
Performance Characterization of Big Data
Systems with TPC Express Benchmark HS

Manan Trivedi(&)

Cisco Systems, Inc., 275 East Tasman Drive, San Jose, CA 95134, USA
matrived@cisco.com

Abstract. TPC Express Benchmark HS (TPCx-HS) is industry’s first standard
for benchmarking big data systems. There are many moving parts in a large big
data deployment which includes compute, storage, memory and network col-
lectively called the infrastructure, platform and application and in this paper, we
characterize in detail how each of these components affect performance.

Keywords: Industry standards � Performance � Hadoop � Spark

1 Introduction

Performance is key to any application and more so to a big data deployment as it usually
involves hundreds and thousands of nodes for both data storage and processing. This
paper goes in to the detail on various bottlenecks to performance at each level and to
what extent one could improve the performance by overcoming these bottle necks. Even
a small percentage gain in performance can be a lot of capex reduction in a large
deployment as fewer nodes can take on more tasks. The focus of this paper is on Hadoop
performance characterization and goes into details of tuning and consideration of the
storage – with Solid State Disks (SSD) and Hard Disk Drive (HDD), Networking - with
10 Gbit and 40 Gbit, application - Spark and MapReduce.

1.1 Hadoop Evolution

Apache Hadoop is a software framework used for distributed storage and processing of
big data. The two main components of Apache Hadoop are the Hadoop Distributed File
System (HDFS), and the MapReduce framework. HDFS implements a fault-tolerant
distributed file system. MapReduce is a framework for the parallel processing of data
stored in HDFS. The MapReduce architecture divides the task into many smaller jobs.
The code for each of these jobs is pushed to each server where the data resides. The
framework executes the code on each server in parallel; intermediate results are
returned, then combined for the final result.

The first version of the MapReduce framework, MRv1, implemented an architec-
ture that handled both the processing of jobs and the resource management across the
cluster. This approach had a number of limitations:

• Single point of failure: If the server coordinating all the tasks, called the NameNode,
fails, then all processing fails.

© Springer International Publishing AG 2018
R. Nambiar and M. Poess (Eds.): TPCTC 2017, LNCS 10661, pp. 75–92, 2018.
https://doi.org/10.1007/978-3-319-72401-0_6

• Scalability: The architecture is limited to approximately 4000 nodes.
• Lock-in: MRv1 requires the use of MapReduce, which is not the optimal choice for

many workloads.

To address these limitations the open source community developed another
approach to handle job processing and cluster management called MRv2 (also known
as YARN). In MRv2, the responsibilities are handled by separate components. This
addresses the issues of a single point of failure and scalability while also opening the
framework to run other programming models besides MapReduce. This allows mul-
tiple applications to be run on the same cluster at the same time. YARN can assign and
reassign resources for different concurrent applications to allow better utilization of the
cluster’s resources (Fig. 1).

The ability to run new programming models on the cluster opens the door to
address the issues with MapReduce. Parallel data processing as implemented by
Apache Hadoop executes map and reduce phases that output intermediate data sets that
are themselves input to the next map and reduce phase. There can be many such phases
and MapReduce’s key constraint is that it writes the intermediate data sets out to the
disk, and then reads from the disk for the next phase. As such, MapReduce’s speed is
governed by the I/O bandwidth of the storage system.

To overcome the disk, I/O constraint of MapReduce the open source community
developed Apache Spark. Apache Spark addresses the issue by reading the data into

Fig. 1. MRv1 and MRv2 architecture

76 M. Trivedi

memory, storing and transforming it there before producing the final result. As the
majority of operations are performed in memory at electronic speeds the system exe-
cutes much faster. In addition, Apache Spark provides a rich set of functionality for
in-memory processing that is both fault-tolerant and easier to program than MapRe-
duce. It’s in-memory approach enables applications for real-time processing of
streaming data and interactive analysis.

Another solution to the disk I/O constraint issue comes from improvements in
storage technology that have made SSDs a viable choice for data storage in big data
systems. SSDs enable much faster read and write access as they do not have the same
physical limitations of spinning disks and moving heads that hard disk drives have.
Finally, advances in network technology have created faster throughput speeds which
also benefit big data systems.

2 Introduction to TPCx-HS Benchmark

TPCx-HS is the industry’s first standard for benchmarking big data systems [1–3]. It is
designed to provide verifiable performance, price-to-performance, and availability
metrics for hardware and software systems that use big data.

TPCx-HS can be used to assess a broad range of system topologies and imple-
mentation methodologies for Hadoop in a technically rigorous and directly comparable,
vendor-neutral manner [5]. While the modeling is based on a simple application, the
results are highly relevant to big data hardware and software systems.

TPCx-HS benchmarking has three steps:

• HSGen: Generates data and retains it on a durable medium with three-way
replication

• HSSort: Samples the input data, sorts the data, and retains the data on a durable
medium with three-way replication

• HSValidate: Verifies the cardinality, size, and replication factor of the generated
data

The TPCx-HS specification mandates two consecutive runs to demonstrate
repeatability, as depicted in Fig. 2, and the lower value is used for reporting.

TPCx-HS uses three main metrics:

• HSph@SF: Composite performance metric, reflecting TPCx-HS throughput, where
SF is the scale factor

• $/HSph@SF: Price-to-performance metric
• System availability date

TPCx-HS also reports the following numerical quantities:

• TG: Data generation phase completion time, with HSGen reported in hh:mm:ss
format

• TS: Data sort phase completion time, with HSSort reported in hh:mm:ss format
• TV: Data validation phase completion time, reported in hh:mm:ss format

Performance Characterization of Big Data Systems 77

The primary performance metric of the benchmark is HSph@SF, the effective sort
throughput of the benchmarked configuration. Here is an example (using the sum-
mation method):

HSph@SF ¼ SF
T=3600ð Þ

� �

Here, SF is the scale factor, and T is the total elapsed time for the run-in seconds.
The price-to-performance metric for the benchmark is defined as follows:

$=HSph@SF ¼ P
HSph@SF

Here, P is the total cost of ownership (TCO) of the system under test (SUT).
The system availability date indicates when the system under test is generally

available as defined in the TPC-Pricing specification.

Fig. 2. TPCx-HS Benchmark processing

78 M. Trivedi

3 Performance Characterization

The tests were conducted a series of TPCx-HS to characterize the performance in
various deployment scenarios. The test configuration consisted of Cisco UCS Inte-
grated Infrastructure for Big Data cluster with 17 Cisco UCS C240 M4 Rack Servers.
The Cisco UCS Integrated Infrastructure for Big Data is built using the following
components:

• Cisco UCS 6300 Series Fabric Interconnect, provide high-bandwidth, low-latency
connectivity for servers, with Cisco UCS Manager providing integrated, unified
management for all connected devices. The Cisco UCS 6300 Series Fabric Inter-
connects are a core part of Cisco UCS, providing low-latency, lossless 40 GB
Ethernet, Fibre Channel over Ethernet (FCoE), and Fibre Channel functions with
management capabilities for systems deployed in redundant pairs. Cisco Fabric
Interconnects offer the full active-active redundancy, performance, and exceptional
scalability needed to support the large number of nodes that are typical in clusters
serving big data applications.

• Cisco UCS C240 M4 Rack Server: Cisco UCS C-Series Rack Servers extend
Cisco UCS in standard rack-mount form factors. The Cisco UCS C240 M4 Rack
Server is designed to support a wide range of computing, I/O, and storage-capacity
demands in a compact design. It supports two Intel® Xeon® processor E5-2600 v4
series CPUs, up to 1.5 TB of memory, and 24 small-form-factor (SFF) disk drives
plus two internal SATA boot drives and Cisco UCS Virtual Interface Card
(VIC) 1387 adapters.

The Cisco UCS Integrated Infrastructure for Big Data cluster configuration consists
of two Cisco UCS 6332 fabric interconnects, 17 Cisco UCS C240 M4 servers with two
Intel Xeon processor E5-2680 v4 series CPUs, 256 GB of memory, and 24 SFF disk
drives or 8 SFF 1.6 TB SATA SSD plus two internal SATA boot drives and
Cisco UCS VIC 1387 adapters, as shown in Fig. 3. Table 1 lists the software versions
used.

2 x Cisco UCS 6332 16UP
40-Port Fabric Interconnect

16 x Cisco UCS C240 M4 Servers (Data Nodes)
with 8 x 1.6TB 6G SATA SSD or

24 x 1.8TB 10k rpm SAS HDD and
2 x 240 GB 2.5 inch Enterprise Value 6G SATA SSD (BOOT)

1 x Cisco UCS C240 M4 Servers (Name Node)
with 2 x 1.6TB 6G SATA SSD or

2 x 1.8TB 10K rpm SFF HDD and
2 x 240 GB 2.5 inch Enterprise Value 6G SATA SSD (BOOT)

40GigE

Fig. 3. Cisco UCS integrated infrastructure for big data cluster configuration

Performance Characterization of Big Data Systems 79

3.1 Cisco UCS Integrated Infrastructure for Big Data Cluster
Configuration

• 16 � Cisco UCS C240 M4 Servers (Data Nodes) with:
• 8 � 1.6-TB 6-Gbps SATA SSD or
• 24 � 1.8-TB/1.2 TB 12-Gbps SAS 10 K-rpm SFF HDD
• 2 � 240-GB 2.5–in. Enterprise Value 6-Gbps SATA SSD (Boot)
• 2 � 40 Gigabit Ethernet
• 2 � Cisco UCS 6332 fabric interconnect
• 1 � Cisco Nexus® 9372PX Switch

4 Hardware and Software: Performance Characterization

In the following section, we will do an in-depth performance analysis with various
permutations of these hardware and software constituents:

• Baseline Performance Tuning parameters (Infrastructure and Operating System)
• Performance tuning parameters of MRv2
• Performance characteristics comparison of MRv1 vs. MRv2
• MRv2 Storage Configuration Comparison (HDD vs. SDD, 2 vs. 4 vs. 8 SSD)
• MRv2 Network Configuration Comparison (10 g vs. 40 g)
• Apache Spark: Comparison of Default Settings to Tuned Parameters
• Apache Spark Storage Comparison: HDD vs. SSD

4.1 Baseline Performance Tuning Parameters

Apache Hadoop is based on a new approach to storing and processing complex data,
with reduced data movement. It distributes the data across the cluster. Each machine in
the cluster stores and also processes the data. Infrastructure and operating system
tunings can have a significant performance impact, depending on the applications and
their respective workloads. Therefore, it is important to individually tune the compute,
network and storage parameters of the system to achieve optimal performance for the
cluster.

Table 1. Software versions

Layer Component Version or Release

Computing Cisco UCS C240 M4 server C240M4.2.0.13d.0.0812161132
Network Cisco UCS 6332 fabric interconnect 3.1 (2b)

Cisco UCS VIC 1387 firmware 4.1 (2d)
Cisco UCS VIC 1387 driver 2.3.0.31

Software Red Hat Enterprise Linux (RHEL) server 7.2 (x86_64)
Cisco UCS Manager 3.1 (2b)

Hadoop Cloudera Enterprise Version 5.10.0

80 M. Trivedi

Hadoop is a complex application designed to address many different types of
workloads. Very often, the default settings are not optimized for the best performance,
instead being defined to work out of the box on the minimum hardware required.
Tuning the Hadoop settings can produce significant performance improvements [4].

The key areas for Hadoop performance tuning are: infrastructure (compute, net-
work and storage), operating systems and Hadoop parameters. These parameters are
covered in-depth in a previous paper I wrote titled “Performance Evaluation and
Benchmarking” as part of Springer’s Lecture Notes in Computer Science Series.

The focus of this paper is to study the MRv2 architecture and compare its per-
formance to MRv1. We will use the MRv1 performance tuning and results from our
earlier study published under: “Lessons Learned: Performance Tuning for Hadoop
Systems.”1

4.2 Apache Hadoop MRv2 Tuning

The default Apache Hadoop MRv2 settings are not optimized for performance. Instead,
they are defined so the system works out of the box with the minimum hardware
requirement. HDFS provides storage for all the data and is a core component of Apache
Hadoop. Fine-tuning the settings here can produce significant performance improve-
ments. The settings discussed in this section have been tested and will provide
improved speed for heavy workloads. Here are the tuning parameters which we used to
tune the cluster for MRv2.

The following are the parameters and tuned values for the test cases run in this
paper (Tables 2 and 3).

• hdfs-site.xml
• mapred-site.xml

Table 2. hdfs-site.xml settings

Parameter Value

dfs.blocksize 1 GB
dfs.datanode.failed.volumes.tolerated 4
dfs.datanode.handler.count 40
dfs.datanode.max.xcievers,
dfs.datanode.max.transfer.threads

32000

dfs.namenode.handler.count 1400
dfs.namenode.service.handler.count 55
dfs.namenode.servicerpc-address 8022
Java Heap Size of NameNode in Bytes 16 GB
Java Heap Size of Secondary NameNode in Bytes 16 GB

1 Note: These settings represent a starting point for tuning a big data system. The actual best values
will vary based on the workload of the system.

Performance Characterization of Big Data Systems 81

4.3 MRv1 vs MRv2 (YARN)

MRv1, the first version of the Apache Hadoop framework makes use of a job tracker
that creates a set of map and reduce tasks which are then managed by the appropriate
task trackers on each node.

Table 3. mapred-site.xml settings

Parameter Value

Mapreduce.client.submit.file.replication 3
yarn.app.mapreduce.am.command-opts -Djava.net.preferIPv4Stack=TRUE -

Xmx2800m
io.file.buffer.size 128 KB
mapreduce.job.reduce.slowstart.completedmaps 0.85
mapreduce.job.reduces 895
mapreduce.task.timeout 3 min
mapreduce.map.java.opts -Djava.net.preferIPv4Stack=true -XX:

+UseParallelGC -XX:
ParallelGCThreads=8 -XX:-
UseAdaptiveSizePolicy -XX:
+DisableExplicitGC

mapreduce.reduce.java.opts –Djava.net.preferIPv4Stack=true -XX:
+UseParallelGC -XX:
ParallelGCThreads=8 -XX:-
UseAdaptiveSizePolicy -XX:
+DisableExplicitGC

mapreduce.task.io.sort.factor 100
mapreduce.task.io.sort.mb 1500 MB
mapreduce.reduce.shuffle.parallelcopies 30
yarn.nodemanager.heartbeat.interval-ms, yarn.
resourcemanager.nodemanagers.
heartbeat-interval-ms

160 ms

yarn.scheduler.fair.preemption Resource Manager Default Group
zlib.compress.level BEST_SPEED
yarn.app.mapreduce.am.resource.mb 3 GB
ApplicationMaster Java Maximum Heap Size 1 GB
mapreduce.map.memory.mb 2500 MB
mapreduce.reduce.memory.mb 3 GB
mapreduce.map.java.opts.max.heap 2300 MB
mapreduce.reduce.java.opts.max.heap 2800 MB
yarn.nodemanager.resource.memory-mb 246 GB
yarn.nodemanager.resource.cpu-vcores 56
yarn.scheduler.maximum-allocation-mb 246 GB
yarn.scheduler.maximum-allocation-vcores 56

82 M. Trivedi

The next version of the MapReduce framework, MRv2, introduces YARN (Yet
Another Resource Negotiator). YARN separates cluster resource management and
MapReduce specific logic. The Resource Manager tracks and allocates available
resources and an Application Master process is created for each application which is
responsible for the entire life cycle of the MapReduce application.

To understand MRv2 performance compared to MRv1 we did an in-depth study of
the performance of both frameworks by running a TPCx-HS benchmark. This led to the
following observations:

• Overall, in terms of total time taken, MRv1 performed faster than MRv2.
• While MRV2 was faster in HSSort phase, and MRv1 was faster in the HSGen and

HSValidate phases.

The test results here show the comparison of MRv1 vs. MRv2 at a 3-TB scale
factor.

Result: MRv1 vs MRv2 (YARN).
This observed performance penalty is offset by the numerous benefits of the MRv2

framework in terms of scalability, fault-tolerance and support for simultaneously
running multiple applications. The results in Table 4 show that MRv1 is performing
6% better than MRv2.

These results are based on one set of tuning parameters. These parameters will vary
from workload to workload.

Cluster Detail: 16 data nodes each containing 8 � 1.6 TB Intel SSDs and
2 � 40 G Network connectivity (Fig. 4).

190

522

77

789

215

503

125

843

0

100

200

300

400

500

600

700

800

900

HSGen HSSort HSValidate Total Time

T
ot

al
 T

im
e

In
 S

ec
on

ds

MRv1 vs MRv2 (YARN)

MRv1 MRv2

Fig. 4. MRv1 vs MRv2 (YARN)

Performance Characterization of Big Data Systems 83

Table 4 lists detailed response times for each benchmark phase.

4.4 MRv2 Storage Configuration Comparison

Apache Hadoop solves the big data problem by breaking the data up into smaller
chunks and storing them across many servers. The processors of each of these indi-
vidual servers are then used to operate on their locally stored data. This use of many
smaller servers with direct attached storage is a key reason Apache Hadoop scales in
such a linear fashion.

The use of this architecture means that the I/O bandwidth, i.e. how fast we can read
and write data, is the key constraint for the system. Recent advances in storage tech-
nology have made solid state disks (SSDs) a viable choice for big data systems.
However, the performance gains from using SSDs are so dramatic that they exceed the
total available bandwidth of the internal throughput of the system. As a result, when
comparing SSDs to HDDs, we have to look at both raw performance and
price-performance.

4.5 MRv2 HDD vs SSD

The choice between hard disk drives and solid-state drives needs to be made based on
the expected workload. HDDs will provide more raw storage capacity at the expense of
throughput while SSDs provide the best performance and price-performance but with a
lower total capacity. There is also an endurance factor with SSDs based on the number
of expected write operations.

The test results here show the comparison of 24 HDDs vs. 8 SSDs using Apache
Hadoop MapReduce version 2 (MRv2) at a 3-TB scale factor.

Result: MRv2 HDD vs SSD.
Results of the tests using MRv2 with HDDs vs. SSDs are shown below. The results

demonstrate that eight SSDs do the work of 24 HDDs with better performance for all
tasks. The results also show that SSDs are a better value with a performance
improvement of 2%

Cluster Detail: 16 data nodes each containing 24 � 1.8 TB 10 K SAS HDDs vs.
8 � 1.6 TB Intel SSDs with 2 � 40 G Network connectivity (Fig. 5).

Table 4. MRv1 vs MRv2 (YARN)

Phase MRv1 MRv2

HSGen 190 215
HSSort 522 503
HSValidate 77 125
Total time 789 843
HSph@SF at 3-TB scale factor 13.52 12.71

84 M. Trivedi

Table 5 lists detailed response times for each benchmark phase.

4.6 SSD Performance Comparison (2 vs 4 vs 8)

One of the key advantages of Apache Hadoop is that it scales linearly with the more
data nodes and more data disk drives.

This test compares the performance of 2 vs 4 vs 8 SSDs in each server, using
Apache Hadoop MapReduce version 2 (MRv2) at a 3-TB scale factor.

Result: SSD Performance Comparison (2 vs 4 vs 8).
Results of the tests using MRv2 with 2 vs 4 vs 8 SSDs are shown below. The

results demonstrate the linear scaling of performance using 8 SSDs. As shown in
Fig. 6, on an individual server basis, Apache Hadoop performance improves with the
number of drives per node.

224

527

107

858

215

503

125

843

0

100

200

300

400

500

600

700

800

900

1000

HSGen HSSort HSValidate Total Time

T
ot

al
 T

im
e

In
 S

ec
on

ds
MRv2 HDD vs SSD

HDD SSD

Fig. 5. MRv2 HDD vs SSD

Table 5. MRv2 HDD vs SSF

Phase HDD (1.8 TB) SSD (1.6 TB)

HSGen 224 215
HSSort 527 503
HSValidate 107 125
Total time 858 843
HSph@SF at 3-TB scale factor 12.47 12.71

Performance Characterization of Big Data Systems 85

Cluster Detail: 16 data nodes each containing 2, 4 and 8 � 1.6 TB Intel SSDs and
2 � 40G Network connectivity.

Table 6 lists detailed response times for each benchmark phase.

Test Result: End-to-End Write I/O Bandwidth Utilization.
TPCx-HS enables fair comparisons to be made between software and hardware

systems. It also exercises various subsystems. Figure 7 shows disk write IO bandwidth
utilization for 2, 4 and 8 SSDs using one of the node’s end-to-end run. As we are seeing
in the chart below 8 drives are performing 3 times faster than 2 drives. We are seeing it
scaling linearly as the number of the SSDs increase.

664

1156

260

2028

321

732

128

1189

215

503

125

843

0

500

1000

1500

2000

2500

HSGen HSSort HSValidate Total Time

T
ot

al
 T

im
e

In
 S

ec
on

ds
SSD Performance Comparison (2 vs 4 vs 8)

2 SSDs 4 SSDs 8 SSDs

Fig. 6. SSD performance comparison (2 vs 4 vs 8)

Table 6. SSD performance comparison (2 vs 4 vs 8)

Phase 2 SSDs 4 SSDs 8 SSDs

HSGen 664 321 215
HSSort 1156 732 503
HSValidate 260 128 125
Total time 2028 1189 843
HSph@SF at 3-TB scale factor 5.32 9.08 12.71

86 M. Trivedi

5 MRv2 Network Configuration Comparison

The impact of the network on big data systems is enormous. An efficient and resilient
network is a crucial part of a good Apache Hadoop cluster because the network is
what connects all the nodes. The network is used to load the data, read the data, and
write the intermediate data sets and final output.

The impact of the failure of a network device is dire. Individual jobs and even entire
applications may need to be restarted with the workloads pushed to remaining available
nodes. The network must be well designed with fault-tolerance, redundancy and
multiple paths between computing nodes. It must also be able to scale with the data.

The network can quickly become the constraining factor, and this is becoming more
common as technologies like Apache Spark and SSDs proliferate. In response to this,
faster networks have been developed. The current generation of 40G networks are
aimed squarely at big data systems with local storage using SSDs or high throughput
HDDs. Upgrading to the latest generation of Cisco UCS fabric interconnects, we
increased the underlying fabric from 10 Gbps to 40 Gbps.

5.1 10G Network vs. 40G Network

Comparing network bandwidth to IO bandwidth can be confusing as networks are
commonly measured in bits per second while IO bandwidth is measured in bytes per
second. Converting the network measurements to bytes:

• Standard 10 Gbps networks = 1.25 Gbps
• New 40 Gbps networks = 5 Gbps

0

0.5

1

1.5

2

2.5

3

15
:4

6:
35

15
:4

7:
35

15
:4

8:
35

15
:4

9:
35

15
:5

0:
35

15
:5

1:
35

15
:5

2:
35

15
:5

3:
35

15
:5

4:
35

15
:5

5:
35

15
:5

6:
35

15
:5

7:
35

15
:5

8:
35

15
:5

9:
35

16
:0

0:
35

16
:0

1:
35

16
:0

2:
35

16
:0

3:
35

16
:0

4:
35

16
:0

5:
35

16
:0

6:
35

16
:0

7:
35

16
:0

8:
35

16
:0

9:
35

16
:1

0:
35

16
:1

1:
35

16
:1

2:
35

16
:1

3:
35

16
:1

4:
35

G
B

/S

Time

Write Bandwidth

2 SSD 4 SSD 8 SSD

Write I/O
peak

Fig. 7. End-to-End Write I/O bandwidth utilization comparison (2 vs 4 vs 8)

Performance Characterization of Big Data Systems 87

For servers with 24 1.8 TB drives, the total IO bandwidth is 5.4 Gbps. This is over
four times the available bandwidth of a 10 Gbps network. Big data applications are not
transferring the maximum IO bandwidth across the network all the time. But they do
exceed the bandwidth at times and when they do the performance is directly affected.

One way to characterize this is to execute a performance comparison using both
10 Gbps and 40 Gbps networks. The results are shown below. Note that the perfor-
mance impact will be greater using SSDs as the total IO bandwidth can exceed 7 Gbps.

Result: 10 Gbps Network vs 40 Gbps Network.
Results of the tests using MRv2 with 10 Gbps vs. 40 Gbps are shown below. The

results demonstrate that the 40 Gbps network improves the write bandwidth which
helps the applications to write and read the data faster over the network for all tasks.
Overall, the results show that 40 Gbps performs 14% faster than 10 Gbps.

Cluster Detail: 16 Data Nodes each containing 24 � 1.8 TB 10 K SAS and
2 � 10G vs 40G Network connectivity (Fig. 8).

Table 7 lists detailed response times for each benchmark phase.

287

586

122

995

224

527

107

858

0

200

400

600

800

1000

1200

HSGen HSSort HSValidate Total Time

T
ot

al
 T

im
e

In
 S

ec
on

ds

10G Network vs 40G Network

Network 10G Network 40G

Fig. 8. 10G Network vs 40G Network

Table 7. 10G Network vs 40G Network

Phase 10G Network 40G Network

HSGen 287 224
HSSort 586 527
HSValidate 122 107
Total time 995 858
HSph@SF at 3-TB scale factor 10.85 12.47

88 M. Trivedi

6 Apache Spark

While MapReduce has become a standard for batch processing, Apache Spark is a
better choice for real-time data processing and interactive analysis. Apache Spark was
developed to overcome the disk I/O constraint of MapReduce. The model for pro-
cessing distributed data in parallel uses many cycles of first mapping the data, then
reducing it. Each of these cycles produces an intermediate output which is input to the
next. MapReduce writes these intermediate sets of output to disk, which is then read
from disk as input to the next cycle. Thus, the overall performance is gated by the
relatively slow speed of disk I/O. Apache Spark addresses this disk I/O bottleneck by
reading the data into memory and then performing all data operations in memory,
eliminating the disk I/O constraint.

6.1 Apache Spark Tuning

Out of the box, Apache Spark is not optimized for performance. Instead, the default
parameters are designed to work without modification on the minimum hardware
requirements.

Tuning the parameter can yield significant performance improvements. The tuning
parameters discussed in this section provide a guideline towards improved performance
for real-time data processing workloads.

Table 8 is the list of Spark parameters which are tuned across the different test cases
covered in this section.

6.2 Comparison of Default Settings to Tuned Parameters

An interesting starting point is a comparison of out of the box performance vs per-
formance with parameters tuned specifically for the System Under Test (SUT).

Table 8. List of Spark tuning parameters

Parameter Value

spark.shuffle.compress true
spark.broadcast.compress true
spark.io.compression.codec org.apache.spark.io.SnappyCompressionCodec
spark.shuffle.spill.compress true
spark.kryo.
referenceTracking

false

spark.executor.
extraJavaOptions

-XX:+PrintFlagsFinal -XX:+PrintReferenceGC -verbose:gc -
XX:+PrintGCDetails -XX:+PrintGCTimeStamps -XX:
+PrintAdaptiveSizePolicy -XX:
+UnlockDiagnosticVMOptions -XX:
+G1SummarizeConcMark

spark.shuffle.spillAfterRead true
spark.kryoserializer.buffer 2000
spark.default.parallelism 2110

Performance Characterization of Big Data Systems 89

Result: Default Settings vs Tuned Parameters.
As a part of this experiment, we tuned the Spark for running the TPCx-HS

benchmark on the cluster with below details.
Observation: Spark, with our tuned parameters performed significantly better: 63%

performance improvement over default settings. Note that Apache Spark performs
better when all the data fits in the memory, so with this cluster configuration, the 1 TB
scale factor test performs better than 3 TB scale factor.

Although, in-memory processing provides significant advantages, it also adds an
extra layer of consideration when tuning the system. The results below are based on
one set of tuning parameters. The tunings will vary from workload to workload.

Cluster Detail: 16 Data Nodes each containing 8 � 1.6 TB Intel SSDs and
2 � 40G Network connectivity in both test scenarios (Fig. 9).

Table 9 lists detailed response times for each benchmark phase

132

1029

91

1252

105

256

40

401

0

200

400

600

800

1000

1200

1400

HSGen HSSort HSValidate Total Time

T
ot

al
 T

im
e

In
 S

ec
on

ds

Spark Default Settings vs Tuned Parameters

Spark Default Settings Spark Tuned Parameters

Fig. 9. Spark default settings vs Tuned parameters

Table 9. Spark default settings vs. Tuned parameters

Phase Spark default Spark tuned

HSGen 132 105
HSSort 1029 256
HSValidate 91 40
Total time 1252 401
HSph@SF at 1-TB scale factor 2.85 8.97

Note: Spark test was performed with 1 TB scale factor using
TPCx-HS

90 M. Trivedi

6.3 Apache Spark Storage Comparison: HDD vs SSD

Apache Spark reads the data into memory and processes is it there. This initial read of
the data is constrained by disk I/O. However, if instead of HDDs you use SSDs you can
further improve performance. But, by how much? Answering this question helps to
understand if the additional cost of SSDs is worth it.

Further, if there is more data than will fit in memory, or the intermediate result sets
exceed the amount of available memory, Apache Spark will “spill” the data to disk
(conceptually equivalent to operating system “swapping”). When this happens, disk I/O
as a constraint re-enters the performance equation.

Result: Spark HDD vs SSD
We have done a study of the performance comparison between HDDs and SSDs

using Apache Spark by running the TPCx-HS benchmark on the test setup described
below. This led to the following observation:

The observed performance shows that SSDs performed better with Spark than
HDDs. Spark’s processing engine is designed to use both in-memory and on-disk, so it
performs operations when data does not fit in memory. This is where the high I/O
performance of SSDs overcomes the slower read and write access of HDDs and
Spark’s performance is improved. As a result, with larger data sizes or scale factors
SSDs performance will be better than HDDs.

Cluster Detail: 16 data nodes each containing 24 � 1.8 TB 10 K SAS HDDs vs.
8 � 1.6 TB Intel SSDs with 2 � 40G Network connectivity (Fig. 10).

125

304

80

509

105

256

40

401

0

100

200

300

400

500

600

HSGen HSSort HSValidate Total Time

T
ot

al
 T

im
e

In
 S

ec
on

ds

Spark HDD vs SSD

Spark HDD Spark SSD

Fig. 10. Spark HDD vs SSD

Performance Characterization of Big Data Systems 91

Table 10 lists detailed response times for each benchmark phase.

7 Conclusion

This paper provides a summary of lessons learned from performance tuning for the
TPCx-HS benchmark. The tuning parameters and test results have broad applicability
across Hadoop-based applications. In general, we clearly see improvements in per-
formance as the technology advances to address the limitations of the previous gen-
eration. This paper quantifies those improvements providing the data needed to make
informed decisions.

References

1. Nambiar, R., Poess, M., Dey, A., Cao, P., Magdon-Ismail, T., Ren, D.Q., Bond, A.:
Introducing TPCx-HS: the first industry standard for benchmarking big data systems. In:
Nambiar, R., Poess, M. (eds.) TPCTC 2014. LNCS, vol. 8904, pp. 1–12. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-15350-6_1

2. Nambiar, R.: Benchmarking big data systems: introducing TPC express benchmark HS. In:
Rabl, T., Sachs, K., Poess, M., Baru, C., Jacobson, H.-A. (eds.) WBDB 2015. LNCS, vol.
8991, pp. 24–28. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20233-4_3

3. Nambiar, R.: A standard for benchmarking big data systems. In: BigData Conference 2014,
pp. 18–20 (2014)

4. Trivedi, M., Nambiar, R.: Lessons learned: performance tuning for hadoop systems. In:
Nambiar, R., Poess, M. (eds.) TPCTC 2016. LNCS, vol. 10080, pp. 121–141. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-54334-5_9

5. TPCx-HS specification. http://www.tpc.org/tpcx-hs/

Table 10. Spark HDD vs SSD

Phase Spark HDD Spark SSD

HSGen 125 105
HSSort 304 256
HSValidate 80 40
Total time 509 401
HSph@SF at 1-TB scale factor 7.07 8.97

Note: Test was performed with 1 TB scale factor using
TPCx-HS.

92 M. Trivedi

http://dx.doi.org/10.1007/978-3-319-15350-6_1
http://dx.doi.org/10.1007/978-3-319-20233-4_3
http://dx.doi.org/10.1007/978-3-319-54334-5_9
http://www.tpc.org/tpcx-hs/

	Performance Characterization of Big Data Systems with TPC Express Benchmark HS
	Abstract
	1 Introduction
	1.1 Hadoop Evolution

	2 Introduction to TPCx-HS Benchmark
	3 Performance Characterization
	3.1 Cisco UCS Integrated Infrastructure for Big Data Cluster Configuration

	4 Hardware and Software: Performance Characterization
	4.1 Baseline Performance Tuning Parameters
	4.2 Apache Hadoop MRv2 Tuning
	4.3 MRv1 vs MRv2 (YARN)
	4.4 MRv2 Storage Configuration Comparison
	4.5 MRv2 HDD vs SSD
	4.6 SSD Performance Comparison (2 vs 4 vs 8)

	5 MRv2 Network Configuration Comparison
	5.1 10&!hx00A0;G Network vs. 40&!hx00A0;G Network

	6 Apache Spark
	6.1 Apache Spark Tuning
	6.2 Comparison of Default Settings to Tuned Parameters
	6.3 Apache Spark Storage Comparison: HDD vs SSD

	7 Conclusion
	References

