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Foreword

Gérard A. Maugin born at Angers

Gérard A. Maugin

(France) on December 2, 1944, mar-
ried to Eleni Zachariadou in 1978,
passed away in Villejuif (France) on
September 22, 2016, 7 p. m.

He had retired from the University
of Paris VI since 2010. His longstand-
ing scientific activity in Continuum
Mechanics and Continuum Physics is
well known in the Community of Me-
chanics. In these fields he enjoys a
well-established reputation. His inter-
ests covered almost all disciplines of
Continuum Mechanics and his stud-
ies have been addressed fundamental
problems of mechanics and electro-
magnetism and applications as well.

One of his first papers (1965) is concerned with The Race Tidal Power Plant, a
topical subject in the current engineering applications. A few years later he published
a series of papers in the Comptes Rendus de l’Académie des sciences, Paris (1970-71),
on the macroscopic description of magnetic media in the relativistic framework. His
striking versatility in scientific research, which emerged since the very beginning of
his career, cannot be unnoticed. In April 1971 he defended his PhD dissertation thesis
on micromagnetism, supervisor Prof. Cemal A. Eringen from Princeton University.
The Princeton University Press has published the thesis with the title Micromagnetism
and Polar Media, 1-294, (1971). Four years later, in May 1975, Prof. Maugin achieved
his “habilitation” (Doctorat d’Etat en Sciences Mathématiques) in Paris, supervisor
Prof. Paul Germain de l’Académie des sciences.

By 1975, Gérard Maugin already had a ripe scientific curriculum studiorum
in Mechanics and Physics: 45 papers published in the most well known scientific
journals of mechanics and mathematics (Ann. Inst. Henri Poincaré, J. of Physics, J.
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viii Foreword

of Mathematical Physics, General Relativity and Gravitation, J. de Mécanique and
others).

His favourite topics in this period are the behaviour of electromagnetic materials
in the relativistic framework and in the Galilean approximation as well. Specifically,
the behaviour of deformable dielectrics, ferro-magnetic and ferri-magnetic bodies
are examined and explored in such frameworks.

His training in relativity and in electromagnetism presumably developed in his
mind a specific sensitivity toward the mathematical description of Continua with
coupled-fields, Continua with structures and/or Microstructures.

In 1980 Gérard Maugin published the paper The method of virtual power in
Continuum Mechanics: Application to Coupled Fields, Acta Mechanica, 35, 1-70,
(1980). The energetic approach therein proposed represents one of the most powerful
methods for describing complex materials from the viewpoint of continua. The
method also provides the proper tools, with which to attack problems of structured
continua, both, from the theoretical viewpoint and from the standpoint of applications.
The method of virtual power, such as expounded in the aforementioned paper, is
formulated in its most general form and is applied to electromagnetic materials in
their various aspects (thermo-elastic dielectrics with polarisation gradients, dielectrics
with quadrupoles, ferromagnets, liquid crystals in external electromagnetic fields,
et cetera). This contribution of Prof. Maugin stands as a referential point to many
searchers in continuum mechanics.

Wave propagation was also one of his favourite topics of interest. To this topic
he devoted his attention and his studies since the very beginning of his studies. Due
to the interesting results achieved in applied problems of wave propagation, he was
awarded by a scientific prize, the Prize of Mechanics Doisteau-Blutet of the French
Academy of Sciences in 1982. His interest in wave propagation never ceased nor
decreased in the subsequent years, even when his main efforts were focused on
other fields. As a result of the expertise that he had acquired in this field, Gérard
Maugin was invited to deliver a course on Physical and Mathematical Models of
Nonlinear Waves in Solids, in Udine, at the International Centre for Mechanical
Sciences (CISM), in 1993. Springer-Verlag will publish the lecture notes of this
course in the series CISM Courses and Lectures. Afterward, he also published the
book Nonlinear Waves in Elastic Crystals, Oxford University Press (1999).

This specific attention to the dynamical problems in continua is often transferred
to his graduate students. Some of them investigated the possibility of “soliton-
propagation” in structured materials, under his advice. Interesting and unexpected
results are shown in evidence by their studies, with the help of numerical techniques.

Gérard Maugin not only provided his students with an excellent professional
training in Continuum Mechanics and Physics he also transferred to his students and
co-workers enthusiasm in research along with motivations and scientific curiosity.
These qualities represent the primary source of his prolific scientific activity.

An impressive number of papers and many books and monographs (published by
Springer-Verlag, McGraw-Hill, Elsevier, Oxford University Press UK, Cambridge
University Press UK) emerge from his Curriculum and numerous awards and honours.
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A detailed list can be found on the website:
http://www.dalembert.upmc.fr/home/maugin/.

Gérard Maugin was a member of the editorial board of many scientific journals,
among them
• International Journal of Engineering Science from 1976 to December 1995,
• Wave Motion since 1986,
• Journal of Thermal Stresses,
• Journal of Technical Physics of the Polish Academy of Science,
• International Journal of Applied Electromagnetics and Mechanics - one of its

founders in 1990,
• Applied Mechanics Reviews - Associate Editor since 1985,
• Journal of Non-equilibrium Thermodynamics,
• Egyptian Journal of Mathematics,
• Archives of Applied Mechanics (formerly Ingenieur-Archiev),
• Yugoslav Journal of Mechanics,
• Archives of Mechanics of the Polish Academy of Science,
• ARI - Associate Editor since its creation 1997,
• Proceedings of the Estonian Academy of Science since 1997,
• Mechanics Research Communications - one of the five Editors since July 1999,

and
• the Marocain Revue de Mécanique Appliquée et Théorique.

He held a membership in scientific societies (in most of the cases as member of the
executive committee or of the advisory board)

• Society of Natural Philosophy (SNP), USA,
• Society of Engineering Science, (SES), USA, Life member,
• Society for Industrial and Applied Mathematics (SIAM), USA,
• American Physical Society (APS), USA,
• American Mathematical Society (AMS), USA,
• Acoustical Society of America (ASA), USA,
• Gesellschaft für angewandte Mathematik und Mechanik (GAMM), Germany,
• International Society for the Interaction of Mathematics and Mechanics (ISIMM)

- Member of the Executive Committee 1986-1990, 1997-2001,
• Société Française d’Acoustique (SFA), France,
• Association Française de Mécanique (AFM), France, and
• EUROMECH Society (European Society of Mechanics),

and was appointmented as consulting editor (for Springer, John Wiley & Sons,
Kluwer, Oxford University Press) or as expert for research contracts and grants (in
USA, Canada, UK, Belgium, France and other countries). In addition, he acted as
a Series Editor of the CRC Series on Continuum Modelling and Discrete Systems
(CRC, Boca Raton, Florida, USA) and Applied Electromagnetics and Mechanics
(Elsevier, then I.O.S. Press, The Netherlands).

He was a visiting professor and visiting scientist at Princeton, Belgrade, Warsaw,
Istanbul, at the Royal Institute of Technology in Stockholm, at the TU Berlin, Rome,
Tel Aviv, the Lomonosov University, Kyoto, Darmstadt and Berkeley. In 2001 he



x Foreword

received the Max Planck Research Award, was the 1991/92 Fellow of the Berlin
Institute for Advanced Study, and in 2001 received an honorary doctorate from
the Technical University of Darmstadt. In 1982 he received the mechanics Prize of
French Academy of Sciences and in 1977 the Medal of the CNRS in physics and
engineering. He was a member of the Polish Academy of Sciences (1994), of the
Estonian Academy of Sciences and was awarded an honorary professorship by the
Moscow State University. In 2003, he received the A. Cemal Eringen Medal.

I would like rather to emphasise his natural attitude as searcher and as teacher.
This attitude combined with his skill in finding the proper (and often the simplest)
mathematical tools, through which to expound and to clarify the physical nature of
the phenomenon under consideration.

The so-called Configurational Mechanics or Material Mechanics is the “novel”
field, to which Gérard Maugin devoted his main interest during the last decades.
He initiated the search and the studies of configurational forces in elasticity, being
concerned with the elastic energy-momentum tensor, a notion introduced by Eshelby
in a few seminal papers in the fifties. It is not difficult to show that the Eshelby tensor
naturally applies to defective materials and in fracture mechanics. For instance, based
on this tensor, one is able to recover all known invariant integrals around a defect,
including the celebrated J-integral around the tip of a crack. In addition, fracture
criteria can be (and indeed, are) properly extended to elastic dielectrics and to elastic
magnetised materials.

The early studies of Gérard Maugin and others in this field are also concerned with
inhomogeneous materials. Specifically, Maugin and others re-proposed the Eshelby
tensor in finite elasticity, basing on Noll’s notion of homogeneity and uniformity.
Such an extension of the Eshelby tensor shows in evidence important physical proper-
ties and relevant geometrical features, which are hidden in the linear framework. All
these features eventually address the notion of configurational force. Gérard Maugin
and others suddenly realised that the notion of configurational force confers to the
Eshelby stress tensor a deeper physical meaning. They also realised that the notion
of configurational (or material) force could not be confined to the in-homogeneities
in the elasto-static framework. Hence, the important role of this force was enquired
in dynamics. One of the relevant results is the natural relationship of the material
force with the so-called material-momentum, or pseudo-momentum. Such a result
also represents a turning point for the introduction of the so-called configurational
mechanics, which now stands on firm bases. In addition, configurational mechanics
is also shown to be the natural framework for thermodynamical transformations, such
as solid-phase-transitions.

The notion of configurational force becomes even more powerful in complex
materials and materials with structures. Based on this notion, Gérard Maugin (with a
second author) contributed to disentangling the following quarrel in liquid crystals
(Int. J. Engng. Sci., 33, 1663-1678, 1995): as to whether the Ericksen stress tensor
should be regarded as related to a configurational force or to the classical traction.
The point is that the Ericksen tensor for liquid crystals has the form of an energy-
stress tensor, just like the Eshelby stress. Hence, one could be tempted to incorrectly
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identify the one with the other. It is worth noticing that the quarrel involved Ericksen
and Eshelby themselves, along with Kröner and other prominent people.

Eventually, the interest arises in discriminating configurational forces from traction
in the more general context of structured continua. This interest becomes a crucial
need in the case of electromagnetic materials. In this regard, it is worth recalling
that Eshelby was initially inspired by the Maxwell stress tensor of electromagnetism.
The latter however, though possessing the form of an energy-stress, is undoubtedly
related to the classical traction. In order to avoid misunderstandings, one envisages the
existence of two meaningful energy-stress-tensors in continua and, more specifically,
in electromagnetic materials. The introduction of the material energy-stress (namely,
the Eshelby tensor) provides a novel standpoint, which allows one to enlighten
unclear issues or rather obscure aspects of electromagnetic materials. One of these is
the proper form of the electromagnetic momentum. Basing on a criterion established
by Gérard Maugin and others, one is able to distinguish between momentum and
pseudo-momentum or crystal-momentum, in the language of Solid State Physics.
These themes are still nowadays open to further developments. New applications of
these ideas are proposed from time to time in the community of continuum mechanics,
in which a steadily increasing interest is recorded on this subject.

It should be noted that Gérard Maugin delivered his knowledge and new research
results immediately to the PhD and post graduated students. One of his loveliest
places for lectures was the International Center of Mechanical Sciences (CISM,
Udine, Italy), where he presented not only the aforementioned course on wave
propagation. He was involved, for example, in the following activities:

• Non-Equilibrium Thermodynamics with Application to Solids (coordinated by
W. Muschik in 1992): lectures on "Non-Equilibrium Thermodynamics of Electro-
magnetic Solids",

• Nonlinear Waves in Solids (coordinated by A. Jeffrey and J. Engelbrecht in 1993):
lectures on "Physical and Mathematical Models of Nonlinear Waves in Solids",

• Configurational Mechanics of Materials (coordinated by R. Kienzler and G.A.
Maugin in 2001): lectures on "Elements of Field Theory in Inhomogeneous
and Defective Materials" and "Material Mechanics of Electromagnetic Solids"
(together with C. Trimarco),

• Surface Waves in Geomechanics: Direct and Inverse Modeling for Soils and
Rocks (coordinated by K. Wilmanski and C.G. Lai in 2004): 6 lectures on waves
on interfaces, in thin layers on linear media, on surfaces with curvature, grating
and roughness, nonlinear surface waves, propagation of surface soliton packages,
interactions with nonmechanical fields,

• Generalised Continua and Dislocation Theory. Theoretical Concepts, Compu-
tational Methods and Experimental Verification (coordinated by C. Sansour in
2007): 4 lectures on defects, dislocations and the general theory of material
inhomogeneities,

• Mechanics and Electrodynamics of Magneto- and Electro-Elastic Materials (coor-
dinated by R.W. Ogden and D.J. Steigman in 2009): 7 lectures on the basics of
electromagnetics in matter, with emphasis placed on the notions of electromag-
netic forces, momentum and stresses, on the general thermomechanical framework,
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and on applications to magnetoelasticity at different scales, the notions of inter-
nal stresses, internal variables, homogenization, ferromagnetic polycrystals and
configurational force,

• Generalized Continua from the Theory to Engineering Applications (coordinated
by H. Altenbach and V. Eremeyev in 2011): 6 lectures on electromagnetism
and generalized continua, ponderomotive couple, electromagnetic microstructure,
resonance couplings with classical deformation, effects on configurational forces
(fracture and phase transformation).

Gérard Maugin was also greatly attracted by researches in Epistemology and
the History of Science. The naissance of fundamental concepts of Mechanics and
Physics and their evolution through the centuries were fascinating topics for him.
Toward these topics he had developed a unique sensitivity, since he was a young
researcher. To them he devoted his efforts in the last years until the end of his life by
writing a history of Continuum Mechanics in the following three volumes published
by Springer, Solid Mechanics and Applications Series:

• Continuum Mechanics Through the Twentieth Centuries: A Concise Historical
Perspectives (2013),

• Continuum Mechanics Through the Eighteenth and Nineteenth Centuries: Histori-
cal Perspectives from John Bernoulli (1727) to Ernst Hellinger (1914) (2014),

• Continuum Mechanics Through the Ages: From the Renaissance to the Twentieth
Century (2016).

Last but not least, he offered clear and reliable explanations of over 100 keywords in
Continuum Mechanics for better understanding the fundamental concepts

• Non-Classical Continuum Mechanics - A Dictionary (2017).

This book was published also by Springer in the Advanced Structured Materials
Series (Series Editors: Andreas Öchsner, Lucas F.M. da Silva, and Holm Altenbach)
as volume 51.

His memory will endure among his many friends and in the Scientific Community
of Mechanics.

Università di Pisa, Italia, January 2018 Carmine Trimarco
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At the beginning of February 2017 the invitation letters for a special remembrance
book were sent to approximately 70 friends and colleagues of the great French
scientist in the field of Continuum Mechanics (or more general Continuum Physics)
Gérard A. Maugin who died on September 22nd, 2016. As usual in such case that
the response is 50% sending a kind reply that they will submit a paper and finally
one gets 15-20 papers. In the case of Gérard the resonance was overwhelming - the
editors got finally approximately 60 papers and the decision was made to publish
two volumes. This is the first one including 40 papers from authors living in more
than 20 countries.

The scientific interests of Gérard are well reflected by variety of subjects covered
by the contributions to this book including the following branches of Continuum
Mechanics

• relativistic continuum mechanics,
• micromagnetism,
• electrodynamics of continua,
• electro-magneto-mechanical interaction,
• mechanics of deformable solids with ferroïc states (ferromagnetics, ferroelectrics,

etc.),
• thermomechanics with internal state variables,
• linear and nonlinear surface waves on deformable structures,
• nonlinear waves in continua,
• Lighthill-Whitham wave mechanics,
• lattice dynamics,
• Eshelbian Mechanics of continua on the material manifold,
• geometry and thermomechanics of material defects,
• material equations and
• biomechanical applications (tissue and long bones growth).

In addition, he published several papers and books on the history of continuum
mechanics. This was reason that the authors of this book have submitted so different
papers with the focus on the research interests of Gérard.

xiii
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We have to thank all contributors for their perfect job. Last but not least, we
gratefully acknowledge Dr. Christoph Baumann (Springer Publisher) supporting the
book project.

Magdeburg, Paris Holm Altenbach
January 2018 Joël Pouget

Martine Rousseau
Bernard Collet

Thomas Michelitsch
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2.7.1.2 Spectrum Features just Over the Level s = ŝ1 . 47
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Chapter 1

Effective Coefficients and Local Fields of

Periodic Fibrous Piezocomposites with 622

Hexagonal Constituents

Ransés Alfonso-Rodríguez, Julián Bravo-Castillero, Renald Brenner, Raúl
Guinovart-Díaz, Leslie D. Pérez-Fernández, Reinaldo Rodríguez-Ramos, and
Federico J. Sabina

Abstract The asymptotic homogenization method is applied to a family of boundary
value problems for linear piezoelectric heterogeneous media with periodic and
rapidly oscillating coefficients. We consider a two-phase fibrous composite consisting
of identical circular cylinders perfectly bonded in a matrix. Both constituents are
piezoelectric 622 hexagonal crystal and the periodic distribution of the fibers follows a
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rectangular array. Closed-form expressions are obtained for the effective coefficients,
based on the solution of local problems using potential methods of a complex variable.
An analytical procedure to study the spatial heterogeneity of the strain and electric
fields is described. Analytical expressions for the computation of these fields are
given for specific local problems. Examples are presented for fiber-reinforced and
porous matrix including comparisons with fast Fourier transform (FFT) numerical
results.

1.1 Introduction

At the beginning of the nineteen nineties, different homogenization techniques were
applied to investigate the macroscopic or effective properties of periodic piezoelectric
composites (Galka et al, 1992; Maugin and Turbé, 1991; Telega, 1991; Turbé and
Maugin, 1991). The initial studies of the effective dynamical properties of periodic
piezoelectric composites by considering Bloch expansions were reported in Telega
(1991); Turbé and Maugin (1991). The method of Γ -convergence was used to study
the static effective properties without dispersive behavior. In Galka et al (1992), the
two-scale asymptotic homogenization was applied for thermo-piezoelectric heteroge-
neous media.

In this framework, the computation of the effective properties depends on the
solution of the so-called local problems. Many works have been devoted to the
application of analytical and numerical techniques for solving the local problems,
see, for instance, Berger et al (2003, 2006); Bravo-Castillero et al (1997, 1998, 2001);
Galka et al (1996); Otero et al (2003); Rodríguez-Ramos et al (1996); Sabina et al
(2001). In general, those efforts have been addressed to piezoelectric composites
whose constituents exhibit a 6mm symmetry class which are of interest in smart
materials applications.

The purpose of this work is essentially twofold. Firstly, to provide closed-form
expressions for the effective coefficients of fibrous composites with piezoelectric
components which belong to the 622 hexagonal symmetry (Nye, 1957) and with
a rectangular distribution of the fibers. These results generalize those published in
López-López et al (2005); Aguiar et al (2013) where the periodic cell is a square.
Secondly, to describe a procedure to obtain analytical expressions for the components
of both the local strain tensor and local electric field intensity vector.

These studies could be interesting for the modeling of biomaterials in bone me-
chanics applications (for instance, collagen is a natural substance which possesses
the 622 symmetry, see Fukada, 1984). In Telega (1991), for the first time, the appli-
cation of homogenization methods for finding the effective piezoelectric properties
of compact bones was sketched. However, up to now, few papers on composites
with 622 symmetry have been reported (Aguiar et al, 2013; Alfonso-Rodríguez et al,
2017; López-López et al, 2005; Sevostianov et al, 2014).

The paper is organized as follows. In Sect. 1.2, a family of boundary value prob-
lems for periodic piezoelectric media with rapidly oscillating coefficients is presented
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in matrix notation. The main steps of the asymptotic homogenization procedure to
obtain the averaged problem, the local problems, the effective coefficients and the
components of the local fields, are summarized. In Sect. 1.4, the homogenization
model is applied to the case of unidirectional fibrous composites with 622 piezoelec-
tric phases and a rectangular periodic cell. The relevant local problems are solved
based on the theory of functions of a complex variable and closed-form expressions
are derived for the corresponding effective coefficients. Analytical expressions are
also explicitly given for the components of the strain and electric local fields asso-
ciated with particular local problems. In Sect. 1.6, some numerical examples are
presented and the accuracy of the results is assessed through comparisons with results
derived from the FFT numerical scheme (Brenner, 2009, 2010).

1.2 A Boundary Value Problem of the Linear Piezoelectricity

Theory

Let Ω ⊂ R3 be a three-dimensional domain with infinitely smooth boundary ∂Ω .
The material properties of a piezoelectric body occupying Ω are described by elastic
(ci jkl), piezoelectric (ei jk), and dielectric (κi j) coefficients. These coefficients are
assumed to be differentiable, rapidly oscillating and εY -periodic functions in the
local variable y = x/ε , where x = (x1,x2,x3) ∈Ω is the global variable, ε > 0 is the
usual small geometric parameter, and Y is the periodic cell.

The material functions are defined by

cεi jkl (x) = ci jkl

( x
ε

)
, eεi jk (x) = ei jk

( x
ε

)
, κεi j (x) = κi j

( x
ε

)
, i, j,k = 1,2,3,

which are denoted in a unified fashion by A jl ≡
(

ai′k′
jl

)
i′,k′=1,...,4

, where

aik
jl = ci jkl, ai4

jl = eli j, a4k
jl = e jkl, a44

jl =−κ jl .

The material functions satisfy the usual symmetry conditions

aik
jl = a jk

il = ail
jk = aki

l j, ai4
jl = a j4

il , a4k
jl = a4l

jk, a44
jl = a44

l j , (1.1)

and we will assume that there exist a constant κ > 0 such that, for any symmetric
matrix q = (qi j) and any vector a = (ai)

aik
jl (x)qi jqkl ≥ κqi jqi j, a44

jl (x)a jal ≥ κa ja j. (1.2)

Note that the summation rule on the repeated indices will be used throughout the
paper.

A boundary value problem for the system of equations of linear piezoelectricity
can be written as
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∂
∂x j

(
Aε

jl (x)
∂
∂xl

Uε(x)
)

= 0 ∈Ω , (1.3)

Uε(x) = Û(x), x ∈ ∂Ω , (1.4)

where Uε(x) =
(
uε1(x),u

ε
2(x),u

ε
3(x),ν

ε(x)
)T and Û(x) = (û1(x), û2(x), û3(x), ν̂(x))T

represent the unknown and the prescribed boundary conditions, respectively. The
superscript T stands for transposition. Equation (1.3) represent a system of partial
differential equations to find the mechanical displacement field uε =

(
uεk
)

and the
electric potential νε . The problem (1.3)-(1.4) describes the piezoelectric state of a
composite material that occupies the domain Ω and is free of external forces.

1.3 Homogenization, Local Problems and Effective Coefficients

In this section, the asymptotic homogenization method (AHM) (Bakhvalov and
Panasenko, 1989) is applied to the family of problems (1.3)-(1.4). More specifically,
the methodology used in Sixto-Camacho et al (2013) is followed.

The solution of (1.3)-(1.4) is sought in the form

Uε (x) =U (0)(x,y)+ εU (1)(x,y)+ · · ·+ ε iU (i) (x,y)+ . . . , (1.5)

where
U (i) =

(
u(i)1 ,u(i)2 ,u(i)3 ,ν(i)

)T
, i = 0,1,2, . . . ,

being u(0)k (x,y), u(1)k (x,y),. . ., ν(0)(x,y), ν(1)(x,y), . . . infinitely differentiable and
Y−periodic functions with respect to y. Substituting (1.5) into (1.3)–(1.4), applying
the differentiation chain rule and equating to zero the terms corresponding to equal
powers of ε (from ε−2,ε−1,ε0, . . . ), a recurrent family of partial differential equa-
tions is obtained. From the term corresponding to ε−2, it is possible to conclude
that the non-perturbed terms of the asymptotic (1.5) are independent of y, that is
U (0) = U (0)(x). From the term that corresponds to ε−1 the local problems are
obtained, which have a solution U (1)(x,y) in the class of Y−periodic functions with
respect to y. Such a solution can be expressed using the method of separable variables
as follows

U (1)(x,y) = N p (y)
∂U (0)(x)
∂xp

, (1.6)

with

N p(y) =
(
Ξ pq

k (y) ϒ p
k (y)

Θ pq(y) Π p(y)

)
k,q=1,2,3

,

where the matrix N p(y) is a Y−periodic solution of

∂
∂y j

(
A jp (y)+A jl (y)

∂N p(y)
∂yl

)
= 0. (1.7)
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Based on the periodicity and ellipticity of the material coefficients it is possible to
apply the theorem of the Appendix of Sixto-Camacho et al (2013) to prove that
equations (1.7) have a unique Y−periodic solution up to an additive constant. The
problems involving such equations are the so-called local problems. The solutions of
such problems play an important role for the calculation of the effective coefficients.
Usually, the condition of null average of the local functions (i.e., 〈N p (y)〉= 0) on
the periodic cell is imposed for uniqueness. The angular brackets denote the average
per unit volume over the cell i.e.

〈g(y)〉= 1
|Y |
∫
Y

g(y)dy.

On the other hand, from the terms corresponding to ε0, we obtain the homogenized
problem

Apq
∂ 2U (0) (x)
∂xp∂xq

= 0, x ∈Ω , (1.8)

U (0) (x) = Û(x), x ∈ ∂Ω . (1.9)

and the effective coefficients Apq, which are defined by

Apq =

〈
Apq(y)+Apl(y)

∂N p(y)
∂yl

〉
. (1.10)

The terms U (i)(x,y) (i > 1) of (1.5) can be also expressed in separable variables by

U (i)(x,y) = N pp1...pi−1 (y)
∂ iU (0)(x)

∂xp∂xp1 . . .∂xpi−1

, (1.11)

where N pp1...pi−1 are Y−periodic solutions of certain partial differential equations
which can be found in Eq. (4.13) of Sixto-Camacho et al (2013).

1.3.1 Explicit Form of the Homogenized Problem, Effective
Coefficients and Local Problems

From (1.8)–(1.10), it is possible to obtain the explicit form of the homogenized
problem

ci jkl
∂ 2u(0)k (x)
∂x j∂xl

+ emi j
∂ 2ν(0)(x)
∂x j∂xm

= 0, x ∈Ω , (1.12)

eikl
∂ 2u(0)k (x)
∂xi∂xl

−κ im
∂ 2ν(0)(x)
∂xi∂xm

= 0, x ∈Ω , (1.13)
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u(0)k (x) = ûk (x) , ν(0) (x) = ν̂(x), x ∈ ∂Ω , (1.14)

and the effective coefficients

ci jpq =

〈
ci jkl
[
δkpδlq + εkl,y (Ξ pq)

]
+ eli j

∂Θ pq

∂yl

〉
, (1.15)

e jpq =

〈
e jkl
[
δkpδlq + εkl,y (Ξ pq)

]−κ jl
∂Θ pq

∂yl

〉
, (1.16)

epi j =

〈
eli j

[
δl p +

∂Π p

∂yl

]
+ ci jklεkl,y (ϒ p)

〉
, (1.17)

κ ip =

〈
κil

[
δl p +

∂Π p

∂yl

]
− eiklεkl,y (ϒ p)

〉
, (1.18)

where δkl is the Kronecker’s delta and

εkl,ξ (u) =
1
2

(
∂uk

∂ξl
+
∂ul

∂ξk

)
.

The local functions Ξ pq
k ,Θ pq,ϒ p

k and Π p are Y -periodic solutions of the following
problems on the cell Y :

• Problem Lpq: Find the Y -periodic functions Ξ pq
k , Θ pq such that:⎧⎪⎪⎨⎪⎪⎩

∂
∂y j

{
ci jkl
[
δkpδlq + εkl,y (Ξ pq)

]
+ eli j

∂Θ pq

∂yl

}
= 0, in Y,

∂
∂y j

{
e jkl
[
δkpδlq + εkl,y (Ξ pq)

]−κ jl
∂Θ pq

∂yl

}
= 0, in Y.

(1.19)

• Problem Lp: Find the Y -periodic functionsϒ p
k , Π p such that:⎧⎪⎪⎨⎪⎪⎩

∂
∂y j

{
eli j

[
δl p +

∂Π p

∂yl

]
+ ci jklεkl,y (ϒ p)

}
= 0, in Y,

∂
∂y j

{
κ jl

[
δl p +

∂Π p

∂yl

]
− e jklεkl,y (ϒ p)

}
= 0, in Y.

(1.20)

1.3.2 Local Fields

Now boundary conditions (1.14) are given by linear functions of the type

ûk (x) = ε̂klxl , ν̂ (x) =−Êlxl , (1.21)

where ε̂kl and Êl are the components of a constant strain tensor and a constant electric
field intensity vector, respectively on the boundary of the composite. Under these
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conditions, the functions u(0)k (x) = ε̂klxl and ν(0) (x) =−Êlxl represent the solution
of the homogenized problem (1.12)-(1.14). So the linearity of U (0)(x) implies that
U (i)(x,y) = 0 for i > 1. Consequently, the components of the asymptotic expansion
(1.5) take the form

uεk (x) = ε̂klxl + ε
[
ε̂pqΞ pq

k (y)− Êpϒ p
k

]
, (1.22)

νε (x) = −Êlxl + ε
[
ε̂pqΘ pq (y)− ÊpΠ p] . (1.23)

Therefore, it is possible to obtain the components of the local strain field

εkl,x (uε ) = ε̂pq
[
δkpδlq + εkl,y (Ξ pq)

]− Êpεkl,y (ϒ p) , (1.24)

and the components of the local electric field intensity

El (νε ) = Êp

[
δpl +

∂Π p

∂yl

]
− ε̂pq

∂Θ pq

∂yl
, (1.25)

where

El (νε ) =−∂ν
ε

∂xl
.

Note that the fields defined by (1.24) and (1.25) only depend on the local variable y.

1.4 Application to a Binary Fibrous Piezocomposite with Perfect

Contact Conditions at the Interfaces

In this section, we apply the previously described method to a particular composite.
We consider a two-phase fibrous composite consisting of identical circular cylinders
embedded in a matrix. Both components are homogeneous piezoelectric materials.
The axis of the fibers is parallel to the x3-axis. The periodic distribution of the fibers
follows a rectangular array as shown in Fig. 1.1. Perfect contact conditions on the
interface Σε between the fibers and the matrix are assumed. The application of the
above described homogenization process leads to (1.12)–(1.20), with the addition of
contact conditions on the interfaces.

The local problems (1.19)–(1.20) on the periodic cell Y can be written as (Bravo-
Castillero et al, 2001; Sabina et al, 2001):

• Problem Lpq: To find the Y -periodic functions Ξ pq
k and Θ pq such that:

σ pq(γ)
iδ ,δ = 0, in Yγ , (1.26a)

Dpq(γ)
δ ,δ = 0, in Yγ , (1.26b)

�
Ξ pq

k

�
= 0, on Σ , (1.26c)

�Θ pq� = 0, on Σ , (1.26d)



8 Ransés Alfonso-Rodríguez et al.

2

Y

2x
1

1x
a
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Fig. 1.1: Description of the cross-section of a two-phase fibrous periodic medium
and the rectangular periodic cell

�
σ pq

iδ nδ
�
=−�

ciδ pq
�

nδ , on Σ , (1.26e)�
Dpq
δ nδ

�
=−�

eδ pq
�

nδ , on Σ , (1.26f)〈
Ξ pq

k

〉
= 0, (1.26g)

〈Θ pq〉= 0, (1.26h)

with

σ pq(γ)
iδ ,δ = c(γ)iδkλ εkλ ,y

(
Ξ pq(γ)

)
+ e(γ)λ iδΘ

pq(γ)
,λ , (1.27a)

Dpq(γ)
δ = e(γ)δkλ εkλ ,y

(
Ξ pq(γ)

)
−κ(γ)

δλΘ
pq(γ)
,λ . (1.27b)

• Problem Lp: Find the Y -periodic functionsϒ p
k and Π p such that:

σ p(γ)
iδ ,δ = 0, in Yγ , (1.28a)

Dp(γ)
δ ,δ = 0, in Yγ , (1.28b)

�
ϒ p

k

�
= 0, on Σ , (1.28c)

�Π p� = 0, on Σ , (1.28d)�
σ p

iδ ,δnδ
�
=−�

epiδ
�

nδ , on Σ , (1.28e)
�

Dp
δnδ

�
=−�

κδ p
�

nδ , on Σ , (1.28f)〈
ϒ p

k

〉
= 0, (1.28g)

〈Π p〉= 0, (1.28h)
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with

σ p(γ)
iδ ,δ = c(γ)iδkλ εkλ ,y

(
ϒ p(γ)

)
+ e(γ)λ iδΠ

p(γ)
,λ , (1.29a)

Dp(γ)
δ = e(γ)δkλ εkλ ,y

(
ϒ p(γ)

)
−κ(γ)

δλ Π
p(γ)
,λ , (1.29b)

where nδ are the components of the outer unit normal vector to the interface Σ , and
�·� = (·)(1)− (·)(2) denotes the contrast across Σ taken from the matrix to the fiber.
σiδ and Dδ are the components of local stress tensor and electric displacement vector,
respectively. The Eqs. (1.26a) and (1.28a) are the corresponding equilibrium relations
of solids bodies; (1.26b) and (1.28b) are the quasi-static approximation of Maxwell’s
equations in the absence of free charges. Perfect contact conditions on the interface
are represented by (1.26c)–(1.26f) and (1.28c)–(1.28f). Conditions for uniqueness
are given by (1.26g)–(1.26h) and (1.28g)–(1.28h). Formulae (1.27a)–(1.27b) and
(1.29a)–(1.29b) are the local constitutive relations. The Latin indices run from 1 to
3, and the Greek ones from 1 to 2. The comma denotes partial differentiation with
respect to the local variable y.

1.5 Local Problems for Fibrous Composites with Constituents of

622 Hexagonal Class

In this work, we solve the local problems for the case corresponding to matrix and
fibres made of piezoelectric materials with 622 hexagonal symmetry (Nye, 1957).
These materials are characterized by eight independent constants (k, m, l, n, p, s′, t
and u), which are given by five elastic constants

2k = c1111 + c1122, 2m = c1111− c1122 = c1212,
l = c1133 = c2233, n = c3333, p = c1313 = c2323;

one piezoelectric constant

s′ =−e123 = e213 = e231 =−e132

and two dielectric permittivity constants

t = κ11 = κ22, u = κ33.

Consequently, the local problems L11, L22, L33 and L12 are exactly the same purely
elastic problems which were solved in Nava-Gómez et al (2012) to obtain the effective
coefficients c1111, c2211, c3311, c2222, c3322, c3333 and c1212. On the other hand, from
L3 one obtains that κ33 = 〈u〉. Therefore, only four local problems (L13, L23, L1 and
L2) are relevant to obtain the remaining nonzero effective coefficients, which are
c1313, c2323, e213, e123, κ11 and κ22.
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In the local problems L13, L23, L1 and L2, the relevant constitutive relations (1.27)
and (1.29) can be summarized as

σ31 = pε13,y− s′E2, (1.30)
σ32 = −s′ε23,y + tE1, (1.31)
D1 = pε23,y + s′E1, (1.32)
D2 = s′ε13,y + tE2. (1.33)

Thus, only three material properties are here involved: the longitudinal shear modulus
p, the shear stress piezoelectric coefficient s′ and the transverse permittivity constant
t. The next subsections will be dedicated to the solution of these local problems and
the further computation of the related effective coefficients.

1.5.1 Local Problems L23 and L1

These two problems can be stated in a unified form as follows

ΔΞ (γ) = 0 in Yγ , (1.34a)

ΔΘ (γ) = 0 in Yγ , (1.34b)
�Ξ� = 0 on Σ , (1.34c)
�Θ� = 0 on Σ , (1.34d)�(

pΞ,1− s′Θ,2
)

n1 +
(

pΞ,2 + s′Θ,1
)

n2
�
= An2 on Σ , (1.34e)�(

s′Ξ,2− tΘ,1
)

n1−
(
s′Ξ,1 + tΘ,2

)
n2

�
= Bn1 on Σ , (1.34f)

〈Ξ〉= 0, (1.34g)
〈Θ〉= 0, (1.34h)

where Δ is the two-dimensional Laplacian. Therefore, the solutions Ξ (γ)(≡ Ξ 23(γ)
3 )

and Θ (γ)(≡Θ 23(γ)) are doubly periodic harmonic functions of the complex variable
z = y1 + iy2 defined in the rectangular cell Y with periods ω1 = 1 and ω2 = ai. The
values of A and B in the right hand side of equations (1.34e) and (1.34f) for L23 are
−�p� and −�s′� respectively. However, for the local problem L1, these values are
A =−�s′� and B = �t�, whereas Ξ (γ)(≡ϒ 1(γ)

3 ) and Θ (γ)(≡Π 1(γ)).
The solution of (1.34) is sought as follows

Ξ (1)(z) = ℑ

{
− δ2

ω2
a1z+

∞

∑o

k=1
ak
ζ (k−1)(z)
(k−1)!

}
, (1.35a)

Θ (1)(z) = ℜ

{
− δ1

ω1
b1z+

∞

∑o

k=1
bk
ζ (k−1)(z)
(k−1)!

}
, (1.35b)
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Ξ (2)(z) = ℑ

{
∞

∑o

k=1
ckzk

}
, (1.35c)

Θ (2)(z) = ℜ

{
∞

∑o

k=1
dkzk

}
, (1.35d)

where ak, bk, ck and dk are real and undetermined coefficients, ℜ{z} and ℑ{z} are,
respectively, the real and imaginary part of the complex number z, and ζ (z) is the
quasi-periodic Weierstrass Zeta function; whereas ζ (k)(z) denotes the k-th derivative
of periods ω1 and ω2. The superscript “o” indicates that the summation is carried out
only over the odd indices. Ξ (γ) is an even function of θ , with z = Reiθ , andΘ (γ) is
an odd function of θ .

The expressions for the undetermined constants δα can be obtained from the
quasi-periodicity of ζ (z)

ζ (z+ωα)−ζ (z) = δα , (1.36)

where
δα = 2ζ

(ωα

2

)
and Legendre’s relation is fulfilled (see, for instance Lang, 1993).

The Laurent expansion about the origin for Ξ (1) and Θ (1) can be written as

Ξ (1)(z) = ℑ

{
∞

∑o

l=1
alz−l−

∞

∑o

k=1
ak

∞

∑o

l=1
kηklzl

}
, (1.37a)

Θ (1)(z) = ℜ

{
∞

∑o

l=1
blz−l−

∞

∑o

k=1
bk

∞

∑o

l=1
kη ′klz

l

}
, (1.37b)

with

η11 =
δ2

ω2
, η ′11 =

δ1

ω1
, ηkl = η ′kl =

(k+ l−1)!
k!l!

Sk+l for k, l �= 1,

(1.38)
and the lattices sum Sk+l is defined by

Sk+l = ∑′
m,n

(mω1 +nω2)
−k−l , k+ l ≥ 3, (1.39)

where the prime on the summation means that it excludes the term m = n = 0. Now
we use contact conditions (1.34c)–(1.34f) to derive the following relations between
the undetermined coefficients

Rlcl =−
(

R−lal +
∞

∑o

k=1
kηklRlak

)
, (1.40a)



12 Ransés Alfonso-Rodríguez et al.

Rldl = R−lbl−
∞

∑o

k=1
kη ′klR

lbk, (1.40b)

ARδ1l =
(

p(1) + p(2)
)

R−lal− �p�
(

∞

∑o

k=1
kηklRlak

)
+

�
s′
�
(

R−lbl−
∞

∑o

k=1
kη ′klR

lbk

)
,

(1.40c)

BRδ1l =
�

s′
�
(

R−lal +
∞

∑o

k=1
kηklRlak

)
−
(

t(1) + t(2)
)

R−lbl− �t�
(

∞

∑o

k=1
kη ′klR

lbk

)
,

(1.40d)

for l = 1,3,5, . . . Note that the coefficients ak and bk from (1.40c) and (1.40d) are
solutions of an infinite system of linear algebraic equations.

In order to solve the system (1.40), it is convenient to introduce the following
change of variables

ãl =
√

lR−lal , b̃l =
√

lR−lbl , c̃l =
√

lRlcl , d̃l =
√

lRldl . (1.41)

Thus, now we can write (1.40) as

(I +W )V1 =V3, (1.42a)
(I−W ′)V2 =V4, (1.42b)

ϕ(1)
11 V1 +ϕ(1)

12 V2 +ϕ(2)
11 WV1 +ϕ(2)

12 W ′V2 = V̂1, (1.42c)

ϕ(1)
21 V1 +ϕ(1)

22 V2 +ϕ(2)
21 WV1 +ϕ(2)

22 W ′V2 = V̂2, (1.42d)

where I is the identity matrix, and the components W and W ′ for k = l = 1 are

w11 =
δ2

ω2
R2, w′11 =

δ1

ω1
R2, (1.43)

and, otherwise,

wkl = w′kl =
(k+ l−1)!

(k−1)!(l−1)!
Rk+l
√

k
√

l
Sk+l . (1.44)

So, both W and W ′ are real, symmetric and bounded; then we can use classical results
from the theory of infinite systems (Kantorovich and Krylov, 1964). Furthermore,

V1 = (ã1, ã3, ã5, . . .)
T , V2 =

(
b̃1, b̃3, b̃5, . . .

)T
, (1.45)

V3 = (c̃1, c̃3, c̃5, . . .)
T , V4 =

(
d̃1, d̃3, d̃5, . . .

)T
. (1.46)

and all components of V̂1 and V̂2 are zero except the first ones, which are equal to
Rχp and Rχ ′t , respectively, in L23, and to −Rχp and −Rχ ′t in L1

χp =
�p�

p(1) + p(2)
, χ ′t =

�s′�
t(1) + t(2)

, (1.47)
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χ ′p =
�s′�

p(1) + p(2)
, χt =

�t�
t(1) + t(2)

. (1.48)

Moreover, matrices Φ (δ ), of components ϕ(δ )
αβ , are non-symmetric matrices and can

be defined as

Φ (1) =

[ −1 −χ ′p
−χ ′t 1

]
, Φ (2) =

[
χp χ ′p
−χ ′t χt

]
. (1.49)

Note that the knowledge of V1 and V2 is enough to solve the system (1.42). Equations
(1.42c) and (1.42d) can be transformed into

ϕ11V1 +ϕ12V2 +WV1 =V1, (1.50a)
ϕ21V1 +ϕ22V2 +W ′V2 =V2, (1.50b)

or, in matrix form

Φ
[
V1
V2

]
+

[
W O
O W ′

][
V1
V2

]
=

[
V1
V2

]
, (1.51)

where the O denotes the null matrix and, in L23, only the first component of V1 is
nonzero, and equal to R; and in L1, only the first component of V2 is nonzero, and
equal to −R. Besides, we have

Φ =
[
Φ (2)

]−1
Φ (1) =

1
Λ

[
−χt +χ ′pχ ′t −χ ′p (1+χt)

−χ ′t (1+χp) χp−χ ′pχ ′t

]
,

Λ = χpχt +χ ′pχ
′
t ,

(1.52)

In order to solve the infinite system (1.50) it must be truncated as follows

HV=V, (1.53)

where V = (V1i,V2i)
T and V = (V1i,V2i)

T , for i = 1,3, . . . ,2n0− 1. The natural
number n0 denotes the truncation order.

The general form of the components of the principal matrix H = (hi j) of (1.53)
can be defined as follows:

hi j =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

for i odd

⎧⎨⎩
hii = ϕ11 +wii,
hi j = wi j, if j odd,
hii+1 = ϕ12,

for i even

⎧⎨⎩
hii = ϕ22 +w′i−1i−1,

hi j = w′i−1 j−1, if j even,
hii−1 = ϕ21,

. (1.54)
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From system (1.53) the values of ãi and b̃i can be obtained using the inverse matrix
method to solve systems; and then the values of ai and bi by reversing the change of
variables described in (1.41), resulting in the following formulae

ai = RHiU, bi = RHi+1U, (1.55)

where Hi is the i-th row of H−1, which is the inverse matrix of H.

1.5.2 Effective Coefficients Related with the Local Problems L23

and L1

The nonzero effective coefficients which can be computed from the local problems
L23 and L1 are

c2323 = pv +
〈

pΞ 23
3,2− s′Θ 23

,1
〉
, (1.56)

−e123 = s′v +
〈
s′Ξ 23

3,2 + tΘ 23
,1
〉
= s′v +

〈
pϒ 1

3,2 + s′Π 1
,1
〉
, (1.57)

κ11 = tv +
〈
tΠ 1

,1− s′ϒ 1
3,2
〉
, (1.58)

where pv = c1 p(1) + c2 p(2), with c1 + c2 = 1 and c2 = πR2/a.
After that, the application of Green’s theorem, the doubly periodicity of the local

functions and the conditions on Σ leads to the following expressions (see, for instance,
Sabina et al, 2001; Aguiar et al, 2013)

c2323 = p(1)
(

1+
2π
a

a23
1

)
, (1.59)

−e123 = s′(1)
(

1+
2πt(1)

as′(1)
b23

1

)
= s′(1)

(
1+

2π p(1)

as′(1)
a1

1

)
, (1.60)

κ11 = t(1)
(

1− 2π
a

b1
1

)
, (1.61)

where only the residues a1 and b1, of Ξ (1) and Θ (1), are relevant for computing such
effective coefficients. The superindices on a1 and b1 indicate the local problem which
is solved in order to use the formulas (1.55) for i = 1.

1.5.3 Local Problems L13 and L2 and Related Effective Coefficients

The study of the local problems L13 and L2 and the related effective coefficients
is very similar as above. Then only the main results will be summarized in this
subsection.
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The simultaneous formulation of these problems consists in to find the doubly
periodic functions Ξ (γ) and Θ (γ) such that:

ΔΞ (γ) = 0 in Yγ , (1.62a)

ΔΘ (γ) = 0 in Yγ , (1.62b)
�Ξ� = 0 on Σ , (1.62c)
�Θ� = 0 on Σ , (1.62d)�(

pΞ,1− s′Θ,2
)

n1 +
(

pΞ,2 + s′Θ,1
)

n2
�
=Cn1 on Σ , (1.62e)�(

s′Ξ,2− tΘ,1
)

n1−
(
s′Ξ,1 + tΘ,2

)
n2

�
= Dn2 on Σ , (1.62f)

〈Ξ〉= 0, (1.62g)
〈Θ〉= 0. (1.62h)

The solutions Ξ (γ)(≡ Ξ 13(γ)
3 ) and Θ (γ)(≡Θ 13(γ)) are Y -periodic harmonic func-

tions depending on z = y1 + iy2 with periods ω1 = 1 and ω2 = ai. The values of C
and D in the right hand side of equations (1.62e) and (1.62f) for L13 are −�p� and
�s′�, respectively. For the local problem L1, these values are C = �s′� and D = �t�,
whereas Ξ (γ)(≡ϒ 2(γ)

3 ) and Θ (γ)(≡Π 2(γ)).
According to the interface conditions (1.62e) and (1.62f), the solution of (1.62) is

sought as

Ξ (1)(z) = ℜ

{
− δ2

ω2
a1z+

∞

∑o

k=1
ak
ζ (k−1)(z)
(k−1)!

}
, (1.63a)

Θ (1)(z) = ℑ

{
− δ1

ω1
b1z+

∞

∑o

k=1
bk
ζ (k−1)(z)
(k−1)!

}
, (1.63b)

Ξ (2)(z) = ℜ

{
∞

∑o

k=1
ckzk

}
, (1.63c)

Θ (2)(z) = ℑ

{
∞

∑o

k=1
dkzk

}
. (1.63d)

Furthermore, using similar ideas to those discussed previously, the following
formulae for the related effective coefficients can be obtained

c1313 = p(1)
(

1− 2π
a

a13
1

)
, (1.64)

e213 = −s′(1)
(

1+
2πt(1)

as′(1)
b13

1

)
= s′(1)

(
1+

2π p(1)

as′(1)
a2

1

)
, (1.65)

κ22 = t(1)
(

1+
2π
a

b2
1

)
, (1.66)
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where a1 and b1 are also the residues of Ξ (1) and Θ (1).
Now, by using the change of variable (1.41) it is possible to arrive to the infinite

system to compute ã1 and b̃1:

(I−M)V1 =V3, (1.67a)
(I +M′)V2 =−V4, (1.67b)

ψ(1)
11 V1 +ψ(1)

12 V2 +ψ(2)
11 MV1 +ψ(2)

12 M′V2 = V̂1, (1.67c)

ψ(1)
21 V1 +ψ(1)

22 V2 +ψ(2)
21 MV1 +ψ(2)

22 M′V2 = V̂2, (1.67d)

where the only difference to system (1.42) is that

m11 =
δ1

ω1
R2, m′11 =

δ2

ω2
R2, (1.68)

and, otherwise,

mkl = m′kl =
(k+ l−1)!

(k−1)!(l−1)!
Rk+l
√

k
√

l
Sk+l . (1.69)

Besides,

Ψ (1) =

[
1 −χ ′p
−χ ′t −1

]
, Ψ (2) =

[
χp −χ ′p
χ ′t χt

]
, (1.70)

and, as above, we find the matrixΨ , which is given by

Ψ =
[
Ψ (2)

]−1
Ψ (1) =

1
Λ

[
χt −χ ′pχ ′t −χ ′p (1+χt)

−χ ′t (1+χp) −χp +χ ′pχ ′t

]
. (1.71)

Therefore, we can write the system in the following way

Ψ
[
V1
V2

]
+

[
M O
O M′

][
V1
V2

]
=

[
V1
V2

]
, (1.72)

where only the first components of V1 and V2 can be different from zero, and equal to
R. In the case of problem L13, the first component of V1 is the one that is nonzero; in
the case of problem L2, only the first component of V2 is equal to R.

System (1.72) can be written in the form (1.53) with the particularity that the
components of the principal matrix H = (hi j) are defined by

hi j =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

for i odd

⎧⎨⎩
hii = ψ11 +mii,
hi j = mi j, if j odd,
hii+1 = ψ12,

for i even

⎧⎨⎩
hii = ψ22 +m′i−1i−1,

hi j = m′i−1 j−1, if j even,
hii−1 = ψ21,

(1.73)
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Finally, the corresponding values of a1 and b1 can be computed by using Eqs.
(1.55), respectively.

1.5.4 On the Computation of the Local Fields from the Solutions of
the Local Problem L13

As we can note, the analytical solutions of the local problems are expressed in terms
of the local coordinates ρ and θ . However, to study the behavior of the local fields
(1.24) and (1.25) it is necessary to compute their derivatives with respect to the
Cartesian coordinates yδ , and then the chain’s rule must be used

∂
∂y1

= cosθ
∂
∂ρ
− sinθ

ρ
∂
∂θ

,
∂
∂y2

= sinθ
∂
∂ρ

+
cosθ
ρ

∂
∂θ

. (1.74)

For instance, the solutions Ξ (γ)(≡ Ξ 13(γ)
3 ) and Θ (γ)(≡Θ 13(γ)), of the local problem

L13, can be written as

Ξ (1)(ρ,θ) =
2n0−1

∑o

l=1
alρ−l cos(lθ)−

2n0−1

∑o

k=1
ak

2n0−1

∑o

l=1
kηklρ l cos(lθ), (1.75a)

Θ (1)(ρ,θ) =−
2n0−1

∑o

l=1
blρ−l sin(lθ)−

2n0−1

∑o

k=1
bk

2n0−1

∑o

l=1
kη ′klρ

l sin(lθ), (1.75b)

Ξ (2)(ρ,θ) =
2n0−1

∑o

k=1
ckρk cos(kθ), (1.75c)

Θ (2)(ρ,θ) =
2n0−1

∑o

k=1
dkρk sin(kθ), (1.75d)

where the constants al , bl ,cl and dl (l = 1,3, . . . ,2n0−1) can be obtained from the
solution of (1.67a)–(1.67d) for a truncation order n0.

As an example, we consider the following homogeneous boundary conditions:
ε̂13 = 1 and ε̂pq = 0, for the strain tensor components, and Êp = 0 for the components
of electric field intensity vector. Then, Eqs. (1.24) and (1.25) take the form

εkl (y) = δk1δl3 +δk3δl1 +2εkl,y
(
Ξ 13
)
, El (y) =−2

∂Θ 13

∂yl
. (1.76)

Finally, it is possible to compute the components of the local fields from the
solutions of the local problem L13 as follows
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ε13 (y) = 1+
∂Ξ 13

3
∂y1

, ε23 (y) =
∂Ξ 13

3
∂y2

, (1.77)

E1 (y) =−2
∂Θ 13

∂y1
, E2 (y) =−2

∂Θ 13

∂y2
. (1.78)

which can be computed by using the expressions (1.75) and the chain rule. A similar
procedure allows to obtain analytical expressions for the local fields related with the
solutions of the local problems L23, L1 and L2.

1.6 Numerical Examples

Some examples are presented, which include comparisons between the analytical
results derived from the present model (PM) and those obtained with the fast Fourier
transform (FFT) numerical method (Moulinec and Suquet, 1998; Michel et al, 2001;
Brenner, 2009, 2010). For the case of a fiber-reinforced matrix, we have considered
the data previously used in López-López et al (2005). They correspond to a collagen
matrix with collagen-hydroxyapatite (HA) fibers. For the case of a porous piezoelec-
tric matrix, we have considered the data used in Aguiar et al (2013) corresponding to
bone material (Table 1.1).

In Figs. 1.2–1.5, the evolution of the effective coefficients with the fiber volume
fraction c2 is shown. The range of variation of c2 goes from zero up to the percolation
limit when two neighboring fibers or holes get in contact. The results are normalized
by the properties of the matrix. In Fig. 1.2, a square periodic cell (a = 1) is considered
and the results from López-López et al (2005) are reproduced. In Figs. 1.4 and 1.5, a
rectangular periodic cell (for a = 2) is discussed. Finally, in Figs. 1.6 and 1.7, the
spatial distribution of the local fields is illustrated.

Table 1.1: Piezoelectric properties used for the computations (López-López et al,
2005; Aguiar et al, 2013). ε0 denotes the permittivity of free-space.

Collagen HA
Longitudinal shear modulus p (GPa) 1.400 2.697
Shear strain piezoelectric coefficient d = s′/p (pC/N) 0.062 0.041
Transverse permittivity constant t/ε0 (no units) 2.825 2.509

Bone
Longitudinal shear modulus p (GPa) 8.2
Shear stress piezoelectric coefficient s′ (N/Vm) 2.214×10−3

Transverse permittivity constant t/ε0 (no units) 6.85
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Fig. 1.2: The elastic, piezoelectric and dielectric effective coefficients for a two-
phase fibrous piezocomposite with a square (a = 1) periodic distribution of fibres.
Comparisons of the results obtained with the present model (PM) with those de-
rived by the FFT

1.6.1 Square Array Distribution

In Fig. 1.2, numerical results are shown for a fiber reinforced material with square
periodic cell (a = 1). In this case the following equalities were numerically verified:
c1313 = c2323, κ11 = κ22 and e213 =−e123. Then, for simplicity, p, t and s′ are used
to denote the effective elastic, dielectric permittivity and piezoelectric coefficients,
respectively. Also, d = s′/p denotes the effective shear strain piezoelectric coefficient.
A truncation order n0 = 2 is used for the computations with the present model.

A good agreement can be observed between the semi-analytical (PM) and the
numerical results (FFT). The curves corresponding to the present model reproduce
those published in López-López et al (2005).

The results shown in Fig. 1.3 correspond to a porous material and, as in Fig.
1.2, the periodic cell is square. Here, the equalities c1313 = c2323 = κ11 = κ22 and
e213 =−e123 stand and were numerically verified. A good agreement between the
PM results and those from the numerical FFT method can be observed whatever the
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Fig. 1.3: The normalized elastic, piezoelectric and dielectric effective coefficients
for a piezocomposite with a square (a = 1) periodic distribution of cylindrical holes.
Comparisons between the results derived from the present model (PM) with those
derived from the Fast Fourier Transform numerical method (FFT)

fiber volume fraction. The results shown for the present model were obtained using a
truncation order n0 = 5.

1.6.2 Rectangular Array Distribution

In Figs. 1.4 and 1.5, piezoelectric composites with a rectangular periodic distribution
of the fibers are examined for a = 2. In Fig. 1.4, a two-phase composite with an
orthotropic effective behavior is studied. In Fig. 1.5, a porous piezocomposite which
preserves the symmetry properties of the matrix is considered. In both figures, an
excellent agreement can be observed, for all the range of fiber area fractions, among
the analytical (PM) and numerical (FFT) results and for all the normalized effective
coefficients. Note that both models capture the expected global behavior for each
type of composite. The truncation order used for the computations with the present
model was n0 = 4.
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Fig. 1.4: The normalized elastic, piezoelectric and dielectric effective coefficients
for a two-phase fibrous piezocomposite with a rectangular (a = 2) periodic distri-
bution of fibres. Comparisons of the results derived from the present model (PM)
with those derived by the Fast Fourier Transform numerical method (FFT)

1.6.3 Spatial Distribution of Local Fields

The local fields defined by (1.24) and (1.25) depend on the solution of all local
problems. However, for specific homogeneous boundary conditions only one local
problem needs to be solved in order to compute the local fields. For instance, as
was shown above, the solutions of the local problem L13 are enough to compute
the local fields given by (1.77)–(1.78). In Figs. 1.6 and 1.7, the distribution of the
components ε13 and E1, for a truncation order n0 = 7 is plotted. In both cases the
radius of the fiber is R = 0.35. A significant variation is predicted in the matrix at the
fiber-matrix interface normal to the x1 and x2 axis respectively, and almost uniform
fields are predicted within the fibers. The latter is an expected result. Let us consider,
for example, the Eq. (1.77): using Eqs. (1.75c) and (1.74) it yields

ε13 (y) = 1+
∂Ξ 13

3
∂y1

, ε13 (y) = 1+
2n0−1

∑o

k=1
kckρk−1 cos(k−1)θ . (1.79)
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Fig. 1.5: The normalized elastic, piezoelectric and dielectric effective coefficients
for a piezocomposite with a rectangular (a = 2) periodic distribution of cylindrical
holes. The results derived from the present model (PM) and those derived from the
Fast Fourier Transform numerical method (FFT) are compared

The sum in the right hand side of Eq. (1.79)2 can be easily majored by the sum

|c1|
2n0−1

∑o

k=1
k
(

1
2

)k−1

. (1.80)

Hence, the aforementioned sum should have little to nil influence in the final value
of the field inside the fiber, since the value of c1 for the given data set is very small.

The results shown in Fig. 1.6 were obtained using the formula (1.77) correspond-
ing to the solutions of the local problem L13, for homogeneous boundary conditions
of the type ε̂ pq = δ1pδ3q and Êp = 0. This field is similar to that predicted via FFT,
as can be seen in Fig. 1.6, where the relative error between the computation using
Eq. (1.77) and the one using FFT is plotted, i.e. |PM−FFT|/PM. It can be seen that
in the matrix both methods coincide, while in the fiber they predict behaviors with
about a 20% difference. This difference can be explained by the little influence of the
sum in the right hand side of Eq. (1.79) in the actual value of the field inside the fiber.
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(a)

(b)

Fig. 1.6: (a) Component ε13 of the local strain field within the fiber composite
with square arrangement for an axial shear strain load ε̂13 = ε̂31 = 1; (b) Absolute
error between the computation in (a) using the present model (1.77) and the FFT
numerical scheme
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The variation shown in Fig. 1.7 was computed for homogeneous boundary conditions
of the type ε̂ pq = 0 and Êp = δ1p. Such conditions transform (1.24) and (1.25) into

ε13 (y) =−∂γ
1
3

∂y1
, ε23 (y) =−∂γ

1
3

∂y2
, (1.81)

E1 (y) = 1+
∂Π 1

∂y1
, E2 (y) =

∂Π 1

∂y2
. (1.82)

Consequently, only the solutions of the problem L1 are involved in (1.81). Notice that
again in Fig. 1.7 the relative error of the computations through the present method
and FFT was plotted and they show coincidence in the matrix, while the differences
inside the fiber are not greater than a 6%.

1.7 Concluding Remarks

Analytical formulae for the effective coefficients were obtained for binary fibrous
composites with 622 hexagonal piezoelectric components and a rectangular distri-
bution of the unidirectional circular fibers. These results contain as particular cases
those reported in López-López et al (2005) and Aguiar et al (2013) where only the
square periodic cell was considered. Analytical expressions to study the fluctua-
tions of the components of the local strain and the local electric field intensity are
explicitly given. For the binary and the porous piezoelectric materials, the present
model has been successfully compared to the results obtained with the FFT numerical
homogenization method (Brenner, 2009, 2010).
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Chapter 2

High-Frequency Spectra of SH Guided Waves in

Continuously Layered Plates

Vladimir I. Alshits and Jerzy P. Nowacki

Abstract The spectra of SH guided waves in an isotropic continuously layered plate
with arbitrary profile of the limiting slowness ŝ(y) across the plate are explicitly
analyzed for high frequencies ω in the framework of "adiabatic" approximation.
Dispersion equations and their solutions are analytically found for free, clamped or
free-clamped faces of the plate. The positions of horizontal asymptotes for dispersion
branches are determined by extreme points yi of the dependence ŝ(y) including also
inflection points and "linear" (non-extreme) min/max points. In the vicinity of all
asymptotic levels, apart from the upper one, spectra form specific ladder-like patterns.
Explicit asymptotics of dispersion curves are derived for a series of particular local
dependencies ŝ(y) in the vicinity of points yi.

2.1 Introduction

The subject of this paper, dedicated to G.A. Maugin, belongs to a circle of his interests
and closely associates with his results. We mean an analytical explicit theory of SH
waves in an elastic inhomogeneous plate. Thirty five years ago he published the
well known paper (Maugin, 1983) about properties of SH waves in solids. In this
paper and in the previous publication (Bakirtas and Maugin, 1982) the influence of
continuous inhomogeneity on the dispersion of SH waves was numerically studied.
Fifteen years ago he participated in the study (Alshits et al, 2003) of high-frequency
spectra of guided waves in a homogeneous elastic plate of arbitrary anisotropy where
the intermediate asymptotes in spectra with a non-trivial ladder-like behaviour of
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dispersion branches were first time analytically described. Then the general theory
(Alshits and Maugin, 2005, 2008) of acoustic waves in arbitrary anisotropic layered
plate was developed (see also Baron et al, 2003; Shuvalov et al, 2004, 2005). In
the theory (Alshits and Maugin, 2005, 2008) ladder-like patterns again appeared in
spectra of piece-wise homogeneous and continuously layered plates. In both cases
the detailed predictions were given of number and positions of the asymptotes in
spectra and of the character of approaching these asymptotes by the dispersion
branches when the frequency ω increases. The analytical theory for stratified plates
was rigorously formulated in terms of the propagator matrix. And the description of
graded media was based on a semi-intuitive approach. In accordance with the latter
consideration, asymptotic levels in such spectra must occur in all extreme points
of the slowness profile ŝ(y) across the continuously layered plate (of minimum,
maximum and inflection type) and in non-extreme min/max points at the surfaces.
The predictions of this theory were in agreement with previously obtained numerical
data (Baron et al, 2003).

The further corroboration was given by Shuvalov et al (2008), who basing on the
WKB method obtained the same asymptotic dependencies in the cases of extreme
maximums for a monoclinic graded plate. They did not consider "linear" points, mini-
mums or inflection points, but just noticed that they could hardly course "a prominent
falloff of dispersion" in spectra not being "markedly flat". Such doubts contradicting
to Alshits and Maugin (2005, 2008) sound reasonable and need checking.

In this paper we shall reconsider predictions of Alshits and Maugin (2005, 2008)
including linear min/max points at the faces, as well as minimums and inflections of
the slowness profile ŝ(y). We shall use the adiabatic approximation for the propagator
matrix. This approach introduced by Alshits and Kirchner (1995) is similar to the
WKB method but seems to be more convenient for us being well adjusted to the
propagator theory. We shall consider a purely isotropic plate with arbitrary transverse
inhomogeneity. This will transform the 6D theory of Alshits and Maugin (2005)
into a 2D formalism admitting explicit calculations. It will be even easier than the
remarkably simple monoclinic 2D theory (Shuvalov et al, 2008). On the other hand,
the presented in Shuvalov et al (2008) positive testing of results of WKB method by
comparing them with exact computing will allow us to limit our analysis to adiabatic
approximation.

2.2 Statement of the Problem and Main Equations

Consider the layered elastic plate of the thickness d with the faces parallel to the
layers. The material constants involved into the analysis, the shear modulus μ and the
density ρ , are supposed to be arbitrary continuous functions of the coordinate y along
the normal n to the faces. The latter are intersected by this axis at y = 0 and y = d
(Fig. 2.1). The sagittal plane of wave propagation is xy, and the propagation direction
is x. Certainly the theory is equally applicable to a layered hexagonal plate with the
sagittal plane parallel to the plane of transverse isotropy. In this case μ = c44(y).
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Fig. 2.1 The continuously
layered plate with the surfaces
parallel to the layers in the
Cartesian coordinate system.
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In such plate an SH wave field is characterized by the displacement (u) and
traction (σn) vectors which are both directed along z and can be described by the
scalar steady-state fields

u(x,y, t) = A(y)exp[ik(x− vt)], (2.1)

σ(x,y, t) =−ikL(y)exp[ik(x− vt)], (2.2)

where k is the wave number, v=ω/k is the tracing speed and ω is the wave frequency.
Let us form the two-component vector function

ηηη =

(
A(y)

L(y)

)
. (2.3)

In the considered case the standard 6D equation of Stroh (1962) acquires the 2D
form

dηηη
dy

= ikN̂SH(y)ηηη , (2.4)

where N̂SH is the 2×2 analog of the Stroh matrix:

N̂SH =−
(

0 1/μ

p2μ 0

)
. (2.5)

Here
p2 = (ŝ/s)2−1, (2.6)

with s = v−1 for the slowness of the wave and ŝ(y) for the limiting slowness profile
of the plate:

ŝ2 = ρ(y)/μ(y), (2.7)

which is supposed to be a known function.
The eigenvectors (ξ1,2) and eigenvalues (p1,2) of the N̂SH matrix are equal (Alshits

et al, 2005)

ξ1(y) =
i√
2

(
(μ p)−1/2

−(μ p)1/2

)
, ξ2(y) =

1√
2

(
(μ p)−1/2

(μ p)1/2

)
, p1,2(y) =±p . (2.8)
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2.3 The Propagator Matrix and Its Adiabatic Approximation

Thus, we should solve Eq. (2.4) and then from boundary conditions find the dispersion
branches sl(ω), l = 1,2 . . .. The solution of (2.4) is conveniently expressed in the
form (Alshits and Maugin, 2005, 2008)

ηηη(y) = Ŵ (k)(y|0)ηηη(0), (2.9)

where Ŵ (k) is the propagator matrix which in analogy with Alshits and Maugin
(2005); Alshits and Kirchner (1995) may be presented in the form

Ŵ (k)(y|0) = Ordexp[ik

y∫
0

N̂SH(y′)dy′]. (2.10)

The Ord operator means the definite order of non-commuting matrices N̂SH in
the products N̂SH(y′)N̂SH(y′′) . . . N̂SH(y′′′) (with y′ > y′′ > .. . > y′′′ for y > 0 and
y′ < y′′ < .. . < y′′′ for y < 0) in integrands of multiple integrals arising after
expansion of the exponential operator in (2.10).

Such solutions of equations similar (2.4) are widely used in quantum mechanics
with time-dependent Hamiltonian (Landau and Lifshitz, 1991), in mathematics (Gant-
macher, 1989; Shilov, 1996) and in mechanics of inhomogeneous media (Nayfeh,
1995). In our paper we are interested by only high-frequency region of the acoustic
spectrum, i.e. we need the asymptotic representation of the matrix Ŵ (k) at large k.
The proper analytical representation known as adiabatic approximation has the form
(Alshits and Kirchner, 1995)

Ŵ (k)
ad (y|0)≈

2

∑
α=1

ξkα(y)⊗ T̂ξα(0), (2.11)

where

ξkα(y) = ξα(y)exp[ikypα(y)] , pα(y) = y−1
y∫

0

pα(y′)dy′ ; (2.12)

T̂ =

(
0 1
1 0

)
. (2.13)

It is easily checked that this approximate solution satisfies Eq. (2.4) at large k.
Substituting (2.12) into (2.4) one obtains the criterion for this satisfaction:

|ξ ′α(y)| � k|p(y)ξα(y)| . (2.14)

Thus the approximation is the better, the larger k and the less inhomogeneity of the
material. However, inequality (2.14) is not the only limitation on the applicability of
representation (2.11). Apart from differential equation (2.4), the solution should also
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satisfy some known criteria (Alshits and Kirchner, 1995) for the propagator matrix.
For instance, as is seen from (2.10) the identity must be valid

[Ŵ (k)(y|0)]∗ = Ŵ (−k)(y|0) . (2.15)

This relation is satisfied by (2.11) only when the averaged factors p1,2 (2.12)2 are
either real, or imaginary (in the second case the two terms in sum (2.11) are complex
conjugate). However, as follows from (2.6), (2.8) and (2.12)2, the factors p1,2 might
be also generally complex at some regions of slowness s. This difficulty may be
overcome basing on the main propagator property

Ŵ (k)(y3|y1) = Ŵ (k)(y3|y2)Ŵ (k)(y2|y1) . (2.16)

At any s one can always divide the interval [0,y] on several subintervals [0,y1],
[y1,y2], . . . , [yN ,y], in which the parameters p1,2 (2.6) (and consequently p1,2) are
either real, or purely imaginary. Then, with (2.16), one can present the asymptotic
formula as the matrix product

Ŵ (k)(y|0) = Ŵ (k)
ad (y|yN) . . .Ŵ

(k)
ad (y2|y1)Ŵ

(k)
ad (y1|0) (2.17)

where all matrices on the right-hand side are given by (2.11)-(2.13). Of course, with
changing the slowness s the positions yl of the division points and their number N
may vary (Fig. 2.2).

Substitution of (2.8) into (2.11), (2.12) determines the matrices Ŵ (k)
ad in (2.17):

Ŵ (ω)
ad (yl+1|yl) =

⎛⎝√γl/γl+1 cos(ωIl) −(i/√γlγl+1)sin(ωIl)

−i
√γlγl+1 sin(ωIl)

√
γl+1/γl cos(ωIl)

⎞⎠ . (2.18)

Fig. 2.2 Profile ŝ(y) of the
limiting slowness of the plate
material with five min/max
and inflection points (1, 2, . . . ,
5) determining asymptotic
levels ŝ1, ŝ2, . . . , ŝ5 in the SH
wave spectrum. The regions
Ii, II, III and IV j of slowness
s relate to different numbers
of zeros of the function p(y)
(e.g. in the regions IV1,2 there
are three such zeros: y1,y2 and
y3).
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1ŝ  
2ŝ  
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Here k = ωs is put with replacing the superscript (k)→ (ω) and the notations

γl ≡ γyl = μ(yl)p(yl), Il(s)≡ Iylyl+1 =

yl+1∫
yl

dy
√
[ŝ(y)]2− s2 (2.19)

are introduced. In these terms we shall imply below that y0 ≡ 0 and yN+1 ≡ d.
It is easily checked that (2.18) satisfies identity (2.15) for both real and imaginary

parameter p(yl) = Il/s (2.12)2. And still, there remains one more trouble in solution
(2.17)-(2.19): all the division points y1,y2, . . . ,yN exactly correspond to the limiting
slowness s = ŝ for which p = 0 (2.6) and the corresponding parameters γ1,γ2, . . . ,γN
vanish. In view of (2.18), this leads to singularities in all matrices of product (2.17).
In order to exclude these singularities, let us introduce in the vicinity of each internal
division point yl the two additional points y±l = yl ± ε where ε is chosen so, that
εk� 1. Basing on (2.18) one can prove that for small enough ε the matrix products
Ŵ (ω)

ad (y+l |yl)Ŵ
(ω)
ad (yl |y−l ) for any l = 1,2, . . . ,N can be made arbitrarily close to the

identity matrix Î with corrections linear in ε . Thus, (2.17) is reduced to the form

Ŵ (ω)(y|0)= lim
ε→0

{
Ŵ (ω)

ad (y|y+N )Ŵ (ω)
ad (y−N |y+N−1) . . .Ŵ

(ω)
ad (y−2 |y+1 )Ŵ (ω)

ad (y−1 |0)
}

(2.20)

which does not contain singularities. Indeed, the small parameters γ±l ∝ ε present in
(2.20) only in the combination γ−l /γ+l with the following limiting behaviour:

lim
ε→0

{
γ−l /γ+l

}
= i sgn {ŝ′(yl)} . (2.21)

2.4 Boundary Problems and Their General Solutions

As shown by Shuvalov et al (2008), the dispersion equations for SH waves in
inhomogeneous plates are directly formulated in terms of scalar elements of the
propagator

Ŵ (ω)(d|0) =
⎛⎝W1 W2

W3 W4

⎞⎠ . (2.22)

It allows a convenient description of the boundary problems for the plate surfaces
which are both free (f/f), both clamped (c/c), the lower face free - the upper face
clamped (f/c) and the lower face clamped - the upper face free (c/f):

W3 = 0 (f/f), W2 = 0 (c/c), W1 = 0 (f/c), W4 = 0 (c/f) . (2.23)
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2.4.1 Spectral Regions Without Division Points

2.4.1.1 The Range s < min{ŝ(y)}(I1 in Fig. 2.2)

In this case Eq. (2.6) gives real p(y) in any layer of the plate which means that there
are no division points in the region 0≤ y≤ d and the propagator matrix is directly
determined by (2.18):

Ŵ (ω)(d|0) = Ŵ (ω)
ad (d|0) =

⎛⎝√γ0/γd cos(ωI0d) −(i/√γ0γd)sin(ωI0d)

−i
√γ0γd sin(ωI0d)

√
γd/γ0 cos(ωI0d)

⎞⎠ . (2.24)

Then, by (2.22), (2.23), in this range one has the dispersion equations

sin(ωI0d) = 0 (f/f and c/c), cos(ωI0d) = 0 (f/c and c/f) . (2.25)

With (2.25), asymptotics for inverse dispersion branches ω(sl) (l = 1,2, . . .) are
given by

ω(sl) =
πl

I0d(sl)
(f/f and c/c), ω(sl) =

π(l− 1
2 )

I0d(sl)
(f/c and c/f) . (2.26)

2.4.1.2 The Range s > max{ŝ(y)}(I2 in Fig. 2.2)

In this range the parameter p(y) (2.6) is purely imaginary throughout the plate.
Again there are no division points. And the propagator is given by the replacement
I0d → i|I0d | in (2.24):

Ŵ (ω)(d|0) =
⎛⎝√γ0/γd cosh(ω|I0d |) (1/√γ0γd)sinh(ω|I0d |)
√γ0γd sinh(ω|I0d |)

√
γd/γ0 cosh(ω|I0d |)

⎞⎠ . (2.27)

No elements of this matrix can vanish which means that at s > max{ŝ(y)} there are
no dispersion branches for SH waves.

2.4.2 Spectral Regions with one Division Point

In the intermediate range min{ŝ(y)} < s < max{ŝ(y)} there must be regions for y
where p(y) (2.6) takes either real or imaginary values. We start from the situation
when the equation ŝ(y) = s has only one solution y = a dividing the plate thickness
into two parts: 0 < y < a and a < y < d. In this case the short wavelength asymptotics
of the propagator matrix has the form
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Ŵ (ω)(d|0) = lim
ε→0

{
Ŵ (ω)

ad (d|a+)Ŵ (ω)
ad (a−|0)

}
(2.28)

With appropriate expressions from (2.18) for matrices Ŵ (ω)
ad in (2.28) the further

analysis depends on the sign of the derivative ŝ′(a).

2.4.2.1 The Case ŝ′(a)> 0 (the Range II in Fig. 2.2)

In this case the parameters γ0 and I0a are imaginary and the parameters γd and Iad
are real, and the propagator matrix acquires the form

Ŵ (ω)(d|0) = exp(ω|I0a|)√
2

⎛⎜⎜⎜⎝
√

γ0

iγd
sin(ωIad +

π
4
)

1√
iγ0γd

sin(ωIad +
π
4
)

√
iγ0γd cos(ωIad +

π
4
)

√
iγd

γ0
cos(ωIad +

π
4
)

⎞⎟⎟⎟⎠ .

(2.29)
Here we used (2.21) and the high frequency approximation for hyperbolic functions

sinh(ω|I0a|)≈ cosh(ω|I0a|)≈ 1
2

exp(ω|I0a|). (2.30)

Found expression (2.29) gives dispersion equations for all boundary problems (2.23):

cos(ωIad +
π
4
) = 0 (f/f and c/f); sin(ωIad +

π
4
) = 0 (c/c and f/c) . (2.31)

Solving these equations gives the inverse dispersion branches ω(sl)(l = 1,2, . . .) :

ω = π(l +
1
4
)/Iad(sl) (f/f and c/f)

ω = π(l− 1
4
)/Iad(sl) (c/c and f/c)

⎫⎪⎪⎬⎪⎪⎭ ŝ′(a)> 0 . (2.32)

2.4.2.2 The Case ŝ′(a)< 0

This time, vice versa, the parameters γd and I0d are imaginary and the parameters
γ0 and I0a are real. Accordingly, Eqs. (2.29) and (2.31) should be transformed by
replacing there γd↔ γ0 and Iad↔ I0a. And the inverse dispersion branches ω(sl)(l =
1,2, . . .) are

ω = π(l +
1
4
)/I0a(sl)(f/f and c/f)

ω = π(l− 1
4
)/I0a(sl)(c/c and f/c)

⎫⎪⎪⎬⎪⎪⎭ ŝ′(a)< 0 . (2.33)
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2.4.3 Spectral Regions with two Division Points

Let us suppose that the equation ŝ(y) = s has two roots: y1 = a and y2 = b > a. In
this case the propagator is the product of three submatrices:

Ŵ (k)(d|0) = Ŵ (k)
ad (d|b+)Ŵ (k)

ad (b−|a+)Ŵ (k)
ad (a−|0). (2.34)

Matrix product (2.34) leads to different dispersion equations for two types of sign
combinations of derivatives ŝ′(a) and ŝ′(b) which will be considered separately.

2.4.3.1 The Case ŝ′(a)> 0, ŝ′(b)< 0

Now the parameter p(y) (2.6) is imaginary in the intervals (0,a) and (b,d), being
real in the interval (a,b). Equations (2.34) and (2.18) give

Ŵ (k)(d|0) = 1
2

exp[ω(|I0a|+ |Ibd |)cos(ωIab)

⎛⎝√γ0/γd 1/
√γ0γd

√γ0γd
√
γd/γ0

⎞⎠ . (2.35)

Thus, all boundary problems f/f, c/c, f/c and c/f are reduced to one equation

cos(ωIab) = 0 (2.36)

and the inverse branches ω(sl), l = 1,2, . . . are in this case also universal:

ω = π(l− 1
2
)/Iab(sl) . (2.37)

2.4.3.2 The Case ŝ′(a)< 0, ŝ′(b)> 0 (the Range III in Fig. 2.2)

Now parameter p(y) (2.6) is real in the intervals (0,a) and (b,d), being imaginary in
the interval (a,b). So, the propagator matrix acquires the form

Ŵ (k)(d|0) = exp(ω|Iab|)×⎛⎜⎜⎜⎝
√

γ0

γd
cos(ωI0a +

π
4
)sin(ωIbd +

π
4
)
−i√γ0γd

sin(ωI0a +
π
4
)sin(ωIbd +

π
4
)

i
√
γ0γd cos(ωI0a +

π
4
)cos(ωIbd +

π
4
)

√
γd

γ0
sin(ωI0d +

π
4
)cos(ωIbd +

π
4
)

⎞⎟⎟⎟⎠ .

(2.38)
From here we obtain the following dispersion equations (2.23):
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f/f : cos(ωI0a +
π
4
) = 0, cos(ωIbd +

π
4
) = 0;

c/c : sin(ωI0a +
π
4
) = 0, sin(ωIbd +

π
4
) = 0;

f/c : cos(ωI0a +
π
4
) = 0, sin(ωIbd +

π
4
) = 0;

c/f : sin(ωI0a +
π
4
) = 0, cos(ωIbd +

π
4
) = 0.

(2.39)

Each of them describes a couple of branch series, sm(ω) and sn(ω). They are num-
bered separately (m,n = 1,2, . . .). As before, we present the inverse functions:

f/f : ω = π(m+
1
4
)/I0a(sm), ω = π(n+

1
4
)/Ibd(sn);

c/c : ω = π(m− 1
4
)/I0a(sm), ω = π(n− 1

4
)/Ibd(sn);

f/c : ω = π(m+
1
4
)/I0a(sm), ω = π(n− 1

4
)/Ibd(sn);

c/f : ω = π(m− 1
4
)/I0a(sm), ω = π(n+

1
4
)/Ibd(sn).

(2.40)

Until now for each boundary condition we obtained only one series of branches.
In (2.40) we have a couple of branch series for each boundary problem which
are independent and admit multiple intersections which are generally forbidden
(Alshits et al, 2003; Alshits and Maugin, 2005, 2008; Shuvalov et al, 2008). In fact,
these intersections arise due to our asymptotic approximation (2.30) which excludes
very weak branch repulsion. Exact calculations would eliminate such degeneracies.
However the higher is frequency the less is size of the repulsion region. Often in
order to visualize this region one should greatly scale up the picture. This effect is
one of reasons for formation of terracing patterns in spectra (Alshits et al, 2003;
Shuvalov et al, 2008).

2.4.4 Extension for an Arbitrary Number of Division Points

2.4.4.1 An Odd Number of Division Points N = 2n−1 (n > 1)

As before, the results of an analysis depend on the sign of the derivative ŝ′(y1). If
ŝ′(y1) > 0 the parameters Im (2.19) are purely imaginary when their numbers are
even (m = 2l), being real for odd numbers (m = 2l−1). The propagator matrix in
this case takes the form
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Ŵ (ω)(d|0) = 1√
2

exp

[
ω

n−1

∑
l=0
|I2l |
]

n−1

∏
l=1

cos(ωI2l−1)×⎛⎜⎜⎜⎜⎝
√

γ0

iγd
sin(ωIN +

π
4
)

1√
iγ0γd

sin(ωIN +
π
4
)

√
iγ0γd cos(ωIN +

π
4
)

√
iγd

γ0
cos(ωIN +

π
4
)

⎞⎟⎟⎟⎟⎠ .

(2.41)

The corresponding dispersion equations (2.23) are

∏n−1
l=1 cos(ωI2l−1) = 0, cos(ωIN +

π
4
) = 0 (f/f, c/f);

∏n−1
l=1 cos(ωI2l−1) = 0, sin(ωIN +

π
4
) = 0 (c/c, f/c).

(2.42)

So, for each boundary problem we obtain the n sets of inverse dispersion branches:

f/f, c/f :

⎧⎪⎪⎨⎪⎪⎩
ω = π(m− 1

2
)/I2l−1(sm), m = 1,2, . . . , l = 1, . . . ,n−1, n > 1;

ω = π(m+
1
4
)/IN(sm), m = 1,2, . . . ;

(2.43)

c/c, f/c :

⎧⎪⎪⎨⎪⎪⎩
ω = π(m− 1

2
)/I2l−1(sm), m = 1,2, . . . , l = 1, . . . ,n−1, n > 1;

ω = π(m− 1
4
)/IN(sm), m = 1,2, . . . .

(2.44)
If ŝ′(y1)< 0, the set I2l is real and I2l−1 is imaginary. Thus we obtain

Ŵ (k)(d|0) = 1√
2

exp

[
ω

n

∑
l=1
|I2l−1|

]
n−1

∏
l=1

cos(ωI2l)×⎛⎜⎜⎜⎜⎝
√

iγ0

γd
cos(ωI0 +

π
4
)

1√
iγ0γd

sin(ωI0 +
π
4
)

√
iγ0γd cos(ωI0 +

π
4
)

√
γd

iγ0
sin(ωI0 +

π
4
)

⎞⎟⎟⎟⎟⎠ .

(2.45)

Again for each boundary problem (2.23) there occur n sets of inverse branches

f/f, f/c :

⎧⎪⎨⎪⎩ω =
π(m− 1

2 )

I2l(sm)
, m = 1,2, . . . , l = 1, . . . ,n−1, n > 1;

ω = π(m+ 1
4 )/I0(sm), m = 1,2, . . . ;

(2.46)
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c/c, c/f :

⎧⎪⎨⎪⎩ω =
π(m− 1

2 )

I2l(sm)
, m = 1,2, . . . , l = 1, . . . ,n−1, n > 1;

ω = π(m− 1
4 )/I0(sm), m = 1,2, . . . .

(2.47)

Found solutions (2.43), (2.44) and (2.46), (2.47) are valid for odd numbers N of
division points starting from N = 3 and extend above solutions (2.32), (2.33) valid
for N = 1.

2.4.4.2 An Even Number of Division Points N = 2n (n > 1)

In the case ŝ′(y1)> 0 one obtains

Ŵ (ω)(d|0) = 1
2

exp

[
ω

n

∑
l=1
|I2l |
]

n

∏
l=1

cos(ωI2l−1)

⎛⎜⎝
√

γ0

γd
1/
√γ0γd

√γ0γd
√
γd/γ0

⎞⎟⎠ . (2.48)

The n sets of dispersion equations are common for all four boundary problems

n

∏
l=1

cos(ωI2l−1) = 0 (f/f, c/c, f/c, c/f) (2.49)

which are solved by

ω =
π(m− 1

2 )

I2l−1(sm)
, m = 1,2, . . . , l = 1, . . . ,n, n≥ 1. (2.50)

The found general solution describes also the case n = 1 and coincides with (2.37).
For ŝ′(y1)< 0 the propagator matrix is more bulky than (2.48):

Ŵ (k)(d|0) = exp

[
ω

n

∑
l=1
|I2l−1|

]
n−1

∏
l=1

cos(ωI2l)×⎛⎜⎜⎜⎝
√

γ0

γd
cos(ωI0 +

π
4
)sin(ωIN +

π
4
)
−i√γ0γd

sin(ωI0 +
π
4
)sin(ωIN +

π
4
)

i
√
γ0γd cos(ωI0 +

π
4
)cos(ωIN +

π
4
)

√
γd

γ0
sin(ωI0 +

π
4
)cos(ωIN +

π
4
)

⎞⎟⎟⎟⎠ .

(2.51)
This time we obtain n+ 1 sets of dispersion branches different for all boundary
conditions:
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f/f :

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ω =
π(m− 1

2 )

I2l(sm)
, m = 1,2, . . . , l = 1, . . . ,n−1, n > 1;

ω = π(m+
1
4
)/I0(sm), m = 1,2, . . . ;

ω = π(m+
1
4
)/IN(sm), m = 1,2, . . . ;

(2.52)

c/c :

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ω =
π(m− 1

2 )

I2l(sm)
, m = 1,2, . . . , l = 1, . . . ,n−1, n > 1;

ω = π(m− 1
4
)/I0(sm), m = 1,2, . . . ;

ω = π(m− 1
4
)/IN(sm), m = 1,2, . . . ;

(2.53)

f/c :

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ω =
π(m− 1

2 )

I2l(sm)
, m = 1,2, . . . , l = 1, . . . ,n−1, n > 1;

ω = π(m+
1
4
)/I0(sm), m = 1,2, . . . ;

ω = π(m− 1
4
)/IN(sm), m = 1,2, . . . ;

(2.54)

c/f :

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ω =
π(m− 1

2 )

I2l(sm)
, m = 1,2, . . . , l = 1, . . . ,n−1, n > 1;

ω = π(m− 1
4
)/I0(sm), m = 1,2, . . . ;

ω = π(m+
1
4
)/IN(sm), m = 1,2, . . . .

(2.55)

These equations are valid for N ≥ 4. They extend sets (2.42) of branches for the case
N = 2.

2.5 The Low-Slowness Approximation and the Cut-Off

Frequencies

Below we shall study the found spectra in the vicinity of some levels of the slowness
where the branches sl(ω) manifest some specific features. We start from the range of
low slowness s�min{ŝ(y)}. In this limit the spectrum is easily found from (2.26)
with

I0d(sl) =

d∫
0

dy
√

ŝ2(y)− s2
l ≈ d

(
ŝ− 1

2
s2

l ŝ−1

)
, (2.56)



40 Vladimir I. Alshits and Jerzy P. Nowacki

where the notations are introduced

ŝ =
1
d

d∫
0

dyŝ(y) , ŝ−1 =
1
d

d∫
0

dyŝ−1(y) . (2.57)

Combining (2.26) with (2.56) one readily obtains the spectrum. In particular, for the
f/f boundary condition we have

sl(ω)≈
√

2ŝ

ŝ−1

(
1− ω0

l
ω

)
, (2.58)

where ω0
l are the so-called cut-off frequencies,

ω0
l = πl/ŝd l = 1,2, . . . . (2.59)

Each branch sl(ω) exists only for frequencies ω exceeding its own cut-off frequency
ω0

l for which sl(ω0
l ) = 0. As is seen from (2.58), the derivative ∂ sl/∂ω at ω → ω0

l
tends to infinity which means that the branches sl(ω) come out the cut-off frequencies
ω0

l with vertical slopes.
A similar approximate description of this part of the spectrum was earlier pre-

sented by Shuvalov et al (2008) in somewhat more general statement. It was shown
that Eqs. (2.58), (2.59) are in quite good fit with an exact computer spectrum in
the vicinity of cut-off frequencies exceeding 10 rad/μs. Indeed, in this range of
the spectrum we have the small slowness, s2

l � ŝ2(y), and accordingly the large
parameter p≈ ŝ(y)/sl (2.6). Then the criterion (2.14) reduces to the inequality

ω � (μ ŝ)′

2μ ŝ2 =
(ρ/ŝ)′

2ρ
, (2.60)

which is satisfied for the example considered in Shuvalov et al (2008) (see Fig. 3 in
those paper).

2.6 Example of Inhomogeneity Admitting an Explicit Analysis

Let us consider the example of slowness profile ŝ(y) shown in Fig. 2.3:

ŝ(y) = ŝ0

√
1+δ

y
d

(2.61)

which can be explicitly analyzed basing on the above theoretical approach. As was
shown in Subsects. 2.4.1 and 2.4.2, the spectral regions s ≤ ŝ0 = min{ŝ(y)} and
ŝ0 ≤ s < ŝm = max{ŝ(y)} should be considered separately.
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Fig. 2.3 Schematic plot of the
function ŝ(y) (2.61).

0ŝ  

mŝ
ŝ  

dy /  0  1  

2.6.1 The Region 0 < s≤ ŝ0

In this range the inverse branches ω(sl) are given by (2.26) with

I0d =
2d

3ŝ2
0δ

{(
ŝ2

m− s2
l
)3/2− (ŝ2

0− s2
l
)3/2
}
. (2.62)

For instance, for the f/f boundary problem one has

ω =
3πlŝ2

0δ

2d
{(

ŝ2
m− s2

l

)3/2− (ŝ2
0− s2

l

)3/2
} =

δ 3/2ωl(
1+δ − s2

l /ŝ2
0

)3/2− (1− s2
l /ŝ2

0

)3/2 ,

(2.63)
where

ωl = lΔω , Δω =
3π

2dŝ0
√
δ
. (2.64)

2.6.1.1 The Cut-Off Frequencies of the Spectrum

Each of branches sl(ω) exists only for frequencies ω exceeding the cut-off frequency
ω0

l for which sl(ω0
l ) = 0. Substituting into (2.63) sl = 0 one finds the spectrum of

cut-off frequencies

ω0
l = lΔω0 , Δω0 =

3π ŝ0δ
2d(ŝ3

m− ŝ3
0)

=
Δωδ 3/2

(1+δ )3/2−1
. (2.65)

As is seen from (2.63), at the points sl = 0 the derivative dω/dsl vanishes which
means that the branches sl(ω) come out the cut-off frequencies ω0

l with vertical
slopes (Fig. 2.4). This part of the spectrum related to the range sl � ŝ0 has the form

sl(ω) =

√
πlŝ0δ

d(
√

1+δ −1)

(
1
ω0

l
− 1
ω

)
. (2.66)
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Fig. 2.4: The spectrum of the plate with slowness profile (2.61) for δ = 1. Solid
lines relate to branches sl(ω). Dashed lines bound the forbidden band. Dotted lines
indicate the levels s = ŝ0 and s = ŝ0

√
2.

At small inhomogeneity δ � 1 this expression as well as the interval Δω0 between
the cut-off frequencies become independent of δ :

sl(ω) =

√
2πls0

d

(
1
ω0

l
− 1
ω

)
, Δω0 ≈ π

ŝ0d
. (2.67)

2.6.1.2 Spectrum just Under the Level sl = ŝ0

Consider now the narrow band of the spectrum, Δsl = ŝ0− sl � ŝ0, just below the
level sl = ŝ0. Here one should be careful because the upper limit of this band sl = ŝ0
relates to a singular level of the spectrum where the eigenvectors ξ1,2 (2.8) diverge
due to vanishing of p (2.6). In the vicinity of this level the solution (2.63) satisfies
the criterion (2.14) of applicability of the adiabatic approximation if

ω � ŝ2
0δ

2d(ŝ2
0− s2

l )
3/2 . (2.68)

Thus for large enough frequency ω Eq. (2.63) describes the spectrum as close to
the singular level sl = ŝ0 as we need. Let us choose the arbitrarily narrow forbidden
gap of the width Δs� ŝ0 under the level sl = ŝ0 and estimate the lower bound l0
of spectrum branch numbers, l� l0, for which our approximation (2.68) works at
sl = ŝ0−Δs and consequently throughout the region Δs < ŝ0− sl � ŝ0.
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The frequencies ωb
l where the dispersion lines intersect the bound,

sl(ω) = ŝ0−Δs,

are found from (2.63):

ωb
l = lΔωb , Δωb ≈ 3πδ

2dŝ0(δ +2Δs/ŝ0)3/2 ≈ Δω . (2.69)

Here we supposed for simplicity that Δs� ŝ0δ/3. In this approximation the found
frequencies (2.69) are very close to the set (2.64) related to intersections with the
singular level sl = ŝ0. Combining (2.69) with criterion (2.68) taken at sl = ŝ0−Δs
one obtains

l� l0 =
(ŝ0δ/Δs)2/3

6π
√

2
, (2.70)

i.e. l0 = 5 when Δs/ŝ0 ≈ 0.04δ . Thus, the width Δs0
l of the forbidden zone, where

our adiabatic approach fails, depends on l and converges ∝ l−2/3 (Fig. 2.4):

Δs0
l ∼

ŝ0δ
(2πl)2/3 . (2.71)

For the considered interval Δs0
l < Δsl � ŝ0 Eq. (2.63) takes the form(

1+
2Δsl

ŝ0δ

)3/2

−
(

2Δsl

ŝ0δ

)3/2

=
ωl

ω
. (2.72)

In the region Δs0
l < Δsl � ŝ0δ this equation is solved by

sl(ω)≈ ŝ0

{
1− δ

3

[ωl

ω
−1
]}

. (2.73)

It follows from (2.73) that slopes of the branches sl(ω) in points ωb
l of their inter-

section with the level sl = ŝ0−Δs0
l decrease with growing branch number as 1/l:

s′l(ω) |ωl≈
ŝ0δ
3ωl

. (2.74)

2.6.2 The Region ŝ0 < s≤ ŝm

In this spectral interval we meet the situation described in the Sect. 2.4.2.1. The
inverse spectrum now is described by equation (2.32) with

Iad(sl) =
2ωd
3ŝ2

0
(ŝ2

m− ŝ2
l )

3/2 . (2.75)
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For the f/f boundary condition the resulting spectrum is given by

s2
l (ω) = ŝ2

m− ŝ2
0δ (ω̃l/ω)3/2 (2.76)

where

ω̃l = ωl+1/4 = Δω
(

l +
1
4

)
. (2.77)

As we shall see, the shift of the frequency (l→ l + 1
4 ) in (2.77) as compared with

(2.64) plays a key role in the spectrum pattern in the vicinity of the level sl = ŝ0.

2.6.2.1 Spectrum just Over the Level sl = ŝ0

We start from the narrow region Δs0
l < sl− ŝ0� ŝ0 just over the level s = ŝ0. Here

one obtains from (2.76)

sl(ω)≈ ŝ0

{
1+

δ
2

[
1−
(
ω̃l

ω

)2/3
]}

. (2.78)

This is a continuation of branch (2.73) through the forbidden zone |sl− ŝ0|< Δs0
l .

Certainly, for large l its upper side is practically symmetrical to the lower one. If to
forget for a moment about this zone, the points of intersections of lines (2.73) and
(2.78) with the level s = ŝ0 are shifted on the distance ω̃l−ωl =

1
4Δω (Fig. 2.4).

It is essential that the slope of curve (2.78) in the point ω̃ practically coincides
(for large l) with the slope (2.74) of the other curve:

s′l(ω) |ω̃l≈
ŝ0δ
3ω̃l

. (2.79)

Thus, the interpolation line through the gap between curves (2.73) and (2.78) must
contain an inflection point. With growing l and respective converging the gap, these
imaginary fragments of the spectrum should tend to a horizontal line along the
discussed level sl = ŝ0. Unfortunately, such tendency is concealed by the other
tendency: with increasing l the slopes of all branches on both sides of the expected
asymptote also decrease ∝ 1/l and remain identical (compare (2.74) and (2.79)).
Therefore it would be difficult to notice manifestations of discussed anomaly in real
spectra. This is evident from Fig. 2.4.

2.6.2.2 Spectrum Under the Asymptote s = ŝm

Dispersion branches sl(ω) (2.76) never exceed the upper asymptotic level s = ŝm
(Fig. 2.4). In the vicinity of this level (sm− sl � ŝm) one obtains
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sl(ω)≈ ŝm

{
1− δ

2(1+δ )

(
ω̃l

ω

)2/3
}

. (2.80)

We stress that asymptotic tending sl → ŝm is accompanied by approaching the lower
limit (a) of the integral Iad to the upper one (d). This relates to convergence of the
region admitting the propagation of bulk SH waves, i.e. to channelling of the wave
field in the vicinity of the upper face of the plate.

Note in passing that approaching the curve sl(ω) (2.80) to the asymptote s = ŝm
at growing frequency, ŝm− sl ∝ ω−2/3, coincides with the prediction (Alshits and
Maugin, 2005, 2008) based on completely different consideration.

2.7 Levels Related to Extreme Points on the Slowness Profile

In this section we shall study behaviour of dispersion branches in the vicinity of
levels associated with extreme points of the slowness profile. Here we shall return
to the scheme of the function ŝ(y) shown in Fig. 2.2 and consider the minimum (1),
inflection (3) and maximum (4) types of levels. The non-extreme points 2 and 5 will
be beyond our interest because these types of asymptotes are already studied in the
previous Sect. 2.6.

2.7.1 An Absolute Minimum of the Function ŝ(y)

In the vicinity of the level ŝ1 related to the minimum on the slowness profile in
Fig. 2.2 it is convenient to present the function ŝ(y) in the form

ŝ2(y) = ŝ2
1 {1+ f1(y)} . (2.81)

Close to its minimum point y(1) the function f1(y) will be approximated by the
expression

f1(y)≈ λ

∣∣∣∣∣y− y(1)

d

∣∣∣∣∣
m

, (2.82)

where λ is a dimensionless parameter and the power m is supposed to be integer-
valued: m = 2,3, . . . Expression (2.82) for f1(y) will be implied applicable in the
definite region |y− y(1)|< Δy� d .

2.7.1.1 Spectral Features just Under the Level s = ŝ1

The spectrum branches ω(sl) under the level s = ŝ1 is given by (2.26) with



46 Vladimir I. Alshits and Jerzy P. Nowacki

I0d(sl) =

d∫
0

dy
√

ŝ2
1− s2

l + ŝ2
1 f1(y) . (2.83)

Let us divide this integral into two parts: I0d = I1 + I2. The first one (I1) is deter-
mined by the range (I): |y− y(1)|< Δy, where approximation (2.82) works. And the
integral I2 is taken over the rest part (II) of the interval [0,d]. These integrals may be
presented in the forms

I1 = 2ε
m+2
2m

1l (ŝ1d/λ 1/m)

Δy
d

(
λ
ε1l

)1/m∫
0

dx
√

1+ xm ,

I2 =
∫
II

dy
√

ŝ2
1− s2

l + ŝ2
1 f1(y) = ŝ1

∫
II

dy
√
ε1l + f1(y) ,

(2.84)

with ε1l = (ŝ2
1− s2

l )/ŝ2
1. For our asymptotic consideration we shall suppose ε1l to be

very small,
ε1l � λ (Δy/d)m . (2.85)

In this limiting case one can obtain

I0d(sl)≈ ŝ1d
(

A1 +B1ε
m+2
2m

1l

)
, (2.86)

where A1 ∼ 1 and B1 ∼ 1 are dimensionless constants depending on λ .
Substituting (2.86) into (2.26), one can find asymptotic dispersion branches sl(ω)

just under the level s = ŝ1 for any of boundary problems (2.23). In particular, for free
faces one has

sl ≈ ŝ1

{
1−κ1

(ω1l

ω
−1
) 2m

m+2
}

, (2.87)

where the notations are introduced

κ1 =
1
2
(A1/B1)

2m
m+2 , ω1l = lΔω1 , Δω1 = π/A1ŝ1d . (2.88)

The set of frequencies ω1l approximately indicates points of intersections of the
branches sl(ω) with the level ŝ1. However here one should be careful in the same
way as in Sect. 2.6. In the vicinity of ŝ1, solution (2.87) satisfies criterion (2.14) of
applicability of the adiabatic approximation, only if

ω � mδ 1/m

8ŝ1d
√

2
ε−

m+2
2m

1l (2.89)

(compare with (2.68)). Thus, for large enough frequencies ω , formula (2.87) de-
scribes the spectrum as close to the singular level s = ŝ1 as we need.
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The further consideration is completely analogous to that in 2.6.1.2. Again close
to the asymptote there is a forbidden zone of the width Δs1

l which depends on l and
converges with its growth:

Δs1
l ∼ ŝ1

(
mλ 1/mA1

2πl

) 2m
m+2

. (2.90)

For parabolic minimum m = 2 this gives Δs1
l ∝ 1/l. By (2.87), the frequency ωb

1l
where the branch sl(ω) intersect the bound ŝ1−Δs1

l is

ωb
1l ≈

ω1l

1+
(
Δs1

l /κ1ŝ1
)m+2

2m
. (2.91)

For κ1 ∼ 1 and Δs1
l � ŝ1 the frequencies ωb

1l must be close to the set ω1l (2.88).
It also follows from (2.87) that with increasing branch number l the slopes of the

branches sl(ω) in the points ωb
1l (2.91) of the bound decrease as

dsl

dω

∣∣∣∣
ω=ωb

1l

≈ ŝ1

ω1l

A1m
B1(m+2)

(
2Δs1

l
ŝ1

)m−2
2m

. (2.92)

Note in passing that for m = 2 the last multiplier is equal 1. However one should
be aware that even for m > 2 this multiplier containing a small parameter 2Δs1

l /ŝ1

remains of order of unity at least for not very large m because of small index m−2
m+2

(see (2.90)).
The character of the relay race approaching the level s = ŝ1 by the infinite set of

branches is conveniently described by the decrease of distances ŝ1− sl > Δs1
l in the

discrete series of equidistant frequencies ω̂l ≡ ω1(l−Δ l) with the growing l and the
constant Δ l� l . For large enough numbers l−Δ l when asymptotic formula (2.87)
is applicable, it gives

ŝ1− sl(ω̂l)≈ ŝ1κ1

(
ω1Δ l

ω̂l

) 2m
m+2

∝ ω̂
− 2m

m+2
l . (2.93)

This dependence is similar to the prediction in Alshits and Maugin (2005, 2008).

2.7.1.2 Spectrum Features just Over the Level s = ŝ1

For the other side from the level s= ŝ1 the analysis is completely analogous. However,
this time the line s =const > ŝ1 intersects the curve ŝ(y) in two points a and b on the
left and right sides from the minimum y(1), respectively (region III in Fig. 2.2). The
inverse spectrum for such case is found in 2.4.3.2. For the f/f boundary problem it is
described by the two series of branches given by (2.42)1. The integrals I0a and Ibd
determining these series are similar to (2.86):
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I0a(si)≈ ŝ1d
(

A′1−B′1|ε1i|m+2
2m

)
, Ibd(s j)≈ ŝ1d

(
A′′1−B′′1 |ε1 j|m+2

2m

)
, (2.94)

where i, j = 1,2, . . . are numbers of branches, and the positive coefficients in (2.94)
are estimated as A′1,B

′
1,A
′
2,B
′
2 ∼ 1. With (2.94) and (2.40)1, the new asymptotic

branch series are

si ≈ ŝ1[1+(κ ′1(1−ω ′i/ω)
2m

m+2 ] , s j ≈ ŝ1[1+(κ ′′1 (1−ω ′′j /ω)
2m

m+2 ], (2.95)

where ω > ω ′i ,ω ′′j and

κ ′1 =
1
2
(A′1/B′1)

2m
m+2 , ω ′1i = Δω ′1(i+

1
4
) , Δω ′1 = π/A′1ŝ1d ;

κ ′′1 =
1
2
(A′′1/B′′1)

2m
m+2 , ω ′′1 j = Δω ′′1 ( j+

1
4
) , Δω ′′1 = π/A′′1 ŝ1d .

(2.96)

One can prove that the parameters A′1 and A′′1 in (2.94) and (2.96) should approxi-
mately relate to A1 in (2.86) as A1 ≈ A′1 +A′′1. Then the intervals Δω ′1, Δω

′′
1 (2.96)

and Δω1 (2.88) must relate to each other as

1
Δω1

≈ 1
Δω ′1

+
1

Δω ′′1
(2.97)

This relation has clear interpretation. Indeed, it is evident that at large enough
frequency ω the total number of branches in the spectrum with frequencies less than
ω coming to the level s = ŝ1 from below, l ≈ ω/Δω1, must be approximately equal
to the sum of numbers of branches over the asymptote in the same frequency range,
i≈ ω/Δω ′1 and j ≈ ω/Δω ′′1 , i.e. l ≈ i+ j. But this leads directly to (2.97).

Thus, each branch l under the level s = ŝ1 will be continued above it by the branch
i, or j. And the intersection points of this pair with the level s = ŝ1 must be shifted
correspondingly by 1

4Δω
′
1 or by 1

4Δω
′′
1 which reminds the situation of Sect. 2.6.

But the slopes of all three lines from both sides of the level now differ from each
other (ordinarily, the slope (2.92) of the lower l-line is less). Of course, the discussed
discontinuities of functions (2.87), (2.95) and their derivatives occur nonmetering
the forbidden gap around the singular level. However with increasing frequency the
forbidden band converges faster than earlier (e.g., for m = 2 by (2.90) Δs1

l ∝ 1/l)
and the changes in the shape of the dispersion line should become more and more
pronounced. Such relay-race asymptotic behavior of spectrum on the level related to
an extreme minimum of the profile ŝ(y) was expected in Alshits and Maugin (2005).

All mentioned features are seen in Fig. 3 of Shuvalov et al (2008) where the
numerically obtained exact spectrum is presented for a continuously layered plate.
The level s≈ 0.29μ s/mm just corresponds to such intermediate asymptote related
to the minimum of the slowness profile at y≈−0.2mm. One can see a tendency of
decreasing slopes of branches under this level with growing frequency and then a
rather sharp increase in their slopes on the upper side with two types of branches
going up to different asymptotes. There are no comments in Shuvalov et al (2008)
related to this part of spectrum.
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2.7.2 The Level Related to an Inflection Point

The vicinity of the level s = ŝ3 which relates to the inflection point 3 in Fig. 2.2 may
be described similarly to the previous subsection. In this case the situation is simpler
because the ranges just under the level ŝ3 and just over it belong to regions IV1,2
(Fig. 2.2) of the same type (with 3 division points) where the spectra are given by
the same relations (2.45) with n = 2, l = 1. In both cases they provide two series of
dispersion branches, one asymptotic and the other not. So, in case of the f/f boundary
problem we obtain for asymptotic branches,

ω = π(p− 1
2
)

{
1/I+(sp), sp < ŝ3 ,

1/I−(sp), sp > ŝ3 ; (2.98)

I± = ŝ3

d∫
y(3)∓δy

dy
√

f3(y)±|ε3p| , ε3p =
ŝ2

3− s2
p

ŝ2
3

. (2.99)

Let us calculate the integrals in (2.99) for the function

f3(y)≈ λ

(
y− y(3)

d

)3

. (2.100)

In this case one can use in the lower limits of the integrals in (2.99) the small shift

δy = d (|ε3p|/λ )1/3 , (2.101)

and the above integrals acquire the form

I± = ŝ3d
(

A3±B±3 |ε3p|5/6
)
, (2.102)

with

A3 ≈ 0.4
√
λ
(

1− y(3)/d
)5/2

, B+
3 ≈ 2.86/ 3√λ , B−3 ≈ 1.04 3√λ . (2.103)

Combining (2.102) with (2.98) one obtains the following spectrum

sp ≈ ŝ3

{
1−κ−3 (ω3p/ω−1)6/5 , ω < ω3p ,

1+κ+
3 (1−ω3p/ω)6/5 , ω > ω3p ;

(2.104)

where

κ∓3 = (A3/2B±3 )
6/5 , ω3p = Δω3(p− 1

2
) , Δω3 = π/A3ŝ3d . (2.105)



50 Vladimir I. Alshits and Jerzy P. Nowacki

Thus, in the given case the dispersion branch sp(ω) is continuous at the level s = ŝ3.
Let us prove that its derivatives at bounds of the forbidden gap are substantially
different. These bounds s = ŝ3∓Δs3

p and the frequencies ω∓3p where the branch
sp(ω) intersect the bounds can be estimated similarly to (2.90), (2.91):

Δs3
p ∼ ŝ3

(
3λ 1/3A3

2π p

)6/5

, ω∓3p ≈
ω3p

1+
(
Δs3

p/κ
∓
3 ŝ3
)5/6 . (2.106)

And branch slopes at bounds of the forbidden gap are found similarly (2.92):

dsp

dω

∣∣∣∣
ω=ω∓1p

≈ ŝp

ω3p

3A3

5B±3

(
2Δs3

P
ŝ3

)1/5

≈ ŝp

ω3p

3A3

5B±3
. (2.107)

Thus, with increasing branch number p the both slopes decrease ∝ 1/p and the slope
under the level is B+

3 /B−3 ≈ 3 times less than that over the level. So, we again obtained
asymptotic spectrum with branches tending in a relay-race manner to the level s = ŝ3
from below. Then they, one by one, increase their slopes and after intersection of the
level go up to the next asymptote. The character of approaching the level by branches
from below with growing p is again well described by the dependence

ŝ3− sp(ω̂p)≈ ŝ3κ−3
(
ω3Δ p/ω̂p

)6/5 ∝ ω̂−6/5
p (2.108)

in the complete analogy with the above equation (2.93) for m = 3 which fits the
predictions in Alshits and Maugin (2005, 2008).

2.7.3 Asymptote Related to Maximum at the Profile ŝ(y)

We conclude this section by a short description of the spectrum under the asymptote
s = ŝ4 associated with maximum point 4 on the slowness profile in Fig. 2.2. We do it
just for completeness since this problem is already solved in Shuvalov et al (2008).

Under this level there are three division points (region IV2 in Fig. 2.2) and two
series of dispersion branches described by equation (2.43) at n = 2 and l = 1. Only
the first series is asymptotic and just relates to our case. For the f/f boundary condition
the solution is given by

ω = π(k− 1
2
)/I4(sk) , k = 1,2,3, . . . ; (2.109)

I4 = ŝ4

y(4)+δy∫
y(4)−δy

dy
√
ε4k− f4(y) , ε4k =

ŝ2
4− s2

k

ŝ2
4

. (2.110)
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In the considered asymptotic region ŝ4− sk� ŝ4 the function f4(y) will be chosen in
the form similar to (2.82)

f4(y)≈ λ

∣∣∣∣∣y− y(4)

d

∣∣∣∣∣
m

, m = 2,3,4 . . . . (2.111)

The value of δy in limits of the integral in (2.110) is found as a root of the
integrand:

δy = d(ε4k/λ )1/m . (2.112)

With (2.111) and (2.112) the integral I4 is equal

I4 = 2χmŝ4dε
m+2
2m

4k (2.113)

where χm is the dimensionless parameter

χm = λ−
1
m

1∫
0

dt
√

1− tm ∼ 1 . (2.114)

Substituting (2.113) with (2.110)2 into (2.109) one obtains for the studied asymptotic
region ŝ4− sk� ŝ4 :

sk ≈ ŝ4

{
1− 1

2

(ω4k

ω

) 2m
m+2
}

(2.115)

ω4k = Δω4(k− 1
2
) , Δω4 = π/2χmŝ4d . (2.116)

The estimated asymptotic branches (2.115) coincide with the result of Shuvalov et al
(2008) and fit the expectation of Alshits and Maugin (2005, 2008) that

ŝ4− sk ∝ ω−2m/m+2 .

As was explained in the end of Sect. 2.6, this part of the spectrum relates to channeling
of energy in the thin layer related to the position of the slowness profile maximum in
the plate. This part of spectrum exists only under the asymptote. Above that there
are branches of the mentioned second series which intersect this asymptote and go
up to the last asymptote related to the point 5 in Fig. 2.2. Their "intersections" with
the first series are spurious being the consequence of approximation (2.30). Small
repulsion eliminates degeneracies and creates a ladder-like pattern in spectrum.

2.8 Conclusions

The presented approximate approach to an analytical analysis of acoustic spectra
of transversely inhomogeneous plates appears to be quite convenient and efficient.



52 Vladimir I. Alshits and Jerzy P. Nowacki

It allows one to study rather peculiar unexpected properties and nontrivial specific
features of acoustic behavior created exclusively by inhomogeneity of the medium
even when it is isotropic. We analyzed the spectral effects in the vicinity of slowness
levels associated with extreme material characteristics of the inhomogeneous profile.
As was predicted by Alshits and Maugin (2005, 2008), all such levels should be
characterized by specific asymptotic behavior of dispersion branches. Indeed, we
found that maximum points on the slowness profile of the plate provide channeling
of energy in appropriate layers and create high frequency asymptotes for spectral
branches. This coincides with data of Shuvalov et al (2008). But it was also expected
by Alshits and Maugin (2005, 2008) that minimum and inflection points on the
same profile would create specific intermediate asymptotes to which branches should
approach in the relay-race manner. The Asymptotes of these two types were found.
The non-extreme minimum on the surface was not included in Alshits and Maugin
(2005, 2008) into the list of candidates for asymptotic behavior. Indeed, we found
that the anomalies related to such sort of levels are hardly observable. They are not
visible in the mentioned above numerical spectrum (Fig. 3 in Shuvalov et al, 2008).
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Chapter 3

Nonlinear Schrödinger and Gross - Pitaevskii

Equations in the Bohmian or Quantum Fluid

Dynamics (QFD) Representation

Attila Askar

Abstract The Quantum Fluid Dynamics (QFD) representation has its foundations in
the works of Madelung (1929), De Broglie (1930 - 1950) and Bohm (1950 - 1970). It
is an interpretation of quantum mechanics with the goal to find classically identifiable
dynamical variables at the sub-particle level. The approach leads to two conservation
laws, one for "mass" and one for "momentum", similar to those in hydrodynamics for
a compressible fluid with a particular constitutive law. The QFD equations are a set
of nonlinear partial differential equations. This paper extends the QFD formalism of
quantum mechanics to the Nonlinear Schrödinger and the Gross-Pitaevskii equation.

3.1 Introduction

Schrödinger equation is the most conventional formalism for describing quantum
mechanics (Wyatt, 2005; Styer et al, 2002). Another formalism is referred to equiva-
lently as "the hydrodynamic analogy to quantum mechanics" or "the quantum fluid
dynamics" (QFD) (Wyatt, 2005). This approach is partly motivated by Einstein’s
questioning of the completeness of the quantum theory that is dramatized by his fa-
mous statement: "God doesn’t throw dice" while admitting to its internal consistency
(Einstein et al, 1935; Bohr, 1935; Schilp, 1949).

The essence of the formalism is the polar representation of the complex wave
function by its amplitude and phase as opposed to its Cartesian representation using
the real and imaginary parts.

The approach leads to two conservation laws, one for "mass" and one for "energy"
whose gradient becomes the "momentum" equation, similar to those in hydrodynam-
ics. This formalism was derived originally by Madelung (1926), elaborated on by de
Broglie in work spanning the period 1927 to 1967 (de Broglie, 1926, 1951, 1957,
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1967) and in the fifties to end of sixties by Bohm (1951); Bohm and Bub (1966). The
initial attempts have been more in terms of the philosophy of interpreting quantum
mechanics, trying in particular find a classically identifiable quantities or dynamical
variables at the quantum level.

The QFD equations are a set of nonlinear partial differential equations. In this
sense, QFD may be seen as a step in the negative direction as compared to the
Schrödinger equation that is linear. However, in this scheme, the oscillatory real and
imaginary components of the complex wave function are replaced by the usually
significantly less oscillatory amplitude and phase. To appreciate this aspect of the pro-
cedure, consider a plane wave ψ = exp[i(kx− t)] as the simplest illustrative example.
Its real and imaginary parts are the oscillatory sine and cosine functions, while its
amplitude is a constant and its phase is linear in both the time and space coordinate.
This aspect of QFD formalism is utilized advantageously to generate numerical algo-
rithms for solving the time dependent Schrödinger equation for scattering problems
(Wyatt, 2005; Weiner and Askar, 1971; Askar et al, 1980; Dey, 1998; Sales, 1999).
The QFD formalism replaces the abstract wave function or operator representation
by the concrete image of an ensemble of mass points in classically familiar terms for
a more intuitive interpretation of the dynamics.

3.2 Polar Representation of the Wave Function

The (i) Schrödinger, (ii) Nonlinear Schrödinger and (iii) Gross-Pitaevskii equations
are defined in the same structure respectively with (i) k = 0, (ii) V = 0 and (iii) with
both k �= 0 and V �= 0 as:

ih̄
∂ψ
∂ t

=− h̄2

2m

(
∇2ψ− k2|ψ|2ψ

)
+Vψ (3.1)

These equations are treated in the paper with their physical forms to reinforce the
structure of the QFD representation. Planck’s constant h̄, mass m and the wave
number k are kept for dimensional convenience and reference to quantum mechanics.

The complex wave function is considered in the polar representation by its ampli-
tude A and phase S as:

ψ(x, t) = A(x, t) ei[S(x,t)−Et]/h̄ (3.2)

Above by reference to quantum mechanics, E is singled out to be identified as at the
total energy. The substitution of the representation of the wave function in the polar
form in Eq. (3.2) into the Eq. (3.1) and the separation of its respectively imaginary
and real parts yields:

At +
1
2
(∇S ·∇A+

1
2m

A∇2S) = 0 (3.3)
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A
[
∂S
∂ t
−E +

1
2m

∇S ·∇S+V
]
+

h̄2

2m
A3− h̄2

2m
∇2A = 0 (3.4)

The two equations above are rearranged in the following sections into both physically
meaningful and computationally suitable forms.

3.3 Conservation Laws

3.3.1 Mass Conservation Equation

The rearrangement of the first equation above after multiplying it by A, introducing
the definitions for ρ and v yields:

ρ = A2 v =
∇S
m

→ ∂ρ
∂ t

+∇ · (ρv) = 0 (3.5)

Equation (3.5) is identified as the conventional mass conservation equation law of
fluid dynamics for a compressible gas with the density ρ(x, t) and velocity field
v(x, t). The phase function S(x, t) plays the role of the velocity potential in view of
the definition in Eq. (3.5) (Wyatt, 2005; Dey, 1998; Sales, 1999).

3.3.2 Energy Conservation Equation

The rearrangement of the expression in Eq. (3.4) after dividing it by A and introducing
the definitions

Vqu =− h̄2

2m

(∇2A
A

)
Vp =

h̄2k2

2m
ρ (3.6)

yields:
∂S
∂ t

+
(1

2
mv ·v+V +Vp +Vqu

)
= E (3.7)

Equation (3.7) is interpreted as an energy conservation law with S as an action whose
time rate St is an energy;

1
2

mv ·v+V

form the classical energy with its kinetic and potential energy components; Vp is a
local "pressure potential" and Vqu as a non-local "quantum potential" as the Laplacian
connects neighboring regions.
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3.3.3 The Momentum Equation

A momentum conservation equation can be derived by taking the gradient of the
expression in Eq. (3.7). With the use of the vector identity

∇(a ·b) = a ·∇b+b ·∇a+(∇×a)×b+(∇×b)×a

with a = b = ∇S, the result is:

m
(∂v

∂ t
+v ·∇v

)
=−∇(V +Vp +Vqu) (3.8)

The term vt +v ·∇v is the acceleration in fluid dynamics and is composed of the sum
of the local and the convected components (Landau and Lifschitz, 1959; Eringen,
1962).

3.3.4 Pressure Interpretation

The term Vp +Vqu can also be interpreted as "pressure" in the fluid dynamics ter-
minology. Consequently, again in the fluid dynamics terminology, a diagonal stress
tensor can be introduced with the use of the unit tensor I:

p =Vp +Vqu σσσ =−p I (3.9)

With this interpretation and the definition of the external force density acting on the
fluid as g =−∇V , the momentum equation reads:

m
(∂v

∂ t
+v ·∇v

)
= ∇ ·σσσ +g (3.10)

3.3.5 The Lagrangian Representation

The conservation laws in Eqs. (3.5), (3.7) and (3.8) can be rewritten in the convected
coordinates (Wyatt, 2005; Landau and Lifschitz, 1959; Dey, 1998; Sales, 1999;
Eringen, 1962), thereby leading to the Lagrangian representation. The total time
derivative of a general function f = f (x, t) is defined as:

d f
dt

=
∂ f
∂ t

+v ·∇ f (3.11)

and the position vector of a particle is related to the velocity in the usual way as:

dx

dt
= v (3.12)
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With the above basic definitions, the mass and momentum conservation equations
become:

dρ
dt

+ρ∇ ·v = 0 (3.13)

m
d2x

dt2 =−∇(Vp +Vqu +V ) → m
d2x

dt2 = F (3.14)

The representation above for the momentum conservation is in the familiar Newto-
nian form. The interpretation of the momentum equation in the Lagrangian formalism
is most clear: the evolution of the wave equation is equivalent to calculating the
trajectories of the ensemble of particles subject to the total potential made of the clas-
sical and quantum components. This form of the momentum equation in (3.14) along
with the mass conservation in (13) has been exploited in computational algorithms
with success (Wyatt, 2005; Dey, 1998; Sales, 1999).

The above momentum equation represented as a collection of trajectories, can
also be written in the fluid dynamics terminology:

m
d2x

dt2 = ∇ ·σσσ +g σσσ ≡−(Vp +Vqu) I g≡−∇V (3.15)

Above, the stress σ and the external force g are as defined in Eqs. (3.9) and (3.10).

3.4 Adding a Dissipation Term as in Navier - Stokes Equation

The QFD equations conserve mass, momentum and energy. In this sense, they
correspond to a perfect fluid, with a particular constitutive law for a pressure field:
p =Vqu +Vp. Introducing the dissipative term as the rate of strain into the stress, in
the manner of the Navier - Stokes equation, yields:

σσσ ≡−(Vp +Vqu) I+μ
(

∇v+(∇v)T
)

(3.16)

Above, the superscript T represents the transpose in defining the rate of strain and
thereby making the momentum equation invariant under rigid body rotations.

With the above stress, the momentum equations in (3.8) and (3.14), respectively
for the Eulerian and Lagrangian representations, become:

m
(∂v

∂ t
+v ·∇v

)
=−∇p+μ(∇2v+∇∇ ·v)+g (3.17)

m
dv

dt
=−∇p+μ(∇2v+∇∇ ·v)+g (3.18)

Above, p and g have the definitions in (3.9) and (3.10).
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The mass conservation equation remains unchanged. However, the addition of
the Laplacian of the velocity changes drastically the nature of the set of differential
equations from hyperbolic to parabolic type.

3.5 Vorticity

Vorticity is defined as ω ≡ ∇× v. The QFD as well as its equivalent Schrödinger
equations do not lead to vorticity. The reason follows simply from the identity
ω ≡ ∇×v = ∇× (∇S) = 0. Figures 3.1 present numerical results of the application
of the QFD formulation (Dey, 1998; Sales, 1999). These solutions are obtained by a
discretization of ρ(x, y, t) and x(t) = (x(t), y(t)) within the Lagrangian representa-
tion in Eqs. (3.13) and (3.14). The purpose here is an illustration of the absence of
vorticity.

(a) (b)

(c) (d)

Fig. 3.1: Sample density and trajectory results. The figures on the top show the
evolution of the initial wave packet through the display of ρ(x j,y j, tk) at the se-
lected times tk and the positions x j. (a) NOCl→ NO + Cl; (b) NO2 → NO + O
density contours. The figures in the second row are sample trajectories for selected
discrete points x j = x j(t) of the wave function: (c) NOCl→ NO + Cl; (d) NO2
→ NO + O.
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The figures on the top show the evolution of the initial wave packet through the
display of ρ(x j,y j, tk) at the selected times tk and the positions x j. The figures in
the second row are sample trajectories for selected discrete points x j(t) of the wave
function, each corresponding to the evolution of the selected points of the wave
packet above. In accordance with the prediction by the Schrödinger equation, no
vortices are present in the plots. (The physics behind the figures is about a photo-
dissociation problem with the linear Schrödinger equation. The figures on the left are
for the photodissociation of NOCl and those on the right are for the photodissociation
of NO2 (Dey, 1998; Sales, 1999).

Regardless of the nature of the physical problem, one would expect a vorticity
field due to viscosity, as in the Navier - Stokes equation for dissipative fluids. In fact,
the vorticity equation is obtained by taking the curl of the momentum equation in
(3.8). With the curl of the gradients dropping out of the equation, ∇× (∇ f ) = 0 and
the use of vector identities for ∇× (v ·∇v) we obtain:

m∇×
(∂v

∂ t
+v ·∇v

)
= ∇×

(
−∇p+V

)
+μ∇×

(
∇2v+∇∇ ·v

)
(3.19)

→ m
(∂ω
∂ t

+(v ·∇v)ω− (ω ·∇)v
)
= μ∇2ω (3.20)

Equivalently, in the Lagrangian representation this equation reads:

m
dω
dt

=−(v ·∇v)ω+μ∇2ω (3.21)

Approaches to dissipation in quantum systems and chaos based on stochastic noise,
as well as their relevance to physics can be viewed in Braun (2001).

The importance of vorticity lies in the heuristic - phenomenological explanation
of the formation of turbulence in classical fluids. In the classical Navier - Stokes
equation, it is stipulated that vorticities break into a hierarchy of smaller and smaller
ones, eventually covering the whole space and thereby leading to "turbulence".

Further analytical and computational work is needed to determine weather the
QFD equations with the viscosity term would lead to chaos and eventually "turbu-
lence".

3.6 Closing Remarks

The representation here has the following set of purposes:

1. Benefit from the fluid dynamics analogy towards a concrete image of the complex
valued equations and the function respectively as a fluid flow or set of trajectories
of an ensemble of discrete set of points;

2. Present a platform for a natural extension to of the Schrödinger family of equa-
tions to multidimensions;
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3. Present formulations with numerical advantages in discretized forms, including
for the multidimensional extensions of the family of Schrödinger equations;

4. The nonlinear field equations with the dissipation in the Navier - Stokes manner
transform the differential equations from hyperbolic to parabolic type, thereby
opening a natural framework for studying fundamentally nonlinear phenomena;

5. With the dissipation term, the extended set of equations in the fluid dynamics
analogy which lead to vorticity and thereby are likely to lead to chaos and
eventually to turbulence.

The fluid dynamics equations derived here, including the dissipative case, are invari-
ant under Galilean transformation of the coordinates, i. e. rigid body translations and
rotations, as they should be.
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Chapter 4

The Stability of the Plates with Circular

Inclusions under Tension

Svetlana M. Bauer, Stanislava V. Kashtanova, Nikita F. Morozov, and Boris N.
Semenov

Abstract This paper deals with the problem of local buckling caused by uniaxial
stretching of an infinite plate with a circular hole or with circular inclusion made
of another material. As the Young’s modulus of the inclusion approaches that of
the plate, the critical load increases substantially. When these moduli coincide,
stability loss is not possible. This paper also shows the difference between them
when the inclusion is softer than the plate and when the inclusion is stiffer than the
plate. Computational models show that instability modes are different both when
the inclusion is softer than the plate and when the inclusion is stiffer than the plate.
The case when plate and inclusion have the same modulus of elasticity, but different
Poisson’s ratio is investigated too. It is also discussed here the case when a plate with
inclusion is under biaxial tension. For each ratio of the modulus of elasticity of plate
versus inclusion it’s obtained the range of the load parameters for which the loss of
stability is impossible.

4.1 Introduction

The study of buckling elements, mechanisms and structures, together with the tasks
of destruction are actual problems of modern mechanics. The stability of thin plates
with holes and cracks under uniaxial tension was analyzed in Guz et al (1981);
Bochkarev and Grekov (2015); Shimizu (2007).

It was noted in Guz et al (1981); Shimizu (2007) that compressive stresses can
arise not only in plates subjected to compression, which is obvious, but also near the
boundaries of holes in plates subjected to tension.
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In recent years, increasingly interest has arise in the various mechanisms using
nano-objects. When calculating the deformation, stability, and failure of nanoscale
objects, it is necessary also to take into account the surface effect. The local loss
of stability of a plate with circular nanohole under uniaxial tension was considered
by Bochkarev and Grekov (2014). In this case, the surface stresses on the circular
hole boundary, which define more exactly the known solution of the Kirsch problem
for small hole sizes, were taken into account in the subcritical state. It is noted that
taking into account the surface stresses at the hole edge results in a loss of stability
of the plate under a smaller load than in the classical formulation. The value of the
load decreases by 5-7%.

However, it is clear that for nanoscale thicknesses of the plate, it is necessary to
take into account also the surface stresses operating on the face surfaces. So in Bauer
et al (2014) the problem was solved taking into account surface effects not only on
the border of the hole, but also taking into account surface stresses on the facial
planes, which change the bending stiffness of the plate. To determine the critical
stress corresponding to the point of bifurcation, in which the plate loses the flat shape
deformation, the energy method of S.P. Timoshenko is used.

The normal deflections of the plate was sought in the form

w(ρ,ϕ) = R
∞

∑
k=1

∞

∑
l=0

Akl
cos(lϕ)
ρk , (4.1)

Here R is radius of the inclusion hole, r,ϕ- polar coordinates centered in the center
of a circular hole, ρ = r/R. These expressions satisfy the boundary condition of the
symmetry of deformations and the deflection decrement at infinity.

It is shown that taking into account surface stresses for plates of nanoscale thick-
ness leads to a significant increase in the flexural rigidity of the plate comparison
with the classical value. The consequence is an increase in the critical load even
when taking into account the surface stresses on the contour boundary. The problem
considered in Bochkarev and Grekov (2014) was solved by the method of finite
elements. It was built of the buckling modes and corresponding critical loads. The
results demonstrated a good coincidence between the first critical loads constructed
by the method of finite elements and by analytical method.

Compression stresses could appear also in the plates with the inclusion, and
therefore these stresses may cause local buckling of the plate.

Loss of stability under uniaxial tension in an infinite plate with a circular inclusion
made of another material was analyzed in Bauer et al (2017). The influence of the
inclusion, or more exactly, the influence of the elastic modulus of the inclusion
on the critical load was examined. The Poisson’s ratio of the inclusions and plates
were considered to be the same. The minimum eigenvalue corresponding to the first
critical load was found as in Bauer et al (2014) by applying the variational principle.
Computations were performed in Maple and were compared with results obtained
with the finite element method in ANSYS .
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4.2 Problem Statement

This part deals with the problem of the local buckling caused by uniaxial stretching
of an infinite plate with a circular inclusion in the case when plate and inclusion
have the same modulus of elasticity, but different Poisson’s ratio. The problem on
the deformation of a plate with a circular inclusion under uniaxial tension was solved
by Muskhelishvili (1963); Kachanov et al (2003) in polar coordinates with the origin
placed at the center of the inclusion. The solution of this problem in Cartesian
Coordinate System is presented in Deryugin and Lasko (2012).

Suppose that E1, ν1 - are Young’s modulus and Poison’s ratio of the plate, and
E2, ν2 - parameters of the inclusion, x, y - Cartesian coordinates. If we consider an
infinite plate with a circular inclusion made of different material with applied at
infinity load σ along the y-axis, the stresses in the plate will have the follow form:

σy

σ
= 1+

(1− ky + kx)R2

2r2

[
1+

3R2 +10y2

r2 −F +G
]
− kxR2

r2

(
1− 2y2

r2

)
,

σx

σ
=

(1− ky + kx)R2

2r2

[
3− 3R2 +18y2

r2 +F−G
]
+

kxR2

r2

(
1− 2y2

r2

)
,

σxy

σ
=

(1− ky + kx)R2xy
r4

[
3− 2(3R2 +4y2)

r2 +
12R2y2

r4

]
− 2kxR2xy

r4 ,

(4.2)

where

r2 = x2 + y2, F =
8y2(3R2 +2y2)

r4 , G =
24R2y4

r6 ,

R - radius of an inclusion, h - thickness. Coefficients kx and ky depend on elasticity
modulus of the inclusion and the plate:

ky =
E2[(3−ν2)E1 +(5+ν1)E2]

(E1 +2E2)2− [ν2E1 +(1−ν1)E2]2
,

kx =
E2[(3ν2−1)E1 +(1−3ν1)E2]

(E1 +2E2)2− [ν2E1 +(1−ν1)E2]2
.

(4.3)

According to Eshelby’s theorem (Deryugin and Lasko, 2012; Eshelby, 1957) the
stress field inside the circular inclusion is homogeneous and symmetric with respect
to the tension axis:

σy = kyσ , σx = kxσ , σxy = 0. (4.4)

It follows from (4.1) that the stresses σy/σ are mainly positive (negative zones arise
as the limiting cases are approached, i.e., absolutely rigid inclusion or absent of an
inclusion). As for the stresses σx/σ , then there are always appear negative values;
moreover, the region of negative stresses and their absolute values are smaller for a
stiffer inclusion. There are no negative stresses when the inclusion and the plate are
made of the same material (and this is consistent with the classical solution). When
the inclusion becomes stiffer than the plate, once again there appears a region of
negative stresses and, hence, the loss of stability of the plate is again possible. Note
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that in the case of an inclusion stiffer than the plate, the region of negative stresses
σx/σ is shifted by 90 degrees. Similar results are obtained if the problem is solved
by applying the finite element method in ANSYS (see Figs. 4.1a and 4.1b).

4.3 Stability Loss

The numerical results and analysis in ANSYS showed that the loss of stability of
plates with circular inclusion is possible if the elastic modulus of the inclusion is less
than the modulus of elasticity of the plate E2 < E1 (inclusion softer than the plate)
or when the elastic modulus of the inclusion larger than the modulus of elasticity of
the plate E2 > E1 (i.e. inclusion is stiffer). Figures 4.2a and 4.2b show the stability
loss modes for a plate with an inclusion subjected to tension along the plate’s Y axis.
Note that the stability loss modes are different for the case E2/E1 < 1 and E2/E1 > 1
. In the case when the inclusion is stiffer than the plate, as was noted above, the
zones of compressive stresses lie along the x axis (they are shifted by 90 degrees
with respect to the case where the inclusion is softer than the plate).

If the Young’s modulus of the inclusion is close to the modulus of elasticity of the
plate than the loss of stability occurs either at very high loads or does not occur at all
in the case of identical materials (Fig. 4.3).

4.3.1 Case with Different Poisson’s Ratio

All results obtained in Bauer et al (2014) and shown in Fig. 4.3, were carried out
for the same Poisson’s ratio for inclusion and for plate ν1 = ν2 = 0.3. However,

(a) (b)

Fig. 4.1: Stresses σx/σ : (a) ν1 = ν2 = 1/3, E2 = E1/10 ("soft" inclusion), (b)
ν1 = ν2 = 1/3, E2 = 10E1 ("rigid" inclusion)
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(a) (b)

Fig. 4.2: Loss of stability: (a) E2 = E1/10 ("soft" inclusion), (b) E2 = 10 E1
("rigid" inclusion)

Fig. 4.3: Critical load as a function of the ratio of the inclusion modulus to the
plate modulus (σ0 is critical load for plate with a hole)

in the case of equal modules of elasticity of inclusion and plate, but with different
Poisson’s ratios can also be area of negative stress. Figures 4.4a and 4.4b represents
stress distribution in the plate, obtained on the relations (4.1) for the case when
E2 = E1 = E, but ν1 �= ν2.

It means that in the case when the materials of the plate and inclusion have the
same elastic moduli but different Poisson’s ratios, the plate can also lose the stability
under uniaxial tension. Figures 4.5a and 4.5b show the stress distribution before
buckling and form of the plate stability loss in the case when E2 = E1 = 2 ·1011 Pa.
Poisson’s ratio of the plate ν1 = 0.49, Poisson’s ratio of the inclusion ν2 = 0.01.
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(a) (b)

Fig. 4.4: Stress distribution in the plate: (a) ν1 = 2ν2,ν2 = 1/4, (b) ν1 = ν2/2,
ν2 = 1/3

(a) (b)

Fig. 4.5: (a) Stress distribution before buckling E2 = E1 = 2 ∗ 1011 Pa, ν1 = 0.49,
ν2 = 0.01, (b) Form of the plate stability loss E2 = E1 = 2 ∗ 1011 Pa, ν1 = 0.49,
ν2 = 0.01

Figures 4.6a and 4.6b show the stress distribution before buckling and form of
stability loss of a plate in the case when E2 = E1 = 2 ·1011 Pa. Poisson’s ratio of the
plate ν1 = 0.01, Poisson’s ratio of the inclusion ν2 = 0.49.
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(a) (b)

Fig. 4.6: (a) Stress distribution before buckling E2 = E1 = 2 ∗ 1011 Pa, ν1 = 0.01,
ν2 = 0.49, (b) Form of the plate stability loss E2 = E1 = 2 ∗ 1011 Pa, ν1 = 0.01,
ν2 = 0.49

4.3.2 A Plate with a Circular Inclusion under Biaxial Tension

The case when the plate with inclusion is under tension not only along the Y -axis
but also along the X-axis is also interesting to consider. If tension along the Y -axis
is equal to the tension along the X-axis then all stresses in the plate will be positive
and there is no loss of stability. But if the stresses applied along the X-axis is less
than stresses applied along Y -axis then again occur negative stresses in the plate near
inclusion and thus the stability loss of the plate is possible.

Under uniaxial tension negative stresses vanish only if the elastic moduli and
Poisson’s ratios of the plate and inclusion are equal (see Fig. 4.3). The area of
negative stresses in the plate with inclusion under tension along the Y -axis decreases
with the application to the plate stresses along the X-axis. By increasing the load
along the X-axis we can discover the value of tension Pcomp when the regions of
compressive stresses in the plate disappear and loss of stability is impossible. If we
continue to increase the load along the X-axis, starting with a certain value Pcomp we
can obtain new areas of compressive stresses. These areas are rotated on 90 degrees
compared to the initial location of compressive stresses.

For each ratio of the modules of elasticity of inclusion and plate (E2/E1) there is
an interval of stresses Pcomp along X-axis, where there are no zones of compressive
stresses, thus we determine the whole range of values for which there is no possibility
for stability loss of the plate (between lines 1 and 2). In Figs. 4.7a and 4.7b curve 1
is the lower boundary of this zone, and the curve is 2 the upper bound. If E2/E1 goes
to 1 then the upper boundary of the interval (line 2) goes to infinite.
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(a) (b)

Fig. 4.7: (a) Additional stress curves bounding the stability region of the plate with
inclusion. Curve 1 (blue) is the lower boundary of this zone, and the curve 2 (red)
is the upper bound. Pcomp/P is the ratio of the additional tension Pcomp along the
X-axis to the initial tension P along the Y -axis.
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Chapter 5

Unit Cell Models of Viscoelastic Fibrous

Composites for Numerical Computation of

Effective Properties

Harald Berger, Mathias Würkner, José A. Otero, Raúl Guinovart-Díaz, Julián
Bravo-Castillero, and Reinaldo Rodríguez-Ramos

Abstract The paper presents an extension to viscoelastic composites of a former
developed numerical homogenization procedure which was used for elastic and
piezoelectric material systems. It is based on an unit cell model using the finite
element method. In the paper a brief description of the basic equations and the
homogenization algorithm with specific attention to the numerical model is given. The
investigated composites consist of a viscoelastic matrix with unidirectional embedded
cylindrical elastic fibers. Hence the homogenized behavior of the composite is
also viscoelastic. Consequently the effective coefficients are time-dependent. The
geometrical shape of the unit cell is rhombic which allows to analyze a wide range of
nonstandard unidirectional fiber distributions. Otherwise it includes the special cases
for square and hexagonal fiber arrangements which can be used for comparisons
with other solutions. Here results are compared with an analytical homogenization
method. Furthermore the influences of rhombic angle and fiber volume fraction on
effective coefficients are investigated. In addition two limit cases are considered. One
is with air as inclusions which is equivalent to a porous media and the other is the
pure matrix without fibers.
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5.1 Introduction

Nowadays composite materials have a very important meaning in many fields of
industry. Due to their advantageous properties related to weight, strength, stiffness,
functionality and resistance they belong to future orientated materials which replace
more and more common materials. Furthermore the combination of components with
multi-physical behavior (e.g. piezoelectricity) opens new ways in constructions.

But on the other hand composites are a great challenge to estimate their overall
behavior in structural design. One possible way is to calculate effective material
properties by appropriate homogenization techniques. Since many years scientists
deal with this matter. Different types of composites and different material compo-
nents have been considered. But there are still some issues which need a deeper
investigation.

Also the homogenization of viscoelastic composites has been a matter of investi-
gation since many years. There are analytical approaches (Yancey and Pindera, 1990;
Nguyen et al, 1995; Tang and Felicelli, 2016; Cruz-González et al, 2018) and numer-
ical approaches (Haasemann and Ulbricht, 2009; Nguyen et al, 1995; Pathan et al,
2017; Daridon et al, 2016; To et al, 2017). Unit cells (RUC) are a typical basis for
homogenization models which assume an infinite regular distribution of inclusions
with repeatable pattern. For random distribution of inclusions so-called representative
volume elements (RVE) are used. A wide range of literature especially deals with the
characteristics of such cells considering appropriate boundary conditions, influence
of cell size related to inclusions, etc.

In this paper a former developed homogenization procedure based on a RUC model
(Berger et al, 2006; Kari et al, 2007; Würkner et al, 2011) is extended to viscoelasticity
in order to calculate effective material properties of unidirectional fiber-reinforced
composites, where elastic cylindrical fibers are embedded in a viscoelastic matrix.
The procedure allows the investigation of composites, where the fiber distribution can
be characterized by a RUC with a rhombic cross section (see Fig. 5.1). By varying
the rhombic angle and the fiber volume fraction the change in overall viscoelöastic
material behavior can be studied for such types of composites.

x1

x2

u1

u2

Fig. 5.1: Geometrical type of composite structure and extracted rhombic RUC
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5.2 Linear viscoelastic relations

In general viscoelastic materials are characterized by a time-dependent change of
stress or strain after loading. In case of a constant stress load the strain is increasing
over time which is called creep. In case of a constant strain load the stress is decreas-
ing over time which is called relaxation. Viscoelasticity means that the stress-strain
relations can be divided in an elastic and non-elastic part. In case of a restriction to
small deformations it leads to linear viscoelastic behavior.

The typical phenomenological behavior can be described by the well known mod-
els from Maxwell and Kelvin-Voigt consisting of springs and dashpots (Gutierrez-
Lemini, 2014). The following basic equations are focused on solving a linear vis-
coelastic problem using a finite element software.

Derived from the generalized Maxwell relaxation model (Gutierrez-Lemini, 2014)
the linear isotropic viscoelastic behavior is characterized by time-dependent material
parameters and can be written in the hereditary integral formulation

σ(t) =
t∫

0

2G(t− τ) de
dτ

dτ+ I
t∫

0

K(t− τ)dΔ
dτ

dτ. (5.1)

It couples stresses σ with strain rates de/dτ and dΔ/dτ . In detail ‘σ ’ are the Cauchy
stresses, ‘e’ is the deviatoric part of the strains, ‘Δ ’ is volumetric part of the strains,
G(t) is the shear relaxation function, K(t) is the bulk relaxation function, t is the
current time, ‚τ‘ is the relaxation time and I is the unit tensor. The time-dependent
functions G(t) and K(t) which represent the viscoelastic material parameters can be
expressed in terms of Prony series (Gutierrez-Lemini, 2014) in the following form

G(t) = G∞ +
ng

∑
i=1

Gi e

(
− t

τG
i

)
, (5.2)

K(t) = K∞ +
nk

∑
i=1

Ki e

(
− t

τK
i

)
. (5.3)

Here Gi and Ki are the shear elastic moduli and the bulk elastic moduli, respectively,
and τG

i and τK
i are the corresponding relaxation times for each Prony component.

G∞ and K∞ are the long-term moduli related to t = ∞ . ng and nk are the numbers of
Prony terms for the corresponding moduli.

Introducing the relative moduli

αG
i =

Gi

G0
, (5.4)

αK
i =

Ki

K0
(5.5)

with
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G0 = G∞ +
ng

∑
i=1

Gi , (5.6)

K0 = K∞ +
nk

∑
i=1

Ki (5.7)

where G0 and K0 are the instantaneous shear elastic modulus and instantaneous bulk
elastic modulus, respectively, Eqs. (5.2) and (5.3) can be rewritten in

G(t) = G0

⎡⎣αG
∞ +

ng

∑
i=1

αG
i e

(
− t

τG
i

)⎤⎦ , (5.8)

K(t) = K0

⎡⎣αK
∞ +

ng

∑
i=1

αK
i e

(
− t

τK
i

)⎤⎦ . (5.9)

For isotropic materials G0 and K0 can be expressed by the Young’s modulus E0 and
the Poisson’s ratio ν0 with

G0 =
E0

2(1+ν0)
, (5.10)

K0 =
E0

3(1−2ν0)
. (5.11)

Finally the necessary input values are the instantaneous Young’s modulus E0, Pois-
son’s ratio ν0 and the Prony terms τG

i , αG
i and τK

i , αK
i . The number of shear terms

nG and bulk terms nK need not to be the same.
Inside the finite element algorithm the problem is solved by a time integration

scheme. The solution is carried out by time steps until the target time is reached. The
time step width must be carefully chosen to achieve a stable solution.

5.3 Numerical Homogenization Model

To find the effective material properties for the composite the elasticity tensor must
be calculated with the developed numerical homogenization procedure. Only a brief
description is given here. For more details see Berger et al (2006); Würkner et al
(2011).

The constitutive relation at a discrete time ti can be expressed in the following
form

σi j(ti) =Ci jkl(ti)εi j(ti) (5.12)

where Ci jkl(ti) is the coefficient of the elasticity tensor at time ti. and σi j(ti) and εi j(ti)
are the stresses and strains, respectively. Although the constituents have isotropic
behavior the overall properties of the composite can become anisotropic due to
different types of fiber arrangements. In case of anisotropic material the elasticity
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tensor has 21 independent coefficients (here expressed in matrix notation which is
used in Sect. 5.4 for presentation of calculated effective coefficients)⎡⎢⎢⎢⎢⎢⎢⎣

σ11
σ22
σ33
σ12
σ23
σ31

⎤⎥⎥⎥⎥⎥⎥⎦=

⎡⎢⎢⎢⎢⎢⎢⎣
C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26
C33 C34 C35 C36

C44 C45 C46
symm C55 C56

C66

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
ε11
ε22
ε33
ε12
ε23
ε31

⎤⎥⎥⎥⎥⎥⎥⎦ . (5.13)

In the numerical homogenization procedure the RUC is subjected to 6 strain load
cases (applied as prescribed displacement differences) in such a way that in every
load case only one strain component is nonzero and all others are zero. These are
three pure tension cases in all spatial directions and three pure shear cases.

Furthermore to guarantee that also after deformation the periodicity is ensured
appropriate periodic boundary conditions must be applied. This can be achieved by
fulfilling the following equation (Würkner et al, 2011)

u
X+

j
i −u

X−j
i = ε0

i j(x
X+

j
j − x

X−j
j ). (5.14)

The values u
X+

j
i and u

X−j
i are the ith displacement components on the boundary

surfaces of the cell, which are perpendicular to the x j-axis ("+" for a positive normal
direction, "-" for a negative normal direction, see Fig. 5.2). The locations, in which
the values are calculated, are characterized by an offset in x j-direction. In the finite
element model this means that every opposite nodal pair is coupled by constraint
equations corresponding to Eq. (5.14). This requires an identical mesh configuration
on opposite surfaces which is ensured using a special meshing strategy. ε0 represents
the applied strain tensor and has the following form for the three tension load cases⎛⎝ε0

11 0 0
0 0 0
0 0 0

⎞⎠ ,

⎛⎝0 0 0
0 ε0

22 0
0 0 0

⎞⎠ ,

⎛⎝0 0 0
0 0 0
0 0 ε0

33

⎞⎠ (5.15)

Fig. 5.2 Scheme for notation
of the different surfaces on the
RUC
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and for the three shear load cases⎛⎝ 0 ε0
12 0

ε0
12 0 0
0 0 0

⎞⎠ ,

⎛⎝0 0 0
0 0 ε0

23
0 ε0

23 0

⎞⎠ ,

⎛⎝ 0 0 ε0
31

0 0 0
ε0

31 0 0

⎞⎠ . (5.16)

ε0
i j can have an arbitrary value but is chosen with an unit value.

From the six calculated load cases all effective coefficients can be extracted by
dividing the averaged stresses by the averaged strains considering every column of
the matrix in Eq. (5.13) separately. For the calculation of averaged stresses σ̂i j and
strains ε̂i j we take the averaged element values σ k

i j and εk
i j, respectively, which are

the arithmetic mean of Gauss point results, weight these values with the element
volume Vk, calculate the sum over all elements and divide it by the RUC volume
VRUC

σ̂i j =
1

VRUC

n

∑
k=1

σ k
i jVk, (5.17)

ε̂i j =
1

VRUC

n

∑
k=1

εk
i jVk. (5.18)

Then, for example from the first load case in Eq. (5.15) the following effective
elasticity coefficients can be extracted

C11 =
σ̂11

ε̂11
, C12 =

σ̂22

ε̂11
, etc. (5.19)

In case of a composite with a rhombic fiber arrangement the unit cell has the
typical shape shown in Fig. 5.1. But for this shape with the oblique coordinate system
ω1,ω2 it is difficult to apply the above mentioned periodic boundary conditions.
The solution lies in extracting a rectangular cell which is rotated against the global
coordinate system by the half of the rhombic angle α (see Fig. 5.3). Assuming unit
length of rhombic edges the rectangular cell has the edge lengths

l1 = 2cos(
α
2
), (5.20)
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x’1
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2
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Fig. 5.3: Rectangular RUC with local coordinate system (Würkner et al, 2011)
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l2 = 2sin(
α
2
). (5.21)

Then all calculations can be made in the local coordinate system x′i and, if necessary,
the results can be transformed to the global coordinate system xi.

To calculate all effective coefficients of the elasticity tensor a three-dimensional
RUC is used shown in Fig. 5.4. Due to unidirectional embedded fibers the thickness of
the cell can be chosen arbitrarily and only one element in this direction is enough. 3D
standard elements (hexahedrons and pentahedrons) with quadratic shape functions
is used which provide sufficient accuracy with moderate mesh size like shown in
Fig. 5.4. Since all calculations are made with the finite element package ANSYS
many parts of model generation as well as extracting and processing results can be
automated using the included ANSYS parametric design language APDL.

5.4 Results

Various calculations are made to consider different aspects of the developed proce-
dure. First, for a validation results are compared with available values calculated by
the asymptotic homogenization method for the case of hexagonal fiber arrangement.
Furthermore calculations are made to study the change in the overall behavior of the
composite by varying the rhombic angle and keeping a constant fiber volume fraction
and then by varying the volume fiber fraction and keeping a constant rhombic angle,
respectively. Finally investigations are made by considering the two limit cases:
embedded air instead of fibers (porous media) and no inclusions (pure matrix).

For all calculations a glass fiber/epoxy composite with material properties for the
constituents given in Table 5.1 is considered. The fiber is considered to be elastic
isotropic. The matrix has viscoelastic isotropic properties. According to Sect. 5.2 the
necessary input values are the instantaneous Young’s modulus E0, the Poisson’s ratio
ν0 and the Prony series parameters. Here nG is 3 and nK is 0. That means 3 pairs of
the shear part and no values for bulk part are used. For the relaxation time range a
period of 60000 seconds is used. This is chosen in order to achieve the long-term
material behavior.

Fig. 5.4 Finite element mesh
of the RUC with rhombic
angle 45 o and fiber volume
fraction 0.3

x’
1x’

3

x’
2
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Table 5.1: Material properties

Constituent E (GPa) ν

Fiber 100 0.3

Matrix 3.606 (E0) 0.4(ν0) Prony series parameters i τG
i (s) αG

i

1 9.6 0.03807
2 372 0.0458
3 9887 0.0668

For the validation of the presented homogenization procedure for rhombic cells
a comparison is made with results obtained from the asymptotic homogenization
method for the special case of hexagonal fiber arrangement (Cruz-González et al,
2018). This arrangement is identical with a rhombic angle of 60 degrees. Hexagonal
fiber arrangement leads to transverse isotropic behavior of the composite. Hence
only 6 coefficients in the matrix of Eq. (5.13) are nonzero. From these coefficients
tangential (x′1 − x′2 plane; index t) and axial (x′3 direction; index a) engineering
constants can be derived. The fiber volume fraction is fixed with Vf iber/VRUC = 0.3.
Figures 5.5-5.10 show the six engineering constants over time as a comparison
between the presented method (FEM) and the asymptotic homogenization method
(AHM). A good agreement can be stated for all engineering constants. Although the
curves show differences in the low time region the percentage difference is not more
the 2%. All curves show the asymptotic behavior at the end of the chosen time range.

To study the influence of the rhombic angle different calculations are made by
varying the angle and keeping the fiber volume fraction constant. For arbitrary
angles the resulting behavior is orthotropic with respect to the local axes in Fig. 5.2.
This leads to 9 independent coefficients in the matrix of Eq. (5.13). Only selected
effective coefficients are considered for this study. Figures 5.11-5.16 show the results
over time for all coefficients of the main diagonal of the matrix related to the local
coordinate system. Four rhombic angles α are investigated: 45o, 60o, 75o and 90o.
The fiber volume fraction is kept constant with Vf iber/VRUC = 0.3. For α = 60o,
the hexagonal case, an expected transversal isotropy can be recognized considering
the corresponding coefficients C11, C22 (in-plane) and C55, C66 (out-of-plane). The
coefficient C33 for the axial direction depends only on the fiber volume fraction in
correspondence with the simple rule of mixture and is nearly identical for all rhombic
angles. But for the other coefficients the typical differences for rhombic angles of
45o and 75o can be seen. This is caused by the effective orthotropic behavior of the
composite due to different fiber distances in the x′1− x′2 plane. It can be seen for
instance in the case of 45o where the shear coefficient C55 is lower and C66 is higher
then the transversal isotropic curve (angle 60o).

In the next investigations the influence of fiber volume fraction for a constant
rhombic angle of 45o is studied. Like expected all effective coefficients increase with
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an increase of fiber volume fraction due to a higher stiffness in comparison to the
matrix phase. This can be clearly seen in Figs. 5.17-5.22.

The last consideration is dedicated to the limit cases. In the first case the fibers
are replaced by air. This leads to the simulation of a porous medium. In the RUC
the air is modeled as a phase with a very low Young‘s modulus related to the matrix
material. The second limit case is a homogeneous material consisting only of the
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viscoelastic matrix phase which is denoted in the figures with "monolithic". Figures
5.23-5.28 show selected effective coefficients of the elasticity tensor over time. In
addition to the limit cases the curves for a composite with 0.3 fiber volume fraction
and a rhombic angle of 45o are included in the figures for a better exhibition of
the tendency. The reinforcing influence of the fibers can be clearly observed. Like
expected the porous case show the lowest stiffness. On the other hand the achievable
effective stiffness of the composite depends mainly on the stiffness of the fiber in
relation to the matrix and on the fiber volume fraction. Furthermore, with varying
the rhombic fiber arrangement it is possible to construct composites which have a
different elastic behavior in two perpendicular directions in the x′1− x′2 plane (see
also Figs. 5.11-5.16). The orthotropic in-plane behavior can be valuable for optimal
design of constructions.

5.5 Conclusions

This work is based on a former research of the authors in numerical homogenization.
Here an extension to viscoelastic composites is presented. Furthermore it is applied
to unidirectional fiber-reinforced composites with a rhombic fiber arrangement. The
developed models are verified by values calculated with an analytical homogenization
method. This has been realized for a special case of rhombic shape with an angle
of 60o which is identical with a hexagonal arrangement. The correctness of the
procedure can be stated by corresponding results.

Furthermore interesting points of the behavior by changing the rhombic angle,
fiber volume fraction and material composition are revealed. Especially in this work
it is shown that the former developed algorithms can be extended to time-dependent
material behavior like viscoelasticity to get the effective time-dependent coefficients.
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Chapter 6

Inner Resonance in Media Governed by

Hyperbolic and Parabolic Dynamic Equations.

Principle and Examples

Claude Boutin, Jean-Louis Auriault, and Guy Bonnet

Abstract This chapter deals with the modeling and design of inner resonance me-
dia, i.e. media that present a local resonance which has an impact on the overall
dynamic behaviour. The aim of this chapter is to provide a synthetic picture of the
inner resonance phenomena by means of the asymptotic homogenization method
(Sanchez-Palencia, 1980). The analysis is based on the comparative study of a few
canonical realistic composite media. This approach discloses the common principle
and the specific features of different inner resonance situations and points out their
consequences on the effective behavior. Some general design rules enabling to reach
such a specific dynamic regime with a desired effect are also highlighted. The paper
successively addresses different materials

• having different behaviours and inner structures as elastic composites, reticulated
media, permeable rigid and elastic media,

• undergoing phenomena governed either by momentum transfer or/and mass trans-
fer,

• in which the inner resonance mechanisms can be highly or weakly dissipative,
• in situation of inner resonance or inner anti-resonance.

The results related to different physical behaviours show that inner resonance requires
a highly contrasted microstructure. It constrains the resonant constituent to respond
in a forced regime imposed by the non resonant constituent. Then, the effective
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constitutive law is determined by this latter while the resonating constituent acts as
an atypical source term in the macroscopic balance equation. It is established that
inner resonance governed by momentum (resp. mass) balance yields unconventional
mass (resp. bulk modulus). Furthermore, inner-resonance in media characterized
by hyperbolic or parabolic dynamic equations can be handled in a similar manner,
leading however to strongly distinct effective features.

6.1 Introduction

This paper deals with the macroscopic description of inner resonance media, i.e.
media that present a Representative Elementary Volume (REV) in which dynamic
phenomena exist at micro-scale and lead to specific features of the overall behaviour
at macro-scale. Such an occurrence of a dynamic regime coexisting at both micro
and macro scales will be named "co-dynamics".

Such a "co-dynamics" regime is impossible in (nearly-)homogeneous media and
can occur only in heterogeneous materials with sufficiently contrasted properties.
This type of materials, or "metamaterials", are of prime interest for their atypical
properties, that are seemingly impossible to reach with classical materials. Indeed,
in presence of inner resonance, the description strongly departs from usual standard
dynamics. The critical discrepancy is that effective parameters, as apparent mass or
compressibility, are frequency dependent and can take negative or complex values in
a frequency range related to the inner-resonance frequency.

In mechanics, the first study dedicated to inner-resonance media was developed
in Auriault and Bonnet (1985) (in English Auriault, 1994) where the macroscopic
behavior of highly-contrasted bi-composite elastic materials were rigorously derived
through the homogenization method. It was shown that the local resonance within
the soft medium leads to a frequency dependent effective tensorial density. Then
waves are dispersive and frequency band-gaps occur around the series of local
resonance frequencies, see Fig. 6.1. Note that the idea of local resonating elements
was already considered by Maxwell and Rayleigh as an analogous mechanical system
for explaining anomalous dispersion (Maugin, 1995), Fig. 6.2.

This subject receives now a great interest and a wide amount of works are now
devoted to inner resonance in mechanics and acoustics. Among them, let us mention
the theoretical studies based on asymptotic and/or physical approaches (Zhikov,
2000; Ávila et al, 2005; Babych et al, 2008; Chesnais et al, 2007; Milton, 2007;
Smyshlyaev, 2009; Krynkin et al, 2011) and experimental investigations as Fang
et al (2006); Liu et al (2000, 2005); Shanshan et al (2008); Sheng et al (2003), where
band gaps related to local resonance are evidenced. A good state of art in acoustic
metamaterials can be found in the recent review (Ma and Sheng, 2016). Among other
subjects, this review paper presents some papers studying the coupling between local
resonance and diffraction, which occurs when the elastic properties of inclusions are
of the same order as the ones of the matrix. A main consequence of this coupling
is that the effective behaviour is no more local in space, contrarily to the kinds of
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Fig. 6.1: Wave number versus angular frequency, inspired from Auriault and Bon-
net (1985). Hatched areas: stopping bands. Solid lines: dispersion curves on pass-
ing bands

behaviours studied thereafter, which correspond to "decoupled resonance". If the re-
cent advances provide a number of results devoted to particular cases, a general clear
and comprehensive understanding is still challenging. Furthermore, academic and
numerical studies investigate the features of the band-gaps of a great variety of 1D or
2D discrete lattice of rigid point mass connected by massless extension/compression
springs. Meanwhile this approach enables to identify some basic possible mecha-
nisms, the direct transposition of these studies to real materials is far from being
straightforward. Indeed, replacing the discrete mass and stiffness distribution by a
continuous 3D distribution can significantly modify the description, both quantita-
tively and qualitatively. The present paper aims at contributing to a synthetic picture
of the inner resonance phenomena derived by using the asymptotic homogenization
method (Sanchez-Palencia, 1980). The analysis is based on the comparative study
of a few canonical realistic 3D continuous media. Investigating different materials

Fig. 6.2 The Maxwell -
Rayleigh model of anoma-
lous dispersion, inspired from
Maugin (1995)
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and different mechanisms enables to disclose the common principles and the specific
features of the inner resonance situations and to point out their consequences on the
effective behavior. Some general design rules enabling to reach the "co-dynamic"
regime with a desired effect can also be established. In this view, we address:

• materials of different morphologies as elastic composite, reticulated media, per-
meable rigid media,

• undergoing phenomena governed either by momentum transfer or/and mass trans-
fer, in which the inner resonance mechanisms can be highly or weakly dissipative,
and is generally of mono-polar type but also of multi-polar type in the case of
inner anti-resonance.

In these different cases, we investigate situations where the materials, conveniently
represented by periodic media, experience a wave propagation with a long wave-
length Λ much larger than the characteristic size � of the REV, or of the period. Thus
the condition of scale separation is satisfied and the homogenization method applies
(Auriault et al, 2009; Sanchez-Palencia, 1980). The macroscopic characteristic length
L of the wave field is defined by the reduced wavelength i.e. L =Λ/2π = 1/k(ω),
where k(ω) is the wave number at the considered frequency ω . Denoting by ε the
small scale ratio parameter, we have

ε =
2π�
Λ

= k(ω)�=
�

L
� 1

This method enables to build up the equivalent macroscopic description by means
of multiple scale expansions in ε-power. Recall that the macroscopic formulation
- namely the differential operator and the effective parameters - is derived from
the physics at the heterogeneity scale, in the condition of scale separation, without
any macroscopic prerequisites. Compared to the self-consistent approaches, also
known as "coherent potential approximation", where the structure of the macroscopic
differential operator is postulated a priori, this procures some decisive advantages
that will be exploited in the sequel. In particular it enables determining whether or
not a macroscopic description exists and therefore providing the domains of validity
of the macroscopic models. Throughout the study, we will show that:

• despite the different physical kinds of inner resonance, the phenomena present
common features that result in a similar formalism of the macroscopic description,

• the inner resonance may be reached either by introducing large contrasts in
the mechanical properties, or by a geometrical contrast in the morphology (e.g.
including plates or beams within the microstructure),

• sparse co-dynamic regimes may exist in situation of inner anti-resonance,
• considering resonance with low or high dissipation, drastically changes the nature

of the resonance effect,
• unconventional mass arises when the physics is governed by the momentum

balance, while unconventional compressibility arises when physics is governed
by the mass balance.
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The paper is structured as follows. In Sect. 6.2, the specificity of inner-resonance
media is presented in the general framework of the dynamic descriptions of hetero-
geneous linear media in comparison with situations where the contrast of physical
properties is moderate. Section 6.3 deals with the case of inner resonance in elastic
composites. Both situations of resonance and anti-resonance are analyzed. Section
6.4 is devoted to inner-resonance in poro-acoustics, considering the cases of reso-
nance in media characterized by "parabolic" and "hyperbolic" dynamic equations.
Section 6.5 addresses poro-elastic media in which momentum and mass balance are
coupled, leading simultaneously to unconventional stiffness and mass. The main
theoretical outcomes and practical perspectives are discussed in the conclusion.

6.2 Dynamic Descriptions of Heterogeneous Linear Elastic

Media Without and With Inner Resonance

The "co-dynamics" regime where waves of long wavelength interfere with a local
dynamic state departs from the dynamic regime usually considered in heterogeneous
media. To highlight this specificity it is of interest to briefly review the dynamic
descriptions derived by different approaches in situations where the contrast between
physical properties is moderate. In every case, the heterogeneous media is assumed
to present a Representative Elementary Volume (REV), assumption that is satisfied
considering either statistically invariant media or Ω -periodic media (i.e. periodic
media characterized by a unit cell Ω reproduced periodically). In this section we
will focus on the elasto-dynamic case, but most of the comments also apply to
linear phenomena governed by hyperbolic or parabolic dynamic equations (see e.g.
Boutin, 1995; Auriault et al, 2005). The schematic diagram in Fig. 6.3, provides
a classification of the possible descriptions, according to the frequency range, the
periodic or non periodic nature of REV, and the contrast between physical parameters.

6.2.1 Long Wavelength Descriptions

In the long wavelength assumption, the homogenization method of periodic media
(Auriault et al, 2009; Sanchez-Palencia, 1980) is a rigorous upscaling method. The
macroscopic description of elastic composites is established on the assumption of
scale separation and on multi-scale asymptotic expansions in powers of the scale
ratio ε = k(ω)�= 2π�/Λ � 1, where k(ω) denotes the wave number. By principle,
the upscaled description is valid for frequencies lower than the diffraction frequency
ωd such that k(ωd)�= 1.

Consider a composite with a Ω -periodic elastic tensor a and density ρ . At the
leading order, under an harmonic regime at frequency ω , the homogenization yields
the classical elasto-dynamic formulation in which the effective elastic tensor AAA0 is
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Fig. 6.3: Mapping of the dynamic descriptions, according to the normalized
wavenumber k(ω)� and the contrast of the parameters. The descriptions apply
to periodic media (white and dashed zones) but also to non periodic media (left
grey triangles) characterized by a REV, at sufficiently low frequencies

the same as in statics, and the effective density R0 = 〈ρ〉 is the scalar mean density
of the composite. Physically, this description results from the fact that at the scale of
the period Ω , each constituent is in a quasi-static regime and moves with the same
rigid translation UUU (0) at the leading order. This leads to the following representation,
where eee(UUU (0)) stands for the macroscopic strain tensor

div(AAA0 : eee(UUU (0)))+ω2〈ρ〉UUU (0) = 0 (6.1)

Thus, at the first order of approximation, the wave propagation is dispersionless. For
comparison with other descriptions one may also adopt the following alternative
formulation where 〈σσσ (0)〉 is the mean stress on Ω and 〈p(0)〉 the mean moment
density:

div(〈σσσ (0)〉) = iω〈ppp(0)〉 with

(
〈σσσ (0)〉
〈ppp(0)〉

)
=
(

AAA0 0
0 iω〈ρ〉

) (
: eee(UUU (0))

·iωUUU (0)

)
When the wavelength, is large but not very large compared to �, the leading order
model can be enhanced by considering the correctors associated to the high order
terms. Doing so one obtains the following equation governing the ith corrector of

the mean cell motion ŨUU
(i)

= O(ε iUUU (0)) (see Boutin and Auriault, 1993, for the
developments and the analysis)
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div(AAA0 : eee(ŨUU
(i)
))+ω2〈ρ〉ŨUU (i)

= −div

(
i

∑
j=1

AAA j ·
j+2

∇ jeee(ŨUU
(i− j)

)

)

−ω2

(
i

∑
j=1

RRR j ·
j+1

∇ jŨUU
(i− j)
)

The detailed analysis shows that the higher order terms describe the Rayleigh scat-
tering. In particular, the corrector of first order leads to a correction of polarization
varying according to ω/ωd , the second order induces a dispersion of wave celerity
proportional to (ω/ωd)

2, and the third order introduces a geometric attenuation
increasing as (ω/ωd)

3, where ωd is the diffraction frequency.
The upscaled equivalent medium is a generalized continuum media, characterized

by constitutive laws that are non-local in space. This relies on the higher gradients
of strains, associated to the effective elastic and density tensors of higher orders,

respectively AAA j and RRR j. Furthermore, considering the total field UUU = ∑∞
i=0ŨUU

(i)
, the

description reads

div

(
∞

∑
j=0

AAA j ·
j+2

∇ jeee(UUU)

)
+ω2

(
∞

∑
j=0

RRR j ·
j+1

∇ jUUU

)
= 0

Noting that the infinite sum of the terms with successive derivation can be considered
as the expansion of a convolution product, the above description can be rewritten
in the following condensed form expressed in terms of generalized stress SSS and
momentum density PPP:

div(SSS) = iωPPP with
(

SSS
PPP

)
=

(
ÃAA 0
0 R̃RR

)
∗
(

: eee(UUU)
·iωUUU

)
where ∗ stand for the convolution product. The enhanced description introduces
a dynamic effect at the period scale and improves the approximation of quasi-
static regime made at the leading order. Nevertheless, by construction, the period
experiences a regime of weak dynamics, and consequently the effects of the correctors
are of weak magnitude, i.e. |ÃAA−AAA0| � |AAA0|, and |R̃RR−RRR0| �RRR0.

The leading order and higher order descriptions have been established by assuming
implicitly that the contrast of the mechanical parameters of the constituents of the
composite are moderate i.e O(1) compared to the scale ratio ε = k(ω)�, and also
that the morphology of the constituent in Ω , do not presents geometrical contrast
as in Subsect. 6.3.5 thereafter. Consequently, the natural way to deviate from these
standard formulations is to remove these implicit assumptions as done in the next
sections.

Remark finally that in the long wavelength range, periodic materials and non-
periodic materials with REV show macroscopic behavior of the same nature (Auriault
et al, 2009), however, the solution is not reducible to well-defined problems on a
periodic cell in the case of a non-periodic medium.
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6.2.2 Short Wavelength Descriptions

In the short wavelength range, i.e. k(ωd)�≥ 1, or ω ≥ ωd , the wavelength strongly
interacts with the cell size. Then the description is of different nature for periodic
materials and non-periodic materials with REV, while, in both cases, a full dynamic
regime is observed at the local scale. Direct simulations based on multiscattering
approach can be performed. However the numerical cost is in general extremely
expansive. Theoretical formulations dedicated to periodic case, i.e. phononic crystals,
or non periodic cases are also available.

Periodic media at high frequency are usually named phononic crystals. They
are exactly described by the Floquet-Bloch theory (Brillouin, 1946), that provides
through the Bloch wave decomposition (Allaire and Conca, 1998) the equation of
dispersion E(k,ω) = 0 which can be solved numerically. This approach describes
Bragg scattering, with dispersion and occurrence of band-gaps. The latter corresponds
to intervals of real frequency where the solutions of E(k,ω) = 0 are purely imaginary
wave numbers. A wide amount of literature is devoted to this approach and the specific
behavior of phononic crystal is now largely studied from the first experimental
evidence presented in Vasseur et al (1998). However, meanwhile the Floquet-Bloch
theory gives a comprehensive description of wave fields with short wavelengths, the
fact that such wave fields may also present large evolution lengths is not directly
accessible by this approach. This question of large scale modulation of wave fields
with short waves can be handled through a revisited asymptotic method that have
been initiated by Daya et al (2002); Moustaghfir et al (2007) for periodic structures
and followed by the works of Craster et al (2010); Boutin et al (2012, 2014) for
3D elastic composites. Compared to the usual homogenization method, the main
change lies in the fact that the macroscopic variables are the amplitudes of periodic
eigenmodes of the cell (or multi-cell) instead of being the displacement field itself.
This induces significant differences in the nature of the up-scaled description. The
approach by modulation enables simple calculations of high frequency wave fields
based on a two-step procedure separating the periodic eigenmode of the cell (or
multi-cell) and the large modulation scale using the derived modulation equation.

Non-periodic media with REV have been widely addressed by Willis (2012).
In accordance with the statistic character of the REV, the method is based on the
ensemble average (denoted < . >) instead of the volume average (denoted 〈 .〉) used
in periodic homogenization (note however that both averages coincide in periodic
media). The developments yield a conservation equation expressed in terms of
averaged stress < σσσ > and momentum density < p >. These latter quantities are
determined by non-local elasto-dynamic constitutive laws coupling the strain and the
velocity. This formulation reads

divx(< σσσ >) = iω < p > with
(
< σσσ >
< p >

)
=
(

A (ω) D(ω)
tD(ω) R(ω)

)
∗
(

: eee(UUU
·iωUUU

)
The convolution operators A (ω), D(ω), tD(ω) and R(ω) involved in the con-

stitutive laws account for the dynamics at the REV scale. A main difficulty of this
approach lies in the determination of these operators. Note that despite the differ-
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ent context of application and the more complex constitutive laws, this description
presents formally some common features with the Rayleigh scattering description.
Recent developments (Nassar et al, 2016a,b) deal with the transposition of this
approach to periodic materials.

In the above descriptions, the alternative is that either the whole cell is in quasi-
static or weakly dynamic regime, or the whole cell is in dynamic regime. Thus
the specificity of the co-dynamic regime characterizing inner resonant media is not
captured. In fact, the inner resonance situation mixes some of the assumptions of
the low and high frequency regime which are usually incompatible. For this reason
a specific description is required. Indeed, whatever the physics in consideration, a
co-dynamics regime implies that in any cell one may distinguish

i) a part of the cell that acts as the long wavelength conveyor - and therefore
undergoes a quasi-static regime -, and in the same time and same cell,

ii) an other part that experiences a dynamic state.

Thus, in presence of long waves, the REV responds with "partial" non equilibrium
state at the local scale. This specific regime changes the fundamental assumption
usually considered in continuum mechanics applied to heterogeneous material. As a
consequence non conventional behaviors are obtained.

6.3 Inner Resonance in Elastic Composites

We investigate two types of inner resonant elastic media: bi-composites materials
made of constituents having contrasted stiffness and/or densities; reticulated media
made of a single material, for which the cell morphology presents a geometrical
contrast (i.e. containing beams or plates).

6.3.1 Requirements for the Occurrence of Inner Resonance in
Elastic Bi-Composites

Consider first a periodic bi-composite of period Ω and characteristic period size �
made of two homogeneous constituents namely the C -constituent (denoted by index
c) and the R-constituent (denoted by index r), with uniform elastic tensors aaac and aaar
and constant densities ρc and ρr, occupying the domains Ωc and Ωr respectively (see
Fig. 6.4). The interface between Ωc and Ωr is denoted Γ with unit normal nnn, exterior
to Ωc.

As stated in the introduction, in the frequencies range of interest the two con-
stituents experience distinct regimes at the cell scale. By convention, here and there-
after the C -constituent will convey the long wavelength and then undergoes a local
quasi-static regime, while the R-constituent experiences a local dynamic regime. In
other words, the wavelength Λc in C -constituent is large with respect to �, while the
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Fig. 6.4: Period Ω of a bi-composite elastic media. Illustration of the "co-
dynamic" regime

wavelengthΛr in R-constituent is of the order of �. To achieve this, the C -constituent
will be systematically considered as connected, while the R-constituent can either
be connected or dispersed. Hence, one has the following a priori estimates

L = ε−1�= O(
Λc

2π
) =

1
ω

√
|aaac|
ρc

;
Λr

2π
=

1
ω

√
|aaar|
ρr

= O(�) (6.2)

These requirements implies that a co-dynamic regime may be reached when

|aaar|
|aaac|

ρc

ρr
= O(

�2

L2 ) = O(ε2) (6.3)

Besides, the resonance of the R-constituent will be enhanced if this constituent
partially traps the energy carried by the surrounding C -constituent. The energy
storage is significant when the impedance of the R-constituent is much smaller
than that of the C -constituent (so that the incoming energy cannot escape and stays
trapped in R-constituent). This leads to consider that√|aaar|ρr√|aaac|ρc

= O(ε) (6.4)

Combining relations (6.3)-(6.4), a "co-dynamic" regime is "naturally" expected when
the C -constituent is highly stiffer than the R-constituent, while their contrast of
density is moderate, i.e:

|aaar|
|aaac| = O(ε2) and

ρc

ρr
= O(1) (6.5)

This case will be addressed in Subsect. 6.3.2.
Aside from this canonical case that favors the resonance, the R-constituent can "a

priori" also be set in resonance in situations of moderate contrast of impedance, i.e.
when
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= O(1) (6.6)

This second case (6.3)-(6.6) that corresponds to a C -constituent significantly stiffer
and lighter than the R-constituent, i.e.:

|aaar|
|aaac| = O(ε) and

ρr

ρc
= O(ε−1) (6.7)

deserves also to be studied. It will be investigated in Sect. 6.3.3.
Finally, for completeness, the case of moderate contrast of stiffness and highly

denser R-constituent, i.e.

|aaar|
|aaac| = O(1) and

ρr

ρc
= O(ε−2)

could also be considered. However, as the impedance of the R-constituent would
be significantly larger than that of the C -constituent, it is expected that such media
would behave as an usual composite with an apparent mass dominated by that of
the denser constituent. Indeed, it will be shown in Appendix that this is actually the
case, and that this situation is not compatible with the occurrence of a "co-dynamic"
regime.

Note 6.1. By convention, in this paper we use the terms of high, significant or mod-
erate contrast when the ratio of parameters are of the order of O(ε±2), O(ε±1) or
O(1).

6.3.2 Elastic Bi-Composites: High Contrast of Stiffness, Moderate
Contrast of Density

The situation of high stiffness contrast and moderate density contrast (6.7) corre-
sponds to that addressed in Auriault and Bonnet (1985); Auriault and Boutin (2012).
In that case O(aaac)� O(aaar) and ρc = O(ρr) and the C -constituent is connected.
Independently of the fact that the R-constituent can be connected or not, the stress is
mainly carried by the C -constituent. Thus the long wave is actually conveyed by the
C -constituent and estimates (6.2) clearly apply. For the sequel it is useful to recall
the main results in this canonical case.

In harmonic regime at angular frequency ω , the medium satisfies the Navier
equation in Ωc and Ωr, with the continuity of stress vector and of displacement
on the interface Γ . The time dependance exp(+iωt) simplifies by linearity and
is systematically omitted. Thus, the medium is governed by the following set of
equations
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div(σσσ) =−ω2ρuuu in Ω (6.8a)
σσσ = aaa : eee(uuu) in Ω (6.8b)

(σσσ c−σσσ r) ·nnn = 0 on Γ (6.8c)
uuuc−uuur = 0 on Γ (6.8d)

σσσ and uuu Ω −periodic (6.8e)

where σσσ is the stress tensor, eee(uuu) is the strain tensor, and uuu is the displacement. The
elastic tensor aaa and density ρ take the values indexed by c and r in the domains
Ωc and Ωr respectively and similarly for σσσ and uuu. The homogenization process
consists in introducing two space variables, xxx and yyy = ε−1xxx, (hence in replacing the
usual gradient by ∇x + ε−1∇y) and to look for the displacement and other physical
quantities in the form of Ω -periodic asymptotic expansions

uuu = uuu(0)(xxx,yyy)+ εuuu(1)(xxx,yyy)+ ε2uuu(2)(xxx,yyy)+ . . . , uuu(i)(xxx,yyy)Ω −periodic inyyy (6.9)

Further, to properly account for the contrast of stiffness in the (xxx,yyy) formulation,
a rescaling of the elastic tensors must be considered. Since the overall stiffness is
dominated by that of the C -constituent, aaac is taken as the reference stiffness tensor,
and as such it is not rescaled. Now, by comparison with the reference tensor aaac and
in accordance with the stiffness contrast |aaar|/|aaac|= O(ε2) the elastic tensor of the
R-constituent is consistently rescaled as ε2aaar. Thus, using the reduced wavelength L
as characteristic length, and considering in compliance with the continuity condition
on Γ that the displacements in both constituents are of similar order of magnitude
uuuc = O(uuur), the (xxx,yyy) governing equations take the following scaled form

div(aaac : eee(uuuc)) =−ω2ρcuuuc in Ωc (6.10a)

div(ε2aaar : eee(uuur)) =−ω2ρruuur in Ωr (6.10b)

(aaac : eee(uuuc)− ε2aaar : eee(uuur)) ·nnn = 0 onr Γ (6.10c)
uuur−uuuc = 0 on Γ (6.10d)

uuuc and uuur Ω −periodic (6.10e)

6.3.2.1 Derivation of the Inner-Resonance Behavior by Homogenization

Introducing expansion (6.9) into the (xxx,yyy)-differential set (6.10) and equating the
terms with powers of ε yield successive boundary value problems on the period.

• At the dominant order, the C -constituent is governed by an elasto-static balance
equation with free boundary condition on the interface Γ , namely:⎧⎪⎪⎨⎪⎪⎩

divy(aaac : eeey(uuu
(0)
c )) = 0 in Ωc

(aaac : eeey(uuu
(0)
c )) ·nnnc = 0 on Γ

uuu(0)c Ω −periodic

(6.11)
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Therefore, Ωc experiences a periodic rigid motion at the leading order, and since
Ωc is connected, this rigid motion reduces to a translation. Thus

uuu(0)c =UUU (0)(xxx) (6.12)

This is consistent with a local quasi static regime of the C -constituent.
• The following order leads to the classic elastic local problem in the C -constituent

forced by the macroscopic strain eeex(UUU (0)), with free boundary conditions on Γ :⎧⎪⎪⎨⎪⎪⎩
divy(aaac : (eeey(uuu

(1)
c )+eeex(UUU (0))) = 0 in Ωc

aaac : (eeey(uuu
(1)
c )+eeex(UUU (0))) ·nnn = 0 on Γ

uuu(1)c Ω −periodic

(6.13)

Hence, at this order, the C -constituent behaves locally as if the R-constituent were
absent (or of zero stiffness). By linearity, the solution has the form below, where
fields χχχ pq(yyy) are the real particular displacements solutions for unit macroscopic
strains, i.e. eeex(UUU (0))i j = (δipδ jq +δiqδ jp)/2 (conveniently χχχ(yyy) is the third order
tensor built from the vectors χχχ pq(yyy) = χ pq

j (yyy)EEE j, where {EEE j, j = 1,2,3} denotes
the unit orthogonal vectors of the reference frame{

uuu(1)c = χχχ(yyy) : eeex(UUU (0))+UUU (1)
c (xxx)

σσσ (0)
c = (aaac : eeey(χχχ)+aaac) : eeex(UUU (0))

(6.14)

• At the next order, the balance and boundary condition concerning both constituents
write ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

divy(σσσ
(1)
c )+divx(σσσ

(0)
c ) =−ω2ρcUUU (0) in Ωc

σσσ (1)
c ·nnn = (aaar : eeey(uuu

(0)
r )) ·nnn on Γ

divy(aaar : eeey(uuu
(0)
r )) =−ω2ρruuu

(0)
r in Ωr

σσσ (1)
c Ω −periodic

(6.15)

After integration over Ωc, and Ωr, using the divergence theorem, the Neumann
boundary condition on Γ and the periodicity condition, it comes the macroscopic
relation, independent on yyy

divx(AAAC : eeex(UUU (0))) = −ω2〈ρuuu(0)〉

= −ω2

⎛⎝ρc
|Ωc|
|Ω |UUU

(0) +ρr
1
|Ω |

∫
Ωc

uuu(0)r dΩ

⎞⎠ (6.16)

Let us introduce the following notations

〈.〉i = 1
|Ω|

∫
Ωi

. dΩ , i = c, r, and 〈.〉 = 1
|Ω|

∫
Ω

. dΩ
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The effective elasticity tensor reads

AAAC = 〈aaac : eeey(χχχ)+aaac〉c (6.17)

and is therefore defined independently of the mechanical parameters of the soft R-
constituent (but depends on its geometry). It presents the properties of symmetry
and positiveness classically established for elastic composites (Sanchez-Palencia,
1980). The notation AAAC for the effective elasticity tensor recalls that this tensor
results from the constituent C , obviously with a correction due to the presence of
the R-inclusions of negligible stiffness. Conversely, the effective inertia 〈ρuuu(0)〉
on the right hand side of (6.16) results from both constituents.

• To close the description it remains to express the mean inertia of the R-constituent.
For this, we re-consider the balance equations in Ωr (6.10b) together with the
Dirichlet condition (6.10d) at the leading order on Γ .⎧⎪⎪⎨⎪⎪⎩

divy(aaar : eeey(uuu
(0)
r )) =−ω2ρruuu

(0)
r in Ωr

uuu(0)r =UUU (0)(xxx) on Γ

uuu(0)r Ω −periodic

(6.18)

Consistently with the inner resonance regime, the R-constituent at the leading order
experiences a dynamic regime forced by the rigid translation UUU (0)(xxx) imposed on its
boundary. The fields EEE p +ααα p(yyy) are the real particular solutions for unit imposed
displacements, i.e. UUU (0)

i = δip (recall that {EEE p, p = 1,2,3} are the vectors of the
reference frame). By construction, the vectors ααα p, p = 1,2,3 are the solutions of :⎧⎪⎨⎪⎩

divy(aaar : eeey(ααα p)) =−ω2ρr(EEE p +ααα p) in Ωr

ααα p = 0 on Γ
ααα p Ω −periodic

(6.19)

Denoting by ααα the second order tensor build from the vectors ααα p = α p
j EEE j, one

derives by linearity that

uuu(0)r =UUU (0) +ααα(yyy,ω) ·UUU (0) (6.20)

It is necessary for the next steps to identify the specific features of the tensor ααα . From
(6.19) we deduce directly the low and high frequencies limits, that read

ααα p →
ω→0

0 and ααα p →
ω→∞

−EEE p,

respectively. However, to thoroughly highlight the features of the frequency depen-
dent fields ααα p(yyy,ω), let us consider the eigenvalue problem associated to (6.19)
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divy(aaar : eeey(φφφ)) =−λφφφ in Ωr

φφφ = 0 on Γ
φφφ Ω −periodic

(6.21)

The elastic tensor aaar being symmetric and coercive, this problem presents a discrete
series of eigen values λJ > 0 and corresponding orthonormal eigenmodes φφφ J such
that 〈φφφ J ·φφφK〉r = δJK . Then, using the modal decomposition of fields ααα p(yyy,ω) the
expression of tensors ααα(yyy,ω) and 〈ααα〉r are obtained in the form

ααα(yyy,ω) =
∞

∑
J=1

φφφ J⊗〈φφφ J〉r
ω2

J
ω2 −1

; 〈ααα〉r =
∞

∑
J=1

〈φφφ J〉r⊗〈φφφ J〉r
ω2

J
ω2 −1

; ωJ =
√
λJ/ρr (6.22)

Expressions (6.22) show that 〈ααα〉r is a second order real and symmetric tensor that
depends on

i) the frequency,
ii) the elastic properties, density and geometry of the R-constituent only.

This implies that 〈ααα〉r is isotropic if the R-constituent presents at least three or-
thogonal plans of symmetry. Moreover 〈ααα〉r is not bounded, changes its sign at the
eigenfrequencies ω = ωJ of modes such that 〈φφφ J〉r �= 0, and presents continuous
variations between [−∞,+∞] in the interval of two consecutive poles [ωJ ,ωJ+1].

Note that the decomposition is realized on the subset of modes "activated " by
the forced uniform motion UUU (0) in the sense that only modes such that 〈φφφ J〉r �= 0 are
involved in 〈ααα〉r . Modes φφφ J∗ of zero mean value, i.e. 〈φφφ J∗〉r = 0 (as antisymmetric
modes in a symmetric domain) are not activated by the uniform motion of the C -
constituent. Consequently, the eigen frequencies ωJ∗ of modes φφφ J∗ are not poles of
〈ααα〉r. Thus, as the {φφφ J∗} are not involved in the local response, the macroscopic
description ignores this subset of modes in the whole frequency range, including the
vicinity of the ωJ∗ . An example of such a strong reduction of modes involved in the
computation of < ααα > is the case of spheres. The eigenfrequencies of spheres are
numerous (related to a double infinity of integer indices), but only one set of only
two integers is involved in the computation of < ααα > (Bonnet and Monchiet, 2017).

Finally, reporting the result (6.20) in (6.16), the effective behavior at the leading
order reads {

divx(AAAC : eeex(UUU (0))) = −ω2ρρρ(ω) ·UUU (0),

ρρρ(ω) = 〈ρ〉III +ρr〈ααα(ω)〉r
(6.23)

This description combines conventional elasticity, characterized by the elastic tensor
AAAC of the material made of the C -constituent only, and by a non conventional
mass density associated to the frequency dependent density ρρρ(ω). The equivalent
formulation

div(〈σσσ (0)〉) = iω〈ppp(0)〉 (6.24)

with
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〈σσσ (0)〉
〈ppp(0)〉

)
=

(
AAAC 0
0 iω(〈ρ〉III +ρr〈ααα(ω)〉r)

)(
: eeex(UUU (0))

·iωUUU (0)

)
highlights the difference with the Rayleigh scattering regime, as here the constitutive
laws are local in space and frequency dependent, instead of being non-local in space
and frequency independent.

6.3.2.2 Comments

The key point to obtain (6.24) is that the stress sustained by the R-constituent is
of one order smaller than the one prevailing in the C -constituent. This is a direct
consequence of the scale separation assumption as shown by the quite basic following
arguments. Consider a period of face area S and denote symbolically |Sσc1| and |Sσc2|
the ingoing and outgoing stress fluxes on opposite faces, and |Γσr| the stress flux
induced by the R-constituent. By hypothesis a regime of long wavelength L� �
is considered, thus (|Sσc2| − |Sσc1|)/|Sσ1| ≈ �/L = O(ε). In addition, as the C -
constituent is in quasi static regime, its equilibrium at the scale of the cell implies
that |Sσc2| ≈ |Sσc1|+ |Γσr|, and consequently |Γσr|/|Sσc1|= O(ε). Thus, the stress
external to the resonating domain is not significantly modified by the small stress
induced by the resonating domain. In other words, the long-wavelength condition
automatically ensures that at the leading order

i) the motion in the stiff C -constituent is governed by ordinary ("low frenquency")
elastic equations,

ii) the resonating domain acts as a source term in the balance equation within the
cell.

As at low frequencies 〈ααα〉r→ 0, then ρρρ(ω)→ 〈ρ〉III, and the description (6.24)
tends to the usual elasto-dynamic formulation of porous composites. However, the
description (6.24) can not be obtained by performing homogenization with the usual
assumption of moderate stiffness contrast i.e. |aaar|/|aaac| = O(1), and then taking
the limit of the model by making |aaar|/|aaac| → 0. Doing so, the same elastic tensor
AAAC would be derived but the unconventional inertia would be missed. The reason
is that, considering a moderate contrast leads to assume (at least implicitly) that
the wavelengths in both constituents are of the same order, and throughout the
homogenization process, to keep this physics at the limit ε→ 0. Thus, by construction
such a description cannot capture the inner resonance effect, and this effect will be
necessarily missed even if a contrast is introduced a posteriori in the macroscopic
model. Conversely, when the contrast is introduced ab initio, the co-dynamic regime
is explicitly formulated and preserved at the limit ε → 0. The fact that the alternative
approach is erroneous in dynamics (meanwhile correct in statics) highlights the fact
that the homogenized model is only valid in the framework of the assumptions made
at the microscopic scale. If one physical phenomena is disregarded it cannot be
retrieved afterwards. Consequently, performing on the macroscopic model a passage
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to the limit on some parameters is only valid if it does not introduce an effect which
is not accounted for in the initial assumptions.

The non conventional feature involved in description (6.24) lies in the fact that
the effective density ρρρ(ω)

i) is of tensorial nature,
ii) is not bounded and depends on the frequency.

It changes of sign in the vicinity of the series of poles ωJ . This arises from the inner
resonance of the R-constituent domain that experiences a non uniform, frequency
dependent motion. Hence, its effective inertia takes large positive or negative values
in the vicinity of its eigen-frequencies.

As a consequence, the material shows a significant dispersion of the wave velocity
with band-gaps when ρρρ(ω) takes negative values. The specificity - and practical
interest - of these band gaps is that they appear in a frequency range where the wave-
lengths that would propagate in the C -constituent, in absence of the R-constituent,
are much larger than the period size. These band gaps are tunable with the R-
constituent properties and the geometry of its domain. For simple geometry, exact
analytical expressions of the effective density are available. For periodic bi-stratified
media made of isotropic materials, the effective density tensor is orthotropic with the
classical mean value along the direction perpendicular to the layers, and takes the
following value along the directions in the plane of the layers (Auriault and Bonnet,
1985):

ρρρ(ω) = 〈ρ〉+ρr
�r

�

(
tan(ω∗)
ω∗

−1
)

; ω∗ = ω
�r

2

√
ρr

μr

where � and �r are respectively the thickness of the period and of the resonating layer
(of shear modulus μr). One may refer to Auriault and Boutin (2012) for contrasted
tri-stratified media, and to Bonnet and Monchiet (2015) for cylindrical or spherical
composite resonant domains.

The description (6.24) also departs from usual homogenized models by the fact
that the macroscopic kinematic descriptor of the media, UUU (0) is not the mean average
of the displacement over the cell, but is the uniform displacement of the C -constituent.
This is a signature of a non-local behavior as already pointed out by Lafarge and
Nemati (2013) in the context of the acoustics of porous media.

In the time domain, due to the frequency dependence of ρρρ(ω), a convolution
product (denoted by ∗) appears in the inertial terms and the macroscopic equation
reads

divx(AAAC : eeex(UUU (0))) = 〈ρ〉∂
2UUU (0)

∂ t2 +ρr〈ααα〉r ∗ ∂
2UUU (0)

∂ t2 (6.25)

The modal decomposition of the local fields 〈ααα〉r provides an alternative manner to
account for the inner-resonance effects without introducing convolution products. It
consists in introducing the instantaneous amplitudes of eigenfunctions as an infinite
set of additional variables {bJ(x, t)} which can be considered as the microscopic
descriptors of the media. This leads to the following formulation, which is equivalent
to (6.25):
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divx(AAAC : eeex(UUU (0))) = 〈ρ〉∂

2UUU (0)

∂ t2 +ρr

∞

∑
J=1

∂ 2bJ

∂ t2 〈φ J〉r,

bJω2
J +

∂ 2bJ

∂ t2 =
∂ 2UUU (0)

∂ t2 · 〈φ J〉r
(6.26)

Thus, both the macro variables UUU (0)(x, t) and the microscopic descriptors bJ(x, t) can
be determined in parallel by solving the coupled linear differential set governing their
time/space evolution. Such a formulation is usual in the framework of generalized
continua where the microstructural effects are "condensed" into additional variables
governed by specific equations of evolution (Eringen, 1968; Maugin and Metrikine,
2010). The formulation in terms of microscopic descriptors may be convenient for
computational methods as it

i) avoids the difficulties associated to the numerical treatment of convolution prod-
ucts, which requires to store the data of the preceding steps of calculation,

ii) does not require multi-scale mesh, as for example using the ’square’ finite element
method (FEM2).

In fact, local fields are "pre-integrated" owing to the calculation of the eigenmodes
of the resonant domain. Furthermore, the relevant number of eigenmodes required
for the calculations can be adapted according to the frequency spectrum content.
Inner resonant media differ from "standard" generalized continua, mainly by the
fact that the time evolution of each microscopic descriptor is ruled by differential
equations of the second order, with a forcing term related to the macroscopic variables.
Consequently, the descriptors can formally be determined as a function of the macro
variables and their combination constitutes the kernel of the convolution product.

The above analysis can be extended to more complicated microstructures. Dif-
ferent cases have been investigated in Auriault and Boutin (2012). For instance,
the regularizing effect of slight damping in case of viscoelastic R-constituent can
easily be studied in the same framework. One may also replace the homogeneous
R-constituent by a composite (or nonhomogeneous) inclusion. In this latter case,
asymmetric morphology may induce also resonance in rotation.

Experimentally the co-dynamic regime has been actually evidenced in elastic
composites, for instance in Liu et al (2000). In fact, a great variety of inner resonant
materials can be contemplated by following the principles identified in the present
simple case:

i) the contrast of properties imposes that the effective constitutive law is determined
by the stiffer constituent, and that the resonant domain responds in a forced regime
imposed by the motion of the stiff constituent,

ii) in turn the mean inertial force of the resonant domain acts as a source term in the
macroscopic balance equations.

Such situations of "partial" non equilibrium local state would result in a non-
conventional behavior characterized by frequency dependent inertia parameters.

Despite the local dynamics, the existence of the long wavelength enables to pre-
vent the use of much complicated theoretical approaches based on multi-scattering
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formulation (that, furthermore, can only be handled numerically). In fact, one of the
most practical interests of inner resonant materials lies in the fact that their constitu-
tive parameters can easily be determined by two independent local problems, one
related to the C -constituent only, that corresponds to standard periodic homogeniza-
tion problem in statics, and one related to the R-constituent only, that corresponds
to standard well-posed dynamic problem in a finite domain. This is a significant
advantage for designing such materials with unconventional effective properties.

6.3.3 Elastic Bi-Composites: Significant Contrast of Stiffness and
of Density

In this section we consider the second case defined in (6.7), i.e. |aaar|/|aaac| = O(ε)
and ρr/ρc = O(ε−1). As previously the C -constituent is connected so that the stress
is mainly carried by the C -constituent. However, due to the density contrast, the
macroscopic wavelength in the media does not match the wavelength in the C -
constituent. Two estimates can be proposed - each corresponding to a different
frequency range - according to the magnitude of the effective density.

Let us first investigate the situation where the effective density is dominated by the
larger value ρr, in accordance with the physical intuition. In this situation, the overall
stiffness is dominated by that of the C -constituent while the density is dominated
by that of the R-constituent. As previously, to properly account for the contrast
of parameters, their rescaling must be considered. The dominating stiffness aaac and
density ρr are taken as reference values, and as such are not rescaled, while, compared
with these reference values and in accordance with the contrasts |aaar|/|aaac| = O(ε)
and ρr/ρc = O(ε−1) the elastic tensor of the R-constituent and the density of the C -
constituent are consistently rescaled as εaaar and ερc. Hence the scaled (xxx,yyy) governing
equations read in that case:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

div(aaac : eee(uuuc)) =−ω2ερcuuuc in Ωc

div(εaaar : eee(uuur)) =−ω2ρruuur in Ωr

(aaac : eee(uuuc)− εaaar : eee(uuur)) ·nnn = 0 on Γ
uuur−uuuc = 0 on Γ

uuur and uuuc Ω −periodic

(6.27)

As in the previous case, we successively obtain for the C -constituent, at the leading
order uuu(0)c =UUU (0)(xxx), and at the next order, that the local elasto-static set (6.13) is
unchanged so that the solution (6.14) still apply. However the R-constituent is here
governed by the following elasto-static problem with a Dirichlet condition on its
border:
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divy(aaar : eeey(uuu

(0)
r )) = 0 in Ωr

uuu(0)r =UUU (0)(xxx) on Γ

uuu(0)r Ω −periodic

(6.28)

The obvious solution is uuu(0)r =UUU (0)(xxx). Then it is easy to see that the medium is
described by a conventional elasto-dynamic formulation

divx(AAAC : eeex(UUU (0))) =−ω2〈ρr〉r ·UUU (0)

where the effective elastic tensor AAAC is defined in (6.17) and the effective density
is nothing but the mean density. It is clear that this situation does not corresponds
to inner resonance as both constituents experience a quasi-static local regime. This
implies that this conventional modeling applies at frequencies sufficiently low so that
the local dynamic effects can be disregarded at the leading order.

6.3.3.1 Co-Dynamics Regime at Anti-Resonance Frequencies

Let us still consider that |aaar|/|aaac|= O(ε) and ρr/ρc = O(ε−1), but investigate now
the less intuitive situation where the effective density is estimated of the order of
the smaller value ρc. This assumption is supported by the fact that, as seen in the
previous section, the effective density can indeed be very different from the mean
density.

This assumption is formulated by considering that ρc is the reference value, and
therefore is not rescaled, while the density of the R-constituent, is consequently
rescaled as ε−1ρr, while the elastic tensor of the C -constituent is rescaled as previ-
ously as εaaar. Hence the scaled (xxx,yyy) governing equations read now⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

div(aaac : eee(uuuc)) =−ω2ρcuuuc in Ωc

div(εaaar : eee(uuur)) =−ω2ε−1ρruuur in Ωr

(aaac : eee(uuuc)− εaaar : eee(uuur)).nnn = 0 on Γ
uuur−uuuc = 0 on Γ

uuur and uuuc Ω −periodic

(6.29)

• At the dominant order, the C -constituent and the R-constituent are each governed
by the same sets as previously, namely (6.11) and (6.18). Thus we have,

uuu(0)c =UUU (0)(xxx); uuu(0)r =UUU (0) +ααα(yyy,ω) ·UUU (0) and thus σσσ (0)
r = (aaar : eeey(ααα)) ·UUU (0)

(6.30)
where ααα(yyy,ω) is given by (6.22). Again this result is consistent with a local quasi
static regime of the C -constituent and a dynamic regime of the R-constituent at
the leading order.

• The following order for the C -constituent leads to a specific local problem where
the C -constituent experiences a static regime while it undergoes the stresses
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exerted by the R-constituent in dynamic regime⎧⎪⎪⎨⎪⎪⎩
divy(aaac : (eeey(uuu

(1)
c )+eeex(UUU (0))) = 0 in Ωc

(aaac : (eeey(uuu
(1)
c )+eeex(UUU (0))) ·nnn = (aaar : eeey(uuu

(0)
r )) ·nnn on Γ

uuu(1)c Ω −periodic

(6.31)

where uuu(0)r is given by its expression in (6.30) that involves the second order tensor
ααα . The integration of the balance equation over Ωc, combined with the use of the
divergence theorem, the Neumann boundary condition on Γ and the periodicity
condition, provides the necessary condition for the existence of a solution. This
condition expresses the overall balance and implies that

1
Ω

∫
Γ

(aaar : eeey(uuu
(0)
r )) ·nnn =

1
Ω

∫
Γ

σσσ (0)
r ·nnnds = 0.

Now integrating the momentum balance

divy(aaar : eeey(uuu
(0)
r )) =−ω2ρruuu

(0)
r in Ωr

and making use of the divergence theorem provides

1
Ω

∫
Γ

σσσ (0)
r ·nnnds =−ω2〈ρruuu

(0)
r 〉r = 0.

According to the expression of uuu(0)r this requirement leads to

ω2ρr〈III +ααα〉r ·UUU (0) = 0

As ω �= 0, such a situation is generally impossible except for specific frequencies
where

i) the tensor 〈III +ααα〉r is singular and
ii) the polarization of the macroscopic motion UUU (0) is constant and belongs to the

kernel of 〈III+ααα〉r. Note that if 〈ααα〉r is isotropic, the singularity arises for the three
directions of the space and then the orientation of UUU (0) can be arbitrary.

Hence, in the following we will assume the isotropy of 〈ααα〉r (thus 〈ααα〉r can be
replaced by a scalar) that enables less restrictive conditions.

To sum up, when 〈ααα〉r is isotropic, the set (6.31) can only have solutions in the
vicinity of specific frequencies such that the effective inertia of the R-constituent
vanishes at the considered order i.e.

〈III +ααα〉r = 〈ααα〉r + |Ωr|
|Ω | III = O(ε) (6.32)

The requirement (6.32) is consistent
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i) with the a priori estimate of the macroscopic wavelength based on the lower
density ρc and

ii) with the fact that the co-dynamic regime imposes that the stress flux induced
by the R-constituent is of one order smaller than the stress prevailing in the
C -constituent.

In fact meanwhile the stress tensor σσσ (0)
r is actually of zero order, its mean value on

Γ is of one order smaller. This can correspond to dissymmetric modes that may be
seen as a dipolar source (instead of mono-polar source as in the previous case studied
in Sect. 6.3.2). According to the above described properties of 〈ααα〉r, and assuming
its isotropy, this possibility occurs for a discrete series of frequency ω̃K localized in
between each pole, i.e. ωK < ω̃K < ωK+1. Such frequencies ω̃K will be designated
thereafter as anti-resonant frequencies.

Now, focusing on the close vicinity of one of anti-resonant frequencies ω̃K , the
local elastodynamic problem (6.31) is forced by eeex(UUU (0)), and uuu(0)r = (III +ααα) ·UUU (0).
Accounting for the linearity, we can express the fields uuu(1)c and σσσ (0)

c in the form{
uuu(1)c = χχχ(yyy) : eeex(UUU (0))+ξξξ (yyy, ω̃K) ·UUU (0) +UUU (1)

c (xxx)

σσσ (0)
c = [aaa : eeey(χχχ)+aaa] : eeex(UUU (0))+(aaa : eeey(ξξξ )) ·UUU (0)

(6.33)

where χχχ(yyy) is the same real tensor as in the previous section, see (6.14). The second
order tensor ξξξ (yyy, ω̃K) is built from the particular fields ξξξ p

(yyy, ω̃K). These fields are
the frequency dependent solutions corresponding to unit values of the macroscopic
motion i.e. UUU (0) =EEE p. From (6.31) the corresponding local problem reads⎧⎪⎨⎪⎩

divy(aaac : (eeey(ξξξ
p
)) = 0 in Ωc

(aaac : (eeey(ξξξ
p
) ·nnn = (aaar : eeey(ααα p)) ·nnn on Γ
ξξξ p Ω −periodic

(6.34)

In other words, the first order fields ξξξ p
(yyy, ω̃K) are the elasto-static displacements in

the C -constituent that balance the stresses (aaar : eeey(ααα p)) ·nnn exerted on its boundary
by the R-constituent, this latter undergoing a dynamic regime forced by the uniform
motion EEE p of the C -constituent at the leading order.

• At the next order, the balance and boundary condition concerning both constituents
write ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

divy(σσσ
(1)
c )+divx(σσσ

(0)
c ) =−ω̃2

KρcUUU (0) in Ωc

σσσ (1)
c ·nnn = σσσ (1)

r ·nnn
divy(σσσ

(1)
r )+divx(σσσ

(0)
r ) =−ω̃2

Kρruuu
(1)
r

σσσ (1)
r and σσσ (1)

c Ω −periodic

(6.35)

Integrating over Ωc, and Ωr and using the usual integral transformation, yield

divx(〈σσσ (0)〉) = −ω̃2
K(〈ρc〉cUUU (0) +ρr〈uuu(1)r 〉r) (6.36)
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From the expression of σσσ (0) in both constituents, the mean stress term 〈σσσ (0)〉
reads:

〈σσσ (0)〉=AAAC : eeex(UUU (0))+DDDω̃K
·UUU (0)

The effective elasticity tensor AAAC is the same as in the previous case, see (6.17).
The new elasto-inertial tensor DDDω̃K

is defined by

DDDω̃K
= 〈aaac : eeey(ξξξ )〉c + 〈aaar : eeey(ααα)〉r

As ξξξ and ααα are of second rank, the tensor DDDω̃K
is of the third rank.

Furthermore note that, as one considers aaar constant then

〈aaar : eeey(ααα)〉r = aaar〈eeey(ααα)〉r = 0

because
〈2eeey(ααα)〉r =

∫
Γ

ααα⊗nnn+nnn⊗αααds = 0

since ααα = 0 on Γ . Thus, in that case the last term of DDDω̃K
vanishes and

DDDω̃K
= 〈aaac : eeey(ξξξ )〉c

• To close the description it remains to express the inertial term ρr〈uuu(1)r 〉r that
appears in (6.36). The field uuu(1)r is determined by the following balance equation
in Ωr together with the Dirichlet condition on Γ .⎧⎪⎪⎨⎪⎪⎩

divy(aaar : (eeey(uuu
(1)
r )+eeex(uuu

(0)
r ))+divx(aaar : eeey(uuu

(0)
r ))) =−ω̃2

Kρruuu
(1)
r in Ωr

uuu(1)r = uuu(1)c in Γ

uuu(1)r Ω −periodic
(6.37)

According to the expressions of uuu(1)c this local elastodynamic problem is forced
by eeex(UUU (0)), UUU (0) and UUU (1). Thus, by linearity we have:

uuu(1)r = θθθω̃K
(yyy, ω̃K) : eeex(UUU (0))+ζζζ ω̃K

(yyy, ω̃K) ·UUU (0) +UUU (1) +ααα(yyy, ω̃K) ·UUU (1)

and as (at order 1)

〈ααα〉r(ω̃K)+
|Ωr|
|Ω | III = 0,

〈uuu(1)r 〉r = 〈θθθω̃K
〉r : eeex(UUU (0))+ 〈ζζζ ω̃K

〉r.UUU (0)

where 〈θθθω̃K
〉r and 〈ζζζ ω̃K

〉r are tensors of rank three and two respectively. The field

uuu(1)r is the first corrector of uuu(0)r :
The contribution 〈θθθω̃K

〉r : eeex(UUU (0)) results
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i) from the non uniform motion χχχ : eeex(UUU (0)) imposed by the deformed stiff
constituent on the boundary Γ , and

ii) from the volume forces accounting for the variation at the macroscopic scale
of the local elasto-dynamic field ααα;

the contribution 〈ζζζ ω̃K
〉r ·UUU (0) results from the non uniform motion ξξξ ·UUU (0) im-

posed by the deformed stiff constituent on the boundary Γ .
Remark that as the fields constituting ααα , ξξξ , and ζζζ are determined at an anti-
resonance frequency, one may reasonably infer that they remain bounded as well
as the effective tensors in which they are involved. However, the proof would
require a detailed analysis that is beyond the scope of this paper.

• Finally, focusing on the vicinity of the anti-resonance frequencies ω̃K , the equiva-
lent macroscopic behavior at the leading order reads⎧⎪⎨⎪⎩

divx

(
AAAC : eeex(UUU (0))+DDDω̃K

·UUU (0)
)
=−ω̃2

K

(
ρ̃ρρω̃K
·UUU (0) +ρr〈θθθω̃K

〉r : eeex(UUU (0))
)
,

ρ̃ρρω̃K
= ρc

|Ωc|
|Ω | III +ρr〈ζζζ ω̃K

〉r
(6.38)

The behaviour is finally expressed by using two real valued third order tensors,
DDDω̃K

and 〈ζζζ ω̃K
〉r, which are not null only if the material is not isotropic. This

result is not inconsistent with the assumed isotropy of the second order tensor
〈ααα〉r, because the isotropy of 〈ααα〉r is strictly related to the mechanical properties
and geometry of the R-constituent. At the contrary, the third order tensors are
related to the mechanical properties and geometry of both constituents and can be
anisotropic.

6.3.3.2 Comments

The description (6.38) is non conventional for the following reasons:

• It is only valid in the vicinity of the discrete spectrum of anti-resonance {ω̃K},
and the effective parameters, other than the elastic tensor AAAC , differ for each of
these frequencies,

• The classic elastic constitutive law is complemented by an elasto-inertial term
involving the {ω̃K}-harmonic motion itself (not the strain). As the effective tensor
DDDω̃K

is of third rank, it is necessarily anisotropic when non null, and it vanishes
provided that the cell presents three orthogonal planes of symmetry,

• The effective density is of one order smaller that the mean density and the effective
inertia involves a non-local term associated to the strain. The comment made on
DDDω̃K

also applies to the third rank effective tensor 〈θθθω̃K
〉r.

The description (6.38) can equivalently be expressed in terms of mean stress 〈σσσ (0)〉
and momentum density 〈p(0)〉 as follows:

divx(〈σσσ (0)〉) = iω̃K〈p(0)〉
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with (
〈σσσ (0)〉
〈p(0)〉

)
=

⎛⎝ AAAC
DDDω̃K
iω̃K

ρriω̃K〈θθθω̃K
〉r ρ̃ρρω̃K

⎞⎠(: eeex(UUU (0))

·iω̃KUUU (0)

)
It is worth mentioning that qualitatively, and physically, this formulation takes a
form close to the one proposed in Willis (2012). However, a detailed comparison is
far to be straightforward as the present equations are derived in the framework of
largely contrasted periodic media (instead of random moderately contrasted media).
The macroscopic descriptor UUU (0) corresponds to the motion of the non-resonant
domain of the cell (hence it differs form the mean value overall the cell), and the
effective tensors are local and frequency dependent (instead of being non-local, i.e.,
convolution operators). It should be noticed that in the present case, the effective
parameters can actually be determined from the knowledge of the microstructure.

Note finally that non-zero third rank coupling tensors yield a wave equation (with
frequency dependent coefficients) involving classical space derivatives of the second
order but also non-classical derivatives of the first order. These latter may induce a
non-symmetry for waves propagating in opposite directions at the anti-resonance
frequencies, i.e. corresponding to an effect of "acoustic diode".

6.3.4 Synthesis on the Resonant and Anti-Resonant Co-Dynamic
Regimes

The main learning of the two above sub-sections can be summarized as follows:

• The occurrence of a co-dynamic regime requires strong contrasts of properties,
and imposes that the stress flux induced by the resonating constituent is of one
order smaller than the stress flux conveyed by the other constituent.

• The simplest case is that of a soft resonant domain in a much stiffer matrix,
both having similar densities. In that case, the macroscopic constitutive law is of
standard elastic type, and the inner resonance phenomenon emerges as a specific
inertial source term in the stress balance. This mechanism presents a strong
analogy with what is sometimes designed as mono-polar resonance. Consequently,
this situation leads to an unconventional density, and a conventional elasticity. The
description is valid on a wide frequency range, provided that the scale separation
is respected.

• A more complicated case is that of a soft and dense resonant domain in a stiff
and light matrix. Then a co-dynamic situation is possible only in the vicinity
of the anti-resonance of the R-constituent. This is a similar situation to what is
sometimes designed as bi- or multi-polar resonance. Such a phenomenon leads
to an unconventional elastic constitutive law and inertia, both including elasto-
inertial terms. However the degrees of these additional differential operators are
different from that of the conventional one. Consequently, due to the nature of the



108 Claude Boutin, Jean-Louis Auriault, and Guy Bonnet

description itself, it is not possible in this context to speak of equivalent media
having possibly negative elasticity or density.

Compared to the co-dynamic regime at resonant frequencies, a co-dynamic regime
at anti-resonant frequencies requires much more severe and specific conditions to
be observed experimentally. In particular, in presence of slight damping, condition
(6.32) of vanishing inertia of the R-constituent at the leading order may be difficult to
reach, specially as the resonant domain has a larger density than the one of the other
constituent. The existence of anti-resonance lies on the combined interaction of, at
least, two resonant modes. Thus, specific resonant systems with an unique degree of
freedom (as a simple spring-mass system) cannot exhibit this type of behavior. Note
also that the practical design of such materials governed by antiresonance is more
complicated than materials governed by resonance, since, meanwhile the discrete
anti-resonant frequencies can be determined from the knowledge of the resonant
domain only, the effective properties result from coupling effects between the R-
and C -constituents. These coupling effects require (even in the simple case where
the coupling tensors DDDω̃K

and 〈θθθω̃K
〉r vanish) the resolution of the three successive

local problems related to ααα , ξξξ , and ζζζ . For this reason we focus in the sequel on the
co-dynamic regime governed by resonance.

6.3.5 Reticulated Media: Inner Resonance by Geometrical
Contrast

We illustrate in this subsection the possibility of realizing inner resonance media
with a single material, by introducing geometrical contrasts in the morphology, such
contrasts being achieved by the presence of beams or plates at the microscale. We
follow here the work of Boutin et al (2010); Chesnais et al (2007) on reticulated
structures experiencing global vibrations, where inner dynamic phenomena due to
local resonance in bending have been evidenced.

Consider a periodic reticulated medium (Fig. 6.5-left), whose cubic period of
side length � simply consists of bars located on the edges, rigidly connected at
their extremities (the cubic corners). For simplicity, we investigate the configuration
where the bars are all identical, have a square section of side length a and are made
of the same material of Young modulus E, Poisson’s ratio ν and volumic mass
ρ . Further, we consider a morphology that presents a strong geometrical contrast.
This strong geometrical contrast is achieved by assuming that the bars are slender
enough, i.e. a� �, to be described locally as Euler-Bernoulli beams. Hence the
axial (compression) and transverse (bending) harmonic behaviours of the bars are
described by the following set of equations (s stands here for beam axis coordinate, u
the axial displacement, N the normal force, S = a2 the beam section; v the transverse
displacement, M the bending momentum, T the transverse shear force, and I = a4/12
is the geometrical inertia of the beam section)
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Fig. 6.5: Examples of reticulated elastic media. Left: 3D media made of a cubic
array of identical beams; Center: 2D square array of beams ; Right: 2D square
array of identical plates (courtesy of Logan Schwan)

⎧⎪⎪⎨⎪⎪⎩
dN
ds

=−ω2ρSu , N = ES
du
ds

,

dT
ds

=−ω2ρSv , T − dM
ds

= 0 , M =−EI
d2v
ds2

(6.39)

and consequently the compression and bending wavelengths are respectively

Λc

2π
=

1
ω

√
E
ρ

,
Λb

2π
=

1√
ω

4

√
EI
ρS

Note that the validity of the beam model requires that the bending wavelength is
significantly larger than the size of the section, i.e. Λb� a. Consequently, at a given
frequency, the compression wavelength is much larger than the bending wavelength,
since from the above expressions (for rectangular sections):

Λc

Λ 2
b
=

1
2π

√
S
I
=

√
3

πa
hence

Λc

Λb
=
Λb
√

3
πa

� 1

This corresponds to the fact that the beams present a much higher stiffness in
compression than in bending.

In the considered reticulated medium, let us focus on the propagation of compres-
sional waves in the direction EEE1 coinciding with one axis of the cubic period. In that
case, we can distinguish the axial bars oriented along EEE1 that sustain a compression
state and the transversal bars oriented at π/2 that undergo bending. Because of the
compression/bending stiffness contrast, the stress is mainly carried by the axial bars
that play the role of the conveying C -constituent. Thus, the macroscopic wavelength
is the compression wavelength, which is much larger than the period size � in the
assumption of scale separation. To reach a co-dynamics regime, the transversal bars
should play the role of the resonating R-constituent, i.e. they should be in dynamic
bending regime. In other terms the bending wavelength should be of the order of
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magnitude of the period size �. Consequently, the requirements for a co-dynamic
regime are

L = O(
Λc

2π
) = ε−1�;

Λb

2π
= O(�)

i.e., according to the expressions of Λc and Λb

O(
1
ω2

E
ρ
) = ε−2�2 ; O(

1
ω2

Ea2

12ρ
) = �4

These relations impose that the inverse of the slenderness parameter of the beam is
of the same order as the scale ratio:

O(
a
�
) = ε � 1

Note that with this geometry, the transverse force Tb in the bended beams and the
axial force Nc in the compressed beam can be assessed as:

Nc = ES
du
dsc

= O(Ea2 u
L
) ; Tb =

dM
dsr

= O(E
a4

12
v
�3 )

Thus, since the axial motion u of the compressed beams oriented along EEE1 is of the
same order of magnitude as the transverse motion v of the bended beams oriented
along EEE2 we have

Tb

Nc
= O(

a2L
12�3 ) = ε

Consequently the transverse force Tb in the bended beams is actually one order
smaller than the axial force Nc in the compressed beam.

Such a reticulated medium can be analyzed by the asymptotic homogenization of
periodic discrete media (Caillerie et al, 1989; Tollenaere and Caillerie, 1998). The
detailed process is not reported here, and the reader can refer to Chesnais et al (2007,
2012); Hans and Boutin (2008) for a further insight. The principle consists in two
steps: first the reduction of the media to an exact discrete representation, then the
homogenization process itself.

The discretization consists in taking advantage of the integration of the beam
constitutive laws in harmonic regime to express explicitly the forces and couples
at the endpoints of a bar as functions of the kinematic variables (displacement and
rotations) at these endpoints. Then, as the equilibrium of each beam is already
achieved, the balance of the medium exactly reduces to the balance of forces and
moments applied by the bars connected to a given node. These equations take the
form of a finite difference set and provide the discrete description of the medium.

The homogenization process transforms these discrete descriptions into an equiv-
alent continuum model. The nodal variables are identified to the values taken at the
discrete locations of the nodes by continuous functions. These latter are looked for
in the form of asymptotic expansions in powers of ε . Now, according to the scale
separation assumption the nodal variables vary slowly from one node to the next.
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Therefore, the finite differences can be re-expressed in terms of Taylor’s series of
the continuous functions, which introduces the macroscopic derivatives. Reporting
the expansions in the discrete description of the medium yields a set of differential
equations from which the macroscopic continuous description is derived.

In the present case this method leads successively to show that:

• at the leading order the normal forces in the axial bars is simply given by

ES
dU (0)(x)

dx
,

consistently with the fact that the transverse force in the transversal bar is of one
order smaller,

• the transverse bars undergo a forced dynamic regime in bending resulting from
the motion imposed at their extremities by the axial bars,

• the balance equation of normal forces accounts for the conventional inertia of the
axial bar and the non-conventional inertia of the transversal bars.

Thus the derived 1D equation governing the compressional wave reads⎧⎪⎪⎪⎨⎪⎪⎪⎩
d
dx

(E
dU (0)

dx
) =−ω2ρ̃(ω)U (0),

ρ̃ = ρ (1+2ψ(ω∗)) ; ω∗ =
ω
ω1

with ω1 =

(
2
�

)2
√

EI
ρS

(6.40)

The frequency dependent complex valued function ψ(ω�) accounts for the non
uniform motion within the transverse bars. As for the composite, this motion can
be expressed on the basis of the bending modes of the bar. Alternatively, an explicit
expression of the motion can be derived by integrating the beam equation with the
conditions of imposed motion and no rotation at its extremity. Taking the average
over the beam length yields:

ψ(ω∗) =
1√
ω∗

2
coth(

√
ω∗)+ cot(

√
ω∗)

The function ψ(ω�) presents the same general features as the tensor III+〈ααα〉r involved
in the bi-composite description: it is not bounded and changes of sign in the vicinity
of the poles ωi of ψ , that corresponds to the odd bending modes of the transversal
bars, with clamped conditions at their extremities (the average displacement of
even bending modes is null and consequently these modes do not participate to the
effective density). Similarly to bi-composites, the negative effective density leads
to dispersive waves and band-gaps in the frequency range where, in absence of
inner resonance, the wavelength would be much larger than the period size. This
effect results from the morphology instead of the interaction between contrasted
constituents. Another significant difference between bi-composites, is that the role
of conveying and resonating elements are not determined a priori but depends on
the direction of the wave: they switch for compressional wave propagating in one or
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other of the two material orthogonal directions. Experimentally, inner resonance by
bending has been reported in reticulated beams by Baravelli and Ruzzene (2013).

Many variants of this simple example based on bending/compression contrast are
possible. For instance, considering the 2D arrays described in Fig. 6.5, a description
similar to (6.40) applies, except that ρ̃ = ρ (1+ψ(ω∗)) and, in the case of plates, E
has to be changed in to E/(1−ν2). With parallelepipedic cells the inner-resonant
frequencies will be different in the three directions of propagation if the three families
of orthogonal bars are different. One may also add localized masses to tune the
bending resonance. Considering rhomboidal cell enables oblique orientations of
inner-resonance effects, bars can also be replaced by plates, etc. . .

Despite the strong morphologic difference the same principles and consequences
identified for bi-composites apply to reticulated media: the effective elasticity is
conventional while the effective density is non-conventional. This relies on the
fact that, in the momentum balance equation the "flux" is the stress, which is not
influenced by the inner resonance effect, while the inner resonance effect is comprised
in the source term of inertial nature. This leads to infer that, in the same framework,
to obtain the reverse situation, and particularly non-conventional stiffness, one should
consider phenomena governed by a balance equation such that the elastic effect
appears as a source term instead of a flux. This is the case in acoustics of porous
media where the flux of mass is balanced by the fluid compressibility. This topic is
investigated in the next section.

6.4 Inner Resonance in Poro-Acoustics

The linear acoustics in homogeneous rigid porous media of porosity φ is classically
described by the mass balance equation of the gas and the constitutive equation
governing the gas flow, namely the dynamic Darcy’s law (Auriault, 1980; Smeulders
et al, 1992). This formulation applies in a frequency range such that the wavelength
is significantly larger than the characteristic pore size. In harmonic regime at angular
frequency ω , the set of differential equations reads (with the convention that each
variable is multiplied by exp(+iωt)):⎧⎪⎪⎨⎪⎪⎩

div(vvv) =−iω
φ
β

p,

vvv =−KKK (ω)

η
·∇∇∇p

(6.41)

where p is the acoustic pressure perturbation around the equilibrium pressure Pe, and
vvv is the mean gas flux, i.e., following the usual convention, the flux averaged over the
elementary representative volume (the flux averaged over the volume of the pores
reads vvv/φ ). By simplicity we assume that the thermal effects at the pores scale can
be disregarded so that the wave propagation occurs in adiabatic regime. Thus the gas
bulk modulus β (compressibility β−1) reads β = γPe. This simplifying assumption
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can be removed by introducing a complex frequency dependent coefficient γ̃(ω)
varying from the isothermal value γ̃(0) = 1 at low frequency to the adiabatic value γ
at higher frequencies, see Lafarge et al (1997). The gas viscosity is η and KKK (ω) is
the frequency dependent dynamic permeability tensor. At low frequencies, the flow
in the pores is driven by the viscosity, then

KKK (ω) →
ω→0

κκκ

where the real-valued intrinsic permeability κκκ is of the order of magnitude of
O((poressize)2). At high frequencies, the flow is driven by the inertia, then

ηφKKK −1(ω) →
ω→∞

iωρeααα∞

where ρe is the gas density at equilibrium and ααα∞ is the real-valued high frequency
limit of the tortuosity tensor whose order of magnitude is O(1). The two regimes are
delimited by the Biot transition frequency ωb for which the low frequency viscous
component within the balance of momentum equals the inertial component, so that

ωb =
ηφ

|κκκ|ρe|ααα∞|
Despite the differences in the conservative and dissipative phenomena we can

highlight the formal similarity with the elastic case (6.8a)-(6.8b). The analogous
variables and parameters in elastic/porous problems are: vectorial solid elastic mo-
tion/scalar gas pressure, i.e uuu→−p ; tensorial elastic stress/vectorial gas flux, σσσ → vvv
; solid density /gas compressibility ρ → φβ−1 ; fourth rank elastic tensor/second
rank tensor related to permeability aaa→ iωKKK /η . The fact that the "force-type" and
"kinematic-type" variables play an inverse role in the two cases, results from the
different nature of the balance equation that expresses the balance of momentum (for
elastic media) or the mass balance (for porous media).

Similarly to elastic composites, the description (6.41) can be recast in terms of
mass flux v instead of stress and, instead of momentum density, condensation b
(following the Lafarge and Nemati, 2013, formulation) as follows:

divx(vvv) = iωb with
(

vvv
b

)
= -

⎛⎜⎜⎝
KKK (ω)

η
,0

0 ,
φ
β

⎞⎟⎟⎠ (·∇x p
p

)

Combining the mass balance and the dynamic Darcy law, and eliminating the flux
leads to the wave equation satisfied by the pressure:

div
(
−K (ω)K (ω)K (ω)

η
·∇∇∇p
)
+ iω

φ
β

p = 0

Then the acoustic wavelength is
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Λ(ω) = O

(
2π
ω

√
|iωKKK (ω)|β

ηφ

)

Consequently, for ω � ωb the wave is of diffusion type and

Λ ≈ 2π

√
|κκκκκκκκκ|β
ωηφ

while for ω � ωc the wave is propagative and

Λ ≈ 2π
ω

√
β

|ααα∞|ρe

We investigate hereafter two types of inner resonant rigid porous media saturated
by air. First, we analyze double porosity media, i.e. a periodic bi-composite porous
medium with a large contrast in permeability (instead of elastic stiffness) of the
constituents (Auriault and Boutin, 1994; Boutin et al, 1998; Hornung and Showalter,
1990; Venegas and Umnova, 2011). This case leads to a local dynamic state governed
by parabolic equations. Second, porous media with embedded Helmholtz resonators
are examined. In that case the required effect is introduced by a geometrical contrast
coming from the resonator morphology. This configuration enables to reach a local
dynamic state governed by hyperbolic equations.

6.4.1 Double Porosity Media: Inner Resonance by High
Permeability Contrast

Consider a double porosity medium, i.e., a periodic bi-porous composite analogous
to the elastic bi-composites studied in Subsect. 6.3.2. By simplicity we keep the
same notations: the C -constituent of porosity φc and the R-constituent of porosity φr
occupy respectively the domains Ωc and Ωr interfaced by Γ . They present uniform
but highly contrasted permeability tensors KKK c and KKK r respectively, and are saturated
by the same gas of identical viscosity, density and compressibility at equilibrium,
η , ρe and γPe, respectively, see Fig. 6.6. We keep also the convention that the C -
constituent conveys the long wavelength and then undergoes a local quasi-static
regime, while the R-constituent experiences a local dynamic regime. Therefore, the
C -constituent must be connected and much more permeable than the connected or
dispersed R-constituent, i.e. O(κκκκκκκκκc)� O(κκκκκκκκκ r).

In co-dynamics regime the wavelength Λc in C -constituent is large with respect
to �. As a consequence of the permeability contrast, the mass flux is mainly carried
by the C -constituent. Thus the order of magnitude of the macroscopic length L is
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Fig. 6.6: Double porosity media

L = O(
Λc

2π
) =

1
ω

√
ω|KKK c|β
ηφc

� � i.e.
ω2

β
=

ω|KKK c|
ηφcL2

while, the requirement of a dynamic regime in the R-constituent at the period scale
implies that

Λr

2π
=

1
ω

√
ω|KKK r|β
ηφr

= O(�) i.e.
ω2

β
=

ω|KKK r|
ηφr�2 (6.42)

Consequently a co-dynamics regime can be reached when the contrast of permeability
tensors is:

|KKK r|
|KKK c|

φc

φr
= O(

�2

L2 ) = ε2� 1 (6.43)

Note that as the gas compressibility is identical in both constituents the condition
(6.43) involves the permeability ratio only. Hence, in poro-acoustics there is no anal-
ogous of the case of significant density contrast encountered in elastic composites.

If the Darcy flow in both constituents is in inertial regime (i.e. ω > ωbc and
ω > ωbr) the condition (6.43) simplifies into

|ααααααααα r|
|αααααααααc| = ε−2� 1

which is impossible to reach since the tortuosity |α∞| is a dimensionless factor O(1).
However, (6.43) can be fulfilled provided that the Darcy flow in the low permeability
R-constituent is in viscous regime, i.e. ω � ωbr. Then, we will consider in the
following that KKK r = κκκ r(1+O(ε)), so that, at the leading order, we can approximate
KKK r by the real intrinsic permeability κκκ r. Consequently, the frequency range of
interest as defined by (6.42) is
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ω = O(ωr), ωr =
β |κκκ r|
η�2

In compliance with the continuity condition on Γ , the pressure in both constituents
are of the same order of magnitude pc = O(pr). In accordance with the permeability
contrast (6.43), the overall permeability is dominated by that of the C -constituent
which is taken as the reference value. Then, compared to this reference value, the
permeability of the R-constituent is rescaled as ε2KKK r. Thus, taking L as the char-
acteristic length, the re-scaled governing equations accounting for the permeability
contrast take the following form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

div(
KKK c

η
·∇∇∇pc) = iω

φc

β
pc in Ωc,

div(ε2KKK r

η
·∇∇∇pr) = iω

φr

β
pr in Ωr,

(
KKK c

η
·∇∇∇pc− ε2KKK r

η
·∇∇∇pr) ·nnn = 0 on Γ ,

pr− pc = 0 on Γ ,

pr and pc Ω −periodic

(6.44)

6.4.1.1 Homogenized Behavior

The homogenization process of this differential set is close to the one developed in
elasticity.

• At the dominant order, the C -constituent is governed by a static balance equation
with free boundary condition. Therefore, consistently with a local quasi static
regime of the C -constituent, at the dominant order, the pressure is uniform,

p(0)c = P(0)(xxx)

• The following order leads to a classic local problem of conduction in the C -
constituent with zero flux boundary conditions:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

divy

(
KKK c

η
· (∇∇∇y p(1)c +∇xP(0))

)
= 0 in Ωc,

KKK c

η
·
(

∇y p(1)c +∇∇∇xP(0)
)
·nnn = 0 on Γ ,

p(1)c Ω −periodic

(6.45)

Hence, at this order, the C -constituent behaves as if the R-constituent were
impervious. By linearity we have
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p(1)c = θθθ(yyy) ·∇∇∇xP(0) +P(1)(xxx),

vvv(0)c =−
(

KKK c

η
·∇∇∇yθθθ +

KKK c

η

)
.∇∇∇xP(0)

(6.46)

where fields θθθ q(yyy) are the real valued particular solutions for unit pressure gradi-
ent, i.e. ∇∇∇xP(0)

i = δiq.
• At the next order, the balance equation and the boundary conditions concerning

the C -constituent write⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
divy(vvv

(1)
c )+divx(vvv

(0)
c ) =−iω

φc

β
P(0) in Ωc,

vvv(1)c ·nnn =−κκκ r

η
·∇∇∇y p(0)r ·nnn on Γ ,

vvv(1)c Ω −periodic

(6.47)

Integrating over Ωc, and using the usual integral transformation and the Ω -
periodicity yields

divx

(
−KKKC

η
·∇∇∇xP(0)

)
=−iω

φc

β
|Ωc|
|Ω | P

(0)− 1
|Ω |

∫
Γ

(
κκκ r

η
·∇∇∇y p(0)r ) ·nnn dΓ (6.48)

where the effective dynamic permeability KKKc is independent of the (weak) perme-
ability of the R-constituent, which, at this order, appears as impervious

KKKC = 〈KKK c ·∇∇∇y(θθθ)+KKK c〉c
• To express the boundary flux term in (6.48), we focus now on the leading order

problem that governs the response of the R-constituent⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
divy(

κκκr

η
.∇∇∇y p(0)r ) = iω

φr

β
p(0)r in Ωr,

p(0)r = P(0)(xxx) on Γ ,

p(0)r Ω −periodic

(6.49)

that, as expected, describes a local dynamic regime with Dirichlet condition.
However, since κκκ r is real valued, the dynamic phenomena is of parabolic type.
Indeed, the mass transfer ruled by the viscous permeability is balanced by the gas
compressibility. This induces a transient diffusion of pressure in the R-constituent.
By linearity, the pressure p(0)r takes the form

p(0)r = P(0) +ζ (yyy,ω)P(0)

the pressure field 1+ ζ (yyy,ω) is the real particular solution for unit imposed
pressure, i.e. P(0) = 1, and is therefore the solution of:
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divy(

κκκr

η
·∇∇∇yζ ) = iω

φr

β
(1+ζ ) in Ωr,

ζ = 0 on Γ ,

ζ Ω −periodic

(6.50)

Let us identify the features of the function ζ . From (6.50) the low and high
frequencies limits read

ζ →
ω→0

0 and ζ →
ω→∞

−1

The frequency dependence of field ζ is established by considering the eigen value
problem associated to (6.50)⎧⎪⎪⎨⎪⎪⎩

divy(
κκκ r

η
·∇∇∇yψ) =−λψ in Ωr

ψ = 0 on Γ
ψ Ω −periodic

(6.51)

The permeability tensor κκκ r being symmetric and coercive, the problem (6.51)
presents a discrete series of positive eigenvalues and corresponding orthonormal
eigenmodes {λJ ,ψJ} such that 〈ψJ .ψK〉r = δJK . Then, the expressions of ζ and
〈ζ 〉r are derived by modal decomposition and read

ζ (yyy,ω) =
∞

∑
J=1

ψψψJ⊗〈ψψψJ〉r
ωJ

iω
−1

; 〈ζζζ 〉r =
∞

∑
J=1

〈ψψψJ〉r⊗〈ψψψJ〉r
ωJ

iω
−1

; ωJ =
λJβ
φr

Hence, 〈ζ 〉r takes complex values and varies continuously without poles nor zero
values (for ω > 0), from 〈ζ (0)〉r = 0 at ω = 0 to 〈ζ (∞)〉r =−1 when ω → ∞.

• Finally, following the same procedure as for elastic media, we derive the macro-
scopic description:⎧⎪⎪⎪⎨⎪⎪⎪⎩

divx(
KKKC

η
·∇∇∇xP(0)) = iω

P(0)

B(ω)
,

1
B(ω)

=
1
β

(
φc|Ωc|+φr|Ωr|

|Ω | + 〈ζ 〉r
) (6.52)

The description combines conventional dynamic Darcy flow, characterized by the
complex permeability tensor KKKC of the material made of the C -constituent and
impervious R-constituent, and by a non conventional compressibility associated
to the frequency dependent density bulk modulus B(ω). The formal similarity
with elastic composites (6.24), is obvious when the description is rewritten in the
form of conservation equation, involving the mean mass flux 〈vvv(0)〉 and the mean
condensation 〈b(0)〉:
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divx(〈v(0)〉) = iω〈b(0)〉 with

(
〈vvv(0)〉
〈b(0)〉

)
=−

⎛⎜⎜⎝
KKKC

η
0

0
1

B(ω)

⎞⎟⎟⎠
(
·∇xP(0)

P(0)

)

(6.53)

6.4.1.2 Comments and Generalization to Other Diffusion Phenomena

As suggested by the elasto-dynamic/poro-acoustic analogy, instead of obtaining a
frequency dependent density, one obtains here a frequency dependent bulk modulus.
However, the different hyperbolic or parabolic nature of the local problems leads to
different physical effects, meanwhile the similarity in the formulations, see (6.23)
and (6.52). As further similarities, note (i) that conversely to standard poro-acoustic
models, the pressure P(0) (that plays the role of the displacement in elastic compos-
ites) is not the mean pressure of the cell, but that prevailing in the C -constituent,
and (ii) that the description (6.52) relies also on the fact that the flux pulsed by the
R-constituent is of one order smaller than that carried by the C -constituent.

The effective bulk modulus B(ω), as 〈ζ (ω)〉r, is complex valued and varies
continuously without singularity according to the frequency. Due to the dissipative
character of the "parabolic resonance", instead of the conservative character of hyper-
bolic resonance, there is no resonance-singularity for a series of specific frequencies,
but a wide-band effect centered around the frequency of the fundamental mode

ω1 ≈ ωr = O(
β |κκκ r|
η�2 )

Consequently no band-gap occurs, yet a significant increase of dissipation appears
around ωr. This latter frequency is tunable by playing either on the permeability
value and/or on the size of the R-constituent. Since the local problem (6.50) is scalar,
the determination of the effective complex modulus can be achieved analytically for
simple geometries. For example, if the R-constituent is a sphere of diameter R made
of an isotropic media of intrinsic permeability κr one has:

〈ζ (ω)〉r = 1+3
(

1
iω∗
− coth(

√
iω∗)√

iω∗

)
; ω∗ =

ω
ωr

with ωr =
βκr

ηR2

Assuming in addition that the flow within the C -constituent is dominated by
viscosity, then KKK is real. Therefore, transposed in the time domain, the macroscopic
description becomes

divx(
KKKC

η
·∇∇∇xP(0)) =

1
β

(
φc|Ωc|+φr|Ωr|

|Ω |
∂P(0)

∂ t
+ 〈ζ 〉r ∗ ∂P(0)

∂ t

)
(6.54)

The convolution product introduces a memory effect. As in elastic composites, the
convolution can be "replaced" by the introduction of an infinite set of microscopic
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descriptors of the medium {bJ(x, t)} associated to the modal decomposition of ζ .
The equivalent coupled linear differential set of (6.52) enabling the resolution in
parallel of the time/space evolution of the macroscopic pressure P(0)(x, t) and of the
microscopic descriptors bJ(x, t) reads:⎧⎪⎪⎪⎨⎪⎪⎪⎩

divx(
KKKC

η
·∇∇∇xP(0)) =

1
β

(
φc|Ωc|+φr|Ωr|

|Ω |
∂P(0)

∂ t
+

∞

∑
J=1

∂bJ

∂ t
〈ψJ〉r

)
,

bJωJ +
∂bJ

∂ t
= 〈∂P(0)

∂ t
.ψJ〉r

(6.55)

The parabolic inner-resonance description (6.52) has been confirmed experimentally
(Olny and Boutin, 2003): measurements realized on double porosity materials show
the high absorption performance of such materials and the tunability of the frequency
range of high dissipation.

In the poro-acoustic context a co-dynamic regime with anti-resonance cannot be
reached for two reasons: firstly, as the gas is identical in the two pores networks,
no compressibility contrast can be introduced, secondly, the complex term 〈1+ζ 〉r
never vanishes whatever the frequency is. Similar developments and outcomes can
be obtained for other dissipative phenomena governed by parabolic equations. For
instance, the same conclusions were established more than 30 years ago in Auriault
(1983) dealing with double conductivity in thermal transfer. In that case the physical
analogs of the pressure, the mass flux, the permeability and the compressibility
become respectively the temperature, the heat flux, the conductivity and the specific
volume heat capacity (in standard notation ρcp). Then the effective double conduc-
tivity media present a complex frequency dependent specific volume heat capacity,
associated to a non uniform temperature field in the low conducting R-constituent.
One may also mention molecular diffusion in double porosity media that leads to
Non-Fickean diffusion process (Auriault and Lewandowska, 1995), or situations
mixing diffusion and mass transfer.

6.4.2 Embedded Resonators in Porous Media: Inner Resonance by
Geometrical Contrast

We consider in this section a bi-composite porous medium in which the R-constituent
is governed by an elasto-inertial dynamics of hyperbolic nature. To realize this, one
may think about introducing in the pores matrix cavities significantly larger than the
pores size. However, the resonance of sufficiently regular cavities occurs when the
acoustic wavelength is of the order of magnitude of the size of the cavity. This is not
compatible with a co-dynamic regime since the acoustic wavelengths in the matrix
and in the resonating cavity would be of the same order. To overcome this difficulty,
we can modify the resonance of the cavity by introducing a geometrical contrast in
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its morphology. This is performed by considering Helmholtz resonators, periodically
embedded in the porous C -constituent (Boutin, 2013), see Fig. 6.7.

6.4.2.1 Helmholtz Resonator

An Helmholtz resonator Ωr is made of a ’chamber’ with rigid and impervious wall
connected to a constricted duct Ω ′ of length �′ = O(�) which is open toward the
outer porous medium. This specific morphology presents a geometrical contrast
(Fig. 6.7) between the section |s| of the duct and the one of the chamber whose order
is O(�2). As a consequence, a particular dynamic regime occurs where the mass and
stiffness effects are uncoupled since the inertia is localized in the duct in which the
mass of the gas moves almost as a rigid body, while the stiffness is localized in the
chamber where the gas is almost uniformly compressed. This situation corresponds
to a spring-mass system and departs significantly from standard resonances where
the mass and stiffness are distributed in the whole cavity.

The chamber spring k and duct mass m are straightforwardly given by
k = β |s|2/|Ωr| and m = ρe|Ω ′|. Hence, the eigenfrequency f0 = ω0/2π of the
resonator reads (Ce =

√
β/ρe is the sound velocity in air):

ω0 =

√
k
m

=
Ce

δ
; δ =

√|Ωr||Ω ′|
|s| = �O(

�√|s| )
Since |s|/�2 � 1, then δ � �. Consequently, the resonance occurs at a fre-

quency much lower than the diffraction frequency of the periodic medium, namely
ω0 = Ce/δ � ωd = O(Ce/�). Note that this latter estimate of ωd assumes that the
flow regime in the porous matrix is dominated by inertia and thus the sound celerity is
of the order of Ce/

√αc∞ = O(Ce). In other words, at the Helmholtz eigenfrequency,
the reduced wavelength in the porous matrix is Λ/(2π) = O(Ce/ω0) = O(δ )� �
hence, both requirements of scale separation and co-dynamics regime are fulfilled.

The classic undamped response (disregarding the viscous dissipation on the duct)
of an Helmholtz resonator to an external harmonic perturbation of pressure P, is
immediately derived from the following balance equation of the duct mass undergoing

Fig. 6.7 Porous medium with
a periodic array of embedded
Helmholtz resonators
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a rigid body motion ur,
mω2ur− kur = Ps

Thus, introducing the above mentioned expressions of k and m the outgoing flux
induced by the external pressure P reads

qr(P) = iωur|s|=−iω
P
β

|Ωr|
1− (ω/ω0)2 (6.56)

6.4.2.2 Homogenized Behavior

As previously, the C -constituent of porosity φc is described by the classic poro-
acoustic formulation. Now, to account for the geometrical contrast in the asymptotic
expansions, we specify that

|s|= O(ε�2)

The boundary condition at the interface Γ , is split into

i) an impervious condition on Γ − s corresponding to the wall of the Helmholtz
resonator, and

ii) the conditions of continuity of pressure and of flux on the aperture s.

This latter condition implies that O(|vr||s|) = O(|vc||s|) and thus, accounting for the
geometrical contrast, the flux pulsed by the resonator is of one order smaller than the
flux carried through the C -constituent, since O(vr||s/|vc|�2) = O(|s|/�2) = ε � 1.
Consistently, qr must be rescaled as εqr(pc). This analysis leads to the following
rescaled differential set⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

div(
KKK c

η
·∇∇∇pc) = iω

φc

β
pc in Ωc

(
KKK c

η
·∇∇∇pc) ·nnnc = 0 on Γ − s

(
KKK c

η
·∇∇∇pc) ·nnnc =−εvr(pc); |s|vr = qr(pc) on s

pc Ω −periodic

(6.57)

When processing homogenization, since the flux brought by the resonator is of one
order smaller than the one carried by the C -constituent, the first and second problems
in the C -constituent remain unchanged compared to the double porosity case. The
difference arises on the global mass balance, only, that takes now the form

divx(
KKKC

η
·∇∇∇xP(0)) = iω

|Ωc|φc

|Ω |
P(0)

β
− 1
|Ω |

∫
s

vvvc ·nnnc dΓ

and, according to the flux continuity the last integral equals −qr(pc). Consequently,
reporting the expression (6.56) of the pulsed flux, the macroscopic description writes:
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⎧⎪⎪⎪⎨⎪⎪⎪⎩
divx

(
KKKC

η
·∇∇∇xP(0)

)
= iω

P(0)

B̂(ω)
,

1

B̂(ω)
=

1
β

( |Ωc|φc

|Ω | +
|Ωr|
|Ω |

1
1− (ω/ω0)2

) (6.58)

The description involves the same conventional dynamic Darcy flow, than that ob-
tained in the double porosity case (for the same geometry and parameters of the
C -constituent), but presents a non conventional frequency dependent compressibility.
Formally, this is the same description as (6.53) except that the effective modulus
B(ω) is now replaced by B̂(ω).

6.4.2.3 Comments

Around resonance, the resonator brings a negative contribution to the effective bulk
modulus B̂(ω). Then B̂(ω) is negative in a broad "atypical band" [ω0,ω∗0 ]⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

B̂(ω0) = 0 ; B̂(ω∗0±) =±∞,

B̂(ω)≤ 0 for ω0 ≤ ω ≤ ω∗0 = ω0

√
1+

|Ωr|
|Ωc|φc

,

B̂(ω)≥ 0 for ω ≤ ω0 and ω ≥ ω∗0

(6.59)

Hence a broad band gap along with strongly dispersed waves occurs, and is tunable
with the parameters of the porous matrix and the resonators. As for the elastic case,
the local hyperbolic problem introduces an unbounded effective parameter that takes
real positive or negative values. However, as the material is governed by a mass
balance, the inner resonance effect induces an unconventional effective bulk modulus.
This latter presents a single pole due to the single eigenfrequency of the resonator.
Indeed the higher eigenfrequencies of the resonator are related to the modes of the
chamber, which, as previously explained, do not respect the scale separation.

The "co-dynamics" condition is naturally fulfilled when ω0 > ωbc, i.e. when the
flow in the C -constituent is driven by inertia at the pore scale (much smaller than �).
From the expressions of ω0 and ωbc this situation arises when the C -constituent is
sufficiently permeable, as defined by:

Kcαc∞

φc
>

η
ρeCe δ

where Kc stands for the modulus of KcKcKc. Conversely, when ω0 < ωbc, which means
that the flow in the C -constituent is in a viscous regime, then "co-dynamics" condition
is rather restrictive. Indeed, in this situation the scale separation must also be satisfied,
that is Λc(ω0)/(2π)� �. Hence, in this case, we have the two requirements:
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Kcαc∞

φc
<

η
ρeCe δ ;

√
KcPe/(ω0ηφc)� �

that can be rewritten as:

αc∞
�

δ
� Kcαc∞

φc

ρeCe

η
1
�
<

δ
�

and as αc∞ = O(1), �/δ =
√|Σ |/�= O(

√
ε) then

O(
√
ε)� Kcαc∞

�φr

ρeCe

η
< O(

1√
ε
)

and therefore we must necessarily have

Kcαc∞

�φr

ρeCe

η
= O(1)

Consequently, both viscous or inertial regimes in the C -constituent lead to the
conclusion that "co-dynamics" situations can be reached only when:

Kcαc∞

φr
≥ η

ρeCe O(�) i.e., ω0/ωbc ≥ O(�/δ )

which means that the Darcy flow in the porous C -constituent may be in inertial or
visco-inertial regime. Conversely, if the pores network is too resistive, i.e. when the
Helmholtz resonance belongs to the almost purely viscous regime (ω0/ωbc � 1),
then this outside resistance avoids the resonance phenomenon, and consequently the
co-dynamics regime is not possible.

Several other morphological options can lead to inner resonance. Whatever the
case, the resonator design should be such that the resonating effect induces a small
flux (on average over the period) compared to the macroscopic flux. For instance,
instead of having a single type of oscillator, the period may contain several different
oscillators, or additional impervious inclusions (of the same magnitude as the size of
the resonator). Instead of the spring-mass resonance of Helmholtz resonators, one
may also consider quarter wavelength resonators. In a frequency range such that the
length lr of a resonating tube of small section s matches the quarter wavelength of
the acoustic wave, a resonance occurs. Nevertheless, to ensure the scale separation
necessary for the co-dynamic regime, the size of the resonating domain should be
much smaller than the wavelength. This implies to rearrange the tube in a compact
domain Ωr of characteristic size �, for instance by wrapping the tube. In that case the
flux pulsed by the resonator reads

qr(P) = iωP
|s|
ρeCe tan(

ωlr
Ce )

and the compressibility can present several poles at the eigenmodes frequencies.
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Negative bulk modulus has been actually observed experimentally, either in a tube
connected to a 1D array of resonators (Fang et al, 2006) or in 3D materials made
of a packing of resonators, each of them being made of an impervious spherical
shell drilled and connected to a constricted tube (Boutin and Becot, 2015). Note also
that in acoustics the membrane based meta-materials e.g. Naify et al (2012); Yang
et al (2008) leads to unconventional densities, as they are governed by momentum
balance.

To sum up it is clear that for fluid in porous media a non conventional bulk
modulus can appear. However, these examples do not disclose the possibility of
having non conventional stiffness of a solid material by inner resonance effect. One
of the possible way to reach this situation is presented in the next section.

6.5 Inner Resonance in Poroelastic Media: Coupling Effect

Poro-elastic media are governed by the Biot model (Biot, 1956). This latter involves
the two types of balance, namely of momentum and of mass, that couple the dis-
placements and the pressure. For this reason, one may expect that an inner resonance
phenomenon related to one type of balance, entails a non conventional parameter on
the other type of balance also. This idea is illustrated below in the case of double
porosity poro-elastic media.

6.5.1 Double Porosity Poro-Elastic Media - Problem Statement

We investigate the behavior of a fluid-saturated deformable elastic double porosity
medium, see Fig. 6.8. The medium is periodic of period Ω = Ωb ∪Ωf. Ωb is the
domain occupied by the fluid-saturated microporous poroelastic medium of porosity
φ (instead of being rigid as studied in Sect. 6.4), and Ωf is the pore space saturated
by the same fluid and presenting the porosity φf = |Ωf|/|Ω |. For simplicity, we focus
on a frequency range sufficiently low so that the flow regimes in the pores and the
micropores are dominated by the viscosity. This means that the permeabilities of
the two pores networks take the real values κκκb/η and κκκ f/η . Following the above
analysis on rigid double porosity media, we assume that the permeabilities are highly
contrasted, i.e., κκκb/κκκ f = O(ε2). Such media were studied in Auriault and Boutin
(1994) and we sumarize here below the approach based on reiterated homogenization
presented in Boutin and Royer (2015).

The microporous poroelastic medium is governed by the classical Biot model
(Biot, 1956). This latter consists in the momentum balance (6.60a), the poroelastic
constitutive law (6.60b), the conservation of fluid mass (6.60c) and the rescaled
Darcy’s law (6.60d), which read in harmonic regime (to lighten the notations the
variables in Ωb are not indexed)
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Fig. 6.8 A period Ω of double
porosity media representative
of the morphology of fissured
microporous medium

div(ΣΣΣ) =−ω2(1−φ)ρsuuu+ iωφρfvvv (6.60a)
ΣΣΣ = ccc : eee(uuu)−ααα p (6.60b)

div(qqq) = iω
(
−ααα : eee(uuu)− p

M

)
(6.60c)

qqq = φ(vvv− iωuuu) =−ε2 κκκ
η
·∇p (6.60d)

where in addition to the notations already introduced previously:

• ααα represents the symmetric and positive Biot coupling tensor. For isotropic media,
this tensor is diagonal and all its components are scalar and identical. They comply
with: φ ≤ α ≤ 1.

• 1/M is the Biot’s bulk modulus:

1
M

=
α−φ

Ks
+
φ
β
,

where Ks and β are the bulk modulus of elastic material forming the microporous
matrix and of the saturating fluid, respectively;

• uuu is the solid displacement, while vvv stands for the mean fluid velocity within the
volume of the micropores. Darcy’s flux is thus given by: qqq = φ(vvv− iωuuu);

• ΣΣΣ , σσσ = ccc : eee(uuu) and p represent the tensor of total stress, the tensor of effective
stress and the interstitial pressure, respectively; ccc is is the elastic tensor of the
drained porous media;

• ρs and ρf are the density of the solid and of the fluid, respectively.

In the fluid domain Ωf, the flow is governed by the Darcy law and the mass balance,
that read:
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qqqf = φf(vvvf− iωuuu) =−κκκ f

η
·∇pf, (6.61a)

div(qqqf) =−iω
pf

β
(6.61b)

On the interface, we express the continuity of normal stresses (6.62a), of pressures
(6.62b), and of the fluid mass fluxes (6.62c) as:

ΣΣΣ ·nnn = pppf ·nnn, (6.62a)
p = pf, (6.62b)

qqq ·nnn = φ(vvv− iωuuu) ·nnn = (vvvf− iωuuu) ·nnn = qqqf ·nnn (6.62c)

6.5.2 Homogenized Behavior

We do not present the homogenization procedure; the detailed developments can
be found in Boutin and Royer (2015). The leading order leads to an uniform solid
motion uuu(0) =UUU(xxx) of the solid and to an uniform pressure in the fluid domain
pf = Pf(xxx). Hence the Darcy law at the leading order reads

QQQf = φf(VVV f− iωUUU) =−κκκ f

η
·∇Pf

In the microporous domain, the first order problem takes the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

divdivdivy

(
ccc : (eeex(UUU)+eeey(uuu(1)))−ααα p(0)

)
= 0 in Ω(

ccc :
(

eeex(UUU)+eeey(uuu(1))
)
−ααα p(0)

)
·nnn =−Pfnnn on Γ

divy((
κκκb

η
) ·∇y p(0)) = iω(ααα :

(
eeex(UUU)+eeey(uuu(1))

)
+

1
M

p(0)) in Ω

p(0) = Pf on Γ

uuu(1) and p(0), Ω̂ −periodic

(6.63)

This differential set coupling variables uuu(1) and p(0) describes a non stationary
local regime forced by both the macro deformation of the solid matrix eeex(UUU) and the
pore pressure Pf. Due to the pressure/displacement coupling, the non-stationarity re-
sulting from the transient pressure diffusion in the microporous Biot matrix concerns
both variables uuu(1) and p(0). By linearity the local fields read:{

uuu(1) = ũuu+uuu(1)0 = (ξξξ 0(yyy)+ ξ̃ξξ (yyy,ω)) : eeex(UUU)− (ζζζ 0(yyy)+ ζ̃ζζ (yyy,ω))Pf,

p(0) = p̃+Pf = θ̃θθ(yyy,ω) : eeex(UUU)+(1− ϖ̃(yyy,ω))Pf

(6.64)
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In the above equations, the particular local fields are decomposed into their long
term parts (uuu(1)0 ,Pf), (i.e. when ω = 0, namely, ξξξ 0(yyy) and ζζζ 0(yyy)) and their transient

parts ((ũuu, p̃), namely, ξ̃ξξ (yyy,ω), ζ̃ζζ (yyy,ω), θ̃θθ(yyy,ω) and ϖ̃(yyy,ω). Note that the micropore
pressure is not uniform, except at both limits of zero frequency and of "infinite"
frequency. In this latter case, a boundary layer arises at the pore/micropore interface
Γ , which enables the sharp transition between both uniform pressure fields.

Finally, the macroscopic model is established from the momentum and mass
balances of the local second order problems in both domains. Integrating these
balance equations over each volume, and accounting for the boundary condition and
periodicity leads to the balance equations governing the double porosity medium:

• As for the momentum balance one obtains

divdivdivx(SSS) =−ω2(1−φf)((1−φ)ρs +φρf)UUU)+ iωφfρfVVV f

with
SSS =

1
Ω

∫
Ωb

ΣΣΣdΩ −φfPfIII

where ΣΣΣ = ccc :
(

eeex(UUU)+eeey(uuu(1))
)
−ααα p(0) is the total stress in the microporous

domain and where VVV f is the macroscopic fluid velocity.
Recall that uuu(1) and p(0) given by (6.64) are the frequency dependent solutions of
the pressure/displacement localization problem 6.63. Hence, the constitutive law
for the macroscopic total stress tensor reads:

SSS =CCC(ω) : eeex(UUU)−AAA(ω)Pf =
(

CCC0 +C̃CC(ω)
)

: eeex(UUU)−
(

AAA0 + ÃAA(ω)
)

Pf (6.65)

where the effective tensors are decomposed into their long term and transient con-
tribution. The homogenized tensors CCC(ω),C̃CC(ω),ÃAA(ω) are obtained by integration
of the localization tensors appearing in Eq. 6.64.

• As for the mass balance

φfdivx(V f− iωUUU)− iω
(
φf(divx(UUU)+

Pf

β
)

+
1
|Ω |

∫
Ωb

(ααα : (eeey(uuu(1))+eeex(UUU))−divy(uuu(1))+
p(0)

M
)

⎞⎠dΩ (6.66)

Replacing uuu(1) and p(0) by their expressions (6.64), the macroscopic mass balance
reads:

φfdivx(V f− iωUUU) = iω
(
−AAA(ω) : eeex(UUU)− Pf

M (ω)

)
(6.67)

As above, the effective bulk stiffness M (ω) can be decomposed into its long term
and transient contributions.
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To sum up the double porosity poro-elastic medium is described by the following set⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

div(ΣΣΣ) =−ω2 ((1−φf)((1−φ)ρs +φρf)UUU)+ iωφfρfVVV f,

ΣΣΣ =CCC(ω) : eee(UUU)−AAA(ω)Pf,

div(QQQ) = iω
(
−AAA(ω) : eee(UUU)− Pf

M (ω)

)
,

QQQ = φ(VVV f− iωUUU) =−κκκ f

η
·∇Pf

(6.68)

6.5.3 Comments

This description is similar to a Biot description except that the effective parameters
CCC, AAA, M are now frequency dependent. Thus the macroscopic behavior is that of an
equivalent porous medium with viscoelastic skeleton, saturated by a viscoelastic fluid
(in compression). The permeability is that of the highly permeable fissure network,
and the density is the mean density of the medium. Consistently with the fact that
the inner resonance is associated to the mass balance, the bulk modulus M is non
conventional. Furthermore, the non conventional natures of the effective elastic tensor
CCC, and of the coupling tensor AAA, are directly inherited from the pressure/displacement
coupling. In fact the feature of parabolic inner-resonance are also observed on CCC and
AAA. Note the classical nature of the permeability and of the density resulting from
the fact that the inner resonance concerns the mass balance and not the momentum
balance.

As an illustrating example, consider a periodic bi-stratified media whose periodic
cell is made of an isotropic porous medium and a fluid layer of respective thickness
(1−φ)� and φ�. The effective stiffness modulus along the direction of the layers is
complex valued and reads (see Boutin and Royer, 2015, for the expressions of the
other effective coefficients):

C11
11 = (1−φ) 2μ

λ +2μ

(
2(λ +μ)+

2μ
λ +2μ

α2BF(ω∗)
)

; F(ω∗) = 1− tanh(
√

iω∗)√
iω∗

where

ω∗ = ω
(
(1−φ)�

2

)2 η
κκκbB

;
1
B
=

1
M

+
1

λ +2μ

and λ and μ are the Lamé coefficients of the porous medium. One may refer to
Boutin and Venegas (2016) for other geometries.

As thermo-elasticity is analogous to poro-elasticity, the same kind of phenomenon
would be observed in a thermoelastic matrix embedding a connected network of a
highly conductive material. Note also that in poro-acoustics a coupling mechanism
explains the complex component of the effective compressibility evoked in Sect. 6.4:
at the pores scale, the presence of the solid walls implies a thermal transfer within
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the gas undergoing the uniform pressure. As a consequence of the non-thermal equi-
librium, there is a phase shift between the mean temperature and the forced pressure.
Hence, through the state equation, a complex valued effective compressibility is
obtained.

6.6 Conclusions

The analysis of different physical systems shows that the inner resonance requires
a highly contrasted microstructure. This can be reached either by considering com-
posites with contrasted constituents or by specific morphologies with a "contrasted
geometry". Whatever the physics in consideration, the common principle for a co-
dynamics regime is that an internal dynamic phenomenon periodically or at least
regularly distributed in the whole medium is activated by a locally quasi-static
excitation. It results that at the local scale,

• a part of the period acts as the long wavelength conveyor and undergoes a quasi-
static regime, while

• an other part experiences a dynamic state.

This implies that the resonating part responds in a forced regime imposed by the
quasi-static part. Then, the effective constitutive law is determined by the static
part, while the resonating part acts as a source term in the balance equations. The
situation of "partial" non equilibrium local state results in a non conventional be-
havior characterized by frequency dependent constitutive parameters associated to
the transient term. Hence, when the macroscopic governing equation expresses a
momentum balance - respectively a mass balance - an atypical effective density
- respectively bulk modulus - appears. However, if the physics involves coupled
balance equations of both types, the inner resonance effect associated to a given type
of balance is reflected in the effective parameters of the other type of balance as a
consequence of the coupling. When the local dynamic problem is described by an
equation of hyperbolic type, the effective parameter of the transient term presents
poles and takes real positive or negative values that are not bonded in the vicinity of
the eigenfrequency of the locally resonating domain. Thus band gaps and a strong
dispersion exists at low frequencies (i.e. much lower that the diffraction frequency).
Conversely, when the dynamic problem is described by an equation of parabolic type,
the effective parameter varies continuously without poles, and takes complex values
of significant phase in the frequency range of the "eigenfrequencies". Thus no band
gaps arise but a strong dissipation and a dispersion appear at low frequencies. This
points out the key effect of the local dissipation in the description of phenomena in
materials involving co-dynamics state.

The possibility and the conditions for having a co-dynamic regime at anti-
resonance have also been proven and described. Despite its theoretical interest,
it seems however that the practical conditions to reach such a situation are not easy
to implement. This likely may reduce the potential applications.
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Note that as a scale separation exists, provided that the inner resonant domain are
identical, their periodic or statistical invariant distribution would lead to a similar
behavior. Compared to phononic crystals whose properties are strongly dependent
on their geometry, the fact that a perfect periodicity is not a mandatory requirement
is an interesting feature of inner-resonant materials in view of practical applications.

To conclude, the asymptotic approach enables to identify design rules in terms of
morphology and/or specificity of the mechanical parameters of the constituents for
the practical realization of microstructured materials, with tailored unconventional
properties that are seemingly impossible to reach with classical materials.
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Appendix: Elastic Bi-Composites: Moderate Stiffness Contrast

and High Density Contrast

Consider now that |aaar|/|aaac|= O(1) and ρr/ρc = O(ε−2). If the effective density is
dominated by the larger value ρr the scaled (xxx,yyy) governing equations are:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

div(aaac : eee(uuuc)) =−ω2ε2ρcuuuc in Ωc

div(aaar : eee(uuur)) =−ω2ρruuur in Ωr

(aaac : eee(uuuc)−aaar : eee(uuur)) ·nnn = 0 on Γ
uuur−uuuc = 0 on Γ

uuuc and uuur Ω −periodic

(6.69)

Using the same procedure as above it is easy to show that no inner resonance arises.
The description is the classical elasto-dynamic formulation, identical to (6.1) (where
the density of the C -constituent can be neglected).

Let us now examine the possibility of a less intuitive situation where the effective
density is dominated by the smaller value ρc. Then the scaled (xxx,yyy) governing
equations becomes⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

div(aaac : eee(uuuc)) =−ω2ρcuuuc in Ωc

div(aaar : eee(uuur)) =−ω2ε−2ρruuur in Ωr

(aaac : eee(uuuc)−aaar : eee(uuur)).nnn = 0 on Γ
uuur−uuuc = 0 on Γ

uuuc and uuur Ω −periodic

(6.70)

The local problem at the dominant order reads
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div(aaac : eee(uuu(0)c )) = 0 in Ωc

div(aaar : eee(uuu(0)r )) =−ω2ρruuu
(0)
r in Ωr

(aaac : eee(uuu(0)c )−aaar : eee(uuu(0)r )) ·nnn = 0 on Γ

uuu(0)r −uuu(0)c = 0 on Γ

uuu(0)c and uuu(0)r Ω −periodic

(6.71)

This corresponds to an elasto-dynamics regime of the cell where both constituents are
coupled. The solutions of this eigenvalue problem, are the periodic eigenmodes that
occur at the discrete frequency spectrum {ωJ} of system described by (6.71). Hence,
the whole field in the period varies at the local scale and therefore this situation does
not correspond to a "co-dynamic" regime.

Note finally that the intermediary scaling of both densities, namely ε−1ρr and ερc
is not admissible since it would leads to an uniform motion at the leading order, and
then to an unbalanced inertial term at the next order.
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Chapter 7

The Balance of Material Momentum Applied to

Water Waves

Manfred Braun

Abstract The balance of material momentum is applied to the motion of an ideal,
incompressible fluid with special emphasis on water waves. To this end, the fluid flow
is represented by its material or Lagrangian description. A variational approach using
Hamilton’s principle is employed, with the incompressibility condition incorporated
into the Lagrangian by means of a Lagrange multiplier. The balance of material
momentum is obtained in its standard form known from nonlinear elasticity, however
with the peculiarity that the dynamic Eshelby stress becomes hydrostatic and its
divergence reduces to the (negative) gradient of an “Eshelby pressure”. The balance
is applied to Gerstner’s nonlinear theory of water waves.

7.1 Introduction

Configurational Mechanics or Mechanics in Material Space is closely linked to the
Lagrangian description of deformation. This way of describing the deformation is
quite common in non-linear elasticity, where it offers several advantages over the
Eulerian description. For instance, the boundary conditions at a stress-free surface
are easily formulated at the undeformed body, while in the Eulerian description
one would need the deformed surface, which is already most of the solution of the
problem.

The use of material coordinates alone does not yet qualify an equation as “con-
figurational”. For instance, the Piola-Kirchhoff format of the balance of physical
momentum employs material coordinates, but the physical momentum lives in the
actual configuration. The balance of material momentum, in contrast, pertains to
quantities that reside totally in the material space. It is, therefore, a legitimate equation
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of configurational mechanics. This does not mean, of course, that the actual config-
uration has become obsolete. The vector of material momentum and the Eshelby
stress tensor, although quantities of the material space, depend on the deformation,
i.e., on the mapping from the material to the physical space.

Configurational mechanics as presented in the standard works of Maugin (1993,
2010); Kienzler and Herrmann (2000); Gurtin (2000) evolves from the theory of
elasticity with all its generalizations. Fluids are mentioned only briefly by Gurtin
(2000, page 45). This is related to the fact that fluid mechanics is the realm of
Eulerian description. In some situations it would be well-nigh impossible to employ
Lagrangian coordinates. Take, as an example, the flow around an airfoil. A Lagrangian
grid convected by the flow is so heavily distorted in the vicinity of the airfoil that
it cannot be used as a coordinate system. Also the boundary conditions pertain to
the contour in the actual configuration. For such kind of problems the material
description is not appropriate. A material reference is still needed though for the sole
reason that the material points in the fluid flow must be given an identity.

There are, however, examples of fluid flow, where the Lagrangian description can
be used. In a propagating surface wave the individual particles remain close to their
initial positions. Even for rather steep waves a Lagrangian grid convected by the flow
is not distorted too much and can well serve as a reference. It is quite interesting
that the very first nonlinear theory of water waves proposed already in 1802 by
Gerstner (1804) is based on a Lagrangian description. Gerstner’s wave, although an
exact solution of the equations of motion of an ideal fluid, has a severe drawback.
It is rotational, and the vorticity is just opposite to the circulatory motion of the
material particles. Apparently there is no simple way to overcome this deficiency.
The later approximate theories of irrotational waves, notably Stokes’ theory from
1847 (Stokes, 2009), use the Eulerian description.

Even though Gerstner’s theory could be considered as disqualified by its strange
vorticity behavior, it has kept its place in the textbooks on water waves, like Lamb
(1932); Le Méhauté (1976); Rahman (1995), since it represents, up to now, the only
closed-form solution of the nonlinear equations. In recent times, there is even a renais-
sance of the Lagrangian description of water waves, mainly initiated by Constantin
(2001), that has revived also the interest in Gerstner’s old theory (Clamond, 2007;
Kalisch, 2004; Stuhlmeier, 2015) and some extensions (Constantin and Monismith,
2017). Clamond (2007) has pointed out the advantages of the Lagrangian description,
especially for steep waves.

Once the Lagrangian description is used the way is paved for a configurational
theory of water waves. It is certainly simpler than the configurational mechanics
of elasticity due to the lack of a strain energy and might be considered as trivial.
Nonetheless it is worthwhile to study the balance of material momentum in ideal
fluids and apply it to Gerstner’s wave.

Following this introduction about the motivation of the paper the balance of phys-
ical momentum of an incompressible fluid will be derived from a Lagrange function.
There is one special point to be considered, namely that the reference configuration
may be chosen such that the fluid cannot attain it without violating the incompressibil-
ity condition. Actually this is the case in Gerstner’s theory. Incompressibility means
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only that the Jacobian of the deformation is time-independent, but not necessarily
unity. This has to be implemented into the Lagrangian.

The third section devoted to the balance of material momentum represents the
central part of the paper. Section 7.4 examines briefly the energy balance considered
as another material conservation law. Gerstner’s wave under the aspect of material
momentum is presented in Sect. 7.5. As already mentioned the reference configura-
tion in Gerstner’s serves only to label the material points and cannot be attained by
the fluid. In Sect. 7.6 it is shown how the reference configuration has to be changed
such that it could be attained by the incompressible fluid. The paper closes with some
concluding remarks.

Diverse notations are used throughout the paper, depending on the context. For
instance, the deformation gradient and the velocity vector are usually denoted by FFF
and vvv, respectively. If it is to be emphasized that these quantities are derivatives of the
mapping ϕϕϕ(ξξξ , t) they are written as ϕϕϕξξξ and ϕϕϕ t . When, finally, it comes to detailed
calculations the component representations Fi

α = xi
,α and vi = ẋi are preferred.

In the example of Gerstner’s wave, which is simply two-dimensional, coordinate
pairs (ξ ,η) and (x,y) are used rather than the coordinates with superscripts, ξα
and xi. Capitalized differential operators, like D/Dt or Grad, refer to the Lagrangian
description with ξξξ and t as independent variables. Otherwise the used notations
should be self-explanatory.

7.2 The Balance of Physical Momentum

The motion of the continuum is described as usual by a mapping

xxx = ϕϕϕ(ξξξ , t) (7.1)

that assigns the position xxx ∈B(t) in the actual configuration at time t, of a material
point specified by its position ξξξ ∈BR in the reference configuration. The governing
equations will involve the derivatives

ϕϕϕ t =
Dxxx
Dt

= vvv, ϕϕϕξξξ = Grad xxx = FFF , and ϕϕϕξξξ t =
DFFF
Dt

= Grad vvv, (7.2)

i.e., the velocity vector, the deformation gradient, and the material velocity gradient.
The mass densities in the actual and the reference configurations are related, in
general, by

ρ(ξξξ , t) =
ρR(ξξξ )
J(ξξξ , t)

, J = detFFF . (7.3)

The conservation of mass is reflected by the fact that the referential density ρR does
not depend on time, though it may depend on the material point ξξξ . In an isochoric
motion also the actual density ρ at a fixed material point does not change with time.
This means that, according to (7.3), the material time derivative of the Jacobian,
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DJ
Dt

=
∂ J
∂FFF
··· DFFF

Dt
= JFFF−T ··· DFFF

Dt
, (7.4)

vanishes. An incompressible material is characterized by the property that it can
undergo only isochoric motions. These motions are restricted by the constraint

h
(
ϕϕϕξξξ ,ϕϕϕξξξ t

)≡ DJ
Dt

= 0 (7.5)

that depends on the derivatives ϕϕϕξξξ and ϕϕϕξξξ t of the motion (7.1).
The kinetic energy density, per unit reference volume, is

T (ϕϕϕ t ;ξξξ ) =
1
2
ρR(ξξξ )v2. (7.6)

Since there is no strain energy in an incompressible fluid, the only potential energy is
the external gravity potential. Its density, again per unit reference volume, is

U (ϕϕϕ;ξξξ ) =−ρR(ξξξ )ggg ··· xxx. (7.7)

If there were no constraint, the Lagrangian would be simply the difference T −U
of the kinetic and potential energy densities. To incorporate the incompressibility
constraint the Lagrangian is enhanced by the constraint function (7.5) with a Lagrange
multiplier λ . Thus the Lagrangian density becomes

L = T −U +λh =
1
2
ρR(ξξξ )vvv ··· vvv+ρR(ξξξ )ggg ··· xxx+λJFFF−T ··· DFFF

Dt
. (7.8)

It is a function
L = L

(
ϕϕϕ,ϕϕϕ t ,ϕϕϕξξξ ,ϕϕϕξξξ t ,λ ;ξξξ

)
(7.9)

that depends on the motion ϕϕϕ(ξξξ , t) and its derivatives, on the Lagrange multiplier λ ,
and, via the non-uniform density, also explicitly on the material point ξξξ .

Hamilton’s principle states that the action integral

A =

t1∫
t0

∫
VR

L
(
ϕϕϕ,ϕϕϕ t ,ϕϕϕξξξ ,ϕϕϕξξξ t ,λ ;ξξξ

)
dVRdt (7.10)

taken over a fixed volume VR in the reference configuration BR and a fixed time
interval [t0, t1], is stationary with respect to arbitrary variations δϕϕϕ and δλ of the
motion and the Lagrange multiplier. Necessary conditions are the corresponding
Euler-Lagrange equations

δL

δxi ≡
∂L

∂xi −Dt
∂L

∂ ẋi −Dα
∂L

∂xi
,α

+DtDα
∂L

∂ ẋi
,α

!
= 0 and

δL

δλ
≡ ∂L

∂λ
!
= 0,

(7.11)
where Dt and Dα denote the total derivatives with respect to the time t and the
material coordinate ξα , respectively. The second, scalar equation just recovers the
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incompressibility constraint (7.5), while the first equation reveals the balance of
physical momentum. Now the special form (7.8) of the Lagrangian has to be inserted.
The two last terms are a little bit intricate to form. The details are worked out in the
Appendix. Altogether one obtains the vectorial equation

ρR
Dvvv
Dt

= JFFF−TGrad
Dλ
Dt

+ρRggg, (7.12)

which is the Lagrangian form of the balance of physical momentum. It has to be
complemented by the equations

DρR

Dt
= 0 and

DJ
Dt

= 0 (7.13)

reflecting the balance of mass and the condition of incompressibility.
The Eulerian form of the balance of momentum is obtained by transforming the

material gradient to the spatial gradient. Also the referential density is expressed via
(7.3) in the actual density. Thus the Eulerian version of the balance reads

ρ
Dvvv
Dt

= grad
Dλ
Dt

+ρggg. (7.14)

From this equation one sees that the Lagrange multiplier is related to the hydrostatic
pressure p by

Dλ
Dt

=−p. (7.15)

Otherwise the Eulerian form of the balance of momentum will not be used any further.
It should be noted that, despite incompressibility, the density ρ may depend on the
position xxx, as in the case of a density stratified fluid.

If one had assumed the incompressibility condition in the form J−1 = 0, rather
than DJ/Dt = 0, the result would have been the same, except that the Lagrange
multiplier of (J − 1) can be identified directly as −p. The balance of physical
momentum, even in the Lagrange description, does not depend on whether the
reference configuration can be attained by the fluid or not. For the present application
it is important to allow reference configurations that violate the incompressibility
condition and, therefore, cannot be attained by the fluid at any time. It is only the
actual configuration that must obey the incompressibility condition.

7.3 The Balance of Material Momentum

There are several ways to derive the balance of material momentum of a continuum
that admits a Lagrangian. The most straightforward procedure has been proposed
by Gołębiewska-Herrmann (1981). She simply takes the total derivative of the
Lagrangian with respect to the material coordinates and recasts the expression such
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that the functional derivative of the Lagrangian appears1. The remaining terms
constitute the balance of material momentum.

The approach has to be modified here to allow for the constraint of incompress-
ibility, which introduces a second derivative ϕϕϕξξξ t into the Lagrangian (7.9). The
Lagrangian depends on the material point ξξξ via all its arguments including possibly
an explicit dependence. Its total derivative with respect to the material coordinate ξα
is

DαL =
∂L

∂xi xi
,α +

∂L

∂ ẋi ẋi
,α +

∂L

∂xi
,β

xi
,βα +

∂L

∂ ẋi
,β

ẋi
,βα +

∂L

∂λ
λ,α +

∂L

∂ξα
. (7.16)

The second and third terms can be written, using the product rule, as

∂L

∂ ẋi ẋi
,α = Dt

(
∂L

∂ ẋi xi
,α

)
−Dt

∂L

∂ ẋi xi
,α ,

∂L

∂xi
,β

xi
,βα = Dβ

(
∂L

∂xi
,β

xi
,α

)
−Dβ

∂L

∂xi
,β

xi
,α .

(7.17)

Applying the product rule twice, the fourth term in (7.16) becomes

∂L

∂ ẋi
,β

ẋi
,αβ = Dβ

(
∂L

∂ ẋi
,β

ẋi
,α

)
−Dβ

∂L

∂ ẋi
,β

ẋi
,α =

= Dβ

(
∂L

∂ ẋi
,β

ẋi
,α

)
−Dt

(
Dβ

∂L

∂ ẋi
,β

xi
,α

)
+DtDβ

∂L

∂ ẋi
,β

xi
,α . (7.18)

Now these expressions are inserted into (7.16). The resulting terms are sorted such
that first all terms with the factor xi

,β are collected, then the single term with λ,α , next
those terms preceded by the operator Dt , then those preceded by the operator Dβ ,
and finally the partial derivative with respect to ξα . Thus one arrives at the equation

DαL =

(
∂L

∂xi −Dt
∂L

∂ ẋi −Dβ
∂L

∂xi
,β

+DtDβ
∂L

∂ ẋi
,β

)
xi
,α +

∂L

∂λ
λ,α +

+Dt

(
∂L

∂ ẋi xi
,α −Dβ

∂L

∂ ẋi
,β

xi
,α

)
+

+Dβ

(
∂L

∂xi
,β

xi
,α +

∂L

∂ ẋi
,β

ẋi
,α

)
+

∂L

∂ξα
. (7.19)

On the right-hand side the two functional derivatives (7.11) appear, the second being
simply a partial derivative. Moreover, the derivative DαL on the left-hand side can
be incorporated into the divergence term on the right-hand side. This leads to the
final equation

1 There is a misprint in Gołębiewska-Herrmann (1981): In the unnumbered equation preceding
Eq. (5) a plus sign has to be inserted before the square brackets and the factor φ j,i behind. The
subsequent equations are correct.
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0 =
δL

δxi xi
,α +

δL

δλ
λ,α +Dt

(
∂L

∂ ẋi xi
,α −Dβ

∂L

∂ ẋi
,β

xi
,α

)
+

+Dβ

(
∂L

∂xi
,β

xi
,α +

∂L

∂ ẋi
,β

ẋi
,α −L δβα

)
+

∂L

∂ξα
. (7.20)

If the Euler–Lagrange equations (7.11) are fulfilled, the two functional derivatives
in (7.20) vanish and the equation assumes the form of a balance law. In the ho-
mogeneous case, i.e., if the Lagrangian does not depend explicitly on the material
coordinate ξα , it becomes a strict conservation law. Homogeneity means here that
there is a symmetry with respect to translations in material space. The conservation
law is, therefore, just the one predicted by Noether’s theorem.

It would be straightforward to interpret the vector preceded by the time deriva-
tive Dt as the negative material momentum and the tensor preceded by the total
derivative Dβ as the dynamic Eshelby tensor. We shall postpone and even modify the
introduction of these quantities for reasons that become clear after the next step.

Up to this point, the Lagrangian in (7.20) has not be specified except that it
depends on the arguments listed in (7.9). Let us now take into account the special
form (7.8) of the Lagrangian. Then the derivatives occurring in (7.20) are

∂L

∂ ẋi = ρRẋi ,
∂L

∂xi
,β

= λJ
(
ξβ,iξ γ,k−ξβ,kξ γ,i

)
ẋk
,γ ,

∂L

∂ ẋi
,β

= λJξβ,i . (7.21)

The last of these derivatives appears twice in (7.20). In one case also its total derivative

Dβ
∂L

∂ ẋi
,β

= λ,β Jξβ,i +λJ
(
ξβ,iξ γ,k−ξβ,kξ γ,i

)
xk
,γβ = λ,β Jξβ,i (7.22)

is needed. This, in turn, is embedded into the expression

Dt

(
Dβ

∂L

∂ ẋi
,β

xi
,α

)
= Dt

(
λ,β Jξβ,ixi

,α

)
= Dt (λ,αJ) = Jλ̇,α =−Jp,α , (7.23)

where the incompressibility condition (7.5) has been used. Also the time derivative
of the Lagrange multiplier has been replaced by −p according to (7.15).

The Lagrange multiplier λ itself hasn’t any direct physical meaning, only its time
derivative can be interpreted as the negative hydrostatic pressure. Due to the special
structure of the Lagrangian the time derivative (7.23) has been reformulated such that
there is no differentiation with respect to time anymore. Therefore it is appropriate to
separate this expression from the other term whose time derivative has to be formed
in (7.20). We define the vector of material momentum by

pα =−∂L

∂ ẋi xi
,α =−ρRẋixi

,α or ppp=−ρRFFFTvvv. (7.24)

This means that the material momentum is the same as in the case of a Lagrangian
that does not depend on DFFF/Dt.
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The term (7.23) that has been omitted so far must now be considered in the
remaining parts of the equation. To this end it is written as

Jp,α = Dβ

(
Jpδβα

)
− pJ,α . (7.25)

The first term can be included in the divergence expression, while the second term
that reflects some inhomogeneity is combined with the other inhomogeneity term
∂L /∂ξα . Thus we define the dynamic Eshelby stress tensor by

Eα
β =

∂L

∂xi
,β

xi
,α +

∂L

∂ ẋi
,β

ẋi
,α +(Jp−L )δβα . (7.26)

Inserting the derivatives (7.21)2,3 and the Lagrangian (7.8) several expressions cancel
each other and the Eshelby tensor becomes

Eα
β =−

[
ρR

(
1
2

v2 +gixi
)
− Jp

]
δβα . (7.27)

It is proportional to the identity tensor.
What remains is the inhomogeneity force

fα =
∂L

∂ξα
− pJ,α =

(
1
2

v2 +gixi
)
ρR,α − pJ,α . (7.28)

If the reference density ρR is expressed via (7.3) in the actual density ρ , the inhomo-
geneity force can be decomposed into the two parts

fα =

(
1
2

v2 +gixi
)

Jρ,α +
[
ρ
(

1
2

v2 +gixi
)
− p
]

J,α . (7.29)

The first part represents the actual inhomogeneity of the fluid due to a prescribed
density stratification ρ(ξξξ ). The second part is not a property of the fluid, but arises
from the choice of the reference configuration. So even if the fluid is homogeneous
(ρ = const), the reference configuration may be chosen such that the Jacobian J
depends on the material point giving rise to an inhomogeneity force.

We have now obtained the balance of material momentum in its standard form

Dpα
Dt

= Eα
β
,β + fα or

Dppp

Dt
= DivEEE+fff (7.30)

with the material momentum vector ppp, the dynamic Eshelby tensor EEE, and the inho-
mogeneity force fff according to (7.24), (7.27), and (7.29), respectively. The special
structure of the Eshelby tensor (7.27) suggests to introduce a scalar “Eshelby pressure”

q= ρR

(
1
2

v2 +ggg ··· xxx
)
− Jp, (7.31)

such that EEE=−qIII. This simplifies the balance equation to



7 The Balance of Material Momentum Applied to Water Waves 143

Dppp

Dt
=−Grad q+fff, (7.32)

which resembles the Eulerian form of the balance of physical momentum. In the
case of vanishing inhomogeneity force fff, the balance becomes a strict conservation
law. The pressure p in an incompressible material is an independent function p(ξξξ , t)
that is not determined by the motion ϕϕϕ(ξξξ , t) of the medium. The Eshelby pressure
(7.31) depends on the motion and, additionally, on the pressure p. Therefore, it may
be considered as an independent function q(ξξξ , t) itself.

An alternate, though equivalent form of the balance of material momentum can
be stated by modifying its ingredients as follows: Instead of the quantities ppp, q, fff we
introduce

ppp=
1
J
ppp=−ρFFFTvvv, q=

q

J
= ρ
(

1
2

v2 +ggg ··· xxx
)
− p, fff=

(
1
2

v2 +ggg ··· xxx
)
∂ ρ
∂ξξξ

(7.33)

as modified material momentum, Eshelby pressure, and inhomogeneity force. Also
these quantities satisfy the balance equation

Dppp

Dt
=−Grad q+fff (7.34)

that can be interpreted as the balance of material momentum. When comparing this
new version to the original one, it might be considered a stylistic clash to define the
quantities ppp, q, fff in terms of the actual density ρ rather than the referential density ρR.
It should be emphasized, however, that the actual density is considered here as a
function ρ(ξξξ ), in the same way as the velocity vector is a function vvv(ξξξ , t), although
both live in the actual configuration. An advantage of the alternate version is the fact
that the formulas for the Eshelby pressure and the inhomogeneity force have become
simpler and, above all, that we have eliminated the fictitious inhomogeneity that is
brought in by the choice of the reference configuration. Unlike fff, the inhomogeneity
force fff indicates only the true inhomogeneity of the fluid, independently of the chosen
reference configuration.

The incompressibility condition (7.5) introduces a second derivative of the defor-
mation, namely ϕϕϕξξξ t , into the Lagrangian. This puts the incompressible fluid close
to a second-grade elastic material, where, of course, also the more important spatial
second gradient ϕϕϕξξξξξξ is included. Lazar and Anastassiadis (2007) have shown that
there are different ways of defining material momentum and Eshelby stress of a
second-grade material. The reason is that balance equations are always understood as
first-order differential equations containing a time derivative and a divergence term.
Higher-order derivatives must be included in either of them, and the assignment of
mixed derivatives is not always unique.

Lazar and Anastassiadis (2007) emphasize that the inclusion of the time derivative
of a tensor in the Eshelby stress makes it non-objective. Actually we have included
a time-derivative in the Eshelby stress. But in our case it is only Dλ/Dt =−p, the
derivative of a scalar, and this is always an objective time rate.
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7.4 The Energy Balance

Although it is outside of the title problem, another material balance law should be
mentioned, which is obtained in the same way as the balance of material momentum.
Following again Gołębiewska-Herrmann (1981) we form the total derivative of the
Lagrangian, now with respect to time t rather than with respect to the material
coordinate ξα . Then, instead of (7.16), we get

DtL =
∂L

∂xi ẋi +
∂L

∂ ẋi ẍi +
∂L

∂xi
,α

ẋi
,α +

∂L

∂ ẋi
,α

ẍi
,α +

∂L

∂λ
λ̇ +

∂L

∂ t
. (7.35)

Since there is no explicit dependence on time, the partial derivative ∂L /∂ t can be
omitted. The subsequent steps are similar to those for the derivation of the material
momentum balance. Again the product rule has to be applied to some terms, and
the equation has to be recast such that the functional derivatives of the Lagrangian
become visible. The resulting equation, the counterpart of (7.20), is here

0 =
δL

δxi ẋi +
δL

δλ
λ̇ +

+Dt

(
∂L

∂ ẋi ẋi +
∂L

∂ ẋi
,α

ẋi
,α −L

)
+Dα

(
∂L

∂xi
,α

ẋi−Dt
∂L

∂ ẋi
,α

ẋi
)
. (7.36)

If the functional derivatives (7.11) vanish, the equation assumes the form of a
conservation law for the energy density. This is predicted by Noether’s law applied
to the symmetry of the Lagrangian with respect to a translation in time.

Taking into account the special form (7.8) of the Lagrangian the total energy
density, or Hamiltonian, becomes

H =
∂L

∂ ẋi ẋi +
∂L

∂ ẋi
,α

ẋi
,α −L = ρR

(
1
2

v2−ggg ··· xxx
)
. (7.37)

The term λ J̇ in the Lagrangian has canceled out, such that the Hamiltonian is simply
the sum of kinetic and potential energy. Further we define the components of the
energy flux or Poynting vector by

Sα =−
(
∂L

∂xi
,α
−Dt

∂L

∂ ẋi
,α

)
ẋi = λ̇Jξα,iẋi = pJVα , (7.38)

where VVV = ∂ξξξ (xxx, t)/∂ t denotes the velocity at which a material point has to move in
reference space in order to keep its actual position xxx fixed. Now the conservation law
assumes the form

DH

Dt
= Sα,α or

DH

Dt
= Div SSS. (7.39)

Since the Lagrangian does not explicitly depend on time, there is no source term and
the balance law is a strict conservation law. A source term would appear, if material
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parameters – in our case it could be only the density ρR – depend on time. Materials
with time-dependent properties were studied, for instance, by Rousseau et al (2011).

7.5 Gerstner’s Wave

To describe Gerstner’s theory of water waves we use cartesian coordinates in both
the reference and the actual configuration. Gerstner’s theory is two-dimensional. To
simplify the notation the index notation is abandoned, and the coordinates are denoted
by (ξ ,η) in the reference configuration and by (x,y) in the actual configuration,
the latter with the y-axis pointing upward. In the reference configuration the fluid
occupies the half-plane η ≤ 0.

Following Gerstner we assume the motion xxx = ϕϕϕ(ξξξ , t) to be described by

x = ξ + r(η)sinθ , y = y0 +η− r(η)cosθ (7.40)

with the phase
θ = κξ −ωt. (7.41)

The wave number κ and the frequency ω are assumed constant. The function r(η)
and the constant displacement y0 have still to be specified.

The deformation gradient of the motion has the components

FFF =

[
1+κr cosθ r′ sinθ
κr sinθ 1− r′ cosθ

]
(7.42)

and leads to the Jacobian

J = detFFF = 1−κrr′ − (r′ −κr
)

cosθ . (7.43)

In general, this Jacobian would depend on time via the phase (7.41), thus violating
the incompressibility condition. Therefore, the factor in front of cosθ must vanish,
which means that the function r(η) has to satisfy the differential equation

r′ = κr. (7.44)

Then the deformation gradient and the Jacobian become

FFF =

[
1+κr cosθ κr sinθ
κr sinθ 1−κr cosθ

]
and J = 1− (κr)2 . (7.45)

The general solution of the differential equation (7.44) is

r = aeκη (7.46)

with an integration constant a that plays the role of a wave amplitude. Since the
Jacobian must be positive in the whole fluid-filled area η ≤ 0 of the reference
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configuration, the amplitude a and the wavenumber κ have to satisfy the inequality

κa < 1, (7.47)

which guarantees J > 0. If the wave amplitude is nonzero, the Jacobian will also be
limited by J < 1. Therefore, the fluid cannot adopt the reference configuration at any
time without violating the incompressibility constraint. For this reason, the more
general condition of incompressibility DJ/Dt = 0 has been employed, rather than
J = 1.

The ansatz (7.40) contains still a constant displacement y0 that has to be specified.
Gerstner himself and most of subsequent presentations take y0 = 0, which means
that crests and troughs have the elevations y =±a. However, since the troughs are
wider than the peaks, the mean water level is then below the still-water level y = 0.
To overcome this discrepancy one should choose the elevation y0 such that the mean
water level always coincides with the still-water level y= 0, as suggested by Clamond
(2007). According to (7.40)2 the mean water level is located at

y(ξ ,0, t) =
κ
2π

2π/κ∫
ξ=0

y(ξ ,0, t)dx(ξ ,0, t) = y0− 1
2
κa2. (7.48)

Henceforth we shall take
y0 =

1
2
κa2, (7.49)

which means that the mean water level coincides with the still-water level y = 0.
The deformation at the fixed time t = 0 represented by the ansatz (7.40) with r(η)

and y0 inserted from (7.46) and (7.49), respectively, is shown in Fig. 7.1. A square
grid in the half-plane η ≤ 0 of the reference configuration is transformed to the actual
configuration. The parallels η = const are mapped to trochoids. Below a depth of
about half a wavelength, the material square grid is nearly undistorted. The deformed
grid in Fig. 7.1 gives an impression of the mapping ξξξ �→ xxx = ϕϕϕ(ξξξ , t0) at a fixed
time t0. In contrast, a pathline tracks the motion t �→ xxx = ϕϕϕ(ξξξ 0, t) of a fixed material

x

y

y0

− π
κ

2π
κ

4π
κ

a

Fig. 7.1: Gerstner’s wave: deformation at time t = 0, amplitude a = 0.7/κ
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point ξξξ 0. In Gerstner’s wave, any material point moves along a circular pathline of
radius r(η) = aexp(κη) with constant velocity ωr. If the wave propagates to the
right, the circles are traversed clockwise. Figure 7.2 shows the pathlines of selected
material points.

The actual density ρ of the fluid is taken constant in Gerstner’s theory, although a
generalization to stratified fluid would be possible. According to (7.3), the referential
density

ρR = Jρ =
(
1−κ2r2)ρ =

(
1−κ2a2e2κη)ρ (7.50)

has its minimum value at the surface η = 0 and increases with depth tending asymp-
totically to ρR→ ρ as η →−∞. This “stratification” in the reference configuration
is not a property of the fluid, it has rather been carried in by the choice of the refer-
ence configuration. As will be shown in the next section there exist also reference
configurations with a constant reference density.

The ansatz (7.40) represents an isochoric motion, but it has not yet been shown
that the governing equations are fulfilled. To this end we shall check the alternate
form (7.34) of the balance of material momentum. It has the advantage that the
inhomogeneity force fff vanishes, since the actual density ρ is assumed constant. The
balance of material momentum is reduced to the conservation law

Dppp

Dt
=−Grad q. (7.51)

Therefore, the time derivative of the material momentum has to satisfy the compati-
bility condition

Curl
Dppp

Dt
= 0. (7.52)

The vectors of velocity and material momentum have the components

vvv =−ωr

[
cosθ
sinθ

]
and ppp=−ρFFFTvvv = ρωr

[
cosθ +κr

sinθ

]
, (7.53)

Fig. 7.2 Pathlines of a Gerst-
ner wave propagating in
positive x-direction. The initial
positions of the material points
at time t = 0 are marked by a
dot. Also the deformed grid is
shown for t = 0.

x

y

0
y0

��

��

��

��

��

��



148 Manfred Braun

respectively, the material momentum depending on time via the phase θ . In two
dimensions the compatibility condition (7.52) is reduced to a single equation, and
one can easily verify that it is fulfilled by the material momentum vector (7.53)2.
This confirms that Gerstner’s ansatz satisfies the balance of material momentum in
its alternate form (7.34).

The Eshelby pressure is obtained explicitly by integrating the equation

Grad q=−Dppp

Dt
= ρω2r

[
−sinθ

cosθ

]
, (7.54)

resulting in

q= ρ
ω2r
κ

cosθ +C (7.55)

with an integration constant C. According to (7.33)2 the Eshelby pressure is related to
the kinetic and potential energy densities and to the hydrostatic pressure p. Solving
for the latter yields

p = ρ
[

1
2
(ωr)2−g(y0 +η)+

(
g− ω2

κ

)
r cosθ

]
−C. (7.56)

At the free surface η = 0 we have r = a and the pressure becomes

p(ξ ,0, t) = ρ
[

1
2
(ωa)2−gy0 +

(
g− ω2

κ

)
acosθ

]
−C. (7.57)

It depends, in general, on the phase θ of the wave. In principle, Gerstner’s wave (7.40)
with arbitrary values of the wave number κ , the frequency ω , and the amplitude a can
propagate, provided the free surface is exposed to the pressure field (7.57) traveling
at the phase speed c = ω/κ .

Under realistic conditions, the pressure acting on the free water surface may have
some modulation due to the interaction of the wind with the wavy water surface. This
is a subject of its own and treated, for instance, in Janssen (2004). It is outside the
scope of the present analysis. Here we assume, as Gerstner did, that the water surface
is exposed to a constant pressure p0. In this case, the variable term in (7.57) has to
vanish, which leads to

ω2 = gκ. (7.58)

It is the dispersion law of the linear theory of deep-water waves that holds here within
a nonlinear theory. Below the water surface, the pressure is a function

p(η) = p0−ρgη− 1
2
ρω2 (a2− r2)= p0−ρg

[
η+

1
2
κa2 (1− e2κη)] . (7.59)

This means that not only the free surface η = 0, but all levels η = const are isobaric
surfaces. For η → −∞, where the wave motion is not perceptible anymore, the
pressure tends to the hydrostatic pressure p0−ρgy.
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Gerstner’s wave stands out for being the only known closed-form solution of the
nonlinear equations. Its big deficiency is that the flow field is rotational. This should
be pointed out in brief, even if it is not related to the balance of material momentum.
The Eulerian velocity gradient of Gerstner’s wave, expressed in the deformation
gradient and its time-derivative, is

grad vvv =
DFFF
Dt

FFF−1 =−ωκr
J

[ −sinθ cosθ +κr
cosθ −κr sinθ

]
. (7.60)

Its skew-symmetric part,

WWW =
1
2

[
grad vvv− (grad vvv)T

]
=

ω (κr)2

J

[
0 −1
+1 0

]
, (7.61)

is the vorticity tensor. In three dimensions, vorticity is the corresponding axial vector.
In our two dimensional flow, vorticity is the pseudo-scalar

w =W21−W12 =
2ω (κr)2

J
=

2ω (κaeκη)2

1− (κaeκη)2 . (7.62)

The vorticity of Gerstner’s wave propagating to the right is positive, i.e., opposite to
the clockwise rotation of the material points along their pathlines. It has its maximum
at the water surface and decays exponentially with depth. Figure 7.3 shows the
dependence of the vorticity on the vertical coordinate η according to (7.62), for
different values of the dimensionless amplitude κa. For κa→ 1, the vorticity at the
surface tends to infinity.

A parallel shear flow of the same vorticity distribution would flow in the opposite
direction of the wave motion. This flow was analyzed by Stokes already in 1847
(Stokes, 2009, page 223). In the same paper he presented an approximate theory of
irrotational waves, where the pathlines of particles are not closed, leading to what
today is called the Stokes drift.

Fig. 7.3 Vorticity w as a func-
tion of the vertical Lagrangian
coordinate η , for normalized
amplitudes κa = 0.5, . . . ,0.9

w1 5

η

0

π
2κ

κa = 0.9
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7.6 Change of Reference Configuration

Gerstner’s representation (7.40) of the wave motion leads to a Jacobian J(η)< 1 that
depends on the vertical material coordinate η . It should be possible to describe the
same motion using a different reference configuration such that the Jacobian assumes
the constant value Ĵ = 1. This alternate reference configuration B̂R can be generated
from BR by an appropriate diffeomorphism

ΨΨΨ : BR→ B̂R; ξξξ �→ XXX =ΨΨΨ(ξξξ ), KKK =
∂XXX
∂ξξξ

. (7.63)

The motion xxx = ϕϕϕ(ξξξ , t) expressed in the new material coordinates XXX becomes

xxx = ϕ̂ϕϕ(XXX , t) = ϕϕϕ
(
ΨΨΨ−1(XXX), t

)
, (7.64)

while the corresponding deformation gradient and Jacobian are transformed as

F̂FF = FFFKKK−1, Ĵ =
J

detKKK
. (7.65)

A constant Jacobian Ĵ = 1 is achieved by any transformationΨΨΨ whose Jacobian is
detKKK = J.

Since, in the present case, the Jacobian J depends only on the vertical material co-
ordinate η , it is reasonable to leave the horizontal coordinate unaltered and transform
only the vertical coordinate:

X = ξ , Y =

η∫
0

J(η)dη = η+
1
2
κa2 (1− e2κη) . (7.66)

Then the differential of the diffeomorphism and its Jacobian are simply

KKK =

[
1

J(η)

]
, detKKK = J(η). (7.67)

The motion xxx = ϕ̂ϕϕ(XXX , t) has, according to (7.65)2, the Jacobian Ĵ = 1, which means
that the new reference configuration B̂R can be attained by the fluid. Up to now the
motion is available only in the parametric form XXX =ΨΨΨ(ξξξ ), xxx = ϕϕϕ(ξξξ , t), namely

X = ξ ,

Y = η+
1
2
κa2 (1− e2κη) ,

x = ξ +κaeκη sin(κξ −ωt),

y =
1
2
κa2 +η−κaeκη cos(κξ −ωt).

(7.68)

To obtain the explicit representation xxx = ϕ̂ϕϕ(XXX , t) one has to invert the transformation
(7.66), which is rather tedious. As shown by Clamond (2007) the inverse transforma-
tion can be expressed in terms of the Lambert W function, which is defined as the
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inverse of the function
W−1(z) = zez, (7.69)

see Corless et al (1996) for details. Using the W function the inverse transformation
of (7.66) becomes

ξ = X , η = Y − 1
2κ

[
κ2a2 +W

(
−κ2a2e2κY−κ2a2

)]
. (7.70)

Now the unpleasant expression for η has to be inserted into (7.68)2,4. Despite this
“explicit” representation it is, for practical reasons, easier to invert the transformation
numerically or to keep the parametric representation (7.68).

Figure 7.4 shows the two reference configurations and the actual configuration for
a high-amplitude wave. A square grid is chosen in the alternate reference configu-
ration B̂R, which is transformed byΨΨΨ−1 to a grid of rectangles varying with η in
the original reference configuration BR. This, in turn, is mapped via ϕϕϕ to the actual
configuration B(t). In Fig. 7.4, the three configurations are aligned such that the
grids in the deep-water regime coincide. Therefore, the (ξ ,η)-plane is raised by y0.
Unlike ϕϕϕ the mapping ϕ̂ϕϕ is volume-preserving.

How does the change of the reference configuration influence the balance of
material momentum? The material time derivative D/Dt is the same in either refer-
ence configuration, since the transformation ΨΨΨ is time-independent. The material
momenta and the gradients of the Eshelby pressure in the two configurations are
related by

p̂pp= KKKTppp and GradXXX q= KKKTGradξξξ q. (7.71)

Therefore, changing the reference configuration from BR to B̂R has the consequence
that either side of the conservation law (7.51) is multiplied by KKKT, where KKK is given
by (7.67)1. So essentially it is the same equation. Still of interest is the dependence
of the pressure p on the vertical material coordinate. Using the new coordinate Y the
function p(η) according to (7.59) is transformed to

X

Y

B̂R

ξ

η

X =Ψ(ξ ) x = ϕ(ξ, t)

x = ϕ̂(X, t)

BR

x

y

B(t)

Fig. 7.4: Mappings between reference configurations B̂R, BR and actual configu-
ration B(t); dimensionless amplitude κa = 0.9
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p(Y ) = p0−ρgY. (7.72)

In Gerstner’s wave, the pressure at an arbitrary material point is equal to the hy-
drostatic pressure at that material point in the fluid at rest occupying the reference
configuration B̂R. There is no change due to the motion, the levels of hydrostatic
pressure are just mapped as material surfaces to the actual configuration.

7.7 Concluding Remarks

The balance of material momentum is applied to fluid motion, especially to the prop-
agation of a surface gravity wave according to Gerstner’s theory. In the Lagrangian
description of fluid motion, the reference configuration is not necessarily some initial
configuration. Even a configuration that cannot be attained by the fluid without violat-
ing the incompressibility condition is a legitimate reference configuration. Therefore,
the incompressibility condition demands that the Jacobian of the deformation is only
time-independent, but not necessarily unity. The Lagrangian, in which the incom-
pressibility condition DJ/Dt = 0 is incorporated, exhibits a dependence on the mixed
second derivative ϕϕϕξξξ t of the deformation.

The balance of material momentum of fluid motion is derived and the final result
is presented in two versions. Formally they have the same appearance, resembling
the balance of physical momentum in the actual configuration. The two versions
differ, however, in the definition of material momentum, which is based either on the
density ρR in the material configuration or on the density ρ in the actual configuration.
In either case, the densities are considered as functions of the material coordinates.
The density ρ(ξξξ ) has the advantage that it describes a property of the fluid only,
while ρR(ξξξ ) depends, in addition, on the choice of the reference configuration.
For a reference configuration that complies with incompressibility, the densities
are identical, ρR = ρ , and the two versions of the balance of material momentum
coincide. More as a side note, also the balance of energy in material space is derived.

Gerstner’s theory of water waves relies on a Lagrangian description and is, there-
fore, amenable to configurational mechanics. It is shown that Gerstner’s wave fulfills
the balance of material momentum. The pressure at a material point depends only
on the vertical material coordinate as in the hydrostatic case. The reference configu-
ration used by Gerstner does not comply with the incompressibility condition and
is, therefore, not attainable by the fluid. This application justifies the more general
approach to incompressibility used throughout this paper.

Finally an alternate reference configuration is introduced which complies with
the incompressibility constraint. This seems to be the most natural reference configu-
ration. The Lagrangian description of the waves, however, becomes rather compli-
cated and can be formulated only in terms of a not so well-known special function.
Gerstner’s simple and elegant representation works only with the original, distorted
reference configuration that cannot be attained by the incompressible fluid.
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The balance of material momentum for an ideal fluid, although much simpler than
for an elastic body, is not so trivial as it might seem on the first sight. Still missing is
an appropriate physical interpretation of the Eshelby pressure acting in the reference
configuration of the fluid. In analogy to elasticity there should be a path integral that
describes the configurational force acting on some inhomogeneity. Its significance is
still an open question. Unfortunately, Gérard Maugin cannot be asked anymore for
his advice. His comments, whether critical or encouraging, have always been of high
value for the author.

Appendix: Derivatives of the Lagrangian

The derivatives of the Lagrangian (7.8) with respect to the motion ϕϕϕ and its deriva-
tives are needed in Sects. 7.2 to 7.4. The derivatives with respect to ϕϕϕ and ϕϕϕ t are
immediately available as

∂L

∂xi = ρRgi and
∂L

∂ ẋi = ρRẋi. (7.73)

Additionally the Lagrangian depends on ϕϕϕξξξ and ϕϕϕξξξ t via the incompressibility term

λh = λ J̇ = λ
∂ J
∂x j

,β
ẋ j
,β (7.74)

giving the derivatives

∂L

∂xi
,α

= λ
∂ 2J

∂xi
,α ∂x j

,β
ẋ j
,β and

∂L

∂ ẋi
,α

= λ
∂ J
∂xi

,α
. (7.75)

These appear mainly in the combination

δL

δxi
,α
≡ ∂L

∂xi
,α
−Dt

∂L

∂ ẋi
,α

=−λ̇ ∂ J
∂xi

,α
, (7.76)

where the second derivatives of J have cancelled out. In (7.11) the total derivative

−Dα

(
∂L

∂xi
,α
−Dt

∂L

∂ ẋi
,α

)
= λ̇,α

∂ J
∂xi

,α
+ λ̇

∂ 2J
∂xi

,α ∂x j
,β

x j
,αβ (7.77)

is needed. At this point, the derivatives of the Jacobian with respect to the deformation
gradient are written out explicitly as

∂ J
∂xi

,α
= Jξα,i and

∂ 2J
∂xi

,α ∂x j
,β

= J
(
ξα,iξβ, j−ξα, jξβ,i

)
, (7.78)

whence the derivative (7.77) is reduced to
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−Dα

(
∂L

∂xi
,α
−Dt

∂L

∂ ẋi
,α

)
= λ̇,αJξα,i . (7.79)

Collecting now the relevant derivatives of the Lagrangian the Euler–Lagrange equa-
tion (7.11)1 becomes

ρRgi−ρRẍi + λ̇,αJξα,i = 0. (7.80)

Reformulated in index-free notation this is the balance of physical momentum (7.12).
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Chapter 8

Electromagnetic Fields in Meta-Media with

Interfacial Surface Admittance

David C. Christie and Robin W. Tucker

Abstract We exploit Clemmow’s complex plane-wave representation of electro-
magnetic fields to construct globally exact solutions of Maxwell’s equations in a
piecewise homogeneous dispersive conducting medium containing a plane interface
that can sustain (possibly dissipative) field-induced surface electric currents. Families
of solutions, parametrised by the complex rotation group SO(3,C), are constructed
from the roots of complex polynomials with coefficients determined by constitutive
properties of the medium and a particular interface admittance tensor. Such solu-
tions include coupled TE and TM-type surface polariton and Brewster modes and
offer a means to analyse analytically their physical properties given the constitutive
characteristics of bulk meta-materials containing fabricated meta-surface interfaces.

8.1 Introduction

This article is concerned with the behaviour of electromagnetic fields in regions of
materials that possess rapid spatial variations in their constitutive properties in the
vicinity of two-dimensional surfaces. In such regions certain components of these
fields are also expected to exhibit enhanced spatial variations. An exact mathematical
treatment of such systems is feasible if one idealises such regions as two-dimensional
physical interfaces across which the material constitutive properties and electromag-
netic fields become discontinuous. Since the fundamental structure of all materials is
molecular and electronic one may consider these physical interfaces to be endowed
with active or passive electromagnetic properties described classically by constitutive
properties that are distinct from those of the media that they separate. Furthermore,
with the recent rapid advances in meta-surface technology one may contemplate
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systems with artificially fabricated meta-surfaces that offer novel possibilities for
controlling the behaviour of electromagnetic fields in new meta-materials.

There exists a vast literature on recent technological developments in this field.
In particular the search for an effective control of surface polariton excitations in
various meta-structures remains an active area of current experimental endeavour
(Raether, 1988; Pitarke et al, 2006; Sarid and Challener, 2010; Maier, 2007). The
interesting properties of meta-surfaces with a tuneable surface impedance have been
discussed in Zhu et al (2014); Nemilentsau et al (2016) and the recent discovery of
the novel properties of graphene lends new impetus to exploring surface excitations
in meta-structures involving this material (Vakil and Engheta, 2011; Gusynin et al,
2009; Sounas and Caloz, 2011, 2012).

Theoretical approaches to the behaviour of meta-surfaces often rely on simplified
models that are bench-marked against various numerical computer codes while
descriptions involving Greens’ functions inevitably lead to various approximation
schemes (Hanson, 2008). In this article we outline an approach based on an exact
analysis of Maxwell’s equations in media with interfaces with particular attention
devoted to developing tools for finding solutions induced by the presence of a single
planar-interface with an intrinsic frequency dependent complex rank (1,1) surface
admittance tensor. Such a tensor can be employed to invoke surface currents from
surface electromagnetic fields. The formulation of the entire theory benefits from the
use of exterior differential forms in a 3-dimensional Euclidean space.

In Sect. 8.2 some mathematical preliminaries and notations are given for those
unfamiliar with the geometrical language of differential forms. Further introduc-
tory information can be found in Benn and Tucker (1987); Burton (2003). It also
introduces a complex extension of Rodrigues formula (Cheng and Gupta, 1989) for
describing complex rotations that is used extensively in subsequent sections. Sections
8.3 and 8.4 use this language in the formulation of Maxwell’s equations for fields in
any regular domain of a medium free of interfaces. Section 8.5 introduces complex
field structures based on Clemmow’s plane-wave representation (Clemmow, 1966)
and Sect. 8.6 indicates how a general family of solutions can be constructed in local
regions (without interfaces) using elements from the complex rotation group SO(3,C).
In Sect. 8.7 interface conditions are given that must be satisfied in order that solutions
can be constructed describing electromagnetic fields in a piecewise-homogeneous
material system containing a planar-interface possessing a complex admittance tensor.
In Sect. 8.8 these interface conditions are reduced to a set involving complex rotated
amplitudes. This set facilitates their reduction in Sect. 8.9 to the solution of certain
polynomials with complex coefficients. Furthermore, certain roots of these polyno-
mials are then shown to lead to electromagnetic field solutions that can be identified
with surface polariton or bulk Brewster mode configurations in particular materials
possessing a complex interface admittance tensor. In particular when its components
constitute a 2×2 Hermitian matrix the interface can sustain an anisotropic Ohmic
surface current.
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8.2 Mathematical Preliminaries

Our formulation is in terms of time or frequency dependent tensors on R3 endowed
with the three-dimensional Euclidean metric

g =
3

∑
a=1

ea⊗ ea,

and inverse metric

G =
3

∑
a=1

Xa⊗Xa

where ea(Xb) = δ b
a with δ b

a = 1 when a = b = 1,2,3 and zero otherwise.
For U ⊂ R3, define ΓT r

s U as the space of complex, time-dependent r (con-
travariant), s (covariant) type tensors on U and ΓΛ pU as the space of complex,
time-dependent p-forms on U .

A 1-form γ ∈ ΓΛ 1U which is the metric-dual of a vector field X ∈ ΓTU may
be written γ = X̃ ≡ g(X ,−). Equivalently, one may write X = γ̃ ≡ G(γ,−).1

For Φ ∈ ΓΛ pU , Ψ ∈ ΓΛ qU and f ∈ ΓΛ 0U , define the exterior derivative
d : ΓΛ pU → ΓΛ p+1U with the properties

d f (X) = X f , d(Φ ∧Ψ) = dΦ ∧Ψ +(−1)pΦ ∧dΨ , d◦d = 0 (8.1)

and the linear interior contraction operator iX : ΓΛ pU → ΓΛ p−1U with the proper-
ties

iXγ = γ(X), iX f = 0, iX (Φ ∧Ψ) = iXΦ ∧Ψ +(−1)pΦ ∧ iXΨ , iX ◦ iX = 0. (8.2)

In these relations, the exterior product Ψ ∧Φ satisfies Ψ ∧Φ = (−1)pqΦ ∧Ψ .
Furthermore, associated with the metric g one may define the linear Hodge map
# : ΓΛ pU → ΓΛ 3−p U with the properties2

#(Φ ∧ γ) = iγ̃ #Φ , #1 = e1∧ e2∧ e3, #◦# = 1 (8.3)

where 1 ∈ T 1
1 R3 is the unit (1,1) tensor on R3. From (8.2), one obtains the useful

result that ifΨ is any decomposable p-form containing the 1-form γ , then

iγ̃ #Ψ = 0. (8.4)

1 In a Cartesian coordinate system (x,y,z) for R3, a global co-frame e1 ≡ dx, e2 ≡ dy, e3 ≡ dz, and
d̃x = ∂x, d̃y = ∂y and d̃z = ∂z. Similarly, ∂̃x = dx, ∂̃y = dy and ∂̃z = dz.
2 A p-form is said to be decomposable if it can be written as the exterior product of p 1-forms. Then
(8.3) is sufficient to define the Hodge map on any decomposable p-form since recursive application
gives #(γ1∧·· ·∧ γ p) = iγ̃ p . . . iγ̃1 #1 for γ1, . . . ,γ p ∈ ΓΛ 1U , and its action on a non-decomposable
p-form follows by linearity. In a Cartesian coframe, #1 = dx∧dy∧dz, and (8.3) yields #dx = dy∧dz,
#dy = dz∧dx and #dz = dx∧dy.
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For U ⊂ R3 and any unit norm real vector field N ∈ ΓTU satisfying g(N,N) = 1,
we define the normal and tangential projection operators nN , tN and the tangential
Hodge map #N as

nN : ΓΛ pU → ΓΛ pU , ξ → nNξ ≡ Ñ∧ iNξ (8.5)

tN : ΓΛ pU → ΓΛ pU , ξ → tNξ ≡ ξ −nNξ = iN
(
Ñ∧ξ) (8.6)

where p = 0,1,2,3 and

#N : ΓΛ pU → ΓΛ 2−pU , ξ → #Nξ = (−1)piN #ξ ≡ #
(
Ñ∧ξ) , (8.7)

where p = 0,1,2. Since N has unit norm, nNÑ = Ñ, tNÑ = 0 and one has the operator
relations:

nN ◦nN = nN , tN ◦ tN = tN , (8.8)
nN ◦ tN = tN ◦nN = 0, (8.9)

nN ◦# = #◦ tN , tN ◦# = #◦nN (8.10)
nN ◦#N = #N ◦nN = 0, (8.11)
tN ◦#N = #N ◦ tN = #N , (8.12)

#N ◦#N = tN ◦η , (8.13)
iN ◦nN = iN , iN ◦ tN = iN ◦#N = 0, (8.14)

#N ◦ iN = #◦nN = tN ◦#, (8.15)
# = #N ◦ iN + Ñ∧#N ◦η , (8.16)

where η(Φ)≡ (−1)p(Φ). Furthermore, for α,β ∈ ΓΛ 1U ,

nN (α ∧β ) = nNα ∧β +α ∧nNβ , (8.17)
tN (α ∧β ) = tNα ∧ tNβ = #Nα ∧#Nβ (8.18)

#N (α ∧β ) = #N (#Nα ∧#Nβ ) = G(#Nα,β ) =−G(α ,#Nβ ). (8.19)

Let ϕ denote a complex angle and introduce the complex rotation operator3

RN(ϕ) : ΓΛ 1U → ΓΛ 1U : α → RN(ϕ)(α)≡ nNα+ cosϕtNα− sinϕ #Nα.
(8.20)

From (8.8)-(8.14), one has the relations

RN(ϕ)Ñ = Ñ (8.21)
iN ◦RN(ϕ) = iN (8.22)

RN(ϕ)◦nN = nN ◦RN(ϕ) = nN , (8.23)
RN(ϕ)◦ tN = tN ◦RN(ϕ) (8.24)

3 This is a complex extension of the Rodrigues rotation formula.
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i.e. the operator RN commutes with the projectors tN and nN . For a pair of complex
angles ϕ1 and ϕ2, one has

RN(ϕ1 +ϕ2) = RN(ϕ1)◦RN(ϕ2), (8.25)

and hence
RN(−ϕ)◦RN(ϕ) = RN(0) = 1. (8.26)

Identity (8.9) and definition (8.20) imply that

RN

(
−π

2

)
◦ tN = #N , (8.27)

so that

RN(ϕ)◦#N = #N ◦RN(ϕ) = RN(ϕ− π
2
)◦ tN = tN ◦RN(ϕ− π

2
). (8.28)

Using (8.18) and (8.19), it can be shown that

G(RN(ϕ)(α),RN(ϕ)(β )) = G(α,β ), (8.29)
#N(RN(ϕ)(α)∧RN(ϕ)(β )) = #N(α ∧β ) (8.30)

i.e. the operator RN is an isometry on the space of 1-forms on U . Finally, since
(8.16), (8.25), (8.28) and (8.30) give

(RN(−ϕ)◦#)(RN(ϕ)(α)∧RN(ϕ)(β ))

= RN(−ϕ)
[
(iN(α))(#N ◦RN(ϕ))(β )− (iNβ )(#N ◦RN(ϕ))(α)

+#N (RN(ϕ)(α)∧RN(ϕ)(β )) Ñ
]

= RN(−ϕ)
[
(iNα)RN(ϕ)(#Nβ )− (iNβ )RN(ϕ)(#Nα)+#N (α ∧β ) Ñ

]
= (iNα)#Nβ − (iNβ )#Nα+#N (α ∧β ) Ñ

= #(α ∧β ) ,

one has the useful identity4

RN(ϕ)#(α ∧β ) = #(RN(ϕ)α ∧RN(ϕ)β ) . (8.31)

8.3 General Maxwell Equations and their Fourier Transform

In terms of the electric field eee ∈ ΓΛ 1U , electric displacement ddd ∈ ΓΛ 1U , magnetic
flux density bbb ∈ ΓΛ 1U , magnetic field hhh ∈ ΓΛ 1U , total free current jjj ∈ ΓΛ 1U

4 Analogous to the preservation of the real angle between two vectors under a Rodrigues’ real
rotation.



160 David C. Christie and Robin W. Tucker

and total free charge density ρ ∈ ΓΛ 0U , these time (t)-dependent fields satisfy the
Maxwell system:

#deee+
∂
∂ t

bbb = 0, (8.32)

#dhhh− ∂
∂ t

ddd− jjj = 0, (8.33)

d#bbb = 0, (8.34)
#d#ddd−ρ = 0, (8.35)

provided
#d# jjj+∂tρ = 0.

This system is assumed closed with the addition of (possibly nonlocal and nonlinear)
constitutive relations correlating eee, bbb, ddd, hhh and jjj on U .

If a t-parametrised (r,s)-type tensor T ∈ ΓT r
s U in a t-independent tensor-basis

can be related to an ω-parametrised tensor T̂ ∈ Γ̂T r
s U by the Fourier transform:

T (x,y,z, t) =
∞∫
−∞

T̂ (x,y,z,ω)e−iωtdω, (8.36)

then

T̂ (x,y,z,ω) =
1

2π

∞∫
−∞

T (x,y,z, t)eiωtdt where ω ∈ R. (8.37)

Similarly, Γ̂Λ pU is the space of complex, ω-dependent Fourier transformed p-forms
on U . The complex ω-domain Maxwell equations then satisfy

#dêee− iωb̂bb = 0, (8.38)

#dĥhh+ iωd̂dd− ĵjj = 0, (8.39)

d#b̂bb = 0, (8.40)

#d#d̂dd− ρ̂ = 0 (8.41)

together with the Fourier transformed constitutive relations on U . Since

d#b̂bb =− i
ω

d##dêee =− i
ω

d(dêee) = 0,

(8.38) implies that equation (8.40) is satisfied automatically for ω �= 0.
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8.4 Maxwell Equations in a Source-Free Domain of an Ohmic,

Homogeneous, Isotropic, Dispersive, Linear Medium

If U contains a simple linear medium, the fields êee, d̂dd, b̂bb and ĥhh are related by the
following linear constitutive relations

d̂dd = ε̂εε(êee), b̂bb = μ̂μμ(ĥhh), (8.42)

where ε̂εε , μ̂μμ ∈ Γ̂T 1
1 U are respectively complex dispersive permittivity and permeabil-

ity tensors.
If U contains a stationary, isothermal, conducting medium, a contribution to the

total current 1-form ĵjj may depend on the local electromagnetic fields in U . The
medium is said to be an Ohmic conductor if ĵjj contains a contribution σ̂σσ(êee) where
σ̂σσ ∈ Γ̂T 1

1 U denotes the Hermitian conductivity tensor of the medium. In an isotropic,
homogeneous medium, one also has σ̂σσ = σ̂1 where dσ̂ = 0. When σ̂σσ �= 0, the bulk
medium is dissipative. In the following, we assume all bulk regions without interfaces
to be homogeneous and isotropic. Thus,

ε̂εε = ε̂1, μ̂μμ = μ̂1, (8.43)

where ε̂ , μ̂ are frequency-dependent complex 0-forms satisfying dε̂ = dμ̂ = 0 on
U . More generally, any form α̂ ∈ Γ̂Λ pU is said to be closed on U if dα̂ = 0.
When ε̂εε = ε0κκκr or μ̂μμ = μ0ηηηr where κκκr and ηηηr are (possibly complex) dimensionless
(1,1) tensors independent of frequency, their Fourier transforms do not exist as
smooth tensors. In these circumstances, we write εεε ≡ ε0κκκr, μμμ ≡ μ0ηηηr in terms of the
permittivity ε0 and the permeability μ0 of free space.

We henceforth assume that the isotropic, homogeneous medium U is also source-
free, so that ĵjj = σ̂ êee and the Maxwell equations (8.38)-(8.39) may then be rewritten

ĥhh =− i
ωμ̂

#dêee, êee =
i

ω ε̂ ′
#dĥhh. (8.44)

where

ε̂ ′ ≡ ε̂+ iσ̂
ω
.

Since

ρ̂ = ε̂#d#êee =− ε̂

iω ε̂ ′
#d#(#dĥhh) =− ε̂

iω ε̂ ′
#d(dĥhh) = 0,

the remaining independent Maxwell equation (8.41) reduces to ρ̂ = 0, which is
consistent with #d# ĵjj = 0.
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8.5 Electromagnetic Fields in a Source-Free Domain of an

Ohmic, Homogeneous, Isotropic, Dispersive, Linear Medium

In the following, we explore particular real solutions to equations (8.44) from the
particular complex forms

êee = Ê eiχ̂ , ĥhh = Ĥ eiχ̂ , (8.45)

where Ê is a closed complex electric polarisation 1-form on U , Ĥ is a closed
complex magnetic polarisation 1-form on U and χ̂ is a complex 0-form. Substituting
(8.45) into (8.44) and recalling that Ê and Ĥ are closed yields

Ĥ =
1
ωμ̂

#(K̂∧ Ê ), Ê =− 1

ω ε̂ ′
#(K̂∧Ĥ ), (8.46)

where K̂ = dχ̂ is a complex propagation 1-form. Using (8.3) and (8.4), it follows
from (8.46) that the 1-forms Ê , Ĥ and K̂ must form a mutually orthogonal triplet,
i.e.

G(Ê ,Ĥ ) = G(K̂,Ĥ ) = G(K̂, Ê ) = 0. (8.47)

Eliminating Ĥ from (8.46) gives

Ê =− 1

ω2 ε̂ ′μ̂
#(K̂∧#(K̂∧ Ê )) =

G(K̂, K̂)

ω2 ε̂ ′μ̂
Ê . (8.48)

since (using (8.3))

−#(K̂∧#(K̂∧ Ê )) = #(#(K̂∧ Ê )∧ K̂) = i ˜̂K##(K̂∧ Ê ) = i ˜̂K(K̂∧ Ê ) =
(

i ˜̂KK̂
)

Ê

as
i ˜̂K Ê = G(K̂, Ê ) = 0.

Therefore, for nontrivial electromagnetic fields, one requires

G(K̂, K̂) = ω2 ε̂ ′μ̂ =
ω2 ε̂ ′r μ̂r

c2 , (8.49)

where

ε̂ ′r =
ε̂ ′

ε0
, μ̂r =

μ̂
μ̂0

and
c =
√
μ0ε0

is the speed of light in vacuo.
In summary, a 0-form χ̂ and 1-form Ê which satisfy (8.49) and (8.47) may be

used to construct a complex Maxwell solution of the form (8.45), where the magnetic
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field amplitude

Ĥ =
1
ωμ̂

#(dχ̂ ∧ Ê ), (8.50)

provided dÊ = dĤ = 0. In the next section, we indicate the form of the scalar field
χ̂ which leads to a class of plane-fronted harmonic solutions.

8.6 Plane Wave Solutions in Terms of the Complex Rotation

Group

If the Cartesian components of the vector field ˜̂K were real constants (and ĵjj = 0), the
fields (8.45) would give rise to a family of plane harmonic electromagnetic waves

with polarisation vectors orthogonal to the direction of propagation ˜̂K.
In a homogeneous medium, the only constraint on K̂ would be that it has modulus

ω
√
ε̂ μ̂ . Thus, all such plane wave solutions could be related to each other by an

SO(3,R) group action. In the presence of a meta-material with non-zero complex
conductivity (leading to possible amplification and attenuation of electromagnetic
waves) one expects that the group SO(3,C) should play a role in relating solutions
that propagate with attenuation (or amplification)5. In this section, we approach a
representation of SO(3,C) generated from a group action on differential 1-forms.
This will then yield a construction of the fields (8.45) in terms of particular elements
{K̂, Ê ,Ĥ } “rotated” by elements of SO(3,C), satisfying the conditions (8.49) and
(8.47), and maintaining the relation (8.50), thereby automatically satisfying the
Maxwell system on U .

Given a g-orthonormal triplet {N1,N2,N3} of vector fields on U and a triplet
τ = {ψ̂, θ̂ , φ̂} of complex functions of ω , use (8.20) to construct a three-complex-
parameter linear map

Rτ : Γ̂Λ 1U → Γ̂Λ 1U , α̂ →Rτ α̂ ≡
(

RN3(ψ̂)◦RN2(θ̂)◦RN1(φ̂)
)
(α̂), (8.51)

such that ψ̂ , θ̂ , φ̂ locally parametrise SO(3,C). Repeated application of identity
(8.29) gives

G(Rτ(α̂),Rτ(β̂ )) = G(α̂, β̂ ), (8.52)

i.e., the operator Rτ is an isometry on the space of 1-forms on U .
A particularly simple solution satisfying the system (8.44) is

êeeτ0 = Êτ0eiχ̂τ0 , ĥhhτ0 = Ĥτ0eiχ̂τ0 , (8.53)

where

5 The elements of SO(3,C) connected to the identity element are more familiar as elements of the
Lorentz group SO(3,1,R) after parametrisation in terms of real group coordinates.



164 David C. Christie and Robin W. Tucker

K̂τ0 = dχ̂τ0 = ω
√
ε̂ ′μ̂ dx, Êτ0 = Âdy, Ĥ = Â

√
ε̂ ′

μ̂
dz (8.54)

in a global Cartesian co-frame, where Â is a complex constant.
From this solution, one may use a generic element Rτ of SO(3,C) to generate an

orbit of solutions:

êeeτ = Rτ Êτ0 eiχ̂τ , ĥhhτ = RτĤτeiχ̂τ0 , (8.55)

with
K̂τ ≡ dχ̂τ = Rτ K̂τ0 = K̂τ,xdx+ K̂τ,ydy+ K̂τ,zdz (8.56)

and
χ̂τ ≡ K̂τ,xx+ K̂τ,yy+ K̂τ,zz = G

(
K̂τ , xdx+ ydy+ zdz

)
, (8.57)

since (8.52) implies

G(K̂τ , K̂τ) = G(K̂τ0 , K̂τ0) =
ω2 ε̂ ′r μ̂r

c2 , (8.58)

G(K̂τ , Êτ) = G(K̂τ0 , Êτ0) = 0, (8.59)

and repeated application of (8.31) yields

Ĥτ =
1
ωμ̂

#
(

K̂τ ∧ Êτ
)
= RτĤτ0 (8.60)

This approach can be extended to situations involving multiple regions with differ-
ent material properties. The associated field components must then be matched at
interfaces between such regions using junction conditions as described in the next
section.

8.7 Interface Conditions for Media Containing Anisotropic,

Homogeneous, Planar Interface Consitutive Relations

Let f = 0 be a particular smooth interface S belonging to a foliation of a region
M ⊂ R3 and assign a normal unit vector field

N =
d̃ f
|d f | �= 0,

where |d f |2 ≡ G(d f ,d f ) with N oriented from a region I where f ≤ 0 to the region
II where f ≥ 0.

If regions I and II in M contain material with different constitutive properties
then the electromagnetic fields in these regions will in general exhibit discontinuities
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in certain of their components across the interface f = 0, corresponding to surface
charge and current densities.

The interface conditions for general electric and magnetic 1-forms in the frequency
domain are given in this language as:

S∗iNb̂bb
II−S∗iNb̂bb

I
= 0 (8.61)

S∗tNêeeII−S∗tNêeeI = 0 (8.62)

S∗iNd̂dd
II−S∗iNd̂dd

I− ρ̂S = 0 (8.63)

S∗tNĥhh
II−S∗tNĥhh

I
+#N ĵjjS = 0, (8.64)

where for any p-form γ̂ ∈ Γ̂Λ pM , S∗γ̂ denotes the pullback onto the interface S.
Since #N maps forms on any domain to their tangential parts with respect to N, they
have a natural extension to maps on the pullbacks of such forms to any surface
S ⊂M with the local normal N. Furthermore, ρ̂S ∈ Γ̂Λ 0S and ĵjjS ∈ Γ̂Λ 1S are the
surface charge density 0-form and surface current density 1-form on S respectively. In
general, the interface surface forms ρ̂S and ĵjjS in (8.63)-(8.64) correspond to surface
charge and current densities (including those produced by possible external sources
of surface charge density, possible external sources of interface current density, and
surface electromagnetic fields).

At this point, we assume that the surface charge density ρ̂S is determined solely
by electromagnetic fields in the bulk media and is given by (8.63). Furthermore, we
assume that ĵjjS is determined solely by the fields satisfying the interface constitutive
relation

ĵjjS =
1
Z0
Σ̂ΣΣ
(

S∗tNêeeI
)
≡ 1

Z0
Σ̂ΣΣ
(

S∗tNêeeII
)

(8.65)

where the rank (1,1) complex surface admittance tensor Σ̂ΣΣ ∈ T̂ 1
1 S is defined to act

only on the tangential components of the electric field on S and

Z0 =

√
ε0
μ0

=
1

cμ0
= cε0

is the impedance of free space.
Assume that in a Cartesian coordinate system the surface S, (z = 0), separates

M into two semi-infinite volume regions V I (z < 0) and V II (z > 0). For nota-
tional simplicity, denote the unit normal vector field on S, ∂z|S, by ∂z. We suppose
that the domains V I and V II are filled with isotropic, homogeneous media with
distinct complex permittivity, permeability and conductivity constitutive scalars
{ε̂ I , μ̂ I , σ̂ I , ε̂ II , μ̂ II , σ̂ II}.

The electric and magnetic fields are given by

êeeL = Ê Leiχ̂L
, ĥhh

L
= Ĥ Leiχ̂L

(8.66)
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in terms of {χ̂L, Ê L,Ĥ L} where L ∈ {I, II}. We refer to these fields as modes in
V ≡ V I ∪V II ∪S. The interface conditions (8.61)-(8.64) become

μ̂ II i∂zĤ
IIeiχ̂ II

0 − μ̂ I i∂zĤ
Ieiχ̂ I

0 = 0, (8.67)

t∂z Ê
IIeiχ̂ II

0 − t∂z Ê
Ieiχ̂ I

0 = 0, (8.68)

i∂z Ê
IIeiχ̂ II

0 − i∂z Ê
Ieiχ̂ I

0 = ρ̂S, (8.69)

t∂zĤ
IIeiχ̂ II

0 − t∂zĤ
Ieiχ̂ I

0 = −#N ĵjjS, (8.70)

where
χ̂L

0 = S∗χ̂L (8.71)

depends only on x and y6. The interface conditions (8.67), (8.68) and (8.70) imply
correlations amongst {χ̂L, Ê L,Ĥ L} and ĵjjS. The remaining interface condition (8.69)
defines the charge density ρ̂S ∈ Γ̂Λ 0S that will arise on the interface. For (8.68) and
(8.70) to be satisfied at every point on S we require

χ̂ II
0 = χ̂ I

0 (8.72)

ρ̂S = ρ̂0eiχ̂ I
0 = ρ̂0eiχ̂ II

0 (8.73)

ĵjjS = Ĵ eiχ̂ I
0 = Ĵ eiχ̂ II

0 (8.74)

where ρ̂0 ∈ Γ̂Λ 0S and Ĵ ∈ Γ̂Λ 1S denote the Fourier amplitudes of the surface
charge 0-form and current density 1-form respectively.

From (8.56) and (8.56), it follows that (8.72) is equivalent to

t∂z K̂
II− t∂z K̂

I = 0. (8.75)

The complex exponential terms now factor out of all the interface conditions which
then reduce to

μ̂ II i∂zĤ
II− μ̂ I i∂zĤ

I = 0, (8.76)

t∂z Ê
II− t∂z Ê

I = 0, (8.77)

i∂z Ê
II− i∂z Ê

I = ρ̂0, (8.78)

t∂zĤ
II− t∂zĤ

I = −#NĴ (8.79)

with
Ĵ =

1
Z0
Σ̂ΣΣ
(
tN Ê

I)
=

1
Z0
Σ̂ΣΣ
(
tN Ê

II)
. (8.80)

A homogeneous but anisotropic interface admittance tensor with components
(σ̂xx, σ̂xy, σ̂yx, σ̂yy) depending only on ω may be written in terms of the induced,
fixed-frame (dx,dy) on S as

6 For the 1-form γ̂ = γ̂xdx+ γ̂ydy+ γ̂zdz where γ̂x, γ̂y, γ̂z ∈ Γ̂Λ0U , i∂z γ̂ = γ̂z and t∂z γ̂ = γ̂xdx+ γ̂ydy.
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Σ̂ΣΣ = σ̂xxdx⊗ i∂x + σ̂xydx⊗ i∂y + σ̂yxdy⊗ i∂x + σ̂yydy⊗ i∂y . (8.81)

The junction condition (8.79) then becomes

t∂zĤ
II− t∂zĤ

I =− 1
Z0

(
#∂z ◦ Σ̂ΣΣ ◦ t∂z

)
(Ê

L
), (8.82)

where one can choose L to be either I or II. It will be useful in the following to
rewrite (8.82) using (8.27) as

t∂zĤ
II− t∂zĤ

I =− 1
Z0

(
R∂z

(
−π

2

)
◦ Σ̂ΣΣ ◦ t∂z

)
(Ê

L
). (8.83)

8.8 Consequences of the Interface Conditions

The structure of the modes in V = V I ∪V II ∪ S is given by (8.66) in terms of
the specific 1-forms {K̂I , Ê I ,Ĥ I , K̂II , Ê II ,Ĥ II} where K̂L = dχ̂L for L ∈ {I, II}.
In each region, Ê L and K̂L must satisfy the (nonlinear) dispersion relation and
orthogonality conditions (8.49) and (8.47), as well as the interface conditions (8.75),
(8.76), (8.77) and (8.83) derived in Sect. 8.7, with Ĥ L given by (8.50).

The construction of solutions parametrised by elements of SO(3,C) acting on
particular solutions in a domain free of interfaces developed in Sect. 8.6 is now
extended to the parametrisation of solutions in region M containing a planar interface,
in terms of the six complex angles {φ̂ I , θ̂ I , ψ̂ I , φ̂ II , θ̂ II , ψ̂ II} using composite rotation
operators Rτ I and Rτ II by writing

γ̂τL = RτL γ̂L
τ0

(8.84)

where
γ̂τL ∈ {K̂τL , ÊτL ,ĤτL},
γ̂τL

0
∈ {K̂τL

0
, ÊτL

0
,ĤτL

0
}, (8.85)

RτL = R∂z(ψ̂
L)◦R∂y(θ̂

L)◦R∂x(φ̂
L), (8.86)

K̂L
τ0

= K̂L
0 dx = ω

√
ε̂ ′

L√
μ̂Ldx,

Ê L
τ0

= ÂLdy,

Ĥ L
τ0

=
ÂLK̂L

0
ωμ̂L dz =

ÂL

√
ε̂ ′

L√
μ̂L

dz,

(8.87)

so that
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K̂τL = K̂L
0

[
cos θ̂L cos ψ̂Ldx− cos θ̂L sin ψ̂Ldy+ sin θ̂Ldz

]
(8.88)

ÊτL = ÂL
[(

cos φ̂L sin ψ̂L + sin θ̂L sin φ̂L cos ψ̂L
)

dx

+
(

cos φ̂L cos ψ̂L− sin θ̂L sin φ̂L sin ψ̂L
)

dy− cos θ̂L sin φ̂Ldz
]

(8.89)

ĤτL =
ÂLK̂L

0
ωμ̂L

[(
sin φ̂L sin ψ̂L− sin θ̂L cos φ̂L cos ψ̂L

)
dx

+
(

sin φ̂L cos ψ̂L + sin θ̂L cos φ̂L sin ψ̂L
)

dy+ cos θ̂L cos φ̂Ldz
]
. (8.90)

Such 1-forms already satisfy (8.49), (8.47) and (8.50), so one must only address the
interface conditions (8.75), (8.76), (8.77) and (8.83) to obtain a suitably correlated
solution in both regions. In terms of {K̂L

τL , Ê
L
τL ,Ĥ

L
τL}, these interface conditions are

t∂z K̂τ II − t∂z K̂τ I = 0, (8.91)

μ̂ II i∂zĤτ II − μ̂ I i∂zĤτ I = 0, (8.92)

t∂z Êτ II − t∂z Êτ I = 0, (8.93)

t∂zĤτ II − t∂zĤτ I +
1
Z0

(
R∂z

(
−π

2

)
◦ Σ̂ΣΣ ◦ tN

)
(Ê τ I ) = 0. (8.94)

To decouple the system, it will prove expedient to work with a new set of 1-forms
“rotated” with respect to ∂z by the complex angle −ψ̂ I using the operator (8.20). In
terms of (8.84)-(8.85), define the rotated forms

γ̂L
R ≡ R∂z(−ψ̂ I)γ̂τL =

(
R∂z(−ψ̂ I)◦RτL

)(
γ̂L
τ0

)
. (8.95)

The identity (8.25) then gives

γ̂ I
R =
(
R∂z(−ψ̂ I)◦Rτ I

)(
γ̂ I
τ0

)
=
(

R∂z(−ψ̂ I)◦R∂z(ψ̂
I)◦R∂y(θ̂

I)◦R∂x(φ̂
I)
)(

γ̂ I
τ0

)
=
(

R∂y(θ̂
I)◦R∂x(φ̂

I)
)(

γ̂ I
τ0

)
(8.96)

γ̂ II
R =

(
R∂z(−ψ̂ I)◦Rτ II

)(
γ̂ II
τ0

)
=
(

R∂z(−ψ̂ I)◦R∂z(ψ̂
II)◦R∂y(θ̂

II)◦R∂x(φ̂
II)
)(

γ̂ II
τ0

)
=
(

R∂z(ψ̂
Δ )◦R∂y(θ̂

I)◦R∂x(φ̂
I)
)(

γ̂ I
τ0

)
(8.97)

where
ψ̂Δ ≡ ψ̂ II− ψ̂ I (8.98)

and the system of rotated 1-forms in (8.96)-(8.97) now depends on the five complex
angles {φ̂ I , θ̂ I , φ̂ II , θ̂ II , ψ̂Δ} rather than the original six. Equations (8.88)-(8.90) may
be replaced by the partially simplified formulae
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K̂I
R = K̂I

0

[
cos θ̂ Idx+ sin θ̂ Idz

]
, (8.99)

Ê I
R = ÂI

[
sin θ̂ I sin φ̂ Idx+ cos φ̂ Idy− cos θ̂ I sin φ̂ Idz

]
, (8.100)

Ĥ I
R =

ÂIK̂I
0

ωμ̂ I

[
− sin θ̂ I cos φ̂ Idx+ sin φ̂ Idy+ cos θ̂ I cos φ̂ Idz

]
, (8.101)

K̂II
R = K̂II

0

[
cos θ̂ II cos ψ̂Δdx− cos θ̂ II sin ψ̂Δdy+ sin θ̂ IIdz

]
, (8.102)

Ê II
R = ÂII

[(
cos φ̂ II sin ψ̂Δ + sin θ̂ II sin φ̂ II cos ψ̂Δ

)
dx

+
(

cos φ̂ II cos ψ̂Δ − sin θ̂ II sin φ̂ II sin ψ̂Δ
)

dy− cos θ̂ II sin φ̂ IIdz
]
, (8.103)

Ĥ II
R =

ÂIIK̂II
0

ωμ̂ II

[(
sin φ̂ II sin ψ̂Δ − sin θ̂ II cos φ̂ II cos ψ̂Δ

)
dx

+
(

sin φ̂ II cos ψ̂Δ + sin θ̂ II cos φ̂ II sin ψ̂Δ
)

dy+ cos θ̂ II cos φ̂ IIdz
]
. (8.104)

The interface conditions (8.91)-(8.94) may now be readily expressed in terms of the
rotated 1-forms. Condition (8.92) is satisfied if

μ̂ II i∂zĤ
II

R − μ̂ I i∂zĤ
I

R = 0, (8.105)

since identity (8.22) gives

i∂zĤ
L

R = i∂z R∂z(−ψ̂ I)(Ĥ L) = i∂zĤ
L.

From the identities (8.24) and (8.25), the relation

tN(R∂z(ϕ)(γ̂τ II ))− tN(R∂z(ϕ)(γ̂τ I ))−R∂z(ϕ)(β̂ ) = 0, (8.106)

for any 1-form β̂ is readily converted by the action of R∂z(−ϕ) to the condition

tN γ̂τ II − tN γ̂τ I − β̂ = 0. (8.107)

Thus conditions (8.91) and (8.93) are satisfied by (8.106) with ϕ = −ψ̂ I

and β̂ = 0 while condition (8.94) is satisfied with ϕ = (π/2) − ψ̂ I and
β̂ = 1

Z0

(
RN(−π

2 )◦ Σ̂ΣΣ ◦ tN
)(

Ê L
)

, thereby replacing these with the new interface
conditions:

0 = t∂z

(
R∂z(ϕ)(γ̂τ II )

)− t∂z

(
R∂z(ϕ)(γ̂τ II )

)−R∂z(ϕ)(β̂ )

= R∂z(ϕ)
(
t∂z(γ̂τ II )

)−R∂z(ϕ)
(
t∂z(γ̂τ II )

)−R∂z(ϕ)(β̂ )

= R∂z(−ϕ)
(

R∂z(ϕ)
(
t∂z(γ̂τ II )

)−R∂z(ϕ)
(
t∂z(γ̂τ II )

)−R∂z(ϕ)(β̂ )
)

= t∂z γ̂τ II − t∂z γ̂τ II − β̂ .
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Hence, taking ϕ =−ψ̂ I , β̂ = 0 in (8.75), (8.77) and

ϕ̂ =
π
2
− ψ̂ I , β̂ =

1
Z0

(
R∂z

(
−π

2

)
◦ Σ̂ΣΣ ◦ t∂z

)(
Ê

L)
in (8.83) gives the new conditions

t∂z K̂
II
R − t∂z K̂

I
R = 0, (8.108)

t∂z Ê
II

R − t∂z Ê
I

R = 0, (8.109)[
t∂z ◦R∂z

(π
2

)](
Ĥ II

R −Ĥ I
R

)
+

1
Z0

[
R∂z

(π
2
− ψ̂ I

)
◦R∂z

(
−π

2

)
◦ Σ̂ΣΣ ◦ t∂z

](
Ê

I)
= 0.

(8.110)

Using identities (8.25), (8.24) and definition (8.95), (8.110) can be rewritten:(
t∂z ◦R∂z

(π
2

))(
Ĥ II

R −Ĥ I
R

)
=− 1

Z0

(
R∂z

(−ψ̂ I)◦ Σ̂ΣΣ ◦ t∂z

)(
Ê

I)
. (8.111)

To further simplify (8.111), introduce the rank (1,1) tensor Λ̂ΛΛ : Γ̂Λ 1S→ Γ̂Λ 1S where

Λ̂ΛΛ = R∂z

(−ψ̂ I)◦ Σ̂ΣΣ ◦R∂z

(
ψ̂ I)◦ t∂z

= λ̂xxdx⊗ i∂x + λ̂xydx⊗ i∂y + λ̂yxdy⊗ i∂x + λ̂yydy⊗ i∂y . (8.112)

After some algebra, it can be shown that the components of the tensor Λ̂ΛΛ are given by

λ̂xx =
1
2
[
(σ̂xx + σ̂yy)+(σ̂xx− σ̂yy)cos2ψ̂ I− (σ̂xy + σ̂yx)sin2ψ̂ I] , (8.113)

λ̂xy =
1
2
[
(σ̂xy− σ̂yx)+(σ̂xy + σ̂yx)cos2ψ̂ I +(σ̂xx− σ̂yy)sin2ψ̂ I] , (8.114)

λ̂yx =
1
2
[−(σ̂xy− σ̂yx)+(σ̂xy + σ̂yx)cos2ψ̂ I +(σ̂xx− σ̂yy)sin2ψ̂ I] , (8.115)

λ̂yy =
1
2
[
(σ̂xx + σ̂yy)− (σ̂xx− σ̂yy)cos2ψ̂ I +(σ̂xy + σ̂yx)sin2ψ̂ I] . (8.116)

Condition (8.111) can thus be rewritten in terms of the tensor Λ̂ΛΛ as(
t∂z ◦R∂z

(π
2

))(
Ĥ II

R −Ĥ I
R

)
=− 1

Z0
Λ̂ΛΛ
(
Ê I

R

)
. (8.117)

Having written the interface conditions (8.91)-(8.94) in terms of the rotated 1-forms
γ̂L

R , as (8.105), (8.108)-(8.110) they may be further decoupled. Substituting (8.99)
and (8.102) into (8.108) gives(

K̂II
0 cos θ̂ II cos ψ̂Δ − K̂I

0 cos θ̂ I
)

dx+ K̂II
0 cos θ̂ II sin ψ̂Δdy = 0, (8.118)
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One solution of (8.118) is cos θ̂ I = cos θ̂ II = 0. This implies from equation (8.88)
that the tangential components of the wave vector K̂L are zero in both regions and
the fields can only vary with z, thereby excluding any solutions propagating along
the interface. In the following, we instead restrict to solutions with K̂I

0 cos θ̂ I �= 0 and
K̂II

0 cos θ̂ II �= 0, which include both single-interface surface polariton and Brewster
modes (see below). In this case, the dy component of (8.118) requires sin ψ̂Δ = 0
and therefore

ψ̂Δ = mπ, (8.119)

where m ∈ Z. Thus cos ψ̂Δ = (−1)m, sin ψ̂Δ = 0, and (8.99)-(8.104) can be written
in terms of the scalings {ÂL} and four complex angles {φ̂ I , θ̂ I , φ̂ II , θ̂ II}:

K̂L
R = K̂L

0

[(
ζ L)m

cos θ̂Ldx+ sin θ̂Ldz
]
, (8.120)

Ê L
R = ÂL

[(
ζ L)m

(
sin θ̂L sin φ̂Ldx+ cos φ̂Ldy

)
− cos θ̂L sin φ̂Ldz

]
, (8.121)

Ĥ L
R =

ÂLK̂L
0

ωμ̂L

[(
ζ L)m

(
−sin θ̂L cos φ̂Ldx+ sin φ̂Ldy

)
+ cos θ̂L cos φ̂Ldz

]
. (8.122)

where the constant ζ L is defined in each region as:

ζ I = 1 ζ II =−1. (8.123)

The interface condition (8.108) (and hence (8.118)) gives (8.124) below, and (8.105)
gives (8.125). Furthermore, the components of (8.109) yield (8.126) and (8.127) and
the components of (8.117) give (8.128) and (8.129). The complete set of interface
conditions therefore becomes

K̂II
0 cos θ̂ II = (−1)mK̂I

0 cos θ̂ I , (8.124)

K̂II
0 ÂII cos θ̂ II cos φ̂ II = K̂I

0ÂI cos θ̂ I cos φ̂ I , (8.125)

ÂII sin θ̂ II sin φ̂ II = (−1)mÂI sin θ̂ I sin φ̂ I , (8.126)

ÂII cos φ̂ II = (−1)mÂI cos φ̂ I . (8.127)

(−1)m cK̂0
II

ωμ̂ II
r

ÂII sin φ̂ II− cK̂0
I

ωμ̂ I
r

ÂI sin φ̂ I =−λ̂xxÂI sin θ̂ I sin φ̂ I− λ̂xyÂI cos φ̂ I ,

(8.128)

(−1)m cK̂0
II

ωμ̂ II
r

ÂII sin θ̂ II cos φ̂ II− cK̂0
I

ωμ̂ I
r

ÂI sin θ̂ I cos φ̂ I

=−λ̂yxÂI sin θ̂ I sin φ̂ I− λ̂yyÂI cos φ̂ I .

(8.129)

with

μ̂L
r =

μ̂L

μ0
=

μ̂Lc
Z0

.

We observe that (8.125) automatically follows if (8.124) and (8.127) are satisfied.
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8.9 Solving the Interface Conditions

We now show that solving the interface conditions (8.124)-(8.129) reduces to finding
solutions to a complex polynomial equation. Introduce the complex quantities

Ψ̂ ≡ ÂI sin θ̂ I sin φ̂ I , (8.130)

Φ̂ ≡ ÂI cos φ̂ I , (8.131)

Q̂≡ cK̂I
0

ω
cos θ̂ I �= 0, (8.132)

α̂ ≡ c
2ω

(
K̂0

I
sin θ̂ I + K̂0

II
sin θ̂ II

)
, (8.133)

β̂ ≡ c
2ω

(
K̂0

I
sin θ̂ I− K̂0

II
sin θ̂ II

)
. (8.134)

Equation (8.108) is then satisfied with

cos θ̂L =
(
ζ L)m ωQ̂

cK̂L
0

(8.135)

and (8.133) and (8.134) yield

sin θ̂L =
ω

cK̂L
0

(
α̂+ζ Lβ̂

)
. (8.136)

Equations (8.133)-(8.134) give

α̂β̂ =
c2

4ω2

(
K̂0

I 2
sin2 θ̂ I− K̂0

II 2
sin2 θ̂ II

)
=

c2

4ω2

(
K̂0

I 2− K̂0
II 2− K̂0

I 2
cos2 θ̂ I + K̂0

II 2
cos2 θ̂ II

)
=

c2

4ω2

(
K̂0

I 2− K̂0
II 2
)
=

1
4

(
ε̂ ′

I
r μ̂

I
r − ε̂ ′

II
r μ̂

II
r

)
,

since K̂0
I 2

cos2 θ̂ I = K̂0
II 2

cos2 θ̂ II from (8.124). Hence,

β̂ =
v̂
α̂

(8.137)

where
v̂≡ 1

4

(
ε̂ ′

I
r μ̂

I
r − ε̂ ′

II
r μ̂

II
r

)
(8.138)

depends only on the constitutive properties of the two bulk regions. Equation (8.136)
is now written in terms of α̂ as
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sin θ̂L =
ω

cK̂L
0

(
α̂+ζ L v̂

α̂

)
. (8.139)

Definition (8.130) and junction condition (8.126) imply

AL sin φ̂L =
(
ζ L)m Ψ̂

sin θ̂L
=
(
ζ L)m cK̂L

0
ω

Ψ̂
α̂+ζ L v̂

α̂

, (8.140)

while (8.131) and junction condition (8.127) yield

AL cos φ̂L =
(
ζ L)m Φ̂ . (8.141)

Substituting equations (8.135) and (8.139) into the complex identity cos2 θ̂L +
sin2 θ̂L = 1 for either L = I or L = II and solving for Q̂ gives

Q̂ =±
√
ε̂ ′

I
r μ̂ I

r

2
+
ε̂ ′

II
r μ̂ II

r

2
− α̂2− v̂2

α̂2 . (8.142)

In summary, the trigonometric functions of θ̂L and φ̂L are expressed in terms of α̂ ,
Φ̂ , Ψ̂ and the constitutive properties of V I and V II by the relations

sin θ̂L =
ω

cK̂L
0

(
α̂+ζ L v̂

α̂

)
, cos θ̂L =

(
ζ L)m ωQ̂

cK̂L
0

,

ÂL sin φ̂L =
(
ζ L)m cK̂L

0
ω

Ψ̂
α̂+ζ L v̂

α̂

, ÂL cos φ̂L =
(
ζ L)m Φ̂ , (8.143)

where ζ L is defined by (8.123) and Q̂ is given by (8.142). It may be readily confirmed
that the interface conditions (8.124)-(8.127) are satified by the equations (8.143). We
now turn to the final two conditions (8.128) and (8.129).

Substituting (8.143) into (8.128) and using (8.49) gives

X̂(α̂)Ψ̂ − λ̂xyΦ̂ = 0, (8.144)

where

X̂(α̂)≡
α̂
(
ε̂ ′

I
r− ε̂ ′

II
r

)
− v̂

α̂

(
ε̂ ′

I
r + ε̂

′II
r

)
− λ̂xx

(
α̂2− v̂2

α̂2

)
α̂2− v̂2

α̂2

. (8.145)

Substituting (8.143) into (8.129) then implies

Ŷ (α̂)Φ̂− λ̂yxΨ̂ = 0, (8.146)

where
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Ŷ (α)≡
(

1
μ̂ I

r
− 1
μ̂ II

r

)
α̂+

(
1
μ̂ I

r
+

1
μ̂ II

r

)
v̂
α̂
− λ̂yy. (8.147)

Equations (8.144) and (8.146) admit different classes of solution for Φ̂ and Ψ̂
depending on the values of the constitutive functions and their dependence on
frequency.

For solutions with Φ̂ = 0 and Ψ̂ �= 0, these equations degenerate to the set

X̂(α̂) = 0, λ̂yx = 0 (8.148)

where the first equation is a complex quartic equation for α̂ . We will call the fields
determined by such solutions “type-Ψ̂ modes”.

When Ψ̂ = 0 and Φ̂ �= 0 one obtains

Ŷ (α̂) = 0, λ̂xy = 0 (8.149)

where the first equation is a complex quadratic equation for α̂ . We will call the fields
determined by such solutions “type-Φ̂ modes”.

In the general case (with both Φ̂ and Ψ̂ non-zero), one obtains coupled type-Φ̂-Ψ̂
modes from solutions α̂ satisfying the determinantal condition

X̂(α̂)Ŷ (α̂)− λ̂xyλ̂yx = 0 (8.150)

i.e. the degree six complex polynomial

0 =

(
α̂3
(
ε̂ ′

I
r− ε̂ ′

II
r

)
− v̂α̂

(
ε̂ ′

I
r + ε̂

′II
r

)
− λ̂xx

(
α̂4− v̂2))

×
((

1
μ̂ I

r
− 1
μ̂ II

r

)
α̂2 +

(
1
μ̂ I

r
+

1
μ̂ II

r

)
v̂− λ̂yyα̂

)
− λ̂xyλ̂yxα̂

(
α̂4− v̂2) . (8.151)

Then for each root α̂ ,

Ψ̂
Φ̂

=
1

λ̂yx

{
1
μ̂ I

r

(
α̂+

v̂
α̂

)
− 1
μ̂ II

r

(
α̂− v̂

α̂

)
− λ̂yy

}
. (8.152)

and the rotated field 1-forms are given by substituting (8.143) into (8.120)-(8.122),
for each root α̂ of (8.151), using (8.49) to rewrite K̂2

0 :
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K̂L
R =

ω
c

{
Q̂dx+

(
α̂+

ζ Lv̂
α̂

)
dz
}
, (8.153)

Ê L
R = Ψ̂dx+ Φ̂dy− Q̂Ψ̂

α̂+ ζLv̂
α̂

dz, (8.154)

Ĥ L
R =

1
Z0

{
−
(
α̂+

ζ Lv̂
α̂

)
Φ̂
μ̂L

r
dx+

ε̂ ′rΨ̂

α̂+ ζLv̂
α̂

dy+
Q̂Φ̂
μ̂L

r
dz

}
, (8.155)

where v̂ is given by (8.138) and Q̂ is given by (8.142). Finally,

{K̂L, Ê L,Ĥ L}= R∂z(ψ̂
I){K̂L

R , Ê
L

R ,Ĥ
L

R },

where

K̂L =
ω
c

{
Q̂
(
cos ψ̂ Idx− sin ψ̂ Idy

)−(α̂+
ζ Lv̂
α̂

)
dz
}
, (8.156)

Ê L =
(
Ψ̂ cos ψ̂ I + Φ̂ sin ψ̂ I

)
dx+

(
Φ̂ cos ψ̂ I−Ψ̂ sin ψ̂ I

)
dy+

Q̂Ψ̂

α̂+ ζLv̂
α̂

dz,

(8.157)

Ĥ L =
1
Z0

{(
ε̂ ′rΨ̂

α̂+ ζLv̂
α̂

sin ψ̂ I−
(
α̂+

ζ Lv̂
α̂

)
Φ̂
μ̂L

r
cos ψ̂ I

)
dx,

+

((
α̂+

ζ Lv̂
α̂

)
Φ̂
μ̂L

r
sin ψ̂ I +

ε̂ ′rΨ̂

α̂+ ζLv̂
α̂

cos ψ̂ I

)
dy+

Q̂Φ̂
μ̂L

r
dz

}
. (8.158)

The complex parameter ψ̂ I remains an arbitrary complex angle. Thus (8.156)-(8.158)
constitute a family of solutions parametrised by ψ̂ I along with the bulk and surface
constitutive scalars.

For each m, ψ̂ I and root α̂ , the final electric and magnetic field configurations are
given by

êeeL = Ê Leiχ̂L
, ĥhh

L
= Ĥ Leiχ̂L

,

where

χ̂L =
ω
c

{
Q̂
(
cos ψ̂ Ix− sin ψ̂ Iy

)
+

(
α̂+

ζ Lv̂
α̂

)
z
}
. (8.159)

8.10 Conclusion

We have developed a strategy for analysing a large class of solutions to Maxwell’s
equations for the electromagnetic fields in piecewise homogeneous material media
containing a plane interface. The constitutive properties on either side of the interface
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have been assumed dispersive but isotropic while the interface has been endowed
with a complex homogeneous anisotropic admittance tensor relating surface currents
to electric fields in the interface. Such a model accommodates as a special case both
active and passive (including Ohmic) interface electromagnetic characteristics. The
analysis yields a family of solutions to this problem characterised by both constitutive
properties of the system and a number of arbitrary, complex (frequency-dependent)
constants. Different choices of these constants and constitutive scalars determine the
physical characteristics of the solutions.

For a planar interfaces f = 0 with surface normal unit vector N = d f/|d f |,
bounded solutions with K̂I and K̂II complex and

ℑ(iN(K̂L)) �= 0,

exhibit mode attenuation in directions where | f | ↔ ∞ and are referred to as surface
polariton modes. If the bulk constitutive permittivities or permeabilities are complex,
with bulk conductivity non-zero or the interface possesses surface admittance, the
tangential components of K̂I (or K̂II) may also become complex. In these circum-
stances, the physically acceptable plane-fronted polariton modes will propagate (in
half-spaces) with attenuation in directions orthogonal to N. When K̂I and K̂II are real
1-forms with

sign(iNK̂I) = sign(iNK̂II),

one speaks of plane-fronted Brewster modes.
Particular solutions may be classified further by introducing the notion of a real

plane of propagation at any point as the span of the real vector fields N and ˜̂ϒ where

ϒ̂ ≡ℜ(tNK̂I) = ℜ(tNK̂II). (8.160)

Such solutions are said to generate TE-type modes in the domain L if

i ˜̂
E

L

(
Ñ∧ϒ̂

)
= 0, (8.161)

and TM-type modes in the domain L if

i˜̂
H

L

(
Ñ∧ϒ̂

)
= 0. (8.162)

By definition the complex propagation vectors for surface polaritons without attenua-
tion in any plane orthogonal to N can be written in the form

˜̂KL

SP =
˜̂ϒ SP + iK̂L

NN (8.163)

for some K̂L
N ∈ R and the real propagation vectors for Brewster modes as K̂L

B . Since

i ˜̂
E

L K̂L = i˜̂
H

L K̂L = 0 (8.164)
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by construction, it follows that TE-type solutions in this class also satisfy

0 = i ˜̂
E

L

(
Ñ∧ϒ̂

)
= i ˜̂

E
L

(
Ñ∧ K̂L

)
= iN Ê

L
. (8.165)

From (8.157), with N = ∂z and Q̂ �= 0, this implies that

Ψ̂ = 0. (8.166)

Similarly, (8.164) implies that TM-type solutions in this class also satisfy

0 = i˜̂
H

L

(
Ñ∧ϒ̂

)
= i˜̂

H
L

(
Ñ∧ K̂L

)
= iNĤ

L
. (8.167)

From (8.158), this implies that
Φ̂ = 0. (8.168)

Thus type-Φ modes in this class correspond to TE polarised fields in the presence of
a planar interface, and type-Ψ modes to TM polarised fields7.

One may observe in this way how, for example, the presence of a non-zero surface
conductivity can dramatically change the standard mode structure of surface polariton
and Brewster electromagnetic field configurations. These and other effects will be
presented elsewhere (Christie and Tucker, 2018).

The systematic strategy outlined in the paper for finding analytic expressions
describing the electromagnetic fields in a dispersive medium containing a planar
meta-interface can be generalised to accommodate more intricate interface conditions
where surface currents are induced by electric and/or magnetic fields that are normal
and/or transverse to the planar interface. Such conditions have been contemplated in
Epstein and Eleftheriades (2016) in efforts to construct a “tunable meta-surface”.

Our geometric formulation in terms of differential forms offers a consistent
and compact way to approach more challenging problems involving media with
inhomogeneous constitutive components and curved interfaces. Such problems will
be discussed more fully elsewhere.
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{Ê ,Ĥ } ∈ Γ̂Λ 1U to be of type TE with respect to N if they satisfy iN Ê = 0 and of type TM with
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Chapter 9

Evolution Equations for Defects in Finite

Elasto-Plasticity

Sanda Cleja-Ţigoiu

Abstract The paper deals with continuous models of elasto-plastic materials with
microstructural defects such as dislocations and disclinations. The basic assumptions
concern the existence of plastic distortion and so-called plastic connection with
metric property and the existence of the free energy function. This is dependent on the
Cauchy-Green strain tensor, and its gradient with respect to the plastically deformed
anholonomic configuration, and on the dislocation and disclination densities. The
defect densities are defined in terms of the incompatibility of the plastic distortion
and non-integrability of the plastic connection. The evolution of plastic distortion
and disclination tensor has been postulated under the appropriate viscoplastic and
dissipative type equations, which are compatible with the principle of the free energy
imbalance. The associated small distortion model is provided. The present model
and the previous ones have been also compared.

9.1 Introduction

The paper deals with defects in crystalline materials, when the differential geometry
description is used in order to characterize lattice defects existing at the micro
structural level, see Kröner (1990). Here we restrict ourselves to dislocations and
disclinations and we make reference to different continuous descriptions which are
close to the background of our finite elasto-plastic model.
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9.1.1 Defects in Linear eElasticity

The elastic model for the defects such as dislocations and disclinations have been
described by the solutions of the linear theory of elasticity having the displacement
fields discontinuous along cut-off surfaces, see de Wit (1973a,b); Teodosiu (1982).
The problems formulated by de Wit (1973c) and Kossecka and de Wit (1977) concern
the finding of the elastic basic fields (i.e. strain and bent twist tensors) and the stress,
when the plastic fields, namely the defect densities, ααα for dislocations and ωωω for
disclinations, have been prescribed (without specifying the nature of these defects).
The incompatibilities in linear elasticity were reviewed by de Wit (1970, 1981);
Kossecka and de Wit (1977), see also Fressengeas et al (2011). Traditionally the
dislocations are determined by Burgers vector, bbb, which is equal to the translational
displacement, and the disclinations are characterized by Frank vector, ΩΩΩ , which is
equal to the rotational displacement, see de Wit (1973a,c); Kossecka and de Wit
(1977). The internal mechanical state of solids with defects leads Kröner (1992), to
solve the elastic problems with given incompatibilities.

9.1.2 Defects in Non-Linear Elasticity

Yavari and Goriely (2013) considered the cases of a single wedge disclination and
a parallel cylindrically-symmetric distribution of wedge disclination, respectively.
They solved the problem of existence of the residual stress: find the stress distri-
bution in an Neo-Hookean material, which is stress free, namely zero traction is
applied on the outer radius of the cylinder, when the wedge disclination densities, as
those mentioned above, have been given. First Yavari and Goriely (2013) construct a
Riemannian material manifold which is metric compatible having zero torsion and
non-zero curvature, for the given disclination density identified with the curvature
tensor. The manifold corresponds to Volterra’s geometrical description of wedge
disclination in a cylindrical body: cut, following by removing or inserting material,
and weld operations. As an example of Riemann-Cartan geometry Yavari and Goriely
(2012) built the material manifold which is dependent on the distribution of dislo-
cations, namely for a screw and a cylindrically-symmetric distribution of parallel
screw dislocations, respectively. The material manifold has torsion and vanishing
non-metricity, and corresponds to Volterra’s description of screw dislocation: cut a
half axial plane of the cylinder followed by the displacement with Burgers vector
along the symmetry axis, and weld procedure with removing the axis. The authors
found the residual stress for a generalized Neo-Hookean elastic body induced by
several distributed dislocations, including also the radially-symmetric distributed
edge dislocations.
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9.1.3 Defects in Nonlocal Elasticity

An improvement has been obtained using the nonlocal elasticity instead of the
classical one, namely the stress and strain energy singularities, which are present
in classical elasticity, have been eliminated. The nonlocal elasticity is given by
an integral type constitutive equations, which are characterized by the so-called
nonlocal kernel. The approaches to nonlocal elasticity proposed and discussed in
Eringen (2002) replace the integral operators with a special class of kernels by certain
differential operators. The integral representation of the stress is given in terms of
the Hookean stress. The displacement fields are identical with the classical forms
obtained by integrating the stress-strain relations of linear elasticity. Solutions for
screw dislocation, edge dislocation and wedge disclination have been described
and analyzed within the nonlocal elasticity, with Gaussian kernel, and for a special
class of kernels, which are Green functions of the Helmholtz equation in Eringen
(2002) and for bi-Helmholtz equation in Lazar et al (2006). Lazar and Maugin
(2004a,b), developed first a constitutive framework of gradient micropolar isotropic
elasticity, which was connected to the nonlocal micropolar elasticity given by Eringen
(2002). Second, Lazar and Maugin examined the mentioned defects in gradient
micropolar elasticity. The micropolar distortion and bent twist tensors satisfy the
appropriate inhomogeneous Helmholtz equations, with the inhomogeneities identified
with classical elastic expressions for the stress and couple stress tensor. The authors
did not derive the associate boundary conditions because they considered an infinite
extended medium. Only in a small region in the vicinity of r = 0, the stress calculated
in nonlocal elasticity of Helmholtz or bi-Helmholtz type is different, both of them
being zero at r = 0. Eringen’s results were recovered too.

9.1.4 Elasto-Plastic Models for Defects

Continuum models of these defects involve the couple stresses within the microp-
olar materials and Cosserat continuum, see Clayton et al (2006); Fressengeas et al
(2011). In the models developed by Arsenlis and Parks (1999); Gurtin (2002) the
Burgers vector has been defined by the geometrically necessary dislocation (GND)
tensor GGG = FFF pcurlFFF p in the lattice space. The GND density tensor is decomposed
in the appropriate edge and screw dislocations. Clayton et al (2006) introduced the
geometrically necessary defect density tensors in the deformed configuration, ααα
and θθθ , accounting for the incompatibilities induced by the torsion and curvature
tensor, which are associated with the connection ΓΓΓ . The connection coefficients were
defined as in Minagawa (1979) in terms of non-Riemannian’s type connection (using
(FFFL )−1) and a third order tensor field QQQ with assigned skew-symmetry. We recall the
multiplicative decomposition FFF =FFFL FFF p assumed by Clayton et al (2006), where
the lattice part FFFL is given by FFFL =FFFeFFFi, FFFe is the elastic part, FFFi is the residual
part due to the micro-heterogeneity in the presence in the of lattice defects. The free
energy function in the intermediate configuration is dependent on elastic Cauchy-
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Green strain tensor (expressed in terms of FFFe), defect density tensors pulled back
to the intermediate configuration by FFFe, i.e. α̃αα and θ̃θθ , the symmetric and positive
definite part of FFFi, and so on.

9.1.5 Aim of this Paper

Fressengeas et al (2011) proposed a field defect (dislocation and disclination), re-
stricted to small strains. The non-symmetric Cauchy stress, TTT , and couple- stress
tensor, mmm, are described in terms of elastic strain and bent-twist, εεεe and κκκe, with
macro forces, TTT and mmm, satisfying the balance equation formulated by Fleck et al
(1994). The evolution equations for basic plastic fields, εεε p,κκκ p, are dependent on the
density of dislocations and disclinations, ααα and θθθ , and on the macro forces. The
dislocation density θθθ generates a Frank vector ΩΩΩ .

In this paper we propose a model for structural defects such as dislocations and
disclinations, which can be viewed as an improvement of the models provided by
Cleja-Ţigoiu (2014); Cleja-Ţigoiu et al (2016), within the constitutive framework
developed by Cleja-Ţigoiu (2007, 2010). The key point is related to the expression
of the free energy density, this time also dependent on the gradient of the Cauchy-
Green elastic strain with respect to the plastically deformed configuration or the
so-called configuration with torsion. The basic assumptions concern the existence
of plastic distortion and so-called plastic connection with metric property and the
existence of the free energy function. This function is dependent on the Cauchy-Green
strain tensor and its gradient with respect to the plastically deformed anholonomic
configuration, and on dislocation and disclination densities. The defect densities are
defined in terms of the incompatibility of the plastic distortion and non-integrability of
the plastic connection, respectively. The free energy imbalance principle is postulated
in a similar form with those presented by Cleja-Ţigoiu (2007, 2010), following the
ideas given by Gurtin (2002); Gurtin et al (2010). The balance equation for micro
forces have been considered in the form provided by Cleja-Ţigoiu (2007, 2017). The
constitutive and evolution equations for plastic distortion and disclination tensor are
derived to be compatible with the free energy imbalance principle. The evolution of
plastic distortion and disclination tensor has been postulated under the appropriate
viscoplastic and dissipative type equations. The associated small distortion model is
also provided. The proposed model is compared with the previous models discussed
in Cleja-Ţigoiu et al (2016); Cleja-Tigoiu and Maugin (2000).

9.1.6 List of Notations

Further the following notations will be used:
E - the three dimensional Euclidean space, with the vector space of translations V ;
Lin - the set of the linear mappings from V to V , i.e the set of second order tensor,
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Sym2,Skw2 ⊂ Lin are the sets of all symmetric and skew-symmetric second order
tensors, respectively; uuu ·vvv,uuu×vvv,uuu⊗vvv denote scalar, cross and tensorial products
of vectors; (uuu,vvv,zzz) := (uuu×vvv) ·zzz is the mixed product of the vectors from V . aaa⊗bbb
and aaa⊗bbb⊗ccc are defined to be a second order tensor and a third order tensor by
(aaa⊗bbb)uuu = aaa(bbb ·uuu),(aaa⊗bbb⊗ccc)uuu = (aaa⊗bbb)(ccc ·uuu), for all vectors uuu.

For AAA ∈ Lin− a second order tensor, we introduce:
the notations {AAA}S,{AAA}a for the symmetric and skew-symmetric parts of the tensor;
definition of the trace: trAAA((uuu×vvv) · zzz) = (AAAuuu,vvv,zzz) + (uuu,AAAvvv,zzz) + (uuu,vvv,AAAzzz). III is the
identity tensor in Lin, AAAT denotes the transpose of AAA ∈ Lin, ∂AAAφ(x) denotes the
partial differential of the function φ with respect to the field AAA.

Let χ : B×RRR→ V defines the motion of the body B. The deformation gradient
and its gradient are expressed in coordinate systems by

FFF(XXX , t) = ∇χ(XXX , t) =
∂xi

∂X j gggi⊗GGG j, ∇FFF(XXX , t) =
∂ 2xi

∂X j∂Xk gggi⊗GGG j⊗GGGk. (9.1)

Here {gggi}i=1,2,3 and {GGGi}i=1,2,3 are local bases in the actual and reference configura-
tions, respectively.

In what follows the anholonomic basis vectors, in the so-called plastically de-
formed configuration or the configuration with torsion, generically denoted by K ,
are related with the crystal and defined by eee j =FFF pGGG j. Let {GGGi}i=1,2,3 be the recipro-
cal basis in the reference configuration. The plastic connection is represented by its
coefficients in a component representation given by

(p)
ΓΓΓ = Γ α

β γGGGα ⊗GGGβ ⊗GGGγ . (9.2)

The differential of smooth field AAA, with respect to the anholonomic configuration K ,
obeys the rule

∇K AAA = (∇AAA)(FFF p)−1. (9.3)

curl of a second order tensor field AAA is defined by the second order tensor field

(curlAAA)(uuu×vvv) := (∇AAA(uuu))vvv− (∇AAA(vvv))uuu ∀uuu,vvv ∈ V ,

(curlAAA)pi = ε i jk
∂Apk

∂x j

(9.4)

are the components of curlAAA given in a Cartesian basis.
The transpose of the third order tensor tensor field is defined by

A T (uuu) := (A uuu)T , ∀uuu ∈ V . (9.5)

The third order tensors, denoted by A , are linear mapping defined as element of the
set Lin{V ,Lin}, which are represented in a Cartesian basis {eeei}i=1,2,3 as

A := Ai jkeeei⊗eee j⊗eeek. (9.6)
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The scalar product of second order tensors AAA and BBB, and of the third order tensors A
and B, are defined in terms of their Cartesian components by

AAA ·BBB = Ai jBi j, ∀AAA,BBB ∈ Lin,
A ·B = Ai jkBi jk, ∀A ,B ∈ Lin{V ,Lin}. (9.7)

For any ΛΛΛ 1, ΛΛΛ 2 ∈ Lin we define a third order tensor associated with them, denoted
ΛΛΛ 1×ΛΛΛ 2, by

((ΛΛΛ 1×ΛΛΛ 2)uuu)vvv = (ΛΛΛ 1uuu)× (ΛΛΛ 2vvv), ∀ uuu,vvv. (9.8)

The notations SymA and SkwA are introduced for all A ∈ Lin{V ,Lin,} by

SymA ∈ Lin{V ,Lin}, Sym(A ) = A +A T ,
SkwA ∈ Lin{V ,Lin}, ((SkwA )uuu)vvv := (A uuu)vvv− (A vvv)uuu ∀uuu ∈ V .

(9.9)

The following identity holds

A ·Sym(CCCB) = (CCC(SymA )) ·B ∀CCC ∈ Sym2, A ,B ∈ Lin{V ,Lin}. (9.10)

The third order tensor, denoted by A [FFF1,FFF2], is associated to the set of tensors
A ∈ Lin(V ,Lin), and FFF1,FFF2 ∈ Lin, and is defined by

((A [FFF1,FFF2])uuu)vvv = (A (FFF1uuu))FFF2vvv, ∀ uuu,vvv ∈ V . (9.11)

or by its Cartesian components (A [FFF1,FFF2])ilq = Ai jk(FFF1) jl(FFF2)kq. Two types of
second order tensors that can be associated with any pair of third order tensors,
A ,B, following the rules written below

(A �B) ·LLL = A [III,LLL] ·B = AiskLsnBink,
(A r�B) ·LLL = A · (LLLB) = Ai jkLinBn jk, LLL ∈ Lin. (9.12)

9.2 Elasto-Plastic Materials with Lattice Defects

We recall our basic relationships which characterize the elasto-plastic material from
the geometrical point of view. The motion of the body, χ, induces a second order
deformation which is defined by (FFF ,ΓΓΓ := (FFF)−1(∇FFF)), ΓΓΓ is called the motion
connection.

The multiplicative decomposition of the deformation gradient FFF into its elastic
and plastic components, FFFe and FFF p, called distortions, namely

FFF =FFFeFFF p (9.13)

is considered.
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Definition 9.1. The Cauchy-Green elastic strain tensor,CCCe, and Cauchy-Green plastic
strain tensor, CCCp, are expressed by

CCCe = (FFFe)TFFFe, =⇒ CCCe = (FFF p)−TCCC(FFF p)−1, where CCC =FFFTFFF ,

CCCp = (FFF p)TFFF p.
(9.14)

The gradient of CCCe with respect to the configuration K can be expressed by

∇K CCCe = (FFF p)−T
(
∇CCC−Sym{CCC

(p)
A }
)
[(FFF p)−1,(FFF p)−1] (9.15)

As a direct consequence of the multiplicative decomposition formula (9.19) the
following relationships hold

LLL = LLLe +FFFeLLLp(FFFe)−1, where LLLe = ḞFFe
(FFFe)−1, LLLp = ḞFF p

(FFF p)−1. (9.16)

The plastic rate tensors with respect to the plastically deformed and reference config-
urations, respectively, and denoted by LLLp and lll p, are related by

LLLp =FFF plll p(FFF p)−1, where lll p = (FFF p)−1ḞFF p
. (9.17)

The following time derivatives can be computed

d
dt
(CCCp)−1 =−lll p(CCCp)−1− (CCCp)−1(lll p)T ,

ĊCC = 2FFFTDDDFFF , where DDD = {LLL}S,

∇ĊCC = (ĊCCΓΓΓ )T +FFFT (∇χDDD)[FFF ,FFF ]+ĊCCΓΓΓ , where ΓΓΓ =FFF−1∇FFF ,

d
dt
{(CCCp)−1(ΛΛΛ ×III)}=−(lll p(CCCp)−1 +(CCCp)−1(lll p)T )(ΛΛΛ ×III)+

+(CCCp)−1(Λ̇ΛΛ ×III).

(9.18)

Here ΛΛΛ is a second order tensor.

Proposition 9.1. Under the hypothesis of the multiplicative decomposition of the
deformation gradient FFF , postulated in (9.19), we get the composition rule of the
motion connection

ΓΓΓ = (FFF p)−1
(e)
A K [FFF p,FFF p]+

(p)
A ,

where
(e)
A K := (FFFe)−1∇K FFFe,

(p)
A := (FFF p)−1∇FFF p.

(9.19)

(e)
A K and

(p)
A define Bilby’s type connections (see Bilby, 1960) with respect to the

so-called configuration with torsion, and initial one, respectively.
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Based on the definitions for elastic strain CCCe and its gradient ∇K CCCe the following
relation holds

∇K CCCe = (CCCe
(e)
A K )T +CCCe(

(e)
A K ), (9.20)

see (9.19) together with (9.14).

The formula (9.20) states that the so-called elastic Bilby’s connection
(e)
A K has

metric property in K with respect to the elastic metric tensor CCCe, using a definition
given by Schouten (1954), see also Yavari and Goriely (2012).

9.2.1 Plastic Connection with Metric Property

We accepted the existence of the plastic connection with metric property, see Cleja-
Ţigoiu (2010).

Definition 9.2. The connection
(p)
ΓΓΓ has metric property if and only if the following

relationship holds

∇CCCp = (CCCp
(p)
ΓΓΓ )T +CCCp

(p)
ΓΓΓ . (9.21)

The relationship (9.21) is similarly to (9.20).

Proposition 9.2. The plastic connection, which is metric compatible with respect to
the metric tensor CCCp, is represented under the form

(p)
ΓΓΓ =

(p)
A +(CCCp)−1(ΛΛΛ ×III), (9.22)

where the third order tensor ΛΛΛ × III is generated by the second order (covariant)
tensor ΛΛΛ , which is called disclination tensor.

Proof. The proof can be found in Cleja-Ţigoiu (2010).

Definition 9.3. The (Cartan) torsion associated with the plastic connection (9.22) is
calculated in a given coordinate system by the skew-symmetric part of the connection,
as it follows

(SSSpvvv)uuu≡ (
(p)
ΓΓΓ vvv)uuu− (

(p)
ΓΓΓ uuu)vvv≡ ((SkwΓΓΓ )uuu)vvv. (9.23)

Let us remark that the Cartan torsion (9.23) can be expressed as a consequence of
the formula (9.22) by

SSSp = Skw
(p)
A +Skw((CCCp)−1(

(p)
ΛΛΛ ×III)). (9.24)
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Proposition 9.3. The second order torsion tensor N p, which is associated with
Cartan torsion (9.24), is expressed by

N p = (FFF p)−1curlFFF p +(CCCp)−1
(
(tr ΛΛΛ)III− (ΛΛΛ)T

)
,

where (SSSpuuu)vvv = N p(uuu×vvv).
(9.25)

Proof. The formula (9.31) follows directely from the mentioned calculus rules:

1. ∀N ∈ Lin(V ,Lin) there exists

ΩΩΩ<N > ∈ Skw2, such that SkwN =ΩΩΩ<N >(III×III),
which means ((SkwN )uuu)vvv =ΩΩΩ<N >(uuu×vvv), ∀ uuu,vvv ∈ V .

(9.26)

2. The following component representations hold

(SkwN )i jk = (ΩΩΩ<N >)imεmk j,

2(ΩΩΩ<N >)im = (SkwN )i jkεmk j.
(9.27)

Here εmk j denotes components of Ricci’s permutation tensor, namely εεε .
3. The following results can be proved

Skw
(p)
A = curlFFF p(III×III), that is

((Skw
(p)
A )uuu)vvv = (curlFFF p)(uuu×vvv), ∀ uuu,vvv ∈ V ,

Skw(ΛΛΛ ×III) = (trΛΛΛIII−ΛΛΛT )(III×III), namely
(Skw(ΛΛΛ ×III)uuu)vvv = (trΛΛΛIII−ΛΛΛT )(uuu×vvv).

(9.28)

9.2.2 Measure of Defects

The disclination tensor with respect to the configuration with torsion will be denoted
by Λ̃ΛΛ , see Cleja-Ţigoiu (2010), and it will be introduced here through

Λ̃ΛΛ = FFF pΛΛΛ(FFF p)−1. (9.29)

We define Burgers and Frank vectors in terms of the plastic distortion FFF p and
disclination tensor Λ̃ΛΛ . Both vectors are associated with a circuit C0. Let A0 be a
surface with normal NNN, which is surrounded by C0 in the reference configuration.

Definition 9.4. The Frank vector associated with a circuit C0 is defined by

ΩΩΩK =
∫

CK

Λ̃ΛΛ dxxxK =
∫
C0

Λ̃ΛΛFFF p dXXX =
∫
A0

curl(FFF pΛΛΛ)NNNdA. (9.30)
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Definition 9.5. The disclination density tensor with respect to the reference configu-
ration is defined by

ωωω = curl(FFF pΛΛΛ). (9.31)

The Burgers vector is defined in terms of the plastic distortion FFF p.

Definition 9.6. The Burgers vector associated with the circuit C0 is defined by

bbbK =
∫
C0

FFF p dXXX =
∫
A0

(curlFFF p)NNNdA. (9.32)

The dislocation density tensor ααα is expressed by

ααα := (FFF p)−1(curl FFF p), or ααα(III×III) = Skw(SSSp). (9.33)

ααα is a measure of the incompatibility of the plastic distortion FFF p, and its expression
is involved in (9.25).

Note 9.1. Starting from the definition of the Cartan torsion SSSp, via the second order
torsion tensor N p expressed by (9.25), and using the definitions of the defect
densities, (9.31) and (9.33), we can say that SSSp is a measure of the coupling between
continuously distributed dislocations and disclinations.

9.3 Free Energy Imbalance Principle Formulated in K

The local free energy imbalance is formulated with respect to the configuration with
torsion K , since the defects are relevant at the level of the lattice microstructure.
First we introduce the expression of the free energy density postulated with respect
to the configuration with torsion.

9.3.1 Free Energy Function

We assume that the free energy density in K is dependent on the second order elastic
deformation in terms of (CCCe,∇K CCCe), and it is also influenced by the state of defects,
i.e. SSSp

K ,ΛΛΛ and ∇K ΛΛΛ . The Cartan torsion SSSp pushed away to the plastically deformed
configuration is related to SSSp

K , in terms of the plastic distortion as it follows

SSSp
K =−FFF pSSSp[(FFF p)−1,(FFF p)−1]. (9.34)

Axiom 9.1 The free energy density with respect to the plastically deformed config-
uration, K , is postulated to be a function of the second order elastic deformation,
which is also dependent on the defects, and it is given by
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ψ = ψK (CCCe−III,∇K CCCe,SSSp
K ,Λ̃ΛΛ ,∇K Λ̃ΛΛ). (9.35)

Now we compare the free energy density function postulated in the paper Cleja-
Ţigoiu (2014) and the expression (9.35) considered herein. We recall here the basic

relationships between ΓΓΓ ,
(p)
ΓΓΓ and the so-called elastic connection in K ,

(e)
ΓΓΓ K

ΓΓΓ =
(p)
ΓΓΓ +(FFF p)−1

(e)
ΓΓΓ K [FFF p,FFF p],

(e)
ΓΓΓ K =

(e)
A K −ΛΛΛK ×III, where ΛΛΛK =

1
detFFF p Λ̃ΛΛ ,

(9.36)

that can be found in a detailed presentation in Cleja-Ţigoiu (2007) and Cleja-Tigoiu
and Maugin (2000).

The torsion of the elastic type connection
(e)
ΓΓΓ K is defined by

SSSe
K = Skw

(e)
ΓΓΓ K

(9.37)

and the relationship between torsions of the appropriate connections

SSSe
K =−SSSp

K (9.38)

can be proved as a direct consequences of the formulae (9.36), (9.37) together with
(9.29) and (9.37).

Proposition 9.4. The constitutive representation for the free energy density as de-

pendent on the second order elastic deformation in terms of (CCCe,
(e)
A K ) and on the

defects through (SSSe
K ,Λ̃ΛΛ), namely

ψ = ψK (CCCe,
(e)
A ,SSSe

K ,Λ̃ΛΛ), (9.39)

which has been postulated in Cleja-Ţigoiu (2014), can be viewed as a function of
arguments given by (9.35) if the dependence on ∇ΛΛΛ is ignored.

Proof. In order to justify the statement, first we recall the following theorem referring
to the compatible connection and which is written in component representations.

Theorem 9.1. The plastic Bilby connection allows the following representation

(p)
A = γγγ p +WWW p,

((γγγ puuu)vvv) ·zzz =
1
2
(CCCp)−1[((∇CCCp)uuu)vvv ·zzz+((∇CCCp)vvv)uuu ·zzz−((∇CCCp)zzz)uuu ·vvv],

(WWW puuu)vvv =
1
2
((SSSp)uuu)vvv− 1

2
(CCCp)−1((CCCpSSSpuuu)Tvvv+(CCCpSSSpvvv)Tuuu

)
,

(9.40)
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defined for all uuu,vvv,zzz ∈ V or in component representation the Levi-Civita (plastic)
connection is given by

(γγγ p)s
jk =

1
2

Gsi(∂Gik

∂X j +
∂Gi j

∂Xk −
∂G jk

∂Xi

)
,

and the (plastic) contorsion is expressed in terms of the torsion components as

(WWW p)i
jk =

1
2
(SSSp)i

jk−
1
2

Gis(G jm(SSSp)m
sk +Gkm(SSSp)m

s j
)
.

Here the components of the plastic metric tensors CCCp and (CCCp)−1 are denoted by Gi j
and Gi j, respectively. We mention here the symmetry properties of the fields defined
above

((γγγ p)uuu)vvv = (γγγ pvvv)uuu ∀ uuu,vvv ∈ V ,
WWW puuu ∈ Skew2 ∀ uuu ∈ V .

(9.41)

The proof can be found, for instance, in Schouten (1954), see also Yavari and Goriely

(2012). In addition, we apply the formulae (9.40) to the connection
(e)
A K , with respect

to the anholonomic configuration K . This means that gradient ∇ is replaced by
∇K . Consequently, having in mind the decomposition (9.40) the presence of the
fields (CCCe,∇K CCCe,SSSe

K ) in the formula (9.35) can be justified. Thus the presence of
the elastic torsion written with respect to the configuration K has been replaced by
the plastic torsion with respect to the same configuration via the relationship (9.38).

Note 9.2. The free energy density is influenced by the dislocation density αααK , which
is defined by

αααK (ũuu× ṽvv) = (Skw(
(e)
A K )ũuu)ṽvv, with the property

αααK (ũuu× ṽvv) =− 1
detFFF p FFF pααα(FFF p)−1(uuu×vvv), (FFF p)−1(ũuu) = uuu,(FFF p)−1(ṽvv) = vvv,

(9.42)

and by the disclination tensor Λ̃ΛΛ , both tensors being defined with respect to the
configuration with torsion K .

We mention that the elastic strain field

CCCe−III = (FFF p)−T (CCC−CCCp)(FFF p)−1, (9.43)

its gradient formula written in (9.15) together with (9.34), and (9.29) suggest that the
free energy density can be rewritten with respect to the reference configuration. When
the fields were pulled back to the reference configuration by (FFF p)−1, the function ψ
can be written under the form

ψ = ψ(CCC−CCCp,∇CCC−Sym{CCC
(p)
A },SSSp,ΛΛΛ ,∇ΛΛΛ). (9.44)
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As SSSp is considered to be a measure of dislocation-disclination interplay we
introduce a more general representation, which contains separately the influence of
dislocation and disclination defects, given by

ψ = ψe(CCC−CCCp,∇CCC−Sym{CCC
(p)
A })+

+ ψ(Skw(
(p)
A ),(CCCp)−1Skw(ΛΛΛ ×III),ΛΛΛ ,∇ΛΛΛ).

(9.45)

The time derivative of the free density function (9.45) is computed by

ψ̇ = ∂CCCeψe · (ĊCC−ĊCCp
)+

+∂∇CCCeψe · [∇ĊCC−Sym{CCC d
dt
(
(p)
A )}−Sym{ĊCC

(p)
A }]+ ψ̇.

(9.46)

The derivatives of the mentioned fields will be replaced by their appropriate expres-
sions.

9.3.2 Free Energy Imbalance Principle

The local free energy imbalance states the internal power expended during the elasto-
plastic process is equal or greater than the time derivative of the free energy density.

Axiom 9.2 The elasto-plastic constitutive description of the material is restricted to
satisfy in K the free energy imbalance principle

(Pint)K − ψ̇K ≥ 0, (9.47)

for any virtual (isothermal) processes.

The expression of the internal power is the result of the superposed elastic, plastic
and defect effects and will be written here in a slightly modified version of the
corresponding expression postulated in Cleja-Ţigoiu (2010).

Axiom 9.3 The internal power in the configuration with torsion is postulated to be
given by the expression

(Pint)K =
1
ρ
(TTT s) ·LLLe +

1
ρ̃
ϒϒϒ p ·LLLp +

1
ρ̃
μμμ p ·∇K LLLp+

+
1
ρ̃
μμμK · (

(
FFFe)−1(∇χLLL)[FFFe,FFFe]−∇K LLLp)+

+
1
ρ̃
ϒϒϒλ · D

Dt
Λ̃ΛΛ +

1
ρ̃
μμμλ ·∇K

D
Dt

Λ̃ΛΛ .

(9.48)

Note 9.3. The gradient of the plastic rate LLLp = ḞFF p
(FFF p)−1 with respect to the plasti-

cally deformed configuration is related to the time derivative of
(p)
A = (FFF p)−1∇FFF p,
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and moreover ∇lll p is involved in the expression of the previous one, as can be seen
from the following formulae:

d
dt

( (p)
A
)
= (FFF p)−1(∇K LLLp)[FFF p,FFF p] = ∇lll p− lll p

(p)
A +

(p)
A [III,lll p]. (9.49)

We represent now the stresses and stress momenta as associated measures with
respect to the reference configuration by pulled back procedure, see Cleja-Ţigoiu
et al (2016). For instance the Mandel stress tensors, associated with plastic and
disclination behaviour, are introduced with respect to the reference configuration by

1
ρ0
ΣΣΣ p

0 =
1
ρ̃
(FFF p)Tϒϒϒ p(FFF p)−T ,

1
ρ0
ΣΣΣλ

0 =
1
ρ̃
(FFF p)Tϒϒϒλ (FFF p)−T , (9.50)

while the appropriate micro stress momenta with respect to the reference configura-
tion are given by

1
ρ0

μμμ0 = (FFF p)T 1
ρ̃
μμμK [(FFF p)−T ,(FFF p)−T ],

1
ρ0

μμμ p
0 = (FFF p)T 1

ρ̃
μμμ p[(FFF p)−T ,(FFF p)−T ],

1
ρ0

μμμλ
0 = (FFF p)T 1

ρ̃
μμμλ [(FFF p)−T ,(FFF p)−T ].

(9.51)

Proposition 9.5. The internal power postulated by (9.48) is reformulated in terms of
the stresses and stress momenta associated with the reference configuration, (9.50)
and (9.51), under the form

1
ρ
(TTT s) · (LLL−FFFlll pFFF−1)−2∂CCCeψe ·FFFTDDDFFF +

1
ρ0
ΣΣΣ p

0 · lll p +
1
ρ0

μμμ p
0 ·

d
dt
(
(p)
A )+

+
1
ρ̃0

μμμ0 · (
(
FFF−1(∇χLLL)[FFF ,FFF ]− d

dt
(
(p)
A )
)
+∂CCCeψe · [CCCplll p +(lll p)TCCCp]−

−∂∇CCCeψe · {Sym(ĊCCΓΓΓ )+FFFT (∇χDDD)[FFF ,FFF ]}+
+∂∇CCCeψe · [Sym{CCC d

dt
(
(p)
A )}+Sym{ĊCC

(p)
A }]+

+
1
ρ0
ΣΣΣλ

0 · Λ̇ΛΛ +
1
ρ0

μμμλ
0 · {

(p)
A [III,Λ̇ΛΛ ]+∇Λ̇ΛΛ − Λ̇ΛΛ

(p)
A }− ψ̇ ≥ 0.

(9.52)

In order to derive the consequences that follow from the dissipation inequality (9.52)
we introduce certain identities involving the operators defined by (9.12).

The following identities written for any A and B ∈ Lin(V ,Lin) are direct conse-
quences of the given definitions
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(A �B)T = B�A , (A r�B)T = B r�A ,

{Sym(A �B)}s =
1
2
(A �B+A T �B+B�A +B�A T ),

{Sym(A r�B)}s =
1
2
(A r�B+A T

r�B+B r�A +B r�A ).

(9.53)

(SkwA )� (SkwB) = (ΩΩΩ<A > ·ΩΩΩ<B>)III +(ΩΩΩ<B>)
TΩΩΩ<A >,

(SkwA ) r� (SkwB) = 2ΩΩΩ<A >(ΩΩΩ<B>)
T ,

(9.54)

Moreover

A ·B = 2ΩΩΩ<A > ·ΩΩΩ<B>. (9.55)

9.4 Constitutive Restrictions Imposed by the Imbalance Free

Energy Principle

First we derive the elastic type constitutive equations, starting from the supposition
that no variation of the irreversible behaviour can occur.

9.4.1 Elastic Type Constitutive Equations

Proposition 9.6. We suppose that LLLp = 0 or lll p = 0 (then LLLe = LLL) and Λ̇ΛΛ = 0. Thus
the imbalance free energy relation is reduced to the following inequality

(
1
ρ
(TTT s)−2FFF∂CCCeψeFFFT ) ·DDD+

1
ρ0

μμμ0 ·FFF−1(∇χLLL)[FFF ,FFF ]
)−

−∂∇CCCeψe · {Sym(ĊCCΓΓΓ )+FFFT ∇χDDD[FFF ,FFF ]}+∂∇CCCeψe ·Sym{ĊCC
(p)
A } ≥ 0,

(9.56)

which holds for any LLL and ∇χLLL.

Theorem 9.2. The elastic free energy, denoted by ψe is potential for the macro stress
and macro stress momentum, respectively, related to the reference configuration,
namely

1
2ρ

πππ0 = ∂CCCeψe +{Sym(∂∇CCCeψe) r� (ΓΓΓ−
(p)
A )}S,

1
ρ0

μμμ0 = Sym(CCC∂∇CCCeψe),

(9.57)

were ΓΓΓ−
(p)
A≡ (FFF p)−1

(e)
A [FFF p,FFF p].
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Proof. In order to compare the terms written in (9.56) we use the rule (9.12)

∂∇CCCeψe ·Sym
(
ĊCC(ΓΓΓ−

(p)
A )
)
=
(
(Sym∂∇CCCeψe) r� (ΓΓΓ−

(p)
A )
) ·ĊCC, (9.58)

and we pass from DDD to ĊCC via the relation (9.18)2. The inequality (9.56) is written
finally under the form

{ 1
2ρ

πππ0−∂CCCeψe) ·ĊCC− ((Sym∂∇CCCeψe)r� (ΓΓΓ−
(p)
A )
)} ·ĊCC+

+
1
ρ0

FFF−T (μμμ0−Sym(CCC∂∇CCCeψe)
)
[FFFT ,FFFT ] ·∇χLLL≥ 0,

(9.59)

which holds for any LLL and ∇χLLL. In (9.59) the expression of the Piola-Kirchhoff stress
tensor with respect to the reference configuration, πππ0, has been introduced

1
ρ 0

πππ0 =
1
ρ

FFF−1TTTFFF−T , (9.60)

Note 9.4. The non-symmetric Cauchy stress, TTT , and couple-stress tensor, mmm, satisfy
the balance equations formulated by Fleck et al (1994), see also Cleja-Ţigoiu and
Ţigoiu (2011). In this model μμμ0zzz ∈ Sym2 and consequently TTT a is vanishing. The
(equilibrium) balance equations for macro forces, say (TTT ,μμμ) in the actual configura-
tion is reduced to the classical one, divTTT = 0, if the mass density of the body and
couple forces are neglected.

9.4.2 Dissipation Inequality

In order to derive the restrictions imposed by the free energy imbalance related to the
plastic behaviour, we return to the inequality (9.52).

Theorem 9.3. The reduced dissipation inequality is derived under the form

{ 1
ρ0

(μμμ p
0 −μμμ0)+CCCSym(∂∇CCCeψe)−Skw(∂Z1ψ)} · d

dt

(p)
A +

+{ 1
ρ0
ΣΣΣ p

0 +2CCCp∂CCCeψe +∂Z2ψ r� (CCCp)−1Skw(ΛΛΛ ×III)+

+Skw(ΛΛΛ ×III) r� (CCCp)−1∂Z2ψ} · lll p +(
1
ρ0

μμμλ
0 −∂∇ΛΛΛψ) ·∇Λ̇ΛΛ+

+
( 1
ρ0
ΣΣΣλ

0 −∂ΛΛΛψ+
(p)
A � 1

ρ0
μμμλ

0 −
1
ρ0

μμμλ
0 r�

(p)
A
) · Λ̇ΛΛ+

+{εεε · ((CCCp)−1∂Z2ψ
)
III− (εεε r� ((CCCp)−1∂Z2ψ)

)} · Λ̇ΛΛ ≥ 0,

(9.61)
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when we put into evidence the terms which contain the rates of the appropriate

fields and their gradients, namely lll p,
d
dt
(
(p)
A ), Λ̇ΛΛ and ∇Λ̇ΛΛ . Here εεε denotes Ricci’s

permutation tensor.

Proof. First we introduce the expression for the time derivative of non-elastic free
energy function ψ, in which we use the notations mentioned below

ψ = ψ(Skw(
(p)
A ),(CCCp)−1Skw(ΛΛΛ ×III),ΛΛΛ ,∇ΛΛΛ)≡ ψ(Skw(Z1,Z2,ΛΛΛ ,∇ΛΛΛ),

where Z1 = Skw(
(p)
A ), Z2 = (CCCp)−1Skw(ΛΛΛ ×III).

(9.62)

The time derivative of the non elastic free energy function (9.62) is expressed as

ψ̇ = ∂Z1ψ ·Skw(
d
dt
(
(p)
A )+∂Z2ψ ·Skw

( d
dt

(
(CCCp)−1(ΛΛΛ ×III)

)
+

+∂ΛΛΛψ · Λ̇ΛΛ +∂∇ΛΛΛψ ·∇Λ̇ΛΛ .
(9.63)

Using the time derivative formula written in (9.18)4, (9.7)4 and the rules (9.12) we
obtain

∂Z2ψ ·Skw
d
dt

(
(CCCp)−1(ΛΛΛ ×III)

)
=−(∂Z2ψ r�Skw(CCCp)−1(ΛΛΛ ×III)

) · lll p−

−((CCCp)−1∂Z2ψr
�Skw(ΛΛΛ ×III)

) · (lll p)T−
−εεε · ((CCCp)−1∂Z2ψ

)
III · Λ̇ΛΛ +

(
εεε r� ((CCCp)−1∂Z2ψ)

) · Λ̇ΛΛ .

(9.64)

The reduced dissipation inequality is derived from (9.52) together with the elastic
type constitutive relation (9.57)1, were ψ̇ is given by the formulae (9.63) together
with (9.64).

9.5 Viscoplastic Type Evolution Equations for Plastic Distortion

and Disclination Tensor

HHHypotheses. The energetic type constitutive equations will be defined for micro
momenta related to the plastic and disclination mechanism, namely

1
ρ0

μμμ p
0 =

1
ρ0

μμμ0−CCCSym(∂∇CCCeψe)+Skw(∂Z1ψ),

1
ρ0

μμμλ
0 = ∂∇ΛΛΛψ.

(9.65)
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Theorem 9.4. Under the hypotheses formulated by (9.65) the reduced dissipation
inequality can be written under the form

{ 1
ρ0
ΣΣΣ p

0 +2Skw∂Z2ψ r� (CCCp)−1(ΛΛΛ ×III)+

+(ΛΛΛ ×III) r�
(
(CCCp)−1Skw(∂Z2ψ)

)
+2CCCp∂CCCeψe} · lll p+

+
( 1
ρ0
ΣΣΣλ

0 −∂ΛΛΛψ+
(p)
A � 1

ρ0
μμμλ

0 −
1
ρ0

μμμλ
0 r�

(p)
A
) · Λ̇ΛΛ+

+{εεε · ((CCCp)−1∂Z2ψ
)
III− (εεε r� ((CCCp)−1∂Z2ψ)

)} · Λ̇ΛΛ ≥ 0

(9.66)

Proof. As a direct consequence of (9.61) together with (9.65) the inequality (9.66)
follows at once. The variables Z1 and Z2 have been defined in (9.62). Here Mandel’s

type stress tensor,
1
ρ0
ΣΣΣ p

0 , appears to be power conjugate to the rate of plastic distor-

tion lll p. For physical meaning and properties of Mandel and Eshelby stress tensors
see for instance Maugin (1994); Cleja-Tigoiu and Maugin (2000).

Axiom 9.4 The evolution equations for plastic distortion and disclination tensor are
supposed to be given by

ξ1 lll p =
1
ρ0
ΣΣΣ p

0 +Skw(∂Z2ψ) r�
(
(CCCp)−1Skw(ΛΛΛ ×III)

)
+

+Skw(ΛΛΛ ×III) r�
(
(CCCp)−1Skw(∂Z2ψ)

)
+2CCCp∂CCCeψe,

ξ2 Λ̇ΛΛ =
1
ρ0
ΣΣΣλ

0 −∂ΛΛΛψ+
(p)
A � 1

ρ0
μμμλ

0 −
1
ρ0

μμμλ
0 r�

(p)
A +

+εεε · ((CCCp)−1∂Z2ψ
)
III−εεε� ((CCCp)−1∂Z2ψ).

(9.67)

As a direct consequence of (9.67) the dissipation inequality (9.66) becomes

ξ1 lll p · lll p +ξ2 Λ̇ΛΛ · Λ̇ΛΛ ≥ 0. (9.68)

The last inequality holds for any non-negative constitutive functions ξ1,ξ2.

Concerning the expression of the Mandel type stress tensors,
1
ρ0
ΣΣΣ p and

1
ρ0
ΣΣΣλ

defined by (9.50), we shall use the balance equations for micro forces provided in the
paper by Cleja-Ţigoiu (2017). We recall the micro balance equation for the plastic
mechanism

1
ρ̃
(
ϒϒϒ p−ΣΣΣK

)
= div

( 1
ρ̃
(μμμ p−μμμK )(FFF p)−T )+BBBp, (9.69)

and the appropriate micro balance equation related to the disclination mechanism

1
ρ̃
ϒϒϒλ = div

( 1
ρ̃
μμμλ (FFF p)−T )+BBBλ . (9.70)
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Here ρ̃BBBp and ρ̃BBBλ are mass densities of couple body forces.

Definition 9.7. The Piola-Kirchhoff macroscopic stress tensor, πππ0, the macro stress
tensor, ΣΣΣK , and the Cauchy stress TTT are related by the following relationships

1
ρ̃
ΣΣΣK =

1
ρ0

(FFF p)−TCCCπππ0(FFF p)T =
1
ρ
(FFFe)−TTTT (FFFe)T . (9.71)

Note 9.5. Clayton et al (2006) assumed that the geometrically necessary density
tensors α̃αα and θ̃θθ do not contribute to the free energy dissipation, namely

σ̃ =
∂ψ̃
∂ α̃αα

, μ̃μμ =
∂ψ̃
∂ θ̃θθ

,

and the microforces with respect to the intermediate configuration satisfy the Fleck
et al (1994) type balance equations.

9.5.1 Quadratic Free Energy

We restrict ourself to the case of the free energy function which is quadratic with
respect to above mentioned variables, given by

ψ = ψe +ψ,

ψe =
1
8
E (CCC−CCCp) · (CCC−CCCp)+

1
4
β1(∇CCC−

−Sym{CCC
(p)
A }) · (∇CCC−Sym{CCC

(p)
A }),

ψ =
1
4
β2{Skw

(p)
A +β̃ (CCCp)−1Skw(ΛΛΛ ×III)} · {Skw

(p)
A +

+β̃ (CCCp)−1Skw(ΛΛΛ ×III)}+ 1
2
β3ΛΛΛ ·ΛΛΛ +

1
2
β4∇ΛΛΛ ·∇ΛΛΛ .

(9.72)

Note 9.6. If β̃ = 1 then the non-elastic part of the free energy postulated here coin-
cides with those introduced by Cleja-Ţigoiu et al (2016).

The appropriate partial derivatives of the free energy function (9.72) determine the
elastic type constitutive equations (9.57), the energetic representation for the micro
stress momenta (9.65) as well as the evolution equations for plastic distortion and
disclination tensor (9.67).

We do not provide here the particular constitutive model associated with the free
energy function (9.72) for the conciseness of the exposure. We pass directly to the
case of small distortions, that follows directly from the finite deformation model.
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9.5.2 Elasto-Plastic Model for Dislocations and Disclinations in
the Case of Small Distortions

The case of small elastic and plastic distortions is defined by the following conditions

FFFe = III +HHHe, FFF p = III +HHH p, FFF = III +HHH,
HHH = ∇uuu, HHH =HHHe +HHHe, for ‖HHHe ‖� 1,‖HHH p ‖� 1, (9.73)

The following approximated formulae can be put into evidence

CCC = III +2εεε, εεε =
1
2
(∇uuu+∇uuuT ), CCCp = III + εεε p, (9.74)

where

εεε p =
1
2
(HHH p +(HHH p)T )

1
2
β1
(
∇CCC−Sym({CCC

(p)
A })

)
= ∇εεε−∇εεε p,

(p)
A = ∇HHH p, ΓΓΓ = ∇HHH, Z1 = Skw∇HHH p, Z2 = Skw(ΛΛΛ ×III).

The elastic type constitutive equations, namely the formulae (9.57), can be repre-
sented under the form

1
ρ 0

πππ0 = E (εεε− εεε p)+
1
2
β1{(∇εεε−∇εεε p) r� (∇HHH−∇HHH p)

+(∇HHH−∇HHH p) r� (∇εεε−∇εεε p)},
1
ρ0

μμμ0 = β1(∇εεε−∇εεε p).

(9.75)

The energetic expressions for the plastic and disclination momenta are given by

1
ρ0

μμμ p = β2
(
Skw∇HHH p + β̃Skw(ΛΛΛ ×III)

)
,

1
ρ0

μμμλ = β4∇ΛΛΛ .
(9.76)

The evolution equations for plastic distortion and disclination tensor become

ξ1 lll p =
1
ρ0
ΣΣΣ p

0 +E (εεε− εεε p)+

+β2Skw(ΛΛΛ ×III) r�
(
Skw∇HHH p + β̃Skw(ΛΛΛ ×III)

)
+

+β2
(
Skw∇HHH p + β̃Skw(ΛΛΛ ×III)

)
r�Skw(ΛΛΛ ×III),

(9.77)
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ξ2 Λ̇ΛΛ =
1
ρ0
ΣΣΣλ

0 +β4 ∇HHH p�∇ΛΛΛ −β4∇ΛΛΛ r�∇HHH p−β3ΛΛΛ+

+
1
2
β2 ∈ ·

(
Skw∇HHH p + β̃Skw(ΛΛΛ ×III

)
III−

−1
2
β2 ∈ r�

(
Skw∇HHH p + β̃Skw(ΛΛΛ ×III)

)
.

(9.78)

Using the identities (9.54) and (9.55), together with the property Ω<∈> = −III the
evolution equation for the disclination tensor ΛΛΛ will be given by

ξ2 Λ̇ΛΛ =
1
ρ0
ΣΣΣλ

0 +β4 ∇HHH p�∇ΛΛΛ −β4∇ΛΛΛ r�∇HHH p−β3ΛΛΛ−
−2β2 tr (curlHHH p)III−4β2 β̃ tr(ΛΛΛ)III +β2 (curlHHH p)T +β2β̃

(
tr(ΛΛΛ)III−ΛΛΛ)

)(9.79)

Proposition 9.7. In the case of small distortions the evolution equations for the
plastic distortion HHH p and ΛΛΛ are given by

ξ1 ḢHH p
=

1
ρ0
ΣΣΣ p

0 +E (εεε− εεε p)+β2
(
(trΛΛΛ)III−ΛΛΛT )(curlHHH p)T+

+β2 (curlHHH p)
(
(trΛΛΛ)III−ΛΛΛ)+2β2β̃

(
(trΛΛΛ)III−ΛΛΛT )((trΛΛΛ)III−ΛΛΛ),

ξ2 Λ̇ΛΛ =
1
ρ0
ΣΣΣλ

0 +β4 ∇HHH p�∇ΛΛΛ −β4∇ΛΛΛ r�∇HHH p−β3ΛΛΛ−
−2β2 tr (curlHHH p)III−4β2 β̃ tr(ΛΛΛ)III+
+β2 (curlHHH p)T +β2β̃

(
tr(ΛΛΛ)III−ΛΛΛ).

(9.80)

The appropriate Mandel stress tensors are approximated by

ΣΣΣ p
0 =ϒϒϒ p, ΣΣΣλ

0 =ϒϒϒλ , ΣΣΣK = πππ0 = TTT , ρ̃ = ρ0, (9.81)

and are characterized by the micro balance equations (9.69) and (9.70) reduced to
the following ones

1
ρ0

(
ϒϒϒ p−πππ0

)
= div

1
ρ0

(μμμ p
0 −μ), (9.82)

where

div (
1
ρ0

μμμ p
0) =−β2curl

(
curlHHH p)−β2β̃ ∈ (∇trΛΛΛ)+β2β̃ curl(ΛΛΛT ),

div (
1
ρ0

μμμ0) = β1(Δεεε−Δεεε p).

and

1
ρ0
ϒϒϒλ = β4 ΔΛΛΛ , (9.83)

when the mass density of couple body forces were neglected.
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Theorem 9.5. Finally, the evolution equations for the unknowns HHH p and ΛΛΛ are given
by

ξ1 ḢHH p
=

1
ρ0

TTT +E (εεε− εεε p)−β1(Δεεε−Δεεε p)+

−β2curl
(
curlHHH p)−β2β̃ ∈ (∇trΛΛΛ)+β2β̃ curl(ΛΛΛT )+

+β2
(
(trΛΛΛ)III−ΛΛΛT )(curlHHH p)T +β2 (curlHHH p)

(
(trΛΛΛ)III−ΛΛΛ)+

+2β2β̃
(
(trΛΛΛ)III−ΛΛΛT )((trΛΛΛ)III−ΛΛΛ),

ξ2 Λ̇ΛΛ = β4 ΔΛΛΛ +β4 ∇HHH p�∇ΛΛΛ −β4∇ΛΛΛ r�∇HHH p−β3ΛΛΛ−
−2β2 tr (curlHHH p)III−4β2 β̃ tr(ΛΛΛ)III+
+β2 (curlHHH p)T +β2β̃

(
tr(ΛΛΛ)III−ΛΛΛ).

(9.84)

Here TTT is given by the relationship (9.75) when the hypothesis of small distortions is
accepted.

9.6 Conclusions

The proposed model of structural defects such as dislocations and disclinations
appears to be a continuation of the previous ones proposed by Cleja-Ţigoiu (2014);
Cleja-Ţigoiu et al (2016).

• The postulated free energy functions contain somehow the same variables de-
scribing the defects, excepting the gradient of the disclination tensor which is not
involved in Cleja-Ţigoiu (2014).

The elastic constitutive functions have been essentially changed, as follows

• The elastic response is characterized here by the formulae (9.57). The Piola-
Kirchhoff stress tensor is expressed in terms of the partial derivatives ∂CCCeψ,∂∇CCCeψ,

as well as Bilby’s elastic connection,
(e)
A , while

1
ρ 0

πππ = ∂CCCeψ

in Cleja-Ţigoiu (2014).
• The macro stress momentum with respect to the reference configuration is given

in terms of ∂∇CCCeψ via the relation (9.57)2, while in Cleja-Ţigoiu (2014) the macro
stress momentum is not a third order symmetric tensor and it depends on ∂A eψ,
and ∂SSSeψ. We used the notations

A e ≡
(e)
A K

and
SSSe ≡ SSSe

K .
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The evolution equations for plastic distortion, FFF p, and disclination tensor, Λ̃ΛΛ , were
provided to be compatible with the reduced dissipation inequality. We derived also
peculiar evolution equations for HHH p and Λ̃ΛΛ within the small distortions framework.

The evolution equations provided here for β = 1 are similar with those derived
in Cleja-Ţigoiu et al (2016) for the small strains, apart from the terms induced by
the elastic effect, namely the first three terms involved in right-hand side of the
evolution equation (9.84)1. In Cleja-Ţigoiu (2014) the micro stress associated with
the disclination mechanism remained undefined, and the disclination tensor, Λ̃ΛΛ , was
viewed as internal variable, see Maugin (2006). The presence of the gradient ∇K Λ̃ΛΛ
in the free energy function allowed us to define the micro stressϒϒϒλ , introduced in
(9.48) via (9.70). Thus both evolution equations are viscoplastic and diffusion type.
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Cleja-Ţigoiu S, Ţigoiu V (2011) Strain gradient effect in finite elasto-plastic damaged materials.
International Journal of Damage Mechanics 20(4):484–514
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Chapter 10

Viscoelastic effective properties for composites

with rectangular cross-section fibers using the

asymptotic homogenization method
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Bravo-Castillero, Raúl Guinovart-Díaz, Raúl Martínez-Rosado, Federico J. Sabina,
Serge Dumont, Frederic Lebon, and Igor Sevostianov

Abstract The present work deals with the estimation of the linear viscoelastic effec-
tive properties for composites with periodic structure and rectangular cross-section
fibers, using the two-scale asymptotic homogenization method (AHM). As a partic-
ular case, the effective properties for a layered medium with transversely isotropic
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properties are obtained. Two times the homogenization method, in different direc-
tions, according to the geometrical configuration of the composite material is applied
for deriving the analytical expressions of the viscoelastic effective properties for
a composite material with rectangular cross-section fibers, periodically distributed
along one axis. In addition to that, models with different creep kernels, in particular,
the Rabotnov’s kernel are analyzed. Finally, the numerical computation of the effec-
tive viscoelastic properties is developed for the analysis of the results. Moreover, a
numerical algorithm using FEM is developed in the present work. Comparisons with
other approaches are given as a validation of the present model.

10.1 Introduction

Many materials like metals, polymers, and ceramics especially at high temperature
exhibit time dependent behavior. For linear non ageing viscoelastic materials, the
convolution product in the Stieltjes space is often used for modeling of the time
dependent constitutive law. The overall behavior of viscoelastic composite materials
is investigated by many researchers based on homogenization techniques. Classically,
the investigation of effective properties of non ageing linear viscoelastic compos-
ites are mainly based on the correspondence principle and Laplace transform. This
approach changes the convolution constitutive law describing the linear non age-
ing viscoelastic behavior into a fictitious linear elastic one in the Laplace domain.
Linear homogenization method can then be used to drive the effective properties in
the frequency domain. The time dependent effective properties can be obtained by
performing numerical inversion of their Laplace transform. Based on this method-
ological approach, many researchers investigated the overall non ageing behavior of
linear viscoelastic composites.

Important results obtained for elastic materials can be translated to linear non
ageing viscoelastic materials using the correspondence principle (Hashin, 1965,
1970b; Christensen, 1969; Schapery, 1967; Wang and Weng, 1992; Kachanov, 1992;
Lahellec and Suquet, 2007; Dormieux et al, 2006). It can be shown that in the
Laplace-Carson (LC) transform space, the writing of the constitutive behavior is
the same as in elasticity, the stiffness tensors being nevertheless functions of the
LC transform variable (denoted thereafter LC variable). However, assuming that the
solution in LC space is obtained, there are still considerable difficulties in obtaining
the inverse LC transform to find the corresponding results in time space (Lévesque
et al, 2007; Le et al, 2007).

Homogenization of viscoelastic composites can be performed analytically by
solving the homogenization equations in Laplace-Carson space with the so-called
correspondence principle (Hashin, 1966, 1970a; Laws and McLaughlin, 1978; Beur-
they and Zaoui, 2000; Lévesque et al, 2007). The time domain solution is usually
obtained with inversion algorithms,such as the collocation method (Schapery, 1964;
Lévesque et al, 2007). The recently developed method of Lévesque et al (2007)
is quite accurate, leads to thermodynamically admissible materials but requires a
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moderate computation time. Another approach consists of a time-integration ap-
proach, relying on variational principles (Lahellec and Suquet, 2007). While it avoids
Laplace-Carson transforms and solves the viscoelastic problem directly in the time
domain, its numerical implementation is challenging. Finally, another technique
relies on a direct quasi-elastic approximation in the Laplace-Carson space (Brenner
et al, 2002). This method is computationally-efficient but at the expense of accuracy.
Finally, Ricaud and Masson (2009) have shown that the Laplace-Carson scheme,
making use of the Prony series approximation, is equivalent to a time-integration
scheme of the internal variable formulation, establishing a link between the two
approaches.

This work is devoted to Gerard A. Maugin, who apported significant contributions
in the micro-mechanic area. In particular, the authors had the pleasant opportunity
to collaborate with him in the piezoelectric composites area (Berger et al, 2003,
2006; Otero et al, 2003). In the present contribution, making use of the two-scale
asymptotic homogenization method (AHM) and correspondence principle, an equi-
librium viscoelastic heterogeneous problem is solved similar to the elastic case, but
in Laplace-Carson space. The overall behavior of composite non-ageing constituents
is investigated with the estimation of the linear viscoelastic effective properties. As
a particular case, the explicit formulae to predict the effective relaxation modulus
for a two-layered medium with transversely isotropic properties are obtained. The
numerical algorithm proposed by Hollenbeck (1998), to invert the Laplace transform,
is using to calculate the properties to the homogenized composites in the time do-
main. Different creep kernels are analyzed, in particular, a time-dependent function
considerated by Dischinger’s model (see Maghous and Creus, 2003) and the fraction-
exponential function or Rabotnov’s kernel (see Sevostianov et al, 2015, 2016) with
the aim to make several comparison and to validate the numerical results. A model
of finite element method is implemented and comparisons with the obtained results
using finite element method is also realized. An alternative approach, using double
homogenization scheme, is considered to estimate the linear viscoelastic effective
properties for composites with periodic structure and rectangular cross-section fibers.
This approach is inspired in the geometric design of the material.

10.2 Statement of the Viscoelastic Heterogeneous Problem

A heterogeneous material with periodic structure exhibiting a linear viscoelastic
behavior is considered. It occupies a region Σ in R3. Cartesian coordinate system xxx(xi)
is used where the stress tensor, external force field, surface force field, displacement
field and outer unit normal to the boundary ∂Σ of Σ (see Fig. 10.1) are denoted
by σσσ (σi j) , fff ( fi) , sss0 (s0

i ) , uuu(ui) and nnn(ni), respectively. The equilibrium equation
under the action of external force field is written as (see Persson et al, 1993)

divσσσ(xxx, t)+ fff (xxx) = 000, in Σ. (10.1)
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Fig. 10.1: Scales of the heterogeneous structure. a) Macroscopic heterogeneous
structure, b) periodic microstructure and c) periodic cell.

The corresponding boundary conditions associated to (10.1) are

uuu(xxx, t) = uuu0, on Σ1, (10.2)
σσσ(xxx, t)·nnn = sss0, on Σ2. (10.3)

The initial condition for Eq. (10.1) is

uuu(xxx, t) = 000, in Σ ×{0}, (10.4)

where Σ1∪Σ2 = ∂Σ and Σ1∩Σ2 =∅, (see Fig 10.1).
The stress and strain fields are linearly related to the constitutive law (see vis-

coelastic theory in Christensen, 1971; Pipkin, 1986)

σσσ(xxx, t) =
t∫

0

RRR(xxx, t− τ) :
∂εεε
(
uuu(xxx,τ)

)
∂τ

dτ, (10.5)

where RRR (Ri jkl) and εεε (εkl) denote a fourth rank tensor (the creep kernel or relaxation
modulus) and the Cauchy strain tensors, respectively.

The Eq. (10.5) can be expressed in a simplified form

σσσ(xxx, t) =RRR(xxx, t)◦εεε(uuu(xxx, t)), (10.6)

where ◦ is indicating the convolution integral (Zhang and Ostoja-Starzewski, 2015).
The following relationship is satisfied for small displacements

εkl
(
uuu(xxx, t)

)
=

1
2

(
∂uk(xxx, t)
∂xl

+
∂ul(xxx, t)
∂xk

)
. (10.7)

Replacing (10.6) into (10.1) and using (10.2) - (10.4), the mathematical statement
for the equilibrium viscoelastic heterogeneous problem is obtained
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−div
(

RRR(xxx, t)◦εεε(uuu(xxx, t))) = fff (xxx), (10.8)

uuu(xxx, t) = uuu0, ∀xxx ∈ Σ1 ∧ ∀t ∈ R, (10.9)
RRR(xxx, t)◦εεε(uuu(xxx, t))·nnn = sss0, ∀xxx ∈ Σ2 ∧ ∀t ∈ R, (10.10)

uuu(xxx,0) = 000, ∀xxx ∈ Σ . (10.11)

The following additional conditions are considered:

1. xxx (xi) is called the global coordinate. Also, is introduced the local or fast scale
coordinate yyy (yi), where yyy = ξ−1xxx. The parameter ξ is the fine mesh size of the
cell structure (see Persson et al, 1993).

2. The relaxation modulus fulfills the memory principle RRR(xxx, t)→ 0 as t→ ∞ (see
Sevostianov et al, 2016). In particular, we have RRRξ (xxx, t) =RRR(xxx/ξ , t) =RRR(yyy, t) is
Y−periodic related to the fast variable yyy.

3. RRR(yyy, t) ∈C∞(R3×R).
4. εεεα,β , t0 such that 0≤ α ≤RRR(yyy, t0)≤ β ≤ ∞ ∀yyy ∈ R3 (ξ → 0).
5. fff (xxx) ∈C∞(Σ).

The non-aging linear viscoelastic problem corresponds to elastic problems thanks
to the Laplace-Carson transform (Lavergne et al, 2016). The transformed of a function
ggg(xxx, t) is defined by

LC[ggg(xxx, t)] = ĝgg(xxx, p) = p
∞∫

0

e−ptggg(xxx, t)dt.

From now on, the functions with the symbol (̂) depending on the parameter p denotes
the Laplace-Carson space.

Considering the convolution theorem (see Sokolnikoff and Redheffer, 1968), the
equilibrium viscoelastic heterogeneous problem (10.8)-(10.11) becomes,

P ûuu(xxx, p) = fff (xxx), (10.12)
ûuu(xxx, p) = uuu0, ∀xxx ∈ Σ1 ∧ ∀p ∈ [0,∞], (10.13)

R̂RR(xxx, p) : εεε
(
ûuu(xxx, p)

)·nnn = sss0, ∀xxx ∈ Σ2 ∧ ∀p ∈ [0,∞], (10.14)
ûuu(xxx,0) = 000, ∀xxx ∈ Σ , (10.15)

where
P ûuu(xxx, p) =−div

(
R̂RR(xxx,p) : εεε

(
ûuu(xxx,p)

))
.

10.3 Two-Scale Asymptotic Homogenization Method to Solve the

Heterogeneous Problem

In this section the two-scales homogenization technique is used to obtain the basic
equations and the effective characteristic of the composite. A formal asymptotic
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solution (see definition in Bakhvalov and Panasenko, 1989) for finding the solution
of the problem is proposed. The asymptotic according to Bakhvalov and Panasenko
(1989) for solving (10.12)-(10.15) is given in the form

ûuu(xxx,ξ , p) =
∞

∑
a=0

ξ a ûuu(a)(xxx,yyy, p), (10.16)

where ûuu(a) (û(a)i ) is Y−periodic related to the variable yyy ∀a, ∀xxx ∈ Σ , ∀p ∈ [0,∞] and
ûuu(a)(xxx,yyy, p) ∈C∞(Σ ×R3× [0,∞]).

Besides, the expressions eklx and ekly are defined as follows (see Persson et al,
1993)

εklx
(
Φ̂ΦΦ(xxx, p)

)
=

1
2

(∂Φ̂k(xxx, p)
∂xl

+
∂Φ̂l(xxx, p)

∂xk

)
, (10.17)

εkly
(
Φ̂ΦΦ(yyy, p)

)
=

1
2

(∂Φ̂k(yyy, p)
∂yl

+
∂Φ̂l(yyy, p)

∂yk

)
. (10.18)

According to the chain rule and from (10.7), (10.16) - (1.18) can be obtained

εkl
(
ûuu(a)(xxx,xxx/ξ , p)

)
= εklx

(
ûuu(a)(xxx,yyy, p)

)
+ξ−1 εkly

(
ûuu(a)(xxx,yyy, p)

)
. (10.19)

Now, the objective is to find the expression of the coefficients such that the
following equality is satisfied (Bakhvalov and Panasenko, 1989)

P(ξ ) ûuu(xxx,ξ , p)− fff (xxx) = O(ξ ). (10.20)

In order to guarantee (10.20), the following operator is defined

Lαβ (•) :=− ∂
∂α j

(
R̂i jkl(yyy, p)εklβ (•)

)
, (10.21)

for α,β = xxx,yyy indistinctly and taken into account the rule for derivation

∂ (•)
∂x j

≡ ∂ (•)
∂x j

+
1
ξ
∂ (•)
∂y j

. (10.22)

Then, replacing (10.16), (10.19) - (10.22) into (10.20), applying some simplifica-
tions and grouping in powers of ε , the following sequence of problems are obtained

ξ−2 → Lyyûuu
(0)(xxx,yyy, p) = 000, (10.23)

ξ−1 → Lxyûuu
(0)(xxx,yyy, p)+Lyxûuu

(0)(xxx,yyy, p)+Lyyûuu
(1)(xxx,yyy, p) = 000, (10.24)

ξ 0 → Lxxûuu
(0)(xxx,yyy, p)+Lxyûuu

(1)(xxx,yyy, p)+Lyxûuu
(1)(xxx,yyy, p)

+Lyyûuu
(2)(xxx,yyy, p)− fff (xxx) = 000. (10.25)

The problems (10.23) - (10.25) can be solved in a recursive form.
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Considering the asymptotic (10.16) as an approximation of the exact solution
of the original problem (10.12)-(10.15) and replacing (10.16) into the boundary
conditions (10.13) and (10.14)

ûuu(0)(xxx,yyy, p) = uuu0, ∀xxx ∈ Σ1 ∧ ∀p ∈ [0,∞], (10.26)

R̂RR(xxx, p) : εεε(ûuu(0)(xxx,yyy, p))·nnn = sss0, ∀xxx ∈ Σ2 ∧ ∀p ∈ [0,∞]. (10.27)

Besides, the remaining terms are assigned by

ûuu(a)(xxx,yyy, p) = 000, ∀xxx ∈ Σ1 ∧ ∀p ∈ [0,∞] ∧ ∀a > 0, (10.28)

R̂RR(xxx, p) : εεε(ûuu(a)(xxx,yyy, p))·nnn = 000, ∀xxx ∈ Σ2 ∧ ∀p ∈ [0,∞] ∧ ∀a > 0 (10.29)

The conditions (10.26)-(10.29) are justified by construction because of the formal
asymptotic solution is considered.

In order to solve (10.23)-(10.25) the following lemma is required. The proof of
this lemma is given in Sect. 4.3 of Persson et al (1993).

Lemma 10.1. Let FFF (Fi) be square integrable function over Y and consider the
boundary value problem

LyyΦΦΦ =FFF ,

where ΦΦΦ is Y -periodic. Then the following conditions hold,

(i) A Y -periodic solution ΦΦΦ exists if and only if 〈FFF〉= 0.
(ii) If a Y -periodic solution ΦΦΦ exists, then it is unique up to a constant vector ccc.

The notation 〈•〉 defines the average over the Y -cell, i.e.,

〈FFF〉 :=
1
|Y |
∫

Y
FFFdy,

where |Y | is the measure of Y . Subsequently, the main results for each power of ε are
summarized.

10.3.1 Contribution of the Level ξ−2 Problem

The problem (10.23) and (10.26)-(10.27) is stated as follows

Lyyûuu
(0)(xxx,yyy, p) = 000, (10.30)

ûuu(0)(xxx,yyy, p) = uuu0, ∀xxx ∈ Σ1 ∧ ∀p ∈ [0,∞], (10.31)

R̂RR(xxx, p) : εεε(ûuu(0)(xxx,yyy, p))·nnn = sss0, ∀xxx ∈ Σ2 ∧ ∀p ∈ [0,∞], (10.32)
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ûuu(0)(xxx,yyy,0) = 000, ∀xxx ∈ Σ . (10.33)

Equation (10.30) has the trivial solution ûuu(0)(xxx,yyy, p)≡000. Thus, Lemma 10.1 indicates
that ûuu(0)(xxx,yyy, p) is a solution of (10.30) if and only if it is a constant with respect to
the variable yyy. It implies that,

ûuu(0)(xxx,yyy, p) = v̂vv(xxx, p), (10.34)

where v̂vv(xxx, t) is a infinitely differentiable function (see Persson et al, 1993).
Now, from (10.31) - (10.33) are obtained

ûuu(0)(xxx,yyy, p) = v̂vv(xxx, p) = uuu0, ∀xxx ∈ Σ1 ∧ ∀p ∈ [0,∞], (10.35)

R̂RR(xxx, p) : εεε(v̂vv(xxx, p))·nnn = sss0, ∀xxx ∈ Σ2 ∧ ∀p ∈ [0,∞], (10.36)

ûuu(0)(xxx,yyy,0) = v̂vv(xxx,0) = 000, ∀xxx ∈ Σ . (10.37)

10.3.2 Contribution of the Level ξ−1 Problem

According to (10.34), the first term of (10.24) is zero, Lxyûuu
(0)(xxx,yyy, p) = Lxyv̂vv(xxx, p) =000.

In this case, the problems (10.24) and (10.28)-(10.29) are reduced to

Lyyûuu
(1)(xxx,yyy, p) = −Lyxûuu

(0)(xxx,yyy, p), (10.38)

ûuu(1)(xxx,yyy, p) = 000, ∀xxx ∈ Σ1 ∧ ∀p ∈ [0,∞], (10.39)

R̂RR(xxx, p) : εεε(ûuu(1)(xxx,yyy, p))·nnn = 000, ∀xxx ∈ Σ2 ∧ ∀p ∈ [0,∞], (10.40)

ûuu(1)(xxx,yyy,0) = 000, ∀xxx ∈ Σ . (10.41)

Applying the Lemma 10.1 on (10.38), having into account (10.34), the divergence
theorem and the Y−periodicity condition of R̂RR(yyy, p) (see the additional condition
(2)), the following result is satisfied〈

−Lyxûuu
(0)(xxx,yyy, p)

〉
= 0.

Consequently, the existence of one solution for the problem (10.38) is guaranteed.
Now, using separation of variables and the condition (ii) of Lemma 10.1, a general
solution of (10.38) can be given by

ûuu(1)(xxx,yyy, p) = N̂NN
rs
(yyy, p)εrsx(v̂vv(xxx, p))+ŵww(xxx, p), (10.42)

where N̂NN
rs

(N̂rs
i ) is called the local function and ŵww (ŵi) is infinitely differentiable

function.
Finally, replacing (10.34) and (10.42) into (10.38) and after some simplifications

the cell problem is obtained
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− ∂
∂y j

(
R̂i jkl(yyy, p)εkly

(
N̂NN

rs
(yyy, p)

))
=

∂
∂y j

(
R̂i jrs(yyy, p)

)
, (10.43)

where, employing the Lemma 10.1 on (10.43), N̂NN
rs

is Y -periodic function.
Having into account (10.35) - (10.37), (10.39) - (10.42), the boundary conditions

and initial condition to the cell problem are written in term of the local function

N̂NN
rs
(yyy, p) = 000, ∀yyy ∈ Y ∧ ∀p ∈ [0,∞], (10.44)

R̂RR(xxx, p) : εεε(N̂NN
rs
(yyy, p))·nnn = 000, ∀yyy ∈ Y ∧ ∀p ∈ [0,∞], (10.45)

N̂NN
rs
(yyy,0) = 000, ∀yyy ∈ R3. (10.46)

10.3.3 Contribution of the Level ξ 0 Problem

The problem (10.25) and (10.28)-(10.29) are given as follows

Lyyûuu
(2)(xxx,yyy, p)= fff (xxx)−Lxxûuu

(0)(xxx,yyy, p)−Lxyûuu
(1)(xxx,yyy, p)−Lyxûuu

(1)(xxx,yyy, p), (10.47)

ûuu(2)(xxx,yyy, p) = 000, ∀xxx ∈ Σ1 ∧ ∀p ∈ [0,∞], (10.48)

R̂RR(xxx, p) : εεε(ûuu(2)(xxx,yyy, p))·nnn = 000, ∀xxx ∈ Σ2 ∧ ∀p ∈ [0,∞], (10.49)

ûuu(2)(xxx,yyy,0) = 000, ∀xxx ∈ Σ . (10.50)

The Lemma 10.1 guarantees the existence of one Y -periodic solution of the problem
(10.47), if and only if〈

fff (xxx)−Lxxûuu
(0)(xxx,yyy, p)−Lxyûuu

(1)(xxx,yyy, p)−Lyxûuu
(1)(xxx,yyy, p)

〉
= 0. (10.51)

The functions R̂RR(yyy, p) and N̂NN
rs
(yyy, p) are Y−periodic and the function v̂vv(xxx, p) is

independent of yyy. Therefore, using (10.42) and the divergence theorem can be proved〈
Lyxûuu

(1)(xxx,yyy, p)
〉
= 0.

Then, from (10.51), the homogenized equation is obtained and it can be written in
the form

−R̂ (e)
i jrs(p)

∂
∂x j

εrsx(v̂vv(xxx, p)) = fi(xxx), (10.52)

where

R̂ (e)
i jrs(p) =

〈
R̂i jrs(yyy, p)+ R̂i jkl(yyy, p)εkly

(
N̂NN

rs
(yyy, p)

)〉
, (10.53)

are the homogenized coefficients or the effective coefficients.
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To obtain a well posed problem in (10.52), the boundary conditions and initial
condition are needed for v̂vv(xxx, p). From (10.35) and (10.36) the boundary conditions
for the Eq. (10.52) are given in the form

v̂vv(xxx, p) = uuu0, ∀xxx ∈ Σ1 ∧ ∀p ∈ [0,∞], (10.54)

R̂RR(xxx, p) : εεε(v̂vv(xxx, p))·nnn = sss0, ∀xxx ∈ Σ2 ∧ ∀p ∈ [0,∞], (10.55)

and from (10.37) the initial condition is

v̂vv(xxx,0) = 000, ∀xxx ∈ Σ . (10.56)

10.4 Two Phase Viscoelastic Composite

Now, we study a layered medium (see Fig 10.2). It is a composite formed by cells that
are periodically distributed along one axis and each cell is made of a finite number
of layers. In particular, we take x3 the axis that describe the periodicity and it is
perpendicular to the layers. The relaxation modulus R̂RR(xxx, p) is periodic function of
the coordinate x3 and it does not depend on x1 and x2.

Expanding the cell problem (10.43) for the index j, the first two terms are vanished
because the fast variable depends only on y3, (y3 = ξ−1x3), and therefore

− ∂
∂y3

(
R̂i3kl(yyy, p)εkly

(
N̂NN

rs
(yyy, p)

)
+ R̂i3rs(yyy, p)

)
= 0. (10.57)

The symmetry properties of the relaxation viscoelastic modulus are considered

Ri jkl(xxx, t) = R jikl(xxx, t) = Ri jlk(xxx, t) = Rkli j(xxx, t),

where the last equality is consistent with the reciprocity principle stated by Onsager
(see Maghous and Creus, 2003). Expanding (10.57) for the index k and l, this equation

Fig. 10.2: Scales of a layered structure. a) Macroscopic structure, b) periodic mi-
crostructure, c) unit cell.
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becomes in the simplified form

− ∂
∂y3

(
R̂i3k3(yyy, p)

∂ N̂rs
k (yyy, p)
∂y3

+ R̂i3rs(yyy, p)
)
= 0. (10.58)

From (10.58) is obtained

R̂i3k3(yyy, p)
∂ N̂rs

k (yyy, p)
∂y3

+ R̂i3rs(yyy, p) = Âi3rs(p), (10.59)

and therefore,

∂ N̂rs
k (yyy, p)
∂y3

= R̂−1
i3k3(yyy, p)

(
Âi3rs(p)− R̂i3rs(yyy, p)

)
. (10.60)

As N̂NN
rs

is Y−periodic function, applying the average operator to both sides of (10.60)
and using the divergence theorem we obtain〈

∂ N̂rs
k (yyy, p)
∂y3

〉
= 0, (10.61)

and consequently

Âi3rs(p) =
〈

R̂−1
i3q3(yyy, p)

〉−1〈
R̂−1

p3q3(yyy, p)R̂p3rs(yyy, p)
〉
. (10.62)

Replacing (10.62) into (10.60) and after some algebraic manipulations

∂ N̂rs
k (yyy,p)
∂y3

= R̂−1
l3k3(yyy, p)

〈
R̂−1

l3q3(yyy, p)
〉−1〈

R̂−1
p3q3(yyy, p)R̂p3rs(yyy, p)

〉
− R̂−1

l3k3(yyy, p)R̂l3rs(yyy, p).
(10.63)

Using the formula of the effective coefficients (10.53)

R̂ (e)
i jrs(p) =

〈
R̂i jrs(yyy, p)+ R̂i jkl(yyy, p)εkly

(
N̂NN

rs
(yyy, p)

)〉
=

〈
R̂i jrs(yyy, p)+ R̂i jk3(yyy, p)

(∂ N̂rs
k (yyy, p)
∂y3

)〉
. (10.64)

Replacing (10.63) into (10.64), the expression of the effective coefficients is given
in the final form

R̂ (e)
i jrs(p) =

〈
R̂i jrs(yyy, p)

〉
+

〈
R̂i jk3(yyy, p)R̂−1

l3k3(yyy, p)
〉〈

R̂−1
l3q3(yyy, p)

〉−1

·
〈

R̂−1
p3q3(yyy, p)R̂p3rs(yyy, p)

〉
−
〈

R̂i jk3(yyy, p)R̂−1
l3k3(yyy, p)R̂l3rs(yyy, p)

〉
. (10.65)
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The Eq. (10.65) represents the general expression for the effective coefficients in
Laplace-Carson space (see Pobedria, 1984).

In case of a two-layered medium where each constituent has isotropic charac-
teristic, the expression of the effective coefficients derived from (10.57) are the
following

R̂ (e)
1111(p) = R̂ (e)

2222(p)

= 〈λ +2μ〉+
〈

1
λ +2μ

〉−1〈 λ
λ +2μ

〉2

−
〈

λ 2

λ +2μ

〉
, (10.66)

R̂ (e)
3333(p) =

〈
1

λ +2μ

〉−1

, (10.67)

R̂ (e)
1122(p) = R̂ (e)

2211(p) = 〈λ 〉+
〈

1
λ +2μ

〉−1〈 λ
λ +2μ

〉2

−
〈

λ 2

λ +2μ

〉
, (10.68)

R̂ (e)
1133(p) = R̂ (e)

3311(p) = R̂ (e)
3322(p) = R̂ (e)

2233(p) =
〈

λ
λ +2μ

〉〈
1

λ +2μ

〉−1

, (10.69)

R̂ (e)
1313(p) = R̂ (e)

2323(p) =
〈

1
μ

〉−1

, (10.70)

R̂ (e)
1212(p) = 〈μ〉. (10.71)

Notice that the global behavior is transversely isotropic for this type of laminate
composite with isotropic constituents where their properties are denoted by the
Lame’s constants λ and μ .

10.5 Numerical Results

The above described method allows to find for two-layered viscoelastic medium with
isotropic constituents, the value of the effective properties. In the literature, there
are different creep kernels that describe the viscoelastic properties of a material. As
examples, two different models are analyzed.

10.5.1 Model I

The first case is a two-layered medium (see Fig 10.3) structured by a layer 1 with
linear elastic behavior and a layer 2 with viscoelastic behavior. This last layer is
described by Dischinger’s model (see Maghous and Creus, 2003). The Dischinger’s
model considers a time-dependent function, given in the form

ϕ(τ, t) = exp (−αt)− exp (−ατ). (10.72)
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The correspondent Lame’s constants for the elastic layer 1 are taken by the
relations

μ1 = μ2,0, λ1 = K− 2
3
μ2,0, (10.73)

and the relaxation functions for the viscoelastic layer 2 are defined for τ ≤ t by

μ2(τ, t) = μ2,0 exp

(
μ2,0

αβ
ϕ(τ, t)

)
, λ2(τ, t) = K− 2

3
μ2(τ, t), (10.74)

where K is the bulk elastic modulus and μ2,0 represents a constant. Besides, α and
β are parameters of model. In Table 10.1 can be found the values of the parameters
related to Dischinger’s model. The results are obtained for τ = 0, a medium with
non-ageing.

The computation of the effective coefficients are done using the formulae (10.66)-
(10.68) and (10.70). The behavior of the macroscopic properties are displayed in
Fig. 10.4. This result by AHM is compared with Maghous and Creus (2003). Besides,
in Fig. 10.4 are added the Voigt upper bound (VUB) and Reuss lower bound (RLB)
to verify that the overall properties of the composite are between them. Since the
composite has two phases and piecewise constant properties, the bounds can be
calculated as follows

R̂ (Voigt)
i jkl (p) = η1R̂ (1)

i jkl(p)+η2R̂ (2)
i jkl(p), (10.75)

R̂ (Reuss)
i jkl (p) =

(
η1

R̂ (1)
i jkl(p)

+
η2

R̂ (2)
i jkl(p)

)−1

, (10.76)

where η1 and η2 are the volume fractions of layer 1 and layer 2 respectively. The
superscripts (1), (2) in the kernels are indicating the corresponding material in each

Fig. 10.3 Cell of two-layered
medium.

Table 10.1: Parameters of Dischinger’s model.

K μ20 α·β α η1 η2

(GPa) (GPa) (GPa) (days−1) (dimensionless) (dimensionless)

10 000 8571 35667 0.026 0.5 0.5
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Fig. 10.4: Comparison between AHM, FEM, Maghous and Creus model and the
Voigt and Reuss bounds. The results have been normalized with respect to the first
phase and are obtained for τ = 0.

layer. In the computational process the numerical implementation of the effective
coefficients is necessary. The function INVLAP2, developed in Matlab and the expla-
nation given in Hollenbeck (1998), is adapted to guarantee the necessary technical
support for the numerical inversion of Laplace-Carson transform.

As another validation of the present algorithm, a finite element method to compute
homogenized coefficients, using Eqs. (10.58) and (10.61) written in the physical
space, is implemented. For that purpose, the time interval [0,T ] is firstly discretized
ti = kΔ t, (k = 0, . . . ,NT ), and the time integral is approximated using a midpoint
quadrature rule. As a consequence, the kernel of the convolution is evaluated on a
staggered grid. Then, we obtain a sequence of Poisson’s equations that are discretized
using a standard finite element method (for more details, see for example Chen et al,
2010; Dumont and Duval, 2013).

10.5.2 Model II

In the previous model, the proposed creep kernel is a composed exponential function.
The main problem is that, simplest kernels as exponential function or their linear
combinations, does not always describe correctly the viscoelastic behavior for de-



10 Viscoelastic effective properties for composites with rectangular cross-section fibers 217

termined materials (see Sevostianov et al, 2016). The use of fraction-exponential
functions (see Rabotnov, 1948, 2014; Blair and Coppen, 1939, 1943)

�α (β , t) = t−α
∞

∑
n=0

(−β )ntn(1−α)

Γ[(n+1)(1−α)] , (10.77)

with 0 ≤ α < 1 and 0 < β , as kernel of viscoelastic operators, simplify and solve
this situation. Furthermore, they allow, analytically, to obtain results with the use
of Laplace transform and at the same time, offer an excellent concordance with the
experimental data (see Sevostianov et al, 2016).

The algebraic properties of the Rabotnov’s kernel are very well developed in
Rabotnov (1977). One of the most important aspect described in the theory of this
function is the analytical treatment of its Laplace transform

L
[
�α (β , t)

]
≡

∞∫
0

�α (β , t)e−pt =
1

p1−α +β
. (10.78)

Now, consider a two-layered medium with the structure: the layer 1 exhibits elastic
properties and the layer 2 viscoelastic properties. The following data, obtained from
Sevostianov et al (2016), has been selected to guarantee the numerical computation.
The corresponding Lame’s constants for the layer 1 are given as follows

μ1 = 8.571GPa, λ1 = K1− 2
3
μ1GPa. (10.79)

Taking the relaxation modulus of layer 2 as a fraction-exponential function or
Rabotnov’s kernel and applying the Laplace-Carson transform, having in mind the
expression (10.71), the following analytic formulae are obtained,

μ̂2(p) = p ·μ20

(
1+

γ2

p(1−α2) +β2

)
, λ̂2(p) = K2− 2

3
μ̂2(p), (10.80)

where μ20 is the instantaneous shear modulus and μ20,α2,β2 and γ2 are parameters of
the material given experimentally. The material parameters are shown in Table 10.2.

The obtained effective coefficients (10.66)-(10.68) and (10.70), for this model,
are displayed in Fig. 10.5. The expression (10.77) is reduced to exponential function
for α = 0. In this case, it describes the properties of standard viscoelastic material
or Kelvin model (see Sevostianov et al, 2015). Therefore, the numerical results of
the effective coefficients by AHM are compared with the corresponding coefficients
calculated by Kelvin’s model (AHM-Kelvin). Besides, the Voigt upper bound (VUB)
and Reuss lower bound (RLB) are added to the comparison (see Fig. 10.5) as a
validation of the results obtained by the present model (AHM).
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Fig. 10.5: Computation of the effective coefficients using Rabotnov’s kernel. Com-
parison with Kelvin’s model, Voigt and Reuss bounds. The coefficients have been
normalized with respect to the first phase.

10.5.3 Viscoelastic Effective Constants for Composites with
Rectangular Cross-Section Fibers: Double Homogenization

The purpose now is to obtain, using the asymptotic homogenization method, the
viscoelastic effective properties for a composite material with rectangular cross-

Table 10.2: Material parameters.

Layer 1 K1 η1 - - - -
(GPa) (-)

10.0 0.5 - - - -

Layer 2 K2 η2 α2 β2 γ2 μ20

(GPa) (-) (-) (day1−α ) (day1−α ) (MPa)

5.97 0.5 0.47 0.98 49.6 1.7
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Fig. 10.6: Composites material with rectangular cross-section fibers. (a) First
homogenization structure. (b) Second homogenization structure.

section fibers, periodically distributed (see Fig 10.6) along one axis with the aim of
the aforementioned results applied to layered composites.

The basic idea is applied two times the homogenization method, in different
directions, according to the geometrical configuration of the composite material.
Therefore, we can divided the problem into two homogenization stages.

1. In a first moment, the composite is homogenized in the direction x2. This structure
can be analyzed as a two-layered medium with transversely isotropic properties
after the homogenization process (see Fig. 10.6 (a)). In Sect. 10.4 is applied the
homogenization method on this type of material in the direction x3, obtaining the
effective coefficients using (10.66)-(10.71). Now, as the problem is formulated
in the direction x2, it is affected the disposition of the subscripts in the formulae
of the effective coefficients. In order to solve this issue, only it is necessary to
change the subscripts (3→ 2) and (2→ 3) in all the formulae. Moreover, the
superscript (e1) is added indicating the first homogenization step. For example,
(10.71) is transformed as follows R̂ (e1)

1313(p) = 〈μ〉. Clearly, for this two-layered
medium 〈 f 〉 = η1 f (1) +η2 f (2), where the superscripts (1), (2) are indicating
the corresponding layer (see Fig. 10.6 (a)).

2. Finally, the effective coefficients are calculated in the direction x3. The structure
can be analyzed as a two-layered medium (see Fig 10.6 (b)). In this case, the for-
mulae obtained are just the same that (10.66)-(10.71). Besides, the notation (e2)
is added as superscript denoting the second homogenization step. For example,
the coefficient R(e2)

1212(t) can be obtained from (10.71) as follows, R̂ (e2)
1212(p) = 〈μ〉.

Now, is necessary to take into account that 〈 f 〉 = η1 f (1) +η2 f (e1), where the
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superscript (1) indicates the elastic property of the layer 1 and the superscript
(e1) denotes the effective viscoelastic property of the layer 2. This last properties
are calculated in the first homogenization step, see Fig. 10.6 (b).

In the Fig. 10.7 is displayed the computation of the effective coefficients for
a composite material reinforced with rectangular cross-section fibers. A fraction-
exponential function (see Model II in Sect. 10.5) is assigned as relaxation modulus
for the viscoelastic layer 2. The volume fractions are taken as follow η1 = 0.7 and
η2 = 0.3. The remaining data has been taken from Table 10.2.

10.6 Conclusions

In this work, the two-scale asymptotic homogenization method is applied to calculate
the linear viscoelastic effective properties for layered composites where the distribu-
tion of the layers are perpendicular to one preferential axis. The local problems and
the analytic expressions of the effective coefficients are derived. Based on this result,
two times, the homogenization method is applied in different directions, according
to the geometrical configuration of the composite material for deriving the analytical
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Fig. 10.7: Effective coefficients for rectangular cross-section fibers, using double
homogenization, with Rabotnov’s kernel. Comparison with the Kelvin’s model.
The results have been normalized with respect to the first phase.
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expressions of the viscoelastic effective properties for composites with rectangular
cross-section fibers, periodically distributed along one axis. In addition, models with
different creep kernels are studied, in particular, the Rabotnov’s kernel is analyzed.
A numerical computation where the inverse of Laplace-Carson is implemented nu-
merically for the computation of the effective viscoelastic properties. An algorithm
using FEM is developed in the present work and comparisons with other approaches
are given as a validation of the present model.
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Chapter 11

A Single Crystal Beam Bent in Double Slip

Xiangyu Cui and Khanh Chau Le

Abstract A theory of plastic bending of single crystal beam with two active slip
systems accounting for continuously distributed excess dislocations is proposed. If
the resistance to dislocation motion is negligibly small, then excess dislocations pile
up against the beam’s neutral line, leaving two small layers near the lateral faces
dislocation-free. The threshold value at the onset of plastic yielding, the dislocation
density, as well as the moment-curvature curve are found. If the energy dissipation is
taken into account, excess dislocations at the beginning of plastic yielding occupy
two thin layers, leaving the zone near the middle line as well as two layers near
the beam’s lateral faces dislocation-free. The threshold bending moment at the
dislocation nucleation and the hardening rate are higher than those in the case of zero
dissipation.

11.1 Introduction

When a single crystal beam is plastically bent, excess dislocations occur on certain
active slip planes to reduce its energy. As a rule, the number of dislocations is huge, so,
instead of a difficult and time-consuming task of describing individual dislocations
(Cleveringa et al, 1999; Motz et al, 2008), the use of continuum approach to find
the dislocation densities in the bent state turns out more effective. The first attempt
of taking into account continuously distributed excess dislocations in the plastically
bent beam was made by Nye (1953) who expressed the curvature of the beam caused
by dislocations in terms of the dislocation density tensor bearing now his name. Read
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(1957) and Bilby et al (1958) have extended this result to the case when the stress
due to excess dislocations does not vanish (see also Ashby, 1970; Evans, 1995; Mura,
1987; Wang et al, 2003). The first quantitative prediction of the dislocation density
based on the asymptotically exact solution for single crystal beam bent in single slip
has been made in Le and Nguyen (2013). The analyzed model has been the simplest
one within the continuum dislocation theory (CDT) proposed by Berdichevsky
(2006a,b) and developed further in Berdichevsky and Le (2007); Kaluza and Le
(2011); Kochmann and Le (2008, 2009b,a); Le and Sembiring (2008a,b, 2009) (see
also the alternative approaches in Gurtin (2002); Gurtin et al (2007); Sandfeld et al
(2010)). The information about dislocation distribution obtained in Le and Nguyen
(2013) has been used to explain the formation of small angle tilt boundaries and
predict the number of polygons in a polygonized beam after annealing (see also Le
and Nguyen, 2010, 2012).

The real bending of single crystal beam is often more involved because two or
more slip systems could be activated during the plastic bending, depending on the
orientation of crystal with respect to the beam axis affecting the Schmid factors. For
instance, if the fcc single crystal beam having the axis parallel to [110]-direction
is bent about the [110] direction, then there are two symmetric active slip systems
oriented at angles ±54.7◦ with respect to the beam axis (see, e.g., Kysar et al, 2010).
Simulations of such bending problems require more elaborate models because of the
interaction between edge dislocations of different groups (Cleveringa et al, 1999).
This paper aims at constructing an approximate one-dimensional theory of bending
of single crystal beams having two active slip systems and, thus, extending the results
obtained in Le and Nguyen (2013) to double slip. We incorporate the interactions of
excess dislocations in a material model similar to that proposed by Le and Sembiring
(2009). We then use the variational-asymptotic method developed in Berdichevsky
(1983); Le (1999) to derive the one-dimensional approximate theories from the exact
three-dimensional problems in two cases:

i) the resistance to dislocation motion (and, consequently, the energy dissipation)
is negligibly small so that the displacements and plastic slips can be found by
minimizing the energy functional,

ii) the rate-independent dissipation is taken into account.

The obtained one-dimensional variational problems admit analytical solutions repre-
senting the smooth minimizers for the symmetric active slip systems. It is established
that there exist energetic as well as dissipative thresholds for the dislocation nucle-
ation which depend on the thickness of the beam. However, the distribution of excess
dislocations are quite different in case i) and ii). In case of negligibly small resistance
to dislocation motion the excess dislocations pile up against the beam’s neutral
line, leaving its lateral faces dislocation-free. In contrary, in the case of non-zero
dissipation, dislocations cannot reach the zone near the neutral line at the beginning
of plastic yielding because the driving force cannot overcome Peierls’ barrier. At
the later stage of plastic bending dislocations may reach the neutral line, so they
pile up against it. Thus, in case ii) excess dislocations either occupy two thin layers,
leaving the zone near the middle line as well as two plastically deformed layers near
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the beam’s lateral faces dislocation-free, in the early stage of plastic yielding, or
pile up against the neutral line in the later stage of plastic bending. The thickness of
dislocation layer depends on the thickness of the beam causing the typical size effect
of the gradient theory. Based on this analytical solution the deflection of the beam,
the dislocation density, and the moment-curvature curve are analyzed in terms of the
bending moment for different loading/unloading processes of both case i) and ii).

The paper is organized as follows. In the next section the 3-D models of single
crystal beam with continuously distributed dislocations bent in double slip are formu-
lated. Sections 11.3 and 11.4 derive the one-dimensional equations and solve them
for the case of zero dissipation. Sections 11.5 and 11.6 consider the same problems
but with dissipation. Finally, Sect. 11.7 concludes the paper.

11.2 3-D Models of Crystal Beam Bent in Double Slip

Consider a single crystal beam bent by a moment M. In the undeformed state the
beam occupies the domain V of the three-dimensional euclidean space, with the
cartesian coordinates (x,y,z)∈ (0,L)×(−h/2,h/2)×(0,a) where L, h, and a are the
length, height, and width of the beam, respectively. We will assume that h� a� L
and that the beam is bent under the plane strain condition. For definiteness, let the
beam be clamped at x = 0 and subjected to a linearly distributed traction −τy having
the resultant moment M at x = L. Besides, the upper and lower boundaries of the
beam at y = h/2 and y =−h/2 are traction free. If the applied moment is small, it
is natural to expect that the beam deforms elastically and the stress distribution is
linear over the thickness according to the elementary beam theory. However, if the
applied moment exceeds some critical value, edge dislocations with dislocation lines
parallel to the z-axis may appear to reduce energy of the bent beam. We assume that,
at the onset of yielding and during the plastic deformations, the crystal admits two
active slip systems with slip planes inclined at angles ϕ1 and ϕ2 to the plane y = 0 as
shown in Fig. 11.1.

Under the plane strain state condition there are only two non-zero components of
the displacements that do not depend on z, ux(x,y) and uy(x,y). Consequently, the
non-zero components of the total strain tensor are

εxx = ux,x, εyy = uy,y, εxy = εyx =
1
2
(ux,y +uy,x).

x

y
M

1

s1m1

m2

s2

2

Fig. 11.1: Single crystal beam bent in double slip by a moment M.
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Throughout the paper the comma before an index is used to denote the partial
derivative with respect to the corresponding coordinate. Since there are two active
slip systems, the plastic distortion tensor is given by

βi j = β1(x,y)s1
i m1

j +β2(x,y)s2
i m2

j ,

with
sss1 = (cosϕ1,sinϕ1,0), mmm1 = (−sinϕ1,cosϕ1,0),
sss2 = (cosϕ2,sinϕ2,0), mmm2 = (−sinϕ2,cosϕ2,0)

being the unit vectors denoting the slip direction and the normal to the slip planes of
the corresponding slip system. We call β1(x,y) and β2(x,y) the plastic slips. Thus,
the finding of plastic distortion tensor reduces to determining the functions β1(x,y)
and β2(x,y). Non-zero components of the plastic strain tensor, ε p

i j =
1
2 (βi j +β ji),

read

ε p
xx =−

1
2
β1 sin2ϕ1− 1

2
β2 sin2ϕ2,

ε p
yy =

1
2
β1 sin2ϕ1 +

1
2
β2 sin2ϕ2,

ε p
xy = ε p

yx =
1
2
β1 cos2ϕ1 +

1
2
β2 cos2ϕ2.

Accordingly, the non-zero components of the elastic strain tensor, εe
i j = εi j− ε p

i j, are

εe
xx = ux,x +

1
2
β1 sin2ϕ1 +

1
2
β2 sin2ϕ2,

εe
yy = uy,y− 1

2
β1 sin2ϕ1− 1

2
β2 sin2ϕ2,

εe
xy = εe

yx =
1
2
(ux,y +uy,x−β1 cos2ϕ1−β2 cos2ϕ2) .

The distribution of excess dislocations associated with these two active slip
systems is described by the dislocation density tensor (introduced by Nye (1953);
Bilby (1955), and Kröner (1955)), αi j = ε jklβil,k, whose non-zero components read

αxz = β1,x cos2ϕ1 +β1,y cosϕ1 sinϕ1 +β2,x cos2ϕ2 +β2,y cosϕ2 sinϕ2,

αyz = β1,x cosϕ1 sinϕ1 +β1,y sin2ϕ1 +β2,x cosϕ2 sinϕ2 +β2,y sin2ϕ2.

Thus, we see that there are two different groups of excess edge dislocations associated
with the slip systems 1 and 2, whose resultant Burgers’ vectors show in the directions
sss1 and sss2, respectively. These give two scalar dislocation densities

ρ1 =
1
b
|β1,x cosϕ1 +β1,y sinϕ1|, ρ2 =

1
b
|β2,x cosϕ2 +β2,y sinϕ2|, (11.1)

with b being the magnitude of the Burgers vector.
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Let us propose the free energy density of the single crystal deforming in double
slip in the form (see Le and Sembiring, 2009)

φ =
1
2
λ (εe

kk)
2 +μεe

i jε
e
i j +μk ln

1
1− ρ1

ρs

+μk ln
1

1− ρ2
ρs

+μχ
ρ1ρ2

ρ2
s

, (11.2)

with λ and μ being the Lamé constants, ρs the saturated dislocation density, and
k and χ the constants of the material. The first two terms in (11.2) represent the
contribution to the energy of crystal by the elastic strain. The third and fourth terms
are the contributions to the energy from the two separate groups of excess dislocations.
The logarithmic energy term (Berdichevsky, 2006b) stems from two facts: i) energy
of the dislocation network for small dislocation densities is the sum of energy
of non-interacting dislocations, and ii) there exists a saturated dislocation density
which characterizes the closest packing of dislocations admissible in the discrete
crystal lattice. The logarithmic term ensures a linear increase of the energy for small
dislocation density ρ (Ortiz and Repetto, 1999) and tends to infinity as ρ approaches
the saturated dislocation density ρs hence providing an energetic barrier against
over-saturation. Finally, the last term takes the interaction of dislocations between
these two groups into account. We restrict ourselves to the range of small up to
moderate dislocation densities for which the logarithmic terms can be approximated
by the Taylor series

ln
1

1− ρ
ρs

∼= ρ
ρs

+
1
2
ρ2

ρ2
s

and shall use further only this approximation.
With (11.1) and (11.2) the total energy functional of the bent beam becomes

I = a
L∫

0

h/2∫
−h/2

[
1
2
λ (ux,x +uy,y)

2 +μ(ux,x +
1
2
β1 sin2ϕ1 +

1
2
β2 sin2ϕ2)

2

+ μ(uy,y− 1
2
β1 sin2ϕ1− 1

2
β2 sin2ϕ2)

2 +
1
2
μ(ux,y +uy,x−β1 cos2ϕ1

− β2 cos2ϕ2)
2 +μk

|β1,x cosϕ1 +β1,y sinϕ1|
bρs

+
1
2
μk

(β1,x cosϕ1 +β1,y sinϕ1)
2

b2ρ2
s

+ μk
|β2,x cosϕ2 +β2,y sinϕ2|

bρs
+

1
2
μk

(β2,x cosϕ2 +β2,y sinϕ2)
2

b2ρ2
s

+ kμχ
|β1,x cosϕ1 +β1,y sinϕ1||β2,x cosϕ2 +β2,y sinϕ2|

b2ρ2
s

]
dxdy

+ a

h/2∫
−h/2

τyux|x=Ldy.

(11.3)
The last term in (11.3) is the work done by the linearly distributed traction−τy acting
at the boundary x= L. If the dissipation caused by the dislocation motion is negligible,
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then the true displacements ux, uy and plastic slips β1, β2 in the final state of bending
minimize energy functional (11.3) among all admissible displacements and plastic
slips satisfying the kinematic boundary condition. By the final state of bending
we means the equilibrium state which is established at fixed loading condition
after dislocation nucleation and after the movement of dislocations toward their
equilibrium positions is finished. Thus, the whole process of dislocation nucleation
and dislocation dynamics cannot be described by this theory. The bending moment
M = τah3/12 is regarded as a control parameter, so one can study the evolution of
the dislocation network in terms of M.

If the dissipation due to dislocation motion cannot be neglected, energy minimiza-
tion should be replaced by the variational equation (Sedov, 1965)

δ I +a
L∫

0

h/2∫
−h/2

(
∂D
∂ β̇1

δβ1 +
∂D
∂ β̇2

δβ2)dxdy = 0. (11.4)

The last integral in this equation describes the energy dissipation due to dislocation
motion, where the dissipation function D(β̇1, β̇2) is assumed to depend only on the
plastic slip rates. We shall consider the simplest rate-independent theory (Maugin,
1990, 1992) for which

D(β̇1, β̇2) = K(|β̇1|+ |β̇2|),

with K being the critical resolved shear stress. Then, provided the signs of β̇1 and
β̇2 do not change during the evolution of β1 and β2, the variational equation (11.4)
reduces to minimizing the following “relaxed energy” functional

Id = a
L∫

0

h/2∫
−h/2

[
1
2
λ (ux,x +uy,y)

2 +μ(ux,x +
1
2
β1 sin2ϕ1 +

1
2
β2 sin2ϕ2)

2

+ μ(uy,y− 1
2
β1 sin2ϕ1− 1

2
β2 sin2ϕ2)

2 +
1
2
μ(ux,y +uy,x−β1 cos2ϕ1

− β2 cos2ϕ2)
2 +μk

|β1,x cosϕ1 +β1,y sinϕ1|
bρs

+
1
2
μk

(β1,x cosϕ1 +β1,y sinϕ1)
2

b2ρ2
s

+ μk
|β2,x cosϕ2 +β2,y sinϕ2|

bρs
+

1
2
μk

(β2,x cosϕ2 +β2,y sinϕ2)
2

b2ρ2
s

+ kμχ
|β1,x cosϕ1 +β1,y sinϕ1||β2,x cosϕ2 +β2,y sinϕ2|

b2ρ2
s

+ K sign(β̇1)β1 +K sign(β̇2)β2

]
dxdy+a

h/2∫
−h/2

τyux|x=Ldy.

(11.5)
So, the true displacement and plastic slip fields in the final equilibrium state of
plastic bending minimize the “relaxed” energy functional Id among all admissible
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displacements and plastic slips. Finally, if β̇1 = 0 and β̇2 = 0, then the plastic slips
are frozen, while the displacements should be found by minimizing (11.3) with the
frozen plastic slips.

11.3 Energy Minimization

We first focus on the minimization problem (11.3). It is convenient to introduce the
following dimensionless variables and quantities

x = bρsx, y = bρsy, h = bρsh, L = bρsL, τ =
τ

μbρs
,

ux = bρsux, uy = bρsuy, I =
I(bρs)

2

μa
, γ =

λ
μ
, (11.6)

which simplify the minimization problem. Now the energy functional can be rewritten
in the dimensionless form as follows

I =
L∫

0

h/2∫
−h/2

[
1
2
γ(ux,x +uy,y)

2 +(ux,x +
1
2
β1 sin2ϕ1 +

1
2
β2 sin2ϕ2)

2

+ (uy,y− 1
2
β1 sin2ϕ1− 1

2
β2 sin2ϕ2)

2 +
1
2
(ux,y +uy,x−β1 cos2ϕ1

− β2 cos2ϕ2)
2 + k|β1,x cosϕ1 +β1,y sinϕ1|+ 1

2
k(β1,x cosϕ1 +β1,y sinϕ1)

2

+ k|β2,x cosϕ2 +β2,y sinϕ2|+ 1
2

k(β2,x cosϕ2 +β2,y sinϕ2)
2 + kχ|β1,x cosϕ1

+ β1,y sinϕ1||β2,x cosϕ2 +β2,y sinϕ2|
]

dxdy+

h/2∫
−h/2

τyux|x=Ldy.

(11.7)
The bar over the dimensionless quantities is dropped for short because in the subse-
quent analysis we shall deal only with them.

Energy functional (11.7) contains a small parameter h, so it can be reduced to
1-D energy functional by the variational asymptotic method (see Berdichevsky,
1983; Le, 1999). For this purpose let us introduce the rescaled coordinate ζ = y/h,
ζ ∈ (−1/2,1/2) to fix the domain over the thickness in the passage to the limit
h→ 0. With this new variable ζ the small parameter h enters the functional explicitly
through the formulas

ui,y =
1
h

ui,ζ , βα,y =
1
h
βα,ζ , α = 1,2.

Since the boundary condition at x = L does not influence the inner asymptotic
distributions of the displacements and the plastic slips over the thickness, we put
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τ = 0 for a while. At the first step of the variational-asymptotic procedure we keep
the asymptotic principal terms in (11.7) to obtain

I0 = h
L∫

0

1/2∫
1/2

[
1

2h2 γ(uy,ζ )
2 +

1
h2 (uy,ζ )

2 +
1

2h2 (ux,ζ )
2 +

k
h
|β1,ζ sinϕ1|

+
k

2h2 (β1,ζ sinϕ1)
2 +

k
h
|β2,ζ sinϕ2|+ k

2h2 (β2,ζ sinϕ2)
2

+
χk
h2 |β1,ζ sinϕ1||β2,ζ sinϕ2|

]
dxdζ .

Functional I0 is positive definite, so its minimum must be zero and is achieved at
ux,ζ = uy,ζ = β1,ζ = β2,ζ = 0. For the bending states which we are interested in let
us set at this step ux = 0 and β1 = β2 = 0 to obtain

ux = 0, uy = v(x), β1 = β2 = 0.

At the second step, we fix v(x) and seek the minimizer in the form

ux = u′x(x,ζ ), uy = v(x)+u′y(x,ζ ), β1 = β ′1(x,ζ ), β2 = β ′2(x,ζ ),

with u′x(x,ζ ),u′y(x,ζ ),β ′1(x,ζ ),β
′
2(x,ζ ) being the correction terms which are small

compared to v(x). Substituting these formulas into (11.7) and then keeping the
asymptotically leading terms containing u′x(x,ζ ), u′y(x,ζ ), and β ′α(x,ζ ), we obtain

I1 = h
L∫

0

1/2∫
1/2

[
1

2h2 γ(u
′
y,ζ )

2 +
1
h2 (u

′
y,ζ )

2 +
1
2
(

1
h

u′x,ζ + v,x)2 +
k
h
|β ′1,ζ sinϕ1|

+
k

2h2 (β
′
1,ζ sinϕ1)

2 +
k
h
|β ′2,ζ sinϕ2|+ k

2h2 (β
′
2,ζ sinϕ2)

2

+
χk
h2 |β ′1,ζ sinϕ1||β ′2,ζ sinϕ2|

]
dxdζ

Since functional I1 is also positive definite, its minimum is again zero and is achieved
at

u′y,ζ = 0, u′x,ζ =−hv,x, β ′1,ζ = 0, β ′2,ζ = 0.

This implies

u′y = 0, u′x =−hζv,x, β ′1 = 0, β ′2 = 0.

At the third step of the variational-asymptotic procedure, we look for the minimizer
in the form
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ux =−hζv,x +u′′x (x,ζ ), uy = v(x)+u′′y (x,ζ ), (11.8)

β1 = β ′′1 (x,ζ ), β2 = β ′′2 (x,ζ ),

with u′′x (x,ζ ), u′′y (x,ζ ), β ′′1 (x,ζ ), and β ′′2 (x,ζ ) being the correction terms which are
assumed small compared with those found at the second step. By redefining v(x) if
required, we may put the following constraints on these correction terms

〈u′′y 〉= 0, 〈β ′′1 〉= 0, 〈β ′′2 〉= 0, where 〈·〉=
1/2∫
−1/2

·dζ . (11.9)

Constraint 〈u′′y 〉= 0 means that v(x) is the average deflection (over the thickness) of
the beam. Substituting (11.8) into (11.7), then keeping the asymptotically leading
terms containing u′′x (x,ζ ), u′′y (x,ζ ), β ′′1 (x,ζ ), and β ′′2 (x,ζ ) to get

I2 = h
L∫

0

1/2∫
1/2

[
1
2
γ(−hζv,xx +

1
h

u′′y,ζ )
2 +(−hζv,xx +

β ′′1
2

sin2ϕ1 +
β ′′2
2

sin2ϕ2)
2

+ (
1
h

u′′y,ζ −
1
2
β ′′1 sin2ϕ1− 1

2
β ′′2 sin2ϕ2)

2 +
1
2
(

1
h

u′′x,ζ −β ′′1 cos2ϕ1−β ′′2 cos2ϕ2)
2

+
k
h
|β ′′1,ζ sinϕ1|+ k

2h2 (β
′′
1,ζ sinϕ1)

2 +
k
h
|β ′′2,ζ sinϕ2|+ k

2h2 (β
′′
2,ζ sinϕ2)

2

+
χk
h2 |β ′′1,ζ sinϕ1||β ′′2,ζ sinϕ2|

]
dxdζ .

Functional I2 can be reduced to a functional depending only on β ′′1 and β ′′2 . Indeed,
fixing first β ′′1 and β ′′2 and varying this functional with respect to u′′x and u′′y , then
using the natural boundary conditions at ζ =±1/2, we obtain,

1
h
(γ+2)u′′y,ζ = γhζv,xx +β ′′1 sin2ϕ1 +β ′′2 sin2ϕ2,

1
h

u′′x,ζ = β ′′1 cos2ϕ1 +β ′′2 cos2ϕ2.
(11.10)

After finding u′′x and u′′y according to these equations, we substitute (11.10) into
(11.7) and change ζ back to y. Since the functional does not contain β ′′1,x and β ′′2,x,
the thickness problem reduces to minimizing the following functional with respect to
β ′′1 (x,y) and β ′′2 (x,y)
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I3 =

h/2∫
−h/2

[
κ
2
(−2v,xxy+β ′′1 sin2ϕ1 +β ′′2 sin2ϕ2)

2 + k|β ′′1,y sinϕ1|

+
k
2
(β ′′1,y sinϕ1)

2 + k|β ′′2,y sinϕ2|+ k
2
(β ′′2,y sinϕ2)

2

+χk|β ′′1,y sinϕ1||β ′′2,y sinϕ2|
]

dy,

where
κ =

1
2(1−ν) .

Solution of this minimization problem enables one to find β ′′1 (x,y) and β ′′2 (x,y)
required for the reduction to 1-D theory. The analytical solution of the thickness
problem can be found in the special case of symmetric slip systems with the angles
ϕ1 = ϕ ∈ (0,π/2), ϕ2 = π−ϕ . Obviously, β ′′1 = β = −β ′′2 in this case due to the
symmetry of the problem. Thus, functional I3 simplifies to

I3 =

h/2∫
−h/2

[
κ
2
(−2v,xxy+2β sin2ϕ)2 +2k|β,y sinϕ|+ k(1+χ)(β,y sinϕ)2]dy.

(11.11)
Functional (11.11) is similar to the functional obtained in Le and Nguyen (2013),

so we present the solution of the thickness problem without detailed derivation. The
minimizer β (x,y) is

β (x,y) =

⎧⎪⎨⎪⎩
βm(x) for y ∈ (−h/2,−l(x)/2),
β0(x,y) for y ∈ (−l(x)/2,0),
−β (x,−y) for y ∈ (0,h/2).

(11.12)

Function β0(x,y) is found to be

β0(x,y) =
v,xx

sin2ϕ
1
η

(
ηy− 1

cosh η l
2

sinhηy

)
,

where

η = 2

√
2κ

k(1+χ)
cosϕ. (11.13)

Function βm(x) is given by

βm(x) =
v,xx

sin2ϕ
1
η

(
−η l

2
+ tanh

η l
2

)
.

Finally, the length l(x) should be found by solving the following transcendental
equation
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κv,xx[
1
4
(h2− l2)+

1
η
(−η l

2
+ tanh

η l
2
)(h− l)]sin2ϕ− k sign(β0,y)sinϕ = 0.

(11.14)
If the length l is small, then the sign of v,xx coincides with the sign of β0,y evaluated
right from the point y =−l/2. For definiteness let β0,y(−l/2+0)> 0 so that v,xx > 0.
Note that, if the curvature of the beam is constant, then l(x) does not depend on x
and remains constant over the whole length of the beam. In this case (11.14) can be
regarded as the equation for v,xx once l is known. By integrating (11.10) in our special
case and taking the constraints (11.9) into account, we obtain the displacements ux
and uy in the form

ux =−v,xy,

uy = v(x)+
γ

γ+2
1
2
(y2− h2

12
)v,xx +

2
γ+2

⎛⎝ y∫
0

β (x,ξ )dξ −Λ
⎞⎠sin2ϕ,

where

Λ = 〈
y∫

0

β (x,ξ )dξ 〉.

Having found the solution of the thickness problem, let us now substitute the
above formulas for the displacements together with the expression of β into the
energy functional (11.7). Keeping the asymptotically principal terms and integrating
over the thickness we obtain the one-dimensional functional

J[v(x)] =
L∫

0

Φ(v,xx)dx−Mv,x|x=L, (11.15)

where the bending energy density reads

Φ(ω) = c1ω2 + c2ω.

In these formulas we use ω to denote the curvature v,xx, M = τh3/12 is the resultant
moment, and

c1 = 2

−l/2∫
−h/2

κ
2
(2q0−2y)2 dy+2

0∫
−l/2

[
κ
2
(2q−2y)2 +

k(1+χ)
4cos2ϕ

(q,y)2
]

dy,

c2 = 2
0∫

−l/2

2kq,y
sinϕ

sin2ϕ
dy =− 2k

cosϕ
q0, (11.16)

with
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q(y) =
1
η

(
ηy− 1

cosh η l
2

sinhηy

)
, (11.17)

and q0 = q(−l/2). Note that, as the coefficients c1 and c2 depends on the curvature ω
through l, the energy density is not quadratic with respect to ω . Besides, if q(y) = 0,
then c1 = κh3/6 and c2 = 0, so the obtained functional reduces to the classical 1-D
functional of the elastic beam as expected (Le, 1999).

Varying functional (11.15) with respect to the deflection v, we obtain the differen-
tial equation of bending

m,xx = 0, m =
∂Φ
∂ω

, (11.18)

subject to the boundary conditions{
v(0) = 0, v,x(0) = 0,
m(L)−M = 0, m,x(L) = 0.

(11.19)

Equation (11.18), together with the conditions (11.19)2, implies that

m(ω) = 2c1ω+
dc1

dω
ω2 + c2 +

dc2

dω
ω = M. (11.20)

Since the bending moment m is independent of x, the curvature must also be constant
over the length of the beam. Consequently, l and β0 are independent of x and the
upper and lower layers of the beam are dislocation-free. Together with (11.14), this
equation determines the moment-curvature curve during the plastic bending. To plot
this curve let us compute the derivatives of c1 and c2 with respect to ω

dc1

dω
=

dc1

dl
dl
dω

,
dc2

dω
=

dc2

dl
dl
dω

.

From (11.14) we find that

dω
dl

=
4kη tanh lη

2

(
η (h− l) tanh lη

2 +2
)

κ cosϕ(h− l)2
(
η(h− l)+4tanh lη

2

)2 .

This formula, together with (11.16), enables one to determine dc1/dω and dc2/dω ,
required for plotting the moment-curvature curve.

The threshold value of curvature at which dislocations begin to nucleate is calcu-
lated by letting l go to zero in (11.14). This yields

ωen =
2k

κh2 cosϕ
.
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The threshold value of moment can be computed from (11.20). Taking into account
that, at l = 0, c1 = κh3/6, c2 = 0, while dc1/dω = dc2/dω = 0, we get

Men =
2kh

3cosϕ
.

Returning to the original physical quantities according to (11.6) we have

Men =
τenh3a

12
=

2μkah
3bρs cosϕ

,

which exhibits explicitly the size effect. Besides, Men goes to infinity as the shear
modulus μ goes to infinity, so this coincides well with the result obtained by Ashby
(1970). Thus, if M < Men, then β = 0, so no dislocation is nucleated and we have
purely elastic solution. The plastic yielding begins at M = Men.

Combining the elastic and plastic responses together, we get the moment-curvature
relation in the following form

M =

⎧⎪⎪⎨⎪⎪⎩
κh3

3
ω for M < Men,

2c1ω+
dc1

dω
ω2 + c2 +

dc2

dω
ω for M > Men.

Knowing the curvature ω from M, we integrate the equation v,xx = ω and use the
boundary conditions (11.19)1 to obtain the deflection of the beam

v(x) =
1
2
ωx2.

11.4 Numerical Simulations

In order to simulate the minimizer numerically, we choose h = 0.1, L = 10, ν = 0.25,
k = 10−4, and χ = 0.8. Figure 11.2 shows the plot of energetic threshold of the
bending moment Men as function of the angle ϕ . It can be seen that the threshold
moment becomes infinite as ϕ goes to π/2 and has a local minimum at ϕ = 0. It
must be emphasized that this result is obtained under the assumption that the crystal
admits two active symmetric slip systems. So, if ϕ = π/2 the slip systems merge
into one that remains inactive during the whole process of bending because of its
vanishing resolved shear stress (cf. with Le and Nguyen, 2013). However, if the slip
systems are oriented unsymmetrically, then the one with largest Schmid factor will
be activated at a certain finite bending moment.

For M > Men the plastic slip becomes non-zero. Figure 11.3 show the plots of
plastic slip β (y) for M = 0.0001 at two different orientations of slip systems. The
plastic strain vanishes on the middle line of the beam as expected and reaches its
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Fig. 11.3: Function β (y) for M = 0.0001. a) ϕ = π/3, b) ϕ = π/6

maximum and minimum at the traction-free faces. There are two small boundary
layers near these faces where the plastic slip remains constant.

On Fig. 11.4, where the dimensionless dislocation density ρ(y) = β,y sinϕ is
plotted for M = 0.0001 and for two different angles, it is seen that the excess edge
dislocations of the same sign of each group are concentrated in the middle of the
beam thickness, with maximum dislocation density achieved at y = 0. Although no
obstacle exists on the middle line, the repulsive forces between dislocations of the
same sign prevent them from colliding. Thus, the high concentration of dislocations
can be regarded as the dislocation pile-up against the middle line. The dislocation
free zones are y ∈ (−h/2,−l/2) and y ∈ (l/2,h/2).
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Fig. 11.4: Dislocation density for M = 0.0001. a) ϕ = π/3 (l≈ 0.097), b) ϕ = π/6
(l ≈ 0.099)

The dimensionless deflection of the beam, v(x), is shown in Fig. 11.5 for
M = 0.0001 and (a) ϕ = π/3, (b) ϕ = π/6. Since the curvature of the beam
is constant, the thickness of the dislocation zone l does not depend on x.

On Fig. 11.6 we show the moment-curvature curve for ϕ = π/3 and ϕ = π/6. Up
to the threshold moment Men (corresponding to point A on this figure) the moment-
curvature curve is a straight line corresponding to the linear elastic beam theory.
Then the curve becomes non-linear and increasing as M increases and l increases
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Fig. 11.5: Deflection of the beam
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Fig. 11.6: Moment-curvature curve. a) ϕ = π/3, b) ϕ = π/6

from zero to h/2. This nonlinear portion describes the work hardening due to the
dislocation pile-up against the middle line of the beam. If the bending moment is
increased from zero up to the moment MB corresponding to B (the loading case) we
follow the moment-curvature curve from O through A to B. Now, if we unload the
beam by decreasing the bending moment from MB to zero, the curvature and moment
follow the same path BAO (in the inverse direction), and at the end of the unloading
process no residual curvature of the beam is observed.

11.5 Non-Zero Dissipation

If the dissipation cannot be neglected, the problems reduce to minimizing the relaxed
energy functionals (11.5). The signs of the dissipation terms in this functional depend
on whether β̇α > 0 or β̇α < 0, α = 1,2. However, for the beam bending it is easy
to see that both cases occur simultaneously during the plastic deformations. Indeed,
from the elementary beam theory (and also from the previous simulations) we know
that, as the bending moment is increased (loading), β̇1 > 0 for y > 0 and β̇1 < 0
for y < 0, while β̇2 < 0 for y > 0 and β̇2 > 0 for y < 0. In contrary, if the bending
moment is decreased (unloading or loading in the opposite direction), β1 is either
frozen or β̇1 > 0 for y < 0 and β̇1 < 0 for y > 0 while the opposite happens to β2.
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Since these functionals differs from each other in the loading and unloading case, the
case study must be done separately.

The case study becomes simpler for the symmetric slip systems with ϕ1 = ϕ ∈
(0,π/2), ϕ2 = π−ϕ . Due to the symmetry of the problem, we have β1 = β =−β2.
Therefore K sign(β̇1)β1 = K sign(β̇2)β2. According to the above property, both terms
can be replaced by K signyβ . We use again the dimensionless quantities (11.6) and
write the functional (11.5) in this special case in the form

Id =

L∫
0

h/2∫
−h/2

[
1
2
γ (ux,x +uy,y)

2 +(ux,x +β sin2ϕ)2 +(uy,y−β sin2ϕ)2

+
1
2
(ux,y +uy,x)

2 + k|β,x cosϕ+β,y sinϕ|+ 1
2

k (β,x cosϕ+β,y sinϕ)2

+ k|β,x cosϕ−β,y sinϕ|+ 1
2

k (β,x cosϕ−β,y sinϕ)2

+ kχ|β,x cosϕ+β,y sinϕ| · |β,x cosϕ−β,y sinϕ|+2ε signyβ
]

dxdy

+

h/2∫
−h/2

τyux|x = Ldy,

where ε = K/μ . As compared to the previous functional (11.7) the additional term
2ε signyβ does not belong to the asymptotically principal terms. Therefore, up to
the second step of the variational-asymptotic procedure this term does not have any
influence on the inner asymptotic expansion. At the third step, we are looking for
the minimize in the form (11.8) such that the constraints (11.9) are fulfilled. Fixing
β ′′ and minimizing the relaxed energy with respect to u′′x and u′′y we find them in the
form (11.10). Then, the functional reduces to

Id =

h/2∫
−h/2

[
κ
2
(−2v,xxy+2β ′′ sin2ϕ

)2
+2k|β ′′,y sinϕ|+ k(β ′′,y sinϕ)2

+ χk
(
β ′′,y sinϕ

)2
+2ε signyβ ′′

]
dy

Now the term 2ε signyβ ′′ should be kept because it has the same order as the cross
term −4κv,xxyβ ′′ sin2ϕ . The presence of this term changes radically the behavior of
the minimizer. Since at the beginning of plastic yielding the resolve shear stress near
the beam axis is always smaller that the critical resolved shear stress K, dislocations
cannot reach this neutral axis1. Thus, near the beam axis the plastic slip must vanish
identically at this stage. Therefore in the first stage of plastic bending we look for the
minimizer in the form

1 Our paper (Le and Nguyen, 2013) missed this early stage of plastic yielding.
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β ′′(y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
βm for y ∈ (−h/2,−l1/2),
β1(y) for y ∈ (−l1/2,−l2/2),
0 for y ∈ (−l2/2,0),
−β (−y) for y ∈ (0,h/2).

(11.21)

According to (11.21), the layer y ∈ (−l2, l2) deforms elastically, and this agrees well
with the classical beam theory for elasto-plastic materials.

With the solution Ansatz (11.21) being plugged into functional (11.21), we get the
variational (thickness) problem that can be solved in a similar way as that presented
in Sect. 11.3. For function β1(y) we find

β1(y) =
v,xx

sin2ϕ
y+

ε

2κ sin2 2ϕ
+C1 coshηy+C2 sinhηy, (11.22)

where

C1 = (
l1ω

2sin2ϕ
− ε

2κ sin2 2ϕ
+βm)cosh

η l1
2
− ω
η sin2ϕ

sinh
η l1
2

, (11.23)

C2 =− ω
η sin2ϕ

cosh
η l1
2

+(
l1ω

2sin2ϕ
− ε

2κ sin2 2ϕ
+βm)sinh

η l1
2

. (11.24)

Here, ω = v,xx denotes as before the curvature of the deformed beam axis, while η is
given by (11.13). One may find the unknown quantities βm, l1, and l2 in terms of the
given curvature ω , or alternatively, use βm as the parameter and express ω , l1, and l2
through it. We find the latter way more convenient for numerical simulations. In this
case the curvature ω is given by

ω =
2k sinϕ

κ(h2− l2
1)sin2ϕ

+
2ε−4κβm sin2 2ϕ
κ(h+ l1)sin2ϕ

, (11.25)

while l1 and l2 must be found from the equations

β1(−l2/2) = 0, β1,y(−l1/2) = 0. (11.26)

If the bending moment and therefore the curvature increases further, it turns out
that equations (11.26) have no longer solutions. This means that in the later stage of
plastic deformation dislocations may reach the neutral line. In this case we use the
same solution Ansatz as (11.12). For function β0(y) we find

β0(y) =
v,xx

sin2ϕ
1
η

(
ηy− 1

cosh η l
2

sinhηy

)

+
ε

2κ sin2 2ϕ

(
1− coshηy− tanh

η l
2

sinhηy
)
. (11.27)

Computing β0(y) at y =−l/2 we get
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βm =
v,xx

sin2ϕη

(
−η l

2
+ tanh

η l
2

)
+

ε

2κ sin2 2ϕ

(
1− 1

cosh η l
2

)

The transcendental equation for l reads

κv,xx[
1
4
(h2− l2)+

1
η
(−η l

2
+ tanh

η l
2
)(h− l)]sin2ϕ

− ε
2

1

cosh η l
2

(h− l)− k sign(β1,y)sinϕ = 0.

Having found the plastic slip, we can now compute the dimensionless bending
moment. In the first stage of plastic yielding it is convenient to compute it according
to

m =

h/2∫
−h/2

4κ(ωy−β ′′(y)sin2ϕ)ydy. (11.28)

Substituting (11.21) into this formula and making use of (11.22) and (11.23), we
obtain

m =
1
3
κωh3 +κ sin2ϕβm(h2− l2

1)+
1
3
κω(l3

1 − l3
2)−

ε(l2
1 − l2

2)

2sin2ϕ

+
4κ sin2ϕ

η2 [(2C1 +C2l1η)cosh
η l1
2
− (2C1 +C2l2η)cosh

η l2
2

− (2C2 +C1l1η)sinh
η l1
2

+(2C2 +C1l2η)sinh
η l2
2

].

(11.29)

Note that when β ′′(y)≡ 0, the bending moment m = 1
3κωh3 is exactly that of the

purely elastic solution. In the second stage of bending we compute the bending
energy density

Φ(ω) = c1ω2 + c2ω,

with the coefficient c1 and c2 being given by

c1 = 2

−l/2∫
−h/2

κ
2
(2q0−2y)2 dy+2

0∫
−l/2

[
κ
2
(2q−2y)2 +

k(1+χ)
4cos2ϕ

(q,y)2
]

dy,

c2 = 2
0∫

−l/2

[
k

cosϕ
q,y +

ε

κ sin2ϕ
(

k(1+χ)
4cos2ϕ

q,y p,y +κ(p(y)−1)(2q(y)

−2y))
]

dy+2

−l/2∫
−h/2

[
ε

sin2ϕ
(p0−1)(2q0−2y)

]
dy,
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with

q(y) =
1
η
(ηy− sinhηy

cosh η l
2

), p(y) = 1− coshηy− tanh
η l
2

sinhηy,

and p0 = p(−l/2), q0 = q(−l/2). Then the bending moment can be computed from
this bending energy in accordance with (11.20).

Consider now the following loading/unloading process. We first bend the beam
slowly and successively by increasing the moment until some maximum value
M∗ > Md such that at the end of the loading process the plastic slip becomes β∗. Then
we unload the beam by reducing the bending moment back to zero. It is reasonable
to assume that dislocations are frozen during this unloading process with β = β∗ and
β̇ = 0. In this case the bending moment becomes

m =

h/2∫
−h/2

4κ(ωy−β ′′∗ (y)sin2ϕ)ydy, (11.30)

where β ′′∗ (y) is the plastic slip found at the end of the loading process. Thus, during
the unloading process the moment-curvature curve becomes a straight line.

11.6 Numerical Simulation

In order to simulate the minimizer numerically, we choose the same numerical values
for h, L, ν , k, χ as in Sect. 11.4, and ϕ = π/6. For ε = K/μ we choose the value
ε = 0.001. In order to find the dissipative threshold for the bending moment we need
to study equations (11.26) in the limit βm→ 0. It turns out that in this limit l2→ l1
which is given by

l1 =
ε

κω sin2ϕ
.

Besides, as βm goes to zero,

ω =
4k sinϕ+2ε(h− l1)

(h2− l2
1)sin2ϕ

.

Solving these equations, we find the dissipative threshold of dislocation nucleation
to be

ωd =
ε

κl1 sin2ϕ
, (11.31)

where

l1 = h+2
k
ε

sinϕ−
√
(h+2

k
ε

sinϕ)2−h2. (11.32)
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As this threshold value depends on h, we have clearly the size effect. For the above
chosen parameters l1 ≈ 0.01896, while ωd ≈ 0.09136. The corresponding threshold
moment is

Md =
1
3
κωdh3 ≈ 0.0000203. (11.33)

Figure 11.7 shows the evolution of the plastic slip in the first stage of plastic
yielding. Thus, as the magnitude of βm increases, the plastic slip increases too. The
elastic zone in the middle decreases, and at βm =−0.0002196, the length l2 vanishes.
After this equations (11.26) have no longer solutions. The plastic slip at the later
stage of plastic bending (computed according to (11.27)) looks similar to that in Sect.
11.4.

On Fig. 11.8, where the dimensionless dislocation density ρ(y) = β,y sinϕ is
plotted for three different βm at the first stage of plastic yielding, it is seen that the
excess edge dislocations of the same sign are concentrated in two layers, leaving the
central layers (−l1/2, l1/2) as well as the layers near the free faces dislocation-free.
The dislocation density distributions at the later stage of plastic bending (computed
according to (11.27)) look similar to those in Sect. 11.4.

On Fig. 11.9 we show the moment-curvature curve for the chosen parameters. Up
to the threshold moment Md (corresponding to point A on this figure) the moment-
curvature curve is a straight line corresponding to the linear elastic beam theory. Then
the curve becomes non-linear and, in the first stage of plastic yielding, monotone
increasing as ω increases. At the beginning of the later stage of plastic bending we
can observe a small softening behavior of the moment-curvature curve. The further
monotonously increasing portion of the moment-curvature curve describes the work
hardening due to the dislocation pile-up against the middle line of the beam. If the
curvature is increased from zero up to the value ωB corresponding to B (the loading
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Fig. 11.7: Function β (y). a) βm = −10−5 (ω = 0.09207), b) βm = −5× 10−5

(ω = 0.094), c) βm =−10−4 (ω = 0.096)
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Fig. 11.8: Dislocation density. a) βm =−10−5 (ω = 0.09207), b) βm =−5×10−5

(ω = 0.094), c) βm =−10−4 (ω = 0.096)
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Fig. 11.9: Moment-curvature curve

case) we follow the moment-curvature curve from O through A to B. If the beam
is then unloaded, the moment-curvature curve becomes a straight line BC with the
same slope like that of OA as shown in Fig. 11.9.

11.7 Discussion and Outlook

In this paper the one-dimensional theory of bending of a single crystal beam with
two active slip systems has been developed. The one-dimensional energy of bending
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has been found after the solution of the thickness problem. The latter has been solved
for the symmetric slip systems. The threshold bending moment depends on the beam
thickness and, thus, exhibits the size effect. We have found also the dislocation
distributions and the moment-curvature curves at loading and unloading. It would be
interesting to verify the obtained results with the measurement of excess dislocation
density in a bent beam by the method of orientation imaging microscopy developed
recently in Kysar et al (2010). The specimen could be for instance the fcc single
crystal beam having the axis parallel to [110]-direction and bent about the [110]
direction. For the unsymmetrically oriented slip systems the thickness problem can
only be solved numerically. This will be addressed in our forthcoming paper.
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Chapter 12

Acoustic Metamaterials Based on Local

Resonances: Homogenization, Optimization and

Applications

Fabio di Cosmo, Marco Laudato, and Mario Spagnuolo

Abstract The aim of this review is to give an overview of techniques and methods
used in the modeling of acoustic and elastic metamaterials. Acoustic and elastic
metamaterials are man-made materials which present exotic properties capable to
modify and drive wave propagation. In particular in this work we will focus on locally
resonant microstructures. Such metamaterials are based on local resonances of the
internal structure, the dimensions of which are much smaller than the wavelengths of
the waves under analysis. We will consider the seminal papers in the fields to grasp
the most important ideas used to develop locally resonant metamaterials, such as
homogenization techniques and optimization topology. Finally, we will discuss some
interesting application to clarify the aforementioned methods.

12.1 Introduction

The term acoustic (elastic) metamaterials refers to all those artificial materials which
have been conceived to manipulate the propagation of acoustic (elastic) waves.
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Usually they are composed by a periodic repetition of a fundamental cell, whose
dimensions are much smaller than the characteristic wavelength of the phenomenon
under investigation. Therefore, the macroscopic behaviour of the material can be
very exotic, since it is given by the superposition of the responses produced by many
cells.

Metamaterials of this kind were firstly introduced in electromagnetism and optics.
Indeed, researches in these fields were motivated by some pioneering papers by Vese-
lago (1968, 1967), which at the end of the 60’s studied wave propagation in materials
with magnetic permeability and electric susceptibility both negative. His analysis
gave as a result the introduction of materials with negative refractive index, with
extremely interesting applications related to manipulation of electromagnetic waves,
for instance flat lenses. Interestingly, Pendry et al (1996) proposed a metamaterial
made up of an array of thin wires. This microstructured continuum behaves like a
low-density plasma with an effective dielectric constant which can become negative
below the effective plasma frequency. The successes in the realm of electromagnetism
and optics were rapidly extended to acoustics wave propagation. The milestone in
this field was the work made by Liu et al (2000). As we will explicitly discuss in the
following, Liu et al. considered a metamaterial formed by an array of rubber-coated
lead spheres embedded in an epoxy matrix was designed, producing spectral band
gaps in the dispersion diagram. Since then more and more researchers joined this
activity and the efficient interchange of ideas in both fields, optics and acoustics, has
produced a very rapid increase of new results and new applications.

As well-explained in dell’Isola et al (2016a) metamaterials together with the recent
technological developments in manufacturing techniques have led to a drastic change
of perspective in material engineering: the possibility of realizing microstructures
with a desired macroscopic behaviour has reestablished the fundamental role of
mathematical modelling and theoretical analysis in the production process. Interesting
examples of architectured microstructure with a desired macroscopic behaviour can
be found in Turco et al (2016); dell’Isola et al (2016b); Rahali et al (2015); Placidi
et al (2016a); Giorgio (2016); Boutin et al (2017): pantographic sheets, indeed, are
metamaterials which are described, at a larger scale, as second-gradient continua.
Higher-gradient continua were already studied in the 19th century by Piola (1825);
the possibility of defining microstructures modelled according to this theory has been
considered in many papers at the beginning of this century (Pideri and Seppecher,
1997; Placidi et al, 2016b; Alibert and Della Corte, 2015; Rinaldi and Placidi, 2014;
Auffray et al, 2015; Placidi, 2016, 2015; Cuomo et al, 2016; Battista et al, 2016; Yang
and Misra, 2012; Andreaus et al, 2016; Barchiesi and Placidi, 2017); 3D-printing is
opening new horizons from this point of view, since the accuracy of this technology
allows for the creation of almost any kind of structure. Some analysis of wave
propagation in higher-gradient continua has been considered in some papers (Placidi
et al, 2014; dell’Isola et al, 2015; Madeo et al, 2014; Placidi et al, 2008; Berezovski
et al, 2016; Alibert et al, 2003), but more investigations are necessary and we will
not consider this topic in the rest of this review.

As already explained, the research in acoustic and elastic metamaterials is very
active. There are many approaches to the problems and many different applications.
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First of all there are metamaterials with negative effective parameters (Milton and
Willis, 2007; Ding et al, 2007; Chan et al, 2006; Wu et al, 2011; Nemat-Nasser
and Srivastava, 2011). These materials have been largely study in order to produce
bandgaps in the dispersion diagram and are of great interest for acoustic insulation
and elastic vibrations absorption.

Another trend in metamaterials is the one devoted to image focusing below the
diffraction limit (Deng et al, 2009; Zhang et al, 2009; Ambati et al, 2007; Ao and
Chan, 2008; Jia et al, 2010; Liu et al, 2009). From this point of view we can consider
two family of structures: hyperlenses, which are able to transform evanescent waves
that are produced close to an object to image into propagating ones which can be
detected at larger distance, and superlenses that amplify these evanescent waves
thanks to the superposition of Fabry-Perot resonance modes. Metafluids (Norris,
2009), which are fluid metamaterials with anisotropic tensorial mass density, have
found interesting applications in this field: they have been produced, for instance,
by inserting in a fluid an array of very small plaquettes with internal sphere of a
different material, in order to affect both the isotropy and the effective bulk modulus
(see Chap.7 in Craster and Guenneau, 2012).

Eventually there is the branch called transformation acoustics (Chen and Chan,
2007, 2010; Hu et al, 2011; Chang et al, 2011, 2010; Zhang et al, 2011; Brun et al,
2009; Hu et al, 2009; Torrent and Sánchez-Dehesa, 2008; Gokhale et al, 2012;
Norris and Parnell, 2012), under which we are collecting all the techniques for wave
manipulation which are derived from the transformation properties of acoustics and
elastic equations. Indeed, when the equations which describe a certain phenomenon
are invariant in form with respect to a certain class of coordinate transformations,
one can think of the result of this transformation as an effect due to the presence of a
new metamaterial. Therefore a certain mode of propagation obtained after a change
of coordinates can be produced by the insertion of a metamaterial with some desired
properties. These techniques have been widely analysed in connection to cloaking
(Milton et al, 2006; Milton and Nicorovici, 2006; Milton et al, 2017; Norris and
Shuvalov, 2011) and underwater stealthing.

In this paper we will touch this topics only superficially. Instead we will try
to focus on some of the several phases which are required in the production of a
metamaterial. This will give us the opportunity of surveying the principal methods
used in this very active research field. We will start from the theoretical analysis:
first of all the modelling of a single unit of the microstructure, then the macroscopic
behaviour which is obtained by means of suitable homogenization techniques. A
second fundamental step is the optimization of the structure in order to obtain the
desired result. Eventually there are the applications and all the problems related to
manufacturing; in particular we will consider applications to noise and vibration
isolation. Many examples will support the theoretical discussion in order to facilitate
the reading of the work.

According to the previous scheme, the paper will be divided into six sections.
After this short introduction, in Sect. 12.2 we will present some of the locally
resonant microstructures which have been designed in order to produce negative
effective parameters. Section 12.3, instead, will be devoted to a survey of the principal
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homogenization techniques which have been adopted in literature for the macroscopic
description of acoustic metamaterials. In Sect. 12.4 we will deal with topology
optimization: how to obtain an optimal unit cell according to a certain desired
behaviour. Section 12.5 will contain a short review of applications mainly related to
isolation. Eventually some conclusions are derived.

12.2 Locally Resonant Microstructures

Acoustic and elastic metamaterials are man-made materials which present exotic
properties capable to modify and drive wave propagation. Usually, these metamate-
rials are realized by periodically reproducing a fundamental cell or by considering
heterogeneous assembly of different materials. Indeed, there are different phenom-
ena which are able to affect wave propagation in elastic media depending on the
wavelength characterizing the propagation phenomenon and the size characterizing
the internal structure of the metamaterial. In particular one may distinguish between
metamaterials which are based on diffraction effects, where the wavelengths of
interest are of the same order of magnitude as the size of the internal structure, and
metamaterials which are based on local resonances of the internal structure, the
dimensions of which are much smaller than the wavelengths of the waves under
analysis. In this paper we will focus on this second family of acoustic metamaterials,
on their mathematical modelling and their subsequent applications.

The research field on acoustic metamaterials has fruitfully exploited its analogies
with electromagnetic and optical metamaterials which were theoretically predicted in
Veselago (1967, 1968, 2002) and concretely realized in Pendry et al (1996). Indeed,
few years later Liu et al (2000) produced the first example of locally resonant acoustic
metamaterial. This metamaterial was realized as an array of lead spheres coated by a
soft rubber cloak and embedded in an epoxy matrix. Such a metamaterial presented
some bandgaps in the dispersion diagram the feature of which were dependent on the
parameters of the resonating unit cell. Since then more and more researchers joined
this activity and the efficient interchange of ideas in both fields has produced a very
rapid increase of new results and new applications.

The usual description of wave propagation in homogeneous linear elastic Cauchy
continua is obtained by means of the equation

∇ · σ̃ = ρüuu , (12.1)

where uuu(xxx, t) is the displacement. σ̃ is the stress tensor which in linear elasticity is
written as follows:

σ̃ = C : (∇uuu+(∇uuu)T ) . (12.2)

C is the fourth-rank elasticity tensor which satisfies the following properties:

Ci jkl = C jikl = Ci jlk .
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The equation governing acoustic propagation, on the other hand, involves a smaller
number of fields and parameters. It is written as

∇2P− ρ
K

∂ 2

∂ t2 P = 0 , (12.3)

where P is the pressure field, ρ the mass density and K the bulk modulus.
If one deals with microstructured continua the previous description is not satis-

factory since all the information about the internal structure is lost. However many
techniques have been developed which allow to replace the initial heterogeneous
medium with an effective homogeneous one with exotic features. These exceptional
properties are responsible for the manipulation of the wave propagation. These tech-
niques are collected under the name of homogenization techniques and they will be
wider illustrated in the next section.

Before passing to a more systematic investigations of homogenization procedures,
in the rest of this section we will concentrate on the microstructure. Indeed, many
discrete models involving systems of springs and other mechanical components, have
been introduced in order to explain why local resonances can give rise to unusual
effective properties. One of the major contributions to this activity has been given by
Milton and Willis (2007).

They firstly understood that negative mass can be originated by local resonances
in a unit cell. They proposed a very simple model illustrated in Fig. 12.1 a small
mass M1, described as a point particle, connected to a hollow sphere of mass M2 by
means of two springs with elastic constant k. Newton’s Second Law of Dynamics
implies that

M1ẍ = 2k(X− x), (12.4)
M2Ẍ = 2k(x−X), (12.5)

where X is the horizontal displacement of the barycenter of the mass M2, whereas x
is the horizontal displacement of the material point M1.

If we look for harmonic solutions, i.e.

x = xeiωt , X = Xeiωt (12.6)

Equation (12.4) can be rewritten as follows

Fig. 12.1 A mass-spring
system exhibiting negative
effective mass. The periodic
arrangement of this basic unit
cell constitutes a negative
mass acoustic metamaterial.
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M1ω2x = 2k(x−X) . (12.7)

Therefore we get
x
X

=
ω2

1

ω2
1 −ω

(12.8)

with

ω1 =

√
2

k
M1

. (12.9)

ω1 is the resonance frequency of the whole system in Fig. 12.1. For frequencies
close to this value the oscillation of the internal mass is amplified, resulting in a
out-of-phase motion with respect to the motion of the external hollow sphere. If one
defines the effective mass μ of the cell as the ratio between the total momentum of
the cell P and the velocity of the external hollow sphere Ẋ , one gets that

μ = M1
ω2

1

ω2
1 −ω2 +M2 . (12.10)

It is worth noticing that the global effect of the resonance is that the effective mass
can assume also negative values. Periodic arrays of these resonant cells have been
used as acoustic insulators because, when the mass of a single unit becomes negative,
wave propagation is forbidden: the dispersion diagram consequently presents some
bandgaps whose features can be manipulated by changing the parameters of the
single unit cell (Yao et al, 2008; Huang and Sun, 2009).

Similar mechanisms have been introduced to obtain fundamental units charac-
terized by a frequency dependent bulk modulus (Ding et al, 2007; Li and Chan,
2004; Fang et al, 2006; Zhou and Hu, 2007; Liu et al, 2011a). Close to the resonant
frequency the effective bulk modulus becomes negative. In this case the resonance
must involve compressional-extensional motions, a phenomenon which occurs, for
instance, in Helmholtz resonators.

One of the main objective of current research in acoustic metamaterials is finding
structures with a wide range of frequencies in which both parameters, mass density
and bulk modulus, are negative. Indeed, doubly negative acoustic metamaterials
(Li and Chan, 2004; Fang et al, 2006; Ding et al, 2007; Nemat-Nasser and Srivas-
tava, 2011) would be the analogue of right-handed electromagnetic metamaterials
introduced by Veselago. The main feature of these metamaterials is their negative
refractive index: for these systems group and phase velocity have opposite directions,
giving rise to other exotic phenomena like negative Doppler effect and negative
Cherenkov radiation. From the point of view of applications, doubly negative meta-
materials could be efficiently used to manufacture flat lenses (Pendry, 2000) or to
design acoustic cloaks (Milton et al, 2006; Milton and Nicorovici, 2006; Milton et al,
2017; Norris and Shuvalov, 2011).

Locally resonant microstructures are also studied for sub-wavelength imaging
resolution (Deng et al, 2009; Zhang et al, 2009; Ambati et al, 2007; Ao and Chan,
2008; Jia et al, 2010; Liu et al, 2009). Indeed, by means of locally resonant acoustic
metamaterials, it is possible to overcome the diffraction limit and use evanescent
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waves for better imaging a source. For instance superlenses use local Fabry-Perot
resonant modes to amplify the evanescent waves which are produced in the vicinity
of the imaging object.

The step to elastic metamaterials is now very short. Ways of reasoning similar to
the ones above illustrated can be extended to elasticity: the main difference is that the
number of parameters which appear in the equations of motion is higher. For instance
homogeneous isotropic linear elastic materials are described by three parameters, the
mass density, ρ , and the two Lamé’s coefficients, λ ,μ . In this case systems made up
of a hard core coated by a elastic layer, behave like local resonators giving rise to
frequency-dependent effective elastic parameters (Wu et al, 2011; Hu et al, 2011; Liu
et al, 2011b; Zhou et al, 2008; Zhou and Hu, 2009). The out-of-phase motion of the
internal core with respect to the external cloak creates resonances which affect either
mass density or Lamé coefficients, depending on the kind of motion they produce on
the unit cell. The principal applications of this family of metamaterials are related to
absorption of elastic vibrations: new results in this direction could be fundamental in
civil engineering to efficiently protect buildings from earthquakes, or for vibration
attenuation.

In this section we have only outlined some of the macroscopic consequences
deriving from locally resonant microstructures. Our aim was not to provide a full
list of the microstructures which have been proposed in literature during the last
decades. We have only presented some justifications for the use of local resonances
to produce metamaterials with extra-ordinary properties. In the next section we will
illustrate with more details some homogenization techniques which have been used
in modelling this kind of metamaterials. This will help us to better understand how
unit cells have to be designed in order to obtain a certain desired behaviour.

12.3 A Survey of Homogenization Techniques

As already stated, many homogenization techniques exist in literature. For instance it
has to be remarked that in statistical mechanics some rigorous results are obtained
which prove rigorously how one can get fluid continua from discrete microscopic
systems (see the exhaustive reviews presented in Esposito and Pulvirenti (2004);
Pulvirenti (1996)). Actually while one can obtain relevant and rigorous results in
homogenizing microscopically inhomogeneous systems, also including in the picture
thermal phenomena for systems behaving macroscopically as fluids (see the e.g.
Caprino et al, 1993; De Masi and Olla, 2015; Carinci et al, 2014a; De Masi et al,
2009; Carinci et al, 2014b) and also for different class of biological systems (see e.g.
De Masi et al, 2007, 2015), it is an open problem the determination, via statistical
mechanics and rigorous reasonings, of micro properties leading, at macro level, to
solid behavior.

Therefore one has to expect that heuristic methods (Nadler et al, 2006; Steigmann
and dell’Isola, 2015; Steigmann, 2008), mixed micro-macro approaches (Javili et al,
2013; Misra and Poorsolhjouy, 2015; Nadler et al, 2006), numerical identifications
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(Saeb et al, 2016) and ad hoc phenomenological continuum models (Bertram and
Glüge, 2016; Bevill et al, 2006; Eringen, 1976; Ganghoffer, 2016; Javili et al, 2013;
Misra and Poorsolhjouy, 2015; Nadler et al, 2006; Steigmann and dell’Isola, 2015;
Steigmann, 2008) still play a relevant role in the efforts for describing structured
media.

In this section we will present some of these methods directly applied to acous-
tic/elastic metamaterials.

12.3.1 Periodic Homogenization

In this paragraph we will illustrate the method of periodic homogenization in a
concrete example coming from elasticity. For other details on this method applied to
acoustic/elastic metamaterials see for instance the references (Smith, 2011; Andri-
anov et al, 2008; Otero et al, 2005; Craster et al, 2010).

Let us consider the equation describing anti-plane shear waves in an elastic
medium. If U represents the out of plane component of the displacement field uuu, the
above mentioned equation can be written as follows:

∇ · (μ∇U)+ω2ρU = 0 , (12.11)

where μ is the shear modulus of the homogeneous elastic medium under analysis.
Since we are dealing with a microstructured continuum, we will introduce a new
variable, yyy = xxx/ε , where ε denotes the length scale of the microstructure. In other
words, this new variable describes the fast degrees of freedom which characterize the
microscale dynamics of the system, whereas xxx describes its macroscopic behaviour.
The previous field U will now depend on two variables, i.e. Uε (xxx) =U(xxx,xxx/ε), and
the system will be supposed to be periodic, with period h, in the new variable yyy. This
new field obeys the rescaled equation

∇ε · (μ∇εUε )+ρω2Uε = 0 , (12.12)

where ∇ε = ∇x +
1
ε ∇y. The final step of this homogenization technique is to obtain

the field solution of Eq. (12.12) in the limit ε → 0. For this reason one looks for a
solution Uε in the form of a power series in the parameter ε :

Uε (xxx) = ∑
j∈N
ε jU ( j)(xxx,yyy) .

By replacing the ansatz in Eq. (12.12) one obtains the equations for the limiting
field U (0)(xxx,yyy). To retain only the dependence on the macroscopic variable xxx one can
perform an integration over the unit cell of the periodic microstructure.

An interesting application of this homogenization procedure can be found in
Chap.1 of Craster and Guenneau (2012). Guenneau et al (2007) have proved that
if one consider a microstructure made up of square unit cells containing two semi-
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cylinders with a very small separation distance, the equation of the motion for the
homogenized medium preserves the same form as the initial one (Eq. 12.11) but the
shear modulus becomes anisotropic. This kind of structures have been largely studied
in relationship with transformation acoustics.

12.3.2 Dynamic Homogenization and Willis-Type Constitutive
Relations

This method focuses on the dynamical behaviour of the homogeneous effective
medium, providing, in particular, a characterization of those properties which affect
waves propagation (for more details see, for instance, Nemat-Nasser et al, 2011;
Srivastava and Nemat-Nasser, 2012; Nemat-Nasser, 2015; Sieck et al, 2015). The
quantities which are obtained by averaging techniques will, in the end, depend on
the frequencies, resulting in an effective dispersive medium.

The main assumption in this method is the existence of a microstructure which can
be either random and characterized by a probability density P(a) (a is the parameter
representing the distribution of the microstructure) or periodic. Its validity, in both
cases, is restricted to wavelengths much longer than the size of the microstructure.
The presence of the probability distribution allows to define averages of the field as
follows

〈 f (xxx, t)〉=
∫
A

P(a) f (xxx, t,a) . (12.13)

Analogously, in case of periodic structure one can consider different realizations of
the fundamental cell. Since the structure is periodic, there will be a vector yyy which
connects this realization with the cell considered from the beginning. If one considers
equally probable all these realizations it is possible to compute averages as follows:

〈 f (xxx, t)〉=
∫
Y

f (x+ yx+ yx+ y, t)dyyy , (12.14)

where Y denotes the initial realization of the fundamental cell. In the rest of the
paragraph we will limit to the case of periodic microstructures which permits to
understand more easily the dispersive behaviour of the effective dynamical medium
resulting from the average procedure.

Let us consider again (12.1),

∇ · σ̃ = ρüuu . (12.15)

with σ̃ = C : ε̃ .
The periodic hypothesis allows to introduce Bloch-Floquet solutions, i.e.

uuu(xxx, t) = ûuu(xxx)ei(kkk·xxx−ωt) , (12.16)
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where the function ûuu(xxx) is periodic. The effective averaged field is

uuue f f (xxx, t) = 〈ûuu〉ei(kkk·xxx−ωt).

Let us now consider a comparison homogenized medium, the properties of which
will be denoted by a superscript 0, e.g. C0 will denote its elasticity tensor. The
constitutive relations of linear elasticity can be rewritten as follows:

σ̃ = C0 : ε̃+ Σ̃ , p = ρ0u̇+Π . (12.17)

Therefore the equation of motion becomes

∇ · (C0 : ∇u)+∇ · Σ̃ − Π̇ = ρ0üuu , (12.18)

with appropriate boundary conditions. The solution of this equation can be written as
follows:

uuu(xxx, t) = uuu0(xxx, t)+G0 ∗ (∇ · Σ̃ − Π̇) , (12.19)

where ∗ denotes the operation of convolution, both in space and time, uuu0 is solution of
the equation ∇ · (C0 : ∇uuu0) = ρ0üuu0 with the same boundary conditions as Eq. (12.18)
and G0 is the Green function of the same PDE, satisfying homogeneous boundary
conditions.

After integration by part in the convolution integral one obtains a linear relation
between the field u and the fields Σ̃ and Π :

uuu = uuu0−S0 ∗ Σ̃ −M0 ∗Π ,

where S0 and M0 are integral operator deriving from the Green function G0.
Consequently one can write

ε̃ = ε̃0−S0
x ∗ Σ̃ −M0

x ∗Π , ppp = ppp0−S0
t ∗ Σ̃ −M0

t ∗Π . (12.20)

On the other hand these expressions can be read as a set of relations between the
fields (Σ̃ ,Π) and the fields ε̃ ,u̇uu. Therefore after averaging over the unit cell Y we get
the final relations:

〈σ̃〉= T11 〈ε̃〉+T12 〈u̇uu〉 , 〈Π〉= T21 〈ε̃〉+T22 〈u̇uu〉 (12.21)

Replacing this expression in the constitutive relations one obtains the constitutive
equations for the effective medium which are of the Willis-type, that is

〈σ̃〉= Ce f f 〈ε̃〉+Se f f 〈u̇uu〉 , 〈p〉= Se f f 〈ε̃〉+ρe f f 〈u̇uu〉 . (12.22)

It has been proved in Norris et al (2012); Srivastava (2015) that this constitutive rela-
tions are closed under this homogenization scheme, that is a Willis type microstruc-
ture remains of the same kind after homogenization. Furthermore self-adjointness of
the problem is also preserved.
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Let us remark that the effective tensor Se f f is not univoquely determined since
we can modify the integral operators involved in the homogenization scheme without
altering the procedure. However, as observed by Willis, if one introduces an eigen-
strain η in the constitutive relations the effective constitutive relations are unique
(Willis, 2011).

12.3.3 Homogenization from Scattering Properties.

Another largely applied method which gives effective homogeneous media describing
the properties of acoustic metamaterials is based on the comparison between the
scattering properties of the internal microstructure and the ones of the corresponding
homogenized medium. These methods have been largely used for acoustic trans-
parency. Indeed one can design the microstructure in such a way that the effective
parameters coincide with the parameters of the external host medium (Cummer et al,
2008; Cummer and Schurig, 2007; Alù and Engheta, 2005; Zhou and Hu, 2006; Zhou
et al, 2008; Zhou and Hu, 2007; Guild et al, 2011).

Let us consider a metamaterial formed by a large number of subunits which we
will consider as single scatterers. When an incident field impinges on a rotationally
symmetric cluster of scatterers, its response is described by a scattered field which is
linearly related with the incident wave, i.e.

ψsc = Tclsψin .

The matrix Tcls depends only on the properties of the cluster and the frequency of the
incident wave.

The idea at the base of this homogenization scheme is to replace the original
metamaterial with a homogenized medium whose properties are obtained by the
following equation:

lim
ω→0

Tcls = lim
ω→0

Te f f . (12.23)

In other words one is supposing that in the quasi-static limit, that is ω→ 0, the cluster
behaves like an homogeneous medium characterized by some effective parameters.

Because of the rotational symmetry, the incident wave and the scattered field can
be expanded in a multipolar series, and the scattering matrix actually connects the
coefficient in the series. If one considers a bidimensional example one can write:

ψin(r,θ) = ∑
q∈N

Aq jq(kr)eiqθ , (12.24)

ψsc(r,θ) = ∑
q∈N

Bq jq(kr)eiqθ , (12.25)

Bq = ∑
s∈N

TqsAs, (12.26)



258 Fabio di Cosmo, Marco Laudato, and Mario Spagnuolo

where the symbol jq(kr) indicates one of the Bessel or Hankel functions (depending
on the problem under analysis) and k is the background wave-vector.

Let us continue with this bidimensional example to illustrate how this homoge-
nization scheme works. In the circular case, for a homogeneous and isotropic elastic
medium, the scattering matrix Tqs becomes diagonal T = Tqδqs. Furthermore all the
Tq vanish in the limit ω → 0, but according to different trends. For instance, in the
electromagnetic case the dominant terms in this quasi-static limit are the coefficient
T0 and T1 both vanishing as ω2.

In general for a homogeneous scatterer of radius Ra it can be shown (see Waterman,
1969, for instance) that the dominant terms in the scattering matrix have the form

Tq ≈ iπk2R2
a

4
Γ a

q , (12.27)

where the Γ a
q are coefficients which depend only on the field considered. Therefore

for the effective medium we will have:

T e f f
q ≈ iπk2R2

e f f

4
Γ e f f

q .

On the other hand, if we neglect multiple scattering, the scattering coefficients of the
cluster are the sum of the scattering coefficients of any single scatterer. Therefore
if the medium is composed of N homogeneous scatterer of radius Ra the dominant
terms of the scattering matrix for the cluster are written as follows:

T cls
q ≈ N

iπk2R2
a

4
Γ a

q .

Equating the two expressions one can find the effective parameters describing the
homogenized medium:

Γ e f f
q = fΓ a

q

where f =NR2
a/R2

e f f is the filling factor relative to the metamaterial. Some interesting
applications of this general procedure to obtain homogenized plates is presented in
Torrent et al (2014). In this case it is interesting to notice that, differently from the
electromagnetic case, the properties of the homogenized medium are determined
only by the coefficients T0 and T2.

After this short review of some homogenization techniques used for acous-
tic/elastic metamaterials, in the next section we will present another aspect which
is fundamental in the design and modelling of metamaterials: optimization of the
structures.
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12.4 Topology Optimization

One of the key feature that has driven the attention of researcher on Locally Resonant
Sonic Materials is the possibility, in principle, of controlling wave-propagation
phenomena. Moreover, an important advantage from the realizability point of view is
that, unlike other absorptive materials like for instance phononic crystals, they do
not require in general any particular relation between the characteristic length of the
microstructure and the wavelength of the acoustic waves (Deymier, 2013).

However, the modeling of such materials is not straightforward and a systematical
method of design is not yet available. Here modeling means the way to design the
local resonators in order to obtain an aimed band-gap in the dispersion relation of the
material. Although several proposals have been done in the last years, a satisfying
model to forecast the frequencies at which attenuation is maximized still miss. For
instance one can mention the heuristic model to forecast resonance frequencies by
Hirsekorn (2004), where the main problem is that, due to the action of elastic waves,
resonance frequencies alone are not enough to determine the damping band.

Despite the difficulties of such a study, the advantages of a complete control of
Locally Resonant Sonic Materials are formidable and one can mention applications
to several area of engineering, physics, and biology. Therefore, it is not unexpected
that several research groups are intensely working on this topic.

A promising idea which has given interesting and fruitful results is the so-called
topology optimization procedure (Bendsøe and Kikuchi, 1988; Bendsøe and Sigmund,
2004). We will briefly show in the rest of the section the main idea behind the
topology optimization by considering specific relevant examples from the literature.
In each example, which deals with Locally Resonant Sonic Materials with different
microstructures, we will discuss how the topology optimization procedure is realized
and the particular advantages will be examined case by case.

12.4.1 TopologyOptimizationforLocalResonantSonicMaterials

In Liu et al (2000) introduced for the first time the concept of Local Resonant Sonic
Materials. The microstructure consists of a epoxy resin matrix, with inclusions of
lead covered with silicon rubber. An incident wave induces a near eigen-frequency
high-amplitude vibration of the inclusions which consequently prevents the passage
of the wave through the Local Resonant Sonic Materials.

The first steps to produce Local Resonant Sonic Materials with satisfying at-
tenuation properties were driven by a trial and error process in the design of the
microstructure. Of course, these methods were not very reliable and they were high-
time consuming from the computational point of view. Some efforts were done trying
to forecast the damping frequency band (see for instance Hirsekorn et al, 2006) or to
enlarge it (Gu et al, 2008), but the first systematic method for the design of Local
Resonant Sonic Materials was presented in 2004 by Matsuki et al (2014).
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They have proposed a systematic method to obtain the optimal unit cell, whose
repetition gives rise at macroscopic level to the desired frequency band at which atten-
uation is maximized. The main tool is the structural topology optimization method,
which essentially deals with the density distributions of the various components of
the material. One of the main problems which usually arises dealing with topology
optimization methods is that the optimal configuration may contain non-physical
materials, i.e. it may include areas where the material density has an intermediate
values between the densities of the actual materials. This problem was brilliantly
overcome by Allaire et al (2004) and Wang et al (2003), independently, by proposing
the so-called set-based structural optimization method (we refer to Yamada et al,
2010, for an application to topology optimization method).

The optimization problem is set as follows: one considers a single cell, harmoni-
cally loaded with frequency ω to the left side Γin. The cell is divided in three different
areas: The design area Ωdesign (around the inclusion), the coat area Ωcoat, and the
kernel area Ωkernel. The densities of the materials in Ωdesign are defined as:

ρdesign = ρepoxy +χ
(
ρsilicone−ρepoxy

)
,

λdesign = λepoxy +χ
(
λsilicone−λepoxy

)
,

μdesign = μepoxy +χ
(
μsilicone−μepoxy

)
,

(12.28)

where the characteristic function χ(xxx) describes the extension of the Ωsilicone area:{
χ(xxx) = 1, if xxx ∈Ωsilicone,

χ(xxx) = 0, if xxx ∈Ωdesign/Ωsilicone.
(12.29)

The optimization problem is stated by requiring the minimization with respect to the
characteristic function χ of the following functional (Matsuki et al, 2014)

inf
χ

∫
Γout

u(ω) ·u∗(ω)dΓ , (12.30)

being Γout the right-side of the cell, u the displacement field, and ∗ the complex
conjugate.

In conclusion, by means of a topology optimization procedure, based on a set-
based approach, this method is able to give an engineering meaningful optimal
configuration of the cell, providing an acoustic damping band around the desired
frequency ω .

12.4.2 Topology Optimization for Hyperbolic Elastic Metamaterials

Hyperbolic elastic materials are metamaterials in which the wave propagation is
allowed only in the radial direction while it is forbidden in the angular direction.
They were introduced for the first time, for electromagnetic waves, independently, by
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Salandrino and Engheta (2006) and Jacob et al (2006), but several examples were
developed in the subsequent years (see for instance Liu et al, 2007; Lee et al, 2007)
with several interesting applications, see for instance the results in high-resolution
lithography (Xiong et al, 2009) and hyperbolic lenses (Kildishev and Narimanov,
2007).

Only in a second moment researchers, driven by possible applications to sub-
wavelength imaging for medical purposes, considered elastic/acoustic hyperbolic
metamaterials. The typical microstructure (see for instance the one proposed by in
Oh et al (2015)) of a hyperbolic elastic metamaterial is a small plate (thickness ∼
1mm) in aluminium with an internal corrugated structure which is able to slow the
speed of the incident wave along the angular direction. The dispersion curve of such
a metamaterial shows that waves can propagate along the angular direction until a
certain frequency threshold f < fθ is reached, while they can propagate in the radial
direction at frequencies below fr, with fr > fθ . Therefore, the frequency band for
which this system works as a hyperbolic metamaterial is fθ < f < fr. One of the
main challenges in this topic is to broaden this band as much as possible.

An interesting approach to this problem was proposed by Oh et al (2015) and it
deals with a topology optimization procedure. The key role in the damping effect is
played by the corrugated part in the microstructure and the optimization procedure
looks for its optimal design. In this system, one has to consider that the physical
phenomena in the radial and angular directions are different. Moreover, and this is
the major feature which distinguishes this problem from all the similar optimization
problems, the frequency band for which the system works as a true hyperbolic
materials depends on both internal resonance effects and on the periodicity of the
microstructure. To deal with this situation is not straightforward and one has to
consider two independent finite element models which are able to describe the
physical phenomena associated to the propagation in the two orthogonal directions
at the same time. This is the so-called multi-model based finite element analysis.

The optimization problem is formulated by requiring that following functional
has to be minimized

ψ(x1, . . . ,xN) = a
ωBragg

wi
Bragg

+b
ω i

shear
ωshear

+ c
N

∑
e=1

(1− xe)xe, (12.31)

where 0 < xe ≤ 1 is the element density design variable associated to the e-th cell, N
is the total number of design variables, ωBragg is the Bragg frequency of the system,
a,b,c are weights, and the index i is relative to the initial guess of the corrugated
shape which is known and that for sure gives rise to truly-hyperbolic metamaterial.
By means of this topology optimization problem, Oh et al (2015) were able to show
that the optimal internal corrugated structure, which maximally broaden the working
frequency band, is characterized by an hinge and a reinforced rectangular part.
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12.4.3 Topology Optimization for Hyperelastic Plates

In the recent years the peculiar properties of hyperelastic materials have been deeply
studied. The main reason is the growing interest in applications like bio-mimetic
actuators and sensors, energy producing devices (Czech et al, 2010), and microjets
(Oates and Liu, 2009) for which hyperelastic materials (Park et al, 2010) seems to be
suitable.

One of the most interesting phenomenon which has been investigated is the
nonlinear response of elastic structure to resonant excitations (Sathyamoorthy, 1997;
Lacarbonara, 2013). In particular, when the natural frequencies associated to two
(or more) oscillation modes are (nearly) commensurable, it is possible to observe
the effects of transfer of energy between the modes due to resonances of the internal
structure. For instance, internal resonance will happen if a sufficient huge external
excitation is applied to a system described in terms of quadratic non-linearities which
exhibits a 1:2 frequency ratio of two linear modes.

There are essentially two different possibilities to obtain quadratic nonlinearities
in a considered structure: material nonlinearities, which are the ones related to a non
linear stress-strain relation, and geometric nonlinearities, which are related to a large
deformation regime.

In order to obtain internal resonance in hyperelastic materials, one has to look
for the particular design of the microstructure that is able to produce the quadratic
nonlinearities which allow 1:2 internal resonance. Among the many proposals that
have been done in the last year, one of the most successful is the one presented in
the recent work of Tripathi and Bajaj (2016) dealing with a topology optimization
procedure.

In their model, the resonator whose design has to be optimized to obtain internal
resonance, is an isotropic rectangular thin hyperelastic plate described as a two-
parameter incompressible Mooney-Rivlin material. It is modeled by means of four
node thin-plate elements which can rotate around the two axis of the plate and move
on the transverse plane. Initially, they consider energy transfer only between two
oscillation modes. In particular, an external resonant perturbation excites the second
mode that in turn, once the optimal design is reached, excites the internal resonators
with a 1:2 frequency ratio.

They performed the so-called method of moving asymptotes topology optimiza-
tion (for a complete introduction, see for instance Svanberg, 1987). In this method,
one divides the design region in N cells and a design variable xi, the index i referring
to the i-th cell, such that 0 < xi < 1 is defined. The density and the Young modulus
of the i-th cell are then expressed as

ρi = ρmin + xn
i ρ0, Ei = Emin + xm

i E0, (12.32)

where the constants ρmin and Emin are needed to avoid singularities during the finite
element procedure and ρ0 and E0 are the density and Young’s modulus of the material,
respectively. Again, it is crucial to avoid gray-scales zones, i.e. the case in which
the optimization procedure yields non-physical densities. This is the reason of the
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exponents n and m in (12.32) that, to prevent intermediate densities and Young’s
modulus, are usually defined higher than 3 (in Tripathi and Bajaj, 2016, they are fixed
to 6 and 12, respectively). The topology optimization problem is the minimization of
the following functional

c(ω) =

(
ξ − ω2

ω1

)
+Ck

N

∑
i=1

(xn
i )(1− xm

i ), (12.33)

where ω1 and ω2 are the frequencies of the two modes and Ck is a fixed coupling
constant. The optimization method of moving asymptotes topology essentially solves
a series of iterative convex approximation of the functional, starting from an initial
solution. In the first step, by means of the initial solutions we obtain the first gradient
of the objective function. By means of the gradient, it is possible to define an
approximate convex form of the objective function that can be solved by using usual
methods. In the second step, the so-obtained solution will be now considered as
a starting objective function and the process will be repeated until a satisfactory
approximation is reached.

Despite the fact that topology optimization is not very developed for nonlinear
dynamics, by means of the moving asymptotes topology method, in Tripathi and
Bajaj (2016) a method to optimize the design of the microstructure to obtain internal
resonators has been shown, providing us with another example of the usefulness of
topology optimization method.

12.5 Principal Applications: Phononic Crystals

An important kind of acoustic metamaterial is the one including particular artificial
periodic composites known as phononic crystals (PC) or sonic crystals, consisting in
a periodic array of acoustic scatterers (see for instance Fig. 12.2 where a square unit
cell is represented) embedded in a host material (Kushwaha et al, 1993; Sigalas et al,
2005; Liu et al, 2000). The fundamental feature of PC is that they may induce band
gaps. The existence of band gaps in PC is of great interest in the area of noise and
vibration isolation (Sánchez-Dehesa et al, 2011; Yu et al, 2008). A phononic band
gap is a frequency range in which all the propagating Bloch waves (not depending
on their wave vector and polarization) are forbidden.

The problem of wave propagation in two-dimensional acoustic metamaterials is
investigated in Wang et al (2015), referring to locally resonant viscoelastic phononic
crystals of two different kind associated to quasi-longitudinal and quasi-shear waves.
A variational formulation of the complex band structure for in-plane polarized waves
is considered: this kind of approach, in fact, allows to simply develop a finite element
model. For linearly viscoelastic materials load and deformations are linearly related
and the general relation between the components of the stress and strain tensors is
given by

Tα(rrr, t) = ψ̇αβ (t)∗Sβ (rrr, t), (12.34)
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Fig. 12.2 Unit cell of the
square-lattice metamaterial.
The lattice constant is a.

where ∗ indicates the time convolution, ψαβ are the 21 independent components of
the relaxation function with indices α,β = 1, . . . ,6 and

TTT = [σxx,σyy,σzz,σyz,σxz,σxy]
T , SSS = [εxx,εyy,εzz,εyz,εxz,εxy]

T . (12.35)

In the case of a time-harmonic plane wave u j(rrr, t), the stress and strain vectors
can be written as

Tα(rrr, t) = T̃α eiωt , Sα(rrr, t) = S̃α eiωt , (12.36)

and the constitutive relation becomes

T̃α =Cvαβ (iω) · S̃β (12.37)

The complex stiffness matrix Cv, whose components are

Cv
αβ (iω) =

+∞∫
−∞

ψ̇αβ (t)e−iωt dt , (12.38)

can be expressed as
Cv =C+ iωη , (12.39)

where we call η the viscosity matrix.
The governing equation in absence of body forces is then (ρ is the mass density)

∇ jα T̃α(rrr) =−ρω2ũ j. (12.40)

If the elastic waves propagate in the transverse plane with displacements independent
of the z-coordinate, they can be decomposed into mixed and shear modes and the
wave equation for mixed modes is

∇ · (μ∗∇ỹ j)+∇ ·
(
μ∗

∂
∂x j

ũuu
)
+

∂
∂x j

(λ ∗∇ · ũuu) =−ρω2ũ j, (12.41)
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where λ ∗ =Cv
12(rrr, iω) and μ∗ =Cv

44(rrr, iω) are the complex Lamè constant and shear
modulus. According to the Bloch’s theorem by substituting this expression in (12.41)
we obtain:

(∇− ikkk) · [μ∗ (∇− ikkk) ũ jkkk
]
+(∇− ikkk) ·

[
μ∗ (∇− ikkk) j ũuukkk

]
+(∇− ikkk) j [λ ∗ (∇− ikkk) · ũuukkk] =−ρω2ũ jkkk .

(12.42)

After the presentation of the theoretical aim, the authors describe an algorithm for
calculating the complex band structure (see Fig. 2 in Wang et al, 2015) for in-plane
waves and the modal distribution of the displacement components (see Fig. 3 in
Wang et al, 2015) based on a FEM implementation. Propagating and evanescent
Bloch waves (see Fig. 5 in Wang et al, 2015) are calculated and analyzed in order to
understand the physical meaning of the associated complex bands, also in presence
of viscosity.

A similar problem is studied in Xiao et al (2012), where local resonators are also
considered. The plane wave expansion method to study the flexural wave propagation
in locally resonant beams with multiple periodic arrays of attached spring-mass
resonators is considered. In this case it is possible to quantify the wave attenuation
performance of band gaps by calculating the complex Bloch wave vectors. The
interesting point consists in the fact that a locally resonant beam with multiple arrays
of damped resonators can achieve much broader band gaps than a locally resonant
beam with only a single array of resonators.

For the calculation of elastic wave band structures associated to the system in
Fig. 12.3 the authors use the so-called plane wave expansion method (PWE) to
deal with the LR beams containing multiple arrays of lumped resonant elements
(i.e., spring-mass resonators). The governing equation for the time-harmonic flexural
vibration of the LR beam system can be written, by referring to the Euler-Bernoulli
beam theory, as

EI
∂ 4w(x)
∂x4 −ω2ρAw(x) =

N

∑
j=1

+∞

∑
n=−∞

f j(x j +na)δ [x− (x j +na)] , (12.43)

f j(x j +na) =−k j [w(x j +na)−u j(x j +na)] , j = 1, . . . ,N, (12.44)

−ω2m ju j(x j +na) =− f j(x j +na) , j = 1, . . . ,N (12.45)

with E Young’s modulus, I the cross-sectional inertia moment, A the cross-sectional
area, while w(x) is the transverse displacement of the beam, f j(x j +na) the force

Fig. 12.3 Diagram of an
infinite LR beam with multiple
periodic arrays of attached
spring-mass resonators.
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applied to the beam by the resonator located at x j + na and u j(x j + na) is the dis-
placement of the mass of the resonator.

For the periodicity of the LR beam system, the displacement of the beam can be
written as

w(x) =
+∞

∑
m=−∞

Wm e−i(q+2mπ/a)x (12.46)

and similarly can be done for the others terms present in Eq. (12.43). By substituting
these quantities in Eq. (12.43) the following equations are obtained:

EIa(q+2mπ/a)4Wm−ω2ρAaWm=
N

∑
j=1

{
−k j [w(x j)−u j]ei(q+2mπ/a)x j

}
−ω2m ju j = j j[w(x j)−u j] , j = 1, . . . ,N .

(12.47)

By solving the previous equations the predicted values of the Bloch vectors are
obtained (see Figs. 2 and 3 in Xiao et al (2012)).

Flexural wave propagation is also studied in Xiao et al (2013), by using an exact
analytical approach based on a combination of the spectral element method and
periodic structure theory. The authors calculate the propagation constants and thus
the complex band structures in the case of infinite and finite periodic structures are
considered. The locally resonant beam structure is pictorially described in Fig. 12.4.
As a result of numerical simulations, the complex band structures of a LR beam (see
Fig. 3 in Xiao et al, 2013) and the relationship between the lattice constant L on the
band gap behavior of a LR beam with fixed absorber parameters is obtained (see Fig.

Fig. 12.4: Locally resonant (LR) beams with periodically attached dynamic vibra-
tion absorbers (DVAs): (a) and (b) are schematics of two realistic models, and (c)
is the simplified physical model.
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10-11 in Xiao et al, 2013). By changing the key physical parameters it is possible to
show how to obtain different basic unit cell, as depicted in Fig. 12.5.

A numerical study and relative comparison with experiments of in-plane and
out-of-plane guided waves in a thin plate with local resonators is presented in Zhu
et al (2011). The authors achieve a new metamaterial plate design for a low-frequency
bandgap in both in-plane and out-of-plane guided waves. A different point of view is
considered in Zhu et al (2014), where chiral lattice-based EMM beam with multiple
embedded local resonators is suggested to achieve broadband vibration suppression.
Also in this case, the authors verify their principal hypothesis via comparison between
numerical simulations and experimental measures.

In Chen et al (2011) the behaviour of wave propagation in a sandwich beam
with internal resonators (see Fig. 12.6) is studied analytically and experimentally.
The authors find that, near the local resonance frequency of the resonator, harmonic
waves cannot propagate without attenuation in amplitude and that the extent of the
bandgap can be selected by altering the local resonance frequency of the resonator.
The magnitude of the internal mass has a greater influence on the size of the bandgap.
Sandwich beams with internal resonators are also studied in Sharma and Sun (2016).
Using FEM numerical tools the effectiveness of various local resonator frequencies
under a given impact load is compared to the behavior of an equivalent mass beam.
It is shown that addition of appropriately chosen local resonators into the sandwich
beam is an effective method of improving its flexural bending behavior under impact
loads.

In Thompson (2008) a damped mass–spring absorber system is considered at-
tached continuously along the beam length. The aim of this study is to attenuate

Fig. 12.5 Unit-cell models:
(a) and (d) represent two
choices of a single symmetric
unit cell; (b), (c), (e) and (f) de-
pict the unit cells with pinned-
pinned or sliding–sliding
boundary conditions.

Fig. 12.6 Sandwich beam
with internal resonators.
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structural waves in beams. As particular application the authors give the reduction of
noise from a railway track, which requires the attenuation of structural waves along
the rail to be increased over a frequency band of two or more octaves.

The study in Wang (2014) presents a cell of elastic metamaterials in an effort to
provide a model for generating negative mass and/or negative modulus. The authors
present a model consisting of a series of properly arranged rigid bodies and linear
springs. By introducing both translational and rotational motions in the representative
cell, negative mass and negative modulus can be obtained in a controlled manner.
Finally, a review on the recent advances in the microstructural designs of LR based
EMM plates can be found in Zhu et al (2015).

12.6 Conclusions

In this review we have presented the actual development of the studies on acoustic
metamaterials based on local resonances. We have explored the homogenization
procedures developed for this kind of materials and a particular attention has been
paid to the topological optimization processes. Finally, some applications have been
presented. In particular the interesting case of phononic crystal has been treated.
Some interesting applications for the methods described in this review could result
in the development of brand-new kind of acoustic metamaterials. Indeed, the fast
advancement of 3D printing technologies, allowing the realization of relatively “small
structural architectures”, has pushed the interest of several research groups into this
field. History of science has many paradigmatic examples in which it is clear how
technological advancement leads to novel theoretical progresses and opens new
scientific perspectives (Dell’Isola et al, 2016; Russo and Levy, 2013; Eugster and
dell’Isola, 2017; dell’Isola et al, 2016).

This review would answer to the need of understanding the main techniques and
results in the modeling of acoustic metamaterials. The importance of such activity
should not be underestimated since in the history of science it happens frequently
that some results are lost and then rediscovered in subsequent works.
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Chapter 13

On Nonlinear Waves in Media with Complex

Properties

Jüri Engelbrecht, Andrus Salupere, Arkadi Berezovski, Tanel Peets, and Kert Tamm

Abstract In nonlinear theories the axiom of equipresence requires all the effects of
the same order to be taken account. In this paper the mathematical modelling of
deformation waves in media is analysed involving nonlinear and dispersive effects
together with accompanying phenomena caused by thermal or electrical fields. The
modelling is based on principles of generalized continuum mechanics developed by
G.A. Maugin. The analysis demonstrates the richness of models in describing the
physical effects in media with complex properties.

13.1 Introduction

The legacy of G.A. Maugin is huge and has an imprint on many studies on continuum
mechanics in the second half of the 20th century. His studies have cast light on many
fundamental problems of continua like the principle of virtual power, generalized
continuum mechanics, the concepts of internal variables and configurational forces,
propagation of waves and fronts – just to name a few (dell’Isola et al, 2014). His
sparkling ability to inspire his colleagues to collaborate and find new problems in the
field of fundamental understanding of the behaviour of materials has been realized
in numerous joint publications. In this paper the attention is paid to nonlinear wave
propagation. G.A. Maugin himself has studied waves in elastic crystals (Maugin,
1999), numerical methods used for the analysis of waves and fronts (Berezovski
et al, 2008) and published several overviews on waves (Maugin, 2011; Christov
et al, 2007).The cooperation with colleagues in Tallinn has resulted in describing
complexities of soliton theory (Salupere et al, 1994, 2001), in nerve pulse analysis
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(Maugin and Engelbrecht, 1994), in elaborating the concept of internal variables
(Berezovski et al, 2011a,b), etc. Here we shall present some fundamental ideas from
this cooperation and novel results developed recently. The basic problem is how to
describe real properties of materials and how these are reflected in wave propagation.
The importance of such an analysis is pointed out also by Maugin (2015).

In what follows, the problems in deriving the governing equations of nonlinear
wave motion for describing complicated properties of media (materials) and the
corresponding mathematical models are presented in Sect. 13.2. The physical effects
resulting from these governing equations are analysed in Sect. 13.3. Finally, in
Sect. 13.4 discussion is given together with ideas for the further research.

13.2 The Governing Equations

The governing equations for describing wave motion are based on the balance of
momentum. Besides classical linear wave equations, the Boussinesq-type models
are richer because they account also nonlinear and dispersive effects (Christov
et al, 2007). Like classical wave equations in the 1D setting, these equations have
bi-directional solutions. Another class of models describing nonlinear waves are
evolution equations like the Korteweg-de Vries (KdV) equation and its modifications.
Evolution equations describe uni-directional propagation and are usually derived
from complicated systems by the reductive perturbation method using the moving
frame of reference. Characteristically for both types of equations, the modelling
of nonlinear and dispersive effects permits to describe many interesting physical
phenomena. Below some results of modelling are briefly described. The 1D set-ups
are used in order to reach transparent models where it would be easy to trace the
influence of individual terms in models.

A typical form of a Boussinesq-type equation in terms of a displacement u is
(Christov et al, 2007):

utt − c2
0uxx− [F(u)]xx = (β1utt −β2uxx)xx , (13.1)

where c0 is the wave velocity, Fu is a polynomial and β1,β2 are physical constants.
As usual, x denotes space and t denotes time. Here and further, indices x and t denote
the differentiation with respect to the indicated variable. This equation can be found
as in solid mechanics as well as in fluids where it was derived originally. It must
be noted that the r.h.s. of Eq. (13.1) has often an order of O(ε) where ε is a small
parameter.

The general form of a KdV-type evolution equation in terms of v∼ ux (or v∼ ut )
is (Salupere et al, 2001)

vτ +[P(v)]ξ +D(v) = 0, (13.2)
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where τ is a scaled coordinate, ξ = c0t− x is the moving frame coordinate, P(v) is a
polynomial and D(v) is a dispersion operator including the odd derivatives of v with
respect to ξ only.

13.2.1 Boussinesq-Type Models

In modelling of microstructured solids, it is possible to distinguish macro- and
microstructure that must be taken into account in modelling the wave motion. Based
on the Mindlin (1964) micromorphic theory, the governing equations can be derived
for both coupled structures. The existence of the microstructure leads to dispersive
effects while nonlinearity is of the physical character. The free energy W is assumed
to have a form:

W =
ρ0c2

2
u2

x +A1ϕux +
1
2

Bϕ2 +Cϕ2
x +

1
6

Nu3
x +

1
6

Mϕ3
x , (13.3)

where ρ0 and c are the density and the sound velocity of the macrostructure, u is the
macrodisplacement, ϕ is the microdeformation in the sense of Mindlin (1964), and
A,B,C,N,M are material parameters. The kinetic energy K is

K =
ρ0

2
u2

t +
I
2
ϕ2

t , (13.4)

where I is the measure of microstructure inertia.
Then the governing equation in terms of the macrodisplacement u is (Engelbrecht

et al, 2005; Berezovski et al, 2013):

utt − (c2− c2
A)uxx− 1

2
k1(u2

x)x = p2c2
A
(
utt − c2

1uxx
)

xx−
1
2

k2(uxx)xx, (13.5)

where c2
A = A2/ρ0B , c2

1 =C/I , p2 = I/B and k1,k2 are the coefficients of nonlin-
earities.

It must be stressed that Eq. (13.5) reflects the following: (i) the nonlinearities
are of the deformation-type as usually in solid mechanics; (ii) microinertia of the
microstructure is taken into account; (iii) the second wave operator at the r.h.s has
a parameter p2 which is usually small and therefore Eq. (13.5) is a hierarchical
equation. In addition, the velocity of the wave operator for the macrostructure at
the l.h.s is influenced by the properties of the microstructure. In such a way, the
governing equation reflects real properties of the microstructured material.

In case of a multiscale (the scale in the scale) microstructure, the governing
equation involves two wave operators reflecting the properties of microstructures
(Engelbrecht et al, 2007). In the linear case this equation is:
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utt − (c2− c2
A1)uxx = p2

1c2
A1
[
utt −

(
c2

1− c2
A2
)

uxx
]

xx

− p2
1c2

A1 p2
2c2

A2
(
utt − c2

2uxx
)

xxxx , (13.6)

where indices 1 and 2 denote the microstructures. The smaller scales bring in higher
order dispersive terms. Like the macrostructure, the level 1 microstructure is also
influenced by the level 2 microstructure. Two wave operators at the r.h.s. of Eq. (13.6)
indicate the hierarchical structure the governing equation. If internal variables are
considered to include nonlinearities in the microscale then the structure of governing
equations becomes even more complicated compared to Eq. (13.3) as shown by
Berezovski (2015).

The asymptotic analysis demonstrates also the hierarchies for waves in Cosserat
media and ferroelectrics, analysed by Maugin (1999). In the linear case, the governing
equations are similar to those for microstructured solids (Salupere and Engelbrecht,
2014).

In biomechanics, the character of nonlinearities can be different from what is
typical in solid mechanics. Based on experiments, it has been shown that in biomem-
branes where the microstructure is built up by lipid molecules, the nonlinearity of
mechanical waves can be accounted in the effective velocity (Heimburg and Jackson,
2005)

c2
e = c2

0 + pu+qu2, (13.7)

where c0 is the velocity in the unperturbed state and u is the density change along
the axis of the biomembrane, while p,q are material coefficients. Substituting c2

e into
the balance of momentum and the adding dispersive terms, the governing equation
for longitudinal waves in biomembranes takes the form

utt =
[(

c2
0 + pu+qu2)ux

]
x−h1uxxxx +h2uxxtt , (13.8)

where h1,h2 are constants. This equation was proposed by Heimburg and Jackson
(2005) with h2 = 0 and later improved by Engelbrecht et al (2015). This improvement
with h2 �= 0 is important because it accounts for the microstructure of the biomem-
brane made of lipids and removes the discrepancy that at higher frequencies the
velocities are unbounded. This is a physically admissible situation as stressed by Mau-
gin (1999). It must be stressed that as noted above, in Eq. (13.5) the nonlinearities
are of the deformation-type, then in Eq. (13.8) they are of the displacement-type.

13.2.2 Evolution-Type (KdV-Type) Models

These one-wave asymptotical models have gained wide attention because of the iconic
status of several nonlinear evolution equations like the KdV equation, Schrödinger
equation which permit in some cases also analytical solutions (for example, Maugin,
1999, 2011; Ablowitz, 2011). The classical KdV equation combines the quadratic
nonlinearity and cubic dispersion:
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vτ + vvξ +dvξξξ = 0, (13.9)

where d is the dispersion parameter. The numerical analysis of the KdV equation
has revealed many details including the behaviour of multi-recurrence of solitons
forming from a harmonic excitation (Salupere et al, 2002), the explanation of the
importance of hidden solitons (Salupere et al, 2003; Engelbrecht and Salupere, 2005)
and the influence of an additional force (Engelbrecht and Salupere, 2005). The
modifications of the KdV equations involve more physical effects. For example, for
martensitic-austenitic shape-memory alloys the governing equation takes the form
(Salupere et al, 2001):

vτ +[P(v)]ξ +dvξξξ +bv5ξ = 0, (13.10)

P(v) =−1
2

v2 +
1
4

v4, (13.11)

where d and b are the third- and the fifth-order dispersion parameters, respectively.
The quartic potential (13.11) corresponds to the two-well energy distribution which
has a direct influence on nonlinear effects. Equations (13.10), (13.11) are able to
describe several solitonic structures (Ilison and Salupere, 2006).

It is also possible to derive an evolution equation from the bi-directional
model (13.5). However, in this case the result is a modified KdV equation (Ran-
drüüt and Braun, 2010)

vτ +a1vvξ +d1vξξξ +a2(v2
ξ )ξξ = 0, (13.12)

where a1 describes the nonlinearity of the macrostructure, a2 ∼ O(ε) - the nonlin-
earity of the microstructure and d1 denotes the joint influence of dispersive terms
(cf. Eq. (13.5)). It means that both of the effects – inertia of the microstructure
(term uttxx in Eq. (13.5)) and elasticity of the microstructure (term uxxxx in Eq. (13.5))
are involved in the dispersive term in Eq. (13.12), reflected by the sign of d1 (Ran-
drüüt and Braun, 2010). More detailed analysis of nonlinearities in the microscale
demonstrates that also Benjamin-Bona-Mahoney or Camassa-Holm equations can be
derived (Berezovski, 2015).

Like for the Boussinesq-type equations, the evolution equations may also have a
hierarchical character reflecting the scale effects. This is the case of granular materials
when the evolution equation can be written in the form (Giovine and Oliveri, 1995):

vτ + vvς +α1vξξξ +β
(
vτ + vvξ +α2vξξξ

)
ξξ = 0, (13.13)

where α1 and α2 are macro- and microlevel nonlinearities and β is a parameter
involving the ratio of the grain size and the wavelength. The solutions of Eq. (13.13)
involve beside single solitons also soliton ensembles. This is a typical example of
two concurrent dispersive effects (Ilison and Salupere, 2009).
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13.2.3 Coupled Fields

Several physical situations need accounting for coupled fields. For example, in
mechanics of solids, the presence of heat sources lead to coupling of deformation
fields and temperature fields. For microstructured materials the processes in macro-
and microstructures are influenced by both fields. Besides the deformations of macro-
and microstructures, the temperature fields can also be divided: macrotemperature
and microtemperature (fluctuation of temperature in microstructural elements). The
corresponding governing equations can be derived by using the concept of internal
variables (Berezovski et al, 2011a,b). However, due to the complicated structure
of these equations, it is impossible to derive a single governing equation like it is
done for elastic waves in microstructured solids (see above). In this coupled case the
governing system of equations is (Berezovski et al, 2014):
balance of linear momentum:

utt − c2
ouxx = m1θx +m2ϕx +m3αxx; (13.14)

balance of energy:
θt = n(kθx)x +m4uxt + r1α2

t ; (13.15)

governing equation for microtemperature:

αtt − c2
d αxx = m5uxx− r2αt ; (13.16)

governing equation for microdeformation:

ϕtt − c2
t ϕxx =−m2ux−m3ϕ, (13.17)

where u is the macrodisplacement, ϕ - the microdeformation, θ - the macrotempera-
ture, α - the microtemperature; c0,cd ,ct denote velocities, k is the thermal conduc-
tivity and m1,m2,m3,m4, m5,r1,r2,n are coefficients. If conditions θ = const,α =
const are satisfied then Eqs. (13.14) and (13.16) can be reduced to the linear form
of Eq. (13.5). The full system of Eqs. (13.14) – (13.17) includes three hyperbolic
equations (Eqs. (13.14), (13.16), (13.17) and one parabolic equation (Eq. (13.15)).
The coupling of physical effects is complicated – microdeformation and microtem-
perature are not coupled but both are coupled to the balance of linear momentum
while macrostructure is affected by the macrodisplacement (like in the usual theory
of thermoelasticity) and microtemperature.

In biophysics, a theoretical model for nerve signal propagation including all the
physical effects is still a challenge calling “to frame a theory that incorporates all
observed phenomena in one coherent and predictive theory of nerve signal propaga-
tion” (Andersen et al, 2009). The phenomena are following: the action potential (the
electrical pulse) in a nerve fibre which carries the signal, generates also mechanical
waves in the axoplasm within a fibre and in the surrounding biomembrane. The
longitudinal wave in the biomembrane leads to the transverse displacement which is
measurable. Leaving aside the detailed description on the origin of physical effects
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and corresponding models, a possible mathematical model uniting all the processes
into one system has recently been proposed in the following form (Engelbrecht et al,
2016).

First, the action potential can be modelled by the simplified FitzHugh-Nagumo
(FHN) equation governing the propagation of an electrical pulse z (Nagumo et al,
1962):

ztxx = ztt +μ(1−a1z+a2z2)zt + z, (13.18)

where a1,a2,μ are parameters and z is the scaled voltage.
Second, the pressure wave in axoplasm may be governed by a 1D Navier-Stokes

model
ρ(Vt +VVx) =−px +μνVxx +F1(z), (13.19)

where V is the velocity, ρ – the density, p – the pressure and μν – the viscosity. The
force acting from the action potential is denoted by F1(z).

Third, the longitudinal wave in the biomembrane is modelled by Eq. (13.8)

utt =
[(

c2
0 + pu+qu2)ux

]
x−h1uxxxx +h2uxxtt +F2(z,V ), (13.20)

where F2(z,V ) is a force from other waves. The system of equations (13.18), (13.19),
(13.20) is solved for the initial condition

z
∣∣
t=0= f (x) (13.21)

and the transverse wave (horizontal displacement w of the biomembrane) is calculated
by

w =−krux, (13.22)

like in rods (Porubov, 2003). All the governing equations are nonlinear and demon-
strate explicitly the complexity of the process. The nature of forces F1(z),F2(z,V )
must be determined by experiments.

13.3 Physical Effects

The model equations described in Sect. 13.2 give an idea about how to account
for complicated physical effects reflecting the properties of nonlinear media. In
this Section, the most typical effects are described which have resulted from recent
studies (many in cooperation with G.A. Maugin). As typical for the complex world,
the interactions of effects lead to new phenomena.

Most of the mathematical models described above are the soliton-bearing systems.
The nonlinear Boussinesq-type model like Eq. (13.5) demonstrates the emergence
of soliton trains. Note that here the nonlinearity is of the deformation type. An
initial condition produces left- and right-propagating trains of deformation solitons
(Berezovski et al, 2013) where, as expected, the higher the amplitude, the faster the
soliton. The interaction of solitons governed by non-integrable equation (13.5), howe-
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ver, is not fully elastic and produces some radiation explained already by Maugin
(1999). Due to the nonlinearity at the microlevel, the emerging solitons are not fully
symmetric (Salupere et al, 2008). By solving the corresponding evolution equation
(13.12), the same effect is demonstrated (Randrüüt and Braun, 2010).

Another Boussinesq-type equation (13.8) involves displacement-type nonlineari-
ties. It possesses a soliton solution and from an initial input, the soliton trains can
be formed. Given the signs of the coefficients from experiments (p < 0) contrary to
the previous case, the soliton trains have an interesting property – the smaller the
amplitude, the faster is the soliton. The analysed improved model (13.8) demonstrates
clearly that the existence of the inertial term h2uxxtt leads to a narrower pulse which
is important in determining its value from experiments by measuring the width of the
pulse. The full analysis of Eq. (13.8) is given by Engelbrecht et al (2017) together
with the demonstration of the existence of periodical waves (cf cnoidal waves for the
KdV equation) governed by this equation. Like in the previous case, the interaction
of solitons is not fully elastic resulting in some radiation during interactions.

The existence of solitary solutions or the emergence of regular soliton trains are
like benchmarks of solitonics. However, due to complicated physics, the governing
equations are different from well-studied classical models and interest should also
be focused to the complicated solitonic structures. Such structures may emerge
in phase memory alloys (Eq. (13.10)), in granular media (Eq. (13.13)) and forced
KdV models. In order to understand properly the mechanisms of emerging solitonic
structures, one should determine the number of possible emerging solitons. This
depends on the energy sharing and redistribution between solitons. In general terms,
starting from the seminal paper by Zabusky and Kruskal (2014) this problem has
been analysed using various estimations (see references in Salupere et al, 2014). A
detailed analysis of interaction of solitons shows that besides visible solitons there
exist also hidden (or virtual) solitons (Salupere et al, 1996; Christov, 2012). The
hidden solitons can be detected from the changes they cause in trajectories of other
solitons during interactions and can be visible during the short time intervals due to
the fluctuations of the reference level. What is important, is that these hidden solitons
may serve as “energy pockets” which may become visible if an external force acts
in a system (Engelbrecht and Salupere, 2005). This effect has been analysed for the
KdV equation with the periodic external force (Engelbrecht and Salupere, 2005).
Depending on the strength of the force, several features were established: weak,
moderate, strong and dominating external fields. In the case of the weak field all
hidden and smaller visible solitons are suppressed; in the case of the moderate field
the resulting solitons include all visible and some hidden solitons; in the case of
the strong field the number of emerging solitons is higher than in the corresponding
conservative case; and in the dominating field no soliton complexes but wave packets
are formed. If the external force has a polynomial character with one maximum and
one minimum then a single soliton may be suppressed or amplified depending on its
amplitude (Engelbrecht and Khamidullin, 1988). This phenomenon could explain the
possible amplification of the precursors to seismic waves generated by earth-quakes.
The hierarchical KdV equation (13.13) governs beside a single soliton several types
of soliton complexes: a KdV soliton ensemble with or without a weak tail; a soliton
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with a strong tail; a solitary wave with a tail and wave packets (Ilison and Salupere,
2009; Salupere et al, 2014). Here the hidden solitons play a role in the emergence of
soliton complexes.

It is obvious that the soliton “menagerie” is rich and above only a part of phenom-
ena was described related to microstructured solids. For a more detailed review the
reader is referred to Maugin (2011).

Besides solitons and soliton complexes, the microstructured solids reveal other
interesting phenomena. In the case of multiscaled hierarchical microstructures
(see Eq. (13.6)) the effect of the negative group velocity may appear (Peets et al,
2013). This phenomenon is related to the coupling effects between the two scales.
In terms of dispersion analysis, this is a case when two optical branches of disper-
sion curves are very close to each other at certain frequencies. As far as the optical
modes represent non-propagating oscillations, such a situation can be considered as
a pre-resonant one.

The processes in thermoelastic microstructured solids are described by
Eqs. (13.14) – (13.17). The numerical simulation shows that even in the absence of
effects of the microdeformation, the wave propagation process is strongly influenced
by the microtemperature (Berezovski and Engelbrecht, 2013). Namely, although the
leading terms in the balance of energy (13.15) reflect the parabolicity as expected, the
macrotemperature is affected by the microtemperature changes (hyperbolic equation
(13.17)) and demonstrates the wave-like behaviour. This result casts surely more
light on the behaviour of microstructured solids.

The joint model of a nerve signal propagation (Eqs. (13.18) – (13.20)) is an
attempt to explain this fascinating process by including all the possible waves into an
ensemble where the nonlinearities play a decisive role. The waves in the ensemble
interact with each other through the coupling forces. Certainly, the description of
the electrical signal is here simplified because the FHN model takes into account
only one (generalized) ionic current. This current plays a crucial role in the energy
balance of the electrical pulse dictating its asymmetric shape. It would better to
account for specified currents of Na and K ions but the more complicated models
like the Hodgkin-Huxley model (Hodgkin and Huxley, 1952) taking these ionic
currents into account need many more physical parameters. So at this stage we limit
ourselves to the simple FHN equation (13.18). The pressure wave in the axoplasm is
described by the classical Navier-Stokes equation. Finally, the longitudinal waves in
the surrounding biomembrane are described by a recently derived equation (13.20).
To make this model work, two important physical phenomena must be properly
understood:

i) the mechanisms of opening the ion channels;
ii) the nature of coupling forces.

It means that in Eq. (13.18) the parameters a1 and a2 should be carefully estimated
and the forces F1(z) and F2(z,V ) determined. This work is in progress. A special
challenge is to understand the synchronization of velocities and the possible phase-
shifts between the waves in an ensemble.
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13.4 Discussion

What has been described above, is the description of complexity in wave motion.
Indeed, the main features of complex systems are (Érdi, 2008):

i) complex systems are comprised of many different constituents which are con-
nected in multiple ways;

ii) complex systems produce global effects including emergent structures generated
by local interactions;

iii)complex systems are typically nonlinear;
iv)emergent structures may occur far from the equilibrium.

The need for the inevitable introduction of complexity in the mechanics of real
materials has been suggested also by Maugin (2015). The list of effects in nonlinear
wave motion includes many fundamental phenomena such as the balance of nonlinear
and dispersive effects, scale effects and hierarchies, coupling of different fields, etc.
As a result, special wave structures could emerge and the interaction of waves may
lead to amplification, instability and energy redistribution. The coupling of several
fields like in thermoelasticity and biophysics leads to completely novel physical
effects which can explain the behaviour of materials or systems in a more informative
way. In general terms, the corresponding mathematical models are non-integrable
(Maugin, 2011) and that is why numerical methods are used in the analysis. Most of
the results described above are obtained either by using the finite volume (Berezovski
et al, 2008) or the pseudospectral (Salupere, 2009) methods. A special attention is
paid to the accuracy and convergence of numerical simulations.

The analysis of complexity of wave motion demonstrates clearly that the mechan-
ical behaviour (stresses, velocities, deformation, temperature) of continua depends
on the interactions of constituents and fields. From another point of view, the waves
are the carriers of information and energy reflecting so the interaction processes. By
measuring the physical properties of waves (amplitudes, velocities, spectra, shapes),
this information can be used for the determining the properties of fields or internal
structures, i.e. for solving the inverse problems (Janno and Engelbrecht, 2011).

There are many unsolved problems in the complexity of wave motion. One could
ask about the soliton management, soliton tunability (generation of solitons with
predetermined amplitudes or spectral densities), soliton turbulence (self-organization
into spatially localized solitonic structures), etc. An interesting question is whether
intuitively well understood microtemperatures in microstructured materials can be
measured. Metamaterials and nanomaterials need more attention because of their
properties which must be reflected also in wave motion.

The impact of G.A. Maugin in generating novel ideas is enormous.
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Chapter 14

The Dual Approach to Smooth Defects

Marcelo Epstein

Abstract Within the theory of continuous distributions of defects in materials, this
paper advocates a point of view based on the geometry of differential forms. Appli-
cations to smectic liquid crystals and to multi-walled nanotube composites serve to
show how this dual mathematical approach fits perfectly with the intended physical
reality. Moreover, the weak formulation of the theory in terms of de Rham currents
delivers the description of discrete isolated dislocations as a generalization of the
smooth theory.

14.1 Dedication

It is with not a small amount of sad yearning that I recollect Gérard’s gift in celebra-
tion of our almost common seventieth birthday, a gift that he delivered in the form of
a lecture in Calgary in August of 2015. It was the last time that I saw him and had a
chance to witness the amazing scope of his knowledge, the power of his intellect, his
keen sense of humour and the depth of his friendship. The topic of his talk on that
occasion was “Geometry and Continuum Mechanics”. In this tribute to his memory,
therefore, it seems fitting that I should write a summary of some ideas within this
field, which he knew to be my aesthetic ideal and scientific paradigm.

14.2 Summary of the Direct Approach

In the mental process of passing to the continuous limit of a crystal structure (such as
a Bravais lattice), the most natural correspondence is obtained by smoothly assigning
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to each point X of a material body B a frame, that is, a basis EEEα (α = 1,2,3),
of the tangent space TXB at X . Smoothness means that for every point X ∈B a
neighbourhood U (X) can be found such that X ∈ U (X) and such that, for any
system of coordinates XI (I = 1,2,3) in U (X), the components EI

α of EEEα in the
natural coordinate basis eeeI =

∂
∂XI are smooth functions of XI . Thus, locally at least,

we obtain a material parallelism. A vector vvv∈ TY B at a point Y ∈U (X) is said to be
materially parallel to a given vector uuu ∈ TXB if their components in the respective
material bases, EEEα(Y ) and EEEα(X), are respectively equal.

Thus constructed, a continuous lattice is said to be (locally) defect-free if, for
each U (X) above, a (reference) configuration of the body B exists such that the
material parallelism coincides with the standard Euclidean parallelism in R3. In
plain language, the lattice is (locally) defect-free if it can be ‘straightened’ in a
neighbourhood of each point. A classical theorem (see, e.g., Bishop and Goldberg,
1980) in differential geometry establishes that a necessary and sufficient condition
for this to be the case is that the Lie bracket (or commutator) of every pair of lattice
base vectors must vanish identically in U (X), that is

[EEEα ,EEEβ ] = 0 ∀α,β = 1,2,3. (14.1)

In components, using the summation convention, this condition reads

EI
α
∂EJ

β

∂XI −EI
β
∂EJ

α
∂XI = 0. (14.2)

The description summarized above will be referred to as the structural description
of the direct approach. The direct approach can also be motivated from a more sophis-
ticated point of view, epitomized in Noll (1967), which we will call the constitutive
description. Since from an epistemological standpoint Continuum Mechanics must
stand alone, rather than justify its legitimacy on the basis of another physical model,
one must conclude that any material geometry, such as the one exhibited above, must
be "the outcome, not the first assumption, of the physical theory" (Truesdell and Noll,
1965). Accordingly, a notion of material isomorphism is established exclusively on
the basis of a constitutive law of the body. In the elastic case, for a simple or first-
grade material, the constitutive law is given by specifying the Cauchy stress tensor
ttt as a function ttt = ttt(FFF ,X) of the local value FFF of the deformation gradient at each
point X ∈B. The deformation gradient is, of course, a non-singular two-point tensor.
In any referential and spatial coordinate systems it is represented by a nonsingular
matrix. Two material points X ,Y ∈B are materially isomorphic if there exists a
linear map PPP(X ,Y ) : TXB→ TY B such that

ttt(FFF ,Y ) = ttt (FFFP(X ,Y ),X) ∀FFF . (14.3)

Physically, two points are materially isomorphic if they are made of the same ma-
terial. Indeed, the material isomorphism map PPP only changes the local reference
configuration induced at each point by a given global reference configuration. For
this reason, a material isomorphism can also be described as a material transplant.
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A body is said to be materially uniform if all its points are mutually materially
isomorphic. We assume that a field of material isomorphisms in a uniform body
can be chosen smoothly neighbourhood by neighbourhood. To relate the two points
of view (structural and constitutive), it suffices to adopt arbitrarily a basis EEEα at
any one point X and, by application of the transplant maps assumed to exist in a
uniform body, to obtain the corresponding basis at all other points of U (X). In the
terminology of the constitutive description, a (locally) defect-free body is called
(locally) homogeneous.

Two significant differences between the two descriptions of the direct approach
must be mentioned. The first discrepancy arises from the fact that, having already
utilized the underlying constitutive law, the constitutive description must forego any
possibility of including the contribution of the presence of defects to the constitutive
response, beyond the contribution encoded in the lack of homogeneity. Put differ-
ently, we cannot include in the constitutive law an a posteriori dependence on the
non-vanishing commutators, since they were obtained by an a priori specified law.
The second significant difference between the two descriptions arises from the fact
that the material at hand may have a continuous symmetry group, such as is the
case in commonly found isotropic or transversely isotropic materials. A material
symmetry is nothing but a material automorphism, that is, a material isomorphism
of a point with itself. In a uniform body it is not difficult to show that the symmetry
groups at all points are mutually conjugate. Thus, a smooth extra degree of freedom
becomes available in the choice of material isomorphisms and, consequently, in the
determination of the local material bases EEEα . As a result of this extra degree of free-
dom, the homogeneity condition (14.2) does not necessarily hold for every possible
choice of material parallelism in a defect-free neighbourhood. These differences
should not be counted as deficiencies of either description.

14.3 The Dual Perspective

Given a finite-dimensional vector real space V its dual space V ∗ is defined as the
vector space consisting of all real-valued linear functions ω : V → R, with the
obvious definitions of vector addition and multiplication by a scalar. An element
of the dual space V ∗ is also known as a covector. Being of the same dimension,
the spaces V and V ∗ are automatically isomorphic to each other, but no canonical
isomorphism between them can be established. On the other hand, once a basis
EEEα is specified in V , a dual basis EEEα is obtained uniquely in V ∗ according to the
prescription

〈EEEα ,EEEβ 〉= δαβ , (14.4)

where δαβ is the Kronecker symbol and where 〈ω,vvv〉 denotes the evaluation of the
linear functional ω ∈V ∗ on the vector vvv ∈V .

It might appear, therefore, that the direct formulation summarized in Sect. 14.2
can be replicated almost word for word by moving from the tangent bundle TB to the
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Fig. 14.1 A physicist’s view
of a covector ω and its evalua-
tion on a vector vvv

◦

◦

︷ ︸︸ ︷ω

vvv

cotangent bundle T ∗B, which would amount to a perhaps unnecessary abstraction
with little or no added benefit. Our intention in this note is precisely to demonstrate
that this is not the case and that definite advantages may arise from adopting the dual
point of view. Before doing so, however, it may prove useful to reveal the meaning
of the homogeneity condition in the geometric language of the dual formulation.

Even from a purely aesthetical point of view, the elegance of the dual approach
can be traced back to the fact that a differential form, that is, a field of covectors on a
manifold, is endowed with an analytic structure known as exterior differentiation,
which is not the case for vector fields. It is true that every vector space gives rise
to an algebraic construct known as the exterior algebra (or Grassmann algebra) of
multi-vectors of various orders. But it is only in a bundle of multi-covectors that an
analytic construction can be carried out. The exterior derivative operator d assigns to
a differential k-form ω (that is, to a field of multi-covectors of order k) a differential
(k+1)-form dω . In this language, to be further elucidated in the next section, the
homogeneity condition (14.2) is written as

dEEEα = 0. (14.5)

14.4 A Brief Review of Differential Forms

14.4.1 Pictorial Representation of Covectors and 1-Forms

We borrow from Misner et al (1973) a surprisingly useful representation of a covector
ω as a stack of parallel planes arranged at a given density. Each plane in the stack
is defined by all the vectors vvv such that 〈ω,vvv〉= constant. Doubling the covector is
tantamount to doubling the density without otherwise affecting the planes themselves.
Within this imagery, the evaluation of a covector on a vector is obtained by ‘counting
how many planes’ are pierced by the vector, as suggested in Fig. 14.1.
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Fig. 14.2 Pictorial representa-
tion of a differential 1-form on
B

B

A differential 1-form is a smooth assignment of a co-vector at each point of B.
Following our previous depiction, a differential 1-form can be understood as the
specification of a plane stack at each point of B, as shown schematically in Fig. 14.2.
Let us just point out for now that this picture looks very much like a field of Bravais
planes in the continuous limit.

In a coordinate system XI the dual basis of the natural basis eeeI =
∂
∂XI is denoted

by dXI . A differential 1-form ω is given by

ω = ωI dxI , (14.6)

where ωI = ωI(X1,X2,X3) are smooth functions. The evaluation of ω on the vector
field vvv with components vI(X1,X2,X3) is

〈ω(X),vvv(X)〉= ωI vI . (14.7)

14.4.2 Exterior Algebra

Given a vector space V , we declare 2-covectors to be the same as skew-symmetric
second-order covariant tensors. Two 1-covectors, ω,σ ∈ V ∗, give rise to the 2-
covector ω ∧σ defined as

ω ∧σ =
1
2
(ω⊗σ −σ ⊗ω) , (14.8)

where ⊗ denotes the tensor product. The 2-covector ω ∧σ is called the exterior
product (or wedge product) of ω with σ , and the symbol ∧ is also known as the
wedge operator.

By definition, the exterior product is skew-symmetric. In particular the product of
a 1-covector by itself vanishes. In three dimensions, therefore, the exterior products
eeeI ∧eeeJ constitute essentially only 3 distinct non-zero values. These products can be
regarded as a basis for all possible products of 1-covectors. In other words, any skew-
symmetric tensor ρ can be expressed as a linear combination ρ = ρIJ eeeI ∧eeeJ , whether
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or not it arises from the product of two covectors. A 2-covector that happens to be
expressible as the exterior product of two 1-covectors is said to be decomposable.

Given a coordinate system in B, we can apply these ideas in a pointwise manner
thus giving rise to differential 2-forms. A differential 2-form ρ is given in components
by

ρ(X) = ρIJ dXI ∧dXJ , (14.9)

where ρIJ are smooth functions of the coordinates.
These concepts can also be extended to multi-covectors of any order. The order,

however, cannot non-trivially exceed the dimension of the underlying vector space. A
3-covector is a completely skew-symmetric covariant tensor of order 3. The exterior
products eeeI ∧eeeJ ∧eeeK constitute a basis for all such tensors. By skew-symmetry, this
basis boils down to the single 3-covector eee1∧eee2∧eee3. In 3 dimensions we cannot go
any further non-trivially.

14.4.3 The Exterior Derivative

It is convenient to regard scalar functions f : B→ R as 0-forms. The differential of
a 0-form is

d f =
∂ f
∂XI dXI = f,I dxI . (14.10)

The notation suggests that the differential of a smooth scalar field is a differential
1-form. In the same spirit, we define the exterior derivative or exterior differential of
a 1-form ω = ωI dxI as the 2-form

dω =
∂ωI

∂XJ dXJ ∧dXI = ωI,J dXJ ∧dXI . (14.11)

Similarly, the exterior derivative of a 2-form Ω =ΩIJ dXI ∧dXJ is the 3-form

dΩ =ΩIJ,K dXK ∧dXI ∧dXJ . (14.12)

An important property of the exterior differential is that a repeated application of the
operator d to any differential form ω annihilates the result, namely,

d2ω = d(dω) = 0, (14.13)

The reason for this result stems from the inherent symmetry of second partial deriva-
tives combined with the inherent skew-symmetry of the exterior derivative. For
example, if f is a scalar function, we obtain

d2 f = d(d f ) = d( f,I dXI) = f,IJ dXJ ∧dXI = 0. (14.14)

The converse result, known as Poincaré’s lemma, is a keystone in the theory of forms
and its interpretation in various physical contexts.
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Lemma 14.1. (Poincaré’s lemma) Let ω be a p-form (with p≥ 1) such that dω = 0
on a coordinate ball. Then, there exists a (p−1)-form f such that ω = d f on that
ball.

A p-form ω with the property dω = 0 is said to be closed. A p-form obtained as
the differential of a (p−1)-form is said to be exact. Every exact form is closed, but
(according to Poincaré’s lemma) a closed form is only guaranteed to be locally exact.
If the domain of definition B is topologically contractible, then every closed p-form
on B is exact. Notice that in n dimensions every n-form is automatically closed.

14.4.4 Integration

Differential p-forms are essentially objects that can be integrated over p-dimensional
domains of integration. If M is a p-dimensional oriented manifold with boundary
and ω is a p-form with compact support in M , the integral of ω over M is denoted
as
∫
M ω . If the support of ω happens to be contained in the domain U ⊂M of

coordinate chart φ , the integral is defined by working in the chart∫
M

ω =
∫

φ(U )

f dX1...dX p, (14.15)

where ω = f dX1 ∧ ...∧ dX p. The right-hand side is understood as the ordinary
Riemann integral in Rp. The more general case where the support is not contained in
a single chart is handled technically by means of partitions of unity (see Chern et al,
2000).

The fundamental result in the theory of integration is contained in the following
theorem. It generalizes and encompasses all the results of this kind covered by
classical vector calculus.

Theorem 14.1. (SSStokes’ formula): Let ω be a compactly supported (p−1)-form in
a p-dimensional oriented manifold M with boundary. Then∫

M

dω =
∫

∂M

ω, (14.16)

where ∂M is the boundary of M . On the right-hand side, ω is understood as
the restriction of the given (p− 1)-form to ∂M . Moreover, the orientation of the
boundary is assumed to be consistent with the orientation of M .

14.5 An Application to Smectics

Quoting from Chen et al (2009),
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Smectic liquid crystals consist of rod-shaped molecules that spontaneously form both di-
rectional (nematic) order and a one-dimensional density wave, commonly described as a
layered system; the spacing between the layers is approximately the rod length, a. In two
dimensions, we can picture the layers as a set of nearly equally spaced curves lying in the
plane. The ground states are characterized by both equal spacing between these curves and
vanishing curvature.

Without pretending to treat this subject in depth, it is clear from the description
above that defects are worthy of study in molecular structures that are not necessarily
representable by Bravais lattices. In the continuous limit, we can conjecture that
a smectic liquid crystal of the kind described in Chen et al (2009) is faithfully
represented by a differential 1-form. Although the objective in Chen et al (2009) is
the study and classification of isolated defects, the presence of smooth distributions
of defects is also important. Notice that the direct approach would be at pains to
describe the physical situation in a natural way. In the dual formulation, all we have
to do is consider a single 1-form instead of the three required for a fully-fledged
Bravais structure.

Let, therefore, ω be the 1-form representing the field of local stacks of layers of a
smectic. We will call this the layering form (Epstein and Segev, 2014a,b). What is the
meaning of the condition that the layering form be closed, that is, dω = 0? According
to Poincaré’s Lemma 14.1, for each point X ∈B this condition implies the existence
of a scalar function f : U (X)→ R such that ω = d f . This is equivalent to stating
that in the neighbourhood U (X) the stack of surfaces f = constant coincides at each
point with the local stack of the layering form in the sense that it is both tangent to it
and has exactly the same local density. In physical terms, the smectic is defect-free,
as schematically represented in Fig. 14.3.

On the other hand, if dω does not vanish identically over U (X), we conclude that
the smectic contains a continuous distribution of defects. It is, therefore, appropriate
to call the 2-form D = dω the defect density. We will now try to extract the physical
meaning of the fact that the defect density D, as just defined, is itself an exact
differential form.

In a smectic body B, with a given layering 1-form ω , let γ be a closed curve in
B and let C be an oriented 2-dimensional submanifold with boundary (a surface)
such that γ = ∂C . We may think of γ as a Burgers’ circuit, by analogy with the

Fig. 14.3 Pictorial representa-
tion of a defect-free smectic
(dω = 0)

B
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theory of crystal dislocations. The surface C encounters defects (smoothly distributed
mismatches in slope and/or density between neighbouring stacks). The net amount
of defects encountered is given by the integral of the defect density D = dω over C .
This net amount may vanish even if there are defects on C which end up canceling
out mutually. Whatever the case, according to Stokes’ Theorem 14.1, we must have∫

C

D =
∫
γ

ω, (14.17)

Consider a different surface C ′ with the same boundary curve γ , as shown in Fig. 14.4.
We conclude from Eq. (14.17) that the net amount of defects is the same as before. In
other words, the net amount of defects is the same on all surfaces sharing a common
boundary. Thus, a Burgers circuit γ can be said to embrace a fixed net amount of
defects. This generalization of the concept of Burgers circuit (and, in this case, the
associated Burgers scalar) is a direct elementary consequence of the geometrical
setting, rather than of a clever physical insight.

A fundamental result, with a clear intuitive flavour, states that the boundary of the
boundary of a manifold with boundary vanishes, namely,

∂∂M = /0. (14.18)

This equation should be compared with its formal analogue (14.13). These two
statements are intimately related via Stokes’ theorem. To elucidate the physical
significance of these formulas, consider the integration of the defect density D =
dω over the boundary ∂R of a three-dimensional domain in B. Applying Stokes’
theorem, we obtain ∫

∂R

D =
∫

∂∂R

ω = 0. (14.19)

This result can be interpreted physically as the fact that there can be no isolated
sources of defects. It was obtained by exploiting the vanishing of the boundary of
a boundary, that is, ∂ 2 = 0. It could also have been independently obtained from
d2 = 0. Indeed, recalling that, by its very definition, D is an exact form, we could
have claimed that

Fig. 14.4 A Burgers circuit γ
and two associated surfaces C
and C ′

B γ
C C ′
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∂R

D =
∫
R

dD =
∫
R

d(dω) = 0. (14.20)

Assume, finally, that the defect density vanishes identically everywhere except
around a very thin, wire-like, domain traversing the body. Enclosing this domain
with a slightly thicker tubular neighbourhood, and focusing attention on the portion
comprised between two cross sections, we conclude that the net defect density in any
cross section of this tube is constant. We have thus essentially recovered Frank’s rule
(Frank, 1951) for line dislocations. A similar result can be obtained for branching
dislocation lines. We again emphasize that, in this approach, the physical results
emerge naturally from the geometric setting.

14.6 An Application to Nanotubes

Because of the perfect match between the physical reality of smooth defects in a
smectic liquid crystal and the geometry of differential forms, it is difficult to imagine
a better alternative procedure. An even closer agreement is encountered when trying
to tackle the more difficult problem of smooth defects in nanotube composites, as
proposed in Epstein (2016).

Carbon nanotubes may consist of several coaxial cylinders of carbon atoms. When
embedded in large numbers within a matrix, therefore, our picture of local plane
stacks breaks down as a geometric descriptor of the resulting composite. Instead, we
have a situation schematically depicted in Fig. 14.5, whose mathematical expression
we will consider next.

As a collection of coaxial cylinders, a single nanotube provides us with a one-
parameter family of atomic plane stacks tangent to the cylindrical surfaces. In other
words, instead of having a single layering 1-form as was the case in the smectic, we
are now confronted with a one-parameter family of layering forms, namely

ω(λ ) = ωI(X1,X2,X3;λ ) dXI , (14.21)

Fig. 14.5 A multi-walled
nanotube composite

B
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where λ is the parameter. A more general case can be imagined in which the family
depends on more than one parameter, as would be the case for a composite with
embedded multi-walled nanospheres.

When looking for defects, we are not referring to imperfections within each
elementary cylinder. What we have in mind is a possible lack of alignment that
transcends the individual elements. In a defect-free composite, we look for the
existence of a family of integral surfaces, such as those depicted in Fig. 14.3, that are
tangential to the elementary cylinders and have their prescribed stack density. Put
differently, we will say that the composite is locally defect-free if each point X ∈B
belongs to a neighbourhood U (X) such that a scalar field λ : U (X)→ R exists that
renders the layering form (14.21) closed, namely, by the chain rule,

dω =
(
ωI,J +ωI,λλ,J

)
dXJ ∧dXI = 0. (14.22)

We obtain thus a system of 3 quasi-linear partial differential equations for the function
λ , namely,

εKIJ (ωI,J +ωI,λλ,J
)
= 0, (K = 1,2,3), (14.23)

where εKIJ is the alternating symbol, equal to +1 (-1) for each even (odd) permutation
of the values of the indices K, I,J) and vanishing whenever the values of any two
indices are equal.

For a given one-parameter form ω(λ ), the system (14.23) is overdetermined, so
that there may be no functions λ = λ (X1,X2,X3) that satisfy (14.23). In this case, we
say that the nanotube composite is defective. A necessary condition for this system
to have a solution is of a purely algebraic nature. Indeed, if we attempt to read off
the three partial derivatives λ,I , we find that they are connected linearly and that the
coefficient matrix of this linear system is

AIJ = ε IKJωK,λ . (14.24)

This is a singular matrix. It is not difficult to check that the rank consistency condition
of the system (14.23) is

ε IKJ ωI,λ ωK,J = 0. (14.25)

If this necessary algebraic condition yields no solutions for λ (X1,X2,X3), the
structure is defective. If it has a solution, we still have to check whether the differential
equations are satisfied. Finally, if the algebraic condition is satisfied identically, it
can be shown (Epstein, 2016) that the system of PDEs has a solution. In this way, it
is possible to construct configurations of nanotube composites that are defect-free, in
the sense that there are atomic integral surfaces that transcend the individual strands
and provide the setting for enhanced strength and conduction properties.
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14.7 A Volterra Dislocation

Historically, the study of material defects is traceable to the pioneering work of
Volterra (1907), who calculated the stress fields in multiply-connected elastic bodies
subjected to a discontinuous displacement field. Although he did not use the modern
terminology, this work established the basis for the study of isolated dislocations
in solids. The passage to the continuous case was achieved later, using the Volterra
paradigm and the crystal lattice model as its inspiration (see, e.g., Bilby, 1960). Can
this process be reversed? In other words, using a continuous model ab initio, is it
possible to recover rigorously an isolated dislocation, through a well-established
mathematical process without any further assumptions? The positive answer to this
question is given in Epstein and Segev (2014b,a), thus embracing both theories under
a single umbrella. The dual approach is, once again, the secret of success. Indeed,
although a theory of singular vector fields à la Schwartz distributions does not exist,
the theory of singular differential forms has been well established some decades ago
by de Rham (1984).

Recall that a Schwartz distribution (or generalized function) is a continuous
linear functional on a space of C∞ real-valued functions with compact support (test
functions). The classical example is the δ function, which assigns to every test
function its value at the origin. Similarly a de Rham r-current T on a manifold M
is a continuous linear functional on the space of C∞ r-forms with compact support
in M . By continuity in this context we mean that T [ω]i → 0 as i→ ∞ whenever
the components of the sequence of r-forms ωi and all their derivatives tend to zero
uniformly in a coordinate domain that includes the supports of the sequence.

As pointed out by de Rham himself in the introduction to his book (de Rham,
1984), the concept of a current is so general that it includes as special cases both
differential forms and chains. In other words, both the integrands and the domains
of integration can be regarded as currents! Indeed, let ω be a p-form on the n-
dimensional manifold M . We can assign to it a unique (n− p)-form Tω by the
prescription

Tω [φ ] =
∫
M

ω ∧φ , (14.26)

for all (n− p)-forms φ with compact support in M . On the other hand, let S be an
oriented p-dimensional submanifold of M with boundary. We can uniquely associate
with it the p-current TS defined as

TS[φ ] =
∫
S

φ . (14.27)

for all p-forms φ with compact support in M . Note how this p-current resembles the
δ function in the sense that it perceives only the values of the test function restricted
to S .

By analogy with the exterior derivative of a differential form, the boundary of a
p-current T is the (p−1)-current ∂T defined by
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∂T [φ ] = T [dφ ], (14.28)

for all (p−1)-forms φ with compact support in M . A p-current T is closed if ∂T = 0.
The boundary of the current associated with a submanifold, turns elegantly to be
equal to the current associated with the boundary of the submanifold. Indeed,

∂TS[φ ] = TS[dφ ] =
∫
S

dφ =
∫
∂S

φ = T∂S [φ ], (14.29)

where Stokes’ theorem has been invoked.
Translating the treatment of the smooth case to the language of currents, we

stipulate that a (possibly singular) layering is expressed as a layering (n−1)-current.
In 3 dimensions, therefore, we speak of a layering 2-current T . The dislocation
current is given by D = ∂T . The layering is defect-free if D = 0. As an example,
consider a body consisting of the open cube B = (−1,1)3 ⊂ R3 shown in Fig. 14.6.
With the intention of emulating the addition or removal of the atoms contained within
a half plane, let S denote the intersection of B with with the oriented lower half
plane {{x,y,z} ∈ R3 | x = 0,z≤ 0}. The 2-current TS , as defined in Eq. (14.27), can
be seen as the prescription of a non-smooth layering, since it is the distributional
generalization of a smooth one-form. The dislocation current is given by the boundary
current ∂T . It is not difficult to check that, as a consequence of the fact that the
currents act on smooth forms with compact support in B,

∂TS = TL, (14.30)

where L is the open interval shown with thick dashes in Fig. 14.6. This is precisely
the dislocation line of the textbook description of a Volterra edge dislocation.

Fig. 14.6 An edge dislocation

y
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Chapter 15

A Note on Reduced Strain Gradient Elasticity

Victor A. Eremeyev and Francesco dell’Isola

Abstract We discuss the particular class of strain-gradient elastic material models
which we called the reduced or degenerated strain-gradient elasticity. For this class
the strain energy density depends on functions which have different differential
properties in different spatial directions. As an example of such media we consider
the continual models of pantographic beam lattices and smectic and columnar liquid
crystals.

15.1 Introduction

The Mechanics of Generalized Continua was one of the permanent interests of Prof.
Gérard A. Maugin who is one of the main founder and contributor in the field,
see, e.g., his recent original books and papers Maugin (2010, 2011, 2013, 2016,
2017) devoted to developments in the field. Among various generalized models
of continuum the strain gradient elasticity found recently various applications in
the mechanics of nano-sized solids and fluids (Forest et al, 2011; Cordero et al,
2016), for modelling of strain localization phenomena (Aifantis, 1992), as model
of heterogeneous granular solids (Misra and Chang, 1993), as model of fabrics and
composites (Harrison, 2016; dell’Isola and Steigmann, 2015; dell’Isola et al, 2016b;
Soubestre and Boutin, 2012; d’Agostino et al, 2015; Rahali et al, 2015; Placidi et al,
2016), see also dell’Isola et al (2017); Aifantis (2014); Bertram and Glüge (2016);
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Engelbrecht and Berezovski (2015); Chatzigeorgiou et al (2017). In this context, it is
also worth mentioning continuum bodies, characterized at micro scale, by interacting
spins in a crystalline lattice (see e.g. Grimmett (2016); de Masi et al (2008, 2009) for
some relevant results using the Potts model). As some other generalized models it can
predict size-effect since it includes the characteristic length observed at the nanoscale
and can describe dispersion for waves propagation in microstructured solids. The
typical form of the strain energy density W under infinitesimal deformations can be
represented as follows

W = W (eee,∇eee) (15.1)

or
W = W (eee,∇∇uuu), (15.2)

where
eee =

1
2
(∇uuu+(∇uuu)T )

is the strain tensor, uuu is the vector of displacements, and ∇ is the three-dimensional
(3D) nabla-operator (Lebedev et al, 2010; Simmonds, 1994). In what follows for
brevity we use form (15.2). The model was presented in the original works by Toupin
(1962); Mindlin (1964); Mindlin and Eshel (1968) and in simplified form by Aifantis
(1992, 2003); Askes and Aifantis (2011); Askes and Gitman (2017).

The characteristic feature of (15.1) and (15.2) is that W depends on a set of all
second derivatives of uuu. Considering small deformations we can transform W into a
quadratic form

W =
1
2

eee : CCC : eee+
1
2

∇∇uuu
... DDD

... ∇∇uuu, (15.3)

where CCC and DDD are forth- and six-order tensors of elastic moduli, respectively. The
standard assumption is that CCC and DDD are not singular. Moreover, CCC and DDD are assumed
to be positive definite, see, e.g., Healey and Krömer (2009); Mareno and Healey
(2006), that is

eee : CCC : eee≥ ceee : eee, (15.4)

∇∇uuu
... DDD

... ∇∇uuu≥ d ∇∇uuu
... ∇∇uuu (15.5)

with c > 0, d > 0. Here “:” and “
...” stand for scalar (inner) products in the spaces of

second- and third-order tensors, respectively.
So, all spatial directions are equivalent in the sense of dependence on all second

derivatives.
In the follows we consider another type of constitutive equations. We keep re-

quirement (15.4) and relax (15.5) assuming that DDD can be degenerated, that is

eee : CCC : eee≥ ceee : eee, ∇∇uuu
... DDD

...∇∇uuu≥ 0. (15.6)
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We call such model the reduced or degenerated strain gradient elasticity. In what
follows we discuss few examples of such models.

15.2 Reduced Strain Gradient Elasticity. Examples

15.2.1 Structural Mechanics

First, let us recall that such inequality in spatial directions is well-known in the
structural mechanics. For example, the strain energy density of an extensible beam
under tension and in-plane bending is given by

W =
1
2
Ke(u′)2 +Kb(w′′)2, (15.7)

where Ke > 0 and Kb > 0 are the extensional and bending stiffness parameters,
u = u(x) and w = w(x) are longitudinal and transverse displacements, respectively,
x is the coordinate along the beam axis, and the prime stands for derivative with
respect to x.

The same situation can be observed in the Kirchhof-Love theory of plates and
shells (Timoshenko and Woinowsky-Krieger, 1985; Lebedev et al, 2010). For exam-
ple, the strain energy density of an elastic homogeneous plate of thickness h is given
by

W =
Eh

2(1+ν)

[
uα ,βuα ,β +

ν
1−ν

(
uα ,α

)2
]

+
Eh3

24(1+ν)

[
w,αβw,αβ +

ν
1−ν (w,αα)

2
]
, (15.8)

where E and ν are Young’s modulus and Poisson’s ratio, respectively, uα and w are
the in-plane and transverse displacements, xα is a Cartesian coordinates, α = 1,2.
Hereinafter indices after comma denote derivatives with respect to xα , so w,α is the
partial derivative of w with respect to xα ,

w,α =
∂w
∂xα

.

So, considering beams, plates and shells as 1D and 2D continua embedded into 3D
physical space we see a difference in order of used derivatives in different directions.
Obviously, for beams the preferable direction is tangent to the beam axis whereas for
plates and shells it is normal to the middle surface. Nevertheless, here the mentioned
difference concerns different components of displacements. For example, (15.8)
includes all derivatives of the deflection w. In what follows we demonstrate another
situation.
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Fig. 15.1: Structure of a pantographic beam lattice.

15.2.2 Continual Models for Pantographic Beam Lattices

Recently, a new class of composites materials called pantographic beam lattices was
introduced, see dell’Isola and Steigmann (2015); dell’Isola et al (2016a); Giorgio
et al (2017); Placidi et al (2016). A scheme of a pantographic lattice is given in
Fig. 15.1. It consists of two families of orthogonal long flexible beams connected
by pivots. For in-plane deformations using heuristic homogenization the model of
a pantographic lattice is reduced to the two-dimensional strain gradient continuum.
Introducing the vector displacements as follows

uuu = u1iii1 +u2iii2, uα = uα(x1,x2),

we obtain the strain energy density in the form, see dell’Isola et al (2016a); Boutin
et al (2017); Placidi et al (2017) for details,

W =
K(1)

e

2
u2

1,1 +
K(2)

e

2
u2

2,2 +
Kp

2
(u1,2 +u2,1)

2 +
K(2)

b

2
u2

1,22 +
K(1)

b

2
u2

2,11, (15.9)

where the stiffness parameters K(α)
e > 0 and K(α)

b > 0 are related to the extensional
and bending stiffnesses of the beams at the interpivot scale, respectively, while
the coefficient Kp ≥ 0 relates to shear stiffness of the pivots. Here we also neglect
torsional deformations of the beams. In particular, if the pivots are perfect then Kp
vanishes and the strain energy transforms to

W =
K(1)

e

2
u2

1,1 +
K(2)

e

2
u2

2,2 +
K(2)

b

2
u2

1,22 +
K(1)

b

2
u2

2,11. (15.10)
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Both energies are significantly degenerated since (15.9) and (15.10) include only
few second derivatives. In fact, there are only u2,11 and u1,22. As it was shown in
(dell’Isola et al, 2016a; Eremeyev et al, 2017) for (15.10) there exist nontrivial static
solutions with zero energy which are different from rigid body motions.

Neglecting the torsional deformations of the beams and pivots we may also
write the strain energy density for a pantographic beam lattice for three-dimensional
deformations. Here uuu = uk(x1,x2,x3)iiik, k = 1,2,3, and vectors iii1 and iii2 are directed
along the corresponding beams. Under certain assumptions on the beam cross-
sections we obtain that

W =
K(1)

e

2
u2

1,1 +
K(2)

e

2
u2

2,2 +
K(2)

b

2
(
u2

1,22 +u2
3,22
)
+

K(1)
b

2
(
u2

2,11 +u2
3,11
)
. (15.11)

The form (15.11) corresponds to the perfect pivots that is without stored energy as
in (15.10). In other words this 2D material inherits the properties of extensible beams,
so its strain energy density is a “sum” of energies of beams undergoing bending and
stretching deformations without torsion.

The advantages in 3D printing gives us also the possibility to produce three-
dimensional pantographic beam lattices such as shown in Fig. 15.2. Neglecting the
energies of beams due to torsion as well as energies due to torsion and bending in
pivots we introduce the extension of the 2D model (15.11) to the 3D case as follows

W =
K(1)

e

2
u2

1,1 +
K(2)

e

2
u2

2,2 +
K(2)

b

2
(
u2

1,22 +u2
3,22
)
+

K(1)
b

2
(
u2

2,11 +u2
3,11
)

+
K(3)

e

2
u2

3,3. (15.12)
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1

x2
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Fig. 15.2: Three-dimensional pantographic beam lattice.
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Here K(3)
e is the stiffness related to pivots undergoing tension/compression.

Comparing (15.12) with the general constitutive equation (15.3) we see that DDD
is rather degenerated. Thus, the presented above models belong to the class of
constitutive relations of reduced strain gradient elasticity. The pantographic beam
structures are not unique example of such materials, other examples one can find in
the hydrostatics of liquid crystals.

15.2.3 Smectics and Columnar Liquid Crystals

Smectics are the particular class of liquid crystals with layered structure, see Chan-
drasekhar (1977); de Gennes and Prost (1993); Oswald and Pieranski (2006). Each
layer is a two-dimensional liquid. Nevertheless smectics demonstrate existence of
non-hydrostatic stresses and resistance to bending. The schematic structure of smec-
tic A is given in Fig. 15.3 (a) where ordered arrangements of molecules in each
layer is shown. For small distortion of the initially plane layers of a smectic the main
kinematical descriptor is the displacement field uuu = u(x,y,z)iii3. So, the kinematics of
smectics is determined by one scalar function u.

The strain energy density of smectics A is given

W =
1
2
B(u,z)2 +

1
2
K(u,xx +u,yy)

2 , (15.13)

where B and K are elastic moduli describing the longitudinal stiffness along z-
direction and the bending stiffness of the smectic layers, respectively.

Another type of liquid crystals are so-called columnar phases which structure is
shown in Fig. 15.3 (b). From the physical point of view these liquid crystals look as
set of flexible deformable tubes which can easily slide along each other. For small
deformations of this class of liquid crystals we introduce the vector of displacements

z

i3

y

x

a)

i1

i2

b)

Fig. 15.3: Structures of liquid crystals. a) smectic A, b) a columnar.
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uuu = u1iii1 + u2iii2 + u3iii3, uk = uk(x,y,z). The strain energy density is now given by
de Gennes and Prost (1993) as follows

W =
1
2
B(u1,x +u2,y)

2 +
1
2
K1
[
(u1,x−u2,y)

2 +(u1,y +u2,x)
2]

+
1
2
K2
[
u2

1,zz +u2
2,zz
]
, (15.14)

where B, K1 and K2 are elastic moduli.
The similarity between strain energies (15.13) and (15.14) of these liquid crystals

and the form of strain energy densities of pantographic beam lattices (15.12) is
obvious. Indeed, all these forms contains incomplete set of second spatial derivatives,
so they belong to the class of materials described using the reduced strain gradient
elasticity.

15.2.4 Other Spatially Non-Symmetric Models

Almost all models known in structural and continuum mechanics are symmetric in
spatial directions in mentioned above sense. Nevertheless, non-symmetric models
are also known. Let us mention few equations of such kind.

The Kadomtsev-Petwiashvili equation is a two-dimensional analog of the famous
Korteweg-de-Vries equation, see Kadomtsev and Petviashvili (1970). It takes the
form

(u,t +6uu,x +u,xxx),x +3λu,yy = 0, (15.15)

where u = u(x,y, t), x and y are Cartesian coordinates and λ =±1. Eq. (15.15) cames
originally from acoustics and found further applications in the nonlinear theory of
dispersive waves, theory of solitons, theory of ferromagnetics, string theory, see,
e.g., Ablowitz and Segur (1981); Ablowitz and Clarkson (1991); Maugin (1999).
The Kadomtsev-Petviashvili equation describes also the evolution of the localized
structures over a large-time scale of a quasi-continuum model deduced from a non-
linear lattice model, see Pouget (2005).

The next example is the PDE arose in the analysis of gas centrifuges, nowadays
known as Onsager’s pancake equation (Wood and Morton, 1980; Eastham and
Peterson, 2004). It is given by[

ex (exu,xx),xx

]
,xx

+bu,yy = f (x,y), (15.16)

where u = u(x,y), b and f are given.
Both equations (15.15) and (15.16) were derived using some approximation

techniques in which the preferable spatial direction was chosen a priori.
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15.3 Conclusions

We briefly discussed a new class of strain gradient elasticity models called the reduced
or degenerated strain gradient elasticity. Among such continua there are continual
models of pantographic beam lattices and smectic and columnar liquid crystals. The
common peculiarity for both media is a layered structure and sensitivity to bending
only in certain directions. From the mathematical point of view the corresponding
systems of partial differential equations and natural boundary conditions requires
special analysis, such as given in Eremeyev et al (2017) within the framework of
anisotropic Sobolev spaces. Let us note that the considered model is obviously
anisotropic with a special type of anisotropy. Usually, the anisotropic behavior of
solids is determines by symmetries of the tensors of elastic moduli. Here, in addition
to this symmetries we meet strong dependence of the material properties on the spatial
directions since the strain energy density may be independent on some components
of strain gradient tensor. In particular, for pantographic beam lattice as for smectic
and columnar liquid crystals there is a preferable direction normal to the inner layers.
Here we are restricted ourselves by infinitesimal deformations, but the models can be
easily extended for finite deformations. So, we can easily consider the reduced strain
gradient elasticity for large deformations. Another common peculiarity observed
for pantographic beam lattices and liquid crystals is the existence of non-trivial
solutions with zero energy. The further analysis of such constitutive equations can
be performed using the material symmetry group defined in (Bertram, 2016) as was
performed for shells in (Eremeyev and Pietraszkiewicz, 2006) and for micropolar
media in (Eremeyev and Pietraszkiewicz, 2012, 2016).
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Chapter 16

Use and Abuse of the Method of Virtual Power

in Generalized Continuum Mechanics and

Thermodynamics

Samuel Forest

Abstract The method of virtual power, put forward by Paul Germain and celebrated
by Gérard A. Maugin, is used (and abused) in the present work in combination with
continuum thermodynamics concepts in order to develop generalized continuum,
phase field, higher order temperature and diffusion theories. The systematic and ef-
fective character of the method is illustrated in the case of gradient and micromorphic
plasticity models. It is then tentatively applied to the introduction of temperature and
concentration gradient effects in diffusion theories leading to generalized heat and
mass diffusion equations.

16.1 Introduction

There are essentially two equivalent ways to mathematically represent forces acting
on continuum mechanical media: the introduction of forces and couples in the balance
of moment and moment of momentum equations, on the one hand, and the method
of virtual power, on the other hand, which is a variational statement of the dynamics
of bodies (Germain, 1973a). The axiomatic and systematic character of the latter has
been put forward by P. Germain and illustrated in the case of first and second gradient
continuum theories. It has the merit of clearly separating universal balance laws
from peculiar constitutive laws in contrast to Lagrangian/Hamiltonian mechanics
which was used by Mindlin to first propose a consistent strain gradient elasticity
theory with suitable boundary conditions (Mindlin, 1965). The derivation of complex
boundary conditions as they arise in strain gradient and also plate theories probably
is the most striking example where the method of virtual power is undoubtedly more
effective than the usual procedure. This is due to the fact that the complex form of
contact forces, in contrast to internal forces, can hardly be anticipated in that case,
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as discussed in dell’Isola and Seppecher (1995); dell’Isola et al (2012). Following
Germain, Maugin has promoted the method of virtual power and extended it to
non–mechanical fields in order to construct complex and coupled continuum theories
(Maugin, 1980). The latter contribution deals with the coupling of mechanics with
electromagnetism. Maugin also introduced the consideration of singular surfaces and
interfaces for mechanical and thermodynamic field variables (Daher and Maugin,
1986). Maugin’s passion for the method of virtual power in continuum physics
led him recently to write a review paper on the merits of the approach and the
many fields of application, namely mechanics of one, two and three–dimensional
continuum mechanics, including beam, plate and shell theories, and the coupling
with electromagnetic fields (Maugin, 2013).

The mechanics of generalized continua is undoubtedly the privileged domain
of application of the principle of virtual power because it enables the systematic
introduction of enriched kinematics of the material point with the conjugate forces.
This is illustrated by the application of this method to the theory of micromorphic
media by Germain (1973b). As claimed by Germain, the derived balance laws
and boundary conditions were not new but the level of generality was increased
by the systematic nature of the method and the definition by Germain of general
micromorphic continua with additional degrees of freedom represented by tensors
of increasing order. The method is illustrated in several recent books edited by
G.A. Maugin and collecting various generalized continuum theories (Maugin and
Metrikine, 2010; Altenbach et al, 2011).

The combination of the method of virtual power and the concepts of continuum
thermodynamics, again following Germain’s incentive (Germain et al, 1983), leads
to a complete framework for the development of continuum theories including con-
sistent constitutive equations. Within this framework, Maugin himself significantly
developed the thermomechanics of continua (Maugin, 1992, 1999). He recently also
applied the method to coupled diffusion theory (Maugin, 2006).

The objective of the present work is first to extend generalized continuum ap-
proaches like strain gradient and micromorphic models to plasticity and damage
by means of the method of virtual power and continuum thermodynamics. This
shows the systematic use and the merits of the method. The second part deals with
the coupling of the mechanics with thermodynamic fields like temperature, phase
field and concentration. The attention is drawn on the introduction of the gradient
of these variables into thermodynamic potentials. For that purpose, the method of
virtual power is used again in non-conventional situations, which may represent an
abuse of the method in the sense that its application may be regarded as formal. It
however delivers new types of balance and evolution equations that can be compared
to more standard formulations. In particular, the two last sections deal with the
application of the method of virtual power to the construction of phase field and
higher order diffusion models. These formulations differ from the classical ones
based on variational derivatives that do not take enough care of boundary conditions.
The seminal contribution by Gurtin (1996) proposes a construction of the phase
field continuum theory using additional balance laws for so–called microstress and
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microforce tensors. In the present work, the method of virtual power is used instead
and applied to various situations.

An intrinsic notation system is used in this chapter whereby tensors of order 1, 2
and 4 are respectively denoted by a ,A∼ and A∼∼

. Simple and double contractions read:

f · v = fivi, A∼ : B∼ = Ai jBi j (16.1)

The gradient and divergence operators are written as

∇u = ui, j e i⊗ e j, σ∼ ·∇ = σi j, je i (16.2)

in a Cartesian orthonormal basis (e 1,e 2,e 3).
All theories are presented within the small deformation framework for the sake of

brevity. The readers are referred to Forest (2016) for the finite deformation formula-
tions of some of them.

16.2 Micromorphic and Gradient Plasticity

The method of virtual power certainly is an powerful tool to construct generalized
continuum mechanics theories ranging from strain gradient to micromorphic continua.
Higher order or generalized stresses are introduced via the power density of internal
forces and lead to additional boundary conditions for the partial differential equations
to be solved. More recently, reduced models have been developed that concentrate
the gradient effects on plastic or damage variables instead of the full kinematics
(Aifantis, 1984; Frémond and Nedjar, 1996; Gurtin, 2003; Forest, 2009). A generic
example is provided in this section dealing with micromorphic and strain gradient
plasticity. It can be readily extended to microdamage and gradient damage models
(Aslan et al, 2011). The present theory is limited to the quasi-static problem but
dynamic contributions of the micromorphic variables can be included as proposed in
Saanouni and Hamed (2013).

16.2.1 The Micromorphic Approach to Gradient Plasticity

Within the framework of thermomechanics with additional degrees of freedom
(Maugin, 1990), the displacement degrees of freedom, u , of the material point are
complemented by a micromorphic degree of freedom, called here plastic micros-
train, pχ . Within a first gradient theory, the model variables are the strain tensor, ε∼,
temperature T , internal variables α , the plastic microstrain and its gradient, pχ ,∇pχ .

The virtual power of internal forces in a subdomain D of the body B is a linear
form with respect to the degrees of freedom ant their gradients:
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P(i)(v �, ṗ�χ) =−
∫
D

p(i)(v �, ṗ�χ)dV

p(i)(v �, ṗ�χ) = σ∼ : ∇v �+aφ̇ �
χ +b ·∇ṗ�χ (16.3)

where v �, ṗ�χ are virtual velocity and plastic microstrain rate variables. The dual
quantities are generalized stresses. The Cauchy stress is σ∼ and a and b are generalized
stresses associated with the micromorphic variable and its first gradient. Similarly,
the power of contact forces must be extended as follows:

P(c)(v �, ṗ�χ) =
∫
D

p(c)(v �, ṗ�χ)dV, p(c)(v �, ṗ�χ) = t · v �+ac ṗ�χ (16.4)

where t is the traction vector and ac a generalized traction. For conciseness, we do
not extend the power of forces acting at a distance and keep the classical form:

P(e)(v �, ṗ�χ) =
∫
D

p(e)(v �, ṗ�χ)dV, p(e)(v �, ṗ�χ) = ρ f · v � (16.5)

where ρ f accounts for given simple body forces. Following Germain (1973a), given
body couples and double forces working with the gradient of the velocity field could
also be introduced in the theory. The generalized principle of virtual power with
respect to the velocity and micromorphic variable fields, is presented here in the
static case only:

P(i)(v �, ṗ�χ)+P(e)(v �, ṗ�χ)+P(c)(v �, ṗ�χ) = 0, ∀D ⊂B, ∀v �, ṗ�χ (16.6)

The method of virtual power according to Maugin (1980) is used then to derive the
standard local balance of momentum equation:

divσ∼ +ρ f = 0, ∀x ∈B (16.7)

and the generalized balance of micromorphic momentum equation:

divb −a = 0, ∀x ∈B (16.8)

The method also delivers the associated boundary conditions for the simple and
generalized tractions:

t = σ∼ ·n , ac = b ·n , ∀x ∈ ∂D (16.9)

The local balance of energy is also enhanced by the generalized micromorphic power
already included in the power of internal forces (16.3):

ρ ε̇ = p(i)−divq (16.10)
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where ε is the specific internal energy and q the heat flux vector. The entropy
principle takes the usual local form:

−ρ(ψ̇+η Ṫ )+ p(i)− q
T
.∇T ≥ 0 (16.11)

where it is assumed that the entropy production vector is still equal to the heat vector
divided by temperature, as in classical thermomechanics according to Coleman and
Noll (1963). Again, the enhancement of the theory goes through the enriched power
density of internal forces (16.3). The entropy principle is exploited according to clas-
sical continuum thermodynamics to derive the state laws. At this stage it is necessary
to be more specific on the dependence of the state functions ψ,η ,σ∼ ,a,b on state
variables and to distinguish between dissipative and non–dissipative mechanisms.
The introduction of dissipative mechanisms may require an increase in the number
of state variables. The presentation is limited here to non–dissipative contributions of
generalized stresses (see Forest, 2009; Aslan and Forest, 2011) for more sophisticated
cases including dissipative contributions). Dissipative events are assumed here to
enter the model only via the classical mechanical part. Total strain is split into elastic
and plastic parts:

ε∼ = ε∼
e + ε∼

p (16.12)

The constitutive functional are assumed to depend on the following set of state
variables:

(ε∼
e,T,α, pχ ,∇pχ)

The entropy inequality (16.11) can be expanded as:

(σ∼ −ρ
∂ψ
∂ε∼e ) : ε̇∼

e +ρ(η+
∂ψ
∂T

)Ṫ +(a−ρ ∂ψ
∂ pχ

)ṗχ +(b −ρ ∂ψ
∂∇pχ

) ·∇ṗχ

+σ∼ : ε̇∼
p−ρ ∂ψ

∂α
α̇− q

T
·∇T ≥ 0 (16.13)

Assuming that no dissipation is associated with the four first terms of the previous
inequality, the following state laws are found

σ∼ = ρ
∂ψ
∂ε∼e , η =−∂ψ

∂T
, R =−ρ ∂ψ

∂α
a = ρ

∂ψ
∂ pχ

, b = ρ
∂ψ
∂∇pχ

(16.14)

and the residual dissipation is

Dres = σ∼ : ε̇∼
p +Rα̇− q

T
.∇T ≥ 0 (16.15)

where R is the thermodynamic force associated with the internal variable α . The
existence of a convex dissipation potential,Ω(σ∼ ,R) depending on the thermodynamic
forces can then be assumed from which the evolution rules for internal variables
are derived, that identically fulfil the entropy inequality, as usually done in classical
continuum thermomechanics (Germain et al, 1983):
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ε̇∼
p =

∂Ω
∂σ∼

, α̇ =
∂Ω
∂R

(16.16)

After presenting the general approach, we readily give the most simple example
which provides a direct connection to several existing generalized continuum models.
The free energy density function ψ is chosen as a function of the generalized relative
strain variable e defined as:

e = p− pχ (16.17)

where p is the cumulative plastic strain, thus introducing a coupling between macro
and micromorphic plastic variables. Assuming isotropic material behaviour for
brevity, the additional contributions to the free energy are taken as quadratic functions
of e and ∇pχ :

ψ(ε∼
e,T,α, pχ ,∇pχ) = ψ(1)(ε∼

e,T,α)+
1
2

Hχ(p− pχ)2 +
1
2

A∇pχ ·∇pχ (16.18)

where Hχ and A are the additional moduli introduced by the micrmorphic model. The
function ψ(1)(ε∼

e,T,α) refers to any constitutive function in a classical continuum
thermomechanical model with internal variables. After inserting the state laws (16.14)

a = ρ
∂ψ
∂ pχ

=−Hχ(p− pχ), b = ρ
∂ψ
∂∇pχ

= A∇pχ (16.19)

into the additional balance equation (16.8), the following partial differential equation
for pχ is obtained, at least for a homogeneous material under isothermal conditions:

p = pχ − A
Hχ

Δ pχ (16.20)

where Δ is the Laplace operator. It involves a characteristic length scale defined by:

l2
c =

A
Hχ

(16.21)

The additional material parameters Hχ and A are assumed to be positive in this work.
This does not exclude a softening material behaviour that can be induced by the
proper evolution of the internal variables.

Let us now choose a yield function in the form

f (σ∼ ,R) = σeq−σY −R (16.22)

where σeq is an equivalent stress measure, σY the initial yield stress and R(p) is here
the hardening (or softening) function. It follows from the state law (16.14) and from
the balance equation (16.20) that

R =
∂ψ
∂ p

= R(p)+Hχ(p− pχ) = R(p)−AΔ pχ (16.23)
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which shows the enhanced hardening due to the plastic microstrain. Under plastic
loading condition,

σeq = σY +R(p)−AΔ pχ (16.24)

which is reminiscent of Aifantis celebrated strain gradient plasticity model (Aifantis,
1984). The equivalence with Aifantis model is obtained for Hχ = ∞ which enforces
the internal constraint: pχ � p.

16.2.2 Direct Construction of Gradient Plasticity Theory

The method of virtual power can also be used directly to construct the strain gradient
plasticity model without resorting to the micromorphic model (Forest and Bertram,
2011). The enriched power density of internal forces and of contact forces are
introduced as

p(i) = σ∼ : ε̇∼+aṗ+b ·∇ṗ, p(c) = t · u̇̇u̇u +ac ṗ (16.25)

where a and b are generalized stresses acting on the virtual plastic field ṗ and its
gradient, respectively. The usual traction vector is t and ac denotes the generalized
traction. Such generalized stresses are called micro–forces by Gurtin (2003). A
generalized principle of virtual power is stated with respect to the virtual fields of
displacements and the p–variable. The application of this principle results in the
same balance equations and boundary conditions as in Eq. (16.7) to (16.9).

The constitutive functions now depend on cumulative plastic strain and its gradient.
The Clausius–Duhem inequality then becomes:

(σ∼ −ρ
∂ψ
∂ε∼e ) : ε̇∼

e +(a−ρ ∂ψ
∂ p

)ṗ+(b −ρ ∂ψ
∂∇p

) ·∇ṗ+σ∼ : ε̇∼
p ≥ 0 (16.26)

At this stage, the following state laws are adopted

σ∼ = ρ
∂ψ
∂ε∼e , a = ρ

∂ψ
∂ p

+R, b = ρ
∂ψ
∂∇p

(16.27)

thus assuming that no dissipation is associated with the generalized stress b . This is
the most simple assumption that is sufficient for deriving Aifantis model, in particular.
The residual dissipation is then

σ∼ : ε̇∼
p +Rṗ≥ 0 (16.28)

A simple quadratic free energy potential is chosen

ρψ(ε∼
e, p,∇p) =

1
2
ε∼

e : C∼∼
: ε∼

e +
1
2

H p2 +
1
2

A∇p ·∇p (16.29)

from which the state laws are derived:
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σ∼ =C∼∼
: ε∼

e, R =−H p+a, b = A∇p (16.30)

where C∼∼
is the four–rank tensor of the elastic moduli, H is the usual hardening

modulus and A is an additional material parameter (unit MPa·mm2). The yield
function is taken as

f (σ∼ ,R) = σeq−σY +R (16.31)

Under plastic loading, this gives

σeq = σY −R = σY +H p−a = σY +H p−divb = σY +H p−A∇2 p (16.32)

which is Aifantis celebrated equation, to be compared with Eq. (16.24). The plasticity
flow and evolution rules are

ε̇∼
p = λ

∂ f
∂σ∼

, ṗ = λ
∂ f
∂R

= λ (16.33)

in the rate–independent case, λ being the plastic multiplier.
The enhanced power of internal forces has been used also by Gurtin and Anand

(2009) for gradient plasticity and by Frémond and Nedjar (1996) for gradient damage.
However, there exist alternative formulations avoiding the modification of p(i), see
Nguyen (2010b, 2016).

16.3 Gradient of Entropy or Temperature Models

It was shown in the previous section that the free energy function can depend on
the gradient of strain or on any internal variable like plastic strain and damage. This
requires an amendment of the principle of virtual power with the introduction of
generalized stress tensors. A similar question arises in the case of heat transfer:
can the free energy function depend on the temperature gradient? In the standard
continuum thermodynamics framework, the answer is no (Coleman and Mizel,
1963). However, this impossibility can be overcome by suitable enhancement of the
theoretical framework. Several tracks have been proposed in the literature for that
purpose which are reviewed in Liu et al (2017) with special consideration of the
consequences on the heat equations.

In this part, the mechanical contributions are omitted for the sake of conciseness.

16.3.1 A Principle of Virtual Power for Entropy

One track is presented here based on the formulation of a principle of virtual power
for entropy (or temperature) and its gradient following (Forest and Amestoy, 2008).
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It is postulated that the entropy rate and its gradient contribute to the power of
internal and external forces, in the form:

P(i)(η̇�) =−
∫
D

(aη η̇�+b η ·∇η̇�)dV (16.34)

P(e)(η̇�) =
∫
D

(ap
η η̇�+b p

η ·∇η̇�)dV +
∫
∂D

ac
η η̇

� dS (16.35)

in addition to the purely mechanical parts not recalled here, where η̇� is a field of
virtual rate of change of entropy density. These power densities involve internal scalar
and vector generalized stresses aη , b η , on the one hand, and prescribed external
scalar and vector volume microforces ap

η , b p
η and a generalized surface traction ac

η ,
on the other hand.

The exploitation of the principle of virtual power with respect to the virtual field
η̇� results in the following independent variational equation:

P(i)(η̇�)+P(e)(η̇�) = 0, ∀D ⊂B, ∀η̇� (16.36)

provided that no “microinertia" effects are attached to variable η (Svendsen, 1999).
Such terms involving the second derivative of temperature or entropy can be intro-
duced following (Liu et al, 2017). It is used to derive a balance equation associated
with variable η and the associated boundary condition:

div(b η −b p
η)−aη +ap

η = 0, ∀x ∈D , ac
η = (b η −b p

η) ·n , ∀x ∈ ∂D
(16.37)

It is essential that the power of external forces (16.35)2 contributes to the global
balance of energy:

Ė =
∫
D

ρ ε̇ dV = P(e)(η̇)−
∫
∂D

q ·n dS (16.38)

An alternative form is obtained after taking the generalized principle of virtual power
into account:

Ė =−P(i)(η̇)−
∫
∂D

q ·n dS (16.39)

The local form of energy balance follows:

ρ ε̇ = aη η̇+b η ·∇η̇−divq (16.40)

The entropy principle is assumed to keep its classical global form, for any material
subdomain D ⊂B:

d
dt

∫
D

ρη dV ≥−
∫
∂D

q
T

dS (16.41)

The additional contributions appear in the generalized Clausius–Duhem inequality:
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ρ(T η̇− ε̇)+aη η̇+b η ·∇η̇−
q
T
·∇T ≥ 0 (16.42)

The constitutive functions of solids of this kind depend on the set of state variables
(η ,∇η). After inserting these dependencies, the Clausius–Duhem inequality (16.42)
becomes:

ρ(T − ∂ ε
∂η

+
aη
ρ
)η̇+(b η −ρ

∂ ε
∂∇η

) ·∇η̇− q
T
·∇T ≥ 0 (16.43)

from which the state laws are derived,

T =
∂ ε
∂η
− aη

ρ
, b η = ρ

∂ ε
∂∇η

(16.44)

Accordingly, the temperature is found to be equal to the partial derivative of the
internal energy function with respect to entropy complemented by a contribution of
the internal scalar microstress aη . The internal generalized stress vector b η is nothing
but the partial derivative of internal energy with respect to the entropy gradient. It
is called the hypertemperature vector (Forest and Amestoy, 2008). The residual
dissipation reduces to:

−q
T
·∇T ≥ 0 (16.45)

First consequences of the additional or modified state laws established previously
are investigated in the simplest case, namely that of the rigid heat conductor. After
inserting the state laws (16.44) into the local energy balance (16.40), the following
usual form of the heat equation is recovered:

ρT η̇ =−divq (16.46)

In the sequel, a specific constitutive function for internal energy is chosen for the illus-
tration of the modifications brought in the governing equations of thermal conduction
by the introduction of entropy gradient effects. A specific constitutive relation will
also be needed for the heat flux vector in order to obtain an explicit partial differential
equation for entropy. In the present theory, there is no need for departing from the
classical Fourier law of heat conduction:

q =−κ∇T (16.47)

written here for isotropic materials for simplicity. So in the present theory, heat still
flows from hot to cold and there is no up–hill heat diffusion.

The explicit heat equation associated with the gradient of entropy theory is now
derived for isotropic materials. We take ap

η = 0 and b p
η = 0 for the sake of brevity.

Material homogeneity is also assumed for simplicity. The mass density ρ is constant
and homogeneous.

The expression of the internal energy density function in a rigid heat conducting
body is linearised around the reference entropy value η0. According to the gradient
of entropy model, it contains quadratic terms in the entropy and entropy gradient:
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ρε(η ,∇η) = ρηT0 +
ρ2(η−η0)

2

4β
+

1
2

Aη∇η ·∇η (16.48)

where β and Aη are (strictly positive) material parameters. The expression of the
generalized stresses are derived from the additional state and balance laws:

b η = ρ
∂ ε
∂∇η

= Aη∇η , aη = divb η = AηΔη (16.49)

where Δ is the Laplace operator. Compared to classical linearised thermal diffusion,
the temperature function is modified as follows:

T =
∂ ε
∂η
− aη

ρ
= T0 +

ρ(η−η0)

2β
− Aη

ρ
Δη (16.50)

Keeping the usual form (16.47) of Fourier heat conduction law, the heat equation can
now be derived as

ρT0η̇ =
ρκ
2β

(Δη− l2
ηΔ

2η), with l2
η =

2βAη

ρ2 (16.51)

This enhanced heat equation has the structure of the Cahn–Hilliard equation in mass
transport theory as derived in Cahn and Hilliard (1958); Gurtin (1996). It involves a
characteristic (positive) length lη related to material parameters. The classical heat
equation is retrieved for a vanishing intrinsic length scale lη = 0, or equivalently
Aη = 0, in the absence of prescribed external microforces.

16.3.2 Gradient of Entropy or Gradient of Temperature?

The initial question raised in this part was the introduction of the temperature gradient
in the free energy density function. The previous theory was developed for the
entropy gradient instead. This is due to the fact that the first function of state in
thermodynamics is the internal energy density which is a function of entropy and
strain in general. The question of the introduction of a gradient term must therefore
be asked first at this stage. A similar construction as before is possible for a gradient
of temperature theory. It was shown in Forest and Amestoy (2008) to deliver a distinct
theory from the gradient of entropy one. The gradient of temperature and gradient of
entropy models are not dual contrary to the usual case where the entropy based and
temperature based theories are dual in the absence of gradients. The same situation is
encountered in mechanics where the strain gradient theory and the recently proposed
stress gradient model are no dual theories (Forest and Sab, 2012, 2017).

Alternative formulations of the gradient of temperature models were proposed in
Ireman and Nguyen (2004); Nguyen (2010a,b) without resorting to additional power
contributions but, instead, by modifying the definition of the free energy function
and extending the concept of standard generalized materials to the gradient case.



322 Samuel Forest

They lead to heat equations that differ from Eq. (16.51) and that possibly include the
possibility of heat wave propagation.

The method of virtual power can be used to propose new theories of heat con-
ductors including microtemperature or microentropy concepts (Forest and Aifantis,
2010). The predicted effects are similar to those deduced from double temperature
models where each material point is characterized by two distinct temperatures,
similarly to mixture theory for fluids.

16.4 The Method of Virtual Power Applied to Phase Field

Modelling

The phase field variable φ usually is an order parameter with continuous values
ranging from 0 to 1. It very often serves as a phase indicator in combination with a
concentration field, c, of some solute species in solid body (Finel et al, 2010). Virtual
fields of order parameter φ � are considered with suitable regularity1. The virtual
power of internal generalized forces is defined by the integral over the volume D
⊂B of a power density, which is assumed a priori to be a linear form represented
by the generalized stress measures a and b (Ammar et al, 2009):

P(i)(φ �,D) = −
∫
D

(aφ �+b ·∇φ �)dV

= −
∫
D

(a−∇ ·b )φ � dV −
∫
∂D

(b ·n )φ �dS (16.52)

The next step is to introduce the virtual power of external forces applied to the
considered body. It can be split into a virtual power density of long range volume
forces, which can include, in general, a volume density of scalar external generalized
forces γ and vector external generalized force γ :

P(e)(φ �,D) =
∫
D

(γφ �+ γ ·∇φ �)dV

=
∫
D

(γ−∇ · γ )φ � dV +
∫
∂D

(γ ·n )φ � dS (16.53)

and a virtual power density of generalized contact forces, represented by a surface
density ac of generalized traction:

P(c)(φ �,D) =
∫
∂D

acφ � dS (16.54)

1 In fact, as in distribution theory, it is sufficient to take them as differentiable at any order with
compact support.
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A possible power of inertial microforces is not envisaged here. According to the
principle of virtual power, the total virtual power of all forces vanishes on any
subdomain D ⊂B and for any virtual order parameter field φ �:

P(i)(φ �,D)+P(c)(φ �,D)+P(e)(φ �,D) = 0, ∀φ �,∀D ⊂B (16.55)

∫
D

(−a+∇ ·b + γ−∇ · γ )φ � dV +
∫
∂D

(ac−b ·n + γ ·n )φ � dS = 0 (16.56)

This identity can be satisfied for any field φ � and ∀D if and only if:

a−∇ · (b − γ )− γ = 0 in B, ac = (b − γ ) ·n on ∂B (16.57)

Equation (16.57)1 expresses the general form of balance of generalized stresses. It is
identical with Gurtin’s balance of microforces (Gurtin, 1996), except the external
microforce contribution γ that may exist in general. In the sequel, however, it is
assumed that γ = 0 and γ = 0 for the sake of brevity. The equation (16.57)2 represents
the boundary condition for the generalized traction vector.

State Laws and Dissipation Potential

According to the first principle of thermodynamics, the time variation of the total
energy in a material subdomain is equal to the power of external forces acting on it.
In the absence of inertial forces, the total energy is reduced to the internal energy
with density e. Then, the energy balance is stated as:∫

D

ε̇ dV = P(e) +P(c) =−P(i) =
∫
D

aφ̇ +b ·∇φ̇ dV (16.58)

This identity is valid for any subdomain D ⊂B. The local form of the energy balance
is obtained:

ε̇ = aφ̇ +b ·∇φ̇ = ∇ · (φ̇ b ) (16.59)

The entropy principle is formulated as follows:∫
D

η̇ dV ≥−
∫
∂D

Φ ·n dS and Φ =−μ J
T

(16.60)

where η is the entropy density, Φ the entropy flux, J the diffusion flux and μ the
diffusion potential (Villani et al, 2014). Using the equation of local conservation of
mass:

ċ =−∇ · J (16.61)
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the following local form of the entropy inequality is obtained:

T η̇−∇ · (μJ )≥ 0 (16.62)

Combining the equation of the free energy density ψ̇ = ε̇ −T η̇ in the isothermal
case with Eqs. (16.59)–(16.62), leads to the Clausius-Duhem inequality:

−ψ̇+aφ̇ +b ·∇φ̇ − J ·∇μ−μ∇ · J ≥ 0 (16.63)

The free energy density is assumed to be a function of concentration c, order parame-
ter φ , as well as its gradient ∇φ . The Clausius-Duhem inequality can then be written
as follows:(

μ− ∂ψ
∂c

)
ċ+
(

a− ∂ψ
∂φ

)
φ̇ +

(
b − ∂ψ

∂∇φ

)
·∇φ̇ − J ·∇μ ≥ 0 (16.64)

For every admissible process and for any given (c, φ ,∇φ ), the inequality (16.64)
must hold for arbitrary values of ċ, φ̇ and ∇φ̇ . The microstress b (c,φ ,∇φ) and the
diffusion potential μ(c,φ ,∇φ) are assumed independent of ∇φ̇ and ċ. The following
state laws are deduced:

μ =
∂ψ
∂c

, b =
∂ f
∂∇φ

= A∇φ (16.65)

the latter equation being valid in the case of a quadratic potential w.r.t. ∇φ . The
Clausius-Duhem inequality then reduces to the residual dissipation:

D =−J ·∇μ+adisφ̇ ≥ 0 with adis = a− ∂ψ
∂φ

(16.66)

where adis is the chemical force associated with the dissipative processes, as intro-
duced in Gurtin (1996).

In order to define the complementary laws related to the dissipative processes, the
existence of a dissipation potential function Ω(∇μ,πdis) is assumed. The retained
specific form is the following:

Ω(∇μ,adis) =
1
2

L(φ)∇μ ·∇μ+
1

2β
adis2 (16.67)

where L(φ) and β are material parameters or functions.
The complementary evolution laws derive from the dissipation potential:

φ̇ =
∂Ω
∂adis =

1
β

adis, J =− ∂Ω
∂∇μ

=−L(φ)∇μ (16.68)

The convexity of the dissipation potential ensures the positivity of dissipation.
Combining Eqs. (16.66) and (16.68), one gets:
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a = β φ̇ +
∂ψ
∂φ

(16.69)

The substitution of the two state laws and the complementary laws, into the balance
equations for mass concentration and generalized stresses respectively leads to the
evolution equations for concentration and order parameter:

ċ =−∇ · (−L(φ)∇μ) =−∇ ·
(
−L(φ)∇

∂ψ
∂c

)
(16.70)

a−∇ ·b = β φ̇ −αΔφ +
∂ψ
∂φ

= 0 (16.71)

The usual diffusion and Cahn–Allen / Ginzburg–Landau equations are thus retrieved
(Finel et al, 2010).

In the previous theory, the free energy density depends on the gradient of the order
parameter but not on the concentration gradient. This possibility is investigated in
the next section.

16.5 On the Construction of the Cahn–Hilliard Diffusion Theory

The partial differential equation for the concentration field according to Cahn and
Hilliard (1958) is the following

ċ = κΔ(
∂ψ
∂c
−AΔc) (16.72)

with the special case: ċ = β∇2c−χ∇4c when the free energy potential is quadratic
w.r.t. c and ∇c. We present in this section three distinct derivations of these field
equations from first principles. The first one was initially proposed by Cahn and
Hilliard. The second one is based on the principle of virtual power with an additional
generalized balance equation, following Gurtin (1996). In the last subsection, a
variational formulation is proposed considering a second gradient theory of diffusion.

16.5.1 Usual Presentation Based on the Variational Derivative

A homogeneous material system is considered with composition c of a given so-
lute element. The free energy density ψ(c,∇c) is assumed to depend not only on
concentration but also on its gradient, as initially proposed by Cahn and Hilliard
(1958):
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F =
∫
B

ψ dV =
∫
B

(
ψ0(c)+κ1∇2c+κ2(∇c) · (∇c)

)
dV

=
∫
B

(
ψ0(c)+

1
2

A(∇c) · (∇c)
)

dV (16.73)

in the isotropic case. The second expression holds assuming (∇c) · n = 0 on ∂B.
The potential ψ0(c) is the usual potential depending on concentration in classical
diffusion theory. The variational derivative of the total free energy of the body is
defined as

δF =
∫
B

δψ dV =
∫
B

(
∂ψ
∂c

δc+
∂ψ
∂∇c

δ∇c
)

dV (16.74)

Note that ∇ · (δc∇c) = ∇c ·δ∇c+δcΔc so that∫
B

∇ · (δc∇c)dV =
∫
∂B

δc∇c ·n dS = 0, if ∇c ·n = 0 on ∂B

=
∫
B

∇c ·δ∇cdV +
∫
B

δcΔcdV (16.75)

Hence

δF =
∫
B

(
∂ψ0

∂c
−AΔc

)
δcdV (16.76)

The variational derivative of the free energy function then is

δψ
δc

:=
∂ψ0

∂c
−AΔc (16.77)

which makes sense only in the absence diffusion flux ∇c ·n on the boundary of the
body or in periodic systems. The balance of mass and Fick’s law for the mass flux
write

ċ =−∇ · J , J =−κ∇μ (16.78)

The diffusion potential μ is defined as the variational derivative of the free energy
density function:

μ :=
δψ
δc

(16.79)

The combination of mass balance, Fick’s law and constitutive potential ψ leads to
the Cahn-Hilliard equation:

ċ = ∇ ·
(
κ∇

δψ
δc

)
= κΔ

δψ
δc

= κΔ(
∂ψ0

∂c
−AΔc) (16.80)

This is the general form for a conserved quantity in contrast to non–conserved phase
field or order parameter considered in the previous section.
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16.5.2 Method of Virtual Power with Additional Balance Equation

The existence of a principle of virtual power w.r.t. to the concentration field and its
gradient is assumed. The power density of generalized internal and contact forces is

p(i) = aċ+b ·∇ċ, p(c) = acċ (16.81)

This leads to a field equation for the balance of generalized forces a and b , and
associated boundary conditions:

a = divb , b ·n = ac (16.82)

in addition to the balance of mass ċ = −divJ . The first and second principles
(isothermal case) take the form

ε̇ = p(i), −ψ̇+ p(i)−div(μJ )≥ 0 (16.83)

It should be noted that in the absence of concentration gradient in the free energy
potential, the generalized forces a and b identically vanish and the classical diffusion
theory is retrieved, as it should. The Clausius-Duhem inequality is

(a+μ− ∂ψ
∂c

)ċ+(b − ∂ψ
∂∇c

) ·∇ċ− J ·∇μ ≥ 0 (16.84)

leading to the state laws

μ =
∂ψ
∂c
−a, b =

∂ψ
∂∇c

(16.85)

Fick’s law (16.78) and the potential (16.73) are used again. The Cahn–Hilliard
equations are now obtained by combining the balance and constitutive equations in
the following way:

μ =
∂ψ
∂c
−a =

∂ψ
∂c
−divb =

∂ψ
∂c
−AΔc, (16.86)

ċ = −divJ = κΔμ = κΔ(
∂ψ
∂c
−AΔc) (16.87)

The Cahn–Hilliard model can also be derived from a more general theory introducing
micromorphic concentration or microconcentration variables cχ and its gradient in
addition to the concentration as done in Sect. 16.3 for the entropy or temperature.
The internal constraint c≡ cχ leads to the previous equations (Forest, 2008). The mi-
croconcentration can be regarded as a description of the variance of the composition
inside the volume element.
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16.5.3 Second Gradient Diffusion Theory

The Cahn–Hilliard equations can also be interpreted as emerging from a second
gradient theory of diffusion. For that purpose, let us first recall the

16.5.3.1 Variational Formulation of Classical Diffusion

The variational formulation of the field and boundary equations of classical diffusion,
namely

−∇ · J + γ = ċ on B, j = J ·n on ∂B (16.88)

can be written in the form ∀c�,∀D ⊂B

I (i)(c�,D)+I (c)(c�,D)+I (e)(c�,D)+I (a)(c�,D) = 0 (16.89)

for test compositions c� and with the following contributions

I (i)(c�,D) =
∫
D

J ·∇c� dV, I (c)(c�,D) =−
∫
∂D

jc� dS (16.90)

I (e)(c�,D) =
∫
D

γc� dV, I (a)(c�,D) =−
∫
D

ċ c� dV (16.91)

In other words, ∫
D

(−∇ · J + γ− ċ)c� dV +
∫
∂D

(J ·n − j)c� dS = 0 (16.92)

16.5.3.2 Variational Formulation of Second Gradient Diffusion

The internal contribution (16.90) is extended by introducing the second gradient of
the test functions and a generalized second order flux tensor:

I (i)(c�,D) =
∫
D

(
J ·∇c�+K∼ : ∇∇c�

)
dV (16.93)

Two integration by parts are necessary to obtain the form of the generalized surface
flux:
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I (i)(c�,D) =
∫
D

(
(Jic�),i +(Ki jc�,i), j− Ji,ic�−Ki j, jc�,i

)
dV

=
∫
D

(
(Jic�),i +(Ki jc�,i), j− Ji,ic�− (Ki j, jc�),i +Ki j,i jc�

)
dV

=
∫
∂D

(
Jic�+Ki jc�,i−Ki j, jc�

)
ni dS−

∫
D

(Ji,i−Ki j,i j)c� dV

=
∫
∂D

(
J −K∼ ·∇

) ·n c� dS+
∫
∂V

(K∼ ·n ) ·∇c� dS−
∫
V

((J −K∼ ·∇) ·∇)c� dV

At this stage, tangent and normal derivatives, D t and Dn of the concentration field
on surfaces must be distinguished:

∇c = D tc+(Dnc)n , Dnc = ∇c ·n (16.94)

It follows that∫
∂D

(K∼ ·n ) ·∇c� dS =
∫
∂D

(K∼ ·n ) ·D tc
� dS+

∫
∂D

(n ·K∼ ·n )Dnc� dS (16.95)

An integration by parts of the integral involving the tangent derivative is possible:∫
∂D

(K∼ ·n ) ·D tc
� dS =

∫
∂D

D t · (K∼ ·n c�)dS−
∫
∂D

(D t · (K∼ ·n ))c� dS (16.96)

The divergence theorem for surfaces2 can be applied to the first term of the right-hand
side to get the final expression of

2 The divergence theorem for a closed and smooth surface ∂V (no edge) is∫
∂V

D t ·q dS =
∫
∂V

2C q ·n dS, with 2C = D t ·n

where C is the mean local curvature.

Proof. Evaluate

curl (n ×q ) = εi jkε jlm(nlqm)k e i =−ε jikε jlm(nl,kqm +nlqm,k)

= −(δilδkm−δimδkl)(nl,kqm +nlqm,k) =−(ni,kqk−qink,k +niqk,k−nkqi,k)

n · curl (n ×q ) = −(qknini,k−qinink,k +qk,k−qi,knink) = qinink,k−qk,k +qi,knink

= qinink,k−Dtiqi

since nini,k = 0 (‖n ‖= 1). Hence∫
∂V

D t ·q dS =
∫
∂V

q .n (divn )dS−
∫
∂V

n · curl (n ×q )dS
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I (i)(c�,D) =−
∫
D

(
(J −K∼ ·∇) ·∇) c� dV

+
∫
∂D

(
(J −K∼ ·∇).n +(n ·K∼ ·n )2C −D t · (K∼ ·n )

)
c� dS+

∫
∂D

(
n ·K∼ ·n

)
Dnc� dS

(16.97)
where C is the mean surface curvature. The form of the surface contribution can be
deduced from the previous calculation:

I (c)(c�,D) =
∫
∂D

( jc�+ kDnc�)dS (16.98)

where j and k are generalized prescribed mass flux surface densities. External contri-
butions take the form:

I (e)(c�,D) =
∫
D

(γc�+ γ ·∇c�+ γ
∼

: ∇∇c�)dV =
∫
V

(
γ− γ ·∇+ γ

∼
·∇ ·∇

)
c� dV

+
∫
∂V

(
γ ·n − (γ

∼
·∇) ·n −D t · (γ∼ ·n )+2C n · γ

∼
·n
)

c� dS+
∫
∂V

γ
∼

: (n ⊗n )Dnc� dS

(16.99)
The last contribution I (a)(c�,D) keeps the classical form (16.91).

The variational principle (16.89) is invoked again to derive the field equations:

ċ =−J e f f ·∇+ γ (16.100)

with the effective3 tensor diffusion flux defined as

J e f f = J + γ − (K∼ + γ
∼
) ·∇ (16.101)

The associated boundary conditions for simple and double flux are

j = J e f f ·n +2R(K∼ + γ
∼
) : (n ⊗n )− ((K∼ + γ

∼
) ·n ) ·D t ,

k = (K∼ + γ
∼
) : (n ⊗n )

(16.102)

The energy and entropy principles (isothermal case) take the following form

Ė = I (e), ε̇ = γ ċ+ γ ·∇ċ+ γ
∼

: ∇∇ċ, T Ṡ≥
∫
∂V

TΦ ·n dV (16.103)

The last term vanishes due to Stokes theorem:
∫
S
(curl A ) ·n dS = −∮Γ A · l dl and Γ = /0 for a

closed surface. Finally, note that

nk,l = Dtlnk +nk, jnknl =⇒ nk,k = Dtknk, divn = D t ·n �

3 This is similar to Germain’s effective stress whose divergence arises in the strain gradient balance
of momentum equation.
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In contrast to the formulation (16.83), there is no internal energy contribution due to
composition rate and its gradient (only the source terms γ,γ ,γ

∼
), as in the classical

case. The new contributions are included in the extended entropy flux (Maugin and
Muschik, 1994):

TΦ = μJ e f f +TΦ extra (16.104)

The Clausius–Duhem inequality (for vanishing γ,γ ,γ
∼
≡ 0) then reads

−ψ̇−∇ · (TΦ extra)−∇ · (μJ e f f )≥ 0

−
(
∂ψ
∂c
−∇ · ∂ψ

∂∇c
−μ
)

ċ−∇ ·
(

TΦ extra +
∂ψ
∂∇c

ċ
)
− J e f f ·∇μ ≥ 0

The chemical potential is now defined as

μ =
∂ψ
∂c
−∇ · ∂ψ

∂∇c
(16.105)

The following constitutive choices are made ensuring positivity of dissipation:

• extra–entropy flux

TΦ extra =− ∂ψ
∂∇c

ċ (16.106)

• generalized Fick law
J e f f =−κ∼ ·∇μ (16.107)

• corresponding constitutive equations for J and K∼

J e f f = J −K∼ ·∇ =−κ∼ · (∇(
∂ψ
∂c
−∇ · ∂ψ

∂∇c
)) (16.108)

with

J =−κ∼ ·
∂ψ
∂c

, K∼ =−(∇ · ∂ψ
∂∇c

)κ∼ (16.109)

(for uniform diffusion coefficients κ∼).

16.6 Conclusions

The development of continuum theories involving the gradient of field variables re-
quires the introduction of suited (conjugate) generalized forces and stresses fulfilling
higher order or additional balance equations. Such models can be constructed in an
efficient and rigorous manner by applying the method of virtual power. It has been
illustrated in the case of gradient and micromorphic plasticity and can be extended to
damage and other internal variable theories in a straightforward way. The applica-
tion to nonmechanical fields like temperature, microtemperature, concentration or
microconcentration was shown to be possible even though it remains rather formal.
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It provides new higher order diffusion equations that can be compared to existing
ones derived from different concepts. For instance, micromechanically motivated
higher-order continuum formulation of linear thermal conduction was proposed in
Temizer and Wriggers (2010) based on a second gradient of temperature model
very close to the formulation proposed in Sect. 16.5.3. In particular the higher order
boundary conditions are the same. These boundary conditions, involving surface
curvature effects, differ from the ones derived by means of an additional balance laws
in Subsect. 16.5.2. Two different views of the Cahn–Hilliard model were presented,
one based on an additional balance equation, the second one based on second gradient
diffusion theory, all derived using the method of virtual power. The different inter-
play between generalized forces and the use of extra–entropy flux leads to different
boundary conditions. This combination of kinematic and constitutive choices was
discussed many times by G.A. Maugin who tried in each situation to reduce the
arbitrariness in the choice of generalized forces and extra–entropy flux vectors.
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Chapter 17

Forbidden Strains and Stresses in

Mechanochemistry of Chemical Reaction Fronts

Alexander B. Freidin and Leah L. Sharipova

Abstract The influence of stresses and strains on a chemical reaction rate and a
chemical reaction front velocity is studied basing on the concept of the chemical
affinity tensor. The notion of forbidden zones formed by strains or stresses at which
the reaction cannot go is discussed. Examples of forbidden zones are constructed.

17.1 Introduction

The influence of a stress-strain state on a chemical reaction rate is still remaining
questionable in spite of the fact that modern engineering challenges manifest the
necessity of a detailed description of this influence, particulary due to increasing
use of micro- and nano- structural elements in microsystem technologies combining
thermomechanical and chemical actions.

It should be noted that coupling of stresses, diffusion and chemical reaction has
been intensively discussed in the context of silicon oxidation. In a number of papers,
the Deal-Grove model (Deal and Grove, 1965) has been modified by considering
the classical diffusion equation with the stress-dependent diffusion coefficient and
the stress-dependent reaction rate parameter. The choice of stress characteristics,
which affect the reaction and the diffusion parameters, was made intuitively, e.g.
Kao et al (1988); Rafferty (1990); Sutardja and Oldham (2005). Additionally, a
concentration-dependent volumetric expansion was introduced, which led to the
total stress-diffusion coupling, e.g. Rao and Hughes (2000); Rao et al (2000). The
influence of stresses on diffusion via additional terms in the diffusion equation has
been also considered, e.g. Knyazeva (2003); Toribio et al (2011).
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Another group of models includes the influence of stresses on the diffusion flux
and the chemical reaction rate via a scalar chemical potential, which depends on
the concentration and the stresses, and the gradient of which governs the flux of the
reactant, e.g. Loeffel and Anand (2011); Cui et al (2012); Brassart and Suo (2013);
Levitas and Attariani (2014); Bower et al (2015), and it was noted that the velocity
of the reaction front can be controlled by the reaction rate at the reaction front rather
than by the diffusivity of the reactant (see e.g. Jia and Li, 2015, and reference therein).

In the present paper we develop the thermodynamically consistent approach to
mechanochemistry of reaction fronts by which the influence of stresses and strains on
the chemical reaction rate and the chemical reaction front velocity is studied basing
on the concept of the chemical affinity tensor (Freidin, 2014; Freidin et al, 2014;
Freidin, 2015; Freidin et al, 2016a,b). We focus on locking effects – arresting of the
reaction front propagation by mechanical stresses.

Recall that in the classical physical chemistry the chemical affinity appears as
a multiplier A in the expression of the entropy production P[S] due to a chemical
reaction (Prigogine and Defay, 1988):

T P[S] = Aω , (17.1)

where ω is the reaction rate, T is the temperature. In the case of a reaction

n1B1 +n2B2 + ...+nlBl → nl+1Bl+1 +nl+2Bl+2 + ...+nNBN ,

where Bk are chemical formulae of reacting constituents, nk are the stoichiometric
coefficients (k = 1, . . . ,N), the chemical affinity is defined as

A =−
N

∑
1

nkMkμk,

where μi and Mi (i = 1, . . . ,4) are chemical potentials per unit mass and molar masses
of the reaction constituents, the stoichiometric coefficient nk is substituted into the
sum with the sign “+” if the kth constituent is produced in the reaction and with the
sign “−” if the kth constituent is consumed.

The structure of the entropy production expression indicates that a kinetic equation
can be formulated in a form of the dependence of the reaction rate on the affinity:
ω = ω(A). Chemical equilibrium corresponds to the case ω = 0 and A = 0, and a
direct reaction is possible only if A > 0. So called false equilibrium A �= 0, ω = 0, is
not discussed in the present paper.

The reaction
n−B−+n∗B∗ → n+B+ (17.2)

is considered further where B− and B+ are solid constituents, and B∗ is a diffusive
(“gaseous”) component. The reaction is sustained by the diffusion of B∗ through
the material B+ and is localized at the reaction front Γ that divides domains v− and
v+ occupied by the solid constituents B− and B+, respectively, and the diffusive
constituent is fully consumed at the reaction front (Fig. 17.1). Silicon oxidation
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Fig. 17.1 Localized chemical
reaction in a solid sustained by
the diffusion

B+ Γ
B−

B∗

Si+O2→ SiO2

performs a reaction of this type.
For the reaction (17.2) the chemical affinity equals

A = n−M−μ−+n∗M∗μ∗ −n+M+μ+,

and the kinetic equation can be taken in the form

ω =−→ω
{

1− exp
(
− A

RT

)}
, (17.3)

where −→ω = k∗c is the direct reaction partial rate, which, in the case of a reaction
between gaseous and solid constituents, is proportional to the concentrations of
reacting solid constituent, k∗ is the kinetic coefficient (reaction rate parameter),
c = ρ∗/M∗ is the molar concentration of the diffusive constituent (Glansdorff and
Prigogine, 1971). Then it follows from the mass balance that the front velocity equals

W =
n−M−
ρ−

k∗c
{

1− exp
(
− A

RT

)}
,

where ρ− is the mass density of the constituent B+.

In the linear thermodynamic approach
A

RT
� 1, then

ω = k∗c
A

RT
, W =

n−M−
ρ−

k∗c
A

RT
.

The above considerations were based on a scalar chemical potential and was not
specified for deformable constituents. In the last decades of the twentieth century
it was realized that in the case of solid phases the chemical potential was to be
a tensor (see Grinfeld, 1991, and reference therein), and in the case of a moving
interface, the jump of the normal component of the chemical potential tenor acts as
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a configurational (driving, thermodynamical) force (see Maugin, 1993; Wilmanski,
1998; Gurtin, 2000; Kienzler and Herrmann, 2000; Abeyaratne and Knowles, 2006;
Maugin, 2010, and reference therein). Tensorial nature of the chemical potential also
have been pointed out in Rusanov (2005, 2006).

For the case of a chemical reaction front these results were generalised in Freidin
(2014) (see also Appendix in Freidin, 2014, 2015). It was derived from mass, linear
momentum and energy balances and the entropy inequality written down for the case
of the reaction between a diffusive constituent and solids of arbitrary rheology that
the chemical affinity is a tensor. For nonlinear elastic solids the chemical affinity
tensor was derived in Freidin (2009). Tensorial nature of the chemical affinity reflects
the fact that the reaction takes place at oriented surface elements that pass through
a point, as opposed to a reaction just at a point, and the reaction rate depends on
the orientation of the surface element with respect to stresses. It was shown that the
normal component Ann of the chemical affinity tensor AAA arises in the expression of
the entropy production (17.1) instead of the scalar affinity A.

The use of Ann in the kinetic equation (17.3) allows to describe the influence of
stresses and strains on the reaction rate by the thermodynamically sound way, as
they affect the chemical affinity tensor. The approach based on the chemical affinity
tensor was applied to a number of boundary value problems for linear elastic solids
undergoing chemical reactions (Freidin et al, 2014, 2016a,b). It was demonstrated
that stresses can accelerate, retard and even block the chemical reaction. In Freidin
et al (2016b) the notion of a forbidden zone was introduced as a domain formed
by the strains or the stresses at which the reaction cannot go at any admissible
concentrations of the diffusive constituent. The aim of the present paper is further
development of the forbidden zones notion and their construction.

17.2 Chemical Affinity in the Case of Small Strains

If to neglect the input of pressure of a diffusive constituent into total stresses in
comparison with the stresses produced by a transformation strain and external loading,
then the normal component of the affinity tensor takes the following form in the case
of small strains Freidin et al (2014); Freidin (2015):

Ann=
n−M−
ρ−

(
w−−g3w++σσσ± : [[εεε]]

)
+n∗

(
η∗+RT ln

c
c∗

)
,

where w± are the volume densities of the Helmholtz free energy of solid constituents,
εεε± are the deformations at the reaction front, the stress tensors σσσ± can be taken at
any side of the reaction front, the parameter g is determined by the volume part of
the transformation strain εεε tr: if εεε tr = ε trIII, then g = 1+ ε tr; it is accepted that the
chemical potential μ∗ of the diffusive constituent is defined as

M∗μ∗ = η∗+RT ln
c
c∗
,
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where c is the molar concentration of the diffusive constituent, c∗ and η∗ are the
reference concentration and the chemical potential of B∗.

The reference concentration c∗ can be taken as the concentration at the part
Ω∗ ⊂Ω of the outer surface Ω through which the diffusive constituent is supplied,
or as the constituent B∗ solubility in the transformed material B+. Then two types of
the boundary condition can be state at Ω∗ for the diffusion problem: which prescribe
the concentration at the outer surface or the flux through the outer surface:

c|Ω∗ = c∗, (17.4)

D
∂c
∂n

∣∣∣∣
Ω∗
−α(c∗ − c|Ω∗) = 0 (17.5)

where α is the surface mass transfer coefficient, the normal nnn to the reaction front is
directed from “−” to “+”.

Stresses are assumed to be related with elastic strains by Hooke’s law:

σσσ− =CCC− :(εεε−−εεε∗−), σσσ+ =CCC+ :(εεε+−εεε∗+), (17.6)

where εεε∗− = εεε in− is the inelastic (viscous, plastic) strain in the material B−,
εεε∗+ = εεεch +εεε in

+ is the sum of the transformation strain εεεch and inelastic strain εεε in
+

in the material B+, CCC± are the stiffness tensors of the materials B±.
From (17.6) it follows that the volume densities of the Helmholtz free energies of

the materials B∓ are

w−= η−(T )+
1
2
(εεε−−εεε∗−) : CCC− : (εεε−−εεε∗−),

w+= η+(T )+
1
2
(
εεε+−εεε∗+

)
: CCC+ :

(
εεε+−εεε∗+

)
,

where η±(T ) are the free energy densities of B± in stress-free states (chemical
energies). Then the normal component of the chemical affinity tensor takes the form:

Ann =
n−M−
ρ−

{
γ(T )+

1
2
σσσ− : (εεε−−εεε∗−)−

1
2
σσσ+ : (εεε+−εεε∗+)+σσσ− : (εεε+−εεε−)

}
+n∗RT ln

c
c∗
, (17.7)

where the temperature dependent parameter γ is determined by the chemical energies
of the reaction constituents:

γ = η−−gη++
ρ−

n−M−
n∗η∗.

Note that if the role of stresses is neglected than the reaction is allowed only if the
chemical energies are such that γ > 0, and the stresses affect the chemical affinity
and, thus, the reaction rate, only if the input of the strain energies of the constituents
is compatible with the input of the chemical energies.
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The normal component of the affinity tensor can be expressed via strains or
stresses at one sides of the reaction front, as it was done earlier for the interfaces
in the case of phase transformations (see, e.g., Morozov and Freidin, 1998; Freidin,
2007). Indeed, if the contacting materials have constitutive equations (17.6), then
from the continuity of displacements and traction across the reaction front it follows
that the jumps of strains and stresses can be calculated as (Kunin, 1983):

[[εεε]] =−KKK∓ (nnn) :qqq±, [[σσσ ]] = SSS∓ (nnn) :mmm±, (17.8)

where the tensors qqq and mmm are linear transformations of strains and stresses with
coefficients equal to the jumps of the stiffness tensor in combination with inelastic
strains:

qqq± = [[CCC]] :εεε±− [[CCC : εεε∗]], mmm± = [[BBB]] :σσσ±+[[εεε∗]],

KKK∓(nnn)={nnn⊗GGG∓(nnn)⊗nnn}s, GGG∓(nnn)=(nnn ·CCC∓·nnn)−1,

SSS∓(nnn) =CCC∓ : KKK∓(nnn) : CCC∓−CCC∓, BBB± =CCC−1
± .

Tensors GGG∓(nnn) are Fourier transformations of Green tensors for the determination
of displacements in elastic medium B− or B+, that equal to the acoustic tensors, s
denote the symmetrization with respect to the indexes in the first and second pair:
Ki jkl = n(iG j)(knl), further in the expressions the upper and lower indexes and the
signs “+” and “−” correspond with each other.

From (17.7) and (17.8) it follows the formulae expressing the normal component
of the chemical affinity tensor via strains and stresses on a side of the transformation
front:

Ann =
n−M−
ρ−

{
ϕε(εεε−)+

1
2

qqq− : KKK+ (nnn) : qqq−
}
+n∗RT ln

c
c∗

=
n−M−
ρ−

{
ϕε(εεε+)− 1

2
qqq+ : KKK− (nnn) : qqq+

}
+n∗RT ln

c
c∗

=
n−M−
ρ−

{
ϕσ (σσσ−)+

1
2

mmm− :SSS+ (nnn) :mmm−
}
+n∗RT ln

c
c∗

=
n−M−
ρ−

{
ϕσ (σσσ−)− 1

2
mmm+ :SSS− (nnn) :mmm+

}
+n∗RT ln

c
c∗
,

(17.9)

where ϕε(εεε) and ϕσ (σσσ) are defined by the differences of the volume densities of the
Helmholtz and Gibbs free energies, respectively,

ϕε(εεε) = w−(εεε)−g3w+(εεε)+η∗,

ϕσ (σσσ) = ψ−(σσσ)−g3ψ+(σσσ)+η∗,
ψ∓(σσσ) = w∓(εεε∓(σσσ))−σσσ : εεε∓(σσσ), εεε∓(σσσ) =BBB∓ :σσσ +εεε∗∓

and, thus,
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ϕε(εεε∓) = γ− 1
2
[[εεε∗ : CCC : εεε∗]]− 1

2
εεε∓ : [[CCC]] : εεε∓+εεε∓ : [[CCC : εεε∗]], (17.10)

ϕσ (σσσ∓) = γ+
1
2
σσσ∓ : [[BBB]] :σσσ∓+σσσ∓ : [[εεε∗]]. (17.11)

Note that ϕε(εεε) and ϕσ (σσσ) can be also expressed via qqq and mmm:

ϕε(εεε) = γ∗ − 1
2

qqq : [[CCC]]−1 : qqq≡ ϕq(qqq), ϕσ (σσσ) = γ∗+
1
2

mmm : [[BBB]]−1 : mmm≡ ϕm(mmm).

(17.12)

If the reverse [[CCC]]−1 exists then the strains and stresses in Ann can be expressed
via qqq and mmm. Then the normal component Ann takes the form of quadratic forms of qqq
and mmm:

Ann =
n−M−
ρ−

{
γ∗ −1

2
qqq− :
(
[[CCC]]−1−KKK+(nnn)

)
: qqq−
}
+n∗RT ln

c
c∗

=
n−M−
ρ−

{
γ∗ −1

2
qqq+ :
(
[[CCC]]−1 +KKK−(nnn)

)
: qqq+

}
+n∗RT ln

c
c∗

=
n−M−
ρ−

{
γ∗+

1
2

mmm− :
(
[[BBB]]−1 +SSS+(nnn)

)
: mmm−
}
+n∗RT ln

c
c∗

=
n−M−
ρ−

{
γ∗+

1
2

mmm+ :
(
[[BBB]]−1−SSS−(nnn)

)
: mmm+

}
+n∗RT ln

c
c∗
,

(17.13)

γ∗ = γ− 1
2
[[εεε∗]] : [[BBB]]−1 : [[εεε∗]].

The representations (17.9)–(17.13) define how Ann and, thus, the reaction rate
and front velocity, depend on strains and stresses at the front and the front surface
element orientation.

17.3 Forbidden Zones

The direct reaction is possible only if Ann > 0, i.e. only if

ϕε(εεε−)+
1
2

qqq− : KKK+(nnn) : qqq−≥ n∗ρ−
n−M−

RT ln
c∗
c

(17.14)

and/or

ϕε(εεε+)− 1
2

qqq+ : KKK−(nnn) : qqq+≥ n∗ρ−
n−M−

RT ln
c∗
c
. (17.15)

Since c < c∗ at the direct reaction front, ln(c∗/c)> 0, and the following inequalities
are to be fulfilled in the case of the propagating front:
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ϕε(εεε−)+
1
2
K +

max(qqq−)≥ 0, and/or ϕε(εεε+)− 1
2
K −

min(qqq+)≥ 0, (17.16)

where

K ±
max(qqq∓) = max

nnn
qqq∓ : KKK±(nnn) : qqq∓, K ±

min(qqq∓) = min
nnn

qqq∓ : KKK±(nnn) : qqq∓

If

ϕε(εεε−)+
1
2
K +

max(qqq−)≤ 0 (17.17)

and/or

ϕε(εεε+)−1
2
K −

min(qqq+)≤ 0 (17.18)

then the direct reaction cannot go at any area elements and can not be started-up by
any diffusion supply of the diffusive constituent.

By (17.13), the inequalities (17.17) and (17.18) can be written via tensor qqq: if

ϕq(qqq−)+
1
2
K +

max(qqq−)≤ 0, and/or ϕq(qqq+)− 1
2
K −

min(qqq+)≤ 0 (17.19)

then the reaction cannot go.
The reverse reaction can go only if Ann ≤ 0. Since the reverse reaction is ac-

companied by the extraction and diffusive withdrawal of the constituent B∗, the
concentration at the reaction front is greater than the reference concentration c∗,
c > c∗. Then ln(c/c∗)> 0 at the reverse reaction front and

Ann ≤ n−M−
ρ−

{
ϕε(εεε∓)± 1

2
qqq∓ : KKK± (nnn) : qqq∓

}
. (17.20)

Then if the reverse reaction front propagates then

ϕε(εεε∓)± 1
2

qqq∓ : KKK± (nnn) : qqq∓ = ϕσ (σσσ∓)± 1
2

mmm∓ :SSS± (nnn) :mmm∓ ≤ 0. (17.21)

Thus, the reverse reaction cannot go if

ϕε(εεε−)+
1
2
K +

min(qqq−)≥ 0 and/or ϕε(εεε+)− 1
2
K −

max(qqq+)≥ 0. (17.22)

Obviously, conditions (17.22) can be reformulated in terms of stresses as well as via
tensors qqq and mmm.

Restrictive inequalities (17.17)–(17.19), (17.22) form domains in the strain space
or q−space which further will be referred as forbidden zones. The boundaries of
the domains (17.17)–(17.19) were constructed earlier in the context of the phase
transition zones construction formed by the strains which can exist at equilibrium
interfaces (Morozov and Freidin, 1998; Freidin et al, 2002; Freidin and Sharipova,
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2006; Freidin, 2007). The difference is only in the definition of the parameter γ and
the sign of the inequalities.

If materials B+ and B− are elastic and isotropic then

CCC± = λ±III⊗III +2μ4
±III, εεε∗+ = (ϑ ch/3)III, εεε∗− = 0,

KKK±(nnn) =
1
μ±

(nnn⊗III⊗nnn)s− 1
2μ±(1−ν±)nnn⊗nnn⊗nnn⊗nnn,

where III and 4III are the identity tensors of the second and fourth rank, respectively;
λ and μ are the Lamé’s constants; ν is the Poisson’s ratio. The maximal and minimal
values of the quadratic form

K (nnn|qqq) = qqq : KKK(nnn) : nnn

in the case of isotropic material are given by the following relationships (see, e.g.,
Freidin, 2007). Denote the minimal, maximal and intermediate eigenvalues of the
tensor qqq by qmin, qmax and qmid, and the minimal and maximal absolute values of
the eigenvalues of qqq by |q|min and |q|max, respectively. Let eeemin, eeemax and eeemid, eee|q|min
and eee|q|max be the corresponding eigenvectors of qqq, and nmin, nmax and nmid be the
components of the normal nnn in the basis eeemin,eeemax,eeemid. Then if

qminqmax < 0 or
{

qminqmax > 0
(1−ν)|q|min < ν |q|max

(17.23)

then the normal lies in the plane of maximal and minimal eigenvalues of the tensor qqq,
nmid = 0, and

n2
max =

(1−ν)qmax−νqmin

qmax−qmin
, n2

min =
νqmax− (1−ν)qmin

qmax−qmin
, (17.24)

Kmax(qqq) =
1−ν
2μ

(q2
max +q2

min)−
ν
μ

qmaxqmin, (17.25)

otherwise

nnn = eee|q|max, (17.26)

Kmax(qqq) =
1−2ν

2μ−(1−ν) |q|
2
max. (17.27)

The minimal value of qqq : KKK(nnn) : qqq and the corresponding normal are given by

nnn = eee|q|min, Kmin(qqq) =
1−2ν+

2μ+(1−ν+) |q|
2
min. (17.28)

The cross-sections of forbidden zones by the plane ε1 = ε2 in strain space and in
q−space are represented in Fig. 17.2 for γ > 0 and in Fig. 17.3 for γ < 0. The lines
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ω− = ω ′− ∪ω ′′− correspond to the equation

ϕq(qqq−)+
1
2
K +

max(qqq−) = 0

with K +
max(qqq−) and the normal nnn given by (17.25) and (17.24) (the solid parts ω ′′)

or given by (17.27) and (17.26) (the dotted parts ω ′) with ν = ν+ and qqq = qqq−.
Analogously, the lines ω+ = ω ′+∪ω ′′+ correspond to the equation

ϕq(qqq+)− 1
2
K −

max(qqq+) = 0.

The lines β+ and β− correspond to the equations

ϕq(qqq+)− 1
2
K −

min(qqq+) = 0 and ϕq(qqq−)− 1
2
K +

min(qqq−) = 0

with K ∓
min(qqq±) and the normal given by (17.28). The lines ξ correspond to

ϕε(εεε) = ϕq(qqq) = 0.

β+ β− ω ′′+ω ′′− ω ′+ω ′− ξ

ε1

ε0

(a)

ω ′+
ω ′−
β+
β−

ω ′′+
ω ′′−

z = trqqq

q−q1

ξ

z0

(b)

Fig. 17.2: The cross-sections of the forbidden zones by the planes (a) ε2 = ε3 = ε
and (b) q2 = q3 = q at γ = 0.03, K+ = 39, K− = 78, μ+ = 15, μ− = 30, ϑ tr = 0.015,
the point z0 corresponds to ε1 = ε2 = ε3 = 0.
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β+ β− ω ′′+ω ′′−
ω ′+ω ′− ξ

ε1

ε0

(a)

ω ′+
ω ′−
β+
β−

ω ′′+
ω ′′−

z = trqqq

q−q1

ξ

z0

(b)

Fig. 17.3: The cross-sections of the forgbiden zones by the planes (a) ε2 = ε3 = ε
and (b) q2 = q3 = q at γ =−3, K+ = 39, K− = 78, μ+ = 15, μ− = 30, ϑ tr = 0.015,
the point z0 corresponds to ε1 = ε2 = ε3 = 0.

The forbidden zone is inside the line ω− for the strains at the side “−” of the
reaction front (red hatching) and inside the line β+ for the strains at the side “+”
of the front (blue hatching). One can see that reaction cannot go at γ < 0 without
straining but can start at proper loading.

The lines ω which bound the forbidden zones for strain “−” are shown for various
parameters γ in Fig. 17.4. One can see that if γ increases than the forbidden zone
decreases and the reaction can be blocked only by strains from a relatively small
domain. The forbidden zone disappears at further increase of gamma If γ decreases
then the both effects become essential: from some value of γ the reaction cannot go
without additional loading, at other strains the direct reaction in blocked.

As final remarks, note that the forbidden zones reflect the influence not only of
the values of strains and stresses, but also the influence of the strain state. The size
and the position of the forbidden zone depend also on the strain εεε∗ which may be
considered as a constant transformation strain if the solid constituents are elastic, but
may depend on time in the case of viscoelastic or viscoelastoplastic constituents. In
this case forbidden zones will evolve with time and, particularly, an arrested reaction
can be unlocked.
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Fig. 17.4: Locking strains εεε− for direct reactions. Cross-sections ε2 = ε3 ≡ ε of
forbidden zones at various γ: γ1 = 0.008 > γ2 = 0.001 > γ3 = 0 > γ4 =−0.03.
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Chapter 18

Generalized Debye Series Theory for Acoustic

Scattering: Some Applications

Alain Gérard

Abstract The problem of propagation of acoustic waves in the presence of a sub-
merged elastic object of cylindrical or spherical shape is formulated here in a unified
fashion. With this general formalism is associated a synthetic procedure of resolution
of the continuity conditions for the fields at the interfaces. This procedure, based on
the operator concept, leads in a simple and direct fashion to the generalized Debye
series for the exact solution of wave propagation in the case of separable geometries
with the acoustic source either inside or ouside to the scatterer. For cylindrical and
spherical geometries, this result, which we term the "Generalized Debye Series The-
ory" (GDST), is exploited for various applications and appears as a complementary
contribution to the Resonance Scattering Theory (RST) as established by H. Überall
et al.

18.1 Introduction

Determining the exact solution of the propagation of elastic waves in the presence
of a cylindrical or spherical object imbedded in another medium (fluid or elastic) is
a problem that has been solved mathematically since a long time (Sezawa, 1927).
However, only the last thirty years the power of electronic computers has permitted
to start exploiting this solution, with numerous applications in seismology, nonde-
structive testing, underwater acoustics etc. This solution, which stems from satisfying
the boundary (continuity) conditions, is usually obtained by solving Cramer’s system
of algebraic equations and appears in the form of a ratio of two determinants whose
elements are linear combinations of Bessel functions and their derivatives. Apart from
the complexity of this result, whose exploitation necessitates the use of a calculator,
such a method masks the physical interpretation of the solution.
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Consequently, one of the major problems posed by the analysis of acoustic scat-
tering consists in the difficulty of reaching, in all cases, at a physical interpretation,
which constitutes the most interesting aspect of the phenomenon. The study of scatter-
ing often takes its starting point from a modal series of the normal modes of vibration.
It is clear that the comprehension of a physical problem is intimately linked to the
modeling of the problem. The modal series constitutes a typical example where the
mathematical model does provide a global image of the physical situation under
consideration, but where at the same time it hides most of the fine details that could
be observed in the scattering process. Thus, for example, the modal series at first
sight does not exhibit the multiple reflections and refractions that take place inside
the scatterer.

It may be overly ambitions, in general, to expect that an exact mathematical
solution should immediately reflect all the elementary mechanisms that one would
like to understand, but it appears desirable to single out, as soon as possible, the
elements of the analysis that correspond to the type of interpretation that is being
looked for. However, numerous studies on the scattering of electromagnetic waves
by spheres and cylinders have shown to permit appropriate techniques for this type
of scattering problem for scalar fields.

Accordingly, since the work of Debye (1908), and of van-der-Pol and Bremmer
(1937), on cylindrical and spherical objects, we know that for a scalar field the exact
solution for the propagation of waves exterior to an obstacle can be expanded in
a series of an elementary1 waves (the Debye series) expressed by reflection and
refraction coefficients. In particular, the Debye series has led to advances such as the
understanding of the rainbow phenomenon, which is created by multiple reflections
and refractions of the light rays by water droplets suspended in the atmosphere
Nussenzweig (1969a,b).

In acoustics, the presence of a vector field in the description of wave propagation
in elastic objects complicates the analysis to some extent (Knopoff, 1959). The
reflection-refraction phenomena are accompanied by transitions from longitudinal to
transverse modes and vice versa. This possibility of mode conversion, which does
not exist in electromagnetics, renders an expansion into Debye series more difficult
for elastic media. In spite of this, a partial wave expansion has been obtained in
the exterior region for a fluid sphere enclosed in an elastic space by Scholte (1956),
and independently by Nagase (1956), by a division of the determinants contained
in the exact solution of the problem. The opposite case (elastic object imbedded in
a fluid) has been solved for the cylindrical geometry by Brill and Überall (1970,
1971). Their methods consist in separating the exact solution in the fluid into two
terms the first of which represents the specular reflection on the cylinder. The other
term is expanded, by using the binomial theorem, in a series in which the various
elements are subsequently identified as the reflection and refraction coefficients of
the cylinder. The application of these various methods is complicated, representing a
considerable task that could not be envisaged for multilayered objects. However, for
many experimental problems it would be desirable to have a physical interpretation

1 No partial waves because each term are an elementary solution of the boundary conditions
(continuity) at each interface of the scatterer.
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of the exact solution available. Another method has been proposed (Gérard, 1979,
1980, 1983) which, starting out from a matrix notation, uses directly the notion
of operators and linear algebra. It furnishes the exact solution in all the layers
of an elastic multilayered sphere in terms of a generalized Debye series (Gérard,
1987). This method uses the concept of outgoing and ingoing waves together with
a particular organization of the system of continuity conditions for the fields at the
various interfaces of the model in terms of an appropriate matrix representation.
This method has also been used for the case of plates (Conoir et al, 1991; Gérard,
1987), or of the solid elastic or fluid (non multilayered) cylinder immersed in a
fluid (Conoir, 1988; Derem, 1982). In all these applications, a judicious choice of
notation leads to a form of solution that is independent of the geometry of the model
under consideration (cylindrical or spherical). Only the analytic expressions for the
reflection and transmission coefficients are specific to the geometry considered. One
may thus consider it possible to formulate and solve in a unified fashion the problem
of the diffraction of a plane wave by an elastic sphere or cylinder (of circular cross
section) immersed in a fluid.

In the present review, we shall first show that our approach can be formulated for
the case of submerged objects of linear behavior (whether elastic or not), as long as
their surfaces are cylinders of circular cross section, or spheres. We then develop our
method for obtaining the generalized Debye series. This method, which we call the
GDST (Generalized Debye Series Theory), is subsequently explored in various ways
for different examples of targets insonified by external or internal sources. The GDST
then appears as a useful complement of the RST (Resonance Scattering Theory)
developed by Flax et al (1978); Fiorito et al (1979); Murphy et al (1979a).

18.2 Generalized Debye Series

18.2.1 Formulation of the Problem

The scattering object is assumed to be bounded by a surface that is part of the
coordinate surface of a curvilinear system. If the object is multilayered, the interfaces
of the layering are also assumed surfaces of the same curvilinear system.

The curvilinear coordinates are designated ξ , η , ζ where ξ is along the exterior
normal −→n = (ξ ,0,0). We assume that source and receiver are located in a plane
normal to the direction ζ , which is an axis of revolution of the problem. According to
the geometry considered, we have ξ = r, η = θ , and ζ = z for the cylinder (circular
cross section of radius r and of axis ζ = z), and ξ = r,η = θ , ζ = ϕ for the sphere
centered at the origin of coordinates. For the case most frequently treated, and in
order to simplify, we assume the source to be exterior to the obstacle. However, the
present theory is equally valid if the source is interior to the object, as we shall see
later on. For that latter case, an application to the elastic cylinder imbedded in air is
given in Sect. 18.6.
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We assume that the object, for which we defined the geometry, has linear and
isotropic elastic behavior. For the developments to follow, we note that linear elastic
behavior plays a fundamental role, while the isotropic character is not essential,
but is chosen here solely in order to simplify the calculations. We shall utilize the
potential theory of Helmholtz, which for the elastic medium 2 permits to decompose
the displacement field (or velocity field) in two potentials (Pao and Mow, 1973).
The scalar potential φ (or vectorial potential −→χ ) is associated with longitudinal
(transverse) waves which propagate in the (ξ ,η) plane at speed Cp (Cs). From the
basic laws of dynamics and of the behavior of medium 2, these potentials satisfy,
respectively, the decoupled wave equations:

Cp
2Δφ − ∂ 2φ

∂ t2 = 0, Cs
2Δχr− ∂ 2χr

∂ t2 = 0, (18.1)

where χr designates the radial component of the potential vector.
The modal solution of these equations is then searched for by the classical method

of separation of variables. The elementary solutions of order n (n being integer) are
obtained as the product fn(ξ )gn(η) of two functions of a real variable. For any of
our chosen geometries (cylinder on sphere), fn(ξ ) is the Hankel function of first
on second kind of order n for the cylinder, and of order n+ 1/2 for the sphere.
In contrast, for the cylindrical geometry gn(η) is a trigonometric function (sinnθ
or cosnθ ) while it is a Legendre polynomial Pn(cosθ) for the sphere. With a time
dependence exp(−iωt) of the fields where ω is the circular frequency, the concept
of ingoing (or convergent) waves is associated with the Hankel function of second
kind, H(2), and that of outgoing (or divergent) waves with the Hankel function of first
kind, H(1) (van-der-Pol and Bremmer, 1937; Nussenzweig, 1969a,b). To simplify,
we shall use a subscript + (or -) with all quantities associated with outgoing waves
proportional to H(1) (or ingoing waves proportional to H(2), respectively), such that
the two independent elementary solutions can be written as f±n (ξ )gn(η).

Thus, the modal decomposition of the potential associated with an incident plane
wave, or with a longitudinal wave interior to the obstacle, is of the form:

φ =
∞

∑
n=0

(anφ+
n +bnφ−n )e−ωt , φ±n = f±n (ξ )gn(η), (18.2)

where the coefficients bn (an) are known (unknown) for the incident wave (the wave
reemitted by the obstacle), while these same coefficients an and bn are unknown
for the waves propagating in the interior of the obstacle. These coefficients are
determined by solving the system arising from the boundary conditions, which
express the continuity of the components of displacement and of the stress vector.
These quantities are obtained starting from the expression of type Eq. (18.2) by linear
derivative operations, which conserve the structure of Eq. (18.2) for the components
of displacement and stress. More precisely, we call medium 1 the ambient fluid and
medium 2 the submerged elastic object, and then the scalar potential at the boundary
of medium 1 is:
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φ1 =
∞

∑
n=0

(φ−1 (1)+anφ+
n (1)), (18.3)

where 1 = k1ξ0 k1 being the wave number in medium 1 and ξ0 the radius of the
surface of the object. On the boundary of medium 2, denoting for simplicity χ2 as the
radial component of the vector potential of medium 2, the two potentials necessary
for the description of the displacements and stresses are:

φ2 =
∞

∑
n=0

(φ−n (p)+φ+
n (p))bn, χ2 =

∞

∑
n=0

(χ−n (s)+χ+
n (s))cn, (18.4)

where, for the p and s waves coming from medium 2 we have set q = kqξ0, kq
being the wave number of the wave with polarization q (q = p,s). Incidentally, there
appears in Eq. (18.4) only one constant to be determined for φ2, and also for χ2,
because we have taken into account the fact that the fields must remain finite at ξ = 0.
This condition is often interpreted as the passage of the waves through a focal point
of the object, or also as the reflection of the waves at ξ = 0. We shall designate by−→u ( j) the displacement field in medium j ( j = 1,2). Using the theorem of Helmholtz
(Morse and Feshbach, 1953), the structure of ingoing on outgoing waves is conserved
under the operators

−−→
grad and−→rot in a way that the displacements in each of the media

are given by:
u(1)ξ = u−1 (1)+u+1 (1)an, (18.5)

in the fluid,
u(2)ξ = [u−2 (p)+u+2 (p)]bn +[u−2 (s)+u+2 (s)]cn (18.6)

in the solid. Likewise, the law of the behavior being linear elastic, the components of
the stress tensor σ ( j)

lm for the medium j ( j = 1,2) are obtained by linear combinations
of derivatives of the expressions Eqs. (18.3) and (18.4). We thus obtain in a similar
fashion the nonvanishing components of the stress at the interface in the form:

σ (1)
ξξ = σ−ξξ (1)+σ+

ξξ (1)an, σ (1)
ξn = 0 (18.7)

linear in an in the fluid,

σ (2)
ξx = [σ−ξx(p)+σ+

ξx(p)]bn +[σ−ξx(s)+σ+
ξx(s)]cn, x = ξ ,η (18.8)

linear in bn and cn in the solid. Thus, the system of boundary conditions at the
fluid-solid interface results as :

u(1)ξ −u(2)ξ = 0, σ (1)
ξξ −σ

(2)
ξξ = 0, σ (2)

ξη = 0. (18.9)

From this, the operator (which, below, we shall designate by D), which represents
the application of the boundary conditions that contain the elements of Eq. (18.9),
linear in an bn and cn, is easily obtained via Eqs. (18.5) and (18.6) and (18.7 and
18.8). Since these boundary conditions must be satisfied for each mode n separately,
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we may suppress the index n at all the constants and write an→ a etc. This leads to
the following concise formulation of the boundary conditions:

−→
f −(1)+D

−→
d = 0⇔−→f −(1)+DL

−→
d +
−→
f +(p)b+

−→
f +(s)c = 0 (18.10)

where the following notations were used:

−→
d =(a,b,c)t ,

−→
f −(1)= (u−ξ (1),σ

−
ξξ (1),0)

t ,
−→
f ±(q)= (−u+ξ (q),−σ+

ξξ (q),σ
+
ξη(q))

t

and

D =

⎛⎜⎜⎝
u+ξ (1) −u−ξ (p)−u+ξ (p) −u−ξ (s)−u+ξ (s)

σ+
ξξ (1) −σ−ξξ (p)−σ+

ξξ (p) −σ−ξξ (s)−σ+
ξξ (s)

0 σ−ξη(p)+σ+
ξη(p), σ−ξη(s)+σ+

ξη(s)

⎞⎟⎟⎠ (18.11)

In these expressions, the subscript ”t” designates the transpose,
−→
f −(1) is the incident

field and DL the matrix of local interactions (hence the index L) which deduce from
Eq. (18.11) substituting column 2 and 3 by

−→
f −
(p) and

−→
f −
(s) respectively. We introduce

the column matrix C; so the two last terms in Eq. (18.10) can be combined in the
simple expression

C = (
−→
0 ,
−→
f (+)(p),

−→
f (+)(s)) ⇒ C

−→
d = (

−→
0 ,
−→
f (+)(p)b,

−→
f (+)(s)c) (18.12)

The global system of boundary conditions Eq. (18.7) is thus written, employing these
operators: −→

f −(1)+(DL +C)
−→
d = 0 with D = DL +C. (18.13)

In the general case of multilayered media one can show that the matrix operator of
local interactions DL (of block-diagonal form) dissociates the interfaces while the
matrix operator C (simultaneously block and banded) represents the coupling; hence
the notations D and C. Before solving the "global" system of boundary conditions
Eq. (18.10) and Eq. (18.13), we shall first introduce the "local" modal reflection and
refraction coefficients.

18.2.2 "Local" Modal Reflection and Refraction Coefficients

18.2.2.1 Reflection and Refraction of a Wave Incident from Medium 1 (Fluid)

on Medium 2 (Solid)

In a general fashion, we denote by Rqv
i j (T

qv
i j ) the reflection (transmission) coefficient

for a wave of polarization q (q = p, s) incident from medium i on medium j, which
undergoes mode conversion v (v = p, s). The incident field coming from medium 1,
the potentials in each domain are expressed on the surface of the object ξ = ξ0 by
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φ1 = φ−1 +Rpp
12 φ

+
1 (1), φ2 = T pp

12 φ−2 (p), χ2 = T ps
12 χ

−
2 (s), (18.14)

these expressions containing the local reflection Rpp
12 and refraction coefficient T pp

12 .
The subscripts designate, successively, the nature of the incident wave, followed by
that of the reflected (or transmitted) wave. Writing the boundary conditions for the
fields of Eq. (18.14) leads to:

u−ξ (1)+u+ξ (1)R
pp
12 −u−ξ (p)T pp

12 −u−ξ (s)T
ps

12 = 0,

σ−ξξ (1)+σ+
ξξ (1)R

pp
12 −σ−ξξ (p)T pp

12 −σ−ξξ (s)T
ps

12 = 0,

σ−ξη(1)T
pp

12 +σ−ξη(s)T
ps

12 = 0.
(18.15)

This system of boundary conditions becomes, from Eqs. (18.10) and (18.11):

−→
f −(1)+DL

−→a L = 0,−→a L = (Rpp
12 ,T

pp
12 ,T ps

12 )
t . (18.16)

The reflection and refraction coefficients are thus given by a simple inversion of
relation Eq. (18.16). The analytic expression of these coefficients is given in Conoir
and Gérard (1989) for the elastic cylinder, and in Gérard (1987) for the elastic sphere.

18.2.2.2 Reflection and Refraction of Wave Incident from Medium 2 on

Medium 1

In the case of a p wave incident on medium 1, the potentials associated with waves
propagating in each of the media are expressed at the interface by:

φ1 = φ+
1 (1)T pp

21 , φ2 = φ+
2 (p)+φ−2 (p)Rpp

21 , χ2 = χ−2 (s)Rps
21, (18.17)

We introduce the notation
−→
b p = (T pp

21 ,Rpp
21 ,R

ps
21)

t so that the boundary conditions
across the interface ξ0 can be written as:

−→
f +(p)+DL

−→
b L = 0 (18.18)

leading to the analytic expression of the reflection-refraction coefficients. A quite
similar problem arises for the case of an incident s wave. With the above notations,
it is sufficient to replace p by s in the foregoing relations. In then follows that for a
field of polarization q incident from medium 2, the system of boundary conditions of
the fields across the interface can be written as:

−→
f +(q)+DL

−→
b q = 0,

−→
b q = (T qp

21 ,Rqp
21 ,R

qs
21)

t , q = p,s (18.19)

The various reflection and refraction conditions are thus given by a simple inversion
as before. Inserting this inversion of Eq. (18.19) in Eq. (18.12) we thus have

C
−→
d =−DL(

−→
b pb+

−→
b sc)
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Introducing the matrix R of column vectors

R = (
−→
0 ,
−→
b p,
−→
b s)

we obtain
R
−→
d =
−→
b p +

−→
b sc, C

−→
d =−DLR

−→
d

Equation 18.13 then becomes

−→
f −(1)+DL(1−R)

−→
d = 0 (18.20)

where 1 designates the unit matrix. From Eqs. (18.20) and (18.10) follows:

D = DL(1−R) (18.21)

By a simple inversion, the vector of unknowns can be expressed by

−→
d = (1−R)−1−→a L

If we use the Cayley-Hamilton theorem (Morse and Feshbach, 1953) for expanding
(1−R)−1, we find:

−→
d =

∞

∑
n−0

Rn−→a L (18.22)

which is the generalized Debye series (generalized with respect to the original
formulation (Debye, 1908), valid for a scalar field diffracted by a homogeneous
object). This formulation of the Generalized Debye Series Theory (GDST), as
reviewed here, will be applied below to various different cases.

18.3 Transmitted Waves

In this section, we work out some natural applications of the present GDST. This first
application concerns the physical meaning of the exact solution for waves in a fluid
normally incident on a fluid cylinder (Brill and Überall, 1970; Derem, 1982). For
this scalar case we have no mode conversion and we can suppress the superscripts p
and s in the local reflection-refraction coefficients. Using Eq. (18.22), it is easy to
show that the exact solution an of the scattering problem is:

an = R12 +T12(1−R12)
−1T21 ⇒ an = R12 +T12(

∞

∑
n=0

Rn
12)T21. (18.23)

For each term of Eq. (18.23) the application of the Sommerfeld-Watson transfor-
mation and the saddle point method (Flax et al, 1978) furnish the expressions for the
individual transmitted wave amplitudes in terms of reflection-refraction coefficients.
After this the first term in Eq. (18.23) represents the specularly reflected wave while
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the n-th term of an is representative of a wave that, after being refracted into the
medium 2 (coef. T12) has undergone (n− 1) internal reflections into this medium
(coef. Rn

12) before being refracted in the medium 1 (coef. T21). Equation (18.22)
furnishes again the GDST for an elastic cylinder treated above with

an = R12 +
T pp

12
Δ

[(1−Rss
21)T

pp
21 +Rps

21T sp
21 ]+

T ps
12
Δ

[(1−Rpp
21 )T

sp
21 +Rsp

21T pp
21 ]

Δ = (1−Rpp
21 )(1−Rss

21)−Rps
21Rsp

21.

(18.24)

Considering the case where no critical angle is crossed, one finds that:

| Rpp
21 |< 1, | Rss

21 |< 1 and | Rps
21Rsp

21 |<| 1−Rpp
21 || 1−Rss

21 | . (18.25)

As previously, the asymptotic evaluation of all coefficients in Eq. (18.24), and expan-
sion of Δ−1 in the manner of Eq. (18.23), describe the "avalanche" as illustrated by
figure 4 in Brill and Überall (1970). Equation (18.22) furnishes a similar interpreta-
tion of the solution inside to the obstacle, which is not usually given. This will be
developed shortly below regarding the example of the internal source treated in Sect.
18.6.

18.4 Contribution to the Resonance Scattering Theory

18.4.1 Case of Solid Submerged Elastic Objects

Another exploitation of Eq. (18.22) concerns the exact calculation of the frequencies
and the widths of the scatterer’s resonances. It is well known from the Resonance
Scattering Theory (RST) (Flax et al, 1978) that the resonances of an object are given
by the roots of the secular equation det(D) = 0, and thus, using Eq. (18.21), by
the roots of the equation det(1−R) = 0 (from the definition of the reflection and
refraction coefficients, det(DL) �= 0). Computational results are given below for the
case of scattering by an aluminum and brass sphere immersed in water (Gérard
and Rousselot, 1983). The numerical evaluation of the roots is accomplished in two
steps. After having performed the complex extension ν of the index n, one solves the
characteristic equation det(1−R) = 0. For a given frequency, one locates the roots
in a quadrant of the complex plane. One thus obtains an approximate value of the
roots ν̂0. Starting from this estimation ν̂0 one refines the result using an algorithm
derived from the Newton-Raphson method. The roots group themselves into families
labeled by the integer l = 1 whose numbers increase with frequency.

All results are given as a function of the dimensionless frequency parameter
x = k1a (a radius, k1 acoustic wavenumber in water). In agreement with the RST,
the resonances are labeled by two numbers (n,l). The first index defines the ordinal
number (order) of the resonance, and the second determines the type of peripheral
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Fig. 18.1 Regge trajectories
for a solid aluminum sphere
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Fig. 18.2 Regge trajectories
for a solid brass sphere
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x

n

wave revolving around the elastic sphere that generates the resonance. The index
l = 1 corresponds to the "Rayleigh" wave and l = 2,3, ... corresponds to "Whispering
Gallery" waves. The curves called "Regge trajectories" (Figs. 18.1 and 18.2) are
analogous to what one finds in Maze and Ripoche (1983); Sessarego et al (1987);
Maze et al (1981) after a direct search of the roots of the characteristic equation
detD = 0.

18.4.2 Case of Solid Submerged Lossy Elastic Objects

The acoustic scattering by a lossy elastic cylinder at low frequencies has been
obtained in the same way (Grosse-Tête et al, 1985). The attenuation is taken into
account by introducing the complex wavenumber kp = k1C1C−1

p (1− iαp), ks =

k1C1C−1
s (1− iαs). To facilitate comparison we have used the following parameters

for lucite material (Schuetz and Neubauer, 1977):
C1 = 1,468.72m/s, Cp = 2,688.50m/s, Cs = 1,340.0m/s,
ρ2 = 1.18g/cm3, αp = 0.00348m αs = 0.00531
The resonance frequencies are determined by the roots of det(1−R) = 0 and listed
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Fig. 18.3 Regge trajectories
for a solid brass sphere l=1

l=2

x

n
l=3

l=4

l=5

in Grosse-Tête et al (1985) and the results of Schuetz and Neubauer (1977) are
improved. Here again, the results lead to Regge trajectories, Fig. 18.3, which as a
whole resemblance those found in the literature. The slope of these curves is always
between 0 and 1. One also notes that the resonances are very large for l = 1, but
narrower for l = 2,3, ... in the low frequency range x≤ 16. Mode conversions appear
between the Regge curves l = 3,4 and 5 (Fig. 18.3).

In Grosse-Tête et al (1985) the curves of the pressure field compared with those for
lossless materials show that for an isolated resonance the pressure amplitude is weakly
attenuated whatever the direction of observation (homogeneous attenuation), whereas
when two resonance frequencies are very near the frequency under consideration,
the amplitude of scattering pressure is very strongly reduced in specific directions
(preferential attenuation).

18.4.3 Case of Submerged Elastic Shells

For a multilayered spherical structure subject to an external point source emit-
ting harmonic elastic waves, the characteristic equation giving the resonance
frequencies of the obstacle has been factored by using the present GDST
(Gérard, 1983; Gérard and Rousselot, 1984) and still presents itself in the
form Eq. (18.22). For example, for the case of shells where the internal fluid
medium is numbered by 3, the system of boundary conditions has the form:

1 2 r = r1,

2 3 r = r2.

In each block one note the number of the region for which the displacements and
stresses must be matched on the surface, and the corresponding radius is written to
the right of the block. The outermost (innermost) interface has radius r = r1(r = r2).
The solution of the system of boundary conditions proceeds as in Sect. 18.2 and leads
to a matrix R of the form:
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R =

(
0 Ru

1
Rd

1 0

)
, Ru

1 =

⎛⎜⎝0 T pp
21 T sp

21
0 Rpp

21 Rsp
21

0 Rps
21 Rss

21

⎞⎟⎠ , Rd
1 =

⎛⎜⎝0 T pp
23 T sp

23
0 Rpp

23 Rsp
23

0 Rps
23 Rss

23

⎞⎟⎠ (18.26)

where 0 designates the 3x3 matrix with all elements equal to zero, while Ru
1 (or Rd

1) is
the 3x3 matrix in which the elements of the first column are zero and those of the two
other columns are the reflection and refraction coefficients of the interface at r = r1
or at r = r2, respectively. The characteristic equation thus appears in the simple form

det(1−Ru
1Rd

1) = 0

We note that one pass from a 6x6 determinant to a 3x3 determinant.
For an air-filled aluminum and brass spherical shell immersed in water, the

theoretical resonance frequencies, and their theoretical resonance widths, have been
obtained by us earlier (Gérard and Rousselot, 1984). For these numerical applications
we have used the following numerical values of the material properties: r2/r1 = 0.67
(r1 outside radius, r2 inner radius);
aluminum shell: Cp = 6,420m/s, Cs = 3,040m/s;
brass shell: Cp = 4,350m/s, Cs = 2,050m/s
The Regge trajectories, shown in Figs 18.4 and 18.5, also agree with what is usually
found in the literature, and demonstrate that the number of resonances increases with
frequency more rapidly for shells than for solid objects (Murphy et al, 1979b; Maze
and Ripoche, 1983; Maze et al, 1984; Likhodaeva and Shenderov, 1971; Dickey et al,
1983). The slope of these curves always lies between 0 and 1.

The study of a thin spherical shell of Fortal (Rousselot et al, 1988) (r2/r1 = 0.80)
has also brought into evidence a new series of resonances denoted l = 0 (Fig. 18.6)
which has not been visible for a thicker shell with r2/r1 = 0.67 (Fig. 18.7). The
Regge trajectories displaying these results (Figs. 18.7 and 18.6) are in agreement
with experiments (Rousselot et al, 1988). One notes, among other things, that these
new resonances appear in a limited frequency band. This series of resonances l = 0,
unknown a priori but existing also in cylindrical geometry, has recently been related
to Scholte-Stoneley type interface waves which encircle the shells at their outer

Fig. 18.4 Regge trajecto-
ries for a spherical air-filled
aluminum shell.

n
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circumference and which exhibit certain frequency limitations (Gérard et al, 1988;
Izbicki et al, 1991).

Evidently the simplest separable geometrical shape is the plate. This geometry
has been the subject of many studies. Since the first work of Brill and Überall (1970)
who have achieved the extension of Debye’s series by the binomial theorem, many
authors have used the present GDST. Results which have been obtained in recent
years concerning the GDST for acoustical interactions, are systematically presented
in a thorough manner for the example of an elastic plate immersed in a fluid (Conoir
et al, 1991; Gérard, 1983). This special case allows to state clearly the essential
principles underlying the way in which GDST is constructed. The characteristic
equation of an orthotropic elastic plate is then written in a new form, which uses
the local reflection-refraction coefficients linked to the two interfaces of the plate,
and the acoustical trajectories of the longitudinal and transverse waves between the
interfaces (Deschamps and Hosten, 1992). In Conoir (1991) it is shown that there is
a countable infinity of angles (phase velocities), for which the dispersion curves of
the symmetric and antisymmetric Lamb waves are crossing. At these angles, there
exists a periodicity in the distribution of resonances, and when the dispersion curves
are crossing, the resonances result from interferences between all longitudinal and
transverse waves refracted in the plate. At high frequencies, situations have also been
studied where the resonances result only from transverse wave interferences.

18.5 Non Resonant Background

When making use of Eq. (18.22) that the resonances are intimately linked to the
local interactions of the waves in the scatterer, and their combinations. Another
interesting consequence of the GDST is the introduction of a new type of intermedi-
ate background into the S matrix theory. This theory was transferred into acoustics
from nuclear reaction theory by (Flax et al, 1978; Fiorito et al, 1979). In the reso-
nance frequency calculation the interest in the S matrix results from this property
of factorization, showing one term of "potential" (or non-resonant) background S(p)

n

Fig. 18.5 Regge trajectories
for a spherical air-filled brass
shell.

l=1

l=2

l=3

x

n
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Fig. 18.6 Regge trajectories
for a spherical Fortal shell,
r2/r1 = 0.80.

l=0

l=1

l=2

x

n

Fig. 18.7 Regge trajectories
for a spherical Fortal shell,
r2/r1 = 0.67.

x

and one term S∗n(Sn = S(p)
n S∗n, here Sn = an) which explicitly displays its resonance

character. The idea consists in introducing the transition matrices Tn and T (p)
n defined

by Sn = 1+2iTn, S(p)
n = 1+2i(T (p)

n and observing the behavior of U p
n = T−n T (p)

n as
the frequency varies. If the choice made for Sp

n is appropriate, then U p
n will reach

significant values at the resonances, and these are then detected precisely when δ ∗n ,
the half-phase of S∗n, passes through π/2.

Thus the purpose of identifying the background component is to isolate easily
the resonance frequencies. Generally the background is to be chosen according
to the relative density of the scatterer or the relative thickness of the shell; for an
elastic scatterer or a thick shell the rigid background, for some average thickness the
intermediate background and for very thin air-filled shells (or air bubbles for instance)
the soft background is used (Fiorito et al, 1979). The principal difficulty is to choose
the intermediate background. Below, we shall develop a possible factorization of the
matrix S which is based on the GDST. In order to simplify the calculations, we take
the example of a fluid cylinder immersed in a fluid of different mechanical properties.

Remembering the decomposition of the amplitude of the incident field in a Debye
series, Eqs. (18.22) and (18.23), it appears the Sn is the sum of a resonant term –
second term of the second expression of Eq. (18.23)– and of a non-resonant term
R12. Let us remember that starting from Eqs. (18.21) and (18.23) the characteristic
equation of the problem is 1−R12 = 0. If subsequently we put Sn = R12 = 1+
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2iT n we can evaluate the difference Un between the transition matrix Tn and the
transition matrix T n associated with the non-resonant background R21. In this case,
we have Un = (2i)−1T12T21(1− R21)

−1 from which follows that Un is likely to
assume significant values at the resonant frequencies since 1−R12 passes though a
minimum at the resonance, or is close to a minimum.

For different resonance modes, the development of the modulus of R12 as a
function of frequency has been observed numerically (Schuetz and Neubauer, 1977;
Conoir and Gérard, 1989). It was found that this modulus is smaller than 1 and tends
towards the modulus of the reflection coefficient at a plane fluid/fluid interface at
normal incidence when k1ξ0 tends to infinity (i.e. ξ0, the radius of the cylindrical
on spherical object, tends to infinity). It thus appears natural to define the resonant
contribution S∗n of the process by S∗n = Sn/R12 and if we introduce δ ∗n we have

S∗n =| R12 |−1 exp(2iδ ∗n )

since | Sn |= 1. We conclude from this that

|Un |= 2−1 | exp(2iδ ∗n )− | R12 ||

which does not assure as before that

U (p)
n (=|Un |)

is a maximum when δ ∗n passes exactly through π/2 since R12 depends on the fre-
quency. In any case, if we postulate that the variation of the phase is much more rapid
than the variation of R12 around the resonances, we will not commit an important
error. We have thus conserved as a criterion for the detection of resonances the
passage of δ ∗n through π/2 (Gérard and Conoir, 1989).

When the characteristic acoustic impedance

Z = ρ2C2(ρ1C1)
−1

is high (Z > 1) (resp. low (Z < 1)) and through the potential background (R12) we
find again the results obtained with the rigid background (S∗n = Srigid

n ) (resp. soft
(S∗n = Sso f t

n )). For example, the resonance frequency evaluation with R12 and Sso f t
n

as potential background (impedance < 1) is given in Conoir and Gérard (1989). We
observe that the results globally are in a quite good agreement with an accuracy
better than 10−1. The table of resonance frequencies established with R12 and Srigid

n
as potential background (impedance > 1) gives the same kind of results. This study
tends to show that when setting Sn = R12, one can effect the calculation of resonances
equally well for large as well as small impedance ratios. In these conditions, contrary
to the preceding cases where two different types of potential background had to be
considered (rigid or soft) depending on the impedance ratio, we now only have a
single one.

This is not surprising since, if one observes the behavior of the reflection coef-
ficient R12 when the density of the scatterer becomes very large ρ2→+∞ or very
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small ρ2→ 0, one has according to the results shown in Gérard and Conoir (1989) :

R12 =−x1H(2)′
n (x1)H

(2)
n (x2)−ρ1ρ−1

2 x2H(2)′
n (x2)H

(2)
n (x1)

x1H(1)′
n (x1)H

(2)
n (x2)−ρ1ρ−1

2 x2H(2)′
n (x2)H

(1)
n (x1)

(18.27)

from which one deduces the following asymptotic behavior (Conoir and Gérard,
1989):

lim
ρ2→+∞

R12 = Srigid
n =−H(2)′

n (x1)

H(1)′
n (x1)

, lim
ρ2→0

R12 = Sso f t
n =−H(2)

n (x1)

H(1)
n (x1)

(18.28)

This proves that, as stated, the potential background R12 adopts the rigid and soft
limits for the scatterer when the density of the letter is large or small.

To be rigorous, it remains to be shown that Sn = R12 is a potential background
that remains correct when the impedance ratio is near unity. This latter situation
presents a difficulty for a comparison of the results since one does not have any
reference values for the resonances. The validation of our hypotheses can thus only
be achieved by a comparison with experiments. However, we note that the potential
background is supposed to represent the scattering outside the resonances. From
this, it appears natural to adopt a rigid or soft background which correspond to the
case where no energy penetrates into the scatterer (or, is conserved by the latter). In
this sense, the background Sn = R12 differs from Srigid

n and Sso f t
n , since it takes into

account the penetration (or non-penetration) of the acoustic waves into the scatterer
depending on the nature of the later : elastic, rigid or soft. Thus, the coefficient R12,
which naturally takes into account the penetration of acoustic energy inside the target,
allows us to continuously move from the case in which the insonified object has a
rather rigid behavior, to that in which it exhibits a rather soft behavior. As we have
verified, these results confirm that the potential R12 is well adjusted to obtain the
resonance frequencies to a good approximation.

All the examples of the use of the GDST which we have treated here concern the
case of the response of an object insonified by an external acoustic source. But as
we have already indicated, the methodology developed in Sect. 18.2 equally applies
to the case where the acoustic source is inside the object. To illustrate this latter
situation, we shall now proceed to evaluate the space-time response to a bounded
beam inside an elastic cylindrical waveguide.

18.6 Space-Time Dependence of a Bounded Beam Inside an

Elastic Cylindrical Guide

The space-time development of a signal with original time dependence e(t), emitted
by a source and received at a space point M, may be described using Fourier analysis.
We shall consider here such a development of the signal in a solid elastic medium
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of cylindrical geometry imbedded in air, and excited by a source centered on the
axis. This represents an application of the GDST to the case of an internal source
with axial propagation, and no longer in a plane of normal cross section; this obliges
us to recommence the problem from its beginnings (Danthez et al, 1989a,b). In the
appropriate coordinates (ξ = r, η = θ , ζ = z) where the z direction coincides with
the axis of the cylinder, the velocity field is still given, after the theorem of Helmholtz,
by the two potentials φ (scalar) and −→χ (vectorial).

18.6.1 Propagation Equations

The scalar potential and the axial component χz of the vector potential satisfy the
uncoupled equations while the components χr and χθ of the vector potential are
governed by the coupled wave equations. The vector potential also has to satisfy
the condition div(−→χ ) = 0. The axial symmetry entrains the θ independence of the
phenomena. The only nonvanishing component of the vector potential is thus along
this axis (ζ = z). The expression for the potentials in the solid cylinder is therefore:

φ = φ0J0(2πkpr)exp[−2iπ(ωt− kwz)], (18.29)

−→χ = χ0J1(2πksr)exp[−2iπ(ωt− kwz)]−→eθ (18.30)

where φ0 and χ0 are normalization constants, while kp,ks,kw(ω) the spatial (tempo-
ral) frequencies are linked by the dispersion equations:

k2
p + k2

w = ω2C−2
p , k2

s + k2
w = ω2C−2

s . (18.31)

In the following, we shall employ for the Fourier-Bessel transform the following
notation:

Fn
k (ωk) = 2π

∞∫
0

ω(k)Jn(2πkr)exp(2πkwz)kdk (18.32)

in which the kernel can be interpreted in terms of monochromatic cylindrical waves
in the r, θ plane, and plane progressive waves in the axial direction z.

18.6.2 Initial Conditions and Limiting Conditions

We assume the field of normal velocities to be known at z = 0 in the form of separated
variables v0(r, t) = e(t)a(r). This form permits to separately treat the space part and
the time part of the field. In an infinite medium, the spatial development of the field
can be written with the help of the scalar potential expressed as a Fourier-Bessel
transform
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φ(r,z) = F0
p [φ(kp)]

a relation in which the regular spectrum of the potential appears, defined by

φ(kp) = (2iπkw)
−1

∞∫
0

a(r)J0(2πkpr)2πrdr

In a bounded medium, it is expedient to introduce in these expression a transfer
function that includes the effects of diffraction, and notably the multiple reflections
in the (r,θ ) plane as well as the effects of diffraction linked to the finite opening
of the source, independently of the temporal form of the signal. In order to obtain
coherent phases in the reflection coefficients, it is necessary to call upon the Hankel
functions of first and second kind, representing divergent and convergent cylindrical
waves. Let us recall that these two functions are conjugates of each other and that
their half-sum is the Bessel function of first kind. Thus, by a simple permutation on
the Hankel functions, the study of propagation with a potential φ+ defined by:

φ+ =
1
2
φ(kp)H

(1)
0 (2πkpr)exp(−2iπkwz) (18.33)

permits to derive from it that corresponding to a potential φ− defined by:

φ− =
1
2
φ(kp)H

(2)
0 (2πkpr)exp(−2iπkwz) (18.34)

The total response is thus written as a superposition of the propagations Eqs. (18.33)
and (18.34). The necessary transfer functions are obtained as before, in the form
of an expansion in a GDST as a solution of the global boundary conditions on the
fields relevant to the present problem. These limiting conditions are the vanishing of
normal and tangential stresses on the outer surface of the cylinder (i. e., a free surface
at r = ξ0). The notations of the preceding sections are conserved and a superscript +
or - is attached to the quantities associated with divergent (H(1)) or convergent (H(2))
waves.

18.6.3 Solution of the Problem: Generalized Debye Series

One may thus treat the problem in its global form as before, Sect. 18.2. The incident
potential φ+ generates on the internal surface r = ξ0 a reflected scalar potential and
a reflected vector potential by mode conversion, and these potentials will in turn get
reflected by the cylinder axis (interpretation of the fields being finite at r = 0). One
denotes thus −→

X − = (L−(p,ω),T−(p,ω))

as the unknown field amplitudes. Writing the condition of a stress-free surface r = ξ0
furnishes the system
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D
−→
X − =

−→
fext (18.35)

where
−→
fext denotes the stresses of excitation imposed by the internal source, and

where D follows from Eq. (18.11) (after having suppressed the first row and column).
To solve this system, we first evaluate the reflection coefficients on the internal surface
of the cylinder as in Sect. 18.2. For example, the incident potential Eq. (18.33) is
reflected as a longitudinal wave and a transverse wave. The associated reflected scalar
potential is

φ− =
1
2
φ(kp)R−ppH(2)

0 (2πkpr)exp(−2iπkwz) (18.36)

in which there appears R−pp, the longitudinal reflection coefficient without mode
conversion associated with a convergent wave, while the vector potential generated
by the field Eq. (18.33) is written as a function of the reflection coefficient with mode
conversion associated with a convergent wave R−ps:

χ−θ =
1
2
φ(kp)R−psH

(2)
1 (2πksr)exp(−2iπkwz) (18.37)

The boundary conditions are expressed as a system equivalent to Eq. (18.18), of
which the solutions is −→

b
p
=−D−1

L
−→
fext , (18.38)

with
−→
b p =

(
R−pp

R−ps

)
, DL =

(
σ−rr (p) σ−rr (s)
σ−rz (p) σ−rz (s)

)
Likewise, proceeding as in Eq. (18.19) for an s wave incident on the wall of the
cylinder one has:

−→
b

p
= D−1

L
−→
f +(s),

−→
b

s
=

(
Rsp

21
Rss

21

)
(18.39)

With these notations, the following reflection coefficients for the incident φ− or χ−θ
fields are obtained from the above relations by permutation of the superscripts + and
-. The global system may now easily be solved. It follows from Eqs. (18.20) and
(18.21), denoting byR the 2x2 matrix formed from the column vectors

−→
b p and

−→
b s,

for which analytical expressions are known (Danthez, 1988):

D
−→
X − = DL(1−R)

−→
X − =

−→
fext . (18.40)

By a simple inversion and after use of the Cayley - Hamilton theorem (Morse and
Feshbach, 1953) to the GDST :

X− =
+∞

∑
n=0

Rn[
−→
b p] (18.41)

The expression for the unknown coefficients is thus:
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L−(p,ω) = [R−pp(1−R−ss)+R−psR
−
sp][(1−R−pp)(1−R−ss)−R−psR

−
sp]
−1 (18.42)

T−(p,ω) = R−ps[(1−R−pp)(1−R−ss)−R−psR
−
sp]
−1 (18.43)

For the applications, we consider the case where no critical angle has been passed.
The inversion of the matrix (1−R) is thus possible, and the convergence of the Debye
series is assured. In effect, we can show that the moduli of the coefficients verify the
inequalities equivalent to Eq. (18.25). Thus, the following series expansions lead to
transfer functions of the following form (Danthez et al, 1989a) :

L−(p,ω) = H−p (p,ω)

=
+∞

∑
c=1

(R−pp)
c +

+∞

∑
n=1

+∞

∑
c=n

+∞

∑
d=n

Cn
(c−1)Cd

(n−1)(R−pp)
c−n+1(R−ss)

d−n+1(R−psR
−
sp)

n

(18.44)

where there clearly appears a first term representing the ensemble of interactions
that have propagated uniquely as longitudinal modes, and a second term containing
at least one transverse interaction and one double mode conversion. Likewise, the
transverse transfer function is:

T−(p,ω) = H−s (p,ω)

= (R−pp)
+∞

∑
n=0

+∞

∑
c=n

+∞

∑
d=n

Cn
cCn

d(R
−
pp)

c−n(R−ss)
d−n(R−psR

−
sp)

n (18.45)

where at least on longitudinal-transverse mode conversion appears. In these condi-
tions, n designates the number of double mode conversion, c the number of longitudi-
nal interactions and d the number of transverse interactions. In this way, the transfer
functions Eq. (18.43) can be interpreted in terms of multiple reflections-refractions,
and the figure of the avalanche given by Überall (Fig. 4 of Ref. Brill and Über-
all, 1971), transferred to the present situation, illustrates perfectly the propagation
phenomenon considered here.

Since the same decompositions are valid for the inverse situation (divergent
waves), on finally has for the response associated with Eqs. (18.44) and (18.45):

Hp(p,ω) = H+
p (p,ω)+H−p (p,ω), Hs(s,ω) = H+

s (s,ω)+H−s (s,ω) (18.46)

Noting the complex form of the reflection coefficients, one has

R−pp = (R+
pp)
∗, R−ss = (R+

ss)
∗, R−ps =−(R+

ps)
∗,

R−sp =−(R+
sp)
∗, R−psR

−
sp = (R+

psR
+
sp)
∗ (18.47)

where ∗ designates the complex conjugate. One verifies that the transfer function
H−p (p,ω) associated with the propagation φ− is the conjugate of H+

p (p,ω) . Thus,
the longitudinal transfer functions is purely real
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Hp(p,ω) = 2Re[H−p (p,ω)]

In the functions H+
s (s,ω) and H−s (s,ω) it appears a term R−ps as a factor before the

combinations, and since
R−ps =−(R+

ps)
∗,

therefore follows immediately (Danthez et al, 1989a) that the transverse transfer
function is thus purely imaginary, Hs(s,ω) = 2Im[H−s (s,ω)].

18.6.4 Velocity Fields and Simulation

The velocity field is expressed by the Helmholtz potential. Using the preceding
results, we have for the radial component:

Vr(r,z,ω) = F1
p {−2πkpφ(kp)[1+Hp(kp,ω)]}+F1

s {2iπkwφ(kp)Hs(kp,ω)}
(18.48)

and for the axial component:

Vz(r,z,ω) = F0
p {−2iπkwφ(p)[1+Hp(p,ω)]}+F0

q {2πkwφ(p)Hs(s,ω)} (18.49)

For a simulation the axial propagation alone, Eq. (18.49), is of interest to us, and
using the properties of transfer function this expression becomes

Vz(r,z,ω) = F0
p {−2iπkwφ(p)[1+ReHp(p,ω)]}+F0

q {2πkwφ(p)2ImHs(s,ω)}
(18.50)

The application of an inverse temporal Fourier transformation to Eq. (18.50)
furnishes the space-time response of a cylindrical guide to a bounded beam:

vz(r,z, t) =
∞∫
−∞

Vz(r,z,ω)E(ω)exp(2iπωt)dω (18.51)

where E(ω) is the temporal spectrum of the original signal e(t). We shall synthesize
by numerical calculation (Danthez et al, 1989b) the signal received by a longitudinal
transducer placed on the axis at a cross section of a circular cylinder at a distance z
from the emitter plane (Fig. 18.8). In most real situations, we can describe the signal
delivered by the longitudinal transducer/receiver by the integral of the axial velocity
on the surface of the latter, with radius r = a. In the axisymmetric case, the answer is
expressed by

s(z, t) =
a∫

0

vz(r,z, t)2πrdr

The radial distribution of the emitter is modeled by a Gaussian distribution of
rotational symmetry: a(r) = exp[(−πr2)/α2] where α is th equivalent radius that
can be adjusted appropriate to the experimental situation. The angular spectrum
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of the potentials, also of rotational symmetry and furnishing the angular velocity
spectrum, is

φ(p) = (−2iπkw)
−1α2 exp(−πα2k2

p)

Finally, the original signal e(t), depending on the transducer used, is obtained by
a spatial deconvolution of the signal received in an infinite medium (Danthez et al,
1989b). The temporal spectrum of the response in an infinite medium is

S∞(z,ω) = F1
p (−2iπkwr/kpφ(p)) |r=a E(ω)

from which one obtains immediately:

e(t) =
+∞∫
−∞

S∞(z,ω)(F1
p [−2iπkwrkpφ(p)] |r=a)

−1 exp(2iπωt)dω (18.52)

In a finite medium, evanescent modes appear only for radial wavenumbers of longitu-
dinal waves 2πkp larger than the longitudinal wavenumber kp. At higher frequencies,
no resonance mode is excited and use of the reflection coefficients is sufficient.
Furthermore, the contribution of the transverse transfer function is negligible in the
expression for the axial velocity. The response of the guide is only given by the
longitudinal transfer function. The responses consist of the sum of the signal in an
infinite medium and those furnished by the various reflection. In this way, on obtains
a succession of separated temporally echoes, whose order is linked to the number of
transverse interactions d, cf. Eqs. (18.44) and (18.45).

Thus, the first echo consists of the sum of the signal in an infinite medium and
of the modes that have only undergone longitudinal reflections (d = 0 and c ≥ 1).
The second echo represents the sum of the modes that have undergone a single
transverse interaction (d = 1 and c ≥ 1), and similarly from there on. It has been
verified (Danthez, 1988) that for the parameters chosen here, a truncation of order 3
(1 ≤ c ≤ 3) was sufficient for the convergence of the Debye series describing the
longitudinal transfer function Eq. (18.44). As an example, Fig. 18.9 shows (Danthez
et al, 1989b) the good agreement between experiment and the numerical simulation
for a distance (L/ξ0) of 20. The experimental signal amplitudes, strongly linked to

L = z

+

Fig. 18.8: The simulated problem.
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Fig. 18.9: Comparison of signals. a) Theoretical signal for L = 100 mm, ξ0 = 5 mm,
b) Experimental signal for L = 100 mm, ξ0 = 5 mm (after Danthez et al (1989a,b))

the coupling layer, were normalized relative to the first echo of the corresponding
numerical simulation. The experimental parameters used for the numerical simu-
lation are: ω0 = 10 MHz, longitudinal (transverse) wave velocity in the cylinder
Cp = 5,900 m/s (Cs = 3,240 m/s), dimensionless frequency Fa = ω0a/Cp = 5.39,
a = 3.18 mm (transducer radius). The experimentally observed signals thus confirm
the validity of the theoretical model based on the GDST which, among other things,
furnishes very well the order of arrival of the mode conversions.

18.7 Conclusions

In acoustics, the doubling of the waves transmitted into an elastic medium into
longitudinal and transverse waves renders the scattering problem vectorial, and
of a complexity clearly much higher than that of the earlier studies performed
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in electromagnetic scattering. The original technique used by Debye is here not
applicable. The system of continuity conditions of the fields across the interfaces,
which is the essence of the problem, has thus been examined in a different fashion.
Considering the matrix form of this system, we have established that in its solution, it
is perfectly possible to present the ensemble of reflection-refraction coefficients that
represent the local elementary interactions which, in fact, are constituents of the exact
global solution. Via the Cayley-Hamilton theorem, this solution is then developed in
a generalized Debye series. Numerous advantages arise from the fine structure of the
thus-formulated solution, first as to the way of treating the problem, but also relative
to the intended objectives. Apart from its interest for the study of the reflected and
transmitted rays, the GDST is equally well adapted for a search of the resonances, be
that for the properties of the S matrix or for the search of the roots of the characteristic
equation. In the first case, the GDST furnishes an intermediate potential background,
appropriate for a search of resonances for shells that may be both thin -or thick-
walled. In the second case, the presence of reflection and refraction coefficients
in the characteristic equation shows that the resonances are the consequence of
interferences, constructive or destructive, in multiple reflections-refractions taking
place inside the insonified object. The several applications presented in this paper
show that the GDST is a contribution of interest to the RST as established successfully
by Herbert Überall and co-workers. Among other things, the GDST is found to be
efficient for the analysis of space-time phenomena.
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Chapter 19

Simplest Linear Homogeneous Reduced

Gyrocontinuum as an Acoustic Metamaterial

Elena F. Grekova

Abstract We consider gyrocontinuum, whose each point-body is an infinitesimal
rigid body containing inside an axisymmetric rotor, attached to the body but freely
rotating about its axis. Point-bodies of the medium may perform independent trans-
lations and rotations of general kind. The proper rotation of their rotors does not
cause stresses in the medium. We consider the case of infinitesimal density of inertia
tensor both of rotor and carrying body and large proper rotation velocity of the rotor,
resulting together in a finite dynamic spin. Rotor inside each point body does not
interact with anything but its carrying point body, i.e. its existence only contributes
into the kinetic energy but not to the strain energy. We suppose that this medium does
not react to the gradient of turn of the carrying bodies, therefore we call it “reduced”.
This yields in zero couple stresses. For simplicity we consider the elastic energy
of the medium to be isotropic. This is a medium similar to the reduced Cosserat
medium but with the kinetic moment consisting of a gyroscopic term. An example of
such an artificially made medium could be a medium consisting of interacting light
spheres with light but fast rotating rotors inside them. We consider linear motion of
the carrying spheres and investigate harmonic waves in this continuum. We see that,
similar to isotropic reduced Cosserat medium, longitudinal wave is non-dispersional,
and shear-rotational wave has dispersion and one its branch has a band gap. The
band gap depend on the dynamic spin of point bodies and can be controlled via it.
Note that all the shear harmonic waves in this medium are not plane waves but have
polarization, if the direction of propagation is not orthogonal to the rotor axes.
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19.1 Introduction

There exist various media whose particles possess rotational degrees of freedom. The
most famous example are Cosserat media. Three-dimensional continuum whose parti-
cles are infinitesimal rigid bodies possessing independent rotational and translational
degrees of freeedom, was suggested for the first time by brothers Cosserat (Cosserat
and Cosserat, 1909). They suggested for description of strains in this medium so-
called Cosserat deformation tensor

◦
∇RRR ·PPP,

where
◦
∇ is the gradient operator with respect to the reference configuration, RRR is

the position vector in the actual configuration, and PPP is the turn tensor in the actual
configuration. The theory of Cosserat continua was developed in its full variant by
Kafadar and Eringen (1971). One of the first works on 3D linear micropolar elasticity
is by (Palmov, 1964). For the elastic case one may obtain constitutive equations of
the Cosserat continua basing upon the balance of energy (see Altenbach and Zhilin,
1988) where it is done for 2D case and Grekova and Zhilin (2001) where this method
is generalized for 3D case. Among various books on elastic Cosserat continua one
can mention Eringen and Maugin (2012); Erofeyev (2003); Eremeyev et al (2012).

Strain energy in the elastic full Cosserat medium depends also on the second
measure of deformation, equal to

−(
◦
∇PPP ·PPP!) · ·(EEE×PPP)/2

(transposed wryness tensor). Reduced Cosserat continuum is a Cosserat continuum
which does not work on the gradient of the angular velocity, and therefore couple
stress tensor is zero, though stress tensor is asymmetric. For elastic case it means that
the strain energy depends only on the Cosserat deformation tensor (Grekova, 2012).

Linear isotropic elastic reduced Cosserat medium was suggested in Schwartz et al
(1984) for description of granular media. Waves in this medium and in its various
anisotropic versions were investigated in Grekova et al (2009); Grekova (2016, 2018)
and some other works. In isotropic case the compression wave is not dispersive,
but the shear-rotational wave has a band gap and is highly dispersive close to this
domain of frequencies (it is a single negative acoustic metamaterial). If an anisotropic
coupling between rotational and translational strains exists, mixed and (if they exist)
compression waves are also dispersive and in most cases have a band gap.

Kelvin’s medium, a special type of Cosserat continuum consisting of fastly and
freely rotating about their axes axisymmetric point bodies, was investigated in
Grekova and Zhilin (2001); Grekova and Maugin (2005) and some other works. Its
equations are analogous to the equations of ferromagnetic insulators in the approxi-
mation of quasimagnetostatics in the state of magnetic saturation by Maugin (1988).
Note that both reduced Cosserat medium and Kelvin’s medium are specific Cosserat
continua with certain restrictions on the strain energy. Constraints on the strain en-



19 Waves in the Reduced Gyrocontinuum 377

ergy yield in specific type of constitutive equations. Symmetry groups and use of
different type of strain measures for Cosserat media with constraints are discussed in
Eremeyev and Pietraszkiewicz (2012, 2016); Pietraszkiewicz and Eremeyev (2009).

In (Zhilin, 2012) the basic laws for a gyrocontinuum consisting of multispin point
bodies (infinitesimal rigid bodes with embedded gyrostats) are suggested. Such a
point body is equivalent to a one-rotor gyrostat, a rigid case containing a freely
rotating about its axis rotor attached to the case. In Ivanova (2010, 2014, 2015, 2017)
Zhilin’s ideas were enhanced.

We consider a variant of such a one-rotor elastic gyrocontinuum, consisting of
interacting light spheres with light but fast rotating rotors inside them (Fig. 19.1).
We consider linear motion of the carrying spheres. We consider a special kind of this
gyrocontinuum imposing a restriction that the strain energy does not depend on the
gradient of turn of carrying spheres. Therefore we call it reduced gyrocontinuum,
analogously to the reduced Cosserat medium.

Note that reduced gyrocontinuum considered in this paper is similar but not
the same as reduced Kelvin’s medium, since Kelvin’s medium does not react on
the proper rotation of a point body about it axis. Kelvin’s medium cannot possess
isotropic elastic energy for this reason. On the other hand, it reacts on all other turns
of the axis relatively to the background of centres of mass. Reduced gyrocontinuum
considered here is rather similar to the reduced isotropic Kelvin’s medium but with a
specific kinetic moment that yields to the gyroscopic dynamic term in the balance of
torque.

19.2 Basic Equations for the Linear Reduced Gyrocontinuum

Define RRR the position vector of the centre of mass of a point body, RRR equals rrr
in the reference configuration, PPP the turn tensor of a carrying point body, PPP = EEE
in the reference configuration, mmm the unit vector of its rotor axis in the reference
configuration. The rotor performs proper rotation about its axis described by the turn
tensor PPP ·QQQ, where QQQ= (1−cosϕ)mmmmmm+cosϕEEE+sinϕmmm×EEE . Note that this rotation
does not influence the tensor of inertia of the rotor, neither of the whole point body,
since due to the axial symmetry of the rotor it does not change the mass distribution.
For this reason Zhilin calls such a point body “quasi-rigid particle” (Zhilin, 2012).
The tensor of inertia of the point body will have axial symmetry since the carrying
body is a sphere, and the rotor is axisymmetric. Denote ρ the mass density, J the
moment of inertia of the carrying sphere, III0 = I(EEE−mmmmmm)+ I1mmmmmm density of tensor of
inertia of the rotor in the reference configuration, EEE the identity tensor. We consider

Fig. 19.1 Reduced gyrocon-
tinuum

uθ
ϕ

m
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homogeneous medium with equally oriented axes of symmetry of point bodies in the
reference configuration (mmm does not depend on the space co-ordinates).

Theorem 19.1. Consider infinitesimal J, I, I1 and large ϕ̇ , such that

M
def
= I1ϕ̇ = O(1)

is a finite quantity. Angular velocity of the carrying point bodyωωω satisfies the Poisson
equation ṖPP =ωωω×PPP. Angular velocity of the rotor ωωω1 equals ωωω1 =ωωω+ ϕ̇PPP ·mmm. Then
the proper kinetic moment KKK2 of a point body equals MPPP ·mmm+o(M).

Proof.

KKK2 = JEEEωωω+III ·ωωω1
= Jωωω+(I(EEE− (PPP ·mmm)(PPP ·mmm))+ I1(PPP ·mmm)(PPP ·mmm)) · (ωωω+ ϕ̇PPP ·mmm)

= (JEEE +III) ·ωωω+ I1ϕ̇PPP ·mmm = MPPP ·mmm+o(M)

The last equality is true since III,J are infinitesimal, and ωωω is finite.�
We will consider the linear theory, i.e. uuu =RRR−rrr is an infinitesimal translational

displacement, PPP = EEE +θθθ ×EEE + o2(1), θθθ is an infinitesimal vector of turn, ωωω =
θ̇θθ+o(θθθ) = o(1), and we do not need to distinguish between gradients in the reference
◦
∇ and actual (∇) configurations. In the linear theory, up to the higher order terms, the
time derivative of kinetic moment is equal to Mθ̇θθ ×mmm. Consider the case when there
is no external torque acting upon the rotor along its axis. In this case ϕ̇ = const.

Indeed,

K̇KK2 = ((JEEE+III) ·ωωω+ I1ϕ̇PPP ·mmm)̇ = I1ϕ̇θ̇θθ×(EEE+θθθ×EEE) ·mmm+o(θθθ)≈ I1ϕ̇θ̇θθ×mmm (19.1)

We suppose that rotors do not interact with anything outside their carrying point
bodies. Therefore the strain energy of this medium is the same as for the reduced
Cosserat medium (Grekova et al, 2009), and there are no any other type of stresses
caused by presence of rotors. In fact, the equations for this gyrocontinuum are the
same as for the reduced Cosserat medium, but with another dynamic term in the
balance of kinetic moment. The requirement that the gradient of turn does not cause
any stresses in the medium yields in

∂U
∂∇θθθ

= 000 ⇐⇒ μμμ = 000. (19.2)

The stress tensor, however, is asymmetric.
We consider isotropic linear case, then we have

ρU =
1
2
(∇uuu)S · ·CCC · ·(∇uuu)S +

1
2
α(θθθ −∇×uuu/2)2, (19.3)

where
CCC = λEEEEEE +2μ(iiimiiin)S(iiimiiin)S. (19.4)
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Constitutive equations look as follows

τττ =
∂ρU

∂ (∇uuu+θθθ ×EEE)
=CCC · ·∇uuuS +α(θθθ −∇×uuu/2)×EEE

= λ∇ ·uuuEEE +2μ(∇uuu)S +α(θθθ −∇×uuu/2)×EEE. (19.5)

We will consider the case when external loads are zero. In fact, the equations for this
gyrocontinuum are the same as for the reduced Cosserat medium, but with another
dynamic term in the balance of kinetic moment. Then equations of motion can be
written as

∇ ·τττ = ρüuu, (19.6)

τττ× = Mθ̇θθ ×mmm. (19.7)

Substituting here (19.5), we obtain equations of motion in displacements

(λ +2μ)∇∇ ·uuu−μ∇× (∇×uuu)+2α∇× (θθθ −∇×uuu/2) = ρüuu, (19.8)

−4α (θθθ −∇×uuu/2) = Mθ̇θθ ×mmm. (19.9)

19.3 Special Solution in Case ω = ω0

Denote
ω0 =

4α
M

=
4α
I1ϕ̇

. (19.10)

Note that
ω0ϕ̇ = 4α/I1

(cf. ω0
2 = 4α/I for the reduced Cosserat medium). We see that if we consider

only real θθθ 0, then θθθ = θθθ 0eiω0t ,uuu = 000 is not a solution of the problem (19.8)-(19.9),
contrary to the case of the reduced Cosserat continuum. However, there is a solution
uuu = 000, θθθ =QQQ(−ω0tmmm) ·θθθ 0, corresponding to the regular precession of the axes of
point bodies about their initial direction with the angular velocity −ω0mmm (directed
contrary to the proper rotation velocity). Here QQQ(−ω0tmmm) = (1− cosω0t)mmmmmm +
cosω0tEEE− sinω0tmmm×EEE is a turn tensor about axis mmm at angle ω0t. We also may
write down it as θθθ = θθθ 0eiω0t if θθθ 0 = θ0(iii1 + iiii2), where iii1,2 ·mmm = 0. This solution
exists if θθθ 0 does not depend on space co-ordinates, and therefore ∇×θθθ = 000.

19.4 Longitudinal Waves and Spectral Problem for the

Shear-Rotational Wave

Let us look for the harmonic wave solution of (19.8) - (19.9):
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uuu = uuu0ei(kkk·rrr+ωt), θθθ = θθθ 0ei(kkk·rrr+ωt).

Denote
k̂kk = kkk/k, k = |kkk|.

The spectral problem takes form

− (λ +2μ)k2k̂kkk̂kk ·uuu
− (μ+α)k2(EEE− k̂kkk̂kk) ·uuu+αk2(k̂kk×mmmk̂kk×mmm) ·uuu+2iαkkk×θθθ +ρω2uuu = 000,

(19.11)

2iα(kkk×uuu) = 4αθθθ + iMωθθθ ×mmm. (19.12)

Since kkk ·uuu does not enter into (19.12), the equation for the longitudinal plane wave
uuu0 = u0k̂kk separates from the system and its dispersion relation is classical:

ω =

√
λ +2μ

ρ
k. (19.13)

For θθθ we have in this case trivial solution if we look for the harmonic wave. Also,
the combination of the longitudinal plane wave for uuu and special solution for θθθ (see
section 19.3) is possible.

For the shear-rotational wave we obtain

(ρω2− (μ+α)k2)(EEE− k̂kkk̂kk) ·uuu0 +αk2(k̂kk×mmmk̂kk×mmm) ·uuu0 +2iαkkk×θθθ 0 = 0, (19.14)
i
2

kkk×uuu0 = (EEE− i
ω
ω0

mmm×EEE) ·θθθ 0. (19.15)

In future consider ω �= ω0.

19.5 Shear-Rotational Wave. Reduced Spectral Problem

Let us multiply (19.15) from the left side on

(EEE− i
ω
ω0

mmm×EEE)! =EEE + i
ω
ω0

mmm×EEE.

This will not add parasite roots to the solution, since detAAA = detAAA! for any tensor AAA.
We obtain

((1− ω2

ω2
0
)(EEE−mmmmmm)+mmmmmm) ·θθθ 0 =

i
2

kkk×uuu0− ω
2ω0

mmm× (kkk×uuu0). (19.16)

We consider in this section ω �= ω0, therefore we may multiply this equation on
((1−ω2/ω2

0 )
−1(EEE−mmmmmm)+mmmmmm) and express θθθ 0 via uuu0:



19 Waves in the Reduced Gyrocontinuum 381

θθθ 0 =
i
2
((1−ω2/ω2

0 )
−1(EEE−mmmmmm)+mmmmmm) ·(kkk×uuu0)−(1− ω2

ω2
0
)−1 ω

2ω0
mmm×(kkk×uuu0)

=
i
2
(

ω2
0

ω2
0 −ω2 kkk×uuu0 +

ω2

ω2
0 −ω2 mmm(mmm×kkk) ·uuu0)− ωω0

2(ω2
0 −ω2)

mmm× (kkk×uuu0)

=
ω2

0

2(ω2−ω2
0 )

(−ikkk×uuu0− i
ω2

ω2
0

mmm(kkk×mmm) ·uuu0 +
ω
ω0

mmm× (kkk×uuu0)) (19.17)

Thus we obtain

2iαkkk×θθθ 0 =
αω2

0 k2

ω2
0 −ω2 ((EEE− k̂kkk̂kk) ·uuu0− ω2

ω2
0
(k̂kk×mmmk̂kk×mmm) ·uuu0 + i

ω
ω0

k̂kk ·mmmk̂kk×uuu0).

(19.18)
Now, substituting this equation into (19.14), we obtain reduced spectral problem for
the shear-rotational wave

(ρω2− (μ+α
ω2

ω2−ω2
0
)k2)(EEE− k̂kkk̂kk) ·uuu0 +α

ω2k2

ω2−ω2
0
(k̂kk×mmmk̂kk×mmm) ·uuu0

− i
αω0ωk2

ω2−ω2
0

k̂kk ·mmmk̂kk×uuu0 = 000, (19.19)

which can be rewritten as

(ρω2− (μ+α(k̂kk ·mmm)2 ω2

ω2−ω2
0
)k2)eee1eee1

+(ρω2− (μ+α
ω2

ω2−ω2
0
)k2)eee2eee2

− i
αω0ωk2

ω2−ω2
0

k̂kk ·mmmk̂kk×EEE) ·uuu0 = 000, (19.20)

where eee1 = k̂kk×mmm/|k̂kk×mmm|, eee2 =mmm · (EEE− k̂kkk̂kk)/|mmm · (EEE− k̂kkk̂kk)|, −k̂kk form an orthonormal
right-handed basis.

19.6 Shear-Rotational Wave Propagating Perpendicular to the

Rotors’ Axes (k̂kk ·mmm = 0).

We see that if the wave propagates orthogonal to mmm, the last term in the equation
(19.19) disappears, and there are two shear waves, one is non-dispersive classical
shear wave ω =

√
μ/ρk with uuu = u0eee1, and another one (uuu0 = u0mmm, in this case

mmm = eee2) has the same dispersion relation as in the isotropic reduced Cosserat contin-
uum (Grekova et al, 2009)
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Fig. 19.2 Dispersion curves
for the shear-rotational waves
for mmm · k̂kk = 0, uuu0 = u0mmm. Ve-
locities at low and high
frequencies cs =

√
μ/ρ ,

csα =
√

(μ+α)/ρ , re-
spectively, ω0 = 4α/M,
ω2

1 = ω2
0μ/(μ+α).

k2 =
ρω2

μ+α ω2

ω2−ω2
0

=
ω2

c2
s

ω2−ω2
0

ω2−ω2
1
, (19.21)

where cs =
√
μ/ρ , csα =

√
(μ+α)/ρ , ω2

1/ω
2
0 = μ/(μ +α) (see Fig. 19.2).

Curiously, in this particular case the gyrostatic nature of the continuum results (only)
in the effective anisotropy for shear-rotational waves, though rotors do not interact
with anything outside.

19.7 Shear-Rotational Wave Propagating Parallel to the Rotors’

Axes (k̂kk×mmm = 000).

If k̂kk×mmm = 000, the middle term in (19.19) vanishes, and we obtain

(ρω2− (μ+α
ω2

ω2−ω2
0
)k2)(EEE− k̂kkk̂kk)∓ i

αω0ωk2

ω2−ω2
0

k̂kk×EEE) ·uuu0 = 000, (19.22)

where ∓ takes the value opposite to the sign of k̂kk ·mmm. In this case rotation does not
yield the effective anisotropy, but we clearly see the influence of the gyroscopic term.
We find in this case circular polarized harmonic waves.

Since

ik̂kk× (eee1 + ieee2) = i(ieee1−eee2) =−(eee1 + ieee2) and ik̂kk× (eee1− ieee2) = eee1− ieee2,

it is easy to check that uuu0 = u0(eee1± ieee2) are the eigen vectors of (19.22). Similar to
the section 19.3, this corresponds to the circular waves

uuu = u0(cos(ωt +kkk ·rrr)eee1± sin(ωt +kkk ·rrr)eee2).

The dispersion relation for these waves can be obtained from (19.22)

(ρω2− (μ+α
ω2

ω2−ω2
0
)k2)∓ αω0ωk2

ω2−ω2
0
= 0. (19.23)
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Fig. 19.3: Dispersion curves for shear–rotational waves, k̂kk×mmm = 000.

This dispersion relation can be written also as

k2 =
ω2

c2
sα

ω±ω0

(ω±ω1∗)
, (19.24)

where ω1∗=ω0μ/(μ+α). The branch with the minus sign has a band gap [ω1∗;ω0),
a horizontal asymptote at ω = ω1∗, the lower part starts at zero with the group
velocity cs and the upper one starts with zero group velocity at its cut-off frequency
ω0, changing the velocity to csα at large ω . The branch with the plus sign has no
band gap, its group velocity tends to cs at small ω and to csα at large ω . Its typical
graph is presented in Fig. 19.3. Thus we see that our reduced gyrocontinuum is a
single negative acoustic metamaterial (with respect to some waves), since there are
band gaps where certain waves cannot propagate.

19.8 Shear-Rotational Wave Directed in General Way with

Respect to the Rotors’ Axes

Now let us look for the solution of (19.20) in form of a harmonic polarized wave.
We will see that polarization will depend not only on the direction of the wave
propagation with respect to the axes of rotors of point bodies, but also on frequency.
Let uuu0 = u0(eee1 + iβeee2). We will look for such β that uuu0 is an eigen vector of (19.20).
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Calculate

−ik̂kk×uuu0 =−i(−eee2 + iβeee1)u0 =−i(−eee2 + iβeee1)u0 = (βeee1 + ieee2)u0. (19.25)

Equation (19.20) gives us

eee1((ρω2− (μ+α(k̂kk ·mmm)2 ω2

ω2−ω2
0
)k2)+

αω0ωk2

ω2−ω2
0

k̂kk ·mmmβ )

+ iβeee2(ρω2− (μ+α
ω2

ω2−ω2
0
)k2 +

αω0ωk2

ω2−ω2
0

k̂kk ·mmm
β

) = 000. (19.26)

We have to find such β that coefficients at eee1 and iβeee2 in (19.26) would coincide,
then eee1 + iβeee2 will be an eigen vector of the spectral problem, and if we require this
coefficient to be zero, we will obtain the dispersion relation. To determine β we write
down

ρω2− (μ+α(k̂kk ·mmm)2 ω2

ω2−ω2
0
)k2 +

αω0ωk2

ω2−ω2
0

k̂kk ·mmmβ

= ρω2− (μ+α
ω2

ω2−ω2
0
)k2 +

αω0ωk2

ω2−ω2
0

k̂kk ·mmm
β

(19.27)

Simplifying this relation, we obtain

1− (k̂kk ·mmm)2

k̂kk ·mmm
ω
ω0

+β − 1
β

= 0 (19.28)

Thus if we choose uuu0 = u0(eee1 + iβeee2), where

β =−ξ ω
ω0
±
√
(ξ

ω
ω0

)2 +1, ξ =
(k̂kk×mmm)2

2k̂kk ·mmm , (19.29)

it will be an eigenvector corresponding to the frequency ω . For small ω we have
β ≈±(1+(ξω/ω0)

2/2)−ξω/ω0, for large ω we obtain

β ≈ ξω
ω0

(−1± (1+(ξω/ω0)
−2/2)),

for ω → ω0 we have an exact equality β =−ξ ±
√
ξ 2 +1.

The dispersion relations corresponding to these polarized waves are

ρω2 = (μ+α
ω2

ω2−ω2
0
− αω0ω
ω2−ω2

0

k̂kk ·mmm
β±(ω)

)k2. (19.30)

They can be rewritten as
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k2 =
ω2

c2
sα

ω2−ω2
0

ω2−2ω2k̂kk ·mmmω/β (ω)−ω2
1

. (19.31)

This relation is enough sophisticated. We see that at small ω its group velocity tends
to cs, at large ω to csα , there is a band gap below ω0 for the wave corresponding to
β−, and the branch corresponding to β+ does not have a band gap. These curves look
qualitatively analogous to Fig. 19.3, though their equations are different from that
shown in the figure.

19.9 Conclusions

We discussed harmonic waves in the simplest linear reduced elastic homogeneous
gyrocontinuum. Though its strain energy was chosen to be isotropic, gyroscopic
effects in some cases yield in effective anisotropy of the medium. Compression
wave is not affected and it coincides with the classical one. We have plane shear
wave propagation in the direction perpendicular to the axes of rotors. In this case
we observe two waves, one is classical and another one is dispersive and has a band
gap. Shear-rotational harmonic waves propagating in other directions are polarized.
One branch has a band gap below characteristic frequency of the gyrocontinuum,
and another branch is dispersive but has no band gap. Thus this gyrocontinuum is a
kind of single negative acoustic metamaterial, though only with respect to certain
type of waves.

If the propagation of the shear-rotational wave is parallel to the axes of rotors,
the wave is circular, and its eigen vectors do not depend on the frequency. For other
directions of shear-rotational wave propagation (not parallel and not orthogonal to
the axes of rotors) the polarization depends on the frequency. We have found the
dispersion relations and the eigen vectors for this spectral problem.

We may control characteristic frequency and the band gap changing the velocity of
proper rotation of rotors. Also, in band gaps one may expect localisation phenomena
if a heterogeneity is present, and we may create it changing the velocity of the proper
rotation of a rotor or changing noticeably its initial position. The other, easier way to
control the properties of this acoustic metamaterial would be via magnetic field, but
this problem, as well as localisation phenomena, are a subject of future investigation.
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Chapter 20

A Mathematical Model of Nucleic Acid

Thermodynamics

Sonia Guarguagli and Franco Pastrone

Abstract The DNA denaturation, the double-stranded DNA unwinding process, is
a vital process for cells. The percentage of the denaturation is used as an index of
organism complexity and it is the base of the DNA hybridisation technique, which
provides a great deal of information. It can be detected by observing the increase in
the ability of a DNA solution to absorb ultraviolet light at a wavelength of 260 nm.
Based on experimental data, we found a mathematical model capable of predicting
the behaviour of a general DNA, given the melting temperature Tm.

20.1 Introduction

Gérard Maugin has shown great interest for mathematical models applied to medicine
and biology, especially in the latest years of his work (see, for instance Ciarletta et al,
2013, 2012). Thus, we have decided to present this paper, where a mathematical
model capable of predicting the behaviour of DNA during its denaturation process
is discussed. The two main characteristics of the DNA denaturation curve are its
inflection point and its slope, which in turn represent melting temperature and
heterogeneity (the percentage of guanine and cytosine) (Nelson and Cox, 2005). At
the end of this paper, a relation between the two parameters is found and a single
variable α is used to characterise strand behaviour.
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20.2 Denaturation of DNA

Nucleic acid thermodynamics studies how the nucleic acid structure of double-
stranded DNA (dsDNA) is affected by temperature (see, for instance Nelson and Cox,
2005). The helical structure of nucleic acids is determined by thermodynamically
favoured stacking between adjacent bases in the same strand and the double-stranded
structure of the helix is maintained by hydrogen-bonding between the base pairs.

When heated, the double-stranded DNA unwinds because the hydrogen bonds
holding the two strands together break. A macromolecule in which the molecules are
in a nearly random conformation, is said to be denatured and the process of double
helix separation is called DNA denaturation or DNA melting. The measurement of
some properties of the molecule changing as denaturation proceeds provides a great
deal of information about the structure of DNA. For example, denaturation can be
detected by observing the absorbance of ultraviolet light at a wavelength of 260 nm.
In double stranded DNA - when bases are highly ordered - A260 is lower than that for
the less ordered state in single stranded DNA.

If A260 is measured at various temperatures while the DNA solution is slowly
heated, a melting curve, such as that shown in Fig. (20.1), is obtained (Rastogi,
2003). The temperature at which the rise in A260 is halfway through (strands are half
double-stranded, half single-stranded) is called the melting temperature (Tm).

Tm is a convenient parameter to characterise the melting transition: the percentage
of guanine (G) and cytosine (C) in the DNA molecule has a significant effect on its
Tm: the higher the percentage of guanine and cytosine, the higher Tm. The ratio of
G to C and A (adenine) to T (thymine) is fixed in an organism’s DNA, but the GC
content can vary noticeably from one DNA to another. This is because G-C pairs form
three hydrogen bonds, while A-T pairs form only two and thus a double-stranded
DNA rich in G and C needs more energy to be broken than one rich in A and T; this
results in a higher melting temperature.

Fig. 20.1 A comparison
between bacterial and viral
DNA
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The study of the ability of a DNA solution to absorb ultraviolet light is a compar-
ative method to quantify differences among organisms. Bacterial double-stranded
DNA starts to unwind at a lower temperature than viral DNA, but the process takes
longer. This shows that bacterial DNA is more extensive and complex than viral
DNA. Moreover, it can be deduced that bacterial DNA contains both AT and GC
pairs, whereas viral DNA is shorter, simpler and mainly made of CG pairs that split
at higher temperatures.

DNA denaturation is also the base of DNA hybridisation, a technique for selec-
tively binding specific segments of single-stranded DNA or RNA by base pairing to
complementary sequences on single-stranded DNA molecules. The field of applica-
tion of this technique is wide: for example, DNA-DNA hybridisation is commonly
used to determine the degree of sequence identity between DNAs of different species,
while DNA-RNA hybridisation is used to select those molecules that are comple-
mentary to a specific DNA from a heterogeneous population of RNAs (SantaLucia,
1998).

20.3 Mathematical Model

Based on experimental data, our aim is to find a model capable of predicting the
behaviour of a general DNA with known Tm. From general analysis, it seems that
logistic equations are suitable to represent such a behaviour.

As well known, a logistic function is a sigmoid curve, similar to an exponential
function on the left side of the inflection point and with a slow growth on the right of
the inflection point. This function can be represented as:

x(T ) =
q

m+ cqe−qT , (20.1)

where q and m are parameters and c is always positive (the function we are trying to
represent is monotonically increasing). Here and further T denotes temperature [◦C].
The function is thus continuous at every time t.

We recall here the first and the second derivatives of the function:

x′ =
cq3e−qT

m+ cqe−qT , (20.2)

x′′ =
cq4e−qT (cqe−qT −m)

(m+ cqe−qT )2 . (20.3)

Expression (20.3) vanishes only at Tm (the inflection point). Thus, it can be
deduced that

Tm =
1
q

ln
cq
m
. (20.4)
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It is obvious from Expression (20.4) that the horizontal asymptote (x = q/m) – for t
approaching infinity – corresponds to 100% denaturation.

The inflection point of the function is for T = Tm and, as mentioned previously,
it represents a denaturation of 50%. It can be calculated by assuming that x′′ = 0.
Hence we obtain:

T =
1
q

ln
cq
m

= Tm. (20.5)

In addition, we have
x(Tm) =

q
2m

= 0.5. (20.6)

Consequently, q = m. This result can also be obtained by calculating the limit for
T →+∞ in Expression (20.1).

lim
T→+∞

x(T ) = lim
T→+∞

q
m+ cqe−qT =

q
m
. (20.7)

Expression (20.4) is simplified:

Tm =
ln(c)

q
. (20.8)

This means that the inflection point of denaturation curves has a fixed T value and
the peculiarity of the DNA is due to a different Tm.

Expression (20.1) is simplified as well:

x(T ) =
q

m+ cqe−qT =
1

1+ ce−qT . (20.9)

Considering the parameter q and trying to define the curve with the only characteristic
known, Tm, we can say that:

Tm =
ln(c)

q
, (20.10)

and consequently,

q =
1

Tm
ln(c). (20.11)

Thus, Expression (20.9) becomes:

x(T ) =
1

1+ ce−T q . (20.12)

To simplify Expression (20.12), we introduce τ = T/Tm and b = ln(c). We obtain:

x(τ) =
1

1+ eb(1−τ) . (20.13)
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20.4 The Role of Parameter b

First of all, to study parameter b, we calculate the first derivative of Expression
(20.13).

x′(τ) =
beb(1−τ)(

1+ eb(1−τ)
)2 , (20.14)

and consequently,

x′(T ) =
b

Tm

e
b

Tm (Tm−T )(
1+ e

b(Tm−T )
Tm

)2 . (20.15)

Approximating the curve in the vicinity of Tm to a straight line, its slope m is x′(Tm):

x′(Tm) =
b

4Tm
. (20.16)

Here Tm is fixed and established by a DNA type; as a result, the slope depends
exclusively on b. The equation of this straight line is:

y =
b

4Tm
x+q. (20.17)

Let us consider as an example, the bacterial DNA shown in Fig. 20.1 (see Rastogi,
2003), where A(80,0) and B(85,100) can be used to identify the slope of the curve. It
is thus possible to calculate m and to estimate the value of b to be 660. The equation
that represent the denaturation curve of bacterial DNA shown in Fig. 20.1 is:

y(T ) =
1

1+ e(660 82.5−T
82.5 )

. (20.18)

The slope, and therefore parameter b, is an indirect index of the complexity of a
genome: the more dishomogeneous the DNA, the slower the denaturation process
and vice versa.

20.5 Discussion

As shown in Fig. 20.2, the model obtained perfectly conforms to laboratory results,
where Tm (representing denaturation temperature) is an index of DNA guanine and
cytosine percentage and the slope b is an index of DNA heterogeneity (and thus of
genoma complexity): the broader the denaturation range, the more heterogeneous the
system. As we know from literature (see, for instance, Mandel and Marmur, 1968)
the DNA content of cytosine and guanine can be extimated with Tm. It thus appears
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Fig. 20.2 Curve expressed by
Expression (20.18)

possible to further simplify the model found, by uniting the two parameters b and Tm
into one.

The model obtained perfectly conforms to laboratory results, where Tm (represent-
ing denaturation temperature) is an index of DNA guanine and cytosine percentage
and the slope b is an index of DNA heterogeneity (and thus of genoma complexity):
the broader the denaturation range, the more heterogeneous the system. As we know
from literature the DNA content of cytosine and guanine can be estimated with Tm.
It thus appears possible to further simplify the model found, by uniting the two
parameters b and Tm into one.

To do so, we introduce the variable α (0 < α < 1), representing the percentage of
guanine and cytosine. As said, Tm is directly proportional to α , while b depends on a
function of α as shown in Eq. (20.20):

Tm ∝ α, (20.19)

b ∝
1

α(1−α) . (20.20)

The function α(1−α) vanishes for α = 0 and for α = 1 and it reaches its max-
imum for α = 0.5, so when heterogeneity is greatest (see Fig. 20.3 for a visual
representation).

Introducing α in Expression (20.13) we obtain Expression (20.21):

x(T ) =
1

1+ eg(α)(1− T
f (α) )

. (20.21)
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Fig. 20.3 Curve expressed by
Expression (20.20)

where

g(α) =
λ

μ+α(1−α) , (20.22)

f (α) = (Tm(1)−Tm(0)) ·α+Tm(0). (20.23)

From experimental data, we know that

• Tm(0) = 80,
• Tm(1) = 85,

• g(0) =
λ
μ

= 20,

• g(
1
2
) =

λ
μ+ 1

4

= 1.8

Hence we obtain the graphs in Fig. (20.4) for a set of alpha.
The curve on the left side in Fig. 20.4 represents a DNA with adenine and thymine

only, thus having a lower Tm and a very steep slope. The same slope is found for
the curve on the right hand side, representing a DNA with guanine and cytosine
only and a higher Tm (as said, the three hydrogen bonds of guanine-cytosine pairs
require a larger amount of energy to be broken than the double hydrogen bonds
of adenine-thymine pairs). All curves in between these two show the behaviour of
the function with steps of α every 10%: the slope is lowest where heterogeneity is
maximum, so when α = 0.5.

20.6 Conclusion

The aim of this study was to find a mathematical model to represent the empirical
curve of DNA denaturation. Expression (20.21) satisfyingly reaches this purpose,
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Fig. 20.4: Curve expressed by Expression (20.21) in the interval 0 < α < 1 (with
intervals of 0.1).

where the guanine-cytosine content in the DNA (α) is the main variable to charac-
terise the strands behaviour.
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Chapter 21

Bulk Nonlinear Elastic Strain Waves in a Bar

with Nanosize Inclusions

Igor A. Gula and Alexander M. Samsonov (†)

Abstract We propose a mathematical model for propagation of the long nonlinearly
elastic longitudinal strain waves in a bar, which contains nanoscale structural inclu-
sions. The model is governed by a nonlinear doubly dispersive equation (DDE) with
respect to the one unknown longitudinal strain function. We obtained the travelling
wave solutions to DDE, and, in particular, the strain solitary wave solution, which
was shown to be significantly affected by parameters of the inclusions. Moreover we
found some critical inaccuracies, committed in papers by others in the derivation of a
constitutive equation for the long strain waves in a microstructured medium, revised
them, and showed an importance of improvements for correct estimation of wave
parameters.

21.1 Introduction

Studies of physical properties of composite materials (composites) are of a great
importance due to variety of applications in physics and technology. A special
class of composites is formed by the so called micro- and nanocomposites, which
are multicomponent materials, consisting of a matrix and fillers of extraordinary
small size. A comprehensive understanding of dynamical behaviour of composites is
substantial for studies of the elastic properties, robustness and strength of materials,
for various applications, e.g., the non-destructive testing, since the latter allows one
to detect defects in structural elements.
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Physical properties of nanocomposites differ dramatically from those of the matrix
homogeneous isotropic materials. The local deformation in nanocomposites affects
significantly their elastic properties and mechanical behaviour, however, the classical
elasticity theory fails in attempts to describe these phenomena. As a result, nonlocal
theories appeared in the beginning of last century and thoroughly elaborated later
(Cosserat and Cosserat, 1909; Mindlin, 1964; Eringen and Suhubi, 1964a,b; Capriz,
1989), in which a material point was considered as a finite volume with additional
degrees of freedom.

One of the linear nonlocal theories of elastic solids with microstructures (also
called ”microelastic” or ”microstructured” solids) is the Mindlin theory of microstruc-
tured medium (Mindlin, 1964), which is based on two hypotheses. In accordance
with the first one each material point of solids is considered as solids also and,
simultaneously, as an elementary cell, while both macro- and microdisplacements
are evaluated separately. The second hypothesis states that u′i components of mi-
crodisplacement vector are linear in local coordinates, i.e. can be represented in the
form u′i = x′kψki(x j, t), where x′k – microcoordinates, and ψki are microdeformation
tensor components, depending only on macrocoordinates x j. The function of poten-
tial energy density Π was chosen in the form of homogeneous quadratic function,
depending on tensor components εi j, γi j and χi jk:

Π =
1
2

ci jkl εi j εkl +
1
2

bi jkl γi j γkl +
1
2

ai jklmn χi jk χlmn

+ di jklm γi j χklm + fi jklm χi jk εlm +gi jkl γi j εkl ,
(21.1)

where εi j = (∂iu j +∂ jui)/2 – linear macrodeformation tensor, γi j = ∂iu j−ψi j – a
relative deformation tensor, χi jk = ∂iψ jk – microdeformation gradient (in Mindlin’s
notation).

Considering an isotropic medium with central symmetry, Mindlin neglected terms,
containing the coefficient tensors of 5th rank: di jklm and fi jklm. Author’s explanation
was ”there are no isotropic tensors of an odd rank”. We follow this proposition since
it makes the model much simpler, however, it has to be noted, the proposition is
to be justified, since, e.g., the Levi-Civita symbols is known to constitute the 3rd
order isotropic tensor. Moreover, according to Weisstein (2017), there are 6 isotropic
tensors of 5th order.

The Mindlin theory has been applied to many problems of long strain waves
in micro- and nanostructured solids, which have been studied during the last two
decades. This may be explained mainly by relative simplicity of the mathematical
models formulation in partial differential equations (PDE). In the linear problem of
unidirectional long elastic longitudinal strain waves in a medium with microstruc-
tures (Porubov and Pastrone, 2004) the linear Mindlin theory was applied via formal
addition both physical and geometrical nonlinearities, and the obtained results were
used in their following work devoted to 1+ 2D localized strain waves (Porubov
et al, 2004). It was shown in Casasso et al (2010) that consideration of two scales of
microstructures in a composite leads to a PDE of 6th order for long nonlinear strain
waves. The problem of plane strain waves in microstructured solids was studied
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in Porubov et al (2012). The general model of solids with vectorial microstructures
was proposed in Pastrone (2005) as a generalization of the Mindlin theory. An
overview of various models of nonlocal media, exploited in the solid state mechanics,
was presented in Engelbrecht and Braun (1998) from the viewpoint of wave propa-
gation theory. Main theoretical results that have been obtained in the framework of
the generalized continuum mechanics in the past 40 years are collected in a famous
paper by Maugin (2011). A detailed review of mathematical models for strain waves
in elastic microstructured solids can be found in Engelbrecht and Berezovski (2015).

As it has been noted, the Mindlin theory (Mindlin, 1964), being even the linear
one, is often used as a background for models of nonlinear wave processes in
composite solids. Many authors proposed various models for potential energy of
elastic deformation, however, the linear parts of the models were inconsistent with the
Mindlin model in most cases, and nonlinear terms were not well justified. Moreover,
up to date there are no models for description of the nonlinear strain waves in
any of three basic types of structural elements (rod, plate and shell), containing
microstructures.

Nonlinear longitudinal strain waves in isotropic homogeneous rods have been
also studied experimentally in the Ioffe Institute since 80s, see Samsonov (2001) and
the studies are in progress up to now, e.g., Semenova et al (2011); Samsonov et al
(2017). It should be noted that to interprete experimental data on bulk strain solitons
propagation in a cylindrical rod it is of interest to obtain the solution in the form of
strain soliton to the problem for a rectangular rod (a bar). It is known (Samsonov,
2001; Semenova et al, 2011; Samsonov et al, 2017), that for the holographic method
of registration of such waves a specimen should have surfaces perpendicular to an
incident laser light. Consequently, small parts are to be removed from an initial
cylindrical rod. Results of estimations of bulk solitons in a bar would allow one to
estimate an error, initiated by the necessary shape modification of a cylindrical rod.

The aim of the present work is to derive and to analyze the constitutive equation
of the model for the long nonlinearly elastic longitudinal strain waves in a microstruc-
tured bar. To derive the equation we proposed the generalization of the Mindlin
model and established the one-to-one correspondence between the generalization
and the Murnaghan model for potential energy of an elastic deformation Murnaghan
(1951) of solids. Besides we found and corrected some critical inaccuracies in re-
cent paper (Porubov and Pastrone, 2004), where the Mindlin theory was applied.
Moreover, the model for the long nonlinearly elastic longitudinal strain waves for
an isotropic bar was refined to satisfy the condition of a free boundary with a given
precision.

21.2 Refinement of the Model of a Continuous Microstructured

Medium

The problem of the long nonlinearly elastic longitudinal strain waves in a microstruc-
tured medium was considered in Porubov and Pastrone (2004). Authors focused their



398 Igor A. Gula and Alexander M. Samsonov (†)

attention on the 1+1D case to simplify analysis and studied general properties of
the nonlinear strain waves in a microstructured medium. The main result of the work
is that presence of microscopic inclusions in a medium formally provides formation
of the nonlinear localized strain waves (solitons, kinks). As it is known, energy
canalization and, as a result, the nonlinear unidirectional strain solitary waves are
impossible in an isotropic homogeneous medium without inclusions. However, it
is to be noted that authors of Porubov and Pastrone (2004) assumed implicitly that
the medium under consideration contains microstructures oriented rather specifically
than in a chaotic way. Only the assumption about unidirectionality of microinclusions
allowed the authors to derive the constitutive equation of the model for strain wave
propagation in a microstructured medium in the form of the long nonlinearly elastic
longitudinal localized unidirectional waves. Nevertheless, authors committed few
inaccuracies, which led, in particular, to the conclusion that even the linear wave
velocity was independent of inclusion presence and properties.

To improve the statement of the problem and correct some mistakes we reconsider
the derivation of the governing equation for waves in microstructured medium. We
introduce the Cartesian coordinate system Oxyz in an elastic medium and consider
propagation of a nonlinear strain wave along Ox axis. The geometrical nonlinear-
ity is described by a single component of the Cauchy-Green macrostrain tensor
C11 = Ux + U2

x /2, where U(x, t) is the macrodisplacements vector component, and
the tensor CCC invariants may be written as follows: I1(CCC) = trCCC =C11 =Ux +U2

x /2,
I2(CCC) = (trCCC)2 /2− tr

(
CCC2
)
= 0, I3(CCC) = det CCC = 0. The microdisplacements vector

also has a single non-zero component.
The potential energy density Π in Porubov and Pastrone (2004) was chosen to

keep its macroscopic part consistent with the Murnaghan model and its microscopic
part - with the Mindlin model for an isotropic material with central symmetry. Instead
of an expression for Π only its partial derivatives were written with respect to the
arguments C11, γ11, χ111 with reference to Mindlin (1964) and Murnaghan (1951):

∂Π
∂C11

= (λ +2μ)Ux +βU2
x ,

∂Π
∂γ11

= D(Ux−ψ),
∂Π
∂χ111

= Gψx , (21.2)

where λ , μ are the Lamé coefficients, l, m, n are the Murnaghan moduli, and
β = 3/2 (λ +2μ)+ l +m+3n/2. However, if one writes the precise expression
for potential energy density Π in accordance with Mindlin (1964) and Murnaghan
(1951):

Π =
λ +2μ

2
I2
1 (CCC)+

l +2m
3

I3
1 (CCC)+

D
2
γ2

11 +
G
2
χ2

111 +H C11 γ11 , (21.3)

where D, G, H are elastic constants of microstructures, then the following relations
will be derived instead of (21.2):
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∂Π
∂C11

= (λ +2μ)Ux +

(
λ +2μ

2
+ l +2m

)
U2

x +O(U3
x )+H (Ux−ψ) ,

∂Π
∂γ11

= D(Ux−ψ)+H
(

Ux +
U2

x

2

)
,

∂Π
∂χ111

= Gψx ,

(21.4)

and, comparing (21.4) with (21.2), we conclude, that in the problem of waves in
a nonlinearly elastic medium the coefficient n in ∂Π/∂C11 is absent, since it is
multiplied by I3 (CCC) = 0 in the Murnaghan model for the potential energy density.
Besides, the term with C11 γ11 was discarded for unknown reasons in Porubov and
Pastrone (2004).

The wave motion equations in Porubov and Pastrone (2004) were written with the
reference to Mindlin (1964) in the form:

ρutt = τx +σx , Iψtt = σ +ηx, (21.5)

where ρ is material’s density, I is microinclusions’ inertia, τ = ∂Π/∂C11,
σ = ∂Π/∂γ11, η = ∂Π/∂χ111. Mindlin derived (21.5) for the linear strain ten-
sor εi j, and, consequently, defined τ as ∂Π/∂ε , however, as mentioned in Porubov
and Pastrone (2004), the geometrical nonlinearity was taken into account. Therefore
the wave motion equations are to be written in the following form:

ρUtt = (τ+σ + τUx)x , Iψtt = σ +ηx. (21.6)

This can be argued easily. Neglecting the microinclusions influence, the motion
equations in a 3D medium, with the physical and geometrical nonlinearities being
taken into account, can be written as:

ρUUUtt = ∇PPP , PPP =
∂Π
∂CCC

(EEE +∇UUU) (21.7)

where UUU(x,y,z, t) = U(x,y,z, t)iii+V (x,y,z, t) jjj +W (x,y,z, t)kkk is the displacement
vector, PPP is the Piola-Kirchhoff strain tensor, EEE is the unit tensor. Then the first
equation in (21.7) for 1+1D problem is reduced to:

ρUtt = (τ+ τUx)x,

that differs from the first equation in (21.5) by the term (τUx)x. This term was absent
in Porubov and Pastrone (2004), obviously, because the term (∂Π/∂CCC) ∇UUU in the
second equation (21.7) was neglected in Porubov and Pastrone (2004), and, as a result,
the physical nonlinearity was not taken into account. The rigorous derivation of the
motion equations based on the Hamilton principle leads to the same refinements.

For convenience a refined derivation of the general equation for the long non-
linearly elastic longitudinal strain damped waves in a microstructured medium is
presented in the Supplement 21.5.1 in a dimensionless form:
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utt −uxxα0−
(
u2
)

xx ε α1−uxxt γ α2 +uxxxx δ α3−uxxtt
[
δ α4 + γ2α7

]
+γ δ [uxxxxt α5 +uxxttt α6]+δ ε

[(
2uuxx +u2

x
)

xx α5−
(
2uutt +u2

t
)

xx α6
]

+(uut)xx γ ε α4 +δ 2 [uxxxxxxα8−uxxxxtt α9 +uxxtttt α10]+
(
u3
)

xx ε
2α11 = 0

(21.8)
along with definition of the parameters ε , γ , δ . For simplicity we restrict here
our consideration by the model of solitary waves without damping, i.e. dissipative
terms are neglected, γ = 0, and assume that nonlinearity and dispersion terms are
balanced, δ =O(ε). Leaving the terms of order O(ε), we obtain the doubly dispersive
equation (DDE) from (21.8) in the form:

utt −uxxα0− ε
[(

u2)
xx α1−uxxxxα3 +uxxtt α4

]
= 0, (21.9)

where u = Ux, α0 = 1−H2/(D(λ +2μ)), α1 = (l +2m)/(λ +2μ) + 3α0/2,
α4 = I∗ (1+H/D)2, α3 = G∗ (1+H/D)2 /(λ +2μ), G∗ = G/p2, I∗ = I/

(
ρ p2
)
,

and p is a characteristic size of a microstructural element (Porubov and Pastrone,
2004). The equation (21.9) after introduction of the phase variable θ = x±v t can be
reduced to the Weierstrass equation, which general solution can be found in terms of
the elliptic Weierstrass℘-function (Samsonov, 2001). In particular, the solution can
be written in the form of solitary strain waves with velocity v:

u(θ) =
3
(
v2−α0

)
2ε α1

cosh−2

⎛⎝θ√ α0−v2

4ε (α3−v2α4)

⎞⎠ , θ = x±v t, (21.10)

which exists, obviously, if the following conditions for a wave velocity are satisfied:⎡⎢⎢⎣v2 > max
{
α0;

α3

α4

}
v2 < min

{
α0;

α3

α4

} ⇔

⎡⎢⎢⎢⎣
v2 > max

{
(λ +2μ)− H2

D
;
ρG

I

}
v2 < min

{
(λ +2μ)− H2

D
;
ρG

I

}
It can be seen from (21.9) and (21.10), that the linear wave velocity in a mi-

crostructured medium is defined by the expression c0
√
α0, where c0 = (λ +2μ)/ρ ,

and turns out to be dependent on the microstructure parameters also. In fact potential
influence of microstructures on behaviour of linear strain waves in a medium was
shown earlier (see Engelbrecht and Pastrone, 2003; Engelbrecht et al, 2005). Never-
theless it is useful to notice that if authors of the two mentioned papers strictly follow
the Mindlin theory they would not have revealed this phenomena. Anyway this effect
could not be taken into account in Porubov and Pastrone (2004) because the term
H C11 γ11 from (21.3) was neglected. Besides, the additional term H C11 γ11 in Π also
contributes to the condition of the existence of the solitary strain wave.
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21.3 Nonlinear Strain Waves in a Bar

We consider firstly the long nonlinear wave propagation in an isotropic bar and
generalize the results to take into consideration the microinclusions in the material. It
allows us to underline details arrived due to rectangle cross section, and, separately,
due to microsctructure of the material.

21.3.1 The Model for Wave Propagation in an Isotropic Bar

Let us consider the problem of the long nonlinearly elastic longitudinal strain waves
in a rod with rectangular cross section (a bar). The dimensional DDE was derived
in Khusnutdinova and Samsonov (2008) in the form:

utt − E
ρ

uxx =
β0

2ρ
(u2)xx +

ν2 R2

3

[
utt − E

2ρ (ν+1)
uxx

]
xx
, (21.11)

where u = Ux, U(x, t) is the longitudinal displacement function, E is the Young
modulus, ν is the Poisson ratio, l, m, n are the 3rd order Murnaghan moduli,
β0 = 3E + 2 l (1− 2ν)3 + 4m(ν + 1)2 (1− 2ν)+ 6nν2, R2 =

(
H2

y +H2
z
)
/4, Hy

and Hz are the bar cross section sizes along the Oy and Oz axes resp. The Eq. (21.11)
is based on the plane section hypothesis U(x,y,z, t) =U0(x, t) and the Love hypoth-
esis for transversal displacements V (x,y,z, t) = −ν yU0,x, W (x,y,z, t) = −ν zU0,x.
However, the hypotheses does not lead to the free boundary condition with the
necessary accuracy. Our aim is to generalize the hypotheses in such a way for the
condition of the bar free boundary to be satisfied more accurately.

The bar geometry is presented in Fig. 21.1. The bar material is assumed to be the
homogeneous isotropic one without inclusions, and the bar length is much greater
than the cross section sizes. Let us introduce the scales for x, t and u as Λ , T and
A correspondingly and dimensionless variables x′ = x/Λ , t ′ = t/T, u′ = u/A. We
select the wave solutions with velocities close to velocity of the linear longitudinal
strain wave in the bar c0 =

√
E/ρ , and suppose that Λ = c0 T. Now (21.11) can be

rewritten in the dimensionless form (primes are omitted):

Fig. 21.1 A rod with rectan-
gular cross-section (a bar).
The bar length is supposed
to be much greater compared
to its cross section sizes Hy
and Hz. A coordinate system
is introduced with the origin
placed in the centre of one
of the bar edges. The bar is
oriented by its longest edge
parallel to the abscissa axis
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utt −uxx =
β A
2E

(u2)xx +
ν2 R2

3Λ 2

[
utt − 1

2(ν+1)
uxx

]
xx
. (21.12)

Deformations are supposed to be elastic, i.e., small enough to assume that A� 1,
therefore the small parameter ε = A can be introduced. Let us consider the long
longitudinal waves, R2/Λ 2� 1, and suppose that the nonlinear and the dispersive
terms are in balance, β A/(2E) = ν2 R2/

(
6Λ 2

)⇒ A∼ R2/Λ 2. Then (21.12) can
be rewritten with the first order accuracy with respect to ε in the form:

utt −uxx = ε
[
β

2E
(u2)xx +

ν2

3

(
utt − 1

2(ν+1)
uxx

)
xx

]
. (21.13)

We may write the dimensionless components Pyx, Pyy, Pyz, Pzx, Pzy, Pzz of the
Piola-Kirchhoff tensor PPP = ∂Π3D/∂CCC (E + ∇UUU) upon an introduction the addi-
tional scales for transversal coordinates [y] = Hy, [z] = Hz and for displacements
[V ] = AHy, [W ] = AHz, and a definition of dimensionless variables y′ = y/Hy,
z′ = z/Hz, V ′ = V/(AHy), W ′ =W/(AHz). The ratio of the bar cross section sizes
is denoted as Hz/Hy = k.

Let us expand the displacements U , V , W in a series with respect to ε . Collecting
terms with the same powers of ε in the dimensionless components of PPP and success-
fully setting them to zero on the bar boundaries y = ±1/2, z = ±1/2, we find the
generalized expressions for the displacements with an accuracy of O(ε2) in the form:

U(x,y,z, t) =U0(x, t)+ ε
2ν

1+ k2

(
y2 + k2 z2)U0,xx , (21.14)

V (x,y,z, t) =−ν yU0,x− ε 2ν
1+ k2

[
y3

3
+

y
4
(
(1+ k2)ν−1

)]
U0,xxx−

−ε
[
ν (1+ν)

2
+

(1−2ν)(1+ν)
E

(
l (1−2ν)2 +2mν (1+ν)−nν

)]
yU2

0,x,

W (x,y,z, t) =−ν zU0,x− ε 2ν
1+ k2

[
k2 z3

3
+

z
4
(
(1+ k2)ν− k2

)]
U0,xxx−

−ε
[
ν (1+ν)

2
+

(1−2ν)(1+ν)
E

(
l (1−2ν)2 +2mν (1+ν)−nν

)]
zU2

0,x

or in dimensional form (useful for interpretation of experimental data):

U(x,y,z, t) =U0(x, t)+
ν
2
(
y2 + z2)U0,xx , (21.15)

V (x,y,z, t) =−ν yU0,x− ν
2

[
y3

3
+

yH2
y

4
(
(1+ k2)ν−1

)]
U0,xxx−

−
[
ν (1+ν)

2
+

(1−2ν)(1+ν)
E

(
l (1−2ν)2 +2mν (1+ν)−nν

)]
yU2

0,x ,
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W (x,y,z, t) =−ν zU0,x− ν
2

[
z3

3
+

zH2
z

4

(
1+ k2

k2 ν−1
)]

U0,xxx−

−
[
ν (1+ν)

2
+

(1−2ν)(1+ν)
E

(
l (1−2ν)2 +2mν (1+ν)−nν

)]
zU2

0,x .

Application of the generalized expressions (21.14, 21.15) leads to the refined
DDE in a dimensionless form with the small parameter ε:

utt −uxx = ε
[
β

2E
(u2)xx− ν (1−ν)

3
uxxtt +

ν
3

uxxxx

]
, (21.16)

or in dimensional form:

utt − c2
0 uxx =

β
2ρ

(u2)xx− ν (1−ν)
3

R2 uxxtt +
ν
3

R2 c2
0 uxxxx, (21.17)

where u(x, t) =U0,x(x, t). The comparison of (21.16), (21.17) with (21.13), (21.11),
shows that the refined hypotheses (21.14), (21.15) led to the signs changes in the
dispersion terms. This important result is a consequence of taking into account the
highest degrees corrections of the transversal displacements.

The particular solution to the DDE with constant coefficients in the form of the
solitary bell-shaped wave (soliton) (Samsonov, 2001) is well known. To interpret
physical experiments it is useful to write the solutions to the dimensional equa-
tions (21.11) for conventional (subindex usl) and refined (subindex r f n) statements:

uusl (θ) = Acosh−2
(

θ
Busl(A)

)
=

3
(
ρ v2−E

)
β

cosh−2
(

θ
Busl(v)

)
, (21.18)

Busl(A) = 2νR

√
1
3
+

E
Aβ

2ν+1
2(ν+1)

, Busl(v) = 2νR

√√√√√v2− c2
0

2(1+ν)
3
(
v2− c2

0

) ,

and (21.17):

urfn (θ) = Acosh−2
(

θ
Brfn(A)

)
=

3
(
ρ v2−E

)
β

cosh−2
(

θ
Brfn(v)

)
, (21.19)

Brfn(A) = 2νR

√
E

Aβ
− 1−ν

3ν
, Brfn(v) = 2νR

√
c2

0−v2(1−ν)
3ν
(
v2− c2

0

) .

In (21.18), (21.19) the phase variable θ = x± v t was introduced, together with
A = 3

(
ρ v2−E

)
/β as the amplitude of the solitary wave, and v as the solitary wave

velocity.
The refined DDE (21.17) differs from the refined model for the nonlinearly elastic

longitudinal strain waves in an isotropic cylindrical rod, proposed in Samsonov
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(2001), only by the dispersion terms coefficients. Denominators of the coefficients
of our model contain 3 instead of 2. Considering propagation of solitons with the
same amplitudes in a bar with cross section sizes Hy and Hz and in a cylindrical rod
of radius R, one can conclude that the soliton velocities will be the same. However, if
the rod and the bar cross sections are related as R2 =

(
H2

y +H2
z
)
/4, then the soliton

in the bar will have the width of
√

3/2≈ 1.23 times less than that of the soliton in
the cylindrical rod.

The condition for the existence of the solution in the form (21.18) has the following
form: ⎡⎣ v > c0,

v <
c0√

2 (ν+1)
,

whereas the condition of existence of the solution (21.19) to the refined DDE is:

c0 < v <
c0√
1−ν

and provides a limit to the maximal velocity of the solitary waves in a bar. Since
0 < ν < 0.5 for most isotropic materials, then both the existence conditions are
relevant.

To draw the graphs for comparison and estimation of quantitative characteristics
of the solitary compression waves the polystyrene (PS) elastic moduli were taken
from Hughes and Kelly (1953), whereas the elastic properties for plexiglas (poly-
methylmethacrylate, PMMA) were found in Semenova et al (2011), see Table 21.1.
The bar cross section sizes were equal to 10× 10mm along axes y, and z, and
the strain soliton amplitudes for PS and PMMA were equal, correspondingly, to
−3.2×10−4 and −2.3×10−4, and taken from Samsonov et al (2017). Quantitative
estimations for velocities c0 of linear waves and velocities v of the nonlinear waves,
the values of the nonlinear term coefficients β and the solitons full width at the half
maximum of an amplitude (FWHM) for (21.18) and (21.19) are presented in Ta-
ble 21.2. The results of numerical estimations allow one to conclude that the solution
to the refined equation defines the solitary wave with a greater width. Besides, the

Table 21.1: Elastic moduli of PS and PMMA (Hughes and Kelly, 1953; Semenova
et al, 2011)

density Lamé Young’s Poisson’s 3rd order
coefficients modulus ratio Murnaghan moduli

ρ λ μ E ν l m n
kg/m3 N/m2 N/m2 N/m2 N/m2 N/m2 N/m2

1010 1010 1010 1010 1010 1010

PS 1060
0.289
±0.001

0.138
±0.001

0.369
±0.003

0.338
±0.001

−1.89
±0.32

−1.33
±0.29

−1.0
±0.14

PMMA 1160 0.39 0.186 0.498 0.339 −1.09 −0.77 −0.14
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Table 21.2: Calculation results

linear wave
velocity

nonlinear
solitary wave
velocity

nonlinear
term
coefficient

width at
amplitude
half max,
usual

width at
amplitude
half max.,
refin.

c0, m/s v, m/s β , N/m2 1010 FWHMusl,
cm

FWHMrfn,
cm

PS
1866.8
±7.6

1867.4
±7.7

−2.786
±0.799

13.6
±2.7

17.1
±3.4

PMMA 2071.8 2071.9 −0.458 46.2 58.4

values of c0 and v differ insignificantly, and at the same time, since the solitons have
the amplitudes laying in admissible limits then the deformations do not transfer a bar
to the plastic zone. The graphs of (21.18) and (21.19) are presented in Fig. 21.2.

21.3.2 The Refined Model Application for a Bar with Nanosize
Inclusions

To derive the governing equations we use the Mindlin theory Mindlin (1964) and
the refinements of the Love hypothesis and the plane section hypothesis, obtained in
previous subsection.

Let us assume that a bar is made of a nanocomposite containing a matrix with small
scale structural inclusions embedded (nanostructures). According to the Mindlin
theory each inclusion is a parallelepiped, and its edges are oriented parallel to the
bar edges. We shall call these inclusions as nanobars. For each nanobar the local

DDE usual
DDE re ned

uPS( ) uPMMA( )

DDE usual
DDE re ned

Fig. 21.2: Comparison graphs of the solutions to the DDE (21.18) and to the re-
fined DDE (21.19) for the PS bar (left graphs) and the PMMA bar (right graphs)
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Cartesian coordinate system is introduced with its origin placed in the centre of
one of the nanobar end surfaces. The Ox′ axis of the system is perpendicular to the
end surface, while axes Oy′ and Oz′ are parallel to it. The axes of all of the local
nanocoordinate systems are codirectional to the axes of the macrocoordinate system.
Let us introduce the 3D microdisplacement vector in each nanobar

U ′U ′U ′(x′,y′,z′, t) =U ′(x′,y′,z′, t)iii+V ′(x′,y′,z′, t) jjj+W ′(x′,y′,z′, t)kkk.

We assume additionally that all nanobars have lengths much greater than their
cross section linear sizes, which, in turn, are equal to H ′y and H ′z along the correspond-
ing axes. Consequently, the Love hypothesis and the plane section hypothesis can be
admitted for nanodisplacements:

U ′(x′,y′,z′, t) = U ′0(x
′, t) ,

V ′(x′,y′,z′, t) = −κ y′U ′0,x′ ,

W ′(x′,y′,z′, t) = −κ z′U ′0,x′ ,
(21.20)

where κ is a nanoscopic analog of the Poisson ratio of the bar matrix. The refined
hypotheses obtained previously are not suitable for nanodisplacements since it would
be impossible to eliminate the local coordinates x′, y′, z′ in the motion equations. The
Mindlin hypothesis is used in a simple form U ′0(x

′, t) = x′ϕ(x, t), choice of ϕ(x, t)
instead of ϕ(x,y,z, t) will be analyzed later. The gradient tensor of the nanodisplace-
ments ∇′U ′U ′U ′ is denoted asΨ .

The potential energy density Π3D, according to Mindlin (1964), is a quadratic
function of components of the Cauchy-Green strain tensor CCC = Ci j, of the rela-
tive deformation tensor Γ = ∇UUU −Ψ = γi j and of the nanodeformation gradient
X = ∇Ψ = χi jk. Assuming the materials of the bar (both matrix and filler) are
isotropic and taking into account that CCC is the symmetrical tensor, one can write Π3D
in the form:

Π3D =
A1

2
Cii Cj j +A2 Ci j Ci j +

B1

2
γii γ j j +

B2

2
γi j γi j +

B3

2
γi j γ ji

+ D1 Cii γ j j +D2 Ci j (γi j + γ ji)+G1 χiik χk j j +G2 χiik χ jk j

+
G3

2
χiik χ j jk +

G4

2
χi j j χikk +G5 χi j j χkik +

G6

2
χi ji χk jk +

G7

2
χi jk χi jk

+ G8 χi jk χ jki +
G9

2
χi jk χik j +

G10

2
χi jk χ jik +

G11

2
χi jk χk ji.

(21.21)
Note that the macroscopic physical nonlinearity is not taken into acount in (21.21).

To fix this, let us add to Π3D an expression, cubic with respect to the CCC components
in the form Ai jklmn Ci j Ckl Cmn. It contains 729 terms in general, whereas only 56 are
independent due to symmetry of CCC. Since the bar is isotropic, than the tensor Ai jklmn
has to be isotropic as well, and, consequently, it has to be a linear function of the
Kronecker delta productions. It is known, that there are 15 independent productions
of three Kronecker deltas, providing isotropic tensors of 6th rank (Mindlin, 1964):
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Ai jklmn = A3 δi j δkl δmn +A4 δi j δkm δln +A5 δi j δkn δlm +A6 δik δ jl δmn

+ A7 δik δ jm δln +A8 δik δ jn δlm +A9 δil δ jk δmn +A10 δil δ jm δkn

+ A11 δil δ jn δkm +A12 δim δkl δ jn +A13 δim δ jk δln +A14 δim δkn δ jl

+ A15 δin δkl δ jm +A16 δin δ jk δlm +A17 δin δkm δ jl .

Convolution of Ci j Ckl Cmn with each term of the written above shows that A4 = A5 =
A6 =A9 =A12 =A15, A7 =A8 =A10 =A11 =A13 =A14 =A16 =A17, therefore it can
be concluded that Ai jklmn Ci j Ckl Cmn = A3 Cii Cj j Ckk +A4 Cii Cjk Cjk +A7 Ci j Cik Cjk.
The obtained expression is equal to the third order correction in the Landau model
for elastic energy of isotropic solid up to the coefficients, see Landau and Lifshitz
(1986). The physical nonlinearity resulted from (21.21) has the form:

A3

3
Cii Cj j Ckk +A4 Cii Cjk Cjk +A5 Ci j Cik Cjk.

Let us write the relations between the Mindlin and Murnaghan model coefficients,
establishing one-to-one correspondence between the models:

A1 = λ , A2 = μ, A3 = l−m+
n
2
, A4 = m− n

2
, A5 =

n
3
, (21.22)

this, in turn, allows one to use the Lamé coefficients and the 3rd order Murnaghan
moduli instead of the Ai coefficients of the Mindlin model.

Let us admit the hypotheses (21.15) for the displacements U , V , W and integrate
the Lagrangian volume density L3D to eliminate the transversal coordinates y and
z. The integration is possible to be done because the function ϕ depends only on
the variable x. Applying the Hamilton’s principle, we write the system of two Euler-
Lagrange differential equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
∂L1D

∂U0, t

)
t
= −

(
∂L1D

∂U0,x

)
x
+

(
∂L1D

∂U0,xx

)
xx
+

(
∂L1D

∂U0,xt

)
xt

−
(
∂L1D

∂U0,xxx

)
xxx
−
(
∂L1D

∂U0,xxt

)
xxt
+

(
∂L1D

∂U0,xxxx

)
xxxx

+

(
∂L1D

∂U0,xxxt

)
xxxt

,

(
∂L1D

∂ϕt

)
t
=

(
∂L1D

∂ϕ

)
−
(
∂L1D

∂ϕx

)
x

(21.23)
where

L1D =

Hy/2∫
−Hy/2

Hz/2∫
−Hz/2

L3D dydz

is the Lagrangian linear density.
To write (21.23) in dimensionless form, we introduce the scale A for ϕ and

the new scale for time Λ/c0, where c0 is a characteristic velocity of a strain wave
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propagation that in general differs from that one defined in Sect. 21.3. Introducing the
dimensionless function ϕ ′ = ϕ/A and the same simplifications about deformations
and scale relations as those from Sect. 21.3, we multiply the first equation in (21.23)
by Λ 2/

(
ρ c2

0 AHy Hz
)

and the second one by 1/(AHy Hz). The result is written up
to the first order terms with respect to ε:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

utt =
E +α1

ρ c2
0

uxx +
α2

ρ c2
0
ϕxx + ε

{
β0 +α3

2ρ c2
0

(
u2
)

xx−
ν (1−ν)

3
uxxtt

+
α4

ρ c2
0
(uϕ)xx +

1
ρ c2

0

(
ν E
3

+α5

)
uxxxx +

α6

ρ c2
0
ϕxxxx

}
,

β1ϕ = −α2 u+ ε
{
−α4

2
u2− I c2

0
R2 ϕtt −α6 uxx +

β2

R2 ϕxx

}
,

(21.24)

where u(x, t) =U0,x(x, t), R2 =
(
H2

y +H2
z
)
/4, ε = A = R2/Λ 2, and the coefficients

αi, βi are presented in the Supplement 21.5.2. Let us define c2
0 = E/ρ to present the

coefficient at the uxx in (21.24) in the form 1+α1/
(
ρ c2

0
)
.

We apply the slaving principle, assuming ϕ(x, t) is expanded with respect to ε as
ϕ = ϕ0 + ε ϕ1 + . . .. Substitution of the expansion for ϕ(x, t) to the second equation
of (21.23) results in:

ϕ0 =−α2

β1
u, ϕ1 =−

(
α6

β1
+
α2β2

β 2
1 R2

)
uxx +

I c2
0α2

β 2
1 R2 utt − α4

2β1
u2 .

Let us substitute ϕ0, ϕ1 in the first equation of (21.23). Leaving the first order
terms with respect to ε inclusively, we derive the equation for u(x, t):

utt −
(

1+
α1

E
− α2

2
E β1

)
uxx

= ε
[(

β0 +α3

2E
− 3α2α4

2E β1

) (
u2
)

xx−
(
ν (1−ν)

3
− α2

2 I
β 2

1 ρ R2

)
uxxtt

+

(
ν
3
+
α5

E
− 2α2α6

E β1
− α2

2 β2

E β 2
1 R2

)
uxxxx

]
(21.25)

or in the dimensional form

utt −a0 uxx = a1
(
u2)

xx +a2 uxxtt +a3 uxxxx , (21.26)

where:
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a0 = c2
0 +

α1

ρ
− α2

2
ρ β1

, a1 =
β0 +α3

2ρ
− 3α2α4

2ρ β1
,

a2 = −ν (1−ν)R2

3
+

α2
2 I

ρ β 2
1
, a3 = R2

(
ν c2

0
3

+
α5

ρ
− 2α2α6

β1ρ

)
− α2

2 β2

β 2
1 ρ

.

The equations above are similar to the DDE derived and investigated in Samsonov
(2001) for the isotropic cylindrical rod. Moreover it can be found in Porubov and
Pastrone (2004), where the problem of the long nonlinearly elastic longitudinal strain
waves in a medium with nanoinclusions was considered, as well as in Sect. 21.3 of
this paper (Eq. (21.17)) in the context of problem of the strain waves in an isotropic
bar. The exact solutions to the DDE were derived in Samsonov (2001) in the form of a
travelling wave, expressed via the elliptical Weierstrass℘-function and, in particular,
in the form of the solitary wave:

unano(θ) = A cosh−2

[
θ

√
a1 A

6
(
a3 +

2
3 a1 a2 A+a0 a2

)] , θ = x±v t , (21.27)

which amplitude A and velocity v are related as:

A =
3
2

v2−a0

a1
.

The condition of existence of the solitary wave solution can be obtained straightfor-
ward: ⎡⎢⎣A ≥ max{0;− a3

a1 a2
− a0

a1
},

A ≤ min{0;− a3

a1 a2
− a0

a1
}.

The coefficient a0 at the uxx in (21.26) allows one to calculate the velocity of
the linear strain waves propagation c1 =

√
a0, moreover a0 defines the ”effective”

Young modulus E1 = ρ c2
1. It is clear that various values of the coefficients B1−3,

D1,2, G1−11 may lead to a value of E1 either less or greater than the Young modulus
E of a matrix material of the bar.

To characterize the solution (21.27) quantitatively and draw its graph we took
the same values for the amplitude A, density ρ and elastic properties of PS and
PMMA as those in the Sect. 21.3. Additionally for simplicity we assumed that κ = ν ,
I = 10−3. We are hardly be able to derive analytically the conditions of the solution
existense in form of the solitary wave due to a lot of coefficients. Instead, the inverse
problem of mathematical modelling of the coefficients B1−3, D1,2, G1−11, character-
izing nanoinclusion properties, was solved with the help of the function NMinimize,
embedded in the computer algebra system Wolfram Mathematica (Wolfram Research,
Inc, 2017). As an example, we found the coefficients in such a way that the value
LFWHM of a solitary wave full width at the half maximum of an amplitude calculated
as:
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LFWHM = 2 arcosh(
√

2)

√
6
(
ρ a3 +

2
3 a1 a2 A+a0 a2

)
a1 A

, (21.28)

which was close to 4 cm, 3 cm and 2 cm, resp., while the linear wave propa-
gation velocities c1 were, correspondingly, within the ranges [2000; 4000]m/sec.,
[1200; 2000]m/sec. and [800; 1200]m/sec., see Table 21.3. The values for LFWHM
and c1 were chosen to demonstrate values of the nanostructure coefficients, necessary
for the existence of a bulk soliton with parameters, suitable for observation in future
physical experiments with nanocomposite bars.

Figure 21.3 presents the graph of the solution to the DDE (21.26) for a nanostruc-
tured bar with LFWHM value equal to 3 cm compared with the solution to the refined
DDE (21.17). It can be seen, that inclusions may formally provide a solitary strain
pulse in a nanostructured bar with a width, essentially (in times) less than a width of
similar soliton in an isotropic homogeneous bar.

Quantitative estimations of soliton velocities v1 and linear strain wave veloci-
ties c1 in nanostructured bars, given in the Table 21.4, show that inclusions affect
significantly both the velocity of the linear waves as well as of the nonlinear ones.
Formally they can provide both waves acceleration and deceleration compared to
waves velocities in isotropic homogeneous materials, correspondingly, c0 and v.

Table 21.3: Coefficients of the potential energy density function (21.21) that pro-
vides the value of a solitary wave LFWHM equal to 4 cm, 3 cm or 2 cm, resp.

Polystyrene Polymethylmetacrylate
LFWHM 0.04 m 0.03 m 0.02 m 0.04 m 0.03 m 0.02 m

B1, N/m2×109 −0.114 0.287 0.241 6.219 −0.559 −0.168
B2, N/m2×109 −0.294 −0.489 0.248 −3.565 0.338 0.269
B3, N/m2×109 −0.288 −0.489 0.237 −3.262 0.509 0.212
D1, N/m2×109 −0.109 −0.460 0.603 4.177 −0.158 −0.382
D2, N/m2×109 1.183 −0.204 −0.510 −4.105 0.619 0.624

G1, N×107 −1.279 2.216 −2.12 −1.014 3.803 14.330
G2, N×107 −1.243 2.67 −1.083 1.753 −5.798 −5.728
G3, N×107 1.626 2.334 1.758 1.469 −6.613 −6.663
G4, N×107 1.87 −1.951 2.48 1.251 −7.348 −3.88
G5, N×107 −1.619 2.214 −1.41 1.584 3.848 −4.786
G6, N×107 −1.785 2.334 −1.302 1.974 4.187 −5.168
G7, N×107 1.554 2.411 1.834 −1.253 4.298 −7.998
G8, N×107 1.506 2.671 1.787 −1.116 5.061 −4.694
G9, N×107 1.374 −1.561 1.733 −1.323 −6.381 17.670
G10, N×107 −1.139 −9.543 −2.129 −1.024 4.163 −3.979
G11, N×107 −1.146 −9.51 −2.095 −1.024 −1.876 19.010
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Fig. 21.3: Comparison graphs of the solutions to the DDE (21.26) for a nanostruc-
tured bar, and to the refined DDE (21.17) for an isotropic bar without nanostruc-
tures in the form of solitary waves for PS (left graphs) and PMMA (right graphs)

Table 21.4: Estimations of the propagation velocities of the linear waves c1 and
nonlinear longitudinal strain waves v1 in nanostructured bars made of PS and
PMMA with the corresponding values of the nanostructures coefficients from the
Table 21.3

Polystyrene Polymethylmethacrylate
FWHMrfn , m 0.17 0.58

c0 , m/s 1866.8 2071.8
v, m/s 1867.4 2071.9

FWHMnano , m 0.04 m 0.03 m 0.02 m 0.04 m 0.03 m 0.02 m
c1 , m/s 3792.6 1930.5 1155.1 3830.7 1517.3 969.9
v1 , m/s 3793.2 1931.3 1155.7 3830.8 1517.4 970.1

Besides, it is clear from (21.25), (21.26) that among the coefficients characterizing
nanoinclusion properties only Bi, Di affect c1 and v1, whereas Gi contribute only to
a nonlinear pulse width (21.28).

21.4 Conclusions

We propose the mathematical model for the long nonlinearly elastic longitudinal wave
propagation in a rod with rectangular cross section (a bar), containing nanoscale inclu-
sions. The model is based on the Mindlin theory of microstructured solids (Mindlin,
1964). We found and corrected some critical inaccuracies, committed by other authors
in derivation of similar equation, see Porubov and Pastrone (2004). For the problem
of the nonlinear strain wave propagation in an isotropic bar the formulae were ob-
tained, which generalized the Love hypothesis and the plane section hypothesis and
allowed one to satisfy the free boundary conditions with desired accuracy.
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We note that inaccuracies committed in Porubov and Pastrone (2004) led to the
model equations, which were incorrect, in particular, in expressions for the velocity
of linear waves propagation in a material with small scale structural inclusions, that
was equal to the one in a matrix material. We showed, that the presence of inclusions
affected even the velocity of linear strain waves propagation.

The doubly dispersive equation (DDE) for the long nonlinearly elastic longitudinal
strain waves propagation in a bar was refined. The derived model satisfies the free
boundary condition with desired accuracy. The comparison of the model with the one
for the long nonlinearly elastic longitudinal strain waves propagation in a cylindrical
isotropic rod Samsonov (2001) showed, that when the compression strain solitons in
a bar and in a rod have the same amplitudes, then their velocities are equal. Besides,
if the bar and the rod cross sections are related as R2 = (H2

y +H2
z )/4, then the soliton

in the bar has the width which is
√

3/2≈ 1.23 times less than that of the soliton in
the rod.

The results obtained for the bar with nanoinclusions demonstrate that inclusions
can define the admissible limits of amplitudes and propagation velocities of the
solitary waves in elastic wave guides. Moreover it is shown that inclusions can also
affect significantly the qualitative wave characteristics, e.g., an ability to focus strain
solitons or spread them.

If no microstructure inclusions are presented, i.e. when B1−3 = 0, D1,2 = 0,
G1−11 = 0, the coefficients α1−6 and β1−2 in (21.25) are equal to 0 and, as a con-
sequence, (21.26) reduces to the refined DDE (21.17). It can be seen from (21.26)
that reduction of R in the dispersion terms makes the nanostructure influence (terms
α2

2 I/
(
ρ β 2

1
)

and α2
2 β2/

(
ρ β 2

1
)

in the coefficients at the uxxtt and uxxxx, resp.) more
significant in comparison with the macroscopic one. This conclusion seems to be
predictable as the reduction of the rod size should lead to more significant effects of
the nanostructure. However, from the formal viewpoint, an exact estimation depends
on the relation between parameters of the nanostructure.
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21.5 Supplement

21.5.1 The Model for Longitudinal Nonlinearly Elastic Damping
Waves Propagation in a Microstructured Medium

The expressions containing the dissipative terms:

τ = τeq +Auxt +aψt , σ = σeq +Buxt +bψt , η = ηeq +F uxxt + f ψxt , (21.29)

are substituted to the motion equations:
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ρUtt = (τ+σ + τUx)x , Iψtt = σ +ηx (21.30)

as it was done in Porubov and Pastrone (2004). Here A, a, B, b, F , f are the dissipation
coefficients,

τeq = (λ +2μ)Ux +

(
λ +2μ

2
+ l +2m

)
U2

x +O(U3
x )+H (Ux−ψ) ,

σeq = D(Ux−ψ)+H
(

Ux +
U2

x

2

)
, ηeq = Gψx ,

and D, G, H are the microstructure elastic constants. Let us introduce the strain
function u = Ux and differentiate the first equation of (21.30) with respect to x.
Collecting the terms up to the second order, one can derive:

ρutt = (D+2H +λ +2μ) uxx− (D+H) ψxx−H (uψ)xx

+

(
3H
2

+
3
2
(λ +2μ)+ l +2m

) (
u2
)

xx

+ (A+B) uxxt +(a+b) ψxxt +
A
2
(
u2
)

xxt +a (uψt)xx ,

Iψtt = (D+H) u−Dψ+Gψxx +
H
2

u2 +But +bψt +F uxxt + f ψxxt

. (21.31)

The correction of the potential energy density function Π affected only the coefficients
in (21.31) (e.g., all terms with the coefficient H as well as the coefficient of

(
u2
)

xx).
However, the correct description of the geometrical and physical nonlinearities led to
appearance of two additional nonlinear terms A/2

(
u2
)

xxt and a (uψt)xx in the first
equation in (21.31).

Let us introduce the scales Λ for the x coordinate, Λ/c0 for time, where
c2

0 = (λ +2μ)/ρ is the propagation velocity of the linear waves in an isotropic
homogeneous medium, and A for both macro- and microdeformations. Let us de-
fine the dimensionless variables x′ = x/Λ , t ′ = c0 t/Λ and dimensionless functions
u′ = u/A, ψ ′ = ψ/A. We assume the following simplifications: the long waves
with characteristic lengths Λ � 1 are under consideration, strains are small A� 1,
microinertia depend on some squared characteristic size p of microstructural element
as I = ρ p2 I∗, G = p2 G∗, the coefficients at the dissipative terms can be written as
A = A∗ d, a = a∗ d, B = B∗ d, b = b∗ d, F = F∗ d p2, f = f ∗ d p2, where the parame-
ter d has the length dimension. We introduce the following positive dimensionless
parameters ε = A� 1 to characterize the deformation scale, δ = p2/Λ 2� 1 to char-
acterize the microstructure size in comparison with the wave length and γ = d/Λ� 1
to characterize the dissipation influence. Let us rewrite (21.31) in the dimensionless
form (primes are omitted):
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utt −
(

1+
D+2H
λ +2μ

)
uxx +

D+H
λ +2μ

ψxx = γ
[

c0 (A∗+B∗)
λ +2μ

u+
c0 (a∗+b∗)
λ +2μ

ψ
]

xxt

+ε
[

3λ +6μ+ l +2m+3H
2 (λ +2μ)

u2− H
λ +2μ

uψ
]

xx

+ε γ
[

c0 A∗

2(λ +2μ)
(
u2
)

t +
c0 a∗

λ +2μ
uψt

]
xx
,

(21.32)

Dψ = (D+H) u+ γ (c0 B∗ u+ c0 B∗ψ)t +δ (G∗ψxx

−I∗ (λ +2μ) ψtt)+ ε
H
2

u2 +δ γ (c0 F∗ u+ c0 f ∗ψ)xxt .
(21.33)

Expanding ψ in power series with respect to the introduced small parameters, one
can derive:

ψ = ψ0 + γ ψ1 +δ ψ2 + ε ψ̃2 +δ γ ψ3 + γ2ψ4 +δ ε ψ̃3 + γ ε ψ̃4 +δ 2ψ3 + ε2ψ4.
(21.34)

Substitution of (21.34) to the second equation of (21.33) allows one to find ψi.
After substitution of ψi to the first equation of (21.33), leaving the terms up to the
second order with respect to the small parameters, we obtain the following nonlinear
wave propagation equation:

utt −uxxα0−
(
u2
)

xx ε α1−uxxt γ α2 +uxxxx δ α3−uxxtt
[
δ α4 + γ2α7

]
+γ δ [uxxxxt α5 +uxxttt α6]+δ ε

[(
2uuxx +u2

x
)

xx α5−
(
2uutt +u2

t
)

xx α6
]

+(uut)xx γ ε α4 +δ 2 [uxxxxxxα8−uxxxxtt α9 +uxxtttt α10]+
(
u3
)

xx ε
2α11 = 0 .

21.5.2 Coefficients of the Coupled Equations in (21.24)

β0 = 3E +2 l (1−2ν)3 +4m(ν+1)2 (1−2ν)+6nν2,

α1 = (1−2ν)2 (B1 +2D1)+(1+2ν2) (B2 +B3 +4D2) ,
α2 = −((1−2ν) (1−2κ) (B1 +D1)+(1+2κ ν) (B2 +B3 +2D2)) ,
α3 = 12ω (−1+2ν)B1 +12ω ν (B2 +B3)

− 3(−1+2ν)(1−8ω+2ν2)D1 +6(1+8ω ν−2ν3)D2 ,
α4 = −(4ω (2κ−1)B1 +4ω κ (B2 +B3)+

+ (1−2κ)(1−4ω+2ν2)D1 +2(1+4ω κ−2κ ν2)D2
)
,

α5 = ν(1−2ν)2 (B1 +2D1)+
ν
3
[(

1+6ν2
)
(B2 +B3 +4D2)−4ν (B2 +2D2)

]
,

α6 = −ν
2
(1−2ν) (1−2κ) (B1 +D1)− ν

6
(1−2κ+6ν κ) (B2 +B3 +2D2) ,
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β1 = (1−2κ)2 B1 +
(
1+2κ2

)
(B2 +B3) ,

β2 = 2 (1−2κ) (G1 +G5)+2 (G2 +G8)+G3 +(1−2κ)2 G4

+ G6 +
(
1+2κ2

)
(G7 +G9)+G10 +G11,

ω =
ν (1+ν)

2
+

(1−2ν)(1+ν)
E

(
l (1−2ν)2 +2mν (1+ν)−nν

)
.
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Chapter 22

On the Deformation of Chiral Piezoelectric

Plates

Dorin Ieşan and Ramon Quintanilla

Abstract The paper is concerned with the linear theory of piezoelectricity for
isotropic chiral Cosserat elastic solids. The behavior of chiral bodies is of inter-
est for the investigation of auxetic materials, carbon nanotubes, bones, honeycomb
structures, as well as composites with inclusions. First, we establish the basic equa-
tions which govern the behavior of thin plates. It is shown that, in contrast with the
theory of achiral plates, the stretching and flexure cannot be treated independently
of each other. Then, we present a uniqueness result with no definiteness assumption
on elastic constitutive coefficients. A reciprocity theorem is also established. Then,
we present the conditions on the constitutive coefficients which guarantee that the
energy of the system is positive definite and we give a continuous dependence result.
In the case of stationary theory we derive a uniqueness result for the Neumann
problem. Finally, the effects of a concentrated charge density in an unbounded plate
are investigated.

22.1 Introduction

The interaction of electromagnetic fields with elastic continua has been studied
in many works (see, e.g., Toupin, 1963; Mindlin, 1974; Maugin, 1988; Eringen
and Maugin, 1990; Yang, 2006; Eringen, 1999, 2004, and references therein). In
recent years there has been much interest in the study of piezoelectric plates (see,
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e.g., Mindlin, 1984; Maugin and Attou, 1990; Tiersten, 1993; Bisegna and Maceri,
1996; Krommer and Irschik, 2000; Irschik, 2002; Batra and Vidoli, 2002, and the
literature cited therein). In this paper we use the results of Mindlin (1951); Eringen
(1999, 1967); Naghdi (1972) in order to derive a theory of chiral piezoelectric thin
plates. The behavior of chiral materials is of interest for the investigation of auxetic
materials, carbon nanotubes, bones, honeycomb structures, as well as composites
with inclusions. It is known that the deformation of chiral elastic materials cannot
be described within classical elasticity. Various authors have studied the behavior of
chiral materials by using the theory of Cosserat elasticity (see, e.g., Lakes, 2001; Park
and Lakes, 1986; Lakes, 1987; Healey, 2002; Natroshvili et al, 2006; Chandraseker
et al, 2009; De Cicco and Ieşan, 2013, and references therein). The Cosserat theory
studies continua with oriented particles, in which each material point has the six
degrees of freedom of a rigid body. Lakes (2001) has shown that a chiral plate bent to
hyperbolic shape is predicted to exhibit size effects from the Cosserat characteristic
length, and a shear force from the chirality. The general theory of piezoelectric
Cosserat elastic solids has been established by Eringen (1999). We use this theory to
derive the equations of isotropic piezoelectric plates. This work is motivated by the
recent interest in the study of piezoelectric carbon nanotubes, bones and composites
(see, e.g., Telega and Wojnar, 2002; Ray and Batra, 2007; Ha et al, 2016).

The deformation of achiral Cosserat elastic plates has been investigated in many
papers. A detailed analysis of the results established in this theory have been presented
in Eringen (1999); Altenbach and Eremeyev (2013). In this paper we derive a theory
of piezoelectric chiral Cosserat elastic plates. In contrast with the theory of achiral
plates, the stretching and flexure cannot be treated independently of each other.
We assume that on the upper and lower faces of the plate there are prescribed the
surface traction, the surface moment and the normal component of the electrical
displacement. In Sect. 22.2 we present the basic equations of homogeneous and
isotropic chiral Cosserat piezoelectric solids. Section 22.3 is devoted to the deriving
of the theory of thin plates. In Sect. 22.4 we present a uniqueness result with no
definiteness assumption on elastic constitutive coefficients in the dynamic theory. A
reciprocity theorem is also established. In Sect. 22.5 we establish the conditions on
constitutive coefficients which guarantee that the energy of the system is positive
and we give a continuous dependence result under these conditions. Section 22.6 is
concerned with a uniqueness result for the Neumann problem in the case of stationary
theory. In Sect. 22.7 we investigate the effects of a concentrated charge density in an
unbounded plate.

22.2 Basic Equations

We consider a body that at time t0 occupies the region B of Euclidean three-
dimensional space and is bounded by the piecewise smooth surface ∂B. The motion
of the body is referred to a fixed system of rectangular cartesian axes Oxk(k = 1,2,3).
We denote by nnn the outward unit normal of ∂B. We shall employ the usual sum-
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mation and differentiation conventions: Greek subscripts are understood to range
over integers (1,2) whereas Latin subscripts to the range (1,2,3); summation over
repeated subscripts is implied and subscripts preceded by a comma denote partial
differentiation with respect to the corresponding cartesian coordinates. The partial
derivative with respect to time t is denoted by a superposed dot. We assume that
B is occupied by a homogeneous and isotropic chiral piezoelectric material. The
fundamental system of field equations consists of the equations of motion

t ji, j + fi = ρ üi,

m ji, j + εi jkt jk +gi = Jϕ̈i, (22.1)

the equations of the electric field

D j, j = q, Ek =−ψ,k, (22.2)

the constitutive equations (cf. Eringen, 1999; Lakes, 2001)

ti j = λerrδi j +(μ+κ)ei j +μe ji +C1κssδi j +C2κ ji +C3κi j +λ1εi jkEk,

mi j = ακssδi j +βκ ji + γκi j +C1errδi j +C2e ji +C3ei j +λ2εi jkEk, (22.3)
Dk =−λ1εi jkei j−λ2εi jkκi j +χEk,

and the geometrical equations

ei j = u j,i + ε jikϕk, κi j = ϕ j,i. (22.4)

Here we have used the following notations: ti j is the stress tensor, fi is the body forces,
ρ is the reference mass density, ui is the displacement vector, mi j is the couple stress
tensor, εi jk is the alternating symbol, gi is the body couple, J is the coefficient of
microinertia, ϕi is the microrotation vector, D j is the dielectric displacement vector, q
is the volume charge density, E j is the electric field vector, ψ is the electrostatic poten-
tial, ei j and κi j are kinematic strain measures, and λ ,μ,κ,α,β ,γ,C1,C2,C3,λ1,λ2
and χ are constitutive constants. In the case of an achiral material the coefficients
C1,C2,C3 and λ1 are equal to zero.

The components of surface traction, the components of the surface moment, and
the normal component of the electrical displacement at a regular point of ∂B are
given by

ti = t jin j, mi = m jin j, σ = Dknk, (22.5)

respectively.
Let M and N be non-negative integers and T a given interval of time. We say that

f is of class CM,N on B×T if f is continuous on B×T and the functions

∂m

∂xi∂x j. . .∂xp

(
∂ n f
∂ tn

)
,m∈ {0,1,2,. . . ,M},n∈ {0,1,2,. . . ,N},m+n≤max{M,N},

exist and are continuous on B×T . We write CM for CM,M .
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We say that p = (ui,ϕi,ψ) is an admissible state provided: (i) uk and ϕk are of
class C2 on B×T ; (ii) ui,ϕi and ψ are of class C1 on B×T ; (iii) ψ is of class C2,0

on B×T . We assume that fff ,ggg and q are continuous on B×T and that ρ and J are
positive constants.

22.3 Chiral Piezoelectric Plates

We assume now that the region B refers to the interior of a right cylinder of length
2h with open cross-section Σ and the lateral boundary II. The cartesian coordinate
frame consists of the orthonormal basis {eee1,eee2,eee3} and the origin O. The coordinate
frame is supposed to be chosen in such a way that the plane x1Ox2 is middle plane.
We denote by Γ the boundary of Σ . Clearly,

B = {xxx : (x1,x2) ∈ Σ ,−h < x3 < h},Π = {xxx;(x1,x2) ∈ Γ ,−h < x3 < h}.

In what follows we present a theory of thin plates assuming that

uα = wα(x1,x2, t)+ x3vα(x1,x2, t), u3 = w3(x1,x2, t),
ϕ j =Φ j(x1,x2, t),ψ =U(x1,x2, t)+ x3V (x1,x2, t),
(x1,x2,x3) ∈ B, t ∈T .

(22.6)

In Eringen (1999, 1967) a theory of achiral Cosserat elastic plates was established.
It was shown that in this case the stretching and flexure of plates can be treated
independently of each other. Following Mindlin (1951); Eringen (1967); Naghdi
(1972), to establish a plate theory, we perform the following integrations: (i) we
integrate equation of balance of momenta with respect to x3 over the thickness of
the plate; (ii) we take the cross product of the equations of the balance of linear
momentum with x3eee3 and integrate over the thickness of the plate; (iii) we integrate
the Gauss equation (22.2)1 over x3 between the limits −h and h; (iv) we multiply
equation (22.2)1 by x3 and integrate over the thickness of the plate. The results of (i)
are

τβk,β +Fk = ρẅk, μβα,β + ε3ρα(τ3ρ − τρ3)+Gα = JΦ̈α ,

μα3,α + ε3ρατρα +G3 = JΦ̈3,
(22.7)

where

τi j =
1
2h

h∫
−h

ti jdx3, μi j =
1
2h

h∫
−h

mi jdx3, (22.8)

Fi =
1
2h

h∫
−h

fidx3 +
1

2h
[t3i]

h
−h, Gi =

1
2h

h∫
−h

gidx3 +
1

2h
[m3i]

h
−h.
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We assume that the functions ti,mi and σ are prescribed on the surfaces x3 =±h. To
the Eqs. (22.7) we add the result of (ii), i.e.,

Mβα,β −2hτ3α +Hα = ρIv̈α , (22.9)

where we have used the notations

Mαβ =

h∫
−h

x3tαβdx3, I =
2
3

h3, Hα =

h∫
−h

x3 fαdx3 +[x3t3α ]h−h. (22.10)

If we integrate the Eq. (22.2)1 with respect to x3 between the limits −h and h,
then we obtain the following equation

σα,α = P, (22.11)

where

σk =
1
2h

h∫
−h

Dkdx3, P =
1
2h

h∫
−h

qdx3− 1
2h

[D3]
h
−h. (22.12)

The equation which results from the multiplication of Eq. (22.2)1 by x3 and integra-
tion over x3 from x3 =−h to x3 = h can be written in the form

dα,α −2hσ3 = Q, (22.13)

where we have used the notations

dα =

h∫
−h

x3Dαdx3, Q =

h∫
−h

x3qdx3− [x3D3]
h
−h. (22.14)

The functions Fj,G j,Hα ,P and Q are prescribed. From (22.4), (22.2) and (22.6) we
obtain

eαβ = γαβ + x3ξαβ , eα3 = γα3, e33 = 0, e3α = γ3α ,

κα j = ηα j, κ3 j = 0, Eα = eα + x3ζα , E3 =−V,
(22.15)

where

γα j = w j,α + ε jαkΦk, γ3α = vα + ε3βαΦβ , ηαk =Φk,α ,

ξαβ = vβ ,α ,eα =−U,α , ζα =−V,α .
(22.16)

It follows from (22.3), (22.8), (22.10), (22.12), (22.14) and (22.15) that
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ταβ = λγρρδαβ +(μ+κ)γαβ +μγβα +C1ηρρδαβ +C2ηβα +C3ηαβ −λ1ε3αβV,

τα3 = (μ+κ)γα3 +μγ3α +C3ηα3 +λ1ε3βαeβ ,

τ3α = (μ+κ)γ3α +μγα3 +C2ηα3 +λ1ε3αβ eβ ,

μνκ = αηρρδνκ +βηκν + γηνκ +C1γρρdνκ +C2γκν +C3γνκ −λ2ε3νκV,

μα3 = βη3α + γηα3 +C2γ3α +C3γα3 +λ2ε3βαeβ , (22.17)
Mαβ = I[λξρρdαβ +(μ+κ)ξαβ +μξβα ],

σα = χeα −λ1εi jαγi j−λ2ερ3αηρ3, σ3 =−λ1ε3αβ γαβ −λ2ε3αβηαβ −χV,

dα = Iχζα .

Thus, the basic equations of the theory of chiral plates consist of the equations of
motion (22.7) and (22.9), the equations of the electric fields (22.11) and (22.13),
the constitutive equations (22.17) and the geometrical equations (22.16). The field
equations can be expressed in terms of the functions wk,Φk,vα ,U and V . We obtain
the following equations

(μ+κ)Δwα +(λ +μ)wρ,ρα +C3ΔΦα +(C1 +C2)Φρ,ρα +κε3αβΦ3,β

−λ1ε3βαV,β +Fα = ρẅα ,

(μ+κ)Δw3 +C3ΔΦ3 +κε3αβΦβ ,α +μvρ,ρ +F3 = ρẅ3,

C3Δwα +(C1 +C2)wρ,ρα + γΔΦα +(α+β )Φρ,ρα +κε3αρ(w3,ρ − vρ)

+2(C3−C2)ε3αβΦ3,β −2κΦα −λ2ε3βαV,β −2λ1U,α +Gα = JΦ̈α ,

C3Δw3 + γΔΦ3 +κε3ραwα,ρ +2ε3αβ (C3−C2)Φβ ,α

+C2vα,α −2κΦ3−2λ1V +G3 = JΦ̈3, (22.18)
I[(μ+κ)Δvα +(λ +μ)vρ,ρα ]−2h[μw3,α +C2Φ3,α +κε3βαΦβ

+(μ+κ)vα ]+2hλ1ε3αβU,β +Hα = ρIv̈α ,

χΔU−2λ1Φρ,ρ −λ1ε3αρvρ,α =−P,

IχΔV −2h(λ1ε3αβwβ ,α −2λ1Φ3 +λ2ε3αβΦβ ,α +χV ) =−Q,

where Δ is the two-dimensional Laplacian.
To the field equations we must adjoin initial conditions and boundary conditions.

The initial conditions are

w j(x1,x2,0) = w0
j(x1,x2), Φ j(x1,x2,0) =Φ0

j (x1,x2),

vα(x1,x2,0) = v0
α(x1,x2), ẇ j(x1,x2,0) = ϑ 0

j (x1,x2), (22.19)

Φ̇ j(x1,x2,0) = ω0
j (x1,x2), v̇α(x1,x2,0) = η0

α(x1,x2), (x1,x2) ∈ Σ ,

where the functions w0
j , Φ

0
j ,v

0
α ,ϑ 0

j ,ω
0
j and η0

α are given. The Neumann problem is
characterized by the following boundary conditions

τβ jnβ = τ̃ j, μβ jnβ = μ̃ j, Mβαnβ = M̃α , σαnα = σ̃ , dαnα = d̃ on Γ ×T , (22.20)
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where the functions τ̃ j, μ̃ j,M̃α , σ̃ and d̃ are prescribed. In the case of Dirichlet
problem the boundary conditions are

w j = w̃ j, Φ j = Φ̃ j, vα = ṽα , U = Ũ , V = Ṽ on Γ ×T , (22.21)

where the functions w̃ j,Φ̃ j, ṽα ,Ũ and Ṽ are given.

22.4 General Theorems

In this section we establish some basic theorems in the dynamic theory. First, follow-
ing Brun (1965), we derive a uniqueness theorem without using positive definiteness
assumptions on the elastic constitutive coefficients. We assume that the boundary
conditions have the form (22.20). Let us consider two data systems of loading

L (α) = {F(α)
k ,G(α)

k ,H(α)
β ,P(α),Q(α),w0(α)

k ,Φ0(α)
k ,v0(α)

ρ ,

ϑ 0(α)
j ,ω0(α)

j ,η0(α)
β , τ̃(α)j , μ̃(α)

j ,M̃(α)
ρ , σ̃ (α), d̃(α)}, (α = 1,2),

and denote by A(α) = {w(α)
k ,Φ (α)

k ,v(α)β ,U (α),V (α),γ(α)i j ,η(α)
βk ,ξ (α)

βα ,e(α)ρ ,ζ (α)
ρ ,τ(α)i j ,

μ(α)
i j ,M(α)

ρν ,σ (α)
k , d(k)

α }, a solution corresponding to L (α). We define the following
functions associated to the solution A(α)

τ(α)k = τ(α)βk nβ , μ
(α)
k = μ(α)

βk nβ , M(α)
ρ = M(α)

βρ nβ , σ (α) = σ (α)
ρ nρ , S(α) = d(α)

ρ nρ .
(22.22)

Let us introduce the notations

Jκν(r,s) =
∫
Γ

[2hτ(κ)j (r)w(ν)
j (s)+2hμ(κ)

j (r)Φ (ν)
j (s)+2hσ (κ)(r)U (ν)(s)

+M(κ)
β (r)v(ν)β (s)+S(κ)(r)V (ν)(s)]dl

+
∫
Σ

[2hF(κ)
j (r)w(ν)

j (s)+2hG(κ)
j (r)Φ (ν)

j (s)−2hP(κ)(r)U (ν)(s)

+H(κ)
α (r)v(ν)α (s)−Q(κ)(r)V (ν)(s)]da, (22.23)

Kκν(r,s) =
∫
Σ

[2hρẅ(κ)
j (r)w(ν)

j (s)+2hJΦ̈ (κ)
j (r)Φ (ν)

j (s)

+ρIv̈(κ)α (r)v(ν)α (s)]da,

for all r,s ∈T . Here, for convenience, we have suppressed the argument xxx.
In the next theorem we present a reciprocity relation which involves two processes

at different instants. This relation forms the basis of a uniqueness result.

Theorem 22.1. Let
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Dαβ (r,s) = Jαβ (r,s)−Kαβ (r,s), (22.24)

for all r,s ∈T . Then

Dαβ (r,s) = Dβα(s,r), (α,β = 1,2). (22.25)

Proof. Let us denote

Wκν(r,s) = 2h[τ(κ)β j (r)γ
(ν)
β j (s)+ τ(κ)3α (r)γ(ν)3α (s)+μ(κ)

β j (r)η
(ν)
β j (s)− (22.26)

−σ (κ)
α (r)e(ν)α (s)+σ (κ)

3 (r)V (ν)(s)]+M(κ)
α j (r)ξ

(ν)
α j (s)−d(κ)

α (r)ζ (ν)
α (s).

In view of the constitutive equations (22.17) we find that

Wκν(r,s) = 2hW (1)
κν (r,s)+ IW (2)

κν (r,s), (22.27)

where

W (1)
κν (r,s) = λγ(κ)ρρ (r)γ

(ν)
ηη (s)+(μ+κ)[γ(κ)α j (r)γ

(ν)
α j (s)+ γ(κ)3α (r)γ(ν)3α (s)]

+μ[γ(κ)β j (r)γ
(ν)
jβ (s)+ γ(κ)3α (r)γ(ν)α3 (s)]+C1[η

(κ)
ρρ (r)γ

(ν)
ββ (s)+ γ(κ)ρρ (r)η

(ν)
ββ (s)]

+C2[η
(κ)
α j (r)γ

(ν)
jα (s)+ γ(κ)jβ (r)η(ν)

β j (s)]+C3[η
(κ)
α j (r)γ

(κ)
α j (s)+ γ(κ)α j (r)η

(ν)
α j (s)]

+αη(κ)
ρρ (r)η

(ν)
ββ (s)+βη(κ)

αρ (r)η
(ν)
ρα (s)+ γη(κ)

α j (r)η
(ν)
α j (s)−χe(κ)α (r)e(ν)α (s)

−λ1ε3αβ [V (κ)(r)γ(ν)αβ (s)+V (ν)(s)γ(κ)αβ (r)]

−λ2ε3αβ [V (κ)(r)η(ν)
αβ (s)+V (ν)(s)η(κ)

αβ (r)] (22.28)

+λ1ε3αβ [e
(κ)
α (r)γ(ν)β3 (s)+ γ(κ)β3 (r)e(ν)α (s)+ e(κ)β (r)γ(ν)3α (s)+ γ(κ)3α (r)e(ν)β (s)]

+λ2ε3αβ [e
(κ)
α (r)η(ν)

β3 (s)+η(κ)
β3 (r)e(ν)α (s)]−χV (κ)(r)V (ν)(s),

and

W (2)
κν (r,s) = λξ (κ)

ρρ (r)ξ (ν)
αα (s)+(μ+κ)ξ (κ)

αρ (r)ξ
(ν)
αρ (s)

+ μξ (κ)
βα (r)ξ

(ν)
αβ (s)−χζ (κ)

α (r)ζ (ν)
α (s). (22.29)

It follows from (22.27)-(22.29) that

Wκν(r,s) =Wνκ(s,r). (22.30)

On the other hand, if we use the equations (22.7), (22.9), (22.11), (22.13) and (22.16)
we find that
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Wκν(r,s) = 2h[F(κ)
k (r)w(ν)

k (s)+G(κ)
k (r)Φ (ν)

k (s)−P(κ)(r)U (ν)(s)]

+ H(κ)
α (r)v(ν)α (s)−Q(κ)(r)V (ν)(s)−2h[ρẅ(κ)

k (r)w(ν)
k (s)

+ IΦ̈ (κ)
k (r)Φ (ν)(s)]−ρIv̈(κ)α (r)v(ν)α (s) (22.31)

+ {2h[τ(κ)βk (r)w(ν)
k (s)+μ(κ)

βk (r)Φ (ν)
k (s)+σ (κ)

β (r)U (ν)(s)]

+ M(κ)
βα (r)v

(ν)
α (s)+d(κ)

β (r)V (ν)(s)},β .

If we integrate (22.31) over Σ and use the divergence theorem and (22.22)-(22.24),
then we obtain ∫

Σ

Wκν(r,s)da = Dκν(r,s). (22.32)

In view of (22.30) we obtain the desired result.�

We introduce the notations

τk = ταknα , μk = μαknα , Mα = Mβαnβ , σ = σαnα , S = dαnα . (22.33)

The following theorem is a consequence of Theorem 22.1.

Theorem 22.2. Let

A = {wk,Φk,vβ ,U,V,γi j,ηβk,ξβρ ,eρ ,ζρ ,τi j,μi j,Mαβ ,σk,dα}

be a solution corresponding to the system of loading

{Fi,Gi,Hα ,P,Q,w0
i ,Φ

0
i ,v

0
α ,ϑ

0
j ,ω

0
j ,η

0
α , τ̃ j, μ̃ j,M̃α , σ̃ , d̃}

and let

Π(r,s) =
∫
σ

[2hFj(r)w j(s)+2hG j(r)Φ j(s)

− 2hP(r)U(s)+Hα(r)vα(s)−Q(r)V (s)]da (22.34)

+
∫
L

[2hτ j(r)w j(s)+2hμ j(r)Φ j(s)+2hσ(r)U(s)+Mβ (r)vβ (s)+S(r)V (s)]dl,

for all r,s ∈T . Then

d
dt
{
∫
Σ

(2hρw jw j +2hJΦ jΦ j +ρIvαvα)da}=
t∫

0

[Π(t− s, t + s)−Π(t + s, t− s)]ds

+

∫
Σ

{2hρ[ẇ j(0)w j(2t)+ ẇ j(2t)w j(0)]+2hJ[Φ̇ j(0)Φ j(2t)+ Φ̇ j(2t)Φ j(0)]

+ρI[v̇α(0)vα(2t)+ v̇α(2t)vα(0)]}da. (22.35)

Proof. From (22.25) we get
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t∫
0

D11(t + s, t− s)ds =
t∫

0

D11(t− s, t + s)ds. (22.36)

Let us apply this relation to the solution A(1) = A. From (22.23), (22.24) and (22.34)
we obtain

t∫
0

D11(t + s, t− s)ds =
t∫

0

Π(t + s, t− s)ds−
t∫

0

∫
Σ

[2hρẅ j(t + s)w j(t− s)

+2hJΦ̈ j(t + s)Φ j(t− s)+ρIv̈α(t + s)vα(t− s)]dsda, (22.37)

and

t∫
0

D11(t− s, t + s)ds =
t∫

0

Π(t− s, t + s)ds−
t∫

0

∫
Σ

[2hẅ j(t− s)w j(t + s)

+2hJΦ̈ j(t− s)Φ j(t + s)+ρIv̈α(t− s)vα(t + s)]dsda. (22.38)

With the help of the relations

t∫
0

f̈ (t + s)g(t− s)ds = ḟ (2t)g(0)− ḟ (t)g(t)+
t∫

0

ḟ (t + s)ġ(t− s)ds,

t∫
0

g̈(t− s) f (t + s)ds = ġ(t) f (t)− ġ(0) f (2t)+
t∫

0

ġ(t− s) ḟ (t + s)ds,

we can present (22.37) and (22.38) in an alternative form. Thus, we have

t∫
0

D11(t + s, t− s)ds =
t∫

0

Π(t + s, t− s)ds−
∫
Σ

{2hρ[ẇ j(2t)w j(0)

−ẇ j(t)w j(t)+
t∫

0

ẇ j(t + s)ẇ j(t− s)ds]+2hJ[Φ̇ j(2t)Φ j(0)

−Φ̇ j(t)Φ j(t)+
t∫

0

Φ̇ j(t + s)Φ̇ j(t− s)ds] (22.39)

+ρI[v̇α(2t)vα(0)− v̇α(t)vα(t)+
t∫

0

v̇α(t + s)v̇α(t− s)ds]}da.

In a similar way we can transform (22.38). With the help of (22.36) and (22.38) we
obtain the desired result.�

In what follows we shall use the following relations
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Γ

σαnαUdl =
∫
Σ

(PU +σαU,α)da,
∫
Γ

dαnαV dl =
∫
Σ

(QV +2hσ3V +dαV,α)da,

(22.40)
which are consequences of (22.11) and (22.13) .

Theorem 22.2 leads to the following uniqueness theorem.

Theorem 22.3. Assume that ρ,J and χ are strictly positive. Let

A∗ = {w∗k ,Φ∗k ,v∗β ,U∗,V ∗,γ∗i j,η
∗
βk,ξ

∗
βρ ,e

∗
ρ ,ζ

∗
ρ ,τ
∗
i j,μ

∗
i j,M

∗
αβ ,σ

∗
k ,d
∗
α}

be the difference of any two solutions of the problem corresponding to the loading
system L (α). Then

w∗j = 0, Φ∗j = 0, v∗α = 0, U∗ = const., V ∗ = 0 on Σ ×T .

Proof. The solution A∗ corresponds to null data so that (22.35) implies that

d
dt
{
∫
Σ

(2hρw∗jw
∗
j +2hJΦ∗j Φ

∗
j +ρIv∗αv∗α)da}= 0.

If we take into account that w∗j ,Φ∗j and v∗α vanish initially, we obtain∫
Σ

(2hρw∗jw
∗
j +2hJΦ∗j Φ

∗
j +ρIv∗αv∗α)da = 0.

In view of hypotheses we find

w∗j = 0, Φ∗j = 0, v∗α = 0 on Σ ×T .

It follows from (22.17) that

σ∗α =−χU∗,α , d∗α =−IχV ∗,α , σ
∗
3 =−χV ∗.

With the help of the equations (22.40) we arrive at the desired result.�

In what follows we denote by f ∗g the convolution of f and g,

f ∗g(xxx, t) =
t∫

0

f (x, t− τ)g(x,τ)dτ, x ∈ Σ , t ∈T ,

where f and g are continuous functions on Σ ×T .
Theorem 22.1 forms the basis of the following reciprocity theorem

Theorem 22.4. Let A(α) be a solution corresponding to the external data system
L (α), (α = 1,2). Then
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Σ

[2hF
(1)
i ∗w(2)

i +2hG
(1)
i ∗Φ (2)

i +H
(1)
α ∗ v(2)α − k ∗ (2hP(1) ∗U (2) +Q(1) ∗V (2))]da

+
∫
Γ

k ∗ [2hτ(1)j ∗w(2)
j +2hμ(1)

j ∗Φ (2)
j +2hσ (1) ∗U (2) +M(1)

β ∗ v(2)β (22.41)

+S(1) ∗V (2)]dl =
∫
Σ
[2hF

(2)
i ∗w(1)

i +2hG
(2)
i ∗Φ (1)

i

+H
(2)
α ∗ v(1)α − k ∗ (2hP(2) ∗U (1) +Q(2) ∗V (1))]da

+
∫
Γ

k ∗ [2hτ(2)j ∗w(1)
j +2hμ(2)

j ∗Φ (1)
j +2hσ (2) ∗U (1) +M(2)

β ∗ v(1)β +S(2) ∗V (1)]dl,

where

F
(α)
i = k ∗F(α)

i +ρ(tϑ 0(α)
i +w0(α)

i ), k(t) = t, t ∈ [0,∞), (22.42)

G
(α)
i = k ∗G(α)

i + J(tω0(α)
i +Φ0(α)

i ), H
(α)
ρ = k ∗H(α)

ρ +ρI(tη0(α)
ρ + v0(α)

ρ ).

Proof. We take in (22.24), r = τ and s = t−τ and integrate from 0 to t. With the aid
of (22.25) we obtain∫

Σ

[2hF(1)
j ∗w(2)

j +2hG(1)
j ∗Φ (2)

j −2hP(1) ∗U (2) +H(1)
α ∗ v(2)α −Q(1) ∗V (2)]da

+
∫
Γ

[2hτ(1)j ∗w(2)
j +2hμ(1)

j ∗Φ (2)
j +2hσ (1) ∗U (2) +M(1)

β ∗ v(2)β +S(1) ∗V (2)]dl

−
∫
Σ

[2hρẅ(1)
j ∗w(2)

j +2hIΦ̈ (1)
j ∗Φ (2)

j +ρIv̈(1)α ∗ v(2)α ]da (22.43)

=
∫
Σ

[2hF(2)
j ∗w(1)

j +2hG(2)
j ∗Φ (1)

j −2hP(2) ∗U (1) +H(2)
α ∗ v(1)α −Q(2) ∗V (1)]da

+
∫
Γ

[2hτ(2)j ∗w(1)
j +2hμ(2)

j ∗Φ (1)
j +2hσ (2) ∗U (1) +M(2)

β ∗ v(1)β +S(2) ∗V (1)]dl

−
∫
Σ

[2hρẅ(2)
j ∗w(1)

j +2hJΦ̈(2)
j ∗Φ (1)

j +ρIv̈(2)α ∗ v(1)α ]da.

Let us note that
k ∗ ẅ(α)

j = w(α)
j − tϑ 0(α)

j −w0(α)
j . (22.44)

If we take the convolution of the relation (22.43) with k, then with the help of (22.42)
and (22.44) we conclude that the relation (22.41) holds.�

The method to obtain this reciprocal theorem has been established in Ieşan and
Quintanilla (2007).

Let us study now the continuous dependence of solutions upon initial data and
body loads. We restrict our attention to Dirichlet boundary conditions. Therefore in
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the remains of this section when we will consider a system of loading the correspond-
ing boundary conditions will be of Dirichlet type. Let A(1) and A(2) be solutions
corresponding to the data systems of loading

L (1) = {F(1)
k ,G(1)

k ,H(1)
β ,P(1),Q(1),w0(1)

k ,Φ0(1)
k ,v0(1)

ρ ,ϑ 0(1)
j ,ω0(1)

j ,η0(1)
β , w̃ j,Φ̃ j, ṽρ ,Ũ ,Ṽ}

and

L (2) = {F(2)
k ,G(2)

k ,H(2)
β ,P(2),Q(2),w0(2)

k ,Φ0(2)
k ,v0(2)

ρ ,ϑ (2)
j ,ω0(2)

j ,η0(1)
β , w̃ j,Φ̃ j, ṽρ ,Ũ ,Ṽ},

respectively. We denote

wi = w(1)
i −w(2)

i ,Φi =Φ (1)
i −Φ (2)

i ,vi = v(1)i −v(2)i ,U =U (1)−U (2),V =V (1)−V (2),

γi j = γ(1)i j −γ(2)i j ,ηβk = η(1)
βk −η

(2)
βk,ξβα = ξ (1)

βα −ξ
(2)
βα,eρ = e(1)ρ −e(2)ρ ,ζρ = ζ (1)

ρ −ζ (2)
ρ ,

τi j = τ(1)i j −τ(2)i j ,μi j = μ(1)
i j −μ(2)

i j ,Mρν = M(1)
ρν−M(2)

ρν,σk = σ (1)
k −σ (2)

k ,dα = d(1)
α −d(2)

α .

Clearly,

A = {wk,Φk,vβ ,U,V,γi j,ηβk,ξβρ ,eρ ,ζρ ,τi j,μi j,Mαβ ,σk,dα}

is a solution of the problem corresponding to the system of loading

L = {Fi,Gi,Hα ,P,Q,w0
i ,Φ

0
i ,v

0
α ,ϑ

0
j ,ω

0
j ,η

0
α ,0,0,0,0,0},

where

Fi = F(1)
i −F(2)

i ,Gi = G(1)
i −G(2)

i ,Hα = H(1)
α −H(2)

α ,P = P(1)−P(2),Q = Q(1)−Q(2),

w0
i = w0(1)

i −w0(2)
i ,Φ0

i =Φ0(1)
i −Φ0(2)

i ,v0
α = v0(1)

α − v0(2)
α ,ϑ 0

j = ϑ (1)
j −ϑ (2)

j ,

ω0
j = ω0(1)

j −ω0(2)
j ,η0

α = η0(1)
α −η0(2)

α .

Let us denote this problem by (P). We introduce the function E on [0, t1] by

E =
1
2

∫
Σ

(2hρẇ jẇ j +2hJΦ̇ jΦ̇ j +ρIv̇α v̇α +4hN1 +2IN2)da, (22.45)

where

2N1 = λγααγρρ +(μ+κ)(γα jγα j + γ3αγ3α)+μ(γβ jγ jβ + γ3αγα3)

+αηρρηνν +βηαρηρα + γηα jηα j +2C1γρρηββ +2C2ηβ jγ jβ (22.46)

+2C3γα jηα j +χ(eαeα +V 2),

2N2 = λξααξββ +(μ+κ)ξαβ ξαβ +μξβαξαβ +χζαζα .
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Lemma 22.1. Let A be a solution of the problem (P). Then

Ė =
∫
Σ

[2h(Fjẇ j +G jΦ̇ j + ṖU)+Hα v̇α + Q̇V ]da. (22.47)

Proof. In view of (22.17) and (22.46), we find that

2h(τα j γ̇α j + τ3α γ̇3α +μα jη̇α j + σ̇αeα − σ̇3V )+Mαβ ξ̇αβ + ḋαζα = 2h ˙N1 + I ˙N2.
(22.48)

On the other hand, by using (22.7), (22.11) and (22.13)) we obtain

2h(τα j γ̇α j + τ3α γ̇3α +μα jη̇α j + σ̇αeα − σ̇3V )+Mαβ ξ̇αβ
+ḋαζα = {2h(τβ jẇ j +μβ jΦ̇ j− σ̇βU)+Mβα v̇α − ḋβV},β (22.49)

+2h(Fjẇ j +G jΦ̇ j + ṖU)+Hα v̇α + Q̇V −2h(ρẅ jẇ j + JΦ̈ jΦ̇ j)−ρIv̈α v̇α .

If we integrate (22.48) over Σ and use the divergence theorem, the boundary condi-
tions and (22.47), then we obtain the desired result.�

We assume that N1 and N2 are positive definite quadratic forms. Thus, there exist
the positive constants κ j,( j = 1,2,3,4), such that

κ1(γα jγα j + γ3αγ3α + eαeα +V 2)≤N1 ≤ κ2(γα jγα j + γ3αγ3α + eαeα +V 2),

κ3(ξαβ ξαβ +ζαζα)≤N2 ≤ κ4(ξαβ ξαβ +ζαζα), (22.50)

for all the variables and any t ∈ [0, t1].
We define the functionsΨ and M on [0, t1] by

Ψ = [
∫
Σ

(ẇ jẇ j + Φ̇ jΦ̇ j + v̇α v̇α + γα jγα j + γ3αγ3α +ξαβ ξαβ ,

+eαeα +ζαζα +U2 +V 2)da]1/2,

M = {
∫
Σ

[FiFi +GiGi +HαHα +(Ṗ)2 +(Q̇)2]da}1/2. (22.51)

Lemma 22.1 leads to the following continuous dependence result.

Theorem 22.5. Assume that ρ and J are strictly positive and that N1 and N2 are
positive definite quadratic forms. Let A be a solution of the problem (P). Then, there
exist the positive constants ρ1 and ρ2 such that

Ψ(t)≤ ρ1Ψ(0)+ρ2

t∫
0

M(s)ds, t ∈ [0, t1]. (22.52)

Proof. With the help of the Schwarz inequality, from (22.47) we find that
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Ė ≤Mk0[
∫
Σ

(ẇ jẇ j + Φ̇ jΦ̇ j + v̇α v̇α +U2 +V 2)da]1/2, (22.53)

where k0 = max(1,2h). It follows from (22.51) and (22.53) that

Ė ≤Mk0Ψ , (22.54)

so that we get

E(t)≤ E(0)+ k0

t∫
0

M(s)Ψ(s)ds, t ∈ [0, t1]. (22.55)

In view of (22.45) and (22.50) we have

E(t)≥ ω1Ψ 2(t), E(0)≤ ω2Ψ 2(0), (22.56)

where

ω1 =
1
2

min(2hρ,2hJ,ρI,4hκ1(1− ε),4h,κ1εC−1,2Iκ3),

ω2 =
1
2

max(2h,2hJ,ρI,4κ2h,2Iκ4).

Here ε is an arbitrary constant between zero and one and C is the Poincaré constant
for the domain Σ .

The relations (22.55) and (22.56) imply that

Ψ 2(t)≤ ρ2
1Ψ

2(0)+2ρ2

t∫
0

M(s)ψ(s)ds, t ∈ [0, t1], (22.57)

where
ρ1 = (ω2/ω1)

1/2, 2ρ2 = k0/ω1.

In view of the Gronwall inequality, from (22.57) we obtain the desired result.�

We can prove that the quadratic forms N1 and N2 are simultaneously positive definite,
if and only if

2λ +2μ+κ > 0,2μ+κ > 0,κ > 0,γ+κ > β ,χ > 0,
β + γ+κ+2μ > 0,2α+β + γ+2λ +2μ+κ > 0,

κ(γ−β )> (C2−C3)
2, (β + γ)(κ+2μ)> (C2 +C3)

2, (22.58)
(2α+β + γ)(2λ +2μ+κ)> (2C1 +C2 +C3)

2,

κγ(2μ+κ)> κ(C2
2 +C2

3)+μ(C2−C3)
2.

To prove this we introduce the matrices A and B defined by
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A = ||ai j||8×8, B = ||bmn||6×6, ai j = a ji, bmn = bnm,

a11 = a22 = λ +2μ+κ, a33 = a44 = μ+κ, a55 = a66 = α+β + γ,
a77 = a88 = γ, a12 = λ , a13 = a14 = a17 = a18 = 0,

a15 = a26 =C1 +C2 +C3, a16 = a25 =C1,a23 = a24 = a27 = a28 = 0,
a34 = μ,a35 = a36 = 0, a37 = a48 =C3,a38 = a47 =C2, (22.59)

a45 = a46 = 0,a56 = α,a57 = a58 = 0,a67 = a68 = 0,a78 = β ,
b11 = b22 = b33 = b44 = μ+κ,b55 = b66 = γ,b12 = b14 = b16 = 0,

b13 = b24 = μ, b15 = b26 =C3, b23 = b25 = 0, b34 = b36 = 0,
b35 = b46 =C2, b45 = b56 = 0.

Clearly, the quadratic form N1 is positive definite if and only if the matrices A
and B are positive definite and χ > 0. The matrix A has six distinct eigenvalues εk
defined by

2ε1,2 = γ+κ−β ± [(β +κ− γ)2 +4(C2−C3)
2]1/2,

2ε3,4 = 2μ+κ+β + γ± [(β + γ−κ−2μ)2 +4(C2 +C3)
2]1/2, (22.60)

2ε5,6 = 2λ +2μ+κ+2α+β + γ
±[(2α+β + γ−2λ −2μ−κ)2 +4(2C1 +C2 +C3)

2]1/2.

If b is positive, then the numbers a±b1/2 are both positive if and only if a and a2−b
are positive. Therefore, the eigenvalues of the matrix A are positive if and only if
the following conditions

2μ+κ+β + γ > 0, γ+κ > β , κ(γ−β )> (C2−C3)
2,

2λ +2μ+κ+2α+2β +κ > 0,(β + γ)(2μ+κ)> (C2 +C3)
2, (22.61)

(2α+β + γ)(2λ +2μ+κ)> (2C1 +C2 +C3)
2,

are satisfied. By using Sylvester theorem we find that the matrix B is positive definite
if and only if the following hold true

2μ+κ > 0, κ > 0, κγ(2μ+κ)> μ(C2−C3)
2 +κ(C2

2 +C2
3). (22.62)

Similarly, we see that the form N2 is positive definite if and only if following
inequalities

2λ +2μ+κ > 0, 2μ+κ > 0, κ > 0, (22.63)

hold. With the help of (22.60), (22.61) and (22.62) we obtain (22.73).
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22.5 Equilibrium Theory

In this section we derive a uniqueness result for the Neumann problem in the station-
ary theory. In the case of the equilibrium theory the basic system of field equations
consists of the geometrical equations (22.16), the equations of the electric field
(22.11) and (22.13), the constitutive equations (22.17) and the following equations
of equilibrium

τβk,β +Fk = 0, μβα,β + ε3ρα(τ3ρ − τρ3)+Gα = 0,
μα3,α + ε3ρατρα +G3 = 0, Mβα,β −2hτ3α +Hα = 0 (22.64)

on Σ . To the field equations we must adjoin boundary conditions. We consider the
Neumann problem which is characterized by the following conditions

τβ jnβ = τ̃ j, μβ jnβ = μ̃ j, Mβαnβ = M̃α , σαnα = σ̃ , dαnα = d̃ on Γ , (22.65)

where τ̃ j, μ̃ j,M̃α , σ̃ and d̃ are prescribed functions on Γ .
We introduce the function W by

W = 2h[λγααγββ +(μ+κ)(γα jγα j + γ3αγ3α)+μ(γβ jγ jβ + γ3αγα3)+αηρρηνν
+βηαρηρα + γηα jηα j +2C1γρρηββ +2C2ηβ jγ jβ +2C3γαkηαk +χ(eαeα +V 2)]

+I[λξααξββ +(μ+κ)ξαβ ξαβ +μξβαξαβ +χζαζα ]. (22.66)

We note that the strain measures γα j,γ3α ,ηα j and ξαβ defined by (22.16) are
equal to zero if and only if w j = w′j,Φ j =Φ ′j, vα = v′α , where w′j,Φ ′j, v′α are defined
by

w′j = a j + ε jkβ xβbk, Φ ′j = b j, v′α = ε3αβbβ , (22.67)

and a j and b j are arbitrary constants.

Theorem 22.6. Assume that the function W is a positive definite quadratic form. Let
A∗ = {w∗j ,Φ∗j ,v∗β ,U∗,V ∗, γ∗i j,η∗β i,ξ

∗
βρ ,e

∗
α ,ζ ∗α ,τ∗i j,μ∗i j,M

∗
αβ ,σ

∗
i ,d
∗
α} be the difference

of any two solutions of the Neumann problem. Then

w∗j = w′j, Φ
∗
j =Φ ′j, v∗α = v′α , U∗ = const.,V ∗ = 0 on Σ ,

where w′j,Φ ′j and v′α are defined by (22.67).

Proof. With the help of constitutive equations (22.17) we find that

W = 2h(ταkγαk + τ3αγ3α +μαkηαk +σαeα −σ3V )+Mαβ ξαβ +dαζα . (22.68)

On the other hand, by using the relations (22.16) and Eqs. (22.11), (22.13) and
(22.63), from (22.68) we find that

W = 2h(Fkwk +GkΦk +PU)+Hαvα +QV

+[2h(τβkwk +μβkΦk−σβU)+Mβαvα −dβV ],β . (22.69)
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If we use (22.68), (22.69) and the divergence theorem we obtain∫
Σ

Wda =
∫
Σ

[2h(Fkwk +GkΦk +PU)+Hαvα +QV ]da

+
∫
Γ

[2h(τβkwk +μβkΦk−σβU)+Mβαvα −dβV ]nβdl. (22.70)

Let us assume that the Neumann problem has two solutions. If A∗ is the differ-
ence of any two solutions of the problem, then A∗ satisfies the Neumann problem
corresponding to null external data. From (22.70) we find that∫

Σ

W ∗da = 0, (22.71)

where W ∗ denotes the function W associated to the solution A∗. Since W ∗ is positive
definite, from (22.71) we obtain the desired result.�

We note that in the three dimensional theory the restrictions imposed on the con-
stitutive coefficients by the positive definiteness of the elastic potential have been
established in Ieşan and Quintanilla (2007).

22.6 Effects of a Concentrated Charge Density

In this section we present an application of the stationary theory of chiral piezoelectric
plates. We study the deformation of an infinite plate subjected to a concentrated
charge density. We assume that

Fj = 0, G j = 0, Hα = 0, Q = 0. (22.72)

We consider that the concentrated charge acts in the point (y1,y2), and introduce the
notation r = [(x1− y1)

2 +(x2− y2)
2]1/2. We try to solve the problem assuming that

wα = F,α , w3 = 0, Φα = G,α , Φ3 = 0, vα = ε3αβH,β , U =Λ , V = 0, (22.73)

where F,G,H and Λ are unknown functions of r. The equations (22.18) are satisfied
if the functions F,G,H and Λ satisfy the equations

aΔF +bΔG = 0,
bΔF +(cΔ −2κ)G+κH−2λ1Λ = 0,

(μ+κ)(Δ −ν2)H +κν2G+λ1ν2Λ = 0, (22.74)
χΔΛ −2λ1ΔG+λ1ΔH =−P, on Σ

where



22 On the Deformation of Chiral Piezoelectric Plates 435

a = λ +2μ+κ, b =C1 +C2 +C3, c = α+β + γ, ν2 = 2h/I. (22.75)

We introduce the operator D defined by

D = η1ΔΔ −η2Δ +η3, (22.76)

where we have used the notations

η1 = χ(ac−b2)(μ+κ),
η2 = (ac−b2)ν2[χ(λ +μ)+λ 2

1 ]+2a(μ+κ)(κχ+2λ 2
1 ), (22.77)

η3 = aν2(κχ+2λ 2
1 )(2μ+κ).

Let Ω be a function of class C6 on Σ , and let us consider the representation

F =−bλ1[2(μ+κ)Δ − (2μ+κ)ν2]Ω ,

G = aλ1[2(μ+κ)Δ − (2μ+κ)ν2]Ω ,

H =−ν2λ1(ac−b2)ΔΩ , (22.78)
Λ = [(ac−b2)(μ+κ)Δ(Δ −ν2)−2κa(μ+κ)(Δ −ν2)−aκ2ν2]Ω .

Then, the functions F,G,H and Λ satisfy the system (22.74) if the function Ω
satisfies the equation

ΔDΩ =−P. (22.79)

We can prove this assertion by substituting F,G,H and Λ from (22.78) into Eqs.
(22.74). The operator D can be expressed in the form

D = η1(Δ − k2
1)(Δ − k2

2),

where k2
α are the roots of the equation

η1y2−η2y+η3 = 0.

The function Ω satisfies the equation

(Δ − k2
1)(Δ − k2

2)ΔΩ =−ξP, (22.80)

where ξ = 1/η1. In what follows we assume that kα are distinct positive constants.
Let S j be functions that satisfy the equations

(Δ − k2
1)S1 =−ξP, (Δ − k2

2)S2 =−ξP, ΔS3 =−ξP. (22.81)

The solution of the equation (22.80) can be written in the form

Ω =
3

∑
j=1

d jS j, (22.82)

where
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d−1
1 = k2

1(k
2
1− k2

2), d−1
2 = k2

2(k
2
2− k2

1), d−1
3 = k2

1k2
2. (22.83)

We now assume that P = P∗δ (x− y), where δ (·) is the Dirac measure and P∗ is a
given constant. In this case we have

Sα =− 1
2π

ξP∗K0(kαr), S3 =
1

2π
ξP∗ lnr, (22.84)

where Kp denotes the modified Bessel function of the third kind and order p. Thus,
we get

Ω =− 1
2π

ξP∗[d1K0(k1r)+d2K0(k2r)−d3 lnr]. (22.85)

The functions, F,G,H and Λ can be determined from (22.78) and (22.85). The
function F is given by

F =− 1
2π

ξP∗bλ1[d1A1K0(k1r)+d2A2K0(k2r)+d3A3 lnr],

where

A1 = (2μ+κ)ν2−2(μ+κ)k2
1, A2 = (2μ+κ)ν2−2(μ+κ)k2

2, A3 =−(2μ+κ)ν2.

The displacements wα produced by the concentrated charge density are given by

wα =
1

2πr
ξP∗bλ1xα [d1A1k1K1(k1r)+d2A2k2K2(k2r)−d3A3r−1].

Similarly, we find that the function vα have the form

vα = ν2(ac−b2)λ1ξP∗ε3αβ xβ (2πr)−1[d1k3
1K0(k1r)+d2k3

2K1(k2r)].

We see that, in contrast with the theory of achiral materials, the stretching and flexure
of the plate cannot be treated independently of each other.

22.7 Conclusions

The original results presented in this paper can be summarized as follows:

a) We present a theory of chiral piezoelecric elastic plates in the framework of the
Cosserat theory. In contrast with the case of achiral plates, the stretching and
flexure cannot be treated independently of each other.

b) We establish a uniqueness result with no definiteness assumption on the constitu-
tive elastic coefficients. A reciprocity theorem is also presented.

c) We give the suitable conditions on the parameters to guarantee that the energy
of the system is positive and we present a continuous dependence result under
these assumptions.

d) We establish a uniqueness result in the stationary theory.
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e) We study the effects of a concentrated charge density acting in an unbounded
plate.
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Chapter 23

Non-Equilibrium Temperature and Reference

Equilibrium Values of Hidden and Internal

Variables

David Jou and Liliana Restuccia

Abstract In previous papers the concepts of caloric and entropic temperatures were
outlined and illustrated in a few examples (ideal gas, ideal systems with two or three
energy levels, solids with defects or dislocations). In equilibrium states, all degrees
of freedom are at the same temperature, but out equilibrium they have different
non-equilibrium temperatures. In this work, using a systematic methodology of
classical irreversible thermodynamics, we take into consideration an undeformable
medium in which the contributions of microscopic phenomena to the macroscopic
specific internal energy U can be described by introducing two internal variables
and one hidden variable. Internal variables are measurable (from the thermal point
of view, they exchange directly heat with the system acting as thermometer) but not
controllable, whereas (in our proposal) hidden variables are also not controllable
but, in addition, they do not exchange directly heat with the thermometer, but only
with other variables. The aim of this paper is to explore the difference between
internal and hidden variables and to establish connections and relations among their
corresponding non-equilibrium temperatures and the equilibrium temperature of the
medium under consideration.

23.1 Introduction

In equilibrium states, all degrees of freedom are at the same temperature. Out of
equilibrium, there are different definitions of temperature and, in any of such defini-
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tions, the different degrees of freedom may have different temperatures. In previous
papers (Jou and Restuccia, 2013, 2016; Criado-Sancho et al, 2006) we outlined the
concepts of caloric and entropic temperatures and emphasized their differences in a
few examples (ideal gas, solids with defects of dislocations, ideal systems with two
or three energy levels). The aim of this work is to consider how these temperatures
differ for hidden and internal variables, depending on the caloric or entropic restric-
tions considered in the definition, or, in other words, on the equilibrium state taken
as reference state. We will specify in more detail the differences between internal
variables and hidden variables, which have special consequences on their respective
temperatures. In Sect. 23.2 we describe the physical situation, in Sect. 23.3 we deal
with non-equilibrium steady states, and in Sect. 23.4 we comment on unsteady states.

One of the motivations of this work is to go deeper into the thermal interaction of
systems and thermometers. In general, thermometers are sensitive only to a given
number of degrees of freedom of the system. This is not a problem in equilibrium
thermodynamics, because all degrees of freedom have the same temperature, but this
become a problem in non-equilibrium steady states, where each degree of freedom
may have a different “temperature”. Thus, the situation of variables which do not
have a direct exchange of heat with the thermometer is not a purely academic issue
but also a practical topic of reflexion.

23.2 Internal Variables and Hidden Variables

In this paper, using a systematic methodology of classical irreversible thermody-
namics (CIT) (de Groot, 1951; de Groot and Mazur, 1962; Jou et al, 2010; Meixner
and Reik, 1959), we show that different nonequilibrium temperatures arise when
in the thermodynamic vector state of thermodynamic variables hidden and internal
thermodynamic variables, that influence thermal behaviour of the material under
consideration, must be introduced.

The introduction of internal variables permits to describe the internal structure
of the body or some physical aspects of it, which influence the behaviour of the
observed variables (Maugin and Muschik, 1994a,b; Maugin, 1999, 2013, 2015). The
use of internal variables in nonequilibrium thermodynamics was done, for the first
time, by Eckart (1940a,b) that introduced scalar internal variables; later Kluitenberg
used vectorial and tensorial internal variables for describing physical relaxation
mechanical, magnetic and dielectric phenomena (Kluitenberg, 1962, 1977, 1981,
1984). Internal variables were used also in Ciancio (1989); Ciancio and Restuccia
(1990); Ciancio et al (1990); Ciancio and Restuccia (2016); Dolfin et al (2010);
Restuccia and Kluitenberg (1987, 1988, 1989, 1990); Jou and Restuccia (2011);
Restuccia (2010, 2014).

Internal variables and hidden variables share the fact that they are not directly
measured, but they influence the behaviour of the system, as expressed in terms of
a reduced set of directly measured variables. The difference between hidden and
internal variables is that the former ones are much more difficult to be measured
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and controlled than the internal variables, or, in some occasions, hidden variables
are in fact not known. Internal variables are measurable (from the thermal point of
view, they exchange directly heat with the system acting as thermometer) but not
controllable, whereas (in our proposal) hidden variables are also not controllable
but, in addition, they do not exchange directly heat with the thermometer, but only
with other variables. Hidden variables cannot still be related to any particular internal
aspect of the system, because the latter is insufficiently known, at least at the moment
in which the system is being considered. This does not imply, of course, that in the
future these aspects may, eventually, be identified, measured and controlled. In spite
of this lack of direct knowledge and control hidden variables influence the behaviour
of the observable variables. This influence must be sufficiently mild, otherwise, the
results of each experiment would be too different from those of the other experiments,
but it must be perceptible. A possibility is, for instance, that these variables have
a very slow or a very fast dynamics as compared to that of the variables being
considered. We do not mean that the hidden variables must necessarily be much
slower or faster than the other ones, but we only want to stress that hidden variables
(in our proposal) not only do not exchange directly heat with the thermometer, but
also they could have a very different dynamics than the directly observable variables.
This last feature is not necessary for our proposal of hidden variables, and it is only
examined in Sect. 23.4, but it is not used in Sect 23.3.

In Jou and Restuccia (2013, 2016); Criado-Sancho et al (2006) we discussed three
aspects of temperature: on empirical temperature, based on the zeroth law, caloric
temperature, based on the first law and related to the energy content of the system,
and entropic temperature, based on the second law and related to the capacity of
energy exchange with other systems. The meaning of the caloric and the entropic
temperatures is thus deeply different, but, despite the conceptual differences, their
respective values coincide in equilibrium states.

There are also other definitions of temperature based on statistical physics, on
fluctuation theory, on fluctuation-dissipation theory, and other theories (see Casas-
Vázquez and Jou, 2003; Criado-Sancho et al, 2006; Hoover and Hoover, 2008;
Jou and Restuccia, 2011; Luzzi et al, 1997; Powles et al, 2005). In equilibrium
states, all these definitions lead to the same value for the temperature, but in non-
equilibrium steady states (where the material system is crossed by fluxes of energy,
matter, electric current, . . . ) they lead to different values and give information on
different aspects of the system, as for instance on different degrees of freedom,
or on kinds of thermometers (for example, the intensity of several spectral lines
in a radiation spectrum gives information on vibrational, rotational and electronic
temperatures of excited atoms or molecules) (Puglisi et al, 2017). Thus, to try to
establish connections between them and relations with the equilibrium temperature
is a task for non-equilibrium thermodynamics.

In this paper we consider an undeformable medium in which the contributions of
microscopic phenomena to the macroscopic specific internal energy U (energy per
unit mass) can be described by introducing two internal variables (x1,x3), and one
hidden variable (x2), with their corresponding contributions to the internal energy
denoted as U1,U2,U3. Now, we consider that degrees of freedom 1 and 3, associa-
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ted to U1 and U3, are measurable and controllable from the outside, i.e. they may
directly exchange energy with the environment or with other systems; in contrast,
degree 2, associated to U2, is a truly "hidden" degree of freedom and it cannot be
directly controlled. It does not exchange directly energy with the environment, but
only indirectly, through the other two degrees of freedom 1 and 3.

Then, let us suppose that the total specific internal energy U is additively composed
of three mentioned contributions

U =U1 +U2 +U3

and we introduce the state space C

C =C (U1,U2,U3) . (23.1)

Now, let us assume that the specific entropy (the entropy per unit of mass) S is a
constitutive function of the state space C, and in particular

S = S (U1,U2,U3) . (23.2)

We shall define the non-equilibrium entropic temperatures T1,T2,T3, that represent
the thermodynamic affinities conjugate to the internal variables U1,U2,U3 as follows

T−1
1 =

∂S
∂U1

, T−1
2 =

∂S
∂U2

, T−1
3 =

∂S
∂U3

. (23.3)

Considering very small deviations with respect to an equilibrium state state, we
expand the entropy (23.2) into Taylor’s series with respect to this state and, confining
our consideration to the linear terms, we have

S = Seq +
∂S
∂U1

dU1 +
∂S
∂U2

dU2 +
∂S
∂U3

dU3. (23.4)

From (23.3) we obtain the following Gibbs’ relation

dS = T−1
1 dU1 +T−1

2 dU2 +T−1
3 dU3. (23.5)

Note that one could also consider

S = S
(
U1,U2,U3,X ′1,X

′
2,X

′
3
)
,

with X ′i related to work variables (as mechanical, electrical, magnetic or chemical
work). In more general terms, we could also have

dS = ∑
i

T−1
i dUi +∑

i
T−1

i YidX ′i , (23.6)

with

T−1
i Yi =

∂S
∂X ′i

. (23.7)
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For instance, if X ′1 is an electrical polarization and X ′2 a magnetic polarization, the Yi
would be related to the electric field and the magnetic field, respectively. Here we
will deal with (23.5).

23.3 Temperatures in Steady States

The temperatures T1 and T3 of the internal variables x1 and x3, related to U1 and
U3, may be measured from outside. The open problem is to find the temperature T2
of the hidden variable related to U2. In equilibrium this is not a problem because
T1 = T2 = T3, but in non-equilibrium this equality is no longer true.

23.3.1 Asymptotic Equilibrium Expressions for Caloric and
Entropic Temperatures

There are at least two different possibilities to relate T2 to T1 and T3, depending on
whether we are using a caloric or entropic reference state. The caloric reference state
is that which has the same total internal energy than the non-equilibrium state, and
its temperature is denoted as TU . Then

c1T ′1 + c2T ′2 + c3T ′3 = ctotTU , (23.8)

where TU is the equilibrium temperature in the caloric reference state, the
ci (i = 1,2,3) are the specific heats corresponding to the respective variables,
and

ctot = (c1 + c2 + c3)

is the total specific heat. In other words, TU will be the temperature of the equilibrium
state, which is eventually reached a sufficiently long time after isolating the system.
Accordingly, T ′2 will be given by

T ′2 =
ctotTU − c1T ′1− c3T ′3

c2
. (23.9)

The integration path in this case is to isolate the system at a given time and let it
reach the final total equilibrium. Being the system isolated, its total internal energy
will remain constant.

In the entropic point of view, we select as equilibrium reference state that having
the same total entropy of our non-equilibrium state, i.e.

S′ −Seq = 0.
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But, to do so, one should bring the degrees of freedom 1 and 3 in contact with very
slowly varying thermal reservoirs slowly approaching T ′1 and T ′3 to their common
eventual equilibrium value. Hopefully, this very slow process will not increase the
total entropy of the system (unless the internal degree of freedom is analogous to dry
friction, in which care slowness will not avoid some entropy production) so that

S′ −Seq = c1 ln
T ′1
TS

+ c2 ln
T ′2
TS

+ c3 ln
T ′3
TS

, (23.10)

where TS is the equilibrium temperature of the entropic reference state. This may be
obtained (see (23.5)) from

dS =
dU1

T1
+

dU2

T2
+

dU3

T3
, (23.11)

with dUi = cidTi and assuming, for the the sake of simplicity, ci constant. Equation
(23.10) may be rewritten in a parallel way to (23.8) as

c1 lnT ′1 + c2 lnT ′2 + c3 lnT ′3 = ctot lnTS. (23.12)

In this case, the temperature T ′2 in the initial non-equilibrium state will be related to
T ′1, T ′3 and TS as

lnT ′2 =
ctot lnTS− c1 lnT ′1− c3 lnT ′3

c2
. (23.13)

The integration path in this case is different from the previous one leading to (23.9).
In (23.9) the total internal energy was kept constant; indeed, here the total entropy is
kept constant. This could be achieved, for instance, by using reversible heat engines
acting between the several degrees of freedom. Therefore, the temperature T ′2 related
to the hidden degree of freedom will depend on the selected reference state. For small
separations from equilibrium, i.e. if

| T ′1−TS |� TS and | T ′3−TS |� TS and | T ′1−TU |� TU and | T ′3−TU |� TU ,

both TS and TU will be very close to each other and also the caloric and the entropic
values of T ′2 will be very close to each other. Note that these operational definitions of
T ′2 do not yield the instantaneous temperature of x2 at given time, because reaching
the total equilibrium may require a considerably long time.

23.3.2 Dynamical Steady-State Expressions for Caloric and
Entropic Temperatures

The expressions (23.9) and (23.13) are very general but they do not allow us to relate
T ′i to the heat fluxes with the external world. A way to achieve this more detailed
knowledge and to be able to estimate T ′2 without need to let the system reach the
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Fig. 23.1 Three degrees of
freedom and their fluxes Ji,in
and Ji,out (i = 1,2).

caloric or the entropic equilibrium reference states would be to assume, for instance,
that the evolution equations for T1, T2 and T3 are (see Fig. 23.1)

U̇1 = c1Ṫ1 = J1,in− J1,out −σ12,

U̇2 = c2Ṫ2 = σ12−σ23,

U̇3 = c3Ṫ3 = J3,in− J3,out +σ23,

(23.14)

with Ui internal energy, ci heat capacity, Ti temperature of the degree i (1 = 1,2,3),
Ji,in and Ji,out (i=1,3) the rate of energy exchange of degrees 1 and 3 with the external
world, and σi j rate of energy transfer from degree i to degree j inside the system.

We assume that degree 2 is not directly accessible, and we want to know how to
measure its temperature in non-equilibrium steady state. In equilibrium,

J1,in = J1,out = J3,in = J3,out = 0.

Furthermore, we assume

σ12 = α12(T1−T2); σ23 = α23(T2−T3), (23.15)

with α12 and α23 being energy exchange coefficients.
In the steady state Ṫ1 = Ṫ2 = Ṫ3 = 0, under a given net supply

J′1 ≡ J1,in− J1,out ,

with
J1,in + J3,in = J1,out + J3,out

(corresponding to the steady state), the temperatures T ′1 and T ′3 will be, by solving
Eqs. (23.14)1, (23.14)3 and (23.15),

T ′1 = T ′2 +
J′1
α12

, T ′3 = T ′2−
|J′3|
α23

. (23.16)

Now, the results for T ′1 and T ′3 will depend on the values of T ′2. As we did above,
we may relate T ′2 to a caloric or an entropic reference state. In the first case, using
(23.8) and taking into account (23.16), one obtains
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T ′3 = TU − c1

ctot

[
J′1
α12

+
|J′3|
α23

]
− c2

ctot

|J′3|
α23

,

T ′2 = TU − c1

ctot

J′1
α12

+
c3

ctot

|J′3|
α23

,

T ′1 = TU +
c2 + c3

ctot

J′1
α12

+
c3

ctot

|J′3|
α23

.

(23.17)

The interest of this expression is that it shows in a direct way how the temperatures
of three different degrees of freedom differ from the temperature TU . It is seen that
the temperatures depend on the specified net fluxes J′i , as external quantities, and on
the internal quantities ci and on αi j.

In the second case, if we express T ′1 = T ′3 +ΔT ′1 and T ′2 = T ′3 +ΔT ′2, relation
(23.13) may be rewritten as[

T ′3 +ΔT ′1
]c1
[
T ′3 +ΔT ′2

]c2 T ′c3
3 = T ctot

S . (23.18)

From here, T ′3 as a function of TS may be obtained and when this result is combined
with (23.16), one would get the expressions for T ′2 and T ′1 as well, and we would
have the expressions analogous to (23.17). To have an explicit illustration, assume
that c1 = c2 = c3. In this case

T ′3 = TS− 1
3

J′1
α12
− 2

3
|J′3|
α23

,

T ′2 = TS− 1
3

J′1
α12

+
1
3
|J′3|
α23

,

T ′1 = TS +
2
3

J′1
α12

+
1
3
|J′3|
α23

.

(23.19)

In general, the temperatures T ′1, T ′2 and T ′3 will depend on whether the caloric or the
entropic equilibrium reference state are used.

In (23.17) and (23.19), T ′2 is not an univocally defined, "objective", quantity, but it
yields the values of T ′2 without need to wait for the system to reach the corresponding
equilibrium state. Thus, the status of T ′2 depends on the observer - not only through
the choice of the kind of thermometer - but also by choosing the strategy (caloric or
entropic) to reach the eventual equilibrium state.

In Fig. 23.2 we sketch as a continuous curve the manifold of equilibrium states
of the system, the non-equilibrium state as the dot neq, and with discontinuous
horizontal and vertical lines the respective entropic and caloric projections of the
non-equilibrium state on the equilibrium manifold, with respective temperatures TS
and TU .

The role of different "projections" of a non-equilibrium steady state on the mani-
fold of equilibrium states of the system has been emphasized in Muschik (1990,
1977). The corresponding equilibrium state is sometimes called the "accompanying
equilibrium state" (Muschik, 1977). When the fluxes are small the non-equilibrium
state is "close" to the equilibrium manifold and the caloric and entropic reference
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states are close to each other, and TS and TU are almost the same, but if the fluxes are
high, the differences between TS and TU and, correspondingly, between (23.17) and
(23.19), are significant.

23.4 A Model for System’s Aging

We have assumed that variable 2 cannot directly exchange energy with the envi-
ronment, in contrast to the variables 1 and 3. This is a conceptual problem for the
measurement of T2, since there will not be a "thermometer" able to exchange energy
with it. Thus, the measurements of T2 should be of "dynamical" nature, i.e., through
measurements of T1 as of T3 since, according to (23.16), in the steady state

T2−T3 =
|J′3|
α23

, as T1−T2 =
|J′1|
α12

.

Another problem illustrated by variable 2 is found in the case that c2 is much
higher than c1and c3. Indeed, the characteristic time of temperatures T1 and T3 may
be found writing (23.14)1 and (23.14)3 as

c1δ Ṫ1 = J1,in− J1,out −α12(δT1−T2),

c3δ Ṫ3 = J1,in− J3,out +α23(T2−δT3),
(23.20)

which imply for the respective characteristic time scale

τ1 =
c1

α12
, τ3 =

c3

α23
. (23.21)

The corresponding characteristic time for T2 found from

Fig. 23.2 A sketch of the
manifold of equilibrium states
of the system as a continuous
curve and of a non-equilibrium
state as the dot neq.
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c2δ Ṫ2 = α12(T1−δT2)−α23(δT2−T3) (23.22)

is
τ2 =

c2

α12 +α23
. (23.23)

Thus, time τ2 will be very long. This implies that variable 2 could act as an energy
storage system. In the case that σ12−σ23 is not zero, but small, i.e. σ12−σ23 = σ ′,
with σ ′ small, this would mean that T2 changes in time as

T2(t) = T2(0)+
σ ′

c2t
. (23.24)

In this case, the system would exhibit "aging" in temperature. This means that
research measuring T1 and T3 would find a different value at a different moment.
Indeed, the measurement of T1 as T3 should take a time of the order of, let us say, 3τ1
as 3τ3, in order that T1 and T3 take a steady value. If this time is much shorter than
c2/σ ′, the changes in T2 will not be perceptible according to (23.24) and the system
will seem to be in a truly steady state. However, if an observation after an interval of
the order of c2/σ ′ is made, the internal T2 will be changed considerably. Since, the
measured temperature is

T1(t) = T2(t)+
J′1
α12

, (23.25)

with J′1/α12 constant (in the simplest case), the measured temperature for T1 will be
different than that measured in an earlier time.

23.5 Concluding Remarks

We have presented a very simplified model for a system with three degrees of
freedom. One of them, degree 2, acts as a hidden variable U which cannot be directly
manipulated from the outside, in contrast with the other two internal degrees of
freedom 1 and 3. Degree 2 does not exchange directly energy with the environment,
but only indirectly, through the other two degrees of freedom 1 and 3. We have
considered two conceptual problems related to the temperature of such internal
variable:

1. First, we have obtained the values of T1, T2 and T3 in a nonequilibrium steady
state. Expression (23.16) shows how they depend on the internal energy exchange
given by

J′i = Ji,in− Ji,out ,

and of internal constitutive quantities ci, αi j.
2. Second, we have related these three temperatures to the single value of tempe-

rature of an equilibrium state having the same energy U or the same entropy S
than the non-equilibrium system. These temperatures are called TU and TS, which
are the caloric and entropic temperatures, respectively. It is seen that the temper-
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atures of the degrees of freedom, given by (23.17) and (23.19), respectively, will
be different in both cases.

3. Third, we have seen that if the internal variable 2 has associated a high heat
capacity, it may act as an internal energy reservoir, changing its temperature very
slowly. Thus, the values for the measured T1 and T3 variables will change with
time in a very slow way, showing a thermal aging of the true system. Equilibrium
states will be obtained only after a very long time that the perturbation occurs.
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Chapter 24

On the Foundation of a Generalized Nonlocal

Extensible Shear Beam Model from Discrete

Interactions

Attila Kocsis and Noël Challamel

Abstract In this paper a generalized discrete elastica model including bending, nor-
mal and shear interactions is developed. Nonlinear static analysis of the discrete
model is accomplished, its buckling and post-buckling behavior are thoroughly stud-
ied. It is revealed that based on what finite strain theory is used, the discrete model
yields a generalized (extensible) Engesser elastica, or a generalized (extensible)
Haringx elastica. The local continuum counterparts of these models are also obtained.
Then nonlocal models are developed from the introduced flexural, extensible, shear-
able discrete systems using a continualization technique. Analytical and numerical
solutions are given for the discrete and nonlocal models, and it is shown that the
scale effects of the discrete models are well captured by the continualized nonlocal
models.

24.1 Introduction

Bridging the gap between molecular mechanics (formulated as a discrete lattice
problem) and continuum mechanics is an old topic, which dates, at least from the
XIXth century (see the initial works of Navier, 1823; Cauchy, 1823, 1828). This ques-
tion was extensively debated during the XIXth century, for elaborating a consistent
molecular-based three-dimensional elasticity theory (see Timoshenko, 1953; Foce,
1995) for a historical overview of this question). In case of local linear elasticity,
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Cauchy derived expressions of the elastic moduli from the atomistic potentials (see
also the complete paper of Stakgold (1950) on this point). Modern treatment of the
problem of relating lattice and local continuum elasticity can be found in the treatise
of Born and Huang (1954), who included both monatomic and multiatomic cases.
The development of nonlocal elasticity theories from a lattice formulation emerged
more recently, in the 60’s by researchers such as Krumhansl (1965); Kröner and Datta
(1966); Kunin (1966) (see the extensive analysis of Eringen, 2002, which includes a
consistent thermodynamically-based framework of nonlocal theories including the
lattice-based calibration). As pointed out by Dell’Isola et al (2014, 2015), the idea of
nonlocality introduced from particles interaction was already probably anticipated
by Piola during the XIXth century. Strain-based integral nonlocal models generally
lead to the resolution of a complex integro-differential problem, whose mathematical
treatment in the nonlinear range may be mathematically quite difficult. Among the
nonlocal theories, the stress gradient model introduced by Eringen (1983) avoids the
computation of such an integro-differential problem, by preserving the differential
nature of the problem to be solved. This efficient engineering model, which may
be classified as a phenomenological nonlocal model, can be calibrated from the
wave dispersive properties of the axial lattice (Eringen, 1983). Alternatively, low
frequency calibration of such a nonlocal model may be also proposed by Challamel
et al (2015b). These results mainly concern three-dimensional or, as a particular
case, uniaxial lattice and nonlocal media. The nonlocal models investigated in this
paper may be also classified as differential type nonlocal models, in the sense that
the mathematical problem to be solved also avoids integro-differential operators
and mainly used additional gradient operators for introducing the additional length
scale effects. The development of nonlocal beam theories and their fundamental
discrete (or lattice) background is much more recent. An extensible local beam theory,
which includes both bending and shear contributions was developed by Bresse (1859)
for curved elements. Bresse developed a fully consistent bending-shear local beam
theory, based on independent kinematic variables, namely the deflection, the axial
displacement and the rotation for the in- plane behavior of curved beam elements.
The shear correction factor, later introduced by Engesser (1891); Föppl (1897) was
implicitly equal to unity in Bresse’s theory. In his paper dated from 1922 Timoshenko
calibrated the shear correction factor for an elastic beam composed of rectangular
cross section, from the exact two- dimensional wave length solution, also labelled
as Rayleigh-Lamb equation, giving rise to the so-called Bresse-Timoshenko beam
theory (Timoshenko, 1922). The lattice foundation of these engineering beam models,
especially formulated in a nonlocal framework, is still under debate. When restricted
to the bending contribution, Hencky’s model (Hencky, 1920) can be considered as the
paradigmatic lattice model, which may asymptotically converge towards the bending
continuum beam model, namely the Euler-Bernoulli beam model. It has been shown
that this lattice model behaves as a nonlocal Euler-Bernoulli beam model in its linear
range (Challamel et al, 2014)) but also in its nonlinear range, for the post-bifurcation
regime (Challamel et al, 2015a)). A bending/shear lattice model was also shown to
behave as a nonlocal Bresse-Timoshenko beam element (Zhang et al, 2013; Duan
et al, 2013). These results valid for bending/shear lattices have been recently ex-
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tended in the nonlinear range by Kocsis et al (2017). The aim of the present paper
is to generalize these results and to develop a fully consistent axial/shear/bending
lattice, with its nonlocal counterpart, based on a rational introduction of the exten-
sibility effect. Shear effect will be introduced through both Engesser’s approach
(Engesser, 1891) and Haringx’s approach (Haringx, 1942). Analytical solutions will
be presented for the nonlocal extensible shear/beam model and its lattice initial
formulation. A closely related study is the paper of Turco et al (2016) who consid-
ered a generalized two-dimensional Hencky-type system with bending, shear and
extensional springs. Alibert et al (2017) recently presented an extensible Hencky
model in the nonlinear range and investigated in detail the convergence property
of the associated difference scheme, even in the nonlinear range. As an interesting
point concerning the mathematical structure of the difference equations of lattice
mechanics, Maugin (1999) pointed out the link between lattice mechanics and finite
difference methods (as a numerical method) for the associated continuous medium, a
property which is confirmed for beam elements as already mentioned by Silverman
(1951) for Hencky beams (restricted to the bending contribution). We will show that
this property is valid as well for the fully consistent extensible/shear/bending lattice
beam. The fully consistent extensible/shear/bending lattice, which is developed in
this paper, can be viewed as the lattice foundation of a general nonlinear and nonlocal
(Bresse-Timoshenko) beam kinematics model.

24.2 The Mechanical Model

The generalized Hencky bar-chain model is shown in Fig. 24.1 (a). It consists of N
links connected by frictionless hinges. In the unloaded undeformed state, the links
form a rectangle of longer side a0, their longer axes form a straight line which is
the undeformed axis of the linkage of length L = N×a0. The leftmost hinge 0 of
the linkage is fixed, the rightmost hinge N is equipped with a roller. The linkage
is loaded axially by a compressive force P. The links are extensible and shearable,
i.e. they can be elongated and distorted. The tensile stiffness of the links is r, the
shear stiffness is k. The elongated length of the ith link is ai = (1+ εi)a0, with εi
the normal strain in the link, which is constant along the link. The link distortion is
measured by the shear angle γi. The rotation of the axis of link i is

Fig. 24.1 (a) Generalized
Hencky bar-chain under axial
compression with pinned-
pinned ends. (b) A deformed
link with moments in the bend-
ing spring and the resultant of
the normal and shear forces.
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Ψi = θi + γi (24.1)

with θi the rotation of the end sections of the link. The ends of the neighboring
links are interconnected by a rotational spring. If the linkage is a discrete model of
a homogeneous, prismatic beam of bending stiffness EI, shear stiffness κGA, and
normal stiffness EA, then the stiffness of the bending springs is EI/a0, the shear
stiffness of the links is κGAa0, and their tensile stiffness is EAa0.

The material law for the rotational (bending) springs is Mi = EI/a0(θi+1−θi),
with Mi the moment in the ith spring. The material law for elongation is Ni = EAεi,
with Ni the normal force, and the material law for shearing (considering small
displacements at this point) is Vi = κGAγi, with Vi the shear force in link i. This latter
law will be generalized for large displacements depending on the applied finite shear
strain theory later. A deformed link with moments in the bending spring and the
resultant of the normal and shear forces are shown in Fig. 24.1 (b).

In Sect. 24.3 we follow Timoshenko’s finite strain theory and analyse the equi-
librium states, buckling and post-buckling behavior of the discrete system for large
displacements. The continuum counterpart and the continualized nonlocal analogue
of the discrete model are derived and it is revealed that these are the discrete, local
and nonlocal extensible Engesser elastica.

In Sect. 24.4 we do the same analyses using Love’s finite strain theory, leading us
to the discrete, local and nonlocal extensible Haringx elastica.

24.3 Extensible Engesser Elastica

In this section, we implement Timoshenko’s finite strain theory in the discrete model.
First the static behavior of the discrete model is analysed, then the continuum
counterpart of the system is determined and a quasi-continuum is also developed
from the lattice system, following a continualization technique.

24.3.1 Discrete Extensible Engesser Elastica

Figure 24.2 shows a deformed link of the model. The link axis, which is of initial
length a0, becomes ai = (1+ εi)a0 upon stretching, and rotates byΨi = θi + γi. Here
θi can be thought of as a rigid-body-like rotation of the lengthened link, and γi, the
shear strain, measures the distortion of the link. The normal and shear forces of the
ith link, Ni and Vi, are aligned and perpendicular, respectively, to the link axis.

The total potential energy of the structure is the sum of internal and external
potentials:
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Fig. 24.2 Deformation of
the shearable, extensible link
according to Timoshenko’s
finite strain theory
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0aε i

Πtot =
1
2

EAa0

N

∑
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ε2
i +

1
2
κGAa0

N

∑
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γ2
i

+
1
2
· EI

a0

N−1

∑
i=1

(θi+1−θi)
2 +Pa0

N

∑
i=1

(1+ εi)cos(θi + γi) . (24.2)

The dimensionless total potential energy is obtained by dividing Eq. (24.2) by EI/a0:

Π =
χ

2N2

N

∑
i=1

ε2
i +

α
2N2

N

∑
i=1

γ2
i +

1
2

N−1

∑
i=1

(θi+1−θi)
2 +

β
N2

N

∑
i=1

(1+ εi)cos(θi + γi)

(24.3)

Here the following stiffness and load parameters are introduced:

α =
κGAL2

EI
, χ =

AL2

I
, β =

PL2

EI
. (24.4)

The first derivatives of this potential with respect to ε = {ε1,ε2, . . . ,εN},
γ = {γ1,γ2, . . . ,γN}, and θθθ = {θ1,θ2, . . . ,θN} are:

∂Π
∂εi

=
χ

N2 εi +
β
N2 cos(θi + γi) = 0, i = 1,2, . . . ,N, (24.5)

∂Π
∂γi

=
α
N2 γi− β

N2 (1+ εi)sin(θi + γi) = 0, i = 1,2, . . . ,N, (24.6)

∂Π
∂θi

=−(θi+1−2θi +θi−1)− β
N2 (1+ εi)sin(θi + γi) = 0, i = 1,2, . . . ,N.

(24.7)

The trivial equilibrium state is a straight linkage under simple compression:
θi = γi = 0, εi =−β/χ , i = 1, . . . ,N, and β is arbitrary.

Note that Eq (24.5) gives the normal strain of link i,
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εi =−βχ cosΨi. (24.8)

Here β cos(Ψi) is the compressive (nondimensional) normal force. Similarly,
Eq. (24.6) gives the shear strain,

γi =
β
α

(
1− β

χ
cosΨi

)
sinΨi (24.9)

with β sin(Ψi) the (nondimensional) shear force.
Hence, the equation system Eq. (24.5)–(24.7) can be written also by using the

rotation of the link axesΨi (see Eq. (24.1)), by using Eq. (24.7) and the normal and
shear strain equations:

Ψi+1−2Ψi +Ψi−1− β
α

{(
1− β

χ
cosΨi+1

)
sinΨi+1

−2
(

1− β
χ

cosΨi

)
sinΨi +

(
1− β

χ
cosΨi−1

)
sinΨi−1

}
+

β
N2

(
1− β

χ
cosΨi

)
sinΨi = 0, i = 1,2, . . . ,N.

(24.10)

The pinned-pinned boundary conditions are:Ψ0 =Ψ1 andΨN =ΨN+1.
Summing Eq. (24.10) for all i yields:

β
N2

N

∑
i=1

(
1− β

χ
cosΨi

)
sinΨi = 0. (24.11)

24.3.1.1 Buckling Loads

The N–by–N Jacobian of Eq. (24.10) around the trivial equilibrium state is:

JJJ =

{
1− β

α

(
1− β

χ

)}
CCC− β

N2

(
1− β

χ

)
III. (24.12)

Here III is the N–by–N identity matrix, while CCC is the N–by–N modified continuant
matrix defined as Ci,i = 2 (except for C1,1 = CN,N = 1), Ci,i+1 = Ci,i−1 = −1, and
zero otherwise. Based on Eq. (24.12) one can reformulate the linearized difference
equation as:[

1− β
α

(
1− β

χ

)]
(Ψi+1−2Ψi +Ψi−1)+

β
N2

(
1− β

χ

)
Ψi = 0. (24.13)

In a critical equilibrium state an eigenvalue of Eq. (24.12) is zero. Hence its
determinant is zero, which holds if
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β
N2

(
1− β

χ

)
/

{
1− β

α

(
1− β

χ

)}
is an eigenvalue of CCC. According to Rózsa (1991), the eigenvalues of CCC are

λi = 4sin2 iπ
2N

, i = 0,1, . . . ,N−1. (24.14)

It leads to the nondimensional buckling loads of the discrete extensible Engesser
elastica:

β cr
2i,2i+1 =

χ
2

⎛⎜⎝1±

√√√√√1−4
4N2 sin2 iπ

2N
χ

1+ 4N2 sin2 iπ
2N

α

⎞⎟⎠ , i = 0,1, . . . ,N−1. (24.15)

For i = 0, there are two critical loads. One is β = χ , which means the linkage gets
fully compressed under the axial load, while the other, β = 0, corresponds to free
rigid-body-like rotation of the structure. However, the latter solution is prevented by
the supports. For i = 1,2, . . . ,N−1 there are 2(N−1) compressive buckling loads if
the discriminant in Eq. (24.15) is positive.

The fundamental buckling load is:

βdeE =
χ
2

⎛⎜⎝1−

√√√√√1−4
4N2 sin2 π

2N
χ

1+ 4N2 sin2 π
2N

α

⎞⎟⎠ , (24.16)

which is a new result, to the best of our knowledge. (The subscript “deE” refers
to “discrete extensible Engesser”.) Based on Eq. (24.13) one can also obtain the
fundamental buckling mode:

Ψj =Φ cos
[
π
N

(
j− 1

2

)]
, j = 1,2, . . . ,N. (24.17)

Note that this fundamental buckling load exists if the discriminant is non-negative,
i.e. if

χ

(
1+

4N2 sin2 π
2N

α

)
≥ 16N2 sin2 π

2N
. (24.18)

For large N it yields χ(1+π2/α)≥ 4π2.
For an unshearable column, i.e. for a discrete extensible elastica, the buckling

load is

βdee =
χ
2

⎛⎝1−
√

1− 16N2 sin2 π
2N

χ

⎞⎠ , (24.19)
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and it exists if χ ≥ 4π2. (Here the subscript “dee” refers to “discrete extensible
elastica”.) For the inextensible case, i.e. for χ → ∞, we asymptotically find:

βdE =
4N2 sin2 π

2N

1+ 4N2 sin2 π
2N

α

, (24.20)

which was already obtained by Zhang et al (2013) for a discrete Timoshenko column
(see also Kocsis et al, 2017). For the inextensible and unshearable case (χ → ∞ and
α→ ∞), the solution of Wang (1951, 1953) is found for the Hencky bar-chain model:

βHencky = 4N2 sin2 π
2N

. (24.21)

24.3.1.2 Analytical Solution for Short Linkages

For N = 2 analytical solution can be given, at least for reflection symmetric post-
buckled configurations. The equilibrium equations are Eq (24.10) with N = 2:

Ψ2−Ψ1− β
α

{(
1− β

χ
cosΨ2

)
sinΨ2−

(
1− β

χ
cosΨ1

)
sinΨ1

}
+

β
N2

(
1− β

χ
cosΨ1

)
sinΨ1 = 0, and (24.22)

−Ψ2 +Ψ1− β
α

{
−
(

1− β
χ

cosΨ2

)
sinΨ2 +

(
1− β

χ
cosΨ1

)
sinΨ1

}
+

β
N2

(
1− β

χ
cosΨ2

)
sinΨ2 = 0. (24.23)

The sum of these equations, Eq. (24.11) at N = 2, is solved by any reflection sym-
metric configuration:

Ψ2 =−Ψ1−2kπ. (24.24)

Equation (24.23) with the above solution reads:

Ψ1 + kπ− β
α

(
1− β

χ
cosΨ1

)
sinΨ1− β

2N2

(
1− β

χ
cosΨ1

)
sinΨ1 = 0. (24.25)

Finally, the equilibrium paths are given by:

β =
χ

2cosψ1

⎛⎜⎝1±

√√√√1−
32
χ

1+ 8
α
(Ψ1 + kπ)cotΨ1

⎞⎟⎠ . (24.26)

Note that the above equation is singular atΨ1 = 0. An asymptotic expansion yields
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β =
χ

2cosψ1

⎛⎜⎜⎝1±
√√√√√1−

32
χ

1+ 8
α
· cosΨ1

1+
∞
∑

m=1
(−1)m Ψ2m

1
(2m+1)!

⎞⎟⎟⎠ (24.27)

for k = 0, which atΨ1 = 0 gives the buckling loads:

βN=2
deE =

χ
2

⎛⎜⎝1±

√√√√1−
32
χ

1+ 8
α

⎞⎟⎠ . (24.28)

This coincides with Eq. (24.15) at N = 2, i = 1.
The buckling load exists if the discriminant is positive, i.e. if 8χ/α/(32−χ)> 1.

By fixing α = 10, the above condition fulfills if χ > 160/9 = 17.7778. This case is
shown on top left of Fig. 24.3, by plotting Eq. (24.26) for k =−5, · · · ,4. Here the
two critical loads coincide at β = χ/2. If the normal stiffness parameter is slightly
larger, for example χ = 160/8 = 20, then these two critical loads separate, which
can be well observed on top right of Fig. 24.3. If the normal stiffness parameter is
slightly smaller, for example χ = 160/10 = 16, then both of these two critical loads

Fig. 24.3: Equilibrium paths of the discrete, extensible Engesser elastica of N = 2
links, for k =−5, · · · ,4. Values of α and χ are written on the top of the figures.
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vanish, as shown on bottom left of Fig. 24.3. The solution for a linkage with large
tensile stiffness (χ = 1000) is shown on bottom right of Fig. 24.3.

On the two top figures of Fig. 24.3, it can be seen that the first post-buckling
path is not stable. We can determine the condition for the stability of the first post-
buckling path as follows. We assume that the fundamental buckling load exists (i.e.
the discriminant in Eq. (24.28) is positive). The first derivative of Eq. (24.27) with
respect toΨ1, evaluated atΨ1 = 0, yields zero, hence the bifurcations are symmetric.
The second derivative of Eq. (24.27), with subtraction, with respect toΨ1, evaluated
atΨ1 = 0 yields:

∂ 2β
∂Ψ 2

1
(Ψ1 = 0) =

χ
2

(
1−
√

1− 32/χ
1+8/α

)
− 16

1+8/α
· 1

3
√

1− 32/χ
1+8/α

. (24.29)

If the above curvature of the first post-buckling path is positive, then the post-buckling
path is stable. If it is negative, the first post-buckling path is unstable. The separator
between the two states can be obtained by finding the roots of the above equation
(i.e., by solving ∂ 2β/∂Ψ 2

1 (Ψ1 = 0) = 0). This yields

χ
(

1+
8
α

)
=

128
3

. (24.30)

If χ (1+8/α)> 128/3, then the first post-buckling path is stable, if χ (1+8/α)<
128/3, then it is unstable. For the top left figure of Fig. 24.3, χ(1+8/α) = 32, and
for the top right figure it is 36. Both are smaller than 128/3 = 42.667, and the first
post buckling path is unstable in both cases. It can be clearly seen that snapping can
occur in these two cases. For the bottom right figure of Fig. 24.3 χ(1+8/α) = 1800,
which is larger than 128/3, and the first post-buckling path is stable.

For N = 3 a similar approach can be used. The geometrically exact equilibrium
equation of the discrete Engesser elastica of N = 3 links is obtained from Eq. (24.10)
with N = 3. Equation (24.11) with N = 3 is satisfied by any reflection symmetric
configuration:

Ψ3 =−Ψ1−2kπ, Ψ2 =−mπ. (24.31)

The geometrically exact solution for the equilibrium states can be developed from
the equilibrium equations:

β =
χ

2cosψ1

⎛⎜⎝1±

√√√√1−
36
χ

1+ 9
α
(Ψ1 +mπ)cotΨ1

⎞⎟⎠ . (24.32)

With an asymptotic expansion the buckling loads are obtained:
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βN=3
deE =

χ
2

⎛⎜⎝1±

√√√√1−
36
χ

1+ 9
α

⎞⎟⎠ . (24.33)

This coincides with Eq. (24.15) at N = 3, i = 1. The buckling load exists if the
discriminant is positive, i.e. if 9χ/α/(36− χ) > 1. By fixing α = 10, the above
condition fulfills if χ > 360/19= 18.9474. This case is shown on top left of Fig. 24.4,
by plotting Eq. (24.32) for k =−5, · · · ,4.

Here, the two critical loads coincide at β = χ/2. If the normal stiffness parameter
is slightly larger, for example χ = 360/18= 20, then these two critical loads separate,
which can be well observed on top right of Fig. 24.4. If the normal stiffness parameter
is slightly smaller, for example χ = 360/20 = 18, then both of these two critical
loads vanish, as shown on bottom left of Fig. 24.4. Equilibrium paths for a linkage
with large tensile stiffness (χ = 1000) are shown on bottom right of Fig. 24.4.

On the two top figures of Fig. 24.4, it can be seen that the first post-buckling
path is not stable. The condition for stability of the first post-buckling path can be
developed. The first derivative of Eq. (24.32) with respect toΨ1, expanded up to the
second order terms, and evaluated atΨ1 = 0 yields zero, hence the bifurcations are
symmetric. The second derivative of Eq. (24.32) with respect toΨ1, expanded up to
the second order terms, with subtraction, evaluated atΨ1 = 0 yields:

Fig. 24.4: Equilibrium paths of the discrete, extensible Engesser elastica of N = 3
links, for k =−5, · · · ,4. Values of α and χ are noted on the top of the figures.
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∂ 2β
∂Ψ 2

1
(Ψ1 = 0) =

χ
2

(
1−
√

1− 36/χ
1+9/α

)
− 6

1+9/α
· 1√

1− 36/χ
1+9/α

. (24.34)

If the above curvature of the first post-buckling path is positive, then the post-buckling
path is stable. If it is negative, the first post-buckling path is unstable. The separator
between the two states can be obtained by finding the roots of the above equation. It
yields

χ
(

1+
9
α

)
= 48. (24.35)

If χ (1+9/α)> 48, then the first post-buckling path is stable, if χ (1+9/α)< 48,
then it is unstable. For the top left figure of Fig. 24.4, χ(1+9/α) = 36, and for the
top right figure, it is 38.Both are smaller than 48, and the first post buckling path is
unstable in both cases. It can be clearly seen that snapping can occur in these two
cases. For the bottom right figure of Fig. 24.4, χ(1+9/α) = 1900, which is larger
than 48, and the first post-buckling path is stable. (The second post-buckling path is
well above β = 100.)

We can conjecture that the stability limit of the first post-buckling path of the
discrete Engesser elastica is[

1+
4N2

α
sin2
( π

2N

)] 3χ
16

= 4N2 sin2
( π

2N

)
. (24.36)

24.3.1.3 Numerical Solution

Numerically computed equilibrium paths of the discrete extensible Engesser elastica
are shown in Fig. 24.5 for N = 2, and in Fig. 24.6 for N = 3 in gray color. For
completeness the analytical solutions for symmetric configurations are also shown by
black curves. It can be seen that there are a vast amount of equilibrium states which
are not symmetric, hence not found with the analytical approach. The numerical
results are obtained with the simplex scanning algorithm (Gáspár et al, 1997).

24.3.2 Asymptotic Limit: the Local Extensible Engesser Elastica

Equation (24.10) in the asymptotic limit, N→ ∞ and a0→ 0, yields the governing
equation of the local (continuum) extensible Engesser elastica:

d2

dξ 2

(
Ψ − β

α
sinΨ +

β 2

2αχ
sin2Ψ

)
+β sinΨ − β 2

2χ
sin2Ψ = 0. (24.37)
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Fig. 24.5: Equilibrium paths of the discrete, extensible Engesser elastica of N = 2
links. Analytical results are shown by black curves (for k =−5, · · · ,4), numerical
results are shown by gray color. Scanned domain of the angleΨ2 is [−10π,10π]
for the numerical algorithm. Values of α and χ are written on the top of the figures.

Here ξ = s/L is the nondimensional arc-length parameter andΨ(ξ ) = θ(ξ )+ γ(ξ ).
Equation (24.37) can also be written as:[

1− β
α

(
cosΨ − β

χ
cos(2Ψ)

)]
d2Ψ
dξ 2

− β
α

(
2β
χ

sin(2Ψ)− sinΨ
)(

dΨ
dξ

)2

+β
(

1− β
χ

cosΨ
)

sinΨ = 0.
(24.38)

This geometrically exact differential equation of the continuous extensible Engesser
elastica has not been presented yet in the literature, to the best of our knowledge.

In order to obtain the buckling loads of the local continuous extensible Engesser
elastica, Eq. (24.37) is linearized:(

1− λ
α

)
d2Ψ
dξ 2 +λΨ = 0, with λ = β

(
1− β

χ

)
, (24.39)
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Fig. 24.6: Equilibrium paths of the discrete, extensible Engesser elastica of N = 3
links. Analytical results are shown by black curves (for k =−5, · · · ,4), numerical
results are shown by gray color. Scanned domain of the anglesΨ2,Ψ3 is [−7π,7π]
for the numerical solution. Values of α and χ are noted on the top of the figures.

with pinned-pinned boundary conditions dΨ/dξ (0) = 0 and dΨ/dξ (1) = 0. It leads
to the buckling modes

Ψr(ξ ) = Ar cos(rπξ ), (24.40)

and to the nondimensional buckling load parameters:

βleE,r =
χ
2

⎛⎜⎝1±

√√√√1−4
r2π2

χ

1+ r2π2

α

⎞⎟⎠ . (24.41)

(With subscript “leE” referring to “local extensible Engesser”.) Here r2π2 are the
buckling load parameters of the local elastica (i.e. the nondimensional Euler forces).
The fundamental buckling load is obtained with r = 1,

βleE =
χ
2

⎛⎜⎝1±

√√√√1−4
π2

χ

1+ π2

α

⎞⎟⎠ . (24.42)
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This equation was first obtained by Ziegler (see Eq. (5.14) of Ziegler, 1982).
This fundamental buckling load exists if the discriminant is non-negative, i.e. if

χ
(

1+
π2

α

)
≥ 4π2, (24.43)

which can also be obtained from Eq. (24.18) with N→ ∞. Considering Eq. (24.4)
the (dimensional) fundamental buckling load of the extensible Engesser elastica is:

PleE =
EA
2

⎛⎝1−
√√√√1−4

PE
EA

1+ PE
κGA

⎞⎠ (24.44)

Here PE is the Euler force.
For infinite normal stiffness (χ → ∞) Eq. (24.38) yields(

1− β
α

cosΨ
)

d2Ψ
dξ 2 +

β
α

sinΨ
(

dΨ
dξ

)2

+β sinΨ = 0. (24.45)

It is the equation of the (inextensible) Engesser elastica, already obtained by Atanack-
ovic (see Eq. (3.3.57) of Atanackovic, 1997) and also given by Kocsis et al (2017).
The Engesser solution (Engesser, 1891) can be obtained from Eq. (24.42) in the
inextensible limit χ → ∞:

βlE =
π2

1+ π2

α

. (24.46)

This load always exists. (The subscript “lE” refers to “local Engesser”.)
For infinite shear stiffness (α → ∞) Eq. (24.38) yields

d2Ψ
dξ 2 +β

(
1− β

χ
cosΨ

)
sinΨ = 0. (24.47)

This extensible elastica equation has been obtained by Pflüger (1964); Atanackovic
(1997); Magnusson et al (2001). See also special cases of Koiter (2009); Goto et al
(1990); Attard (2003); Humer (2013). The fundamental buckling load parameter of
the extensible elastica is obtained in the limit α → ∞:

βlee =
χ
2

(
1±
√

1− 4π2

χ

)
. (24.48)

(With subscript “lee” referring to “local extensible elastica”.) The buckling load
Eq. (24.48) exists if χ ≥ 4π2. Euler’s critical force can be obtained in the inextensible,
unshearable limit (χ → ∞ and α → ∞).

Asymptotic solutions in the post-buckling range can be derived based on a Taylor
expansion of the load parameter and the rotation field, as extensively used by Koiter
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(1963, 2009). The derivation is given in Appendix A. Based on that, the limit between
the stable and the unstable post-bifurcation branch is(

1+
π2

α

)
3χ
16

= π2. (24.49)

Note that it is the continuum limit of Eq. (24.36). For the unshearable case
(extensible elastica), the critical parameter for normal stiffness, χ = 16π2/3, has
been obtained by Atanackovic (1997) and Magnusson et al (2001), which validates
our results in the limit of α → ∞.

24.3.3 Continualized Nonlocal Extensible Engesser Elastica

Introducing the Taylor expansion of a rotational field ω(ξ ) of nondimensional
coordinate ξ = x/L,

ω
(
ξ +

1
N

)
=

∞

∑
k=0

dk

dξ k ω(ξ )

k!

(
1
N

)k

= e
1
N

d
dξ ω(ξ ), (24.50)

and using a Padé approximant of order [2,2], the following identity can be written:

ωi+1−2ωi +ωi−1 = ω
(
ξ +

1
N

)
−2ω(ξ )+ω

(
ξ − 1

N

)

= 4sinh2
(

1
2N

d
dξ

)
ω(ξ ) =

1
N2 ·

d2

dξ 2

1− 1
12N2

d2

dξ 2

ω(ξ )+ . . . .

(24.51)

Similarly,

sinωi+1−2sinωi + sinωi−1 = 4sinh2
(

1
2N

d
dξ

)
sinω(ξ )

=
1

N2 ·
d2

dξ 2

1− 1
12N2

d2

dξ 2

sinω(ξ )+ . . . . (24.52)

Based on this formulae, the difference equation system Eq. (24.10) can be contin-
ualized. It yields the geometrically exact differential equation of the continualized
nonlocal extensible Engesser elastica:
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d2

dξ 2

{
Ψ −β

(
1
α
+

1
12N2

)
sinΨ +

β 2

2χ

(
1
α
+

1
12N2

)
sin2Ψ

}
+β sinΨ − β 2

2χ
sin2Ψ = 0. (24.53)

The linearization of the above nonlinear differential equation leads to:{
1−λ

(
1
α
+

1
12N2

)}
d2Ψ
dξ 2 +λΨ = 0, with λ = β

(
1− β

χ

)
. (24.54)

In order to determine the buckling loads, we can use either local or nonlocal boundary
conditions. See for example Challamel et al (2015a) for a discussion on local and
nonlocal boundary conditions of the nonlocal elastica.

By using local pinned-pinned boundary conditions, i.e.Ψ ′(0) =Ψ ′(1) = 0, the
buckling modes are the same as Eq. (24.40) and the nondimensional buckling load
parameters of the nonlocal extensible Engesser elastica are:

βnleE,r =
χ
2

⎛⎜⎝1±

√√√√√1−4
r2π2

χ

1+
(

1
α + 1

12N2

)
r2π2

⎞⎟⎠ . (24.55)

Here “nleE” refers to “nonlocal extensible Engesser”. The nonlocal pinned-pinned
boundary conditions are:Ψ(0) =Ψ(1/N) andΨ(1) =Ψ(1+1/N).

24.3.3.1 Numerical Solution: Discrete Versus Nonlocal Extensible Engesser

Elastica

The first post-buckling paths of the discrete and the nonlocal Engesser elastica
are shown in Fig. 24.7 for various numbers of links N. The results are obtained
numerically with the simplex path-following algorithm (Domokos and Gáspár, 1995).
It can be seen that the path computed for the nonlocal model follows well the path of
the corresponding discrete model. Hence the scale effect of the lattice system is well
captured by the nonlocal model also for large displacements, at least as far as the
first post-buckling path is considered, which has the greatest importance in practice.

24.4 Extensible Haringx Elastica

In this section we implement Love’s finite strain theory in the discrete model. First
the static behavior of the discrete model is analysed, then the continuum counterpart
of the system is determined and a quasi-continuum is also developed from the lattice
system following a continualization technique.
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Fig. 24.7: First post-buckling equilibrium path of the nonlocal versus discrete
extensible Engesser elastica of N = 2,3,4,5,7,8,9 links (α = 10, χ = 20).
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24.4.1 Discrete Extensible Haringx Elastica

Figure 24.8 sketches a deformed link of the generalized Hencky bar-chain model.
The link is rotated as a rigid body by the angle θi, then distorted by the shear angle
γi. According to Love’s finite shear strain theory (Love, 1944), the area of the link
is preserved under shearing. The elongation of the link occurs perpendicular to its
end sections, and not along the link axis as in the case of Timoshenko’s finite strains.
Hence, a link gets longer by a0(1+εi)/cos γ̃i, where γ̃i is obtained from the following
equation: tanγi = (1+ εi) tan γ̃i. Here εi and γi are the normal and shear strains of the
ith link, respectively.

Hence, the nondimensional potential energy of the discrete model is:

Π =
χ

2N2

N

∑
i=1

ε2
i +

α
2N2

N

∑
i=1

tan2 γi +
1
2

N−1

∑
i=1

(θi+1−θi)
2

+
β
N2

N

∑
i=1
{(1+ εi)cosθi− tanγi sinθi} . (24.56)

Here the same load and stiffness parameters are used as in Eq. (24.4). The first
derivatives of this potential with respect to θθθ , γ , and ε are:

∂Π
∂εi

=
χ

N2 εi +
β
N2 cosθi = 0, i = 1,2, . . . ,N, (24.57)

∂Π
∂γi

=
α
N2 tanγi− β

N2 sinθi

cos2 γi
= 0, i = 1,2, . . . ,N, (24.58)

∂Π
∂θi

=−(θi+1−2θi +θi−1)− β
N2 {(1+ εi)sinθi + tanγi cosθi}=0, i = 1,2, . . . ,N.

(24.59)

Fig. 24.8 Deformation of
a shearable, extensible link
according to Love’s finite
strain theory
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The trivial equilibrium state is a straight linkage under simple compression: θi =
γi = 0, εi =−β/χ (i = 1,2, . . . ,N), and β is arbitrary.

Note that (24.57) gives the normal strain, εi, due to the compressive normal force
β cosθi:

εi =−βχ cosθi, (24.60)

while the shear strain γi can be computed from Eq. (24.58):

γi = arctan
(
β
α

sinθi

)
. (24.61)

By using these strains the equilibrium equations can be rewritten from Eq. (24.59)
for the rotations θi:

θi+1−2θi +θi−1 +
β
N2

{
1+β

(
1
α
− 1
χ

)
cosθi

}
sinθi = 0, i = 1,2, . . . ,N.

(24.62)

Summing the above equation for all i, and taking into account the boundary condition
θ0 = θ1 and θn = θn+1 yield:

β
N2

N

∑
i=1

{
1+β

(
1
α
− 1
χ

)
cosθi

}
sinθi = 0. (24.63)

24.4.1.1 Buckling Loads

The N–by–N Jacobian of Eq. (24.62) around the trivial equilibrium state is:

JJJ =−CCC+
β
N2

(
1− β

χ
+
β
α

)
III. (24.64)

Based on Eq. (24.64), one can reformulate the linearized difference equation as:

θi+1−2θi +θi−1 +
β
N2

[
1+β

(
1
α
− 1
χ

)]
θi = 0. (24.65)

In a critical equilibrium state the determinant of Eq. (24.64) is zero, i.e
β

N2

(
1− β

χ + β
α

)
is an eigenvalue of CCC (given already by Eq. (24.14)). The nondimen-

sional buckling loads of the discrete, extensible Haringx elastica is:

β cr
2i,2i+1 =

χ α
2(χ−α)

(
±
√

1+16
χ−α
χ α

N2 sin2 iπ
2N
−1

)
, i = 0,1, . . . ,N−1.

(24.66)



24 On the Foundation of a Generalized Nonlocal Extensible Shear Beam Model 471

The above formula at i = 0, with subtraction, leads to a pure shear buckling mode:

β shear
deH =

χ α
α−χ

. (24.67)

(With “deH” referring to “discrete extensible Haringx”.) Note that this load may be
negative, hence the buckling occurs under tension, if χ > α , i.e. if the links are easier
to shear than to shorten1. Meanwhile, the shear buckling occurs under compression,
if the links are easier to shorten than to shear. However, this compressive pure shear
buckling cannot be achieved, since it is physically inadmissible: it requires a larger
force than needed to the total compression of the links.

Besides this shear buckling mode, there are at most 2(N− 1) buckling loads,
given by Eq. (24.66) with i = 1,2, . . . ,N − 1. At most, because the discriminant
can be negative. If χ > α , then half of these buckling loads are tensile, the other
half is compressive. If χ < α , then all the buckling loads are compressive (but not
necessarily physically admissible). Possessing tensile buckling loads is a unique
feature of Haringx-type columns, see for example Kocsis (2016); Kocsis et al (2017).
(Note that Genovese (2017) also found a tension shear buckling phenomenon.)

The fundamental compressive buckling load is Eq. (24.66) at i = 1 with addition:

βmixed
deH =

χ α
2(χ−α)

(√
1+16

χ−α
χ α

N2 sin2 π
2N
−1
)
, (24.68)

which exists if

1+16N2 χ−α
χ α

sin2 π
2N
≥ 0. (24.69)

Based on Eq. (24.65), one can also derive the fundamental buckling mode:

θdeH, j =Φ cos
[
π
N

(
j− 1

2

)]
, j = 1,2, . . . ,N. (24.70)

For the inextensible case (χ → ∞), we asymptotically find

βdH =−α
2

(
1±
√

1+16N2 1
α

sin2 π
2N

)
, (24.71)

which has been obtained by Kocsis et al (2017). For the unshearable case (α → ∞),
we find the same buckling load of a discrete extensible elastica as Eq. (24.19). For
the inextensible, unshearable case (χ → ∞ and α → ∞) we obtain Eq. (24.21), the
solution of Wang (1951, 1953) for Hencky-chains (Hencky, 1920).

1 Note that Domokos (1992) also found a pure shear buckling mode under tension for a discrete
model of a cord.
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24.4.1.2 Analytical Solution for Short Linkages

For N = 2 analytical solution can be given, at least for equilibrium configurations
possessing symmetric post-buckling states. The equation system of the discrete
extensible Engesser elastica is:

θ2−θ1 +
β
4

{(
1− β

χ
cosθ1

)
+
β
α

cosθ1

}
sinθ1 = 0, (24.72)

−θ2 +θ1 +
β
4

{(
1− β

χ
cosθ2

)
+
β
α

cosθ2

}
sinθ2 = 0. (24.73)

The sum of these equations, Eq. (24.63) at N = 2, is solved by{(
1− β

χ
cosθ1

)
+
β
α

cosθ1

}
sinθ1 +

{(
1− β

χ
cosθ2

)
+
β
α

cosθ2

}
sinθ2 = 0.

(24.74)

A solution set of this equation is

θ2 =−θ1−2kπ, (24.75)

Eq. (24.72) with the above solution reads:

−θ1− kπ+
β
16

{
2sinθ1 +β

(
1
α
− 1
χ

)
sin2θ1

}
= 0. (24.76)

Finally, the equilibrium paths are given by:

β =
χ α

2(χ−α)cosθ1

(
−1±

√
1+32

χ−α
χ α

· (θ1 + kπ)cotθ1

)
. (24.77)

Note that the above equation is singular atΨ1 = 0. An asymptotic expansion yields

β =
χ α

2(χ−α)cosθ1

⎛⎜⎜⎝−1±
√√√√√1+32

χ−α
χ α

· cosθ1

1+
∞
∑

m=1
(−1)m (θ1)2m

(2m+1)!

⎞⎟⎟⎠ . (24.78)

Equation (24.78) at k = 0 and θ1 = 0 gives the fundamental buckling loads,

βN=2
deH =

χ α
2(χ−α)

(
−1±

√
1+32

χ−α
χ α

)
, (24.79)

which coincide with Eq. (24.66) at N = 2, i = 1. These buckling loads exist if the
discriminant is positive, i.e. if αχ > 32(α − χ). By fixing α = 10, this condition
fulfills if χ > 320/42 = 7.6190. This case is shown on top left of Fig. 24.9, which is
obtained by plotting Eq. (24.77) for k =−5, · · · ,4.
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Here the two critical loads coincide at β = χα/2/(α−χ). If the normal stiffness
parameter is slightly larger, for example χ = 8, then these two critical loads separate,
which can be well observed on top right of Figure 24.9. If the normal stiffness
parameter is slightly smaller, for example χ = 7, then both of these two critical
loads vanish, as shown on bottom left of Figure 24.9. Finally, if the tensile stiffness
parameter χ is larger than the shear stiffness parameter α , then one critical force is
tensile and the other one is compressive. The compressive post-buckling branch and
other higher-order equilibrium paths can be seen on bottom right of Figure 24.9 for
α = 10, χ = 20. The second derivative of Eq. (24.78) with respect to θ1, expanded
up to the second order, and evaluated at θ1 = 0 yields:

∂ 2β
∂θ 2

1
(θ1 = 0) =

p
6(p+32)

{
(3p+64)

√
p+32

p
−3(p+32)

}
, p =

χα
χ−α .

(24.80)

If the above curvature of the first post-buckling path is positive, the post-buckling
path is stable, if it is negative, the post-buckling path is unstable. The separator
between the two states can be obtained by finding the roots of the above equation,
which yields

Fig. 24.9: Equilibrium paths of the discrete, extensible Haringx elastica of N = 2
links, for k =−5, · · · ,4. Values of α and χ are written on the top of the figures.
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Fig. 24.10: Equilibrium paths of the discrete, extensible Haringx elastica of N = 3
links, for k =−5, · · · ,4. Values of α and χ are given on the top of the figures.

χα
α−χ

=
128

3
. (24.81)

For N = 3 a similar procedure can be followed. Eq. (24.63) at N = 3 is solved by

θ3 =−θ1−2kπ, θ2 =−mπ. (24.82)

Then the equilibrium paths can be derived from the equilibrium equations (24.62):

β =
χ α

2(χ−α)cosθ1

(
−1±

√
1+36

χ−α
χ α

· (θ1 + kπ)cotθ1

)
. (24.83)

For k = 0 and θ1 = 0, after an asymptotic expansion, the fundamental buckling loads
can be obtained,

βN=3
deH =

χ α
2(χ−α)

(
−1±

√
1+36

χ−α
χ α

)
, (24.84)

which coincide with Eq. (24.66) at N = 3, i = 1. The buckling load exists if the
discriminant is positive, i.e. if αχ > 36(α − χ). By fixing α = 10, this condition
fulfills if χ > 360/46= 7.8261. Figure 24.10 shows the equilibrium paths for various
values of α and χ .
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The second derivative of Eq. (24.83) at θ1 = 0 leads to:

∂ 2β
∂θ 2

1
(θ1 = 0) =

p
2(p+36)

{
(p+24)

√
p+36

p
− (p+36)

}
, p =

χα
χ−α .

(24.85)

The separator between stable and unstable first post-buckling paths can be found by
finding the roots of the above equation:

χα
α−χ

= 48. (24.86)

We conjecture that the stability limit of the first post-buckling path of the discrete
Haringx elastica is

χα
α−χ

=
64
3

N2 sin2
( π

2N

)
. (24.87)

24.4.1.3 Numerical Solution

Numerically computed equilibrium paths of the discrete extensible Haringx elastica
are shown in Fig. 24.11 for N = 2, and in Fig. 24.12 for N = 3 in gray color.

For completeness, the analytical solutions obtained for symmetric configurations
are also shown by black curves. It can be seen that there are a vast amount of
equilibrium states which are not symmetric, hence not found by the analytical
approach. The numerical results are obtained with the simplex scanning algorithm
(Gáspár et al, 1997).

24.4.2 Asymptotic Limit: the Local Extensible Haringx Elastica

The local Haringx elastica can be asymptotically obtained from Eq. (24.62):

d2θ
dξ 2 +β

{
1+β

(
1
α
− 1
χ

)
cosθ

}
sinθ = 0, (24.88)

with ξ = s/L being the nondimensional arc-length parameter. The continuous exten-
sible Haringx elastica has already been studied by Goto et al (1990); Atanackovic
(1997); Attard (2003); Koiter (2009); Humer (2013).

Now we discuss special cases of Eq. (24.88). For infinite normal stiffness, i.e. for
χ → ∞, Eq. (24.88) yields

d2θ
dξ 2 +β

(
1+

β
α

cosθ
)

sinθ = 0, (24.89)
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Fig. 24.11: Equilibrium paths of the discrete, extensible Engesser elastica of N = 2
links. Analytical results are shown by black curves (for k =−5, · · · ,4), numerical
results are shown by gray color. Scanned domain of the angleΨ2 is [−10π,10π]
for the numerics. Values of α and χ are noted on the top of the figures.

the Haringx elastica equation, which has been already investigated by Goto et al
(1990); Atanackovic (1997); Huang and Kardomateas (2002); Attard (2003); Koiter
(2009); Humer (2013) (see also the discussion after Eq. (58) of Kocsis et al (2017)).
For infinite shear stiffness, i.e. for α → ∞, Eq. (24.88) leads to

d2θ
dξ 2 +β

(
1− β

χ
cosθ

)
sinθ = 0, (24.90)

the extensible elastica equation, which has been obtained by Pflüger (1964); Goto
et al (1990); Atanackovic (1997); Magnusson et al (2001). The Euler elastica (Euler,
1744) equation can be asymptotically obtained from Eq. (24.88) as χ → ∞ and
α → ∞:

d2θ
dξ 2 +β sinθ = 0. (24.91)

The linearized differential equation of the extensible Haringx elastica, Eq. (24.88),
is:
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Fig. 24.12: Equilibrium paths of the discrete, extensible Haringx elastica of N = 3
links. Analytical results are shown by black curves (for k =−5, · · · ,4), numerical
results are shown by gray color. Scanned domain of the anglesΨ2,Ψ3 is [−7π,7π]
for the numerical solution. Values of α and χ are given on the top of the figures.

d2θ
dξ 2 +β

{
1+β

(
1
α
− 1
χ

)}
θ = 0, (24.92)

with pinned-pinned boundary conditions dθ/dξ (0) = 0 and dθ/dξ (1) = 0. The
buckling modes are

θr(ξ ) = Ar cos(rπξ ), (24.93)

and the nondimensional buckling load parameters of the continuous extensible
Haringx elastica are:

βleH,r =
χα

2(χ−α)
(
−1±

√
1+4

χ−α
χα

r2π2

)
. (24.94)

(With subscript “leH” referring to “local extensible Haringx”.) Here r2π2 is the
buckling load parameter of the Euler elastica. For r = 0 a pure shear buckling load
of the local continuum is obtained:

βleH,shear =
χα

α−χ
. (24.95)
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This is the same as for the discrete version, with the same conclusions: it physically
exists if the column is softer for shearing than for tension/compression, and it occurs
then under tension. For r = 1 the fundamental buckling load parameter of mixed
(flexural, normal and shear) buckling modes can be obtained:

βleH =
χα

2(χ−α)
(
−1±

√
1+4

χ−α
χα

π2

)
. (24.96)

These loads exist if the discriminant is positive, i.e. if 1+ 4π2(χ−α)/(χα) ≥ 0,
and they can be both compressive, or one can be tensile and one compressive (if the
column is softer for shearing than for tension/compression). Eq. (24.96) was first
obtained by Reissner (1982). Considering Eq. (24.4), the dimensional buckling load
of pure shear buckling mode of the continuous extensible Haringx elastica is

Pshear
leH =

GA ·EA
GA−EA

(24.97)

while its fundamental compressive buckling load of mixed deformations is:

PleH =
κGA

2
· EA

EA−κGA

(√
1+4

EA−κGA
EA

· PE

κGA
−1

)
. (24.98)

Here PE is Euler’s critical force. Eq. (24.98) coincides with the results of Kocsis
(2016) for discrete planar Cosserat rods.

For the unshearable case, α → ∞, the same buckling load is found as Eq. (24.48).
The original solution of Haringx (1942) is obtained in the inextensible limit, χ → ∞:

βlH =−α
2

(
1±
√

1+
4π2

α

)
. (24.99)

Finally, Euler’s critical force is obtained in the unshearable, inextensible limit.
Asymptotic solutions in the post-buckling range are derived in Appendix B.
Based on that derivation we can conclude that for χα/(α−χ) ∈ [4π2,16π2/3

]
the post-bifurcation path is unstable, and for χα/(α−χ) ≥ 16π2/3 it is stable.
Hence the limit between stable and unstable post-bifurcation branch of the continuous
Haringx elastica is

χα
α−χ

=
16π2

3
, (24.100)

which is the asymptotic limit of Eq. (24.87). For unshearable columns, this critical
parameter is χ = 16π2/3, as already obtained by Magnusson et al (2001). In summary,
the critical parameters at the boundary of stable and unstable responses are given for
the extensible Engesser elastica by
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1+

π2

α

)
χ =

16π2

3
. (24.101)

and for the extensible Haringx elastica by

αχ
α−χ

=
16π2

3
. (24.102)

In both cases, for the unshearable limit α → ∞, we find the value of Atanackovic
(1997); Magnusson et al (2001)

χ =
16π2

3
. (24.103)

24.4.3 Continualized Nonlocal Extensible Haringx Elastica

The governing difference equation, Eq. (24.62), can be continualized based on
Eq. (24.51):

d2θ
dξ 2 +β

(
1− 1

12N2
d2

dξ 2

)
·
{

1+β
(

1
α
− 1
χ

)
cosθ

}
sinθ = 0. (24.104)

The linearization of the above nonlinear differential equation is(
1− λ̂

12N2

)
d2θ
dξ 2 + λ̂ θ = 0, with λ̂ = β

(
1+β

(
1
α
− 1
χ

))
. (24.105)

The buckling loads can be computed based on local or nonlocal boundary con-
ditions (Challamel et al, 2015a). With local pinned-pinned boundary conditions,
i.e. θ ′(0) = θ ′(1) = 0, the buckling modes are the same as Eq. (24.93) and the
nondimensional buckling load parameters of the nonlocal extensible Haringx elastica
are:

βnleH,r =
χα

2(χ−α)

(
−1±

√
1+4

χ−α
χα

r2π2

1+ r2π2

12N2

)
. (24.106)

(With subscript “nleH” referring to “nonlocal extensible Haringx”.) Here
r2π2/(1+ r2π2/(12N2)) are the buckling load parameters of the nonlocal elastica
(Challamel et al, 2015a). The nonlocal boundary conditions would be θ(0) = θ(1/N)
and θ(1) = θ(1+1/N).

Note that the local and the nonlocal extensible Haringx elasticavobey pure shear
buckling mode, same as Eq. (24.67). Besides, they possess a countable infinity of
tensile and compressive buckling loads. Note also that the discriminant in Eq. (24.94)
and (24.106) can be negative, meaning that some critical loads do not exist.
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24.4.3.1 Numerical Solution: Discrete Versus Nonlocal Extensible Haringx

Elastica

The first post-buckling paths of the discrete and the nonlocal, extensible Haringx
elastica are shown in Fig. 24.13 for various numbers of links N. The results are
obtained numerically with the simplex path-following algorithm (Domokos and
Gáspár, 1995). It can be seen that the path computed for the nonlocal model follows
well the path of the corresponding discrete mode. Hence the scale effect of the lattice
system is well captured by the nonlocal model also for large displacements.

24.5 Conclusions

In this paper lattice systems with shear, normal and bending interactions were devel-
oped. The buckling and post-buckling analysis of these systems were studied using
exact geometric nonlinearities. Timoshenko’s finite strain theory was included in
one lattice system, which led to the discrete counterpart of the extensible Engesser
elastica, and Love’s finite strain theory was embedded in the other lattice system,
resulting in a discrete extensible Haringx elastica model. Analytical and numerical
solutions were given for large displacements and high forces and these solutions
were compared on bifurcation diagrams.

It was shown that in the continuum limit these systems lead to the local continous
Engesser and Haringx elastica solutions. In the inextensible and unshearable limits
the obtained continuum solutions were verified to results available in the literature.
Analytical solutions for the post-buckling paths of these continuum models were
derived.

Through a continualization technique, nonlocal counterparts of the extensible
Engesser and Haringx elastica models were developed starting from our original
lattice systems. Analytical formulas for the buckling loads of the nonlocal models
were given. The first post-buckling paths of the nonlocal models were computed
numerically and they were compared to those of the source lattice systems. It was
shown that these nonlocal models can capture the scale effects of the lattice systems.

Acknowledgements The work of A. Kocsis was supported by the János Bolyai Research Scholar-
ship of the Hungarian Academy of Sciences.

Appendix A

The following Taylor expansions are used:
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Fig. 24.13: First post-buckling equilibrium path of the nonlocal versus discrete
extensible Haringx elastica of N = 2,3,4,5,7,8,9 links (α = 10, χ = 20).
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β = β0 + εβ1 + ε
2β2 + ε

3β3 + . . . (24.107)

Ψ(ξ ) = ν0(ξ )+ εν1(ξ )+ ε2ν2(ξ )+ ε3ν3(ξ )+ . . . with ε =Ψ(0) =Ψ0.
(24.108)

Here ε is a small parameter related to the amplitude of the post-buckling mode. The
fundamental (or trivial) path is characterized by no rotation, ν0 = 0. Furthermore, for
reasons related to symmetry, it can be shown that some terms vanish in the asymptotic
expansion:

for k ≥ 1, ν2k(ξ ) = 0 and β2k−1 = 0, (24.109)

leading to the third-order asymptotic expansion:

β = β0 + ε
2β2 + . . . (24.110)

Ψ(ξ ) = εν1(ξ )+ ε3ν3(ξ )+ . . . with ε =Ψ(0) =Ψ0, (24.111)

Using this expansion in Eq. (24.38), and considering up to the third power of small
parameter ε (note that the coefficient of ε2 = 0), one obtains the following two
differential equations:[

1− β0

α

(
1− β0

χ

)]
d2ν1

dξ 2 +β0

(
1− β0

χ

)
ν1 = 0,[

1− β0

α

(
1− β0

χ

)]
d2ν3

dξ 2 +β0

(
1− β0

χ

)
ν3 =

β0

α

(
−ν

2
1

2
+

2β0

χ
ν2

1 −
β2

χ

)
d2ν1

dξ 2

+
β2

α

(
1− β0

χ

)
d2ν1

dξ 2 +

(
dν1

dξ

)2 β0

α

(
4β0

χ
−1
)
ν1

+

(
1− β0

χ

)(
β0
ν3

1
6
−β2ν1

)
− β0ν1

χ

(
−β2 +

β0

2
ν2

1

)
.

(24.112)

with boundary conditions

ν ′i (0) = 0,ν ′i (1) = 0. (24.113)

The first differential equation of Eq. (24.112) gives the linearized fundamental
buckling mode

ν1(ξ ) = cos(πξ ) (24.114)

with β0 equals the buckling load given by Eq. (24.42). Here the normalization
criterion ν1(0) = 1 was used. Using this buckling mode in the second differential
equation of Eq. (24.112) yields



24 On the Foundation of a Generalized Nonlocal Extensible Shear Beam Model 483[
1− β0

α

(
1− β0

χ

)]
d2ν3

dξ 2 +β0

(
1− β0

χ

)
ν3 = Acos(πξ )+Bcos(3πξ ) (24.115)

with

A =
π2

α
β0

(
4β0

χ
−1
)
+

2β0β2

χ

(
1+

π2

α

)
−β2

(
1+

π2

α

)
+

3β0

4

(
1
6
+

3π2

2α

)
− 3β 2

0
4

(
6π2

αχ
+

2
3χ

)
,

B =
β0

4

(
1
6
+

3π2

2α

)
− β 2

0
4

(
6π2

αχ
+

2
3χ

)
.

(24.116)

Due to the boundary conditions Eq. (24.113), the solution of this differential equation
for the second-order buckling load factor β2 is

β2 =
β0

1− 2β0
χ

(
1
8
− β0

2χ

)
. (24.117)

β2 measures the curvature of the post-bifurcation branch. The limit between the stable
and the unstable post-bifurcation branch is associated with β2 = 0 and β0 = χ/4, so
that

β0 =
χ
4
⇒

(
1+

π2

α

)
3χ
16

= π2. (24.118)

Appendix B

The following expansion of the load parameter and the rotation field can be used:

β = β0 + ε
2β2 + . . .

θ(ξ ) = εν1(ξ )+ ε3ν3(ξ )+ . . . .
(24.119)

Substituting these expansions in the nonlinear differential equation, Eq. (24.88), and
considering the first and third powers of the small parameter ε (since the coefficient
of ε2 is zero), one obtains the following system of two differential equations:

d2ν1

dξ 2 +β0(1−μβ0)ν1 = 0,

d2ν3

dξ 2 +β0(1−μβ0)ν3=β0(1−μβ0)
ν3

1
6
−β2(1−μβ0)ν1−μβ0

(
−β2 +β0

ν2
1

2

)
ν1

(24.120)

with
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μ =
1
χ
− 1
α
.

The first differential equation gives the linearized fundamental buckling mode

ν1(ξ ) = cos(πξ ) with β0 =
1±
√

1−4μπ2

2μ
(24.121)

where the normalization criteria ν1(0) = 1 was used. Inserting this first order buckling
mode in the second differential equation of Eq. (24.120) leads to:

d2ν3

dξ 2 +π2ν3 = Acos(πξ )+Bcos(3πξ )

with A =−β2(1−2μβ0)+
β0

8
(1−4μβ0), B =

β0

24
(1−4μβ0).

(24.122)

In view of the boundary conditions, the solution of this differential equation (which
requires A to vanish) yields the second-order buckling load factor:

β2 =
β0

8
1−4μβ0

1−2μβ0
. (24.123)

Since β2 measures the curvature of the bifurcated equilibrium path at the bifurcation
point, the limit between stable and unstable post-bifurcation branches can be obtained
by solving for β2 = 0:

β0 =
1

4μ
⇒ μ =

3
16π2 ⇒ αχ

α−χ
=

16π2

3
. (24.124)
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Chapter 25

A Consistent Dynamic Finite-Strain Plate

Theory for Incompressible Hyperelastic

Materials

Yuanyou Li and Hui-Hui Dai

Abstract In this chapter, a dynamic finite-strain plate theory for incompressible
hyperelastic materials is deduced. Starting from nonlinear elasticity, we present the
three-dimensional (3D) governing system through a variational approach. By series
expansion of the independent variables about the bottom surface, we deduce a 2D
vector dynamic plate system, which preserves the local momentum-balance structure.
Then we propose appropriate position and traction boundary conditions. The 2D plate
equation guarantees that each term in the variation of the generalized potential energy
functional attains the required asymptotic order. We also consider the associated
weak formulations of the plate model, which can be applied to different types of
practical edge conditions.

25.1 Introduction

Plate structures are defined as plane elements with one small thickness dimension
compared with the other two planar dimensions. The theory of plates has been
widely studied by scientists in both mathematical and engineering communities since
the nineteenth century. The literature in this field is extremely plentiful, including
theories based on engineering intuitions and assumptions, derived theories from
three-dimensional elasticity, as well as direct theories (Timoshenko and Woinowsky-
Krieger, 1959; Naghdi, 1972; Reddy, 2007; Altenbach et al, 2010). We also refer the
readers to Dai and Song (2014) for a review of some selected works. For derived
plate theories, we usually focus on how to reduce the original 3D elasticity theory
to a two-dimensional (2D) approximate model while the fundamental mechanical
properties of plate structures can be appropriately captured.
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Early attempts on plate theories relied on a priori hypotheses, either of geometrical
and mechanical nature or on the specific form of the solution (displacements and
stresses). Classical plate theories derived in this way include the Kirchhoff-Love
theory (Kirchhoff, 1850; Love, 1888), the von Kármán theory (von Kármán, 1910),
the Mindlin-Reissner theory (Mindlin, 1951). Despite the success of these theories to
various specific situations, their applicability for relatively thick plates and general
loadings (say, under shear tractions) may be limited.

One approach involves no explicit kinematic assumptions on displacements (or
deformed positions) except general power (or other function) series expansions

xxx(rrr,Z) =
N

∑
j=0

Z jxxx j(rrr). (25.1)

Normally, all the coefficients xxx j ( j � 1) are treated as independent unknowns. By
first integrating out the Z variable and conducting a truncation, the 2D potential
energy of the plate is formulated. Then the governing equations are derived from the
two-dimensional variational or virtual work principle. Such an approach has been
adopted by Kienzler (2002) based on linear elasticity. Based on nonlinear elasticity,
Meroueh (1986); Steigmann (2007) adopted Legendre polynomials of Z in (25.1)
and formulated a system in terms of generalized (high order) stress resultants for
finite-strain problems. It is worth mentioning that by imposing restrictions on the
high-order coefficients in (25.1) instead of treating them as independent unknowns,
Steigmann (2013) derived more proper plate and shell models which incorporate
both stretching and bending.

Based on a priori scalings between the plate thickness and the deformations (or
applied loads), some consistent mathematical approaches are utilized for deriving
asymptotically correct plate theories. The method of Gamma convergence (Friesecke
et al, 2002) is concerned with the two-dimensional variational problem in the limit
of small thickness, but it cannot be used to study dynamic problems and derive
plate theories incorporating both bending and stretching. The method of asymptotic
analysis, which aims at developing the leading-order weak formulation by formal
expansions with the thickness as the small parameter, was used to derive the von
Kármán plate equations from the 3D weak formulation in Ciarlet (1980). In Millet
et al (2001), based on the 3D differential formulation, a hierarchy of leading-order
plate equations were derived.

Most of the works in the literature consider compressible materials, the exist-
ing plate theories for incompressible materials are much fewer. With the Gamma
convergence method, Trabelsi (2005) formulated a nonlinear elastic thin membrane
model for incompressible materials, while Conti and Dolzmann (2008) extended the
plate theory derived in Friesecke et al (2002) to the case of incompressible materials.
By using the principle of virtual work, Batra (2007) proposed a compatible shear
and normal deformable theory for a plate made of an incompressible linear elastic
material, in which the orthonormal Legendre polynomials were adopted to derive the
high-order plate theory.
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Nowadays, soft materials and biological materials have attracted attentions of
researchers of different fields. It happens that most of soft materials are incompress-
ible. In this chapter, we intend to provide a dynamic plate theory for incompressible
materials. Taking the incompressibility constraint into account, we extend the con-
sistent plate theory proposed in Song and Dai (2016) to the case of incompressible
hyperelastic materials.

We organize this chapter as follows. In Sect. 25.2, the 3D governing system of
incompressible materials is derived through conventional variational approach. In
Sect. 25.3, according to the criterion of consistency we derive the 2D vector plate
equation and propose some proper edge boundary conditions as well. In Sect. 25.4,
we consider the associated weak formulations of the 2D plate equation and adopt
them to distinct types of boundary conditions. Finally, we make some concluding
remarks.

25.2 The 3D Governing Equations

In this section, we consider a homogeneous thin plate of constant thickness, which is
composed of an incompressible hyperelastic material. A material point of the plate
in the reference configuration κ = Ω × [0,2h] is denoted by XXX = (rrr,Z), where the
thickness 2h of the plate is small compared with the planar dimensions of the top (or
bottom) surface Ω . The coordinates of a material point in the current configuration κt
is denoted as xxx. Throughout the paper, symbols with typefaces a, aaa, A, A represent
scalar, vector, second-order tensor (matrix) and higher-order tensor, respectively. In
component forms, we adopt the convention that Latin indices run from 1 to 3 whereas
Greek indices run from 1 to 2, repeated summation convention is used and the index
after the comma indicates differentiation.

The deformation gradient tensor of a material point in the plate can then be
represented by

F =
∂xxx
∂XXX

=
∂xxx
∂rrr

+
∂xxx
∂Z
⊗kkk = ∇xxx+

∂xxx
∂Z
⊗kkk, (25.2)

where ∇ is the in-plane two-dimensional gradient and kkk is the unit outward normal
vector of the reference top surface Ω . More precisely, with rectangular Cartesian
coordinates rrr = X1EEE1 +X2EEE2, we have

∇xxx =
∂xxx
∂X1
⊗EEE1 +

∂xxx
∂X2
⊗EEE2.

Besides, we consider the following incompressibility constraint equation

R(F) = Det(F)−1 = 0, in Ω × [0,2h]. (25.3)

Suppose the material has the strain-energy density function Φ(F), the associated first
and second order elastic moduli are defined by
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A 1(F) =
∂ 2Φ
∂F∂F

(
A 1

i jkl =
∂ 2Φ

∂Fji∂Flk

)
, A 2(F) =

∂ 3Φ
∂F∂F∂F

. (25.4)

It is assumed that the strain energy function for the deformations concerned
satisfies the strong-ellipticity condition

aaa⊗bbb : A 1(F)[aaa⊗bbb]> 0, for all aaa⊗bbb �= 0, (25.5)

where the colon between second-order tensors means a scalar tensor product de-
fined by A : B = AklBlk and the square bracket after a higher-order modulus tensor
represents the operations{

A 1[A]
}

i j = A 1
i jklAlk,

{
A 2[A,B]

}
i j = A 2

i jklmnAlkBnm. (25.6)

For the dynamic case with dead-loading on the boundary, suppose qqqb is the body
force, qqq± are the applied tractions on the top and bottom surfaces, and qqq is the applied
traction on ∂Ωq. The kinetic energy, the strain energy and the load potential are given
by

K =
∫
κ

1
2
ρẋxx · ẋxxdXXX ,

Φ =
∫
κ

Φ(F)dXXX ,

V =−
∫
κ

qqqb(XXX) ·xxx(XXX)dXXX−
∫
Ω

qqq−(rrr) ·xxx(rrr,0)+qqq+(rrr) ·xxx(rrr,2h)drrr

−
∫

∂Ωq

2h∫
0

qqq(s,Z) ·xxx(s,Z)dZds,

where ρ is the mass density of the plate material and the overhead dot means time
derivative. The lateral surface of the plate, which is denoted as ∂Ω , is composed
of the position boundary ∂Ω0 and the traction boundary ∂Ωq. All the quantities are
defined in the reference configuration.

In order to calculate the minimum of the potential energy functional under the
constraint condition (25.3), we consider the following generalized potential energy
functional

Ψ(xxx, p;XXX) =

t2∫
t1

⎧⎨⎩Φ+V −K−
∫
κ

p(XXX)R(F)dXXX

⎫⎬⎭dt,

where p(XXX) plays the role of the Lagrangian multiplier. Next, the governing system
of the current plate model will be derived by calculating the variations of Ψ with
respect to the independent variables xxx and p.

First, from the Hamilton’s principle and upon using the divergence theorem, we
obtain the variation ofΨ with respect to xxx
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δΨ
δxxx

=

t2∫
t1

{∫
κ

(−DivS−qqqb +ρẍxx) ·δxxxdXXX−
∫
Ω

(STkkk|Z=0 +qqq−) ·δxxx(rrr,0)drrr

+
∫
Ω

(STkkk|Z=2h−qqq+) ·δxxx(rrr,2h)drrr+
∫

∂Ω0

2h∫
0

STNNN ·δxxx(s,Z)dZds

+
∫

∂Ωq

2h∫
0

(STNNN−qqq) ·δxxx(s,Z)dZds
}

dt, (25.7)

where

S =
∂Φ
∂F
− p

∂R
∂F

, (25.8)

is the nominal stress tensor of the incompressible material (Ogden, 1984)), NNN is the
unit outward normal to the lateral surface, and ẋxxδxxx is assumed to vanish at both t1 and
t2. Due to the arbitrariness of δxxx in (25.7), the equations of motion for any t ∈ (t1, t2)
together with boundary conditions are

DivS+qqqb = ρẍxx, in Ω × [0,2h],
STkkk|Z=0 =−qqq−, in Ω ,

STkkk|Z=2h = qqq+, in Ω ,
xxx = bbb(s,Z), on ∂Ω0× [0,2h],
STNNN = qqq(s,Z), on ∂Ωq× [0,2h],

(25.9)

where bbb is the prescribed position on the boundary ∂Ω0, and we omit the argument t
in all the above quantities. Next, we obtain the variation ofΨ with respect to p

δΨ
δ p

=−
t2∫

t1

∫
κ

R(F)δ pdXXXdt. (25.10)

We can obtain the constraint Eq.(25.3) from the above equation. Now we have
formulated the 3D governing system Eq.(25.3) and Eq.(25.9), which contains two
independent variables xxx and p.

25.3 The 2D Dynamic Plate Theory

In this section, we derive the 2D plate theory for incompressible materials from the
previous 3D governing partial differential equations system, including the consistent
dynamic plate equations, the boundary conditions as well as the associated weak
formulation. It is a general approach to make approximations to eliminate the Z
variable. Here we use the same consistency criterion proposed in Dai and Song
(2014):
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For all loadings that satisfy some smooth requirements, each term in the first variation of the
energy functional should be of a required asymptotic order (say, O(h4)) separately for the
plate approximation.

Without loss of generality, it is assumed that all the spatial variables are scaled by
the typical dimension of the in-plane surface, then 2h in fact represents the thickness
ratio of the plate. The derivation follows the similar lines proposed in Song and
Dai (2016); Wang et al (2016), but here we take into account the incompressibility
constraint. We start from the series expansion of the independent variables with
respect to Z.

25.3.1 Dynamic 2D Vector Plate Equation

Suppose that both xxx(XXX) and p(XXX) are C5 functions in their arguments, then we obtain
the following series expansions:

xxx(XXX) = xxx(0)(rrr)+Zxxx(1)(rrr)+
1
2

Z2xxx(2)(rrr)

+
1
6

Z3xxx(3)(rrr)+
1

24
Z4xxx(4)(rrr)+O(Z5), (25.11)

p(XXX) = p(0)(rrr)+Zp(1)(rrr)+
1
2

Z2 p(2)(rrr)

+
1
6

Z3 p(3)(rrr)+
1

24
Z4 p(4)(rrr)+O(Z5), (25.12)

where (·)(n) = ∂ n(·)/∂Zn|Z=0 (n = 1, . . . ,4). According to the expansion of xxx, the
deformation gradient tensor can also be expanded as

F(XXX) = F(0)(rrr)+ZF(1)(rrr)+
1
2

Z2F(2)(rrr)+
1
6

Z3F(3)(rrr)+O(Z4). (25.13)

By substituting (25.11) into (25.2) and comparing with (25.13), we obtain the
following relations

F(n) = ∇xxx(n) +xxx(n+1)⊗kkk, n = 0,1,2,3. (25.14)

An observation from (25.14) is that the dependence of F(n) on xxx(n+1) is linearly
algebraic. We also suppose the strain energy Φ(F) is C5 functions in their arguments,
so the nominal stress tensor can be expanded as

S(XXX) = S(0)(rrr)+ZS(1)(rrr)+
1
2

Z2S(2)(rrr)+
1
6

Z3S(3)(rrr)+O(Z4). (25.15)

Besides, from (25.8) and by using the chain rule, we obtain
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S = A(0)(F(0))+A (1)(F(0))[F−F(0)]+
1
2
A (2)(F(0))[F−F(0),F−F(0)]

+
1
6
A (3)(F(0))[F−F(0),F−F(0),F−F(0)]+ · · ·

−
{

p(0)(rrr)+Zp(1)(rrr)+
1
2

Z2 p(2)(rrr)+
1
6

Z3 p(3)(rrr)+ · · ·
}

×
{

R(0)(F(0))+R(1)(F(0))[F−F(0)]+
1
2
R(2)(F(0))[F−F(0),F−F(0)]

+
1
6
R(3)(F(0))[F−F(0),F−F(0),F−F(0)]+ · · ·

}
,

(25.16)

where A (i) (i = 1,2,3) are elastic moduli associated with Φ , the similar moduli R(i)

(i = 1,2,3) are defined by replacing Φ with the constraint R, and

A(0)(F(0)) =
∂Φ
∂F

∣∣∣∣
F=F(0)

,

R(0)(F(0)) =
∂R
∂F

∣∣∣∣
F=F(0)

= Det(F(0))(F(0))−1.

By substituting (25.13) into (25.16) and comparing with (25.15), we obtain the
following expressions for S(n)

S(0)(rrr) =A(0)− p(0)R(0),

S(1)(rrr) =A [F(1)]− p(1)R(0),

S(2)(rrr) =A [F(2)]−p(2)R(0)+A (2)[F(1),F(1)]− p(0)R(2)[F(1),F(1)]−2p(1)R(1)[F(1)],

S(3)(rrr) =A [F(3)]− p(3)R(0) +3A (2)[F(1),F(2)]+A (3)[F(1),F(1),F(1)]

−3p(0)R(2)[F(1),F(2)]− p(0)R(3)[F(1),F(1),F(1)]−3p(1)R(1)[F(2)]

−3p(1)R(2)[F(1),F(1)]−3p(2)R(1)[F(1)],

(25.17)

where the function of the new combined modulus

A = A (1)− p(0)R(1)

in this incompressible case resembles A (1) in the compressible case, and the ar-
gument F(0) in A(0), R(0), A (i) and R(i) (i = 1, . . . ,3) is omitted for brevity. Due
to the series expansions (25.11) and (25.12), we obtain totally 19 unknowns in the
governing system (including five vectors xxx(n) (n = 0, . . . ,4) and four scalars p(n)

(n = 0, . . . ,3)), which are necessary in formulating a closed system by some con-
sistent truncations of the 3D system. In addition, some equations in (25.9) serves
to eliminate most of the unknowns, leading to a single vector plate equation. From
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(25.14) and (25.17), we can observe that S(i) depend linearly on xxx(i+1) (i = 1,2,3) as
well, which plays a fundamental role in deriving the following recursion relations.

First, by substituting (25.17)1 into the bottom traction condition (25.9)2, we obtain

{S(0)}Tkkk =
{

A(0)(F(0))− p(0)R(0)(F(0))
}T

kkk

=
{

A(0)(∇xxx(0) +xxx(1)⊗kkk)− p(0)R(0)(∇xxx(0) +xxx(1)⊗kkk)
}T

kkk

=−qqq−.

(25.18)

Equation (25.18) provides three algebraic equations for the unknowns xxx(1) and p(0).
In order to ease the sequel derivations, we define

ggg(xxx(0))� R(0)Tkkk = Det(F(0))(F(0))−Tkkk = F(0)∗kkk = F(0)∗(EEE1∧EEE2)

= (F(0)EEE1)∧ (F(0)EEE2) = xxx(0),1 ∧xxx(0),2 ,

where ‘∗’ represents the adjugate and ‘∧’ means the cross product (Chadwick, 1999).
So (25.18) reduces to

A(0)T (F(0))kkk− p(0)ggg(xxx(0)) =−qqq−. (25.19)

Next, vanishing of the coefficients of Zn from (25.9)1 yields that

∇ ·S(n) +S(n+1)Tkkk+qqq(n)b = ρẍxx(n), n = 0,1,2. (25.20)

Equation (25.20) provides three linear algebraic equations for the unknowns xxx(n+1)

and p(n) (n = 1,2,3).
Furthermore, by substituting the series expansion (25.13) into the constraint Eq.

(25.3), we obtain

R(F(0))+R(0) :
{

ZF(1) +
1
2

Z2F(2) +
1
6

Z3F(3)
}

+
1
2

{
ZF(1) +

1
2

Z2F(2)
}

: R(1)
[

ZF(1) +
1
2

Z2F(2)
]

+
1
6

ZF(1) : R(2)[ZF(1),ZF(1)]+O(Z4) = 0.

The vanishing of the coefficients of Zn (n = 0,1,2,3) in the above equation leads
to
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R(F(0)) = (xxx(0),1 ∧xxx(0),2 ) ·xxx(1)−1 = ggg ·xxx(1)−1 = 0,

R(0) : F(1) = ggg ·xxx(2) +R(0) : ∇xxx(1) = 0,

R(0) : F(2) +F(1) : R(1)[F(1)] = 0,

R(0) : F(3) +3F(2) : R(1)[F(1)]+F(1) : R(2)[F(1),F(1)] = 0,

(25.21)

which provide the additional (linear) equations for the unknowns xxx(n) (n = 1,2,3,4)
and p(n) (n = 1,2,3).

These equations can be used to derive the recursion relations for xxx(n+1) and p(n)

(n = 1,2,3). For instance, substituting (25.17)2 into (25.20) (n = 0) furnishes

Bxxx(2) + fff (2)− p(1)ggg = ρẍxx(0),

where the second-order (acoustic) tensor B and the vector fff (2) are defined as

Bxxx = {A [xxx⊗kkk]}T kkk, ⇒ (B)|i j = A 3i3 j,

fff (2) =
{

A [∇xxx(1)]
}T

kkk+∇ ·S(0) +qqq(0)b .

By the strong-ellipticity condition in (25.5), B is invertible and positive-definite and
we obtain

xxx(2) =−B−1 fff (2) + p(1)B−1ggg+B−1ρẍxx(0). (25.22)

By substituting (25.22) into (25.21)2, we easily derive the expression of p(1):

p(1) =
1
g

(
ggg ·B−1 fff (2)−ggg ·B−1ρẍxx(0)−R(0) : ∇xxx(1)

)
, with g = ggg ·B−1ggg, (25.23)

where g > 0 due to the positive-definiteness of B. Similarly, we obtain the following
expressions of xxx(3) and p(2)

xxx(3) =−B−1 fff (3) + p(2)B−1ggg+B−1ρẍxx(1), (25.24)

p(2) =
1
g

(
ggg ·B−1 fff (3)−ggg ·B−1ρẍxx(1)−R(0) : ∇xxx(2)−F(1) : R(1)[F(1)]

)
, (25.25)

where

fff (3) =
{

A [∇xxx(2)]
}T

kkk+∇ ·S(1) +qqq(1)b

+
{
(A (2)− p(0)R(2))[F(1),F(1)]−2p(1)R(1)[F(1)]

}T
kkk.

The recursion relations for p(3) and xxx(4) are not needed in the following derivations,
however the relation (25.20) with n = 2 as a whole will be used to eliminate them.

Finally, the top traction condition in (25.9)3 states

S(0)Tkkk+2hS(1)Tkkk+2h2S(2)Tkkk+
4
3

h3S(3)Tkkk+O(h4) = qqq+, (25.26)
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which contains all the unknowns xxx(n) (n = 0, . . . ,4) and p(n) (n = 0, . . . ,3).
As for xxx(1) and p(0), it can be seen from (25.19) and (25.21)1 that they only depend

on ∇xxx(0). However, (25.19) and (25.21)1 are nonlinear algebraic equations of xxx(1) and
p(0), which can only be solved when the concrete form of the strain-energy density
Φ(F) is given. The strong-ellipticity condition and the implicit function theorem
imply that they can uniquely determined in terms of ∇xxx(0), as shown in Wang et al
(2016).

Finally, by subtracting (25.18) from (25.26) and further using (25.20), we can
obtain the dynamic 2D vector plate equation

∇ ·S+qqq = ρẍxx, (25.27)

where

qqq =
qqq++qqq−

2h
+qqq

b
,

xxx =
1
2h

2h∫
0

xxxdZ = xxx(0) +hxxx(1) +
2
3

h2xxx(2) +O(h3),

and S and qqq
b

are defined in the same way as xxx. The dynamic plate equation, after
substituting the recursion relations, becomes a fourth-order differential equation for
xxx(0) with an error of O(h3).

25.3.2 Edge Boundary Conditions

Besides the vector plate equation, we shall also reduce the original 3D lateral surface
conditions to appropriate boundary conditions for 2D equation. Since the plate
equation is of fourth order in spatial derivatives, on either the position boundary
∂Ω0 or the traction boundary ∂Ωq two conditions regarding xxx(0) or its derivatives are
required. Some conditions might involve time-derivative of xxx(0), which is different
from the boundary conditions proposed in Dai and Song (2014).

25.3.2.1 Case 1. Prescribed Position in the 3D Formulation

Suppose that on ∂Ω0×[0,2h] the position bbb is prescribed, then we adopt the following
two boundary conditions

xxx(0) = bbb(0)(s),
xxx = bbb on ∂Ω0

⇔ xxx(1) +
2
3

hxxx(2) +
1
3

h2xxx(3) +O(h3) =
1
h
(bbb−bbb(0)),

(25.28)
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where
bbb(0) = bbb|Z=0

and bbb represents the prescribed averaged position. The second condition contains
up to the third-order spatial-derivatives and third-order time-derivatives of xxx(0) upon
using the recursion relations.

25.3.2.2 Case 2. Prescribed traction in the 3D formulation

Suppose that on ∂Ωq× [0,2h] the traction qqq is specified and is C4 in Z, then we adopt
the following two boundary conditions

S(0)TNNN = qqq(0),

STNNN =
1
2h

2h∫
0

STNNNdZ =
1
2h

2h∫
0

qqqdZ = qqq0 on ∂Ωq

⇔
(

S(0) +hS(1) +
2
3

h2S(2) +
1
3

h3S(3) +O(h4)

)T

NNN = qqq0,

(25.29)

where
qqq(0) = qqq|Z=0

and qqq0 is the averaged traction along the thickness of the plate. As for the second
condition, we may utilize the traction condition at an arbitrary Z, or alternatively, use
the specified moment about the middle line

1
2h

2h∫
0

(Z−h)STNNNdZ =
1
2h

2h∫
0

(Z−h)qqqdZ =mmm(s)

⇔ 1
3
S(1)TNNN +

1
3

hS(2)TNNN +
1
5

h2S(3)TNNN +O(h3) =
mmm(s)

h2 ,

(25.30)

where mmm(s) can be expressed in terms of qqq(i) in the same way as the left-hand side.

25.3.3 Examination of the Consistency

According to the criterion introduced in Sect. 25.3, in order to examine the con-
sistency of the derived 2D dynamic vector plate equation system, we analyze the
asymptotic orders of the terms in the variations (25.7) and (25.10).

For the first term on the right hand side (r.h.s.) of (25.7), we consider the series
expansions of DivS in terms of Z. As the first three terms in the series expansion
(25.20) have been used together with (25.21)(2−4) to obtain the recursion relations
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of xxx(i) (i = 2,3,4) and p(i) (i = 1,2,3), we have DivS = O(Z3). Thus the first term
in (25.7) is of O(h4). The second term on the r.h.s of (25.7) is exactly equal to zero
because Eq. (25.19) together with (25.21)1 have been used to derive the expressions
of xxx(1) and p(0). In Eq. (25.26), STkkk on the top surface has been expanded to O(h4),
which implies that the third term in (25.7) is O(h4).

Next, we examine the asymptotic order of the fourth term in (25.7) which involves
the prescribed position boundary condition on ∂Ω0× [0,2h]. We rewrite the integrand
in the following form

2h∫
0

STNNN ·δxxxdZ =

2h∫
0

S(0)TNNN ·
(
δxxx(0) +Zδxxx(1) +

1
2

Z2δxxx(2)
)

dZ

+

2h∫
0

ZS(1)TNNN ·
(
δxxx(0) +Zδxxx(1)

)
dZ

+

2h∫
0

1
2

Z2S(2)TNNN ·δxxx(0)dZ +O(h4).

(25.31)

From the position boundary conditions (25.28), it can be obtained that δxxx(0) = 0,
δxxx(1) = O(h) and δxxx(1) + 2/3hδxxx(2) = O(h2). By substituting these results into
(25.31), it is easy to check that all the three terms on the r.h.s. of (25.31) are of O(h4).
Thus, the fourth term in (25.7) also satisfies the consistency condition.

To examine the asymptotic order of the fifth term in (25.7), we denote

q̃qq = STNNN−qqq.

The coefficients of the series expansion of q̃qq are represented as q̃qq(i) (i = 0, . . . ,3).
Then the integration of the fifth term in (25.7) can be rewritten as

2h∫
0

q̃qq ·δxxxdZ =

2h∫
0

(
q̃qq(0) +Zq̃qq(1) +

1
2

Z2q̃qq(2)
)
·δxxx(0)dZ

+

2h∫
0

Z
(

q̃qq(0) +Zq̃qq(1)
)
·δxxx(1)dZ

+

2h∫
0

1
2

Z2q̃qq(0) ·δxxx(2)dZ +O(h4).

(25.32)

From the traction boundary conditions (25.29), it can be obtained that q̃qq(0) = 0,
q̃qq(1) = O(h) and q̃qq(1) +2/3hq̃qq(2) = O(h2). By substituting these results into (25.32),
it is easy to check that all the three terms on the r.h.s. of (25.32) are of O(h4). Thus,
the fifth term in (25.7) also satisfies the consistency condition.
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For the variation (25.10), we have considered the series expansion of R(F) in
terms of Z, where the coefficients of Zi (i = 0,1,2,3) are set to be zero to derive the
recursion relations of xxx(i+1) (i = 0,1,2,3). Thus the variation (25.10) also attains
O(h4), which satisfies the consistency condition. To sum up, the 2D vector plate
equation (25.27) and the edge boundary conditions (25.28) and (25.29) ensure each
term in the variations to be of an asymptotic order of O(h4), which satisfies the
consistency criterion.

25.4 The Associated Weak Formulations

In this section, we shall derive the associated weak formulations of the previous 2D
vector plate system to be prepared for future numerical calculations. Furthermore,
when the 3D edge conditions are unknown, suitable boundary conditions can be
proposed for practical loading cases according to the weak form.

First, by multiplying both sides of the plate equation (25.27) with ξξξ = δxxx(0) and
calculating the integrations over the region Ω , we obtain∫

Ω

(∇ ·S) ·ξξξdrrr =−
∫
Ω

qqq ·ξξξdrrr+
∫
Ω

ρẍxx ·ξξξdrrr

⇒
∫
∂Ω

(
STNNN

) ·ξξξds−
∫
Ω

S : ∇ξξξdrrr =−
∫
Ω

qqq ·ξξξdrrr+
∫
Ω

ρẍxx ·ξξξdrrr.
(25.33)

Generally, the weak formulation associated with the fourth-order plate equation
(25.27) should only contain up to the second-order derivative of xxx(0). However, the
weak formulation (25.33) involves the third-order derivatives, which originates from
the terms F(2) and p(2) in S(2) and should be eliminated.

By substituting (25.23) and (25.25) into (25.14) and through some manipulations,
we decompose p(2) and F(2) into two parts

p(2) = p(2)1 + p(2)2 , F(2) = F(2)
1 +F(2)

2 ,

where

p(2)1 =
1
g

{
ggg ·B−1

{
(A (2)− p(0)R(2))[F(1),F(1)]

}T
kkk−2p(1)ggg ·B−1

(
R(1)[F(1)]

)T
kkk

+ggg ·B−1qqq(1)b −ggg ·B−1ρẍxx(1)−F(1) : R(1)[F(1)]

}
,

p(2)2 =
1
g

{
ggg ·B−1

(
∇ ·S(1)

)
+ggg ·B−1

{
A [∇xxx(2)]

}T
kkk−R(0) : ∇xxx(2)

}
,
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F(2)
1 =p(2)1 B−1ggg⊗kkk−B−1

{
(A (2)− p(0)R(2))[F(1),F(1)]

}T
kkk⊗kkk

+2p(1)B−1
(
R(1)[F(1)]

)T
kkk⊗kkk−B−1qqq(1)b ⊗kkk+B−1ρẍxx(1)⊗kkk,

F(2)
2 =∇xxx(2)−B−1

{
A [∇xxx(2)]

}T
kkk⊗kkk−B−1(∇ ·S(1))⊗kkk+ p(2)2 B−1ggg⊗kkk.

It can be found that only p(2)2 and F(2)
2 involve the third-order derivative of xxx(0).

Correspondingly, we consider the following decomposition

S : ∇ξξξ = W1(∇∇xxx(0),∇ξξξ )+W2(∇∇∇xxx(0),∇ξξξ ), (25.34)

where

W1 = (S(0) +hS(1)) : ∇ξξξ +
2
3

h2
{

A [F(2)
1 ]− p(2)1 R(0)

}
: ∇ξξξ

+
2
3

h2
{
(A (2)− p(0)R(2))[F(1),F(1)]−2p(1)R(1)[F(1)]

}
: ∇ξξξ ,

W2 =
2
3

h2
{

A [F(2)
2 ]− p(2)2 R(0)

}
: ∇ξξξ .

(25.35)

In order to eliminate the third-order derivative terms of xxx(0), we then substitute the
expressions of F(2)

2 and p(2)2 into (25.35). Further manipulations yield the following
result

W2 =
2
3

h2
{

S0 : ∇xxx(2) +ηηη · (∇ ·S(1))
}
,

and

S0 = A [∇ξξξ +ηηη⊗kkk]−ζR(0),

ηηη =−B−1 {A [∇ξξξ ]}T kkk+ζB−1ggg,

ζ =
1
g

(
A [B−1ggg⊗kkk]−R(0)

)
: ∇ξξξ � P : ∇ξξξ .

(25.36)

In fact, it can be proved that

δ p(0) = ζ , δxxx(1) = ηηη , δS(0) = S0.

Then, integration by parts leads to∫
Ω

W2drrr =
2
3

h2
∫
∂Ω

(S T
0 NNN) ·xxx(2) + (S(1)TNNN) ·ηηηds+

∫
Ω

W3drrr,

W3 =−2
3

h2
{
(∇ ·S0) ·xxx(2) +S(1) : ∇ηηη

}
.

(25.37)

It can be seen from (25.37) that the third-order derivatives of xxx(0) have been elimi-
nated. Combining the results (25.33), (25.34) and (25.37), the following 2D weak
formulation can be derived
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Ω

(
W1 +W3 +(ρẍxx−qqq) ·ξξξ)drrr

=
∫
∂Ω

(
STNNN ·ξξξ − 2

3
h2S(1)TNNN ·ηηη− 2

3
h2S T

0 NNN ·xxx(2)
)

ds.
(25.38)

In the following, by considering the boundary conditions, the 2D weak formulation
(25.38) can be further simplified. We adapt it to two distinct types of boundary
conditions, i.e., the previous cases in Sect. 25.3.2 and other practical cases when 3D
edge conditions are unclear.

25.4.0.1 Case 1. Edge position and traction in the 3D formulation are known

From (25.28), it is easy to deduce that ξξξ = δxxx(0) = 000 and ηηη = δxxx(1) = O(h) on
∂Ω0, which together with (25.36) further implies that ∇ξξξ = O(h) and S0 = O(h).
Consequently, the boundary integral on ∂Ω0 in (25.38) is of O(h3) and can be
neglected.

While on ∂Ωq, it follows from conditions (25.29), (25.30) that

S T
0 NNN = δ [S(0)TNNN] = O(h2).

Thus, the third term in the boundary integral can be neglected. Besides, replacing
S(1)TNNN by the condition in (25.30) only causes a higher-order correction. Then, the
2D weak formulation (25.38) reduces to∫

Ω

(
W1 +W3 +(ρẍxx−qqq) ·ξξξ)drrr =

∫
∂Ωq

(
STNNN ·ξξξ − 2

3
h2S(1)TNNN ·ηηη

)
ds

=
∫

∂Ωq

qqq0 ·ξξξ −2mmm ·ηηηds.

25.4.0.2 Case 2. Edge position and traction in the 3D formulation are

unknown

In many practical situations, where the edge traction distribution (e.g. a pinned edge)
or displacement distribution (e.g. a clamped edge) is unknown, we should propose
the so-called natural boundary conditions according to the weak formulation. For
this purpose, we shall recast the boundary integral in (25.38) in terms of ξξξ and its
normal derivative ξξξ ,N .

For convenience, considering the last two terms in the boundary integral of (25.38),
we introduce a third-order tensor M through
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− 2
3

h2
(
S(1)TNNN ·ηηη+S T

0 NNN ·xxx(2)
)

=
2
3

h2
{

A
[
ttt⊗kkk−xxx(2)⊗NNN

]
+
(

xxx(2) ·R(0)TNNN−ttt ·ggg
)

P
}

: ∇ξξξ � (M [NNN])T : ∇ξξξ ,

(25.39)

where
ttt = B−1

(
S(1)TNNN +B1xxx(2)

)
, (B1)i j = A 3iα jNα .

Furthermore, we introduce the decomposition

∇ξξξ = ξξξ ,s⊗TTT +ξξξ ,N ⊗NNN, (25.40)

where TTT is the unit tangential vector, and ξξξ ,s is tangential derivative on ∂Ω . Substitut-
ing (25.39) and (25.40) into the boundary integral in (25.38) and a simple integration
by parts leads to∫
Ω

(
W1 +W3 +(ρẍxx−qqq) ·ξξξ)drrr =

∫
∂Ω

{
STNNN− (M [NNN]TTT ),s

}
·ξξξ +{M [NNN]NNN} ·ξξξ ,Nds.

(25.41)

If we regard
W := W1 +W3

as the variation of the plate stress work due to the virtual displacement ξξξ , the weak
formulation (25.41) can be rewritten as∫

Ω

(
W +(ρẍxx−qqq) ·ξξξ)drrr =

∫
∂Ω

q̂qq(s) ·ξξξ +m̂mm(s) ·ξξξ ,Nds, (25.42)

where q̂qq and m̂mm are respectively the applied generalized traction and bending mo-
ment at the edge. Based on (25.41) or (25.42), boundary conditions can be suitably
proposed for various practical cases (e.g., clamped, pinned, simply-supported).

25.5 Conclusions

In this chapter, we propose a consistent dynamic finite-strain plate theory for incom-
pressible hyperelastic materials with no special restrictions on loadings or the order of
deformations. The developed plate theory follows similar lines as the previous work,
except that the dynamic terms and an additional constraint equation are involved
into the recursion relations and the final dynamic system. It is consistent with the
3D weak formulation since each term in the variations of the generalized potential
energy functional attains the asymptotic order of O(h4). The current plate theory
can recover the 3D displacement and stress fields. For the convenience of numerical
calculations, we also derive the weak formulation of the 2D vector plate equation
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together with the position or traction edge boundary conditions. In comparison with
other plate theories, the present one takes into account dynamic, finite-strain, bending
and stretching effects together with incompressibility constraint, so it may provide a
general framework for studying mechanical behaviour of soft-material plates under
various loading conditions.
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Chapter 26

A One-Dimensional Problem of Nonlinear

Thermo-Electroelasticity with Thermal

Relaxation

Wael Mahmoud, Moustafa S. Abou-Dina, Amr R. El Dhaba, Ahmed F. Ghaleb, and
Enaam K. Rawy

Abstract We investigate a nonlinear, one-dimensional problem of thermo-
electroelasticity with thermal relaxation and in quasi-electrostatics. The system
of basic equations is a restriction to one spatial dimension of that proposed earlier in
Abou-Dina et al (2017). This model is based on the introduction of the heat flow vec-
tor as an additional state variable, thus leading to a Cattaneo-type evolution equation.
It includes several non-linear couplings and may be useful in studying problems of
elastic dielectrics at low temperatures, as well as in problems of high-temperature
heat conduction in dielectric solids subjected to strong high-frequency laser beams.
For the present investigation, however, only a few nonlinearities have been retained
in the equations for conciseness. A numerical solution is presented for the system of
nonlinear equations using an iterative, quasilinearization scheme by finite differences.
The numerical results are discussed.

26.1 Introduction

An extensive and rigorous presentation of the general theory of continuum mechanics
of electromagnetic media with numerous applications may be found in Maugin
and Eringen (1977); Maugin (1988). A state-of-the-art overview of smart materials,
including theoretical and computational aspects, is given in Ogden and Steigmann
(2011). The theories of electroelasticity and electro-thermoelasticity were treated by
numerous authors, among whom we cite Tiersten (1971); Maugin (1985); Dorfmann
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and Ogden (2006); Maugin et al (1992). A numerical treatment of nonlinear thermo-
electroelasticity for smart materials by finite elements is given by Mehnert et al
(2017). The general models of electro-thermoelasticity involve rather complicated
interactions between the mechanical, thermal and electric fields. Nonlinearity is
relevant in most cases for technological applications. As Maugin (1985) notes in his
preface: “On certain occasions, one wants to benefit from the nonlinearities. On other
occasions, one wants to avoid them”. In any case, for a successful treatment of the
subject, the laws of thermodynamics must be respected.

The theory of extended thermoelasticity mainly addresses the problem of finiteness
of the speed of propagation of the heat disturbances, or second sound. This leads
to hyperbolic systems of equations, instead of the classical hyperbolic-parabolic
systems of thermoelasticity. Many approaches to extended thermodynamics exist in
the literature. They all agree on a central requirement: The need for an enrichment of
the basic set of thermodynamical variables describing the system. Most of them rely
on rigorous thermodynamics, meaning that the Clausius-Duhem inequality is satisfied.
One of the existing approaches to extended thermodynamics relies on the assignment
of a new definition to entropy outside thermodynamical equilibrium by the addition
of a dissipative component. As noted by Maugin (2015, footnote on p. 81), this may
lead to a hyperbolic equation for the propagation of heat. Along this trend one cites
the pioneering work by Coleman et al (1982); Coleman and Newman (1988) who
proposed a theory for rigid conductors which is compatible with thermodynamics
only if the specific internal energy has a dissipative part exhibiting a quadratic
dependence on the heat flux. The same was adopted by Ghaleb (1986) and others.
Kuang (2014, cf. p. 23) adds a dissipative part to entropy, calling it inertial entropy,
and relates it to the time rate of change of temperature. Adding such a time rate to
the basic set of thermodynamical variables raised some concern, but was shown to be
consistent with the basic principles of thermodynamics in earlier work by Coleman
et al (1982). The laws of thermodynamics have been re-visited in certain cases (cf.
Green and Naghdi, 1991; Barletta and Zanchini, 1997) in order to find a solution
for the paradox of infinite speed of propagation of the thermal disturbances. The
limits of applicability of Fourier law for heat conduction is questioned nowadays
in many relevant practical problems, for example those related to laser treatment of
surfaces, under high power ultra-short energy pulses, when extreme rapidly changing
temperature fields are formed (cf. Zudin, 2017).

The theory of electro-thermoelasticity in generalized thermodynamics has wit-
nessed a growing interest due to experimental work by Rybalko and others (Rybalko
et al, 2007; Pashitskii and Ryabchenko, 2007; Pashitskii et al, 2009, cf.), in which
experimental evidence was given that the propagation of heat waves at low temper-
ature is accompanied by an electrical activity. A multitude of investigations have
appeared since. Montanaro (2011) develops a model of nonlinear thermoelasticity
in extended thermodynamics for electrically polarizable, heat conducting elastic
continua. Ghaleb (2014) presents a fully nonlinear model for electrically polarizable,
heat conducting elastic continuous media in the quasi-electrostatic approximation.
Kuang (2014) considers wave propagation in pyroelectrics and other materials with
complex structure in extended thermodynamics within the linearized theory. Mon-
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tanaro (2015); Giorgi and Montanaro (2016) treat the case of electrical continuous
media within Green and Naghdi thermoelasticity theory. Abou-Dina et al (2017)
present a model of nonlinear thermo-electroelasticity within the frame of extended
thermodynamics and in the quasi-electrostatic regime, including several couplings
between the mechanical, thermal and electric fields. In particular, the free energy of
the system has a quadratic dependence on the heat flow vector, with a multiplicative
coefficient which does not depend on temperature. In this case, the entropy retains
its classical form, and the objection raised by Barletta and Zanchini (1997) that
Coleman’s entropy does not satisfy the highest-entropy principle does not apply here.
The model proposed in Abou-Dina et al (2017) involves several nonlinearities, and is
thus adequate for the description of dielectric materials, as the nonlinear effects are
often relevant in technological applications involving these materials, and the control
of such effects is of primordial importance.

Here we investigate a one-dimensional nonlinear problem of thermo-electro-
elasticity in extended thermodynamics and in the quasi-electrostatic regime. Thus,
the magnetic field effects are discarded from the outset. The model is a restriction
to one spatial dimension of the one recently presented by some of the authors
Abou-Dina et al (2017). Solutions to nonlinear problems of thermoelasticity within
the frame of extended thermodynamics are few in the literature. One notices here
the numerical treatments by Pulvirenti et al (1998) for materials with temperature
dependent heat conduction properties, and by Yen and Wu (2003) in which the
authors consider a hyperbolic heat problem with nonlinear boundary condition. To
the authors knowledge, solutions to problems of nonlinear thermo-electroelasticity
are almost inexistant. A numerical treatment of the nonlinear equations by finite
differences is proposed for the half-space. This is an iterative, quasi-linearization
scheme. For this reason, a brief discussion of the associated linear system is given. It
puts in evidence the existence of two speeds of wave propagation as expected, one
for the usual coupled thermoelastic wave, and the other for second sound. Only a
few nonlinearities are kept for conciseness, but the model may be extended further
without difficulty. The obtained results are represented in two-, and three-dimensional
plots. They illustrate the main features of the solution, more precisely the existence of
two velocities of propagation of disturbances, and the effect of an important constant
expressing the quadratic dependence of the free energy on heat flux. Future work is
under progress to study nonlinear wave propagation in two dimensions.

26.2 The Nonlinear Equations

The following equations are a restriction to one spatial dimension of a more general
system of equations of electro-thermoelasticity based on the introduction of the heat
flow vector as an additional state variable in the free energy density of the medium
and introduced in Ghaleb (2014). The equations are in dimensionless form, the
velocity of coupled thermoelastic waves being taken as unity:
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−εφxx + γ ′uxx +β �θx = 0, (26.1)
utt −uxx = −β1θx + f (x, t), (26.2)

(θ +aux)t = −qx +
1
θ0

qθx +Nq2 + r(x, t), (26.3)

(θ0 +θ)qt = −q− 1
N
θx. (26.4)

Here, u denotes the mechanical displacement component, θ is the absolute tempera-
ture as measured from a reference temperature θ0, q is the heat flow vector and φ is
the electric potential. These four relations represent respectively:

i the equation of electrostatics expressing the vanishing of the divergence of the
electric induction, in which only two linear coupling terms have been retained;

ii the equation of motion with only a linear thermoelastic coupling term;
iii the equation of heat conduction transformed using the constitutive equation for

entropy, and
iv Vernotte-Cattaneo law which replaces the usual Fourier law for heat conduction.

The coefficients appearing in the equations denote material constants having obvious
meaning. In particular, ε represents the dielectric constant, β � is a thermoelectric
coupling constant, β1 is the thermoelastic coefficient, N is an important parameter
illustrating the quadratic dependence of the free energy on the heat flow vector,
related to the thermal relaxation time. Functions f and r are, respectively, the volume
force and the heat supply. In the subsequent calculations, both of them will be taken
equal to zero. It may be noticed that the classical Fourier law for heat conduction can
be obtained from the Vernotte-Cattaneo law (26.4) in the limit of vanishing thermal
relaxation time as explained in Abou-Dina et al (2017). In the above equations,
only few nonlinear terms have been retained for conciseness, as compared to the
more ample equations proposed in Abou-Dina et al (2017). Among others, terms
expressing the dependence of material parameters on strain, and the quadratic electric
terms have been neglected.

In what follows we consider a one-dimensional problem of thermo-electro-
elasticity for the half-space 0 ≤ x < ∞ based on the above governing equations.
The present formulation necessitates initial and boundary conditions for the new
variable of state q, to be considered side by side with the boundary condition for
temperature. This is in distinction from other models of generalized thermoelasticity
in which time derivatives are imbedded in the basic equations.

26.3 The Associated System of Linear Equations

Investigation of the associated linear system is necessary, as the adopted method
of solution to deal with the nonlinear equations involves an iterative scheme with
quasi-linearization. The system of linear equations may be written as a system of
first-order partial differential equations in six unknown functions {u,θ ,q,E,P,R},
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where E is the electric field component given by

E =−∂φ
∂x

,

while P,R are defined below. One has

ζ
∂E
∂ t

+ γ ′
∂u
∂x

=−εE−β �θ , (26.5)

∂P
∂ t
− ∂P

∂x
+β1

∂θ
∂x

= f (x, t), (26.6)

∂θ
∂ t

+
∂q
∂x

+a
∂R
∂ t

= r(x, t), (26.7)

Nθ0
∂q
∂ t

+
∂θ
∂x

=−Nq, (26.8)

∂u
∂ t

+
∂u
∂x

= P, (26.9)

η
∂R
∂ t

+
∂u
∂x

= R. (26.10)

The two unknown functions P and R are defined from the last two equations of the
above system. The parameters ζ ,η are two positive small parameters introduced
artificially for convenience. Subsequently, they will be made to tend to zero during
the computations. The other parameters appearing in the equations are dimensionless
quantities involving the physical parameters of the medium. In matrix form, this
system reads:

T
∂Z
∂ t

+W
∂Z
∂x

= F, (26.11)

with

T =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0 0 0
0 1 0 0 0 a
0 0 Nθ0 0 0 0
0 0 0 ζ 0 0
0 0 0 0 1 0
0 0 0 0 0 η

⎞⎟⎟⎟⎟⎟⎟⎠ , W =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
γ ′ 0 0 0 0 0
0 β1 0 0 −1 0
1 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

F =

⎛⎜⎜⎜⎜⎜⎜⎝
−εE−β �θ

f
r
−Nq

P
R

⎞⎟⎟⎟⎟⎟⎟⎠ , Z =

⎛⎜⎜⎜⎜⎜⎜⎝
u
θ
q
E
P
R

⎞⎟⎟⎟⎟⎟⎟⎠ .

Matrix T is upper triangular. It is invertible with inverse
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T−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0

0 1 0 0 0 − a
η

0 0
1

Nθ0
0 0 0

0 0 0
1
ζ

0 0

0 0 0 0 1 0

0 0 0 0 0
1
η

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The set of eigenvalues of T is

{1,1,1,Nθ0,ζ ,η}.

Thus the linear system under consideration is of t-hyperbolic type. Such systems
are known to have many common features with the hyperbolic systems. Multiplying
(26.11) by T−1, the linear system takes the standard form:

∂Z
∂ t

+W1
∂Z
∂x

= F1, (26.12)

where
W1 = T−1W

and
F1 = T−1F.

One may now determine the speeds v of wave propagation in the present model by
looking for autonomous solutions of the homogeneous system in (26.12) in the form

Z(x, t) = Z(t− x
v
) = Z(ξ ).

The condition for the existence of non-trivial solutions is

det(I− 1
v

W1) = 0,

yielding two values

v1 = 1, v2 =
1√
Nθ0

.

The first speed is for the coupled thermoelastic wave as expected, while the second
one is for second sound. Clearly, both speeds in the linear approximation are not
affected by the electric field.
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26.4 Numerical Scheme

In what follows, we use a three-step, iterative quasi-linearization finite-difference
scheme to solve the set of nonlinear equations (26.1) - (26.4). For the computational
work, one considers finite intervals on the x- and t-axes:

0≤ x≤ X , 0≤ t ≤ T,

The domain in the (x, t) plane is discretized by a grid with step length

#x = h

and time step
#t = k

in such a way so as to secure stability of the computational scheme. Details about
the scheme may be found in Mahmoud et al (2014). The following figures were
calculated with h = 0.5, k = 0.005 and X = T = 150. For this same value of k, we
noticed instability of the numerical scheme for h≤ 0.1.

The system of equations is solved for the values of the constants

θ0 = 1, ε = 0.9, β1 = 0.5, a = 5, γ ′ = 0.001, β ∗ = 0.01

and under the following initial-boundary conditions:

u(x,0) = ut(x,0) = θ(x,0) = θt(x,0) = q(x,0) = φ(x,0) = 0,
u(0, t) = u0(1− cos t),
θx(0, t) = Biθ(0, t),
q(0, t) = q0(1− cos t),
φ(0, t) = 0,
u(X , t) = θ(X , t) = q(X , t) = φ(X , t) = 0,
u0 = q0 = 0.1,
Bi = 2.

Zeroing all the variables at x = X introduces an artificial boundary, necessary for the
application of the shooting method. The choice of the values for X and T provides the
possibility to detect the reflected waves at this far boundary travelling with velocity
v> 1. On the other hand, zeroing the electric potential at x = X induces some error, as
the used quasi-electrostatic approximation allows for non-zero values of the electric
potential at any location of space at any positive time value. This error, however, can
be made smaller by considering larger values for X .

The solutions for the mechanical displacement, temperature, heat flow vector and
electric potential for five values of time {t = 30,60,90,120,150} and two values
of the constant N {N = 0.01,0.1} are represented on the 3D-figures (26.1) - (26.4),
in which one clearly notices the effect of nonlinearity, growing with time, on the
distributions of the main unknown functions.
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Fig. 26.1: Displacement for five values of time and two values of the constant N.

Fig. 26.2: Temperature for five values of time and two values of the constant N.

We have drastically decreased the value of constant N. Comparison is carried out
for two values {N = 0.0001,0.1} on Fig. (26.5), in which we have taken u0 = 0.01
and q0 = 0.01. Understandably, the heat wave is invisible for N = 0.0001, i.e. for
relatively large values of the speed of second sound, since the effects of extended
irreversible in this case may be disregarded.

Figure (26.6) shows the electric potential as function of time at a certain location
of the half-space x = 100. The fast wave is clearly visible for times t < 100, while
the classical coupled thermoelastic wave starts to appear at t = 100. We have omitted
the curves for the displacement, temperature and heat flux because the rapid wave is
not visible on them, due to the smallness of its amplitude, compared to that of the
slower, classical wave.
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Fig. 26.3: Heat flux for five values of time and two values of the constant N.

Fig. 26.4: Electric potential for five values of time and two values of the con-
stant N.

26.5 Conclusions

The solution to a problem of nonlinear thermo-electroelasticity in extended thermo-
dynamics and in the quasi-electrostatic approximation has been presented. The main
ingredient in the used model is a Cattaneo-type evolution equation, with the inclusion
of the heat flow vector as an additional state variable, independent of temperature.
This requires considering an additional boundary condition for the heat flux, inde-
pendent of the usual thermal boundary condition. Dimension analysis and a study of
the characteristic curves has revealed the mixed “parabolic-hyperbolic” character of
the proposed system of linear equations of electro-thermoelasticity. The parabolic
component here is due to the basic hypothesis of quasi-electrostatic approximation
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Fig. 26.5: Comparison between two cases N = 0.0001 and N = 0.1.

Fig. 26.6: Electric potential at x = 100 for two values of N.

of the electric field. The numerical treatment involves periodic boundary regimes for
the mechanical displacement and the heat flux. The obtained results clearly show two
types of waves propagating in the medium, the usual coupled thermoelastic wave,
and the second sound wave. Thus the used model successfully illustrates the studied
phenomenon, showing at the same time the electrical activity that accompanies the
propagation of thermal and mechanical disturbances. In the almost total absence
of solutions to nonlinear problems of thermo-electroelasticity, the obtained results
may be of interest in investigating the nonlinear thermo-electromechanical interac-
tions in dielectrics at low temperature, or in problems involving surface treatment in
dielectrics by means of strong high-frequency laser beams.
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Chapter 27

Analysis of Mechanical Response of Random

Skeletal Structure

María-Belén Martínez-Pavetti and Shoji Imatani

Abstract In order to discuss the transmission of forces and moments in cellular
materials, a computational scheme by use of rod-beam element is adopted to represent
open-celled skeletal materials with random configuration. The target domain is
obtained by so-called the Voronoi tessellation technique, in which we consider the
line segments of the polyhedra as the substantial beam-like members, and these
members are interconnected with each other at the corners. Finite element analyses
by rod-beam elements are then carried out to examine the characteristics of the
complex structures. We discuss the transition from microscopic deformation in
member beams to macroscopic response of such structures.

27.1 Introduction

Cellular structures are very common in nature; plant tissues, bones, honeycombs,
and so on; some are made of so-called closed-cell structures and others are of open-
celled structures. A particular configuration by beam-like members with hollow
portions reveals outstanding characteristics of extremely light weight and high energy
absorption, which are of our great interest for engineering application. Such materials
are, needless to say, extremely inhomogeneous; most of the portion is just hollow,
i.e. neither force nor moment is transmitted there, while the substantial members
carry forces, moments, and any other kinds of signals from one position to others.
When we touch a sponge in dairy life, for example, we feel a softness for a sponge
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with fine foams while, in contrast, we feel something hard for another one with
rough foams, even if they have the same volume fraction and the same ingredients. A
question may arise: why is the sense of touch different from each other even with the
same density at the macroscopic level? or how do mechanical signals transmit in the
porous/skeletal structure? Such a primitive question is also of importance when we
formulate a macroscopic material model for porous materials.

Mechanical behavior of porous materials have been discussed for a long time
(Gibson, 1989). Among them we can readily refer the celebrated monographs, for
example, by Ashby et al (2000); Gibson and Ashby (1997); Weaire and Hutzler
(2009). Stimulated by these pioneering works, experimental investigations as well
as numerical simulations can be found in literatures, e.g. Gong et al (2005); Luxner
et al (2007). One of the authors also reported the mechanical behavior of closed-
cell foams "ALPORAS" both from experimental and computational approaches
(Imatani, 2012b). The complexity of dealing with the porous materials lies in the
randomness in geometrical configuration. So far as we employ stresses and strains in
the macroscopic level, this kind of statistical variation should be discussed somewhere
in the process of constitutive modeling.

Recent development of production technology enables us to fabricate complex
structures quite easily. Figure 27.1 demonstrates a porous/skeletal structure by use of
a 3D printer. The advantage of using the 3-D printer is that we can generate mostly
any kind of geometrical data as we expect, and the data are readily converted to
the input file for numerical analysis schemes. Then we can exactly compare the
response with computations. The volume fraction of the above example takes about
10%, i.e. the rest of 90% is hollow in the rectangular body. The cross-section of the
bridge members is controlled to achieve the volume. The resolution of accuracy of
the machine nowadays reaches less than 0.1mm, and so we expect fabrications of
structures in smaller size, through which the real size effect can be discussed. In
order to formulate a macroscopic constitutive model taking account of what really
takes place in the structures, we are now going on the experimental work on the
skeletal structures with this technique. Here we present a computational scheme to
evaluate the mechanical behavior of random skeletal structures and discuss some of
the characteristics to be taken into account in the macroscopic models.

The objective domain, i.e. skeletal structures, should have specific features, and
they must be realized in the computational scheme. The most characteristic point
for our purpose is the regularity and randomness not only in shape but also in di-
mension. The real scale effect of the skeletal structure is out of our consideration for

Fig. 27.1 A sample structure
fabricated by use of 3-D
printer. The volume fraction of
the substantial portion is about
10%, and it is easily controlled
by setting the thickness of
line segments of Voronoi
polyhedra.
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the moment, and it is reserved for our future work. Here we limit our discussion to
the effect of configuration of skeletal members, which carry forces and moments.
Problems become simple when adopting a regular shape for pores to be generated in
the way that the structures are composed of regular polyhedron such as tetrahedron,
cube, octahedron and so on. We can apply so-called the homogenization method
(Cioranescu and Donato, 1999; Sanchez-Palencia and Zaoui, 1987) to the represen-
tative unit cell. Then the homogenized stiffness is immediately obtained, and the
local responses in any state can be evaluated, at least, within the linear elasticity
theory. However, a specific anisotropy may be induced in the structural response
of such regular structures, and this would make our discussion complicated in the
macroscopic level. And such an treatment may be far from the reality of our targetted
materials. We take an opposite way; starting from the shape and the volume of pores
sufficiently to be various and random, and focusing to the specific phenomena. The
Voronoi tessellation algorithm (Aurenhammer and Klein, 2000; Brostow et al, 1978;
Finney, 1979) is the one of the promising techniques to generate such a skeletal struc-
ture in the three dimensional space. Here we apply this procedure with an extension
in hyperspace (Imatani, 2012a) while regarding the line segments of edges as the
substantial members of skeletal structures.

27.2 Material Characterization

27.2.1 Extended Voronoi Tessellation

In the usual three dimensional Voronoi tessellation technique, we first set many
points (seeds) at random. And we seek the corner which is equi-distant from four
seeds and is the closest from all the other seeds, i.e. no other seed exists within the
distance from that specific corner. When we repeat this procedure for all the seeds,
the domain surrounded by closer planes from the specific seed comprises a convex
polyhedron call "Voronoi" polyhedron. The objective domain is then occupied by
many polyhedra generated in such a way. The algorithm is just simple and this is
widely used to analyze the crystallisation processes; overall discussions are presented
in Aurenhammer and Klein (2000). Since we set many seeds at random in the three
dimensional space, the polyhedra in fact reveal various shape with various number of
planes, e.g. from 18 to 22, planes. It should be noted, however, that the volume of
polyhedra is quite homogeneous. When we set, for example, 100 seeds in a unit cube,
the average of the volume of polyhedra is of course 0.01, but the standard deviation
of the volumes takes less than 0.002! This indicates that the largest polyhedron takes
at most 0.014 or so, while the smallest 0.006 in the cells assembly. As we observe
various volume distribution of skeletal structures in nature, this could be far from
reality. This is the reason why we extend the tessellation technique to the hyperspace.

Let (xi,yi,zi,wi) be the coordinate of a seed in the four dimensional space, where
i takes from 1,2, . . . ,N. We set the value for the fourth parameter wi to be relatively
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smaller than the other components, and the component wi indicates the additional
parameter through which the randomness of volume is controlled. The seed with the
negative of wi, i.e. a seed at the mirror position (xi,yi,zi,−wi), is also added in the
list of seeds. The key point of setting the mirror seed is to cut the four dimensional
polytope at w= 0, which is in fact a mid-point of wi and−wi, and to get the projection
in three dimensional space. The four dimensional Voronoi polytope can be specified
from the following steps:

1. We solve the linear equations by five seeds i, j, · · · ,m to the interconnected
point (xp,yp,zp,wp) as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(xi− xp)
2 +(yi− yp)

2 +(zi− zp)
2 +(wi−wp)

2 = R2

(x j− xp)
2 +(y j− yp)

2 +(z j− zp)
2 +(w j−wp)

2 = R2

...
(xm− xp)

2 +(ym− yp)
2 +(zm− zp)

2 +(wm−wp)
2 = R2

(27.1)

while eliminating the radius R. This is a simple extension of the three dimensional
search.

2. In the above equations, the mirror seed (xi,yi,zi,−wi) should be included either
in j, . . . ,m for the seed i, and then wp = 0 must be the solution. This indicates
the projection from the four dimensional space to the three dimension at w = 0.
The candidate (xp,yp,zp,0) is reserved if it is the closest point (corner) from
any other kind of combinations. If it does not fit this condition, e.g. w �= 0, the
candidate is disregarded.

3. The mid-plane is composed of the corners (xp,yp,zp,0) around the position
(xi,yi,zi,wi). The rest of the procedure just follows the usual three dimensional
technique. The position (xi,yi,zi,0) is regarded as the center of the polyhedron.
A sample of Voronoi polyhedra is shown in Fig. 27.2 where each polyhedron is
displayed in separate. All these polyhedra are strictly closed and convex because
the original one in the four dimension is closed and convex.

4. In order to construct the open-celled structure from the above polyhedra, we use
the edges, i.e. the line segments between two corner points, as the substantial
material portion. For the experimental sample in Fig. 27.1, we reserve the portion
with triangular cross-section. In the following simulation, however, each line

Fig. 27.2 Various shape
of Voronoi polyhedra in
an assembly example. The
polyhedra are displayed, just
for convention, in separate
with each other. In order to
create the skeletal structure,
the edges of the polyhedra are
regarded as the members of
the substantial portion.



27 Analysis of Mechanical Response of Random Skeletal Structure 521

segment is assumed to be a rod/beam-like member with a constant circular cross-
section. The diameter d is settled being proportional to the length of each line
segment. This simplification remarkably reduces the computational costs while
violates the equivalence between the experiment and simulation because the
warping and other related issues may occur in the experiment. Another option
with fully three dimensional mesh generation is also possible. The material
parameters are introduced into this member material. Each line segment is
sub-divided into several finite elements.

27.2.2 Basic Equations

We assume that the substantial member portion is composed of a linear elastic
material. All the governing equations are well-known. The equation of motion in a
body, i.e. the substantial portion R, is given by

ρ−̇→v = div−→σ +ρ
−→
b . (27.2)

Here the standard nomenclatures are used; ρ is the mass density, −→v = −̇→u is the
velocity and therefore −̇→v means the acceleration, −→σ stands for the stress tensor, and−→
b is the body force per unit mass. The conventional linear elasticity material model
reads

−→σ =
−→
E −→ε . (27.3)

The elasticity coefficient
−→
E is a fourth-rank tensor, and we set Young’s modulus E

and the shear modulus G. The kinematic variable −→ε is the infinitesimal strain which
is related to the displacement −→u as

−→ε =
1
2
(
grad−→u +gradT−→u ) . (27.4)

In a part of the surrounded region, i.e. a surface ∂Ru, the displacement −→u is pre-
scribed as −→u at the fundamental boundary, while the surface force −→t is given at the
complementary boundary ∂Rt .

The Lagrangian L of the continuum body is given by the kinematic energy K
subtracted by the potential energy U as L = K −U :⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

K =
∫
R

1
2
ρ−→v ·−→v dv,

U =
∫
R

1
2
−→ε · (−→E−→ε )dv−

∫
R

ρ
−→
b ·−→u dv−

∫
∂R

−→t ·−→u ds.
(27.5)
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The Lagrangian is integrated over the time. Taking the first variation on the functional,
we obtain the virtual work principle. Making use of some integration techniques, we
have the following virtual work principle at any instant:∫

R

δ−→u ·ρ−̈→u dv+
∫
R

δ−→ε · −→E−→ε dv =
∫
R

δ−→u ·ρ−→b dv+
∫

∂Rt

δ−→u ·−→t ds. (27.6)

Here the virtual displacement δ−→u does not violate the fundamental boundary, i.e.
δ−→u = 0,−→x ∈ ∂Ru. The static version of this principle is easily reduced or recovered
when the dynamic term is neglected. This gives the basis for the finite element
equation (Hughes, 1987).

27.2.3 Finite Element Discretization

Let an element e be composed of node-i and node- j, and the z-axis lies along the
longitudinal direction of the element. The other axes x and y are set perpendicular to
the z-axis. The components in this coordinate can be transformed from the global
coordinate X-Y -Z, as schematically illustrated in Fig. 27.3. The discretization proce-
dure is just straightforward as is well recognized (Bathe, 1995). Almost no particular
technique is employed. The displacement −→u in the element e is interpolated by the
shape function φ(z). We employ so-called the Timoschenko type element together
with longitudinal tension and twisting. Each component of the displacement in the
local system is expressible as⎧⎨⎩

ue
x = [φ ]{un

x}− y[φ ]{θ n
z },

ue
y = [φ ]{un

y}+ x[φ ]{θ n
z },

ue
z = [φ ]{un

z}+ y[φ ]{θ n
x }− x[φ ]{θ n

y }.
(27.7)

The first terms in the right hand side of Eq. (27.7) represent the translation, and the
second terms for ux and uy contribute to the twisting around z-axis. The second and
third term in the component uz are to express the shear in the Timoshenko beam
theory.

The infinitesimal rotation vector
−→
θ is arranged around the axes, and so there are

totally six degrees of freedom at the node-n as

Fig. 27.3 A schematic model
of two-node rod-beam element.
The line segments of Voronoi
polyhedra are composed of
this type of element. There are
totally six degrees of freedom
per node.
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{un}= [un
x un

y un
z θ

n
x θ n

y θ n
z ]

T. (27.8)

Equation (27.7) is simply denoted by {ue}= [Φ ]{un}. Then we obtain the non-zero
strain components of εz for tension/bending and γyz and γzx for shear, which are
related to the nodal displacement by [B]-matrix. Non-zero stress components are
also σz for tension/bending and σyz and σzx for shear. Setting {ε}= [εz γyz γzx]

T

and {σ}= [σz σyz σzx]
T in vector table, the strain-displacement relation and the

stress-strain relation are respectively expressed by{{ε}= [B]{un},
{σ}= [D]{ε}. (27.9)

The 3×3 stiffness matrix [D] is a diagonal matrix whose components are E and
G. The shear correction factor is chosen to be 0.9 for this type of Timoshenko
beam. The surface force is also discretized by the standard technique, and the body
force is neglected for simplicity. In this case we can prescribe the rotation angle as
the fundamental boundary while surface moment can also be given as the natural
boundary condition.

Introducing these equations from (27.7) to (27.9) into Eq.(27.6), we find the
equation of motion in discrete system. For simplicity we prepare the elemental mass
matrix [Me] and the elemental stiffness matrix [Ke] as

[Me] =
∫
e

ρ[Φ ]T[Φ ]dv, [Ke] =
∫
e

[B]T[D][B]dv. (27.10)

This is written in the local coordinate system. Here we employ the consistent mass
matrix technique rather than the lumped matrix which is well used in structural
analysis. Converting from the local system to the global system, we have the following
equation of motion:

[
−→
M ]{−̈→U

n
}+[
−→
K ]{−→U n}= {−→F n}. (27.11)

[
−→
M ] and [

−→
K ] are the total mass matrix and the stiffness matrix respectively. For

step-by-step analysis, the nodal acceleration {−̈→U
n
} is approximated between the time

τ and τ+Δτ by use of the implicit Newmark-β algorithm with a proper parameter

1/6≤ β ≤ 1/4.

The FE equation to be solved for the nodal displacement{−→U n
τ+Δτ} is given by

[
−̂→
K ]{−→U n

τ+Δτ}= {
−̂→
F

n

τ+Δτ} (27.12)

where the matrices are given below:
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[
−̂→
K ] = [

−→
K ]+ 1

β (Δτ)2 [
−→
M ],

{−̂→F
n

τ+Δτ} = {
−→
F n

τ+Δτ}
+ [
−→
M ]

{
1

β (Δτ)2 {
−→
U n

τ}+
1

β Δτ
{−̇→U

n

τ}+
(

1
2β
−1
)
{−̈→U

n

τ}
}
.

(27.13)

We notice that there is no damping in this system, and that we have no steady
state to be approached. By virtue to the Helmholtz theorem, we have two kinds
of characteristic wave speed for one kind of vector field; usually the longitudinal
wave and shear wave in terms of the displacement −→u . However, it should be pointed
out that there is one more wave pattern through rot

−→
θ (N.B. div

−→
θ = 0), since we

have two kinds of vector fields −→u and
−→
θ . For the static analysis, the matrix [

−̂→
K ] is

replaced by [
−→
K ] and the vector {−̂→F

n

τ+Δτ} by {−→F n}. Then the equation (27.12) is
recovered to the static stiffness equation;

[
−→
K ]{−→U n}= {−→F n} . (27.14)

The results of {−→U n
τ+Δτ} for dynamic analysis and {−→U n} for static analysis are

utilized for the evaluation of elemental stress/strain response.

27.3 Analyses and Discussions

27.3.1 Preparation of Skeletal Model

Figure 27.4 shows two types of skeletal structures of unit cube (X ,Y,Z) ∈[0,1]. The
bold frames in grey color, which are not valid in the practical computation, are
added to distinguish the domain. The internal structure is completely different due to
the seeds distributed in the domain as is given in Sect. 27.2.1. The left side of the
figure indicates a regular structure composed of the line segments of face centered
cubic (f.c.c.) cells; i.e. rhombic dodecahedron. The cross-section of each member is

Fig. 27.4 Two types of skele-
tal structures. The left side
model is a regular structure
composed of the line segments
of f.c.c. dodecahedral cells,
and the right side model is
a random skeletal structure.
Two-nodes rod-beam elements
are utilized to compose the
structures, and thus the sub-
stantial portion is displayed in
line.
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constant and uniform. In contrast the right side of the figure indicates a unit-cube
structure composed of random skeletal members. The cross-section of this structure
depends upon the length of the line segments, and the total volume of the substantial
portion is set to be the same; about 10% in the above example. In the following
simulation, we set the nodes at the left end of X = 0 to be fixed and the displacements
of the nodes at the right end of X = 1 are prescribed. The number of interconnected
points is about 600 to 800, and the total number of elements and nodes is about
20,000 to 24,000, both of which depend on the number of seeds. We prepare several
patterns for the random structure with different sets of seeds. The material properties
and other parameters related to the simulation are, mainly for simplicity, chosen to
be simple enough; the mass density ρ to be 1.0, the shear modulus G to be 1.0, and
Young’s modulus is set 2.6.

When a signal of axial force, shear forces, axial (twisting) moment, and bending
moments leaves from an interconnected point (corner), it propagates along the
line segments, which are subdivided by several elements, and reaches the other
corner. Since all the line segments are identical in the regular structure, the reflection
and the transmission at the corner occur at the same time. From this meaning the
signal may be kept coherent in the structure, while the bending strain has some
distribution along the member. In contrast, the length of the line segments in the
random structure is so various that the reflection and the transmission take place
almost at random. And this may affect the macroscopic behavior of mechanical
response of the structure. It should be noticed that the forces and the moments change
the role at the interconnected point, and so a simple push-pull signal does not keep
the same signal pattern.

27.3.2 Static Tension

As the first examination, a simple tension by static analysis is carried out for the
structures. The displacement at the right end UX in Fig. 27.4 is stretched to 0.1% at
the X-direction. For homogeneous solids, this simply induces a uniform strain over
the whole domain. However the results are far different from the uniform stretch.
Figure 27.5 represents the displacement of some of the representative nodes. The
members exposed to the outside of the domain are free, and therefore they do not
contribute to any deformation. In order to exclude such a free end effect, the sample
nodes located on the inside of the domain are chosen. The open circles are the
plots by the regular structure and the triangular marks are the result by the random
structure, while some of the marks are overlapped. Both plots of displacement are
almost linear on the distance from the origin, which implies that the structures as
a whole undergo the prescribed stretch, i.e. εX ≈ 0.1%. And this also indicates the
uniformity in the macroscopic response of strain, since the macroscopic strain is
given by the gradient of displacement at the macroscopic level. However, this does
not mean that the response is uniform in the structures at the microscopic level. Even
in the regular structure a periodic distribution may occur in each line segment.
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Fig. 27.5 Displacement along
the structures. Some of the
representative nodes near the
center are plotted in order
that peculiar responses due to
the free ends around the side
surface are to be excluded.
Since the nodes at the origin
X = 0 are strictly fixed not
only at the X-direction but
also at Y - and Z-direction as
well as the angles, the edge
effect is observed around the
origin O.
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Fig. 27.6: Statistical properties of displacement and strain within the middle part
of the domain under tension test. The regular structure shows a flat distribution in
displacement while the random structure reveals a normal distribution due to the
randomness of the skeletal members. The local strain shows a wide variety and
sometimes 10 times larger than the average strain.

Lest us discuss the statistical aspect of the microscopic deformation. Figure 27.6
demonstrates the distribution profiles around the middle part, i.e. X ∈ [0.4,0.6], of the
structures. The samples are also chosen on the inside of the domain (Y,Z) ∈ [0.4,0.6]
to exclude the nodes and elements around the side surface. Notice that the number
of plotted data in this figure is much more than the previous one in X ∈ [0.4,0.6] of
Fig. 27.5. The solid circles are the plot for the regular structure and the open ones
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for the random structure. The left side of the figure indicates the distribution profile
of displacement UX in the global coordinate system, and the right side stands for
the cumulative frequency, i.e. the sum of plotted data, of the longitudinal strain εz
in each local coordinate system in the elements. Both figures are normalized by the
sum of the event data. The magnitude of the local longitudinal strain εz is in general
much smaller than the macroscopic strain εX , because the deformation is achieved by
the structural response in which the local members are deflected mainly by bending
and twisting. It follows that a uniform stretch in homogeneous materials is replaced
by the structural rotation in skeletal materials.

Characteristic differences are observed between these structures in the distribution
of displacement in the left side of the figure. A flat form like a step-function is
obtained in the regular structure, whereas a normal distribution is predicted in the
random structure. If a homogeneous solid is applied, we have an exact step-function
within [4× 10−4,6× 10−4] for the finite range of X ∈ [0.4,0.6], corresponding to
the 0.1%-stretch. This step function may approach steeper and steeper, i.e. finally
like the Dirac-delta, when the sampling range becomes narrower. From this point
of view, the regular structure keeps this kind of regularity in displacement. This
assures, in a sense, the validity of the homogenization technique when we deal
with the regular structure. In contrast, the normal distribution is induced from the
randomness in geometry. When we take narrower sampling range for the random
structure, the normal distribution may also approach steeper distribution, but not the
Dirac-delta function in final. Furthermore the gradient of this kind of distribution
does not reduce any regularity. Imatani (2007) reported that the stress/strain response,
but not the displacement, in a polycrystalline model also reveals a transition to the
normal distribution, although each crystal grain possesses the cubic anisotropy at
random orientation. In such a way the randomness in geometry gives more and more
dominant influence in the gradient of displacement, i.e. the strain.

The local strain εz reveals much complicated distributions in the right figure. The
slope of the cumulative frequency is equivalent to the event density, i.e. the local
strain level, while the horizontal axis is displayed in logarithmic scale. In the regular
structure, the local longitudinal strain distribution is mostly located in the range from
4×10−5 to 1×10−4, and the density is similar to the normal distribution. In contrast,
the strain response in random structure shows larger variation from extremely small
stain of less than 1×10−5 to relatively large strain up to 1×10−3. This is because
we set many kinds of beams with various cross-section as well as length. We have
found a rough tendency such that larger strain is generated in thinner members, but
this tendency does not always hold since the geometrical configuration gives much
more dominant influence on the location strain response.

27.3.3 Dynamic Loading

The dynamic response is examined next, in order to discuss the transmission of force
and moment. Being similar to the static test, we use the cubic structures in Fig. 27.4,
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and the left end at X = 0 is fixed while the right end at X = 1 is stretched. The
prescribed displacement given to the structures is

UX |X=1 =

⎧⎨⎩U0

(
1− cos

π tn
20

)
· · · tn < 20 ,

2U0 · · · tn ≥ 20 (hold) .
(27.15)

The time tn indicates the normalized scale. Starting from X = 1, the deformation
makes progress or propagates from the right end to the left. However, the propagation
itself is very complex because of the reflection at interconnecting points. Recall
that the equation of motion (27.11) does not involve any damping mechanism, and
therefore the structures do not show any stationary state even when a long time passes
while holding the displacement at the right end. Here we pick up deformation profiles
at the time tn = 100 and tn = 400 and compare the progress of deformation. Since we
set the elasticity parameters E = 2.6 and G = 1.0 while the mass density is ρ = 1.0,
the wave speed, whether it is a longitudinal wave or a shear wave, is in the order of 1.
The sampling times at 100 and 400 should sufficiently be large.

Figure 27.7 demonstrates the variation of microscopic deformation, in which the
left figure shows the local strain distribution εz and the right figure corresponds to
the rotation |ω|. The infinitesimal rotation −→ω is evaluated as the skew-symmetric
part of the displacement gradient, and it is also related to the axial vector. In spite
that the prescribed displacement is held constant with U0 at tn = 100 and 400, the
deformation is concentrated near the right end and it is not yet uniform from the
macroscopic viewpoint. In the regular structure, all the members have the same
span and the same connecting configuration, the signal traveling is coherent. This
coherence is advantageous in transmission of signals across the interconnecting point,

Fig. 27.7: Distributions of longitudinal strain and rotation under dynamic tension.
The signals generally move from the right end to the left, while the reflections at
the interconnecting point play an important role as the structural damping.
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Fig. 27.8 Composition of
strain energy along the axis
over the simulation time.
In spite of the remarkable
difference of mechanical
response between the regular
and random structures, the
composition of strain energy
stored in the body is not so
different. When the member is
thinner, The bending energy
becomes more dominant in the
storage of strain energy.
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and the local strain arrives at the left end. In the random structure, in contrast, the
deformation almost ceases the propagation at the middle of the cube. This may be
due to the simultaneous recurrence of reflection of signals at the interconnecting
points, and this behavior seems a structural damping while no damping mechanism
exists. Such a tendency is common for both the strain and the rotation.

With reference to the interpolation of displacement in Eq. (27.7), the strain com-
ponents can be decomposed into normal strain, bending/shear strains, and twisting
strain. Then the total strain energy can also be split into these terms. Figure 27.8
clarifies the contribution of the strain energy stored in the member elements. The
energy composition means the relative ratio of each term with respect to the total
strain energy at that location, and so the values at X = 0.1 are overestimated in a
sense because the deformation is so small there. It should also be pointed out that
the nodal displacements at both ends are fixed, and then further constraints give
influences on the evaluation of energy. However, the bending energy is always the
highest among all, and it is dominant on the deformation of skeletal structures.

27.4 Concluding Remarks

Skeletal structures with random configuration are discussed from computational
approaches. Here we obtained the following remarks:

1. Based upon a computational geometry technique, skeletal structures with random
configuration is generated. The advantage of this procedure is that we can
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reproduce the model in practice with a 3-D printer while the model is also
applied to the numerical analysis scheme.

2. It is found that both the displacement and the strain should be treated as a
sort of distribution density function when we formulate a macroscopic consti-
tutive model for skeletal materials. The homogenization technique would be a
promising method for a material with some regularity in geometry, while further
technique must be applied to a material with random configuration.

3. The bending mechanism plays a dominant role in the deformation of each
member. And so the couple stress concept or higher order stress should taken
into account in the macroscopic constitutive model.

4. The reflection of plural waves at the interconnecting point decelerates the travel
of signals, and this effect appears as a sort of mechanical damping at the macro-
scopic level. The high energy absorption in skeletal materials may be caused by
this effect.
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Chapter 28

On the Influence of the Coupled Invariant in

Thermo-Electro-Elasticity

Markus Mehnert, Tiphaine Mathieu-Pennober, and Paul Steinmann

Abstract Electro-active polymers (EAPs) are a comparatively new class of smart ma-
terials that can change their properties and undergo large deformations as a result of
an external electric excitation. These characteristics make them promising candidates
in a wide range of applications, for example in sensor and actuator technology. As
the experimental testing is both expensive and time consuming, simulation methods
are developed in order to predict the material behavior. These simulations are based
on well established energy formulation that are amended by additional coupling
terms, often times in form of an invariant description. While the form of the purely
mechanical and purely electric invariant quantities does not vary among the con-
tributions of the electro-mechanical community, two different formulations for the
coupling invariant can be found. In this contribution we demonstrate the influence of
the selected coupling invariant on the material response. Therefore a thermo-electro-
mechanically coupled constitutive model is derived based on the frequently used total
energy approach. We devise the relevant constitutive equations starting from the basic
laws of thermodynamics. Two distinctively different non-homogeneous boundary
value problems are solved analytically in order to demonstrate the influence of the
selected coupling invariant.
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28.1 Introduction

Increased standards on design and efficiency, the demand for multi-functionality and
small scale applications while simultaneously ensuring low production costs and
robustness of the final product pose major challenges for engineers in the develop-
ment of state-of-the-art technology. This has lead to an increased interest in smart
materials that possess the ability to change their shape and their mechanical features
in response to the application of a non-mechanical field. One particularly interesting
example of this material class are electro-active polymers (EAPs) which can react
to the application of an electric field with large deformations and a change in their
material properties, like stiffness or viscosity. In the design of actuators for example,
EAPs have the ability to outperform traditional technologies like shape memory
alloys, piezoelectrics or electro-magnetic motors, especially when low weight, small
production costs and a fast reaction time are are the dominating factors (Pelrine et al,
2000a,b). But also in a wide range of other applications such as artificial muscles,
sensors, generators, microfluidic pumping systems and adaptable optics (O’Halloran
et al, 2008; Bar-Cohen, 2002, 2004; Vertechy et al, 2014; Böse and Fuß, 2014; Koh
et al, 2011) electro-active polymers have been employed successfully.

We can differentiate EAPs based on their deformation mechanism (Bar-Cohen,
2002; Brochu and Pei, 2010). In ionic electro-active polymers (IEAPs), intramolec-
ular forces lead to electrostriction whereas the mechanical response of electronic
electro-active polymers (EEAPs) is due to the Maxwell stress originating from elec-
trostatic forces between electric charges. If used as an actuator, a thin film of an
EEAP is sandwiched between two compliant electrodes. Upon the application of an
electric potential difference the thin-film contracts in the direction of the resulting
field while simultaneously expanding in the transverse planar direction.

A group of smart materials that shows a very similar behavior as EAPs are
magneto-rheological elastomers (MREs) which consist of a soft elastomer matrix
filled with magnetizable micro particles (Kankanala and Triantafyllidis, 2004). When
a magnetic field is applied, MREs can undergo large deformations and change their
elastic properties (Danas et al, 2012). This makes magneto-rheological elastomers
interesting candidates in the design of e.g. controllable stiffness devices or tactile
interfaces for the visually impaired (Bodelot et al, 2016). For the latter, the magneto-
rheological material is applied in form of a thin layer on a non-magnetic substrate.
When the combination is subjected to a transverse magnetic field buckling of the
material occurs (Danas and Triantafyllidis, 2014).

The basic principles of the mathematical modelling of electro- and magneto-
elasticity were established for example in the works of Voltairas et al (2003); Maugin
and Eringen (1977); Maugin (1976); Maugin and Eringen (1972); Maugin (2013);
Eringen and Maugin (2012); Dorfmann and Ogden (2005a). The work of Maugin
was furthermore extended by contributing studies on defects in electro-active poly-
mers (Maugin, 1993) using the concept of material forces (Epstein and Maugin,
1990b,a). In the modelling of magneto-active materials the interface between the
micro particles and the elastomer matrix poses additional challenges that were in-
vestigated for example in Pössinger et al (2014). Just as conventional polymeric
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materials, EAPs and MREs are sensitive to changes in temperature which often times
may be impossible to avoid during their operation due to the high electric potential
differences needed for the activation but also due to external thermal loading. There-
fore it is crucial not only to analyze the electro- and magneto-mechanical coupling
but also to consider the influence of temperature changes. A thermo-electro-elastic
framework was introduced in a preceding contribution (Mehnert et al, 2016) which
presented a phenomenological approach to the simulation of EAPs. In contrast to
micro-mechanical models, which are derived from the statistical analysis of net-
works of idealized chain molecules, phenomenological approaches are formulated
in terms of strain invariants or principal stretches (Steinmann et al, 2012; Hossain
and Steinmann, 2013). One common approach to capture the interaction between the
non-mechanical field and the deformation in EAPs or MREs is to amend a classical
phenomenological model such as a realization of the class of Ogden models (Ogden,
1972) or models of Mooney-Rivlin type (Rivlin, 1948, 1949a,b) with additional
coupling invariants. Throughout the literature two different formulations for this
coupling invariant have been predominant whereas both fulfill the requirements for
the formulation of an isotropic material. In this contribution we want to present how
the selection of the coupling invariant may change the material response based on
two analytical examples. This is done in the context of electro-active polymers but
can in principle also be translated to the magnetic case for MREs.

This paper is organized as follows. In Subsect. 28.1.1, the finite strain theory of
nonlinear electro-elasticity is presented by deriving the relevant nonlinear kinematics
and balance laws for the spatial and material configuration. Furthermore this chapter
contains constitutive relations based on a total free energy function and the deriva-
tion of a modified heat equation. The chapter is concluded by the derivation of a
thermo-electro-mechanical coupled framework. In Sect. 28.2 two non-homogeneous
boundary problems are solved analytically in order to present the different material
behavior due to the selection of the coupling invariant. The final Sect. 28.3 concludes
the paper with a summary and an outlook for future works.

28.1.1 Kinematics

The position vector XXX defines the position of a point in the reference configuration
B0 of a nonlinearly deforming body B. The corresponding position vector in the
deformed configuration Bt is denoted x, which is connected to the reference configu-
ration by the nonlinear deformation map ϕϕϕ in the form xxx =ϕϕϕ(X). By calculating the
gradient of the deformation map with respect to the material coordinates we introduce
the deformation gradient FFF = Grad ϕϕϕ with the Jacobian determinant J = det(FFF). The
deformation gradient F can be used to define the right Cauchy-Green tensorCCC =FFFTFFF .
As the considered deformation is a combination of thermal and electro-mechanical
loading, we introduce a multiplicative decomposition of the deformation gradient
following Lu and Pister (1975) into an electro-mechanical deformation FFFEM and
a thermal part FFFΘ = exp(αΔΘ)III, c.f. Erbts et al (2015), that captures the thermal
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expansion
FFF =FFFEMFFFΘ (28.1)

In this context α is the thermal expansion coefficient and ΔΘ is the temperature
difference. The Jacobian determinant can be decomposed accordingly as

J = detFFF = detFFFEM detFFFΘ = JEMJΘ ,

with JΘ = exp(3αΔΘ) and JEM = J exp(−3αΔΘ).
(28.2)

28.1.2 Balance Laws in Electrostatics

We will now present the well established electro-mechanical balance equations. For
further details on these relations the reader is referred to the works of e.g. Voltairas
et al (2003); Maugin (2013); Griffiths (1989) or Dorfmann and Ogden (2005a).

28.1.2.1 Spatial Configuration

In vacuum an electric field e induces the electric displacement dε = ε0e, where
ε0 = 8.85×10−12 F/m is the vacuum electric permittivity, whereas in the presence
of matter, this relationship is amended by the electric polarization p which results in
the constitutive relation for the electric displacement d (Eringen, 1963; Trimarco and
Maugin, 2001)

d =: dε +p, in Bt . (28.3)

The governing equations of the electric problem in the spacial configuration are
summarized by the Maxwell equations that, in the absence of free currents and free
electric charges, take the form

div d = 0, curl e = 000 in Bt . (28.4)

Here div and curl denote the corresponding differential operators with respect to the
position vectors xxx in Bt . We can ensure that Equation (28.4)2 is satisfied by defining
the electric field e as the gradient of the scalar electric potential φ with respect to the
spatial coordinates Vu et al (2007); Vogel (2015)

e =−grad φ . (28.5)

The balance of linear momentum governs the mechanical response of the body. In
electro-mechanics it states that the divergence of the non-symmetric mechanical
Cauchy stress σσσ has to be in equilibrium with the mechanical body forces bbbt and the
ponderomotive body forces bbbpon

t

div σσσ +bbbpon
t +bbbt := div σσσ tot +bbbt = 000 in Bt . (28.6)
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These ponderomotive body forces capture the interaction between matter and the
electric field in terms of the polarization and the gradient of the electric field

bbbpon
t := grad e ·p, (28.7)

and can be expressed as the divergence of a corresponding ponderomotive stress
σσσpon

bbbpon
t = div σσσpon. (28.8)

The ponderomotive stress can be decomposed into the symmetric Maxwell stress
σσσmax and a non-symmetric polarization stress σσσpol (Vogel et al, 2014; Steinmann,
2011; Eringen, 1980; Eringen and Maugin, 2012)

σσσmax =−1
2
ε0[e ·e]iii+ ε0e⊗e, σσσpol = e⊗p, (28.9)

where iii represents the second order spatial identity tensor. If we combine the mechan-
ical stress σσσ with the ponderomotive stress σσσpon we can define a total Cauchy-type
symmetric stress tensor (Dorfmann and Ogden, 2005a; Bustamante, 2009b; Dorf-
mann and Ogden, 2005b, 2003, 2004)

σσσ tot =σσσ +σσσpon. (28.10)

In order to complete the description of the electro-mechanical balance equations, we
will now define the behavior at the boundary of the body ∂Bt . For this we define
[[•]] = [•]out− [•]in as the jump of a quantity at the interface between the bulk material
and the free space surrounding the body. The total stress tensor σσσ tot must satisfy

−[[σσσ tot]] ·nnn = tttp
t , on ∂Bt , (28.11)

where tttp
t are the imposed mechanical tractions and nnn is the surface normal on ∂Bt

pointing outwards. This formulation simplifies to the standard boundary condition
if we neglect the influence of the free space. In this case the boundary ∂Bt is split
into a Dirichlet boundary ∂Bϕ

t and a Neumann boundary ∂Bt
t , where mechanical

tractions tttp
t are imposed

ϕϕϕ =ϕϕϕp, on ∂Bϕ
t , σσσ tot ·nnn = tttp

t , on ∂Bt
t . (28.12)

For the spatial electric field vector e and the electric displacement d we can formulate
similar jump conditions at the boundary of the body in the form (Eringen, 1980;
Eringen and Maugin, 2012; Kovetz, 2000; Kost, 1994)

[[e]]×nnn = 000 and [[d]] ·nnn = ρ̂ f
t , on ∂Bt , (28.13)

with the density of free surface charges per deformed area ρ̂ f
t (Vogel et al, 2014). If

we consider the influence of the free space as negligible these jump conditions can
be transformed into classical boundary conditions. Recalling the relationship in Eq.
(28.5), i.e. the electric field e can be defined as the gradient of a scalar potential φ
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we split the boundary ∂Bt into a part ∂Bφ
t on which Dirichlet boundary conditions

for the electric potential are prescribed and ∂B
ρ
t where Neumann conditions have to

be satisfied

φ = φ p, on ∂Bφ
t and d ·nnn = ρ̂ f

t , on ∂B
ρ
t . (28.14)

28.1.2.2 Material Configuration

The relations presented in the previous section are now transformed into the mate-
rial configuration, starting with the electric field, the electric displacement and the
polarization

E =FFFT ·e, D = J FFF−1 ·d, P = J FFF−1 ·p. (28.15)

With these quantities in the undeformed configuration the Maxwell equations (28.4)
take the form

Div D = 0, Curl E = 000 in B0. (28.16)

Here Div and Curl are the corresponding differential operators defined with respect to
the material position vector XXX . If we derive the electric field E from a scalar potential
such that

E =−Grad φ , in B0, (28.17)

we ensure that Eq. (28.16)2 is satisfied. When we define the vacuum electric displace-
ment as Dε := ε0JCCC−1 ·E the electric displacement D in matter can be formulated as

D = Dε +P in B0, (28.18)

which follows directly from a pull-back of the spatial format given in Eq. (28.3). We
can derive the total Piola stress tensor PPPtot as the material counterpart of the total
Cauchy stress as σσσ tot as

PPPtot = Jσσσ tot ·FFF−T . (28.19)

This stress measure can be decomposed into a mechanical part PPP and a ponderomotive
part PPPpon containing the polarization stress PPPpol and the Maxwell stress PPPmax

PPPtot =PPP+PPPpon =PPP+PPPmax +PPPpol (28.20)

with

PPPpol = e⊗P, PPPmax =−1
2
ε0JCCC−1 : [E⊗E]FFF−T +e⊗Dε . (28.21)

The balance of linear momentum (28.6) in the undeformed configuration can there-
fore be translated to

Div PPPtot +bbb0 = 000. (28.22)

To conclude the material description we transform the jump conditions into

[[D]] ·NNN = ρ̂ f
0 , and [[PPPtot]] ·NNN = ttt p

0 , on ∂B0, (28.23)
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which renders the standard boundary conditions in the case that the free space is not
considered

D ·NNN = ρ̂ f
0 , on ∂B

ρ
0 ,

PPPtot ·NNN = ttt p
0 , on ∂Bt

0.
(28.24)

28.1.3 Heat Equation

We will now present various basic equations in thermo-electro-elasticity. The reader
is referred to the works of Holzapfel (2000); Erbts et al (2015); Miehe (1995) and
Vogel (2015) for a description in further detail.
The starting point is the first law of thermodynamics. It states that the rate of the
energy E , that can be decomposed into the internal part U and a kinetic energy
contribution K , has to be equal to the rate of work done on a continuum body which
comprises of the sum of the external mechanical power Pext and the non-mechanical
power Q combining thermal power Qthm and ponderomotive power density Qpon

(Holzapfel, 2000)

Ė = U̇ + ˙K = Pext +Q = Pext +Qthm +Qpon. (28.25)

Following Vogel (2015) for the quasi static case, we can derive the local form of the
balance of energy in the material configuration as

U̇ =PPP : ḞFF−Div QQQ+R+E · Ṗ+PPPpol : ḞFF . (28.26)

Here we have introduced the change in the internal energy density per unit unde-
formed volume U̇ , the heat sources R and the heat flux vector QQQ, expressed in the
undeformed configuration. The heat flux can be calculated from the gradient of the
absolute temperature Θ using the relation

QQQ :=−κJCCC−1 ·Grad Θ (28.27)

with the isotropic heat conductivity κ . This can be transformed to the Clausius-
Duhem inequality by introducing the entropy H, which gives a formulation of the
dissipation power density D = D(XXX , t)≥ 0 in the form

D =Θ Ḣ− QQQ
Θ
·Grad Θ − U̇ +PPP : ḞFF +E · Ṗ+PPPpol : ḞFF ≥ 0. (28.28)

The dissipative term consists of two contributions, the dissipation power density due
to heat conduction

Dcon =−QQQ
Θ
·grad Θ ≥ 0

and the local dissipation power density D loc Vu (2014), that can be expressed in form
of the Clausius-Planck inequality as
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D loc =Θ Ḣ− U̇ +PPP : ḞFF +E · Ṗ+PPPpol : ḞFF ≥ 0. (28.29)

This inequality holds for any irreversible process whereas the local dissipation term
vanishes for a reversible process. We introduce the free energy densityΨ that depends
on the current state of deformation, the electric field and the temperature, resulting
from a double Legendre transformation (Coleman and Noll, 1963) in the form

Ψ(FFF ,Θ ,E) = U −ΘH−E ·P, (28.30)

rendering the Clausius-Planck inequality

D loc =−Ψ̇ −Θ̇H +[PPP+PPPpol] : ḞFF− Ė ·P≥ 0. (28.31)

When we finally choose to take into account the energy stored in the electric field
itself, the free energy densityΨ(FFF ,Θ ,E) has to be amended by the term

E(FFF ,E) =−1
2
ε0J[E⊗E] : CCC−1

(Dorfmann and Ogden, 2003, 2004) leading to the amended total free energy density
per unit volume in B0

Ω(FFF ,Θ ,E) =Ψ(FFF ,Θ ,E)+E(FFF ,E). (28.32)

The Clausius-Duhem inequality is transformed accordingly to a formulation contain-
ing the total Piola stress

D loc =−Ω̇ −Θ̇H +PPPtot : ḞFF− Ė ·D≥ 0. (28.33)

From this formulation we can derive the constitutive relations for the total Piola
stress, the electric displacement and the entropy (Mehnert et al, 2016)

PPPtot =
∂Ω
∂FFF

, with PPPmax =
∂E
∂FFF

, D =−∂Ω
∂E

, H =−∂Ω
∂Θ

. (28.34)

If we combine Eq. (28.26) with the Clausius-Planck inequality (28.31) we find the
first law of thermodynamics in entropy form

Θ Ḣ = R−DivQQQ+D loc, (28.35)

The term Θ Ḣ can be expanded with the total free energy density (28.32) using the
chain rule, c.f. Mehnert et al (2016),

Θ Ḣ =−Θ ∂ 2Ω
∂Θ∂Θ

Θ̇ −Θ ∂ 2Ω
∂FFF∂Θ

: ḞFF−Θ ∂ 2Ω
∂E∂Θ

· Ė. (28.36)

If we recall the definition of the heat capacity c0 = −Θ ∂ 2Ω
∂Θ 2 , c.f. Holzapfel and

Simo (1996); Elahinia et al (2013); Vertechy et al (2010); Santapuri et al (2013);
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Santapuri (2012), the first law of thermodynamics can be transformed into the heat
conduction equation

c0Θ̇ = R−DivQQQ+Θ∂Θ
[
PPPtot : ḞFF−D · Ė

]
︸ ︷︷ ︸

H

+D loc. (28.37)

The structural thermo-mechanical and thermo-electric heating/cooling effect are
here combined to the term H . To finalize the formulation we split the boundary of
the body into a part ∂BΘ

0 with Dirichlet boundary conditions for the temperature,
i.e. Θ = Θ p on ∂BΘ

0 , and a part ∂Bq
0 with Neumann boundary conditions for

the heat flux, i.e. QQQ ·NNN = Q on ∂Bq
0, in such a way that ∂B0 = ∂BΘ

0
⋃
∂Bq

0 and
∂BΘ

0
⋂
∂Bq

0 = /0.

28.1.4 Energy Function

We will now derive a thermo-electro-mechanically coupled free energy function. As
a starting point we use the heat capacity cFFF ,E at constant deformation and constant
electric field that is assumed to be constant as a simple first attempt to model the
thermo-electro-mechanical behavior of elastomers

cFFF ,E(Θ) = cFFF ,E(Θ0) = c0. (28.38)

Here Θ0 is a reference temperature. With the definition of the heat capacity c0 used
in the previous section we can derive a thermodynamically consistent formulation
for the free energy density Ψ by integrating the expression twice as presented in
Mehnert et al (2016). This leads to the formulation

Ψ(FFF ,Θ ,E) = c0

[
Θ −Θ0−Θ ln

( Θ
Θ0

)]
−
[
Θ −Θ0

]
M1(FFF ,E)+W (FFF ,E).

(28.39)
The first term on the right side of Eq. (28.39) can be identified as the capacitive
contribution to the free energy density, whereas the second term is the coupled
contribution and the last is an expression for the isothermal energy contribution.
Following Mehnert et al (2016) we can transformΨ(FFF ,Θ ,E) into

Ψ(FFF ,Θ ,E) = c0

[
Θ −Θ0−Θ ln

( Θ
Θ0

)]
−
[
Θ −Θ0

]
M(J)+

Θ
Θ0

W (FFF ,E). (28.40)

In this context, the term M(J) describes the volumetric contribution to the free energy.
This expression can be introduced into the definition of the total free energy density
(28.32). We consider the electro-elastic material to be isotropic which is closely
connected to the theory of isotropic tensor functions Vu (2014) and can therefore be
expressed using the representation theorem (Spencer, 2013; Wang, 1970) that states
that a scalar-valued function F = F (AAA,bbb) is invariant with respect to the proper
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orthogonal group SO(3) if and only if it can be expressed as a function of the six
principal invariants of AAA and bbb

F (AAA,bbb) = F (I1AAA, I2AAA, I3AAA, I4bbb, I5AAAbbb, I6AAAbbb). (28.41)

Thus we define the isothermal energy function W (FFF ,E) as an isotropic function
depending on the right Cauchy-Green tensor CCC and the electric field vector E. As
presented in e.g. Dorfmann and Ogden (2005a); Vu (2014); Spencer (2013) the first
three purely mechanical invariants take the form

I1 = tr (CCC), I2 =
1
2

[
[tr (CCC)]2− tr (CCC2)

]
, I3 = det (CCC), (28.42)

and the fourth invariant, which is a purely electric quantity, can be expressed as

I4 = [E⊗E] : III. (28.43)

This invariant can be physically interpreted as the square of the electric field strength
in the undeformed configuration. While these four invariants are basically consistent
throughout the literature, different formulations can be found for the remaining two
invariants describing the coupling between the electric field and the mechanical
deformation. On the one hand in a number of contributions (Vu, 2014; Ask et al,
2012; Bustamante, 2010, 2009a; Vogel, 2015) the coupled invariants are formulated
using the right Cauchy-Green tensor

I5 = [E⊗E] : CCC, I6 = [E⊗E] : CCC2. (28.44)

The physical interpretation of this formulation is not quite straight forward. Following
the notion in Dorfmann and Ogden (2005a) that the electric field plays a similar
role in electro-elasticity as the preferred direction for transversely isotropic elastic
materials, one attempt of a physical interpretation can be made analogously to
Holzapfel and Ogden (2010). We assume the electric field vector as a normal vector
to an area-like quantity comparable to an area element da in the spatial configuration
and dA in the material configuration. Using Nanson’s formula it can be shown that I5
is a measure for the ratio da2/dA2, hence a measure of the changes of this area-like
quantity normal to the electric field.

In contrast to this in Dorfmann and Ogden (2005a); Holzapfel and Ogden (2010);
Merodio and Ogden (2002); Dorfmann and Ogden (2014) a formulation based on
the inverse of the right Cauchy-Green tensor can be found which will be labeled Ĩ5 in
the context of this work

Ĩ5 = [E⊗E] : CCC−1, Ĩ6 = [E⊗E] : CCC−2. (28.45)

A nice feature of this formulation is that the fifth invariant can be physically inter-
preted as the square of the electric field strength in the deformed configuration as

Ĩ5 = [E⊗E] : CCC−1 = E ·CCC−1 ·ET = |e|2. (28.46)
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Both of these formulation are invariant to the proper orthogonal group SO(3) and
are therefore valid options for the free energy function of an isotropic material.
Nevertheless the choice of the coupled invariant can have a significant influence on
the material response as we will demonstrate in Sect. 28.2.

28.2 Non-Homogeneous Boundary Value Problems

In the following section we will present two different boundary value problems
as examples of how the choice of the coupled invariant can influence the material
response. The isothermal energy function used will take one of the following forms

W (CCC,E) = μ(I4)[I1−3]+ c1I4 + c2I5,

W̃ (CCC,E) = μ(I4)[I1−3]+ c1I4 + c̃2Ĩ5.
(28.47)

In both cases the material response is based on a Neo-Hookean type material with
a field dependent shear modulus μ(I4). For the sake of simplicity in the analytical
calculations this field dependency is assumed to be linear (Mehnert et al, 2016;
Bustamante, 2010), i.e. μ(I4) = μ0 + g1I4, with the zero field shear modulus μ0.
For g1 < 0 this leads to a softening whereas g1 > 0 results in a hardening of the
material when an electric field is applied. The coupling between the electric field
and the mechanical deformation is implemented by the fifth invariant with the
coupling parameter c2 and c̃2 respectively. The parameter c1 vanishes in the following
analytical calculations, it should be noted though that we would have to select c1 < 0
to ensure that the free energy is concave in E.

As the focus of this contribution lies on the effect of the electro-mechanical
coupling invariant on the material behavior, we will neglect the deformation due to
thermal expansion in the following calculations. This is done because i) the expected
deformation from thermal expansion will be significantly smaller when compared to
the deformations caused by the electric field or the prescribed displacement and ii)
the effect of the thermal expansion on the results does not influence the conclusion on
the role of the selected coupling invariant. With this in mind we assume the material
to be incompressible at constant temperature. Thus it holds that the contribution M(J)
in (28.40) vanishes and the definition of the total Cauchy stress can be expressed for

• I5 = [E⊗E] : CCC as

σσσ tot = bbbΩ1 +[[CCC : I]bbb−bbb2]Ω2 +[bbbe⊗bbbe]Ω5

− 1
2
ε0[E⊗E] : [FFF−T⊗FFF−1]− pIII.

(28.48)

• Ĩ5 = [E⊗E] : CCC−1 as
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σ̃σσ tot
=bbbΩ1 +[[CCC : I]bbb−bbb2]Ω2− [e⊗e]Ω̃5

− 1
2
ε0[E⊗E] : [FFF−T⊗FFF−1]− pIII.

(28.49)

Here the parameter p is the Lagrange multiplier connected to the incompressibility
constraint and Ωi is the derivative of the augmented energy function Ω with respect
to the invariant Ii, whereas Ω̃5 is the derivative of the free energy Ω̃ with respect to
Ĩ5

Ω1 =
Θ

2Θ0
[μ0 +g1I4] , Ω2 =Ω6 = 0, Ω4 =

Θ
Θ0

c1 +
Θ
Θ0

g1

2
[I1−3],

Ω5 = c2
Θ
Θ0

, Ω̃5 = c̃2
Θ
Θ0

.

(28.50)

Furthermore we have introduced the special dyadic product (Wriggers, 2008;
Holzapfel, 2000)

AAA⊗BBB = [Ai jeeei⊗eee j]⊗[Bkleeek⊗eeel ] = AikBkleeei⊗eee j⊗eeek⊗eeel . (28.51)

28.2.1 Deformation of a Cube with a Uniaxially Applied Electric
Field

As a first example we will focus on a cube consisting of electro-active material that
deforms due to a uniaxially applied electric field resulting from a potential difference
Δφ . The sides with normal vector in direction eee1 are labeled as top/bottom, with
normal vector in direction eee2 as left/right and with normal vector in direction eee3 as
front/back. We assume that the bottom surface of the cube is fixed in eee1 direction
whereas all other sides are free to deform. In this example for the sake of simplicity
we will restrict ourself to the isothermal case and also neglect the field sensitivity
of the shear modulus, therefore we choose g1 = 0. The zero field shear modulus
is selected as μ0 = 5 MPa, similar to Vu et al (2007) . Using the incompressibility
condition λ1λ2λ3 = 1, where λi is the stretch in the respective coordinate direction,
and assuming a symmetric deformation we can formulate the deformation gradient
depending exclusively on the stretch λ = λ1 in the direction of the electric field E as

FFF =

⎡⎣λ 0 0
0 λ−0.5 0
0 0 λ−0.5

⎤⎦ , CCC = bbb =

⎡⎣λ 2 0 0
0 λ−1 0
0 0 λ−1

⎤⎦ , E =

⎡⎣E0
0
0

⎤⎦ . (28.52)

This deformation gradient in combination with the derived equations for the total
Cauchy stress (28.48) and (28.49) results in the value σ tot

11 and respectively σ̃ tot
11 in

the direction of the electric field as
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σ tot
11 = μλ 2 +2c2E2

0λ
2− 1

2
ε0E2

0λ
2− p,

σ̃ tot
11 = μλ 2−2c2E2

0λ
−2− 1

2
ε0E2

0λ
2− p.

(28.53)

The Lagrange multiplier can be identified as p = μλ−1 using the definition of the
stress in direction perpendicular to the applied electric field. When we assume that
the upper surface of the cube is stress free in normal direction we can calculate the
resulting stretch from the applied electric field E which is depicted in Fig. 28.1 for
c2 and various values of c̃2. The validity of these results is checked with numerical
results obtained from an in-house FEM-Code and are therefore deemed to be correct.

We expect the electro-active material to contract in the direction of the applied
electric field which is the case for the invariant I5 = [E⊗E] : CCC with a positive value
for c2. In contrast to this the material does not show the expected response to the
electric loading for Ĩ5 = [E⊗E] : CCC−1 with a positive value for c̃2 as the resulting
stretch λ is larger than one. By simply switching the sign of c̃2 we can achieve a
physically sensible material response and by selecting a value of c̃2 =−4.9799N/V 2

we can fit the material response with Ĩ5 to the one calculated with I5. It should be

0 0.05 0.1 0.15 0.2
0.94

0.96

0.98

1

1.02

1.04

E0 in V/mm

λ

I5, c2 = 6 N/V 2 Ĩ5, c̃2 = 6 N/V 2

Ĩ5, c̃2 =−6 N/V 2 Ĩ5, c̃2 =−4.9799 N/V 2

Fig. 28.1: Plot of the stretch λ resulting from the applied electric field with the
field strength E0
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noted though that the selection of a negative value for c̃2 comes with the downside
that the expression for σ̃ tot

11 found in Eq. (28.53) only gives real valued results until
a threshold value of E0 is reached. After this we will find only complex solutions.
For this simple example the selection of Ĩ5 as the coupled invariant therefore is only
sensible for a very restricted amplitude of the electric field, whereas there is no
restriction if we choose I5.

28.2.2 Extension and Torsion of a Cylindrical Tube

As a second example we are going to investigate a cylindrical tube under thermo-
electro-mechanical loading. Due to the small value of the vacuum permittivity the
energy stored in the electric field E(FFF ,E) will be neglected, c.f. Vu et al (2007). In
the considered case it is reasonable to work in the cylindrical coordinates (R,Φ ,Z)
with the material unit basis vectors (EEER,EEEΦ ,EEEZ). The corresponding quantities in
the spatial configuration are defined as (r,φ ,z) and (eeer,eeeφ ,eeez). The geometry of the
cylinder in the deformed configuration can be described by

ai ≤ r ≤ ae, 0≤ φ ≤ 2π, −∞ < z < ∞, (28.54)

where the internal radius is denoted by ai and the external radius by ae. The length
of the cylinder is assumed to be infinite in order to avoid problems with the end
conditions of a finitely long tube. In the undeformed configuration the geometry of
the tube can be expressed by

Ai ≤ R≤ Ae, 0≤Φ ≤ 2π, −∞ < Z < ∞, (28.55)

We introduce the ratio of the undeformed external radius to the undeformed internal
radius ζ = Ae

Ai
as a measure for the wall thickness of the cylinder. The prescribed

deformation that is considered in this example is a combination of an axial stretch
characterized by the parameter λz and a torsion of the angle τ around the cylinder
axis. Thus the transformation of the undeformed to the deformed coordinates reads

r = λ−1/2
z R, φ =Φ+λzτZ, z = λzZ. (28.56)

This mechanical loading results in a deformation gradient in the form

FFF =

⎛⎜⎝λ−1/2
z 0 0

0 λ−1/2
z τrλz

0 0 λz

⎞⎟⎠=

⎛⎜⎝λ−1/2
z 0 0

0 λ−1/2
z γλz

0 0 λz

⎞⎟⎠ , (28.57)

where we have introduced the definition of γ = rτ and used the incompressibil-
ity constraint det(FFF) = 1. Furthermore we will apply a purely axial electric field
characterized by the field strength E0 and a radial temperature gradient. With the
given deformation gradient and an axial electric field we can use the relations in Eqs.
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(28.48) and (28.49) to calculate the respective non-zero entries of the total Cauchy
stress. For the coupling invariant I5 this results in

σ tot
rr = 2Ω1λ−1

z − p,

σ tot
φφ = 2Ω1[λ−1

z + γ2λ 2
z ]+2Ω5E2

0 γ
2λ 2

z − p,

σ tot
zz = 2Ω1λ 2

z +2Ω5E2
0λ

2
z − p,

σ tot
zφ = σ tot

φz = 2Ω1γλ 2
z +2Ω5E2

0γλ
2
z ,

(28.58)

whereas the selection of Ĩ5 leads to the stress entries

σ̃ tot
rr = 2Ω1λ−1

z − p,

σ̃ tot
φφ = 2Ω1[λ−1

z + γ2λ 2
z ]− p,

σ̃ tot
zz = 2Ω1λ 2

z −2Ω5E2
0λ
−2
z − p,

σ̃ tot
zφ = σ tot

φz = 2Ω1γλ 2
z .

(28.59)

As we apply a radial temperature gradient we need to find a solution to the heat
conduction equation (28.37). In order to find an analytical solution first we have
to simplify this equation. We will assume a steady state temperature field without
heat sources. Furthermore we neglect the thermo-mechanical and thermo-electric
heating effect H and local dissipation effects. All these assumptions simplify the
heat conduction equation to the Laplace equation

ΔΘ = 0 (28.60)

with Δ as the Laplace operator. For an axial symmetric problem as the torsion of
a hollow cylinder, this equation can be transformed to the cylindrical coordinates
(r,φ ,z) as

∂ 2Θ(r)
∂ r2 +

1
r
∂Θ(r)
∂ r

= 0. (28.61)

One possible analytical solution to this equation found for example in Bland (1956);
Rajagopal and Huang (1994) is

Θ(r) = k1 + k2 ln(r) (28.62)

with the constants k1 and k2 depending on the deformed internal and external radius
of the cylinder and on the respective temperature

k1 =
Θ(ai) ln(ae)−Θ(ae) ln(ai)

ln(ae)− ln(ai)
, k2 =

Θ(ae)−Θ(ai)

ln(ae)− ln(ai)
. (28.63)

We will investigate the influence of the coupling invariant by analyzing the torque
M that has to be applied in order to achieve the prescribed deformation. The torque
can defined as the integral over the cross section of the cylinder of the mechanical
stress in azimuthal direction
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M = 2π
ae∫

ai

σzφ r2dr = 2π
ae∫

ai

(σ tot
zφ −σmax

zφ ) r2dr. (28.64)

As the Maxwell stress σmax
zφ for the applied electric field vanishes, this definition

reduces to

M = 2π
ae∫

ai

σ tot
zφ r2dr. (28.65)

Using the definition of the Cauchy stress (28.58) and (28.59) combined with the
derivatives of the energy function (28.50) and the solution of the heat equation
(28.62) this results in the following expression for the torque

• for the invariant I5

M =
4πτλ 2

z

Θ0
[0.5[g0 +g1E2

0 ]+ c2E2
0 ]×[

k1

4
[a4

e−a4
i ]+

k2

16
[a4

e [4ln(ae)−1]−a4
i [4ln(ai)−1]]

]
,

(28.66)

• for the invariant Ĩ5

M̃ =
4πτλ 2

z

Θ0
[0.5[g0 +g1E2

0 ]]×[
k1

4
[a4

e−a4
i ]+

k2

16
[a4

e [4ln(ae)−1]−a4
i [4ln(ai)−1]]

]
.

(28.67)

It is obvious that the formulation for the torque in the case of Ĩ5 does not contain the
coupling parameter c̃2. Therefore, in contrast to the previous example, the expected
material response in the case of Ĩ5 will inevitably be different from the one with I5
independent from the selected material parameter.

A similar example can be found in Bustamante (2010); Mehnert et al (2016),
therefore we choose the zero-field shear modulus as μ0 = 0.1 MPa accordingly. The
parameters g1 =−0.01 N/V 2 and c2 = 0.05 N/V 2 are selected in such a way that the
influence of the coupled invariant becomes intuitive.

We will start by investigating the electro-mechanical loading case. Figure 28.2
illustrates the behavior of the torque M (solid lines) and M̃ (dashed lines) depending
on the angle of torsion (a) and the axial stretch (b) in the case of an axially applied
electric field for selected values of the initial wall thickness ζ .

Figure 28.2 shows a linear dependency of the resulting torque on both the angle τ
and the axial stretch λz. For τ = 0 the torque vanishes independently from the applied
electric field and the axial stretch λz. In Fig. 28.2(b) the torque never vanishes as we
assume a constant torsion of the cylinder of τ = π/4. It can be seen in both plots
that the incline of M is larger than M̃ and if we look at the final formulation of the
torque in Eqs. (28.66) and (28.67) it is obvious that this is due to the influence of the
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Fig. 28.2: Plot of the torque with respect to (a) τ and (b) λz under a electro-
mechanically coupled load for selected values of ζ

coupling parameter c2 that results in an increased stiffness of the material when an
electric field is applied.

Figure 28.3 shows the dependency of the torque on the thickness of the tube
(a) and on the applied electric field (b). In the first plot it is visible that the torque
increases when the wall thickness of the cylinder is increased. When comparing
the results with respect to the two different coupled invariants a similar effect as in
Fig. 28.2 can be identified. The material response for an electro-mechanical loading
in the case of I5 is stiffer when compared to the response for Ĩ5.

The difference between the two formulations becomes even more distinct when
we analyze the material behavior depending on the electric field depicted in Fig.
28.3(b). It becomes visible that for the invariant I5 the torque increases with the
electric field whereas the effect is the opposite for the invariant Ĩ5. This can once
again be explained by the final formulation of the torque in Eqs. (28.66) and (28.67).
Regardless of the selected coupling invariant the influence of the electric field is
only present in the first term in brackets and is coupled in both cases by the selected
material parameter g1 < 0, which results in a softening of the material. As the
expression for M additionally contains the positive parameter c2 > g1 the result is
an increase of the torque with the electric field despite the decrease of the material
parameter μ(I4). It should be restated at this point, that in the final expression for M̃
the coupling parameter c̃2 is not present. Therefore independently from the selected
value of c̃2 the torque will always show a softening of the material when an electric
field is applied.

Next we apply an additional radial temperature gradient by keeping the tem-
perature at the internal surface of the tube fixed at the reference temperature
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Fig. 28.3: Plot of the torque with respect to ζ for selected values of τ (a) and with
respect to E0 for selected values of ζ (b) under a electro-mechanically coupled
load

Θ(ai) =Θi = 293 K and varying the temperatureΘ(ae) =Θe on the external surface
of the tube. Figure 28.4 depicts the material response with respect to the applied
electric field (a) and the temperature Θe (b).

The plot on the left side of Fig. 28.4 shows a similar behavior of the torque with
respect to the electric field when compared to the isothermal case. For I5 the torque
increases with the field strength whereas a decrease is visible when Ĩ5 is selected. The
effect is scaled by the temperature gradient as the torque becomes larger/smaller for
an increased/decreased value of Θe, independent of the selected coupling invariant.
Figure 28.4(b) confirms this observation further. If no electric field is applied the
resulting torque is equal in both cases whereas the application of an electric field
leads to an increase of the torque when I5 is selected and a decrease for Ĩ5. In both
cases the torque increases linearly with the temperature on the external cylinder
surface although this increase is more distinct for M .

As mentioned before the results of M̃ are independent of the selected parameter c̃2.
Thus the only way to achieve a similar material behavior in this example would mean
to select the coupling parameter c2 = 0 and therefore reducing the electro-mechanical
coupling to the softening effect of the field sensitive shear modulus.
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28.3 Conclusions

While the isothermal description of electro-elasticity is well documented in the
literature, the influence of the temperature on the response of electro-active materials
has yet to reach a comparable level of understanding. With our previous work
(Mehnert et al, 2016) we introduced a coupled thermo-electro-mechanical framework
that might be used to fill this gap as it expands the formulations commonly used
for the description of isothermal electro-elasticity to include thermal contributions.
Both the isothermal formulations and the presented framework have in common that
they employ an invariant approach, i.e. the free energy function used is formulated
using a number of purely mechanical, purely electric and coupled invariant quantities,
the latter of which vary in form throughout the literature. Thus in this contribution,
we have focused on the influence of this coupling invariant in a phenomenological
simulation approach of thermo-electro-elasticity. By the investigation of the analytical
solution of two non-homogeneous boundary value problems we have presented that
the selection of the coupling invariant can have a significant influence on the results.
While in the first example, the displacement of a cube of electro-active material due to
an uniaxially applied electric field, the difference between the two formulations could
be minimized by the proper selection of material parameters, the second example
proved that the material response might differ independently from the material
parameters, due to the selected coupling invariant. In forthcoming contributions the
behavior of the coupled thermo-electro-mechanical framework will be investigated
further by using a finite element implementation with which we may model for

0 0.5 1 1.5 2
0

20

40

60

80

100

E0 in kV/m

To
rq

ue
in

N
m

I5, Θe = 243 K Ĩ5, Θe = 243 K
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example the influence of the surrounding free space on the material response. Future
work will include experimental studies in order to further investigate the best possible
selection of the coupling invariants and the addition of essential time dependent
effects, such as viscoelasticity of the underlying polymeric material.
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Chapter 29

On Recurrence and Transience of Fractional

Random Walks in Lattices

Thomas Michelitsch, Bernard Collet, Alejandro Perez Riascos,
Andrzej Nowakowski, and Franck Nicolleau

Abstract The study of random walks on networks has become a rapidly growing
research field, last but not least driven by the increasing interest in the dynamics
of online networks. In the development of fast(er) random motion based search
strategies a key issue are first passage quantities: How long does it take a walker
starting from a site p0 to reach ‘by chance’ a site p for the first time? Further
important are recurrence and transience features of a random walk: A random walker
starting at p0 will he ever reach site p (ever return to p0)? How often a site is visited?
Here we investigate Markovian random walks generated by fractional (Laplacian)
generator matrices L

α
2 (0 < α ≤ 2) where L stands for ‘simple’ Laplacian matrices.

This walk we refer to as ‘Fractional Random Walk’ (FRW). In contrast to classical
Pólya type walks where only local steps to next neighbor sites are possible, the
FRW allows nonlocal long-range moves where a remarkably rich dynamics and new
features arise. We analyze recurrence and transience features of the FRW on infinite
d-dimensional simple cubic lattices. We deduce by means of lattice Green’s function
(probability generating functions) the mean residence times (MRT) of the walker at
preselected sites. For the infinite 1D lattice (infinite ring) we obtain for the transient
regime (0 < α < 1) closed form expressions for these characteristics. The lattice
Green’s function on infinite lattices existing in the transient regime fulfills Riesz

Thomas Michelitsch, Bernard Collet
Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7190, Institut Jean Le
Rond d’Alembert, F-75005 Paris, France
e-mail: michel@lmm.jussieu.fr,bernard.collet@upmc.fr

Alejandro Perez Riascos
Department of Civil Engineering, Universidad Mariana San Juan de Pasto, Colombia
e-mail: aaappprrr@gmail.com

Andrzej Nowakowski, Franck Nicolleau
Sheffield Fluid Mechanics Group, Department of Mechanical Engineering, University of Sheffield,
Mappin Street, Sheffield S1 3JD, United Kingdom
e-mail: a.f.nowakowski@sheffield.ac.uk,f.nicolleau@sheffield.ac.uk

Approaches in Complex Materials 1, Advanced Structured Materials 89,
https://doi.org/10.1007/978-3-319-72440-9_29

555
H. Altenbach et al. (eds.), Generalized Models and Non-classical
© Springer International Publishing AG, part of Springer Nature 2018

michel@lmm.jussieu.fr, bernard.collet@upmc.fr
aaappprrr@gmail.com
a.f.nowakowski@sheffield.ac.uk, f.nicolleau@sheffield.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-72440-9_29&domain=pdf


556 Thomas Michelitsch et al.

potential asymptotics being a landmark of anomalous diffusion, i.e. random motion
(Lévy flights) where the step lengths are drawn from a Lévy α-stable distribution.

29.1 Introduction

The scientific activity of Gérard Maugin was not limited and focused to only one
discipline. He by his nature indeed was a generalist with fine sense for the ‘big picture’
and interest in interdisciplinary problems and approaches where the broad spectrum
of his contributions is well documented in his last book (Maugin, 2017). Inspired
over many years by his sprit, the present paper is concerned to the interdisciplinary
subject of random walks.

Many stochastic processes and transport phenomena in very different contexts
such as the diffusion of particles, the foraging of animals, the spread of plant seeds,
pandemic diseases, rumors, migration, the transitions in chemical reactions, the
time evolution of stock market prices, and many further natural processes can be
attributed to random walks. Random walks may take place on continuous spaces
or on discrete finite or infinite sets of points (graphs) (Newman, 2010; Albert and
Barabási, 2002; Noh and Rieger, 2004; Gonçalves et al, 2011; Mieghem, 2011). The
notion of ‘random walk’ first was introduced by Karl Pearson in 1905 (Pearson,
1905). A fundamental question arising in many contexts such as information spread
in a network: How long does it take for news headlines emitted somewhere in the
web to hit a preselected set of target sites for the first time? Indeed the study of
expected ‘first passage times’ of a random walk strategy is of crucial interest in
many interdisciplinary problems for instance in contexts of survival models or to
describe the efficiency of random walk based search strategies, the speed of chemical
reactions, and one easily can enumerate further examples (Metzler et al, 2009).

Closely related to the problem how many steps are needed until a target is hit, is
the question whether a target is hit at all, and whether there exists a finite probability
of never hitting a target. In the random walk picture this question is related to the
problem of recurrence (transience) of a walk: Will two random walkers starting their
walk from the same site at the same time performing independent walks of the same
type ever meet again somewhere on the network? Indeed these features are well
understood for ‘classical’ random walks where the walker in one time increment can
only make steps with equal probability to next neighbor sites. This ‘simple’ type of
random walk performed on the infinite d-dimensional lattice was first analyzed by
Pólya (1921) formulating the celebrated ‘recurrence theorem’ (‘Pólya theorem’) for
such random walks: The random walker returns for sure to the site of departure for
lattice dimensions d = 1,2 (recurrence of the walk), whereas there is a finite escape
probability of never return in dimensions d = 3,4 (transience of the random walk)
(Pólya, 1921; Montroll, 1956; Montroll and Weiss, 1965; Hudges, 1995; Spitzer,
1976). The question on whether or not the walker returns to its departure site, i.e.
recurrence or transience of a walk indeed is crucial for the development of random
walk based search strategies (Viswanathan et al, 2008). In the meantime a multitude of
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random walks with different features were introduced. Hughes and Shlesinger (1982)
have analyzed random walks on simple cubic lattices with asymptotic power-law
behavior of the vibrational dispersion relation of the lattice and derived conditions
for recurrence of these walks. They demonstrated that the recurrence features of this
type of walk are different from the Pólya walk.

The very rich dynamics of this new type of random walk model has turned
out to be suitable to describe phenomena of ‘anomalous diffusion’, i.e. stochastic
motions with self-similar (heavy tailed inverse power law) distribution of step lengths
where long-range steps appear which are drawn from Lévy α-stable (‘heavy tailed’)
distributions. This type of anomalous diffusion which also is referred to as Lévy
motions or Lévy flights during the last two decades and at present is extensively being
studied (Metzler and Klafter, 2000; Chechkin et al, 2008; Palyulin et al, 2016; Klages,
2016; Dybiec et al, 2017). The classical Pólya walk which allows only local steps to
‘neighbor sites’ is a model for Brownian motion and describes well phenomena of
classical diffusion where the step length are drawn from a normal distribution.

In the present paper our goal is to generalize Pólya walks on regular networks in
such a way to become a suitable model exhibiting long-range steps with asymptotic
emergence of Lévy motions. We will demonstrate subsequently that an appropriate
discrete model to achieve this is the Fractional Random Walk (FRW), a random walk
which is generated by a fractional power L

α
2 (0 < α ≤ 2) where the Laplacian matrix

L itself generates a Pólya type walk (Michelitsch et al, 2017b,a). It has been found in
various models that search efficiency may be increased for sparse targets by using
search strategies based on random walks with long-range Lévy flight characteristics
rather than for ‘classical’ Brownian Pólya type random walks (Palyulin et al, 2016;
Klages, 2016; Metzler et al, 2009; Metzler and Klafter, 2004; Riascos and Mateos,
2012; Michelitsch et al, 2017b,a; Bénichou et al, 2011, and references therein).

We define the FRW as a Markovian random walk generated by fractional powers
L

α
2 of ‘simple’ Laplacian matrices L. The index range is restricted 0 < α ≤ 2 to

maintain the good properties of the Laplacian (Michelitsch et al, 2017b) where α = 2
recovers the classical Pólya type walk allowing only next neighbor steps. We will
demonstrate some of the universal features of the FRW such as Lévy flight dynamics
on sufficiently large lattices which is a consequence of the asymptotic scale free non-
locality of fractional Laplacian matrices. The latter take asymptotic representations
of Riesz fractional derivatives (continuous fractional Laplacian operator kernels)
on sufficiently large lattices depending only on the dimension d of the lattice and
index α of the fractional Laplacian. Asymptotic scale free non-locality indeed is an
‘universal’ feature, in the sense that it is independent of the spectral details (apart of
some constraints mentioned below) of the Laplacian matrix L.

The present paper is organized as follows: First we evoke basic features of time-
discrete Markavian random walks and define the FRW on a regular undirected
networks and lattices. We introduce for the FRW transition matrices and deduce by
employing the method of probability generating functions the Green’s functions of
the network containing the entire statistical information on occupation probabilities,
first passage probabilities and recurrence (transience) of the random walk on the
network. We then analyze the FRW on d-dimensional cubic lattices: We deduce the
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lattice Green’s function of the FRW which determines the average number of visits of
the lattice points (nodes) and contains the probabilities that a node (n)ever is visited.
In this way we uncover the universal recurrence (transience) features for a FRWs
performed on infinite d-dimensional lattices. Finally we analyze the asymptotic
behavior of long-range steps. We demonstrate that the probability of long-range
moves of distance l� 1 obeys an universal inverse power law scaling ∼ l−(α+d) of
Riesz fractional derivative kernel form independently of the choice of Laplacian L.
This asymptotic universal scaling law on sufficiently large lattices is the landmark of
the emergence of Lévy flights, that is anomalous diffusion drawn from Lévy α-stable
(heavy tailed) distribution. For a more detailed analysis, we refer to our recent paper
(Michelitsch et al, 2017a).

29.2 Time Discrete Markovian Random Walks on Undirected

Networks

We consider here Markovian random walks on regular undirected connected networks
(graphs) consisting of N nodes denoted by p= 0, ..,N−1 (see Fig. 29.1). In a network
nodes p,q are either connected by an edge or disconnected. Whether or not the nodes
p,q are connected is described by the N ×N adjacency matrix A with elements
Apq = 1 if the nodes p,q are connected, and Apq = 0 if they are disconnected. We do
not permit self-connections thus App = 0. Nodes p,q which are connected Apq = 1
are also referred to as ‘adjacent nodes’ or ‘next neighbor nodes’. In undirected
networks which uniquely are considered in the present paper, the connections (edges)
between nodes have no direction thus the adjacency matrix is symmetric Apq = Aqp.
In a network of N nodes an important quantity is the (symmetric) distance matrix
Dpq = Dqp ≥ 0 (Dpq = Dqp > 0 when p �= q and Dpp = 0). The elements Dpq of the
distance matrix indicate the shortest possible numbers of edges needed to generate
a path linking the nodes p,q. It follows that adjacent nodes have distance Dpq = 1.
In Fig. 29.1 is represented a connected network where different colors indicate
different distances of nodes from node 1. Closely related is the degree Kp of a node
p, representing the number of adjacent nodes of node p. The degree is given by

Fig. 29.1 Representation of a
connected network. The colors
indicate different distances
from node 1 (black) on the
network: Red nodes can be
reached from node 1 in one
step (distance D = 1), blue
nodes in two steps, they have
distance D = 2 from node 1,
and yellow nodes are D = 3
steps away from node 1.
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Kp =
N−1

∑
q=0

Apq. (29.1)

We restrict us here uniquely to ‘regular’ networks where all nodes p have constant
degree Kp = K ∀p = 0, ..,N−1. This especially is true in the lattice structures con-
sidered in this paper, such as simple cubic lattices (‘integer lattices’). The properties
of the network are taken into account by the Laplacian matrix which has the canonic
representation (Newman, 2010; Mieghem, 2011)

Lpq = δpqKp−Apq =
N

∑
j=1

μ j〈p|Ψj〉〈Ψj|q〉 (29.2)

where Lpq = Lqp is symmetric in undirected networks reflecting the symmetry
Apq = Aqp of the adjacency matrix. We adopt here for our convenience Dirac’s
bracket notation. For constant degree Kp = K the Laplacian matrix has the form
L = K1̂−A where 1̂ indicates the unity matrix. Due to the symmetry of the Laplacian
matrix the set of eigenvectors constitutes a complete N-dimensional ortho-normal
canonic basis1. It follows from (29.1) and (29.2) that the constant vector

|Ψ1〉= 1√
N
(1, . . . ,1)

is eigenvector of the Laplacian matrix L to the vanishing eigenvalue μ1 = 0.
Generally the Laplacian matrix is positive-semidefinite and in connected networks

the zero eigenvalue μ1 appears uniquely together with N− 1 positive eigenvalues
μ1 = 0 < μ2 ≤ ..,≤ μN (Mieghem, 2011). This positive-semidefinite structure of the
Laplacian matrix follows from the quadratic form

V (ξ0, ..,ξN−1) =
1
2

N−1

∑
p=0

N−1

∑
q=0

Lpqξpξq =
1
4

N−1

∑
p=0

N−1

∑
q=0

Apq(ξp−ξq)
2 ≥ 0 (29.3)

where V (ξ0, ..,ξN−1)= 0 only when ξp = ξq = c∀p,q is constant (which corresponds
to the constant eigenvector to μ1 = 0) and V > 0 otherwise. We further observe
in (29.2) that the off-diagonal elements of the Laplacian matrix are non-positive
Lpq =−Apq ≤ 0 (p �= q). Both, (i) the positive semi-definiteness together with (ii) the
property of non-positiveness of the off diagonal elements define the ‘good’ properties
of a Laplacian matrix which are necessary to generate random walks.

In order to characterize the time-evolution of a random walk it is convenient to
introduce the occupation probability vector PPPt = (Pt(0), ..,Pt(p), ..,Pt(N−1)) where
Pt(p) indicates the occupation probability that the walker occupies node p at time t.
We consider time-discrete random walks at integer times t = 0,1,2, .. where the walk
starts at t = 0. Time continuous Fractional Random Walks we analyzed elsewhere
(Michelitsch et al, 2017b). The normalization condition

1 where 〈Ψi|Ψj〉= δi j and
N
∑

m=1
〈i|Ψm〉〈Ψm| j〉= δi j
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N−1

∑
p=0

Pt(p) = 1

indicates that the walker at any time is on the network during an infinite time of
observation 0 ≤ t < ∞. For a Markovian walk which uniquely is considered here
the time evolution of the occupation probabilities is described by a discrete master
equation (Hudges, 1995)

Pt+1(p) =
N−1

∑
q=0

WpqPt(q), PPPt+1 = W ·PPPt (29.4)

where we utilize alternatively matrix and index notations. In (29.4) is introduced the
constant N×N matrix W =: W (δ t = 1) which is referred to as transition matrix
constituting a linear relationship between the occupation probabilities PPPt+1 and
PPPt (Spitzer, 1976). The time-evolution (29.4) of the transition matrix iterating t
time-steps writes

Pt(p) =
N−1

∑
q=0
〈p|W tq〉P0(q) (29.5)

where W 0 = 1̂ denotes the N×N unity matrix. We employ the equivalent notations
〈p|W tq〉=Wpq(t) for the elements of the transition matrix W t =W (t) at time t. The
transition matrix fulfills the normalization condition

N−1

∑
p=0

Wpq(t) = 1, 0≤Wpq(t)≤ 1 (29.6)

as a consequence of the normalization condition for the occupation probabilities.
We also have the restriction 0≤Wpq(t)≤ 1 allowing the probability interpretation
to be maintained for the entire observation time 0≤ t = n < ∞. For the analysis to
follow it is worthy to consider the spectral properties of the transition matrix. As the
transition matrix is symmetric (self-adjoint), it can be expressed by its (purely real)
eigenvalues λm and eigenvectors |Ψm〉 as

W = W (t = 1) =
N

∑
m=1

λm|Ψm〉〈Ψm|,

W (t)pq = (W t)pq =
N

∑
m=1

(λm)
t〈p|Ψm〉〈Ψm|q〉.

(29.7)

In connected ergodic networks with constant degree the stationary distribution is
constituted by the equal-distribution (Mieghem, 2011; Riascos and Mateos, 2012)

Wpq(t→ ∞) = 〈p|Ψ1〉〈Ψ1|q〉= 1
N

∀p,q = 0, ..,N−1 (29.8)
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From limt→∞ W t = |Ψ1〉〈Ψ1| follows that eigenvalue λ1 = 1 has in connected
networks multiplicity one and the remaining N − 1 eigenvalues fulfill |λm| < 1
m = 2, ..,N. All eigenvalues λm of the transition matrix are real due the symmetry
Wpq = Wqp in regular networks2.

Consider now a time-discrete random walk where the walker in one time increment
is allowed to step only to adjacent nodes q→ p with Apq = 1, i.e. to perform steps of
distance Dpq = 1. This is realized when the transition matrix of one time increment
of (29.4) has the following form, e.g. Noh and Rieger (2004)

Wpq = δpq− 1
Kq

Lpq =
1
K

Apq, K =
1
N

tr(L) (29.9)

where tr(..) denotes the trace
N−1

∑
p=0

(..)pp

of a matrix with
1

Kq
Lpq =

1
K

Lpq.

As a consequence in regular networks the transition matrix Wpq = Wqp is symmetric
with the same canonic basis of eigenvectors {|Ψj〉} ( j = 1,2, ..,N) as the Laplacian
matrix. It follows also that the eigenvalues of transition matrix and Laplacian matrix
then are related by

λm = 1− μm

K
, m = 1,2, ..,N. (29.10)

The constitutive relation (29.9) connects the random walk dynamics with the network
properties. We notice that Wpp = 0, that is the walker at each time-step has to move
to an adjacent node. The transition matrix (29.9) in a regular network thus defines a
Pólya type random walk where only the K adjacent nodes can be reached in a single
time-step with equal probability 1/K. This ‘locality’ of moves is a typical feature
of Pólya walks and is in contrast to the ‘nonlocality’ of the subsequently analyzed
FRWs.

29.3 Probability Generating Functions - Green’s Functions

For the subsequent analysis of the FRW it is convenient to employ the powerful
method of probability generating functions and network Green’s functions. For
general properties and discussions we refer to Mieghem (2011); Montroll (1956);
Montroll and Weiss (1965); Hudges (1995); Spitzer (1976); Doyle and Laurie Snell
(1984); Kemeny and Laurie Snell (1976); Feller (1950). To this end the following
definitions are required. Ft(p,q) denotes the probability that the random walker start-
ing at t = 0 at node q reaches node p at time-step t for the first time. The first passage

2 We define here ‘regular’ networks as networks with constant degree Kp = K.
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probabilities in an undirected network define symmetric matrices Ft(p,q) = Ft(q, p)
with respect to departure and arrival nodes. The same is true for occupation proba-
bilities which we denote here as Pt(p,q) = Pt(q, p) indicating the probability that a
walker starting at t = 0 from departure node q reaches node p at time t (not neces-
sarily for the first time). It follows that Pt(p,q) = (W t)pq =Wpq(t) can be identified
with the entries of transition matrix (29.5).

For a time sequence of probabilities {Qt(p,q)} (t = 0,1,2, ...) the N×N matrix
Q(ξ ) = (Q(p,q,ξ )) of probability generating function is defined by the power series
(Hudges, 1995)

Q(p,q,ξ ) =
∞

∑
n=0

Qn(p,q)ξ n |ξ |< 1 (29.11)

where the (non-negative) probabilities 0 ≤ Qn(p,q) ≤ 1 appear as coefficients.
(29.11) has according to Abel’s theorem (at least) the radius of convergence
ξ = 1. By putting ξ = e−s (29.11) can be read as discrete Laplace transform
Q(ξ = e−s) = Q̂(s) of the probabilities Qt (converging at least for ℜ(s) > 0).
The Q(p,q,ξ ) = (F(p,q,ξ ),P(p,q,ξ )) stand in the following analysis for the gen-
erating functions of the first passage- and occupation probabilities, respectively.
For Markovian walks we can establish the following relation between first passage
probabilities and occupation probabilities

Pt(p,q) = δt0δpq +
t

∑
k=0

Ft−k(p,q)Pk(0,0) (29.12)

with P0(p,q) = δpq where F0(p,q) = 0 and F1(p,q) = P1(p,q) as at t = 1 only next
neighbor nodes can be visited for the first time.

From this relation (29.12) which constitutes the nth-order in ξ of the functional
identity P(p,q,ξ )−δpq = F(p,q,ξ )P(0,0,ξ ), one can establish a classical relation-
ship between the first passage probability generating functions and the occupation
probability generating functions holding for Markovian walks, namely Montroll and
Weiss (1965); Hudges (1995); Spitzer (1976); Michelitsch et al (2017a)

F(p,q,ξ ) =
P(p,q,ξ )−δpq

P(0,0,ξ )
, F(ξ ) =

1
P(0,0,ξ )

(
P(ξ )− 1̂

)
(29.13)

where the second relation represents matrical representation. For the analysis to
follow the following physical interpretations of the probability generating functions
are important (Hudges, 1995; Spitzer, 1976):
Firstly the cumulated first passage probability

F(p,q,ξ = 1) =
∞

∑
t=0

Ft(p,q) (0≤ F(p,q,ξ = 1)≤ 1)

indicates the probability that a node p ever is visited by the walker for a walk starting
at node q during an infinite time of observation t → ∞. For p = q this quantity
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F(p, p,ξ = 1) indicates the probability that the walker ever returns to the departure
node. If F(p, p,ξ = 1) = 1 then the walker returns for sure to the departure node, thus
the walk is recurrent. In contrast if F(p, p,ξ = 1)< 1 there is a nonzero probability
of non-return 1−F(p, p,ξ = 1)> 0 thus the walk then is transient.
Secondly the cumulated occupation probabilities

P(p,q,ξ = 1) =
∞

∑
t=0

Pt(p,q)

indicate the average number of time-steps (the mean residence time - MRT) the
walker occupies node p when starting the walk at node q during an infinite time of
observation. Since the walker per construction changes at any time-step the node (as
Wpp = 0, see (29.9)), the MRT P(p,q,ξ = 1) measures the average number of visits
of a node p for a walk starting at q during an infinite time of observation (Spitzer,
1976; Dybiec et al, 2017; Michelitsch et al, 2017a). For networks with constant
degree Kp = K the MRTs P(p,q,ξ = 1) = P(q, p,ξ = 1) constitute a symmetric
N×N matrix. This matrix P(ξ = 1) = (P(q, p,ξ = 1)) also is referred to as network
Green’s function or lattice Green’s function if the network constitutes a lattice
(Montroll and Weiss, 1965; Hudges, 1995; Spitzer, 1976)3.

These definitions are sufficient for our goal to analyze recurrence and transience
features of the FRW. The Green’s function contains the full statistical information
whether or not the walker (n)ever returns to the departure node and (n)ever reaches
any preselected destination node (Mieghem, 2011; Pólya, 1921; Montroll, 1956;
Montroll and Weiss, 1965; Hudges, 1995; Spitzer, 1976; Doyle and Laurie Snell,
1984; Kemeny and Laurie Snell, 1976; Feller, 1950). The following statistical inter-
pretations of the Green’s function are important.

aaa) A random walk is recurrent if the MRT (i.e. the matrix elements of the Green’s
function) limξ→1 P(p,q,ξ )→ ∞ diverge. A sufficient criteria for recurrence of a
walk is when the diagonal element (being constant for regular networks) P(p, p,1)
diverges, which is equivalent that the walker is expected to return infinitely often
to the departure node P(q,q,ξ )−1→ ∞ and hence to any ever visited node.
In view of the spectral representation of the transition matrix (29.7) the probability
generating function P(p,q,ξ ) for a finite network of N nodes of the occupation
probabilities is obtained by the geometrical series

P(ξ )=
∞

∑
n=0

W nξ n = [1̂−ξW ]−1 =
|Ψ1〉〈Ψ1|
(1−ξ ) +

N

∑
m=2
|Ψm〉〈Ψm| 1

(1−λmξ )
, |ξ |< 1.

(29.14)
We see that P(p,q,ξ → 1−0)→ ∞ due to the contribution which corresponds to
λ1 = 1 namely

|Ψ1〉〈Ψ1|
(1−ξ )

3 We subsequently see that the Green’s function exists only for transient walks on infinite networks.
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is diverging for N finite. One can conclude due to the presence of λ1 = 1 in finite
networks, that random walks on finite connected networks always are recurrent,
i.e. any node of the network is sure to be (infinitely often) visited (during an
infinite time of observation) (Hudges, 1995). This feature may change for walks
on infinite networks (N→ ∞) where the stationary (equal-) distribution N→ ∞
due to

〈p|Ψ1〉〈Ψ1|q〉= 1
N
→ 0

is suppressed (Michelitsch et al, 2017a).
bbb) In contrast, if a node p for an infinite observation time in the average is visited

only for a finite number of times where the MRT

lim
ξ→1

P(p,q,ξ )< ∞

is finite, the random walk is transient. Transient walks may occur only on infinite
networks (N→ ∞) since then

lim
N→∞

|Ψ1〉〈Ψ1|
(1−ξ ) → 0

is suppressed, thus only the contributions of the relaxing modes |λm|< 1 contribute
to (29.14).

Whether or not a walk is transient or recurrent in an infinite network depends on the
network properties which are crucial for the convergence of the infinite network limit
N→ ∞ of (29.14) which writes with (29.9)

rpq(ξ = 1) = lim
ξ→1−0

( lim
N→∞

P(ξ )) = K
∞

∑
m=2
〈p|Ψm〉〈Ψm|q〉(μm)

−1,

=

μmax∫
0

D(μ)μ−1〈p|Ψ̃(μ)〉〈Ψ̃(μ)|q〉dμ,
(29.15)

containing only relaxing modes

|λm|= |1− μm

K
|< 1 (μm > 0).

In the second line we have introduced the density of (eigen)states D(μ) where
μ2 ≤ ..≤ μN−1 =: μmax becomes a continuous eigenvalue spectrum for N→ ∞ and
the Ψ̃(μ) denotes the appropriately renormalized continuous set of eigenmodes. The
general representation (29.15) for the Green’s function will be useful to explore
subsequently recurrence and transience features for the FRW.
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29.4 The Fractional Random Walk

Here our goal is to generalize the ‘simple’ Pólya type walk to introduce the ‘Fractional
Random Walk’ (FRW) (Michelitsch et al, 2017b; Riascos and Mateos, 2015, 2014).
In order to define a random walk transition matrix (29.9), it is important to notice
that only Laplacian matrices L fulfilling the following properties are admissible
(Michelitsch et al, 2017b; Riascos et al, 2017):

iii) The eigenvalue structure of the Laplacian matrix in connected networks is positive-
semidefinite with (in connected networks) one vanishing μ1 = 0 and N−1 positive
eigenvalues μ1 = 0 < μ2 ≤ .. ≤ μN . This positive-semidefinite structure is a
consequence of (29.3).

iiii) The off-diagonal elements of the Laplacian matrix are non-positive

Lpq =−Apq ≤ 0 (p �= q)

allowing probability interpretation

0≤Wpq =
Apq

K
≤ 1

of the transition matrix elements. The vanishing eigenvalue of the Laplacian
matrix μ1 = 0 guarantees

K =
N−1

∑
q=0

Apq > 0

the normalization condition with eigenvalue λ1 = 1 of the transition matrix to-
gether with the stationary (equal-) distribution

〈p|Ψ1〉〈Ψ1|q〉= 1
N

representing the state of maximum entropy (ergodicity of the network, see relation
(29.8)).

The properties iii), iiii) constitute the necessary ‘good properties’ of a Laplacian matrix
to generate a random walk as defined in (29.9). We notice that in a context of
elasticity (29.3) can be interpreted as harmonic elastic potential where the adjacency
matrix elements play the role of harmonic spring constants where the conditions
iii), iiii) guarantee elastic stability. We emphasize that when we replace in (29.9)
Laplacian matrix L by a matrix function g(L) only functions g(L) are admissible
that conserve the structure iii), iiii). Indeed this is the case for the fractional Laplacian
matrix g(L) = L

α
2 in the index range 0 < α ≤ 2. For a demonstration see Michelitsch

et al (2017b).
In above relation (29.9) we defined Pólya type random walks where the walker

can step with equal probabilities 1/K only to any next neighbor (adjacent) node. The
Pólya walk serves as a model for Brownian normal diffusive motion (Pólya, 1921;
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Metzler and Klafter, 2000; Michelitsch et al, 2017a) appearing as a special case in
FRWs.

To define below the FRW we introduce the fractional Laplacian matrix as a power
matrix function of (29.2) in its canonic representation

L
α
2 = 1̂K(α)−A(α) =

N

∑
m=2

(μm)
α
2 |Ψm〉〈Ψm|, 0 < α ≤ 2. (29.16)

We define the transition matrix of one time-step for the FRW corresponding to (29.9)
(Michelitsch et al, 2017a; Riascos and Mateos, 2015, 2014)

W
(α)

pq = δpq− 1
K(α) (L

α
2 )pq =:

1
K(α) (A

(α))pq, 0 < α ≤ 2. (29.17)

We introduced in (29.16) the fractional degree K(α) which is the diagonal element of
the fractional Laplacian matrix. This quantity which is constant in regular networks
is given by

K(α) = [L
α
2 ]pp =

1
N

tr(L
α
2 ) =

1
N

N

∑
m=1

(μm)
α
2 , 0 < α ≤ 2. (29.18)

The diagonal element of the transition matrix is vanishing W
(α)

pp = 0 as for the Pólya
walk (see (29.9)). So as for the Pólya walk, the fractional random walker changes
the node at any time-step. Further we introduced in relation (29.17) the fractional
adjacency matrix

A(α)
pq = δpqK(α)− (L

α
2 )pq ≥ 0, 0 < α ≤ 2. (29.19)

We observe analogous properties as in the non-fractional case

K(α) =
N−1

∑
q=0

A(α)
pq

for the constant fractional degree reflecting conservation of eigenvalue zero and
corresponding eigenvector |Ψ1〉 of the fractional Laplacian matrix. We notice further
per construction (29.19) the diagonal elements A(α)

pp = 0 are vanishing and (29.17)
are normalized probabilities

N−1

∑
p=0

W
(α)

pq =
N−1

∑
p=0

1
K(α) (A

(α))pq = 1.

The fractional adjacency matrix A(α)
pq has uniquely non-negative off diagonal elements

A(α)
pq =−(L α

2 )pq ≥ 0 (p �= q)
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which are especially nonzero and positive in the fractional range 0 < α < 2 reflecting
the nonlocality of the FRW: In contrast to the Pólya type walk, for 0 < α < 2
the FRW walker can reach in one single time-step any node including far distant
nodes (Dpq >> 1) in the network with jump probabilities W

(α)
pq > 0 where any jump

distances may occur4. The nonlocal characteristics of the FRW makes its dynamics
remarkably more rich as compared to Pólya type walks. The FRW has the capacity
to describe phenomena of anomalous transport and diffusion where the large world
property of a network seen by a Pólya walker is transformed by the FRW dynamics
into a small world. We can demonstrate here only a few of these newly emerging
phenomena generated by the FRW (Michelitsch et al, 2017b,a; Riascos and Mateos,
2014, 2015).

29.5 Universality of Fractional Random Walks

The goal of the present section which is the principal part of this paper, is to elaborate
some of the universal properties of FRWs generated by a fractional Laplacian L

α
2

(0 < α ≤ 2). We refer these properties to as ‘universal’ as they appear independently
from the spectral details of the Laplacian matrix.

29.5.1 Universal Behavior in the Limit α → 0

The first of these properties to be discussed here emerges when we consider the limit
α → 0+ where α remains infinitesimally positive: In this limiting case the N− 1
positive eigenvalues μm > 0 take asymptotically independent of their values

(μm)
α
2 → 1

and where only the zero eigenvalue

μ
α
2

1 = 0

is maintained. We obtain hence

lim
α→0+

L
α
2 =

N

∑
m=2
|Ψm〉〈Ψm|= 1̂−|Ψ1〉〈Ψ1|. (29.20)

The universality of this relation manifests itself in the sense as it only requires one
vanishing and N−1 positive eigenvalues, i.e. good structure iii), ii) of the fractional
Laplacian. Consider now a rescaled version of (29.20) generating the same walk (see

4 With characteristic inverse power law asymptotics for long range jumps as demonstrated subse-
quently.
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eq. (29.9))
lim

α→0+
N〈p|L α

2 |q〉= δpq(N−1)− (1−δpq). (29.21)

which coincides with the Laplacian of a fully connected network where all nodes
are connected to each other Apq = (1−δpq) = 1∀p �= q and where the degree of any
node is

lim
α→0+

NK(α) = KN = N−1,

i.e. each node has the maximum number of N−1 adjacent nodes. From (29.17) we
obtain for α → 0+ the transition matrix

lim
α→0+

W (α) =
1

K(α→0) A(α→0)
pq =

1
N−1

(1−δpq) (29.22)

coinciding with the transition matrix of a Pólya walk on a fully connected network
where the walker can reach in one time-step any destination node different from the
departure node in only one time-step with equal probability 1/(N−1). In this limit
α→ 0+ the FRW reaches its maximum speed. This holds for finite networks when N
is finite and not necessarily large. We come back to the limit α → 0+ in subsequent
paragraph in the context of our analysis of recurrence and transience features of the
FRW on infinite lattices.

29.5.2 Recurrence Theorem for the Fractional Random Walk on
Infinite Simple Cubic Lattices

Here we analyze universal behavior of the FRW which emerges in d-dimensional
infinite simple cubic lattices (Zd-integer lattices) where d = 1,2,3,4, ... denotes the
dimension of the lattice. The recurrence behavior of the FRW to be analyzed in this
paragraph can also be considered as an ‘universal’ property in the sense as it does
not depend on the spectral details of Laplacian matrix L (apart from above discussed
requirements for L of positive semi-definiteness iii), and non-positive off diagonal
elements iiii)).

For the sake of simplicity of the present demonstration we consider now the
special cases of regular undirected networks constituted by d-dimensional simple
cubic lattices (d = 1,2,3,4, ..) where we assume infinite boundary conditions in
any dimension j = 1, ..,d. The lattice points can be identified with the nodes of
the network and are denoted by the lattice vectors ppp = (p1, .., pd) having integer
valued components where p j = 0,±1,±2, ..±∞ ∈ Z may take any integer value.
The Laplacian matrix L in this lattice with only next neighbor connections have the
matrix elements (Michelitsch et al, 2017a,b)
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L (ppp−qqq) = Lp1,..pn|q1,..,qn = 2d
d

∏
j=1

δp jq j −
d

∑
j=1

(
δp j+1q j +δp j−1q j

) n

∏
s�= j

δpsqs

=
1

(2π)d

∫
κκκ

eiκκκ·(ppp−qqq)μ(κκκ)dqκκκ, μ(κκκ) = 2d−2
d

∑
j=1

cos(κ j)

−π ≤ κ j ≤ π, j = 1, ..,d
(29.23)

and constant degree K = 2d. The second line indicates the spectral representation in
terms of 2π-periodic Bloch eigenfunctions

eiκ j p j
√

2π

(see (29.2)) where κκκ = (κ1, ..,κ j, ..,κd). In (29.23) we have introduced the abbrevia-
tion

∫
κκκ

h(κκκ · (ppp−qqq))dκκκ =

π∫
−π

dκ1..

π∫
−π

dκdh(κ1(p1−q1)+ ..+κd(pd−qd)) (29.24)

which indicates integration over the d-dimensional first Brillouin zone (2π)d . Further
we introduced the unity matrix

δpq→ δppp−qqq =
d

∏
j=1

δp jq j

of the d-dimensional lattice. Laplacian (29.23) with transition matrix (29.9) defines
the classical Pólya walk (Pólya, 1921). Now to define the FRW on the cubic lattice
we introduce the fractional Laplacian (fractional power of (29.23)) which has the
canonic representation

[L
α
2 ](ppp−qqq) =

1
(2π)d

∫
κκκ

eiκκκ·(ppp−qqq)(μ(κκκ))
α
2 dqκκκ, 0 < α ≤ 2 (29.25)

where throughout this analysis we confine us on the admissible range 0 < α ≤ 2 and
for α = 2 (29.25) recovers (29.23). The transition matrix of the FRW on the lattice is
defined by (29.17) and can then be written as

W (α)(ppp−qqq) =
1

(2π)d

∫
κκκ

eiκκκ·(ppp−qqq)λ (α)(κκκ)dqκκκ, λ (α)(κκκ) = 1− (μ(κκκ))
α
2

K(α)

(29.26)
where the fractional degree K(α) being the constant diagonal element of (29.25) is
given by

K(α) = [L
α
2 ](000) =

1
(2π)d

∫
μ

α
2 (κκκ)ddκ, 0 < α ≤ 2. (29.27)
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We introduce now the Green’s function of the FRW on the infinite simple cubic
d-dimensional lattice. Using general relation (29.15) yields

r(α)ppp−qqq(ξ = 1) =
K(α)

(2π)d

∫
ei(ppp−qqq)·κκκμ−

α
2 (κκκ)ddκ (29.28)

where the integrations always are performed over the first Brillouin zone (see (29.24)).
As already mentioned the matrix elements of the Green’s function

r(α)ppp−qqq(ξ = 1)

have the statistical interpretation of the mean residence time (MRT), that is the
average number of time-steps the walker is visiting a node ppp during an infinite time
of observation where the walk always is starting at node qqq. The Green’s function
is a symmetric matrix with respect of exchange of departure- and arrival node. Its
diagonal element of (29.28) indicates then the average number of time-steps the
walker spends in the departure node

r(α)000 (ξ = 1) =
Kα

(2π)d

∫
μ−

α
2 (κ ′κ ′κ ′)ddκ ′. (29.29)

Since the walker for t = 0 per definition always is present in the departure node
for one time-step, the inequality r(α)000 (ξ = 1)≥ 1 is fulfilled. Thus r(α)000 (ξ = 1)−1
indicates the expected number of returns to the departure node measured during
an infinite time of observation. It is a sufficient criteria for recurrence of the walk
when this quantity (and hence the Green’s function (29.28)) diverges, indicating
that the walker returns to the departure node infinitely often. On the other hand if
r(α)000 (ξ = 1)−1 is convergent, i.e. when the walker returns during an infinite time
of observation only a finite number of times to the departure node, then the walk
necessarily is transient.

Let us now analyse the convergence behavior of Green’s function (29.28) for the
FRW more closely. We notice in (29.27) that the fractional degree K(α) for 0 < α ≤ 2
always converges. The question of whether or not the Green’s function converges
thus depends on the behavior of the eigenvalues μ

α
2 (κκκ) of the fractional Laplacian

(29.25) close to the origin |κκκ| → 0. Since in this limit μ
α
2 (κκκ) ∼ |κκκ|α (see relation

(29.23)), integral (29.29) can be written as

r(α)000 (ξ = 1)
K(α) =

1
(2π)d

∫
μ−

α
2 (κ ′κ ′κ ′)ddκ ′

=
1

(2π)d

⎧⎨⎩ 2π
d
2

Γ ( d
2 )

lim
ε→0

κ0∫
ε

κd−1−αdκ+
∫
Vc

μ−
α
2 (κ ′κ ′κ ′)ddκ ′

⎫⎬⎭
∼ lim

ε→0
a(ε)+C(κ0).

(29.30)
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In (29.30) 0 < κ0� 1 is sufficiently small that (μ(κ0κ0κ0))
− α

2 ≈ κ−α0 and C(κ0) is the
contribution of the integral of μ−

α
2 (κ ′κ ′κ ′) over Vc which is the cube −π < κ j < π

without the d-sphere of radius κ = κ0.
The first integral in (29.30)2 is crucial for the divergence or convergence of r(α)000 (1):

It behaves as

a(ε)∼− ε
d−α

d−α
for d �= α and

a(ε)∼− log(ε)

when d = α where ε → 0+. Hence (29.30) diverges for d ≤ α and as a consequence
the FRW then is recurrent. On the other hand integral (29.30) is finite for d > α , i.e.
Green’s function (29.28) then is convergent where the walker in the average visits
any node only a finite number of times. That is for d > α (0 < α ≤ 2) the FRW is
transient with a finite probability

1

r(α)000 (ξ = 1)
> 0

of never return to the departure node.
The generalized recurrence theorem for Fractional Random Walks can then be

formulated as follows (For a more thorough analysis and further comments, we
refer to Michelitsch et al (2017a)). The FRW is recurrent for lattice dimensions
d ≤ α and transient for d > α where always 0 < α ≤ 2. We emphasize that the
recurrence behavior of the FRW is an universal feature, that is, it does not depend
on the spectral details of the generating Laplacian L. This behavior is represented in
Fig. 29.2: Lattice dimensions of transient FRWs are indicated by bullet points. The
FRW-recurrence theorem remains true for the entire class of random walks on infinite
networks with the same power law asymptotics for long-range steps (analyzed in
subsequent section) as Lévy flights. The recurrence behavior for Lévy flights in
the continuous d-dimensional infinite space was considered earlier (Ferraro and
Zaninetti, 2006; Sato, 1999) and generally recurrence of symmetric stable processes
was analyzed in Blumenthal et al (1961); Getoor (1961) and see also the Hughes and
Shlesinger (1982) where some recurrence features of random walks with power-law
asymptotics have been obtained.

29.5.3 Universal Asymptotic Scaling: Emergence of Lévy Flights

The asymptotic power law behavior of the eigenvalues of the fractional Laplacian as
|κκκ|α for |κκκ| → 0 have as further consequence an universal scaling behavior of long-
range steps. To demonstrate this briefly, let us consider the probability determined by
(29.26) that the walker makes a long-range move |ppp−qqq| � 1. Using (μ(κκκ))

α
2 ∼ |κκκ|α

for |κκκ| → 0 we obtain as leading contribution (A(α) = K(α)W (α))
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Fig. 29.2 Representation
of the recurrence theorem
for the Fractional Random
Walk for the admissible range
0 < α ≤ 2 (Michelitsch et al,
2017a): The plot shows for two
values of α (within 0 < α < 2)
the lattice dimensions of tran-
sience (indicated as bullet
points). Recurrent FRWs exist
for d = 1 within 1 ≤ α < 2.
For α = 2 representing the
Pólya walk, Pólya’s classi-
cal recurrence theorem is
recovered where the walk is
recurrent for lattice dimen-
sions d = 1,2 and transient for
d ≥ 3.
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A(α)(ppp−qqq))≈− 1
(2π)d

∫
|κκκ|αei(ppp−qqq)·κκκ =−(−Δ(ppp−qqq)

) α
2 δ d(ppp−qqq) =

Cα,d

|ppp−qqq|d+α
(29.31)

with the positive constant (Michelitsch et al, 2014)

Cα,d =
2α−1αΓ (α+d

2 )

π
d
2Γ (1− α

2 )

where the inverse power law kernel holds for 0<α < 2 (α �= 2) having the form of the
kernel of the fractional Laplacian (Riesz fractional derivative) in the d-dimensional
infinite space (Michelitsch et al, 2014, 2017b). Returning to master equation (29.4),
the time evolution of the occupation probabilities with (29.31) is for |ppp−qqq| � 1
asymptotically described by 5

dPt(ppp−qqq)
dt

|t=0 ≈− (L
α
2 )ppp−qqq

K(α) ≈− 1
K(α)

(−Δ(ppp−qqq)
) α

2 δ d(ppp−qqq) (29.32)

This relation is the evolution equation of a (time-continuous) Lévy flight in the
d-dimensional infinite space with Lévy index 0 < α < 2 where δ d(ppp−qqq) denotes
the d-dimensional Dirac’s δ -function (Michelitsch et al, 2017b). Asymptotic relation
(29.32) recovers for α = 2 the conventional diffusion equation with the Brownian
nature of the Pólya walk.

By a similar consideration the asymptotic representation of the fractional lattice
Green’s function (29.28) of the d-dimensional infinite lattice for |ppp−qqq|>> 1 for the
transient regime d−α > 0 is obtained in Riesz potential form (see also Sato, 1999,
pp. 261)

5 Pt+1(ppp−qqq)−Pt(ppp−qqq)≈ dPt(ppp−qqq)
dt
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1
K(α) r(α)(ppp−qqq)≈ (−Δ(ppp−qqq)

)− α
2 δ d(ppp−qqq) =

(−C−α,d)
|ppp−qqq|d−α > 0 (29.33)

evanescent at infinity since existing only in the transient regime d > α (0 < α ≤ 2).
This expression formally is obtained when replacing α→−α (and adding multiplyer
(−1)) in (29.31). It is worth noticing that

−C−α,d = 2−απ−
d
2
Γ ( d−α

2 )

Γ (α2 )
> 0

occurring in (29.33) indeed is a positive constant as required for probabilities. We
mention also that asymptotic relation (29.33) holds also for the transient Pólya walks
d > α = 2, i.e. d ≥ 3. For a Pólya walk on a d = 3-dimensional lattice, the Green’s
function (29.33) takes the representation of a Newtonian potential

1
4π|ppp−qqq| =

(−Δ(ppp−qqq)
)−1 δ 3(ppp−qqq)

as a landmark of the Brownian nature of the Pólya walk. It is a very interesting
observation that the lattice Green’s functions existing in the transient regime and
static potentials of lattice dynamics have their correspondence in both contexts,
namely for random walks and lattice dynamics. In this context we refer especially to
the seminal works (Montroll, 1956; Montroll and Weiss, 1965; Spitzer, 1976) where
this general correspondence is analyzed.

29.6 Transient Regime 0 < α < 1 for the Inifinite

One-Dimensional Chain

The FRW is transient for all lattice dimensions d = 1,2,3,4, .. in the index range
0 < α < 1. Here we discuss the transient regime for the one-dimensional infinite
lattice d = 1. For this case explicit expressions for the fractional Laplacian matrix
(Michelitsch et al, 2015, 2016; Zoia et al, 2007), and for the lattice Green’s function
(Michelitsch et al, 2017a) have been obtained. We assume an undirected network
of an infinite chain where the nodes are located at the integer lattice points p =
0,±1,±2 ∈ZZZ. The Laplacian matrix (29.23) of the one-dimensional lattice with only
next neighbor connections and constant degree K = 2 has the simple representation

Lpq = 2δpq−δp,q+1−δp,q−1 (29.34)

of a symmetric second difference operator where the eigenvalues of the Laplacian
are

μ(κ) = 2(1− cos(κ)) = 4sin2
(κ

2

)
, −π ≤ κ ≤ π. (29.35)

The spectral representation of the fractional Laplacian matrix L
α
2 then is defined by
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(L
α
2 )|p| =

1
2π

π∫
−π

eiκ p
(

4sin2 κ
2
)
) α

2
dκ (29.36)

depending only on |p−q| → |p|= p and is obtained in explicit form as (Michelitsch
et al, 2015, 2016; Zoia et al, 2007)

(L
α
2 )|p| = (−1)p α!

(α2 + p)!(α2 − p)!
=−α!

π
sin
(απ

2

) (|p|−1− α
2 )!

(α2 + |p|)! . (29.37)

We utilize here the same notation as in Michelitsch et al (2015, 2016) in terms of
generalized binomial coefficients with the notation

ζ ! = Γ (ζ +1) (29.38)

where Γ (..) denotes the Γ -function. Note that as discussed above the fractional
Laplacian maintains its good properties for 0 < α ≤ 2, where α = 2 in (29.36),
(29.37) recovers the Laplacian (29.34). The fractional degree (diagonal element of
the fractional Laplacian matrix (29.37)) yields

K(α) = (L
α
2 )0 =

2α

π
(α−1

2 )!(− 1
2 )!

α
2 !

=
α!

α
2 !α2 !

. (29.39)

Expression (29.28) for the Green’s function with d = 1 takes the representation
(Michelitsch et al, 2017a)

r(α)|p| (ξ = 1) =
K(α)

2π

π∫
−π

eiκ p
(

4sin2 κ
2
)
)− α

2
dκ, 0 < α < 1. (29.40)

We emphasize that for d = 1 the lattice Green’s function converges only in the
transient regime 0 < α < 1, whereas diverges in the recurrent regime 1≤ α ≤ 2. The
Green’s function (29.40) then yields an explicit expression which can be obtained
when replacing in (29.37) α →−α , namely

r(α)|p| (ξ = 1) = K(α)(L−
α
2 )|p| =

α!
α
2 !α2 !

(−1)p(−α)!
(−α2 + p)!(−α2 − p)!

, 0 < α < 1. (29.41)

For p = 0 this relation yields

r(α)0 (1) =
Γ (1+α)Γ (1−α)
Γ 2(1+ α

2 )Γ 2(1− α
2 )
≥ 1, 0 < α < 1 (29.42)

which in view of our above interpretation as MRT and (29.40) can only take values
greater than one (Fig. 29.3) where the minimum value

r(α→0+)
0 (1) = 1
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Fig. 29.3 Diagonal element
r(α)0 (1) of the Green’s func-
tion (29.42) versus α in the
transient regime 0 < α < 1,
indicating the expected num-
ber of time units the walker
is present in the departure
node. The smaller α the more
rare the walker returns to
the departure node where for
α → 0+ (extreme transience)
the walker never returns to
the departure node. With in-
creasing α the MRT r(α)0 (1)
increases monotonously di-
verging at the recurrent limit
α → 1− 0 where the walker
returns infinitely often to the
departure node.
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is taken for α → 0+. For |p| >> 1 (29.41) yields the Riesz potential asymptotic
formula

r(α)|p|>>1(ξ = 1)

K(α) ≈ (−α)!
π

sin
(πα

2

) 1
|p|1−α , 0 < α < 1 (29.43)

which is in accordance with (29.33) for d = 1 (0 < α < 1).
Let us now discuss more closely some characteristics of the FRW where we

invoke the statistical meaning of the components of the Green’s function as the
mean residence time (MRT). Due to the construction of the walk (29.9) where the
walker at any time increment has to move to another node, (29.41) thus counts the
expected number of visits of nodes ±p during an infinitely long FRW. For visits of
the departure node holds

r(α)0 (ξ = 1)≥ 1

since the walker per definition visits the departure node (at least) once, namely at
t = 0.

In Fig. 29.3 is drawn the diagonal element r(α)0 (1). Taking into account that

r(α)0 (1)−1 indicates the average number of returns to the departure node, Fig. 29.3
shows the following behavior: The smaller α the more rare become returns to the
departure node. A physical interpretation is that the smaller α , the mode frequent
are long-range steps (see (29.31) with d = 1) and the higher the average speed of the
FRW. This tendency is most pronounced in the limit of extreme transience α → 0+
where the walker for sure never returns to the departure node where

r(α→0+)
0 (1)−1 = 0.
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For increasing α the number of returns to the departure node increases monotonously,
diverging in the limit recurrence α = 1−0 (see Fig. 29.3 and Eq. (29.42) where

lim
α→1−0

Γ (1−α) = ∞),

where the walker infinitely often returns to the departure node. In view of relation
(29.13) we mention that 1/r(α)0 (1) indicates the probability of escape (never return)
to the departure node: for α → 0+ the probability that walker never returns to the
departure node tends to 1 whereas in the recurrent limit α = 1 the probability of
escape

1

r(α→1−0)
0 (1)

= 0

is vanishing.
In Fig. 29.4 are drawn the matrix elements of Green’s function (closed form

expression (29.41)) for destination nodes different form the departure node (p �= 0).
We observe that the smaller α , the smaller r(α)|p| (ξ = 1). That is the smaller α , the
more rarely a preselected target node is visited. In terms of search efficiency this
means that a FRW searcher is less successful for smaller α . This tendency is the
most pronounced at α = 0+ where the expected number of visits of any preselected
destination node tends to zero. A FRW searcher on the infinite lattice in the limit
of extreme transience α → 0 becomes inefficient 6. This effect can be understood
in terms of more frequent long-range jumps occuring for smaller α where any
preselected destination node tends to be overleaped. This overshooting effect was
already found in the context of Lévy flight search (Klages, 2016; Palyulin et al, 2014).
We also observe in Fig. 29.4 when α is kept constant that the average number of
visits is increased for nodes closer to the departure node.

On the other hand we also see in Fig. 29.4 the expected number of visits of a
node p increases with increasing α and diverges when approaching the recurrent
limit α = 1. That is in terms of search efficiency the FRW searcher becomes the
more efficient the closer the recurrent limit α = 1 is approached. Similar results were
reported for the case of Lévy flight based search strategies (Klages, 2016; Palyulin
et al, 2014) (and references therein), however, this subject is beyond of the scope of
the present paper. For a further discussion and analysis of the present results in terms
of ever passage probabilities we refer to Michelitsch et al (2017a).

In Fig. 29.5 is plotted the Green’s function (29.41) versus |p| in log-log representa-
tion. Equal values are indicated by lines of the same color. The linear characteristic of
the same colored lines indicate the inverse power law (Riesz potential) characteristics
which is obtained for |p| � 1 in (29.43). We observe that, the more the recurrent
limit α = 1 is approached, the more horizontal the equal colored lines become which
is confirmed by the Riesz potential (29.43) behaving as ∼ |p|α−1.

6 This statement is not any more true on finite lattices where any walk is recurrent.
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Fig. 29.4 Expected number
of visits given by the elements
of Green’s function (29.41)
for nodes p �= 0 different
from the departure node. The
larger α the more frequent
a destination node is visited
(diverging at the recurrent
limit α = 1). For the same α a
node is more often visited the
closer located to the departure
node. In the limit of extreme
transience α → 0+ caused by
the extreme occurence of long
range jumps any preselected
node p is overleaped and
therefore in the average is
never visited.
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Fig. 29.5 Plot r(α)|p| (ξ =

1) vs. log p from (29.41)
taking Riesz potential inverse
power law characteristics
log(r(α)|p| (ξ = 1)) ∼ (α −
1) log |p|+ const (see Eq.
(29.43)). In rainbow colors
from small α = 0.001 (blue:
extreme transience) to α =
1−0 (red: recurrent limit).
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29.7 Conclusions

In the present paper we have presented a brief analysis of some universal features
of Fractional Random Walks on regular networks, especially simple cubic lattices.
Among these universal features are the recurrence and transience behavior of the
FRW: The FRW on infinite lattices is transient for lattice dimensions d > α (where
always 0 < α ≤ 2) otherwise recurrent (Michelitsch et al, 2017a). On finite lattices
the FRW (as any Markovian walk) always is recurrent (Hudges, 1995).

Another universal feature of the FRW emerging on infinite networks is the inverse
power law asymptotics for the probability of long-range moves where the master
equation governing the time evolution of the occupation probabilities asymptotically
takes the form of a fractional Lévy flight diffusion equation involving Riesz fractional
derivatives (relation (29.32) together with (29.31)). As a consequence the infinite
lattice Green’s function of the FRW indicating the average number of visits of nodes
(converging only in the transient regime d > α) takes the asymptotic form of the
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inverse of the Riesz fractional derivative, namely the Riesz potential for nodes far
from the departure node (expression (29.33)).

All these mentioned features are universal in the sense that they do not depend
on the spectral details of the Laplacian matrix L (where only ‘good’ properties of
the Laplacian are required). They emerge on infinite lattices and depend only on
lattice dimension d and index α . In the limit α → 0 the FRW appears as a Pólya
walk on a fully connected network when the network is finite. In the infinite network
the limit α → 0+ exhibits the phenomena of extreme transience and appears for any
lattice dimension d where the walker for sure never returns to the departure node (see
(29.28) together with (29.27) and (29.41) for d = 1). For a more thorough analysis
and discussions of FRW we again refer to Michelitsch et al (2017a).

The FRW offers interesting perspectives in the development for faster random
walk based search strategies as demonstrated for Lévy flights (Palyulin et al, 2016,
2014; Bénichou et al, 2011). The FRW due to his universal characteristics with
relation to Lévy α stable distributions and capacity to describe anomalous transport
phenomena in networks deserves further investigations: For instance it would be
desirable to analyse MRTs for finite observation times tob and to characterize how
the MRT (tob) diverge in the recurrent limit with respect to tob.

Further important questions calling for deeper analysis are: What is the relation-
ship of the FRW to fractal networks? Is the FRW performed on a regular lattice
equivalent to a walk performed on a fractal network and what is then the relation
of its fractal dimension with the index α of the FRW? In Hughes and Shlesinger
(1982) random walks with asymptotic power law behavior were considered and a
relationship between scaling index and (fractal) lattice dimensions were analysed.
With a similar reasoning Pólya type walks on fractal networks could be related to
FRWs: Consider a path in the d-dimensional lattice realized during a FRW. This tran-
science/recurrence behavior depends on d−α . Take now a network of a ‘dimension’
d∗ containing the same path where successively visited points are adjacent. The FRW
on this unknown network thus is of Pólya type where only steps to adjacent nodes
are performed. We consider the identical walk in both networks, appearing as a FRW
in the d-dimensional lattice as well as a Pólya type walk in the unknown network of
dimension d∗. Since identical walks have the same recurrence behavior, we obtain
d∗−2 = d−α which is a condition that determines the dimension d∗ = d+2−α of
the unknown network. For 0 < α < 2 dimension d∗ generally is (except for α = 1) a
non-integer and hence a fractal dimension d∗ > d. For the Pólya walk case α = 2
both dimensions d∗ = d and hence both lattices coincide. In other words the FRW
on regular lattice seem to have Pólya type walk counterparts taking place on fractal
network. This rough consideration may give an idea of the potential of the FRW
concept to open new directions towards approaches that describe the dynamics of
random motions on fractal sets and complex networks.
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Chapter 30

Micropolar Theory with Production of

Rotational Inertia: A Rational Mechanics

Approach

Wolfgang H. Müller and Elena N. Vilchevskaya

Abstract The aim of this paper is a review on recently found new aspects in the
theory of micropolar media. For this purpose the necessary theoretical framework
for a micropolar continuum is initially presented. Here the standard macroscopic
equations for mass, linear and angular momentum, and energy are extended in two
ways. First, the aspect of coupling linear and angular rotational kinetic energies is
emphasized. Second, the equations are complemented by a recently proposed kinetic
equation for the moment of inertia tensors containing a production term. We then
continue to explore the possibilities of this new term for the case of micropolar media
encountering a change of moment of inertia during a thermomechanical process.
Particular emphasis is put on the general form of the production of moment of
inertia for a transversally isotropic medium and its potential to describe, for example,
structural changes from a transversally isotropic state to an isotropic one. In order to
be able to comprehend and to study the influence of the various material parameters
the production term is interpreted mesoscopically and various other examples are
solved in closed form. Moreover, in context with the presented example problems it
will also become clear that the traditional Lagrangian way of describing the motion
of solids might sometimes no longer be adequate and must then be replaced by a
Eulerian approach.
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30.1 Review of the Current State-of-the-Art

Generalized Continuum Theories (GCTs) have proven to be most useful for the
materials science community, because they are needed for computational modeling
of new technical designs with high performance materials carrying an inner structure.
Such materials appear in large and small scale applications ranging from light-weight
aerospace and automotive applications down to micromechanics and microelectronic
gadgets. A particular form of GCT is the so-called micropolar theory. It emphasizes
the aspect of inner rotational degrees of freedom of a material consisting of rigid
particles on a mesoscopic scale, see Eringen and Kafadar (1976), Eringen (2002,
Section 13), or Eremeyev et al (2012). Hence this theory seems particularly promising
in context with the description of soils, polycrystalline and composite matter, granular
and powder-like materials, and also for porous media and foams.

Recall that the tensor of the moment of inertia of a continuum particle, JJJ, plays
an important role in context with its rotational degree of freedom, specifically in
combination with the angular velocity vector, ωωω , assigned to the continuum element.
Traditionally JJJ is conserved and known a priori. However, more recently, it has been
emphasized by Ivanova and Vilchevskaya (2016) that the moment of inertia tensor
deserves to be treated as an independent structural field variable. The situation is
completely analogous to the inertia associated with linear momentum, namely the
field of mass density, ρ , of compressible media, which, as it is commonly known, is
governed by a kinetic or (better) balance equation of its own. However, in contrast
to the balance of mass, moment of inertia is not conserved. Rather its governing
equation contains a production term, χχχJ , which in terms of continuum theory must
be considered as a new constitutive quantity. As we shall see, it allows to model
additional features of materials, e.g., processes with considerable structural changes,
such as transitions from an anisotropic to an isotropic state, and vice versa.

We therefore need to extend the original goals of micropolar theory. In fact, in
what follows we will initially formulate the corresponding equations in a very general
manner, so that they are ready for future investigations of various kinds of boundary
value problems, may they be static or dynamic, and with or without coupling of linear
and angular momentum. After that we shall successively specialize to the needs of
this paper. In this spirit we proceed as follows:

In its most general form the objective of micropolar theory is, mathematically
speaking, to determine the following primary fields: (a) the scalar field of mass
density, ρ(xxx, t); (b) the symmetric, second rank, and positive definite specific moment
of inertia tensor field, JJJ(xxx, t); (c) the specific moment of inertia coupling tensor field,
BBB(xxx, t); (d) the vector field of linear velocity, vvv(xxx, t); (e) the spin (a.k.a. angular
velocity) field, ωωω(xxx, t); and the temperature field, T (xxx, t), in all points, xxx, and at all
times, t, within a region of space, B, which can be either a material volume, i.e.,
it consists of the same matter at all times, or be a region through which matter is
flowing.

The determination of these fields relies on field equations for the primary fields.
The field equations are based on balance laws and need to be complemented by
suitable constitutive relations. In spatial description, putting the substantial time
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derivatives of the balancable quantities exclusively on the left hand side, these
continuum scale balances read as follows:

• balance of mass:
δρ
δ t

=−ρ∇∇∇ ·vvv, (30.1)

with the substantial (a.k.a. material) derivative,

δ (·)
δ t

=
d(·)
dt

+(vvv−www) ·∇∇∇(·), (30.2)

d(·)/dt being the total time derivative including the mapping velocity www of the
observational point;

• balances for the moment of inertia and for the coupling moment of inertia tensors,

δJJJ
δ t

=ωωω×JJJ−JJJ×ωωω+χχχJ ,
δBBB
δ t

=ωωω×BBB−BBB×ωωω+χχχB ; (30.3)

• balance of linear momentum,

ρ
δ
δ t

(vvv+BBB ·ωωω) =∇∇∇ ·σσσ +ρ fff +ρ χχχB ·ωωω; (30.4)

• balance of spin,

ρ
δ
δ t

(JJJ ·ωωω+vvv ·BBB) =∇∇∇ ·μμμ+σσσ×+ρmmm−ρvvv×BBB ·ωωω+ (30.5)

ρ (vvv ·χχχB +χχχJ ·ωωω) ;

• and the balance of internal energy,

ρ
δu
δ t

=−∇∇∇ ·qqq+ρr+σσσ : (∇∇∇vvv+III×ωωω)+μμμ : ∇∇∇ωωω. (30.6)

The symbol “:” denotes the outer double scalar product, see Eq. (30.69) of the
Appendices. We will elaborate more on the important issue of spatial description
below. For the time being it suffices to say thatσσσ denotes the (non-symmetric) Cauchy
stress tensor, fff is the specific body force, χχχJ (a symmetric tensor of second rank)
and χχχB (a general tensor of second rank) are the productions related to the moment
of inertia tensor, JJJ, and to the coupling moment of inertia tensor, BBB, respectively; μμμ
is the couple stress tensor, σσσ× is the Gibbsian cross (see Eremeyev et al, 2012, pg.
34) or (Naumenko and Altenbach, 2007, pg. 176) applied to the (non-symmetric)
Cauchy stress tensor, mmm are specific volume couples, u is the specific internal energy,
qqq is the heat flux, and r is the specific heat supply.

In context with Eq. (30.3) several comments are in order. It has already been
mentioned that in this form such relations were first introduced in a recent paper by
one of the authors (Ivanova and Vilchevskaya, 2016). There is a precedent to the
equation for the inertia tensor, JJJ, namely what is called “conservation of microinertia”
in Eringen and Kafadar (1976), pg. 15. However, being characterized as a conserved
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quantity it cannot contain a production term, χχχJ , a priori. On the continuum level
this term must be interpreted as a new constitutive quantity. One of the purposes of
this paper is to specify possible forms of this constitutive relation and to illustrate
its potential for modeling materials with higher inner degrees of freedom by various
example problems, which in hindsight confirm the necessity for extending the theory.

However, if there exists a production of moment of inertia, we face another
problem, as follows: Continuum mechanics of solids is typically formulated in the
Lagrangian way, a.k.a. material description, which is based on the concept of an
indestructible “material particle.” This particle is identifiable by its reference position
vector, XXX , which can then be used in a bijective mapping for describing uniquely the
motion, xxx = x̂xx(XXX , t), of the particle through three-dimensional space in time. Note
that this requires the neighboring material particles to remain “close” to each other
during the motion. Furthermore note that a material particle in the continuum sense
is composed of myriads of atoms or molecules, so that statistical fluctuations play
no role in a macroscopic continuum. Moreover, there is no exchange of atoms and
molecules between material particles. A material particle is indestructible and its
mass is simply conserved.

Traditionally, micropolar theory was not any different in this respect. One may
say that the corresponding material particle consists of a statistically significant
number of subunits on a mesoscopic scale, which are often also called “particles,” an
unfortunate terminology, which may give rise to confusion. Now, if the Lagrangian
idea of a material particle is followed, material particles must stay together during
motion. There should be no exchange of subunits between them. Particles are neither
destroyed nor generated. In other words, this concept cannot handle production.
Consequently, under such assumptions the field equations of mass and of the inertia
tensor, Eqs. (30.1) and (30.3)1, can be integrated in time. In Eringen and Kafadar
(1976, pp. 15/16) we find:

ρ =
ρ0

detFFF
, JJJ =QQQ ·JJJ0 ·QQQ! , (30.7)

where all functions of the current configuration depend on (XXX , t) and the ones in
the reference placement (identifiable by the subscript 0) on (XXX , t0). The first result
for the mass density is well known in continuum mechanics, FFF = ∇∇∇XXXx̂xx(XXX , t) being
the deformation gradient. The second one is less frequently mentioned, QQQ being the
so-called tensor of micromotion or microrotation, as it is called in modern literature
(e.g. Eremeyev and Pietraszkiewicz, 2012) an orthogonal rotation tensor connecting
the directors of the reference configuration with those of the current placement.

However, this means that within this framework certain processes and effects in
materials can simply not be modeled. Consider, for example, a granular medium,
which is milled. The milling will affect the material particle, because its subunits
will be crushed. They will change their mass as well as their moment of inertia and,
what is more, during the milling process there might even be an exchange of crushed
subunits between neighboring material particles, which are then no longer material
in the original sense of the word. Consequently, on a continuum scale, the moment
of inertia will change in space and time as dictated by the production term, χχχJ . As
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another example consider a medium, which on a mesoscale consists of electrically
charged particles. If an electrostatic field is applied externally, is will affect their
orientation as well as their shape. On a continuum scale this means that the moment
of inertia tensor field is affected.

Also recall that the Eulerian description is based and widely used in fluid mechan-
ics. It does not impose strict constraints on the motion of mass-conserved material
points. Rather it embraces the idea of an open system, allowing a priori for exchange
of mass, momentum, energy, moment of inertia, etc., between and within the cells of
the Eulerian grid.

For such reasons (Ivanova and Vilchevskaya, 2016) have decided to consider an
independent balance for JJJ (and for BBB), and this is why they depart from the Lagrangian
description and turn to the Eulerian perspective (a.k.a. spatial description) instead.

A second remark concerns Eqs. (30.4) and (30.5). Note that the specific moment
of inertia coupling tensor, BBB, originally stems from rigid body dynamics (see, e.g.
Hibbeler, 2010, Section 21.3). It is skewsymmetric and different from zero, if we
choose some arbitrary “geometric” center as a reference point, which does not
coincide with the center of mass. In Ivanova and Vilchevskaya (2016, Section 3.2) a
mesoscopic interpretation of the continuum field BBB was given. From their explanations
it follows that if the microparticles in an RVE (Representative Volume Element in
an Eulerian grid) are homogeneously distributed within, then, due to symmetry
considerations, the skewsymmetric tensor BBB must be zero. Consequently, if we intend
to use BBB on the continuum level, we have to abandon the above approach and accept
that the BBB tensor of the microparticle should no longer be skewsymmetric but an
arbitrary tensor of second rank characterizing an additional physical quality of the
microparticle. It was exactly for this reason that Zhilin (2015) introduced it in the
continuum world. We proceed to explain this issue.

By coupling linear and angular velocities, i.e., vvv ·BBB ·ωωω , it contributes toward the
specific kinetic energy contained in a spatial element:

K = 1
2vvv ·vvv+vvv ·BBB ·ωωω+ 1

2ωωω ·JJJ ·ωωω. (30.8)

The kinetic energy serves as a potential for the linear and for the angular momen-
tum:

KKK lin =
∂K

∂vvv
= vvv+BBB ·ωωω , KKK ang =

∂K

∂ωωω
= vvv ·BBB+JJJ ·ωωω. (30.9)

This way BBB also couples the linear balance of momentum and the spin balance,
Eqs. (30.4) and (30.5), which is also a new feature when compared to the usual
formulations found in (for example) Eringen and Kafadar (1976, pg. 15) or Eremeyev
et al (2012, pg. 30).

In Zhilin (2015, Section 3.2) a first fascinating application of BBB was presented.
Zhilin specialized the equations from above, which are valid for the continuum, to the
case of a point particle carrying mass m and isotropic rotational inertia. The coupling
tensor was also assumed to be isotropic:

BBB = BIII , JJJ = JIII, (30.10)
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where B and J are constants. The point particle was initially assigned a constant
translational speed, vvv0, and a constant angular velocity, ωωω0. Then, in the absence of
external forces and moments, linear and angular momentum are conserved and the
angular velocity develops according to:

ωωω(t) = [1− cos(αt)]nnn ·ωωω0nnn+ cos(αt)ωωω0 + sin(αt)nnn×ωωω0, (30.11)

where α = Ba
B2−J and vvv0 +Bωωω0 = aaa = annn, nnn being a unit vector indicating a direction.

The translational speed and the path of the particle are given by

vvv(t) = vvv0 +B
[
(1− cos(αt))(III−nnn⊗nnn)− sin(αt)nnn×III

] ·ωωω0 (30.12)

and

xxx(t) = xxx0 +vvv0t+ (30.13)

B
[(

t− 1
α sin(αt)

)
(III−nnn⊗nnn)− 1

α
(
1− cos(αt)

)
nnn×III

] ·ωωω0,

respectively.
The first two terms on the right hand side are the classical result according to

Newton’s First Law: Not driven by forces a mass point continues to move uniformly
along a straight line. Clearly, the terms on the second line show the difference between
Newtonian and Eulerian mechanics, where the balance of angular momentum is truly
independent and a coupling between translational and angular parts of the kinetic
energy is assumed: The mass point moves along a curved path. The initial angular
velocity influences its path considerably. However, note that all of these differences
to the classical point of view arise only if we allow the coupling coefficient B to be
different from zero.

In this paper, we are going to consider extensively structural changes from transver-
sal anisotropy with no translational motion. In these examples there is a need for a
non-spherical inertia tensor, JJJ(xxx, t), but not for a coupling inertia tensor field, BBB(xxx, t).
A first examination of the modeling possibilities contained in the latter was just
presented: Zhilin’s idea of induced helical motion of a particle without external
forces and moments originally moving translationally at a constant speed. However,
a more detailed examination of the capabilities of the coupling tensor is left to future
research.

We shall now proceed to discuss possible rather general forms of the production
χχχJ and then illustrate the general theory by various examples.

30.2 Productions of Microinertia and the Coupling Tensor for

Transversally Isotropic Media

In this and in the next section we will concentrate on the balance for the inertia
tensor (30.3)1 in combination with the balance of spin (30.5). We will study purely
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static problems, where the linear and the angular velocity vanish, ωωω = 000, vvv = 000, or
problems of purely angular motion, ωωω �= 000, vvv = 000. In particular, we will focus on a
transversally isotropic medium, such that the plane of isotropy is characterized by a
unit normal vector nnn perpendicular to it. In a first cut to the problem1 we will assume
that the production χχχJ is a function of the microinertia and of the unit vector alone:

χχχJ = χχχJ(JJJ,nnn). (30.14)

Recall that the production χχχJ is a symmetric second rank tensor. The most general
representation for the production under these circumstances was derived in the
Appendices:

χχχJ(JJJ,nnn) = χ1III+χ2nnn⊗nnn+χ3JJJ+χ4JJJ2+ (30.15)

χ5(nnn
⊗JJJ ·nnn+JJJ ·nnn⊗nnn)+χ6(nnn

⊗JJJ2 ·nnn+JJJ2 ·nnn⊗nnn),

where the coefficients χi, i = 1, · · ·,6 are arbitrary scalar functions of five invariants,
Tr(JJJ),Tr(JJJ2),Tr(JJJ3),nnn ·JJJ ·nnn,nnn ·JJJ2 ·nnn.2

We consider a few special cases. Let us assume that, on a mesoscopic level, the
material consists of (not necessarily rigid) spheroids with (initial) minor axes a0 and
major axis c0 > a0. Let us further assume that as part of a production process the
spheroids are all oriented in the direction of the major axis, nnn. Then, on a continuum
level the homogenized tensor of inertia field of a transversally isotropic medium is
initially given by:

JJJ0 =
1
5 (a

2
0 + c2

0)(III−nnn⊗nnn)+ 2
5 a2

0nnn⊗nnn. (30.16)

This result calls for a short explanation. The inertia tensor of a single spheroidal
particle within the RVE is (initially) of the form shown in Eq. (30.16). Following the
averaging procedure outlined in Subsection 3.2 of Ivanova and Vilchevskaya (2016)
this is then also the homogenized initial field of the moment of inertia tensor on the
continuum scale.

If the material is purely isotropic (a0 = c0, i.e., spherical particles) the moment of
inertia turns into a purely spherical tensor:

JJJ0 =
2
5 a2

0III. (30.17)

If the particles are hollow spheres with (initial) inner and outer radii, ri,0 and ro,0,
respectively, we may write:

JJJ0 =
2
5

r5
o,0− r5

i,0

r3
o,0− r3

i,0
III. (30.18)

1 This is supposed to mean that in a complete phenomenological theory further variables should
appear, such as deformation or stress tensors, temperature and, in particular, electromagnetic ones,
such as polarization or magnetization, or their duals, the electric and the magnetic field. However,
the detailed description is left to future research.
2 Also observe the previous footnote. The invariant nnn ·nnn does not appear because nnn is a unit vector.
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In the isotropic case the most general form for the moment of inertia and its
production are then given by:

JJJ = JIII , χχχJ = χJIII, (30.19)

where the scalar χJ is an arbitrary function of the three invariants of JJJ:

χJ = χJ (I1, I2, I3) , I1 = 3J , I2 = 3J2 , I3 = 3J3. (30.20)

Moreover, for later purpose, we now also decompose the moment of a general
inertia tensor JJJ into volumetric (spherical) and deviatoric parts:

JJJ = JJJvol +JJJdev , JJJvol = 1
3 TrJJJ III , JJJdev = JJJ− 1

3 TrJJJ III, (30.21)

i.e., similarly as in the case of Eq. (30.16):

JJJvol = 2
15

[
2a(t)2 + c(t)2] III, JJJdev = 1

15

[
c(t)2−a(t)2](III−3nnn⊗nnn). (30.22)

The first two terms on the right hand side of Eq. (30.3)1, which characterize the
change of the moment of inertia tensor due to rigid body rotation, always vanish in
the case of a sphere for physical reasons, i.e., in the latter case, for the isotropic part,
JJJvol. Of course, this can also be demonstrated mathematically:

ωωω×III−III×ωωω = ωkεmk j(eeem
⊗eee j +eee j

⊗eeem) = 000, (30.23)

where εmik denotes the Levi-Civita symbol and eeei is a Cartesian base. Moreover, if we
now assume that the angular velocity points exclusively in the direction of transversal
anisotropy, ωωω = ωnnn, it is easily seen that the nnn-dependent parts in JJJdev will also lead
to vanishing rigid body rotation terms on the right hand side of Eq. (30.3)1.

Hence, under the requirements discussed in context with Eqs. (30.19) and (30.21)
the balance of the moment of inertia tensor simplifies and reads:

δJJJ
δ t

= χχχJ . (30.24)

30.3 Discussion of Special Cases for the Production Term for the

Moment of Inertia, χχχJ

In previous papers some solutions of the temporal development of the field for the
moment of inertia have already been studied. One of the purposes of this paper is
to revisit these examples and to discuss them from a more general point of view.
Moreover, some new cases will be presented, which have not been investigated so
far.
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30.3.1 Examples for the Isotropic Case

As a first example for the case of an isotropic structural change consider the situation
depicted in Fig. 30.1. On the inset of the upper left we see a Representative Volume
Element (RVE) or Eulerian volume element containing hollow spherical particles
filled with an ideal gas. We assume that the shell of these particles is incompressible
with a constant volume V0. The inner pressure is initially at the level p0. The outer
pressure can change as a function time, p(t).

Depending on how we model the shell the inner pressure will then adjust differ-
ently. If the shell is modeled as a linear elastic solid it will be subjected to a stress
level p0 inside and carry the difference to the outer pressure by developing internal
stresses according to the Lamè solution. On the other hand, if we model the shell as
a rubber balloon, the inner pressure will adjust and equal the outer one. In both cases
the volume of the spheres will change over time (right inset on the top of the figure).
The moment of inertia tensors of all spheres in an RVE are equal and given by an
isotropic tensor expression analogous to Eq. (30.18). If homogenized (see the two
insets on the bottom of the figure) the inertia tensor field on the continuum level is
also isotropic and it stays that way.

Hence Eq.(30.3)1 implies that the production χχχJ is isotropic as well. As it was
shown in Ivanova and Vilchevskaya (2016) and in Müller et al (2017) it consists
in both cases only of the first term on the right hand side of Eq. (30.15), where the
coefficient χ1 is independent of invariants of JJJ. With some modeling effort it can be
expressed in terms of mesoscopic parameters. For example, in the case of the Lamè
model it is given by:

χ1 =−
r2

o,0

2μ
β 3
(
1−β 2

)
(1−β 3)(1−β 5)

dp(t)
dt

, β =
ro,0

ri,0
, (30.25)

Fig. 30.1 Structural shape
change and corresponding
homogenization of pressurized
spheres.
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μ being the shear modulus of the mesoscopic particle. For further details the reader
should turn to the two references.

Another structural change governed by an isotropic moment of inertia and an
inevitably isotropic production is the case of particles isotropically distributed on the
mesoscale being milled in a so-called crusher. The assumption is that the distribution
stays isotropic during the milling process. This situation is also treated extensively
in the two references. There it is also motivated that the production is given by the
following expression:

χχχJ =−α (J− J∗)III, (30.26)

where α and J∗ are positive constants, which can be interpreted as being related to
the minimum grain size the particles are made of, to the particle toughness, and to the
crusher action. Obviously this kind of an expression is also contained in the first term
on the right hand side of the general equation (30.15) if we assume χ1 to depend
only on TrJJJ and then perform a linear Taylor expansion.

30.3.2 Structural Change I: Purely Deviatoric Production

Consider now the case of a material, which, on a mesoscale, consists of an assembly
of rigid spheroids with equatorial axes a0 and polar axis c0, respectively. Initially,
at times t < 0, as consequence of an external force acting as part of a “production
process,” all particles are uniformly aligned in nnn-direction (Fig. 30.2, top left). The
initial, homogenized field of micropolar inertia is then given by Eq. (30.16) and
illustrated in Fig. 30.2 on the bottom left. In order to realize such an ordered structure
one could think of an electret powder. Electrets are materials that possess a quasi-
permanent electric charge or electric dipole polarization. One way of obtaining a
(coarse) electret powder consists of irradiating a fluorine-containing resin sheet with
an electron beam in order to convert the fluorine-containing resin sheet into an electret
sheet, and then pulverize it. The resulting powder particles are more or less rigid. An
external electric field orients them as indicated in the figure, where the positive and
negative electric charges are indicated by white and black bullets, respectively (also

Fig. 30.2 Structural shape
change and corresponding
homogenization.
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see Kestelman et al, 2013, Fig. 1.1). The net charge in the representative volume
element is equal to zero and it is for that reason that the depicted equivalent spheroids
on the bottom of the figure do not contain symbols for charges.

At t = 0 the electric field is then suddenly switched off. Stochastic (thermal)
motion sets in and the particles start to realign arbitrarily (Fig. 30.2, top right). For
physical reasons we expect the resulting field of microinertia eventually to degenerate
into a spherical tensor. This final state is illustrated in Fig. 30.2 on the bottom right.
It is important to note that the electric field is not running the transition. It was used
only for motivation how the initial state of order could be achieved and is then simply
switched off. This will be different in the next example where it drives the structural
change actively.

The objective is now to study the transition process. For this purpose we argue that
the transition is nothing else but a “shape” change. It is known that shape changes
are characterized by deviatoric expressions. Hence we choose for the production of
microinertia shown in Eq. (30.15) only the linear term in JJJ and specialize it to its
deviatoric part according to Eq. (30.21). Moreover, we assume that the parameter χ3
in that equation is a negative constant, −β , and write:

χχχJ =−βJJJdev(t) , β > 0. (30.27)

As we shall see this assumption is physically reasonable. The tensor of microinertia is
notably time dependent. In order to state its explicit mathematical form we generalize
Eq. (30.16) by assuming the semi-axes to be time dependent and write:

JJJ(t) = 1
5

[
a2(t)+ c2(t)

]
(III−nnn⊗nnn)+ 2

5 a2(t)nnn⊗nnn. (30.28)

Analogously to Eq. (30.22) we have:

JJJvol(t) = 2
15

[
2a2(t)+ c2(t)

]
III , (30.29)

JJJdev(t) = 1
15

[
c2(t)−a2(t)

]
(III−3nnn⊗nnn).

We do not expect that the shape transition is accompanied by macroscopic transla-
tional movement, i.e., vvv = 000 at all times. Eq. (30.24) then becomes

∂JJJ(t)
∂ t

=−βJJJdev(t) ⇒ dJJJ(t)
dt

=−βJJJdev(t), (30.30)

the latter being an ordinary time differentiation,3 because of the homogeneity of the
problem.

Recall the volumetric (spherical) and the deviatoric projectors defined by:

PPPvol =
1
3

III⊗III , PPPdev = eeei
⊗eee j

⊗eeei
⊗eee j−PPPvol. (30.31)

We apply them successively to Eq. (30.30) and obtain:

3 not to be confused with the total time derivative of Eq. (30.2)
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dJJJvol

dt
= 000 ,

dJJJdev

dt
=−βJJJdev. (30.32)

We conclude that the volumetric part is conserved and the deviatoric one decreases
exponentially in time:

JJJvol(t) = JJJvol
0 , JJJdev(t) = JJJdev

0 exp(−β t) . (30.33)

In order to find out how the axes a(t) and c(t) “adjust” during the shape change
we insert Eqs. (30.29) and (30.22) into this result. Two algebraic equations for a(t)
and c(t) are obtained, which can be solved easily:

a(t) = 1√
3

√
3a2

0 +
(
c2

0−a2
0

)
[1− exp(−β t)], (30.34)

c(t) = 1√
3

√
c2

0 +2a2
0 +2

(
c2

0−a2
0

)
exp(−β t).

We conclude that for very long times t the semi axes a(t) and c(t) become equal
and that the average axis in all directions is given by:

a(∞) = c(∞) = 1√
3

√
c2

0 +2a2
0. (30.35)

Moreover, if we insert these results into Eq. (30.28) we can explicitly see how the
moment of inertia field turns exponentially into a spherical tensor:

JJJ(t) =
2
15
(
2a2

0 + c2
0
)

III+
1

15
(
c2

0−a2
0
)
(III−3nnn⊗nnn)exp(−β t). (30.36)

Obviously the factor β has the physical meaning of a rate parameter: The greater
it is, the faster the transition from order to disorder will be achieved. In view of our
mesoscopic interpretation we may say that β characterizes how fast the particles
within the RVE “rotate.” It is thus tempting to relate it to a temperature, but we leave
it with this remark.

At this point our mathematical analysis of the shape change to an isotropic config-
uration is complete. It is exactly what we expect to happen for physical reasons and it
supports in hindsight our choice of the minus sign in Eq. (30.27). However, we may
also argue that shape change is a transition from order to disorder due to fluctuations
on the mesoscopic scale. Obviously the state of order is initially much higher than
after the structural change. This calls for an examination of the irreversibility associ-
ated with the process. For this purpose it was shown in the Appendices that the minus
sign in front of β guarantees consistency with the second law. We can even calculate
the entropy production and the change in entropy associated with the process. To
this end we start from the local entropy balance shown in Eq. (30.74), observe that
the substantial time derivative degenerates for matter not moving translationally in
the homogeneous case to a partial time derivative, which can then be replaced by
a standard differentiation w.r.t. time, ignore the heat terms and rewrite the entropy
production by observing Eqs. (30.79) and (30.80) in context with the production of



30 Micropolar Theory with Production of Rotational Inertia 593

Fig. 30.3 Structural shape
change and corresponding
homogenization.

interest shown in (30.27):4

ρ
ds
dt

= σ =−ρ 1
T
∂ f
∂JJJ

: χχχJ = ρ
β3β
T

JJJdev : JJJdev. (30.37)

We now observe the solution shown in Eqs. (30.28) and (30.34) and find:

ds
dt

=
6β3β
152T

(
c2

0−a2
0
)2

exp(−2β t). (30.38)

This can be integrated between t = 0 and t = ∞ to yield the change in specific
entropy during the structural transition:

s(t = ∞)− s(t = 0) =
β3

75T

(
c2

0−a2
0
)2
. (30.39)

We expect entropy to increase and, indeed, this is the case if β3 is positive as
already discussed in the Appendices.

30.3.3 Structural Change II: Purely Axial Production

We consider a transversally isotropic material characterized by the axis nnn. On a
mesoscopic scale it consists of little spheroids of initial axes a0 in the plane of
symmetry and with an axis c0 in the direction of nnn. The situation is depicted in Fig.
30.3 on the top left. As in the example of Subsection 30.3.2 we suppose that the initial
alignment is due to some external force stemming from a production process, for
example, by an electric field EEE, as will be detailed below. However, this time we will
not assume that the particles are rigid. Rather they shall be able to deform most easily
up to a certain limit due to an externally imposed “load.” In other words they can be
stretched in nnn-direction and will finally turn into little rods of finite length (Fig. 30.3,
top right). As a motivation5 for such a material and process, one can again turn to

4 Because of the assumed homogeneity there is no difference in partial and regular derivatives, ∂ s/∂ t

vs. ds/dt.
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electrets for a possible realization. However, an electret powder is not suitable for this
purpose. It is simply too stiff. We could envision the powder particles to behave linear
elastically, but the deformation resulting from an external electric field would be very
small indeed. The situation is similar to the case of permanent magnets, where even
enormous external fields result in only very small deformations (cf., Reich et al, 2017).
What we need are “membrane-like electrets,” similar to the balloons depicted in Fig.
30.1. Most recently materials scientists invented a substance with properties coming
close to this, the so-called Ferroelectrets (Wikipedia, 2017). These are polymers, e.g.,
Fluorinated Ethylene Propylene (FEP) containing lens-shaped voids filled with gas
or a highly porous matter consisting of expanded PolyTetraFluorEthylen (ePTFE).

Gross and Xu (2015) calculated the electric field distributions in such structures.
In particular, they investigated the configuration of a single “unit” consisting of an
lens-shape body made of ePTFE surrounded by an FEP layer, which with a grain of
salt we may idealize as an electrically polarized spheroidal balloon. Note that their
simulations concentrate on calculating the electric field in this “unit” and that they do
not detail the associated deformation, although mechanical stresses and strains are
included in their theoretical framework.6 They claim that such units have also been
investigated experimentally. However, after looking at the corresponding references
it is fair to say that such experiments have not been performed with single units
of microscopic size. With some good will it can be said that porous bodies have
been manufactured consisting of such units (of different size) forming a permanently
electrically polarizable network.

All of this in mind we can now reinterpret Fig. 30.3 in two ways. First, a flexible
ferroelectrete material, pre-polarized in nnn-direction, is subjected to a constant electric
field EEE = Ennn, E > 0 at time t = 0. This will lead at times t > 0 to an elongation of
the spheroids within the FEP/ePTFE network. Of course, in reality, the spheroids will
not be able to elongate freely. Rather there will be some elastic response, constraints,
and interactions between them, which are not so easy to model in the production
term for JJJ. Here we will simply ignore such effects.

Therefore, second, imagine polarized, independent, ellipsoidal “balloon units” to
exist and that a constant electric field EEE is suddenly acting on them in nnn-direction. We
assume that all of these particles will instantaneously realign accordingly and then
start elongating under the influence of that electric field. In the figure it was assumed
that c0 > a0 but the inverse is also possible. We conclude that on the continuum
scale the (homogenized) initial moment of inertia field is given by Eq. (30.16). This
situation is illustrated on the bottom left inset of the figure. If we envision the electric
polarization charges to be contained within an inextensible membrane, we expect
the spheroidal electrets to be elongated in normal direction, c(t)> c0, and to shrink
within the plane of symmetry, 0≤ a(t)< a0. The limit case a = 0 corresponds to a
rod, so to speak. On a continuum scale the material stays transversally isotropic and

5 And nothing more but a motivation! Note that the intention of this paper is not to present a proper
mesomodel. Rather we wish to demonstrate the possibilities of the various terms for the moment of
inertia production according to the representation theorem.
6 Recall that what Gross and Xu (2015) call “displacement” in their paper is not the mechanical one
but the charge potential field in matter, DDD, a.k.a. dielectric displacement.
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its (homogenized) moment of inertia field is given by Eq. (30.28). This is illustrated
by the inset on the bottom right of the figure.

So far the process of axial elongation. The opposite process, axial shrinkage, is
also imaginable, at least in an idealized theoretical manner. To this end consider
Fig. 30.4. We start with a flexible ferroelectrete material which, similarly as in
Subsection 30.3.2, has been pre-polarized in nnn-direction as a consequence of a
suitable production process: See the left inset on the top of Fig. 30.4. At times
t > 0 it is then subjected to a constant electric field EEE =−Ennn, E > 0. This will lead
to a shrinkage of the spheroids within the FEP/ePTFE network (see the top right
inset). But again, the spheroids will not be able to shrink freely, and there will be
some elastic influence, constraints, and interactions, etc., which we will ignore when
modeling the production term for JJJ.

In this spirit we take refuge to our idea of polarizable, independent, ellipsoidal
“balloon units” which we assume to be pre-polarized in nnn-direction as indicated in
the figure. However, if an electric field is instantaneously switched on pointing in
−nnn-direction, EEE =−|EEE|nnn, the slightest fluctuation would cause the particles to flip,
because they are free to rotate. The situation is that of an unstable equilibrium, which
we do not want to “disturb,” because the intention is to study a shrinkage process
instead, due to the electrostatic forces associated with EEE. Hence, in reality some
embedding of the particles, as in the case of the FEP/ePTFE network, is required.
Moreover, initially rod-like particles will steadily become stouter and finally turn into
spheres. After that structural instability might set in, which would let them depart
from the spheroidal shape into some more complex form. In other words, the particles
assume first an oblong spheroidal shape, then turn into a spheres, and most likely will
never be able to assume the shape of a penny. We will take this into account when
modeling the temporal transition for the case of axial shrinkage on the continuum
scale.

In order to make a long story short: In this paper we will not conceive a more
complex mesomechanical model of the FEP/ePTFE network and what follows is
more of a mathematical exercise than a true physical model. In this idealistic spirit
we will assume that the spheroidal pores behave like a limb inextensible membrane,
and that the electric charges, which are so to speak situated at the top points of the
axis of symmetry, may glide freely until the shrinkage process toward a sphere, c = a,

Fig. 30.4 Structural shape
change during shrinkage.
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is complete, without an interaction between the charges, and without flipping in the
direction of the electric field. We also assume that during the shrinkage process the
simple spheroidal shape remains and we will therefore not extrapolate our results
beyond the formation of a sphere during shrinkage.

We now wish to quantify both processes, elongation as well as shrinkage. For
this purpose we put bbb =±EEE and choose only the term in EEE ⊗EEE in the production of
microinertia shown in Eq. (30.73). Moreover, the function a2 will initially simply be
replaced by a constant, α , such that we find:

χχχJ =∓α EEE ⊗EEE. (30.40)

The minus and plus signs refer to the case of elongation and to the case of
shrinkage, respectively. Correspondingly, the sign of α is, in general, positive, but α
can also become zero, as follows. In the case of elongation we write:

α > 0 if a > 0 and α = 0 if a = 0. (30.41)

This way we make mathematically sure that as long as a(t) is positive there will
be a production of moment of inertia and that the production stops abruptly as soon
as the ellipsoid has turned into a rod.

In the case of shrinkage we choose as initial condition c0 > a0 (in order to avoid
instability as discussed above) and:

α > 0 if c > a and α = 0 if c = a, (30.42)

because the moment of inertia shall change only as long as c(t)> a(t). It shall come
to a standstill the moment the spheroid turns into a sphere in order to avoid the
problem of instability that was mentioned above. Again this is a purely mathematical
trick and further below we will attempt to ameliorate the situation somewhat, at least
for the case of elongation.

Note that the production is not explicitly time-dependent. This makes sense,
because it is the result of the immediate change to a constant electric field −EEE that
stays put. It is also not implicitly time-dependent in terms of the current moment
of inertia, JJJ, as in Eqs. (30.26) or (30.27). Also, if we gave some more thought
to the modeling of the elongation on the mesoscale we would be able to relate
the parameter α to mesoscopic or external parameters, similarly as in the case of
Eq. (30.25). For example, it is likely that the magnitude of the electric field will
influence the production such that higher electric fields will speed up the structural
change. Moreover, in the case of the porous network made of FEP/ePTFE elastic
stiffness parameters will to appear, whereas in the case of the electric polarization
charges contained within an inextensible, limb membrane, α is a true constant,
because the charges “glide” freely within the membrane and continuously stretch
it to the maximum possible. In this context it should also be mentioned that we
ignore the effect of internal work required for separating the electric charges: They
do not interact and the external field simply moves each of them separately and
independently. This simple case will be considered in what follows, because our
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intention is to illustrate the various possibilities of the production, χχχJ , and not a
thorough micromechanical modeling of the spheroidal balloons or of the FEP/ePTFE
network. The latter only serves as a vehicle to put our theory in context with reality.

A final word of caution is in order: The elongation or deformation on the mesoscale
must not be confused with a deformation of the RVE on the continuum scale. In fact
the RVE does not deform at all, even though its substructure changes as described.
But on the continuum scale this change has a repercussion only on the JJJ-field, at
least within the framework of this paper, where continuum field variables like stress
and strain are of no concern.

Now if translational motion is ignored we obtain for elongation similarly to the
case of Eq. (30.30):

dJJJ(t)
dt

=−α EEE ⊗EEE. (30.43)

In view of Eq. (30.28) we obtain by taking the trace of this equation:

d
dt

[
2a2(t)+ c2(t)

]
=−5

2
αE2, (30.44)

and by double scalar multiplication with nnn from the left and from the right:

d
dt

a2(t) =−5
2
αE2, (30.45)

Hence the semi-axis of the plane of isotropy decreases with time:

a(t) = a0

√
1− t , t =

5αE2

2a2
0

t, (30.46)

and vanishes completely from t = 1 onward. Moreover, the semi-axis in the direction
of nnn increases toward a maximum value at time t = 1 according to:

c(t) = c0

√
1+

a2
0

c2
0

t. (30.47)

If we insert this in Eq. (30.28) we learn how the moment of inertia field develops
in time:

JJJ(t) =
1
5
(
a2

0 + c2
0
)

III− 1
5
[
c2

0− (1−2t)a2
0
]
nnn⊗nnn. (30.48)

Especially at the end of the elongation process, t = 1, we obtain:

JJJ(t = 1) =
1
5
(
a2

0 + c2
0
)
(III−nnn⊗nnn) . (30.49)

In comparison with Eq. (30.28) we see that the semi-axis characterizing the plane
of isotropy, a, completely disappeared and that the semi-axis in the direction of the

axis of anisotropy, c, became
√

a2
0 + c2

0: Equivalently, the ellipsoid has turned into a
rod of vanishing cross-section with a fixed moment of inertia tensor, the projection of
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which in nnn-direction, JJJ ·nnn, is zero, because a rod has no resistance to rotation about
its axis. To be precise, the length of this equivalent rod is given by l =

√
12
5 (a2

0 + c2
0).

Clearly, the production of moment of inertia vanishes when this state is reached. In
other words α must then be put equal to zero.

A final comment on the case of elongation is in order. Some readers may feel
uncomfortable with the case distinction for the constitutive relation for the production
shown in Eq. (30.40). An alternative is the following ansatz, which is consistent with
our representation principles:

χχχJ =−α̂ detJJJ EEE ⊗EEE , (30.50)

α̂ > 0 being constant. Obviously the determinant takes the volume change explicitly
into account and makes sure that there is no production any more as soon as the case
of the rod has been reached. Note that in contrast to Eq. (30.40) the production now
depends explicitly on time. Following the lines of reasoning explained before we
find with detJJJ = 2

125

[
a2(t)+ c2(t)

]2 a2(t):

a(t) = a0 exp
[
− α̂E2

50
(
a2

0 + c2
0
)2

t
]
, (30.51)

c(t) =

√
a2

0 + c2
0−a2

0 exp
[
− α̂E2

25
(
a2

0 + c2
0

)2 t
]
.

It should be noted that in this case the production vanishes at t→ ∞, unlike the
case represented by Eqs. (30.40) and (30.41), where it vanishes at a finite time, more
or less by mathematical requirement. We may want to interpret these results as a
relaxation process, which at times t→ ∞ yields exactly the results shown previously
in Eqs. (30.46) and (30.47) at the finite (dimensionless) time t = 1. It is therefore a
matter of taste which ansatz for the production one prefers.

In the case of shrinkage we find the following solution for the temporal devel-
opment of semi-axes simply by switching the signs in Eqs. (30.46) and (30.47):

a(t) = a0

√
1+ t , c(t) = c0

√
1− a2

0

c2
0

t , t =
5αE2

2a2
0

t. (30.52)

Both semi-axes become equal at time t iso = 1
2

(
c2

0/a2
0−1

)
. Then the final state

of a sphere is reached with an equivalent radius of 1√
2

√
a2

0 + c2
0, which will stay

fixed afterwards: The spheroid has turned into a sphere of constant dimensions
and isotropic conditions prevail. This can be confirmed by studying the temporal
development of the moment of inertia field until that time. We find by using the
solution (30.52) in combination with Eq. (30.28):

JJJ(t) =
1
5
(
a2

0 + c2
0
)

III− 1
5
[
c2

0− (1+2t)a2
0
]
nnn⊗nnn, (30.53)
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which, as it should, differs from the solution for elongation shown in Eq. (30.48)
only by one change of sign. Especially at time t iso, we obtain:

JJJ (t iso) =
1
5
(
a2

0 + c2
0
)

III, (30.54)

which corresponds to the equation for the specific moment of inertia tensor of a

sphere with radius 1√
2

√
a2

0 + c2
0.

30.4 Dynamics of Micropolar Media with Time-Varying

Micro-Inertia

30.4.1 General Remarks

Recall the general spin balance for micropolar media shown in Eq. (30.5). If there is
no coupling tensor BBB, it can be rewritten while observing the balance of microinertia
of Eq. (30.3)1:

ρJJJ · δωωω
δ t

+ωωω×JJJ ·ωωω =∇∇∇ ·μμμ+σσσ×+ρmmm. (30.55)

We want to study the evolution of angular velocity for some of the situations of
temporally changing microinertia tensor discussed in Section 30.3. In the context
of axial elongation and shrinkage based upon the action of an electric field it seems
reasonable to assume that the angular velocity vector points in the direction of the
normal, ωωω = ωnnn. Then for microinertia tensors of the form shown in Eq. (30.28) the
second term on the left hand side of Eq. (30.55) drops out completely. Moreover, we
will assume that the spheroidal particles behave like dust, i.e., the spin and the stress
tensors vanish, μμμ = 000 and σσσ = 000. This assumption is somewhat critical because the
particles within the RVE are electrically charged and, as we shall see now, must also
carry a magnetic moment in order to enable rotation. It is also critical because of
the embedding medium we had to assume in case of particles oriented in opposite
direction to nnn.

For the moment couple density we assume that it is constant and points in normal
direction, mmm = m0nnn. In order to provide a physical interpretation one may imagine
that it is created by a constant external magnetic field acting on elementary magnetic
dipoles: If the particles of the RVE on the mesolevel carry in addition to the electric
charges a magnetic moment oriented in nnn-direction this will lead to a rotational
motion about their nnn-axis, similar to a DC electric engine, provided that the original
electric field EEE is accompanied by an additional external (constant) magnetic field,
BBB.7 Intuitively speaking, we may imagine the magnetic moment of a spheroidal
particle to result from an elementary Ampère current loop (see, e.g, Bansal, 2006,
Section 3.2.8) circulating about its equator. Note that both, the elementary magnetic

7 which is not to be confused with the coupling tensor
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moments as well as the external magnetic field, are not shown in Figs. 30.3 and 30.4
in order not to overload the cartoons. This is all we say at this point and, in particular,
we will not attempt to find a real material with such microscopic properties.

Finally we assume that there is no translational motion and homogeneous condi-
tions prevail. Then Eq. (30.55) simplifies to a first order ODE:8

JJJ(t) ·nnndω(t)
dt

= m0nnn. (30.56)

30.4.2 Axial Elongation and Shrinkage

We will first examine Eq. (30.56) for the case of axially elongation, where the tensor
of inertia is given by Eq. (30.48). In this case we have to solve for 0≤ t < 1, t = 5αE2

2a2
0

t:

dω(t)
dt

=
1

1− t
, ω =

ω
ω0

, ω0 =
m0

αE2 (30.57)

with ω(0) = 0, which yields:

ω(t) = ln
1

1− t
. (30.58)

At time t = 1 we end up with a singularity, which makes sense, because then the
spheroid turns into a rod. Recall that a rod has no resistance against rotation about
its axis. Hence the slightest m0 will result in infinite angular velocity. Note that the
curvature of the temporal development is positive: It becomes easier and easier to
accelerate about the nnn-axis because the resisting moment of inertia becomes smaller
and small. Also note that this behavior is independent as to whether c0/a0 is less or
greater one.

If we turn to the case of the alternative constitutive equation for elongation detailed
in Eqs. (30.50) and (30.51) we have to write:

dω(t)
dt

= exp t , ω =
ω
ω0

, (30.59)

ω0 =
125m0

2α̂E2a2
0(a

2
0 + c2

0)
2 , t =

α̂E2

25
(a2

0 + c2
0)

2t.

Using the initial condition ω(0) = 0 yields:

ω(t) = exp t−1. (30.60)

8 The material derivative of Eq. (30.55) degenerates into a partial derivative because the observa-
tional point does not move and there is no translational velocity on the continuum scale. Moreover,
because of the assumed homogeneity there is no difference in partial and regular derivatives, ∂ω/∂ t

vs. dω/dt.
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This means the occurrence of an infinite angular velocity is postponed untill
infinity.

We will finally examine Eq. (30.56) for the case of axially shrinkage where the
tensor of inertia is given by Eq. (30.53). In this case we have to solve the ODE in two
steps. First we consider times 0≤ t ≤ t iso, t = 5αE2

2a2
0

t. Here we seek the solution to:

dω(t)
dt

=
1

1+ t
, ω =

ω
ω0

, ω0 =
m0

αE2 (30.61)

with ω(0) = 0, which yields:

ω(t) = ln(1+ t) , 0≤ t ≤ t iso. (30.62)

At time t = t iso the spheroid has turned into a sphere, and by brute mathematical
force we have made sure that the moment of inertia will then not change any more.
We solve:

dω(t)
dt

=
1

1+ t iso
(30.63)

with ω(t iso) = ln(1+ t iso), which yields:

ω(t) =
t− t iso

1+ t iso
+ ln(1+ t iso) , t iso ≤ t < ∞. (30.64)

In contrast to the previous case the angular velocity now develops initially with a
negative curvature. This makes sense because the spheroid turns into a sphere with a

greater radius than the initial axis in the plane of isotropy, 1√
2

√
a2

0 + c2
0 vs.

√
2
5 a0.

Thus the resistance against revolution about the nnn-axis grows. After the sphere has
formed the angular velocity continues to grow linearly as to be expected by a constant
driving moment with constant resistance of revolution.

30.5 Conclusions and Outlook

In this paper several tasks were accomplished:

• The features of an extended micropolar theory were presented, which allows
for coupling of translational and angular kinetic energies as well as changes of
microinertia.

• An attempt based on representation theory was made to present a general form for
the recently introduced production of inertia of a transversally isotropic material.

• Based on the representation for the production of microinertia various solutions
of its kinetic or balance equation were discussed: isotropic productions, deviatoric
production, and a production purely related to the axis of symmetry.

• Closed form solutions for the moment of inertia tensor and for the spin as functions
of time were obtained.
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For an outlook into future work recall first the so-called Einstein-de Haas effect:
Consider a suspended cylinder made of magnetizable material. The cylinder is
initially motionless. Now a magnetic field is applied in axial direction whereupon
the cylinder starts turning. This effect is interpreted as follows: Initially the angular
momentum was zero. Aligning the electron spins means that they create an effective
angular momentum, which must be counterbalanced macroscopically leading to an
observable rotation of the material. One may also say that the spins of the electrons
are initially isotropically oriented. After the magnetic field has been applied the
electrons form a transversally isotropic medium. In other words, there is a structural
change from isotropic to transversally isotropic.

In fact, our example of axially elongated spheroids shows similar features. Let us
assume that the axes a0 and c0 are initially equal. This means that in the left upper
inset of Fig. 30.3 we would have to draw polarized spheres, which are then extended
to rods. According to Eq. (30.48) we have to write:

JJJ(t) =
2
5

a2
0 (III−nnn⊗nnn)+

2
5

a2
0(1− t)nnn⊗nnn. (30.65)

Note that this tensor is clearly isotropic at t = 0 and its transversal isotropy evolves
with increasing values of time, t. It reaches the highest level of transversal isotropy
at t = 1, namely:

JJJ(t = 1) =
2
5

a2
0 (III−nnn⊗nnn) , (30.66)

where the resistance against rotation about the nnn-axis becomes zero. In future work
we shall explore if and how such thoughts could lead to a phenomenological modeling
of the Einstein-de Haas effect. Here it will become necessary to include the coupling
tensor, BBB, because changes of the angular velocity field must generate a translational
(circumferential) velocity.

A second potential field of application of the presented theory are liquid crystals
and, in particular, the transition from an orderly anisotropic structure to an isotropic
one of the Navier-Stokes type, if temperature is increased. The structural tensor
parameters introduced in the work of de Gennes (e.g., de Gennes, 1971; de Gennes
and Prost, 1995) bear a certain similarity to those used in context with the examples
presented in Subsections 30.3.2 and 30.3.3. It can be expected that the continuum
point of view is able to shed a different light on that problem, too.

Acknowledgements E.N.V. wishes to gratefully acknowledge support of her work by a grant from
the Russian Foundation for Basic Research (17-51-12055).

Appendices

Below general representations for the production term and for the free energy density
will be derived and discussed.
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Representation of the Production of Moment of Inertia

In the case of a transversally isotropic material we assume that the production of
the moment of inertia, χχχJ is a symmetric isotropic tensor function of second rank
depending on a symmetric second order tensor, BBB9, and a vector vector bbb. Note that
in the examples of structural change presented in this paper the vector bbb will either
be the direction of the spheroidal axis, nnn, or the applied (constant) electric field, ±EEE,
and the tensor BBB is replaced by the tensor of the moment of inertia, JJJ. We write:

χχχJ = χχχJ(BBB,bbb). (30.67)

Without loss of generality we turn this isotropic tensor function into an isotropic
scalar function φ = φ(AAA,BBB,bbb) by outer scalar multiplication with a symmetric tensor
second rank, AAA, as follows:

φ(AAA,BBB,bbb) =AAA : χχχJ(BBB,bbb). (30.68)

The symbol “:” refers to the outer double scalar product (see Holzapfel, 2000, pg.
14):

CCC : DDD =Ci jDi j, (30.69)

CCC and DDD being arbitrary tensors of second rank.
We now turn to the tables of Smith (1965), where we examine the case of a scalar

depending on two symmetric tensors of second rank, AAA and BBB, and one vector, bbb. We
restrict ourselves to linear dependencies in the “dummy tensor,” AAA. Then the most
general polynomial form for the isotropic scalar φ(AAA,BBB,bbb) is given by the following
expression based on six terms:

φ(AAA,BBB,bbb) =AAA :
(

a1III+a2bbb⊗bbb+a3BBB+a4BBB2+ (30.70)

a5(bbb
⊗BBB ·bbb+BBB ·bbb⊗bbb)+a6(bbb

⊗BBB2 ·bbb+BBB2 ·bbb⊗bbb)
)
,

where the necessity for symmetry of the tensorial expression in parentheses, namely
for χχχJ , has explicitly been taken into account. The coefficients ai, i = 1, · · ·,6 are
arbitrary scalar functions of the following six invariants:

ai = ai

(
Tr(BBB),Tr(BBB2),Tr(BBB3),bbb ·bbb,bbb ·BBB ·bbb,bbb ·BBB2 ·bbb

)
. (30.71)

Note that the dependence on the invariant, bbb ·bbb, can be omitted, if bbb is a unit vector.
Also note that if physical interpretation is sought, then it is advisable to replace Tr(BBB3)
by detBBB, which is characteristic of volume changes, since detBBB= 1

6

(
I3
1 −3I1I2 +2I3

)
with I1 = Tr(BBB), I2 = Tr(BBB2), I3 = Tr(BBB3).

This result is in agreement with investigations on tensorial representations per-
formed in Müller (1985), pg. 88, or Naumenko and Altenbach (2007), Section C2,

9 not to be confused with the coupling tensor
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where the former reference uses more or less intuitive arguments. The latter one is
obviously inspired by the work of Zhilin, specifically Zhilin (2003, 2005). In there we
find a very helpful formula for predicting the to-be-expected number of independent
invariants, N∗, namely:

N∗ = N−3 , N > 3, (30.72)

where N is the “coordinate number” or (better) number of independent components
of the participating objects, in our case N = 6+3 = 9, hence N∗ = 6 as it was claimed
above.

Finally we conclude that the most general structure of the production of moment
of inertia for transversally isotropic media is given by:

χχχJ(BBB,bbb) = a1III+a2bbb⊗bbb+a3BBB+a4BBB2+ (30.73)

a5(bbb
⊗BBB ·bbb+BBB ·bbb⊗bbb)+a6(bbb

⊗BBB2 ·bbb+BBB2 ·bbb⊗bbb),

where bbb will either be the unit normal nnn or the electric field EEE, and BBB will be replaced
by the moment of inertia tensor, JJJ.

Restrictions on the Production of Moment of Inertia by the Second
Law

We start from the standard entropy balance and from the second law of thermody-
namics:

ρ
δ s
δ t

=−∇∇∇ · qqq
T
+
ρr
T

+σ , σ ≥ 0. (30.74)

In other words, we assume that the entropy flux and the entropy supply are given
by qqq/T and ρr/T , respectively, where qqq is the heat flux and r the volumetric heat
supply known from the balance of internal energy of micropolar media shown in Eq.
(30.6). Finally σ refers to the entropy production density. If both heat terms in these
equations are eliminated we arrive at the Clausius-Duhem inequality for micropolar
media:

ρ
δ f
δ t

+ρs
δT
δ t
−σσσ : (∇∇∇vvv+III×ωωω)−μμμ : ∇∇∇ωωω+

1
T

qqq ·∇∇∇T =−Tσ ≤ 0. (30.75)

For a more general examination according to Coleman-Noll we would now assume
that the specific free energy, f = u−T s, is a scalar function of:

f = f (ρ,T,∇∇∇vvv+III×ωωω,∇∇∇ωωω,∇∇∇T,JJJ,nnn). (30.76)

However, in this paper we are interested in restrictions of the form of the produc-
tion of the microinertia, χχχJ , in the absence of mechanical and thermal influences.
Hence we concentrate on the dependencies on JJJ and nnn alone and focus on the
following reduced Clausius-Duhem inequality:
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ρ
δ f (JJJ,nnn)

δ t
=−Tσ ≤ 0 ⇒ (30.77)

ρ
(∂ f
∂JJJ

:
δJJJ
δ t

+
∂ f
∂nnn
· δnnn
δ t

)
= ρ

∂ f
∂JJJ

: χχχJ =−Tσ ≤ 0,

if we restrict ourselves to situations where Eq. (30.24) holds, i.e., δJJJ/δ t = χχχJ , this is
to say, where the rigid body rotation, ωωω×JJJ−JJJ×ωωω , vanishes and if δnnn/δ t = 000. Both
is the case for the microinertia field of interest in this paper, i.e., for a transversally
isotropic one of the form shown in Eq. (30.28). Now we consider a representation
for f analogous to (30.71):

f (JJJ,nnn) = f
(

Tr(JJJ),Tr(JJJ2),Tr(JJJ3),nnn ·JJJ ·nnn,nnn ·JJJ2 ·nnn
)
. (30.78)

The partial differentiation in (30.77) can then be executed by using the chain rule.
If we restrict ourselves to a linear irreversible theory in JJJ then the following terms
remain:

ρ
(
β1III+(β2 +

1
3β3)TrJJJ III+β3JJJdev +β4nnn⊗nnn

)
: χχχJ =−Tσ ≤ 0, (30.79)

where βi, i = 1, · · ·, 4 are true constants, namely:

β1 =
∂ f
∂ TrJJJ

∣∣∣
JJJ=000

, β2 =
∂ 2 f

∂ TrJJJ∂ TrJJJ

∣∣∣
JJJ=000

, (30.80)

β3 = 2
∂ f

∂ TrJJJ2

∣∣∣
JJJ=000

, β4 =
∂ f

∂nnn ·JJJ ·nnn
∣∣∣
JJJ=000

.

Let us investigate as to whether the choice of a purely deviatoric production
according to Eq. (30.27) might lead to a conflict with the second law. By inserting
the expression into Eq. (30.79) when specialized to deviators we obtain:

ρβ3JJJdev : χχχJ =−ρβ3βJJJdev : JJJdev =−Tσ ≤ 0. (30.81)

Since β is positive this leads to a constraint for the free energy:

β3 = 2
∂ f

∂ TrJJJ2

∣∣∣
JJJ=000
≥ 0. (30.82)
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Chapter 31

Contact Temperature as an Internal Variable of

Discrete Systems in Non-Equilibrium

Wolfgang Muschik

Abstract State space and entropy rate of a discrete non-equilibrium system are
shortly considered including internal variables and the contact temperature. The
concept of internal variables in the context of non-equilibrium thermodynamics of a
closed discrete system is discussed. The difference between internal variables and
degrees of freedom are repeated, and different types of their evolution equations are
mentioned in connection with Gérard A. Maugin’s numerous papers on applications
of internal variables. The non-equilibrium contact temperature is recognized as an
internal variable and its evolution equation is presented.

31.1 Introduction

Temperature is a quantity which can be measured easily, but whose theoretical
foundation is complicated. There is a huge variety of different thermometers (Kestin,
1966; Lieneweg, 1976) all measuring "temperature", but the concept of temperature
is first of all only properly defined in equilibrium. For elucidating this fact, we
consider the simple example of a thermometer whose surface1 has different heat
conductivities. Contacted with a non-equilibrium system, the measured "temperature"
depends at the same position on the orientation of such a "thermometer". It is clear,
that this orientation sensitivity of the thermometer vanishes in equilibrium (if one
knows what equilibrium is). A second example is a thermometer which measures
the intensity of radiation which is composed of different parts of the spectrum. The
measured "temperature" depends on the sensitivity distribution of the thermometer

Wolfgang Muschik
Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, D-10623 Berlin,
Germany
e-mail: muschik@physik.tu-berlin.de

1 The thermometer is here a discrete system which has a volume and a surface, as small as ever.
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over the spectrum with the result, that different thermometers measure different
"temperatures" at the same object.

For escaping these "thermometer induced" difficulties, a theoretical definition of
temperature is considered as a remedy . We define (Kestin, 1966)

discrete systems:
1
T

:=
∂S
∂U

,

field formulation:
1
T

:=
∂ s
∂u

.

(31.1)

But also these definitions have their drawbacks: First of all, a state space is needed,
because the partial derivatives have no sense without it. Then entropy S or entropy
density s and internal energy U or internal energy density u are needed in equilibrium
or out of it. And finally, the open question is, if there exists a thermometer which
measures the temperature T .

To avoid all these uncertainties, a simple idea is the following: why not define
a general concept of temperature which is valid independently of equilibrium or
non-equilibrium and which is introduced into the theoretical framework by defining
the RHSs of (31.1)

1
Θ

=:
∂S
∂U

,

1
Θ

=:
∂ s
∂u

?
(31.2)

If additionally Θ is connected with a measuring instruction which "defines" the tem-
perature Θ experimentally, temperature comes from the outside into the theoretical
framework and not vice versa. How to realize this idea in connection with internal
variables is the objective of this paper.

31.2 Contact Temperature

31.2.1 Definition

We consider a closed discrete non-equilibrium system2 which is contacted with an
equilibrium environment of thermostatic temperature T ∗. The heat exchange per

time between the considered system and its environment is
•
Q. We now introduce a

temperature Θ which satisfies the inequality

•
Q
( 1
Θ
− 1

T ∗
)
≥ 0. (31.3)

2 For the sake of a minimum of formalism, we consider here closed systems. This choice does not
influence the definition of the contact temperature below, that means, closing an open system does
not change its contact temperature. More details in Muschik (2009).
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According to this inequality, we obtain3

•
Q > 0 =⇒ T ∗ >Θ ,
•
Q < 0 =⇒ T ∗ <Θ ,

T ∗ =Θ ⇐⇒
•
Q= 0.

(31.4)

Consequently, we have the following definition.

Definition 31.1. The system’s contact temperature is that thermostatic temperature
of the system’s equilibrium environment for which the net heat exchange between
the system and this environment through an inert4 partition vanishes by change of
sign5.

The contact temperature is defined for discrete systems in non-equilibrium embracing
the case of equilibrium (Muschik, 1977; Muschik and Brunk, 1977; Muschik and
Berezovski, 2004). In both cases, the net heat exchange vanishes, if the thermostatic
temperature of the controlling environment T ∗ is equal to the contact temperature
Θ in non-equilibrium according to (31.4)3, or if T ∗ is equal to the thermostatic
temperature T of the system in equilibrium. If the system is in non-equilibrium at the
contact temperature Θ = T ∗, the sum of the non-vanishing partial heat exchanges
between system and heat reservoir of T ∗ vanishes. If the system is in equilibrium, all
these partial heat exchanges vanish.

The contact temperature is not defined by (31.2), but it is a basic quantity similar
as the energy. Entropy and internal energy in connection with a suitable state space
have to be defined so that (31.2) is satisfied. This item is treated in Sect. 31.3.

31.2.2 Contact Temperature and Internal Energy

The contact temperature Θ is independent of the internal energy U of the system6.
The proof of this statement runs as follows: we consider the energy balance equation
of a closed discrete system with a rigid power impervious partition

•
U =

•
Q +

•
W ,

•
W = 0, the power. (31.5)

The process taking place in the non-equilibrium system generates a time dependent

contact temperature Θ(t) and a time dependent heat exchange
•
Q (t) which also

depends on the temperature T ∗(t) of the equilibrium environment which controls the
system.

3 A more detailed proof is represented in first subsection of Appendices.
4 inert means: the partition does not absorb or emit energy and/or material
5 Do not take the vanishing net heat exchange for an adiabatic condition: there are positive and
negative heat exchanges through partial surfaces between system and environment.
6 see Muschik (1990a, 4.1.2)
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We now choose the environment’s temperature for all times equal to the contact
temperature of the system, and we obtain

T ∗(t) .
= Θ(t) =⇒

•
Q(t) = 0 =⇒ •

U (t) = 0. (31.6)

The last implication is due to (31.5). Because Θ is time dependent and U is constant,
both quantities are independent of each other.

31.3 State Space and Entropy Rate

We consider the state space of a closed discrete non-equilibrium system which
contains the contact temperature as an independent variable according to Sect. 31.2.2

Z := (U,aaa,Θ ,ξξξ ). (31.7)

Here, aaa are the work variables
•

W = AAA· •aaa (31.8)

and ξξξ the internal variables –"measurable but not controllable"7– which are discussed
in Sect. 31.5.

A process Z(t) is represented by a trajectory T on the non-equilibrium space
(31.7). According to this state space, the time rate of the non-equilibrium entropy
becomes along T by inserting the first law (31.5)

•
S :=

1
Θ

( •
U −AAA· •aaa

)
+α

•
Θ +βββ ·

•
ξξξ =

1
Θ

•
Q +α

•
Θ +βββ ·

•
ξξξ . (31.9)

By definition, the entropy rate of an isolated system is the entropy production Σ
which is non-negative according to the second law

•
U ≡ 0,

•
aaa ≡ 0 −→

•
S isol =: Σ = α

•
Θ +βββ ·

•
ξξξ ≥ 0. (31.10)

Because the contact temperature is independent of the other internal variables, we
can decompose (31.10)4

α
•
Θ ≥ 0, βββ ·

•
ξξξ ≥ 0, (31.11)

and using (31.9) and (31.3), we obtain the inequalities

•
S ≥

•
Q
Θ
≥

•
Q
T ∗

. (31.12)

7 see Maugin (1999a, 4.1); Maugin (2013a, 5.6)
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If we presuppose that a state function S(U,aaa,Θ ,ξξξ ) exists8, the integration along
a cyclic trajectory on (31.7) results in the extended Clausius inequality of closed
systems

0 ≥
∮ •

Q
Θ

dt ≥
∮ •

Q
T ∗

dt, (31.13)

and (31.2)1 becomes an integrability condition

1
Θ

=
( ∂S
∂U

)
aaa,Θ ,ξξξ

−→ S(U,aaa,Θ ,ξξξ ) =
1
Θ

U +K(aaa,Θ ,ξξξ ), (31.14)

and −ΘK(aaa,Θ ,ξξξ ) is the free energy9. Because of the two last terms in (31.9), the
contact temperature takes the placing of an internal variable which are discussed in
Sect. 31.5.

31.4 Equilibrium and Reversible "Processes"

Equilibrium in thermally homogeneous systems satisfies the following equilibrium
conditions:

no time dependence:
•
� eq .

= 0, (31.15)
thermostatic temperature: Θ eq .

= T (U,aaa) = T ∗. (31.16)

Consequently, we obtain

•
U eq = 0,

•
aaa eq = 000,

•
Q eq = 0,

•
Θ eq = 0,

•
ξξξ eq = 000−→ Σ eq = 0 (31.17)

according to (31.10). We now have to distinguish two kinds of equilibria concerning
the affinities βββ

βββ
(

U,aaa,T (U,aaa),ξ eqξ eqξ eq
)

= 000 and βββ
(

U,aaa,T (U,aaa),ξξξ f

)
�= 000. (31.18)

Consequently, we obtain

unconstrained equilibrium:
•
ξξξ eq = 000 ∧ βββ = 000, (31.19)

constrained equilibrium:
•
ξξξ f = 000 ∧ βββ �= 000. (31.20)

Unconstrained equilibrium means that the internal variables are fixed at their equilib-
rium values

ξ eqξ eqξ eq = ξξξ (U,aaa) �= ξξξ f (31.21)

8 That is the case in large state spaces, if the system is adiabatically unique (Muschik, 2009).
9 more details in Muschik (2009, 2014)
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according to the solution of (31.18)1. Constraint equilibrium means that the internal
variables ξξξ f are according to (31.20)1 "frozen in" at a value which is different
from its unconstrained equilibrium value and which is not determined by (U,aaa).
"Mixed equilibria" are possible in which one part ζζζ of the internal variables is
in unconstrained equilibrium, whereas the other part χχχ of them is in constraint
equilibrium:

ξξξ = (ζζζ ,χχχ) −→ ξξξ eq
=
(
ζζζ eq

(U,aaa),χχχeq = χχχ f

)
. (31.22)

The individual parts ζζζ and χχχ of a mixed equilibrium may depend on the time for
which the system is isolated making the relaxation to equilibrium possible.

The dimension of the state space (31.7) shrinks at equilibrium according to (31.16)
and (31.22)1

Zeq :=
(

U,aaa,Θ eq(U,aaa),ζζζ eq
(U,aaa),χ fχ fχ f

)
−→ Z eq = (U,aaa,χχχ f ). (31.23)

Such as the entropy rate of a non-equilibrium process T is defined on (31.7), we
define the reversible entropy "rate" along a reversible "process" R on the equilibrium
sub-space (31.23)2 Z eq(t)

•
S rev :=

1
T

( •
U −AAArev· •aaa

)
+
∂Srev

∂χχχ f
· •χχχ f ,

•
U −AAArev· •aaa =:

•
Q rev.

(31.24)

The process parameter "t" along R is not the real time because real processes are not
possible in the equilibrium sub-space. The time parameter is formally generated by a
projection of T onto R

PT (t) = P(U,aaa,Θ ,ξξξ )(t) = (U,aaa,χχχ f )(t) = R(t), (31.25)

where the reversible accompanying "process" (U,aaa,χχχ f )(t) takes place10 which
belongs to the original one (U,aaa,Θ ,ξξξ )(t) by projection (Muschik, 1993).

To connect (31.9) with (31.24)1, we apply the embedding axiom (Muschik, 1990a)

SB(eq)−SA(eq) = T

B∫
A

•
S (t)dt .

= R

B∫
A

•
S rev(t)dt (31.26)

which by use of (31.9)2 and (31.24) results in

(T /R)

B∫
A

( •Q
Θ
−
•
Q rev

T
+α

•
Θ +βββ ·

•
ξξξ −∂Srev

∂χχχ f
· •χχχ f

)
dt = 0. (31.27)

10 t is the "slaved time" according to (31.25)
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We obtain according to (31.3) and (31.24)2, and that T (U,aaa) = T ∗ is valid along R

•
Q
Θ
−
•
Q rev

T
≥

•
Q
T ∗
−
•
Q rev

T
=

1
T ∗
( •

Q−
•
Q rev

)
=

1
T ∗
(

AAArev−AAA
)
· •aaa . (31.28)

Taking (31.10)3 and (31.28) into account, we obtain from (31.27)

T /R

B∫
A

[ 1
T ∗
(

AAArev−AAA
)
· •aaa−∂Srev

∂χχχ f
· •χχχ f

]
dt ≤ 0. (31.29)

If the system under consideration has only unconstrained equilibria, (31.29) yields

R

B∫
A

AAArev· •aaa dt ≤ T

B∫
A

AAA· •aaa dt, (31.30)

and we obtain for the volume work the well known inequality

AAA· •aaa ≡ −p
•

V −→ R

B∫
A

prevdV ≥ T

B∫
A

p
•

V dt. (31.31)

The non-equilibrium entropy (31.9) has to be complemented by evolution laws
for the internal variables Θ and ξξξ in the next section.

31.5 Brief Overview of Internal Variables

Historically, the concept of internal variables can be traced back to Bridgeman
(1943); Meixner (1943) and many others. The introduction of internal variables
makes possible to use large state spaces, that means, material properties can be
described by mappings defined on the state space variables (including the internal
ones), thus avoiding the use of their histories which appear in small state spaces
(Muschik, 1990b). Those are generated, if the internal variables are eliminated.
Consequently, internal variables allow to use the methods of Irreversible and/or
Extended Thermodynamics (Maugin, 1999a).

Internal variables cannot be chosen arbitrarily: there are concepts which restrict
their introduction (Muschik, 1990b). The most essential ones are:

1. Internal variables need a model or an interpretation,
2. Beyond the constitutive and balance equations, internal variables require rate

equations which can be adapted to different situations, making the use of internal
variables flexible and versatile,

3. The time rates of the internal variables do not occur in the work differential of
the First Law,



614 Wolfgang Muschik

4. An isolation of the discrete system does not influence the internal variables,
5. In equilibrium, the internal variables become dependent on the variables of the

equilibrium sub-space, if the equilibrium is unconstrained.

Satisfying these concepts, the internal variables involve an ambiguous relationship
with the microstructure and internal degrees of freedom (Maugin and Muschik,
1994a,b). But internal variables and internal degrees of freedom represent different
concepts for extending the state space: both are included in the state space, both need
evolution laws, but whereas internal variables do not occur in the work differential
of the First Law according to 3., degrees of freedom appear in the time rate of
the internal energy. Consequently, the question "internal variables or degrees of
freedom?"11 can be answered clearly.

As the last term of (31.9) shows, internal variables must be complemented by an
evolution law12 which may have the shape

•
ξξξ = fff (U,aaa,ξξξ )+ggg(U,aaa,ξξξ )

•
U + hhh(U,aaa,ξξξ )· •aaa . (31.32)

Special one-dimensional cases are (Muschik, 1990a)

relaxation type:
•
ξ (t) = − 1

τ(U,aaa,Θ)

(
ξ (t)−ξ eq

)
, (31.33)

reaction type:
•
ξ (t) = γ(U,aaa,Θ)

[
1− exp

(
−μ(t)β (U,aaa,Θ)

)]
. (31.34)

If for a special degree of freedom an evolution criterion exists (Muschik and
Papenfuß, 1993)

d
dt

∫
G(t)

L (...)dV ≥ 0, (31.35)

we obtain a variational problem at equilibrium( ∫
G(t)

L (...)dV
)eq −→ max, (31.36)

and the Euler-Lagrange equations of L result in the Landau-Ginzburg equations for
the considered degree of freedom at equilibrium13.

11 This question was discussed during Gérard’s stay at the Wissenschaftskolleg zu Berlin, 1991/92,
(Maugin, 1999a, sect.4.7 B), (Maugin and Muschik, 1994a,b).
12 Maugin (1999a), 3.5, 4.7.B, Maugin and Muschik (1994a)
13 An example for a degree of freedom is the second order alignment tensor of liquid crystal theory
(Muschik and Papenfuß, 1993).
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31.6 Contact Temperature as an Internal Variable

When at the University of Calgary (Canada) on the first week of August, 1979,
Gérard delivered a lecture on "Electromagnetic internal variables in ferroelectric
and ferromagnetic continua", he started a series of papers on internal variables
(Maugin, 1993, 1981a,b, 1990; Maugin and Drouot, 1983; Maugin and Morro, 1989;
Maugin, 1999b) which comes to its end in 2013 (Maugin, 2013b). The concept
of contact temperature is mentioned in Sect. 4.3 of Maugin (1999a), but without
any connection to internal variables. In the sequel, Gérard replaced the contact
temperature in the Clausius-Duhem inequality by the thermostatic temperature, thus
blurring the differences between these two concepts of temperature. Beyond that,
nobody was aware at that time, that despite its appearance in the entropy rate (31.9)
the contact temperature may be an internal variable . This knowledge came into
consideration in the course of 2012/14 (Muschik, 2014).

Starting out with the defining inequality of the contact temperature (31.3), we
obtain the following constitutive equation

•
Q = κ(T ∗ −Θ), κ = K [T ∗ −Θ ], κ > 0. (31.37)

The heat exchange number κ is positive and depends on the temperature difference
between the non-equilibrium system of contact temperatureΘ and the equilibrium
environment of thermostatic temperature T ∗.

We now explain in four steps why the contact temperature is an internal variable
(Muschik, 2014):

111: We consider the pure thermal contact between the non-equilibrium system and its
equilibrium environment –marked by ∗– through an inert partition. The First Law
of the equilibrium environment –the heat reservoir– is

•
U ∗ =

•
Q ∗ = −

•
Q,

•
aaa ∗ ≡ 000. (31.38)

The caloric equation of the heat reservoir is

T (U∗,aaa∗) = T ∗ −→ ∂T
∂U∗

(−
•
Q) =

•
T ∗ −→

•
Q = −

•
T ∗

∂T/∂U∗
. (31.39)

Consequently, the heat exchange can be measured by calorimetry using the heat
reservoir.

222: If according to (31.4)3, the net heat exchange between the non-equilibrium system
and the heat reservoir vanishes, the non-equilibrium systems has by definition the
contact temperature Θ . Consequently, the contact temperature is measurable, but
not controllable by the heat reservoir.

333: Because T ∗,
•
Q and Θ are measurable quantities, so also is the function K is

according to (31.37)1 known by measurement.
444: We obtain from (31.37) the time rate of the heat exchange
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∂t

•
Q =

(
K ′[T ∗ −Θ ](T ∗ −Θ)+κ

)
(
•
T ∗−

•
Θ) (31.40)

resulting in an evolution equation for the contact temperature

•
Θ =

•
T ∗ − κ∂t

•
Q

K ′
•
Q +κ2

. (31.41)

Thus, because of #222 and (31.41), the contact temperatureΘ is an internal variable.

For the sake of simplicity, the special case of a closed discrete system is here
considered. The general case of open discrete systems and of field formulation is
treated in Muschik (2014), a paper which was dedicated to Gérard on the occasion of
his 70th birthday in 201414.

Appendices

Heat Exchange and Contact Temperature

The heat exchange
•
Q between the considered non-equilibrium system and the equi-

librium environment of the thermostatic temperature T ∗ represent a two-place one-
to-one mathematical correlation R satisfying the two statements

(T ∗,
•
Q) ∈R ∧ (T ∗,

•
Q0) ∈R =⇒

•
Q =

•
Q0, (31.42)

(T ∗,
•
Q) ∈R ∧ (T ∗0 ,

•
Q) ∈R =⇒ T ∗ = T ∗0 . (31.43)

In a more physical language this means: To each temperature of the environment
belongs a unique heat exchange between system and environment and vice versa.

We now introduce a temperature Θ with the property

(T ∗,
•
Q) ∈R ∧

•
Q ≥ 0 =⇒ Θ ≤ T ∗, (31.44)

(T ∗,
•
Q) ∈R ∧ Θ ≥ T ∗ =⇒

•
Q ≤ 0. (31.45)

Especially for T ∗ =Θ follows

(Θ ,
•
Q) ∈R ∧

•
Q ≥ 0 =⇒ Θ =Θ , (31.46)

(Θ ,
•
Q) ∈R ∧ Θ =Θ =⇒

•
Q ≤ 0, (31.47)

resulting in

14 Other papers dedicated to him are Muschik and v. Borzeszkowski (2014) and Muschik (2004).
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(Θ ,0) ∈R (31.48)

which means: the heat exchange
•
Q vanishes, if the environment has the contact

temperatureΘ and vice versa because of the one-to-one correlation R. Although the
contact temperature is by definition a thermostatic one of the equilibrium environ-
ment, we attach it to the non-equilibrium system as a non-equilibrium temperature
which satisfy the defining inequality (31.3). Of course, the value of the contact tem-
perature depends on the properties of the partition generating the contact between
non-equilibrium system and heat reservoir. The terminology "contact temperature"
stems from this contact depending which disappears in equilibrium.

We now consider two non-equilibrium systems –1 and 2– into contact with each
other. The corresponding contact temperatures areΘ1 andΘ2, and the correlations
are

(T ∗1 ,
•
Q1) ∈R1, (T ∗2 ,

•
Q2) ∈R2. (31.49)

The defining inequalities (31.3) of the contact temperatures are

•
Q1

( 1
Θ1
− 1

T ∗1

)
≥ 0,

•
Q2

( 1
Θ2
− 1

T ∗2

)
≥ 0. (31.50)

The heat exchange
•
Q12 between these two non-equilibrium systems takes place

through an inert partition15 resulting in

•
Q1 ≡

•
Q12

.
= −

•
Q21 ≡ −

•
Q2 . (31.51)

Because the correlations are one-to-one, we obtain from (31.49) and (31.50)

(T ∗12,
•
Q12) ∈R1, (T ∗21,

•
Q21) ∈R2, (31.52)

•
Q12

( 1
Θ1
− 1

T ∗12

)
≥ 0, −

•
Q12

( 1
Θ2
− 1

T ∗21

)
≥ 0. (31.53)

Addition of (31.53)1 and (31.53)2 results in

•
Q12

( 1
Θ1
− 1
Θ2

)
≥
•
Q12

( 1
T ∗12
− 1

T ∗21

)
. (31.54)

Consequently, the reservoir temperature T ∗1 in the defining inequality (31.50)1 cannot
be replaced by the contact temperature of system #2, because the RHS of (31.54) does
not vanish. The endoreversible case is defined by replacing the contact temperatures
by thermostatic ones. That means, reservoirs are contacting to each other in the
endoreversible case:

Θ1
.
= T1, Θ2

.
= T2, (31.55)

T ∗12
.
= T2, T ∗21

.
= T1. (31.56)

15 which is impervious to work and material
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Consequently, we obtain from (31.54) to (31.56)

•
Q12

( 1
T1
− 1

T2

)
≥
•
Q12

( 1
T2
− 1

T1

)
−→

•
Q12

( 1
T1
− 1

T2

)
≥ 0, (31.57)

an inequality which is well known in thermostatics. These considerations show that
the contact temperature is a useful tool in non-equilibrium thermodynamics.

Contact Temperature and Efficiency

We consider a cyclic, power-producing process of a closed discrete non-equilibrium
system which works between two heat reservoirs of constant thermostatic temper-
atures T ∗H > T ∗L (Muschik, 2009). The contact temperatures of the two contacts
between the system and the corresponding reservoirs areΘH(t) andΘL(t), the heat
exchanges through the inertial contacts are

•
Q ∗H(t)< 0

and •
Q ∗L(t)> 0,

relative to the heat reservoirs. According to the defining inequality (31.3), we obtain
for the two heat reservoirs ( 1

T ∗H
− 1
ΘH

) •
Q ∗H ≥ 0,( 1

T ∗L
− 1
ΘL

) •
Q ∗L ≥ 0,

(31.58)

resulting in
T ∗H ≥ ΘH , ΘL ≥ T ∗L . (31.59)

Integration over the cycle time yields

∮ •
Q ∗H
ΘH

dt ≤ 1
T ∗H

∮ •
Q ∗Hdt =:

1
T ∗H

Q∗H , (31.60)

∮ •
Q ∗L
ΘL

dt ≤ 1
T ∗L

∮ •
Q ∗Ldt =:

1
T ∗L

Q∗L. (31.61)

The mean value theorem applied to (31.60)1 and (31.61)1 results in
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∮ •
Q ∗H
ΘH

dt =
Q∗H
[ΘH ]

≤ 1
T ∗H

Q∗H −→ T ∗H ≥ [ΘH ], (31.62)

∮ •
Q ∗L
ΘL

dt =
Q∗L
[ΘL]

≤ 1
T ∗L

Q∗L −→ T ∗L ≤ [ΘL], (31.63)

Here, the square brackets denote mean values over the cyclic process which are
defined by (31.62)1 and (31.63)1. We obtain the following estimation of the Carnot
efficiency according to (31.62)3 and (31.63)3

ηCar = 1− T ∗L
T ∗H
≥ 1− [ΘL]

[ΘH ]
=: ηneq. (31.64)

The non-equilibrium efficiency ηneq is smaller or equal to the Carnot efficiency which
belongs to reversible processes in contrast to ηneq which is a more realistic efficiency.

An essential presupposition for the considerations above is according to (31.59)

T ∗H ≥ ΘH(t), ΘL(t) ≥ T ∗L , (31.65)

that the contact temperatures during the non-equilibrium process satisfy (31.65) for
all times.

We now consider the First and the Second Law with respect to the contact temper-
ature. The First Law per cycle of the considered power-producing non-equilibrium
system runs as follows

QH +QL +W = 0 −→ Q∗H +Q∗L =W < 0 −→ Q∗H =W −Q∗L <−Q∗L,
(31.66)

and the Clausius inequality (Second Law) (31.13)1 becomes by use of the mean
value theorem

0 ≤
∮ •

Q∗

Θ
dt =

∮ •
Q ∗H
ΘH

dt +
∮ •

Q ∗L
ΘL

dt =
Q∗H
[ΘH ]

+
Q∗L
[ΘL]

. (31.67)

Taking (31.66)3 into account, we obtain an inequality of the mean values of the
contact temperatures belonging to the cycle

0 ≤
(
− 1

[ΘH ]
+

1
[ΘL]

)
Q∗L −→ [ΘH ] > [ΘL] −→ ηCar ≥ ηneq > 0,

(31.68)
and the positive definiteness of ηneq which is according to (31.68)3 a more realistic
efficiency in comparison with that of Carnot.
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Chapter 32

Angular Velocities, Twirls, Spins and Rotation

Tensors in the Continuum Mechanics Revisited

Konstantin Naumenko and Holm Altenbach

Abstract In the classical continuum mechanics several quantities related to angular
velocity of rotation are introduced. Examples include vorticity vector, twirl tensors
and logarithmic spin. Furthermore the corresponding rotation tensors can be defined
to capture the orientation of triads. All of these quantities are measures of accompa-
nying rotational motion and can be related to the deformation and velocity gradient.
Such relationships are crucial for constitutive modeling of material behavior. The
aim of this contribution is to recall classical definitions of rotation-like quantities and
to present several new relationships between them.

32.1 Introduction

In the classical continuum mechanics several quantities related to angular velocity
of rotation are introduced. Examples include vorticity vector, twirl tensors and
logarithmic spin. Furthermore the correspondent rotation tensors can be defined
to capture the orientation of triads. Since all of these quantities are derived from
motion and deformation, relationships between them exist. Such relationships are
crucial for constitutive modeling of complex material behavior. For example, in
finite plasticity, the multiplicative decomposition of the deformation gradient into
the elastic and inelastic parts is frequently applied. Here several rotation tensors and
spins corresponding to elastic and plastic parts can be introduced, e.g. Altenbach and
Eremeyev (2014); Bertram (2012); Maugin (1992, 2013); Naumenko and Altenbach
(2016). Physically sound definitions satisfying the objectivity requirements are only
available for specific constitutive theories, e.g. crystal plasticity.
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Another example is related to anisotropic materials with evolving microstructure,
e.g. short-fiber suspensions and composites (Altenbach et al, 2003a,b, 2007). Here
additional tensorial state variables for microstructure orientation states are defined
by means of evolution equations. The rotation tensor and the angular velocity vector
of rigid particles in a suspension must be defined in order to derive the evolution
equations for state variables. The aim of this contribution is to recall all classical
definitions of rotation-like quantities in the continuum mechanics and to present
several relationships between them.

32.2 Rotation Tensor and Angular Velocity Vector

In order to fix our notation let us recall several definitions from rigid body kinematics.
Let NNNk,k = 1,2,3, (NNN1×NNN2) ···NNN3 = 1 be a triple of orthogonal unit vectors attached
to a point of a body in a reference configuration. Let nnnk(t),k = 1,2,3 be the actual
triple of orthogonal unit vectors obtained from NNNk by a rigid body rotation, i.e. the
length and the angles between the vectors does not change during the motion and
(nnn1×nnn2)···nnn3 = 1. To describe such a rotation of the triad the proper orthogonal tensor
RRR can be introduced as follows

RRR(t) = nnn1(t)⊗NNN1 +nnn2(t)⊗NNN2 +nnn3(t)⊗NNN3, nnnk(t) =RRR(t) ···NNNk

RRR ···RRRT =RRRT ···RRR = III, detRRR = 1,

where III is the second rank unit tensor. For the rotation tensor RRR the angular velocity
vector ΩΩΩRRR and the spin tensor ΩΩΩRRR× III are introduced as follows. According to the
definition of the orthogonal tensor we obtain

RRR ···RRRT = III ⇒ ṘRR ···RRRT +RRR ··· ṘRRT
= 000 ⇒ ṘRR ···RRRT =−(ṘRR ···RRRT)T

The skew-symmetric tensor WWWRRR = ṘRR ···RRRT is called the left spin tensor or simply spin
tensor. In the rigid body kinematics the associated vector ΩΩΩRRR called the (left) angular
velocity vector is introduced as follows

WWWRRR =ΩΩΩRRR×III = III×ΩΩΩRRR, ΩΩΩRRR =−1
2
(WWW )×, (32.1)

where (. . .)× denotes the vector invariant or the Gibbs cross operation applied to a
second rank tensor, see Subsect. 32.4. The axial vectorΩΩΩRRR is widely used in the rigid
body dynamics, e.g. Altenbach et al (2007); Zhilin (1996). If the rotation tensor RRR is
given, then the corresponding angular velocity of rotation is determined as follows

ΩΩΩRRR =−1
2
(ṘRR ···RRRT)× (32.2)
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For the given angular velocity of rotation ΩΩΩRRR(t) the rotation tensor can be computed
by solving the Darboux problem

ṘRR =ΩΩΩRRR×RRR, RRR(0) =RRR0, (32.3)

where RRR0 is the initial condition.

32.3 Rotation Tensors and Spins in the Classical Continuum

Mechanics

In the Cosserat-type theories of continuum (Maugin, 2014, 2016; Eremeyev et al,
2013) and in theories of shells (Altenbach et al, 2005; Antman, 1995; Libai and Sim-
monds, 1998) the rotation tensor and the angular velocity of rotation are introduced
as independent quantities to capture the motion of triads. In the classical continuum
mechanics rotation tensors and angular velocities are measures of accompanying
rotational motion and can be related to the deformation and velocity gradient. The
spatial velocity gradient LLL is defined as follows

LLL = (∇∇∇vvv)T = ḞFF ···FFF−1, (32.4)

where vvv is the velocity vector and FFF is the deformation gradient. The tensor LLL can be
additively decomposed into the symmetric and skew symmetric parts

LLL =DDD+ωωω×III, (32.5)

where the symmetric part

DDD =
1
2
[
∇∇∇vvv+(∇∇∇vvv)T]

is called the deformation rate tensor while

ωωω =−1
2

∇∇∇×vvv

is called vorticity vector.
Applying the polar decomposition theorem relations

FFF =RRR ···UUU =VVV ···RRR ⇒ ḞFF = ṘRR ···UUU +U̇UU ···RRR and FFF−1 =UUU−1 ···RRRT,

where UUU is the right stretch tensor, VVV is the left stretch tensor and RRR is the rotation
tensor the velocity gradient can be given as follows

LLL = ḞFF ···FFF−1 = ṘRR ···RRRT +RRR ···U̇UU ···UUU−1 ···RRRT (32.6)

With Eq. (32.5) Eq. (32.6) takes the form
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DDD+ωωω×III =ΩΩΩRRR×III +RRR ···U̇UU ···UUU−1 ···RRRT, (32.7)

where ΩΩΩRRR is the angular velocity vector corresponding to RRR. The tensor ΩΩΩRRR× III is
sometimes called body spin, e.g. Reinhardt and Dubey (1996). By analogy let us
call ΩΩΩRRR the body angular velocity. The vector invariant of Eq. (32.7) provides the
vorticity vector as follows

ωωω =ΩΩΩRRR− 1
2
(RRR ···U̇UU ···UUU−1 ···RRRT)× (32.8)

The symmetric part of Eq (32.7) is

DDD =
1
2

RRR ···UUU−1 ···U̇UU ···RRRT =
1
2

RRR ··· (U̇UU ···UUU−1 +UUU−1 ···U̇UU) ···RRRT (32.9)

Equation (32.9) can be put in the following form

RRRT ···DDD ···RRR =
1
2
(U̇UU ···UUU−1 +UUU−1 ···U̇UU)

or
FFFT ···DDD ···FFF =

1
2

d
dt
(UUU2) =

1
2

ĊCC, (32.10)

where CCC is the right Cauchy-Green tensor. Let us take the time derivatives of stretch
tensors applying the spectral representations1

U̇UU =
3

∑
i=1

(
λ̇i

UUU
NNNi ⊗

UUU
NNNi +λi

d
dt

UUU
NNNi ⊗

UUU
NNNi +λi

UUU
NNNi ⊗ d

dt

UUU
NNNi

)
,

V̇VV =
3

∑
i=1

(
λ̇i

VVV
nnni ⊗ VVV

nnni +λi
d
dt

VVV
nnni ⊗ VVV

nnni +λi
VVV
nnni ⊗ d

dt
VVV
nnni

)
,

(32.11)

where λi are principal stretches,
UUU
NNNi are eigenvectors of UUU and

VVV
nnni are eigenvectors of

the tensor VVV .

32.3.1 Rotations of Principal Directions and Twirls

Consider a triple of fixed orthogonal unit vectors eeei and the rotation tensor PPPUUU such
that

UUU
NNNi=PPPUUU ···eeei

Hence
VVV
nnni=RRR ···PPPUUU ···eeei

1 In the sequel we assume that the tensorsUUU and VVV have distinct eigenvalues. The cases of coincident
eigenvalues should be analyzed separately.
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or
VVV
nnni=PPPVVV ···eeei, PPPVVV =RRR ···PPPUUU (32.12)

For the rotation tensors PPPUUU and PPPVVV the spin tensors and the angular velocity vectors
can be introduced as follows

ṖPPUUU ···PPPT
UUU =ΩΩΩUUU ×III, ṖPPUUU =ΩΩΩUUU ×PPPUUU ,

ṖPPVVV ···PPPT
VVV =ΩΩΩVVV ×III, ṖPPVVV =ΩΩΩVVV ×PPPVVV

(32.13)

The tensorsΩΩΩUUU×III andΩΩΩVVV×III are called Lagrangian and Eulerian twirls, respectively
(Reinhardt and Dubey, 1996; Zhong-Heng et al, 1992). By analogy let us call the
vectors ΩΩΩUUU and ΩΩΩVVV twirl angular velocities.

The time derivative of Eq (32.12)2 yields

ṖPPVVV = ṘRR ···PPPUUU +RRR ··· ṖPPUUU

= ΩΩΩRRR×RRR ···PPPUUU +RRR ··· (ΩΩΩUUU ×III) ···RRRT ···RRR ···PPPUUU

= (ΩΩΩRRR +RRR ···ΩΩΩUUU )×PPPVVV

Hence the following relationship between the angular velocity vectors can be estab-
lished

ΩΩΩVVV =ΩΩΩRRR +RRR ···ΩΩΩUUU (32.14)

With Eqs. (32.13) the rates of change of principal directions can be computed as
follows

d
dt

UUU
NNNi=ΩΩΩUUU×

UUU
NNNi,

d
dt

VVV
nnni=ΩΩΩVVV× VVV

nnni

Consequently the rates of change of stretch tensors (32.11) take the following form

U̇UU =
3

∑
i=1

λ̇i
UUU
NNNi ⊗

UUU
NNNi +ΩΩΩUUU ×UUU−UUU×ΩΩΩUUU ,

V̇VV =
3

∑
i=1

λ̇i
VVV
nnni ⊗ VVV

nnni +ΩΩΩVVV ×VVV −VVV ×ΩΩΩVVV

(32.15)

With Eq. (32.15) and

UUU−1 =
3

∑
i=1

1
λi

UUU
NNNi ⊗

UUU
NNNi,

one may compute

RRR ···U̇UU ···UUU−1 ···RRRT =RRR ···
[

3

∑
i=1

λ̇iλ−1
i

UUU
NNNi ⊗

UUU
NNNi +ΩΩΩUUU ×III− (UUU×ΩΩΩUUU ) ···UUU

]
···RRRT

Applying Eqs. (32.12) and (32.14) we obtain
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RRR ···U̇UU ···UUU−1 ···RRRT =
3

∑
i=1

λ̇iλ−1
i

VVV
nnni ⊗ VVV

nnni

+ (ΩΩΩVVV −ΩΩΩRRR)×III−VVV ··· [(ΩΩΩVVV −ΩΩΩRRR)×III] ···VVV−1

(32.16)

With identities (32.38) and (32.39) the vector invariant of Eq. (32.16) yields

(RRR ···U̇UU ···UUU−1 ···RRRT)× =−2(ΩΩΩVVV −ΩΩΩRRR)−AAAVVV ··· (ΩΩΩVVV −ΩΩΩRRR), (32.17)

where

AAAVVV =
3

∑
i1

λi
VVV
nnni ×VVV−1× VVV

nnni=
3

∑
i=1

3

∑
j=1

λi

λ j

VVV
nnni × VVV

nnn j ⊗ VVV
nnn j × VVV

nnni

According to (32.39) and the Cayley-Hamilton theorem the tensor AAAVVV has the follow-
ing representations

AAAVVV = J−1VVV ··· [VVV 2− (tr VVV 2)III] = III +
J2VVV − J2

1VVV

J
VVV +

J1VVV

J
VVV 2

where J1VVV ,J2VVV and J = J3VVV are principal invariants of the tensor VVV . The spectral form
of the tensor AAAVVV is

−AAAVVV =
λ 2

2 +λ 2
3

λ2λ3

VVV
nnn1 ⊗ VVV

nnn1 +
λ 2

3 +λ 2
1

λ3λ1

VVV
nnn2 ⊗ VVV

nnn2 +
λ 2

1 +λ 2
2

λ1λ2

VVV
nnn3 ⊗ VVV

nnn3 (32.18)

With Eqs (32.8) and (32.17) the following relationship between the angular velocities
can be obtained

ωωω =ΩΩΩVVV +
1
2

AAAVVV ··· (ΩΩΩVVV −ΩΩΩRRR) (32.19)

The relationship (32.19) can also be derived from the polar decomposition

FFF =VVV ·RRR ⇒ FFF−1 =RRRT ·VVV−1

such that the velocity gradient takes the form

LLL = ḞFF ···FFF−1 = V̇VV ···VVV−1 +VVV ··· ṘRR ···RRRT ···VVV−1 (32.20)

With Eqs (32.1) and (32.15), Eq. (32.20) takes the form

LLL =
3

∑
i=1

λ̇iλ−1
i

VVV
nnni ⊗ VVV

nnni +ΩΩΩVVV ×III +LLLΩΩΩ , (32.21)

where
LLLΩΩΩ =VVV ··· (Ω̃ΩΩ ×III) ···VVV−1, Ω̃ΩΩ =ΩΩΩRRR−ΩΩΩVVV

The vector invariant of Eq. (32.21) provides the relationship (32.19).
With the identity (32.36)2 the tensor LLLΩΩΩ can be represented as follows
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LLLΩΩΩ = aaa×VVV−2 =VVV 2×bbb,

aaa = JVVV−1 ···Ω̃ΩΩ , bbb = J−1VVV ···Ω̃ΩΩ
(32.22)

The right dot product of Eq. (32.21) with VVV 2 yields

LLL ···VVV 2 =
3

∑
i=1

λ̇iλi
VVV
nnni ⊗ VVV

nnni +ΩΩΩVVV ×VVV 2 +aaa×III, (32.23)

With the decomposition of the velocity gradient (32.5), Eq. (32.23) takes the following
form

DDD ···VVV 2 =
3

∑
i=1

λ̇iλi
VVV
nnni ⊗ VVV

nnni +(ΩΩΩVVV −ωωω)×VVV 2 +aaa×III (32.24)

Taking the vector invariant of Eq. (32.24) yields

1
2J

VVV ··· (DDD ···VVV 2)× =

(
III +

1
2

AAAVVV

)
···ΩΩΩVVV − 1

2
AAAVVV ···ωωω−ΩΩΩRRR (32.25)

From Eqs. (32.19) and (32.25) we obtain

1
2J

VVV ··· (DDD ···VVV 2)× =

(
III− 1

2
AAAVVV

)
··· (ωωω−ΩΩΩRRR)

With Eq. (32.18) one may verify the tensor III− 1
2AAAVVV is non-singular. Hence

ωωω =ΩΩΩRRR +KKKVVV ··· (DDD ···VVV 2)×, KKKVVV =
1
2J

(
III− 1

2
AAAVVV

)−1

···VVV (32.26)

Applying Eq. (32.18) the following spectral representation of the tensor KKKVVV can be
established

KKKVVV =
1

(λ2 +λ3)2
VVV
nnn1 ⊗ VVV

nnn1 +
1

(λ3 +λ1)2
VVV
nnn2 ⊗ VVV

nnn2 +
1

(λ1 +λ2)2
VVV
nnn3 ⊗ VVV

nnn3 (32.27)

Equation (32.26) is the relationship between the vorticity vector and the body angular
velocity vector. It shows that if the vector (DDD ···VVV 2)× = 000, i.e. the tensors DDD and VVV are
coaxial, the vorticity vector coincides with the body angular velocity. To the best
of our knowledge Eq. (32.26) is new and not introduced in the classical continuum
mechanics literature.

32.3.2 Logarithmic Spin

Let us relate the tensor DDD to the time derivative of the spatial Hencky tensor hhh. To
this end consider the symmetric part of Eq. (32.21)
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DDD =
3

∑
i=1

λ̇iλ−1
i

VVV
nnni ⊗ VVV

nnni +
1
2
(VVV 2×bbb−bbb×VVV 2) (32.28)

The time derivative of the spatial Hencky strain tensor hhh = lnVVV can be computed as
follows

ḣhh =
3

∑
i=1

λ̇iλ−1
i

VVV
nnni ⊗ VVV

nnni +ΩΩΩVVV ×hhh−hhh×ΩΩΩVVV (32.29)

With Eqs. (32.28) and (32.29) we obtain

DDD = ḣhh−ΩΩΩVVV ×hhh+hhh×ΩΩΩVVV +
1
2
(VVV 2×bbb−bbb×VVV 2) (32.30)

The tensor
DDDΩΩΩ =

1
2
(VVV 2×bbb−bbb×VVV 2)

has the following representation

2DDDΩΩΩ =
3

∑
i=1

3

∑
j=1

(λ 2
i −λ 2

j )bbb ··· (
VVV
nnni × VVV

nnn j)(
VVV
nnni ⊗ VVV

nnn j +
VVV
nnn j ⊗ VVV

nnni) (32.31)

Assuming that the tensor VVV has distinct principal values λi let us consider the follow-
ing identity

2DDDΩΩΩ =
3

∑
i=1

3

∑
j=1

(lnλi− lnλ j)
λ 2

i −λ 2
j

(lnλi− lnλ j)
bbb ··· (VVV

nnni × VVV
nnn j)(

VVV
nnni ⊗ VVV

nnn j +
VVV
nnn j ⊗ VVV

nnni)

=
3

∑
i=1

3

∑
j=1

(lnλi− lnλ j)ccc ··· (VVV
nnni × VVV

nnn j)(
VVV
nnni ⊗ VVV

nnn j +
VVV
nnn j ⊗ VVV

nnni)

= hhh×ccc−ccc×hhh, i �= j,
(32.32)

where the components of vector ccc are related to the components of vector bbb as follows

ccc ··· (VVV
nnni × VVV

nnn j) =
λ 2

i −λ 2
j

(lnλi− lnλ j)
bbb ··· (VVV

nnni × VVV
nnn j), i �= j

Hence

ccc ···
3

∑
i=1

3

∑
j=1

VVV
nnni × VVV

nnn j ⊗ VVV
nnn j × VVV

nnni= bbb ···
3

∑
i=1

3

∑
j=1

λ 2
i −λ 2

j

(lnλi− lnλ j)

VVV
nnni × VVV

nnn j ⊗ VVV
nnn j × VVV

nnni, i �= j

Applying the identity (32.37) we obtain

3

∑
i=1

3

∑
j=1

VVV
nnni × VVV

nnn j ⊗ VVV
nnn j × VVV

nnni=
3

∑
i=1

VVV
nnni ×III× VVV

nnni=
3

∑
i=1

(
VVV
nnni ⊗ VVV

nnni − VVV
nnni ··· VVV

nnni III) =−2III
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Consequently

2ccc =−bbb ···
3

∑
i=1

3

∑
j=1

λ 2
i −λ 2

j

(lnλi− lnλ j)

VVV
nnni × VVV

nnn j ⊗ VVV
nnn j × VVV

nnni, i �= j (32.33)

With Eqs. (32.22), (32.30), (32.32) and (32.33) the tensor DDD is related to the rate of
the Hencky tensor hhh as follows

DDD = ḣhh−ΩΩΩhhh×hhh+hhh×ΩΩΩhhh, ΩΩΩhhh =ΩΩΩVVV +AAAhhh ··· (ΩΩΩRRR−ΩΩΩVVV ), (32.34)

where

AAAhhh =− 1
4J

VVV ···
3

∑
i=1

3

∑
j=1

λ 2
i −λ 2

j

(lnλi− lnλ j)

VVV
nnni × VVV

nnn j ⊗ VVV
nnn j × VVV

nnni, i �= j

The tensor AAAhhh has the following spectral representation

2AAAhhh =
λ 2

2 −λ 2
3

λ2λ3 ln λ2
λ3

VVV
nnn1 ⊗ VVV

nnn1 +
λ 2

3 −λ 2
1

λ3λ1 ln λ3
λ1

VVV
nnn2 ⊗ VVV

nnn2 +
λ 2

1 −λ 2
2

λ1λ2 ln λ1
λ2

VVV
nnn3 ⊗ VVV

nnn3

In Xiao et al (1997) the tensor ΩΩΩhhh×III is called logarithmic spin. By analogy let us
call the vector ΩΩΩhhh the logarithmic angular velocity. With Eqs. (32.14), (32.26) and
(32.34) the vector ΩΩΩhhh can be computed as follows

ΩΩΩhhh =ωωω+KKKhhh ··· (DDD ···VVV 2)×, (32.35)

where

2KKKhhh =
3

∑
i=1

3

∑
j=1

1
λ 2

i −λ 2
j

⎛⎝λ 2
i +λ 2

j

λ 2
i −λ 2

j
− 1

ln λi
λ j

⎞⎠ VVV
nnni × VVV

nnn j ⊗ VVV
nnn j × VVV

nnni, i �= j

The tensor KKKhhh has the following spectral representation

KKKhhh =
1

λ 2
2 −λ 2

3

⎛⎝ 1

ln λ2
λ3

− λ 2
2 +λ 2

3

λ 2
2 −λ 2

3

⎞⎠ VVV
nnn1 ⊗ VVV

nnn1

+
1

λ 2
3 −λ 2

1

⎛⎝ 1

ln λ3
λ1

− λ 2
3 +λ 2

1

λ 2
3 −λ 2

1

⎞⎠ VVV
nnn2 ⊗ VVV

nnn2

+
1

λ 2
3 −λ 2

1

(
1

ln λ1
λ2

− λ 2
1 +λ 2

2

λ 2
1 −λ 2

2

)
VVV
nnn3 ⊗ VVV

nnn3

With Eqs. (32.26) and (32.35) one may relate the logarithmic angular velocity to
the vectors ωωω and ΩΩΩRRR. To the best of our knowledge Eq. (32.34) is new. Equation
(32.35) in a different notation is firstly derived by Xiao et al (1997). It indicates that
if tensors DDD and VVV are co-axial, the logarithmic angular velocity coincides with the
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vorticity vector. Therefore the deformation rate tensor DDD is the Jaumann co-rotational
rate of the spatial Hencky tensor.

32.4 Conclusions

The derived equations relate twirl vectors and the logarithmic angular velocity vector
to combinations of the vorticity vector and the body angular velocity vector. If the
deformation rate tensor is co-axial with the left stretch tensor, then the vorticity vector
coincides with the body angular velocity vector. In our view the notions of angular
velocities is more convenient if compared to the skew-symmetric tensors for the
following reasons. First the derived relations are more transparent as similar relations
discussed in the literature, for example for twirls, e.g. Reinhardt and Dubey (1996).
Second, one may use foundations of rigid body dynamics to give interpretations to
angular velocities. Furthermore, rotation tensors corresponding to angular velocities,
for example the logarithmic one can be introduced.

Appendix: Some Operations with Second Rank Tensors

Dot Products of a Second Rank Tensor and a Vector

The right dot product of a second rank tensor AAA and a vector ccc is defined by

AAA ···ccc =
(

3

∑
i=1

aaa(i)⊗bbb(i)

)
···ccc =

3

∑
i=1

(bbb(i) ···ccc)aaa(i) =
3

∑
i=1

α(i)aaa(i)

with α(i) ≡ bbb(i) ···ccc. The left dot product is defined by

ccc ···AAA = ccc ···
(

3

∑
i=1

aaa(i)⊗bbb(i)

)
=

3

∑
i=1

(ccc ···aaa(i))bbb(i) =
3

∑
i=1

β(i)bbb(i)

with β(i) ≡ ccc ···aaa(i). The results of these operations are vectors. One can verify that

AAA ···ccc �= ccc ···AAA, AAA ···ccc = ccc ···AAAT

Cross Products of a Second Rank Tensor and a Vector

The right cross product of a second rank tensor AAA and a vector ccc is defined by
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AAA×ccc =

(
3

∑
i=1

aaa(i)⊗bbb(i)

)
×ccc =

3

∑
i=1

aaa(i)⊗ (bbb(i)×ccc) =
3

∑
i=1

aaa(i)⊗ddd(i)

with ddd(i) ≡ bbb(i)×ccc. The left cross product is defined by

ccc×AAA = ccc×
(

3

∑
i=1

aaa(i)⊗bbb(i)

)
=

3

∑
i=1

(ccc×aaa(i))⊗bbb(i) =
3

∑
i=1

eee(i)⊗bbb(i)

with eee(i) ≡ bbb(i)×ccc. The results of these operations are second rank tensors. It can be
shown that

AAA×ccc =−[ccc×AAAT]T

The following identities valid for a non-singular tensor AAA and vectors aaa and bbb
(Zhilin, 2001)

detAAAAAA−T ··· (aaa×bbb) = (AAA ···aaa)× (AAA ···bbb),

detAAAAAA−T ··· (aaa×III) ···AAA−1 = (AAA ···aaa)×III
(32.36)

Vector Invariant

The vector invariant or the Gibbs cross of a second rank tensor AAA is defined by

AAA× =

(
3

∑
i=1

aaa(i)⊗bbb(i)

)
×
=

3

∑
i=1

aaa(i)×bbb(i)

The result of this operation is a vector. The vector invariant of a symmetric tensor is
the zero vector. The following identities can be verified

(aaa×III)× =−2aaa,
aaa×III×bbb = bbb⊗aaa− (aaa ···bbb)III (32.37)

For any vector aaa and any second rank tensor BBB the following identity is valid

(aaa×BBB)× =BBB ···aaa− (tr BBB)aaa, (BBB×aaa)× =BBBT ···aaa− (tr BBB)aaa (32.38)

For any vector aaa and symmetric tensors AAA, BBB the following identity can be established

[(AAA×aaa) ···BBB]× = [AAA ··· (aaa×BBB)]× =CCC ···aaa,

CCC =
3

∑
i=1

λA
i

AAA
nnni ×BBB× AAA

nnni=
3

∑
i=1

λB
i

BBB
nnni ×AAA× BBB

nnni

= [tr (AAA ···BBB)− tr AAAtr BBB]III +(tr BBB)AAA+(tr AAA)BBB−AAA ···BBB−BBB ···AAA,

(32.39)
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where λA
i and λB

i are principal values of the tensors AAA and BBB, respectively. The

othonormal vectors
AAA
nnni and

BBB
nnni are corresponding principal directions.
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Chapter 33

Towards Continuum Mechanics with

Spontaneous Violations of the Second Law of

Thermodynamics

Martin Ostoja-Starzewski and Bharath V. Raghavan

Abstract As dictated by modern statistical physics, the second law is to be replaced
by the fluctuation theorem (FT) on very small length and/or time scales. This means
that the deterministic continuum thermomechanics must be generalized to a stochastic
theory allowing randomly spontaneous violations of the Clausius-Duhem inequality
to take place anywhere in the material domain. This paper outlines a formulation of
stochastic continuum thermomechanics, where the entropy evolves as a submartingale
while the dissipation function is consistent with the FT. A summary is then given
of the behavior of an atomic fluid in Couette flow, studied using a combination of
kinetic theory, hydrodynamic theory, and molecular dynamics. Overall, the developed
framework may be applied in many fields involving fluid flow and heat conduction
on very small spatial scales.

33.1 Dissipation Function in Thermomechanics within Second

Law

In the version of continuum mechanics called thermomechanics with internal vari-
ables (TIV), the Second Law is written in terms of the reversible (ṡ(r)) and irreversible
(ṡ(i)) parts of entropy production rate (ṡ) (Maugin, 1999; Ziegler, 2012; Ziegler and
Wehrli, 1987)

ṡ = ṡ(r) + ṡ(i) with ṡ(r) =−∂ (qi/θ)
∂xi

and ṡ(i) ≥ 0. (33.1)

Here θ is the absolute temperature while qi (qqq) is the heat flux [Hereinafter we
interchangeably, whichever is more convenient, use the symbolic ( fff ) and subscript
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( fi...) notations for tensors; an overdot means the material time derivative.]. This form
of writing the Second Law naturally involves the dissipation function φ = ṡ(i), which
provides a constitutive law for the irreversible part of response. Typically, φ =Y ·VY ·VY ·V
is taken as a functional of the velocity VVV so as to obtain the dissipative force YYY :

Yi = λ
∂φ (VVV )

∂Vi
where λ =

(
Vi
∂φ (VVV )

∂Vi

)−1

φ . (33.2)

Effectively, this means that, provided the dissipative force YYY is prescribed, the actual
velocity maximizes the dissipation rate ṡ(i) =Y ·VY ·VY ·V subject to the side condition (33.1)

φ(V )V )V ) =Y ·VY ·VY ·V = ṡ(i) ≥ 0 (33.3)

This is not the only extremum-type interpretation of (33.2), others being e.g. the
principle of least velocity, the principle of least dissipative force.

While (33.2) applies to a very wide range of linear and nonlinear material behav-
iors, it does not cover all of them. The most general solution of the inequality (33.3)
is based on a decomposition theorem of Edelen (1973, 1974): assuming YYY =YYY (VVV ),
there always exist functions ϕ (VVV ) and UUU (VVV ) such that

Yi =
∂ϕ (VVV )

∂Vi
+Ui (33.4)

with

ϕ (VVV )≡
1∫

0

ViYi (τVVV )dτ (33.5)

and

Ui (VVV )≡
1∫

0

τVj

[
∂Yj (τVVV )

∂ (τVi)
− ∂Yi (τVVV )

∂ (τVj)

]
dτ (33.6)

Since Y ·UY ·UY ·U = 0, UUU (VVV ) is called the non-dissipative (or powerless) vector; also
U (000) = 0U (000) = 0U (000) = 0. The Maxwell-Cattaneo heat conduction is an example of a process deriv-
able by this approach.

By analogy to the role played by the free energy ψ for quasi-conservative pro-
cesses (such as hyperelasticity), φ or ϕ plays the role of a potential for all the
dissipative processes, which are then called hyperdissipative. Effectively, the func-
tional φ (VVV ) or φ (YYY ) is employed to derive the constitutive laws of continua. In
general, there is no perfectly-established (and uniformly agreed-upon) rule to decide
whether VVV or YYY should be the argument of the functional ϕ or φ .

Note that φ , but not ϕ , is directly equal to the dissipation s∗(i). Clearly, in the
linear response regime, ϕ = φ/2 providing UUU = 000.
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33.2 Dissipation Function in Statistical Physics beyond Second

Law

While the inequality (33.3) is assumed to hold instantaneously (i.e. for ∀t), contem-
porary statistical physics (e.g. Evans and Searles, 2002; Searles and Evans, 2001)
the Second Law is replaced by the fluctuation theorem which gives the relative
probability of observing processes that have positive (A) and negative (−A) total
dissipation in non-equilibrium systems:

P(φt = A)
P(φt =−A)

= eAt . (33.7)

Here φt is the total dissipation for a trajectory ΓΓΓ ≡ {q1, p1, ...,qN , pN} of N particles
originating at ΓΓΓ (0) and evolving for a time t:

φt (ΓΓΓ (0)) =
t∫

0

φ (ΓΓΓ (s))ds. (33.8)

The integral in (33.8) involves an instantaneous dissipation function:

φ (ΓΓΓ (t)) =
dφt (ΓΓΓ (0))

dt
. (33.9)

The Second Law of thermodynamics is recovered upon ensemble averaging, time
averaging, or upscaling.

In view of (33.7) above, the dissipation function is a stochastic (not deterministic)
quantity which possibly and spontaneously takes negative values, so that the positive-
definiteness does not absolutely hold. Therefore, we write (33.3) as

φ (VVV ,ω) =YYY (ω)·V·V·V = s∗(i), ω ∈Ω , (33.10)

whereYYY (ω) are the dissipative forces conjugate to VVV , whileΩ is the set of all possible
outcomes. Thus, the argument ω indicates that φ(VVV ,ω) is a stochastic functional,
while YYY (ω) is a random quantity for a non-random (prescribed) velocity VVV . An
analogous picture holds for YYY being prescribed and VVV being the random outcome. It
is tacitly assumed that Ω is equipped with a σ -algebra of observable events A and a
probability measure P defined on (Ω ,A ).

The fluctuation theorem as expressed by (33.7) states that (i) positive dissipation is
exponentially more likely to be observed than negative dissipation, and (ii) ensemble
averaging of φt leads to

〈Δφt |Ft〉 ≥ 0. (33.11)

Here |Ft indicates the conditioning on the past history and is discussed below, while
〈 f 〉 :=

∫
f dP. Thus, the entropy production rate is non-negative on average. In view

of the random fluctuations, φt is a stochastic process with a specific type of memory
effect: a submartingale (Doob, 1953; Ostoja-Starzewski and Malyarenko, 2014).
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Treating time as a continuous parameter and noting that φt is deterministic for a
forward evolution, we have

〈φt+dt |Ft〉 ≥ φt . (33.12)

Clearly, this is a weaker statement than a purely deterministic one

φt+dt |Ft ≥ φt or, equivalently,
φt+dt −φt

Δ t
≥ 0. (33.13)

The latter inequality is the same as writing (33.1)3 in a finite difference form.
Next, we recall the Doob–Meyer decomposition to write φt as a sum of a martin-

gale (M) and a "drift" process (G):

φt(VVV ,ω) = M+G and φ(VVV ,ω) = Ṁ+ Ġ. (33.14)

Thus, M �= 0 reflects the fluctuations of entropy production about the zero level〈
s(i)
〉
= 0. The four different cases depending on whether M = 0 or M �= 0 and

G = 0 or G > 0 have been discussed in Ostoja-Starzewski and Malyarenko (2014).
Overall, the deterministic continuum mechanics is smoothly recovered as the time
and/or spatial scale increases (so that M→ 0) or via ensemble averaging, a result that
is consistent with intuition. A corresponding re-examination of axioms of continuum
mechanics has been given in Ostoja-Starzewski (2016).

Observe that one might also work with a discrete time formulation, making the
mathematical analysis of martingales simpler. It is fitting here to note that mathemat-
ical physics − also in classical, i.e. non-quantum, regime − may be formulated from
the standpoint of discrete, rather than continuous, time (Jaroszkiewicz, 2014).

There are three types of phenomena in classical physics where the fluctuation
theorem is applicable: viscous, thermal, and electrical (Evans and Searles, 2002;
Searles and Evans, 2001). If we concern ourselves with the first two, a contact
with continuum thermomechanics is made by writing the scalar product Y ·VY ·VY ·V as
one involving the intrinsic mechanical dissipation (viscous effects) and thermal
dissipation in spatial (Eulerian) description:

φ(VVV ,ω) = φth(VVV 1,ω)+φmech(VVV 2,ω), VVV ≡ (VVV 1,VVV 2) =

(−∇∇∇θ
θ

,ddd
)
. (33.15)

Thus, the generalized velocity vector VVV is made up of two parts: the negative tem-
perature gradient divided by the temperature (i.e., −∇∇∇θ/θ ) and the deformation
rate ddd. The reason we take the former as the argument of φth is that the fluctuation
theorem for heat flow was derived for controllable temperature differences (Searles
and Evans, 2001), with the heat flux being the stochastic outcome. Analogously, the
fluctuation theorem for Couette and Poiseuille flows was derived for controllable
velocities (Evans and Searles, 2002), with the Cauchy stress being the stochastic
outcome. Thus, the dissipative force corresponding to VVV is made up of the heat flux
and the dissipative stress
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YYY ≡ (YYY 1,YYY 2) =
(

qqq,σσσ (d)
)
. (33.16)

It is largely a matter of convenience whether −∇∇∇θ/θ or qqq should be taken as a
velocity or a dissipative force. In the section on thermoviscous fluids we work with
the setup outlined above, while in the section on inviscid thermoelastic solids we
invert the roles of −∇∇∇θ/θ and qqq.

There are two basic possibilities here:

• both processes in (33.15) may independently exhibit spontaneous random viola-
tions of the Second Law;

• both processes in (33.15) are coupled implying that the Clausius-Duhem inequality
holds for thermal and viscous violations jointly; the relevant statistical physics
has not yet been studied.

In Ostoja-Starzewski (2017b,a), we considered the first possibility focusing on: (i)
thermoviscous fluids with parabolic or hyperbolic type heat conduction, (ii) thermoe-
lasticity with parabolic or hyperbolic type heat conduction, and (iii) poromechanics
with dissipation within the skeleton, the fluid, and the temperature field. The rea-
son we considered parabolic or hyperbolic cases is that the statistical physics has
established the spontaneous violations of the Fourier type law, but a hyperbolic
heat conduction in fluids and solids can still be modeled in continuum mechanics
providing two relaxation times - one in the mechanical and another in the entropy
constitutive law - are introduced (recall the "thermoelasticity with two relaxation
times"). The theoretical developments hinge on the fact that the balance laws apply
irrespective of the conventional Second Law being obeyed or not. At the same time,
we are interested in formulating models which are hyperelastic and hyperdissipative
in ensemble average sense (or, for long time averages), thereby extending such class
beyond the deterministic media fully obeying the Second Law (Edelen, 1974; Evans
and Searles, 2002).

33.3 Stochastic Dissipation Function

33.3.1 Basics

In view of the preceding section, the constitutive relation linking YYY with VVV should
be stochastic. Therefore, we replace the deterministic picture by a stochastic one so
the internal energy density u and the entropy s are real-valued random fields over the
material (D) and time (T ) domains. For example, in the case of heat conduction in a
rigid (undeformable) conductor,

u : D×T ×Ω → R, s : D×T ×Ω → R. (33.17)

The randomness disappears as the time and/or spatial scales become large: the field
quantities simplify to deterministic functions of a homogeneous continuum. Focusing
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on the thermal dissipation in (33.15), we have

φth

(−∇∇∇θ
θ

,ω
)
=−qk

θ ,k
θ
≡−qqq ··· ∇∇∇θ

θ
. (33.18)

Given the stochastic violations of the Second Law, φth(qqq,ω) takes the form:

φth(qqq,ω) = Ġ(qqq)+ Ṁ(qqq,ω). (33.19)

For the linear Fourier-type conductivity, it becomes more explicit with

Ġ(qqq) =
1
θ

qiκi jq j, Ṁ(qqq,ω) =
1
θ

qiMi j (ω)q j. (33.20)

Here Ġ(qqq) involves the thermal resistivity λi j which is positive definite, and
Ṁ(qqq,ω) = dM(qqq,ω)/dt, with M being the martingale modeling the random fluctu-
ations according to (33.2). Clearly, the randomness residing in M(ddd,ω) allows the
total thermal conductivity κi j +Mi j to become negative since Mi j is not required to
be positive definite, thus signifying the violations of the Second Law. More specifi-
cally, Mi j : V → V (where V is a real vector space) is a second-order rank 2 tensor
random field (Malyarenko and Ostoja-Starzewski, 2014, 2016)

Mi j : D×Ω → V 2. (33.21)

In view of the Gaussian character of nanoscale fluctuations, Mi j is a Gaussian tensor
random field. A departure from Gaussianity has been studied through the atomic
fluid model below.

33.3.2 Atomic Fluid in Couette Flow

In Raghavan and Ostoja-Starzewski (2017), based on a kinetic theory and Non-
Equilibrium Molecular Dynamics (NEMD) we have derived a shear-thinning model
equation of state for an atomic fluid with interactions of Lennard-Jones type. This,
in turn, leads to a dissipation function ϕ (YYY ), in which the dissipative force YYY is the
symmetric Cauchy stress tensor σ (d)

i j and VVV is the deformation rate di j. For a uniform

shear flow, the dissipative force is just the shear stress σ (d)
12 corresponding to the

applied deformation rate γ̇ , so that

σ (d)
i j (di j)di j = φ (ddd) =

η0γ̇2

1+ 2
3 (γ̇/ν)

2 , (33.22)

where ν = p/η0 with η0 being the Newtonian viscosity, and p being the pressure.
Adopting thermodynamic orthogonality (33.2), on account of the side conditions
(d(1) = 0, d(2) = γ̇2, and d(3) = 0) and several intermediate steps, we obtain a quasi-
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linear fluid model

σ (d)
i j = λ

∂φ
∂d(2)

di j = 2η
(
d(2)
)

di j, (33.23)

with the constant of proportionality in (33.23) being

λ =
1+ 2

3 (γ̇/ν)
2

2
. (33.24)

The fluid viscosity η needs to at least depend on d(2) = γ̇2.
Continuing with NEMD in Raghavan et al (2018), we obtained a connection

between a local density contrast and temporal fluctuations in the shear stress, which
arise naturally through the equivalence between the dissipation function and entropy
production according to the fluctuation theorem. The bispectral density of the shear
stress was used to measure the degree of departure from the Gaussian model and the
degree of nonlinearity induced in the system owing to the applied strain rate. The
information theory was used to account for the departure from Gaussian statistics
and to develop a more general probability distribution function. By accounting for
negative shear stress increments, this distribution (i) preserves the violations of the
Second Law of thermodynamics observed in planar Couette flow of atomic fluids and
(ii) captures the non-Gaussian nature of the system by allowing for non-zero higher
moments. It was also demonstrated how the temperature affects the band-width of the
shear-stress and how the density affects its power spectral density, thus determining
the conditions under which the shear-stress acts is a narrow-band or wide-band
random process. The changes in the statistical characteristics of the parameters of
interest occur at a critical deformation rate at which an ordering transition occurs in
the fluid causing shear thinning and affecting its stability.

33.4 Closure

There are myriad directions in which this research can be continued. For instance,
we have already suggested a formulation of inelastic materials, thermoviscous fluids,
and micropolar fluid mechanics accounting for the lack of symmetry of stress tensor
on molecular scales. Overall, the situations where violations of the Second Law are
relevant occur on very small length scales (extremely thin wavefronts, nano-channels,
nano-rods, . . . ) and short time scales (although times up to 3 seconds have been
observed for cholesteric liquids). Thus, a natural setting in which to expect these
phenomena is that of permeability and poromechanics involving nanoscale channels
in random (and possibly fractal) media.
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Chapter 34

Nonlocal Approach to Square Lattice Dynamics

Alexey V. Porubov, Alena E. Osokina, and Thomas M. Michelitsch

Abstract The algorithm is developed to model two-dimensional dynamic processes
in a nonlocal square lattice on the basis of the shift operators. The governing discrete
equations are obtained for local and nonlocal models. Their dispersion analysis
reveals important differences in the dispersion curve and in the sign of the group
velocity caused by nonlocality. The continuum limit allows to examine possible
auxetic behavior of the material described by the nonlocal discrete model.

34.1 Introduction

Studies of the waves propagation in various crystal lattices are associated, first of all,
with the name of M. Born Born and Huang (1954), whose works are dated from the
beginning of the 20th century and don’t lose relevance up to this day in connection
with the development of nanotechnologies and nanoelectronics. Recent achievements
may be found, e.g., in Askar (1985); Kunin (1975); Maugin (1999); Maugin et al
(1992); Manevich and Manevitch (2005); Ostoja-Starzewski (2002); Andrianov et al
(2010); Kuzkin et al (2016); Eringen (1972); Metrikine and Askes (2006); Askes
and Metrikine (2005); Kosevich and Savotchenko (1999); Zabusky and Deem (1967).
The problem of linear waves propagation in one-dimensional monoatomic chain,
where particles are represented by material points with a nonzero mass, and the inter-
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atomic bonds are described by elastic springs, has become classical (Askar, 1985;
Ostoja-Starzewski, 2002; Andrianov et al, 2010; Metrikine and Askes, 2006; Zabusky
and Deem, 1967). The particles with different masses or the springs with various
rigidities were also considered, as well as nonlinear and nonlocal generalizations
of interatomic interactions. First of all, linear approximation problems were solved.
Structures with monatomic crystal lattices (triangular, square, cubic, FCC and BCC)
(Askar, 1985; Metrikine and Askes, 2006; Askes and Metrikine, 2005) and diatomic
crystal lattices (Born and Huang, 1954; Askar, 1985; Manevich and Manevitch,
2005; Ostoja-Starzewski, 2002) were examined. Discrete and continuum models
both possess analytical solutions in the linear case, which allows complex analysis
of the mechanical phenomena from micro- and macroscopic points of view (Kuzkin
et al, 2016). In the monograph (Askar, 1985), perfect and imperfect lattices dynamics
was considered and their connection with the continuum theories of four main types:
elasticity, piezoelectricity, viscoelasticity and plasticity in the framework of contin-
uum mechanics. Furthermore, two-dimensional problems were considered for the
triangular, square, and hexagonal lattices in Askar (1985); Manevich and Manevitch
(2005); Metrikine and Askes (2006); Askes and Metrikine (2005); Porubov and
Berinskii (2014).

The importance of nonlinear interactions has risen after the report of Fermi,
Pasta and Ulam in 1955, which presented the model of one-dimensional nonlinear
lattice that did not show energy equipartition, i.e. practically the entire energy was
concentrated in the first mode, and thus, nonlinearity doesn’t guarantee an equal
energy distribution between modes, see Zabusky and Deem (1967); Ablowitz and
Segur (1981). An outstanding contribution to the nonlinear wave theory of crystals
has been done by Maugin (1999); Maugin et al (1992); Sayadi and Pouget (1991).
In Maugin (1999), aspects of deformable solids (also known as inelastic crystals)
nonlinear dynamics were considered, where nonlinear effects combine or compete
with each other. Various models were investigated - both discrete and continuum, in
particular, the effects of thermal, electric or magnetic nature in the crystal structure,
and were analyzed utilizing the equations of rational mechanics. More complicated
highly nonlinear discrete systems were studied in Maugin et al (1992); Sayadi and
Pouget (1991) giving rise to new coupled nonlinear wave equations in the continuum
limit.

A nonlocal approach to the study of the crystalline structures allows to take
into consideration the influence of more distant particles onto discrete system dy-
namics (Kunin, 1975; Eringen, 1972; Xu et al, 2005). The interaction between
non-neighboring particles in the lattice has attracted considerable interest because
of their influence on the dispersion features of the waves (Maugin, 1999; Manevich
and Manevitch, 2005; Ostoja-Starzewski, 2002; Andrianov et al, 2010; Metrikine
and Askes, 2006; Askes and Metrikine, 2005; Kosevich and Savotchenko, 1999;
Michelitsch et al, 2014). This is also important for a modeling of a microstructure of
the material. Dynamic processes in one-dimensional lattices are studied more widely
both in linear and nonlinear cases (Askar, 1985; Maugin, 1999; Ostoja-Starzewski,
2002) while two-dimensional lattices are mainly considered in the linear case (Ostoja-
Starzewski, 2002; Metrikine and Askes, 2006; Askes and Metrikine, 2005). Some of
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the two-dimensional processes can be studied in the one-dimensional approximation,
for example, propagation of plane waves (Porubov and Berinskii, 2014), while their
transverse instability requires a two-dimensional analysis.

Dynamic processes in lattices are investigated using both discrete and continuum
modelling (Askar, 1985; Maugin, 1999; Ostoja-Starzewski, 2002; Andrianov et al,
2010). In the linear case, one can solve analytically both the discrete and the con-
tinuum equations. However, only certain discrete nonlinear equations, such as, for
example, the Toda lattice equation, have exact solutions, see, e.g., Ablowitz and
Segur (1981). Therefore, in order to obtain continuous equations in the nonlinear
case, an approach based on the continuum long-wave limit of the original discrete
equation is needed (Askar, 1985; Maugin, 1999; Ostoja-Starzewski, 2002; Andrianov
et al, 2010) that corresponds to a discrete model only for small wave numbers.

Lattice structural features are usually taken into account when describing the
negative Poisson ratio (Lakes, 1991; Prawoto, 2012; Vasiliev, 2013; Dirrenberger
et al, 2013; Erofeev and Pavlov, 2015). It was obtained in Baughman et al (1998),
that metals with cubic structure possess negative value of Poisson’s ratio or auxetic
behavior exactly because of their crystal lattice features. Relations for the Poisson
ratio in materials with cubic lattice can be found in Turley and Sines (1971). Possible
applications of auxetics in various branches of industry and technology may be
found, e.g., in Stavroulakis (2005). In particular, they may be useful for creating
semiconductors with low thermal conductivity and ultra-high hole mobility Zhang
et al (2016), or in aerospace engineering (Alderson and Alderson, 2007). Also, in
medicine, such materials are used to create blood vessels, which tend to increase
their walls’ thickness (rather than decrease) in response to the blood pulsation to
prevent the vessel’s rupture (Evans and Alderson, 2000). The range of applications
varies from sport industry (Sanami et al, 2014) to the military-industrial complex
(Underhill, 2014). Among the models of auxetics, one considers the particles which
are no longer represented as material points, but as bodies possessing shape and
mass, with additional degrees of freedom (Erofeev and Pavlov, 2015). The system of
anisotropic particles is considered, and the couple stress interactions are taken into
account: a square lattice is modeled as a set of rigid circular particles possessing two
translational and one rotational degrees of freedom.

In this paper, a new formalism is introduced to simplify the derivation of nonlocal
equations. To do this, we extend the method based on the usage of the shift operators
developed in Michelitsch et al (2014), up to a two-dimensional problem. The disper-
sion relation analysis is used to reveal additional effects that non-local interactions
bring into the model changing the shape of the dispersion curve and the sign of the
group velocity. In addition, the continuum limit of the discrete equations allows us to
see how non-locality affects elastic constants and to analyze the effect of additional
long-range interactions on ta possible auxetic behavior of the model.
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34.2 Linear Local Model

Let us consider the square lattice with particles whose interactions are modeled by
linearly elastic springs, see Fig. 34.1. The particles have equal masses M, the lattice
constant in horizontal and vertical directions is denoted by h, the rigidities of the
horizontal and vertical springs are equal to C1 , while rigidity of the diagonal springs
is C2. We introduce the displacement vector for the particle with the number m, n
in the following form:

−→
U m,n = um,n

−→
i + vm,n

−→
j , where um,n,vm,n are the horizontal

and vertical components of the displacement vector, and ni are the unit vectors
corresponding to the directions from the particle m,n to its neighbour as shown in
Fig. 34.1,

Fig. 34.1: Local model of square lattice.
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−→n 1 =
−→
i , −→n 2 =−−→i , −→n 3 =

−→
j , −→n 4 =−−→j ,

−→n 5 =
1√
2)

(
−→
i +
−→
j ), −→n 6 =

1√
2
(−−→i +

−→
j ),

−→n 7 =
1√
2
(
−→
i −−→j ), −→n 8 =

1√
2
(−−→i −−→j ).

(34.1)

The shift operators,

D1 =
∞

∑
m=0

hm

m!
dm

dxm = eh d
dx , D2 =

∞

∑
n=0

hn

n!
dn

dyn = eh d
dy ,

D†
1 =

∞

∑
m=0

(−h)m

m!
dm

dxm = e−h d
dx , D†

2 =
∞

∑
n=0

(−h)n

n!
dn

dyn = e−h d
dy ,

D1D2 =
∞

∑
m=0

∞

∑
n=0

hm+n

m!n!
dm

dxm
dn

dyn = eh( d
dx+

d
dy ),

D1D†
2 =

∞

∑
m=0

∞

∑
n=0

(−1)nhm+n

m!n!
dm

dxm
dn

dyn = eh( d
dx− d

dy ),

D†
1D2 =

∞

∑
m=0

∞

∑
n=0

(−1)mhm+n

m!n!
dm

dxm
dn

dyn = eh(− d
dx+

d
dy ),

D†
1D†

2 =
∞

∑
m=0

∞

∑
n=0

(−1)m+nhm+n

m!n!
dm

dxm
dn

dyn = eh(− d
dx− d

dy ),

act on the function u(xm,yn) as

D1um,n = u(xm +h,yn) = u(xm+1,yn) = um+1,n,

D†
1um,n = u(xm−h,yn) = u(xm−1,yn) = um−1,n,

D2um,n = u(xm,yn +h) = u(xm,yn+1) = um,n+1,

D†
2um,n = u(xm,yn−h) = u(xm,yn−1) = um,n−1,

D1 ∗D2um,n = u(xm +h,yn +h) = u(xm+1,yn+1) = um+1,n+1,

D1 ∗D†
2um,n = u(xm +h,yn−h) = u(xm+1,yn−1) = um+1,n−1,

D†
1 ∗D2um,n = u(xm−h,yn +h) = u(xm−1,yn+1) = um−1,n+1,

D†
1 ∗D†

2um,n = u(xm−h,yn−h) = u(xm−1,yn−1) = um−1,n−1.

(34.2)

Similar expressions hold for the action on the function v(xm,yn).
Let the potential energy Vm,n contains only the local part, V1(um,vn), responsible

for the interaction of the central particle (m,n) with the neighboring particles shown
in Fig. Fig. 34.1. The interactions should take into account the geometry of the lattice
characterized by the unit vectors ni introduced above, while the shift operators allow
us to write the expression for the energy in a compact form,

Vl =
C1

2

(
((D1−1)

−→
U m,n ·−→n1)

2 +((D†
1−1)

−→
U m,n ·−→n2)

2 +((D2−1)
−→
U m,n ·−→n3)

2+
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((D†
2−1)

−→
U m,n ·−→n4)

2
)
+

C2

2

(
9(D1D2−1)

−→
U m,n ·−→n5)

2 +((D†
1D†

2−1)
−→
U m,n ·−→n6)

2+

((D†
1D2−1)

−→
U m,n ·−→n7)

2 +((D1D†
2−1)

−→
U m,n ·−→n8)

2
)
, (34.3)

To obtain discrete equations of motion, it is necessary to write down the La-
grangian,

Lm,n = Tm,n−Vm,n =
M
2
(u̇2

m,n + v̇2
m,n)−V1, (34.4)

where Tm,n is the kinetic energy of the particle with the number m,n. Then the discrete
equations of motion are obtained by utilizing the Hamilton-Ostrogradsky variational
principle. They are

M üm,n =C1(D1 +D†
1−2)um,n

+
C2

2

(
(D1 ∗D2 +D1 ∗D†

2 +D†
1 ∗D2 +D†

1 ∗D†
2−4)um,n

+(D1 ∗D2−D1 ∗D†
2 +D†

1 ∗D2−D†
1 ∗D†

2)vm,n

)
(34.5)

M v̈m,n =C1(D2 +D†
2−2)vm,n

+
C2

2

(
(D1 ∗D2 +D1 ∗D†

2 +D†
1 ∗D2 +D†

1 ∗D†
2−4)vm,n

+(D1 ∗D2−D1 ∗D†
2 +D†

1 ∗D2−D†
1 ∗D†

2)um,n

)
(34.6)

Nonlocal interactions result in variations in the equations of motion.

34.3 Nonlocal Linear Model

Consider the lattice model shown in Fig. 34.2 where the central particle m,n interacts
with additional non-neighboring particles. The rigidities of the springs modeling
interactions with four vertical and horizontal non-neighbors is assumed to be C3,
while for four diagonal particles the rigidity of the springs is equal to C4.

For further investigation it’s necessary to choose a "generator" function, which,
on the basis of the shift operators formalism and the expression for energy in the
local case, would describe the nonlocal behaviour of the lattice, and would generate
energy expressions for any indicated order of non-locality. The power function is the
most suitable in this case Michelitsch et al (2014), the exponent of which determines
the order of non-locality. Consequently, different orders of non-locality of the model
correspond to different exponents. Thus, for the second order of non-locality shown
in Fig. 34.2 the non-local interactions are described by the energy Vn in the form
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Fig. 34.2: Lattice with the second order non-locality.

Vn =
C3

2

[
((D2

1−1)
−→
U m,n ·−→n1)

2 +((D†2
1 −1)

−→
U m,n ·−→n2)

2 +((D2
2−1)

−→
U m,n ·−→n3)

2+

((D†2
2 −1)

−→
U m,n ·−→n4)

2
]
+

C4

2

[
((D2

1D2
2−1)

−→
U m,n ·−→n5)

2+((D†2
1 D†2

2 −1)
−→
U m,n ·−→n6)

2+

((D†2
1 D2

2−1)
−→
U m,n ·−→n7)

2 +((D2
1D†2

2 −1)
−→
U m,n ·−→n8)

2
]
. (34.7)

Then the whole potential energy V is

V =Vl +Vn (34.8)

where the local energy Vl is defined by Eq. (34.3). The utilization of the variational
principle for the Lagrangian (34.4) with the potential energy defined by Eq. (34.8)
results in the discrete equations of motion,
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M üm,n =C1(D1 +D†
1−2)um,n +C3(D2

1 +D†2
1 −2)um,n+

C2

2

[
(D1D2 +D†

1D2 +D1D†
2 +D†

1D†
2−4)um,n +

(D1D2−D†
1D2−D1D†

2 +D†
1D†

2)vm,n

]
+

C4

2

[
(D2

1D2
2 +D†2

1 D2
2 +D2

1D†2
2 +D†2

1 D†2
2 −4)um,n+

C4

2
(D2

1D2
2−D†2

1 D2
2−D2

1D†2
2 +D†2

1 D†2
2 )vm,n

]
, (34.9)

M v̈m,n =C1(D2 +D†
2−2)vm,n +C3(D2

2 +D†2
2 −2)vm,n+

C2

2

[
(D1D2 +D†

1D2 +D1D†
2 +D†

1D†
2−4)vm,n+

(D1D2−D†
1D2−D1D†

2 +D†
1D†

2)um,n

]
+

C4

2

[
(D2

1D2
2 +D†2

1 D2
2 +D2

1D†2
2 +D†2

1 D†2
2 −4)vm,n+

C4

2
(D2

1D2
2−D†2

1 D2
2−D2

1D†2
2 +D†2

1 D†2
2 )um,n

]
. (34.10)

The influence of the additional nonlocal terms in Eqs. (34.9), (34.10) will be studied
using the dispersion relation analysis.

34.4 Dispersion Relations Analysis

Let us consider the propagation of longitudinal plane waves in the horizontal direction.
In this case, the transverse displacement is absent, vm,n = 0, and no variations by n
occur, i.e., the corresponding shift operators are equal to zero. Then the local model
(34.5), (34.6) is reduced to only one equation of motion,

M üm = (C1 +C2)(2(1−D1 +D†
1)um). (34.11)

In the case of the non-local model (34.9), (34.10) one obtains

M üm = (C1 +C2)(2(1−D1 +D†
1)um +(C3 +C4)(2(1−D2

1 +D†2
1 )um). (34.12)

The solution of both equations is sought in the form

um = A exp ı(k m−ω t), (34.13)

where k is normalized wave number, ω is frequency.
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Substitution of Eq. (34.13) into the local model equation (34.11) gives rise to the
dispersion relation,

ω2 =
4
M
((C1 +C2)sin2(k/2), (34.14)

while substitution to Eq. (34.12) results in nonlocal dispersion relation,

ω2 =
4
M

(
(C1 +C2)sin2(k/2)+(C3 +C4)sin2(k)

)
. (34.15)

The first derivative of ω2 in Eq.(34.15) with respect to k reveals additional values
of k where the first derivative is zero. Besides k = πN, N is integer, from the local
model, there are additional extrema defined by C1 +C2 + 4(C3 +C4)cos(k) = 0.
Comparison of the dispersion curves is shown Fig. 34.3, where an appearance
additional extrema for nonlocal model is seen. The difference in the shapes for
nonlocal model results in variations in the shape of the curve of the group velocity a
shown in Fig. 34.4. In particular, it provides different signs of the group velocity for
one and the same k.

34.5 Continuum Equations

The transition from discrete equations to continuum ones is provided by the following
algorithm: the discrete displacements um,n,vm,n for small values of the wave number
are associated with smooth differentiable functions u(x,y, t) and v(x,y, t), describing
the displacements in the continuum medium to be obtained. The continuum displace-
ments for the particles with neighboring numbers the Taylor series expansion around
the position m,n is used.

Fig. 34.3 Dispersion curves
for local and nonlocal model.
Solid line corresponds to
local relation (34.14), dashed
line corresponds to nonlocal
relation (34.15) at C1 +
C2 > 4(C3 +C4), dotted
line corresponds to the curve
(34.15) at C1 +C2 < 4(C3 +
C4).
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Fig. 34.4 Group velocities
for nonlocal model: dashed
line corresponds to nonlocal
relation (34.15) at C1 +
C2 > 4(C3 +C4), dotted
line corresponds to the curve
(34.15) at C1 +C2 < 4(C3 +
C4).
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34.5.1 Local Model

Discrete local equations (34.5), (34.6) in the long wave continuum limit are

M utt = h2[C2(uyy +2vxy)+(C1 +C2)uxx],

M vtt = h2[C2(vxx +2uxy)+(C1 +C2)vyy].
(34.16)

Equations (34.16) are related to the equations of motion of the cubic crystals provided
that the elastic cubic constants C11, C12 and C44 are connected with our constants C1,
C2 as

C11 =
C1 +C2

a
, C12 =

C2

a
, C44 =

C2

a
(34.17)

It can be seen from Eqs. (34.17) that such relations occur only if the Cauchy
condition (C12 =C44) is fulfilled, i.e., when central forces act between uniformly de-
formed regions of the lattice. The Poisson ratio is not the same in different directions
for cubic crystals. Using the expressions for the main crystallographic directions of
the cubic lattice (Turley and Sines, 1971), we obtain:

ν<110,001> =
4C2

2

C12 +5C1C2 +2C2
2
, ν<110,110> =

C2
1 +C1C2−2C2

2

C2
1 +5C1C2 +2C2

2
(34.18)

Only Poisson’s ratio in the < 110,110 > direction may possess negative values
if C1 < C2. The designation corresponds to the measurement of Poisson’s ratio in
the direction < 110 > when stretched along < 110 >, see Figs. 34.5 and 34.6. The
figures show the crystallographic directions in the cubic lattice.

34.5.2 Nonlocal Model

Discrete nonlocal equations (34.9), (34.10) in the long wave continuum limit are
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Fig. 34.5: Crystallographic directions

Fig. 34.6: Crystallographic directions

M utt = a2[(C2 +4C4)uyy +2(C2 +4C4)vxy +(C1 +C2 +4(C3 +C4))uxx],

M vtt = a2[(C2 +4C4)vxx +2(C2 +4C4)uxy +((C1 +C2 +4(C3 +C4))vyy]

Cubic elastic constants are connected with the rigidities of the model as

C11 =
C1 +C2 +4(C3 +C4)

a
, C12 =

C2 +4C4

a
, C44 =

C2 +4C4

a
(34.19)
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Then anisotropic Poisson ratios are

ν<100,001> =
C2 +4C4

C1 +2C2 +4C3 +8C4
(34.20)

ν<110,110> =
(C1−C2 +4C3−4C4)(C1 +2C2 +4C3 +8C4)

(2C2 +4C4)(C1 +C2 +4(C3 +C4))+(C1 +4C3)(C1 +3C2 +4(C3 +3C4))
(34.21)

One of the coefficients may be negative,

ν<110,110> < 0 (34.22)

if C1 +4C3 <C2 +4C4. Hence, the probability of manifestation of auxetic properties
may be provided by the greater contribution of the diagonal interactions. This may be
done by nonlocal diagonal interaction described by the rigidity C4. The longitudinal
nonlocal interaction supports positive values of the Poisson ratio.

34.5.3 Nonlinear Interaction

The proposed algorithm of obtaining discrete equations using the shift operators
may be generalized for a weak nonlinearity. In particular, it is done by the following
expression for energy in the local model

Vnloc=
1
2
[C1((D1−1)

−→
U m,n ·−→n1)

2+C1((D
†
1−1)

−→
U m,n ·−→n2)

2+C1((D2−1)
−→
U m,n ·−→n3)

2

+C1((D
†
2−1)

−→
U m,n ·−→n4)

2 +C2(((D1D2−1)
−→
U m,n ·−→n5)

2 +((D†
1D†

2−1)
−→
U m,n ·−→n6)

2+

((D†
1D2−1)

−→
U m,n ·−→n7)

2 +((D1D†
2−1)

−→
U m,n ·−→n8)

2)+
Q1

3
(((D1−1)

−→
U m,n ·−→n1)

3+

((D†
1−1)

−→
U m,n ·−→n2)

3 +((D2−1)
−→
U m,n ·−→n3)

3 +((D†
2−1)

−→
U m,n ·−→n4)

3)

+
Q2

3
(((D1D2−1)

−→
U m,n ·−→n5)

3 +((D†
1D†

2−1)
−→
U m,n ·−→n6)

3+

((D†
1D2−1)

−→
U m,n ·−→n7)

3 +((D1D†
2−1)

−→
U m,n ·−→n8)

3] (34.23)

where Q− i account for nonlinear rigidity. More detailed consideration of nonlinear
problem will be done elsewhere.
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34.6 Conclusion

The algorithm is developed to obtain two-dimensional discrete equations of motion
for different orders of non-locality in the square lattice. Owing to the introduced
mathematical formalism, the equations can be obtained in a simpler way because
the nonlocal model is obtained from the local by raising the operators included in
the expression for the internal energy. Dispersion relation analysis of the plane wave
in the discrete system shows the role of nonlocality in the appearance of additional
extrema in the dispersion curve and in the sign of the group velocity. In addition,
it is shown that the Poisson coefficients for a square lattice in the nonlocal model
can take negative values and, accordingly, the lattice demonstrates auxetic behavior
along one of the crystalline directions. Also, the lattice rigidities relation at which
the auxetic behavior will definitely manifest itself has been derived.

The approach to describe non-local interactions in crystals that was presented in
this work, can also be generalized to any type of crystal lattices. Further development
is connected, first of all, with the development of a nonlinear model based on the
shift operators. Taking into account nonlinear terms greatly complicates the two-
dimensional problem, which makes it necessary to make reasonable simplifications
with respect to the nature of the wave propagation, the characteristic scale for the weak
nonlinearity and its correlation to the scale for changes in the direction perpendicular
to the direction of nonlinear strain wave propagation. Another possible direction in
the development of the algorithm based on the usage of shift operators is to consider
the construction of continuous models in the short-wave limit, just as was done for
the triangular lattice in Porubov and Berinskii (2014).
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Chapter 35

A New Class of Models to Describe the Response

of Electrorheological and Other Field Dependent

Fluids

Vít Průša and Kumbakonam R. Rajagopal

Abstract We propose a new class of models for electrorheological fluids. While
the standard constitutive relations for electrorheological fluids are based on the
assumption that the stress is a function of the symmetric part of the velocity gradient
and the intensity of the electric field, we formulate constitutive relations in an implicit
way. The stress, the symmetric part of the velocity gradient and the intensity of the
electric field are linked via a tensorial implicit equation. The potential benefit of
the new class of models is investigated by the analysis of a simple shear flow in a
transverse electric field.

35.1 Introduction

Ever since the pioneering work of Winslow (1949) concerning suspensions that can
exhibit significant changes in their response characteristics due to the application
of electrical or magnetic fields, field dependent fluids such as magnetorheological
fluids, see Rosenweig (1985), and electrorheological fluids, see Conrad et al (1991)
or Halsey et al (1992), are finding ever increasing applications in a variety of techno-
logical areas such as vibration dampers and absorbers, see Gavin et al (1996), brakes
and clutches in automobiles, lubricants, exercise machines, in the fine polishing of
surfaces and so forth, see for example Choi et al (2005) and the list of references
therein.
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While a great deal of effort has been expended in the manufacture of such field
dependent fluids, see Liu and Choi (2012) and references therein, the same cannot
be said with respect to the development of models to describe the response of such
materials and the solution of initial-boundary value problems relevant to the prob-
lems that arise in technological applications wherein such materials are employed.
While there is interest in understanding the response characteristics of both magne-
torheological and electrorheological fluids1 this study is devoted to the modeling of
electrorheological fluids. In particular, we speculate about a new methodology for
the development of mathematical models for these fluids.

Electrorheological fluids are essentially suspensions. While some suspensions
might be describable by the Navier–Stokes constitutive relation, most cannot be
described by the Navier–Stokes model. In fact, electrorheological fluids exhibit a
variety of non-Newtonian characteristics, see Abu-Jdayil and Brunn (1997); Kollias
and Dimarogonas (1993); Zukoski (1993); Krztoń-Maziopa et al (2005); Martin et al
(1994); Gast and Zukoski (1989) or Belza et al (2008) to name a few. Concerning
the rheological behaviour of suspensions and colloids, an important characteristic
exhibited by many of them is the non-monotone relationship between the shear
stress and the shear rate in simple shear flow, see for example Boltenhagen et al
(1997); David and Filip (2004) or Galindo-Rosales et al (2011). Such behavior can be
described by implicit constitutive relations that have been introduced recently within
the context of field-independent fluids, see Rajagopal (2003, 2006) and Perlácová
and Průša (2015). The question is, whether the same methodology can be fruitfully
applied in the context of field-dependent fluids in general, and electrorheological
fluids in particular.

The models that are currently in use to describe the response of electrorheological
fluids provide explicit expression for the Cauchy stress tensor T in terms of the
density, deformation that the fluid undergoes, temperature, and the electrical field,
see Gamota and Filisko (1991); Conrad et al (1991); Rajagopal and Wineman (1992);
Rajagopal and Růžička (1996, 2001) and Růžička (2000). While this allows one to
incorporate effects associated for instance the invariants of the symmetric part of
the velocity gradient in the expression for the stress, whereby providing the ability
to model shear thinning, it does not allow for the material properties to depend for
instance on the mean value of the stress or other invariants of the stress or on mixed
invariants that depend on stress as well as an appropriate measure of the deformation
and so forth. Further, if the electrorheological fluid exhibited S-shaped response in
the shear stress/shear rate plot, as many suspensions do, see Perlácová and Průša
(2015) and Janečka and Průša (2015) and references therein, the standard approach
based on expressing the Cauchy stress as a function of the symmetric part of the
velocity gradient would be inapplicable.

1 Field dependent fluids have to be studied within the full scope of an electromagnetic theory and
the stress response of such fluids would depend on both the electric as well as the magnetic fields.
However, most such fluids seems to primarily respond to either the electric or magnetic fields
and hence one can simplify their study by restricting one’s interest to one or the other field. By
electrorheological fluids we refer to fluids whose stress response depends primarily on the electric
field. For such fluids, the effects of the magnetic field are secondary and can be ignored.
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In order to address these issues, it is necessary to develop constitutive relations
wherein one has an implicit relationship between the stress, and the other quantities.
This study concerns the development of such implicit constitutive relationship. Note
that while we restrict ourselves to electrorheological fluids in order to illustrate the
issues involved, a similar approach applies for other field dependent fluids as well.

In order to pose the initial-boundary value problem for the motion of electrorhe-
ological fluid fully, one needs to formulate the balance equations for mass, linear
and angular momentum, energy, as well as the full Maxwell’s equations. However,
this is too daunting and challenging problem and hence we shall, as it is commonly
practiced, simplify it drastically. The approximations that we shall employ parallel
the standard development of explicit models for the stress in terms of the symmetric
part of the velocity gradient and the electric field that has worked reasonably well. We
will completely ignore Maxwell’s equations and consider the electric field as a known
and controllable quantity that need not be determined, see Rajagopal and Wineman
(1992); Ceccio and Wineman (1994) or Růžička (2004) and references therein for
such an approach. The only departure from the previous studies in electrorheology
is that we consider the class of models wherein the stress, symmetric part of the
velocity gradient and the electric field bear an implicit relation.

Initially we shall define a very general class of implicit constitutive relations that
can be used to model electrorheological field dependent fluids. We then particularize
to a simpler class of models wherein the symmetric part of the velocity gradient
depends on the Cauchy stress and the applied fields. We shall restrict ourselves to
what we shall refer to as algebraic models. (Constitutive relation is formulated as a
relation between pointwise values of the quantities such as Cauchy stress tensor and
the symmetric part of the velocity gradient. Neither time not space derivatives of these
quantities enter the constitutive relation.) It is quite straightforward to generalize the
modeling to include rate type models such as the Maxwell, Oldroyd or Burgers fluid
models as well as integral type fluid models.

35.2 Preliminaries

A study of the mechanics of field dependent materials, even in the absence of
thermal effects, requires the study of the usual balance equations for mass, linear
and angular momentum, as well as the equations governing the field in question. If
electromagnetic fields are involved, one has to also consider Maxwell’s equations.
However, in many instances one does not consider the full set of governing equations
but simplifies the system, as in the case of magnetohydrodynamics, see for example
Chapman and Cowling (1990).

An extreme and useful approximation that is often used in the study of the behavior
of electrorheological fluids in particular and field dependent materials in general is to
merely consider the balance equations for the mass and balance of linear and angular
momentum and consider the field as a variable that is given, that is one does not
solve the coupled equations for the balance of mass, linear and angular momentum
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and Maxwell’s equations. This is the approach that we shall adopt2. Also, we shall
restrict ourselves to the case of incompressible electrorheological fluids, but it is
straightforward to extend the current approach to the case of compressible fluids, and
to other field-dependent fluids as well.

For the electromagnetic field we can use a quasistatic approximation of Maxwell
equations

div
(
ε0εr
−→
E
)
= 0, (35.1a)

rot
−→
E = 0, (35.1b)

where
−→
E denotes the intensity of the electric field, εr is the relative permittivity

(a constant) and ε0 denotes the vacuum permittivity (a constant). For the fluid (no
external forces) we get the equations

ρ
d−→v
dt

= divT+ ε0εr

[
∇−→E
]−→

E , (35.2a)

T = T!, (35.2b)
div−→v = 0, (35.2c)

where ρ is the density of the fluid,−→v is the velocity field, T is the Cauchy stress tensor,
D is the symmetric part of the velocity gradient D=def

1
2

(
∇−→v +∇−→v !), and d−→v

dt =def
∂−→v
∂ t +(−→v •∇)−→v denotes the material time derivative. In (35.1) and (35.2) we have

already made a constitutive assumption that the polarization
−→
P is proportional to

the intensity of the electric field, thus
−→
P = ε0χe

−→
E , where χe denotes the electric

susceptibility, εr =def χe +1. Another constitutive assumption that is in fact tacitly
introduced in (35.2) is the absence of internal body couples that leads to the symmetry
(35.2b) of the Cauchy stress tensor.

The electric field
−→
E enters the balance of linear momentum (35.2a) in two ways,

“implicitly” in the constitutive equation for the Cauchy stress T, and “explicitly” as
a volume force,

[
∇−→E
]−→

E . Obviously, the latter term vanishes if one considers a
homogeneous electric field, for example an electric field between two infinite plates,
but this is not the case in more complicated geometries.

System (35.1) can be reduced to a single equation for the scalar potential ϕ ,

Δϕ = 0, (35.3)

where the intensity of the electric field
−→
E is related to the potential φ through the

formula
−→
E =−∇ϕ . Obviously, the equation for the potential can be solved without

knowledge of the pressure and velocity field. Consequently, the intensity of the

2 See Rajagopal and Wineman (1992); Rajagopal and Růžička (1996); Růžička (2000); Rajagopal
and Růžička (2001) and Růžička (2004) for a discussion of this approximation. More involved
approaches that are necessary to follow in other flow regimes are described for example in Pao
(1978); Penfield and Haus (1967) or Eringen and Maugin (1990a,b).
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electric field enters system (35.2) as a known “parameter”, which justifies the notion
of “field dependent fluid”.

In order to get a closed system of equations, one needs to complement (35.2) with
a constitutive relation that provides a link between the Cauchy stress tensor and the
other quantities, namely the electric field

−→
E and the symmetric part of the velocity

gradient D.

35.3 Constitutive Relation

In this section we shall develop implicit constitutive relations to describe the response
of electrorheological fluids. Within the purview of the classical approach, the Cauchy
stress is expressed in terms of the symmetric part of the velocity gradient D and the
intensity of the electric field

−→
E as

T = f
(
D,
−→
E
)
, (35.4)

where f denotes a tensorial function.
If the fluid of interest is isotropic, then one can appeal to standard representation

theorems in continuum mechanics, see Spencer (1971), to obtain the most general
expression for the stress in terms of the symmetric part of the velocity gradient and
the electric field. If one requires invariance with respect to the full proper orthogonal
group, it follows that

T = β0I+β1D+β2

(−→
E ⊗−→E

)
+β3D

2

+β4

(−→
E ⊗D

−→
E +D

−→
E ⊗−→E

)
+β5

(−→
E ⊗D2−→E +D2−→E ⊗−→E

)
, (35.5)

see also Rajagopal and Wineman (1992). The scalar coefficients {βi}5
i=0 depend on

the invariants TrD, TrD2, TrD3, Tr
(−→

E ⊗−→E
)

, Tr
(
D
−→
E ⊗−→E

)
and Tr

(
D2−→E ⊗−→E

)
.

We shall consider constitutive relations of the form

g
(
T,D,

−→
E
)
= 0, (35.6)

where g denotes a tensorial function. The generalisation from (35.4) to (35.6) is
motivated by the ideas introduced by Rajagopal (2003, 2006), that have been later
fruitfully applied in the mechanics of solids, electroelastic solids, magnetoleastic
solids and non-Newtonian fluids, see Rajagopal and Srinivasa (2009, 2007); Málek
et al (2010); Průša and Rajagopal (2012b); Le Roux and Rajagopal (2013); Perlá-
cová and Průša (2015); Kulvait et al (2013); Bustamante and Rajagopal (2013b,a,
2015); Rajagopal and Srinivasa (2015, 2016); Bustamante and Rajagopal (2017) and
Arvanitakis (2017) to name a few.
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Appealing to standard representation theorems for isotropic tensorial functions,
see Smith (1971); Spencer (1971) and Zheng (1994), we find that (35.6) leads to

α0I+α1T+α2T
2 +α3D+α4D

2 +α5 (TD+DT)+α6
(
T2D+DT2)

+α7
(
D2T+TD2)+α8

(
D2T2 +T2D2)+α9

(−→
E ⊗−→E

)
+α10

(−→
E ⊗T

−→
E +T

−→
E ⊗−→E

)
+α11

(−→
E ⊗D

−→
E +D

−→
E ⊗−→E

)
+α12

(−→
E ⊗T2−→E +T2−→E ⊗−→E

)
+α13

(−→
E ⊗D2−→E +D2−→E ⊗−→E

)
+α14

(−→
E ⊗TD

−→
E +TD

−→
E ⊗−→E

)
+α15

(
T
−→
E ⊗D

−→
E +D

−→
E ⊗T

−→
E
)
= 0, (35.7)

where the material moduli {αi}15
i=0 scalar functions of the invariants

I1 =def TrT, I2 =def TrT2, I3 =def TrT3, (35.8a)

I4 =def TrD, I5 =def TrD2, I6 =def TrD3, (35.8b)

I7 =def Tr(TD) , I8 =def Tr
(
T2D
)
, I9 =def Tr

(
TD2) , (35.8c)

I10 =def Tr
(
T2D2) (35.8d)

I11 =def
−→
E •−→E , (35.8e)

I12 =def
−→
E •T−→E , I13 =def

−→
E •T2−→E , (35.8f)

I14 =def
−→
E •D−→E , I15 =def

−→
E •D2−→E , (35.8g)

I16 =def T
−→
E •D−→E (35.8h)

see also Bustamante and Rajagopal (2013b) and comments therein.
It is well-nigh impossible to develop an experimental protocol that can identify

the numerous material moduli that are functions of the numerous invariants that
characterize the general model. We thus look for a sensible simple sub-class, and
we point out some features that make the models of the type (35.7) of interest in the
modelling of the response of electrorheological fluids.

First, we decompose the Cauchy stress tensor to the spherical and traceless part,

T =−mI+S, (35.9a)

where S is a traceless extra stress tensor, TrS = 0, and m is the mean normal stress.
Now instead of specification of the constitutive relation for the full Cauchy stress
tensor T, we will search for a constitutive relation for the extra stress tensor S only.
That is we replace (35.6) by

h
(
S,D,

−→
E
)
= 0. (35.9b)

Doing so, we have lost the opportunity to model phenomena such as viscosity depen-
dent on the mean normal stress. The benefit is that we will be dealing with a simpler
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but yet very rich class of constitutive relations. (In particular the incompressibility
of the material is much easier to handle if we use restricted form (35.9) instead
of (35.6).) If we use the representation theorem for function h in (35.9b), we get

α̃1S+ α̃2
(
S2)

δ + α̃3D+ α̃4
(
D2)

δ + α̃5(SD+DS)δ + α̃6
(
S2D+DS2)

δ

+ α̃7
(
D2S+SD2)

δ + α̃8
(
D2S2 +S2D2)

δ + α̃9

(−→
E ⊗−→E

)
δ

+ α̃10

(−→
E ⊗S

−→
E +S

−→
E ⊗−→E

)
δ
+ α̃11

(−→
E ⊗D

−→
E +D

−→
E ⊗−→E

)
δ

+ α̃12

(−→
E ⊗S2−→E +S2−→E ⊗−→E

)
δ
+ α̃13

(−→
E ⊗D2−→E +D2−→E ⊗−→E

)
δ

+ α̃14

(−→
E ⊗SD

−→
E +SD

−→
E ⊗−→E

)
δ
+ α̃15

(
S
−→
E ⊗D

−→
E +D

−→
E ⊗S

−→
E
)
δ
= 0,

(35.10)

where {α̃i}16
i=1 are functions of combined invariants of S, D and

−→
E . (These are

essentially the same as those listed in (35.8a), it suffices to replace T by S.) The
symbol Aδ denotes the traceless part of the corresponding tensor, that is Aδ =
A− 1

3 TrA.
Out of the plethora of particular models in the class (35.9), we shall first focus on

linear models. This includes the standard models wherein the extra stress tensor is a
linear function of the symmetric part of the velocity gradient, and the complementary
models wherein the symmetric part of the velocity gradient is a linear function of the
extra stress tensor. In the former case the representation theorem implies that

S = a3D+a9 Tr
(
D
−→
E ⊗−→E

)(−→
E ⊗−→E

)
δ
+a11

(
D
−→
E ⊗−→E +

−→
E ⊗D

−→
E
)
δ
, (35.11)

where the scalar coefficients a3, a9 and a11 can be functions of
−→
E •−→E . (Recall that

the fluid is assumed to be incompressible, hence the linear invariant TrD vanishes.)
On the other hand, if we assume the opposite, that is if we assume that the symmetric
part of the velocity gradient D is a linear function of the extra stress tensor S, then
the representation theorem implies that

D = b1S+b9 Tr
(
S
−→
E ⊗−→E

)(−→
E ⊗−→E

)
δ
+b10

(−→
E ⊗S

−→
E +S

−→
E ⊗−→E

)
δ
, (35.12)

where the scalar coefficients b1, b9 and b10 can be functions of
−→
E •−→E .

After discussing linear models, we move forward to nonlinear models. If one
insists on the standard approach, that is if one requires the extra stress tensor S to
be a function of the symmetric part of the velocity gradient D and the intensity of
the electric field

−→
E , then, according to the representation theorem, the most general

isotropic tensorial function of D and
−→
E has the form
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S = a3D+a4
(
D2)

δ +a9

(−→
E ⊗−→E

)
δ
+a11

(
D
−→
E ⊗−→E +

−→
E ⊗D

−→
E
)
δ

+a13

(
D2−→E ⊗−→E +

−→
E ⊗D2−→E

)
δ

(35.13)

where a3, a4, a9 and a13 can be functions of the corresponding combined invariants
of D and

−→
E . In particular we will focus on the case where the material coefficients

a3, a4, a9 and a13 are constants.
Finally, we introduce a fully implicit model that includes all the bilinear tensorial

terms involving S and D, that is we assume that the constitutive relation is given by
the formula

c1S+ c3D+ c5(SD+DS)δ + c9

(−→
E ⊗−→E

)
δ
+ c10

(−→
E ⊗S

−→
E +S

−→
E ⊗−→E

)
δ

+ c11

(−→
E ⊗D

−→
E +D

−→
E ⊗−→E

)
δ
+ c14

(−→
E ⊗SD

−→
E +SD

−→
E ⊗−→E

)
δ

+ c15

(
S
−→
E ⊗D

−→
E +D

−→
E ⊗S

−→
E
)
δ
= 0, (35.14)

where c1, c3, c5, c9, c10, c11, c14 and c15 can be functions of the complete set of
invariants.

In what follows, the models will not assessed with respect to their consistency with
the laws of thermodynamics. Such a task would require one to deal with intricated
nonlinear models, see for example Perlácová and Průša (2015) for a preliminary
study in the case of non-Newtonian fluids, and also Rajagopal and Srinivasa (2008)
for a general approach to the same. Here the aim is different. We want to discuss the
potential of the additional tensorial terms especially form the perspective of their
qualitative features such as the presence of normal stress differences3, which is an
important qualitative characteristics of complex fluids, see for example Coleman et al
(1966); Barnes et al (1989) or Tanner and Walters (1998).

35.4 Simple Shear Flow

In order to assess qualitative features of the models, we investigate the simple shear
flow under a constant transverse electric field, see Fig. 35.1. The fluid flows in
between two infinite parallel plates kept at constant electric potential ϕtop and ϕbottom.
The flow is driven by the motion of the top plate that moves with the velocity

−→
V , and

the distance between the plates is 2h. No-slip boundary condition for the velocity
field −→v is assumed on both plates.

Given the simple geometry we are interested in, it is straightforward to solve the
field equation (35.3). Intensity of the electric field

−→
E is then given by the formula

3 See Sect. 35.4 for a precise definition of the concept of normal stress differences.
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−→
E = E−→e y =

⎡⎣0
E
0

⎤⎦ , (35.15)

where E = ϕB−ϕT
2h .

Cauchy stress tensor is assumed to take the form

T =

⎡⎢⎣Tx̂x̂ 0 0
0 Tŷŷ Tŷẑ
0 Tŷẑ Tẑẑ

⎤⎥⎦ , (35.16)

where the components are constants. Further, the velocity field is assumed to take the
form of a steady unidirectional flow

−→v = vẑ(y)−→e ẑ, (35.17)

and the magnitude of the velocity is a linear function of y, vẑ =Vtop
( y

h +1
)
. If the

velocity field takes the form (35.17) and the Cauchy stress field is given by the
formula (35.16), then the equations (35.2) with no-slip boundary condition for the
velocity are fulfilled. It remains to check whether the corresponding constitutive
relation is also satisfied. In other words, using the corresponding constitutive relation,
we need to express the components of the stress tensor in terms of the problem data,
that is in terms of the gradient dvẑ

dy .
A more convenient way of writing the formula for the Cauchy stress tensor is

T =

⎡⎣C 0 0
0 C+A T
0 T C+B

⎤⎦ . (35.18)

If the Cauchy stress tensor has the form (35.18), then it is easy to keep track on the
normal stress differences. If the coordinate systems is chosen as above, then the first
and second normal stress differences are defined as follows

Fig. 35.1 Simple shear flow
in a transverse electric field.

eŷ

eẑ
ex̂

h

x

z

V = Vtopeẑy

ϕ = ϕtop

ϕ = ϕbottom
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N1 = Tẑẑ−Tŷŷ, (35.19a)

N2 = Tŷŷ−Tx̂x̂, (35.19b)

see for example Coleman et al (1966), hence we see that N1 = B−A, and N2 = A.
The traceless part of T then reads

S =

⎡⎢⎣−
A+B

3 0 0
0 2A−B

3 T
0 T 2B−A

3

⎤⎥⎦ . (35.20)

Further, the symmetric part of the velocity gradient is given by the formula

D =
1
2

dvẑ

dy

⎡⎣0 0 0
0 0 1
0 1 0

⎤⎦ , (35.21)

and the formulae for some of the tensorial terms in the representation theorem read
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−→
E ⊗−→E = E2

⎡⎣0 0 0
0 1 0
0 0 0

⎤⎦ , (35.22a)

(−→
E ⊗−→E

)
δ
= E2

⎡⎢⎣−
1
3 0 0

0 2
3 0

0 0 − 1
3

⎤⎥⎦ , (35.22b)

D2 =
1
4

(
dvẑ

dy

)2
⎡⎣0 0 0

0 1 0
0 0 1

⎤⎦ , (35.22c)

(
D2)

δ =
1
4

(
dvẑ

dy

)2
⎡⎢⎣−

2
3 0 0

0 1
3 0

0 0 1
3

⎤⎥⎦ , (35.22d)

DS+SD =
1
2

dvẑ

dy

⎡⎢⎣0 0 0
0 2T A+B

3
0 A+B

3 2T

⎤⎥⎦ (35.22e)

(DS+SD)δ =
1
3

dvẑ

dy

⎡⎢⎣−2T 0 0
0 T A+B

2
0 A+B

2 T

⎤⎥⎦ (35.22f)

D
−→
E ⊗−→E +

−→
E ⊗D

−→
E =

1
2

E2 dvẑ

dy

⎡⎣0 0 0
0 0 1
0 1 0

⎤⎦ , (35.22g)

(
D
−→
E ⊗−→E +

−→
E ⊗D

−→
E
)
δ
=

1
2

E2 dvẑ

dy

⎡⎣0 0 0
0 0 1
0 1 0

⎤⎦ , (35.22h)

D2−→E ⊗−→E +
−→
E ⊗D2−→E = E2

(
dvẑ

dy

)2
⎡⎣0 0 0

0 1 0
0 0 0

⎤⎦ , (35.22i)

(
D2−→E ⊗−→E +

−→
E ⊗D2−→E

)
δ
= E2

(
dvẑ

dy

)2
⎡⎢⎣−

1
3 0 0

0 2
3 0

0 0 − 1
3

⎤⎥⎦ , (35.22j)

S
−→
E ⊗−→E +

−→
E ⊗S

−→
E = E2

⎡⎣0 0 0
0 2

3 (2A−B) T
0 T 0

⎤⎦ , (35.22k)

(
S
−→
E ⊗−→E +

−→
E ⊗S

−→
E
)
δ
= E2

⎡⎢⎣−
2
9 (2A−B) 0 0

0 4
9 (2A−B) T

0 T − 2
9 (2A−B)

⎤⎥⎦ ,
(35.22l)
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SD
−→
E ⊗−→E +

−→
E ⊗SD

−→
E =

1
2

dvẑ

dy
E2

⎡⎢⎣0 0 0
0 2T 2B−A

3
0 2B−A

3 0

⎤⎥⎦ , (35.22m)

(
SD
−→
E ⊗−→E +

−→
E ⊗SD

−→
E
)
δ
=

1
2

dvẑ

dy
E2

⎡⎢⎣−
2
3 T 0 0
0 4

3 T 2B−A
3

0 2B−A
3 − 2

3 T

⎤⎥⎦ , (35.22n)

S
−→
E ⊗D

−→
E +D

−→
E ⊗S

−→
E =

1
2

dvẑ

dy
E2

⎡⎢⎣0 0 0
0 0 2A−B

3
0 2A−B

3 2T

⎤⎥⎦ , (35.22o)

(
S
−→
E ⊗D

−→
E +D

−→
E ⊗S

−→
E
)
δ
=

1
2

dvẑ

dy
E2

⎡⎢⎣−
2
3 T 0 0
0 − 2

3 T 2A−B
3

0 2A−B
3

4
3 T

⎤⎥⎦ . (35.22p)

Let us now use the explicit formulae in the specific constitutive relations (35.11),
(35.12), (35.13) and (35.14), and let us see the implications of the given constitutive
relation with respect to qualitative properties such as the normal stress differences.

35.4.1 Extra Stress Tensor S is a Linear Function of the
Symmetric Part of the Velocity Gradient D

If we substitute (35.22) into (35.11), we get⎡⎢⎣−
A+B

3 0 0
0 2A−B

3 T
0 T 2B−A

3

⎤⎥⎦= a3
1
2

dvẑ

dy

⎡⎣0 0 0
0 0 1
0 1 0

⎤⎦+a11
1
2

E2 dvẑ

dy

⎡⎣0 0 0
0 0 1
0 1 0

⎤⎦ . (35.23)

(The invariant Tr
(
D
−→
E ⊗−→E

)
vanishes in the simple shear flow setting we are inter-

ested in, see (35.22g).) Consequently, we see that

A = 0, (35.24a)
B = 0, (35.24b)

T =
(
a3 +a11E2) 1

2
dvẑ

dy
. (35.24c)

This means that no normal stress differences are generated in the simple shear flow.
In fact, the fluid described by the constitutive relation (35.11) effectively behaves, in
the simple shear flow, as a fluid with constitutive relation

S =
(
a3 +a11E2)D, (35.25)
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which means that the extra tensorial term
(
D
−→
E ⊗−→E +

−→
E ⊗D

−→
E
)
δ

in (35.11) has
no impact on the structure of the extra stress tensor matrix.

The fact that A and B vanish is a natural consequence of the fact that the normal
stress differences are second order effects, hence they can not be captured by a linear
constitutive relation.

35.4.2 Symmetric Part of the Velocity Gradient D is a Linear
Function of the Extra Stress Tensor S

Let us now consider the other linear constitutive relation. If we substitute into (35.12),
we get

1
2

dvẑ

dy

⎡⎣0 0 0
0 0 1
0 1 0

⎤⎦= b1

⎡⎢⎣−
A+B

3 0 0
0 2A−B

3 T
0 T 2B−A

3

⎤⎥⎦+b9
1
3

E2 (2A−B)

⎡⎣0 0 0
0 1 0
0 0 0

⎤⎦

+b10E2

⎡⎢⎣−
2
9 (2A−B) 0 0

0 4
9 (2A−B) T

0 T − 2
9 (2A−B)

⎤⎥⎦ , (35.26)

which implies that

A = 0, (35.27a)
B = 0, (35.27b)(

b1 +b10E2)T =
1
2

dvẑ

dy
. (35.27c)

Again, as expected, no normal stress differences are generated in the simple shear
flow, and the fluid effectively behaves as a fluid with constitutive relation(

b1 +b10E2)S = D, (35.28)

hence the extra tensorial term
(−→

E ⊗S
−→
E +S

−→
E ⊗−→E

)
δ

plays no important role
regarding the structure of the extra stress tensor matrix.

35.4.3 Extra stress tensor S is a function of the symmetric part of
the velocity gradient

Substituting for S, D and
−→
E into (35.13) yields
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A+B

3 0 0
0 2A−B

3 T
0 T 2B−A

3

⎤⎥⎦= a3
1
2

dvẑ

dy

⎡⎣0 0 0
0 0 1
0 1 0

⎤⎦+a4
1
4

(
dvẑ

dy

)2
⎡⎢⎣−

2
3 0 0

0 1
3 0

0 0 1
3

⎤⎥⎦
+a9E2

⎡⎢⎣−
1
3 0 0

0 2
3 0

0 0 − 1
3

⎤⎥⎦+a11
1
2

E2 dvẑ

dy

⎡⎣0 0 0
0 0 1
0 1 0

⎤⎦+a13E2
(

dvẑ

dy

)2
⎡⎢⎣−

1
3 0 0

0 2
3 0

0 0 − 1
3

⎤⎥⎦ .
(35.29)

This implies that the following three independent equations must be satisfied,

A+B =
(a4

2
+a13E2

)(dvẑ

dy

)2

+a9E2, (35.30a)

A−B = a9E2 +a13E2
(

dvẑ

dy

)2

, (35.30b)

T =
1
2
(
a3 +a11E2) dvẑ

dy
. (35.30c)

(The first equation follows from comparison of x̂x̂ elements of the matrices, the
second equation follows by subtracting equations that follow comparison of ẑẑ and ŷŷ
elements in the matrices. The last equation follows from comparison of ŷẑ elements
of the matrices.) This means that

A =
(a4

4
+a13E2

)(dvẑ

dy

)2

+a9E2, (35.31a)

B =
a4

4

(
dvẑ

dy

)2

, (35.31b)

T =
1
2
(
a3 +a11E2) dvẑ

dy
, (35.31c)

hence we get nonzero normal stress differences.
In particular, if we want the material parameters in (35.13) to be constants, and

if we require the extra stress tensor to vanish if D = 0 and
−→
E =

−→
0 , then we have

to fix a9 = 0. In such a case, we see that the constitutive relation does not allow us
to describe a fluid where A+B = 0 for all shear rates and intensities of the electric
field, and simultaneously have A �= 0 and B �= 0.

35.4.4 Fully Implicit Constitutive Relation – Constitutive Relation
with Bilinear Tensorial Terms

Substituting for S, D and
−→
E into (35.14) yields
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c1

⎡⎢⎣−
A+B

3 0 0
0 2A−B

3 T
0 T 2B−A

3

⎤⎥⎦+ c3
1
2

dvẑ

dy

⎡⎣0 0 0
0 0 1
0 1 0

⎤⎦+ c5
1
3

dvẑ

dy

⎡⎢⎣−2T 0 0
0 T A+B

2
0 A+B

2 T

⎤⎥⎦
+ c9E2

⎡⎢⎣−
1
3 0 0

0 2
3 0

0 0 − 1
3

⎤⎥⎦+ c10E2

⎡⎢⎣−
2
9 (2A−B) 0 0

0 4
9 (2A−B) T

0 T − 2
9 (2A−B)

⎤⎥⎦
+ c11

1
2

E2 dvẑ

dy

⎡⎣0 0 0
0 0 1
0 1 0

⎤⎦+ c14
1
2

dvẑ

dy
E2

⎡⎢⎣−
2
3 T 0 0
0 4

3 T 2B−A
3

0 2B−A
3 − 2

3 T

⎤⎥⎦
+ c15

1
2

dvẑ

dy
E2

⎡⎢⎣−
2
3 T 0 0
0 − 2

3 T 2A−B
3

0 2A−B
3

4
3 T

⎤⎥⎦=

⎡⎣0 0 0
0 0 0
0 0 0

⎤⎦ . (35.32)

This implies that the following three independent equations must be satisfied

c1 (A+B)+ c52T
dvẑ

dy
+ c9E2 + c10

2
3

E2 (2A−B)

+
dvẑ

dy
E2T(c14 + c15) = 0, (35.33a)

c1 (A−B)+ c9E2 + c10
2
3

E2 (2A−B)+
dvẑ

dy
E2T(c14− c15) = 0, (35.33b)

c1T+ c3
1
2

dvẑ

dy
+ c5

dvẑ

dy
A+B

6
+ c10E2T

+
E2

2
dvẑ

dy

[
c11 + c14

2B−A
3

+ c15
2A−B

3

]
= 0. (35.33c)

(The first equation follows from comparison of x̂x̂ elements of the matrices, the
second equation follows by subtracting equations that follow from comparison of ẑẑ
and ŷŷ elements in the matrices. The last equation follows from comparison of ŷẑ
elements of the matrices.)

Constitutive relation (35.14) leads to interesting results even if we put most of
the material parameters equal to zero. Indeed, let us set c10 = 0, c5 = 0, c11 = 0 and
c9 = 0. This means that we do not consider tensorial terms that do not involve

−→
E ,

the terms that are linear in S and D, and the tensorial term that depends exclusively
on
−→
E . If we do so, and if we further fix

c14 =def −c15, (35.34)

then (35.33) reduces to
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A+B = 0, (35.35a)

A−B = 2c15
dvẑ

dy
E2T, (35.35b)

c1T+ c3
1
2

dvẑ

dy
+

E2

2
dvẑ

dy
c15

A−B
3

= 0, (35.35c)

which yields

A = c15
dvẑ

dy
E2T, (35.36a)

B =−A, (35.36b)

T =−
c3
2

c1 +
c2

15
3 E4

(
dvẑ

dy

)2
dvẑ

dy
, (35.36c)

or, in the explicit form,

A =−1
2

c3c15

c1 +
c2

15
3 E4

(
dvẑ

dy

)2

(
dvẑ

dy

)2

E2, (35.37a)

B =−A, (35.37b)

T =−
c3
2

c1 +
c2

15
3 E4

(
dvẑ

dy

)2
dvẑ

dy
. (35.37c)

Consequently, wee see that in the case of constant material coefficients the simple
constitutive relation (35.14) allows us to describe the behaviour that is beyond the
reach of constitutive relation (35.13) and vice versa.

35.5 Conclusion

We have seen that the implicit type constitutive relations substantially expand the
class of models the can be used to characterise the response of electrorheological
fluids, especially regarding genuine three dimensional effects such as normal stress
differences. This is apparent even in the simplest setting of simple shear flow and
transverse electric field. It would be worthwhile to test the influence of the additional
tensorial terms in more complex geometries and inhomogeneous electric fields, in
particular in geometries where one can still have an analytic formula for the electric
field, see for example Love (1924); Jeffery (1921) and Bewley (1948). Some partial
results in this direction can be found for example in Průša and Rajagopal (2012a).

An important qualitative feature of electrorheological fluids, namely the yield
stress behaviour, is not captured by the specific models discussed in Sect. 35.3. How-
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ever, in the framework of implicit constitutive relations, it is easy to design models
that are capable of capturing the yield stress phenomenon, and amend the constitutive
relations for electrorheological fluids correspondingly. In fact, the yield stress phe-
nomenon has been studied from the perspective of implicit constitutive relations in
the context of non-Newtonian fluids, see especially Rajagopal and Srinivasa (2008)
and follow-up works such as Bulíček et al (2009, 2012); Diening et al (2013) and
Maringová and Žabenský (2018) focused on the corresponding mathematical issues.

The outlined approach to the constitutive relations for electrorheological fluids
fits into a larger framework of the so-called implicit constitutive relations, that has
been found useful both in modelling the response of solids and fluids. The reader
interested in the benefits of using implicit constitutive relations is kindly referred to
recent review (Rajagopal and Saccomandi, 2016).
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Chapter 36

Second Gradient Continuum: Role of

Electromagnetism Interacting with the

Gravitation on the Presence of Torsion and

Curvature

Lalaonirina R. Rakotomanana

Abstract The goal of this paper is to link the geometric variables of strain gradient
continuum with electromagnetic fields. For that purpose, we derive the electromag-
netic wave equation within a Riemann-Cartan continuum where curvature and torsion
are present. We also show that the gravitational and electromagnetic fields are re-
spectively identified as geometric objects of such a continuum, namely the curvature
ℜγ
αβλ for gravitation which is a classical result, and the torsion ℵγ

αβ as source of
electromagnetism.

36.1 Introduction

First, interaction of Einstein gravitation and electromagnetism was often considered
in a curved Riemannian continuum e.g. Fernandez-Nunez and Bulashenko (2016).
It is usually assumed the case where the electromagnetic field is of the order of
small perturbation of the spacetime metric. Only the influence of the metric on
electromagnetic field is mostly accounted for, not the converse. Second, the influence
of the Riemann-Cartan geometry on the electromagnetic field is not so easy. A free
electromagnetic field is suggested to not produce torsion e.g. Hehl et al (1976), and
there is in principle no contribution from torsion in Maxwell equations. When a
strong magnetic field coexists with matter distribution, there is however a possibility
to induce spin polarization of individual particles composing the continuum matter
e.g. Prasanna (1975). Some authors have even suggested that torsion play a keyrole in
electromagnetism when considering electromagnetic field within twisted continuum
e.g. Hammond (1989). They propose that the electromagnetic potential is represented
by the torsion vector Aα := ℵα = ℵβ

αβ . The influence of torsion tensor as cosmic
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dislocation (singularity of the curvature tensor) was investigated in e.g. Dias and
Moraes (2005), or some material defects as screw dislocations (Fumeron et al, 2015),
or fluids with spin density e.g. Schutzhold et al (2002). They have included the 2-form
torsion with one non-vanishing component as 2πβδ 2(r) dr∧dθ in the metric of the
spacetime, then derive Maxwell’s equations in a cylindrical coordinates to solve two
interesting cases: the electric field of a line charge, and the magnetic field of the line
current. However, they seemed to assume a connection based only a metric but do
not consider the contortion tensor for covariant derivation of Maxwell’s equations in
the framework of Riemann-Cartan geometry.

In the context of nonhomogeneous continuum matter, a question arised some
years ago in Maugin (1993) about the couplings of cracks and more generally in-
homogeneities with the electromagnetic fields within the matter. A main difficulty
arises with the derivation of governing wave equations, namely the formulation of
constitutive laws and conservation laws for strain gradient continuum which requires
the identification of physical quantities with geometrical variables e.g. Futhazar
et al (2014). A convenient tool for deriving constitutive laws and conservation laws
from a Lagrangian density lies on the concept of variation of an action, namely the
Lagrangian variation and the Eulerian variation (Poincaré invariance). Covariance
requires the use of metric, torsion, and curvature as arguments of Lagrangian function
for a second gradient continuum e.g. Antonio Tamarasselvame and Rakotomanana
(2011). For the present paper, we are interested in the wave propagation and relative
gravitation inspired by the pioneering work of Maugin (1978). We attempt in this
paper to define some link between the electromagnetic fields and the second gradient
continuum geometric variables. Electromagnetic waves, including light wave prop-
agation, are described by Maxwell’s equations within Minkowskian, Riemannian
or Riemann-Cartan continuum. We consider in this work some elements of the the-
ory of interaction between gravitation and electromagnetism based on the classical
Hilbert-Einstein action.

36.2 Electromagnetism in Minkowski Spacetime

36.2.1 Maxwell’s 3D Equations in Vacuum

Electromagnetism theory is built upon electric field EEE, and magnetic field BBB. Both of
them depend on the space coordinate and the time in the general case. The general
form of the Maxwell’s equations is intimately linked to the geometry of the spacetime
vacuum characterized by the Minkowski metric, they constitute the fundamental
basis of classical electrodynamics. Vacuum Maxwell’s equations are derived in the
local coordinates of flat Minkowski spacetime M endowed with the metric

ĝμν := {+1,−1,−1,−1}

Coordinates of the spacetime are denoted
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xμ := (x0 = ct,x1,x2,x3)

Conservation laws are rigorously derived with the derivative with respect to the
proper time which is a particular case of the objective derivative defined from the
concept of integral invariance of Poincaré e.g. Rakotomanana (2003). Before going
into the derivation of Maxwell’s equation, it is worth to remind the notion of proper
time in the framework of special relativity. Consider a body / or a referential frame
moving with a uniform velocity v with respect to M . The proper time is given
by: dτ :=

√
1− (v2/c2)dt, where the proper time τ along a timelike world line in

the spacetime M is the laps of time measured by a clock following that line. The
derivative with respect to the proper time τ is then be calculated by applying the
transitivity rule:

∂
∂τ

=
∂x0

∂τ
∂0 = c

dt
dτ

∂0 � c ∂0

when the velocity is small compared to the light speed v� c. Therefore, classical
three-dimensional Maxwell’s equations take the form of, the connection of 3D
vacuum space is denoted ∇̂, e.g. Kleinert (2008); Kovetz (2000):{

∇̂ ·DDD = ρ
∇̂×HHH− c ∂0DDD = JJJ

,

{
∇̂ ·BBB = 0

∇̂×EEE + c ∂0BBB = 0
(36.1)

in which EEE and HHH are the electric and magnetic field intensities, whereas DDD (displace-
ment) and BBB (magnetic induction) are the electric and magnetic flux densities. ρ and
JJJ are the volume charge density and the electric current density respectively. The
fluxes DDD and BBB are related to the field intensities via the electromagnetic constitutive
laws for the vacuum e.g. Kovetz (2000):

DDD = ε0EEE, BBB = μ0HHH (36.2)

Constants ε0 and μ0 are called electric permittivity and magnetic permeability of the
vacuum space, respectively, and c2 := (ε0μ0)

−1. As such, the Maxwell’s equations
are the conservation laws, and then by accounting for constitutive laws, we obtain
the partial differential equations where the electric and magnetic intensities are the
unknowns. From the equations (36.1), an alternative expression of the electric and
magnetic fields holds:

EEE :=−c ∂0AAA− ∇̂φ , and BBB := ∇̂×AAA (36.3)

where AAA and φ are the vector and scalar potentials of electromagnetism. Fluxes may
be re-written as magnetic BBB := B jk dx j ∧ dxk and Bi := (1/2)ε i jk B jk and electric
variables DDD := D jk dx j ∧dxk and Di := (1/2)ε i jk D jk. By using the form notation,
we remind the electromagnetic strength or also Faraday tensor as a 2-form:

F = E1dx1∧dx0 +E2dx2∧dx0 +E3dx3∧dx0

+ B1dx2∧dx3 +B2dx3∧dx1 +B3dx1∧dx2 (36.4)
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from which we can easily check the correspondence of the components Fμν with
the components of EEE and BBB. The Maxwell’s equations in terms of in terms φ and AAA
do not uniquely determine the electric potential and magnetic potential. If φ0 and AAA0
are solutions, then so are the pair:

φ = φ0 + c∂0Λ , AAA =AAA0− ∇̂Λ (36.5)

by checking EEE = −c∂0(AAA0− ∇̂Λ)− ∇̂(φ0 + c∂0Λ) and BBB = ∇̂× (AAA0 + ∇̂Λ) where
Λ(xμ) is an arbitrary scalar function assumed to be of class C 2, which is called
gauge-transformation function. However, the gauge invariance is satisfied since we
assumed: −c∂0(∇̂Λ)− ∇̂t(c∂0Λ) = 0, and ∇̂× (∇̂Λ) = 0.

36.2.2 Covariant Formulation of Maxwell’s Equations

Maxwell’s equations in vacuum include both conservation laws and the constitutive
equations. The invariant formulation of electromagnetism theory in the Minkowski
spacetime M is obtained by considering the Faraday tensor with components (36.4):

Fμν := ∂μAν −∂νAμ , Fμν =

⎡⎢⎢⎣
0 −E1 −E2 −E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0

⎤⎥⎥⎦ (36.6)

where the combined electromagnetic field (EEE,BBB) do not transform as 3-vectors but
as the six components of the skew-symmetric tensor Fμν . We conform here to the
convention in e.g. Hehl (2008); Obukhov (2008). In this way the skew symmetric
tensor Fμν is chosen as primal variables of the theory. Let us now define the dual
variable H μν constructed from the displacement and the magnetic field. Indepen-
dently on the constitutive laws, the classical electromagnetism theory considers the
electromagnetic excitation as a two-form Hμν :

H := −H1dx1∧dx0−H2dx2∧dx0−H3dx3∧dx0

+ D3dx1∧dx2 +D1dx2∧dx3 +D1dx2∧dx3 (36.7)

in the same way as the definition of the electromagnetic strength (36.4). The variable
we are interested in is in fact the dual variable H μν in order to be able to link it
with the primal variable Fαβ . From (36.7), we easily obtain the two contravariant
components as exactly as for the linear case:

H μν =

⎡⎢⎢⎣
0 D1 D2 D3

−D1 0 H3 −H2

−D2 −H3 0 H1

−D3 H2 −H1 0

⎤⎥⎥⎦ (36.8)
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owing again that ε0μ0 = 1 (the choice of coordinate system where x0 := ct allows us
to act as if c = 1 and the metric of the flat Minkowski spacetime holds

gμν := {+1,−1,−1,−1}

It conforms to the linear constitutive law but it should again be stressed that in the
general case this is in fact considered as a definition of the dual variable independently
on the constitutive law. Previous 3D equations (36.1) may be recast in 4-dimensional
covariant Maxwell equations by using the Minkowski spacetime connection:

∇̂μH μν = Jν , ∇̂μF ∗μν = 0 (36.9)

where H μν denotes the electromagnetic tensor including the electric displacement
field and the magnetic field, and F ∗μν := (1/2)εμνκσFκσ is the dual of F μν

(εμνκσ being the Levi-Civita tensor ε0123 :=+1). Covariant formulation of constitu-
tive laws may be derived by means of the electromagnetic Lagrangian:

L :=−1
4

H μνFμν (36.10)

By introducing the definitions (36.6) and (36.8) the three-dimensional formulation of
the Lagrangian density function reduces to:

L =
1
2
(DDD ·EEE−BBB ·HHH)

Note 36.1. The covariance of the Maxwell’s 3D equations with respect to rotations,
space reflection, time reversal, and charge conjugation (modification of positive
charge to negative charge) may be checked by means of a four-dimensional covari-
ance analysis with respect to Lorentz group of transformations.

36.3 Electromagnetism in Curved Continuum

36.3.1 Variational Method and Covariant Maxwell’s Equations

Various phenomena may have effects on electromagnetic waves such as the presence
of gravitational field. The constitutive equations should be worthily changed to
account for either the modification of the spacetime environment in presence of
gravity for instance (curvature), or the propagation of electromagnetic fields within
continuum matter. Here, we thus consider the electromagnetic constitutive laws
DDD = εEEE and BBB = μHHH where ε and μ are the electric and magnetic parameters of
the continuum replacing ε0 and μ0. For the sake of the simplicity, let us consider
the simplest example of action for free electromagnetic field without sources and
occurring within a Riemann curved continuum:
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S :=
∫
M

Lωn with L :=−1
4
F μν Fμν +

1
2χ

R (36.11)

where the Faraday tensor and the scalar curvature are defined by the relationships:

Fμν := ∇μAν −∇νAμ , R := gμνℜμν (36.12)

where the Faraday tensor F μν is calculated with the connection with zero torsion.
First, the Lagrangian variation of the action (36.11) allows us to obtain the expression:

ΔS =
∫
M

{
−1

2
F μνΔFμν +

1
4
Fμν

(
gμλF ρν +F μρgλν

)
Δgλρ

+
1

2χ

(
ℜλρ − R

2
gλρ
)
Δgλρ +

1
8
F μν Fμν gλρΔgλρ

+
1

2χ
gμν
[
∇λ

(
ΔΓ λ

μν

)
−∇μ

(
ΔΓ λ

λν

)]}
ωn

For the variation of the Lagrangian (36.11), it is worth to remind the independent
variations of the metric and the four-potential vector. The Lagrangian variation of the
Faraday tensor takes the form of :

ΔFμν = ∇μ(ΔAν)−∇ν(ΔAμ) (36.13)

This relation is obtained by directly writing:

ΔFμν = Δ
(
∂μAν −Γ ρ

μνAρ

)
−Δ

(
∂νAμ −Γ ρ

νμAρ

)
=
(
∂μΔAν −Γ ρ

μνΔAρ −ΔΓ ρ
μνAρ

)
−
(
∂νΔAμ −Γ ρ

νμΔAρ −ΔΓ ρ
νμAρ

)
accounting for that the connection variation ΔΓ ρ

μν induces a variation of the field
ΔFμν . Second, the two systems of conservation laws associated to the unknown
primal variables (say the 4-vector potential Aμ , and the Riemannian metric gμν )
are derived by varying the Lagrangian along the Lie-derivative variations LξAμ ,
and Lξgμν . Shifting the divergence terms at the boundary of the continuum and
assuming a zero divergence at this boundary allow us to obtain the conservation laws.
We can rearrange the Lagrangian variation of the action to give:

ΔS =

∫
M

∇νF
μν ΔAμ ωn +

∫
M

[
1

2χ

(
ℜ
λρ − R

2
gλρ
)

+
1
8
F μνFμν gλρ +

Fμν

4

(
gμλF ρν +F μρgλν

)]
Δgλρ ωn (36.14)

owing that the Faraday tensor is in fine expressed in terms of the potential Aμ by
means of equation (36.12). Due to the arbitrariness of the metric and potential
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variations, we obtain the classical (and covariant) Einstein-Maxwell’s equations:⎧⎪⎨⎪⎩
∇νF μν = 0

1
2χ

(
ℜ
λρ − R

2
gλρ
)
+

1
8
F μνFμν gλρ +

Fμν

4

(
gμλF ρν +F μρgλν

)
= 0

(36.15)
where the first equation is the covariant Maxwell’s equations in a Riemann continuum,
such as second gradient continuum. The second equation governs the interaction of
electromagnetism with gravitation. The unknowns in first term of the second equation
are the continuum metric. The electromagnetic source (including both the second
and the third terms) in the second equation constitutes the energy-momentum tensor.
They influence the gravitation field and vice versa the metric field has also some
influence on the electromagnetic field via the Levi-Civita covariant derivative ∇.
Maxwell’s equations (36.15) (first row) are used to analyze the electromagnetic wave
within a Riemann continuum. The first equation may be re-written:

∇νF
μν = ∇ν

(
gμαgανFαβ

)
= ∇ν

[
gμα∇αAν −gνβ∇βAμ

]
= gμα

[
∇α∇νAν +ℜν

ναγAγ
]
−gνβ∇ν∇βAμ = 0

where we have used the Schouten’s relations e.g. Rakotomanana (2003) with a zero
torsion. Maxwell’s equations include a classical wave part, a divergence term, and
the contribution of the Ricci curvature of the continuum:

−gνβ∇ν∇βAμ +gμα∇α∇νAν +gμαℜαγAγ = 0 (36.16)

The first term expresses a D’Alembertian operator. The second term may be dropped
if we assume a Lorenz gauge ∇νAν = 0. We then obtain the electromagnetic wave
propagation equation within curved continuum:

−gνβ∇ν∇βAμ +gμαℜαγAγ = 0 (36.17)

in which we notice the direct influence of the gravitation (represented by Ricci
curvature) on the electromagnetic wave propagation. In the following we will consider
an extension of the equation (36.17) in the framework of Riemann-Cartan continuum.

36.3.2 Field Equations and Conservation Laws

The second row of system (36.15) is the field equation which extends the Einstein
equation for vacuum spacetime, where the term represents the energy momentum
analogous of the Maxwell energy-momentum for the space part, and with nonsym-
metric property when considering the timelike part:
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T λρ :=−1
4
F μνFμν gλρ −Fμν

2

(
gμλF ρν +F μρgλν

)
(36.18)

It is the Minkowski energy-momentum tensor due to electromagnetic field. It modifies
the gravitational field as source whereas the spacetime modifies the electromagnetic
field according to (36.17). The temporal component of the energy-momentum (36.18)
holds:

T 00 =
1
2
(
DiEi +BiHi

)
(36.19)

which is exactly the electromagnetic energy density

T 00 = (1/2)(DDD ·EEE +BBB ·HHH) := E

in a three-dimensional formulation. By introducing the electromagnetic tensors (36.6)
and (36.8) into the expression of the energy-momentum tensor, we have the following
particular cases:⎧⎨⎩

T 01 = E2H3−E3H2

T 02 = E3H1−E1H3

T 03 = E1H2−E2H1

,

⎧⎨⎩
T 10 = D2B3−D3B2

T 20 = D3B1−D1B3

T 30 = D1B2−D2B1

showing again that the
{

T 01,T 02,T 03
}

are the components of the vector EEE ×HHH,
whereas

{
T 10,T 20,T 30

}
are the components of the vector DDD×BBB, also called

Minkowski momentum density e.g. Milonni and Boyd (2010), in the three-
dimensional formulation. This highlights that the Minkowski tensor T μν is not
symmetric when considering the time index 0. It is worth to express the energy
momentum as:

T μν
M =

[
E EEE×HHH

DDD×BBB TTT M

]
(36.20)

where E is the energy, and TTT M is the Maxwell tensor with contraviant components
T i j. The (nonsymmetric) energy-momentum such defined is called Minkowski energy
momentum.

Note 36.2. The Poynting vector SSS :=EEE×HHH (originally discovered by JH Poynting
in 1884) represents the rate of energy in the i-direction.

Note 36.3. Due to the nonsymmetry of the Minkowski energy-momentum, other
tensors have been considered in the past, the most known is the symmetric Abraham
energy momentum tensor which can be written as:

T μν
A =

[
E EEE×HHH

EEE×HHH TTT M

]
(36.21)

T μν
M and T μν

A are by far the most cited and considered. Among the numerous re-
sults for supporting the choice of the one or the other, experimental measurements
of radiation pressure of light on matter have shown the complementarity of these
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two energy-momenta, see for instance Milonni and Boyd (2010) for physical in-
terpretations of the two energy-momentum on the radiation pressure of light on a
dielectric.

For completeness, the spatial components of the Maxwell energy-momentum take
the form of for diagonal contributions:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

T 11 = −1
2
(
+D1E1−D2E2−D3E3

)− 1
2
(
+B1H1−B2H2−B3H3

)
T 22 = −1

2
(−D1E1 +D2E2−D3E3

)− 1
2
(−B1H1 +B2H2−B3H3

)
T 33 = −1

2
(−D1E1−D2E2 +D3E3

)− 1
2
(−B1H1−B2H2 +B3H3

)
For off-diagonal spatial terms we obtain (remind that T μν is symmetric):

T 12 =−(D2E1 +B2H1
)
, T 23 =−(D3E2 +B3H2

)
, T 31 =−(D1E3 +B1H3

)
By considering the Eulerian variation (Lie derivative variation Lξgλρ ) on the Rie-
mann continuum we obtain the conservation equation as follows:

∇ρ(ℜ
λρ − (R/2)gλρ) = 0 =⇒ ∇ρT λρ = 0

where the covariant derivative of the Einstein tensor vanishes by using the Bianchi
relationships e.g. Rakotomanana (2003). It is now essential to introduce the energy-
momentum tensor in the conservation laws. The conservation laws take the form of:{

∇ρT 0ρ = ∇0T 00 +∇iT 0i

∇ρT iρ = ∇0T i0 +∇ jT i j (36.22)

We recognize that the first row reduces to the Poynting’s theorem when considering
an isotropic and homogeneous continuum, where the Joule effect is not present
because we did not introduce it in the Lagrangian function L . The second row
represents the "force equilibrium" where the time derivative of the Poynting’s vector
compensates the divergence of the Maxwell’s stress tensor. Going back to the system
of equations (36.15), it is interesting to re-formulate the second row to give:

1
χ

(
ℜ
λρ − R

2
gλρ
)
= T λρ

M =
1
2

(
T λρ

M +T ρλ
M

)
+

1
2

(
T λρ

M −T ρλ
M

)
(36.23)

where the left-hand side of the equation is symmetric whereas the right-hand side is
not. This induces that the skew-symmetric part of the Minkowski energy-momentum
T λρ

M does not contribute to bend the spacetime and then has no influence on the
gravitation field. In a vacuum Minkowski spacetime remind however that ε0μ0 =
c2 = 1, for we adopt a coordinate system (x0 := ct,x1,x2,x3). In such a case the
two energy-momenta merge and the Abraham energy-momentum coincides with
the Minkowski energy-momentum, problems only arise when electromagnetism
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interact with continuum matter. Starting from the equation (36.23) which relates
the electromagnetic fields T λρ as source of the bending of the continuum, we can
multiply this equation by the covariant components of the metric gλρ to obtain
without difficulty the Ricci curvature and then the curvature of the continuum:

−R = T := gλρT λρ
M =−2χFλρF

λρ = χ (DDD ·EEE−BBB ·HHH) (36.24)

which is exactly χ times twice of the electromagnetic part of the Lagrangian.

Note 36.4. The debate of physicists and mathematicians about the choice of energy-
momentum draw back to the beginning of relativistic theory more than 100 years ago.
At least two factors may constitute the reasons of its revival nowadays: the increasing
role of optics in modern communication technology, and the legitimate seek of
consistent physics theory. Previous studies suggest that the two energy-momenta
(36.20) and (36.21) are in fact correct but in different circumstances e.g. Milonni and
Boyd (2010). They have their own physical interpretations.

36.4 Electromagnetism in Twisted and Curved Continuum

Analysis of electromagnetic fields in presence of extremely massive gravitation
remains a relevant topic in relativistic astrophysics. Propagation of electromagnetic
waves governed by Maxwell’s equations within a curved continuum constitutes a
fundamental basis for studying signals received from neutron stars and black holes
to name but a few in astrophysics. Other methods consist in measuring the signal due
to gravitational waves. It is now admitted that the influence of the non-Minkowskian
metric of the curved spacetime is much stronger on the electromagnetic field Fμν(xα)
than the influence of this field on the bending of the spacetime M . In this section
we consider the gravitation electromagnetism interaction within a Riemann-Cartan
continuum endowed with metric gαβ (xμ) and connection Γ γ

αβ (x
μ).

36.4.1 Faraday Tensor in Twisted Continuum

Formulation of Maxwell’s equations by means of differential forms may be not
equivalent to formulation by means connection in Riemann-Cartan continuum e.g
Vandyck (1996). In a Riemann-Cartan continuum, the Faraday tensor is calculated
as follows e.g. Prasanna (1975); Smalley (1986): Fμν := ∇μAν −∇νAμ = ∂μAν −
∂νAμ +ℵρ

μνAρ . It is rather different if calculated by means of an exterior derivative
of the 1-form AAA = (Aμ) e.g. Prasanna (1975) :

F := dAAA =⇒ Fμν = ∂μAν −∂νAμ (36.25)
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where, in such a case, we have exactly the same form of Faraday tensor in ei-
ther Minkowski spacetime or Riemann continuum. In this framework, two of the
Maxwell’s equations dF = 0 would be expected since the Faraday tensor 2-form
F is exact, say F := dAAA, and hence closed, dF = d (dAAA) = 0. To investigate elec-
tromagnetic waves within twisted and curved continuum matter (which may be
considered as a Riemann-Cartan manifold), it is assumed that the electromagnetic
field is described by an electromagnetic 2-form Fμν . It constitutes an extended model
of electromagnetism within curved continuum as earlier as in e.g. Plebanski (1960),
and in the framework of differential forms e.g. Prasanna (1975). Prasanna (1975) has
derived the Maxwell equations in a Riemann-Cartan continuum. In the following, we
would like to derive the Maxwell’s equations in a curved and twisted manifold M . By
using a formalism based on exterior calculus, Maxwell’s equations were established
for various continua (Minkowski, Riemann, and almost post-Riemann) (Puntigam
et al, 1997) where they considered as basic axioms the conservation of electric charge
and the conservation of magnetic flux. This allows them to put aside the connection
structure of the continuum. Third, either for metric-based energy, or metric-torsion
based energy, it is worth to define Lagrangian L (Fμν ,uμ ,M μν ,J μ ,Aμ , · · ·) as-
sociated to the electromagnetic fields when we face the question of variational
formulation. To relate electromagnetism with relativistic gravitation, it is interest-
ing to remind that application of the gauge invariance principle for the group of
translation (corresponding to torsion) of the continuum M with Yang-Mills type
Lagrangian, quadratic in the field strengths Fμν (as for electromagnetism), allows
us to deduce the usual Einstein’s theory of gravitation, based on the Einstein-Hilbert
action e.g. Cho (1976).

36.4.2 Field Equations, Wave Equations

For the sake of the simplicity, let us consider the simplest example of action for
free electromagnetic field without sources and occurring within a Riemann-Cartan
continuum (curved and twisted):

S :=
∫
M

Lωn with L :=−1
4
F μν Fμν +

1
2χ

R (36.26)

For the variation of (36.26), it is worth to remind that the metric and the torsion are
independents primal variables in addition to the electromagnetic four-potential. The
Faraday tensor (minimally coupled to the gravitation in a Riemann-Cartan continuum
via the torsion) and the scalar curvature are defined by the relationships:

Fμν := ∇μAν −∇νAμ = ∇μAν −∇νAμ +ℵρ
μνAρ , R := gμνℜμν (36.27)

where the contravariant components of F μν are calculated by means the connection
with torsion e.g. Smalley and Krisch (1992). Definition (36.25) in Riemann contin-
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uum holds for both Euclidean and (pseudo)-Riemannian and also proposed in some
post-Riemannian spacetimes e.g. Puntigam et al (1997). As extension the definition
(36.27) is valid for both Euclidean, Riemannian and Riemann-Cartan continuum.
This again illustrates the fact that the extension of physical variables as Fμν can
be done in many ways (as a 2-form in e.g. Puntigam et al (1997) or as a twice the
skew-symmetric part of the gradient in e.g. Smalley and Krisch (1992)). This shows
that the Lagrangian variation of this 2-form and curvature include both the variation
of the potential Aμ , the variation of the Riemann metric gαβ , and also the variation
of the connection Γ γ

αβ . Here, the Lagrangian we consider includes Yang-Mills elec-
tromagnetic part and Einstein-Hilbert gravitation part e.g. Charap and Duff (1977).
First, the Lagrange variation of the action (36.26) allows us to obtain the expression:

ΔS =
∫
M

{
−1

2
F μνΔFμν +

1
4
Fμν

(
gμλF ρν +F μρgλν

)
Δgλρ

+
1

2χ

(
ℜλρ − R

2
gλρ
)
Δgλρ +

1
8
F μν Fμν gλρΔgλρ

+
1

2χ
gμν
[
∇λ

(
ΔΓ λ

μν

)
−∇μ

(
ΔΓ λ

λν

)
−ℵρ

λμΔΓ
λ
ρν

]}
ωn

where the last line is deduced from Palatini relation e.g. Rakotomanana (2003). The
Lagrangian variation of the Faraday tensor takes the form of:

ΔFμν = ∇μ(ΔAν)−∇ν(ΔAμ)+Δℵρ
μνAρ (36.28)

This relation is obtained by directly writing:

ΔFμν = Δ
(
∂μAν −Γ ρ

μνAρ
)−Δ (∂νAμ −Γ ρ

νμAρ
)

=
(
∂μΔAν −Γ ρ

μνΔAρ −ΔΓ ρ
μνAρ

)− (∂νΔAμ −Γ ρ
νμΔAρ −ΔΓ ρ

νμAρ
)

accounting for that the variation of the geometric structure, say Δℵρ
μν , induces a

variation of the field ΔFμν . At a second step, the three systems of conservation
laws associated to the unknown primal variables (say the 4-vector potential Aμ , the
Riemannian metric gμν , and the torsion ℵρ

μν ) are derived by varying the Lagrangian
along the Lie-derivative variations LξAμ , Lξgμν , and Lξℵρ

μν . Now we factorize the
variation with respect to the Lagrangian variations of the electromagnetic potential
ΔAμ , the metric Δgλρ , and the connection ΔΓ λ

μν respectively. The presence of
the term ΔΓ λ

μν means that the torsion and curvature may evolve since they are
independent primal variables of the theory. By shifting divergence terms at the
boundary of the continuum M we can rearrange the Lagrangian variation of the
action to give:
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ΔS =
∫
M

∇νF
μν ΔAμ ωn +

∫
M

[
1

2χ

(
ℜλρ − R

2
gλρ
)

+
1
8
F μνFμν gλρ +

Fμν

4

(
gμλF ρν +F μρgλν

)]
Δgλρ ωn

−
∫
M

(
(F μν −F νμ) Aλ +

1
χ

gρν ℵμ
λρ

)
ΔΓ λ

μν ωn (36.29)

owing that the Faraday tensor is in fine expressed in terms of the potential Aμ by
means of (36.27). Due to the arbitrariness of the variation of primal variables, we
deduce the system of partial differential equations:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∇νF μν = 0
1

2χ

(
ℜλρ − R

2
gλρ
)
+

1
8
F μνFμν gλρ +

Fμν

4

(
gμλF ρν +F μρgλν

)
= 0

(F μν −F νμ) Aλ +
1
χ

gρν ℵμ
λρ = 0

(36.30)
where we notice a slightly extension of the fields equations in Charap and Duff (1977)
for Riemann-Cartan continuum. The first row of the system (36.30) expresses the
Maxwell’s equations in Riemann-Cartan continuum, and it should be stressed that in
this Lagrangian (model), the potential Aμ may be apparently calculated independently
on the gravitation (except eventual coupling at the boundary ∂M ). The connection
approach is equivalent to the differential form approach when the continuum is
Riemannian without torsion (Vandyck, 1996), or when the non metricity of the
connection is traceless. The Maxwell’s equations of the system (36.30) show that the
connection approach with torsion is "naturally" deduced from a variation principle,
and the same form as the connection approach is obtained. The Maxwell’s equations
(36.30) (first row) may be used to analyze the electromagnetic wave propagation
within a twisted and curved continuum. Let consider a continuum M endowed with
a metric gαβ and a connected with Γ γ

αβ , this later is compatible with the metric.
Maxwell’s equations may be re-written as follows:

∇νF
μν = ∇ν

(
gμαgανFαβ

)
= ∇ν

[
gμα∇αAν −gνβ∇βAμ

]
= gμα

[
∇α∇νAν −ℵγ

να∇γAν +ℜν
ναγAγ]−gνβ∇ν∇βAμ = 0

where we have used the Schouten’s relations e.g. Rakotomanana (2003). By ar-
ranging the previous relationships, we notice that the Maxwell’s equations include,
as for elastic wave propagation, a classical wave part, a divergence term, and the
contribution of the twisting and the Ricci curvature of the continuum:

−gνβ∇ν∇βAμ +gμα∇α∇νAν −gμαℵγ
να∇γAν +gμαℜαγAγ = 0 (36.31)
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The first term expresses a D’Alembertian operator. The second term may be dropped
if we assume a null divergence as a gauge condition. The condition ∇νAν ≡ 0
extends the Lorenz condition in the framework of Riemann-Cartan geometry, more
specifically in the way of Gauss units system. For a non twisted and non curved
continuum, the electromagnetic wave propagation equation reduces to � Aμ = 0.
The third term introduces a first covariant derivative which leads to a diffusion of the
wave (spacetime attenuation), and the last term points out a breathing mode whenever
the boundary conditions allow it e.g. Futhazar et al (2014). What should be observed
too is that the torsion and Ricci curvature influence the wave propagation linearly. It
should be stressed that the continuum geometry and in fine the gravitation is in fact
tightly linked to the electromagnetism phenomenon. This may not be perceived at a
first sight. In sum, the second row of the system (36.30) gives the coupling equation
of the electromagnetic field and the gravitational field one. The electromagnetic
terms act as a source-term for the gravitation. They act as a kind of electromagnetic
energy generating evolution of the continuum metric. We recognize the Einstein field
equation in the absence of the electromagnetic field. Despite its apparent relative
simplicity, the system of partial differential equations (36.30) remains complex since
the connection, and by the way the Ricci and total curvatures, includes both the
(gravitational) metric gμν and the contortion tensor T γ

μν .

36.4.3 Electromagnetism and Continuum Defects

The third row of (36.30) gives the equation to calculate the torsion field. It is striking
its analogy with the result obtained by Fernado et al (2012) by considering a particular
Riemann-Cartan continuum and working with contortion tensor. It is a link between
electromagnetic fields and the twisting of the continuum. What is interesting is that
the electromagnetic field allows us to calculate with an algebraic explicit formula the
torsion field by means of the third row. Once the torsion is obtained, we can apply
covariant derivative within Riemann-Cartan geometry. By multiplying with gνσ , the
explicit formula for calculating the torsion is obtained accordingly by means of an
algebraic relation:

ℵμ
λσ =−χ gσν (F μν −F νμ)Aλ =−2χ gσν

(
gμαgνβ −gμβgνα

)
Aλ∇αAβ

(36.32)
owing the expression of the electromagnetic strength in terms of potential. It may be
noticed that the contribution of the electromagnetic potential to the torsion field is of
second order "Aλ∇αAβ ".

Note 36.5. The investigation of the interaction of electromagnetic masses with
Riemann-Cartan continuum was done by numerous authors for charged and spin-
ning "static" dust (static means here no displacement of the center of mass), for
perfect fluids with spin density e.g. Smalley and Krisch (1992). It was shown that
by analyzing the solutions of Maxwell’s equations, the torsion field together with
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the spin of Einstein-Cartan gravitation theory may be suggested as produced by the
electromagnetic field e.g. Tiwari and Ray (1997). Paraphrasing these authors, it was
concluded that in the absence of electromagnetic fields, the body has a vanishing
spin density which itself is associated to the continuum torsion e.g. Hehl and von
der Heyde (1973). The third algebraic equation of (36.30) conforms this conclusion
concerning the torsion field.

Note 36.6. What could be relevant is that the torsion field of the Riemann-Cartan
continuum may be explicitly calculated. In other words and from the physical point
of view, torsion is thought to be generated by the electromagnetic field demonstrated
here by assuming the simplest Lagrangian of the type (36.26).

Note 36.7. From the system of equations (36.30), we notice that the electromagnetic
energy-momentum in a vacuum has the same shape as for as for electromagnetic
within a continuum matter (Obukhov and Hehl, 2003):

T λρ =
1
4
F μνFμν gλρ −Fμν

2

(
gμλF ρν +F μλgρν

)
(36.33)

This is a non symmetric Minkowski (canonical) energy-momentum tensor e.g.
Obukhov (2008) for the free electromagnetic field occurring within spacetime. For
electromagnetic fields without sources occurring within a Riemann-Cartan continuum
(curved and twisted), the Lagrangian (36.26) is slightly extended to:

S :=
∫
M

Lωn with L :=−1
4
H μν Fμν +

1
2χ

R (36.34)

where the constitutive laws are given by the equation (36.8). The same developments
as previously may be conducted to analyze the behavior of the matter electromagnetic
interaction. There is a controversy between the version of Minkowski and that of
Abraham, not deduced from a Lagrangian. We do not enter into this long last debate,
which was done in the past. We have just to remind that the Minkowski version
is defined in the framework of Lagrange-Noether conforming to the invariance
approach we adopt in this work. Obukhov and Hehl (2003) suggested the adoption of
the Minkowski like version (36.33) which is motivated by the Lagrangian axiomatic
approach, and by the experimental evidence conducted in the past by Walker &
Walker (which is based on experimental measurements of dielectric disk placed in a
crossed oscillating radial electric and longitudinal magnetic fields), and James (which
is based on a similar experimental jig but with radial electric field and azimuthal
magnetic field), see Obukhov and Hehl (2003).

Note 36.8. In the previous equations, the torsion does not propagate. In order to
account for the torsion propagation, i.e., a well-known method would be to add a
scalar bilinear term of the covariant derivatives of the torsion e.g. Hammond (1987)
where the trace of the torsion ℵν := ℵμ

νμ can be considered as the electromagnetic
four-potential, and the skew-symmetric part of the Ricci curvature tensor as propor-
tional to the electromagnetic Faraday tensor. For that purpose, he has considered the



690 Lalaonirina R. Rakotomanana

Lagrangian: S :=
∫

M

(R
χ +a GμνG μν) with Gμν := ∂μℵν −∂νℵμ where arbitrari-

ness of the metric and the torsion variations hold. In his approach the electromagnetic
variables are deduced from continuum geometry.

To go further let us consider the first and third equations of the system of equations
relating gravitation and electromagnetism. As for the Maxwell’s equations within
vacuum spacetime, the above equation may be formulated by means of four-potential
vector Aμ by introducing properties of curvature tensor, the metricity of the con-
nection and the Lorenz gauge (∇νAν ≡ 0). The third equation may be re-arranged
to isolate the torsion. The first and third equations thus give, by assuming a null
divergence for the potential ∇νAν = 0,:{

−gνβ∇ν∇βAμ −gμαℵγ
να∇γAν +gμαℜαγAγ = 0

2εχ (∇γAα −∇αAγ)Aβ = ℵγ
αβ

(36.35)

where, in the Maxwell’s equations, the first term represents a wave equation, the
second term a diffusion contribution due to the torsion field, and the last term with the
Ricci curvature introduces a "breathing" mode due to the non vanishing of curvature
tensor. It should be pointed out that the torsion field is of second-order with respect
to the potential Aα .

Note 36.9. By proposing a particular Riemann-Cartan spacetime structure, and work-
ing with contortion tensor rather than with the torsion tensor, a similar and interesting
relation as the second row of the system (36.35) is obtained in Fernado et al (2012)
without dealing with a variational formulation.

Note 36.10. We define the Faraday tensor as Fαβ := ∇αAβ −∇βAα where the
connection Γ γ

αβ has torsion. The U(1) gauge invariance of Maxwell’s equations
may be violated without cautions with this choice. Indeed by modifying the
potential as Aβ → Aβ + gβγ∇γΛ where Λ(xμ) is an arbitrary function, we get:
Fαβ = ∇αAβ −∇βAα −ℵγ

αβ∇γΛ where the last term vanishes if and only if the
torsion is zero or the function Λ is covariantly uniform. Some previous authors
propose to define Fαβ := ∇αAβ −∇βAα as Faraday tensor even in Riemann-Cartan
continuum e.g. Smalley (1986); de Andrade and Pereira (1999). Further analyses
are required in the future. Results in the framework of Riemann-Cartan Gravitation
(e.g. Sotiriou and Liberati, 2007) may highlight some problems of gauge invariance
since the electromagnetic tensor does not satisfy the Lorenz gauge invariance (say
U(1) gauge invariance) e.g. Puntigam et al (1997). Choosing the Faraday tensor
as F := dAAA or equivalently Fμν := ∇μAν −∇νAμ = ∇μAν −∇νAμ −ℵρ

μνAρ al-
lows to obtain a U(1) invariant model but induces the following field equations:
∇νF μν −2ℵμ

ρνF
ρν = 0 and ℵρ

μν = 0 replacing the first Maxwell’s equations and
the third equation coupling the torsion within continuum and the electromagnetic
fields, meaning that the torsion is identically zero within the continuum. Further
investigations should be done about the definition of the Faraday tensor, there is
yet a lot to be done in this domain. This may hurt at first sight, however, more



36 Interaction of Electromagnetism with Torsion and Curvature of Continuum 691

investigations should be conducted since the concept of magnetic monopole enters
into the discussion because the Gauss law on magnetic flux should be re-analyzed in
such a case e.g. Fernado et al (2012).

36.5 Concluding Remarks

Electromagnetism interacting with gravity is source of change of Riemann continuum
to Riemann-Cartan continuum. We have considered in the present study the Hilbert-
Einstein action (which is the simplest case among numerous gravitation theories) to
relate electromagnetism and gravitation with the extended continuum with torsion. In
the present paper, we mainly consider the intimate link between the electrodynamics
and the geometry of the continuum where the electromagnetic waves are propagating.
Considering a very simple shape of the Lagrangian (the same form for all the models),
we extend the geometry structure from the flat spacetime to curved and then twisted
and curved continua (second gradient continua). In order to analyze the interaction
of electromagnetism and gravitation, the development of the Maxwell’s equations
within curved continuum shows the electromagnetism-gravitation mutual influence
by means of the geometry characterized by metric, Levi-Civita connection, and
associated Ricci curvature. When dealing with second gradient continuum, where
abrupt gradients of physical properties may occur, the extension of the Maxwell’s
equations, namely the resulting wave propagation, is necessary to account for the
non zero torsion ℵγ

αβ �= 0 and non zero curvature ℜγ
αβλ �= 0. Among numerous

approaches, the use of Riemann-Cartan manifold as underlying geometrical structure
seems worth. The tables below give overview of interaction of electromagnetic
waves with various continuua. The table displays most classical approaches for
analyzing the interaction of the electromagnetic waves with gravitation and more
generally the geometric structure of continua. For the first two continua, the basic
geometric variable is the continuum metric tensor: uniform for Minkowski (Special
Relativity) and depending on the coordinates xμ for Riemann spacetime (Relativistic
Gravitation). We observe that the Minimal Coupling Procedure induces the interaction
of the electromagnetic waves with the continuum curvature, by means of the Ricci
curvature. This is pointed out by the shape of the field equation e.g. de Andrade and
Pereira (1999); Smalley (1986). It is striking that the equation (36.30) we obtained,
is analogous to the particular contortion tensor T γ

αβ = −(G/c4)F γ
βAα found in a

paper by Fernado et al (2012). Indeed, they have deduced that a particular connection
defined by Γ γ

αβ := Γ γ
αβ +T γ

αβ in Riemann-Cartan continuum allowed them to derive
Maxwell’s equations:

∇βFαβ = ∇βFαβ = 0, ∇[βFαβ ] = ∇[βFαβ ] = ∂[βFαβ ] = 0

For instance, following another path Poplawski suggested to define the four-
potential as a part of the trace of the torsion itself e.g. Poplawski (2010). All these
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aspects will certainly constitute future research topics. We observe that both the tor-
sion and the curvature influence the electromagnetic wave propagation in a Riemann-
Cartan continua. Despite the crucial point on the Lorenz gauge invariance, this
model seems to extend and thus include all previous models. First, geometrization
of gravity developed by Einstein by considers the dependence of the Lagrangian on
the curvature tensor as the starting point for deriving the field equations (Einstein
equations). Second, introducing the tensor Faraday including electric and magnetic
fields - within the Lagrangian, it is recognized that the light, a particular case of
electromagnetic waves, bends if viewed from a uniformly accelerating frame and
then accordingly that the gravity would therefore bend the light. The interaction of
gravitation and electromagnetic waves are described Einstein-Maxwell’s equations.
The geometrization of the electromagnetic fields constitutes the third step when
these fields are present in the continuum. For that purpose, we have considered a
strain gradient continuum where curvature and torsion are present, Riemann-Cartan
continuum. By observing the fields equation, we propose that the gravitational and
electromagnetic fields are respectively identified as geometric objects of such a

Table 36.1: Theories of electromagnetism interacting with gravitation in curved
continua : Minkowski (flat spacetime), and Riemann (curved continuum).

Minkowski Special Relativity

Spacetime metric gαβ := {+,−,−,−} g :=
√
|Detgαβ |

Electromagnetic
tensor Γ γ

αβ ≡ 0 Fαβ = ∂αAβ −∂βAα

Constitutive laws L :=−1
4
FαβFαβ g Fαβ = ε0 gαμgβνFμν

Conservation laws ∂βFαβ = 0 gνβ ∂ν∂βAμ = 0

Riemann Einstein Gravitation

Continuum metric gαβ := gαβ (xμ) g :=
√
|Detgαβ |

Electromagnetic
tensor Γ γ

αβ (Levi−Civita) Fαβ = ∇αAβ −∇βAα

Constitutive laws L :=−1
4
FαβFαβ g Fαβ = ε0 gαμgβνFμν

Conservation laws ∇βFαβ = 0 gνβ∇ν∇βAμ −gμαℜαγAγ = 0
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Table 36.2: Theories of electromagnetism interacting with gravitation in twisted
and curved continua : Weitzenböck (twisted, not curved) and Riemann-Cartan
(twisted and curved)

Weitzenböck Tele Parallel Gravitation

Continuum metric gαβ := gi jFi
αF j

β g :=
√
|Detgαβ |

Electromagnetic
tensor

Γ γ
αβ := Fγ

i ∂αFi
β =

Γ γ
αβ +T γ

αβ Fαβ = ∇αAβ −∇βAα

Constitutive laws L :=−1
4
FαβFαβ g Fαβ = ε0 gαμgβνFμν

Conservation laws ∇βFαβ = 0 gνβ∇ν∇βAμ −gμαKαγAγ = 0

Riemann-Cartan Einstein-Cartan Gravitation

Continuum metric gαβ := gαβ (xμ) g :=
√
|Detgαβ |

Electromagnetic
tensor Γ γ

αβ Fαβ = ∇αAβ −∇βAα

Constitutive laws L :=−1
4
FαβFαβ g Fαβ = ε0 gαμgβνFμν

Conservation laws ∇βFαβ = 0
gνβ∇ν∇βAμ +gμαℵγ

να∇γAν −
gμαℜαγAγ = 0

continuum, namely the curvature ℜγ
αβλ and the torsion ℵγ

αβ . Further studies are
required for the invariance aspects.
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Chapter 37

Optimal Calculation of Solid-Body

Deformations with Prescribed Degrees of

Freedom over Smooth Boundaries

Vitoriano Ruas

Abstract One of the reasons why the finite element method became the most used
technique in Computational Solid Mechanics is its versatility to deal with bodies
having a curved shape. In this case method’s isoparametric version for meshes
consisting of curved triangles or tetrahedra has been mostly employed to recover
the optimal approximation properties known to hold for standard elements in the
case of polygonal or polyhedral domains. However isoparametric finite elements
helplessly require the manipulation of rational functions and the use of numerical
integration. This can be a brain teaser in many cases, especially if the problem at
hand is non linear. We consider a simple alternative to deal with boundary conditions
commonly encountered in practical applications, that bypasses these drawbacks,
without eroding the quality of the finite-element model. More particularly we mean
prescribed displacements or forces in the case of solids. Our technique is based
only on polynomial algebra and can do without curved elements. Although it can be
applied to countless types of problems in Continuum Mechanics, it is illustrated here
in the computation of small deformations of elastic solids.

37.1 Introduction

This work deals with a new technique for the numerical solution of boundary value
problems posed in a two- or three-dimensional domain, with a boundary consisting
of disconnected smooth curved portions of arbitrary shape. Although it can be used
for solving different types of problems in Continuum Mechanics and beyond, here
we focus its application to Solid Mechanics. This is because the technique is strongly
related to the finite element method, which turns out to be by far the most popular
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numerical method employed in deformable solid-body modeling. Actually the new
technique is aimed at taking the best advantage of equally smooth data, prescribed all
over each smooth disconnected boundary portion as essential boundary conditions.
In the case of the finite element method these correspond to prescribed boundary
degrees of freedom, which can be displacements for a standard minimum-energy
formulation, or forces for a complementary energy formulation.

The method presented in this paper attempts to tackle the true boundary of the
solid body, akin to the interpolated boundary condition method described in Brenner
and R.Scott (2008) introduced almost simultaneously in Nitsche (1972); Scott (1973),
and the method proposed in Zlámal (1973) extended in Žénišek (1978), for two-
dimensional problems. Although the latter methods are rather intuitive and are known
since the seventies, they have been of limited use so far. Among the reasons for this we
could quote their difficult implementation, the lack of extensions to three-dimensional
problems, or yet restrictions on the choice of nodal points where boundary degrees of
freedom are to be prescribed in order to reach optimal convergence rates. In contrast
our method is simple to implement in both two- and three-dimensional geometries.
Moreover optimality is attained very naturally in both cases for various choices of
boundary nodal points.

Without loss of essential aspects, our methodology can be perfectly described
taking as a model simple linear partial differential equations with Dirichlet boundary
conditions. We can consider for example the Poisson equation solved by different N-
simplex based methods, incorporating degrees of freedom other than function values
at the mesh vertices. If standard quadratic Lagrange finite elements are employed,
it is well-known that approximations of an order not greater than 1.5 in the energy
norm are generated (cf. Ciarlet, 1978), in contrast to the second order ones that
apply to the case of a polygonal or polyhedral shape, assuming that the solution is
sufficiently smooth. If we are to recover the optimal second order approximation
property, something different has to be done. Since long the isoparametric version of
the finite element method for meshes consisting of curved triangles or tetrahedra (cf.
Zienkiewicz, 1971), has been considered as the ideal way to achieve this. It turns out
that, besides a more elaborated description of the mesh, the isoparametric technique
inevitably leads to the integration of rational functions to compute the system matrix,
which raises the delicate question on how to choose the right numerical quadrature
formula in the master element. In contrast, in the technique to be considered in this
paper exact integration can always be used for this purpose, since we only have
to deal with polynomial integrands. Moreover the element geometry remains the
same as in the case of polygonal or polyhedral domains. It is noteworthy that both
advantages are conjugated with the fact that no erosion of qualitative approximation
properties results from the application of our technique, as compared to the equivalent
isoparametric one. We should also emphasize that this approach is particularly handy,
whenever the finite element method under consideration has normal components
or normal derivatives as degrees of freedom. Indeed in this case the definition of
isoparametric finite element analogs is not always so straightforward (cf. Bertrand
et al, 2014).
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An outline of the paper is as follows. In Section 2 we describe our method to solve
a model Poisson problem with Dirichlet boundary conditions in a smooth curved
two-dimensional domain with conforming Lagrange finite elements based on meshes
with straight triangles, in connection with a standard Galerkin formulation. We recall
the error estimates established in Ruas (2017b) for this method. In Sect. 37.2 we
assess its approximation properties, by solving linear elasticity problems posed in
a two-dimensional solid body a smooth curved shape using piecewise quadratic
functions. More specifically a circular membrane problem is considered in Subsect.
37.3.1 and in Subsect. 37.3.2we use our methodology to represent the displacement
field of a homogeneous isotropic elastic annulus in small plane deformations caused
by a prescribed rotation of its outer boundary. We conclude in Sect. 37.4 with a few
comments.

37.2 Method Description

As a model we consider the Poisson equation with Dirichlet boundary conditions in
an N-dimensional smooth domain Ω with boundary ∂Ω for N = 2 or N = 3, that is,
−Δu = f in Ω , u = d on Γ , where f and d are given functions defined in Ω and on
Γ , having suitable regularity properties. We shall be dealing with approximations
of u of order k for k > 1 in the standard energy norm, assuming that f , d and Ω
are sufficiently smooth. Although the method to be described below applies to any
spatial dimension, for the sake of simplicity we confine its description to the two-
dimensional case. Let us then be given a partition Th of Ω into straight triangles
satisfying the usual compatibility conditions (see Ciarlet (1978)). Th is assumed to
belong to a uniformly regular family of partitions. Let Ωh be the polygonal domain
formed by the union of the triangles in Th and Γh be its boundary. Further hT being
the diameter of a triangle T ∈ Th, we denote by h the maximum of the hT s as T
sweeps Th. Notice that if Ω is convex Ωh is a proper subset thereof. We make the
more than reasonable assumptions on the mesh that no element in Th has more
than one edge on Γh. We also need some definitions regarding the skin comprised
between Γh and Γ . First of all, in order to avoid non essential technicalities, we
assume that the mesh is constructed in such a way that convex and concave portions
of Γ correspond to convex and concave portions of Γh. This property is guaranteed if
the points separating such portions of Γ are vertices of polygon Γh. In doing so, let
Sh be the subset of Th consisting of triangles having one edge on Γh. Now for every
T in the subset Sh we denote by ΔT the skin portion delimited by Γ and the edge eT
of T whose end-points belong to Γ and by T

′
the sets indicated in T ∪ΔT (see Fig.

37.1).
Next we introduce two sets of functions Vh and W d

h associated with Th. Vh is the
standard Lagrange finite element space consisting of continuous functions v defined
in Ωh that vanish on Γh, whose restriction to every triangle T in Th is a polynomial
of degree less than or equal to k for k > 1. For convenience we extend by zero every
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Fig. 37.1 Skin portion ΔT
comprised between eT and Γ
at the level of a mesh triangle
T belonging to the subset Sh,
next to a convex (right) or a
concave (left) portion of Γ ; eT
is the edge of T contained in
Γh.
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function v ∈Vh to Ω \Ωh. W d
h in turn is the set of functions defined in Ωh having the

properties listed below.

1. The restriction of w ∈W d
h to every T ∈Th is a polynomial of degree less than or

equal to k ;
2. Every w in W d

h is continuous in Ωh and equals d at the vertices of Γh;
3. A function w in W d

h is also defined in Ω \Ωh, in such a way that its polynomial
expression in a triangle T belonging to Sh also applies to points in the skin
portion ΔT ;

4. For all T belonging to Sh, w(P) = d(P) at every point P of Γ located on the
lines passing through the vertex OT of T not belonging to Γ and the k−1 points
M of eT different from a vertex of T lying among those that subdivide this edge
into k segments of equal length (cf. Fig. 37.2).

Note 37.1. The construction of the nodes associated with W d
h located on Γh advocated

in item 4. is not mandatory. Notice that it differs from the intuitive construction of
such nodes lying on normals to edges of Γh commonly used in the isoparametric
technique. The main advantage of this proposal is an easy determination of boundary
node coordinates by linearity, using a supposedly available analytical expression
of Γ . Actually the choice of boundary nodes ensuring our method’s optimality is
absolutely flexible, in contrast to the restrictions inherent to the interpolated boundary
condition method (cf. Brenner and R.Scott, 2008).

The fact that W d
h is a non empty finite-dimensional manifold was established in Ruas

(2017b).

Fig. 37.2 Construction of
nodes P located on Γ for the
set W d

h corresponding to nodes
M located on Γh, exemplified
in the particular case of the
cubic Lagrange interpolation
(i.e. for k = 3)
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Next we set the problem associated with the sets of functions Vh and W d
h , whose

solution is an approximation uh of the solution u to the Poisson equation. Taking any
regular extension of f to Ωh \Ω and still denoting the resulting function by f , uh is
determined as the solution of the following variational problem:

uh ∈W d
h fulfills for all v∈Vh :

∫
Ωh

grad uh ·grad v dxdy=
∫
Ωh

f v dxdy. (37.1)

According to Ruas (2017b), provided h is sufficiently small, problem (37.1) has
a unique solution. Moreover the underlying bilinear form is uniformly stable on
W 0

h ×Vh in the sense of Babuska-Brezzi (cf. Ruas, 2017b)) where W 0
h is W d

h for d ≡ 0.
This leads to the conclusion that the approximation method associated with (37.1) is
a k-th order method in the natural energy norm, as long as u is sufficiently smooth
and all the Ths under consideration belong to a regular family of partitions of Ω in
the sense of Ciarlet (1978). In short

[

∫
Ωh

|grad(uh−u)|2dx]1/2

is an O(hk) under such assumptions (cf. Ruas (2017b)).

37.3 Method Experimentation

In order to show the effectiveness of the technique studied in this work to take
into account Dirichlet boundary conditions prescribed on curved boundaries, we
report in this section significant numerical results for some academic test-problems
with known exact solution, taking k = 2. We selected two classical applications in
Solid Mechanics, namely, the small deflexions undergone by a homogeneous elastic
membrane under the action of forces orthogonal to its plane, and the small plane
deformations of a homogeneous isotropic elastic plate.

37.3.1 Deflections of an Elastic Membrane

In the small strain regime a homogeneous elastic membrane whose edge is kept
fixed, subjected to a load distribution g applied perpendicularly to its plane Π is
governed by the Poisson equation with homogeneous Dirichlet boundary conditions,
i.e. with d ≡ 0. More specifically, in appropriate dimensionless form the deflexion
u in the direction orthogonal to Π satisfies −Δu = f in the region Ω of the plane
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occupied by the membrane in Π , where f = cg for a suitable constant c. For the
sake of simplicity we consider that Ω is the unit disk with center at the origin O of a
cartesian coordinate system (O,x,y) attached to Π . Taking g of the conical form αr
where r = (x2 + y2)1/2 the exact solution is given by

u(x,y) =
α(1− r3)

9c
.

In our computations we took α = 9c, and used meshes with 2M2 triangles for M = 2m

and m= 2,3,4,5,6, of the quarter disk given by x > 0 and y> 0 due to symmetry. For
better visibility quite abusively we set h = 1/M. The resulting errors in the following
senses are displayed in Table 37.1. In the third column we show the errors in the
energy norm while in the fourth column the mean-square norms of u−uh in Ωh are
given. For the sake of conciseness we denote the mean-square norm of a function or
field aaa defined in Ωh by ‖ aaa ‖h.

In order to make sure that there was no favorable effect owing to the particular
shape of the membrane and/or the exact solution, we also computed with the same
meshes using the polygonal approach. This consists of prescribing zero boundary
values at the mid-points of the edges eT , besides the vertices of Γh. In other words
the polygonal approach consists of replacing W 0

h by Vh in (37.1), thereby generating
another numerical solution uh instead of uh. Corresponding errors are supplied in
Table 37.2.

Observation of Tables 37.1 and 37.2 confirms that our method is of the second
order in the energy norm, while the polygonal approach yields only O(h1.5) approxi-
mations in the same sense, as predicted in classical books (cf. Ciarlet (1978)). Even
better news come from the errors in the mean-square sense. We observe third order
approximations for our method, in contrast to the second order ones for the polygonal
approach.

Table 37.1: Errors for the membrane problem solved by the new approach with
k = 2

M h ‖ grad(u−uh) ‖h ‖ u−uh ‖h

4 0.250000 0.14007×10−1 0.43895×10−3

8 0.125000 0.36168×10−2 0.56460×10−4

16 0.062500 0.91850×10−3 0.71709×10−5

32 0.031250 0.23151×10−3 0.90592×10−6

64 0.015625 0.58128×10−4 0.12428×10−6
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Table 37.2: Errors for the membrane problem solved by the polygonal approach
with k = 2

M h ‖ grad(u−uh) ‖h ‖ u−uh ‖h

4 0.250000 0.54344×10−1 0.81891×10−2

8 0.125000 0.19690×10−1 0.19879×10−2

16 0.062500 0.70417×10−2 0.48790×10−3

32 0.031250 0.25026×10−2 0.12070×10−3

64 0.015625 0.88700×10−3 0.29979×10−4

37.3.2 Torsion of an Elastic Annulus

The aim of the experiments reported in this sub-section is to assess the behavior
of an obvious extension of our method to a system of linear second order partial
differential equations. More specifically we consider the linear elasticity system for a
homogeneous, compressible and isotropic solid occupying a bounded region Ω of
the plane referred to a cartesian coordinate system (O,x,y), with a smooth curved
boundary Γ . Under these circumstances, in case the solid is subjected to body forces−→
f and its displacement field uuu = (ux,uy) is prescribed all over its boundary, say

uuu = ddd on Γ , uuu is the solution of the system{−2μdiv ε(uuu)−λgrad div uuu = fff in Ω
uuu = ddd on Γ ,

(37.2)

where ε(uuu) is the symmetric gradient of uuu and μ and λ are the Lamé coefficients of
the material the solid is made of.

Similarly to the case of the scalar Poisson equation, we will define the set of
test-fields to be VVV h := Vh×Vh and the set of trial-fields WWWddd

h := W dx
h ×W dy

h with
(dx,dy) = ddd. Then we determine an approximation uuuh of uuu by solving the discrete
variational problem,

⎧⎪⎨⎪⎩
uuuh ∈WWWddd

h fulfills for all vvv ∈VVV h :∫
Ωh

[2με(uuuh) : ε(vvv)+λdiv uuuhdiv vvv] dxdy =
∫
Ωh

fff ·vvv dxdy. (37.3)

We check the performance of the above method in the case where Ω is the
annulus delimited by the circles given by r = ro and r = ri, with ri < ro. This
annulus represents the cross section of the domain comprised between two concentric
cylinders with radii ro and ri between which lie a homogeneous and isotropic elastic
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body. This body is assumed to perfectly adhere to both cylinders. The outer cylinder
undergoes a rotation about its axis of an angle equal to ωo while the inner cylinder is
kept fixed. We assume deformation conditions under which the resulting strains in
the elastic body are small. In this case the displacement field uuu = (ux,uy) referred
to a cartesian frame (O,x,y,z) such that the z-axis coincides with the axis of both
cylinders is given by

ux(x,y) =−yuθ (r)
r

and

uy(x,y) =
xuθ (r)

r
,

where uθ is the azimuthal displacement of the body at a distance from the z-axis
equal to r.

Our experiments consist of approximating by quadratic Lagrange finite elements
the components ux and uy of the displacement field, which satisfy the equilibrium
equation (37.2) in Ω with fff ≡ 000 and ddd ≡ 000 for r = ri and ddd = (−xωo,yωo) for
x2 + y2 = r2

o. Then, irrespective of the values of μ and λ , the exact solution is given
by

uuu = uθ (r)(−y
r
,

x
r
),

where

uθ (r) = ωor2
o
(r− r2

i
r )

(r2
o− r2

i )
.

In order to take advantage of symmetry we solve (37.3) in the quarter annulus
corresponding to x > 0 and y > 0, by prescribing uuuh ·τττ = 0 and vvv ·τττ = 0 on the
axes

−→
Ox and

−→
Oy, where τττ generically represents the unit vector along them. Using

dimensionless quantities we take ro = 1 and ri = 1/2, and prescribe ωo = 0.5o.
The meshes of the computational domain consist of 4M2 triangles constructed

by subdividing the range of the radial coordinate r into M equal segments, and its
total aperture equal to π/2 into 2M equal angles with M > 1. Setting for convenience
h = roπ/(4M) we supply in Table 37.3 the errors measured in the gradient mean-
square norm, i.e. ‖ grad(uuu−uuuh) ‖h, and the field mean-square norm, i.e. ‖ uuu−uuuh ‖h,
for M = 2,4,8,16,32. As one can observe, akin to Sub-section 3.1, the numerical
results show that our method is of the second order in the gradient mean-square norm
and of the third order in the mean-square sense, instead of being of the order 1.5 and
second order, respectively like in the case of the polygonal approach.

Note 37.2. In Table 37.3 uuu also stands for the extension of uuu to the skin Ωh \Ω next
to the inner boundary given by r = ri, analytically expressed in the same way as in
Ω .
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37.4 Final Comments

Numerical two-dimensional experiments were further carried out in several author’s
recent works on the methodology considered in this paper. For instance in Ruas
(2017c) this was done again for curved membranes. However in contrast to Subsect.
3.1 in Ruas (2017c) the simulations were also performed with an adaptation of our
technique to a Hermite analog of the Raviart-Thomas mixed finite element of the
lowest order, allowing for an explicit representation of the stresses (cf. Ruas and
Silva Ramos, 2017, and references therein).

Three-dimensional boundary value problems can be dealt with in a very simi-
lar manner, even though for obvious reasons our technique becomes slightly more
complicated in this case. For further details the author refers to Ruas (2017a). Appli-
cations of the method studied in this work to Fluid Mechanics are underway and will
be reported in due course.

Acknowledgements This work was partially accomplished while the author was working at PUC-
Rio, Brazil, as a CNPq research grant holder.
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Chapter 38

Toward a Nonlinear Asymptotic Model for Thin

Magnetoelastic Plates

Sushma Santapuri and David J. Steigmann

Abstract An asymptotic two-dimensional formulation for the potential energy of a
thin magnetoelastic plate is obtained from that for a three-dimensional magnetoelastic
body subjected to conservative tractions and an applied magnetic field.

38.1 Introduction

Modern treatments of the theory of elastic plates and shells emphasize asymptotic
derivations of the relevant equations from expressions for the potential energy of
a three-dimensional nonlinearly elastic body. The availability of such energies in
three-dimensional magnetoelasticity theory naturally suggests an avenue for further
application of the asymptotic method. We discuss this extension in the present
work. In contrast, classical treatments of magnetoelastic plate theory (Maugin, 1988)
emphasize through-thickness integration of the three-dimensional equations but do
not deliver information about the order of accuracy of the resulting theory vis a vis
the three-dimensional theory.

We present a summary of three-dimensional magneto-elastostatics in Sect 38.2.
A convenient reformulation of the basic theory that facilitates our objectives is
outlined in Sect. 38.3. This is augmented in Sect. 38.4 by a derivation of neces-
sary conditions for energy-minimizing states that play a crucial role in securing
the eventual two-dimensional model. In Sects. 38.5 and 38.6 we derive the two-
dimensional plate energy to an accuracy of order h3, where h is the small plate
thickness; this is the scaling that is classically associated with combined plate bend-
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ing and stretching. The resulting expression for the energy inherits certain features
from the three-dimensional theory related to the through-thickness derivatives of the
three-dimensional deformation and magnetization fields. In Sect. 38.7 we demon-
strate that these latter fields may be obtained in terms of the mid-plane deformation
and its (two-dimensional) gradients to yield a plate energy functional that is finally
determined by the midplane deformation alone, as in the conventional purely elastic
theory.

We employ a direct notation throughout so as to convey the underlying ideas as
succinctly as possible. Readers preferring more explicit formulae are encouraged to
translate these into Cartesian index notation.

38.2 Summary of the Three-Dimensional Theory for

Conservative Problems

In the formulation of the three-dimensional static theory of magnetoelasticity adopted
here, the independent variables are the deformation field y = χ(xy = χ(xy = χ(x), where χχχ is the
deformation function and xxx is the position of a material point in a fixed reference
configuration κ; and the magnetization μμμ(x)(x)(x) per unit mass.

The basic constitutive function is the strain energy, W (F,μF,μF,μ), per unit volume of κ.
This function depends explicitly on xxx if the material is not uniform, but we suppress
this in the notation for the sake of clarity.

The basic equations of three-dimensional magneto-elastostatics are (Brown, 1966;
James, 2002; DeSimone and Podio-Guidugli, 1996; Steigmann, 2004; Dorfmann and
Ogden, 2014):

1. The force balance
Div(WFFF)+μ0J(gradh)m = 0,h)m = 0,h)m = 0, (38.1)

wherein Div is the divergence with respect to x,x,x, grad is the gradient with respect
to y,y,y, hhh is the magnetic field, FFF is the gradient of χ(xχ(xχ(x), J = detFFF , mmm is the
magnetization per unit volume of the current configuration, R say, and μ0 is the
permeability of free space;

2. The magnetostatic equations

divbbbs = 0; [bbbs] ·nnn = 0, (38.2)

where bbbs is the magnetic induction self-field generated by the magnetized body
and [·] ·nnn is the jump in the enclosed quantity across the bounding surface ∂R
with exterior unit normal n.n.n. In (38.2) the induction self-field is defined by

μ−1
0 bbbs = hhhs +m,m,m, (38.3)

where hhhs is the magnetic self-field - the part of the field generated by the magne-
tized body. This is simply the difference between the total and applied magnetic
fields; i.e.,
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hhhs = h−hh−hh−ha. (38.4)

The total, self and applied magnetic fields are presumed to be curl free in
accordance with Ampére’s law. Lastly,

3. The constitutive equation
μ0ρκhhh =Wμμμ (38.5)

connecting the magnetic field to the magnetization and the deformation, where
ρκ(x)x)x) is the assigned mass density in κ.

Granted the force balance (38.1), balance of moments is equivalent to the rotational
invariance of the energy; i.e., W (F,μF,μF,μ) =W (QF,QμQF,QμQF,Qμ), where QQQ is an arbitrary rotation
(Steigmann, 2004; Kovetz, 2000). We do not dwell on the consequences of such
invariance, which are well known, and, in any case, not germane to the considerations
of this work.

In (Brown, 1966; James, 2002; DeSimone and Podio-Guidugli, 1996; Kankanala
and Triantafyllidis, 2004) it is shown by a rather involved procedure that, for con-
servative problems, Eqs. (38.1) and (38.5) are the Euler-Lagrange equations for the
potential energy

E =
∫
κ

[W − 1
2
μ0ρκ(h+hh+hh+ha) ·μ]μ]μ]dv−L , (38.6)

where hhha is the applied magnetic field generated by sources remote from the body,
and L is a load potential. This presumes that the magnetostatic Eqs. (38.2)-(38.4)
are satisfied a priori. The applied field is presumed to be prescribed as a smooth
function of yyy in all space, consisting of the interior and exterior of the body. Further,
the variation of the load potential generates the virtual work of the applied Piola
tractions pppa; thus,

L̇ =
∫
∂κp

pppa · ẏ̇ẏyda, (38.7)

where, here and elsewhere, superposed dots are used to denote variational, or Gateaux,
derivatives, and ∂κp is the complement of the part of ∂κ where position yyy is assigned.
For example, in the case of dead loading, pppa(x)x)x) is fixed on ∂κp, independently of the
deformation, and for L we may take

L =
∫
∂κp

pppa ·yyyda. (38.8)

Whether or not the load is dead, the associated natural boundary condition is
(Steigmann, 2004)

(WFFF)N = pN = pN = pa +
1
2
μ0(m ·n)m ·n)m ·n)2FFF∗N,N,N, (38.9)

where NNN is the exterior unit normal to ∂κ and FFF∗ is the cofactor of F.F.F.
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38.3 Reformulation

We reformulate the foregoing system to make it more amenable to our present
purpose. To this end it proves convenient to define the pull-back

MMM = ρκFFF−1μμμ (38.10)

of the magnetization field, and to regard FFF and MMM as independent variables in the
strain-energy function. Accordingly, we define

U(F,MF,MF,M) =W (FFF ,ρκFMFMFM). (38.11)

Then, the potential energy (38.6) may be expressed as

E =

∫
κ

[U− 1
2
μ0(H +HH +HH +Ha) ·M]M]M]dv−L , (38.12)

where
H = FH = FH = Fthhh and HHHa =FFFthhha(y)y)y). (38.13)

It follows easily from (38.5) and the chain rule that

UMMM = μ0H,H,H, (38.14)

which we impose henceforth. Accordingly, the energy (38.12) becomes

E =
∫
κ

Ξ(y,F,M)y,F,M)y,F,M)dv−L , (38.15)

where
Ξ(y,F,M)y,F,M)y,F,M) =U(F,MF,MF,M)− 1

2
MMM ·UMMM− 1

2
μ0HHHa ·M,M,M, (38.16)

in which the explicit dependence on yyy is inherited from (38.13)2 via the assigned
function hhha(y)y)y).

Stationarity of the energy with respect to MMM, at fixed χ(x),χ(x),χ(x), yields the condition

ΞMMM = 0,0,0, (38.17)

holding pointwise in κ. Using (38.16), this may be cast as

UMMM = μ0HHHa +(UMMMMMM)M,M,M, (38.18)

and with (38.14) this may be interpreted as

μ0HHHs = (UMMMMMM)M,M,M, (38.19)

where
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HHHs =FFFthhhs (38.20)

is the pull-back of the magnetic self-field (cf. (38.4) and (38.13)) in the region
occupied by the material. Accordingly, as expected, the self-field in the body vanishes
if the magnetization vanishes; that is, if the body is not magnetized. In the next section
we show that UMMMMMM is invertible and hence that the self-field vanishes if and only if
the magnetization vanishes.

Stationarity of the energy with respect to variation of the deformation yields the
differential equation

Div(ΞFFF) = Ξyyy, (38.21)

holding in κ; and the boundary condition

(ΞFFF)NNN = pppa, (38.22)

holding on ∂κp.

38.4 Legendre-Hadamard Conditions

In James (2002); Kankanala and Triantafyllidis (2004) arguments are given in support
of regarding stable equilibria as minimizers of the energy E . In the present section
we derive pointwise necessary conditions for such states which play an essential role
in the considerations that follow. To this end we compute the second variation of
the energy (38.15). Suppressing the applied tractions and the applied magnetic field,
which in principle are subject to our control, we find the second variation to be

Ë =
∫
κ

{ΞFFFFFF [Ḟ̇ḞF ] ·Ḟ·Ḟ·Ḟ +(ΞMMMMMM)Ṁ · ṀṀ · ṀṀ · Ṁ+(ΞFMFMFM)Ṁ · ḞṀ · ḞṀ · Ḟ +(ΞMFMFMF)Ḟ · ṀḞ · ṀḞ · Ṁ}dv

+
∫
κ

(ΞFFF · F̈̈F̈F +ΞMMM · M̈̈M̈M)dv. (38.23)

At equilibrium, the first variation,

Ė =

∫
κ

(ΞFFF · Ḟ̇ḞF +ΞMMM · Ṁ̇ṀM)dv (38.24)

vanishes for all choices of the variations Ḟ̇ḞF and Ṁ.Ṁ.Ṁ. Therefore the second integral in
(38.23) vanishes at equilibrium. If the equilibrium state is an energy minimizer, it is
then necessary that∫

κ

{ΞFFFFFF [∇u]u]u] ·∇uuu+vvv · (ΞMMMMMM)vvv+(ΞFMFMFM)vvv ·∇uuu+(ΞMFMFMF)∇u · vu · vu · v}dv > 0 (38.25)

for all vector fields uuu(xxx) and vvv(xxx) with the proviso that uuu vanishes on ∂κ \∂κp.
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Consider the special variation

uuu(xxx) = εφφφ(zzz) with zzz = ε−1(x− xx− xx− x0), ε > 0 (38.26)

and xxx0 ∈ κ . Choose φφφ and vvv to be compactly supported in a strictly interior region D
containing the point z = 0.z = 0.z = 0. Then, after division by ε3 and passage to the limit ε → 0,
we find that (38.25) reduces to∫

D

{ΞFFFFFF [∇φφφ ] ·∇φφφ +(ΞMMMMMM)v · vv · vv · v+(ΞFMFMFM)vvv ·∇φφφ +(ΞMFMFMF)∇φφφ ·vvv}dv > 0, (38.27)

in which ∇(·) is now the gradient with respect to z,z,z, and the coefficients ΞFFFFFF , etc.,
are evaluated at xxx0 and hence fixed.

A standard necessary condition for (38.27) is

ccc · (ΞMMMMMM)ccc > 0 for all ccc �= 000 (38.28)

at the arbitrary point xxx0 ∈ κ; i.e., ΞMMMMMM is pointwise positive definite. To find another
necessary condition, we render the left-hand side of inequality (38.27) stationary
with respect to v.v.v. This yields∫

D

v̇̇v̇v · {(ΞMMMMMM)vvv+(ΞMFMFMF)∇φφφ}dv = 0, (38.29)

and the stationary value of vvv is

vvv =−(ΞMMMMMM)−1(ΞMFMFMF)∇φφφ (38.30)

in which the existence of the inverse on the right is guaranteed by (38.28). Because
(38.27) is satisfied for all vvv, it is satisfied by this choice in particular. Substitution
into (38.27) delivers the necessary condition∫

D

M [∇φφφ ] ·∇φφφdv > 0, (38.31)

where
M = ΞFFFFFF −ΞFMFMFM(ΞMMMMMM)−1ΞMFMFMF . (38.32)

The classical pointwise Legendre-Hadamard, or strong-ellipticity, condition

M [a⊗ba⊗ba⊗b] ·a⊗ba⊗ba⊗b > 0, for all a⊗ba⊗ba⊗b �= 0 (38.33)

may be deduced from (38.31) via a well known procedure, detailed, for example in
Chapter 4, Section 1.3 of Giaquinta and Hildebrandt (1996). Conditions equivalent to
(38.28) and (38.33) are stated without proof in Kankanala and Triantafyllidis (2004).
Together they imply a form of the strong-ellipticity condition similar to that arising
in the conventional purely mechanical theory; namely,
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ΞFFFFFF [a⊗ba⊗ba⊗b] ·a⊗ba⊗ba⊗b > 0, for all a⊗ba⊗ba⊗b �= 000, (38.34)

the necessity of which follows immediately from (38.27) on setting v = 0v = 0v = 0 and adapt-
ing the procedure used to derive (38.33) from (38.31) (Giaquinta and Hildebrandt,
1996).

38.5 Equations Holding on the Midplane and Small-Thickness

Estimates

Let the reference configuration κ of the body be the prismatic cylindrical plate-like
region Ω × [−h/2,h/2], where Ω is the midplane of the plate and h is its (uniform)
thickness. Let kkk be the (fixed) unit normal to Ω . Using the projection

1 = I− k⊗ k,1 = I− k⊗ k,1 = I− k⊗ k, (38.35)

where III is the identity for three-space, we write the force balance (38.21) in the form

div((ΞFFF)111)+(ΞFFF)
′kkk = Ξyyy, (38.36)

where div(·) is the two-dimensional divergence on Ω and (·)′ = ∂ (·)/∂ς , where
ς ∈ [−h/2,h/2] is a convected through-thickness coordinate. This holds at all points
of κ and hence on the midplane Ω in particular, whereon it reduces to

div((ΞFFF)0111)+(ΞFFF)
′
0kkk = (Ξyyy)0, (38.37)

where, here and henceforth, the subscript 0 is used to denote evaluation on the
midplane corresponding to ς = 0.

Further, because (38.17) holds identically in (−h/2,h/2) we may differentiate it
with respect to ς . Evaluating the result, together with (38.17), on Ω we find that

(ΞMMM)0 = 000 and (ΞMMM)′0 = 0.0.0. (38.38)

In the sequel we make use of the formulas (Steigmann, 2013)

FFF0 = ∇rrr+d⊗ k, Fd⊗ k, Fd⊗ k, F ′0 = ∇ddd +g⊗ kg⊗ kg⊗ k and FFF ′′0 = ∇ggg+h⊗ k,h⊗ k,h⊗ k, (38.39)

where
r = χr = χr = χ0, d = χd = χd = χ ′0, g = χg = χg = χ ′′0 and h = χh = χh = χ ′′′0 . (38.40)

The first of these is the midplane deformation, and the remaining terms are the
coefficients in the through-thickness expansion

χχχ = rrr+ ςddd +
1
2
ς2ggg+

1
6
ς3hhh+ ... (38.41)

of the three-dimensional deformation.
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Thus far we have merely recast the equations and specialized them to the midplane
without making any approximations. We do so now, by approximating the traction
boundary conditions at the major surfaces of the plate. Assuming the tractions to
vanish on these surfaces, we have cf. (38.22) (ΞFFF)

±k = 0,k = 0,k = 0, which may be Taylor-
expanded about the midplane to conclude that

(ΞFFF)0kkk = O(h2) and (ΞFFF)
′
0kkk = O(h2). (38.42)

38.6 Potential Energy of a Thin Plate

On combining Leibniz’ rule with a Taylor expansion, we estimate the first term on
the right-hand side of (38.15) as (Steigmann, 2013)∫

κ

Ξdv =
∫
Ω

Wda+o(h3), (38.43)

in which W is given by

W = hΞ0 +
1

24
h3Ξ ′′0 , (38.44)

where, for uniform materials,

Ξ0 = Ξ(rrr,FFF0,MMM0) (38.45)

and

Ξ ′′0 = (ΞFFF)
′
0 ·FFF ′0 +(ΞMMM)′0 ·MMM′0 +(ΞFFF)0 ·FFF ′′0 +(ΞMMM)0 ·MMM′′0 +(Ξyyy)

′
0 ·ddd +(Ξyyy)0 ·g.g.g.

(38.46)
We seek a theory for equilibria and thus invoke partial information about these

from the three-dimensional theory. For example, (38.38), (38.39) and (38.42) may
be used to simplify (38.46) to

Ξ ′′0 = (ΞFFF)
′
0111 ·∇ddd +(ΞFFF)0111 ·∇ggg+(Ξyyy)

′
0 ·ddd +(Ξyyy)0 ·g,g,g, (38.47)

while retaining an order of accuracy consistent with (38.43). The second term on the
right is re-arranged and use is made of (38.37) to obtain

(ΞFFF)0111 ·∇ggg = div{[(ΞFFF)0111]tggg}−div[(ΞFFF)0111] ·g·g·g
= div{[(ΞFFF)0111]tggg}+(ΞFFF)

′
0k ·gk ·gk ·g− (Ξyyy)0 ·g.g.g. (38.48)

From (38.42) we then derive the consistent-order estimate

Ξ ′′0 = (ΞFFF)
′
0111 ·∇ddd +(Ξyyy)

′
0 ·ddd +div{[(ΞFFF)0111]tggg} (38.49)

and thus reduce (38.43), with the aid of the Green-Stokes theorem, to
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κ

Ξdv =
∫
Ω

Wda+
1

24
h3
∫
∂Ω

ggg · (ΞFFF)01ν1ν1νds+o(h3), (38.50)

in which ννν is the exterior unit normal to the edge ∂Ω and W (not to be confused
with the use of the same symbol in (38.6) is given by

W = hΞ0 +
1

24
h3{(ΞFFF)

′
0111 ·∇ddd +(Ξyyy)

′
0 ·ddd}. (38.51)

In the case of dead loading, (38.8) yields (Steigmann, 2013)

L = L+o(h3), (38.52)

with
L =

∫
∂Ωp

(pppr ·rrr + pppd ·ddd + pppg ·ggg)da (38.53)

where

pppr = h(pppa)0 +
1

24
h3(ppp′′a)0, pppd =

1
24

h3(2ppp′a)0 and pppg =
1
24

h3(pppa)0, (38.54)

and where ∂Ωp is the intersection of ∂κp with Ω ; i.e, ∂κp = ∂Ωp× [−h/2,h/2].
Using (38.22) in the form

(pppa)0 = (ΞFFF)01ν ,1ν ,1ν , (38.55)

we derive the estimate
E = E +O(h3), (38.56)

with
E =

∫
Ω

Wda+
1

24
h3
∫

∂Ω\∂Ωp

(ΞFFF)01ν ·g1ν ·g1ν ·gds−L, (38.57)

in which L is now given by

L =
∫

∂Ωp

(pppr ·r + pr + pr + pd ·ddd )ds. (38.58)

The integral over ∂Ω \∂Ωp is effectively fixed by the data and thus contributes
only a disposable constant to the energy (38.57). This conclusion follows from the
fact that three-dimensional position is assigned on ∂κ \∂κp. This fixes the through-
thickness derivatives of the deformation thereon and implies that r,r,r, ddd and ggg are
assigned on ∂Ω \∂Ωp. Further, (ΞFFF)0 is controlled by the values of MMM0, rrr, ∇rrr and
d.d.d. We show in the next section that MMM0 and ddd are determined by rrr and ∇r.r.r. On a
clamped boundary, rrr and its normal derivative (∇rrr)ννν are assigned. Then, since

∇rrr = (∇rrr)ννν⊗ννν+(∇rrr)τττ⊗τττ,
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with τ = k×ν ,τ = k×ν ,τ = k×ν , and since the tangential derivative (∇rrr)τττ is determined by the as-
signed function rrr, it follows that ∇rrr is fixed on ∂Ω \∂Ωp. The relevant integrand is
then fixed by the data and may be suppressed without affecting the mechanics of the
system. Accordingly, the approximate plate energy reduces to

E =
∫
Ω

Wda−L, (38.59)

with W and L as stated.

38.7 Reduction of the Plate Energy

Henceforth we work exclusively with variables defined on Ω and thus suppress the
subscript 0 for the sake of clarity. Our objective is to show that the midplane values
of M,M,M, MMM′, d,d,d, ∇ddd and ggg may be found in terms of the midplane deformation rrr and its
first and second midplane gradients and thus that the plate energy may be reduced
to a functional of the midplane deformation alone, as in the conventional purely
mechanical theory (Steigmann, 2013).

To this end we fix the function rrr and its gradient ∇rrr on Ω . Equation (38.38)1,
namely ΞMMM = 0,0,0, then imposes a relationship between MMM and ddd, which yields a unique
solution MMM = M̂MM(ddd), say, by virtue of the positive definiteness of ΞMMMMMM (cf. (38.28))
and the implicit function theorem. The midplane energy may then be written as a
function Ξ = Γ (ddd) of ddd alone, again presuming that rrr and its gradient are fixed.
Consider the one-parameter family ddd(u). This induces the family MMM(u) = M̂̂M̂M(ddd(u)).
Let σ(u) = Γ (ddd(u)). The first and second derivatives of this function are

σ̇ = ΞMMM · Ṁ̇ṀM+ΞFFF · ḋ⊗ kḋ⊗ kḋ⊗ k (38.60)

and

σ̈ = ΞMMM · M̈̈M̈M+ΞFFF · d̈⊗ kd̈⊗ kd̈⊗ k+(ΞMMMMMM)Ṁ̇ṀM · Ṁ̇ṀM+ ḋ⊗ kḋ⊗ kḋ⊗ k ·ΞFFFFFF [ḋ⊗ kḋ⊗ kḋ⊗ k]

+Ṁ̇ṀM · (ΞMFMFMF)ḋ⊗ kḋ⊗ kḋ⊗ k+ ḋ⊗ kḋ⊗ kḋ⊗ k · (ΞFMFMFM)Ṁ,Ṁ,Ṁ, (38.61)

where, by construction, ΞMMM(ddd(u),M,M,M(u))))))≡ 0.0.0. Accordingly,

(ΞMMMMMM)Ṁ̇ṀM+ΞMFMFMF(ḋ⊗ kḋ⊗ kḋ⊗ k) = 000, (38.62)

yielding
Ṁ̇ṀM =−(ΞMMMMMM)−1ΞMFMFMF(ḋ̇ḋd⊗kkk) (38.63)

and (cf. 38.32)
σ̈ = ΞMMM · M̈̈M̈M+ΞFFF · d̈⊗ kd̈⊗ kd̈⊗ k+ ḋ⊗ kḋ⊗ kḋ⊗ k ·M [ḋ̇ḋd⊗kkk]. (38.64)

Next, recall that (38.42) was used to justify the suppression of (ΞFFF)kkk in the order-
h3 term of the energy. Together with the vanishing of ΞMMM, this furnishes σ̇ = 0
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and hence the stationarity of the midplane energy Ξ with respect to d.d.d. Conversely,
granted the vanishing of ΞMMM, this energy is stationary only if (ΞFFF)kkk vanishes, and σ̈
then reduces to

σ̈ = ḋ⊗ kḋ⊗ kḋ⊗ k ·M [ḋ⊗ kḋ⊗ kḋ⊗ k], (38.65)

which is positive for all non-zero ḋ̇ḋd by virtue of (38.33). The energy Ξ is thus
a convex function of d.d.d. Because such functions have unique stationary points, it
follows that the conditions ΞMMM =000 and (ΞFFF)k = 0,k = 0,k = 0, which were imposed in the course
of constructing W , furnish MMM and ddd as unique functions of rrr and ∇r.r.r. Importantly,
because these functions minimize Ξ absolutely, it is appropriate to incorporate them
in the order-h term of the energy also.

It remains to evaluate MMM′ and ggg. To this end we observe, for uniform materials,
that (38.38)2 furnishes

MMM′ =−(ΞMMMMMM)−1{(ΞMFMFMF)FFF ′+(ΞMyMyMy)ddd} (38.66)

in which (cf. (38.39)2)
FFF ′ = ∇d +g⊗ k.d +g⊗ k.d +g⊗ k. (38.67)

Here MMM, ddd and ∇ddd are fixed in terms of rrr, ∇rrr and ∇∇rrr via the foregoing procedure.
For fixed values of the latter, (38.66) thus delivers MMM′ as an explicit function of g.g.g. To
eliminate g,g,g, and thereby reduce the energy (38.59) to a functional of the midplane
position field rrr alone, recall that (38.42)2 was used to justify the suppression of
(ΞFFF)

′kkk in the course of deriving (38.51). Thus,

000 = (ΞFFF)
′kkk = {ΞFFFFFF [∇d +g⊗ kd +g⊗ kd +g⊗ k]+ (ΞFMFMFM)MMM′+(ΞFyFyFy)ddd}kkk. (38.68)

Inserting (38.66), we obtain

AgAgAg =−(M [∇ddd])kkk+{ΞFyFyFy−ΞFMFMFM(ΞMMMMMM)−1ΞMyMyMy}d,d,d, (38.69)

where AAA is the symmetric tensor defined by

AvAvAv = (M [vvv⊗kkk])kkk (38.70)

for any three-vector v.v.v. This is positive definite by virtue of (38.33), and (38.69) yields
ggg uniquely in terms of variables that are uniquely determined by rrr, ∇rrr and ∇∇rrr,
yielding an energy density W that depends on the latter variables alone.

In principle, this completes the reduction of the plate energy to a functional of the
midplane deformation. However, in practice, because (38.38)1 and (38.42)1 do not
deliver explicit formulae for MMM and d,d,d, it is more feasible to eliminate MMM′ and ggg using
the explicit results (38.66) and (38.69), and then to regard the resulting energy as a
functional of r,r,r, ddd and M,M,M, subject to the nonlinear algebraic constraints (38.38)1 and
(38.42)1. One may then derive the relevant equilibrium equations as the stationarity
conditions for the constrained energy. The details of this procedure are standard and
therefore left to the interested reader.
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We leave open the challenging question of the well-posedness of the minimization
problem for the two-dimensional plate energy. In the purely mechanical context, it is
known (Steigmann, 2013) that the energy derived by a procedure like that used here
may not be well posed unless certain additional conditions are met. In particular, it
may be that truncation of the energy at order higher than h3 may be needed to secure
a well-posed model, in which case the ultimate dimensionally reduced system may
well prove to be overly cumbersome vis à vis the three-dimensional theory.
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Chapter 39

Modelling of an Ionic Electroactive Polymer by

the Thermodynamics of Linear Irreversible

Processes

Mireille Tixier and Joël Pouget

Abstract Ionic polymer-metal composites consist in a thin film of electro-active
polymers (Nafion� for example) sandwiched between two metallic electrodes. They
can be used as sensors or actuators. The polymer is saturated with water, which
causes a complete dissociation and the release of small cations. The strip undergoes
large bending motions when it is submitted to an orthogonal electric field and vice
versa. We used a continuous medium approach and a coarse grain model; the system
is depicted as a deformable porous medium in which flows an ionic solution. We write
microscale balance laws and thermodynamic relations for each phase, then for the
complete material using an average technique. Entropy production, then constitutive
equations are deduced: a Kelvin-Voigt stress-strain relation, generalized Fourier’s
and Darcy’s laws and a Nernst-Planck equation. We applied this model to a cantilever
electro-active polymer strip undergoing a continuous potential difference (static case);
a shear force may be applied to the free end to prevent its displacement. Applied
forces and deflection are calculated using a beam model in large displacements. The
results obtained are in good agreement with data published in the literature.

39.1 Introduction

Electro-active polymers (EAP) have attracted much attention from scientists and
engineers because of their very promising applications in many areas of science and
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the growing market. Their behavior and electro-chemical-mechanical interactions
are of great interest and curiosity for research. In particular, the properties of these
materials are highly attractive for biomimetic applications (for instance, in robotic
mechanisms are based on biologically inspired models), for the rise of artificial mus-
cles (Bar-Cohen, 2001), and for haptic actuators. More recently EAPs are excellent
candidates for energy harvesting devices (Brufau-Penella et al, 2008). Promising
applications of this smart material consisting of micro-electromechanical systems
(MEMS) at the sub-micron scale are also investigated for accurate medical control
(Yoon et al, 2007).

The purpose of the present study is to construct step by step a micro-mechanical
model which accounts for couplings between the ion transport, electric field and
elastic deformation in order to deduce the constitutive equations for this material.
Next, an application to the actuation of beam made of thin layer of EAP is presented.
Roughly speaking, an electro-active polymer is a polymer that exhibits a mechanical
response, such as stretching, contracting, or bending for example, when subject to
an electric field (only few volts are needed for actuation). Conversely, the EAP can
produce energy in response to a mechanical loading.

The terminology electro-active polymer has very wide meaning and can be applied
to a large category of materials. The electro-active polymers are generally divided in
two main classes: (i) the electronic EAPs, in which activation is causedby electro-
active force between both electrodes which squeezes the polymer and (ii) the ionic
EAPs, in which actuation is due to the displacement of ions inside the polymer. Both
classes are divided into subfamilies according to the physical or chemical principles of
activation. The electronic EAP family encompasses ferroelectric polymers, electrets
(PolyVinyliDene Fluoride (PVDF) is an example), dielectric elastomers, electroactive
papers, liquide crystal polymers and many others. The ionic EAP category comprises
ionic gels, ionic composite (IPMC) (such as Nafion� or Flemion�), ionic conductor
polymers (the strong conductivity is due to oxychloreduction process), nanotube of
carbone (the electrolyte is modified by additional charges which produce volume
change), electrorheologic fluid (fluid with micro particles changing the rheological
properties of fluid, viscosity for instance) among others. The reader can refer to Bar-
Cohen (2001) for many more details. Each category possesses their own advantages
and their drawbacks.

The present work addresses investigation of electro-active polymers belonging to
ionic class and more precisely to ionic-exchange polymer-metal composite (IPMC
because of the metallic electrodes on the layer faces). The latter consists in an ionic
polymer (Nafion�, for instance) sandwiched with two electrodes onto the upper
and lower surfaces of the polymer layer. Katchalsky, in 1949 was one of the first
investigators to report the ionic chemo-mechanical deformation of polyectrolytes
such as polyacrylic acid or polyvinyl chloride systems. More recently a great interest
has been devoted to EAPs due to the similarities with biological tissues in terms of
achievable stress and they are often called artificial muscles. Moreover, the material
has potential applications in the field of robotics, medical technology and so on.
Investigation on EAP have been traced to Shahinpoor (1994); Shahinpoor et al (1998)
and some many other researchers.
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Modeling of EAPs must include complicated electro-chemical-mechanical cou-
plings. Different kinds of approaches have been proposed. Newbury and Leo (2001,
2002) developed empirical and heuristic models to explain sensing and actuating
properties of ionic polymer benders. Model based on electrostatic interactions pro-
duced by ion motion has been developed by Todokoru et al (2000). A model including
the effect of electric field, current, pressure gradient and water flux as state variables
has been proposed by de Gennes et al (2000) using the concept of irreversible thermo-
dynamics. A more sophisticated model nonetheless closer to the realistic properties
was developed by Nemat-Nasser and Li (2000); Nemat-Nasser (2002). The model
is based on the micro-mechanics of ionic polymers including ion transport. Finite
element 3D model has been studied by Vokoun et al (2015) to solve the basic govern-
ing physical equations for EAPs proposed by Nemat-Nasser with given boundary
conditions. A model of electro-viscoelastic polymers as an extension of the nonlinear
electro-elasticity theory has been discussed by Ask et al (2012) and finite element
numerical simulations were also presented.

The proposed model accounts for electro-mechanical and chemical-electric cou-
pling of ion transport, electric field and elastic deformation to produce the response
of the EAP. We first investigate the conservation laws of the different phases at the
micro level. An averaging statistical process applied to the different phase quantities
and to the equations of the conservation laws at the micro-scale is used to deduce, in
a representative elementary volume containing all the phases, the equations of the
conservation laws of the polymer at the continuum level. We write down conservation
laws (mass, momentum, energy) in the framework of non-equilibrium thermody-
namics. The thermodynamics of linear irreversible process allows us to identify
the fluxes and generalized forces (Tixier and Pouget, 2014) and the constitutive
equations for the continuum model are consequently obtained (Tixier and Pouget,
2016). A generalized Darcy’s law and the balance for ion flux (a kind of Nernst-Plank
equation) are deduced from the thermodynamics relations and Gibbs’ relation. Along
with the former equations the stress-strain equation and that of the electric charge
conservation are also considered (Tixier and Pouget, 2016).

The paper is organized as follows, the next section is devoted to the description of
the EAP giving the main properties and the way of modeling the material. The section
reports also the method used for arriving at the continuum model. The Sect. 39.3
concerns the conservation laws, especially the energy balance laws. The fundamental
thermodynamic relations as well as the entropy production are reported in Sect. 39.4.
Gibbs’, Euler’s and Gibbs-Duhem’s relations are given in order to deduce the rate
of entropy production. The constitutive equations are presented in Sect. 39.5, in
particular the stress-strain relation, Nernst-Plank equation and generalized Darcy’s
law are written in terms of concentration, electric field and pressure. The Sect. 39.6
proposes a validation of the model by studying the bending actuation of EAP layer
subject to a constant difference of electric potential applied to the upper and lower
electrodes. Comparisons to experimental results available in the literature ascertain
the present model. The most pertinent results are summarized in the conclusions.



720 Mireille Tixier and Joël Pouget

39.2 Description and Modelling of the Material

The system we study is an ionic polymer-metal composite (IPMC); it consists of a
membrane of polyelectrolyte coated on both sides with thin metal layers acting as
electrodes. The polymer is saturated with water, which results in a quasi-complete
dissociation: anions remain bound to the polymer backbone, whereas small cations
are released in water (Chabé, 2008). When an electric field perpendicular to the
electrodes is applied, cations are attracted by the negative electrode and carry solvent
away by osmosis. As a result, the polymer swells near the negative electrode and
contracts on the opposite side, leading to the bending of the strip.

To model this system, the polymer chains are assimilated to a deformable porous
medium saturated by an ionic solution composed by water and cations. We suppose
that the solution is dilute. We depicted the complete material as the superposition of
three systems: a deformable solid made up of polymer backbone negatively charged,
a solvent (the water) and cations (for schematic representation, see the inset of
Fig. 39.1 a and b. The solid and liquid phases are assumed to be incompressible
phases separated by an interface whose thickness is supposed to be negligible. We
identify the quantities relative to the different components by subscripts: 1 refers to
cations, 2 to solvent, 3 to solid, i to the interface and 4 to the solution, that is both
components 1 and 2; quantities without subscript refer to the whole material. The
different components (except 1) as well as the global material are assimilated to
continua. We venture the hypothesis that gravity and magnetic field are negligible, so
the only external force acting on the system is the electric force (Tixier and Pouget,
2014).
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Fig. 39.1: Deformable porous medium: (a) Undeformed strip, (b) Strip bending
under an applied electric field
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39.2.1 Average Process

We describe this medium using a coarse-grained model developed for two-phase
mixtures (Drew, 1983; Drew and Passman, 1998; Ishii and Hibiki, 2006; Lhuillier,
2003; Nigmatulin, 1979, 1990). We use two scales. The microscopic scale must be
small enough so that the corresponding volume only contains a single pase (3 or
4), but large enough to use a continuous medium model. For Nafion� completely
saturated with water, it is about hundred Angstroms. At the macroscopic scale, we
define a representative elementary volume (R.E.V.) which contains the two phases;
it must be small enough so that average quantities relative to the whole material
can be considered as local, and large enough so that these averages are relevant.
Its characteristic length is about micron (Chabé, 2008; Collette, 2008; Gierke et al,
1981).

A microscale Heaviside-like function of presence χk (
−→r , t) has been defined for

the phases 3 and 4

χk = 1 when phase k occupies point−→r at time t, χk = 0 otherwise (39.1)

The function of presence of the interface is the Dirac-like function

χi =−
−→
∇ χk ·−→nk (in m−1)

where −→nk is the outward-pointing unit normal to the interface in the phase k. 〈〉k
denotes the average over the phase k of a quantity relative to the phase k only. The
macroscale quantities relative to the whole material are obtained by statistically
averaging the microscale quantities over the R.E.V., that is by repeating many times
the same experiment. We suppose that this average, denoted by 〈〉, is equivalent
to a volume average (ergodic hypothesis) and commutes with the space and time
derivatives (Leibniz’ and Gauss’ rules, Drew, 1983; Lhuillier, 2003). A macroscale
quantity gk verifies

gk =
〈
χkg0

k
〉
= φk

〈
g0

k
〉

k (39.2)

where g0
k is the corresponding microscale quantity and φk = 〈χk〉 the volume fraction

of the phase k. gk is relative to the total volume of the whole material. In the following,
we use superscript 0 to indicate microscale quantities; the macroscale quantities,
which are averages defined all over the material, are written without superscript.

39.2.2 Interface Modelling

In practice, contact area between phases 3 and 4 has a certain thickness; extensive
physical quantities vary from one bulk phase to the other one. This complicated
reality can be modelled by two uniform bulk phases separated by a discontinuity
surface Σ whose localization is arbitrary. Let Ω be a cylinder crossing Σ , whose
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bases are parallel to Σ . We denote by Ω3 and Ω4 the parts of Ω respectively included
in phases 3 and 4.

The continuous quantities relative to the contact zone are identified by a superscript
0 and no subscript. A microscale quantity per surface unit g0

i related to the interface
is defined by

g0
i = lim

Σ−→0

1
Σ

⎧⎨⎩
∫
Ω

g0dv−
∫
Ω3

g0
3dv−

∫
Ω4

g0
4dv

⎫⎬⎭ (39.3)

where Ω3 and Ω4 are small enough so that g0
3 and g0

4 are constant. Its average over
the R.E.V. is the volume quantity gi defined by

gi =
〈
g0

i χi
〉

(39.4)

We arbitrarily fix the interface position in such a way that it has no mass density. The
different phases do not interpenetrate, thus we can write on the interfaces

−→
V 0

1 =
−→
V 0

2 =
−→
V 0

3 =
−→
V 0

4 =
−→
V 0

i (39.5)

where
−→
V 0

k denotes the local velocity of the phase k. Moreover, we neglect all the
velocities fluctuations on the R.E.V. scale.

39.2.3 Partial Derivatives and Material Derivative

In order to write the balance equations, it is necessary to calculate the variations of
the extensive quantities following the material motion. This raises a problem because
the different phases do not move with the same velocity: velocities of the solid and
the solution are a priori different. Let us consider an extensive quantity of density
g(−→r , t) relative to the whole material. We can define particle derivatives following
the motion of the solid ( d3

dt ), the solution ( d4
dt ) or the interface ( di

dt )

dkg
dt

=
∂g
∂ t

+
−→
∇ g ·−→Vk (39.6)

According to the theory developed by Biot (1977); Coussy (1989, 1995), we are
also able to define a derivative following the motion of the different phases of the
medium. We will call it the "material derivative"

ρ
D
Dt

(
g
ρ

)
= ∑

k=3,4,i
ρk

dk

dt

(
gk

ρk

)
= ∑

k=3,4,i

∂gk

∂ t
+div

(
gk
−→
Vk

)
(39.7)

where ρk is the mass density of the phase k and g3, g4 and gi the densities rela-
tive to the total actual volume attached to the solid, the solution and the interface,
respectively
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g = g3 +g4 +gi (39.8)

This derivative must not be confused with the derivative d
dt following the barycentric

velocity
−→
V

ρ
D
Dt

(
g
ρ

)
= ρ

d
dt

(
g
ρ

)
−∑

k

[
div
(

gk

(−→
V −−→Vk

))]
(39.9)

39.2.4 Balance Laws

The balance equation of an extensive microscale quantity g0
k (
−→x , t) writes

∂g0
k

∂ t
+div

(
g0

k

−→
V 0

k

)
=−div

−→
A0

k +B0
k (39.10)

where
−→
A0

k is the flux of g0
k linked to phenomena other than convection and B0

k the
volume production of g0

k (source term). At the macroscopic scale

∂gk

∂ t
+div

(
gk
−→
Vk

)
=−div

−→
Ak +Bk−

〈−→
A0

k ·−→nkχi

〉
(39.11)

in which
−→
Ak =

〈
χk
−→
A0

k

〉
Bk =

〈
χkB0

k
〉

(39.12)

In the case of an interface, the balance law is Ishii and Hibiki (2006)

∂g0
i

∂ t
+divs

(
g0

i

−→
V 0

i

)
= ∑

3,4

[
g0

k

(−→
Vk −

−→
V 0

i

)
·−→nk +

−→
A0

k ·−→nk

]
−divs

−→
A0

i +B0
i (39.13)

where
−→
A0

i is the surface flux of g0
i along the interface due to phenomena other than

convection, B0
i the surface production of g0

i and divs the surface divergence operator.
At the macroscopic scale

∂gi

∂ t
+div

(
gi
−→
Vi

)
= ∑

3,4

〈
χi
−→
A0

k ·−→nk

〉
−div

−→
Ai +Bi (39.14)

Note that gi,
−→
Ai and Bi are volume quantities.

For the complete material, we deduce by summation:

ρ
D
Dt

(
g
ρ

)
=−div

−→
A +B (39.15)

where
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−→
A = ∑

3,4,i

−→
Ak, B = ∑

3,4,i
Bk (39.16)

39.3 Conservation Laws

We now write the balance laws of the following quantities: mass, electric charge,
linear momentum, the different energies (potential, kinetic, total and internal), entropy
as well as Maxwell’s equations.

39.3.1 Conservation of the Mass

In the absence of chemical reaction, there is no volume production of mass and the
only flux is due to convection. The macroscale mass continuity equation thus writes

∂ρk

∂ t
+div

(
ρk
−→
Vk

)
= 0 (k = 2,3),

∂ρ
∂ t

+div
(
ρ−→V
)
= 0 (39.17)

with

ρ1 = φ4CM1, ρk = φkρ0
k (k = 2,3), ρ4 = ρ2 +φ4CM1 (39.18)

Mk is the molar mass of the component k and C the cations molar concentration
relative to the liquid phase. We assume the concentration fluctuations are negligible.

39.3.2 Electric Equations

As in the case of mass, there is, for the electric charge, neither source term nor flux
except convection. The electric charge conservation law can be written

div
−→
I +

∂ρZ
∂ t

= 0 (39.19)

where
ρZ = ∑

3,4
ρkZk +Zi,

−→
I = ∑

3,4,i

−→
Ik (39.20)

and −→
I3 = ρ3Z3

−→
V3 ,

−→
I4 = ρ1Z1

−→
V1 (39.21)

Zk denotes the electric charge per unit of mass and
−→
Ik the current density vector of

phase or interface k.
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The electric field
−→
E0

k and the electric displacement
−→
D0

k verify Maxwell’s equations
and their boundary conditions. We assume that the electric field fluctuations are
negligible and that macroscale electric fields are identical in all the phases. We thus
obtain Maxwell’s equations for the complete material

rot
−→
E =

−→
0 div

−→
D = ρZ

−→
D = ε−→E (39.22)

where the permittivity ε of the whole material writes

ε = ∑
3,4
φk
〈
ε0

k
〉

k (39.23)

We conclude that the EAP behaves like an isotropic homogeneous linear dielectric.
However its permittivity varies over time and space because of variations of the
volume fractions φk.

39.3.3 Linear Momentum Conservation Law

Since the gravity and the magnetic field are negligible, the only force applied is the
electric force (source term). The linear momentum flux is related to the stress tensors
σ˜0

k of the different phases. From (39.5), we deduce that the linear momentum of the
interface is zero, which leads to the following linear momentum conservation law for
the interfaces

∑
3,4

〈
σ0

k˜ ·−→nkχi

〉
= Zi
−→
Ei (39.24)

We obtain for the complete material

ρ
D
−→
V

Dt
= divσ˜+ρZ

−→
E = div

[
σ˜+ ε

(−→
E ⊗−→E − E2

2
1˜
)]

+
E2

2
gradε (39.25)

using Maxwell’s equations (39.22), 1˜ denotes the identity tensor,

σ˜ = ∑
k=3,4

σ˜k (39.26)

is a symmetric tensor.

ε
(−→

E ⊗−→E − E2

2
1˜
)

is the Maxwell’s tensor, which is here symmetric. The additional term

E2

2
gradε

results from the nonhomogeneous material permittivity.
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39.3.4 Energy Balance Laws

39.3.4.1 Potential Energy Balance Equation

Potential energy production is equal to the volume power −−→E0
k ·
−→
I0
k of the force due

to the action of the electric field on the electric charges. The two phases are supposed
to be non-dissipative isotropic linear media. As a consequence the balance equation
for the potential energy (Poynting’s theorem) can be written in the integral form
(Jackson, 1975; Maugin, 1988)

d
dt

∫
Ω

1
2

(−→
E ·−→D +

−→
B ·−→H

)
dv =−

∮
∂Ω

(−→
E ∧−→H

)
·−→n ds−

∫
Ω

−→
E ·−→I dv (39.27)

The left hand side represents the variation of the potential energy attached to the
volume Ω following the charge motion. If the charges are mobile, the associated
local equation is written as follows for the phase k, neglecting the magnetic field

∂E0
pk

∂ t
+div

(
E0

pk

−→
V 0

k

)
=−
−→
E0

k ·
−→
I0
k k = 3,4 (39.28)

in which
E0

pk =
1
2

−→
D0

k ·
−→
E0

k

is the potential energy per unit of volume of the phase k. The potential energy balance
equation for the whole material is then

ρ
D
Dt

(
Ep

ρ

)
=−−→E ·−→I (39.29)

where
Ep =

1
2
−→
D ·−→E

39.3.4.2 Kinetic Energy Balance Equation

The relative velocities of the different phases are negligible compared to the velocities
measured in the laboratory reference frame. Let us take for example a strip of
Nafion� which is 200 μm thick and 1.57 cm long, bending in an electric field;
the tip displacement is about 4 mm and is obtained in 1 s (Nemat-Nasser and Li,
2000). Relative velocities of the order of 2 10−4 ms−1 and absolute velocities close
to 4 10−3 ms−1 are thus obtained (Tixier and Pouget, 2016). In a first approximation,
we can identify the kinetic energy Ec of the complete material and the sum of the
kinetic energies of the constituents. The kinetic energy balance equation derives from
the linear momentum balance equation
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ρ
D
Dt

(
Ec

ρ

)
= ∑

3,4

[
div
(
σk˜ ·−→Vk

)
−σk˜ : grad

−→
Vk

]
+
(−→

I −−→i
)
·−→E (39.30)

where the diffusion current of the cations in the solution and of the interfaces is

−→
i =
−→
I − ∑

k=3,4

(
ρkZk
−→
Vk

)
−Zi
−→
Vi (39.31)

39.3.4.3 Total Energy Balance Equation

The total energy E is the sum of internal, potential and kinetic energies. The source
term is null, and the flux comes from contact forces work and heat conduction

−→
Q .

The total energy conservation law for the whole material is

ρ
D
Dt

(
E
ρ

)
= div

(
∑

k=3,4
σk˜ ·−→Vk

)
−div

−→
Q (39.32)

39.3.4.4 Internal Energy Balance Equation

Internal energy U is the difference between total energy and potential and kinetic
energies

U = E−Ec−Ep (39.33)

which leads to

ρ
D
Dt

(
U
ρ

)
= ∑

3,4

(
σk˜ : grad

−→
Vk

)
+
−→
i ·−→E −div

−→
Q (39.34)

39.3.4.5 Interpretation of the Equations

The energy balance laws we have written are relative to a thermodynamic closed
system because of the use of the material derivative. Source terms correspond to
conversion of one kind of energy into another one. Energy exchanges are summarized
in Table 39.1. Fluxes can be considered as the rate of variation of the quantity
associated with the conduction phenomenon. The kinetic energy flux is equal to the
work of the contact forces, the internal energy flux is the heat flux and the total energy
flux is the sum of the two. We verify that there is no source term in this last equation.(−→

I −−→i
)
·−→E results in a motion of the electric charges subject to the electric field

and is a conversion of potential energy into kinetic energy.
−→
i ·−→E can be seen as

Joule heating, which is a conversion of potential energy into internal energy,
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Table 39.1: Energy exchanges

flux Ec←→ Ep U ←→ Ep Ec←→U

Ep −
(−→

I −−→i
)
·−→E −−→i ·−→E

Ec ∑
3,4
σk˜ ·−→Vk +

(−→
I −−→i

)
·−→E − ∑

3,4
σk˜ : grad

−→
Vk

U −−→Q +
−→
i ·−→E + ∑

3,4

(
σk˜ : grad

−→
Vk

)
E ∑

3,4
σ˜k ·−→Vk −−→Q

∑
3,4

(
σk˜ : grad

−→
Vk

)
represents the viscous dissipation, which converts kinetic energy into heat.

39.4 Entropy Production

We shall now write the thermodynamic relations of the electroactive polymer. The
thermodynamics of linear irreversible processes will allow us to identify the fluxes
and the generalized forces (Tixier and Pouget, 2016).

39.4.1 Entropy Balance Law

The entropy balance law of the whole material is written as

ρ
D
Dt

(
S
ρ

)
= s−div

−→
Σ , (39.35)

where S,
−→
Σ and s denote the entropy, the entropy flux vector and the rate of entropy

production, respectively.

39.4.2 Fundamental Thermodynamic Relations

According to de Groot and Mazur (1962), the Gibbs’ relations of a single constituent
solid and of a two-constituent fluid can be written at the microscopic scale
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ρ0
3

d0
3

dt

(
U0

3

ρ0
3

)
= p0

3
1
ρ0

3

d0
3ρ

0
3

dt
+σ0e

3˜s :
d0

3ε
0
3˜ s

dt
+ρ0

3 T 0
3

d0
3

dt

(
S0

3

ρ0
3

)
,

d0
4

dt

(
U0

4

ρ0
4

)
= T 0

4
d0

4
dt

(
S0

4

ρ0
4

)
− p0

4
d0

4
dt

(
1
ρ0

4

)
+ ∑

k=1,2
μ0

k
d0

4
dt

(
ρ ′k
ρ0

4

)
,

(39.36)

where T 0
k denotes the absolute temperature, ε03˜ and σ0e

3˜ the strain tensor and the

equilibrium stress tensor, ε0s
3˜ and σ0es

3˜ the strain and stress deviator tensors. The solid

pressure p0
3 is related to the stress tensor and verifies the Euler’s relation, as well as

the liquid pressure p0
4

p0
3 =−

1
3

tr
(
σ0e

3˜
)
= T 0

3 S0
3−U0

3 +μ0
3ρ

0
3 ,

U0
4 −T 0

4 S0
4 + p0

4 = μ0
1CM1 +μ0

2
ρ0

2φ2

φ4
.

(39.37)

μ0
k is the chemical potential per unit of mass. We venture the hypothesis that the

fluctuations over the R.E.V. of the intensive thermodynamic quantities (pressures,
temperatures and chemical potentials) and of the strain and equilibrium stress tensors
are negligible. We also suppose that the solid deformations are small. Making the
hypothesis of local thermodynamic equilibrium, we derive

p = p3 = p4 = p0
3 = p0

4
T = T3 = T4 = Ti = T 0

3 = T 0
4

(39.38)

We thus obtain Gibbs’s, Euler’s and Gibbs-Duhem’s relations of the whole material

T
D
Dt

(
S
ρ

)
=

D
Dt

(
U
ρ

)
+ p

D
Dt

(
1
ρ

)
− 1
ρ
σ e

3˜s :
d3ε

s
3˜

dt
−∑

1,2
μk
ρ4

ρ
d4

dt

(
ρk

ρ4

)
,

p = T S−U + ∑
k=1,2,3

μkρk,

d p
dt

= S
dT
dt

+ ∑
k=1,2,3

ρk
dμk

dt
−σ e˜s : grad

−→
V

(39.39)

39.4.3 Entropy Production

The stress tensor is composed of the equilibrium stress tensor σ e˜ and the viscous
stress tensor σ v˜; this second part vanishes at equilibrium

σ˜ = σ e˜+σ v˜ =−p1˜+σ e˜s +σ v˜ (39.40)
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Combining the internal energy and entropy equations with the Gibbs’ relation, the
rate of entropy production s can be identified

s =
1
T
σ v˜ : grad

−→
V +

1
T

−→
i′ ·−→E − 1

T 2

−→
Q′ ·gradT + ∑

k=1,2,3
ρk

(−→
V −−→Vk

)
·grad

μk

T
(39.41)

with −→
i′ =
−→
I −ρZ

−→
V ,−→

Q′ =
−→
Q − ∑

k=3,4
Uk

(−→
V −−→Vk

)
− ∑

k=3,4
σk˜ ·
(−→

Vk −−→V
)

(39.42)

39.4.4 Generalized Forces and Fluxes

We define the mass diffusion flux of the cations in the solution
−→
J1 and the mass

diffusion flux of the solution in the solid
−→
J4

−→
J1 = ρ1

(−→
V1−−→V2

)
,

−→
J4 = ρ4

(−→
V4−−→V3

)
(39.43)

These two fluxes are linearly independent. The diffusion current
−→
i′ and the fluxes

ρk

(−→
Vk −−→V

)
can be expressed as functions of these two fluxes. We thus identify the

fluxes along with the associated generalized forces (Table 39.2).

Table 39.2: Generalized fluxes and forces

Fluxes Forces
1
3

trσ v˜ 1
T

div
−→
V

−→
Q′ grad

1
T

−→
J1

ρ2

ρ4

[
1
T

Z1
−→
E −grad

μ1

T
+grad

μ2

T

]
−→
J4

ρ3

ρ

[
1
T

(
ρ1

ρ4
Z1−Z3

)−→
E − ρ1

ρ4
grad

μ1

T
− ρ2

ρ4
grad

μ2

T
+grad

μ3

T

]
σ v˜s 1

T

[
1
2

(
grad
−→
V +grad

−→
V T
)
− 1

3

(
div
−→
V
)

1˜
]
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39.5 Constitutive Equations

We venture the hypothesis that the medium is isotropic. According to Curie symmetry
principle, there can not be any coupling between fluxes and forces whose tensorial
ranks differs from one unit. Moreover, we suppose that coupling between fluxes and
different tensorial rank forces are negligible, which is commonly admitted (de Groot
and Mazur, 1962). We thus obtain a tensorial law (the rheological equation) and three
vectorial constitutive equations.

39.5.1 Rheological Equation

Considering the symmetry of the tensor σ v˜, the scalar and tensorial fluxes are linear
functions of the corresponding forces. Assuming that the complete material satisfies
the Hooke’s law at equilibrium and the liquid phase is newtonian and stokesian, the
pressure verify

p =−1
3

tr
(
σ e˜
)
=

(
λ +

2
3

G
)

trε˜ (39.44)

where λ and G denote the first Lamé constant and the shear modulus of the complete
material, respectively, and ε˜ the material strain

ε˜= 1
2
(
grad−→u +grad−→u T ) or

•
ε˜= 1

2

(
grad
−→
V +grad

−→
V T
)

(39.45)

−→u is the displacement vector. The stress tensor of the complete material thus identifies
with a Kelvin-Voigt model

σ˜ = λ
(
trε˜)1˜+2Gε˜+λvtr

•
ε˜1˜+μv

•
ε˜ (39.46)

λv and μv are viscoelastic coefficients.
The elastic coefficients have the following values (Bauer et al, 2005; Barclay

Satterfield and Benziger, 2009; Silberstein and Boyce, 2010), which are in agreement
with the usual ones

G∼ 4.5 107 Pa, λ ∼ 3 108 Pa, E ∼ 1.3 108 Pa ν ∼ 0.435 (39.47)

where E is the Young’s modulus and ν the Poisson’s ratio. Viscoelastic coefficients
can be deduced from uniaxial tension tests (Barclay Satterfield and Benziger, 2009;
Silberstein and Boyce, 2010; Silberstein et al, 2011) and relaxation times for a
traction, which are close to 15 s (Silberstein, 2008; Silberstein and Boyce, 2010;
Silberstein et al, 2011)

λv ∼ 7 108 Pa s, μv ∼ 108 Pa s (39.48)
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These coefficients depend strongly on the solvent concentration and on the tempera-
ture, especially if it is close to the glass transition.

39.5.2 Nafion� Physicochemical Properties

Vectorial constitutive equations require nine phenomenological coefficients, which
are a priori second-rank tensors; they can be replaced by scalars because of the
isotropy of the medium. The first equation that we obtain is a generalized Fourier’s
law. We will approximate the two other by restricting ourselves to the isothermal
case and focusing on a particular EAP: Nafion� 117 Li+.

The liquid phase is a dilute solution of strong electrolyte. According to Diu (2007),
mass chemical potentials can be written on a first approximation

μ1 (T, p,x)� μ0
1 (T, p)+

RT
M1

ln
(

C
M2

ρ0
2

)
,

μ2 (T, p,x)� μ0
2 (T, p)− RT

ρ0
2

C,

μ3 (T, p,x) = μ0
3 (T ) ,

(39.49)

where R = 8,314 J K−1 is the gas constant. μ0
2 and μ0

3 denote the chemical potentials
of the single solid and solvent, and μ0

1 depends on the solvent and the solute. The
Gibbs-Duhem’s relations for the solid and the liquid phases enable the calculation of
gradμk

gradμ1 =−S1

ρ1
gradT +

v1

M1
grad p+

RTρ0
2

M2M1C
grad

(
CM2

ρ0
2

)
gradμ2 =−S2

ρ2
gradT +

v2

M2
grad p− RT

M2
grad

(
CM2

ρ0
2

)
gradμ3 =−S3

ρ3
gradT

(39.50)

where vk denotes the partial molar volume of the constituent k.
The physicochemical properties of the Nafion� are well documented. Its equiva-

lent weight, that is to say, the weight of polymer per mole of ionic sites is (Gebel,
2000)

Meq ∼ 1.1 kg eq−1

The solution volume fraction φ4 is close to 38% (Cappadonia et al, 1994; Choi
et al, 2005). Other parameters are resumed in Table 39.3 (Heitner-Wirguin, 1996;
Nemat-Nasser and Li, 2000). The anions molar concentration, which is equal to the
average cations concentration, is
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Cmoy =
ρ0

3φ3

Meqφ4
∼ 3.1 103 mol m−3

The dynamic viscosity of water is η2 = 10−3 Pa s. We deduce the mass densities of
the complete material ρ ∼ 1.7 103 kg m−3. We moreover suppose that the temperature
is T = 300 K. The electric field is typically about 104 V m−1 (Nemat-Nasser and Li,
2000).

Considering this numerical estimations, we can write in a first approximation

Z1� Z3 ρ ∼ ρ2 ∼ ρ3� ρ1 ρ1Z1 ∼ ρ4Z3 (39.51)

39.5.3 Nernst-Planck Equation

It is commonly accepted that the non-diagonal phenomenological coefficients are
small compared to the diagonal ones. The expression of the mass diffusion flux of
the cations J1 can be identified with a Nernst-Planck equation (Lakshminarayanaiah,
1969)

−→
V1 =−D

C

[
gradC− Z1M1C

RT
−→
E +

Cv1

RT

(
1− M1

M2

v2

v1

)
grad p

]
+
−→
V2 (39.52)

D∼ 2 10−9m2s−1 denotes the mass diffusion coefficient of the cations in the liquid
phase Zawodzinski et al (1991). This equation expresses the equilibrium of an ions
mole under the action of four forces: the Stokes friction force, which is propor-
tional to

−→
V1−−→V2, the pressure force, the electric force and the thermodynamic force

−M1gradμ1.
The order of magnitude of the different terms of this equation can be estimated.

According to Farinholt and Leo (2004); Nemat-Nasser (2002), the concentration
gradient verifies

|gradC|� 108 mol m−4 (39.53)

Table 39.3: Nafion� 117 Li+ parameters

Cations Solvent Solid
Mk
(
kg mol−1) 3 10−3 18 10−3 102 - 103

ρ0
k

(
kg m−3) 103 2.08 103

vk

(
m3 mol−1

) M1

ρ0
4
∼ 3 10−6 18 10−6

ρk
(
kg m−3) 3.5 380 1.3 103

Zk
(
C kg−1) 3.2 107 0 9 104
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The pressure gradient can be roughly estimated using the Darcy’s law; it is about
109 Pa m−1. We thus obtain

M1C
RT

Z1

∣∣∣−→E ∣∣∣ ∼ 1.6 109 mol m−4

Cv1

RT

(
1− M1

M2

v2

v1

)
|grad p| ∼ 1.1 103 mol m−4

(39.54)

The electric field and the mass diffusion have the leading effects; we thereafter
neglect the pressure gradient term.

39.5.4 Generalized Darcy’s Law

The expression of the mass diffusion flux of the solution in the solid J4 identifies
with a generalized Darcy’s law

−→
V4−−→V3 �− K

η2φ4

[
grad p−ρ0

4 (Z4−Z3)
−→
E
]
− R

M1Cρ4
L1gradC (39.55)

where L1 is a phenomenological coefficient and K the intrinsic permeability of the
solid phase, which is on the order of the square of the pore sizes, that is 10−16 m2.

The orders of magnitude of the different terms are

K
η2φ4

|grad p| ∼ 2.6 10−4 m s−1

K
η2φ4

ρ0
4 (Z4−Z3)

∣∣∣−→E ∣∣∣ ∼ 0.53 m s−1

R
M1Cρ4

L1 |gradC| � 5.9 10−7 m s−1

(39.56)

The latter term can therefore be neglected. The first term represents the mass pressure
force and the second one is the mass electric force; it expresses the motion of
the solution under the action of the electric field and reflects an electro-osmotic
phenomenon.

The distribution of cations becomes very heterogeneous (Farinholt and Leo, 2004;
Nemat-Nasser, 2002): they gather near the negative electrode, where Z4� Z3; the
expression obtained coincides with that of Biot (1955). Near the positive electrode,
where the cation concentration is very low, Z4� Z3; this corresponds to the result
obtained by Grimshaw et al (1990); Nemat-Nasser and Li (2000). In the center of the
strip, the mass electric force exerted on the solution is proportional to the net charge
(Z4−Z3).
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39.6 Validation of the Model: Application to a Cantilevered Strip

In order to validate the model that we have just described, we apply it to the static
case of a cantilevered EAP strip bending under the effect of a permanent electric
field. In addition, the strip might undergo the action of a shear force exerted on the
free end in order to prevent its displacement (blocking force).

39.6.1 Static Equations

A continuous constant voltage ϕ0 is applied between the two faces of the strip. As a
consequence, the partial derivatives with respect to time and the velocities are zero.
We focuse on Nafion� Li+ strip of length L = 2 cm, of thickness 2e = 200 μm and
of width 2l = 5 mm subject to a potential difference ϕ0 = 1 V. We postulate that the
volume fraction φ4 is constant; this hypothesis will be checked a posteriori. As a
consequence, the dielectric permittivity of the whole material is a constant too. We
assume that it is equal to that measured by Deng and Mauritz (1992) for a material
very close to the Nafion�: ε ∼ 10−6 F m−1. Considering the strip dimensions, it is a
two-dimensional problem. A coordinate system Oxyz is chosen such that the axis Oz
is parallel to the imposed electric field, the axis Ox is along the length of the strip
and Oy along its width. We venture the hypothesis that the local electric field axial
coordinate Ex is negligible compare to the normal one Ez. On a first approximation,
C, Ez, p, the local electric potential ϕ and the electric charge density ρZ only depend
on the z coordinate. Neglecting the pressure term in (39.52), we obtain

Ez = −dϕ
dz

, ε
dEz

dz
= ρZ,

d p
dz

=
(
CF−ρ0

2 Z3
)

Ez,
dC
dz

=
FC
RT

Ez,

ρZ = φ4F (C−Cmoy)

(39.57)

F = 96487 C mol−1 is the Faraday’s constant. The boundary conditions write

lim
z→−e

ϕ = ϕ0, lim
z→e

ϕ = 0,
e∫
−e

ρZ dz = 0 (39.58)

The latter condition expresses the electroneutrality condition and is equivalent to
Ez (e) = Ez (−e). We introduce the following dimensionless variables:

E =
Eze
ϕ0

, C =
C

Cmoy
, ϕ = ϕ

ϕ0
,

ρZ =
ρZ

φ4FCmoy
, p =

p
Fϕ0Cmoy

, z =
z
e

(39.59)
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which leads to

E = −dϕ
dz

,
dE
dz

=
A1

A2
ρZ,

d p
dz

=
(
C+A3

)
E,

dC
dz

= A2CE,

ρZ = C−1,

(39.60)

A1, A2 and A3 are dimensionless constants

A1 =
φ4e2F2Cmoy

εRT
∼ 4,37 107,

A2 =
Fϕ0

RT
∼ 38,7,

A3 = −ρ
0
2 Z3Cmoy

FCmoy
∼ 0,303

(39.61)

Boundary conditions are

lim
z→−1

ϕ = 1, lim
z→1

ϕ = 0, E (1) = E (−1) (39.62)

We deduce
d
dz

(
dC
Cdz

)
= A1

(
C−1

)
(39.63)

and

C � A2 exp(−A2ϕ) , p =
C
A2
−A3ϕ+Cte (39.64)

The hydrated polymer can be assimilated to a conductive material. As a conse-
quence, the electric field is zero throughout the strip except near the boundaries. We
deduce the values of the different quantities on the sides and at the center of the strip
(Table 39.4). Equation (39.63) can be solved using Matlab. We deduce ρZ, ϕ , p and
E by (39.60) and (39.64). An evaluation of the pressure term of the equation (39.52)

Table 39.4: Boundary values of the physical quantities

−1 Center 1
C A2e−A2 � 0 1 A2

ϕ 1
lnA2

A2
0

E

√
2A1

A2

[
1− 1

A2
(1+ lnA2)

]
0

√
2A1

A2

[
1− 1

A2
(1+ lnA2)

]
p −A3

1
A2

(1−A3 lnA2) 1
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shows that it does not exceed 2% of the second term of the equation with the nominal
conditions chosen.

39.6.2 Beam Model on Large Displacements

Given the high deflection values, we used a large displacement beam model to
determine forces, stress and strain. We consider a straight beam clamped at the end
O; the other end A is either free or subject to a shear force bringing the deflection
to a zero value (blocking force

−→
F p). The polymer is subject to a distributed electric

force
−→
pp independent of the x coordinate and orthogonal to the strip. Moreover, the

swelling of the strip on the side of the negative electrode generates, through the
pressure

p =
σxx

3
,

a bending moment
−→
Mp

A at the free end of the beam, see (39.2), Considering the
electroneutrality condition, the distributed force and the bending moment verify

pp =

l∫
−l

e∫
−e

ρZEz dz dy = 2l
e∫
−e

ρZEz dz = 2lε
[

E2
z

2

]e

−e
= 0 (39.65)

Mp
A =

l∫
−l

e∫
−e

σxx z dz dy = A4

1∫
−1

p z dz (39.66)

with A4 = 6le2Fϕ0Cmoy ∼ 0,045N m.
We assume that the Bernoulli and Barré Saint Venant hypotheses are verified.

Let s and s be the curvilinear abscissas along the beam respectively at the rest and
deformed configurations, −→t and −→n the vectors tangent and normal to the beam, θ
the angle of rotation of a cross-section and Rp the radius of curvature (geometric
parameters are given in Fig. 39.3). It will be assumed that the elongation

Λ =
ds
ds

Fig. 39.2 Forces exerted on
the beam
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Fig. 39.3 Beam on large
displacements z 

Rp 

O 

t 

n 
ex 

ez 

is equal to 1. The bending moment in the current section is

Mp = F p (x−L)+Mp
A (39.67)

The strain tensor is given by

ε˜= 1
2

[(
grad−→u +1˜)T (grad−→u +1˜)−1˜

]
(39.68)

In the reference frame linked to the undeformed beam, it follows

εxx =− n
Rp

(
1− n

2Rp

)
�− n

Rp (39.69)

where n designates the coordinate in the −→n direction. Indeed, the beam being thin,
|n| � Rp. In the case of pure bending, the strain is given by

εxx =
Mp

EIp n

where

I p =
4le3

3
is the area moment of inertia, with respect to the Oy axis. The shear force has a
negligible effect on the deflection. We deduce the radius of curvature and the angle
of rotation

1
Rp =

dθ
ds

=
F p

EIp (L− s)− Mp
A

EIp , θ =
F p

2EIp s(2L− s)− Mp
A

EIp s (39.70)

by choosing the point O as the origin of the curvilinear abscissas. The deflection w is
obtained by integrating the relation
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dz
ds

= sinθ

In the case of a cantilever beam (F p = 0), the radius of curvature is constant; the
beam is circle shaped and at the free end

θ =−Mp
A

EIp L =−2A5

L

1∫
−1

p z dz

w =
EIp

Mp
A

[
cos
(

Mp
A

EIp L
)
−1
]
=

L2

2A5
1∫
−1

p z dz

⎡⎣cos

⎛⎝2A5

L

1∫
−1

p z dz

⎞⎠−1

⎤⎦
(39.71)

with

A5 =
9
4

L2Fϕ0Cmoy

eE
∼ 20,59 m

The blocking force is the end loading such that the deflection is zero

w(s = L) =−
L∫

0

sin
[

F p

2EIp s(s−2L)+
Mp

A
EIp s

]
ds = 0 (39.72)

Using the Fresnel functions to compute this integral, we obtain for the blocking
force the same result as in small displacements

F p =
3Mp

A
2L

=
3A4

2L

1∫
−1

p z dz (39.73)

39.6.3 Simulations Results

The values obtained for the deflection and the blocking force are in good agreement
with the experimental values reported in the literature (Nemat-Nasser, 2002; Newbury,
2002; Newbury and Leo, 2002, 2003). The variation of cation concentration in the
thickness of the strip is shown in Fig. 39.4. This quantity is constant throughout
the central part of the strip but varies very strongly in the vicinity of the electrodes,
especially near the negative electrode on which the cations accumulate. On the
contrary, it is noticed near the positive electrode an aerea of the order of 0,1 μm
without cations. This result is in good agreement with that of Nemat-Nasser (2002).

1∫
−1

p z dz
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Fig. 39.4: Variation of cation concentration in the thickness of the strip; the dis-
tributions at the vicinity of the lower and upper faces (electrodes) are detailed in
insets.

depends only on the imposed potential ϕ0, the thickness e and the cation chosen. The
deflection w is therefore independent of the width and approximately proportional to
length square, which corresponds to Shahinpoor measurements (Shahinpoor, 1999).
The blocking force is proportional to l and inversely proportional to L, which is in
good agreement with Newbury and Leo (2003).

The deflection varies linearly with the imposed potential difference ϕ0, a result
in agreement with the experiments of Mojarrad and Shahinpoor (1997); Shahinpoor
et al (1998). The blocking force follows the same tendency (Fig. 39.5).

39.7 Conclusion

We have modeled the behavior of an ionic electroactive polymer saturated with water
and subject to an orthogonal electric field. The presence of water causes a complete
dissociation of the polymer and the release of small cations. We have depicted this
medium as the superposition of three systems with different velocities fields : the
cations, the solvent and the solid assimilated to a deformable porous medium. We

Fig. 39.5 Influence of the
potential difference on the
blocking force
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have used a continuous medium approach and a coarse grain model. We have estab-
lished the microscale balance equations of mass, linear momentum, energies, entropy
and the Maxwell’s equations as well as thermodynamic relations for each phase
(solid and liquid). We have derived the macroscale equations relative to the whole
material using an average technique and the material derivative concept. Thermody-
namics of linear irreversible processes have provided the entropy production and the
constitutive equations of the complete material. We have obtained a rheological law
of the Kelvin-Voigt type, generalised Fourier’s and Darcy’s laws and a Nernst-Planck
equation.

We have applied this model to a cantilevered Nafion� strip subject to a continuous
voltage between its two faces, which is a static case. The other end may be either
free or subject to a shear force preventing its displacement (blocking force). We
have used a beam model in large displacement. We have drawn the profile of cations
concentration and evaluated the deflection and the blocking force. We have observed
that the concentration varies very strongly in the vicinity of the electrodes, which is
characteristic of a conductive material behavior. Our results are in good agreement
with the experimental data published in the literature.

To improve this model, we intend to take into account the variations of the
permittivity with the cation concentration. Another way of improvement is to replace
the rheological law with a Zener model that is better suited to viscoelastic polymers.

39.8 Notations

k = 1,2,3,4, i subscripts respectively represent cations, solvent, solid, solution (water
and cations) and interface; quantities without subscript refer to the whole material.
Superscript 0 denotes a local quantity; the lack of superscript indicates average
quantity at the macroscopic scale. Microscale volume quantities are relative to
the volume of the phase, average quantities to the volume of the whole material.
Superscript s indicates the deviatoric part of a second-rank tensor, and T its transpose.

C, Cmoy : cations molar concentrations (relative to the liquid phase);
D : mass diffusion coefficient of the cations in the liquid phase;−→
D : electric displacement field;
e : half-thickness of the strip;
E, G, λ , ν : Young’s and shear modulus, first Lamé constant, Poisson’s ratio;−→
E : electric field;
E, Ep (E0

pk), Ec, U (Uk, U0
k ) : total, potential, kinetic and internal energy densities;

F = 96487 C mol−1 : Faraday’s constant ;−→
F p : blocking force;−→
i (
−→
i′ ) : diffusion current;−→

I (
−→
Ik ,
−→
I0
k ) : current density vectors;

I p : area moment of inertia;
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−→
Jk : mass diffusion flux;
K : intrinsic permeability of the solid phase;
l : half-width of the strip;
L : length of the strip;
Mk : molar mass of component k;
Meq : equivalent weight (weight of polymer per mole of sulfonate groups);
−→
Mp (
−→
Mp

A) : bending moment;−→nk : outward-pointing unit normal of phase k;
p (pk, p0

k) : pressure;
−→
Q (
−→
Q′) : heat flux;

R = 8,314 J K−1 : gas constant;
Rp : radius of curvature of the beam;
s : rate of entropy production;
S (S0

k , Sk) : entropy density;
T (Tk, T 0

k ) : absolute temperature;−→u : displacement vector;
vk : partial molar volume of component k (relative to the liquid phase);
−→
V (
−→
Vk ,
−→
V 0

k ) : velocity;
w : deflection of the beam;
Z (Zk) : total electric charge per unit of mass;
ε : permittivity;
ε˜ (ε0k˜ ) : strain tensor;
η2 : dynamic viscosity of water;
θ : angle of rotation of a beam cross section;
λv, μv : viscoelastic coefficients;
μk (μ0

k ) : mass chemical potential;
ρ (ρk, ρ0

k ) : mass density;
σ˜ (σk˜ , σ0

k˜), σ v˜, σ e˜ (σ e
k˜,σ0e

k˜): stress tensor, dynamic stress tensor, equilibrium
stress tensor;
ΣΣΣ : entropy flux vector;
φk : volume fraction of phase k;
ϕ (ϕ0): electric potential;
χk : function of presence of phase k ;
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Chapter 40

Weakly Nonlocal Non-Equilibrium

Thermodynamics: the Cahn-Hilliard Equation

Péter Ván

Abstract The Cahn-Hilliard and Ginzburg-Landau (Allen-Cahn) equations are
derived from the second law. The intuitive approach of separation of full divergences
is supported by a more rigorous method, based on Liu procedure and a constitutive
entropy flux. Thermodynamic considerations eliminate the necessity of variational
techniques and explain the role of functional derivatives.

40.1 Introduction

In continuum theories the extension of classical, well known evolution equations is
one of the most exciting theoretical question, where several, completely different
approaches compete. When compared to the kinetic theory or nonequilibrium sta-
tistical physics the advantage of pure phenomenological ideas is their universality.
This way one can analyse the consequences of general requirements, like the basic
balances and the second law of thermodynamics without assuming and introducing
particular microscopic structures or mechanisms (Gurtin, 1996; Giorgi, 2009; Ván,
2013). In this respect the so called phase-field theories are particularly interesting,
because there the influence of microstructure is introduced mostly indirectly, through
fluctuating field quantities. The apparent universality of these descriptions is often at-
tributed either to second order phase transitions or background linear instabilities (see
e.g. Hohenberg and Halperin, 1977; Hohenberg and Krekhov, 2015). On the other
hand, from a continuum point of view the obtained macroscopic models are weakly
nonlocal extensions of the simplest evolution equations. For example the extension
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of a relaxation dynamics of a single internal variable leads to the Ginzburg-Landau
(Allen-Cahn) equation (Landau and Ginzburg, 1950; Landau and Khalatnikov, 1954;
Cahn, 1961; Allen and Cahn, 1979), or the extension of a diffusion-Fourier dynamics
results in the Cahn-Hilliard equation (Cahn and Hilliard, 1958). In phase-field models
the role of the second law is rarely constructive, it is used more restrictively. Thermo-
statics is based on free energy and entropy appears only when thermal phenomena
is considered (Penrose and Fife, 1990; Alt and Pawlow, 1992; Antanovskii, 1995,
1996), or sometimes when dissipation is calculated (e.g. Grmela, 2008). Some more
elaborated analyses introduce extra entropy flux (Fabrizio et al, 2006; Giorgi, 2009).
The weakly nonlocal extension is either postulated or due to variational techniques
applied together with local equilibrium based thermodynamic considerations (An-
ders and Weinberg, 2011). In phase-field theories the second law compatibility in
the weakly nonlocal sense, for the higher order spatial derivatives, is rarely men-
tioned, and then it is restricted to the Ginzburg-Landau theory. In the case of the
Cahn-Hilliard equation the large constitutive state space leads to technical difficulties.

However, for more complicated constraints, like the classical balances of contin-
uum mechanics of solids, a simple variational approach may become problematic
as well. The conceptual problem is the doubled theoretical structure. Usually the
relaxation dynamics is introduced without referring to nonequilibrium thermodynam-
ics (e.g. Anderson et al, 1998). The methodology can be extended and combined to
theories like GENERIC (Öttinger, 2005; Grmela and Öttinger, 1997; Öttinger and
Grmela, 1997; Grmela, 2008), where a clear separation of dissipative and nondissipa-
tive parts of the dynamics is based on a bracket formalism with functional derivatives
for weak nonlocality. That can keep strict thermodynamic compatibility far beyond
the usual phase-field approaches.

This doubled thermodynamical-mechanical structure is due to a lack of a resolu-
tion of an ancient question regarding the origin of evolution equations of physics1.
Should we separate the ideal world from the real one or is there a common origin
of nondissipative and dissipative dynamics? Here there are two evident strategies.
One either try to extend the variational principles to dissipative dynamics or derive
the nondissipative evolution from the second law. The historical roots of the first
approach are going back to Helmholtz (Yourgrau and Mandelstam, 1999) and to a
strategy to overcome some strict mathematical conditions (Ván and Muschik, 1995;
Ván and Nyíri, 1999). In order to obtain dissipative evolution and parabolic partial
differential equations from variational principles one need to use some inconventional
methods (Gyarmati, 1970; Sieniutycz and Farkas, 2005; Verhás, 2014; Glavatskiy,
2015). However, in most cases the doubled theoretical structure is preserved in a
modified form (Matolcsi et al, 2005).

The other possibility is pioneered in nonequilibrium thermodynamics, where a
deeper mathematical consistency indicated that the second law can be sufficient to
derive evolution equations. Anyway, a nondissipative evolution is a special dissipative
one, where the dissipation is zero. There exist an intuitive and a rigorous treatment for
weakly nonlocal theories, where the constitutive functions depend on the derivatives

1 That question goes back at least to the greek philosophers Platon and Aristotle, see and overview
in Prigogine and Stengers (1986).
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of the state variables (Capriz, 1985, 1989; Mariano, 2002). The intuitive technique,
the identification of the entropy flux by separation of full divergences, appears
independently in many papers and books (Cahn and Hilliard, 1958; de Groot, 1959;
de Groot and Mazur, 1962; Maugin, 1999; Giorgi, 2009; Heida et al, 2012). The
rigorous treatments are the Coleman-Noll and the Liu procedures (Coleman and Noll,
1963; Liu, 1972), together with a strict interpretation of the second law (Coleman and
Mizel, 1967; Muschik and Ehrentraut, 1996). This rigorous methods are equivalent
(Triani et al, 2008) and interpret the second law as a constrained inequality, where
the identification of independent variables and the constitutive state space are the key
aspects for handling differential equations as constraints.

In principle weak nonlocality can be both in time and space, that is the constitutive
functions may depend both on time and space derivatives. However, in the following
we use the terminology only for the spatial case if not mentioned otherwise. This is
the safe approach because we want to avoid spacetime related objectivity questions:
spatial derivatives in nonrelativistic space-time are frame independent (Ván, 2017).

The first applications of the strict mathematical requirements of the second law
led to blockingly restrictive results. Coleman and Gurtin has proved that for internal
variables only local evolution is possible (Coleman and Gurtin, 1967), and Gurtin has
shown that there is no gradient extension of elasticity (Gurtin, 1965). These results
effectively prevented to understand the universal background of the Ginzburg-Landau
(Allen-Cahn) equation and phase-field theories in general. The thermodynamic inves-
tigations of higher grade fluids and solids were slowed down. Additional concepts
were necessary to circumvent the restrictive conditions.

These concepts are very different. For example interstitial work generalizes the
energy balance (Dunn and Serrin, 1985), the configurational forces generalize the
energy and momentum balances (Gurtin, 1996, 2000), and the virtual power is
based on a kinematic interpretation of internal variables and a related modification
of the energy balance (Germain, 1973; Maugin, 1980; Frémond, 2001; Maugin,
2013)2. These interpretational issues elevated further communication barriers, and the
pitchforking of thermodynamic theories continued3. In principle all these extension
are capable to construct reasonable conditions and lead to very similar results.

Here, in this paper we argue that there is a minimal set of assumptions – it is
essentially the second law – that can generate the Ginzburg-Landau and Cahn-Hilliard
type evolution without any further ado. Moreover, the second law is useful at two
levels, there is an intuitive and a rigorous approach. The mentioned sophisticated
exploitation procedures of Coleman-Noll and Liu can be applied when the blocking
barriers are removed: one need to treat the entropy current density as a constitutive
quantity and prolong the constraints according to the nonlocality level of the state
space. From this point of view the Cahn-Hilliard evolution is particularly instructive,
because there the rigorous methods are seemingly hopeless. They are either restricted

2 The phase-fields themselves have their particular interpretation contexts like order parameters,
interfacial free energy, diffuse interface, etc. All these particular ideas are disguising the general
conditions and the universal background.
3 This is somehow deeply related to the situation described in the first chapter of (Maugin, 1999).
The specialization is a logical consequence.
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to check the thermodynamic compatibility of the already derived equations (Fabrizio
et al, 2006) or the obtained conditions are not direct and too complicated for practical
applications (Pawłow, 2006; Cimmelli et al, 2016). At the same time we will show
that the intuitive method of separation of full divergences leads essentially to the
same results. This is the classical tool of irreversible thermodynamics (de Groot and
Mazur, 1962), the method used originally by Cahn and Hilliard (1958) and it is the
approach of Gerard Maugin for weakly nonlocal internal variables (Maugin, 1999,
2006). Thermodynamic concepts can be used to unite dissipative and nondissipative
evolution.

40.2 Variational derivation of Ginzburg-Landau and

Cahn-Hilliard equations

In both cases we are looking for the evolution equation of a single scalar internal
variable without any constraint in a continuum at rest. In the first case without any
additional conditions or constraints for the internal variables, and in the second
case with a balance form evolution as a constraint. Here we survey the traditional
derivation of both equations which is a characteristic mixture of variational and
thermodynamical ideas.

Let us denote the scalar field by ξ . The Helmholtz free energy density, f , depends
on this variable and its gradient: f (ξ ,∂iξ ). For the sake of simplicity we assume the
following square gradient form, a Ginzburg–Landau free energy function:

f (ξ ,∂iξ ) = f0(ξ )+ γ∂iξ∂ iξ/2, (40.1)

where γ is a nonnegative material parameter, which is scalar for isotropic continua. f0
is the classical, local part of the free energy, that may have particular forms, if ξ is an
order parameter of a second order phase transition. ∂ξ denotes the gradient of ξ and
we apply Einstein’s summation convention and abstract indices, i, j,k ∈ {1,2,3}4.

Then, following the usual arguments, one assumes, that the rate of ξ in a body
with volume V is negatively proportional to the change of the free energy, denoted
by δ :

d
dt

∫
V

ξdV =−lδ
∫
V

f (ξ ,∂iξ )dV. (40.2)

Assuming that this equality is valid for any V we obtain the general Ginzburg–Landau
(Allen-Cahn) equation in the following form:

∂tξ =−l
δ f
δξ

=−l
[
∂ξ f −∂i

(
∂∂iξ f

)]
. (40.3)

4 Please note that these indices are not coordinates (Penrose, 2004).



40 Weakly Nonlocal Non-Equilibrium Thermodynamics: the Cahn-Hilliard Equation 749

Here ∂t is the partial time derivative, δ
δξ in the functional derivative, and l is a

material parameter. With the square gradient free energy, (40.1), one arrives at the
classical form of the equation:

∂tξ =−l
[
∂ξ f0− γ∂ i

iξ
)]
. (40.4)

The second most important basic example of phase-field theories is the Cahn–
Hilliard equation, used for modelling phase transitions in solid media. Usually it
is introduced as a dynamic equation of a conserved order parameter (Hohenberg
and Halperin, 1977). Therefore now we are looking for a balance form evolution
of an internal variable. Then one may assume a derivation by classical irreversible
thermodynamics, where in the thermodynamic force the gradient of the internal
variable is substituted by a functional derivative, assuming a nonlocal interaction.
The variational origin can be less argumented in this case. Therefore, denoting by ji

the current density of ξ , the balance is written as

∂tξ +∂i ji = 0. (40.5)

Then, according to classical irreversible thermodynamics the thermodynamic
flux is the gradient of the corresponding intensive quantity, Aξ . Without thermal
interaction this intensive quantity is the partial derivative of the free energy by ξ , that
is

Aξ =
∂ f
∂ξ

.

Therefore the constitutive equation for the flux is

ji =−κ∂ iAξ . (40.6)

In case of a weakly nonlocal free energy, f (ξ ,∂iξ ), the partial derivative, is to be
substituted by a functional derivative,

Âξ =
δ f
δξ

.

Then we obtain the Cahn-Hilliard equation for the evolution of the internal variable
as

∂tξ −∂i
(
κ∂ iÂξ

)
= ∂tξ −∂i

(
κ∂ i[∂ξ f −∂i

(
∂∂iξ f

)])
= 0. (40.7)

These derivations are remarkably simple and sound from a physical point of view
also when developed in a more detailed form. On the other hand they combine a vari-
ational extremum principle with a frame theory of non-equilibrium thermodynamics.
In the next section we will see, that variational considerations are not necessary at all,
and they role is simply a separation of surface and bulk contributions for the entropy.

First we will investigate the Ginzburg-Landau equation.
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40.3 The Thermodynamic Origin of the Ginzburg-Landau

(Allen-Cahn) Equation

40.3.1 Separation of Full Divergences

With this intuitive method one constructs the entropy balance by introducing the
constraints through the time derivative of the entropy density and then identify an
entropy flux by separating full divergences in the expression. This idea was used
independently in several works (Cahn and Hilliard, 1958; Giorgi, 2009; Heida et al,
2012), but as a method was introduced in classical irreversible thermodynamics,
where the starting point is the Gibbs relation for the classical extensives (de Groot,
1959; de Groot and Mazur, 1962; Gyarmati, 1970). Gerard Maugin applied the
approach in several cases, including internal variables (Maugin, 1999; Maugin and
Drouot, 1983; Maugin, 2006; Berezovski and Ván, 2017).

Let us assume that the evolution equation of the internal variable ξ is written in a
general form as

∂tξ = F. (40.8)

As we can see one does not fix the domain of the right hand side yet. The starting
point is a first order weakly nonlocal entropy density, s(ξ ,∂iξ ). Now we investigate
the entropy balance. With a free energy the following investigation is less convenient,
however, there is no conceptual difference. The relation of the two approaches and
a more systematic background with complete continuum mechanics on material
manifolds is developed e.g. in Berezovski and Ván (2017).

Let us calculate the time derivative of the entropy density and separate the full
divergences with Leibnitz rule:

∂t s(ξ ,∂iξ ) = ∂ξ s∂tξ +∂∂iξ s∂tiξ =−∂ξ sF−∂∂iξ s∂iF

=−∂i
(
F∂∂iξ s

)
+F
(−∂ξ s+∂i(∂∂iξ s)

)
. (40.9)

Therefore the entropy flux is identified as

Ji = F∂∂iξ s, (40.10)

and the entropy production is

∂t s+∂iJi = Σ = F
(−∂ξ s+∂i(∂∂iξ s)

)≥ 0. (40.11)

One can see, that the entropy inequality can be solved with the identification of
thermodynamic fluxes and forces and assuming a linear relationship between them

F = l
(−∂ξ s+∂i(∂∂iξ s)

)
, (40.12)
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where l > 0 is a material relaxation coefficient. The complete evolution of ξ will be
given by an entropic Ginzburg-Landau equation:

∂tξ = l
(−∂ξ s+∂i(∂∂iξ s)

)
. (40.13)

One may observe that natural boundary conditions emerge assuming a zero entropy
flux. These are convenient for numerical solutions and effectively substitute the
natural boundary conditions of variational principles (Giorgi, 2009; Berezovski and
Ván, 2017).

40.3.2 Ginzburg-Landau Equation: a More Rigorous Derivation

The method is simple and clear, this is the advantage. The disadvantage is that one
cannot fix the constitutive quantities and the constitutive state space in advance, it is
determined along the calculations, therefore the results are not unique and require a
verification by more rigorous methodology.

In this case one should assume a second order weakly nonlocal state space,
spanned by the internal variable field, ξ , and its first and second derivatives, ∂iξ and
∂i jξ .

We distinguish the

• space of basic variables, spanned by ξ ,
• the consititutive state space, spanned by (ξ ,∂iξ ,∂i jξ ),
• and the constitutive functions are s, Ji and F .

Then the so called process direction space (Muschik and Ehrentraut, 1996;
Ván, 2008) is spanned by the higher derivatives of the constitutive state space,
(∂tξ ,∂tiξ ,∂ti jξ ,∂i jkξ ). We can observe, that now these derivatives are not indepen-
dent, both the evolution equation, (40.8), and also its derivative

∂tiξ +∂iF = 0i, (40.14)

is a relation in the process direction space. Therefore both the evolution equation of
ξ and also its gradient are constraints for the entropy inequality.

In order to apply Liu procedure we introduce the Lagrange-Farkas multipliers, λ
and Λ i, for the equations (40.8) and (40.14) respectively. Then the application of Liu
procedure leads to

0≤ ∂t s+∂iJi−λ (∂tξ +F)−Λ i (∂tiξ +∂iF) =

= ∂ξ s ∂tξ +∂∂iξ s ∂itξ +∂∂i jξ s ∂i jtξ +∂ξ Ji ∂iξ +∂∂ jξ Ji ∂i jξ +∂∂ jkξ Ji ∂i jkξ

−λ (∂tξ +F)−Λ i
(
∂tiξ +∂ξF ∂iξ +∂∂ jξF ∂i jξ +∂∂ jkξF ∂i jkξ

)
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=
(
∂ξ s−λ)∂tξ +

(
∂∂iξ s−Λ i) ∂itξ +∂∂i jξ s ∂i jtξ +

+
(
∂∂ jkξ Ji−Λ i∂∂ jkξF

)
∂i jka+∂ξ Ji ∂iξ +∂∂ jξ Ji ∂i jξ −

− Λ i
(
∂ξ f ∂iξ +∂∂ jξ f ∂i jξ

)
−λF. (40.15)

The multipliers of the underlined partial derivatives, the members of the process
direction space, give the Liu equations as

∂tξ : ∂ξ s = λ , (40.16)

∂itξ : ∂∂iξ s =Λ i, (40.17)

∂i jtξ : ∂∂i jξ s = 0i j, (40.18)

∂i jkξ : ∂∂( jkξ Ji) =Λ (i∂∂ jk)ξ f . (40.19)

The first two equations determine the Lagrange–Farkas multipliers as the deriva-
tives of the entropy, a solution of the third one gives that the entropy is independent on
the second gradient of the state variable, ξ . Therefore the Lagrange–Farkas multiplier,
Λ i, is also independent of this variable. In the last equation the indexed parenthesis
indicate the symmetric part of the related tensorial components. The last equation
can be integrated as

Ji(ξ ,∂iξ ,∂i jξ ) = ∂∂iξ s(ξ ,∂iξ ) F(ξ ,∂iξ ,∂i jξ )+Ji(ξ ,∂iξ ). (40.20)

Here the extra entropy current density, Ji, is an arbitrary constitutive function of
the indicated variables and we did not restrict the Liu condition to the symmetric
part of the expression. This is a complete solution of this solution, (40.16)–(40.19).
Considering these results, the dissipation inequality is reduced to the following form:

0≤ ∂iJ
i +
[
∂i(∂∂iξ s)−∂ξ s

]
F. (40.21)

Assuming that the extra entropy flux, Ji, is zero, we obtain a product of undeter-
mined constitutive quantity and the derivatives of the entropy, the same thermody-
namic force-flux system as in (40.11). The classical linear solution of the inequality
results in

F = l
[
∂i(∂∂iξ s)−∂ξ s

]
, l ≥ 0. (40.22)

Therefore the evolution equation of an internal variable in a second order weakly
nonlocal constitutive state space will be the Ginzburg-Landau equation:

∂tξ = l
[
∂ξ s−∂i(∂∂iξ s)

]
. (40.23)

This result is a consequence of the second law, independently of any microscopic
interpretation. If the entropy density has a square gradient form, (40.1), Bedeaux et al
(2003); Johannessen and Bedeaux (2003, 2004); Glavatskiy and Bedeaux (2008), we
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obtain the classical form of the equation if γ is constant. The concavity of the entropy
requires γ > 0.

40.4 The Thermodynamic Origin of the Cahn–Hilliard Equation

40.4.1 Separation of Full Divergences

In this case the internal variable ξ is conservative, its evolution equation has a balance
form

∂tξ +∂i ji = 0, (40.24)

where ji is the flux of ξ . Now the constitutive functions are the entropy, its current
density and the flux of the state variable: s,Ji and ji. When looking at the equation
(40.7) we can observe, that we need at least a fourth order weakly nonlocal state
space. In case of the Coleman-Noll or Liu procedures the large number of composite
derivatives, and the resulted nonlinearity in the process direction variables, encumbers
to find explicit solutions of the inequality. However, the simple separation of the full
divergences in the entropy balance leads to the expected result.

Let us assume, that the entropy density depends on the state variable and also on
its gradient, s(ξ ,∂iξ ). Let us calculate its time derivative, and substitute the balance,
(40.24), as a constraint:

∂t s(ξ ,∂iξ ) = ∂ξ s∂tξ +∂∂iξ s∂tiξ =−∂ξ s∂i ji−∂∂iξ s∂ik jk

=−∂i
(
∂ξ s ji)+∂i

(
∂ξ s
)

ji−∂i

(
∂∂iξ s∂k jk

)
+∂i

(
∂∂iξ s

)
∂k jk =

=−∂i

[
∂ξ s ji +∂∂iξ s∂k jk∂k

(
∂∂kξ s

)
ji
]
+∂i

(
∂ξ s−∂k

(
∂∂kξ s

))
ji

(40.25)

Therefore the entropy flux can be identified as

Ji =
(
∂ξ s−∂k

(
∂∂kξ s

))
ji +∂∂iξ s∂k jk, (40.26)

and the entropy production is

Σ = ∂i
(
∂ξ s−∂k

(
∂∂kξ s

))
ji ≥ 0. (40.27)

One can see, that the solution of this inequality is easy with the identification of
the thermodynamic force by the gradient of ∂i

(
∂ξ s−∂k

(
∂∂kξ s

))
, and the thermody-

namic flux as the current density of the internal variable, ji. For isotropic materials
the coefficient is a scalar and we obtain the constitutive equation, (40.6):

ji =−κ∂ i (∂ξ s−∂k
(
∂∂kξ s

))
, (40.28)
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where κ > 0, because of the second law. Substituting this expression into the balance
(40.24) we obtain the Cahn-Hilliard equation:

∂tξ −∂i
[
κ∂ i (∂ξ s−∂k

(
∂∂kξ s

))]
= 0. (40.29)

One may recognize that according to (40.28) the internal variable flux is a third order
weakly nonlocal function, depending on the variables (ξ ,∂iξ ,∂i jξ ,∂i jkξ ).

40.4.2 Cahn-Hilliard Equation: a More Rigorous Derivation

Here we should start from a fourth order weakly nonlocal constitutive state space for
a systematic analysis. Therefore, the

• space of basic variables is spanned by ξ ,
• the consititutive state space is spanned by (ξ ,∂iξ ,∂i jξ ,∂i jkξ ,∂i jklξ ,).
• The constitutive functions are s, Ji and ji.

In order to apply the Liu procedure we introduce the Lagrange-Farkas multipliers
λ for the balance of ξ , (40.24), and Λ j for the gradient of (40.24):

∂t jξ +∂i j ji = 0. (40.30)

With a fourth order weakly nonlocal state space one may wonder, whether higher
order spatial derivatives of the constraint are to be applied. For example, Cimmelli
(2007) argues that the consistent evaluation of the second law may require the third
and fourth derivatives as constraints. However, in that case the constructive character
of the derivation is lost. Therefore, let us calculate the constrained inequality, with
the Lagrange-Farkas multipliers, as in the previous section, but now with different
constraints and in a larger state space.

0 ≤ ∂t s+∂iJi−λ (∂tξ +∂i ji)−Λ j (∂t jξ +∂i j ji)=
= ∂ξ s ∂tξ +∂∂iξ s ∂itξ +∂∂i jξ s ∂i jtξ +∂∂i jkξ s ∂i jktξ +∂∂i jklξ s ∂i jkltξ +

+ ∂ξ Ji ∂iξ +∂∂ jξ Ji ∂i jξ +∂∂ jkξ Ji ∂i jkξ +∂∂ jklξ Ji ∂i jklξ +∂∂ jklmξ Ji ∂i jklmξ +

− λ
(
∂tξ +

(
∂ξ ji) ∂iξ +

(
∂∂ jξ ji

)
∂i jξ +

(
∂∂ jkξ ji

)
∂i jkξ+

+
(
∂∂ jklξ ji

)
∂i jklξ +

(
∂∂ jklmξ ji

)
∂i jklmξ

)
− Λ n

(
∂ntξ +∂n

(
∂ξ ji) ∂iξ +

(
∂ξ ji) ∂inξ +∂n

(
∂∂ jξ ji

)
∂i jξ +

(
∂∂ jξ ji

)
∂i jnξ+

+ ∂n

(
∂∂ jkξ ji

)
∂i jkξ +

(
∂∂ jkξ ji

)
∂i jknξ +∂n

(
∂∂ jklξ ji

)
∂i jklξ+
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+
(
∂∂ jklξ ji

)
∂i jklnξ +∂n

(
∂∂ jklmξ ji

)
∂i jklmξ +

(
∂∂ jklmξ ji

)
∂i jklmnξ

)
≥ 0

(40.31)

The multipliers of the partial time derivatives give the following Liu equations:

∂tξ : ∂ξ s = λ , (40.32)

∂itξ : ∂∂iξ s =Λ i, (40.33)

∂i jtξ : ∂∂i jξ s = 0i j, (40.34)

∂i jktξ : ∂∂i jkξ s = 0i jk, (40.35)

∂i jlktξ : ∂∂i jklξ s = 0i jkl , (40.36)

The first two equations give the Lagrange–Farkas multipliers as the derivatives of the
entropy, and a solution of the last three ones result in that the entropy must depend
only on the state variable and its gradient. Therefore the λ and Λ i Lagrange–Farkas
multipliers depend only on these variables, too. In summary the entropy density and
its derivatives are s = s(ξ ,∂iξ ), ∂ξ s = λ , and ∂∂iξ s =Λ i.

Let us investigate now the multipliers of the underlined sixth and fifth spatial
derivatives, the remaining members of the process direction space in the inequality:

∂i jklmnξ : ∂∂iξ s∂∂ jklmξ jn = 0i jklmn, (40.37)

∂i jklmξ : ∂∂i jklξ Jm = ∂ξ s∂∂i jklξ jm +∂∂nξ s
(
∂n

[
∂∂i jklξ jm

]
+δ i

n∂∂ jklξ jm
)

(40.38)

If the entropy is first order weakly nonlocal, then a solution of the first equation is

∂∂i jklξ ( jm) = 0. (40.39)

The solution of the second equation will be the following expression for the entropy
flux

Ji = ∂ξ s ji +∂∂nξ s∂n ji +Ji(ξ ,∂iξ ,∂i jξ ,∂i jkξ ), (40.40)

where the last term, the extra entropy flux, Ji, is only third order weakly nonlocal.
In this solution we have used the first among the identities below:

∂∂i jklξ [∂n jm] = ∂n

[
∂∂i jklξ jm

]
+δ i

n∂∂ jklξ jm,

∂∂iklξ [∂n jm] = ∂n
[
∂∂iklξ jm]+δ i

n∂∂klξ jm,

∂∂ilξ [∂n jm] = ∂n
[
∂∂ilξ jm]+δ i

n∂∂lξ jm,

∂∂iξ [∂n jm] = ∂n
[
∂∂iξ jm]+δ i

n∂ξ jm. (40.41)

Using also the other identities of (40.41) and also the entropy flux, (40.40), the
dissipation inequality reduces to the following simple form:
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∂i jklξ
(
∂∂ jklξ Ji−∂ξ s∂∂ jklξ ji−∂∂mξ s∂∂ jklξ (∂m ji)

)
+

∂i jkξ
(
∂∂ jkξ Ji−∂ξ s∂∂ jkξ ji−∂∂mξ s∂∂ jkξ (∂m ji)

)
+

∂i jξ
(
∂∂ jξ Ji−∂ξ s∂∂ jξ ji−∂∂mξ s∂∂ jξ (∂m ji)

)
+

∂iξ
(
∂ξ Ji−∂ξ s∂ξ ji−∂∂mξ s∂ξ ∂m ji)=

= ∂iJ
i +∂i(∂ξ s) ji +∂i(∂∂nξ s)∂n ji ≥ 0. (40.42)

Then the consequence of (40.39) is, that the last line of the above expression depends
linearly on the fourth spatial derivative of the internal variable, ∂i jklξ . The coeffi-
cents of this term, ∂∂i jkξJ

i and ∂i(∂∂nξ s)∂∂i jkξ ji, and also the remaining terms in the
inequality are all independent on the fourth spatial derivative itself, they are only
third order weakly nonlocal. Therefore the coefficient of ∂i jklξ must be zero in the
inequality. This is a repeated application of Liu procedure. Therefore:

∂i jklξ : ∂∂ jklξJ
i = ∂n(∂∂nξ )∂∂ jklξ jn. (40.43)

The solution of this equation for the extra entropy flux is

Ji =−∂n
(
∂∂iξ s

)
jn + Ĵi(ξ ,∂iξ ,∂i jξ ). (40.44)

Here the remaining extra entropy flux, Ĵi, is only second order weakly nonlocal.
Therefore the final form of the entropy flux is

Ji =
(
∂ξ s−∂n(∂∂iξ s)

)
jn +(∂∂nξ s)∂n ji + Ĵi(ξ ,∂iξ ,∂i jξ ), (40.45)

This concludes a complete solution of the Liu system of equations (40.32)–(40.37).
Considering all these conditions, and assuming a zero extra entropy flux, the dissipa-
tion inequality reduces to the following simple expression:

0≤ ∂i
[
∂ξ s−∂n(∂∂nξ s)

]
ji. (40.46)

Equations (40.45) and (40.46) are identical with the expressions (40.26) and
(40.27), that we have obtained with the help of divergence separation method.

The product form of the inequality, (40.46), with the fourth order weakly nonlocal
constitutive ji as a multiplier is a flux-force system, where the constitutive state space
ensures a linear solution by Lagrange mean value theorem:

ji =−κ∂ i (∂ξ s−∂k
(
∂∂kξ s

))
, (40.47)

Substituting this expression into the balance (40.24) we obtain the Cahn-Hilliard
equation again:

∂tξ −∂i
[
κ∂ i (∂ξ s−∂k

(
∂∂kξ s

))]
= 0. (40.48)



40 Weakly Nonlocal Non-Equilibrium Thermodynamics: the Cahn-Hilliard Equation 757

The particular case of first order weakly nonlocal state space leads to the diffusive
evolution of Classical Irreversible Thermodynamics (Ván, 2002). This concludes the
thermodynamic derivation.

40.5 Discussion

In this paper we have seen that phase-field evolution equations can be derived from
the second law without variational considerations and functional derivatives. The
intuitive method of separation of divergences enlights that the background is the
separation of surface and bulk contributions. A more rigorous analysis with the
application of Liu procedure led essentially to the same results when a constitutive
entropy flux was applied with derivative constraints. This derivation of the evolution
equations is based only on general principles and therefore the obtained Ginzburg-
Landau and Cahn-Hilliard dynamics is universal.

Let us emphasize that the differences between the pure thermodynamic approaches
are not fundamental. They are negligible when compared to the difficulties of the
doubled structures mentioned in the introduction. For example the simple and elegant
approach of Heida, Málek and Rajagopal is based on the separation of divergences
and the solution of the dissipation inequality. It is applied to obtain coupled diffusive
thermal dynamics of fluid mixtures including Korteweg fluids (Heida et al, 2012).
A more rigorous second law analysis, probably could lead to a justification of their
results. An independent but similar work of Giorgi emphasizes the universality of
the uniform thermodynamic derivation when compared to the configurational force
balance of Gurtin and the virtual power approach of Fremond (Giorgi, 2009).

On the other hand a less constructive but rigorous standpoint can lead to general
but complicated conditions. These conditions are nevertheless useful to improve a
heuristic ansatz and to check its validity (Cimmelli et al, 2016). A similarly instructive
analysis is the work of Pawlow, where the constitutive state space is first order
weakly nonlocal in time, the entropy flux is constitutive but Pawlow does not apply a
derivative prolongation of the constraints. Then the Liu equations cannot be solved in
a closed function form, and to obtain the particular Cahn-Hilliard dynamics requires a
further restriction. However, the evolution equation of the Lagrange-Farkas multiplier
leads to the microforce balance of Gurtin (Pawłow, 2006). That is, sacrificing the
constructivity obscures the advantages of a uniform approach, but it still can be well
interpreted.

Here the thermodynamic methods are demonstrated with scalar internal variables.
The generalization for vectors and tensors is straightforward, as well as for classical
thermodynamic variables and more complicated constraints (see e.g. Ván and Fülöp,
2006; Ván, 2008, 2009; Ván and Papenfuss, 2010). We need to mention also, that
time nonlocality, the treatment of memory and inertial effects is a different matter.
For such systems dual internal variables are suitable for a uniform thermodynamic
approach (Ván et al, 2008; Berezovski et al, 2011; Ván et al, 2014; Berezovski and
Ván, 2017).
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