703
Toward a Nonlinear Asymptotic Model for Thin Magnetoelastic
Plates .. ... . 705
Sushma Santapuri and David J. Steigmann
38.1 Introduction................iiiiiiniiniiiiii i 705
38.2 Summary of the Three-Dimensional Theory for Conservative
Problems .. ..... ... 706
38.3 Reformulation ..............coiiiiiiiiiii 708
38.4 Legendre-Hadamard Conditions . ....................coouo.... 709
38.5 [Equations Holding on the Midplane and Small-Thickness Estimates711
38.6 Potential Energy of aThinPlate ............................. 712
38.7 Reduction of the Plate Energy . .............................. 714



XXX Contents

References . ..... ... 716
39 Modelling of an Ionic Electroactive Polymer by the
Thermodynamics of Linear Irreversible Processes . ............... 717
Mireille Tixier and Joél Pouget
39.1 Introduction ............coouniiiii 717
39.2 Description and Modelling of the Material .................... 720
39.2.1 Average Process..........ooiiiii i 721
39.2.2 Imnterface Modelling.............. .. ... .. ... .... 721
39.2.3 Partial Derivatives and Material Derivative ............ 722
3024 BalanceLaws...........coiiiiiiiiiii i 723
39.3 Conservation Laws . ...ttt 724
39.3.1 Conservationofthe Mass ........................... 724
39.3.2 ElectricEquations . ............. .. ... .. ... 724
39.3.3 Linear Momentum Conservation Law. ................ 725
39.3.4 EnergyBalanceLaws .............. ... ... ....... 726
39.3.4.1 Potential Energy Balance Equation.......... 726
39.3.4.2 Kinetic Energy Balance Equation ........... 726
39.3.4.3 Total Energy Balance Equation ............. 727
39.3.4.4 Internal Energy Balance Equation........... 727
39.3.4.5 [Interpretation of the Equations ............. 727
39.4  Entropy Production............. .. ... i i 728
39.4.1 EntropyBalanceLaw .............................. 728
39.4.2 Fundamental Thermodynamic Relations .............. 728
39.43 Entropy Production .............. .. ... .. ... 729
39.4.4 Generalized Forces and Fluxes ...................... 730
39.5 Constitutive Equations . ..., 731
39.5.1 Rheological Equation .............................. 731
39.5.2 Nafion® Physicochemical Properties ................. 732
39.53 Nernst-Planck Equation ............................ 733
39.54 Generalized Darcy’sLaw ........................... 734
39.6 Validation of the Model: Application to a Cantilevered Strip ..... 735
39.6.1 StaticEquations.................coiiiiiiiiii... 735
39.6.2 Beam Model on Large Displacements ................ 737
39.6.3 SimulationsResults............... ... . ... 739
39.7 ConCluSION. . .ottt 740
39.8  NOLALIONS . . .ottt ettt et e e e e 741
References . . ... ..o 742
40 Weakly Nonlocal Non-Equilibrium Thermodynamics: the
Cahn-Hilliard Equation . .. ......... .. .. ... ... .. .. ......... 745
Péter Van
40.1 IntroduCtion ... ........uieuiiiunn i e 745

40.2 Variational derivation of Ginzburg-Landau and Cahn-Hilliard
EQUALIONS .+« vttt ettt e e e e e e e 748



Contents

40.3

40.4

40.5

XXX1
The Thermodynamic Origin of the Ginzburg-Landau
(Allen-Cahn) Equation . ..., 750
40.3.1 Separation of Full Divergences ...................... 750
40.3.2 Ginzburg-Landau Equation: a More Rigorous Derivation 751
The Thermodynamic Origin of the Cahn—Hilliard Equation . .. ... 753
40.4.1 Separation of Full Divergences ...................... 753
40.4.2 Cahn-Hilliard Equation: a More Rigorous Derivation. . . . 754
DiSCUSSION . . ..ottt 757

References . ... 758



List of Contributors

Moustafa S. Abou-Dina
Department of Mathematics, Faculty of Science, Cairo University, Giza 12613,

Egypt
e-mail: moustafa_aboudina@hotmail.com

Ransés Alfonso-Rodriguez

Department of Mathematics, University of Central Florida, 4393 Andromeda Loop
North, Orlando, FL 32816, USA

e-mail: ranses.alfonso@knights.ucf.edu

Vladimir I. Alshits

Shubnikov Institute of Crystallography, Russian Academy of Sciences, 119333
Moscow, Russia

e-mail: valshits@mail.ru

Holm Altenbach

Institut fiir Mechanik, Otto-von-Guericke-Universitit Magdeburg, Universitétsplatz
2, D-39106 Magdeburg, Germany

e-mail: holm.altenbach@ovgu.de

Attila Askar
Kog University, Sartyer, Istanbul 89010, Turkey
e-mail: AASKARQku.edu.tr

Jean-Louis Auriault
Université Grenoble Alpes-CNRS, 3SR Lab, F-38000 Grenoble, France
e-mail: jean—-louis.auriault@3sr—grenoble.fr

Svetlana M. Bauer

St. Petersburg State University, 199034 St. Petersburg, Universitetskaya nab. 7-9,
Russia

e-mail: s_bauerlmail.ru

XXXiii


moustafa_aboudina@hotmail.com
ranses.alfonso@knights.ucf.edu
valshits@mail.ru
holm.altenbach@ovgu.de
AASKAR@ku.edu.tr
jean-louis.auriault@3sr-grenoble.fr
s_bauer@mail.ru

XXXiV List of Contributors

Arkadi Berezovski

Department of Cybernetics, School of Science, Tallinn University of Technology,
Akadeemia tee 21, 12618, Tallinn, Estonia

e-mail: berezovski.arkadi@gmail.com

Harald Berger

Institut fiir Mechanik, Otto-von-Guericke-Universitit Magdeburg, Universititsplatz
2, D-39106 Magdeburg, Germany

e-mail: harald.berger@ovgu.de

Guy Bonnet

Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME
UMR 8208 CNRS, Marne-la-Vallée, France

e-mail: guy .bonnet@u-pem. fr

Claude Boutin
Université de Lyon, LGCB/LTDS CNRS 5513, ENTPE, Vaulx-en-Velin, France
e-mail: claude.boutin@entpe.fr

Manfred Braun

Chair of Mechanics and Robotics, University Duisburg—Essen, Lotharstral3e 1,
47057 Duisburg, Germany

e-mail: manfred.braun@uni-due.de

Julian Bravo-Castillero

Facultad de Matematica y Computacién, Universidad de La Habana, San Lazaro y L,
Vedado, CP 10400, La Habana, Cuba & Instituto de Investigaciones en Matemadticas
Aplicadas y en Sistemas, Universidad Nacional Auténoma de México, Delegacién
Alvaro Obregdn, Apartado Postal 20-126, 01000 CDMX, México

e-mail: jbravo@matcom.uh.cu, julian@mym.iimas.unam.mx

Renald Brenner

Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7190,
Institut Jean Le Rond d’ Alembert, F-75005 Paris, France

e-mail: renald.brenner@upmc. fr

Noél Challamel

Université de Bretagne Sud, EA 4250, Institut de Recherche Dupuy de Lome (IRDL),
Centre de Recherche, Rue de Saint Maudé-BP 92116, F-56100 Lorient, France
e-mail: noel.challamel@univ—ubs.fr

Sanda Cleja-Tigoiu

University of Bucharest, Faculty of Mathematics and Computer Science, str.
Academiei 14, 010014-Bucharest, Romania

e-mail: tigoiu@fmi.unibuc.ro

David Christie

Physics department, Lancaster University, Lancaster LA1 4YB and The Cockcroft
Institute of Accelerator Science, Keckwick Lane, Warington WA4 4AD, Unided
Kingdom

e-mail: d.christie@lancaster.ac.uk


berezovski.arkadi@gmail.com
harald.berger@ovgu.de
guy.bonnet@u-pem.fr
claude.boutin@entpe.fr
manfred.braun@uni-due.de
jbravo@matcom.uh.cu,julian@mym.iimas.unam.mx
renald.brenner@upmc.fr
noel.challamel@univ-ubs.fr
tigoiu@fmi.unibuc.ro
d.christie@lancaster.ac.uk

List of Contributors XXXV

Bernard Collet

Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7190,
Institut Jean Le Rond d’ Alembert, F-75005 Paris, France

e-mail: bernard.collet@upmc. fr

Oscar L. Cruz-Gonzélez

Facultad de Ciencias Técnicas, Departamento de Matemadtica, Universidad de
Matanzas, Varadero road, Km. 2 1/2, Matanzas, Cuba

e-mail: oscar.lcg93@gmail.com

Xiangyu Cui
Computational Engineering, Ruhr University Bochum, D-44780 Bochum, Germany
e-mail: 15120080178@163.com

Hui-Hui Dai

Department of Mathematics, City University of Hong Kong, 83 Tat Chee Avenue,
Kowloon Tong, Hong Kong

e-mail: mahhdai@cityu.edu.hk

Francesco dell’Isola

Universita di Roma “La Sapienza” & International Research Center on Mathematics
and Mechanics of Complex System (M&MOCS), Universitd degli Studi dell’ Aquila,
Via Giovanni Gronchi 18 - Zona industriale di Pile, 67100, L’ Aquila, Italy

e-mail: francescodellisola@uniromal.it

Fabio di Cosmo

International Research Center on Mathematics and Mechanics of Complex System
(M&MOCS), Universita degli Studi dell’ Aquila, Via Giovanni Gronchi 18 - Zona
industriale di Pile, 67100, L’ Aquila, Italy

e-mail: fabio.dicosmo.memocs@gmail.com

Serge Dumont
Université de Nimes, Institut de Mathématiques Alexander Grothendieck, CNRS,
UMR 5149, CC.051, PI. E. Bataillon, 34 095 Montpellier Cedex 5, France

e-mail: serge.dumont@unimes.fr

Amr R. El Dhaba
Department of Mathematics, Faculty of Science, Damanhour University, Egypt
e-mail: amrramadaneg@gmail.com

Jiiri Engelbrecht

Department of Cybernetics, School of Science, Tallinn University of Technology,
Akadeemia tee 21, 12618, Tallinn, Estonia

e-mail: je@ioc.ee

Marcelo Epstein
University of Calgary, Canada
e-mail: mepstein@ucalgary.ca


bernard.collet@upmc.fr
oscar.lcg93@gmail.com
15120080178@163.com
mahhdai@cityu.edu.hk
francescodellisola@uniroma1.it
fabio.dicosmo.memocs@gmail.com
serge.dumont@unimes.fr
amrramadaneg@gmail.com
je@ioc.ee
mepstein@ucalgary.ca

XXXVi List of Contributors

Victor A. Eremeyev

Gdarsk University of Technology, ul. Gabriela Narutowicza 11/12, 80-233 Gdansk,
Poland

e-mail: eremeyev.victor@gmail.com

Samuel Forest
Mines ParisTech, Centre des Matériaux, CNRS, UMR 7633, France
e-mail: samuel.forest@ensmp. fr

Alexander B. Freidin

Institute for Problems in Mechanical Engineering of the Russian Academy

of Sciences, Bolshoy pr., 61, V.O., St. Petersburg, 199178 & Peter the Great
St.Petersburg Polytechnic University, Polytechnicheskaya st., 29, St.Petersburg,
195251, Russia

e-mail: alexander.freidin@gmail.com

Ahmed F. Ghaleb
Department of Mathematics, Faculty of Science, Cairo University, Giza 12613,

Egypt
e-mail: afghaleb@sci.cu.edu.eg

Alain Gérard
Bordeaux University, 2M-MPI, CNRS, UMR 5295, 33600 Pessac, France
e-mail: ajr.gerard@gmail.com

Elena F. Grekova

Institute for Problems in Mechanical Engineering of the Russian Academy of
Sciences, Bolshoy pr., 61, V.O., St. Petersburg, 199178, Russia

e-mail: elgreco@pdmi.ras.ru

Sonia Guarguagli
Universita degli Studi di Torino, Via Giuseppe Verdi 8, Torino, Italy
e-mail: sonia.guarguagli@gmail.com

Radl Guinovart-Diaz

Facultad de Matemadtica y Computacion, Universidad de La Habana, San Lazaro y L,
Vedado, CP 10400, La Habana, Cuba

e-mail: guino@matcom.uh.cu

Igor A. Gula

The Ioffe Institute of the Russian Academy of Sciences, 194021, St. Petersburg,
Russia (current Department of Physics, Chemistry and Pharmacy, University of
Southern Denmark (SDU), Campusvej 55, Odense M 5230, Denmark)

e-mail: wswggg@gmail.com

Dorin Iesan

Department of Mathematics, Al. I. Cuza University and Octav Mayer Institute of
Mathematics (Romanian Academy), Bd. Carol I, nr. 8, 700508 Iasi, Romania
e-mail: iesan@uaic.ro


eremeyev.victor@gmail.com
samuel.forest@ensmp.fr
alexander.freidin@gmail.com
afghaleb@sci.cu.edu.eg
ajr.gerard@gmail.com
elgreco@pdmi.ras.ru
sonia.guarguagli@gmail.com
guino@matcom.uh.cu
wswggg@gmail.com
iesan@uaic.ro

List of Contributors XXX Vil

Shoji Imatani
Kyoto University, Sakyo-ku, Kyoto, Japan
e-mail: imatani@energy.kyoto-u.ac. jp

David Jou

Universitat Autonoma de Barcelona, Grup de Fisica Estadistica, 08193 Bellaterra,
Catalonia, Spain

e-mail: David.JouR@uab.cat

Stanislava V. Kashtanova

St. Petersburg State University, 199034 St. Petersburg, Universitetskaya nab. 7-9,
Russia

e-mail: kastasya@yandex.ru

Attila Kocsis

Department of Structural Mechanics, Budapest University of Technology and
Economics and Engineering Center Budapest, Robert Bosch Kft., 1111, Budapest,
Hungary

e-mail: kocsis@ep-mech.me.bme.hu

Marco Laudato

Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica, Universita
degli Studi dell’ Aquila, Via Vetoio (Coppito 1), 67100 Coppito & International
Research Center on Mathematics and Mechanics of Complex System (M&MOCS),
Universita degli Studi dell’ Aquila, Via Giovanni Gronchi 18 - Zona industriale di
Pile, 67100, L’ Aquila, Italy

e-mail: laudato.memocs@gmail.com

Khanh Chau Le

Lehrstuhl fiir Mechanik - Materialtheorie, Ruhr-Universitidt Bochum, D-44780
Bochum, Germany

e-mail: chau.le@Rrub.de

Frederic Lebon

Aix-Marseille Univ., CNRS, Centrale Marseille, LMA, 4 Impasse Nikola Tesla, CS
40006, 13453 Marseille Cedex 13, France

e-mail: lebon@lma.cnrs—-mrs.fr

Yuanyou Li

Department of Mathematics, City University of Hong Kong, 83 Tat Chee Avenue,
Kowloon Tong, Hong Kong

e-mail: yuanyouli2—-c@cityu.edu.hk,

‘Wael Mahmoud
Department of Mathematics, Faculty of Science, Cairo University, Giza 12613,

Egypt
e-mail: mwael@sci.cu.edu.eg


imatani@energy.kyoto-u.ac.jp
David.Jou@uab.cat
kastasya@yandex.ru
kocsis@ep-mech.me.bme.hu
laudato.memocs@gmail.com
chau.le@rub.de
lebon@lma.cnrs-mrs.fr
yuanyouli2-c@cityu.edu.hk,
mwael@sci.cu.edu.eg

XXXViil List of Contributors

Maria-Belén Martinez-Pavetti

Kyoto University, Sakyo-ku, Kyoto, Japan (currently Universidad Nacional de
Asuncién, San Lorenzo, Paraguay)

e-mail: bmartinez.py@gmail.com

Raul Martinez-Rosado

Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Atizapan de Zaragoza,
Estado de México, México

e-mail: rrosado@itesm.mx

Tiphaine Mathieu-Pennober
Ecole Polytechnique, Paris, France
e-mail: tiphaine.mathieu-pennober@polytechnique.org

Markus Mehnert

Chair of Applied Mechanics, University of Erlangen-Nuremberg, Paul-Gordan-Str.
3, 91054 Erlangen, Germany

e-mail: markus.mehnert@fau.de

Thomas Michelitsch

Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7190,
Institut Jean Le Rond d’ Alembert, F-75005 Paris, France

e-mail: michel@lmm. jussieu. fr

Nikita F. Morozov

St. Petersburg State University, 199034 St. Petersburg, Universitetskaya nab. 7-9,
Russia

e-mail: morozov@nml016.spb.edu

Wolfgang H. Miiller

Institute of Mechanics, Chair of Continuum Mechanics and Constitutive Theory,
Technische Universitét Berlin, Einsteinufer 5, 10587 Berlin, Germany

e-mail: whmueller1000@gmail.com

Wolfgang Muschik

Institut fiir Theoretische Physik, Technische Universitéit Berlin, Hardenbergstr. 36,
D-10623 Berlin, Germany

e-mail: muschik@physik.tu-berlin.de

Konstantin Naumenko

Institut fiir Mechanik, Otto-von-Guericke-Universitit Magdeburg, Universititsplatz
2, D-39106 Magdeburg, Germany

e-mail: konstantin.naumenko@ovgu.de

Franck Nicolleau

Sheffield Fluid Mechanics Group, Department of Mechanical Engineering of the
Russian Academy of Sciences, University of Sheffield, Mappin Street, Sheffield S1
3JD, United Kingdom

e-mail: f .nicolleau@sheffield.ac.uk


bmartinez.py@gmail.com
rrosado@itesm.mx
tiphaine.mathieu-pennober@polytechnique.org
markus.mehnert@fau.de
michel@lmm.jussieu.fr
morozov@nm1016.spb.edu
whmueller1000@gmail.com
muschik@physik.tu-berlin.de
konstantin.naumenko@ovgu.de
f.nicolleau@sheffield.ac.uk

List of Contributors XXXIX

Jerzy P. Nowacki
Polish-Japanese Academy of Information Technology, 02-008 Warsaw, Poland
e-mail: nowacki@pja.edu.pl

Andrzej Nowakowski

Sheffield Fluid Mechanics Group, Department of Mechanical Engineering of the
Russian Academy of Sciences, University of Sheffield, Mappin Street, Sheffield S1
3JD, United Kingdom

e-mail: a. f.nowakowski@sheffield.ac.uk

Alena E. Osokina

Institute for Problems in Mechanical Engineering of the Russian Academy

of Sciences, Bolshoy pr., 61, V.O., St. Petersburg, 199178 & Peter the Great
St.Petersburg Polytechnic University, Polytechnicheskaya st., 29, St.Petersburg,
195251, Russia

e-mail: aecosokina@gmail.com

Martin Ostoja-Starzewski
University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
e-mail: martinos@illinois.edu

José A. Otero

Instituto Tecnolégico de Estudios Superiores de Monterrey CEM, Atizapéan de
Zaragoza, EM CP 52926, México

e-mail: j.a.otero@itesm.mx

Franco Pastrone
Accademia delle Scienze di Torino, Via Accademia delle Scienze 6, Torino, Italy
e-mail: franco.pastrone@unito.it

Tanel Peets

Department of Cybernetics, School of Science, Tallinn University of Technology,
Akadeemia tee 21, 12618, Tallinn, Estonia

e-mail: tanelp@ioc.ee

Leslie D. Pérez-Fernandez

Universidade Federal de Pelotas, Departamento de Matemadtica e Estatistica, Instituto
de Fisica e Matematica, Caixa Postal 354, CEP 96010-900, Pelotas, Rio Grande do
Sul, Brazil

e-mail: leslie.fernandezQufpel.edu.br

Alejandro Perez Riascos
Department of Civil Engineering, Universidad Mariana San Juan de Pasto, Colombia
e-mail: aaappprrr@gmail.com


nowacki@pja.edu.pl
a.f.nowakowski@sheffield.ac.uk
aeosokina@gmail.com
martinos@illinois.edu
j.a.otero@itesm.mx
franco.pastrone@unito.it
tanelp@ioc.ee
leslie.fernandez@ufpel.edu.br
aaappprrr@gmail.com

x1 List of Contributors

Alexey V. Porubov

Institute for Problems in Mechanical Engineering of the Russian Academy

of Sciences, Bolshoy pr., 61, V.O., St. Petersburg, 199178 & Peter the Great
St.Petersburg Polytechnic University, Polytechnicheskaya st., 29, St.Petersburg,
195251, Russia

e-mail: alexey.porubov@gmail.com

Joél Pouget

Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7190,
Institut Jean Le Rond d’ Alembert, F-75005 Paris, France

e-mail: joel.pougetQupmc.fr

Vit Prisa

Faculty of Mathematics and Physics, Charles University, Sokolovska 83, Praha 8 —
Karlin, CZ 186 75, Czech Republic

e-mail: prusv@karlin.mff.cuni.cz

Ramon Quintanilla

Department of Mathematics, ESEIAAT, Polytechnic University of Catalonia, Coldn,
11, 08222 Terrassa, Barcelona, Spain

e-mail: ramon.quintanilla@upc.edu

Bharath V. Raghavan
University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
e-mail: braghav2@illinois.edu

Kumbakonam R. Rajagopal

Texas A&M University, Department of Mechanical Engineering, 3123 TAMU,
College Station TX 77843-3123, USA

e-mail: krajagopal@tamu.edu

Lalaonirina R. Rakotomanana

Institut de Recherche Mathématique de Rennes, Campus Beaulieu, 35042 Rennes,
France

e-mail: lalaonirina.rakotomanana-ravelonarivo@univ—rennesl.
fr

Enaam K. Rawy
Department of Mathematics, Faculty of Science, Cairo University, Giza 12613,

Egypt
e-mail: enaamkhalifa@yahoo.com

Liliana Restuccia

University of Messina, Department of Mathematical and Computer Sciences,
Physical Sciences and Earth Sciences, Contrada Papardo, Viale Ferdinando Stagno
d’ Alcontres, 98166 Messina, Italy

e-mail: lrestuccia@unime.it


alexey.porubov@gmail.com
joel.pouget@upmc.fr
prusv@karlin.mff.cuni.cz
ramon.quintanilla@upc.edu
braghav2@illinois.edu
krajagopal@tamu.edu
lalaonirina.rakotomanana-ravelonarivo@univ-rennes1.fr
lalaonirina.rakotomanana-ravelonarivo@univ-rennes1.fr
enaamkhalifa@yahoo.com
lrestuccia@unime.it

List of Contributors xli

Reinaldo Rodriguez-Ramos

Facultad de Matemadtica y Computacién, Universidad de La Habana, San Lizaro y L,
Vedado, CP 10400, La Habana, Cuba

e-mail: reinaldo@matcom.uh.cu

Vitoriano Ruas

Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7190,
Institut Jean Le Rond d’ Alembert, F-75005 Paris, France

e-mail: vitoriano.ruas@upmc.fr

Federico J. Sabina

Instituto de Investigaciones en Matemadticas Aplicadas y en Sistemas, Universidad
Nacional Auténoma de México, Delegacién Alvaro Obregén, Apartado Postal
20-126, 01000 CDMX, México

e-mail: f js@mym.iimas.unam.mx

Andrus Salupere

Department of Cybernetics, School of Science, Tallinn University of Technology,
Akadeemia tee 21, 12618, Tallinn, Estonia

e-mail: salupere@ioc.ee

Alexander M. Samsonov ()
The Ioffe Institute of the Russian Academy of Sciences, 194021, St. Petersburg,
Russia

Sushma Santapuri

Department of Applied Mechanics, Indian Institute of Technology Delhi, New Delhi
110016, India

e-mail: ssantapuri@am.iitd.ac.in

Boris N. Semenov

St. Petersburg State University, 199034 St. Petersburg, Universitetskaya nab. 7-9,
Russia

e-mail: semenov@bs1892.spb.edu

Igor Sevostianov

Department of Mechanical and Aerospace Engineering, New Mexico State
University, Las Cruces, NM 88003, USA

e-mail: igor@nmsu.edu

Leah L. Sharipova

Institute for Problems in Mechanical Engineering of the Russian Academy of
Sciences, Bolshoy pr., 61, V.O., St. Petersburg, 199178, Russia

e-mail: sleah07@gmail.com

Mario Spagnuolo

CNRS, LSPM UPR3407, Université Paris 13, Sorbonne Paris Cité, 93430
Villetaneuse, France

e-mail: mario.spagnuolo@lspm.cnrs. fr


reinaldo@matcom.uh.cu
vitoriano.ruas@upmc.fr
fjs@mym.iimas.unam.mx
salupere@ioc.ee
ssantapuri@am.iitd.ac.in
semenov@bs1892.spb.edu
igor@nmsu.edu
sleah07@gmail.com
mario.spagnuolo@lspm.cnrs.fr

xlii List of Contributors

David J. Steigmann

Department of Mechanical Engineering, University of California Berkeley, CA
94720, USA

e-mail: dsteigmann@berkeley.edu

Paul Steinmann

Chair of Applied Mechanics, University of Erlangen-Nuremberg, Paul-Gordan-Str.
3, 91054 Erlangen, Germany

e-mail: paul.steinmann@fau.de

Kert Tamm

Department of Cybernetics, School of Science, Tallinn University of Technology,
Akadeemia tee 21, 12618, Tallinn, Estonia

e-mail: kert@ioc.ee

Mireille Tixier

Département de Physique, Université de Versailles Saint Quentin, 45, Avenue des
Etats-Unis, F-78035 Versailles, France

e-mail: mireille.tixier@uvsqg.fr

Robin Tucker

Physics department, Lancaster University, Lancaster LA1 4YB and The Cockcroft
Institute of Accelerator Science, Keckwick Lane, Warington WA4 4AD, Unided
Kingdom

e-mail: r.tucker@lancaster.ac.uk

Péter Van

Department of Theoretical Physics, Wigner Research Centre for Physics, H-1525
Budapest, Konkoly Thege Mikl6s u. 29-33., Department of Energy Engineering,
Faculty of Mechanical Engineering, Budapest University of Technology and
Economics, 1111 Budapest, Miiegyetem rkp. 3., Montavid Thermodynamic Research
Group, Budapest, Hungary

e-mail: van.peter@wigner.mta.hu

Elena N. Vilchevskaya

Institute for Problems in Mechanical Engineering of the Russian Academy

of Sciences, Bolshoy pr., 61, V.O., St. Petersburg, 199178 & Peter the Great
St.Petersburg Polytechnic University, Polytechnicheskaya st., 29, St.Petersburg,
195251, Russia

e-mail: vilchevska@gmail.com

Mathias Wiirkner

Institut fiir Mechanik, Otto-von-Guericke-Universitit Magdeburg, Universitétsplatz
2, D-39106 Magdeburg, Germany

e-mail: mathias.wuerkner@Qovgu.de


dsteigmann@berkeley.edu
paul.steinmann@fau.de
kert@ioc.ee
mireille.tixier@uvsq.fr
r.tucker@lancaster.ac.uk
van.peter@wigner.mta.hu
vilchevska@gmail.com
mathias.wuerkner@ovgu.de

®

Check for
updates

Chapter 1

Effective Coefficients and Local Fields of
Periodic Fibrous Piezocomposites with 622
Hexagonal Constituents

Ransés Alfonso-Rodriguez, Julidn Bravo-Castillero, Renald Brenner, Rail
Guinovart-Diaz, Leslie D. Pérez-Fernandez, Reinaldo Rodriguez-Ramos, and
Federico J. Sabina

Abstract The asymptotic homogenization method is applied to a family of boundary
value problems for linear piezoelectric heterogeneous media with periodic and
rapidly oscillating coefficients. We consider a two-phase fibrous composite consisting
of identical circular cylinders perfectly bonded in a matrix. Both constituents are
piezoelectric 622 hexagonal crystal and the periodic distribution of the fibers follows a
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rectangular array. Closed-form expressions are obtained for the effective coefficients,
based on the solution of local problems using potential methods of a complex variable.
An analytical procedure to study the spatial heterogeneity of the strain and electric
fields is described. Analytical expressions for the computation of these fields are
given for specific local problems. Examples are presented for fiber-reinforced and
porous matrix including comparisons with fast Fourier transform (FFT) numerical
results.

1.1 Introduction

At the beginning of the nineteen nineties, different homogenization techniques were
applied to investigate the macroscopic or effective properties of periodic piezoelectric
composites (Galka et al, 1992; Maugin and Turbé, 1991; Telega, 1991; Turbé and
Maugin, 1991). The initial studies of the effective dynamical properties of periodic
piezoelectric composites by considering Bloch expansions were reported in Telega
(1991); Turbé and Maugin (1991). The method of I"-convergence was used to study
the static effective properties without dispersive behavior. In Galka et al (1992), the
two-scale asymptotic homogenization was applied for thermo-piezoelectric heteroge-
neous media.

In this framework, the computation of the effective properties depends on the
solution of the so-called local problems. Many works have been devoted to the
application of analytical and numerical techniques for solving the local problems,
see, for instance, Berger et al (2003, 2006); Bravo-Castillero et al (1997, 1998, 2001);
Galka et al (1996); Otero et al (2003); Rodriguez-Ramos et al (1996); Sabina et al
(2001). In general, those efforts have been addressed to piezoelectric composites
whose constituents exhibit a 6mm symmetry class which are of interest in smart
materials applications.

The purpose of this work is essentially twofold. Firstly, to provide closed-form
expressions for the effective coefficients of fibrous composites with piezoelectric
components which belong to the 622 hexagonal symmetry (Nye, 1957) and with
a rectangular distribution of the fibers. These results generalize those published in
Loépez-Lépez et al (2005); Aguiar et al (2013) where the periodic cell is a square.
Secondly, to describe a procedure to obtain analytical expressions for the components
of both the local strain tensor and local electric field intensity vector.

These studies could be interesting for the modeling of biomaterials in bone me-
chanics applications (for instance, collagen is a natural substance which possesses
the 622 symmetry, see Fukada, 1984). In Telega (1991), for the first time, the appli-
cation of homogenization methods for finding the effective piezoelectric properties
of compact bones was sketched. However, up to now, few papers on composites
with 622 symmetry have been reported (Aguiar et al, 2013; Alfonso-Rodriguez et al,
2017; Lopez-Lopez et al, 2005; Sevostianov et al, 2014).

The paper is organized as follows. In Sect. 1.2, a family of boundary value prob-
lems for periodic piezoelectric media with rapidly oscillating coefficients is presented
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in matrix notation. The main steps of the asymptotic homogenization procedure to
obtain the averaged problem, the local problems, the effective coefficients and the
components of the local fields, are summarized. In Sect. 1.4, the homogenization
model is applied to the case of unidirectional fibrous composites with 622 piezoelec-
tric phases and a rectangular periodic cell. The relevant local problems are solved
based on the theory of functions of a complex variable and closed-form expressions
are derived for the corresponding effective coefficients. Analytical expressions are
also explicitly given for the components of the strain and electric local fields asso-
ciated with particular local problems. In Sect. 1.6, some numerical examples are
presented and the accuracy of the results is assessed through comparisons with results
derived from the FFT numerical scheme (Brenner, 2009, 2010).

1.2 A Boundary Value Problem of the Linear Piezoelectricity
Theory

Let Q C R? be a three-dimensional domain with infinitely smooth boundary 9.Q.
The material properties of a piezoelectric body occupying 2 are described by elastic
(cijii), piezoelectric (e;jx), and dielectric (k;;) coefficients. These coefficients are
assumed to be differentiable, rapidly oscillating and €Y -periodic functions in the
local variable y = x/¢&, where x = (x1,x2,x3) € Q is the global variable, € > 0 is the
usual small geometric parameter, and Y is the periodic cell.

The material functions are defined by

X

X X .o
cfjk/ (x):Cijk[ (E)a efjk(x):eijk (5)7 Kt‘j(x):Klj (5)7 l7.]7k: 132737

which are denoted in a unified fashion by A ;; = (a’;[k/> . , where
i k=1,..4

ik i 4k 44
ajy = ciju, Ay =eyj,  dj =eju,  dj =—Kj.
The material functions satisfy the usual symmetry conditions

ik _ gk _ il ki i _ j4 4k _ 4l 44 _ 44

aj=ay =dyp=qa, dy=ay, dj=dy, dj=da;, (1.1)
and we will assume that there exist a constant s > 0 such that, for any symmetric
matrix ¢ = (¢;;) and any vector a = (g;)

dlf (V) qijau = #qijqij, - aff () ajar > xajaj. (12)

Note that the summation rule on the repeated indices will be used throughout the
paper.

A boundary value problem for the system of equations of linear piezoelectricity
can be written as
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a € a € _
axj<Aj,(x)axlU (x)) =0€eQ, (1.3)
Ut(x) = U(x), x€dQ, (1.4)

where U® (x) = (uf (x),u5 (x), u§(x), vs(x))T and U (x) = (i (x), 2 (x), 3 (x), ¥(x))"
represent the unknown and the prescribed boundary conditions, respectively. The
superscript T stands for transposition. Equation (1.3) represent a system of partial
differential equations to find the mechanical displacement field u® = (u,f) and the
electric potential vé. The problem (1.3)-(1.4) describes the piezoelectric state of a
composite material that occupies the domain 2 and is free of external forces.

1.3 Homogenization, Local Problems and Effective Coefficients

In this section, the asymptotic homogenization method (AHM) (Bakhvalov and
Panasenko, 1989) is applied to the family of problems (1.3)-(1.4). More specifically,
the methodology used in Sixto-Camacho et al (2013) is followed.

The solution of (1.3)-(1.4) is sought in the form

U (x) =UO (x,y)+eUD(x,y) +---+ U (x,9) +..., (1.5)

where ’
Ul = ( §’>,u§’),ugl>,v<">) S i=0,12,...

being u,io) (x,y), u,(cl)(x,y),. o VO (x,y), vID(x,y), ... infinitely differentiable and
Y —periodic functions with respect to y. Substituting (1.5) into (1.3)—(1.4), applying
the differentiation chain rule and equating to zero the terms corresponding to equal
powers of € (from e 2,1, €% ...), a recurrent family of partial differential equa-
tions is obtained. From the term corresponding to €2, it is possible to conclude
that the non-perturbed terms of the asymptotic (1.5) are independent of y, that is
v = gy (x). From the term that corresponds to €' the local problems are
obtained, which have a solution ") (x,y) in the class of Y —periodic functions with
respect to y. Such a solution can be expressed using the method of separable variables
as follows

AU (x)

(1) — NP
UY (x,y) =NP(y) ax, (1.6)
with - )
E0 L)
NP(y :( r o) X ) 7
D=omi) 0 ) s s
where the matrix N”(y) is a Y —periodic solution of
d ‘ INP(y)\
5 (Ar 01+ 450 P ) o 1)
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Based on the periodicity and ellipticity of the material coefficients it is possible to
apply the theorem of the Appendix of Sixto-Camacho et al (2013) to prove that
equations (1.7) have a unique Y —periodic solution up to an additive constant. The
problems involving such equations are the so-called local problems. The solutions of
such problems play an important role for the calculation of the effective coefficients.
Usually, the condition of null average of the local functions (i.e., (N? (y)) = 0) on
the periodic cell is imposed for uniqueness. The angular brackets denote the average
per unit volume over the cell i.e.

1
50 = 171 / g(y)dy.

On the other hand, from the terms corresponding to €%, we obtain the homogenized
problem

22U (%)
—= =0 Q 1.8
P 9xpdx, ’ xeL (1.8)
vOx) =0k, xeoe. (1.9)
and the effective coefficients A g which are defined by

aNp(y)>. (1.10)

ga= (a0 + 40 ) 5

The terms U9 (x,y) (i > 1) of (1.5) can be also expressed in separable variables by

U (x)

U(i)(xay) :Npplmpiil (y) &X ax 3)6 )
p¥rpL Pi-1

(1.11)
where NPP1--Pi-1 are Y —periodic solutions of certain partial differential equations

which can be found in Eq. (4.13) of Sixto-Camacho et al (2013).

1.3.1 Explicit Form of the Homogenized Problem, Effective
Coefficients and Local Problems

From (1.8)—(1.10), it is possible to obtain the explicit form of the homogenized
problem

8214,((0) (%) 2vO)(x)
Cijkl axjaxl Emij axjaxm _07 )CEQ, (112)
2 (0) 2,,(0)
Oy _(%) IVIW oy seo, (1.13)

e. —_— .
S 0xidx; ™ 9xi0xm ’
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u () = (x), VO (1) =¥(x), x€dQ, (1.14)
and the effective coefficients
Cijpg = <Cijkl (8181 + €x1y (EPD)] + ezij(i?;]> : (1.15)
€ipg = <eﬂ<l (S 1q + €11 (E7)] = Kjla;)yjq> : (1.16)
Cpij = <eli./' [5117 + a;;lp} + Cijki €kt y (T”)> ; (1.17)
Kip = <’<ﬂ {5117 + 8815] — €iki€kl.y (Y”)> , (1.18)

where 0y is the Kronecker’s delta and

1 (Jdu, du
e g (u) = 3 (851+(9§,< :
The local functions £/?, ©P4, Y, and I1” are Y-periodic solutions of the following
problems on the cell Y:

e Problem L”: Find the Y-periodic functions Z;¢, @74 such that:

9 _ 01 .
=— 3 Cijut [OkpOig + €1y (EPD)] +eij—— ¢ =0, inY,
9y, I
5 S0P (1.19)
E {ejk[ [6kp6[q + Ek[’y (qu)} — K]l&yl} = O7 mn Y
e Problem L”: Find the Y-periodic functions Y?, IT? such that:
0 aIrr
I {elij {5117 + 8] +Cijki€kiy (Tp)} =0, inY,
i Il (1.20)
d aIrp » .
Tyj Kji 51P+Tyl — €jkI€kly xr)yr =0, inY.
1.3.2 Local Fields
Now boundary conditions (1.14) are given by linear functions of the type
i (x) = 8uyxg, V(x) = —Epxy, (1.21)

where &, and E; are the components of a constant strain tensor and a constant electric
field intensity vector, respectively on the boundary of the composite. Under these
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conditions, the functions u}({o) (x) = &gy and v(©) (x) = —Ejx; represent the solution
of the homogenized problem (1.12)-(1.14). So the linearity of U(©) (x) implies that
U (x,y) =0 for i > 1. Consequently, the components of the asymptotic expansion

(1.5) take the form

uyp (x) = Eux; +¢€ [é‘pqE,fq (y)— EPY;{”] , (1.22)
Ve (x) = —Ex + € [8,,079 (y) — E,IT"] . (1.23)

Therefore, it is possible to obtain the components of the local strain field
&t () = Epg [8pOig + &11y (EP9)] — Epery (17), (1.24)
and the components of the local electric field intensity

A

. orr] . e
EI(V ) =k, |:5pl+ayl:| —8quyl, (1.25)
where 5
vf
El (VE) = — axl .

Note that the fields defined by (1.24) and (1.25) only depend on the local variable y.

1.4 Application to a Binary Fibrous Piezocomposite with Perfect
Contact Conditions at the Interfaces

In this section, we apply the previously described method to a particular composite.
We consider a two-phase fibrous composite consisting of identical circular cylinders
embedded in a matrix. Both components are homogeneous piezoelectric materials.
The axis of the fibers is parallel to the x3-axis. The periodic distribution of the fibers
follows a rectangular array as shown in Fig. 1.1. Perfect contact conditions on the
interface X between the fibers and the matrix are assumed. The application of the
above described homogenization process leads to (1.12)—(1.20), with the addition of
contact conditions on the interfaces.

The local problems (1.19)—(1.20) on the periodic cell Y can be written as (Bravo-
Castillero et al, 2001; Sabina et al, 2001):

e Problem L": To find the Y-periodic functions Z/'? and ®”7 such that:

P —0, in Y, (1.26a)
DY =0, in v, (1.26b)
[/7] =0, on X, (1.26¢)

[©7] =0, on X, (1.26d)
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Xy ) Be)
25§— / al2

—t
N

—al2

Fig. 1.1: Description of the cross-section of a two-phase fibrous periodic medium
and the rectangular periodic cell

G,%qnﬁ]] = — [[CiSpq]] ng, on 2, (1266)
[[ngnﬁ]] == [[e&m]] ns, on X, (1.260)
E]i7q> =0, (1.26g)
(OP1) =0, (1.26h)
with
hID — D) e (qum) +ef 0, (1.27a)
ng(Y) _ EESJ]’C)}L €1y (qu(y)) _ Ké?@fi‘l(y), (1.27b)

e Problem L?: Find the Y -periodic functions ;" and IT” such that:

ol =0, in ¥, (1.282)
DY =0, in v, (1.28b)
[x']=0, on I, (1.28¢)
[I1’] =0, on Z, (1.28d)
[[Gil(; 6”5]] = [[epiS]] ng, on 27 (1286)
[D4ns] = — [xs5,] ns, on Z, (1.28f)
(1) =0, (1.289)
(Ir) =0, (1.28h)
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with
o) = cfleans (477) + L. .29
DY = o e (Tpm) — kY, (1.29b)

where ng are the components of the outer unit normal vector to the interface X, and
[1= ()M = (-) denotes the contrast across £ taken from the matrix to the fiber.
0;s5 and Dg are the components of local stress tensor and electric displacement vector,
respectively. The Eqgs. (1.26a) and (1.28a) are the corresponding equilibrium relations
of solids bodies; (1.26b) and (1.28b) are the quasi-static approximation of Maxwell’s
equations in the absence of free charges. Perfect contact conditions on the interface
are represented by (1.26¢)—(1.26f) and (1.28¢)—(1.28f). Conditions for uniqueness
are given by (1.26g)—(1.26h) and (1.28g)—(1.28h). Formulae (1.27a)—(1.27b) and
(1.29a)—(1.29b) are the local constitutive relations. The Latin indices run from 1 to
3, and the Greek ones from 1 to 2. The comma denotes partial differentiation with
respect to the local variable y.

1.5 Local Problems for Fibrous Composites with Constituents of
622 Hexagonal Class

In this work, we solve the local problems for the case corresponding to matrix and
fibres made of piezoelectric materials with 622 hexagonal symmetry (Nye, 1957).
These materials are characterized by eight independent constants (k, m, [, n, p, s, t
and u), which are given by five elastic constants

2k =ci111+cne, 2m=cri —Ci122 = C1212,
[=c1133 =233, Nn=03333, P =CI313=C2323;

one piezoelectric constant
s’ =—e13 = ez = ex31 = —e13
and two dielectric permittivity constants
1=K =K, U=K33.

Consequently, the local problems L!', L?2, I3 and L'? are exactly the same purely
elastic problems which were solved in Nava-Gomez et al (2012) to obtain the effective
coefficients 111, 20115 €3311> €2222> €33225 €3333 and €11,. On the other hand, from
L3 one obtains that k35 = (u). Therefore, only four local problems (L'3, 23, L' and
LZ) are relevant to obtain the remaining nonzero effective coefficients, which are

C1313> €2323 €213> €123, K11 and Ky».
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In the local problems L3, 123 L' and L?, the relevant constitutive relations (1.27)
and (1.29) can be summarized as

031 = p8137y—s'E2, (1.30)
O3 = —S/€23.y-‘rtE1, (1.31)
D) = p£237y-|-le1, (1.32)
Dy = S/813,y +tE>. (1.33)

Thus, only three material properties are here involved: the longitudinal shear modulus
p, the shear stress piezoelectric coefficient 5" and the transverse permittivity constant
t. The next subsections will be dedicated to the solution of these local problems and
the further computation of the related effective coefficients.

1.5.1 Local Problems [*3 and L!

These two problems can be stated in a unified form as follows

AEY) =0inY,, (1.34a)

A0 =0inY,, (1.34b)

[E]=00nZX, (1.34c)

[@] =0on X, (1.34d)

[(pE 1 —5O2)ni+ (pE2+50,) ] =Anyon X, (1.34e)
[(§&2—101)n — (sZ1 +102)n2] =Bnjon X, (1.341)
(E) =0, (1.34g)

(@) =0, (1.34h)

where A is the two-dimensional Laplacian. Therefore, the solutions Z(¥) (= E32 3()/))
and O (= @23(7)) are doubly periodic harmonic functions of the complex variable
7 =1y1 + iy, defined in the rectangular cell Y with periods @; = 1 and w, = ai. The
values of A and B in the right hand side of equations (1.34e) and (1.34f) for L?* are
— [p] and — [s'] respectively. However, for the local problem L!, these values are
= —[s'] and B = [t], whereas Z(7) (= 7-31(7)) and @) (= I1').
The solution of (1.34) is sought as follows

g0 =3 {—ZmH Y’ akc(k_ll(z) } (1.352)

)
(k—1)
@(“(z)i)t{alblwx bkC(k ()Z‘)} (1.35b)
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=22 =3 { Yy’ ckzk} : (1.35¢)

k=1
0V (;) =R { Y’ dkzk} , (1.35d)
k=1

where ay, by, ¢, and dy are real and undetermined coefficients, ®{z} and 3{z} are,
respectively, the real and imaginary part of the complex number z, and {(z) is the
quasi-periodic Weierstrass Zeta function; whereas § (k) (z) denotes the k-th derivative
of periods @; and w,. The superscript “o” indicates that the summation is carried out
only over the odd indices. = (7) is an even function of 0, with z = Re'®, and O is
an odd function of 6.

The expressions for the undetermined constants §, can be obtained from the
quasi-periodicity of {(z)

(24 0n) = {(2) = ba, (1.36)

where 5, _2c (%)

and Legendre’s relation is fulfilled (see, for instance Lang, 1993).
The Laurent expansion about the origin for Z(1) and 1) can be written as

o

20z =3 {ZO az ' =Y’ akZOknkzz’} ; (1.37a)
i= i=1

k=1
0 (z) =R { Y bz =YY’ kn,ilzl} : (1.37b)
I=1 k=1 =1
with
() 01 (k+1-1)!
7111257 71{1:51» lezznliz:Tl!SkH for k,1#1,

(1.38)

and the lattices sum Sy, is defined by
Ser = Y (moy +nan) k4 1>3, (1.39)

m,n

where the prime on the summation means that it excludes the term m = n = 0. Now
we use contact conditions (1.34c)—(1.34f) to derive the following relations between
the undetermined coefficients

Rlej=— (R_lal +Y7 knklRlak> : (1.40a)
k=1
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R'dy=R"'b; =Y "kn,R'by, (1.40b)
k=1

ARy = (p1)+ p® ) R e - [p]](): kR ak> +[s ]](R’b,—Z”kn,Q,R’bk>,
=1 k=1

(1.40c)

B8Ry = 5] <Rfa,+yknk,m) ~ (0 +®) B0 1] (z knklzefbk),
k=1 k=1

(1.40d)

for/ =1,3,5,... Note that the coefficients a; and by from (1.40c) and (1.40d) are
solutions of an infinite system of linear algebraic equations.

In order to solve the system (1.40), it is convenient to introduce the following
change of variables

=VIR-la;, by=VIR-Ib;, &=VIRlc;, dy=+IRld;. (1.41)

Thus, now we can write (1.40) as

(I—I-W)%l =03, (1.42a)

(1—-W"U, =Yy, (1.42b)

O+ 0By + o) WU + 93 W'D, =T, (1.420)

oV, + o)W, + oW, + oD W', = i, (1.42d)

where [ is the identity matrix, and the components W and W' for k = [ = 1 are

1)

wn = 2R, why = R, (1.43)
() w

and, otherwise,
(k+1—1)! R

k+l
(= D= 1! Vi
So, both W and W' are real, symmetric and bounded; then we can use classical results
from the theory of infinite systems (Kantorovich and Krylov, 1964). Furthermore,

Wkl = W;d = (1.44)

~ o~ o~ = T
U = (a1,ds,ds,...)" 0 = (b1,b3,bs,...) (1.45)
Vs = (61,63,05,...)" Uy = (d,ds,ds,...)" . (1.46)

and all components of V) and V, are zero except the first ones, which are equal to
Ry, and Ry/, respectively, in L3, and to —Ry,, and —Ry; in L'

[Pl L (147)

Xp =50 1 po X =0 )
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/ [5] [1]
FOEcL (1.48)

Xp = X=Tm e

(8)

Moreover, matrices ®(%), of components ¢z, are non-symmetric matrices and can
be defined as

1 —/ /
o) = [ ;/ f‘ﬂ} , o2 — { x;/ 7}‘(1’] (1.49)
At T Ar At

Note that the knowledge of *J; and U is enough to solve the system (1.42). Equations
(1.42c¢) and (1.42d) can be transformed into

01101+ 012V, + WG, =V, (1.50a)
02101 + 00V + W'y = Vs, (1.50b)
or, in matrix form
0, W O PUR R
o[z +[ow] =)= W] (50

where the O denotes the null matrix and, in L>, only the first component of V; is
nonzero, and equal to R; and in L, only the first component of V, is nonzero, and
equal to —R. Besides, we have

=X+ X —Xp (14 21)

9

b [q;(z)}*‘ o) — Al

1 (L 2p) X0 = 2p2 (1.52)
A= XpXe + X
In order to solve the infinite system (1.50) it must be truncated as follows
HY =V, (1.53)

where U = (U1;,0;)" and V = (Vy;,Vs)T, for i = 1,3,...,2n9 — 1. The natural
number 7y denotes the truncation order.

The general form of the components of the principal matrix H = (h;;) of (1.53)
can be defined as follows:

hii = Q11 +wi,
foriodd{ h;jj =w;;, if jodd,
hiiv1 = @12,

1.54
hii = @ +w,_y;_4, (1.54)

. A / . .
forieven{ h;j = Wilyj—1s if j even,
hii-1 = @21,
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From system (1.53) the values of d; and b; can be obtained using the inverse matrix
method to solve systems; and then the values of a; and b; by reversing the change of
variables described in (1.41), resulting in the following formulae

a;j = RAU, bi = RA1\U, (1.55)

where 7 is the i-th row of H~!, which is the inverse matrix of H.

1.5.2 Effective Coefficients Related with the Local Problems L*
and L'

The nonzero effective coefficients which can be computed from the local problems
L?3 and L' are

€303 = Pyt <P5323§ - 5/9,213> ) (1.56)
—eiy3 = 5, + (S E+107) =5, + (pliH + 5T} ), (1.57)
Ky =t + (tIT} —s'1Y), (1.58)

where p, = clp(l) +czp(2), with ¢ + ¢, = 1 and ¢; = 7R /a.

After that, the application of Green’s theorem, the doubly periodicity of the local
functions and the conditions on X leads to the following expressions (see, for instance,
Sabina et al, 2001; Aguiar et al, 2013)

2
p3 = pV (1 + :a%3> ) (1.59)
2t 2mp(D)
—epy = s (1 +=0 b%3> =50 <1+ 7‘21) aj |, (1.60)
as as’
xyy =t (1 — Mbi) : (1.61)
a

where only the residues a; and by, of Z(1) and @) are relevant for computing such
effective coefficients. The superindices on a; and b; indicate the local problem which
is solved in order to use the formulas (1.55) fori = 1.

1.5.3 Local Problems L'3 and L? and Related Effective Coefficients

The study of the local problems L'3 and L? and the related effective coefficients
is very similar as above. Then only the main results will be summarized in this
subsection.
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The simultaneous formulation of these problems consists in to find the doubly
periodic functions Z () and ®(") such that:

AEW =0inY, (1.62a)

A0 =0inY,, (1.62b)

[E]=0o0nZX, (1.62¢)

[]=0onZ, (1.62d)

[[(pEﬁl — S/@ﬁz) ny+ (pEg —&—s/@,l) I’lz]] =Cnjonk, (1.62e)
[(sZ22—101)n1 — (SE1+102) 2] =Dnyon X, (1.62f)
(E) =0, (1.62¢)

(@) =0. (1.62h)

The solutions Z () (= 531 3 ) and @) (= @'3(") are Y-periodic harmonic func-
tions depending on z = y; + iy, with periods @; = 1 and @, = ai. The values of C
and D in the right hand side of equations (1.62¢) and (1.62f) for L' are — [p] and
[s'], respectively. For the local problem L!, these values are C = [s'] and D = [¢],
whereas Z(1) (= Tfm) and @) (= IT2),

According to the interface conditions (1.62¢) and (1.62f), the solution of (1.62) is
sought as

0 *=1)(2)
E(l)(z)zfﬁ{—sza + Y’ C}, (1.63a)
P M
) 2o, §E1(g)
0W(z) =3¢ —Lp 2 b2\ 1.63b
(2) { o 1Z+kg,1 =) ( )
=@ (z2) =R { i" ckzk} , (1.63¢)
k=1
0¥ (z)=3 { i dkzk} : (1.63d)
k=1

Furthermore, using similar ideas to those discussed previously, the following
formulae for the related effective coefficients can be obtained

27
ciany = plV (l—aaP), (1.64)
2D 2mpt)
€13 = *S,(l) (l + cl_s‘/(l)b}3> = Sl(l) (1 + ma% ) (165)

2
Ky = 1) (1 + ”b%) , (1.66)
a
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where a; and b; are also the residues of 2 and @),
Now, by using the change of variable (1.41) it is possible to arrive to the infinite
system to compute @; and by:

(I— M) =T, (1.67a)
(1+M)B, = —0s, (1.67b)
w0, + w0, + y@ M, + yIMs, =7, (1.67¢)
w0+ y)w, + v ms, + DM, =, (1.67d)

where the only difference to system (1.42) is that

8 0
myy = ERZ, mh, = @R% (1.68)
and, otherwise,
k+1-1)! RN+
mey = m, = ( St 1.69)
M= == D) ey (
Besides,
1 —x Xp =X
w(l) _ . P w2 — 1: P (1.70)
—x -1 Xt Xt
and, as above, we find the matrix ¥, which is given by
1 1 —yly ¥ (14
W {W)} p) _ 1| X2k xp ( /le) . (171)
A =2 (L4 2p) —Xp+ XpXi

Therefore, we can write the system in the following way

pag MO | (D | (W
v[a] (o] =)= [) am
where only the first components of V| and V, can be different from zero, and equal to
R. In the case of problem L3, the first component of Vj is the one that is nonzero; in
the case of problem L2, only the first component of V; is equal to R.

System (1.72) can be written in the form (1.53) with the particularity that the
components of the principal matrix H = (h;;) are defined by

hii = Y1 + myj,
foriodd{ h;jj =m;;, if jodd,
hii+1 = Y2,

1.73
hij =y +m_y;_, (1.73)
forieven ¢ hijj=mj_y; ;, if jeven,

hii—1 = Yhi,
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Finally, the corresponding values of a; and b; can be computed by using Egs.
(1.55), respectively.

1.5.4 On the Computation of the Local Fields from the Solutions of
the Local Problem L'

As we can note, the analytical solutions of the local problems are expressed in terms
of the local coordinates p and 6. However, to study the behavior of the local fields
(1.24) and (1.25) it is necessary to compute their derivatives with respect to the
Cartesian coordinates yg, and then the chain’s rule must be used

0 sin@ o 0 . d cos@ 0
—— =sinf—+ 5

o Vap Tp a8’ ay dp p 06

(1.74)

For instance, the solutions Z(V) (= E; 3(7)) and @) (= ©'3), of the local problem
L3, can be written as

2)‘!071 2}1()71 211071
EW(p,0)= Y apcos(18) — Y " ar Y knup' cos(16), (1.75a)
=1 k=1 =1
2n0—1 2]10—1 2n0—1
0 (p,0)=—Y"bp 'sin(16) — Y " b Y. kny,p' sin(10), (1.75b)
=1 k=1 =1
2n0—1
ED(p,0) =Y’ cxpFeos(k0), (1.75¢)
k=1
2”071
0¥ (p,0) = Y’ dip*sin(k6), (1.75d)
k=1

where the constants a;, b;,c; and d; (I = 1,3,...,2n9 — 1) can be obtained from the
solution of (1.67a)—(1.67d) for a truncation order rg.

As an example, we consider the following homogeneous boundary conditions:
&13 = 1 and &,, = 0, for the strain tensor components, and £, = 0 for the components
of electric field intensity vector. Then, Eqgs. (1.24) and (1.25) take the form

8@13
—2—.

& (y) = 8183 + 8381 +2eu,, (E1) E(y) = v

(1.76)

Finally, it is possible to compute the components of the local fields from the
solutions of the local problem L3 as follows
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8713 8713

e I el I 1.77

€13(y) + 7, &3 (y) 7, (L.77)
a@13 a®13

Eiy) =22 E() =-2 . 1.78

1(») 7 2 () 32 (1.78)

which can be computed by using the expressions (1.75) and the chain rule. A similar
procedure allows to obtain analytical expressions for the local fields related with the
solutions of the local problems L?3, L! and L.

1.6 Numerical Examples

Some examples are presented, which include comparisons between the analytical
results derived from the present model (PM) and those obtained with the fast Fourier
transform (FFT) numerical method (Moulinec and Suquet, 1998; Michel et al, 2001;
Brenner, 2009, 2010). For the case of a fiber-reinforced matrix, we have considered
the data previously used in Lopez-Lopez et al (2005). They correspond to a collagen
matrix with collagen-hydroxyapatite (HA) fibers. For the case of a porous piezoelec-
tric matrix, we have considered the data used in Aguiar et al (2013) corresponding to
bone material (Table 1.1).

In Figs. 1.2—-1.5, the evolution of the effective coefficients with the fiber volume
fraction c¢; is shown. The range of variation of ¢, goes from zero up to the percolation
limit when two neighboring fibers or holes get in contact. The results are normalized
by the properties of the matrix. In Fig. 1.2, a square periodic cell (a = 1) is considered
and the results from Lopez-Lopez et al (2005) are reproduced. In Figs. 1.4 and 1.5, a
rectangular periodic cell (for a = 2) is discussed. Finally, in Figs. 1.6 and 1.7, the
spatial distribution of the local fields is illustrated.

Table 1.1: Piezoelectric properties used for the computations (Lépez-Lopez et al,
2005; Aguiar et al, 2013). € denotes the permittivity of free-space.

Collagen HA

Longitudinal shear modulus p (GPa) 1.400 2.697

Shear strain piezoelectric coefficient d = s /p (pC/N) 0.062 0.041

Transverse permittivity constant ¢ /€p (no units) 2.825 2.509
Bone

Longitudinal shear modulus p (GPa) 8.2

Shear stress piezoelectric coefficient s (N/Vm) 2214 %1073

Transverse permittivity constant ¢ /€y (no units) 6.85
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Fig. 1.2: The elastic, piezoelectric and dielectric effective coefficients for a two-
phase fibrous piezocomposite with a square (¢ = 1) periodic distribution of fibres.
Comparisons of the results obtained with the present model (PM) with those de-
rived by the FFT

1.6.1 Square Array Distribution

In Fig. 1.2, numerical results are shown for a fiber reinforced material with square
periodic cell (a = 1). In this case the following equalities were numerically verified:
C1313 = C€2323> K11 = Ky and €513 = —e193. Then, for simplicity, p, t and s’ are used
to denote the effective elastic, dielectric permittivity and piezoelectric coefficients,
respectively. Also, d = s’ / p denotes the effective shear strain piezoelectric coefficient.
A truncation order ny = 2 is used for the computations with the present model.

A good agreement can be observed between the semi-analytical (PM) and the
numerical results (FFT). The curves corresponding to the present model reproduce
those published in Lopez-Lépez et al (2005).

The results shown in Fig. 1.3 correspond to a porous material and, as in Fig.
1.2, the periodic cell is square. Here, the equalities ¢33 = €303 = K| = K5, and
€713 = —e)»3 stand and were numerically verified. A good agreement between the
PM results and those from the numerical FFT method can be observed whatever the
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Fig. 1.3: The normalized elastic, piezoelectric and dielectric effective coefficients

for a piezocomposite with a square (a = 1) periodic distribution of cylindrical holes.
Comparisons between the results derived from the present model (PM) with those
derived from the Fast Fourier Transform numerical method (FFT)

fiber volume fraction. The results shown for the present model were obtained using a
truncation order ng = 5.

1.6.2 Rectangular Array Distribution

In Figs. 1.4 and 1.5, piezoelectric composites with a rectangular periodic distribution
of the fibers are examined for a = 2. In Fig. 1.4, a two-phase composite with an
orthotropic effective behavior is studied. In Fig. 1.5, a porous piezocomposite which
preserves the symmetry properties of the matrix is considered. In both figures, an
excellent agreement can be observed, for all the range of fiber area fractions, among
the analytical (PM) and numerical (FFT) results and for all the normalized effective
coefficients. Note that both models capture the expected global behavior for each
type of composite. The truncation order used for the computations with the present
model was ng = 4.
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Fig. 1.4: The normalized elastic, piezoelectric and dielectric effective coefficients
for a two-phase fibrous piezocomposite with a rectangular (@ = 2) periodic distri-
bution of fibres. Comparisons of the results derived from the present model (PM)
with those derived by the Fast Fourier Transform numerical method (FFT)

1.6.3 Spatial Distribution of Local Fields

The local fields defined by (1.24) and (1.25) depend on the solution of all local
problems. However, for specific homogeneous boundary conditions only one local
problem needs to be solved in order to compute the local fields. For instance, as
was shown above, the solutions of the local problem L3 are enough to compute
the local fields given by (1.77)—(1.78). In Figs. 1.6 and 1.7, the distribution of the
components €13 and Ej, for a truncation order ny = 7 is plotted. In both cases the
radius of the fiber is R = 0.35. A significant variation is predicted in the matrix at the
fiber-matrix interface normal to the x; and x, axis respectively, and almost uniform
fields are predicted within the fibers. The latter is an expected result. Let us consider,
for example, the Eq. (1.77): using Egs. (1.75¢) and (1.74) it yields

=13 2no—1

= en(y)=1+ ZO keyp* ! cos(k—1)8.
Iy =1

€13 (y) =14+ (1.79)
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Fig. 1.5: The normalized elastic, piezoelectric and dielectric effective coefficients
for a piezocomposite with a rectangular (a = 2) periodic distribution of cylindrical
holes. The results derived from the present model (PM) and those derived from the
Fast Fourier Transform numerical method (FFT) are compared

The sum in the right hand side of Eq. (1.79); can be easily majored by the sum
291y k-
o
k(= . 1.80
el (2) (1.80)

Hence, the aforementioned sum should have little to nil influence in the final value
of the field inside the fiber, since the value of ¢ for the given data set is very small.

The results shown in Fig. 1.6 were obtained using the formula (1.77) correspond-
ing to the solutions of the local problem L3, for homogeneous boundary conditions
of the type €,, = 81,83, and E,, = 0. This field is similar to that predicted via FFT,
as can be seen in Fig. 1.6, where the relative error between the computation using
Eq. (1.77) and the one using FFT is plotted, i.e. [PM — FFT| /PM. It can be seen that
in the matrix both methods coincide, while in the fiber they predict behaviors with
about a 20% difference. This difference can be explained by the little influence of the
sum in the right hand side of Eq. (1.79) in the actual value of the field inside the fiber.
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(a)

(b)

Fig. 1.6: (a) Component €3 of the local strain field within the fiber composite
with square arrangement for an axial shear strain load €13 = é3; = 1; (b) Absolute
error between the computation in (a) using the present model (1.77) and the FFT
numerical scheme
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The variation shown in Fig. 1.7 was computed for homogeneous boundary conditions
of the type é,, = 0 and E,, = 01 . Such conditions transform (1.24) and (1.25) into

oy oyl
€ =—-B g =13 1.81
13 () o1 23 (¥) 72 (1.81)
oIT! oIT!
EL() =14+ E(y)=—. 1.82
1 () o, 2(y) 72 (1.82)

Consequently, only the solutions of the problem L' are involved in (1.81). Notice that
again in Fig. 1.7 the relative error of the computations through the present method
and FFT was plotted and they show coincidence in the matrix, while the differences
inside the fiber are not greater than a 6%.

1.7 Concluding Remarks

Analytical formulae for the effective coefficients were obtained for binary fibrous
composites with 622 hexagonal piezoelectric components and a rectangular distri-
bution of the unidirectional circular fibers. These results contain as particular cases
those reported in Lopez-Lopez et al (2005) and Aguiar et al (2013) where only the
square periodic cell was considered. Analytical expressions to study the fluctua-
tions of the components of the local strain and the local electric field intensity are
explicitly given. For the binary and the porous piezoelectric materials, the present
model has been successfully compared to the results obtained with the FFT numerical
homogenization method (Brenner, 2009, 2010).
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Chapter 2

High-Frequency Spectra of SH Guided Waves in
Continuously Layered Plates

Vladimir I. Alshits and Jerzy P. Nowacki

Abstract The spectra of SH guided waves in an isotropic continuously layered plate
with arbitrary profile of the limiting slowness §(y) across the plate are explicitly
analyzed for high frequencies @ in the framework of "adiabatic" approximation.
Dispersion equations and their solutions are analytically found for free, clamped or
free-clamped faces of the plate. The positions of horizontal asymptotes for dispersion
branches are determined by extreme points y; of the dependence $(y) including also
inflection points and "linear" (non-extreme) min/max points. In the vicinity of all
asymptotic levels, apart from the upper one, spectra form specific ladder-like patterns.
Explicit asymptotics of dispersion curves are derived for a series of particular local
dependencies §(y) in the vicinity of points y;.

2.1 Introduction

The subject of this paper, dedicated to G.A. Maugin, belongs to a circle of his interests
and closely associates with his results. We mean an analytical explicit theory of SH
waves in an elastic inhomogeneous plate. Thirty five years ago he published the
well known paper (Maugin, 1983) about properties of SH waves in solids. In this
paper and in the previous publication (Bakirtas and Maugin, 1982) the influence of
continuous inhomogeneity on the dispersion of SH waves was numerically studied.
Fifteen years ago he participated in the study (Alshits et al, 2003) of high-frequency
spectra of guided waves in a homogeneous elastic plate of arbitrary anisotropy where
the intermediate asymptotes in spectra with a non-trivial ladder-like behaviour of
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dispersion branches were first time analytically described. Then the general theory
(Alshits and Maugin, 2005, 2008) of acoustic waves in arbitrary anisotropic layered
plate was developed (see also Baron et al, 2003; Shuvalov et al, 2004, 2005). In
the theory (Alshits and Maugin, 2005, 2008) ladder-like patterns again appeared in
spectra of piece-wise homogeneous and continuously layered plates. In both cases
the detailed predictions were given of number and positions of the asymptotes in
spectra and of the character of approaching these asymptotes by the dispersion
branches when the frequency @ increases. The analytical theory for stratified plates
was rigorously formulated in terms of the propagator matrix. And the description of
graded media was based on a semi-intuitive approach. In accordance with the latter
consideration, asymptotic levels in such spectra must occur in all extreme points
of the slowness profile §(y) across the continuously layered plate (of minimum,
maximum and inflection type) and in non-extreme min/max points at the surfaces.
The predictions of this theory were in agreement with previously obtained numerical
data (Baron et al, 2003).

The further corroboration was given by Shuvalov et al (2008), who basing on the
WKB method obtained the same asymptotic dependencies in the cases of extreme
maximums for a monoclinic graded plate. They did not consider "linear" points, mini-
mums or inflection points, but just noticed that they could hardly course "a prominent
falloff of dispersion" in spectra not being "markedly flat". Such doubts contradicting
to Alshits and Maugin (2005, 2008) sound reasonable and need checking.

In this paper we shall reconsider predictions of Alshits and Maugin (2005, 2008)
including linear min/max points at the faces, as well as minimums and inflections of
the slowness profile §(y). We shall use the adiabatic approximation for the propagator
matrix. This approach introduced by Alshits and Kirchner (1995) is similar to the
WKB method but seems to be more convenient for us being well adjusted to the
propagator theory. We shall consider a purely isotropic plate with arbitrary transverse
inhomogeneity. This will transform the 6D theory of Alshits and Maugin (2005)
into a 2D formalism admitting explicit calculations. It will be even easier than the
remarkably simple monoclinic 2D theory (Shuvalov et al, 2008). On the other hand,
the presented in Shuvalov et al (2008) positive testing of results of WKB method by
comparing them with exact computing will allow us to limit our analysis to adiabatic
approximation.

2.2 Statement of the Problem and Main Equations

Consider the layered elastic plate of the thickness d with the faces parallel to the
layers. The material constants involved into the analysis, the shear modulus u and the
density p, are supposed to be arbitrary continuous functions of the coordinate y along
the normal n to the faces. The latter are intersected by this axisaty=0and y =d
(Fig. 2.1). The sagittal plane of wave propagation is xy, and the propagation direction
is x. Certainly the theory is equally applicable to a layered hexagonal plate with the
sagittal plane parallel to the plane of transverse isotropy. In this case 1t = caa(y).
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Fig. 2.1 The continuously y
layered plate with the surfaces d
parallel to the layers in the
Cartesian coordinate system.

d P(), 1u(y) 4

>

In such plate an SH wave field is characterized by the displacement (u) and
traction (on) vectors which are both directed along z and can be described by the
scalar steady-state fields

u(x,y,t) = A(y) explik(x — vt)], 2.1

o(x,y,t) = —ikL(y) exp[ik(x — vt)], (2.2)

where k is the wave number, v = @/k is the tracing speed and @ is the wave frequency.
Let us form the two-component vector function

A(y)
n= ( ) . (2.3)
L(y)
In the considered case the standard 6D equation of Stroh (1962) acquires the 2D
form

d N
d—'y’ — ikisy (y)n. 2.4)

where Ny is the 2 x 2 analog of the Stroh matrix:

. 0 1/u
Ney = — s . (2.5)
pu o

Here
P =(8/s)" =1, 2.6)

with s = v~ for the slowness of the wave and §(y) for the limiting slowness profile
of the plate:

F=p)/nb), 2.7)

which is supposed to be a known function.
The eigenvectors (&) ») and eigenvalues (p; ») of the Ngy matrix are equal (Alshits
et al, 2005)

; “1)2 “1)2
él<y>—ﬂ<£‘zz)p)l/2>7 @(y)—\}Z((:f;)l/z), pab)=4p. 28
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2.3 The Propagator Matrix and Its Adiabatic Approximation

Thus, we should solve Eq. (2.4) and then from boundary conditions find the dispersion
branches s;(®), [ = 1,2.... The solution of (2.4) is conveniently expressed in the
form (Alshits and Maugin, 2005, 2008)

n(y) =Ww¥[0)n(0), (2.9)

where W) is the propagator matrix which in analogy with Alshits and Maugin
(2005); Alshits and Kirchner (1995) may be presented in the form

,
)(+10) = Ordexplik [ Risu (/). (2.10)
0

The Ord operator means the definite order of non—commuting matrices Ngy in
the products NSH( s (y") ... Nsgr (5") (with y/ > y" > . y" for y > 0 and
Yy < ¥y <...<y"” for y <0) in integrands of multiple 1ntegrals arising after
expansion of the exponentlal operator in (2.10).

Such solutions of equations similar (2.4) are widely used in quantum mechanics
with time-dependent Hamiltonian (Landau and Lifshitz, 1991), in mathematics (Gant-
macher, 1989; Shilov, 1996) and in mechanics of inhomogeneous media (Nayfeh,
1995). In our paper we are interested by only high-frequency region of the acoustic
spectrum, i.e. we need the asymptotic representation of the matrix W *) at large k.
The proper analytical representation known as adiabatic approximation has the form
(Alshits and Kirchner, 1995)

W (v10) ~ Zéka )@ TEq(0), @.11)
where
y
Saly) = Ea)ewlibPa] . Pul) =y [pal)dys @12
0
v (01
T=<10). (2.13)

It is easily checked that this approximate solution satisfies Eq. (2.4) at large k.
Substituting (2.12) into (2.4) one obtains the criterion for this satisfaction:

1Ea ()| < klp()&a(y)] - (2.14)

Thus the approximation is the better, the larger k and the less inhomogeneity of the
material. However, inequality (2.14) is not the only limitation on the applicability of
representation (2.11). Apart from differential equation (2.4), the solution should also
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satisfy some known criteria (Alshits and Kirchner, 1995) for the propagator matrix.
For instance, as is seen from (2.10) the identity must be valid

WO 10)]" =W (5)0) . 2.15)

This relation is satisfied by (2.11) only when the averaged factors p; , (2.12); are
either real, or imaginary (in the second case the two terms in sum (2.1 1) are complex
conjugate). However, as follows from (2.6), (2.8) and (2.12),, the factors p; , might
be also generally complex at some regions of slowness s. This difficulty may be
overcome basing on the main propagator property

WO (y3]y1) = WO (3]y2) WO (ya]y1 ) - (2.16)

At any s one can always divide the interval [0,y] on several subintervals [0,y],
[V1,¥2]---,[yv,y], in which the parameters p; > (2.6) (and consequently 7, ,) are
either real, or purely imaginary. Then, with (2.16), one can present the asyniptotic
formula as the matrix product

WO 310) = W 5lyn) ... WE 3oy )W (31]0) 2.17)

where all matrices on the right-hand side are given by (2.11)-(2.13). Of course, with
changing the slowness s the positions y; of the division points and their number N
may vary (Fig. 2.2).

Substitution of (2.8) into (2.11), (2.12) determines the matrices W([f )in (2.17):

a

- (@) Vu/Yercos(ol) —(i/ /%) sin(ol)
Waa i1lyr) = . (2.18)

—i/YiYr1sin(@l;)  ~/Yi41/Yicos(@l;)

S
L
§ °L v
A
i 4‘""""""""""{‘ II
- ~ y
Fig. 2.2 Profile §(y) of the S, N };
limiting slowness of the plate / ’\/ §( y) A3/ v,
material with five min/max k. A 4
and inflection points (/, 2, ..., 3 --2--- g--- ---\ -------- f “IV1
5) determining asymptotic § < H H H
levels §1,82,...,85 in the SH 2 feeee- F D " i A
wave spectrum. The regions $§ : ! :
I;, IL, 11T and IV; of slowness 1 E E E A
s relate to different numbers ! () (D1 3) I
. S A Yooy
of zeros of the function p(y) ! ' ' v
(e.g. in the regions IV  there 0 i) Y, V3 d
are three such zeros: y;,y, and y—>

¥3)-
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Here k = ws is put with replacing the superscript (k) — (®) and the notations

YVi+1
Y=Y =u0)p0On), II(S)EI)WIH:/dy [$(y)]* —s2 (2.19)
i

are introduced. In these terms we shall imply below that yo =0 and yy4+1 =d.

It is easily checked that (2.18) satisfies identity (2.15) for both real and imaginary
parameter p(y;) = I;/s (2.12),. And still, there remains one more trouble in solution
(2.17)-(2.19): all the division points y1,y2,...,yy exactly correspond to the limiting
slowness s = § for which p = 0 (2.6) and the corresponding parameters ¥, 7>, ..., v
vanish. In view of (2.18), this leads to singularities in all matrices of product (2.17).
In order to exclude these singularities, let us introduce in the vicinity of each internal
division point y; the two additional points yli = y; + € where € is chosen so, that
€k < 1. Basing on (2.18) one can prove that for small enough € the matrix products

W;;‘)) O |yl)W;§)) (v1ly;) forany I =1,2,...,N can be made arbitrarily close to the
identity matrix [ with corrections linear in € . Thus, (2.17) is reduced to the form

W 510) = lim (W G O3 i) - W 03 WS 67100} 2.20)

which does not contain singularities. Indeed, the small parameters }/li oc € present in
(2.20) only in the combination 7,/ y;“ with the following limiting behaviour:

lim {y, /y;"} =isgn{s'(m)} . (2.21)

e—0

2.4 Boundary Problems and Their General Solutions

As shown by Shuvalov et al (2008), the dispersion equations for SH waves in
inhomogeneous plates are directly formulated in terms of scalar elements of the
propagator
W W,
W@ (d]0) = : (2.22)
Wz Wy

It allows a convenient description of the boundary problems for the plate surfaces
which are both free (f/f), both clamped (c/c), the lower face free - the upper face
clamped (f/c) and the lower face clamped - the upper face free (c/f):

Ws =0 (f/f), Wo =0 (c/c), Wy =0 (f/c), Wy =0 (c/f) . (2.23)
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2.4.1 Spectral Regions Without Division Points

2.4.1.1 The Range s < min{3(y)}(I; in Fig. 2.2)

In this case Eq. (2.6) gives real p(y) in any layer of the plate which means that there
are no division points in the region 0 <y < d and the propagator matrix is directly
determined by (2.18):

. . V W/ Yacos(@loa) —(i/\/W7a) sin(@loa)
W@ (d)0) = W' (d)0) = . (2.24)

—iv/%Y4 sin(a)lgd) \/ ’)/d/’}/()COS((DI()d)
Then, by (2.22), (2.23), in this range one has the dispersion equations
sin(@wlyy) =0 (f/fand c/c), cos(wlyy) =0 (f/c and c/f) . (2.25)

With (2.25), asymptotics for inverse dispersion branches w(s;) (I = 1,2,...) are
given by

(f/fandc/c), o(s)= n(l—3%)

= o) (f/c and ¢ /f) . (2.26)

ml
osi) = Toa(s1)

2.4.1.2 The Range s > max{3§(y) } (1, in Fig. 2.2)

In this range the parameter p(y) (2.6) is purely imaginary throughout the plate.
Again there are no division points. And the propagator is given by the replacement
log — i|10d| in (2.24):

V' 10/ Yacosh(@|loa|) (1/1/107a) sinh(@|loa|)
W@ (4)0) = . (2.27)

VIovasinh(@|log|)  \/Ya/ Yo cosh(®|loa|)

No elements of this matrix can vanish which means that az s > max{$(y)} there are
no dispersion branches for SH waves.

2.4.2 Spectral Regions with one Division Point

In the intermediate range min{$(y)} < s < max{§(y)} there must be regions for y
where p(y) (2.6) takes either real or imaginary values. We start from the situation
when the equation $(y) = s has only one solution y = a dividing the plate thickness
into two parts: 0 <y < a and a < y < d. In this case the short wavelength asymptotics
of the propagator matrix has the form
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W) (d]0) = tim {W;;” (d|a* )W ©) (a*\o)} (2.28)

With appropriate expressions from (2.18) for matrices W;;O ) in (2.28) the further
analysis depends on the sign of the derivative §'(a).

2.4.2.1 The Case §'(a) > 0 (the Range II in Fig. 2.2)

In this case the parameters Yy and [y, are imaginary and the parameters y; and 4
are real, and the propagator matrix acquires the form

. T 1 . T
——sin(Wlyg+ —) —F—=sin(Wlyg + —
A exp(@[Ioa|) \/; (@ha+7) NG (@l +7)
W(w)(d|0):PT Y )
l
\/%COS(wlad +=) Wcos(wlad +2)
4 70 4
(2.29)

Here we used (2.21) and the high frequency approximation for hyperbolic functions

. 1
sinh(®|ly,|) = cosh(w|ly,|) = Eexp((o|loa|). (2.30)

Found expression (2.29) gives dispersion equations for all boundary problems (2.23):

cos(a)Iud—&—g):O(f/fandc/f); sin(wlad—l—g):O(c/candf/c). (2.31)

Solving these equations gives the inverse dispersion branches @(s;)(I =1,2,...):

0= 21+ 1) /() (E/Fand /)
§'(a)>0. (2.32)

o=n(l— %) Jlaa(s)) (c/c and £/c)

2.4.2.2 The Case §'(a) <0

This time, vice versa, the parameters 7y, and y; are imaginary and the parameters
Y% and Iy, are real. Accordingly, Egs. (2.29) and (2.31) should be transformed by
replacing there ¥ <> Y and I,y <> Io,. And the inverse dispersion branches @ (s;) (I =
1,2,...) are

o=r(l+ %)/IOa(sl)(f/f and c¢/f)
§(a)<0. (2.33)

o=n(l— %) Jloa(s1) (/< and £/c)
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2.4.3 Spectral Regions with two Division Points

Let us suppose that the equation §(y) = s has two roots: yj =a and y = b > a. In
this case the propagator is the product of three submatrices:

W® dj0) =W @pH W b 1a WS (@ 0). (2.34)

Matrix product (2.34) leads to different dispersion equations for two types of sign
combinations of derivatives §'(a) and §'(b) which will be considered separately.

2.4.3.1 The Case §'(a) > 0,5 (b) <0

Now the parameter p(y) (2.6) is imaginary in the intervals (0,a) and (b,d), being
real in the interval (a,b). Equations (2.34) and (2.18) give

V0 Ya 1/ Ya

A 1
W (d]0) = 5 exple(oa] + [Tpa]) cos(el) @239)
VI /T

Thus, all boundary problems f/f, c/c, f/c and c/f are reduced to one equation
cos(wl,,) =0 (2.36)

and the inverse branches w(s;), [ = 1,2, ... are in this case also universal:

1
o=rnr(l— E)/Iab(sl) : (2.37)

2.4.3.2 The Case §'(a) < 0,5 (b) > 0 (the Range III in Fig. 2.2)

Now parameter p(y) (2.6) is real in the intervals (0,a) and (b,d), being imaginary in
the interval (a,b). So, the propagator matrix acquires the form

WK (d)0) = exp(@|lp]) x

T T —i T T
1/%cos(aﬂo‘ﬂrZ)sin((ulder—) : sin(@ly, + —) sin(@lpg + —)
d

47 /1% 4 4
T T T T
i/ Yacos(wly, + =) cos(®lpy + =) Y sin(@lpg + =) cos(@lpy + =)
4 2\ 4 4
(2.38)

From here we obtain the following dispersion equations (2.23):
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T T
f/f: cos(wly,+ —) =0, cos(@lpy + Z) =0;

4
. T . T
c/c: sin(wlp,+ =) =0, sin(0lyy+—) =0;
4 4
- T (2.39)
f/c:  cos(wly, + Z) =0, sin(@lpy + Z) =0;

T
0, cos(wlpy+ =) =0.

T
c/f: sin(wl, + )

2)
Each of them describes a couple of branch series, s,,(®) and s,(®). They are num-
bered separately (m,n=1,2,...). As before, we present the inverse functions:

(/8 0= almt ) loalsn), ©=(n+ ) /(o)

c/c: o=n(m-— %)/IOH(sm), o=mn(n— %)/Ibd(s,,);
(2.40)

fe: @=n(m+ )/ lolsn), ©= (1= ) /lhalsn);

c/f: o=mn(m— %)/IOH(sm), 0=n(n+ %)/Ibd(s,,).

Until now for each boundary condition we obtained only one series of branches.
In (2.40) we have a couple of branch series for each boundary problem which
are independent and admit multiple intersections which are generally forbidden
(Alshits et al, 2003; Alshits and Maugin, 2005, 2008; Shuvalov et al, 2008). In fact,
these intersections arise due to our asymptotic approximation (2.30) which excludes
very weak branch repulsion. Exact calculations would eliminate such degeneracies.
However the higher is frequency the less is size of the repulsion region. Often in
order to visualize this region one should greatly scale up the picture. This effect is
one of reasons for formation of terracing patterns in spectra (Alshits et al, 2003;
Shuvalov et al, 2008).

2.4.4 Extension for an Arbitrary Number of Division Points

2.4.4.1 An Odd Number of Division Points N =2n—1 (n > 1)

As before, the results of an analysis depend on the sign of the derivative §(y). If
§'(y1) > 0 the parameters I, (2.19) are purely imaginary when their numbers are
even (m = 2I), being real for odd numbers (m = 2/ — 1). The propagator matrix in
this case takes the form
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1 n—1 n—1
w)(d|0) = \ﬁexp |f1);) |121] II:IICOS((DIZI,QX

[N . T 1 . T
—sin(wly + — - sin(wly + — 2.41
iV ( N 4 ) \/m ( N 4 ) ( )
ViYoYacos(@ly + g) \/ % cos(wly + Z)
The corresponding dispersion equations (2.23) are
12} cos(@hy 1) = 0, cos(@ly + %) =0 (f/f, c/f);
(2.42)

T
n~Lcos(why—1) =0, sin(@ly + Z) =0 (c/c, f/c).
So, for each boundary problem we obtain the n sets of inverse dispersion branches:

1
o=n(m—=)/bi—1(sm),m=1,2,....1=1,....n—1, n>1;

f/f, c/f: 2 .
o =mn(m+ Z)/IN(S'”)’ m=1,2,...;
(2.43)
1
w:n(m—i)/ly,l(sm), m=12,....1=1,....n—1,n>1;
c/e, f/c: .
o0 =mn(m-— Z)/IN(Sm)’ m=12,....
(2.44)
If §'(y1) < 0, the set I, is real and Ip;_; is imaginary. Thus we obtain
1 n—1
9 (d|0) = —exp wz 1= Hcos o) x
V2 =
(2.45)

T
sin(wly + — )

%
— cos(wly +
\ % ( 4) ViYYa
- | Va
V4 wly+ — )
10 cos(@ly + 4) l')/O sin(@ly + 4)
Again for each boundary problem (2.23) there occur 7 sets of inverse branches
1
ﬂ —_ =
=) =1l

= —_—, =
f/f, f/c: Ly (sm)
= 7r(m—|—£)/]o(sm), m=1,2,...;

(2.46)



38 Vladimir I. Alshits and Jerzy P. Nowacki

_am—-3) _ .
0="""2 12 l=1,..n—1,n>1;
c/c, c/f: bLy(sm) (2.47)
o=n(m—1)/Io(sm), m=1,2,....

Found solutions (2.43), (2.44) and (2.46), (2.47) are valid for odd numbers N of
division points starting from N = 3 and extend above solutions (2.32), (2.33) valid
for N = 1.

2.4.4.2 An Even Number of Division Points N =2n (n > 1)

In the case §'(y1) > 0 one obtains

Y
1 U n = 1/\/WYa
(@) (4]0) = 5 €xp [wz 12,|] [Jcos(wn—) V % . (2.48)
= = VI0Ya N Yal Yo

The n sets of dispersion equations are common for all four boundary problems

lﬁlcos(a)ly,]) =0 (f/f, c/c, f/c, c/f) (2.49)

which are solved by

w(m—3)
b1 (Sm) ’

The found general solution describes also the case n = 1 and coincides with (2.37).
For §'(y1) < 0 the propagator matrix is more bulky than (2.43):

0= m=12,...1=1,...n,n>1. (2.50)

V®)(d|0) = exp

n n—1
[0} Z |11 ] HCOS((J)IZI) X

=1 =1
n

v —cos(@ly+ = y) ) sin(@ly + %) sm(a)Io +— ) sin(oly + g)
iv/YoYacos(wly+ E) cos(wly + E) E sin(wlp + *) cos(wly + E)
4 2\ 4 4
2.51)

This time we obtain n+ 1 sets of dispersion branches different for all boundary
conditions:
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_”(m—j) B _ .
= ,ym=12,....1l=1,....n—1,n>1;
Ly(sm)
f/f: o=n(m+- )/Io(sm) m=12,...; (2.52)

o=mn(m+ Z)/IN(S’”)’ m=12 ...

_n(m—%) B B .
0="""2) 12 =1,..n—1,n>1;
Ly (sm)
1
c/e: 0= n(m—z)/lo(sm), m=1,2,...; (2.53)

1
ﬂ —_— =
o= D) i alast
Dy (sm)
1
f/c: ® = m(m+ ) /Io(sm), m=12,... (2.54)
1
61):7r(m—1)/11\/(s,,,)7 m=1,2,...;
1
7[: —_ =
o="U""2) o =i las1:
Ly (sm)
1
c/f: ® = x(m—7)/To(sn), m=1,2,... (2.55)

1
o=mn(m+ Z)/IN(sm), m=12,....

These equations are valid for N > 4. They extend sets (2.42) of branches for the case
N=2.

2.5 The Low-Slowness Approximation and the Cut-Off
Frequencies

Below we shall study the found spectra in the vicinity of some levels of the slowness
where the branches s;(®) manifest some specific features. We start from the range of
low slowness s < min{$(y)}. In this limit the spectrum is easily found from (2.26)

with
1
Toa(sy) /dy ) — 7 ~d<§ 2s12§1>, (2.56)
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where the notations are introduced

d d

_ 1 — 1 _

f= g favs), 5= [ ). (2.57)
0 0

Combining (2.26) with (2.56) one readily obtains the spectrum. In particular, for the
f/f boundary condition we have

28 o)
si(@) ~ = ( - w) , (2.58)
where a)lo are the so-called cut-off frequencies,
o) =nl/sd 1=1.2,.... (2.59)

Each branch s;(w) exists only for frequencies @ exceeding its own cut-off frequency
? for which 5;(@)’) = 0. As is seen from (2.58), the derivative ds;/d® at ® — )
tends to infinity which means that the branches s;(®) come out the cut-off frequencies
a)lo with vertical slopes.

A similar approximate description of this part of the spectrum was earlier pre-
sented by Shuvalov et al (2008) in somewhat more general statement. It was shown
that Egs. (2.58), (2.59) are in quite good fit with an exact computer spectrum in
the vicinity of cut-off frequencies exceeding 10 rad/us. Indeed, in this range of
the spectrum we have the small slowness, sl2 < §%(y), and accordingly the large
parameter p = §(y)/s; (2.6). Then the criterion (2.14) reduces to the inequality

()" _ (p/3)
0> e = 2p (2.60)

which is satisfied for the example considered in Shuvalov et al (2008) (see Fig. 3 in
those paper).

2.6 Example of Inhomogeneity Admitting an Explicit Analysis
Let us consider the example of slowness profile §(y) shown in Fig. 2.3:

5() :fo,/1+6§ 2.61)

which can be explicitly analyzed basing on the above theoretical approach. As was
shown in Subsects. 2.4.1 and 2.4.2, the spectral regions s < §y = min{§(y)} and
§o < s < §n = max{§(y)} should be considered separately.
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Fig. 2.3 Schematic plot of the 3
function §(y) (2.61). §

U

0 y/d—> 1

2.6.1 The Region 0 < s < §

In this range the inverse branches @(s;) are given by (2.26) with

2d » 3/2 R 3/2
Ipg = @ {(s,zn — slz) — (s% — slz) } . (2.62)

For instance, for the f/f boundary problem one has

37ls36 832wy,
®= @ 22 (2 232 1468 —s2/82)3? 27\3/27
2a{ (- = (F-"} (+8-5/5)" - (1-5}/5)
(2.63)
where 3
0

2.6.1.1 The Cut-Off Frequencies of the Spectrum

Each of branches s;(®) exists only for frequencies @ exceeding the cut-off frequency
a)l0 for which sl(a)lo) = 0. Substituting into (2.63) s; = 0 one finds the spectrum of
cut-off frequencies

O 3m§s Awd/? 2.65)
C2d($3,-8)  (1+8)32-1" '

o) =140, A’

As is seen from (2.63), at the points s; = 0 the derivative d®/ds; vanishes which
means that the branches s;(®) come out the cut-off frequencies a)lo with vertical
slopes (Fig. 2.4). This part of the spectrum related to the range s; < §p has the form

B iy 11
si(o) = \/d(m_l) <w[0 w) . (2.66)
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@/Ad®
Fig. 2.4: The spectrum of the plate with slowness profile (2.61) for 6 = 1. Solid

lines relate to branches s;(®). Dashed lines bound the forbidden band. Dotted lines
indicate the levels s = § and s = §yv/2.

At small inhomogeneity § < 1 this expression as well as the interval A®° between
the cut-off frequencies become independent of §:

2rlsy (1 1 0o T
W)= —_——— AW’ ~ . 2.67
S]( ) \/ d (wl() 0)> 9 f()d ( )

2.6.1.2 Spectrum just Under the Level s; = §

Consider now the narrow band of the spectrum, As; = §y — s; < o, just below the
level s; = §y. Here one should be careful because the upper limit of this band s; = §j
relates to a singular level of the spectrum where the eigenvectors &; » (2.8) diverge
due to vanishing of p (2.6). In the vicinity of this level the solution (2.63) satisfies
the criterion (2.14) of applicability of the adiabatic approximation if

2
556

D> —s—5—77 -
2d(82— 2"

(2.68)

Thus for large enough frequency @ Eq. (2.63) describes the spectrum as close to
the singular level s; = §p as we need. Let us choose the arbitrarily narrow forbidden
gap of the width As < §y under the level s; = §y and estimate the lower bound [
of spectrum branch numbers, [ > [y, for which our approximation (2.68) works at
s; = 8o — As and consequently throughout the region As < §p — 57 < $p.
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The frequencies a)l” where the dispersion lines intersect the bound,
si(@) = 8o — As,
are found from (2.63):

N 3nd N
T 2d80(8+2As/30)3%

ol =1A0”, Ao’ A . (2.69)
Here we supposed for simplicity that As < 90 /3. In this approximation the found
frequencies (2.69) are very close to the set (2.64) related to intersections with the
singular level s5; = §y. Combining (2.69) with criterion (2.68) taken at s; = §y — As
one obtains
(508/As)*3
6nv2
i.e. lp =5 when As/§y = 0.048. Thus, the width As? of the forbidden zone, where
our adiabatic approach fails, depends on / and converges o< [ —2/3 (Fig. 2.4):

>y = (2.70)

AsS R 271

For the considered interval As? < As; < 8o Eq. (2.63) takes the form

245 \*?  [245\* @
14+ — - = =—. 2.72
< + §05 > §05 (0] ( )
In the region As? < As; < $p0 this equation is solved by
. STm
sl(w)mo{l—S[w’—l” : 2.73)

It follows from (2.73) that slopes of the branches s;(®) in points a)lb of their inter-
section with the level s; = §y — As? decrease with growing branch number as 1/1:

§00

: 2.74
30, (2.74)

S?(a)) ‘wl%

2.6.2 The Region 5y < s < §y,

In this spectral interval we meet the situation described in the Sect. 2.4.2.1. The
inverse spectrum now is described by equation (2.32) with

2od , R
laa(s1) = 5 (5= $D)Y2 - 2.75)
0
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For the f/f boundary condition the resulting spectrum is given by

st(@) = 4 — 538 (@) w)/? (2.76)
where

1
(0] :CO[+1/4:A(D(Z+ 4> . (2.77)

As we shall see, the shift of the frequency (I — [+ %) in (2.77) as compared with
(2.64) plays a key role in the spectrum pattern in the vicinity of the level s; = §p.

2.6.2.1 Spectrum just Over the Level 5s; = §

We start from the narrow region As? < s;1— 8o < $o just over the level s = 5. Here

one obtains from (2.76)
~ N\ 2/3
wy
11— — . 2.

This is a continuation of branch (2.73) through the forbidden zone |s; — §o| < As?.
Certainly, for large / its upper side is practically symmetrical to the lower one. If to
forget for a moment about this zone, the points of intersections of lines (2.73) and
(2.78) with the level s = §; are shifted on the distance @ — & = 1A® (Fig. 2.4).

It is essential that the slope of curve (2.78) in the point @ practically coincides
(for large [) with the slope (2.74) of the other curve:

Sl(a))%.fo{l—Fz

sj(0) |~ ;O—(g . (2.79)
Thus, the interpolation line through the gap between curves (2.73) and (2.78) must
contain an inflection point. With growing / and respective converging the gap, these
imaginary fragments of the spectrum should tend to a horizontal line along the
discussed level s; = §y. Unfortunately, such tendency is concealed by the other
tendency: with increasing [ the slopes of all branches on both sides of the expected
asymptote also decrease o< 1// and remain identical (compare (2.74) and (2.79)).
Therefore it would be difficult to notice manifestations of discussed anomaly in real

spectra. This is evident from Fig. 2.4.

2.6.2.2 Spectrum Under the Asymptote s = $,

Dispersion branches s;(®) (2.76) never exceed the upper asymptotic level s = §,,
(Fig. 2.4). In the vicinity of this level (s, — s; < §,,) one obtains
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. s (I)l 2/3
S[(CO) Nsm{l_2(1—|—5) ((;_)) . (280)

We stress that asymptotic tending s; — §,, is accompanied by approaching the lower
limit (@) of the integral 1,4 to the upper one (d). This relates to convergence of the
region admitting the propagation of bulk SH waves, i.e. to channelling of the wave
field in the vicinity of the upper face of the plate.

Note in passing that approaching the curve s;(®) (2.80) to the asymptote s = §,,
at growing frequency, §,, — §; o< 23 coincides with the prediction (Alshits and
Maugin, 2005, 2008) based on completely different consideration.

2.7 Levels Related to Extreme Points on the Slowness Profile

In this section we shall study behaviour of dispersion branches in the vicinity of
levels associated with extreme points of the slowness profile. Here we shall return
to the scheme of the function §(y) shown in Fig. 2.2 and consider the minimum (7),
inflection (3) and maximum (4) types of levels. The non-extreme points 2 and 5 will
be beyond our interest because these types of asymptotes are already studied in the
previous Sect. 2.6.

2.7.1 An Absolute Minimum of the Function 3(y)

In the vicinity of the level §; related to the minimum on the slowness profile in
Fig. 2.2 it is convenient to present the function §(y) in the form

SO =8{1+A0)} . (2.81)

Close to its minimum point y(l) the function fj(y) will be approximated by the

expression

y—yt!
d

Hily) = A ; (2.82)

where A is a dimensionless parameter and the power m is supposed to be integer-
valued: m = 2,3,... Expression (2.82) for fj(y) will be implied applicable in the
definite region [y —y(V'| < Ay < d .

2.7.1.1 Spectral Features just Under the Level s = §,

The spectrum branches ®(s;) under the level s = §) is given by (2.26) with
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d

oa(s) = [ dyy/§ =5 +SA0) (2.83)

0

Let us divide this integral into two parts: Iyy = I + I,. The first one (1;) is deter-
mined by the range (I): |y — ym\ < Ay, where approximation (2.82) works. And the
integral I, is taken over the rest part (IT) of the interval [0,d]. These integrals may be
presented in the forms

Av( A 1/m
d \ g

I =2¢e" (sld/xl/m) / dxV/1+x"
sz/dy st A —Sl/dyvelﬂrfl

(2.84)

with g1, = (§? §1—153 2) / . For our asymptotic consideration we shall suppose €j; to be
very small,
ey < A(Ay/d)" . (2.85)

In this limiting case one can obtain
m+2
Toa(s) = §1d (Al +Big" ) , (2.86)

where A| ~ 1 and B ~ 1 are dimensionless constants depending on A.
Substituting (2.86) into (2.26), one can find asymptotic dispersion branches s;(®)
just under the level s = §; for any of boundary problems (2.23). In particular, for free

faces one has R
R @y iz
~6dl—x (— _ 1) : 2.87
5172 8 { 1 } (2.87)

where the notations are introduced
1 m
K| = E(Al/Bl)n??, oy=IlAw, Ao =71/ASd. (2.88)

The set of frequencies ®y; approximately indicates points of intersections of the
branches s;(@) with the level §;. However here one should be careful in the same
way as in Sect. 2.6. In the vicinity of §;, solution (2.87) satisfies criterion (2.14) of
applicability of the adiabatic approximation, only if

81/’” m+2
8S1d\[ 11

(compare with (2.68)). Thus, for large enough frequencies ®, formula (2.87) de-
scribes the spectrum as close to the singular level s = §; as we need.

> (2.89)
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The further consideration is completely analogous to that in 2.6.1.2. Again close
to the asymptote there is a forbidden zone of the width Asll which depends on / and
converges with its growth:

2m
A, 1/mA m+2
As! ~§ (mzml> . (2.90)

For parabolic minimum m = 2 this gives As] «< 1/I. By (2.87), the frequency ?,
where the branch s;(®) intersect the bound §; — As} is

0]
o} ~ L . (2.91)

m+2

1+ (As} /x1§1)

For k1 ~ 1 and Asl1 < § the frequencies a){’l must be close to the set w;; (2.88).
It also follows from (2.87) that with increasing branch number / the slopes of the
branches s;(®) in the points ®?, (2.91) of the bound decrease as

m—2
2m

ds 5 Am <2As}> 2.9)

do |y g~ oy Bi(m+2) \ $

Note in passing that for m = 2 the last multiplier is equal 1. However one should

be aware that even for m > 2 this multiplier containing a small parameter 2A sll /81
m=2
m+2

remains of order of unity at least for not very large m because of small index
(see (2.90)).

The character of the relay race approaching the level s = §; by the infinite set of
branches is conveniently described by the decrease of distances §1 —s; > Asl1 in the
discrete series of equidistant frequencies @ = ®;(;_,;) with the growing / and the
constant Al < [ . For large enough numbers / — Al when asymptotic formula (2.87)
is applicable, it gives

ity 2

e (@A

§1—si(ay) ~ §1K1 (éf) o< @y " (2.93)
|

This dependence is similar to the prediction in Alshits and Maugin (2005, 2008).

2.7.1.2 Spectrum Features just Over the Level s = §

For the other side from the level s = §; the analysis is completely analogous. However,
this time the line s =const > §; intersects the curve §(y) in two points a and b on the
left and right sides from the minimum y(!), respectively (region III in Fig. 2.2). The
inverse spectrum for such case is found in 2.4.3.2. For the f/f boundary problem it is
described by the two series of branches given by (2.42);. The integrals Iy, and I,
determining these series are similar to (2.86):
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Ioa(si) ~ 51d (A} — B lew| " ) | Iha(s;) ~ $1d (AY — Bl|ey ;|5 2.94
0a(si) = $1d (A} = Byleu| 2 ), Lpa(sj) = $1d (A] —Biley| = ), (2.94)

where i, j = 1,2,... are numbers of branches, and the positive coefficients in (2.94)
are estimated as A}, B|,A}, B, ~ 1. With (2.94) and (2.40),, the new asymptotic
branch series are

2m

simSi[l+ (k) (1— o /o)m2], s;~8[1+ (k] (1 fwj’-’/a))r%”z], (2.95)

where ® > o/, 07 and

1 m 1
K = (A1/B)#2 | 0, =Awl(i+5), A0|=1/Al§d;

2 . 4 (2.96)
K] = 5(A’{/B’{)mTz , 0 = Ao (j+ 7)Aol =z/ATqd.

One can prove that the parameters A} and A] in (2.94) and (2.96) should approxi-
mately relate to A; in (2.86) as A| =~ A} +A/. Then the intervals Aw], Aw{ (2.96)
and A w; (2.88) must relate to each other as

R
Aoy Ao " Ao

(2.97)

This relation has clear interpretation. Indeed, it is evident that at large enough
frequency @ the total number of branches in the spectrum with frequencies less than
o coming to the level s = §; from below, [ &~ ®/A ®,, must be approximately equal
to the sum of numbers of branches over the asymptote in the same frequency range,
i~o/Ao] and j~ 0/Aw{, ie. ]~ i+ j. But this leads directly to (2.97).

Thus, each branch / under the level s = §; will be continued above it by the branch
i, or j. And the intersection points of this pair with the level s = §; must be shifted
correspondingly by 2A®] or by A®] which reminds the situation of Sect. 2.6.
But the slopes of all three lines from both sides of the level now differ from each
other (ordinarily, the slope (2.92) of the lower /-line is less). Of course, the discussed
discontinuities of functions (2.87), (2.95) and their derivatives occur nonmetering
the forbidden gap around the singular level. However with increasing frequency the
forbidden band converges faster than earlier (e.g., for m = 2 by (2.90) Asl1 o< 1/1)
and the changes in the shape of the dispersion line should become more and more
pronounced. Such relay-race asymptotic behavior of spectrum on the level related to
an extreme minimum of the profile §(y) was expected in Alshits and Maugin (2005).

All mentioned features are seen in Fig. 3 of Shuvalov et al (2008) where the
numerically obtained exact spectrum is presented for a continuously layered plate.
The level s = 0.294 s/mm just corresponds to such intermediate asymptote related
to the minimum of the slowness profile at y ~ —0.2mm. One can see a tendency of
decreasing slopes of branches under this level with growing frequency and then a
rather sharp increase in their slopes on the upper side with two types of branches
going up to different asymptotes. There are no comments in Shuvalov et al (2008)
related to this part of spectrum.
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2.7.2 The Level Related to an Inflection Point

The vicinity of the level s = §3 which relates to the inflection point 3 in Fig. 2.2 may
be described similarly to the previous subsection. In this case the situation is simpler
because the ranges just under the level §3 and just over it belong to regions IV »
(Fig. 2.2) of the same type (with 3 division points) where the spectra are given by
the same relations (2.45) with n = 2, [ = 1. In both cases they provide two series of
dispersion branches, one asymptotic and the other not. So, in case of the f/f boundary
problem we obtain for asymptotic branches,

1 1/L(sp), sp <33,
= - = n 2.98
o =7(p 2){1/1(sp),s,,>s3; (2.98)
1 f% — 52
L=s [ dn/h0lenl, ep="5T. (2.99)
Y3 F8y ’

Let us calculate the integrals in (2.99) for the function

ENEAS
fz(y)ML(ydy ) : (2.100)

In this case one can use in the lower limits of the integrals in (2.99) the small shift

Sy =d(|es,| /M), (2.101)
and the above integrals acquire the form
1 = §3d (As £ BE[e3,71°) (2.102)
with
Ay ~ 0.4V (1 —y<3>/d)5/2 . BI~286/VA, By ~1.04VA. (2.103)

Combining (2.102) with (2.98) one obtains the following spectrum

Sp A § 1=k (/0 =170, @ <o, (2.104)
1+ (1 -3,/ 0)°7 , 0> w3
where
1 .
K7 = (A3/2BE)° | s, =Aws(p—=), Aws=m/A38d . (2.105)

2
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Thus, in the given case the dispersion branch s, (®) is continuous at the level s = §3.
Let us prove that its derivatives at bounds of the forbidden gap are substantially
different. These bounds s = §3 F As]3, and the frequencies cofp where the branch
sp(a)) intersect the bounds can be estimated similarly to (2.90), (2.91):

6/5

31134

ASS ~ 53 ) ef~ e o (2.106)
2np 1+ (As3 /K5 §3)

And branch slopes at bounds of the forbidden gap are found similarly (2.92):

ds,
—£ ~ 2 ~ 2.107
o ( )

I I
o-of,  ©3p B3 @3p 5B3

8, 34 <2As;)1/5 $p 3As3

§3

Thus, with increasing branch number p the both slopes decrease o< 1/p and the slope
under the level is B;r /B3 ~ 3 times less than that over the level. So, we again obtained
asymptotic spectrum with branches tending in a relay-race manner to the level s = §3
from below. Then they, one by one, increase their slopes and after intersection of the
level go up to the next asymptote. The character of approaching the level by branches
from below with growing p is again well described by the dependence

N A A - ~ \0/5 A—
83— s,(0) = 835 (W30 @p)*° o< @, *° (2.108)

in the complete analogy with the above equation (2.93) for m = 3 which fits the
predictions in Alshits and Maugin (2005, 2008).

2.7.3 Asymptote Related to Maximum at the Profile 3(y)

We conclude this section by a short description of the spectrum under the asymptote
s = §4 associated with maximum point 4 on the slowness profile in Fig. 2.2. We do it
just for completeness since this problem is already solved in Shuvalov et al (2008).

Under this level there are three division points (region IV, in Fig. 2.2) and two
series of dispersion branches described by equation (2.43) atn =2 and / = 1. Only
the first series is asymptotic and just relates to our case. For the f/f boundary condition
the solution is given by

1
o=n(k—3)/h(s), k=123, (2.109)

(ONF N
¥ +8y 0

2
S — S
Iy =34 / dy\/&y — fa(y) , & = 4§2 k. (2.110)

4
y(4) 76);
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In the considered asymptotic region §4 — s < §4 the function f4(y) will be chosen in
the form similar to (2.82)

, m=23/4.... @2.111)

The value of Jy in limits of the integral in (2.110) is found as a root of the
integrand:

8y =d(eq /)™ . (2.112)
With (2.111) and (2.112) the integral I is equal
m+2
Iy = 2y mSadey;" (2.113)
where Y, is the dimensionless parameter
1
XmZX’%/dt\/l—tmwl. (2.114)
0

Substituting (2.113) with (2.110), into (2.109) one obtains for the studied asymptotic
region §y — 5 <K 84 :

1 /g n%%
~§ 1—7<7) 2.115
Sk 54{ AP } ( )
1
(1)4k=A(1)4(k—§), A(D4=7l'/2){m§4d. (2.116)

The estimated asymptotic branches (2.115) coincide with the result of Shuvalov et al
(2008) and fit the expectation of Alshits and Maugin (2005, 2008) that
§4— sy o< wfzm/erZ ]

As was explained in the end of Sect. 2.6, this part of the spectrum relates to channeling
of energy in the thin layer related to the position of the slowness profile maximum in
the plate. This part of spectrum exists only under the asymptote. Above that there
are branches of the mentioned second series which intersect this asymptote and go
up to the last asymptote related to the point 5 in Fig. 2.2. Their "intersections" with
the first series are spurious being the consequence of approximation (2.30). Small
repulsion eliminates degeneracies and creates a ladder-like pattern in spectrum.

2.8 Conclusions

The presented approximate approach to an analytical analysis of acoustic spectra
of transversely inhomogeneous plates appears to be quite convenient and efficient.
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It allows one to study rather peculiar unexpected properties and nontrivial specific
features of acoustic behavior created exclusively by inhomogeneity of the medium
even when it is isotropic. We analyzed the spectral effects in the vicinity of slowness
levels associated with extreme material characteristics of the inhomogeneous profile.
As was predicted by Alshits and Maugin (2005, 2008), all such levels should be
characterized by specific asymptotic behavior of dispersion branches. Indeed, we
found that maximum points on the slowness profile of the plate provide channeling
of energy in appropriate layers and create high frequency asymptotes for spectral
branches. This coincides with data of Shuvalov et al (2008). But it was also expected
by Alshits and Maugin (2005, 2008) that minimum and inflection points on the
same profile would create specific intermediate asymptotes to which branches should
approach in the relay-race manner. The Asymptotes of these two types were found.
The non-extreme minimum on the surface was not included in Alshits and Maugin
(2005, 2008) into the list of candidates for asymptotic behavior. Indeed, we found
that the anomalies related to such sort of levels are hardly observable. They are not
visible in the mentioned above numerical spectrum (Fig. 3 in Shuvalov et al, 2008).
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Chapter 3

Nonlinear Schrodinger and Gross - Pitaevskii
Equations in the Bohmian or Quantum Fluid
Dynamics (QFD) Representation

Attila Askar

Abstract The Quantum Fluid Dynamics (QFD) representation has its foundations in
the works of Madelung (1929), De Broglie (1930 - 1950) and Bohm (1950 - 1970). It
is an interpretation of quantum mechanics with the goal to find classically identifiable
dynamical variables at the sub-particle level. The approach leads to two conservation
laws, one for "mass" and one for "momentum", similar to those in hydrodynamics for
a compressible fluid with a particular constitutive law. The QFD equations are a set
of nonlinear partial differential equations. This paper extends the QFD formalism of
quantum mechanics to the Nonlinear Schrodinger and the Gross-Pitaevskii equation.

3.1 Introduction

Schrodinger equation is the most conventional formalism for describing quantum
mechanics (Wyatt, 2005; Styer et al, 2002). Another formalism is referred to equiva-
lently as "the hydrodynamic analogy to quantum mechanics" or "the quantum fluid
dynamics" (QFD) (Wyatt, 2005). This approach is partly motivated by Einstein’s
questioning of the completeness of the quantum theory that is dramatized by his fa-
mous statement: "God doesn’t throw dice" while admitting to its internal consistency
(Einstein et al, 1935; Bohr, 1935; Schilp, 1949).

The essence of the formalism is the polar representation of the complex wave
function by its amplitude and phase as opposed to its Cartesian representation using
the real and imaginary parts.

The approach leads to two conservation laws, one for "mass" and one for "energy"
whose gradient becomes the "momentum" equation, similar to those in hydrodynam-
ics. This formalism was derived originally by Madelung (1926), elaborated on by de
Broglie in work spanning the period 1927 to 1967 (de Broglie, 1926, 1951, 1957,
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1967) and in the fifties to end of sixties by Bohm (1951); Bohm and Bub (1966). The
initial attempts have been more in terms of the philosophy of interpreting quantum
mechanics, trying in particular find a classically identifiable quantities or dynamical
variables at the quantum level.

The QFD equations are a set of nonlinear partial differential equations. In this
sense, QFD may be seen as a step in the negative direction as compared to the
Schrodinger equation that is linear. However, in this scheme, the oscillatory real and
imaginary components of the complex wave function are replaced by the usually
significantly less oscillatory amplitude and phase. To appreciate this aspect of the pro-
cedure, consider a plane wave y = exp[i(kx — )] as the simplest illustrative example.
Its real and imaginary parts are the oscillatory sine and cosine functions, while its
amplitude is a constant and its phase is linear in both the time and space coordinate.
This aspect of QFD formalism is utilized advantageously to generate numerical algo-
rithms for solving the time dependent Schrodinger equation for scattering problems
(Wyatt, 2005; Weiner and Askar, 1971; Askar et al, 1980; Dey, 1998; Sales, 1999).
The QFD formalism replaces the abstract wave function or operator representation
by the concrete image of an ensemble of mass points in classically familiar terms for
a more intuitive interpretation of the dynamics.

3.2 Polar Representation of the Wave Function

The (i) Schrodinger, (ii) Nonlinear Schrodinger and (iii) Gross-Pitaevskii equations
are defined in the same structure respectively with (i) k =0, (ii) V = 0 and (iii) with
both k #£ 0 and V # 0 as:

2
iha—w:—h—(quf—kZWIFW)—le]/ (3.1)

ot 2m
These equations are treated in the paper with their physical forms to reinforce the
structure of the QFD representation. Planck’s constant 7, mass m and the wave
number k are kept for dimensional convenience and reference to quantum mechanics.
The complex wave function is considered in the polar representation by its ampli-

tude A and phase S as:

W(x,1) = A(x,1) Bx0-E/ 3.2)

Above by reference to quantum mechanics, FE is singled out to be identified as at the
total energy. The substitution of the representation of the wave function in the polar
form in Eq. (3.2) into the Eq. (3.1) and the separation of its respectively imaginary
and real parts yields:

1 1
Z(VS.V —AV2S) = .
A’+2( S A+2mA S)=0 (3.3)
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as 1 o, K

— —E+—VS-VS4+V|+_—A— —V?A=0 3.4

ot + 2m TV 2m 2m (34)
The two equations above are rearranged in the following sections into both physically

meaningful and computationally suitable forms.

A

3.3 Conservation Laws

3.3.1 Mass Conservation Equation

The rearrangement of the first equation above after multiplying it by A, introducing
the definitions for p and v yields:

p=A>2 v:E — 8—p+V-(pv):0 (3.5)
m ot

Equation (3.5) is identified as the conventional mass conservation equation law of

fluid dynamics for a compressible gas with the density p(x,#) and velocity field

v(x,t). The phase function S(x,7) plays the role of the velocity potential in view of

the definition in Eq. (3.5) (Wyatt, 2005; Dey, 1998; Sales, 1999).

3.3.2 Energy Conservation Equation

The rearrangement of the expression in Eq. (3.4) after dividing it by A and introducing
the definitions

" /V2A n2k?
P 36
a 2m\ A P 2mp (3.6)
yields:
s /1
4 (GmYVEV Y4V ) = E G.7)

Equation (3.7) is interpreted as an energy conservation law with S as an action whose
time rate S; is an energy;

1
—mv-v+V
2
form the classical energy with its kinetic and potential energy components; V), is a

local "pressure potential" and V,, as a non-local "quantum potential" as the Laplacian
connects neighboring regions.
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3.3.3 The Momentum Equation

A momentum conservation equation can be derived by taking the gradient of the
expression in Eq. (3.7). With the use of the vector identity

V(a-b)=a-Vb+b-Va+(Vxa)xb+(Vxb)xa

with a =b = V&, the result is:

av
m(EJrv-Vv) — —V(V+Vy+ V) (3.8)
The term v; + v - Vv is the acceleration in fluid dynamics and is composed of the sum
of the local and the convected components (Landau and Lifschitz, 1959; Eringen,
1962).

3.3.4 Pressure Interpretation

The term V), + V,, can also be interpreted as "pressure” in the fluid dynamics ter-
minology. Consequently, again in the fluid dynamics terminology, a diagonal stress
tensor can be introduced with the use of the unit tensor I:

p=V,+Vyu oc=—-pl (3.9)
With this interpretation and the definition of the external force density acting on the
fluid as g = —VV , the momentum equation reads:
d
m(a—:+v-vV)=V-a+g (3.10)

3.3.5 The Lagrangian Representation

The conservation laws in Egs. (3.5), (3.7) and (3.8) can be rewritten in the convected
coordinates (Wyatt, 2005; Landau and Lifschitz, 1959; Dey, 1998; Sales, 1999;
Eringen, 1962), thereby leading to the Lagrangian representation. The total time
derivative of a general function f = f(x,¢) is defined as:

df _df

S ty.vy 3.11)

and the position vector of a particle is related to the velocity in the usual way as:

dx

— = 3.12
=Y (3.12)
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With the above basic definitions, the mass and momentum conservation equations
become:

dp

— V.v=0 3.13

TPV (3.13)
d*x d*x

The representation above for the momentum conservation is in the familiar Newto-
nian form. The interpretation of the momentum equation in the Lagrangian formalism
is most clear: the evolution of the wave equation is equivalent to calculating the
trajectories of the ensemble of particles subject to the total potential made of the clas-
sical and quantum components. This form of the momentum equation in (3.14) along
with the mass conservation in (13) has been exploited in computational algorithms
with success (Wyatt, 2005; Dey, 1998; Sales, 1999).

The above momentum equation represented as a collection of trajectories, can
also be written in the fluid dynamics terminology:

2

d
mﬁzv.o—kg 6=—(Vy+Vu) I g=-VV  (3.15)

Above, the stress o and the external force g are as defined in Egs. (3.9) and (3.10).

3.4 Adding a Dissipation Term as in Navier - Stokes Equation

The QFD equations conserve mass, momentum and energy. In this sense, they
correspond to a perfect fluid, with a particular constitutive law for a pressure field:
P = Vg + V). Introducing the dissipative term as the rate of strain into the stress, in
the manner of the Navier - Stokes equation, yields:

6=—(Vy+Vy) I+,LL(VV+(VV)T) (3.16)

Above, the superscript T represents the transpose in defining the rate of strain and
thereby making the momentum equation invariant under rigid body rotations.

With the above stress, the momentum equations in (3.8) and (3.14), respectively
for the Eulerian and Lagrangian representations, become:

0
m(a—:+v-vV) — Vp+ u(VAVEVV V) 4 g (3.17)
m%z—Vp—!—,u(Vzv—FVV-V)—Fg (3.18)

Above, p and g have the definitions in (3.9) and (3.10).
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The mass conservation equation remains unchanged. However, the addition of
the Laplacian of the velocity changes drastically the nature of the set of differential
equations from hyperbolic to parabolic type.

3.5 Vorticity

Vorticity is defined as @ =V x v. The QFD as well as its equivalent Schrédinger
equations do not lead to vorticity. The reason follows simply from the identity
0=V xv=Vx(VS)=0. Figures 3.1 present numerical results of the application
of the QFD formulation (Dey, 1998; Sales, 1999). These solutions are obtained by a
discretization of p(x, y, t) and x(¢) = (x(¢), y(¢)) within the Lagrangian representa-
tion in Egs. (3.13) and (3.14). The purpose here is an illustration of the absence of
vorticity.

25F

(c) as n s s 55 s

Fig. 3.1: Sample density and trajectory results. The figures on the top show the
evolution of the initial wave packet through the display of p(x;,y;,#) at the se-
lected times # and the positions x;. (a) NOCI — NO + Cl; (b) NO, — NO + O
density contours. The figures in the second row are sample trajectories for selected
discrete points x; = x;(¢) of the wave function: (¢) NOCI — NO + CI; (d) NO,
—+NO +O.
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The figures on the top show the evolution of the initial wave packet through the
display of p(x;,y;,#) at the selected times #; and the positions x;. The figures in
the second row are sample trajectories for selected discrete points x;(z) of the wave
function, each corresponding to the evolution of the selected points of the wave
packet above. In accordance with the prediction by the Schrodinger equation, no
vortices are present in the plots. (The physics behind the figures is about a photo-
dissociation problem with the linear Schrodinger equation. The figures on the left are
for the photodissociation of NOC! and those on the right are for the photodissociation
of NO, (Dey, 1998; Sales, 1999).

Regardless of the nature of the physical problem, one would expect a vorticity
field due to viscosity, as in the Navier - Stokes equation for dissipative fluids. In fact,
the vorticity equation is obtained by taking the curl of the momentum equation in
(3.8). With the curl of the gradients dropping out of the equation, V x (V) = 0 and
the use of vector identities for V x (v- Vv) we obtain:

mV><(%—I—V-VV):Vx(—Vp—i—V)—l—qu(Vzv—i—VV-v) (3.19)
= m(%—? +(V-VV)o - (w-V)v) — uV2e (3.20)

Equivalently, in the Lagrangian representation this equation reads:

do

m— = —(v-Wo+uvVie (3.21)

Approaches to dissipation in quantum systems and chaos based on stochastic noise,
as well as their relevance to physics can be viewed in Braun (2001).

The importance of vorticity lies in the heuristic - phenomenological explanation
of the formation of turbulence in classical fluids. In the classical Navier - Stokes
equation, it is stipulated that vorticities break into a hierarchy of smaller and smaller
ones, eventually covering the whole space and thereby leading to "turbulence".

Further analytical and computational work is needed to determine weather the
QFD equations with the viscosity term would lead to chaos and eventually "turbu-
lence".

3.6 Closing Remarks

The representation here has the following set of purposes:

1. Benefit from the fluid dynamics analogy towards a concrete image of the complex
valued equations and the function respectively as a fluid flow or set of trajectories
of an ensemble of discrete set of points;

2. Present a platform for a natural extension to of the Schrodinger family of equa-
tions to multidimensions;
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3. Present formulations with numerical advantages in discretized forms, including
for the multidimensional extensions of the family of Schrodinger equations;

4. The nonlinear field equations with the dissipation in the Navier - Stokes manner
transform the differential equations from hyperbolic to parabolic type, thereby
opening a natural framework for studying fundamentally nonlinear phenomena;

5. With the dissipation term, the extended set of equations in the fluid dynamics
analogy which lead to vorticity and thereby are likely to lead to chaos and
eventually to turbulence.

The fluid dynamics equations derived here, including the dissipative case, are invari-
ant under Galilean transformation of the coordinates, i. e. rigid body translations and
rotations, as they should be.
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Chapter 4

The Stability of the Plates with Circular
Inclusions under Tension

Svetlana M. Bauer, Stanislava V. Kashtanova, Nikita F. Morozov, and Boris N.
Semenov

Abstract This paper deals with the problem of local buckling caused by uniaxial
stretching of an infinite plate with a circular hole or with circular inclusion made
of another material. As the Young’s modulus of the inclusion approaches that of
the plate, the critical load increases substantially. When these moduli coincide,
stability loss is not possible. This paper also shows the difference between them
when the inclusion is softer than the plate and when the inclusion is stiffer than the
plate. Computational models show that instability modes are different both when
the inclusion is softer than the plate and when the inclusion is stiffer than the plate.
The case when plate and inclusion have the same modulus of elasticity, but different
Poisson’s ratio is investigated too. It is also discussed here the case when a plate with
inclusion is under biaxial tension. For each ratio of the modulus of elasticity of plate
versus inclusion it’s obtained the range of the load parameters for which the loss of
stability is impossible.

4.1 Introduction

The study of buckling elements, mechanisms and structures, together with the tasks
of destruction are actual problems of modern mechanics. The stability of thin plates
with holes and cracks under uniaxial tension was analyzed in Guz et al (1981);
Bochkarev and Grekov (2015); Shimizu (2007).

It was noted in Guz et al (1981); Shimizu (2007) that compressive stresses can
arise not only in plates subjected to compression, which is obvious, but also near the
boundaries of holes in plates subjected to tension.
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In recent years, increasingly interest has arise in the various mechanisms using
nano-objects. When calculating the deformation, stability, and failure of nanoscale
objects, it is necessary also to take into account the surface effect. The local loss
of stability of a plate with circular nanohole under uniaxial tension was considered
by Bochkarev and Grekov (2014). In this case, the surface stresses on the circular
hole boundary, which define more exactly the known solution of the Kirsch problem
for small hole sizes, were taken into account in the subcritical state. It is noted that
taking into account the surface stresses at the hole edge results in a loss of stability
of the plate under a smaller load than in the classical formulation. The value of the
load decreases by 5-7%.

However, it is clear that for nanoscale thicknesses of the plate, it is necessary to
take into account also the surface stresses operating on the face surfaces. So in Bauer
et al (2014) the problem was solved taking into account surface effects not only on
the border of the hole, but also taking into account surface stresses on the facial
planes, which change the bending stiffness of the plate. To determine the critical
stress corresponding to the point of bifurcation, in which the plate loses the flat shape
deformation, the energy method of S.P. Timoshenko is used.

The normal deflections of the plate was sought in the form

= o (1
:R;Z cos( ‘p 4.1)

Here R is radius of the inclusion hole, r, ¢- polar coordinates centered in the center
of a circular hole, p = r/R. These expressions satisfy the boundary condition of the
symmetry of deformations and the deflection decrement at infinity.

It is shown that taking into account surface stresses for plates of nanoscale thick-
ness leads to a significant increase in the flexural rigidity of the plate comparison
with the classical value. The consequence is an increase in the critical load even
when taking into account the surface stresses on the contour boundary. The problem
considered in Bochkarev and Grekov (2014) was solved by the method of finite
elements. It was built of the buckling modes and corresponding critical loads. The
results demonstrated a good coincidence between the first critical loads constructed
by the method of finite elements and by analytical method.

Compression stresses could appear also in the plates with the inclusion, and
therefore these stresses may cause local buckling of the plate.

Loss of stability under uniaxial tension in an infinite plate with a circular inclusion
made of another material was analyzed in Bauer et al (2017). The influence of the
inclusion, or more exactly, the influence of the elastic modulus of the inclusion
on the critical load was examined. The Poisson’s ratio of the inclusions and plates
were considered to be the same. The minimum eigenvalue corresponding to the first
critical load was found as in Bauer et al (2014) by applying the variational principle.
Computations were performed in Maple and were compared with results obtained
with the finite element method in ANSYS .
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4.2 Problem Statement

This part deals with the problem of the local buckling caused by uniaxial stretching
of an infinite plate with a circular inclusion in the case when plate and inclusion
have the same modulus of elasticity, but different Poisson’s ratio. The problem on
the deformation of a plate with a circular inclusion under uniaxial tension was solved
by Muskhelishvili (1963); Kachanov et al (2003) in polar coordinates with the origin
placed at the center of the inclusion. The solution of this problem in Cartesian
Coordinate System is presented in Deryugin and Lasko (2012).

Suppose that Eq, v; - are Young’s modulus and Poison’s ratio of the plate, and
E5, v, - parameters of the inclusion, x, y - Cartesian coordinates. If we consider an
infinite plate with a circular inclusion made of different material with applied at
infinity load o along the y-axis, the stresses in the plate will have the follow form:

o,  (I—ky+k)R? 3R? 4+ 10y? k.R? 2y?
- = 3 I+—3 F+Gl—=5(1-=7),
1 —ky + k) R? 3R? +18y? k.R? 2y?
& _ Ukth) {3— AL —i—F—G}—&- b (1—y2), “.2)
(o 2r r r r
iy _ (1 —ky + ko) R?xy 3_2(3R2+4y2) N 12R%y*|  2kR%xy
r4 r2 r4 )
where

r2:x2—&—y27 F=

8y (3R? +2y?) G 24R%y*

}’4 ) r6 )
R - radius of an inclusion, £ - thickness. Coefficients k, and k, depend on elasticity
modulus of the inclusion and the plate:

_ B[B-w)E+(5+Vv1)E)]
YT B+ 2B —[iE + (1 - V) B
— E2[(3V2*1)E1+(1—SVI)E2]
T B+ 2E)2 —[iE + (1 - V)EJ

(4.3)

According to Eshelby’s theorem (Deryugin and Lasko, 2012; Eshelby, 1957) the
stress field inside the circular inclusion is homogeneous and symmetric with respect
to the tension axis:

0y =kyo, Oy,=koO, 0y=0. “4.4)

It follows from (4.1) that the stresses 6,/ are mainly positive (negative zones arise
as the limiting cases are approached, i.e., absolutely rigid inclusion or absent of an
inclusion). As for the stresses 0,/0, then there are always appear negative values;
moreover, the region of negative stresses and their absolute values are smaller for a
stiffer inclusion. There are no negative stresses when the inclusion and the plate are
made of the same material (and this is consistent with the classical solution). When
the inclusion becomes stiffer than the plate, once again there appears a region of
negative stresses and, hence, the loss of stability of the plate is again possible. Note
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that in the case of an inclusion stiffer than the plate, the region of negative stresses
0,/ 0 is shifted by 90 degrees. Similar results are obtained if the problem is solved
by applying the finite element method in ANSYS (see Figs. 4.1a and 4.1b).

4.3 Stability Loss

The numerical results and analysis in ANSYS showed that the loss of stability of
plates with circular inclusion is possible if the elastic modulus of the inclusion is less
than the modulus of elasticity of the plate E> < E; (inclusion softer than the plate)
or when the elastic modulus of the inclusion larger than the modulus of elasticity of
the plate E» > E; (i.e. inclusion is stiffer). Figures 4.2a and 4.2b show the stability
loss modes for a plate with an inclusion subjected to tension along the plate’s Y axis.
Note that the stability loss modes are different for the case E»/E| < 1 and E; /E| > 1
. In the case when the inclusion is stiffer than the plate, as was noted above, the
zones of compressive stresses lie along the x axis (they are shifted by 90 degrees
with respect to the case where the inclusion is softer than the plate).

If the Young’s modulus of the inclusion is close to the modulus of elasticity of the
plate than the loss of stability occurs either at very high loads or does not occur at all
in the case of identical materials (Fig. 4.3).

4.3.1 Case with Different Poisson’s Ratio

All results obtained in Bauer et al (2014) and shown in Fig. 4.3, were carried out
for the same Poisson’s ratio for inclusion and for plate vi = v, = 0.3. However,
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-6156.83 -3756.71 -1356.59 1043.53 3
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-1327 1547.29

.23 110.029 298455 44218

(@) (b)

Fig. 4.1: Stresses 0,/0: (a) vi = v, = 1/3, E; = E /10 ("soft" inclusion), (b)
vi = va =1/3, E; = 10E; ("rigid" inclusion)
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(a) (b)

Fig. 4.2: Loss of stability: (a) E; = E; /10 ("soft" inclusion), (b) E; = 10 E;
("rigid" inclusion)
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Fig. 4.3: Critical load as a function of the ratio of the inclusion modulus to the
plate modulus (o is critical load for plate with a hole)

in the case of equal modules of elasticity of inclusion and plate, but with different
Poisson’s ratios can also be area of negative stress. Figures 4.4a and 4.4b represents
stress distribution in the plate, obtained on the relations (4.1) for the case when
E, =E; =E,butv| #v,.

It means that in the case when the materials of the plate and inclusion have the
same elastic moduli but different Poisson’s ratios, the plate can also lose the stability
under uniaxial tension. Figures 4.5a and 4.5b show the stress distribution before
buckling and form of the plate stability loss in the case when E» = E; = 2-10'! Pa.
Poisson’s ratio of the plate v = 0.49, Poisson’s ratio of the inclusion v, = 0.01.
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(@ (b)

Fig. 4.4: Stress distribution in the plate: (a) vi = 2v,,v, = 1/4, (b) v = v2/2,
Vy = 1/3
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Fig. 4.5: (a) Stress distribution before buckling £, = E| = 2 x 10! Pa, v; = 0.49,

v2 = 0.01, (b) Form of the plate stability loss E; = E; = 2% 10'! Pa, v; = 0.49,
v, =0.01

Figures 4.6a and 4.6b show the stress distribution before buckling and form of
stability loss of a plate in the case when E; = E; = 2-10'! Pa. Poisson’s ratio of the

plate vi = 0.01, Poisson’s ratio of the inclusion v, = 0.49.
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Fig. 4.6: (a) Stress distribution before buckling E; = E; = 2% 10'! Pa, vi = 0.01,
vy = 0.49, (b) Form of the plate stability loss E; = E; = 2% 10'! Pa, v; = 0.01,
v, =0.49

4.3.2 A Plate with a Circular Inclusion under Biaxial Tension

The case when the plate with inclusion is under tension not only along the Y-axis
but also along the X-axis is also interesting to consider. If tension along the Y-axis
is equal to the tension along the X-axis then all stresses in the plate will be positive
and there is no loss of stability. But if the stresses applied along the X-axis is less
than stresses applied along Y -axis then again occur negative stresses in the plate near
inclusion and thus the stability loss of the plate is possible.

Under uniaxial tension negative stresses vanish only if the elastic moduli and
Poisson’s ratios of the plate and inclusion are equal (see Fig. 4.3). The area of
negative stresses in the plate with inclusion under tension along the Y-axis decreases
with the application to the plate stresses along the X-axis. By increasing the load
along the X-axis we can discover the value of tension P, when the regions of
compressive stresses in the plate disappear and loss of stability is impossible. If we
continue to increase the load along the X-axis, starting with a certain value Peop wWe
can obtain new areas of compressive stresses. These areas are rotated on 90 degrees
compared to the initial location of compressive stresses.

For each ratio of the modules of elasticity of inclusion and plate (E,/E) there is
an interval of stresses P, along X-axis, where there are no zones of compressive
stresses, thus we determine the whole range of values for which there is no possibility
for stability loss of the plate (between lines 1 and 2). In Figs. 4.7a and 4.7b curve 1
is the lower boundary of this zone, and the curve is 2 the upper bound. If E»/E| goes
to 1 then the upper boundary of the interval (line 2) goes to infinite.
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Fig. 4.7: (a) Additional stress curves bounding the stability region of the plate with
inclusion. Curve 1 (blue) is the lower boundary of this zone, and the curve 2 (red)
is the upper bound. P, /P is the ratio of the additional tension P, along the
X-axis to the initial tension P along the Y -axis.
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Chapter 5

Unit Cell Models of Viscoelastic Fibrous
Composites for Numerical Computation of
Effective Properties

Harald Berger, Mathias Wiirkner, José A. Otero, Rail Guinovart-Diaz, Julidn
Bravo-Castillero, and Reinaldo Rodriguez-Ramos

Abstract The paper presents an extension to viscoelastic composites of a former
developed numerical homogenization procedure which was used for elastic and
piezoelectric material systems. It is based on an unit cell model using the finite
element method. In the paper a brief description of the basic equations and the
homogenization algorithm with specific attention to the numerical model is given. The
investigated composites consist of a viscoelastic matrix with unidirectional embedded
cylindrical elastic fibers. Hence the homogenized behavior of the composite is
also viscoelastic. Consequently the effective coefficients are time-dependent. The
geometrical shape of the unit cell is thombic which allows to analyze a wide range of
nonstandard unidirectional fiber distributions. Otherwise it includes the special cases
for square and hexagonal fiber arrangements which can be used for comparisons
with other solutions. Here results are compared with an analytical homogenization
method. Furthermore the influences of rhombic angle and fiber volume fraction on
effective coefficients are investigated. In addition two limit cases are considered. One
is with air as inclusions which is equivalent to a porous media and the other is the
pure matrix without fibers.
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5.1 Introduction

Nowadays composite materials have a very important meaning in many fields of
industry. Due to their advantageous properties related to weight, strength, stiffness,
functionality and resistance they belong to future orientated materials which replace
more and more common materials. Furthermore the combination of components with
multi-physical behavior (e.g. piezoelectricity) opens new ways in constructions.

But on the other hand composites are a great challenge to estimate their overall
behavior in structural design. One possible way is to calculate effective material
properties by appropriate homogenization techniques. Since many years scientists
deal with this matter. Different types of composites and different material compo-
nents have been considered. But there are still some issues which need a deeper
investigation.

Also the homogenization of viscoelastic composites has been a matter of investi-
gation since many years. There are analytical approaches (Yancey and Pindera, 1990;
Nguyen et al, 1995; Tang and Felicelli, 2016; Cruz-Gonzélez et al, 2018) and numer-
ical approaches (Haasemann and Ulbricht, 2009; Nguyen et al, 1995; Pathan et al,
2017; Daridon et al, 2016; To et al, 2017). Unit cells (RUC) are a typical basis for
homogenization models which assume an infinite regular distribution of inclusions
with repeatable pattern. For random distribution of inclusions so-called representative
volume elements (RVE) are used. A wide range of literature especially deals with the
characteristics of such cells considering appropriate boundary conditions, influence
of cell size related to inclusions, etc.

In this paper a former developed homogenization procedure based on a RUC model
(Berger et al, 2006; Kari et al, 2007; Wiirkner et al, 2011) is extended to viscoelasticity
in order to calculate effective material properties of unidirectional fiber-reinforced
composites, where elastic cylindrical fibers are embedded in a viscoelastic matrix.
The procedure allows the investigation of composites, where the fiber distribution can
be characterized by a RUC with a rhombic cross section (see Fig. 5.1). By varying
the rhombic angle and the fiber volume fraction the change in overall viscoeldastic
material behavior can be studied for such types of composites.

x A

[

Fig. 5.1: Geometrical type of composite structure and extracted rhombic RUC
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5.2 Linear viscoelastic relations

In general viscoelastic materials are characterized by a time-dependent change of
stress or strain after loading. In case of a constant stress load the strain is increasing
over time which is called creep. In case of a constant strain load the stress is decreas-
ing over time which is called relaxation. Viscoelasticity means that the stress-strain
relations can be divided in an elastic and non-elastic part. In case of a restriction to
small deformations it leads to linear viscoelastic behavior.

The typical phenomenological behavior can be described by the well known mod-
els from Maxwell and Kelvin-Voigt consisting of springs and dashpots (Gutierrez-
Lemini, 2014). The following basic equations are focused on solving a linear vis-
coelastic problem using a finite element software.

Derived from the generalized Maxwell relaxation model (Gutierrez-Lemini, 2014)
the linear isotropic viscoelastic behavior is characterized by time-dependent material
parameters and can be written in the hereditary integral formulation

t

(1) = /ZG(I—T)

0

de

drt

da.

dr. 5.1
P (.1

1
dr—i—I/K(t—r)
0

It couples stresses o with strain rates de/dt and dA /dt . In detail ‘G’ are the Cauchy
stresses, ‘e’ is the deviatoric part of the strains, ‘A’ is volumetric part of the strains,
G(t) is the shear relaxation function, K(¢) is the bulk relaxation function, ¢ is the
current time, ,7° is the relaxation time and / is the unit tensor. The time-dependent
functions G(r) and K(¢) which represent the viscoelastic material parameters can be
expressed in terms of Prony series (Gutierrez-Lemini, 2014) in the following form

G(1) Ger%Gie(_’;G), (5.2)
i=1
K(t) :Kw+il(ie<r?(>. (5.3)

i=1
Here G; and K; are the shear elastic moduli and the bulk elastic moduli, respectively,
and ‘L'iG and X are the corresponding relaxation times for each Prony component.
G.. and K., are the long-term moduli related to ¢ = oo . ng and ny are the numbers of
Prony terms for the corresponding moduli.
Introducing the relative moduli

Gi

G i

af = 2L 54

C =Gy (5.4)
K;

K i

k_ K 5.5

of = (5.5)

with
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g

Go=Gw+Y G, (5.6)
i=1
N

Ko=Ke.+Y K; (5.7)
i=1

where Gy and K are the instantaneous shear elastic modulus and instantaneous bulk
elastic modulus, respectively, Egs. (5.2) and (5.3) can be rewritten in

e

G(t)=Go |aS+ Y afe\ &/ |, (5.8)
i=1

K(1) =Ko a§+ia,-’<e<f?<) . (5.9)
=1

For isotropic materials Gy and Ky can be expressed by the Young’s modulus Ej and

the Poisson’s ratio vy with
Ey

Ko_73(1—2V0)' (5.11)

Finally the necessary input values are the instantaneous Young’s modulus Ey, Pois-
son’s ratio Vo and the Prony terms t°, a° and tX, oX . The number of shear terms
ng and bulk terms ng need not to be the same.

Inside the finite element algorithm the problem is solved by a time integration
scheme. The solution is carried out by time steps until the target time is reached. The
time step width must be carefully chosen to achieve a stable solution.

5.3 Numerical Homogenization Model

To find the effective material properties for the composite the elasticity tensor must
be calculated with the developed numerical homogenization procedure. Only a brief
description is given here. For more details see Berger et al (2006); Wiirkner et al
(2011).
The constitutive relation at a discrete time #; can be expressed in the following
form
0;;(ti) = Ciju (t;) €;(t;) (5.12)
where C;ji(;) is the coefficient of the elasticity tensor at time #;. and o;;(#;) and &;(#;)
are the stresses and strains, respectively. Although the constituents have isotropic
behavior the overall properties of the composite can become anisotropic due to
different types of fiber arrangements. In case of anisotropic material the elasticity
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tensor has 21 independent coefficients (here expressed in matrix notation which is
used in Sect. 5.4 for presentation of calculated effective coefficients)

o1 Cii Ci2 Ci3C14Ci5Ci6| |€n

(03)) Crp Cr3 Cog Co5 Co6 | | €22

033 | _ C33 C34 (35 C36 | | €33 (5.13)
o2 Cag Cy5 Cyg | |€12| " '
023 symm Cs5 Cse | | €23

031 Cos | | €31

In the numerical homogenization procedure the RUC is subjected to 6 strain load
cases (applied as prescribed displacement differences) in such a way that in every
load case only one strain component is nonzero and all others are zero. These are
three pure tension cases in all spatial directions and three pure shear cases.

Furthermore to guarantee that also after deformation the periodicity is ensured
appropriate periodic boundary conditions must be applied. This can be achieved by
fulfilling the following equation (Wiirkner et al, 2011)

Vel X 0 X+ X

w! —u;’ :Sij(xjj ij" ). (5.14)

n -

The values u;(j and u;(j are the ith displacement components on the boundary
surfaces of the cell, which are perpendicular to the x;-axis ("+" for a positive normal
direction, "-" for a negative normal direction, see Fig. 5.2). The locations, in which
the values are calculated, are characterized by an offset in x;-direction. In the finite
element model this means that every opposite nodal pair is coupled by constraint
equations corresponding to Eq. (5.14). This requires an identical mesh configuration
on opposite surfaces which is ensured using a special meshing strategy. £° represents
the applied strain tensor and has the following form for the three tension load cases

€9 00 000 000
000, (og,o], |000 (5.15)
000 000 00 &)

- X
surface X;  surface X; 1 2
X1

surface X7 X
3
\ . : .- .,
@ ] surface X
+ surface X,
Fig. 5.2 Scheme for notation surface X 2

of the different surfaces on the
RUC
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and for the three shear load cases

0 &),0 00 0 0 0¢&Y
e, 00|, (00&;), {000 |. (5.16)
0 00 0ed 0 €00

80 can have an arbitrary value but is chosen with an unit value.

From the six calculated load cases all effective coefficients can be extracted by
dividing the averaged stresses by the averaged strains considering every column of
the matrix in Eq. (5.13) separately. For the Calculation of averaged stresses 6;; and
strains &;; we take the averaged element values 0' and 8" respectively, which are
the arithmetic mean of Gauss point results, welght these values with the element
volume Vj, calculate the sum over all elements and divide it by the RUC volume

Vruc

6= E V 5.17

ij VRU k> ( )
< k

&i=— E & V. 5.18

ij VRUC = ijvk ( )

Then, for example from the first load case in Eq. (5.15) the following effective
elasticity coefficients can be extracted

etc. (5.19)

In case of a composite with a rhombic fiber arrangement the unit cell has the
typical shape shown in Fig. 5.1. But for this shape with the oblique coordinate system
w1, it is difficult to apply the above mentioned periodic boundary conditions.
The solution lies in extracting a rectangular cell which is rotated against the global
coordinate system by the half of the rhombic angle & (see Fig. 5.3). Assuming unit
length of rhombic edges the rectangular cell has the edge lengths

I = 2cos(%), (5.20)

- L

X
-
X,

Fig. 5.3: Rectangular RUC with local coordinate system (Wiirkner et al, 2011)
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. O
153 :2sm(E). (5.21)

Then all calculations can be made in the local coordinate system x§ and, if necessary,
the results can be transformed to the global coordinate system x;.

To calculate all effective coefficients of the elasticity tensor a three-dimensional
RUC is used shown in Fig. 5.4. Due to unidirectional embedded fibers the thickness of
the cell can be chosen arbitrarily and only one element in this direction is enough. 3D
standard elements (hexahedrons and pentahedrons) with quadratic shape functions
is used which provide sufficient accuracy with moderate mesh size like shown in
Fig. 5.4. Since all calculations are made with the finite element package ANSYS
many parts of model generation as well as extracting and processing results can be
automated using the included ANSYS parametric design language APDL.

5.4 Results

Various calculations are made to consider different aspects of the developed proce-
dure. First, for a validation results are compared with available values calculated by
the asymptotic homogenization method for the case of hexagonal fiber arrangement.
Furthermore calculations are made to study the change in the overall behavior of the
composite by varying the rhombic angle and keeping a constant fiber volume fraction
and then by varying the volume fiber fraction and keeping a constant rhombic angle,
respectively. Finally investigations are made by considering the two limit cases:
embedded air instead of fibers (porous media) and no inclusions (pure matrix).

For all calculations a glass fiber/epoxy composite with material properties for the
constituents given in Table 5.1 is considered. The fiber is considered to be elastic
isotropic. The matrix has viscoelastic isotropic properties. According to Sect. 5.2 the
necessary input values are the instantaneous Young’s modulus E, the Poisson’s ratio
Vo and the Prony series parameters. Here n¥ is 3 and n¥ is 0. That means 3 pairs of
the shear part and no values for bulk part are used. For the relaxation time range a
period of 60000 seconds is used. This is chosen in order to achieve the long-term
material behavior.

Fig. 5.4 Finite element mesh
of the RUC with rhombic
angle 45 ° and fiber volume
fraction 0.3
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Table 5.1: Material properties

Constituent E (GPa) v

Fiber 100 0.3

Matrix 3.606 (Ep) 0.4(vp) Prony series parameters i ° (s)  oF
1 9.6 0.03807
2 372 0.0458

3 9887 0.0668

For the validation of the presented homogenization procedure for rhombic cells
a comparison is made with results obtained from the asymptotic homogenization
method for the special case of hexagonal fiber arrangement (Cruz-Gonzélez et al,
2018). This arrangement is identical with a rhombic angle of 60 degrees. Hexagonal
fiber arrangement leads to transverse isotropic behavior of the composite. Hence
only 6 coefficients in the matrix of Eq. (5.13) are nonzero. From these coefficients
tangential (x] — x5 plane; index r) and axial (x} direction; index a) engineering
constants can be derived. The fiber volume fraction is fixed with Vip,, /Vruc =0.3.
Figures 5.5-5.10 show the six engineering constants over time as a comparison
between the presented method (FEM) and the asymptotic homogenization method
(AHM). A good agreement can be stated for all engineering constants. Although the
curves show differences in the low time region the percentage difference is not more
the 2%. All curves show the asymptotic behavior at the end of the chosen time range.

To study the influence of the rhombic angle different calculations are made by
varying the angle and keeping the fiber volume fraction constant. For arbitrary
angles the resulting behavior is orthotropic with respect to the local axes in Fig. 5.2.
This leads to 9 independent coefficients in the matrix of Eq. (5.13). Only selected
effective coefficients are considered for this study. Figures 5.11-5.16 show the results
over time for all coefficients of the main diagonal of the matrix related to the local
coordinate system. Four rhombic angles o are investigated: 45°, 60°, 75° and 90°.
The fiber volume fraction is kept constant with Ve, /Vruc = 0.3. For a = 60°,
the hexagonal case, an expected transversal isotropy can be recognized considering
the corresponding coefficients Cy1, Cy; (in-plane) and Css, Cgg (out-of-plane). The
coefficient C33 for the axial direction depends only on the fiber volume fraction in
correspondence with the simple rule of mixture and is nearly identical for all rhombic
angles. But for the other coefficients the typical differences for rhombic angles of
45° and 75° can be seen. This is caused by the effective orthotropic behavior of the
composite due to different fiber distances in the x| —x} plane. It can be seen for
instance in the case of 45° where the shear coefficient Css is lower and Cgg is higher
then the transversal isotropic curve (angle 60°).

In the next investigations the influence of fiber volume fraction for a constant
rhombic angle of 45° is studied. Like expected all effective coefficients increase with
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an increase of fiber volume fraction due to a higher stiffness in comparison to the
matrix phase. This can be clearly seen in Figs. 5.17-5.22.

The last consideration is dedicated to the limit cases. In the first case the fibers
are replaced by air. This leads to the simulation of a porous medium. In the RUC
the air is modeled as a phase with a very low Young‘s modulus related to the matrix
material. The second limit case is a homogeneous material consisting only of the
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viscoelastic matrix phase which is denoted in the figures with "monolithic". Figures
5.23-5.28 show selected effective coefficients of the elasticity tensor over time. In
addition to the limit cases the curves for a composite with 0.3 fiber volume fraction
and a rhombic angle of 45° are included in the figures for a better exhibition of
the tendency. The reinforcing influence of the fibers can be clearly observed. Like
expected the porous case show the lowest stiffness. On the other hand the achievable
effective stiffness of the composite depends mainly on the stiffness of the fiber in
relation to the matrix and on the fiber volume fraction. Furthermore, with varying
the rhombic fiber arrangement it is possible to construct composites which have a
different elastic behavior in two perpendicular directions in the x| —x} plane (see
also Figs. 5.11-5.16). The orthotropic in-plane behavior can be valuable for optimal
design of constructions.

5.5 Conclusions

This work is based on a former research of the authors in numerical homogenization.
Here an extension to viscoelastic composites is presented. Furthermore it is applied
to unidirectional fiber-reinforced composites with a rhombic fiber arrangement. The
developed models are verified by values calculated with an analytical homogenization
method. This has been realized for a special case of rhombic shape with an angle
of 60° which is identical with a hexagonal arrangement. The correctness of the
procedure can be stated by corresponding results.

Furthermore interesting points of the behavior by changing the rhombic angle,
fiber volume fraction and material composition are revealed. Especially in this work
it is shown that the former developed algorithms can be extended to time-dependent
material behavior like viscoelasticity to get the effective time-dependent coefficients.
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Chapter 6

Inner Resonance in Media Governed by
Hyperbolic and Parabolic Dynamic Equations.
Principle and Examples

Claude Boutin, Jean-Louis Auriault, and Guy Bonnet

Abstract This chapter deals with the modeling and design of inner resonance me-
dia, i.e. media that present a local resonance which has an impact on the overall
dynamic behaviour. The aim of this chapter is to provide a synthetic picture of the
inner resonance phenomena by means of the asymptotic homogenization method
(Sanchez-Palencia, 1980). The analysis is based on the comparative study of a few
canonical realistic composite media. This approach discloses the common principle
and the specific features of different inner resonance situations and points out their
consequences on the effective behavior. Some general design rules enabling to reach
such a specific dynamic regime with a desired effect are also highlighted. The paper
successively addresses different materials

e having different behaviours and inner structures as elastic composites, reticulated
media, permeable rigid and elastic media,

e undergoing phenomena governed either by momentum transfer or/and mass trans-
fer,
in which the inner resonance mechanisms can be highly or weakly dissipative,
in situation of inner resonance or inner anti-resonance.

The results related to different physical behaviours show that inner resonance requires
a highly contrasted microstructure. It constrains the resonant constituent to respond
in a forced regime imposed by the non resonant constituent. Then, the effective
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constitutive law is determined by this latter while the resonating constituent acts as
an atypical source term in the macroscopic balance equation. It is established that
inner resonance governed by momentum (resp. mass) balance yields unconventional
mass (resp. bulk modulus). Furthermore, inner-resonance in media characterized
by hyperbolic or parabolic dynamic equations can be handled in a similar manner,
leading however to strongly distinct effective features.

6.1 Introduction

This paper deals with the macroscopic description of inner resonance media, i.e.
media that present a Representative Elementary Volume (REV) in which dynamic
phenomena exist at micro-scale and lead to specific features of the overall behaviour
at macro-scale. Such an occurrence of a dynamic regime coexisting at both micro
and macro scales will be named "co-dynamics".

Such a "co-dynamics" regime is impossible in (nearly-)homogeneous media and
can occur only in heterogeneous materials with sufficiently contrasted properties.
This type of materials, or "metamaterials", are of prime interest for their atypical
properties, that are seemingly impossible to reach with classical materials. Indeed,
in presence of inner resonance, the description strongly departs from usual standard
dynamics. The critical discrepancy is that effective parameters, as apparent mass or
compressibility, are frequency dependent and can take negative or complex values in
a frequency range related to the inner-resonance frequency.

In mechanics, the first study dedicated to inner-resonance media was developed
in Auriault and Bonnet (1985) (in English Auriault, 1994) where the macroscopic
behavior of highly-contrasted bi-composite elastic materials were rigorously derived
through the homogenization method. It was shown that the local resonance within
the soft medium leads to a frequency dependent effective tensorial density. Then
waves are dispersive and frequency band-gaps occur around the series of local
resonance frequencies, see Fig. 6.1. Note that the idea of local resonating elements
was already considered by Maxwell and Rayleigh as an analogous mechanical system
for explaining anomalous dispersion (Maugin, 1995), Fig. 6.2.

This subject receives now a great interest and a wide amount of works are now
devoted to inner resonance in mechanics and acoustics. Among them, let us mention
the theoretical studies based on asymptotic and/or physical approaches (Zhikov,
2000; Avila et al, 2005; Babych et al, 2008; Chesnais et al, 2007; Milton, 2007,
Smyshlyaev, 2009; Krynkin et al, 2011) and experimental investigations as Fang
et al (2006); Liu et al (2000, 2005); Shanshan et al (2008); Sheng et al (2003), where
band gaps related to local resonance are evidenced. A good state of art in acoustic
metamaterials can be found in the recent review (Ma and Sheng, 2016). Among other
subjects, this review paper presents some papers studying the coupling between local
resonance and diffraction, which occurs when the elastic properties of inclusions are
of the same order as the ones of the matrix. A main consequence of this coupling
is that the effective behaviour is no more local in space, contrarily to the kinds of
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Fig. 6.1: Wave number versus angular frequency, inspired from Auriault and Bon-
net (1985). Hatched areas: stopping bands. Solid lines: dispersion curves on pass-

ing bands

behaviours studied thereafter, which correspond to "decoupled resonance". If the re-
cent advances provide a number of results devoted to particular cases, a general clear
and comprehensive understanding is still challenging. Furthermore, academic and
numerical studies investigate the features of the band-gaps of a great variety of 1D or
2D discrete lattice of rigid point mass connected by massless extension/compression
springs. Meanwhile this approach enables to identify some basic possible mecha-
nisms, the direct transposition of these studies to real materials is far from being
straightforward. Indeed, replacing the discrete mass and stiffness distribution by a
continuous 3D distribution can significantly modify the description, both quantita-
tively and qualitatively. The present paper aims at contributing to a synthetic picture
of the inner resonance phenomena derived by using the asymptotic homogenization
method (Sanchez-Palencia, 1980). The analysis is based on the comparative study
of a few canonical realistic 3D continuous media. Investigating different materials

Fig. 6.2 The Maxwell -
Rayleigh model of anoma-

lous dispersion, inspired from
Maugin (1995)
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and different mechanisms enables to disclose the common principles and the specific
features of the inner resonance situations and to point out their consequences on the
effective behavior. Some general design rules enabling to reach the "co-dynamic"
regime with a desired effect can also be established. In this view, we address:

e materials of different morphologies as elastic composite, reticulated media, per-
meable rigid media,

e undergoing phenomena governed either by momentum transfer or/and mass trans-
fer, in which the inner resonance mechanisms can be highly or weakly dissipative,
and is generally of mono-polar type but also of multi-polar type in the case of
inner anti-resonance.

In these different cases, we investigate situations where the materials, conveniently
represented by periodic media, experience a wave propagation with a long wave-
length A much larger than the characteristic size ¢ of the REV, or of the period. Thus
the condition of scale separation is satisfied and the homogenization method applies
(Auriault et al, 2009; Sanchez-Palencia, 1980). The macroscopic characteristic length
L of the wave field is defined by the reduced wavelength i.e. L= A /27w = 1/k(®),
where k(@) is the wave number at the considered frequency ®. Denoting by € the
small scale ratio parameter, we have

2ml
E= — =

1
k = - 1
(w)f <

L

This method enables to build up the equivalent macroscopic description by means
of multiple scale expansions in £-power. Recall that the macroscopic formulation
- namely the differential operator and the effective parameters - is derived from
the physics at the heterogeneity scale, in the condition of scale separation, without
any macroscopic prerequisites. Compared to the self-consistent approaches, also
known as "coherent potential approximation", where the structure of the macroscopic
differential operator is postulated a priori, this procures some decisive advantages
that will be exploited in the sequel. In particular it enables determining whether or
not a macroscopic description exists and therefore providing the domains of validity
of the macroscopic models. Throughout the study, we will show that:

e despite the different physical kinds of inner resonance, the phenomena present
common features that result in a similar formalism of the macroscopic description,

e the inner resonance may be reached either by introducing large contrasts in
the mechanical properties, or by a geometrical contrast in the morphology (e.g.
including plates or beams within the microstructure),
sparse co-dynamic regimes may exist in situation of inner anti-resonance,
considering resonance with low or high dissipation, drastically changes the nature
of the resonance effect,

e unconventional mass arises when the physics is governed by the momentum
balance, while unconventional compressibility arises when physics is governed
by the mass balance.
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The paper is structured as follows. In Sect. 6.2, the specificity of inner-resonance
media is presented in the general framework of the dynamic descriptions of hetero-
geneous linear media in comparison with situations where the contrast of physical
properties is moderate. Section 6.3 deals with the case of inner resonance in elastic
composites. Both situations of resonance and anti-resonance are analyzed. Section
6.4 is devoted to inner-resonance in poro-acoustics, considering the cases of reso-
nance in media characterized by "parabolic" and "hyperbolic" dynamic equations.
Section 6.5 addresses poro-elastic media in which momentum and mass balance are
coupled, leading simultaneously to unconventional stiffness and mass. The main
theoretical outcomes and practical perspectives are discussed in the conclusion.

6.2 Dynamic Descriptions of Heterogeneous Linear Elastic
Media Without and With Inner Resonance

The "co-dynamics" regime where waves of long wavelength interfere with a local
dynamic state departs from the dynamic regime usually considered in heterogeneous
media. To highlight this specificity it is of interest to briefly review the dynamic
descriptions derived by different approaches in situations where the contrast between
physical properties is moderate. In every case, the heterogeneous media is assumed
to present a Representative Elementary Volume (REV), assumption that is satisfied
considering either statistically invariant media or Q-periodic media (i.e. periodic
media characterized by a unit cell  reproduced periodically). In this section we
will focus on the elasto-dynamic case, but most of the comments also apply to
linear phenomena governed by hyperbolic or parabolic dynamic equations (see e.g.
Boutin, 1995; Auriault et al, 2005). The schematic diagram in Fig. 6.3, provides
a classification of the possible descriptions, according to the frequency range, the
periodic or non periodic nature of REV, and the contrast between physical parameters.

6.2.1 Long Wavelength Descriptions

In the long wavelength assumption, the homogenization method of periodic media
(Auriault et al, 2009; Sanchez-Palencia, 1980) is a rigorous upscaling method. The
macroscopic description of elastic composites is established on the assumption of
scale separation and on multi-scale asymptotic expansions in powers of the scale
ratio € = k(@)¢ =2n¢/A < 1, where k(@) denotes the wave number. By principle,
the upscaled description is valid for frequencies lower than the diffraction frequency
@, such that k(w,)¢ = 1.

Consider a composite with a 2-periodic elastic tensor a and density p. At the
leading order, under an harmonic regime at frequency ®, the homogenization yields
the classical elasto-dynamic formulation in which the effective elastic tensor A” is
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Fig. 6.3: Mapping of the dynamic descriptions, according to the normalized
wavenumber k(®)¢ and the contrast of the parameters. The descriptions apply
to periodic media (white and dashed zones) but also to non periodic media (left
grey triangles) characterized by a REV, at sufficiently low frequencies

the same as in statics, and the effective density R = (p) is the scalar mean density
of the composite. Physically, this description results from the fact that at the scale of
the period €, each constituent is in a quasi-static regime and moves with the same
rigid translation U ) at the leading order. This leads to the following representation,
where e(U (0>) stands for the macroscopic strain tensor

div(A? : eU")) + 0?*(p)UY =0 (6.1)

Thus, at the first order of approximation, the wave propagation is dispersionless. For
comparison with other descriptions one may also adopt the following alternative
formulation where (6(%)) is the mean stress on  and (p(®)) the mean moment
density:

| | aw [1EO) (a0 0 [ew®)
div((e®) =iw(p¥)  with <@<o>>>‘(o o)) (-wa“))

When the wavelength, is large but not very large compared to /, the leading order
model can be enhanced by considering the correctors associated to the high order
terms. Doing so one obtains the following equation governing the i’ corrector of
the mean cell motion U O _ O(e'U (0)) (see Boutin and Auriault, 1993, for the
developments and the analysis)
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The detailed analysis shows that the higher order terms describe the Rayleigh scat-
tering. In particular, the corrector of first order leads to a correction of polarization
varying according to @/ @y, the second order induces a dispersion of wave celerity
proportional to (®/®,)?, and the third order introduces a geometric attenuation
increasing as (®/w,)?, where @, is the diffraction frequency.

The upscaled equivalent medium is a generalized continuum media, characterized
by constitutive laws that are non-local in space. This relies on the higher gradients
of strains, associated to the effective elastic and density tensors of higher orders,

respectively A/ and R/. Furthermore, considering the total field U = Y=, U <l>, the
description reads

div ( Al . V’é(U)) + o’ (ZRj : v-fU) =0
j=0 Jj+2 j=0 Jj+1
Noting that the infinite sum of the terms with successive derivation can be considered
as the expansion of a convolution product, the above description can be rewritten
in the following condensed form expressed in terms of generalized stress S and
momentum density P:

div(S) =iwP  with (f,) - (’3 1%) . (fg{’} ))

where * stand for the convolution product. The enhanced description introduces
a dynamic effect at the period scale and improves the approximation of quasi-
static regime made at the leading order. Nevertheless, by construction, the period
experiences a regime of weak dynamics, and consequently the effects of the correctors
are of weak magnitude, i.e. |A —A°| < |A°|, and |R —R?| < RO.

The leading order and higher order descriptions have been established by assuming
implicitly that the contrast of the mechanical parameters of the constituents of the
composite are moderate i.e O(1) compared to the scale ratio € = k(®)¢, and also
that the morphology of the constituent in 2, do not presents geometrical contrast
as in Subsect. 6.3.5 thereafter. Consequently, the natural way to deviate from these
standard formulations is to remove these implicit assumptions as done in the next
sections.

Remark finally that in the long wavelength range, periodic materials and non-
periodic materials with REV show macroscopic behavior of the same nature (Auriault
et al, 2009), however, the solution is not reducible to well-defined problems on a
periodic cell in the case of a non-periodic medium.
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6.2.2 Short Wavelength Descriptions

In the short wavelength range, i.e. k(®@;)¢ > 1, or @ > @y, the wavelength strongly
interacts with the cell size. Then the description is of different nature for periodic
materials and non-periodic materials with REV, while, in both cases, a full dynamic
regime is observed at the local scale. Direct simulations based on multiscattering
approach can be performed. However the numerical cost is in general extremely
expansive. Theoretical formulations dedicated to periodic case, i.e. phononic crystals,
or non periodic cases are also available.

Periodic media at high frequency are usually named phononic crystals. They
are exactly described by the Floquet-Bloch theory (Brillouin, 1946), that provides
through the Bloch wave decomposition (Allaire and Conca, 1998) the equation of
dispersion E (k,®) = 0 which can be solved numerically. This approach describes
Bragg scattering, with dispersion and occurrence of band-gaps. The latter corresponds
to intervals of real frequency where the solutions of E (k, @) = 0 are purely imaginary
wave numbers. A wide amount of literature is devoted to this approach and the specific
behavior of phononic crystal is now largely studied from the first experimental
evidence presented in Vasseur et al (1998). However, meanwhile the Floquet-Bloch
theory gives a comprehensive description of wave fields with short wavelengths, the
fact that such wave fields may also present large evolution lengths is not directly
accessible by this approach. This question of large scale modulation of wave fields
with short waves can be handled through a revisited asymptotic method that have
been initiated by Daya et al (2002); Moustaghfir et al (2007) for periodic structures
and followed by the works of Craster et al (2010); Boutin et al (2012, 2014) for
3D elastic composites. Compared to the usual homogenization method, the main
change lies in the fact that the macroscopic variables are the amplitudes of periodic
eigenmodes of the cell (or multi-cell) instead of being the displacement field itself.
This induces significant differences in the nature of the up-scaled description. The
approach by modulation enables simple calculations of high frequency wave fields
based on a two-step procedure separating the periodic eigenmode of the cell (or
multi-cell) and the large modulation scale using the derived modulation equation.

Non-periodic media with REV have been widely addressed by Willis (2012).
In accordance with the statistic character of the REV, the method is based on the
ensemble average (denoted < . >) instead of the volume average (denoted (. )) used
in periodic homogenization (note however that both averages coincide in periodic
media). The developments yield a conservation equation expressed in terms of
averaged stress < 6 > and momentum density < p >. These latter quantities are
determined by non-local elasto-dynamic constitutive laws coupling the strain and the
velocity. This formulation reads

icer-wers o (2)-(50 52)- ()

The convolution operators & (®), Z(®), Z(®) and Z(®) involved in the con-
stitutive laws account for the dynamics at the REV scale. A main difficulty of this
approach lies in the determination of these operators. Note that despite the differ-
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ent context of application and the more complex constitutive laws, this description
presents formally some common features with the Rayleigh scattering description.
Recent developments (Nassar et al, 2016a,b) deal with the transposition of this
approach to periodic materials.

In the above descriptions, the alternative is that either the whole cell is in quasi-
static or weakly dynamic regime, or the whole cell is in dynamic regime. Thus
the specificity of the co-dynamic regime characterizing inner resonant media is not
captured. In fact, the inner resonance situation mixes some of the assumptions of
the low and high frequency regime which are usually incompatible. For this reason
a specific description is required. Indeed, whatever the physics in consideration, a
co-dynamics regime implies that in any cell one may distinguish

1) a part of the cell that acts as the long wavelength conveyor - and therefore
undergoes a quasi-static regime -, and in the same time and same cell,
ii) an other part that experiences a dynamic state.

Thus, in presence of long waves, the REV responds with "partial" non equilibrium
state at the local scale. This specific regime changes the fundamental assumption
usually considered in continuum mechanics applied to heterogeneous material. As a
consequence non conventional behaviors are obtained.

6.3 Inner Resonance in Elastic Composites

We investigate two types of inner resonant elastic media: bi-composites materials
made of constituents having contrasted stiffness and/or densities; reticulated media
made of a single material, for which the cell morphology presents a geometrical
contrast (i.e. containing beams or plates).

6.3.1 Requirements for the Occurrence of Inner Resonance in
Elastic Bi-Composites

Consider first a periodic bi-composite of period £ and characteristic period size ¢
made of two homogeneous constituents namely the € -constituent (denoted by index
¢) and the Z-constituent (denoted by index r), with uniform elastic tensors a. and a,
and constant densities p. and p;, occupying the domains . and 2, respectively (see
Fig. 6.4). The interface between Q. and €2, is denoted I" with unit normal n, exterior
to Q..

As stated in the introduction, in the frequencies range of interest the two con-
stituents experience distinct regimes at the cell scale. By convention, here and there-
after the %’-constituent will convey the long wavelength and then undergoes a local
quasi-static regime, while the Z-constituent experiences a local dynamic regime. In
other words, the wavelength A in %’-constituent is large with respect to ¢, while the
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Fig. 6.4: Period Q of a bi-composite elastic media. [llustration of the "co-
dynamic" regime

wavelength A; in Z-constituent is of the order of £. To achieve this, the € -constituent
will be systematically considered as connected, while the Z-constituent can either
be connected or dispersed. Hence, one has the following a priori estimates

_ A 1 |a | A 1 |ar|
L= lv=0(=)= —, /=!I . T /2 _0
et ( 2r ) w Pc ’ 2n 0] Pr (6) (62)

These requirements implies that a co-dynamic regime may be reached when

a;| pe 22
%% ~0(33) = 0(e?) 6.3)

Besides, the resonance of the Z-constituent will be enhanced if this constituent
partially traps the energy carried by the surrounding ¢’-constituent. The energy
storage is significant when the impedance of the Z-constituent is much smaller
than that of the %’-constituent (so that the incoming energy cannot escape and stays
trapped in Z-constituent). This leads to consider that

Vel o(e) (6.4)

Vlaclpe -

Combining relations (6.3)-(6.4), a "co-dynamic" regime is "naturally" expected when
the ©’-constituent is highly stiffer than the %-constituent, while their contrast of
density is moderate, i.e:

a
lad _ o2y and Pe—om 6.5)
lac| Pr
This case will be addressed in Subsect. 6.3.2.
Aside from this canonical case that favors the resonance, the %-constituent can "a
priori" also be set in resonance in situations of moderate contrast of impedance, i.e.
when



6 Inner Resonance in Media 93

\/la:|pr %
Vlaclpe M

This second case (6.3)-(6.6) that corresponds to a %’-constituent significantly stiffer
and lighter than the Z-constituent, i.e.:

(6.6)

|a | Pr -1
=0(e and —=0(e 6.7)
=0 =0

deserves also to be studied. It will be investigated in Sect. 6.3.3.
Finally, for completeness, the case of moderate contrast of stiffness and highly
denser Z-constituent, i.e.

|a| N

—0(1) and P =02
ac| Pe

could also be considered. However, as the impedance of the Z-constituent would
be significantly larger than that of the %’-constituent, it is expected that such media
would behave as an usual composite with an apparent mass dominated by that of
the denser constituent. Indeed, it will be shown in Appendix that this is actually the
case, and that this situation is not compatible with the occurrence of a "co-dynamic"
regime.

Note 6.1. By convention, in this paper we use the terms of high, significant or mod-
erate contrast when the ratio of parameters are of the order of O(¢*2), O(e*!) or
o(1).

6.3.2 Elastic Bi-Composites: High Contrast of Stiffness, Moderate
Contrast of Density

The situation of high stiffness contrast and moderate density contrast (6.7) corre-
sponds to that addressed in Auriault and Bonnet (1985); Auriault and Boutin (2012).
In that case O(a.) > O(a;) and p. = O(pr) and the ¥-constituent is connected.
Independently of the fact that the Z-constituent can be connected or not, the stress is
mainly carried by the %’-constituent. Thus the long wave is actually conveyed by the
% -constituent and estimates (6.2) clearly apply. For the sequel it is useful to recall
the main results in this canonical case.

In harmonic regime at angular frequency ®, the medium satisfies the Navier
equation in . and €2, with the continuity of stress vector and of displacement
on the interface I'. The time dependance exp(+i@t) simplifies by linearity and
is systematically omitted. Thus, the medium is governed by the following set of
equations
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div(c) = —0’pu  inQ (6.82)
6=a:e(u) inQ (6.8b)
(6.—0;)-n=0 onI’ (6.8¢)
u.—u. =0 onI’ (6.8d)

6 and u 2 — periodic (6.8¢)

where 0 is the stress tensor, e(u) is the strain tensor, and u is the displacement. The
elastic tensor a and density p take the values indexed by . and ; in the domains
Q. and €, respectively and similarly for ¢ and u. The homogenization process
consists in introducing two space variables, x and y = £~ 'x, (hence in replacing the
usual gradient by V, + 8‘1Vy) and to look for the displacement and other physical
quantities in the form of 2-periodic asymptotic expansions

u=u?xy) +euV (x,y) + e (x,y)+..., u?(x,y)Q — periodic iny (6.9)

Further, to properly account for the contrast of stiffness in the (x,y) formulation,
a rescaling of the elastic tensors must be considered. Since the overall stiffness is
dominated by that of the %’-constituent, a. is taken as the reference stiffness tensor,
and as such it is not rescaled. Now, by comparison with the reference tensor a. and
in accordance with the stiffness contrast |a;|/|a.| = O(€?) the elastic tensor of the
Z-constituent is consistently rescaled as £%a,. Thus, using the reduced wavelength L
as characteristic length, and considering in compliance with the continuity condition
on I that the displacements in both constituents are of similar order of magnitude
u. = O(u;), the (x,y) governing equations take the following scaled form

div(a. :e(u;)) = —0*pu.  in 2 (6.10a)

div(e’a, - e(u;)) = —0’pu;  in (6.10b)

(a.:e(uc) — €%a, :e(u;)) -n=0 onr I (6.10¢c)
u—u.=0 onl (6.10d)

u. and u; Q — periodic (6.10e)

6.3.2.1 Derivation of the Inner-Resonance Behavior by Homogenization
Introducing expansion (6.9) into the (x,y)-differential set (6.10) and equating the
terms with powers of € yield successive boundary value problems on the period.
e At the dominant order, the %’-constituent is governed by an elasto-static balance
equation with free boundary condition on the interface I, namely:
divy(a. : ey(ugo))) =0 inQ
(ac:eyw®))-ne=0 onl (6.11)

u£°>  — periodic
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Therefore, 2. experiences a periodic rigid motion at the leading order, and since
€. is connected, this rigid motion reduces to a translation. Thus

ul) =U O (x) (6.12)

This is consistent with a local quasi static regime of the %’-constituent.
e The following order leads to the classic elastic local problem in the % ’-constituent
forced by the macroscopic strain e, (U (0)), with free boundary conditions on I":

divy(ac : ey (") +e,U®) =0 in Q.

ac: (e,w) +e,U®)) -n=0 onT (6.13)
uﬁl) Q — periodic

Hence, at this order, the €’-constituent behaves locally as if the Z-constituent were
absent (or of zero stiffness). By linearity, the solution has the form below, where
fields x?4(y) are the real particular displacements solutions for unit macroscopic
strains, i.e. e,(U));; = (8,84 + 848;,)/2 (conveniently x (y) is the third order
tensor built from the vectors x7?(y) = x*(y)E/, where {E/, j = 1,2,3} denotes
the unit orthogonal vectors of the reference frame

(1 _ . (0) (1)
{ uc X):ex(UY)+U: (x) (6.14)

6&0) = (ac:ey(X)+ac) :ex(U(O))

e At the next order, the balance and boundary condition concerning both constituents
write
divy(6") + div,(6”) = —0?pU®  in Q.
O'gl) ‘n=(a;: ey(us()))) ‘n onIl 6.15)
divy(a; : e, (uEO))) = —a)zpru§0> in Q, .

Gﬁl) Q — periodic

After integration over €., and €2, using the divergence theorem, the Neumann
boundary condition on I" and the periodicity condition, it comes the macroscopic
relation, independent on y

div,(Ag : e (U?)) = —w*(pu'?)

€|
12|

_— U(°>+prﬁ/u£°>d9 (6.16)
Q

Let us introduce the following notations

1 1
.)~:—/.d!2, i=c,r, and . :—/.dQ



96 Claude Boutin, Jean-Louis Auriault, and Guy Bonnet
The effective elasticity tensor reads
Ay = (ac:e,(X)+ac). (6.17)

and is therefore defined independently of the mechanical parameters of the soft %-
constituent (but depends on its geometry). It presents the properties of symmetry
and positiveness classically established for elastic composites (Sanchez-Palencia,
1980). The notation A¢ for the effective elasticity tensor recalls that this tensor
results from the constituent 4, obviously with a correction due to the presence of
the Z-inclusions of negligible stiffness. Conversely, the effective inertia <pu(0)>
on the right hand side of (6.16) results from both constituents.

e To close the description it remains to express the mean inertia of the &-constituent.
For this, we re-consider the balance equations in €2, (6.10b) together with the
Dirichlet condition (6.10d) at the leading order on I".

divy(a; : ey(uﬁo))) = —wzpruﬁo) in ©,
u” =UOx) onTl (6.18)
uﬁo) Q — periodic

Consistently with the inner resonance regime, the Z-constituent at the leading order
experiences a dynamic regime forced by the rigid translation U ©) (x) imposed on its
boundary. The fields E? + a”(y) are the real particular solutions for unit imposed

displacements, i.e. U EO) = 6,-p (recall that {E?, p = 1,2,3} are the vectors of the

reference frame). By construction, the vectors &”, p = 1,2,3 are the solutions of :
divy(a; :ey(@f)) = —@’p.(EP + @) in £,
a’?=0 onl (6.19)
a’ Q — periodic

Denoting by & the second order tensor build from the vectors a” = aﬁ’ E/, one
derives by linearity that

It is necessary for the next steps to identify the specific features of the tensor &. From
(6.19) we deduce directly the low and high frequencies limits, that read

a’ - 0 and a? — —EP,
0—0 W—eo

respectively. However, to thoroughly highlight the features of the frequency depen-
dent fields a”(y, ®), let us consider the eigenvalue problem associated to (6.19)
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divy(a::e,(9)) =—1¢ inQ
=0 onl (6.21)
¢ Q — periodic

The elastic tensor a; being symmetric and coercive, this problem presents a discrete
series of eigen values A; > 0 and corresponding orthonormal eigenmodes ¢’ such
that (¢7 - %), = /. Then, using the modal decomposition of fields a”(y, ) the
expression of tensors ¢(y, ®) and (@), are obtained in the form

I J J oo J J
aly,0) =Y ¢Q§7<¢>r; (@), =Y M; oy =/p: (622)

Expressions (6.22) show that (@), is a second order real and symmetric tensor that
depends on

i) the frequency,
ii) the elastic properties, density and geometry of the ZZ-constituent only.

This implies that (@), is isotropic if the Z-constituent presents at least three or-
thogonal plans of symmetry. Moreover (@), is not bounded, changes its sign at the
eigenfrequencies @ = @; of modes such that <¢J>r # 0, and presents continuous
variations between [—eo, +o0] in the interval of two consecutive poles [y, @;+1].

Note that the decomposition is realized on the subset of modes "activated " by
the forced uniform motion U(?) in the sense that only modes such that <¢J )+ # 0 are
involved in (a),. Modes ¢~ of zero mean value, i.e. (¢’ ); = 0 (as antisymmetric
modes in a symmetric domain) are not activated by the uniform motion of the %-
constituent. Consequently, the eigen frequencies w;+ of modes ¢J " are not poles of
(@);. Thus, as the {¢’ } are not involved in the local response, the macroscopic
description ignores this subset of modes in the whole frequency range, including the
vicinity of the @y+. An example of such a strong reduction of modes involved in the
computation of < & > is the case of spheres. The eigenfrequencies of spheres are
numerous (related to a double infinity of integer indices), but only one set of only
two integers is involved in the computation of < & > (Bonnet and Monchiet, 2017).

Finally, reporting the result (6.20) in (6.16), the effective behavior at the leading
order reads

(AL OV — g2 U
{dlvx(A,g.ex(U ) o°p(w)-U™, (6.23)

p(@) = (p)+pr(t(®)):
This description combines conventional elasticity, characterized by the elastic tensor
Ay of the material made of the ©-constituent only, and by a non conventional
mass density associated to the frequency dependent density p(®). The equivalent

formulation
div((6 D)) = io(p®) (6.24)

with
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() _ (Acg 0 > e (U©)
) 0 io((p)+prla(®)))) \ .iwU©®
highlights the difference with the Rayleigh scattering regime, as here the constitutive

laws are local in space and frequency dependent, instead of being non-local in space
and frequency independent.

6.3.2.2 Comments

The key point to obtain (6.24) is that the stress sustained by the Z-constituent is
of one order smaller than the one prevailing in the 4-constituent. This is a direct
consequence of the scale separation assumption as shown by the quite basic following
arguments. Consider a period of face area S and denote symbolically |So| and [Soc|
the ingoing and outgoing stress fluxes on opposite faces, and |I"o;| the stress flux
induced by the Z-constituent. By hypothesis a regime of long wavelength L > ¢
is considered, thus (|Socz| — [Soc1])/|So1| = £/L = O(¢). In addition, as the %-
constituent is in quasi static regime, its equilibrium at the scale of the cell implies
that |Socz| = |Soc1|+ | o;|, and consequently |I"o;|/|Soc1| = O(€). Thus, the stress
external to the resonating domain is not significantly modified by the small stress
induced by the resonating domain. In other words, the long-wavelength condition
automatically ensures that at the leading order

i) the motion in the stiff @-constituent is governed by ordinary ("low frenquency")
elastic equations,

ii) the resonating domain acts as a source term in the balance equation within the
cell.

As at low frequencies (@); — 0, then p(®) — (p)I, and the description (6.24)
tends to the usual elasto-dynamic formulation of porous composites. However, the
description (6.24) can not be obtained by performing homogenization with the usual
assumption of moderate stiffness contrast i.e. |a;|/|ac| = O(1), and then taking
the limit of the model by making |a;|/|a.| — 0. Doing so, the same elastic tensor
A4 would be derived but the unconventional inertia would be missed. The reason
is that, considering a moderate contrast leads to assume (at least implicitly) that
the wavelengths in both constituents are of the same order, and throughout the
homogenization process, to keep this physics at the limit € — 0. Thus, by construction
such a description cannot capture the inner resonance effect, and this effect will be
necessarily missed even if a contrast is introduced a posteriori in the macroscopic
model. Conversely, when the contrast is introduced ab initio, the co-dynamic regime
is explicitly formulated and preserved at the limit € — 0. The fact that the alternative
approach is erroneous in dynamics (meanwhile correct in statics) highlights the fact
that the homogenized model is only valid in the framework of the assumptions made
at the microscopic scale. If one physical phenomena is disregarded it cannot be
retrieved afterwards. Consequently, performing on the macroscopic model a passage
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to the limit on some parameters is only valid if it does not introduce an effect which
is not accounted for in the initial assumptions.

The non conventional feature involved in description (6.24) lies in the fact that
the effective density p(m)

i) is of tensorial nature,
ii) is not bounded and depends on the frequency.

It changes of sign in the vicinity of the series of poles w;. This arises from the inner
resonance of the Z-constituent domain that experiences a non uniform, frequency
dependent motion. Hence, its effective inertia takes large positive or negative values
in the vicinity of its eigen-frequencies.

As a consequence, the material shows a significant dispersion of the wave velocity
with band-gaps when p () takes negative values. The specificity - and practical
interest - of these band gaps is that they appear in a frequency range where the wave-
lengths that would propagate in the ‘€-constituent, in absence of the Z-constituent,
are much larger than the period size. These band gaps are tunable with the %-
constituent properties and the geometry of its domain. For simple geometry, exact
analytical expressions of the effective density are available. For periodic bi-stratified
media made of isotropic materials, the effective density tensor is orthotropic with the
classical mean value along the direction perpendicular to the layers, and takes the
following value along the directions in the plane of the layers (Auriault and Bonnet,

1985):
B 4 (tan(®™) ). . b [P
P(@)=({p)+pry (w* 1>, o _w?/ftr

where ¢ and /; are respectively the thickness of the period and of the resonating layer
(of shear modulus p;). One may refer to Auriault and Boutin (2012) for contrasted
tri-stratified media, and to Bonnet and Monchiet (2015) for cylindrical or spherical
composite resonant domains.

The description (6.24) also departs from usual homogenized models by the fact
that the macroscopic kinematic descriptor of the media, U () is not the mean average
of the displacement over the cell, but is the uniform displacement of the €’-constituent.
This is a signature of a non-local behavior as already pointed out by Lafarge and
Nemati (2013) in the context of the acoustics of porous media.

In the time domain, due to the frequency dependence of p(®), a convolution
product (denoted by ) appears in the inertial terms and the macroscopic equation

reads 277(0) 277(0)
2U PR
: . 0)y) —
div(Ag e (U)) = (p) 5 P — (6.25)

The modal decomposition of the local fields (), provides an alternative manner to
account for the inner-resonance effects without introducing convolution products. It
consists in introducing the instantaneous amplitudes of eigenfunctions as an infinite
set of additional variables {b’(x,#)} which can be considered as the microscopic
descriptors of the media. This leads to the following formulation, which is equivalent
to (6.25):
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. 82u(0) ) a2bJ
lex(Agg : ex(U(O))) = <p>? +Pr W<¢J>ra
J=1

(6.26)
;o 9% 22U
Voj+—5=—57" r
or? or?

Thus, both the macro variables U'?) (x, ) and the microscopic descriptors 5’ (x, ) can
be determined in parallel by solving the coupled linear differential set governing their
time/space evolution. Such a formulation is usual in the framework of generalized
continua where the microstructural effects are "condensed" into additional variables
governed by specific equations of evolution (Eringen, 1968; Maugin and Metrikine,
2010). The formulation in terms of microscopic descriptors may be convenient for
computational methods as it

i) avoids the difficulties associated to the numerical treatment of convolution prod-
ucts, which requires to store the data of the preceding steps of calculation,

ii) does not require multi-scale mesh, as for example using the ’square’ finite element
method (FEM?2).

In fact, local fields are "pre-integrated" owing to the calculation of the eigenmodes
of the resonant domain. Furthermore, the relevant number of eigenmodes required
for the calculations can be adapted according to the frequency spectrum content.
Inner resonant media differ from "standard" generalized continua, mainly by the
fact that the time evolution of each microscopic descriptor is ruled by differential
equations of the second order, with a forcing term related to the macroscopic variables.
Consequently, the descriptors can formally be determined as a function of the macro
variables and their combination constitutes the kernel of the convolution product.

The above analysis can be extended to more complicated microstructures. Dif-
ferent cases have been investigated in Auriault and Boutin (2012). For instance,
the regularizing effect of slight damping in case of viscoelastic Z-constituent can
easily be studied in the same framework. One may also replace the homogeneous
Z-constituent by a composite (or nonhomogeneous) inclusion. In this latter case,
asymmetric morphology may induce also resonance in rotation.

Experimentally the co-dynamic regime has been actually evidenced in elastic
composites, for instance in Liu et al (2000). In fact, a great variety of inner resonant
materials can be contemplated by following the principles identified in the present
simple case:

i) the contrast of properties imposes that the effective constitutive law is determined
by the stiffer constituent, and that the resonant domain responds in a forced regime
imposed by the motion of the stiff constituent,

ii) in turn the mean inertial force of the resonant domain acts as a source term in the
macroscopic balance equations.

Such situations of "partial" non equilibrium local state would result in a non-

conventional behavior characterized by frequency dependent inertia parameters.
Despite the local dynamics, the existence of the long wavelength enables to pre-

vent the use of much complicated theoretical approaches based on multi-scattering



6 Inner Resonance in Media 101

formulation (that, furthermore, can only be handled numerically). In fact, one of the
most practical interests of inner resonant materials lies in the fact that their constitu-
tive parameters can easily be determined by two independent local problems, one
related to the %’-constituent only, that corresponds to standard periodic homogeniza-
tion problem in statics, and one related to the Z-constituent only, that corresponds
to standard well-posed dynamic problem in a finite domain. This is a significant
advantage for designing such materials with unconventional effective properties.

6.3.3 Elastic Bi-Composites: Significant Contrast of Stiffness and
of Density

In this section we consider the second case defined in (6.7), i.e. |a;|/|ac| = O(¢)
and p;/p. = O(e~1). As previously the %-constituent is connected so that the stress
is mainly carried by the %’-constituent. However, due to the density contrast, the
macroscopic wavelength in the media does not match the wavelength in the %-
constituent. Two estimates can be proposed - each corresponding to a different
frequency range - according to the magnitude of the effective density.

Let us first investigate the situation where the effective density is dominated by the
larger value p;, in accordance with the physical intuition. In this situation, the overall
stiffness is dominated by that of the € -constituent while the density is dominated
by that of the Z-constituent. As previously, to properly account for the contrast
of parameters, their rescaling must be considered. The dominating stiffness a. and
density p; are taken as reference values, and as such are not rescaled, while, compared
with these reference values and in accordance with the contrasts |a;|/|a.| = O(€)
and p;/p. = O(g™") the elastic tensor of the Z-constituent and the density of the %-
constituent are consistently rescaled as €a, and £p.. Hence the scaled (x,y) governing
equations read in that case:

div(ac : e(uc))

div(ea, : e(u;)) = —a)zprur in Q,

—’epeue  in Q

(ac:e(u.)—¢ca;:e(u;))-n=0 onl (6.27)
u—u.=0 onI’
u, and u. Q — periodic

As in the previous case, we successively obtain for the %’-constituent, at the leading
order u£°> =y (x), and at the next order, that the local elasto-static set (6.13) is
unchanged so that the solution (6.14) still apply. However the ZZ-constituent is here
governed by the following elasto-static problem with a Dirichlet condition on its

border:
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divy(a; : ey(u§0>)) =0 in&

u” =UOx) onTl (6.28)
Y O — periodic
The obvious solution is u\” = U©) (x). Then it is easy to see that the medium is

described by a conventional elasto-dynamic formulation
div,(Ag : e (U)) = —w*(p,), - UV

where the effective elastic tensor Ay is defined in (6.17) and the effective density
is nothing but the mean density. It is clear that this situation does not corresponds
to inner resonance as both constituents experience a quasi-static local regime. This
implies that this conventional modeling applies at frequencies sufficiently low so that
the local dynamic effects can be disregarded at the leading order.

6.3.3.1 Co-Dynamics Regime at Anti-Resonance Frequencies

Let us still consider that |a;|/|a.| = O(€) and p;/p. = O(e~'), but investigate now
the less intuitive situation where the effective density is estimated of the order of
the smaller value p.. This assumption is supported by the fact that, as seen in the
previous section, the effective density can indeed be very different from the mean
density.

This assumption is formulated by considering that p. is the reference value, and
therefore is not rescaled, while the density of the Z-constituent, is consequently
rescaled as €' p;, while the elastic tensor of the % -constituent is rescaled as previ-
ously as €a,. Hence the scaled (x,y) governing equations read now

div(a. :e(uc)) = —0°peute  in Q,
div(ea; : e(u;)) = —0’e 'pu,  in Q
(ac:e(u.)—ea;:e(u;)).n=0 onI (6.29)
u—u.=0 onI’
u, and u. Q — periodic

e At the dominant order, the ¥’-constituent and the Z-constituent are each governed
by the same sets as previously, namely (6.11) and (6.18). Thus we have,

u? =UO0x):; W =00 +a(y,0) U andthus 6\° = (a, : e,()) - U

(6.30)

where a(y, ) is given by (6.22). Again this result is consistent with a local quasi

static regime of the %’-constituent and a dynamic regime of the Z-constituent at
the leading order.

e The following order for the 4 -constituent leads to a specific local problem where

the %’-constituent experiences a static regime while it undergoes the stresses
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exerted by the Z-constituent in dynamic regime

divy(ac : (e,u) +e,UD) =0 inQ.

(ac : (e, (")) +e(U®))-n= (@ :eyw”))-n onT 6.31)

(1)

u; Q — periodic

where uEO) is given by its expression in (6.30) that involves the second order tensor
a. The integration of the balance equation over £2., combined with the use of the
divergence theorem, the Neumann boundary condition on I" and the periodicity
condition, provides the necessary condition for the existence of a solution. This
condition expresses the overall balance and implies that

Q/ar ey ur /O‘r -nds =0

Now integrating the momentum balance

(0)

divy(a : e, (uﬁo) ) = —’puy” in

and making use of the divergence theorem provides
1
E/O'ﬁo) -nds = —a)2<pru£0)>r =0.

(0)

According to the expression of u; ’ this requirement leads to
o’prl+a), - UY =0

As o # 0, such a situation is generally impossible except for specific frequencies
where

i) the tensor (I + &), is singular and

ii) the polarization of the macroscopic motion U(®) is constant and belongs to the
kernel of (I + a);. Note that if (@), is isotropic, the singularity arises for the three
directions of the space and then the orientation of U(%) can be arbitrary.

Hence, in the following we will assume the isotropy of (), (thus (@), can be
replaced by a scalar) that enables less restrictive conditions.

To sum up, when (@), is isotropic, the set (6.31) can only have solutions in the
vicinity of specific frequencies such that the effective inertia of the Z-constituent
vanishes at the considered order i.e.

€|
2]

I+a), = (a)y+—1=0(e) (6.32)

The requirement (6.32) is consistent
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i) with the a priori estimate of the macroscopic wavelength based on the lower
density p. and

ii) with the fact that the co-dynamic regime imposes that the stress flux induced
by the Z-constituent is of one order smaller than the stress prevailing in the
‘¢’-constituent.

(0)

In fact meanwhile the stress tensor 6’ is actually of zero order, its mean value on
I is of one order smaller. This can correspond to dissymmetric modes that may be
seen as a dipolar source (instead of mono-polar source as in the previous case studied
in Sect. 6.3.2). According to the above described properties of {@),, and assuming
its isotropy, this possibility occurs for a discrete series of frequency @k localized in
between each pole, i.e. wx < g < Wk 1. Such frequencies Wg will be designated
thereafter as anti-resonant frequencies.

Now, focusing on the close vicinity of one of anti-resonant frequencies @, the
local elastodynamic problem (6.31) is forced by e, (U®)), and ul” = I+a)UO.

Accounting for the linearity, we can express the fields ug) and Géo)

{ug”: x0):eUO)+E(y,ax)- U +UM (x)
ol = [a:e,(x)+a]:eUY)+(a:e, (&)U

in the form
(6.33)

where x(y) is the same real tensor as in the previous section, see (6.14). The second
order tensor & (y, @) is built from the particular fields €7 (y, @x). These fields are
the frequency dependent solutions corresponding to unit values of the macroscopic
motion i.e. U®) = EP. From (6.31) the corresponding local problem reads

divy(ac: (e,(§7)) =0 inQ
(ac: (ey(&") -n=(a;:ey(a”))-n onT (6.34)
g’ Q — periodic

In other words, the first order fields €7 (y, @) are the elasto-static displacements in
the €’-constituent that balance the stresses (a : e,(@?”)) - n exerted on its boundary
by the Z-constituent, this latter undergoing a dynamic regime forced by the uniform
motion E? of the ¥’-constituent at the leading order.

e At the next order, the balance and boundary condition concerning both constituents
write
divy(o¢ o )) + leX(O'C )=—azpU?  in Q.

(D) ()

(o O ' 'n

‘n=
(6.35)
divy (o (>)+lex( o )= —prrur
0'5” and Gé) Q — periodic

Integrating over €., and €2, and using the usual integral transformation, yield

div.((6©)) = —@% () U + pr(uM),) (6.36)
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From the expression of 69 in both constituents, the mean stress term <0'<0)>
reads:
(6") =4y :e,UY)+Dg, - UV

The effective elasticity tensor Ay is the same as in the previous case, see (6.17).
The new elasto-inertial tensor D, is defined by

Dg, = (a :e.,,(§)>c+ (@ :ey()):

As & and & are of second rank, the tensor D(,N)K is of the third rank.
Furthermore note that, as one considers a, constant then

(@ :ey(a))r =arley(@)): =0

because
(2e,(@)); = /a®n+n®ads —0
r

since & = 0 on I'". Thus, in that case the last term of Dg,K vanishes and
DcBK = (ac :ey(é»c

e To close the description it remains to express the inertial term pr<u£1))r that

appears in (6.36). The field ugl) is determined by the following balance equation
in Q, together with the Dirichlet condition on I".
. 0 . 0 ~ .
divy(a; : (ey(ugl)) +ex(u§ ))) +div,(a; : ey(uﬁ )))) —a)lz(pruﬁl) in Q;

)

uﬁl) Q — periodic
(6.37)
According to the expressions of uél) this local elastodynamic problem is forced
by ex(U(O)), U and U, Thus, by linearity we have:

ugl) inl”

! = 05,(v.0x) e U”) + {5, (v.0x) U +UY + a(y, ) - UY

and as (at order 1)

(@) (@) + g1 =0

W)y = (B ex(U®) + (L 5,00

where (05, ) and ({4, )r are tensors of rank three and two respectively. The field

uﬁ” is the first corrector of uEO):

The contribution (85, ). : ex(U )y results
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i) from the non uniform motion X : e,(U (0)) imposed by the deformed stiff
constituent on the boundary I', and

i) from the volume forces accounting for the variation at the macroscopic scale
of the local elasto-dynamic field «;

the contribution (£, )r-U () results from the non uniform motion & -U® im-

posed by the deformed stiff constituent on the boundary I".

Remark that as the fields constituting @, &, and § are determined at an anti-
resonance frequency, one may reasonably infer that they remain bounded as well
as the effective tensors in which they are involved. However, the proof would
require a detailed analysis that is beyond the scope of this paper.

Finally, focusing on the vicinity of the anti-resonance frequencies @y, the equiva-
lent macroscopic behavior at the leading order reads

div, (A(g 1e,(UY) +Dg, 'U(0)> = - (5@ U0 +p(85,) :ex(U(O))) ;

~ Q.
p(T)K = pC ||Q||I+pr<C(7)](>r

(6.38)
The behaviour is finally expressed by using two real valued third order tensors,
Dg, and (§ @y )r» which are not null only if the material is not isotropic. This
result is not inconsistent with the assumed isotropy of the second order tensor
(), because the isotropy of (@), is strictly related to the mechanical properties
and geometry of the Z-constituent. At the contrary, the third order tensors are
related to the mechanical properties and geometry of both constituents and can be
anisotropic.

6.3.3.2 Comments

The description (6.38) is non conventional for the following reasons:

It is only valid in the vicinity of the discrete spectrum of anti-resonance { @k },
and the effective parameters, other than the elastic tensor Ay, differ for each of
these frequencies,

The classic elastic constitutive law is complemented by an elasto-inertial term
involving the { @k }-harmonic motion itself (not the strain). As the effective tensor
Dg, is of third rank, it is necessarily anisotropic when non null, and it vanishes
provided that the cell presents three orthogonal planes of symmetry,

The effective density is of one order smaller that the mean density and the effective
inertia involves a non-local term associated to the strain. The comment made on
Dg, also applies to the third rank effective tensor (85, ).

The description (6.38) can equivalently be expressed in terms of mean stress (0'(0>>
and momentum density (p(?)) as follows:

divi((6'")) = i ")
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with
@ _ [ A (z e.(U)
() Ptk (05, )r  Pay, ) \-ioxUY

It is worth mentioning that qualitatively, and physically, this formulation takes a
form close to the one proposed in Willis (2012). However, a detailed comparison is
far to be straightforward as the present equations are derived in the framework of
largely contrasted periodic media (instead of random moderately contrasted media).
The macroscopic descriptor U 0) corresponds to the motion of the non-resonant
domain of the cell (hence it differs form the mean value overall the cell), and the
effective tensors are local and frequency dependent (instead of being non-local, i.e.,
convolution operators). It should be noticed that in the present case, the effective
parameters can actually be determined from the knowledge of the microstructure.

Note finally that non-zero third rank coupling tensors yield a wave equation (with
frequency dependent coefficients) involving classical space derivatives of the second
order but also non-classical derivatives of the first order. These latter may induce a
non-symmetry for waves propagating in opposite directions at the anti-resonance
frequencies, i.e. corresponding to an effect of "acoustic diode".

6.3.4 Synthesis on the Resonant and Anti-Resonant Co-Dynamic
Regimes

The main learning of the two above sub-sections can be summarized as follows:

e The occurrence of a co-dynamic regime requires strong contrasts of properties,
and imposes that the stress flux induced by the resonating constituent is of one
order smaller than the stress flux conveyed by the other constituent.

e The simplest case is that of a soft resonant domain in a much stiffer matrix,
both having similar densities. In that case, the macroscopic constitutive law is of
standard elastic type, and the inner resonance phenomenon emerges as a specific
inertial source term in the stress balance. This mechanism presents a strong
analogy with what is sometimes designed as mono-polar resonance. Consequently,
this situation leads to an unconventional density, and a conventional elasticity. The
description is valid on a wide frequency range, provided that the scale separation
is respected.

e A more complicated case is that of a soft and dense resonant domain in a stiff
and light matrix. Then a co-dynamic situation is possible only in the vicinity
of the anti-resonance of the Z-constituent. This is a similar situation to what is
sometimes designed as bi- or multi-polar resonance. Such a phenomenon leads
to an unconventional elastic constitutive law and inertia, both including elasto-
inertial terms. However the degrees of these additional differential operators are
different from that of the conventional one. Consequently, due to the nature of the
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description itself, it is not possible in this context to speak of equivalent media
having possibly negative elasticity or density.

Compared to the co-dynamic regime at resonant frequencies, a co-dynamic regime
at anti-resonant frequencies requires much more severe and specific conditions to
be observed experimentally. In particular, in presence of slight damping, condition
(6.32) of vanishing inertia of the Z-constituent at the leading order may be difficult to
reach, specially as the resonant domain has a larger density than the one of the other
constituent. The existence of anti-resonance lies on the combined interaction of, at
least, two resonant modes. Thus, specific resonant systems with an unique degree of
freedom (as a simple spring-mass system) cannot exhibit this type of behavior. Note
also that the practical design of such materials governed by antiresonance is more
complicated than materials governed by resonance, since, meanwhile the discrete
anti-resonant frequencies can be determined from the knowledge of the resonant
domain only, the effective properties result from coupling effects between the Z-
and %’-constituents. These coupling effects require (even in the simple case where
the coupling tensors Dg, and (@5, ); vanish) the resolution of the three successive
local problems related to ¢, &, and §. For this reason we focus in the sequel on the
co-dynamic regime governed by resonance.

6.3.5 Reticulated Media: Inner Resonance by Geometrical
Contrast

We illustrate in this subsection the possibility of realizing inner resonance media
with a single material, by introducing geometrical contrasts in the morphology, such
contrasts being achieved by the presence of beams or plates at the microscale. We
follow here the work of Boutin et al (2010); Chesnais et al (2007) on reticulated
structures experiencing global vibrations, where inner dynamic phenomena due to
local resonance in bending have been evidenced.

Consider a periodic reticulated medium (Fig. 6.5-left), whose cubic period of
side length ¢ simply consists of bars located on the edges, rigidly connected at
their extremities (the cubic corners). For simplicity, we investigate the configuration
where the bars are all identical, have a square section of side length @ and are made
of the same material of Young modulus E, Poisson’s ratio v and volumic mass
p. Further, we consider a morphology that presents a strong geometrical contrast.
This strong geometrical contrast is achieved by assuming that the bars are slender
enough, i.e. a < £, to be described locally as Euler-Bernoulli beams. Hence the
axial (compression) and transverse (bending) harmonic behaviours of the bars are
described by the following set of equations (s stands here for beam axis coordinate, u
the axial displacement, N the normal force, § = a? the beam section; v the transverse
displacement, M the bending momentum, 7 the transverse shear force, and I = a* /12
is the geometrical inertia of the beam section)
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Fig. 6.5: Examples of reticulated elastic media. Left: 3D media made of a cubic
array of identical beams; Center: 2D square array of beams ; Right: 2D square
array of identical plates (courtesy of Logan Schwan)
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and consequently the compression and bending wavelengths are respectively

A 1 |E Ay 1 JEI
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Note that the validity of the beam model requires that the bending wavelength is
significantly larger than the size of the section, i.e. Ap > a. Consequently, at a given

frequency, the compression wavelength is much larger than the bending wavelength,
since from the above expressions (for rectangular sections):

Ac 1 [S V3 Ac ApV3
— == — hence — =

= 1
A2 2V 1 ma Ay Ta >

This corresponds to the fact that the beams present a much higher stiffness in
compression than in bending.

In the considered reticulated medium, let us focus on the propagation of compres-
sional waves in the direction E| coinciding with one axis of the cubic period. In that
case, we can distinguish the axial bars oriented along E that sustain a compression
state and the transversal bars oriented at 77/2 that undergo bending. Because of the
compression/bending stiffness contrast, the stress is mainly carried by the axial bars
that play the role of the conveying % -constituent. Thus, the macroscopic wavelength
is the compression wavelength, which is much larger than the period size ¢ in the
assumption of scale separation. To reach a co-dynamics regime, the transversal bars
should play the role of the resonating Z-constituent, i.e. they should be in dynamic
bending regime. In other terms the bending wavelength should be of the order of
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magnitude of the period size ¢. Consequently, the requirements for a co-dynamic
regime are

Ac . Ay

L=0(=—)= l; =0/
(55 =€ 7z~ 00
i.e., according to the expressions of A and Ay
1 E 1 Ed?
O(——=) =20 O(———)=t"
- p o> 12p

These relations impose that the inverse of the slenderness parameter of the beam is
of the same order as the scale ratio:

a
Note that with this geometry, the transverse force Ty, in the bended beams and the
axial force N, in the compressed beam can be assessed as:

dM at v

— —— —0(E%—
i, ~OELp)

du u
Ne = ESdTC = O(Eazi) ;T

Thus, since the axial motion u of the compressed beams oriented along E is of the
same order of magnitude as the transverse motion v of the bended beams oriented
along E, we have

T, o a’L

N, ( 1203 )
Consequently the transverse force 7;, in the bended beams is actually one order
smaller than the axial force N, in the compressed beam.

Such a reticulated medium can be analyzed by the asymptotic homogenization of
periodic discrete media (Caillerie et al, 1989; Tollenaere and Caillerie, 1998). The
detailed process is not reported here, and the reader can refer to Chesnais et al (2007,
2012); Hans and Boutin (2008) for a further insight. The principle consists in two
steps: first the reduction of the media to an exact discrete representation, then the
homogenization process itself.

The discretization consists in taking advantage of the integration of the beam
constitutive laws in harmonic regime to express explicitly the forces and couples
at the endpoints of a bar as functions of the kinematic variables (displacement and
rotations) at these endpoints. Then, as the equilibrium of each beam is already
achieved, the balance of the medium exactly reduces to the balance of forces and
moments applied by the bars connected to a given node. These equations take the
form of a finite difference set and provide the discrete description of the medium.

The homogenization process transforms these discrete descriptions into an equiv-
alent continuum model. The nodal variables are identified to the values taken at the
discrete locations of the nodes by continuous functions. These latter are looked for
in the form of asymptotic expansions in powers of €. Now, according to the scale
separation assumption the nodal variables vary slowly from one node to the next.
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Therefore, the finite differences can be re-expressed in terms of Taylor’s series of
the continuous functions, which introduces the macroscopic derivatives. Reporting
the expansions in the discrete description of the medium yields a set of differential
equations from which the macroscopic continuous description is derived.

In the present case this method leads successively to show that:

o at the leading order the normal forces in the axial bars is simply given by

du O (x)
EST )
consistently with the fact that the transverse force in the transversal bar is of one
order smaller,
e the transverse bars undergo a forced dynamic regime in bending resulting from
the motion imposed at their extremities by the axial bars,
e the balance equation of normal forces accounts for the conventional inertia of the
axial bar and the non-conventional inertia of the transversal bars.

Thus the derived 1D equation governing the compressional wave reads

d _du© -
T E— ) =-0’p(0)U",
(6.40)

~ . . 0 2\* [EI
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The frequency dependent complex valued function y(®*) accounts for the non
uniform motion within the transverse bars. As for the composite, this motion can
be expressed on the basis of the bending modes of the bar. Alternatively, an explicit
expression of the motion can be derived by integrating the beam equation with the
conditions of imposed motion and no rotation at its extremity. Taking the average
over the beam length yields:

N 2
V(0%) = 75 com(var) £ cot(Va)

The function y(@™*) presents the same general features as the tensor I + (@), involved
in the bi-composite description: it is not bounded and changes of sign in the vicinity
of the poles @; of y, that corresponds to the odd bending modes of the transversal
bars, with clamped conditions at their extremities (the average displacement of
even bending modes is null and consequently these modes do not participate to the
effective density). Similarly to bi-composites, the negative effective density leads
to dispersive waves and band-gaps in the frequency range where, in absence of
inner resonance, the wavelength would be much larger than the period size. This
effect results from the morphology instead of the interaction between contrasted
constituents. Another significant difference between bi-composites, is that the role
of conveying and resonating elements are not determined a priori but depends on
the direction of the wave: they switch for compressional wave propagating in one or
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other of the two material orthogonal directions. Experimentally, inner resonance by
bending has been reported in reticulated beams by Baravelli and Ruzzene (2013).

Many variants of this simple example based on bending/compression contrast are
possible. For instance, considering the 2D arrays described in Fig. 6.5, a description
similar to (6.40) applies, except that p = p (1 + y(@*)) and, in the case of plates, E
has to be changed in to E /(1 — v?). With parallelepipedic cells the inner-resonant
frequencies will be different in the three directions of propagation if the three families
of orthogonal bars are different. One may also add localized masses to tune the
bending resonance. Considering thomboidal cell enables oblique orientations of
inner-resonance effects, bars can also be replaced by plates, etc. ..

Despite the strong morphologic difference the same principles and consequences
identified for bi-composites apply to reticulated media: the effective elasticity is
conventional while the effective density is non-conventional. This relies on the
fact that, in the momentum balance equation the "flux" is the stress, which is not
influenced by the inner resonance effect, while the inner resonance effect is comprised
in the source term of inertial nature. This leads to infer that, in the same framework,
to obtain the reverse situation, and particularly non-conventional stiffness, one should
consider phenomena governed by a balance equation such that the elastic effect
appears as a source term instead of a flux. This is the case in acoustics of porous
media where the flux of mass is balanced by the fluid compressibility. This topic is
investigated in the next section.

6.4 Inner Resonance in Poro-Acoustics

The linear acoustics in homogeneous rigid porous media of porosity ¢ is classically
described by the mass balance equation of the gas and the constitutive equation
governing the gas flow, namely the dynamic Darcy’s law (Auriault, 1980; Smeulders
et al, 1992). This formulation applies in a frequency range such that the wavelength
is significantly larger than the characteristic pore size. In harmonic regime at angular
frequency w, the set of differential equations reads (with the convention that each
variable is multiplied by exp(+it)):

div(v) = —iao%p7
__Ho) g
v 0 p

(6.41)

where p is the acoustic pressure perturbation around the equilibrium pressure P°, and
v is the mean gas flux, i.e., following the usual convention, the flux averaged over the
elementary representative volume (the flux averaged over the volume of the pores
reads v/¢). By simplicity we assume that the thermal effects at the pores scale can
be disregarded so that the wave propagation occurs in adiabatic regime. Thus the gas
bulk modulus 8 (compressibility B~!) reads B = yP¢. This simplifying assumption
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can be removed by introducing a complex frequency dependent coefficient (@)
varying from the isothermal value ¥(0) = 1 at low frequency to the adiabatic value y
at higher frequencies, see Lafarge et al (1997). The gas viscosity is 1) and £ (o) is
the frequency dependent dynamic permeability tensor. At low frequencies, the flow
in the pores is driven by the viscosity, then

H(0) — K
0—0
where the real-valued intrinsic permeability K is of the order of magnitude of
O((poressize)?). At high frequencies, the flow is driven by the inertia, then

no¥ (o) b i0p©a

where p€ is the gas density at equilibrium and €., is the real-valued high frequency
limit of the tortuosity tensor whose order of magnitude is O(1). The two regimes are
delimited by the Biot transition frequency @), for which the low frequency viscous
component within the balance of momentum equals the inertial component, so that

ne

=
|K[p°|eter

Despite the differences in the conservative and dissipative phenomena we can
highlight the formal similarity with the elastic case (6.8a)-(6.8b). The analogous
variables and parameters in elastic/porous problems are: vectorial solid elastic mo-
tion/scalar gas pressure, i.e 4 — —p ; tensorial elastic stress/vectorial gas flux, 6 —v
; solid density /gas compressibility p — ¢! ; fourth rank elastic tensor/second
rank tensor related to permeability a — i®.¢ /1. The fact that the "force-type" and
"kinematic-type" variables play an inverse role in the two cases, results from the
different nature of the balance equation that expresses the balance of momentum (for
elastic media) or the mass balance (for porous media).

Similarly to elastic composites, the description (6.41) can be recast in terms of
mass flux v instead of stress and, instead of momentum density, condensation b
(following the Lafarge and Nemati, 2013, formulation) as follows:

*)

Y

Combining the mass balance and the dynamic Darcy law, and eliminating the flux
leads to the wave equation satisfied by the pressure:

div <x£m) ~Vp) Jria)%p =0

Then the acoustic wavelength is
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Consequently, for @ < @y the wave is of diffusion type and
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while for < @. the wave is propagative and
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We investigate hereafter two types of inner resonant rigid porous media saturated
by air. First, we analyze double porosity media, i.e. a periodic bi-composite porous
medium with a large contrast in permeability (instead of elastic stiffness) of the
constituents (Auriault and Boutin, 1994; Boutin et al, 1998; Hornung and Showalter,
1990; Venegas and Umnova, 2011). This case leads to a local dynamic state governed
by parabolic equations. Second, porous media with embedded Helmholtz resonators
are examined. In that case the required effect is introduced by a geometrical contrast
coming from the resonator morphology. This configuration enables to reach a local
dynamic state governed by hyperbolic equations.

6.4.1 Double Porosity Media: Inner Resonance by High
Permeability Contrast

Consider a double porosity medium, i.e., a periodic bi-porous composite analogous
to the elastic bi-composites studied in Subsect. 6.3.2. By simplicity we keep the
same notations: the ¢’-constituent of porosity @. and the Z-constituent of porosity ¢
occupy respectively the domains . and £, interfaced by I". They present uniform
but highly contrasted permeability tensors J£ . and J£, respectively, and are saturated
by the same gas of identical viscosity, density and compressibility at equilibrium,
n, p¢ and yP¢, respectively, see Fig. 6.6. We keep also the convention that the &-
constituent conveys the long wavelength and then undergoes a local quasi-static
regime, while the Z-constituent experiences a local dynamic regime. Therefore, the
% -constituent must be connected and much more permeable than the connected or
dispersed Z-constituent, i.e. O(K.) > O(K;).

In co-dynamics regime the wavelength A, in %’-constituent is large with respect
to £. As a consequence of the permeability contrast, the mass flux is mainly carried
by the ¥-constituent. Thus the order of magnitude of the macroscopic length L is
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Fig. 6.6: Double porosity media
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while, the requirement of a dynamic regime in the Z-constituent at the period scale
implies that

2
—0(0) ie. % - 01)1|¢_J£;2| (6.42)

Consequently a co-dynamics regime can be reached when the contrast of permeability
tensors is:

o\ ng

A+ e SR
——=0(=)=¢xK1 6.43
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Note that as the gas compressibility is identical in both constituents the condition
(6.43) involves the permeability ratio only. Hence, in poro-acoustics there is no anal-
ogous of the case of significant density contrast encountered in elastic composites.
If the Darcy flow in both constituents is in inertial regime (i.e. ® > @, and
® > o) the condition (6.43) simplifies into

la:|

= >1
|

which is impossible to reach since the tortuosity |ot.| is a dimensionless factor O(1).
However, (6.43) can be fulfilled provided that the Darcy flow in the low permeability
Z-constituent is in viscous regime, i.e. ® < @y;. Then, we will consider in the
following that J¢'; = k(1 + O(€)), so that, at the leading order, we can approximate
¢ by the real intrinsic permeability k. Consequently, the frequency range of
interest as defined by (6.42) is
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Bl
o=0(w), o= 2

In compliance with the continuity condition on I", the pressure in both constituents
are of the same order of magnitude p. = O(p;). In accordance with the permeability
contrast (6.43), the overall permeability is dominated by that of the %’-constituent
which is taken as the reference value. Then, compared to this reference value, the
permeability of the %-constituent is rescaled as €2 ;. Thus, taking L as the char-
acteristic length, the re-scaled governing equations accounting for the permeability
contrast take the following form

L
C
B
diV(EZ% -Vp) = ia)ﬁpr in Q,,
n B
v (6.44)
22 Vp)n=0 onT,

diV(JZC -Vpe) =io in Q,

(%
n

-Vp.—¢

pr—pe=0 onl,

pr and pc Q — periodic

6.4.1.1 Homogenized Behavior

The homogenization process of this differential set is close to the one developed in
elasticity.

e At the dominant order, the €-constituent is governed by a static balance equation
with free boundary condition. Therefore, consistently with a local quasi static
regime of the €-constituent, at the dominant order, the pressure is uniform,

e The following order leads to a classic local problem of conduction in the %-
constituent with zero flux boundary conditions:

div, (f (V,p) ¢ VXP(O))> =0 inQ,

H
c. (Vypﬁ” + VXP(O)) m=0 onT, (6.45)
n
(1) . ..
De Q — periodic
Hence, at this order, the %-constituent behaves as if the %-constituent were
impervious. By linearity we have
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=6(y) V.P" + PV (x),

where fields 89(y) are the real valued particular solutions for unit pressure gradi-
ent, i.e. VXPl-(U) = Jj4.

At the next order, the balance equation and the boundary conditions concerning
the €’-constituent write

divy, (") + div, (") = —iw % PO i@,
v£l>-n:—ﬁ~vyp£0)~n onl, (6.47)
n
vél) Q — periodic

Integrating over 2., and using the usual integral transformation and the Q-
periodicity yields

. Ky P || 1 ©)
div. _.pr<0>> po_ 1L Vo) ndl (6.48)
( n B @] |sz|< )

where the effective dynamic permeability K is independent of the (weak) perme-
ability of the Z-constituent, which, at this order, appears as impervious

Ky=(H:.-V,(0)+H)

To express the boundary flux term in (6.48), we focus now on the leading order
problem that governs the response of the Z-constituent

Kr o (0 ¢r ,
div Vi) =i in Q,
y( Tl y ) ﬁ
pg()) Q — periodic

that, as expected, describes a local dynamic regime with Dirichlet condition.
However, since k; is real valued, the dynamic phenomena is of parabolic type.
Indeed, the mass transfer ruled by the viscous permeability is balanced by the gas
compressibility. This induces a transient diffusion of pressure in the Z-constituent.

By linearity, the pressure pﬁo) takes the form

! =P+ L(y.0)P"

the pressure field 1+ {(y, ®) is the real particular solution for unit imposed
pressure, i.e. pO) — 1, and is therefore the solution of:
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divy(% V) = iw%(l ¢ inQ

£—0 onl (6.50)

¢ Q — periodic

Let us identify the features of the function {. From (6.50) the low and high
frequencies limits read

-1
cw:)OO and ijm

The frequency dependence of field { is established by considering the eigen value
problem associated to (6.50)

divy(% V)= -Ay  inQ

w=0 onl (6.51)

v £ — periodic

The permeability tensor K, being symmetric and coercive, the problem (6.51)
presents a discrete series of positive eigenvalues and corresponding orthonormal
eigenmodes {A;, ¥’} such that (y’.yX), = §;x. Then, the expressions of { and
(&), are derived by modal decomposition and read

o ¥ ay) - (Vo (y) AB
C(yaw):ZTr; <C>rzz%§ W) =
=1 ——1 J=1 ——1 9
0} i
Hence, (), takes complex values and varies continuously without poles nor zero
values (for @ > 0), from ((0)), =0at @ =0to ({ (o)), = —1 when @ — 0.
o Finally, following the same procedure as for elastic media, we derive the macro-
scopic description:

( (0)
div.( Ky v.PO) = iwp—,
n B(w) (6.52)
L L(sadesial )
B(w) B ] '

The description combines conventional dynamic Darcy flow, characterized by the
complex permeability tensor K¢ of the material made of the €-constituent and
impervious Z-constituent, and by a non conventional compressibility associated
to the frequency dependent density bulk modulus B(®). The formal similarity
with elastic composites (6.24), is obvious when the description is rewritten in the
form of conservation equation, involving the mean mass flux (v(*)) and the mean
condensation (b(*)):
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Ky 0
(0) . (0)
dive (V) = iw(6®)  with (EZ(O)D - _ Z : (V;(Ig) )
B()

6.4.1.2 Comments and Generalization to Other Diffusion Phenomena

As suggested by the elasto-dynamic/poro-acoustic analogy, instead of obtaining a
frequency dependent density, one obtains here a frequency dependent bulk modulus.
However, the different hyperbolic or parabolic nature of the local problems leads to
different physical effects, meanwhile the similarity in the formulations, see (6.23)
and (6.52). As further similarities, note (i) that conversely to standard poro-acoustic
models, the pressure P(*) (that plays the role of the displacement in elastic compos-
ites) is not the mean pressure of the cell, but that prevailing in the %’-constituent,
and (ii) that the description (6.52) relies also on the fact that the flux pulsed by the
Z-constituent is of one order smaller than that carried by the % -constituent.

The effective bulk modulus B(®), as ({(®)),, is complex valued and varies
continuously without singularity according to the frequency. Due to the dissipative
character of the "parabolic resonance", instead of the conservative character of hyper-
bolic resonance, there is no resonance-singularity for a series of specific frequencies,
but a wide-band effect centered around the frequency of the fundamental mode

Blx:|
ne )

o ~ o, =0(

Consequently no band-gap occurs, yet a significant increase of dissipation appears
around ;. This latter frequency is tunable by playing either on the permeability
value and/or on the size of the Z-constituent. Since the local problem (6.50) is scalar,
the determination of the effective complex modulus can be achieved analytically for
simple geometries. For example, if the Z-constituent is a sphere of diameter R made
of an isotropic media of intrinsic permeability k; one has:

1 coth(View*) 0] : B
(C(w)) + (iw* o ) 0} o, wi o &2

Assuming in addition that the flow within the @-constituent is dominated by
viscosity, then K is real. Therefore, transposed in the time domain, the macroscopic
description becomes

i I& (0)y — l Oc| Q| + ¢r] €] oP) opP©
div,( 1 V.PY) = B Q] 5 +(C)r = 3 (6.54)

The convolution product introduces a memory effect. As in elastic composites, the
convolution can be "replaced" by the introduction of an infinite set of microscopic
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descriptors of the medium {4’ (x,t)} associated to the modal decomposition of {.
The equivalent coupled linear differential set of (6.52) enabling the resolution in
parallel of the time/space evolution of the macroscopic pressure P(0) (x,t) and of the
microscopic descriptors b’ (x,t) reads:

Ky o ooy L[ 9]+ ¢i| Q] PO & o
div,( 0 V.P )_ﬁ 2 5 +1§:1 9 (v ],

ov'  op©
J - =
b’ w5+ o1 < 3 l}/J>r

(6.55)

The parabolic inner-resonance description (6.52) has been confirmed experimentally
(Olny and Boutin, 2003): measurements realized on double porosity materials show
the high absorption performance of such materials and the tunability of the frequency
range of high dissipation.

In the poro-acoustic context a co-dynamic regime with anti-resonance cannot be
reached for two reasons: firstly, as the gas is identical in the two pores networks,
no compressibility contrast can be introduced, secondly, the complex term (1 + ),
never vanishes whatever the frequency is. Similar developments and outcomes can
be obtained for other dissipative phenomena governed by parabolic equations. For
instance, the same conclusions were established more than 30 years ago in Auriault
(1983) dealing with double conductivity in thermal transfer. In that case the physical
analogs of the pressure, the mass flux, the permeability and the compressibility
become respectively the temperature, the heat flux, the conductivity and the specific
volume heat capacity (in standard notation pc). Then the effective double conduc-
tivity media present a complex frequency dependent specific volume heat capacity,
associated to a non uniform temperature field in the low conducting Z-constituent.
One may also mention molecular diffusion in double porosity media that leads to
Non-Fickean diffusion process (Auriault and Lewandowska, 1995), or situations
mixing diffusion and mass transfer.

6.4.2 Embedded Resonators in Porous Media: Inner Resonance by
Geometrical Contrast

We consider in this section a bi-composite porous medium in which the Z-constituent
is governed by an elasto-inertial dynamics of hyperbolic nature. To realize this, one
may think about introducing in the pores matrix cavities significantly larger than the
pores size. However, the resonance of sufficiently regular cavities occurs when the
acoustic wavelength is of the order of magnitude of the size of the cavity. This is not
compatible with a co-dynamic regime since the acoustic wavelengths in the matrix
and in the resonating cavity would be of the same order. To overcome this difficulty,
we can modify the resonance of the cavity by introducing a geometrical contrast in
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its morphology. This is performed by considering Helmholtz resonators, periodically
embedded in the porous %’-constituent (Boutin, 2013), see Fig. 6.7.

6.4.2.1 Helmholtz Resonator

An Helmbholtz resonator €2, is made of a ’chamber’ with rigid and impervious wall
connected to a constricted duct Q' of length ¢/ = O(f) which is open toward the
outer porous medium. This specific morphology presents a geometrical contrast
(Fig. 6.7) between the section |s| of the duct and the one of the chamber whose order
is O(£?). As a consequence, a particular dynamic regime occurs where the mass and
stiffness effects are uncoupled since the inertia is localized in the duct in which the
mass of the gas moves almost as a rigid body, while the stiffness is localized in the
chamber where the gas is almost uniformly compressed. This situation corresponds
to a spring-mass system and departs significantly from standard resonances where
the mass and stiffness are distributed in the whole cavity.

The chamber spring k and duct mass m are straightforwardly given by
k = B |s|*/|| and m = p¢|Q’|. Hence, the eigenfrequency fy = @y /27 of the
resonator reads (C¢ = \/3/p¢ is the sound velocity in air):

kK C* arenired L
m= == 5= =00(——)
m 0 Is| Is|

Since |s|/#*> < 1, then § > (. Consequently, the resonance occurs at a fre-
quency much lower than the diffraction frequency of the periodic medium, namely
wy = C°/6 < wy = O(C?/¢). Note that this latter estimate of @, assumes that the
flow regime in the porous matrix is dominated by inertia and thus the sound celerity is
of the order of C°/,/&., = O(C®). In other words, at the Helmholtz eigenfrequency,
the reduced wavelength in the porous matrix is A /(27) = O(C¢/ay) = O(6) > ¢
hence, both requirements of scale separation and co-dynamics regime are fulfilled.

The classic undamped response (dis