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Abstract. The TPCx-HS Hadoop benchmark has helped drive competition in
the Big Data marketplace and has proven to be a successful industry standard
benchmark for Hadoop systems. However, the Big Data landscape has rapidly
changed since its initial release in 2014. Key technologies have matured, while
new ones have risen to prominence in an effort to keep pace with the exponential
expansion of datasets. For example, Hadoop has undergone a much-needed
upgrade to the way that scheduling, resource management, and execution occur
in Hadoop, while Apache Spark has risen to be the de facto standard for in-
memory cluster compute for ETL, Machine Learning, and Data Science Work-
loads. Moreover, enterprises are increasingly considering cloud infrastructure for
Big Data processing. What has not changed since TPCx-HS was first released is
the need for a straightforward, industry standard way in which these current tech-
nologies and architectures can be evaluated. In this paper, we introduce TPCx-
HS v2 that is designed to address these changes in the Big Data technology land-
scape and stress both the hardware and software stacks including the execution
engine (MapReduce or Spark) and Hadoop Filesystem API compatible layers for
both on-premise and cloud deployments.
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1 Introduction

Since its release on August 2014, the TPCx-HS Hadoop benchmark [1] has helped drive
competition in the Big Data marketplace, generating 24 publications spanning 5 Hadoop
distributions, 3 hardware vendors, 2 OS distributions, and 1 virtualization platform [2]
(as of 2017/06/20). By all measures, it has proven to be a successful industry standard
benchmark for Hadoop systems. However, the Big Data landscape has rapidly changed
over the last three years. Key technologies have matured, while new ones have risen to
prominence in an effort to keep pace with the exponential expansion of datasets. More-
over, enterprises are increasingly considering cloud infrastructure for Big Data
processing. What has not changed, however, is the need for a straightforward, industry
standard way in which these current technologies and architectures can be evaluated
with workloads and metrics that are well understood and easily relatable to the end user.
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In keeping with these important industry trends, we introduce TPCx-HS v2 for
Hadoop and Spark that support not only traditional on-premise deployments but also
cutting edge cloud deployments.

The rest of the paper is organized as follows. Section 2 briefly discusses the Hadoop
ecosystem and the emergence of Spark. In Sect. 3, we present the changes made to TPCx-
HS in version 2 of the benchmark specification and kit. Section 4 follows with an exper-
imental comparison of Hadoop MapReduce and Spark. Finally, we conclude in Sect. 5.

2 Hadoop Ecosystem

At its core, Apache Hadoop is a software library that provides a framework for distrib-
uted processing of large datasets using a simple programming model. The popularity of
Hadoop has grown in the last few years because it meets the needs of many organizations
for flexible data analysis. Because of the increased deployment of Hadoop in production,
a rich ecosystem of tools and solutions has developed around it. The number of official
Apache open source projects alone, that are related to Hadoop, have increased from just
1 in 2008 [5] to 26 today [6]. Commercial Hadoop offerings are even more prolific and
diverse, and include platforms and packaged distributions from vendors such as Clou-
dera, Hortonworks, and MapR, plus a variety of tools for specific Hadoop development,
production, and maintenance tasks. Today, Apache Spark represents an increasingly
important piece of this ecosystem.

2.1 Emergence of Spark

Apache Spark is an open source cluster computing framework that provides an interface
for programming entire clusters with implicit data parallelism and fault-tolerance. It was
developed to overcome some of the bottlenecks of Apache Hadoop, one of which is
around the use of intermediate persistent storage. Spark provides an alternative to
MapReduce that enables workloads to execute in memory, instead of on disk. Spark
accesses data from HDFS but bypasses the MapReduce processing framework, and thus
eliminates the resource-intensive disk operations that MapReduce requires. By using in-
memory computing, Spark workloads typically run significantly faster compared to disk
execution.

According to a Big Data survey report published by the Taneja Group [3], perform-
ance was cited as one of the main drivers of Spark adoption. Within the report, more
than half of the respondents mentioned actively using Spark, with a notable increase in
usage over the twelve months following the survey. Clearly, Spark is an important
component of any Big Data pipeline today. Interestingly, but not surprisingly, there is
also a significant trend towards deploying Spark in the cloud.

3 TPCx-HS v2

The TPCx-HS benchmark now stresses both the hardware and software stack including
the execution engine (MapReduce or Spark) and Hadoop Filesystem API compatible
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layers for both on-premise and cloud deployments. The workload can be used to assess
a broad range of system topologies and implementations of Hadoop/Spark clusters. In
this new version of the kit, there have been changes made to support not only Spark but
also Hadoop 2 APIs. The following sections discuss the need for these changes and
describe what they are.

3.1 Hadoop 2 Support

With Hadoop 2, MapReduce from Hadoop 1 (MRv1) has been split into two compo-
nents. The cluster resource management capabilities have become YARN (Yet Another
Resource Negotiator) [11], while the MapReduce-specific capabilities remain MapRe-
duce (MRv2)—albeit with a newer API. This is a significant upgrade to the way sched-
uling, resource management, and execution occur in Hadoop. It divides resource
management and job lifecycle management into separate components.

The new YARN ResourceManager manages the global assignment of compute
resources to applications, and the per-application ApplicationMaster manages the sched-
uling and coordination of an application. An application is either a single job (in the
sense of Hadoop 1 MapReduce jobs) or a Directed Acyclic Graph (DAG) of such jobs.
The ResourceManager and per-machine NodeManager daemon, which manages the
user processes on that machine, form the computation unit of the job. The per-application
ApplicationMaster is the framework-specific library and is tasked with negotiating
resources from the ResourceManager and working with the NodeManager(s) to execute
and monitor the tasks. One of the primary issues with MRv1 is that the Map and Reduce
slot configuration is static. This inflexibility can lead to the underutilization of resources
[10]. There is no slot configuration in YARN, allowing it to be more dynamic and hence
more efficient [11]. Another limitation of MRv1 is that the Hadoop framework only
supports MapReduce jobs. YARN supports both MapReduce and non-MapReduce
applications.

3.1.1 MapReduce Kit Changes

While TPCx-HS v1 used the MRv1 API, the MapReduce code in the TPCx-HS v2 kit
has been rewritten to conform to the MRv2 Java API. Since the MRv2 API is not back-
ward compatible, a side effect of this change is that TPCx-HS v2 will not run on Hadoop
1. As before, job configuration options can be specified on the command line or in
the mapred-site.xml file on the client. The vast majority of job configuration options that
were available in MRv1 work in MRv2/YARN as well. For consistency and clarity,
many options have been given new names. The older names are deprecated, but will still
work for the time being. One more notable difference is the change in record format
between TPCx-HS v1 and v2. The MRv1 code used a 64-bit Linear Congruential Gener-
ator (LCG) based random number generator, while the new MRv2 code uses a 128-bit
LCG random number generator. As a result, keys now remain in the binary format.
TPCx-HS v2 data is also less compressible as it was changed to reflect the changes in
the GraySort benchmark [8] on which it is based [7]. Results of running the kit with the
new API are detailed in Sect. 4.
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3.2 Spark Support

Spark is a unified engine for distributed data processing. It enables batch, real-time, and
advanced analytics on the Hadoop platform. Spark has a programming model similar to
MapReduce but extends it with a data-sharing abstraction called “Resilient Distributed
Datasets,” or RDDs [9]. RDDs enable Spark to perform fault tolerant distributed in-
memory computations.

Spark can be run in standalone mode or on YARN, both of which are supported by
the TPCx-HS kit. In standalone mode, Spark manages its own cluster and uses a master/
worker architecture. Here, a single driver (master) manages the workers on which the
executors run. When run on YARN, YARN is responsible for allocating resources to
Spark. Spark on YARN supports data locality for data residing in HDFS.

3.2.1 Spark Kit Changes

The TPCx-HS kit utilizes the Spark Scala API, for running the three phases of data
generation, data sorting, and data validation required by the benchmark. The record
generation in the Spark code is similar to the MRv2 code, so both of these results are
comparable. The settings needed for Spark can be added to the Spark default configu-
ration, for additional tuning. The kit supports running Spark using YARN or in stand-
alone mode. The YARN configuration settings can be changed as needed for running
Spark applications. The new jar file for Spark is also part of the kit and the user can
choose to run with either Spark or MapReduce as the framework for running the bench-
mark. The results of the Spark framework tests are outlined in Sect. 4.

3.3 Cloud Support

The TPCx-HS specification now allows for cloud services to be part of the System Under
Test. Moreover, the disclosure requirements have been amended to support public cloud
environments where there is limited visibility into the underlying technology platform.

While there was nothing inherent in the workload or kit that prevented TPCx-HS
from running on public or private cloud infrastructure, changes to the TPCx-HS speci-
fication were required in order to make the results compliant with the new TPC pricing
policies outlined in the TPC Pricing Specification version 2.0 [4]. In particular, for a
measured configuration the benchmark driver and the System Under Test must all reside
in the same region and for a priced configuration the benchmark driver and the System
Under Test must all reside in the same region. The region of the priced configuration
may be different from the region of the measured configuration. The price of the priced
configuration must include all hardware, software, cloud services, and maintenance
charges over a period of 3 years.
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4 Experimental Results

4.1 Configuration

The 13 HPE ProLiant DL 380 Gen 9 servers used in the test were configured identically,
with two Intel Xeon E5-2683 v4 (“Broadwell”) processors with 16 cores each and 512
GiB of memory. Hyper-Threading was enabled so each server showed 64 logical
processors.

Each server was configured with two 1.2 TB spinning disks in a RAID 1 mirror for
the server operating systems, as well as four 800 GB Non-Volatile Memory Express
(NVMe) solid state disks connected to the PCI bus, and twelve 800 GB SAS Solid State
Disks (SSDs) connected through the HPE Smart Array P840ar/2G raid controller.

Full server configuration details are shown in Table 1.

Table 1. Server configuration. In this document notation such as “GiB” refers to binary quantities
such as gigibytes (2**30 or 1,073,741,824) while “GB” refers to gigabytes (10**9 or
1,000,000,000).

Component Quantity/Type
Server HPE ProLiant DL.380 Gen 9
Processor 2% Intel Xeon CPU E5-2683 v4 @ 2.10 GHz

w/16 cores each
Logical Processors (including HyperThreads) | 64

Memory 512 GiB (16x 32 GiB DIMMs)

NICs 2% 1 GbE ports + 4 x 10 GbE ports

Hard Drives 2x 1.2 TB 12G SAS 10 K 2.5in HDD - RAID
1 for OS

NVMes 4x 800 GB NVMe PCle — NodeManager traffic

SSDs 12x 800 GB 12G SAS SSD — DataNode traffic

RAID Controller HPE Smart Array P840ar/2G Controller

Remote Access HPE iLO Advanced

Three of the servers were virtualized with VMware vSphere 6.5 and ran virtual
machines that managed the Hadoop cluster. On the first server, a VM hosted the Gateway
node, running Cloudera Manager and several other Hadoop functions as well as the
gateway for the Hadoop Distributed File System (HDFS), YARN, Spark, and Hive
services. The second and third servers each hosted a Master VM, on which the active
and passive HDFS NameNode and YARN ResourceManager components and associ-
ated services ran. ZooKeeper, running on all three VMs, provided high availability.

The other 10 servers ran only the worker services, HDFS DataNode, and YARN
NodeManager. Spark executors ran on the YARN NodeManagers.

The full assignment of roles is shown in Table 2. Key software component versions
are shown in Table 3.
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Table 2. Hadoop/Spark roles.

Node

Roles

Gateway

Cloudera Manager, ZooKeeper Server, HDFS JournalNode, HDFS gateway,
YARN gateway, Hive gateway, Spark gateway, Spark History Server, Hive
Metastore Server, Hive Server2, Hive WebHCat Server, Hue Server, Oozie
Server

Masterl

HDFS NameNode (Active), YARN ResourceManager (Standby), ZooKeeper
Server, HDFS JournalNode, HDFS Balancer, HDFS FailoverController,
HDEFS HttpFS, HDFS NFS gateway

Master2

HDFS NameNode (Standby), YARN ResourceManager (Active), ZooKeeper
Server, HDFS JournalNode, HDFS FailoverController, Y ARN JobHistory
Server,

Workers (10)

HDEFS DataNode, YARN NodeManager, Spark Executor

Table 3. Key software components.

Component Version

Operating System Centos 7.3

Cloudera Distribution of Hadoop 5.10.0

Cloudera Manager 5.10.0

Hadoop 2.6.04-c¢dh5.10.04-2102
HDFS 2.6.0+cdh5.10.04+2102
YARN 2.6.0+cdh5.10.04+2102
MapReduce2 2.6.0+cdh5.10.04+2102
Hive 1.1.04-cdh5.10.04+-859
Spark 1.6.04+cdh5.10.0+457
ZooKeeper 3.4.54cdh5.10.0+104
Java Oracle 1.8.0_111-b14
MySQL 5.6.35 Community Server

With the NVMe storage providing the highest random read/write I0s per second,
the four NVMe devices in each server were assigned to handle the NodeManager
temporary data, which consists of Hadoop map spills to disk and reduce shuffles. SAS
SSDs provide very high speed sequential reads and writes, so the twelve SSDs in each
server were assigned to the DataNode traffic, consisting of reads and writes of permanent

HDES data.

The Hadoop and Spark parameters used in the test are shown in Table 4. They fall
into two categories. Parameters such as yarn.nodemanager.resource.cpu-vcores and
yarn.nodemanager.resource.memory-mb assign the resources available to YARN (to
provide to containers running Hadoop map or reduce tasks or Spark executors), while
the rest are application-dependent parameters.
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Table 4. Key Hadoop/Spark cluster parameters used in tests.

Parameter Default Configured
dfs.blocksize 128 MiB 1 GiB
dfs.replication 3 3
mapreduce.task.io.sort.mb 256 MiB 2047 MiB
yarn.nodemanager.resource.cpu-vcores 64
mapreduce.map.cpu.vcores 1 1
mapreduce.reduce.cpu.vcores 1 1
yarn.nodemanager.resource.memory-mb 448 GiB
mapreduce.map.memory.mb 1 GiB 6.25 GiB
mapreduce.reduce.memory.mb 1 GiB 6.25 GiB
Maximum map/reduce tasks per node 64/64
Number of map/reduce tasks used in tests 639/639
spark.executor.cores 1 4
spark.executor.memory 256 MiB 25 GiB
spark.driver.memory 1 GiB 10 GiB
spark.executor.instances 149
Maximum number of Spark executors per node 16

Log Level on HDES, YARN, Hive INFO WARN

For yarn.nodemanager.resource.cpu-vcores, all 64 logical processors were assigned
to YARN vcores. For yarn.nodemanager.resource.memory-mb, the 512 GiB server
memory was reduced by about 12% to provide memory for the operating system, as well
as the Java heap size required for the DataNode and NodeManager processes, resulting
in 448 GiB usable for containers.

The dfs.blocksize was set at 1 GiB to take advantage of the large memory available
to YARN, and the mapreduce.task.io.sort.mb was consequently set to the largest
possible value, 2047 MiB, to minimize spills to disk during the map processing of each
HDFEFS block.

The number of vcores assigned to map and reduce processes (mapre-
duce.map.cpu.vcores and mapreduce.reduce.cpu.vcores) were left at the default value
of 1, meaning that a maximum of 64 map or reduce task containers could run at any one
time on the 64-vcore cluster. It was found through experimentation that using all 64
veores per server provided the fastest performance, but optimum performance was
achieved by lowering the per-task memory (mapreduce.map.memory.mb and mapre-
duce.reduce.memory.mb) from the maximum sustainable by the 448-GiB cluster (7
GiB) down to 6.25 GiB. With each of the 10 nodes running 64 YARN containers, a
maximum of 640 task containers could be run simultaneously. One YARN container
was needed to run the YARN Application Master, leaving 639 for maps or reduces.

For Spark the calculations are similar: 16 Spark executors were enabled per node,
each using 4 vcores (spark.executor.cores) and 25 GiB (spark.executor.memory). Spark
automatically adds 10% of Spark executor memory overhead, so the total memory
consumed by 16 Spark executors (16 x 27.5 GiB or 440 GiB) would fit within the 448-
GiB cluster. However, it was found that the best Spark performance was obtained while
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allowing more free memory and vcores, so the final setup used 15 executors per node
or 149 per cluster (again with one YARN container left over for the ApplicationMaster
task).

Spark was run in yarn-client mode, meaning that the Spark master process ran on
the Spark gateway on the Gateway VM. 10 GiB was assigned to this process
(spark.driver.memory).

Finally, the log level of most Hadoop processes was lowered from INFO to WARN
to reduce the amount of log traffic being written on each server.

4.2 Results

The results for the three versions of the code are shown in Table 5. Both the consolidated
benchmark metric (HSph@3TB) in which larger is faster, and the elapsed times for the
three TPCx-HS phases (smaller is better) are shown.

Table 5. Results

Test TPCx-HS Performance HSGen Elapsed | HSSort Elapsed | HSValidate
Metric (HSph@3TB) Time (S) Time (S) Elapsed Time (S)

MRvl | 7.8843 372 918 123

MRv2 | 7.2974 370 979 127

Spark 8.6281 368 799 79

Utilization of CPU, disks, and network are shown for the three tests in Figs. 1, 2, 3,
4,5,6,7,8 and 9. One can see how the various resources are utilized through the phases
of the benchmark, as well as the small differences between the two MapReduce versions
and the Spark version.

MRV CPU Utilization % Through Phases of TPCx-HS MRV Disk Thruput (GB/s) During TPCx-Hs- Per Host

NodeMgr Reads g Writes ataNode Reads ataNode Writes

Thruput (GB/s)

€PU Utilizatio

Fig. 1. MRvl CPU Utilization on a single Fig. 2. MRv1l Disk Throughput on a single
worker node. worker node.



128 T. Magdon-Ismail et al.

MRv1 Network Receive and Transmit Rates (GB/s) During TPCx-Hs - Per Host MRV2 CPU Utilization % Through Phases of TPCx-HS

RX —TX

CPU Utilization %

Receive/Transmit Rate (GB/s)

Fig. 3. MRv1 Network Receive and Transmit Fig. 4. MRv2 CPU Utilization on a single
Rates on a single worker node. worker node.

MRv2 Disk Thruput (GB/s) During TPCx-HS - Per Host MRv2 Network Receive and Transmit Rates (GB/s) During TPCx-HS - Per Host

NodeMgr Reads gr Wites Reads Writes RX —TX

Throput (68/5)

£

Fig. 5. MRv2 Disk Throughput on a single Fig. 6. MRv2 Network Receive and Transmit
worker node. Rates on a single worker node.

Spark CPU Utilization % Through Phases of TPCx-HS Spark Disk Thruput (GB/s) During TPx-HS - Per Host

NodeMgr Reads gr Wites Reads Writes

U Utilization %

Fig. 7. Spark CPU Utilization on a single Fig. 8. Spark Disk Throughput on a single
worker node. worker node.
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Spark Network Receive and Transmit Rates (GB/s) During TPCx-Hs - Per Host

RX —TX

mit Rate (GB/)

eive/Trans:

Fig. 9. Spark Network Receive and Transmit Rates on a single worker node.

5 Conclusion

The TPC has played a crucial role in providing the industry with relevant standards for
total system performance, price-performance, and energy efficiency comparisons. TPC
benchmarks are widely used by database researchers and academia. As Big Data became
an integral part of enterprise IT, TPCx-HS was the TPC’s first major step in creating a
set of industry standards for measuring various aspects of hardware and software systems
dealing with Big Data. It has helped drive competition in the Big Data marketplace and
has proven to be a successful industry standard benchmark for Hadoop systems.

However, the Big Data technology landscape has rapidly changed since the bench-
mark’s initial release, and in keeping with these changes TPCx-HS has also transformed.
TPCx-HS v2 has advanced not only by supporting the significant leaps in technology,
namely Hadoop 2 (MapReduce v2/Y ARN) and Spark, but also by accommodating major
new infrastructure and deployment options such as the cloud.
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