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Foreword

In the 1950s and 1960s, there was euphoria that antibacterial drugs had been discov-
ered, which seemed to have the potential to eliminate the major role infectious dis-
eases had in reducing the quality and duration of human life. Penicillins, 
cephalosporins, macrolides, tetracyclines, and aminoglycosides were a small but 
manageable armamentarium, which seemed destined to solve many human 
challenges.

Since the 1960s and 1970s, we have recognized how readily most infectious 
agents learn to become resistant to the anti-infective agents to which they are 
exposed. Methicillin-resistant Staphylococcus aureus (MRSA), vancomycin- 
resistant Enterococcus faecium (VRE), carbapenemase-producing Klebsiella 
(KPC), azole-resistant Candida, and acyclovir-resistant herpes simplex have been 
examples of how much urgency there is to create new drugs which will have activity 
against organisms that have learned to evade currently available anti-infective 
agents.

We have also developed new classes of drugs for more recently recognized 
pathogens such as human immunodeficiency virus (HIV) and hepatitis C. These 
older and newer drugs are given to patients who are receiving a rapidly expanding 
armamentarium of molecules to treat their chronic and acute underlying 
conditions.

Healthcare providers are well aware that drugs are only effective and safe if 
administered with tactical and strategic planning. The right dose, given at the right 
time, to the right patient is a foundation for effective and safe care. However, as 
patients are administered more and more agents for a wide range of health chal-
lenges, interactions among drugs become more and more likely.

Every experienced clinician has anecdotes of unanticipated drug interactions that 
affected clinical outcome. Drug interactions can have a major negative impact on 
drug efficacy and can greatly enhance toxicity for the antimicrobial agent being 
focused on or for concurrent drugs that may be life-sustaining.

This fourth edition of Drug Interactions in Infectious Diseases provides health-
care providers with a unique resource for both understanding basic principles and 
finding important information. Volume 1 on Mechanisms and Models of Drug 
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Interactions and Volume 2 on Antimicrobial Drug Interactions are well organized 
for providers to quickly find practical information. This resource maximizes the 
likelihood that the healthcare team can optimize efficacy and safety in this era when 
patients are so often receiving multiple drugs.

Henry Masur, MD
Chief, Critical Care Medicine Department
NIH-Clinical Center
Bethesda, MD, USA

Foreword
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Editors’ Preface

The benefits of new medical therapies in infectious diseases cannot be appreciated 
without understanding and mitigating risk. Drug interactions in infectious diseases 
are a major source of medical harm that can be prevented. Over the past two decades, 
we have witnessed a major expansion in our anti-infective armamentarium. This 
expansion has been coupled with an improved understanding of drug interaction 
mechanisms and scientific approaches to measure them. Our transformation of the 
fourth edition of this text to a two-volume series is a direct reflection of the growing 
knowledge in this domain. Volume 1 provides a mechanistic profile of drug interac-
tions as well as in vitro, in vivo, in silico, and clinical methods to evaluate these 
interactions. Volume 2 is structured by anti-infective class to provide clinicians, 
researchers, and academicians a useful resource to meet their practical needs.

Given the scale of this field of study, no comprehensive reviews on antimicrobial 
drug-drug interactions can be easily published through journals. Software programs 
and deep learning algorithms that can integrate the effects of all known covariates 
of drug-drug interaction are in development but have as yet not entered clinical 
practice. Hence, clinical intuition and vigilance remain key defenses against untow-
ard drug-drug interactions. Since the last publication in 2011, several new antimi-
crobials have received regulatory approval. The chapters have been updated to 
reflect these new additions. Three distinct chapters related to the pharmacologic 
management of human immunodeficiency virus- and hepatitis C virus-related infec-
tions have been added in response to recent drug approvals.

The strength of the textbook lies not only in the fact that it is a comprehensive 
reference book on drug interactions but it also has chapters that provide insights that 
are difficult to find in the medical literature. We are confident that the information 
provided in the detailed tables and text will increase the acumen of the practicing 
clinician, the academic instructor, and the infectious disease researcher.

As the editors of the fourth edition of Drug Interactions in Infectious Diseases, 
we are thrilled to deliver a text that will enhance your clinical knowledge of the 
complex mechanisms, risks, and consequences of drug interactions associated with 
antimicrobials, infection, and inflammation. The quality and depth of the informa-
tion provided would not be possible without the contributions of an excellent 
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 number of authors. We are indebted to our authors for their time and diligence to 
ensure that this textbook remains a primary reference for those engaged in the field 
of infectious diseases. Finally, we thank our families for their support and encour-
agement throughout this endeavor.

Ann Arbor, MI, USA Manjunath P. Pai
Aurora, CO, USA Jennifer J. Kiser
Springfield, MO, USA Paul O. Gubbins
Chicago, IL, USA Keith A. Rodvold

Editors’ Preface
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Author’s Preface

It is well known that drug interactions pose a major risk to patients. Even a cursory 
look at approved drug product labels for anti-infective drugs, such as HIV drugs, 
direct-acting antivirals for HCV, azole antifungal drugs, and anti-mycobacterial 
agents, reveals that drug interactions present a huge challenge for patients and their 
healthcare providers. However, before a drug reaches patients, drug development 
scientists have the opportunity to define the potential for drug interactions. The 
work of these scientists and the regulatory scientists responsible for drug approval 
results in information available to healthcare providers and patients.

Concerns related to drug interactions grow as the knowledge of pharmacology 
advances. The interactions may be due to CYP enzymes, non-CYP enzymes, the 
ever-growing list of drug transporters, changes in gastric pH, and more. It is easy to 
be overwhelmed by the scope of the issue. How do you develop an informative and 
efficient drug interaction program? What drugs are likely perpetrators or victims of 
interactions? Do you have to study all potential interactions? This textbook helps 
answer those questions. The chapters address general drug interaction concepts, 
specific classes of anti-infective drugs, and application of the concepts to drug 
development. Together, the information helps one focus on the overarching goals of 
a drug interaction program, determine the potential for clinically significant drug 
interactions, and develop management strategies for the interactions. The first goal 
can be divided into four questions. Does the investigational drug alter the pharma-
cokinetics of other drugs? Do other drugs alter the pharmacokinetics of the investi-
gational drug? What is the magnitude of the change? Is the change clinically 
significant?

As indicated in the initial chapters of this book, there are many potential mecha-
nisms for drug interactions. Also, concerns go beyond interactions between small 
molecules. Other considerations include interactions due to biologic products, food 
components, and herbal medications. However, the bulk of drug interaction evalua-
tions involve investigation of CYP enzyme- or transporter-based interactions. Drug 
development programs include multiple steps to evaluate the potential for these 
interactions. For both CYP enzyme and transporter interactions, programs often 
begin with in vitro evaluations that screen for interactions. If the in vitro evaluations 
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reveal potential interactions, additional evaluations, usually clinical studies with 
pharmacokinetic endpoints, follow. In some situations, model-based simulations 
can replace clinical studies or help refine their design [1]. Scientific quality and 
rigor is essential for all studies. The methods and interpretation of in vitro metabo-
lism and transporter studies must follow best practices because the results may 
screen out the need for clinical evaluations [2]. Each clinical study should be 
designed to address the goal of the study. Some clinical studies, referred to as index 
studies, use perpetrators (inhibitors or inducers) or substrates (victims) with well- 
known pharmacokinetic and drug interaction properties [1]. Results of the index 
studies can be extrapolated to other drug combinations and inform the need for 
additional studies. The design of index studies should maximize the potential to 
detect an interaction. In contrast to index studies, concomitant use studies investi-
gate drug interactions between the investigational drug and other drugs used in the 
target population [2]. Results of concomitant use studies provide useful information 
for the healthcare provider and patient.

The progression from in vitro to index and then concomitant use studies is a 
common drug development path. However, there are other options. In silico studies 
that use physiologically based pharmacokinetic (PBPK) methods may substitute for 
some clinical studies [1]. Instead of dedicated drug interaction studies, prospec-
tively planned evaluations nested within a larger clinical trial may provide useful 
drug interaction information in the intended patient population. The nested studies 
often use population pharmacokinetic methods. The in silico and population PK 
evaluations should be carefully designed to address their specific goals.

Two draft guidance documents from the US Food and Drug Administration pro-
vide more details about in  vitro and in  vivo drug interaction studies: In Vitro 
Metabolism- and Transporter-Mediated Drug-Drug Interaction Studies Guidance 
for Industry [3] and Clinical Drug Interaction Studies − Study Design, Data 
Analysis, and Clinical Implications Guidance for Industry [4].

The progression of drug interaction evaluations that determine the presence and 
magnitude of pharmacokinetic changes forms the foundation for the next questions: 
Is the interaction clinically significant? How are clinically significant interactions 
managed? Thus, solid knowledge regarding general drug interaction concepts, issues 
related to specific classes of anti-infective drugs, and application of the concepts to 
drug development are essential to the development of anti-infective drugs.

Kellie Schoolar Reynolds, PharmD
Deputy Director, Division of Clinical Pharmacology IV
Office of Clinical Pharmacology, Office of Translational Sciences
Center for Drug Evaluation and Research, US Food and Drug Administration 

Author’s Preface



xi

 References

 1. Rekic D, Reynolds KS, Zhao P et al (2017) Clinical drug-drug interaction evaluations to inform 
drug use and enable drug access. J Pharm Sci 106:2214–2218

 2. Yoshida K, Zhao P, Zhang L et  al (2017) In vitro-in vivo extrapolation of metabolism and 
transporter-mediated drug-drug interactions- overview of basic prediction methods. J Pharm 
Sci 106:2209–2213

 3. US Department of Health and Human Services, Food and Drug Administration, Center for 
Drug Evaluation and Research (CDER) (2017) Draft guidance for industry. In vitro metabo-
lism- and transporter mediated drug-drug interactions. Available at https://www.fda.gov/down-
loads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM581965.pdf. 
Accessed 30 Oct 2017

 4. US Department of Health and Human Services, Food and Drug Administration, Center for 
Drug Evaluation and Research (CDER). Draft guidance for industry. Clinical drug interaction 
studies − study design, data analysis, and clinical implications. Available at https://www.fda.
gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM292362.
pdf. Accessed 30 Oct 2017

Author’s Preface

https://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM581965.pdf
https://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM581965.pdf
https://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM292362.pdf
https://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM292362.pdf
https://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM292362.pdf


xiii

Contents

 1  Beta-Lactam Antibiotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    1
Larry H. Danziger and Karolyn S. Horn

 2  Macrolides, Azalides, and Ketolides  . . . . . . . . . . . . . . . . . . . . . . . . . . .   57
Manjunath P. Pai

 3  Quinolones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   87
David R. P. Guay

 4  Glycopeptides, Lipopeptides, and Lipoglycopeptides . . . . . . . . . . . . .  139
Mary A. Ullman and John C. Rotschafer

 5  Miscellaneous Antibiotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  167
Gregory M. Susla

 6  Drugs for Tuberculosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  221
Rocsanna Namdar and Charles A. Peloquin

 7  Drug Interactions in HIV: Protease and Integrase Inhibitors  . . . . . .  255
Parul Patel and Stan Louie

 8  Drug Interactions in HIV: Nucleoside, Nucleotide,  
and Nonnucleoside Reverse Transcriptase Inhibitors  
and Entry Inhibitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  297
Lauren R. Cirrincione and Kimberly K. Scarsi

 9  Hepatitis B and Hepatitis C Antiviral Agents . . . . . . . . . . . . . . . . . . . .  357
Christine E. MacBrayne and Jennifer J. Kiser

 10  Drug Interactions of Non-HIV Antiviral Agents . . . . . . . . . . . . . . . . .  381
Douglas N. Fish

 11  Antifungal Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  425
Jarrett R. Amsden and Paul O. Gubbins



xiv

 12  Drug-Drug Interactions of Antimalarial Drugs . . . . . . . . . . . . . . . . . .  503
Waheed A. Adedeji, Tunde Balogun, Fatai A. Fehintola,  
and Gene D. Morse

 13  Antiprotozoal and Anthelmintic Agents . . . . . . . . . . . . . . . . . . . . . . . .  515
Tony K. L. Kiang, Kyle John Wilby, and Mary H. H. Ensom

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  551

Contents



xv

Contributors

Waheed A. Adedeji, MBBS, MSc, FMCP Department of Clinical Pharmacology, 
University College Hospital, Ibadan, Oyo State, Nigeria

Jarrett R. Amsden, PharmD, BCPS Department of Pharmacy Practice, Butler 
University College of Pharmacy & Health Sciences, Indianapolis, IN, USA

Tunde  Balogun, DVM, MSc, PhD Department of Clinical Pharmacology and 
Therapeutics, College of Medical Sciences, University of Maiduguri, Maiduguri, 
Borno State, Nigeria

Lauren  R.  Cirrincione University of Nebraska Medical Center, College of 
Pharmacy, Department of Pharmacy Practice, Omaha, NE, USA

Larry  H.  Danziger, PharmD Department of Pharmacy, Tufts Medical Center, 
Clinical Pharmacist Emergency Medicine, Boston, MA, USA

Mary  H.H.  Ensom, Pharm D, FASHP, FCCP FCSHP FCAHS Faculty of 
Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada

Children’s and Women’s Health Centre of British Columbia, Vancouver, BC, Canada

Fatai A. Fehintola, MBBS, MSc, FMCP Department of Clinical Pharmacology, 
University College Hospital, Ibadan, Oyo State, Nigeria

Department of Pharmacology and Therapeutics, University of Ibadan, Ibadan, Oyo 
State, Nigeria

Douglas  N.  Fish, PharmD Department of Clinical Pharmacy, University of 
Colorado School of Pharmacy, Aurora, CO, USA

University of Colorado Hospital, Aurora, CO, USA

David R. P. Guay, PharmD, FCP, FCCP Department of Experimental & Clinical 
Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA

Paul O. Gubbins, PharmD Division of Pharmacy Practice and Administration, 
UMKC School of Pharmacy at MSU, Springfield, MO, USA



xvi

Karolyn  S.  Horn, PharmD Department of Pharmacy, Tufts Medical Center, 
Clinical Pharmacist Emergency Medicine, Boston, MA, USA

Tony  K. L.  Kiang, BSc(Pharm), ACPR, PhD Faculty of Pharmacy and 
Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada

Jennifer  J.  Kiser, PharmD Department of Pharmaceutical Sciences, Skaggs 
School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, 
Aurora, CO, USA

Stan  Louie, PharmD, FASHP University of Southern California, School of 
Pharmacy, Los Angeles, CA, USA

Christine  E.  MacBrayne, PharmD Department of Pharmaceutical Sciences, 
Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado 
Denver, Aurora, CO, USA

Gene D. Morse, PharmD, FCCP, BCPS School of Pharmacy and Pharmaceutical 
Sciences, Center for Integrated Global Biomedical Sciences, University at Buffalo, 
Buffalo, NY, USA

Rocsanna  Namdar, PharmD, FCCP, BCPS Raymond G. Murphy Veterans 
Affairs Medical Center, Albuquerque, NM, USA

Manjunath P. Pai, PharmD College of Pharmacy, University of Michigan, Ann 
Arbor, MI, USA

Parul Patel, PharmD Clinical Pharmacology, ViiV Healthcare, Research Triangle 
Park, NC, USA

Charles A. Peloquin, PharmD Infectious Disease Pharmacokinetics Lab, College 
of Pharmacy, and Emerging Pathogens Institute, University of Florida, Gainesville, 
FL, USA

John  C.  Rotschafer, PharmD, FCCP University of Minnesota College of 
Pharmacy, Department of Experimental and Clinical Pharmacology, Minneapolis, 
MN, USA

Kimberly K. Scarsi University of Nebraska Medical Center, College of Pharmacy, 
Department of Pharmacy Practice, Omaha, NE, USA

Gregory  M.  Susla, PharmD, FCCM Medical Information, MedImmune, 
Gaithersburg, MD, USA

Mary A. Ullman, PharmD Regions Hospital, Department of Pharmacy, St. Paul, 
MN, USA

Kyle John Wilby, BSP, ACPR, PharmD College of Pharmacy, Qatar University, 
Doha, Qatar

Contributors



1© Springer International Publishing AG, part of Springer Nature 2018 
M. P. Pai et al. (eds.), Drug Interactions in Infectious Diseases: Antimicrobial 
Drug Interactions, Infectious Disease, 
https://doi.org/10.1007/978-3-319-72416-4_1

Chapter 1
Beta-Lactam Antibiotics

Larry H. Danziger and Karolyn S. Horn

1.1  Beta-Lactam Antibiotics

The beta-lactam antibiotics are a large class of diverse compounds used clinically in 
oral, parenteral, and inhaled dosage formulation. The beta-lactam antibiotic agents 
have become the most widely used therapeutic class of antimicrobials because of 
their broad antibacterial spectrum and wide therapeutic index. Reports of drug-drug 
interactions with the beta-lactam antimicrobials are a relatively rare phenomenon, 
and when they do occur, they are generally of minor clinical significance. This 
chapter describes the drug-drug interactions of the beta-lactam class of antibiotics: 
penicillins, cephalosporins, carbapenems, and monobactams.

This chapter serves as a review and clinical assessment of the literature regarding 
beta-lactam drug interactions. After reading this chapter, the reader will recognize 
the clinical significance of drug-drug interactions associated with the beta-lactam 
antibiotics and understand the management of these drug-drug interactions.

1.2  Penicillin Drug Interactions

1.2.1  Acid-Suppressive Agents

The combination of various penicillins (ampicillin, amoxicillin, bacampicillin, 
amoxicillin/clavulanate) and H2-receptor antagonists (cimetidine and ranitidine) 
and the proton pump inhibitors (omeprazole, esomeprazole, and lansoprazole) has 

L. H. Danziger (*) • K. S. Horn 
Department of Pharmacy, Tufts Medical Center, Clinical Pharmacist Emergency Medicine, 
Boston, MA, USA
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been evaluated for effects on the bioavailability of different penicillins [1–9]. With 
the exception of bacampicillin, the bioavailability of the penicillins was unaffected. 
The area under the curve (AUC) of bacampicillin was reduced in the presence of 
food, ranitidine, and sodium bicarbonate [5]; however, another study did not dem-
onstrate a difference in AUC with coadministration of omeprazole and bacampicil-
lin [3]. The concurrent administration of most penicillins and acid-suppressive 
agents poses no problems except possibly with bacampicillin.

1.2.2  Allopurinol

An increased incidence of skin rash has been reported in patients receiving either 
ampicillin or amoxicillin concomitantly with allopurinol. In an analysis of data col-
lected in 4686 patients receiving ampicillin, 252 of which were also receiving allo-
purinol, rash was reported in 5.9% of the patients receiving ampicillin compared to 
13.9% of patients receiving both ampicillin and allopurinol (p = 0.0000001) [10]. 
There were no differences in age, sex, diagnosis, or admission laboratory value of 
blood urea nitrogen (BUN) that could be identified between the two groups. Another 
study identified 1324 patients who received ampicillin, with 67 also receiving allo-
purinol. The frequency of skin rashes was higher in the ampicillin-allopurinol com-
bination than ampicillin alone (22.4% vs. 7.5%, p < 0.00005). The incidence of rash 
in those on allopurinol alone was 2.1% [11].

Fessel and colleagues attempted to explain why there is a higher incidence of 
rash in patients receiving allopurinol and ampicillin [12]. They compared the his-
tory of allergies to penicillin, allergies to other antibiotics, presence of hay fever, 
use of antihistamine medications, and the prevalence of asthma in 124 asymptom-
atic hyperuricemic individuals compared to 224 matched normouricemic controls. 
The following results were significant in asymptomatic hyperuricemic subjects ver-
sus the control subjects: history of penicillin allergy (14.1% versus 4.9%), hay fever 
(18.8% versus 8.0%), and use of antihistamine medications (9.9% versus 2.7%). 
The incidence of allergies to antibiotics excluding penicillin and prevalence of 
asthma were not significant between groups. The authors hypothesized that hyper-
uricemic individuals tend to have a higher frequency of allergic reactions; therefore, 
this altered immunologic state may explain the increased incidence of ampicillin 
rashes rather than an ampicillin-allopurinol interaction [12].

Fredj and colleagues reported a case of amoxicillin hypersensitivity 2 years after 
a drug rash with eosinophilia and systemic symptoms (DRESS) induced by allopu-
rinol therapy [13]. Another case of erythema multiforme and allopurinol hypersen-
sitivity syndrome in a patient on concomitant allopurinol and amoxicillin has also 
been reported [14].

The significance of this pharmacodynamic interaction tends to be minor. Clinicians 
may continue to prescribe these agents concomitantly. Patients should be monitored 
and counseled regarding this potential increased incidence of skin rashes when these 
two agents are prescribed concurrently. As with any patient who  develops DRESS or 

L. H. Danziger and K. S. Horn



3

another severe medication-induced rash, the clinician and patient should be cognizant 
of the potential for future medication-induced reactions.

1.2.3  Aminoglycosides

Penicillins and aminoglycosides are commonly used in combination to treat a vari-
ety of infections. However, concomitant use of the extended-spectrum penicillin 
antimicrobials may result in inactivation of the aminoglycosides. Henderson et al. 
reported on the in  vitro inactivation of tobramycin, gentamicin, and netilmicin, 
when combined with azlocillin, carbenicillin, and mezlocillin in plasma samples 
incubated at 37° from 1 to 9 days. They noted that each of the penicillins studied 
decreased the concentrations of the aminoglycosides. The amount of aminoglyco-
side inactivation was related to temperature, contact time, and penicillin concentra-
tion [15]. Although the majority of interactions are reported in vitro, the potential 
for in vivo interactions is of concern, especially in those patients with end-stage 
renal failure [16–23].

1.2.3.1  In Vivo Aminoglycoside Inactivation

Animal models have demonstrated interactions between various penicillins and 
aminoglycosides. In bilaterally nephrectomized canines administered carbenicillin 
and tobramycin, gentamicin, and amikacin, the serum concentrations of all the ami-
noglycosides were decreased at 24 h and 7 days [24]. Additionally, it was noted that 
carbenicillin reduced serum half-lives of gentamicin and tobramycin by 40% 
(P < 0.05). In another study, a decrease in plasma concentrations as well as a varia-
tion in volume of distribution and half-life was shown with coadministration of 
piperacillin and netilmicin in rabbits, but renal accumulation and renal damage were 
similar between rabbits treated with the combination and only netilmicin [25]. 
McLauglin and Reeves noted that rabbits that received only gentamicin were 
reported to have normal gentamicin concentrations, while rabbits receiving carbeni-
cillin and gentamicin had undetectable concentrations at 30 h [17].

Evidence for an interaction between penicillins and aminoglycosides in humans 
is primarily restricted to coadministration with extended-spectrum penicillins, par-
ticularly in patients with end-stage renal failure [17–23, 26, 27]. McLaughlin and 
Reeves reported their experience in two patients [17]. In the first patient, they 
reported undetectable gentamicin concentrations and clinical failure in a 12-year- 
old patient who received an infusion of carbenicillin and gentamicin for Pseudomonas 
bacteremia. The second patient was undergoing hemodialysis and receiving genta-
micin for 8 days for the treatment of a soft tissue infection. Carbenicillin therapy 
was added on day 8. The authors reported that therapeutic serum concentrations for 
gentamicin could not be achieved, despite administration of high doses following 
the addition of carbenicillin. Of note, the patient received more frequent dialysis 

1 Beta-Lactam Antibiotics
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sessions during this period, which may have also contributed to subtherapeutic gen-
tamicin concentrations. Uber et  al. noted similar findings when tobramycin and 
piperacillin where administered concomitantly in a chronic hemodialysis patient 
[18]. Davies et  al. evaluated gentamicin half-lives in the presence of therapeutic 
doses of ticarcillin or carbenicillin in eight patients with end-stage renal failure [20]. 
In patients receiving gentamicin concomitantly with ticarcillin, the gentamicin half- 
life was reduced from 31 to 22 h, whereas gentamicin half-life was reduced from 50 
to 8  h in patients receiving carbenicillin and gentamicin. Blair et  al. also docu-
mented a significant interaction between carbenicillin and gentamicin. The mean 
gentamicin serum half-life was significantly impacted by the presence of carbenicil-
lin (18.4  ±  8.2 versus 61.6  ±  30.7  h, respectively) [22]. However, these authors 
reported that amikacin serum concentrations and clearance were not altered by con-
comitant carbenicillin administration. Lastly, Riff and Jackson reported on four 
patients on chronic hemodialysis receiving gentamicin and carbenicillin concomi-
tantly, noting that the half-life of gentamicin was reduced by over 50% and that 
serum concentration was also reduced by 20–40% [23].

However, Halstenson et al. assessed the effect of piperacillin administration on 
the disposition of netilmicin and tobramycin in 12 chronic hemodialysis patients 
[19]. The half-life of netilmicin was not significantly altered when given concur-
rently with piperacillin. In comparison, the half-life of tobramycin was considerably 
reduced in the presence of piperacillin (59.62 ± 25.18 versus 24.71 ± 5.41 h). Lau 
et al. were unable to document any such drug-drug interaction between piperacillin 
and tobramycin in subjects with normal renal function (defined as creatinine clear-
ances of greater than or equal to 60 mL/min) [28]. One report of healthy subjects 
who received 1 g of aztreonam both alone and combined with 0.5 g of amikacin 
showed no difference in overall exposure between monotherapy and combination 
therapy [29]. Hitt and colleagues reported no differences in pharmacokinetic param-
eters of once-daily gentamicin with the coadministration of several piperacillin- 
tazobactam regimens in subjects with normal renal function [30]. Similarly, Dowell 
et al. were unable to demonstrate differences in the pharmacokinetic parameters of 
tobramycin when administered alone or with piperacillin/tazobactam in subjects 
with moderate renal impairment (creatinine clearance between 40 and 59 mL/min), 
mild renal impairment (creatinine clearance between 20 and 39 mL/min), or normal 
renal function (creatinine clearance greater than 90 mL/min) [31].

Roberts and colleagues evaluated 18 healthy, cystic fibrosis patients adminis-
tered either tobramycin alone or tobramycin plus ticarcillin. They noted that the 
clearance and volume of distribution of tobramycin increased by 13% (P < 0.001) 
and 14% (P < 0.001), respectively, with the coadministration of ticarcillin. They 
also noted that the concentration of tobramycin was decreased significantly (by 
13%) when measured out to 330 min, in the presence of ticarcillin. The authors felt 
this difference was unlikely to be of any clinical significance [32].

It has been suggested that the extended-spectrum penicillins interact chemically 
with the aminoglycosides to form biologically inactive amides. The degree of inac-
tivation is dependent on the specific aminoglycoside and beta-lactam used [20, 33]. 
In vivo inactivation of aminoglycosides occurs at such a slow rate that it appears to 
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be clinically insignificant in patients with normal renal function [28, 33]. Some 
investigators have stated that this interaction could possibly be relevant for patients 
with renal failure who have high serum concentrations of penicillins [19, 20, 34]; 
therefore, close therapeutic monitoring of aminoglycosides is warranted in this spe-
cific clinical situation.

Concomitant administration of oral neomycin and penicillin VK has been 
reported to reduce serum concentrations of penicillin [31]. In healthy volunteers, 
penicillin VK concentrations decreased by over 50% following the administration 
of oral neomycin concomitantly with penicillin VK [31]. Due to the significant 
decrease in penicillin exposure, penicillin VK should not be administered to patients 
receiving oral neomycin.

1.2.3.2  In Vitro Aminoglycoside Inactivation

In vitro inactivation of aminoglycosides can be significant when these agents are 
prepared in the same intravenous mixture for administration [17, 23, 33]. Noone and 
Pattison showed that within 2 h of admixing at room temperature, an intravenous 
fluid mixture containing ampicillin (concentration equivalent to 12 g/d) and genta-
micin resulted in a 50% decline in the gentamicin activity. After 24 h, no measurable 
gentamicin activity was noted [33]. An intravenous fluid mixture containing genta-
micin and carbenicillin demonstrated a 50% reduction in activity between 8 and 
12 h after admixing at room temperature. Aminoglycosides and penicillins should 
not be mixed together prior to infusion.

1.2.3.3  In Vitro Inactivation Aminoglycoside in Sampling Serum 
Concentrations

If high concentrations of penicillins are present in serum samples that are to be 
assayed for aminoglycoside concentrations, inactivation of the aminoglycosides by 
the penicillins can result in falsely decreased aminoglycoside concentrations [16, 
35]. Penicillin concentration, period of time prior to sampling, and storage tempera-
ture of the sample are factors that affect the extent of inactivation [16]. When mea-
suring aminoglycoside serum concentrations through intravenous tubing, one 
should flush 5–10 mL of either normal saline or 5% dextrose in water (based on 
drug compatibilities) through the tubing before withdrawing blood to minimize the 
amount of beta-lactam present in the intravenous tubing prior to sampling.

1.2.3.4  Aminoglycosides: Synergy

The concomitant use of beta-lactam and aminoglycoside antimicrobials has been 
described as synergistic for several Gram-positive and Gram-negative organisms 
[36–39]. By inhibiting the cell-wall synthesis, beta-lactams increase the porosity of 
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the bacterial cell wall resulting in greater aminoglycoside penetration and access to 
target ribosomes [40].

The use of penicillin or ampicillin in combination with an aminoglycoside has 
been documented to be advantageous in the treatment of streptococcal and entero-
coccal infections [41–47]. As a result of increased efficacy with combination ther-
apy, many severe streptococcal and enterococcal infections are routinely treated 
with penicillin or ampicillin plus an aminoglycoside [46].

Despite the well-documented in vitro synergy between beta-lactams and amino-
glycosides, limited clinical data are available supporting superior efficacy of syner-
gistic versus nonsynergistic combinations for the treatment of Gram-negative 
infections. Anderson et al. retrospectively evaluated Gram-negative bacteremias to 
determine if the treatment with one or two antimicrobials effected outcome and 
whether in vitro synergy correlated with superior efficacy [48]. Of the 173 patients 
treated with two drugs, the clinical response rate was 83% in patients who received 
synergistic versus 64% with nonsynergistic antimicrobial regimens (p < 0.05). The 
use of synergistic antimicrobial combinations (aminoglycoside plus ampicillin or 
carbenicillin) was associated with better clinical response in patients with neutrope-
nia (p < 0.001), shock (p < 0.001), Pseudomonas aeruginosa bacteremias (p < 0.05), 
and “rapidly or ultimately fatal” conditions (p < 0.005). However, the data from 
several meta-analyses do not support the use of concomitant antimicrobial therapy 
for definitive treatment of Gram-negative bacterial infections [49]. In critically ill 
patients with severe sepsis associated with Gram-negative bacteremia, the combina-
tion of an extended-spectrum penicillin and aminoglycoside is a reasonable thera-
peutic approach [49].

1.2.4  Anticoagulants

1.2.4.1  Heparin

A number of case reports have suggested that parenteral penicillins in combination 
with heparin have caused coagulopathies [50–56] and may predispose patients to 
clinically significant bleeding [53–55, 57]. The exact mechanism of this interaction 
is unknown but may be a result of a direct effect on platelet function by penicillins, 
which may have an additive anticoagulant effect when combined with heparin [51, 
52, 57].

Wisloff and colleagues evaluated the bleeding time of patients receiving heparin 
and penicillins compared to heparin alone [56]. Fifty patients were placed on hepa-
rin (5000 IU subcutaneously for 7 days) following an elective vascular surgery pro-
cedure and were also randomized to receive a combination of ampicillin and 
cloxacillin or no antibiotics. The patients that were receiving heparin along with the 
penicillins had a slightly longer bleeding time; however, this was still within an 
acceptable range in most cases.
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Since patients receiving heparin are routinely monitored closely for coagulopa-
thies and clinically significant bleeding, the potential interaction between these two 
drugs does not warrant further precautions.

1.2.4.2  Warfarin

A decreased anticoagulant effect for warfarin has been documented when given 
concomitantly with nafcillin [58–63], dicloxacillin [58, 64, 65], cloxacillin [66], 
and flucloxacillin [67, 68]. This interaction can be significant, necessitating up to a 
two- to fourfold increase in warfarin dose during concomitant therapy. In addition 
to decreasing INR levels, cloxacillin has also been described as increasing INR in a 
patient on chronic warfarin therapy [69].

It has been postulated that these antibiotics induce the cytochrome P450 system 
and may increase the metabolism of warfarin [60, 63, 70, 71]. Another possible 
explanation may involve the ability of these highly protein-bound agents to displace 
warfarin. However, Qureshi et al. performed an in vitro study and demonstrated that 
nafcillin did not affect the protein binding of warfarin [60]. Cropp and Busey 
reported that the usual onset of this interaction between nafcillin and warfarin is 
within 1 week after initiation of nafcillin therapy and with warfarin requirements 
returning to baseline usually within 4 weeks after the discontinuation of the nafcil-
lin [72].

Krstenansky et al. studied the effect of dicloxacillin in seven patients stabilized 
on warfarin therapy [64]. Prothrombin times (PTs) were obtained prior to treatment 
and on days 1, 3, 6, and 7 of dicloxacillin administration. A decrease in the PT was 
observed in all patients on day 6 or 7 compared to baseline PT values. The decrease 
in PT ranged from 0.3 to 5.6 s (mean ± SD of −1.9 ± 1.8 s) and was statistically 
significant (p < 0.05). This interaction is described in case reports for patients being 
treated with dicloxacillin and warfarin [58, 69, 73]. Similar to nafcillin and warfa-
rin, the effects of the interaction on international normalized ratio (INR) often last 
for up to 3 weeks after discontinuation of dicloxacillin.

Brown and colleagues presented a case report of a patient on warfarin 2.5 mg 
daily who developed an increased hypoprothrombinemia response after receiving 
high-dose intravenous penicillin (24 million units/day). Upon withdrawal of the 
penicillin, the patient’s prothrombin time subsequently returned to his baseline [74].

Davydov et al. reported a case of a 58-year-old woman, in which warfarin inter-
acted with amoxicillin/clavulanate resulting in an elevated international normalized 
ratio (INR) and hematuria [75]. More recently, amoxicillin, amoxicillin- clavulanate, 
and cloxacillin have all been implicated in case reports as interacting with warfarin 
to increase INR [76, 77]. It is important to note that some of these reports also 
describe clinically significant bleeding that occurred as a result of this interaction 
[75, 77].

Although the exact mechanism of this interaction remains unknown, it has been 
proposed that broad-spectrum antibiotic use may lead to a decrease in vitamin 
K-producing bacteria within the gastrointestinal tract. This may then result in a 
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vitamin K-deficient state (especially in patients with low dietary intake of vitamin 
K) potentially leading to an increased effect of warfarin. Clinicians should be aware 
of the potential interaction between penicillins and oral anticoagulants and monitor 
the PT and INR in patients receiving these agents concurrently.

1.2.4.3  Direct Oral Anticoagulants

To date no studies have been published regarding drug interactions between the 
penicillin antibiotics and the direct oral anticoagulants (DOACs; dabigatran, rivar-
oxaban, apixaban, and edoxaban). However, Lippi et al. described that a review of 
the Web site of eHealthMe reported cerebral hemorrhage in two patients, rectal 
hemorrhage in six patients, and ten episodes of hematemesis in patients receiving 
amoxicillin and dabigatran concomitantly [78]. According to these reports, it would 
seem prudent that patients concomitantly administered amoxicillin and the DOACs 
require close follow-up.

1.2.4.4  Aspirin

Large doses of aspirin may increase the serum concentrations and half-lives of peni-
cillin, oxacillin, nafcillin, cloxacillin, and dicloxacillin when administered concur-
rently [79, 80]. Eleven patients with arteriosclerotic disorders received penicillin G 
before and after high doses of aspirin (3 g/d) [79]. During aspirin administration, 
penicillin half-life increased from 44.5 ± 15.8 m to 72.4 ± 35.9 m (p < 0.05) [79]. 
The mechanism of this interaction remains unknown. Some have speculated that 
this interaction may occur as a result of aspirin displacing penicillin from protein- 
binding sites or of aspirin competing with penicillins for the renal tubular secretory 
proteins [79–83]. Avoidance of this combination is unnecessary.

1.2.5  Beta-Adrenergic Blockers

Coadministration of ampicillin and atenolol may lead to a decrease in the serum 
concentration of atenolol. In a crossover study, six healthy subjects were orally 
administered with 100 mg atenolol alone and with 1 g ampicillin. Atenolol pharma-
cokinetics were assessed after a single dose and after reaching steady state. These 
subjects previously received intravenous atenolol in another study, which was uti-
lized to determine oral bioavailability in the present study. The bioavailability of 
atenolol was reduced from 60% (atenolol alone) to 36% (single-dose atenolol and 
ampicillin, p < 0.01) to 24% (steady-state concentrations of atenolol and ampicillin, 
p < 0.01) [84]. Other atenolol pharmacokinetic parameter values for AUC, Cmax, 
and mean steady-state concentrations were also significantly reduced (p < 0.01). 
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Despite the differences in atenolol serum concentration, blood pressure measure-
ments did not differ between the groups over a 4-week treatment period.

McLean and colleagues also performed a crossover study administering oral 
atenolol and ampicillin to six volunteers [85]. Unlike the previous study, these 
investigators dosed ampicillin at clinically applicable doses of 250 mg four times a 
day, as well as higher doses of 1 g. The mean reduction of AUC was lower in the 
former dosing regimen compared to the latter one (18.2% versus 51.5%).

Although the clinical significance of this interaction is questionable, it would 
seem reasonable that patients should be monitored for this interaction when higher 
doses of ampicillin are used, especially in the presence of renal dysfunction; how-
ever, no empiric dosage alterations are recommended at this time.

1.2.6  Calcium Channel Blockers

Nifedipine appears to increase the bioavailability of amoxicillin by facilitating its 
active transport mechanism within the gastrointestinal tract [86]. In a randomized 
crossover study conducted in eight healthy volunteers, each subject received 1 g oral 
amoxicillin with 20 mg nifedipine or placebo. The absolute bioavailability of amox-
icillin was noted to increase from 65.25% to 79.2% with the addition of nifedipine 
(p < 0.01) [86]. The AUC also increased from 29.7 ± 5.3 mg · h/L (amoxicillin 
alone) compared to 36.26 ± 6.9 mg · h/L (amoxicillin and nifedipine) (p < 0.01). 
Since no adverse events were associated with the alterations of these pharmacoki-
netic parameters, no dosage adjustments are recommended.

Nafcillin has been postulated to enhance the elimination of agents metabolized 
through the cytochrome P450 system [63, 70]. A crossover study was conducted to 
evaluate the induction potential of nafcillin on nifedipine, a substrate of the cyto-
chrome P450 3A4 enzyme [71]. Healthy volunteers were randomized to receive 
5 days of oral nafcillin (500 mg four times daily) or placebo, which was followed 
by a single dose of nifedipine. The subjects who received nafcillin along with nife-
dipine were found to have a significant reduction in the nifedipine AUC0–∞ 
(80.9 ± 32.9 μg · l/h versus 216.4 μg · l/h; p < 0.001) and enhanced plasma clearance 
(138.5 ± 42.0  l/h versus 56.5 ± 32.0  l/h; p < 0.002) compared to the nifedipine- 
placebo group. Due to the limited available data, the clinical significance of this 
interaction is unknown.

In an animal model, the total exposure of amlodipine was increased by 42 and 
133% greater when it was coadministered with ampicillin at doses of 10 mg/kg 
and 20  mg/kg, respectively, compared to amlodipine alone (p  <  0.001). The 
authors postulated that ampicillin (and possibly other antibiotics) increases 
amlodipine exposure by suppression of gut microbes responsible for metabolism 
of amlodipine [87].
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1.2.7  Chloramphenicol

The administration of a bacteriostatic agent such as chloramphenicol may antago-
nize the bactericidal activity of beta-lactam antimicrobials [88, 89]. Beta-lactam 
antimicrobials exhibit their bactericidal effect by binding to penicillin-binding pro-
teins and inhibiting bacterial cell-wall synthesis. For beta-lactams to exert optimal 
bactericidal effects, bacteria should be actively growing and dividing. However, 
bacteriostatic agents such as chloramphenicol, which may inhibit protein synthesis, 
may interfere with the bactericidal activity of penicillins.

In vitro studies have demonstrated the concomitant of penicillins and chloram-
phenicol to be antagonistic, particularly in the setting of chloramphenicol-resis-
tant, ampicillin-susceptible strains [88, 90, 91]. Although Solberg and Andersen 
did not find antagonism with the combination of penicillin and chloramphenicol 
against meningococci in vitro [92], Asmar and Dajani found that the combination 
of ampicillin and chloramphenicol could be synergistic if the chloramphenicol was 
bactericidal against the organism, but antagonistic if chloramphenicol was bacte-
riostatic [93]. Human data do not support these findings [94, 95]. Patients with 
gonococcal infections treated with a combination of penicillin and chlorampheni-
col had better clinical outcomes than patients treated with penicillin alone [94]. 
Superior outcomes were also reported among patients infected with typhoid fever 
who were treated with chloramphenicol plus ampicillin compared to chloramphen-
icol alone [95].

Relevant clinical information is limited for this drug-drug interaction. Since the 
in vivo and in vitro data concerning this interaction are contradictory, it seems pru-
dent to avoid the concurrent use of these antimicrobials.

1.2.8  Chloroquine

Investigators conducted a study in healthy volunteers to evaluate the coadministra-
tion of chloroquine and ampicillin on the pharmacokinetics of ampicillin [96]. 
Ampicillin pharmacokinetics alone or in the presence of chloroquine was deter-
mined by characterizing the drug’s renal elimination. The mean percent of dose 
excreted was 29% for ampicillin alone versus 19% for the ampicillin/chloroquine 
combination (p  <  0.005). The coadministration of ampicillin and chloroquine 
resulted in a significant reduction in ampicillin bioavailability, but not in time of 
maximal excretion [96]. Based on limited data, coadministration of these agents 
may lead to a reduction in ampicillin concentrations. The antimicrobial effects of 
the combination of chloroquine with either penicillin G or penicillin VK on 
Staphylococcus aureus were evaluated [97]. Antagonistic microbiological effects 
were observed with chloroquine when combined with these two penicillins. The 
clinical significance of these interactions remains unknown, but avoidance of the 
combination appears to be unnecessary.
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1.2.9  Ciprofloxacin

Several in vitro studies examining penicillins (piperacillin, azlocillin) coadminis-
tered with ciprofloxacin found an antagonistic effect when the concentrations of the 
antibiotics were at less than one-fourth of the MIC for the organism studied [98, 99]. 
Smith and Eng found no synergy or antagonism with the combination of ampicillin 
and ciprofloxacin against Enterococcus faecalis [100]. Fuursted and Gerner-Smith 
found a synergistic effect with the combination of piperacillin and ciprofloxacin 
against Pseudomonas aeruginosa [101]. Overbeek and colleagues did not find syn-
ergism or antagonism with the combination of ciprofloxacin and azlocillin against 
Acinetobacter anitratum [102]. Smith and colleagues found synergy with the com-
bination of levofloxacin and ampicillin against selected isolates of E. faecium [103].

Interactions between the penicillins and fluoroquinolones have been rarely docu-
mented in humans [104, 105]. Barriere and colleagues assessed the effect of the 
concurrent administration of ciprofloxacin and azlocillin in a crossover trial [104]. 
Six subjects were administered single doses of ciprofloxacin and azlocillin alone 
and in combination. Similar pharmacokinetic profiles were noted with azlocillin; 
however, when coadministered with azlocillin, a statistically significant reduction in 
total clearance and renal clearance of ciprofloxacin was noted. Orlando and col-
leagues administered ciprofloxacin and azlocillin both in combination and alone to 
healthy volunteers and measured the area under the bactericidal titer curve to com-
pare agents. They found an additive effect for the combination of ciprofloxacin and 
azlocillin for Escherichia coli, Staphylococcus aureus, and Klebsiella pneumoniae, 
but not for Serratia marcescens [106]. Based on limited data, coadministration of 
these agents need not be avoided.

1.2.10  Contraceptives: Oral Estrogen

Several case reports of breakthrough bleeding and pregnancies have been reported 
in patients receiving oral contraceptives and antibiotics concomitantly [107–111]. 
It has been postulated that antibiotics interfere with the enterohepatic circulation of 
oral estrogens, resulting in subtherapeutic estrogen concentrations [109–111]. 
After oral estrogens are absorbed, they undergo hepatic metabolism to glucuronide 
and sulfate conjugates and are excreted into the bile. Bacteria residing in the gut 
hydrolyze the conjugates to active drug, which is then reabsorbed by the body 
[109]. The proposed mechanism of this interaction involves the ability of antibiot-
ics to destroy the gut bacteria that are required to hydrolyze the conjugated estro-
gen to their active form.

Studies in animal models assessing this interaction have shown mixed results 
[112, 113]. One investigation demonstrated no alterations in the pharmacokinetics 
of ethinylestradiol when administered with ampicillin [112]. Another study found 
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differences in both AUC and plasma clearance in the group that received antibiotics 
compared to ethinylestradiol alone [113].

Several studies have been performed in humans to determine if the case reports 
and animal data represent significant findings [114–116]. Freidman and colleagues 
prospectively evaluated the serum concentrations of gonadotropins and other hor-
mones in 11 volunteers receiving Demulen® (50 μg of ethinylestradiol and 1 mg of 
ethynodiol diacetate) plus ampicillin or placebo during two consecutive menstrual 
cycles [115]. Progesterone concentrations were similar between the Demulen- 
ampicillin and Demulen-placebo groups. Follicle-stimulating hormone and lutein-
izing hormone appeared to be similar between the two groups. None of the 11 
patients underwent ovulation. Freidman and colleagues concluded that ampicillin 
should not reduce the effectiveness of Demulen. Other researchers have criticized 
the results of this study because of its study design which included a small number 
of subjects, a short duration of antimicrobial therapy, and a relatively high dose of 
estrogens (present in Demulen) [110].

Back and colleagues evaluated seven women receiving oral contraceptives for at 
least 3 months (all containing ≥30 μg of ethinyloestradiol) who presented to their 
clinic with an infection that required the administration of ampicillin of 8 d duration 
[114]. Blood samples were taken during concomitant oral estrogen and ampicillin 
therapy and during the next menstrual cycle without ampicillin. Six female volun-
teers receiving only oral contraceptives for at least 3 months were similarly evalu-
ated for the potential drug interaction. Plasma concentrations of ethinyloestradiol, 
levonorgestrel, follicle-stimulating hormone, and progesterone were not signifi-
cantly different between the two groups (oral contraceptive-ampicillin versus oral 
contraceptive alone). Despite the fact that a lower concentration of ethinyloestradiol 
was seen with two women on ampicillin, the authors concluded that alternative 
methods of protection are not necessary in most women [114].

Another study in volunteers analyzed the effect of administering ampicillin or 
metronidazole with an oral contraceptive preparation [116]. This summary will be 
limited to the group using ampicillin (n = 6). Subjects initially received a low-dose 
oral contraceptive (1 mg norethisterone acetate and 30 μg ethinylestradiol). On days 
6 and 7, plasma concentrations of ethinylestradiol and norethisterone were obtained. 
Subsequently, subjects were administered ampicillin (500 mg twice daily orally for 
5–7 days) and the contraceptive steroid. Following antibiotic treatment, serum hor-
mones, ampicillin, and progesterone concentrations were measured in the subjects. 
The concentrations of norethisterone and ethinylestradiol were not altered in the 
presence of ampicillin, and progesterone concentrations were in the appropriate 
range to suppress ovulation [116].

It is difficult to determine the clinical significance of this interaction because of 
the small number of clinical trials, small numbers of patients, minimal number of 
case reports, and the limited number of oral contraceptives studied. A review article 
by Weisberg suggests that the possibility of a clinically significant interaction 
between antibiotics and oral contraceptives is likely less than 1% [117]. The author 
states that women with a greater extent of enterohepatic circulation, previous break-
through bleeding, or contraceptive failure may have a higher risk for this interaction 
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[117]. More recently, Dickinson et al. reviewed this literature from 1969 through 
1999. They concluded that although a rare occurrence, certain penicillins may affect 
plasma ethinylestradiol concentration in some women. Given the serious nature of 
an unexpected pregnancy, they advised that women should consider other protective 
measures while taking these antibiotics [118].

Although clinical trials have not been able to demonstrate any consistent interaction 
between oral contraceptives and antibiotics due to the potential risk of contraceptive 
failure, clinicians should still counsel patients on this potential interaction and suggest 
alternative method(s) of contraception if antimicrobial therapy is necessary.

1.2.11  Cyclosporine

Although nafcillin is not well-established as an inducer of the cytochrome P450 
system, there have been several reports to suggest that nafcillin may reduce the 
serum concentrations of cyclosporine via induction of the cytochrome P450 system 
[119]. On two separate occasions, a 34-year-old woman, status post-renal trans-
plant, experienced a reduction in cyclosporine serum concentration following naf-
cillin administration [119]. The patient received 2 g nafcillin intravenously every 
6 h for a positive culture of methicillin-susceptible S. aureus from a perinephric 
abscess. Upon admission, the patient was receiving 400 mg cyclosporine daily with 
a corresponding trough serum concentration of 229 ng/mL. After initiation of naf-
cillin, her cyclosporine concentrations decreased to 119 ng/mL and 68 ng/mL on 
days 3 and 7 of nafcillin, respectively, despite stable daily doses of 400 mg of cyclo-
sporine. Upon discontinuation of nafcillin, trough serum concentrations of cyclo-
sporine increased to 141 ng/mL and 205 ng/mL on days 2 and 4 without nafcillin 
therapy, respectively. No change in renal or hepatic function was noted throughout 
this entire treatment period. The second cyclosporine-nafcillin interaction occurred 
when the patient was later readmitted for drainage of retroperitoneal fluid collec-
tion. The patient experienced a similar decline in cyclosporine concentrations dur-
ing concomitant therapy and subsequent increases in cyclosporine concentrations 
following discontinuation of nafcillin. Based on the findings of this case report, 
cyclosporine concentrations should be closely monitored during concomitant naf-
cillin administration.

In addition to this case report, Jahansouz and colleagues compared nine patients 
immediately post lung transplant who received nafcillin for 1 week with ten patients 
who were post lung transplant who did not receive nafcillin. All patients received 
cyclosporine for immunosuppression. Despite no differences in cyclosporine levels 
between the two groups, the patients who received nafcillin had significantly more 
renal dysfunction (presumed to be cyclosporine-induced) and more viral infections 
than those who did not receive nafcillin. There was no difference in mortality or 
graft survival. The authors concluded that an alternative agent to nafcillin should be 
considered in lung transplant recipients receiving cyclosporine in the early post- 
transplant period [120].
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There is not sufficient evidence or a plausible mechanism established to recom-
mend avoidance of nafcillin and cyclosporine coadministration. However, as a pre-
caution, cyclosporine levels should be monitored and adjusted as necessary while 
on nafcillin therapy.

1.2.12  Macrolides

1.2.12.1  Azithromycin

Only one in vitro study examined the coadministration of azithromycin and amoxicil-
lin. This investigation involved the creation of a biofilm model to mimic subgingival 
plaque and multiple antibiotics, both alone and in combination. The combination of 
amoxicillin and azithromycin did not result in synergism in this model [121].

1.2.12.2  Erythromycin

The concurrent administration of erythromycin and penicillin may result in antago-
nism, synergy, or no effect (indifference) on the antibacterial activity of penicillin. 
Beta-lactams exert their cidal effects on bacteria by binding to penicillin-binding 
proteins and inhibiting cell-wall synthesis. For beta-lactams to exercise their opti-
mal bactericidal activity, bacteria should be actively growing and dividing; there-
fore, erythromycin can interfere with the bactericidal activity of penicillin by 
inhibiting protein synthesis.

In vitro studies have demonstrated varied results for the concomitant administra-
tion of penicillin and erythromycin [122–140]. These differences may be due to 
such factors as the specific microorganism involved, susceptibility patterns to both 
agents, antibiotic concentrations, the inoculum effect, and time of incubation [122, 
124, 126, 128, 130, 134]. Similar to the disparate results demonstrated in vitro, case 
reports have shown penicillin and erythromycin antagonism in the treatment of 
scarlatina [131] and Streptococcus bovis septicemia [133], whereas clinical improve-
ment has been reported with the concurrent use of ampicillin and erythromycin in 
the treatment of pulmonary nocardiosis [132]. Although there has been concern 
about the use of the combination of beta-lactams and macrolides because of the pos-
sibility of antagonism, they have recently gained favor for the treatment of 
community- acquired pneumonia in the hospitalized patient. Several recently pub-
lished studies found that patients with bacteremic pneumococcal pneumonia treated 
with a beta-lactam plus a macrolide had a lower mortality rate compared to those 
treated with a single agent [135–137]. As such, treatment guidelines for community- 
acquired pneumonia recommend a beta-lactam and macrolide as a preferred 
 treatment option for hospitalized patients [138]. As evident from these clinical 
reports and in vitro testing, the antagonism risk between beta-lactams and macro-
lides appears to be minimal.
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1.2.13  Guar Gum

Guar gum, which may be utilized as a food additive, has been reported to reduce 
serum concentrations of phenoxymethylpenicillin [141]. In a double-blind study, 
ten healthy volunteers received guar gum or placebo granules along with 3 mu of 
phenoxymethylpenicillin. The peak penicillin concentration decreased significantly 
from 7560 ± 1720 ng/mL to 5680 ± 1390 ng/mL (p < 0.01) when administered with 
placebo compared to guar gum. The AUC0–6 h of penicillin decreased significantly 
from 14,500 ± 1860 to 10,380 ± 2720 ng/mL · hr. (p < 0.001) when administered 
with guar gum. The time to peak concentration was not altered significantly. As a 
result of the significant decrease in the peak serum concentrations and AUC0–6 h, 
phenoxymethylpenicillin should not be administered concomitantly with guar gum.

1.2.14  Interferon-Gamma

Recent data suggest that penicillin may interact with a variety of cytokines by con-
jugating these biological proteins [142]. Benzylpenicillin has been shown to conju-
gate IFN-gamma, IL-1beta, IL-2, IL-5, IL-13, and TNF-alpha; however, based on a 
series of in vitro experiments, benzylpenicillin only appears to alter the biologic 
activity of IFN-gamma [142]. Using an in vitro bioassay, Brooks and colleagues 
noted that benzylpenicillin inhibited the ability of IFN-gamma to induce CD54 
expression on epithelial cells. Additional preclinical studies suggest that other regu-
latory functions of IFN-gamma may also be modulated by benzylpenicillin [142]. 
Because IFN-gamma promotes Th1 responses and inhibits Th2- and IgE-mediated 
responses, disruption of IFN-gamma activity by benzylpenicillin may result in clini-
cally significant immunomodulatory effects, which promote allergy.

1.2.15  Khat

The chewing of khat (a natural substance obtained from shrubs grown in East Africa 
and Yemen) may reduce the bioavailability of ampicillin and amoxicillin [143]. In a 
crossover design, eight healthy adult male Yemeni subjects received ampicillin or 
amoxicillin under various conditions of khat chewing [143]. The urinary excretion 
method was utilized to determine the bioavailabilities of ampicillin and amoxicillin 
under the following conditions: antibiotic alone, 2 h before khat chewing, immedi-
ately prior to khat chewing, immediately prior to khat chewing with a meal, midway 
through khat chewing, and 2 h after khat chewing. The bioavailability of ampicillin 
(measured by percentage of ampicillin excreted unchanged in the urine, peak excre-
tion, and time to peak excretion) was significantly decreased during all conditions 
except when administered 2  h after khat chewing. In contrast, amoxicillin’s 
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bioavailability was only affected when amoxicillin was taken midway through khat 
chewing. Considering the limited use of khat in the developed countries, this should 
not be considered a clinically relevant drug-drug interaction. However, if ampicillin 
and amoxicillin are administered to an individual using khat, these agents should be 
taken at least 2 h following khat chewing.

1.2.16  Methotrexate

Weak organic acids such as penicillins can compete with methotrexate for renal 
tubular secretion [144, 145] and reduce the renal elimination of methotrexate. 
Various studies in rabbits have demonstrated a reduction in the renal clearance of 
methotrexate and 7-hydroxymethotrexate [144–146]. One of the studies demon-
strated nearly 50% reduction in methotrexate (MTX) clearance when piperacillin 
was administered 10 min before and 4 h after a single dose of MTX (p ≤ 0.05) 
[145]. The AUC of MTX and its 7-hydroxymethotrexate metabolite also differed 
significantly from the control (p ≤ 0.05).

Despite the rather significant results reported from animal studies, few case 
reports have documented this potential interaction [147–152]. Bloom and col-
leagues reported four cases in which the administration of various penicillins con-
comitantly with MTX resulted in the decreased clearance of methotrexate [148]. 
Methotrexate clearance before and after the addition of the following antimicrobial 
agents is as follows: penicillin, 2.8 L/h versus 1.8 L/h; piperacillin, 11 L/h versus 
3.6 L/h; ticarcillin, 5.8 L/h versus 2.3 L/h; and dicloxacillin/indomethacin, 6.4 L/h 
versus 0.45 L/h, respectively. Due to reduction in clearance, these patients required 
an extended leucovorin rescue. Titier et al. published a case report describing severe 
methotrexate toxicity following the concomitant administration of high-dose meth-
otrexate and oxacillin, which lead to a series of complications and ultimately the 
death of the patient [152]. Mayall and colleagues performed a retrospective chart 
review of patients at their institution who received low-dose methotrexate and 
developed neutropenia (< 1 × 109 cell/L). Of the five patients identified, four were 
also being administered penicillins, which the authors postulated could have inter-
fered with methotrexate excretion, leading to neutropenia [153]. More recently, 
Zarychanski and colleagues reported the interaction of piperacillin/tazobactam with 
methotrexate resulting in prolonged toxic concentrations of methotrexate [154]. In 
contrast, Herrick and colleagues reported no differences in renal clearance of meth-
otrexate administered alone or with flucloxacillin in ten patients with rheumatoid 
arthritis [155].

Avoiding the concomitant use of penicillins and methotrexate is justified to avoid 
potential toxicity. If the concomitant administration of penicillins and methotrexate 
is necessary, close monitoring of methotrexate concentrations and signs of toxicity 
is suggested.
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1.2.17  Oseltamivir

A pharmacokinetic study conducted in healthy volunteers evaluated the concurrent 
administration of oseltamivir (a prodrug) and amoxicillin [156]. No differences in 
the pharmacokinetic parameters of oseltamivir’s active metabolite, Ro 64–0802, 
were noted when administered alone compared to coadministration with amoxicil-
lin. Also, no pharmacokinetic differences were noted for amoxicillin with or with-
out the administration of oseltamivir [156]. Based upon these finding, oseltamivir 
may be prescribed with amoxicillin.

1.2.18  Phenytoin

Highly protein-bound antibiotics such as nafcillin and oxacillin (both approximately 
90% bound to plasma proteins) [80, 157] have the potential to interact with other 
highly protein-bound agents such as phenytoin [158, 159]. Due to drug displace-
ment from protein-binding sites, high doses of nafcillin or oxacillin may increase 
unbound concentrations of phenytoin in certain patient populations [158, 159].

Dasgupta et al. conducted an in vitro study to determine the potential drug inter-
action between oxacillin and phenytoin [158]. Serum was collected from three sepa-
rate patient populations (A, B, and C). Serum for group A was collected from 
healthy patients receiving phenytoin. Serums for group B and C were obtained from 
hypoalbuminemic and hyperuremic individuals, respectively. Subjects in these lat-
ter two groups were not receiving phenytoin; therefore, the serum was supplemented 
with phenytoin. Each group was tested for total and unbound phenytoin concentra-
tions with and without 15 μg/mL or 50 μg/mL of oxacillin, which represented esti-
mated peak oxacillin concentrations following a 500  mg oral dose and a 1  g 
intravenous dose, respectively. Serum from group A showed no statistical difference 
in unbound phenytoin concentrations with 15 μg/mL oxacillin; however, a signifi-
cantly higher unbound phenytoin concentration with 50 μg/mL of oxacillin was 
observed when compared to serum not containing oxacillin (1.67 μg/mL versus 
1.47 μg/mL) (p < 0.05). Serum from subjects in groups B and C also demonstrated 
a statistically significant increase in unbound phenytoin concentrations for both 
oxacillin concentrations compared to the group without oxacillin.

Dasgupta and colleagues performed another study to determine the potential 
effect of nafcillin on unbound phenytoin concentrations [159]. The study consisted 
of both in vitro and in vivo components. The authors observed both in vitro and 
in vivo displacement of phenytoin with the addition of nafcillin to serum. Although 
increases in unbound phenytoin appeared to be minor for the in vitro portion of the 
experiment, a significant increase in unbound phenytoin concentrations was noted 
in all groups compared to the control group (p < 0.05). Unbound phenytoin concen-
trations were also measured in four patients receiving phenytoin and nafcillin con-
currently [159]. The investigators obtained unbound phenytoin concentrations 
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during and after nafcillin therapy. Unbound phenytoin concentrations decreased fol-
lowing the discontinuation of nafcillin, although baseline phenytoin concentrations 
were not obtained.

Patients receiving antimicrobials with a high percentage of protein binding (90% 
or greater) and concomitant phenytoin should be monitored closely for signs of 
phenytoin toxicity. Furthermore, patients receiving high doses of any penicillin 
should have their unbound and total phenytoin concentrations monitored closely. 
Phenytoin dosage adjustments should be made according to extent of the 
interaction.

1.2.19  Probenecid

The interaction of probenecid and penicillins (weak organic acids) occurs primarily 
as a result of the inhibition of the tubular secretion of penicillin, although other 
mechanisms may be possible as well [160, 161]. The decrease in renal elimination 
results in increased penicillin serum concentrations. Studies have shown that the 
AUCs of amoxicillin, ampicillin, ticarcillin, and nafcillin may increase by approxi-
mately 50–100% when coadministered with probenecid [79, 161–166]. Other beta- 
lactams such as penicillin and dicloxacillin have also demonstrated increased serum 
concentrations in the presence of probenecid [79, 161, 163, 167–169]. Although 
probenecid significantly effects renal clearance of piperacillin/tazobactam, it does 
not significantly affect area under the curve or half-life of piperacillin/tazobactam 
[170]. An in vitro investigation with the effect of probenecid and benzylpenicillin 
against Neisseria gonorrhoeae showed enhanced effect with the combination com-
pared to either agent alone, hinting at a mechanism beyond inhibition of tubular 
secretion of penicillin [171].

This drug-drug interaction may be clinically beneficial in certain situations in 
which higher penicillin serum concentrations are necessary especially when using 
oral agents. However, careful monitoring or avoidance of this combination should 
be considered in certain patient populations in whom drug accumulation may occur 
(e.g., elderly patients or patients with impaired renal function).

1.2.20  Proguanil

Babalola CP et al. conducted a study in healthy volunteers to evaluate the coadmin-
istration of proguanil and cloxacillin on the pharmacokinetics of cloxacillin [172]. 
Differences in pharmacokinetic parameter values for cloxacillin alone or in the 
presence of proguanil were determined by assaying urinary samples. Both the maxi-
mum excretion rate and total amount of excreted unchanged cloxacillin were 
reduced by approximately 50% when taken with proguanil compared to proguanil 
alone (p < 0.0001). No differences were noted in cloxacillin half-life or Tmax. The 
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authors suggest that separating these two agents by 1–2 h may avoid this potential 
interaction.

1.2.21  Sulfonamides

The concurrent administration of penicillins and sulfonamides was evaluated in a 
pharmacokinetic study [80]. The unbound concentrations of penicillin G, penicillin 
V, nafcillin, and dicloxacillin were increased with the concurrent administration of 
several sulfonamides. The researcher postulated that this interaction occurred as a 
result of the displacement of penicillins from protein-binding sites [80]. In a sepa-
rate study, Kunin reported that the coadministration of oral oxacillin and sulfon-
amides caused a decrease in oxacillin serum concentrations. The author postulated 
that perhaps the sulfonamides may cause reduced absorption of oral oxacillin; how-
ever, additional mechanisms cannot be ruled out [80]. Based on this limited clinical 
data, avoidance of penicillins and sulfonamides is not warranted.

1.2.22  Tetracyclines

As previously stated, the administration of a bacteriostatic agent, such as tetracy-
cline or related compounds, may antagonize the bactericidal activity of beta- lactams. 
Nonetheless, both antagonism and synergy between penicillins and tetracyclines 
have been documented in in vitro and in vivo studies [173–178].

Lepper and Dowling reported the outcome of 57 patients diagnosed with pneu-
mococcal meningitis who were treated with high-dose penicillin (n = 43) or high- 
dose penicillin along with the tetracycline antibiotic, aureomycin (n = 14) [178]. 
Although the severity of illness appeared similar between the treatment groups, 
mortality rates were significantly higher in the patients who received combination 
therapy compared to penicillin alone (79% versus 30%). Olsson and colleagues also 
noted a trend toward increased mortality in patients with pneumococcal meningitis 
treated with penicillin in combination with a tetracycline derivative (85%; n = 7) 
versus penicillin alone (52%; n = 23) or erythromycin alone (50%; n = 6) [179]. 
Strom noted that treatment of hemolytic streptococci with penicillin in combination 
with chlortetracycline compared to penicillin alone had similar initial clinical 
response but the penicillin/chlortetracycline group experienced a higher incidence 
of reinfection [180].

Unlike the case studies involving meningitis, Ahern and Kirby reported similar 
clinical outcomes in patients treated with penicillin alone versus penicillin in com-
bination with aureomycin for pneumococci pneumonia [181]. The authors sug-
gested that the role of rapid, bactericidal activity of penicillin is of more clinical 
significance in treating meningitis compared to less severe infections such as pneu-
monia. Ahern and Kirby stressed the importance of penicillin’s role in treating 
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 meningitis due to the relatively limited phagocytic activity in the subarachnoid 
space compared to nonmeningeal infections such as pneumonia [181].

As a result of increasing antibiotic resistance, the eradication rates of Helicobacter 
pylori infections have been declining. This decrease in efficacy has led to the search 
for new therapies. Although there are precautions of using penicillins and tetracy-
clines concomitantly, recent research has shown that such combinations are effec-
tive in the treatment of Helicobacter pylori infections [182, 183].

Avoiding the combination of penicillin and tetracycline derivatives appears 
appropriate in severe infections requiring rapid bactericidal activity such as menin-
gitis. In less severe infections, the use of these drugs in combination has not been 
documented to adversely affect outcomes.

1.2.23  Vancomycin

An interesting observation that has emerged in clinical practice is the possible inter-
action with either piperacillin or piperacillin-tazobactam when administered with 
vancomycin resulting in acute kidney injury (AKI). Several studies, mostly retro-
spective, have documented this increased incidence in AKI, in patients receiving 
concomitant vancomycin and piperacillin-tazobactam compared to vancomycin 
alone [184–187], or vancomycin administered concomitantly with other beta- 
lactams, such as cefepime [188–191] or meropenem [189]. This literature has pre-
dominantly evaluated the combination of piperacillin-tazobactam and vancomycin 
interaction. Recently, Rutter and Burgess reported the results of a large retrospective 
cohort study comparing the incidence of AKI in patients receiving either piperacillin- 
tazobactam or ampicillin-sulbactam [192]. They reported that AKI occurred at simi-
lar rates for both groups (265 patients per group: piperacillin-tazobactam 11.4% vs 
ampicillin-sulbactam 9.2%; p = 0.14). They did note, however, that adding vanco-
mycin to piperacillin-tazobactam increased the probability of AKI compared to 
piperacillin-tazobactam alone (adjusted OR 1.77, 95% CI 1.26–2.46). Karino and 
colleagues reported several possible independent risk factors for development of 
AKI in patients receiving vancomycin and piperacillin-tazobactam. These included 
documented Gram-positive infection, the presence of sepsis, the administration of a 
vancomycin loading dose, and concomitant administration of other nephrotoxins 
[193]. In a retrospective, matched cohort study, Navalkele and colleagues found that 
the combination of vancomycin and piperacillin-tazobactam was an independent 
predictor of AKI compared to the combination of vancomycin and cefepime (hazard 
ratio = 4.27; 95% confidence interval, 2.73–6.68). In their patient population the 
onset of AKI occurred sooner in the vancomycin and piperacillin-tazobactam group 
(3 vs 5 days, P = < 0.0001) [191]. This study also reported that higher vancomycin 
troughs were not associated with a higher risk of AKI in these patients [191]. Lastly, 
studies have found no difference between intermittent or extended infusion 
piperacillin- tazobactam in rates of AKI [193, 194].
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The combination of piperacillin-tazobactam and vancomycin resulting in an 
increased risk of AKI has also been reported in pediatric patients, both in a case 
report and two retrospective studies [195–197]. Three meta-analyses have shown an 
increased rate of AKI with concomitant administration of piperacillin-tazobactam 
and vancomycin [198–200]. Interestingly, other retrospective analyses have not 
found a statistically significant difference [201–204].

It is necessary to take this potential interaction into context with other patient- 
specific factors that increase the risk of AKI, such as critical illness, underlying 
disease states, and other nephrotoxic agents the patient may be receiving. Recent 
data seems to indicate that the addition of tazobactam is not likely the mechanism 
in the observed increased incidence of AKI in these patients [192]. However, pro-
spective data are lacking evaluating the impact of beta-lactamase inhibitors alone on 
the incidence of AKI. Additionally, it is critical to note that these studies used dif-
fering definitions of AKI. It is also of importance to realize that there is no prospec-
tive evidence for this interaction, and no physiological mechanism has been 
elucidated. Nevertheless, the possible interaction between piperacillin and tazobac-
tam resulting in an increased risk of AKI serves as a consideration for practitioners 
to implement into their stewardship intervention practices by discontinuing combi-
nation broad-spectrum antimicrobial therapy with piperacillin-tazobactam and van-
comycin as soon as clinically possible.

1.2.24  Vecuronium

The concurrent administration of vecuronium and acylaminopenicillins has been 
reported to prolong muscle paralysis in both humans and animals [205–208]. Tryba 
reported a significant prolongation of muscle relaxation after a fixed dose of 
vecuronium with apalcillin, azlocillin, mezlocillin, and piperacillin in six patients. 
When combined with vecuronium, the mean increase in effect was 26% with apal-
cillin, 38% with mezlocillin, 46% with piperacillin, and 55% with azlocillin [205]. 
Condon et  al. conducted a double-blind clinical trial to determine the ability of 
piperacillin or cefoxitin (control agent) to prolong the muscular blockade of 
vecuronium [209]. Patients were eligible for study enrollment if they were undergo-
ing an elective operation with general anesthesia that required antibiotic prophy-
laxis. Patients were subsequently randomized to receive piperacillin or cefoxitin as 
the prophylactic antibiotic prior to the operation. All patients received vecuronium 
for muscle relaxation. Prolongation of neuromuscular blockade was determined 
before and after the administration of the antibiotic by the electromyography twitch 
response. Of the 27 evaluable patients enrolled in the study, five patients (two piper-
acillin and three cefoxitin) exhibited a nonclinically significant prolongation of neu-
romuscular blockade. Otherwise, the rate and extent of neuromuscular blockade 
was similar between groups. It appears that this interaction is clinically insignifi-
cant, although knowledge of this potential prolongation may be useful in certain 
surgical settings.
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1.2.25  Miscellaneous Agents

The concomitant administration of penicillins and acidic drugs such as phenylbuta-
zone, sulfinpyrazone, indomethacin, and sulfaphenazole may prolong the half-life 
of penicillin [79]. In this investigation, the half-life of penicillin was not noted to 
change significantly with concomitant administration of chlorothiazide, sulfame-
thizole, and sulfamethoxypyridazine [79].

This is postulated to occur as a result of competition between the acidic drugs 
and penicillin for renal tubular secretory proteins [79, 210]. Gothoni et al. reported 
that concomitant treatment of pivampicillin and metoclopramide led to more rapid 
absorption of the pivampicillin [211].

Potential drug-drug interactions between the penicillins and theophylline have 
also been investigated. The coadministration of amoxicillin, ampicillin, ticarcillin/
clavulanic acid, or ampicillin/sulbactam with theophylline was not noted to alter 
theophylline’s properties [212–216].

Deppermann et al. assessed the effect of the coadministration of pirenzepine, an 
antimuscarinic, with various antibiotics including amoxicillin in a double-blind, 
randomized crossover study [4]. Coadministration of pirenzepine with amoxicillin 
did not significantly alter the pharmacokinetics of amoxicillin.

Conner presented a case report, which suggested that concomitant administra-
tion of venlafaxine and amoxicillin-clavulanate might result in serotonin syndrome 
[217]. The patient exhibited intense paresthesia in his fingers, tingling on his tongue, 
severe abdominal cramping, profuse diarrhea, cold sweats, and uncontrollable shiv-
ering after the concomitant administration of amoxicillin-clavulanate and venlafax-
ine at two separate times. This patient had previously taken amoxicillin- clavulanate 
without incident previously when he was not using venlafaxine without toxicity.

1.3  Cephalosporin Drug Interactions

1.3.1  Acid-Suppressive Agents

1.3.1.1  Ranitidine, Famotidine, and Omeprazole

Concomitant administration of the prodrugs, cefpodoxime proxetil, cefuroxime 
axetil, and cefditoren pivoxil, with agents that increase gastric pH, such as raniti-
dine, results in a reduction of the antibiotic serum concentrations [5, 218]. The 
bioavailability of the cefpodoxime proxetil has been reported to decrease by approx-
imately 30–40% with concurrent administration of an H2-receptor antagonist [218, 
219]. However, no impact on the bioavailability of cefpodoxime was noted when 
famotidine administration was separated from cefpodoxime by 2 h. Similarly, the 
AUC of cefuroxime axetil was reduced by approximately 40% with pretreatment of 
ranitidine and sodium bicarbonate [5]. The Cmax and AUC of cefditoren pivoxil 
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were reduced by approximately 25% with the concurrent administration of famoti-
dine [220]. Other studies have found no significant effect on the bioavailability of 
cephalexin, cefaclor AF, or ceftibuten when administered concomitantly with H2- 
receptor antagonists, omeprazole, or antacids [4, 221–225]. Madras-Kelly and col-
leagues reported that the administration of omeprazole or ranitidine with cephalexin 
had only a minimal effect on the pharmacokinetics of cephalexin, with the excep-
tion of a significant delay in Tmax which increased almost twofold [222]. Based on 
the results from these studies, concurrent administration of H2-receptor antagonists 
and cefuroxime axetil, cefpodoxime proxetil, and cefditoren pivoxil should be 
avoided. If these agents need to be administered concurrently, the cephalosporins 
should be given at least 2 h after the H2-receptor antagonist.

1.3.1.2  Acid-Neutralizing Agents: Antacids

The coadministration of antacids and certain cephalosporins including Cefaclor 
CD®, cefdinir, cefpodoxime, cephradine, and cefditoren may lead to decreased 
concentrations of the antibiotics [218–221, 223, 226]. A variety of studies have 
reported decreases in cephalosporin AUC and Cmax to be in the range of 20–40% 
for cefaclor, cefdinir, and cefpodoxime when administered with an antacid [218, 
221, 223]. A minimal reduction in Cmax (14%) and AUC (11%) was noted with the 
concurrent administration of cefditoren with an antacid [220]. Other investigators 
have found no effect with cephalexin [4] or cefixime [224] when administered con-
comitantly with antacids. Certain cephalosporins including Cefaclor CD, cefdinir, 
cefpodoxime, and cefditoren should not be coadministered with antacids. If antac-
ids are required during therapy, the cephalosporins should be separated from the 
antacid administration by at least 2 h.

1.3.2  Aminoglycosides

Aronoff et al. studied the in vivo interaction of ceftazidime and tobramycin in both 
anuric patients and normal volunteers [15]. Analysis of serum concentrations only 
showed minor changes in the pharmacokinetics of these agents when they were 
administered concurrently. However, the clearance of both ceftazidime and tobra-
mycin was unchanged when these drugs were given concomitantly. The volume of 
distribution of tobramycin at steady state was increased by 20% in the normal vol-
unteers when ceftazidime was given concurrently. The increase in distribution was 
accompanied by a slight decrease in ceftazidime elimination rate. The authors felt 
that this interaction was of little clinical significance and that no alteration in dosing 
was necessary when giving this combination.
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1.3.3  Beta-Lactamase Inhibitors

The pharmacokinetics of the beta-lactamase inhibitors, tazobactam and ceftolozane, 
have been evaluated in healthy adult subjects [227]. Patients received a combination 
of these drugs in single doses of up to 2000 and 1000 mg of ceftolozane and tazo-
bactam, respectively, as well as multiple doses of up to 3000 and 1500  mg of 
ceftolozane and tazobactam, respectively, daily. Ceftolozane was reported to have 
linear pharmacokinetics unaffected by the coadministration of tazobactam. Two 
phase I clinical trials were performed to investigate the interaction between ceftazi-
dime and avibactam, as well as ceftazidime-avibactam and metronidazole. Healthy 
subjects were randomized to receive ceftazidime, avibactam, or ceftazidime- 
avibactam. They were given the medication once on days 1 and 4, and every 8 h on 
days 2 and 3. There were no differences in pharmacokinetic parameters between 
ceftazidime and avibactam compared to ceftazidime-avibactam or ceftazidime- 
avibactam and metronidazole. This indicates no drug-drug interaction exists 
between ceftazidime and avibactam, or ceftazidime-avibactam and metronidazole 
[228].

The drug-drug interaction potential of avibactam was investigated both in vitro 
and in a [14C] mass balance study in six healthy male subjects. Avibactam was a 
substrate and an inhibitor of human OAT1 and OAT3 renal transporters. Given this 
observation was noted when avibactam concentrations were 20-fold higher than 
typical dosing, coupled with the rapid elimination of avibactam noted in healthy 
subjects, the clinical impact of this interaction is low. Nevertheless, a potentially 
clinically significant interaction may occur with potent inducers of OAT1 and 
OAT3, such as probenecid, and should be taken into consideration prior to coadmin-
istration. The authors found no interactions with the cytochrome P450 enzymes or 
other renal and hepatic transporters [229].

1.3.4  Calcium

Several regulatory agencies have issued warnings regarding the use of ceftriaxone 
concomitantly with intravenous products containing calcium [230, 231]. Reports 
indicate that ceftriaxone may be incompatible with calcium-containing solutions, 
depending on the concentrations used [232, 233]. These warnings were based origi-
nally on the reports of seven cases of neonatal or infant death and/or sudden cardio-
respiratory arrest [232]. These authors reported that these patients received higher 
than normal ceftriaxone doses (150–200 mg/kg/day) and the use of higher concen-
tration of calcium supplements administered via intravenous bolus [232]. In some 
cases these deaths were believed to have occurred as a result of the formation of 
these precipitates in the lungs or kidneys. Ceftriaxone being an anion, when present 
in high concentrations, can bind with calcium ions to form insoluble complexes that 
can precipitate out in various tissues [234, 235].
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This warning of the concomitant use of ceftriaxone and calcium products has 
recently been reassessed by the FDA, resulting in the issuance of a less restrictive 
advisory. The most recent FDA advisory states that [236]:

• “Concomitant use of ceftriaxone and intravenous calcium-containing products is 
contraindicated in neonates (≤28 days of age). Ceftriaxone should not be used in 
neonates (≤28 days of age) if they are receiving (or are expected to receive) 
calcium-containing intravenous products.”

• “In patients >28 days of age, ceftriaxone and calcium-containing products may 
be administered sequentially, provided the infusion lines are thoroughly flushed 
between infusions with a compatible fluid.”

• “Ceftriaxone must not be administered simultaneously with intravenous calcium- 
containing solutions via a Y-site in any age group.”

• “FDA now recommends that ceftriaxone and calcium-containing products may 
be used concomitantly in patients >28 days of age, using the precautionary steps 
above because the risk of precipitation is low in this population.”

Steadman and colleagues recently reviewed the FDA Adverse Event Reporting 
Systems to determine the risk of serious ceftriaxone-calcium interactions in adults 
[237]. In these authors’ opinion, their analysis of this FDA data base supported the 
FDA’s recently revised recommendations suggesting that patients greater than 
28 days of age may receive calcium and ceftriaxone sequentially. However, these 
authors do caution that in certain populations (such as those with intravascular 
depletion), the sequential administration of these two agents still warrants caution.

1.3.5  Calcium Channel Blockers

Variable data exist regarding the effects of nifedipine on cephalosporin pharmaco-
kinetics [238, 239]. In a randomized crossover study, each healthy volunteer 
received cefixime with nifedipine or placebo [239]. The absolute bioavailability of 
cefixime was increased from 31% (cefixime alone) to 53% (cefixime and nifedip-
ine) (p < 0.01). The AUC0–∞ also increased from 16.1 mg · h/L (cefixime alone) 
compared to 25.4 mg · h/L (cefixime and nifedipine) (p < 0.01) [239]. These inves-
tigators have also shown increased cephalexin concentrations with coadministration 
of nifedipine or diltiazem in an animal model [240]. The authors concluded that 
nifedipine can increase the absorption of these cephalosporins by enhancing the 
active transport mechanism in the intestine. In contrast, another study demonstrated 
that the pharmacokinetics of cefpodoxime did not change when coadministered 
with nifedipine [238]. The effects of amlodipine on cephalexin and cefuroxime 
axetil pharmacokinetics were investigated in healthy male subjects. There was a 
significant difference in the cephalexin geometric mean ratio for the AUC and the 
Cmax for individuals also administered amlodipine compared to those who only 
received cephalexin. There was no difference in pharmacokinetics seen with cefu-
roxime coadministration with amlodipine. The authors suggest that amlodipine may 
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increase the bioavailability, specifically for peptidomimetic beta-lactam antibiotics 
[241]. Due to differences in specific antimicrobials and lack of adverse events seen 
with calcium channel blocker and cephalosporin combinations, no dosage changes 
are recommended when these agents are coadministered.

1.3.6  Cholestyramine

The coadministration of cholestyramine with cefadroxil or cephalexin has been 
shown to cause a delay in absorption, which is associated with a prolonged Tmax 
and reduction in Cmax [242, 243]. Despite these pharmacokinetic alterations, other 
important parameters such as AUC or amount of drug excreted in the urine were 
minimally affected. Although data for this interaction are limited, the clinical sig-
nificance is doubtful, particularly when one considers that cholestyramine does not 
appear to alter cephalosporin exposure.

1.3.7  Colistin/Polymyxin

Coadministration of cephalothin and colistin has been associated with an increased 
incidence of nephrotoxicity compared to colistin alone [244, 245]. Koch-Weser and 
colleagues evaluated the incidence of adverse events related to colistin administra-
tion [244]. Renal toxicity was defined as a rise in serum creatinine (SCr) or blood 
urea nitrogen (BUN) that exceeded baseline (prior to colistin therapy) by 100% in 
the normal or by 25% in the abnormal range. The upper limit of normal range for 
Scr and BUN were defined as 1.5/100 mL and BUN 25 mg/100 mL. Overall, the 
incidence of nephrotoxic reactions occurred at a rate of 64/317 (20.2%). In patients 
that received administration of colistin along with cephalothin versus colistin alone, 
the rate of renal reaction increased to 33.3% (26/78) versus 15.9% (38/239) 
(p < 0.001).

Adler and Segel presented four case reports of acute renal failure due to colistin 
therapy [245]. Coadministration of cephalothin occurred in three of the four patients, 
while the fourth patient received cephalothin prior to colistin treatment. No other 
causes of renal failure could be determined in these patients.

Since both agents administered alone may have the potential to cause nephrotox-
icity [245–247], it appears that the coadministration of these agents may result in an 
increased incidence of nephrotoxicity. The package insert for colistimethate also 
warns that coadministration of sodium cephalothin with colistimethate may enhance 
the nephrotoxicity of colistimethate and that the antimicrobials should not be 
administered together. The clinical impact of this interaction is limited since cepha-
lothin is rarely used in clinical practice; however, careful monitoring of renal func-
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tion is warranted if the combination is prescribed. No information exists regarding 
beta-lactam interactions with polymyxin B.

1.3.8  Cyclosporine

The data regarding drug interactions between cephalosporins and cyclosporine is 
contradictory. In rats administered cefepime and cyclosporine, both the AUC in the 
blood and brain increased significantly [248]. Soto and colleagues reported that two 
patients that had undergone renal transplants presented with significantly increased 
cyclosporine serum concentrations 2–3 days after the initiation of ceftriaxone 1 g 
twice a day [249]. These authors reported a two- to fourfold increase in cyclospo-
rine concentration in these two patients. Cockburn reported that the concomitant use 
of ceftazidime or latamoxef (moxalactam) had been associated with an increase in 
cyclosporine concentrations [250]. Other investigators have shown no problems 
with the concomitant use of cyclosporine and ceftazidime. Verhagen and colleagues 
reported no significant impact upon renal function in 28 patients who underwent 
allogeneic bone marrow transplantation receiving both ceftazidime and cyclospo-
rine for febrile neutropenia as measured by serum creatinine concentrations or cre-
atinine clearance [251]. Since the data concerning the use of cyclosporine and 
cephalosporins is limited and contradictory, no firm recommendation can be made 
regarding their use together.

1.3.9  Contraceptives: Oral Estrogen

Refer to this topic in the discussion of penicillin.

1.3.10  Ethanol: Disulfiram-Like Reactions

Semisynthetic cephalosporins containing a methyltetrazolethiol (MTT) side chain 
such as cefamandole, cefoperazone, cefmenoxime, cefotetan, and moxalactam have 
been documented to cause disulfiram-like reactions in patients who consume etha-
nol during antibiotic treatment [252–254]. Cephalosporins with an MTT side chain 
inhibit acetaldehyde dehydrogenase, which results in the accumulation of acetalde-
hyde, a toxic metabolite of ethanol. Patients should be instructed not to consume 
alcohol during and for several days following antibiotic therapy. Refer to Chap. 10 
regarding antimicrobials and food interactions for a more detailed review of this 
topic.
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1.3.11  Iron

Coadministration of ferrous sulfate appears to cause a chelation complex and reduce 
the absorption of cefdinir [255]. In a randomized three-way crossover study, six 
healthy male subjects received the following regimens: 200  mg cefdinir alone, 
200 mg cefdinir plus 1050 mg ferrous sulfate sustained release, or 200 mg cefdinir 
followed by 1050 mg ferrous sulfate sustained release 3 h later [255]. The AUC0–

12 ± SD (μg · h/mL) was significantly lower in the groups that received cefdinir 
concomitantly with ferrous sulfate (0.78 ± 0.25 μg · h/mL) or at 3 h following the 
dose of cefdinir (6.55 ± 1.61 μg · h/mL) compared to cefdinir alone (10.3 ± 1.35 μg 
· h/mL) (p < 0.05). To avoid the potential for therapeutic failure of cefdinir, it should 
not be taken together with ferrous sulfate.

Three cases of red stools associated with cefdinir and iron-containing products 
have been reported in the literature [256, 257]. In all cases the discoloration of the 
stool was not associated with GI symptoms, and in all three instances, stool guaiac 
tests were negative. The reddish discoloration of the stools is thought to be due to 
formation of a nonabsorbable complex between iron and cefdinir or some of its 
breakdown products in the GI tract [257].

1.3.12  Metoclopramide

A healthy volunteer, crossover study evaluated the effect of food, metoclopramide, 
propantheline, and probenecid on the pharmacokinetics of cefprozil [258]. In the 
metoclopramide arm of the study, volunteers received cefprozil alone or cefprozil 
given 0.5 h after a dose of metoclopramide. Both isomers of cefprozil, cis and trans, 
were assayed in blood and urine. Cefprozil’s isomers demonstrated a statistically 
significant reduction in mean residence time when administered after metoclo-
pramide; however, there was no difference in AUC0–∞ or half-life of cefprozil among 
the treatment groups. Administration of metoclopramide prior to cefprozil did not 
affect its extent of absorption. Concurrent administration of these agents need not be 
avoided.

1.3.13  Methotrexate

Rabbits receiving concomitant infusions of methotrexate and a cephalosporin 
(ceftriaxone, ceftazidime, ceftizoxime, or cefoperazone) have been demonstrated 
to have an increased renal elimination of methotrexate and 7-hydroxymethotrex-
ate [144].

In a case report, an 8-year-old boy receiving methotrexate for non-Hodgkin’s 
lymphoma experienced a decrease in methotrexate clearance when methotrexate 
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was coadministered with piperacillin [147]. The patient subsequently received 
methotrexate along with ceftazidime without any impact on methotrexate clearance. 
The differences seen in methotrexate renal elimination between cephalosporins and 
piperacillin may be due to the extent of tubular secretion (penicillins > cephalospo-
rins) [144, 259]. In contrast, Tran and Herrington report a patient that received 
methotrexate, cefepime, and ceftriaxone, with no effect on methotrexate clearance. 
They suggest that cefepime and ceftriaxone do not inhibit OAT3, the main trans-
porter involved in methotrexate clearance, which leads to a lack of interaction with 
coadministration of the agents [260].

There have been no documented interactions resulting in decreased renal elimi-
nation of methotrexate with the concurrent administration of cephalosporins and 
methotrexate in humans. However, because of the documented interaction between 
some penicillins and methotrexate as well as the animal data regarding some cepha-
losporins and methotrexate, close monitoring of methotrexate concentrations and 
signs of toxicity (e.g., bone marrow suppression, nephrotoxicity, mucositis) is sug-
gested during concurrent use of cephalosporins and methotrexate.

1.3.14  Metformin

In a crossover study, healthy volunteers were randomized to receive metformin 
alone or metformin along with cephalexin [261]. The coadministration of metfor-
min and cephalexin led to an increase in Cmax and AUC of metformin by approxi-
mately 30%. It appears that cephalexin interferes with renal clearance of metformin, 
which may be due to competition for renal transport proteins such as organic anion 
or cation transporter (OAT or OCT, respectively) [261, 262]. Limited data are avail-
able on the clinical significance of this interaction. Clinicians should exercise cau-
tion when using these two agents together and monitor for metformin toxicity.

1.3.15  Nonsteroidal Anti-inflammatory Drugs

Diclofenac has been reported to cause an increase in the biliary excretion of ceftri-
axone [263]. A study was conducted in patients in whom a cholecystectomy was 
performed and a drain was placed in the common bile duct [263]. The subjects who 
received ceftriaxone along with diclofenac demonstrated a 320% (p < 0.05) increase 
in the amount of ceftriaxone excreted in the bile and a 56% (p < 0.05) reduction in 
the amount excreted in the urine. Due to the limited data, no therapeutic recommen-
dations can be made.
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1.3.16  Phenytoin

Highly protein-bound antibiotics such as ceftriaxone (approximately 90% bound to 
plasma proteins) [264] have the potential to interact with other highly protein-bound 
agents such as phenytoin [159]. Due to protein displacement, high doses of ceftri-
axone may increase unbound concentrations of phenytoin in certain patient popula-
tions [159]. Dasgupta and colleagues performed an in vitro study to determine the 
effect of ceftriaxone in displacing phenytoin from protein-binding sites [159]. 
Estimated peak ceftriaxone concentrations (270  μmol/L and 361  μmol/L) were 
added to pooled sera from patients receiving phenytoin. Three groups with varying 
albumin concentrations were evaluated. The greatest ceftriaxone-induced displace-
ment effect was seen in the group with the lowest albumin concentration (25 g/L). 
In this group, the unbound phenytoin concentrations (μmol/L) (SD) were 8.12 
(0.28) for the control, 9.39 (0.12) for ceftriaxone 270 μmol/L, and 9.93 (0.36) for 
ceftriaxone 361 μmol/L, respectively. Although the increases appear minor, signifi-
cant increases in unbound phenytoin concentrations were noted in all groups com-
pared to the control group (p < 0.05). In patients receiving ceftriaxone concomitantly 
with phenytoin, monitoring of unbound and total serum concentrations of phenytoin 
in addition to watching for signs of phenytoin toxicity is warranted.

1.3.17  Oral Anticoagulants

Semisynthetic cephalosporins containing an MTT substituent at the 3-position, such 
as cefamandole, cefoperazone, cefmenoxime, cefotetan, and moxalactam, have 
been associated with the development of a hypoprothrombinemia [265]. Several 
case reports have implicated these agents in prolonged prothrombin time and/or 
bleeding episodes in patients [266–272]. Anagaran and colleagues retrospectively 
assessed the effect of prophylactic administration of cefamandole or vancomycin on 
the warfarin anticoagulation response in 60 postsurgical patients [273]. Patients 
who received cefamandole had a higher proportion of elevated prothrombin times 
compared those who received vancomycin (14 versus 1, p < 0.05). In another study, 
these same investigators characterized the effect of cefazolin, cefamandole, and 
vancomycin on warfarin anticoagulation in post-cardiac valve replacement patients 
[274]. They noted that the greatest number of patients (n = 6) with elevated pro-
thrombin times received cefamandole compared to cefazolin (n = 1) and vancomy-
cin (n = 1). In addition, cefamandole therapy was associated with a 15–20% greater 
change in prothrombin times compared to the cefazolin and vancomycin (p < 0.01). 
Patients who are malnourished or who have renal insufficiency may be at higher risk 
for this interaction [266]. There are two case reports of patients on chronic warfarin 
therapy who were administered ceftaroline for cellulitis and developed elevated 
INRs. One of the two patients also developed a clinically significant bleed [275, 
276]. Saum and Balmat performed a retrospective chart review comparing INR 
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outcomes among different agents commonly used for urinary tract infections (peni-
cillin, ceftriaxone, ciprofloxacin, and a first-generation cephalosporin). They found 
patients treated with ceftriaxone had a higher peak INR (3.56, p = 0.004) and greater 
extent of change from baseline INR (+1.19, p = 0.006) compared to patients treated 
with other antibiotics [277].

The exact mechanism of the hypoprothrombinemia phenomenon is unknown, 
although several mechanisms have been proposed [278–281]. Clinicians are cau-
tioned to monitor for signs and symptoms of bleeding, prothrombin time, and acti-
vated partial thromboplastin time in patients receiving cephalosporins with an MTT 
side chain and concomitant therapy with oral anticoagulants.

1.3.18  Probenecid

Probenecid can increase the serum concentrations of most renally eliminated cepha-
losporins [221, 258, 282–286]. Although other mechanisms may contribute, pro-
benecid appears to inhibit tubular secretion of cephalosporins resulting in their 
decreased renal elimination [160, 161]. The AUCs of ceftizoxime, cefoxitin, cefa-
clor, and cephradine have been reported to increase by approximately 50–100% 
with the coadministration of probenecid [17, 160, 284]. Another study showed that 
probenecid prolonged the cefuroxime serum half-life by 63%, from 0.8 h to 1.3 h (P 
0.05) after a 750 mg dose, and the area under the concentration-time curve (AUC) 
increased by 44% (P 0.05) [287]. Twenty-six patients were prospectively examined 
to determine the effect of probenecid on cefazolin. This study showed that proben-
ecid 500  mg given four times a day allowed a cefazolin dosage adjustment to 
2000 mg once daily, instead of three times a day, still resulting in what would be 
considered therapeutic serum concentrations of cefazolin [288].

Probenecid has been documented to prolong the half-life and increase the serum 
concentration of many other cephalosporins as well [221, 282–286, 288–298]. 
Certain cephalosporins such as ceforanide, ceftazidime, ceftriaxone, and moxalac-
tam are eliminated through a different pathway, and their pharmacokinetics are not 
significantly altered by probenecid [282, 283, 299–304]. Caution or avoidance of 
this combination should be considered in certain patient populations in which drug 
accumulation may occur (e.g., elderly patients or patients with impaired renal 
function).

1.3.19  Propantheline

A healthy volunteer, crossover study evaluated the effect of food, metoclopramide, 
propantheline, and probenecid on the pharmacokinetics of cefprozil [258]. In the 
propantheline arm of the study, volunteers received cefprozil alone or cefprozil 
given 0.5 h after a dose of propantheline. Both isomers of cefprozil, cis and trans, 

1 Beta-Lactam Antibiotics



32

were assayed in blood and urine samples. There was no difference in cefprozil 
AUC0–∞ or half-life in either treatment group. The administration of propantheline 
prior to cefprozil does not affect the extent of cefprozil absorption. No special pre-
cautions seem necessary for this combination.

1.3.20  Theophylline

The coadministration of cephalexin or cefaclor with theophylline has not been doc-
umented to significantly alter any pharmacokinetic parameters of theophylline 
[305–307]. However, Hammond and Abate reported a case of a possible interaction 
between theophylline and cefaclor, which resulted in theophylline toxicity [308]. It 
was unclear whether this was an actual drug-drug interaction or the effect of an 
acute viral illness on theophylline disposition. Based on these limited data, no dos-
age recommendation seems warranted.

1.3.21  Miscellaneous Agents

The pharmacokinetics of the combination of cefotaxime and mezlocillin were eval-
uated in eight healthy subjects and five patients with end-stage renal disease [309]. 
Simultaneous administration of mezlocillin in the volunteers resulted in a decrease 
of the total body clearance of cefotaxime by 42%. In the presence of end-stage renal 
disease, simultaneous administration of mezlocillin and cefotaxime led to an 
increase of the half-life of cefotaxime by roughly six times, to 5.8 h. Combined 
administration of cefotaxime and mezlocillin did not affect the pharmacokinetics of 
mezlocillin. These results suggest that lower doses of cefotaxime are probably ade-
quate to maintain comparable cefotaxime plasma concentrations when mezlocillin 
is given simultaneously, in patients with normal renal function.

Older cephalosporins such as cephalothin (renamed cefalotin) and cephaloridine 
have been reported to cause nephrotoxicity [244, 245]. The coadministration of 
these older cephalosporins with other potential nephrotoxic agents including colis-
tin [244, 245], various aminoglycosides [244–246, 310–316], and furosemide [317–
320] has been associated with an increased incidence of nephrotoxicity. The clinical 
impact of this interaction is limited because these cephalosporins are rarely used in 
current clinical practice; however, careful monitoring of renal function is warranted 
if such combinations are prescribed. These drug-drug interactions have not been 
documented as a clinically significant problem for any of the newer cephalosporins 
[321–323].
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1.4  Carbapenems

1.4.1  Aminoglycosides

As with penicillins, there are mixed reports of both inactivation and enhancement of 
activity with the use of carbapenems and aminoglycosides. An in vitro model of 
tobramycin was incubated with imipenem/cilastatin and analyzed at various time 
points using a fluorescence polarization assay. The authors found no degradation at 
typical serum concentrations of both agents [324]. In an immunocompetent guinea 
pig model of Acinetobacter baumannii pneumonia, the authors report a Cmax to 
MIC ratio of 8.4 for amikacin monotherapy compared to 5.4 for those treated with 
the combination of imipenem and amikacin. There was also a greater decrease in 
bacterial counts in guinea pigs treated with amikacin alone compared to imipenem 
and amikacin. The authors postulate that there is an in vivo chemical interaction that 
exists between imipenem and amikacin that diminishes the efficacy when adminis-
tered together [325]. Finally, a pharmacokinetic study was performed in healthy 
subjects who were administered 0.5 g of imipenem both alone and then combined 
with 0.5 g of amikacin. The mean Cmax for imipenem increased from 7.70 to 26.00 
mcg/mL when combined with amikacin. This did not change overall exposure of 
imipenem; therefore, the authors concluded that the clinical effects of monotherapy 
compared to combination therapy are unchanged [29].

1.4.2  Probenecid

Concomitant probenecid can increase the concentration of the carbapenems. It is 
proposed that probenecid inhibits tubular secretion of the carbapenems, resulting in 
their decreased renal elimination.

Of the four commercially available carbapenems in the United States, probene-
cid has the most impact on the renal elimination of doripenem followed by merope-
nem, ertapenem, and imipenem. The combination of doripenem and probenecid 
produced a 53% increase in half-life and 75% increase in the AUC of doripenem 
compared to doripenem alone [326]. Meropenem’s half-life and AUC were increased 
by 33% and 55%, respectively, when coadministered with probenecid [291]. 
Ertapenem’s half-life and AUC increased by 20% and 25% with the combination of 
ertapenem and probenecid compared to ertapenem alone [327]. Nix and colleagues 
also reported that the concomitant administration of probenecid and ertapenem 
resulted in the decreased renal clearance of unbound ertapenem by approximately 
50% [328]. In contrast, imipenem’s half-life and AUC only increased 6% and 13%, 
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respectively, when coadministered with probenecid [329]. Caution and/or avoid-
ance of this combination should be a consideration in patient populations in which 
drug accumulation may occur (such as elderly patients or patients with impaired 
renal function). The increased serum concentration noted because of this drug-drug 
interaction may increase the risk of central nervous system toxicity of these agents.

1.4.3  Cyclosporine

Based on case reports, cyclosporine and imipenem/cilastatin may demonstrate addi-
tive central nervous system toxicity when administered concomitantly. Bösmuller 
and colleagues reported five transplant patients experiencing central nervous system 
toxicity during administration of cyclosporine and imipenem/cilastatin [330]. None 
of these patients reported a history of seizures. Four of the five patients experienced 
a seizure despite cyclosporine concentrations within normal therapeutic range. The 
fifth patient experienced a myoclonia; this was associated with an elevated cyclo-
sporine concentration of 900 ng/mL. Symptoms of central nervous toxicity occurred 
within 1 d in four patients, and symptoms resolved in all patients with discontinua-
tion of imipenem/cilastatin or discontinuation, or dose reduction of cyclosporine. 
Zazgornik and colleagues published a case report of a 62-year-old female receiving 
imipenem/cilastatin and cyclosporine who developed central nervous system toxic-
ity [331]. The patient had recently received a renal transplant secondary to intersti-
tial nephritis and was receiving imipenem/cilastatin for a urinary tract infection. 
Following the second dose of imipenem/cilastatin, the patient experienced confu-
sion, agitation, and tremors, which resulted in the discontinuation of imipenem/
cilastatin. The serum cyclosporine concentration, which was obtained 4 days after 
imipenem/cilastatin therapy, was elevated at 1000 ng/mL compared to a previous 
level of 400 ng/mL. In contrast, an investigation in a rat model has demonstrated 
decreased cyclosporine serum concentrations when it was combined with imipe-
nem/cilastatin [332].

Since both imipenem and cyclosporine administered alone may have the poten-
tial to cause central nervous system side effects, it is difficult to determine what role 
the combination of these agents may have played in these reports. Based on this 
limited clinical data, avoidance of imipenem and cyclosporine is not warranted.

1.4.4  Theophylline

Semel and Allen reported three cases of seizures occurring in patients receiving 
imipenem/cilastatin and theophylline [333]. None of the patients had a previous 
history of neurologic or seizure disorder. The authors concluded that the seizures 
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could be due to both of the drugs’ ability to inhibit gamma aminobutyric acid bind-
ing to receptors, thus resulting in increased excitation of the central nervous system. 
It is difficult to differentiate the potential for seizures between the administration of 
imipenem/cilastatin alone and the combination of imipenem/cilastatin and theoph-
ylline. Avoiding coadministration of theophylline and imipenem/cilastatin is not 
warranted.

1.4.5  Ganciclovir

Patients have experienced generalized seizures during concomitant imipenem/cilas-
tatin and ganciclovir therapy [334, 335]. No additional information is available on 
these patients. Due to this limited data, it is difficult to differentiate the potential for 
seizures of imipenem/cilastatin alone or the combination of imipenem/cilastatin and 
ganciclovir. The manufacturer does not recommend coadministration of imipenem/
cilastatin and ganciclovir unless the benefits outweigh the risks.

1.4.6  Valganciclovir

After oral administration of valganciclovir, it is rapidly converted to ganciclovir by 
intestinal and hepatic esterases. Although no in vivo drug-drug interaction studies 
have been conducted with valganciclovir, because of its rapid conversion to ganci-
clovir in the body [336], any drug-drug interaction seen with ganciclovir would be 
expected to occur with valganciclovir [337]. Due to the possibility of an interaction 
between valganciclovir and imipenem/cilastatin, the use of these drugs concomi-
tantly should be avoided unless the benefit outweighs the risk [338].

1.4.7  Valproic Acid

The coadministration of carbapenems and valproic acid may lead to decreased 
concentrations of valproic acid [326]. The proposed mechanism is that carbapen-
ems may interfere with the hydrolysis of valproic acid’s glucuronide metabolite 
to valproic acid [326, 339–343]. A healthy volunteer study evaluated the pharma-
cokinetics of valproic acid and glucuronide metabolite in subjects receiving 
doripenem [326]. Valproic acid’s Cmax, Cmin, and AUC were decreased by 
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44.5%, 77.7%, and 63%, respectively, when coadministered with doripenem. In 
contrast, an increase in the Cmax and AUC of valproic acid’s glucuronide metab-
olite was seen when coadministered with doripenem [326]. Two retrospective 
studies showed decreased valproic acid concentrations of 82% and 66% in 
patients receiving concomitant meropenem and valproic acid compared to val-
proic acid alone [344, 345]. In a retrospective study examining coadministration 
of all carbapenems and valproic acid in 52 patients, the authors reported a 
decrease in valproic acid levels of 60% with 24 h of administration. Even more, 
90% of patients were determined to have subtherapeutic valproic acid levels. 
Ertapenem and meropenem had a greater effect on valproic acid levels as com-
pared to imipenem/cilastatin (p < 0.005) [346]. In both studies, the authors noted 
that the decrease in valproic concentrations could be seen within 24 h of con-
comitant administration of these two agents. Animal models have also found 
decreased valproic acid concentrations with the concurrent administration of 
imipenem [298], meropenem [347], or panipenem [348] and valproic acid. There 
have been several documented cases of lowering of plasma valproic acid concen-
trations during concomitant therapy with carbapenems [349–357]. In addition to 
changes in valproic acid concentrations, there have been many case reports pub-
lished describing patients who experienced breakthrough seizures secondary to 
this drug interaction [348, 349, 358–368]. Spriet and Willems describe a patient 
with decompensated liver cirrhosis (Child-Pugh score 13) who was being treated 
with meropenem and was then started on valproic acid after experiencing a sei-
zure. Total valproic acid levels were stable both during and after meropenem was 
discontinued. The authors theorized that the upregulation and inhibition of the 
glucuronide metabolites did not occur due to the patient’s advanced liver disease 
[369]. Providers should avoid prescribing carbapenems in patients receiving val-
proic acid to prevent subtherapeutic valproic acid serum concentrations [370]. If 
no alternative therapy is available, close monitoring of valproic acid concentra-
tions and dosage modifications of valproic acid is recommended [326].

1.4.8  Miscellaneous Agents

Franco-Bronson reported severe hypotension related to imipenem and haloperidol 
administered concomitantly in three patients. The episodes were brief and self- 
limiting in nature. The authors postulated that competition for protein-binding sites 
between these two agents might have resulted in increased free levels of haloperi-
dol [371].
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1.5  Monobactams

1.5.1  Aminoglycosides

Six healthy volunteers were administered 1 g of aztreonam alone or combined with 
0.5 g amikacin [29]. The apparent serum concentrations of aztreonam achieved 0.5 
and 8 h after the end of infusion were 32.68 ± 10.06 and 1.84 ± 0.75 μg/mL, respec-
tively. After concomitant administration with amikacin, the respective concentra-
tions were 21.63  ±  10.50 and 4.00  ±  1.71  μg/mL.  This study revealed that 
concomitant of amikacin with aztreonam in healthy volunteers minimally effects 
the Cmax without impacting any other pharmacokinetic parameter.

1.5.2  Probenecid

Concomitant probenecid can increase aztreonam concentrations [372]. It is pro-
posed that probenecid inhibits tubular secretion resulting in decreased aztreonam 
renal elimination. In a randomized crossover trial, six healthy men received aztreo-
nam alone or aztreonam along with probenecid [372]. Coadministration of proben-
ecid with aztreonam increased aztreonam concentrations from 81.7  ±  3.4 to 
86.0 ± 2.2 μg/mL. This interaction seems to carry minimal clinical risk. No recom-
mendation to avoid the concurrent administration of probenecid and aztreonam 
seems warranted.

1.5.3  Miscellaneous Agents

A number of other antimicrobial agents have been evaluated for the potential of 
drug interactions with aztreonam. Healthy subjects were given concomitant line-
zolid and aztreonam, in an open-label, crossover study [373]. The combined treat-
ment compared to each drug alone resulted in an increase in the maximum serum 
concentration of linezolid of approximately 18% and an approximate 7% decrease 
in the apparent elimination rate of aztreonam. Neither of these changes are consid-
ered clinically significant. Other studies in healthy subjects administered aztreonam 
concomitantly with daptomycin [374], nafcillin [375], gentamicin plus metronida-
zole [372], or amikacin [29] showed no clinically significant drug interactions were 
identified in these studies.
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Admixtures of aztreonam and metronidazole prepared at two different concen-
trations revealed an incompatibility as evidenced by the appearance of a pinkish 
color [376]. Under acidic pH settings of these admixtures of aztreonam and metro-
nidazole, it is suggested that the aminothiazole moiety of aztreonam is diazotized by 
the nitrite ion produced by metronidazole solutions. The diazotized molecule, in 
turn, reacts with another aztreonam molecule by diazo-coupling leading to the pink 
color [376]. As a result of this interaction, it has been recommended that aztreonam 
and metronidazole be administered separately (Table 1.1).

Table 1.1 Clinical significance of beta-lactam drug interactions

Penicillins Cephalosporins Carbapenems Monobactam

Major Contraceptives, oral 
estrogen
Probenecid
Methotrexate
Warfarin

Calcium 
(ceftriaxone, 
infants)
Contraceptives, oral 
estrogen
Methotrexate
Probenecid
Warfarin

Cyclosporine
Ganciclovir/
valganciclovir
Theophylline
Probenecid
Valproic acid

Moderate Cyclosporine (nafcillin)
Phenytoin
Tetracyclines
Vancomycin Metronidazole

Minor Acid suppressive agents
Allopurinol
Aminoglycosides
Aspirin
Beta-adrenergic blockers
Calcium channel blockers
Chloramphenicol
Chloroquine
Ciprofloxacin
Direct acting oral 
anticoagulants
Heparin
Interferon-gamma
Guar gum
Khat
Macrolides
Oseltamivir
Proguanil
Sulfonamides
Vecuronium

Acid suppressive 
agents
Aminoglycoside 
nephrotoxicity
Avibactam
Calcium channel 
blocker
Cholestyramine
Colistin
Cyclosporine
Ethanol
Iron
Metoclopramide
Mezlocillin
Nephrotoxic agents 
(with cefalotin, 
cephaloridine)
Nonsteroidal 
anti-inflammatory 
drugs
Phenytoin
Propantheline
Theophylline

Aminoglycosides
Cyclosporine
Haloperidol
Theophylline

Probenecid
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Chapter 2
Macrolides, Azalides, and Ketolides

Manjunath P. Pai

2.1  Introduction

Azithromycin and amoxicillin are currently the most prescribed antibiotics in the 
outpatient setting [1]. An estimated 60 million outpatient prescriptions are written 
for macrolides in the United States alone; over 90% of these are for azithromycin 
[1]. This high use coincides with the long history of experience and safety of these 
agents for respiratory tract infections. The macrolide, erythromycin, was the first 
major alternative for patients with hypersensitivity reactions to penicillins like 
amoxicillin [2]. However, this class of agent was recognized to be different very 
early in its development. Hinshaw noted in 1953, “The do not have the same range 
of bactericidal possibilities that penicillin has, and unlike penicillin they cannot be 
given in massive doses,” referring to the gastrointestinal intolerability and hepato-
toxicity observed with this class [3]. Several macrolide derivatives and the azalide, 
azithromycin, have been generated over the past 60 years in order to identify safer, 
better tolerated agents with a lower drug interaction potential [4].

Macrolides contribute to drug-drug interaction through several mechanisms but 
principally through inhibition of the cytochrome P450 (CYP) 3A4 isoenzyme sys-
tem [5]. Specifically, coadministration with narrow therapeutic index cardiovascu-
lar drugs can lead to serious adverse events including death [5, 6]. Specifically, 
macrolides cause a prolongation of the QTc interval in a dose-dependent manner 
and can contribute to cardiac dysrhythmias especially when used with agents known 
to prolong the QTc interval [7]. Transport proteins like P-glycoprotein (P-gp) can 
lead to complimentary drug interactions with CYP3A4 [8]. Macrolides can inhibit 
P-gp and alter the distribution, metabolism, and elimination of substrates of these 
transporters [9]. It is therefore essential that clinicians gain a deeper understanding 
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of the pharmacology of this class of antimicrobials when selecting appropriate 
pharmacotherapy.

Macrolides are defined by their structural characteristics as a 14-membered ring 
(erythromycin, clarithromycin, dirithromycin, roxithromycin), 15-membered ring 
(azithromycin), or 16-membered ring (spiramycin) [10]. Azithromycin is the only 
clinically available azalide and so classified because it contains a nitrogen atom in 
its macrocyclic lactone structure [10]. The rise of erythromycin resistant 
Streptococcus pneumoniae strains created an impetus for the development of 
ketolides [11]. The ketolides extend the microbiologic spectrum of macrolides 
through chemical modifications that have rendered them less prone to efflux (mef or 
msr)- and methylase (erm)-mediated mechanisms of macrolide resistance [11]. 
These agents replace cladinose with a 3-keto group and inclusion of a cyclic carba-
mate group within the lactone ring [11]. Of the four ketolide agents (modithromy-
cin, cethromycin, telithromycin, solithromycin), only telithromycin has received 
regulatory approval; however the United States Food and Drug Administration (US 
FDA) narrowed the clinical indications of telithromycin to only mild-to-moderate 
pneumonia in 2007 due to concerns about hepatotoxicity [12]. Replacement of the 
pyridine-imidazole side chain (telithromycin) with an aminophyl-1,2,3-triazole ring 
was considered as a potential approach to reduce the hepatotoxicity potential of this 
class with the fluoroketolide agent, solithromycin [13]. Regulatory approval has 
been deferred for solithromycin until concerns about the hepatotoxic potential of 
this agent can be addressed with a higher level of statistical confidence [14].

The similarity in structure of clarithromycin and ketolides to erythromycin con-
fers a similar drug interaction potential [4]. In contrast, the structural difference 
between azithromycin and these agents has been associated with a lower drug inter-
action potential [5]. Therefore, the current chapter focuses on the drug interaction 
potential of key macrolide, azalide, and ketolide (MAK) agents, namely, erythro-
mycin, clarithromycin, azithromycin, and telithromycin. Available information 
regarding solithromycin is also included given that this agent unlike cethromycin 
demonstrated efficacy in clinical trials for community-associated pneumonia [15]. 
The degree of pharmacokinetic interaction of MAK agents is most often based on 
the changes in exposure of the substrate drug. The percentage change in the area 
under the plasma/serum concentration time curve (AUC) is reported in this chapter 
to illustrate the degree of interaction.

2.2  Basic Pharmacology

Several antimicrobials including the MAK antibiotics exert their effects by blocking 
ribosomal protein synthesis [16]. Macrolides bind reversibly to the 50S ribosomal 
subunit of sensitive microorganisms and exert a bacteriostatic effect similar to that 
of the lincosamides and streptogramins. Erythromycin (MW = 733.93 g/mol) spe-
cifically inhibits the translocation step by blocking the transfer of the peptide chain 
from the transferase site to the donor site [16]. Analysis of the crystal structure of 
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the large ribosomal subunit (50S) form complexed with azithromycin suggests that 
azithromycin blocks the protein exit tunnel [17]. Resistance to macrolides and 
azalides occurs through four known mechanisms which include drug efflux, ribo-
somal protection by constitutive or inducible production of methylase enzyme, 
hydrolysis by esterases, and chromosomal mutations that modify the 50S ribosome 
[11]. Ketolides are less likely to induce production of methylase and to undergo 
drug efflux [11]. Dimethylation at 23S rRNA nucleotide A2058 within the ribo-
somal binding site does confer resistance to the ketolides [18]. The level of A2058- 
dimethylation correlates with reductions in ketolide sensitivity and is greatest in S. 
pyogenes strains expressing erm(B) [18]. The use of the only approved ketolide 
(telithromycin) is technically limited to the treatment of community-acquired pneu-
monia (of mild to moderate severity) due to Streptococcus pneumonia (including 
multidrug-resistant isolates), Haemophilus influenzae, Moraxella catarrhalis, 
Chlamydophila pneumoniae, or Mycoplasma pneumoniae, for patients 18 years and 
older due to its hepatotoxic potential [12]. As a result, the MAK agents continue to 
be prescribed for respiratory and non-respiratory infections secondary to these 
pathogens. Vaccination of children with the 7-valent and 13-valent pneumococcal 
forms is contributing to improvements in susceptibility profiles of global strains to 
the beta-lactams and macrolides [19].

Beyond coverage against Gram-positive pathogens, clarithromycin and azithro-
mycin are used as prophylaxis and treatment of Mycobacterium avium- 
intracellularae in AIDS and other immunocompromised patient populations [20]. 
These agents are utilized to treat pathogens associated with ticks that are seeing a 
rise in incident infections over the past decade [21]. Clarithromycin (MW = 747.95 
g/mol) has also been a key agent in the treatment of peptic ulcer disease secondary 
to Helicobacter pylori but is increasingly less effective due to emergence of resis-
tance globally [22]. Finally, macrolides and azalides are used clinically for their 
non-antimicrobial properties, and non-antimicrobial macrolides are in drug devel-
opment [23, 24]. Erythromycin demonstrates prokinetic effects through stimulation 
of the motilin receptor and is used in critically ill patients with gastroparesis [25]. 
Azithromycin (MW= 748.98 g/mol) has recently been demonstrated to have com-
parable antroduodenal effects as erythromycin [26]. Macrolides exert anti- 
inflammatory effects that have been exploited for chronic respiratory diseases such 
as diffuse panbronchiolitis and cystic fibrosis [27]. Use of chronic azithromycin has 
been shown to have anti-inflammatory, antisecretory, and tissue repair and healing 
effects. Biochemical effects include inhibition of nuclear factor kappa-B, reductions 
in proinflammatory cytokines, and decreases in reactive oxygen species. These bio-
chemical effects also include cellular changes through reduced inflammatory cell 
migration and shifts in T-helper cells toward the type 2 helper T cell profile [28]. 
The MAK antimicrobials can also affect neuromuscular transmission. Telithromycin 
(MW = 812.00 g/mol) has been shown to inhibit postsynaptic nicotinic acetylcho-
line receptors, and its use is contraindicated in patients with myasthenia gravis [29]. 
This adverse pharmacologic effect is not seen with solithromycin (MW = 845.01 g/
mol) that lacks the pyridine moiety [13]. Finally, the MAK antibiotics are associated 
with drug-induced QT prolongation and sudden death especially when combined 
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with other agents implicated with QT prolongation that are metabolized by CYP3A4 
[6, 30]. The affinity of clarithromycin is roughly twofold of that of erythromycin for 
this effect mediated by the human ether-a-go-go-related gene (HERG)-encoded 
potassium channels [31].

2.2.1  Absorption

The majority of MAK agents are biopharmaceutical class II compounds, having low 
solubility and high permeability [32]. Erythromycin is extremely sensitive to acid 
degradation through slow loss of cladinose from erythromycin A by gastric acid. 
Food significantly decreases the rate (lag time extends to 2–3 h) and extent of its 
absorption (50% reduction in AUC) [33]. More importantly, significant intersubject 
variability exists in the absorption of erythromycin [33–36]. Modification of eryth-
romycin through esterification and enteric coating helps to reduce gastric degrada-
tion and improve bioavailability. Available formulations of erythromycin as the 
base, estolate, ethylsuccinate, and stearate derivatives are included in Table  2.1. 
Erythromycin estolate is least susceptible to acid hydrolysis, and enteric coating 
leads to the most predictable absorption profile [35, 37]. Erythromycin is also avail-
able as an intravenous formulation that is delivered as a lactobionate derivative. 
Clarithromycin is available as both an intravenous and oral formulations in several 
countries (Klaricid IV) but is currently only available as an immediate and extended 
release oral formulation (Table 2.1) in the United States. Clarithromycin undergoes 

Table 2.1 Available systemic formulations of macrolides, azalides, and ketolides in the United 
States

Drug Formulations

Erythromycin 
(base)

Injectable (100 mg/mL), injectable (200 mg/mL), capsule (250 mg),  
coated tablet (250 mg), timed-release tablet (250 mg), enteric-coated 
tablet (500 mg), delayed-release (250 mg)

  Erythromycin 
estolate

Capsule (125 mg), suspension (125 mg/mL)

  Erythromycin 
ethylsuccinate

Suspension (200 mg/5 mL), suspension (400 mg/5 mL), coated tablet (400 
mg), tablet (400 mg)

  Erythromycin 
lactobionate

Injectable (500 mg vial), injectable (1000 mg vial)

  Erythromycin 
stearate

Coated tablet (250 mg), coated tablet (500 mg), tablet (500 mg)

Clarithromycin Suspension (125 mg/5 mL), suspension (250 mg/5mL), tablet (250 mg), 
tablet (500 mg), extended-release tablet (500 mg)

Azithromycin Extended-release suspension (2 g), injectable (500 mg), solution (2.5 g), 
solution (500 mg), suspension (500 mg), suspension (100 mg/5mL), 
suspension (200 mg/5mL), suspension (1 g/packet), tablet (250 mg), tablet 
(500 mg), tablet (600 mg)

Telithromycin Tablet (300 mg), tablet (400 mg)
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significant first-pass metabolism and has a bioavailability of approximately 50% 
that is not affected by the coadministration of food [38]. However, the bioavailabil-
ity of the extended release formulation is significantly improved when taken with 
food and is the recommended approach to administration [39].

Azithromycin is available (Table  2.1) as intravenous, immediate release, and 
extended release oral formulations [40]. The oral bioavailability of azithromycin 
capsule (not commercially available) is 38% [41]. The extended release formulation 
is not bioequivalent to the immediate release oral suspension, and so the dosages of 
these agents are not interchangeable [42]. Food reduces the bioavailability of 
extended release oral suspension but has marginal effects on the immediate release 
formulations [42]. The solubility of azithromycin is higher in its amorphous instead 
of the dihydrate-crystalline form, but these alternate formulations have not been 
introduced to the market [43]. Improving the bioavailability of this compound can 
have a major impact on the global supply chain of this agent given that high doses 
are needed for certain clinical indications. Telithromycin is available as an oral for-
mulation only and has a bioavailability of 57% that is not adversely affected by the 
coadministration of food [44]. The absolute oral bioavailability of solithromycin is 
62%, and coadministration of food does not reduce its bioavailability [11].

2.2.2  Distribution

Erythromycin is approximately 70–95% protein bound, with variability noted based 
on the specific derivative [45]. The volume of distribution (Vd) of erythromycin is 
approximately 40 L in adults [46]. Clarithromycin is less protein bound (42–50%) 
and has a correspondingly larger apparent Vd of 243–266  L [47]. Azithromycin 
demonstrates concentration-dependent protein binding with a range of 7–50% and 
an apparent Vd that exceeds 1000 L [47]. Telithromycin in comparison has similar 
protein binding to clarithromycin (60–70%) and an apparent Vd of 200–250 L [4]. 
Solithromycin is 81% plasma protein bound with an apparent Vd of 400 L [11]. 
High intracellular concentrations contribute to the computation of large Vd values 
for these. Pulmonary tissue concentrations also exceed serum-unbound drug con-
centrations, with epithelial lining fluid concentrations that are 3.15- to 24.10-fold 
higher, and alveolar macrophage concentrations have been documented to be 84.2- 
to 3,234-fold higher than serum total concentrations [48]. Accumulation of azithro-
mycin and clarithromycin in alveolar macrophages occurs in the acidic subcellular 
compartments of these cells such as the lysosomes [49]. The enhanced distribution 
of MAK into pulmonary tissue is likely mediated by active transport mechanisms as 
these measurements are not predicted by the free drug concentration profiles of 
these agents [48, 50, 51].
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2.2.3  Metabolism

The transport and metabolism of macrolides are illustrated in Fig. 2.1. Transport 
of erythromycin and clarithromycin into hepatocytes is mediated by organic 
anion transport polypeptide and has not been well characterized for the other 
agents [52]. The tertiary amine function, -N-(CH3)2, subsequently undergoes 

Fig. 2.1 Macrolide metabolism and transport pathways [accessible through PharmGKB]. 
©PharmGKB. Permission granted by PharmGKB and Stanford University
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N-demethylation by hepatic microsomes, followed by dealkylation [53]. The 
metabolites N-desmethylerythromycin, 14-(R)-hydroxyclarithromycin, and 
N-desmethylclarithromycin form stable complexes with Fe2+ of reduced CYP3A4 
to disable enzymatic activity [54]. Of these metabolites, 14-(R)-hydroxy clarithro-
mycin is more potent against Haemophilus influenzae compared to clarithromycin 
[55]. Erythromycin has been demonstrated to first induce CYP, which is followed 
by rapid complexation and inactivation by its metabolite [56]. In contrast, azithro-
mycin induces N-demethylase but does not induce CYP, and no inactive CYP 
complexes are detectable despite high azithromycin accumulation in this tissue 
[57]. Telithromycin undergoes similar biotransformation as clarithromycin and 
has a N-bis-demethyl derivative that is 4–16-fold less active than the parent com-
pound [58]. However, telithromycin has been shown to decrease the activity of 
both CYP1A2 and CYP3A4, while clarithromycin principally decreases the activ-
ity of CYP3A4 [59]. The mechanism-based inhibition of CYP3A by erythromy-
cin, clarithromycin, and telithromycin suggests that several days of drug-free 
period may be necessary to permit generation of CYP3A4 isoenzymes to normal-
ize the intrinsic activity of this metabolic pathway [60]. Solithromycin is metabo-
lized by CYP3A4, n-acetyl transferase, and loss of the aminopheyl-1,2,3-triazole 
group [11]. The latter two metabolites are active but represent less than 6% of the 
systemic exposure in human mass balance studies [13]. Solithromycin auto-inhib-
its its CYP3A4 metabolism contributing to nonlinear clearance over time [11]. 
Auto-inhibition has also been shown with clarithromycin with similar nonlinearity 
(at higher doses) [61]. However, this effect does not contribute to further increases 
in exposure after 48 h of the standard 500 mg twice daily regimen of clarithromy-
cin [61].

2.2.4  Elimination

Elimination of MAK agents is primarily through the hepatic route with unchanged 
drug elimination in urine contributing to 2.5% of erythromycin and 10–12% for 
azithromycin, telithromycin, and solithromycin [4, 47, 62]. Overall, biliary excre-
tion accounts for the majority of the elimination of these compounds primarily 
through the P-gp transport. In contrast, elimination of clarithromycin through the 
kidney accounts for 20–40% of its excretion [63]. In addition, 10–15% of 14-hydroxy 
clarithromycin is excreted in urine [63]. As a consequence, the dosage of clarithro-
mycin is recommended to be reduced by 50% in patients with renal impairment 
based on a creatinine clearance (CLcr) <30 mL/min. Drug interactions that increase 
clarithromycin exposure can necessitate a 75% reduction in the dosage when CLcr 
< 30mL /min [64].
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2.3  Drug Interactions

The primary mechanisms associated with contraindicated and major drug interac-
tions with MAK agents involve CYP3A4 inhibition in the small intestine and liver 
[65]. Interactions associated with drug transport systems such as P-gp and OATP 
have been increasingly recognized, but the degree of interaction is driven by the 
complimentary CYP3A4 inhibition [66]. Given the specific expression of human 
transporters within select tissues, inhibition of these systems can affect absorption, 
distribution, metabolism, and elimination of several compounds [67]. Inhibition of 
P-gp in the intestine can lead to increased bioavailability of the substrate, while 
inhibition of P-gp in the kidney can reduce elimination. Inhibition of P-gp in the 
brain leads to accumulation of substrates within this tissue. Hence, prediction of the 
degree of MAK drug-drug interactions on a specific substrate is complex, when the 
distribution, metabolism, and elimination pathways are regulated by multiple 
systems.

MAK can increase or decrease the bioavailability of drugs through an alteration 
in normal intestinal flora. Digoxin and digitoxin can be metabolized by Eubacterium 
lentum found in the gastrointestinal tract of certain individuals [68, 69]. Inhibition 
of E. lentum by erythromycin has been proposed as a mechanism leading to 
enhanced bioavailability of digoxin [68, 69] . Conversely, macrolides can theoreti-
cally attenuate the activity of conjugated estrogens by reducing enterohepatic recir-
culation of these oral contraceptive agents [70]. However, this mechanism has not 
been substantiated, and systematic reviews and recent studies have failed to confirm 
these historic findings [71–73]. Microbiome-related research is beginning to shed 
new light on the potential impacts of antimicrobials at a young age. Preliminary 
evidence from Finland demonstrates that use of macrolides in 2–7-year-olds caused 
a measurable shift in the microbiome and reduces bile salt hydrolases [74]. Children 
in this cohort were more likely to be at risk for asthma and weight gain with this 
early use of macrolides compared to the penicillins [74]. Modification to bile acid 
activity has major implications for drug that require micellar solubilization in order 
to be bioavailable. Further exploration of macrolide-host-microbiome-drug interac-
tions is required.

Clarithromycin is active against bacillus Calmette-Guerin (BCG) and so can 
reduce the viability of this microorganism during intravesical instillation to treat 
bladder cancer [75]. Finally MAK have been shown to induce QTc prolongation 
and have the potential for a synergistic pharmacodynamic interaction with agents 
known to also prolong the QTc interval [7]. Multiple substrates that have the poten-
tial to increase the QTc interval are metabolized by CYP3A4 and transported by 
P-gp. Use of verapamil with erythromycin serves as a prime example where this 
interaction has been associated with a fivefold higher risk for sudden death [6, 76]. 
The following sections highlight the key known PK-PD interactions of MAK anti-
microbials. Given the breadth of potential CYP3A4 substrates, these sections focus 
on interactions of MAK agents with non-antimicrobials.
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2.3.1  Pharmacokinetic Drug-Drug Interactions

2.3.1.1  Absorption-Related Drug Interactions

Absorption-mediated interactions with MAK agents are primarily transport medi-
ated. Alternate mechanisms such as the prokinetic effect of AK agents through 
motilin agonism are most pronounced with erythromycin and its more potent 
metabolite, 9-anhydro-erythromycin A-6,9-hemiketal, formed by its acid lability. 
The clinical implication of this prokinetic effect is limited for the MAK agents. The 
bioavailability of MAK is not significantly affected by the concomitant use of ant-
acids [77]. The coadministration of antacids and azithromycin is discouraged due to 
the low bioavailability of this agent. The mean Cmax of azithromycin was reduced by 
24%, while the AUC was not affected when coadministered with aluminum-/
magnesium- containing antacids [42, 78]. The use of an acid-suppressive agent such 
as cimetidine has no negative impact on azithromycin absorption [78]. Drug absorp-
tion through the intestinal barrier is regulated primarily by adenosine triphosphate 
(ATP)-binding cassette (ABC) drug transporters and the solute carrier (SLC) trans-
porters [67]. P-glycoprotein (ABC transporter) is an efflux transporter found in the 
apical (luminal) membrane of the entire intestine from duodenum to rectum, with a 
high expression in the enterocytes of the small intestine. The bioavailability of 
digoxin (P-gp substrate) has been documented to increase with the concomitant use 
of clarithromycin [79, 80]. Another relevant substrate is dabigatran etexilate, an oral 
anticoagulant with a mean (range) bioavailability of 6.5 (2.8–12.1%) that is not 
metabolized by CYP and is excreted unchanged (80%) by the kidneys [81]. 
Coadministration of dabigatran with clarithromycin increased the mean (range) oral 
bioavailability to 10.1 (4.1–26.9%) noted by a 60.2% increase in the Cmax and 49.1% 
increase in the AUC [82]. Of greater concern is the rise in the interindividual vari-
ability (coefficient of variation) in bioavailability of dabigatran from 38.6% to 
72.5% with concomitant of clarithromycin use [82]. This degree of interaction 
likely extends to telithromycin and solithromycin given similar expected affinity for 
P-gp inhibition compared to erythromycin and azithromycin. This expectation is 
further demonstrated through a 15-year population-based nested case-control study 
that documented a fourfold higher associated risk for digoxin toxicity with clar-
ithromycin compared to either erythromycin or azithromycin [83].

Uptake transport into enterocytes is mediated by OATP and PEPT transporters 
[84]. In addition, select OATP type transporters are specifically expressed in the 
liver (OATP1B1, OATP1B3) [84]. The IC50 for inhibition of OATP1B3-mediated 
uptake of pravastatin was determined to be 11 μM, 32 μM, and 34 μM for telithro-
mycin, clarithromycin, and erythromycin, respectively [85]. Clarithromycin inhib-
its the hepatic uptake of HMG-CoA reductase inhibitors such as pitavastatin, 
pravastatin, and rosuvastatin, leading to an increase in the bioavailability of these 
agents [86, 87]. A 200% increase in exposure of pravastatin with clarithromycin is 
attributed to this mechanism as pravastatin is not a substrate of CYP3A4 [88]. 
Limiting the daily dose of pravastatin to 40 mg/day is recommended if it is used 
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concomitantly with clarithromycin. However, the impact of OAT1B1 inhibition is 
limited for other substrates such as ambrisentan where only a 41% increase in AUC 
is observed with concomitant clarithromycin use [89].

2.3.1.2  Distribution-Related Drug Interactions

Other than the intestine and liver, P-gp is also expressed in various organs such as 
the brain, kidney, placenta, adrenal, testes, and retina [90]. However, the relative 
expression and influence of P-gp vary by the tissue type. Inhibition of P-gp has been 
shown to increase distribution of radio-labeled verapamil to a greater extent in the 
retina compared to the brain [91]. The potential for increased exposure of drugs that 
are substrates of P-gp is unlikely to increase substantially in restricted distribution 
compartments (brain, eyes, testes) when MAK agents are coadministered. Use of 
clarithromycin has not been shown to alter the brain distribution of verapamil 
because a secondary transport mechanism mediated by a proton antiporter may 
overcome this inhibited pathway [92, 93]. Data on altered distribution due to plasma 
protein-binding displacement with the use of MAK agents are limited. The mean 
[95% CI] ratio of the unbound fraction of quinine in patients with severe liver dys-
function who received erythromycin was 1.76 [1.42, 2.11]. In comparison the mean 
[95% CI] ratio of the unbound fraction of quinine in healthy volunteers who received 
erythromycin was 1.41 [1.28, 1.55] [94]. The effects of MAK agents on distribution- 
mediated interactions are likely to be limited. However, tissue-specific toxicities can 
be attributed in part to altered distribution when drugs with narrow therapeutic indi-
ces are used with MAK agents as discussed in the next section.

2.3.1.3  Metabolism-Related Drug Interactions

Clarithromycin, telithromycin, and solithromycin are strong inhibitors, erythromy-
cin is a moderate inhibitor, and azithromycin is not an inhibitor of CYP3A4 [11, 
95]. Strong inhibitors are classified as agents that have the ability to raise substrate 
AUC values at least fivefold, while moderate inhibitors have the potential of raising 
AUC values by two- to less than fivefold [66]. Evaluation of the CYP3A4 drug 
interaction potential in healthy volunteers has historically included use of ketocon-
azole as the index agent [66]. Regulatory agencies like the FDA recommended 
against the use of ketoconazole, and consideration of clarithromycin or itraconazole 
in healthy volunteer studies due to the potential for liver injury [96, 97]. The selec-
tion of ritonavir or cobicistat has been suggested as better alternative for healthy 
volunteer studies, while other studies suggest that the risk of hepatotoxicity does not 
outweigh the scientific benefit of retaining ketoconazole as the index inhibitor [96–
98]. These studies highlight various transport mechanisms impacted by CYP3A4 
inhibitors that truly limit clinical prediction and generalizations about the specific 
drug-drug interactions of these inhibitors. As a result, the interactions of key drug 
classes with MAK agents where documented serious adverse events have occurred 
are listed in Table 2.2 and detailed as follows. Please note that a detailed summary 
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Table 2.2 Pharmacokinetic alterations of key drugs when combined with the macrolides and 
ketolides

Drugs Erythromycin Clarithromycin Telithromycin

Anticancer

Cabazitaxel ↑ 25% AUCa ↑ 50% AUCa ↑ 50% AUCa

Vinblastine ↑ 25% AUCa ↑ 50% AUCa ↑ 50% AUCa

Vinorelbine ↑ 25% AUC ↑ 50% AUCa ↑ 50% AUCa

Anticoagulant

Edoxaban ↑ 185% AUC ↑ 185% AUC ↑ 185% AUC
Rivaroxaban ↑ 34% AUC ↑ 54% AUC ↑ 54% AUC
Dabigatran ↑ 30% AUC ↑ 60% AUC ↑ 60% AUC
Antidiabetic

Glyburide ↑ 18% Cmax ↑ 18% Cmax
a ↑ 18% Cmax

a

Glibenclamide ↑ 25% Cmax
a ↑ 25% Cmax ↑ 25% Cmax

a

Repaglinide ↑ 40% AUCa ↑ 40% AUC ↑ 40% AUCa

Saxagliptin ↑ 100%a AUC ↑ 250%a AUC ↑ 250%a AUC
Antimigraine

Dihydroergocryptine ↑ 1650% AUC ↑ 1650% AUCa ↑ 1650% AUCa

Eletriptan ↑ 400% AUC ↑ 600% AUCa ↑ 600% AUCa

Benzodiazepines

Alprazolam ↑ 60% AUC ↑ 100% AUC ↑ 100% AUC
Midazolam ↑ 400% AUC ↑ 200–800% AUC ↑ 200–800% AUC
Triazolam ↑ 52% AUC ↑ 100% AUCa ↑ 100% AUCa

Calcium channel blocker

Felodipine ↑ 250% AUC ↑800% AUCa ↑ 800% AUCa

Nifedipine ↑ 100% AUC ↑200% AUCa ↑200% AUCa

Immunosuppressants

Cyclosporine ↑ 100% AUC ↑ 200% AUCa ↑ 200% AUCa

Everolimus ↑440% AUC ↑1500% AUCa ↑1500% AUCa

HMG-CoA inhibitors

Atorvastatin ↑ 32.5% AUC ↑ 82% AUC ↑ 82% AUCa

Lovastatin ↑ 390% AUCa ↑ 1000% AUCa ↑ 890% AUCa

Simvastatin ↑ 390% AUC ↑ 1000% AUC ↑ 890% AUC
Pitavastatin ↑ 280% AUC ↑ 280–460% AUCa ↑ 280–460% AUCa

Pravastatin ↑ 100% AUCa ↑ 200% AUC ↑ 200% AUCa

PDE5 inhibitors

Sildenafil ↑ 182% AUC ↑ 230% AUC ↑ 230% AUCa

Tadalafil ↑ 107% AUC ↑ 107–312% AUCa ↑ 107–312% AUCa

Vardenafil ↑ 400% AUC ↑ 1000% AUCa ↑ 1000% AUCa

aChange in area under the curve (AUC) estimated based on data available for an alternate CYP 
inhibitor with a comparable degree of inhibition [99]
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of the interaction potential of all approved drugs that are metabolized by the CYP 
system and have the potential to interact with MAK agents is not feasible in this 
review. The following sections serve as relevant examples of the spectrum and 
extent of metabolism-related drug interactions secondary to MAK agents.

2.3.1.4  Anticancer Medications

Several potentially harmful interactions exist between the macrolides and antican-
cer medications. The degree of interaction is dependent on substrate specificity for 
CYP3A4. Several orally administered tyrosine kinase inhibitors interact with strong 
CYP3A4 inhibitors such as ketoconazole necessitating a >50% reduction in the 
daily dose [100]. A similar degree of interaction is expected with the use of clar-
ithromycin or telithromycin. The potential negative pharmacokinetic effects of clar-
ithromycin may be countered by positive chemosensitizing effects that may work 
synergistically with agents to induce autophagy in models of myeloma and pancre-
atic and non-small cell lung cancer that are presently under clinical study [101, 
102]. Unfortunately, the high drug-drug interaction potential of this agent has 
reduced the feasibility of this clinical evaluation for non-small cell cancer but shown 
success for select cancers [103]. Irrespective of the potential non-antimicrobial ben-
efits, the key concern with overexposure of select anticancer agents due to CYP3A4 
inhibition is the risk for prolonged severe neutropenia. Concomitant use of clar-
ithromycin and vinorelbine was associated with a 4.52-fold (95% CI 1.41–14.45) 
increased risk for grade 3/4 neutropenia [104]. A similar near fivefold risk in devel-
opment of neutropenia was observed with the concomitant administration of 
docetaxel and clarithromycin [105]. Dose reductions to 50% or more of normal may 
be necessary in select cases where the coadministration of these anticancer agents 
and clarithromycin or telithromycin cannot be avoided.

2.3.1.5  Antidiabetic Medications

There are currently eight classes of agents that are approved for the treatment of 
patients with type 2 diabetes. These include the α-glucosidase inhibitors, bigua-
nides, dipeptidyl peptidase 4 (DPP4) inhibitors, glucagonlike peptide-1 (GLP-1), 
meglitinides, selective sodium-glucose cotransporter-2 (SGLT-2) inhibitors, sulfo-
nylureas, and thiazolidinediones [106]. The primary metabolic pathway for metabo-
lism of the sulfonylureas and thiazolidinediones is via the CYP2C system. The 
pharmacokinetics of glyburide (sulfonylurea) was evaluated to be marginally altered 
in combination with erythromycin [107]. The Cmax of glyburide was demonstrated 
to increase by 18%, with an associated reduction in the Tmax from 4.9 to 3.0 h [107]. 
These results are thought to be a result of enhanced gastric motility by erythromy-
cin, which increased the rate but not extent of glyburide absorption. The AUC of 
glyburide, a substrate of CYP2C9, was increased by a mean [90% CI] of 25% [12%, 
50%] when combined with clarithromycin [107]. Despite this mild pharmacokinetic 
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interaction, reports of severe and potentially life-threatening hypoglycemia have 
been documented with use of clarithromycin and sulfonylureas that may in part be 
transporter mediated [108, 109].

Schelleman and colleagues recently performed two case-crossover studies using 
US Medicaid data to evaluate if the use of oral antimicrobials increases the risk of 
severe hypoglycemia. An association between sulfonylurea-induced hypoglycemia 
and the use of fluconazole, ciprofloxacin, levofloxacin, azithromycin, clarithromy-
cin, erythromycin, trimethoprim/sulfamethoxazole, or cephalexin was measured. 
Interestingly the odds ratio [95% CI] for glyburide-induced hypoglycemia and con-
comitant use of an antimicrobial was 2.66 [2.02, 3.49]-cephalexin, 2.65 [1.87, 
3.76]-azithromycin, 3.60 [2.35, 5.50]-erythromycin, and 13.28 [10.26, 17.18]-clar-
ithromycin [110]. Similarly the odds ratio for glipizide-induced hypoglycemia was 
at least 2.5-fold higher with the use of clarithromycin versus azithromycin [110]. 
These findings have been substantiated through an analysis of Texas Medicaid data 
that show that the risk associated with antimicrobial use and hypoglycemia is great-
est with clarithromycin – 3.96 [2.42–6.49] [111]. Cumulatively, these data suggest 
that although MAK agents are less likely in theory due to a CYP3A4-mediated 
pathway, an interaction does exist and is likely to be exacerbated in patients with 
acute infections.

The pharmacokinetic interaction potential between the mitiglinides, thiazolidin-
ediones, and MAK agents tends to be less likely with increases of AUC typically 
<40% [112, 113]. In contrast, the exposure of saxagliptin (DPP4 inhibitor), a 
CYP3A4 substrate, increased by 250% when coadministered with ketoconazole 
[114]. Although no cases of hypoglycemia have been reported with use of saxa-
gliptin and CYP3A4 inhibitors, the product label recommends that the daily dosage 
of saxagliptin be limited to 2.5 mg once daily when used with agents like clarithro-
mycin and telithromycin [114]. Overall, patients with diabetes receiving treatment 
with an oral antidiabetic agent should be counseled on the signs and symptoms of 
hypoglycemia, such as headache, dizziness, drowsiness, nervousness, tremor, weak-
ness, perspiration, and palpitations when initiated on agents like clarithromycin or 
telithromycin.

2.3.1.6  Antimigraine Medications

The ergopeptide alkaloids and the triptans represent the two major drug classes that 
are used to treat migraine attacks. Chronic or high exposures to ergotamine com-
pounds can lead to ergotism known classically as “St. Anthony’s Fire” related to the 
convulsive and gangrenous symptoms that ensue from this toxicity [115]. The ergot-
amines have been used to treat migraine headaches for nearly a century but increas-
ingly replaced by the triptans. Dihydroergotamine is metabolized by CYP3A4 and 
has an oral bioavailability of <1% [116]. Thus it is remarkable how the increase in 
oral bioavailability with the use of ergopeptides in combination with erythromycin 
and clarithromycin can lead to acute limb ischemia, necrosis, and gangrene [117–
120]. Evaluation of the interaction potential of alpha-dihydroergocryptine and 
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erythromycin suggests that there is a mean [95% CI] of 1650% [870%, 3150%] 
increase in the AUC of this ergoline [121].As a result, the use of erythromycin and 
clarithromycin is contraindicated with ergoline derivatives such as bromocriptine 
and cabergoline. These major adverse event risks are expected with telithromycin 
and solithromycin, and so avoidance of concomitant MAK agents with ergotamines 
is essential.

The currently available triptans include sumatriptan, rizatriptan, naratriptan, zol-
mitriptan, eletriptan, almotriptan, frovatriptan, and avitriptan that are not all metab-
olized by the same pathway . Most triptans are metabolized by monoamine oxidase 
A or alternatively by CYP1A2 [122]. Almotriptan is metabolized by CYP3A4 and 
CYP1A2, and its exposure has demonstrated to increase by 57% when used with the 
potent CYP3A4 inhibitor, ketoconazole [123]. The exception within this group is 
eletriptan, which is principally transported by P-gp and metabolized by CYP3A4 
[124]. The exposure of eletriptan increases by 400% when coadministered with 
erythromycin and 600% when coadministered with ketoconazole [124]. Hence, the 
potential interaction between clarithromycin or telithromycin with eletriptan is sig-
nificant, and concomitant use within 72 h of use of strong CYP3A4 inhibitors such 
as clarithromycin and telithromycin is recommended [124].

2.3.1.7  Benzodiazepines

The majority of benzodiazepine undergo CYP metabolism followed by glucuroni-
dation [125]. The exception to these includes lorazepam that is glucuronidated by 
UGT2B15 and clonazepam that undergoes acetylation via NAT2 [125–127]. The 
three benzodiazepines influenced by CYP3A4 include alprazolam, triazolam, and 
midazolam [125]. Midazolam is considered an optimal CYP3A4 probe substrate 
and is a useful agent to characterize the degree of CYP3A4 inhibition. Erythromycin 
was demonstrated to increase the AUC of single-dose oral alprazolam by approxi-
mately 60% but was not demonstrated to alter psychomotor function as assessed by 
the Digit Symbol Substitution Test [125]. In contrast, the clearance of triazolam was 
demonstrated to be reduced by 52% with the concomitant use of erythromycin and 
was associated with psychomotor dysfunction and amnesia [125]. Prolonged seda-
tion has been reported with the concomitant use of midazolam and erythromycin 
[128]. Olkkola et al. demonstrated the exposure of oral midazolam to be increased 
by 400%, while that of intravenous midazolam increased by 54% with use of eryth-
romycin [129]. The dual inhibition of both intestinal and hepatic CYP3A4 contrib-
utes to the enhanced oral bioavailability of midazolam [129]. As expected, 
azithromycin has not demonstrated a significant interaction with midazolam [130]. 
In contrast, the potent inhibitors, clarithromycin and telithromycin, are expected to 
increase the exposure of midazolam by 200–800% with expected psychomotor 
adverse events [80]. This potential interaction is especially important in elderly 
patients and those sensitive to the effects of benzodiazepines. Although a reduction 
in the dose of the midazolam is recommended, use of azithromycin would be pre-
ferred over coadministration with clarithromycin or telithromycin. The isomer of 
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zopiclone, eszopiclone, is principally metabolized by CYP3A4, and 220% increase 
in AUC is expected when combined with a strong inhibitor like clarithromycin 
[131]. Alternatively, use of sedative hypnotics such as zolpidem and zaleplon has a 
lower potential for interaction with agents like clarithromycin [132]

2.3.1.8  Calcineurin Inhibitors and Proliferation Signal Inhibitors

Major drug-drug interactions have been observed with the combination of calcineu-
rin inhibitors (cyclosporine and tacrolimus) and proliferation signal inhibitors (siro-
limus and everolimus) and MAK agents [133]. Overexposures to cyclosporine and 
tacrolimus due to this interaction have been associated with nephrotoxicity and neu-
rotoxicity [133]. Patients that are immunosuppressed are often at an increased risk 
for pulmonary infection that carries the risk for an untoward reaction when a MAK 
agent is selected. The exposure of cyclosporine can increase by 100–500% when 
combined with erythromycin [134]. Initial dosage reductions of at least 50–100% 
may be necessary when combined with clarithromycin and telithromycin [133]. 
Again, as expected the interaction between azithromycin and these agents has been 
of marginal significance [135]. Similarly, a major interaction has been documented 
with the combination of tacrolimus and erythromycin or clarithromycin [136]. 
Again, an interaction has been documented with azithromycin and tacrolimus, but 
the impact of this interaction is expected to also be low [137]. Similar changes in the 
pharmacokinetics of everolimus have been shown in healthy volunteers, where the 
mean [90% CI] AUC of everolimus increased by 440% [350%, 540%] with eryth-
romycin co-use [138]. Pea and colleagues recently illustrated a case that required a 
reduction in the everolimus dose to one-quarter of the normal daily dose for approx-
imately 2 weeks upon discontinuation of clarithromycin before the everolimus dose 
could be administered at the baseline level [139]. Similarly, sirolimus should not be 
used concomitantly with strong CYP3A4 inhibitors. The combined use of sirolimus 
and clarithromycin has been associated with an 800% increase in the blood trough 
concentration of sirolimus and acute nephrotoxicity [140]. The sustained CYP3A4 
inhibition induced by clarithromycin and telithromycin makes it critically important 
to gain a thorough medication history before these immunosuppressive agents are 
initiated.

2.3.1.9  Hydroxymethylglutaryl Coenzyme A (HMG-CoA) Reductase 
Inhibitors

Overexposure of select HMG-CoA reductase inhibitors, commonly referred to as 
the “statins,” is associated with rhabdomyolysis and acute kidney injury. Case 
reports and population-based studies documenting the seriousness of this interac-
tion are abound [141–143]. Currently available statins include atorvastatin, fluvas-
tatin, lovastatin, pitavastatin, pravastatin, rosuvastatin, and simvastatin. One out of 
four adults in the United States over the age of 40 years is currently prescribed a 
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statin that increases the probability for this major adverse drug-drug interaction 
event [144]. The metabolic and transport pathways of these agents are variable. 
Atorvastatin, lovastatin, and simvastatin are primarily metabolized by CYP3A4 and 
transported into hepatocytes by OAT1B1 and eliminated via P-gp through the bile 
[145]. Fluvastatin is primarily metabolized by CYP2C9, and rosuvastatin is primar-
ily metabolized by CYP2C9 and CYP2C19 [145]. Pravastatin is not a substrate of 
CYP and instead is primarily metabolized by sulfation pathways and undergoes 
elimination via the kidney [145]. Pitavastatin is metabolized by CYP2C8 and 
CYP2C9 and forms a lactone metabolite via uridine5’-diphosphate (UDP) glucuro-
nosyltransferase (UGT; UGT1A3 and UGT2B7) [86]. Despite the lack of CYP3A4 
metabolism for select HMG-CoA, all marketed statins are substrates of OATP and 
are expected to interact with MAK agents to varying degrees with a corresponding 
risk for myopathy, rhabdomyolysis, and death [84]. In addition, multidrug resistance- 
associated protein (MRP) is now known to be highly expressed in skeletal muscle 
and contributes to reduced intracellular accumulation of agents like atorvastatin and 
rosuvastatin [146]. An estimated 60% of cases of statin-related rhabdomyolysis are 
thought to be a result of drug interactions. Simvastatin doses of 80 mg per day have 
been associated with a higher risk of rhabdomyolysis compared to standard doses of 
fluvastatin and pravastatin, which carry lower risks [147].

A 390% and 1000% increase in the AUC0-24 of simvastatin is expected with the 
concomitant use of erythromycin or clarithromycin, respectively [148]. A compa-
rable degree of interaction between simvastatin and telithromycin is expected, while 
the interaction potential between azithromycin and simvastatin is low. The use of 
erythromycin and pitavastatin was associated with a 280% increase in the AUC of 
pitavastatin likely mediated by OATP1B1 inhibition [96]. These data suggest that 
macrolides interact with HMG-CoA reductase inhibitors via both metabolic and 
transporter-mediated interactions. A 50–80% reduction in the dose of other HMG- 
CoA inhibitors may be necessary when used with macrolide or ketolide agents. 
Most importantly, patients who must receive these agents concurrently should be 
warned to contact their healthcare provider immediately if they experience muscle 
pain, tenderness, or weakness.

2.3.1.10  Phosphodiesterase 5 (PDE5) Inhibitors

Sildenafil, tadalafil, vardenafil, and avanafil are approved clinically to treat erectile 
dysfunction and are increasingly used for non-urological conditions [149]. Avanafil 
is the most recent addition to this therapeutic class and has the clinical advantage of 
a faster rate of response (15 min). The PDE5 inhibitors are also increasingly being 
used to treat idiopathic pulmonary arterial hypertension [149]. Sildenafil is recog-
nized to be a very selective substrate of CYP3A4 like buspirone, simvastatin, and 
midazolam. The sildenafil, tadalafil, and vardenafil AUC increases by 182–300% 
when coadministered with a MK [150]. In contrast, avanafil AUC increases by 
1300% when coadministered with a strong CYP3A4 inhibitor that is expected with 
clarithromycin and telithromycin [149]. Coadministration of avanafil with 
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clarithromycin and telithromycin is not recommended, while dosage reductions are 
recommended for the other agents. A lower starting dose of sildenafil (25 mg) 
should be considered if its concomitant use with MK agents cannot be avoided 
[149]. Similarly initial doses of tadalafil and vardenafil of 2.5 mg are recommended 
if concomitant use of CYP3A4 inhibitors cannot be used. Azithromycin does not 
affect the pharmacokinetics of sildenafil and is not expected to impact the other 
agents [149].

2.3.1.11  Miscellaneous Agents

Buspirone is a generically available anxiolytic agent that is known to be a selective 
substrate of CYP3A4 [151]. The plasma AUC of buspirone increased by 600% with 
associated drowsiness and altered psychomotor performance with erythromycin 
coadministration [151]. A greater than 50% reduction in the dose of buspirone is 
likely to be necessary if used concomitant with erythromycin, clarithromycin, or 
telithromycin. Seizures, drowsiness, and neutropenia have been documented in case 
reports of the combination of erythromycin and clozapine [152]. Clozapine is 
metabolized by CYP1A2, CYP3A4, and CYP2D6, and this risk for interaction with 
macrolides is likely most pronounced in CYP2D6 poor metabolizers. Opiates such 
as fentanyl and oxycodone are primarily metabolized by CYP3A4 [153, 154]. No 
major adverse events have been observed with the combination of clarithromycin 
and oxycodone, while that combination with fentanyl has been associated with seri-
ous respiratory depression [155, 156]. A less predictable interaction has been 
recently reported with the combination of linezolid and clarithromycin in patients 
with multidrug-resistant tuberculosis. A 44% reduction in linezolid clearance has 
been documented and thought to be P-gp mediated but not associated with any 
major adverse events [157]. A similar transport-mediated interaction is also sug-
gested with the combination of montelukast and clarithromycin through OATP1B1/
OAT1B3 since montelukast is a primary substrate of CYP2C8 [158]. A 245% 
increase in the AUC of montelukast is observed when combined with clarithromy-
cin [159]. Overall these interactions demonstrate the importance of CYP3A4, 
OATP, and P-gp-mediated interactions with MK agents [160].

2.3.1.12  Elimination-Related Interactions

Serious elimination drug interactions have been documented with the combination 
clarithromycin and colchicine, digoxin, and the vinca alkaloids [161, 162]. The pri-
mary mechanism includes P-gp inhibition, but the intensity of interaction is also 
mediated by CYP3A4 inhibition. Clarithromycin and telithromycin carry the high-
est risk followed by erythromycin, with azithromycin exerting a minor interaction 
through this pathway. For example, clarithromycin increases the mean [min, max] 
AUC of colchicine by 281.5% [88.7%, 851.6%], and its use is contraindicated with 
colchicines [161]. Although not explicitly stated in the product label, use of 
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erythromycin or telithromycin should be avoided with colchicine given the risk for 
life-threatening and fatal toxic reactions [161]. Azithromycin is not considered to be 
a concern with colchicine though one case report has documented its potential for 
interaction (confounded by the coadministration of cyclosporine) [160]. 
Rhabdomyolysis, neuromyopathy, acute kidney injury, agranulocytosis, fever, diar-
rhea, convulsions, alopecia, and death can occur with the coadministration of col-
chicine with MK agents [160, 163–165]. Importantly, patients with chronic kidney 
disease are at a higher risk for this interaction [166, 167].

Other well-documented examples include the interaction of MAK agents with 
digoxin. In a large population-based study conducted in Taiwan, the risk for hospi-
talization secondary to digoxin intoxication increased by 5.07-fold (95% CI 2.36, 
10.89) if clarithromycin was used within 14 days of the index day [168]. Gomes and 
colleagues completed a 15-year population-based, case-control study and demon-
strated an increased risk for hospitalization secondary to digoxin intoxication with 
erythromycin, clarithromycin, and azithromycin [83]. The odds ratio [95% CI] for 
digoxin toxicity-related hospitalization was 3.7 [1.7, 7.9], 3.7 [1.1, 12.5], and 14.8 
[7.9, 27.9] with the recent exposure to erythromycin, azithromycin, and clarithro-
mycin, respectively. The primary mechanism for this interaction is P-gp mediated 
though gastrointestinal antimicrobial inhibition of E. lentum by MAK agents has a 
documented role [69].The relatively low P-gp-mediated interaction potential of 
azithromycin is exemplified by a 60% increase in melagatran AUC, when the active 
form of the prodrug thrombin inhibitor ximelagatran is coadministered [169]. The 
vinca alkaloids such as vinblastine, vincristine, vinorelbine, and vindesine are sub-
strates of both P-gp and CYP3A [104]. Severe adverse events have been observed 
with the combination of vinblastine and erythromycin when used in combination 
with cyclosporine [170]. The incidence of vinorelbine-associated grade 4 neutrope-
nia was reported in 31.6% of patients treated with clarithromycin versus 2.5% of 
patients not treated with this agent [104]. Clarithromycin or telithromycin should be 
avoided in patients receiving treatment with vinca alkaloids. On a more intriguing 
note, clarithromycin is being repurposed as a potential adjuvant to chemotherapy 
against multiple myeloma [101, 102]. Although the underlying mechanisms behind 
this effect may be autophagy mediated, drug interactions may play a role when 
combined with select agents [102].

2.3.2  Pharmacodynamic Torsades de Pointes

The primary mechanism for drug-induced QTc prolongation includes inhibition of 
the rapid component of the delayed rectifier potassium current through a potassium 
channel that is regulated by the human ether-a-go-go-related gene (HERG) [171]. 
Potentiation of the QTc interval and development of cardiac dysrhythmias such 
as torsades de pointes (TdP) can have grave consequences such as sudden death. 
Prior to our mechanistic understanding of this phenomenon, observations of this 
toxicity were noted primarily with intravenous erythromycin [172]. The rate of 
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erythromycin infusion was demonstrated to increase the QTc interval in critically ill 
patients and significant even at slower rates of infusion [173, 174]. Three patients 
developed ventricular fibrillation and one patient died [173, 174]. Oberg and 
Bauman retrospectively evaluated the effect of erythromycin lactobionate infusion 
on changes in the QTc interval and revealed a change in the QTc interval from 432 
± 39 ms to 483 ± 62 ms at baseline compared to during erythromycin therapy, 
respectively [175]. Only one patient developed TdP in this evaluation but brought 
the potential risk of intravenous erythromycin and QTc prolongation to the 
forefront.

Macrolides like clarithromycin inhibit HERG in a voltage- and time-dependent 
manner [31]. The ratio of IC50 to the serum Cmax value (IC50/Cmax) has been used as 
a surrogate marker for the potential clinical risk for an agent known to inhibit 
HERG. The inhibition of HERG by agents withdrawn from the market such as ter-
fenadine, astemizole, and cisapride occurs at the nanomolar concentration range 
with IC50/Cmax values of 0.075–5.2. Lin and colleagues evaluated 20 drugs known to 
induce QTc prolongation in order to identify cutoff values that could predict a 
higher risk of torsades de pointes [176]. Although IC50/Cmax cutoff values predictive 
of TdP have not been identified, values of 9.1, 12.8, and 17.5 are documented for 
clarithromycin, telithromycin, and erythromycin, respectively [176]. Higher 
IC50/Cmax values are expected with azithromycin, but despite this lower risk for QTc 
prolongation, reports of TdP have been recorded in the literature with this agent 
[177–180].

Ray and colleagues extended our knowledge of the risk of oral erythromycin and 
sudden death from cardiac causes through a population-based study of 1,249,943 
person years of data through a Tennessee Medicaid cohort [6]. The incidence rate 
ratio [95% CI] for sudden death with the current use of erythromycin was 2.01 
[1.08–3.75] and increased to 5.35 [1.72–16.64] with the use of a CYP3A inhibitor 
such as the calcium channel blocker, verapamil [6]. Although this study was not 
designed to evaluate the mechanistic basis for this interaction, the data suggest the 
necessity for caution when using macrolides with CYP3A inhibitors, especially 
when both agents carry the risk for dysrhythmias. A report in the New England 
Journal of Medicine by the same investigative group in 2012 suggested that these 
concerns extended to azithromycin in patients with a high baseline risk of cardio-
vascular disease [30]. Relative to amoxicillin, use of azithromycin was associated 
with a 2.5 hazard ratio for death related to a cardiovascular event at a risk similar to 
levofloxacin but higher than ciprofloxacin [30]. This work along with others led to 
an FDA review and subsequent label revision informing healthcare providers for 
this risk [181]. Other groups have demonstrated that this risk is not present or lower 
in younger and middle-aged adults, highlighting well-characterized risk factors 
such as increasing age, female sex, concomitant illness, and use of concomitant 
agents that prolong the QTc interval [179, 182]. Table 2.3 includes a current list of 
agents that are contraindicated with the use of MAK agents based on a review of 
regulatory approved product labels.

As tabulated, azithromycin continues to not have any drug interaction-related 
contraindications, while telithromycin is contraindicated with cisapride and pimo-
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zide due to the potential risk of TdP. Clarithromycin has the longest list of contrain-
dications and is comparable to erythromycin. Extension of the outlined list of agents 
contraindicated with clarithromycin to telithromycin is rational. Table 2.4 outlines a 
list of drugs, where the risk for combined QTc prolongation is known, probable or 
theoretically possible. The drugs outlined in this table demonstrate that several 
commercially available antiarrhythmic, antibiotic, antifungal, antihypertensive, 
antimalarial, antipsychotic, and anesthetic drugs have the potential to induce QTc 
prolongation [7, 44, 76, 176, 183, 184]. The combined risk of CYP3A4 inhibition 
coupled with QTc prolongation can lead to synergistic PK/PD drug interactions that 
can be fatal as documented with agents such as verapamil, pimozide, and cisapride 

Table 2.3 Pharmacological agents contraindicated with the use of erythromycin, clarithromycin, 
and telithromycin

Erythromycin Clarithromycin Telithromycin

1. Amifampridine
2. Amisulpride
3. Astemizole
4. Bepridil
5. Cisapride
6. Colchicine
7. Dronedarone
8. Ergot derivatives
9. Flibanserin
10. Fluconazole
11. Grepafloxacin
12. Levomethadyl
13. Lomitapide
14. Lovastatin
15. Mesoridazine
16. Pimozide
17. Piperaquine
18. Posaconazole
19. Saquinavir
20. Simvastatin
21. Sparfloxacin
22. Terfenadine
23. Thioridazine
24. Ziprasidone

1. Alfuzosin
2. Amifampridine
3. Amisulpride
4. Bepridil
5. Cisapride
6. Colchicine
7. Conivaptan
8. Dronedarone
9. Eletriptan
10. Eliglustat
11. Eplerenone
12. Ergot derivatives
13. Flibanserin
14. Fluconazole
15. Isavuconazonium sulfate
16. Ivabradine
17. Ketoconazole
18. Lomitapide
19. Lovastatin
20. Lurasidone
21. Maraviroc
22. Mesoridazine
23. Naloxegol
24. Nelfinavir
25. Nimodipine
26. Pimozide
27. Piperaquine
28. Posaconazole
29. Ranolazine
30. Saquinavir
31. Silodosin
32. Simvastatin
33. Thioridazine
34. Tolvaptan
35. Venetoclax
36. Ziprasidone

1. Alfuzosin
2. Amifampridine
3. Amisulpride
4. Bepridil
5. Cisapride
6. Colchicine
7. Conivaptan
8. Dronedarone
9. Eletriptan
10. Eliglustat
11. Eplerenone
12. Ergot derivatives
13. Flibanserin
14. Fluconazole
15. Isavuconazonium sulfate
16. Itraconazole
17. Ivabradine
18. Lomitapide
19. Lovastatin
20. Lurasidone
21. Maraviroc
22. Mesoridazine
23. Naloxegol
24. Nelfinavir
25. Nimodipine
26. Pimozide
27. Piperaquine
28. Posaconazole
29. Saquinavir
30. Silodosin
31. Simvastatin
32. Terfenadine
33. Thioridazine
34. Tolvaptan
35. Venetoclax
36. Ziprasidone
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in recent years [185–187]. Finally, solithromycin has not demonstrate any QTc pro-
longation in a randomized crossover study in health volunteers exposed up to twice 
the daily dose [188]. Although this is a promising finding, post-marketing knowl-
edge gained with the MAK agents to date suggests cautious optimism if this agent 
is approved for clinical use.

2.4  Summary

Macrolides have numerous antimicrobial and non-antimicrobial properties, and 
azithromycin represents one of the most widely prescribed antibiotics on the planet. 
Clarithromycin and telithromycin are important derivatives of erythromycin that 
have expanded the spectrum of activity of this agent and improved its tolerability. 
However, the drug interaction potential of these agents is greater than that of eryth-
romycin. Azithromycin is a substantially different agent that shares pharmacologic 
similarities to clarithromycin and telithromycin without their major drug interaction 
potential. However, increasing antimicrobial resistance coupled with continued 
development of ketolides suggests that the benefits of this class of agents will con-
stantly need to be weighed against their risk for drug interactions. Phase 1 drug 
metabolic inhibition through CYP3A4 and P-gp inhibition are the key mechanistic 
pathways for MAK drug-drug interactions. Given that these drug disposition path-
ways account for the clearance of a majority of pharmacological agents, the drug 
interaction potential of this class will remain high. A careful review of an individual 
patient’s medication regimen is critical prior to their prescription.

Table 2.4 Drugs with a known, probable and theoretical potential for QTc prolongation when 
combined with clarithromycin

Known Probable Theoretical

Astemizole
Atazanavir
Cisapride
Desipramine
Diltiazem
Disopyramide
Itraconazole
Pimozide
Quetiapine
Quinidine
Risperidone
Terfenadine
Verapamil

Ajmaline
Dofetilide
Dolasetron
Doxepin
Dronedarone
Droperidol
Hydroquinidine
Ketoconazole
Mesoridazine
Pazopanib
Ranolazine
Salmeterol
Voriconazole

Artemether
Bretylium
Telavancin
Acecainide
Amiodarone
Amisulpride
Amitriptyline
Amoxapine
Aprindine
Arsenic Trioxide
Azimilide
Bepridil
Chloral Hydrate
Chloroquine
Chlorpromazine
Dibenzepin
Encainide
Enflurane
Flecainide
Fluconazole

Fluoxetine
Foscarnet
Gemifloxacin
Halofantrine
Haloperidol
Halothane
Ibutilide
Imipramine
Isoflurane
Isradipine
Lidoflazine
Lorcainide
Mefloquine
Moxifloxacin
Nortriptyline
Octreotide
Pentamidine
Pirmenol
Prajmaline
Probucol

Procainamide
Prochlorperazine
Propafenone
Protriptyline
Sematilide
Sertindole
Sotalol
Sulfamethoxazole
Sultopride
Tedisamil
Thioridazine
Trifluoperazine
Trimethoprim
Trimetrexate
Trimipramine
Vasopressin
Ziprasidone
Zolmitriptan
Zotepine
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Chapter 3
Quinolones

David R. P. Guay

3.1  Introduction

Drug-drug interactions can be categorized into those originating from pharmacoki-
netic mechanisms and those originating from pharmacodynamic mechanisms. 
Pharmacokinetic interactions are those that result in alterations of drug absorption, 
distribution, metabolism, and elimination; pharmacodynamic interactions occur 
when one drug affects the actions of another drug. This chapter deals only with the 
pharmacokinetic and pharmacodynamic interactions of fluoroquinolones (hereafter 
referred to as quinolones) with non-antimicrobial agents. Additive, synergistic, or 
antagonistic antimicrobial activity interactions between quinolones and other anti-
microbials are not discussed.

Some drug interactions can be predicted from the chemical structure of the agent, 
its pharmacologic activity, its toxicologic profile, and other characteristics deter-
mined in its premarketing evaluation (Fig. 3.1). Other interactions cannot be pro-
spectively predicted and can only be detected through intense, large-scale clinical 
studies or postmarketing surveillance. The quinolones exhibit drug-drug interac-
tions of both types.

There are a number of problems in the prospective clinical evaluation of drug- 
drug interactions in humans. First, there may be ethical concerns when administer-
ing interacting drug combinations to patients or volunteers, depending on the 
potential consequences of the interaction. Second, because there are an endless 
number of drug combinations, doses, and timings of administration that could be 
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investigated, it is economically impossible to fund the study of all possibilities. 
Third, the prospective evaluation of an interaction in a manageable number of 
patients is unlikely to uncover a rare interaction. Finally, studies that are carried out 
in normal volunteers and demonstrate a pharmacokinetic interaction, such as 
slightly decreased absorption of a drug, may be of uncertain clinical relevance.

Despite these obstacles, delineating the frequencies and types of pharmacoki-
netic interactions of the quinolones with other drugs is important for several rea-
sons. Since quinolones are often administered orally, absorptive interactions may 
compromise the efficacy of antimicrobial therapy. Due to their breadth of activity, 
agents of this class find substantial use in the critically ill and elderly, many of 
whom receive potentially interacting medications [1–4]. Because elderly individu-
als have an increased sensitivity to drug-induced toxicity and experience more 
adverse drug reactions, they may also exhibit an increased incidence and severity of 
drug-drug interactions. In fact, a retrospective analysis of 505 patients at least 
60 years of age hospitalized in a second-level care hospital in Mexico City demon-
strated that 62.8% had at least one potential drug-drug interaction and that 14.9% of 
serious drug-drug interactions were related to fluoroquinolone-hypoglycemic agent 
interactions [5]. Finally, the quinolones are such a structurally diverse group that the 
extrapolation of drug-drug interactions from one to another of these agents may not 
be appropriate.

In this edition, based upon their worldwide regulatory status, the following qui-
nolones will not be covered due to space considerations: clinafloxacin, enoxacin, 
fleroxacin, gatifloxacin, grepafloxacin, pazufloxacin, rufloxacin, sparfloxacin, 
temafloxacin, tosufloxacin, and trovafloxacin/alatrofloxacin. Previous editions of 
this text should be consulted for further information on these agents.

Influence Phototoxicity and Genetic Toxicity. For Phototoxicity: Metal Binding and Chelation Site Controls
Interactions with antacids, milk, iron
supplements.  Most divalent metals Ca++,
Fe++, Zn++ reduce oral absorption

No Side effects associated
with this positionR2
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R7 X8
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O O

OHC

Controls Theophylline Interaction and
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Interaction:
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Effect of F on side effect profile has
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NSAID Interaction (Major),
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Fig. 3.1 Fluoroquinolone nucleus with the accepted numbering scheme for positions on the mol-
ecule. The R indicates possible sites for structural modifications, and the X is a carbon or nitrogen 
atom, depending on whether it is a quinolone or naphthyridine molecule. Summary of structure- 
adverse event relationships is also represented. Abbreviations: GABA gamma-aminiobutyric acid, 
NSAID nonsteroidal antiinflammatory drug, pip piperazine, pyrr pyrrolidine, subst substituted
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3.2  Pharmacokinetic Interactions

3.2.1  Absorption Interactions

The deleterious effect of multivalent cations on the oral bioavailability of quino-
lones was first reported in 1985 [6]. Since this pivotal report, numerous investiga-
tions have duplicated and extended this observation; these are detailed in Table 3.1 
[6–57].

The concomitant oral administration of magnesium- or aluminum-containing ant-
acids has been found to result in six- to ten-fold decreases in the absorption of oral 
quinolones. Even when dose administrations of the agents were separated by two or 
more hours, substantial reductions in quinolone absorption persisted [3, 10, 11, 15–
17, 20, 25–27, 35, 36, 41, 46, 47, 58, 59]. Studies of the oral coadministration of 
calcium-containing antacids with oral quinolones have produced conflicting results, 
with some reporting no significant effect [7, 10, 17–19, 24, 25, 27] and others report-
ing significant reductions in absorption [9, 11, 15, 16, 19–21, 23, 26, 46]. Studies 
have also documented significant reductions in quinolone bioavailability during 
coadministration with calcium-fortified orange juice and calcium polycarbophil, cal-
cium acetate, lanthanum carbonate, and sevelamer hydrochloride [28–31, 40].

Studies have documented substantial reductions in quinolone bioavailability 
when coadministered with sucralfate. Again, this interaction persisted even when 
dose administrations of the agents were spaced two or more hours apart [38, 46, 49, 
50, 53, 56]. Further studies have documented substantial reductions in quinolone 
bioavailability when coadministered with iron preparations or multiple vitamins 
with minerals such as zinc, magnesium, copper, and manganese [35, 36], although 
one study did not find a significant interaction with iron [10]. A pharmacokinetic- 
pharmacodynamic model has been created, incorporating the pharmacokinetic data 
for ciprofloxacin and norfloxacin after metal cation administration at various time 
intervals before and after quinolone administration and the pharmacodynamic data 
of complex formulation. This model predicted, in the cases of usual doses of cipro-
floxacin with magnesium and aluminum hydroxides (Maalox®) and norfloxacin 
with sucralfate, that the quinolone should be administered at least 4.5 and 3.5 h after 
or at least 1 and 0.5 h before the administration of metal cations, respectively, to 
ensure a relative bioavailability of at least 90% versus control [60].

It is hypothesized that the reduction in quinolone absorption is caused by the 
formation of insoluble and hence unabsorbable drug-cation complexes or chelates 
in the gastrointestinal tract [61–65]. This has been confirmed in binding experi-
ments utilizing fluoroscopic, UV spectroscopic, and nuclear magnetic resonance 
spectroscopic techniques [35, 44, 66, 67]. It appears that the complexation or 
chelation involves the 4-keto and 3-carboxyl groups of the quinolones. In vitro 
work with the ciprofloxacin-magnesium complex validated the marked stability 
of these complexed products [68]. The stoichiometry (i.e., the ratio of divalent/
trivalent metal cation to quinolone in the stable complexes) varies as a function of 
the quinolone involved. For example, norfloxacin, nalidixic acid, and ciprofloxa-
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Table 3.1 Effects of multivalent cations on quinolone absorption

Quinolone Cation/preparation/schedule
Mean % change 
in Cmax

Mean % change 
in AUC References

Levoflox Al OH/simultaneous with 
quinolone

−65a −44a [7]

Norflox Al OH/simultaneous with 
quinolone

− −86a,b [8]

Norflox Al OH/simultaneous with 
quinolone

−28c −29c [9]

Oflox Al OH/simultaneous with 
quinolone

−29a −19 [10]

Pruli Al OH/1 h prequinolone −93a,d −85a,d [11]
Pruli Al OH/3 h prequinolone −40a,d −35a,d [11]

2 h prequinolone −36d −46d

1 h postquinolone +6d −13d

2 h postquinolone −10d −18d

Oflox Al phos/simultaneous with 
quinolone

−10 −3 [12]

Oflox Al phos/simultaneous with 
quinolone

− −7 [13]

Norflox Bi subsalicylate/simultaneous 
with quinolone

– −10b [8]

Cipro Bi subsalicylate/simultaneous 
with quinolone

−13 −13 [14]

Cipro Ca carb/simultaneous with 
quinolone

−38a −41a [15]

Cipro Ca carb antacid/simultaneous 
with quinolone

−47a −42a [16]

Cipro Ca carb antacid/with meals  
(PO4 binder)

+13 − [17]

Cipro Ca carb/2 h prequinolone +22a 0 [18]
Cipro Ca carb/simultaneous with 

quinolone
− −29a,b [19]

Cipro Ca carb/(tid × 11 doses) 2 h after 
dose 10

−24a −14 [20]

Gemi Ca carb/simultaneous with 
quinolone

−21a −17a [21]

2 h prequinolone −11 −10
2 h postquinolone 0 −7

Levoflox Ca carb/simultaneous with 
quinolone

−23 −3 [7]

Levoflox Ca carb/2 h prequinolone −9 +16 [22]
2 h postquinolone −19a,e −3e

Lomeflox Ca carb/simultaneous with 
quinolone

−14a −2 [23]

(continued)
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Table 3.1 (continued)

Quinolone Cation/preparation/schedule
Mean % change 
in Cmax

Mean % change 
in AUC References

Moxi Ca carb/simultaneous with 
quinolone and 12 and 24 h 
postquinolone

−15a −2 [24]

Nemo Ca carb/simultaneous with 
quinolone

−14 −18 [25]

Norflox Ca carb/simultaneous with 
quinolone

−28c −47a,c [9]

Norflox Ca carb antacid/simultaneous 
with quinolone

−66a −63a [26]

Oflox Ca carb/simultaneous with 
quinolone

− 0b [19]

Oflox Ca carb/simultaneous with 
quinolone

−18 +10 [10]

Oflox Ca carb antacid/ [27]
2 h prequinolone +3 −4
24 h prequinolone +9 −4
2 h postquinolone +3 −3

Pruli Ca carb/1 h prequinolone −60a,d −55a,d [11]
Cipro Ca acetate/simultaneous with 

quinolone
−50a −51a [28]

Cipro Ca polycarbophil 1200 mg 
(5.0 mmol Ca)/simultaneous  
with quinolone

−64a −52a [29]

Cipro Ca-fortified orange juice/
simultaneous with quinolone

−41a −38a [30]

Levo Ca-fortified orange juice/ −23a −14a [31]
Ca-fortified orange juice + milk/ −24a −16a

(both simultaneous with 
ready-to-eat cereal and 
quinolone)

Moxi Ca lact – gluc + carb/ [24]
immed. before and 12 + 24 h 
after quinolone

−15a −2

Cipro Didanosine (+ cations)/3 doses [32]
(dose 3 simultaneous with 
quinolone)

−93a −98a

Cipro Didanosine (+ cations)/6 doses [33]
(quinolone 2 h pre-didanosine) −16 −26a

Cipro Didanosine (−cations)/
simultaneous with quinolone

−8 −9 [34]

Cipro FeSO4/300 mg simultaneous 
with quinolone

−33a −42a [35]

(continued)
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Table 3.1 (continued)

Quinolone Cation/preparation/schedule
Mean % change 
in Cmax

Mean % change 
in AUC References

Cipro FeSO4/325 mg tid × 7 days −75a −63a [36]
Cipro FeSO4/simultaneous with 

quinolone
−54a −57a [37]

Gemi FeSO4/ [38]
3 h prequinolone −20a −11
2 h postquinolone −4 −10

Levoflox FeSO4/simultaneous with 
quinolone

−45a −19a [7]

Lomeflox FeSO4/simultaneous with 
quinolone

−28a −14 [23]

Moxi FeSO4/simultaneous with 
quinolone

−59a −39a [39]

Nemo FeSO4/simultaneous with 
quinolone

−57a −64a [25]

Norflox FeSO4/simultaneous with 
quinolone

−75a −73a [37]

Norflox FeSO4/simultaneous with 
quinolone

−97a,c −97a,c [9]

Norflox FeSO4/simultaneous with 
quinolone

− −55a,b [8]

Oflox FeSO4/simultaneous with 
quinolone

− −10a,b [13]

Oflox FeSO4/simultaneous with 
quinolone

−36a −25a [37]

Oflox FeSO4/simultaneous with 
quinolone

+9 +35 [10]

Pruli FeSO4/1 h prequinolone −85a,d −75a,d [11]
Cipro Lanthanum carbonate/quinolone 

taken immediately postdose 1 on 
day 2 of 3-day regimen of 1 g tid 
with meals

−56a −54a [40]

Norflox Mg OH/simultaneous with 
quinolone

− −90a,b [8]

Levoflox Mg O/simultaneous with 
quinolone

−38a −22a [7]

Pruli Mg O/1 h prequinolone −61a,d −57a,d [11]
Norflox Mg trisilicate/simultaneous with 

quinolone
−72a,c −81a,c [9]

Oflox Mg trisilicate/simultaneous with 
quinolone

−2 +19 [10]

Cipro Mg/Al antacid/simultaneous 
with quinolone

−81a −84a [16]

Cipro Mg/Al antacid/ [41]

(continued)

D. R. P. Guay



93

Table 3.1 (continued)

Quinolone Cation/preparation/schedule
Mean % change 
in Cmax

Mean % change 
in AUC References

5–10 min prequinolone −80a −85a

2 h prequinolone −74a −77a

4 h prequinolone −13 −30a

6 h prequinolone 0 +9
2 h postquinolone +32a +7

Cipro Mg/Al antacid/10 doses over 
24 h prequinolone

−93a −91a [42]

Cipro Mg/Al antacid/with meals  
(PO4 binder)

−65 − [17]

Cipro Mg/Al antacid/24 h 
prequinolone

−94a − [6]

Gemi Mg/Al antacid/ [43]
3 h prequinolone −17a −15
10 min postquinolone −87a −85a

2 h postquinolone +10 +3
Lomeflox Mg/Al antacid/simultaneous 

with quinolone
−46a −41a [44]

Moxi Mg/Al antacid/simultaneous 
with quinolone

−61a −59a [45]

2 h postquinolone −7 −26a

4 h prequinolone −1 −23a

Nemo Mg/Al antacid/ 25
2 h prequinolone +3 −9
Simultaneous with quinolone −78a −81a

4 h prequinolone −53a −58a

Norflox Mg/Al antacid/ [26]
Simultaneous with quinolone −95a −
2 h postquinolone −24a −20

Norflox Mg/Al antacid/ [46]
Simultaneous with quinolone −95 −98
2 h postquinolone −24 −22

Oflox Mg/Al antacid/ [42]
10 doses over 24 h prequinolone −73a −69a

Oflox Mg/Al antacid/ [27]
2 h prequinolone −30a −21a

24 h prequinolone −5 −5
2 h postquinolone +3 +5

Oflox Mg/Al antacid/simultaneous 
with quinolone

−24 − [47]

Peflox Mg/Al antacid/13 doses  
(quinolone 1 h after dose 10)

−61a −54a [48]

Cipro Multivit with Zn/once daily × 
7 days

−32a −22a [36]

(continued)
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Table 3.1 (continued)

Quinolone Cation/preparation/schedule
Mean % change 
in Cmax

Mean % change 
in AUC References

Cipro Multivit with Fe/Zn/ [35]
Once simultaneous with 
quinolone

−53a −52a

Norflox NaHCO3/simultaneous with 
quinolone

+5c +5c [9]

Cipro Sevelamer hydrochloride/seven 
403 mg caps simultaneous with 
quinolone

−34a −48a [28]

Cipro Sucralfate/1 gm 6 and 2 h 
prequinolone

−30a −30a [49]

Cipro Sucralfate/1 gm QID × 1 day 
then simultaneous with 
quinolone

−90a −88a [50]

Cipro Sucralfate/2 gm BID × 5 doses [51]
Quinolone simultaneous with  
dose 5

−95a −96a

Quinolone 2 h before dose 5 +5 −20
Quinolone 6 h before dose 5 0 −7

Gemi Sucralfate/ [38]
2 g 3 h prequinolone −69a −53a

2 g 2 h postquinolone −2 −8
Levoflox Sucralfate/1 gm 2 h 

postquinolone
+14 −5 [52]

Lomeflox Sucralfate/1 gm 2 h 
prequinolone

−30a −25a [53]

Lomeflox Sucralfate/1 gm simultaneous 
with quinolone

−65a −51a [23]

Moxi Sucralfate/1 gm simultaneous 
with quinolone and 5, 10, 15, 
24 h postquinolone

−71a −60a [54]

Norflox Sucralfate/ [46]
Simultaneous with quinolone −90 −98
2 h prequinolone −28 −42

Norflox Sucralfate/ [55]
1 gm simultaneous with 
quinolone

−92a −91a

1 gm 2 h postquinolone +9 −5
Norflox Sucralfate/ [56]

1 gm simultaneous with 
quinolone

−90a −98a

1 gm 2 h prequinolone −28 −43
Oflox Sucralfate/ [55]

1 gm simultaneous with 
quinolone

−70a −61a

1 gm 2 h postquinolone +7 −5

(continued)
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cin exhibited ratios of 1:1 or 2:1, 1:1–3:1, and 3:1, respectively [60]. In two 
in vitro studies, calcium, zinc, and iron exposures resulted in respective precipi-
tates of the hydrated ciprofloxacin base, Zn(SO4)2(Cl)2(ciprofloxacin)2 x nH2O, 
where n can range up to 12, and Fe(SO4)2(Cl)2(ciprofloxacin)2 x nH2O, where n 
can range up to 12 [69, 70]. In addition, it appears that the presence of these ions 
results in impaired dissolution of the quinolones (tablet formulations and the 
agents themselves), at least in vitro [69–76]. However, in vitro permeability stud-
ies using human colon carcinoma (Caco-2) cell lines in monolayers suggest that 
chelate formation and adsorption to cations can only partially explain the interac-
tions between fluoroquinolones and polyvalent metal cations [77]. Chelation has 
even been reported between ciprofloxacin, ofloxacin, and levofloxacin and the 
oral magnetic resonance imaging contrast medium manganese chloride tetrahy-
drate [78]. It is thus recommended to not use magnesium-, aluminum-, or cal-
cium-containing antacids, sucralfate, or iron/vitamin-mineral preparations 
concomitantly with quinolones. Histamine H2- receptor antagonists such as raniti-
dine, cimetidine, and famotidine have not been shown, in general, to alter quino-
lone absorption. However, these agents do result in significantly decreased 
absorption of prulifloxacin [7, 11, 42, 45, 52, 53, 79–85]. Omeprazole has also not 
been shown to alter the pharmacokinetics of quinolones to a clinically significant 
degree [86–89]. Thus, these agents can be recommended as alternative noninter-
acting antiulcer and antiesophagitis therapy.

Agents that alter gastric motility may affect quinolone absorption. Pirenzepine, a 
gastrointestinal tract-specific anticholinergic not available in the USA, delayed gas-
tric emptying and absorption of ciprofloxacin, thus delaying the time to achievement 

Table 3.1 (continued)

Quinolone Cation/preparation/schedule
Mean % change 
in Cmax

Mean % change 
in AUC References

Oflox Sucralfate/ [57]
Fasting +1 gm simultaneous 
with quinolone

−70a −61a

Nonfasting +1 gm simultaneous 
with quinolone

−39a −31a

Norflox Tripotassium citrate/ [9]
Simultaneous with quinolone −48a,b −40a,c

Norflox ZnSO4/simultaneous with 
quinolone

− −56a,b [8]

% change change from baseline or placebo control, Cmax peak serum or plasma concentration, AUC 
area under the plasma or serum concentration-time curve, oflox ofloxacin, cipro ciprofloxacin, 
norflox norfloxacin, carb carbonate, lomeflox lomefloxacin, levoflox levofloxacin, tid 3 times daily, 
qid 4 times daily, bid twice daily, gluc gluconate, moxi moxifloxacin, gemi gemifloxacin, lact lac-
tate, multivit multivitamin, pruli prulifloxacin, nemo nemonoxacin
aStatistically significant change from baseline or placebo control
bBased on urinary excretion data
cBased on salivary AUC data
dBased on ulifloxacin (active metabolite) data
eAdults with cystic fibrosis
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of maximal serum concentration (Tmax). However, the extent of absorption was not 
altered [42, 79]. N-butylscopolamine, another anticholinergic, interacted with oral 
ciprofloxacin in an identical manner [80]. In contrast, absorption of ciprofloxacin 
was accelerated by the gastrointestinal motility stimulant metoclopramide; again, 
the extent of absorption was unaltered [80]. These quinolone-drug interactions are 
thought to be of no clinical importance during usual multiple-dose regimens. In 
addition, an extended-release mesalamine product (MMXR mesalamine) had no sig-
nificant effect on ciprofloxacin pharmacokinetics [90].

The absorption of ciprofloxacin is not significantly altered in the presence of 
Osmolite® enteral feedings [91]. However, other studies have found significant 
interaction potential between the quinolones and enteral feedings. Concurrent 
administration of Osmolite® and Pulmocare® enteral feedings significantly reduced 
single-dose ciprofloxacin bioavailability as assessed using Cmax (mean −  26 and 
−31%, respectively) and area under the serum concentration-vs-time curve (AUC; 
mean  −  33 and −42%, respectively) data [92]. Concurrent administration of 
Sustacal® enteral feeding significantly reduced single-dose ciprofloxacin bioavail-
ability as assessed using Cmax (mean − 43%) and AUC (mean − 27%) data. In the 
same study, continuous administration of Jevity® enteral feeding via gastrostomy 
and jejunostomy tubes significantly reduced single-dose ciprofloxacin bioavailabil-
ity as assessed using Cmax (mean − 37 and −59%, respectively) and AUC (mean − 53 
and −67%, respectively) data [93]. Concurrent administration of Ensure® enteral 
feeding significantly reduced single-dose ciprofloxacin and ofloxacin bioavailabil-
ity as assessed using Cmax (mean − 47 and −36%, respectively) and AUC (mean − 27 
and −10%, respectively) data. However, the extent of the interaction was signifi-
cantly greater for ciprofloxacin than for ofloxacin [94].

The interaction potential between quinolones and dairy products appears to be 
quinolone-specific. Studies have demonstrated no significant interaction between 
lomefloxacin, moxifloxacin, and ofloxacin and milk (200, 240, or 300  mL) or 
yogurt (250–300  mL) [23, 95–98]. In contrast, ciprofloxacin, prulifloxacin, and 
norfloxacin bioavailability is substantially reduced (by 28–58%) by concurrent 
administration with milk or yogurt [97, 99–101]. Recent in vitro dissolution studies 
have demonstrated that the major mechanism whereby concurrent milk administra-
tion reduces the bioavailability of some quinolones is adsorption on the surface of 
milk proteins, especially casein. Complexation with calcium is much less important 
in this regard [102].

3.2.1.1  Therapeutic Implications of Absorption Interactions

Five cases of therapeutic failure due to the interaction of oral quinolones with metal 
cations have been published [103]. The combination therapies included ciprofloxa-
cin with calcium carbonate, magnesium oxide, and multiple vitamins with minerals 
and iron; levofloxacin with calcium carbonate and aluminum hydroxide; levofloxa-
cin with calcium carbonate and magnesium oxide; and levofloxacin with calcium 
carbonate and sucralfate. In all cases, spacing of the administration times of the 
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quinolones and the metal cations, temporary discontinuation of metal cations until 
the end of quinolone therapy, and/or substitution with noninteracting agents (e.g., 
histamine H2-receptor antagonist for sucralfate) allowed subsequent successful oral 
quinolone therapy.

The potential extent of quinolone-metal cation interactions was explored in a 
case-control study conducted in a 625-bed tertiary-care medical center in the 
USA. Data from all patients receiving oral levofloxacin from July 1, 1999, through 
June 30, 2001, were included. Coadministration was defined as any divalent or tri-
valent cation-containing agent being administered within 2 h of levofloxacin admin-
istration. Complete coadministration was defined as coadministration complicating 
every dose of an entire course of levofloxacin. Overall, 1904 (77%) of 2470 doses 
(427 courses of therapy) were complicated by coadministration. Also, 386/427 
courses (90%) had at least 1 dose complicated by coadministration. In 238 courses 
(56%), complete coadministration occurred. Only three factors were significantly 
associated with complete coadministration upon multivariate analysis. A higher 
number of prescribed medications on the first day of levofloxacin therapy was a risk 
factor (per increase of one drug, odds ratio [OR], 1.05; 95% CI, 1.01–1.10; 
p  =  0.036). Two factors were protective (i.e., decreased the risk): location in an 
intensive care unit (OR, 0.51; 95% CI, 0.30–0.87; p = 0.013) and longer duration of 
levofloxacin therapy (OR, 0.92; 95% CI, 0.88–0.97; p = 0.001). Extrapolating these 
results to all oral levofloxacin recipients at the institution, one in every three doses 
would be complicated by deleterious coadministration with at least one multivalent 
cation-containing agent [4].

Therapeutic failure due to quinolone-metal cation interactions may occur not 
only through the production of subtherapeutic drug concentrations due to malab-
sorption. These subtherapeutic drug concentrations may also lead to the emergence 
of bacterial resistance to the quinolone class. A case-control study of 46 inpatients 
receiving oral levofloxacin and divalent/trivalent cations was conducted. Of the 46 
individuals, 32 (70%) had levofloxacin-resistant pathogens, while 14 (30%) had 
levofloxacin-susceptible pathogens. Patients with levofloxacin-resistant isolates 
had previously been exposed to nearly twice as many days of coadministration (as 
defined previously) compared with those having susceptible isolates (median 5 vs. 
3 days, respectively; p = 0.04). Upon multivariate analysis, the relationship between 
the number of days of coadministration and the presence of resistant isolates was 
no longer statistically significant but nevertheless did show a statistical trend (OR, 
1.26; 95% CI, 0.98–1.63; p = 0.07). Last, the percentage of subjects with quinolone- 
resistant isolates varied directly with the number of days of coadministration. 
Zero–2, 3– 4, 5–7, and 8–31 days of coadministration were linked to 42%, 78%, 
68%, and 90% frequencies of quinolone resistance, respectively [104].

A second case-control trial was conducted using data from all inpatients at a 
tertiary-care hospital and an urban hospital who received oral levofloxacin between 
January 1, 2001, and December 31, 2005. Coadministration was defined as receipt 
of levofloxacin and multivalent cation-containing agents during the same day 
(regardless of the times of administration). A total of 3134 patients had courses of 
oral levofloxacin at least 3 days in duration. Of the 3134 patients, 895 (29%) had 
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100% coadministration (i.e., on all days of the course of therapy), while 606 (19%) 
had partial coadministration (i.e., on ≥1 but not all days of the course of therapy). 
The remainder (52%) had no coadministration at all. Levofloxacin-resistant isolates 
were found in 198 patients (6%). Coadministration was significantly associated 
with subsequent identification of a quinolone-resistant isolate (≥ 48 h after initia-
tion of levofloxacin). On univariate analysis, the ORs for resistant pathogens with 
100%, ≥ 75%, ≥ 50%, and ≥25% coadministration were 1.49 (p = 0.005), 1.48 
(p = 0.005), 1.61 (p < 0.001), and 1.44 (p = 0.007), respectively. On multivariate 
analysis, the ORs for resistant pathogens with 100% (vs. < 100%), ≥ 50% (vs. < 
50%), and 100% (vs. 0) coadministration were significant (OR, 1.43; p = 0.03; OR, 
1.52; p = 0.006; and OR, 1.36; p = 0.05; respectively). For ≥75% (vs. <75%) and 
≥25% (vs. <25%) coadministration, statistical significance was not achieved [105].

Another important issue is the antimicrobial activity of quinolone-metal cation 
complexes. Even though these complexes are not bioavailable to the systemic circu-
lation, they theoretically could still be active against bacterial pathogens in the gas-
trointestinal (GI) tract. Two evaluations of the in  vitro activity of drug-cation 
complexes compared with drug alone have been published [68, 73]. Minimum 
inhibitory concentrations (MICs) were determined, with a rise in MIC demonstrat-
ing reduced susceptibility and a fall in MIC demonstrating increased susceptibility. 
With ciprofloxacin and magnesium, the MICs for Escherichia coli, Staphylococcus 
aureus, and Pseudomonas aeruginosa were significantly higher for the drug-cation 
complex compared with the drug alone (all p < 0.05) [68]. With lomefloxacin and 
11 cations, the MICs did not change with Salmonella typhi, Streptococcus pneu-
moniae (except for increases with exposure to nickel and cadmium), and P. aerugi-
nosa (except for increases with exposure to copper and zinc). For Bacteroides 
fragilis, MICs increased in the presence of all cations except nickel (for latter, MIC 
was the same as control). For S. aureus, MICs were unaltered in the presence of 
magnesium, manganese, cobalt, zinc, and cadmium. They were increased upon 
exposure to calcium, chromium, iron, nickel, and copper [73]. Overall, because of 
the drug-, cation-, and organism-specific effects on quinolone-cation complex bio-
activity, it would be prudent to not consider quinolone-cation complexes to be 
potentially useful in the therapy of bacterial infections of the GI tract.

3.2.2  Distribution Interactions

The quinolones are plasma protein bound to the extent of only 20–30%. Ciprofloxacin 
does not displace bilirubin from albumin, which suggests that interactions involving 
displacement of other drugs from their carrier proteins are unlikely to occur during 
coadministration of quinolones [106]. The absence of such an interaction with the 
quinolones may be of particular importance to elderly debilitated patients with 
hypoalbuminemia who receive multiple drugs.
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3.2.3  Metabolism Interactions

The effect of quinolones on the metabolism of antipyrine, a probe drug for hepatic 
drug metabolism, has been evaluated. Ofloxacin given as 200 mg twice daily for 
7  days did not influence antipyrine metabolism significantly [107]. Similarly, 
125 mg ciprofloxacin twice daily for 7 or 8 days did not influence antipyrine metab-
olism significantly [108]. In contrast, a regimen of 500 mg ciprofloxacin twice daily 
for 8–10 days (a clinically relevant dosing regimen) was associated with a signifi-
cant mean 39% reduction in antipyrine clearance and mean 58% increase in termi-
nal disposition half-life (t ½) [109].

A number of case reports have documented a clinically significant drug-drug 
interaction between ciprofloxacin and theophylline, in some cases leading to death 
[110–116]. A number of the quinolones have been found to reduce the hepatic 
metabolism of coadministered drugs such as the xanthines theophylline [117–138] 
and caffeine [139–146] (Table 3.2). In contrast to the absorption interactions with 
multivalent cations, which appear to be generalizable to the entire quinolone drug 
class, differences do exist between individual quinolones in their propensity to 
inhibit hepatic xanthine metabolism. A meta-analysis of quinolone-theophylline 
interaction studies revealed that ciprofloxacin, antofloxacin (based on Ref. [138]), 
prulifloxacin (based on Ref. [137]), and norfloxacin (in descending order) are clini-
cally significant inhibitors of theophylline metabolism; ofloxacin, lomefloxacin, 
and (based on Refs. [85, 131, 134–136]) levofloxacin, moxifloxacin, nemonoxacin, 
and gemifloxacin are clinically insignificant inhibitors [147]. Using a simple phar-
macokinetic model that allowed cross-comparison between quinolone-caffeine 
interaction studies, Barnett and colleagues developed a relative potency index of 
quinolone interaction as follows: using enoxacin [100] as a benchmark, ciprofloxa-
cin [11], norfloxacin [9], and ofloxacin (0) [148]. The inhibition of xanthine metab-
olism may be dose-dependent for those FQs covered herein. The dose dependency 
of inhibition with enoxacin has been well-demonstrated (see previous editions).

A population-based, nested case-control study of Ontario residents at least 
66 years old receiving theophylline therapy between April 1992 and March 2009 
evaluated whether there was any relationship between ciprofloxacin use (within 
14  days of the event) and hospitalization for theophylline intoxication. Among 
77,251 patients, there were 180 case patients who were matched to 9000 control 
patients. After multivariate adjustment, the adjusted odds ratio (AOR) for the rela-
tionship with ciprofloxacin was 1.86 (95% CI, 1.18–2.93). There was no increased 
risk of hospitalization for theophylline intoxication with comparator antimicrobials 
(levofloxacin, trimethoprim-sulfamethoxazole, or cefuroxime [AOR, 0.78; 95% CI, 
0.38–1.62]) [149].

Few other substrates have been examined. Levofloxacin, norfloxacin, moxifloxa-
cin, gemifloxacin, nemonoxacin, and ciprofloxacin have been shown not to potenti-
ate the anticoagulant effect of warfarin in healthy subjects and patients requiring 
long-term anticoagulation [85, 150–157]. Based on rat studies, ciprofloxacin and 
pefloxacin significantly increased prothrombin time (PT)/international normalized 
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Table 3.2 Effect of quinolones on methylxanthine pharmacokinetics

Mean % change in
Quinolone Css CL t½ References

Theophylline
  Norflox 400 bid − –8a +9a [117]
  Norflox 400 bid − +10 +26 [118]
  Cipro 750 bid − –31a − [119]
  Oflox 400 bid +9a –15a − [120]
  Norflox 400 bid − –15a +13a [121]
  Lomeflox 400 qd − −7 +4a [122]
  Cipro 500 bid +66a –30a +42a [123]
  Oflox 400 bid +2 −5 +2 [123]
  Oflox 200 tid − 0 +6 [124]
  Norflox 200 tid − −7 +15 [124]
  Oflox 200 tid − 0 +6 [125]
  Norflox 200 tid − −7 +15 [125]
  Cipro 500 bid − –27a − [125]
  Lomeflox 400 bid − −2 − [126]
  Lomeflox 400 x 1 dose +1 –2 +1 [127]

400 bid +8 −7 +7
  Lomeflox 400 bid − +7 +3 [128]
  Norflox 200 tid − −4 − [129]
  Oflox 200 tid − −11 − [129]
  Cipro 200 tid − –22a − [129]
  Cipro 750 bid +87a − − [130]
  Levoflox 500 bid − +3 −1 [131]
  Oflox 200 bid − −5 +5 [132]
  Cipro 500 bid − –20a +25a [133]
  Moxi 200 bid − −4 +4 [134]
  Moxi 200 bid − +5 +3 [135]
  Gemi 320 qd − −1 − [136]
  Pruli 600 qd − –15a,b +14a,b [137]
  Antoflox 200 qd +32a,c −23a − [138]
  Nemonoxacin 500 qd +15c −17 – [85]
Caffeine
  Peflox 400 bid − –47a +96a [139]
  Norflox 800 bid − –35a +23 [140]
  Cipro 750 bid − –45a +58a [141]
  Cipro 750 bid +877a –145a +116a [142]
  Oflox 200 bid − +2 –3 [142]
  Norflox 400 bid − −16 +16a [143]
  Cipro 100 bid − −17 +6 [143]

250 bid − –57a +15a

(continued)
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ratio (INR) results after acenocoumarin administration [158]. These results need to 
be validated in humans. In these same studies, acenocoumarin coadministration sig-
nificantly enhanced the serum concentrations of both quinolones and their penetra-
tion into the mandibular bone but not the femur. The mechanism of this effect is 
unknown [158]. However, case reports have documented quinolone-associated 
increases in PT/INR in patients receiving warfarin concurrently with ciprofloxacin, 
ofloxacin, norfloxacin, levofloxacin, and moxifloxacin [159–176].

Several epidemiological studies have examined the association of antimicrobial 
use with laboratory and clinical outcomes in warfarin recipients. A nested case- 
control and case-crossover study using the Medicaid database assessed the risk of 
hospitalization for gastrointestinal (GI) bleeding in warfarin users who also received 
oral sulfonamides, azole antifungals, and two quinolones (ciprofloxacin and levo-
floxacin). When adjusted for all confounders and using cephalexin as a control, 
neither of the quinolones was statistically associated with the target outcome [177]. 
A retrospective case-cohort study was designed to measure INR changes occurring 
in warfarin recipients after initiation of oral azithromycin, levofloxacin, 
trimethoprim- sulfamethoxazole (TMP-SMX), and terazosin (control) between 
January 1998 and December 2002. Subjects were outpatients in a university- 
affiliated VA Medical Center. The mean changes in INR were +0.51, +0.85, +1.76, 
and −0.15, respectively (all antimicrobial-terazosin pairs, p < 0.05). The  frequencies 
of supratherapeutic INRs (i.e., above the upper limit of the desired range) were 
31%, 33%, 69%, and 5%, respectively (all antimicrobial-terazosin pairs, p < 0.05). 
The frequencies of INRs exceeding 4.0 were 16%, 19%, 44%, and 0%, respectively 
(only TMP-SMX vs. terazosin, p < 0.05) [178]. A retrospective case-cohort study 
was conducted in an outpatient oral anticoagulation clinic for patients on long-term 
warfarin therapy (between January 1, 1998, and March 31, 2003). Forty-three 
patients received warfarin: 21 were prescribed felodipine (as control), while 22 
were prescribed oral levofloxacin (16 on 500 mg/day, 6 on 250 mg/day). The differ-
ences in pre- versus post-drug INR values and the proportions of patients requiring 
a change in dose due to the post-drug INR values were not significantly different 

Table 3.2 (continued)

Mean % change in
Quinolone Css CL t½ References

500 bid − –58a +26
  Oflox 200 bid − +4 −3 [144]
  Cipro 250 bid − –33a +15a [144]
  Lomeflox 400 qd −6 −3 0 [145]

% change change from baseline or placebo control, Css steady-state concentration, CL total body 
clearance, t1/2 elimination half- life, norflox norfloxacin, cipro ciprofloxacin, lomeflox lomefloxa-
cin, levoflox levofloxacin, oflox ofloxacin, peflox pefloxacin, moxi moxifloxacin, gemi gemifloxa-
cin, qd once daily, bid twice daily, tid three times a day, pruli prulifloxacin
aStatistically significant change from baseline or placebo control
bUlifloxacin (active metabolite)
cPeak concentration
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between groups. Eight levofloxacin and eight felodipine recipients had INR differ-
ences of >0.5, while four levofloxacin and one felodipine recipient had INR differ-
ences of >1.0. For the levofloxacin and felodipine groups, 7/9 (78%) and 3/7 (43%) 
of dose changes were reductions due to supratherapeutic INR values [179]. A retro-
spective review was conducted of all hospitalized patients in a university hospital in 
Spain (from 2000 to 2005) who had received levofloxacin and warfarin concur-
rently. A total of 21 patients were identified and evaluable (mean age 75 years old 
[range, 49–92]; 57.1% were women). Concurrent therapy lasted for 7 ± 4.4 days 
(mean ± SD). The routes of administration of levofloxacin were intravenous (N = 4), 
oral (N = 8), and intravenous to oral (N = 9). Three subjects had bleeding due to INR 
elevations (to 3.43, 4.8, and 6.32). The mean INR values before, during, and follow-
ing concurrent therapy were 1.85 (range 1.01–4.08), 2.64 (1–6.32), and 2.32 (1.11–
4.15) (before vs. during, p = 0.001; before vs. following, p = not significant) [180].

A nested case-control analysis of multiple linked healthcare databases in 
Ontario, Canada, was conducted between April 1, 1998, and March 31, 2002. 
Subjects were a minimum of 65 years old. Cases were those on continuous warfarin 
therapy admitted to the hospital with any type of bleeding. The cohort was a popu-
lation of elders on continuous warfarin therapy, wherein observation began with the 
first warfarin prescription following the 66th birthday and ended with the occur-
rence of one of the following events: first recurrence of hospital admission for 
bleeding, death, warfarin discontinuation, or the end of the study period. Study 
medications included oral levofloxacin, ocular antimicrobials, and cefuroxime (as 
control). A total of 158,510 elders met the inclusion criteria (mean age at start was 
79 years old, 48% were women). Cases (N = 4269) were matched to 17,048 con-
trols. For 14 days of exposure, the odds ratio of only cefuroxime was significant 
(1.62; 95% CI, 1.28–2.20). For 28 days of exposure, only the odds ratio of cefurox-
ime was again significant (1.63; 95% CI, 1.23–1.89). Both times, cefuroxime was 
associated with an enhanced risk of bleeding. Ocular antimicrobials were weakly 
associated with a decreased risk of bleeding with 28 days of exposure (OR, 0.94; 
95% CI, 0.76–0.98). Levofloxacin was not associated with bleeding in these elderly 
warfarin recipients [181].

The effects of various antimicrobials, being used to treat UTIs in warfarin recipi-
ents, on upper gastrointestinal (UGI) tract hemorrhage rates were evaluated. This 
trial utilized a population-based, nested case-control trial design using healthcare 
databases in Ontario, Canada, over the period of April 1, 1997, through March 31, 
2007. Cases were Ontario residents 66 years old and older with UGI tract hemor-
rhage who were being continuously treated with warfarin. Up to ten age- and sex- 
matched controls were selected for each case. Adjusted odds ratios for antimicrobial 
exposure within 14 days before UGI tract hemorrhage were calculated for six com-
monly used antimicrobials for UTI, including ciprofloxacin and norfloxacin. Only 
trimethoprim-sulfamethoxazole and ciprofloxacin use were significantly associated 
with UGI tract hemorrhage (AORs of 3.84 and 1.94, respectively). All other agents, 
including norfloxacin (AOR of 0.38), were not associated with this outcome [182].

Last, the efficacy of preemptively reducing warfarin doses by 10–20% when 
starting oral TMP-SMX or levofloxacin therapy in warfarin recipients was com-
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pared with no preemptive dose reduction. Of 40 patients, 18 were dose-reduced (in 
8 TMP-SMX patients, the mean dose reduction was 16.3%, while in 10 levofloxacin 
patients, the mean dose reduction was 16.2%), and in 22, there was no dose altera-
tion. In the dose-reduced TMP-SMX group, the mean difference in pre- versus on- 
therapy INR values was not significant, but 25% still developed INR values >4.0, 
and none had subtherapeutic INR values. In the control TMP-SMX group, there was 
a significant rise in INR values on-therapy versus pre-therapy (p < 0.02), and 89% 
had INR values >4.0 (25% vs. 89%, p < 0.02). In the dose-reduced levofloxacin 
group, the mean difference in pre- versus on-therapy INR values was not significant, 
40% developed subtherapeutic INR values, and none had INR values >4.0. In the 
control levofloxacin group, there was a significant rise in INR values on-therapy 
versus pre-therapy (p  <  0.02), 38.5% developed INR values >4.0, and none had 
subtherapeutic INR values (differences between levofloxacin groups in proportions 
with subtherapeutic or supratherapeutic INR values were significant: p < 0.03 and 
p < 0.02, respectively). Thus, more pronounced effects were seen with TMP-SMX 
compared with levofloxacin. For the pooled dose-reduction group, 11% of subjects 
needed temporary interruption of warfarin therapy due to supratherapeutic INR val-
ues. In the pooled control group, 55% of subjects required such interruption 
(p = 0.007) [183].

Pending additional information, patients who are receiving long-term warfarin 
therapy in whom a quinolone is to be used should be monitored for changes in PT/
INR.

Case reports have suggested that the quinolones may reduce the metabolism of 
cyclosporine and hence potentiate the nephrotoxicity of this agent [184–187]. In 
addition, results of one study conducted in pediatric renal transplant recipients sug-
gested that norfloxacin may interfere with cyclosporine disposition, as evidenced by 
the difference in mean daily dose of cyclosporine required to maintain trough blood 
cyclosporine concentrations of 150–400  ng/mL (4.5  mg/kg/day in norfloxacin 
recipients versus 7.4 mg/kg/day in non-recipients) [188]. A study was conducted in 
renal transplant recipients requiring therapy for urinary tract infections wherein the 
effect of high-dose oral levofloxacin (1 g daily) on cyclosporine pharmacokinetics 
was evaluated. Levofloxacin therapy resulted in significant increases in cyclospo-
rine Cmax (mean 23%, p = 0.0049), AUC (mean 26%, p = 0.005), Cmin (mean 36%, 
p = 0.0013), and Cavg (mean 26%, p = 0.0005). A slight fall in polyclonal assay Cmax 
(mean 5%, p = 0.014), which measures parent compound plus metabolites, was also 
seen [189]. However, numerous formal in vitro and other pharmacokinetic studies 
have not found a significant interaction between cyclosporine and ciprofloxacin, 
pefloxacin, levofloxacin, and moxifloxacin [190–199]. This suggests that these 
agents with the possible exception of high-dose levofloxacin may be used together 
with routine monitoring. In addition, high-dose levofloxacin (1 g/day) significantly 
increased tacrolimus systemic exposure (means 24–28%), and combination therapy 
would appear to warrant enhanced monitoring [189, 200].

Studies have documented nonsignificant interactions of moxifloxacin, gemi-
floxacin, and levofloxacin with digoxin [201–203]. However, one case report has 
suggested a ciprofloxacin-digoxin interaction. The mechanism may be identical to 
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that described with erythromycin and the tetracyclines (i.e., suppression of 
Eubacterium lentum in the gut) as well as competition for P-glycoprotein (reducing 
digoxin secretion into the gut and its renal clearance) [204]. Findings of reduced 
quinolone bioavailability have been noted with coadministration of oral ciprofloxa-
cin and intramuscular papaveretum [205]. In contrast, oral oxycodone had no sig-
nificant effect on oral levofloxacin pharmacokinetics [206]. Ciprofloxacin 
significantly reduced the total body clearance, renal clearance, and nonrenal clear-
ance and increased t ½ and urinary excretion of R(−) and S(+) mexiletine in both 
smokers and nonsmokers. However, these changes were modest in degree (≤20%) 
and suggested the absence of a clinically relevant drug interaction between the two 
agents [207].

Ciprofloxacin may impair the elimination of diazepam [208], although this is 
controversial [209].

Multiple-dose delafloxacin (450 mg twice daily) had no significant effect on the 
pharmacokinetics of midazolam or its 1-hydroxy metabolite [210]. Waite and 
coworkers demonstrated that elderly subjects are not more sensitive than younger 
subjects to the inhibitory effect of ciprofloxacin on hepatic metabolism of antipyrine 
[211]. Similarly, Loi and coworkers demonstrated that elderly subjects are not more 
sensitive to the inhibitory effect of ciprofloxacin on hepatic metabolism of theoph-
ylline [212].

Chandler and colleagues showed that rifampin does not induce the metabolism 
of ciprofloxacin, suggesting that the two agents may be used concomitantly in stan-
dard clinical dosing regimens [213]. A study conducted in rats suggested that levo-
floxacin pharmacokinetics were also not altered by concurrent rifampin 
administration [214]. The results of this study must be validated in humans.

Examining the rifampin component of the combination, single-dose ciprofloxa-
cin coadministration significantly increased t ½ and reduced the Cmax but had no 
effect on the AUC, volume of distribution, or urinary excretion of single-dose 
rifampin [215, 216]. Single-dose pefloxacin coadministration significantly increased 
t ½, Cmax, AUC (from 0 to 24 h and 0 to ∞), volume of distribution, absorption t ½, 
and urinary excretion of single-dose rifampin [217, 218]. Single-dose ofloxacin 
coadministration significantly reduced the Cmax, absorption t ½, salivary Cmax, and 
renal clearance and increased the salivary bioavailability and urinary excretion of 
rifampin, while single-dose norfloxacin significantly reduced the AUC to infinity, 
salivary Cmax and bioavailability, and renal clearance and increased urinary excre-
tion of rifampin [219].

In a multiple-dose healthy volunteer trial evaluating the steady-state interaction 
of rifampin with moxifloxacin, moxifloxacin Cmax and AUC were reduced by means 
of 6% and 27%, respectively (p ≤ 0.047 and p < 0.0001, respectively). Rifampin 
coadministration also increased Cmax and AUC of the M-1 metabolite by means of 
255% and 116%, respectively, and decreased t 1/2 of this metabolite by a mean of 
68% (no statistical results were presented) [220]. In a study conducted in patients 
with tuberculosis receiving thrice weekly therapy with rifampin and isoniazid, 
steady-state moxifloxacin serum concentrations fell in 18/19 patients (95%). 
Significant (p  <  0.05) reductions were also found for steady-state moxifloxacin 
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AUC (mean 31%), Cmax (mean 32%), Cmin (mean 62%), and t 1/2 (mean 28%). In 
addition, significant (p < 0.05) increases were found for steady-state Tmax (median 
rose from 1.00 to 2.51 h) and total body clearance (mean 45%). The correlations of 
moxifloxacin AUC (in the absence of rifampin) and rifampin AUC with the change 
in moxifloxacin AUC in the presence of rifampin were both nonsignificant [221]. It 
would be of benefit to repeat this study using daily dosing of the same antitubercular 
agents. In another study conducted in patients with tuberculosis, full moxifloxacin 
pharmacokinetic characterization was available in ten patients on concurrent 
rifampin therapy and six patients who were not. Nonsignificant effects were noted 
on moxifloxacin AUC0–24 (mean values of 36.8 vs. 21.3 mg.L/h, respectively) and 
total body clearance (22.6 vs. 15.5 L/h, respectively), while a significant effect was 
noted for volume of distribution/F (3.46 vs. 2.90  L/kg, respectively) [222]. The 
effect of rifampin on moxifloxacin pharmacokinetics is still not established. Two 
studies have found that ciprofloxacin does not interact pharmacokinetically with 
isoniazid [223, 224].

The interaction between concomitant multiple-dose ciprofloxacin (500 mg twice 
daily × 7 days) and multiple-dose itraconazole (200 mg twice daily × 7 days) was 
evaluated in a three-period crossover study in healthy volunteers. Itraconazole had 
no significant effect on ciprofloxacin pharmacokinetics. However, ciprofloxacin 
produced the following significant mean effects on itraconazole pharmacokinetics: 
increased Cmax (by 53%), Cmin (by 86%), AUC0–96 (by 49%), and AUC0-∞ (by 82%) 
and reduced volume of distribution/F (35%) [225].

Single-dose ciprofloxacin coadministration reduced single-dose acetaminophen 
Cmax by mean 30% and increased Tmax and t 1/2 by means of 86% and 29%, respec-
tively (all p < 0.05) [226]. The effects of single-dose acetaminophen coadministra-
tion on single-dose ciprofloxacin pharmacokinetics were nonsignificant [227]. 
Similar results were obtained with single-dose acetaminophen and pefloxacin coad-
ministration [228]. Single-dose chloroquine coadministration produced mean 
reductions in single-dose ciprofloxacin Cmax and AUC of 18% and 43%, respec-
tively, and a mean increase in cumulative urinary excretion as a percentage of the 
dose of 1000% (all p < 0.05) [229, 230].

The effect of phenazopyridine, a urinary tract analgesic, on the pharmacokinetics 
of ciprofloxacin was evaluated using a commercially available combination tablet 
(containing ciprofloxacin 500 mg + phenazopyridine 200 mg). The only significant 
alterations noted were mean 29% and 30% increases in ciprofloxacin AUC and 
mean residence time, respectively (both parameters did not fulfill at least one of the 
lower [80%] or upper [125%] limits of bioequivalence). The mechanism of this 
effect is not known [231]. A single-dose trial evaluating the effect of ciprofloxacin 
on sildenafil pharmacokinetics found that ciprofloxacin coadministration resulted in 
significant increases in t 1/2 (mean 38%), AUC (mean 112%), and Cmax (mean 
117%) (all p < 0.05). The 90% CIs for AUC (119–159%) and for Cmax (127–152%) 
document a potential drug-drug interaction of considerable magnitude [232].

Two cases have been described of an interaction between ciprofloxacin and levo-
thyroxine (T4), wherein coadministration produced a substantial loss of T4 pharma-
cological effect manifested by increases in thyroid-stimulating hormone 

3 Quinolones



106

concentrations to 19 and 44 IU/mL and reductions in free T4 concentrations to 13 
and 4 pmol/L, respectively. In one case, spacing the administration times of the two 
agents by 6 h led to rapid normalization of thyroid function test results [233]. In a 
double-blind, randomized, crossover study in healthy volunteers, a single dose of 
ciprofloxacin 750 mg reduced the baseline-corrected 6-h AUCTOT T4 by 39% after a 
single dose of 1000 mcg T4 (p  =  0.035). However, no effect was noted on T3 
AUC. The hypothesized mechanism was inhibition of intestinal T4 uptake transport-
ers (e.g., MCT8, MCT10, LAT1/2) by ciprofloxacin [234].

One case of an interaction between ciprofloxacin and tizanidine has been 
described. Upon initiation of ciprofloxacin therapy for a urinary tract infection, 
signs of tizanidine toxicity (bradycardia, hypotension, hypothermia) began almost 
immediately in this 45-year old with multiple sclerosis. Drowsiness and continuing 
hypotension led to discontinuation of ciprofloxacin with subsequent improvement 
and then disappearance of the signs of tizanidine intoxication [235]. The authors 
then surveyed the medical records of 1165 patients, looking for the combined use of 
tizanidine with ciprofloxacin. Eight cases were found. Examining these eight cases 
and comparing them to 11 cases of combined use of tizanidine and fluvoxamine 
found in the literature (fluvoxamine being another CYP1A2 inhibitor), both combi-
nations were characterized by similar patterns of systolic and/or diastolic hypoten-
sion and hypothermia. This suggested that inhibition of CYP1A2-mediated 
metabolism of tizanidine was the mechanism involved [235]. This mechanism was 
confirmed by a drug interaction study conducted in ten healthy volunteers. Steady-
state ciprofloxacin coadministration led to significant increases in single-dose tiza-
nidine Cmax (mean 564%), t ½ (mean 23%), and AUC (mean 876%) (all p ≤ 0.007). 
Significant decreases were also seen in systolic and diastolic blood pressures (post-
tizanidine vs. baseline differences during ciprofloxacin vs. no coadministration of 
−17 and −11 mm Hg, respectively; both p < 0.001). Visual analog scales for drowsi-
ness and drug effect and the Digit Symbol Substitution Test results demonstrated 
significant negative effects of the combination compared with tizanidine alone 
(p  =  0.009–0.02). Correlation analyses with caffeine/paraxanthine concentration 
ratios (a marker for CYP1A2 activity) supported CYP1A2 inhibition as the mecha-
nism of the interaction [236].

Ciprofloxacin has been used to augment pentoxifylline plasma concentrations in 
cancer patients undergoing interleukin therapy [237]. Pentoxifylline inhibits inter-
leukin-induced capillary leak syndrome in these patients. In addition, the plasma 
concentrations of (R)-metabolite-1, an even more potent inhibitor of this syndrome 
than the parent pentoxifylline, were evaluated during concurrent therapy with cipro-
floxacin [237, 238]. In vitro and in vivo (murine) studies revealed that pentoxifylline 
and metabolite-1 Cmax and AUC were doubled by coadministration of ciprofloxacin. 
These two moieties were interconvertible in vivo. The underlying mechanism was 
inhibition of CYP1A2 (thus increasing pentoxifylline) and induction of CYP2E1 
(thus increasing generation of the R-enantiomer of metabolite-1) [239, 240].

Eight case reports have suggested inhibition of clozapine (N = 6), olanzapine 
(N = 1), and methadone (N = 1) metabolism by ciprofloxacin [241–247]. In a study 
conducted in seven patients with schizophrenia, ciprofloxacin 250 mg twice daily 
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caused significant elevations in serum clozapine and N-desmethylclozapine concen-
trations (mean 29 and 31%, respectively) after 1 week of concurrent therapy [248]. 
One case report has suggested a similar interaction of ciprofloxacin with asenapine, 
a neuroleptic dependent upon CYP1A2 and UGT1A4 for its metabolism and excre-
tion [249].

Four cases of severe methotrexate toxicity due to concomitant use of ciprofloxa-
cin in oncology patients have been reported. In all cases, elimination of methotrex-
ate after high-dose therapy for cancer was substantially delayed with resultant 
dermatologic, bone marrow, hepatic, and renal toxicity. The mechanism is unclear 
but may involve alterations of methotrexate plasma protein binding, reduction in 
renal function (thus enhancing drug retention), inhibition of hepatic aldolase (thus 
reducing drug metabolism), or inhibition of renal tubular secretion (again, enhanc-
ing retention). Another issue with combination quinolone-high-dose methotrexate 
therapy is the effect of urinary alkalinization (required for safe high-dose metho-
trexate use) on the crystalluria risk of the quinolones [250–254]. Case reports have 
also appeared of severe methotrexate toxicity using the much lower doses used in 
management of psoriasis and rheumatic diseases, again documenting delayed meth-
otrexate elimination [255].

A case report of lithium toxicity caused by concurrent levofloxacin use has also 
been reported. It appears that an acute deterioration in renal function occurred, 
causing retention of lithium. Whether the deterioration in renal function was due to 
the quinolone or the combination of the two drugs is not known [256].

Ciprofloxacin and moxifloxacin do not interact pharmacokinetically or pharma-
codynamically with low-dose oral contraceptives containing 30 μg of ethinyl estra-
diol and 150 μg desogestrel per tablet [201, 257]. Levofloxacin does not alter the 
pharmacokinetics of zidovudine, efavirenz, or nelfinavir, and ciprofloxacin does not 
alter the pharmacokinetics of didanosine [32, 258, 259]. Note that there is an absorp-
tion interaction between ciprofloxacin and didanosine with cations as discussed pre-
viously [32, 33]. Ciprofloxacin does not interact pharmacokinetically with 
metronidazole [83].

The effect of quinolones on the pharmacokinetics and pharmacodynamics of 
ethanol are uncertain. One study using healthy volunteers found no pharmacoki-
netic or pharmacodynamic interaction with ciprofloxacin [260]. However, another 
study, again using healthy volunteers, found that ciprofloxacin 750 mg twice daily 
significantly reduced the ethanol elimination rate (by mean 9%, range 5–18%) and 
increased the AUC (mean 12%) and time to zero blood ethanol concentration (mean 
10%). This pharmacokinetic interaction was felt to be caused by the effect of cipro-
floxacin on the ethanol-metabolizing intestinal flora and not its hepatic effects (on 
enzymes and blood flow) [261]. Perhaps the discrepencies between results of these 
two studies are caused by differences in subject numbers (statistical power), drug 
doses, or study design (randomized, parallel group vs. crossover).

The effects of multiple-dose oral ciprofloxacin of the single-dose pharmacokinet-
ics of intravenous ropivacaine have been evaluated in nine healthy volunteers. The 
clearance of ropivacaine was significantly reduced (mean 31%) during concomitant 
therapy, with considerable intersubject variability (range 52% reduction to 39% 
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enhancement). The CYP1A2-mediated formation of 3-OH-ropivacaine was signifi-
cantly retarded; the AUC and 24-h urinary excretion of this metabolite fell 38% 
and 27%, respectively. In contrast, the CYP3A4-mediated formation of (S)-2′,6′-
pipecoloxylidide (PPX) was significantly enhanced, as manifested by mean increases 
in AUC and 24-h urinary excretion of 71% and 97%, respectively [262].

Pharmacokinetics of single-dose lidocaine and its monoethylglycinexylidide 
(MEGX) and 3-hydroxylidocaine metabolites were evaluated after multiple-dose 
oral ciprofloxacin administration. Ciprofloxacin at steady state produced significant 
increases in lidocaine Cmax (mean 12%, p < 0.05), AUC (mean 26%, p < 0.01), and 
t ½ (mean 7%, p < 0.01) and a decrease in total body clearance (mean 22%, p < 0.01). 
Alterations seen with the MEGX metabolite included significant reductions in Cmax 
(mean 40%, p < 0.01), AUC (mean 21%, p < 0.01), and the ratio of MEGX/lido-
caine AUCs (mean 40%, p < 0.001), while an increase was noted in t ½ (mean 34%, 
p < 0.05). Alterations with the 3-hydroxy metabolite included significant reductions 
in Cmax (mean 23%, p < 0.05), AUC (mean 14%, p < 0.01), and the ratio of 3-hydroxy 
metabolite to lidocaine AUCs (mean 35%, p < 0.001) [263].

A number of case reports have documented substantial reductions in serum phe-
nytoin concentrations when ciprofloxacin therapy was initiated, an unexpected find-
ing for a drug usually associated with enzyme inhibition and reduced drug clearance 
[264–270]. Indeed, results of a small study revealed that ciprofloxacin cotherapy 
was associated with nonsignificant reductions in mean steady-state phenytoin Cmax 
(4%) and AUC (6%) [271]. The mechanism underlying this interaction may involve 
CYP2E1 induction by ciprofloxacin [240]. This effect has even been described in a 
well-documented case report after the use of ciprofloxacin eye drops [270]. Caution 
is warranted when coadministering phenytoin and quinolones on the basis of this 
kinetic interaction as well as the epileptogenic potential of the quinolones (when 
certain quinolones and certain nonsteroidal anti-inflammatory drugs are coadmin-
istered see below).

The interaction of single-dose ciprofloxacin (500 mg) with single-dose carbam-
azepine (200 mg) has been evaluated in healthy volunteers. Ciprofloxacin coadmin-
istration produced significant (median) increases in Cmax (59%), t ½ (31%) and AUC 
(54%) and reductions in volume of distribution/F (25%), central volume of 
distribution/F (45%) and total body clearance (42%) [272].

The interaction of multiple-dose ciprofloxacin (500 mg twice daily) and multiple- 
dose alvimopan (6  mg twice daily) has been evaluated in healthy volunteers. 
Ciprofloxacin exposure reduced the mean Cmax, AUC, and Ctrough of alvimopan by 
24%, 12%, and 6%, respectively, and virtually eliminated generation of the active 
and equipotent metabolite of alvimopan. Thus, concurrent therapy could result in a 
loss of therapeutic efficacy of alvimopan [273].

The interaction of single-dose zolpidem with multiple-dose ciprofloxacin 
(500  mg daily × 5  days) pretreatment has been evaluated in healthy volunteers. 
Ciprofloxacin produced significant (mean) increases in zolpidem Cmax (6%), AUC0−t 
(37%), AUC0−∞ (46%), t ½ (40%), and mean residence time (42%) [274].

The effect of combinations of enzyme inhibitors such as ciprofloxacin plus clar-
ithromycin and ciprofloxacin plus cimetidine has been evaluated [212, 275–277]. 
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Interestingly, clarithromycin (1000 mg twice daily) did not significantly augment 
the effect of ciprofloxacin (500 mg twice daily) on steady-state theophylline phar-
macokinetics [276]. In contrast, coadministration of cimetidine (400 mg twice daily 
or 600 mg four times a daily) plus ciprofloxacin (500 mg twice daily) exerted a 
greater inhibitory effect on theophylline elimination than each agent alone, although 
the combined effect was less than the additive sum produced by the individual drugs 
[212, 275, 277].

Virtually no data are available regarding the interaction potential of quinolones 
with herbal products. Turmeric (Curcuma longa) is a medicinal plant extensively 
used in Ayurveda, Unani, and Siddha medicine as a home remedy for various disor-
ders. Curcumin is the active moiety of this plant. It is known to inhibit CYP3A4 in 
the liver and induce P-glycoprotein. After oral curcumin pretreatment for 3 days in 
rabbits, single oral dose norfloxacin pharmacokinetics were significantly modified 
compared with those in the non-pretreated group. Mean absorption half-life was 
decreased (by 23%), while increases were seen in the absorption rate constant (by 
41%), t ½ (by 19%), AUC (by 52%), AUC (first moment) (by 69%), mean residence 
time (by 12%), and Vd (area) (by 31%) (all p < 0.05) [278].

The mechanism of these metabolic interactions is largely unexplored. It has been 
suggested that inhibition of metabolism may be related to the 4-oxo-metabolites of 
the quinolones, but more recent data suggests that the sequence N* – C = N – C – 
N – C (where N* = nitrogen on the piperazine ring) is the entity responsible for 
metabolic inhibition [143, 279].

The structure-activity relationships for in  vitro inhibition of human CYP1A2 
have been investigated by Fuhr and coworkers. 3′-oxo derivatives had similar or 
reduced activity, and M1 metabolites (cleavage of piperazinyl substituent) had 
greater inhibitory activity compared with the parent molecule. Alkylation of the 
7-piperazinyl substituent resulted in reduced inhibitory potency. Naphthyridines 
with an unsubstituted piperazinyl group in position 7 displayed greater inhibitory 
potency than did corresponding quinolone derivatives. Molecular modeling studies 
revealed that the keto group, carboxylate group, and core nitrogen at position 1 are 
likely to be the most important groups for binding to the active site of CYP1A2. 
These investigators also developed an equation to estimate a priori, using quantita-
tive structure-activity relationship analysis, the potency of a given quinolone to 
inhibit CYP1A2 [280]. These investigators as well as Sarkar and coworkers have 
also developed in vitro human liver microsome models that may be useful in quali-
tatively predicting relevant drug interactions between quinolones and methylxan-
thines [281, 282].

Antofloxacin and caderofloxacin, new quinolones being developed in China, are 
derivatives of levofloxacin and ciprofloxacin, respectively. Neither agent appears to 
inhibit the activities of CYP1A2 or CYP2C9 in human microsomes [283]. However, no 
data have been published addressing their effects on other CYP isoenzymes in humans, 
except the drug-drug interaction between antofloxacin and theophylline [138].

Clinically, caution is advised when using any quinolone in combination with a 
xanthine compound such as theophylline. Close monitoring of serum theophylline 
concentrations is recommended in any patient receiving these drugs. The clinical 
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significance of inhibited metabolism of other drugs remains largely unclear at pres-
ent. Until further data become available, clinicians should be aware of the possibil-
ity of reduced drug metabolism resulting in adverse effects whenever the quinolones 
are coadministered with drugs that depend on hepatic metabolism for their 
elimination.

3.2.4  Excretion Interactions

The quinolone antimicrobials are generally excreted into the urine at a rate higher 
than creatinine clearance, implying that tubular secretion is a prominent excretory 
pathway. Indeed, the administration of probenecid, a blocker of the anionic renal 
tubular secretory pathway, substantially reduces the renal elimination of norfloxa-
cin, levofloxacin, gatifloxacin, ulifloxacin (active metabolite of prulifloxacin), 
nemonoxacin, and ciprofloxacin, reflecting competitive blockade of quinolone 
tubular secretion [85, 284–289]. In contrast, probenecid coadministration does not 
affect the pharmacokinetics of moxifloxacin [290]. In addition, furosemide and 
ranitidine reduce the renal tubular secretion of lomefloxacin, again reflecting com-
petitive blockade [291, 292]. There is thus a possibility that other drugs or endoge-
nous compounds may interact with the quinolones at this site to competitively 
impair their mutual renal elimination, thus elevating blood concentrations and per-
haps enhancing therapeutic and/or toxic effects. In general, levofloxacin, lomefloxa-
cin, and moxifloxacin exhibit little/no net renal tubular transport, while ofloxacin, 
ciprofloxacin, and gemifloxacin exhibit net renal tubular secretion [293].

For example, in vitro, the quinolones DX-619 and levofloxacin significantly and 
dose-dependently inhibited the uptake of creatinine in HEK cells expressing the 
renal organic cation transporter (hOCT2). At the highest quinolone concentrations 
tested, creatinine transport fell by 88% with both drugs. Whether these agents can 
interfere with creatinine clearance estimation in vivo to a clinically relevant degree 
is unknown [294]. In another study, 13 quinolones were evaluated for their abilities 
to inhibit OCT1, OCT2, and OCT3. All except enoxacin inhibited OCT1 uptake, 
while none inhibited OCT2. Moxifloxacin inhibited OCT3 but only weakly (30% at 
1000-fold excess) [295].

No data are available regarding the effects of antofloxacin and caderofloxacin on 
transporters such as P-gp, MRP-2, or organic anion and cation transporters in 
humans. However, in rats, inhibitors of multiple transporters (P-gp, MRP-2, organic 
anion and cation transporters, and breast cancer resistance protein) significantly 
reduced the biliary clearance of antofloxacin (all p < 0.05). The effects of antofloxa-
cin on these transporters were not assessed [296].

Another example has been noted in a study of the interaction between ofloxacin 
and procainamide in healthy volunteers. Ofloxacin coadministration was associ-
ated with 22% and 30% falls in procainamide oral total body and renal clearances, 
respectively. However, neither the pharmacokinetics of N-acetylprocainamide nor 
the pharmacodynamics of the antiarrhythmic, as assessed by standard 12-lead and 
signal- averaged electrocardiograms, were affected by ofloxacin coadministration 
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[297]. A more recent trial compared oral levofloxacin to oral ciprofloxacin with 
regard to the interaction potential with procainamide and NAPA in ten healthy 
volunteers. The only significant effects of ciprofloxacin (500 mg twice daily for 
5 days) were a mean 15% reduction in procainamide renal clearance and a mean 
10% reduction in the ratio of NAPA renal clearance to creatinine clearance (both 
p < 0.05). In levofloxacin (500 mg once daily for 5 days) recipients, the following 
significant (p < 0.05) effects were noted: mean reductions in procainamide total 
body and renal clearances, fraction excreted in urine in unchanged form, and ratio 
of procainamide renal clearance to creatinine clearance of 17%, 26%, 11%, and 
29%, respectively; mean increase in procainamide t ½ of 19%; and mean reduc-
tions in NAPA renal clearance, fraction eliminated in urine in unchanged form, 
and the ratio of NAPA renal clearance to creatinine clearance of 21%, 20%, and 
28%, respectively. This interaction was thus potentially more clinically problem-
atic with levofloxacin than with ciprofloxacin. In fact, of the ten volunteers, only 
one had a reduction in procainamide total body clearance exceeding 25% with 
ciprofloxacin, while four had reductions in total body clearance of 30% or greater, 
and three of the four had reductions in NAPA renal clearance of 30% or greater 
with levofloxacin [298].

3.3  Pharmacodynamic Interactions

3.3.1  Quinolones and NSAIDs

Central nervous system (CNS) toxicity, including tremulousness and seizures, is 
rare with quinolones [299–311]. In some cases, concurrent use of nonsteroidal anti- 
inflammatory drugs (NSAIDs) has been noted [302, 303, 305, 312]. It was the report 
of multiple cases of seizures associated with the concurrent use of enoxacin and 
fenbufen (the latter being an NSAID not available in the USA) to Japanese regula-
tory authorities that led to a plethora of investigations into the possible interaction 
between quinolones and NSAIDs [305, 312].

Some rat studies have suggested that NSAIDs such as fenbufen may enhance 
CNS uptake of quinolones such as ciprofloxacin, norfloxacin, and ofloxacin [313, 
314]. However, other studies conducted in the same species have documented an 
absence of a pharmacokinetic interaction between fenbufen and ciprofloxacin and 
ofloxacin [315, 316]. In addition, human studies have the documented absence of a 
pharmacokinetic interaction between ciprofloxacin and fenbufen and between 
pefloxacin or ofloxacin and ketoprofen [317–319]. However, with single-dose 
diclofenac coadministration, ciprofloxacin pharmacokinetics were modestly 
affected. Mean ciprofloxacin Cmax, AUC, and apparent oral clearance increased 58% 
and 46% and decreased 28%, respectively [320]. Overall, any interaction that occurs 
between quinolones and NSAIDs is thus probably purely pharmacodynamic in 
nature. Previous editions of this book should be consulted for mechanistic details of 
this pharmacodynamic interaction.
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Although of theoretical interest, the pharmacodynamic interaction between qui-
nolones and NSAIDs is probably of little clinical relevance so long as fenbufen is 
not concurrently used with prulifloxacin.

3.3.2  Quinolones and Electrophysiology

Levofloxacin, ciprofloxacin, norfloxacin, nemonoxacin, and moxifloxacin have 
been associated with prolongation of the QTc interval on the electrocardiogram, 
which in a few cases has been associated with the development of polymorphous 
ventricular tachycardia (torsades des pointes), which in turn can degenerate into 
ventricular fibrillation [85, 321–340]. One case of levofloxacin-associated torsades 
des pointes in the absence of QTc interval prolongation has also been reported 
[341]. Grepafloxacin was removed from the market by its manufacturer in October 
1999 because of its electrophysiologic adverse event profile.

Extensive but conflicting data are available regarding the epidemiology of elec-
tropathophysiology in quinolone recipients. One group utilized the Varese province 
of Italy as the study database, performing a case-control study of subjects with 
ventricular arrhythmias or cardiac arrest between July 1998 and December 2003. A 
total of 1275 cases and 9189 controls formed the study population. The adjusted 
odds ratio for recent (within 4 weeks) exposure to quinolones was 3.58 (95% CI, 
2.51–5.12) [342]. Another group evaluated drug-induced torsades des pointes in 
patients at least 80 years old. In 24 reports on 25 patients 80–95 years old, the most 
prevalent risk factors were nonmodifiable (88% were female, 76% had structural 
heart disease, and 64% were female with structural heart disease). Among poten-
tially modifiable risk factors, 44% received QTc interval-prolonging drugs despite 
preexisting prolonged QTc intervals, and 36% received two or more concurrent QT 
interval-prolonging drugs. The most prevalent QTc interval-prolonging drugs were 
quinolone (N = 3) and macrolide (N = 7) antimicrobials in 36%. All but three indi-
viduals had at least one modifiable risk factor [343].

A nationwide case-control study conducted in Taiwan compared the risks of ven-
tricular arrhythmias (VA) and cardiovascular (CV) death in outpatient recipients of 
moxifloxacin, ciprofloxacin, levofloxacin, and amoxicillin-clavulanate (A-C) as 
control (as well as azithromycin and clarithromycin). The primary end points were 
evaluated within 7 days of antimicrobial initiation. Moxifloxacin therapy was asso-
ciated with significantly increased risks of VA (odds ratio [OR], 3.30; 95% CI, 
2.07–5.25) and CV death (OR, 2.31; 95% CI, 1.39–3.84) compared with A-C. 
Ciprofloxacin therapy was also associated with an enhanced risk of CV death com-
pared with A-C (OR, 1.77; 95% CI, 1.22–2.59). However, the risks of VA and CV 
death with moxifloxacin were significantly higher than those with ciprofloxacin. 
The absolute risks per 1000 patients for VA and CV death for A-C, ciprofloxacin, 
levofloxacin, and moxifloxacin were 0.12, 0.15, 0.26, and 0.57 and 0.13, 0.12, 0.39, 
and 0.46, respectively [344].
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Two hundred consecutive patients admitted to the intensive care unit who were 
prescribed one or more of a variety of drugs known to prolong the QTc interval were 
evaluated for the combined end point of QTc interval prolongation to over 500 mil-
liseconds or QTc interval prolongation exceeding 60 milliseconds over baseline. In 
62 recipients of ciprofloxacin, the mean ± SD increase in QTc interval from baseline 
was 18 ± 33 milliseconds, and prevalence of the combined end point was 40%. For 
82 recipients of moxifloxacin, corresponding values were 20 ± 33 milliseconds and 
55% [345].

A Canadian case-cohort study conducted in the province of Quebec from January 
1990 through December 2005 (with follow-up to March 2007) evaluated the risk of 
serious arrhythmias (defined as VA or sudden/unattended death as hospital dis-
charge diagnoses) in quinolone recipients. In the cohort of 605,127 patients, 1838 
cases were identified (incidence rate = 4.7/10,000 person-years). Current quinolone 
use was significantly associated (relative risk [RR], 1.76; 95% CI, 1.19–2.59), espe-
cially new current use (RR, 2.23; 95% CI, 1.31–3.80). Moxifloxacin and ciprofloxa-
cin were significantly associated as well (RR, 3.30; 95% CI, 1.47–7.37, and RR, 
2.15; 95% CI, 1.34–3.46, respectively [as was gatifloxacin]) [346].

A retrospective chart review of hospitalized hematology patients was conducted 
from September 2008 to January 2010 to evaluate the effect of combined quinolone-
azole use on QTc interval. Of 94 patients identified, 88 received levofloxacin, 53 
received voriconazole, and 40 received fluconazole. The overall change in QTc 
interval from baseline was a mean of 6.1 milliseconds (95% CI, 0.2–11.9). Twenty-
one patients (22.3%) had a clinically significant change in QTc interval on combi-
nation therapy. Major clinical significance was defined as a greater than 
60-millisecond prolongation or an absolute value exceeding 500 milliseconds, 
while moderate clinical significance was defined as a 30–59-millisecond prolonga-
tion or an absolute value exceeding 470 milliseconds (males) or 480 milliseconds 
(females). Significant risk factors in these patients included hypokalemia and a left 
ventricular ejection fraction below 55%. The relative contributions of the quinolone 
and azole components could not be discerned [347].

A retrospective case-cohort analysis, conducted within the Veterans Affairs sys-
tem, evaluated the risk of serious cardiac arrhythmias and all-cause mortality among 
outpatient recipients of amoxicillin (N = 979,380) and levofloxacin (N = 201,798) 
between September 1999 and April 2012 (mean age, 56.8 years). Outcomes were 
assessed during days 1–5 and 6–10 of antimicrobial therapy. Levofloxacin therapy 
significantly increased the risks of all-cause mortality (hazard ratio [HR], 2.49; 
95% CI, 1.70–3.64) and serious cardiac arrhythmias (HR, 2.43; 95% CI, 1.56–3.79) 
during days 1–5. Corresponding data for days 6–10 were HR, 1.95; 95% CI, 1.32–
2.88, and HR, 1.75; 95% CI, 1.09–2.82 (both significant). Absolute numbers of 
deaths per million prescriptions were amoxicillin, N  =  154 and levofloxacin, 
N = 384 at the end of day 5 and amoxicillin, N = 324 and levofloxacin, N = 714 at 
the end of day 10 [348].
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A retrospective chart review was conducted at the Mayo Clinic (Rochester, MN) 
from October 9, 2009, to June 12, 2012, to evaluate the epidemiology of ventricular 
tachycardia (VT)/ventricular fibrillation (VF) in patients receiving levofloxacin 
who had a prolonged QTc at baseline (defined as a QTc exceeding 450 millisec-
onds). Over this period, 1004 consecutive patients fulfilled the QTc study criteria. 
Levofloxacin was administered both orally and intravenously and was dose-adjusted 
for the level of renal function. The primary outcome was sustained VT on electro-
cardiogram. The median time from initiation of levofloxacin therapy to hospital 
discharge was 4 days (range, 1–94 days). Only two patients (0.2%, 95% CI, 0.0–
0.7) experienced the primary outcome [349].

A binational (Danish/Swedish) case-cohort study was conducted using Danish 
data from 1997 to 2011 and Swedish data from 2006 to 2013 to evaluate the CV 
risks of quinolones in adults 40–79 years old. There were 909,656 quinolone courses 
(ciprofloxacin, 82.6%; norfloxacin, 12.1%; ofloxacin, 3.2%; moxifloxacin, 1.2%; 
others, 0.9%) and 909,656 courses of penicillin V (matched on propensity scores). 
The risk period of interest was days 0–7 of antimicrobial therapy. Subgroup analy-
ses were performed by country, sex, age, underlying CV disease, concomitant use 
of other drugs increasing the risk of polymorphous VT, quinolone type, and level of 
arrhythmia risk score. One hundred and forty-four cases of serious arrhythmias 
occurred during follow-up, 66 among quinolone recipients (3.4/1000 patient-years) 
and 78 among penicillin recipients (4.0/1000 patient-years), yielding a rate ratio of 
0.85 (95% CI, 0.61–1.18). The absolute risk difference was −13 (95% CI, −35–16) 
per one million courses of quinolones. No statistically significant differences were 
noted in subgroup analyses. Due to the small numbers of non-ciprofloxacin quino-
lones used, intra-quinolone class differences could not be ruled out [350].

In a retrospective analysis utilizing the FDA adverse event reporting database 
from January 1, 1996, through May 2, 2001, the rates of torsades des pointes with 
ciprofloxacin and levofloxacin were 0.3 and 5.4 cases per 10 million prescriptions, 
respectively (p < 0.05) [323]. However, the numerous potential problems with study 
design preclude generalizability of these results [323, 324].

Numerous in vitro models have been utilized to elucidate the mechanism under-
lying the arrhythmogenic effects of these agents: HERG (human ether-a-go-go-
related gene) potassium channels, mouse atrial tumor cells, guinea pig myocardium, 
and canine Purkinje fibers [351–355]. The potency of quinolones in inhibiting 
HERG-mediated outward potassium currents was moxifloxacin > levofloxa-
cin  =  ciprofloxacin > ofloxacin in one study; for the other, it was moxifloxacin 
>> > ciprofloxacin [351, 355]. Similar findings were noted for mouse atrial tumor 
cell potassium channels [352]. In guinea pig ventricular myocardium, prolongation 
of action potential duration was 25% for moxifloxacin, and the prolongation with 
levofloxacin and ciprofloxacin was essentially zero [353]. Similar findings were 
noted with canine cardiac Purkinje fibers (moxifloxacin > ciprofloxacin) [354]. The 
maximum degree of blockade of HERG current in transfected HEK293 cells was 
only 12.3 ± 3.3% at the highest tested concentration (335 μM) of ulifloxacin, the 
active metabolite of prulifloxacin [356].
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In rabbits, levofloxacin and ulifloxacin were equipotent in prolonging the maxi-
mum QT interval [357]. In dogs with complete atrioventricular block and dogs 
under halothane anesthesia, oral and intravenous levofloxacin produced essentially 
no adverse electrophysiologic and hemodynamic effects [358]. In conscious dogs 
dosed with oral prulifloxacin 150 mg/kg/day for 5 days and followed by telemetry, 
no significant effect was noted on the QTc interval at any time [356].

In summary, the in vitro and in vivo (animal) studies revealed that quinolones 
cause a drug-specific, dose-dependent prolongation in QTc interval by inhibiting 
outward potassium currents in myocytes. In turn, this prolongation in action poten-
tial duration leads to a drug-specific risk of ventricular tachycardia and torsades 
des pointes. However, the lack of full agreement of the results of evaluations of 
potassium channel inhibition and QTc interval prolongation, in terms of relative 
drug potencies, suggests that more than potassium channel inhibition may be 
involved [352].

In a retrospective review of 23 patients receiving 500 mg levofloxacin once daily 
in whom pre- and intratherapy electrocardiograms were available, the QTc prolon-
gation exceeded 30 milliseconds in four patients (17%) and 60 milliseconds in two 
patients (9%), with an absolute QTc prolongation to more than 500 milliseconds in 
four patients (17%) [359]. Single oral doses of moxifloxacin 400 and 800 mg caused 
4.0 ± 5.1% (mean ± SD) and 4.5 ± 3.8% prolongation of the QTc interval at rest 
(both p < 0.05) in healthy volunteers. Significant QTc interval prolongation occurred 
at all heart rates and across the entire RR interval range (400–1000 milliseconds). 
The effect was similar in males and females and did not show dose dependence. No 
significant reverse rate dependence was seen. Statistically significant but weak cor-
relations existed between moxifloxacin plasma concentrations versus QTc interval 
(r = 0.35) and change in QTc interval with placebo (r = 0.72) [360].

In another healthy volunteer study, periodic and continuous ECGs were recorded 
before and after administration of single doses of intravenous levofloxacin 500, 
1000, and 1500 mg. Using periodic ECG data, the only significant differences noted 
were the mean QTc intervals at 1.5 h after administration of 1500 mg (Bazett for-
mula, 415.33 vs. 399.48 milliseconds with placebo; Fredericia correction, 409.67 
vs. 400.46 milliseconds with placebo) and 2.0 h after administration of 1500 mg 
(corresponding values of 414.10 vs. 398.92 and 409.58 vs. 400.10 milliseconds) (all 
p  <  0.05). Using continuous ECG data, significant QTc interval prolongation 
occurred after administration of 1000 mg (Bazett correction, in 3/4 baseline correc-
tion methods, mean change ranged from 2.8 to 3.9 milliseconds [p ≤ 0.05]; 
Fredericia correction, in 1/4 baseline correction methods, the mean change was 2.8 
milliseconds [p ≤ 0.05]) and 1500 mg (Bazett correction, in 4/4 baseline correction 
methods, mean change ranged from 6.4 to 7.7 milliseconds [p ≤ 0.001]; Fredericia 
correction, in 4/4 baseline correction methods, mean change ranged from 4.9 to 6.9 
milliseconds [p ≤ 0.001]) [361].

Two comparative studies of the effect of quinolones on QTc interval in humans 
have been published. Single oral doses of 1000 mg levofloxacin, 1500 mg cipro-
floxacin, and 800 mg moxifloxacin were compared in healthy volunteers. Mean QT 
and QTc interval prolongation was significantly greater for moxifloxacin compared 
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to placebo for all end points, but it was generally not so for levofloxacin and cipro-
floxacin (the exception was that the postdose QTc and QTc at 1.5, 2, and 2.5 h 
postdose, using the Bazett method, were significantly increased for levofloxacin vs. 
placebo). The proportion of subjects with prolongation in QTc interval of 30 milli-
seconds or greater was higher with moxifloxacin (72–81%) compared to levofloxa-
cin (33–38%) and ciprofloxacin (34–40%) [362].

The second study compared single-dose oral levofloxacin 1000 and 1500  mg 
with oral moxifloxacin 400 mg in a four-way, placebo-controlled, crossover study in 
healthy volunteers. The largest difference in QTc for all three agents occurred at 
3.5 h postdosing, and mean baseline-corrected QTc prolongations were 4.42, 7.44, 
and 13.19 milliseconds, respectively (no statistical comparison performed) [363].

In contrast, in thorough QTc studies conducted with delafloxacin, prulifloxacin, 
and zabofloxacin, there appeared to be clinically significant QTc interval prolonga-
tion [364–366]. In addition, the electrophysiologic effects of quinolones do not 
appear to differ by race/ethnic group, at least for Caucasians, Japanese, Chinese, 
and Koreans [367–370].

Taking the data above as a whole, it appears that the excess in adverse cardiac 
events over base rates with ciprofloxacin, levofloxacin, and moxifloxacin is roughly 
20–40 cases per million courses of each drug. The number of prescriptions needed 
to cause 1 additional serious cardiac event is roughly 25,000–50,000. In view of the 
relative rarity of these adverse events and inconsistencies between studies in risk 
estimates, the choice of quinolone should not be made primarily on the basis of 
concern for adverse cardiac events, except in patients at the highest risk for such 
events [371, 372]. Caution is warranted with the use of these agents in patients 
receiving other drugs with similar electrophysiologic effects (Table 3.3) [373–375]. 
In addition, caution is warranted in using these agents in patients with an abnormal 
pretreatment QTc interval, pretreatment electrolyte abnormalities (e.g., hypokale-
mia, hypomagnesemia, rarely hypocalcemia), starvation/liquid-protein fast diets, 
and a prior or current history of coronary heart disease, bradyarrhythmias, or atrial 
fibrillation [373–375].

Table 3.3 Drugs prolonging the QTc interval that may potentially interact pharmacodynamically 
with selected quinolone antimicrobials

Cisapride

Trimethoprim/sulfamethoxazole Macrolides (erythromycin, clarithromycin, spiramycin)
Pentamidine Chloroquine
Halofantrine Phenothiazines
Quinidine Tricyclic and tetracyclic antidepressants
Procainamide Disopyramide
Ibutilide Lidocaine, mexiletine (rare)
β-blockers (rare) Amiodarone (rare)
Bepridil Lidoflazine
Sotalol Dofetilide
Flecainide Encainide

Source: From Ref. [373]

D. R. P. Guay



117

3.3.3  Quinolones and Glucose Homeostasis

Case reports have documented pharmacodynamic interactions between quinolones 
and hypoglycemic agents in patients with type 2 diabetes mellitus, leading to symp-
tomatic, prolonged hypoglycemia. Gatifloxacin was, by far, the most implicated in 
this and was removed from the market for this reason. Other implicated quinolones 
have included levofloxacin, ciprofloxacin, and moxifloxacin [376–382].

Glucose homeostasis abnormalities (GHAs) reported to the FDA in the MedWatch® 
program from November 1997 to September 2003, inclusive, have been reviewed for 
concurrent use of ciprofloxacin, levofloxacin, and moxifloxacin. These events were 
identified under 14 unique coding items. Rates were calculated using US retail phar-
macy prescriptions as the denominator. The spontaneous reporting rates for the three 
quinolones combined for both total GHA reports (8/10 million prescriptions) and fatal 
GHA reports (0.6/10 million prescriptions) were exceedingly low. GHA reports con-
stituted only 1.4% of the combined quinolone adverse event reports [383].

In another population-based analysis, two nested case-control studies were con-
ducted, using data from 1.4 million elderly (≥66 years old) residents of Ontario, 
Canada. In study 1, case patients were treated in the hospital setting for hypoglyce-
mia after outpatient treatment with macrolide, second-generation cephalosporin, or 
respiratory quinolone (levofloxacin, moxifloxacin, or ciprofloxacin) agents. In study 
2, case patients were those who received hospital care for hyperglycemia. For each 
case patient, up to five controls were identified, matched by age, sex, presence/
absence of diabetes, and timing of antimicrobial therapy [384].

For study 1, all patients treated for hypoglycemia within 30 days of completion 
of antimicrobial therapy were identified (April 2002–March 2004). As compared 
with macrolides (e.g., erythromycin, azithromycin, and clarithromycin), levofloxa-
cin recipients were at significantly greater risk for the development of hypoglyce-
mia (adjusted odds ratio [AOR] of 1.5 [95% CI, 1.2–2.0]) in the overall population. 
In contrast, there was no relationship of the development of hypoglycemia with the 
use of moxifloxacin, ciprofloxacin, or second-generation cephalosporins (e.g., cefa-
clor and cefuroxime axetil). Similar findings held true when the analysis was 
repeated in patients with/without diabetes with one exception. The relationship of 
hypoglycemia to levofloxacin use in patients without diabetes was not significant 
(AOR, 2.1; 95% CI, 0.7–6.0) [384].

For study 2, all patients treated for hyperglycemia within 30 days of completion 
of antimicrobial therapy were identified. Compared with macrolides, none of the 
three quinolones were significantly associated with the development of hyperglyce-
mia. Similar findings were noted in patients with or without diabetes, with the addi-
tional finding of a borderline increase in risk in levofloxacin recipients in the 
population of patients with diabetes (AOR, 1.5; 95% CI, 1.2–2.0) [384].

Last, all patients ≥66  years old treated with antimicrobials during the study 
period were identified. Those hospitalized within 90 days before receiving an anti-
microbial prescription as well as those who received another antimicrobial prescrip-
tion within 30  days were excluded. Hospital visits for dysglycemia during the 
30-day period after the start of antimicrobial therapy were identified for each patient. 
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In the context of multiple antimicrobial prescriptions, each treatment course was 
considered separately. The rates of hospitalization for dysglycemia for ciprofloxa-
cin (0.3%), levofloxacin (0.3%), moxifloxacin (0.2%), second-generation cephalo-
sporins (0.2%), and macrolides (0.1%) were comparable [384].

A retrospective case-control study of the risk of severe hypo- or hyperglycemia 
in recipients of levofloxacin, ciprofloxacin, and azithromycin (control) was con-
ducted using the Veterans Affairs outpatient database (from October 1, 2000, to 
September 30, 2005). In the final study cohort, 874,682 and 402,566 patients 
received quinolones and azithromycin, respectively. The event rates for hypoglyce-
mia and hyperglycemia/1000 patients (levofloxacin/ciprofloxacin/azithromycin) 
were 0.19/0.10/0.07 and 0.18/0.12/0.10, respectively (both p  =  NS). In patients 
without diabetes, no quinolone was statistically associated with either hypo- or 
hyperglycemia, but the statistical power of this analysis was low due to the small 
number of events (total N = 51). In patients with diabetes, a significant odds ratio 
(OR) for severe hypoglycemia (versus azithromycin) of 2.1 (95% CI, 1.4–3.3) for 
levofloxacin was found. A corresponding significant OR for severe hyperglycemia 
of 1.8 (95% CI, 1.2–2.7) for levofloxacin was also found. Ciprofloxacin was not 
statistically associated with either glucose perturbation [385].

A retrospective cohort study was conducted using Texas Medicare claims from 
2006 to 2009 for patients 66 years old and older who had received prescriptions for 
glipizide or glyburide and who also filled prescriptions for 1 of 16 antimicrobials 
most frequently used in this population. The primary outcome evaluated was hospi-
talization or emergency department visit for hypoglycemia within 14 days of anti-
microbial exposure. Five antimicrobials were significantly associated with increased 
rates of hypoglycemia, including two quinolones: levofloxacin (odds ratio, 2.60; 
95% CI, 2.18–3.10) and ciprofloxacin (odds ratio, 1.62; 95% CI, 1.33–1.97). 
Moxifloxacin had no association (odds ratio, 1.13; 95% CI, 0.65–1.98) [386].

In a population-based cohort study of Taiwanese patients with types 1 and 2 
diabetes (N = 78,433, January 2006–November 2007), outpatient new users of levo-
floxacin, ciprofloxacin, moxifloxacin, cephalosporins, and macrolides were identi-
fied. Study outcomes were defined as emergency department visit or hospitalization 
for dysglycemia within 30 days of the start of antimicrobial therapy. Adjusted odds 
ratios (AORs) for hyperglycemia compared with macrolides were 1.75 (95% CI, 
1.12–2.73) for levofloxacin, 1.87 (95% CI, 1.20–2.93) for ciprofloxacin, and 2.48 
(95% CI, 1.50–4.12) for moxifloxacin. Comparable AORs for hypoglycemia com-
pared with macrolides were 1.79 (95% CI, 1.33–2.42) for levofloxacin, 1.46 (95% 
CI, 1.07–2.00) for ciprofloxacin, and 2.13 (95% CI, 1.44–3.14) for moxifloxacin. 
Adjusted ORs for moxifloxacin plus insulin, moxifloxacin plus sulfonylureas, and 
levofloxacin plus sulfonylureas for hypoglycemia were 2.28 (95% CI, 1.22–4.24), 
1.93 (95% CI, 1.09–3.42), and 2.03 (95% CI, 1.36–3.03), respectively. Adjusted 
ORs for hyperglycemia for glitinides, metformin, or thiazolidinediones plus cipro-
floxacin, moxifloxacin, and levofloxacin were 3.19 (95% CI, 1.09–9.31), 4.84 (95% 
CI, 1.39–16.84), and 3.80 (95% CI, 1.34–10.75), respectively [387].

Studies have been conducted to evaluate the mechanism of this interaction. 
Altered pharmacokinetics of oral hypoglycemics do not appear to be the explana-
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tion as ciprofloxacin and moxifloxacin do not significantly alter glyburide pharma-
cokinetics [201, 388].

In patients with type 2 diabetes mellitus stabilized on diet and exercise therapy, 
multiple oral dose ciprofloxacin (500 mg twice daily for 10 days) produced no sig-
nificant effects on the dynamics of the oral glucose tolerance test, fasting serum 
insulin and glucose profiles over 6 h after dosing on study days 1 and 10 and pre-
dose fasting insulin, glucose, and C-peptide concentrations on study days 2, 4, 6, 8, 
and 11 compared with placebo. The only significant drug-associated effect was a 
significant increase in the 0- to 6-h postdose fasting serum insulin concentrations on 
study day 10 [389].

Moxifloxacin has been reported not to alter serum insulin dynamics in patients 
with type 2 diabetes mellitus stabilized on glyburide therapy. The increases reported 
in serum glucose 0- to 6-h postdose AUC (mean 7%) and Cmax (mean 6%), although 
statistically significant, were felt to be clinically insignificant [201].

3.4  Physicochemical Interactions

Physicochemical interactions involve physical incompatibilities between injectable 
quinolones and intravenous fluids and admixed medications. Studies of these types 
of interactions involve combinations of visual inspection (for precipitation), assess-
ment of pH changes, and quantitation of drug and breakdown products. Table 3.4 
illustrates the known incompatibilities of the injectable quinolones [390]. It should 

Table 3.4 Intravenous fluid and admixed drug incompatibilities with injectable quinolones

Incompatibilities

Quinolone LVP IV fluid Admixed drugs
Ciprofloxacin Sodium 

bicarbonate,a 
sodium 
phosphatea

Amoxicillin, amphotericin B, amoxicillin/clavulanate, 
clindamycin, floxacillin, furosemideb, cefepimeb, 
ceftazidime, cefuroxime, heparinc, metronidazole, 
propofolb, hydrocortisoneb, potassium phosphates, 
mezlocillinc, ampicillin/sulbactamc, piperacillin, ticarcillin, 
aminophyllinec, teicoplanin, magnesiumb, dexamethasoneb, 
phenytoinb, warfarinb, methylprednisoloneb, TPNb, 
pantoprazoled, azithromycinc, drotrecogin alfa (activated)b, 
lansoprazoleb, pemetrexedb, sodium phosphatesb, 
fluorouracil

Levofloxacin Mannitol, sodium 
bicarbonate

Acyclovirb, alprostadilb, furosemideb, heparinb, 
indomethacinb, insulinb, nitroglycerinb, nitroprussideb, 
propofolb, azithromycinb, drotrecogin alfa (activated) b, 
lansoprazoleb, telavancinb

Moxifloxacin None reported Not reported

Source: From Ref. [390]
LVP large-volume parenteral, TPN total parenteral nutition
aIncompatible on simulated Y-site administration as well as when used as an LVP intravenous fluid
bIncompatible (evaluated only on simulated Y-site administration)
cIncompatible on simulated Y-site administration as well as when admixed into an LVP intravenous fluid
dIncompatible (evaluated only in syringe)
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be noted that the interaction between ciprofloxacin and hydrocortisone sodium suc-
cinate occurs even at low concentrations of the latter administered via Y-site injec-
tion [391]. A case report of an interaction between indomethacin and ciprofloxacin, 
both administered as eye drops following phototherapeutic keratectomy, has been 
published. The interaction appeared to be physicochemical in nature, as a precipi-
tate containing both drugs was deposited in the cornea [392].

3.5  Summary

The quinolone antimicrobials have proven to be important additions to our thera-
peutic armamentarium based on their broad spectra of activity, favorable pharmaco-
logic properties, and ease and cost-efficiency of administration. However, with their 
widespread use comes the realization that drug-drug interactions will occur with 
these agents. It is important that the clinician be aware of clinically significant inter-
actions with these agents and pay attention to other potential interactions with drugs 
exhibiting narrow therapeutic/toxic dose ratios.

Note Added in Proof
Delafloxacin was approved by the FDA in June 2017 in oral and injectable formula-
tions [393]. The compatibility of the injectable formulation has only been estab-
lished in normal saline and 5% dextrose in water large- volume parenteral solutions. 
The compatibility of other intravenous admixtures (drugs, electrolytes, etc.) with 
delafloxacin has not been established, and coadministration is not recommended, 
especially with multivalent cations. Formal bioavailability interaction studies of the 
oral formulation with orally administered multivalent cations have not been con-
ducted, but similar results to those with other quinolones should be expected. 

Table 3.5 Clinically significant pharmacokinetic quinolone-drug interactions

Interacting drug Results Comments

Ca, Mg, Al-containing antacids; Ca 
supplements; iron or mineral 
preparations; sucralfate; didanosine; 
lanthanum; sevelamer tripotassium 
citrate

Reduced 
quinolone 
absorption

Avoid quinolone therapy if possible; 
otherwise space administrations as far 
apart as possible

Theophylline Reduced 
theophylline 
metabolism

Follow levels if on antofloxacin, 
ciprofloxacin, nemonoxacin, 
norfloxacin, or prulifloxacin; watch 
clinical status if on other quinolones

Caffeine Reduced 
caffeine 
metabolism

Reduce consumption of caffeinated 
foods/beverages, follow clinical 
status (see theophylline above)

Warfarin (?) reduced 
warfarin 
metabolism

Follow INR intra- and post-quinolone 
therapy and adjust warfarin dose 
accordingly
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Delafloxacin should be administered at least 2 h before or 6 or more hours after the 
administration of any oral multivalent cation preparation. In vitro studies did not 
find delafloxacin to be a substrate, inducer, or inhibitor of hepatic CYP enzymes at 
therapeutically relevant drug concentrations. As mentioned previously, delafloxacin 
did not affect the pharmacokinetics of midazolam, a CYP3A substrate, or its 
1-hydroxy metabolite in healthy volunteers [210]. In vitro studies did not find dela-
floxacin to be a substrate, inducer, or inhibitor of hepatic or renal transporters at 
therapeutically relevant drug concentrations with the exceptions that it was a sub-
strate of P-gp and BCRP (the clinical relevance of these effects is unknown). As 
mentioned previously, in a positive-controlled, crossover, thorough QTc study con-
ducted in 51 healthy volunteers, 300 and 900 mg intravenous doses of delafloxacin 
did not significantly affect the QTc interval [364].
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Chapter 4
Glycopeptides, Lipopeptides, 
and Lipoglycopeptides

Mary A. Ullman and John C. Rotschafer

4.1  Introduction

While glycopeptide antibiotics have been available in practice for over 50 years, lipo-
peptides and lipoglycopeptide antibiotics are relatively new. Vancomycin is the only 
glycopeptide antibiotic currently available in the USA. Teicoplanin is a glycopeptide 
only available in Europe and will not be discussed in this chapter. However, it does not 
have any significant drug-drug interactions. Daptomycin is the only available lipopep-
tide. Three agents in the lipoglycopeptide class – telavancin, oritavancin, and dalba-
vancin – are now available for use in the USA Both dalbavancin and oritavancin have 
a serum half-life profile quite different than currently available products (150–300 h 
vs. 6–12 h), and a typical course of therapy with these new agents is one dose (orita-
vancin) or one to two doses (dalbavancin) of drug [1, 5, 6]. Possible adverse reactions 
with having a half-life of this magnitude may prove difficult to manage.

While these three antibiotic classes are chemically different, there are many sim-
ilarities among these compounds. The drugs tend to be large molecules which limits 
or delays antibiotic penetration to various sites in the body [2–6]. This large molec-
ular weight (Table 4.1) also contributes to a low bioavailability when these com-
pounds are administered orally. All of these compounds with the exception of 
vancomycin are extensively protein bound (Table 4.1) leaving but a small free frac-
tion of antibiotic that can cross biological barriers and interact with bacteria [2–6]. 
High levels of protein binding can be theoretically associated with drug-drug binding 
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displacement interactions. However, clinically significant protein binding displace-
ment has not been reported with these compounds. The kidneys are primarily 
responsible for the elimination of vancomycin, daptomycin, and telavancin, thus 
warranting dose adjustments in renal dysfunction (Table 4.1) [2–6]. Dalbavancin 
does need a dose reduction in patients with an estimated creatinine clearance less 
than 30 mL/min but does not require a dose adjustment in hemodialysis patients [5]. 
While oritavancin has not been studied in severe renal dysfunction, no dose adjust-
ments are needed in mild or moderate renal dysfunction [6]. Many of the older 
agents in these classes have been associated with nephrotoxicity directly or when 
used in conjunction with other nephrotoxic agents such as aminoglycosides, nonste-
roidal anti-inflammatory agents (NSAIDs), ACE inhibitors, loop diuretics, etc. 
(Table 4.2). Because these agents are primarily renally eliminated, there is generally 
modest concerns with the need for dose adjustment in liver failure, liver enzyme 
induction, or drug-drug interactions associated with CYP liver enzyme metabolism. 
Another common concern among glyco/lipo/lipoglyco class members is the possi-
bility of infusion reactions, the so-called red man or red neck syndrome (Table 4.2).

As with all class compounds, differences do exist with respect to individual phar-
macokinetic parameters particularly in terms of the length of half-life and the size 
of distribution volume (Table 4.1); these three antibiotic classes are relatively free 
of typical CYP drug-drug interactions. We will review each member of these three 
antibiotic classes differentiating each drug in terms of their pharmacokinetic param-
eters and likely drug interaction potential.

4.2  Vancomycin (Glycopeptide)

Vancomycin has been and remains to date the gold standard antibiotic for the manage-
ment of methicillin−/oxacillin-resistant S. aureus (MRSA/ORSA) infections [7]. While 
this agent has been available clinically for over 60 years, the clear majority of clinical 
experience has been at substantially lower doses than what are currently recommended. 
The IDSA/ASHP/SIDP published a position paper on the therapeutic monitoring of 
vancomycin in January 2009 [7]. In this consensus opinion and in accordance with pre-
viously published treatment guidelines recommending clinicians obtain trough concen-
trations two to four times the previous standard (5–10  mg/L), a loading dose of 
25–30 mg/Kg (actual body weight) and maintenance doses of 15–20 mg/Kg (actual 
body weight) are to be used when treating patients for serious gram-positive infections. 
Because of the substantially larger doses currently being used, clinicians should monitor 
patients carefully for infusion reactions and nephrotoxicity.

4.2.1  Absorption

Because of the large molecular size of vancomycin, very little absorption occurs 
after oral administration [8, 9]. In patients with normal renal function who received 
vancomycin 500  mg orally every 6 h, vancomycin serum concentrations were 
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Table 4.2 Potential drug-drug interactions

Vancomycin Daptomycin Telavancin Oritavancin Dalbavancin

Liver CYP Weak inhibitor 
2C9/2C19

Enzyme effects – – – Weak inhibitor 
2C9/2C19

–

Drug-drug 
CYP
Interaction 
with 
Metabolism

– – – – –

Other 
drug-drug 
interaction

Nephrotoxic 
agentsa

Nephrotoxic 
agentsa

Statins

Nephrotoxic 
agentsa

Formulated with 
hydroxypropyl- 
beta- 
cyclodextrinb

Heparin
Warfarin
Live cholera 
vaccine

Live cholera 
vaccine

Protein binding
Displacement – – – – –
Antibiotic 
antagonism

– – – – –

QTc 
prolongation

– – 5 ms – –

Laboratory test – – Anticoagulation 
testsd

Anticoagulation 
testse

Interference Protein dipstick D-dimer assay
Infusion 
reactions and 
red man and 
red neck 
syndrome

Definite Possible Possible Possible Possible

aConcomitant use of loop diuretics, ACE inhibitors, aminoglycosides, amphotericin B, NSAIDs, 
and polymyxins could contribute to the development of nephrotoxicity; reduced drug elimination 
of adefovir, cisplatin, cyclosporine, methotrexate, tacrolimus, telbivudine, and tenofovir with con-
comitant vancomycin is cautioned in individual drug package inserts [64]
bCan accumulate in renal dysfunction. Use caution when in combination with other agents using 
this solubilizer
cIn itself not likely an issue but used with other agents capable of increasing the QTc interval or in 
a patient with a QTc interval > 500 ms concomitant use could be a problem
dCan artificially alter PT, INR, aPTT, activated clotting time, and factor Xa-based test results – 
draw blood for these tests as close to next telavancin dose as possible
eCan artificially alter PT, INR, aPTT, ACT, silica clotting time, and dilute Russell’s viper venom 
time-based test results – consider monitoring coagulation with chromogenic factor Xa assays or 
thrombin time
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2.4–3.0 mcg/mL [10]. Therefore, to treat systemic infections, vancomycin must be 
administered intravenously. However, in the management of Clostridium difficile 
infections, oral administration is the preferred route as the drug remains in the intes-
tinal lumen at the site of infection [10, 11]. In the rare cases of a patient with both 
pseudomembranous colitis and severe renal failure, therapeutic concentrations were 
achieved in the serum secondary to increased oral absorption due to decreased 
integrity of the intestinal lumen [11, 12].

4.2.2  Distribution

The pharmacokinetics of vancomycin distribution has been characterized using 
one-, two-, three-, and non-compartment models. Protein binding is generally esti-
mated to be approximately 50%. Vancomycin binds to albumin and appears to have 
a low affinity for alpha-1-acid-glycoprotein [4].

4.2.3  Metabolism

Vancomycin does not undergo significant hepatic metabolism and thus is not a 
source for CYP drug interactions either by induction or competitive metabolism [4].

4.2.4  Elimination

Vancomycin is primarily eliminated renally (95%), and drug clearance correlates 
well with creatinine clearance [4]. Conventional hemodialysis methods do not 
extensively remove vancomycin from the serum. However, high flux dialysis meth-
ods have been reported to clear vancomycin much more effectively [13]. Additionally, 
clinicians should be aware concomitant use of drugs that affect a patient’s hemody-
namics (e.g., dopamine, dobutamine, furosemide) might also result in higher clear-
ance of vancomycin. Patients who continue on vancomycin after discontinuation of 
these agents may require adjustments due to decreased clearance.

4.2.5  Considerations for Clinical Use

Vancomycin has been associated with nephrotoxicity, although the incidence 
decreased since the drug’s initial introduction as the purity of the drug formulation 
has improved. However, with current clinical practice recommending much larger 
loading and maintenance doses of vancomycin plus the almost exclusive use of 
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generic products with potentially higher concentrations of impurities, there may be 
a greater risk of nephrotoxicity than reported in years past where lower doses were 
used and the product was branded. In cases of renal dysfunction, vancomycin does 
accumulate. Monitoring of serum trough concentrations is recommended to prevent 
nephrotoxicity in patients at high risk of toxicity either due to pre-existing renal 
impairment, use of aggressive dosing strategies to achieve troughs of 15–20 mg/L, 
or prolonged courses of vancomycin of 5 days or greater [7]. Potential drug interac-
tions involve the use of vancomycin in conjunction with other nephrotoxic agents, 
most commonly aminoglycosides. Vancomycin degradation products (VDPs) have 
been reported to accumulate in patients with renal dysfunction. VDPs have also 
been reported to result in the reporting of falsely high concentrations of vancomycin 
as with some assays as VDPs are falsely interpreted as vancomycin (factor B vanco-
mycin) [14]. Additionally, vancomycin can rarely cause and/or contribute to neutro-
penia; neutrophil counts should be monitored when used with other agents that may 
cause neutropenia.

4.3  Daptomycin (Lipopeptide)

4.3.1  Pharmacology

Most clinical experience to date with daptomycin has been at daily doses of 4 mg/
kg (skin and soft tissue infection) and 6 mg/kg (right-sided endocarditis and bacte-
remia) [2]. However, as more clinicians consider using higher doses for difficult to 
treat gram-positive infections, additional adverse events could emerge at the upper 
limit of daily dosing of daptomycin and are explored [15–22].

While theoretically the potential for a variety of drug-drug interactions exists, 
daptomycin has remained relatively free of such problems. Like vancomycin and 
other lipoglycopeptides, daptomycin is primarily cleared renally avoiding induction 
of CYP liver enzymes or competing with other drugs for metabolism [18]. Even in 
terms of the drug’s antibacterial action combining daptomycin with other antibiotics 
generally usually results in synergy, an additive effect or indifference [19]. Only 
rarely is any type of antagonism demonstrated although use with tobramycin has 
been reported to reduce area under the serum concentration-time curve (AUC) by 
15% [2].

Concomitant use of daptomycin with other known nephrotoxic agents may 
increase the risk of nephrotoxicity, and the use of “statins” in conjunction with dap-
tomycin may increase the risk of muscle enzyme (creatine phosphokinase, CPK) 
elevation [2, 22–27]. While infusion reactions should be a concern with any of the 
glycopeptide, lipopeptide, and lipoglycopeptide classes, there are published studies 
using 2-min intravenous push doses of daptomycin compared to traditional 30-min 
intravenous infusions demonstrating that the bolus dosing method is as well toler-
ated by patients as the 30-min infusion [28].
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4.3.2  Absorption

Because of the large molecular size of daptomycin, oral absorption would not likely 
result in therapeutic serum concentrations.

4.3.3  Distribution

The volume of distribution is small for daptomycin, and daptomycin is highly pro-
tein bound (90–95%) in a concentration-independent manner. Hepatic dysfunction 
did not alter the rate of protein binding. Studies indicate a slow distribution of dap-
tomycin into the tissues from the serum [2].

4.3.4  Metabolism

The exact metabolism of daptomycin is not completely understood. Induction or 
inhibition of cytochrome P450 isoforms has not been demonstrated with daptomy-
cin. While metabolites are detected in the urine, no metabolites are detected in 
serum, suggesting the possibility of renal metabolism of daptomycin [2].

4.3.5  Elimination

Daptomycin is eliminated renally, with approximately 50–60% excreted as 
unchanged. Dose adjustments in renal dysfunction are recommended by the manu-
facturer [2].

4.3.6  Considerations for Clinical Use

Theoretically, because daptomycin is a highly protein-bound drug, concomitant use 
of other highly protein-bound drugs could result in displacement of drug. While 
alpha-1 glycoprotein has been identified as one of the proteins that bind daptomy-
cin, other protein targets have not been identified. Alternatively, in critically ill 
patients who may have reduced levels of serum proteins, higher free drug concen-
trations of daptomycin may be present.
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4.4  Telavancin (Lipoglycopeptide)

4.4.1  Pharmacology

Telavancin attacks the cell wall by inhibiting polymerization of the bacterial cell 
wall. The drug also interferes with transpeptidation by binding to the d-ala-d-ala 
terminal sequence. Lastly like daptomycin, telavancin causes depolarization of 
the outer membrane of the gram-positive cell wall. Telavancin is primarily a 
gram- positive antibiotic active against staphylococci, streptococci, and entero-
cocci. The drug has no gram-negative activity and has limited activity against 
anaerobes [1, 3, 29].

4.4.2  Absorption

Like vancomycin, telavancin and other lipopeptides and lipoglycopeptides are not 
systemically absorbed following oral administration.

4.4.3  Distribution

Like daptomycin, telavancin is highly protein bound (approximately 90%). Albumin 
is the main protein responsible for binding telavancin; hepatic or renal impairment 
does not affect the rate of binding. The volume of distribution is small at 0.1 L/kg 
[3]. In difficult to treat infections such as meningitis, limited animal studies have 
demonstrated the superior performance of telavancin vs. vancomycin in clearing 
bacteria causing meningitis and sterilizing CSF [30]. Comparable performance has 
been demonstrated in animal of osteomyelitis comparing telavancin and vancomy-
cin. Telavancin also appears to penetrate and demonstrate biologic activity in bacte-
rial biofilms [31, 32].

4.4.4  Metabolism

Telavancin has not demonstrated CYP450 3A4 activity following a midazolam 
probe [33]. Approximately 3–6% of the telavancin dose is converted to a 
7-hydroxy metabolite which is excreted in the urine. The mechanism of tela-
vancin’s metabolism is unknown at this time. Mild to moderate hepatic impair-
ment does not affect the pharmacokinetics of telavancin, and no dosage adjustment 
is recommended [3].
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4.4.5  Elimination

Two-thirds to three-quarters of telavancin is eliminated renally unchanged. Dose 
adjustments are recommended in patients with a creatinine clearance of less than 
50 mL/min [3]. Clinical outcome in patients with reduced renal function as well as 
elderly patients (>65 years) who may have age-related renal impairment has not 
done as well in terms of clinical outcome compared to patients with normal renal 
function [3]. Current dosage adjustment for renal failure possibly may not be pro-
viding the required amount of telavancin to overcome clinical infection keeping in 
mind that the drug is a concentration-dependent killer. Additionally, one of the 
excipients in the intravenous solution is hydroxypropyl-beta-cyclodextrin, known to 
accumulate in patients with renal dysfunction [3]. Hemodialysis has been found to 
remove ~6% of a single dose of 7.5 mg/kg in patients with end-stage renal disease 
undergoing hemodialysis. Continuous venovenous hemofiltration is much more 
efficient at removing telavancin from the bloodstream. The amount of telavancin 
removal is dependent on the rate of ultrafiltration [3].

4.4.6  Considerations for Clinical Use

While not extensively studied, there does not appear to be any antibiotic-antibiotic 
antagonistic combinations reported to date with telavancin.

Because of the highly protein-bound nature of telavancin, the potential exists for 
drug interaction in patients also receiving other drugs that are highly bound to pro-
teins, especially albumin. Although no reports of clinically significant protein bind-
ing displacement events have been reported to date, clinicians should be aware of 
the potential interaction and monitor patients accordingly. A higher incidence of 
side effects has been reported with telavancin in clinical trials as compared to van-
comycin [3]. The most common adverse events with this new agent include nausea, 
emesis, foamy urine, and a metallic aftertaste following parenteral administration.

Care should be used in patients with renal dysfunction to monitor for drug accu-
mulation but also because the drug is formulated with hydroxypropyl-beta- 
cyclodextrin; this agent may also accumulate in patients with renal failure. One 
other intravenous antimicrobial that carries warning about cyclodextrin use in renal 
impairment is voriconazole [34]. In clinical trials telavancin has been shown to 
cause more nephrotoxicity than the comparator, vancomycin (15% vs 7%) [35–37]. 
However, vancomycin dosages were 2 g per day in patients with normal renal func-
tion. These differences may not be present at higher, more contemporary dosing of 
vancomycin. Concern should also be directed at concomitant use of telavancin and 
other drugs known to contribute to nephrotoxicity.

Telavancin has also been shown to increase QTc intervals [38]. On average, the 
increase is relatively small, i.e., ~5 ms, but if used in conjunction with other agents 
or in the background of conditions known to increase QTc, there could be an adverse 
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clinical outcome. Telavancin is also not recommended in pregnancy and is a cate-
gory C drug [3]. Current dosage recommendations for telavancin call for a daily 
dose of 10 mg/Kg to be determined based on actual body weight. Possible red man 
or red neck infusion-related reactions are clearly a risk with the use of telavancin.

Because telavancin binds to phospholipids, there are some significant drug- 
laboratory test interactions [3]. Telavancin artificially interferes with the determina-
tion of prothrombin time, internal normalization ratio, activated partial 
thromboplastin time, activated clotting time, and coagulation studies based on fac-
tor Xa test. A clear distinction needs to be made that the drug interferes with the test 
result of various coagulation studies but does not actually alter the coagulation state. 
As telavancin is administered every 24 h, the easiest maneuver to avoid this interac-
tion is to obtain blood for these studies in the terminal 6 h of the dosing interval (i.e., 
6 h or less before the next telavancin dose). Telavancin can also interfere with quali-
tative dipstick protein assay methods.

4.5  Dalbavancin

4.5.1  Pharmacology

Similar to telavancin, dalbavancin interferes with synthesis of the cell wall by bind-
ing to the d-ala-d-ala terminal sequence of peptidoglycan [5]. Dalbavancin has dem-
onstrated activity against a large number of staphylococci and streptococci, 
including resistant isolates. The drug has also demonstrated activity against gram- 
positive anaerobic bacteria including Clostridium species, Peptostreptococcus spe-
cies, and Actinomyces species. Dalbavancin does not possess activity against 
gram-negative organisms or enterococci that possess the van A gene, conferring 
vancomycin resistance [5].

4.5.2  Absorption

Due to the large molecular size, oral administration of dalbavancin would not result 
any measurable serum concentration.

4.5.3  Distribution

Dalbavancin is approximately 93% protein bound, with albumin being the primary 
plasma protein. This binding is not altered by drug concentration or by renal or 
hepatic impairment. Dalbavancin has demonstrated excellent tissue penetration in 
blister fluid, with a ratio of fluid concentration to plasma concentration of 0.83:1.1. 
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The concentration of dalbavancin in blister fluid has been demonstrated to be greater 
than 30 mg/L for up to 7 days after dose administration [5]. The volume of distribu-
tion ranges from 9.75 to 15.7 L [5].

4.5.4  Metabolism

Dalbavancin is not metabolized through the hepatic system. A minor metabolite, 
hydroxyl-dalbavancin, has been detected in urine samples of healthy volunteers but 
has not been detected in human plasma [5].

4.5.5  Elimination

Approximately a third of a dose of dalbavancin is eliminated in the urine unchanged, 
and an additional 12% of the dose is eliminated as the minor metabolite based on 
elimination studies lasting up to 42 days. Fecal elimination accounted for 20% of 
the administered dose [5].

4.5.6  Considerations for Clinical Use

Dalbavancin has been FDA approved for skin and soft tissue infections, first as a 
two-dose strategy 7 days apart and then as a higher single-dose strategy [5, 66]. A 
two-dose strategy of dalbavancin has also been compared to vancomycin for the 
treatment of catheter-related bacteremia and demonstrated a higher success rate 
than vancomycin. The clinical efficacy to use dalbavancin for other infections com-
monly treated with vancomycin is unknown at this time.

Due to the high protein binding, the same potential issues that exist with the 
other highly protein lipopeptides and lipoglycopeptides could potential result in 
drug displacement and/or increased concentrations of dalbavancin. No such studies 
have demonstrated this effect in a clinical scenario.

No significant drug-drug or drug-lab interactions have been demonstrated with 
dalbavancin. However, as use increases, additional drug interactions may be discov-
ered; clinicians should consider referring to recently published drug information 
sources for new potential interactions. In comparison with vancomycin and line-
zolid for skin and soft tissue infections, dalbavancin was well tolerated and demon-
strated similar efficacies.

While a long half-life provides less frequent dosing and the potential for better 
compliance, in patients that demonstrate a significant reaction to dalbavancin, 
removal of the offending agent may prove difficult. Data on the ability of hemodi-
alysis or plasmapheresis to remove significant amounts of dalbavancin are not 
available.
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4.6  Oritavancin

4.6.1  Pharmacology

Oritavancin is similar to telavancin in that the mechanism of action is multifaceted: 
(1) inhibition of peptidoglycan synthesis by binding to peptidoglycan precursors, (2) 
inhibition of the peptidoglycan cross-linking, and (3) depolarization of the outer 
membrane [6]. Oritavancin has demonstrated activity against both methicillin- 
sensitive and methicillin-resistant Staphylococcus aureus, Streptococcus agalactiae, 
Streptococcus dysgalactiae, Streptococcus pyogenes, and Streptococcus anginosus 
group, and vancomycin-susceptible isolates of Enterococcus faecalis. Oritavancin 
does not have any activity against gram-negative or anaerobic organisms [6].

4.6.2  Absorption

As similar to all other agents in this chapter, the large size of oritavancin would limit 
clinically significant oral absorption.

4.6.3  Distribution

Like other agents in lipoglycopeptide class, oritavancin demonstrates a high percent 
bound to proteins, 85%. Drug concentrations in blister fluid were 20% of plasma 
concentration in healthy volunteers. Based on population pharmacokinetics, the 
average total volume of distribution is 87.6 L [6].

4.6.4  Metabolism

Oritavancin does not appear to be metabolized based on in vitro human liver micro-
some studies. It has demonstrated weak inhibition and induction of CYP450 
enzymes, but the clinical relevance of this activity is unknown at this time [6].

4.6.5  Elimination

Oritavancin, similar to dalbavancin, has a significantly long half-life of 245  h. 
Oritavancin is slowly excreted unchanged. After 2 weeks of collection, oritavancin 
was found in feces and urine with concentrations of <1% and 5% of the drug, 
respectively [6].
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4.6.6  Considerations for Clinical Use

FDA approval is currently only for infection of skin and/or subcutaneous tissue. In 
comparison studies with vancomycin, oritavancin was non-inferior to vancomycin 
for this indication. However, osteomyelitis was more common in the oritavancin 
group than the vancomycin group in one study; alternative agents should be consid-
ered in patients who have or may develop osteomyelitis [39].

Similar to previous discussions for other agents that demonstrate high protein 
binding, a theoretical interaction may exist in critically ill patients who demonstrate 
lower amounts of plasma proteins. The clinical implications of this interaction are 
unknown at this time. As use increases, additional drug interactions may be discov-
ered; clinicians should consider referring to recently published drug information 
sources for new potential interactions.

4.7  Important Drug Interactions

4.7.1  Vancomycin

4.7.1.1  Aminoglycosides

Mechanism: Both aminoglycosides and vancomycin are known to cause damage to 
similar sites in the renal tubules. The use of these two agents concomitantly can 
result in additive toxicity.

Literature: Several studies have demonstrated the toxicities encountered when 
using the combination vancomycin and aminoglycosides. In a prospective study 
with 34 patients and 39 courses of vancomycin performed by Mellor and colleagues, 
6 courses of vancomycin alone were compared with 27 courses of vancomycin plus 
aminoglycoside, either concurrently or within 2 weeks of the first dose of vancomy-
cin [35]. The mean total dose and duration of vancomycin therapy was 28.3 ± 18.1 g 
and 15.3 ± 9.3 days, respectively, approximately 1.8 g per day. Nephrotoxicity was 
defined as a rise of ≥0.5 mg/dL if initial creatinine was 3 g/dL or less; if initial cre-
atinine was greater than 3 g/dL, a rise of ≥1.0 mg/dL was indicative of nephrotoxic-
ity. Three patients developed acute nephrotoxicity (7.1%); 9.1% of patients 
developed nephrotoxicity within the 2 weeks following vancomycin therapy. All 
cases of nephrotoxicity demonstrated an abrupt rise in creatinine following septice-
mia or gastrointestinal hemorrhage. Additionally, two patients reported tinnitus and 
dizziness. One patient was diagnosed with acute hearing loss, but the authors con-
cluded this was not due to drug toxicity.

In an retrospective evaluation of 229 courses of antibiotic therapy, Ciminio and 
colleagues examined the relationship of serum vancomycin and aminoglycoside 
concentrations to nephrotoxicity [40]. Antibiotic courses were divided into three 
groups: aminoglycoside alone (148 cases), vancomycin alone (41 cases), and van-
comycin concurrently with aminoglycoside [44]. Nephrotoxicity was defined as a 
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rise of >0.5 mg/dL in serum creatinine, when compared to baseline. Normal values 
for vancomycin and aminoglycosides were peak 20–40 mg/L and trough <10 mg/L 
and peak 4–9 mg/L and trough <2 mg/L, respectively. Overall, a 17% incidence of 
nephrotoxicity was noted. When broken down in the three groups, 18% of patients 
developed nephrotoxicity with aminoglycosides alone, 15% with vancomycin 
alone, and 15% with concurrent vancomycin and aminoglycosides. While higher 
serum creatinine concentrations were associated with increased nephrotoxicity in 
patients with aminoglycosides alone and higher daily doses of vancomycin 
(36.3 ± 4.8 mg/kg/day versus 24.0 ± 1.1 mg/kg/day) were associated with nephro-
toxicity in patients with vancomycin alone, the only significant relationship of con-
current vancomycin and aminoglycoside therapy to higher incidence of 
nephrotoxicity was found to be serum drug concentrations which exceeded the nor-
mal values.

Rybak et al. studied the nephrotoxicity of vancomycin alone and in combination 
with an aminoglycoside in 231 courses of antibiotic therapy in 224 patients (168 
vancomycin alone, 63 vancomycin and aminoglycoside, 103 aminoglycoside alone) 
[41]. Nephrotoxicity was defined as an increase of 0.5 mg/dL of serum creatinine or 
50% increase above baseline, whichever was greater. Targeted vancomycin peak 
and trough concentrations were 30–40 mg/L and <15 mg/L, respectively. Targeted 
aminoglycoside peak and trough concentrations were 4–10  mg/L and <2  mg/L, 
respectively. The incidence of nephrotoxicity was 5% in the vancomycin alone 
group, 11% in aminoglycoside alone group, and 22% in patients receiving both 
vancomycin and an aminoglycoside; these differences were all found to be statisti-
cally different. Following a multivariate analysis, increased incidence of nephrotox-
icity was found to be associated with concurrent vancomycin and aminoglycoside 
therapy, treatment with vancomycin of greater than 10 days, and vancomycin serum 
trough greater than 10 mg/L.

A recent clinical trial compared daptomycin with standard therapy, either anti-
staphylococcal penicillin or vancomycin in combination with an aminoglycoside, 
for the treatment of bacteremia and endocarditis [42]. Cosgrove and colleagues uti-
lized patient information collected during the trial to specifically analyze the inci-
dence of nephrotoxicity in relation to use of low-dose gentamicin (mean daily dose 
of 3.1 mg/kg). A total of 236 patients were analyzed for adverse event data related 
to kidney function: 120 received daptomycin; 53 received vancomycin, of which 49 
also received low-dose gentamicin; and 63 received antistaphylococcal penicillins, 
of which 59 also received low-dose gentamicin. A clinically significant decrease in 
creatinine clearance (CrCl) was defined as a decrease in CrCl to <50 mL/min if 
baseline CrCl was ≥50 mL/min. In patients with a baseline CrCl <50 mL/min, a 
significant decrease in CrCl occurred if CrCl decrease to <10 mL/min. A sustained 
decease in CrCl was defined if ≥2 sequential decreased CrCl measurements. CrCl 
was calculated by Cockcroft-Gault equation. After data evaluation, 8% in the dap-
tomycin arm, 22% in the vancomycin arm, and 25% in the antistaphylococcal peni-
cillin arm were found to have a decreased creatinine clearance. The median length 
of aminoglycoside therapy with vancomycin and antistaphylococcal penicillins 
was only 5 and 4 days, respectively. Twenty-two percent of patients who received 
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low- dose gentamicin experienced decreased creatinine clearance versus only 8% of 
patients who did not, a statistically significant difference. After multivariate analy-
sis, only age greater than 65 and receipt of any gentamicin were individual risk 
factors for nephrotoxicity. No differences were noted in the incidence of nephrotox-
icity when comparing antistaphylococcal penicillins and vancomycin other than 
nephrotoxicity with antistaphylococcal penicillins that occurred earlier in therapy 
when compared to vancomycin. The authors suggest this finding may indicate that 
nephrotoxicity seen with vancomycin and gentamicin is more sustained.

Clinical importance: Guidelines for the treatment of endocarditis recommend the 
use of low-dose aminoglycosides with vancomycin for treatment with cases due to 
penicillin-resistant gram-positive strains, particularly MRSA [43]. Some clinicians 
may also expand the synergistic use of aminoglycosides with vancomycin in other 
types of infections involving MRSA, based on recommendations for endocarditis. 
For most of these infections, vancomycin troughs of 15–20 mg/L will be targeted, 
based on new guidelines released [7].

Management:  If possible, patients should be evaluated as to whether the use of 
an aminoglycoside is essential with vancomycin therapy. Patients receiving concur-
rent therapy of vancomycin and aminoglycosides should be carefully monitored for 
development of nephrotoxicity, especially in cases where vancomycin troughs of 
15–20 mg/L are targeted and in patients with possibly impaired baseline renal func-
tion. If nephrotoxicity develops, switching to alternative agents should be 
considered.

4.7.1.2  Indomethacin

Mechanism: In infants, indomethacin has been shown to lead to decreased renal 
elimination of vancomycin.

Literature: In a study of 11 neonates with patent ductus arteriosus (PDA) who 
received vancomycin, 6 infants received indomethacin, while the 5 others did not 
and served as controlled [44]. The pharmacokinetics of vancomycin in these two 
groups was compared. In the neonates who received both indomethacin and vanco-
mycin, the volume of distribution was 0.71 L/kg (control 0.48 L/kg), the half-life 
was 24.6 h (control 7.0 L/kg), and the serum clearance was 23 mg/L/kg/h (control 
54 mL/kg/h).

Clinical importance: The authors of the study recommended, based on these 
results, neonates with PDA receiving indomethacin should be adequately treated 
with once-daily doses of vancomycin. Additionally, maintenance dosing of vanco-
mycin should be approximately half of the dose used in neonates not receiving 
indomethacin.

Management: While these findings have not been confirmed on a larger scale in 
the neonatal population or in other patient populations, care should be used when 
administering vancomycin with other renally eliminated drugs, especially in patients 
demonstrating impaired renal function. Appropriate dose adjustments for all renally 
eliminated drugs, including vancomycin, should be employed when renal impair-
ment is present.
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4.7.1.3  Vecuronium

Mechanism: Vancomycin can depress neuromuscular function as well as skeletal 
muscle function.

Literature: A case report of a 34 kg patient received vancomycin as surgical pro-
phylaxis during an exploratory laparoscopy [45]. Prior to the administration of the 
vancomycin, tracheal intubation was performed using vecuronium, and the patient’s 
muscular response was appropriately monitored using the train-of-four (electrical 
stimulation of the ulnar nerve). T1 function had returned to 35%, and T4 was barely 
perceptible 20 min after induction of anesthesia. When the infusion of 1 g vancomy-
cin was started, a rapid decrease of T1 to less than 10% and absence of a T4 response 
was noted. Within 3 min of the completion of the vancomycin infusion, the T1 and 
T4 response recovered steadily. Neuromuscular function continued to increase after 
reversal of the vecuronium with atropine and edrophonium after completion of sur-
gery. Five minutes after administration of the edrophonium, responses decreased to 
levels prior to administration. While the patient was awake and able to control 
breathing, she was not able to sustain headlift. Twenty minutes after the injection of 
edrophonium, the patient regained adequate muscle tone response. No other side 
effects were noted. The serum concentration of the vancomycin 25 min after the 
start of infusion was found to be 70 mg/L.

Clinical importance: Given the patient’s smaller weight in addition to adminis-
tration of 1 g of vancomycin over 35 min, the peak concentration is larger than what 
has typically been encountered clinically. However, given new recommendations of 
aggressive vancomycin dosing, larger serum concentrations are likely to be seen 
with vancomycin. The authors of the case report also note several papers that also 
supported evidence of vancomycin influencing neuromuscular function occurring at 
typical vancomycin peak concentrations of 40–50 mg/L.

Management: Clinicians should be aware of the potential interaction of vanco-
mycin with neuromuscular blockers. Strategies to prevent large peaks of vancomy-
cin such as infusing over at least an hour or more (dependent on the dose) and 
carefully evaluating the appropriate dose based on patient’s actual body weight and 
renal functions will help to reduce the possibility of vancomycin-related neuromus-
cular blockade. In patients receiving surgical neuromuscular blockade use or in 
patients in intensive care units receiving neuromuscular blockers, neuromuscular 
function should be appropriately monitored when used in conjunction with 
vancomycin.

4.7.1.4  Heparin

Mechanism: Heparin and vancomycin are incompatible in admixtures or y-sites due 
the concentration-dependent acid-base reaction that leads to precipitation and inac-
tivation of vancomycin.

Literature: Barg and colleagues present a case of persistent staphylococcal 
 bacteremia in an intravenous drug abuser [46]. The patient presented with fever, 
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shaking chills, and diaphoresis; he admitted to intravenous heroin use for the past 
3 years, with the femoral veins as a frequent place of injection. Upon presentation, 
swelling and tenderness at the injection site in the right groin were noted. A subcla-
vian venous line was placed due to lack of peripheral venous access. Antibiotic 
treatment was initiated with vancomycin and tobramycin, with the tobramycin 
being soon discontinued after Staphylococcus aureus was identified as the causative 
pathogen. Additionally, continuous heparin anticoagulation was initiated after the 
discovery of deep vein thrombosis, confirmed by venogram. Both heparin and van-
comycin were infused in the same line. Fevers and positive blood cultures persisted 
for 7 days despite antibiotic treatment. On the seventh day, another intravenous line 
was placed. With the availability of two intravenous lines, heparin and vancomycin 
were administered in separate lines. Within 24 h of the second line placement, fevers 
dispersed and blood cultures became (and remained) negative. Further investiga-
tions performed by the authors of the case examined the effects of co-administering 
vancomycin and heparin in vitro. At higher vancomycin concentrations of 1–5 mg 
and heparin concentrations of 1–1000  units/mL (concentrations similar to what 
would be seen if administered through the same line), a white precipitate was imme-
diately formed. Concentrations of vancomycin similar to those seen in the serum (5, 
50, and 100 μg/mL) when combined with less than 1 unit/mL of heparin did not 
demonstrate the formation of any precipitate.

Clinical importance: Because of the high incidence of both staphylococcal infec-
tions and deep vein thrombosis in intravenous drug users, the likelihood of the co- 
administration of both drugs is high.

Management: Clinicians should be appropriately educated that vancomycin and 
heparin should not be administered through the same intravenous line. While using 
sodium chloride for admixtures (instead of dextrose) may reduce the likelihood of 
precipitation, these two drugs should be administered via separate lines whenever 
possible.

4.7.1.5  Piperacillin/Tazobactam

Mechanism: Piperacillin may enhance the nephrotoxic effects of vancomycin.
Literature: Many retrospective, observational cohort studies have individually 

assessed the risk of nephrotoxicity with the combination of vancomycin and piper-
acillin/tazobactam. A recent meta-analysis of 15 studies compared the risk of neph-
rotoxicity of the combination of vancomycin and piperacillin/tazobactam to 
vancomycin alone as well as vancomycin and other beta-lactam combinations [47]. 
When all eligible studies were included in the meta-analysis, an odds ratio of 3.649 
(95% CI 2.157–6.174) was determined for the patients receiving the combination of 
vancomycin, and piperacillin/tazobactam compared to vancomycin and other beta- 
lactam therapy had a greater than three times likelihood of developing nephrotoxic-
ity (odds ratio [OR] 3.649, 95% confidence interval [CI] 2.157–6.174). Further 
analysis also demonstrated an increased risk with high-quality studies and compar-
ing the combination of vancomycin and piperacillin/tazobactam to vancomycin 
alone [47].
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Clinical importance: Broad-spectrum antimicrobials are a cornerstone of sepsis 
and septic shock management. Vancomycin and piperacillin/tazobactam are com-
monly used as empiric therapy in septic patients until the source of infection is 
identified when cultures return. Alternatives to piperacillin/tazobactam often require 
two separate drugs, and administration may be hampered by the number of intrave-
nous access ports versus the number of IV fluids, pressors, and other drugs used in 
the management of septic shock. The addition of further prospective clinical studies 
of this interaction may provide more information for clinical management.

Management: As with any empiric antimicrobial choice, patients should be 
critically assessed using antimicrobial stewardship principles. Considering the 
patient’s infection risk factors, likely source of infection, and risk of having a 
 multidrug- resistant organism may allow the healthcare provider to choose a less 
broad agent than piperacillin/tazobactam. Assessing the patient’s risk for MRSA 
with the help of rapid diagnostics may allow a shorter duration of unnecessary van-
comycin therapy. In those patients that do require broad-spectrum antimicrobials 
like the combination of piperacillin/tazobactam and vancomycin, assessment of the 
patient’s risk for renal dysfunction (e.g., age, previous history, concomitant medica-
tion, severity of illness, site of infection, hydration status) may prompt use of an 
alternative agent to piperacillin/tazobactam. Narrowing antimicrobial therapy once 
a causative organism is identified is also essential.

4.7.1.6  Bile Acid Sequestrants

Mechanism: Agents such as cholestyramine and colestipol are used to treat hyper-
lipidemia by utilizing their ability to bile acids in the intestines. These agents are 
also able to bind other materials in the intestines such as co-administered drugs and 
cytotoxins.

Literature: Taylor and Bartlett studied the binding of Clostridium difficile cyto-
toxins and vancomycin by cholestyramine and colestipol using an in vitro and ham-
ster model of C. difficile colitis [48]. The use of cholestyramine and colestipol alone 
displayed extreme reductions in toxin to below assay sensitivity in vitro. When van-
comycin was combined with either of the agents, less than 25% of the vancomycin 
concentration was detectable. Colestipol bound a greater amount of vancomycin 
than cholestyramine, but vancomycin was more strongly bound to cholestyramine. 
In the hamster model, the use of cholestyramine alone, vancomycin alone, and cho-
lestyramine plus vancomycin resulted in a smaller percentage of mortality during 
the treatment period of 5  days. When following these animals for an additional 
11  days, all three treatment arms prevented death longer than controls alone. 
Vancomycin prevented 100% cumulative mortality for a longer time than use of 
cholestyramine alone or cholestyramine plus vancomycin. The authors speculate 
that the 100% mortality reported after the additional 11 days was likely due to reac-
quisition of C. difficile from the environment rather than from the ability of the 
drug(s) to adequately treat the infection.
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Clinical importance: Cholestyramine and colestipol are not recommended as 
alternative treatments for the treatment of persistent C. difficile colitis [7], primarily 
due to the likelihood that these agents will bind the two medications recommended 
for treatment, i.e., vancomycin and metronidazole.

Management: Because of the dosing schedule of vancomycin (usually every 
6–8 h initially), attempts to avoid interactions by creative scheduling to separate 
administration times as far apart as possible (at least 1–2 h before administration or 
4–6 h after administration) are likely to fail. Use of oral vancomycin for treatment 
of C. difficile should not be in combination with oral binding agents. In cases where 
patients have been prescribed cholestyramine for the treatment of hyperlipidemia 
who also need to use vancomycin to treat C. difficile infections, alternative agents 
for hyperlipidemia should be used during the duration of vancomycin treatment.

4.7.2  Daptomycin

4.7.2.1  HMG-CoA Reductase Inhibitors

Mechanism: Both daptomycin and HMG-CoA reductase inhibitors are known to 
cause increased levels of creatine phosphokinase (CPK), a marker of muscle injury.

Literature: Literature has been published on each agent’s individual ability to 
increase CPK and possible cause rhabdomyolysis and has been included in each 
product’s labeling [2, 49]. Odero and colleagues published a case report of rhabdo-
myolysis and acute renal failure associated with the administration of daptomycin, 
simvastatin, niacin, and esomeprazole [22]. Daptomycin was initially started at 
7.2 mg/kg q24h; 4 days after initiation, the dose was changed to 7.2 mg/kg q48h, 
after noting a serum creatinine of 1.5 mg/dL. After 16 days of treatment with dap-
tomycin, patient complaints included muscle weakness and pains in the proximal 
thighs and arms. Daptomycin was discontinued and linezolid initiated; simvastatin 
and niacin were continued. A maximal serum CPK level of 8995 units/L and serum 
creatinine of 3.4 mg/dL were noted. Creatinine levels returned to baseline levels 6 
days after daptomycin discontinuation; CPK concentrations were noted to be 
125 units/L on the seventh day after daptomycin discontinuation. While the authors 
note that simvastatin and niacin both have the potential to cause rhabdomyolysis, 
they also note that the patient had tolerated simvastatin and niacin previously, with 
no complaints.

Clinical importance: Given the high prevalence of HMG-CoA reductase inhibi-
tor use among patients and the increasing incidence of methicillin-resistant 
Staphylococcus aureus, these two agents will be likely used together more often. 
Clinicians should be aware of the potential interaction and be prepared to monitor 
these patients frequently who require co-administration of these two agents, espe-
cially when daptomycin is used for longer periods of time and/or maximal doses of 
the HMG-CoA reductase inhibitor are used.
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Management: Weekly measurements of CPK levels are recommended in the use 
of daptomycin alone. More frequent CPK monitoring (two to three times a week) 
during the concomitant use of these two agents is recommended, particularly in 
patients who also have renal impairment when receiving both medications [2]. 
Additionally, patients should be evaluated for unexplained muscle pain and/or 
weakness, especially in the distal extremities.

When used alone, in patients who have a CPK elevation of greater than 
1000 units/L with signs and symptoms or greater than 2000 units/L without signs or 
symptoms, daptomycin should be discontinued, per manufacturer’s recommenda-
tions. Furthermore, other drugs associated with rhabdomyolysis, like HMG-CoA 
reductase inhibitors, should be discontinued temporarily until CPK levels return to 
baseline.

4.7.2.2  Aminoglycosides

Mechanism: Not fully known.
Literature: While the mechanism is unknown, studies of co-administration of 

daptomycin and tobramycin showed that daptomycin helped protect against 
tobramycin- induced nephrotoxicity in rats [50, 51]. In this same experiment, the use 
of vancomycin and tobramycin demonstrated greater damage to the proximal tubu-
lar cells. A further investigation into this phenomenon alluded to the possibility of 
daptomycin directly interacting with the tobramycin molecule to prevent tobramycin- 
induced changes in the proximal tubular cells.

Clinical importance: Daptomycin has been studied in vitro and in vivo in animals 
in combination with aminoglycosides; large-scale trials of the combination of these 
two drugs in humans have not been performed. The antimicrobial and clinical ben-
efits gained from the addition of an aminoglycoside to a daptomycin regimen have 
not been fully elucidated. The small number of patients that did receive daptomycin 
with gentamicin in a large-scale trial comparing daptomycin to vancomycin and 
antistaphylococcal penicillins demonstrated a smaller cumulative percentage of 
patients who experienced a significant decrease in creatinine clearance when com-
pared to daptomycin or vancomycin/antistaphylococcal penicillins with or without 
aminoglycosides.

Management: Administration of both of these drugs should not cause significant 
negative effects in terms of renal function. Because the antimicrobial benefits (such as 
synergy) of this combination of drugs have not been fully studied in human trials, the 
use of both of these agents together should be evaluated on an individual basis [52].

4.7.2.3  PT/INR Laboratory Results

Mechanism: Daptomycin may interact with recombinant thromboplastin reagents, 
leading to a prolongation of PT and increase in INR due to laboratory artifacts [2, 
53]. This interaction is believed to involve reagents that contain phospholipids, 
which are acted upon by daptomycin during the laboratory procedure [54].
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Literature: During clinical trials, a small number (<1%) were noted to have pro-
longed prothrombin times or elevated INRs. Post-marketing surveillance also dem-
onstrated this trend. One report strictly demonstrated a concentration-related fall in 
INR following daptomycin administration. Despite elevated INRs, no bleeding 
complications were demonstrated [55]. Further evaluation of commercially avail-
able reagents demonstrated that elevation of INR is reagent specific and may not be 
applicable to all reagents [55]. Further evaluation of the prothrombin time prolonga-
tion was demonstrated to be concentration dependent [56].

Clinical importance: Because of the likelihood of interaction, in patients who are 
started on daptomycin and need PT and/or INR laboratory results, clinicians should 
note any unexpected changes in PT and/or INR results. Daptomycin has not been 
found to interact with warfarin; therefore, the clinician should suppose the  interaction 
to be due to a lab assay interaction and not drug-drug interaction. One case report 
did demonstrate thrombocytopenia accompanied with INR prolongation, but these 
two findings were thought to be independent of each other. Thrombocytopenia did 
resolve after discontinuation of the drug [57].

Management: In cases where an abnormal PT and/or INR measurement is docu-
mented, the clinicians should schedule another assessment of PT and INR just prior 
to the next dose of daptomycin. The clinician may also confer with the laboratory 
staff which commercial reagents are used for prothrombin and INR testing and 
compare these to published literature [55]. Additionally, other sources of interac-
tions should be evaluated as relevant.

4.7.3  Telavancin

4.7.3.1  QTc-Prolonging Drugs

Mechanism: Because telavancin has been shown to prolong the QTc interval during 
clinical trials, the possibility exists that co-concomitant use with other drugs known 
to prolong the QTc interval would have additive effects (Table 4.3). Prolonged QTc 
intervals can lead to torsades de points, ventricular arrhythmias, and sudden cardiac 
death.

Literature: A large body of literature exists on the potential for arrhythmias fol-
lowing administration of one or more drugs known to prolong the QTc intervals 
[58]. The website crediblemeds.org provides an up-to-date, well-maintained data-
base of QTC interactions. For telavancin, a randomized, multidose clinical study 
conducted in healthy subjects found that mean changes in QTc intervals were 4.1 
and 4.5 ms following administration of 7.5 mg/kg and 15 mg/kg doses, respectively 
[3, 58]. None of the study subjects demonstrated any significant ECG abnormalities 
or clinical symptoms beyond the interval changes. Change in QTc intervals was not 
found to correlate to concentrations of telavancin.
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Clinical importance: Given that telavancin has only recently been approved, no 
clinical reports of substantial effects of QTc interval prolongation following the use 
of telavancin for treatment of infections have been published as of now.

Management: Interactions of this type are best managed by using alternative 
treatments that do not carry the QTc prolongation risk, if possible. If no alternatives 
exist, clinicians should consider cardiac monitoring for patients who require treat-
ment with one or more drugs known to prolong the QTc interval. Clinicians should 
also use caution with telavancin in patients who already exhibit QTc prolongation 
prior to treatment.

4.7.3.2  Coagulation Panels

Mechanism: Because of the nature of telavancin to bind artificial phospholipid sur-
faces, telavancin will bind these types of surfaces which are commonly used in 
anticoagulation tests [3].

Table 4.3 QTc-prolonging agents [52, 65]

Select agents with risk of QTc 
prolongation

Select agents with possible risk of QTc 
prolongation

Amiodarone Alfuzosin
Astemizolea Amantadine
Bepridilb Atazanavir
Chlorpromazine Azithromycin
Cisaprideb,c Clozapine
Clarithromycin Dronedaroneb

Dofetilide Flecainide
Droperidol Foscarnet
Erythromycin Fosphenytoin
Haloperidol Gatifloxacin
Levomethadylb Gemifloxacin
Mesoridazineb Levofloxacin
Methadone Lithium
Pentamidine Moxifloxacin
Pimozideb Ondansetron
Procainamide Paliperidone
Quinidine Risperidone
Sotalol Tacrolimus
Sparfloxacina,b Tamoxifen
Terfenadinea Telithromycin
Thioridazineb Venlafaxine

Voriconazole
Ziprasidone

aNo longer available in the USA
bConcomitant use with telavancin is contraindicated
cOnly available through a restricted access program
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Literature: The effects of telavancin on coagulation panels have been studied in 
in vitro studies with varying commercial reagents and varying concentrations of 
telavancin [59–61]. A dose-dependent effect of telavancin has been shown with both 
INR and aPTT; however, the degree of this effect is noted to be dependent on 
reagents used.

Clinical importance: The degree of binding is dependent upon the commercial 
assay used, as reagents differ among these assays. False elevations of PT, INR, 
aPTT, and ACT have been noted, and, in patients where monitoring of these levels 
is used to dose antithrombotic agents, clinicians should be aware of this possibility 
and should attempt to schedule telavancin doses and lab draws at times so as not to 
interfere [62].

Management: The likelihood of the interaction decreases as the plasma concen-
trations decrease; therefore, in cases of patients who need to daily monitor these lab 
values, the ideal time for these lab draws to take place is just prior to the administra-
tion of the next telavancin dose. In cases where multiple lab draws are needed per 
day, as in the case of adjustment of heparin by aPTT values, use of another antimi-
crobial agent might be preferred.

4.7.4  Oritavancin

4.7.4.1  Heparin

Mechanism: Oritavancin falsely elevates aPTT test results, likely by binding to and 
preventing the action of phospholipid reagents that activate coagulation. Oritavancin 
does not have effects on coagulation in vivo [6].

Literature: Due to similar agents demonstrating effects on coagulation panels, 
investigators evaluated the effects of oritavancin on coagulation tests. Dose- 
dependent effects were noted for aPTT [63].

Clinical importance: Use of heparin within 5  days of administration of orita-
vancin is contraindicated.

Management: Given the importance of heparin in the management of acute 
cardiac syndromes, the need to avoid use of heparin in patients who have received 
oritavancin may prove problematic. Other anticoagulants may need to be consid-
ered, such as those used in patients who have heparin allergies. Alternatively, 
chromogenic factor Xa monitoring is not influenced by oritavancin and may be 
considered. Xa monitoring of heparin is currently used at some institutions instead 
of aPTT monitoring of heparin. However, in institutions that do not normally uti-
lize Xa assays for monitoring, the laboratory may not be equipped or appropri-
ately calibrated to provide accurate Xa levels that can be used to guide heparin 
therapy. Additionally, nursing may be unfamiliar with dose adjustments based on 
Xa instead of aPTT, and the risk for errors increases with an already high-risk 
medication.
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4.7.4.2  Warfarin

Mechanism: Oritavancin causes false elevations in INR up to 12 h after administra-
tion [6].

Literature: Due to similar agents demonstrating effects on coagulation panels, 
investigators evaluated the effects of oritavancin on coagulation tests. Dose- 
dependent effects were noted for prothrombin time and INR [63].

Clinical importance: Due to false elevations in INR, test results may be unreli-
able to adjust warfarin dosing. After screening, drug-drug interaction study  indicated 
that oritavancin may be a nonspecific, weak inhibitor of 2C9 and 2C19, and an 
additional study was done to assess the effect of a 1200 mg dose on warfarin phar-
macokinetics. No effect was demonstrated.

Management: The package insert states to avoid the use of oritavancin in drugs 
with a narrow therapeutic window, like warfarin, due to the potential of CYP450 
inhibition. If warfarin is used in a patient that has also received oritavancin, patients 
should be monitored for signs and symptoms of bleeding. Defer INR measurements 
until at least 12 h after the administration of oritavancin. If INR measurements are 
needed sooner, consider alternative methods to monitor warfarin activity, such as 
chromogenic factor Xa assays.

4.7.4.3  Anticoagulation Tests

Mechanism: Oritavancin binds and prevents the action of phospholipid reagents in 
commonly used laboratory coagulation tests, including prothrombin time (PT), 
INR, aPTT, activated clotting time (ACT), silica clotting time (SCT), dilute Russell’s 
viper venom time (DRVVT), and D-dimer.

Literature: Due to similar agents demonstrating effects on coagulation panels, 
investigators evaluated the effects of oritavancin on coagulation tests. Dose- 
dependent effects were noted for prothrombin time, INR, aPTT, and dilute Russell’s 
viper venom time [63].

Clinical importance: The length of coagulation interferences depends on the 
tests. Oritavancin will only have up to a 12-h effect on PT and INR, an 18-h 
effect on SCT, a 24-h effect on ACT, and a 72-h effect on DRVVT and D-dimer 
[63]. The effect on aPTT is significantly longer as discussed under the heparin 
interaction.

Management: Chromogenic factor Xa and thrombin time are unaffected by ori-
tavancin and may be utilized if necessary [6]. Alternatively, these test measures 
could be performed after the appropriate amount of time has passed when orita-
vancin will no longer influence that test result.
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4.8  Summary and Conclusions

Use of these agents is likely to increase as the incidence of methicillin-resistant S. 
aureus infections increases. In general, few drug interactions exist for these classes 
of drugs. The key drug interaction to consider with vancomycin is the concomitant 
use of other nephrotoxic agents, especially in those patients who may already 
exhibit decreased renal function. The use of daptomycin with HMG-CoA reductase 
inhibitors should be limited and monitored closely due to the possibility of rhabdo-
myolysis. More information regarding possible drug interactions with lipoglyco-
peptides will likely be available as the drug becomes more widely used and 
additional FDA indications are investigated. Caution should be used when adminis-
tering telavancin with other QTc-prolonging drugs or in patients who present with a 
QTc prolongation. In patients requiring anticoagulation with warfarin or heparin, 
alternative agents to oritavancin should be considered to avoid false elevations in 
anticoagulation monitoring.
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Chapter 5
Miscellaneous Antibiotics

Gregory M. Susla

5.1  Introduction

This chapter discusses the interactions of antibiotics that may be the only available 
agents from a class of antibiotics that is used clinically today. Chloramphenicol and 
tetracycline are older agents that are less frequently prescribed; so many clinicians 
may not be familiar with their interactions with other medications. Many of the 
interacting agents also are less frequently prescribed, such as first-generation oral 
hypoglycemic agents. Since many of the interactions in this chapter are based on 
single case reports, it is often difficult to determine the mechanism of the interaction 
and if a true interaction exists. The existence of some interactions may be ques-
tioned because of other potential causes that may have been present when the inter-
action was discovered.

The interactions described in this chapter are summarized in Table 5.1.

5.2  Chloramphenicol

Chloramphenicol is a broad-spectrum antibiotic that has been shown to interact 
with a number of medications, including analgesics-antipyretics, other antibiotics, 
oral hypoglycemic agents, anticoagulants, and anticonvulsants. Most of these inter-
actions are limited to case reports with small numbers of patients. The mechanism 
of the interaction for several of the interactions is unknown or is limited to specula-
tion. Five to fifteen percent of chloramphenicol is excreted as free chloramphenicol 
in the urine; the remainder of a dose is metabolized in the liver to inactive metabo-
lites, principally the glucuronide metabolite.

G. M. Susla (*) 
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5.2.1  Acetaminophen

Chloramphenicol has been reported to increase, decrease, and have no effect on the 
half-life of acetaminophen. Spika and colleagues evaluated the effect of multiple 
doses of acetaminophen on chloramphenicol metabolism in patients with bacterial 
meningitis [1]. Significant differences in chloramphenicol peak serum concentra-
tion, volume of distribution, half-life, and clearance occurred between samples 
obtained before and during treatment with acetaminophen. Peak serum concentra-
tions fell; volume of distribution and clearance increased, and half-life became 
shorter. The greatest change was in clearance, which increased by more than 300% 
from baseline values. During treatment with acetaminophen, the percent of chlor-
amphenicol excreted unchanged in the urine decreased; its succinate metabolite 
remained unchanged, while the glucuronide metabolite increased by approximately 
300%. Kearns also evaluated the effect of acetaminophen in acutely ill pediatric 
patients [2]. Chloramphenicol pharmacokinetic parameters were compared between 
a group of patients receiving acetaminophen and a group not receiving acetamino-
phen. There was no statistical difference in the chloramphenicol pharmacokinetic 
parameters between the two groups. However, there was a clinically significant 
increase in chloramphenicol clearance and decrease in half-life between the initial 
dose and final dose in the patients receiving acetaminophen. Following acetamino-
phen therapy, the chloramphenicol half-life decreased by approximately 33%, from 
3.4 h to 2.2 h, while its clearance increased by more than 50%, from 5.5 to 8.9 mL/
min/kg. The peak chloramphenicol serum concentrations were lower after the final 
dose than at steady state, 15.7 versus 22.7 mg/L, respectively. Stein was unable to 
document any effect of acetaminophen on chloramphenicol metabolism in hospital-
ized adult patients [3]. In a randomized crossover design, patients received either 
chloramphenicol or chloramphenicol with acetaminophen for 48 h. There was no 
significant difference in peak and trough chloramphenicol concentrations, half-life, 
or area under the concentration-time curve between the two treatment periods.

Although the mechanism of this interaction is unclear, it appears to be an altera-
tion in clearance. This interaction may take several days to manifest its full effect, 
and in some studies, patients may not have been studied for a long enough period of 
time to evaluate fully the effects of acetaminophen on chloramphenicol pharmaco-
kinetic parameters. Although Spika suggested that the increase in chloramphenicol 
clearance was due to an increased in glucuronidation, other investigators have not 
confirmed this.

This interaction may be important in patients receiving chloramphenicol for the 
treatment of central nervous system infections or infections due to organisms that 
are resistant to more traditional antibiotics. Reduced peak concentrations or 
increases in clearance without appropriate adjustments in dosage regimens to 
account for these changes may result in therapeutic failures. Patients receiving 
chloramphenicol and acetaminophen should have chloramphenicol serum concen-
trations monitored every 2–3 days during a course of therapy, especially during the 
later part of therapy when it appears that chloramphenicol concentrations may begin 
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to decline. Dosage regimens should be adjusted to maintain chloramphenicol con-
centrations within the desired therapeutic range. Other agents such as aspirin or 
ibuprofen may be used as alternatives to acetaminophen for antipyresis and 
analgesia.

5.2.2  Anticonvulsants

Anticonvulsants have been shown to increase the metabolism of chloramphenicol 
by increasing its hepatic metabolism. Phenobarbital has been shown to stimulate the 
metabolism of chloramphenicol in several case reports [4, 5]. In addition, chloram-
phenicol has been shown to reduce the metabolism of phenytoin and phenobarbital 
when both agents are administered concurrently [6–10]; the onset of these interac-
tions appears to be rapid and may persist for several days after chloramphenicol is 
discontinued.

The reduction in phenytoin and phenobarbital metabolism is mostly likely due to 
a competition for metabolic enzymes. The clinical significance of the interaction is 
the potential for patients to develop phenytoin and/or phenobarbital toxicity after 
beginning chloramphenicol therapy. Patients may show signs of lethargy, excessive 
sedation, nystagmus, hallucinations, or other mental status changes. Because phe-
nytoin undergoes nonlinear metabolism, toxic serum concentrations may not occur 
for several days after starting chloramphenicol. After the maximum rate of phenyt-
oin metabolism is exceeded, serum concentrations will rise rapidly and may remain 
elevated for a period of time after the chloramphenicol is discontinued. Due to phe-
nobarbital’s long half-life, its sedative effects can be expected to resolve slowly as 
the serum concentration falls.

Patients receiving chloramphenicol with either phenytoin or phenobarbital must 
have their anticonvulsant serum concentrations monitored frequently, preferably 
every 3–5 days if possible, to detect increases in the concentrations. Patients also 
should be monitored clinically for the development of signs and symptoms of phe-
nytoin and/or phenobarbital toxicity.

Phenobarbital has been shown to increase the metabolism of chloramphenicol, 
resulting in a reduction in its peak serum concentrations. Bloxham reported two 
patients who received chloramphenicol and phenobarbital for the treatment of men-
ingitis [4]. In one patient, peak chloramphenicol serum concentrations fell from 
31 mg/L on day 2 and day 3 to less than 5 mg/L on day 5. Patients receiving concur-
rent therapy with chloramphenicol and phenobarbital should have chloramphenicol 
concentrations monitored daily to monitor for reductions in the serum concentra-
tion. The chloramphenicol dosage regimen needs to be adjusted to maintain thera-
peutic concentrations and prevent therapeutic failures.
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5.2.3  Oral Hypoglycemic Agents

Several investigators have documented chloramphenicol’s ability to decrease the 
hepatic metabolism of tolbutamide, resulting in increases in its half-life and serum 
concentrations [10, 11]. Patients receiving tolbutamide and chloramphenicol con-
currently may experience greater reductions in their serum glucose values and 
hypoglycemia with its associated complications. However, frank hypoglycemia has 
not been reported when this combination has been given together.

Petitpierre and Fabre reported the ability of chloramphenicol to inhibit the renal 
excretion of chlorpropamide [12]. They reported that five patients taking these 
agents together experienced an increase in their chlorpropamide half-lives from 30 
to 36 h up to 40 to 146 h. Hypoglycemia was not documented in these patients.

Patients taking oral hypoglycemic agents should monitor their blood glucose 
frequently when taking chloramphenicol. The oral hypoglycemic dosage regimen 
may need to be adjusted to maintain the blood glucose within a desirable range. 
Patients should also be instructed to monitor for signs of hypoglycemia and to carry 
glucose-containing products to reverse any episodes of hypoglycemia that may 
develop. If possible, alternative antibiotics should be selected to avoid this interac-
tion. Since a patient’s blood glucose may be controlled on a stable oral hypoglyce-
mic dose, switching oral hypoglycemic agents to avoid this interaction is not 
recommended.

5.2.4  Antibiotics

5.2.4.1  Penicillins

Chloramphenicol has been reported to antagonize the effect of beta-lactam antibiot-
ics. A number of reports have been published suggesting that bacteriostatic and 
bactericidal antibiotics may antagonize each other in vitro [13, 14] and in vivo [15, 
16]. Despite this information, many authorities do not believe that this is a clinically 
significant interaction and have used this combination of antibiotics as a standard of 
practice for many years for the treatment of bacterial meningitis.

French and colleagues described a case in which chloramphenicol and ceftazi-
dime were used together to treat an infant with Salmonella meningitis [16]. The 
combination failed to eradicate the infection, but subsequent treatment with ceftazi-
dime alone was successful. In vitro tests of serum and cerebrospinal fluid taken at 
that time showed that the serum could inhibit the growth of an inoculum of the sal-
monella at a dilution of 1:2, and the cerebrospinal fluid at a dilution of 1:16, but that 
neither fluid could kill the organism at any dilution. A specimen of cerebrospinal 
fluid taken during treatment with ceftazidime alone inhibited and killed the standard 
inoculum of salmonella in vitro at a dilution of 1:32.
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Minor degrees of antagonism have been demonstrated in occasional laboratory 
experiments between almost any pairs of drugs, but generally the most consistent 
interfering drugs are bacteriostatic agents such as chloramphenicol, tetracyclines, 
and macrolides [14]. All these agents appear to act predominantly as inhibitors of 
protein synthesis in microorganisms. They actively antagonize agents such as the 
penicillins, which primarily block the synthesis of cell-wall mucopeptides. It is 
believed that protein synthesis must proceed actively in order to permit active muco-
peptide synthesis; therefore, inhibitors of protein synthesis can antagonize inhibi-
tors of cell-wall synthesis.

5.2.4.2  Rifampin

Prober [17] and Kelly [18] each reported two cases in which the coadministration of 
rifampin and chloramphenicol resulted in significantly lower chloramphenicol 
serum concentrations. Two patients were treated with chloramphenicol for H. influ-
enzae. During the last 4  days of treatment, the patients received 20  mg/kg/d of 
rifampin. After 12 doses of chloramphenicol, the peak serum concentrations of 
chloramphenicol in these two patients were 21.5 and 38.5 mg/L, respectively, and 
trough concentrations were 13.7 and 28.8  mg/L.  After the administration of 
rifampin, peak chloramphenicol concentrations progressively declined. By day 3 of 
rifampin coadministration, the peak concentration of chloramphenicol was reduced 
by 85.5%, to 3.1 mg/L in one patient, and by 63.8%, to 8 mg/L in the second patient. 
Serum concentrations increased back into the therapeutic range after the daily dose 
of chloramphenicol was increased to 125 mg/kg/day. The reduction in serum con-
centrations was most likely due to rifampin stimulating the hepatic metabolism of 
chloramphenicol, increasing its clearance and decreasing its serum concentrations.

Patients should have chloramphenicol concentrations monitored daily, while 
they are receiving rifampin. The chloramphenicol dosage regimen may need to be 
adjusted to maintain concentrations within the therapeutic range, since subtherapeu-
tic concentrations may result in therapeutic failure. Patients also should be moni-
tored clinically for their response to therapy.

5.2.5  Anticoagulants

Chloramphenicol may enhance the hypoprothrombinemic response to oral antico-
agulants. Christensen documented a two- to fourfold increase in dicumarol half-life 
when coadministered with chloramphenicol [10].

Several potential mechanisms may be responsible for this interaction. 
Chloramphenicol has been shown to inhibit the metabolism of dicumarol, probably 
by inhibiting hepatic microsomal enzymes [10]. Some investigators have proposed 
that chloramphenicol decreases vitamin K production by gastrointestinal bacteria 
[19, 20]; however, bacterial production of vitamin K appears to be less important 
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than dietary intake. Moreover, chloramphenicol does not usually have much effect 
on bowel flora [21]. Vitamin K depletion by chloramphenicol may affect the pro-
duction of vitamin K-dependent clotting factors in the hepatocyte [22].

The clinical consequences of an increased prothrombin time (PT) or interna-
tional normalized ratio (INR) would be increased risk of bleeding. This includes 
minor bleeding such as nosebleeds and bleeding from the gums but also major 
bleeding into the gastrointestinal tract, central nervous system, or retroperitoneal 
space. The PT/INR should be monitored daily when chloramphenicol is started or 
discontinued in patients taking oral anticoagulants. There may be an increase in clot 
formation and thromboembolic complications if the warfarin dose is not increased 
after the chloramphenicol is stopped.

5.2.6  Immunosuppressive Agents

5.2.6.1  Cyclosporine and Tacrolimus

Several reports have appeared in the literature describing an interaction between 
chloramphenicol and immunosuppressive agents, specifically cyclosporine and 
tacrolimus. Bui and Huang reported the interaction in a renal transplant patient 
receiving cyclosporine [23]. The patient is required cyclosporine 50–75 mg twice 
daily to maintain trough concentrations in the 100–150 μg/L prior to hospital admis-
sion. The patient’s cyclosporine dose required increasing to 300  mg twice daily 
during her hospital admission to maintain similar trough concentrations because of 
rifampin therapy for the treatment of line sepsis. Ten days after the rifampin was 
stopped, chloramphenicol 875  mg 6  h was started for the treatment of an 
Enterococcus sinusitis. The trough cyclosporine concentration on the following day 
increased to 280  μg/L.  Despite stepwise lowering of the cyclosporine dose to 
50–100 mg/day, the concentrations continued to rise for the next 2 weeks, reaching 
a plateau of 600 μg/L. After stopping the chloramphenicol, the cyclosporine con-
centration stabilized between 100 and 150 μg/L on a dose of 50 mg twice daily. 
Steinfort and McConachy reported a similar experience in a heart transplant patient 
receiving chloramphenicol and cyclosporine [24]. Mathis reported a 41.3% increase 
in trough cyclosporine concentration in three renal transplant patients following the 
addition of chloramphenicol to their medication regimens [25]. Mean cyclosporine 
doses were reduced by 44–49% in order to maintain therapeutic cyclosporine 
concentrations.

Several reports have documented a similar interaction between chloramphenicol 
and tacrolimus in transplant patients [26–28]. Schulman and colleagues reported a 
7.5-fold increase in tacrolimus dose-adjusted AUC, 22.7 vs 171  μg•h/L, and an 
increased in tacrolimus half-life from 9.1 to 14.7 h following the addition of chloram-
phenicol to a stable tacrolimus regimen [26]. Taber and colleagues documented the 
chloramphenicol-tacrolimus interaction in a liver transplant patient. The patient was 
stabilized on an outpatient tacrolimus dose of 5 mg twice daily with trough concen-
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trations ranging between 9 and 11 μg/L. The tacrolimus 12-h trough concentration 
increased to more than 60 μg/L after 3 days of chloramphenicol 1850 mg every 6 h. 
The patient complained of lethargy, fatigue, headaches, and tremors. The tacrolimus 
concentration decreased to 8.2 μg/L 7 days after the chloramphenicol was stopped. 
The tacrolimus regimen was restarted at 5 mg twice daily resulting in stable trough 
concentrations between 6.7 and 11.0 μg/L [27]. Bakri reported an approximately 
fourfold increase in the tacrolimus blood concentration of a renal transplant patient 
after the initiation of chloramphenicol 750 mg four times daily [28]. The tacrolimus 
concentration ranged between 5 and 11 μg/L on stable regimen of 4 mg twice daily 
but increased to >30 μg/L within 3 days after starting chloramphenicol. The patient 
also experienced a slight rise in serum creatinine and a significant increase in his 
serum potassium level during this time. The tacrolimus dose was reduced to 1.5 mg 
twice daily, and the blood concentration fell to 18–25 μg/L. Chloramphenicol was 
stopped after 15 days of therapy, and the patient’s tacrolimus blood concentration 
stabilized between 8 and15 μg/L on a regimen of 3  mg twice daily. Mathis also 
reported up to a 207% increase in trough tacrolimus concentration in another three 
renal transplant patients following the addition of chloramphenicol to their medica-
tion regimens [25]. Mean tacrolimus doses were reduce by 25–34% in order to main-
tain therapeutic cyclosporine concentrations.

5.2.7  Antifungal Agents

5.2.7.1  Voriconazole

Chloramphenicol was shown to inhibit the metabolism of voriconazole in a pediat-
ric patient with fungal ventriculitis [29]. A voriconazole dose of approximately 
4 mg/kg twice daily resulted in plasma voriconazole trough concentrations of 2.2 
and 3.5 mg/L, while the patient was also receiving chloramphenicol. The voricon-
azole dose had to be increased to 9 mg/kg twice in order to maintain concentrations 
within the range to treat Aspergillus infections.

The mechanism of the interaction with the immunosuppressants is most likely 
due to chloramphenicol’s inhibition of the cytochrome P450 (CYP) 3A4 enzyme 
that is responsible for the metabolism of cyclosporine and tacrolimus. If chloram-
phenicol has to be used in a patient receiving cyclosporine or tacrolimus, a prospec-
tive decrease in dose may be warranted. Cyclosporine and tacrolimus concentrations 
should be closely monitored with appropriate dose adjustments, while patients are 
receiving chloramphenicol. Cyclosporine and tacrolimus administration should be 
stopped in patients with elevated trough concentrations, especially in patients slow-
ing signs of cyclosporine or tacrolimus toxicity until the concentrations returned to 
the normal therapeutic range. The agents may be restarted at appropriately adjusted 
doses to maintain the trough concentrations within the therapeutic range. 
Chloramphenicol inhibits voriconazole metabolism by inhibiting P450 3A4 and 
possibly 2C19 isoenzymes. Voriconazole doses will need to be adjusted with the 
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initiation and discontinuation of chloramphenicol therapy. Monitoring voriconazole 
concentrations may be warranted in order to maintain concentrations within the 
range needed to effectively treat serious fungal infections.

5.3  Clindamycin

5.3.1  Nondepolarizing Neuromuscular Blocking Agents

Clindamycin has been shown to interact with nondepolarizing neuromuscular 
blocking agents and aminoglycoside antibiotics. Becker and Miller investigated the 
neuromuscular blockade induced by clindamycin alone and when mixed with 
d-tubocurarine or pancuronium in an in vitro guinea pig lumbrical nerve-muscle 
preparation [30]. Clindamycin initially increased twitch tension, but with higher 
concentrations, twitch tensions subsequently decreased. With 15–20% twitch 
depression induced by clindamycin, neostigmine or calcium slightly but not com-
pletely antagonized the blockade. Clindamycin at a dose that did not depress twitch 
tension potentiated d-tubocurarine- and pancuronium-induced neuromuscular 
blockade.

Several clinical reports document clindamycin’s ability to prolong neuromuscu-
lar blockade following depolarizing and nondepolarizing neuromuscular blocking 
agents [31–33]. Best and colleagues reported on a patient who received clindamycin 
300 mg IV 30 min before surgery to repair a nasal fracture [31]. Succinylcholine 
120 mg was administered to facilitate intubation with no additional nondepolarizing 
neuromuscular blocking agents administered during the surgery. Approximately 5 h 
after surgery and 20  min after receiving clindamycin 600  mg intravenously, the 
patient complained of profound overall body weakness and was noted to have bilat-
eral ptosis, difficulty in speaking, and rapid shallow respirations. After several min-
utes, her weakness rapidly became more profound, with 1/5 muscle strength noted 
in all extremities. Nerve stimulation showed marked neuromuscular blockade with 
the train-of-four (TOF) stimulation noted to be 0/4. The patient was treated with 
neostigmine 4 mg IV and glycopyrrolate 0.8 mg IV enabling the patient to move all 
extremities and develop a more normal respiratory pattern. Follow-up nerve stimu-
lation showed a TOF of 4/4, and within 20 min of the reversal agent, the patient 
returned to baseline muscle strength (5/5) in all extremities.

Clindamycin-induced neuromuscular blockade is difficult to reverse. No reversal 
could be obtained by using either calcium or neostigmine [34]. The mode of action 
of clindamycin on neuromuscular function is complex. Although it has a local anes-
thetic effect on myelinated nerves, it also stimulates the nerve terminal and simulta-
neously blocks the postsynaptic cholinergic receptor. It appears that its major 
neuromuscular blocking effect is a direct depressant action on the muscle by the 
un-ionized form of clindamycin [35]. Clindamycin also has been shown to decrease 
the quantal content of acetylcholine released with presynaptic stimulation in vitro 
[36], possibly the result of effects on presynaptic voltage-gated Ca+2 channels [37].
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This interaction may be of clinical significance in patients receiving clindamycin 
and depolarizing or nondepolarizing neuromuscular blocking agent during the peri-
operative period or in an intensive care unit. This interaction may result in a pro-
longed period of neuromuscular blockade, resulting in recurarization with 
respiratory failure and an extended period of mechanical ventilation.

Patients receiving this combination of agents should be monitored clinically with 
peripheral nerve stimulation using train-of-four or other mode of nerve stimulation 
to assess neuromuscular function and degree of neuromuscular blockade.

5.3.2  Aminoglycosides

One report suggests that clindamycin may increase the risk of nephrotoxicity when 
administered concurrently with aminoglycoside antibiotics. Butkus and colleagues 
reported three patients who developed acute renal failure when gentamicin and 
clindamycin were administered concurrently [38]. The evidence for combined 
nephrotoxicity consisted of the temporal relationship between administration of the 
antibiotics and the development of acute renal failure with rapid recovery after the 
antibiotics were stopped.

5.3.3  Paclitaxel

The pharmacokinetics of paclitaxel 175 mg/m2 was studied in 16 patients with 
ovarian cancer [39]. Paclitaxel was administered alone and with clindamycin 
doses of 600 and 1200 mg per dose. There was a slight reduction in paclitaxel 
Cmax and AUC with increasing doses of clindamycin. The baseline paclitaxel Cmax 
and AUC were 3.25 ± 1.22 mg/L and 8.40 ± 2.88 μg•h/ml, respectively, but fell 
progressively with the coadministration of clindamycin 600  mg/dose 
(3.02 ± 0.81 mg/L and 7.49 ± 1.94 μg•h/ml) and 1200 mg/dose (2.87 ± 0.89 mg/L 
and 7.45 ± 2.24 μg•h/ml).

This interaction between clindamycin and gentamicin is supported by circum-
stantial evidence. Although both agents were administered concurrently, none of the 
patients had gentamicin concentrations monitored during therapy. The reversible 
renal failure is consistent with that seen with aminoglycosides. It occurs during the 
course of therapy and resolves rapidly once the aminoglycoside antibiotic is stopped. 
There is no evidence to suggest that the administration of clindamycin in the setting 
of appropriately dosed aminoglycoside antibiotics leads to an increased risk of 
nephrotoxicity. The changes in paclitaxel concentrations following the coadminis-
tration of clindamycin are minimal and probably not clinically relevant. No 
 alterations in the paclitaxel dose are recommended when it is coadministered with 
clindamycin.
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5.3.4  Rifampin

Several studies reported on the effect of rifampin on clindamycin serum concentra-
tions in patients taking the combination of clindamycin and rifampin for the pro-
longed treatment of bone and joint infections [40–42]. In an observational study of 
61 patients with bone and joint infections, the median clindamycin daily dose was 
1800  mg (range 600  mg– 700  mg/day).The median clindamycin Cmin was 
1.39 mg/L. However, the Cmin values were 1.52 mg/L in patients being treated with 
clindamycin alone compared to 0.46 mg/L (p = 0.034) in patients taking the antibi-
otic combination [40]. In a retrospective study of 70 patients being treated for bone 
and joint infections, the median duration of treatment was 40 days with a median 
daily clindamycin dose of 2400 mg (range 1200–3600 mg/day). The median serum 
clindamycin concentrations on days 3 to 14 and days 8 to 28 were 5  mg/L and 
6.8 mg/L, respectively. In patients treated with rifampin, their median clindamycin 
serum concentrations were significantly lower (5.3 mg/L) compared to patients tak-
ing clindamycin alone (8.9 mg/L) (p < 0.02) [41]. Bernard evaluated 34 patients 
who randomly received either oral clindamycin-rifampin or clindamycin- 
levofloxacin for the treatment of staphylococcal osteoarticular infections [42]. 
Clindamycin trough and peak concentrations were measured at days 1, 15, and 30 
during treatment. Mean trough and peak concentrations were lower in the 
clindamycin- rifampin-treated patients compared to the clindamycin-levofloxacin- 
treated patients: 0.79 ± 0.3 mg/L (range 0.2–2 mg/L) and 3.48 ± 1.1 mg/L (range 
0–8.3 mg/L) versus 4.7 ± 1.2 mg/L (range 0–9.2 mg/L) and 10.2 ± 1.8 mg/L (range 
1.1–17.4 mg/L), respectively.

Rifampin is a known potent inducer of CYP isoenzymes 3A4 and 2C8/9 [43]. 
Clindamycin is >90% metabolized in the liver to active and inactive metabolites. 
Patients requiring prolonged treatment with clindamycin in combination with other 
antibiotics should probably avoid rifampin if other agents have activity against the 
infecting pathogen. High doses of clindamycin may be required in those patients 
requiring the addition of rifampin. Patients on the combination should be closely 
monitored for clinical and microbiologic response.

5.4  Sulfonamides

5.4.1  Warfarin

Several reports have described an enhanced hypoprothrombinemic response to war-
farin when sulfamethoxazole, usually in combination with trimethoprim, was added 
to a patient’s therapy [44–47]. Two pharmacokinetic studies in healthy adults con-
firmed that sulfamethoxazole enhances the hypoprothrombinemic response to warfa-
rin in most people [47, 48]. Although the sulfamethoxazole seems more likely to have 
been responsible than the trimethoprim, a trimethoprim effect cannot be ruled out.
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O’Reilly conducted two studies evaluating the stereoselective interaction 
between trimethoprim-sulfamethoxazole (TMP-SMX) and warfarin. In one study, 
patients received 1.5 mg/kg of racemic warfarin with and without 320 mg trime-
thoprim- 1600 mg sulfamethoxazole beginning 7 days before warfarin and continu-
ing daily throughout the period of hypoprothrombinemia [48]. There was a 
significant increase in the areas of the one-stage prothrombin time, from 53 to 
83 units, during the administration of TMP-SMX. In a follow-up study, O’Reilly 
studied the effects of TMP-SMX on each of the warfarin enantiomers [49]. Subjects 
received each enantiomer alone and in combination with 80 mg trimethoprim-400 mg 
sulfamethoxazole. TMP-SMX had no effect on the R-isomer. The areas of the one- 
stage prothrombin time increased by approximately 70%, from 40 to 67 units, when 
the S-isomer and TMP-SMX were given together. Additional case reports describe 
the prolongation in PT following the addition of TMP-SMX to medication regimens 
containing warfarin [44, 47]. Penning-van Beest and colleagues analyzed a retro-
spective group of approximately 60,000 patients taking coumarin anticoagulants 
identified in the PHARMO Record Linkage System in the Netherlands [50]. The 
relative risk of bleeding was calculated for a variety of antibiotics coadministered 
with the coumarin anticoagulants with the relative risk of bleeding being three to 
five for TMP-SMX.

A retrospective analysis was conducted in a veteran’s population taking warfarin 
>30 days along with antibiotics considered to be high risk for interaction with war-
farin [51]. The high-risk antibiotics included in the analysis were trimethoprim/
sulfamethoxazole (TMP-SMX), ciprofloxacin, levofloxacin, metronidazole, flucon-
azole, azithromycin, and clarithromycin. A total of 22,272 patients were included in 
the analysis with 14,078 patients taking high-risk antibiotics. One hundred twenty- 
nine bleeding events were identified during the study. TMP-SMX was associated 
with an increased risk of serious bleeding when compared to low-risk antibiotics 
such as clindamycin and cephalexin. 14 of 129 (11%) bleeding events occurred in 
patients taking TMP-SMX (HR 2.09, 95% CI 1.45–3.02).

Some sulfonamides appear to impair the hepatic metabolism of oral anticoagu-
lants. Competition for plasma protein-binding sites may play an additional role. 
Although sulfonamides reportedly decrease vitamin K production by the gastroin-
testinal bacteria, evidence for such an effect is lacking.

Patients should be monitored closely for an increase in PT/INR when 
sulfamethoxazole- containing products are coadministered with warfarin. Two 
reports suggest that a preemptive warfarin dose reduction of approximately 10–20% 
when initiating TMP-SMX therapy is effective in maintaining INR in the therapeu-
tic range [52, 53]. Patients should be monitored clinically for signs of bleeding with 
initiating TMP-SMX and decreased effects upon discontinuing TMP-SMX or when 
preemptively reducing the warfarin dose. Other antibiotics may be prescribed to 
avoid this interaction, or other forms of anticoagulation may be used as alternatives 
to warfarin.
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5.4.2  Oral Hypoglycemic Agents

A retrospective cohort study of Texas Medicare claims from 2006 to 2009 for 
patients ≥66 years was performed to determine the risk of hypoglycemia in patients 
who were prescribed glyburide or glipizide and an antibiotic [54]. The addition of 
TMP-SMX to the oral hypoglycemic agent regimen was significantly associated 
with hypoglycemia. The overall adjusted odds ratio (OR) for an emergency depart-
ment visit or hospitalization for hypoglycemia within 14 days of exposure to an 
antimicrobial drug was 2.56 (95% CI 2.12–3.10). The OR ranged between 2.78 and 
3.58 in patients co-prescribed with TMP-SMX and glipizide compared to the refer-
ence antibiotics azithromycin, amoxicillin, and cephalexin. The OR ranged between 
1.63 and 2.37 in patients co-prescribed with TMP-SMX and glyburide compared to 
the reference antibiotics azithromycin, amoxicillin, and cephalexin. In a second 
Medicare claims database analysis between 2008 and 2010, 34,239 patients taking 
glyburide or glipizide were tracked for TMP-SMX prescriptions and subsequent 
emergency department visits for hypoglycemia [55]. Patients prescribed with the 
combination of glyburide or glipizide and TMP-SMX had a significantly higher risk 
of an emergency department visit for hypoglycemia compared with patients pre-
scribed with amoxicillin, a non-interacting reference antibiotic. The OR was 3.89 
(95% CI 2.29–6.60) in patients taking glipizide and 3.78 (95% CI 1.81–7.90) in 
patients taking glyburide. The study also showed that TMP-SMX was prescribed to 
16.9% patients taking these oral hypoglycemic agents. Patients with polypharmacy 
and multiple prescribers were more likely to be prescribed with TMP-SMX. Patients 
with a documented primary care provider had a 20% lower chance of receiving a 
TMP-SMX prescription.

These findings are consistent with similar studies documenting a two- to three-
fold higher incidence of severe hypoglycemia in patients taking TMP-SMX and 
glipizide [56] and a two- to fivefold higher incidence of severe hypoglycemia in 
patients taking TMP-SMX and glyburide [57].

The mechanism of the interaction is TMP-SMX’s ability to block CYP2C9 activ-
ity interfering with sulfonylurea metabolism. Other antibiotics such as azithromy-
cin, amoxicillin, and cephalexin should be considered when appropriate for patients 
taking these older-generation oral hypoglycemic agents.

5.4.3  Medications Affecting Potassium Homeostasis

Numerous reports have appeared in the literature over the years documenting TMP- 
SMX’s ability to increase serum potassium concentrations [58–61]. Risk factors for 
developing hyperkalemia include dose [60, 61], age [59–61], a variety of concomi-
tant medications [61], underlying renal function [58, 59], and diabetes [58, 59]. The 
mechanism responsible for hyperkalemia is trimethoprim’s ability to block apical 
membrane potentials in the distal nephron similar to amiloride, reducing transepi-
thelial voltage and inhibiting potassium secretion [62].
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5.4.3.1  Renin-Angiotensin System Inhibitors

A population-based nested case-control study of patients ≥66  years in Ontario, 
Canada, was conducted to determine whether a prescription of TMP-SMX along 
with an angiotensin-converting enzyme inhibitor (ACEI) or angiotensin receptor 
blocker (ARB) was associated with sudden death [63]. TMP-SMX was associated 
with an increased risk of sudden death; adjusted OR was 1.38 (95% CI 1.09–1.76) 
compared to amoxicillin. The risk was slightly higher at 14 days; adjusted OR was 
1.54 (95% CI 1.29–1.84). This corresponds to approximately three sudden deaths 
within 14 days per 1000 SMX-TMP-treated patients. A retrospective medical record 
review of outpatients receiving high-dose TMP-SMX (at least four double-strength 
tablets per day) showed that concurrent administration of an ACEI was associated 
with hyperkalemia [60]. A single case report documented a case of intraoperative 
hyperkalemia following the administration of TMP-SMX in a patient taking chronic 
ARB therapy [64].

These reports document the potential interaction between TMP-SMX and medi-
cations that affect potassium homeostasis resulting in hyperkalemia and potentially 
sudden cardiac death. Patients especially at risk include those who are elderly, have 
reduced renal function, and are receiving higher doses of TMP-SMX. Other antibi-
otics should be considered in patients taking these chronic cardiac medications.

5.4.3.2  Spironolactone

A similar population-based nested case-control study of patients ≥66  years in 
Ontario, Canada, was conducted to determine whether the prescription of TMP- 
SMX along with spironolactone was associated with sudden death [65]. TMP-SMX 
was associated with an increased risk of sudden death; adjusted OR was 2.46 (95% 
CI 1.55–3.90) compared to amoxicillin.

5.4.4  MMX Mesalamine

The pharmacokinetic interaction between MMX mesalamine and TMP-SMX was 
studied in healthy adults [66]. Subjects received MMX mesalamine 4.8 g once daily 
on days 1–4 and then either placebo or TMP-SMX twice daily on days 1–3 and once 
daily on day 4. There was a non-statistically significant 12% increase in SMX phar-
macokinetic parameters when coadministered with MMX mesalamine compared 
with placebo. AUCss increased from 786 to 909 μg•h/ml, AUC0–24 increased from 
1176 to 1430 μg•h/ml, Cmax increased from 89.1 to 100 mg/L, and Cmin increased 
from 45.1 to 55 mg/L. Half-life was unchanged between the two groups at 2 h.

TMP-SMX appears to be safe when coadministered with MMX mesalamine. 
There is no need for therapeutic change during therapy.
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5.4.5  Methotrexate

Methotrexate (MTX) is an agent widely used for the treatment of malignancies and 
many autoimmune disorders such as rheumatoid arthritis, Crohn’s disease, and pso-
riasis. Although MTX is usually well tolerated at low doses, it is known to cause 
myelosuppression, mucositis, hepatotoxicity, and renal injury. Cudmore reported a 
patient with Crohn’s disease who was treated with MTX 25 mg/week for 13 years. 
The patient was treated with corticosteroids for what appeared to be an exacerbation 
of her Crohn’s disease. TMP-SMX 160 mg/800 mg three times weekly was started 
concurrently with the steroids as prophylaxis against P. jirovecii pneumonia while 
taking the steroids. Three weeks after starting TMP-SMX, the patient developed 
signs of leukopenia, thrombocytopenia, anemia, and mucositis. The MTX and 
TMP-SMX were stopped, and the patient was treated with folinic acid 15 mg for 
5 days. Five days after starting folinic acid, the patient’s white blood count, hemo-
globin, and platelet count returned to normal [67].

Data from the National Ambulatory Care Survey documented that TMP-SMX 
and MTX were co-prescribed in 22,000 physician visits between 1993 and 2010 
[68]. Caution should be used when prescribing these agents together. Both agents 
are folic acid antagonists and can cause bone marrow suppression. TMP-SMX also 
inhibits the renal excretion of MTX. Patients should be monitor for the development 
of signs and symptoms of bone marrow suppression during concomitant therapy.

5.4.6  Mefloquine

A randomized, double-blind, placebo-controlled study was conducted in 124 HIV- 
positive pregnant women receiving standard doses of TMP-SMX [69]. Seventy-two 
women received mefloquine 15  mg/kg at monthly intervals. TMP-SMX did not 
have an impact on mefloquine pharmacokinetics. There was no significant effect on 
TMP pharmacokinetics. However, there was a 53% decrease in SMX concentra-
tions after mefloquine administration relative to the placebo group. SMX concentra-
tions returned to baseline 28 days after stopping mefloquine. The authors reported a 
SMX Cmin of 23.8 mg/L, approximately two-thirds to one-half the concentration 
reported in previous studies. Although the mechanism of the interaction is unknown, 
the authors suggested that the presence of carboxymefloquine, the primary metabo-
lite, may be responsible in stimulating the metabolism of SMX and reducing its 
concentrations.

While the coadministration of both products has no effect on mefloquine or TMP 
concentrations, the reduction in SMX concentrations may result in an increase in 
bacterial infections.
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5.5  Tetracyclines

Tetracyclines have been documented to interact with a number of medications. The 
most common interaction is with heavy metals that chelate tetracyclines and impair 
their absorption from the gastrointestinal tract. Although somewhat controversial, 
interactions may occur with oral contraceptives, where tetracycline may reduce 
their effectiveness and increase the risk of pregnancy.

5.5.1  Heavy Metals

Numerous studies have documented the ability of heavy metals to chelate tetracy-
cline products and impair their absorption [70–72]. These products contain divalent 
and trivalent cations such as aluminum, magnesium, and calcium. Antacids also 
may impair the dissolution of tetracyclines. Bismuth subsalicylate, a common 
ingredient in antidiarrheal medications, also has been shown to impair the absorp-
tion of tetracyclines through a similar chelation mechanism [73, 74].

This is a pharmacokinetic interaction because it impairs absorption and reduces 
oral bioavailability. The clinical consequences of this interaction could be the poten-
tial of a therapeutic failure because of inadequate tetracycline serum and tissue 
concentrations.

Oral tetracycline products should be taken 2 h before or 6 h after antacids. This 
may not completely avoid the interaction but should minimize it. Since this interac-
tion is not based on an alteration in pH, H2-receptor antagonists and proton pump 
inhibitors may be alternative medications. Additionally, other antibiotics may be 
prescribed to avoid the interaction.

Bismuth can reduce the bioavailability of tetracycline, similar to heavy metals. 
Ericsson and colleagues evaluated the influence of a 60 mL dose of bismuth sub-
salicylate on the absorption of doxycycline [73]. Doxycycline bioavailability was 
reduced by 37% and 51% when given simultaneously and as a multiple-dose regi-
men before doxycycline. Peak serum concentrations of doxycycline were signifi-
cantly decreased when bismuth subsalicylate was given 2 h before doxycycline but 
not when given 2 h after doxycycline. Albert and co-workers documented a 34% 
reduction in doxycycline bioavailability when the two products were administered 
simultaneously [74]. A further discussion on the effect of various food containing 
divalent cations is given in Chap. 4.

5.5.2  Colestipol

Colestipol reduces the bioavailability of tetracycline by impairing its absorption in 
the gastrointestinal tract. Friedman et al. showed that when colestipol and tetracy-
cline were given together, there was a 50% reduction in tetracycline bioavailability 
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[75]. In a single-dose, three-way, crossover study, subjects ingested 500 mg tetracy-
cline with 180 mL of water, 180 mL of water and 30 g colestipol, and 180 mL of 
orange juice and 30 g colestipol. There were significant differences in the 48-h uri-
nary excretion of tetracycline. More than 50% of the dose was recovered in the urine 
when the tetracycline was administered with water. Only 23–24% was recovered in 
the urine when it was administered with colestipol. There was no significant differ-
ence among the three groups in the mean value excretion half-life.

This interaction impairs absorption and reduces oral bioavailability as a result of 
tetracycline adsorbing onto colestipol-binding sites. The clinical consequences of 
this interaction could be the potential of a therapeutic failure because of inadequate 
tetracycline serum and tissue concentrations.

Oral tetracycline should be taken 2 h before or at least 3 h after a dose of colesti-
pol. Additionally, other antibiotics may be prescribed to avoid the interaction.

5.5.3  Digoxin

Tetracycline can reduce the gastrointestinal bacterial flora responsible for metabo-
lizing digoxin in the gastrointestinal tract and increase digoxin absorption and bio-
availability in some patients. Lindenbaum and colleagues administered digoxin to 
healthy volunteers for 22–29 days. After 10 days, 500 mg tetracycline q6h for 5 days 
was started [76]. During the period of antibiotic administration, digoxin reduction 
products fell, urine digoxin output rose, and digoxin steady-state serum concentra-
tions increased by as much as twofold in some subjects. Preantibiotic serum digoxin 
concentrations ranged between 0.37 and 0.76 μg/L and increased to 0.8–1.33 μg/L 
following antibiotic therapy. It also was noted that these effects persisted for several 
months after the antibiotics were stopped. There were no reports of digoxin toxicity 
in the patients who experienced an increase in their digoxin concentrations.

The mechanism of this interaction appears to be the inhibition of digoxin metab-
olism by suppressing gut bacteria. The clinical implications of this interaction are 
the possibility that therapy with antibiotics in subjects producing large amounts of 
digoxin reduction products may precipitate toxicity. Unrecognized changes in gut 
flora might result in variability in digoxin response, in the direction of either drug 
toxicity or therapeutic failure.

5.5.4  Anticonvulsants

Phenobarbital and phenytoin have been shown to reduce the serum concentrations 
of doxycycline [77–79]. Penttilla and Neuvonen conducted three trials to evaluate 
the effect of anticonvulsants on doxycycline metabolism [77]. In one study they 
compared the half-life of doxycycline in patients taking long-term phenytoin and/or 
carbamazepine therapy to a control group of patients not receiving anticonvulsants. 
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The doxycycline half-life in the patients receiving chronic anticonvulsants ranged 
between 7 h and 7.5 h compared to 15 h in the control subjects. In a second cross-
over trial, they determined the half-life of doxycycline in five patients after 10 days 
of phenobarbital therapy and in another five patients taking phenobarbital chroni-
cally [78]. The half-life of doxycycline was 15 h in the control patients before phe-
nobarbital therapy was begun. After 10 days of therapy, the half-life was reduced to 
11 h. The doxycycline half-life was 7 h in the patients taking phenobarbital chroni-
cally. In a third trial, they evaluated the effect of chronic anticonvulsant therapy on 
a variety of tetracycline products and compared this to results in control patients 
[79]. The doxycycline half-life averaged 7  h, and the peak concentrations were 
lower in the patients on chronic anticonvulsant therapy compared to the control 
group. There was no difference in the half-lives of oxytetracycline, methacycline, 
chlortetracycline, and demethylchlortetracycline between the patients on anticon-
vulsants and control patients.

Although doxycycline is primarily eliminated in the feces, the enhanced hepatic 
metabolism of doxycycline appears to be the mechanism of this interaction. The 
clinical consequences of this interaction could be a reduction in serum doxycycline 
concentrations and the potential for therapeutic failure. An alternative class of anti-
biotics should be selected for these patients because they may be receiving anticon-
vulsants for the control of a seizure disorder, and it would not be wise to switch 
anticonvulsants to avoid this interaction.

5.5.5  Warfarin

Tetracyclines may be associated with an increased hypoprothrombinemic response 
in patients taking oral anticoagulants. Several case reports describe patients stabi-
lized on chronic warfarin therapy who experienced increases in PT after the addi-
tion of doxycycline to their medication regimens [80, 81]. Westfall described a 
patient maintained on warfarin therapy with stable PT values approximately two 
times the control value [80]. After the initiation of 100 mg of doxycycline twice a 
day, the patient’s PT increased to 51 seconds and was associated with an unusually 
heavy menstrual flow. Upon medical evaluation her hemoglobin and hematocrit had 
dropped to 5.7 g/dL and 18.9%, respectively.

Caraco and Rubinow described two patients taking chronic oral anticoagulation 
who presented with severe hemorrhage and disturbed anticoagulation tests after the 
addition of doxycycline to their medication regimens [81]. In the first patient, the 
PT ratio increased from 1.49 to 3.82 following the addition of 100 mg of doxycy-
cline daily. In the second patient, the PT ratio increased from between 1.5 and 2.5 to 
4.09 following the addition of 100 mg of doxycycline twice daily.

Penning-van Beest estimated the relative risk of bleeding in patients taking cou-
marin anticoagulants and a tetracycline in the PHARMO Record Linkage System in 
the Netherlands [50]. The relative risk of bleeding was calculated to be three to five 
for doxycycline and nine for tetracycline.
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Dowd conducted a trial to determine if a 10–20% empiric reduction in warfarin 
dose before starting doxycycline would prevent nontherapeutic INRs following 
doxycycline-warfarin coadministration compared to reactive warfarin dose adjust-
ments [82]. The average empiric dose reduction was 11%. Twelve percent of patients 
in the reactive dosing group experienced an INR above the upper INR goal range 
compared to none in the empiric dosing group (p = 0.02). A higher percentage of 
patients in the empiric dosing group had a subtherapeutic INR compared to the reac-
tive group (35% vs 6%, p < 0.05).

The mechanism of this interaction is unclear but may involve a reduction in the 
plasma prothrombin activity by impairing prothrombin utilization or decreasing 
vitamin K production by the gastrointestinal tract.

The clinical significance of this interaction is the increased anticoagulant effect, 
which may result in an increased risk of bleeding. Patients should be closely moni-
tored for clinical signs of bleeding such as nosebleeds or bleeding from the gums, 
the PT monitored, and warfarin dose adjusted to maintain the PT/INR in the thera-
peutic range. Empiric warfarin dose reductions to avoid potential supratherapeutic 
INR are not warranted and may result in subtherapeutic INR. Other antibiotics may 
be prescribed to avoid this interaction, or other forms of anticoagulation may be 
used as alternatives to warfarin.

5.5.6  Lithium

One case report described the increase in lithium concentrations following a course 
of tetracycline [83]. However, a prospective trial documented small decreases in the 
serum lithium concentration when both agents were administered concurrently [84].

McGennis reported a patient taking lithium chronically for a history of manic 
depression [83]. Two days after starting tetracycline, it was noted that her serum 
lithium concentration increased from 0.81 to1.7  mmol/L.  The patient exhibited 
slight drowsiness, slurred speech, and a fine tremor of both hands consistent with 
lithium toxicity. At the time lithium and tetracycline were stopped, the serum lith-
ium concentration was 2.74 mmol/L. The concentration declined to within the ther-
apeutic range 5 days after stopping both agents.

Fankhauser evaluated the effect of tetracycline on steady-state serum lithium 
concentrations in healthy volunteers and compared the frequency and severity of 
adverse effects in the lithium and lithium-tetracycline treatment phases [84]. There 
was a significant decrease in the serum lithium concentration between the control 
and treatment phases (0.51 versus 0.47 mEq/L, p = 0.01). It is unclear whether this 
is a clinically significant decrease in the serum lithium concentration. There was no 
difference in adverse effects between the control and treatment phases of the trial.

The mechanism of this interaction is not known. One possibility may be that 
tetracycline-induced renal failure may reduce urinary lithium excretion. Although it 
is unlikely that a significant interaction exists, patients should be monitored for 
signs of lithium toxicity when this combination is prescribed. Renal function should 
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also be monitored to prevent increases in the serum lithium concentrations second-
ary to reductions in renal function. Another class of antibiotics should be prescribed 
to avoid this interaction.

5.5.7  Psychotropic Agents

Steele and Couturier reported the possible interaction between tetracycline and ris-
peridone and/or sertraline in a 15-year-old male with Asperger’s disorder, Tourette’s 
disorder, and obsessive-compulsive disorder [85]. Tetracycline was added to a 
risperidone- sertraline treatment regimen resulting in an acute exacerbation of motor 
and vocal tics. The authors postulated that the increase in tics may have resulted 
from either a tetracycline-risperidone interaction leading to a reduction in risperi-
done concentrations or a tetracycline-sertraline interaction leading to increased con-
centrations of sertraline or the natural course of Tourette’s disorder. The sertraline 
dose was increased with no concomitant increase in tics, and subsequent discontinu-
ation of tetracycline resulted in an improvement in tics, which suggests the possibil-
ity of an interaction between tetracycline and risperidone. The mechanism of this 
potential interaction is unknown, but the author recommended that the addition of 
antibiotics to psychotropic medications requires close monitoring due to the poten-
tial for the interaction.

5.5.8  Theophylline

Several case reports describe increases in theophylline serum concentrations during 
a course of tetracycline administration [86, 87]. However, prospective trials have 
failed to document a consistent effect [88–91].

Four prospective studies have evaluated the interaction between theophylline and 
tetracycline. Pfeifer gave nine patients tetracycline for 48 h and did not observe a 
statistically significant interaction [88]. However, six subjects had a decrease in 
theophylline clearance during the combined tetracycline-theophylline period, and in 
four of the subjects, the decrease was greater than 15%. Mathis studied eight healthy 
volunteers by giving them a single intravenous injection of aminophylline before 
and after 7 days of tetracycline [89]. Theophylline clearance decreased by an aver-
age of 9%, but four patients had greater than 15% decrease in clearance, and one 
patient had a 32% decrease in clearance. Gotz and Ryerson evaluated the interaction 
between tetracycline and theophylline in five patients with chronic obstructive air-
way disease [90]. Theophylline clearance decreased by an average of 11% follow-
ing the 5-day course of tetracycline. Jonkman evaluated the effects of doxycycline 
on theophylline pharmacokinetic parameters in healthy volunteers during a 9-day 
course of theophylline alone and with the coadministration of doxycycline [91]. 
There was no influence of doxycycline on absorption, elimination, and volume of 
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distribution of theophylline. Mean steady-state plasma concentrations were not sig-
nificantly different between the two treatment periods.

The mechanism for the interaction is unknown but appears to be a reduction in 
the hepatic metabolism of theophylline. The reduction in metabolism appears to be 
quite variable. It may take several days for the interaction to occur, so increases in 
serum theophylline may not be clinically significant after short courses of tetracy-
cline. Patients taking longer courses of tetracycline may be at risk for developing 
theophylline toxicity.

Patients should be closely monitored when tetracycline is added to a medication 
regimen containing theophylline. Although short courses may not result in clini-
cally significant increases in the serum theophylline concentration, patients main-
tained in the upper end of the therapeutic range may be at risk of developing 
theophylline toxicity even with modest increases in the serum theophylline concen-
tration. Also, the reduction in clearance appears to be quite variable, so it may be 
difficult to predict how much of the theophylline will increase following the addi-
tion of tetracycline to the medication regimen. All patients should be monitored 
clinically for signs and symptoms of theophylline toxicity. Serum theophylline con-
centration should be monitored every 2–3 days in patients at high risk for develop-
ing theophylline toxicity.

5.5.9  Oral Contraceptives

Several case reports suggest that tetracycline can reduce the effectiveness of oral 
contraceptives [92, 93]. One retrospective study showed that the oral contraceptive 
failure rate was within the expected range associated with the typical pattern of use 
[94]. However, prospective trials have failed to document a consistent effect [95, 
96]. These case reports of unintended pregnancies have occurred following the con-
current administration of tetracycline and other antibiotics with oral contraceptives. 
Two small controlled studies evaluated the effect of tetracycline on the serum con-
centrations of ingredients contained in commonly prescribed oral contraceptives. 
Neely et al. compared the serum concentrations of ethinyl estradiol, norethindrone, 
and endogenous progesterone during a control period and after a 7-day course of 
doxycycline starting on day 14 of their cycle [95]. There were no statistically sig-
nificant differences in serum concentrations of ethinyl estradiol, norethindrone, and 
endogenous progesterone between the control and treatment phases. Murphy et al. 
studied the effect of tetracycline on ethinyl estradiol and norethindrone after 24 h 
and 5–10 days of therapy with tetracycline [96]. There was no significant decrease 
in ethinyl estradiol and norethindrone concentrations after 24 h or after 5–10 days 
of therapy. A pharmacokinetic study was performed to investigate whether there 
was any interaction between etonogestrel and ethinyl estradiol released from the 
combined contraceptive vaginal ring NuvaRing and concomitant treatment with 
orally administered doxycycline. Healthy women were randomized to receive either 
NuvaRing alone for 21 days or NuvaRing for 21 days doxycycline. The doxycycline 
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study measured AUC values over the initial 24 h on days 1 and 10 and the whole of 
days 1–11 and 1–22. There were no differences in the etonogestrel or ethinyl estra-
diol serum concentrations between subjects using NuvaRing alone versus those 
receiving the ring plus doxycycline. Calculation of etonogestrel and ethinyl estra-
diol interaction/control ratios confirmed the absence of an interaction between these 
medications [97].

The mechanism for the interaction is unknown but may be due to interference 
with the enterohepatic circulation of estrogens in the intestines, making this a phar-
macokinetic interaction. Other antibiotics have also been reported to reduce the 
effectiveness of oral contraceptives when administered concurrently. It is not known 
if nonadherence played a role in some of these unplanned pregnancies. Other more 
extensive reviews on the interaction between tetracyclines and oral contraceptives 
have concluded that this interaction is not supported by pharmacokinetic data [98].

Although the evidence of the interaction between tetracycline and oral contra-
ceptives is limited to case reports, women should be counseled to use other methods 
of birth control during tetracycline therapy.

5.5.10  Methotrexate

Tortajada-Ituren and colleagues reported an interaction between doxycycline and 
high-dose methotrexate (MTX) [99]. A 17-year-old female was receiving high-dose 
MTX as part of a chemotherapy regimen. The patient had undergone ten cycles of 
the regimen without complications. Her mean MTX pharmacokinetic parameters 
following the ten cycles were a MTX clearance of 2.95 L/h; half-life, 2.96 h; mean 
residence time, 4.27 h; and volume of distribution, 12.53 liters. On admission to the 
hospital for the 11th cycle of chemotherapy, the patient was noted to have a palpe-
bral abscess in her left eye which was treated with doxycycline 100 mg twice daily. 
The high-dose MTX, 18  g, was administered according to her usual protocol. 
During the first 24 h after the MTX infusion, the patient developed facial erythema, 
malaise, and vomiting that had not occurred during the first ten cycles. The doxycy-
cline was stopped 48 h after chemotherapy. The pharmacokinetic monitoring was 
prolonged for 168 h revealing a significant decrease in MTX clearance (1.29 L/h) 
and significant increase in half-life (6.26 h) and mean residence time (9.03 h) com-
pared to the values obtained during the first ten cycles. Her hospital stay was pro-
longed to 11 days compared to an average of 7.7 days during the first ten cycles.

Although the mechanism of the interaction is unknown, one proposed theory 
suggests that tetracyclines may displace MTX from plasma protein-binding sites 
[100]. In an attempt to validate this mechanism in their patient, the authors deter-
mined the degree of MTX plasma protein binding in two plasma samples with simi-
lar MTX concentrations from the 7th and 11th cycles. The unbound MTX 
concentrations were determined with an ultrafiltration process. The unbound MTX 
fractions during the 7th and 11th cycles were 53% and 41%, respectively.
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Although case reports of a tetracycline-MTX interaction are limited, tetracy-
clines should be avoided in patients receiving high-dose MTX therapy. If therapy 
with a tetracycline is required, pharmacokinetic monitoring should be continued 
until the MTX concentrations are below the desired range, and the leucovorin res-
cue should be continued, if necessary, until all signs and symptoms of MTX toxicity 
disappear.

5.5.11  Rifampin

Colmenero and colleagues studied the possible interaction between rifampin and 
doxycycline in 20 patients with brucellosis [101]. Patients were treated with either 
doxycycline and streptomycin or doxycycline and rifampin. The doxycycline con-
centrations in the patients treated with rifampin were significantly lower than those 
patients treated with doxycycline and streptomycin. The doxycycline clearance in 
patients treated with rifampin was significantly higher than in the patients treated 
with doxycycline and streptomycin 3.59  L/hours and 1.55  L/hours, respectively. 
The elimination half-life (4.32 h vs 10.59 h) and area under the concentration-time 
curve were significantly lower in the rifampin-treated patients (30.4 vs 72.6 μg•h/
ml). Additionally, there were lower doxycycline concentrations in the rifampin 
treatment group who were rapid acetylaters. There were no treatment failures in the 
patients receiving doxycycline and streptomycin, while there were two treatment 
failures in the doxycycline-rifampin group.

Rifampin is a potent inducer of hepatic microsomal enzymes. Although doxycy-
cline is only partially metabolized, the effect of rifampin may be significant enough 
to lower doxycycline concentrations to subtherapeutic levels. Caution should be 
used when treating patients with combined rifampin and doxycycline therapy. If 
possible, alternative antibiotic should be prescribed to avoid potential treatment 
failures.

5.6  Tigecycline

5.6.1  Warfarin

The interaction between tigecycline and warfarin was studied in 19 healthy males 
[102]. On day 1, the subjects received a single warfarin 25 mg dose. On day 8, they 
received a 100 mg loading dose of intravenous tigecycline followed by 50 mg every 
12 h for eight additional doses. On day 12, they received another warfarin 25 mg 
dose with their last tigecycline dose. After eight doses of tigecycline, R- and 
S-warfarin AUCs were increased by 68% and 29%, respectively, and clearance 
decreased by 40% and 23%, respectively. There was an approximately 50% increase 
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in the R-warfarin half-life from 42.4 h to 68.7 h but less than a 20% increase in the 
S-warfarin half-life from 32 h to 37 h. There was no significant effect on INR.

The reduction in clearance and prolongation in half-life suggest that this effect 
was due to an increase in warfarin protein binding. Although there was no effect on 
the INR after single doses in healthy volunteers, all patients on chronic warfarin 
therapy receiving broad-spectrum antibiotics should have their INR closely moni-
tored and doses adjusted as needed.

5.6.2  Organ Transplant Immunosuppressive Agents

5.6.2.1  Cyclosporine

Stumpf reported a patient who had been maintained on cyclosporine for 5 years 
after a renal transplant [103] and experienced a urinary tract infection that was ulti-
mately treated with tigecycline. During combined therapy, cyclosporine concentra-
tions rose necessitating a 50% reduction in the daily cyclosporine dose. The 
cyclosporine dose had to be increased back to the initial dose of 120 mg daily after 
tigecycline was discontinued. The mechanism of the interaction is unknown, but the 
authors and Srinivas speculate that it may be due to the inhibition of P-glycoprotein- 
related efflux transport activity [103, 104].

5.6.2.2  Tacrolimus

Pavan and colleagues report on a similar interaction between tacrolimus and tigecy-
cline [105]. A patient who was stable on tacrolimus for 5  years following renal 
transplant developed septic shock with Escherichia coli sensitive only to tigecy-
cline. During tigecycline therapy tacrolimus serum concentrations rose requiring a 
reduction in the daily dose of tacrolimus. No other medications known to interact 
with tacrolimus were administered during this time. The tacrolimus serum concen-
trations became subtherapeutic after tigecycline was discontinued necessitating an 
increase in the tacrolimus dose. The authors speculated that the interaction may be 
due to tigecycline’s ability to inhibit CYP3A4.

The mechanism by which tigecycline inhibits the metabolism of cyclosporine 
and tacrolimus is unclear. Caution should be used when tigecycline is administered 
to organ transplant patients on stable doses of the antirejection medications. 
Alternative antibiotics should be prescribed if possible. Serum concentrations of 
cyclosporine and tacrolimus should be monitored and the doses adjusted, while 
patients are receiving tigecycline and after it is discontinued.
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5.7  Aminoglycosides

Aminoglycoside antibiotics are involved in a number of drug interactions, many of 
which result in an increased risk of nephrotoxicity.

5.7.1  Amphotericin B

The concurrent use of aminoglycoside antibiotics may lead to an increased risk of 
developing nephrotoxicity. Churchill and Seely reported four patients that devel-
oped nephrotoxicity when both agents were administered together [106]. All of the 
patients received amphotericin B at an approximate dose of 0.5 mg/kg/day. Two of 
the four patients had documented gentamicin trough concentrations of 5 mg/L. All 
patients developed progressive renal failure during the first several days of com-
bined therapy. In the patients who survived, renal function returned to baseline val-
ues after both agents were discontinued.

The mechanism of this is the potential of additive nephrotoxicity from both 
agents. Amphotericin B is associated with a predictable rise in creatinine within the 
first several days of therapy. Aminoglycoside antibiotics are associated with acute 
tubular necrosis, especially in the setting of elevated serum concentrations. In the 
case report, three patients had documented gentamicin concentrations significantly 
higher than the desired 2 mg/L. This most likely contributed to the development of 
nephrotoxicity in these patients.

Patients receiving aminoglycoside antibiotics and amphotericin B should be 
closely monitored for the development of renal failure. The aminoglycoside serum 
concentrations should be monitored every 2–3 days and the dosage regimen adjusted 
to maintain peak and trough concentrations within the desired therapeutic range. 
Every attempt should be made to avoid other conditions that might increase the risk 
of developing renal failure (i.e., hypotension) and/or administering other medica-
tions that might increase the risk of developing renal failure (i.e., IV contrast media, 
loop diuretics).

5.7.2  Neuromuscular Blocking Agents

Aminoglycoside agents are known to potentiate paralysis from neuromuscular 
blocking agents [107–110]. Often this has occurred in the setting of the instillation 
of aminoglycoside-containing irrigation solutions into the intra-abdominal cavity 
during surgery. Dupuis et al. evaluated prospectively the interaction between amino-
glycosides and atracurium and vecuronium in 44 patients [111]. Twenty-two 
patients had therapeutic concentrations of gentamicin or tobramycin, and 22 patients 
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served as controls. Onset time, clinical duration, and time to spontaneous recovery 
of a T1/T4 ratio of 0.7 after atracurium or vecuronium injection were measured. 
Although no statistically significant differences were found in onset time, clinical 
duration was longer in patients receiving tobramycin or gentamicin and paralyzed 
with vecuronium than in controls. The neuromuscular blockade produced by atracu-
rium was not significantly influenced by the presence of therapeutic serum concen-
trations of tobramycin or gentamicin. The clinical duration of patients receiving 
atracurium alone or in the presence of an aminoglycoside was approximately 40 min 
in each group, and the time to recovery of a T1/T4 ratio > 0.7 was approximately 
60–70 min. The clinical duration was significantly longer in the vecuronium patients 
receiving aminoglycosides than in the vecuronium control patients, 30 versus 
55  min, respectively. The time to recovery of a T1/T4 ratio  >  0.7  in the patients 
receiving vecuronium with aminoglycosides also was longer in the patients receiv-
ing an aminoglycoside, 55 versus 105 min, respectively.

Aminoglycosides have been shown to interfere with acetylcholine release and 
exert a postsynaptic curare-like action [112]. These agents have membrane- 
stabilizing properties and exert their effect on acetylcholine release by interfering 
with calcium ion fluxes at the nerve terminal, an action similar to magnesium ions. 
Aminoglycosides also possess a smaller but significant decrease in postjunctional 
receptor sensitivity and spontaneous release.

These drugs may cause postoperative respiratory depression when administered 
before or during operations and may also cause a transient deterioration in patients 
with myasthenia gravis. Patients should be monitored for prolonged postoperative 
paralysis if they received neuromuscular blocking agents and aminoglycoside anti-
biotics during the perioperative or immediate postoperative period.

5.7.3  Indomethacin

Zarfin et al. evaluated the effect of indomethacin on gentamicin and amikacin serum 
concentration in 22 neonates with patent ductus arteriosus treated with indometha-
cin and aminoglycosides [113]. The aminoglycoside doses were held stable before 
the initiation of indomethacin therapy. After the addition of indomethacin, there was 
a significant rise in aminoglycoside trough and peak concentrations, a reduction in 
urine output, and a significant rise in serum creatinine. This may have been due to 
the ability of nonsteroidal anti-inflammatory agents to cause reversible renal failure. 
In this setting the elimination of all renally eliminated medications would be 
expected to be reduced with elevation in serum concentrations.

Renal function should be closely monitored in patients receiving nonsteroidal 
anti-inflammatory agents. If renal failure develops, the doses of all renally elimi-
nated medications should be adjusted to the level of remaining renal function. 
Serum concentrations of medications should be monitored when possible and dos-
age regimens adjusted to maintain serum concentrations within the accepted thera-
peutic ranges.
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5.7.4  Cyclosporine

Cyclosporine and aminoglycosides are both nephrotoxic and produce additive renal 
damage when administered together. Termeer et al. reported that the combined use 
of gentamicin and cyclosporine in renal transplant patients increased the incidence 
of acute tubular necrosis to 67%, compared with 5–10% when gentamicin was used 
alone or when cyclosporine was used with other, non-nephrotoxic antibiotics [114]. 
Animal studies have also documented the additive nephrotoxicity of aminoglyco-
sides when administered with cyclosporine.

The mechanism appears to be additive injury to the renal tubule. Aminoglycosides 
induce renal failure by inhibiting the intracellular phospholipases in lysosomes of 
tubular cells in the proximal tubule. Cyclosporine-induced acute renal failure is 
related primarily to its effects on the renal blood vessels. Cyclosporine acutely 
reduces renal blood flow, with a corresponding increase in renal vascular resistance 
and a reduction in glomerular filtration rate.

Patients receiving aminoglycoside antibiotics and cyclosporine should be closely 
monitored for the development of renal failure. The aminoglycoside and cyclospo-
rine serum concentrations should be monitored every 2–3 days and the dosage regi-
men adjusted to maintain peak and trough concentrations within the desired 
therapeutic range. Every attempt should be made to avoid other conditions that 
might increase the risk of developing renal failure (i.e., hypotension) and avoid 
administering other medications that might increase the risk of developing renal 
failure (i.e., IV contrast media, loop diuretics).

5.7.5  Chemotherapeutic Agents

Numerous reports have documented the additive nephrotoxicity when aminoglyco-
sides are administered to patients receiving cisplatin-type chemotherapeutic agents 
[115–121]. Cisplatin-type chemotherapeutic agents have been shown to be associ-
ated with a reduction in renal function. Patients who received aminoglycoside anti-
biotics during or after a course of cisplatin-based chemotherapy regimens have 
demonstrated additional reductions in renal function.

The mechanism appears to be direct injury to the renal tubule. Aminoglycosides 
induce renal failure by inhibiting the intracellular phospholipases in lysosomes of 
tubular cells in the proximal tubule. Cisplatin-induced renal failure is mediated by a 
toxic effect on the renal tubular cells, resulting in acute tubular necrosis.

Prior administration of cisplatin is not an absolute contraindication to the use of 
aminoglycoside antibiotics. When clinically indicated, patients who have previ-
ously received cisplatin and have apparently normal renal function should be treated 
cautiously with standard doses of aminoglycoside antibiotics, and pharmacokinetic 
monitoring should be routinely performed, with the dosage regimens adjusted to 
maintain serum concentrations within the desired therapeutic range.
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5.7.6  Loop Diuretics

Several reports describe the increased risk of nephro- and ototoxicity when amino-
glycosides and loop diuretics are administered together [122, 123]. Although some 
case reports suggest there is increased ototoxicity when ethacrynic acid is given in 
combination with aminoglycosides [125]. The data supporting the association 
between furosemide and aminoglycosides are controversial [124].

5.7.6.1  Ethacrynic Acid

High doses of ethacrynic acid given alone have been shown to produce hearing loss 
in patients with renal failure [125, 126]. Hearing loss can range between partial and 
full deafness and is usually irreversible. When patients receiving ethacrynic acid 
have been given an aminoglycoside such as kanamycin or streptomycin, hearing 
loss has been reported to occur within 15 min after an injection of the diuretic and 
lasting for several hours. Some patients had reduced hearing loss, while others 
remained deaf [125].

The mechanism of this pharmacodynamic interaction is not known. Ethacrynic 
acid is thought to produce hearing loss by an alteration in the formation of peri-
lymph in the cochlea. This may be disputed because not all patients experience 
vertigo or nausea. Other possible causes of deafness may be the cysteine adduct of 
ethacrynic acid, a substance known to be ototoxic, or a direct toxicity to the auditory 
nerves by ethacrynic acid. Aminoglycosides produce ototoxicity by destroying the 
sensory hair cells in the cochlea and vestibular labyrinth.

Ethacrynic acid and the older-generation aminoglycosides are rarely used in 
clinical practice. However, some patients may be unable to take loop diuretics such 
as furosemide or bumetanide, so ethacrynic acid may be their only available option. 
When ethacrynic acid is used alone or in combination with aminoglycosides, it 
should be used in the lowest dose that maintains adequate urine output or fluid bal-
ance. Aminoglycoside concentrations should be monitored and the dosage regimens 
adjusted to maintain concentrations within the therapeutic range. Patients should be 
monitored with audiograms if therapy is to be continued for an extended duration, 
and audiograms should be performed in patients who complain of hearing loss.

5.7.6.2  Furosemide

Kaka et al. reported a suspected case of furosemide increasing the peak and trough 
concentrations of tobramycin in a 72-year-old woman [122]. The patient received 
intermittent doses of furosemide for the management of congestive heart failure. 
The patient developed a Gram-negative aspiration pneumonia. Tobramycin was 
started, with serum concentrations drawn after the loading dose followed by a main-
tenance dose of 180 mg IV q8h. Twelve hours after an intravenous dose of 120 mg 

G. M. Susla



205

of furosemide, the tobramycin trough and peak concentrations around the fourth 
dose were 5.3 and 16.2 mg/L, respectively. The authors concluded that moderate 
doses of furosemide could increase tobramycin concentrations, thus increasing the 
risk of ototoxicity and nephrotoxicity in some patients.

It is unclear whether furosemide was the cause of the increased tobramycin con-
centrations in this patient. Although furosemide has been reported to both increase 
and decrease the clearance of gentamicin, there are other possible explanations for 
the elevated tobramycin concentrations in these patients. The authors determined 
the patient’s tobramycin pharmacokinetic parameters after the initial dose and used 
these parameters to determine the patient’s maintenance dosage regimen. The main-
tenance regimen may have been overly aggressive for the patient’s age, weight, and 
underlying renal function. There was extreme variability in the tobramycin pharma-
cokinetic parameters between the first and fourth doses, suggesting errors in drug 
administration or sampling technique rather than changes in the patient’s clinical 
status or the administration of furosemide.

Smith and Liftman analyzed the data from three prospective, controlled, random-
ized, double-blind clinical trials to determine whether furosemide increased the 
nephrotoxicity and ototoxicity of aminoglycosides. There was no difference in the 
incidence of nephrotoxicity or ototoxicity between the groups receiving aminogly-
cosides alone and the group receiving aminoglycosides and furosemide [124].

It is unclear whether furosemide directly increases the nephrotoxicity and oto-
toxicity of aminoglycosides. Furosemide may increase the risk of developing neph-
rotoxicity by causing excessive diuresis, hypovolemia, and a reduction in renal 
blood flow. Furosemide should be used with caution in patients receiving aminogly-
coside antibiotics. Careful attention should be paid to the patient’s weight, urine 
output, fluid balance, and indices of renal function. Aminoglycoside concentrations 
should be monitored and the dosage regimen adjusted to maintain concentrations 
within the therapeutic range.

5.7.7  Vancomycin

Several reports have been published evaluating the potential of vancomycin to 
increase the nephrotoxicity of aminoglycoside antibiotics. Two studies were retro-
spective reviews and two studies were prospective evaluations. Cimino retrospec-
tively evaluated 229 courses of therapy in 229 oncology patients [127]. Forty 
patients received vancomycin alone, 148 patients received aminoglycosides alone, 
and 40 patients received vancomycin and an aminoglycoside antibiotic. The inci-
dence of nephrotoxicity in patients administered with an aminoglycoside was 18%; 
vancomycin, 15%; and an aminoglycoside and vancomycin, 15%. They could not 
show that the concurrent administration of vancomycin had an additive effect on the 
incidence of nephrotoxicity. Pauly et al. retrospectively evaluated the incidence of 
nephrotoxicity in 105 patients who received at least 5 days of combined therapy 
[128]. Twenty-eight (27%) patients developed nephrotoxicity during combined 
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vancomycin-aminoglycoside therapy. However, 22 patients had other insults such 
as amphotericin B, sepsis, or liver disease that could account for the increase in 
nephrotoxicity. There were no control groups of patients receiving vancomycin or 
aminoglycosides alone to provide a comparative incidence of nephrotoxicity 
between these groups. The results of these two studies are limited by their retrospec-
tive design, the small number of patients who received vancomycin and an amino-
glycoside, and the patients who had other potential causes for developing 
nephrotoxicity.

Mellor et al. prospectively evaluated 39 courses of vancomycin therapy in 34 
patients [129]. Twenty-seven courses were associated with aminoglycoside admin-
istration either concurrently or within 2 weeks of the first dose of vancomycin. A 
reduction in renal function was seen during (7%) and after (9%) vancomycin ther-
apy. There was no evidence of synergistic toxicity between vancomycin and amino-
glycosides. One feature of the patients with renal dysfunction was the severity of 
their underlying disease. Each case of nephrotoxicity occurred in association with 
either sepsis or gastrointestinal hemorrhage.

Ryback and colleagues prospectively evaluated the incidence of nephrotoxicity 
in patients receiving vancomycin alone or in combination with an aminoglycoside, 
following 224 patients receiving 231 courses of therapy [130]. 168 patients received 
vancomycin alone, 63 patients received vancomycin with an aminoglycoside, and 
103 patients received an aminoglycoside alone. 8 patients (5%) receiving vancomy-
cin alone, 14 patients (22%) receiving vancomycin with an aminoglycoside, and 11 
patients (11%) receiving an aminoglycoside alone were found to have nephrotoxic-
ity. Factors thought to be associated with an increased risk of nephrotoxicity in 
patients receiving vancomycin were concurrent therapy with an aminoglycoside, 
length of treatment with vancomycin (>21 days), and vancomycin trough concen-
trations (>10 mg/L).

Both of these studies are small prospective studies. Although they had control 
groups, it is unclear how well matched the control groups were to the group of 
patients receiving vancomycin and an aminoglycoside for underlying disease states 
and renal function. The increased risk of nephrotoxicity when vancomycin is admin-
istered with an aminoglycoside antibiotic is controversial. The clinical studies pub-
lished to date do not show a clear association between the combination use of these 
agents and an increased risk of nephrotoxicity. Patients receiving vancomycin and 
aminoglycoside antibiotics should be closely monitored for the development of 
renal failure. The aminoglycoside and vancomycin serum concentrations should be 
monitored and the dosage regimen adjusted to maintain peak and trough concentra-
tions within the desired therapeutic range. Every attempt should be made to avoid 
other conditions that might increase the risk of developing renal failure (i.e., hypo-
tension) and to avoid administering other medications that might increase the risk of 
developing renal failure (i.e., IV contrast media, loop diuretics).
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5.8  Linezolid

Linezolid is a synthetic oxazolidinone antibiotic that selectively inhibits bacterial 
protein synthesis. As a class, oxazolidinones are known to inhibit monoamine oxi-
dase (MAO). Two forms of MAO exit in humans: Type A and Type B. MAO-A 
preferentially deaminates noradrenaline, adrenaline, and serotonin, while Type B 
deaminates dopamine. Linezolid has been shown to be a weak, competitive inhibi-
tor of MAO-A.

5.8.1  Selective Serotonin Reuptake Inhibitors (SSRIs)

Numerous reports have documented the development of the serotonin syndrome 
following the coadministration of linezolid and SSRIs, and this interaction has been 
extensively reviewed in the literature [131–133]. SSRIs that have been documented 
to have been associated with the development of the serotonin syndrome following 
the coadministration with linezolid include paroxetine [131, 134], sertraline [135–
138], mirtazapine [139, 140], venlafaxine [141–145], fluoxetine [146], citalopram 
[140, 144, 147], escitalopram [147], and buspirone [149]. A wide range of compli-
cations associated with the serotonin syndrome has been reported involving the cen-
tral nervous system (altered mental status, paranoia, hallucinations, myoclonus, 
seizures, dizziness, confusion), delirium, hostility, anger, fatigue, ataxia, and trem-
ors), cardiovascular system (hypertension, tachycardia, palpitations, syncope, car-
diac arrest), and gastrointestinal tract (diarrhea). Death has also been associated 
with the serotonin syndrome. Symptoms can develop anywhere from 1 h to several 
days after the addition of an SSRI [131].

5.8.2  Meperidine

The serotonin syndrome was reported in a leukemia patient following the coadmin-
istration of linezolid and meperidine [148]. The patient had been receiving meperi-
dine as a pretreatment to prevent amphotericin-associated rigors. The patient 
received meperidine 90 min after his third dose of linezolid and 30 min later devel-
oped tremulousness with myoclonus, paranoid ideation with visual hallucinations. 
The meperidine was stopped, and the patient was treated with methotrimeprazine 
4 mg resulting in the resolution of neuropsychiatric symptoms within 2 h.
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5.8.3  Rifampin

Two reports have described an interaction between linezolid and rifampin resulting 
in decreased linezolid serum concentration [150, 151]. Gebhart reported a patient 
who received rifampin and linezolid for 19 days. Ten days after rifampin was dis-
continued, the patient’s trough linezolid concentration was reported as a trace, and 
the linezolid dose was increased to 600  mg every 8  h. Rifampin was restarted 
11 days after it was initially discontinued and administered for an additional 8 days. 
Six days after rifampin was discontinued for the second time, linezolid peak and 
trough concentrations were reported as 7.29  mg/L and 2.04  mg/L, respectively. 
Follow-up peak and trough concentrations obtained 2 days later 12.46 mg/L and 
5.03 mg/L, respectively [150]. Egle administered a single linezolid 600 mg IV dose 
to eight healthy males [151]. The following day he administered linezolid 600 mg 
IV with rifampin 600 mg IV. The pooled serum linezolid concentrations were lower 
after coadministration with rifampin compared to when linezolid was administered 
alone.

Gervasoni reported a patient who had been maintained on rifampin 600 mg daily 
and minocycline 100  mg twice daily for chronic osteomyelitis [152]. The 
minocycline- rifampin regimen was switched to linezolid 600 mg twice daily which 
was added due to poor response to therapy. The linezolid trough concentration 
9 days after stopping rifampin was 0.6 mg/L. Eight and fifteen days later, the line-
zolid trough concentrations were 1.1 mg/L and 1.4 mg/L, respectively. These trough 
concentrations were similar to the trough concentration measured in the patients 
2 years previously (1.4 mg/L–1.5 mg/L) when the patient was initially treated with 
linezolid 600 mg twice daily. The authors concluded that the enzyme-inducing abil-
ity of rifampin may impact linezolid serum concentrations up to 2–3 weeks after 
stopping therapy.

Serotonin is removed from the nerve synapse by reuptake into the nerve terminal 
or degradation by MAO. Linezolid’s ability to inhibit MAO degradation of sero-
tonin results in increased serotonin concentrations and the development of the sero-
tonin syndrome. Patient medication profiles should be reviewed for medications 
that are metabolized by MAO before linezolid is prescribed. When possible, alterna-
tive antibiotics should be prescribed to avoid the risk of the development of the 
serotonin syndrome in susceptible individuals. Due to the long half-lives of some of 
the SSRIs, the serotonin syndrome may develop in patients whose SSRI was discon-
tinued several days before initiating linezolid therapy. Alternative analgesics such as 
morphine or hydromorphone should be prescribed in place of meperidine. 
Management of the serotonin syndrome is primarily supportive with removal of the 
offending agent with symptoms typically resolve within 24–48 h but may last up to 
7–10 days if the agents has a long half-life or active metabolites. If necessary, cypro-
heptadine appears to be an effective antiserotonin agent. It usually relieves symp-
toms after the first dose but may be administered every 1–4 h until a therapeutic 
response is obtained. The mechanism of the interaction between rifampin and line-
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zolid is not known. Linezolid is not metabolized through CYP pathways. Egle has 
suggested that rifampin may stimulate the induction of P-glycoprotein expression 
leading to increased linezolid clearance by upregulation of linezolid intestinal secre-
tion [151]. Careful consideration should be used when selecting antibiotics to treat 
resistant Gram-positive infections. In the event that rifampin and linezolid should be 
used together, the monitoring of linezolid serum concentrations should be consid-
ered, and monitoring may need to be continued up to 2–3  weeks after stopping 
rifampin.

5.8.4  Cough and Cold Preparations

Many over-the-counter (OTC) cough and cold preparations contain ingredients that 
are metabolized by MAO or are selective serotonin reuptake inhibitors. Decongestants 
such as pseudoephedrine and phenylpropanolamine are metabolized by MAO. The 
cough suppressant, dextromethorphan, has been shown to block serotonin reuptake 
and has been implicated in precipitating the serotonin syndrome when co-ingested 
with MAO inhibitors. Hendershot and colleagues reviewed the data from three line-
zolid clinical trials to evaluate the pharmacokinetic and pharmacodynamic responses 
to the coadministration of linezolid with pseudoephedrine, phenylpropanolamine, 
and dextromethorphan [153]. Significant increases in systolic blood pressure (SBP) 
were observed following the coadministration of linezolid with either pseudoephed-
rine or phenylpropanolamine. The mean maximum increase from baseline in SBP 
was 32 mm Hg and 38 mm Hg with the coadministration of pseudoephedrine and 
phenylpropanolamine, respectively. Treatment-emergent SBP greater than 160 mm 
Hg was observed following the coadministration of linezolid with pseudoephedrine 
in five subjects and in two patients in the linezolid-phenylpropanolamine-treated 
group. Dizziness was the most frequent adverse event when linezolid and pseudo-
ephedrine were given concomitantly, and headache was the most frequent adverse 
event when linezolid and phenylpropanolamine were given together. There were no 
statistically or clinically significant effects on heart rate in either treatment group.

There were no statistically or clinically significant changes in blood pressure, 
heart rate, or temperature and no abnormal neurological examination results in the 
dextromethorphan-linezolid treatment group.

Linezolid’s ability to inhibit the MAO degradation of pseudoephedrine and 
phenylpropanolamine resulted in the significant increases in blood pressure that was 
seen when linezolid was coadministered with the decongestants. Patients should be 
counseled to consult with their pharmacist or physician before taking systemic 
decongestants while taking linezolid. Topical nasal decongestants such as sodium 
chloride or oxymetazoline may be alternative agents for patients requiring decon-
gestants while receiving linezolid.
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5.8.5  Warfarin

A retrospective study was conducted to evaluate the potential interaction between 
warfarin and linezolid [154]. Patients had baseline PT/INR obtained before treat-
ment and then at days 4 or 5 and 10, at completion of treatment, and at 1 week after 
stopping linezolid. The PT/INR increased from 1.62 ± 0.32 at baseline to 3.00 ± 0.83 
at day 4 or 5 of concomitant therapy (p < 0.01) and declined to 1.65 ± 0.45 at the 
discontinuation of warfarin and 1.26  ±  0.1 at 1  week after stopping linezolid. 
Although the mechanism of the interaction is unclear, the authors speculated that 
the rise in PT/INR with concomitant therapy may be due to linezolid lowering vita-
min K levels.

Patients stable on warfarin should have PT/INR monitored closely when adding 
linezolid to their medication regimen. The patients should be monitored clinically 
for signs and symptoms of bleeding. Other antibiotics may be prescribed to avoid 
this interaction, or other forms of anticoagulation may be used as alternatives to 
warfarin.

5.8.6  Clarithromycin

Bolhuis and colleagues initially reported on a patient who experienced a significant 
increase in linezolid serum concentrations when linezolid was coadministered with 
clarithromycin [155]. The patient’s baseline 24-h AUC on linezolid 300 mg twice 
daily was 29 mg•h/L. The 24-h AUC increased to 108 mg•h/L following the addi-
tion of clarithromycin 1000 mg once daily. It was also noted that the Cmax in the 
absorption phase was delayed. The linezolid dose was decreased to 150 mg twice 
daily for the remainder of his treatment. Bolhuis and colleagues then followed up 
with a formal study to investigate the interaction between clarithromycin and line-
zolid [156]. Five healthy adults were initially started on linezolid 300  mg twice 
daily for 1 week. After 1 week, clarithromycin 250 mg daily was added for 2 weeks 
followed by an additional 2 weeks of dosing at 500 mg/day. Linezolid serum con-
centrations were obtained at baseline, at the 2-week end of dosing clarithromycin 
250 mg and 500 mg, and at 1 week after stopping clarithromycin. The linezolid 12-h 
AUC increased from 36.0 mg•h/L at baseline to 61.0 mg•h/L and 67.2 mg•h/L fol-
lowing the coadministration of clarithromycin 250 mg and 500 mg, respectively. 
The Cmax (6 mg/L, 8 mg/L, 9.4 mg/L) and Cmin (1.2 mg/L, 2.1 mg/L, 2.6 mg/L) val-
ues increased accordingly. Linezolid clearance declined with the increasing dose of 
clarithromycin: 7.0  l/h, 4.0  l/h, 3.5  l/h with a resultant prolongation of linezolid 
half-life and 4.1 h, 4.9 h, and 5.4 h. The authors speculated that the mechanism 
could be due to clarithromycin’s ability to inhibit CYP3A4 and P-glycoprotein.

Patients receiving linezolid and clarithromycin should be monitored closely for 
signs of linezolid toxicity. Linezolid serum concentrations should be monitored 
when possible and the dose adjusted accordingly to maintain serum concentrations 
above the pathogen-specific minimum inhibitory concentration.
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5.9  Quinupristin-Dalfopristin

5.9.1  CYP3A4 Metabolized Drugs

In vitro drug interaction studies have demonstrated that quinupristin-dalfopristin 
significantly inhibits CYP3A4-mediated metabolism. There are no published drug 
interaction studies in normal volunteers and only limited reports of interactions in 
patients receiving quinupristin-dalfopristin for therapeutic indications. The manu-
facturer’s package insert indicates that it is reasonable to expect that the concomi-
tant administration of quinupristin-dalfopristin and other drugs primarily 
metabolized by the CYP3A4 may likely result in increased plasma concentrations 
of these drugs that could increase or prolong their therapeutic effect and/or increase 
adverse reactions [157].

In healthy volunteers, the coadministration of quinupristin-dalfopristin with 
midazolam increased midazolam Cmax and AUC by 14% and 33%, respectively. 
Also in healthy volunteers, the Cmax and AUC of nifedipine were increased by 18% 
and 44% when the two agents were coadministered. Additional studies in transplant 
patients indicate that quinupristin-dalfopristin can inhibit the metabolism of cyclo-
sporine and tacrolimus. Stamatakis and Richard reported an interaction between 
cyclosporine and quinupristin-dalfopristin in a renal transplant patient [158]. The 
patient’s baseline cyclosporine concentrations ranged from 80 to 105 ng/mL. Two 
and three days after the initiation of quinupristin-dalfopristin therapy, trough cyclo-
sporine concentrations increased to 261 and 291 ng/mL, respectively. Following the 
discontinuation of quinupristin-dalfopristin, the cyclosporine blood concentrations 
decreased, and the dosage was increased to the previous regimen.

Medications known to be metabolized by CYP3A4, especially those with a nar-
row therapeutic index, should be administered with caution and closely monitored 
for adverse effects.

5.10  Antipseudomonal Penicillins

Aminoglycosides and penicillins are often administered in combination for their 
additive or synergistic effects in the treatment of serious Gram-negative infections. 
Numerous reports have been published documenting the ability of commonly used 
antipseudomonal penicillins to inactivate aminoglycoside antibiotics in vivo [159–
166] and in vitro [167–173]. These have usually documented unusually low amino-
glycoside concentrations in patients receiving this combination, despite high doses 
of aminoglycosides. Carbenicillin inactivates all aminoglycosides at faster rates and 
to a greater extent than ticarcillin, mezlocillin, and piperacillin. Tobramycin is the 
least stable and amikacin is the most stable aminoglycoside. Gentamicin has inter-
mediate stability. Pickering and Gearhart evaluated the effect of time on the in vitro 
interaction between mixtures of four aminoglycosides at two concentrations with 
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carbenicillin, piperacillin, mezlocillin, azlocillin, and mecillinam at three concen-
trations [169]. The inactivation of the aminoglycoside was shown to be directly 
proportional to the concentration of the penicillin. Aminoglycoside inactivation was 
greater at 72  h of incubation with the penicillins than after 24  h of incubation. 
Inactivation by each penicillin was greater for tobramycin and gentamicin than for 
netilmicin and amikacin, especially at higher penicillin concentrations. At concen-
trations of 500 mg/L, significantly less inactivation of amikacin occurred compared 
to netilmicin. No significant change in aminoglycoside activity occurred when the 
aminoglycosides were stored with the penicillins at -70 °C for 30 days.

There are several reports of in vivo inactivation of aminoglycosides by ticarcillin 
and carbenicillin. These have occurred in the patients with renal failure, where the 
penicillin concentrations would be expected to be high. Thompson and colleagues 
studied the inactivation of gentamicin by piperacillin and carbenicillin in patients 
with end-stage renal disease [165]. Patients received a single dose of gentamicin, 
4 g piperacillin every 12 h for four doses, or 2 g carbenicillin every 8 h for six doses, 
and gentamicin plus piperacillin or carbenicillin. Subjects were studied on off- 
dialysis days. Gentamicin was inactivated to a greater extent by carbenicillin than 
by piperacillin. In the subjects in the carbenicillin group, the terminal elimination 
half-life of gentamicin was 61.6 h when gentamicin was administered alone and 
19.4 h when gentamicin was administered with carbenicillin. In the subjects in the 
piperacillin group, the mean gentamicin half-life when gentamicin was given alone 
was 53.9 h, and it was 37.7 h when it was administered with piperacillin. Control 
samples verified that no in vitro inactivation occurred.

Penicillins combine with aminoglycoside antibiotics in equal molar concentra-
tions at a rate dependent on the concentration, temperature, and medium composi-
tion. The greater the concentration of the penicillin, the greater is the inactivation of 
the aminoglycoside. The inactivation is thought to occur by way of a nucleophilic 
opening of the beta-lactam ring, which then combines with an amino group of the 
aminoglycoside, leading to the formation of a microbiologically inactive amide. 
The inactivation occurs less in pooled human sera than in other media, including 
whole blood. Spinning down whole blood can help slow the inactivation. Significant 
serum inactivation occurs at room temperature and under refrigeration. Only when 
the blood sample is centrifuged and frozen is the inactivation arrested.

Rich reviewed the procedure for handling aminoglycoside concentrations in 
patients receiving this combination of antibiotics [174]. Blood samples for amino-
glycoside concentrations drawn from patients receiving the combination should be 
sent on ice to the laboratory within 1–2 h so that the sample can be spun down and 
frozen to arrest any inactivation. Samples left exposed at room temperature will 
decay 10% in 1 h. The two antibiotics should not be given at the same time. The 
administration times should be scheduled so that the administration of the amino-
glycoside occurs at the end of the penicillin dosing interval, when its concentrations 
are the lowest. If a patient is receiving this antibiotic combination and unusually low 
aminoglycoside concentrations occur, the above factors should be checked. 
Inactivation with beta-lactam antibiotics is further described in Chap. 7.
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Chapter 6
Drugs for Tuberculosis

Rocsanna Namdar and Charles A. Peloquin

6.1  Introduction

Tuberculosis (TB) remains a leading infectious killer, particularly in the developing 
world [1]. Given the high rates of coinfection with TB and HIV, drug interactions 
are frequent occurrences. In particular, rifamycins commonly produce significant 
drug interactions that can decrease the effectiveness of highly active antiretroviral 
therapy in patients with HIV. This chapter assesses drug interactions in patients with 
TB and briefly in patients with nontuberculous mycobacterial (NTM) infections.

6.2  Standard Treatment for Tuberculosis

The published treatment guidelines for TB generally produce successful outcomes, 
even in HIV-positive patients [1, 2]. These references are recommended to all prac-
titioners dealing with such patients. For suspected drug-susceptible disease, a regi-
men of isoniazid (INH), rifampin (RIF), pyrazinamide (PZA), and ethambutol 
(EMB) is used. Rifabutin (RBN) is an alternative to RIF to reduce cytochrome P450 
(CYP) enzyme induction in both the liver and the intestine. When full drug suscep-
tibility is confirmed, EMB can be discontinued. PZA can be discontinued in patients 
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who respond normally to treatment after 8 weeks [1, 2]. INH and either RIF or RBN 
are continued for an additional 4 months or longer if the patient is slow to respond 
or has extensive pulmonary cavitary, bone, or central nervous system (CNS) dis-
ease. Multidrug-resistant tuberculosis (MDR-TB, defined as resistance to at least 
INH and RIF) and extensively drug-resistant tuberculosis (XDR-TB, defined as 
MDR-TB plus resistance to a quinolone and an injectable agent) are much more 
difficult to treat [1, 2]. The drugs used for DR-TB are less effective and more toxic 
than INH and RIF, and the duration of treatment for DR-TB often is much longer 
(24 months or more).

6.3  Oral Absorption

6.3.1  Interactions with Food

INH and RIF show marked decreases in the maximum serum concentration (Cmax, 
51% and 36%, respectively) and lesser decreases in area under the serum concentra-
tion versus time curve (AUC, 9% and 10%, respectively) when given with high-fat 
meals (Table 6.1) [3]. EMB shows modest decreases in Cmax (17%) but not AUC, 
while PZA only shows a modest delay in absorption when these drugs are given 
with high-fat meals [4, 5]. A meta-analysis evaluating the effect of food on first-line 
antituberculosis drugs also found that food reduces the Cmax of INH, RIF, and 
EMB in pooled data analysis [6]. High-fat meals do not adversely affect the absorp-
tion of ethionamide (ETA) but decrease the Cmax of cycloserine (CS) by 27% 
(AUC decreases by only 5%) [7, 8]. Orange juice also decreases the Cmax of cyclo-
serine by about 13% (AUC decreases by only 3%), and presumably this would 
occur in other acidic beverages [8]. In contrast, high-fat meals increase the Cmax of 
clofazimine (CF) and p-aminosalicylic acid (PAS) granules [9, 10].

6.3.2  Interactions with Antacids

Of the four most frequently used TB drugs, only EMB appears to be significantly 
affected by coadministration with antacids (Mylanta®, Table 6.1) [3–5]. Our inves-
tigation showed no significant effect when Mylanta® was given 9 h before INH, at 
the time of dosing, and then with lunch and dinner following dosing. Antacids pro-
duced insignificant change in the absorption of RIF, CS, ETA, PAS, CF, and PZA 
(pyrazinamide) [5–11]. The absorption of fluoroquinolones is markedly decreased 
when coadministered with antacids or medications containing di- or trivalent cat-
ions. These drug interactions can be avoided by ingesting antacids at least 2 h apart 
from fluoroquinolones [1, 12].
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6.3.3  Interactions with H2 Antagonists

RIF is not affected by the coadministration of ranitidine [3]. Data are not available 
for the other TB drugs.

6.3.4  Malabsorption in Selected Patient Populations

Patients with known or suspected gastroenteropathies may have difficulty absorbing 
the TB drugs. INH, RIF, and EMB appear to be more prone to malabsorption, with 
lower Cmax and AUC [13–18]. Recent studies suggest that the dose of RBN often 
is too low, even in the presence of ritonavir. Minimal data exist for rifapentine [19–
21]. Studies show that INH and RBN malabsorption may lead to treatment failures 
and the selection of drug resistance, especially among AIDS patients [22, 23]. PZA 
generally is well absorbed [5, 13]. Reasons for drug malabsorption may include 
HIV-related achlorhydria, HIV enteropathy, and opportunistic infections of the gas-
trointestinal tract, such as cryptosporidiosis [24–28]. Other populations to observe 
carefully include patients with cystic fibrosis and diabetes mellitus. Therapeutic 
drug monitoring (TDM) early during treatment may be used to identify problems 
and to guide dose adjustments [18].

6.4  Drug and Disease Interactions

6.4.1  Isoniazid Interactions

INH is cleared by N-acetyltransferase 2 (NAT2) to the microbiologically inactive 
metabolite acetyl isoniazid and subsequently to mono- and di-acetyl-hydrazine [29, 
30]. INH is not substantially removed by hemodialysis [31]. INH is a relatively 
potent inhibitor of several CYP isoenzymes and interacts significantly with phe-
nytoin (a CYP2C9 substrate) and carbamazepine (CYP3A4 and either CYP2C8 or 
CYP2C9), increasing concentrations of both [31–33]. INH also may inhibit the 
clearance of valproic acid [33], diazepam (CYP3A4 and CYP2C19), primidone, 
chlorzoxazone (CYP2E1), theophylline (CYP1A2), warfarin (CYP1A2, CYP2C9, 
CYP2C19, CYP3A4), serotonergic antidepressants [34], and clozapine [35–42]. 
Desta and colleagues showed that INH inhibits CYP2C19 and CYP3A4  in a 
concentration- dependent manner [43]. Significant inhibition of CYP2C9 and 
CYP1A2 in their human liver microsome system was not shown; however, INH was 
considered a weak noncompetitive inhibitor of CYP2E1 and a competitive inhibitor 
of CYP2D6 [42]. The inductive effect of RIF on CYP enzymes outweighs the inhib-
itory effect of INH. Therefore, the overall effect of combined therapy with RIF and 
INH is a decrease in the concentrations of drugs [44].
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INH can also act as a monoamine oxidase inhibitor, with a potential for interac-
tion with antidepressants. Excess catecholamine stimulation resulting in increased 
blood pressure has been reported with INH and levodopa therapy [45]. INH causes 
an initial inhibition, followed by induction of CYP2E1 [40]. Therefore, INH can 
alter the clearance of ethanol. INH may inhibit or promote the conversion of acet-
aminophen to its putative toxic intermediate metabolite, N-acetyl-p-benzoquinone 
imine (NAPQI), depending on the timing of the doses [39]. Therefore, high-dose 
acetaminophen should be avoided with INH [39, 46–49]. The overall effect of com-
bined therapy with RIF and INH is a decrease in the concentrations of coadminis-
tered drugs [43].

The absorption of INH can be affected by other drugs. Coadministration of cip-
rofloxacin and INH results in a delay (but not a reduction in the extent) of INH 
absorption [50].

6.4.2  Rifamycin Interactions

The available rifamycins include rifampin (RIF), rifabutin (RBN), and rifapentine 
(RPNT). They share a similar mechanism of action and generally show cross- 
resistance. They are cleared by esterases to their 25-desacetyl derivatives, which 
have roughly half of the parent drugs’ activity. RBN undergoes some CYP clear-
ance as well. Most of the parent drug and metabolite are cleared through the biliary 
tract, with small amounts through the urine [3, 30, 46]. For 25-desacetyl-RBN, sub-
sequent metabolism occurs via CYP3A4. RIF is not substantially removed by 
hemodialysis [31]. Rifamycins are potent inducers of the P450 enzyme system, 
especially CYP3A4 and 2C8/9 [28, 50, 51]. Further, RIF also induces the activity of 
the phase II enzymes uridine glucuronosyltransferase and sulfotransferase and the 
efflux transporter P-glycoprotein (P-gp) [51, 52].

At least with single doses, RIF is an inhibitor of P-gp and MRP2 in vitro and in 
animals. However, continued doses of RIF appear to induce MRP2. Rifampin, like 
cyclosporine and gemfibrozil, inhibits OATP1B1, an uptake transporter for many 
drugs and endogenous substances [51, 52]. At pharmacological concentrations, RIF 
induces the expression of MRP transporters both at the apical (MRP2) and basolat-
eral (MRP3) membrane of hepatocytes, while, at higher concentrations, it was 
shown to exert a competitive inhibitory effect on MRP2 in vitro [53]. Caution should 
be exercised when reading this literature, since the effects may depend on whether 
the experiment was done in vitro or in vivo and, for the latter, if the experiment was 
single dose or multidose. For example, RIF can inhibit OATPs, which correlates 
with the initial rise in serum bilirubin at the start of RIF treatment [54]. However, it 
is well known that these values return to normal early in treatment. So, it is possible 
that some of these effects of RIF on OATP are not sustained over time. Further, 
compensatory effects across different OATB receptors may be seen. For example, 
data suggest that SLCO1B1 polymorphism does not affect the extent of induction of 
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hepatic CYP3A4 by rifampicin, probably because other uptake transporters, such as 
OATP1B3, can compensate for reduced uptake of rifampicin by OATP1B1 [55, 56].

RIF intracellular concentrations and CYP3A induction are strongly correlated 
with P-gp levels, encoded on the multidrug resistance gene (MDR1) [57, 58]. 
Polymorphic expression of MDR1 may partially explain the wide inter-patient vari-
ability in CYP3A induction by RIF. RPNT is at least 85% as potent an inducer as 
RIF, and when RPNT is dosed daily, RPNT may be more potent than daily RIF 
[5960]. RBN is about 40% as potent as RIF [60]. The AUC of RIF may be lower in 
patients with active tuberculosis, those with the solute carrier organic anion trans-
porter 1B1 (SLCO1B1) c. 463CA genotype, and in TB patients from Africa versus 
North America [61]. The extent of induction by rifamycins may change with dosing 
frequency (daily versus intermittently) [62]. For 600 mg RIF daily, near-maximum 
induction occurs in about 7 days, although true steady state may take weeks [51]. 
Larger doses may shorten the time to, but not the extent of, induction, which lasts 
for 7–14 days after the rifamycin is stopped [51, 62, 63]. CYP3A4, and to a lesser 
degree, CYP2C9, CYP2C19, and CYP2D6, are most affected, leading to shorter 
half-lives and lower plasma concentrations for many coadministered drugs.

RBN induces and is partly metabolized by CYP3A, leading to complex bidirec-
tional interactions [29, 51]. RBN decreases concentrations of other drugs, while 
CYP3A inhibitors increase the concentrations of RBN and especially 25-O-desacetyl 
RBN, sometimes leading to toxicity [29, 51]. RBN often is used in place of RIF if 
there are drug-drug interactions of concern. In contrast, RPNT is very similar to RIF 
regarding drug interactions. Unlike RBN, RPNT does not offer any advantage in 
sparing the drug interactions. Like RIF, RPNT is not a substrate for CYP enzymes, 
and concentrations of RIF and RPNT do not increase with concurrent enzyme 
inhibitors.

Significant inter-patient variability in the extent of rifamycin drug interactions 
can be seen [18, 29, 51, 64]. Most data come from small studies of healthy volun-
teers and focus on bidirectional interactions. Clinically, complex interactions 
involving three, four, or more drugs cannot be predicted, especially when factoring 
in erratic drug absorption in some patients [18, 64]. For example, in solid organ 
transplant recipients, significant interactions can occur between rifamycin-based 
regimens and calcineurin inhibitors or rapamycin [65]. Therapeutic drug monitor-
ing (TDM) should be used for such patients. TDM should be considered early in 
treatment for complicated multidrug interactions involving TB drugs, azoles, prote-
ase inhibitors, NNRTI, and macrolides [19, 64]. In contrast, guessing at the doses 
may be harmful to the patient. A review of rifamycin drug interactions with antimi-
crobials is described below. A summary is provided in Table 6.2 [11, 66, 67].

6.4.2.1  Azoles

RIF reduces itraconazole AUC 64–88% in both healthy volunteers and in AIDS 
patients, often resulting in undetectable concentrations [68, 69]. Likewise, RIF 
reduces the AUC of ketoconazole by 82% in healthy volunteers [70]. Based on these 
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data, the concurrent use of RIF and itraconazole and ketoconazole should be avoided 
due to the risk of therapeutic failure. Schwiesow et al. reported the use of voricon-
azole and RBN together to successfully treat a combined mycobacterial and 
Aspergillus infection [71]. The approach described may be used as a template for 
similar types of complex interactions. The goal is to get the patient on safe and 
effective doses of the relevant drugs as quickly as possible.

RIF may reduce fluconazole’s AUC by 23–52% and may cause treatment failures 
[72–74]. Higher doses of fluconazole may be required if used concomitantly with 
RIF [1, 75]. There is no significant effect of fluconazole on RIF pharmacokinetics 
[76]. As noted, RBN demonstrates bidirectional interactions. Fluconazole increased 
RBN’s AUC by 76% and further increased the 25-desacetyl metabolite [77]. Caution 
should be exercised, and TDM employed, during concurrent use of fluconazole with 
RBN. In cases of coexisting mycobacterial and fungal infections, careful drug selec-
tion and therapeutic monitoring of drug concentrations can allow for combined use 
of these drugs.

6.4.2.2  Chloramphenicol

Several case reports have described low chloramphenicol serum concentrations in 
patients treated concomitantly with RIF.  The dose of chloramphenicol could be 
increased to maintain serum concentrations; however, this may put the patient at 
greater risk for aplastic anemia. Alternative therapies should be considered in 
patients taking RIF [78, 79].

6.4.2.3  Dapsone

RIF and RBN have been associated with a significant increase (50–70%) in the 
clearance of dapsone [20, 80], resulting in lower dapsone AUC values. Since lower 
dapsone exposures may increase the risk of Pneumocystis jirovecii pneumonia 
(PCP). Higher dapsone doses may be needed when used with RBN or RIF [80]. 
Patients should be monitored closely and TDM should be considered.

6.4.2.4  Doxycycline

Treatment failures have been reported in patients with brucellosis being treated with 
doxycycline and RIF. Patients receiving RIF and doxycycline had decreased doxy-
cycline AUC values (59%) and higher clearances compared to those receiving doxy-
cycline plus streptomycin. Alternative therapies should be considered in patients 
taking RIF [81].
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6.4.2.5  Fluoroquinolones

Limited data exist regarding the interactions between fluoroquinolones and rifamy-
cins. Quinolone clearance may be increased by RIF [82, 83]. Weiner et al. evaluated 
the effects of RIF on concentrations of moxifloxacin. The AUC of moxifloxacin was 
decreased by 27%, but peak concentrations were unchanged, secondary to rifampin’s 
inductive effect on phase II clearance pathways noted above [84]. Similar results 
were seen by Nijland et al. [85]. Currently, there are not enough data to support 
routine dosage adjustments. That said, TDM can detect patients with low moxi-
floxacin concentrations, allowing for dose adjustment. Moxifloxacin does show 
concentration-dependent activity against M. tuberculosis [86]. RPT and RFB may 
also decrease moxifloxacin serum concentrations. Where available, moxifloxacin 
plasma concentrations can guide therapy.

6.4.2.6  Isoniazid

The oral bioavailability of RIF was reduced by an average of 32% in volunteers who 
were administered an INH-RIF fixed-dose combination (FDC) product, compared 
with RIF alone [87]. This appears to be a function of the FDC formulation and not 
directly due to an interaction between INH and RIF. This is compensated by giving 
a slightly higher dose of RIF (in milligrams) as the FDC product. This effect may 
vary with individual FDC formulations.

6.4.2.7  Macrolides

The combination of clarithromycin and RIF resulted in reduced mean peak clar-
ithromycin concentrations (87%) when compared to clarithromycin monotherapy 
[88]. Overall, concentrations of the metabolite of clarithromycin, 14-OH clarithro-
mycin, were not affected, although the usual ratio of parent to metabolite was 
inverted. While 14-OH clarithromycin is active against H. influenzae, it is not active 
against M. avium complex (MAC) [89]. Based on current data, RIF can decrease the 
efficacy of clarithromycin against MAC by reducing serum concentrations. 
Azithromycin may be preferred when RIF is used.

Macrolide drug interactions with RBN are complex. RBN decreases macrolide 
concentrations, while the macrolides, CYP3A inhibitors, increase the concentration 
of RBN and its active metabolite, occasionally leading to RBN toxicity. The phar-
macokinetics of clarithromycin plus RBN has been evaluated in healthy volunteers 
and in HIV-positive patients [77, 88, 90]. Concomitant administration resulted in 
increased serum concentration (76%) and AUC (99%) of RBN and its partially 
active metabolite, 25-O-desacetyl rifabutin. Rifabutin reduced clarithromycin’s 
AUC by 44% and increased concentrations of 14-OH clarithromycin. Reports of 
significant adverse reactions, including neutropenia, fever, myalgia, and uveitis 
have been associated with the combination of clarithromycin plus RBN, especially 
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in the presence of additional drugs, such as fluconazole [88, 90]. Based on current 
data, the combination of RBN and clarithromycin should be avoided when feasible 
and used cautiously when necessary. Despite azithromycin’s reduced affinity for 
CYP, studies evaluating the combination of azithromycin and RBN also resulted in 
unusually high rates of neutropenia [88]. Azithromycin may be preferred if 
RBN + macrolide therapy is necessary. Otherwise, RIF may be easier to use than 
RBN. TDM should be used to achieve the desired concentrations.

6.4.2.8  Metronidazole

Limited data has shown that RIF increases the clearance of metronidazole and 
decreases the AUC [91].

6.4.2.9  Non-nucleoside Reverse-Transcriptase Inhibitors

Tables 6.3 and 6.4 summarize the effects of RIF and RBN on the AUC of non- 
nucleoside reverse-transcriptase inhibitors [28, 92]. Although rarely used today, 
delavirdine should not be combined with any rifamycin [1, 75, 93, 94]. In general, 
etravirine should not be used together with RIF but can be used with RBN [95]. 
Dosage adjustments may be necessary. Rilpivirine is a substrate and inducer of 
CYP3A4. RIF reduced rilpivirine AUC by 80% and trough concentrations by 89%, 
so the two drugs should not be coadministered [96].

Nevirapine and efavirenz can be used with either RBN or RIF, although efavi-
renz generally has been used in the United States. Studies with RIF and efavirenz 
have shown moderate no significant reductions in concentrations of efavirenz. 
Patients with certain genetic polymorphisms (CYP 2B6 516  G  >  T) metabolize 
efavirenz more slowly, and high concentrations of efavirenz are common [97–99]. 
Dosage adjustments of efavirenz may be considered if given with RIF in patients 
who weigh over 50 kg [100–104]. When RBN is used in combination with efavi-
renz, the concentration of RBN is reduced, and RBN dosage should be adjusted to 
600 mg per dose [105, 106]. RIF has been shown to reduce the concentration of 
nevirapine by 20–55% [107–110]. Efavirenz is the preferred NNRTI to be used with 
RIF; however, if nevirapine is selected in patients already receiving RIF therapy, it 
should be initiated without the once daily lead-in dosing to minimize subtherapeutic 
concentrations [111]. Higher doses of nevirapine have been associated with 
increased rates of hepatotoxicity [112]. RBN may be an option in patients taking 
nevirapine as interactions are less likely [113]. Serum concentration changes of 
RBN and etravirine combinations are 17% and 35%, respectively, when given in 
combination [95]. Standardized dosage adjustments are not recommended, but 
TDM could guide dosing in individual patients.

R. Namdar and C. A. Peloquin
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6.4.2.10  Nucleoside Reverse-Transcriptase Inhibitors

Zidovudine and lamivudine are not metabolized by the CYP450 enzymes. The effi-
cacy of these drugs is correlated with the intracellular concentrations of the active 
derivative. The coadministration of RIF with zidovudine resulted in a decrease 
(43%) in Cmax and AUC (47%) of zidovudine. Decreased plasma concentrations 
have not been shown to reduce the concentration of the intracellular metabolite [63]. 
Therefore, RIF is expected to have little impact on the clinical effect and antiviral 
activity of zidovudine [63].

6.4.2.11  Protease Inhibitors

The protease inhibitors are CYP3A substrates and inhibitors, therefore exhibiting a 
bidirectional interaction. Tables 6.3 and 6.4 summarize the effects of RIF and RBN 
on the AUC of protease inhibitors [29, 92]. Due to the profound effects of RIF and 
RPNT on the AUCs of saquinavir, indinavir, nelfinavir, and amprenavir, concomi-
tant administration is discouraged [75, 114–120].

RIF significantly reduces saquinavir concentrations when but when used with 
ritonavir, RIF has lesser effects. But, RIF also has modest effects on ritonavir con-
centrations [121].

Tipranavir, like the other protease inhibitors, both inhibits and induces the cyto-
chrome P450 enzyme system; when used in combination with ritonavir, its net 
effect on CYP3A4 is inhibition. Tipranavir also induces the P-glycoprotein trans-
porter; tipranavir may alter the concentrations of many other drugs metabolized by 
these pathways and in some cases may be complex and difficult to predict. Rifampin 
induces tipranavir metabolism and decreases tipranavir concentrations; RIF should 
not be given concomitantly with tipranavir. Combining tipranavir with RBN should 
be done with caution, while toxicity and RBN drug concentrations should be moni-
tored [122]. Darunavir is metabolized by CYP3A4. Rifampin induces darunavir 
metabolism and decreases darunavir concentrations; RIF should not be given con-
comitantly with darunavir. Coadministration of darunavir with ritonavir results in a 
55% increase in the RBN metabolite AUC values [123] and a concomitant decrease 
in darunavir concentrations.

Based on current data, ritonavir or saquinavir, ritonavir should be used with cau-
tion in combination with RIF [1, 75]. The complexity of this interaction may be 
overcome by TDM which may help to optimize regimens for the coadministration 
of these agents.

Because RBN has little effect on the serum concentration of ritonavir-boosted 
protease inhibitors, RBN can be used if combination therapy is necessary [123, 
124]. However, due to the bidirectional interaction and the potential for intolerance, 
RBN and/or protease inhibitor dosage adjustments may be warranted [117, 119, 
125]. The combination of daily nelfinavir with RBN twice-weekly results in what 
may be considered reasonable RBN AUC’s [126]. However, a related study by the 
same research group found 5% failure or relapse with the selection of acquired rifa-
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mycin resistance (ARR) with twice-weekly TB treatment, including RBN [127]. 
Lopinavir-ritonavir used in combination with RBN three times weekly also lead to 
the selection of ARR. Therefore, RBN 150 mg daily is recommended when given 
with boosted protease inhibitors in adult patients. These patients should be moni-
tored for RBN toxicities, and further dosage adjustments can be based on plasma 
concentration monitoring [128–130].

6.4.2.12  CCR-5 Receptor Antagonists

Maraviroc is the first drug to be approved in the class of CCR-5 receptor antago-
nists. It is primarily and extensively metabolized by CYP3A4. In the presence of 
CYP3A4 inducers, such as RIF, dosage of maraviroc should be increased due to a 
64% decrease in AUC [131]. Current clinical experience with RBN is limited, but a 
decrease maraviroc AUC is possible.

6.4.2.13  Integrase Inhibitors

In vitro and in vivo studies indicate raltegravir does not have any significant induc-
tion or inhibitory effects on the CYP enzymes [132]. Interactions have been observed 
with RIF; however, efficacy data is required [132]. Raltegravir is metabolized by 
glucuronidation. The enzyme responsible for the metabolite of raltegravir appears 
to be the UDP-glucuronosyltransferase (UGT) 1A1 subtype. Rifampin upregulates 
the synthesis of UGT. A 40% reduction in raltegravir AUC occurred when it was 
dosed as 400 mg twice daily with RIF 600 mg daily. An increased dose of raltegravir 
(800 mg twice daily) demonstrated that the negative effect of RIF on raltegravir 
exposure could be reversed [133]. Therefore, raltegravir 800 mg twice daily should 
be used in adults taking RIF. Caution is warranted if the combination of raltegravir 
and RIF is selected, and RBN may be preferred [133, 134].

Drug doses for persons with HIV coinfection who are being treated with highly 
active antiretroviral therapy (HAART) often must be adjusted when rifamycins are 
used concurrently. The extent of these interactions typically is drug- and patient- 
specific, and an effort should be made to obtain expert consultation and the latest 
available information to guide dosing. Note that plasma concentration changes seen 
in two-way interaction studies may be very different from those seen clinically 
when three or more interacting drugs are used concurrently. For example, the com-
bination of elvitegravir, cobicistat, tenofovir, and emtricitabine (Stribild®) should 
not be given together with RIF as it is expected to reduce the concentrations of 
elvitegravir and cobicistat.

6.4.2.14  Bedaquiline

Bedaquiline, approved by the FDA in 2012, is an ATP synthase inhibitor. RIF and 
RBN increase the clearance of bedaquiline. Cmax concentrations when 
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administered with RIF are decreased 21% and with RPNT concentrations are 
decreased 25%. However, bedaquiline metabolites may accumulate, and the parent 
and metabolites display very long elimination half-lives. Concomitant administra-
tion of rifamycin antibiotics and bedaquiline is not recommended [135].

6.4.2.15  Sulfamethoxazole and Trimethoprim

The effect of RIF on concentrations of sulfamethoxazole/trimethoprim (SMZ/TMP) 
was evaluated in HIV-positive patients [136]. A decrease (23%) in mean AUC of 
SMZ/TMP was observed. The clinical significance of this interaction has not been 
established, but the reduced efficacy of SMZ/TMP may be of concern.

Rifamycins interact with several other classes of drugs beyond those listed above. 
Additional information regarding rifamycin interactions can be found in the article 
by Niemi et al. and in several other papers [19, 136, 137].

6.4.3  Pyrazinamide Interactions

Pyrazinamide (PZA) is metabolized to pyrazinoic acid and 5-hydroxypyrazinoic 
acid, which are subsequently cleared renally [5, 30]. PZA is removed by hemodialy-
sis [30]. It is not associated with a large number of drug interactions. Because PZA 
can compete with uric acid for excretion, patients will accumulate uric acid while 
on PZA. In most cases, this is not a clinically significant problem, which may pre-
cipitate a flare-up of the disease. Allopurinol inhibits the clearance of PZA’s primary 
metabolite, pyrazinoic acid, thereby exacerbating the metabolite’s inhibition of uric 
acid secretion [138, 139]. Further, probenecid may be significantly less effective as 
a uricosuric agent in the presence of PZA [140]. Thus, the most effective manage-
ment of PZA-induced elevations of uric acid and arthralgias may be to hydrate the 
patient and withhold PZA.

The combination of RIF and PZA in the absence of INH leads to an unexpect-
edly high incidence of hepatotoxicity in HIV-negative patients [141–143]. It is 
important to stress this was in the context of 2-month regimens of RIF and PZA for 
latent TB infection (LTBI) and not during the treatment of active TB disease with 
INH, RIF, PZA, and EMB.  Therefore, this 2-month RIF+ PZA LTBI regimen 
should no longer be used [142]. PZA combined with ofloxacin or levofloxacin for 
LTBI due to multidrug-resistant TB also is poorly tolerated [144–146]. It is possible 
that PZA or its metabolites compete with quinolones for renal tubular secretion, 
although this has not been proven. This regimen also cannot be recommended at 
this time. In some cases, patients receiving zidovudine may have diminished con-
centrations of pyrazinamide.
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6.4.4  Ethambutol Interactions

EMB is cleared both hepatically and renally [4, 29, 30]. EMB is not significantly 
removed by hemodialysis [4, 30]. Anecdotal experience suggests that it is not 
cleared by peritoneal dialysis, and accumulation can occur. The specific pathways 
involved in its hepatic clearance are not well established, and EMB has few docu-
mented interactions. The effect of concurrent antacids has been described above. 
Because EMB can cause optic neuritis, patients receiving other potential agents 
associated with ocular injury (RBN, cidofovir) should be monitored carefully. 
While RBN and cidofovir are associated with uveitis and not optic neuritis, additive 
effects may adversely affect vision [37, 130].

6.4.5  Aminoglycoside and Polypeptide Interactions

The aminoglycosides amikacin, kanamycin, and streptomycin, as well as the poly-
peptides capreomycin and viomycin, are all primarily cleared renally [30, 148, 
149]. Aminoglycosides are removed by hemodialysis [150]. However, under clini-
cal conditions, especially in the intensive care setting, traditional hemodialysis 
removal may be limited. Other methods of renal replacement, however, potentially 
can remove substantially more drug. Aminoglycosides can adversely affect vestibu-
lar, auditory, and renal function. Reported differences in the incidence of these tox-
icities among the agents reflect, in part, differences in doses and frequencies used. 
Elevated serum creatinine values due to non-oliguric acute tubular necrosis are usu-
ally reversible; renal wasting of cations also may occur [30, 46, 148, 151]. Periodic 
monitoring (every 2–4 weeks) of the serum blood urea nitrogen, creatinine, cal-
cium, potassium, and magnesium should be considered, especially if other nephro-
toxins (such as amphotericin B) are being used [1]. Vestibular changes may be noted 
on physical exam and may occur independently of, or in conjunction with, tinnitus 
and auditory changes [149–151]. Auditory changes are best detected by monthly 
audiograms for those patients requiring prolonged treatment or those receiving con-
current potential ototoxins (clarithromycin, ethacrynic acid, furosemide) [1, 150]. 
Aminoglycosides and polypeptides can potentiate the neuromuscular blocking 
agents or may precipitate neuromuscular blockade in patients with myasthenia gra-
vis [153]. Therefore, these drugs should be used cautiously in those settings.

6.4.6  Cycloserine Interactions

There is little known regarding the potential for drug interactions with cycloserine 
(CS) [152]. This drug is renally cleared, and there are no known metabolites [30, 
151]. CS is cleared by hemodialysis [152]. It can cause a variety of central nervous 
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system disturbances, including anxiety, confusion, memory loss, dizziness, leth-
argy, and depression, including suicidal tendencies [30]. Therefore, other agents 
associated with any of these effects (INH, ethionamide, and quinolones) may have 
additive CNS toxicities. CS should be used cautiously in patients with a history of 
depression or psychosis or those receiving treatment for these conditions. It is not 
clear if cycloserine can alter the potential for seizures in patients predisposed to 
these events. Caution is advised, as is TDM, to ensure that concentrations do not 
exceed the recommended range of 20–35 mcg/ml [18]. Older literature suggests that 
CS may decrease the clearance of phenytoin, possibly leading to toxicity [37].

6.4.7  Ethionamide Interactions

ETA is a prodrug that must be converted to its active form. It is extensively metabo-
lized to a sulfoxide metabolite that is active against mycobacteria [7, 30]. Flavin- 
containing monooxygenase (FMO) has been found to play an important role in the 
pharmacokinetics of ethionamide and its hepatotoxicity. The specific hepatic micro-
somal enzymes primarily responsible for metabolism of ethionamide’s metabolism 
are CYP2C8, CYP2C19, and to a lesser extent CYP3A4, CYP2B6, and CYP1A2 
[153]. The inhibitory effects of ethionamide on CYP2C8 enzymes may cause clini-
cally significant drug interactions [153, 154]. Little unchanged drug is excreted in 
the urine/feces or cleared by hemodialysis [152, 153]. ETA causes significant gas-
trointestinal (GI) distress which may improve when taken with food. ETA may 
cause CNS effects, including headache, drowsiness, depression, psychosis, and 
visual changes, although a causative role has not been established [153]. Therefore, 
additive effects with INH, CS, or fluoroquinolones are possible. ETA may cause 
peripheral neuritis, so caution should be exercised in patients receiving other agents, 
such as nucleoside reverse-transcriptase inhibitors that share this toxicity. ETA can 
cause hepatotoxicity, up to 5 months after initiation, and goiter, with or without 
hypothyroidism. The latter is worsened by the concurrent use of PAS [153–155]. 
Thyroid-stimulating hormone (TSH) concentrations should be monitored periodi-
cally in patients receiving ETA.

6.4.8  Para-aminosalicylic Acid Interactions

PAS is metabolized by N-acetyltransferase 1 (NAT1) to acetyl-PAS that is subse-
quently cleared renally [9, 152, 155]. Little PAS is cleared by hemodialysis, but 
acetyl- PAS is cleared by hemodialysis, and post-hemodialysis doses may be neces-
sary [156]. PAS can cause diarrhea, and this can affect the pharmacokinetics of 
other drugs. Various types of malabsorption with PAS have been described, includ-
ing steatorrhea, vitamin B12, folate, xylose, and iron. With the possible exception of 
digoxin, it is not known if PAS can cause specific drugs to be malabsorbed [157]. 
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Hypersensitivity reactions with fever, including hepatitis, can occur, and desensiti-
zation to PAS-induced hypersensitivity is not recommended [157]. PAS is known to 
produce goiter, with or without myxedema, and this is more frequent with concomi-
tant ETA therapy. This can be prevented or treated with thyroxine. Older tablet 
forms of PAS that contained bentonite reduced serum RIF concentrations; this 
should not occur with the granule form [157]. Due to the reported greater risk of 
crystalluria, the concurrent use of ammonium chloride with PAS is not recom-
mended [156, 157].

6.4.9  Clofazimine Interactions

Clofazimine (CF) is a weak anti-TB drug, and has a very unusual pharmacokinetic 
profile [10, 30]. It is highly tissue-tropic, and as a result, displays a very long elimi-
nation half-life. It is primarily excreted in feces, but the precise mechanisms have 
not been described. CF is negligibly removed by hemodialysis [158]. As noted 
above, oral absorption is improved when CF is given with a high-fat meal. The most 
serious adverse reactions associated with CF are dose-related gastrointestinal (GI) 
toxicities, and these can be additive with other drugs’ effects [30, 149]. Skin discol-
oration may also occur, and other drugs, including amiodarone and RBN, may make 
this worse. CF can produce a statistically significant increase in RIF’s Tmax, but 
this interaction is unlikely to be clinically significant. The large accumulation of CF 
in macrophages may affect the function of these cells, but this has not been well 
defined. It is at least theoretically possible that such affects contribute to the worse 
outcome seen in some AIDS patients who received CF as part of their regimen for 
disseminated MAC infection (DMAC). CF is being studied as a potential adjuvant 
to cancer chemotherapy, in the hope that it may reduce or reverse acquired multi-
drug resistance (MDR) [158].

6.4.10  Bedaquiline

Bedaquiline is an ATP synthase inhibitor, approved for the treatment of pulmonary 
multidrug-resistant tuberculosis. The hepatic isoenzyme, CYP3A4, is primarily 
responsible for metabolism of bedaquiline. Bedaquiline has not been observed to 
induce or inhibit CYP isoenzyme activity in vitro; however given its metabolism by 
CYP3A4, there is a potential for drug interaction during coadministration with 
CYP3A4 inducers (rifampin, rifabutin, carbamazepine, efavirenz, etravirine) and 
inhibitors (ciprofloxacin, ketoconazole, ritonavir) [159, 160].
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6.4.11  Delamanid

Delamanid is a new agent that inhibits mycolic acid synthesis and is currently being 
used under the guidance of the WHO for MDR-TB treatment when other treatments 
are ineffective. Coadministration of delamanid with strong CYP3A4 inhibitors has 
been associated with increase in the concentration of metabolites. Clinically signifi-
cant drug interactions and increased risk of QTc prolongation have been associated 
with concomitant administration of CYP3A4 inhibitors and with fluoroquinolones. 
Caution must be exercised in patients at risk for QTc prolongation. Strong CYP 3A4 
inducers can reduce the exposure of delamanid by up to 45%. In drug interaction 
studies in healthy subjects, delamanid did not affect the concentration of rifampicin, 
isoniazid, or pyrazinamide but increased concentrations of ethambutol by approxi-
mately 25% [162].

6.5  Management of Patients Coinfected with HIV and TB

The Centers for Disease Control and Prevention has published guidelines for the 
management of TB in patients coinfected with HIV [1, 75]. First, clinicians should 
look for a paradoxical worsening of TB symptoms upon the introduction of highly 
active antiretroviral therapy (HAART) as a consequence of immune reconstitution 
inflammatory syndrome (IRIS) [1, 75]. Next, the guidelines generally recommend 
the use of RBN instead of RIF for patients receiving HAART in an attempt to mini-
mize drug interactions. It is very important to bear in mind that most interaction 
studies involving RIF or RBN and HAART were performed in small numbers of 
healthy volunteers. Results seen in HIV-positive patients can be very different. For 
example, combinations of RIF and ritonavir are very poorly tolerated in healthy 
subjects, with high rates of hepatic enzyme elevations. This is not nearly as common 
in patients with HIV, based on available information. Table 6.5 summarizes the cur-
rent data available on drug interactions between protease inhibitors and antitubercu-
losis drugs other than rifamycins [29, 75]. It is our practice to measure the serum 
concentrations of the various interacting drugs (antimycobacterial drugs, oral azole 
antifungals, and anti-HIV protease inhibitors) in order to verify adequate dosing 
[18, 28]. As noted, low RBN plasma concentrations have been associated with 
acquired rifamycin resistant (ARR) mycobacteria in patients with HIV [75, 127]. 
Intermittent dosing of TB drugs in patients with HIV may become a thing of the 
past. However, the best daily dose of RBN for patients receiving HAART requires 
further study.
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6.6  Nontuberculous Mycobacterial (NTM) Infections

The NTM comprise a substantial list of infections caused by various slow-growing 
and rapid-growing mycobacteria. The management of such infections has been 
summarized elsewhere [161]. Clinicians should be aware that there are differences 
between HIV-infected and non-infected hosts as far as disease presentation and 
management. It is important to consider the drug interactions described above for 
TB, as many of these same drugs are used to treat NTM. Advanced generation mac-
rolides (azithromycin, clarithromycin) are frequently used to treat NTM, such as M. 
avium complex, and clarithromycin has been associated with many CYP3A4 inter-
actions [46, 162]. In particular, bidirectional interactions involving RBN and clar-
ithromycin should be anticipated [160]. RIF causes a more pronounced decline in 
clarithromycin concentrations than RBN [162–164].

6.7  Future Considerations

Several new TB drugs are under development, including PA-824 and SQ109 [165–
168]. SQ109 is metabolized by CYP2D6 and CYP2C19, and up to 58% of parent 
is metabolized in 10-min incubation with microsomes. Insignificant metabolism is 
found in the presence of CYP3A4 [168]. The optimal dosing for combined use of 
these new TB drugs with RIF or other rifamycins in humans has not been studied 
to date.

Table 6.5 Predicted potential for drug-drug interaction between HIV protease inhibitors and 
antituberculosis drugs other than rifamycins

Drug Metabolism
Effect on 
CYP3A

Effect of drug X 
on PI (predicted)a

Effect of PI on 
drug X (predicted)a

Isoniazid Acetylation > 
CYP

Mild inhibitor No change in 
indinavir

None

Pyrazinamide Deamidase > 
xanthine oxidase

None known (none) (none)

Ethambutol Renal > CYP None known (none) (none)
Ethionamide CYP None known Unknown (increase)
PAS Acetylation None known (none) (none)
Quinolones Renal > CYP None known (none) (none)
Aminoglycosides Renal None known (none) (none)

Adapted from Burman et al. [29] with permission
aPredicted using existing knowledge regarding metabolic pathways for the two drugs
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6.8  Conclusion

The above discussion highlights the need for the careful introduction of the TB 
drugs into existing drug regimens. In particular, rifamycins can seriously disrupt 
ongoing treatment, with potentially serious consequences. While the role of TDM 
remains to be better defined for these situations, it does offer the potential to untan-
gle multidirectional drug interactions.
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Chapter 7
Drug Interactions in HIV: Protease 
and Integrase Inhibitors

Parul Patel and Stan Louie

7.1  Introduction

Treatment of HIV disease has greatly enhanced our understanding of the molecular 
basis leading to drug-drug interactions. HIV protease inhibitors (PIs) and nonnucle-
oside reverse transcriptase inhibitors (NNRTIs), critical components of early anti-
retroviral therapy (ART), are subject to a number of clinically significant drug-drug 
interactions. Early effective ART consisted of either a PI- or NNRTI-based regimen 
in combination with two nucleosides. Although effective, these two therapeutic 
platforms had major drawbacks, which included a large number of pills, multiple 
daily dosing, intolerance, and significant impact on metabolic clearance. For exam-
ple, PIs can alter metabolic clearance by both inhibiting a wide variety of cyto-
chrome P450 (CYP) enzymes and inducing the expression of phase II enzymes such 
as glucuronidation. In contrast, NNRTIs are well-known inducers of CYP450 isoen-
zymes that increase the clearance of concomitantly administered drugs.

In the past decade, ART regimens have undergone dramatic improvements in 
terms of tolerability and simplification (given once or twice daily). Two early 
changes significantly improved ART tolerability and adherence. One was the devel-
opment of more tolerable agents such as the NNRTI, efavirenz, and PI, atazanavir, 
with pharmacokinetic (PK) profiles that also permitted once daily administration. 
The second was a fortuitous discovery that the PI ritonavir (RTV) could prolong 
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systemic PK of a concomitantly administered PI, opening the potential to dose PIs 
once daily with low doses of RTV.  The ability to reduce dosing frequency also 
improved adherence which ultimately improved clinical outcomes. In addition, the 
development of new ARVs with increased potency meant lower daily dosages could 
be used and permitted co-formulation of various individual components into a sin-
gle pill, more commonly referred to as fixed-dose combination tablets or FDC 
(Table 7.1).

More recently, a potent new class of ART, integrase inhibitors (INIs), has set a 
new standard as the most potent and well-tolerated agents available with a high 
genetic barrier to resistance. Raltegravir (RAL) was the first INI approved which 

Table 7.1 Fixed-dose combinations (FDCs) of antiretroviral agents

Name of 
FDC Components

No. of tablets 
per day Daily dose

Atripla 600 mg efavirenz, 300 mg tenofovir DF, 200 mg 
emtricitabine (FTC)

1 Once daily

Combivir 300 mg zidovudine, 300 mg lamivudine 1 Twice daily
Descovy 10 mg tenofovir alafenamide (TAF) and 200 mg 

emtricitabine (FTC) – Not available in the United 
States
25 mg tenofovir alafenamide (TAF) and 200 mg 
emtricitabine (FTC)

1 Once daily
Once daily

Eviplera
or
Complera

25 mg rilpivirine (RPV), 300 mg tenofovir DF 
(TDF), 200 mg emtricitabine (FTC)

1 Once daily

Epzicom
or
Kivexa

600 mg abacavir (ABC), 300 mg lamivudine (3TC) 1 Once daily

Evotaz 300 mg atazanavir (ATV), 150 mg cobicistat 
(COBI)

1 Once daily

Genvoya 150 mg elvitegravir, 150 mg cobicistat, 10 mg 
tenofovir alafenamide (TAF), 200 mg emtricitabine 
(FTC)

1 Once daily

Kaletra 200 mg lopinavir (LPV), 50 mg ritonavir (RTV) 2 Twice daily
Odefsey 25 mg rilpivirine, 25 mg tenofovir alafenamide 

(TAF), 200 mg emtricitabine (FTC)
1 Once daily

Prezcobix
or
Rezolsta

800 mg darunavir (DRV), 150 mg cobicistat (COBI) 1 Once daily

Stribild 150 mg elvitegravir (EVG), 150 mg cobicistat 
(COBI), 300 mg tenofovir DF (TDF), 200 mg 
emtricitabine (FTC)

1 Once daily

Triumeq 50 mg dolutegravir (DTG), 600 mg abacavir (ABC), 
300 mg lamivudine (3TC)

1 Once daily

Trizivir 600 mg abacavir (ABC), 300 mg zidovudine (AZT), 
300 mg lamivudine (3TC)

1 Twice daily

Truvada 300 mg tenofovir DF (TDF), 200 mg emtricitabine 
(FTC)

1 Once daily
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did not require use of RTV as a pharmacoenhancing agent. Subsequently, elvitegra-
vir (EVG) was co-formulated with the first alternative pharmacokinetic booster, 
 cobicistat (COBI), to enable once daily dosing. Elvitegravir is available as a com-
plete, single-tablet regimen (STR) which includes COBI and dual NRTIs, emtric-
itabine and tenofovir disoproxil fumarate (TDF), in Stribild™ or with another 
tenofovir prodrug, tenofovir alafenamide (TAF), in Genvoya™. Dolutegravir (DTG) 
is the first second-generation INI with a PK profile that also supports once daily 
dosing but without the need for pharmacokinetic boosting agents such as RTV and 
COBI. Dolutegravir has also been co-formulated as a STR with dual NRTIs, lami-
vudine (3TC) and abacavir (ABC), in Triumeq™. Among the recently approved 
INIs, elvitegravir FDC regimens have similar potential for drug-drug interactions as 
PIs or NNRTIs, as elvitegravir is a CYP3A substrate co-formulated with a potent 
CYP3A inhibitor. In contrast, raltegravir and dolutegravir have a lower potential for 
drug-drug interactions because their metabolic pathway involves glucuronidation 
and thus have lower propensity for being a victim or perpetrator of drug-drug 
interactions.

This chapter will make extensive use of tables for reference, while the text will 
provide historical context and discussions about the molecular basis of drug-drug 
interactions and address key drug-drug interactions issues with PIs and INIs. 
Internet websites are continually updated with the latest antiretroviral drug-drug 
interaction information that may be useful to the reader [1–4].

7.2  Pharmacology of ART

7.2.1  Protease Inhibitors

PIs were the first class of antiretrovirals to dramatically improve HIV morbidity and 
mortality [5]. PIs are potent ARVs that exhibit durable antiretroviral suppression 
and have a high genetic barrier to resistance. To enhance efficacy, PIs are commonly 
co-administered with other ARV agents from different therapeutic classes to pro-
duce additive to synergistic antiviral activity. The introduction of PIs as part of the 
antiretroviral regimen led to the term, highly active antiretroviral therapy (HAART), 
which has since been simplified to antiretroviral therapy (ART). HIV protease 
inhibitors competitively inhibit HIV protease. PIs are peptidomimetic agents that 
bind and inhibit viral proteases from liberating the active peptide moieties from a 
virally produced pro-peptide preventing further viral propagation from infected 
cells. Numerous PIs have been approved since their introduction in the early 1990s; 
however, no new agents have been approved in this class since 2006, apart from the 
new pharmacokinetic boosting agent, cobicistat. Atazanavir, darunavir, and lopina-
vir are still employed in the treatment of HIV-infected adults and children in com-
bination with a pharmacokinetic enhancer (ritonavir or cobicistat) and other 
antiretroviral agents, but the use of other HIV PIs has declined.
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In general, PIs are large-molecular-weight compounds that often have low water 
solubility leading to poor oral bioavailability and necessitating large oral doses and 
concomitant administration of food in many cases to increase bioavailability. 
Atazanavir has pH-dependent absorption and should be used with caution with 
gastric- acid modifiers. The majority are highly protein bound and undergo extensive 
hepatic metabolism via CYP3A and may require multiple daily dosing in the 
absence of a pharmacoenhancing agent. Hepatic impairment increases PI expo-
sures; however, renal excretion is typically minimal supporting recommendations 
for no dosage adjustment in renal impairment. PIs are metabolically eliminated by 
hepatic clearance and are also known to inhibit CYP3A activity or UGT activity [6]. 
RTV is a potent inhibitor of CYP3A which was a fortuitous discovery that ulti-
mately shifted its use away from a primary ART agent to its use as a low-dose 
PK-enhancing drug. This boosting effect of RTV was discovered during evaluation 
of RTV with another PI, saquinavir (SQV), to determine if the combination could 
enhance antiretroviral activity. Initially, the reduction of circulating HIV was attrib-
uted to synergistic antiviral activity but was later found to be the result of RTV’s 
ability to prolong the plasma half-life of SQV and increase its total drug exposure. 
The added antiviral activities were found to be a drug-drug interaction, whereby 
RTV potently blocked CYP3A4and reduced the metabolic elimination of the co-
administered PI. This strategy was later employed to reduce the pill burden and 
dosing frequency of other PIs such as indinavir (IDV), lopinavir (LPV), atazanavir 
(ATV), darunavir (DRV), and tipranavir (TPV) using much lower doses of RTV that 
still retained potent CYP inhibition but exerted little antiretroviral activity. The 
majority of DDI studies with PIs have focused on their ability to act as substrates, 
inhibitors, or inducers of CYP3A4 and P-gp transport; however, PIs are also known 
to inhibit active transport processes with the most prominent interactions involving 
OATPs and OCTs. Key drug-drug interactions with protease inhibitors are summa-
rized in Table 7.2.

7.2.2  Integrase Inhibitors

HIV integrase is one of three viral enzymes that are critical for viral replication. 
Since it is only expressed in virally infected cells, this has been an obvious target to 
block HIV proliferation and an area of active research for decades. After viral pen-
etration into the host cell and viral DNA replication, the viral DNA integrates into 
the host genome through a series of DNA cutting and joining reactions. The func-
tion of this multipurpose viral enzyme is to remove the 3′-end from the viral DNA 
to enable the viral DNA strand to be transferred into the host genome. The resultant 
viral DNA is then joined and inserted into the host genome. After viral DNA inser-
tion, cellular enzymes are activated to repair the single gaps found in the DNA and 
remove the unpaired nucleotides. HIV integrase inhibitors (INIs) bind to Mg+2 
within the enzyme catalytic site to effectively disrupt binding to viral DNA, thus 
blocking the viral strand transfer step [7].
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The HIV integrase strand transfer inhibitor or integrase inhibitor (INSTI or INI) 
class of drugs includes raltegravir, elvitegravir, and dolutegravir. Their introduction 
has revolutionized the management of HIV infection for several reasons. They are 
characterized as among the most potent and efficacious antiretroviral agents as 
exemplified by an initial rapid achievement of virologic suppression that is durable 
over time. They exhibit favorable safety and tolerability profiles, have a high genetic 
barrier to resistance without cross-resistance to other agents, and have manageable 
drug-drug interaction profiles (Table 7.3). Most are available in fixed-dose combi-
nations (FDC) with other antiretrovirals to constitute a complete, single-tablet regi-
men that can be administered once daily (Table 7.1). These features explain why 
these compounds have transformed how HIV is currently being managed.

7.2.2.1  Raltegravir

Raltegravir (RAL) was the first integrase inhibitor to receive FDA approval for the 
treatment of HIV. Raltegravir is a small molecule with a beta-diketo acid moiety 
that selectively inhibits the strand transfer step of viral integration. Its introduction 
into clinical use was a paradigm changing moment as it was one of the most potent 
treatment options developed at the time and with a completely new mechanism of 
action which was especially important for heavily treatment-experienced patients in 
desperate need for alternative options that were also well tolerated with potential to 
significantly improve patient adherence.

Raltegravir is approved for twice daily administration (400 mg twice daily) and, 
more recently, for once daily administration (1200 mg once daily) (Isentress PI). 
Raltegravir does not require PK boosting with RTV or COBI. It has a low oral bio-
availability of 32% with large interindividual variability in exposure. Potential rea-
sons for its high pharmacokinetic variability include whether it is dosed with food, 
pH-dependent solubility impacting absorption, differences in UGT1A1 expression 
or polymorphisms, and drug interactions. For example, pharmacokinetic variability 
increases when RAL is dosed with food, as a high fat meal increased AUC and Cmax 
by approximately twofold and increased C12h by 4.1-fold, while Tmax was delayed 
for up to 12 h in some healthy volunteers [8]. It has an initial distribution half-life of 
1 h, which is followed by a beta terminal half-life that is approximately 9 h. Similar 
to other INI, raltegravir is eliminated through UGT1A1-mediated metabolism. At 
clinically achievable concentrations, raltegravir is not a CYP substrate which 
explains why it has few drug-drug interactions. In addition, raltegravir is not an 
inhibitor or inducer of CYP expression.

7.2.2.2  Elvitegravir

Elvitegravir (EVG, E) is the second INI that received FDA approval. Similar to 
raltegravir, EVG is a potent INI with antiviral activity in the subnanomolar range. It 
is available as a single entity and as part of two complete single-tablet antiretroviral 
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regimens with cobicistat (COBI, C), emtricitabine (FTC, F), and either tenofovir 
disoproxil fumarate (E/C/F/TDF, Stribild™) or tenofovir alafenamide (E/C/F/TAF, 
Genvoya™). Since its plasma half-life alone is short, it must be co-administered 
with a pharmacoenhancer like COBI or RTV to prolong the half-life to approxi-
mately 9.5 h to permit once daily dosing [9].

Elvitegravir is metabolized primarily via CYP3A4 with a minor component via 
UDP-glucuronosyltransferase (UGT) 1A1 and 1A3. As stated earlier, EVG requires 
pharmacoenhancement by COBI and the presence of food to improve its systemic 
exposure [10]. Thus, EVG-containing regimens are prone to complex drug interac-
tions via CYP3A similar to those observed with PI and NNRTI classes. EVG is a 
weak inhibitor of P-gp transport; however, COBI and RTV are both clinically rele-
vant P-gp inhibitors. Additionally, EVG and COBI are substrates and inhibitors of 
the transporters breast cancer resistant protein (BCRP), organic anionic 
 transporter- B1 (OATP1B1), and OATP1B3 [11, 12]. The use of TAF as an alterna-
tive to TDF- based fixed-dose combination tablets of EVG does not generally change 
the overall drug interaction liability of EVG FDC tablets, rather improved reduction 
in the incidence of TDF-related renal and bone adverse effects has been reported in 
some studies.

Elvitegravir has a number of clinically relevant drug-drug interactions. 
Elvitegravir is contraindicated when used with drugs that are dependent on CYP3A- 
mediated clearance with a narrow therapeutic index (Table 7.3). In particular, EVG 
is contraindicated when used together with rifamycins like rifampin and rifapentine. 
Combining EVG with the potent CYP3A inducers, rifapentine or rifampin, will 
reduce EVG levels below the threshold required for HIV suppression. When elvite-
gravir has to be used in combination with a rifamycin, rifabutin may be a good 
alternative in this scenario since this is a weak CYP3A inducer. In healthy volun-
teers, rifabutin administered at an adjusted dose of 150 mg every other day signifi-
cantly reduced elvitegravir Cmin by 67% with concurrent COBI administration [13]. 
However, doubling the EVG dose to 300 mg once daily and switching the pharma-
cokinetic booster to low dose RTV mitigate this interaction and permit co- 
administration with dose-adjusted rifabutin [14]. However, increased monitoring 
for rifabutin-associated adverse effects is required as a result of increased rifabutin 
and desacetyl-rifabutin metabolite concentrations with EVG/r co-administration. 
Other potent CYP3A enzyme inducers should not be co-administered with EVG, 
regardless if COBI, within fixed dose tablet regimens, or RTV, with boosted PI regi-
mens, is used for pharmacoenchancement.

In treatment-experienced subjects receiving RTV-boosted PIs with atazanavir or 
lopinavir, the dose of EVG must be reduced as a result of potent UGT1A1 inhibition 
by these PIs. In healthy volunteers, EVG exposures increased up to 2.8-fold when 
co-administered with ATV 300 mg/RTV 100 mg daily and increased by 2.3-fold 
when co-administered with LPV 400 mg/RTV 100 mg twice daily [15]. Thus, con-
comitant use with these RTV-boosted protease inhibitors requires a dose reduction 
in EVG from 150 to 85 mg once daily.
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Overall, EVG-containing regimens are prone to complex CYP3A-mediated drug 
interactions similar to those observed with PI and NNRTI classes but unlike other 
members of the integrase class. EVG is contraindicated for use with drugs depen-
dent on CYP3A-mediated clearance possessing a narrow therapeutic index and 
drugs with potent CYP3A induction potential. Healthcare providers are advised to 
evaluate the potential for drug-drug interactions when prescribing EVG-containing 
regimens due to potent enzyme and transporter inhibition by RTV and COBI.

7.2.2.3  Dolutegravir

Dolutegravir (DTG) is a potent, second-generation INI with antiviral activity against 
raltegravir- and elvitegravir-resistant virus. It exhibits low to moderate variability in 
plasma concentrations and does not require COBI or RTV boosting or food for 
optimal drug exposures. DTG is available as a single entity and as a component of 
a STR (Triumeq™) which is combined with two nucleosides abacavir (ABC) and 
lamivudine (3TC) (Table 7.1).

DTG is primarily metabolized by UGT 1A1 with a minor contribution from 
CYP3A4 and has a favorable drug interaction profile similar to raltegravir, which 
also undergoes glucuronidation. Although DTG is a substrate for UGT1A3, 
UGT1A9, and the efflux transporters P-gp and BCRP, it has a low potential to cause 
drug-drug interactions. DTG does not induce or inhibit CYP or UGT enzymes. 
Additionally, it has relatively little impact on major efflux transporters such as P-gp 
or MRPs [16]. DTG has been shown to potently inhibit renal organic cation trans-
porter, OCT2 and MATE-1, which results in a reduction in creatinine secretion in 
the renal proximal tubule. This causes a benign increase in serum creatinine concen-
trations which consequently causes an artificial decline in calculated glomerular 
filtration rate.

Dolutegravir exposures can be impacted when co-administered with potent 
CYP3A inducers such as tipranavir, fosamprenavir, efavirenz, and rifampin. When 
co-administered with moderate to strong UGT1A1 and CYP3A inducers, DTG 
exposures can be reduced requiring either dose adjustment or employment of miti-
gating strategies. Rifampin, a potent inducer of CYP and efflux transporters, can 
significantly decrease dolutegravir plasma concentrations. This interaction can be 
mitigated by simply increasing the dolutegravir dosage to 50 mg BID. Similar to 
raltegravir, but unlike elvitegravir, dolutegravir may be administered with rifabutin 
without dose adjustment [17].

NNRTIs like efavirenz and etravirine are known CYP3A inducers, and both 
agents are able to reduce DTG plasma concentrations. Efavirenz can significantly 
reduce DTG plasma Cmin by 75%; therefore, the dose of DTG must be increased to 
50 mg twice daily to overcome this interaction [18]. Surprisingly, etravirine dra-
matically reduced plasma DTG Cmin by 88% likely due to combined UGT and 
CYP3A induction; however, this interaction can be attenuated with the addition of 
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specific RTV-boosted PIs, either DRV/RTV or LPV/RTV [19]. Therefore, no dose 
adjustment in DTG is necessary when co-administered with etravirine and RTV- 
boosted PIs, DRV/RTV and LPV/RTV.  Similarly, when DTG is combined with 
enzyme-inducing PIs like tipranavir or fosamprenavir, even the addition of RTV 
cannot mitigate the enzyme-inducing effect; therefore, DTG requires dose adjust-
ment when co-administered with these agents.

When DTG is combined with atazanavir (ATV), a potent competitive inhibitor of 
UGT-mediated metabolism, plasma DTG Cmin increased by 2.8-fold and AUC by 
1.9-fold compared with ATV alone. However, when RTV was added to ATV, the 
increase in DTG exposure was attenuated possibly via RTV-mediated induction of 
UGT metabolism [19, 20]. Additionally, there were no safety issues as a result of 
higher DTG concentrations with atazanavir co-administration in clinical trials; 
therefore, no dose adjustment of DTG is required.

7.2.3  Drug Interactions to Improve Bioavailability and Dosing

7.2.3.1  Pharmacoenhancement of PIs

As previously mentioned, RTV is a potent CYP3A4 inhibitor found in high levels in 
the gut wall and liver [21]. These inhibitory properties can be exploited to increase 
plasma concentrations of co-administered PIs with RTV.  The resultant effect is 
increased PI exposure leading to improved antiviral activity while permitting a 
lower dosage and dosing frequency of the co-administered PI and potentially reduc-
ing the incidence of adverse effects.

RTV is ideally suited to boosting, as it acts both on first-pass metabolism and on 
hepatic clearance. Thus, CYP3A4 and P-gp found in the intestinal walls can be 
inhibited using RTV and thus overcome poor intrinsic bioavailability. When RTV 
200 mg was co-administered with SQV, a three- to eightfold increase SQV exposure 
was realized when compared with unboosted SQV [22]. For PIs with good bioavail-
ability but a short half-life, RTV-mediated inhibition of CYP3A4 can decrease 
hepatic clearance and therefore extend the half-life of a co-administered PI.

Ideally, boosting should maintain drug concentrations that are within the thera-
peutic window. This means that the Cmin should fall within a zone above the mini-
mum effective concentration for viral inhibition, while Cmax should fall below the 
threshold for toxicity. If an agent has a narrow therapeutic window, boosting is likely 
to increase the frequency or magnitude of adverse effects, even if boosting has a rela-
tively minor effect on Cmax. For example, IDV has good bioavailability, but its rela-
tively short half-life requires frequent dosing to prevent suboptimal plasma levels, a 
shortcoming that can be overcome by boosting with RTV [23]. Although the increase 
in IDV Cmax from boosting is small, it is apparently sufficient to substantially increase 
risk of nephrolithiasis [24]. In contrast, addition of RTV to a PI with low bioavail-
ability, like SQV or LPV, results in greatly increased Cmax without increased toxicity, 
probably because these drugs have intrinsically lower toxicity [25].
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7.2.3.2  Cobicistat

Cobicistat (COBI, Tybost™) is a structural analog of RTV developed as an alterna-
tive pharmacokinetic boosting agent. Although RTV co-administration can improve 
the pharmacokinetic profile of a co-administered PI, low-dose RTV is also associ-
ated with many metabolic side effects including hyperlipidemia and hypercholester-
olemia. Advantages of COBI include its lack of antiretroviral activity at the dosage 
employed, its lower potential to alter lipid metabolism compared with RTV, and its 
availability as FDC with PIs such as darunavir (DRV) and atazanavir (ATV) and the 
integrase inhibitor, elvitegravir (EVG), to block CYP3A-mediated metabolism of 
the parent compound to enable once a day dosing. COBI and RTV share some simi-
larities in pharmacokinetics. For example, COBI has a plasma t1/2 of approximately 
3 h, which is similar to that found for RTV (t1/2 3–5 h), and COBI inactivates CYP3A 
enzymes in a time- and concentration-dependent manner similar to RTV. COBI and 
RTV have both been shown to inhibit the activity of multiple transporters. In vitro, 
COBI is an inhibitor of Pgp, BCRP, organic anion-transporting polypeptide 1B1 
and 1B3 (OATP 1B1 and 1B3), and renal tubular cell drug transporters like multi-
drug and toxin extrusion protein 1 (MATE-1) and organic cation transporter 1 
(OCT1) [26].

In general, COBI and RTV are considered to be equipotent in CYP3A inhibition 
potential and therefore can be used interchangeably to boost systemic exposures of 
CYP3A substrates. However, there are notable differences in their ability to inhibit 
or induce other CYP isoenzymes and glucuronyltransferase activity which can 
make it difficult to predict the magnitude and direction of drug-drug interactions 
when using RTV or COBI with concomitant drugs that are metabolized by multiple 
CYPs or that undergo glucuronidation. Moreover, given that RTV is co-formulated 
with various other PIs and COBI is co-formulated with EVG, the parent PI, EVG, 
and the choice of PK boosting agent will all contribute to the net interaction 
observed with a concomitantly administered agent. COBI is distinct from RTV in 
that it does not inhibit CYP2C8, is considered a weak 2D6 inhibitor, and does not 
induce CYP isoenzymes 1A2, 2B6, 2C9, and 2C19 or glucuronyltransferase activ-
ity [27]. In addition, other drugs may impact COBI exposures. For example, com-
bining COBI 150 mg BID with tipranavir 500 mg BID resulted in a significantly 
lower COBI Cmax and a reduction in COBI t1/2 to 2.2 h [13, 28]. These results further 
support the observation that tipranavir can significantly induce metabolic enzymes 
leading to enhanced COBI clearance. Therefore, when COBI is combined with 
tipranavir, a dosage increase of COBI to 200 mg BID may be necessary; however, 
there is no recommended TPV/COBI dosing regimen approved in current product 
labeling [26].

Regimens containing 150 mg of cobicistat and darunavir, atazanavir, and elvite-
gravir are considered to provide bioequivalent exposures compared to these same 
regimens containing 100 mg of RTV. Drug interaction studies comparing COBI vs 
RTV-containing regimens and third agents are limited and based on extrapolation 
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of interaction data with RTV. Relative bioavailability studies have been conducted 
to compare pharmacokinetic exposures of concomitantly administered PIs and 
COBI versus RTV. In healthy volunteers receiving DRV 800 mg/COBI 150 mg, 
DRV Cmax and AUC24 were comparable to those receiving 800 mg DRV/100 mg 
RTV, as the geometric mean ratio was 1.03, 0.694, and 1.02 for Cmax, Ctau, and 
AUCtau, respectively. However, both C0 and C24 were approximately 30% lower 
when DRV was combined with 150 mg COBI as compared to 100 mg RTV [29]. 
However, DRV AUC0–12, Cmax, and Ctau were comparable between the two pharma-
coenhancers when DRV/COBI 600/150  mg BID was compared to DRV/RTV 
600/100 BID, yet the use of DRV/COBI BID is not considered interchangeable and 
is not recommended per product labeling [26]. When either EVG or etravirine was 
added to DRV/COBI 600/150 BID, no changes in DRV PK were noted. Similarly, 
bioequivalent exposures were demonstrated between ATV 300 mg/COBI 150 mg 
and ATV 300  mg/RTV 100 mg, as geometric mean ratios (GMR) for Cmax, Ctau, and 
AUC were 0.923, 0.976, and 1.01, respectively, following a meal in healthy 
volunteers.

7.3  Issues with ARV Drug-Drug Interactions

Specific interactions with PIs and INIs and concomitant medications are summa-
rized in Tables 7.2 and 7.3. For additional information on interactions with PIs and 
INIs with antifungals, antimalarials, antimycobacterials, and hepatitis C agents, the 
reader is referred to Chaps. 12, 15, 17, and 18, respectively.

7.3.1  Interactions with pH-Altering Agents and Polyvalent 
Cations

Drug-drug interactions exist between ARVs that require low gastric pH for absorp-
tion and drugs that raise gastric pH such as proton pump inhibitors (PPI), histamine-
 2 (H2) receptor blockers, and antacids. In one study involving 200 HIV patients, 
88% reported taking a PPI, H2-blocker, or antacid, individually or in combination 
[30]. More importantly, 95% used over-the-counter agents alone or in combination 
with a prescription drug, underscoring the importance of asking patients about non-
prescription medications.

HIV PIs are susceptible to drug-drug interactions with agents that alter gastric 
pH. When PIs are co-administered with antacids, reductions in atazanavir (ATV), 
tipranavir (TPV), and amprenavir/fosamprenavir exposure have been noted; there-
fore, it is recommended to stagger PI doses 2 h before or 1–2 h after antacid dosing. 
Concomitant H2 antagonists reduced unboosted atazanavir AUC by 41% with 
famotidine and reduced amprenavir AUC by 30% with ranitidine. Therefore, it is 
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recommended that H2 antagonists should not exceed 20  mg of famotidine or its 
equivalent with unboosted ATV or 40  mg of famotidine or its equivalent with 
boosted ATV and that a 2–10-h dose separation strategy is employed [31]. When 
proton pump inhibitors are used together with PIs, there is generally no significant 
interaction, except when using atazanavir; therefore, it is not recommended to use 
PPIs in combination with atazanavir.

HIV INIs demonstrate varying propensities of interaction with concomitant 
cation- containing products, such as aluminum, magnesium, and calcium-containing 
antacids, which may be a result of chelation and/or pH-related changes in drug 
absorption. Cation interactions arise from the ability of INIs to form a complex with 
divalent cations in the active site of the integrase enzyme, which can effectively 
reduce the amount of drug available for absorption. Concurrent or staggered admin-
istration of aluminum- and/or magnesium-containing antacids is not recommended 
with RAL because these agents can reduce RAL exposure by greater than 50%. 
Raltegravir exhibits pH-dependent solubility which may explain why Cmax and AUC 
were not significantly altered with concurrent magnesium antacid administration, as 
increasing pH improves RAL solubility initially; however, the net impact is an over-
all reduction in RAL exposures, likely a consequence of large quantities of metal 
cations available for chelation [32–34]. However, the impact on RAL exposures is 
product dependent as concurrent calcium carbonate antacid administration only 
modestly reduced RAL Cmin by 32%. A 2-h dose separation is required between 
EVG and concomitant aluminum- or magnesium-containing antacid administration 
to avoid a 40–50% reduction in EVG AUC with simultaneous administration. 
Dolutegravir requires a 2- to 6-h dose separation with concurrent polyvalent cation 
administration as simultaneous administration of magnesium- or aluminum- 
containing antacids reduced DTG AUC by 74%. Alternatively, products containing 
iron and calcium-containing products may be co-administered at the same time as 
DTG if also administered with food [35].

7.3.2  Interactions with Anticoagulants

PI interactions with anticoagulants or antiplatelets have been well-established. The 
co-administration of thrombin inhibitors such as apixaban, dabigatran, edoxaban, 
and rivaroxaban with any PI will increase thrombin inhibitor concentrations; thus, it 
is recommended these agents be avoided with PIs. The only exception is dabigatran 
with PI, when the creatinine clearance is greater than 50 mL/min where no dosage 
adjustment is required. Similarly, the thrombin receptor antagonist, vorapaxar, 
should be avoided with PIs. When PI/RTV is co-administered with warfarin, warfa-
rin levels are expected to decrease, and thus titration of warfarin dosage may be 
necessary to attain targeted anticoagulation levels.
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7.3.3  Interactions with Anticonvulsants

As expected, the co-administration of anticonvulsants and HIV PIs will lead to sig-
nificant drug-drug interactions. In general, PIs cause an increase in levels of anti-
convulsants such as carbamazepine and ethosuximide. In contrast, phenytoin and 
phenobarbital are potent inducers of CYP, and thus co-administration of these anti-
convulsants with PIs will lead to reduced PI levels, and the combination may 
severely impact efficacy of both classes of drugs. It is recommended that other 
classes of ART such as integrase inhibitors be substituted or a change to a noninter-
acting anticonvulsant, such as levetiracetam, be considered. All currently marketed 
integrase inhibitors are substrates for CYP isoenzymes and/or undergo glucuronida-
tion, and therefore anticonvulsants with potent enzyme induction potential, such as 
phenytoin, phenobarbital, carbamazepine, and oxcarbazepine, are not recommended 
with concomitant INIs.

7.3.4  Interactions with Steroids

Steroids are widely used immunosuppressive agents for the treatment of inflamma-
tion and allergic reactions. HIV patients receiving ART and steroid therapy should 
be aware of potential drug-drug interactions, particularly when immunosuppressive 
steroids such as dexamethasone, fluticasone, and methylprednisolone are utilized. 
Increased fluticasone systemic concentrations have been shown when inhaled fluti-
casone is co-administered with ART combinations containing COBI or RTV. Thus, 
chronic use of steroids in combination with RTV- or COBI-containing regimens 
may enhance the risk for adrenal insufficiency and Cushing’s syndrome and is 
therefore not recommended.

7.3.5  Interactions with Oral Contraceptives

Hormonal contraceptives are frequently co-administered in HIV-infected popula-
tions, and drug interactions with various antiretroviral classes have been demon-
strated. Hormonal contraceptives consist of steroids that are eliminated by phase I 
and II metabolic enzymes. Unboosted PI therapy typically results in slightly 
increased ethinyl estradiol or norethindrone concentrations partly from phase I 
enzyme inhibition. For example, ATV is a potent inhibitor of UGT that can increase 
ethinyl estradiol AUC by 48% and norethindrone AUC by 110%. However, many 
boosted PIs cause a reduction in ethinyl estradiol exposures, and alternative forms 
of contraception are recommended. RTV alters the expression of the phase II meta-
bolic enzyme, uridine 5′-diphospho-glucuronosyltransferase (UGT).
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PI-induced expression of phase II metabolism may partially explain why it is 
able to interact with nucleosides, steroidal compounds, methadone, and antipsy-
chotic agents. Nucleosides such as abacavir and zidovudine are metabolized via 
glucuronidation, and thus co-administration of PIs with nucleosides can alter their 
plasma concentrations. Fortunately, nucleosides have wide therapeutic indices, so 
no dosage adjustments are necessary.

When PIs are combined with steroid compounds such as components of birth 
control pills like ethinyl estradiol (EE) and norethindrone (NE), their systemic con-
centrations can be modified requiring a dose alteration. When an alternative to estra-
diols is needed, depo-medroxyprogesterone acetate (DMPA) can be utilized. One 
study evaluating 65 HIV-infected women receiving ART demonstrated no signifi-
cant interaction between DMPA and EFV, NVP, or NFV [36]. There was no evi-
dence of ovulation, although the study was limited to assessment of interactions 
with EFV, NVP, and NFV.

Although PIs are most notable in their interaction with oral contraceptives, inte-
grase inhibitors also utilize this pathway for elimination, and thus potential drug- 
drug interaction between integrase inhibitors and hormonal contraceptives should 
always be considered. Although both estrogen- and progestin-containing products 
are available in addition to progestin-only formulations, the progestin component is 
generally considered to be most important for contraceptive activity.

No significant interaction was seen with either RAL or DTG when co- 
administered with hormonal contraceptives. However, co-administration of EVG/
COBI/FTC/TDF with a norgestimate (NGNM)- and ethinyl estradiol (EE)-
containing oral contraceptive resulted in a significant increase in progestin concen-
trations and reduced EE concentrations. Mean plasma AUC of NGMN increased by 
2.26-fold, while the mean plasma AUC of EE was lowered by 0.75-fold. However, 
increasing the amount of EE to compensate for lower EE concentrations observed 
with EVG/COBI/FTC/TDF would likely require a higher strength NGNM/EE tab-
let, further increasing the potential for NGNM-related adverse events. Therefore, 
caution should be exercised with concomitant administration of NGMN/EE and 
EVG/COBI/FTC/TDF, and non-hormonal forms of contraception may be consid-
ered. However, when EVG was combined with PI/RTV, no change in EVG concen-
tration was noted.

7.3.6  Interactions with Opioid and Psychotropic Agents

Methadone concentrations can be decreased when co-administered with various 
antiretroviral agents. While EFV and NVP are prominent for their negative interac-
tions with methadone, several PIs, including NFV and LPV/r, also significantly 
lower methadone levels. This interaction can lead to opioid withdrawal whereby an 
inability to adjust methadone doses could prompt patients to interrupt or discon-
tinue ART.
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When INI are co-administered with methadone, no alteration in methadone lev-
els was observed. However, when INI is combined with PI/RTV, the presence of 
RTV can induce glucuronidation resulting in lower methadone levels. In this sce-
nario, it is advised that signs and symptoms of opioid withdrawal be closely moni-
tored. Alternative opioids such as buprenorphine can be considered. EVG in 
combination with COBI increased buprenorphine AUC by 35% and increased 
buprenorphine metabolite concentrations by 42%. However, despite these PK 
changes, no adjustment is recommended.

Trazodone is a CYP3A4 substrate, and interactions with IDV and RTV can raise 
trazodone concentrations. A study in 10 healthy volunteers demonstrated that boost-
ing doses of RTV (200 mg BID for 2 days) led to a 2.4-fold increase in exposure to 
trazodone. Study participants experienced nausea, hypotension, and syncope [37]. 
These observations suggest that caution is warranted whenever PIs are used concur-
rently with trazodone.

7.3.7  Interactions with HMG-Coenzyme a Reductase 
Inhibitors (Statins)

Limited data are available characterizing ARV drug interactions with HMG- 
coenzyme A reductase inhibitors (statins). Statins are frequently prescribed in the 
treatment of dyslipidemias in the HIV population which can be associated to the use 
of certain ARVs such as protease inhibitors (PIs). In general, statins are predomi-
nately metabolized by CYP isoenzymes and can involve drug transport via OATP, 
P-gP, BCRP, and OAT3 [38]. The majority of PIs inhibit the metabolism of statins 
through potent CYP3A enzyme inhibition which can increase statin concentrations 
leading to a clinically significant risk of myopathy and rhabdomyolysis. All PIs, 
with the exception of fosamprenavir, inhibit the OATP transporter. The degree of 
interaction varies by PI and statin; however, the potential for statin inhibition is 
considered greatest with simvastatin and lovastatin followed by atorvastatin and 
rosuvastatin. Simvastatin and lovastatin are contraindicated with PIs to avoid risk of 
myopathy. RTV-boosted PIs (ATV/r, DRV/r, and LPV/r) have been documented to 
increase rosuvastatin AUC from 50% to 200% and Cmax from 90% to 600%, result-
ing in cautious use and titrating with the lowest dose possible [39–41] which may 
be explained by PI-mediated inhibition of OATP transport as rosuvastatin is not 
metabolized by CYP3A to any significant extent or to inhibition of breast cancer 
resistance protein (BCRP). Overall, atorvastatin, rosuvastatin, or pravastatin may be 
considered in patients receiving PI-based regimens; however, dosing adjustments 
may still be required depending on the components of the ARV regimen. Pitavastatin 
and fluvastatin do not exhibit significant interactions with PIs and can generally be 
used without dose adjustments. No dose adjustment of statins is required when co- 
administered HIV integrase inhibitors, with the exception of elvitegravir co- 
administered with potent CYP3A inhibitors containing boosted PIs, RTV, or COBI 
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which is similarly contraindicated with simvastatin and lovastatin, but cautious use 
with rosuvastatin is permitted [1].

7.3.8  INI Interactions with Renal Transporters

As previously stated, dolutegravir potently inhibits renal organic cation transporter, 
OCT2, and multidrug and toxin extrusion transporter MATE1. DTG may increase 
the concentrations of drugs such as metformin and dofetilide or endogenous mole-
cules such as creatinine that are dependent on OCT2-mediated transport for renal 
excretion. A modest 10–15% increase in serum creatinine observed in DTG clinical 
trials is attributed to potent OCT2 inhibition by DTG and does not indicate renal 
toxicity or actual reduction of glomerular filtration [42]. In healthy volunteers, met-
formin mean AUC increased by 1.8- to 2.5-fold and mean Cmax by 1.7- to 2.1-fold 
following metformin 500 mg twice daily administration with either once or twice 
daily DTG administration; therefore, limiting the total daily dose of metformin and 
monitoring of blood glucose are recommended [43]. Drugs that have a narrow ther-
apeutic index, such as dofetilide and pilsicainide, which are dependent on OCT2- 
mediated transport, are contraindicated for use with DTG.

EVG is not known to modulate renal drug transporters; however, it requires phar-
macokinetic boosting using either RTV or COBI. RTV demonstrates inhibitory 
activity for a wide range of transporters, including MATE-1, OAT1, OAT3, MRP2, 
MRP4, and P-gp, and thus may affect transport of drugs requiring these transport-
ers. COBI is known to inhibit MATE-1 and P-gp drug transporters [44]. Given 
EVG/COBI is co-formulated with a nucleotide associated with renal toxicity (TDF) 
or the alternative TFV prodrug, TAF, renal function changes have been reported 
during use of EVG-containing regimens. COBI has been associated with reports of 
mild nonprogressive elevations in serum creatinine from inhibition of creatinine 
active tubular secretion without effecting glomerular filtration or overall renal func-
tion in clinical trials [45, 46]. Tenofovir is a substrate for OAT1, OAT3, and MRP4, 
and therefore inhibition of TFV influx or efflux from renal tubular cells may increase 
TFV exposure contributing to the observed 10–15% reduction in eGFR among 
patients receiving TDF and RTV or COBI-boosted PI- or INI-containing regimens 
[44]. TAF has less nephrotoxic potential when compared to TDF; however, limited 
long-term data exist on the renal impact of TAF-containing regimens given its recent 
approval [47–49]. The effect of COBI on creatinine clearance (CrCl) and iohexol-
measured GFR demonstrated decreased CrCl but no effect on measured GFR 
(German) in healthy volunteers, suggesting the observed increase in renal-related 
adverse events with EVG-containing regimens may be attributed to COBI-mediated 
inhibition of TDF efflux by P-gp rather than COBI- mediated effects on MATE-1 
transport [50, 51]. Overall, the inability to independently evaluate the renal effects 
of elvitegravir and COBI independently of TAF, TDF, or RTV limits our under-
standing of the predominant mechanisms that mediated renal function changes in 
EVG−/COBI-containing regimens.
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In summary, although a wide spectrum of co-administered drugs may interact 
with antiretrovirals, much is presently known about these interactions and how to 
avoid their effects. A thorough history of prescription and nonprescription drugs, 
supplements, and herbs should identify key pharmacologic areas where potential 
interactions may be lurking.

7.4  Summary

Antiretroviral agents with novel mechanisms of action are constantly in develop-
ment with hopes that these agents may constitute a curative treatment as seen with 
hepatitis C viral infection. While new classes of ART are expected to provide sig-
nificant therapeutic benefits, they are also likely to further expand the number of 
potential drug-drug interactions. Integrase inhibitors have transformed the antiretro-
viral landscape with their intrinsic high-level potency, rapid attainment of virologic 
suppression, availability of complete single tablet regimens for once daily dosing, 
significant improvements in safety and tolerability, and high genetic barriers to 
resistance affording high efficacy rates. New advances in formulation technology 
are paving the way for longer-acting medications, including all injectable antiretro-
viral regimens, as an alternative to daily oral dosing and freedom from the daily 
reminder of HIV infection. Healthcare providers must remain vigilant in monitoring 
for drug interactions between antiretrovirals and medications used for the treatment 
of comorbidities. The vast array of websites and mobile applications are increas-
ingly aiding in rapid identification of potential drug interactions at the bedside; 
however, the careful management of HIV disease requires a multidisciplinary focus 
optimized by contributions from experienced practitioners.
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OCT  Organic cation transporters
PBMCs  Peripheral blood mononuclear cells
PDE-5  Phosphodiesterase type-5
P-gp  P-glycoprotein
PrEP  Pre-exposure prophylaxis
SNP  Single-nucleotide polymorphisms
TAF  Tenofovir alafenamide fumarate
TDF  Tenofovir disoproxil fumarate
TFV  Tenofovir
UGT  Uridine-5′-diphosphate glucuronosyltransferase

8.1  Introduction

It is estimated that 36.7 million persons are living with HIV worldwide, with 
approximately 2.1 million new infections per year [1]. Fortunately, combination 
antiretroviral therapy (ART) used to treat HIV infection is highly effective at 
decreasing both HIV-related and HIV-unrelated morbidity and mortality. Therefore, 
both the World Health Organization and the US Department of Health and Human 
Services recommend ART for all persons living with HIV [2, 3]. In addition to ART 
for the treatment of HIV, there is an emerging role for antiretroviral agents as both 
short- and long-term therapies for HIV prevention in high-risk populations [4].

Drug interactions are a common medication-related problem for persons living 
with HIV [5], particularly in aging populations who may also require therapy for 
other chronic and acute conditions. To optimize the selection of antiretrovirals with 
concomitant medications, understanding common drug interactions, their clinical 
significance, and management strategies is critical for healthcare providers who 
care for patients at risk for, or living with, HIV.

8.1.1  Nucleoside and Nucleotide Reverse Transcriptase 
Inhibitors (NRTIs)

Nucleoside and nucleotide reverse transcriptase inhibitors (NRTIs) are analogs of 
endogenous purines and pyrimidines. During replication, viral reverse transcriptase 
enzyme inserts the NRTI into the growing viral DNA in place of thymidine (zidovu-
dine or stavudine), cytosine (lamivudine or emtricitabine), guanosine (abacavir), or 
adenosine (didanosine or tenofovir), resulting in viral DNA chain termination. 
NRTIs commonly included in modern ART regimens are abacavir, emtricitabine, 
lamivudine, tenofovir alafenamide (TAF), and tenofovir disoproxil fumarate (TDF). 
Didanosine, stavudine, and zidovudine are used less frequently but remain options 
in select patient populations. Zalcitabine is no longer recommended in the United 
States and will not be addressed in this chapter. Coformulated tenofovir disoproxil 
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fumarate and emtricitabine are also used for pre-exposure prophylaxis (PrEP) in 
patients at risk for HIV infection.

All NRTIs are tri-phosphorylated intracellularly to their active form [6], except 
tenofovir, which is di-phosphorylated intracellularly [7]. Most NRTIs are renally 
eliminated and hence less commonly associated with drug-drug interactions than 
other antiretroviral drug classes. Known mechanisms of NRTI interactions include 
interference with intracellular phosphorylation, alterations in drug transport, and 
competition for renal elimination.

8.1.2  Nonnucleoside Reverse Transcriptase Inhibitors 
(NNRTIs)

Unlike NRTIs, NNRTIs are not nucleoside/nucleotide analogs, nor do they undergo 
intracellular phosphorylation. NNRTIs are noncompetitive inhibitors of the HIV 
reverse transcriptase enzyme by binding to reverse transcriptase and causing a con-
formational change in the enzyme, which inhibits the enzyme’s polymerase ability 
and stops transcription of HIV-RNA to HIV-DNA. Rilpivirine is commonly used in 
the United States and is being evaluated as part of a long-acting intramuscularly 
administered regimen for HIV therapy [8, 9]. Etravirine is reserved for treatment- 
experienced patients. Efavirenz and, to a lesser extent, nevirapine remain important 
components of ART in many countries. Delavirdine is no longer recommended in 
the United States and will not be addressed in this chapter.

The NNRTIs are each metabolized by one or more cytochrome P450 (CYP) 
isoenzymes to inactive metabolites, with minimal renal elimination. Simultaneously, 
most NNRTIs induce, and sometimes inhibit, numerous CYP enzymes. Therefore, 
most drug-drug interactions within this class are a consequence of alterations in 
metabolism of the NNRTI or the coadministered medication; however, rilpivirine is 
also affected by pH-dependent absorption. In contrast to the NRTIs, NNRTI-related 
drug-drug interactions are not commonly mediated by drug transport proteins [10].

8.1.3  Entry Inhibitors

Entry inhibitors include a fusion inhibitor (enfuvirtide) and a C-C motif co-receptor 
5 (CCR5) antagonist (maraviroc). Enfuvirtide is a fusion inhibitor that binds to the 
viral gp41 subunit, which inhibits conformational changes of HIV-1 structural pro-
tein gp41, thereby restricting viral entry into CD4 cells [11]. Maraviroc is a small 
molecule receptor antagonist, inhibiting the interaction between HIV-1 structural 
protein gp120 and CCR5. Neither enfuvirtide nor maraviroc is commonly used in 
modern ART. However, clinical trials involving maraviroc as a PrEP strategy are 
underway, indicating a potential expansion of maraviroc use. Enfuvirtide is not 
associated with any drug interactions, whereas maraviroc is highly susceptible to 
drug-drug interactions involving the CYP enzyme system and p-glycoprotein (P-gp) 
efflux transporter.
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8.2  NRTI Pharmacology and Potential Mechanisms of Drug- 
Drug Interactions

8.2.1  NRTI Absorption

Unless indicated below, all NRTIs are extensively absorbed and may be adminis-
tered irrespective of meals [7, 12–16]. NRTIs reach maximum concentration 
(Cmax) within 2 h after oral administration [7, 12–17]. In contrast, didanosine has 
<50% bioavailability after oral administration under fasted conditions [17]. It is 
unstable in acidic conditions, and both oral tablets (no longer manufactured in the 
United States) and oral solution contain a buffering agent [18], while delayed-
release capsules contain enteric-coated beadlets to prevent degradation by stom-
ach acid [17]. Didanosine should be administered under fasted conditions in 
adults, because the Cmax and area under the concentration-time curve (AUC) are 
reduced with food. A pediatric pharmacokinetic study found prolonged absorp-
tion and a reduced didanosine Cmax under fed conditions, but there was no reduc-
tion in overall exposure (AUC) [19]. Given the complexities of administering 
didanosine on an empty stomach to infants who feed frequently, clinicians often 
recommend didanosine oral solution without regard to meals to improve adher-
ence [20].

Tenofovir (TFV) is a dianion at physiological pH, leading to low oral bioavail-
ability [21]. Therefore, TFV is formulated as a prodrug—either tenofovir alafen-
amide fumarate (TAF) or tenofovir disoproxil fumarate (TDF). While both prodrugs 
are hydrolyzed to TFV, TDF is rapidly hydrolyzed in plasma, and TAF is hydro-
lyzed primarily within target cells [21, 22], resulting in approximately 90% lower 
plasma TFV concentrations if the dose is administered as TAF versus TDF [21, 23, 
24]. TAF and TDF may be given irrespective of meals [22, 25].

8.2.2  Protein Binding and Distribution of NRTI

Most NRTIs have low plasma protein binding: didanosine, emtricitabine, TFV, and 
stavudine (all <5%) and lamivudine and zidovudine (both <40%) [7, 13–17]. Abacavir 
is moderately protein bound (50%) [12], and TAF is approximately 80% bound to 
plasma protein [25]. Didanosine, emtricitabine, lamivudine, TAF, tenofovir, and zid-
ovudine have wide tissue distribution [7, 14, 17, 26, 27], while abacavir and stavudine 
distribution approximates total body water [12]. NRTIs have variable penetration into 
the blood-brain barrier, with cerebrospinal fluid (CSF): plasma concentration ratio 
of ~5% (tenofovir, lamivudine), 20–30% (abacavir, didanosine), and 60% (stavu-
dine, zidovudine) [13, 14, 28]. No data are available to describe TAF distribution to 
the CSF.
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8.2.3  Metabolism and Elimination of NRTIs

Few NRTIs are metabolized, with most undergoing renal elimination unchanged via 
active tubular secretion and glomerular filtration [13, 15, 16]. Except abacavir, all 
NRTIs require dose adjustment in patients with renal impairment. Neither NRTIs 
nor their metabolites are CYP or uridine-5′-diphosphate glucuronosyltransferase 
(UGT) enzyme inducers or inhibitors [16, 17, 25, 29].

Abacavir is metabolized by hepatic alcohol dehydrogenase and UGT1A1 [12, 
29, 30], didanosine by intestinal and hepatic xanthine oxidase to uric acid [31], and 
zidovudine via glucuronidation during first-pass metabolism [14]. Subsequently, all 
three are renally eliminated as inactive metabolites (50–80%) [6, 14, 29]. TDF is 
rapidly metabolized by esterases in the blood to TFV [32], followed by renal elimi-
nation (80%) of TFV [7]. TAF is metabolized intracellularly by both cathepsin A, 
which is a protease in lymphoid tissue and macrophages, and hepatic carboxylester-
ase (CES1) [25, 26]. The majority of TAF (80%) is eliminated by metabolism to 
TFV, with the remaining TAF primarily eliminated in the feces [25].

Phosphorylated NRTI moieties are characterized by long intracellular half-lives, 
allowing for less frequent dosing than suggested by their comparatively short 
plasma half-lives. For instance, TFV-diphosphate has an estimated elimination half- 
life of 87 h in peripheral blood mononuclear cells (PBMCs)—five times the elimi-
nation half-life of TFV in plasma [7, 33].

8.2.4  Role of Drug Transporters in NRTI Drug-Drug 
Interactions

Influx and efflux transporters are a mechanism of NRTI drug-drug interactions by 
competition between agents that share these transport pathways. Drug transporters 
are discussed in detail in Chap. 3 of this textbook; Fig. 3.1 and Table 3.3 provide a 
brief description of relevant drug transporters involved in NRTI transport. NRTIs 
with transporter-related drug-drug interactions include lamivudine, TFV, and both 
TAF and TDF prodrugs [7, 23, 34]; therefore, these NRTIs will be the focus of this 
drug transport section.

While TAF and TDF are substrates of the efflux pump P-gp, TFV is not [34]. 
TAF, TDF, and TFV are all breast cancer resistance protein (BCRP) efflux  transporter 
substrates [7, 23, 34], resulting in decreased oral bioavailability when coadminis-
tered with BCRP inducers [35]. Agents that alter P-gp and BCRP, such as protease 
inhibitors, are expected to affect the disposition of TDF and TAF (see Sect. 3.4.4) 
[7, 23, 25].

Renal transporters involved in NRTI tubular secretion include organic anion 
transporters (OAT) and organic cation transporters (OCT). An example of an inter-
action by shared tubular secretion between agents is increased lamivudine exposure 
with trimethoprim-sulfamethoxazole, as trimethoprim is a substrate and inhibitor of 
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OCT2 [36, 37]. Given lamivudine’s favorable safety profile, this interaction is not 
clinically significant in patients with normal renal function. However, it provides a 
mechanistic view of potential drug-drug interactions between renally secreted 
agents. TFV is secreted by OAT1 and OAT3 which may result in competitive inhibi-
tion with other renally secreted agents [21, 24, 38, 39]. In vitro, OCT1 and OCT2 
are inhibited by lamivudine and TAF [25, 34, 40, 41]. TDF, TAF, and TFV are sub-
strates of multidrug resistance protein 4 (MRP4) [7, 21, 24, 39]; however, competi-
tion for active tubular secretion with other MRP4 substrates has not been evaluated 
in vivo [39].

Organic anion-transporting polypeptides (OATP) mediate uptake of compounds 
into the liver for metabolism [35, 42]. TAF is a substrate of hepatic uptake transport-
ers OATP1B1 and OATP1B3 [23, 25], and modulation of these transporters is 
responsible for clinically significant drug-drug interactions with hepatitis C direct- 
acting antivirals.

8.3  NRTI Drug-Drug Interactions

Given the importance of NRTI intracellular concentrations, the clinical significance 
of alterations in NRTI plasma concentrations is unclear, yet few drug-drug interac-
tion studies evaluate intracellular concentrations of NRTIs. Therefore, most clini-
cally relevant drug-drug interactions relate to supra-therapeutic plasma 
concentrations of the NRTI or coadministered agent, leading to exposure-related 
adverse events. Clinical relevance of interactions that decrease NRTI plasma con-
centrations is difficult to interpret without associated pharmacodynamic antiviral 
effectiveness measures. Additionally, the role of coadministered antiretrovirals in 
the summative drug-drug interaction potential of the ART regimen must be 
considered.

The magnitude of pharmacokinetic NRTI drug interactions and clinical manage-
ment recommendations discussed in this section are summarized in Table 8.1.

8.3.1  Anticonvulsants

Carbamazepine is a P-gp inducer that reduces TAF plasma exposure [25]. 
Oxcarbazepine, phenobarbital, and phenytoin have not been studied with TAF; 
however, they also induce P-gp efflux activity, and use with TAF should be avoided. 
Interactions between carbamazepine, oxcarbazepine, phenobarbital, and phenytoin 
with other NRTIs are not expected [7, 12–17]. Valproic acid increases zidovudine 
exposure [14], likely due to inhibition of its glucuronidation [61], and routine moni-
toring of zidovudine-related adverse events (e.g., bone marrow suppression) should 
be considered. No clinically significant interactions are expected between valproic 
acid and other NRTIs.
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8.3.2  Antigout

Allopurinol and its metabolite are potent inhibitors of xanthine oxidase [31], and 
didanosine exposure is substantially increased with allopurinol. Therefore, coad-
ministration is contraindicated due to the risk of didanosine-related toxicity [17]. 
Because xanthine oxidase is not involved in the metabolism of other NRTIs, allopu-
rinol interactions are not expected with other NRTIs [62].

8.3.3  Antimycobacterials

Drug interactions involving antimycobacterial agents are reviewed in Chap. 12. 
Briefly, rifamycin antimycobacterial agents (rifampin, rifabutin, and rifapentine) are 
known P-gp inducers [25], which may interact with some NRTIs. Specifically, 
based on observed data with carbamazepine, TAF plasma concentrations are 
expected to be decreased with rifamycins; therefore, rifamycins are not recom-
mended with TAF [55]. In contrast, rifampin does not affect TFV exposure after 
administration of TDF [60]; therefore, until further evidence is available for TAF, 
TDF is the preferred TFV formulation with rifamycins. No significant interactions 
are expected with other NRTIs.

8.3.4  Antiretrovirals

8.3.4.1  Integrase Strand Transfer Inhibitors

Elvitegravir/cobicistat/emtricitabine formulated with TDF 300 mg results in higher 
TFV exposure compared to TDF alone (AUC 4.4 versus 3.3 mcg*hr/mL, respec-
tively) [7, 57]. Due to increased risk of nephrotoxicity, this fixed dose combination 
(FDC) ART regimen should be avoided in patients with creatinine clearance (CrCl) 
<70 ml/min. Furthermore, it should be discontinued if CrCl falls below 50 ml/min 
during therapy, as dose adjustment of TDF is limited as a component of an FDC 
[57], and renal function should be monitored (urinalysis and CrCl) throughout use. 
Elvitegravir/cobicistat/emtricitabine formulated with TAF 10  mg results in over 
90% lower concentrations of circulating TFV yet achieves fivefold higher intracel-
lular concentrations in PBMCs as compared to the TDF 300 mg-containing FDC 
described above [63, 64]. Given the decrease in TFV plasma concentrations, the 
TAF-containing FDC regimen can be used in patients with CrCl ≥30 ml/min [57]. 
Similar TAF plasma exposures are found between TAF 10 mg with cobicistat and 
TAF 25 mg alone (AUC 250 versus 278 ng*hr/mL, respectively), likely related to 
P-gp inhibition by cobicistat [56].
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No change in raltegravir exposure was observed with TDF coadministration [59].

8.3.4.2  Nonnucleoside Reverse Transcriptase Inhibitors

Interactions between NRTIs and NNRTIs are minimal. Didanosine and rilpivirine 
must be separated due to incongruent food requirements [53]. No other clinically 
significant interactions are expected.

8.3.4.3  Nucleoside and Nucleotide Reverse Transcriptase Inhibitors

Didanosine and stavudine should never be combined due to a pharmacodynamic 
drug-drug interaction, including increased adverse effects such as peripheral neu-
ropathy, pancreatitis, and lactic acidosis [17]. Didanosine exposure is significantly 
higher when combined with TDF, increasing the risk of didanosine-associated 
adverse events [39]. While decreasing the didanosine dose was a strategy to over-
come this pharmacokinetic drug-drug interaction [17], ART combining TDF plus 
didanosine resulted in significantly lower CD4 cell counts, despite achieving viro-
logic suppression [65]. As both agents are adenosine analogs, purine accumulation 
inside CD4 cells is suggested as the potential mechanism of this pharmacodynamic 
interaction. For these reasons, didanosine and TDF should be avoided [2].

Similarly, lamivudine and emtricitabine should not be combined, as both are 
cytidine analogs, and there is no evidence supporting combined use [2].

8.3.4.4  Protease Inhibitors

Protease inhibitors are typically administered with a pharmacokinetic enhancer, 
cobicistat or ritonavir. Not only do both agents inhibit CYP3A4-mediated metabo-
lism, they also inhibit P-gp efflux and renal transporters, affecting elimination of 
NRTIs [41, 66]. When TDF is combined with most pharmacokinetically enhanced 
protease inhibitors, inhibition of P-gp and renal transporters results in increased 
TFV plasma exposure (↑ 22–37%) [2, 7, 46, 58].

TAF plasma exposure is also increased with pharmacokinetically enhanced pro-
tease inhibitors (↑ 47–91%) [25, 55]. Additionally, TAF plus darunavir/cobicistat/
emtricitabine results in intracellular TFV-diphosphate concentrations in PBMCs 
that are nearly 6.5 times higher than TFV-diphosphate concentrations observed with 
the identical TDF-containing regimen [67]. Despite shared increases in plasma 
exposure, circulating TFV remains significantly lower with TAF compared to TDF.

Increased TFV plasma exposure, specifically when administered as TDF, 
increases the risk of tenofovir-associated adverse effects. In addition to nephrotox-
icity (described further in Sect. 3.10), TDF-based ART regimens are associated with 
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declining bone mineral density (BMD) [7, 39, 68]. The mechanism of TDF- 
associated bone loss is suspected to be related to proximal tubular toxicity, which 
leads to phosphate wasting and increased bone turnover [7, 68]. Studies have found 
greater BMD reduction with TDF plus pharmacokinetically enhanced protease 
inhibitor-based regimens [39]. While a direct relationship between declining BMD 
and fracture risk has not been established, protease inhibitors plus TDF should be 
avoided in patients with osteoporosis. Clinical trials to date suggest that TAF results 
in less BMD decline as compared to TDF and may be preferred in patients with 
osteoporosis [67].

In contrast to other protease inhibitors, tipranavir is both a substrate and potent 
inducer of P-gp [45], persisting even when combined with ritonavir. Tipranavir/
ritonavir decreases abacavir, enteric-coated didanosine, and zidovudine exposure; 
however, no dose adjustments are recommended [45]. Similarly, a decrease in TAF 
exposure is expected, and coadministration is not recommended [25].

In addition to protease inhibitors’ effect on tenofovir exposure, TDF decreases 
atazanavir exposure [46]. Therefore, atazanavir must be pharmacokinetically 
enhanced when combined with TDF [46]. Atazanavir also requires acidic conditions 
for optimal absorption [17, 46], which results in a drug-drug interaction with didan-
osine. Under fasted conditions, atazanavir plus buffered didanosine results in lower 
atazanavir exposure, which can be overcome by taking atazanavir 1 h following 
buffered didanosine administration [46]. Studies under fed conditions of enteric- 
coated didanosine plus atazanavir/ritonavir, and atazanavir alone, identified lower 
didanosine exposure, but no impact on atazanavir pharmacokinetics. In addition to 
these specific pH-based interactions, several other protease inhibitors should be 
taken with food to improve absorption, while enteric-coated didanosine should be 
administered on an empty stomach (see specific timing of dose separation in 
Table 8.1).

8.3.5  Antivirals

Ganciclovir and cidofovir/probenecid are primarily eliminated by renal tubular 
secretion [39, 52], which leads to drug-drug interactions by inhibition of renal tubu-
lar transporters. Exposure of didanosine and zidovudine is increased by both ganci-
clovir and cidofovir/probenecid, and monitoring for NRTI-related toxicities is 
recommended [14, 17, 48, 49, 52]. In addition, zidovudine dose adjustment is rec-
ommended if concomitant administration of cidofovir/probenecid is required (see 
Table 8.1). Clinically significant interactions between didanosine or zidovudine and 
other antivirals are not expected [62, 69, 70].

Abacavir, emtricitabine, lamivudine, TDF, TAF, and stavudine have not been 
evaluated with most antivirals; however, clinically significant interactions are not 
expected. Famciclovir was studied with emtricitabine, but no significant interaction 
was found [69]. Likewise, foscarnet does not affect stavudine in vitro, and interac-
tions with other NRTIs are not expected. Overall, overlapping toxicities between 

L. R. Cirrincione and K. K. Scarsi



309

NRTIs and other antivirals require routine monitoring of renal function during coad-
ministration [2].

8.3.6  Hepatitis C Direct-Acting Antiviral Agents

Drug interactions involving direct-acting antiviral agents are reviewed in Chap. 15. 
Briefly, ribavirin should not be used in combination with didanosine due to an 
increase in the phosphorylated form of didanosine and an increased risk of 
didanosine- associated toxicities [17]. Exacerbation of anemia is possible with zid-
ovudine and ribavirin and the combination should be avoided [14]. No clinically 
significant interactions have been found between ribavirin and TDF [7], and no 
interaction is expected between ribavirin plus emtricitabine or TAF. Tenofovir con-
centrations are increased with ledipasvir/sofosbuvir and sofosbuvir/velpatasvir [71, 
72]. Whether higher tenofovir concentrations during ledipasvir/sofosbuvir or sofos-
buvir/velpatasvir treatment increases the risk of renal toxicity is presently unclear.

8.3.7  Herbal Products

St. John’s wort (Hypericum perforatum) induces CYP3A4 and P-gp [35, 73]. 
Because TAF is a P-gp substrate, St. John’s wort plus TAF should be avoided, as 
decreased TAF concentrations are expected [25]. No clinically significant interac-
tions are expected with other NRTIs.

8.3.8  Narcotics or Treatment for Opioid Dependence

Methadone is biotransformed via CYP enzymes, and its metabolites are excreted in 
urine and bile (described in further detail in Sect. 5.18) [44]. Abacavir absorption is 
decreased with methadone (↓ Cmax 34%), and an increase in methadone clearance 
(↑ 23%) is also observed [44]. Similarly, methadone moderately reduces didanosine 
and stavudine exposure, likely by decreased intestinal motility and subsequent gas-
tric degradation of these agents [54]. Finally, methadone increases zidovudine expo-
sure, potentially due to inhibition of glucuronidation, and zidovudine-related 
toxicities are reported with coadministration [74, 75]; therefore, patients should be 
monitored for zidovudine-related anemia. No dose adjustment is recommended for 
any of these NRTIs when combined with methadone, and no interaction is expected 
between methadone and other NRTIs [7, 62].

No drug-drug interactions have been observed, or are expected, between 
buprenorphine/naloxone and NRTIs [2, 74, 76].
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8.3.9  Miscellaneous

Ethanol alters pharmacokinetic parameters of abacavir due to overlapping metabo-
lism via alcohol dehydrogenase. However, this increase is not considered clinically 
relevant [43].

Atovaquone increases systemic exposure of zidovudine, possibly related to inhi-
bition of glucuronidation [77]. No dose adjustment is recommended, but monitoring 
for zidovudine-related adverse events is suggested [78].

8.3.10  Pharmacokinetic and Pharmacodynamic Mechanisms 
of Tenofovir-Associated Nephrotoxicity

Proximal renal tubulopathy, acute kidney injury, or Fanconi syndrome leading to 
renal impairment or, in rare cases, renal failure are reported with TDF [7, 79]. 
Concomitant nephrotoxic agents, including aminoglycosides, certain non-ART 
antivirals, high-dose NSAIDs, amphotericin B, foscarnet, pentamidine, vancomy-
cin, or interleukin-2, increase the occurrence of tenofovir-associated nephrotoxicity 
[7]. Combining pharmacokinetic enhancers with TDF may also increase the occur-
rence of nephrotoxicity (see Sect. 3.4.4). To decrease the likelihood of tenofovir- 
associated nephrotoxicity, renal function monitoring (CrCl and serum phosphate) is 
advised before initiating TDF. After initiation of TDF therapy, renal function moni-
toring is recommended after 2 weeks and at least every 6 months thereafter [39]. 
Compared to TDF, TAF results in lower TFV plasma concentrations, and less neph-
rotoxicity has been observed in clinical evaluations to date; therefore, TAF may be 
preferred for patients at risk for nephrotoxicity [21, 67].

8.4  NNRTI Pharmacology and Potential Mechanisms 
of Drug-Drug Interactions

8.4.1  NNRTI Absorption

Most NNRTIs require specific gastric conditions for optimal absorption. Nevirapine 
is the exception, with high oral bioavailability (>90%) under both fasted or fed con-
ditions [80]. Conversely, giving efavirenz with high-fat, high-calorie food increases 
the Cmax achieved (↑ 39%) compared to fasted conditions [81]. Despite improved 
absorption under fed conditions, efavirenz is nearly 50% bioavailable and achieves 
adequate exposure without food; therefore, efavirenz should be administered on an 
empty stomach or with a low-calorie meal to decrease the likelihood of dose-related 
side effects [82]. Absolute bioavailability of etravirine or rilpivirine is unknown; 
however, both agents should be administered with meals, as absorption is reduced 
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on an empty stomach [53, 83]. Unique in the NNRTI class, rilpivirine absorption is 
pH-dependent.

All NNRTIs reach Cmax within 5 h after oral administration, with the exception 
of extended release nevirapine, which reaches Cmax within 24  h following oral 
administration [53, 80, 81, 84].

8.4.2  Protein Binding and Distribution of NNRTI

All NNRTIs demonstrate a high volume of distribution and are highly protein bound 
to plasma albumin (>99%), except nevirapine, which has moderate protein binding 
(62%) [83]. Efavirenz, etravirine, and rilpivirine minimally penetrate the blood- 
brain barrier (CSF/plasma concentration ratio 0.007 to 0.014) [81, 85–87], whereas 
nevirapine achieves higher CSF penetration (~50% plasma concentration) [82].

8.4.3  Metabolism and Elimination of NNRTIs

NNRTIs have long elimination half-lives, ranging from 30 to 50 h [53, 80, 81, 84], 
and undergo extensive CYP-mediated biotransformation. Specific CYP and UGT 
pathways of NNRTI metabolism are described in Table 8.2.

Pharmacogenomic characteristics of patients are known to affect the disposition of 
NNRTIs and may influence the extent of some drug interactions. CYP2B6- associated 
single-nucleotide polymorphisms (SNPs) that reduce CYP2B6 activity correspond 
with a 62% increase in efavirenz plasma concentrations [85, 98]. Expression of loss-
of-function SNPs in the CYP2C19 gene substantially decreases the etravirine hydrox-
ylated metabolites (75–100%). SNPs in the CYP2B6 gene reduce nevirapine 
elimination, increasing plasma concentrations by nearly 25% [98].

After metabolism, NNRTIs are eliminated via both renal and hepatic routes, 
mostly as inactive metabolites, except for etravirine. Renal elimination accounts for 
up to 34% of the efavirenz dose (<1% unchanged), and up to 61% of dose is elimi-
nated in feces unchanged [81]. Etravirine elimination is mainly in feces (94% of 
dose), mostly as unchanged drug [84], and renal elimination is minimal. Nevirapine 
metabolites are eliminated via renal elimination (80% of dose) [93], while fecal 
elimination accounts for 10% of dose (approximately 4% unchanged drug). For 
rilpivirine, 25% of unchanged drug is found in feces, with trace amounts of drug 
detected in the urine (<1%) [53].

The role of P-gp efflux in efavirenz and nevirapine disposition is unclear [98]. 
Although induction of P-gp by both agents is observed in vitro, this occurs at supra-
therapeutic plasma concentrations [99]. Etravirine and rilpivirine are suggested to 
inhibit P-gp in vitro; however, both are unlikely to cause clinically significant inhi-
bition at standard doses [10, 100–102].

8 Drug Interactions in HIV…



312

8.5  NNRTI Drug-Drug Interactions

A common mechanism of NNRTI-related drug-drug interactions is via drug metabo-
lism. NNRTIs are all CYP and/or UGT isoenzyme substrates, making them susceptible 
to drug-drug interactions by other medications that affect these enzymes. In addition, 
most NNRTIs induce or inhibit CYP and UGT enzymes; specific enzymes are 
described in Table 8.2. In vitro, rilpivirine induces or inhibits a range of transporters, 
UGT, and CYP enzymes. However, these effects were observed at supratherapeutic 
concentrations and are unlikely to be observed at therapeutic concentrations [103].

In addition to metabolism-based interactions, rilpivirine has pH-dependent solu-
bility, resulting in decreased bioavailability as gastric pH increases [96]. Gastric 
acid-reducing agents, including proton pump inhibitors and H2-receptor inhibitors, 
have variable effects on rilpivirine [104].

Only a few drug-drug interactions result in a recommendation for dose adjust-
ment of the NNRTI component. The clinical impact of a change in NNRTI plasma 
pharmacokinetic exposure will depend upon the NNRTI’s therapeutic range, phar-
macologic properties, and the individual patient characteristics. For example, high 
efavirenz exposure has been associated with central nervous system adverse effects 
[105]; therefore, drug-drug interactions resulting in increased exposure to efavirenz 
may increase the risk of adverse effects. In contrast, evidence is emerging that a 
reduced dose of efavirenz may maintain adequate virologic suppression, despite 

Table 8.2 NNRTI metabolism, induction, and inhibition of cytochrome P450 (CYP) and uridine- 
5′-diphosphate glucuronosyltransferase (UGT) isoenzymes

NNRTI CYP substrate UGT substrate CYP inhibition
CYP/UGT 
induction

Efavirenz [85, 88–91]
Primary: CYP2B6
Minor: CYP2A6, CYP3A4

Direct:
UGT2B7

CYP3A4, 
CYP2C8, 
CYP2C9, 
CYP2C19

CYP3A4, 
CYP2B6
UGT1A1, 
UGT1A4

Etravirine [83, 92]
Primary: CYP3A4, CYP2C9, 
CYP2C19

Metabolites: 
UGT1A3, 
UGT1A8

CYP2C9, 
CYP2C19

CYP3A4

Nevirapine [93–95]
Primary: CYP3A4
Minor: CYP2B6, CYP2D6

CYP1A2 (weak) CYP2B6, 
CYP3A4 
(weak)

Rilpivirine [96, 97]
Primary: CYP3A4
Minor: CYP1A1/2, CYP3A5, 
CYP3A7, CYP1B1, 
CYP2C8/9/10/18/19

Direct:
UGT1A4
Metabolites:
UGT1A1

Abbreviations: CYP cytochrome P450, NNRTI nonnucleoside reverse transcriptase inhibitor, UGT 
uridine-5′-diphosphate glucuronosyltransferase
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overall lower pharmacokinetic exposure [106]. The individual NNRTI’s exposure- 
related adverse events and the minimum pharmacokinetic parameter associated 
with virologic outcomes should be considered when evaluating drug-drug interac-
tions that influence NNRTI exposure.

The magnitude of pharmacokinetic NNRTI drug interactions and clinical man-
agement recommendations discussed in this section are summarized in the Tables: 
efavirenz, etravirine, nevirapine, and rilpivirine are individually summarized in 
Tables 8.3, 8.4, 8.5 and 8.6.

8.5.1  NNRTI Interactions Involving Additive/Synergistic 
Electrocardiographic Abnormalities

Individuals living with HIV may require the use of QT interval-prolonging antimi-
crobial agents (e.g., clarithromycin, trimethoprim-sulfamethoxazole, clindamycin, 
and bedaquiline) [142–144]. An increase in QTcF through 48 weeks of use has been 
reported with efavirenz-based ART [145]. Furthermore, a healthy volunteer study 
found a concentration-response relationship between increased efavirenz exposure 
and extent of QTcF prolongation, most notable in individuals with impaired efavi-
renz metabolism (homozygous for the CYP2B6*6 decreased functional allele) 
[143].

Rilpivirine may also prolong the QT interval, as healthy volunteers receiving 
supratherapeutic rilpivirine (75 mg or 300 mg daily) had increased QTcF intervals 
of 10.7–23.3  ms [53]. Further studies of standard dose rilpivirine (25  mg daily) 
found a gradual increase in QTcF from baseline until 48 weeks; however, the QTcF 
stabilized beyond this time point [145–147].

QTcF increased by rilpivirine or efavirenz alone is not considered to be clinically 
significant [145]. Combination with other QT interval-prolonging agents may 
increase overall QT prolongation risk, and efavirenz or rilpivirine should be used 
with caution or alternative agents considered [53, 81]. Similarly, agents that inhibit 
CYP3A4 may also potentiate QT prolongation by yielding supratherapeutic plasma 
concentrations of efavirenz or rilpivirine, and the potential risk should be 
considered.

8.5.2  Acid-Reducing Agents

Acid-reducing agents decrease absorption and systemic exposure of rilpivirine 
when given simultaneously. Proton-pump inhibitors are contraindicated with rilpiv-
irine [53], as coadministration of omeprazole results in rilpivirine concentrations 
below the desired therapeutic concentration [104]. H2-receptor antagonists also 
decrease rilpivirine plasma concentrations when administered simultaneously; 
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however, famotidine administered 12 h prior to rilpivirine does not reduce rilpiv-
irine exposure [53]. Therefore, H2-receptor antagonists should be given 12 h before, 
or 4 h after, rilpivirine. Effects of antacids have not been studied [104]; product 
labeling suggests that antacids may be administered if separated by at least 2  h 
before, or 4 h after, the rilpivirine dose [53].

8.5.3  Anticoagulants and Antiplatelet Agents

Warfarin is a racemic compound containing R- and S-enantiomers. S-warfarin is the 
more potent enantiomer, accounting for the majority of anticoagulant effect, and is 
metabolized by CYP2C9. R-warfarin is metabolized by multiple CYP enzymes 
(CYP3A4, CYP1A, and CYP2C) [148].

Given the metabolism of R- and S-warfarin, both efavirenz and etravirine may 
exert variable effects on warfarin’s metabolism. One case report describes a patient 
with a supratherapeutic international normalized ratio (INR) and macrohematuria 
upon coadministration of warfarin 5 mg daily plus efavirenz [149]. Conversely, a 
case-control study found that patients receiving efavirenz-based ART required 
higher doses of warfarin to maintain a therapeutic INR (n = 8) [148]. If warfarin is 
combined with efavirenz, careful INR monitoring and warfarin dose titration are 
recommended.

A case series reported outcomes of nevirapine-based ART and warfarin coad-
ministration in three adult men [133]. In each patient, higher than expected warfarin 
dosing was required when combined with nevirapine. Therefore, if warfarin and 
nevirapine are combined, the INR must be monitored regularly with appropriate 
warfarin titration [2].

Effectiveness of antiplatelet agents must also be considered when used with 
NNRTIs. Clopidogrel is biotransformed via CYP2C19 to an active metabolite [107]. 
Efavirenz may decrease clopidogrel’s active metabolite via CYP2C19 inhibition 
[81]. Similarly, etravirine is expected to reduce clopidogrel metabolism via the 
same mechanism. When possible, avoid clopidogrel and consider alternative anti-
platelet therapy with both efavirenz and etravirine [2, 84, 150]. Neither nevirapine 
nor rilpivirine is expected to have a clinically significant effect on clopidogrel bio-
transformation [107]. Ticagrelor is metabolized to an active metabolite primarily by 
CYP3A4, and both ticagrelor and its major metabolite have antiplatelet activity 
[151]. CYP3A4 induction by NNRTIs, other than rilpivirine, may alter ticagrelor’s 
pharmacokinetic parameters, and it should be coadministered with caution with 
these agents [108]. Prasugrel is an oral prodrug that is hydrolyzed by carboxylester-
ases and subsequently oxidized, primarily by CYP3A4 and CYP2B6. 
Coadministration of prasugrel and a strong CYP3A4 inducer did not result in a 
significant change in prasugrel’s active metabolite. Therefore, all NNRTIs may be 
combined with prasugrel [107].

New oral anticoagulants have not been studied in combination with NNRTIs. 
Rivaroxaban is primarily eliminated by CYP3A4, and efavirenz-mediated CYP3A4 
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induction is expected to reduce rivaroxaban exposure, decreasing anticoagulation 
[107]. A case report describes a patient on nevirapine-based ART developed venous 
thromboembolism after two doses of rivaroxaban following a knee replacement sur-
gery [152]. With the exception of rilpivirine, decreased rivaroxaban concentrations 
are likely with all NNRTIs, and anticoagulant effect should be monitored, or alter-
native anticoagulants should be considered [107]. Apixaban is metabolized primar-
ily by CYP3A4, but it is also metabolized to a lesser extent by CYP1A2, CYP2C8, 
CYP2C9, and CYP2C19. Therefore, the impact of NNRTIs on the effectiveness of 
apixaban is difficult to anticipate but may be impaired by CYP3A4 induction by 
efavirenz, etravirine, and nevirapine. Neither dabigatran nor the dabigatran etexilate 
prodrug are significantly metabolized by CYP isoenzymes, and no interactions are 
anticipated between dabigatran and NNRTIs via this pathway. While weak P-gp 
inhibition by etravirine may increase dabigatran, the clinical significance of this 
potential interaction is unclear. Potential drug interactions should be considered 
before combining these new anticoagulant agents with NNRTIs.

8.5.4  Anticonvulsants

Early generation anticonvulsants are biotransformed by CYP3A4 (carbamazepine) 
and CYP2C19 (phenobarbital, phenytoin); in addition, they also induce CYP3A4 
[126]. A crossover study found that combining efavirenz with carbamazepine sig-
nificantly decreased exposure of both agents, but there was no change in carbamaze-
pine’s active metabolite, suggesting anticonvulsant efficacy may be maintained 
[109]. One case report describes efavirenz-based ART in combination with phe-
nytoin [110]. In this individual, efavirenz concentrations became subtherapeutic 
within 1  week of combined use (0.34  mcg/mL), while phenytoin concentrations 
increased from 17 to 23.5 mg/L after doubling the phenytoin dose. Based on antici-
pated interactions and these sparse data, caution should be used when combining 
efavirenz plus carbamazepine, phenytoin, or phenobarbital, with appropriate thera-
peutic drug monitoring of the anticonvulsant and virologic response [2]. A small 
study (n = 4) identified a decrease in nevirapine’s half-life with carbamazepine or 
phenytoin, but not with phenobarbital [153]. Decreased plasma concentrations of 
anticonvulsants and nevirapine are possible; therefore, anticonvulsant plasma con-
centrations and virologic response should be monitored [80]. Neither etravirine nor 
rilpivirine should be used with carbamazepine, phenobarbital, or phenytoin, due to 
an expected decrease in antiretroviral exposure [53, 84].

Valproic acid is primarily metabolized by UGT isoenzymes, and it inhibits 
CYP2C9 [154]. No significant pharmacokinetic changes in either efavirenz or val-
proic acid were observed when coadministered [155], and no clinically significant 
interactions are expected with other NNRTIs. Oxcarbazepine inhibits CY2C19 and 
induces CYP3A4, though to a lesser extent than carbamazepine [156]. No data are 
available to describe the potential interactions between NNRTIs and oxcarbazepine; 
however, rilpivirine exposure is expected to be significantly decreased, so it should 
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not be combined with oxcarbazepine [53]. Other anticonvulsants are metabolized 
by multiple pathways and have not been evaluated in combination with NNRTIs. 
Specific CYP3A4 substrates include ethosuximide, lacosamide, tiagabine, and 
zonisamide [154, 157]. Potential metabolism-mediated interactions between these 
agents and specific NNRTIs (Table 8.2) should be considered when selecting an 
anticonvulsant or antiretroviral therapy. Use of renally eliminated anticonvulsants 
(gabapentin, pregabalin, levetiracetam, and topiramate) with NNRTIs may be pref-
erable [158, 159].

8.5.5  Antidepressants

Second-generation antidepressants undergo extensive multiple CYP enzyme- 
mediated biotransformation to active and inactive metabolites, except bupropion 
and nefazodone, which are metabolized by a single pathway: CYP2B6 and CYP3A4, 
respectively [160]. In addition, many antidepressants inhibit various CYP enzymes, 
highlighting the potential for bidirectional drug-drug interactions between antide-
pressants and NNRTIs. Overall, studies investigating interactions between antide-
pressants and NNRTIs are lacking, with data available only for efavirenz and 
nevirapine combined with some selective serotonin reuptake inhibitors and bupro-
pion (see Tables 8.3 and 8.5) [84, 117, 134, 161].

Despite scarce evidence regarding NNRTI-antidepressant interactions, co- 
therapy of HIV and depression is important to the overall care of a patient living 
with HIV. Prior to combining antidepressants with NNRTI therapy, it is important to 
consult a reliable drug information resource to evaluate overlapping CYP pathways 
to determine the most appropriate antidepressant. Generally, the clinical impact of 
NNRTI-antidepressant interactions may be minimized by selecting antidepressants 
with a primary route of metabolism other than enzymes known to be induced or 
inhibited by the NNRTI used as part of ART (Table 8.2). Antidepressants with sin-
gle CYP-mediated metabolic pathways may be at a higher risk for drug-drug inter-
actions related to efavirenz (CYP2B6 and CYP3A induction), etravirine, or 
nevirapine (CYP3A induction). Similarly, antidepressants that are strong CYP3A 
inhibitors, like nefazodone, should be cautiously combined with NNRTIs metabo-
lized primarily by CYP3A4. Finally, combination of antidepressants that are associ-
ated with QT prolongation should be considered when NNRTI therapy containing 
rilpivirine or efavirenz is required.

8.5.6  Azole Antifungals

Detailed information about drug-drug interactions associated with all antifungal 
agents is provided in Chap. 17. Relevant to NNRTI interactions, azole antifungals 
are primarily biotransformed by CYP isoenzymes (itraconazole, isavuconazole, 
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voriconazole), except posaconazole (UGT1A4) and fluconazole (renal elimination) 
[162]. All azoles inhibit CYP3A, and most also inhibit CYP2C19 and CYP2C9, 
except for itraconazole and posaconazole [162, 163]. These effects on shared CYP 
metabolic pathways may affect the disposition of both azoles and NNRTIs.

Apart from fluconazole, efavirenz decreases azole antifungal concentrations by 
37–77% (Table  8.3). Voriconazole is decreased the most and also significantly 
increases efavirenz exposure [81, 117]. This combination is contraindicated at stan-
dard dosing but can be used if the efavirenz dose is reduced 50% (300 mg daily) and 
the voriconazole dose is increased 100% (400 mg twice daily). Fluconazole, dose- 
adjusted voriconazole, or non-azole antifungals should be considered in combina-
tion with efavirenz when possible. If isavuconazole, itraconazole, or posaconazole 
are required clinically with efavirenz, antifungal plasma concentrations and clinical 
response should be closely monitored [81, 111, 163, 164].

Etravirine exposure is increased with both fluconazole and voriconazole, and a 
similar increase is expected with all other azoles [2, 84, 126]. No change is expected 
in fluconazole or posaconazole concentrations, but lower isavuconazole and itra-
conazole concentrations are expected. Overall, azole antifungal dosing should be 
adjusted based on desired concentrations and clinical response, with monitoring for 
etravirine-related adverse events [53, 84].

Nevirapine should be avoided with itraconazole due to suboptimal antifungal 
concentrations [80, 164]. Isavuconazole and voriconazole may also be reduced 
when combined with nevirapine, so close clinical and therapeutic drug monitoring 
is required [135, 163]. In contrast, nevirapine is not expected to influence posacon-
azole metabolism [111]. Nevirapine exposure increases substantially with flucon-
azole [80], and similarly, posaconazole and voriconazole are expected to increase 
nevirapine exposure [111, 135]. If coadministration is required, antifungal dosing 
should be adjusted based on desired concentrations and clinical response, with 
monitoring for nevirapine-associated hepatotoxicity.

An increase in rilpivirine exposure is possible with all azole antifungals, but ril-
pivirine is not expected to influence azole antifungal exposure [53].

8.5.7  Antimalarials

Antimalarials are described in Chap. 18. This chapter will review only artemether- 
lumefantrine for treatment of malaria and antimalarial prophylaxis for travelers.

Both artemether and lumefantrine are primarily biotransformed by CYP3A4 to 
active metabolites, with minor metabolism by multiple CYP isoenzymes [112, 136, 
165]. Dihydroartemisinin is a potent active metabolite of artemether and is subse-
quently glucuronidated by UGT isoenzymes [112, 136]. Significant decreases in 
artemether, dihydroartemisinin, and lumefantrine plasma concentrations are consis-
tently described with efavirenz coadministration [2, 112, 113, 166]. The clinical 
significance of lower exposure is not established, but some studies suggest that 
lower antimalarial exposure influences clinical outcomes [167], and alternative anti-
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malarial therapy should be considered. However, if coadministration is required, the 
patient should be monitored for antimalarial efficacy and malaria recurrence [2].

Clinical pharmacokinetic data examining nevirapine with artemether- 
lumefantrine are conflicting. Studies consistently describe lower artemether 
plasma exposure in combination with nevirapine [112, 113, 136, 137, 167]. 
However, lumefantrine exposure may be either increased [113, 137] or possibly 
decreased [112, 136, 167]. Likewise, dihydroartemisinin plasma exposure is 
reported to be either decreased [112, 113] or unchanged [136, 167]. Artemisinins 
also induce CYP3A and CYP2C19, and one study observed lower nevirapine 
plasma exposure when combined with artemether-lumefantrine [112]; however, 
this is not observed in all studies [136]. The combination of nevirapine-based 
ART and artemether- lumefantrine should be used with caution, with monitoring 
for antimalarial efficacy [2].

Etravirine decreases artemether, dihydroartemisinin, and lumefantrine exposure 
[128], and patients should be monitored for antimalarial efficacy [2, 128]. In con-
trast, rilpivirine is not expected to influence the disposition of artemether- 
lumefantrine. Artemisinins may decrease the exposure of both etravirine and 
rilpivirine via CYP induction; and lumefantrine plus rilpivirine should be used with 
caution due to potential risk of additive QT interval prolongation [53, 168].

Atovaquone-proguanil, doxycycline, and mefloquine are commonly used for 
malaria prevention. Atovaquone is a UGT1A1 substrate, while proguanil is metabo-
lized mainly by CYP2C19 [114]. Atovaquone and proguanil’s single-dose plasma 
exposure is decreased with efavirenz, and alternative antimalarial prophylaxis may 
be considered [2]. Clinically significant interactions are not expected between other 
NNRTIs and atovaquone-proguanil. Mefloquine is a CYP3A4 substrate [115], and 
the metabolism of doxycycline is not fully understood, but strong CYP3A4 inducers 
decrease doxycycline’s half-life [169]. Despite this, no clinically significant phar-
macokinetic interactions are expected between NNRTIs and mefloquine or doxycy-
cline [170]. Given the potential for additive central nervous system adverse events 
with efavirenz and mefloquine, alternative antimalarial prophylaxis may be consid-
ered. Similarly, mefloquine and rilpivirine are both suggested to prolong the QT 
interval [53, 168].

8.5.8  Antimycobacterials

It is critical to consider interactions between NNRTIs and antimycobacterial agents, 
particularly rifamycins, prior to coadministration. Notably, significant interactions 
between rifampin and NNRTIs may result in inadequate exposure to etravirine, 
nevirapine, and rilpivirine. Therefore, only efavirenz may be combined with 
rifampin-containing tuberculosis therapy. Refer to Chap. 12 for a complete discus-
sion of antituberculosis regimens.

Azithromycin and clarithromycin are key components of Mycobacterium avium 
complex (MAC) prevention and treatment. Azithromycin is not metabolized, so has 
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minimal drug-drug interaction potential with NNRTIs. In contrast, clarithromycin is 
a CYP3A4 inhibitor that undergoes CYP3A4-mediated metabolism to an active 
metabolite that is less effective against MAC than the parent compound [80, 84]. All 
NNRTIs, except rilpivirine, decrease clarithromycin exposure, while increasing its 
less-potent metabolite [80, 81, 84, 117]. Etravirine and nevirapine plasma concen-
trations are increased, and a similar increase is expected for rilpivirine [53]. 
Azithromycin is the preferred macrolide therapy in combination with all NNRTIs.

The treatment of MAC requires the combination of a macrolide plus ethambutol, 
and in some cases, a quinolone, aminoglycoside, or rifabutin is required. Ethambutol, 
quinolones, and aminoglycosides are not expected to have a clinically significant 
interaction with NNRTIs. Rifabutin may result in significant, bidirectional interac-
tions with NNRTIs. Refer to the “Tuberculosis” chapter for details regarding rifabu-
tin metabolism and discussion of these interactions, as well as Tables 8.3, 8.4, 8.5 
and 8.6 for management of these interactions. Use caution when combining rilpiv-
irine and efavirenz with macrolides or quinolones, due to the overlapping risk of QT 
prolongation.

8.5.9  Antiretrovirals

Drug-drug interactions between NNRTIs and NRTIs are addressed in Sect. 3.4.2 
and Table 8.1.

8.5.9.1  Integrase Inhibitors

Integrase inhibitors, except raltegravir, are susceptible to interactions with all 
NNRTIs via CYP3A4 metabolism. Briefly, dolutegravir can be administered at 
standard doses with nevirapine or rilpivirine but must be given twice daily when 
combined with efavirenz or etravirine [2]. Furthermore, dolutegravir plus etravirine 
should not be used without a concomitant protease inhibitor. Elvitegravir/cobicistat 
should be avoided with all NNRTIs; however, elvitegravir/ritonavir may be used 
with etravirine or rilpivirine plus a concomitant protease inhibitor.

8.5.9.2  Protease Inhibitors

Protease inhibitors may result in bidirectional drug-drug interactions with most 
NNRTIs. Efavirenz may only be combined with dose-adjusted, pharmacokineti-
cally enhanced protease inhibitors; however, efavirenz may be used with standard 
doses of darunavir/ritonavir, saquinavir/ritonavir, and tipranavir/ritonavir 
(Table 8.3). Efavirenz may not be combined with darunavir/cobicistat, or with ata-
zanavir/cobicistat in treatment-experienced patients, and should only be used with 
atazanavir/ritonavir in patients without antiretroviral resistance. Etravirine is only 
recommended with ritonavir-enhanced atazanavir, darunavir, indinavir, lopinavir, or 
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saquinavir (Table 8.4). Nevirapine should only be combined with standard doses of 
darunavir/ritonavir or tipranavir/ritonavir and dose-adjusted fosamprenavir/ritona-
vir and lopinavir/ritonavir (Table 8.5). Rilpivirine does not have clinically signifi-
cant interactions with protease inhibitors (Table 8.6).

8.5.10  Benzodiazepines

Most benzodiazepines are metabolized to variably active metabolites via CYP path-
ways, many primarily by CYP3A4, which may result in drug-drug interactions with 
some NNRTIs (see Tables 8.3, 8.4 and 8.5) [119, 126, 131]. A few agents (e.g., 
lorazepam, oxazepam, and temazepam) are metabolized by direct UGT isoenzyme- 
mediated glucuronidation to mostly inactive metabolites and are expected to have 
less interaction potential with NNRTIs [119, 126]. Overall, the clinical impact of 
NNRTI-benzodiazepine interactions may be minimized by selecting benzodiaze-
pines with a primary route of metabolism other than enzymes affected by NNRTIs 
(Table 8.2) and by dose adjustment of the benzodiazepine based on clinical effec-
tiveness and adverse effects.

8.5.11  Calcium Channel Blockers

Dihydropyridine and non-dihydropyridine calcium channel blockers (CCB) are pri-
marily metabolized by CYP3A4. Nicardipine, diltiazem, and verapamil also inhibit 
CYP3A4 [171]. Data are limited for NNRTI-CCB interactions; however, efavirenz 
decreased exposure of diltiazem and its two active metabolites [81]. Similarly, 
decreased exposure of other CCBs is expected when combined with either efavi-
renz, etravirine, or nevirapine [80, 81, 84]. The clinical response to CCBs should be 
monitored and the dose titrated to effect.

8.5.12  Corticosteroids

Dexamethasone is a CYP3A4 substrate and inducer [96]. Single-dose systemic 
dexamethasone may be used with all NNRTIs. Multiple doses of systemic dexa-
methasone are expected to decrease rilpivirine exposure, and long-term systemic 
dexamethasone should be avoided with rilpivirine [53, 96]. Other NNRTIs have not 
been studied with systemic dexamethasone, but decreased NNRTI or dexametha-
sone exposure is possible [2].
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8.5.13  Hepatitis C Direct-Acting Antiviral Agents

Drug interactions involving direct-acting antiviral agents are reviewed in Chap. 15.

8.5.14  Herbal Products

St. John’s wort (Hypericum perforatum) is an inducer of CYP3A4, and it is expected 
to substantially reduce NNRTI plasma concentrations. For this reason, coadminis-
tration of St. John’s wort is contraindicated with any NNRTI [81, 94, 96, 126].

8.5.15  Hormonal Contraceptives

Hormonal contraceptives are metabolized by CYP and UGT enzymes and are sus-
ceptible to interactions with medications that induce or inhibit these pathways [120, 
132]. Ethinyl estradiol is extensively hydroxylated by primarily CYP3A4 and 
CYP2C9 during first-pass metabolism and also metabolized by UGT1A1 [121]. In 
vitro, ethinyl estradiol inhibits CYP2B6, CYP2C19, and CYP3A4 [120, 132], but 
the clinical significance of this inhibition is unknown. All progestins contained in 
hormonal contraceptives are substrates of CYP3A4 and are susceptible to CYP3A4- 
mediated interactions [120]. Inhibition or induction of CYP3A by exogenous pro-
gestins has been suggested, primarily by in  vitro reports; however, the clinical 
significance is unclear. Overall, hormonal contraceptives do not appear to signifi-
cantly influence ART systemic exposure [120].

Most data surrounding NNRTI’s influence on hormonal contraceptives involve 
efavirenz-based ART. With the exception of depot medroxyprogesterone [172, 173], 
both oral and implantable hormonal contraceptive exposures are significantly 
reduced with efavirenz-based ART [121, 122, 140, 174–176]. Efavirenz reduces the 
progestin component of contraceptives the most significantly, ranging from 47 to 
83% reduction in exposure. Notably, this reduction in progestin exposure corre-
sponds to a higher risk of unintended pregnancy, particularly for contraceptives with 
low overall exposure, such as implants [122, 177]. Therefore, careful consideration 
of the choice of hormonal contraceptive is required for patients receiving efavirenz- 
based ART.

When combined oral contraceptives (COC) were given with etravirine mono-
therapy, ethinyl estradiol increased, potentially related to CYP2C9 and CYP2C19 
inhibition, while there was no effect on norethindrone exposure [120, 132]. No dose 
modification of COCs is recommended, and the change in ethinyl estradiol expo-
sure is not expected to influence contraceptive effectiveness, but estrogen-related 
adverse event should be monitored.
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In patients receiving nevirapine-based ART plus COCs, moderately lower ethi-
nyl estradiol, etonogestrel (the active metabolite of desogestrel), and norethindrone 
are observed, likely through CYP3A4 induction [122, 175, 178]. This decrease is 
less profound than what is observed with efavirenz, and clinical studies do not dem-
onstrate a higher rate of contraceptive failures in women receiving nevirapine-based 
ART [177]. With non-oral routes of hormonal contraceptives, nevirapine does not 
decrease progestin exposure (levonorgestrel, etonogestrel, and medroxyprogester-
one) [122, 140, 172]. Overall, nevirapine is not likely to reduce the effectiveness of 
hormonal contraception.

In one study with COCs, rilpivirine monotherapy did not significantly affect the 
pharmacokinetic parameters of ethinyl estradiol or norethindrone [179]. Based on 
what is known about rilpivirine’s effect on CYP and UGT, it is not expected to clini-
cally influence hormonal contraceptive pharmacokinetics.

8.5.16  3-Hydroxy-3-Methylglutaryl-Coenzyme A (HMG-CoA) 
Reductase Inhibitors

Atorvastatin, lovastatin, and simvastatin undergo extensive CYP3A4 metabolism 
[126, 180], whereas fluvastatin and rosuvastatin are primarily metabolized by 
CYP2C9, with only minimal metabolism of rosuvastatin [181, 182]. Lovastatin and 
simvastatin exposures are all expected to significantly decrease, while atorvastatin 
exposure is expected to moderately decrease, with NNRTIs except rilpivirine [126, 
180]. No studies have evaluated NNRTIs with fluvastatin or rosuvastatin, but no 
clinically significant interactions are expected [2, 84].

Pravastatin and pitavastatin are primarily metabolized via glucuronidation [123], 
with minimal CYP isoenzyme involvement [126]. Efavirenz decreased pravastatin 
exposure [123, 180], possibly due to altered glucuronidation; however, clinically 
significant drug-drug interactions are not expected between NNRTIs and pitavas-
tatin or pravastatin [2, 96, 123]. When coadministered, serum lipid levels should be 
monitored, with HMG-CoA reductase inhibitor dose adjustments as needed.

8.5.17  Immunosuppressants

Cyclosporine, sirolimus, and tacrolimus are substrates of CYP3A4, and decreased 
concentrations are expected by CYP3A4 induction with all NNRTIs except rilpiv-
irine [80, 81, 84]. A small case series found increased oral clearance of tacrolimus 
with efavirenz (↑ 179%) [183], while no significant changes in cyclosporine phar-
macokinetic parameters were reported when combined with efavirenz or nevirap-
ine. Overall, dose adjustments should be guided by immunosuppressant 
concentrations and the desired therapeutic range [2].
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8.5.18  Narcotics or Treatment for Opioid Dependence

Buprenorphine is primarily biotransformed via CYP3A4 to norbuprenorphine, its 
active metabolite [124]. Despite lower buprenorphine and norbuprenorphine expo-
sure observed with efavirenz and etravirine coadministration [2, 124], buprenor-
phine can be administered at standard doses with either agent if the therapeutic 
response is monitored [2, 124]. No clinically significant interactions are expected 
with nevirapine or rilpivirine [141].

Methadone is a racemic compound; it primarily exerts its therapeutic effect 
through the R-enantiomer, which is primarily metabolized by CYP3A4 and 
CYP2B6, while the less-potent S-methadone is metabolized by CYP2C19 [184]. 
Methadone exposure is significantly reduced with efavirenz and nevirapine, accom-
panied by opioid withdrawal symptoms [94, 125]. Withdrawal symptoms should be 
monitored with efavirenz or nevirapine, and methadone dose titration may be neces-
sary [2, 125]. Methadone was not significantly affected with etravirine or rilpivirine 
[96, 126], but monitoring for symptoms of methadone withdrawal is advised.

8.5.19  Phosphodiesterase Type-5 (PDE-5) Inhibitors

PDE-5 inhibitors are primarily biotransformed by CYP3A4 [126]. Drug interaction 
data are only available for etravirine plus sildenafil, which found significantly lower 
exposure of both sildenafil and its active metabolite. Efavirenz, etravirine, and nevi-
rapine are expected to decrease plasma exposure of all PDE-5 inhibitors, and thera-
peutic response should be monitored [126].

8.6  Entry Inhibitors

8.6.1  Entry Inhibitor Absorption

Enfuvirtide is only available as a powder for subcutaneous injectable administra-
tion, and it reaches maximum plasma concentrations within 4–8 h [11]. Maraviroc 
is available as an oral tablet, with an absolute bioavailability of 23% under fasted 
conditions and peak plasma concentration between 0.5 and 4 h after administration 
[185]. Administration with high-fat breakfast decreases systemic exposure by 33%, 
but maraviroc may be administered without regard to food.
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8.6.2  Protein Binding and Distribution of Entry Inhibitors

Enfuvirtide is highly bound to plasma proteins (92%), primarily albumin, and does 
not appreciably cross the blood-brain barrier [11]. Its low volume of distribution 
reflects its confinement to blood (~5.5 L) and failure to distribute into tissue [186]. 
In contrast, maraviroc has moderate protein binding (76%) to albumin and alpha-1 
acid glycoprotein and achieves high tissue distribution (volume of distribution 
~194 L) [185].

8.6.3  Metabolism and Elimination of Entry Inhibitors

As a peptide, enfuvirtide is expected to undergo catabolism to its constituent amino 
acids [186]. Clinical trials have found no clinically significant alteration of enfu-
virtide with ritonavir, saquinavir, or rifampin, describing the low drug-drug interac-
tion potential of enfuvirtide. Enfuvirtide’s elimination half-life is markedly lower 
(~4 h) than maraviroc’s half-life (14–18 h) [185, 186]. Maraviroc undergoes metab-
olism primarily via CYP3A to inactive metabolites; it is also a substrate for P-gp 
efflux, making it susceptible to drug-drug interactions [185]. The majority of the 
total dose is recovered in feces, with 25% recovered as unchanged drug, while 8% 
of the total dose is recovered unchanged in urine.

8.7  Entry Inhibitor Drug-Drug Interactions

Enfuvirtide is not associated with any known drug-drug interactions [186]. 
Maraviroc is often a victim of drug-drug interactions via CYP3A and P-gp; it is not 
known to be the perpetrator of drug-drug interactions with other medications [187].

Higher maraviroc exposure is expected when coadministered with CYP3A4 and/
or P-gp inhibitors; therefore, maraviroc dose reduction is required when combined 
with strong CYP3A4 inhibitors (Table 8.7). Furthermore, in patients with compro-
mised renal function (CrCl <30 ml/min), maraviroc should not be coadministered 
with strong CYP3A4 inhibitors [185]. Moderate CYP3A4 inhibitors, such as diltia-
zem, may increase maraviroc plasma concentrations; however, no clinical studies 
have fully investigated this interaction, and maraviroc dose-reduction is not 
recommended.
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Table 8.7 Drug-drug interactions effecting maraviroc dosing

Drug
Effect on 
maraviroc Clinical recommendation

Integrase strand transfer inhibitors

Elvitegravir/ritonavir ↑ AUC 186% Maraviroc 150 mg twice dailya

Dolutegravir ↔ expected Maraviroc 300 mg twice dailyb

Raltegravir ↓ AUC 14%
Nucleoside/nucleotide reverse transcriptase inhibitors

Emtricitabine, lamivudine, 
stavudine, TAF, TDF, zidovudine 
[25, 187]

↔ expected Maraviroc 300 mg twice dailyb

Nonnucleoside reverse transcriptase inhibitors

Efavirenz ↓ AUC 45% Maraviroc dose 600 mg twice daily; 
avoid coadministration if CrCl < 30 mL/
mina

Etravirine ↓ AUC 53%

Nevirapine ↔ AUC Maraviroc 300 mg twice dailyb

Protease inhibitors

Atazanavir [125, 184, 185, 187] ↑ AUC 257% Maraviroc 150 mg twice dailya

Atazanavir/ritonavir ↑ AUC 388%
Darunavir/ritonavir ↑ AUC 305%
Lopinavir/ritonavir +/− efavirenz ↑ AUC 295%

↑ AUC 153% 
(with efavirenz)

Tipranavir/ritonavir ↔ AUC Maraviroc 300 mg twice dailyb

Miscellaneous strong CYP3A inducers

Carbamazepine, phenobarbital, 
phenytoin

↓ expected Maraviroc 600 mg twice dailya

Rifampin ↓ AUC 63%
Miscellaneous strong CYP3A inhibitors

Itraconazole, ketoconazole, 
clarithromycin

↑ expected Maraviroc 150 mg twice dailya

Pharmacokinetic information is summarized as follows: decreased plasma concentration (↓ %), 
increased plasma concentration (↑ %), or no change (↔, indicating <10% increase or decrease in 
plasma concentration). For drug combinations with potential for an interaction, but no available 
evidence, the predicted result of the interaction is described as expected or possible, which indi-
cates the strength of the prediction based on the pharmacologic characteristics of each drug
Abbreviations: AUC area under the plasma concentration time curve, CrCL creatinine clearance, 
TAF tenofovir alafenamide fumarate, TDF tenofovir disoproxil fumarate
aAvoid coadministration in patients with a CrCl < 30 mL/min or who are receiving hemodialysis
bReduce to 150  mg twice daily if symptoms of postural hypotension occur in patients with 
CrCl < 30 mL/min or who are receiving regular hemodialysis
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In contrast, maraviroc plasma concentrations are expected to decrease when 
combined with CYP3A4 and/or P-gp inducers, including some anticonvulsants and 
NNRTIs (such as efavirenz and etravirine) [84, 185]. If maraviroc is coadministered 
with strong or moderate CYP3A4 inducers, a dose increase is recommended 
(Table 8.7) [185]. However, if maraviroc is combined with both a CYP3A4 inducer 
and CYP3A4 inhibitor, maraviroc dosing is based on the coadministered CYP3A4 
inhibitor (Table 8.7) [84, 188].

Notably, tipranavir/ritonavir, which is both a CYP3A inhibitor and P-gp inducer, 
does not influence maraviroc exposure, demonstrating the ability of P-gp induction 
to overcome the influence of CYP3A inhibition on maraviroc’s disposition [185]. 
However, in general, maraviroc dosing is guided by coadministration of CYP3A 
inhibitors or inducers.

8.8  Conclusion

This chapter highlights drug-drug interactions associated with three classes of anti-
retroviral agents. For the antiretrovirals discussed in this chapter, NNRTIs and the 
entry inhibitor maraviroc have the greatest potential for clinically significant inter-
actions. Because modern ART consists of multiple antiretrovirals used concurrently, 
the entire ART combination, rather than individual agents, must be considered when 
evaluating potential interactions. Overlapping mechanisms of pharmacokinetic 
interactions are often present in a complete ART regimen, which will impact the 
extent of any resulting drug-drug interaction. Patients receiving ART should be 
closely monitored for new or changing co-prescribed medication. Frequent review 
of up-to-date patient medication lists, along with close collaboration and communi-
cation between healthcare providers, will allow potential drug- drug interactions to 
be identified and managed in a timely manner.
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Chapter 9
Hepatitis B and Hepatitis C Antiviral  
Agents

Christine E. MacBrayne and Jennifer J. Kiser

9.1  Introduction

Half a billion people worldwide have chronic hepatitis B (HBV) or hepatitis C virus 
(HCV) [1, 2]. These individuals are at risk for complications of chronic liver disease 
including potential cirrhosis, hepatocellular carcinoma, and death [2]. Fortunately, 
HCV can be cured with a combination of direct-acting antiviral agents (DAAs). 
However, many individuals are unaware of their HCV infection, are not engaged in 
care, or are unable to access treatment due to its expense. Current treatments for 
HBV can suppress viral replication which significantly reduces the development of 
complications from chronic liver disease. However, current HBV therapies are not 
completely curative, and only a small proportion achieves clearance of hepatitis B 
surface antigen and development of hepatitis B surface antibody (known as a “func-
tional cure”). Following the success of DAAs for HCV, many agents are in clinical 
development for the treatment of HBV [3].

HBV is currently treated with a single nucleoside or nucleotide analog (e.g., 
entecavir, tenofovir, adefovir, lamivudine) or a finite course of pegylated interferon 
alfa. These therapies have a low potential for drug interactions but are not devoid of 
interactions. Nucleos(t)ide analogs typically require long-term treatment, and thus 
continued vigilance around the potential for drug interactions is necessary.

Combinations of agents including inhibitors of the NS5B polymerase, NS5A, 
and/or NS3 protease used with or without the purine nucleoside analog ribavirin are 
used to treat HCV. These therapies are typically administered for 12 weeks (range 
8–24 weeks) and achieve cure rates of at least 90% in most patient populations [4]. 
Despite the short course of treatment, DAAs participate in a number of clinically 
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significant drug interactions. A systematic approach to screening, identifying, and 
managing drug interactions before and during HCV treatment is imperative.

The HBV nucleos(t)ide analogs and DAAs are well tolerated and have wide 
therapeutic indices. Thus, large increases in exposures would be required to cause 
toxicities. Interactions that result in a reduced exposure to the HBV nucleos(t)ide 
analogs or DAAs are of greater concern and could have significant clinical conse-
quences. Suboptimal concentrations of antiviral drugs may lead to therapeutic fail-
ure and the development of drug resistance. HBV and HCV therapies may also alter 
the exposures of other drugs. One study found that HCV-infected Americans take an 
average of ten medications (excluding HCV therapies), so there is considerable 
potential for drug-drug interactions with this disease [5].

9.2  Pharmacology and Drug Interaction Potential of HBV 
Agents

9.2.1  Interferon

9.2.1.1  Pharmacology of Interferon

Interferons are cytokines that regulate the innate immune system [6]. Exogenous 
interferon, created using recombinant DNA technology, has non-specific antiviral, 
immunomodulatory, and antiproliferative effects [7, 8]. Interferon alfa-2a was the 
first biologic agent to receive regulatory approval [6]. This compound is used in the 
treatment of several cancers and viruses. For decades, interferon was a fundamental 
component of the treatment of HCV, but it has been replaced with less toxic oral 
agents that directly target specific steps in the HCV life cycle (also known as DAAs). 
However, interferon remains a first-line treatment for HBV. To improve the pharma-
cokinetics and allow once-weekly subcutaneous dosing, a polyethylene glycol 
(PEG) moiety was attached to interferon. Pegylated interferon alfa-2a consists of an 
ester derivative of a branched-chain 40,000-Da PEG bonded to interferon alfa-2a. 
This injection is administered once weekly for 48  weeks for the treatment of 
HBV. Patients with end-stage renal disease require dose reduction. Interferons are 
contraindicated in patients with advanced liver disease because they can precipitate 
clinical deterioration and increase the risk of bacterial infections.

9.2.1.2  Interferon Interactions

Peginterferon alfa-2a does not participate in many interactions, but it may increase 
the exposure of theophylline (a CYP1A2 substrate) [9]. It should also be used with 
caution with other myelosuppressive agents (e.g., zidovudine). For a detailed review 
of interactions with interferon, see Chap. 10, “Drug Interactions for Antiviral 
Agents.”
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9.2.2  Nucleoside and Nucleotide Analogs

9.2.2.1  Pharmacology of HBV Nucleos(t)ide Analogs

Nucleoside analogs are prodrugs. These compounds undergo intracellular conver-
sion by host enzymes to the active moiety which is a triphosphate. The triphosphate 
is an analog of an endogenous base. If the drug triphosphate is incorporated into 
replicating HBV rather than the endogenous triphosphate, then replication is halted. 
A nucleotide analog differs from a nucleoside analog in that it already contains a 
phosphate group and thus requires one less phosphorylation step to become acti-
vated. Adefovir and tenofovir are nucleotides, while entecavir and lamivudine are 
nucleosides. Adefovir and tenofovir are adenosine analogs. Entecavir is a guanosine 
analog. Lamivudine is a cytidine analog. Telbivudine is a thymidine analog. The 
production of telbivudine was recently discontinued by its manufacturer due to a 
limited market for this agent and thus will not be reviewed here.

In addition to their use in the treatment of HBV, tenofovir and lamivudine are 
also used to treat HIV. Additional information on the pharmacology of tenofovir 
and lamivudine can be found in Chap. 8, “Drug Interactions in HIV: Nucleoside and 
Nonnucleoside Reverse Transcriptase Inhibitors and Entry Inhibitors.” 
Nonadherence or abrupt discontinuation of the nucleos(t)ide analogs could lead to 
liver toxicity as the result of reactivation of HBV replication. Additionally, all indi-
viduals initiating chemotherapy or other immunosuppressive treatments should be 
tested for HBV as these individuals may require a nucleos(t)ide analog to prevent 
HBV reactivation [10].

Adefovir

Adefovir dipivoxil is a diester prodrug of adefovir. The active form of adefovir, 
adefovir diphosphate, inhibits the HBV polymerase. The bioavailability of adefovir 
is ~30–60% [11, 12]. Food does not affect adefovir absorption. Binding to plasma 
proteins is minimal (<3%) [11]. Adefovir is renally cleared and may cause nephro-
toxicity. The adefovir dipivoxil dose should be reduced in patients with creatinine 
clearance <50  mL/min or ideally avoided in patients with renal impairment. 
Adefovir pharmacokinetics are not significantly different in individuals with decom-
pensated cirrhosis compared with individuals without hepatic impairment.

Entecavir

Entecavir triphosphate inhibits the HBV polymerase. The bioavailability is esti-
mated at ~70% for this drug [13]. Food decreases the extent of entecavir absorption, 
so this medication should be taken on an empty stomach. Entecavir is minimally 
(~13%) bound to serum proteins [14]. Entecavir is primarily eliminated unchanged 
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by the kidneys via a combination of glomerular filtration and active tubular  secretion. 
The dose should be reduced in patients with creatinine clearance <50  mL/min. 
Entecavir pharmacokinetics are similar in those with decompensated cirrhosis to 
individuals without hepatic impairment. A higher dose is used in adults with decom-
pensated cirrhosis and in adults with lamivudine or telbivudine resistance.

Lamivudine

Lamivudine triphosphate inhibits HBV polymerase. The bioavailability of lamivu-
dine is 86% [15]. There is no significant difference in lamivudine pharmacokinetics 
in the fasted vs. fed state. Binding of lamivudine to human plasma proteins is 
approximately 36% [15]. Lamivudine is renally cleared. The dose should be reduced 
in patients with creatinine clearance less than 50 mL/min. The pharmacokinetics of 
lamivudine were not significantly different in patients with hepatic decompensation 
compared with individuals without hepatic impairment.

Tenofovir

Tenofovir, an acyclic nucleoside phosphonate, is available in two different prodrug 
formulations, tenofovir disoproxil fumarate (TDF) and tenofovir alafenamide fuma-
rate (TAF).

Tenofovir Disoproxil Fumarate

With TDF, cellular esterases cleave the diester, yielding tenofovir in plasma. 
Tenofovir then enters cells and is phosphorylated by cellular kinases to the active 
form, tenofovir diphosphate. Tenofovir diphosphate is a competitive inhibitor of 
HBV polymerase.

The bioavailability of tenofovir when given as TDF is approximately 25% [16]. 
Tenofovir exposures are increased by 40% with a high-fat meal [16]. Binding to 
plasma proteins is negligible (<8%) [16]. Tenofovir is renally cleared by a combina-
tion of glomerular filtration and active tubular secretion. Dose adjustments are nec-
essary for creatinine clearance less than 50 mL/min. Tenofovir pharmacokinetics 
are similar in patients with decompensated cirrhosis to those in individuals without 
hepatic impairment.

Tenofovir Alafenamide Fumarate

TAF is more stable in plasma than TDF; thus, TAF is taken up directly into cells 
where it is de-esterified, concentrated, and phosphorylated to tenofovir diphosphate. 
Plasma concentrations of tenofovir when administered as TAF are 90% less than 
when administered as TDF [17]. The renal adverse effects of tenofovir are mediated 
through uptake by human organic anion transporter 1 (OAT1) in the kidney. TAF is 
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not a substrate for OAT1, so less tenofovir is delivered to the kidneys, and there is 
less renal toxicity with this agent. However, for several other cell types, TAF is 
preferentially taken up, and cellular concentrations of tenofovir diphosphate are 
actually higher than those achieved with TDF.

9.2.2.2  Nucleos(t)ide Interactions

Adefovir, entecavir, lamivudine, and tenofovir participate in very few drug interac-
tions. These compounds are not substrates, inhibitors, or inducers of CYP enzymes; 
however, these agents may participate in drug-drug interactions at the level of renal 
transporters. The interaction potential of lamivudine, TDF, and TAF is reviewed in 
Chap. 8, “Drug Interactions in HIV: Nucleoside and Nonnucleoside Reverse 
Transcriptase Inhibitors and Entry Inhibitors.” All four nucleos(t)ide analogs have 
activity against HIV and therefore could induce nucleoside reverse transcriptase 
inhibitor resistance if used in individuals with HIV/HBV coinfection without fully 
suppressive antiretroviral therapy. Adefovir and tenofovir should be used with cau-
tion in combination with other nephrotoxic agents.

9.3  Pharmacology and Drug Interaction Potential of HCV 
Agents

In this section, the pharmacology of various HCV medications is reviewed followed 
by a summary of interaction potential with CYP and transporter probes and then 
clinically significant/serious drug interactions. Table 9.1 highlights the pharmacoki-
netic properties of each HCV agent. Table 9.2 shows the effects of renal and hepatic 
impairment on the pharmacokinetics of each drug and drug dosing in renal and 
hepatic impairment. Interactions with HCV agents and concomitant medications are 
summarized in Table 9.3.

9.3.1  Sofosbuvir

9.3.1.1  Pharmacology of Sofosbuvir

Sofosbuvir (SOF) is a HCV NS5B polymerase inhibitor [36]. SOF is used in com-
bination with other DAAs and in some cases ribavirin for the treatment of HCV. SOF 
is administered as a phosphoramidate prodrug of the uridine nucleotide analog GS- 
331007 monophosphate [37]. Once SOF is inside cells, it is hydrolyzed by cathep-
sin A and/or carboxyesterase 1 to GS-331007 monophosphate [37, 38]. GS-331007 
monophosphate is then phosphorylated by uridine monophosphate-cytidine 
monophosphate kinase to the GS-331007 diphosphate form, which is then 
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Table 9.1 Pharmacology of drugs used to treat HCV

Route of 
metabolism

Transporter 
substrate

Enzyme 
inhibition

Enzyme 
induction

Transporter 
inhibition

Sofosbuvir Phosphorylated to 
the triphosphate, 
GS-461203, SOF 
and plasma 
metabolite, 
GS-331007 are 
renally cleared

P-gp and 
BCRP

None None None

Ledipasvir Slow oxidative
metabolism via an 
unknown 
mechanism

P-gp None None P-gp, BCRP

Daclatasvir Primarily hepatic 
via CYP 3A

P-gp CYP3A4 None P-gp, BCRP, 
OATP1B1/3

Simeprevir Hepatic via CYP 
3A

P-gp, MRP2, 
BCRP, 
OATP1B1/3, 
and OATP2B1

CYP2A6, 
CYP2C8, 
CYP2D6, 
CYP2C19, 
CYP1A2, 
and intestinal 
CYP3A

None P-gp, OATP1B1, 
NTCP
MRP2, and 
BSEP

Velpatasvir Hepatic via CYP 
3A4, 2C8, and 2B6

P-gp None None P-gp, BCRP, 
OATP1B1/1B3, 
and OATP2B1

Ritonavir- 
boosted 
paritaprevir

Hepatic via 
CYP3A4 and to a 
lesser extent by 
CYP3A5

P-gp, 
OATP1B1, 
BCRP

CYP2C8, 
UGT1A1 
(ritonavir 
inhibits 
CYP3A)

None P-gp, 
OATP1B1/3, 
BCRP

Ombitasvir Amide hydrolysis 
followed by 
oxidative 
metabolism

P-gp, BCRP CYP2C8, 
UGT1A1

None

Dasabuvir Hepatic via 
CYP2C8 and to a 
lesser extent by 
CYP3A

P-gp, BCRP UGT1A1 None P-gp, BCRP

Grazoprevir Hepatic via 
CYP3A4

P-gp and 
OATP1B1

CYP2C8, 
UGT1A1

None UGT1A1 and 
BCRP

Elbasvir Hepatic via 
CYP3A4

P-gp None None BCRP and P-gp

Ribavirin Phosphorylated to 
RBV-TP, RBV is 
renally cleared

ENT1, CNT2, 
CNT3

None None None

Abbreviations: SOF sofosbuvir, CYP cytochrome P450, RBV-TP ribavirin-triphosphate, RBV riba-
virin, P-gp p-glycoprotein, BCRP breast cancer resistance protein, MRP2 multidrug resistance- 
associated protein 2, OATP organic anion-transporting polypeptide, ENT equilibrative nucleoside 
transporter, CNT concentrative nucleoside transporter, NTCP Na-taurocholate cotransporting 
polypeptide, BSEP bile salt export pump, UGT uridine diphosphate-glucuronosyltransferase
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Table 9.2 Pharmacokinetics of hepatitis C therapies in hepatic and renal impairment

Hepatic 
excretion, 
%

Renal 
excretion, 
% Hepatic impairment Renal impairment

Sofosbuvir 14% 80% SOF AUC is 126% and 
143% higher in patients 
with moderate and severe 
hepatic impairment (i.e., 
Child-Pugh B and C), 
respectively, but 
GS-331007 AUC is 
unchanged

SOF AUC is 61%, 107%, 
and 171% higher in mild 
(GFR >50 and < 80 mL/
min/1.73 m2), moderate 
(GFR >30 and <50 mL/
min/1.73 m2), and severe 
(GFR <30 mL/
min/1.73 m2) renal 
impairment, respectively, 
whereas GS-331007 AUC 
is increased by 55%, 
88%, and 451% in mild, 
moderate, and severe 
renal impairment, 
respectively. In patients 
with ESRD on 
hemodialysis, sofosbuvir 
and GS-331007 are 
28–60% and 1300–
2000% higher, 
respectively

Ledipasvir 86% 1% Not significantly altered Not significantly altered
Daclatasvir 88% 7% Total exposures of DCV 

are 43%, 38%, 36% lower 
in patients with Child- 
Pugh A, B, and C 
decompensated cirrhosis, 
respectively, but unbound 
concentrations are 
unchanged

DCV AUC in those with 
end-stage renal disease 
(eGFR less than 15 mL/
min/1.73 m2 receiving 
hemodialysis), eGFR 
30–59 mL/min/1.73 m2, 
and eGFR 15–29 mL/
min/1.73 m2 was 80%, 
60%, and 26% higher, 
respectively, compared to 
those with normal renal 
function, which is more 
than expected given only 
that 7% of the drug is 
renally eliminated

Simeprevir 91% <1% SIM exposures are 
increased by 140% and 
420% in patients with 
Child-Pugh B and C 
hepatic impairment, 
respectively

There is a 62% increase 
in exposure of SIM in 
HCV uninfected subjects 
with eGFR < 30 mL/
min/1.73 m2

Velpatasvir 77% <1% Not significantly altered Not significantly altered

(continued)
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Table 9.2 (continued)

Hepatic 
excretion, 
%

Renal 
excretion, 
% Hepatic impairment Renal impairment

PrOD/PrO 88% – 
paritaprevir
90.2% – 
ombitasvir
94.4% – 
dasabuvir

8.8% – 
paritaprevir
1.91% – 
ombitasvir
~2% – 
dasabuvir

Paritaprevir exposures 
increased by 29% and 
945% in mild and severe 
hepatic impairment, 
respectively.
Ombitasvir exposures 
increased by 8% and 30% 
in mild and moderate 
impairment, respectively, 
and decreased by 54% in 
severe hepatic impairment
Dasabuvir exposure 
increases by 17%, 16%, 
and 325% in patients with 
mild, moderate, and 
severe hepatic 
impairment, respectively

Paritaprevir AUC is 19%, 
33%, and 45% higher in 
in mild (GFR >50 and 
<80 mL/min/1.73 m2), 
moderate (GFR >30 and 
<50 mL/min/1.73 m2), 
and severe (GFR < 
30 mL/min/1.73 m2) 
renal impairment, 
respectively
Ombitasvir is not 
significantly altered
Dasabuvir AUC is 21%, 
37%, and 50% higher in 
mild (GFR >50 and 
<80 mL/min/1.73 m2), 
moderate (GFR >30 and 
<50 mL/min/1.73 m2), 
and severe (GFR <30 mL/
min/1.73 m2) renal 
impairment, respectively

Grazoprevir/
elbasvir

>90% < 1% GZR exposures are 
increased by 70% in those 
with mild (Child-Pugh A), 
400% in those with 
moderate (Child-Pugh B), 
and 1100% in those with 
severe (Child-Pugh C) 
hepatic impairment 
relative to those with no 
hepatic impairment
Total concentrations of 
EBR are 24% and 14% 
lower in patients with 
mild and moderate hepatic 
insufficiency, respectively

GZR and EBR AUCs are 
increased by 65% and 
86%, respectively, in 
non-HCV-infected 
individuals with eGFR 
<30 mL/min/1.73 m2 not 
receiving dialysis
In patients with ESRD 
requiring dialysis, GZR/
EBR AUCs were 
increased by 11% and 
25%, respectively

Ribavirin Not 
reported

5–15% RBV exposures are ~30% 
higher in those with 
Child-Pugh C following a 
single dose, and Cmax is 
doubled

RBV is given in 
alternating daily doses of 
200 mg and 400 mg in 
individuals with a GFR of 
30–50 mL/min/1.73 m2 
and 200 mg orally once 
daily for individuals with 
a GFR <30 mL/
min/1.73 m2 or receiving 
hemodialysis

Abbreviations: PrOD or PrO ritonavir-boosted paritaprevir, ombitasvir with or without dasabuvir, 
AUC area under the concentration-time curve, DCV daclatasvir, SIM simeprevir, GZR grazoprevir, 
EBR elbasvir, SOF sofosbuvir, GFR glomelular filtration rate, HCV hepatitis C virus, ESRD end- 
stage renal disease, RBV ribavirin
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phosphorylated by nucleotide diphosphate kinase to the triphosphate moiety 
 (GS- 461203) [37, 38]. GS-461203 is the pharmacologically active nucleoside ana-
log triphosphate metabolite form of SOF which is incorporated into HCV RNA by 
the NS5B polymerase, allowing for HCV replication to be halted. The major drug- 
related substance found in plasma is GS-331007, which has no antiviral activity.

The absolute bioavailability of SOF has not been determined in humans but is 
estimated to be at least 80% based on recovery of SOF and GS-331007, following a 
radiolabeled dose [38]. If given concomitantly with a high-fat meal, SOF area under 
the curve (AUC) is increased by 67–91%, but the drug is approved without regard 
to food [38]. SOF is 61–65% protein bound and is predominantly renally excreted 
[36]. SOF and GS-331007 exposures are significantly increased in renal impair-
ment, and thus, SOF is not recommended for individuals with CrCl less than 30 mL/
min [39]. However, case series are emerging on the safety and efficacy of SOF- 
based therapy in patients with renal impairment [40–42]. For the metabolism of 
SOF, refer to Table 9.1 [43], and for the pharmacokinetic alterations in hepatic and 
renal impairment, refer to Table 9.2 [36, 38, 44].

9.3.1.2  Probe Interactions

SOF is not a substrate, inhibitor, or inducer of CYP enzymes and has a low poten-
tial for drug interactions. SOF is used in combination with other DAAs, however, 
and thus consideration must be given to the potential for interactions with the con-
comitant DAA.  SOF is a substrate for p-glycoprotein (P-gp) and breast cancer 
resistance protein (BCRP); thus, potent inducers of P-gp or BCRP should not be 
used with SOF [36].

9.3.1.3  Clinically Significant Drug Interactions

Amiodarone

Serious and life-threatening cases of symptomatic bradycardia and at least one 
case of fatal cardiac arrest have occurred in patients taking amiodarone with SOF 
and another DAA [36]. In vitro and animal studies suggest that this interaction is 
not pharmacokinetic in nature but rather appears to be the result of inhibition of a 
calcium channel or disrupted intracellular calcium handling [45–47]. There are 
conflicting data on the contribution of other DAAs to the interaction with sofosbu-
vir and amiodarone [45, 47]. Based on this interaction, the combination of sofos-
buvir and amiodarone is not recommended. However, for patients taking 
amiodarone who have no other alternative, counseling patients on the risk of seri-
ous symptomatic bradycardia is necessary, and inpatient cardiac monitoring is 
advised for the first 48 h of DAA treatment and then daily heart rate monitoring for 
2 weeks thereafter [36].

9 Hepatitis B and Hepatitis C Antiviral Agents
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9.3.2  Daclatasvir

9.3.2.1  Pharmacology of Daclatasvir

Daclatasvir (DCV) is an HCV NS5A inhibitor. The absolute bioavailability of DCV 
is 67%. A high-fat and high-calorie meal decreases DCV exposures by 23%, but a 
low-fat meal has no effect. DCV is 99% protein bound and has minimal renal excre-
tion [48]. For the metabolism of DCV, refer to Table 9.1 [43], and for properties of 
hepatic and renal impairment, refer to Table 9.2 [48]. DCV is the only DAA with 
different dosing strengths available to accommodate dose adjustments for drug 
interactions.

9.3.2.2  Probe Interactions

DCV is mainly a victim of drug interactions rather than a perpetrator, though it does 
increase digoxin AUC (a P-gp substrate) by 27% and rosuvastatin AUC (an 
OATP1B1 and BCRP substrate) by 58%. Due to DCV being highly reliant on 
CYP3A for its metabolism, dose adjustments of DCV are necessary in the presence 
of strong or moderate CYP3A inhibitors and moderate inducers. Ketoconazole (a 
potent CYP3A4 inhibitor) increases the AUC of DCV by 200%. Cyclosporine (a 
P-gp inhibitor and weak CYP3A4 inhibitor) increases DCV AUC by 40% [33]. 
Multi-dose rifampin (a potent CYP3A4 inducer) decreases the AUC of DCV by 
79% [48, 49]; thus, strong inducers are contraindicated with DCV.

9.3.2.3  Clinically Significant Drug Interactions

HIV Antiretroviral Agents

The DCV dose should be increased from 60 to 90 mg with efavirenz and etravirine 
which are inducers. The DCV dose should be decreased with cobicistat-containing 
regimens and ritonavir-boosted atazanavir from 60 to 30  mg [50, 51]. No dose 
adjustment of DCV is necessary with ritonavir-boosted lopinavir or darunavir [52].

9.3.3  Ledipasvir

9.3.3.1  Pharmacology of Ledipasvir

Ledipasvir (LDV) is an inhibitor of NS5A. LDV is only available coformulated with 
SOF. LDV absorption is pH-dependent. The bioavailability of LDV in humans is 
not known but ranges from 30 to 50% in rats, monkey, and dogs [53]. LDV 
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concentrations are similar when given fasted vs. with a moderate- or high-fat meal. 
LDV is greater than 99.8% protein bound. LDV is primarily eliminated unchanged 
in the feces [44]. For the metabolism of LDV, refer to Table 9.1 [43]. For the phar-
macokinetics of LDV in hepatic and renal impairment, refer to Table 9.2 [44]. LDV 
pharmacokinetics are not significantly altered by hepatic or renal impairment, but 
since the drug is coformulated with SOF, the same limitations on use in those with 
renal impairment apply [44].

9.3.3.2  Probe Interactions

LDV inhibits P-gp and BCRP, which may increase the concentrations of rosuvas-
tatin (an OATP1B1 and BCRP substrate); thus, this combination is not recom-
mended. Rosuvastatin AUC was increased by 699% with LDV, GS-9451 (an 
investigational protease inhibitor), and tegobuvir (an investigational non-nucleoside 
NS5B inhibitor) [54]; thus, it is unknown whether LDV would cause this effect on 
rosuvastatin in the absence of these other DAAs [55].

9.3.3.3  Clinically Significant Drug Interactions

Gastric Acid-Modifying Agents

LDV is dependent on an acidic environment for optimal absorption; thus, gastric 
acid modifiers should be used with caution. There are conflicting data on 
whether the use of proton pump inhibitors (PPI) compromises the likelihood of 
achieving cure also known as a sustained virologic response (SVR) [56, 57]. If 
gastric acid modifiers must be used, temporal separation is necessary with ant-
acids (by 4 h). Histamine-2 receptor antagonists (e.g., famotidine, ranitidine) 
should not exceed the equivalent of 40 mg famotidine twice daily. PPI (omepra-
zole, lansoprazole, etc.) doses should not exceed the equivalent of 20  mg 
omeprazole once daily and should be administered simultaneously with LDV/
SOF in the fasted state [44, 58].

HIV Antiretroviral Agents

LDV increases tenofovir exposures by 30–60%. This may increase the risk of renal 
toxicity in HIV-infected individuals taking TDF with a ritonavir-boosted protease 
inhibitor or cobicistat [59]. Efavirenz reduces LDV concentrations by 30% [60]. 
This reduction is unlikely to compromise SVR unless coupled with negative prog-
nostic factors such as imperfect adherence, black race, or shortened (8 weeks) treat-
ment duration [61–63].
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9.3.4  Simeprevir

9.3.4.1  Pharmacology of Simeprevir

Simeprevir (SMV) is a HCV NS3/4A protease inhibitor. The absolute bioavailabil-
ity of SMV is 62%. A 533 kcal meal and 928 kcal meal increase SMV AUC by 69% 
and 61%, respectively; thus, it is recommended to take with food. SMV is 99.9% 
protein bound, primarily to albumin, and less than 1% of SMV is renally cleared 
[64]. For the metabolism of SMV, refer to Table 9.1 [43], and for the pharmacoki-
netics of simeprevir in hepatic and renal impairment, refer to Table 9.2 [64].

9.3.4.2  Probe Interactions

As a perpetrator in drug interactions, SMV increases the AUC of oral midazolam (a 
CYP3A substrate) by 45%, caffeine (a CYP1A2 substrate) by 26%, omeprazole (a 
CYP2C19 substrate) by 21%, digoxin (a P-gp substrate) by 39%, and rosuvastatin 
(an OATP1B1 and BCRP substrate) by 2.8-fold in healthy volunteers [65, 66]. As a 
victim, SMV is altered by moderate or strong inducers and inhibitors of 
CYP3A.  Multi-dose rifampin reduces SMV AUC by 48%. Cyclosporine had no 
effect on SMV exposures in healthy volunteers, but SMV exposures were six fold 
higher in HCV-infected patients’ post-liver transplant taking SMV, DCV, and riba-
virin with cyclosporine vs. historical values [64, 67]. Thus, cyclosporine should not 
be used with SMV.

9.3.4.3  Clinically Significant Drug Interactions

HIV Antiretroviral Agents

Due to the effects of potent CYP3A inhibitors and inducers on SMV, ARV options 
are more limited. Efavirenz reduces SMV AUC by 71% [65]. SMV exposures are 
increased by 2.6-fold by ritonavir-boosted darunavir, even after an empiric dose 
reduction of SMV from 150 to 50 mg. Given these interactions, ritonavir- or cobici-
stat-boosted HIV protease inhibitors and efavirenz are not recommended with SMV.

9.3.5  Velpatasvir

9.3.5.1  Pharmacology of Velpatasvir

Velpatasvir (VEL) is an NS5A inhibitor [25, 68]. Like LDV, VEL absorption is pH- 
dependent. When administered with moderate-fat and high-fat meals, there is a 34% 
and 21% increase in VEL exposures, respectively [25, 69]. VEL is >99.5% bound to 
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proteins and predominantly excreted in feces as parent drug (77%), and less than 
1% of the dose is excreted in urine. For the metabolism of VEL, refer to Table 9.1 
[43], and for the pharmacokinetics of VEL in hepatic and renal impairment, refer to 
Table 9.2 [34, 69]. LDV pharmacokinetics are not significantly altered by hepatic or 
renal impairment, but since the drug is coformulated with SOF, the same limitations 
on use in those with renal impairment apply.

9.3.5.2  Probe Interactions

In terms of VEL’s ability to act as a perpetrator in interactions, pravastatin (an 
OATP1B1 substrate) AUC increased 35%, and rosuvastatin (an OATP1B1 and 
BCRP substrate) AUC increased approximately 170% when coadministered with 
VEL in healthy volunteers. Digoxin (a P-gp substrate) AUC increased 34%. In 
terms of its ability to act as  a victim in interactions, single-dose rifampin (an 
OATP1B1 inhibitor) increased VEL AUC by 47%, while multiple-dose rifampin 
reduced VEL AUC by 81%. VEL AUC increased 103% with a single dose of cyclo-
sporine (a mixed OATP/P-gp/MRP2 inhibitor). Ketoconazole (a CYP3A inhibitor) 
increased VEL AUC by 70% [34].

9.3.5.3  Clinically Significant Drug Interactions

Gastric Acid-Modifying Agents

VEL relies heavily on an acidic environment for optimal absorption [25]. If gas-
tric acid modifiers must be used, temporal separation is necessary with antacids 
(by 4 h). Histamine-2 receptor antagonists (e.g., famotidine, ranitidine) should 
not exceed the equivalent of 40 mg famotidine twice daily. As with LDV/SOF, 
PPI doses should not exceed the equivalent of omeprazole 20 mg once daily, but 
unlike LDV/SOF, SOF/VEL should be administered 4 h before the PPI in the fed 
state [25].

HIV Antiretroviral Agents

VEL AUC is reduced by 50% with TDF/emtricitabine/efavirenz; thus, this combi-
nation should be avoided. As with LDV/SOF, SOF/VEL increased tenofovir expo-
sures by 40–81% [70], and this could increase the risk for nephrotoxicity in 
individuals receiving TDF with ritonavir or cobicistat.
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9.3.6  Grazoprevir/Elbasvir

9.3.6.1  Pharmacology of Grazoprevir/Elbasvir

Grazoprevir and elbasvir (GZR/EBR) are inhibitors of the NS3 and NS5A proteins, 
respectively. GZR/EBR is available as a coformulated tablet administered once 
daily. GZR/EBR is a preferred HCV treatment for patients with renal impairment. 
Ribavirin is given with GZR/EBR in individuals with genotype 1a infection and 
pre-existing NS5A viral variants to increase the likelihood of achieving SVR.

The bioavailability of EBR is 30%. GZR bioavailability ranges from 10 to 40%. 
Administration of GZR/EBR with a high-fat meal to healthy subjects results in 
decreases in EBR AUC and Cmax of approximately 11% and 15%, respectively, 
and increases in GZR AUC and Cmax of approximately 1.5-fold and 2.8-fold, 
respectively [30]. GZR is at least 98% protein bound and EBR is more than 99% 
bound [30]. GZR and EBR are hepatically metabolized and less than 1% of GZR 
and EBR are renally eliminated. For the metabolism of GZR/EBR, refer to Table 9.1 
[43], and for the pharmacokinetics of GZR and EBR in hepatic and renal impair-
ment, refer to Table 9.2 [30, 71].

9.3.6.2  Probe Interactions

As a perpetrator in drug interactions, pravastatin (OATP1B1 substrate) and rosuvas-
tatin (OATP1B1 and BCRP substrate) exposures are increased by 33% and 126%, 
respectively, with GZR/EBR [30]. Atorvastatin and rosuvastatin doses should not 
exceed 20  mg and 10  mg daily, respectively, with GZR/EBR.  In terms of being 
victims of drug interactions, OATP1B1 inhibitors significantly raise GZR expo-
sures. Single-dose rifampin (an OATP1B1 inhibitor) raises GZR AUC by eight- to 
tenfold, and cyclosporine (OATP/P-gp/MRP2 inhibitor) raises the GZR AUC by 
15-fold. GZR/EBR should therefore not be used with cyclosporine. GZR is also 
susceptible to potent CYP3A inhibitors. Ketoconazole (a CYP3A4 inhibitor) 
increases GZR AUC by threefold [31, 72]. EBR AUC is increased by 80% with 
ketoconazole [30]. Coadministration of ketoconazole with GZR/EBR is not 
recommended.

9.3.6.3  Clinically Significant Drug Interactions

HIV Antiretroviral Agents

In healthy volunteers, GZR and EBR are increased by 10.6-fold and 4.76-fold, 
respectively, by ritonavir-boosted atazanavir; 7.5-fold and 1.66-fold, respectively, 
by ritonavir-boosted darunavir; and 12.86-fold and 3.71-fold, respectively, by 
ritonavir- boosted lopinavir. Thus, GZR/EBR should not be used with ARV 
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regimens that include ritonavir or cobicistat. GZR and EBR are reduced by 83% and 
54%, respectively, with efavirenz [30, 73]. Thus, inducers like efavirenz and etra-
virine should not be used with GZR/EBR.

9.3.7  Ritonavir-Boosted Paritaprevir, Ombitasvir with or 
Without Dasabuvir

9.3.7.1  Pharmacology of Ritonavir-Boosted Paritaprevir, Ombitasvir, 
and Dasabuvir

Paritaprevir is an NS3 protease inhibitor, ombitasvir is an NS5A inhibitor, and das-
abuvir is a non-nucleoside NS5B polymerase inhibitor. Ritonavir-boosted paritapre-
vir, ombitasvir, and dasabuvir (PrOD) is used for the treatment of HCV genotype 1. 
In individuals with genotype 1a, ribavirin is used with PrOD to increase the likeli-
hood of SVR.  Ritonavir-boosted paritaprevir and ombitasvir (PrO) is used with 
ribavirin, but without dasabuvir, for 12 weeks for the treatment of individuals with 
genotype 4 disease [74]. Ritonavir is used in this combination to pharmacokineti-
cally enhance the exposures of paritaprevir via inhibition of CYP3A. Ritonavir has 
no HCV activity.

The absolute bioavailability of paritaprevir, ombitasvir, and ritonavir is unknown. 
The absolute bioavailability of dasabuvir is approximately 70%. Moderate- and 
high-fat meals increase exposures of all four components, and the treatment is 
approved for administration with a meal. Protein binding is high for all four drugs: 
paritaprevir 97–98.6%, ombitasvir 99.9%, ritonavir greater than 99%, and dasabu-
vir greater than 99.5% [75]. For the metabolism of PrOD/PrO, refer to Table 9.1 
[43], and for the pharmacokinetics of paritaprevir, ombitasvir, and dasabuvir in 
hepatic and renal impairment, refer to Table 9.2 [76].

9.3.7.2  Probe Interactions

Paritaprevir and ritonavir are primarily metabolized by CYP3A. Ombitasvir is pri-
marily metabolized via amide hydrolysis. Dasabuvir is primarily metabolized by 
CYP2C8 enzymes. Ombitasvir, paritaprevir, dasabuvir, and ritonavir are substrates 
of P-gp. Ombitasvir, paritaprevir, and dasabuvir are substrates of BCRP. Paritaprevir 
is a substrate of OATP1B1 and OATP1B3.

Dasabuvir, ombitasvir, and paritaprevir are inhibitors of UGT1A1, and ritonavir 
is an inhibitor of CYP3A4. Paritaprevir is an inhibitor of OATP1B1 and OATP1B3, 
and dasabuvir, paritaprevir, and ritonavir are inhibitors of BCRP.

Based on the pharmacology of these agents, the use of PrOD/PrO can lead to a 
number of clinically important drug interactions. Clinicians are encouraged to 
screen for interactions with PrOD/PrO (and other DAAs) using the University of 
Liverpool website, www.hep-druginteractions.org. Coadministration with drugs 
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that are highly dependent on CYP3A for clearance, moderate or strong inducers of 
CYP3A or strong inducers of CYP2C8, and strong inhibitors of CYP2C8 is contra-
indicated with PrOD.

In terms of acting as a perpetrator, rosuvastatin (substrate for OATP1B1 and 
BCRP) and pravastatin (substrate for OATP1B1) exposures are increased by 159% 
and 82%, respectively, by PrOD [26]. PrOD increases ketoconazole (a CYP3A sub-
strate) AUC by twofold. PrOD lowers exposures of some drugs including omepra-
zole, a CYP2C19 substrate.

In terms of acting as victims of interactions, ketoconazole (a CYP3A inhibitor) 
increases ombitasvir, paritaprevir, and dasabuvir by 17%, 98%, and 42%, respec-
tively. Gemfibrozil (a potent CYP2C8 inhibitor) increases dasabuvir exposures by 
11-fold. Carbamazepine (CYP3A and P-gp inducer) reduces ombitasvir, paritapre-
vir, and dasabuvir by 31%, 70%, and 70%, respectively.

9.3.7.3  Clinically Significant Drug Interactions

HIV Antiretroviral Agents

With the exception of ritonavir-boosted atazanavir, ritonavir-boosted protease 
inhibitors and cobicistat-based ARV regimens should not be used with PrOD.  In 
healthy volunteers, PrOD reduced darunavir trough concentrations by 48% with 
once-daily ritonavir-boosted darunavir and 43% with twice-daily ritonavir-boosted 
darunavir. Without dasabuvir however (i.e., PrO), the decrease in darunavir troughs 
is not as prominent. Rilpivirine AUC is increased by 225% with PrOD [75]. This is 
concerning due to potential QTc prolongation with increased rilpivirine exposures. 
A study of efavirenz and PrOD in healthy volunteers was prematurely discontinued 
due to toxicities. Thus, efavirenz and etravirine are not recommended with PrOD or 
PrO.

Hormonal Contraceptives

PrOD/PrO was studied with progestin-only (norethindrone-only) oral contraception 
and ethinyl estradiol plus either norgestimate or norethindrone [26]. There was no 
effect on norethindrone pharmacokinetics. With norgestimate, the norelgestromin 
and norgestrel metabolites were increased by 2.6-fold, but this increase is not 
expected to have clinical relevance. Liver function test (LFT) elevations were noted 
in the studies of the combined ethinyl estradiol and progestin-containing contracep-
tive. While there was no increase in the pharmacokinetics of ethinyl estradiol with 
PrOD/PrO, grade 3 or 4 LFT elevations were noted in 5 of 21 women. Thus, 
estrogen- containing oral contraceptives, the transdermal patch, and vaginal ring 
should be avoided during PrOD/PrO treatment and can be reinitiated 2 weeks after 
completing HCV treatment. Progestin-only oral contraceptives, the etonogestrel 
implant, and levonorgestrel intrauterine device can be safely used with PrOD.
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Calcineurin Inhibitors

Cyclosporine AUC and trough concentration are increased by 5.82-fold and 15.8- 
fold, respectively, with PrOD. Modeling and simulation suggest using one fifth of 
the cyclosporine dose during PrOD treatment with careful monitoring of cyclospo-
rine levels and dose titration as needed [35]. Tacrolimus AUC and trough concentra-
tion are increased by 57-fold and 17-fold, respectively, with PrOD. Modeling and 
simulation suggest using 0.5 mg of tacrolimus every 7 days during PrOD treatment 
with careful monitoring of tacrolimus levels and dose titration as needed [35].

Psychotropics

Few formal interaction studies have been performed with PrOD/PrO and psychotro-
pic medications, but theoretically, interactions may occur based on overlapping 
clinical pharmacology. The psychotropic medications are unlikely to affect the 
pharmacokinetics of PrOD/PrO; rather, the pharmacokinetics of psychotropic medi-
cations may be altered by PrOD/PrO. Clinicians are advised to screen for interac-
tions with PrOD/PrO and psychotropic medications using the University of 
Liverpool website, www.hep-druginteractions.org. Psychotropics that are contrain-
dicated with PrOD/PrO include orally administered midazolam, St. John’s wort, 
pimozide, and quetiapine. A recent and helpful review is available on interactions 
with psychotropics and DAAs [77].

9.3.8  Ribavirin

9.3.8.1  Pharmacology of Ribavirin

Ribavirin (RBV) is a purine nucleoside analog. RBV is used in combination with 
DAAs for the treatment of chronic HCV infection in certain situations. RBV dosing 
is typically weight based (less than 75 kg receives 1000 mg daily; ≥75 kg receives 
1200 mg daily). The dose is often divided and given twice daily.

Host cell enzymes phosphorylate RBV to mono-, di-, and triphosphate deriva-
tives. The exact mechanism(s) of action of RBV and/or its phosphorylated deriva-
tives in vivo are unknown [78, 79].

The absolute bioavailability of RBV is 64%. RBV concentrations are increased 
with a high-fat meal and decreased with purine-rich foods such as margarine, tuna, 
ham, or whole milk [80, 81]. RBV is not protein bound, and 61% is recovered in the 
urine. Dose adjustments are required for patients with creatinine clearance values of 
<50 mL/min. For the metabolism of RBV, refer to Table 9.1 [43], and for the phar-
macokinetics of RBV in hepatic and renal impairment, refer to Table 9.2 [81].
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9.3.8.2  Drug Interaction Potential of Ribavirin

RBV has a low potential for drug interactions because it is not a substrate, inhibitor, 
or inducer of CYP enzymes. RBV is a substrate for concentrative (CNT) and equili-
brative nucleoside transporters (ENT), though no clinically significant drug interac-
tions have been attributed to CNT- and ENT-mediated interactions. RBV should not 
be used with the HIV nucleoside analog, didanosine, due to an increase in the for-
mation of the triphosphorylated form of didanosine which raises the risk of mito-
chondrial toxicity [82]. Zidovudine and RBV both cause the adverse effect of 
anemia and thus, this combination should also be avoided.

9.4  Summary

DAAs have revolutionized the treatment of HCV. Current therapies provide cure 
rates in excess of 90%. With these new treatments, comes an additional consider-
ation in the treatment of this disease, the avoidance of unfavorable drug-drug inter-
actions. The use of DAAs necessitates the identification and management of 
potential interactions before, during, and after treatment. The treatment of HBV 
involves the use of pegylated interferon and nucleos(t)ide analogs. These therapies 
have minimal interactions, but several new agents are in development for the treat-
ment of HBV which will likely necessitate more careful consideration of drug inter-
actions for the treatment of this virus as well.
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Chapter 10
Drug Interactions of Non-HIV Antiviral 
Agents

Douglas N. Fish

10.1  Introduction

Viruses continue to be recognized as frequent and important pathogens in many 
populations. Critically ill and immunocompromised patients, particularly within the 
transplant and human immunodeficiency virus (HIV)-infected populations, are at 
particularly high risk for severe viral infections such as those caused by cytomega-
lovirus (CMV), adenovirus, and disseminated herpes simplex virus (HSV) and vari-
cella zoster virus (VZV). Infections caused by hepatitis B virus (HBV) and hepatitis 
C virus (HCV) are also quite prevalent, and influenza continues to be a significant 
public and global health problem. Despite the frequent need for effective manage-
ment of such infections, the development of new antiviral agents for the prophylaxis 
and/or treatment of non-HIV viral infections has been relatively sluggish. With the 
exception of drugs used for HIV and the newer direct-acting antiviral (DAA) agents 
for HCV, few novel antiviral agents have been introduced to the US marketplace in 
recent years. Many of the currently available antiviral agents have been in clinical 
use for many years, and clinically significant drug interactions are reasonably well 
characterized, while interaction data are often quite limited for newer agents. This 
chapter summarizes available data regarding pharmacokinetic and toxic interactions 
with the current antiviral agents, excluding those used specifically for HIV infec-
tions as well as the DAAs. While many relevant drug interactions are summarized 
in Tables 10.1, 10.2, 10.3, and 10.4, there is still a great need for additional studies 
related to interactions with this clinically important group of drugs.
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Table 10.1 Interactions with drugs used for treatment of herpes simplex and varicella zoster virus 
infections

Primary drug Interacting drug Effects Mechanisms
Comments/
management

Acyclovir Food AUC ↓ 18% Decreased 
absorption

Not clinically 
significant, may 
administer without 
regard to meals

Cytarabine ACV Cmax ↓ 
43%, F ↓ 38%

Decreased 
absorption 
caused by 
mucosal 
damage

Clinical 
significance 
unknown, monitor 
response to 
antiviral therapy

Phenytoin, valproic acid ↓ serum 
concentrations 
of AEDs

Decreased 
absorption, 
unknown 
mechanism

Clinical 
significance 
unknown, monitor 
for effectiveness of 
AED therapy

Probenecid ACV AUC ↑ 
40%

Decreased 
renal tubular 
secretion

May be clinically 
significant, 
consider reduction 
in ACV dose

Benzylpenicillin ACV AUC ↑ 
30%

Decreased 
renal tubular 
secretion

May be clinically 
significant, but not 
reported in 
humans

Lithium 300% ↑ lithium 
concentration

Competitive 
renal tubular 
secretion

Clinical 
significance 
unknown, 
monitoring of 
lithium 
concentrations 
recommended

Cyclosporine No effect No additional 
monitoring 
necessary

Mycophenolate mofetil ACV Cmax ↑ 
18%; MMF 
AUC ↑ 9%

Competitive 
renal tubular 
secretion

Not likely to be 
clinically 
significant

Nephrotoxins 
(aminoglycosides, 
amphotericin B, cidofovir, 
foscarnet, intravenous 
pentamidine, vancomycin, 
etc.); also reports of 
nephrotoxicity during 
ceftriaxone therapy

Additive renal 
toxicity

Overlapping 
adverse 
effects

Avoid combination 
if possible; close 
clinical monitoring 
of renal function 
required

(continued)
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Table 10.1 (continued)

Primary drug Interacting drug Effects Mechanisms
Comments/
management

Theophylline THEO CL ↓ 
30%, AUC ↑ 
45%

Decreased 
oxidative 
metabolism

Clinical 
significance 
unknown, 
monitoring of 
theophylline 
concentrations 
recommended

Zidovudine Improved 
survival in 
HIV-infected 
patients

Synergistic 
anti-HIV 
activity

Not consistently 
demonstrated, 
clinical 
significance 
unknown; may be 
less relevant with 
HAART

Valacyclovir High-fat meal No effect May administer 
without regard to 
meals

Al3+/Mg2+ antacids No effect Not significant
Probenecid ACV Cmax ↑ 

22%, AUC ↑ 
49%

Decreased 
renal tubular 
secretion

May be clinically 
significant, 
consider reduction 
in VACV dose

Cimetidine ACV Cmax ↑ 
8%, AUC ↑ 
32%

Decreased 
renal tubular 
secretion

May be clinically 
significant

Probenecid + cimetidine ACV Cmax ↑ 
30%, AUC ↑ 
78%

Decreased 
renal tubular 
secretion

May be clinically 
significant

Digoxin No effect No additional 
monitoring 
necessary

Mycophenolate mofetil ACV Cmax ↑ 
40%, AUC ↑ 
31%; MMF ↔

Competitive 
renal tubular 
secretion

Not likely to be 
clinically 
significant but 
monitor antiviral 
therapy

Nephrotoxins (as with 
ACV)

Additive renal 
toxicity

Overlapping 
side effects

Avoid combination 
if possible; close 
clinical monitoring 
of renal function 
required

NSAIDs Increased renal 
toxicity

Inhibition of 
ACV tubular 
secretion

May be clinically 
significant

Tipranavir/ritonavir ACV Cmax ↓ 
5%, AUC ↑ 7%

Not significant

(continued)
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10.2  Drugs for Treatment of HSV and VZV Infections

10.2.1  Acyclovir/Valacyclovir

Potentially important drug interactions with acyclovir and valacyclovir are summa-
rized in Table  10.1. Although the effects of administration with food will differ 
depending on whether acyclovir is administered as the parent drug or the valacyclo-
vir prodrug, other potential drug interactions involving systemic acyclovir would be 
assumed to occur after administration of either compound. Studies evaluating 
potential interactions between acyclovir and valacyclovir with food have shown no 
significant or clinically relevant changes in the areas under the plasma concentration 
vs. time curve (AUC) compared to administration of the drugs in the fasted state. 
Both oral acyclovir and valacyclovir may thus be administered without regard to 
meals [1, 2]. The concurrent administration of a single dose of aluminum- or 
magnesium- containing antacid was also shown to have no significant effects on the 
pharmacokinetics of valacyclovir after oral administration of a 1 g dose [2].

Acyclovir is commonly administered for suppression of HSV disease during 
remission-induction chemotherapy in patients with acute myelogenous leukemia 
(AML). Malabsorption of D-xylose as a probable result of damage to the intestinal 
mucosa has previously been observed after cytarabine therapy in such patients. 
While the pharmacokinetics of intravenously administered acyclovir were 
unchanged after chemotherapy, both the peak plasma concentration (Cmax) and bio-
availability of oral acyclovir were substantially decreased after chemotherapy [3]. It 
is not known whether these changes are clinically important or whether such phar-
macokinetic alterations are also seen with valacyclovir; however, effectiveness of 
antiviral therapy should be carefully monitored when these agents are orally admin-
istered in similar clinical scenarios.

Two case reports have described the possibly decreased oral absorption of phe-
nytoin and valproic acid (VPA) after the use of oral acyclovir in children; the 

Table 10.1 (continued)

Primary drug Interacting drug Effects Mechanisms
Comments/
management

Famciclovir/ 
penciclovir

Food PCV Cmax ↓ 
53%, ↑ Tmax, 
AUC ↔

Decreased 
rate of 
absorption

Not clinically 
significant, may 
administer without 
regard to meals

Digoxin No effect on 
either drug

No additional 
monitoring 
necessary

ACV acyclovir, AED antiepileptic drug, AUC area under the plasma concentration vs. time curve, 
CL total systemic clearance, Cmax maximum plasma concentration, F bioavailability, HAART 
highly active antiretroviral therapy, MMF mycophenolate, NSAIDs nonsteroidal anti-inflammatory 
drugs, PCV penciclovir, THEO theophylline, Tmax time to maximum plasma concentration, VACV 
valacyclovir

D. N. Fish
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 subsequently decreased serum concentrations of the antiepileptic drugs were asso-
ciated with increased seizure frequency in previously stable patients [4]. The mech-
anisms underlying this potential interaction are unknown.

Acyclovir is primarily eliminated by the kidneys through a combination of glo-
merular filtration and active renal tubular secretion. Potential drug interactions 
involving drugs which may inhibit the tubular secretion of acyclovir have therefore 
been evaluated. The AUC of acyclovir was increased by approximately 40% after 
concomitant administration of probenecid, with renal clearance and urinary excre-
tion of acyclovir also correspondingly decreased [1, 5]. Similar results have been 
observed with valacyclovir [2, 6]. The Cmax and AUC of acyclovir were also increased 
by 8% and 32%, respectively, in subjects receiving valacyclovir orally after con-
comitant administration of a single 800 mg dose of cimetidine [2, 6]. Additionally, 
acyclovir Cmax and AUC were increased to an even greater extent after concomitant 
administration of valacyclovir along with the combination of both probenecid and 
cimetidine [2, 6]. Similar results on acyclovir tubular secretion have been described 
in rat models where the concomitant administration of acyclovir and benzylpenicil-
lin was associated with a 30% increase in acyclovir AUC, presumably through inter-
actions with human organic anion transporters (hOAT) 1 and 3 in the renal tubules 
[7]. Although both probenecid and cimetidine caused substantial alterations in acy-
clovir pharmacokinetics, these changes are unlikely to be clinically relevant unless 
using high doses of acyclovir where accumulation to excessively high concentrations 
may increase the risk of drug-related adverse effects. Conversely, although acyclovir 
is not otherwise known to inhibit the renal secretion of other drugs, one case report 
described a fourfold increase in lithium serum concentrations following the addition 
of high-dose intravenous acyclovir to a chronic lithium carbonate regimen [8].

No significant pharmacokinetic alterations were observed when valacyclovir was 
administered together with multiple doses of thiazide diuretics [2]. Likewise, the 
pharmacokinetics of neither acyclovir nor digoxin were significantly altered when 
valacyclovir was administered concomitantly [2].

The pharmacokinetics of neither acyclovir nor cyclosporine were significantly 
affected when the two drugs were administered concomitantly [1]. However, studies 
assessing the possible interaction of acyclovir and mycophenolate mofetil (MMF) 
have had conflicting results [9–11]. One study found that the AUC of MMF and its 
primary glucuronide conjugate metabolite, MPAG, were increased by 9% and 10%, 
respectively, while the acyclovir Cmax was also increased by 18% [9]. A second 
study found that the pharmacokinetics of neither MMF nor acyclovir were signifi-
cantly affected [10]. In a final study, 15 patients were randomized to receive oral 
acyclovir alone, valacyclovir alone, MMF alone, acyclovir plus MMF, or valacyclo-
vir plus MMF in a single-dose, crossover study [11]. After co-administration with 
MMF, acyclovir Cmax, time to peak plasma concentration (Tmax), and AUC were sig-
nificantly increased compared to those parameters after administration of acyclovir 
alone. The mean renal clearance of acyclovir was also reduced by 19%, possible due 
to competition with MPAG for renal tubular secretion. Valacyclovir Tmax was also 
significantly increased by 0.5 h when co-administered with MMF, and alterations in 
Cmax, Tmax, and AUC were similar to those seen with oral acyclovir. Mycophenolate 
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pharmacokinetics were not significantly altered after co-administration with either 
acyclovir or valacyclovir, with the exception that the AUC of MPAG was decreased 
by 12% after concomitant administration of valacyclovir. Overall, interactions 
between acyclovir, valacyclovir, and MMF were felt by the authors to be clinically 
insignificant in otherwise healthy subjects with good renal function [11].

Because high-dose acyclovir and valacyclovir have been associated with adverse 
renal effects including acute tubular necrosis, crystalluria, and acute renal failure, 
caution should be exercised when using these antivirals in combination with other 
drugs that also have potential for additive nephrotoxicity, e.g., aminoglycosides, 
amphotericin B products, cidofovir, foscarnet, intravenous pentamidine, vancomy-
cin, and others [1]. The concomitant use of ceftriaxone has also been reported to 
increase the nephrotoxicity of acyclovir [12]. A retrospective case-control evalua-
tion utilizing the Food and Drug Administration (FDA) Adverse Event Reporting 
System database found the combination of valacyclovir and loxoprofen, a nonste-
roidal anti-inflammatory drug (NSAID), to be associated with a 26-fold increased 
rate of acute kidney injury (AKI) in elderly patients ≥65 years of age compared to 
patients of similar age exposed to neither agent (odds ratio 26.0, 95% confidence 
interval 19.2–35.3) [13]. An earlier case report also described AKI occurring in an 
elderly patient receiving valacyclovir and an NSAID [14]. The mechanism of poten-
tial renal injury is unknown, although NSAIDS are known to inhibit hOAT1 and 
hOAT3 in the renal tubules which may in turn lead to excessive accumulation of 
acyclovir [13].

A study conducted in five healthy subjects demonstrated a mean 30% reduction 
in total systemic theophylline clearance and 45% increase in AUC when theophyl-
line was administered together with acyclovir [15]. The results of this study suggest 
that acyclovir interferes with the oxidative metabolism of theophylline, although 
such metabolic interactions with acyclovir have not been previously reported and 
the clinical significance is unknown.

The combination of acyclovir and zidovudine has been suggested to have syner-
gistic antiviral effects and to be associated with improved survival in HIV-infected 
patients. However, the benefits of this combination have not been consistently dem-
onstrated, and no pharmacokinetic or in vitro pharmacologic interactions between 
these two drugs have been demonstrated [16–21]. The clinical significance of this 
interaction is therefore unknown and may be less relevant with the current use of 
highly active antiretroviral therapy (HAART) for treatment of HIV infection. The 
combination of tipranavir plus ritonavir has been shown to have no significant phar-
macokinetic interactions with acyclovir [22]; other antiretroviral agents have not 
been formally evaluated.

10.2.2  Famciclovir/Penciclovir

Famciclovir is the prodrug of penciclovir. Dideacetylation of famciclovir occurs in 
the blood and possibly in the intestinal wall, followed by 6-oxidation of the interme-
diary metabolite to form the active antiviral agent penciclovir. Conversion of 
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6-deoxy-penciclovir to penciclovir is catalyzed by the aldehyde oxidase enzyme. 
Cimetidine and promethazine are both in vitro inhibitors of aldehyde oxidase, but 
interaction studies have not shown any relevant effects of these drugs on the forma-
tion of penciclovir [23].

The effects of food on the pharmacokinetics of famciclovir were evaluated in two 
studies [24, 25]; the results of these studies are summarized in Table  10.1. The 
administration of oral famciclovir with food was associated with a 53% decrease in 
penciclovir Cmax and an increase in Tmax of approximately 2 h compared to the fast-
ing state. However, the penciclovir AUC was not significantly altered, indicating 
that the rate of famciclovir absorption was altered but the overall bioavailability was 
not affected. Famciclovir may thus be administered without regard to meals 
[23–25].

Like acyclovir, probenecid may affect the renal tubular excretion of penciclovir, 
but this interaction is not considered to be clinically relevant under most circum-
stances [23]. An in vitro study using human liver microsomes found no inhibition of 
cytochrome (CYP) 3A4 enzymes by penciclovir [23]. In other studies, no clinically 
significant effects on penciclovir pharmacokinetics were observed after pretreat-
ment with multiple doses of allopurinol, magnesium/aluminum hydroxide antacids, 
cimetidine, promethazine, theophylline, thiazides, emtricitabine, or zidovudine 
(either the parent drug or the zidovudine glucuronide metabolite) followed by 
administration of single doses of famciclovir [23]. Finally, the steady-state pharma-
cokinetics of digoxin were also not affected by either single or multiple doses of 
famciclovir [23].

10.3  Drugs Used for Prophylaxis and Treatment of CMV 
Infections

10.3.1  Ganciclovir and Valganciclovir

Potentially important drug interactions with ganciclovir and valganciclovir are sum-
marized in Table 10.2. Although the effects of administration with food will differ 
depending on whether ganciclovir is administered as the parent drug or the valgan-
ciclovir prodrug, other potential drug interactions involving systemic ganciclovir 
would generally occur after administration of either compound. The Cmax and AUC 
of oral ganciclovir were increased by 15% and 20%, respectively, when the drug 
was administered with a high-fat meal [26]. Although the preferred use of the better- 
absorbed valganciclovir prodrug makes this interaction of little relevance, similar 
results have also been observed with valganciclovir; Cmax of ganciclovir was 
increased by 14%, and the AUC increased by 23–57% when valganciclovir was 
administered with standard or high-fat meals [27, 28]. Based on these studies, val-
ganciclovir tablets should be administered with food [27–29].
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As with acyclovir and penciclovir, ganciclovir is approximately 90% eliminated 
as unchanged drug through a combination of glomerular filtration and renal tubular 
secretion. The ganciclovir steady-state AUC was increased by 53 ± 91% (range −14% 
to 299%), and the renal clearance was decreased by 22  ±  20% (range −54% to 
−4%) when oral ganciclovir was administered concomitantly with probenecid, con-
sistent with a probenecid-induced decrease in renal tubular transport [28]. The 
potential for acyclovir to competitively inhibit ganciclovir secretion was also 
assessed, but no interaction was found [28–30].

Because of the high incidence of CMV disease in HIV-infected patients and the 
overlapping myelosuppressive toxicities (i.e., anemia, leukopenia, thrombocytope-
nia) of ganciclovir and zidovudine, potential interactions between these two drugs 
have been assessed [30]. In a study in which oral ganciclovir was administered 
concomitantly with zidovudine, the steady-state ganciclovir AUC was decreased by 
17  ±  25% (range  −52% to 23%), while the steady-state zidovudine AUC was 
increased by 19 ± 27% (range −11 to 74%). Neither of these alterations was consid-
ered to be clinically significant [30]; no studies have been conducted with intrave-
nous ganciclovir.

Although studies did not indicate a high risk for significant pharmacokinetic 
interactions, the overlapping myelosuppressive toxicities of ganciclovir and zid-
ovudine are of concern. The combination of ganciclovir with zidovudine was found 
to be associated with high rates of drug intolerance and hematologic toxicity [31–
35]. The combination of zidovudine plus intravenous ganciclovir was associated 
with hematologic toxicity in 82% and with severe neutropenia in 55% of 40 AIDS 
patients. These toxicities required dose reduction or drug discontinuation to effec-
tively manage the adverse effects [31]. In a second study, 113 patients with AIDS 
or AIDS-related complex received zidovudine for a median duration of 152 days. 
Statistical analysis showed that the concomitant use of ganciclovir was associated 
with significantly increased risk of anemia and thrombocytopenia [32]. Similar 
high rates of anemia and neutropenia were reported in other studies as well [36]. 
Because of the high risk of hematologic toxicities and the current availability of a 
number of other antiretroviral agents, the use of zidovudine in combination of gan-
ciclovir or valganciclovir should be avoided if possible. If such a combination must 
be used for clinical reasons, frequent monitoring of complete blood counts is 
required. Caution should also be exercised in combining ganciclovir or valganciclo-
vir with other drugs with myelosuppressive potential; such drugs include dapsone, 
flucytosine, various antineoplastic agents, intravenous pentamidine, pyrimeth-
amine, amphotericin B products, trimethoprim/sulfamethoxazole (TMP/SMX), and 
trimetrexate [30, 37].

The product information for ganciclovir states that ganciclovir pharmacokinetics 
are not affected by didanosine [30]. However, in a multiple-dose crossover study in 
13 HIV-positive patients, a minor pharmacokinetic interaction was reported when 
oral ganciclovir was administered after didanosine [38]. In this study didanosine 
was administered either simultaneously with ganciclovir or sequentially, i.e., 2 h 
before ganciclovir. Significantly increased AUC was reported for didanosine during 
both simultaneous and sequential administration [115% and 108% increased AUC, 
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respectively (P < 0.001)]. In addition, the AUC of ganciclovir was also decreased by 
21% when administered 2 h after didanosine (P = 0.002) [38]. In a second study, 
intravenous ganciclovir plus didanosine resulted in significantly increases in didan-
osine AUC (70 ± 40%, range 3% to 121%) and Cmax (49 ± 48%, range − 28% to 
125%) [30, 39]. In a third study, ganciclovir combined with didanosine resulted in 
the steady-state didanosine AUC being increased by 50 ± 26% (range 22% to 110%) 
and Cmax being increased by 36 ± 36% (range − 27% to 94%) [30, 40]. The mecha-
nism for the apparent two-way pharmacokinetic interaction between ganciclovir 
and didanosine is unknown, but does not appear to involve competition for renal 
tubular excretion of either drug [40]. Finally, a case report has described pancytope-
nia and persistently decreased CD4+ lymphocyte counts in an HIV-infected patient 
receiving the combination of valganciclovir and didanosine. The proposed mecha-
nism is a ganciclovir-induced inhibition of purine nucleoside phosphorylase, an 
enzyme responsible for catalyzing the breakdown of didanosine and endogenous 
purines [41, 42]. Because of the potential for increased toxicities of didanosine in 
association with significantly increased drug exposure, this interaction should be 
approached with caution, and the concomitant use of ganciclovir or valganciclovir 
plus didanosine should be avoided. If this combination is required for clinical rea-
sons, careful monitoring for adverse effects of both drugs is required.

In vitro models have previously suggested that ganciclovir has antagonistic 
effects on the anti-HIV effects of zidovudine and didanosine, while foscarnet plus 
zidovudine has synergistic activity [35]. Studies evaluating the use of ganciclovir 
and foscarnet in the treatment of CMV retinitis in 234 patients with AIDS found that 
patients receiving foscarnet had a 3-month relative survival advantage compared to 
patients receiving ganciclovir and that this difference in survival could not be attrib-
uted solely to differences in drug exposures or toxicities [43, 44]. Although these 
clinical data provide some support for potential antagonistic or synergistic anti-HIV 
effects of ganciclovir and foscarnet, it is difficult to prove that the observed mortal-
ity differences were due to pharmacological effects of the drugs alone. The clinical 
relevance of these findings is unknown.

Serum creatinine elevations to greater than 2.5 mg/dL have been reported in up 
to 20% of bone marrow transplant and heart transplant patients during ganciclovir 
therapy [45, 46]. Most of these patients received cyclosporine and, in many cases, 
amphotericin B as well. Whether ganciclovir played a role in increasing the nephro-
toxicity of other drugs through pharmacokinetic interactions or additive toxicities is 
unknown. However, a retrospective study of 93 liver transplant patients receiving 
ganciclovir concomitantly with oral cyclosporine found no evidence of effects on 
cyclosporine whole blood concentrations which may have predisposed to enhanced 
toxicities [30]. No changes in the pharmacokinetics of either ganciclovir or MMF 
were observed during concomitant administration of these two agents.

Valproic acid, an inhibitor of histone deacetylase (HDAC), has been shown 
in vitro to stimulate the replication of CMV and significantly impair the antiviral 
activity of ganciclovir, cidofovir, and foscarnet through mechanisms probably 
related to HDAC-related stimulatory effects on CMV itself [47]. Effects were most 
pronounced in cells that had been pretreated with VPA; when added during or after 
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infection, VPA did not inhibit antiviral actions of the other drugs. The clinical rele-
vance of these findings is unknown. Finally, seizures have been reported in patients 
receiving ganciclovir together with imipenem [30, 48]. Whether these seizures were 
related to the combination therapy or solely to imipenem is unclear.

10.3.2  Cidofovir

Potential drug interactions involving cidofovir are summarized in Table  10.2. 
Cidofovir is approximately 90% renally excreted with a high degree of renal tubular 
secretion. Probenecid has been shown to significantly reduce cidofovir clearance 
with a corresponding increase in AUC.  This significant interaction serves as the 
basis for the FDA-approved use of cidofovir in combination with probenecid in the 
treatment of CMV infection. The recommended dose of probenecid is 2 g orally 3 h 
prior to the cidofovir dose, followed by 1 g orally at 2 and 8 h after completion of 
the cidofovir infusion [49]. Although cidofovir is routinely used in combination 
with probenecid in order to improve the pharmacokinetic profile of cidofovir and 
enhance clinical efficacy, the use of probenecid also appears to increase the overall 
incidence of drug-related adverse effects observed during cidofovir therapy [50–
52]. Up to half of patients receiving cidofovir plus probenecid may develop consti-
tutional symptoms of fever, chills, nausea, vomiting, fatigue, headache, GI upset, 
and rash; serious reactions including systemic hypotension may occur in 3% of 
patients and often result in discontinuation of cidofovir/probenecid therapy. 
Although difficult to determine whether such adverse effects are primarily due to 
cidofovir or probenecid, they seem to be most closely related to the administration 
of probenecid [53, 54]. Probenecid is also known to interact with the renal tubular 
secretion of many other drugs including acetaminophen, angiotensin-converting 
enzyme inhibitors, aminosalicylic acid, barbiturates, benzodiazepines, bumetanide, 
clofibrate, methotrexate, famotidine, furosemide, NSAIDs, theophylline, and zid-
ovudine. Concomitant medications should be carefully evaluated as part of the over-
all assessment and monitoring of cidofovir/probenecid therapy [49]. Although no 
consistent change in zidovudine AUC has been observed when combined with cido-
fovir [55], and although the combination of cidofovir plus zidovudine did not appear 
to increase the incidence of drug-related myelosuppression [33], the manufacturer 
of cidofovir recommends that zidovudine should either be temporarily discontinued 
or the dose decreased by 50% when co-administered with probenecid on the day of 
cidofovir dosing [49].

The combination of cidofovir with other potentially nephrotoxic agents such as 
aminoglycosides, acyclovir, amphotericin B products, foscarnet, intravenous 
 pentamidine, vancomycin, and NSAIDs should be avoided whenever possible due 
to potential for additive nephrotoxicity [49]. The manufacturer of cidofovir recom-
mends that other potential nephrotoxins be discontinued at least 7  days prior to 
starting therapy with cidofovir [49]. If the use of other potentially nephrotoxic 
agents cannot be avoided due to clinical considerations, serum creatinine and other 
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markers of renal function should be carefully monitored before and after each dose 
of cidofovir. Although mechanisms of additive nephrotoxicity have not been 
described in detail for most drug combinations and are likely multifactorial, animal 
and tissue culture models indicate that potential interactions between cidofovir and 
amphotericin B do not involve amphotericin B-related inhibition of renal organic 
acid transport proteins [56].

A number of case reports have described the occurrence of ocular toxicities dur-
ing the administration of cidofovir concomitantly with rifabutin [57–60]. Both 
agents have been associated with uveitis, but whether the combination substantially 
increases the risk of ocular toxicities is unknown. Nevertheless, caution should be 
exercised when using these two agents together.

10.3.3  Foscarnet

Important drug interactions involving foscarnet are summarized in Table 10.2. Like 
many other antiviral agents, foscarnet undergoes significant renal tubular secretion. 
Although the potential interaction between foscarnet and probenecid has not actu-
ally been well described, there is also potential for competition between foscarnet 
and certain other drugs such as didanosine and zalcitabine which are also renally 
secreted. However, no pharmacokinetic alterations with didanosine or zalcitabine 
have been observed [61, 62]. While the combination of foscarnet plus ganciclovir 
should rarely be required, no alterations in the pharmacokinetics of either drug were 
noted when the combination was studied in 13 patients [61].

The risk of overlapping and potentially additive toxicity with other drugs is a 
major consideration during foscarnet therapy. The concomitant use of foscarnet and 
other potentially nephrotoxic agents such as aminoglycosides, acyclovir, ampho-
tericin B products, cidofovir, cyclosporine, intravenous pentamidine, and vancomy-
cin should be approached with caution and avoided whenever possible [61, 63]. 
Abnormal renal function has also been noted with combinations of foscarnet plus 
ritonavir, as well as combined foscarnet, ritonavir, plus saquinavir [61]. The poten-
tial mechanisms or significance of observed renal dysfunction during combined 
therapy with these antiretroviral drugs is unknown.

Additive central nervous system toxicity resulting in seizures in two patients has 
been reported with the concomitant use of foscarnet and ciprofloxacin [64]. 
Although both patients in whom these seizures occurred were receiving multiple 
medications and a direct causal effect is unclear, a study in mice has also reported 
increased seizure potential with the combination of foscarnet plus ciprofloxacin (but 
not enoxacin) [65]. Although this interaction appears to involve alteration of 
gamma-aminobutyric acid (GABA) activity in the central nervous system, it has not 
been commonly reported with fluoroquinolones and the clinical importance is 
unknown.

Severe hypocalcemia has been reported during combined therapy of foscarnet 
and intravenous pentamidine [61]. Post-marketing surveillance by the manufacturer 

10 Non-HIV Antivirals



402

found that four patients in the United Kingdom who were treated with the combina-
tion of foscarnet and pentamidine may have developed drug-related hypocalcemia; 
one of these patients reportedly died of severe hypocalcemia. This potential additive 
toxicity would be expected to occur only with intravenous pentamidine since the 
systemic absorption of pentamidine after aerosolized administration is negligible. 
The combination of foscarnet and intravenous pentamidine should be avoided when 
possible; close patient monitoring is required if concomitant therapy with these 
drugs is required.

In vitro models have demonstrated additive or synergistic activity against HIV 
and CMV when the combination of foscarnet plus zidovudine was studied at clini-
cally relevant concentrations [66, 67]. The mechanisms of such enhanced effects are 
unknown, and no pharmacokinetic interactions between the two drugs have been 
observed [68]. Although the clinical significance of these potential interactions is 
unknown, it is likely of low clinically relevance given the use of multiple-drug anti-
retroviral combinations during HAART.

10.4  Drugs Used for Prevention and Treatment of Influenza

10.4.1  Amantadine and Rimantadine

Potentially important drug interactions with the adamantane drugs (amantadine and 
rimantadine) are summarized in Table 10.3. Pharmacokinetic studies of adaman-
tanes have demonstrated that administration of these drugs with food has no signifi-
cant effects on their bioavailability compared to administration in the fasting state 
[69, 70]. The adamantanes may thus be administered without regard to meals.

As with many other antiviral agents, the adamantanes undergo renal tubular 
secretion [71, 72]. A number of drugs have been associated with decreased renal 
clearance and increased adverse effects of amantadine. Concomitant use of amanta-
dine with the diuretic triamterene/hydrochlorothiazide was associated with a 50% 
increase in amantadine concentrations and occurrence of central nervous system 
toxicity. The mechanism of this interaction is assumed to be decreased renal clear-
ance through inhibition of tubular secretion, although it is unknown which compo-
nent of the diuretic combination was responsible [73]. Use of TMP/SMX was also 
reported to cause decreased renal clearance and neurologic toxicity when adminis-
tered with amantadine, presumably due to TMP-induced reduction in the tubular 
secretion of amantadine [74]. Co-administration of quinine or quinidine also report-
edly reduces the renal clearance of amantadine by approximately 30% [71]. Cationic 
drugs with active tubular secretion could theoretically compete with the renal tubu-
lar secretion of rimantadine, but no cases have been reported [75]. No significant 
interaction was found with cimetidine, nor with aspirin or acetaminophen [72].

Increased central nervous system toxicities, particularly of amantadine, have 
been reported when the antiviral agents are used concomitantly with a number of 
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other agents with overlapping toxicity profiles. The neurotoxic effects of amanta-
dine may reportedly be increased by antihistamines, psychotropic agents including 
thioridazine, and drugs with pronounced anticholinergic activity. Reports have been 
particularly frequent among patients taking anticholinergic agents for treatment of 
Parkinson’s disease [71, 72, 76–78]. Neurotoxicity has also been reported with 
combinations of amantadine with either phenylpropanolamine [79] or bupropion 
[80]. Reversible central nervous system toxicity was reported to occur in six of eight 
patients receiving bupropion within 1 week of beginning amantadine treatment; the 
mechanism of toxicity is believed to be related to the dopamine-stimulating effects 
of the two drugs [80]. In general, caution should be used when amantadine is com-
bined with other central nervous system stimulants and patients carefully monitored 
for evidence of neurologic toxicities [71].

Due to concerns regarding severe pandemics with novel influenza strains such 
as H5N1, combination therapy with amantadine plus oseltamivir has been sug-
gested in order to increase the potential for both increased antiviral efficacy and 
decreased resistance. A randomized, crossover trial was conducted in which 17 
subjects received amantadine alone or in combination with oseltamivir for 5 days 
to evaluate any pharmacokinetic interactions between the two drugs [81]. 
Co-administration with oseltamivir had no significant effects on amantadine AUC 
or Cmax. Similarly, amantadine co-administration had no significant effects on the 
pharmacokinetics of either oseltamivir or oseltamivir carboxylate. No evidence of 
increased adverse effects of either drug were noted [81]. Similarly, no significant 
pharmacokinetic interactions were found between rimantadine and either oseltami-
vir or peramivir [82, 83].

The adamantanes exert their effects against the influenza virus by inhibiting 
viral replication. There is a theoretical potential for these agents to reduce the effi-
cacy of the intranasal live attenuated influenza vaccine (LAIV) by inhibiting repli-
cation of the live virus after vaccine administration. It is therefore recommended 
that the LAIV should not be administered within 2 weeks before, or 48 h after, 
administration of amantadine. The use of amantadine or rimantadine should not 
affect administration of the injectable influenza vaccine (IIV) containing inacti-
vated virus [71, 72].

10.4.2  Oseltamivir

Potential drug interactions involving oseltamivir are shown in Table  10.3. 
Co-administration of oral oseltamivir with food has no significant effect on either 
the Cmax or AUC of oseltamivir carboxylate, the active compound which is rapidly 
formed after administration of oseltamivir phosphate [84]. In addition, the rate and 
extent of oseltamivir absorption were not affected by either magnesium hydroxide/
aluminum hydroxide or calcium carbonate antacids after concomitant administra-
tion to healthy volunteers [85]. In contrast, concomitant administration with 400 mL 
of milk was reportedly associated with a 31% reduction in Cmax, 65% reduction in 
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AUC, and 22% reduction in the urinary recovery of oseltamivir. The proposed 
mechanism for this interaction is reduced absorption of oseltamivir through inhibi-
tion of proton-coupled oligopeptide transporter 1 (PEPT1) caused by milk peptides 
[86]. This potential interaction has not been reported elsewhere and the clinical 
significance is unknown.

Oseltamivir has low potential for drug interactions based on the characteristics of 
low protein binding, lack of hepatic metabolism, and renal elimination through glo-
merular filtration and anionic tubular secretion [84, 87]. In vitro studies also suggest 
that neither oseltamivir nor oseltamivir carboxylate are good substrates for CYP450 
mixed-function oxidases or glucuronyl transferases. The conversion of oseltamivir 
to oseltamivir carboxylate occurs via human carboxylesterase 1 (HCE1), which is 
located predominantly in the liver. Activity of HCE1 was reportedly inhibited by as 
much as 90% in the presence of the antiplatelet drug clopidogrel, which is also 
hydrolyzed by HCE1 but has a greater affinity for the enzyme than does oseltamivir 
[88]. The inhibition of HCE1 in vitro was dependent on the clopidogrel dose/con-
centration used [89], and studies describing clopidogrel interactions have been criti-
cized in part because the relative concentrations of oseltamivir and clopidogrel 
evaluated (50 μM and 2.5–50 μM) were approximately 240-fold and 400–8000-fold 
higher, respectively, than plasma concentrations achieved with typical oseltamivir 
and clopidogrel dosing regimens. The true significance of this potential clopidogrel 
interaction is unknown but is not likely to be clinical important based on method-
ological problems with the in vitro studies [90]. Drug interactions involving compe-
tition for, or inhibition of, these esterases otherwise have not been extensively 
reported in literature.

Systemic clearance of oseltamivir carboxylate primarily occurs through renal 
secretion via renal tubular hOAT1. Clinically important drug interactions involving 
oseltamivir could thus potentially occur with other drugs that inhibit renal tubular 
secretion through this pathway [87]. Cimetidine is a potent inhibitor of O-carboxylates 
1 and 2, two active pathways for transport and secretion of cationic drugs by renal 
tubular epithelial cells. Not surprisingly because of the difference in transporter 
systems affected, no interaction was observed when cimetidine was administered 
concomitantly with oseltamivir [87, 91]. However, probenecid reduced the renal 
clearance of oseltamivir carboxylate by 50% and increased the AUC by 100% [84, 
87]. No interaction was noted between oseltamivir and concomitant administration 
of amoxicillin (also secreted into urine by hOAT) in healthy volunteers [87, 91]. 
Even though oseltamivir has only weak inhibitory effects on renal tubular anionic 
secretory transporters, it is recommended that care be exercised with co- 
administration of methotrexate because of common secretory pathways and poten-
tial for increased methotrexate toxicities [91].

The interaction between oseltamivir and probenecid has been suggested as likely 
not clinically important because these two drugs are seldom used together and 
because oseltamivir lacks serious toxicities [87]. However, in response to concerns 
regarding potential influenza pandemics and limited supplies of oseltamivir [92, 
93], at least two studies have evaluated the feasibility of oseltamivir/probenecid 
combinations as a means of reducing oseltamivir dosing requirements [94, 95]. In 
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the first study, 48 healthy volunteers were randomized to receive oseltamivir 75 mg 
once daily, oseltamivir 75 mg every 48 h plus probenecid 500 mg four times daily, 
or oseltamivir 75 mg every 48 h plus probenecid 500 mg twice daily [94]. Oseltamivir 
and oseltamivir carboxylate Cmax and Tmax did not significantly differ between the 
three groups. However, the steady-state apparent oral clearances of oseltamivir car-
boxylate were significantly decreased in the probenecid groups compared to oselta-
mivir alone, confirming inhibitory effects of probenecid on oseltamivir renal 
excretion. Arithmetic mean concentrations at 48 h were not significantly different 
between the oseltamivir and oseltamivir plus four-times-daily probenecid group 
(42 ± 76 ng/mL vs. 81 ± 54 ng/mL, respectively, P = 0.194); however, concentra-
tions in the twice-daily probenecid group were significantly decreased compared to 
oseltamivir alone (23 ± 26 ng/mL vs. 81 ± 54 ng/mL, respectively, P = 0.012). The 
results of this study suggested that co-administration of oseltamivir 75 mg every 
48 h plus probenecid 500 mg four times daily was equivalent to everyday dosing of 
oseltamivir and that this regimen might be a feasible way of allowing for reduction 
of oseltamivir doses without compromising clinical efficacy [94]. A second study 
found that reducing oseltamivir doses to 45 mg twice daily plus probenecid main-
tained oseltamivir exposures which were comparable to the typical 75 mg twice 
daily regimen without probenecid [95]. Although the daily dose of oseltamivir could 
potentially be reduced from 150 mg/day to 90 mg/day through combination therapy 
with probenecid, the authors of the study noted that the potential for increased 
adverse effects and nonadherence related to probenecid use requires careful consid-
eration prior to routine recommendations for such a dosing strategy [95]. The com-
bination of oseltamivir plus probenecid has also been associated with 
thrombocytopenia, lending some credence to concerns regarding toxicity [96].

No interactions have been observed between oseltamivir and either single-
dose acetaminophen or single-dose aspirin [91, 97, 98]. In addition, no interac-
tions have been observed between oseltamivir and cyclosporine, MMF, or 
tacrolimus [91, 99, 100]. Similarly, no significant pharmacokinetic interactions 
were found between oseltamivir and other antiviral agents used for prevention or 
treatment of influenza including amantadine, rimantadine, intravenous zanamivir, 
and peramivir [81–83, 101].

In a study evaluating potential interactions between oseltamivir and warfarin, 
subjects received oseltamivir 75 mg twice daily for a total of nine doses either with 
or without warfarin with an appropriate wash-out period of 4–8 days between treat-
ment periods. No statistical differences in international normalized ratio (INR), fac-
tor VIIa levels, or vitamin K1 concentrations were found when the drugs were 
administered concomitantly. Also, no effects of oseltamivir on warfarin pharmaco-
kinetics were noted [84, 87, 102]. A large retrospective database analysis likewise 
found no significantly increased risk of bleeding events within 14 days of beginning 
oseltamivir therapy in 13,406 predominantly elderly patients (adjusted odds ratio 
1.24, 95% confidence interval 0.97–1.57) [103]. Despite data from well-designed 
pharmacokinetic and outcome studies showing no apparent interactions between 
oseltamivir and warfarin, clinical case reports suggest that changes in INR may 
occur during oseltamivir therapy in patients receiving warfarin. A published case of 
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a single pediatric patient hospitalized with hypoplastic left heart syndrome experi-
enced a 250% increase in INR (from approximately 2.0 to 7.46) over a 5-day course 
of oseltamivir therapy; INR values promptly returned to the original stable values 
within 2 days of discontinuing oseltamivir [104]. An additional case series of 15 
hospitalized Korean patients who were previously stable on warfarin therapy 
reported an alteration of INR values in 7 patients (46%) after initiation of oseltami-
vir therapy; the average INR increase in these patients was 150% [105]. While it can 
be postulated that acute illness and clinical instability may be responsible for the 
reported INR alterations rather than a true drug interaction with oseltamivir, it is 
nevertheless advisable to monitor INR more carefully after initiation of oseltamivir 
therapy in patients previously receiving warfarin.

As with the adamantanes, there is a theoretical potential for oseltamivir to reduce 
the efficacy of the intranasal LAIV by inhibiting replication of the live virus after 
vaccination. It is therefore recommended that LAIV not be administered within 
2 weeks before, or 48 h after, administration of oseltamivir. The use of oseltamivir 
should not affect administration of IIV [84].

Published case reports describe two patients previously stable on sotalol therapy 
who developed corrected QT-interval (QTc) prolongation and torsades de pointes 
(TdP) after being treated with oseltamivir [106]. In one case the TdP occurred after 
six doses of oseltamivir; in the second case, the arrhythmia occurred 6 days after 
completion of a 5-day course of oseltamivir therapy. No potentially feasible mecha-
nisms of oseltamivir-induced QTc prolongation or drug-drug interaction with 
sotalol were offered by the authors of the report, and it is important to note that 
multiple other risk factors for QTc prolongation were present including older age 
(>60  years), female sex, antiarrhythmic drug therapy, borderline or already pro-
longed QTc intervals at baseline, and hypokalemia and bradycardia in one patient 
[106]. The true role of oseltamivir in QTc prolongation and subsequent TdP in these 
case reports is unknown.

10.4.3  Zanamivir

Like oseltamivir, zanamivir has a low potential for significant drug interactions due 
to its low degree of protein binding, lack of hepatic metabolism, and elimination 
primarily by glomerular filtration and tubular secretion [107]. Zanamivir does not 
appear to serve as a substrate or otherwise affect CYP450 enzymes (i.e., 1A1/2, 
2A6, 2C9, 2C18, 2D6, 2E1, or 3A4) in human liver microsomes [108]. Few specific 
pharmacokinetic drug interactions have been evaluated or observed because of the 
use of aerosolized zanamivir with its resultant minimal systemic exposure. However, 
the availability of intravenous zanamivir may prompt additional interaction studies 
in the future. One study has assessed potential pharmacokinetic interactions between 
intravenous zanamivir and oral oseltamivir [101]. The Cmax of zanamivir was 
increased 10% when administered concurrently with oseltamivir; however, this 
pharmacokinetic alteration was not felt to be clinically significant.
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Several drugs have been assessed for their potential effects on the antiviral activ-
ity of zanamivir. Aspirin, ibuprofen, acetaminophen, promethazine, oxymetazoline, 
phenylephrine, and amoxicillin/clavulanate were all shown to have no effect on the 
antiviral activity of zanamivir against influenza A in vitro [107]. Although codeine 
and diphenhydramine have been shown to enhance zanamivir’s antiviral activity 
in vitro through direct antiviral effects by some unknown mechanism, the concen-
trations of codeine and diphenhydramine used in the in vitro studies were many 
times higher than would be achieved with typical doses of these agents, and the 
clinical relevance is therefore unlikely to be important [107, 108].

As with oseltamivir, LAIV should not be administered within 2 weeks before or 
48 h after zanamivir in order to avoid the theoretical concern regarding decreased 
vaccine efficacy (Table 10.3) [108].

10.4.4  Peramivir

Like oseltamivir and zanamivir, peramivir has a low potential for significant drug 
interactions due to its low degree of protein binding (<30%), lack of hepatic metab-
olism, and elimination primarily by glomerular filtration [109]. Peramivir does not 
appear to serve as a substrate or otherwise affect CYP450 enzymes, does not affect 
glucuronidation pathways, and is not a substrate or inhibitor of P-glycoprotein 
transporters [109]. Limited studies to date have found no significant drug-drug 
interactions with rimantadine, oseltamivir, or oral contraceptives containing ethinyl 
estradiol and levonorgestrel. In contrast to many other antiviral agents, peramivir 
does not undergo significant renal tubular secretion and is therefore not significantly 
affected by the concomitant administration of oral probenecid [109].

10.5  Miscellaneous Antiviral Agents

10.5.1  Ribavirin

A large number of potential drug interactions involving ribavirin exist and are sum-
marized in Table 10.4. The prevalence of infection with HCV is a growing problem 
worldwide, particularly among HIV-infected patients in whom rates of coinfection 
with HIV and HCV may be as high as 90% [110, 111]. Ribavirin monotherapy is 
ineffective in the chronic treatment of HCV infections with a sustained virological 
response rate (SVR) of close to 0% in clinical studies, while the SVR of interferon-α 
alone is approximately 20% [111–114]. However, the combination of ribavirin plus 
interferon-α is associated with SVR rates of approximately 40% [111, 112, 114]. 
The synergistic SVR associated with ribavirin plus interferon-α combination ther-
apy occurs through mechanisms which are not completely understood, but which 
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may involve drug-induced stimulation of an anti-HCV immune response and/or 
direct antiviral effects of the drugs. In vitro models indicate that direct, synergistic 
antiviral effects of the drugs occur at physiologically relevant concentrations [115]. 
Whether interferon-α stimulation of infected cells renders them more susceptible to 
the effects of ribavirin or vice versa is not clear. However, regardless of potential 
mechanisms, the combination of ribavirin with pegylated interferon-α was a stan-
dard of care in the treatment of HCV until supplanted by the direct-acting antiviral 
(DAA) agents, and this regimen is still used in patients who are intolerant of, or do 
not have access to, DAAs [115, 116]. No pharmacokinetic interactions have been 
noted with combined administration of ribavirin and interferon alfa-2b or peginter-
feron alfa-2b [117, 118]. However, hemolytic anemia with hemoglobin values of 
less than 10 g/dL was reported in approximately 10% of patients receiving combi-
nation therapy with ribavirin and interferon alfa-2b, usually occurring within 
1–2 weeks of initiating ribavirin therapy [119].

No studies have specifically evaluated the potential for interactions involving 
inhaled ribavirin; however, the manufacturer recommends that inhaled ribavirin not 
be administered together with other drugs given by the inhaled route [120]. The 
remainder of this section deals only with drug interactions involving orally or intra-
venously administered ribavirin.

When single oral doses of ribavirin were co-administered with a high-fat meal, 
Tmax of ribavirin was doubled, the AUC was increased by 42%, and the Cmax was 
increased by 66% compared to the fasting state. Ribavirin should thus be routinely 
administered with food in order to maximize oral absorption [117, 118]. Concomitant 
administration of magnesium, aluminum, and simethicone antacids reduced the 
AUC of oral ribavirin by 14% [117, 118]. This reduction in bioavailability may be 
related to either increases in intestinal transit time or a change in gastrointestinal 
pH; however, it is not considered to be clinically relevant [117, 118].

Ribavirin elimination is accomplished through a mixture of hepatic and renal 
processes including reversible phosphorylation, degradation by deribosylation and 
amide hydrolysis, and elimination of unchanged drug through the kidneys with evi-
dence of both glomerular filtration and renal tubular secretion [121]. Ribavirin does 
not appear to be influenced by, nor to be a substrate of, CYP450 enzyme systems 
based on in vitro human and rat microsomal liver preparations; there is furthermore 
no evidence for induction or inhibition of 2C9, 2C19, 2D6, or 3A4 enzymes [117, 
118]. A single case report describes two patients in whom the addition of the DAAs 
boceprevir and telaprevir to an existing ribavirin plus pegylated interferon-α regi-
men was associated with the new onset of seizures [122]. Although the DAAs are 
well known to interact with the CYP450 system, this does not seem to be a likely 
explanation for this potential interaction, and the clinical significance of this report 
is unclear.

Due to ribavirin’s potential for hematologic toxicities, concomitant therapy with 
other myelosuppressive agents should be used with caution and carefully monitored 
[117, 118, 123]. Several case reports describe severe myelosuppression with the 
combination of ribavirin plus azathioprine in the treatment of inflammatory bowel 
diseases and coexistent HCV infection. The proposed mechanism is interference 
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with the normal clearance of azathioprine intermediate metabolites through 
ribavirin- induced inhibition of inosine monophosphate dehydrogenase (IMPDH). 
Inhibition of IMPDH leads to increased levels of methylated azathioprine metabo-
lites, e.g., 6-methylthioinosine monophosphate (6-MTIMP), which have been asso-
ciated with myelotoxicity [124–127]. In addition, patients with HIV/HCV 
coinfection who were administered zidovudine in combination with pegylated 
interferon-α plus ribavirin developed severe neutropenia and anemia more fre-
quently than did patients not receiving zidovudine. This increased incidence of 
hematologic toxicity with ribavirin plus zidovudine is apparently due to overlapping 
toxicities (rather than pharmacokinetic alterations) and is usually able to be clini-
cally managed through dose reduction or drug discontinuation [117, 118, 128, 129].

Ribavirin is a guanosine analogue and may compete with zidovudine, lamivu-
dine, stavudine, emtricitabine, and other nucleosides for intracellular phosphoryla-
tion [117, 118, 129]. In vitro studies indicate that ribavirin induces an increase in 
deoxythymidine triphosphate which results in feedback inhibition of thymidine 
kinase and decreased intracellular formation of phosphorylated zidovudine [130, 
131]. These effects of ribavirin may potentially increase zidovudine toxicities while 
also reducing clinical efficacy of the drug in HIV-infected patients [132].

Although myelosuppression with the combination of ribavirin and zidovudine 
may occur, several published studies of HIV/HCV coinfection showed no evidence 
of adverse clinical outcomes related to antiviral drug failure with combination ther-
apy [133–135]. Another study of 14 subjects receiving zidovudine also found no 
significant impact on zidovudine triphosphate AUC, plasma zidovudine AUC, or the 
ratio of zidovudine triphosphate to zidovudine AUC after the addition of ribavirin 
[136]. Since the clinical pharmacology of zidovudine does not appear to be altered 
despite in vitro findings, dosage adjustment does not appear to be needed with con-
comitant ribavirin therapy. Likewise, although in vitro studies indicate that the anti- 
HIV activity of tenofovir may be antagonized by ribavirin [137], no interaction 
between oral ribavirin and tenofovir was observed in a multiple-dose interaction 
study in 23 healthy subjects [138]. Other studies have also failed to find evidence of 
adverse clinical outcomes in patients receiving ribavirin for HCV treatment along 
with HAART regimens; the clinical significance of in vitro studies remains unknown 
but does not appear to be highly relevant [128, 139, 140].

Ribavirin-induced inhibition of IMPDH in patients receiving didanosine for 
treatment of HIV infection promotes formation of dideoxyadenosine-5′-
triphosphate, elevated levels of which are in turn associated with the mitochondrial 
toxicity of didanosine. There are a number of reports describing lactic acidosis and 
pancreatitis in patients receiving concomitant ribavirin and didanosine therapy 
[118, 128, 141–143]. In one study, the incidence of symptomatic lactic acidosis was 
33/1000 patient years in those patients treated for HCV with ribavirin and receiving 
HAART versus 13.5/1000 patient years in those receiving HAART only. In this 
study, both didanosine and stavudine were significantly associated with increased 
risk of symptomatic lactic acidosis (P < 0.01 and P = 0.04) [134]. Since no pharma-
cokinetic interactions have been observed between ribavirin and didanosine [144], 
toxicities are presumed to be caused by ribavirin-induced mitochondrial toxicity 
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[111, 145–148]. It has been stated that didanosine-related lactic acidosis and pan-
creatitis occur more rapidly in the presence of ribavirin than with didanosine alone, 
usually within the first 3 months of therapy [117, 118]. Finally, this toxic interaction 
may persist for up to 1–2  months based on the very long half-life of ribavirin 
(approximately 120–170 h) [117, 118]. Extreme caution should therefore be used 
when combining ribavirin with didanosine, and concomitant use of the two drugs 
should be avoided if possible. Combination therapy with stavudine should also be 
approached with caution [117, 118, 128]. There is no indication of risk with other 
antiretroviral drugs such as non-nucleoside reverse transcriptase inhibitors or prote-
ase inhibitors [117, 118].

The addition of ribavirin plus pegylated interferon for HCV treatment in HIV- 
infected patients receiving the protease inhibitor atazanavir has been associated 
with a significantly increased incidence of hyperbilirubinemia [149]. A total of 72 
patients with HIV/HCV coinfection were evaluated following the addition of HCV 
therapy to existing antiretroviral drug regimens. By 4 weeks, patients also receiving 
atazanavir had a significantly greater increase in total bilirubin levels (P = 0.003). 
The proportion of patients experiencing increases of more than 1 mg/dL was also 
significantly greater in patients receiving atazanavir (45% vs. 3%, P = 0.001). The 
proposed mechanism of toxicity is ribavirin-induced hemolysis of red blood cells 
and increased production of bilirubin, followed by an inhibitory competition by 
atazanavir of uridine glucuronosyltransferase (UGT) 1A1, an enzyme which is nor-
mally responsible for bilirubin conjugation. This combination of effects thus leads 
to increased serum bilirubin levels and jaundice [149].

Potential interactions between oral ribavirin and raltegravir, an HIV-1 integrase 
inhibitor, were investigated in 14 healthy volunteers [150]. Ribavirin Tmax was 
increased by 39% and the Cmax reduced by 21% when the drugs were co- 
administered; other pharmacokinetic parameters including half-life and AUC were 
not significantly different. No significant changes in raltegravir pharmacokinetic 
parameters were observed. Although the mechanism underlying the apparently 
altered absorption of ribavirin is unknown, this interaction was felt to be clinically 
insignificant [150].

A prospective study in 124 HIV−/HCV-coinfected patients compared the phar-
macokinetics of ribavirin and HCV virologic responses in patients receiving 
pegylated interferon plus ribavirin, with or without the addition of abacavir [151]. 
Median ribavirin Cmin was not different between patients who received abacavir 
compared to those who did not, and no statistically significant differences in rapid 
virological response (RVR) measured at 4 weeks after end of treatment, early viro-
logical response (EVR) measured at 12 weeks, or SVR measured at 24 weeks were 
observed between groups. The study concluded that there are no pharmacokinetic or 
virologic interactions between ribavirin and abacavir, and abacavir-containing regi-
mens were also found to be safe with no observed increase in adverse events [151].

Finally, the use of ribavirin in patients receiving chronic warfarin therapy has 
reportedly caused a decrease in prothrombin time. Although the mechanism involved 
is unknown, the interaction was clinically significant in the reported case [152].
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10.5.2  The Interferons

Very few formal studies of potential drug interactions have been conducted for most 
interferon drugs [153–158]. Despite this, a considerable amount of information 
(although often conflicting) is available regarding potential interactions with the 
interferons, particularly related to interferon-induced alterations in CYP450-related 
drug metabolism; these potential interactions are summarized in Table 10.4. The 
effects of various interferons on CYP450 activity are highly variable and probably 
depend on the use of specific interferons, specific CYP enzyme families studied, 
and interferon doses. The following summaries will therefore focus on peginter-
feron alfa-2a (Pegasys®) and peginterferon alfa-2b (PegIntron®), two interferon 
products specifically FDA-indicated for use in the treatment of chronic HCV 
infection.

The interferons as a class have long been associated with reduced CYP450 activ-
ity after it was determined that CYP downregulation during acute viral infections 
was primarily mediated by interferons [159–162]. Interferon effects on CYP450 
metabolism occur through unclear mechanisms and may be attributed to either 
increased degradation, suppressed synthesis, or direct inhibition of the enzymes 
[153, 154, 158]. With few exceptions, the interferons have consistently demon-
strated decreased clearance of various drugs metabolized by CYP1A and CYP3A 
subfamilies. Studies which failed to show significant changes in hepatic drug 
metabolism were using low doses of interferon-α (e.g., three million units three 
times per week) [163–165]. Chronic administration of low-dose interferon-α was 
associated with a moderate decrease in theophylline metabolism, minimal effect on 
antipyrine clearance, and minimal effect on hexobarbital metabolism [163–166]. 
However, larger doses of interferons have been associated with more pronounced 
reductions in theophylline and antipyrine metabolism, suggesting that the effects of 
interferons on CYP1A2 drug metabolism are likely to be dose-dependent [153, 
167]. Once-weekly administration of interferon-α for 4 weeks in healthy subjects 
resulted in inhibition of CYP450 1A2 and a 25% increase in theophylline AUC 
[153], while other studies have reported 100% increases in theophylline concentra-
tions after interferon treatment [168, 169]. Interferon-α has also been shown to 
inhibit CYP3A4 metabolism using the 14C–erythromycin breath test as a marker of 
CYP3A4 activity [170]. Despite data indicating alterations in CYP1A2 and CYP3A4 
activity, these changes are not always consistently reported [153] and/or may not 
always be considered clinically significant with required changes in drug dosing 
[154]. In light of potentially variable and dose-related effects, patients receiving 
drugs metabolized by CYP1A2 (e.g., theophylline, caffeine, antipyrine, tricyclic 
antidepressants [TCAs], olanzapine, clozapine) or CYP3A (e.g., azole antifungals, 
macrolide antibiotics, many antiretroviral agents, some immunosuppressants, some 
serotonin-specific reuptake inhibitors [SSRIs], TCAs, certain statins, opiate analge-
sics, benzodiazepines, antipsychotics, barbiturates, calcium channel antagonists) 
should be carefully monitored during interferon therapy.
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Although it has been stated that interferon-α has no effect on the pharmacokinet-
ics of drugs metabolized by CYP2C9, CYP2C11, CYP2C19, or CYP2D6 [153, 
171], it has elsewhere been reported that the activities of CYP2C8/9 and CYP2D6 
were actually induced by 28%–66% in 22 patients with chronic HCV who received 
interferon-α for 4 weeks [154]. These effects were highly variable, however, with 
40% of patients exhibiting either inhibition of CYP activity or no change rather than 
increased activity [154]. Close monitoring is therefore recommended during inter-
feron therapy with the concomitant use of drugs metabolized by CYP2C8/9 (e.g., 
warfarin, phenytoin, NSAIDs, angiotensin receptor blockers, certain statins, sulfo-
nylureas) or CYP2D6 (e.g., β-blockers, lidocaine, flecainide, TCA, SSRIs, opiate 
analgesics, antipsychotics) as the therapeutic effects of these drugs may be either 
decreased, increased, or unchanged [154]. As a case in point, increased effects of 
warfarin during interferon therapy have been previously described in two case 
reports [172, 173].

The pharmacokinetics of methadone were assessed in 18 patients with chronic 
HCV who received concomitant administration of interferon-α2b [154]. All patients 
were stable on chronic methadone treatment at the time of interferon initiation. A 
mean 16% increase in methadone AUC was observed after 4 weeks of interferon 
therapy, but the AUC was increased by 100% in two patients. This interaction is 
probably related to inhibition of CYP3A4 metabolism. The clinical significance of 
this interaction is unknown and likely highly variable; cautious monitoring of seda-
tive and respiratory effects of methadone is warranted during the first few weeks of 
combined therapy [154].

The combination of ribavirin plus pegylated interferon-α has the potential for 
increased incidence and/or severity of myelosuppression due to overlapping poten-
tials for hematologic toxicity [117, 118, 153, 154]. As previously described, hemo-
lytic anemia occurred in 10% of patients receiving combination therapy with 
ribavirin and interferon alfa-2b within 1–2  weeks of initiating ribavirin therapy 
[154]. Such interactions between ribavirin and the interferons have not been not 
consistently reported [117, 118]; however, close monitoring for hematologic toxici-
ties is required during therapy with these agents. A published case report describes 
a patient receiving pegylated interferon-α plus ribavirin for chronic HCV who 
developed severe anemia after addition of oseltamivir for treatment of influenza 
[174]. Whether this case describes a new drug-drug interaction as postulated by the 
authors of the report, or merely reflects the potential toxicities with ribavirin- 
interferon combinations previously discussed, is unknown.

Caution should also be exercised during combined use of interferons with poten-
tially myelosuppressive drugs. As previously described, the administration of 
 zidovudine in combination with pegylated interferon-α plus ribavirin was associ-
ated with increased rates of severe neutropenia and anemia [128]. Interferon was 
associated with significantly decreased zidovudine clearance and increased AUC in 
eight patients with AIDS who were started on interferon-β after 8 weeks of zidovu-
dine monotherapy [175]. Interferon has also been associated with significant 
changes in zidovudine metabolic rates, plasma elimination rates, and decreased 
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ratio of parent drug to glucuronide metabolite after initiation of interferon; such 
metabolic alterations may contribute to the increased risk of myelosuppression with 
the combination of interferon and zidovudine. In contrast to the significant effects 
on zidovudine metabolism, no interaction was found between interferon-α and 
didanosine [176]. Severe and irreversible granulocytopenia has also been reported 
in several patients during concomitant use of interferon alfa-2a and angiotensin-
converting enzyme (ACE) inhibitors including both captopril and enalapril [177, 
178]. Potential drug interactions resulting in increased drug toxicities have been 
reported during concomitant use of interferon-α and antineoplastic agents including 
5-fluorouracil (myelosuppression) [179], hydroxyurea (myelosuppression, vasculi-
tis) [180], and melphalan (myelosuppression) [181, 182]. Studies have not consis-
tently shown alterations in pharmacokinetic parameters such as Cmax or AUC, and 
the mechanisms behind these potential interactions with certain antineoplastic 
agents are unknown [183–188]. However, the potential for severe toxicities neces-
sitates careful patient monitoring during combined use of these agents. Suspected 
additive myelosuppression during combined peginterferon and thalidomide therapy 
has also been reported [189]. Finally, hematologic toxicity has been reported in a 
patient receiving combined interferon-α and clozapine; although the specific mech-
anisms for this interaction were not defined, clozapine is known to be a CYP1A2 
substrate [190].

A number of studies have demonstrated a decreased response to interferon-α 
therapy in the treatment of HCV infection among patients who consume alcohol 
[191–195]; SVR rates were directly related to the level of ethanol consumption. In 
one study nondrinkers had a 53% response rate to interferon, while responses were 
43% among light drinkers (<70 g of ethanol/day, or approximately 2.5 ounces) and 
0% among heavy drinkers (>70 g ethanol/day); the difference between nondrinkers 
and heavy drinkers was statistically significant (P < 0.01) [191]. In another study, 
only 11% of patients failing to respond to interferon therapy were nondrinkers com-
pared to 63% of patients with any level of alcohol consumption; furthermore, over-
all non-response rates directly increased according to the level of alcohol 
consumption [194]. While the association between ethanol consumption and 
response of HCV infection to treatment with interferon-α is clear, the actual cause 
is unclear. Alcohol has been shown to accelerate the course of HCV disease through 
increased HCV replication, enhanced oxidative stress, increased inflammatory and 
fibrotic effects, and modulation of the immune response to HCV infection, there-
fore indicating that the effects of alcohol on interferon response are more attribut-
able to effects on the underlying infectious process [196]. However, in vitro data 
also suggest that alcohol may directly inhibit the actions of interferon-α through 
effects on intracellular signaling pathways which are activated after binding of 
interferon to cellular receptors. Specifically, alcohol has been shown in  vitro to 
inhibit phosphorylation and activation of specific cytoplasmic transcription factors 
(signal transducers and activators of transcription, or STATs); the inhibition of these 
STATs then results in downstream decreases in expression of antiviral interferon- 
stimulated genes (ISGs) which are responsible for the efficacy of interferon against 
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HCV [196]. The effects of alcohol on interferon response rates are thus multifacto-
rial and likely involve both direct inhibition of interferon’s pharmacologic activity 
and indirect disease state-mediated effects on HCV infection. Patients infected with 
HCV should thus abstain from any level of alcohol consumption while receiving 
therapy with interferon-α.

Finally, a prospective study evaluated whether exposure to an antidepressant 
medication during treatment of HCV with interferon-α and ribavirin influenced 
treatment response [197]. Although antidepressant exposure was associated with a 
statistically significant reduction in end-of-treatment response (ETR) at the conclu-
sion of 24 or 48 weeks of interferon-α therapy (P = 0.016), multivariate logistic 
regression found that this reduced ETR was specifically associated with exposure to 
antidepressant drugs which enhance norepinephrine activity in the brain (e.g., ven-
lafaxine, mirtazapine, amitriptyline) (odds ratio 0.15, 95% CI 0.04–0.60; P = 0.008). 
However, this association of certain antidepressants with treatment response only 
affected the ETR; the more important study endpoint of SVR at 6 months post- 
therapy was not significantly affected (odds ratio 0.39, 95% CI 0.11–1.34; 
P = 0.136). Antidepressant use as a whole was also not significantly associated with 
reduced SVR (P = 0.316). Of note, patient numbers in this study were quite small; 
only 47 patients received antidepressants and only 12 of these received 
norepinephrine- enhancing agents [197]. The overall significance of these findings 
as well as the mechanistic basis for any potential interaction is difficult to deter-
mine, and additional study is clearly needed.

10.5.3  Direct-Acting Antiviral (DAA) Agents Used 
for Treatment of HCV

Nearly a dozen DAAs have been approved for treatment of HCV, and their use is 
considered the current standard of care for most patients with chronic HCV infec-
tion [116]. A review of the many known or potential drug-drug interactions associ-
ated with DAAs is beyond the scope of this chapter. However, it is worth noting that 
up to this point in time no significant drug-drug interactions have been documented 
between the DAAs and any of the many antiviral agents discussed in this chapter 
[198–203]. The various antiviral agents used in the management of infections due to 
HSV, VZV, CMV, and influenza are not likely to be problematic in terms of drug- 
drug interactions with DAAs because of primarily renal excretion, lack of signifi-
cant CYP450 interactions, and other properties discussed elsewhere in this chapter. 
However, new interactions may potentially become known as the use of DAAs 
becomes more widespread and clinicians should be vigilant for any new informa-
tion in this regard.
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Chapter 11
Antifungal Agents

Jarrett R. Amsden and Paul O. Gubbins

11.1  Introduction

Clinicians now have multiple antifungal therapy options when managing systemic 
mycoses. Clear differences in the spectrum of activity, toxicity, and drug interaction 
potential exist between and, in some cases, within the antifungal therapeutic class. 
These differences can be exploited to tailor therapy against a specific pathogen. 
When choosing systemic antifungal therapy, clinicians consider available suscepti-
bility data, the drug’s spectrum of activity, and potential toxicities. The significant 
potential for a systemic antifungal agent to interact with other medicines is often 
difficult to overlook, but if not considered, drug-drug interactions involving sys-
temic antifungal agents may lead to enhanced toxicity of the concomitant 
medication(s) or ineffective antifungal treatment. Therefore, clinicians must under-
stand the drug interaction profile of antifungal agents.

11.1.1  Amphotericin B Pharmacology

Amphotericin B binds to ergosterol, a key component of the fungal cell membrane, 
which disrupts the fungal cell membrane integrity allowing cellular components to 
leak out causing cell death. Amphotericin B produces infusion-related toxicities, 
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including hypotension, fever, rigors, and chills, and dose-dependent adverse effects, 
such as nephrotoxicity, azotemia, renal tubular acidosis, electrolyte imbalance, car-
diac arrhythmias, and anemia [1]. Infusion-related adverse effects rarely limit the 
use of amphotericin B or other agents, but dose-dependent adverse effects often do.

11.1.1.1  Distribution

Amphotericin B deoxycholate is protein bound (>95%), primarily to albumin and 
α1-acid glycoprotein [2]. Amphotericin B deoxycholate apparently distributes 
extensively in tissue (apparent volume of distribution (Vd) ≈  2–4  L/kg) [2, 3]. 
Formulating amphotericin B in a lipid vehicle alters its distribution by increasing 
reticuloendothelial system drug uptake. This alteration reduces renal distribution 
and thereby decreases the propensity for acute kidney injury with lipid amphoteri-
cin B formulations compared to amphotericin B deoxycholate [2–4].

11.1.1.2  Elimination

Amphotericin B deoxycholate is cleared slowly from its distribution sites [3]. More 
than 90% of a dose can be recovered up to 1 week after administration. Amphotericin 
B deoxycholate is mostly excreted as unchanged drug in the urine (20.6%) and feces 
(42.5%) [3]. The formulation of amphotericin B with lipids significantly alters its 
elimination [3].

11.1.2  5-Fluorocytosine (5-FC) Pharmacology

5-Fluorocytosine (5-FC) is used only in combination with amphotericin B in the 
treatment of cryptococcal meningitis. The oral absorption of 5-FC is rapid and com-
plete. In the fasting state, 5-FC bioavailability is approximately 90% [5]. 5-FC is 
minimally bound to plasma proteins and its Vd approximates total body water [5]. 
Renal clearance (CLR) of 5-FC correlates highly with creatinine clearance (CLCR), 
and its half-life (t1⁄2) increases as CLCR declines, because nearly 90% of a dose is 
renally excreted as unchanged drug [5]. When administered orally, 5-FC is deami-
nated by intestinal microflora, resulting in elevated 5-fluorouracil (5-FU) serum 
concentrations, which can cause myelosuppression and gastrointestinal mucosa 
toxicity [5]. The incidence of this toxicity is approximately 20–40% [6, 7].

J. R. Amsden and P. O. Gubbins



427

11.1.3  Azole Pharmacology

Commonly prescribed systemic azoles (itraconazole, fluconazole, voriconazole, 
posaconazole, isavuconazole) inhibit fungal cytochrome P450 (CYP)-dependent 
C-14 α-demethylase, which converts lanosterol to ergosterol. This inhibition 
depletes ergosterol, the essential sterol of the fungal cell membrane, and compro-
mises cell membrane integrity. In general, the azoles are weak bases, and most, with 
the exception of fluconazole, are lipophilic with poor water solubility [8]. Due to 
their lipophilicity, itraconazole, voriconazole, and posaconazole cannot be formu-
lated as an intravenous (i.v.) dosage form without the use of a solubilizing agent 
[9–12]. Although the active form of isavuconazole is also lipophilic and poorly 
soluble in water, it is administered as a highly water-soluble prodrug isavuconazo-
nium sulfate, which consists of triazolium salt bound to isavuconazole by an ester 
moiety and does not require a solubilizing agent [13, 14]. Phase I (CYP), phase II 
(conjugative enzymes), and transport proteins all have a role in the disposition and 
many drug interactions involving azole antifungal agents. The systemic azoles are 
CYP and conjugative enzyme substrates and inhibitors to varying degrees. Certain 
azoles are also substrates and inhibitors of transport proteins in the ATP-binding 
cassette (ABC) transporter protein family (i.e., P-glycoprotein (P-gp), various mul-
tidrug resistance-associated proteins (MRP), breast cancer resistance protein 
(BCRP), and bile salt export pump (BSEP)) and other transporter proteins [15–18]. 
As discussed in Chap. 3, some of these transport proteins share substrate specificity 
or are co-localized with CYP3A in the intestine, liver, and kidney [17–19].

11.1.3.1  Oral Absorption of the Systemic Azoles

In the USA, itraconazole is only marketed as a capsule and as 40% hydroxypropyl- 
β- cyclodextrin (HP-βCD) solution for oral use. Absorption from the capsule is slow, 
variable, and optimal under acidic gastric conditions or in the fed state [20]. Due to 
insufficient and variable intestinal concentrations, itraconazole capsules are subject 
to extensive intestinal and hepatic CYP3A4 (“first-pass”) metabolism before reach-
ing the systemic circulation [21, 22]. Unlike the capsule, itraconazole in oral solu-
tion requires no dissolution, so its absorption is rapid and unaffected by alterations 
in gastric pH but is optimal in the fasting state [21, 23]. The oral solution delivers 
high itraconazole concentrations to the intestinal epithelium that may transiently 
saturate intestinal CYP3A4 and minimize first-pass metabolism [21, 22]. The for-
mulations are clinically bioequivalent, but the absolute bioavailability of the oral 
solution is higher than that of the capsule [9, 20].

Oral fluconazole is rapidly and nearly completely absorbed, and its absorption is 
independent of gastric acidity or the presence of food [24]. Fluconazole is more 
hydrophilic than the other systemic azoles; thus, no solubilizing agent is needed to 
formulate it as an i.v. solution. Moreover, fluconazole undergoes less hepatic metab-
olism than the other azoles.
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Voriconazole is available in both i.v. and oral formulations. Oral voriconazole 
absorption is rapid and nearly complete, and its dissolution is unaffected by changes 
in gastric pH [11, 25]. However, fatty foods and enteral feedings decrease voricon-
azole bioavailability up to 22% and its Cmax by 34% [11, 25]. Intravenous voricon-
azole is formulated with the solubilizing agent sulfobutyl ether β-cyclodextrin 
(SBECD).

Originally, posaconazole was marketed solely as an oral suspension. This origi-
nal formulation exhibits saturable absorption at doses exceeding 800 mg daily; it is 
also influenced by gastric pH, food, and divided dosing [26–33]. Recently, posacon-
azole has been formulated as a delayed release tablet and i.v. solution. As with other 
lipophilic azoles, the i.v. solution of posaconazole is formulated in SBECD; how-
ever, the daily dose SBECD is lower compared to voriconazole [34, 35]. The delayed 
release tablets are formulated as pH-sensitive polymer hypromellose acetate succi-
nate via hot-melt extrusion technology [36]. This delivery system improves solubil-
ity and ultimate bioavailability of posaconazole. This drug delivery system prevents 
its dissolution in low pH environments of the stomach and allows release in the 
higher pH intestines [36, 37]. In contrast to the oral suspension, posaconazole 
delayed release tablets are unaffected by food, pH, or GI motility agents [37–39].

Isavuconazonium sulfate is an orally or intravenously administered prodrug that 
is rapidly and nearly completely (99%) converted by gut or plasma esterases (i.e., 
plasma butyrylcholinesterase), respectively, to the active moiety isavuconazole, 
leaving negligible concentrations of the prodrug or cleavage product [13]. The 
apparent oral bioavailability of isavuconazole is approximately 98%, which is 
achieved in 1–3 h [14]. Absorption of isavuconazole after oral administration of 
isavuconazonium sulfate is not significantly altered by food or changes in pH [40]. 
Because isavuconazonium sulfate is a water-soluble prodrug, a cyclodextrin carrier 
molecule is not required to solubilize the drug for i.v. administration [13, 14].

11.1.3.2  Protein Binding and Distribution of the Systemic Azoles

Itraconazole, posaconazole, and isavuconazole are highly protein bound (95–99%) 
[13, 20, 23, 41]. Itraconazole, posaconazole, voriconazole, and isavuconazole 
extensively distribute throughout the body [13, 20, 23, 41]. Binding to plasma pro-
teins is moderate (58%) for voriconazole and minimal for fluconazole (11%) [11, 
24, 25]. Fluconazole distributes into a variety of body fluids and hepatic and renal 
tissues [24]. Unlike itraconazole, fluconazole and voriconazole adequately distrib-
ute into the cerebrospinal fluid (CSF) and central nervous system (CNS) tissues [23, 
24, 42]. Based upon limited data, posaconazole minimally distributes to the CSF 
and CNS tissue [43]. The amount of isavuconazole distribution into human CSF and 
CNS tissues is unknown; however, it was effective in an experimental cryptococcal 
meningitis animal model and a single case report of disseminated mucormycosis 
involving the brain [44, 45].
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11.1.3.3  Metabolism/Elimination of the Systemic Azoles

Several CYPs including CYP3A4, 2C19, and 2C9 catalyze azole biotransformation 
to varying extents [8]. CYP3A5, another member of the CYP3A subfamily, is 85% 
homologous to CYP3A4, and although it often shares substrate specificity with 
CYP3A4, it catalyzes the biotransformation of the isavuconazole, but not other 
azoles [8, 46].

Itraconazole

Very little (≈ 2%) of an itraconazole dose is excreted unchanged in the urine [10, 
20]. Itraconazole formulations are comprised of four stereoisomers, and they exhibit 
dose-dependent elimination. Itraconazole undergoes extensive stereoselective 
sequential CYP3A4 metabolism of only a pair of its stereoisomers to produce three 
metabolites (hydroxyitraconazole, keto-itraconazole, and N-desalkyl-itraconazole) 
[47–49].

Fluconazole

Approximately 91% of oral fluconazole is excreted in the urine, most of which 
(80%) is excreted as unchanged drug. Two metabolites including a glucuronide con-
jugate (fluconazole β-D glucuronide) and fluconazole N-oxide account for the 
majority of metabolites recovered in the urine [50]. The N-oxide metabolite is 
formed from the heme-coordinating triazole moiety, and the reaction is likely cata-
lyzed by CYP2C9 and CYP3A4 [51]. The formation of fluconazole β-D glucuro-
nide is catalyzed by the uridine diphosphate glucuronosyltransferase (UGT) isoform 
UGT2B7 [52].

Voriconazole

Less than 2% of a voriconazole dose is excreted unchanged in the urine [25, 53]. 
Voriconazole is extensively metabolized to eight metabolites by hepatic CYP 
enzymes [54]. The CYP metabolism of voriconazole involves CYP2C19, CYP3A4, 
and CYP2C9, but not CYP3A5 [25, 53]. CYP2C19 and CYP2C9 also exhibit 
genetic polymorphisms. CYP2C19, the primary CYP enzyme involved in voricon-
azole metabolism, has eight variant alleles which, if expressed, manifest as a poor 
metabolizing (PM) phenotype. The PM phenotype is expressed among Pacific 
Islanders and less frequently among Asians, Caucasian, and African American pop-
ulations [53, 55]. Drug exposure is increased nearly a fourfold in the CYP2C19 
homozygous PM phenotype compared to the homozygous efficient metabolizing 
(EM) phenotype. Furthermore, drug exposure is nearly double in the CYP2C19 
heterozygous EM phenotype compared to the homozygous EM phenotype [25]. 
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CYP2C9 metabolism has 32 known variant alleles, of which 18 are associated with 
no or reduced enzyme activity [56]. The frequencies of the CYP2C9 variant alleles 
differ between racial/ethnic groups [55, 57, 58]. CYP3A4 expression varies widely 
and likely contributes to interindividual variability in voriconazole pharmacokinet-
ics. In addition to CYP, enzymes of the flavin-containing monooxygenase (FMO) 
family (primarily FMO1 and FMO3) and UGT1A4 also catalyze the formation of 
voriconazole metabolites [8, 58, 59].

Posaconazole

Posaconazole is primarily eliminated unchanged in the feces (77%) and urine (13%) 
[60]. Only 17% of a dose undergoes biotransformation, of which little (2%) is 
metabolized by CYP3A4 [60, 61]. Most metabolites are glucuronide conjugates 
formed by UGT pathways [61]. The primary posaconazole metabolite is formed by 
UGT1A4 [61].

Isavuconazole

Very little isavuconazole (<1%) is excreted unchanged in the urine. Active isavuco-
nazole is extensively metabolized by CYP3A4/5 and undergoes further modifica-
tion by enzymes in the UGT pathway prior to being excreted in the feces (46%) and 
bile (46%) [46, 62, 63]. Preclinical in vitro studies indicate that isavuconazole is not 
a substrate of CYP2B6 and CYP2C9 [46, 64]. However, isavuconazole displays 
mild CYP2B6 induction effects [64].

11.1.4  Echinocandin Pharmacology

The echinocandins, caspofungin, micafungin, and anidulafungin, disrupt cell wall 
synthesis by inhibiting 1, 3,-β-D-glucan synthase. These compounds are large 
molecular weight semisynthetic lipopeptides that are administered intravenously 
[65].

11.1.4.1  Distribution of the Echinocandins

Caspofungin binds extensively to albumin and has multiphasic distribution. The 
drug first distributes to plasma and extracellular fluid [66]. Caspofungin rapidly and 
reversibly binds to the surface of hepatocytes. Then, slowly via active transport by 
organic anion transport protein 1B1 (OATP1B1), it distributes into the liver and, to 
a lesser extent, other tissues [66, 67]. This slow active transport influences the 
caspofungin t1/2 [67]. Micafungin binds extensively (>99%) to albumin and, to a 
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lesser extent, α1-acid glycoprotein. In vitro data suggest that like caspofungin, the 
hepatic uptake of micafungin involves transport proteins, specifically, Na+ -tauro-
cholate co-transporting polypeptide (NTCP) [68]. In addition, hepatocyte uptake 
may also involve a transporter from the OATP family [68]. Micafungin is not a P-gp 
substrate. Anidulafungin distribution in humans is not fully understood. Compared 
to other echinocandins, anidulafungin is less protein bound, has a larger volume of 
distribution, and achieves lower peak (Cmax) serum concentrations [69].

11.1.4.2  Metabolism/Elimination of the Echinocandins

The echinocandins exhibit linear pharmacokinetics. However, echinocandins differ 
in how they are metabolized or degraded but are not appreciably metabolized by 
CYP. Less than 2% of a caspofungin dose is excreted unchanged in the urine [70]. 
Caspofungin is slowly degraded in the liver via N-acetylation and peptide hydroly-
sis to several metabolites, which are excreted in the bile and feces [71]. Less than 
1% of a micafungin dose is eliminated unchanged in the urine, with the majority 
(90%) undergoing biliary excretion [72]. Following micafungin hepatic uptake via 
NTCP, micafungin is metabolized to several metabolites that are formed by arylsul-
fatase, catechol-O-methyltransferase, and, to a minor extent, ω-1 hydroxylation via 
CYP, which undergo biliary elimination with the parent compound [69, 72, 73]. 
Data suggest the canalicular membrane efflux transporter, BSEP, is an important 
mediator of micafungin biliary excretion [68]. Less than 10% of an anidulafungin 
dose is excreted in the feces or urine as unchanged drug [74, 75]. Anidulafungin is 
not hepatically metabolized. Rather, in the plasma it undergoes slow nonenzymatic 
chemical degradation to a peptide breakdown product [74, 75].

11.2  Drug Interaction Potential of Antifungal Agents

The potential for drug interactions involving amphotericin B formulations is related 
to its associated nephrotoxicity and whether the concomitant medication is elimi-
nated renally or shares other toxicities. This potential is high when amphotericin B 
formulations are administered with other nephrotoxic or renally eliminated medica-
tions. Because 5-FC is renally eliminated and used with amphotericin B, its poten-
tial for an interaction is high. The azoles cause drug interactions at various sites 
(intestine, liver, blood brain barrier, kidneys, etc.) via several mechanisms (altera-
tions in pH, interference with transport proteins, and oxidative or conjugative enzy-
matic drug metabolism processes). Many of the azole-drug interactions occur 
class-wide; thus, the potential for azoles to cause an interaction is high. The echino-
candins are relatively devoid of clinically significant drug interactions. However, 
in vitro echinocandins have demonstrated varying inhibitory potential across a vari-
ety of drug transport proteins [18].

11 Antifungal Agents



432

11.3  Amphotericin B

Drug interactions involving amphotericin B formulations are summarized in 
Table 11.1.

11.3.1  Amphotericin B Interactions Involving Synergistic/
Additive Nephrotoxicity

Amphotericin B is commonly used in patients who are severely immunocompro-
mised and/or at high risk for renal failure and electrolyte disturbances. Amphotericin 
B causes nephrotoxicity via direct cytotoxicity to the renal tubules, which impairs 
proximal and distal reabsorption of electrolytes. Indirectly it reduces renal blood 
flow that causes ischemic damage and reduces glomerular filtration [1]. Significant 
amphotericin B-drug interactions involve concomitantly administered nephrotoxic 
and/or renally eliminated drugs with a narrow therapeutic index (i.e., aminoglyco-
sides, cyclosporine, foscarnet, tacrolimus, etc.). These interactions produce additive 
or synergistic nephrotoxicity or result in the accumulation of renally eliminated 
drugs (i.e., 5-FC) to toxic concentrations that produce secondary extrarenal adverse 
effects (Table 11.1).

Table 11.1 Drug interactions caused by amphotericin B formulations

Interaction Drugs Comments

Additive/synergistic effects

Direct or indirect 
nephrotoxicitya

Cyclosporine
Tacrolimus
Aminoglycosides

Monitor Scr, BUN, electrolytes, 
consider lipid amphotericin B 
formulations or other antifungal 
agents

Fluid and electrolyte disturbance 
(i.e., water retention, 
hypokalemia, hypomagnesemia)

Thiazide and  loop 
diuretics aminoglycosides, 
corticosteroids

Monitor Scr, BUN, electrolytes. 
Supplement electrolytes as 
needed

Secondary non-renal toxicity

Myelosuppression 5-Flucytosine (5-FC) Effect due to diminished  renal 
clearance of 5-FC secondary to 
amphotericin B-associated 
nephrotoxicity

Miscellaneous electrolyte disturbances

Increase cardiac automaticity 
and inhibition of Na+-K+ ATPase 
pump

Digoxin Effects secondary to 
amphotericin B-induced 
hypokalemia

aAny nephrotoxic drug that affects afferent and/or efferent arterioles can potentiate amphotericin B 
nephrotoxicity
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11.3.1.1  Clinical Importance of Amphotericin B Interactions Involving 
Concomitantly Administered Nephrotoxic Drugs

In addition to increasing the risk of nephrotoxicity or extrarenal toxicities, ampho-
tericin B interactions with concomitantly administered nephrotoxic drugs further 
complicate the use of additional renally eliminated medications. This often compels 
clinicians to switch to alternative drug therapies and/or empirically reduce medica-
tion doses.

11.3.1.2  Management of Amphotericin B Interactions 
with Concomitantly Administered Nephrotoxic Drugs

Amphotericin B-drug interactions are somewhat unavoidable and should be man-
aged by limiting the risk or severity of these interactions. For example, although the 
lipid amphotericin B formulations may also cause nephrotoxicity with concomitant 
nephrotoxic drugs, they should be used in patients with or at high risk for nephro-
toxicity [76, 77]. Depending upon the case, other intravenous, non-nephrotoxic 
antifungal agents (i.e., caspofungin, fluconazole, isavuconazole) should also be 
considered. Both voriconazole and posaconazole are available intravenously, but 
each contain SBECD, which can accumulate in patients with diminished renal func-
tion [34]. Although data suggest that accumulation of SBECD does not increase the 
risk of acute kidney injury at human doses, animal studies have demonstrated renal 
vacuolization, which has led labeling limitations in patients with a creatinine clear-
ance less 50 mL/min [11, 12, 34]. However, SBECD is readily removed by hemodi-
alysis and CRRT, but accumulation may still occur with repeated dosing, and enteral 
formulations are still preferred in these patients. In a typical 70 kg patient, mainte-
nance doses of intravenous posaconazole contain about one third the amount of 
SBECD compared to voriconazole and may be more advantageous in patients with 
a creatinine clearance of 30 mL/min or more [34, 35, 78]. Intravenous isavucon-
azole is devoid of any solubilizing agent, and its pharmacokinetics were not influ-
enced by renal dysfunction which may make it the most ideal intravenous anti-mold 
agent in patients with renal dysfunction [13, 14, 79].

11.3.2  Amphotericin B Interactions Involving Renally 
Eliminated, Narrow Therapeutic Index Drugs 
with Extrarenal Toxicity Including 5-FC

Amphotericin B reduces the CLR of renally eliminated drugs with a narrow thera-
peutic index causing their accumulation and increasing the risk of extrarenal toxici-
ties. For example, amphotericin B-associated nephrotoxicity can cause accumulation 
of 5-FC, leading to myelosuppression, hepatic necrosis, and diarrhea associated 
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with its elevated plasma concentrations that occur with reduced renal function [5]. 
In addition, amphotericin B and 5-FC therapy can augment the myelosuppressive or 
cytotoxic effects of other drugs (i.e., zidovudine, ganciclovir) patients may be 
receiving. Often the clinical importance of the amphotericin B and 5-FC interaction 
is often outweighed by the efficacy of this combination in the treatment of crypto-
coccal meningitis [80].

11.3.2.1  Management of Amphotericin B Interactions with Renally 
Eliminated, Narrow Therapeutic Index Drugs with Extrarenal 
Toxicity

Often, in the treatment of cryptococcal meningitis, concomitant 5-FC therapy is 
unavoidable, so renal function and 5-FC blood concentrations should be monitored. 
Consensus guidelines for the treatment of cryptococcosis support the use of 5-FC in 
combination with amphotericin B with close monitoring for myelosuppression [80]. 
Ideally, 5-FC blood concentrations should be maintained between 25 and 100 μg/
mL [81]. Several 5-FC dosing nomograms for patients with renal dysfunction exist, 
but they should not be used unless the renal dysfunction is chronic in nature and 
only used cautiously in elderly patients [82].

11.4  Systemic Azoles

11.4.1  Interaction Mechanisms

Drug interactions involving the systemic azoles primarily affect the pharmacoki-
netic processes of the concomitantly administered drug(s). However, in select cir-
cumstances the systemic azole or both drugs can be affected. As discussed above, 
all systemic azoles undergo oxidative CYP-mediated metabolism in the liver, and 
several also undergo significant CYP metabolism in the intestine. Itraconazole, 
voriconazole, posaconazole, and the active isavuconazole being more lipophilic are 
more extensively metabolized to polar metabolites than fluconazole. Thus, they pos-
sess a greater potential for CYP-mediated interactions [8].

11.4.1.1  Interactions Affecting Solubility and Absorption (pH 
Interactions)

Drug dissolution rate determines the intestinal lumen drug concentration available 
for absorption [83]. Therefore, intraluminal pH indirectly affects absorption. Weakly 
basic drugs such as itraconazole and posaconazole suspension dissolve more slowly 
at higher pH, whereas weakly acidic drugs dissolve faster at higher pH. The delayed 
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release formulation of posaconazole is formulated to dissolve in the higher pH envi-
ronments of the intestines [37]. Itraconazole and posaconazole are highly lipophilic 
weak bases with high pKa values, and their dissolution and subsequent absorption 
are optimal at pH 1–4 [84, 85]. Fluconazole and voriconazole are also weak bases, 
with lower pKa values, and thus their dissolution is unaffected by increases in gas-
tric pH [8, 86, 87]. Likewise, isavuconazonium sulfate is not affected by alterations 
in gastric pH. Formulated as a triazolium salt linked to an aminocarboxyl moiety, it 
is a highly water-soluble prodrug that is stable at low pH (pH 1–4) which allows it 
to be solubilized in the gastrointestinal environment [13, 88].

11.4.1.2  Interactions Affecting CYP-Mediated Biotransformation

As described above, to varying degrees all azoles are CYP substrates. Moreover, the 
excretion of itraconazole, voriconazole, posaconazole, and isavuconazole from the 
body in the feces or bile requires their extensive conversion to hydrophilic metabo-
lites. In contrast, fluconazole, being more hydrophilic, requires less biotransforma-
tion and is primarily eliminated unchanged in urine [8]. All the azoles are CYP 
inhibitors, but their affinities for specific isoforms differ. As CYP inhibitors, the 
systemic azoles generally exhibit rapidly reversible binding [89]. As reviewed in 
Chap. 2, this type of binding to CYP by an inhibitor or its metabolite results in either 
competitive or noncompetitive inhibition [89, 90]. The azoles, particularly itracon-
azole, primarily exert competitive inhibition, but fluconazole, voriconazole, and 
posaconazole also demonstrate noncompetitive or mixed-type inhibition of CYP 
[89–92]. Whether isavuconazole also exhibits noncompetitive or mixed-type inhibi-
tion has not been described.

As discussed in Chap. 2, isoforms of the CYP3A subfamily are the most abun-
dant CYPs in the human liver and intestine and catalyze the metabolism of numer-
ous xenobiotics. However, CYP3A5, which is expressed polymorphically in the 
intestine and liver, may contribute substantially to overall CYP3A activity [93]. 
CYP3A5 is present in more than 33% of the population [94]. All the systemic azoles 
inhibit CYP3A4, which is extensively expressed in the liver and intestine [8]. In 
general, all triazoles are weak inhibitors of CYP3A5 [8, 63, 94]. CYP3A5 catalyzes 
the biotransformation of isavuconazole but not other azoles [8, 46]. Therefore, the 
polymorphic expression of CYP3A5 may contribute to the observed interindividual 
variability in inhibition of CYP3A-mediated metabolism of other drugs [93–96].

The itraconazole stereoisomers inhibit CYP3A4 and weakly inhibit CYP3A5 
[49, 97]. The three itraconazole metabolites circulate at concentrations sufficient to 
inhibit CYP3A4 and contribute to drug interactions involving itraconazole [49, 97]. 
Following multiple itraconazole dosing, 40–50% of overall CYP3A inhibition is 
attributed to hydroxyitraconazole (major) and N-desalkyl-itraconazole (minor) [49]. 
Fluconazole undergoes minimal CYP-mediated metabolism; it inhibits CYP3A4, 
albeit much more weakly than other systemic azoles [98]. Fluconazole inhibition of 
CYP3A5 is also much weaker than its effects on CYP3A4 [93]. However, flucon-
azole is a comparatively stronger inhibitor of several other isoforms (i.e., CYP2C9 
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and CYP2C19) [98]. Fluconazole binds noncompetitively to CYP, and in vivo it 
circulates largely as free drug. Given this, greater CYP inhibition may occur with 
higher fluconazole doses. Even though only a small percentage of fluconazole 
undergoes CYP-mediated metabolism, this percentage may greatly increase in the 
presence of a potent CYP inducer. Fluconazole also interacts with conjugative 
enzymes involved in glucuronidation and is a moderate inhibitor of UGT1A1 and 
UGT2B7 [24, 99]. Voriconazole is a potent competitive inhibitor of CYP2B6, 
CYP2C9, and CYP2C19 [92, 100]. In addition voriconazole is a potent competitive 
and noncompetitive CYP3A4 inhibitor [92, 100]. Therefore, it has the potential to 
interact with many medicines. Voriconazole inhibits CYP3A5 much more weakly 
than it does CYP3A4 [93]. Although very little posaconazole is metabolized by 
CYP, it is a moderate inhibitor of CYP3A4. However, compared to other systemic 
azoles, posaconazole inhibits CYP3A4 less significantly. Additionally it has no 
effect on the activity of CYP2C8/9, CYP1A2, CYP2D6, or CYP2E1 [101]. In vitro, 
preclinical studies using pooled human liver microsomes and phase I healthy volun-
teer data suggest that isavuconazole is a moderate inhibitor of CYP3A4 [46, 64]. 
Additional phase I studies in healthy volunteers did not demonstrate substantial 
inhibitory or induction effects on CYP1A2, CYP2C8, CYP2D6, or CYP2C19 [64]. 
The preclinical in vitro data demonstrate that isavuconazole may be an inducer of 
CYP3A4/5, CYP2B6, CYP2C8, and CYP2C9, but not CYP2C19; however, in 
healthy volunteers isavuconazole only demonstrated clinically significant induction 
on CYP2B6. Furthermore, isavuconazole only minimally inhibited warfarin and 
influenced R-warfarin more so than S-warfarin indicating minimal inhibitory effects 
on CYP2C9 [102]. Preclinical in vitro studies in human liver microsomes also dem-
onstrate that isavuconazole is a weak inhibitor of UGT1A1, UGT1A9, and UGT2B7 
as well [18]. The clinical impact of these interactions needs further study.

11.4.1.3  Interactions Affecting P-glycoprotein (P-gp)-Mediated Efflux 
and Other Transporters

As discussed in Chap. 3, transport proteins are important determinants of drug dis-
position and effects. In particular, transporters of the ABC transporter protein fam-
ily are involved in unidirectional efflux of drugs across cellular membranes in vital 
organs or at blood-tissue barriers in the body [103]. For example, efflux transport-
ers, including P-gp, BCRP, and MRP2, are localized to the apical membrane of 
enterocytes and mediate the bioavailability of orally administered substrates [103]. 
Similarly when drugs reach the basolateral membrane of hepatocytes, uptake trans-
porters including OATP1B1 and organic cation transporters (OCT) like OCT1 
mediate uptake into hepatocytes [103]. Efflux transporters including P-gp, MRP2, 
and BSEP are located in the canalicular membrane of hepatocytes and mediate 
transport of drugs and/or their metabolites into bile [103]. Uptake and transport 
proteins are expressed in the kidney and mediate renal drug clearance [103]. Finally, 
at blood-tissue barriers of the brain and placenta, uptake and transport including 
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OATP1A2, OATP2B1, P-gp, BCRP and several isoforms of MRP mediate distribu-
tion to sensitive tissues and organs [103].

The systemic azoles vary in how they interact with various transport proteins, but 
such interactions can be somewhat predicted based upon chemical structure and 
physicochemical properties. Itraconazole, posaconazole, and isavuconazole have 
comparable chemical structures and physicochemical properties, and all possess 
similar potentials to inhibit ABC transporters [18]. In contrast, the structural ana-
logues fluconazole and voriconazole do not inhibit the ABC transporters to a signifi-
cant extent [18].

Itraconazole is a substrate and a strong inhibitor of P-gp [15, 17, 18, 104, 105]. 
In addition it is a potent and strong inhibitor of BCRP and BSEP [16, 18]. In vitro, 
posaconazole is a substrate and strong inhibitor of P-gp and a strong inhibitor of 
BCRP at high concentrations [18, 60]. Isavuconazole is not a substrate of P-gp or 
other major transport proteins, but to varying degrees, it can act as an inhibitor of 
certain transporters [106]. In vitro data indicate that isavuconazole strongly inhibits 
P-gp and BCRP [18]. However, data using probe substrates in healthy volunteers 
indicate isavuconazole weakly inhibits P-gp, OCT1, OCT2, and multidrug and 
toxin extrusion protein-1 (MATE1) [106]. In vivo confirmation of in vitro inhibition 
of BCRP has not been adequately demonstrated due to the lack of a sensitive probe 
substrate for BCRP [106]. In vivo studies also indicate that isavuconazole does not 
inhibit OATP1B1 [106]. The clinical impact of interactions between isavuconazole 
and transport proteins needs further study. Fluconazole may be a P-gp substrate, but 
it is not a P-gp inhibitor, and voriconazole is neither a substrate nor an inhibitor of 
P-gp [16–18, 104, 105, 107]. In addition, it neither inhibits other ABC transporters 
involved in drug disposition (e.g., MRP1–5, BCRP, and BSEP) [18].

11.5  Drug Interactions Involving Itraconazole

Drug interactions involving itraconazole are summarized in Tables 11.2, 11.3, and 
11.4.

11.5.1  Itraconazole Interactions Involving Gastric pH

Based on the physicochemical properties of itraconazole, the dissolution and subse-
quent absorption of its capsule form depend on gastric pH, retention time, and the 
fat content of a meal and are optimal in acidic gastric conditions [10, 84, 149]. 
Increased gastric pH does not affect the absorption of the oral solution [23]. H2- 
receptor antagonists, proton pump inhibitors, and antacids reduce the exposure, 
Cmax, or oral availability of the itraconazole capsule up to 67% [23, 85, 138–140, 
150].
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Table 11.2 Itraconazole interactions affecting CYP-mediated biotransformation of other drugs

Drug Effect on drug (% change) Inhibition site Reference(s)

“Statins”
Simvastatin ↑Cmax (175%); ↑AUC(0-∞) 

(417%); ↑t1/2 (25%)
Hepatic CYP3A; perhaps 
intestinal CYP3A or P-gp

[108]

Atorvastatin ↑Cmax (20–38%); ↑AUC(0-∞) 
(150–231%); ↑t1/2 (29–190%)

Hepatic CYP3A; perhaps 
intestinal CYP3A or P-gp

[109, 110]

Fluvastatin None [149]
Pravastatin [108, 109]
Rosuvastatin [111]
Pitavastatin [112]
Benzodiazepines

Midazolam (oral) Hepatic CYP3A; perhaps 
intestinal CYP3A

[113]

  + ITZ day 1 ↑Cmax (75%); ↑AUC(0-∞) 
(242%); ↑t1/2 (104%)

  + ITZ day 6 ↑Cmax (151%); ↑AUC(0-∞) 
(564%); ↑t1/2 (259%)

Midazolam (i.v.) Hepatic CYP3A [113]
  + ITZ day 4 ↓CL (69%); ↑t1/2 (141%)
Triazolam ↑Cmax (41–76%); ↑Tmax 

(11–94%);
Hepatic CYP3A; perhaps 
intestinal CYP3A

[114]

↑AUC(0-∞) (210–348%);↑ t1/2 
(155–210%)

Diazepam ↑AUC(0-∞) (31.8%); ↑t1/2 (34%) Hepatic CYP3A [115]
Estazolam
Bromazepam
Temazepam None [116–118]
Oxazepam
Other anxiolytics, sedatives, and hypnotics

Buspirone ↑ Cmax (1240%); ↑AUC(0-∞) 
(1815%),

Hepatic CYP3A; perhaps 
intestinal CYP3A

[119]

Zolpidem None [120, 121]
Antipsychotic agents

Haloperidol ↑Cmax (14%); ↑AUC(0-∞) (82%);
↑t1/2 (115%); ↓CL/F (33%)

Hepatic CYP3A [122, 123]

Clozapine None [124]
Calcineurin inhibitors

Cyclosporine ↑Css (80%) (range 24–149%) Hepatic CYP3A; perhaps 
intestinal CYP3A/P-gp

[125]

Tacrolimus ↑Css (83%) (range 49–117%) Hepatic CYP3A; perhaps 
intestinal CYP3A/P-gp

[125]

Corticosteroids

Methylprednisolone
  Oral ↑Cmax (57–87%); ↑AUC(0-∞) 

(279%);↑t1/2 (71–132%);
Hepatic and intestinal 
CYP3A4/P-gp

[126, 127]

(continued)
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11.5.1.1  Clinical Importance of Itraconazole Interactions Involving 
Gastric pH Interactions

Reduced itraconazole absorption can lead to therapeutic failure. However, elevated 
gastric pH is unavoidable in patients who require high-dose corticosteroid therapy 
(i.e., transplant recipients) [139]. In these instances the oral solution may be 
preferred.

Table 11.2 (continued)

Drug Effect on drug (% change) Inhibition site Reference(s)

  i.v. ↑AUC(0-∞) (143%); ↑t1/2 
(129%): ↓CL (62%); ↓Vd 
(15%)

Hepatic CYP; perhaps 
biliary P-gp

[128]

Dexamethasone Primarily hepatic 
CYP3A4

[129]

  Oral ↑AUC(0-∞) (269%); ↑Cmax 
(58%); ↑t1/2 (172%); F (14.7%)

  i.v. ↑AUC(0-∞) (223%); ↑t1/2 
(197%); ↓CL (69%)

Prednisolone ↑Cmax (2–14%); ↑t1/2 (14–29%); 
↑AUC(0-∞) (24%)

Hepatic and intestinal 
CYP3A4

[127, 130]

Budesonide (inh) ↑Cmax (64%); ↑AUC(0–∞) 
(321%); ↑t1⁄2 (287%); ↑Tmax 
(150%)

Hepatic and intestinal 
CYP3A4

[131]

Fluticasone (inh) Increased plasma fluticasone 
levels by 2.5-fold

Hepatic CYP3A4; perhaps 
intestinal CYP3A4

[132]

Calcium channel blockers

Felodipine ↑Cmax (675%); ↑AUC(0-∞) 
(534%); ↑t1/2 (71%)

Hepatic and intestinal 
CYP3A4

[133]

Miscellaneous

Oxybutynin ↑Cmax (89%); ↑AUC(0-t) (85%) Hepatic and intestinal 
CYP3A4

[134]

  Busulfan ↑Css (25%); ↑CL/F (20%) Hepatic CYP3A; perhaps 
intestinal CYP3A4

[135]

  Meloxicam ↓AUC(0–72) (37%); ↓Cmax (63%);
↑t1⁄2 (55%); ↑Tmax (500%)

Perhaps intestinal 
CYP3A4 and intestinal 
transport

[136]

  Oxycodone Hepatic and intestinal 
CYP3A4

[137]

   Oral ↑Cmax (43%); ↑AUC(0-∞) 
(125%);
↑t1/2 (48%);↓CL/F (58%); ↑F 
(49%)

   i.v. ↓CL (33%); ↑AUC(0–∞) (51%); 
↑t1/2 (44%)
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Table 11.3 Interactions that induce itraconazole biotransformation or inhibit its absorption

Drug
Effect on itraconazole (% 
change) Mechanism Reference(s)

Gastric pH

Modifiers

Famotidine ↓Cmax (30–52%); ↓Cmin (35%); 
AUC(0–48)(51%)

↑ gastric pH and ↓ 
absorption

[138, 139]

Omeprazole
  Itraconazole caps ↓Cmax (67%); ↓AUC(0–24) (65%); 

↑Tmax (27%)
↑ gastric pH and ↓ 
absorption

[140]

  Itraconazole soln None [23]
Didanosine
  Enteric-coated 

formulation
None [87]

Inducing agents

Phenobarbital Subtherapeutic serum 
concentrations

CYP3A induction [141]

Carbamazepine Undetectable serum 
concentrations

CYP3A induction [141]

Phenytoin ↓Cmax (83%); ↓AUC(0-∞) (93%); 
↓T1/2 (82%); ↑CL/F (1384%)

Hepatic and intestinal 
CYP3A induction

[142]

Rifampin ↓Cmax (67%); ↓AUC(0–24) (67%); 
↓Tmax (35%)

CYP3A induction [143]

Nevirapine ↓Cmax (38%); ↓AUC(0–96) (61%); 
↓AUC(0-∞) (62%); ↓t1/2 (31%)

Hepatic CYP3A4 
induction;P-gp induction

[144]

Table 11.4 Itraconazole interactions affecting P-gp-mediated transport of other drugs

Drug Effect on drug (% Change) Inhibition Site Reference(s)

Cardiac

Glycoside

Digoxin ↑Cmax (31%); ↑AUC(0-∞) (68%); 
↑t1/2 (38%); ↓CLR (20%)

Renal P-gp; possibly 
hepatic/biliary P-gp

[145]

Alkaloids

Quinidine ↑Cmax (32–59%); ↑t1/2 (35–67%); 
↑AUC(0-∞) (142%);
↑Tmax (150%);↓CLR (49–60%)

Quinidine metabolites Inhibition of hepatic 
CYP3A; renal P-gp

[146, 147]

  3-hydroxyquinidine ↓AUC(0–24) (78%); ↓CL(partial) 
(84%)

  N-oxide ↓CL(partial) (73%)
Miscellaneous drugs

Morphine ↑Cmax (25%); ↑AUC(0–9) 
(27%);↑AUC(0–48) (19%)

Inhibition of intestinal 
P-gp

[148]
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11.5.1.2  Management of Itraconazole Interactions Involving Gastric pH 
Interactions

In patients requiring acid suppression therapy and short courses of itraconazole, the 
solution should be employed. The solution is somewhat dilute (20 mL per dose) and 
not very palatable which may be impractical for protracted courses of therapy. In 
such cases, alternative antifungal agents should be considered. If no suitable alter-
native agent exists, the itraconazole capsule can be used with routine therapeutic 
drug monitoring to document adequate oral availability [10].

11.5.2  Itraconazole Interactions Affecting CYP-Mediated 
Biotransformation of Other Drugs

11.5.2.1  The 3-Hydroxy-3 Methylglutaryl (HMG) Coenzyme: 
A Reductase Inhibitor (The “Statins”)

Following oral administration the systemic availability of the statins is determined 
by a series of interactions with CYP (phase I) and conjugative (phase II) enzymes 
as well as ABC transport and export proteins [151]. Simvastatin and atorvastatin are 
metabolized by CYP3A4; fluvastatin is primarily metabolized by CYP2C9, with 
CYP3A4 and CYP2C8 marginally contributing [149, 152]. Although pitavastatin is 
a substrate of CYP2C9 and CYP2C8, it is minimally metabolized by these isoforms 
and instead undergoes lactonization via UGTA1/1A3 [152]. Likewise, pravastatin 
and rosuvastatin are negligibly metabolized by CYP and excreted primarily in the 
urine as unchanged drug [108, 111]. All statins are substrates of OATP1B1, which 
mediates hepatocyte uptake from the portal circulation [151, 152]. In addition, most 
statins are P-gp substrates, which modulate absorption from the intestine into the 
portal circulation [151]. Lastly, all stains have affinity for MRP2, BSEP, and BCRP 
[151]. Itraconazole inhibits P-gp, BSEP, BCRP, and CYP3A4; thus, attributing its 
interactions with certain statins solely to CYP3A4 inhibition is difficult [15–18, 
104, 107].

Itraconazole co-administration with certain statins can elevate their systemic 
concentrations, which may result in rare, but severe, life-threatening toxicities [109, 
153]. Itraconazole significantly increases the exposure and Cmax of simvastatin, but 
it affects atorvastatin pharmacokinetics considerably less [108–110]. In contrast, 
itraconazole has no significant effect on fluvastatin or pravastatin [108, 109, 149]. 
Although the effects were not significant, itraconazole produced modest increases 
in rosuvastatin plasma concentrations and slightly reduced pitavastatin Cmax and 
AUC [111, 112]. Nearly all studies identifying an interaction between itraconazole 
and a statin were performed before the role of transport proteins in statin disposition 
was fully realized. Nonetheless, itraconazole is not an OATP1B1 inhibitor; thus, its 
interaction with simvastatin results from inhibition of intestinal and hepatic 
CYP3A4, whereas its interaction with atorvastatin also may involve BCRP [108, 
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154, 155]. Neither pravastatin nor pitavastatin is a CYP3A4 substrate, but both are 
P-gp substrates; thus, the lack of a significant interaction with these statins also sug-
gests itraconazole’s effects on simvastatin, and atorvastatin is primarily a result of 
CYP3A4 inhibition [108, 112, 151, 152]. Rosuvastatin is neither a substrate of P-gp 
nor CYP3A4; thus, its modest interaction with itraconazole may reflect inhibition of 
intestinal BCRP [18, 151, 152, 155].

11.5.2.2  Benzodiazepines

Itraconazole co-administration with triazolam, midazolam, or diazepam produces 
significant pharmacokinetic interactions that enhance their pharmacologic effects 
[113, 114, 116–118]. The most notable alterations are observed with triazolam and 
midazolam, which are metabolized only by CYP3A4 [113, 114]. Following oral co-
administration with itraconazole, the interaction increases both the triazolam and 
midazolam systemic availability and decreases their clearance (CL), leading to sig-
nificant changes in exposure, Cmax, Tmax, and t1⁄2 [113, 114]. Itraconazole does not 
affect the steady-state volume of distribution (Vss) of i.v. midazolam, but it substan-
tially reduces its plasma CL as reflected by a prolongation in t1⁄2 [113].The effect of 
itraconazole on the CL of triazolam cannot be determined due to the lack of an i.v. 
formulation for this benzodiazepine [114]. The itraconazole-triazolam interaction 
occurs even if triazolam is administered up to 24 h after itraconazole and can persist 
for several days after discontinuing the azole [114]. This persistence is due to the 
itraconazole metabolites [47, 49, 156]. The N-desalkyl-itraconazole metabolite has 
a much longer half-life than the other metabolites or itraconazole, and along with the 
hydroxyl metabolite, it contributes substantially to CYP3A4 inhibition [49, 156].

The interaction with either benzodiazepines can occur with a single or multiple 
itraconazole doses and produces long-lasting pharmacological effects, including 
prolonged amnesia, significantly reduced psychomotor performance, and severe 
sedation [113, 114]. Given the nonlinear stereoselective sequential itraconazole 
metabolism and the prolonged elimination of it and its metabolites, the interaction 
will likely be greater and more prolonged with repeated or increased itraconazole 
doses [113, 114, 156]. Additionally, the variability in benzodiazepine interactions 
may be explained in part by the CYP3A5 genotype [94, 95]. As discussed previ-
ously, unlike many CYP3A4 substrates, of the azoles only isavuconazole is a 
CYP3A5 substrate, and the other azoles only weakly inhibit this isoform [93–96]. 
Also, in some individuals, CYP3A5 may represent the majority of hepatic CYP3A 
activity [94, 95]. Thus, in homozygous expressers of the wild-type genotype 
(CYP3A5*1/*1), the magnitude of itraconazole-midazolam interaction is less 
because the CYP3A5 pathway can compensate for the lack of midazolam metabo-
lism caused by the itraconazole-mediated inhibition of the CYP3A4 pathway [94]. 
However, among homozygous (CYP3A5*3/*3) or heterozygous (CYP3A5*1/*3) 
expressers of the variant-type genotype, CYP3A5 activity is lacking or diminished, 
respectively, and they have relatively more CYP3A4 activity than homozygous 
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expressers of the wild-type genotype [93–96]. Thus, in those expressing the 
 variant- type genotype, the magnitude of interaction will be greater because there is 
less CYP3A5 to compensate for the lack of midazolam metabolism caused by the 
azole- mediated inhibition of the CYP3A4 pathway [94].

Diazepam undergoes minimal first-pass metabolism and is primarily metabo-
lized by CYP2C19 and CYP3A4 [115, 157]. Concomitant itraconazole produces a 
small yet statistically significant increase in diazepam exposure and slightly pro-
longs its t1⁄2, but it does not enhance the pharmacological effects of this benzodiaz-
epine [115]. Estazolam is a short-acting triazolobenzodiazepine derivative that is 
extensively metabolized by CYP3A4 [117]. Itraconazole inhibits estazolam metab-
olism in vitro, but clinically its co-administration did not alter the pharmacokinetics 
or enhance the effects of estazolam [117, 158]. The lack of interaction in vivo may 
have resulted from using a low dose (100 mg/day) of itraconazole in the interaction 
study [117, 158]. Itraconazole does not affect the pharmacokinetics or enhance the 
effects of benzodiazepines that are not appreciably metabolized by CYP3A4 (i.e., 
bromazepam, temazepam, oxazepam) [116, 118].

11.5.2.3  Other Anxiolytics, Sedatives, and Hypnotics

Buspirone undergoes extensive first-pass metabolism via CYP3A4 [119]. 
Itraconazole co-administration significantly increases buspirone exposure, Cmax, 
which moderately enhances its pharmacological effects [119]. However, the interac-
tion does not alter the buspirone t1⁄2, which suggests the interaction involves intesti-
nal CYP3A4 inhibition [119]. The imidazopyridine hypnotic agent zolpidem is a 
substrate of CYP3A4 and to a lesser extent CYP1A2 [120]. It undergoes minimal 
first-pass metabolism and possesses good oral availability. While co-administered, 
itraconazole slightly reduces zolpidem clearance, but it does not appreciably affect 
zolpidem pharmacodynamics [120, 121].

11.5.2.4  Antipsychotic Agents

Haloperidol undergoes first-pass metabolism but has good oral availability. The 
drug is hepatically metabolized by CYP2D6 and CYP3A4 [122]. Several CYP2D6 
alleles (CYP2D6*3, *4, and *5) significantly influence haloperidol disposition, 
while others (i.e., CYP2D6*10) only moderately influence haloperidol disposition 
[122]. Itraconazole significantly increases plasma concentrations of haloperidol and 
its metabolite (reduced haloperidol) and augments its neurological side effects [122, 
123]. The CYP3A4 inhibition by itraconazole enhances the contribution of minor 
CYP2D6 alleles to haloperidol metabolism [122]. CYP3A4 has only a minor influ-
ence on the disposition of the atypical antipsychotic agent clozapine; thus its phar-
macokinetics or activity is unaffected by itraconazole co-administration [124].
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11.5.2.5  Calcineurin Inhibitors and mTOR Inhibitors

Pharmacokinetic interactions between tacrolimus or cyclosporine and the azoles are 
well known. Regardless of route of administration, itraconazole increases cyclospo-
rine concentrations 40–200% and “trough” (Cmin) tacrolimus concentrations up to 
sevenfold [97, 125, 159–162]. As described above with midazolam, the variability 
in the itraconazole-tacrolimus interaction may also be explained in part by the 
CYP3A5 genotype. A small study in Japanese allogeneic hematopoietic stem cell 
transplant recipients demonstrated that orally administered tacrolimus concentra-
tions were largely unchanged in a homozygous expresser of the wild-type genotype 
(CYP3A5*1/*1) during the co-administration of itraconazole. In contrast, among 
patients with the variant CYP3A5*3/*3 or CYP3A5*1/*3 alleles, tacrolimus con-
centrations increased significantly after the start of itraconazole co-administration 
[97]. This study also comparatively demonstrated that interaction between oral 
cyclosporine and itraconazole is not influenced by CYP3A5 polymorphisms [97]. 
The interaction between itraconazole and the calcineurin inhibitors persists due to 
the itraconazole metabolites [49, 156]. Itraconazole has been reported to interact 
with sirolimus in several cases [163, 164]. An anecdotal observation from a large 
population pharmacokinetic analysis of everolimus demonstrated that itraconazole 
co-administration in a single patient reduced everolimus clearance 74% [165].

11.5.2.6  Corticosteroids

Itraconazole inhibits the metabolism of oral or i.v. methylprednisolone (i.e., two- to 
threefold increases in exposure, Cmax, and t1⁄2) [126–128]. The interaction can reduce 
morning plasma cortisol concentration 80%–90% [126–128]. The metabolism of 
methylprednisolone is complex, and these data suggest CYP3A4 is primarily 
involved [126–128].

Dexamethasone is also a CYP3A4 substrate, and itraconazole increases its sys-
temic exposure after i.v. or oral administration, approximately three- and fourfold, 
respectively [129]. The interaction can also significantly reduce morning plasma 
cortisol concentrations. In contrast, itraconazole co-administration increases pred-
nisolone exposure and t1/2 13–30% but produces only minimal changes in predniso-
lone Cmax or morning plasma cortisol concentrations [127, 130].

Itraconazole also interacts with inhaled corticosteroids, which depending on the 
inhalation device and patient technique are absorbed into the systemic circulation 
and undergo hepatic metabolism or can be inadvertently swallowed and undergo 
intestinal and/or hepatic metabolism [131, 166]. Oral itraconazole significantly 
inhibits the metabolism of inhaled budesonide and leads to 1.5–4-fold increases in 
exposure, Cmax, and t1⁄2 [131]. This interaction enhances the adrenal suppressive 
effects of budesonide and should be considered when co-administering other simi-
lar corticosteroids with itraconazole [131, 132, 167–169].
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11.5.2.7  Calcium Channel Blockers

Felodipine is a CYP3A4 substrate that undergoes extensive first-pass metabolism 
[133]. Itraconazole co-administration increases felodipine exposure approximately 
sixfold, Cmax eightfold, and t1⁄2 approximately twofold [133]. These pharmacokinetic 
changes significantly reduce systolic and diastolic blood pressure and increase heart 
rate [133].

11.5.2.8  Miscellaneous Drugs

Itraconazole interacts with several other medicines including oxybutynin (increases 
exposure and Cmax) [134] and busulfan (increases steady-state busulfan concentra-
tions and lowers apparent oral clearance (CL/F)) [135]. An initial case report has 
noted that concomitant itraconazole therapy also substantially enhances warfarin’s 
effect; however, two subsequent reports have demonstrated minimal effects of itra-
conazole on warfarin [170–172]. The pharmacologically active S-warfarin enantio-
mer is a CYP2C9 substrate, while the R-warfarin is primarily a CYP3A4 substrate. 
Itraconazole does not inhibit CYP2C9 activity, except at supratherapeutic concen-
trations, but it is an inhibitor CYP3A4 at standard concentrations. CYP3A4 inhibi-
tion should only influence R-warfarin, and this may not result in a clinically 
significant anticoagulant effect [172]. Given this, itraconazole may only affect war-
farin in patients who are PM of CYP2C9 or in patients who have concomitant 
CYP2C9 inhibitors which would need to be determined on a case-by-case basis.

In healthy volunteers oral itraconazole co-administration significantly reduced 
the exposure and Cmax and delayed the absorption of the selective COX-2 inhibitor 
meloxicam [136]. The mechanism behind this interaction is unknown but may 
involve inhibition of meloxicam absorption [136]. Oxycodone undergoes extensive 
hepatic metabolism via CYP3A4 to noroxycodone (inactive) and via CYP2D6 to 
oxymorphone (active), which are further metabolized to inactive metabolites via 
CYP3A4 [173]. Itraconazole co-administration reduces i.v. and oral oxycodone CL 
and prolongs its t1/2, resulting in increased pharmacological effects [137, 174]. 
When i.v. and oral oxycodone are given with paroxetine (CYP2D6 inhibitor), there 
is a reduction in the formation of oxymorphone, an increase in the formation of 
noroxycodone, and negligible effects on parent oxycodone pharmacokinetics [174, 
175]. The increase in noroxycodone following CYP2D6 inhibition suggests that 
oxycodone metabolism gets compensated for by CYP3A4 [174, 175]. However, 
when the combination of paroxetine (CYP2D6 inhibitor) and itraconazole (CYP3A4 
inhibitor) is co-administered with i.v. and oral oxycodone, there is an increase in 
parent oxycodone levels, with a more pronounced increases with oral oxycodone 
[174, 175]. The larger increases in parent oxycodone following oral administration 
are likely a result of itraconazole inhibition of both hepatic and intestinal CYP3A4 
[174, 175].
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11.5.2.9  Clinical Importance of Itraconazole Interactions Affecting CYP 
Biotransformation of Other Drugs

Many interactions involving itraconazole are clinically important. Myopathy (skel-
etal muscle toxicity) is a potentially severe side effect of elevated statin concentra-
tions that can progress to rhabdomyolysis [151]. The incidence of rhabdomyolysis 
associated with the CYP3A4-metabolized statins is substantially greater than that of 
those not metabolized by CYP3A4 [176]. When statins are administered with potent 
CYP3A4 inhibitors like itraconazole, the risk of rhabdomyolysis associated with 
their use increases significantly [108–110, 151, 177]. Concomitant itraconazole use 
may also increase the risk of dose-dependent adverse effects (i.e., hepatotoxicity) 
associated with the CYP3A4-metabolized statins [178].

Co-administration of itraconazole with midazolam, triazolam, or buspirone 
severely impairs intellectual capacity and psychomotor skills even when low doses 
of these benzodiazepines (particularly midazolam and triazolam) are used for pro-
longed periods. The interaction between the azoles like itraconazole and the calci-
neurin/mTOR inhibitors is largely unavoidable and if not properly managed can 
lead to calcineurin−/mTOR-associated nephrotoxicity. The interaction between 
itraconazole and corticosteroids administered orally, i.v., or via inhalation can pro-
duce significant suppression of endogenous cortisol production. Multiple cases of 
Cushing’s syndrome or adrenal insufficiency reported in the literature are attributed 
to itraconazole co-administration with either fluticasone or budesonide [169].

Itraconazole co-administration with felodipine produces clinically significant 
cardiovascular effects. In addition, the pharmacological effects of oxycodone may 
be increased, particularly the oral dosage form. The interaction between itracon-
azole and warfarin is likely not clinically significant in most cases, but under the 
right conditions (CYP2C9 inhibition or PM of CYP2C9), it could lead to a signifi-
cant bleeding event [170].

11.5.2.10  Management of Itraconazole Interactions Affecting CYP- 
Mediated Biotransformation of Other Drugs

Patients receiving simvastatin or atorvastatin with itraconazole should be closely 
monitored for clinical and laboratory signs of skeletal muscle toxicity (myalgia, 
arthralgia, CK elevations) and hepatotoxicity (transaminase elevations). Depending 
on the degree of lipid-lowering effects needed, non-CYP3A4-metabolized statins 
(pravastatin and rosuvastatin) are alternatives for patients receiving concurrent itra-
conazole therapy.

Itraconazole and its metabolites are slowly eliminated; therefore, the interaction 
between triazolam and midazolam cannot be avoided by adjusting itraconazole dos-
ing [17, 49]. The benzodiazepines that are not appreciably metabolized by CYP3A4 
are alternatives to triazolam and midazolam for patients receiving concurrent itra-
conazole therapy. Other alternatives include diazepam, estazolam, and zolpidem.
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Management of the itraconazole-calcineurin inhibitor interaction necessitates 
monitoring calcineurin inhibitor blood concentrations, adjusting calcineurin inhibi-
tor dosages, or switching antifungal therapy. Calcineurin inhibitor doses should be 
empirically reduced at the onset of itraconazole co-administration, and blood con-
centrations should be obtained before, during, and after azole use and dosages 
adjusted accordingly. The use of itraconazole is not recommended with the mTOR 
inhibitors, and other azole antifungals should be considered.

In patients requiring concomitant itraconazole and oral or i.v. corticosteroid ther-
apy, prednisolone should be considered for immunosuppressive or anti- inflammatory 
agent. If patients are receiving dexamethasone or methylprednisolone (dosed chron-
ically or as pulse therapy), corticosteroid dose reductions may be needed during 
concomitant itraconazole therapy.

Co-administration of itraconazole with felodipine or other chemically related 
calcium channel blockers should be avoided given the considerable clinical signifi-
cance of the interaction. If these combinations cannot be avoided, then the dose of 
the calcium channel blocker should be reduced, and the patient’s heart rate and 
blood pressure should be closely monitored until stable. The interaction between 
itraconazole and meloxicam results in limited meloxicam activity due to decreased 
absorption, at least during the first 48–72 h [136]. The combination of itraconazole 
and warfarin should necessitate close clinical monitoring of warfarin. Contemporary 
data indicate that this interaction is not significant, but some case reports have sug-
gested otherwise [170–172]. If antifungal therapy is needed, an amphotericin B 
formulation or an echinocandin should be used.

11.5.3  Interactions That Induce Itraconazole 
Biotransformation

Phenytoin, phenobarbital, carbamazepine, rifampin, efavirenz, and nevirapine are 
CYP3A4 inducers. Itraconazole co-administration with these agents results in a 
pharmacokinetic interaction that markedly reduces its serum concentrations [141–
144, 179]. The onset of induction varies with each drug and may not be detectable 
for up to 2 weeks [141–144, 179]. After discontinuation of these agents, induction 
may persist for up to 2 weeks [141–144, 179].

11.5.3.1  Clinical Importance of Interactions That Induce Itraconazole 
Biotransformation

Interactions between CYP3A inducers and itraconazole lead to undetectable or sub-
therapeutic serum itraconazole concentrations, which can result in therapeutic 
failure.
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11.5.3.2  Management of Interactions That Induce Itraconazole 
Biotransformation

These interactions likely cannot be circumvented by increasing the itraconazole 
dose. If possible, these combinations should be avoided. However, this is often not 
possible, especially in HIV patients receiving rifampin or rifabutin. In these cases, 
if alternative antifungal therapy cannot be used, then itraconazole serum concentra-
tions and the patient’s clinical condition should be closely monitored for therapeutic 
failure. If alternative antifungal agents cannot be used, then antimycobacterial regi-
mens without rifampin or rifabutin should be considered. Similarly, gabapentin, 
levetiracetam, lamotrigine, or other nonenzyme-inducing antiepileptic drugs may 
represent alternatives.

11.5.4  Itraconazole Interactions Affecting P-glycoprotein- 
Mediated Efflux of Other Drugs

11.5.4.1  Digoxin

Digoxin is not a CYP substrate, undergoes little hepatic metabolism, and is renally 
eliminated primarily as unchanged drug, through P-gp-mediated renal tubular secre-
tion [145, 180–183]. The reduced P-gp-mediated efflux causes decreases in CLR 
and increases in serum digoxin concentrations [145, 180–183]. Therefore, the inter-
action results from inhibition of intestinal P-gp and/or inhibition of P-gp-mediated 
digoxin renal secretion by itraconazole [18, 181, 182].

11.5.4.2  Quinidine

Quinidine is primarily metabolized by CYP3A4 to form 3-hydroxyquinidine and 
CYP2C9 and perhaps CYP3A4 to form quinidine N-oxide [146, 147]. Quinidine is 
also actively secreted by the renal tubules, which most likely involves P-gp. 
Itraconazole co-administration significantly increases quinidine exposure 2.5-fold 
and Cmax nearly twofold, prolongs elimination t1⁄2, and significantly reduces its CLR 
[146, 147]. Itraconazole co-administration also significantly reduces the partial CL 
of both metabolites [147]. This interaction likely results from inhibition of intestinal 
and hepatic CYP3A4 metabolism and P-gp-mediated tubular secretion of quinidine 
by itraconazole [146, 147, 184].

J. R. Amsden and P. O. Gubbins



449

11.5.4.3  Vinca Alkaloids and Opiates

Itraconazole reduces CYP3A4 metabolism and P-gp efflux of vincristine. The sub-
sequent accumulation and distribution of vincristine produce neurological toxicities 
(seizures, paresthesia, sensory deficits, muscle weakness, neuropathy), gastrointes-
tinal disturbances (abdominal pain/distention, constipation, ileus) hyponatremia, 
and SIADH [185]. Itraconazole also interacts to a similar degree with vinblastine 
[186]. Itraconazole produces subtle increases in oral morphine plasma concentra-
tions but does not alter its pharmacological effects [148]. The interaction probably 
involves inhibition of intestinal P-gp [148].

11.5.4.4  Clinical Importance of Itraconazole Interactions Involving 
P-glycoprotein-Mediated Efflux of Other Drugs

Case reports document that interactions between itraconazole and digoxin or the 
vinca alkaloids are clinically significant [145, 181–183, 185–187]. Quinidine has a 
relatively narrow therapeutic index, and elevated concentrations can produce life- 
threatening toxicity. Therefore, the interaction is considered clinically significant 
[146].

11.5.4.5  Management of Itraconazole Interactions Involving 
P-glycoprotein-Mediated Efflux of Other Drugs

Patients receiving itraconazole and digoxin should be questioned about symptoms 
of digoxin toxicity and have their serum digoxin concentrations closely monitored 
[183]. Similarly, plasma quinidine concentrations should be closely monitored in 
patients receiving quinidine and itraconazole [146]. Due to the severity of the inter-
action, itraconazole or any azole should not be co-administered with vincristine- or 
vinblastine-containing regimens. If a vinca alkaloid is started in a patient receiving 
an azole, the azole should be discontinued [185–187].

11.6  Interactions Involving Fluconazole

Drug interactions involving fluconazole are summarized in Table 11.5.
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Table 11.5 Fluconazole interactions affecting CYP-mediated biotransformation of other drugs

Drug Effect on drug (% change) Inhibition site Reference(s)

Statins

Fluvastatin ↑Cmax (44%); ↑AUC(0-∞) 
(84%); t1/2 (80%)

Hepatic CYP2C9 [188]

Pravastatin None [188]
Rosuvastatin None [189]
Benzodiazepines

Midazolam (oral)
  + FCZ po day 1 ↑Cmax (130–150%); ↑AUC(0-∞) 

(251–273%); ↑t1/2 (71–123%)
Hepatic and 
intestinal CYP3A4

[113, 190]

  + FCZ po day 6 ↑Cmax (74%); ↑AUC(0-∞) 
(259%); ↑t1/2 (71%)

Hepatic and 
intestinal CYP3A4

[113]

  + FCZ iv day 1 ↑Cmax (79%); ↑Tmax (100%); 
↑AUC(0-∞) (244%); ↑t1/2 
(123%)

Hepatic CYP3A4 [190]

Midazolam (i.v.) Hepatic CYP3A4 [155]
  + FCZ po day 4 ↓CL (51%); ↑t1/2 (52%)
  α-OH-midazolam Hepatic CYP3A4 [190]
  + FCZ po day 1 ↓Cmax (19%); ↑AUC(0–17) 

(50%); ↑t1/2 (142%); ↓ratio 
(54%)

  + FCZ iv day 1 ↓Cmax (10%); ↑AUC(0–17) 
(56%); ↑t1/2 (157%); ↓ratio 
(56%)

Triazolam Hepatic and 
possibly intestinal 
CYP3A4

  + FCZ po 50 mg ↓Cmax (47%); ↑AUC(0-∞) 
(63%); ↑t1/2 (29%); ↑Tmax 
(15%)

[191]

  + FCZ po 100 mg ↓Cmax (25–40%);↑AUC(0-∞) 
(105–145%);
↑t1/2 (77–83); ↑Tmax (11–92%)

[191, 192]

  + FCZ po 200 mg ↓Cmax (133%); ↑AUC(0-∞) 
(342%); ↑t1/2 (126%); ↑Tmax 
(54%)

[191]

Diazepam ↑AUC(0–48) (51%); ↑AUC(0-∞) 
(174%); ↑t1/2 (135%); ↓CL/F 
(59%)

Hepatic CYP2C19 
and CYP3A4

[193]

  N-Desmethyldiazepam ↓C48hr (60%); ↓AUC(0-48) 
(70%); ↓ AUCratio (71%)

Hepatic CYP2C19 [193]

Calcineurin inhibitors

Cyclosporine
  Day 4 ↑Cmax (39%); ↑Cmin (38%); 

↑AUC (87%); ↓CL (18%)
Hepatic intestinal 
CYP3A and P-gp

[194]

(continued)
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11.6.1  Fluconazole Interactions Affecting CYP-Mediated 
Biotransformation of Other Drugs

11.6.1.1  The 3-Hydroxy-3 Methylglutaryl (HMG) Coenzyme: 
A Reductase Inhibitor (The “Statins”)

Fluconazole significantly increases fluvastatin exposure, Cmax, and t1/2 [188]. 
Fluconazole does not inhibit ABC transporters involved in drug disposition; thus, 
this interaction results from hepatic CYP2C9 inhibition [18, 155]. Pravastatin, 
pitavastatin, and rosuvastatin are not appreciably metabolized by CYP2C9 or 
CYP2C19; thus, fluconazole does not significantly affect their pharmacokinetics 
[153, 188, 189]. Case reports suggest even a moderate CYP3A4 inhibitor like fluco-
nazole can inhibit the metabolism of CYP3A-metabolized statins (simvastatin, ator-
vastatin) [204–207].

Table 11.5 (continued)

Drug Effect on drug (% change) Inhibition site Reference(s)

Tacrolimus Cmin, AUC(0–12) similar pre- and 
post-fluconazole with 40% 
↓dose

[195]

Anticonvulsants

Phenytoin ↑Cmin (≈25%); ↑AUC(0–24) 
(75%)

Hepatic CYP3A4 [196]

Anticoagulants

Warfarin Inhibits S-warfarin metabolic 
pathway ≈ 70%

Hepatic CYP2C9 [98, 177]

Miscellaneous drugs

Fentanyl ↓CL (17%); ↓norfentanyl 
AUC(0–∞) (56%); ↓Ratio (67%)

Hepatic CYP3A4 [197]

Alfentanil Hepatic CYP3A4 [198]
  FCZ po ↑AUC(0–10) (96%); ↑t1/2 (67%); 

↓CL (54%); ↓Vss (19%)
  FCZ i.v. ↑AUC(0–10) (107%); ↑t1/2 

(80%); ↓CL (58%); ↓Vss 
(19%)

Methadone ↑AUC(0–24) (35%); ↑Cmax 
(27%); ↑Cmin (48%);↓CL/F 
(24%)

Hepatic CYP [199]

Cyclophosphamide ↑AUC(0–24) (79%); ↑Cmax 
(33–36%)

Hepatic CYP [200, 201]

  4-OH-cyclophosphamide ↓Cmax (33–36%)
Nevirapine ↑AUC(0–8) (29%); ↑Cmax (28%); 

↓CL/F (22%)
Hepatic CYP3A4 [202]

Ibuprofen (S-enantiomer) ↑AUC(0–24) (83%); ↑Cmax 
(16%); ↑t1/2 (34%)

Hepatic CYP2C9 [203]
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11.6.1.2  Benzodiazepines

Fluconazole co-administration with triazolam or midazolam significantly alters the 
pharmacokinetics and enhances the pharmacological effect of both [113, 190–192]. 
Fluconazole increases the oral availability and decreases the CL (i.e., increases 
exposure, Cmax, and t1⁄2,) of both benzodiazepines [113, 190–192]. Fluconazole has 
no effect on Vss of i.v. midazolam but does substantially reduce its plasma CL 
thereby prolonging its t1⁄2 [113]. The interaction significantly enhances and prolongs 
the pharmacological effects of these benzodiazepines [113, 190–192]. The inhibi-
tion of CYP-mediated midazolam metabolism is greater with orally rather than i.v. 
administered fluconazole [190]. Like itraconazole, CYP3A5 genotype also influ-
ences the extent and interindividual variability of the midazolam-fluconazole inter-
action [47, 95]. The effects of fluconazole on midazolam did not increase with 
repeated dosing [113, 190], but with increasing doses, the extent of the interaction 
with triazolam increased accordingly [192]. Fluconazole significantly increases 
diazepam exposure, most likely by inhibiting CYP2C19-catalyzed formation of its 
primary metabolite N-desmethyldiazepam, but the interaction minimally changes 
its pharmacological effects [193].

11.6.1.3  Calcineurin Inhibitors and mTOR Inhibitors

Fluconazole interacts with calcineurin inhibitors in a dose-related manner, with 
interactions occurring at higher fluconazole (≥200 mg) doses [91, 194, 195, 208–
212]. The maximum effect occurs approximately 4 days after starting fluconazole 
[208, 213]. The magnitude of the interaction is influenced by the route of flucon-
azole administration and is less with i.v. dosing [195, 210]. Such differences may 
also be related to CYP3A5 genotype. Like other azoles, fluconazole interacts with 
tacrolimus, and the interaction is influenced by the CYP3A5 genotype. A small 
study examining the influence of the variant CYP3A5 alleles on tacrolimus expo-
sure and dose before, during, and after fluconazole administration observed that the 
magnitude of the interaction is less in heterozygous expressers (CYP3A5*3/*1) 
compared to homozygous expressers (CYP3A5*3/*3) [214]. In addition, the study 
illustrated that CYP3A5 non-expressers are more frequently exposed to suprathera-
peutic trough tacrolimus concentrations during treatment with fluconazole [214]. 
Data also show that hepatic and intestinal CYP3A5 expression and activity may be 
higher among heterozygous expressers [214]. A case report describes a significant 
interaction between fluconazole and sirolimus [215]. The interaction manifests rap-
idly and results in toxic sirolimus concentrations [215]. Similarly, a case report 
describing the management of a pharmacokinetic drug interaction between everoli-
mus and fluconazole suggests that the dose of everolimus should be reduced to 
avoid overexposure and that reduction is comparatively less with fluconazole than 
other triazoles (e.g., voriconazole) [216].
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11.6.1.4  Phenytoin

In two healthy volunteer studies, fluconazole significantly increased phenytoin 
exposure and Cmin [196, 217]. In the multidose study, the phenytoin dose and its 
duration were limited which demonstrated no appreciable effect on fluconazole 
pharmacokinetics, but in practice it likely will [196].

11.6.1.5  Warfarin

Therapeutic plasma fluconazole concentrations exceed its in vitro inhibitory con-
stant for CYP2C9-mediated warfarin metabolism [98]. Therefore, fluconazole 
interacts with warfarin in a predictable manner. Fluconazole inhibits S-warfarin 
metabolism approximately 70% and R-warfarin metabolism by 45%. The inhibition 
of S-warfarin results in a 38% increase in the INR in previously stabilized patients 
[98, 177]. A single 150 mg dose of fluconazole can increase INR levels in excess of 
8 days [218].

11.6.1.6  Miscellaneous Drugs

Oral fluconazole (400  mg) significantly decreased fentanyl plasma CL and the 
exposure of its primary active metabolite, norfentanyl [197]. The interaction did not 
affect fentanyl Vss or t1/2, which suggests it was due to inhibition of CYP3A-mediated 
norfentanyl formation [197]. Oral or i.v. fluconazole significantly reduces alfentanil 
CL and nearly doubles its t1⁄2 [198]. The increased alfentanil concentrations were 
associated with enhanced pharmacological effects [198]. Fluconazole (200  mg 
daily) reduced methadone CL/F and increased its exposure in patients receiving a 
mean daily methadone dose of 55 mg, without clinically enhancing its pharmaco-
logical effect [199]. Contrary to this, a single case report demonstrated a significant 
increase in methadone’s pharmacological effect with concomitant i.v. fluconazole 
[219].

Cyclophosphamide undergoes extensive metabolism including one pathway 
involving activation by several CYPs including CYP2C9 and CYP3A4, which pro-
duces the cytotoxic alkylating agent 4-hydroxycyclophosphamide. Fluconazole 
reduces cyclophosphamide CL and increases its t1/2 in children [200]. Data also 
indicate that fluconazole increases cyclophosphamide exposure and Cmax and 
reduces 4-hydroxycyclophosphamide Cmax [201]. In HIV patients, the co- 
administration of fluconazole and rifabutin increased the rifabutin Cmax 91% and the 
AUC 76% [220]. This interaction also extended to the primary rifabutin metabolite, 
25-O-desacetylrifabutin, in which the Cmax and Cmin were increased by 3.6-fold and 
2.3-fold, respectively [220]. Drug interactions involving antiretroviral agents are 
discussed in Chaps. 13 and 14. However, fluconazole (200 mg three times per week) 
co-administration significantly increases nevirapine exposure [202].
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Ibuprofen is a chiral compound, and the pharmacologically active S-enantiomer, 
which produces most of its analgesic effect, is metabolized primarily by CYP2C9. 
Fluconazole significantly increases the S-enantiomer Cmax, exposure, and its t1/2 
[203].

11.6.1.7  Clinical Importance of Fluconazole Interactions Affecting 
CYP-Mediated Biotransformation of Other Drugs

While fluconazole is generally regarded as a safe medication, interactions involving 
this azole and benzodiazepines, calcineurin inhibitors, mTOR inhibitors, nevirap-
ine, phenytoin, and warfarin are clinically significant. Most of these interactions can 
lead to prolonged changes in the pharmacological effects and toxicity of the victim 
drugs. Some interactions with fluconazole if not recognized can produce fatalities 
[221]. Other interactions, like the fluconazole-cyclophosphamide interaction, may 
limit toxicities associated with cyclophosphamide regimens [201]. In certain 
patients, the potential for fluconazole to be co-administered with rifabutin is high; 
thus, clinicians must be aware of rifabutin toxicities (uveitis, flu-like symptoms, and 
liver enzymes) [220]. Ibuprofen is a component of many over-the-counter products 
and is largely overlooked as having CYP450 drug interactions. Patients should 
know that fluconazole co-administration may increase the risk of concentration- 
dependent ibuprofen toxicity (i.e., renal, cardiovascular, or gastrointestinal adverse 
effects) [203].

11.6.1.8  Management of Fluconazole Interactions Affecting CYP- 
Mediated Biotransformation of Other Drugs

Like other azoles, the interaction between fluconazole and triazolam, or midazolam, 
cannot be circumvented even with low doses of fluconazole, and these combinations 
should be avoided [113, 190–192]. In patients receiving fluconazole, temazepam, 
oxazepam, or lorazepam may be alternatives to triazolam and midazolam as these 
agents are not appreciably metabolized by CYP3A4. Even though fluconazole co- 
administration significantly reduces the clearance of diazepam, the interaction does 
not enhance its pharmacological effects [193]. Similarly, zolpidem clearance is 
decreased by 20% in the presence of fluconazole which does not influence the seda-
tive effects of zolpidem [121]. Despite these interactions, diazepam and zolpidem 
could also represent alternatives to midazolam and triazolam.

When used with the calcineurin inhibitors, low doses of fluconazole (<200 mg) 
may produce less significant interactions; however, using these doses may not be 
possible [194, 208]. No matter what dose of fluconazole is being used, therapeutic 
drug monitoring of the calcineurin inhibitors is essential to maintain therapeutic 
concentrations and reduce potential toxicities. Phenytoin serum concentrations 
should be monitored with the addition of fluconazole therapy [196]. If the two are 
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used together for prolonged times, clinicians should monitor for breakthrough 
 fungal infections due to the known CYP450 induction effects of phenytoin. The 
interaction between fluconazole and warfarin cannot be avoided. The interaction 
occurs at any dose, with single doses, and the interaction may persist for >7 days 
[48, 98, 218, 222, 223]. Termination of this interaction requires fluconazole discon-
tinuation and perhaps infusion of fresh-frozen plasma, vitamin K, or other therapeu-
tic modalities to reverse excessive anticoagulation. In cases where antifungal 
therapy is needed, isavuconazole, amphotericin B, echinocandins, and perhaps itra-
conazole may be preferred [102, 172, 177].

When using fluconazole and fentanyl concomitantly, respiratory depression may 
occur if the fentanyl dose is not reduced and the patients are not monitored closely 
[197, 221]. The use of rifabutin therapy in Mycobacterium avium infections is often 
unavoidable; therefore, careful monitoring will be necessary [220]. Similar to fen-
tanyl, ibuprofen exposure is significantly increased by fluconazole; however, the 
toxicities of ibuprofen may not be immediately apparent or clinically evident [203]. 
Ideally, a lower ibuprofen dose should be used in patients receiving fluconazole, 
particularly with long-term co-administration. Fluconazole reduces phenytoin 
clearance; therefore, therapeutic drug monitoring of phenytoin and monitoring for 
phenytoin toxicities are needed [196, 224]. If the fluconazole-phenytoin interaction 
persists, there is a potential for fluconazole induction by phenytoin [225, 226]. If the 
induction effects cannot be overcome by increasing the fluconazole dose or the 
patient is not responding to fluconazole therapy, then echinocandins or amphoteri-
cin B formulations should be considered.

11.6.2  Interactions That Induce Fluconazole 
Biotransformation

Although fluconazole undergoes minimal metabolism, co-administration with 
CYP3A4 inducers markedly reduces its exposure [227].

11.6.2.1  Clinical Importance of Interactions That Induce Fluconazole 
Biotransformation

Rifampin co-administration with fluconazole produces a clinically significant inter-
action [227]. Without adjusting the fluconazole dose, the resulting induction leads 
to undetectable or subtherapeutic serum fluconazole concentrations that could lead 
to therapeutic failure [228, 229].
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11.6.2.2  Management of Interactions That Induce Fluconazole 
Biotransformation

Often the induction of fluconazole CYP-mediated metabolism cannot be overcome 
by increasing its dose. However, in patients receiving rifampin, the dose of flucon-
azole should be doubled [227, 229].

11.6.3  Fluconazole Interactions Affecting Conjugative 
Biotransformation of Other Drugs

In humans UGT2B7 catalyzes zidovudine metabolism to its major metabolite, zid-
ovudine glucuronide [230]. Fluconazole, a moderate UGT2B7 inhibitor, co- 
administered at 400  mg daily dose significantly decreased zidovudine CL/F and 
formation of zidovudine glucuronide, which increased zidovudine exposure, Cmax, 
and t1⁄2 [52, 230].

11.6.3.1  Clinical Importance and Management of Fluconazole 
Interactions Affecting Conjugative Biotransformation of Other 
Drugs

The clinical significance of the fluconazole-zidovudine interaction is undetermined. 
Patients receiving this combination should be monitored for zidovudine toxicity 
[231].

11.7  Interactions Involving Voriconazole

Drug interactions involving voriconazole are summarized in Tables 11.6 and 11.7.

11.7.1  Voriconazole Interactions Involving Gastric pH 
and Motility

Voriconazole co-administration with high-fat meals reduces the absolute bioavail-
ability by 22% and Cmax by 34% [11].
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Table 11.6 Voriconazole interactions affecting CYP-mediated biotransformation of other drugs

Drug Effect on drug (% Change) Inhibition site Reference(s)

Benzodiazepines

Midazolam (oral) Hepatic and 
intestinal CYP3A4

[232]

  + VCZ po ↑Cmax (259%); ↑AUC(0-∞) (840%)
↑t1/2 (252%); ↓CL/F (91%)

  α-OH-midazolam
  + VCZ po ↓Cmax (6%); ↑AUC(0-∞) (149%); 

↓Ratio(77%)
Midazolam (i.v.) Hepatic CYP3A4 [232]
  + VCZ po ↑AUC(0-∞) (253%);↓CL (72%); 

↑t1/2 (196%)
  α-OH-midazolam
  + VCZ po ↓Cmax (18%); ↑AUC(0-∞) (68%); 

↑Tmax (168%); ↓Ratio (54%)
Diazepam ↑AUC(0–48) (39%); ↑AUC(0-∞) 

(123%); ↑t1/2 (97%); ↓CL/F 
(47%)

Hepatic CYP2C19 
and CYP3A4

[193]

N-desmethyldiazepam ↓C48hr (48%); ↓AUC(0–48) (64%); 
↓AUCratio (71%)

Hepatic CYP2C19 [193]

Calcineurin inhibitors

Cyclosporine ↑Cmin (248%); ↑AUC(0–12) (70%) Hepatic and 
intestinal CYP3A 
and P-gp

[233–235]

Tacrolimus ↑Cmin great than predicted Hepatic intestinal 
CYP3A

[234, 
236–238]

mTOR inhibitors

Sirolimus No formal PK studies; required 
~90% sirolimus dose reduction

[239–241]

Everolimus No formal PK studies; required 
65%–80% everolimus dose 
reduction

[216, 242, 
243]

Anagesics and anti-inflamatory agents

Ibuprofen 
(S-enantiomer)

↑AUC(0–24) (103%); ↑Cmax (19%); 
↑t1/2 (33%)

Hepatic CYP2C9 [203]

Alfentanil ↑AUC(0–10) (264%);↑AUC(0-∞) 
(444%)
↑t1/2 (340%);↓CL (85%); ↓Vss 
(28%)

Hepatic CYP3A4 [244]

Fentanyl ↓CL (24%); ↑AUC(0-∞) (39%); Hepatic CYP3A4 [197]
Norfentanyl ↓ AUC(0-∞) (56%); ↓Ratio (67%)
Methadone ↑AUC(0–24) (44%); ↑Cmax (30%) Hepatic CYP2B6, 

3A, 2C9, and 2C19
[245]

Oxycodone ↑Cmax (69%); ↑AUC(0-∞) (257%); 
↓CL/F (71%); ↑t1/2 (102%)

Hepatic and 
intestinal CYP3A4
Hepatic CYP2D6

[246–248]

(continued)
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11.7.1.1  Clinical Importance of Voriconazole Interactions Involving 
Gastric pH or Motility Interactions

When considered alone, the clinical significance of the impact of food on voricon-
azole disposition is minimal. However, given the large variation in voriconazole 
pharmacokinetics and its narrow therapeutic index for efficacy and toxicity, reduc-
tion in absolute bioavailability may be significant in select patients.

Table 11.6 (continued)

Drug Effect on drug (% Change) Inhibition site Reference(s)

Noroxycodone ↓Cmax (87%); ↓AUC(0-∞) (67%); 
↓Ratio(92%); ↑t1/2 (106%)

Oxymorphone ↑Cmax (104%); ↑AUC(0-∞) 
(597%); ↑Ratio(100%); ↑t1/2 
(541%)

Noroxymorphone ↓Cmax (88%); ↓AUC(0-∞) (49%); 
↓Ratio(87%); ↑t1/2 (218%)

Buprenorphine ↑Cmax (37%); ↑AUC(0-∞) 
(80%);↓CL/F (42%); ↑t1/2 (39%)

Hepatic CYP3A4 [249]

Meloxicam ↑AUC(0–72) (46%); ↑t1/2 (50%) Hepatic CYP2C9 
and CYP3A4

[136]

Diclofenac ↑AUC(0–∞) (77%); ↑Cmax (114%) Hepatic CYP2C9/19 
and CYP3A4

[250]

Etoricoxib ↑AUC(0–∞) (49%) Hepatic CYP3A [251]
Miscellaneous drugs

Warfarin Inhibits S-warfarin metabolic 
pathway ≈ 41%

Hepatic CYP2C9 [252]

Phenytoin ↑AUC(0–24) (80%); ↑Cmax (70%) Hepatic CYP2C9 
and CYP3A4

[253]

Efavirenz (400 mg/
day)

Hepatic CYP2B6 [254]

  + VCZ 200 mg BID ↑AUC(0–24) (44%); ↑Cmax (37%)
Efavirenz (300 mg/
day)a

Less inhibition with [255]

  + VCZ 300 mg Q12 
hr

↓AUC(0–24) (8%); ↓Cmax (18%) Lower efavirenz dose 
and

  + VCZ 400 mg Q12 
hr

↑AUC(0–24) (6%); ↓Cmax (10%) Higher voriconazole 
dose

Ritonavir
  400 mg BID None
  100mg B.I.D ↓AUC(0-12) (18%); ↓Cmax (30%); 

↓Cmin (22%)
Unknown [256]

aValues compared to efavirenz 600 mg/day
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11.7.1.2  Management of Voriconazole Interactions Involving Gastric pH 
Interactions and Motility

The voriconazole-food interaction can be managed by separating the doses from 
meals or by therapeutic monitoring. Separating the voriconazole dose by more than 
1 h pre or post a meal should maintain its high oral bioavailability [11]. Additionally, 
routine voriconazole therapeutic drug monitoring and close clinical monitoring 
could be employed in these instances.

Table 11.7 Interactions that induce voriconazole biotransformation or inhibit its absorption

Drug
Effect on voriconazole (% 
change) Comments Reference(s)

Food
  Day 7 ↓AUC(0–12) (28%); ↓Cmax 

(34%); ↑Tmax (73%); F (22%)
Delayed absorption;
Decreased bioavailability

[11]

Phenytoin CYP 3A4, 2C9/19 
induction

[253]

  + VCZ 200 mg 
BID

↓AUC(0–12) (64%); ↓Cmax (39%)

  + VCZ 400 mg 
BIDa

↑AUC(0–12) (39%); ↑Cmax (34%) Doubling dose 
compensated induction

Ritonavir (chronic 
dose study)

CYP2C19 and CYP2C9 
induction

[256]

  400 mg BID ↓AUC(0–12) (84%); ↓Cmax (66%)
  100 mg BID ↓AUC(0–12) (27%); ↓Cmax (16%)
Ritonavir (acute 
dose study)

↑AUC(0-∞) (354%); ↑Cmax 
(17%);↓CL/F (43%)

CYP 3A4 inhibition [257]

Efavirenz (400 mg/
day)

CYP2C19/9 and CYP3A4 
induction;

[254]

  + VCZ 200 mg 
BID

↓AUC(0–24) (78%); ↓Cmax (62%) Greater effect with 
standard 600 mg dose?

Efavirenz (300 mg/
day)b

Less induction with [255]

  + VCZ 300 mg 
Q12 hr

↓AUC(0–12) (48%); ↓Cmax (27%) Lower efavirenz dose and

   (VCZ-N-oxide) None Higher voriconazole dose
  + VCZ 400 mg 

Q12 hr
↑AUC(0–24) (4.5%); ↑Cmax 
(28%)

   (VCZ-N-oxide) ↑AUC(0–24) (41%); ↑Cmax (45%)
Flucloxacillin ↓Voriconazole concentrations CYP3A4 and possible 

CYP2C8/9 induction
[258]

aValues compared to voriconazole 200 mg
bValues compared to voriconazole 400 mg/day
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11.7.2  Voriconazole Interactions Affecting CYP-Mediated 
Biotransformation of Other Drugs

11.7.2.1  Benzodiazepines

Voriconazole co-administration also increases oral midazolam exposure ninefold, 
Cmax 3.5-fold, and bioavailability 2.7-fold, respectively [232]. Voriconazole pro-
foundly enhanced the pharmacological effects of oral midazolam, more so than 
intravenous midazolam. As discussed previously, the variability in benzodiazepine 
interactions may be explained in part by the CYP3A5 genotype [94, 95]. Voriconazole 
co-administration significantly increases diazepam exposure but did not enhance 
the pharmacological effects of this benzodiazepine [193].

11.7.2.2  Calcineurin Inhibitors and mTOR Inhibitors

Voriconazole co-administration increases cyclosporine exposure 1.7-fold and Cmin 
1.7–2.5-fold [259]. Clinically, the mean cyclosporine concentration to dose ratio 
increased 1.8-fold with concomitant voriconazole [233]. Similar to cyclosporine, 
the median increase in tacrolimus concentrations (concentration/dose ratios) in the 
presence of voriconazole is 1.3-fold to 1.5-fold [159, 236, 259]. However, this inter-
action demonstrates considerable variability, which has now been at least in part 
attributed to genetic polymorphisms in CYP2C19 and CYP3A5 and the presence of 
concomitant CYP inhibitors [93, 233, 237, 260–265]. Whether administered orally 
or via i.v., voriconazole interacts with the calcineurin inhibitors with considerable 
interpatient variability, but oral voriconazole leads to more pronounced interactions 
[234, 236–238, 260]. Additionally, voriconazole serum concentrations do not seem 
to influence the extent of the tacrolimus interaction [236]. In several case series, 
concomitant sirolimus and voriconazole required sirolimus dose reductions of 
~90% to maintain adequate sirolimus concentrations [239–241]. In three separate 
case reports, the addition of voriconazole to everolimus therapy resulted in signifi-
cant increases in everolimus concentrations [216, 242, 243]. The culmination of 
these reports indicates that everolimus dose reductions of 65–80% are necessary to 
maintain therapeutic everolimus concentrations in the presence of voriconazole 
[216, 242, 243]. Additionally, two of these reports were able to compare the influ-
ence of fluconazole and posaconazole compared to voriconazole [216, 242]. 
Voriconazole increased everolimus concentrations threefold more than that of fluco-
nazole and twofold that of posaconazole [216, 242].
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11.7.2.3  Analgesics and Anti-inflammatory Agents

Voriconazole co-administration significantly decreases the mean alfentanil plasma 
CL, increases exposure (sixfold), and prolongs its t1/2 [244]. Similar to fluconazole, 
oral voriconazole significantly increases fentanyl exposure and decreases its CL and 
norfentanyl exposure [197]. Voriconazole significantly increases the pharmacologi-
cally active R-methadone exposure by 47.2% and Cmax by 30.7% [245]. Voriconazole 
co-administration with oxycodone can significantly decrease first-pass metabolism 
of oxycodone by inhibiting its CYP3A4-mediated metabolism [246]. This can pro-
duce compensatory changes in oxymorphone pharmacokinetics mediated by 
CYP2D6, which voriconazole does not inhibit [246]. The compensatory activity of 
CYP2D6 only modestly enhances the pharmacological effects of oxycodone; how-
ever, CYP2D6 exhibits genetic polymorphisms; and poor metabolizer phenotypes 
would be at an increased risk for oxycodone toxicities [246–248]. Voriconazole also 
demonstrated an inhibitory effect on buprenorphine metabolism. Concomitant 
administration of buprenorphine and voriconazole resulted in an 87% increase in 
buprenorphine exposure and a 37% increase in its Cmax [249]. The resultant increase 
in buprenorphine exposure and Cmax is most likely due to inhibition of CYP3A4 by 
voriconazole [249]. Co-administration of voriconazole and ibuprofen 400  mg 
resulted in a twofold increase in S-(+)-ibuprofen exposure and prolonged its t1/2 by 
43% [203]. Voriconazole exhibited little influence on R-(−)-ibuprofen [203]. 
Additionally, the magnitude of the S-(+)-ibuprofen changes was directly correlated 
with voriconazole concentrations [203]. Ibuprofen is a racemic mixture containing 
the physiologically active S-(+)-ibuprofen and physiologically inactive R-(−)-
ibuprofen. S-(+)-ibuprofen is metabolized via CYP2C9 and R-(−)-ibuprofen is 
metabolized by CYP2C8 [266]. Given this, the effects of voriconazole on S-(+)-
ibuprofen are a direct result of voriconazole’s CYP2C9 inhibition, while its negli-
gible effects on R-(−)-ibuprofen are due the lack of CYP2C8 inhibition of 
voriconazole [266]. Similar to ibuprofen, meloxicam and diclofenac are extensively 
metabolized by hepatic CYP2C9 and to a lesser extent by CYP3A4 and CYP2C19 
(diclofenac) [136, 250]. Voriconazole co-administration markedly increases both 
meloxicam and diclofenac exposure. However, the interaction with voriconazole 
prolongs meloxicam’s t1/2, without affecting its Cmax, while its effects on diclofenac 
increased Tmax and did not change its t1/2 [136, 250]. The differing pharmacokinetics 
of meloxicam and diclofenac suggest that the meloxicam interaction primarily 
occurs in the liver, while the diclofenac interaction occurs in the intestine [136, 
250]. Voriconazole oral gel co-administration can moderately increase single-dose 
etoricoxib exposure, Cmax, and t1/2 [251].

11.7.2.4  Miscellaneous Drugs

Voriconazole interacts with several other medicines including warfarin, phenytoin, 
and efavirenz.
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Voriconazole co-administration significantly enhances the pharmacological effects 
of warfarin [252]. The interaction can increase prothrombin time by 100% from base-
line and can persist for up to 6 days [252]. The effects of voriconazole on the antico-
agulant effect of warfarin are most likely due to the more pronounced stereoselective 
inhibition of the more pharmacologically active warfarin enantiomer, S-warfarin [98]. 
Steady-state plasma phenytoin Cmax and exposure increase by 67% and 81%, respec-
tively, following repeated administration of oral voriconazole (400 mg twice daily for 
10 days) [253]. The phenytoin (a substrate of CYP2C9 and CYP2C19) pharmacoki-
netic changes are most likely a result of voriconazole CYP2C19 and CYP2C9 inhibi-
tion [92, 100]. However, as discussed below, this interaction is bi-directional, and 
phenytoin induces voriconazole metabolism [225, 226, 253].

Voriconazole demonstrates variable drug interactions in patients receiving anti-
retroviral agents. The resultant interactions and their magnitude are complex and 
dependent on genetic polymorphism phenotypes, voriconazole dose (i.e., concen-
tration), and the co-administered antiretroviral drug and their concentrations. The 
variable nature of these interactions makes them difficult to predict, so close clinical 
monitoring is warranted in all patients [267]. Thorough reviews of antiretroviral 
drug interactions can be found in Chaps. 13 and 14. In healthy volunteers, co- 
administration of voriconazole (200 mg twice daily) with efavirenz (400 mg daily) 
moderately increased efavirenz exposure (43%) and Cmax (37%) [254]. The 
efavirenz- voriconazole interaction is likely due to voriconazole inhibition of 
CYP2B6, which is subject to genetic polymorphisms [92, 268]. However, as dis-
cussed below, this interaction is bi-directional, and the effect of efavirenz induction 
on voriconazole metabolism is more pronounced [254, 255]. Voriconazole had no 
apparent effect on steady-state high-dose (400 mg twice daily) ritonavir exposure 
but did slightly reduce Cmax of low dose (100 mg twice daily). The mechanism of 
this effect is not clear [256].

Interactions between voriconazole and statins have only been reported in case 
reports [205]. However, based upon its CYP metabolism and lack of interactions 
with ABC transporters, voriconazole can potentially inhibit CYP3A4-mediated 
first-pass metabolism of simvastatin and atorvastatin and the CYP2C9-mediated 
hepatic metabolism of fluvastatin.

11.7.2.5  Clinical Importance of Voriconazole Interactions Affecting 
CYP-Mediated Biotransformation of Other Drugs

Voriconazole interactions with benzodiazepines, the calcineurin inhibitors, mTOR 
inhibitors, opioids, warfarin, and phenytoin are clinically significant. Voriconazole 
increases and prolongs the effects of commonly used hypnotic doses of oral midazolam 
to the extent that its pharmacological effects are no longer considered “short acting” 
[232]. The use of voriconazole with oral midazolam should be avoided. The interaction 
between i.v. midazolam and oral voriconazole is also significant [232]. If high doses or 
continuous infusions of i.v. midazolam are co-administered with voriconazole, the 
doses should be adjusted and the patients should be monitored closely [232].
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The impact of voriconazole on cyclosporine and tacrolimus pharmacokinetics 
are qualitatively similar and are likely to become clinically significant if appropriate 
empiric dose modifications are not made or if enhanced therapeutic drug monitoring 
is not employed [233–236, 238]. Additionally, voriconazole co-administration with 
everolimus and sirolimus requires 65%–80% and 90% reductions in everolimus and 
sirolimus doses, respectively [216, 240–243]. With all these interactions, oral vori-
conazole may have a more pronounced effect than the i.v. version [238].

Voriconazole co-administration with ibuprofen, meloxicam, and diclofenac may 
increase the risk of concentration-dependent toxicities, including renal, cardiovas-
cular, or gastrointestinal adverse effects [203]. The interaction between voricon-
azole and alfentanil is probably only significant when larger alfentanil doses are 
given either by intermittent bolus or continuous infusion. In these cases, extubation 
procedures may be delayed, more nausea and vomiting may be observed, and respi-
ratory depression can occur. In regard to other opiates, voriconazole increases the 
exposure of fentanyl, methadone, oxycodone and buprenorphine. The voriconazole- 
fentanyl interaction is similar to that of fluconazole and fentanyl [197]. In regard to 
methadone, voriconazole increases the R-methadone (pharmacologically active) 
exposure to a lesser extent than S-methadone, and therefore methadone dose reduc-
tions may or may not be required [245]. The effect of voriconazole on oral oxyco-
done is most likely due to intestinal inhibition of CYP3A4 and less oxycodone 
first-pass metabolism [246]. While this type of interaction can be significant, oxy-
codone also undergoes metabolism via CYP2D6 and can at least partially compen-
sate for the reduction in CYP3A4 metabolism which mitigates this interaction [174, 
175]. Voriconazole can increase the exposure of buprenorphine via CYP3A4 inhibi-
tion [249]. The resultant effect may lead to more pronounced buprenorphine anal-
gesic effects and toxicities. Given the danger of prolonged and excessive 
anticoagulation, the voriconazole-warfarin interaction is clinically significant [252]. 
Likewise, the increased phenytoin concentrations in the presence of voriconazole 
may result in phenytoin toxicities, particularly with long-term exposure [253].

11.7.2.6  Management of Voriconazole Interactions Affecting CYP- 
Mediated Biotransformation of Other Drugs

The use of oral midazolam with voriconazole should be avoided, or substantially 
lower doses of midazolam should be used. To manage the voriconazole- cyclosporine 
and tacrolimus interactions, 50% dose reductions have been recommended [269]. 
However, given the substantial interpatient variability associated with this interac-
tion, dosage adjustments should be individualized [159, 270]. The concomitant use 
of voriconazole and sirolimus is contraindicated. However, the use of this combina-
tion may be unavoidable; therefore, the current literature suggests a sirolimus dose 
reduction of 90% may be needed to maintain therapeutic concentrations [240, 241, 
270]. Similarly, the co-administration of voriconazole and everolimus would require 
a 65–80% everolimus dose reduction. No matter which immunosuppressant agent is 
being used, there is a clinically significant interaction with voriconazole 
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co- administration. In studies where empiric dose reductions (as stated above) were 
employed at the outset of voriconazole administration, patients were more ade-
quately maintained with the respective therapeutic range for the agent being used 
[216, 234, 236, 240–243, 270].

Caution should be exercised when using alfentanil with voriconazole. Alfentanil 
dosage adjustments are not needed if only small bolus alfentanil doses are adminis-
tered during voriconazole treatment. However, patients receiving larger alfentanil 
doses as repetitive bolus or continuous infusion may require 70–90% reductions in 
alfentanil dosage for the maintenance of analgesia [244]. The effect of voriconazole 
on fentanyl results in a 1.4-fold increase in fentanyl exposure [197]. This exposure 
may lead to increased incidence of sedation and even respiratory depression. A sim-
ilar increase was seen in R-methadone exposure. Methadone dose reductions and 
close clinical monitoring may be necessary [245]. In patients receiving voricon-
azole and oxycodone, there is a modest increase in oxycodone exposure and a 
potential for increased toxicities [246]. The modest increase is oxycodone results 
because of compensatory CYP2D6 oxycodone metabolism. However, CYP2D6 is 
subject to genetic polymorphisms, and more severe oxycodone-induced adverse 
effects may been seen in poor metabolizer phenotypes or with concomitant CYP2D6 
inhibitors [246–248]. In patients receiving warfarin who require voriconazole ther-
apy, the empiric warfarin dose reductions should be considered, and individual dose 
reductions should be according to INR values [252].

11.7.3  Interactions That Induce Voriconazole 
Biotransformation

Co-administration of voriconazole with CYP inducers (i.e., phenytoin, ritonavir, 
efavirenz) can significantly reduce its serum concentrations, which could lead to 
therapeutic failure [25, 42, 225, 226, 253–256, 271, 272].

11.7.3.1  Phenytoin

The interaction between voriconazole and phenytoin is bi-directional. Initially, 
repeated administration of oral voriconazole increases steady-state phenytoin con-
centrations and exposure [250]. However, phenytoin (300 mg/day) co- administration 
for 2 weeks significantly reduces steady-state voriconazole Cmax, and exposure, by 
50% and 70%, respectively [253]. This interaction persists for up to 12 h post-dose 
[253].
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11.7.3.2  Antiretroviral Agents

Voriconazole plasma concentrations increase with acute co-administration of rito-
navir, particularly with higher doses (400 mg) of ritonavir and the effect is most 
pronounced in CYP2C19 PM phenotype patients [257]. This increase in voricon-
azole results from CYP3A4 inhibition by ritonavir [257]. However, with chronic 
co-administration, ritonavir significantly reduces voriconazole exposure in a dose- 
dependent fashion [256, 272–275]. This interaction likely results from ritonavir 
induction of CYP2C19/2C9 [267, 275].

Efavirenz (400  mg daily) co-administration with voriconazole (200  mg twice 
daily) decreases voriconazole exposure and Cmax [254]. The interaction is caused by 
efavirenz induction of CYP3A4, and possibly CYP2C19 or CYP2C9 [254, 255]. 
See Chaps. 13 and 14 for a comprehensive review of antiretroviral drug 
interactions.

11.7.3.3  Miscellaneous Drugs

Voriconazole may also be induced by co-administration with phenobarbital, carba-
mazepine, rifampin, or other CYP inducers, but data from well-controlled studies 
describing these interactions are lacking. Recently, flucloxacillin co-administration 
with voriconazole resulted in subtherapeutic concentrations of voriconazole [258]. 
This interaction occurred in a single case report and needs more complete investiga-
tion, but flucloxacillin is not readily recognized as a major source of drug 
interactions.

11.7.3.4  Clinical Importance of Interactions That Induce Voriconazole 
Biotransformation

Interactions that reduce voriconazole serum concentrations are clinically significant 
because they can precipitate therapeutic failure of voriconazole.

11.7.3.5  Management of Interactions That Induce Voriconazole 
Biotransformation

In many cases, given the magnitude of the interaction, induction of voriconazole 
cannot be completely overcome by increasing the voriconazole dose or reducing the 
dose of the CYP inducer. Therefore, the concomitant use of certain drugs (rifabutin, 
rifampin, phenobarbital, and carbamazepine) is contraindicated. While doubling the 
voriconazole dose may compensate for the effect of phenytoin on plasma voricon-
azole levels in healthy volunteers [253], this may not work in clinical practice [226]. 
A similar doubling of the voriconazole dose balanced the efavirenz induction effects 
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while also requiring a 25% decrease in the efavirenz dose [255]. The clinical effec-
tiveness of these dose adjustments is unknown. Co-administration of flucloxacillin 
and voriconazole may warrant therapeutic drug monitoring of voriconazole [258].

11.8  Interactions Involving Posaconazole

Drug interactions involving posaconazole are summarized in Tables 11.8 and 11.9.

11.8.1  Posaconazole Interactions Involving Gastric pH 
and Motility

Posaconazole suspension co-administered with esomeprazole significantly reduced 
posaconazole Cmax and exposure, clearly indicating this formulation is impacted by 
changes in pH [28]. Moreover, regardless of fat content, co-administration of solid 
or liquid food significantly increases posaconazole suspension systemic availability 
[30, 32, 84]. Increases in gastric emptying caused by metoclopramide may result in 
clinically insignificant reductions in Cmax and exposure [28]. The posaconazole 
delayed release tablet formulation was designed to overcome the effects changes in 
gastric pH have on the absorption of the oral suspension. Consequently, delayed 
release tablets are unaffected by food, pH or GI motility agents [37–39, 287]. 
Compared with oral suspension, under optimal conditions, solid state dosage for-
mulations of posaconazole demonstrated a 35–43% and 38%-43 increase in Cmax 
and AUC, respectively. Additionally, the total CL of these solid dosage formulations 
was decreased by 35–40% [39]. Single daily doses of delayed release posaconazole 
tablets demonstrate linear pharmacokinetics from 200 to 400 mg, with an approxi-
mate three-fold accumulation following multiple doses. Twice daily dosing of 
posaconazole delayed release tablets (200  mg 2×/day) produced similar total 
posaconazole exposures compared to 400 mg daily, but the accumulation ratio was 
five-fold higher after multiple doses [287]. Prophylactic posaconazole delayed 
release tablets at 300  mg 2×/day on day 1 followed by 300  mg daily thereafter 
resulted in average steady-state concentrations of 1460 ng/mL in high-risk patients. 
Ninety-seven percent of these patients achieved concentrations >500 and <2500 ng/
mL [288]. Compared to the oral suspension, the delayed release tablets consistently 
produce higher and more reliable steady-state concentrations in patients. 
Additionally, the mean steady-state concentrations of delayed release tablets are 
similar to the intravenous formulation using the same dosing scheme [35, 288]. 
These concentrations exceed the currently recommend threshold for both treatment 
and prophylaxis of invasive fungal infections [289–291].
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Table 11.8 Posaconazole interactions affecting CYP-mediated biotransformation of other drugs

Drug Effect on drug (% change) Inhibition site Reference(s)

Benzodiazepines

Midazolam (oral) Hepatic CYP3A; 
perhaps intestinal 
CYP3A

[276, 277]

  + PCZ 200 mg 
BID

↑Cmax (120%); ↑AUC(0-∞) 
(398%);
↑t1/2 (112%); ↓CL/F (81%)

  + PCZ 400 mg 
BID

↑Cmax (133%); ↑AUC(0-∞) 
(426%);
↑t1/2 (162%); ↓CL/F (82%)

Midazolam (i.v.) Hepatic CYP3A [276]
  + PCZ 200 mg 

BID
↑Cmax (30%); ↑AUC(0-∞) (342%);
↑t1/2 (130%); ↓CL/F (76%)

  + PCZ 400 mg 
BID

↑Cmax (68%); ↑AUC(0-∞) (523%);
↑t1/2 (130%); ↓CL/F (83%)

Calcineurin inhibitors

Cyclosporine 
(CSA)*

↑Cmax (5%); ↑AUC(tau)(33%);
↑t1/2 (21%); ↓CL/F (25%)

Hepatic CYP3A4 [278]

Tacrolimus ↑Cmax (114%); ↑AUC(0-∞) 
(323%);
↑t1/2 (24%); ↓CL/F (80%)

Hepatic CYP3A; 
perhaps intestinal 
CYP3A/P-gp

[279]

mTOR inhibitors

Sirolimus ↑Cmax (537%); ↑AUC(0-∞) 
(690%);
↑t1/2 (52%); ↓CL/F (89%); ↓Vd/F 
(80%)

Hepatic CYP3A4 [280]

Everolimus 3.8-fold increase trough 
concentrations

Hepatic CYP3A4 [242]

Antiretrovirals

Atazanavir Hepatic CYP3A4 [281]
Atazanavir + PCZ ↑Cmax (115%); ↑AUC(0–24) (67%);

↑t1/2 (88%); ↓CL/F (81%); ↓Vd/F 
(56%)

Atazanavir/RTV
Atazanavir + 
PCZ + RTV

↑Cmax (47%); Tmax (200%)
↑AUC(0–24) (140%);↓CL/F(60%);

RTV + atazanavir Hepatic CYP3A4 [281]
RTV + atazanavir + 
PCZ

↑Cmax (27%); ↑AUC(0–24) (63%);
↑t1/2 (30%);↓CL/F (51%) ↓Vd/F 
(31%)

Fosamprenavir + 
PCZ
Fosamprenavir + 
RTV

↓Cmax (36%); ↓Cmin(86%);
↓Vd/F (39%); ↓AUC(0–12) (65%); 
CL/(183%)

Hepatic CYP3A4 [282]

(continued)
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Table 11.8 (continued)

Drug Effect on drug (% change) Inhibition site Reference(s)

Miscellaneous

Phenytoin ↑Cmax (24%); ↑AUC(0–24) 
(25%);↑bioavailability 15.5%

Considered clinically 
insignificant;
Mechanism unknown

[283]

Simvastatin (40 mg)
  + PCZ (50 mg 

daily)
↑Cmax (643%); ↑AUC(0-∞) (436%) Intestinal and hepatic 

CYP3A4
[277]

  +PCZ (100 mg 
daily)

↑Cmax (837%); ↑AUC(0-∞) (862%)

  +PCZ (200 mg 
daily)

↑Cmax (1042%); ↑AUC(0-∞) 
(907%)

Simvastatin acid
  + PCZ (50 mg 

daily)
↑Cmax (452%); ↑AUC(0-∞) (399%) Intestinal and hepatic 

CYP3A4
[277]

  + PCZ (100 mg 
daily)

↑Cmax (817%); ↑AUC(0-∞) (584%)

  + PCZ (200 mg 
daily)

↑Cmax (851%); ↑AUC(0-∞) (645%)

Topiramate
  + PCZ (200 mg 

Q.I.D.)
No formal PK studies
↑Topiramate serum 
concentrations ~fivefold

Likely intestinal and/or 
hepatic CYP3A4

[284]

Inhaled fluticasone
  +PCZ 

(200 mg T.I.D.)
No PCZ concentrations
Drug-induced adrenal 
insufficiency after 12 months

Hepatic CYP3A4 [285]

Table 11.9 Interactions that induce posaconazole biotransformation or inhibit its absorption

Drug
Effect on posaconazole (% 
change) Mechanism Reference(s)

Gastric pH

Modifiers

Esomeprazole ↓Cmax (43%); AUC (37%) ↑ gastric pH and ↓ absorption [28]
Inducing agents

  Efavirenz ↓Cmax (40%); ↓AUC(0–24) 
(46%);

Induction of UGT-mediated [281]

↑CL/F  (99%) Glucuronidation
  Phenytoin ↓Cmax (44%); ↓AUC(0–24) 

(52%);
Mechanism unknown [283]

↑CL/F(90%) Possibly induction of CYP3A4 
or UGT1A4

  Rifampin ↓58%–80% in PCZ serum 
concentrations

CYP3A4; UGT1A4; P-gp [286]

aValues are normalized to dose
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Furthermore, the delayed release tablets produce significantly higher posacon-
azole concentrations and less pharmacokinetic variability compared to oral suspen-
sion even in its most optimal conditions [37–39, 287].

11.8.1.1  Clinical Importance of Posaconazole Interactions Involving 
Gastric pH Interactions

Reduced posaconazole absorption may lead to therapeutic failure. However, ele-
vated gastric pH interactions with posaconazole are unavoidable in certain patients. 
The delayed release tablet formulation of posaconazole alleviates the food, pH and 
co-medications restrictions that limited the oral suspension, however in patients that 
cannot swallow (i.e., severe mucositis) the oral suspension may still be necessary. 
The availability of an i.v. formulation of posaconazole also provides an additional 
option for patients who cannot tolerate either oral dosage form.

11.8.1.2  Management of Posaconazole Interactions Involving Gastric pH 
Interactions

Posaconazole oral suspension interactions involving alterations in gastric pH may 
be managed by administering it in divided doses; with or after a meal, or with a 
nutritional supplement, or an acidic beverage [27, 28, 33]. Delayed release posacon-
azole tablets are not affected by food, pH of GI motility agents and this would be the 
preferred dosage formulation in most patients [38, 39, 287]. Switching patients 
from oral suspension to the delayed release tablet formulation has resulted in 
improved posaconazole concentrations that meet or exceed the current threshold for 
treatment and prophylaxis of invasive fungal infections [290–292].

11.8.2  Posaconazole Interactions Affecting CYP-Mediated 
Biotransformation of Other Drugs

11.8.2.1  Benzodiazepines

Posaconazole significantly inhibits CYP3A metabolism of intravenous or oral mid-
azolam [276, 277]. Posaconazole oral suspension (200 or 400  mg BID) co- 
administration significantly increases oral midazolam (2  mg) exposure with 
dose-dependent increases in posaconazole exposure with numerically similar 
decrease in CL [276, 277]. Likewise, oral midazolam Cmax, t1/2, and Tmax are all 
increased in a dose-dependent manner [276, 277]. Similar changes were seen when 
posaconazole oral suspension (200 or 400 mg BID) was co-administered with i.v. 
midazolam [276]. Posaconazole, regardless of dosage form likely interacts with 
other benzodiazepines that are CYP3A4 substrates (triazolam, alprazolam, etc.), but 
data regarding such interactions are lacking.
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11.8.2.2  Calcineurin Inhibitors and mTOR Inhibitors

Posaconazole significantly interacts with the calcineurin inhibitors. The magnitude 
of the interaction between cyclosporine and systemic azoles is similar (~50% 
increase in cyclosporine concentrations), but its onset varies between azoles [233, 
269, 278, 279]. In patients receiving cyclosporine and posaconazole oral suspension 
prophylaxis (200  mg 3×/day), the cyclosporine concentrations significantly 
increased over the 30 day period [278]. The mean cyclosporine concentration to 
dose ratio also significantly increased over this same period. The results of this 
interaction demonstrated a 50% increase in cyclosporine concentrations, however 
these increases did not require a cyclosporine dose adjustment until day 14 and with 
increased doses being needed through day 30 [278]. Given this, a 50% dose reduc-
tion in cyclosporine is likely needed, but due to the delay in this interaction, this 
dose adjustment should be made based upon individual cyclosporine concentrations 
and gradually changed over the period of the interaction [269, 278, 279, 293]. A 
significant interaction (increased exposure, Cmax, t1/2, and reduced CL/F) between 
posaconazole suspension and single-dose tacrolimus has also been reported [279]. 
The results of this study indicate that the tacrolimus dose should be decreased by a 
factor of 3, which is 25% more than the reduction needed for sirolimus [269, 294].

Posaconazole suspension (400 mg twice daily) significantly increased the single 
dose Cmax, exposure and t1/2 of sirolimus [280]. In addition, the interaction reduced 
sirolimus apparent volume of distribution (Vd/F), and CL/F, 80% and 88%, respec-
tively [280]. Clinically, posaconazole oral suspension (200 mg 3×/day) increased 
the sirolimus concentration/dose ratio by 2.7-fold. An empiric 50% reduction in the 
sirolimus dose is recommended when posaconazole is co-administered [295, 296]. 
Lastly, a drug interaction modeling study suggests that the drug interaction potential 
of posaconazole may increase due to the increased systemic concentrations, 
improved bioavailability and pharmacokinetic profile associated with the delayed 
release tablets [297]. The investigation predicted a greater and more rapid interac-
tion between the two drugs. The 50% inhibitory concentration for posaconazole was 
0.68 mcg/mL, which is readily achievable with the new tablet formulation and sug-
gests that an 80% reduction in the sirolimus dose may be needed when using delayed 
release posaconazole tablets [297]. The interaction is likely due to posaconazole 
inhibition of CYP3A-mediated sirolimus metabolism [280, 295–297]. Whether the 
delayed release tablets increase the drug interaction potential of posaconazole clini-
cally remains to be seen. Furthermore, the contribution of P-gp inhibition by 
posaconazole to this interaction is unknown. In a single case report involving evero-
limus and sequential use of voriconazole and then posaconazole, both agents 
increased everolimus concentrations [242]. Posaconazole oral suspension (400 mg 
2×/day) resulted in a 3.8-fold increase in everolimus trough concentrations, which 
was 50% less than the increase seen with voriconazole and everolimus co- 
administration [242].
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11.8.2.3  Phenytoin

One parallel-designed interaction study demonstrated a bi-directional interaction 
between posaconazole suspension and phenytoin. Posaconazole suspension co- 
administration produced modest, but not statistically significant, increase in steady- 
state phenytoin Cmax (24%), exposure (25%), and relative bioavailability (15.5%) 
which are not considered clinically significantly [283]. However, this study used a 
small number of healthy volunteers who did not serve as their own controls and 
received substandard doses of unmarketed posaconazole solid dosage forms 
(200 mg per day) and phenytoin (200 mg per day) [283]. Whether these limitations 
impacted the magnitude of the observed interaction or whether the interaction 
occurs with marketed dosage forms of posaconazole is unclear.

11.8.2.4  Miscellaneous Drugs

Posaconazole suspension interacts with several other medicines including atazana-
vir and ritonavir. Drug interactions involving antiretroviral agents are discussed in 
detail in Chaps. 13 and 14. However, healthy volunteers in part 1 of a two-part 
crossover study received the protease inhibitor atazanavir alone and then co- 
administered with either ritonavir or posaconazole. In addition, subjects received all 
three concomitantly [281]. Atazanavir and ritonavir are CYP3A4 substrates and 
inhibitors. Posaconazole suspension co-administration (400  mg twice daily for 
7 days) also increased atazanavir exposure, Cmax, and t1/2. In addition, the interaction 
reduced atazanavir Vd/F and CL/F via CYP3A4 inhibition [281]. However, because 
both ritonavir and posaconazole inhibit CYP3A4, when all three were administered 
together, no additional increases in the concentrations and exposure of atazanavir 
were observed compared with ritonavir and atazanavir administration together 
[281]. In this study, posaconazole suspension co-administration modestly increased 
ritonavir exposure and Cmax compared with ritonavir and atazanavir administration 
alone [281]. Similar to the above results, posaconazole suspension co- administration 
with fosamprenavir modestly increased amprenavir concentrations [282]. When 
fosamprenavir plus posaconazole was compared to fosamprenavir plus ritonavir, the 
fosamprenavir plus posaconazole exposure was decreased by 2.8-fold as a result of 
an increase in fosamprenavir CL [282]. The result of this interaction demonstrates 
that posaconazole when given as a suspension is a less potent inhibitor of CYP3A4 
compared to ritonavir and that posaconazole cannot eliminate or replace the need 
for ritonavir boosting of fosamprenavir [282].

Steady-state plasma rifabutin exposure and Cmax increase 72% and 31%, respec-
tively, following repeated administration of an unmarketed posaconazole tablet 
(200 mg once daily for 10 days) in healthy volunteers [298].

Posaconazole suspension significantly increased the steady-state concentrations 
of simvastatin and simvastatin acid (primary metabolite) [277]. When posaconazole 
suspension (50 mg, 100 mg, and 200 mg daily) was administered with simvastatin 
40 mg, the simvastatin Cmax increased 6.4-fold to 10.4-fold, and its exposure was 
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also significantly increased 5.4-fold to 9-fold [277]. Simvastatin clearance was also 
significantly reduced by a similar magnitude. The degree of simvastatin acid phar-
macokinetic changes were parallel to those of simvastatin [277]. In a single case 
report, posaconazole suspension significantly increased the concentration of topira-
mate, but not concurrent valproic acid [284]. The case report lacked baseline topira-
mate concentrations, but compared to topiramate pharmacokinetic data, the patient’s 
topiramate level was increased by over fivefold [284]. Removal of posaconazole 
resulted in a decrease in topiramate levels. Concurrent valproic acid concentrations 
remained stable, and posaconazole concentrations were not reported [284]. The pri-
mary mechanism of this interaction is believed to be from CYP3A4 inhibition, but 
inhibition of P-gp may also be involved [284]. A case report described drug-induced 
Cushing’s syndrome associated with posaconazole and inhaled fluticasone [285]. 
Concomitant administration of inhaled fluticasone and posaconazole suspension 
resulted in adrenal insufficiency after 12 months; however, prior to posaconazole 
therapy, this patient received prophylactic itraconazole (with inhaled fluticasone) 
for 7 years without incident [285]. While no azole levels were reported with either 
drug, the lack of an interaction with itraconazole therapy may have been due to 
reduced absorption and therefore insufficient itraconazole concentrations to inhibit 
hepatic CYP3A4 [166].

11.8.2.5  Clinical Importance of Posaconazole Interactions Affecting 
CYP-Mediated Biotransformation of Other Drugs

Posaconazole interactions with midazolam, the calcineurin and mTOR inhibitors, 
and simvastatin are clinically significant. Similar to the other azoles, the 
posaconazole- calcineurin and mTOR inhibitor interactions may cause adverse 
events or toxicities when clinicians fail to properly monitor blood concentrations 
and make dosage adjustments accordingly. In the case of midazolam and simvas-
tatin, the use of alternative agents that are not metabolized by CYP3A4 (i.e., temaze-
pam and pravastatin, respectively) may be more prudent during posaconazole 
co-administration, particularly when the posaconazole treatment duration is pro-
longed. These interactions illustrate that even drugs like posaconazole that are mini-
mally metabolized by CYP3A4 can potently inhibit this important metabolic 
enzyme. Clinicians may miss or confuse this point and mistakenly believe that 
because posaconazole is a poor CYP3A4 substrate, it will be relatively devoid of 
drug interactions.

11.8.2.6  Management of Posaconazole Interactions Affecting CYP- 
Mediated Biotransformation of Other Drugs

Data regarding the management of patients receiving benzodiazepines, other than 
midazolam, and concomitant posaconazole therapy are lacking. Clinicians should 
consider empirical dose adjustments and monitoring of benzodiazepine adverse 
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events in patients receiving midazolam or other benzodiazepines that are metabo-
lized by CYP3A4 (e.g., triazolam, alprazolam). Alternatively, non-CYP 3A4 metab-
olized benzodiazepines (e.g., temazepam, lorazepam) could be used when clinically 
appropriate.

The interaction between the azoles and calcineurin or mTOR inhibitors is well 
known and should be avoidable. Management of these interactions necessitates 
therapeutic drug monitoring, adjusting, or substituting calcineurin or mTOR inhibi-
tor therapy. Empirically derived dose adjustments are a good starting point to man-
age these interactions. A small retrospective study in lung transplant recipients 
suggests the posaconazole interaction may be safely managed by empirically reduc-
ing the tacrolimus dose by a factor of 3, with subsequent tapering to a mean of 2 mg 
daily [294]. In patients receiving sirolimus and posaconazole oral suspension, a 
50% dose reduction is recommended, but more recently modeling data suggest an 
80% dosage reduction may be required with the delayed release tablet formulation 
[295–297]. Empiric cyclosporine dosage reductions of 50% or more maintained 
therapeutic drug concentrations more effectively than dosage reductions of less than 
50% [278]. Such dosage reductions may need to be gradually implemented as the 
full extent of this interaction may not manifest until day 14 or after [278]. The com-
bination of posaconazole and everolimus demonstrated a significant effect on evero-
limus concentrations; however, this was a single case report; no definitive dosing 
recommendations can be established [242]. Despite these empiric dose reduction 
recommendations, therapeutic drug monitoring of the calcineurin and mTOR inhib-
itors should be performed before, during, and after all azole use. Any dose adjust-
ment should be based upon the objective results of these blood concentration data.

11.8.3  Interactions That Induce Posaconazole 
Biotransformation

Posaconazole co-administration with CYP inducers (i.e., phenytoin, ritonavir, efa-
virenz) can significantly reduce its serum concentrations and potentially lead to 
therapeutic failure. As discussed above, one study demonstrated that posaconazole 
interacts with phenytoin. Despite the previously addressed limitations of that study, 
phenytoin co-administration significantly reduced steady-state posaconazole expo-
sure and Cmax. There was also a 57% reduction in posaconazole t1/2 and a 90% 
increase in its steady-state CL [283]. Rifampin reduced posaconazole serum con-
centration by 58–80% in a single case report [286]. Interactions between marketed 
posaconazole formulations and rifabutin have not been reported, but an interaction 
similar to that observed with rifampin is likely to occur. Efavirenz co-administration 
decreased posaconazole exposure and Cmax [281]. Posaconazole undergoes gluc-
uronidation via UGT1A4, and phenytoin, rifabutin, rifampin, and efavirenz all 
induce UGT activity. Therefore, all these interactions are believed to result from or 
be due in part to induction of UGT-mediated posaconazole glucuronidation [281, 
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283, 286, 298]. Co-administration with fosamprenavir resulted in a 29% decrease in 
posaconazole AUC corresponding to a 29% increase in posaconazole clearance 
[282]. The magnitude of this interaction is less than that seen with other UGT induc-
ers and may reflect differences in induction of UGT1A4 [281–283, 298]. Secondly, 
fosamprenavir may induce P-gp, but the cause of this interaction is unknown [282].

11.8.3.1  Clinical Importance of Interactions That Induce Posaconazole 
Biotransformation

Interactions that induce posaconazole biotransformation may precipitate therapeu-
tic failure and are therefore potentially clinically significant. In addition, these inter-
actions are often bi-directional and may increase the risk of toxicity associated with 
the inducer.

11.8.3.2  Management of Interactions That Induce Posaconazole 
Biotransformation

Because these interactions are bi-directional, increased plasma concentrations of 
phenytoin, rifampin, efavirenz, and fosamprenavir should be expected when they 
are co-administered with posaconazole. Although frequent monitoring for adverse 
events and toxicity is recommended, if possible avoid these combinations due to the 
decreased posaconazole exposure and subsequent risk for therapeutic failure.

11.9  Interactions Involving Isavuconazole

Drug interactions involving isavuconazole are summarized in Tables 11.10 and 
11.11.

11.9.1  Isavuconazole Interactions Involving Gastric pH 
and Motility

Isavuconazole is the active moiety that is formed after gut and plasma esterase 
cleavage of isavuconazonium. In healthy volunteers, isavuconazole was unaffected 
by the presence of food [301]. Additionally, isavuconazole co-administration with 
esomeprazole 40 mg resulted in negligible effects on isavuconazole Cmax or AUC 
[301]. The effects of prokinetic agents on isavuconazole absorption are unknown.
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11.9.1.1  Clinical Importance of Isavuconazole Interactions Involving 
Gastric pH and Motility Interactions

Co-administration with food or esomeprazole did not influence the absorption of 
isavuconazole. It is unknown if GI motility enhancers will effect isavuconazole 
absorption.

Table 11.10 Isavuconazole interactions affecting CYP-mediated biotransformation of other drugs

Drug Effect on drug (% change) Inhibition site Reference(s)

Benzodiazepines

Midazolam ↑Cmax (69%); ↑Tmax (63%);
↑AUC(0-∞) (103%); ↓Cl/F (50%)

Intestinal and hepatic 
CYP3A4

[46]

Calcineurin

Inhibitors

Cyclosporine ↑Cmax (7%); ↑AUC(0-∞) (29%); 
↓Cl/F (21%)

Hepatic CYP3A4 [299]

Tacrolimus ↑Cmax (39%); ↑Tmax (100%);
↑AUC(0-∞) (122%); ↓Cl/F (57%)

Intestinal and hepatic 
CYP3A4

[299]

mTOR inhibitors

Sirolimus ↑Cmax (67%); ↓Tmax (20%);
↑AUC(0-∞) (77%); ↓Cl/F (46%)

Intestinal and hepatic 
CYP3A4

[299]

Anticoagulants

Warfarin Intestinal and hepatic 
CYP3A4

[102]

  S-warfarin ↓Cmax (12%); ↑Tmax 
(150%);↑AUC(0-∞) (11%)

  R-warfarin ↓Cmax (8%); ↑Tmax (131%);↑AUC(0-

∞) (20%)
Miscellaneous

Mycophenolate 
acid

↓Cmax (10%); ↑AUC(0-∞) (39%); 
↓Cl/F (26%)

UGT [299]

Prednisolone ↓Cmax (4%); ↑Tmax (33%); 
↑AUC(0-∞) (8%)

Intestinal and hepatic 
CYP3A4

[299]

Dextromethorphan ↑Cmax (18%);↑AUC(0-∞) 
(19%);↓Cl/F (47%)

[64]

Buproprion ↓Cmax (42%);↓AUC(0-∞) 
(40%);↑Cl/F (78%)

Induction of CYP2B6 [64]

Methadone Induction of CYP2B6 [64]
  S-Methadone ↑Cmax (<1%);↓AUC(0-∞) 

(32%);↑Cl/F (59%)
  R-Methadone ↑Cmax (4%);↓AUC(0-∞) 

(10%);↑Cl/F (11%)
Lopinavir/ritonavir Possibly induction of 

CYP3A4
[300]

  Lopinavir ↓Cmax (19%);↓AUC(tau) (19%);
  Ritonavir ↓Cmax (33%);↓AUC(tau) (27%);
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11.9.1.2  Management of Isavuconazole Interactions Involving Gastric pH 
and Motility Interactions

The evidence to date indicate isavuconazole can be administered without regard to 
food or acid-suppressing agents [301]. Its co-administration with prokinetic agents 
should be avoided or maximally separated until formal pharmacokinetic studies are 
performed.

11.9.2  Isavuconazole Interactions Affecting CYP-Mediated 
Biotransformation of Other Drugs

11.9.2.1  Benzodiazepines

Isavuconazole co-administered in therapeutic doses to healthy volunteers delayed 
single-dose midazolam (3 mg) Tmax by 0.6 h; increased the Cmax and AUC 69% and 
103%, respectively; and reduced CL by approximately 50% [46].

11.9.2.2  Calcineurin Inhibitors and mTOR Inhibitors

Consistent with other azoles, isavuconazole increases the exposure of cyclosporine, 
sirolimus, and tacrolimus [299]. The magnitude of these interactions varies with 
cyclosporine being the least and tacrolimus being the most affected. In healthy vol-
unteers, cyclosporine Cmax and AUC are increased by 7% and 29%, respectively, 
while the clearance is decreased by 21% [299]. Sirolimus pharmacokinetics were 

Table 11.11 Interactions that affect isavuconazole biotransformation or absorption

Drug
Effect on isavuconazole (% 
change) Mechanism Reference(s)

Miscellaneous

Lopinavir/ritonavir Inhibition of intestinal and 
hepatic CYP3A4

[300]

  Isavuconazole
  (100 mg TID, 

100 mg daily)
↑Cmax (94%);↑AUC(tau) 
(112%);

  Isavuconazole
  (200 mg TID, 

200 mg daily)
↑Cmax (74%);↑AUC(tau) 
(96%);

Ketoconazole ↑Cmax (10%); ↑Tmax (50%);
↑AUC(0-∞) (450%); ↓Cl/F 
(80%)

Inhibition of hepatic 
CYP3A4

[46]

Rifampin ↓Cmax (75%);↓AUC(0-∞) 
(97%);↑Cl/F (864%)

Induction of intestinal and 
hepatic CYP3A4

[46]
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studied in healthy volunteers with and without isavuconazole [299]. Sirolimus Cmax 
and AUC increased 67% and 77%, respectively, while its clearance decreased by 
46% with co-administered isavuconazole [299]. In healthy volunteers co- 
administration of isavuconazole increased tacrolimus Cmax and exposure by 39% 
and 122%, respectively, while decreasing its clearance by 56% [299]. A single case 
report of co-administered isavuconazole and tacrolimus found a similar increase in 
tacrolimus exposure that continued to increase over time [302].

11.9.2.3  Warfarin

Warfarin 20 mg as a single dose was given to 20 healthy volunteers with and without 
isavuconazole 200 mg 3×/day for 2 days followed by 200 mg daily. The pharmaco-
kinetics of both warfarin enantiomers, S-warfarin, and R-warfarin were measured. 
The mean S-warfarin and R-warfarin Cmax were 12% and 8% lower, respectively, 
and AUCs were increased 11% and 20%, respectively [102]. Isavuconazole co- 
administration with warfarin results in clinically insignificant changes in warfarin 
pharmacokinetics and anticoagulant effects [102]. As expected, the R-warfarin 
enantiomer is more influenced by isavuconazole, most likely as a result of CYP3A4 
inhibition.

11.9.2.4  Miscellaneous Drugs

The pharmacokinetics of mycophenolate acid were evaluated in 21 healthy volun-
teers with and without the presence of isavuconazole [299]. Overall exposure of 
mycophenolate acid was increased by 39% with a 26% decrease in clearance. 
However, the mycophenolate acid Cmax was decreased by 10%. Mycophenolate acid 
phenyl glucuronide, the primary metabolite of mycophenolate acid, exposure, and 
Cmax were decreased in the presence of isavuconazole [299]. The changes in the 
primary metabolite pharmacokinetics demonstrate mild inhibition of UGT by isa-
vuconazole, which is consistent with previous reports [62, 63, 299].

The effect of isavuconazole on the disposition of prednisolone, ethinyl estradiol, 
and norethindrone has been explored in two healthy volunteer pharmacokinetic 
studies [46, 299]. Isavuconazole co-administration produced clinically insignificant 
changes in the pharmacokinetics of ethinyl estradiol, norethindrone, and predniso-
lone [46, 299].

In the presence of isavuconazole, bupropion Cmax and AUC were decreased by 
31% and 40%, respectively, while bupropion clearance increased by 78% [64]. 
These changes in bupropion concentrations and exposure are consistent with isavu-
conazole being a weak inducer of CYP2B6. Although CYP2B6 displays a wide 
variety of genetic polymorphisms, which may influence the magnitude of this inter-
action, genotypic testing for CYP2B6 was not performed in this study [303]. 
Methadone is formulated as a racemic mixture of S-methadone and R-methadone, 
with R-methadone being the pharmacologically active enantiomer [303]. 
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Isavuconazole co-administration with a single dose of methadone decreased 
S-methadone exposure more than R-methadone (32% versus 10%, respectively) 
[64]. These results are consistent with the stereoselective metabolism that metha-
done undergoes. Metabolism of the pharmacologically active enantiomer 
R-methadone is catalyzed by CYP2C19, whereas S-methadone metabolism is pref-
erentially catalyzed by CYP2B6. CYP3A4 plays only a minor role in the metabo-
lism of methadone [64, 303, 304]. Thus, the difference in enantiomer exposures 
reflects weak induction of CYP2B6 by isavuconazole and its negligible effects on 
CYP2C19 metabolism [303, 304].

Multiple dose isavuconazole increased the Cmax and AUC of dextromethorphan 
by 18% and 19%, respectively. Dextromethorphan is a CYP2D6 and CYP3A4 sub-
strate, but these effects most likely result from isavuconazole inhibition of CYP3A4 
[64].

11.9.2.5  Clinical Importance of Isavuconazole Interactions Affecting 
CYP-Mediated Biotransformation of Other Drugs

While the increase in midazolam exposure produced by isavuconazole co- 
administration is clinically significant, the magnitude of this interaction is less than 
that seen with itraconazole, voriconazole, and posaconazole [46, 113, 115, 232, 
276, 277] and similar to changes observed with fluconazole co-administration [113, 
190]. Regardless, the interaction is sufficient enough to enhance the pharmacody-
namic effects of midazolam, and individual patient response should be monitored. 
The inhibitory effects of isavuconazole on the metabolism of cyclosporine, siroli-
mus, and tacrolimus are consistently less than that of other azoles [299]. Nonetheless, 
like the interaction between isavuconazole and midazolam, the interaction with 
each agent is clinically significant and requires management to avoid adverse out-
comes. In addition to the moderate CYP3A4 inhibition demonstrated above, isavu-
conazole is also a weak inducer of CYP2B6 and may decrease concentrations of 
drugs metabolized by this enzyme [62, 64]. The induction of CYP2B6 metabolism 
of bupropion by isavuconazole may produce subtherapeutic concentrations and 
clinical failures of bupropion [64]. Although isavuconazole decreased the pharma-
cologically inactive S-methadone exposure by CYP2B6 induction, this isoform may 
contribute to the variability in methadone dose-response relationships [64]. The 
clinical significance of this interaction is unknown.

11.9.2.6  Management of Isavuconazole Interactions Affecting CYP- 
Mediated Biotransformation of Other Drugs

The isavuconazole interaction with midazolam produces effects similar in magni-
tude to those observed when fluconazole and midazolam are co-administered and 
can be managed by reducing midazolam based on clinical response [46, 113, 190]. 
The moderate increases in cyclosporine exposure caused by isavuconazole 
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co- administration do not require the dose of the calcineurin inhibitor be reduced. 
However, using these two drugs together requires cyclosporine concentrations be 
closely monitored and the patient assessed for signs of toxicity. In contrast, given 
the magnitude of the interaction caused by isavuconazole co-administration, empiric 
reductions in the sirolimus dose of at least 30% may be warranted. However, formal 
recommendations do not exist, and until they are established, early and more fre-
quent sirolimus therapeutic drug monitoring should be performed. Similarly, when 
co-administered with isavuconazole, empiric reductions in the dose of tacrolimus of 
at least 50% may be warranted, and its concentrations should be closely monitored 
[299]. Additionally, further tacrolimus dose reductions may be needed with contin-
ued co-administration [302]. Isavuconazole minimally affected the pharmacokinet-
ics of a single dose of warfarin [102]. Isavuconazole inhibited warfarin metabolism 
in a stereoselective manner, primarily via inhibition of CYP3A4 but not CYP2C9 
[102]. Because CYP2C9 catalyzes metabolism of the pharmacologically active 
S-enantiomer, the effects of warfarin anticoagulation were considered clinically 
insignificant [102]. However, because the effects of isavuconazole on multiple 
doses of warfarin are unknown, INR should be closely monitored [102]. 
Isavuconazole produced increased mycophenolate acid exposure most likely by 
reducing the formation of the primary phenyl glucuronide metabolite via UGT inhi-
bition [299]. This increase in the mycophenolate acid exposure should not require 
empiric dose reductions; however, in the absence of routine therapeutic drug moni-
toring, close clinical monitoring for mycophenolate acid toxicities (i.e., complete 
blood cell count with differential) is recommended [299]. Patients receiving con-
comitant bupropion and isavuconazole may require higher doses of bupropion due 
to isavuconazole’s induction of CYP2B6. However, bupropion CYP2B6 metabo-
lism is highly variable due to significant genetic polymorphisms; thus empiric 
increases in its dose are discouraged; instead dosing should be guided by patient 
response [64]. Even though the effects of isavuconazole co-administration are pri-
marily limited to the pharmacologically inactive S-methadone, as an weak inducer 
of CYP2B6, it may cause additional variation in methadone dose-response relation-
ships [303].

11.9.3  Interactions Affecting CYP-Mediated 
Biotransformation of Isavuconazole

The pharmacokinetics of isavuconazole were assessed with co-administered fixed- 
dose lopinavir-ritonavir (400 mg/100 mg) twice daily [300]. At 50% of the standard 
isavuconazole dose (100 mg three times a day for 2 days, then 100 mg daily), the 
mean Cmax and mean AUC increased by 94% and 112%, respectively [300]. When 
isavuconazole was administered at the standard therapeutic dose with lopinavir- 
ritonavir, the mean Cmax increased by 74% and the mean AUC increased by 96%. 
The isavuconazole Tmax was unchanged in either analysis. This study also 
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demonstrated a bi-directional induction effect of isavuconazole on the pharmacoki-
netics of lopinavir and ritonavir.

Cyclosporine, sirolimus, and tacrolimus all influenced the Cmax of isavucon-
azole but have little impact on isavuconazole’s exposure (< 12%); therefore, the 
clinical significance of these interactions is negligible [299].

11.9.3.1  Clinical Importance of Interactions Affecting CYP-Mediated 
Biotransformation of Isavuconazole

Co-administration of isavuconazole with ritonavir significantly increased its expo-
sure by a factor of 2 [46, 300]. Ritonavir may also increase CYP protein transcrip-
tion, which could have lessened the magnitude of this interaction [46, 300]. When 
these drugs are co-administered, close clinical monitoring for isavuconazole toxici-
ties is necessary, and isavuconazole therapeutic drug monitoring may also be war-
ranted as clinically available.

11.9.4  CYP-Mediated Interactions That Induce Isavuconazole 
Biotransformation

The pharmacokinetics of isavuconazole (400 mg on day 1, then 100 mg daily) alone 
and with concomitant rifampin (600 mg daily) were compared in healthy volunteers 
[46]. Rifampin co-administration increased isavuconazole clearance nearly tenfold, 
leading to decreases in its Cmax and exposure by 75% and 97%, respectively [46].

11.9.4.1  Clinical Importance of CYP-Mediated Interactions That Induce 
Isavuconazole Biotransformation

Rifampin significantly decreased isavuconazole exposure and Cmax [46]. These 
effects will result in isavuconazole treatment failures if no other measures are taken. 
Similarly, strong inducers of CYP3A4 and/or CYP3A5 are also likely to decrease 
isavuconazole exposure and compromise its efficacy; however, agents other than 
rifampin have not been studied to date.

The changes in isavuconazole disposition caused by rifampin co-administration 
are clinically significant as they would result in antifungal treatment failures if no 
other measures are taken [46]. However, interaction studies with CYP inducers 
other than rifampin have not been yet been published.
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11.9.4.2  Management of CYP-Mediated Interactions That Induce 
Isavuconazole Biotransformation

Therefore, concomitant administration of isavuconazole and rifampin should be 
avoided. Similarly, co- administration of other inducers of CYP3A4 and perhaps 
CYP3A5 should also be avoided until these agents are formally studied.

11.9.5  Isavuconazole Interactions Affecting Non-CYP- 
Mediated Biotransformation of Other Drugs

The effects of isavuconazole on the pharmacokinetics of atorvastatin (OATP1B1 
and OATP1B2, BCRP, P-gp, and CYP3A4 substrate), digoxin (P-gp substrate), met-
formin (organic cation transporter 1 (OCT1), OCT2 and multidrug and toxin extru-
sion protein (MATE)-1 substrate), and methotrexate (organic anion transporter 1 
and 3 (OAT1 and OAT3) substrate) were studied in healthy volunteers [106, 151].

Isavuconazole increased atorvastatin exposure by 37% as a result of a 35% 
reduction in its clearance. The Cmax and Tmax of atorvastatin were largely unchanged 
by isavuconazole [106]. Atorvastatin is a substrate of OATP1B1/2, P-gp, BRCP, and 
CYP3A4 [106, 151]. Isavuconazole did not influence repaglinide, a substrate of 
OATP1B1, which suggests the underlying mechanism for this interaction does not 
involve OATP1B1 [64]. Although, as discussed below, isavuconazole is a P-gp 
inhibitor in vivo, the Cmax of atorvastatin was only modestly changed (3%), suggest-
ing that P-gp plays a minor role in atorvastatin disposition and is not the underlying 
mechanism of this interaction. Isavuconazole inhibits BCRP in vitro; however, on 
the interaction study with atorvastatin and, as described below with methotrexate, a 
BCRP substrate, these data suggest that isavuconazole is not an inhibitor of this 
ABC transporter [18, 106]. Thus, the isavuconazole-atorvastatin interaction is best 
explained by CYP3A4 inhibition [106]. The Cmax, Tmax, and exposure of digoxin 
were increased by 25%, 50%, and 33%, respectively, while total digoxin CL was 
reduced by 26% when co-administered with isavuconazole [106]. Isavuconazole 
inhibits P-gp at clinically achievable concentrations with 50% inhibitory concentra-
tions (IC50) similar to itraconazole. However, the magnitude of the isavuconazole- 
digoxin interaction is less than that observed with itraconazole [18, 145]. 
Isavuconazole increased total metformin exposure by 50% as well as Cmax by 23% 
[106]. However, the drug transporter responsible for this change was not addressed. 
By comparison, when metformin was co-administered with cimetidine and pyri-
methamine (known OCT1, OCT2, and MATE1 inhibitors), metformin concentra-
tions were increased but varied considerably between agents [103]. Thus, it is likely 
that one or more of these drug transporters are responsible for this interaction, but 
the extent which each transporter contributes to the interaction needs further inves-
tigation. Methotrexate pharmacokinetics were largely unaffected by isavuconazole, 
but the Cmax and exposure of its inactive and toxic metabolite (7- hydroxymethotrexate) 
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were increased by 15% and 29%, respectively [106]. Methotrexate disposition is 
complex and in vitro and animal data suggest it may be governed by a variety of 
membrane transporters including, but not limited to, OATP1A2, OATP1B1, 
OATP1B3, OAT1, OAT3, MRP2, MRP3, and BCRP [106, 305–307]. Studies to 
assess whether isavuconazole inhibits OATP1A2 using a specific substrate in vivo 
are lacking. Durmus et al. [308] demonstrated in transgenic mice that OATP1A2 
may have more of a role in methotrexate disposition via the renal tubule system; 
however, the lack of a significant effect of isavuconazole on methotrexate exposure 
suggests that it is not an inhibitor of this transport protein [106]. Similarly, as dis-
cussed previously, isavuconazole did not influence the pharmacokinetics of repa-
glinide, which is an OATP1B1 substrate. Therefore, isavuconazole seemingly does 
not influence OATP1B1. Additionally, the lack of a significant effect on methotrex-
ate, an OATP1B3, OAT1, and OAT3 substrate, also indicates that isavuconazole 
does not inhibit these drug transport proteins [106, 308]. Isavuconazole also did not 
alter the pharmacokinetics of methotrexate or atorvastatin, both of which are BCRP 
substrates thus signifying that isavuconazole does not inhibit BCRP in vivo [106]. 
It should be noted that neither methotrexate nor atorvastatin is a specific substrate 
for BCRP; therefore, further data is needed to completely rule out the possibility of 
this interaction. Lastly, MRP2 and MRP3 have demonstrated a role in controlling 
methotrexate disposition in murine studies [308]. However, an in vitro study dem-
onstrated that isavuconazole did not influence these transport proteins, but substrate- 
specific data is lacking [18]. Given the absence of an effect of isavuconazole on 
methotrexate pharmacokinetics, the increased exposure and Cmax of the 
7- hydroxymethotrexate, a toxic metabolite, with concomitant isavuconazole are 
puzzling and unknown [106, 305–308]. Given the role this metabolite has in causing 
methotrexate toxicity, further study is needed to understand and characterize the 
underlying mechanism of this interaction.

11.9.5.1  Clinical Importance of Isavuconazole Interactions Affecting 
Non-CYP-Mediated Biotransformation of Other Drugs

The increase in atorvastatin exposure caused by isavuconazole CYP3A inhibition 
could increase the risk of statin-associated skeletal muscle toxicity [106]. Similarly, 
given the narrow therapeutic index of digoxin, co-administration with isavucon-
azole results in clinically significant toxicity [106]. The overall increase in metfor-
min exposure during isavuconazole co-administration is numerically larger; 
however, metformin dosing varies widely and its therapeutic index is large; thus, the 
interaction is likely not clinically significant and may result in enhanced blood glu-
cose control [106]. Isavuconazole does not affect methotrexate pharmacokinetics, 
but it does affect the exposure of its primary circulating metabolite, which may 
result in increased methotrexate toxicity [106, 307].
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11.9.5.2  Management of Isavuconazole Interactions Affecting Non-CYP- 
Mediated Biotransformation of Other Drugs

The increase in atorvastatin exposure will likely further enhance its lipid-lowering 
effects without clinically significant adverse effects. However, creatinine phospho-
kinase levels should be monitored, and during concomitant isavuconazole therapy, 
patient counseling should address early warning signs of myopathy. Similarly, in 
most circumstances, isavuconazole co-administration may enhance metformin’s 
blood glucose-lowering potential. However, in certain patients, like those with 
reduced renal clearance, metformin exposure can increase and further increases the 
risk lactic acidosis and rhabdomyolysis. Thus, in patients with reduced creatinine 
clearance, close monitoring of serum creatinine and assessment for early signs and 
symptoms of lactic acidosis and/or rhabdomyolysis may be warranted. If prolonged 
co-administration is anticipated, dose reductions of metformin or substituting vori-
conazole or posaconazole should be considered. Due to digoxin’s narrow therapeu-
tic index and ability to routinely monitor drug concentrations, close clinical 
monitoring of digoxin levels is recommended when this agent is co-administered 
with isavuconazole. However, voriconazole does not inhibit P-gp and may be a 
therapeutic alternative to isavuconazole [105]. Isavuconazole increased 
7- hydroxymethotrexate exposure; the clinical significance of this interaction is 
unknown, but this may lead to liver and renal damage associated with methotrexate 
therapy. Thus, when isavuconazole and methotrexate are used together, close clini-
cal monitoring for methotrexate toxicity will be needed [307]. Alternatively, in vitro 
voriconazole did not demonstrate any inhibitory potential for OATP or BCRP and 
may be an alternative to isavuconazole with methotrexate therapy [18].

11.10  Echinocandins

11.10.1  Interaction Mechanisms

The echinocandins (caspofungin, micafungin, anidulafungin) have very few 
reported drug-drug interactions associated with their use. The echinocandins are not 
significant CYP inhibitors; however, they do inhibit a variety of ABC transporters 
including P-gp, BCRP, MRPs, and BSEP to varying extents [18]. Though the mech-
anisms behind the few reported interactions have not been fully elucidated, the data 
suggest inhibition of ABC and/or OATP transporters may be an underlying cause.
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11.10.1.1  Calcineurin Inhibitors

Early studies involving very few patients raised concerns about the potential for the 
co-administration of caspofungin and cyclosporine to produce additive or synergis-
tic hepatotoxicity. The cause of this interaction is unclear. Using pharmacokinetic 
data from published trials, investigators found no evidence to support inhibition of 
OATP1B1 as a plausible mechanism underlying this interaction [309]. Experience 
with this combination has demonstrated that the combination is well-tolerated, and 
these concerns have dissipated. There are few published data describing drug inter-
actions with micafungin. Micafungin does interact with cyclosporine, but the inter-
action varies in magnitude from producing nonsignificant inhibition of cyclosporine 
CYP metabolism to, in rare cases, a clinically significant increase in cyclosporine 
concentrations [310, 311]. Clinical data suggest that micafungin does not signifi-
cantly interact with tacrolimus [312, 313]. Anidulafungin exposure is increased by 
22% in the presence of cyclosporine, which is not considered clinically relevant, 
and cyclosporine pharmacokinetics are unchanged [314]. Anidulafungin does not 
interact with tacrolimus [315].

11.10.1.2  Rifampin

Co-administration of rifampin produces inhibitory and induction effects on caspo-
fungin disposition, with an overall effect being slight induction at steady-state 
[316]. In the initial days of concomitant therapy, rifampin produces a transient 
increase in caspofungin plasma concentration [316]. This part of the interaction 
occurs during caspofungin’s β distribution phase, which is the driving process 
behind the decline in its serum concentrations within 24 h of administration [316]. 
Caspofungin is an OATP1B1 substrate, and rifampin is a substrate, inhibitor, and 
inducer of this transport protein [67]. Therefore, the transient increases in caspofun-
gin serum concentrations, observed in the initial days with concomitant rifampin, 
are most likely a result of rifampin’s inhibition of caspofungin’s OATP1B1-mediated 
uptake into hepatocytes and other tissues [66, 67, 316]. In vitro data using primary 
human hepatocytes demonstrate that rifampin can cause significant upregulation of 
OATP1B1 mRNA at clinically achievable concentrations (10 μg) [317, 318]. Thus, 
the decline in caspofungin Cmin observed after 2 weeks of co-administered rifampin 
likely results from induction of OATP1B1 [316].

11.10.1.3  Clinical Importance of Interactions Involving Echinocandins

The interaction between cyclosporine and micafungin is significant only in those 
individuals with a very high cyclosporine CL/F. These individuals cannot be identi-
fied by obtaining a single cyclosporine blood concentration.

It is unlikely that the initial transient increase in serum caspofungin concentra-
tions produced by rifampin co-administration is clinically important. However, the 
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ongoing decline in caspofungin concentrations as the therapy continued could pre-
cipitate therapeutic failure [316].

11.10.1.4  Management of Interactions Involving Echinocandins

When micafungin is co-administered with cyclosporine, it is difficult to identify 
patients who will have a clinically significant interaction. Therefore, in these 
patients, careful monitoring of cyclosporine blood concentrations and dosage 
adjustment as needed are recommended upon initiating or discontinuing micafun-
gin therapy.

A reduction in caspofungin dose is not necessary for the transient elevation in 
caspofungin plasma concentrations when rifampin and caspofungin are initiated on 
the same study day. However, when rifampin is added to caspofungin therapy, an 
increase in the daily caspofungin maintenance dose from 50 to 70 mg should be 
considered [316].

11.11  Summary

The myriad of potential drugs that antifungal agents can interact with is daunting 
and can be confusing. Antifungal agents differ markedly in their pharmacokinetic 
properties and in how they interact with other medicines. The clinical relevance of 
antifungal-drug interactions varies substantially. While certain interactions with 
antifungal agents are benign and result in little or no untoward clinical outcomes, 
others can produce significant toxicity or compromise efficacy if not properly man-
aged. However, certain antifungal-drug interactions produce significant toxicity or 
compromise efficacy to such an extent that they cannot be managed, and the particu-
lar combination of antifungal and interacting medicine should be avoided. The 
amphotericin B formulations interact with other medicines by reducing their renal 
elimination or producing additive toxicities. Among the several classes of antifun-
gal agents, the triazole class (fluconazole, itraconazole, voriconazole, posaconazole, 
and isavuconazole) produce the most drug interactions, primarily because of their 
ability to inhibit CYP. As a class these agents inhibit several CYP isoforms includ-
ing CYP2C9, CYP2C19, and CYP3A4. Certain triazoles also interact with transport 
proteins, and depending on the dosage form, the absorption of some can be altered 
by changes in gastric pH. Therefore, collectively, triazoles interact with a vast array 
of medicines, and the degree of interaction is often agent specific. While their poten-
tial to interact with other drugs is vast, the most clinically significant interactions 
involving the triazoles involve benzodiazepines and anxiolytics, immunosuppres-
sants (i.e., calcineurin inhibitors, mTOR inhibitors, and corticosteroids), the 
“statins,” certain types of calcium channel blockers, phenytoin, and warfarin. The 
echinocandins have the lowest propensity to interact with other medicines.
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Chapter 12
Drug-Drug Interactions of Antimalarial  
Drugs

Waheed A. Adedeji, Tunde Balogun, Fatai A. Fehintola, and Gene D. Morse

12.1  Introduction

Malaria is a cause of substantial morbidity and mortality. Malaria-associated deaths 
remain very high at about 450,000 annually [1]. Human populations within the 
tropical and subtropical countries across Africa, the Americas, and Asia are at risk 
of the disease, though with varying extent of endemicity even within the same coun-
try. An estimated 3.2 billion people across 95 countries and territories are at risk of 
malaria with estimated 214 million malaria cases in 2015 [1]. Malaria was known 
to account for considerably higher morbidity and mortality rates prior to the institu-
tion of malaria control measures, notably the use of long-lasting insecticidal nets 
(LLINs), presumptive treatment of malaria in “at-risk” populations, and the prompt 
treatment of acute uncomplicated malaria using artemisinin-based combination 
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therapy (ACT). Malaria-associated morbidity and mortality figures recorded in 
2015 were improvements, respectively, 37% and 65% from the year 2000 rates [1].

Malaria is caused by a protozoan of genus Plasmodium, and five species, namely, 
falciparum, malariae, ovale, vivax, and knowlesi are known to naturally infect 
humans. Of these five species, P. falciparum is the most prevalent species in sub- 
Saharan Africa, accounting for virtually all malaria-related morbidity and mortality 
in the tropical Africa [2]. Malaria transmission is driven by infected species of 
Anopheles mosquito where the sexual reproductive stage as well as sporogony takes 
place. Human infections begin with the inoculation of sporozoite-laden salivary 
secretion by the infected mosquito during a blood meal. The initial development of 
the sporozoites occurs in the liver and is usually completed in about 7–10 days for 
the species of P. falciparum, P. ovale, and P. vivax, but P. malariae requires about 
15 days. Some of the sporozoites of P. ovale and P. vivax can remain dormant as 
hypnozoites and when “awakened” resume hepatic schizogony and subsequent 
invasion of erythrocytes causing the malaria relapse. Merozoites that result from 
hepatic schizogony invade the erythrocytes to begin the erythrocytic schizogony [3, 
4]. Parasite development within the erythrocytes subsequently produces schizonts 
and releases merozoites and some cytokines resulting in fever and other malaria- 
associated symptoms. Anemia is, at least, partly a result of red-cell lysis and dys-
erythropoiesis [5].

Prevention of malaria may be achieved through chemoprophylaxis and vector 
control and, perhaps, by immunization. Various classes of drugs for the treatment 
of malaria exist (Tables 12.1 and 12.2), and, due to drug resistance in malaria, 
drug combinations from at least two different classes are currently the standard of 
care [6].

Table 12.1 Chemical classesa of antimalarial drugs with examples

Classes Examples

4-aminoquinolines Amodiaquine, chloroquine
8-aminoquinolines Pamaquine, primaquine, tafenoquine
Antibacterials Clindamycin, doxycycline, tetracycline, co-trimoxazoleb

Artemisinin derivatives Artemether, artemotil, artesunate, Arteether, 
dihydroartemisinin

Biguanides Chlorproguanil, proguanil
Diaminopyrimidines Pyrimethamine, trimethoprim
Phenanthrene methanol Halofantrine, lumefantrine
Quinoline-methanol Mefloquine, quinidine, quinine
Quinone Atovaquone
Sulfonamides/sulfones Dapsone, sulfadoxine

aArranged in alphabetical order
bCo-trimoxazole is a co-formulation of sulfamethoxazole and trimethoprim
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12.2  Current Status of Malaria Chemotherapy

Until early this millennium, chloroquine and other schizonticides were used as 
monotherapy in the treatment of acute uncomplicated malaria [7, 8]. However, more 
than half a century ago, reports of chloroquine-resistant malaria from Southeast 
Asia and South America emerged, and it has subsequently assumed a global phe-
nomenon; involving to a varying extent, all other drugs hitherto are used as mono-
therapy resulting in increased morbidity and mortality [9–13].

The initial response to stemming malaria-associated morbidity and mortality due 
to drug resistance was the development and introduction of such drugs as halofan-
trine and mefloquine [14–19]. Although both mefloquine and quinine remain sub-
stantially efficacious and safe even till date, in some countries on the continent of 
Africa, neither is currently used as monotherapy [20].

The artemisinins are derived from Artemisia annua L., a Chinese herbal treat-
ment for fevers that has been used for many centuries [21]. Artemether, artesunate, 
and other drugs in this group contain the sesquiterpene lactone ring and are rapidly 
schizonticidal. Artesunate given intravenously has become the standard of care for 
severe or complicated malaria [20].

Treatment of acute uncomplicated malaria requires combination therapy admin-
istered orally. Ideally the combined drugs should have similar pharmacokinetics and 
pharmacodynamics and should display no enhanced adverse effects [22]. Depending 
on the resistance pattern in a given geographical region, a variety of combinations 
may be efficacious, but artemisinin-based combination therapy (ACT) is the mostly 
preferred [20].

In most countries of sub-Saharan Africa, the commonly used ACTs include 
artemether- lumefantrine, artesunate-amodiaquine, artesunate-mefloquine, and 
dihydroartemisinin-piperaquine.

12.2.1  Artemisinin Derivatives

Artemisinin is a sesquiterpene lactone endoperoxide derived from the weed sweet 
wormwood (Artemisia annua). Although the medicinal value of this plant has been 
known for over 2000 years, its active ingredient, qinghaosu (i.e., artemisinin), was 
first isolated in 1972 [23, 24]. Semisynthetic derivatives such as artesunate, 

Table 12.2 Classification of antimalarial drugs based on the parasite life cycle

Classes Examples

Blood schizonticides Amodiaquine, artemisinins, chloroquine,
mefloquine, pyronaridine, piperaquine, quinine

Tissue schizonticides Primaquine, tafenoquine
Gametocides Artemisinins, primaquine
Sporontocide Pyrimethamine
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artemether, dihydroartemisinin, and arteether, with improved potency and bioavail-
ability, are also available for treatment of malaria. Artemisinins possess activity 
against all species of malaria parasites that infect humans [20, 25].

12.2.1.1  Artemether

Artemether, the methyl ether of dihydroartemisinin, is more lipid soluble than arte-
misinin or artesunate. Artemether is usually administered in combination with 
lumefantrine at a ratio of 1:6. Artemether is rapidly metabolized to dihydroartemis-
inin by various cytochrome P450 (CYPs) enzymes including CYP3A4 and CYP2B6. 
Both artemether and dihydroartemisinin are rapidly eliminated [20].

12.2.1.2  Artesunate

Artesunate is the hemisuccinate ester of artemisinin. Its antimalarial activity is due 
largely to its active metabolite, dihydroartemisinin (DHA).

12.2.1.3  Dihydroartemisinin

Dihydroartemisinin is the main active metabolite of artemisinin derivatives and is 
also available as a drug on its own.

12.2.1.4  Arteether

Arteether is an ethyl ether semisynthetic derivative of artemisinin; it is also known 
as artemotil. It exists in two isomers (α- and β-isomers) with both isomers having 
antimalarial activities. It has a relatively long elimination half-life when compared 
to other artemisinins such as artesunate or dihydroartemisinin (> 20 h vs < 1 h or ~ 
2 h) [26].

12.2.2  Aminoquinolines: 4-Aminoquinolines

12.2.2.1  Chloroquine

Chloroquine (CQ) is a 4-aminoquinoline that has been used extensively for the 
treatment and prevention of malaria since the end of World War II.  It is a blood 
schizonticide, a weak base that has strong affinity for various tissues and organs.
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12.2.2.2  Amodiaquine

Amodiaquine hydrochloride is readily absorbed from the gastrointestinal tract. It is 
rapidly metabolized in the liver to the marginally less active metabolite, desethyl-
amodiaquine, which accounts for nearly all of the antimalarial activity as it has 
substantially long half-life, respectively, 5 h and 9–18 days [20].

12.2.3  Aminoquinolines: 8-Aminoquinolines

12.2.3.1  Primaquine

Primaquine (PQ) is an 8-aminoquinoline developed from a large series of quinoline 
derivatives during World War II while searching  for potent and less toxic 
8- aminoquinoline antimalarial drugs [27].

12.3  Antimalarial Drug Interactions

The introduction of combination therapy in the treatment of malaria has imposed 
the need for careful considerations of both intragroup and intergroup drug(−drug) 
interactions. Drug interactions involving antimicrobials become especially impor-
tant whenever there is substantial overlap in the epidemiology of respective condi-
tions. For example, malaria and tuberculosis are rampant in the tropical and 
subtropical countries, and both are responsible for considerable burden [28]. 
Another important overlap of epidemiology exists between the malaria and HIV/
AIDS demanding caution in order to avoid adverse drug interactions [29]. Probability 
of positive pharmacodynamic interaction between co-trimoxazole, an antibacterial, 
and chloroquine, the first-line antimalarial drug of the 1960s through the 1980s in 
most sub-Saharan African countries, is of note [30].

Both the anti-Tb and combination antiretroviral therapy (cART) are normally 
given for a prolonged period whereas the ACT requires a short course, usually not 
more than 3 days. Predictably, the pharmacokinetic interactions between either anti-
 Tb or cART with antimalarial drugs, particularly when it involves enzyme induc-
tion, would mostly situate the latter as the object drug, given the needed time for the 
evolution of induction of enzyme activity. Alteration of pharmacokinetic parameters 
of any drug by the other(s) may result in inadequate concentrations and ineffective 
treatment and/or toxic concentrations and drug-induced disorders. Expectedly, 
genetically imposed pharmacokinetic differences, for example, CYP polymor-
phisms, will further modulate the drug-environment interactions. Thus, these sce-
narios may be sources of increased morbidity and/or mortality, from the original 
diseases and/or adverse drug interactions.
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The following paragraphs attempt to delve into the antimalarial, particularly, 
ACT-anti-Tb drug interactions, as ACT-cART interactions have been addressed 
elsewhere in the text.

12.3.1  Antimalarial-Antituberculosis Drug Interactions

The use of combination of drugs has remained the standard of care for the treatment 
of tuberculosis for decades, having been seen as a vital approach to improving treat-
ment outcome of the disease. Rifampicin, a rifamycin, being a potent enzyme 
inducer, is well known for its pharmacokinetic drug-drug interactions [28]. Isoniazid, 
pyrazinamide, and ethambutol, together with streptomycin, are some of the other 
components of the 6- or more-month regimens used in the treatment of tuberculosis 
[31]. In desperate situations as multidrug-resistant (MDR) or extensively drug- 
resistant tuberculosis (XDR Tb), other drugs such as amikacin, second- and newer- 
generations of quinolones (e.g., ofloxacin or moxifloxacin), capreomycin, or 
ethionamide are used as salvage drugs [32]. Increasing number and/or complexities 
of antituberculosis regimens expose patients to varying degrees of drug-drug 
interactions.

ACT-anti-Tb drug interactions may be viewed as adverse, if concomitant use 
results in treatment failure of either (or both) condition(s) or there is enhancement 
of known adverse effects of either group of drugs. Pharmacokinetic interactions 
may involve absorption, distribution, and elimination of drugs; notably, malaria can 
alter all of these processes in an infected individual [28]. Theoretically, reduced 
exposure to ACT due to enhanced metabolism of its components by the enzyme- 
inducing rifamycins may predispose to poor treatment outcome of acute uncompli-
cated malaria in a tuberculosis patient. Clinically significant pharmacokinetic 
interactions between ACTs and anti-Tb drugs may also involve the drug transport-
ers, particularly, the ubiquitous P-glycoprotein (P-gp) or multidrug resistance- 
associated protein (MRP) transporters [33]. In the following discussion for 
convenience, the commonly used ACTs (and few other antimalarial drugs) are con-
sidered, in the main, as the object drugs.

12.3.1.1  ACT-Anti-Tb Drug Interactions

Artemether-Lumefantrine and Anti-Tb Drugs

Rifamycins including rifampicin, rifabutin, and rifapentine are well known for their 
capacity to induce various isozymes of cytochrome P450 superfamily (CYPs); con-
sequently, they reduce respective concentrations of artemether and lumefantrine. It 
is to be noted that the enzyme-inducing capacity of rifabutin is considerably less 
compared to that of rifampicin and may be preferred whenever necessary in, for 
example, HIV-infected individuals on protease inhibitors [28, 31]. Notable CYP 
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enzyme activity induced by rifampicin includes 3A4/5, 1A2, 2C8, 2C9, and 
2C18/19. Rifampicin also induces phase 2 enzymes, uridine-diphosphate glucuro-
nosyltransferase (UGT), and drug transporters including P-glycoprotein (P-gp) and 
multidrug resistance-associated protein (MRP) [28, 34]. In vitro models have 
revealed that artemether is metabolized by CYPs, 1A2, 2B6, 2C9, and 3A4, but the 
biotransformation of artemether is mediated by the cytochrome P450 isozymes 
CYP1A2, CYP2B6, and CYP3A4 in humans [35]. The antimalarial activity of arte-
mether depends largely on the formation of its active metabolite, dihydroartemis-
inin (DHA); the phase 2 biotransformation is catalyzed by UGTs resulting in the 
final inactive glucuronide conjugates. Ultimately, there is substantial lowering of 
concentrations of artemether, its active metabolite, DHA, and lumefantrine when 
administered to individuals on chronic medication with rifampicin-containing anti-
 Tb drugs [36].

In view of the fact that both rifampicin and isoniazid are used throughout the 
6-month or more duration of anti-Tb treatment, and that the latter agent inhibits 
CYPs, potential for counterbalancing the enzyme-inducing activity of rifampicin is 
theoretically possible. However, the few available studies suggest that the resultant 
effect is the reduced exposure produced by rifampicin-mediated enzyme induction 
[36]. In a study by Lamorde et al., rifampicin-containing anti-Tb therapy resulted in 
lower concentrations of artemether, DHA, and lumefantrine, prompting the conclu-
sion that artemether-lumefantrine should not be coadministered with rifampicin 
[36].

Artesunate-Amodiaquine and Anti-Tb Drugs

Artesunate-amodiaquine is another commonly prescribed ACT for the treatment of 
acute uncomplicated malaria. As described previously, artesunate is a prodrug and 
its antimalarial activity is largely due to its primarily esterase- and CYP2A6- 
mediated conversion to its active metabolite, DHA. The phase 2 reaction and final 
inactivation of artesunate is catalyzed by uridine-diphosphate glucuronosyltransfer-
ases (UGTs – 1A9 & 2B7). Rifampicin and, probably to lower extent, other rifamy-
cins induce UGTs and P-glycoprotein (efflux) transport protein and will consequently 
result in reduced exposure to the artemisinins [28, 36, 37]. Amodiaquine, on the 
other hand, is a CYP2C8 substrate yielding desethylamodiaquine as the major 
metabolite with significant antimalarial activity and considerably longer half-life 
[38]. Concomitant medication of artesunate-amodiaquine with rifampicin- 
containing antituberculosis drugs would appear to present complicated pharmacoki-
netic interactions that are yet to be fully elucidated.

The antiplasmodial activity of rifampicin had been documented, and, when con-
sidered with its hepatotoxic effect shared with amodiaquine, the pharmacodynamic 
interactions would seem to have further confound the requisite treatment of these 
diseases when they co-exist [39, 40]. Amodiaquine-induced hepatotoxicity has been 
linked to the formation of a reactive species quinone-imine which subsequently 
covalently binds to cell structures to provoke immunological response and cell lysis 
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[38]. The mechanism(s) of rifampicin−/rifamycin-induced hepatotoxicity remain(s) 
to be fully elucidated though it may be idiosyncratic and unpredictable resulting in 
diffuse hepatocyte necrosis [41]. In view of the enhanced adverse hepatotoxic effect 
that may be exhibited by both arms of antimalarial (amodiaquine-induced) and anti-
 Tb drugs (Rifampicin and INH), there is an urgent need for relevant assessment of 
their concomitant use to bridge the information gap.

Artesunate-Mefloquine and Anti-Tb Drugs

Mefloquine in combination with artesunate is an important ACT employed in the 
treatment of acute uncomplicated malaria and is widely used in Southeast Asia. 
Mefloquine is also used as monotherapy in the chemoprevention of malaria [42, 43]. 
Rifampicin induces mefloquine metabolism resulting in reduced area under the 
concentration-time curve (AUC) and increased clearance [44] as CYP3A isozyme- 
mediated reaction results in the formation of two inactive metabolites of meflo-
quine. The coadministration of the two drugs should better be avoided [28].

12.3.1.2  Other Antimalarial Drugs and Anti-Tb Drugs

Atovaquone-Proguanil-Rifamycin Interaction

Atovaquone-proguanil combination is mostly used for treatment of P. vivax malaria 
and as prophylactic option for malaria [45]. While CYP3A4 metabolizes atova-
quone, proguanil is metabolized by CYP2C19 to active metabolite, cycloguanil. 
Coadministration of atovaquone with rifampicin and rifabutin resulted in significant 
reduction in the AUC of atovaquone [28]. Similarly, since rifampicin is an inducer 
of CYP2C19, it is expected that proguanil concentrations will be reduced. However, 
relevant clinical data should be obtained to provide firm basis for appropriate clini-
cal consultation and recommendations.

Quinine-Rifamycin Interaction

Quinine metabolism is catalyzed mainly by CYP3A4 and CYP2C19, and it pos-
sesses inhibitory activity against CYP2D6 and enterocyte P-glycoprotein. 
Rifampicin being a potent inducer of many CYPs and transporter proteins has been 
found to reduce exposure to quinine though the former enhances antimalarial activ-
ity of the latter when used concomitantly [46]. The enhanced antimalarial activity 
notwithstanding more assessment is required given the theoretical increased expo-
sure to rifampicin and possible untoward effects. Caution has been advised when 
quinine has to be used with the rifamycins [28, 46].
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Chloroquine-Rifamycin Interaction

Chloroquine still has relevance especially in the treatment of P. vivax malaria. 
Chloroquine metabolism is catalyzed by CYPs 3A4/5 and 2C8 to desethylchloro-
quine and bisdesethylchloroquine [47, 48]. In infected mice treated with rifampicin- 
chloroquine, delayed parasite clearance and an increased recrudescence were 
observed [49]. However, this is yet to be supported by human data.

Antifolate Antimalarial Drugs-Anti-Tb Drug Interactions

Isoniazid and sulfonamide components of antimalarial drugs, for example, sulfa-
doxine, undergo acetylation catalyzed by NAT-2 enzyme. Theoretically, coadminis-
tration of the two drugs may result in competitive inhibition of each other’s 
metabolism. However, definitive recommendations can only await relevant data 
from pharmacokinetic and pharmacodynamic studies of interactions between sulfa-
doxine (a partner drug in the sulfadoxine-pyrimethamine) and isoniazid.

Co-trimoxazole (sulfamethoxazole-trimethoprim), an antifolate antibacterial, is 
known to possess substantial antimalarial activity, and its sulfonamide component 
undergoes acetylation like isoniazid [30]. It is commonly used in HIV/AIDS patients 
especially for prophylaxis and treatment of Pneumocystis jirovecii or PJP (formerly 
PCP) infection; thus there may be need for its concomitant use with cART and anti-
 Tb drugs, including isoniazid. Sulfadoxine-pyrimethamine and co-trimoxazole can-
not be used together as both have similar antimalarial activity, and there may be 
enhanced adverse hematological effect, folate deficiency anemia [50, 51]. Genton 
et al. evaluated co-trimoxazole in co-formulation with rifampicin and isoniazid in 
the treatment of acute uncomplicated malaria and concluded that the combination 
has similar efficacy and tolerability profile with mefloquine or quinine in combina-
tion with sulfadoxine-pyrimethamine [52]. The relative antiplasmodial activity of 
rifampicin would be expected to have played a role, but its N-acetyltransferase- 
inhibitory activity may also have contributed to the observed positive pharmacody-
namic interaction of antimalarial-anti-Tb drugs [28, 39].
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Chapter 13
Antiprotozoal and Anthelmintic Agents

Tony K. L. Kiang, Kyle John Wilby, and Mary H. H. Ensom

13.1  Introduction

As access to medications for both infectious and noninfectious diseases improves 
worldwide, the potential for clinically significant drug interactions in endemic 
regions of parasitic disease increases [1]. Combination chemotherapy is mainstay 
practice in the management of certain parasitic diseases. In malaria, such a strategy 
is dictated by a requirement to combine the aim of effective chemotherapy with the 
wish to minimize the emergence of drug resistance [2–4]. The control of lymphatic 
filariasis and onchocerciasis involves combinations geared at reducing transmission 
as a prelude to elimination of diseases posing huge socioeconomic problems [5, 6]. 
Consequently, combination therapy is associated with many pharmacokinetic and 
pharmacodynamic implications.

The current treatment regimens recommended for most types of malaria in most 
populations consist of an artemisinin agent in combination with a longer half-life 
partner agent. This strategy is known as artemisinin-based combination therapy 
(ACT) [3]. Several arguments favor use of these combinations in the treatment of 
malaria. Synergy among drugs or the potentiation of their individual effects is the 
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reason for use in the treatment of an individual patient. Resistance of parasites is a 
main reason why drugs are being combined and advocated for on a population level. 
Development of resistance as a result of drug pressure depends upon numerous fac-
tors [3]. Among them, genetic determinants include mutation frequency and the 
number of mutations required for expression of resistance. Single point mutations 
may confer resistance to inhibitors of dihydrofolate reductase in Plasmodium falci-
parum. Combination with other drugs is advantageous when the number of genes 
required to express resistance is increased, for example, with combinations such as 
sulfadoxine with pyrimethamine. The survival and selection of resistant parasites 
may additionally depend on the pharmacodynamics of the component drugs. 
Parasitemia should ideally be reduced rapidly in order to decrease the opportunity 
for the development of mutations and the likelihood that parasites will survive under 
drug pressure. Rapid reduction of the parasite burden in patients with malaria and 
the relatively short terminal elimination half-life of the artemisinin drugs lead to 
little or no selective pressure, yet parasites may not fully be eliminated and recru-
descence may take place. The benefits of the artemisinin drugs are better realized 
when combined with other, longer half-life drugs. However, these longer half-life 
agents lead to residual levels after elimination of the artemisinin component, there-
fore exposing vulnerability to selective development of resistance [7].

Advantages of combination therapy need to be viewed alongside the increased 
probability of drug-drug interactions. Throughout the last few decades, the clinical 
pharmacokinetics and metabolism of many antiparasitic agents have been eluci-
dated, particularly the role of drug-metabolizing enzymes, notably cytochromes 
P450, and drug transporter proteins [8–13]. Moreover, the pharmacodynamic prop-
erties of antiparasitic agents are becoming a research focus and enable predictions 
of clinically significant drug interactions [14, 15]. This is true for drug interactions 
between antiparasitic combinations, as well as between antiparasitic agents and 
other drug classes. Specifically, the use of antiparasitic agents in combination with 
agents used to treat other endemic diseases (i.e., human immunodeficiency virus, 
tuberculosis, cardiovascular diseases) may pose risk to achieving optimal patient 
outcomes in terms of both efficacy and safety [16].

Equally important to drug-drug interactions is the consequence of dietary change 
on pharmacokinetics. Patients normally take drugs with meals unless advised to the 
contrary. Diets may differ substantially between developed and underdeveloped 
countries where diseases susceptible to antiparasitic agents are most prevalent. 
Failure to understand the nature of any food effects may lead to a poor clinical out-
come and/or unacceptable adverse effects [17, 18].

Finally, many drug-drug interactions can be postulated on the basis of common 
pathways of metabolism among combinations of therapeutic agents. While it is out-
side the scope of this chapter to deal with all possible effects, they will be high-
lighted with regard to available evidence pertaining to the most commonly 
co-administered agents.
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13.2  Interactions with Food

Bioavailability of orally ingested antiprotozoal and anthelmintic drugs can be 
affected by food. The nature of such interactions is complex and may be influenced 
by quantity of food ingested as well as its composition. Moreover, both pharmaco-
kinetics and pharmacodynamics can be affected. Co-ingested food may change bio-
availability of orally administered drugs and alter their dose-response relationships. 
Consequently, food can unintentionally reduce or increase pharmacodynamic 
effects of antiprotozoal or anthelmintic drugs, potentially resulting in therapeutic 
failure or increased toxicity. Influence of drug formulation on interactions with food 
is predictable from knowledge of gastric function, with solutions and suspensions 
less susceptible to food interactions than solid formulations and enteric-coated 
drugs more susceptible, as retention of capsule in the stomach delays drug release 
[17].

13.2.1  Food Interactions with Antiparasitic Drugs

13.2.1.1  Antimalarial Agents

Halofantrine

Halofantrine is one of the three classes of arylaminoalcohols identified in the United 
States as potential antimalarial agents by the World War II Chemotherapy 
Programme. It is a blood schizonticide with selective activity against intraerythro-
cytic asexual stages of plasmodia. Bioavailability of halofantrine is low with wide 
intra- and inter-subject variability [19, 20]. Absorption of halofantrine may increase 
dramatically when taken with food. Both maximal concentration (Cmax) and area 
under the curve (AUC) of halofantrine and desbutyl-halofantrine are increased by 
an order of magnitude after administration of a 250 mg dose of halofantrine hydro-
chloride with a fatty meal [20]. Studies in dogs and rats have shown that clearance 
of halofantrine is influenced by composition of plasma lipoproteins and may help to 
explain dramatic changes in circulating plasma concentrations in the postprandial 
state [21, 22]. The most serious effects of halofantrine relate to QTc prolongation, 
torsades de pointes, or sudden cardiac death [23–28]. These events led to the curtail-
ment of halofantrine as a frontline antimalarial agent. Because halofantrine is pri-
marily metabolized by cytochrome P450 (CYP) 3A4 [29], it can be subjected to 
food interactions, notably grapefruit juice, that can affect intrinsic clearance of this 
enzyme. Effects of grapefruit juice on pharmacokinetics and pharmacodynamics of 
halofantrine have been documented in healthy subjects, where co-administration 
(250 mL juice) has been shown to increase exposure of halofantrine by 2.8-fold 
with a concomitant elevation in QTc interval, compared to controls [30].
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Artemisinin, Its Derivatives, and Partner Drugs

Artemisinin (qinghaosu) was introduced into clinical practice in the 1980s. 
Subsequently, semisynthetic derivatives were developed, and these have been used 
in some tropical countries since the early 1990s. Artemisinin derivatives available 
on the market today (artesunate, artemether, and arteether) are often used in combi-
nation with other antimalarials with different mechanisms of action. The World 
Health Organization (WHO) recommends combining (short-acting) artemisinins 
with longer-acting antimalarials such as lumefantrine, amodiaquine, mefloquine, 
piperaquine, and sulfadoxine-pyrimethamine [31–33].

Currently available ACTs are included in Table  13.1 and described in detail 
below. For such ACT combinations to be effective, the parasite biomass must be 
reduced sufficiently by the shorter-acting artemisinin derivative, so that chances of 
mutation to the other, more slowly eliminated drug are greatly reduced. Artemisinin 
derivatives are the most active of available antimalarial compounds and produce 
fractional reduction in parasite biomass of approximately 104 per asexual cycle. As 
a result, 3 days of treatment, which involves two cycles, usually produce a 108-fold 
reduction in biomass, leaving a maximum of 105 parasites for other slower-acting 
antimalarial drugs (e.g., lumefantrine, amodiaquine, mefloquine, piperaquine, or 
sulfadoxine-pyrimethamine) to clear. This reduces considerably exposure of the 
parasite population to ACT regimens, thereby reducing chance of an escape- resistant 
mutant arising from the infection [15].

Table 13.1 The five artemisinin combination therapies (ACTs) listed below are those currently 
recommended by WHO

ACT
Proprietary 
brand Manufacturer

Date of 
introduction

Artemether-lumefantrine (AL) Coartem® 
Riamet®

Novartis 2006

Artesunate-mefloquine 
(AS + MQ)

N/A N/A N/A

Artesunate-sulfadoxine/
pyrimethamine
(AS + SP)

N/A N/A N/A

Artesunate-amodiaquine 
(AS + AQ)

Coarsucam® Sanofi-Aventis 2008

Dihydroartemisinin-piperaquine 
(DHA + PPQ)

Artekin® Chong Qing Holley, 
Sigma-Tau

2008

Details of their manufacturer and brand name are given where appropriate. Those marked N/A are 
not yet available as co-formulations
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Artemether and Lumefantrine

Artemether-lumefantrine (Coartem™) was one of the first ACTs marketed to treat 
acute uncomplicated Plasmodium falciparum malaria. Food, especially dietary fat, 
may enhance oral availability of artemether and lumefantrine [34, 35]. Administration 
of artemether and lumefantrine to healthy volunteers at the same time as a high-fat 
meal increases bioavailability of both drugs by 2- and 16-fold, respectively, when 
compared with the fasted state. Healthy adult subjects administered artemether- 
lumefantrine (80 mg/480 mg, single oral dose) had higher exposures of lumefan-
trine when co-ingested with milk or maize porridge with oil compared to fasted or 
oil-free subjects [36]. This may be particularly important given reduced food intake 
of many patients in the acute phase of malaria. A double-blind trial of patients with 
uncomplicated malaria in Thailand demonstrated that extent and variability of 
lumefantrine absorption improved alongside clinical recovery as normal food intake 
was resumed [37]. Pediatric patients in Mali and Niger with severe malnutrition 
exhibited lower concentrations of lumefantrine compared to those with normal 
nutrition [38], although no difference in therapeutic response as measured by clini-
cal and parasitic load was observed. Moreover, data were also available on relative 
lumefantrine exposures in African children with uncomplicated Plasmodium falci-
parum malaria receiving full treatment doses of artemether-lumefantrine within a 
randomized, investigator-blinded phase III trial based on their consumption of foods 
[39]. Specifically, lumefantrine plasma concentration increased by 55–100% 
(depending on tablet formulation) when given with a meal, and its bioavailability 
increased by 27–65% when co-administered with milk. However, despite increased 
lumefantrine exposure, presence (or absence) of food with artemether-lumefantrine 
treatment did not affect ultimate clinical outcome, with 99% overall cure observed 
in these children.

These observations prompt the question as to how much dietary fat is necessary 
to achieve plasma concentrations of lumefantrine that would affect total parasite 
clearance when it is used in combination with artemether. A population model 
developed from lumefantrine concentration measurements in a crossover study in 
healthy volunteers receiving different volumes of soya milk or with no milk demon-
strated that 36 mL of soya milk (containing 1.2 g of fat) was associated with 90% of 
lumefantrine exposure obtained with 500 mL of regular milk (16 g fat) [40]. Fat 
intake in sub-Saharan countries is approximately 15–30 g/day during breastfeeding, 
greater than 10 g/day in the postweaning phase, and upward of 30–60 g/day in a 
normal diet, supporting the view that typical fat intake should support optimal 
absorption, hence therapeutic concentration, of lumefantrine. This is corroborated 
by a trial of 957 patients in Uganda receiving artemether-lumefantrine in a hospital 
under supervision with a meal containing 23 g fat or unsupervised at home after the 
first dose with advice to take drug with a meal or breast milk, when no difference in 
cure rates was observed [41, 42]. Consistent with other studies discussed above, 
lumefantrine plasma concentrations were higher in the supervised group, but ade-
quate pharmacological concentrations of lumefantrine were obtained from home 
food consumption to achieve good clinical response [42, 43]. Overall, it may be 
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concluded that a small amount of dietary fat may be necessary to ensure adequate 
absorption of lumefantrine and that standard African diets or breast milk are suffi-
cient to fulfill this need. However, it is important that patients maintain normal food 
or milk intake during drug administration and resume intake quickly once able to do 
so to minimize variability with drug absorption. Van Agtmael and colleagues [44, 
45] have demonstrated that grapefruit juice (350 mL) increases exposure of arte-
mether (single oral dose of 100  mg) and its metabolite (dihydroartemisinin) by 
~twofold in healthy subjects in an interaction that likely involves inhibition by 
grapefruit juice of CYP3A4, the predominant enzyme responsible for deactivation 
of artemether [46]. Theoretically, grapefruit juice could conceivably reduce recru-
descence with artemether monotherapy by enhancing effective plasma concentra-
tions. This has been demonstrated in preclinical studies of experimental infection 
with Schistosoma mansoni in mice, where co-administration of grapefruit juice with 
a lower dose (150 mg/kg) of artemether achieved similar protection of host animal 
compared to a higher dose of artemether (300  mg/kg) from damage induced by 
schistosomal infection, indicating significant effects of grapefruit juice on pharma-
codynamics of artemether [47]. These observations, however, remain to be shown in 
humans.

Artesunate-Amodiaquine

Artesunate-amodiaquine is one of the ACTs currently recommended by the WHO 
(Table 13.1) and adopted as first-line treatment in many African countries [48, 49]. 
Relative to the fasting state, administration of the fixed-dose combination after a 
high-fat breakfast resulted in a statistically significant increase in circulating con-
centrations of amodiaquine and desethyl-amodiaquine and a decrease in blood con-
centrations of artesunate and dihydroartemisinin [50]. These observations were also 
evident in healthy male subjects administered a single oral dose of artesunate- 
amodiaquine with a high-fat breakfast compared to the fasting state [49]. Subjects 
taking artesunate-amodiaquine with a high-fat breakfast exhibited higher amodia-
quine and desethyl-amodiaquine exposures but lower artesunate and dihydroarte-
misinin maximum blood concentrations compared to fasted individuals. One might 
hypothesize that altered pharmacokinetics of amodiaquine and artesunate may 
enhance toxicity or reduce efficacy, but alterations in pharmacological effects from 
this food-drug interaction remain to be verified.

Piperaquine

Piperaquine (PQ) is a bis-quinoline antimalarial drug that was first synthesized in 
the 1950s. It was seen as less toxic than chloroquine, and its efficacy against 
chloroquine- resistant strains of Plasmodium falciparum led to widespread distribu-
tion in China and Indochina in the 1970s. With emergence of piperaquine-resistant 
parasites, its use declined, but continuing search for suitable partner drugs prompted 
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a renewed interest in piperaquine [51]. Sim and colleagues [52] investigated oral 
bioavailability of piperaquine with food relative to the fasting state and discovered 
a 1.2-fold increase after a high-fat meal. Side effects (i.e., changes in postural blood 
pressure, QTc interval, serum glucose, and other biochemical and hematological 
indices) were similar in fasting and fed states. Hai and colleagues [53] also found no 
significant difference in drug exposure between fed and fasting subjects after admin-
istration of piperaquine with dihydroartemisinin with or without a standard 
Vietnamese meal [53]. Similar observations were reported by Annerberg and col-
leagues [54] in adult subjects diagnosed with uncomplicated falciparum malaria, 
where no significant differences in exposure of piperaquine were observed in fasted 
subjects compared to patients provided with 200  mL of milk (~6.4  g of fat). 
Likewise, population pharmacokinetic analysis in Thai patients with uncomplicated 
Plasmodium falciparum malaria also indicated no effects of food intake on pipera-
quine oral bioavailability [55]. In contrast, in healthy subjects, a high-fat meal 
appears to increase exposure of piperaquine (~threefold) and dihydroartemisinin 
(~1.4-fold) after a single-dose combination regimen [56]. The apparent discrepancy 
in the latter study raises the question of whether degree of drug-food interaction 
might be dependent on amount of fat content (which has yet to be studied systemati-
cally) and cautions against co-administration of piperaquine-dihydroartemisinin 
with high-fat meals to minimize potential adverse effects.

Mefloquine

Mefloquine is a chiral quinoline-methanol active against asexual forms of the spe-
cies of Plasmodium that infect humans. Mefloquine is poorly water soluble, and 
extent of its absorption in healthy volunteers is increased modestly when taken with 
food [57]. In Vietnamese patients with Plasmodium falciparum malaria, mefloquine 
exposures were similar between those co-administered a low-fat versus high-fat 
meal, although the sample population (N = 6) was relatively small. Because its oral 
bioavailability is relatively high, drug-food interaction is likely clinically 
insignificant.

Atovaquone

Atovaquone is a hydroxyl-naphthoquinone with broad-spectrum antiprotozoal 
activity initially selected for development as an antimalarial agent on the basis of 
potent activity against drug-resistant strains of Plasmodium falciparum in  vitro. 
Atovaquone was subsequently found to be active against a number of other micro-
organisms including Pneumocystis carinii and Toxoplasma gondii. Studies on 
in vitro potentiation of atovaquone by other antimalarial drugs revealed evidence of 
marked synergistic activity with proguanil stimulated subsequent clinical evaluation 
of these two drugs, culminating in development of a fixed-dose combination for 
treatment and prevention of malaria. Food increases bioavailability of atovaquone in 
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healthy male subjects administered the tablet formulation by threefold (toast with 
28 g butter) or 3.9-fold (toast with 56 g butter) [58]. In patients with HIV, target 
concentrations for treatment of Pneumocystis carinii pneumonia are more consis-
tently reached when atovaquone is administered with food or a nutrition supplement 
with a moderate fat content [59, 60]. Based on these data, atovaquone is recom-
mended to be administered with food. Findings of some of the major investigations 
into effect of food on pharmacokinetics of antimalarial agents are summarized in 
Table 13.2.

Table 13.2 Key food-drug interactions with antimalarial agents

Antimalarial 
agent(s) Interaction with food Effect on drug aReference(s)

Halofantrine 
(HF)

Cmax of HF ↑
AUC of HF ↑
Grapefruit juice: ↑ AUC

Possible ↑ in QT 
prolongation with food or 
grapefruit juice

[19–21, 29, 
30]

Artemether 
(ARM) /
lumefantrine 
(LUM)

High fat: Bioavailability of 
ARM and LUM ↑ 200–1600%

Effects of pharmacokinetic 
alterations on 
pharmacodynamic effects 
not known

[34–36]

Milk: Bioavailability of LUM ↑ 
157%
Pancakes: Bioavailability of 
LUM ↑ 274%
Grapefruit juice: F of LUM ↑ 
200%

[40]
[35]

Artesunate 
(ARTS) 
/amodiaquine 
(AQ)

High fat: AUC of AQ/
desethyl-AQ ↑ after high-fat 
breakfast

Effects of pharmacokinetic 
alterations on 
pharmacodynamic effects 
[not known]

[44, 45]

AUC of ARTS and 
dihydroartemisinin ↓

[49, 50]

Piperaquine (PIP) Inconsistent findings between 
studies on the effects of food on 
exposure of PIP. High-fat meals 
may ↑ AUC

Effects of pharmacokinetic 
alterations on 
pharmacodynamic effects 
not known

[52]

Mefloquine (MQ) Food: AUC of MQ↑ No clinical relevance as 
MQ already has high F

[57]

Atovaquone 
(ATQ)

Fatty meal: Bioavailaiblity of 
ATQ ↑ 200–300%

More consistent target 
concentrations of ATQ 
achieved in Pneumocystis 
carinii

[58]

Standard abbreviations for AUC area under the curve, Cmax maximal concentration are used. If no 
additional information is available concerning the effect or its clinical importance, this is indicated 
by N/A.
aNote that the references given are the key source in each case. The reader is referred to the text of 
the chapter for more detailed information.
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13.2.1.2  Anthelmintics

Benzimidazoles

Albendazole and mebendazole are benzimidazole carbamates with a broad spec-
trum of anthelmintic activity. While poor absorption may be advantageous for ther-
apy of helminth infections located in the gut lumen, successful treatment of tissue 
helminth infections, such as hydatid disease or neurocysticercosis, requires a suffi-
cient concentration of drug to reach site of infection. Despite low and variable bio-
availability of benzimidazoles, albendazole bioavailability can be increased 
significantly when taken with fatty meals or grapefruit juice [61–63]. Based on 
these observations, it is recommended that albendazole be co-administered with a 
meal to increase absorption. However, little data are available on food interactions 
with mebendazole.

Ivermectin

Ivermectin is a potent antiparasitic drug from the macrocyclic lactone family, the 
most powerful agents against a broad spectrum of ecto- and endoparasites. It was 
used exclusively in veterinary medicine due to its high efficacy and wide margin of 
safety until 1987 when it was introduced into human use for the treatment of oncho-
cerciasis [64, 65]. Since then, it has been used in combination with albendazole 
(ABZ) and diethylcarbamazine (DEC) for treatment of onchocerciasis and lym-
phatic filariasis [6]. The effects of food on pharmacokinetics of ivermectin have not 
been well characterized; co-ingestion of alcoholic drinks, however, is not recom-
mended. Although the mechanism of interaction remains to be established, in 
healthy volunteers given ivermectin orally (150 μg/kg), plasma concentrations were 
significantly higher when ivermectin was co-administered with beer (750 mL) than 
with an equivalent volume of water (66). It has been hypothesized that increased 
ivermectin concentration in the presence of alcohol may result in manifestation of 
adverse effects, and the unpleasant pharmacological interaction may serve as the 
basis for an alcohol abstinence regimen [66].

Praziquantel

Praziquantel is a pyrazino-isoquinoline whose potent anthelmintic activity against 
all Schistosoma species and the majority of other trematodes and cestodes was seen 
as a major advance in medical parasitology. Food increases bioavailability of pra-
ziquantel, as demonstrated in fed healthy volunteers where both Cmax and AUC 
were two to three times higher compared to fasted individuals [67]. Another study 
showed that meals high in fat and carbohydrate increased AUC by 180% and 271%, 
respectively, after a single oral dose (1800 mg) [68]. These data were consistent 
with a further study involving healthy Sudanese volunteers where meals with high 
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and low oil contents were associated with mean AUC praziquantel values that were 
134% and 174%, respectively, of those during fasting [69]. Grapefruit juice 
(250  mL) increased AUC and Cmax of praziquantel after a single oral dose in 
healthy male volunteers (N = 18) [70]. Findings of some major investigations into 
effect of food, on the pharmacokinetics of anthelmintics are summarized in 
Table 13.3.

13.3  Antimalarial Pharmacokinetic and Pharmacodynamic 
Drug-Drug Interactions

13.3.1  4-Aminoquinolines

13.3.1.1  Amodiaquine

Amodiaquine has been used in treatment of malaria for over 40 years having once 
been considered as a successor to chloroquine in East Africa. The use of amodia-
quine in prophylaxis was ended due to unacceptable incidences of agranulocytosis 
and hepatotoxicity [72–74]. CYP2C8 is primarily responsible for the metabolism of 
amodiaquine and exclusively catalyzes formation of desethyl-amodiaquine, a well- 
established marker reaction for the enzyme [75] indicating a potential interaction 
with co-substrates, although CYP2C8, CYP1A1, CYP1B1, CYP2D6, and CYP3A4 
may also play a minor role [76–78]. Ketoconazole, an inhibitor of CYP3A4, was 
associated with decreased formation of desethyl-amodiaquine in human liver micro-
somes [79]. The prominent role of CYP2C8 in amodiaquine metabolism has been 
further demonstrated in vitro where expressed CYP2C8*2 Supersomes™ exhibited 
decreased intrinsic clearance compared to wild-type control [80]. More recently, 
amodiaquine received a new lease on life as a partner drug with artesunate, where a 

Table 13.3 Key food-drug interactions with anthelmintics*

Albendazole 
(ALB)

Fatty meal and grapefruit juice: 
AUC of ALB sulfoxide↑

Potentially ↑ chemosterilant 
properties vs. systemic parasites

[61–
63]

Ivermectin 
(IVM)

Beer vs. water: AUC of IVM ↑ n/a [71]

Praziquantel 
(PZQ)

Fat: AUC of PZQ ↑ 180% 
Carbohydrate: AUC PZQ ↑ 271%
High-oil meal: 134%
Low-oil meal: 174%
Grapefruit juice: 190%

n/a [67–
70]

Standard abbreviations for AUC area under the curve, Cmax maximal concentration are used. 
Values in square parentheses refer to circulating concentrations of a particular drug. If no addi-
tional information is available concerning the effect or its clinical importance, this is indicated by 
N/A.
*Note that the references given are the key source in each case. The reader is referred to the text of 
the chapter for more detailed information.
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pharmacokinetic interaction has been observed such that total AUC for dihydroarte-
misinin and desethyl-amodiaquine was significantly reduced when compared with 
equivalent parameters from the individual drugs [81]. Artesunate is rapidly con-
verted to dihydroartemisinin, suggesting its principal role is as a prodrug for the 
former. Dihydroartemisinin is largely glucuronidated, principally by 5′-diphospho-
(UDP)-glucuronosyltransferase (UGT) 1A9 and UGT2B7, suggesting that common 
CYP isoenzymes are not involved in metabolism of either drug, thereby pointing to 
some other, as yet poorly understood, mechanism for the interaction [82, 83]. In 
human studies, steady-state nevirapine (in combination therapy containing zidovu-
dine and lamivudine) significantly decreased AUC of amodiaquine (29%) and 
desethyl- amodiaquine (33%), when HIV-infected, but malaria-free, patients were 
given artesunate/amodiaquine (200 mg/600 mg daily for 3 days) [84]. The mecha-
nisms of interaction, however, remain to be determined because none of these anti-
retrovirals are known to inhibit CYP2C8 (Table 13.4).

From a pharmacodynamic perspective, amodiaquine shows synergy with arte-
misinins [104], quinine, retinol, atovaquone, and atorvastatin [105, 106]. No addi-
tive drug interactions were documented, yet antagonism was demonstrated with 
chloroquine [107] and methylene blue [108]. Clinically, amodiaquine-artesunate 
combination resulted in increased transaminases after 5 days combination therapy 
with efavirenz, which may limit use of co-administration of these agents [109].

13.3.1.2  Chloroquine

Chloroquine’s antimalarial effects are mediated through the interference of nucleic 
acid synthesis. Although not recommended for the treatment or prophylaxis of P. 
falciparum, chloroquine may be considered an option for other forms of uncompli-
cated malaria [33]. Magnesium trisilicate and kaolin caused a modest reduction in 
bioavailability of chloroquine. To avoid drug loss, it is suggested that chloroquine 
should not be administered with gastrointestinal medications of this type or that 
they should be separated by at least 4 h to reduce risk of adsorption to antacids or 
adsorbents [85, 86]. In vitro reaction phenotyping studies indicated that chloroquine 
is predominately metabolized by CYP2D6, CYP2C8, and CYP3A4 to form 
desethyl- chloroquine [76]. In vitro and in vivo, chloroquine is also a weak inhibitor 
of CYP2D6, and the clinical relevance of this metabolic characteristic to drug-drug 
interactions is yet to be established fully [110–112]. A small reduction was observed 
in Cmax for the fluoroquinolone ciprofloxacin when it was administered with chlo-
roquine, but clinical significance of this observation is unknown [113]. However, 
chloroquine had little effects on pharmacokinetics of various other co-administered 
drugs (e.g., debrisoquine, chlorzoxazone, S-mephenytoin, ampicillin, chlorproma-
zine, imipramine, azithromycin, antipyrine) in healthy volunteers [112, 114–119]. 
Likewise, little effects of co-administered drugs (e.g., cimetidine, ranitidine, imip-
ramine, aspirin, azithromycin, promethazine, and chlorpheniramine) on exposure of 
chloroquine have been documented in healthy human subjects [118, 120–124]. 
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These data suggest that clinically significant pharmacokinetic interactions are likely 
rarely observed with chloroquine in humans.

Pharmacodynamic interactions are less established with chloroquine. There is 
evidence of antagonism between choloroquine and amodiaquine [107], artemisinins 
[107], atorvastatin [107], mefloquine [107], methylene blue [125], omeprazole 
[126], quinine [107, 126], and sulfadoxine-pyrimethamine [107]. Additive interac-
tions were found with artemisinins [127, 128], azithromycin [129, 130], cepharan-
thine [131], and methylene blue [108]. Synergy was found between chloroquine and 
azithromycin [130], cepharanthine [131], and retinol [106].

13.3.2  8-Aminoquinolines

13.3.2.1  Primaquine

Hepatic biotransformation of primaquine and metabolites is partly mediated by 
cytochromes P450 [132]. The principal plasma metabolite is carboxyprimaquine 
[133, 134]. Clinically, the most significant interactions would be those that facilitate 
the formation or accumulation of toxic metabolites [79]. In vitro reaction phenotyp-
ing studies have provided support that CYP2D6 and CYP3A4 act as primary 
enzymes in the conversion to carboxyprimaquine [135]. Specifically, in human liver 
microsomes, carboxyprimaquine formation is inhibited by ketoconazole, a potent 
CYP3A4 inhibitor, but little effects of quinine, artemether, artesunate, halofantrine, 
or chloroquine were observed [136]. Despite being a substrate for CYP2D6 and 
CYP3A4, little has been documented in the literature to support metabolism- 
mediated drug interactions affecting pharmacokinetics of primaquine (or effects of 
primaquine on pharmacokinetics of co-administered drugs). In humans, a small 
decrease in Cmax and AUC of carboxyprimaquine was observed after co- 
administration with quinine [137], but this is probably of little clinical relevance. 
Co-administration with mefloquine had little effect on elimination of primaquine or 
its main metabolite carboxyprimaquine in healthy Thai male adults [137]. Likewise, 
in healthy subjects, a single oral dose of primaquine did not alter the pharmacoki-
netics of a single dose of antipyrine [119]. These studies support overall lack of 
significant pharmacokinetic interactions observed with primaquine in humans.

Little data exist regarding pharmacodynamic interactions with primaquine. One 
study found additive properties when combined with methylene blue [108], while 
another study found an additive to synergistic interaction when co-administered 
with azithromycin [130]. Adverse effects of primaquine in combination with arte-
mether were insignificant [138].

T. K. L. Kiang et al.
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13.3.3  Antifolates

Combination of inhibitors of folate synthesis takes advantage of their synergism and 
observation that different genes contribute to the resistance phenotype, thus reduc-
ing likelihood that resistant strains will be selected. Unfortunately, resistance to 
these drugs has developed in most endemic areas of the world, but degree of resis-
tance varies [139].

13.3.3.1  Biguanides

Proguanil and chlorproguanil are biguanides that inhibit dihydrofolate reductase 
(DHFR) which is an enzyme involved in the folate-thymidylate pathway. Proguanil 
is a prodrug, as it is rapidly transformed in the liver to the DHFR inhibitor cyclogua-
nil. Metabolism of proguanil is possibly mediated by CYP1A2, CYP3A4, and/or 
CYP2C19 as demonstrated in in  vitro reaction phenotyping studies [140–144]. 
Although role of CYP2C19 has been clearly established by various investigators 
[140, 143, 144], inconsistent findings have been reported for CYP1A2 and CYP3A4. 
A genetic polymorphism in CYP2C19 enzyme, with up to 20% poor metabolizers 
in Asian and African populations, has been demonstrated [145–147]. Poor metabo-
lizers have reduced plasma concentrations of cycloguanil during prophylaxis, and 
this could conceivably contribute to prophylactic failure in this group, but large 
inter-subject variability and role of CYP3A4 or CYP1A2 mean there is no clear 
association [141, 142, 146]. Chlorproguanil is a chloro derivative of proguanil and 
intrinsically more active. A similar difference in activity exists with regard to its 
active metabolite, chlorcycloguanil, when compared with cycloguanil [148]. 
Despite known metabolic properties that can potentially mediate drug-drug interac-
tions, available human literature has indicated little effects of proguanil on co- 
administered drugs. In contrast, concurrent drugs have been shown to affect 
pharmacokinetics of proguanil. Steady-state efavirenz, lopinavir/ritonavir, or ata-
zanavir/ritonavir has been demonstrated to decrease exposure of proguanil in HIV- 
infected individuals, compared to pharmacokinetic parameters obtained in healthy 
subjects [87]; these effects may have been mediated by inductive properties of these 
drugs toward CYP enzymes known to metabolize proguanil. The H2-receptor antag-
onist cimetidine and proton pump inhibitor omeprazole significantly increased 
Cmax and AUC of proguanil (with corresponding decreases in Cmax and AUC of 
cycloguanil in the case of cimetidine), which also suggests potential inhibitory 
effects of omeprazole and cimetidine toward CYP isoenzymes [88, 149].

Pharmacodynamic interactions with proguanil have been assessed through 
numerous studies. Synergy with atovaquone was first demonstrated in a study co- 
administering the two agents with artemisinin [150]. However, synergy was later 
discovered to the atovaquone-proguanil pair alone [151]. One other study demon-
strated a synergistic pharmacodynamic interaction between proguanil and 
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monodebutyl- benflumetol [152]. Proguanil is active against P. falciparum, and 
future studies should further assess its role as a recommended alternative agent.

13.3.3.2  Sulfonamides

Sulfonamides are inhibitors of DHPS (dihydropteroate synthase) and historically 
have been used extensively in combination with inhibitors of DHFR, notably sulfa-
doxine, in prevention and treatment of malaria [139]. Chiefly, sulfadoxine is usually 
used in combination with pyrimethamine (Fansidar™). Few pharmacokinetic inter-
actions of clinical importance involving sulfadoxine and pyrimethamine have been 
documented in humans, probably because sulfadoxine undergoes minimal liver 
metabolism. Even though pyrimethamine undergoes extensive hepatic biotransfor-
mation, relatively little is known of the exact metabolic enzymes involved. From a 
pharmacodynamic perspective, the sulfadoxine-pyrimethamine combination 
showed antagonism with chloroquine and is not recommended for use [107].

13.3.4  Atovaquone

The combination of proguanil and atovaquone was originally developed to combat 
multidrug-resistant falciparum malaria [127]. Atovaquone undergoes minimal oxi-
dation but extensive conjugation in humans [153]. Overall, there is no effect of co- 
administration of proguanil on pharmacokinetics of atovaquone [154, 155]. In 
healthy Caucasians, pharmacokinetics of proguanil, cycloguanil, and atovaquone 
are unaffected by the combination. In patients with P. falciparum malaria, pharma-
cokinetics of proguanil with atovaquone was comparable with healthy volunteers 
treated with proguanil alone. In HIV-infected subjects, trimethoprim- 
sulfamethoxazole had little effects on pharmacokinetics atovaquone [60]. However, 
steady-state efavirenz, lopinavir/ritonavir, and atazanavir/ritonavir decreased expo-
sure of atovaquone from a single oral dose of atovaquone/proguanil (250 mg/100 mg) 
by 75%, 74%, and 44%, respectively [87]. Because atovaquone undergoes minimal 
oxidative metabolism, it might be postulated that inductive effects of these antiret-
rovirals toward phase II conjugative enzymes could be the mechanism behind this 
pharmacokinetic interaction. Furthermore, atovaquone decreases the oral clearance 
of zidovudine, leading to a 35 ± 23% increase in its plasma AUC. Clinical signifi-
cance of this is not known, and presently no dose modification is recommended 
[156]. Atovaquone and indinavir might exhibit mutual pharmacokinetic interac-
tions, where indinavir AUC is decreased and atovaquone AUC is increased [157]. 
These changes, however, are relatively small and unlikely clinically significant. 
Moreover, clinical studies have shown higher plasma indinavir in Thai patients with 
much lower body weight, and given toxicity of indinavir at higher doses, dosage 
adjustments are not indicated for ritonavir-boosted indinavir when given with ato-
vaquone or the atovaquone-proguanil combination (Malarone™).
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Pharmacodynamic interactions with atovaquone are documented. Antagonism 
between combinations of atovaquone and methylene blue was previously reported 
[108]. However, enhanced efficacy was shown when atovaquone was combined 
with cepharanthine [131]. From a safety perspective, a case report showed a tempo-
ral relationship between atovaquone and increased international normalized ratio 
for a patient taking warfarin [158]. Therefore, co-administration of these agents 
should be cautioned.

13.3.5  Artemisinin and Derivatives

Artemisinin drugs rapidly reduce parasite burden. Because of short half-lives of 
most artemisinin derivatives, recrudescence occurs after monotherapy. In combina-
tion with other drugs, rapidly acting artemisinin may help to minimize selection 
pressure [3, 4, 46]. Pharmacokinetics of the combination of artemether and lume-
fantrine (Coartem™) are comparable to pharmacokinetics of the individual agents. 
A time-dependent decline in artemether concentration and corresponding increase 
in concentration of dihydroartemisinin were observed, possibly due to autoinduc-
tion [89]. When combined with artemether, Cmax of pyrimethamine was increased 
significantly, and volume of distribution was reduced slightly, although these 
changes are likely not clinically significant [93]. As demonstrated in in vitro reac-
tion phenotyping studies, artemisinin is primarily metabolized by CYP2B6 [159] 
and is capable of inhibiting CYP1A2 [160]. Artesunate undergoes bioactivation in 
formation of dihydroartemisinin in a reaction likely predominately mediated by 
CYP2A6 [76]. Artemether also undergoes activation to form dihydroartemisinin but 
in a reaction mediated primarily by CYP3A4 [161]. In contrast, the reactive metab-
olite dihydroartemisinin is not further oxidized but rather undergoes subsequent 
conjugation by phase II uridine UGT1A9 and UGT2B7 [83]. However, additional 
metabolic pathways might be possible and remain to be investigated. After repeated 
doses, plasma concentrations of artemisinin decline steadily, with a six- to seven-
fold reduction of AUC after 6 days of daily administration [90, 91]. It is likely that 
artemisinin induces its own metabolism but the exact mechanism has not yet been 
elucidated. This time-dependent decline of artemisinin also occurs after rectal 
administration, which suggests that site of induction is hepatic [92]. This effect has 
also been observed with artemether and dihydroartemisinin after oral administration 
of artesunate [162] and probably contributes to recrudescence. Time-dependent 
pharmacokinetics of artemisinin suggests that artemisinin is a selective inducer of 
drug metabolism, in a reaction most likely mediated by CYP2B6 [159, 163]. In 
addition to autoinduction, a few pharmacokinetic drug-drug interactions mediated 
by or affecting artemisinin derivatives have been reported in the literature. Steady- 
state rifampin is shown to decrease exposure of artemether, dihydroartemisinin, and 
lumefantrine in HIV-infected subjects without malaria [94], whereas the administra-
tion of artemether-lumefantrine with ketoconazole, a potent inhibitor of CYP3A4, 
increased the AUC for both artemether (2.4-fold) and lumefantrine (1.7-fold) [95] in 
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reactions likely mediated by induction and inhibition of CYP3A4, respectively. In 
contrast, artemisinin had little effects on the pharmacokinetics of caffeine [160] and 
coumarin [164] but decreased exposure of nicotine (46%) in healthy volunteers. 
Although studies reporting clinical pharmacokinetic interactions involving artemis-
inin derivatives are relatively scarce (antiretroviral-artemisinin derivative drug 
interactions to be discussed below), metabolic properties of these compounds (dis-
cussed above) indicate that metabolism-associated drug-drug interactions, mediated 
by CYP or UGT enzymes, can be manifested in clinical situations but may be rea-
sonably predicted.

Pharmacodynamic interactions between artemisinin agents and partner drugs are 
well established. A Cochrane review identified 50 studies assessing efficacy of 
ACTs against P. falciparum. Findings showed notable efficacy for each ACT regi-
men assessed, with failure rates of <10% [165]. Numerous other interactions have 
also been reported. Antagonism was demonstrated with artemisinin agents and 
cepharanthine [131], chloroquine [107], and ketoconazole [166]. Additive interac-
tions were reported with amphotericin B [167], azithromycin [130, 168], chloro-
quine [128], clindamycin [169], clotrimazole [167], methylene blue [108], and 
omeprazole [126]. Finally, synergy was demonstrated with amodiaquine [104], ato-
vaquone [105, 170], chalcones [167], clindamycin [169], doxycycline [171], meflo-
quine [127, 172, 173], methylene blue [125], pyronaridine [174], quinine [127], 
retinol plus mefloquine [173], and triclosan [166]. Many of these additive and syn-
ergistic interactions should be further explored as potential combination or adjunc-
tive regimens for malaria treatment.

13.3.6  Artemisinin Derivatives and Antiviral Interactions

There is extensive overlap in patient populations likely infected with both malaria 
and HIV, which may lead to increased probability of polypharmacy and drug inter-
actions [175]. In general, protease inhibitors have potential to increase exposure of 
artemisinin derivatives, whereas non-nucleoside reverse transcriptase inhibitors 
tend to have opposite effects. In contrast, artemisinin derivatives have fewer effects 
on pharmacokinetics of antiretroviral agents, suggesting more significant impact on 
malarial treatment when these drugs are combined. In healthy volunteers or HIV- 
infected subjects, steady-state lopinavir/ritonavir (400 mg/100 mg) increased expo-
sure of lumefantrine but had little effects on artemether [176, 177]. To the contrary, 
steady-state darunavir/ritonavir (80 mg/480 mg) increased exposure of lumefantrine 
but decreased that of artemether [178]. These findings are consistent with inhibitory 
effects of protease inhibitors toward CYP3A4, which is responsible for metabolism 
of lumefantrine. However, it is unclear why concentrations of artemether, which is 
also metabolized primarily by CYP3A4, remain unchanged (or decreased) in pres-
ence of protease inhibitors. Contribution of alternative metabolic pathways and 
mixed inhibitory/inductive properties of protease inhibitors might be responsible 
for these observations.
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With respect to non-nucleoside reverse transcriptase inhibitors, steady-state etra-
virine decreased both single-dose and steady-state artemether concentrations (with 
corresponding decreases in dihydroartemisinin and lumefantrine concentrations) in 
healthy subjects [178]. Efavirenz, when used in combination with zidovudine/lami-
vudine, also had similar effects (i.e., decreased artemether/lumefantrine/dihydroar-
temisinin exposures) in HIV-infected patients, but when used alone, it did not 
change pharmacokinetics of artemether/lumefantrine in healthy volunteers [179, 
180]. Available data for nevirapine are inconsistent as it has been shown to decrease 
artemether/dihydroartemisinin exposure in one study [180] but increase lumefan-
trine exposure in another [181]. Most of these effects can be explained by inductive 
effects of etravirine, efavirenz, and nevirapine toward CYP3A4, the primary enzyme 
responsible for metabolism of artemether and lumefantrine. Discrepancy in data 
obtained with efavirenz and nevirapine might be attributed to design differences 
between studies and possibility of alternative, not yet identified, metabolic path-
ways involved in the drug interaction. Please see Kiang et al. [175] for a detailed, 
systematic discussion of antimalarial-antiviral drug-drug interactions.

13.3.7  Cinchona Alkaloids

Quinine is transformed into 3-hydroxyquinine principally by CYP3A4 [182] and to 
a minor, but significant, extent by CYP2C19 [76]. Co-administration with rifampi-
cin (CYP3A4 inducer) and cigarette smoking (CYP1A inducer) each increases 
metabolic clearance of quinine [183, 184], confirming the role of CYP3A4 and sug-
gesting some contribution of CYP1A in the elimination of quinine [183]. Fortunately, 
among other antimalarials, there are few potent inducers or inhibitors of CYP3A4, 
and clinically relevant interactions revolving around enzyme induction and inhibi-
tion are unlikely. The diastereoisomer of quinine, quinidine, used as an antimalarial 
in North America, is the more potent inhibitor of CYP2D6 in  vivo [185]. 
Theoretically, drug-drug interactions would be expected to be more problematic; 
but, in context of antimalarial therapy, relatively few have been observed. In pre-
clinical studies, a number of drugs, such as phenobarbital, that induce cytochromes 
P450 increase quinine clearance [186]. Clearance of quinine is inhibited by cimeti-
dine and ciprofloxacin, inhibitors of cytochrome P450 isoenzymes [187, 188]. In 
healthy subjects, steady-state nevirapine and lopinavir/ritonavir significantly 
reduced exposure of quinine (likely mediated by CYP3A4 induction) but had oppo-
site effects on exposure of 3-hydroxyquinine [189, 190]. In contrast, ritonavir itself 
increased exposure of quinine (340%) and reduced formation of 3-OH quinine 
(90%), in a reaction likely mediated by ritonavir’s potent inhibitory effects toward 
CYP3A4. Clinical significance of these pharmacokinetic interactions, however, 
remains to be determined in the patient population. Quinine is known to inhibit 
metabolism of phenobarbital and carbamazepine but not phenytoin [191] and to 
reduce clearance of flecainide [192] although not excessively [193]. Despite signifi-
cant effects on pharmacokinetics of quinine from co-administration of some 
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antiretroviral agents (see above), quinine had little effects on ritonavir or lopinavir 
exposure in healthy subjects [189, 190]. In contrast, quinine and quinidine may 
increase plasma concentrations of digoxin although the magnitude of effect is less 
for quinine than for quinidine [194, 195]. Clearance of quinidine is unaltered in 
smokers [196]. Elimination of quinidine is markedly increased by phenobarbital, 
phenytoin, and rifampin but reduced by inhibitors of cytochrome P450 isoenzymes, 
such as cimetidine, amiodarone, verapamil, and erythromycin [197, 198]. 
Pharmacokinetic interactions between phenobarbital and quinine have not been 
noted in patients with cerebral malaria where both drugs are commonly co-admin-
istered without evidence of toxicity [198, 199].

13.3.8  Mefloquine

Mefloquine has a very long terminal elimination half-life [8]. This may increase 
selection pressure and is probably the principal reason why resistance developed 
soon after its introduction in Thailand. A combination of mefloquine and artemis-
inin derivatives is effective against multidrug-resistant parasites. Moreover, it is 
argued that use of the combination will also delay development of mefloquine resis-
tance where monotherapy has not been used. Mefloquine is metabolized by CYP3A4 
to carboxy-mefloquine [136]. While co-administration of mefloquine has no effect 
on pharmacokinetics of primaquine or carboxyprimaquine in healthy Thai males 
[137], primaquine, but not sulfadoxine-pyrimethamine, may reduce half-life of 
mefloquine [96]. Mefloquine co-administration to patients with uncomplicated fal-
ciparum malaria increased AUC of artemisinin and reduced apparent volume of 
distribution and clearance without affecting half-life. Because mefloquine and arte-
misinin exhibit distinct metabolism characteristics, mechanisms of interaction for 
this observation remain to be investigated [97]. Mefloquine did not affect pharma-
cokinetics of dihydroartemisinin in healthy Thai males or patients with malaria (and 
vice versa) [200, 201]. To the contrary, interaction between other artemisinin deriva-
tives and mefloquine may be more conflicting: In Thai children with falciparum 
malaria, AUC of mefloquine on day 0 was lower than AUC on day 2 when artesu-
nate was given for 3 days. Rather than a pharmacokinetic interaction, the authors 
suggested that recovery from malaria was the main cause of the increased bioavail-
ability [98]. However, in a study comparing adult Thai patients and healthy volun-
teers, malaria was shown to slow melofloquine’s rate of absorption without any 
effects on AUC [202]. A study in patients with uncomplicated malaria revealed 
AUC of mefloquine to be slightly reduced when given 24 h after artemether [99]. In 
a further study of healthy volunteers, no interaction between artemether and qui-
nine, mefloquine, or primaquine was observed [138]. Co-artemether (40 mg arte-
mether +480 mg lumefantrine) given in six doses over 60 h following a 1000 mg 
dose of mefloquine elicited a significant decrease (30–40%) in plasma lumefantrine 
concentrations compared with lumefantrine alone. However, the authors considered 
that clinical effects were unlikely to be influenced by the interaction [100]. 
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Pharmacokinetics of mefloquine can be altered by co-administered drugs. In healthy 
volunteers, cimetidine and ketoconazole have been shown to increase exposure of 
mefloquine, whereas rifampin had opposite effects [101–103]. In contrast, co- 
administration of metoclopramide, ampicillin, tetracycline, and ritonavir had little 
influence on mefloquine exposure [203–205]. In the same study by Khaliq et al., 
mefloquine also did not affect pharmacokinetics of ritonavir. These data suggest 
some potential of mefloquine to interact with co-administered drugs in humans, but 
clinical significance of these pharmacokinetic alterations remains to be studied.

From a pharmacodynamic perspective, mefloquine showed additive and syner-
gistic behavior with methylene blue [108, 125], while antagonism was demonstrated 
with cepharanthine [131].

The findings of some of the major investigations into drug-drug interactions 
among antimalarials and co-administered drugs are summarized in Table 13.4.

13.4  Anthelmintic Drug-Drug Interactions

13.4.1  Albendazole

Albendazole is converted in vivo into albendazole sulfoxide, the systemically active 
form of the drug, and albendazole sulfone, which is inactive, in sequential sulfoxi-
dation reactions. CYP3A4 and flavin monooxygenases have been implicated as pri-
mary catalysts in these reactions [206, 207]. Plasma concentrations of albendazole 
are increased in presence of grapefruit juice, in a reaction likely mediated by 
CYP3A4 inhibition [63]. In the same study, cimetidine with grapefruit juice 
decreased exposure of albendazole, compared to grapefruit juice alone, potentially 
indicating a pH-dependent absorption of albendazole [63]. Other drugs have been 
shown to affect pharmacokinetics of albendazole: dexamethasone and praziquantel 
(increased exposure); phenytoin, phenobarbital, carbamazepine, and ritonavir 
(decreased exposure); ivermectin and azithromycin (no change in exposure), as 
summarized in [208]. However, not all of these pharmacokinetic interactions can be 
explained by albendazole’s known metabolic characteristics (i.e., CYP3A4 being 
the primary metabolic enzyme). Involvement of alternative metabolic pathways and 
clinical significance of these interactions should be further explored.

Albendazole has a chiral center, and formation of albendazole (−) sulfoxide 
appears to be dependent upon on P450 isoenzymes, whereas formation of albenda-
zole (+) sulfoxide is dependent upon flavin monooxygenases. Subsequent oxidation 
to albendazole sulfone is wholly dependent on P450 enzymes [207]. Albendazole, 
although a substrate of CYP3A4, is neither a substrate nor an inhibitor of 
P-glycoprotein (P-gp) or breast cancer-resistant protein, BCRP/ABCG2. 
Accordingly, interactions between albendazole and P-gp substrates or inhibitors are 
unlikely to be clinically important [209, 210].
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13.4.2  Ivermectin

Ivermectin and other macrocyclic lactones are highly lipophilic molecules and 
therefore widely distributed in the body [211, 212]. The antiparasitic activities of 
ivermectin and other macrocyclic lactones are related to the presence of effective 
concentrations for a suitable length of time in the systemic circulation and in target 
tissues [213, 214]. As demonstrated in human liver microsomes, ivermectin is pri-
marily metabolized by CYP3A4 converting the drug to at least ten metabolites, 
most of them hydroxylated and demethylated derivatives [215]. These data corre-
spond to information obtained in healthy volunteers where a number of radioactive 
metabolites were reported after oral administration of 14C- ivermectin [216]. 
Ivermectin is both a substrate and inhibitor of P-gp [215] and has been demon-
strated to inhibit P-gp, ABCC1, ABCC2, and ABCC3 activities [217, 218]. 
Preclinical studies have indicated that it is a potential inducer of several cytochrome 
P450 subfamilies including CYP1A, CYP2B, and CYP3A, but inductive effects of 
ivermectin in humans remain to be determined [219]. Most literature on ivermectin 
pharmacokinetic interactions have been reported in animal models. In healthy vol-
unteers, levamisole increased bioavailability of ivermectin, but the study used only 
historical controls [220]. Likewise, no significant changes in pharmacokinetics of 
ivermectin were observed when healthy Thai subjects were administered the com-
bination of albendazole, praziquantel, and ivermectin, but this study also lacked 
proper controls [221]. In contrast, concurrent administration of azithromycin and 
ivermectin/albendazole appeared to increase exposure of ivermectin (31%), the 
mechanism of which remains to be determined as azithromycin is not known to 
cause significant CYP3A4 inhibition [222]. Clinical relevance of this positive phar-
macokinetic interaction remains to be studied.

13.4.3  Praziquantel

The commercial preparation of praziquantel is a racemate composed of R (−) and S 
(+) isomers of which only (−) enantiomer has antischistosomal activity [223]. The 
isomers do, however, have similar toxicity. Orally administered praziquantel is rap-
idly absorbed, measurable amounts appearing in blood as early as 15 min after dos-
ing with peak levels occurring after 1–2 h. Maximum plasma concentrations after 
standard dose of 40  mg/kg show wide interindividual variations in the range of 
200–2000 ng/mL. Praziquantel undergoes pronounced liver first-pass metabolism 
with rapid disappearance from the circulation, plasma half-life ranging between 1 
and 3 h. Elimination occurs through urine and feces and is more than 80% complete 
after 24 h [224]. The principal enzyme responsible for oxidation of praziquantel in 
humans appears to be CYP3A4 [225] although systematic reaction phenotyping 
studies are still required to determine relative contribution of other CYP enzymes. 
Bioavailability of praziquantel is increased by simultaneous administration of 
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substances that inhibit cytochrome P450 activities, e.g., cimetidine leads to a 100% 
increase in humans [226, 227]. For this reason, cimetidine has been used in combi-
nation with praziquantel, especially in treatment of neurocysticercosis, where high 
concentrations are required. Chloroquine similarly decreases praziquantel’s bio-
availability to a significant extent [228]. Ketoconazole, a CYP3A inhibitor, has been 
observed to double plasma concentration of praziquantel in humans, while rifampin, 
an inducer of drug metabolism, has been reported dramatically to reduce its concen-
tration, and dose adjustment upon co-administration has been recommended [229, 
230]. In healthy volunteers, co-administration of albendazole was shown to increase 
exposure of praziquantel, in a reaction that may be mediated by CYP3A4 [231]. In 
contrast, praziquantel has not conclusively been characterized in relation to its 
effects on drug transporters. Available in vitro studies indicate that praziquantel may 
act as an inhibitor, but not substrate, of P-gp enzymes [232, 233]; thus, it may medi-
ate pharmacokinetic interactions via transporter inhibition, although clinical signifi-
cance of this theoretical effect remains to be determined. Findings of some major 
investigations into drug-drug interactions among anthelmintics and co-administered 
drugs are summarized in Table 13.5.

13.5  Conclusions

Combination chemotherapy is commonly indicated for treatment of malaria and 
certain anthelmintic infections. Limited clinical drug-drug interaction data are 
available in the literature, and there are few documented interactions that can be 

Table 13.5 Key drug-drug interactions with anthelmintics

Anthelmintic 
agent Interaction

Effect on drug/
importance

aKey 
reference(s)

Albendazole 
(ABZ)

[ABZ] ↑ by grapefruit juice, 
dexamethasone, praziquantel. ABZ 
exposure ↓ by phenytoin, phenobarbital, 
carbamazepine, and ritonavir.

Clinical 
significance not 
known

[63]

Ivermectin 
(IVM)

IVM is a substrate for/inhibitor of 
P-glycoprotein and substrate for CYP3A4
Azithromycin: IVM AUC ↑ 31%

Clinical 
significance not 
known

[222, 234]

Praziquantel 
(PZQ)

Cimetidine: PZQ AUC ↑ 100%.
Ketoconazole: [PZQ] ↑ 100%.
Rifampicin: [PZQ] ↓
Albendazole: [PZQ] ↑

Enhanced 
effectiveness in 
cysticercosis
Some dose 
adjustment may be 
needed

[226, 227]
[229–231]

Standard abbreviations for area under the curve (AUC) and cytochrome (CYP) are used. Values in 
square parentheses refer to circulating concentrations of a particular drug. If no additional informa-
tion is available concerning the effect or its clinical importance, this is indicated by N/A.
aNote that the references given are the key source in each case. The reader is referred to the text of 
the chapter for more detailed information.
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considered clinically significant. This chapter has summarized relevant clinical 
pharmacokinetic and pharmacodynamic drug interactions associated with com-
monly used agents today. Where possible, hepatic drug metabolism characteristics 
are provided to explain mechanisms of observed interactions. Future studies should 
also focus on establishing relationships between significant pharmacokinetic inter-
actions with pharmacodynamic effects. Likewise, further emphasis on common 
comorbid conditions such as HIV infection and tuberculosis, in which polyphar-
macy and likelihood of drug-drug interactions are significant, would be more 
impactful.
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