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Abstract. In this note, we present a critical analysis of machine learning
techniques for applications involving optimal (feedback) control. Specif-
ically, we will focus on the question of using reinforcement learning and
other similar techniques in providing provably stable optimal controllers.

1 Introduction

The traditional control methodology is heavily based on the assumption that
dynamical systems are represented in terms of clearly defined mathematical
models [3,14]. The two corner stones of control theory are stability and per-
formance. While performance is a standard requirement in any design process,
stability is inherently connected with the dynamic nature of dynamical systems.
The definitions of stability are intricately related to the type of model used. Such
models are either derived from first principles or through a rigorous system iden-
tification techniques based on experimental data [11,20].

An ideal control methodology would be a model-free approach for deriving
optimal controllers (which may be model-free themselves) just based on the
input-output data of the system. At this time, machine learning techniques such
as reinforcement learning come to close to providing a model-free approach for
optimal control [24].

In this note, we provide a brief overview of both optimal control and machine
learning techniques. In the discussion of optimal control, the need for the concept
of the state and the state-space approach are considered in relation to stability
of a system. In contrast, the overview of machine learning shows the difficulty
in identifying either state or stability of systems consisting of machine learning
blocks.

2 Optimal Feedback Control

In this section, we present a basic description of the problem of optimal control
starting with a general description of dynamical systems, stability, performance,
optimal, robust, and adaptive control. For more details on these well established
topics one may refer to many of the standard references such as [2,3,6,14,22].
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2.1 Dynamical Systems and Control

A dynamical system is a system that changes with time. Specifically, the complete
description of a dynamical system consists of input and output signals (which are
functions of time) and the relation between the input signals and output signals.
Let U denote the set of input signals u : T → R and Y denote the set of output
signals y : T → R. Let the relation between u and y be given by a mapping
G : U → Y so that y = Gu, u ∈ U so that the description of the dynamical
system is complete by specifying G, U, and Y. If T = R then the system is a
continuous-time system and if T is a finite set then it is a discrete-time system.
In this section, we focus only on the continuous-time version. Analogues for
discrete-time version can be easily developed and are well documented in the
literature.

In the case where G is a linear mapping, the description may be given in
terms of the Laplace transforms of the input and output signals, that is, Y (s) =
G(s)U(s), where G(s) is called the transfer function of the system. A system
described by a transfer function may be equivalently represented in its state-
space form given in terms of ordinary differential equations

ẋ(t) = Ax(t) + Bu(t), (1)
y(t) = Cx(t) + Du(t), (2)

where x(t) is the state vector and A, B, C, D are system matrices are such
that G(s) = C(sI − A)−1B + D. Such a state-space description in terms of a
(vector) ordinary differential equation is always possible if the transfer function
is real rational and proper, that is, G(s) is described in terms of a ratio of
real polynomials with the numerator order less than or equal to that of the
denominator. Even in the more general case, under mild technical assumptions,
it is always possible to represent a linear system in a state-space form involving
infinite-dimensional states. The most general description of a dynamical system
is in terms of a state-function which maps initial state and inputs to the state
at a future time [6,7,15].

In practice, the output signals are typically signals that can be measured
using an instrument or a function of such signals. The input signals are typically
divided into two categories (i) control inputs and (ii) disturbance inputs or
noise. A control problem can then be stated as determination of appropriate
control input signals so that specific output signals follow a desirable pattern. An
optimal control problem is determination of appropriate optimal control input
signals so that specific output signals follow a desirable pattern and maximize a
chosen performance. It is understood that the performance will be in terms of
only the input and the output signals.

2.2 Stability and State-Space Models

In control theory, every control system is designed for (i) stability and (ii) per-
formance. The need for performance is clear and has been included in the con-
trol problem statement above. However, neither the definition nor the need for
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stability is obvious. The difficulty starts with the fact that there are numer-
ous definitions of stability. The definitions of stability can be broadly classified
into two categories (i) bounded-input, bounded-output (BIBO) stability and (ii)
equilibrium-state stability.

A dynamical system is BIBO stable if for every bounded input, the output
remains bounded. It should be noted that input and output signals are functions
of time and hence there is no unique way of measuring the size (in terms of a
norm) of these signals and hence the same system (represented by, say, G) may
be BIBO stable with respect to certain choice of input-output norm pairs but
not stable with respect to other choices. The most standard choice (though not
necessarily most natural) for these norms is the Euclidean norm or the L2-norm.
The classical control theory provides stability results for transfer functions has
the interpretation of BIBO stability with the L2-norm.

As described above, systems can also be represented in a state-space form.
And for the state-space model, one may identify special states called equilibria.
A state is called an equilibrium if the system (in the absence of inputs) starts in
an equilibrium state then it remains there. An equilibrium is said to be stable if
the system starts close to an equilibrium then it remains close to the equilibrium
and approaches the state asymptotically. If the system has only one equilibrium
and it is stable (as per the definition above) then such a system may be called
as a stable system. The definition of equilibrium stability given here is known as
asymptotic stability in the literature. There are many more equally interesting
forms of stability (all connected to one another) but will not be discussed here.

The reader may be wondering if there is a relation between these two broad
categories of stability. The connection between the two categories is most inter-
esting. A linear system is BIBO stable if and only if it is asymptotically stable.
The case of nonlinear systems is slightly more complicated. There are classical
results proving that equilibrium-state stability implies BIBO stability. Indeed
most of the results in the literature on BIBO stability of nonlinear systems rely
on equilibrium-state stability.

It should be noted that the concept of equilibrium-state stability is inherently
connected to the definition of a state. Though neither a state-space description
nor the concept of equilibrium-state stability is necessary for defining stability
of a dynamical system but it is interesting to note that most results on stability
are given for state-space models. The above discussion clearly shows that state-
space description and the corresponding stability notions makes it convenient for
designing a control system. However, it is not clear if these notions are absolutely
necessary.

The popularity of state-space approach has a strong underlying reason. Most
physical systems can be modeled using first principles (such as Newton’s laws of
motion) and state-space descriptions are very natural. In such case, the state
of the system is identified with physical variables. It is therefore important
that the control systems for physical systems are designed such that the entire
state remains bounded. Hence, nonlinear system control is almost synonymous
with control for equilibrium-state stability and state-boundedness (see [14] and
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references therein). However, this is not the case if the system is not physical
(for example, economic or socio-economic systems).

Are the concepts of state-boundedness and equilibrium-state
stability essential for designing control systems?

2.3 Optimal Robust Control

In the previous section, we described the importance given to the concept of sta-
bility in systems theory. Here we focus on the issue of optimality and incomplete
knowledge of systemmodels. Themost important goal in designing control systems
is to design for best performancewhile satisfying all physical constraints.This is the
subject of optimal control. Design of an optimal control for a given system requires
the complete knowledge of the system. For example, in the linear case, the so called
LQR or Kalman filters are optimal controllers (for specific performance criteria)
and require the exact knowledge of the system matrices [2].

In practice, it is almost impossible to have the exact knowledge of system and
hence every model has parameters or functions that are uncertain. Hence, the
stability results will have to be extended for models where part of the model is
unknown or uncertain. Such stability results form the concept of robust stability
[8,14,27]. For example, if a system satisfies an input-output property known as
passivity [14] and there is no other information available about the system one
can design a passive controller to make the overall system stable. More generally,
the concept of dissipativity can be used developed stability results for systems
with different classes of model uncertainty [14]. The dissipativity-based results are
applicable for systems with and without an explicit state-space characterization.
These provide methods for designing a stabilizing controller for a set of (uncer-
tain) systems and the performance obtained will be the worst-case performance.
Hence, the optimal control methodology based on robust stability concepts can
only be used to design controllers maximizing the worst-case performance. If the
uncertainty set if large then the optimal performance will be poor.

2.4 Adaptive Control

An alternate method to control uncertain systems is to use the idea of adaptive
control [4,17,22]. The main idea of adaptive control is to adapt the parameters
of the controllers so that the performance of the closed-loop system is optimal
at each and every operating point. In the 1950’s and the 1960’s, NASA had an
extensive research-airplane program to test the adaptive control methodology
and it was finally shut down due to a fatal accident [18]. The analysis of the
accident revealed that the failure is due to overall stability issues (as opposed
to stability at every operating point). This led to the development of stable or
provably correct adaptive systems [22] based on rigorous Lyapunov approach
applied to state-space models with parametric uncertainty. Stable adaptive con-
trol, as compared to robust control, provides a framework for stabilization as
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well as optimal performance. See [10] for a recent analysis of the NASA X-15
program and the lessons learned from it.

Stability takes priority over performance

3 Machine Learning for Control

In this section, we discuss the relevance of machine learning techniques in the
context of feedback control with specific focus on the issues of stability, per-
formance, and uncertainty. First, we present a brief overview of machine learn-
ing techniques and their specific role in control systems. For an introduction
to machine learning techniques and its allied topics see [1,5,13,21,24,26] and
numerous references within.

3.1 Overview of Machine Learning

The ever increasing ability to manipulate and to compute with large sets of data
makes it possible to implement many of the machine learning techniques for a
variety of applications. Machine learning may simply be defined as extracting
information from data using computing machines. Extracting information from
data is as old as science and every fundamental laws of nature is an example of
such extraction. Hence, every model discovery is such an example. If a computa-
tional tool is utilized in extracting such information or a model from data then
the methodology is dubbed as artificial intelligence or more modestly machine
learning.

Machine learning techniques process large data (of input and output of a
given system) to essentially provide a black-box model of the system, which may
then be used in predicting output for an input that is not part of the origi-
nal data. The black box may contain any number of models available including
neural networks, support vector machines, decision trees, and a variety of other
underlying models. These models are derived using error minimization tech-
niques including back propagation algorithms and reinforcement learning algo-
rithms. Since these techniques are primarily based on the paradigm of processing
large amount of data the models thus obtained may also be significantly high
dimensional, essentially rendering them useless in terms of rigorous mathemat-
ical analysis. Hence, the abstraction of data into one of the machine learning
models is dubbed as model-free approach. Here, the model-free approach also
refers to the fact that a model is not developed from the first principles (laws of
nature) but only from the available data (input as well as output).

Machine learning provides a model-free data-based approach
to predict outputs for unknown inputs
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3.2 Model-Free Control

The literature on machine learning applications to control systems is a lot sparser
compared to that of other applications. See, for example, [9,19,23,25]. With
exception of neural network based control (see for example, [12,16]) most of
the machine learning based control do not focus on the proof of stability. The
primary focus of such literature is on performance maximization or optimiz-
ing parameters of a stabilizing controller. The available literature on machine
learning applications to control systems can be broadly classified as follows:

(i) Neural-network or similar model-based optimal control where the weights/
parameters of the model are adapted for stabilization and optimal perfor-
mance. In this case, the models are invariably state-space based and the sta-
bility proof is in terms of equilibrium-state using Lyapunov-like approaches.
This is simply a large scale version of model-based state-space approach to
control.

(ii) Reinforcement-learning or a similar technique is used to develop optimal
controllers based only on (large amount of) input-output data with appro-
priate control problem stated in terms of input and output signals. In most
of these cases, (BIBO) stability is an inherent quality of the system or
no proof of stability is considered. This is truly a model-free approach to
control, that is, no model is derived from first principles or the available
large-scale model is not useful for formal analysis.

Note that the above model-free approach is ideal for systems which are inher-
ently bounded (for example, finite-state machines). In this case, the reinforce-
ment learning and other techniques can be used to extract maximum perfor-
mance from the system. However, in the case of systems where the boundedness
is not inherent to the system then it is not clear that the model-free approach
is sound. Though there have been multiple demonstrations of model-free app-
roach to control on a variety of problems, only time will tell if it is indeed a
safe approach in every operating condition. As the NASA X-15 program taught
us that performance does not imply stability. The following two questions (and
their derivatives) remain unanswered at this time:

(i) Is there a provably-correct stable machine learning control (that is different
from adaptive control)?

(ii) In the case of model-free approach, what are the definitions of state or
stability? More, fundamentally is there a need for such paradigms?

4 Conclusion

In this note, we considered the question of stability in a model-free approach to
control. Specifically, we first present an overview of traditional control concepts
with specific focus on the issue of stability and its related concepts such as state
and state-space models. This is followed by a very high level introduction to
machine learning techniques for control and discussed the difficulty as well as
need for the concept of stability in such a model-free approach.
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Kingsbury, N.G. (eds.) Signal Analysis and Prediction. Applied and Numerical
Harmonic Analysis, pp. 163–173. Springer, Heidelberg (1998). https://doi.org/10.
1007/978-1-4612-1768-8 11

21. Michalski, R.S., Carbonell, J.G., Mitchell, T.M.: Machine Learning: An Artificial
Intelligence Approach. Springer, Heidelberg (2013)

22. Narendra, K.S., Annaswamy, A.M.: Stable Adaptive Systems. Courier Corporation,
Mineola (2012)

https://doi.org/10.1007/BFb0080630
https://doi.org/10.1007/978-1-4757-3290-0
https://doi.org/10.1007/978-1-4757-3290-0
https://doi.org/10.1007/978-3-319-40624-4
https://doi.org/10.1007/978-3-319-40624-4
https://doi.org/10.1007/978-1-4757-6577-9
https://doi.org/10.1007/978-1-4612-1768-8_11
https://doi.org/10.1007/978-1-4612-1768-8_11


222 V. Chellaboina

23. Ng, A.Y., Coates, A., Diel, M., Ganapathi, V., Schulte, J., Tse, B., Berger,
E., Liang, E.: Autonomous inverted helicopter flight via reinforcement learning.
In: Ang, M.H., Khatib, O. (eds.) Experimental Robotics IX. Springer Tracts in
Advanced Robotics, vol. 21, pp. 363–372. Springer, Heidelberg (2006). https://doi.
org/10.1007/11552246 35

24. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction, vol. 1. MIT
press, Cambridge (1998)

25. Sutton, R.S., Barto, A.G., Williams, R.J.: Reinforcement learning is direct adaptive
optimal control. IEEE Control Syst. 12(2), 19–22 (1992)

26. Witten, I.H., Frank, E., Hall, M.A., Pal, C.J.: Data Mining: Practical Machine
Learning Tools and Techniques. Morgan Kaufmann, San Francisco (2016)

27. Zhou, K., Doyle, J.C.: Essentials of Robust Control, vol. 104. Prentice hall, Upper
Saddle River (1998)

https://doi.org/10.1007/11552246_35
https://doi.org/10.1007/11552246_35

	Model-Free Optimal Control: A Critical Analysis
	1 Introduction
	2 Optimal Feedback Control
	2.1 Dynamical Systems and Control
	2.2 Stability and State-Space Models
	2.3 Optimal Robust Control
	2.4 Adaptive Control

	3 Machine Learning for Control
	3.1 Overview of Machine Learning
	3.2 Model-Free Control

	4 Conclusion
	References




