
3ATutorial

3.1 Introduction

This chapter will focus on the Minerva 2 model, a global matching model of
recognition memory. Recall from Chap. 1 that the recognition memory task takes
place in at least two phases. In the first study phase, people are given a list of items
to study (e.g., words) and instructed to commit them to memory. Following the study
phase, the subject might perform some filler task, such as completing a puzzle.
Often, these filler tasks are used to either remove recency effects or to equate the
retention interval across different conditions. In the second test phase, the subject
is presented with a probe item and asked to respond either “old,” meaning that the
subject believes the probe was on the previously studied list, or “new,” meaning that
the subject believes the probe was not on the previously studied list. The proportion
of old responses to targets (hit rates) can be plotted as a function of the proportion
of old responses to distractors (false alarm rates), producing the receiver operating
characteristic (ROC) curve [71, 72].

After a brief description of the model, the tutorial will be broken into two
parts. In the first part, we will fit the Minerva 2 model to simulated data using
three likelihood-free methods: kernel-based Markov chain Monte Carlo, probability
density approximation (PDA), and analytic expressions derived by Sheu [37]. After
fitting the model using each technique, we will compare the three methods by
examining the estimated marginal posterior distributions for each of the model
parameters and the computational time for each method. The simulation study will
also allow us to better understand the model by permitting us to examine the joint
posteriors for each parameter generated using the PDA method.

© Springer International Publishing AG 2018
J.J. Palestro et al., Likelihood-Free Methods for Cognitive Science,
Computational Approaches to Cognition and Perception,
https://doi.org/10.1007/978-3-319-72425-6_3

55

https://doi.org/10.1007/978-3-319-72425-6_3

56 3 A Tutorial

In the second part of the tutorial, we will fit a hierarchical version of the Minerva
2 model to data from [4] by blending two likelihood-free techniques (PDA and
Gibbs ABC). Prior to fitting the model, we will describe the hierarchical framework
in detail, and after determining if the fit is adequate, we will examine the posterior
distributions of specific parameters to gain a better understanding of both the
effectiveness of the experimental manipulation and the predictions made by the
model.

3.2 MINERVA 2Model

Minerva 2 is a member of the class of global matching models, which includes
memory models such as the Theory of Distributed Associative Memory model
(TODAM) [73], the Search of Associative Memory model (SAM) [74], and the
Matrix model [75, 76]. Global matching refers to a retrieval process in which a
probe item is compared against the contents of memory, producing a single summed
familiarity value that indexes the similarity of the probe to the contents of memory.
The familiarity value is subsequently compared against a decision criterion to
produce an “old” or “new” decision [77]. While all of the global matching models
make mathematically identical predictions under some circumstances [78], Minerva
2 possesses some unique properties that differentiate it from the other models, such
as a non-linear activation function that ensures that traces more similar to the probe
have a greater contribution to the familiarity calculation.

We will describe the mathematics of Minerva 2 briefly. Readers interested in a
more detailed description of the model and its predictions should consult the original
publications [36, 79]. In Minerva 2, items are represented as a vector of � features
that take the values of 1, 0, or �1 with equal probability. When an item is presented
for study, a new trace vector is created in memory that contains features from the
original item vector that are copied with probability L. The probability L is called
the learning rate of the model. If a feature from the item vector is not copied into
memory, the item trace has a 0 stored for that feature. After a set of items have been
studied, the contents of memory are represented by a matrix M, which contains all
of the trace vectors created in the study episode. Over time, correctly copied features
may revert to 0 with probability ı. The probability ı is called the decay rate, and it
is this decay rate that models the effects of a retention interval, with higher decay
rates used for longer study-test intervals [36, 79].

Global matching operates in Minerva 2 by comparing the probe vector P against
each of the trace vectors in the memory matrix M. The similarity Si between the
probe and trace vector i is calculated as

Si D
NX

jD1

PjTi;j

�i
; (3.1)

where Ti is the ith trace vector in M, j is the jth feature in the comparison between
the probe and trace vectors, and �i is the number of features where Pj ¤ 0 and

3.2 MINERVA 2 Model 57

Ti;j ¤ 0. Values of Si are equal to 1 if the probe vector is identical to the trace vector
and 0 if the two vectors are orthogonal to each other. The extent to which a probe
item activates the traces in memory is computed as the activation

Ai D S3
i : (3.2)

The cubing of the similarity values produces a non-linear relationship between
similarity and activation: activation values are highest for traces that are most similar
to the probe vector [79]. The activation values are subsequently summed to produce
a value of “echo intensity” I (i.e., familiarity), so

I D
MX

iD1

Ai: (3.3)

The echo intensity I is compared to a decision criterion C. If I is greater than C,
familiarity is high enough to produce an “old” response. If not, a “new” response
is made. Because echo intensity is greatest when the similarity between the probe
and the traces is highest, the values of I tend to be higher for targets: There is
a higher expected similarity between the target trace vector and its own probe
item than between a trace vector and an unrelated probe item. The distributions
of intensity values tend to have higher variance for targets than for distractors, a
difference that arises from the non-linear activation function and the probabilistic
encoding of features [80]. Performance tends to be worse for longer study lists
than for shorter ones because, as the number of trace vectors in M is increased,
the variance of the echo intensity values increases for both targets and distractors,
resulting in decreased discriminability. This list-length effect is predicted by other
global matching models for similar reasons [77].

Minerva 2 and the other global matching models were challenged by a series
of findings in the recognition memory literature. One of which was the null list
strength effect [81], in which strengthening a subset of studied items by increasing
study time or number of presentations does not decrease performance for the
other non-strengthened items. Another was the mirror effect [82], whereby some
manipulations produce opposite effects on the hit and false alarm rates. The global
matching models were not able to capture these effects without modification, and so
a newer generation of Bayesian recognition memory models were developed. These
models include the Retrieving Effectively from Memory model (REM; [83]), the
Subjective Likelihood in Memory model [84], and the Bind Cue Decide Model of
Episodic Memory (BCDMEM; [85]), all of which can be described as the dominant
theoretical models of recognition memory currently. BCDMEM and REM will
become important in a later application.

Minerva 2 has been used to explain many memory-related phenomena. Arndt
and Hirshman [86] found that Minerva 2 was able to successfully predict a number
of relations between true and false recognition. They further demonstrated that
the non-linear activation function was specifically responsible for the success of

58 3 A Tutorial

these predictions, and that other models such as TODAM or the Matrix model
cannot do the same. A dual-process variant of Minerva 2 was used by Benjamin
[87] to explain dissociations between item and source recognition in the aging
literature. Minerva 2 was used to develop successful models of judgment and
decision making, including judgments of likelihood (MINERVA DM) [88] and
hypothesis generation (HyGene) [89]. It has also been applied to semantic memory
phenomena, such as performance on lexical decision tasks [90] and the formation
of lexical representations [91].

3.2.1 Implementing theModel

The Minerva 2 model is a simulation model, meaning that exact equations have
not yet been produced for evaluating the likelihood function. As such, to fit the
model to data in this chapter, we rely on likelihood-free techniques. The minimum
requirement of these techniques is that we be able to simulate data from the model,
which means we must first prepare computer code to implement the equations in the
preceding section.

First, to offload some complexity of the model simulation code, we can write
a separate function to generate the features that represent the items used at study
and test.

1 init=function(N,p)sample(c(-1,0,1),N,replace=T,prob=p)

The init function simply samples the features f�1; 0; 1g with probability deter-
mined by the variable p. The end result is a vector of randomly selected features of
length N, corresponding to �. With a simple function for generating feature values,
the next block of code creates a function called minerva that can be used to
generate responses, given some parameter values and experimental variables:

1 minerva=function(L,crit,decay,n.features,alpha,p,n.study,n.
targets,n.test){

2 study.feat=init(n.features*n.study,p) # features of study list
3 study=matrix(study.feat,n.features,n.study) # study list
4 image.feat=rbinom(n.features*n.study,1,L) # feature of image
5 image=matrix(image.feat,n.features,n.study)*study # image
6 image=rbinom(n.features*n.study,1,1-decay)*image # decay
7 targets=study[,1:n.targets] # use first study items (arbitrary

)
8 # calculate number of distractors, and generate them
9 n.distractors=(n.test-n.targets) # how many distractors?

10 dist.feat=init(n.features*n.distractors,p) # features
11 distractors=matrix(dist.feat,n.features,n.distractors) # set
12 test=cbind(targets,distractors) # create test set
13 S=matrix(NA,n.study,n.test) # create similarity matrix
14 for(i in 1:n.test){ # loop over test items
15 for(j in 1:n.study){ # ...and study items
16 calc.n=sum(test[,i]!=0 | image[,j]!=0) # nonzero features
17 S[j,i]=sum(test[,i]*image[,j])/calc.n # similarity

3.2 MINERVA 2 Model 59

18 }
19 }
20 A=S^alpha # calculate activation
21 out=apply(A,2,sum) # calculate intensity
22 as.numeric(out>crit) # compare to criterion
23 }

The first line of code declares the function, which requires the learning rate L (i.e.,
L), the criterion value crit (i.e., C), the decay rate decay (i.e., ı), the number
of features n.features (i.e., �), the exponent of the similarity matrix alpha
(which is commonly set to ˛ D 3, as in Eq. (3.2)), and the feature probability vector
p (which is usually set to p D f1; 1; 1g=3, so that the features are equally likely).
In addition, the minerva function requires some choices about the details of the
experiment, such as the number of items presented at study (i.e., n.study), the
number of items in the test list that were on the study list (i.e., n.targets), and the
total number of items in the test set (i.e., n.test). Lines 2 and 3 create the features
of the study list, and then arrange those features into a matrix where the columns
correspond to the items, and the rows correspond to the features. Lines 4–6 detail
the construction of the episodic memory matrix. First, Line 4 generates a vector of
Boolean variables declaring whether or not the features of the study list should be
encoded. The vector in Line 4 is rearranged into a matrix and multiplied by the study
list, creating a new matrix that represents the episodic image: some features of the
study list will appear within the image matrix at the same location as in the study
list matrix, whereas some values within the image matrix will be zero, indicating no
features were encoded. Finally, the quality of the image matrix is further deprecated
by multiplying the matrix by another Boolean matrix representing the feature decay
process. During this multiplication, some features that were correctly encoded in
Line 5 will be reset to zero, eliminating those features from contributing to the
recognition decision at test. Line 7 declares that the first n.targets items will
be selected from the study list to serve as the targets in the test list. Because we
are simulating a model and not using a human subject, the choice of selecting
target items from the study list is completely arbitrary. Lines 9–11 create the set
of distractors to be used in the test set, and Line 12 creates the final test set by
combining targets and distractors. Again, because we are simulating the model, the
arrangement of targets and distractors is inconsequential to the pattern of responses
we will simulate.

The next step is to calculate the similarity matrix S, which is performed in
Lines 13–19. To do this, we follow Eq. (3.1) by looping through the set of test
items and the set of items in the episodic image. The first step is to calculate �i

in Line 16 to determine how many features are nonzero in either the current test
item or the current episodic image item (i.e., determined by i or j in the double
for loop). Finally, Line 17 performed the summation in Eq. (3.1) through matrix
multiplication. Line 20 calculates the activation values by cubing the similarity
matrix shown in Eq. (3.2), and Line 21 calculates intensity according to Eq. (3.3).
Finally, to make a response, the model compares the intensity of each test item to
the criterion variable crit: if the intensity for Item i is larger than the criterion, an

60 3 A Tutorial

“old” response is given, whereas if the intensity value is smaller than the criterion,
a “new” response is given.1

The Minerva 2 model is relatively simple to set up and simulate data from, and as
a consequence, it serves as an interesting running example on which we can apply
likelihood-free techniques to illustrate the utility of these methods. Despite Minerva
2’s simplicity, to our knowledge researchers have not yet taken full advantage of
Bayesian hierarchical methods in fitting the model because it is simulation-based.
In the following section, we will describe how likelihood-free techniques can be
used to fit this model to data. We first fit the model to simulated data to demonstrate
the methods’ ability to recover the model parameters. Then, we use these techniques
to fit the model to recognition memory data from a real-world experiment.

3.3 Simulation Study: Recovering the Posterior Distribution

Although the Minerva 2 model can be fit to a variety of data, for our simulation
study, we focus on the recognition memory task. Recognition memory data are
perfect candidates for illustrating the likelihood-free approach for two reasons. First,
the number of measurements (i.e., hit and false alarm rates) from each subject is
generally small, and so simulating the model to match the observed data is not very
computationally costly. Second, the hit and false alarm rates are discrete: measures
are incremented in steps of 1=n, where n is either the number of targets (for the hit
rate) or distractors (for the false alarm rate). This means that when using methods
such as PDA, the error introduced in the estimation of the posterior distributions will
be minimized, as a kernel density function is not needed to approximate the shape
of the probability density function [38].

3.3.1 Generating the Data

For this simulated experiment, we assumed that the test list consisted of 40 items
total, 20 of which were targets (i.e., words on the previously studied list) and 20 of
which were distractors (i.e., words not on the previously studied list). The study list
consisted of 20 items, all of which were presented during the test phase. Each subject
completed four conditions of the recognition memory task. Hence, the simulated
data consist of four hit rates and four false alarm rates for each subject. The larger
data set provides an opportunity for the posterior distribution to be different from
the prior distribution, thus creating a greater constraint on the model. This increased
stringency allows us to appreciate the quality of the likelihood approximation used
by the three methods below.

1The responses are arbitrarily coded as either a one for an “old” response, or a zero for a “new”
response.

3.3 Simulation Study: Recovering the Posterior Distribution 61

To simulate data from the model, we set the learning rate L D 0:5, the criterion
C D 0:10, the number of features � D 30, and the decay rate ı D 0. We set the ˛

parameter to 3 and the probability of the features taking on the values f�1; 0; 1g to
be f1=3; 1=3; 1=3g, respectively. When simulating the model for four subjects, the
following hit and false alarm rates were obtained:

Hit Rates W f0:40; 0:75; 0:75; 0:60g
False Alarm Rates W f0:05; 0; 0; 0g

This set of data will be used in the posterior recovery test below, and they are
important as changes in the data above may result in changes to the posterior
estimates obtained below.

For our posterior recovery test, we only estimated L, C, and �, because the
analytic expressions derived in Sheu [37] did not consider the effects of the decay
parameter ı. Hence, because analytic expressions for this expanded version of the
model are unavailable, we assumed that ı was known to facilitate a comparison
across the three methods. All parameters were equal across all four conditions of
the experiment.

3.3.2 Fitting the Data

To illustrate the likelihood-free approach, we fit the model to the simulated data in
three different ways. The first approach is the kernel-based ABC algorithm, which
relies on summary statistics to approximate the likelihood. The second approach is
the PDA method [38], which constructs an approximation to the missing likelihood
via pure simulation. The third approach relies on analytic expressions derived by
Sheu [37], which rely on asymptotic assumptions about the distribution of hit and
false alarm rates conditional on a set of model parameters. As we will discuss in
detail below, by “analytic” we mean that the approximation of the likelihood has a
functional form, but we do not necessarily mean that the expressions are perfectly
accurate. In order to obtain analytic expressions Sheu made some simplifying
assumptions about the asymptotic properties of the distribution of echo intensities.
While these assumptions are reasonable for infinitely long lists, their validity when
applied to data with finite limitations has not yet been tested.

Each of the three methods is unique in the way they approximate the posterior
distribution. However, when sampling from the posterior distribution, another set of
algorithms are required to perturb the proposals throughout the parameter space
so that an accurate posterior estimate can be achieved. To maintain consistency
across the three methods, we applied an MCMC algorithm (see Chap. 2) with
identical settings to obtain samples from the posterior distribution using each
approximation method. Note that while the MCMC algorithm is identical, because
each approximation method is different, we cannot necessarily expect that each

62 3 A Tutorial

procedure will result in identical posterior estimates; in fact, it is this comparison of
posteriors that we will use to evaluate the quality of each approximation method.

While we cannot reproduce the code for the entire MCMC algorithm here, we
encourage the reader to consult the online materials for versions of each method
implemented in R. Again, all methods use an identical MCMC sampler to perturb
proposals within the parameter space, yet have different methods for evaluating the
quality of the proposal. At their core, all methods invoke a function that specifies
the log likelihood of the data (i.e., the variable data), given a proposal parameter
value (i.e., the variable x). The general form of the log likelihood function looks
like the following block of code:

1 log.dens.like=function(x,data){
2 L=x[1]; crit=x[2]; feat=x[3]; # redeclare parameters
3 feat=round(feat) # round the number of features
4 if(L<=1 & L>=0 & feat>=2){ # test parameter boundaries
5 ### insert specific approximation method here
6 ### producing a variable called ’out’
7 if(is.na(out))out=-Inf # test for plausibility
8 } else { # if boundary test fails...
9 out=-Inf # reject the proposal

10 }
11 out # return the final log likelihood value
12 }

Line 1 through Line 12 declare the log likelihood function in R. As you can see,
the function requires two inputs—the parameter proposal x and the set of data
data. For convenience, Line 2 transforms the elements of the proposal vector x
into the learning rate variable L, the criterion variable crit, and the number of
features variable feat. Line 3 rounds the feature variable into something discrete,
so that it can be used in the minerva function to construct the episodic image
(i.e., only discrete values can be used as the dimensions of a matrix). Next, Line
4 tests to see whether or not each parameter value is within a plausible range.
Statistically speaking, this line is not completely necessary as these restrictions will
be specified in our priors. However, algorithmically, the minerva function above
will crash if these restrictions are not in place. Line 4 is connected to Lines 8–10
as a condition statement. That means that if a parameter value is outside the range
of plausible values, the final log likelihood value out will be set to �1 or �Inf
in Line 9. Lines 5–6 represent the location where lines of code can be inserted
to implement each approximation method, which we will discuss below. Line 7
is a final test to evaluate whether or not the implementation method produced a
log density value that is plausible. As we assume that NA values correspond to
values of the parameters that are implausible, this line is the final “catch” to rid
our posteriors of invalid samples. Hence, it is very important to ensure that the
approximation method—and more specifically the model data generation code—
is as robust as possible. Finally, Line 11 produces the likelihood of the data, given a
set of parameters, on the log scale.

With the generic wrapper function described, we can now turn to the specific
implementation details that can be slotted into Lines 5–6 above.

3.3 Simulation Study: Recovering the Posterior Distribution 63

3.3.2.1 KABC
As we discussed in Chap. 2, kernel-based ABC (KABC) relies on a kernel to
compare the simulated data to the data that were observed. We chose a Gaussian
kernel with standard deviation ıABC D 0:03. This particular kernel worked well,
giving accurate posterior estimations while still allowing the chains in the MCMC
sampling algorithm to mix properly.2 For each proposed parameter value, we
simulated the model under the proposal four times to reflect the number of observed
data points. Doing this allows for straightforward comparison of the simulated data
to the observed data, although other choices are possible [44].

To implement the KABC algorithm, we adapted code in R based on Fig. 2.3
that would work generically across the three approximation methods. We again
encourage the reader to see the scripts associated with each method, as we
cannot reproduce them here. Instead, the specifics of implementing the KABC
approximation can be seen in the following block of code:

1 mach=matrix(NA,S,n.test) # declare a matrix
2 for(i in 1:S){ # loop over S subjects (i.e., S=4 here)
3 # simulate data from the model with the following settings:
4 # unknown parameters: L, crit, feat
5 # known parameters: decay, t.alpha, p
6 # known experimental variables: n.study, n.targets, n.test
7 mach[i,]=minerva(L,crit,decay=0,feat,t.alpha=3,p=c(1,1,1)*1/3,
8 n.study,n.targets,n.test)
9 }

10 # calculate summary statistics for the simulated data
11 mach.hr=apply(mach[,1:n.targets],1,sum)/sigs # get HR
12 mach.fa=apply(mach[,(n.targets+1):n.test],1,sum)/noise # get

FAR
13 # evaluate how close the simulated and observed data are
14 out.hr=sum(log(dnorm(mean(data$hr-mach.hr),0,.03))) # compare HR
15 out.fa=sum(log(dnorm(mean(data$fa-mach.fa),0,.03))) # compare

FAR
16 out=out.hr+out.fa # calculate final ’out’ variable

First, Line 1 declares a storage object. Line 2–9 perform a simulation using our
minerva function from above by looping over each subject, generating data using
a set of unknowns (i.e., the three parameters we are estimating) and knowns (i.e., the
fixed parameters and the experimental setup), and storing the simulated responses
with the matrix mach. Once the data have been simulated, the next step is to
calculate some summary statistics. For our purposes, the set of summary statistics
we chose were the hit and false alarm rates, which are calculated in Lines 11 and 12,
respectively. Next, we evaluate how closely the summary statistics for the simulated
data are to the observed data by using a Euclidean distance and a Gaussian kernel
(as in Chap. 2) with mean 0 and standard deviation 0.03 in this case. As we are
computing the log likelihood value, we can simply sum up the log-transformed

2In our simulations, we tested a few different values of ıABC until we arrived at the smallest value
that still produced good mixing behavior across the chains.

64 3 A Tutorial

likelihoods, resulting in the variables out.hr and out.fa. The final step is to
obtain the log likelihood of all the data, which is obtained by summing up out.hr
and out.fa in Line 16. This last line produces the variable out that can be used
in the generic log.dens.like function above.

3.3.2.2 PDA
Following the details described in the previous chapter, we constructed an approx-
imation of the joint probability density functions for hit and false alarm rates by
simulating the model 1000 times for each parameter proposal. From this bivariate
distribution we calculated the probability of observing the data under this parameter
proposal: we evaluated the density of the constructed distribution at the location of
each observed hit and false alarm rate. To implement this method, we can use the
following block of code:

1 mach=matrix(NA,rep,n.test) # declare a matrix
2 for(i in 1:rep){ # simulate ’rep’ times (i.e., rep=1000 here)
3 # simulate data from the model with the following settings:
4 # unknown parameters: L, crit, feat
5 # known parameters: decay, t.alpha, p
6 # known experimental variables: n.study, n.targets, n.test
7 mach[i,]=minerva(L,crit,decay=0,feat,t.alpha=3,p=c(1,1,1)*1/3,
8 n.study,n.targets,n.test)
9 }

10 # calculate the hit and false alarm rates for each simulation
11 mach.hr=apply(mach[,1:n.targets],1,sum)/sigs
12 mach.fa=apply(mach[,(n.targets+1):n.test],1,sum)/noise
13 pdf=numeric(S) # declare a storage object
14 for(j in 1:S){ # loop over subjects
15 # determine the joint probability of obtaining each observed
16 # data point, given the distribution of simulated data
17 pdf[j]=mean(mach.hr==data$hr[\,j] & mach.fa==data$fa[j])
18 if(is.na(pdf[j])==T)pdf[j]=0 # test to ensure no NA values
19 }
20 out=sum(log(unlist(pdf))) # sum up the log likelihood values

The PDA code is similar to the KABC code but there are some important
differences. First in Line 1, the matrix mach is constructed to have rep rows and
n.test columns. The difference here is that rep will be large relative to S from
the above KABC code. Because S is just the number of subjects, the KABC code
will generate data of the same size as the data that were observed. By contrast,
the PDA code will construct a full distribution over the space of possible hit and
false alarm rates. Lines 2–9 simulate the Minerva 2 model rep times and place the
elements within the matrix mach. Lines 11 and 12 next complete the hit and false
alarm rates for the rep simulations. The next step is to construct the simulated PDF.
First, a pdf variable is constructed to contain all rep densities. Line 17 computes
the joint probability that the observed hit and false alarm rates (i.e., data$hr and
data$fa, respectively) match the hit and false alarm rates from the simulation
above. To do this, we calculate the number of times the two elements match at the

3.3 Simulation Study: Recovering the Posterior Distribution 65

same time and then divide by the total number of observations. Another convenient
way to do this is to simply take the mean of the boolean vector that performs the
match comparison, as in Line 17. While this will compute the joint probability for
a single data point, we must repeat this process for all of the observed data, and
so the loop in Lines 14–19 is designed to carry this operation out. The final step
is to check for NA values (i.e., Line 18) and construct the variable out as we did
above.

3.3.2.3 Analytic Expressions
Sheu [37] derived analytic expressions for the Minerva 2 model. These expressions
are based on asymptotic assumptions, and so they describe, in the limit, the mean
and variance of the lure and target activation distributions. The lure and target
activation distributions are assumed to be normally distributed. In our description
of Minerva 2 above, we assumed that the probabilities of a feature taking on one of
the values in the set f�1; 0; 1g were equal. This is a simplifying assumption that is
regularly used in practice. More generally, we can denote the probability of a feature
taking on these three values as r, q, and p, respectively, where r C q C p D 1. In a
typical application, the probability that the features take on a value other than zero
is equally likely, such that r D p, and so q D 1 � 2p. Sheu [37] maintained this
assumption for simplicity. Using this constraint and our notation from above, when
a target is presented, the mean and variance of the activation AC for targets are

EŒAC� � L3 C 3L2.1 � L/��;p; and

VarŒAC� � 9L5.1 � L/��;p,

where

��;p D
�X

kD1

�
1

k

�
�

� � k

!
.1 � 2p/��k.2p/k:

Although the distribution of activation for targets is easy to describe, the
distribution of activation for distractors A� is more difficult. The mean and variances
of A� are

EŒA�� D 0; and

VarŒA�� D
X

S�Ds

s3pS�.s/,

where pS�.s/ is the probability mass function of the distribution of similarity for
distractors.

To sum across the similarity distribution for distractors, we must first calculate
the echo intensity variances for distractors. Letting k be an index over all of the
non-zero elements of a trace such that 0 � k � �, and h be an index such that

66 3 A Tutorial

�k � h � k, the probability function of the similarities of the ith item in the episodic
memory matrix is

pS�

i
.h=k/ D

�

� � k

!
Œ.1 � 2p/.1 � 2Lp/���k

�
X

u�wDh

k

uvw

!
�
2Lp2

�uCw
Œ2p.1 C L � 4pL/�v , (3.4)

where u, v, and w are non-negative integers constrained such that 0 � u; v; w � k
and u C v C w D k. Equation (3.4) is difficult to calculate efficiently, so Sheu
constructed a set of recursive equations that are easier to evaluate.

When the means and variances of both the lure and target activation distributions
have been evaluated, one can compute the probability of obtaining a hit and false
alarm by integrating both normal distributions from the criterion parameter C to
infinity. Specifically, the hit rate H and the false alarm rate FA predicted by the
model are

P.Hj�/ D 1 � ˚
�

C
ˇ̌
EŒAC�;

p
VarŒAC�

�
and

P.FAj�/ D 1 � ˚
�

C
ˇ̌
EŒA��;

p
VarŒA��

�
,

where ˚.xja; b/ is the normal cumulative density function at x with mean parameter
a and standard deviation b. To connect these probabilities to the likelihood function,
we invert the probability structure by way of multiplication as we saw in Chap. 1.
We denote the number of hits for the ith subject as Oi;T (i.e., T for targets) and
the number of false alarms by Oi;D (i.e., D for distractors), and we assume that the
number of hits Oi;T and false alarms Oi;D arise from binomial distributions with the
number of trials equal to the number of targets Ni;T and distractors Ni;D, respectively.
We can estimate the probability that the model makes an “old” response to both
targets (i.e., the hit rate) and distractors (i.e., the false alarm rate) by multiplying the
two probabilities together, such that

L.� j Y/ D
SY

iD1

Bin.Oi;T j Ni;T ; P.H j �//Bin.Oi;D j Ni;D; P.FA j �//; (3.5)

where Y is the observed data Y D fO1WS;T ; O1WS;Dg, S D 4 is the number of
observations, and � D fC; �; Lg, and Bin.xjn; p/ is the density of the binomial
distribution, given by

Bin.xjn; p/ D

n

x

!
px.1 � p/n�x:

3.3 Simulation Study: Recovering the Posterior Distribution 67

To form the analytic approximation of the likelihood, we followed Sheu [37]
and programmed a routine in R to evaluate the equations listed above. The code
for implementing the model is provided in the software release with this book. To
sample from the posterior distribution, we can insert the following block of code
into the likelihood wrapper as we did in the KABC and PDA sections above:

1 # unknown parameters: L, crit, feat
2 # known parameters: decay, t.alpha, p
3 # known experimental variables: n.study, n.targets, n.test
4 # calculate the mean and variances from Sheu (1992)
5 temp=minerva2_analytic(L,feat,p)
6 # calculate the hit rate predicted by the model
7 temp.hr=1-pnorm(crit,temp$mean.signal,sqrt(temp$var.signal))
8 # calculate the false alarm rate predicted by the model
9 temp.fa=1-pnorm(crit,temp$mean.noise,sqrt(temp$var.noise))

10 # compute the final joint probability of the data
11 out.hr=sum(log(dbinom(data$hr*sigs,sigs,temp.hr))) # HR
12 out.fa=sum(log(dbinom(data$fa*noise,noise,temp.fa))) # FAR
13 # compute the final joint probability of the data
14 out=out.hr+out.fa

As before, the unknown parameters, known parameters, and experimental variables
are listed in Lines 1–3. The first step is to pass the parameters L and � to the function
minerva2_analytic which computes the mean and variances of the signal and
noise distributions. Notice that this function does not depend on the experimental
variables, as they reflect the long-term representations used in the model to make
recognition decisions. This assumption may be problematic as Minerva 2 is a global
matching model and depends on the properties of the study set. Also note that the
decay term ı is not passed to the minerva2_analytic function as the likelihood
approximation developed by Sheu [37] only considers the predictions of the model
under the constraint that ı D 0. Next, Lines 6–9 compute the hit and false alarm
rates by assuming normal representations for both target and lure distributions (i.e.,
as in [37]). Here, the parameter C (i.e., the variable crit) is used to specify the
boundary point of the integral of the normal distributions, which provides the hit
and false alarm rates predicted by the model. Finally, Lines 10–14 compute the
joint probability of the observed data by adding together the log densities from the
binomial distribution.

3.3.3 Results

For each method, we used a generic MCMC algorithm to sample from the posterior
distribution. We used a Gaussian kernel for each dimension in the parameter space
and set the standard deviations to 0.1, 0.05, and 3 for L, C, and �, respectively. We
ran the sampler with 24 chains for 2000 iterations, and used a burn-in period of
200 iterations. We then thinned the chains by discarding every other sample. Hence,
each method produced 21,624 samples of the joint posterior distribution.

68 3 A Tutorial

Fig. 3.1 Marginal posterior distributions for the three Minerva 2 parameters. The left, middle,
and right panels show the estimated marginal posterior distributions for the learning rate L, the
criterion C, and the number of features �, respectively. In each panel, three estimates are shown, one
corresponding to each method used to form the approximation: PDA (gray), analytic expressions
(solid black), and KABC (dotted black). In each panel, the true value of the parameter used to
generate the data is shown as the vertical dashed line

Figure 3.1 shows the estimated marginal posterior distributions for each of the
model parameters. The left panel shows the estimate for the learning rate L, the
middle panel shows the estimate for the criterion C, and the right panel shows the
estimate for the number of features �. Within each panel, the estimate obtained using
each of the three methods is shown: PDA (gray), analytic expressions (solid black),
and KABC (dotted black). In each panel, the true value of the parameter used to
generate the data is shown as the dashed vertical line. Comparing across the three
methods, Fig. 3.1 shows that the estimates obtained using PDA and KABC are more
similar to one another than they are to the estimates obtained using the analytic
expressions.

In particular, the estimate from the analytic expressions for the criterion param-
eter is highly peaked around the value 0.03 and has considerably less variance
compared to the other likelihood-free methods. However, the estimated posterior
is so heavily concentrated that it does not overlap with the value of the parameter
used to generate the data. Similarly, the estimated posterior for the learning rate
parameter using the analytic expressions also misses the true value of the parameter
used to generate the data. Yet, the estimates for the learning rate parameter using
KABC and PDA do overlap with the true value, and are somewhat similar to one
another.

Because the true likelihood function has not been derived for Minerva 2, we
cannot say for sure which of the three estimates is correct. We suspect that
the inaccuracy of the posterior distributions in Fig. 3.1 reflects the effects of the
normality assumption used in Sheu [37]. Although assuming that the target and
lure activation distributions are normally distributed is convenient for deriving an
approximation for the likelihood function, the activation distributions produced
by Minerva 2 are only normal in the limit as the number of features in the trace

3.3 Simulation Study: Recovering the Posterior Distribution 69

vector increases and the number of traces in the episodic memory matrix increases.
Conventional values for Minerva 2 for number of features and number of traces are
around 20, and so it is possible that the approximation is less accurate under these
conditions. However, because the estimates obtained from the analytic expressions
miss the true value used to generate the data, we suspect that this approximation is
less accurate than either the PDA or KABC methods.

The results in Fig. 3.1 also show some small differences between PDA and
KABC. We suspect that the reason for the differences is due to the kernel-based
approximation, which introduces some approximation error over and above the
error due to Monte Carlo sampling. By contrast, the PDA method removes this
approximation error, but also has the some error associated with the construction
of the simulated PDF. Again, as we do not know what the true posterior distribution
is, we cannot properly evaluate which estimate is more accurate (but see Chap. 4 for
some validation examples).

In addition to the marginal distributions shown in Fig. 3.1, we can also examine
the estimated joint posterior distributions. Occasionally, these posterior distributions
reveal interesting tradeoffs in the model parameters that would otherwise be difficult
to appreciate [38, 44]. Figure 3.2 shows the estimated joint posterior distribution
obtained using the PDA method for each pairwise combination of the three model
parameters. The left panel plots the criterion C against the learning rate L, the
middle panel plots the number of features � against L, and the right panel plots
� against C. Figure 3.2 reveals an interesting curvilinear pattern in the posteriors,
especially in the left and right panels. Although a detailed analysis of Minerva 2 is
outside the scope of this tutorial chapter, we can provide some intuition behind the
tradeoff between the learning rate L and the number of features �. Recall that the
memory traces are formed by a fixed number of features representing the items in
the study list. After an item is presented for study, features of that item are copied
into the episodic memory matrix with probability L. As L increases, the probability

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Learning Rate

C
rit

er
io

n

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

40
50

60

Learning Rate

Fe
at

ur
es

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

40
50

60

Criterion

Fe
at

ur
es

Fig. 3.2 Joint posterior distributions for the three Minerva 2 parameters. The estimated joint
posterior distribution obtained using the PDA method for each pairwise combination of the three
model parameters are shown: the criterion C against the learning rate L (left), the number of
features � against L (middle), and � against C (right). The true values of the parameters used
to generate the data are shown as the dashed lines

70 3 A Tutorial

of copying a given feature increases, making recognition performance better at test.
Hence, when the learning rate is low, Minerva 2 needs more features of the item
to accurately copy enough features to maintain the same accuracy observed in the
data. A similar pattern of tradeoffs exists in the Retrieving Effectively from Memory
(REM) [44, 83, 92] model.

We can learn a good deal about model constraint, flexibility, and identifiability
by close examination of the model parameters. For example, in typical applications,
we assume a diffuse prior on the model parameters. After the posterior distribution
has been estimated, we can compare the spread of the prior distribution relative to
that of the posterior. If a significant discrepancy is observed, where the posterior
distribution has smaller variance than the prior distribution, we can conclude that
the data are constraining the model, because the data have provided evidence that
reduces our uncertainty about the parameter values. Hence, the spread of the joint
posteriors in Fig. 3.2 suggests that the parameters are well identified, and we learn
a lot from our data. In addition, the parameters are highly correlated and trade off
against each other, a finding that is often observed in computational psychological
models [38, 44, 57]. Finally, the joint posteriors reveal reasonably good accuracy
with respect to recovering the true parameter values (also see Fig. 3.1), which further
suggests the model is well identified.

In general, if we were to assess whether or not the posterior estimates were
accurate, we would need the true likelihood function so that we could compare the
estimates obtained by the approximation methods. However, as we don’t currently
have the likelihood function for the Minerva 2 model, we must instead compare
the estimated posteriors to the true value used to generate the data. Unfortunately,
the comparison is not as simple as evaluating the density of the true value of the
parameter within the posterior distribution. In fact, there is nothing that guarantees
an estimated posterior distribution will center around a true parameter value in these
types of simulation studies. All we can assess is whether or not the true value
is contained within the posterior. For KABC and PDA, all of the true values are
contained somewhere within the posterior. However, for the analytic expressions,
the criterion parameter and the learning rate do not contain the true value.

We also measured the total computational time required to complete each
simulation. The PDA method took 10 min and 2 s, the analytic method took 6 min
and 26 s, and the KABC method took 6 min and 58 s. The PDA and KABC method
both require simulations of the model. For optimization purposes, we programmed
Minerva 2 in the C language. The analytic expressions do not require model
simulation, but they do require a number of calculations [37]. We used R to make
the analytic calculations and did not export the code to C because the R version was
relatively fast. To perform each simulation, we parallelized the computation across
8 cores on a Mac Pro desktop computer with a 3.7 GHz processor. The computation
times reveal an interesting tradeoff. First, the fastest results are obtained using the
analytic expressions, and the slowest using the PDA method. However, we believe
that the analytic expressions are also the most inaccurate, and the PDA method is
the most accurate as no error terms corrupt the estimates. However, the differences
between the PDA and KABC estimates are not large, which suggests that the KABC
algorithm may be a suitable approximation for more intensive model fits.

3.4 Real-World Application: Dennis et al. [4] 71

3.4 Real-World Application: Dennis et al. [4]

Our next exercise fits a hierarchical version of Minerva 2 to data from Dennis et al.
[4]. In this experiment Dennis et al. [4], had people perform a recognition memory
task that manipulated list length and the presence or absence of an additional
filler task between the study and test phase of the experiment. In addition, they
implemented a number of controls to eliminate confounds present in traditional list
length designs. The first of these confounds is an unequal retention interval across
short and long list length conditions, which they controlled by keeping the time
between the onset of the study list and the onset of the test list the same in both
conditions. The second is the possibility of a decrease in attention which might
occur over the presentation of the study list. They controlled this possibility by
only testing items from the beginning of the study list in both short and long list
conditions.

Dennis et al. [4] found that the list length effect depended on the presence of
the filler task. Specifically, when no filler task followed the study list, recognition
performance was better for short lists than for long lists. However, when a filler
task was present there was no list length effect. We chose to fit the model to this
particular dataset because the two independent variables, list length and retention
interval, are both variables for which Minerva 2 makes predictions.

3.4.1 TheModel

To fit Minerva 2 to the data from Dennis et al. [4] we must first recall the roles
that each parameter in the model plays and their relationships to the experimental
design.3 We discussed already how Minerva 2, as other global matching models,
accounts for effects of list length as a function of the number of trace vectors in the
memory matrix. Specifically, the matching process comparing an item from the test
list to the episodic image involves a comparison to every item from the study list.
Next, we must consider how the effects of the filler task might influence memory
performance in each task, and how the model might account for these changes across
tasks. We assumed that the effects of the filler task can be explained by the decay
rate parameter ı. We assume that, in the presence of a filler task, the individual
traces in memory decay with probability ı, an assumption that is consistent with the
original implementation of the model [79]. Recall that if a feature in a trace decays
that it reverts to a zero in the episodic image. As a result, increases in ı produce
more memory decay, resulting in lower discriminability.

To implement this mechanism we define a binary indicator Fj to designate the
parameters for a given condition j. We let Fj represent the condition in which the

3Dennis et al. [4] also used words of different frequency (high and low) to construct their study
and test lists. Because Minerva 2 lacks a mechanism for explaining word frequency effects
in recognition memory, for the purposes of this demonstration we collapsed across both word
frequency classes to produce a single hit and false alarm rate for each experimental condition.

72 3 A Tutorial

additional filler activity was either absent (Fj D 0) or present (Fj D 1). We can then
write the parameter vector �i;j for the ith subject in the jth condition as

�i;j D fLi; ıiFj; �i; C. j/
i g: (3.6)

Thus, in conditions with no filler task (Fj D 0), the decay parameter ıi D 0, but
when a filler task is present (Fj D 1), 0 � ıi � 1. The assumption setting the decay
rate is zero when no filler task is present is an arbitrary one, as the other model
parameters should scale accordingly. The important difference here is the value of
the decay rate ıi relative to zero.

For the ith subject in the jth condition, we denote the number of hits as Oi;j;T

and the number of false alarms by Oi;j;D. The number of hits Oi;j;T and false
alarms Oi;j;D arise from binomial distributions with the number of trials equal to
the number of targets Ni;j;T and distractors Ni;j;D, respectively. We can estimate the
probability that the model makes an “old” response to both targets (i.e., the hit rate)
and distractors (i.e., the false alarm rate) by simply simulating the model many
times and tabulating the responses under the different stimulus types. These values
give us the probability of a hit P.H j �i;j/ and false alarm P.FA j �i;j/. Letting the
observed data

Y D ffO1;1;T ; O1;1;Dg; fO1;2;T ; O1;2;Dg; : : : ; fO1;J;T ; O1;J;Dg;
fO2;1;T ; O2;1;Dg; fO2;2;T ; O2;2;Dg; : : : ; fO2;J;T ; O2;J;Dg;
: : : ;

fOS;1;T ; OS;1;Dg; fOS;2;T ; OS;2;Dg; : : : ; fOS;J;T ; OS;J;Dgg

for J conditions and S subjects, the likelihood function for Y is

L.� j Y/ D
SY

iD1

JY

jD1

Bin.Oi;j;T j Ni;j;T ; P.H j �i;j//Bin.Oi;j;D j Ni;j;D; P.FA j �i;j//;

(3.7)
where S D 48 is the number of subjects, and J D 4 is the number of conditions.

To complete the model we select priors for each of the parameters. Because the
parameters Li and ıi represent probabilities, they are both restricted to be between
zero and one. We therefore assumed that each of the individual-level parameters ıi

and Li have truncated normal priors bounded by zero and one, or

Li � T N .!L; �L; 0; 1/; and

ıi � T N .!ı; �ı; 0; 1/;

where T N .a; b; c; d/ denotes the truncated normal distribution with mean a,
standard deviation b, lower bound c, and upper bound d. Because the number of
features parameter �i can only take on integer values, we used a discretized version

3.4 Real-World Application: Dennis et al. [4] 73

of the truncated normal distribution with mean parameter !�, standard deviation
parameter ��, and with a lower bound of two so that

�i � DT N .!�; ��; 2; 1/;

where DT N .a; b; c; d/ denotes the discretized truncated normal distribution with
mean a, standard deviation b, lower bound c, and upper bound d. Choosing a lower
bound of two restricted each item to have at least two features.4

Unlike current Bayesian recognition memory models [83, 85], Minerva 2 and
the other global matching models use different criteria for an “old” response for
different experimental conditions. This is because changes in Minerva 2 parameters,
such as the learning rate and decay rate, affect the mean of the target activation
distribution without changing the mean of the distractor activation distribution
(although the variances of these distributions are different). To illustrate why a
single criterion is insufficient, consider two experimental conditions with different
retention intervals, or the length of time between study and test phases of the
experiment. The longer retention interval condition will have a higher decay rate,
which will decrease the mean of the target activation distribution. If the decision
criterion is fixed for long and short retention intervals, the lower mean target
activation will result in lower hit rates, but the false alarm rate will not be affected.
If the decision criterion is reduced in the long retention condition, the hit rate will
be lower and the false alarm rate will be higher than in the short retention condition,
which is consistent with experimental findings. Allowing for different decision
criteria across conditions also allows for unbiased responding in each condition.

To ensure that the model can fit the data, we assumed a separate criterion
parameter C. j/

i for each of the J D 4 conditions. This is not without precedent,
as a similar approach was used by Clark and Shiffrin [93] to fit Minerva 2 to
their recognition data. For each individual criterion we specified a normal prior
distribution, so that

C. j/
i � N

�
!

.k/
C ; �

.k/
C

�
:

Because Minerva 2 has never been fit hierarchically to data, we have no
information about the likely ranges of the hyperparameters. As a consequence, we
used noninformative priors for the hyperparameters to reflect this uncertainty. First,
for the mean parameters !L and !ı , we chose a uniform distribution that put equal
density on all values in the interval (0,1), so that

!L � Beta.1; 1/; and

!ı � Beta.1; 1/:

4After fitting the model, we noticed that no marginal distribution for �i went below four, so while
our choice was made out of convenience, it had little effect on the posterior estimates.

74 3 A Tutorial

To choose priors for the criteria and number of features, we examined the model
predictions under a variety of different choices for f�; Cg. We found that values of
C ranging from 0 to 0.5 with the number of feature ranging from 10 to 20 produced
data that one might expect from a typical recognition memory task. Thus, we settled
on mildly informative priors for these parameters, given by

!
.k/
C � N .0:05; 1/; and

!� � T N .40; 15; 2; 1/:

For the standard deviation hyperparameters � D
n
�L; �ı; �

.k/
C ; ��

o
, we used a

common, mildly informative priors, so that

� � � .1; 1/;

We chose these priors because we expected only a moderate degree of variability in
the individual-level parameters, and the � .1; 1/ distribution covered a sufficiently
large range.

Figure 3.3 shows a graphical diagram for this hierarchical model. These types
of diagrams are often very useful for illustrating how the parameters in the model
(white nodes) are connected via arrows to the observed data (gray nodes) [6,12,17].
When the variables are discrete they are shown as square nodes, whereas when
the variables are continuous they are shown as circular nodes. A double bordered
variable indicates that the quantity is deterministic, not stochastic, and computed
from other variables. For example, the node corresponding to �i;j is double bordered
because it is always determined by evaluating Eq. (3.6). Finally, “plates” show how
vector-valued variables are interconnected. For example, the node for the parameter
!L is not within the plates, which indicates that this parameter is fixed across both
subjects and conditions, whereas there are separate Li nodes for every subject, and
separate C. j/

i nodes for each subject and condition.

3.4.2 Results

To fit the hierarchical model we used the PDA method [56] embedded within the
Gibbs ABC algorithm [70]. We generated proposals using DE-MCMC [57]. In the
implementation of the algorithm we ran 24 chains in parallel, used a burn-in period
of 3000 iterations, and then ran the sampler for 3000 more iterations. Although
each chain was individually assessed for convergence, estimates were formed by
collapsing across all 24 chains and all 3000 samples, resulting in 72,000 samples of
the joint posterior distribution.

To get a sense of whether the model fits the data well, we examined the posterior
predictive distribution (PPD) and compared it to the observed data. The PPD is the
marginal distribution of new, unobserved data given the data already collected. It
gives a prediction about how new data will be distributed if we were to collect more.
In a hierarchical model, we can generate the PPD on a subject level or a group level.

3.4 Real-World Application: Dennis et al. [4] 75

Subject i = 1,2, . . . ,S

Condition j

Ni,j,T Ni,j,D

Oi,j,DOi,j,T

θi,j

ωδ ωC ξC

ξLξδ δi

ωL

ωη

ξη

ηi

LiFi Ci

(j)

(j)

(j)

Fig. 3.3 Graphical model for the hierarchical version of the Minvera 2 model fit to the data
of [4]. Parameters in the model are represented as white nodes, observed data variables are
represented as gray nodes, and deterministic variables are represented as double-bordered nodes.
Discrete variables are represented as square nodes, whereas continuous variables are circular. Plates
illustrate a replication of a structure within the model, such as parameters across subjects or across
conditions

Figure 3.4 shows the PPD at the group level separated across the four conditions.
The first column corresponds to conditions in the experiment when no filler was
present (i.e., F0), whereas the second column corresponds to conditions when the
filler was present (i.e., F1). The rows correspond to the two list length conditions,
where L0 denotes the short list condition (i.e., 20 words), and L1 denotes the long list
condition (i.e., 80 words). In each panel, the black dots correspond to the observed
data from Dennis et al. [4] and the gray densities correspond to the PPD. Figure 3.4
shows that the PPD is extremely variable, spreading across the majority of the ROC
space. However, this is also true of the observed data [94]. Figure 3.4 assures us that
the predictions of the model, which are derived from the fits, are at least sensible in
that none of the observed data points fall in a location in the ROC space that is not
predicted by the model.

76 3 A Tutorial

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

L0F0

False Alarm Rate

H
it

R
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

L0F1

False Alarm Rate

H
it

R
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

L1F0

False Alarm Rate

H
it

R
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

L1F1

False Alarm Rate

H
it

R
at

e

Data
Post. Pred.

Fig. 3.4 The posterior predictive distributions (PPD) from the hierarchical Minevera 2 model.
Each of the panels corresponds to a condition in the experiment from [4]: the columns correspond
to the two filler conditions (i.e., filler absent condition F0 in the left column, and filler present
condition F1 in the right column) whereas the rows correspond to the two list length conditions
(i.e., the short list condition L0 in the top row, and the long list condition L1 in the bottom row).
Observed data are represented as the black dots, whereas the gray density represents the PPD

Having assured ourselves that the model was fitting the data properly, we
examined the posterior distributions. Although there are many parameters we could
inspect, we focused on the group level hypermean parameters. Figure 3.5 shows
the estimated posterior distributions for the four criterion parameters (top row), the
learning rate parameter (bottom left), the decay parameter (bottom middle), and the
number of features (bottom right). Figure 3.5 shows that the learning rate parameter
for these subjects was quite high, with a mean of 0.955. The decay parameter
was very low, with a mean of 0.019. Together these two parameters are important
determinants of overall accuracy in the model, and these values in particular help to
fit the data (see Fig. 3.4). The number of features parameter is relatively low, having
a mean of 8.47. However, from our simulation study above, we now know that when
the learning rate parameter is high, fewer numbers of features are required for the
model to capture high accuracy data (see Fig. 3.2).

3.4 Real-World Application: Dennis et al. [4] 77

D
en

si
ty

0.15 0.25 0.35 0.45

0
5

10
20

30

ωC

D
en

si
ty

0.15 0.25 0.35 0.45

0
5

10
20

30
ωC

D
en

si
ty

0.15 0.25 0.35 0.45

0
5

10
20

30

ωC

D
en

si
ty

0.15 0.25 0.35 0.45

0
5

10
20

30

ωC

ωη

(4)(3)(2)(1)

ωL

D
en

si
ty

0.90 0.94 0.98

0
5

10
15

ωδ

D
en

si
ty

0.00 0.04 0.08

0
5

10
15

20
25

D
en

si
ty

7.0 8.0 9.0
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Fig. 3.5 Hypermean parameters for each of the parameters in the hierarchical Minerva 2 model.
The top row plots each of the four criterion parameters !

. j/
C , whereas the bottom row plots the

posteriors for the learning rate parameter !L (left), decay parameter !ı (middle), and the number
of features parameter !� (right)

The two most important parameters to explain the experimental effects are the
decay rate ı and the criterion parameter C. Figure 3.6 shows the estimated posterior
distributions of the group-level decay rate (left panel) and the difference in the
average criterion parameters (right panel). The average criterion difference was
computed by collapsing over the criteria for the different list length conditions.
Collapsing was justified because Fig. 3.5 shows the posterior means and variances
of the decay rates are similar in the first and third conditions (short and long list
lengths for no filler task) and in the second and fourth conditions (short and long
list lengths for the filler task). If there was no difference in the activations across
filler conditions, the estimated posterior of the average criterion difference should
be centered at zero. However, Fig. 3.6 shows that the estimated posterior distribution
of the difference has a mean of 0.13 and a 99% probability interval that does not
contain zero. This suggests that, for the filler conditions, although the decay rate
was low, it affected the activations to the extent that the criterion parameter had to
shift to maintain the correct pattern of hit and false alarm rates.

We can use the estimated model parameters to gain some insight into the
activation distributions used by the subjects. To do this, we generated predictions for
the activations in the model for targets and distractors, conditional on the estimates
of the group-level parameters (see Fig. 3.5). Figure 3.7 shows the distributions
for targets (red) and distractors (gray) when the filler task is present (right panel)
and absent (left panel). The criterion parameter is shown as the solid vertical line.
Examining the distributions across the conditions provides better insight into why

78 3 A Tutorial

Decay
D

en
si

ty

0.00 0.04 0.08

0
5

10
15

20
25

ωδ

Criteria

D
en

si
ty

0.00 0.05 0.10 0.15 0.20

0
5

10
20

30

ωC −ωC
(2,4)(1,3)

Fig. 3.6 Estimated posterior distributions of the parameters involved in capturing the filler effect.
The left panel shows the group-level decay rate parameter, whereas the right panel shows the
difference in the average criterion parameters in the two filler conditions. In both panels, the vertical
dotted reference lines indicate the value of the parameter that would produce no filler effect

No Filler

Activation

D
en

si
ty

−1.0 0.0 1.0 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

Filler

Activation

D
en

si
ty

−1.0 0.0 1.0 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

Fig. 3.7 Target and lure activation distributions used by the model across filler conditions. Target
activation distributions are illustrated by the red histograms, whereas lure activation distributions
are illustrated by the gray histograms. The black vertical line represents the criterion parameter
used in each condition

the criterion is lower in the filler condition. Specifically, when the filler task is
present, the target representation decays away, and the target activation distribution
moves closer to the lure distribution. As a consequence, the criterion parameter
needs to adjust to maintain a hit rate that is consistent with the observed data. Hence,
together Figs. 3.6 and 3.7 illustrate an important interaction that occurs between the
criterion parameters and the decay rate parameter.

3.5 Summary 79

3.5 Summary

In this chapter, we illustrated how likelihood-free techniques can be applied to
the Minerva 2 model of recognition memory. We began by estimating the joint
posterior distribution of the model parameters by generating synthetic data from
the model and fitting the model to these data. We compared the estimates of the
joint posterior distribution obtained using three different techniques: probability
density approximation (PDA) [38], analytic expressions [37], and kernel-based
ABC (see Chap. 2). We showed that while the estimates obtained using the
two likelihood-free approximations converged to similar values, the analytically
convenient approximations diverged from the other methods. Finally, we applied
a hierarchical version of Minerva 2 to data from [4] and examined the estimated
posterior distributions of the model’s hyperparameters. This exercise shows how
useful the likelihood-free techniques can be for the Minerva 2 model, a model that
has never been incorporated into a hierarchy or fit to data using Bayesian techniques.

	3 A Tutorial
	3.1 Introduction
	3.2 MINERVA 2 Model
	3.2.1 Implementing the Model

	3.3 Simulation Study: Recovering the Posterior Distribution
	3.3.1 Generating the Data
	3.3.2 Fitting the Data
	3.3.2.1 KABC
	3.3.2.2 PDA
	3.3.2.3 Analytic Expressions

	3.3.3 Results

	3.4 Real-World Application: Dennis et al. DenLeeKin08
	3.4.1 The Model
	3.4.2 Results

	3.5 Summary

