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Foreword

This book provides a concise overview of recent developments in likelihood-
free inference, thereby opening a new chapter in the field of cognitive modeling.
With the easy availability of computers, researchers in the field introduced a glut
of mechanistic models of cognition that have no closed-form expression of the
likelihood function, placing them outside of the standard statistical realm. As such,
it is not generally possible to fit a mechanistic model to observed data by maximum
likelihood estimation or Markov chain Monte Carlo based Bayesian methods.

Instead, as a provisional step, the best-fitting parameter values of the model
of interest were estimated in the frequentist framework by a brute-force, com-
putationally intensive implementation of least squares estimation. Obtaining the
sampling distribution of a test statistic, however, is out of question. The lack of
a test statistic hinders the progress of model development because without it one
can neither properly assess the adequacy of the model nor compare the fitted
model with other competing ones. Things are much the same in the Bayesian
framework. Consequently, the technical challenge of likelihood-free inference has
been a stubborn barrier to making theoretical progress in the field. This unhappy
state of affairs has changed dramatically in the early 2000s with the introduction of
a series of likelihood-free algorithms, such as approximate Bayesian computation
(ABC), Gibbs ABC, synthetic likelihood, and probability density approximation.
With the availability of these easy-to-implement methods, model evaluation and
comparison for mechanistic models are now well within the reach of every modeling
scientist.

The senior author of this book has been at the forefront in the development
and application of likelihood-free methods to analyzing and fitting psychological
models, initially applied to models of recognition memory as part of his dissertation
research at the Ohio State University and subsequently expanded to other domains
of modeling including episodic memory and perceptual decision making.

The book itself, written based on the authors’ published articles, offers a
technically comprehensive yet clearly explained account of all major likelihood-
free algorithms, with a focus on Bayesian inference. Another noteworthy feature
of the book is its practically oriented approach in which application examples of
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vi Foreword

the algorithms for well-known models in psychology are discussed in great detail
with accompanying pseudocode and actual code as well. The work such as this will
make a transformative impact on the advancement and practice of computational
modeling of cognition. This book is a first positive step in that direction.

The Ohio State University Jay Myung
Columbus, OH, USA
September 2017
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1Motivation

What I cannot create, I do not understand.

Richard Feynman

The ultimate endeavor of any good cognitive scientist is to build a model that mimics
the essential dynamics of the (human) mind. We should not hope to create a model
that is perfectly accurate, as the only model that could perfectly reproduce any
dynamic is one that is as complex as the original system; a philosophical argument
known as Bonini’s paradox. We seek out and develop models because they are our
best hope for generalizing complex decision making processes across individuals,
tasks, or time. Our criterion for evaluating the utility of a model is not only in what
it provides in terms of understanding, but also in how well it can capture essential
trends in behavioral data.

A psychological model is a representation of a psychological process, a rep-
resentation that quantifies or provides a mechanism for how a behavioral task is
performed. When we write down a model, we write down a statement of the form

y D f .x; �/:

where y is a set of dependent variables or observed measurements, x is a set
of independent variables or experimental manipulations, the function f is the
mathematical structure dictated by our theory of how the data y are generated, and
� is a set of parameters that relate the independent variables to the model structures.
When we want to explore how well the model explains our data y, or how well it
predicts new data y0, we fit the model to the data y by estimating the parameters � .

These two endeavors—explanation and prediction—are often considered the
foundational pillars of cognitive modeling [1]. Both endeavors are facilitated
by accurate cognitive models, and both require detailed knowledge of estimated
parameters. Hence, one of the major priorities of any would-be cognitive modeler

© Springer International Publishing AG 2018
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2 1 Motivation

should be accurate parameter estimation—the method for finding the parameter
value or values that best fit the observed data.

Consider a recognition task, in which people are asked to discriminate between
items that were presented to them earlier in an experiment (targets) from items
that were not (distractors). An old, well-known model of how recognition might be
accomplished is the “high threshold” model [2, 3]. This model is based on the idea
that if an item were presented to a person earlier in the experiment, it will have left
behind a memory trace. What is the function f , or model structure that relates our
experimental manipulations x and parameters � to the dependent variable y, which,
in this case, is the probability of identifying an item as “old”?

The high-threshold model has two parameters. The first, R, is the probability that
an old target item leaves behind a trace. If a trace is present, then a person will
always respond “old.” The second, g, is the probability that a person responds “old”
by guessing alone. If a trace is not present, then the person will respond old with
probability g. Therefore, the probability of responding “old” to a target item is

RC g.1 � R/:

When an item is new (i.e., a distractor), there is no trace, and the process reduces
to guessing alone. So the probability of responding “old” to a distractor item is g.
The function relating these parameters to recognition performance is therefore

f .x; fR; gg/ D

�
RC g.1 � R/ if x is a target
g if x is a distractor,

where x plays the role of an independent variable that identifies the item as a target
or distractor.

The parameters R and g, together with the probability structure f .x; fR; gg/,
provide the explanatory mechanisms of the high-threshold model. Knowing how
small or large R is tells us something about the efficiency of the memory process.
Knowing how small or large g is tells us the tendency of the person to respond
“old” or “new.” Furthermore, we might expect R and g to be different over different
individuals. Some people have better memories than others; some people are less
willing to say “old” when they aren’t certain. Information about these parameters,
how they change over different experimental conditions, and how they differ over
individuals, is critical to being able to test the model, decide if it is a good model or
not, and in so doing learn about the psychological process that generated the data.

This brings us to the problem that is the focus of this book: how do we learn
about the parameters of the model? The process of model fitting can be conducted
in a number of ways, all of them “correct” in some sense, but some better than
others in the context of different modeling goals. We can divide these methods into
two general types: frequentist and Bayesian. The reader is probably already familiar
with this distinction, but it is important to highlight the key differences between the
two approaches.
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Frequentist inference treats data as random and parameters as fixed quantities
to be estimated. Parameters are assumed to be fixed within a group, condition, or
block of experimental trials, and inference is therefore based on the sample space of
hypothetical outcomes that might be observed by replicating the experiment many
times. Inference about these unknown, fixed parameters takes the form of a null
hypothesis test (such as a t-test), or estimating the parameters by determining the
parameter values that minimize the difference between the model predictions and
the data.

Bayesian inference treats both data and parameters as random, but after data
have been obtained they are fixed. Inferences about parameters are based on the
probability distributions of the parameters, distributions referred to as posterior
distributions. It may be odd to think of a parameter as random; think, for example,
about a parameter like the constant � D 3:1416 : : :, or c D 2:99792458 � 108.
Are these parameters truly random? Most people would say no. The variability
in a parameter that is represented by its posterior distribution should be viewed
not as true variability in the parameter’s value, but as our uncertainty about its
true value. But where there is uncertainty there is also information; the Bayesian
approach makes use of whatever prior information is available about a parameter
and incorporates that information into the inference.

Despite the very different viewpoints that frequentists and Bayesians have about
parameters, their goals are the same. Both groups want to develop and test models
that can explain and predict behavior. Understanding behavior means understanding
how model parameters change with experimental conditions, so long as we can link
those parameters to specific mechanisms.

Bayesian methods have become very popular in mathematical and computational
psychology over the last decade [4–21]. The reasons for this growth in popularity
are numerous, but can be linked to the wide availability of powerful computing
resources and, most importantly, to the fact that Bayesian techniques work where
frequentist methods cannot easily be applied. In particular, Bayesian inference can
be performed in the context of models of theoretical interest, while frequentist
methods often must depend on simplifying asymptotic assumptions (e.g., the central
limit theorem). These models can be embedded in hierarchical structures that
permit estimation of individual differences as well as overall effects of experimen-
tal manipulations, and posterior distributions permit us to examine relationships
between parameters that would ordinarily be unobservable. Bayesian methods also
permit comparisons across models that are very different: non-nested models, where
models are more than just special cases of each other (with, say, certain parameters
fixed at 0 or 1), can be compared and quantitatively evaluated; and models that differ
in dimensionality, the number of unique parameters each have.

In the next sections in this chapter we will present the most common methods
for parameter estimation and contrast them with Bayesian methods. We will then
discuss the problem that is the central focus of this book: how do we estimate the
parameters of a model whose predictions can’t be written down mathematically?
This will set the stage for the chapters to come.



4 1 Motivation

1.1 Methods of Least Squares

Least-squares methods of parameter estimation (LSE) are so called because the
goal is to choose the parameters that minimize the squared distance between the
observations y D f y1; y2; : : : ; yNg and the predicted values given by the model.
That is,

SSE D
NX

iD1

. yi � f .xi; �//
2 ;

where N is the sample size and, as before, x represents the independent variables in
the experiment, f is the model that relates x to y, and � are the model parameters.1

As an example, simple linear regression assumes a model that predicts y D mxC
b, so f .x; fm; bg/ D mx C b. Minimizing SSE in simple linear regression yields

the least-squares estimates Om D rxy
sy

sx
and Ob D y � mx, where rxy is the correlation

between x and y, x and y are the sample means, and sx and sy are the sample standard
deviations.

Simple linear regression is called simple for more than one reason: finding the
least squares estimates Om and Ob can be done by putting pencil to paper. In many
situations the function SSE cannot be easily minimized, which requires that we use
a computer program that searches for the minimum by proposing values for Om and
Ob, computing the resulting SSE, and then, by proposing new values, attempting to
make it smaller. There are many efficient algorithms to do this.

1.2 Maximum Likelihood

Maximum likelihood methods, the frequentist standard for parameter estimation,
form the basis for many inferential procedures and model comparison methods.
They rely heavily on optimization algorithms because the computations necessary
for parameter estimation are usually more complex than those for least squares. In
contrast to least squares, the distance between the data and the model’s predictions
is defined by how closely the probability distribution of the data matches the
distributional assumptions of the model. This distance can be minimized by
maximizing the likelihood of the data under the model.

Returning to the high-threshold recognition memory model, the data we observe
are the numbers of “old” responses OT to targets and OD to distractors, out of a total
number of items NT and ND presented in the experiment. We have already seen that

1We will use the notational convention that a variable name without subscripts such as y or x may
be either vector or scalar valued; context should make clear which. If a variable is subscripted, such
as yi or xi, it represents either an element of a vector or a scalar.



1.3 Bayesian Methods 5

f .x; fR; gg/ D

�
RC g.1 � R/ if x is old
g if x is new

gives us the predicted proportions of “old” responses to target and distractor items.
Using these predicted proportions, the probability distributions of OT and OD are
binomial with parameters fNk; pk D f .k; fR; gg/g for k D T;D. The likelihood
of the data fOT ;ODg is the product of the two binomial distributions, which is
proportional to

`.fg;Rg j fOD;OTg/ D gOD.1 � g/ND�OD ŒRC g.1 � R/�OT

� Œ1 � .RC g.1 � R//�NT �OT : (1.1)

The maximum likelihood estimates of g and R are the values Og and OR that
maximize `.fg;Rg j fOD;OTg/. This is another case where we can find Og and OR
without complications and determine that

Og D OD=ND and OR D
OT=NT � OD=ND

1 � OD=ND

maximizes the function `.fg;Rg j fOD;OTg/. For more complicated likelihood
functions, we will need numerical methods.

1.3 Bayesian Methods

Bayesian methods for parameter estimation do not just compute point estimates like
least squares and maximum likelihood. As we described above, the final product
of a Bayesian analysis is an estimate of a parameter’s posterior distribution given
the observed data. These methods incorporate the data’s likelihood function, the
same function used in maximum likelihood estimation, into Bayes’ Theorem to
arrive at this posterior distribution. Bayesian probabilities used to be called “inverse
probabilities,” a term that describes the problem of turning a likelihood into a
probability distribution over parameters [22].

Bayes’ Theorem is probably well known to most readers, but we will restate it
here in terms of data, models, and parameters. A model, which we described earlier
in terms of its predictions f .x; �/, states that data y will follow some probability
distribution that is “tuned” according to its parameters � . Using that probability
distribution, we can write the likelihood L of y as a function of �2:

2Don’t confuse the probability (or density) function fY .y j �/ with the model structure f .x; �/.
The predictions of the model, described by f .x; �/ are not necessarily the same as the probability
of the data given by fY .y j �/, though they were the same for the high-threshold model above.
For the simple regression model, however, f .x; fm; bg/ D mx C b, while most applications of



6 1 Motivation

L.� j y/ D
NY

iD1

fY. yi j �/: (1.2)

Although the likelihood L is a function of � (where y is given), we can think of it
(generally) as the probability (or the density) of the sampled measurements y given
the parameters � . Applying Bayes’ Theorem, we want to invert the likelihood to
obtain a probability (or density) of � given the data y.

To do this, we will need to specify a prior distribution over � . This distribution
might reflect our past experiences with the model as it was fit to similar data (an
informed prior), or we might choose to avoid making strong a priori assumptions
about � and instead choose an objective distribution that is uninformative or
relatively flat. Such prior distributions usually spread probability over a wide range
of possible parameter values. There are a number of different criteria by which an
objective prior might be selected [23], but lack of information is probably the most
popular basis for an objective prior.

The choice of a prior gives us a probability or density function �.�/ that
represents the variability in the parameter � before any data are observed. Bayes’
Theorem states that

�.� j y/ D
L.� j y/�.�/

fY. y/
;

where fY.y/ is the marginal distribution of the data, taken over all possible parameter
values. Because fY.y/ does not depend on � , it is only a normalizing constant. It
is usually very difficult to compute for models of any real complexity, and so we
usually write

�.� j y/ / L.� j y/�.�/I

the posterior of � given y is proportional to the product of the prior and the
likelihood.

If we know �.� j y/ exactly, then we have everything we need to make inferences
about the parameter � . Not only can we compute point estimates (such as the
posterior mean, mode, or median), we can compute exact probabilities for different
hypotheses. We can evaluate the probability of a null hypothesis such as H0 W � � 0,
or construct the Bayesian equivalent of a 95% confidence interval: a credible set
.�0; �1/ such that P .� 2 .�0; �1// D 0:95.

Unfortunately, for most realistic models, we don’t know �.� j y/ exactly, for one
or two reasons. First, computing the normalizing constant fY.y/ is often complicated,
preventing us from being able to write down closed-form solutions for �.� j y/. This
problem, which was one major reason why Bayesian inference has lagged behind the
development of frequentist techniques, has led to the development of algorithms that

regression state that y is normally distributed with mean mx C b and some standard deviation � . In
this case, fY .y j x;m; b; �/ is the normal density function that sketches out the bell curve.
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permit us to sample values of � from the posterior. These techniques, such as Gibbs
sampling, Metropolis-Hastings sampling, Hamiltonian Monte Carlo sampling, and
so forth, do not require explicit calculation of fY.y/, but instead approximate this
marginalizing constant through Monte Carlo techniques.

The second reason we often don’t know �.� jy/ exactly is because the likelihood
function L.� j y/ may not have an explicit functional form. In psychology,
neuroscience, and cognitive science, our goal is to develop a model that mimics
human decision making, a process that is extremely complicated even for simple
decisions. Often, while developing more complete explanations of behavioral data,
models must grow in complexity to be able to account for different decision making
patterns. For example, the high-threshold model may explain patterns of decisions
from simple recognition memory experiments, but it is not equipped to handle more
complex dynamics that appear in other memory experiments, such as those observed
in free recall experiments [24,25]. The benefit of more complex models is the power
of unifying explanations for many different patterns of behavioral data at once, but
the cost is usually one of computational complexity. It is often the case that as
models become more complex, it becomes more and more difficult to determine
the likelihood of the models’ outputs with a set of equations.

And here lies the purpose of this book. There is a growing emergence of success-
ful computational models in psychology, neuroscience, and cognitive science for
which the likelihood functions are either unknown or computationally difficult to
evaluate. Because the likelihood function has yet to be derived, one must explore
the predictions of such models through simulations, and inference procedures
are limited to the methods of least squares described above. In other words,
due to complications in evaluating the likelihood function, the aforementioned
computational models are unable to enjoy the many benefits that Bayesian analyses
provide.

1.4 Approximate Bayesian Computation

There are now influential models in the behavioral sciences that are constructed
from the “bottom up.” Relatively well-understood neural mechanisms are quantified
and used as the building blocks of more complex structures that can generate simple
responses to quantitative representations of stimuli. Many of these models are used
in memory and vision research. These models are tested by repeated simulation
of the models’ responses using constrained values of the parameters suggested by
findings in neuroscience.

Fitting such models to data is orders of magnitude more demanding than the
methods we have just outlined for models with explicit likelihoods. The most com-
mon method of estimating a simulation model’s parameters is called approximate
least squares [26, 27]. To understand approximate least squares, refer again to the
high-threshold model of recognition memory. If we were to use approximate least
squares, the parameter estimates would be obtained by first proposing reasonable
values for R and g. These initial values would be used to simulate a number of
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responses to a sequence of target and distractor stimuli. For example, a “for” loop
that cycles through the target items would first, by sampling from a Bernoulli
distribution with probability parameter R0, determine whether a trace had been laid
down for each target item. All items with traces would be given an “old” response.
All items without traces would then sample from another Bernoulli distribution with
probability parameter g0, and all items for which the sample was 1 would be given an
“old” response. Another “for” loop would cycle through the distractor items, again
sampling from a Bernoulli distribution with probability parameter g0 to determine
which distractors are given “old” responses. These two loops result in simulated
values for OOT;0 and OOD;0, which can then be compared to the observed values OT

and OD and evaluated as

bSSE0 D . OOT;0 � OT/
2 C . OOD;0 � OD/

2:

This would be the very first step in an optimization algorithm that would then
select a new set of parameters fR1; g1g, perform a second simulation, the results
of which would be used to compute bSSE1, and so on. Although the procedure is
not difficult, it can demand enormous amounts of computing power to perform the
simulation for each iteration, and, depending on the complexity of the problem,
thousands of iterations may be necessary to find the optimal estimates of the model’s
parameters. Furthermore, because of the variability added by the simulated data,
we shouldn’t just simulate the data once for each proposed set of parameters,
we really need to simulate the data many times, perhaps thousands of times, to
reduce the influence of simulation variability on the value of SSE. However, the real
reason that this approach is unsatisfactory is simply because it doesn’t give us much
information in the end: while we may have reasonably accurate point estimates for
the parameters, we will not know how they are distributed, how they are correlated
with each other, or what kinds of null hypothesis tests might be appropriate for
determining if they are changing over experimental conditions.

Approximate Bayesian computation (ABC) was designed to overcome exactly
this kind of problem. Originally developed by Pritchard et al. [28], ABC proceeds
in a way similar to approximate least squares, replacing the computation of the
likelihood with a simulation step. The simulation step produces a sample of
simulated data X that is evaluated relative to the observed data Y . This evaluation
is made on the basis of the distance between X and Y , and distance can be defined
in a number of ways. The SSE is one example of a distance, in which the samples
X and Y could be represented by sample statistics like their means and variances.
However, ABC does not use distance minimization to generate point estimates of
parameters, but rather to estimate the posterior distributions of the parameters.

The logic behind ABC is the following: if a proposed parameter value �� is able
to generate a simulated data set X that is close to the observed data Y , then it must
have associated with it a relatively high posterior probability. Therefore, for some
distance function �.X;Y/, we will keep all values of �� that result in �.X;Y/ � �0
and discard the rest. If we choose �.X;Y/ and �0 correctly, then �.� j �.X;Y/ � �0/
will approximate �.� j Y/ [28].
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Fig. 1.1 Intuition behind approximate Bayesian computation. The left panel shows the joint
distribution of the parameters of interest � against the distance between the statistics of the
observed data S.Y/ and the simulated data S.X/. The dashed vertical line represents the case where
S.Y/ D S.X/, and the solid black lines represent the degree of tolerance �. The right panel shows
the estimated posterior distribution (histogram) under the level of � in the left panel, overlaid by
the true posterior (black density)

Consider one last time the high-threshold model of recognition memory. Let

bSSE D
�
OO�

T � OT

�2
C
�
OO�

D � OD

�2

be the distance function, where OO�
T and OO�

D are the simulated data generated by
proposed parameter values fR�; g�g. We need to make sure that the number of
simulated trials ND C NT is the same as the number of trials in the experiment
to ensure that the sampling distributions of OO�

T and OO�
D are comparable to those of

OT and OD. If bSSE is less than �0, then we keep fR�; g�g as a sample from the
posterior. If it is greater than �0 we discard it and sample a new fR�; g�g, possibly
from the prior or from some other proposal distribution, and repeat the simulation
and computation of bSSE. How the proposals are sampled and how �0 changes (or
not) with repeated sampling are determined by the specific ABC algorithm that we
choose for this particular problem. We will discuss these algorithms later in Chap. 2.

Figure 1.1 illustrates the logic of the ABC approach more generally. Let S.X/ and
S.Y/ be functions that produce summary statistics (means, variances, quantiles, etc.)
of the simulated data X and the observed data Y . For example, the statistics could
be the number of “old” responses to target and distractor items for the observed
(i.e., OT and OD, respectively) and simulated (i.e., OO�

T and OO�
D) data. The distance

function �.X;Y/ is jS.X/ � S.Y/j. The left panel plots the joint distribution of the
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parameter of interest � against S.X/�S.Y/. Staying with our high-threshold model,
the parameter � could correspond to R or g. The “observed” data Y were sampled
from a binomial distribution with “success” probability � D 0:5. This point in the
joint distribution of � and S.X/ � S.Y/ is represented by an � at � D 0:5 and
S.X/ � S.Y/ D 0. To generate the joint distribution in the left panel, we randomly
selected many different values for �� ranging from 0.3 to 0.7. For each new value of
��, we simulated data from binomial model and computed the number of successes
S.X/.

The dashed vertical line in the left panel of Fig. 1.1 is located at 0, when
S.X/ D S.Y/: a perfect match between S.Y/ and S.X/. If the likelihood were
available, the marginal distribution of � along the vertical line would be the true
posterior distribution, which is shown as the black density in the right panel. We
can’t accept only those values of � that produce S.X/ D S.Y/ or �.X;Y/ D 0; such
a strict distance criterion would result in an extraordinarily heavy computational
load. Instead, we specify the tolerance threshold �0 D 0:05, which is shown as the
solid vertical lines to the left and right of zero in the left panel. This value of �0 lets
us retain enough samples of � to be able to construct a relatively accurate estimate
of � ’s posterior. The right panel of Fig. 1.1 shows the histogram of the values of �
in the left panel that produced simulated data X such that jS.X/ � S.Y/j < �0; this
is the region of the joint distribution that falls between the two solid vertical lines.
The histogram estimate is close to the true posterior that would be obtained had a
likelihood been known.

More generally, the relationship between the marginal posterior distribution of a
parameter � and the joint distribution of that parameter and the distance S.X/�S.Y/
shown in the left panel of Fig. 1.1 can be expressed as

�.� jY/ /
Z

X
�.�/ f .x; �/ I.�.X;Y/ � �/ dx; (1.3)

where X is the support of the simulated data and I.a/ is an indicator function
returning one if the condition a is satisfied and zero otherwise. The integration in
Eq. (1.3) expresses the marginalization over the random variable �.X;Y/ that was
performed to provide an estimate of � in the right panel of Fig. 1.1. All values of �
producing data that fell within the black vertical lines were accepted. Note that this
marginalization does not take into account the obvious trend in the relation of � to
S.X/ � S.Y/; this is an important aspect of some versions of ABC algorithms that
we will discuss in the next chapter.

1.5 Outline

The focus of this book is to illustrate a variety of ABC techniques on psychological
problems. As such, while we will review many different types of ABC algorithms,
we will highlight a set of algorithms that have been developed for particular
situations that arise regularly when doing cognitive modeling. In the next chapter,
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we will outline several different ABC algorithms, focusing in particular on those
approaches most similar to the ones we advocate for psychological models. This
is not intended to be an exhaustive review of ABC algorithms. Interested readers
may consult [29–35] for reviews, additional options, and more mathematical
background. In the third chapter, we provide a worked example on the Minerva
2 model [36]. For this model, we provide simulations using two of the algorithms
described in the second chapter, and compare their accuracy to a set of analytic
expressions describing the limiting behavior of the model [37]. In the fourth and
fifth chapters, we discuss a number of applications of ABC algorithms on interesting
problems in psychology. In the sixth and final chapter, we provide an outlook on the
ability of ABC techniques to advance the field of cognitive science, and discuss the
role of mathematical tractability in the development of psychological theory.



2Likelihood-Free Algorithms

2.1 Introduction

In this chapter we present the technical details behind several algorithms for
performing likelihood-free inference. The algorithms vary along a number of
dimensions, which makes organizing them difficult. At the most basic level, the
likelihood-free algorithms we discuss in this book can be described roughly in five
essential steps:

1. Generate a candidate parameter value ��.
2. Generate a set of simulated data X using �� and a model.
3. Summarize the properties of X.
4. Compare the summary of X to a summary of Y .
5. Apply a weight to �� that reflects how close X is to Y .

Across the literature, most likelihood-free algorithms have focused on developing
innovative techniques on either Steps 1, 3, or 5. Regarding Step 2, most likelihood-
free algorithms agree that simply generating a large set of simulated data X should
be good enough as long as the summaries in Step 3 are relatively stable. As such,
while we don’t consider Step 2 to be an important step as far as classifying the
algorithms is concerned, because it clearly interacts with the other steps, close
attention to this step is warranted. For example, determining the size of X will
depend on how quickly one can simulate data from the model, as well as how
large the observed data Y are. Furthermore, some algorithms that we describe
below require much larger sets of simulated data to ensure a quality likelihood
approximation can eventually be formed.

Regarding Step 4, most likelihood-free algorithms specify that a simple
Euclidean distance can be used to compare the statistics of the simulated data
S.X/ to the statistics of the observed data S.Y/. In other words, we can simply

© Springer International Publishing AG 2018
J.J. Palestro et al., Likelihood-Free Methods for Cognitive Science,
Computational Approaches to Cognition and Perception,
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calculate S.X/ � S.Y/ to evaluate how near X is to Y . However, again we find
that the steps listed above interact with one another: As Step 4 depends on the
way in which the data are summarized via S.�/, Step 4 highly depends on Step 3.
Some algorithms depart in the way the data X are summarized [38], and so they
also differ in how X is related to Y . As we describe below, one way of describing
the distribution of X might be through kernel density estimation [39] or even a
histogram method [40]. In this case, as the distribution of X has been specified as
a proper probability density function, we can evaluate the probability of observing
the data Y under the distribution of X.

Although the steps listed above may give the impression that all likelihood-
free algorithms are simple, this is unfortunately not the case. Many sophisticated
techniques have been created in the hopes of increasing the efficiency of an
algorithm on a given problem, and as one might expect, the efficiency of the
algorithms below do vary by the type of problem to which they are applied. Because
the algorithms we present later in this chapter are sometimes complex, we first
introduce a few concepts at a high level by describing the different choices one
can make at Steps 1, 2, or 3.

2.1.1 Generating Candidate Parameter Values

As described in Chap. 1, our ultimate goal is to assemble a collection of samples
from the desired posterior distribution �.� j y/. To achieve this goal, the algorithms
of this chapter generate a sequence of candidates �� and then either add them to the
collection of posterior samples or discard them entirely. The more times candidates
�� can be generated and accepted into our collection, the more efficient our sampler
will be. As such, an important consideration in likelihood-free algorithms is how to
generate effective proposals.

For example, when generating candidate parameter values at Step 1, we might
elect to simply draw a random sample from the prior so that �� � �.�/. This
strategy can be effective computationally because the prior can often be chosen such
that it is easy to draw samples from. Furthermore, when the prior is chosen such
that it is of a similar shape and location to the desired posterior, more candidate
proposals �� will resemble the posterior, which also increases the computational
efficiency. However, when the details of the posterior are not well known, it can be
inefficient to sample from a distribution (i.e., the prior) that is very different from
our posterior. In this case, we might choose to develop a recursive strategy where
the quality of previous candidates in our sampling algorithm can be used to guide
the candidate generation process.

Basing proposal samples off of previous states is precisely the strategy behind
conventional Markov chain Monte Carlo methods. In these methods, the procedure
is to first initialize a “chain” by picking a value �0 that has some nonzero density
in the posterior distribution. On the first iteration, we sample a new candidate value
from a distribution that depends on the initial value �0. Depending on the properties
of this sampling distribution, the new proposals will be more or less similar to the
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initial value. To evaluate whether the new proposal is better or worse than the initial
value, we rely on the Metropolis-Hastings rule, which we discuss below. If the
new proposal is deemed better, the chain moves to this new place in the posterior;
otherwise, the chain stays put at the initial value. The procedure continues until
enough samples have been drawn to form a good approximation of the posterior.

The Markov chain strategy is typically more effective than simply sampling from
the prior distribution, as the chain has the ability to move nearer to the high-density
regions of the posterior when the prior is different from the posterior. However, it
does have a sampling dependency issue where new samples are highly correlated
with previous states of the chain. This feature of the posterior samples is known as
“autocorrelation,” and can have undesirable effects on the approximated posterior.
Furthermore, if the posterior has multiple modes, a chain can get stuck in a local
mode of the posterior and be unable to explore the rest of the parameter space.

One easy solution to the aforementioned problems is to run multiple chains
simultaneously. Here, the likelihood of all the chains getting stuck in a local
mode is inversely proportional to the number of chains. Better still is to use the
information contained in the distribution of current states of the chains to generate
new proposals. This strategy is at the heart of so-called particle filtering approaches,
where chains are referred to as “particles,” and the algorithms work to evolve a
set of particles from the prior to posterior. Often, the particles share distributional
information with one another so that proposal generations can automatically “tune”
themselves to be more efficient. For example, if the particles have a wide distri-
bution, it might suggest that the posterior is also wide, and so a wider distribution
should be used to generate the candidate proposals.

While we will talk more about the mathematical details of these three proposal
strategies below, hopefully the discussion above hints to the idea that different
strategies are essential for different types of problems. For example, simple
problems could be approached by sampling proposals from the prior, whereas more
difficult problems require sophisticated techniques like particle filtering. In the end,
the user will need to take these features of the problem into account when choosing
among the likelihood-free algorithms we have discussed here.

2.1.2 Summarizing the Simulated Data

Another consideration comes at Step 3, where one must decide how to summarize
the distribution of simulated and observed data. Typically, it is too computationally
costly to use the entire set of data, and so the conventional approach in these
likelihood-free techniques is to calculate some statistics of the data. Ideally, the
statistics computed from the data characterize the distribution of data properly, so
that parameters can be estimated accurately. In other words, our task is to choose
a set of statistics that contain as much information about the unknown model
parameters as the entire set of data itself. This property is known as sufficiency.

The property of sufficiency stipulates that a sufficient statistic S.�/ of some data Y
provides as much information about the data when estimating a model’s parameters
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� as does the whole data set itself. Thus, if S.Y/ is a sufficient statistic for the
parameters � , then the posterior distribution can be written as

�.� jY/ D �.� jS.Y//:

Sufficiency, therefore, is something that depends on the structure of the model—the
model’s likelihood. This key assumption of sufficiency is often overlooked, but it
is critical for obtaining accurate posterior estimates. To determine if a statistic S.Y/
is sufficient, we must be able to reexpress the likelihood f .yj�/ as a function of the
sufficient statistic and the data. By the Fisher-Neyman Factorization Theorem [41],
if f .yj�/ can be factored as

f . yj�/ D g .S. y/j�/ h. y/ (2.1)

for some function h.y/ then S.y/ is sufficient for the parameter � .
As an example, consider a series of n independent and identically-distributed

Bernoulli trials and let Yi 2 f0; 1g be the outcome on trial i. We can write

P.Yi D y/ D

(
� y.1 � �/1�y for y 2 f0; 1g

0 otherwise,

where � 2 Œ0; 1� is the probability that Yi D 1. The joint probability function for the
set of outcomes fY1 D y1;Y2 D y2; : : : ;Yn D yng is

f . yj�/ D
nY

iD1

P.Yi D yi/

D

nY
iD1

� yi.1 � �/1�yi

D �
Pn

iD1 yi.1 � �/n�
Pn

iD1 yi

D

�
�

1 � �

�Pn
iD1 yi

.1 � �/n:

Therefore, the function f .yj�/ can be written as a function of the unknown parameter
� and the statistic S.y/ D

Pn
iD1 yi. By Eq. (2.1), we can let g .S.y/j�/ D

g
�Pn

iD1 yij�
�

and h.y/ D 1, demonstrating that the statistic S.y/ D
Pn

iD1 yi is
sufficient for the parameter � .

For our purposes, requiring that S.Y/ be sufficient is problematic because we
can’t examine an unknown or intractable likelihood to determine if the Fisher-
Neyman Factorization Theorem holds. Although there are a growing number of
different strategies for resolving the sufficiency problem [42], the most common
approach has been to select a large set of summary statistics and hope that this set
of statistics is large enough that it is at least close to being jointly sufficient for
the parameters of interest. While adding more summary statistics to this set will



2.1 Introduction 17

tend to provide more information about � , sufficiency can still never be guaranteed,
and some summary statistics may provide identical information about the model
parameters. When a set of summary statistics are not sufficient for the parameters,
then the influence of the information conveyed by the observed data will be weaker,
resulting in posterior distributions that are inaccurate, particularly with respect to
the degree of variability in the estimated posteriors [29].

Clearly, deciding how to characterize the data is an important choice in the
likelihood-free context. Namely, it is impossible to know whether or not a set of
statistics is sufficient for the unknown parameters if the likelihood is intractable.
Given this alarming fact, other approaches, such as the probability density approx-
imation method [38], approximate the distribution of data itself. The idea behind
these algorithms is that the data are always sufficient to themselves, and so the
issue of sufficiency is solved. Unfortunately, as we will discuss below, while these
algorithms free us from one problem, they introduce another problem in the form of
computational complexity. Because the data are not summarized by statistics, these
algorithms rely on extensive model simulations to form an accurate approximation
of the posterior. Again, the choice of whether to calculate sufficient statistics, groups
of summary statistics, or use the entire data set depends on many factors, specifically
computational speed. The user must balance these factors when choosing among the
set of algorithms we discuss below.

2.1.3 Weighting Strategies

The final major consideration in choosing among likelihood-free algorithms is how
to evaluate the quality of the candidate proposals ��. The best way to think about
this problem is through the joint distribution of the proposals �� and the distribution
of the simulated data X associated with them. First, let’s assume that the statistic S.�/
properly characterizes the observed data Y and the simulated data X. Because the
observed data Y have already been observed, they are assumed to be known and will
not change as new parameter proposals are considered. Hence, the statistics S.Y/
will also stay constant. The only random variables to consider now are �� and the
associated S.X/. The left panel of Fig. 1.1 shows one example of a joint distribution
of .��; S.X//. Here, the figure shows that the distance between the observed data and
the simulated data is a linear function of the parameter proposals: larger distances
of S.X/�S.Y/ are associated with parameter proposals that are farther from the true
data generating value of � D 0:5.

The left panel of Fig. 1.1 is useful because it shows how these two variables
are related and how the concept of proposal “fitness” can be incorporated into our
evaluation. Perhaps the simplest way to evaluate a candidate proposal would be a
binary pass/fail decision where proposals that produced data that were close enough
to the observed data would be kept and proposals that did not would be rejected. But,
how would we define “close enough?” One can imagine adopting a simple tolerance
threshold � that could be used to apply a cutoff for the distances jS.X/ � S.Y/j. For
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example, the right side of Fig. 1.1 shows what the distribution of �� values are such
that jS.X/ � S.Y/j < � D 0:5. This strategy forms the core of rejection-based ABC
algorithms.

While adopting a simple pass/fail rule is simple, it is exceedingly wasteful
depending on the value of �. For example, in producing the posterior in the right
panel of Fig. 1.1, half of the simulated data were simply discarded. As an alternative,
consider applying a different function that was not piecewise pass/fail. Instead,
consider applying a kernel to the distribution of S.X/ � S.Y/ in order to obtain
“weights” for each associated ��. We could choose something symmetric such that
large values of S.X/ � S.Y/ would result in smaller weights for ��, and small
values (i.e., near zero) would result in larger weights. Suppose further that the
sharpness of the gradient associated with the proposal weights could be increased or
decreased with a parameter ı, much in the same way as � in the rejection-based ABC
methods. Specifically, increasing ı would allow more proposals to have relatively
large weights, whereas decreasing ı would cause some proposals to have large
weights (i.e., those generating data X such that S.X/ � S.Y/ was near zero) and
most other proposals to have small weights. Clearly, the accuracy of the estimated
posterior would be intimately interwoven with the choice of ı; but, assuming we
could make good choices about ı, we could arrive at accurate posteriors. This type
of weighing strategy is what makes kernel-based ABC algorithms so effective: they
can arrive at similarly accurate posterior estimates without throwing away large
percentages of the data.

While kernel-based ABC approaches work well in using the entire set of
simulated data, they require a functional form for the kernel, and this choice is not
always straightforward. While most kernels are selected to be symmetric, unimodal,
and have exponentially decreasing weights as jS.X/ � S.Y/j increases, beyond
these features, kernels are chosen in a somewhat subjective and arbitrary manner.
Sometimes, the choice of kernel can have adverse effects on the quality of the
posterior estimates, especially in cases where the distribution of summary statistics
is substantially different from the kernel function. A related issue centers on the
choice of ı: when ı is too large, the posterior estimate is too wide relative to the true
posterior, and when it is too small, sampling methods such as MCMC and particle
filtering are more difficult to use effectively.

As a solution to the issues associated with kernel-based ABC methods, other
approaches such as the synthetic likelihood method [43], have exploited facts
about the distribution of summary statistics to avoid the specification of the kernel
altogether. Specifically, the synthetic likelihood method relies on the central limit
theorem to specify the distribution of statistics on summary statistics. The idea
is that, regardless of the set of summary statistics chosen, if enough new data
sets are generated, one can construct a distribution of summary statistics, and the
mean of these summary statistics is normal in shape according to the central limit
theorem. Using this two-level approach, the synthetic likelihood method escapes the
complications of specifying a kernel as well as choosing the parameter ı. However,
similar to the probability density approximation method, the synthetic likelihood
method requires extra simulations that make it computationally costly to implement.
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2.1.4 Outline of the Chapter

Although the steps used to implement likelihood-free samplers seem simple,
hopefully the discussion above illustrates that there are many considerations when
choosing an algorithm for a specific problem. The set of choices one can make
in the steps above correspond to certain constellations of algorithms, and some
of these constellations have been developed, tested, and named by likelihood-free
researchers. As a road map of which algorithms are suitable for different problems,
Table 2.1 shows how the algorithms compare on a number of different features. For
example, all of the algorithms are flexible with the method of proposal generation
(i.e., the first row), yet all of the algorithms use a unique weighting approach
(i.e., the fourth row). The rows of Table 2.1 roughly correspond to the generic
algorithmic steps from the introduction: the first row corresponds to Step 1, the
second row corresponds to Step 3, the third row corresponds to Step 4, and the
fourth row corresponds to Step 5. The final row considers another important feature:
dimensionality. As rejection-based algorithms are wasteful and synthetic likelihood
and probability density approximation methods are computationally costly, they are
not as practical as kernel-based methods when the number of dimensions is high.
However, as we will discuss below, these four classes of algorithms can actually be
combined with hierarchical approaches to move beyond low-dimensional problems
when dealing with hierarchical models. In sum, when choosing among likelihood-
free algorithms to fit a computational model to data, we recommend using Table 2.1
as a guide for specific applications.

Organizing the various likelihood-free algorithms is not an easy task, and there
are probably several effective ways to organize and classify them. For our purposes,
we found it convenient to classify the algorithms on the basis of Step 5 above, which
is mostly closely related to how the likelihood function is approximated. Given
our choice of organization, we formed four categories of algorithms and present
them in the following order: rejection-based, kernel-based, general methods, and
hierarchical methods. Within each class of algorithm, we will discuss a number of

Table 2.1 Some considerations when choosing a likelihood-free algorithm

Consideration RABC KABC SL PDA

Is it flexible with proposal generation? Yes Yes Yes Yes

Does it require sufficient statistics? Yes Yes Yes No

Does it use error terms? Yes Yes No No

What type of weighting approach is used? Binary Gradient CLT KDE

Is it suitable for high dimensions? No Yes No No

The first column proposes a question for consideration along several dimensions. Columns 2–5
explain how each of the four core likelihood-free algorithms matches up to the dimension under
consideration
RABC rejection-based approximate Bayesian computation, KABC kernel-based ABC, SL syn-
thetic likelihood, PDA probability density approximation, CLT central limit theorem, KDE kernel
density estimate
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interesting alternatives, some of which only vary in the way they generate proposals
during the sampling process. It is important to keep in mind that different choices
can be made at different steps in the development of an algorithm, and so while
some algorithms have different names, they are often strikingly similar. We now
discuss each of the four classes of algorithms in turn.

2.2 Rejection-Based ABC

Rejection-based samplers, discussed briefly in the previous chapter (see Fig. 1.1),
are the simplest of all the algorithms, and their simplicity is both a blessing and a
curse. These algorithms are typically very easy to program, but they also are the
most inefficient. The algorithms work in the following way: For the parameter(s)
of interest � , a proposal �� is drawn at random from a proposal distribution (e.g.,
the prior distribution �.�/). Each proposed �� is then used to simulate data X from
the model, so X � Model.��/.1 To decide whether �� comes from the desired
posterior �.� jY/, we compare the simulated data X to the observed data Y by way of
a discriminant function �.X;Y/. In rejection-based approaches, if the simulated data
X is similar enough to Y , producing a �.X;Y/ less than some tolerance threshold �,
then we assume that the proposed �� must have some nonzero probability of coming
from the posterior distribution �.� jY/. Hence, we accept �� as a sample from the
posterior. Otherwise, if �.X;Y/ is too large (i.e., �.X;Y/ > �), we discard �� and
repeat the process until a desired number N of samples have been obtained. We call
this type of sampling rejection-based ABC, and the interested reader should consult
[44] for more details.

Figure 2.1 provides pseudocode for a typical rejection-based sampler. It is
interesting that such a simple algorithm (fewer than 10 lines of code; much simpler

Fig. 2.1 An ABC rejection sampling algorithm to estimate the posterior distribution of a
parameter � given data Y

1The notation Model.�/ describes the distribution of a random variable X, whereas the notation
Model.yj�/ denotes the probability density at the location y, conditional on the parameters � , as in
Eq. (1.2).
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than most traditional likelihood-based samplers) can provide a reasonably accurate
estimate of the joint posterior distribution (see Fig. 1.1). While Fig. 2.1 provides
generic pseudocode that can be adopted for any programming language, we can
also provide explicit code to run a simple rejection-based ABC sampler within R.
First, suppose we have a set of data Y that come from some experiment. For the
sake of illustration, suppose these data are accuracy measures on some task, where
a correct answer on trial i would be coded Yi D 1, and an incorrect response would
be coded Yi D 0. First, to generate these data, we can run the following block of
code:

1 p=.5 # true value for p
2 n=100 # number of trials
3 data=rbinom(n,1,p) # generate data

Here, Line 1 declares the true value for the unknown parameter p that we will
estimate for this problem. The variable n sets the number of observations in our
data, which correspond to the number of trials from our experiment. Finally, Line 3
simulates some random data from a Binomial model using the parameter p. Hence,
the variable data are the data Y from our experiment.

In the real world, we would not know what the true value of p is, and so we
would want to estimate this parameter in order to perform inference on our data.
Furthermore, in real-world scenarios, we won’t know what the true data-generating
model is; instead, we must make an assumption about the model that might have
conceived of the data we observed. Having obtained the data Y , suppose we assumed
that the data could be described by a Binomial distribution such that

Y � Binomial.n; p/;

where n is the number of trials, and p is the probability of observing a “success”
(i.e., Yi D 1) on a single trial. It happens that the model we are assuming generated
the data actually did generate the data for the sake of illustration, but of course this
will not generally be the case. Because we have assumed a Binomial model, the
probability density function can be easily defined, and the likelihood function could
be written

L . pjY/ D

 
n

k

!
pk.1 � p/n�k; (2.2)

where the term k D
Pn

iD1 Yi represents the total number of successes observed
across the n trials. To obtain the posterior distribution, we could specify a prior for
the parameter p, such as a uniform distribution across the entire unit interval .0; 1/.
One way to do this would be to specify a Beta distribution as the prior for p, where
under some values of the parameters, the Beta distribution becomes the uniform
distribution. Specifically, we could set

�. p/ D Beta.˛ D 1; ˇ D 1/;



22 2 Likelihood-Free Algorithms

where ˛ is the shape parameter and ˇ is the scale parameter. Under this setting, the
Beta distribution has equal probability across the unit interval. Hence, the posterior
we wish to obtain is

�. pjY/ / L . pjY/�. p/: (2.3)

Because the posterior in Eq. (2.3) is tractable, we could use any number of
conventional algorithms to draw samples and approximate the posterior. In fact, this
particular posterior is fully analytic, meaning that we wouldn’t need to approximate
it at all. However, as this example is purely for illustrative purposes, suppose that the
likelihood function in Eq. (2.2) was intractable, and we were forced to approximate
it using one of the many algorithms appearing in this book. Suppose, after consulting
Table 2.1, we chose a simple rejection-based ABC approach for this problem. One
important step would be to decide on a summary statistic and a tolerance threshold.
From our discussion about sufficiency above, as well as from Fig. 1.1, we might
choose to evaluate the probability of success across all trials, so that

S.Y/ D
1

n

nX
iD1

Yi:

Then, to compare the summary statistics of the observed data Y to the simulated
data X (see Fig. 2.1), we might choose

�.X;Y/ D jS.X/ � S.Y/j D
1

n

ˇ̌̌
ˇ̌

nX
iD1

Xi �

nX
iD1

Yi

ˇ̌̌
ˇ̌ : (2.4)

Finally, we should define a tolerance threshold such that when �.X;Y/ is calculated,
it can be tested for quality (i.e., Step 5). To set these functions up in R, we can run
the following block of code:

1 eps=.05 # tolerance threshold
2 N=1000 # number of particles
3 theta=numeric(N) # declare a vector for storage
4

5 p.alpha=1 # prior for first parameter of the beta distribution
6 p.beta=1 # prior for second parameter of the beta

distribution
7

8 rho=function(x,y) abs(sum(x)-sum(y))/n # rho function

Line 1 sets the value of eps corresponding to �, Line 2 sets the total number N of
samples to be drawn from the posterior, and Line 3 sets up a storage object theta
to collect all of the accepted samples. Lines 5 and 6 specify the shape of the prior
distribution, and Line 8 specifies a function in R that will calculate �.X;Y/ from
Eq. (2.4).

With all of our variables initialized and the details of our algorithm fully
specified, we need only convert the pseudocode in Fig. 2.1 to R code to draw
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samples from the desired posterior. The next block of code will perform this step
continuously until N samples have been drawn:

1 for(i in 1:N){ # loop over particles
2 d=eps+1 # initialize d to be greater than eps
3 # continue proposal generation until condition is satisfied
4 while(d>eps) {
5 theta.1=rbeta(1,p.alpha,p.beta) # sample from prior
6 x=rbinom(n,1,theta.1) # simulate data
7 d=rho(data,x) # compute distance
8 }
9 theta[i]=theta.1 # store the accepted value

10 }

Lines 1 and 10 begin and end the for loop over the number of samples. Embedded
within the for loop is a while loop (Lines 4 and 8) that will continue testing
new proposals until a candidate is accepted. To force a continuous while loop,
Line 2 specifies that the evaluation variable d is initialized to be a value greater
than the tolerance threshold variable eps. Within the while loop is the process we
have already described for rejection-based samplers: draw a sample from the prior
(Line 5), generate synthetic data (Line 6), and evaluate its degree of match to the
observed data (Line 7). For each new proposal, the variable d is reset, but its value
is irrelevant as long as d is greater than eps. Once d is small enough, the proposal
value theta.1 is stored into the vector theta, and the process restarts until N
samples have been taken.

Once the blocks of code above have been pasted into your R console, obtaining
samples from the posterior should be relatively quick (i.e., should take around 10 s
under these initial settings). While this example is very simple, one can gain a sense
of the power of this approach in other, more realistic situations, considering the
fact that the inference procedure was driven purely by model simulation. In other
scenarios, such as when the data are difficult or time consuming to generate from
the model, we recommend coding the model up in compiler languages like C or
Fortran to improve the sampling speed. Once this is done, one only needs to change
Line 6 to call the compiled code from R. Of course, the efficiency of the sampler
we have presented here depends on several other factors, such as the amount of data
we have (i.e., the variable n), the number of samples we wish to collect from the
posterior (i.e., the variable N), how close the prior is to the posterior (i.e., which
can be manipulated by choosing different values for the variables p.alpha and
p.beta), and the tolerance threshold � (i.e., the variable eps). Building on our
discussion from Chap. 1, choosing an appropriate value for � can be a difficult
problem, because we don’t know for any particular model what the optimal value
of � is. As a general rule, we would like � to be small because, as � approaches
zero, the approximation becomes exact [29]. However, requiring smaller values of
� will produce longer computation times [44]. Because the choice of � is such an
important one, we will revisit this issue later. We now turn to specific rejection-
based algorithms: the rejection-based MCMC algorithm and a number of sequential
Monte Carlo algorithms.
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2.2.1 The Rejection-Based MCMC Algorithm

As discussed in the introduction of this chapter, it can be inefficient to draw proposal
values �� from the prior distribution when the prior is markedly different from the
posterior. While in the illustrative example above the posterior was similar to the
prior, in practice, this is often not the case. Furthermore, we rarely know what the
shape and location of the posterior will be relative to the prior, and so evaluating the
efficacy of the algorithm in Fig. 2.1 become a trial-and-error process.

Fortunately, several algorithms have been developed to improve the efficiency
and robustness of proposal generation. One example is the class of ABC MCMC
algorithms, which use conventional MCMC algorithms to generate proposals for � .
These MCMC algorithms, which have been instrumental in advancing Bayesian
estimation techniques [45, 46], are iterative procedures that evaluate and filter
parameter proposals �� in such a way that we eventually obtain a sample of proposal
values that are from the desired posterior distribution. The most popular MCMC
sampler is the Metropolis-Hastings algorithm [46].

To perform Metropolis-Hastings sampling, we begin by first initializing a “chain”
of parameter values with some initial value �0. Given �0, we then sample a candidate
value �� obtained from a proposal distribution, such as a Gaussian distribution, from
which sampling is easily done. We denote the proposal distribution as q.��j�0/. The
distribution of the first proposal �� is conditioned on the initial value �0, but for
subsequent proposals, their distributions will be conditioned on the current value of
the chain. In our example, if we assume the proposal distribution is Gaussian, we
would write

�� � N .�0; �/;

where N .a; b/ denotes a Gaussian distribution centered at the value a with standard
deviation b. The standard deviation � of a proposal distribution is referred to as a
“tuning parameter,” because it controls the range over which proposals �� can be
sampled.

To evaluate the quality of the newly proposed value ��, we must calculate its
relative posterior density and compare it to the relative posterior density of the initial
value �0. If the posterior density of �� is higher than that of �0, we keep it and it
becomes the next value �1 in the chain. If it is lower, we accept the value of �� with a
probability determined by the ratio of the posterior densities. In this way, the values
in the chain tend to move toward the highest probability regions of the posterior, but
can still move away from these high-probability regions and toward the tails of the
posterior.

To perform Metropolis-Hastings sampling in the likelihood-free context, we
calculate the probability of accepting �� by evaluating

˛ D

8<
:

min

�
1;
�.��/q.�0j��/

�.�0/q.��j�0/

�
if �.X;Y/ � �

0 if �.X;Y/ > �;
(2.5)
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where �.�/ is the prior distribution for � and q is the proposal distribution. To
implement the sampler in a computer program, after computing ˛ for ��, we would
draw a sample from a uniform Œ0; 1� distribution. If the sampled value is less than
˛, we accept �� as the new value of the chain by setting �1 D ��. However, if the
sample value is greater than ˛, we reject the proposal and set �1 D �0, and so the
chain does not move.

What makes Eq. (2.5) different from a standard Metropolis-Hastings acceptance
probability is that the value of ˛ is determined by whether �.X;Y/ > �. For the
proposal �� to have any chance to be accepted as a sample from the posterior
distribution it must first generate data X that is within � of the true data Y . The
procedure iterates, like the standard Metropolis-Hastings algorithm, replacing �0
with �t�1 in Eq. (2.5) to evaluate the quality of the proposal �� on iteration t, until
we have obtained a chain of m values f�0; �1; : : : ; �mg.

Before we can assume the chain f�0; �1; : : : ; �mg is a series of samples from
the posterior distribution �.� jY/ we must evaluate it for convergence [45, 46].
Convergence diagnostics are important because MCMC algorithms may produce
bad posterior estimates if the proposal distribution q is poorly chosen. Typically,
proposal distributions are chosen to be symmetric to simplify Eq. (2.5) and also
unimodal and symmetric so that proposals are more likely to be similar to the
previously accepted value in the chain. However, choosing a good proposal distribu-
tion often requires special “tuning” of the parameters that govern the distribution’s
shape. For example, if the tuning parameter � in the Gaussian proposal q is small,
the chain is likely to get “stuck” in low-probability regions of the posterior. In
low-probability regions, the candidate �� is unlikely to produce simulated data
X close to the observed data Y . However, because � is small, and the proposal
distribution is centered on a low-probability value �t�1, choosing a proposal ��

from a distant, high-probability region is very small. In this situation, the probability
of the chain moving out of the low-probability region becomes effectively zero.
The more often a chain gets stuck, the more likely the samples of the chain are to
be highly dependent on one another (i.e., highly correlated). In general, this is an
undesirable result because it can impact the resolution of the estimated posterior
distribution. One simple remedy for highly dependent chains is a technique known
as thinning. Thinning is a procedure where only a subset of the chain consisting of
equally spaced samples is retained as a sample from the posterior. For instance, we
might decide to keep every third value from f�0; �1; : : : ; �mg, reducing the length of
our chain substantially. Thinning will reduce the degree to which each new sample
is dependent on the one before it, but it will also require that we generate much
longer chains.

While all MCMC chains are in danger of getting stuck, the ABC MCMC
algorithm is particularly susceptible to this because not only must �� meet the
acceptance probability of the standard Metropolis-Hastings sampler, it must also
generate data that are sufficiently close to the observed data. Therefore, the rejection
rate of ABC MCMC can be extraordinarily high, requiring an extreme number
of computing cycles for even relatively simple problems. To make things worse,
MCMC chains cannot be parallelized easily because the state of the chain on
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iteration t is always dependent on the value of the chain at iteration t � 1. This
means that we can only perform one iteration at a time. So while ABC MCMC
algorithms are easy to program and apply to simple modeling problems, more
advanced algorithms are better equipped to handle more complex problems.

2.2.2 Algorithms Using Particle Filtering

Particle filtering is a technique that mitigates, to some extent, the limitation on
parallel processing inherent in the MCMC approach. There are many types of
particle filtering algorithms, and in this section, we discuss three: partial rejection
control (PRC), population Monte Carlo (PMC), and sequential Monte Carlo (SMC).
Instead of generating a chain of samples, particle filters start by establishing a large
pool of candidate proposals that iteratively converge to a sample from the true
posterior distribution. The individual elements in the pool are called particles. At
each stage of the algorithm, the particles are perturbed, evaluated, and filtered: a
process that brings the pool of proposals closer and closer to a large sample drawn
from the desired posterior.

We begin by generating a pool of N candidate values for � . One approach for
initializing the pool is to simply choose a large sample from the prior distribution
�.�/. Each particle in the pool carries with it a weight that quantifies the particle’s
“importance” in the estimation of the posterior distribution. For the first iteration,
all the particles are of equal importance and have weight equal to 1=N. Particles
are sampled from the pool with probability proportional to their weights to form the
pool in the next iteration. In this next iteration, the particles are perturbed slightly by
adding random noise to their location, and the weights assigned to the new particles
change according to where the particles are located in the posterior distribution:
particles in higher-density regions of the posterior are given more weight, whereas
particles in low-density regions are given less weight. This weighting dynamic leads
to particles located in low-density regions of the posterior to be sampled less often
and occasionally “die out,” removing them from the pool entirely. By contrast,
particles in high-density regions tend to survive and “give birth” to new particles
through the perturbation process. In this way, the particles become concentrated in
the region of the true posterior and their relative frequencies in the pool approximate
those of a sample from the true posterior.

The process of perturbing and filtering the particles requires a “transition kernel.”
A kernel function K.x/ is defined as a symmetric, non-negative function that
integrates to one. That is,

K.x/ > 0 for all x 2 .�1;1/;

K.�x/ D K.x/; andZ 1

�1

K.x/dx D 1: (2.6)
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The transition kernel used in sequential Monte Carlo sampling serves the same
purpose as the proposal distribution in the MCMC algorithm discussed previously,
although it is a more general concept. To specify the transition kernel, we need to
choose the distribution of a random variable � that will be added to each particle to
move it around in the parameter space. For example, if a particle �� is sampled from
the pool and perturbed by adding a Gaussian deviate � � N .0; �/ to it, then the
new proposed value for � is ��� D �� C �. The transition kernel then describes the
distribution for ��� given ��: a Gaussian distribution with mean �� and standard
deviation � .

Figure 2.2 shows a generic ABC algorithm that uses particle filtering to estimate
the posterior distribution of some parameter � . As in most particle filtering
algorithms, there are two stages: an “initialization” stage (i.e., Lines 2–11), and
an “evolution” stage (i.e., Lines 12–24). In the initialization stage, particles are first
established by sampling them from the prior. Once accepted, these particles form
the basis of the first pool, but are assigned equal weights for use in the evolution
stage. During the evolution stage, new proposals are selected by first sampling from
the previous pool of particles (Line 16) and then adding some random noise around
this existing particle (Line 17). Beyond this proposal generation scheme, particle
filtering algorithms proceed similar to basic ABC algorithms by generating data

Fig. 2.2 A generic ABC algorithm that uses particle filtering to estimate the posterior distribution
of a parameter � given data Y
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and evaluating its closeness to the observed data Y . Once a particle is accepted,
a new weight is assigned to the particle depending on a number of features (Line
22), which we discuss below. At this stage, algorithms such as the ABC PRC and
ABC PMC algorithms diverge as they specify different weighting strategies for the
particles.

While Fig. 2.2 specifies that particles be perturbed according to a normal
distribution (Line 17), some algorithms also require that we specify a transition
kernel that takes us back to �� from ���. If the distribution of ��� given �� is a
“forward” transition kernel, then the distribution of �� given ��� is a “backward”
transition kernel. If the forward transition kernel is Gaussian as we just described,
then, because �� D ��� � �, one obvious choice for the backward transition
kernel is again a Gaussian distribution with mean ��� and standard deviation � .
In general, the forward and backward kernels need not be symmetric or equal as
in this example; in practice, however, they frequently are [47]. The optimal choice
for the backward kernel can be difficult to determine [48], and while symmetric
kernels greatly simplify the algorithm they can be a poor choice when the posterior
is skewed [49].

We now present three sequential Monte Carlo sampling algorithms adapted for
ABC. As we will see below, the different sequential Monte Carlo algorithms can
be distinguished by how sampling weights are assigned to the particles in the pool
across iterations and in the transition kernels they use to perturb the particles. These
algorithms are partial rejection control, population Monte Carlo, and sequential
Monte Carlo.

2.2.2.1 Partial Rejection Control
The ABC partial rejection control (ABC PRC) algorithm was the first ABC
algorithm to use a particle filter [47]. In this algorithm, we must choose both a
forward and a backward transition kernel. Using similar notation as above, we
denote the forward kernel as qf .�

��j��/, and the backward kernel as qb.�
�j���/.

The forward kernel qf .�
��j��/ is used to perturb the particle �� to ���, and then we

simulate data X using ��� and compare X to the observed data Y by computing the
distance function �.X;Y/. As in the rejection algorithm above, if the particle ���

passes inspection (if �.X;Y/ is less than some �), then we keep it and assign it a
weight that will determine the probability of sampling it on subsequent iterations. If
the particle does not pass inspection (if �.X;Y/ > �), it is discarded, and the process
is repeated until we obtain a particle that does pass inspection. The weight w given
to the new particle ��� will be

w D
�.���/qb.�

�j���/

�.��/qf .���j��/
:

This process is repeated until the pool consists of N new particles, each satisfying
the requirement that �.X;Y/ � �.

If we stop now, after recreating the pool once, then ABC PRC is equivalent to
the simple ABC rejection sampler. However, the major advantage of using the ABC
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PRC algorithm is in the gradual filtering process. So, when using ABC PRC, we will
typically repeat the process several times. On each iteration, we sample particles
with probabilities based on the weights they were assigned in the previous iteration.
These weights allow us to discard particles from the pool in low-probability regions
(particles said to be “performing poorly”) and increase the number of particles in
high-probability regions, finally resulting in a sample of particles that represent a
sample from the desired estimate of the posterior �.� j�.X;Y/ � �/.

Another feature of the ABC PRC algorithm is that the values of � can change over
iterations. In effect, the filtering process is augmented by making � more stringent
over the iterations. On the first iteration, we might adopt a very liberal value for �,
call it �1, such that the resulting pool of particles is only slightly different from the
prior distribution from which they were initially sampled. However, on the second
iteration, we might choose a new value for �, call it �2 such that �2 < �1. After a new
pool of particles has been obtained, the shape of its frequency distribution will be
somewhere between the prior distribution and the desired posterior distribution. In
fact, if we can generate a pool such that �t D 0 and the summary statistics S.�/ that
define the function �.X;Y/ are sufficient, then the ABC PMC algorithm produces
exact posteriors [29]. However, for continuous measures, because the probability
that �.X;Y/ equals � D 0 is zero, the quality of the approximation will depend
on the value of �T on our final iteration T . One reasonable strategy, therefore, is
to set �1 to a large value and slowly decrease it until the computation time grows
impractically large.

This weighting scheme solves several of the problems of ABC MCMC, including
the problem of a chain getting stuck in a low-probability region. However, the
efficiency of the sampler relies heavily on the choices of the two kernels qf .�

��j��/

and qb.�
�j���/, the sequence of � values, and the prior �.�/. As an example, if

we specified a completely uninformative prior (i.e., a flat prior) so that �.�/ is
effectively a constant, and we further specify that qb D qf , then the particle weights
w will not change over iterations, and the algorithm reduces to the rejection-based
ABC algorithm. Such a scenario, as we argued before, is extremely inefficient
and is unlikely to produce good estimates of the posterior distribution. A final
consideration is that the ABC PRC produces biased estimates of the posterior [50].
The net effect of this bias is that the distribution defined by the pool of particles and
their weights does not necessarily converge to the true posterior. The next algorithm
we discuss corrects for this bias using a population Monte Carlo sampling scheme.

2.2.2.2 Population Monte Carlo Sampling
ABC population Monte Carlo sampling (ABC PMC) avoids the biased weighting
scheme used in the ABC PRC algorithm [50]. As in the ABC PRC algorithm, the
ABC PMC algorithm permits the value of � to change over iterations, allowing
particles to move to high-density regions of the desired posterior. While the
ABC PRC algorithm requires both forward and backward transition kernels, the
ABC PMC algorithm uses a single adaptive transition kernel q.���j��/ whose
perturbation variance depends on the distribution of accepted particles in the
previous iteration. Due to this dependency, the algorithm is broken into two “stages.”
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At the first stage, particles are simply sampled from the prior distribution and
evaluated based on some �1 for the first iteration. At this stage, the weights for each
corresponding particle are assigned equal weights. Specifically, letting wi;t denote
the weight assigned to the ith particle on the tth iteration. Following iteration t D 1,

wi;1 D
1

N
8 i 2 f1; 2; : : :Ng:

The purpose of the initialization stage is not to set weights; instead, the purpose is
to gain a sense of the distribution of particles that were accepted. To gain a sense of
the spread of these initialized particles, we can simply compute the variance of the
particles. Letting �i;t denote the ith particle on iteration t, (i.e., with corresponding
weight wi;t), following the initialization stage we can compute

�2t D 2
1

N

NX
iD1

0
@�i;t �

NX
jD1

�j;t=N

1
A
2

D 2Var.�1WN;t/; (2.7)

where t D 1 at this first stage.
The most novel aspect of the ABC PMC algorithm is the way in which the

transition kernel adapts according to the distribution of particles. This feature
allows the algorithm to automatically tune itself to gradual changes in the tolerance
threshold �t over iterations. At the second stage (i.e., t D 2), we can evolve the pool
of particles according to the variance calculated at the previous step. Similar to the
ABC PRC algorithm above, we first sample a �� from the pervious pool of particles
such that �� � �1WN;t�1, with probabilities w1WN;t�1. We then introduce some random
perturbation noise to the selected particle according to the adaptive transition
kernel. For example, if we chose a normal distribution as the transition kernel, the
candidate parameter would be generated by sampling ��� � N.��; �2t�1/. We can
then evaluate the proposal ��� in the usual, rejection-based way by comparing its
corresponding simulated data to the observed data. Because the particles have been
initialized and the transition kernel is set, we can assign weights to the particles on
the basis of their density in the posterior distribution relative to the transition kernel.
Specifically, the weight assigned to the particle �i;t�1 is

wi;t D
�.�i;t/PN

jD1 wj;t�1 q
�
�j;t�1j�i;t; �t�1

� : (2.8)

Following the weight calculation, we can calculate the variance of the particles on
this iteration by evaluating Eq. (2.7).

A major concern with any sampling scheme is the speed with which posterior
estimates can be obtained. Assuming a fixed model simulation time, the speed of
obtaining samples is dictated by the particle acceptance rate, or the probability of
accepting a proposal. When proposal distributions or transition kernels are poorly
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specified, acceptance rates are often very low, which results in a tremendous amount
of computation time wasted on evaluating proposals that have no chance of being
selected.

With this concern in mind, the ABC PMC weighting scheme optimizes the
acceptance probability by setting the variance of the transition kernel to a value
that minimizes the Kullback-Leibler distance, a popular statistic that measures the
discrepancy between two density functions [50, 51]. In the ABC PMC algorithm,
the weights are designed to minimize the distance between the desired posterior
distribution and the proposal distribution, such that when the Kullback-Leibler
distance is minimized, the acceptance probability is maximized [52].

2.2.2.3 Sequential Monte Carlo Sampling
Developed in parallel to the ABC PMC algorithm, the ABC sequential Monte
Carlo (ABC SMC) [49] sampling algorithm relies on a particular type of sequential
importance sampling [48]. The weights in ABC SMC are very similar to the weights
in ABC PMC, except that the kernel q.���j��/ is nonadaptive (its variance does not
change over iterations) and not necessarily Gaussian. In this way, the ABC SMC
algorithm is a more general algorithm than the ABC PMC algorithm, and as such
it is particularly useful in situations when the transition kernel cannot have infinite
support (e.g., cannot be Gaussian). This might happen for certain models in which,
for example, the parameter � cannot be negative. As an example, the probability
parameter p in the binomial distribution is bounded between zero and one, making
a Gaussian transition kernel an inefficient choice.

Given the generic form of the ABC SMC algorithm, Eq. (2.8) calculates the
weight for the ith particle on the tth iteration as

wi;t D
�.�i;t/PN

jD1 wj;t�1 q.�j;t�1j�i;t/
:

Because the transition kernel is nonadaptive, we must rely on manual adjustments
to the tolerance threshold parameter �t to use the algorithm effectively.

2.2.2.4 Summary
The three sequential Monte Carlo algorithms described in this section demonstrate
how particle filters can be used to adaptively estimate posterior distributions in
a likelihood-free context. However, these algorithms are all based on a strategy
whereby a pool of particles metamorphoses from a sample from the prior distri-
bution to, finally, a sample from the target posterior distribution. Each algorithm
achieves this by relying on some sort of filtering process—whether it be in the
particle weights or the adaptive nature of the transition kernel. Another successful
method of estimation relies on a post hoc adjustment to the values of the posterior
samples. These methods are quite general in their approach and can in fact be
applied to any of the rejection-based ABC algorithms we discuss here. We describe
this method next.
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2.2.3 Regression Adjustment

As we discussed in Chap. 1, there is often a systematic relationship between a
model’s parameter values � and the resulting summary statistics S.X/ calculated
from simulated data X. As an example, the left panel of Fig. 1.1 illustrates a
relationship between an unknown probability parameter � for a binomial model
and a summary statistic S.X/, which is the proportion of “successes” in some
binomially distributed data. Each point in the plot represents a particular value
of a proposal �� and the corresponding distance between the data X produced by
simulating the model under �� and the observed data Y . In this example, there is
a clear linear relationship between these two values. Specifically, as the proposed
parameter values approach 0.50, the distance between their corresponding summary
statistics approaches 0.0. If zero is the optimal value for �.X;Y/, then the proposed
parameter values resulting in S.X/ D 0 should have much higher density in the
posterior distribution for � than say, the values resulting in S.X/ D 0:05.

Recall that the rejection-based algorithms assign a simple reject/accept rule to
each parameter proposal, and this rule depends on the value of �. While the particle
filter methods turn on adaptive changes to � over the iterations, another approach is
to consider the joint relationship between the parameter proposals and the simulated
data, as in the left panel of Fig. 1.1. As originally proposed by Beaumont et al. [53],
if the relationship between � and S.X/ is approximately linear, we can use linear
regression techniques to obtain a corrected estimate for � . This estimate can then be
used to adjust the remaining samples from the approximate posterior distribution.

In this section we will denote the set of posterior samples as	, a set of summary
statistics as S.x/, and the target (i.e., optimal) value for those summary statistics as
S0. Individual components of the summary statistics are represented with a double
subscript reflecting the calculation for the ith sample and mth statistic, such as
Si;m.x/.

A simple model for linearly regressing the summary statistics S.x/ on the
obtained posterior samples 	 is

	i D ˛ C .Si.x/ � S0/
T ˇ C 
i; (2.9)

where the residuals 
 are independent and identically distributed. When Si.x/=S0,
we are drawing samples directly from our desired posterior distribution, whose
mean we can denote ˛. The least squares estimates for ˛ and ˇ are�

Ǫ ; Ǒ
�
D .XTX/�1XT	;

where X is the matrix of summary statistics augmented with a column of ones:

X D

2
6664
1 S1;1.x/ S1;2.x/ : : : S1;M.x/
1 S2;1.x/ S2;2.x/ : : : S2;M.x/
:::

:::
:::

: : :
:::

1 SN;1.x/ SN;2.x/ : : : SN;M.x/

3
7775 : (2.10)
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The strategy is then to adjust the set of posterior samples 	 to have mean ˛ while
simultaneously correcting for the trend in the relationship between 	 and S.x/. To
do this, we calculate the correction

	�
i D 	i � ŒSi.x/ � S0�T Ǒ: (2.11)

Following this adjustment, the new set of posterior samples 	� will form a random
sample from an approximation of the desired posterior distribution.

2.2.3.1 Localized Weighting
While Eq. (2.9) does not make distributional assumptions about 
, it does assume
that there is a linear relationship between 	 and S.x/. This is rarely true in practice,
but Beaumont et al. [53] argue that it may be true in a localized region around S0.
Thus, we can perform localized linear regression by applying a weighting function
to the posterior samples based on their corresponding S.x/ values. To localize the
regression problem, we define a kernel function K.d/ that weighs the values of S.x/
as a function of their distance d from the desired S0. This kernel function can take
many forms, such as a Gaussian, exponential, or Epanechnikov. We now define the
weight matrix W as

W D

2
6664

K
�ˇ̌ˇ̌

S1.x/ � S0
ˇ̌ˇ̌�

0 : : : 0

0 K .jjS2.x/ � S0jj/ : : : 0
:::

:::
: : :

:::

0 0 : : : K .jjSN.x/ � S0jj/

3
7775 ; (2.12)

where jjSi.x/ � S0jj D
qPM

jD1ŒSi;j.x/ � S0;j�2 is the distance between the vectors

of summary statistics S0 and S.x/. In this localized weighting scheme, the new
estimates for ˛ and ˇ from Eq. (2.9) become

�b̨; b̌� D .XTWX/�1XTW	:

The kernel function K may be chosen so that values of S.x/ that are outside
the region of S0 are given a weight of zero, excluding them from influencing the
estimates for ˛ and ˇ. This may seem a little wasteful; other methods incorporate
these samples by changing the model specification in Eq. (2.9) instead. For example,
Blum et al. [33] used nonlinear regression techniques to correct for heteroscedascity.
Other applications focus on model selection problems by parameterizing a model
selection parameter that conveys the probability that a given model is preferred.
For these types of models, one can use logistic regression correction on the model
selection parameter to improve the quality of the estimated posterior [54].

Regression correction methods are important for eliminating error that arises
from using error terms � that are too large. This feature is often exploited by specify-
ing large values of � so that fewer model simulations are wasted, which improves the
efficiency of the sampler. However, because the correction is performed following
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posterior sampling, opportunities for optimizing the transition kernel on the basis
of say, the current pool of particles as in the ABC PMC algorithm, are lost.
Furthermore, it is not immediately obvious how one would perform the regression
correction in contexts where Gibbs sampling is necessary, as it is for models
with many parameters or hierarchical construction. Fortunately, another class of
algorithms, called the kernel-based ABC approach, directly incorporates localized
weighting in the sampling algorithm itself, and so there is no need for a post-hoc
correction. We turn to this approach now.

2.3 Kernel-Based ABC

Rejection-based ABC works well when the model of interest closely matches the
observed data; however, it can sometimes be inefficient because of its inability to
provide anything but crude evaluations of a proposal’s “fitness.” In other words, for
a given proposal ��, if the model produces data such that �.X;Y/ > �, resulting in
a rejection of that proposal, then the density of the posterior �.� jY/ will not just be
small but will be zero at the location ��.

While we might be tempted to think that zero density where proposals result
in �.X;Y/ > � is not a bad thing, consider two different proposals ��

1 and ��
2 .

Suppose ��
1 is in a merely low-density region of the posterior distribution whereas

��
2 is far from the posterior distribution (having practically zero density). As a result

of the variability in the generation of X1 for the proposal ��
1 , it is possible that

�.X1;Y/ > �. When this occurs, both ��
1 and ��

2 will be rejected, resulting in an
estimated density of zero at both locations. The problem, then, is the following: if ��

1

is much closer to the desired posterior than ��
2 , such that the condition �.X1;Y/ � �

is sometimes satisfied whereas �.X2;Y/ � � is never satisfied, shouldn’t this
probabilistic information be contained in the weights associated with the proposals
��
1 and ��

2 ?
Such a weighting procedure has only recently been embedded in ABC samplers

[33, 53, 55, 56]. We refer to the class of algorithms that use a continuous weighing
procedure as “kernel-based ABC.” At their core, kernel-based ABC algorithms take
advantage of the localized regression correction techniques discussed above, but
they apply localized weighting during the estimation procedure rather than to the
samples that have been obtained. To do this, kernel-based algorithms use the idea of
model misspecification to apply a weighting procedure to all proposals, regardless of
their proximity to the posterior distribution. Weights are computed by assuming that
the data Y is a realization of a model simulation under the best possible parameter
values O� plus some random error (
). This means that

Y D Model. O�/C 
; (2.13)

where 
 follows a distribution with density  .ı/ governed by the tuning parameter
ı which determines the variance of 
.



2.3 Kernel-Based ABC 35

By assuming that the error 
 is continuous, we can use it to evaluate a particle’s
fitness. For example, we could choose a Gaussian kernel  .�jı/ function centered
at zero and with standard deviation equal to ı. Once selected, the kernel function
is used to weight the proposal according to how closely the simulated data matches
the observed data  .�.X;Y/ j ı/. Because  is symmetric, unimodal, and centered
at zero (see Eq. (2.6)), and assuming our discrepancy function �.X;Y/ is chosen
appropriately (e.g., a Euclidean metric), then as �.X;Y/ moves away from zero,
 .�.X;Y/jı/ will decrease so that a lower weight is assigned to � . The result of this
localized weighting is that proposals �� located further from the posterior �.� jY/
are penalized more heavily because .�.X;Y/jı/will tend to be smaller, on average.
This weighting scheme results in numerical approximation of the equation

�.� jY/ /
Z

x2X
�.�/ Model.xj�/  .�.X;Y/jı/ dx; (2.14)

where X is the range of possible data patterns generated by Model.xj�/.
Although the kernel-based ABC algorithms are considerably more efficient than

rejection-based ABC algorithms, they still rely on the specification of the standard
deviation ı. The standard deviation ı is the kernel-based analog of the error term
� in the rejection-based approaches discussed above and carries with it similar
interpretations and statistical properties. Specifically, as ı becomes smaller and
approaches 0, the approximation becomes more and more accurate. At the same
time it becomes increasingly more difficult to sample from the posterior distribution
in Eq. (2.14) because fewer and fewer samples will produce satisfactory simulated
data X. From a sampling perspective, this creates chains and particle filters that get
stuck in low-probability regions of the parameter space, and this in turn requires
that more samples be taken (resulting in longer computation times) to obtain good
estimates of the posterior distribution �.� jY/.

2.3.1 Kernel-Based MCMC

As we discussed in the introduction to this chapter, we can choose different
methods for generating parameter proposals. One method for instantiating the
kernel-based approach is to embed the weighting strategy within a conventional
MCMC algorithm, similar to the use of rejection-based methods in the MCMC
algorithms discussed above [55]. Figure 2.3 shows a generic kernel-based ABC
MCMC algorithm for sampling from the posterior distribution of the parameter � .
First, on Line 2, the chain is initialized to some starting value �0 that we know
has a nonzero density in the posterior. On iteration 2, we then generate a proposal
parameter �� by adding random noise to the current state of the chain. One way to
add noise, as illustrated on Line 4, is to take a sample from a normal distribution
centered at the current state of the chain and having standard deviation � . From
here, Lines 5 and 6 are identical to the rejection-based ABC algorithms above.
Next, we must determine whether the chain should move to the location of the
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Fig. 2.3 A kernel-based ABC MCMC algorithm to estimate the posterior distribution of a
parameter � given data Y . U.0; 1/ is the continuous uniform distribution over the interval .0; 1/

new proposal parameter or stay where it is. Here, we use the Metropolis-Hastings
rule with a special twist for application to the likelihood-free context. Letting X�

be the simulated data associated with the proposal �� and Xt be the simulated
data associated with the state of the chain on the tth iteration, we can write the
Metropolis-Hastings probability as

˛ D min

�
1;
�.��/ .�.X�;Y/jı/q.�tj�

�/

�.�t/ .�.Xt;Y/jı/q.��j�t/

�
: (2.15)

Equation (2.15) is similar to what was shown in Eq. (2.5), with the additional weight
term  .�.X;Y/jı/, which effectively approximates the likelihood function. Once ˛
has been calculated, we accept the new proposal �� with probability ˛, otherwise
we reject ��, and the chain will stay put. To implement a probabilistic acceptance
rule, we can simply draw a value p� randomly from the unit interval such that p� �

U.0; 1/. If ˛ happens to be larger than the drawn p�, we keep the proposal as shown
on Lines 8–10 in Fig. 2.3.

In Wilkinson [55], the error standard deviation ı was constrained to be the
same across all iterations of the algorithm, but this is not the only choice. For
example, in parallel to a gradually changing � term in the rejection-based algorithms
above, so too can ı change over iterations. While MCMC sampling worked well
in the examples presented by Wilkinson [55], other problems are more difficult
for MCMC algorithms to handle, such as when the number of dimensions is high
or the parameters exhibit strong parameter-to-parameter correlations [57]. In these
cases, picking one ı term across all iterations may lead to undesirable sampling
behavior, and as a result, poor estimates of the posterior distribution. In addition, the
seemingly innocuous choice of setting the tuning parameter � in Fig. 2.3 becomes
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difficult in these scenarios, and poor choices can lead to poor efficiency in the
sampling algorithm. In the next section, we discuss how a different proposal scheme
can help in generating proposal parameters more efficiently.

2.3.2 ABC with Differential Evolution

Another kernel-based algorithm is the Approximate Bayesian Computation with
Differential Evolution (ABCDE) algorithm, which combines the traditional ABC
framework with differential evolution (DE) to generate proposals [57–60]. DE is an
extremely efficient population-based genetic algorithm for performing optimization
and, for our purposes, exploring high-dimensional parameter spaces [61]. As we
have discussed throughout this chapter, most proposal-generating schemes rely on
random perturbations of each member of a class of either particles or chains to
drive convergence to the desired posterior distribution, and there is little to no
communication between the chains or particles. By contrast, DE creates a self-
organizing population of members by evolving each member based on a weighted
difference between other members of the population, similar in spirit to particle
swarm optimization [62–64]. In other words, the members of the population of
proposals communicate valuable information about the shape and location of the
desired posterior distribution, a process that results in a dramatically more efficient
estimation method.

The ABCDE algorithm has three steps: crossover, mutation, and migration [59].
Figure 2.4 shows the basic structure of the ABCDE algorithm in pseudocode. We
begin by selecting a pool of P particles and dividing this pool evenly into K groups
of size G D P=K. The particles within each group are not independent, as in the
particle filtering methods we presented earlier: the groups are pools of Markov
chains that interact, forming an entire system similar to population Monte Carlo
samplers.

After the groups are formed, the particles within each group are initialized by
sampling values from the prior �.�/, which is represented in Lines 1–2 of Fig. 2.4.
After all particles are initialized, the next step in the algorithm is to decide whether
or not a migration step should be performed with probability ˛. The migration step
is the distributed genetic algorithm method of diversifying each of the groups, and
it is represented in Fig. 2.4 by Lines 4–6. To perform the migration step, we first
determine the number of groups � that will be involved in the step. To do this, we
sample � groups uniformly from the set K D f1; 2; : : : ;Kg without replacement,
forming the group set G D fG1;G2; : : : ;G�g. Next, for each group in G we sample
a single particle �� with probabilities based on the inverse of the current weight
corresponding to ��. Finally, we swap the particles from each of the sets in a cyclical
fashion so that

f��
G1
; ��

G2
; : : : ; ��

G��1
��

G�
g ! f��

G�
; ��

G1
; : : : ; ��

G��2
; ��

G��1
g:
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Fig. 2.4 The ABCDE algorithm for estimating the posterior distribution of �

Unlike the mutation and crossover steps, we recommend that the migration step
be deterministic, and so it will not rely on the Metropolis-Hastings probability
in Eq. (2.5). However, probabilistic rules can be adopted so that each swap is
determined by first adding a small amount of random noise as proposed by Hu and
Tsui [59].

After the migration step, the ABCDE algorithm updates the particles by means
of a crossover step (the core DE particle update mechanism, described below)
performed with probability ˇ or by means of a mutation step with probability 1�ˇ.
The mutation step occurs in a way that is similar to other MCMC or particle filtering
steps where particles are perturbed from their location by means of a generic
transition kernel. Once the particles have been perturbed, they are given weights
according to the Metropolis-Hastings probability, given in Eq. (2.5). The decision to
update via the crossover or the mutation steps is performed for each of the K groups,
and is represented in Fig. 2.4 by Lines 7–13.

The most powerful mechanism in ABCDE is the way that it generates efficient
proposals via the crossover step [60, 61]. Essentially, the crossover step allows
particles that are performing well (i.e., have a high posterior density) to be selected
to guide other poorly performing particles to higher-density regions. In the ABCDE
algorithm, the crossover step is used to update the individual groups of particles,
allowing each sub-population to evolve largely independently. The division of the
pool of particles into sub-populations prevents the algorithm from falling into local
minima [65].

Figure 2.5 (right panel) illustrates the crossover step for a single group of parti-
cles. Three particles from the group are selected at random (without replacement):
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θt
θ*

θk θ*

θn

θm
γ(θm − θn)

Fig. 2.5 Graphical representation of the perturbation method assuming an independent bivariate
normal transition kernel (left panel) used in conventional MCMC and the crossover method (right
panel) used in ABCDE

k, m, and n, who have states �k, �m, and �n, respectively. A new proposal (��) is
computed as

�� D �k C �.�m � �n/C �W (2.16)

the current state of particle k plus some proportion of the scaled difference of
the states of particles m and n, plus a small perturbation �. Figure 2.5 shows
the difference between �m and �n as a vector, the blue line, that determines the
direction in which the proposal (��) should move relative to �k. When the direction
of movement has been determined, the tuning parameter � > 0 determines the
magnitude of the move. Larger values for � produce proposals that move more
aggressively around the parameter space, which can help the algorithm to explore
more quickly, but can also result in many more proposals being rejected. The
random perturbation � avoids problems of degeneracy. The influence of � on ��

is illustrated by the red region in the right panel of Fig. 2.5.
One particularly advantageous feature of the crossover step is the way that it

handles posterior distributions with highly correlated parameters. When a model
has highly correlated parameters, the safest choice is often to ignore the correlation
and select a separate tuning parameter (e.g., a variance parameter in a multivariate
Gaussian) for each dimension in the parameter space. In psychology, this is often
done for “blocked” sampling, where the parameter space is divided into groups of
parameters that can be easily sampled simultaneously [9–11,45]. Depending on how
highly correlated the parameters in the model are, ignoring their correlation can lead
to very poor sampling behavior.
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For example, suppose our target distribution contains two parameters that are
moderately correlated. If we do not know how correlated these parameters are,
we might naïvely choose an independent multivariate normal proposal distribution
such that

�� � N2

�
�t; ˙ D

	
�211 0

0 �222


�
; (2.17)

where Np.a; b/ represents the multivariate normal distribution of dimension p with
mean vector a and covariance matrix b. Because the covariance matrix ˙ ignores
the possibility of parameter correlations, this proposal distribution can result in very
high rejection rates.

The left panel of Fig. 2.5 shows an example of a sampling problem using an
independent transition kernel (e.g., Eq. (2.17)) when estimating a target density,
shown as the gray cloud of points. The vector shows the current state of the chain
�t and the proposal region for ��, shown as a red circle. If we assume that the
parameters are uncorrelated, we will generate many proposals �� that are not in the
target density, a situation that is illustrated by the proportion of white area inside the
circle. Proposals generated in this area will almost certainly be rejected.

Referring back to Fig. 2.4, in practice we recommend that the two tuning
parameters ˛ and ˇ be small (e.g., ˛ D ˇ D 0:10), so that most of the particle
updates occur via the DE crossover step, and migration only occurs a few times
throughout the simulation. Migration will have the effect of pulling so-called
“outlier” particles back into the group while keeping the diversity of the individual
groups high enough so that the parameter space can be traversed more effectively.

The ABCDE algorithm’s ability to estimate high-dimensional posterior distri-
butions and automatically tune its proposal-generating mechanism to maximize
efficiency has led to a number of successful applications of the algorithm to
interesting problems in psychology. We will discuss a few of these applications in
Chaps. 4 and 5.

2.4 General Methods

The final suite of non-hierarchical techniques are substantially different from either
the rejection-based or kernel-based algorithms in that neither require tolerance
thresholds nor do they require assumptions about the distributions of summary
statistics. However, these workarounds do come with the potentially high price
of additional computational complexity. We now discuss each of these methods,
synthetic likelihood and probability density approximation, in turn.
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2.4.1 Synthetic Likelihood

The synthetic likelihood approach goes one step beyond the kernel-based
approaches discussed in the previous section. Wood [43] proposed the synthetic
likelihood algorithm as a method for likelihood-free parameter estimation that,
unlike previous likelihood-free algorithms, does not require the use of error terms
such as � in rejection-based algorithms or ı in kernel-based algorithms that can
sometimes produce inaccurate posteriors. Because it does not use a tolerance
threshold (as in the other algorithms we have discussed so far), nor does it require
a specification of a kernel function, we consider it a “general” method because its
distributional assumptions over the selected summary statistics are well founded in
statistical theory.

To implement the synthetic likelihood algorithm, we first generate a proposal
value �� and simulate J new data sets of the same size N and design as the observed
data so that X D fX1;X2; : : : ;XJg, where Xj D fXj;1;Xj;2; : : : ;Xj;Ng. For the jth
simulated data set Xj, we then compute a vector of summary statistics S. j/.Xj/ D

fS. j/
1 .Xj/; S

. j/
2 .Xj/; : : : ; S

. j/
M .Xj/g. The summary statistics across the J simulated data

sets are then used to compute a mean vector

O�� D
1

J

JX
jD1

S. j/.Xj/;

where the covariance matrix Ȯ� D QQT=. J � 1/, and

Q D ŒS.1/.X1/ � O�� ; S
.2/.X2/ � O�� ; : : : ; S

. J/.XJ/ � O�� �:

The same summary statistics are computed for the observed data, which we denote
S.Y/ (i.e., without the super script index), and we assume they have the parametric
form

S.Y/ � N .�� ;˙�/:

Finally, using the normality assumption and the central limit theorem, the log
synthetic likelihood function is given by

SL .� jY/ D �
1

2
.S.Y/ � O��/

T Ȯ �1
� .S.Y/ � O��/ �

1

2
log j Ȯ� j: (2.18)

The synthetic likelihood SL .� jY/ now takes the place of the unknown likelihood,
and we can sample from the posterior distribution as in the other likelihood-free
methods discussed above by combining the synthetic likelihood approximation with
the prior distribution:

�.� jY/ / SL .� jY/�.�/:
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While the synthetic likelihood approach has certain advantages over other
likelihood-free algorithms, the disadvantage of using this approach is that it is more
computationally costly: We must generate multiple data sets of similar size to the
observed data to evaluate just a single proposal of the parameter values. Perhaps
a greater disadvantage is the continued reliance on the assumption that the chosen
summary statistics are sufficient for the parameters � .

2.4.2 Probability Density Approximation

The probability density approximation method differs from other likelihood-free
algorithms in two substantial ways. First, the PDA method makes no assumption
that a set of summary statistics be jointly sufficient for the parameters of interest.
Second, the PDA method is a nonparametric approach, and so it does not require
any restrictive assumptions about the distribution of the summary statistics S.�/ (as
required by the synthetic likelihood algorithm).

Again let Y D fY1;Y2; : : : ;YNg arise from a model so that Y � Model.�/.
We begin by generating a proposal ��. The method for generating �� can be one
of many options, such as MCMC, ABCDE, or particle filtering. We then use ��

to simulate a set of data X D fX1;X2; : : : ;XJg from the assumed model, so that
X � Model.��/. Next, we estimate the form of the random distribution of X, which
we call the “simulated probability density function” (SPDF) and denote f .xjX/. The
SPDF can be obtained using any of a number of density estimation techniques,
which we discuss below. Using the SPDF, we evaluate the density of the observed
data Y under a given � by the equation

Model.Yij�/ D f .YijX/: (2.19)

Thus, after evaluating Eq. (2.19), we obtain a density under the assumed model for
every point in the data set Y . Because the data are always sufficient to themselves,
our density estimation procedure guarantees sufficiency because the summary
statistics are computed for each individual observation Yi.

Following Eq. (1.2), an approximation of the likelihood function is

L .� jY/ D
NY

iD1

Model.Yij�/: (2.20)

The “pseudo-likelihood” for a given proposal �� is obtained by computing
L .��jY/. We can then approximate the posterior density, up to a constant of
proportionality, with

�.� jY/ / L .� jY/�.�/: (2.21)



2.4 General Methods 43

Equation (2.19) forms the necessary approximation used in the evaluation of the
likelihood function, and ultimately the posterior distribution. However, the method
that we choose for evaluating Eq. (2.19) should take into account the characteristics
of the observed measures. Turner & Sederberg [38] discussed three situations:
discrete data, continuous data, and mixed data (i.e., containing both continuous
and discrete measures). For completeness, we will recreate the discussions of the
discrete and continuous versions of PDA below. However, we refer the reader to [38]
for a detailed exposition of the PDA method for mixed data, because that version of
the algorithm can be viewed as a merger of the discrete and continuous cases below.

2.4.2.1 Discrete Data
Discrete data are common in psychology, and can be found in the form of confidence
or rating responses (e.g., a Likert scale), and response frequencies, such as the
number of hit and false alarms (and by extension, hit and false alarm rates). For
discrete measures, the SPDF f .xjX/ is constructed by means of a relative frequency
distribution.

We first define a sample space S D fs1; s2; : : : ; sng as the set of all possible
outcomes in our experiment. Randomness in the process of model simulation
implies that the simulated data X are random variables with their own sample space
from which we observe the random data Y . If we define the set of possible simulated
outcomes as X D fx1; x2; : : : ; xmg, we can define SPDF as

f .xjX/ D P.sj 2 S W X.sj/ D xi/; (2.22)

which restricts the sample space of the simulated data X to lie in the sample space
S of the experiment. Equation (2.22) states that the probability of X equaling a given
value of xi is the number of times that the simulated data equaled the given value
xi, divided by the total number of model simulations. The SPDF is then used in
Eqs. (2.19) and (2.20) to evaluate the pseudo-likelihood of the proposal ��.

2.4.2.2 Continuous Data
When the data Y have continuous measurements, we cannot use a relative frequency
distribution to characterize the random distribution of Y . Instead, we must use the
simulated data X to form an approximation of the likelihood by estimating a density
function. While there are many ways of estimating a density function, one of the
most useful is the nonparametric kernel density estimate [39].

We proceed in the same way as in the discrete case by first generating a proposal
�� and using the proposal to generate a sequence of observations X from the model,
so that X � Model.��/. We then construct a kernel density estimate of the simulated
data so that

f .xjX/ D
1

hJ

JX
jD1

K

�
x � Xj

h

�
: (2.23)
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The function K.�/ is the kernel and h is a smoothing parameter known as the
bandwidth. The kernel satisfies the conditions of Eq. (2.6), and so ensures that f .xjX/
is a true probability density. The kernel K is usually chosen to be continuously
decreasing as its argument moves away from zero, which places decreasing
weights on observations Xj further from the point x where the density is being
estimated. While the kernel can take many forms, in practice we have only used
the Epanechnikov kernel, given by

K.x/ D

8<
:
3

4

�
1 � x2

�
if x 2 Œ�1; 1�

0 if x … Œ�1; 1�
: (2.24)

The accuracy of a kernel density estimate is measured by the mean integrated
squared error (MISE), a measure of divergence between a true and an estimated
density function. The Epanechnikov kernel was derived as a solution that minimizes
the asymptotic MISE, and so it is optimal in a statistical sense [39, 66]. To select a
bandwidth h, we use Silverman’s [39] rule of thumb, so that

h D 0:9min

�
SD.X/;

IQR.X/

1:34

�
n�1=5; (2.25)

where SD.X/ denotes the standard deviation of X, and IQR.X/ denotes the
interquartile range. While these choices work well for all of our examples and are
the standard methods available in the scientific libraries in R and Python, it is likely
that our method of kernel density estimation could be further improved, especially
in the case of small samples [67, 68].

After we have constructed the SPDF f .xjX/ via kernel density estimation,
we can calculate the pseudo-likelihood function by evaluating Eq. (2.20), where
Model.xj�/ D f .xjX/. The posterior density is then determined by Eq. (2.21).
Equations (2.19) and (2.20) together show that each data point is used in the
evaluation of the likelihood, so there is no compression of the observed data into
summary statistics.

2.5 Hierarchical ABC Algorithms

Psychologists are often interested in systematic differences between groups or
people. Subject-specific details such as age, demographic factors, or gender may
be expected to influence a person’s performance on different tasks. One naïve
approach to understanding these individual differences is to assume that they
manifest as differences in parameters across different people, and so we might
estimate model parameters for each person independently. We could then use
these parameter estimates as measurement observations in the same way that we
might treat the measurement of the dependent variables. That is, we could perform
inferential statistical analysis on the estimated parameters to draw conclusions about
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the influence of the experimental conditions on the underlying data-generating
mechanism.

However, another approach is to assume that the individual-level parameters
share some commonality, a relationship that is described by “group-level” parame-
ters. One could then simultaneously estimate the parameters specific to each person
and the parameters that are common to the group in a hierarchical structure. This
approach is called hierarchical modeling.

Despite growing in popularity, ABC is difficult to implement for hierarchical
models. When the number of parameters is small (a low-dimensional problem),
ABC algorithms can be naïvely extended to hierarchical designs by jointly estimat-
ing the parameters across the tiers of the hierarchy—individual-level parameters are
sampled and rejected at the same time as the group-level parameters. For example,
Turner & Van Zandt [44] showed how the parameters of a simple binomial model
could be extended and estimated in a hierarchical framework. Such algorithms,
which estimate all parameters of the model in a single stage, have been the
basis of the chapter so far. However, as the number of parameters increases, the
feasibility of using these single-step algorithms for hierarchical models becomes
impractical. Instead, we must consider methods to adapt the single-step algorithm
to hierarchical problems. Figure 2.6 shows a naïve solution to this problem in which
the hyperparameter vector  is updated in a single-step together with the parameters
� .

Figure 2.6 breaks the sampling problem into two steps. First, we sample proposal
hyperparameters � from the prior �./, and then we sample proposal parameters
��

j from the conditional prior �.�jj
�/. Writing the data as Y DfY1;Y2; : : : ;YJg,

so that Yj represents Subject j’s observations, each set of parameters f�; ��
j g must

generate data X�
j satisfying �.X�

j ;Yj/ � � (if using a rejection-based approach). If
a candidate hyperparameter � produces ��

j s that satisfy the criterion for all j 2
f1; 2; : : : ; Jg, then � and the ��

j s have some nonzero density in the approximate
joint posterior distribution �.; � j�.X;Y/ � �/.

This idea has been implemented in the genetics literature to analyze mutation
rate variation across specific gene locations [28, 69]. However, as dimensionality
increases, as it would, for example, in an experimental design with a large number
of people, the naïve approach presented in Fig. 2.6 would be very slow (and even
impractical) because of the overwhelmingly higher rejection rate [29]. This is
because it may not be possible to find a ��

j that produces X�
j close to Yj, even if

all the other ��
l¤j produced X�

l s close to their Yls. In this case, the proposed � and
all the proposed ��

j s must be discarded, and the search for a sample of � begins again
with a new �. Therefore, this algorithm, while producing accurate estimates of the
posterior, is hopelessly inefficient for even moderately complex problems because
of the high-dimensional nature of the proposal scheme for the ��

j s.
A more reasonable approach would be to partition the parameter space on the

basis of how the conditional distributions interact with the likelihood function. This
partitioning, as this chapter has suggested, is a computationally demanding aspect
of likelihood-free algorithms because it must be approximated numerically through
simulation.
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Fig. 2.6 A naïve algorithm for estimating the posterior distribution of � and  for a hierarchical
model. U.0; 1/ is the continuous uniform distribution over the interval .0; 1/

2.5.1 The Gibbs ABC Algorithm

To remedy the computational inefficiencies observed in other hierarchical ABC
methods, Turner and Van Zandt [70] proposed the Gibbs ABC algorithm. In this
approach, parameters are divided into two groups: individual-level parameters that
depend on the likelihood function and group-level parameters that do not. The key
to using Gibbs ABC is that the posterior of a set of hyperparameters depends on the
data only through the lower-level parameters, which means that approximating the
likelihood function is necessary only when updating the individual-level parameters.
In other words, we can employ Gibbs sampling at the level of the hyperparameters
and bypass the problem of dimensionality and numerical errors that occur in
approximating the likelihood altogether.

To implement Gibbs ABC, we first consider the conditional posterior distribution
of the individual-level parameters � , which is

�.� jY; / / L.� jY; /�.� j/
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/

JY
jD1

L.�jjYj/�.�jj/;

given the conditional independence of the �js and Yjs. The parameter  drops out
of the likelihood because  has no role in the probability density of the data Yj.
The likelihood Yj depends on  only through the parameters �j. We can go one
step further and separate the effects that are exclusive to Yj by noting that, by the
independence of the Yjs and �js,

�.�jjY; / / L.�jjYj/�.�jj/: (2.26)

Using an approximation  .�jı/ of the likelihood for the jth person, Eq. (2.26)
becomes

�.�jjY; / �  .�.Xj;Yj/jı/�.�jj/: (2.27)

In this discussion we assume that  .�jı/ is based on the kernel density estimation
method, but we could have computed just as well the approximation with rejection-
based methods.

The final step is to derive the conditional distribution for the hyperparameters.
Noting that �.jY; �/ / �.� j/�./, the joint conditional posterior distribution of
the hyperparameters  is

�.jY; �/ / L.� jY/�.� j/�./

/ �.� j/�./

/ �./

JY
jD1

�.�jj/: (2.28)

Because  influences the likelihood only through the parameter � , the joint
conditional distribution of  D f1; : : : ; m; : : : ; Mg does not depend on the
likelihood; the likelihood is a constant with respect to  . This means that any of the
algorithms we have discussed up to this point can be used to approximate Eq. (2.27),
whereas we can sample  from its conditional posterior distribution using standard
techniques.

Figure 2.7 shows pseudocode for the Gibbs ABC algorithm. After initializing
values for 1WM;1 and �1WJ;1WK;1 on iteration i D 1, on each iteration i � 2, we
perform the following steps. First we draw samples of m;i conditioned on all other
parameters in the model, including all other values in the vector  . Then we use
a Gibbs sampler to obtain values of 1WM;i by sampling directly from the posterior
�.mjY; �1WJ;1WK;i�1; �m;i/ given by Eq. (2.28).

The Gibbs ABC algorithm is considerably more flexible than other hierarchical
ABC algorithms. Specifically, Gibbs ABC can be used as a mixture of likelihood-
free and likelihood-informed techniques, depending on which parameters are being
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Fig. 2.7 The Gibbs ABC algorithm to estimate the posterior distributions for  and �

updated. We can use any appropriate sampling method to estimate the posterior
distribution of  , while approximating the posterior distribution of each �j. There is
also no reason why we couldn’t use different tuning parameters ı for each person.
This might be useful when the model is misspecified, such that allowing for large
distances for some subjects could improve convergence speed.

As Gibbs sampling does in standard, likelihood-informed Bayesian analysis, the
Gibbs ABC algorithm also permits blocked sampling of parameters. Blocking can
aid in the convergence of the algorithm, especially in cases where parameters are
highly correlated. However, blocking in Gibbs sampling has been shown to provide
sampling efficiency that is similar to the DE proposal scheme discussed above when
the parameters of a model are highly correlated [57].

2.5.1.1 A Hierarchical Poisson Example
Although Fig. 2.7 presents pseudocode for implementing the Gibbs ABC algorithm,
because the algorithm can be complex in more realistic scenarios, we now turn
to an illustrative example. For this illustrative example, we consider data arising
from a Poisson distribution, where we will model both subject-level and group-level
effects in a hierarchical model. As we will see below, the Poisson distribution is a
convenient example for illustration as the conditional distributions of the subject-
and group-level parameters are tractable, and so we can compare the estimates
obtained with the Gibbs ABC algorithm to those obtained with a conventional Gibbs
sampler.
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The data could come from a variety of experimental paradigms, but suppose we
have J D 4 subjects who provide a number of “incidents” each week for T D 100

weeks. Hence the data Y will consist of 100 incident counts, representing the number
of incidents per week, for each of four subjects. To begin building a hierarchical
Bayesian model, we first assume that the number of incidents Subject j has during
the tth week can be modeled with a Poisson distribution

Yj;tj�j � Poisson.�j/; (2.29)

where �j is the incident rate parameter for the jth subject. To extend the model
hierarchically, we will assume that the incident rates � D f�1; �2; : : : ; �Jg come
from an exponential distribution with rate parameter �, such that

�jj� � Exp.�/: (2.30)

The parameter � represents the overall incident rate for the group of subjects, where
larger values produce smaller numbers of incidents per week.

To generate simulated data from this model in R, we can first simply choose a
value for � to dictate the rates of the �j parameters. From there, we can use the
generated �j parameters to produce the data Y . The following block of code can be
used to generate our simulated data, where J is the number of subjects and T are the
number of weeks:

1 J=4 # number of subjects
2 T=100 # number of time points
3

4 lambda=.3 # value of the hyperparameter
5 theta=rexp(J,lambda) # generate parameters for each subject
6 Y=matrix(NA,J,T) # data matrix
7 for(j in 1:J){Y[j,]=rpois(T,theta[j])} # generate subject data

If we were to perform inference on the parameters � and � in a Bayesian
setting, we could use Eqs. (2.29) and (2.30) to specify a hierarchical model. The
final step would be to specify a prior on the parameter �. Assuming we knew
nothing at all about these incident rates, we could specify a noninformative prior,
such that

� � � .0:01; 0:01/: (2.31)

With this prior, we can work through the math to derive a conditional distribution
for the parameter �, which also turns out to be a gamma distribution of the form:

�j�;Y � �

0
@ J C 0:01;

JX
jD1

�j C 0:01

1
A : (2.32)
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Thus, the conditional distribution for � has a convenient form from which we can
sample directly. Notice that the conditional distribution does not depend on the
data Y , as they are conditionally independent, a feature that is exploited in the
Gibbs ABC algorithm. We could also derive the conditional distribution for the �j

parameters, but as our application is intended to be likelihood-free, we are assuming
that the Poisson model’s likelihood function is unknown, and so we would not be
able to derive the conditional distribution.2 Instead, we must rely on simulating
data from the Poisson model and approximating the conditional distribution through
Eq. (2.27).

To approximate the model parameters using a likelihood-free technique, we must
first choose an algorithm. Consulting Table 2.1, we might choose the rejection-
based algorithm combined with Gibbs ABC as the number of parameters to be
estimated are few in number. For a rejection-based algorithm, we must choose a
set of summary statistics and a tolerance threshold. As in the example above, we
might choose a distance function of the form

�.Xj;Yj/ D
1

T

ˇ̌̌
ˇ̌

TX
tD1

Xj;t �

TX
tD1

Yj;t

ˇ̌̌
ˇ̌ (2.33)

to compare the jth subject’s data to data generated by the model. Note that because
we are only updating the parameters �j for a single subject at a time, we need only
specify a function to compare this subject’s data relative to simulated data from the
model. As for �, we can choose something small as the number of parameters are
small, and we would like a close approximation of the posterior. For this example,
let’s set � D 1 � 10�10.

Given these choices, we can now declare variables corresponding to these
parameters within R. The following block of code instantiates � (Line 1), sets
the number of samples (Line 2), sets the parameters of the prior distribution from
Eq. (2.31) (Line 3), and the � function from Eq. (2.33) (Line 4):

1 eps=1e-10 # tolerance threshold
2 N=1000 # number of particles
3 p.lambda=c(.01,.01) # prior settings (Gamma distribution)
4 rho=function(x,y) abs(sum(x)-sum(y))/T # rho function

With the data Y generated and the settings of our algorithm specified, we can now
run the sampler to estimate the parameters � and �. As the sampler is rejection-based
at the level of � , but is drawing samples from the conditional distribution of �, the
next block of code should look similar to the rejection-based algorithm we presented
above. The following block of code can be thought of as a rejection-based sampler
nested within the Gibbs ABC algorithm:

2For the curious reader, the file GibbsABC.R contains code to sample from the posterior using
traditional Gibbs sampling, as well as the Gibbs ABC algorithm so that accuracy of the algorithm
can be assessed. Within this code, the parameters of the conditional distribution are specified.
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1 abc=NULL
2 abc$theta=matrix(NA,N,J) # declare a matrix for storage
3 abc$lambda=numeric(N) # declare a matrix for storage
4

5 for(i in 1:N){ # loop over particles
6 for(j in 1:J){ # loop over subjects
7 d=eps+1 # initialize d to be greater than eps
8 # continue proposal generation until condition is satisfied
9 while(d>eps) {

10 theta.1=rnorm(1,mean(Y[j,]),1) # sample from proposal dist.
11 x=rpois(T,theta.1) # simulate data
12 d=ifelse(theta.1>0,rho(Y[j,],x),eps+1) # compute distance
13 }
14 abc$theta[i,j]=theta.1 # store the accepted value
15 }
16 # sample from conditional distribution of lambda
17 abc$lambda[i]=rgamma(1,J+p.lambda[1],sum(abc$theta[i,])+p.

lambda[2])
18 }

Starting with Lines 1–3, we first declare some storage objects to keep track of
the samples from � and �, and we store these samples within a list object called
abc. Zooming in on Lines 7–13, we see the familiar procedure as in the rejection-
based algorithm above. First, in Line 10, we sample a theta.1 from a proposal
distribution. Here, we have chosen a normal distribution centered at the mean
incident rate for the jth subject (i.e., centered at

PT
tD1 Yj;t), with a standard deviation

of one. This proposal distribution is more informed than simply sampling from the
prior distribution, but also does not depend on the previous states of the chains
or pools of particles as in the other algorithms we have discussed. This is another
type of proposal distribution that can be used effectively when summary statistics of
the data map closely onto regions of the parameter space that are likely to contain
the posterior distribution. Next, we simulate data X (Line 11) and compare it to the
observed data Y in Line 12. In this line, we use the ifelse function to first evaluate
whether theta.1 is even a possible value of the parameter (i.e., is theta.1 in
the support of �j). As the parameters of the Poisson distribution must be positive, �j

must be greater than zero. If this is not the case, the ifelse function will return
eps+1, which is larger than d, causing theta.1 to be rejected. Also note that the
comparison is made at the level of the jth subject: no other rows of Y are involved
in evaluating the fitness of theta.1 (i.e., the parameter �j). Finally, if theta.1
is accepted, it is stored on Line 14.

The next step of the algorithm is to perform the conditional updates on the
parameter �. As we have already derived the conditional distribution of � in
Eq. (2.32), we need only draw a sample from this distribution, conditional on
the current state of the chains on the ith iteration. Line 17 performs this sample
by plugging in the variable abc$theta[i, ] as �1WJ in Eq. (2.32). On some
iterations, the variable abc$theta[i, ] will have a different value due to the
random sampling from the conditional distribution of � , and in so doing, the
conditional distribution of � can also be estimated.
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Fig. 2.8 Marginal posterior distributions for the parameters of the hierarchical Poisson example.
The left panel shows the estimated posterior distributions for each �j parameter, whereas the right
panel shows the estimated posterior for the � parameter. Estimates obtained using the Gibbs ABC
algorithm are shown as the black densities, whereas estimates obtained using a conventional Gibbs
sampler (that uses the likelihood function) are shown as histograms. In each panel, the red vertical
line represents the true value of the model parameters

After running the blocks of code above, we should arrive at posterior distributions
that look similar to those presented in Fig. 2.8. Here, the left panel shows the
estimated posterior distributions of each �j, whereas the right panel shows the
estimated posteriors for the � parameter. The estimates obtained using the Gibbs
ABC algorithm are shown as the black densities, whereas estimates obtained using
a traditional Gibbs sampler (i.e., one that uses the likelihood function) are shown
as histograms. The true value of each model parameter is represented in Fig. 2.8 as
the vertical line. Figure 2.8 shows that the estimated posterior obtained using Gibbs
ABC closely resembles the estimates obtained using the likelihood function (i.e., the
traditional Gibbs sampler). This suggests that our algorithm is working effectively
to estimate the parameters for this particular hierarchical model.

2.6 Conclusions

Referring back to the introduction, successful algorithms of likelihood-free infer-
ence can be thought of as consisting of five important steps. Most of the algorithms
presented here have differed only at some combination of three of these steps,
although we have not reviewed every ABC algorithm that currently exists. Making
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different choices at these steps in the development of an algorithmic can be useful
for customizing it for a particular model-fitting problem.

Fortunately, there are clear advantages and disadvantages of each choice in the
development process that make one feature of an algorithm a better choice than
another, depending on the circumstances. As a general guide, if sufficient statistics
are known, then any of the rejection-based or kernel-based algorithms can be used
to fit a model to data. Kernel-based algorithms will preserve a larger percentage
of the simulated data compared to rejection-based algorithms, but also have the
problem of not allowing the error term to be set to zero (as it can be in rejection-
based algorithms). If the problem becomes more difficult, such as when we need to
estimate many parameters, we recommend an algorithm such as ABCDE because
(1) it is kernel-based and so will provide a more efficient estimate (with respect to
accuracy and speed of computation time) relative to rejection-based algorithms, and
(2) it uses a proposal scheme that is well suited for high-dimensional and correlated
parameter spaces—a consideration important for many models in cognitive science.

If sufficient statistics are known but one would like to avoid using error terms
such as � or ı, then the synthetic likelihood approach is recommended. Although
the synthetic likelihood method requires a great deal of more computational time,
the ability to arrive at accurate posteriors and not worrying about the influence
error terms may have is a desirable outcome. If no sufficient statistics are known,
we recommend using the PDA algorithm as a brute force method for comparing
simulated to observed data. This method, while computationally slow relative to the
other methods, is a nice alternative to choosing a large set of summary statistics and
hoping for the best. Finally, if one is interested in fitting a hierarchical model, we
recommend the Gibbs ABC algorithm in concert with an appropriate choice for a
lower-level likelihood approximation algorithm.



3A Tutorial

3.1 Introduction

This chapter will focus on the Minerva 2 model, a global matching model of
recognition memory. Recall from Chap. 1 that the recognition memory task takes
place in at least two phases. In the first study phase, people are given a list of items
to study (e.g., words) and instructed to commit them to memory. Following the study
phase, the subject might perform some filler task, such as completing a puzzle.
Often, these filler tasks are used to either remove recency effects or to equate the
retention interval across different conditions. In the second test phase, the subject
is presented with a probe item and asked to respond either “old,” meaning that the
subject believes the probe was on the previously studied list, or “new,” meaning that
the subject believes the probe was not on the previously studied list. The proportion
of old responses to targets (hit rates) can be plotted as a function of the proportion
of old responses to distractors (false alarm rates), producing the receiver operating
characteristic (ROC) curve [71, 72].

After a brief description of the model, the tutorial will be broken into two
parts. In the first part, we will fit the Minerva 2 model to simulated data using
three likelihood-free methods: kernel-based Markov chain Monte Carlo, probability
density approximation (PDA), and analytic expressions derived by Sheu [37]. After
fitting the model using each technique, we will compare the three methods by
examining the estimated marginal posterior distributions for each of the model
parameters and the computational time for each method. The simulation study will
also allow us to better understand the model by permitting us to examine the joint
posteriors for each parameter generated using the PDA method.
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In the second part of the tutorial, we will fit a hierarchical version of the Minerva
2 model to data from [4] by blending two likelihood-free techniques (PDA and
Gibbs ABC). Prior to fitting the model, we will describe the hierarchical framework
in detail, and after determining if the fit is adequate, we will examine the posterior
distributions of specific parameters to gain a better understanding of both the
effectiveness of the experimental manipulation and the predictions made by the
model.

3.2 MINERVA 2 Model

Minerva 2 is a member of the class of global matching models, which includes
memory models such as the Theory of Distributed Associative Memory model
(TODAM) [73], the Search of Associative Memory model (SAM) [74], and the
Matrix model [75, 76]. Global matching refers to a retrieval process in which a
probe item is compared against the contents of memory, producing a single summed
familiarity value that indexes the similarity of the probe to the contents of memory.
The familiarity value is subsequently compared against a decision criterion to
produce an “old” or “new” decision [77]. While all of the global matching models
make mathematically identical predictions under some circumstances [78], Minerva
2 possesses some unique properties that differentiate it from the other models, such
as a non-linear activation function that ensures that traces more similar to the probe
have a greater contribution to the familiarity calculation.

We will describe the mathematics of Minerva 2 briefly. Readers interested in a
more detailed description of the model and its predictions should consult the original
publications [36, 79]. In Minerva 2, items are represented as a vector of � features
that take the values of 1, 0, or �1 with equal probability. When an item is presented
for study, a new trace vector is created in memory that contains features from the
original item vector that are copied with probability L. The probability L is called
the learning rate of the model. If a feature from the item vector is not copied into
memory, the item trace has a 0 stored for that feature. After a set of items have been
studied, the contents of memory are represented by a matrix M, which contains all
of the trace vectors created in the study episode. Over time, correctly copied features
may revert to 0 with probability ı. The probability ı is called the decay rate, and it
is this decay rate that models the effects of a retention interval, with higher decay
rates used for longer study-test intervals [36, 79].

Global matching operates in Minerva 2 by comparing the probe vector P against
each of the trace vectors in the memory matrix M. The similarity Si between the
probe and trace vector i is calculated as

Si D

NX
jD1

PjTi;j

�i
; (3.1)

where Ti is the ith trace vector in M, j is the jth feature in the comparison between
the probe and trace vectors, and �i is the number of features where Pj ¤ 0 and
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Ti;j ¤ 0. Values of Si are equal to 1 if the probe vector is identical to the trace vector
and 0 if the two vectors are orthogonal to each other. The extent to which a probe
item activates the traces in memory is computed as the activation

Ai D S3i : (3.2)

The cubing of the similarity values produces a non-linear relationship between
similarity and activation: activation values are highest for traces that are most similar
to the probe vector [79]. The activation values are subsequently summed to produce
a value of “echo intensity” I (i.e., familiarity), so

I D
MX

iD1

Ai: (3.3)

The echo intensity I is compared to a decision criterion C. If I is greater than C,
familiarity is high enough to produce an “old” response. If not, a “new” response
is made. Because echo intensity is greatest when the similarity between the probe
and the traces is highest, the values of I tend to be higher for targets: There is
a higher expected similarity between the target trace vector and its own probe
item than between a trace vector and an unrelated probe item. The distributions
of intensity values tend to have higher variance for targets than for distractors, a
difference that arises from the non-linear activation function and the probabilistic
encoding of features [80]. Performance tends to be worse for longer study lists
than for shorter ones because, as the number of trace vectors in M is increased,
the variance of the echo intensity values increases for both targets and distractors,
resulting in decreased discriminability. This list-length effect is predicted by other
global matching models for similar reasons [77].

Minerva 2 and the other global matching models were challenged by a series
of findings in the recognition memory literature. One of which was the null list
strength effect [81], in which strengthening a subset of studied items by increasing
study time or number of presentations does not decrease performance for the
other non-strengthened items. Another was the mirror effect [82], whereby some
manipulations produce opposite effects on the hit and false alarm rates. The global
matching models were not able to capture these effects without modification, and so
a newer generation of Bayesian recognition memory models were developed. These
models include the Retrieving Effectively from Memory model (REM; [83]), the
Subjective Likelihood in Memory model [84], and the Bind Cue Decide Model of
Episodic Memory (BCDMEM; [85]), all of which can be described as the dominant
theoretical models of recognition memory currently. BCDMEM and REM will
become important in a later application.

Minerva 2 has been used to explain many memory-related phenomena. Arndt
and Hirshman [86] found that Minerva 2 was able to successfully predict a number
of relations between true and false recognition. They further demonstrated that
the non-linear activation function was specifically responsible for the success of
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these predictions, and that other models such as TODAM or the Matrix model
cannot do the same. A dual-process variant of Minerva 2 was used by Benjamin
[87] to explain dissociations between item and source recognition in the aging
literature. Minerva 2 was used to develop successful models of judgment and
decision making, including judgments of likelihood (MINERVA DM) [88] and
hypothesis generation (HyGene) [89]. It has also been applied to semantic memory
phenomena, such as performance on lexical decision tasks [90] and the formation
of lexical representations [91].

3.2.1 Implementing the Model

The Minerva 2 model is a simulation model, meaning that exact equations have
not yet been produced for evaluating the likelihood function. As such, to fit the
model to data in this chapter, we rely on likelihood-free techniques. The minimum
requirement of these techniques is that we be able to simulate data from the model,
which means we must first prepare computer code to implement the equations in the
preceding section.

First, to offload some complexity of the model simulation code, we can write
a separate function to generate the features that represent the items used at study
and test.

1 init=function(N,p)sample(c(-1,0,1),N,replace=T,prob=p)

The init function simply samples the features f�1; 0; 1g with probability deter-
mined by the variable p. The end result is a vector of randomly selected features of
length N, corresponding to �. With a simple function for generating feature values,
the next block of code creates a function called minerva that can be used to
generate responses, given some parameter values and experimental variables:

1 minerva=function(L,crit,decay,n.features,alpha,p,n.study,n.
targets,n.test){

2 study.feat=init(n.features*n.study,p) # features of study list
3 study=matrix(study.feat,n.features,n.study) # study list
4 image.feat=rbinom(n.features*n.study,1,L) # feature of image
5 image=matrix(image.feat,n.features,n.study)*study # image
6 image=rbinom(n.features*n.study,1,1-decay)*image # decay
7 targets=study[,1:n.targets] # use first study items (arbitrary

)
8 # calculate number of distractors, and generate them
9 n.distractors=(n.test-n.targets) # how many distractors?

10 dist.feat=init(n.features*n.distractors,p) # features
11 distractors=matrix(dist.feat,n.features,n.distractors) # set
12 test=cbind(targets,distractors) # create test set
13 S=matrix(NA,n.study,n.test) # create similarity matrix
14 for(i in 1:n.test){ # loop over test items
15 for(j in 1:n.study){ # ...and study items
16 calc.n=sum(test[,i]!=0 | image[,j]!=0) # nonzero features
17 S[j,i]=sum(test[,i]*image[,j])/calc.n # similarity
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18 }
19 }
20 A=S^alpha # calculate activation
21 out=apply(A,2,sum) # calculate intensity
22 as.numeric(out>crit) # compare to criterion
23 }

The first line of code declares the function, which requires the learning rate L (i.e.,
L), the criterion value crit (i.e., C), the decay rate decay (i.e., ı), the number
of features n.features (i.e., �), the exponent of the similarity matrix alpha
(which is commonly set to ˛ D 3, as in Eq. (3.2)), and the feature probability vector
p (which is usually set to p D f1; 1; 1g=3, so that the features are equally likely).
In addition, the minerva function requires some choices about the details of the
experiment, such as the number of items presented at study (i.e., n.study), the
number of items in the test list that were on the study list (i.e., n.targets), and the
total number of items in the test set (i.e., n.test). Lines 2 and 3 create the features
of the study list, and then arrange those features into a matrix where the columns
correspond to the items, and the rows correspond to the features. Lines 4–6 detail
the construction of the episodic memory matrix. First, Line 4 generates a vector of
Boolean variables declaring whether or not the features of the study list should be
encoded. The vector in Line 4 is rearranged into a matrix and multiplied by the study
list, creating a new matrix that represents the episodic image: some features of the
study list will appear within the image matrix at the same location as in the study
list matrix, whereas some values within the image matrix will be zero, indicating no
features were encoded. Finally, the quality of the image matrix is further deprecated
by multiplying the matrix by another Boolean matrix representing the feature decay
process. During this multiplication, some features that were correctly encoded in
Line 5 will be reset to zero, eliminating those features from contributing to the
recognition decision at test. Line 7 declares that the first n.targets items will
be selected from the study list to serve as the targets in the test list. Because we
are simulating a model and not using a human subject, the choice of selecting
target items from the study list is completely arbitrary. Lines 9–11 create the set
of distractors to be used in the test set, and Line 12 creates the final test set by
combining targets and distractors. Again, because we are simulating the model, the
arrangement of targets and distractors is inconsequential to the pattern of responses
we will simulate.

The next step is to calculate the similarity matrix S, which is performed in
Lines 13–19. To do this, we follow Eq. (3.1) by looping through the set of test
items and the set of items in the episodic image. The first step is to calculate �i

in Line 16 to determine how many features are nonzero in either the current test
item or the current episodic image item (i.e., determined by i or j in the double
for loop). Finally, Line 17 performed the summation in Eq. (3.1) through matrix
multiplication. Line 20 calculates the activation values by cubing the similarity
matrix shown in Eq. (3.2), and Line 21 calculates intensity according to Eq. (3.3).
Finally, to make a response, the model compares the intensity of each test item to
the criterion variable crit: if the intensity for Item i is larger than the criterion, an
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“old” response is given, whereas if the intensity value is smaller than the criterion,
a “new” response is given.1

The Minerva 2 model is relatively simple to set up and simulate data from, and as
a consequence, it serves as an interesting running example on which we can apply
likelihood-free techniques to illustrate the utility of these methods. Despite Minerva
2’s simplicity, to our knowledge researchers have not yet taken full advantage of
Bayesian hierarchical methods in fitting the model because it is simulation-based.
In the following section, we will describe how likelihood-free techniques can be
used to fit this model to data. We first fit the model to simulated data to demonstrate
the methods’ ability to recover the model parameters. Then, we use these techniques
to fit the model to recognition memory data from a real-world experiment.

3.3 Simulation Study: Recovering the Posterior Distribution

Although the Minerva 2 model can be fit to a variety of data, for our simulation
study, we focus on the recognition memory task. Recognition memory data are
perfect candidates for illustrating the likelihood-free approach for two reasons. First,
the number of measurements (i.e., hit and false alarm rates) from each subject is
generally small, and so simulating the model to match the observed data is not very
computationally costly. Second, the hit and false alarm rates are discrete: measures
are incremented in steps of 1=n, where n is either the number of targets (for the hit
rate) or distractors (for the false alarm rate). This means that when using methods
such as PDA, the error introduced in the estimation of the posterior distributions will
be minimized, as a kernel density function is not needed to approximate the shape
of the probability density function [38].

3.3.1 Generating the Data

For this simulated experiment, we assumed that the test list consisted of 40 items
total, 20 of which were targets (i.e., words on the previously studied list) and 20 of
which were distractors (i.e., words not on the previously studied list). The study list
consisted of 20 items, all of which were presented during the test phase. Each subject
completed four conditions of the recognition memory task. Hence, the simulated
data consist of four hit rates and four false alarm rates for each subject. The larger
data set provides an opportunity for the posterior distribution to be different from
the prior distribution, thus creating a greater constraint on the model. This increased
stringency allows us to appreciate the quality of the likelihood approximation used
by the three methods below.

1The responses are arbitrarily coded as either a one for an “old” response, or a zero for a “new”
response.
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To simulate data from the model, we set the learning rate L D 0:5, the criterion
C D 0:10, the number of features � D 30, and the decay rate ı D 0. We set the ˛
parameter to 3 and the probability of the features taking on the values f�1; 0; 1g to
be f1=3; 1=3; 1=3g, respectively. When simulating the model for four subjects, the
following hit and false alarm rates were obtained:

Hit Rates W f0:40; 0:75; 0:75; 0:60g

False Alarm Rates W f0:05; 0; 0; 0g

This set of data will be used in the posterior recovery test below, and they are
important as changes in the data above may result in changes to the posterior
estimates obtained below.

For our posterior recovery test, we only estimated L, C, and �, because the
analytic expressions derived in Sheu [37] did not consider the effects of the decay
parameter ı. Hence, because analytic expressions for this expanded version of the
model are unavailable, we assumed that ı was known to facilitate a comparison
across the three methods. All parameters were equal across all four conditions of
the experiment.

3.3.2 Fitting the Data

To illustrate the likelihood-free approach, we fit the model to the simulated data in
three different ways. The first approach is the kernel-based ABC algorithm, which
relies on summary statistics to approximate the likelihood. The second approach is
the PDA method [38], which constructs an approximation to the missing likelihood
via pure simulation. The third approach relies on analytic expressions derived by
Sheu [37], which rely on asymptotic assumptions about the distribution of hit and
false alarm rates conditional on a set of model parameters. As we will discuss in
detail below, by “analytic” we mean that the approximation of the likelihood has a
functional form, but we do not necessarily mean that the expressions are perfectly
accurate. In order to obtain analytic expressions Sheu made some simplifying
assumptions about the asymptotic properties of the distribution of echo intensities.
While these assumptions are reasonable for infinitely long lists, their validity when
applied to data with finite limitations has not yet been tested.

Each of the three methods is unique in the way they approximate the posterior
distribution. However, when sampling from the posterior distribution, another set of
algorithms are required to perturb the proposals throughout the parameter space
so that an accurate posterior estimate can be achieved. To maintain consistency
across the three methods, we applied an MCMC algorithm (see Chap. 2) with
identical settings to obtain samples from the posterior distribution using each
approximation method. Note that while the MCMC algorithm is identical, because
each approximation method is different, we cannot necessarily expect that each
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procedure will result in identical posterior estimates; in fact, it is this comparison of
posteriors that we will use to evaluate the quality of each approximation method.

While we cannot reproduce the code for the entire MCMC algorithm here, we
encourage the reader to consult the online materials for versions of each method
implemented in R. Again, all methods use an identical MCMC sampler to perturb
proposals within the parameter space, yet have different methods for evaluating the
quality of the proposal. At their core, all methods invoke a function that specifies
the log likelihood of the data (i.e., the variable data), given a proposal parameter
value (i.e., the variable x). The general form of the log likelihood function looks
like the following block of code:

1 log.dens.like=function(x,data){
2 L=x[1]; crit=x[2]; feat=x[3]; # redeclare parameters
3 feat=round(feat) # round the number of features
4 if(L<=1 & L>=0 & feat>=2){ # test parameter boundaries
5 ### insert specific approximation method here
6 ### producing a variable called ’out’
7 if(is.na(out))out=-Inf # test for plausibility
8 } else { # if boundary test fails...
9 out=-Inf # reject the proposal

10 }
11 out # return the final log likelihood value
12 }

Line 1 through Line 12 declare the log likelihood function in R. As you can see,
the function requires two inputs—the parameter proposal x and the set of data
data. For convenience, Line 2 transforms the elements of the proposal vector x
into the learning rate variable L, the criterion variable crit, and the number of
features variable feat. Line 3 rounds the feature variable into something discrete,
so that it can be used in the minerva function to construct the episodic image
(i.e., only discrete values can be used as the dimensions of a matrix). Next, Line
4 tests to see whether or not each parameter value is within a plausible range.
Statistically speaking, this line is not completely necessary as these restrictions will
be specified in our priors. However, algorithmically, the minerva function above
will crash if these restrictions are not in place. Line 4 is connected to Lines 8–10
as a condition statement. That means that if a parameter value is outside the range
of plausible values, the final log likelihood value out will be set to �1 or �Inf
in Line 9. Lines 5–6 represent the location where lines of code can be inserted
to implement each approximation method, which we will discuss below. Line 7
is a final test to evaluate whether or not the implementation method produced a
log density value that is plausible. As we assume that NA values correspond to
values of the parameters that are implausible, this line is the final “catch” to rid
our posteriors of invalid samples. Hence, it is very important to ensure that the
approximation method—and more specifically the model data generation code—
is as robust as possible. Finally, Line 11 produces the likelihood of the data, given a
set of parameters, on the log scale.

With the generic wrapper function described, we can now turn to the specific
implementation details that can be slotted into Lines 5–6 above.
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3.3.2.1 KABC
As we discussed in Chap. 2, kernel-based ABC (KABC) relies on a kernel to
compare the simulated data to the data that were observed. We chose a Gaussian
kernel with standard deviation ıABC D 0:03. This particular kernel worked well,
giving accurate posterior estimations while still allowing the chains in the MCMC
sampling algorithm to mix properly.2 For each proposed parameter value, we
simulated the model under the proposal four times to reflect the number of observed
data points. Doing this allows for straightforward comparison of the simulated data
to the observed data, although other choices are possible [44].

To implement the KABC algorithm, we adapted code in R based on Fig. 2.3
that would work generically across the three approximation methods. We again
encourage the reader to see the scripts associated with each method, as we
cannot reproduce them here. Instead, the specifics of implementing the KABC
approximation can be seen in the following block of code:

1 mach=matrix(NA,S,n.test) # declare a matrix
2 for(i in 1:S){ # loop over S subjects (i.e., S=4 here)
3 # simulate data from the model with the following settings:
4 # unknown parameters: L, crit, feat
5 # known parameters: decay, t.alpha, p
6 # known experimental variables: n.study, n.targets, n.test
7 mach[i,]=minerva(L,crit,decay=0,feat,t.alpha=3,p=c(1,1,1)*1/3,
8 n.study,n.targets,n.test)
9 }

10 # calculate summary statistics for the simulated data
11 mach.hr=apply(mach[,1:n.targets],1,sum)/sigs # get HR
12 mach.fa=apply(mach[,(n.targets+1):n.test],1,sum)/noise # get

FAR
13 # evaluate how close the simulated and observed data are
14 out.hr=sum(log(dnorm(mean(data$hr-mach.hr),0,.03))) # compare HR
15 out.fa=sum(log(dnorm(mean(data$fa-mach.fa),0,.03))) # compare

FAR
16 out=out.hr+out.fa # calculate final ’out’ variable

First, Line 1 declares a storage object. Line 2–9 perform a simulation using our
minerva function from above by looping over each subject, generating data using
a set of unknowns (i.e., the three parameters we are estimating) and knowns (i.e., the
fixed parameters and the experimental setup), and storing the simulated responses
with the matrix mach. Once the data have been simulated, the next step is to
calculate some summary statistics. For our purposes, the set of summary statistics
we chose were the hit and false alarm rates, which are calculated in Lines 11 and 12,
respectively. Next, we evaluate how closely the summary statistics for the simulated
data are to the observed data by using a Euclidean distance and a Gaussian kernel
(as in Chap. 2) with mean 0 and standard deviation 0.03 in this case. As we are
computing the log likelihood value, we can simply sum up the log-transformed

2In our simulations, we tested a few different values of ıABC until we arrived at the smallest value
that still produced good mixing behavior across the chains.
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likelihoods, resulting in the variables out.hr and out.fa. The final step is to
obtain the log likelihood of all the data, which is obtained by summing up out.hr
and out.fa in Line 16. This last line produces the variable out that can be used
in the generic log.dens.like function above.

3.3.2.2 PDA
Following the details described in the previous chapter, we constructed an approx-
imation of the joint probability density functions for hit and false alarm rates by
simulating the model 1000 times for each parameter proposal. From this bivariate
distribution we calculated the probability of observing the data under this parameter
proposal: we evaluated the density of the constructed distribution at the location of
each observed hit and false alarm rate. To implement this method, we can use the
following block of code:

1 mach=matrix(NA,rep,n.test) # declare a matrix
2 for(i in 1:rep){ # simulate ’rep’ times (i.e., rep=1000 here)
3 # simulate data from the model with the following settings:
4 # unknown parameters: L, crit, feat
5 # known parameters: decay, t.alpha, p
6 # known experimental variables: n.study, n.targets, n.test
7 mach[i,]=minerva(L,crit,decay=0,feat,t.alpha=3,p=c(1,1,1)*1/3,
8 n.study,n.targets,n.test)
9 }

10 # calculate the hit and false alarm rates for each simulation
11 mach.hr=apply(mach[,1:n.targets],1,sum)/sigs
12 mach.fa=apply(mach[,(n.targets+1):n.test],1,sum)/noise
13 pdf=numeric(S) # declare a storage object
14 for(j in 1:S){ # loop over subjects
15 # determine the joint probability of obtaining each observed
16 # data point, given the distribution of simulated data
17 pdf[j]=mean(mach.hr==data$hr[\,j] & mach.fa==data$fa[j])
18 if(is.na(pdf[j])==T)pdf[j]=0 # test to ensure no NA values
19 }
20 out=sum(log(unlist(pdf))) # sum up the log likelihood values

The PDA code is similar to the KABC code but there are some important
differences. First in Line 1, the matrix mach is constructed to have rep rows and
n.test columns. The difference here is that rep will be large relative to S from
the above KABC code. Because S is just the number of subjects, the KABC code
will generate data of the same size as the data that were observed. By contrast,
the PDA code will construct a full distribution over the space of possible hit and
false alarm rates. Lines 2–9 simulate the Minerva 2 model rep times and place the
elements within the matrix mach. Lines 11 and 12 next complete the hit and false
alarm rates for the rep simulations. The next step is to construct the simulated PDF.
First, a pdf variable is constructed to contain all rep densities. Line 17 computes
the joint probability that the observed hit and false alarm rates (i.e., data$hr and
data$fa, respectively) match the hit and false alarm rates from the simulation
above. To do this, we calculate the number of times the two elements match at the
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same time and then divide by the total number of observations. Another convenient
way to do this is to simply take the mean of the boolean vector that performs the
match comparison, as in Line 17. While this will compute the joint probability for
a single data point, we must repeat this process for all of the observed data, and
so the loop in Lines 14–19 is designed to carry this operation out. The final step
is to check for NA values (i.e., Line 18) and construct the variable out as we did
above.

3.3.2.3 Analytic Expressions
Sheu [37] derived analytic expressions for the Minerva 2 model. These expressions
are based on asymptotic assumptions, and so they describe, in the limit, the mean
and variance of the lure and target activation distributions. The lure and target
activation distributions are assumed to be normally distributed. In our description
of Minerva 2 above, we assumed that the probabilities of a feature taking on one of
the values in the set f�1; 0; 1g were equal. This is a simplifying assumption that is
regularly used in practice. More generally, we can denote the probability of a feature
taking on these three values as r, q, and p, respectively, where r C qC p D 1. In a
typical application, the probability that the features take on a value other than zero
is equally likely, such that r D p, and so q D 1 � 2p. Sheu [37] maintained this
assumption for simplicity. Using this constraint and our notation from above, when
a target is presented, the mean and variance of the activation AC for targets are

EŒAC� � L3 C 3L2.1 � L/��;p; and

VarŒAC� � 9L5.1 � L/��;p,

where
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Although the distribution of activation for targets is easy to describe, the
distribution of activation for distractors A� is more difficult. The mean and variances
of A� are

EŒA�� D 0; and

VarŒA�� D
X

S�Ds

s3pS�.s/,

where pS�.s/ is the probability mass function of the distribution of similarity for
distractors.

To sum across the similarity distribution for distractors, we must first calculate
the echo intensity variances for distractors. Letting k be an index over all of the
non-zero elements of a trace such that 0 � k � �, and h be an index such that
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�k � h � k, the probability function of the similarities of the ith item in the episodic
memory matrix is
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where u, v, and w are non-negative integers constrained such that 0 � u; v;w � k
and u C v C w D k. Equation (3.4) is difficult to calculate efficiently, so Sheu
constructed a set of recursive equations that are easier to evaluate.

When the means and variances of both the lure and target activation distributions
have been evaluated, one can compute the probability of obtaining a hit and false
alarm by integrating both normal distributions from the criterion parameter C to
infinity. Specifically, the hit rate H and the false alarm rate FA predicted by the
model are

P.Hj�/ D 1 � ˚
�

C
ˇ̌
EŒAC�;

p
VarŒAC�

�
and

P.FAj�/ D 1 � ˚
�

C
ˇ̌
EŒA��;

p
VarŒA��

�
,

where ˚.xja; b/ is the normal cumulative density function at x with mean parameter
a and standard deviation b. To connect these probabilities to the likelihood function,
we invert the probability structure by way of multiplication as we saw in Chap. 1.
We denote the number of hits for the ith subject as Oi;T (i.e., T for targets) and
the number of false alarms by Oi;D (i.e., D for distractors), and we assume that the
number of hits Oi;T and false alarms Oi;D arise from binomial distributions with the
number of trials equal to the number of targets Ni;T and distractors Ni;D, respectively.
We can estimate the probability that the model makes an “old” response to both
targets (i.e., the hit rate) and distractors (i.e., the false alarm rate) by multiplying the
two probabilities together, such that

L.� jY/ D
SY

iD1

Bin.Oi;T j Ni;T ;P.H j �//Bin.Oi;D j Ni;D;P.FA j �//; (3.5)

where Y is the observed data Y D fO1WS;T ;O1WS;Dg, S D 4 is the number of
observations, and � D fC; �;Lg, and Bin.xjn; p/ is the density of the binomial
distribution, given by

Bin.xjn; p/ D

 
n

x

!
px.1 � p/n�x:
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To form the analytic approximation of the likelihood, we followed Sheu [37]
and programmed a routine in R to evaluate the equations listed above. The code
for implementing the model is provided in the software release with this book. To
sample from the posterior distribution, we can insert the following block of code
into the likelihood wrapper as we did in the KABC and PDA sections above:

1 # unknown parameters: L, crit, feat
2 # known parameters: decay, t.alpha, p
3 # known experimental variables: n.study, n.targets, n.test
4 # calculate the mean and variances from Sheu (1992)
5 temp=minerva2_analytic(L,feat,p)
6 # calculate the hit rate predicted by the model
7 temp.hr=1-pnorm(crit,temp$mean.signal,sqrt(temp$var.signal))
8 # calculate the false alarm rate predicted by the model
9 temp.fa=1-pnorm(crit,temp$mean.noise,sqrt(temp$var.noise))

10 # compute the final joint probability of the data
11 out.hr=sum(log(dbinom(data$hr*sigs,sigs,temp.hr))) # HR
12 out.fa=sum(log(dbinom(data$fa*noise,noise,temp.fa))) # FAR
13 # compute the final joint probability of the data
14 out=out.hr+out.fa

As before, the unknown parameters, known parameters, and experimental variables
are listed in Lines 1–3. The first step is to pass the parameters L and � to the function
minerva2_analytic which computes the mean and variances of the signal and
noise distributions. Notice that this function does not depend on the experimental
variables, as they reflect the long-term representations used in the model to make
recognition decisions. This assumption may be problematic as Minerva 2 is a global
matching model and depends on the properties of the study set. Also note that the
decay term ı is not passed to the minerva2_analytic function as the likelihood
approximation developed by Sheu [37] only considers the predictions of the model
under the constraint that ı D 0. Next, Lines 6–9 compute the hit and false alarm
rates by assuming normal representations for both target and lure distributions (i.e.,
as in [37]). Here, the parameter C (i.e., the variable crit) is used to specify the
boundary point of the integral of the normal distributions, which provides the hit
and false alarm rates predicted by the model. Finally, Lines 10–14 compute the
joint probability of the observed data by adding together the log densities from the
binomial distribution.

3.3.3 Results

For each method, we used a generic MCMC algorithm to sample from the posterior
distribution. We used a Gaussian kernel for each dimension in the parameter space
and set the standard deviations to 0.1, 0.05, and 3 for L, C, and �, respectively. We
ran the sampler with 24 chains for 2000 iterations, and used a burn-in period of
200 iterations. We then thinned the chains by discarding every other sample. Hence,
each method produced 21,624 samples of the joint posterior distribution.
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Fig. 3.1 Marginal posterior distributions for the three Minerva 2 parameters. The left, middle,
and right panels show the estimated marginal posterior distributions for the learning rate L, the
criterion C, and the number of features �, respectively. In each panel, three estimates are shown, one
corresponding to each method used to form the approximation: PDA (gray), analytic expressions
(solid black), and KABC (dotted black). In each panel, the true value of the parameter used to
generate the data is shown as the vertical dashed line

Figure 3.1 shows the estimated marginal posterior distributions for each of the
model parameters. The left panel shows the estimate for the learning rate L, the
middle panel shows the estimate for the criterion C, and the right panel shows the
estimate for the number of features �. Within each panel, the estimate obtained using
each of the three methods is shown: PDA (gray), analytic expressions (solid black),
and KABC (dotted black). In each panel, the true value of the parameter used to
generate the data is shown as the dashed vertical line. Comparing across the three
methods, Fig. 3.1 shows that the estimates obtained using PDA and KABC are more
similar to one another than they are to the estimates obtained using the analytic
expressions.

In particular, the estimate from the analytic expressions for the criterion param-
eter is highly peaked around the value 0.03 and has considerably less variance
compared to the other likelihood-free methods. However, the estimated posterior
is so heavily concentrated that it does not overlap with the value of the parameter
used to generate the data. Similarly, the estimated posterior for the learning rate
parameter using the analytic expressions also misses the true value of the parameter
used to generate the data. Yet, the estimates for the learning rate parameter using
KABC and PDA do overlap with the true value, and are somewhat similar to one
another.

Because the true likelihood function has not been derived for Minerva 2, we
cannot say for sure which of the three estimates is correct. We suspect that
the inaccuracy of the posterior distributions in Fig. 3.1 reflects the effects of the
normality assumption used in Sheu [37]. Although assuming that the target and
lure activation distributions are normally distributed is convenient for deriving an
approximation for the likelihood function, the activation distributions produced
by Minerva 2 are only normal in the limit as the number of features in the trace
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vector increases and the number of traces in the episodic memory matrix increases.
Conventional values for Minerva 2 for number of features and number of traces are
around 20, and so it is possible that the approximation is less accurate under these
conditions. However, because the estimates obtained from the analytic expressions
miss the true value used to generate the data, we suspect that this approximation is
less accurate than either the PDA or KABC methods.

The results in Fig. 3.1 also show some small differences between PDA and
KABC. We suspect that the reason for the differences is due to the kernel-based
approximation, which introduces some approximation error over and above the
error due to Monte Carlo sampling. By contrast, the PDA method removes this
approximation error, but also has the some error associated with the construction
of the simulated PDF. Again, as we do not know what the true posterior distribution
is, we cannot properly evaluate which estimate is more accurate (but see Chap. 4 for
some validation examples).

In addition to the marginal distributions shown in Fig. 3.1, we can also examine
the estimated joint posterior distributions. Occasionally, these posterior distributions
reveal interesting tradeoffs in the model parameters that would otherwise be difficult
to appreciate [38, 44]. Figure 3.2 shows the estimated joint posterior distribution
obtained using the PDA method for each pairwise combination of the three model
parameters. The left panel plots the criterion C against the learning rate L, the
middle panel plots the number of features � against L, and the right panel plots
� against C. Figure 3.2 reveals an interesting curvilinear pattern in the posteriors,
especially in the left and right panels. Although a detailed analysis of Minerva 2 is
outside the scope of this tutorial chapter, we can provide some intuition behind the
tradeoff between the learning rate L and the number of features �. Recall that the
memory traces are formed by a fixed number of features representing the items in
the study list. After an item is presented for study, features of that item are copied
into the episodic memory matrix with probability L. As L increases, the probability
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Fig. 3.2 Joint posterior distributions for the three Minerva 2 parameters. The estimated joint
posterior distribution obtained using the PDA method for each pairwise combination of the three
model parameters are shown: the criterion C against the learning rate L (left), the number of
features � against L (middle), and � against C (right). The true values of the parameters used
to generate the data are shown as the dashed lines
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of copying a given feature increases, making recognition performance better at test.
Hence, when the learning rate is low, Minerva 2 needs more features of the item
to accurately copy enough features to maintain the same accuracy observed in the
data. A similar pattern of tradeoffs exists in the Retrieving Effectively from Memory
(REM) [44, 83, 92] model.

We can learn a good deal about model constraint, flexibility, and identifiability
by close examination of the model parameters. For example, in typical applications,
we assume a diffuse prior on the model parameters. After the posterior distribution
has been estimated, we can compare the spread of the prior distribution relative to
that of the posterior. If a significant discrepancy is observed, where the posterior
distribution has smaller variance than the prior distribution, we can conclude that
the data are constraining the model, because the data have provided evidence that
reduces our uncertainty about the parameter values. Hence, the spread of the joint
posteriors in Fig. 3.2 suggests that the parameters are well identified, and we learn
a lot from our data. In addition, the parameters are highly correlated and trade off
against each other, a finding that is often observed in computational psychological
models [38, 44, 57]. Finally, the joint posteriors reveal reasonably good accuracy
with respect to recovering the true parameter values (also see Fig. 3.1), which further
suggests the model is well identified.

In general, if we were to assess whether or not the posterior estimates were
accurate, we would need the true likelihood function so that we could compare the
estimates obtained by the approximation methods. However, as we don’t currently
have the likelihood function for the Minerva 2 model, we must instead compare
the estimated posteriors to the true value used to generate the data. Unfortunately,
the comparison is not as simple as evaluating the density of the true value of the
parameter within the posterior distribution. In fact, there is nothing that guarantees
an estimated posterior distribution will center around a true parameter value in these
types of simulation studies. All we can assess is whether or not the true value
is contained within the posterior. For KABC and PDA, all of the true values are
contained somewhere within the posterior. However, for the analytic expressions,
the criterion parameter and the learning rate do not contain the true value.

We also measured the total computational time required to complete each
simulation. The PDA method took 10 min and 2 s, the analytic method took 6 min
and 26 s, and the KABC method took 6 min and 58 s. The PDA and KABC method
both require simulations of the model. For optimization purposes, we programmed
Minerva 2 in the C language. The analytic expressions do not require model
simulation, but they do require a number of calculations [37]. We used R to make
the analytic calculations and did not export the code to C because the R version was
relatively fast. To perform each simulation, we parallelized the computation across
8 cores on a Mac Pro desktop computer with a 3.7 GHz processor. The computation
times reveal an interesting tradeoff. First, the fastest results are obtained using the
analytic expressions, and the slowest using the PDA method. However, we believe
that the analytic expressions are also the most inaccurate, and the PDA method is
the most accurate as no error terms corrupt the estimates. However, the differences
between the PDA and KABC estimates are not large, which suggests that the KABC
algorithm may be a suitable approximation for more intensive model fits.
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3.4 Real-World Application: Dennis et al. [4]

Our next exercise fits a hierarchical version of Minerva 2 to data from Dennis et al.
[4]. In this experiment Dennis et al. [4], had people perform a recognition memory
task that manipulated list length and the presence or absence of an additional
filler task between the study and test phase of the experiment. In addition, they
implemented a number of controls to eliminate confounds present in traditional list
length designs. The first of these confounds is an unequal retention interval across
short and long list length conditions, which they controlled by keeping the time
between the onset of the study list and the onset of the test list the same in both
conditions. The second is the possibility of a decrease in attention which might
occur over the presentation of the study list. They controlled this possibility by
only testing items from the beginning of the study list in both short and long list
conditions.

Dennis et al. [4] found that the list length effect depended on the presence of
the filler task. Specifically, when no filler task followed the study list, recognition
performance was better for short lists than for long lists. However, when a filler
task was present there was no list length effect. We chose to fit the model to this
particular dataset because the two independent variables, list length and retention
interval, are both variables for which Minerva 2 makes predictions.

3.4.1 The Model

To fit Minerva 2 to the data from Dennis et al. [4] we must first recall the roles
that each parameter in the model plays and their relationships to the experimental
design.3 We discussed already how Minerva 2, as other global matching models,
accounts for effects of list length as a function of the number of trace vectors in the
memory matrix. Specifically, the matching process comparing an item from the test
list to the episodic image involves a comparison to every item from the study list.
Next, we must consider how the effects of the filler task might influence memory
performance in each task, and how the model might account for these changes across
tasks. We assumed that the effects of the filler task can be explained by the decay
rate parameter ı. We assume that, in the presence of a filler task, the individual
traces in memory decay with probability ı, an assumption that is consistent with the
original implementation of the model [79]. Recall that if a feature in a trace decays
that it reverts to a zero in the episodic image. As a result, increases in ı produce
more memory decay, resulting in lower discriminability.

To implement this mechanism we define a binary indicator Fj to designate the
parameters for a given condition j. We let Fj represent the condition in which the

3Dennis et al. [4] also used words of different frequency (high and low) to construct their study
and test lists. Because Minerva 2 lacks a mechanism for explaining word frequency effects
in recognition memory, for the purposes of this demonstration we collapsed across both word
frequency classes to produce a single hit and false alarm rate for each experimental condition.
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additional filler activity was either absent (Fj D 0) or present (Fj D 1). We can then
write the parameter vector �i;j for the ith subject in the jth condition as

�i;j D fLi; ıiFj; �i;C
. j/
i g: (3.6)

Thus, in conditions with no filler task (Fj D 0), the decay parameter ıi D 0, but
when a filler task is present (Fj D 1), 0 � ıi � 1. The assumption setting the decay
rate is zero when no filler task is present is an arbitrary one, as the other model
parameters should scale accordingly. The important difference here is the value of
the decay rate ıi relative to zero.

For the ith subject in the jth condition, we denote the number of hits as Oi;j;T

and the number of false alarms by Oi;j;D. The number of hits Oi;j;T and false
alarms Oi;j;D arise from binomial distributions with the number of trials equal to
the number of targets Ni;j;T and distractors Ni;j;D, respectively. We can estimate the
probability that the model makes an “old” response to both targets (i.e., the hit rate)
and distractors (i.e., the false alarm rate) by simply simulating the model many
times and tabulating the responses under the different stimulus types. These values
give us the probability of a hit P.H j �i;j/ and false alarm P.FA j �i;j/. Letting the
observed data

Y D ffO1;1;T ;O1;1;Dg; fO1;2;T ;O1;2;Dg; : : : ; fO1;J;T ;O1;J;Dg;

fO2;1;T ;O2;1;Dg; fO2;2;T ;O2;2;Dg; : : : ; fO2;J;T ;O2;J;Dg;

: : : ;

fOS;1;T ;OS;1;Dg; fOS;2;T ;OS;2;Dg; : : : ; fOS;J;T ;OS;J;Dgg

for J conditions and S subjects, the likelihood function for Y is

L.� jY/ D
SY

iD1

JY
jD1

Bin.Oi;j;T j Ni;j;T ;P.H j �i;j//Bin.Oi;j;D j Ni;j;D;P.FA j �i;j//;

(3.7)
where S D 48 is the number of subjects, and J D 4 is the number of conditions.

To complete the model we select priors for each of the parameters. Because the
parameters Li and ıi represent probabilities, they are both restricted to be between
zero and one. We therefore assumed that each of the individual-level parameters ıi

and Li have truncated normal priors bounded by zero and one, or

Li � T N .!L; L; 0; 1/; and

ıi � T N .!ı; ı; 0; 1/;

where T N .a; b; c; d/ denotes the truncated normal distribution with mean a,
standard deviation b, lower bound c, and upper bound d. Because the number of
features parameter �i can only take on integer values, we used a discretized version
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of the truncated normal distribution with mean parameter !�, standard deviation
parameter �, and with a lower bound of two so that

�i � DT N .!�; �; 2;1/;

where DT N .a; b; c; d/ denotes the discretized truncated normal distribution with
mean a, standard deviation b, lower bound c, and upper bound d. Choosing a lower
bound of two restricted each item to have at least two features.4

Unlike current Bayesian recognition memory models [83, 85], Minerva 2 and
the other global matching models use different criteria for an “old” response for
different experimental conditions. This is because changes in Minerva 2 parameters,
such as the learning rate and decay rate, affect the mean of the target activation
distribution without changing the mean of the distractor activation distribution
(although the variances of these distributions are different). To illustrate why a
single criterion is insufficient, consider two experimental conditions with different
retention intervals, or the length of time between study and test phases of the
experiment. The longer retention interval condition will have a higher decay rate,
which will decrease the mean of the target activation distribution. If the decision
criterion is fixed for long and short retention intervals, the lower mean target
activation will result in lower hit rates, but the false alarm rate will not be affected.
If the decision criterion is reduced in the long retention condition, the hit rate will
be lower and the false alarm rate will be higher than in the short retention condition,
which is consistent with experimental findings. Allowing for different decision
criteria across conditions also allows for unbiased responding in each condition.

To ensure that the model can fit the data, we assumed a separate criterion
parameter C. j/

i for each of the J D 4 conditions. This is not without precedent,
as a similar approach was used by Clark and Shiffrin [93] to fit Minerva 2 to
their recognition data. For each individual criterion we specified a normal prior
distribution, so that

C. j/
i � N

�
!
.k/
C ; 

.k/
C

�
:

Because Minerva 2 has never been fit hierarchically to data, we have no
information about the likely ranges of the hyperparameters. As a consequence, we
used noninformative priors for the hyperparameters to reflect this uncertainty. First,
for the mean parameters !L and !ı , we chose a uniform distribution that put equal
density on all values in the interval (0,1), so that

!L � Beta.1; 1/; and

!ı � Beta.1; 1/:

4After fitting the model, we noticed that no marginal distribution for �i went below four, so while
our choice was made out of convenience, it had little effect on the posterior estimates.
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To choose priors for the criteria and number of features, we examined the model
predictions under a variety of different choices for f�;Cg. We found that values of
C ranging from 0 to 0.5 with the number of feature ranging from 10 to 20 produced
data that one might expect from a typical recognition memory task. Thus, we settled
on mildly informative priors for these parameters, given by

!
.k/
C � N .0:05; 1/; and

!� � T N .40; 15; 2;1/:

For the standard deviation hyperparameters  D
n
L; ı; 

.k/
C ; �

o
, we used a

common, mildly informative priors, so that

 � � .1; 1/;

We chose these priors because we expected only a moderate degree of variability in
the individual-level parameters, and the � .1; 1/ distribution covered a sufficiently
large range.

Figure 3.3 shows a graphical diagram for this hierarchical model. These types
of diagrams are often very useful for illustrating how the parameters in the model
(white nodes) are connected via arrows to the observed data (gray nodes) [6,12,17].
When the variables are discrete they are shown as square nodes, whereas when
the variables are continuous they are shown as circular nodes. A double bordered
variable indicates that the quantity is deterministic, not stochastic, and computed
from other variables. For example, the node corresponding to �i;j is double bordered
because it is always determined by evaluating Eq. (3.6). Finally, “plates” show how
vector-valued variables are interconnected. For example, the node for the parameter
!L is not within the plates, which indicates that this parameter is fixed across both
subjects and conditions, whereas there are separate Li nodes for every subject, and
separate C. j/

i nodes for each subject and condition.

3.4.2 Results

To fit the hierarchical model we used the PDA method [56] embedded within the
Gibbs ABC algorithm [70]. We generated proposals using DE-MCMC [57]. In the
implementation of the algorithm we ran 24 chains in parallel, used a burn-in period
of 3000 iterations, and then ran the sampler for 3000 more iterations. Although
each chain was individually assessed for convergence, estimates were formed by
collapsing across all 24 chains and all 3000 samples, resulting in 72,000 samples of
the joint posterior distribution.

To get a sense of whether the model fits the data well, we examined the posterior
predictive distribution (PPD) and compared it to the observed data. The PPD is the
marginal distribution of new, unobserved data given the data already collected. It
gives a prediction about how new data will be distributed if we were to collect more.
In a hierarchical model, we can generate the PPD on a subject level or a group level.
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Subject i = 1,2, . . . ,S

Condition j 

Ni,j,T Ni,j,D

Oi,j,DOi,j,T

θi,j

ωδ ωC ξC

ξLξδ δi

ωL

ωη

ξη

ηi

LiFi Ci

(j)

(j)

(j)

Fig. 3.3 Graphical model for the hierarchical version of the Minvera 2 model fit to the data
of [4]. Parameters in the model are represented as white nodes, observed data variables are
represented as gray nodes, and deterministic variables are represented as double-bordered nodes.
Discrete variables are represented as square nodes, whereas continuous variables are circular. Plates
illustrate a replication of a structure within the model, such as parameters across subjects or across
conditions

Figure 3.4 shows the PPD at the group level separated across the four conditions.
The first column corresponds to conditions in the experiment when no filler was
present (i.e., F0), whereas the second column corresponds to conditions when the
filler was present (i.e., F1). The rows correspond to the two list length conditions,
where L0 denotes the short list condition (i.e., 20 words), and L1 denotes the long list
condition (i.e., 80 words). In each panel, the black dots correspond to the observed
data from Dennis et al. [4] and the gray densities correspond to the PPD. Figure 3.4
shows that the PPD is extremely variable, spreading across the majority of the ROC
space. However, this is also true of the observed data [94]. Figure 3.4 assures us that
the predictions of the model, which are derived from the fits, are at least sensible in
that none of the observed data points fall in a location in the ROC space that is not
predicted by the model.
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Fig. 3.4 The posterior predictive distributions (PPD) from the hierarchical Minevera 2 model.
Each of the panels corresponds to a condition in the experiment from [4]: the columns correspond
to the two filler conditions (i.e., filler absent condition F0 in the left column, and filler present
condition F1 in the right column) whereas the rows correspond to the two list length conditions
(i.e., the short list condition L0 in the top row, and the long list condition L1 in the bottom row).
Observed data are represented as the black dots, whereas the gray density represents the PPD

Having assured ourselves that the model was fitting the data properly, we
examined the posterior distributions. Although there are many parameters we could
inspect, we focused on the group level hypermean parameters. Figure 3.5 shows
the estimated posterior distributions for the four criterion parameters (top row), the
learning rate parameter (bottom left), the decay parameter (bottom middle), and the
number of features (bottom right). Figure 3.5 shows that the learning rate parameter
for these subjects was quite high, with a mean of 0.955. The decay parameter
was very low, with a mean of 0.019. Together these two parameters are important
determinants of overall accuracy in the model, and these values in particular help to
fit the data (see Fig. 3.4). The number of features parameter is relatively low, having
a mean of 8.47. However, from our simulation study above, we now know that when
the learning rate parameter is high, fewer numbers of features are required for the
model to capture high accuracy data (see Fig. 3.2).
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Fig. 3.5 Hypermean parameters for each of the parameters in the hierarchical Minerva 2 model.
The top row plots each of the four criterion parameters !. j/

C , whereas the bottom row plots the
posteriors for the learning rate parameter !L (left), decay parameter !ı (middle), and the number
of features parameter !� (right)

The two most important parameters to explain the experimental effects are the
decay rate ı and the criterion parameter C. Figure 3.6 shows the estimated posterior
distributions of the group-level decay rate (left panel) and the difference in the
average criterion parameters (right panel). The average criterion difference was
computed by collapsing over the criteria for the different list length conditions.
Collapsing was justified because Fig. 3.5 shows the posterior means and variances
of the decay rates are similar in the first and third conditions (short and long list
lengths for no filler task) and in the second and fourth conditions (short and long
list lengths for the filler task). If there was no difference in the activations across
filler conditions, the estimated posterior of the average criterion difference should
be centered at zero. However, Fig. 3.6 shows that the estimated posterior distribution
of the difference has a mean of 0.13 and a 99% probability interval that does not
contain zero. This suggests that, for the filler conditions, although the decay rate
was low, it affected the activations to the extent that the criterion parameter had to
shift to maintain the correct pattern of hit and false alarm rates.

We can use the estimated model parameters to gain some insight into the
activation distributions used by the subjects. To do this, we generated predictions for
the activations in the model for targets and distractors, conditional on the estimates
of the group-level parameters (see Fig. 3.5). Figure 3.7 shows the distributions
for targets (red) and distractors (gray) when the filler task is present (right panel)
and absent (left panel). The criterion parameter is shown as the solid vertical line.
Examining the distributions across the conditions provides better insight into why
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Fig. 3.6 Estimated posterior distributions of the parameters involved in capturing the filler effect.
The left panel shows the group-level decay rate parameter, whereas the right panel shows the
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Fig. 3.7 Target and lure activation distributions used by the model across filler conditions. Target
activation distributions are illustrated by the red histograms, whereas lure activation distributions
are illustrated by the gray histograms. The black vertical line represents the criterion parameter
used in each condition

the criterion is lower in the filler condition. Specifically, when the filler task is
present, the target representation decays away, and the target activation distribution
moves closer to the lure distribution. As a consequence, the criterion parameter
needs to adjust to maintain a hit rate that is consistent with the observed data. Hence,
together Figs. 3.6 and 3.7 illustrate an important interaction that occurs between the
criterion parameters and the decay rate parameter.
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3.5 Summary

In this chapter, we illustrated how likelihood-free techniques can be applied to
the Minerva 2 model of recognition memory. We began by estimating the joint
posterior distribution of the model parameters by generating synthetic data from
the model and fitting the model to these data. We compared the estimates of the
joint posterior distribution obtained using three different techniques: probability
density approximation (PDA) [38], analytic expressions [37], and kernel-based
ABC (see Chap. 2). We showed that while the estimates obtained using the
two likelihood-free approximations converged to similar values, the analytically
convenient approximations diverged from the other methods. Finally, we applied
a hierarchical version of Minerva 2 to data from [4] and examined the estimated
posterior distributions of the model’s hyperparameters. This exercise shows how
useful the likelihood-free techniques can be for the Minerva 2 model, a model that
has never been incorporated into a hierarchy or fit to data using Bayesian techniques.
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4.1 Introduction

In Chap. 3 we used the Minerva 2 model as a basis for a tutorial on the use of
likelihood-free methods. We fit Minerva 2 to data, and compared the estimated pos-
teriors using likelihood-free algorithms to those obtained using analytic expressions
derived in Sheu [37]. Although these analyses presented interesting case studies
about how we can use likelihood-free algorithms to estimate the model’s parameters,
as the true likelihood of the Minerva 2 model has not been derived for the general
case, we have not yet demonstrated that the algorithms discussed in this book can
provide estimates from the correct posterior distribution.

In this chapter, we show a few examples where likelihood-free algorithms have
been used to recover posterior distributions correctly. First, we show how the
parameters of the Bind Cue Decide Model of Episodic Memory (BCDMEM) [85]
can be accurately recovered using the ABCDE [56] algorithm. This simulation study
was carried out and reported in Turner et al. [92], and so we refer the reader to this
work for more details on the model and simulation study reported below. Second,
we show how parameters of a hierarchical signal detection theory [71] model can
be recovered using the Gibbs ABC algorithm [70] and a kernel-based approach
[55]. This simulation study was carried out in Turner and Van Zandt [70], and so
we refer the reader to this work for details on the analyses we highlight below.
Finally, we show how the parameters of the Linear Ballistic Accumulator [95]
model can be accurately estimated using the PDA method [38], but not using the
synthetic likelihood approach [43]. This simulation study was carried out in Turner
and Sederberg [38], where the reader can find more details about the analysis.
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4.2 Validation 1: The Bind Cue Decide Model of Episodic
Memory

The BCDMEM postulates that when a probe item is presented for recognition, the
contexts in which that item was previously experienced are retrieved and matched
against a representation of the context of interest. BCDMEM consists of two layers
of nodes. The input layer represents items in a local code: each node corresponds
to one item. The output layer represents contexts in a distributed code: a pattern of
activation over a set of nodes. When an item is studied, a random context pattern
of length v for that study episode is constructed by turning on nodes in the output
layer with probability s (the context sparsity parameter). The node in the input layer
representing the studied item is connected to the nodes in the output layer through
associative weights. These connections are established during study by connecting
the active nodes on the input and the context layers with probability r (the learning
rate).

During the test phase, the presentation of a probe results in the activation of the
corresponding node at the input layer. This node then activates a distributed pattern
of activity at the output layer that includes both the pre-experimental contexts in
which the item has been encountered, which activate nodes with probability p (the
context noise parameter), and the context created during study if the item appeared
of the study list. This pattern is called the retrieved context vector.

The presentation of a probe also causes the reconstruction of a representation of
the study list context called the reinstated context vector. The reconstruction process
is unlikely to be completely accurate: nodes that were active during the study phase
may become inactive with probability d (the contextual reinstatement parameter).

When a person is asked whether he has seen an item before, he bases his “old”
decision on a comparison between the activation patterns of the reinstated and
retrieved context vectors. As in Dennis and Humphreys [85], the ith node in the
reinstated context vector is denoted by ci and the jth node in the retrieved context
vector is denoted by mj. Both ci and mj are binary, indicating that the nodes i and j
are either inactive or active, so ci D 0 or 1 and mj D 0 or 1, respectively.

To evaluate the match between the reinstated and retrieved context vectors, we
let ni;j denote the number of nodes in the reinstated context vector that are in state
i (0 or 1) at the same time that the nodes in the retrieved context vector are in state
j (0 or 1). For example, n1;1 denotes the number of nodes that are simultaneously
active in both the reinstated and retrieved context vectors. Similarly, n0;1 denotes
the number of nodes that are inactive in the reinstated context vector but active in
the retrieved context vector. We can then compute the probability that a probe item
is a target and contrast that with the probability that a probe item is a distractor by
computing a likelihood ratio given by

L .n j �/ D
	
1 � sC ds.1 � r/

1 � sC ds


n0;0 	 rC p � rp

p


n1;1

.1 � r/n1;0
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�

	
p.1 � s/C ds.rC p � rp/

p.1 � s/C dsp


n0;1

; (4.1)

where � D fd; p; r; s; vg is the set of parameters for BCDMEM and n represents
the vector of frequencies of node pattern matches and mismatches, so n D
fn0;0; n0;1; n1;0; n1;1g.

When we use likelihood-free approaches to estimate the posteriors of the model
parameters, we are always concerned about the accuracy of those posteriors. One
way to evaluate accuracy is to try to recover the parameters that were used to
simulate a data set by fitting the model and comparing the estimated posteriors to
the known values of the parameters. In addition, because the likelihood function
has been derived for BCDMEM [96], we can evaluate whether the estimates of
the posterior distributions obtained using likelihood-free methods are similar to the
estimates obtained using standard likelihood-based techniques. If the two estimates
are similar, then we can declare that the likelihood-free method that was used
provides an accurate posterior estimates for this model.

Equation 10 in [96] provides the explicit likelihood function for BCDMEM as
a system of equations. We will refer to this likelihood as the “exact” equations.
Unfortunately, the exact equations can be difficult to evaluate precisely for all values
of � . For this reason, Myung et al. [96] also derived asymptotic expressions (their
Equations 15 and 16) that approximate the exact solution. We will refer to this
second set of equations as the “asymptotic” equations. The exact and asymptotic
expressions for the hit and false alarm rates allow us to use standard MCMC
methods to estimate the posterior distribution for the parameter set � so long as
v is fixed to some positive integer (v must be fixed or the other parameters are not
identifiable) [96].

4.2.1 Generating the Data

To perform our simulation study, we first generated data from the BCDMEM for a
single person in a recognition memory experiment with four conditions. In each of
the four conditions, the simulated person was given a 10-item list during the study
phase. At test, the person responded “old” or “new” to presented probes according
to whether it was more likely that the probe was a target or distractor. The test lists
consisted of 10 targets and 10 distractors.

To both generate and fit the data, we fixed the vector length v at 200 and the
context sparsity parameter s at 0:02. We then generated 20 “old”/“new” responses
for each condition using d D 0:3, p D 0:5, and r D 0:75. With v and s fixed, our
goal was to estimate the joint posterior distribution for the parameters d, p, and r.
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4.2.2 Recovering the Posterior

To assess the accuracy of our likelihood-free approach, we fit the model to
the simulated data in three ways. First, we used the ABCDE [56] algorithm to
approximate the likelihood function. As discussed in Chap. 2, the ABCDE algorithm
is a kernel-based approach, and so we specified a normal kernel function where
the summary statistics of the data were the hit and false alarm rates. The spread
of the kernel function was fixed to ıABC D 0:1 through the estimation process.
Second, we used the standard Bayesian approach by using the exact expressions
of the likelihood function from Myung et al. [96]. Third, we used the asymptotic
expressions of the likelihood function from Myung et al. [96]. As we did in the
simulation study from Chap. 3, the details of the sampling algorithm were fixed
across the three likelihood approaches, and only the code corresponding to the
evaluation (or approximation) of the likelihood function was changed across the
three methods. We used DE-MCMC [57,60] as the sampling algorithm and obtained
10,000 samples in total. After discarding a burn-in period of 1000 samples, we were
left with 9000 samples collapsed across 12 chains. We used standard techniques to
assess convergence of the chains (using the coda package in R) [97, 98].

4.2.3 Results

Figure 4.1 shows the estimated marginal posterior distributions for d, p, and r
using ABCDE (the gray lines), exact (solid black lines), and the asymptotic (dashed
black lines) expressions. Each panel includes the distributions obtained for a single
parameter, and the dashed vertical lines indicate the true value of that parameter that
generated the data.
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There are two main results of our simulation study. First, the estimated posteriors
we obtained using ABC are very similar to those obtained using the exact expres-
sions for the likelihood. This suggests that the combination of �.X;Y/, K , and ı we
selected produced accurate ABC posterior estimates. Second, the posterior estimates
we obtained using the asymptotic expressions are different from those we obtained
with the true likelihood, especially the posterior estimates for the parameters p and
r. This inaccuracy suggests that the asymptotic expressions will not be very useful
for Bayesian analyses of BCDMEM.

In addition to the differences in posterior estimates that we obtained with
each method, the computation times required to obtain these estimates also varied
considerably with different methods. The method of estimation using exact likeli-
hoods required 2 h and 20 min of computation. The method using the asymptotic
expressions took only 36 s. The ABCDE approach took 2 min and 33 s. While the
asymptotic expressions did provide the fastest results, they were considerably less
accurate compared to the ABCDE approach. Perhaps more interesting is that the
ABCDE approach was 55 times faster than when using the exact expressions, which
we take as a testament to the usefulness of these kernel-based approaches for fitting
simulation models such as BCDMEM.

4.2.4 Summary

In this section, we illustrated the utility of the ABC approach by fitting the
model BCDMEM to simulated data. The derivations in Myung et al. [96] provided
expressions for the model’s likelihood, which allowed us to compare estimates of the
posterior distribution obtained with standard Bayesian techniques to the estimates
obtained with likelihood-free techniques. We showed that the estimates obtained
using ABCDE were very close to the estimates obtained using the exact expressions,
but the estimates obtained using the asymptotic expressions did not closely match
either the ABCDE or exact expression estimates.

4.3 Validation 2: Signal Detection Theory

Signal detection theory (SDT) is one of the most widely applied theories in all of
cognitive psychology for explaining performance in two-choice task. In these tasks,
someone is presented with a series of stimuli and asked to classify each one as
either signal (a “yes” response) or noise (a “no” response). What constitutes noise
and signal can be flexible. For example, a person may be asked to indicate whether
they have observed a flashing light by responding “yes” if they’ve detected it or “no”
if they have not. The variability in the sensory effect of the stimulus, due either to
noise in the person’s perceptual system or to variations in the intensity of the signal
itself, is represented by two random variables: the first is the sensory effect of noise
when no light is presented, and the second is the sensory effect of signal when the
light is presented. Typically, a presentation of a signal (a flashing light) will result
in larger sensory effects than the presentation of noise alone.
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The psychological representations of the effects of signals and noise are fre-
quently modeled with two random variables. These variables are assumed to be
normally distributed with equal variance, although neither of these assumptions
is necessary. The equal-variance, normal version of the SDT model has only two
parameters. The first parameter d represents the discriminability of signals and is
the standardized distance between the means of the signal and noise distributions.
Higher values of d result in greater separation and less overlap between the two
distributions, meaning that signals are easier to discriminate from noise. The second
parameter is a criterion c, which is along the axis of sensory effect. A person makes
a decision by comparing the perceived sensation to c. If the perceived magnitude
of the effect is above this criterion, the person responds “yes.” If not, the person
responds “no” [99].

When the two representations (signal and noise) have equal variance and the
payoffs and penalties for correct and incorrect responses are the same, an “optimal”
observer should place his or her criterion c at d=2. This is the point where the
two distributions cross, or equivalently the point at which the likelihoods that the
stimulus is either signal or noise are equal. We can then write the “non-optimal”
observers criterion c as d=2C b, where b represents bias, or the extent to which the
person prefers to respond “yes” or “no.” Negative bias shifts the criterion toward the
noise distribution, increasing the proportion of “yes” responses, while positive bias
shifts the criterion toward the signal distribution, increasing the proportion of “no”
responses.

SDT has been influential because it separates effects of response bias from
changes in signal intensity. The parameter d, the distance between the means of
the two representations, increases with increasing stimulus intensity. The parameter
b, the person’s bias, is an individual-level parameter that can be influenced by
instructions to be cautious, payoffs or penalties that reward one kind of response
more than another, or changes in the frequency of each type of stimuli.

SDT is meant to be used as a tool to measure discriminability and response bias.
The likelihood function for the SDT model is easy to compute, which makes it yet
another model we can use as a case study to examine other sampling algorithms. In
the BCDMEM example above, we examined a single-level model with the ABCDE
algorithm. For this example, we will investigate the ability of the Gibbs ABC
algorithm to recover both subject-level and hyper-level parameters.

4.3.1 Generating the Data

The parameters for an individual j are that person’s discriminability dj and bias
bj. We built a hierarchy by assuming that each discriminability parameter follows
a normal distribution with mean d� and standard deviation d� , and that each bias
parameter follows a normal distribution with mean b� and standard deviation b� .
To generate data to which the model could be fit, we first set d� D 1, b� D 0,
d� D 0:20, and b� D 0:05. We then drew nine dj and bj parameters from the normal
hyperdistributions defined by the hyperparameters for nine hypothetical subjects.
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We used these person-level parameters to generate “yes” responses for N D 500

noise and signal trials by sampling from binomial distributions with probabilities
equal to the areas under the normal curves to the right of the criterion (i.e., dj=2Cbj).

4.3.2 Recovering the Posteriors

We fit the hierarchical SDT model in two ways. The first way uses the true likelihood
function [6, 9]. The second approach used the Gibbs ABC algorithm and a kernel-
based ABC algorithm to approximate the likelihood function [55], both of which
are described in Chap. 2. We set �.X;Y/ equal to the Euclidean distance between
the observed hit and false alarm rates (i.e., the simulated data to which the model is
being fitted) and the hit and false alarm rates arising from simulating the model with
a set of proposed parameters ��. This distance was weighted with a Gaussian kernel
using a turning parameter ı D 0:01. For both the likelihood-free and likelihood-
informed estimation procedures, we generated 24 independent chains of 10,000
draws of each parameter, from which we discarded the first 1000 iterations. This
left 216,000 samples from each method with which we estimated the joint posterior
distributions of each parameter.

4.3.3 Results

Figure 4.2 shows the estimated posterior distributions for the model’s hyperparame-
ters, d�, b�, d� , and b� , as histograms. Overlaid on these histograms are the posterior
density estimates (solid curves) obtained from the likelihood-informed method (i.e.,
MCMC), and the vertical lines represent the values of the hyperparameters with
which the fitted data were simulated. The left panels of Fig. 4.2 show the estimated
posteriors for the hypermeans b� (top) and d� (bottom). The right panels show the
estimated posteriors for the log hyper standard deviations b� (top) and d� (bottom).
The estimates obtained from the Gibbs ABC algorithm closely match the estimates
obtained using conventional MCMC.

At the individual level, Fig. 4.3 shows the estimated posterior distributions for
the discriminability (dj) parameters. As for the group-level parameters, the two
methods produced posterior estimates that do not differ greatly. Although we can
also examine the posterior distributions for the subject-level bias parameters (bj),
these estimates were similarly accurate as the discriminability parameters shown in
Fig. 4.3.

4.3.4 Summary

We used a combination of Gibbs ABC and kernel-based ABC to estimate the
parameters of the SDT model. The likelihood function for this model is well known
and simple so the true posterior distribution can be estimated using standard MCMC
techniques. We showed that the estimated posteriors using both likelihood-informed
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Fig. 4.2 The estimated posterior distributions obtained using likelihood-informed methods (black
densities) and the Gibbs ABC algorithm (histograms) for the hyperparameters of the classic SDT
model. Vertical lines are placed at the values used to generate the data. The rows correspond to
group-level parameters for the bias parameter b (top) and the discriminability parameter d (bottom).
The columns correspond to the hypermeans (left) and the hyper standard deviations on the log scale
(right)

and likelihood-free methods were similar for both the individual-level and the
group-level parameters. These results demonstrate that Gibbs ABC fused with a
kernel-based approach can recover the true posterior distributions of the hierarchical
SDT model accurately.

4.4 Validation 3: The Linear Ballistic Accumulator Model

The Linear Ballistic Accumulator model (LBA; [95]) is a stochastic accumulator
used to explain choice response time data. In a typical choice response paradigm,
people are asked to make a decision with two or more response alternatives. For
example, in a numerosity task, a person might be asked to select which of two boxes
contains more of a certain type of object (e.g., stars, dots, etc.). The time between
the onset of the stimulus and the execution of the response is the response time
(RT) and the box that is chosen (left or right) determines the choice response. The
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Fig. 4.3 The estimated posterior distributions obtained using likelihood-informed methods (black
densities) and the Gibbs ABC algorithm (histograms) for the person-level discriminability
parameters dj of the classic SDT model. Vertical lines are located at the values used to generate the
data. Each panel shows the posteriors for a different person

data from this task are therefore mixed, including both continuous RT measures and
discrete response measures.

The LBA model postulates the existence of separate accumulators for each
possible choice alternative. Each accumulator stores evidence for a particular
response, and this evidence increases over time following the presentation of a
stimulus. In particular, on accumulator c, the function describing the amount of
evidence as a function of time is linear with slope dc and starting point (y-intercept)
kc. The evidence on the accumulator grows until it reaches a threshold b. The
starting point kc is uniformly distributed in the interval Œ0;A�, and the rate of
evidence accumulation dc is normally distributed with mean v.c/ and standard
deviation s. After the fastest accumulator reaches the threshold b, a decision is made
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corresponding to the winning accumulator, and the RT is the sum of the finishing
time of the winning accumulator and some nondecision time � (encompassing initial
perceptual processing time and the motor response time).

The LBA is one of a large class of information accumulation models that explain
choice and response time data. It differs from other models in this class by eliminat-
ing certain complexities such as competition between alternatives [100,101], passive
decay of evidence (“leakage”) [100], and even within-trial variability [102, 103].
The LBA is therefore mathematically much simpler than other models of this type of
decision, and has closed-form expressions for the joint RT and response likelihoods.
This simplicity is a big reason for this model’s wide acceptance [104–109]. Like
the earlier applications in this chapter, we will simulate data from the LBA model
using known parameters, and then attempt to recover those parameters by fitting the
model back to the simulated data using both the known likelihoods and likelihood-
free algorithms. Although in Chap. 3 we showed how to use the PDA method [38]
to estimate the parameters of the Minerva 2 model, we have not yet shown how the
PDA method can be used to fit a model to data with both continuous and discrete
measures. Further, to stress the importance of selecting good statistics in kernel-
based approaches, we will investigate whether or not quantiles provide sufficient
information for the parameters of the LBA model.

4.4.1 Generating the Data

We simulated data from a hypothetical 2-choice task. For two stimulus types (say,
“more on the left” and “more on the right” for the task described above), there are
two possible responses (“left” and “right”). The LBA model for this task would
therefore require two accumulators, one for the “left” decision and one for the
“right” decision. On each trial, accumulator c will have a starting point kc and an
accumulation rate dc, where c indexes the “left” or “right” accumulator. If a “more
on the left” stimulus is presented, the “left” accumulator’s rate will be greater on
average than the “right” accumulator’s rate, and if a “more on the right” stimulus is
presented, the “right” accumulator’s rate will be greater on average than the “left”
accumulator’s rate. For simplicity, we assumed no asymmetry between the “left”
and “right” accumulators, so we can write the effects of stimulus more compactly in
terms of the means of d“left” and d“right”, letting v.C/ represent the mean accumulation
rate for correct responses (“left” to “more on the left” and “right” to “more on the
right”) and v.I/ represent the mean accumulation rate for incorrect responses (“right”
to “more on the left” and “left” to “more on the right”) and setting v.C/ > v.I/.

We generated 500 responses from the LBA model using a threshold b D 1:0,
setting the upper bound of the uniform starting point distribution A D 0:75,
setting the mean accumulation rate for correct responses v.C/ D 2:5, and the
mean accumulation rate for incorrect responses v.I/ D 1:5. We also added to each
simulated RT a nondecision time � D 0:2. We set the standard deviation of the
accumulation rates to s D 1 to satisfy the scaling properties of the model. All of
these parameter values are consistent with previously published fits of the LBA
model to experimental data.
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4.4.2 Recovering the Posterior

We used three different approaches to estimate the posterior distribution of the
model parameters (i.e., b;A; v.I/; v.C/; � ). The first approach makes use of the
likelihood function (see [57, 95, 108, 109], for applications). The second is the
PDA method for mixed data types as described in Chaps. 2 and 3. When using
this method, we simulated the model 10,000 times for each parameter proposal.
The third is the synthetic likelihood algorithm [43], which requires the spec-
ification of a set of summary statistics S.�/. To implement the algorithm, we
decided to use the sample quantiles (corresponding to the cumulative proportions
{0.1,0.3,0.5,0.7,0.9}) for both the correct and incorrect RT distributions.1 Thus, for
a given set of RTs Y and choices Z, we summarized the data by computing the vector
S.Y;Z/ comprising 11 statistics: 5 quantiles for each of the samples of correct and
incorrect RTs, plus the proportion of correct responses. When using the synthetic
likelihood method, we generated 50,000 model simulations per parameter proposal.

It has been noted that the parameters of the LBA model are highly correlated by
examining the correlation of samples from the joint distribution of model parameters
(see [57]). The correlation in the posteriors makes it difficult to propose sets of
parameters that will be accepted at the same time. As a result, conventional sampling
algorithms such as Markov chain Monte Carlo (MCMC) [46] can be inefficient,
requiring very long chains, and are therefore impractical. For this reason we used
the DE-MCMC algorithm to draw samples from the posterior distribution for each
of the three methods. For each of the three different likelihood evaluation methods,
we implemented a DE-MCMC sampler with 24 chains for 5000 sampling iterations,
discarding the first 100 observations in each chain.

4.4.3 Results

Figure 4.4 shows the estimated posterior distributions obtained using the PDA
method (top row) and the synthetic likelihood method (bottom row). The columns
of Fig. 4.4 correspond to the threshold parameter b, the starting point upper bound
parameter A, the accumulation rate for correct responses v.C/, the accumulation rate
for incorrect responses v.I/, and the nondecision time � . In each panel, the true
estimated posterior distribution (i.e., the posterior obtained using the true likelihood)
is shown as the black curve plotted over the histogram, and the vertical dashed line
marks the value of the parameter used to generate the data.

The figure shows two important things. First, the histograms from the PDA
method align closely with the true density (black curve) and are centered at the
values of the parameters that generated the data. Therefore, we can state that
the PDA method produces posterior estimates that are close to the true posterior

1We treated the correct and incorrect RT distributions as the accumulators themselves, rather than
the response alternatives.
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Fig. 4.4 Estimated marginal posterior distributions obtained using the PDA method (top row),
and the synthetic likelihood algorithm (SL; bottom row). In each panel, the true estimate of the
posterior distribution (i.e., the likelihood-informed estimate) is shown as the black density, and the
vertical dashed lines are placed at the values of the parameters used to simulate the data

estimates. Because the PDA method is a general technique that makes use of all the
observations in the data set, we can be sure the accuracy of the posterior estimates
only depends on the kernel density estimate. Second, the histograms generated using
the synthetic likelihood methods vary widely around the true posterior densities and
are not centered on the values of the parameters that generated the data. Therefore,
we can state that the posterior estimates obtained using the synthetic likelihood
method are probably inaccurate. There may be several reasons for this, but the most
likely is that the summary statistics (i.e., the quantiles) used for the parameters of
the LBA model are not sufficient. The use of quantiles seems to have resulted in
high proposal rejection rates even in the high-probability regions of the posteriors.

4.4.4 Summary

In this section we showed that the PDA algorithm can produce accurate estimates
of the posterior distributions of the parameters of the LBA model. These results are
reassuring, because they imply that the problem of generating sufficient statistics for
a model with no implicit likelihood can be safely bypassed with the PDA method.
The PDA method does not require the use of sufficient statistics. Using this method
we demonstrated accurate recovery of the posterior distribution with only minimal
assumptions and specifications of how to approximate the likelihood function. By
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contrast, the synthetic likelihood algorithm did not produce accurate estimates of
the posterior. While there are several reasons why this can happen, we suspect the
main reason is that the quantiles we used are not sufficient for the parameters of
interest.

This study provides a cautionary tale about the use of likelihood-free algorithms
in inappropriate circumstances. Rejection-based and kernel-based algorithms are
likely to produce errors in the estimated posterior distribution when sufficient
statistics are not known. In these situations, we recommend using the PDA method if
computational resources are available to make extensive model simulation feasible.

4.5 Conclusions

In this chapter, we have illustrated the effectiveness of different likelihood-free
techniques for three popular models in cognitive science. The models we chose
all have a likelihood function, which enabled us to make comparisons between the
estimates obtained using likelihood-free methods and the estimates obtained when
using the true likelihood function.

In the first application, we showed how the ABCDE algorithm could be used
to estimate the posterior distribution of BCDMEM’s parameters. We compared the
estimates obtained using ABCDE to those of the exact and asymptotic equations
put forth by Myung et al. [96]. In the end, we concluded that the estimates obtained
using likelihood-free algorithms were not only as accurate as those obtained
when using the true likelihood function, but they were achieved at a much faster
computation time. We find this promising for the practical implementation of
ABCDE, at least for BCDMEM.

In the second application, we showed how a combination of Gibbs ABC and
a kernel-based approach could be used to accurately estimate the parameters of
a hierarchical SDT model. We found that at both the subject- and group-levels,
the estimates obtained using our algorithms were accurate, given that they closely
resembled the shape of estimates obtained using a standard, likelihood-informed
Bayesian approach.

In the third application, we showed that the PDA method could be used to
estimate the parameters of the LBA model. The application of likelihood-free
algorithms is tricky when the data consist of choice and response time measures
because it is unclear what statistics should be used to convey sufficient information
about the full response time distribution to the model parameters. For this reason,
we used the PDA method to reconstruct the entire choice RT distribution for a given
parameter proposal ��, which we then compared to the observed data. We concluded
that even in the context where sufficient statistics are not known, if we choose the
appropriate likelihood-free algorithm (see Chap. 2), we can still arrive at accurate
estimates of the posterior distribution.
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5.1 Introduction

In Chap. 4, we applied different likelihood-free algorithms to several different
cognitive models. These models all had tractable expressions for the likelihood
functions, which meant that we could estimate their true posterior using standard
posterior sampling techniques. We used these models to validate our likelihood-free
approaches by comparing estimates obtained by fully Bayesian treatments of the
problem to those obtained using our approximation methods. After three examples,
we concluded that the likelihood-free algorithms we used all provided reasonably
good approximations to the true posteriors.

However, it is rarely the case that we would want to approximate the pos-
terior distribution using likelihood-free techniques when the likelihood function
is known.1 For this reason, in this chapter we will highlight a few real-world
applications where simulation-based models (with no likelihoods) are fit using
likelihood-free techniques. In each case, the model fitting process reveals interesting
facts and comparisons that would have otherwise been difficult or impossible to
discover.

The outline of this chapter parallels that of Chap. 4. In the first example, we
fit the Retrieving Effectively from Memory model [83]. The REM model is also
a model of recognition memory, but it makes very different assumptions about
the encoding and retrieval processes. In the second example, we fit a dynamic
extension of the classic signal detection theory model, which we fit in the previous
chapter. This model uses a complex updating process to gradually inform the
representations used by observers, whereas in the classic signal detection theory
model, the representations are assumed to be fixed throughout the duration of the

1Sometimes evaluating the likelihood function is more arduous than simply simulating the model,
as in our BCDMEM example from Chap. 4.
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experiment. This model represents an interesting case study—when the model was
first developed, we used hand-held fits to obtain good estimates of the parameters
via extensive simulations and approximate least squares minimization. However,
with the advent of likelihood-free techniques, we can now fit this model to the same
data that these hand-held fits were applied, and in turn we can now compare and
contrast this Bayesian solution to the approximate least squares one. In the third
example, we compare two complex, stochastic accumulator models fit to a simple
perceptual decision making task. Prior to this application summarized below, neither
of these models had been fit to data in a Bayesian context, which again highlights
the importance of likelihood-free techniques across the domain of cognitive science.

5.2 The Retrieving Effectively from Memory Model

In this section, we summarize a recent application of likelihood-free methods to
compare models of episodic recognition memory [92]. In this application, we
used Gibbs ABC combined with ABCDE to compare the fits of two prominent
cognitive models that make different assumptions about how interference occurs in
memory: the Bind Cue Decide Model of Episodic Memory [85] and the Retrieving
Effectively from Memory (REM) model [83]. These two models make different
assumptions about the source of noise in recognition decisions. As discussed in the
last chapter, BCDMEM posits that interference from different contexts in which a
probe item appeared makes recognition difficult. On the other hand, REM posits that
interference from the other items in the study context makes recognition difficult.2

These two different ideas about interference are built into the structure of the
models, leading them to make different predictions about performance under a range
of experimental conditions. Both models are very powerful and can fit a range of
different experimental effects. However, their relative goodness of fit to data has
not been examined in a rigorous way because, much like other simulation-based
models, their analytic forms are difficult to derive [96].

Rather than summarizing both model fits to data, we can summarize the
hierarchical REM model because at the time of the model comparison analysis
in Turner et al. [92], the REM model’s likelihood had yet to be derived (but see
[110]). Although some variants of the REM model include contextual noise [111],
we used the original REM model that does not include this component [83]. As a
global memory model, the recognition responses that REM produces are based on
a calculation of memory strength arising from a comparison between a probe item
and all the items stored in memory. Each stored item is represented as a vector of
w features, each of which having some psychological interpretation (such as the
extent to which the item “seal” is associated with the concept “wet”). Each feature
can take on positive integer values, and the probability that a feature (“wet”) takes

2Although later instantiations of REM incorporate both item and context noise, for our purposes
we only consider the pure item-noise version for demonstration.
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on a particular value (say, 3) is determined by a geometric distribution, so that the
probability that feature K equals value k is given by

P.K D k/ D g.1 � g/k�1 for k 2 f1; 2; : : : ;1g;

where the parameter g 2 .0; 1/ is called the environmental base rate.
The value of the environmental base rate g is influenced by word frequency. For

high-frequency words g is larger than for low-frequency words. Larger values of g
will decrease the mean and variance of the feature value K. High-frequency words
will therefore tend to have smaller feature values and, because these values take on
only positive integer values, have more features in common. This means that high-
frequency target words will be more difficult to discriminate from high-frequency
distractors.

When an item is studied, its features are copied to a memory trace, but not with
complete fidelity. With probability u, a feature will be copied, and with probability
1 � u, the feature in the trace will remain empty with a value of 0. If a feature is
copied, it may not be copied correctly. It will be copied correctly with probability c,
and with probability 1�c, a random feature value will be sampled from a geometric
distribution with parameter g. After all the features of all items are copied into the
trace, the result is an “episodic matrix,” the dimensions of which are determined by
w, the number of features, and the number of items NSTUDY on the study list.

A probe item presented for recognition is compared to each trace in the episodic
matrix. Following the notation in [83], we let njq be the number of nonzero
mismatching features in the jth trace, and nijm be the number of nonzero matching
features in the jth trace with a value of i. Then, the similarity �j of the jth trace is

�j D .1 � c/njq

1Y
iD1

	
cC .1 � c/g.1 � g/i�1

g.1 � g/i�1


nijm

: (5.1)

The overall memory strength ˚ of the probe is the average similarity across all the
traces to which it was compared, or

˚ D
1

NSTUDY

NSTUDYX
jD1

�j: (5.2)

The memory strength˚ is a likelihood ratio (the probability that the probe is a target
divided by the probability that the probe is a distractor). This implies that an optimal
decision rule is then to respond “old” if ˚ < 1 and “new” if ˚ > 1.

Turner et al. [92] fit a hierarchical version of the REM model to the data presented
in [4], which was presented in Chap. 3. To model the word frequency effects in [4],
we assumed a new parameter � for high-frequency words. For simplicity, we created
a bivariate indicator variable Wj, such that if the word presented on trial j is a high-
frequency word, Wj D 1, and Wj D 0 for low-frequency words. The environmental
base rate can then be written as g.1 �Wj/C �Wj.



98 5 Applications

To model the effects of a filler task, which, in REM, is not linked to any of
the parameters, we wanted to make sure that the number of parameters in REM
was the same as the number of parameters in BCDMEM. This constraint controls
for the most basic definition of model complexity: models with more parameters
are often considered to be more complex than models with fewer parameters. We
chose to model the effects of a filler task as the addition of spurious traces to the
episodic matrix prior to test. Additional traces cause interference and increase the
memory strength of distractor items. This approach added only a single parameter
to REM, and so the dimensionality of REM matches that of BCDMEM. Using again
a bivariate indicator variable F, where Fj D 1 for the filler conditions and Fj D 0

for the no filler conditions, we defined a new parameter � which represents the
number of spurious features added to the episodic matrix. The number of traces in
Condition j can then be written as NSTUDY C Fj�.

The vector length parameter w is not identifiable [110]. By convention, we set w
equal to 20 [26,83]. For notational convenience, we again define �i;j as the vector of
parameters for the ith person and jth condition, so

�i;j D fNSTUDY C �iFj; gi.1 �Wj/C �iWj; ui; ci;wg: (5.3)

Hence, each subject had five free parameters: ci, gi, ui, �i, and �i. We imposed a
simple hierarchal structure such that each of these five parameters had an associated
group-level mean and standard deviation parameter to model variation across sub-
jects. We refer the reader to [92] for the specific details of the hierarchical models.
For illustration, Fig. 5.1 shows a graphical diagram for this model. There are five
lower-level parameters to measure individual-level effects and ten hyperparameters
to model the group-level effects. We represent the number of hits for Person i in
Condition j as Oi;j;T and (similarly) false alarms as Oi;j;D.

5.2.1 Fitting the REM Model to Data

In both [96] and [110], the expressions defining the likelihood functions for
BCDMEM and REM, respectively, require extensive numerical integration that are
difficult and time consuming. For example, in Chap. 4 we showed that estimates
of the joint posterior distribution for the BCDMEM model could be accurately
estimated using the ABCDE algorithm [56], and these estimates were obtained
55 times faster than when using the analytic expressions from Montenegro et al.
[96]. Although the analytic expressions are useful for validating the likelihood-free
approach, fitting hierarchical versions of these models with likelihood-free methods
is a fast and accurate way to approximate the joint posterior distributions.

We used a combination of two algorithms to approximate the likelihoods and to
fit the hierarchical REM model. First, we used differential evolution (DE) [57, 60]
within ABCDE (see Chap. 2) [56] to generate proposals. Second, we used Gibbs
ABC (see Chap. 2) to fit the hierarchical models [70]. Recall that the Gibbs ABC
algorithm takes advantage of the fact that the group-level parameters do not depend
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Condition j = 1,2, . . . ,C

Ni,j,DNi,j,T

Oi,j,DOi,j,T Fj

Lj Wjθi,j

gi

ωg ωγ ωu ωc ωηξg ξγ ξu ξc ξη

γi ui ci ηi

Subject i = 1,2, . . . ,S

Fig. 5.1 A graphical diagram for the hierarchical REM model for the data of Dennis et al. [4]

on the unknown likelihood function, because the group-level parameters depend
on the data only through the individual-level parameters. Thus, if the parameter
space is partitioned appropriately, we can obtain samples directly from the posterior
distribution of the group-level parameters using a technique called Gibbs sampling
and without any need for likelihood-free techniques.

To approximate the likelihood function for each subject, we used a kernel-based
approach with normal kernel function such that

K .xjıABC/ D
1

p
2�ıABC

exp

	
�

x2

2ı2ABC



; (5.4)

where ıABC D 0:2. Using the distance function �.X;Y/ D jjX � Yjj, we evaluated
the fitness of the proposal ��

i;j by calculating

 .��
i;j j X;Y/ D

SY
iD1

CY
jD1

K
�
�. OOi;j;T ;Oi;j;T/ j ıABC

�
K

�
�. OOi;j;D;Oi;j;D/ j ıABC

�
;

(5.5)
where we denote the number of simulated hits as OOi;j;T and the number of simulated
false alarms as OOi;j;D.
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5.2.2 Results

The parameters of greatest interest in REM are those that capture the effects of list
length, word frequency, and filler activity. These are g, the environmental base rate
that explains the effects of word frequency and �, the number of spurious traces
added during performance of the filler activity. Recalling the bivariate indicator
variables we defined earlier, the environmental base rate is g for low-frequency
words and � for high-frequency words; the number of spurious traces is NSTUDY for
conditions with no filler activity and NSTUDY C � for conditions with filler activity.

At the group level, the parameters !� and !g are the means of � and g for
high- and low-frequency words. To compare these parameters, we examined the
posterior distribution of !� � !g to determine if high-frequency words have higher
environmental base rates. The group-level parameters !� and � are the mean and
standard deviation of the distribution of the number of spurious traces, from which
the 48 individual-level parameters � were drawn. Because � is an individual-level
parameter, we can predict the effects of the filler task for an arbitrary person by
simulating values of � from the posterior distributions of the group-level parameters
!� and �. We will call the distribution of the simulated values Q� the posterior
predictive distribution of �.

The left panel of Fig. 5.2 shows the posterior distribution of !��!g, and the right
panel shows the effects of filler activity through the distribution of Q�. Zero (no effect)
is marked with dashed vertical lines. There is a strong effect for the word frequency
manipulation: the probability that !� > !g is 1.0. Therefore, an explanation for
how the model accounts for word-frequency effects is that memory traces for low-
frequency words are more variable and hence contain more distinctive features than
the memory traces for high-frequency words [112]. The difference in the number of
distinctive features results in greater discriminability of low-frequency over high-
frequency words.

The right panel of Fig. 5.2 shows the distribution of Q�. Had there been no
effects of the filler activity, the distribution of Q� would be concentrated around zero.
However, most of the distribution is well to the right of zero, indicating that most
people are sensitive to the filler conditions. The heavy right tail, which extends to
around 150, suggests that some people may indeed be sensitive to the filler task.
The mode of the distribution is 6, which provides a point estimate of the number of
spurious traces we might expect to be added with a filler task.

5.2.3 Concluding Remarks

In this application we demonstrated that ABC provides a way to perform Bayesian
inference with the REM model. The results of the analyses provide a way to fit
the models to data and interpret their parameters that was not previously possible
with standard techniques. Turner et al. [92] were able to directly compare both
the BCDMEM and REM models, and concluded that BCDMEM provided a better
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Fig. 5.2 Estimated experimental effects for the word frequency manipulation (left panel) and at
the filler manipulation (right panel). The null value of zero is represented by the dashed vertical
line in both panels

explanation for some list-length data than did the REM model. Turner et al.
concluded that the REM model performed worse because it predicts a list-length
effect while not all of the subjects show such an effect.

Had we applied frequentist techniques (such as least squares approximation) to
fit these models to data, it would have been difficult to discriminate between them,
and we may have come to the conclusion that both models fit the data equally well.
The likelihood-free techniques discussed here allowed Turner et al. to exploit a fully
hierarchical Bayesian analysis, which allowed for better discrimination between the
BCDMEM and REM models. Namely, the REM model incurred a heavy penalty
for always predicting a list length effect, when some subjects did not show such
effects. Thus, our likelihood-free techniques exposed a critical distinction between
the two models that might have been missed by traditional or frequentist modeling
techniques.

5.3 A Dynamic Stimulus-Driven Model of Signal Detection

In Chap. 4, we discussed the signal detection theory [71] model, and followed that
discussion with a demonstration of accurate parameter recovery using a hierarchical
likelihood-free technique. This result, while reassuring, is only a toy problem
because the likelihood function for the SDT model is simple and well known. In
this section, our focus is on performing likelihood-free inference on an extension of
the basic SDT model, a model that we refer to as the dynamic stimulus-driven (DSD)
[113] model of signal detection. The DSD model was proposed as an alternative to
the basic SDT framework, to accommodate a number of theoretical concerns that
we will now briefly review.

As powerful and ubiquitous as the SDT framework has been in psychology,
there are several empirical findings for which it cannot account [71]. These include
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sequential dependencies over repeated responses, changes in the shape of the
receiver operating characteristic with changes in discriminability, payoffs and prior
probabilities, and improvements in discrimination performance with experience
(learning). Most attempts to explain these effects have focused on how people adjust
decision criteria with experience. This approach neglects the question of how a
person in an experiment builds a representation of the statistical properties of the
stimuli (i.e., how a person constructs his or her representations of signal and noise
over time as the stimuli are presented); the “yes” and “no” decisions are determined
by whether the perceived stimulus is greater than or less than the adapting criterion
while the representations of the signal and noise distributions remain fixed from the
beginning of the experiment until its end.

Because experiments used in laboratory settings often ask people to classify
unfamiliar stimuli that arise from poorly defined categories, it is difficult to see
how a person could select an appropriate criterion to guide his or her “yes”
and “no” decisions when only a poor representation of these unfamiliar stimuli
exists. In developing the DSD model, we were particularly interested in explaining
how observers develop stimulus representations that allow them to discriminate
between signals and noise, and that could change as the stimulus environment
changes. This resulted in a new “dynamic” SDT model that describes how these two
distributions are not only constructed, but also evolve over time. The model makes
no assumptions about how people set appropriate response criteria. In the next
section, we describe the DSD model, and then we use a likelihood-free approach
to fit a hierarchical version of the model to empirical data.

5.3.1 Overview of the DSD Model

In this section we will briefly highlight and explain the three main components
of the model. The first of these components involves how individuals establish
their “priors” about the signal and noise representations. We assume individuals
use one of two methods: (1) they either bring a prior, based on past performance,
that is useful enough for the discrimination task at hand; or (2) they use the
instructions provided by the experimenter during the experiment to develop a
minimally informative prior over an impoverished representation of the decision
axis.

To illustrate how this may work, consider a person being asked to perform a
task that is completely novel and, therefore, he or she has not brought with them
a useful prior. The person must construct a minimally informative prior before
the presentation of the first stimulus based on the description of the task and the
experimenter’s instructions. This representation will require both a “support,” which
is some idea of the range of stimuli that might be experienced, and also an initial
likelihood for the two different stimuli (signal and noise) at a few points on that
support.

For example, the task that we used asked people to decide if a hypothetical patient
is healthy or ill based on a presented “blood assay” value that ranged from 1 to
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99. Using this information, which is available to everyone prior to performing the
task, someone would construct a rough representation of what a signal and noise
trial would look like on the number line between 1 and 99. These representations
take the form of locations or points between 1 and 99. Each person might use a
different strategy for establishing these representations: some might place points
“on the 5s” (5, 10, 15, etc.), some might place points “on the 10s,” and so forth.
If the experimenter provides additional information by noting that the stimuli will
be generated from a random pool of numbers with a mean of 45, then people may
construct a prior that places points clustered around 45.

The task requires not only that each person decide where to place these repre-
sentations, but also decide how many representation points to use. Unfortunately,
humans are notoriously bad at keeping track of large amounts of information
over a short period of time, so it is unlikely that people will be able to maintain
representations with large number of points. Also, it is possible that the stimulus
stream used in the task may change or evolve over time, so people with inflexible
representations will not be able to adjust to these changes. For this reason, the DSD
model includes a mechanism that allows points within a representation to shift in
response to the statistical properties of the stimulus stream.

The second main component of the model is a mechanism for updating priors in
response to information available during the task: the currently presented stimulus,
the response to that stimulus, and any feedback that may be provided. As the person
is exposed to new information during the task, he or she is able to increase (or
decrease) their estimate of the likelihood of each representation (signal or noise)
based on the magnitude of the currently presented stimulus.

For example, assume that a signal stimulus yn is presented on trial n. After
responding to this stimulus, the observer’s signal and noise distributions will be
either increased or decreased depending on the feedback she received. If she receives
feedback that yn was a signal (S), then her representation of the S distribution
fS;n would increase close to the value yn, and the representation of the noise (N)
distribution fN;n would decrease close to the value yn. If, on the other hand, she
receives feedback that yn was noise, then the representation of the S distribution fS;n
would decrease close to the value yn, and the representation of the N distribution
fN;n would increase close to the value yn.

Figure 5.3 demonstrates how the S and N representations evolve over time in
the DSD framework. The grey dotted lines show the N representations, and the
black dotted lines show the S representations. Each dot is a representation point.
Early in the experiment (top panel), the representations are sparse, using only a
few points. Later on, after more stimuli are presented and more information has
been presented available, the representations evolve to look more like the (true)
distributions from which the stimuli were generated (solid lines). Finally, after many
trials the representations closely resemble the true distributions (bottom panel).

The third and final component specifies how people use the stimulus represen-
tations to make decisions. The basis of the decision, as in the classic SDT model,
is determined by the likelihood ratio of the presented stimulus. If the estimated
likelihood that the stimulus is a signal is greater than the likelihood that it is noise,
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Fig. 5.3 An example of how
the DSD model evolves the
representations (dotted lines)
for both signal (black) and
noise (gray) to match the true
stimulus-generating
distributions (solid lines). The
top, middle, and bottom
panels show the DSD model’s
representations after 5, 50,
and 100 trials
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then the person should respond “yes” [112]. However, in this model, the stimulus
representations contain estimates of the likelihoods of signal and noise at only a few
representation points. Thus, we assume that on any given trial, the person accesses
the point that is closest to the perceived magnitude of the presented stimulus and
bases his decision on which likelihood is the highest at this location.

The likelihood ratio decision strategy is equivalent to setting a criterion along
the axis of perceived magnitude, as long as the likelihood ratios are monotonic
with stimulus magnitude. We might also assume that, depending on task demands,
a person may choose not to decide “yes” until the S likelihood of a presented
stimulus is not only greater than the N likelihood of that stimulus, but also until
the S likelihood exceeds the N likelihood by some amount greater than zero.
This strategy would be similar to moving the criterion to the right of the equal-
likelihood crossover point, as long as the likelihood ratios are monotonic. In the
DSD framework, because the representations are highly dependent on the previously
presented stimuli and the responses made to them, there is no reason to believe that
the likelihood ratio will be monotonic with perceived stimulus intensity. Therefore,
there may be no fixed criterion as in the traditional sense, and there may be more
than one location along the axis of perceived magnitude where the likelihood ratio
is equal to one.

As useful as the DSD model is in explaining how a person’s signal detection
strategies change over time, the fact that the stimulus representations evolve over
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trials means that it is difficult to generate model predictions. It is a simulation-based
model with no closed-form likelihood, like the memory models BCDMEM and
REM. We will now fit a hierarchical version of this model using the likelihood-free
approach, which will permit us to make Bayesian inferences that were not possible
in the original study.

5.3.2 The Data

The data we will use in this section comes from the low discriminability condition
of Experiment 1 in Turner et al. [113]. Thirty-one people were presented with blood
assays from 340 “patients” and were asked to decide whether each patient was
healthy or ill. A “yes” response was a decision that a patient was ill, and a “no”
response was a decision that a patient was healthy. The blood assay values were
drawn from Gaussian distributions with means of 40 for the healthy patients and
60 for the ill patients. Each distribution had a standard deviation of 10. For more
details, interested readers should consult Turner et al. [113].

5.3.3 Fitting the DSD Model to Data

The parameters of interest in the DSD model are: � , the probability of adding/re-
placing a representation point; �, the learning rate, which determines how much
the representations increase and decrease after a response; ı, the bandwidth, or how
far the effect of a stimulus magnitude extends past its representation point; and �,
the maximum number of representation points. We assumed that these parameters
were allowed to vary freely across subjects. Beyond this, we assumed a mean and
standard deviation parameter for each of the four subject-level parameters, so that
we could appreciate the group effects.

We used a combination of the Gibbs ABC algorithm and a kernel-based approach
(as in the SDT example in the previous chapter) to fit the model. To implement
the kernel-based algorithm, we used the Euclidean distance between the observed
and simulated hit and false alarm rates for each person, weighted by a Gaussian
kernel with a standard deviation of ıABC D 0:01 to assess the fitness of each
proposal. We then estimated the hyperparameters by sampling from their conditional
distribution, which do not depend on the approximation of the likelihood function
(see Chap. 2). We ran 24 independent chains for 4000 iterations, and treated the first
1000 iterations as burn-in and discarded them. This yielded 72,000 samples with
which to form an estimate of the joint posterior distribution of each parameter.

5.3.4 Results

As we’ve described, the benefit of the likelihood-free Bayesian approach is that
it provides substantially more information about a model’s ability to fit data in the
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Fig. 5.4 Estimated posterior distributions for each of the hyperparameters in the DSD model.
The top row corresponds to the hyper mean parameters whereas the bottom row corresponds to
the hyper standard deviation parameters (on the log scale). The left column corresponds to the
recency parameter �, the middle left column corresponds to the probability of representation point
replacement � , the middle right column corresponds to the bandwidth parameter ı, and the right
column corresponds to the number of representation points �. The vertical lines in the top row
represent the values used by Turner et al. [113] to fit the model to these data, collapsed across
individuals

form of parameter estimates at both group and individual levels. To demonstrate this
utility, we’ll first look at the estimated posterior distributions for each of the param-
eters shown in Fig. 5.4. These posterior distributions tell us how representations for
the signal and noise stimuli are established and maintained.

For example, the posterior of the mean learning rate �� is concentrated on
small values (e.g., 0.0–0.10), which suggests that formation of each person’s
representations is heavily influenced by early experiences with the stimulus set. This
means that because (in this experiment) the statistical properties of the stimuli were
fixed over trials, it was not necessary to adapt or update the representations after the
first few trials.

The posterior estimate for the node replacement probability �� has a mode of
approximately 0.4. This small node replacement probability, in combination with
a small mean learning rate, is consistent with the idea that people had stable
representations that did not vary across trials.

Finally, the posterior estimate of the mean number of representation points �� is
centered between 15 and 20. The stimuli themselves were drawn from distributions
that ranged from 20 to 80, and if we divide this range by the mean of ��, we
can estimate that people placed representation points approximately 3–4 units apart
along the decision axis. Thus, the people in our experiment did not use the full
decision axis as assumed by the classic SDT model, but rather made use of a sparse
representation.
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Fig. 5.5 The posterior predictive distribution of the DSD model (gray cloud) along with the data
of Turner et al. [113] (black points)

While the estimated posterior distributions provide important information about
the model parameters, they do not indicate how well the model fit the data. To
examine model fit, we will estimate the posterior predictive distribution of the
data, which is obtained by generating predictions from the model conditioned on
the sampled parameter estimates. The joint probability density function of the hit
and false alarm rates obtained in this way appear in Fig. 5.5 as a gray cloud of
points, together with the observed data reported by Turner et al. [113] as black dots.
The observed hit and false alarm rates fall neatly within the posterior predictive
distribution, providing some assurance that the model fits the data well.

5.3.4.1 Summary and Conclusions
In this section we used Gibbs ABC to estimate the parameters of the dynamic,
stimulus driven (DSD) model of signal detection. Unlike the classic SDT model
fit in Chap. 3, which has a simple, tractable likelihood function, the DSD has no
closed-form likelihood because the representations evolve over time with changes
in the stimulus and response stream. With the posterior distributions of the model
parameters obtained with these techniques, we can say a lot more about the
processes assumed in the model and how they are influenced by experimental
variables.
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The model we fit was a complex, hierarchical version of the full DSD model. It
required 132 parameters, including all the individual- and group-level parameters.
We assessed the fit by comparing hits and false alarm rates predicted by the model to
those obtained during the experiment and concluded that the model fit the data well.

5.4 Complex, Stochastic Accumulator Models

Turner et al. [114] illustrated the importance of the probability density approxi-
mation method (see Chap. 2) by comparing two neural network models of choice
response time (RT): the Leaky Competing Accumulator (LCA) model [100] and
the Feed-Forward Inhibition (FFI) model [115]. Both models embody neurolog-
ically plausible decision mechanisms such as “leakage,” or the passive decay of
evidence during a decision, and competition among alternatives through either
lateral inhibition (in the LCA model) or feed-forward inhibition (in the FFI model).
As we will discuss below, these mechanisms extend conventional decision models
such as the diffusion decision model (DDM) [103], and these extensions make the
models complex enough that their likelihoods are intractable. In this application, we
summarize the results in Turner and Sederberg [114] where both models were fit to
real-world data and compared by way of an approximate Bayes factor.

5.4.1 The Data

The data to which we will fit the models were collected by Forstmann et al.
[106]. Twenty people completed 840 trials across three conditions of a random
dot motion task. In this task, people were asked to decide which direction, either
left or right, a cloud of dots appeared to be moving. Prior to each trial, people
were instructed to respond under one of three conditions: respond quickly (speed
direction), respond accurately (accuracy condition), or respond without future
instruction (neutral condition). Following each response in the accuracy condition,
people were presented with accuracy feedback (correct or incorrect). In the speed
and neutral conditions, people were warned if their responses were too slow for the
given condition, where “slow” was defined as 400 ms for the speed condition and
750 ms for the neutral condition.

5.4.2 The Models

Turner et al. [114] explored three models. In addition to the LCA and FFI models,
they looked at a constrained version of the FFI model. This constrained model
performed significantly worse than either the LCA or FFI models, and for this
reason, we do not discuss it here.
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5.4.2.1 The Leaky Competing Accumulator Model
The LCA [100] model casts a decision as a race between evidence accumulation
mechanisms. It was presented as a neurologically plausible model of perceptual
decision making. Each accumulator in the race represents a possible response and
is modeled as a Gaussian diffusion process with a reflecting boundary at 0. The
accumulator that exceeds a threshold level of evidence first wins the race and
determines both the response and the RT. For neural plausibility, each accumulator
“leaks” evidence, and there is lateral inhibition between the accumulators, so that
accumulators with high levels of evidence suppress the accumulation of evidence
on accumulators with low levels of evidence.

Panel A in Fig. 5.6 shows the structure of the LCA model for a two-choice
decision task. The bottom nodes represent the stimulus, and these nodes are
connected to an internal “belief state” (i.e., middle nodes) by the drift rates �.
It is in the internal belief state where the evidence accumulation process occurs.
There is a competition between the response alternatives in the belief state that
depends on both the evidence that has been accumulated and lateral inhibition.
As the trial progresses and more evidence is accumulated, the alternative with the

Fig. 5.6 Graphical depiction of the LCA and FFI models. Panels A and B correspond to the
LCA model, whereas Panels C and D correspond to the FFI model. Panels A and C show how
the stimulus input is mapped to the behavioral response. Panels B and D show representative
simulations of each model in a two-alternative decision task
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greatest evidence will inhibit the accumulation of evidence for the other alternative.
This inhibition both decreases the evidence on for the other alternative and increases
the accumulation of evidence on the alternative with the greatest evidence.

In addition to lateral inhibition, both accumulators lose some of their accumu-
lated evidence to leakage. The parameter � is the rate of leakage, which depends on
the current amount of evidence accumulated. As more evidence is accumulated,
more and more evidence will be lost. Eventually, the winning alternative will
accumulate enough evidence to cross some threshold ˛, and a response will be
made.

The interaction between evidence, inhibition and leakage is shown in Panel
B of Fig. 5.6. At the beginning of a trial when the stimulus is presented, each
accumulator starts with the same amount of evidence. Over time, as more evidence
is accumulated, one accumulator will gain an advantage. This will result in an
inhibition of the other accumulator, such that its level of evidence is reduced toward
the starting point. The accumulator in the lead will then accumulate evidence at a
faster rater and so it reaches the threshold more quickly.

We denote the rate of evidence accumulation for the cth accumulator as �c, the
lateral inhibition parameter as ˇ, and the leakage parameter as �. The change in the
evidence level xc of the cth accumulator is represented by the stochastic differential
equation

dxc D

0
@�c � �xc � ˇ

X
j¤c

xj

1
A dt

�t
C t

s
dt

�t

where �t determines the time scale of the RT measurements (e.g., seconds,
milliseconds) and we assume xc  max.xc; 0/—a boundary condition ensuring that
xc is always positive. When the evidence for any accumulator reaches a threshold
˛, the process is terminated, and the response corresponding to that accumulator is
made. Like many other models of choice RT, we can also include a non-decision
time parameter that incorporates perceptual and motor times, which we will denote
� . We assumed that on each trial the accumulation dynamics start at zero by setting
xc D 0 for both c D f1; 2g.

We must also define parameters to capture the variability in the accumulation
process, or how smoothly the accumulation moves from its starting point of 0 to the
threshold ˛. The extent of variability is called the drift coefficient, which, because
the diffusion processes in the LCA are nonstationary, varies over time. We denote
the drift coefficient at time t as t. The diffusion process is continuous in time, and
must be discretized if it is to be simulated. This discretization occurs by taking
very small steps in time �t, and at each step incrementing the evidence level by a
small amount sampled from a normal distribution with a mean of zero and standard
deviation �. In other words, at each time step t in the evidence accumulation process
t � N .0; �/.
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Turner et al. [114] did not employ a hierarchical model. Instead, they fit the LCA
and the FFI to each individual independently. They also constrained the drift rate
parameters so that

P
c �

.c/ D 1 for each person. The parameters dt (with the unit of
seconds) and �t were fixed to 0.01 and 0.1, respectively. Here we will also not fit a
full hierarchical model, and we will restrict our examinations to the individual-level
parameters.

To capture the effects of the task instruction condition, we assumed three
different threshold parameters, creating a total of eight model parameters. At the
level of each individual, we specified uninformative priors across all subject-level
parameters.

5.4.2.2 The Feed-Forward Inhibition Model
The FFI model differs from the LCA model in two ways: (1) there is no leakage of
evidence from the individual accumulators, and (2) lateral inhibition or competition
between the accumulators is modeled differently.

Panel C in Fig. 5.6 shows the evidence accumulation process in the FFI model.
Like the LCA model, the levels of evidence on the alternatives in the belief state are
regulated by the rate of evidence accumulation �. However, whereas competition
in the LCA model depends on the amount of accumulated evidence for each
alternative, the competitive mechanisms in the FFI model depend on the stimulus.
This happens by way of a feed-forward inhibition process (the arrows in the figure)
regulated by a parameter �.

Panel D in Fig. 5.6 shows a simulation of the FFI model. When a stimulus is
presented, evidence for each alternative begins to accumulate towards a threshold.
Competition occurs at the input stage, so gaining an advantage in terms of the
amount of evidence accumulated does not increase an accumulator’s chances of
winning. Inhibition between accumulators depends on the average input to other
alternatives such that

dxc D

0
@�c �

�

C � 1

X
j¤c

�j

1
A dt

�t
C t

s
dt

�t

where � is the feed-forward inhibition parameter, �c represents the rate of evidence
accumulation for the cth alternative, t � N .0; �/ represents the drift coefficient,
and C D 2 is the number of choice alternatives. Like the LCA, the boundary
constraint xc  max .xc; 0/ prevents the evidence level from becoming negative
by reflecting xc at 0.

As in the LCA above, we assumed that the effects of task instruction could be
captured by way of threshold changes. We again constrained the drift rates to sum
to one, fixed dt D 0:01 (the time scale was measured in seconds), and the time
constant parameter �t D 0:1. We also set xc D 0 at t D 0 for both alternatives.
Hence, the FFI model investigated contained a total of seven parameters.
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5.4.2.3 Estimating the Posterior
The LCA and FFI models explain both RT and choice data. Furthermore, the
parameters of choice RT models can sometimes be highly correlated [57], which
makes conventional sampling algorithms such as Markov chain Monte Carlo
inefficient. Therefore, for this analysis, we used the PDA method for mixed data
types [38], and DE-MCMC [56, 57, 60] to generate proposals. We implemented
the DE-MCMC sampler with 50 chains for 2000 sampling iterations following 500
burn-in iterations, producing 100,000 samples of the joint posterior distributions for
each model.

For each proposed parameter, we simulated the models J D 50;000 times and
performed a log transform on the RTs to obtain stable kernel density estimates. The
bandwidth parameters h were calculated for each proposal by way of Eq. (2.25). We
then multiplied each density estimate by the proportion of responses appropriate to
that estimate to obtain the joint likelihoods of RT and responses under the proposed
parameter values.

5.4.3 Comparing the Models

In the context of likelihood-free estimation, the question of how to fairly compare
model performance remains elusive [34, 49, 116]. The issue is that while a statistic
may be sufficient for all of the parameters from both of the models under
comparison, the same statistics may not be sufficient for parameters that characterize
model performance [117]. So, because we can’t compute the Bayes factor by
parameterizing model choice, we must resort to conventional model fit statistics
based on the output from our DE-MCMC algorithm. In Turner and Sederberg [114],
we used four different metrics to compare the relative fits of the LCA and FFI
models: the Akaike information criterion (AIC) [118], the Bayesian information
criterion (BIC) [119], the Bayesian predictive information criterion (BPIC) [120],
and the Bayes factor. However, for our purposes here, we will only discuss the BIC
and Bayes factors (which use the BIC to form an approximation) here. The BIC is
obtained by calculating

BIC D �2 log.L.b� jD//C log.N/p; (5.6)

where N represents the number of data points. To obtain a Bayes factor between two
model candidates Mq and Mr, given data D, we compute the marginal likelihood of
the data under model Mq divided by the marginal likelihood of the data under model
Mr, or

BFq;r D
p.DjMq/

p.DjMr/
:
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There are many other resources discussing how the Bayes factor can be calculated
[45, 121]. For our purposes it is sufficient to note that the computation of the Bayes
factor is performed by obtaining the marginal likelihoods for each model over all
possible values of the models’ parameters. This computation, while not complicated,
can sometimes encounter difficulties. First, for complex models (such as the FFI
and LCA models), the likelihood function is not analytically tractable and must
be estimated using numerical integration or approximated asymptotically. Second,
because the likelihoods for both the FFI and LCA models are unavailable, we must
approximate them. For this application we will use a method presented in Kass and
Raftery [122], who showed that, when comparing Models q and r, the difference
in BIC values BICq � BICr tends to �2 log.BFq;r/ as the sample size increases.
Therefore, we can approximate the Bayes factor by evaluating

BFq;r � exp

	
�
1

2

�
BICq � BICr

�

: (5.7)

5.4.4 Results

We contrasted the fits of the two models by computing the Bayes factor. Figure 5.7
shows the ranked log Bayes factors computed for each person in the experiment.
As the log Bayes factors increase, the evidence for the FFI model over the LCA
becomes stronger. The dashed black horizontal line at zero is the point where the
degree of evidence favors neither model. Subjects with log Bayes factors above
zero show stronger evidence for the FFI model, while those with Bayes factors
below zero show stronger evidence for the LCA model. Figure 5.7 shows that the
magnitudes of the differences from zero are much greater for the log Bayes factors
below zero: When the LCA model is the better model, the evidence for it is much
greater than when the FFI is the better model.

5.4.5 Conclusion

In this application, we used the probability density approximation (PDA) method
to fit two neural network models to the data presented in Forstmann et al. [106].
The first model, the Leaky Competing Accumulator [100] uses neurally plausible
mechanisms such as competition via lateral inhibition and leakage. The second
model, the Feed-forward Inhibition [115] model, assumes that competition between
alternatives follows a feed-forward inhibition process, and it assumes that leakage is
not present in the network. Both models are neurally inspired and have been shown
to account for a number of experimental effects [100, 115, 123–128].

In Turner and Sederberg [114], neither the AIC nor the BIC measures provided
strong evidence that one model should be preferred to the other. However, the BPIC
measure favored the LCA model for most (15 out of 20) people. The discrepancies
among these different metrics is not surprising. They are only crude measures of
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Fig. 5.7 A comparison of the Bayes factors comparing the FFI model to the LCA model for
each person. Individuals have been ranked by log Bayes factor, where a higher Bayes factor
corresponds to greater evidence for the FFI model. The point of indifference between the two
models is represented as the dashed horizontal line at zero

model fit, and more extensive analyses are needed to contrast complex models such
as LCA and FFI. We computed an approximation to Bayes factor using Eq. (5.7)
[119, 122]. The Bayes factor indicated that the FFI was the better model for 12 of
the 20 people in the experiment. However, when the LCA model outperformed the
FFI model, the evidence in its favor was much greater than the evidence in favor
of the FFI. This finding might suggest that different people in the experiment used
different kinds of decision processes. For example, some people might be more
prone to leakage of information from the alternatives in the belief state, or that
the lateral inhibition between the alternatives was stronger, inducing more temporal
dependencies between the alternatives. The explanation for the results could be
theoretically interesting, or perhaps the simplifying assumptions we used to fit the
models influenced their fits to the data, or that the data are not sufficient to tell these
models apart.
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This book has provided an overview of several prominent likelihood-free algorithms
that are readily available for use when fitting psychological models to data. We
began in Chap. 1 by introducing the concepts of approximate least squares, Bayesian
inference, and approximate Bayesian computation (ABC). Next, in Chap. 2, we
presented several likelihood-free algorithms, along with code for implementing
them. Of course there are now many more algorithms available that we could have
discussed, but these algorithms are often more complicated and have not yet been
used in cognitive science. As such, we limited our focus to algorithms that would be
discussed in later chapters. In Chap. 3, we provided a tutorial on fitting the Minerva
2 model to simulated data, and we compared the relative merits of the probability
density approximation (PDA; [38]) method, a kernel-based ABC algorithm, and
asymptotic expressions for an approximate likelihood function. We then showed
how one could extend the kernel-based algorithm hierarchically, and applied it to fit
the Minerva 2 model to the data from [4].

Chapters 4 and 5 focused on a small set of recovery and model-fit exercises
we have completed in our own research. In Chap. 4, we presented “validations”
where each cognitive model had an explicit likelihood function, and so the true
posterior could be estimated. We used the true posterior as a metric for evaluating
the accuracy of posteriors obtained using various likelihood-free algorithms. These
exercises were useful in the applied setting because we have used these examples
to provide assurance that we had made appropriate choices when moving to
similar models with intractable likelihood functions. Whereas Chap. 4 focused on
validating the likelihood-free approach, Chap. 5 provided some interesting examples
of fitting models to data whose likelihood functions are currently intractable. Here,
we provided summaries of applications in our own work; specifically, we fit the
retrieving actively from memory model [44, 83, 92], the dynamic signal detection
model [70, 113], the feed-forward inhibition model [114, 115], and the leaky
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competing accumulator model [100, 114]. While we cannot say whether or not the
estimated posteriors in these applications were accurate, we believe them to be based
on the simulation results from the “validation” studies.

Our hope is that the techniques discussed in this book may serve as the
catalyst in the advancement of mechanistic models of cognition. To us, the primary
advantage of likelihood-free techniques is the infinite number of possibilities
for new model mechanisms, distributional assumptions, or processing stages.
The techniques described here allow freedom from the burden of simplifying
assumptions in an effort to acquire mathematical tractability. While it is not clear
how often simplifying assumptions are made for the purposes of mathematical
tractability, the advantages and disadvantages of the commitment to tractability
motivates a stimulating discussion on the role that tractability should play in model
development. In developing mathematical models, our goal is to put forth a model
that can not only fit data well, but also makes a strong yet accurate commitment to
the distribution of data we should see in our experiments [128,129]. The assessment
of a model’s full credentials involves two important considerations: model fit and
model complexity [130–132].

In the domain of model development, the word complexity can sometimes
refer to either the flexibility of a model and can sometimes refer to the ease of
implementation [133]. However, these are two different concepts. The ease of
implementation is related to the mathematical tractability, but it is not related to
complexity [96, 110]. Within this book, we have described several mathematical
models that are easy to implement and fit to data because there are analytic
expressions relating the model parameters to the data (e.g., signal detection theory).
These expressions make the model very easy to fit to data via maximum likelihood
or Bayesian approaches. Unfortunately, tractability does not necessarily map onto
fewer parameters, or the degree of model flexibility. As such, tractability is also
unrelated to complexity when used as a measure of model performance.

To illustrate, consider as analogy the bind cue decide model of episodic memory
(BCDMEM; [85]). The BCDMEM model was proposed as a pure context model of
episodic memory, an assumption that was at odds with the dominant models at the
time. The model was presented as a simulation model, meaning that the likelihood
function relating model parameters to predictions about the hit and false alarm rates
was intractable. For years, anytime a researcher wanted to fit BCDMEM to their
data, they were forced to rely on simulation methods, such as approximate least
squares. Eventually, Myung et al. [96] produced analytic expressions for the model.
While these expressions are computationally difficult to evaluate, they can be used
to assess the model’s flexibility, complexity, and identifiability [92]. Ultimately,
the expressions derived by Myung et al. [96] unlocked one key facilitator in the
endeavor of rigorous model evaluation: mathematical tractability.

What can we make of the research conducted in the time between the devel-
opment of the original model in 2001, and the derivation of analytic expressions
in 2007? As the assumptions of BCDMEM were never changed during this time
period, the complexity of BCDMEM also never changed. Hence, the ability of
BCDMEM to fit data also never changed. In a similar vein, if a researcher pub-
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lished a paper deriving analytic expressions for say, the complex leaky competing
accumulator (LCA; [100]) model tomorrow, nothing about the previous fits of the
LCA model over the past decade will have changed. Nothing about the model’s
complexity will have changed either. Instead, the LCA model would simply be
given a compelling pragmatic advantage in choosing among the various models
for application purposes because the model would now be (potentially) easier to
fit to data (but note the simulation performance differences for the BCDMEM in
Chap. 4).

While mathematical tractability is highly advantageous, the analyses in this
book highlight the importance of methods for performing inference on simulation-
based models. In theory, any computational model can now be fit to data using
the likelihood-free approach, allowing researchers to regain access to tried-and-true
methods for model evaluation. Our view is that, by using these methods, researchers
are free to experiment with as many complex and stochastic model variants as they
can imagine, while still assessing model flexibility relative to the data. Of course,
tractable models offer compelling advantages, but if compromising assumptions are
required to produce tractability, these assumptions may now be rejected on the basis
of a theoretical position, prior research, or even curiosity.
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Here, we provide the PDFs for several distributions that we use throughout the book.

Beta Distribution The probability of observing the random variable x under the
Beta distribution with shape parameters ˛ 2 .0;1/ and ˇ 2 .0;1/ is

f .xj˛; ˇ/ D
� .˛/� .ˇ/

� .˛ C ˇ/
x˛�1.1 � x/ˇ�1

where � .x/ D .x � 1/Š.

Binomial Distribution In n trials, the binomial distribution defines the probability
of observing x D f0; 1; : : : ; ng successes as

f .xjp; n/ D

 
n

x

!
px.1 � p/n�x;

where the probability of a single-trial success is the parameter p 2 Œ0; 1�.

Gamma Distribution The probability of observing the random variable x under
the Gamma distribution with shape parameter k 2 .0;1/ and scale parameter � 2
.0;1/ is

f .xjk; �/ D
1

� .k/� k
xk�1 exp

�
�

x

�

�
:
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