
1Motivation

What I cannot create, I do not understand.

Richard Feynman

The ultimate endeavor of any good cognitive scientist is to build a model that mimics
the essential dynamics of the (human) mind. We should not hope to create a model
that is perfectly accurate, as the only model that could perfectly reproduce any
dynamic is one that is as complex as the original system; a philosophical argument
known as Bonini’s paradox. We seek out and develop models because they are our
best hope for generalizing complex decision making processes across individuals,
tasks, or time. Our criterion for evaluating the utility of a model is not only in what
it provides in terms of understanding, but also in how well it can capture essential
trends in behavioral data.

A psychological model is a representation of a psychological process, a rep-
resentation that quantifies or provides a mechanism for how a behavioral task is
performed. When we write down a model, we write down a statement of the form

y D f .x; �/:

where y is a set of dependent variables or observed measurements, x is a set
of independent variables or experimental manipulations, the function f is the
mathematical structure dictated by our theory of how the data y are generated, and
� is a set of parameters that relate the independent variables to the model structures.
When we want to explore how well the model explains our data y, or how well it
predicts new data y0, we fit the model to the data y by estimating the parameters � .

These two endeavors—explanation and prediction—are often considered the
foundational pillars of cognitive modeling [1]. Both endeavors are facilitated
by accurate cognitive models, and both require detailed knowledge of estimated
parameters. Hence, one of the major priorities of any would-be cognitive modeler
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2 1 Motivation

should be accurate parameter estimation—the method for finding the parameter
value or values that best fit the observed data.

Consider a recognition task, in which people are asked to discriminate between
items that were presented to them earlier in an experiment (targets) from items
that were not (distractors). An old, well-known model of how recognition might be
accomplished is the “high threshold” model [2, 3]. This model is based on the idea
that if an item were presented to a person earlier in the experiment, it will have left
behind a memory trace. What is the function f , or model structure that relates our
experimental manipulations x and parameters � to the dependent variable y, which,
in this case, is the probability of identifying an item as “old”?

The high-threshold model has two parameters. The first, R, is the probability that
an old target item leaves behind a trace. If a trace is present, then a person will
always respond “old.” The second, g, is the probability that a person responds “old”
by guessing alone. If a trace is not present, then the person will respond old with
probability g. Therefore, the probability of responding “old” to a target item is

R C g.1 � R/:

When an item is new (i.e., a distractor), there is no trace, and the process reduces
to guessing alone. So the probability of responding “old” to a distractor item is g.
The function relating these parameters to recognition performance is therefore

f .x; fR; gg/ D

�
R C g.1 � R/ if x is a target
g if x is a distractor,

where x plays the role of an independent variable that identifies the item as a target
or distractor.

The parameters R and g, together with the probability structure f .x; fR; gg/,
provide the explanatory mechanisms of the high-threshold model. Knowing how
small or large R is tells us something about the efficiency of the memory process.
Knowing how small or large g is tells us the tendency of the person to respond
“old” or “new.” Furthermore, we might expect R and g to be different over different
individuals. Some people have better memories than others; some people are less
willing to say “old” when they aren’t certain. Information about these parameters,
how they change over different experimental conditions, and how they differ over
individuals, is critical to being able to test the model, decide if it is a good model or
not, and in so doing learn about the psychological process that generated the data.

This brings us to the problem that is the focus of this book: how do we learn
about the parameters of the model? The process of model fitting can be conducted
in a number of ways, all of them “correct” in some sense, but some better than
others in the context of different modeling goals. We can divide these methods into
two general types: frequentist and Bayesian. The reader is probably already familiar
with this distinction, but it is important to highlight the key differences between the
two approaches.
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Frequentist inference treats data as random and parameters as fixed quantities
to be estimated. Parameters are assumed to be fixed within a group, condition, or
block of experimental trials, and inference is therefore based on the sample space of
hypothetical outcomes that might be observed by replicating the experiment many
times. Inference about these unknown, fixed parameters takes the form of a null
hypothesis test (such as a t-test), or estimating the parameters by determining the
parameter values that minimize the difference between the model predictions and
the data.

Bayesian inference treats both data and parameters as random, but after data
have been obtained they are fixed. Inferences about parameters are based on the
probability distributions of the parameters, distributions referred to as posterior
distributions. It may be odd to think of a parameter as random; think, for example,
about a parameter like the constant � D 3:1416 : : :, or c D 2:99792458 � 108.
Are these parameters truly random? Most people would say no. The variability
in a parameter that is represented by its posterior distribution should be viewed
not as true variability in the parameter’s value, but as our uncertainty about its
true value. But where there is uncertainty there is also information; the Bayesian
approach makes use of whatever prior information is available about a parameter
and incorporates that information into the inference.

Despite the very different viewpoints that frequentists and Bayesians have about
parameters, their goals are the same. Both groups want to develop and test models
that can explain and predict behavior. Understanding behavior means understanding
how model parameters change with experimental conditions, so long as we can link
those parameters to specific mechanisms.

Bayesian methods have become very popular in mathematical and computational
psychology over the last decade [4–21]. The reasons for this growth in popularity
are numerous, but can be linked to the wide availability of powerful computing
resources and, most importantly, to the fact that Bayesian techniques work where
frequentist methods cannot easily be applied. In particular, Bayesian inference can
be performed in the context of models of theoretical interest, while frequentist
methods often must depend on simplifying asymptotic assumptions (e.g., the central
limit theorem). These models can be embedded in hierarchical structures that
permit estimation of individual differences as well as overall effects of experimen-
tal manipulations, and posterior distributions permit us to examine relationships
between parameters that would ordinarily be unobservable. Bayesian methods also
permit comparisons across models that are very different: non-nested models, where
models are more than just special cases of each other (with, say, certain parameters
fixed at 0 or 1), can be compared and quantitatively evaluated; and models that differ
in dimensionality, the number of unique parameters each have.

In the next sections in this chapter we will present the most common methods
for parameter estimation and contrast them with Bayesian methods. We will then
discuss the problem that is the central focus of this book: how do we estimate the
parameters of a model whose predictions can’t be written down mathematically?
This will set the stage for the chapters to come.
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1.1 Methods of Least Squares

Least-squares methods of parameter estimation (LSE) are so called because the
goal is to choose the parameters that minimize the squared distance between the
observations y D f y1; y2; : : : ; yNg and the predicted values given by the model.
That is,

SSE D

NX
iD1

. yi � f .xi; �//2 ;

where N is the sample size and, as before, x represents the independent variables in
the experiment, f is the model that relates x to y, and � are the model parameters.1

As an example, simple linear regression assumes a model that predicts y D mxC

b, so f .x; fm; bg/ D mx C b. Minimizing SSE in simple linear regression yields

the least-squares estimates Om D rxy
sy

sx
and Ob D y � mx, where rxy is the correlation

between x and y, x and y are the sample means, and sx and sy are the sample standard
deviations.

Simple linear regression is called simple for more than one reason: finding the
least squares estimates Om and Ob can be done by putting pencil to paper. In many
situations the function SSE cannot be easily minimized, which requires that we use
a computer program that searches for the minimum by proposing values for Om and
Ob, computing the resulting SSE, and then, by proposing new values, attempting to
make it smaller. There are many efficient algorithms to do this.

1.2 Maximum Likelihood

Maximum likelihood methods, the frequentist standard for parameter estimation,
form the basis for many inferential procedures and model comparison methods.
They rely heavily on optimization algorithms because the computations necessary
for parameter estimation are usually more complex than those for least squares. In
contrast to least squares, the distance between the data and the model’s predictions
is defined by how closely the probability distribution of the data matches the
distributional assumptions of the model. This distance can be minimized by
maximizing the likelihood of the data under the model.

Returning to the high-threshold recognition memory model, the data we observe
are the numbers of “old” responses OT to targets and OD to distractors, out of a total
number of items NT and ND presented in the experiment. We have already seen that

1We will use the notational convention that a variable name without subscripts such as y or x may
be either vector or scalar valued; context should make clear which. If a variable is subscripted, such
as yi or xi, it represents either an element of a vector or a scalar.



1.3 Bayesian Methods 5

f .x; fR; gg/ D

�
R C g.1 � R/ if x is old
g if x is new

gives us the predicted proportions of “old” responses to target and distractor items.
Using these predicted proportions, the probability distributions of OT and OD are
binomial with parameters fNk; pk D f .k; fR; gg/g for k D T; D. The likelihood
of the data fOT ; ODg is the product of the two binomial distributions, which is
proportional to

`.fg; Rg j fOD; OTg/ D gOD.1 � g/ND�OD ŒR C g.1 � R/�OT

� Œ1 � .R C g.1 � R//�NT �OT : (1.1)

The maximum likelihood estimates of g and R are the values Og and OR that
maximize `.fg; Rg j fOD; OTg/. This is another case where we can find Og and OR
without complications and determine that

Og D OD=ND and OR D
OT=NT � OD=ND

1 � OD=ND

maximizes the function `.fg; Rg j fOD; OTg/. For more complicated likelihood
functions, we will need numerical methods.

1.3 Bayesian Methods

Bayesian methods for parameter estimation do not just compute point estimates like
least squares and maximum likelihood. As we described above, the final product
of a Bayesian analysis is an estimate of a parameter’s posterior distribution given
the observed data. These methods incorporate the data’s likelihood function, the
same function used in maximum likelihood estimation, into Bayes’ Theorem to
arrive at this posterior distribution. Bayesian probabilities used to be called “inverse
probabilities,” a term that describes the problem of turning a likelihood into a
probability distribution over parameters [22].

Bayes’ Theorem is probably well known to most readers, but we will restate it
here in terms of data, models, and parameters. A model, which we described earlier
in terms of its predictions f .x; �/, states that data y will follow some probability
distribution that is “tuned” according to its parameters � . Using that probability
distribution, we can write the likelihood L of y as a function of �2:

2Don’t confuse the probability (or density) function fY .y j �/ with the model structure f .x; �/.
The predictions of the model, described by f .x; �/ are not necessarily the same as the probability
of the data given by fY .y j �/, though they were the same for the high-threshold model above.
For the simple regression model, however, f .x; fm; bg/ D mx C b, while most applications of
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L.� j y/ D

NY
iD1

fY. yi j �/: (1.2)

Although the likelihood L is a function of � (where y is given), we can think of it
(generally) as the probability (or the density) of the sampled measurements y given
the parameters � . Applying Bayes’ Theorem, we want to invert the likelihood to
obtain a probability (or density) of � given the data y.

To do this, we will need to specify a prior distribution over � . This distribution
might reflect our past experiences with the model as it was fit to similar data (an
informed prior), or we might choose to avoid making strong a priori assumptions
about � and instead choose an objective distribution that is uninformative or
relatively flat. Such prior distributions usually spread probability over a wide range
of possible parameter values. There are a number of different criteria by which an
objective prior might be selected [23], but lack of information is probably the most
popular basis for an objective prior.

The choice of a prior gives us a probability or density function �.�/ that
represents the variability in the parameter � before any data are observed. Bayes’
Theorem states that

�.� j y/ D
L.� j y/�.�/

fY. y/
;

where fY.y/ is the marginal distribution of the data, taken over all possible parameter
values. Because fY.y/ does not depend on � , it is only a normalizing constant. It
is usually very difficult to compute for models of any real complexity, and so we
usually write

�.� j y/ / L.� j y/�.�/I

the posterior of � given y is proportional to the product of the prior and the
likelihood.

If we know �.� j y/ exactly, then we have everything we need to make inferences
about the parameter � . Not only can we compute point estimates (such as the
posterior mean, mode, or median), we can compute exact probabilities for different
hypotheses. We can evaluate the probability of a null hypothesis such as H0 W � � 0,
or construct the Bayesian equivalent of a 95% confidence interval: a credible set
.�0; �1/ such that P .� 2 .�0; �1// D 0:95.

Unfortunately, for most realistic models, we don’t know �.� j y/ exactly, for one
or two reasons. First, computing the normalizing constant fY.y/ is often complicated,
preventing us from being able to write down closed-form solutions for �.� j y/. This
problem, which was one major reason why Bayesian inference has lagged behind the
development of frequentist techniques, has led to the development of algorithms that

regression state that y is normally distributed with mean mx C b and some standard deviation � . In
this case, fY .y j x; m; b; �/ is the normal density function that sketches out the bell curve.
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permit us to sample values of � from the posterior. These techniques, such as Gibbs
sampling, Metropolis-Hastings sampling, Hamiltonian Monte Carlo sampling, and
so forth, do not require explicit calculation of fY.y/, but instead approximate this
marginalizing constant through Monte Carlo techniques.

The second reason we often don’t know �.� jy/ exactly is because the likelihood
function L.� j y/ may not have an explicit functional form. In psychology,
neuroscience, and cognitive science, our goal is to develop a model that mimics
human decision making, a process that is extremely complicated even for simple
decisions. Often, while developing more complete explanations of behavioral data,
models must grow in complexity to be able to account for different decision making
patterns. For example, the high-threshold model may explain patterns of decisions
from simple recognition memory experiments, but it is not equipped to handle more
complex dynamics that appear in other memory experiments, such as those observed
in free recall experiments [24,25]. The benefit of more complex models is the power
of unifying explanations for many different patterns of behavioral data at once, but
the cost is usually one of computational complexity. It is often the case that as
models become more complex, it becomes more and more difficult to determine
the likelihood of the models’ outputs with a set of equations.

And here lies the purpose of this book. There is a growing emergence of success-
ful computational models in psychology, neuroscience, and cognitive science for
which the likelihood functions are either unknown or computationally difficult to
evaluate. Because the likelihood function has yet to be derived, one must explore
the predictions of such models through simulations, and inference procedures
are limited to the methods of least squares described above. In other words,
due to complications in evaluating the likelihood function, the aforementioned
computational models are unable to enjoy the many benefits that Bayesian analyses
provide.

1.4 Approximate Bayesian Computation

There are now influential models in the behavioral sciences that are constructed
from the “bottom up.” Relatively well-understood neural mechanisms are quantified
and used as the building blocks of more complex structures that can generate simple
responses to quantitative representations of stimuli. Many of these models are used
in memory and vision research. These models are tested by repeated simulation
of the models’ responses using constrained values of the parameters suggested by
findings in neuroscience.

Fitting such models to data is orders of magnitude more demanding than the
methods we have just outlined for models with explicit likelihoods. The most com-
mon method of estimating a simulation model’s parameters is called approximate
least squares [26, 27]. To understand approximate least squares, refer again to the
high-threshold model of recognition memory. If we were to use approximate least
squares, the parameter estimates would be obtained by first proposing reasonable
values for R and g. These initial values would be used to simulate a number of
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responses to a sequence of target and distractor stimuli. For example, a “for” loop
that cycles through the target items would first, by sampling from a Bernoulli
distribution with probability parameter R0, determine whether a trace had been laid
down for each target item. All items with traces would be given an “old” response.
All items without traces would then sample from another Bernoulli distribution with
probability parameter g0, and all items for which the sample was 1 would be given an
“old” response. Another “for” loop would cycle through the distractor items, again
sampling from a Bernoulli distribution with probability parameter g0 to determine
which distractors are given “old” responses. These two loops result in simulated
values for OOT;0 and OOD;0, which can then be compared to the observed values OT

and OD and evaluated as

bSSE0 D . OOT;0 � OT/2 C . OOD;0 � OD/2:

This would be the very first step in an optimization algorithm that would then
select a new set of parameters fR1; g1g, perform a second simulation, the results
of which would be used to compute bSSE1, and so on. Although the procedure is
not difficult, it can demand enormous amounts of computing power to perform the
simulation for each iteration, and, depending on the complexity of the problem,
thousands of iterations may be necessary to find the optimal estimates of the model’s
parameters. Furthermore, because of the variability added by the simulated data,
we shouldn’t just simulate the data once for each proposed set of parameters,
we really need to simulate the data many times, perhaps thousands of times, to
reduce the influence of simulation variability on the value of SSE. However, the real
reason that this approach is unsatisfactory is simply because it doesn’t give us much
information in the end: while we may have reasonably accurate point estimates for
the parameters, we will not know how they are distributed, how they are correlated
with each other, or what kinds of null hypothesis tests might be appropriate for
determining if they are changing over experimental conditions.

Approximate Bayesian computation (ABC) was designed to overcome exactly
this kind of problem. Originally developed by Pritchard et al. [28], ABC proceeds
in a way similar to approximate least squares, replacing the computation of the
likelihood with a simulation step. The simulation step produces a sample of
simulated data X that is evaluated relative to the observed data Y . This evaluation
is made on the basis of the distance between X and Y , and distance can be defined
in a number of ways. The SSE is one example of a distance, in which the samples
X and Y could be represented by sample statistics like their means and variances.
However, ABC does not use distance minimization to generate point estimates of
parameters, but rather to estimate the posterior distributions of the parameters.

The logic behind ABC is the following: if a proposed parameter value �� is able
to generate a simulated data set X that is close to the observed data Y , then it must
have associated with it a relatively high posterior probability. Therefore, for some
distance function �.X; Y/, we will keep all values of �� that result in �.X; Y/ � �0

and discard the rest. If we choose �.X; Y/ and �0 correctly, then �.� j �.X; Y/ � �0/

will approximate �.� j Y/ [28].
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Fig. 1.1 Intuition behind approximate Bayesian computation. The left panel shows the joint
distribution of the parameters of interest � against the distance between the statistics of the
observed data S.Y/ and the simulated data S.X/. The dashed vertical line represents the case where
S.Y/ D S.X/, and the solid black lines represent the degree of tolerance �. The right panel shows
the estimated posterior distribution (histogram) under the level of � in the left panel, overlaid by
the true posterior (black density)

Consider one last time the high-threshold model of recognition memory. Let

bSSE D
�

OO�
T � OT

�2

C
�

OO�
D � OD

�2

be the distance function, where OO�
T and OO�

D are the simulated data generated by
proposed parameter values fR�; g�g. We need to make sure that the number of
simulated trials ND C NT is the same as the number of trials in the experiment
to ensure that the sampling distributions of OO�

T and OO�
D are comparable to those of

OT and OD. If bSSE is less than �0, then we keep fR�; g�g as a sample from the
posterior. If it is greater than �0 we discard it and sample a new fR�; g�g, possibly
from the prior or from some other proposal distribution, and repeat the simulation
and computation of bSSE. How the proposals are sampled and how �0 changes (or
not) with repeated sampling are determined by the specific ABC algorithm that we
choose for this particular problem. We will discuss these algorithms later in Chap. 2.

Figure 1.1 illustrates the logic of the ABC approach more generally. Let S.X/ and
S.Y/ be functions that produce summary statistics (means, variances, quantiles, etc.)
of the simulated data X and the observed data Y . For example, the statistics could
be the number of “old” responses to target and distractor items for the observed
(i.e., OT and OD, respectively) and simulated (i.e., OO�

T and OO�
D) data. The distance

function �.X; Y/ is jS.X/ � S.Y/j. The left panel plots the joint distribution of the
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parameter of interest � against S.X/ � S.Y/. Staying with our high-threshold model,
the parameter � could correspond to R or g. The “observed” data Y were sampled
from a binomial distribution with “success” probability � D 0:5. This point in the
joint distribution of � and S.X/ � S.Y/ is represented by an � at � D 0:5 and
S.X/ � S.Y/ D 0. To generate the joint distribution in the left panel, we randomly
selected many different values for �� ranging from 0.3 to 0.7. For each new value of
��, we simulated data from binomial model and computed the number of successes
S.X/.

The dashed vertical line in the left panel of Fig. 1.1 is located at 0, when
S.X/ D S.Y/: a perfect match between S.Y/ and S.X/. If the likelihood were
available, the marginal distribution of � along the vertical line would be the true
posterior distribution, which is shown as the black density in the right panel. We
can’t accept only those values of � that produce S.X/ D S.Y/ or �.X; Y/ D 0; such
a strict distance criterion would result in an extraordinarily heavy computational
load. Instead, we specify the tolerance threshold �0 D 0:05, which is shown as the
solid vertical lines to the left and right of zero in the left panel. This value of �0 lets
us retain enough samples of � to be able to construct a relatively accurate estimate
of � ’s posterior. The right panel of Fig. 1.1 shows the histogram of the values of �

in the left panel that produced simulated data X such that jS.X/ � S.Y/j < �0; this
is the region of the joint distribution that falls between the two solid vertical lines.
The histogram estimate is close to the true posterior that would be obtained had a
likelihood been known.

More generally, the relationship between the marginal posterior distribution of a
parameter � and the joint distribution of that parameter and the distance S.X/�S.Y/

shown in the left panel of Fig. 1.1 can be expressed as

�.� j Y/ /

Z
X

�.�/ f .x; �/ I.�.X; Y/ � �/ dx; (1.3)

where X is the support of the simulated data and I.a/ is an indicator function
returning one if the condition a is satisfied and zero otherwise. The integration in
Eq. (1.3) expresses the marginalization over the random variable �.X; Y/ that was
performed to provide an estimate of � in the right panel of Fig. 1.1. All values of �

producing data that fell within the black vertical lines were accepted. Note that this
marginalization does not take into account the obvious trend in the relation of � to
S.X/ � S.Y/; this is an important aspect of some versions of ABC algorithms that
we will discuss in the next chapter.

1.5 Outline

The focus of this book is to illustrate a variety of ABC techniques on psychological
problems. As such, while we will review many different types of ABC algorithms,
we will highlight a set of algorithms that have been developed for particular
situations that arise regularly when doing cognitive modeling. In the next chapter,
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we will outline several different ABC algorithms, focusing in particular on those
approaches most similar to the ones we advocate for psychological models. This
is not intended to be an exhaustive review of ABC algorithms. Interested readers
may consult [29–35] for reviews, additional options, and more mathematical
background. In the third chapter, we provide a worked example on the Minerva
2 model [36]. For this model, we provide simulations using two of the algorithms
described in the second chapter, and compare their accuracy to a set of analytic
expressions describing the limiting behavior of the model [37]. In the fourth and
fifth chapters, we discuss a number of applications of ABC algorithms on interesting
problems in psychology. In the sixth and final chapter, we provide an outlook on the
ability of ABC techniques to advance the field of cognitive science, and discuss the
role of mathematical tractability in the development of psychological theory.
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