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4.1 Introduction

In Chap. 3 we used the Minerva 2 model as a basis for a tutorial on the use of
likelihood-free methods. We fit Minerva 2 to data, and compared the estimated pos-
teriors using likelihood-free algorithms to those obtained using analytic expressions
derived in Sheu [37]. Although these analyses presented interesting case studies
about how we can use likelihood-free algorithms to estimate the model’s parameters,
as the true likelihood of the Minerva 2 model has not been derived for the general
case, we have not yet demonstrated that the algorithms discussed in this book can
provide estimates from the correct posterior distribution.

In this chapter, we show a few examples where likelihood-free algorithms have
been used to recover posterior distributions correctly. First, we show how the
parameters of the Bind Cue Decide Model of Episodic Memory (BCDMEM) [85]
can be accurately recovered using the ABCDE [56] algorithm. This simulation study
was carried out and reported in Turner et al. [92], and so we refer the reader to this
work for more details on the model and simulation study reported below. Second,
we show how parameters of a hierarchical signal detection theory [71] model can
be recovered using the Gibbs ABC algorithm [70] and a kernel-based approach
[55]. This simulation study was carried out in Turner and Van Zandt [70], and so
we refer the reader to this work for details on the analyses we highlight below.
Finally, we show how the parameters of the Linear Ballistic Accumulator [95]
model can be accurately estimated using the PDA method [38], but not using the
synthetic likelihood approach [43]. This simulation study was carried out in Turner
and Sederberg [38], where the reader can find more details about the analysis.
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4.2 Validation 1: The Bind Cue DecideModel of Episodic
Memory

The BCDMEM postulates that when a probe item is presented for recognition, the
contexts in which that item was previously experienced are retrieved and matched
against a representation of the context of interest. BCDMEM consists of two layers
of nodes. The input layer represents items in a local code: each node corresponds
to one item. The output layer represents contexts in a distributed code: a pattern of
activation over a set of nodes. When an item is studied, a random context pattern
of length v for that study episode is constructed by turning on nodes in the output
layer with probability s (the context sparsity parameter). The node in the input layer
representing the studied item is connected to the nodes in the output layer through
associative weights. These connections are established during study by connecting
the active nodes on the input and the context layers with probability r (the learning
rate).

During the test phase, the presentation of a probe results in the activation of the
corresponding node at the input layer. This node then activates a distributed pattern
of activity at the output layer that includes both the pre-experimental contexts in
which the item has been encountered, which activate nodes with probability p (the
context noise parameter), and the context created during study if the item appeared
of the study list. This pattern is called the retrieved context vector.

The presentation of a probe also causes the reconstruction of a representation of
the study list context called the reinstated context vector. The reconstruction process
is unlikely to be completely accurate: nodes that were active during the study phase
may become inactive with probability d (the contextual reinstatement parameter).

When a person is asked whether he has seen an item before, he bases his “old”
decision on a comparison between the activation patterns of the reinstated and
retrieved context vectors. As in Dennis and Humphreys [85], the ith node in the
reinstated context vector is denoted by ci and the jth node in the retrieved context
vector is denoted by mj. Both ci and mj are binary, indicating that the nodes i and j
are either inactive or active, so ci D 0 or 1 and mj D 0 or 1, respectively.

To evaluate the match between the reinstated and retrieved context vectors, we
let ni;j denote the number of nodes in the reinstated context vector that are in state
i (0 or 1) at the same time that the nodes in the retrieved context vector are in state
j (0 or 1). For example, n1;1 denotes the number of nodes that are simultaneously
active in both the reinstated and retrieved context vectors. Similarly, n0;1 denotes
the number of nodes that are inactive in the reinstated context vector but active in
the retrieved context vector. We can then compute the probability that a probe item
is a target and contrast that with the probability that a probe item is a distractor by
computing a likelihood ratio given by
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where � D fd; p; r; s; vg is the set of parameters for BCDMEM and n represents
the vector of frequencies of node pattern matches and mismatches, so n D
fn0;0; n0;1; n1;0; n1;1g.

When we use likelihood-free approaches to estimate the posteriors of the model
parameters, we are always concerned about the accuracy of those posteriors. One
way to evaluate accuracy is to try to recover the parameters that were used to
simulate a data set by fitting the model and comparing the estimated posteriors to
the known values of the parameters. In addition, because the likelihood function
has been derived for BCDMEM [96], we can evaluate whether the estimates of
the posterior distributions obtained using likelihood-free methods are similar to the
estimates obtained using standard likelihood-based techniques. If the two estimates
are similar, then we can declare that the likelihood-free method that was used
provides an accurate posterior estimates for this model.

Equation 10 in [96] provides the explicit likelihood function for BCDMEM as
a system of equations. We will refer to this likelihood as the “exact” equations.
Unfortunately, the exact equations can be difficult to evaluate precisely for all values
of � . For this reason, Myung et al. [96] also derived asymptotic expressions (their
Equations 15 and 16) that approximate the exact solution. We will refer to this
second set of equations as the “asymptotic” equations. The exact and asymptotic
expressions for the hit and false alarm rates allow us to use standard MCMC
methods to estimate the posterior distribution for the parameter set � so long as
v is fixed to some positive integer (v must be fixed or the other parameters are not
identifiable) [96].

4.2.1 Generating the Data

To perform our simulation study, we first generated data from the BCDMEM for a
single person in a recognition memory experiment with four conditions. In each of
the four conditions, the simulated person was given a 10-item list during the study
phase. At test, the person responded “old” or “new” to presented probes according
to whether it was more likely that the probe was a target or distractor. The test lists
consisted of 10 targets and 10 distractors.

To both generate and fit the data, we fixed the vector length v at 200 and the
context sparsity parameter s at 0:02. We then generated 20 “old”/“new” responses
for each condition using d D 0:3, p D 0:5, and r D 0:75. With v and s fixed, our
goal was to estimate the joint posterior distribution for the parameters d, p, and r.
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4.2.2 Recovering the Posterior

To assess the accuracy of our likelihood-free approach, we fit the model to
the simulated data in three ways. First, we used the ABCDE [56] algorithm to
approximate the likelihood function. As discussed in Chap. 2, the ABCDE algorithm
is a kernel-based approach, and so we specified a normal kernel function where
the summary statistics of the data were the hit and false alarm rates. The spread
of the kernel function was fixed to ıABC D 0:1 through the estimation process.
Second, we used the standard Bayesian approach by using the exact expressions
of the likelihood function from Myung et al. [96]. Third, we used the asymptotic
expressions of the likelihood function from Myung et al. [96]. As we did in the
simulation study from Chap. 3, the details of the sampling algorithm were fixed
across the three likelihood approaches, and only the code corresponding to the
evaluation (or approximation) of the likelihood function was changed across the
three methods. We used DE-MCMC [57,60] as the sampling algorithm and obtained
10,000 samples in total. After discarding a burn-in period of 1000 samples, we were
left with 9000 samples collapsed across 12 chains. We used standard techniques to
assess convergence of the chains (using the coda package in R) [97, 98].

4.2.3 Results

Figure 4.1 shows the estimated marginal posterior distributions for d, p, and r
using ABCDE (the gray lines), exact (solid black lines), and the asymptotic (dashed
black lines) expressions. Each panel includes the distributions obtained for a single
parameter, and the dashed vertical lines indicate the true value of that parameter that
generated the data.

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

2.
0

3.
0

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6
7

ABCDE
Exact
Asymptotic

d p r

Fig. 4.1 The approximate marginal posterior distributions for the parameters d (left panel), p
(right panel), and r (right panel) in BCDMEM using ABCDE (gray lines), the exact likelihood
expressions (solid black lines), and the asymptotic likelihood equations (dashed black lines). The
dashed vertical lines are located at the values of the parameters used to generate the data
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There are two main results of our simulation study. First, the estimated posteriors
we obtained using ABC are very similar to those obtained using the exact expres-
sions for the likelihood. This suggests that the combination of �.X; Y/, K , and ı we
selected produced accurate ABC posterior estimates. Second, the posterior estimates
we obtained using the asymptotic expressions are different from those we obtained
with the true likelihood, especially the posterior estimates for the parameters p and
r. This inaccuracy suggests that the asymptotic expressions will not be very useful
for Bayesian analyses of BCDMEM.

In addition to the differences in posterior estimates that we obtained with
each method, the computation times required to obtain these estimates also varied
considerably with different methods. The method of estimation using exact likeli-
hoods required 2 h and 20 min of computation. The method using the asymptotic
expressions took only 36 s. The ABCDE approach took 2 min and 33 s. While the
asymptotic expressions did provide the fastest results, they were considerably less
accurate compared to the ABCDE approach. Perhaps more interesting is that the
ABCDE approach was 55 times faster than when using the exact expressions, which
we take as a testament to the usefulness of these kernel-based approaches for fitting
simulation models such as BCDMEM.

4.2.4 Summary

In this section, we illustrated the utility of the ABC approach by fitting the
model BCDMEM to simulated data. The derivations in Myung et al. [96] provided
expressions for the model’s likelihood, which allowed us to compare estimates of the
posterior distribution obtained with standard Bayesian techniques to the estimates
obtained with likelihood-free techniques. We showed that the estimates obtained
using ABCDE were very close to the estimates obtained using the exact expressions,
but the estimates obtained using the asymptotic expressions did not closely match
either the ABCDE or exact expression estimates.

4.3 Validation 2: Signal Detection Theory

Signal detection theory (SDT) is one of the most widely applied theories in all of
cognitive psychology for explaining performance in two-choice task. In these tasks,
someone is presented with a series of stimuli and asked to classify each one as
either signal (a “yes” response) or noise (a “no” response). What constitutes noise
and signal can be flexible. For example, a person may be asked to indicate whether
they have observed a flashing light by responding “yes” if they’ve detected it or “no”
if they have not. The variability in the sensory effect of the stimulus, due either to
noise in the person’s perceptual system or to variations in the intensity of the signal
itself, is represented by two random variables: the first is the sensory effect of noise
when no light is presented, and the second is the sensory effect of signal when the
light is presented. Typically, a presentation of a signal (a flashing light) will result
in larger sensory effects than the presentation of noise alone.
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The psychological representations of the effects of signals and noise are fre-
quently modeled with two random variables. These variables are assumed to be
normally distributed with equal variance, although neither of these assumptions
is necessary. The equal-variance, normal version of the SDT model has only two
parameters. The first parameter d represents the discriminability of signals and is
the standardized distance between the means of the signal and noise distributions.
Higher values of d result in greater separation and less overlap between the two
distributions, meaning that signals are easier to discriminate from noise. The second
parameter is a criterion c, which is along the axis of sensory effect. A person makes
a decision by comparing the perceived sensation to c. If the perceived magnitude
of the effect is above this criterion, the person responds “yes.” If not, the person
responds “no” [99].

When the two representations (signal and noise) have equal variance and the
payoffs and penalties for correct and incorrect responses are the same, an “optimal”
observer should place his or her criterion c at d=2. This is the point where the
two distributions cross, or equivalently the point at which the likelihoods that the
stimulus is either signal or noise are equal. We can then write the “non-optimal”
observers criterion c as d=2 C b, where b represents bias, or the extent to which the
person prefers to respond “yes” or “no.” Negative bias shifts the criterion toward the
noise distribution, increasing the proportion of “yes” responses, while positive bias
shifts the criterion toward the signal distribution, increasing the proportion of “no”
responses.

SDT has been influential because it separates effects of response bias from
changes in signal intensity. The parameter d, the distance between the means of
the two representations, increases with increasing stimulus intensity. The parameter
b, the person’s bias, is an individual-level parameter that can be influenced by
instructions to be cautious, payoffs or penalties that reward one kind of response
more than another, or changes in the frequency of each type of stimuli.

SDT is meant to be used as a tool to measure discriminability and response bias.
The likelihood function for the SDT model is easy to compute, which makes it yet
another model we can use as a case study to examine other sampling algorithms. In
the BCDMEM example above, we examined a single-level model with the ABCDE
algorithm. For this example, we will investigate the ability of the Gibbs ABC
algorithm to recover both subject-level and hyper-level parameters.

4.3.1 Generating the Data

The parameters for an individual j are that person’s discriminability dj and bias
bj. We built a hierarchy by assuming that each discriminability parameter follows
a normal distribution with mean d� and standard deviation d� , and that each bias
parameter follows a normal distribution with mean b� and standard deviation b� .
To generate data to which the model could be fit, we first set d� D 1, b� D 0,
d� D 0:20, and b� D 0:05. We then drew nine dj and bj parameters from the normal
hyperdistributions defined by the hyperparameters for nine hypothetical subjects.
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We used these person-level parameters to generate “yes” responses for N D 500

noise and signal trials by sampling from binomial distributions with probabilities
equal to the areas under the normal curves to the right of the criterion (i.e., dj=2Cbj).

4.3.2 Recovering the Posteriors

We fit the hierarchical SDT model in two ways. The first way uses the true likelihood
function [6, 9]. The second approach used the Gibbs ABC algorithm and a kernel-
based ABC algorithm to approximate the likelihood function [55], both of which
are described in Chap. 2. We set �.X; Y/ equal to the Euclidean distance between
the observed hit and false alarm rates (i.e., the simulated data to which the model is
being fitted) and the hit and false alarm rates arising from simulating the model with
a set of proposed parameters ��. This distance was weighted with a Gaussian kernel
using a turning parameter ı D 0:01. For both the likelihood-free and likelihood-
informed estimation procedures, we generated 24 independent chains of 10,000
draws of each parameter, from which we discarded the first 1000 iterations. This
left 216,000 samples from each method with which we estimated the joint posterior
distributions of each parameter.

4.3.3 Results

Figure 4.2 shows the estimated posterior distributions for the model’s hyperparame-
ters, d�, b�, d� , and b� , as histograms. Overlaid on these histograms are the posterior
density estimates (solid curves) obtained from the likelihood-informed method (i.e.,
MCMC), and the vertical lines represent the values of the hyperparameters with
which the fitted data were simulated. The left panels of Fig. 4.2 show the estimated
posteriors for the hypermeans b� (top) and d� (bottom). The right panels show the
estimated posteriors for the log hyper standard deviations b� (top) and d� (bottom).
The estimates obtained from the Gibbs ABC algorithm closely match the estimates
obtained using conventional MCMC.

At the individual level, Fig. 4.3 shows the estimated posterior distributions for
the discriminability (dj) parameters. As for the group-level parameters, the two
methods produced posterior estimates that do not differ greatly. Although we can
also examine the posterior distributions for the subject-level bias parameters (bj),
these estimates were similarly accurate as the discriminability parameters shown in
Fig. 4.3.

4.3.4 Summary

We used a combination of Gibbs ABC and kernel-based ABC to estimate the
parameters of the SDT model. The likelihood function for this model is well known
and simple so the true posterior distribution can be estimated using standard MCMC
techniques. We showed that the estimated posteriors using both likelihood-informed
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Fig. 4.2 The estimated posterior distributions obtained using likelihood-informed methods (black
densities) and the Gibbs ABC algorithm (histograms) for the hyperparameters of the classic SDT
model. Vertical lines are placed at the values used to generate the data. The rows correspond to
group-level parameters for the bias parameter b (top) and the discriminability parameter d (bottom).
The columns correspond to the hypermeans (left) and the hyper standard deviations on the log scale
(right)

and likelihood-free methods were similar for both the individual-level and the
group-level parameters. These results demonstrate that Gibbs ABC fused with a
kernel-based approach can recover the true posterior distributions of the hierarchical
SDT model accurately.

4.4 Validation 3: The Linear Ballistic Accumulator Model

The Linear Ballistic Accumulator model (LBA; [95]) is a stochastic accumulator
used to explain choice response time data. In a typical choice response paradigm,
people are asked to make a decision with two or more response alternatives. For
example, in a numerosity task, a person might be asked to select which of two boxes
contains more of a certain type of object (e.g., stars, dots, etc.). The time between
the onset of the stimulus and the execution of the response is the response time
(RT) and the box that is chosen (left or right) determines the choice response. The
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Fig. 4.3 The estimated posterior distributions obtained using likelihood-informed methods (black
densities) and the Gibbs ABC algorithm (histograms) for the person-level discriminability
parameters dj of the classic SDT model. Vertical lines are located at the values used to generate the
data. Each panel shows the posteriors for a different person

data from this task are therefore mixed, including both continuous RT measures and
discrete response measures.

The LBA model postulates the existence of separate accumulators for each
possible choice alternative. Each accumulator stores evidence for a particular
response, and this evidence increases over time following the presentation of a
stimulus. In particular, on accumulator c, the function describing the amount of
evidence as a function of time is linear with slope dc and starting point (y-intercept)
kc. The evidence on the accumulator grows until it reaches a threshold b. The
starting point kc is uniformly distributed in the interval Œ0; A�, and the rate of
evidence accumulation dc is normally distributed with mean v.c/ and standard
deviation s. After the fastest accumulator reaches the threshold b, a decision is made
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corresponding to the winning accumulator, and the RT is the sum of the finishing
time of the winning accumulator and some nondecision time � (encompassing initial
perceptual processing time and the motor response time).

The LBA is one of a large class of information accumulation models that explain
choice and response time data. It differs from other models in this class by eliminat-
ing certain complexities such as competition between alternatives [100,101], passive
decay of evidence (“leakage”) [100], and even within-trial variability [102, 103].
The LBA is therefore mathematically much simpler than other models of this type of
decision, and has closed-form expressions for the joint RT and response likelihoods.
This simplicity is a big reason for this model’s wide acceptance [104–109]. Like
the earlier applications in this chapter, we will simulate data from the LBA model
using known parameters, and then attempt to recover those parameters by fitting the
model back to the simulated data using both the known likelihoods and likelihood-
free algorithms. Although in Chap. 3 we showed how to use the PDA method [38]
to estimate the parameters of the Minerva 2 model, we have not yet shown how the
PDA method can be used to fit a model to data with both continuous and discrete
measures. Further, to stress the importance of selecting good statistics in kernel-
based approaches, we will investigate whether or not quantiles provide sufficient
information for the parameters of the LBA model.

4.4.1 Generating the Data

We simulated data from a hypothetical 2-choice task. For two stimulus types (say,
“more on the left” and “more on the right” for the task described above), there are
two possible responses (“left” and “right”). The LBA model for this task would
therefore require two accumulators, one for the “left” decision and one for the
“right” decision. On each trial, accumulator c will have a starting point kc and an
accumulation rate dc, where c indexes the “left” or “right” accumulator. If a “more
on the left” stimulus is presented, the “left” accumulator’s rate will be greater on
average than the “right” accumulator’s rate, and if a “more on the right” stimulus is
presented, the “right” accumulator’s rate will be greater on average than the “left”
accumulator’s rate. For simplicity, we assumed no asymmetry between the “left”
and “right” accumulators, so we can write the effects of stimulus more compactly in
terms of the means of d“left” and d“right”, letting v.C/ represent the mean accumulation
rate for correct responses (“left” to “more on the left” and “right” to “more on the
right”) and v.I/ represent the mean accumulation rate for incorrect responses (“right”
to “more on the left” and “left” to “more on the right”) and setting v.C/ > v.I/.

We generated 500 responses from the LBA model using a threshold b D 1:0,
setting the upper bound of the uniform starting point distribution A D 0:75,
setting the mean accumulation rate for correct responses v.C/ D 2:5, and the
mean accumulation rate for incorrect responses v.I/ D 1:5. We also added to each
simulated RT a nondecision time � D 0:2. We set the standard deviation of the
accumulation rates to s D 1 to satisfy the scaling properties of the model. All of
these parameter values are consistent with previously published fits of the LBA
model to experimental data.
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4.4.2 Recovering the Posterior

We used three different approaches to estimate the posterior distribution of the
model parameters (i.e., b; A; v.I/; v.C/; � ). The first approach makes use of the
likelihood function (see [57, 95, 108, 109], for applications). The second is the
PDA method for mixed data types as described in Chaps. 2 and 3. When using
this method, we simulated the model 10,000 times for each parameter proposal.
The third is the synthetic likelihood algorithm [43], which requires the spec-
ification of a set of summary statistics S.�/. To implement the algorithm, we
decided to use the sample quantiles (corresponding to the cumulative proportions
{0.1,0.3,0.5,0.7,0.9}) for both the correct and incorrect RT distributions.1 Thus, for
a given set of RTs Y and choices Z, we summarized the data by computing the vector
S.Y; Z/ comprising 11 statistics: 5 quantiles for each of the samples of correct and
incorrect RTs, plus the proportion of correct responses. When using the synthetic
likelihood method, we generated 50,000 model simulations per parameter proposal.

It has been noted that the parameters of the LBA model are highly correlated by
examining the correlation of samples from the joint distribution of model parameters
(see [57]). The correlation in the posteriors makes it difficult to propose sets of
parameters that will be accepted at the same time. As a result, conventional sampling
algorithms such as Markov chain Monte Carlo (MCMC) [46] can be inefficient,
requiring very long chains, and are therefore impractical. For this reason we used
the DE-MCMC algorithm to draw samples from the posterior distribution for each
of the three methods. For each of the three different likelihood evaluation methods,
we implemented a DE-MCMC sampler with 24 chains for 5000 sampling iterations,
discarding the first 100 observations in each chain.

4.4.3 Results

Figure 4.4 shows the estimated posterior distributions obtained using the PDA
method (top row) and the synthetic likelihood method (bottom row). The columns
of Fig. 4.4 correspond to the threshold parameter b, the starting point upper bound
parameter A, the accumulation rate for correct responses v.C/, the accumulation rate
for incorrect responses v.I/, and the nondecision time � . In each panel, the true
estimated posterior distribution (i.e., the posterior obtained using the true likelihood)
is shown as the black curve plotted over the histogram, and the vertical dashed line
marks the value of the parameter used to generate the data.

The figure shows two important things. First, the histograms from the PDA
method align closely with the true density (black curve) and are centered at the
values of the parameters that generated the data. Therefore, we can state that
the PDA method produces posterior estimates that are close to the true posterior

1We treated the correct and incorrect RT distributions as the accumulators themselves, rather than
the response alternatives.
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Fig. 4.4 Estimated marginal posterior distributions obtained using the PDA method (top row),
and the synthetic likelihood algorithm (SL; bottom row). In each panel, the true estimate of the
posterior distribution (i.e., the likelihood-informed estimate) is shown as the black density, and the
vertical dashed lines are placed at the values of the parameters used to simulate the data

estimates. Because the PDA method is a general technique that makes use of all the
observations in the data set, we can be sure the accuracy of the posterior estimates
only depends on the kernel density estimate. Second, the histograms generated using
the synthetic likelihood methods vary widely around the true posterior densities and
are not centered on the values of the parameters that generated the data. Therefore,
we can state that the posterior estimates obtained using the synthetic likelihood
method are probably inaccurate. There may be several reasons for this, but the most
likely is that the summary statistics (i.e., the quantiles) used for the parameters of
the LBA model are not sufficient. The use of quantiles seems to have resulted in
high proposal rejection rates even in the high-probability regions of the posteriors.

4.4.4 Summary

In this section we showed that the PDA algorithm can produce accurate estimates
of the posterior distributions of the parameters of the LBA model. These results are
reassuring, because they imply that the problem of generating sufficient statistics for
a model with no implicit likelihood can be safely bypassed with the PDA method.
The PDA method does not require the use of sufficient statistics. Using this method
we demonstrated accurate recovery of the posterior distribution with only minimal
assumptions and specifications of how to approximate the likelihood function. By
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contrast, the synthetic likelihood algorithm did not produce accurate estimates of
the posterior. While there are several reasons why this can happen, we suspect the
main reason is that the quantiles we used are not sufficient for the parameters of
interest.

This study provides a cautionary tale about the use of likelihood-free algorithms
in inappropriate circumstances. Rejection-based and kernel-based algorithms are
likely to produce errors in the estimated posterior distribution when sufficient
statistics are not known. In these situations, we recommend using the PDA method if
computational resources are available to make extensive model simulation feasible.

4.5 Conclusions

In this chapter, we have illustrated the effectiveness of different likelihood-free
techniques for three popular models in cognitive science. The models we chose
all have a likelihood function, which enabled us to make comparisons between the
estimates obtained using likelihood-free methods and the estimates obtained when
using the true likelihood function.

In the first application, we showed how the ABCDE algorithm could be used
to estimate the posterior distribution of BCDMEM’s parameters. We compared the
estimates obtained using ABCDE to those of the exact and asymptotic equations
put forth by Myung et al. [96]. In the end, we concluded that the estimates obtained
using likelihood-free algorithms were not only as accurate as those obtained
when using the true likelihood function, but they were achieved at a much faster
computation time. We find this promising for the practical implementation of
ABCDE, at least for BCDMEM.

In the second application, we showed how a combination of Gibbs ABC and
a kernel-based approach could be used to accurately estimate the parameters of
a hierarchical SDT model. We found that at both the subject- and group-levels,
the estimates obtained using our algorithms were accurate, given that they closely
resembled the shape of estimates obtained using a standard, likelihood-informed
Bayesian approach.

In the third application, we showed that the PDA method could be used to
estimate the parameters of the LBA model. The application of likelihood-free
algorithms is tricky when the data consist of choice and response time measures
because it is unclear what statistics should be used to convey sufficient information
about the full response time distribution to the model parameters. For this reason,
we used the PDA method to reconstruct the entire choice RT distribution for a given
parameter proposal ��, which we then compared to the observed data. We concluded
that even in the context where sufficient statistics are not known, if we choose the
appropriate likelihood-free algorithm (see Chap. 2), we can still arrive at accurate
estimates of the posterior distribution.
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